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PREFACE

Mathematics is a human endeavor. Behind its numbers, equa-
tions, formulas, and theorems are the stories of the people 

who expanded the frontiers of humanity’s mathematical knowledge. 
Some were child prodigies while others developed their aptitudes 
for mathematics later in life. They were rich and poor, male and 
female, well educated and self-taught. They worked as professors, 
clerks, farmers, engineers, astronomers, nurses, and philosophers. 
The diversity of their backgrounds testifies that mathematical tal-
ent is independent of nationality, ethnicity, religion, class, gender, 
or disability.

Pioneers in Mathematics is a five-volume set that profiles the 
lives of 50 individuals, each of whom played a role in the develop-
ment and the advancement of mathematics. The overall profiles do 
not represent the 50 most notable mathematicians; rather, they are 
a collection of individuals whose life stories and significant con-
tributions to mathematics will interest and inform middle school 
and high school students. Collectively, they represent the diverse 
talents of the millions of people, both anonymous and well known, 
who developed new techniques, discovered innovative ideas, and 
extended known mathematical theories while facing challenges and 
overcoming obstacles.

Each book in the set presents the lives and accomplishments 
of 10 mathematicians who lived during an historical period. The 
Birth of Mathematics profiles individuals from ancient Greece, 
India, Arabia, and medieval Italy who lived from 700 b.c.e. to 1300 
c.e. The Age of Genius features mathematicians from Iran, France, 
England, Germany, Switzerland, and America who lived between 
the 14th and 18th centuries. The Foundations of Mathematics presents 
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19th-century mathematicians from various European countries. 
Modern Mathematics and Mathematics Frontiers profile a variety of 
international mathematicians who worked in the early 20th and the 
late 20th century, respectively.

The 50 chapters of Pioneers in Mathematics tell pieces of the 
story of humankind's attempt to understand the world in terms of 
numbers, patterns, and equations. Some of the individuals profiled 
contributed innovative ideas that gave birth to new branches of 
mathematics. Others solved problems that had puzzled mathemati-
cians for centuries. Some wrote books that influenced the teaching 
of mathematics for hundreds of years. Still others were among the 
first of their race, gender, or nationality to achieve recognition for 
their mathematical accomplishments. Each one was an innovator 
who broke new ground and enabled their successors to progress 
even further.

From the introduction of the base-10 number system to the 
development of logarithms, calculus, and computers, most sig-
nificant ideas in mathematics developed gradually, with countless 
individuals making important contributions. Many mathematical 
ideas developed independently in different civilizations separated 
by geography and time. Within the same civilization, the name of 
the scholar who developed a particular innovation often became 
lost as his idea was incorporated into the writings of a later math-
ematician. For these reasons, it is not always possible to identify 
accurately any one individual as the first person to have discovered 
a particular theorem or to have introduced a certain idea. But then 
mathematics was not created by one person or for one person; it is 
a human endeavor.
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INTRODUCTION

T he Foundations of Mathematics, the third volume of the Pioneers 
in Mathematics set, profiles the lives of 10 mathematicians 

who lived between 1800 and 1900 c.e. Each one contributed to one 
or more of the four major initiatives that characterized the rapid 
growth of mathematics during the 19th century: the introduction 
of rigor, the investigation of the structure of mathematical systems, 
the development of new branches of mathematics, and the spread 
of mathematical activity throughout Europe.

During the previous two centuries mathematicians had devel-
oped a wealth of new ideas but had not carefully employed rigor-
ous definitions, proofs, and procedures. In the early 19th century 
mathematicians recognized the need to precisely define their terms, 
to logically prove even the most obvious principles, and to use rig-
orous methods of manipulation. They restored to mathematics the 
meticulous logic and precision that had characterized classic geom-
etry 2,000 years earlier. German mathematician Carl Friedrich 
Gauss’s proofs of the fundamental theorem of arithmetic and the 
fundamental theorem of algebra formally established elementary 
principles in these two branches of mathematics. Norwegian math-
ematician Niels Abel developed rigorous methods for determining 
the convergence of infinite series, one of the basic principles of 
calculus. German mathematician Georg Cantor provided a defini-
tion for the fundamental concept of a real number and proved the 
existence of different degrees of infinity.

The insistence on careful attention to details led 19th-century 
mathematicians to reconsider the structure of mathematical sys-
tems. Gauss and several other mathematicians recognized that the 
parallel postulate was independent of the other axioms of Euclidean 
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geometry and that alternative systems of non-Euclidean geometry 
existed. Abel and French mathematician Évariste Galois discov-
ered that the solutions of polynomial equations were related to 
groups of permutations and that the structure of those groups cor-
responded to properties of the equations. Cantor’s work with the 
axioms of set theory led to a reconsideration of the structure of all 
of mathematics.

In concert with their investigations of the structure of math-
ematical systems, 19th-century mathematicians developed new 
branches of the discipline. Galois’s ideas led to the development of 
group theory. Abel’s work established functional analysis. Cantor’s 
innovations marked the founding of set theory. French mathemati-
cian Henri Poincaré introduced a range of new ideas that estab-
lished algebraic topology, chaos theory, and the theory of several 
complex variables as new branches of mathematics. English nurse 
Florence Nightingale demonstrated that the new branch of math-
ematics known as statistics could be used effectively as a basis for 
making positive changes in societal practices. English mathemati-
cian Ada Lovelace produced the first explanation of the process of 
computer programming.

The fourth aspect of mathematics that was evident during the 
19th century was the spread of mathematical activity throughout 
Europe. No longer an elite domain reserved for highly trained 
scholars at a small number of academic institutions and occasional 
amateur mathematicians, mathematics became accessible to all edu-
cated people. Although France and Germany remained the leading 
countries for the training of mathematicians and the development 
of new mathematical ideas, nearly every European country estab-
lished universities, national academies, and scholarly institutes. The 
growing number of mathematical journals, professional societies, 
and international conferences provided opportunities for the wide 
exchange of mathematical ideas. A small but growing number of 
women started to make contributions to the advancement of the 
discipline. Russian mathematician Sonya Kovalevsky proved a fun-
damental theorem in differential equations. French mathematician 
Marie-Sophie Germain investigated prime numbers and the theory 
of vibrating surfaces. Scottish mathematician Mary Somerville 



wrote four books on astronomy, the physical sciences, geography, 
and microscopic structures, which made advanced scientific theo-
ries accessible to the general public.

During the 19th century mathematics in Europe matured into a 
rigorous discipline that attracted widespread participation in almost 
all countries on the Continent. Formalizing the foundational struc-
ture of mathematics enabled the introduction of new branches of 
the discipline. The 10 individuals profiled in this volume represent 
the thousands of scholars who made modest and momentous math-
ematical discoveries that advanced the world’s knowledge. The sto-
ries of their achievements provide a glimpse into the lives and the 
minds of some of the pioneers who discovered mathematics.

Introduction  xiii
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1

Discoveries in Prime Numbers and 
Elasticity

Although she was a reclusive, self-taught mathematician, Sophie 
Germain earned the respect and friendship of Europe’s leading 
mathematicians. She identified a class of prime numbers that bear 
her name. Through Germain’s Theorem she made a significant 
contribution toward the proof of Fermat’s Last Theorem. Her 
paper on the mathematical theory of vibrating surfaces won the 

1

Marie-Sophie Germain
(1776–1831)

1

Marie-Sophie Germain solved Fermat’s 
Last Theorem for a class of prime 
numbers that were named after her 
and won a prize for her research on 
the mathematical theory of vibrating 
surfaces. 
(The Granger Collection)



grand prize in France’s national competition. She introduced the 
concept of mean curvature of a surface.

Early Education
Marie-Sophie Germain was born on April 1, 1776, in Paris, France. 
Ambroise-François Germain, her father, was involved in national 
politics, serving as a representative in the States-General and in 
the Constituent Assembly during the French Revolution. He was 
also a prosperous businessman and became the director of the 
Bank of France. Marie-Madeleine Gruguelu Germain, her mother, 
raised Sophie and her two sisters, Marie-Madeleine and Angelique-
Ambroise. The Germain’s large house had a library filled with 
books on many subjects and private bedrooms for each of the three 
girls.

The era in which Sophie grew up was a time of revolution and 
change. During her childhood, French armies helped Americans 
fight for their independence from England. Throughout her teen-
age years, from 1789 to 1799, the French Revolution violently 
changed the lives of the people of France. During the Reign of 
Terror, from September 1793 to July 1794, the Committee on 
Public Safety arrested 200,000 citizens and executed between 
20,000 and 40,000 of them at the guillotine. To escape this turmoil, 
Sophie spent most of her time reading in her family’s library.

When she was 13 years old, she read about Archimedes, the 
Greek mathematician and scientist who made many discoveries in 
geometry and physics. According to the story, while the Roman 
army was invading the Greek city of Syracuse, Archimedes was 
drawing mathematical diagrams in the sand. He was so absorbed in 
solving the problem that when a soldier ordered him to get up and 
come with him, Archimedes insisted that the soldier move out of 
his light and let him finish the problem. The angry soldier killed 
Archimedes with his spear.

The story of Archimedes’ death made a deep impact on Sophie. 
She wondered what could be so fascinating about mathematics that 
a person would risk losing his life. Inspired by Archimedes, Sophie 
became determined to study mathematics despite her parents’ pro-
hibitions. Like most European parents in the 18th century, they 
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believed it was not an appropriate subject for a young woman to 
study and they feared that it might damage her mind. When they 
discovered that she was taking math books to her room and study-
ing at night, they stopped lighting the fire in her room’s fireplace, 
took away her clothes after she went to bed, and removed the oil 
lamps from her room. Despite these restrictions, Sophie wrapped 
herself in blankets, lit candles that she had hidden in her room, and 
read math books that she had secretly borrowed from the library. 
One morning, her parents found her asleep at her desk, her room 
so cold that the ink had frozen in the inkwell. They agreed to allow 
their determined daughter to pursue her passion for mathematics.

With her new freedom to study, Sophie read every mathemat-
ics book in her family’s library. Studying books such as Étienne 
Bézout’s Traité d’Arithmétique (Treatise on arithmetic) she learned 
geometry and algebra. She taught herself Latin so she could 
read the classic works of Sir Isaac Newton and Leonhard Euler. 
Eventually her parents became very supportive of her mathematical 
studies. When she read Jacques Antoine-Joseph Cousin’s Le Calcul 
Différential (Differential calculus), they arranged for the author to 
visit her, providing her much-needed encouragement.

Monsieur Le Blanc
In 1794 mathematicians Lazare Carnot and Gaspard Monge estab-
lished a new school in Paris called École Polytechnique (Polytechnic 
University) to provide the highest quality training in mathematics 
and science for the country’s most talented young men. Although 
Germain was not permitted to attend classes at this institution, she 
became friends with some students who shared their lecture notes 
and their homework with her. Germain submitted her homework 
solutions signed with the name Antoine-August Le Blanc, a student 
who had dropped out of school. When Professor Joseph-Louis 
Lagrange corrected her final project at the end of his mathemati-
cal analysis course, he was impressed with the excellent work that 
had been submitted by “Monsieur Le Blanc.” (“Monsieur” means 
“Mister” in French.) After the students told him that Monsieur Le 
Blanc was actually a young woman who had been studying on her 
own, he insisted that he had to meet her.
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Lagrange visited Germain at her family’s home, encouraged her 
to continue her mathematical studies, and agreed to be her mentor, 
assisting her in any way that he could. Although he was not able to 
permit her to take his courses, he recommended books and research 
papers for her to read, met with her to explain difficult concepts, 
and wrote frequent letters to her. Most important, he introduced 
her to many of Europe’s leading mathematicians.

As Germain studied Adrien-Marie Legendre’s 1798 book Essai 
sur le théorie des nombres (Essay on the theory of numbers), she devel-
oped some additional ideas and techniques. Lagrange arranged for 
her to write to Legendre, who was impressed with her discoveries. 
Through a series of letters, he helped her to more fully develop 
the concepts she had formulated. Their correspondence eventually 
became a collaboration of mathematical partners.

German mathematician Carl Friedrich Gauss also encouraged 
and advised Germain through a series of letters that he wrote to her 
between 1804 and 1812. After reading his 1801 book Disquisitiones 
arithmeticae (Investigations in arithmetic), Germain sent him her 
proof of an unsolved problem. Worried that Gauss would not seri-
ously consider her work if he knew she was a woman, she signed her 
letter Monsieur Le Blanc. Gauss corresponded with “Le Blanc” for 
three years before learning the mathematician’s true identity.

In 1807 Germain learned that the French army was planning to 
invade the German city Brunswick, where Gauss lived. Recalling 
how Archimedes was killed by a soldier while working on his 
mathematics, she feared that Gauss would die the same way. At 
her request, General Joseph-Marie Pernety, a friend of Germain’s 
father, sent a French military officer to Gauss’s home to remove 
him from danger. When Gauss learned that Mademoiselle Germain 
(“Mademoiselle” means “Miss” in French) who saved his life was 
the true identity of Monsieur Le Blanc, he wrote her a long letter of 
thanks and became an even stronger supporter of her development 
as a mathematician. In 1810, when Gauss was honored by l’Institut 
de France (the Institute of France), Germain and the institute’s sec-
retary bought him a pendulum clock that he treasured for the rest 
of his life. Although they never met in person, Germain and Gauss 
maintained a lifelong friendship.



Marie-Sophie Germain  5

Sophie Germain Prime Numbers
One of the ideas that Germain, Legendre, and Gauss discussed was 
the concept of a prime number—a whole number greater than 1 
that cannot be divided by any other positive number except itself 
and 1. For example, 13 is a prime number because the only ways to 
divide it without getting a remainder are 13 ÷ 13 = 1 or 13 ÷ 1 = 13. 
Numbers like 14 and 15 are not prime numbers because 14 ÷ 2 = 7 
and 15 ÷ 3 = 5. The first several prime numbers are 2, 3, 5, 7, 11, 13, 
17, and 19. This list continues forever because there are infinitely 
many prime numbers.

Germain investigated a special type of prime number that has 
come to be named in her honor. A prime number p is called a 
Sophie Germain prime if 2p + 1 is also a prime number. Some 
examples are 2 (since 2 × 2 + 1 = 5 is prime), 3 (since 2 × 3 + 1 = 7 
is prime), and 5 (since 2 × 5 + 1 = 11 is prime). The prime num-
ber 7 is not a Sophie Germain prime because 2 × 7 + 1 = 15 is not 
prime. With the encouragement and assistance of Legendre and 
Gauss, Germain discovered many properties of this class of prime 
numbers. Almost 200 years later, mathematical researchers are still 
studying Sophie Germain primes. These numbers have applications 
in cryptography for creating secure digital signatures and in num-
ber theory, where they are closely related to Mersenne primes, the 

A prime number p is a Sophie Germain prime if 2p + 1 is also prime.
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largest known prime numbers. Using computers, researchers have 
discovered millions of Sophie Germain primes, including one that 
is more than 34,000 digits long.

Fermat’s Last Theorem
Germain made her discoveries about prime numbers while working 
on Fermat’s Last Theorem, the most famous problem in number 
theory. For thousands of years, mathematicians had known that 
there were infinitely many sets of positive integers such as x = 3,
y = 4, and z = 5 that satisfied the equation x2 + y2 = z2. In the 1630s 
French mathematician Pierre de Fermat claimed that no integers 
satisfied the equation xn + yn = zn if the exponent n was greater than 
two. After he died, mathematicians were able to prove all the theo-
rems that he stated except this one, so it became known as Fermat’s 
Last Theorem. Around 1660 Fermat proved that this equation had 
no solutions if the exponent was n = 4. In 1738 Swiss mathemati-
cian Leonhard Euler proved that no solutions existed when n = 3. 
By 1800 these were the only two exponents for which Fermat’s Last 
Theorem was known to be true.

In her first letter to Gauss, Germain sent him her proof of 
Fermat’s Last Theorem when n = p – 1, where p is a prime number 
of the form p = 8k + 7. She thought she had proven that this famous 
theorem was true for infinitely many values of n such as n = 6, 22, 
30, and 46. Although her proof was not correct, Gauss comple-
mented her for her novel approach and encouraged her to continue 
working on the problem.

In the early 1820s, after working on the problem for more than 
15 years, she made a significant discovery, which became known 
as Germain’s theorem. Researchers had divided Fermat’s Last 
Theorem into two cases: when none of the integers x, y, or z were 
divisible by n, and when one of x, y, and z was divisible by n. In her 
theorem, Germain identified two conditions under which the first 
case of the theorem was true. She demonstrated that these condi-
tions work for all odd primes less than 100. She further explained 
how these conditions work for all odd Sophie Germain primes.

Her theorem was the most significant progress on this famous 
problem since it was first stated. In 1823 Legendre formally 
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announced Germain’s theorem to the mathematical community 
in a paper that he presented to the French Académie des Sciences 
(Academy of Sciences) an organization whose members included 
the best scientists and mathematicians in the country. He also 
included her theorem in a supplement to the second edition of his 
book Essai sur le théorie des nombres, the book that had sparked her 
first letter to him.

By generalizing the concept of Sophie Germain primes, Legendre 
was able to extend Germain’s results to all odd primes less than 197. 
In 1908 American mathematician L. E. Dickson further general-
ized Germain’s work to all odd primes less than 1,700. Germain’s 
strategy was so effective that mathematicians continued to pursue it, 
achieving new results as late as 1991, only three years before English 
mathematician Andrew Wiles finally proved Fermat’s last theorem.

Vibrating Surfaces
In addition to her important work in number theory, Germain 
made significant contributions to the mathematical explanations 
of vibrating or elastic surfaces. In 1808 German physicist Ernst
F. F. Chladni visited Paris, giving demonstrations of a scientific phe-
nomenon that was well known yet unexplained. He would sprinkle 
some fine sand on a thin, flat, circular sheet of glass or metal, and 
then rub a violin bow against the edge of the sheet. This caused the 
sand particles on the vibrating surface to align themselves into well-
defined curves called Chladni Figures. The shape and number of 
curves could be varied by stroking the bow in different ways. These 
scientific demonstrations could be repeated with predictable and 
consistent outcomes, but no one could explain why the particular 
patterns formed the way they did.

The French emperor Napoléon Bonaparte, well educated in 
mathematics and science, was so fascinated by these patterns of 
vibration that in 1809 he asked mathematician Pierre-Simon 
Laplace to organize a competition to discover the mathematical 
explanation for them. The competition was sponsored and judged 
by the Academy of Sciences. The grand prize, a medal made from a 
kilogram of gold, would be awarded to the winner at a celebration 
at the conclusion of the two-year competition.
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Germain won the grand prize in a competition sponsored by France’s Academy 
of Sciences for her analysis of the theory of elasticity that explained why sand 
formed predictable patterns on vibrating surfaces.
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Germain and many mathematicians throughout Europe started 
doing experiments to develop the equations that explained the 
patterns of vibration. Lagrange, who was one of the judges, pre-
dicted that no one would be able to solve the problem because the 
mathematics to explain it had not yet been discovered. When the 
two-year deadline arrived, Germain’s research paper was the only 
entry in the competition. Although her basic approach to explaining 
why the patterns occurred was correct, there were some mistakes 
in her mathematical calculations. The judges decided to extend the 
competition until October 1813.

Lagrange helped Germain correct her mathematical errors and 
create a partial differential equation that more accurately described 
the patterns of the vibrations. When the second deadline arrived, 
her revised paper was again the only entry. This time, her theory 
based on Lagrange’s equation more closely agreed with the well-
known experimental results in a number of situations, but her expla-
nation did not fully explain the phenomenon of vibrating surfaces. 
She had also incorrectly used a technique of double integrals that 
she did not fully understand and had not shown how she obtained 
Lagrange’s equation from physical principles. The judges awarded 
her an honorable mention and extended the contest deadline for an 
additional two years.

In 1815 Germain presented a third paper addressing vibrations 
of general curved surfaces as well as flat surfaces. Although her 
work did not fully explain the pattern of vibrations in all cases, the 
judges were impressed with the originality and the sophistication of 
her theory, and they awarded her the grand prize, their prix extraor-
dinaire (special prize). She did not appear at the award ceremony 
on January 8, 1816, to receive her gold medal, possibly because she 
was unaccustomed to being the center of attention in a large public 
gathering.

In 1821 at her own expense Germain published her enlarged 
and improved theory titled “Remarques sur la nature, les bornes et 
l’étendue de la question des surfaces élastiques et equation générale 
de ces surfaces” (Remarks on the nature, limits, and extent of the 
question of elastic surfaces and general equation of these surfaces). 
Although the theory was still incomplete and the paper includ-
ed mathematical errors, it advanced the scientific dialogue and
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stimulated others to continue their work. In this paper she stated 
her law for the general vibrating elastic surface given by the fourth-
degree partial differential equation

In this equation, N represents the thickness of the surface, S is a 
measure of the surface’s curvature, t represents time, x and y are the 
coordinates of a point on the surface, and p represents the ampli-
tude of the vibration. Augustin-Louis Cauchy praised the paper, 
stating that it would earn the author lasting fame. Claude Navier, 
who was also researching the theory of vibrations, complimented 
her work for the complexity of the methods she employed.

In 1822 Jean-Baptiste Joseph Fourier, the permanent secretary 
of the Academy of Sciences, arranged for Germain to attend meet-
ings of the academy and of its parent organization, the Institute 
of France. She became the first woman who was not married to a 
member to earn these privileges, which provided her greater access 
to discussions of current research and more opportunities to meet 
with leading French mathematicians.

During the next 10 years Germain continued to develop her 
theories and wrote three additional papers on the subject of 
vibrations of surfaces. In 1825 she submitted to the Institute 
of France a paper titled “Mémoire sur l’emploi de l’épaisseur 
dans la théorie des surfaces élastiques” (Memoir on the function 
of thickness in the theory of elastic surfaces). In this paper she 
explained how flat surfaces of various thicknesses vibrated differ-
ently. The paper contained some mathematical errors and was 
ignored by the mathematicians who read it. Fifty-five years later, 
it was rediscovered and was published in 1880 in the French 
Journal de mathématiques pures et appliqués (Journal of pure and 
applied mathematics).

Germain’s 1828 paper “Examen des principes qui peuvent con-
duire à la connaissance des lois de l’équilibre et du movement des 
solides élastiques” (Investigation of the principles that may lead to 
an understanding of the laws of equilibrium and the movement of 
elastic solids) appeared in Annales de chimie et de physique (Annals of 
chemistry and physics). In this article she responded to Siméon-
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Denis Poisson, who had criticized her work and had published a 
competing theory explaining the phenomenon of vibration at the 
molecular level. Germain defended her theory and offered her 
opinion that the purpose of mathematical investigation was to 
explain phenomena in mathematical terms without providing a 
theory for the underlying causes. For the next two decades math-
ematicians favored Poisson’s molecular theory of vibration, but the 
modern theory of elasticity is based on the equations Germain and 
Lagrange derived.

In 1830 Germain wrote her final paper on vibrating surfaces. 
“Mémoire sur la courbure des surfaces” (Memoir on the curvature 
of surfaces) was published in the German Journal für die reine und 
angewandte Mathematik (Journal of pure and applied mathematics). 
In this paper she summarized her entire theory of vibrating sur-
faces and explained the concept of the mean curvature of a surface, 
which she had developed in the course of her research. The notion 
of curvature of a surface generalizes the concept of the curvature of 
a two-dimensional curve. Gauss had introduced a measure known 
as Gaussian total curvature in which he multiplied the maximum 
and minimum curvatures at each point on a surface. Germain 
modified this idea, taking the average of the maximum and mini-
mum curvatures at each point. Her mean curvature provided a 
measure that was more useful for applications to elasticity theory. 
Mathematicians studying differential geometry continue to use this 
concept in their research.

Philosophical Writings
In addition to her work in mathematics, Germain wrote essays on 
philosophical themes. Two of these papers, a short biography, and 
a selection of some of her letters to other mathematicians were 
published in 1879 under the title Oeuvres philosophiques de Sophie 
Germain (Philosophical works of Sophie Germain). In the first 
paper, titled “Pensées diverses” (Diverse thoughts), Germain pre-
sented brief descriptions of several topics in science, her evaluation 
of the contributions of prominent mathematicians and scientists, 
and her personal opinions on various subjects. The second paper 
“Considerations générales sur l’état des sciences et des lettres” 
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(General considerations on the state of the sciences and letters) 
discussed the purposes, methods, and cultural importance that the 
sciences, philosophy, literature, and the fine arts share in common. 
Auguste Comte praised the essay as a scholarly development of the 
theme of the unity of thought.

In 1829 doctors determined that Germain had breast cancer, 
but the illness did not prevent her from completing additional 
work. During her final two years she composed her last paper on 
the curvature of surfaces and continued to correspond with other 
mathematicians and scientists. She wrote a short paper, “Note sur 
la manière dont se composent les valeurs de y et z dans l’équation 
4(xp – 1) / (x – 1) = y2 ± pz2 et celles de Y' et Z' dans l’équation 
4(xp – 1)/(x – 1) = Y'2 ± pZ'2” (Note on the manner by which one 
composes the values of y and z in the equation 4(xp – 1)/(x – 1) = 
y2 ± pz2 and those of Y' and Z' in the equation 4(xp – 1)/(x –1) = 
Y'2 ± pZ'2). The paper appeared in 1831 in the Journal für die reine 
und angewandte Mathematik (also known as Crelle’s Journal ). Gauss 
arranged for her to receive an honorary degree in mathematics from 
the University of Göttingen in Germany. Unfortunately, Germain 
died on June 26, 1831, at the age of 55, before the ceremony could 
be scheduled.

Conclusion
Sophie Germain made significant and lasting contributions to 
two areas of mathematics—elasticity and number theory. Building 
on the concepts that she developed in her prize-winning paper, 
mathematicians have fully developed a theory of elasticity that cor-
rectly explains the phenomenon of vibrating surfaces. The concept 
of mean curvature of a surface that she introduced in the process 
continues to be used by geometers. Number theorists recognize 
Germain’s theorem as one of the significant milestones in the 350 
years that it took to prove Fermat’s Last Theorem. They continue 
to compete to see whose computer can break the record for discov-
ering the largest Sophie Germain prime.

Three landmarks in Paris honor Germain’s memory. A com-
memorative plaque on the house in which she died at 13 rue de 
Savoie marks the location as an historical landmark. In her honor 
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the citizens of Paris named a street—Rue Sophie Germain—and a 
high school—École Sophie Germain.
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Carl Friedrich Gauss
(1777–1855)

“Prince” of Mathematics

Carl Friedrich Gauss (pronounced GOWSE) was the leading 
mathematician of the 19th century. His book Disquisitiones ari-
thimeticae (Investigations in arithmetic) unified the discipline of 
number theory. During the first 10 years of his 60-year career, 
he proved the fundamental theorem of arithmetic, the fundamen-
tal theorem of algebra, the law of quadratic reciprocity, and the 
constructability of regular polygons. He developed the method of 
least squares and the technique of Gaussian curvature. His ideas 

Carl Friedrich Gauss, a child prodigy 
who became the leading mathemati-
cian of the 19th century, contributed 
to almost every branch of mathemat-
ics and physics. 
(Courtesy of AIP Emilio Segrè Visual 
Archives, Brittel Book Collection)
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influenced data analysis, differential geometry, potential theory, 
statistics, calculus, matrix theory, ring theory, and complex function 
theory. As a physical scientist he made significant contributions to 
astronomy, geodesy, magnetism, and electricity. This “Prince of 
Mathematics” is considered one of the three greatest mathemati-
cians who ever lived.

Child Prodigy
Johann Friedrich Carl Gauss was born on April 30, 1777, in 
Brunswick, Germany. From an early age he referred to himself 
as Carl Friedrich Gauss and throughout his professional life he 
signed his research papers and his correspondence with this name. 
Gerhard Diederich Gauss, his father, worked as a gardener, as 
a bricklayer, and as a foreman on a canal, while Dorothea Benz 
Gauss, his mother, worked as a maid. Gauss had one sibling, a half 
brother from his father’s first marriage.

As a very young child Gauss showed signs of brilliance. He taught 
himself to read at the age of two by sounding out the letters in each 
word. When he was three, he discovered and corrected a mistake 
in his father’s calculation of the weekly payroll for his workers. As 
a 10-year-old student he surprised his teacher Mr. Büttner when 
he mentally determined the sum of the numbers 1 + 2 + 3 + … + 
98 + 99 + 100 by grouping them into 50 pairs that each totaled 101 
to produce the result 50 × 101 = 5,050. Gauss showed the depth of 
his insight by explaining to his teacher how this technique could be 
used to sum any list of equally spaced numbers (called an arithmetic 

While adding the numbers from 1 to 100 at the age of 10, Gauss rediscovered this 
classic formula for summing the terms of an arithmetic series.



series) by adding the first and last terms together then multiplying 
this sum by half the number of terms.

Büttner was one of several individuals who recognized Gauss’s 
mathematical aptitude and took a special interest in this gifted 
young man. He lent Gauss additional books to study and convinced 
his parents to allow him to investigate advanced ideas after school 
with a tutor, Martin Bartels, who later became a mathematics 
professor at the University of Kazan. During Gauss’s high school 
years E. A. W. Zimmerman, a mathematics professor at Caroline 
College, provided additional instruction and in 1791 introduced 
him to the duke of Brunswick, Karl Wilhelm Ferdinand. Impressed 
by his mathematical talents, the duke became Gauss’s patron, pay-
ing for his college education and providing him a stipend for 15 
years, enabling him to concentrate on his mathematical research.

Least Squares and Quadratic 
Reciprocity
In 1792, at the age of 15, Gauss enrolled as a student at Caroline 
College in Brunswick, where he spent three productive years. He 
developed two methods for calculating the square root of a number 
accurately to 50 decimal places. He investigated systems of geom-
etry in which Euclid’s parallel postulate did not hold and deter-
mined many properties that would be true in such non-Euclidean 
geometries. His natural ability to make rapid calculations with 
large sets of numbers enabled him to make two other discoveries 
that were so significant that either one of them would have solidly 
established his reputation within the mathematical community.

While studying how changes in individual values affected the 
average of a set of data, Gauss developed the method of least 
squares. For a set of data points plotted on a graph, this numerical 
technique provides a systematic way to find the line or curve that 
passes as close as possible to the collection of points. One of the 
most important techniques of data analysis, Gauss’s method of least 
squares is frequently used in statistics and in all scientific fields. 
The method of least squares is particularly useful when working 
with data that might include errors due to inaccurate measure-
ments or natural variations.
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Gauss also discovered a deep and significant relationship 
between perfect squares—numbers such as 49 = 72 and 100 = 102 

that can be written as integers raised to the second power—and 
prime numbers—numbers such as 2, 3, 5, and 7 that cannot be 
divided by any other positive integers except themselves and 1. He 
noticed that the prime numbers 3 and 13 could be combined to 
make many perfect squares either by starting with 13 and adding a 
number of 3s such as

13 + 3 × 4 = 25 = 52 and 13 + 3 × 12 = 49 = 72

or by starting with 3 and adding a number of 13s such as
3 + 13 × 6 = 81 = 92 and 3 + 13 × 22 = 289 = 172.

He also observed that the prime numbers 3 and 7 could be com-
bined to make perfect squares by starting with 7 and adding a 
number of 3s such as

7 + 3 × 6 = 25 = 52 and 7 + 3 × 19 = 64 = 82

but no perfect squares could be made by starting with 3 adding any 
number of 7s. He further noticed that for the prime numbers 3 and 

As a college student Gauss discovered the method of least squares that enables 
one to fit a regression line to a set of data points.



5, it was not possible to make perfect squares by starting with 3 and 
adding a number of 5s or by starting with 5 and adding a number 
of 3s.

Gauss discovered a pattern that determined whether two odd 
prime numbers could be combined to make perfect squares in both 
ways, in one way, or not at all. He saw that the key was to notice 
what happened when both prime numbers were divided by 4. If the 
prime numbers p and q both had a remainder of 3, then there were 
perfect squares of one form but not the other. If p or q or both had a 
remainder of 1, then there were perfect squares of both forms or of 
neither form. Number theorists had been trying to prove this law 
of quadratic reciprocity for 50 years. Leonhard Euler in 1783 and 
Adrien Marie Legendre in 1785 had provided important pieces of 
the proof. Gauss’s detailed mathematical argument in 1795, com-
pleted just months before his 18th birthday, finally established the 
important theorem.

University Years
After graduating from Caroline College in 1795, Gauss enrolled 
at the University of Göttingen, intending to pursue a degree in 
either mathematics or philology, the study of languages. In 1796 
he determined that it was possible to construct a regular heptadeca-
gon—a polygon with 17 equal sides and 17 equal angles—using a 
ruler and compass. From related results that he proved about the 
roots of cyclotomic polynomials, he developed the general geo-
metrical result that a ruler-and-compass construction of a regular 
n-gon was possible if n could be written as a power of 2 times a 
product of distinct Fermat primes—prime numbers of the form
22k +1. Zimmerman announced Gauss’s proof of this result in the 
“New Discoveries” section of the June 1796 issue of the journal 
Intellegenzblatt der allgemeinen Litteraturzeitung (Intellectual maga-
zine of general literature). Gauss’s success solving this classic prob-
lem that had puzzled mathematicians for more than 2,000 years 
convinced him to devote all his efforts to mathematics. He consid-
ered this discovery one of his greatest achievements and requested 
that a regular 17-gon be engraved on his tombstone.
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During his three years at the University of Göttingen, Gauss 
discovered proofs of many classic conjectures and developed new 
proofs of well-known results. He gave the first proof of the fun-
damental theorem of arithmetic—the principle that each positive 
integer can be written as a product of prime numbers in only one 
way. He rediscovered results about the arithmetic-geometric mean 
and the binomial theorem. Later in life he recalled that during this 
period of years ideas came to him so fast that he had difficulty writ-
ing them all down.

In 1798 Gauss transferred to the University of Helmstedt, a 
larger institution whose more extensive mathematical library pro-
vided him greater access to both classic and current mathematical 
research results. A year later, he completed his studies and earned 
a Ph.D. in mathematics under the nominal direction of Johann 
Friedrich Pfaff. In his dissertation, titled “Demonstratio nova 
theorematis omnem functionem algebraicam rationalem integram 
unius variabilis in factores reales primi vel secundi gradus resolvi 
posse” (A new proof that every rational integral function of one 
variable can be resolved into real factors of the first or second 
degree), he gave the first complete proof of the fundamental theo-

Gauss’s construction of the regular 17-sided polygon convinced him to pursue a 
career in mathematics.



rem of algebra. Many mathematicians, including Sir Isaac Newton, 
Leonhard Euler, and Joseph-Louis Lagrange, had unsuccessfully 
attempted to prove this basic principle concerning the factors of a 
polynomial.

Disquisitiones arithmeticae 
(Investigations in arithmetic)
Gauss did most of his early research in the area of number the-
ory—the branch of mathematics that deals with integers and the 
properties of arithmetic. He called number theory “the queen of 
mathematics” because he considered it to be the first and most 
important part of the discipline. In 1801 he published his work in 
the book Disquisitiones arithmeticae (Investigations in arithmetic). 
In seven chapters he systematically summarized the work of earlier 
mathematicians, gave his solutions to some of the most difficult 
problems in the field, and presented new concepts and challenges 
that gave direction to future researchers in number theory. The 
work included new material on quadratic forms, congruent inte-
gers, the distribution of prime numbers, and modular equations, 
as well as the construction of the regular polygon with 17 sides, 
and his proofs of the law of quadratic reciprocity, the fundamental 
theorem of arithmetic, and the fundamental theorem of algebra. 
Gauss dedicated the book to Duke Karl Wilhelm Ferdinand in 
appreciation for his support and encouragement.

Immediately upon its publication, leading mathematicians 
throughout Europe praised the work as a masterpiece. In a letter 
to Gauss, Lagrange wrote that this achievement had raised him to 
the ranks of the best mathematicians in Europe. Belgium’s Lejeune 
Dirichlet carried a copy of Disquisitiones arithimeticae with him in 
all his travels and slept with it under his pillow. The work unified 
number theory and firmly established it as an important area of 
mathematical research. Although leading mathematicians praised 
the work, Gauss’s concise, polished style of exposition, the rigor 
of his argumentation, and the advanced nature of the mathematics 
made his book inaccessible for most mathematicians until Dirichlet 
and others amplified and re-explained the material 50 years later. 
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Mathematicians today regard this book that is densely packed with 
elegant proofs of significant results from number theory as one of 
the greatest mathematics books ever written.

Astronomy
After completing the work on his number theory book, Gauss 
became interested in the field of astronomy. On New Year’s Day, 
1801, Father Giuseppe Piazzi, an astronomer at the Palermo 
Observatory in Sicily, Italy, discovered a new asteroid, which he 
named Ceres. Observing the asteroid’s position in the sky for 41 
days before it passed behind the Sun, he estimated that it would 
reappear on the other side of the Sun approximately 10 months 
later. Many mathematicians, scientists, and astronomers unsuccess-
fully attempted to determine the exact time and place when Ceres 
would again be visible. Using his method of least squares and just 
three of Piazzi’s observations, Gauss produced an accurate equa-
tion for the orbit of Ceres. Without disclosing his techniques, he 
published his prediction in a paper titled “Neigung der Bahn der 
Ceres” (Inclination of the orbit of Ceres) in the September issue of 
the major German astronomical journal Monatliche Correspondenz 
zur Bef örderung der Erd- und Himmelskunde (Monthly corre-
spondence in support of geographical and astronomical knowl-
edge). When astronomers observed the asteroid’s reappearance on 
December 7th exactly where Gauss had predicted, this achieve-
ment established his reputation as an applied scientist.

This success drew Gauss into a lifelong involvement with 
astronomy. Between 1802 and 1808 he wrote 15 papers present-
ing his observations and theories on the orbits of planets, comets, 
and asteroids. These included his 1808 paper “Beobachtungen der 
Juno, Vesta und Pallas” (Observations of Juno, Vesta and Pallas) 
published in the Monatliche Correspondenz, in which he gave accu-
rate equations for the orbits of three recently discovered asteroids. 
After Duke Ferdinand died in 1806, Gauss rejected offers from 
several universities to become a mathematics professor. In 1807 
he accepted an appointment as Director of the Observatory at 
Göttingen University, a position that he held for 48 years. In this 
capacity he actively pursued research in theoretical astronomy until 



1818, taught courses in mathematics and astronomy until 1854, 
and regularly published his astronomical observations until 1855.

Events in Gauss’s personal life during the first decade of the 
19th century affected him deeply. In 1805 he married Johanna 
Osthoff, the daughter of a local tanner. Before she died in 1809, the 
couple had three children Joseph, Wilhelmine (called Minna), and 
Ludwig (called Louis), whom they named after Guiseppe Piazzi, 
Wilhelm Olbers, and Ludwig Harding, the astronomers who 
discovered the asteroids Ceres, Pallas, and Juno. Gauss regarded 
his four-year marriage to his first wife as the only happy period 
of his life. A year after her death, Gauss married her best friend, 
Friederica Wilhelmine Waldeck, the daughter of a law professor 
at the University of Göttingen. They had three children, Eugene, 
Wilhelm, and Therese, but Gauss continued to feel a tremendous 
sense of loss over the deaths of his first wife and his patron, the 
duke. Although he wrote thousands of letters to professional col-
leagues during his career, he resisted forming deep friendships, did 
not have warm relationships with most of his children, and had no 
close friends during his lifetime.

In 1809 Gauss published his major work on astronomical theory, 
the two-volume book Theoria motus corporum coelestium in sectionibus 
conicis solem ambientium (Theory of the motion of celestial bod-
ies revolving around the Sun in conic sections). The first volume 
explained the necessary mathematical background on differential 
equations and conic sections; the second volume explained how to 
use the method of least squares to determine the orbit of an aster-
oid, comet, moon, or planet. Astronomers regarded this work as an 
important contribution to the field because it provided a rigorous 
mathematical technique for determining planetary orbits without 
requiring any assumptions about whether the orbits were circular, 
elliptic, parabolic, or hyperbolic.

While most of the 65 books and papers that Gauss produced 
between 1802 and 1818 were in the area of astronomy, he also pub-
lished a number of papers on the underlying mathematical theory 
and on other topics in mathematics. Most of his mathematical 
papers during this period appeared in the journal Commentationes der 
Königliche Societät der Wissenschaften der Göttingen (Commentaries 
of the Royal Society of Sciences at Göttingen). He introduced the 
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topic of Gaussian sums in his 1808 paper “Summatio quarundam 
serierum singularium” (Question about the summation of a singu-
lar series). His 1812 paper “Disquisitiones generales circa seriem 
infinitam” (General investigations about infinite series) gave a 
rigorous treatment of infinite series and introduced the hypergeo-
metric function. He contributed significant ideas to the developing 
area of potential theory in the 1814 paper “Theoria attractionis 
corporum sphaeroidicorum ellipticorum homogeneorum methodus 
nova tractata” (Theory of attraction of spherical elliptical homoge-
neous bodies treated by a new method). In the same year he made 
an important contribution to the topic of approximate integrals 
with “Methodus nova integralium valores per approximationem 
inveniendi” (New methods for finding the value of an integral by 
approximations). His 1816 paper “Bestimmung der Genauigkeit 
der Beobachtungen” (Determinations of the accuracy of observa-
tions) published in the journal Zeitschrift für Astronomie (Journal for 
astronomy) presented an analysis of statistical estimators.

Professional Controversies
Gauss’s publication of Theoria motus in 1809 was surrounded by con-
troversy. Three years earlier, Legendre had published the method 
of least squares in an appendix to his book Nouvelles méthods pour 
la détermination des orbites des comètes (New methods for the deter-
mination of the orbits of comets). He accused Gauss of stealing his 
ideas and presenting them as his own. For many years Legendre 
bitterly fought to have the priority of his work recognized and to 
be credited with the discovery of the method of least squares. Gauss 
maintained that he had discovered the technique while he was a 
college student and had used it to determine the orbit of Ceres, but 
he refused to produce his notes in support of his claim.

Similar controversies occurred repeatedly throughout Gauss’s 
career. When Irishman William Rowan Hamilton announced his 
discovery of the noncommutative algebraic objects called qua-
ternions, when Frenchman Augustin-Louis Cauchy published an 
important theorem about integrals of complex functions, and when 
German Carl Jacobi wrote about the repeating properties of elliptic 
functions, Gauss asserted that he had already made each of these 



discoveries years earlier but had not published them. When Janos 
Bolyai in Hungary and Nikolai Lobachevsky in Russia announced 
their discoveries of non-Euclidean geometries, Gauss claimed that 
he had reached the same conclusions during his years at Caroline 
College.

Gauss became entangled in these disputes because he was a per-
fectionist. His philosophical approach to mathematical research 
was to fully investigate a subject and refine the results before 
publishing his discoveries. Faithful to his personal motto “Few, 
but ripe,” he repeatedly reworked his proofs, searching for more 
concise arguments and more elegant explanations. During his 
career he produced four proofs of the fundamental theorem of 
algebra and eight proofs of the law of quadratic reciprocity. Each 
mathematical paper and book that he published made important 
contributions, but his critics charged that his unwillingness to 
share his unpublished work with others created animosity within 
the mathematical community and may have slowed the progress of 
mathematical discovery.

For 18 years Gauss kept a diary in which he noted his math-
ematical discoveries as they first occurred to him. In this journal he 
made 146 entries, each briefly explaining a result he had discovered 
and the date on which it occurred. The first entry, dated March 
30, 1796, recorded his discovery of how to construct a 17-sided 
regular polygon. This record of discoveries could have settled 
many disputes, but he did not permit anyone to read it until after 
he died. When his diary finally became public in 1898, this record 
of his achievements, corroborated by the thousands of letters that 
he wrote to other mathematicians during his lifetime, supported his 
claims to the disputed discoveries.

Geodesy and Differential Geometry
From 1818 to 1828 Gauss focused most of his efforts on geodesy, 
the science of land measurement and mapmaking, and the under-
lying mathematical theory of differential geometry, the branch 
of mathematics that deals with the study of curved surfaces. His 
initial interest in geodesy arose in connection with the necessity 
of determining the precise location of his observatory on the sur-
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face of Earth in order to make accurate measurements of heavenly 
bodies. In 1822 he won first prize in a competition sponsored by 
the Copenhagen Academy in Denmark for his research paper 
“Allgemeine Auflösung der Aufgabe: Die Theile einer gegebenen 
Fläche auf einer andern gegebenen Fläche so abzubilden, dass die 
Abbildung dem Abgebildeten in den Kleinsten Theilen, ähnlich 
wird” (General solution of the problem: To represent the image 
of a given surface onto another surface so the image is similar to 
the original in every detail) in which he presented the first general 
treatment of conformal mappings and introduced the preliminary 
ideas of the theory of isometric mappings. This paper, together 
with several later works, led to the Gauss-Krueger projection, a 
technique that enabled geographers to produce accurate flat maps 
of large sections of Earth’s spherical surface. His major work on 
differential geometry was the 1827 paper “Disquisitiones genera-
les circa superficies curves” (General investigations about curved 
surface) published in Commentationes. In this paper he summa-
rized a century of work on differential geometry, introduced the 
concept now known as Gaussian curvature that used techniques 
from calculus to quantify the curvature of a surface, and proved his 
theorema egregium (remarkable theorem) that Gaussian curvature is 
preserved by isometric mappings of surfaces.

In 1820 England’s King George IV commissioned Gauss to con-
duct a survey of Hanover, a 15,000-square-mile region in northern 
Germany that was then under the control of the British govern-
ment. To enable his surveying team to make accurate measure-
ments, he invented the heliotrope, an instrument that used lenses 
and mirrors to reflect the light of the Sun so that the device could 
be seen by an observer from a distance of three miles. He pro-
vided a mechanism to readjust the heliotrope every four minutes to 
account for the continually changing position of the Sun due to the 
rotation of Earth. In the 20 years that he worked on this project, 
he made thousands of measurements and performed over a million 
calculations. At the conclusion of the project he was disappointed 
that the maps he produced were useful for geographic and military 
purposes but not for land surveys and that the data he had collected 
during this study were not exact enough to calculate the radius of 
Earth as he had originally hoped.



Magnetism and Electricity
From 1828 to 1840, while working on the Hanover land survey and 
continuing to direct the Göttingen Observatory, Gauss’s primary 
research focused on the theory of magnetism and electricity. In 
1828, while attending Naturforscherversammlung (Meeting of nature 
researchers), a three-week scientific conference in Berlin, he met 
Wilhelm Weber, a young German physicist who was conducting 
experiments with electromagnets. The two entered into a produc-
tive seven-year research partnership. Together they designed and 
constructed a laboratory building at the University of Göttingen 
made entirely of nonmagnetic metals in which to perform their 
experiments. In 1833 they invented an electromagnetic telegraph 
and devised a code that enabled them to send messages at the speed 
of eight words per minute. They ran wires from the observatory to 
the laboratory one mile away and used this method of communi-
cation for a number of years. Their model did not lead to a com-
mercial product because inventors Samuel Morse in America and 
Carl August von Steinheil in Switzerland more rapidly developed 
the telegraphs they had invented at about the same time. Gauss and 
Weber established the Magnetischer Verein (Magnetic Association), 
a worldwide network of observation points to measure the mag-
netic force on the surface of Earth and created a journal Resultate 
aus den beobachtungen des Magnetischen Vereins in Jahre . . . (Results 
from the observations of the Magnetic Association in the year . . .) 
to publish the research of its members annually from 1837 to 1842. 
Through this worldwide collaboration of scientists they produced 
in 1840 the Atlas des Erdmagnetismus (Atlas of geomagnetism) a map 
of the magnetic field on the surface of Earth.

Gauss contributed to the understanding of terrestrial magnetism, 
the magnetic forces at different places on the surface of Earth. He 
invented the bifilar magnetometer, an instrument that measures the 
strength of Earth’s magnetic forces. His 1833 paper “Intensitas vis 
magneticae terrestris ad mensuram absolutam revocata” (Intensity 
of terrestrial magnetism by absolute measure revisited) published 
in Commentationes introduced the systematic use of absolute units 
for distance, mass, and time to measure nonmechanical quanti-
ties. In his 1839 paper “Allgemeine Theorie des Erdmagnetismus” 
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(General theory of geomagnetism) published in Resultate, he proved 
that there can be only two magnetic poles on Earth—a North Pole 
and a South Pole. He theoretically determined the location of the 
magnetic South Pole and concluded that it did not coincide with 
the geographic South Pole, the endpoint of the axis on which Earth 
spins. His 1840 paper “Allgemeine Lehrsätze in Beziehung auf die 
im verkehrten Verhältnisse des Quadrats der Entfernung wirk-
enden Anziehungs- und Abstossungskräfte” (General teachings 
on the relation of attracting and repelling forces when the square 
appears in an inverse relation) provided the first systematic treat-
ment of potential theory as a mathematical topic. Gauss considered 
his work on potential theory and his method of least squares to 
be vital links connecting theoretical science to observable natural 
phenomena.

In 1835 Gauss made his most important contribution to elec-
tricity and magnetism when he developed the principle known as 
Gauss’s law, which states that the electric flux through any closed 
surface is proportional to the net electric charge enclosed by the 
surface. His work on this property was not published until after 
his death. Gauss’s law is one of the four Maxwell equations that 
present a unified electromagnetic theory. In recognition of the sig-
nificance of this contribution, scientists have defined the gauss as a 
unit of measure of magnetic field in the cgs system.

Other Discoveries
In addition to his work on astronomy, geodesy, magnetism, and 
electricity, Gauss made contributions to other areas of science. He 
developed mathematical techniques for studying the flow of liquids. 
He did basic research on acoustics, the study of sound. In optics he 
wrote papers about the design of multiple lenses and invented a 
lens called the Gaussian eyepiece that is still used today.

In mathematics his contributions extend beyond his discoveries 
in number theory, geometry, differential geometry, complex func-
tion theory, and potential theory. He developed new techniques 
for solving differential equations. His work on curved surfaces 
contributed to the new field of topology. His discovery of the bell 
curve, the normal (or Gaussian) distribution, and hypergeometric 



functions advanced mathematical knowledge in the field of statis-
tics. In matrix theory his introduction of the technique of Gaussian 
elimination enabled mathematicians to solve problems involving 
simultaneous linear equations. In ring theory his Gaussian inte-
gers—complex numbers whose real and imaginary parts are inte-
gers—remain a fundamental concept. When he was asked how he 
was able to make so many important discoveries, he replied that 
anyone who concentrated as hard and as long as he did could have 
done the same.

In his last years Gauss served his community at Göttingen 
University in additional ways. He supervised the mathematical 
research of several doctoral students, including Richard Dedekind 
and Bernhard Riemann, who both became accomplished mathema-
ticians. Several times he served as the school’s dean of the faculty. 
Using his knowledge of statistics and his ability to read newspapers 
in foreign languages, he made international investments for the 
“widow’s fund” that provided financial support to the wives and 
families of deceased faculty members. Applying the same shrewd 
strategies to his own finances, he accumulated considerable per-
sonal wealth. On February 23, 1855, Gauss died in his sleep at his 
home in Göttingen at the age of 77.

Conclusion
Gauss defined mathematics in the 19th century and made sig-
nificant contributions to many branches of physical science. His 
masterpiece, Disquisitiones arithmeticae, which presented his proofs 
of the law of quadratic reciprocity, the fundamental theorem of 
arithmetic, the fundamental theorem of algebra, and the constru-
ability of regular polygons, along with his work on quadratic forms 
and modular arithmetic established number theory as a unified and 
significant branch of mathematics. His development of the concept 
of Gaussian curvature provided a rigorous technique that remains 
central to differential geometry. His method of least squares has 
become an essential method of data analysis in all quantitative dis-
ciplines. Gauss’s contributions to potential theory, statistics, calcu-
lus, matrix theory, ring theory, and complex function theory shaped 
those branches of mathematics during his lifetime and continue to 
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be of lasting importance. Gauss’s law is a major result in electro-
magnetic theory. His contributions to the determination of plane-
tary obits in astronomy, the mapping of curved surfaces in geodesy, 
and the theory of terrestrial magnetism are central concepts and 
techniques within those branches of the physical sciences.

During his lifetime Gauss earned such an honored status for his 
unparalleled talents and his many significant contributions that his 
fellow mathematicians called him the “Prince of Mathematics.” 
Like the ancient Greek Archimedes, Gauss solved almost every 
major problem in mathematics in his day, contributed to every 
existing branch of mathematics, and invented many practical 
instruments. Like the Englishman Sir Isaac Newton, he looked at 
classic problems in mathematics and science and found the deep 
truths that others had missed. In the history of mathematics, these 
three—Archimedes, Newton, and Gauss—are honored as the three 
greatest mathematicians who ever lived.
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Mary Fairfax Somerville used her 
knowledge of mathematics to write 
popular science books on astronomy, 
the physical sciences, geography, and 
microscopic structures. 
(Library of Congress)

3
Mary Fairfax Somerville

(1780–1872)

“Queen” of Nineteeth-Century Science

Mary Fairfax Somerville was one of Europe’s leading women of 
mathematics and science in the 19th century. Lacking a formal 
education, she mastered advanced theories of mathematics and sci-
ence through a lifelong commitment to self-study. She performed 
experiments to investigate the effects of the rays of the Sun on 
steel needles, vegetable juices, and chemically-treated paper. She 
wrote about comets and advocated for the education of women. 
Her major achievements were four books on astronomy, the physi-



cal sciences, geography, and microscopic structures. These popular 
works, widely distributed throughout Europe and America, made 
advanced scientific theories accessible to the general public. Her 
accomplishments as a writer in various fields of science earned her 
international recognition within the mathematical and scientific 
community.

Early Life in Scotland
Mary Fairfax was born on December 26, 1780. William George 
Fairfax, her father, served in the British Navy, eventually rising to 
the rank of vice admiral. While returning from London, England, 
where she saw her husband depart on one of his navy voyages, 
Margaret Charters Fairfax stopped to visit her sister Martha in 
Jedburgh, Scotland, and gave birth to Mary.

Although they had many distinguished relatives, including 
America’s first president, George Washington, Mary’s family lived 
a modest lifestyle on their father’s navy salary. She spent her child-
hood in the seaside village of Burntisland, Scotland, with her sister 
Margaret, her brothers Samuel and Henry, and three other siblings 
who died as infants. Her father’s advancements in rank provided 
additional advantages for the family, including the opportunity to 
receive an education.

In 1789 Mary’s parents sent her to an exclusive school for girls 
in Musselburgh, where she received her only year of formal edu-
cation. The headmistress, Miss Primrose, taught the students to 
practice good posture, learn proper manners, and memorize pages 
from Samuel Johnson’s Dictionary of the English Language. Although 
Mary disliked the strict discipline, she learned to read and write in 
English and French and developed a lifelong interest in reading.

During her teenage years and into her twenties, Mary and her 
family spent each winter in Edinburgh, the capital of Scotland. For 
several months each year she attended different finishing schools 
to learn the skills that were expected of a cultured young lady in 
upper-class society—sewing, playing the piano, dancing, drawing, 
and painting as well as reading Latin and Greek. She enjoyed a vari-
ety of social events, including parties, balls, theater performances, 
and concerts, and in her circle of friends became known as the 
“Rose of Jedburgh.”
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Introduction to Mathematics
Mary’s mathematical education was haphazard and sporadic. As a 
13-year-old student at one of the finishing schools, she took her 
first formal arithmetic class and quickly mastered the rules of the 
subject. She became interested in algebra—the branch of math-
ematics that expressed the rules of arithmetic in general terms—
after discovering a puzzle in a women’s fashion magazine during a 
tea party. Algebra was not part of the curriculum at the finishing 
school, but her brother’s tutor, Mr. Gaw, provided her with a 
limited explanation of some of the fundamentals of the subject. 
During a painting class at Alexander Nasmyth’s Academy, Mary 
overheard the instructor advising a male student that to learn more 
about the theory of perspective he should study Euclid’s Elements, a 
classic text on arithmetic and geometry. Because it was considered 
improper for a young lady to purchase such a book, she convinced 
Gaw to buy her a copy of Elements.

Knowing that her parents would not approve of her interest in 
mathematics, Mary studied by candlelight in her bedroom at night. 
When the maid complained to her father that the household sup-
ply of candles kept running out, her parents discovered her secret 
activities. Her mother thought that her interest in mathematics was 
shameful, and her father worried that it would cause her to become 
mentally ill, two societal attitudes that were prevalent throughout 
Europe at the time. Although they took away her copy of Elements 
and forbade her to read any math books, she continued to recite the 
definitions, theorems, and examples that she had memorized from 
the first six chapters and defiantly sought opportunities to continue 
her study of mathematics.

First Marriage and Independence
In her early twenties Fairfax became reacquainted with her dis-
tant cousin Samuel Greig, a captain in the Russian Navy who was 
completing a training assignment aboard her father’s ship. In May 
1804, when he was assigned to a position at the Russian embassy 
in London, the two cousins married. Although Greig was a well-
educated professional, he felt that it was not important for women 



to be educated and did not encourage his wife’s mathematical stud-
ies. She gave birth to two sons, Woronzow and William George, 
before her husband died in 1807. He left her a modest inheritance 
that provided a comfortable lifestyle, enabling her to further her 
education and pursue her interests in mathematics and science.

Through independent reading and study, Fairfax developed her 
skills in algebra, trigonometry, and geometry. This background 
in mathematics enabled her to read and understand books on 
astronomy and other branches of science. She lacked access to an 
institution of higher education for women and had limited contact 
with educated people who were willing to discuss the material she 
was reading. These obstacles, combined with her relatives’ and 
friends’ disapproval and discouragement, impeded her educational 
progress. After several years she found a sympathetic group of 
well-educated men who supported the idea of higher education for 
women.

William Wallace, a mathematics professor at the Royal Military 
College in Great Marlow, Scotland, was one colleague with whom 
Fairfax exchanged many letters. He encouraged her, gave her fre-
quent advice, and suggested books for her to read. Following his 
counsel, she built a strong personal library and rapidly developed 
her mathematical talents. Wallace helped her to read through dif-
ficult books such as Principia mathematica (Principles of mathemat-
ics), in which English mathematician Sir Isaac Newton explained 
his theory of calculus, and the newly published Mécanique céleste 
(Celestial mechanics), in which French mathematician Pierre-
Simon de Laplace explained the laws that governed the motions of 
the planets. With Wallace’s encouragement, she regularly submit-
ted her solutions to the challenging problems that appeared in each 
issue of the Scottish journal Mathematical Repository. In 1811 one of 
her published solutions won a silver medal.

Second Marriage and the Start of a 
Career in Science
In May 1812 Fairfax married her first cousin Dr. William 
Somerville, a military physician who served as the head of army 
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hospitals in Scotland. Although Mary was born at his parent’s 
house in Jedburgh, they had rarely met during the next 30 years. 
Unlike her first husband, Captain Greig, Dr. Somerville was very 
supportive of her interest in mathematics, science, and education. 
With his encouragement, she furthered her knowledge of Greek 
and became interested in the study of botany. Together, they read 
through books on geology and mineralogy.

In the next five years Somerville gave birth to four more chil-
dren—Margaret, Thomas, Martha Charters, and Mary Charlotte. 
She took personal responsibility for the education of her five chil-
dren (her son William George had died in 1814) teaching them in 
all subjects. In addition to her growing family responsibilities, she 
continued to develop her own mathematical and scientific abilities.

In 1816 the Somervilles moved to London, where they lived for 
the next 20 years. They attended popular scientific lectures at the 
Royal Institution and became well known in educated circles. They 
developed friendships with many English scientists, including 
astronomers John and Caroline Herschel, mathematician Charles 
Babbage, and astronomer Edward Parry, who later named a small 
island in the Arctic Ocean after Mrs. Somerville. These contacts 
provided her several opportunities to work as an assistant to some 
of England’s leading scientists. The Somervilles frequently traveled 
to France, Switzerland, and Italy, where they developed lifelong 
friendships with mathematicians and scientists throughout Europe, 
friendships that provided her access to the most current discoveries 
and advances in all branches of mathematics and science.

In 1825 Somerville completed a series of physics experiments 
on the connection between magnetism and the rays of the Sun. 
Working in her garden, she focused sunlight on a steel sewing nee-
dle and observed that, after a period of time, the needle appeared 
to be magnetized. She described her discoveries in a research paper 
entitled “On the Magnetizing Power of the More Refrangible 
Solar Rays.” Dr. Somerville, who had been elected as a Fellow of 
the Royal Society, the leading professional organization of scien-
tists in England, presented his wife’s paper at one of their meetings 
in 1826. The members of the Royal Society were impressed with 
her work and published her paper later that year in their journal 
Philosophical Transactions. The presentation and publication of her 



paper were both exceptional accomplishments. Only one other 
woman, Caroline Herschel, a German-born astronomer who dis-
covered eight comets and created a catalogue of 2,500 stars, had 
ever had her research so honored by the Royal Society. Although 
the theory that Somerville proposed in her paper was eventually 
disproved by other scientists, the paper established her reputation 
as a skillful scientific writer.

Writing Her First Book
The success of this paper brought Somerville an invitation to write 
an astronomy book. In 1827 Lord Henry Brougham, a friend of 
the Somervilles, and an officer in the Society for the Diffusion 
of Useful Knowledge, wrote to Dr. Somerville, asking if his wife 
would be willing to create an English version of Laplace’s Mécanique 
céleste. Although the society respected her as a woman who pos-
sessed a deep knowledge of mathematics and science and who had 
demonstrated strong abilities as a writer on technical subjects, they 
complied with the societal expectation that their correspondence 
should be addressed to her husband.

Somerville was confident that she could translate from French 
into English Laplace’s classic work that summarized the discoveries 
of several generations of scientists and mathematicians on gravi-
tational theory and the motions of the bodies in the solar system. 
Successfully explaining the sophisticated theories in a manner that 
made them more accessible to general audiences posed a greater 
challenge. She agreed to undertake the project under the condition 
that her work was to be done in secret so that, if she did not create 
an acceptable edition of the book, no one outside the society would 
know of her failure.

Somerville worked on this project for three years, transforming 
Laplace’s technical mathematical arguments into simpler expla-
nations. She created explanatory diagrams to illustrate various 
scientific principles, explained complicated theories in terms of 
simpler examples, and devised experiments that made the material 
easier to understand. Her husband assisted by obtaining library 
books and by copying by hand her many revisions of the manu-
script.
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When the book The Mechanisms of the Heavens was published 
in 1831, it exceeded the expectations of the members of the 
Society for the Diffusion of Useful Knowledge. Laplace compli-
mented Somerville for her clear and accurate interpretations of the 
advanced mathematical and scientific theories. The Royal Society 
was so impressed with this book that they hired a sculptor to carve 
a bust of Somerville so that her statue could be located in a place 
of honor in their meeting room. All 750 copies of the first print-
ing sold out in less than a year, and additional printings had to be 
made. The book quickly became a standard textbook for honor stu-
dents at Cambridge University and was widely distributed in Great 
Britain and throughout Europe. The first portion of the book, in 
which she explained the necessary mathematical background, was 
also published separately in 1832 under the title A Preliminary 
Dissertation to the Mechanisms of the Heavens.

Second Book Brings Honors and 
Recognition
The success of this book led to another writing project. While 
spending the next year in Europe visiting with friends from the 
scientific community, Somerville completed most of the chapters 
of a second book entitled The Connection of the Physical Sciences. In 
this work she explained the theories of light, sound, heat, motion, 
electricity, magnetism, gravity, and astronomy and showed how 
these various physical phenomena were closely related to one 
another.

When The Connection of the Physical Sciences was published in 
1834, it was a bigger success than The Mechanisms of the Heavens 
had been. Between 1834 and 1877, 10 editions of the book were 
printed in English, French, Italian, and Swedish, and sold through-
out Europe as well as in America. The book was not only popular 
with general readers but was also useful to scientists. Astronomer 
John Couch Adams, who discovered Neptune, credited a passage 
in Somerville’s book with inspiring him to look for this new planet 
near Uranus. The book helped to influence the European scientific 
community to begin to view the physical sciences as a unified field, 



rather than continue to think of each topic as a separate branch of 
science.

Upon the publication of her second book, Somerville received 
recognition from many scientific and governmental bodies. In 
1835 she and Caroline Herschel became the first women to be 
elected to England’s Royal Astronomical Society. In 1834 and 
1835 she was honored with memberships in the Swiss Society of 
Physics and Natural History, the Irish Royal Academy, and the 
Bristol Philosophical and Literary Society. She was invited to meet 
England’s Queen Adelaide, to whom she had dedicated the book, 
and Princess Victoria. The British Prime Minister, Sir Robert 
Peel, awarded her a generous civil pension of 200 pounds per 
year, an amount that was raised to 300 pounds per year when the 
Somervilles experienced some financial problems a few years later.

Somerville became a prominent figure in London’s intellectual 
circles strongly supporting women’s rights and the education of 
women. When John Stuart Mill submitted a petition to Parliament 
seeking to give women the right to vote, she was the first to sign 
it. She assisted women who showed promise in math and science, 
introducing them to scientists and mathematicians who were will-
ing to help them. She significantly influenced the career of Ada 
Lovelace, the daughter of Lord and Lady Byron, by tutoring her 
in mathematics and introducing her to mathematician Charles 
Babbage, who involved her in his work with his Analytical Engine.

Somerville’s fame and recognition did not distract her from her 
scientific work. In 1835, when Halley’s Comet made its expected 
appearance streaking across the night skies of Europe, she was 
visiting Italy near the Collegio Romano (Roman College). She 
sought permission to use their observatory that housed one of the 
most powerful telescopes in Europe to view the famous comet that 
appears only once every 76 years. Her request was denied because 
women were not allowed to use the facilities of this monastery 
where men were trained for the priesthood. Despite this restric-
tion, she wrote a lengthy essay titled “On Halley’s Comet” that 
was published in the December 1835 issue of the popular science 
magazine Quarterly Review.

In 1835 Somerville designed and conducted a series of experi-
ments to investigate some chemical properties of the rays of the 

Mary Fairfax Somerville  39



40  The Foundations of Mathematics

Sun. She discovered how different materials caused a range of 
chemical reactions when they were placed on paper treated with 
silver chloride and then exposed to the sunlight. The discoveries 
she made through these experiments revealed some of the basic 
chemical properties that eventually led to the development of pho-
tography. She wrote a research paper about her work and sent it 
to her colleague D. F. J. Arago, who read portions of the paper to 
a meeting of the French Academy of Sciences in 1836. Her paper 
entitled “Experiments on the Transmission of Chemical Rays of 
the Solar Spectrum Across Different Media” was published that 
year in the French scientific journal Comptes rendus de l’Academie des 
Sciences (Rendering of the accounts of the Academy of Sciences).

Move to Italy
In 1836, when Dr. Somerville’s health problems required that he 
live in a warmer climate, the couple moved from London to Italy, 
where they lived for the rest of their lives. They became popular and 
respected members of the Italian mathematical and scientific commu-
nity. Between 1840 and 1845, Somerville was elected to membership 
in six Italian scientific societies. Although in her sixties, she produced 
several unpublished papers, including a scientific essay on meteors, 
similar to her piece on Halley’s Comet, and a mathematical paper 
titled “On Curves and Surfaces of Higher Orders.” She also wrote 
two books titled The Form and Rotation of the Earth and The Tides of 
the Ocean and Atmosphere, which she did not attempt to publish.

Somerville also continued her scientific research designing and 
conducting a third series of experiments to study the effects of 
the Sun’s rays. When she completed her analysis, John Herschel 
presented the results at a meeting of the Royal Society. A portion 
of her paper entitled “On the Action of Rays of the Spectrum on 
Vegetable Juices” appeared in 1845 in Abstracts of the Philosophical 
Transactions of the Royal Society.

At the age of 67, Somerville published Physical Geography, the 
first major work written in English to study the physical surface of 
Earth by investigating its land masses, climates, soils, and vegeta-
tion. This innovative book earned her wide international recog-
nition, selling more copies than either of her first two published 



books. Printed in seven editions between 1848 and 1877, the 
popular book was widely used in European schools and universi-
ties for 50 years. England’s Royal Geographical Society honored 
Somerville for this work by awarding her their 1869 Victoria 
Gold Medal. In recognition of this accomplishment, the American 
Geographical and Statistical Society and the Italian Geographical 
Society elected her to membership. Between 1853 and 1857, five 
other Italian scientific societies admitted her as a member, and sev-
eral scientific organizations awarded her medals of achievement.

In 1869, at the age of 88, Somerville wrote two final books. 
In the two-volume work On Molecular and Microscopic Science she 
presented a summary of discoveries in biology, chemistry, and 
physics about the molecular form of matter and the microscopic 
structure of plants. English biologist Charles Darwin, who later 
became famous for his revolutionary ideas on the theory of evolu-
tion, provided some of the illustrations for the book. She also wrote 
a book-length account of her life and of the many influential and 
important people she had known. In 1873 her daughter Martha 
published portions of this autobiography under the title Personal 
Reflections from Early Life to Old Age of Mary Somerville.

Productive Life Comes to an End
Somerville outlived her husband, who died in 1860, four of her six 
children, and most of her friends and colleagues. She was almost 
deaf and had difficulty remembering events and people’s names but 
her mathematical and scientific mind remained sharp. Even in her 
last days she continued to read math books for four or five hours 
each morning as she had done each day for the past 60 years

On November 29, 1872, Mary Fairfax Somerville died peace-
fully in her sleep at her home in Naples, Italy, at the age of 91. 
When she died, London’s Morning Post newspaper called her the 
“Queen of Nineteenth Century Science” in recognition of her role 
as one of the most visible women in the European scientific com-
munity for so many years.

Several of England’s educational institutions have preserved 
Somerville’s legacy as an educated woman of mathematics and 
science. Shortly after her death, her children donated most of the 
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books in her personal library to Ladies’ College at Hitchin, now 
known as Girton College at Cambridge University. In 1879 Oxford 
University established Somerville College as one of its first two 
women’s colleges. The Mary Somerville Scholarship at Oxford 
University enables talented young women to pursue an advanced 
education in mathematics.

Conclusion
Somerville’s principal contributions to science were her four books 
on astronomy, the physical sciences, geography, and microscopic 
structures. These popular works made advanced scientific theories 
accessible to nonspecialists throughout the Western world. The 
second of these books, The Connection of the Physical Sciences, also 
influenced the European scientific community to begin to consider 
the physical sciences as a unified field rather than as a collection 
of unrelated branches of science. Although her experiments on 
solar rays and her paper on Halley’s Comet were not significant 
scientific advances, they and her books gave compelling evidence 
that women were capable of understanding and contributing to the 
fields of mathematics and science. Her productive career as a self-
taught woman helped to change the attitudes of many members 
of the scientific community who embraced her as a scientific col-
league and honored her lifetime of work.
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Elliptic Functions

In the last 10 years of his brief 26-year life Niels Henrik Abel 
(pronounced AH-bull) contributed significant ideas to the develop-
ment of algebra, functional analysis, and the rigorous character of 
the discipline of mathematics. As a college student he proved that 
no formula existed to solve polynomial equations of degree five, a 
question that had been unanswered for three centuries. He proved 
that the general binomial theorem was valid for real and complex 

Niels Henrik Abel introduced the con-
cept of elliptic functions, proved the 
impossibility of creating algebraic 
formulas to solve all higher-degree 
polynomial equations, and devel-
oped rigorous methods to determine 
the convergence of infinite series. 
(Courtesy of the Library of Congress)
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exponents. In a memoir that one of the leading mathematicians in 
France misplaced, he introduced the concept of elliptic functions. 
His theorems and methods concerning the convergence of infinite 
series helped bring a level of rigor back to mathematical discourse.

Family Life and Education
Niels Henrik Abel was born on August 5, 1802, in Finnöy, a small 
island village off the southwestern coast of Norway. Sören Georg 
Abel, his Lutheran minister-father who had university degrees in 
theology and philosophy, served as pastor of Finnöy and the sur-
rounding islands. His mother, Anne Marie Simonson, the daughter 
of a wealthy merchant and shipowner, was a talented pianist and 
singer. In 1804 the family moved to Gjerstad, where minister Abel 
succeeded his father as pastor and became involved in national 
politics, eventually serving two terms as a member of the Storting, 
Norway’s parliament.

Abel received his early education from his father, who tutored 
him and his six siblings at home. In 1815 his parents sent him and 
his older brother to the Cathedral School, a private boarding school 
in the capital city of Christiania (now Oslo). Berndt Holmboe, who 
became his mathematics teacher in 1818, noticed his aptitude for 
the subject and introduced him to the writings of the leading math-
ematicians of Europe, including Sir Isaac Newton, Leonhard Euler, 
Pierre-Simon de Laplace, and Joseph-Louis Lagrange. Within a 
year he started to engage in independent research projects. Years 
later, he attributed the rapid development of his mathematical tal-
ents to reading the works of the masters rather than those of their 
pupils. When Abel’s father died in 1820, Holmboe secured a schol-
arship, enabling him to complete his final year of studies.

In 1821, on the strength of his high scores on the mathematics 
portion of the entrance examination, Abel entered the University 
of Christiania, the only institution of higher learning at the time in 
Norway. After earning his degree, he intended to become a math-
ematics professor so that he could financially support his struggling 
family. Aware of his exceptional abilities and his destitute financial 
situation, the university provided a free dormitory room and the 
faculty contributed money from their own salaries to pay his tuition 
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and other expenses. Christoffer Hansteen, professor of astronomy 
and applied mathematics, and Sören Rasmussen, the only profes-
sor of mathematics, directed his mathematical studies and provided 
additional financial support. Within a year he completed the basic 
coursework in general studies and devoted his attention full-time 
to original mathematical research.

Solvability of Algebraic Equations by 
Radicals
One line of independent mathematical research that Abel had 
been pursuing since 1820 involved the 300-year-old search for the 
quintic formula. Mathematicians had developed formulas to solve 
polynomial equations whose highest terms had degree 1, 2, 3, and 4. 

The simple formula  gave the solution to linear equations 

of the form ax + b = 0 and the quadratic formula  

provided the solution to all second-degree equations of the form 
ax2 + bx + c = 0. Mathematicians had also created formulas to solve 
third- and fourth-degree equations whose highest powered terms 
were x3 or x4 but had been unable to discover similar formulas for 
higher degree equations.

During his final year at the Cathedral School, Abel thought he 
had found the quintic formula to find the roots of any fifth-degree 
equation. He wrote a preliminary draft of a paper explaining his 
method and showed it to Holmboe and Hansteen. They forwarded 
his manuscript to Ferdinand Degan, professor of mathematics at 
the University of Copenhagen, Denmark, with the request that 
the Danish Academy publish their student’s result. After review-
ing Abel’s work, Degan asked him to amplify his explanations and 
to illustrate his method with specific examples. While creating 
the examples, he discovered an error in his analysis and started to 
reconsider the question of whether such a formula was possible.

In December 1823, while at the University of Christiania, Abel 
proved that it was impossible to construct a quintic formula that 
solved all fifth-degree equations using only a finite number of addi-



tions, subtractions, multiplications, divisions, and extractions of 
roots, a method known as solving equations by radicals. At his own 
expense he published his proof in a brief pamphlet titled Mémoire 
sur les équations algébriques où on démontre l’impossibilité de la résolu-
tion de l’équation générale du cinquième degré (Memoir on algebraic 
equations demonstrating the impossibility of the resolution of the 
general equation of the fifth degree). The financial constraints 
that forced him to condense his argument to six pages made the 
reasoning in his proof difficult to follow. When he sent copies of 
the pamphlet to leading mathematicians throughout Europe early 
in 1824, the cryptic proof by a young, unknown student generated 
no responses. German mathematician Carl Friedrich Gauss, whose 
comments Abel was particularly intent on hearing, threw away the 
pamphlet without reading it.

Despite the memoir’s failure to generate interest from any mem-
ber of the European mathematical community, Abel continued to 
expand his research on the solution of equations by radicals and to 
try to get his work on the topic published. In 1826 an expanded 
explanation of his discovery titled “Beweis der Unmöglichkeit, 
algebraische Gleichungen von höheren Graden als dem vierten 
allgemein aufzulösen” (Proof of the impossibility of the general 
solution of algebraic equations of degree higher than the fourth) 
appeared in the first issue of the German mathematics quarterly 
Journal für die reine und angewandte Mathematik (Journal for pure 
and applied mathematics). In this paper he proved the more general 
result that it was impossible to construct an algebraic formula to 
solve all equations of any degree higher than four using only the 
four arithmetic operations and the extraction of roots. In his proof 
he developed the concept of an algebraic field extension, a key con-
cept in the developing discipline of abstract algebra.

In the 1828 manuscript Sur la résolution algébraique des equations 
(On the algebraic resolution of equations), which was not pub-
lished until after his death, Abel acknowledged the existence of an 
obscure 1799 proof by Italian mathematician Paolo Ruffini that 
there was no quintic formula. In honor of these two mathemati-
cians, the important result that the general equation of degree n is 
not solvable by radicals if n > 4 is now known as the Abel-Ruffini 
theorem.
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Abel recorded his final comments on the subject in the 1829 
paper “Mémoire sur une classe particulière d’équations résolubles 
algébriquement” (Memoir on a particular class of equations that 
are algebraically resolvable) that appeared in the same journal as 
his 1826 paper. In this work he explained that if the roots of a 
polynomial equation satisfied a certain condition then the equation 
was solvable by radicals. Building on Abel’s ideas, French math-
ematician Évariste Galois finished the analysis of the topic in 1831, 
specifying a complete set of conditions that determined whether or 
not an equation was solvable by radicals.

General Binomial Theorem
During his years at the University of Christiania, Abel worked on 
several other research projects. In 1823 he published three articles 
in Magazin for Naturvidenskaben (Magazine for the natural sciences), 
the Norwegian scientific journal that Hansteen had recently estab-
lished. His first two papers on functional equations and integrals 
were not significant results, but his third paper titled “Opläsning 
afet Par Opgaver ved bjoelp af bestemte Integraler” (Solution of 
some problems by means of definite integrals) contained the first 
published solution of an integral equation. The paper addressed 
the motion of a point mass moving along a curve under the influ-
ence of a gravitational force.

In the summer of 1823 Rasmussen financed a trip enabling Abel 
to travel to Copenhagen to work with Degen and other Danish 
mathematicians. During this visit he met a young woman named 
Christine Kemp and became engaged to be married. Recognizing 
the benefits obtained through collaboration with talented colleagues, 
Abel submitted a collection of his manuscripts to the Norwegian 
government and requested that they provide him funds so he could 
travel to Europe to work with the leading mathematicians in France 
and Germany. The government awarded him a stipend to study the 
French and German languages in Norway for two years and the 
travel funds to visit Europe for the following two years.

In September 1825 Abel and four friends who were preparing for 
careers in medicine and geology departed for Germany. In Berlin 
he met August Leopold Crelle, the civil engineer who designed



Germany’s first railroad system, who was working to establish the
Journal für die reine und angewandte Mathematik. This German 
mathematics quarterly, which became known as Crelle’s Journal, was
the first scholarly periodical devoted exclusively to the publication
of new mathematical research. Crelle vigorously promoted Abel’s
work, publishing 33 of his research papers in the journal, including
seven articles in the first volume in 1826. In addition to Abel’s mem-
oir on the impossibility of solving the quintic equation, his papers in
the quarterly journal’s first four issues included “Untersuchungen

über die Reihe                                                                           ”

(Examination of the series . . .). In this paper he gave the first proof 
of the binomial theorem for real and complex values of m showing 
that this infinite sum of terms equaled (1 + x)m. This result general-
ized Newton’s 1669 discovery that the binomial theorem was valid 
for all fractional exponents.

Elliptic Functions
In the spring of 1826 Abel and his companions traveled to Italy, 
Austria, Switzerland, and France. By the time they arrived in 
Paris it was July, the universities had dismissed for the summer, 
and most of the mathematicians he had hoped to visit had left 
for their vacations. In anticipation of their return he wrote a 
lengthy manuscript titled “Mémoire sur une propriété générale 
d’une classe très-étendue de functions transcendantes” (Memoir 
on a general property of a very extensive class of transcendental 
functions), which he hoped to present to the mathematicians at 
the Académie des Sciences (Academy of Sciences). In this treatise 
he provided a detailed explanation of his discoveries involving 
elliptic functions.

Abel had created elliptic functions as generalizations of the cir-
cular or trigonometric functions. French mathematician Adrien-
Marie Legendre had been studying complicated elliptic integrals of 

the form  that expressed the length of an arc 
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along an ellipse. Abel observed that on a circle, the simplest type of 

ellipse, where the integral arcsin(x) =  expressed the length 

of an arc, the inverse function, sin (x), had more elegant properties 
and was much easier to analyze than the corresponding integral. In a 
parallel manner he introduced the elliptic sine function, sn(x), as the 
inverse of the elliptic integral. He successfully developed an exten-
sive analysis of the properties of this and other elliptic functions.

One simple property that Abel established in this memoir was 
the doubly periodic nature of elliptic functions. All circular func-
tions were known to be periodic, repeating their behaviors on a 
regular basis. The equation sin (x + 2π) = sin (x) expresses the fact 
that the graph of the sine function repeats its values after every 
interval of length 2π. Abel discovered that every elliptic function 
f (x) had two periods w and z for which f (x + w) = f (x + z) = f (x). 
Abel’s discovery of doubly periodic functions led him and other 
mathematicians to investigate the more general classes of functions 
now known as hyperelliptic functions and Abelian functions.

Abel discovered elliptic functions as inverses of the integrals associated with 
the arc length along an ellipse.



In his Paris memoir Abel also introduced the concept of the 
genus of an algebraic function when he proved that any sum of 
integrals of an algebraic function could be expressed as a fixed 
number of integrals of a particular form. That fixed number, 
known as the genus of the function, was a fundamental quantity 
that characterized the function and indicated many of its proper-
ties. German mathematician Carl Gustav Jacobi, who was also 
conducting research on elliptic functions, proclaimed that this 
important theorem, now known as Abel’s theorem, was the greatest 
mathematical discovery of the era.

When Abel presented his memoir on elliptic functions to the 
Paris Academy in October 1826, Legendre and Augustin-Louis 
Cauchy were appointed as referees but never evaluated the work. 
Legendre claimed that he was unable to read the manuscript 
because the ink was too faint. Cauchy misplaced the treatise before 
he had the opportunity to read it.

Disappointed by the disregard that the French mathemati-
cians showed for his work, almost out of money, and suffering 
the early symptoms of tuberculosis, Abel returned to Berlin for a 
few months. Although Crelle offered him the position of editor 
of his journal and promised to obtain for him a professorship at 
a German university, he returned home in May 1827. In Norway 
Abel had hoped to succeed Rasmussen as professor of mathemat-
ics at the University of Christiania, but Holmboe had accepted 
that position. He survived until the end of the year on a small 
stipend provided by the university and the money he earned 
tutoring. Early in 1828 he secured a substitute teaching position 
at the university and at the Norwegian Military Academy when 
Hansteen accepted a two-year grant to study Earth’s magnetic 
field in Siberia.

During this time Abel continued his research on elliptic func-
tions and wrote several articles for Crelle’s Journal. He published 
the first half of his Paris memoir in September 1827 as “Recherches 
sur les functions elliptiques” (Research on elliptic functions). 
When Jacobi announced several new results about transforma-
tions of elliptic functions in 1828, Abel published the second half 
of his memoir under the same title and added a section explaining 
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how Jacobi’s results followed from his own work. During the next 
year he and Jacobi produced a series of papers responding to and 
extending each other’s results. Before the year ended, Abel pre-
pared a book-length treatise on elliptic functions titled Précis d’une 
théorie des fonctions elliptiques (Summary of a theory of elliptic func-
tions) that was not published until after his death.

Establishing Rigor in Mathematical 
Analysis
One of Abel’s overriding concerns throughout his entire math-
ematical career was his desire to make mathematical analysis more 
rigorous. In all his mathematical writings he paid careful attention 
to the exactness of his wording and the thoroughness of his proofs. 
As a student at the Cathedral School, reading the works of Europe’s 
leading mathematicians, he had noticed deficiencies in the logical 
structure of their arguments. Although 150 years had passed since 
the invention of calculus, the concepts of derivative and integral 
were not yet firmly based on a precise definition of limit. He real-
ized that mathematical analysis in the early 19th century lacked 
the meticulous logic and precision that had characterized classic 
geometry.

Abel noticed this lack of rigor most prominently in argu-
ments involving infinite series. In an 1826 letter to Holmboe he 
lamented that, except for the simplest cases, there were no infi-
nite series whose sums had been stringently determined. In the 
same letter he wrote that he was horrified to hear mathematicians 
claim that 1n –2n + 3n –4n + . . . = 1 for every positive integer n. 
In his paper on the binomial theorem that appeared later that 
year, he criticized Cauchy for claiming that an infinite sum of 
continuous functions would produce a continuous function. As a 
counterexample he presented the power series of sine functions 

 that was discontinu-

ous at every odd multiple of π.
To address the lack of rigor mathematicians used when deal-

ing with infinite series, Abel produced a lengthy two-part paper 



on power series titled “Aufgaben und Lehrsatze” (Problems and 
theorems) that appeared in Crelle’s Journal in 1827 and 1828. In 
this paper he presented new methods for determining the limit of 
a series, discussed divergent series, and introduced the concept of 
radius of convergence—the range of values for which an infinite 
series was equivalent to its corresponding function. Among the 
techniques he introduced in this paper was the powerful principle 
now known as Abel’s convergence theorem. This rule for cer-
tain series of the form a1b1 + a2b2 + a3b3 + a4b4 + . . . generalized 
the well-known alternating series test that guaranteed that series 

like and  converged to 

finite totals. He also provided summability methods to understand 
series that are not convergent. Abel, along with Cauchy, Gauss, 
and German mathematician Karl Weierstrass led the 19th-century 
effort to make mathematical definitions more precise and math-
ematical analysis more rigorous.

Abel used the example of the series y = sin(x) –  1–2 sin (2x) + 1–3 sin(3x) –
1–4 sin (4x) + . . . to prove that an infinite sum of continuous functions does
not always produce a continuous result.
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Death and Legacy
While visiting his fiancée in Froland for Christmas, Abel became 
so ill that he was confined to bed. He died on April 6, 1829, from 
complications of tuberculosis. Two days later, Crelle wrote to 
inform Abel that he had secured an appointment for him at the 
newly established Académie Royale des Sciences et des Belles-Lettres 
de Berlin (Royal Academy of Sciences and Beautiful Letters in 
Berlin).

In June 1830 the Paris Academy awarded its grand prix (grand 
prize) to Abel and Jacobi for their outstanding research on elliptic 
functions. At Jacobi’s urging, Cauchy found the memoir on ellip-
tic functions that Abel had submitted to the academy four years 
earlier. The academy eventually published it in 1841 in their jour-
nal Mémoires présentés par divers savants à l’Académie des Sciences de 
l’institute national de France (Reports presented by various scholars 
to the Academy of Sciences of the National Institute of France). 
Legendre, upon realizing the significance of the work he had ear-
lier dismissed as illegible, described the treatise as a monument 
more lasting than bronze. When French mathematician Charles 
Hermite read the memoir, he predicted that Abel’s ideas would 
keep mathematicians occupied for 500 years.

In 2002 the government of Norway honored the memory of 
their country’s greatest mathematician by instituting the Abel 
Prize, an award of $750,000 that is given annually to a mathemati-
cian in recognition of a lifetime of contributions to the discipline. 
The award brought to mathematics the same international recog-
nition that the Nobel Prize gave to literature, medicine, and the 
sciences.

As a tribute to the influence of Abel’s ideas, his name is associ-
ated with a large number of concepts in several branches of math-
ematics. Abelian varieties, Abelian integrals, Abelian functions, and 
Abel’s theorem are the central ideas in the theory of elliptic func-
tions. The analysis of infinite series relies on Abel’s convergence 
theorem, Abel’s inequality, and Abelian summability. The most 
widely used idea named after him is the Abelian group—a math-
ematical structure whose objects satisfy the fundamental property 
that a · b = b · a.



Conclusion
As the prize named in his honor signifies, during Abel’s brief 
lifetime he made significant contributions to the discipline of 
mathematics. His proof of the impossibility of algebraic formulas 
to solve equations of degree higher than four not only settled a 
long-standing question; it also introduced the concept of algebra-
ic field extensions that contributed to the development of abstract 
algebra. Abel’s proof of the general binomial theorem for real and 
complex powers along with the methods he introduced to analyze 
the convergence of infinite series helped to establish a rigorous 
foundation for mathematical analysis. The concepts of elliptic 
functions and more general classes of doubly periodic functions 
that he introduced continue to yield new discoveries in the areas 
of algebra, number theory, and functional analysis.
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5
Évariste Galois
(1811–1832)

Revolutionary Founder of Group 
Theory

Évariste Galois (pronounced ay-vah-REEST GAL-wah) died in a 
duel at the age of 20 after publishing only five short papers detail-
ing his research, but his work had a significant impact on the devel-
opment of abstract algebra. By formalizing the notion of a group, 
he laid the foundations of group theory. He developed a theory 

Évariste Galois formalized the notion 
of a group, specified a complete set 
of conditions that determined wheth-
er or not an equation was solvable by 
radicals, and developed the theory of 
algebraic field extensions now known 
as Galois theory. 
(Granger)
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of solvability of algebraic equations by radicals that grew into the 
advanced area of algebra known as Galois theory. Better known 
during his lifetime as a political revolutionary than as a mathemati-
cian, Galois’s genius was not recognized until many years after he 
died when mathematicians carefully studied the less than 100 pages 
of written work that he produced.

Search for the Quintic Formula
Évariste Galois was born on October 25, 1811, in Bourg-la-Reine, 
France, a small town south of Paris. His father, Nicholas-Gabriel 
Galois, directed a small boarding school and served as mayor of the 
town for 14 years. His mother, Adélaïde-Marie Demante Galois, 
was a well-educated woman who tutored Évariste, his older sister, 
Nathalie-Théodore, and his younger brother, Alfred, at home until 
they were in their early teens.

In October 1823 Galois enrolled in Lycée Louis-le-Grand (Louis 
the Great High School), a well-known high school in Paris named 
after King Louis XIV. Living conditions at the school were harsh, 
and the students frequently demonstrated their dissatisfaction with 
their treatment. In Galois’s first year the director expelled 40 stu-
dents when they sang “Le Marseillaise,” the anthem of the French 
Revolution, rather than raise their glasses in a toast to the king. 
Initially, Galois earned good grades, winning prizes for excellence 
in several courses, but he became increasingly discontented with the 
school’s faculty and with his courses in Latin, Greek, and classical 
literature. By 1827 his academic performance had become so poor 
that he had to repeat most of his classes.

During this year Galois developed a strong interest in mathemat-
ics while taking a course in geometry with H. J. Vernier. Although 
the class textbook Géométrie (Geometry) by French mathematician 
Adrien-Marie Legendre was intended for a two-year course, Galois 
read through the book in a matter of days. The book’s logical 
development of geometrical principles fascinated him and stimu-
lated a passionate interest in mathematics. In the school’s library 
he read additional books on algebra and analysis by other leading 
French mathematicians Augustin-Louis Cauchy and Joseph-Louis 
Lagrange. Working independently, he successfully mastered the 



material in these advanced books written for university students, 
professors, and mathematicians.

As he studied algebra, Galois became intrigued by the formulas 
that mathematicians used to solve different types of equations. 
Every linear equation of the form ax + b = 0 could be solved using the 

simple formula . The quadratic formula  

could be used to solve any second-degree equation of the form
ax2 + bx + c = 0. Mathematicians had also discovered formulas to 
solve third- and fourth-degree equations whose highest powered 
terms were x3 or x4, but no one had discovered formulas that 
worked for higher degree equations.

The task of finding a formula involving square roots and higher 
roots that would solve all algebraic equations of degree five using 
finitely many steps attracted Galois’s interest. He did not know that 
such a “quintic formula” had eluded mathematicians for three cen-
turies. After several months of work the 16-year-old student thought 
he had produced the required formula. His further investigations 

In his first mathematical research Galois attempted to find a quintic formula to 
express algebraically all the roots of a polynomial of degree five.
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revealed that his formula worked for a limited number of cases but 
would not solve all fifth-degree equations. After many revisions he 
became convinced that there was no quintic formula and devoted his 
efforts to proving this assertion.

Disappointments and Frustrations
At the end of his fifth year of high school Galois took the entrance 
exam for École Polytechnique (Polytechnic University), a univer-
sity in Paris established in 1794 by mathematicians Gaspard Monge 
and Lazare Carnot to provide training in mathematics, science, 
and engineering for the most talented young men in France. The 
test focused on material from standard high school mathematics 
courses that he had not yet taken. As a result of these deficiencies in 
his knowledge of basic mathematics, he failed the exam and spent a 
sixth year at Louis-le-Grand.

Vernier, his teacher for his first two mathematics courses, did 
not appreciate Galois’s talents. He criticized Galois for not sys-
tematically writing down all the steps in his solutions even though 
he was able to do many calculations in his head. Louis-Paul-Émile 
Richard, his math teacher during his final year of high school, 
recognized his abilities, praised his ingenious methods of solu-
tion, and supported his independent research. With Richard’s 
encouragement, Galois wrote a paper titled “Démonstration d’un 
théorème sur les fractions continues périodiques” (Demonstration 
of a theorem on continued periodic fractions) that was published in 
April 1829 in the journal Annales de mathématiques pures et appliquées 
(Annals of pure and applied mathematics). In this short paper he 
extended a result Lagrange had obtained about continued fractions 
and gave a more detailed presentation of the concept. This piece 
of original research by a 17-year-old student demonstrated that he 
had progressed far beyond his high school courses. Richard was 
so impressed with this and other evidence of Galois’s talents that 
he suggested that the brilliant young man be admitted to École 
Polytechnique without having to take the entrance exam.

Galois expanded his work on fifth-degree equations to attempt 
to find conditions under which formulas existed to solve equations 
of any degree higher than four. In May and June 1829 he sent to 



the French Academy of Sciences two papers presenting his research 
on the solvability of algebraic equations whose degree was a prime 
number. The secretary of the academy gave the papers to Cauchy, 
who was impressed with the work but did not communicate his 
opinions to Galois until the following year.

Two other emotional events in Galois’s life added to his frustra-
tions and his feeling of despair. In July his father, humiliated by 
rumors that his political enemies circulated, committed suicide. At 
his funeral Galois accused the town’s priest of starting the rumors 
that led to his father’s death, and the mourners chased the priest 
out of the cemetery. In August Galois took the entrance exam for 
École Polytechnique a second time. When the professor admin-
istering the exam insisted that he show his work to justify each 
step in his solutions, he angrily threw an eraser at him and, conse-
quently, failed the exam.

After six years at Louis-le-Grand, Galois graduated from high 
school and in November 1829 enrolled as a student at Paris’s École 
Normale (Normal University), a university established to train high 
school teachers. He was not popular with his instructors or with 
his fellow students. During one mathematics class the professor 
announced a new theorem in algebra that had recently been proven 
but had not yet been published. To embarrass Galois, the professor 
asked him to go to the board and prove the theorem. When Galois 
succeeded, the professor criticized his attitude of excessive pride. 
His only friend, a student named Auguste Chevalier, encouraged 
Galois to overcome his bitterness and to continue to work on his 
own mathematical research.

In January 1830 Cauchy was scheduled to present an oral report 
on Galois’s two research papers at a meeting of the academy. Due 
to an illness he did not give the presentation and never filed a for-
mal report on the work. He privately communicated his positive 
assessment to Galois, calling to his attention the related results 
that Norwegian mathematician Niels Henrik Abel had recently 
obtained. He encouraged Galois to resubmit a single revised paper 
for the academy’s mathematics competition on the topic of solv-
ability of equations. Galois read Abel’s research papers, including 
his 1824 pamphlet in which he proved that there was no quintic 
formula. Combining Abel’s work with his own ideas, he developed 
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a more complete theory on the solvability of higher degree equa-
tions by radicals. In February 1830 he sent his new treatise to the 
academy. Jean-Baptiste Joseph Fourier, the academy’s secretary, 
received the paper but died three months later without having 
reviewed it. Galois’s work was never considered for the grand prix 
(grand prize) that the academy awarded jointly to Abel and German 
mathematician Carl Gustav Jacobi.

Published Works
Galois had better success with two French mathematics journals 
that published four of his papers. In April 1830 the Bulletin des 
sciences mathématiques (Bulletin of the mathematical sciences) pub-
lished an abbreviated summary of the paper he had sent to Fourier 
at the academy. In this brief article titled “Analyse d’un mémoire 
sur la résolution algébrique des équations” (Analysis of a memoir 
on the algebraic resolution of equations), he gave three conditions 
for the solvability of an irreducible equation whose degree was 
a prime number. He concisely stated his results and mentioned 
that he had derived them from Carl Friedrich Gauss’s work on 
the cyclotomic equation axP + b = 0 and from Cauchy’s theory of 
permutations. Since he did not explain his techniques and did not 
supply his proofs, few mathematicians understood his work, and 
none of them recognized the significance of his results.

In June 1830 the Bulletin des sciences mathématiques published a 
second paper, “Note sur la resolution des equations numériques” 
(Note on the resolution of numerical equations). This paper pre-
sented additional results on the use of radicals to solve equations 
and demonstrated that he had made significant progress beyond 
Abel’s published results but fell short of giving a complete theory 
on the topic.

His third paper, “Sur la théorie des nombres” (On the theory 
of numbers), also appeared in the Bulletin des sciences mathématiques 
in June 1830. In this important paper he introduced a new class 
of numbers that have come to be called “Galois imaginaries.” He 
showed how to construct a mathematical structure known as a 
finite field of prime order and explained how it was related to the 
roots of the equation being solved.



In December 1830 the journal Annales de mathématiques pures et 
appliqués published his paper “Notes sur quelques points d’analyse” 
(Notes on several points of analysis). This short note presenting a 
few results in analysis was the last mathematical publication during 
his lifetime.

Political Revolutionary
Despite the successful progress of his mathematical research and 
the publication of some of his work, Galois grew bitter, resent-
ful, and restless. He joined the Republicans, a group of political 
revolutionaries who wanted to overthrow the king and set up a 
new government. In July 1830, when the Republicans started a 
revolution, Galois made speeches trying to convince his classmates 
to participate in the rebellion. Mr. Guigniault, the university’s 
director and a strong supporter of the king, locked the doors and 
gates of the university so the students could not join the uprising. 
After the successful revolution, Galois wrote a letter to a newspaper 
explaining how the director had wanted the rebellion to fail but 
now claimed to be a supporter of the new government. When his 
“Lettre sur l’enseignement des sciences” (Letter on the teaching 
of the sciences) appeared in the Gazette des écoles (Gazette of the 
schools), Guigniault expelled him from the university.

Galois joined the Artillery of the National Guard, a branch of 
the militia primarily composed of Republican revolutionaries. In 
December 1830 he and his fellow soldiers occupied the royal pal-
ace at the Louvre and prepared to stage a revolt against the king. 
The brief uprising subsided without any violence, the Guard was 
disbanded, and the wearing of their uniforms was outlawed.

In January 1831 Galois presented a series of public lectures 
explaining the mathematics he had discovered. He lectured on 
the theory of Galois imaginaries, algebraic number theory, elliptic 
functions, and the solvability of equations by radicals. Although 40 
students attended his first lecture, fewer students came the second 
week, only a handful the third week, and not even Galois showed 
up the fourth week.

For the third time he organized the results of his research on solv-
ing algebraic equations and sent it to the Academy of Sciences. This 
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“Mémoire sur la résolution des équations algébriques” (Memoir on 
the resolution of algebraic equations) was his most important written 
work. In this masterpiece he overcame the difficulties that existed in his 
earlier papers. Combining his own ideas with concepts that had been 
introduced by Abel, Cauchy, Gauss, Lagrange, and Jacobi, he present-
ed the definitive solution to the problem of the solvability of algebraic 
equations by radicals. In this memoir and the three papers published 
in the Bulletin des sciences mathématiques he formalized the notion of 
the algebraic structure known as a group and laid the foundations of 
group theory, the fundamental component of abstract algebra. These 
four works also constitute the establishment of the advanced area of 
abstract algebra now known as Galois theory, in which techniques 
involving chains of normal subgroups and solvable groups are used to 
determine when equations are solvable by radicals.

Prison
Galois’s passion for political activism continued to match his dedi-
cation to mathematics. In May 1831, 19 Republican revolutionaries 
who had been arrested for conspiracy were found to be innocent. 
At a banquet to celebrate the court’s decision, Galois offered a toast 
to the death of King Louis-Philippe while holding a glass of wine in 
one hand and a knife in the other. He was arrested for threatening 
to kill the king, but was acquitted of the charge. In July 1831 he was 
arrested again for wearing the uniform of the National Guard and 
spent the next nine months in Sainte-Pélage prison.

During his prison sentence Galois’s life continued to be tumul-
tuous as he attempted to commit suicide and was involved in an 
uprising by the inmates. In October 1831 he received a letter from 
the academy rejecting his latest paper. Siméon-Denis Poisson, who 
reviewed his manuscript, had found his explanations unclear, his 
proofs difficult to understand, and his theories insufficiently devel-
oped. He recommended that Galois resubmit a more complete 
and detailed presentation of his theory. Galois started to compose 
the comprehensive manuscript Poisson had suggested, but stopped 
after writing a five-page preface in which he expressed his anger at 
the incompetence of the members of the academy to whom he had 
unsuccessfully submitted his work three times.



Near the end of his prison term, an epidemic of cholera spread 
through Paris. Fearing a revolt if their political prisoner died in jail, 
the government authorities transferred Galois to Sieur Faultrier, 
a hospital facility outside the city, where he served the final six 
weeks of his sentence. There he fell in love with Stéphanie-Félice 
du Motel, the daughter of one of the hospital’s doctors, and looked 
forward to starting a new life with her.

The Duel
On April 29, 1832, Galois was released from prison. When his rela-
tionship with du Motel ended two weeks later, he was heartbroken 
and depressed. On May 29 Pescheux d’Herbinville, a Republican 
revolutionary and a friend of du Motel, challenged him to a duel 
over her honor. They agreed to settle their dispute with pistols at 
sunrise.

Galois spent the night outlining his five years of mathematical 
research on the theory of equations and integral functions. He 
made notes on three of his unpublished papers. In the margin of 
the memoir that Poisson had rejected he scribbled that he did not 
have time to make the few corrections needed to complete the 
proof. He wrote to his friend Chevalier instructing him to deliver 
these pages and his unpublished papers to Gauss and Jacobi in the 
hopes that his work would not die with him.

At dawn on May 30, 1832, 20-year-old Évariste Galois met his 
opponent for their duel. He was shot in the abdomen and died the 
next day. Three thousand people attended his funeral on June 2. 
Republicans rallied and rioted in the streets of Paris for several 
days. Despite this public demonstration of concern, he was buried 
in a common grave without a stone to mark the spot.

Mathematicians Recognize the 
Significance of His Work
For 11 years Galois’s brother Alfred and his friend Chevalier 
brought his final notes and his collection of research papers to 
Gauss, Jacobi, and other mathematicians throughout Europe. 
French mathematician Joseph Liouville was the first to recognize 
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the significance of Galois’s work. After studying Galois’s unique 
terms and notations and inserting the steps that were missing from 
his concise proofs, Liouville was able to realize that the results were 
correct, complete, and important. In September 1843 he presented 
to the members of the academy a description of Galois’s research 
on solving algebraic equations by radicals.

In October 1846 Liouville published 67 pages of Galois’s 
papers under the title “Oeuvres mathématiques d’Évariste Galois” 
(Mathematical works of Évariste Galois) in the Journal de mathéma-
tiques pures et appliqués (Journal of pure and applied mathematics), 
which he edited. This collection included Galois’s five published 
mathematical papers, the “Lettre à Auguste Chevalier” (Letter 
to Auguste Chevalier), which he had written the night before the 
duel, and two unpublished works, “Mémoire sur les conditions de 
résolubilité des équations par radicaux” (Memoir on the conditions 
of the resolvability of equations by radicals) and “Des équations 
primitives qui sont solubles par radicaux” (Primitive equations that 
are solvable by radicals).

Liouville’s amplification of Galois’s research and the publication 
of some of his papers made his work more accessible, but for 20 
years few members of the mathematical community understood 
it. Enrico Betti, Leopold Knonecker, Charles Hermite, and oth-
ers wrote commentaries on his work and published some results 
that were immediate applications of it. The third edition of Alfred 
Serret’s Cours d’algèbre supérieure (Course in higher algebra) pub-
lished in 1866 and Camille Jordan’s Traité des substitutions (Treatise 
on substitutions) published in 1870 finally integrated group theory 
and the whole of Galois’s work into the main body of mathemat-
ics. These two books enabled mathematicians to fully develop his 
theories and to apply them to a variety of scientific applications. By 
the end of the 19th century, their explanations and commentaries 
on Galois’s work filled nearly a thousand pages.

In 1906 and 1907 Jules Tannery, the editor of Bulletin des sci-
ences mathématiques, published “Manuscrits et papiers inédits de 
Galois” (Manuscripts and unedited papers of Galois) the complete 
collection of Galois’s research, including 15 additional unpublished 
papers. In two of these papers, titled “Comment la théorie des 
équations dépend de celle des permutations” (How the theory of 



equations depends on that of permutations) and “Recherches sur la 
théorie des permutations et des équations algébriques” (Research 
on the theory of permutations and algebraic equations), Galois 
showed how his work built on Cauchy’s results with permutation 
groups. “Mémoire sur la division des functions elliptiques de pre-
miere espèce” (Memoir on the division of elliptic functions of the 
first kind) was a lost manuscript on elliptic functions and Abelian 
integrals in which he classified those integrals into three categories, 
an advanced result that Bernhard Riemann independently proved 
in 1857. The philosophical paper “Discussions sur les progrès 
de l’analyse pure” (Discussions on the progress of pure analysis) 
offered a vision for the future of research in algebra, his thoughts 
about the spirit of modern mathematics, and some reflections on 
the condition of scientific creativity.

Conclusion
Today mathematicians consider Galois’s work on solving alge-
braic equations by radicals to be a very significant contribution 
to mathematics. Although Abel had already completely answered 
the question of solvability of equations, Galois’s new techniques 
extended beyond the immediate problem and introduced a new 
area of mathematics. His ideas are recognized as the foundation 
of group theory—the basic component of the study of abstract 
mathematical structures—and of Galois theory—an advanced area 
within this branch of mathematics that explains the relationships 
between solutions of equations and properties of groups.
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Augusta Ada Lovelace
(1815–1852)

6

First Computer Programmer

Augusta Ada Lovelace was the first person to detail the process now 
known as computer programming. Her extensive notes explain-
ing how to control Charles Babbage’s Analytical Engine included 
a thorough explanation of the steps necessary for calculating the 
Bernoulli numbers. Her knowledge of mathematics provided her 
with the understanding necessary to accomplish this historical 
achievement.

Augusta Ada Lovelace explained the 
process of computer programming for 
Charles Babbage’s Analytic Engine.
(The Image Works)
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Early Life and Education
Augusta Ada Byron King, countess of Lovelace, was named 
Augusta Ada Byron when she was born in London, England, on 
December 10, 1815. Her parents George Gordon Byron and Anne 
Isabelle Milbanke, Lord and Lady Byron, were wealthy members 
of England’s gentried class. Lord Byron, a passionate and tem-
peramental man and one of England’s best-known poets, legally 
separated from his wife and left the country four months after their 
daughter’s birth. Although he occasionally threatened to take Ada 
from her mother to be raised by his sister Augusta, he never saw her 
again, dying in 1824 when she was eight years old.

Lady Byron, who had been called by her poet-husband “the 
Princess of Parallelograms,” shared with her daughter a strong inter-
est in mathematics. Although societal customs prescribed limited 
exposure to mathematics for upper-class young ladies, Ada’s mother 
encouraged her to learn as much as she could about the subject. In 
addition to studying mathematics, Ada played the violin and learned 
to read and speak several languages. She enjoyed making models of 
boats and once designed plans for a steam-powered airplane.

A series of private tutors directed Ada’s education during her 
childhood and into her adult life. These included William Frend, 
who had been Lady Byron’s mathematics tutor; Mary Somerville, 
who developed an international reputation as a mathematics and 
science writer; and Augustus DeMorgan, who later became a pro-
fessor of mathematics at University College in London.

Ada also participated in the social life of London’s upper class, 
attending the theater, formal balls, concerts, and teas. On May 10, 
1833, she was one of the debutantes presented to King William 
IV and Queen Adelaide at St. James’s Palace. At a party in June of 
that year she met Charles Babbage, the English mathematician who 
was building a computing device known as the Difference Engine. 
When she and her mother visited Babbage’s London studio two 
weeks later to view his machine, Ada expressed an interest in the 
mathematical nature of the machine’s design and initiated a lifelong 
friendship with the inventor.

On July 8, 1835, 19-year-old Ada Byron married William King, 
a 29-year-old scientist to whom Somerville had introduced her a 



year earlier. When he was elevated to the status of the first earl of 
Lovelace in 1838, she became the countess of Lovelace. Although 
her formal title was Lady Augusta Ada Byron King, countess of 
Lovelace, she referred to herself as Ada Lovelace. In the first four 
years of their marriage the couple had three children, whom they 
named Byron, Annabella, and Ralph. With two houses in the 
country and one in London, they enjoyed the life of the upper-
class gentry. In 1840 her husband, was elected a Fellow of the 
Royal Society of London, a connection that provided her access to 
research papers and advanced books that enabled her to continue 
her mathematical studies.

Babbage’s Difference Engine and 
Analytical Engine
In 1842 Lovelace accepted an opportunity to work with Babbage 
and write about the computing machines he was designing. She 
had been corresponding with him since the time of her first visit 
to his studio to see his Difference Engine in 1833 and had estab-
lished a friendship with him. In 1834 she had attended a series 
of lectures on the Difference Engine given by popular science 
writer Dr. Dionysius Lardner at the Mechanics’ Institute and had 
examined the plans for Babbage’s second computing machine, the 
Analytical Engine. During the early years of her correspondence 
with Babbage, she discussed their social plans and sought his rec-
ommendation of a suitable mathematics tutor. As the years passed, 
she grew increasingly interested in his mechanical inventions and 
became knowledgeable about the mathematical principles underly-
ing their design and operation.

Babbage, who had helped to establish Cambridge University’s 
Analytical Society to reform the teaching of mathematics in 
England and who had been the institution’s Lucasian professor of 
mathematics from 1827 to 1839, had been designing and build-
ing computing machines for 20 years. Around 1821 he had begun 
to consider the construction of a machine that would be capable 
of making the calculations required to produce mathematical, 
navigational, and astronomical tables. By 1822 he had built a hand-
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cranked machine that could calculate and print six-digit tables of 
logarithmic and astronomical values. He demonstrated the machine 
for the Royal Society of London and proposed the construction of 
a more powerful machine capable of making calculations with 
larger numbers. In 1823 the government agreed to fund his project 
for three years. He succeeded in building several working models 

Lovelace studied the workings of the Analytical Engine—a steam-powered, 
programmable computing machine that Charles Babbage designed from 1830 
to 1870 but never completely built. The machine would have possessed many 
features of 20th-century electronic computers, including instructions fed in on 
punched cards, the ability to implement logical branching and condition-
controlled looping, and reusable memory locations for variable data. This 
photo shows two experimental models of portions of the Analytical Engine.
(The Image Works)



that implemented portions of the machine’s functions but never 
finished the full Difference Engine. In 1842, after the government 
had invested £17,000 (an amount worth approximately $4 million 
today) and Babbage had spent £6,000 of his own funds, Prime 
Minister Sir Robert Peel officially withdrew support for what had 
been the largest government-sponsored project of its day.

Eight years before this formal announcement, Babbage had 
already abandoned further development of the Difference Engine 
and had turned his attention to the design and construction of a 
more advanced steam-powered, programmable computing machine 
known as the Analytical Engine. By 1838 he had developed a basic 
design of a machine whose features included a “store” where 
intermediate and final numerical results were kept, a “mill” where 
arithmetic computations were performed, and a set of punched 
cards that determined the sequence of operations to be performed 
by the machine. In the process of developing the machine, he pro-
duced 300 sheets of engineering drawings and thousands of pages 
of detailed notes. He never built a working model of his computer 
partly because contemporary engineering techniques were not suf-
ficiently precise to manufacture the required machine parts.

Lovelace’s Writings on the Analytical 
Engine
In 1840 Babbage delivered a series of seminars to a group of scientists 
in Turin, Italy, where he explained the workings of his Analytical 
Engine. Luigi Federico Menabrea, an Italian engineer, ambassador 
to France, and eventually prime minister of Italy, attended these 
seminars and agreed to write a journal article about the machine. 
In October 1842 his paper titled “Notions sur la machine analy-
tique de Charles Babbage” (Ideas on the Analytic Engine of Charles 
Babbage) appeared in print in the Bibliothéque Universelle de Genève 
(Universal Library of Geneva). Lovelace decided to translate it 
from French into English so that the description of Babbage’s work 
could be circulated among scientists throughout England. Early in 
1843 through the intercession of Charles Wheatstone, a scientist, 
inventor, professor, and family friend, she contracted with Richard 
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Taylor to include her work in his Scientific Memoirs, a collection of 
translations of scientific articles from the transactions of foreign 
academies of science that he published from 1837 to 1852. Babbage 
agreed to assist her in the six-month project, and her husband sup-
ported her work by copying drafts of her manuscript.

As Lovelace translated Menabrea’s paper into English, she 
identified several topics that required more detailed explana-
tions. When she rejected Babbage’s suggestion that she write an 
original paper on the subject, he recommended that she include 
some original supplementary material in a set of notes appended 
to the memoir. After generating numerous drafts and revisions 
that Babbage critiqued, she produced seven notes comprising 40 
pages, more than twice as long as Menabrea’s 17-page paper. The 
finished work appeared in the August 1843 edition of Scientific 
Memoirs under the title “ ‘Sketch of the Analytical Engine Invented 
by Charles Babbage’ by L. F. Menabrea of Turin, Officer of the 
Military Engineers, au Bibliothéque Universelle de Genève, nouvelle 
serie, xli, October, 1842, no. 82; with Notes upon the Memoir by 
the Translator, A. A. L.” (‘Sketch of the Analytical Engine Invented 
by Charles Babbage’ by L. F. Menabrea of Turin, Officer of the 
Military Engineers, from the Universal Library of Geneva, New 
Series, xli, October, 1842, no. 82; with Notes upon the Memoir 
by the Translator, A. A. L.).” Lovelace’s name did not appear as 
the translator although her initials A. A. L. appeared at the end of 
each note.

In his paper Menabrea described the nature and extent of the 
capabilities of Babbage’s Difference Engine and extolled the 
extended functionality that the Analytical Engine would provide. 
He explained that when the Analytical Engine was built it would 
perform the four arithmetical operations of addition, subtraction, 
multiplication, and division directly through the mechanical inter-
action of a series of gears. In addition to making rapid and accurate 
computations, it would also be capable of implementing logical 
analysis to modify its sequence of operations when it detected 
that specified conditions had been met. This facility would enable 
the machine to use counters and conditions to control looping 
and branching operations so that once it had been set to work 
on a problem it would require no further intervention from the 



operator. He mentioned the machine’s ability to create a library of 
tables in which it would store collections of logarithms and other 
commonly used values, and he reiterated Babbage’s claim that his 
machine would be able to multiply two 20-digit numbers in three 
minutes.

In her eight-page “Note A,” Lovelace explained the fundamental 
distinctions between Babbage’s earlier Difference Engine and his 
more advanced Analytical Engine. She explained that the older 
device was capable of evaluating any polynomial of degree six or 
less using the method of finite differences and printing a table of 
results. This method reduced the process of computation of each 
function value to a series of at most six additions, the only arith-
metic operation that the machine actually performed. While being 
careful not to disparage the power of the Difference Engine for 
producing accurate tables of numerical values, she contrasted its 
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Babbage’s Difference Engine used the method of finite differences to gener-
ate tables of values for polynomials of degree at most six. This chart, similar to 
one in Lovelace’s translation of Menabrea’s paper, illustrates how the machine 
calculated successive values of the polynomial n2. After the operator supplied 
the initial value in each column, each subsequent value in the first two columns 
was calculated as the sum of the two entries directly above it and to its right.
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limited functionality with that of the Analytical Engine, which could 
perform four operations—addition, subtraction, multiplication, and 
division—in the process of manipulating more complex expres-
sions. The newer machine could solve systems of linear equations, 
multiply polynomials, evaluate an unlimited portion of an infinite 
series, and perform symbolic as well as arithmetic manipulations. 
She explained that the Analytical Engine’s versatility was provided 
by a set of punched cards in which different patterns of holes cor-
responded to different mathematical symbols. These cards were 
similar to those used to control the Jacquard loom that could weave 
intricate patterns in textiles. The selection and sequencing of these 
control cards determined which operations the machine performed 
and in what order they were executed. In a forward-looking predic-
tion of computer-generated music, she suggested that the machine 
would be capable of creating elaborate musical compositions if the 
characteristics of music could be quantified appropriately.

The five-page “Note B” described the design and operation of 
the storehouse—the collection of gears that formed the machine’s 
memory. The set of gears and dials stacked together on each axle 
physically represented the value saved in one variable at the start of 
the program or during its computational process. Using the values 
a = 5, x = 98, and n = 7 stored in three variables, Lovelace explained 
how the Analytical Engine could be made to evaluate the expres-

sions axn, xan, a·n·x, , and a + x + n by supplying it with the 

proper sequence of control cards. Her explanations distinguished 
the supplying variables whose values were used during the compu-
tation and the receiving variable where the resulting value was then 
stored. She mentioned in the one-page “Note C” that a block of 
operations known as a cycle could be performed multiple times by 
backing up the cards and processing them repeatedly.

In the five-page “Note D” Lovelace methodically explained the 
sequence of 11 operations (six multiplications, three subtractions, 
and two divisions) required to perform the evaluation of the expres-

sions  and . She presented a detailed chart 

resembling an assembly language computer program that exhibited 
the incremental changes effected by each of the 11 operations with 



the 16 supplying and receiving variables. This meticulous chart 
generalized the similar seven-line chart Menabrea had included 
to detail the process of calculating the value labeled as x. In her 
explanation of the sequence of steps she emphasized the machine’s 
ability to save intermediate results (such as the common denomina-
tor of the two given expressions) for use in multiple computations. 
She also provided an explanation of the method used to implement 
an “increment” operation such as Vn = Vn + Vp in which the same 
variable played both a supplying and receiving role.

Lovelace was careful to distinguish the analytical abilities of 
the machine from its capacity for numerical computation. In the 
nine-page “Note E” she explained how the machine could multi-
ply the two trigonometric expressions A + A1 cos(θ ) + A2 cos(2θ ) +
A3 cos(3θ ) + . . . and B + B1 cos (θ ). She showed that the well-known 

formula  could be 

used to enable the machine to determine the coefficients of the 
resulting series C + C1 cos(θ ) + C2 cos(2θ ) + C3 cos(3θ )+ . . . without 
knowing in advance a specific formula for their computation. She 
emphasized that the algebraic capabilities of the machine extended 
to manipulations of infinite series for logarithms, sines, tangents, 
and other nonpolynomial functions.

The brief two-page “Note F” exhibited a process for reducing 
to upper triangular form a system of 10 linear equations involv-
ing 10 variables. Lovelace explained that in the repetitive process 
of eliminating the first variable from the last nine equations, 
eliminating the second variable from the last eight equations, and 
continuing until the tenth equation had only a single variable the 
330 operations required could be implemented by reusing a cycle 
of three cards 110 times. She cited this application as another 
example of the machine’s ability to obtain a mathematical solu-
tion without being given a complete formula for doing it. She 
concluded this note with a prediction that the machine’s ability to 
do long series of involved computations would enable mathemati-
cians to deduce new results that they would not have otherwise 
considered.

The most historically significant portion of Lovelace’s writings 
was the 10-page “Note G” in which she presented the first computer 
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program. In both verbal and chart form she presented a detailed 
explanation of the process for calculating a sequence of values 
known as the Bernoulli numbers. After deriving a recursive formula, 
Lovelace showed how the machine could determine the Bernoulli 
number B2n after calculating and storing the smaller values B0, B1, 
B2, . . . , B2n–1. The program for calculating the Bernoulli numbers 
was much more logically complicated than the 11-line sequence of 
instructions detailed in “Note D” where each operation was imple-
mented a single time in the specified order. The order in which the 
steps of this program were implemented depended on the machine’s 
ability to evaluate quantities and then choose to perform a cycle of 
steps again or to carry out a different operation. These concepts of 
looping and branching distinguish a static list of instructions from 
a logical computer program. The minuscule detail of her explana-
tion of the program includes a computation of the total number of 
additions, subtractions, multiplications, and divisions required in the 
process.

“Note G” also included other significant information about the 
Analytical Engine. The initial section of the note summarized six 
of the machine’s features. In addition to its ability to perform the 
four arithmetic operations and its capacity for processing an unlim-
ited number of quantities each of unbounded magnitude, Lovelace 
cited its ability to perform both arithmetic and algebraic analysis. 
She mentioned the machine’s capacity to work with both positive 
and negative numbers, the opportunity to substitute one formula 
for another, and the machine’s ability to modify its sequence of 
instructions when it detected a value that was zero or “infinite.” 
She also briefly discussed how the machine could be made to cal-
culate derivatives and integrals for expressions of the form axn as 
well as for power series.

Later Activities
The publication of Lovelace’s translation and notes gener-
ated high praise from knowledgeable sources. Babbage called her 
work the best contemporary account of his machine and confi-
dently declared that it would enable scientists to realize that the 
entire process of analysis was now capable of being executed by 



machine. Somerville congratulated Lovelace on the clarity with 
which she had illustrated such a difficult subject. Although the 
published work acknowledged only her initials “A. A. L.,” most 
people within the small scientific community of London knew 
that she was the author.

Lovelace had hoped that the success of her translation would 
propel her to a career as a science writer. In letters to Babbage 
and Somerville she described her publication on the Analytical 
Engine as the first of many children that she hoped to create. She 
made plans to hire tutors and nannies to care for her three actual 
children, freeing her to pursue her writing career. She proposed 
to Babbage that he hire her to manage the paperwork, produce 
the technical documents, and publicize his Analytical Engine for 
the three years that he estimated it would take to complete the 
development of the machine. When Babbage declined her offer, 
she inquired about a position as science adviser to England’s 
Prince Albert and began collecting materials on microscopic 
analysis of the human nervous and circulatory systems, electrical 
circuits, poisons, the occult, hypnosis, and the history of several 
scientific discoveries. She offered to collaborate with scientists 
Michael Faraday and Andrew Crosse on experiments and writing 
projects about electricity. Although she considered an array of 
potential projects and started a lesser number of them, her only 
published work consisted of a few paragraphs and footnotes that 
she contributed to a review her husband wrote in 1848 of French 
agronomist De Gasparin’s book on the effects of climate on the 
growth of crops.

Lovelace spent her final years surrounded by controversy and 
scandal. Throughout her life she suffered from asthma, digestive 
problems, intense mood swings, depression, and hallucinations. 
Seeking scientific treatments to remedy these physical ailments, 
she experimented with opium, cannabis, morphine, and alcohol. 
With Babbage she developed a betting scheme based on a flawed 
theory of mathematical probabilities. She lost so much money 
wagering on horse races that she had to sell some of her valuable 
jewelry to pay her gambling debts, and her husband had to inter-
cede with her creditors. Lovelace died on November 27, 1852, 
from cancer of the uterus.
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Conclusion
Although Babbage died without building his Analytical Engine, 
computer scientists regard him as the “Father of Modern 
Computing” because he designed the first programmable com-
puter based on the principles of stored instructions that control 
and modify the machine’s behavior. As the writer who set down 
the first clear exposition of how to communicate with and control 
such a machine, Lovelace was the first computer programmer. Her 
19th-century writings did not directly influence the programmers 
of 20th-century computers, but they cite her work as the beginning 
of their profession.

Lovelace’s notes on Babbage’s machine were rediscovered and 
published in 1953 in a volume by B. Y. Bowden entitled Faster 
Than Thought: A Symposium on Digital Computing Machines. In 
1980 the United States government announced its intention to 
develop a new standardized programming language called Ada in 
her honor. All military and governmental applications were to be 
developed in this language, enabling different groups to use seg-
ments of programming code that other groups had developed and 
facilitating communication between federal computer systems. The 
Association for Women in Computing, a professional organization 
in information technology, honors women who make outstanding 
contributions to the field of computer science through their annual 
Augusta Ada Lovelace Award.
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Florence Nightingale
(1820–1910)

7

Health Care Based on Statistics

Florence Nightingale was one of the first public figures to use 
statistical information as a basis for making positive changes in 
societal practices. As the supervisor of all British nurses during 
the Crimean War she documented the reduction in mortality 
rates that accompanied her introduction of new nursing prac-
tices in military hospitals. An avid student of mathematics, she 
introduced the polar area diagram as a graphical technique for 

Florence Nightingale used graphical 
presentations of medical and health 
statistics to convince governmen-
tal leaders to reform conditions in 
England’s hospitals, military bar-
racks, and infirmaries. 
(Granger)
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presenting an effective visual summary of categorical data. Her 
graphical presentations of medical and health statistics convinced 
governmental and military leaders to implement widespread 
reforms in England’s hospitals, military barracks, and infirmaries. 
The training program she established for nurses and her books on 
nursing introduced significant international changes to the nurs-
ing profession.

Interests in Nursing and Mathematics
Florence Nightingale was born on May 12, 1820, to William 
Edward Nightingale and Frances Smith, a wealthy English couple 
who were vacationing in Florence, Italy. Her father, a rich land-
owner and high sheriff of the county, had changed his last name 
from Shore after inheriting an estate in Derbyshire, England, 
from his great-uncle Peter Nightingale. Her mother was one of 11 
children of politician William Smith, who had served in England’s 
parliament for 40 years. Florence and her older sister, Parthenope, 
were born during a two-year tour of Europe that their parents’ took 
immediately after their wedding. Each daughter was named after 
the Italian city in which she was born, Parthenope being the Greek 
name for Naples.

Nightingale’s family enjoyed the comforts and the social life of 
England’s upper class. In the 1825 they moved to a new country 
estate in Derbyshire named Lea Hurst, and in 1826 they pur-
chased a larger house in Hampshire called Embley Park. The chil-
dren received their early education from a series of nannies and 
private tutors who taught them reading, writing, English history, 
Scripture, and arithmetic. As they grew older, their father taught 
them world history, Greek, Latin, French, German, Italian, and 
mathematics. At their two spacious homes the Nightingales enter-
tained distinguished foreign visitors and the elite of London’s 
society.

From an early age Nightingale demonstrated a strong interest 
in nursing, a career deemed inappropriate for a lady of her social 
standing. In her diaries she recorded the details of her successful 
effort as a young girl to care for a dog that had broken its paw 
and her impressions of visits that she made with her mother to 



the homes of sick neighbors. As she grew older, her relatives and 
friends sought her assistance and counsel whenever they were ill. 
During an 18-month family vacation to Europe in 1837–38 she 
visited a school in Genoa, Italy, for children who could not hear or 
speak. On other trips abroad she visited hospitals and schools oper-
ated by orders of religious sisters in Edinburgh, Scotland; Dublin, 
Ireland; Paris, France; Rome, Italy; and Alexandria, Egypt. In 1850 
and 1851 she made two extended visits to the Deaconess Institute 
of Kaiserwerth near Düsseldorf, Germany, where she observed in 
detail the operations of the medical facility and the administration 
of the religious community of nurses.

In addition to her attraction to nursing, Nightingale developed 
a strong interest in mathematics. At the age of 20 she convinced 
her parents to allow her to study higher mathematics rather than 
needlework and dancing. Her algebra and geometry tutors includ-
ed James Joseph Sylvester, who later became a mathematics pro-
fessor at the Royal Military Academy at Woolwich and president 
of the London Mathematical Society. For a brief period of time 
Nightingale tutored children and taught arithmetic and geometry 
at the Ragged School, an educational institution for poor children 
in London. Her letters to friends indicated that she was familiar 
with the history of mathematics and episodes from the lives of 
famous mathematicians.

Nightingale developed a deep interest in the developing area of 
statistics—the branch of mathematics concerned with the analysis 
of data. She read Belgian mathematician Adolphe Quetelet’s 1835 
book Sur l’homme et le developpement de ses facultés, essai d’une phy-
sique sociale (On man and the development of his faculties, essay of 
a social physics) in which he introduced the idea that the measure-
ments of any human trait were distributed according to a normal 
curve around those of the “average man.” Nightingale also attended 
the 1847 meeting of the British Association for the Advancement 
of Science in Oxford where F. G. P. Neison presented a statistical 
report showing that the crime rate was lower in counties where 
people were better educated. She learned that a small number of 
economists had started to use statistical evidence in their analysis 
of societal conditions.
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In her diary and her published writings from the early 1850s 
Nightingale wrote about the events that led her to her decision 
to devote her life to a career in nursing. In 1951 she anonymously 
published a pamphlet titled The Institution of Kaiserwerth on the 
Rhine in which she described the favorable impressions she had 
gained during her first visit to that nursing facility. The following 
year she wrote Suggestions for Thought to Searchers after Religious 
Truth among the Artisans of England, a three-volume manuscript 
that she privately published in 1860 in which she shared aspects 
of her personal philosophy, including her opinions that marriage 
was selfish and that women should seek fulfillment in a career. In 
1854 her sister, Parthenope, who was an accomplished novelist, 
compiled and edited a collection of Nightingale’s correspondence 
from her five-month trip to Egypt under the title Letters from Egypt, 
A Journey on the Nile, 1849–1850. This travelogue, which circulated 
widely throughout England, included many of her reflections on 
the state of health care and education as well as the role of women 
in Egyptian society. In her diary during those months she recorded 
five visions in which God called her to dedicate her life to his ser-
vice. Upon returning to England, she ended her nine-year romance 
with Richard Monckton Milnes, a poet and social reformer who 
later became Lord Houghton, and committed herself to a career 
in nursing.

In 1853, at the age of 33, Nightingale accepted an unpaid posi-
tion as superintendent at the Invalid Gentlewoman’s Institution in 
London. She introduced sweeping changes in nursing procedures, 
requiring the nurses to sleep in quarters adjacent to the patients’ 
ward and to attend to the patients’ needs whenever they rang bells 
set up for that purpose. She installed mechanical improvements 
such as piped hot water and elevators to deliver patients’ meals to 
the ward and increased the hospital’s capacity to 27 beds. Within 
three months she replaced the chaplain, the head physician, and 
almost the entire staff of nurses and housekeepers. Despite these 
programmatic improvements, she was unable to implement one of 
her main goals—the institution of a program to train women to 
become nurses.



Nursing during the Crimean War
In October 1854 Nightingale responded to a governmental initia-
tive to recruit female nurses to serve in military hospitals near the 
Black Sea, where British, French, and Turkish forces were fighting 
the Russian army in the Crimean War. Through the intercession of 
several influential friends, including Sidney Herbert, the secretary 
at war, she was appointed to the position of superintendent of the 
Female Nursing Establishment in the English General Military 
Hospitals in Turkey. In November she and her staff of 38 nurses 
from Ireland, England, and France arrived in Scutari, a suburb of 
Constantinople, where they were assigned to Barrack Hospital, the 
main British medical facility in the Crimean War zone. In addi-
tion to the military budget allocated to her office, she controlled a 
fund of £9,000 that had been raised through private donations in 
England for her nursing mission.

Although her official responsibilities were to supervise the 
nurses in four local hospitals, Nightingale regularly exceeded the 
limits of her authority, introducing broad changes in all aspects 
of the hospitals’ operations. She built new kitchen and laundry 
facilities, insulated the walls of the hospitals, and introduced new 
procedures for food preparation and daily housekeeping. With her 
private funds she bought fruits, vegetables, higher-quality meats, 
supplies of bandages, and additional medicines. Although it took 
four months to fully institute these improvements, she immediately 
implemented a meticulous system of record-keeping that brought 
order to the hospitals’ haphazard operations and allowed her to 
monitor the effect of the changes she made.

Nightingale’s records showed that during November 1854, the 
month that she had arrived, more than 60 percent of the patients 
admitted to the Scutari Hospital had died. By February 1855, the 
last month before her program of improvements was fully imple-
mented, the changes she had made reduced the death rate to 43 
percent. In June, after three full months under her new system of 
nursing and hospital procedures, the death rate had dropped to 2 
percent. At French military hospitals where no procedural changes 
were implemented, the death rate persisted at nearly 40 percent 
throughout the entire war.
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Articles written by war correspondents for The Times, London’s 
major newspaper, praised the effectiveness of Nightingale’s work 
and proclaimed her a national heroine. When Queen Victoria was 
notified by telegram in May 1855 that Nightingale had become 
ill with typhus, she ordered Lord Raglan, the commander in chief 
of the British military forces in Crimea, to visit the distinguished 
patient and convey her best wishes. In October Lord Panmore, 
the new secretary of war, named her general superintendent of 
the Female Nursing Establishment of the Military Hospitals
of the Army, extending her responsibilities to all British hospitals 
throughout the entire war zone. The War Office adopted her 
policies on standardization and monitoring of food, clothing, and 
furniture as official procedures for all military hospitals. A Royal 
Warrant implemented her revisions of the duties and pay of medi-
cal officers.

Statistical Analysis of Military 
Mortality Rates
In July 1856, four months after the end of the war, Nightingale 
returned to England to widespread public acclaim. She used her 
reputation and visibility to publicize the unsanitary conditions 
in which British soldiers were forced to live. In meetings with 
Prime Minister Palmerston, Queen Victoria, and Prince Albert 
she discussed the need for large-scale reforms in military hous-
ing and hospitals. Despite resistance from the War Office, in 
May 1857 the government established the Royal Commission 
on the Health of the Army. Although she was not permitted 
to serve on the committee, Nightingale strongly influenced 
its work through her friendship with Herbert, who headed the 
commission and by providing the committee with much of its 
information.

In 1858 Nightingale submitted to the commission an 800-page 
report titled Notes on Matters Affecting the Health, Efficiency, and 
Hospital Administration of the British Army, Founded Chiefly on the 
Experience of the Late War. Her extensive report presented graphical 
summaries of mortality rates of British soldiers during peacetime 



and during the Crimean War. Using line diagrams, she showed 
that in each of four age categories the nearly 2 percent rate of 
death among soldiers living in military barracks during peacetime 
was approximately twice as high as the mortality rate for male 
civilians. She concluded that for the 55,000-member British Army 
this meant that forcing healthy soldiers to live in military housing 
was as criminal as shooting 1,100 soldiers each year. Using area 
diagrams, she showed that if the army recruited 10,000 20-year-old 
males per year and each recruit remained in military service until 
age 40, the military death and “invaliding” rates would reduce the 
strength of the army from a potential of 200,000 to 142,000. In an 
accompanying diagram she showed that if the military death and 
invaliding rates were reduced to the significantly lower civilian 
rates, the strength of the same army would rise to 167,000 able-
bodied soldiers.
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Nightingale’s report introduced a new type of graphical sum-
mary that came to be called a polar area chart or a “coxcomb” 
because it resembled the red crest on the top of a rooster’s head. 
She used two diagrams of this type to present a visual summary 
of the number of deaths in all British military hospitals during 
the Crimean War from April 1854 to March 1856. For each 
12-month period from April to March, she displayed the data in 
the form of 12 wedges with equal central angles radiating from 
a common point. The area of each wedge was proportional to 
the number of deaths in the corresponding month. Within each 
wedge she grouped the monthly mortality figures into three cat-
egories by cause of death: the outer portion that she shaded blue 
represented deaths due to preventable or contagious diseases 
such as cholera or typhus; the middle region that she shaded 
pink represented deaths from wounds; and the inner gray portion 

Using area diagrams similar to this one, Nightingale presented visual summa-
ries of the British army’s loss of manpower due to deaths and permanent inju-
ries. The areas of the two triangular regions indicated that deaths and injuries 
depleted the strength of the military forces by 29 percent.



represented deaths from all other causes. Her graphical presenta-
tion showed that deaths in military hospitals peaked in January 
1855, when 3,168 soldier died—2,761 (87 percent) from conta-
gious diseases, 83 (3 percent) from wounds, and 324 (10 percent) 
from other causes. These deaths represented almost 10 percent 
of the 32,000-member British Army contingent in Crimea. She 
remarked that, if these mortality rates had continued, deaths due 

Florence Nightingale  91

In her report to the War Office, Nightingale introduced polar area or cox-
comb diagrams to summarize graphically how many British soldiers died each 
month during the Crimean War. Each wedge was subdivided to indicate the 
number of deaths in a single month due to contagious diseases, war wounds, 
and other causes.
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to contagious diseases alone would have wiped out the entire 
army in less than a year.

English physician and statistician William Farr described 
Nightingale’s report as the best document ever written on statisti-
cal diagrams or on the army. The commission included much of 
her data in their 1858 report, relegating most of her diagrams to 
an appendix. Convinced that her graphical presentations of the 
data would be more effective than the textual report in convincing 
governmental leaders, military officials, and ordinary citizens of the 
need for reforms, she privately printed and circulated 2,000 copies 
of a collection of her tables under the title Mortality of the British 
Army, at Home, at Home and Abroad, and during the Russian War, 
as Compared with the Mortality of the Civil Population in England. 
In 1859 she produced a similar pamphlet titled A Contribution to 
the Sanitary History of the British Army in the Late War with Russia, 
which presented graphical summaries based on revised figures 
taken from the commission’s report.

The attention that these reports and Nightingale’s personal 
efforts focused on military mortality rates moved the government 
to establish four subcommissions to implement the commission’s 
recommendations. The group responsible for making physical 
alterations to military hospitals and barracks introduced improve-
ments in kitchens, water supply, sewerage, and ventilation. The 
other three subcommissions created a sanitary code for the mili-
tary, established an army medical school, and designed revised pro-
cedures for gathering medical statistics. In honor of her pioneering 
work on this project the Statistical Society of England elected her 
to its membership in 1858.

International Improvements in
Health Care
During the first four years after the Crimean War, Nightingale 
actively participated in several additional initiatives to improve 
health care conditions both in her own country and internation-
ally. In 1858 she and Farr designed data forms and mailed them to 
British military stations throughout India to collect information on 



the sanitary conditions in which soldiers were living. By 1859 she 
successfully promoted for the establishment of a Royal Sanitary 
Commission for India. She submitted her own report to the com-
mission, identifying defective sewerage systems, overcrowded liv-
ing conditions, lack of exercise, and inferior hospital facilities as the 
reasons why the death rate among soldiers in India was six times 
higher than among soldiers in England. The commission’s 1863 
Report on the Army in India included her comments in a section 
titled “Observations by Miss Nightingale.” The implementation of 
their recommended reforms reduced the annual death rate among 
soldiers in India from 7 percent to 2 percent during the next 10 
years.

Convinced that ineffective hospital policies could be changed by 
arguments based on statistical evidence, Nightingale and Farr col-
laborated on the design of a standard form to collect medical data 
from hospitals throughout the world. Their form requested annual 
information on the number of patients admitted, discharged, and 
deceased, the average length of a patient’s stay, and the number 
of patients treated for each of numerous categories of diseases. 
Although the 1860 International Congress of Statistics approved 
their Model Hospital Statistical Form, it was never adopted univer-
sally due to its complex structure and its controversial categoriza-
tion of diseases.

In addition to her work with national commissions and inter-
national organizations, Nightingale effected changes in health 
care practices through her books on nursing and hospitals. In 
1859 she wrote a manual titled Notes on Nursing: What It Is and 
What It Is Not. The most popular of her 200 published works, the 
manual sold 15,000 copies in its first month. The book presented 
a description of the fundamental principles of nursing, empha-
sizing that, in addition to administering medicine and changing 
bandages, nursing required attention to the proper use of light, 
fresh air, warmth, cleanliness, quiet, and healthy diet at the least 
expense of the patient’s energy. Two years later, she published 
Notes on Nursing for the Labouring Classes, an inexpensive, abridged 
version for the general public that included an additional chapter 
titled “Minding Baby.” In 1859 she also wrote Notes on Hospitals 
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in which she enunciated the essential principle that a hospital 
should do the sick no harm. This book included guidelines for 
how hospitals should be built and the functional reasons for those 
guidelines.

One of Nightingale’s original motivations for entering the 
nursing profession had been to establish training programs for 
nurses. Drawing on the assets of the Nightingale Fund, a collec-
tion of private donations that had grown to £50,000, she opened 
the Nightingale School at St. Thomas Hospital in London on 
July 9, 1860, with an initial class of 15 student nurses. This first 
school of modern nursing emphasized rules on deportment, dress, 
and report writing as well as the elements of nursing described in 
her 1859 book. The initiative was so successful that seven years 
later the Metropolitan Poor Act mandated the hiring of trained 
nurses in all workhouse infirmaries in London. Within 15 years 
her school responded to requests to send nurses to start similar 
schools throughout Europe and well as in Australia, Canada, and 
the United States.

Although Nightingale suffered health problems that confined 
her to her room for the last 30 years of her life, she continued to 
correspond with international acquaintances and wrote books and 
papers on nursing. She served as a consultant on army health dur-
ing the American Civil War and advised the British War Office 
about military medical care in Canada. During the Franco-Prussian 
War of 1870, both France and Prussia sought her advice on setting 
up field hospitals to treat their wounded. Her further writings on 
nursing included an 1871 book titled Introductory Notes on Lying in 
Institutions, two articles for Quain’s Dictionary of Medicine in 1882, 
and a paper titled “Sick-Nursing and Health-Nursing” for the 
Chicago Exhibition of 1893. In recognition of her contributions to 
military nursing the War Office awarded her the Royal Red Cross 
in 1883 and elected her to membership in the prestigious Order 
of Merit in 1907. She died in her sleep on August 13, 1910, at her 
apartment in London. Her family refused the queen’s offer to bury 
her in Westminster Abbey, an honor reserved for the most distin-
guished citizens of Great Britain.



Conclusion
During the Crimean War Nightingale spent many hours each 
night walking through hospital wards visiting wounded soldiers. 
In his 1857 poem “Santa Filomena” (Saint Filomena) American 
poet Henry Wadsworth Longfellow popularized this image of her 
as the compassionate lady with the lamp. More important than 
her personal treatment of individual patients was her work as an 
administrator, author, consultant, and influential public figure who 
used statistical reasoning to reform health conditions in hospitals, 
military barracks, and infirmaries. She introduced the polar area 
diagram as a graphical technique for presenting an effective visual 
summary of categorical data. In an era when statistics was still 
a new branch of mathematics, she effectively demonstrated that 
statistical information could be used to make positive changes in 
societal practices.
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8
Georg Cantor
(1845–1918)

Father of Set Theory

Georg Cantor introduced radical ideas about infinite sets that 
established set theory as a new branch of mathematics. Using 
diagonal arguments, he established one-to-one correspondences 
between the natural numbers, the rational numbers, and the alge-
braic numbers and between the points in a square and the points 
on a line segment. He proved the existence of different orders of 
infinity by showing that the real numbers formed an uncountable 
set and that the power set of any infinite set had a higher cardinality 

Georg Cantor introduced radical
ideas about infinite sets that estab-
lished set theory as a new branch of 
mathematics. 
(Courtesy of the Library of Congress)
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than the set itself. His introduction of the continuum hypothesis, 
the well-ordering principle, the trichotomy of cardinals, and the 
set of all sets led mathematicians to the development of a rigorous 
theory of sets.

Family Life and Education
Georg Ferdinand Ludwig Philipp Cantor was born on March 3, 
1845, in St. Petersburg, Russia. Georg Woldemar Cantor, his 
father, was a prosperous merchant and stockbroker who had moved 
from Denmark to Russia. Maria Anna Böhm, his mother, came 
from a family of violinists and music teachers. Although both his 
parents were of Jewish descent, his Lutheran father and Catholic 
mother raised him as a devout Christian. The oldest of six children, 
he learned to read and write from his mother before attending 
elementary school in St. Petersburg.

When his father became ill in 1856, the family moved to 
Germany, where the climate was milder, settling in Wiesbaden 
and then Frankfurt. Cantor excelled in school where he devel-
oped lifelong interests in philosophy, theology, literature, music, 
and mathematics. He attended three years of high school at the 
Wiesbaden Gymnasium and spent his final year as a boarder at 
the Grand-Ducal Realschule in Darmstadt, where he graduated 
in 1860. Although Cantor expressed a strong interest in becom-
ing a mathematician, his father insisted that he pursue a career 
in engineering. After two years in the engineering program 
at Höheren Gewerbschule, a technical college in Darmstadt, 
he persuaded his parents to allow him to study mathematics 
at Polytechnikum Institute (Polytechnic Institute) in Zurich, 
Switzerland.

When his father died of tuberculosis in 1863, Cantor transferred 
to the University of Berlin, where he had the opportunity to study 
with Karl Weierstrass, Eduard Kummer, and Leopold Kronecker, 
three of the leading mathematicians in Europe. To broaden his 
mathematical experience, he spent the summer semester of 1866 at 
the University of Göttingen. In December 1867 he presented his 
doctoral dissertation “De aequationibus secundi gradus indetermi-
natis” (On indeterminate equations of the second degree). In this 



work Cantor solved an open problem that German mathematician 
Carl Friedrich Gauss had identified in 1801 regarding the integers 
x, y, and z that satisfy equations of the form ax2 + by2 + cz2 = 0 for 
arbitrary integer coefficients a, b, and c. The solution of this dif-
ficult problem earned him his doctoral degree with the distinction 
magna cum laude (high honors). In that same year Cantor wrote 
another thesis titled In re mathematica ars propendi pluris facienda est 
quam solvendi (In mathematics the art of asking questions is more 
valuable than solving problems) that foreshadowed the significance 
of his career in which the questions he raised and left unanswered 
led to greater achievements than the theorems that he succeeded 
in proving.

While waiting to obtain a position as a university profes-
sor, Cantor passed the Staatsprüfung (national examination), the 
German certification test for school teachers, and taught for a 
year at a girls’ school in Berlin. In 1869 he accepted a position 
at the University of Halle as a Privatdozent (assistant professor) 
meaning that he could lecture at the university but collected his 
fees directly from his students. He advanced in rank becoming an 
Extraordinarius (associate professor) in 1872 and an Ordinariat (full 
professor) in 1879. Although he continually sought positions at 
more prestigious institutions where he could teach better students 
and collaborate with more accomplished research mathematicians, 
he spent his entire 44-year academic career at the University of 
Halle. In 1874 Cantor married his sister’s friend Vally Guttmann, 
with whom he had two sons and four daughters.

Research in Analysis and Number 
Theory
As a protégé of Kummer and Weierstrass, Cantor did his early 
mathematical research in analysis and number theory, the same 
areas as his former teachers. Working with Heinrich Heine, the 
leading mathematician at the University of Halle, he became par-
ticularly interested in questions relating to Fourier series, a method 
for representing functions as infinite sums of sines and cosines. The 
10 papers that he wrote between 1867 and 1873 demonstrated his 
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ability to conduct high-quality research and established him as a 
serious and gifted mathematician.

Cantor presented his most significant work from this period in 
his 1872 paper titled “Über die Ausdehnung eines Satzes aus der 
Theorie der trignometrischen Reihen” (On the generalization of a 
theorem from the theory of trigonometric series), which appeared 
in the journal Mathematische Annalen (Annals of mathematics). In 
this paper he constructed the real numbers as the limits of funda-
mental sequences (now called Cauchy sequences) of rational num-
bers. According to his definition, if two such sequences of rational 
numbers a1, a2, a3, . . . and b1, b2, b3, . . . both had the same limit and 
the sequence of their differences a1 -b1, a2 -b2, a3 -b3, . . . converged 
to zero, then the sequences were equivalent and they represented 
the same real number. Although mathematicians had been working 
with real numbers for thousands of years, Cantor’s construction 
provided the first concrete representation of the concept of real 
number. In the same year another German mathematician, Richard 
Dedekind, published his concept of Dedekind cuts that defined a 
real number as the boundary value separating all the rational num-
bers that were less than it from all the rational numbers that were 
greater than it. The two equivalent concepts that they developed 
independently form the Cantor-Dedekind axiom of real numbers, 
a fundamental concept in analysis.

In his work with real numbers Cantor presented infinite series 

of the form  where the numerators were non-

negative integers. He proved that any positive real number could 
be represented as the limit of the sequence of partial sums of these 
series that are now known as Cantor series. He also investigated 
the representation of real numbers as infinite products. The partial 
products formed by the first n terms provided further sequences for 
defining real numbers.

Through their research on the topic of real numbers, Dedekind 
and Cantor established a mutually advantageous working relation-
ship and a deep friendship. While in Switzerland on his honey-
moon in 1874, Cantor spent time discussing mathematics with 
Dedekind, who was also vacationing there. From 1873 to 1879 the 
two engaged in a voluminous correspondence about their research. 



Dedekind’s deep, abstract, logical way of thinking influenced the 
direction of Cantor’s research and the development of his ideas.

The Birth of Set Theory
In their exchange of letters Dedekind and Cantor discussed infinite 
sets of numbers. Cantor shared his proof that the set of natural num-
bers (the positive integers) and the set of rational numbers (those 
numbers that can be written as fractions of two integers) were the 
same size. He developed a one-to-one correspondence between the 
two infinite sets by pairing up their elements in a creative manner. 
First he organized the positive, rational numbers into a collection
of rows listing the fractions having denominators of 1, followed 
by the fractions having denominators of 2, the fractions having 
denominators of 3, and so on. He then linked these numbers into 

a sequence  by going 

up the first diagonal, down the second, up the third, down the fourth, 

and so on. Ignoring duplicate entries such as   

whose values had occurred earlier in the list as fractions reduced to 
their lowest terms, he managed to assign a distinct natural number 
to each positive, rational number. Inserting the negative of each 
value after the corresponding positive entry and listing zero as the 
initial value, his innovative diagonal argument proved that the set 
of rational numbers was a countably infinite set. He became well 
known for the various types of diagonal arguments that he used to 
prove several important results throughout his career.

Cantor was not the first mathematician to notice that it was 
possible to establish a one-to-one correspondence between the 
members of an infinite set and the elements of one of its subsets. In 
1632 Italian scientist Galileo Galilei had observed that the natural 
numbers 1, 2, 3, 4, 5, . . . could be paired with the seemingly smaller 
collection of square numbers 12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 =
25, . . . Although only some natural numbers were squares, this pair-
ing suggested that the collection of squares was as numerous as the 
set of all natural numbers. Puzzled by the apparent contradiction, 
Galileo did not pursue the subject further. Cantor and Dedekind, 

Georg Cantor  101



102  The Foundations of Mathematics

however, identified this behavior as the defining property of infi-
nite sets. They realized that a set was infinite if its elements could 
be put into a one-to-one correspondence with the elements of one 
of its proper subsets—a set that contained some but not all of the 
elements of the original set.

Cantor formalized and extended his ideas on infinite sets in the 
paper “Über eine Eigenschaft des Inbegriffes aller reellen alge-
braischen Zahlen” (On a property of the collection of all real alge-
braic numbers) that appeared in 1874 in the Journal für die reine und 
angewandte Mathematik (Journal for pure and applied mathematics). 
In this paper he presented two significant results about infinite sets 
that radically changed mathematicians’ ideas about the concept of 
infinity. With the publication of this important paper he intro-
duced set theory as a new branch of mathematics.

One of the two major ideas in Cantor’s foundational paper dealt 
with algebraic numbers—those real numbers that were solutions 

Using a diagonal argument, Cantor specified a systematic method for listing all 
positive rational numbers. By ignoring fractions that were not in lowest terms 
and including zero and negative numbers, he established a one-to-one corre-
spondence between the set of natural numbers and the set of rational numbers.



to equations having integer coefficients. Although this set included 
the natural numbers and the rational numbers, Cantor constructed 
a one-to-one correspondence between its members and the set of 
natural numbers. For each polynomial equation a0 + a1x+a2x2 + . . .
+ anxn = 0 with integer coefficients he defined its index to be the 
sum of the absolute values of the coefficients plus the degree of 
the equation, |a0|+|a1| + . . . |an|+n. The only equation of index 
2 was x = 0, so its solution, 0, became the first algebraic number. 
The four equations of index 3 were 2x = 0, x + 1 = 0, x – 1 = 0, and
x2 = 0. They had roots 0, –1, 1, so he included the new values –1 
and 1 as the second and third entries on his list of algebraic num-
bers. Cantor observed that for each index there were only finitely 
many equations and that each equation had only finitely many 
roots. Listing the new roots by order of index and by increasing 
magnitude within each index, he established a systematic method 
for listing all the algebraic numbers. This one-to-one correspon-
dence with the natural numbers proved that the set of algebraic 
numbers was countably infinite.

The second important result that Cantor proved in this paper 
was that the set of all real numbers was not countably infinite. He 
accomplished this by showing that each real number could be iden-
tified with a nested sequence of intervals [a1, b1], [a2, b2], [a3, b3], . . .  
and that the set of all these sequences could not be put into a one-
to-one correspondence with the natural numbers. Several years 
later, Cantor presented a more elegant diagonal proof that made 
this result very clear. In his later proof he showed that if the real 
numbers were countably infinite, then they could be ordered as a 
sequence of decimal numbers. Given any such sequence, 0.a1a2a3a4

. . . , 0.b1b2b3b4 . . . , 0.c1c2c3c4 . . . , 0.d1d2d3d4 . . . ,  . . . , he showed 
that it would always be possible to create a real number that was not 
in the list by choosing a first digit that was different from a1, a sec-
ond digit that was different from b2, a third digit that was different 
from c3, and so on. Since no sequence of numbers could list all real 
numbers, the set of all real numbers was not countably infinite.

These two results meant that the set of real numbers was some-
how significantly larger than the countably infinite sets of natural 
numbers, rational numbers, and algebraic numbers. Cantor had 
proved that there were different sizes of infinity—a novel concept 

Georg Cantor  103



104  The Foundations of Mathematics

that mathematicians had not previously considered. As he became 
more familiar with these novel ideas, he introduced the terms power 
and cardinality to describe the size of a set, called two sets “equipol-
lent” if they had the same cardinality, and created the expression 
cardinality of the continuum to describe the size of the uncountably 
infinite set of real numbers. In 1844 French mathematician Joseph 
Liouville had established that there were infinitely many nonalge-
braic or transcendental numbers. Cantor’s new results meant that 
the set of transcendental numbers had the cardinality of the con-
tinuum. Rather than being rare quantities, they far outnumbered 
the more familiar algebraic numbers.

Continuum Hypothesis
Cantor continued to investigate the intriguing properties of infinite 
sets. In his 1878 paper “Ein Beitrag zur Mannigfaltigkeitslehre” (A 
contribution to manifold theory), which appeared in the Journal 
für die reine und angewandte Mathematik, he proved that a two-
dimensional surface and a one-dimensional line had the same 

Cantor proved that no sequence of decimal values could include all real num-
bers by constructing a number that had a different first digit than the first 
number in the sequence, a different second digit than the second number in 
the sequence, and so on. This proof showed that the set of real numbers was 
not countably infinite and established the existence of different orders of 
infinity.



number of points. His innovative proof established a one-to-one
correspondence between the points in the unit square
S = {(x,y)|0 ≤ x, y ≤ 1} and the points in the unit interval I = {z|0 
≤ z ≤ 1}. For each point (x, y) = (0.x1 x2 x3 . . . , 0.y1 y2 y3 . . .) in the
unit square, he merged the digits creating the corresponding point 
z = 0.x1 y1 x2 y2 x3 y3 . . . in the unit interval. Conversely, he showed 
that for any point z = 0.z1 z2 z3 z4 z5 z6 . . . in the unit interval its digits
could be separated, creating two decimal numbers that provided the
coordinates of a point (x, y) = (0.z1 z3 z5 . . . , 0.z2 z4 z6 . . .) in the unit 
square. His proof established that, despite their different dimen-
sions, these two sets both had the cardinality of the continuum.

When Cantor completed the proof of this counterintuitive result, 
he remarked to Dedekind that he saw it but he did not believe it. 
The implausibility of the result and the fact that his proof tech-
nique required an infinite number of steps made his paper highly 
controversial. Kronecker, who served on the journal’s editorial 
board, tried to prevent its publication and convinced many mathe-
maticians in Germany to reject Cantor’s radical ideas. Recognizing 
the paper’s significance, Dedekind successfully argued for it to be 
published. Cantor was so upset by the reaction to his work that he 
never submitted any future research results to this journal, even 
though it was the most prestigious mathematical publication in 
Europe. Throughout the remainder of his career he had to defend 
the validity of his innovative ideas and his nonstandard methods.

In the same paper Cantor stated without proof the property 
that if two infinite sets were not equipollent then one set had to 
be equipollent to a proper subset of the other. This fundamental 
principle known as the trichotomy of cardinals seemed obvious to 
him but, despite repeated attempts, he was unable to prove it. His 
suggestion of the idea led to productive research by other mathe-
maticians. In 1904 his countryman Ernst Zermello showed that the 
trichotomy of cardinals could not be proven from the other axioms 
of set theory because it was independent of them. By introducing 
an additional principle known as the axiom of choice, Zermello was 
able to prove the law of trichotomy.

Between 1879 and 1884 Cantor published his most important 
work on set theory in a six-part treatise titled “Über unendliche, 
lineare Punktmannichfaltigkeiten” (On infinite, linear manifolds of 
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points) in the journal Mathematische Annalen. He stated a principle 
known as the continuum hypothesis, asserting that every infinite 
subset of the real numbers was countably infinite or had the cardi-
nality of the continuum. This meant that there were no other types 
of infinity between these two cardinalities. Using the symbol ℵ 
(aleph), the first letter of the Hebrew alphabet, he labeled these two 
orders of infinity as ℵ0 and ℵ1. Cantor attempted to prove and then 
to disprove the continuum hypothesis but was unable to accom-
plish either result. In 1900 Russian mathematician David Hilbert 
identified this conjecture as one of the 23 significant problems that 
would shape the development of mathematics in the 20th century. 
His prediction was accurate as attempts by other mathematicians to 
prove or disprove Cantor’s conjecture led to some of the deepest 
work in set theory. In 1940 Austro-Hungarian mathematician Kurt 
Gödel confirmed the consistency of the continuum hypothesis by 
showing that it could not be disproved from the other axioms of 
set theory. Twenty-three years later, American mathematician Paul 
Cohen established its independence by showing that the continuum 
hypothesis could not be proved from the other axioms of set theory. 
The consistency and independence of Cantor’s conjecture meant 
that it was possible to build valid models of set theory that satis-
fied the continuum hypothesis and other models that did not. The 
realization of the existence of this and other unprovable statements 
changed the nature of mathematics as a rigorous, logical discipline.

In the 1883 installment of this multipart treatise Cantor stated 
another controversial idea known as the well-ordering principle. He 
claimed that it was a fundamental property of set theory that every 
set could be ordered so that each of its subsets had a smallest element. 
When his critics refused to accept this principle as a basic assumption 
of set theory, he attempted to prove it but did not succeed. In 1904 
Zermello proved that the well-ordering principle was a consequence 
of his axiom of choice. Eventually mathematicians showed that the 
axiom of choice, the well-ordering principle, and the trichotomy of 
cardinals were equivalent, unprovable statements in set theory.

Several of the papers in Cantor’s six-part treatise introduced 
basic ideas such as closed, dense, continuous, and perfect sets that 
eventually led to the establishment of the branches of mathemat-
ics known as point set topology and measure theory. He gave an



example of a set now known as the Cantor set that had seemingly 
inconsistent properties. He constructed this set by starting with
the unit interval, removing the middle third (all values between 

), removing the middle third from the two remaining 

intervals, and continuing for infinitely many steps, each time 
removing the middle third from all remaining intervals. He showed 
that this set consisted of all points in the unit interval that could be

written as a sum of the form  + . . . where the 

numerator in each fraction was either 0 or 2. Replacing the 
denominators in the summations by powers of two and changing 
any digit of two in the numerators to a one, he showed that the 
resulting set of points could be put into a one-to-one correspon-
dence with the entire set of points in the unit interval, proving 
that this nearly empty set had the cardinality of the continuum.

Subset Theorem, Transfinite Arithmetic, 
and Antinomies
In 1884 Cantor applied for a position on the mathematics faculty 
at the University of Berlin. Kronecker continued his strong opposi-
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tion to Cantor’s ideas and prevented him for obtaining the profes-
sorship that he desperately wanted. Cantor responded by writing 
52 letters to Gösta Mittag-Leffler, the editor of Acta Mathematica 
(Mathematical activities), attacking Kronecker. In the midst of 
this controversy Cantor suffered a nervous breakdown and was 
hospitalized in a mental institution. This was the first of six times 
that he would be treated at sanatoriums for symptoms of bipolar 
disorder and manic depression. After being discharged from the 
hospital, he applied to teach philosophy and literature. He publicly 
lectured on the theory that Sir Francis Bacon was the real author 
of Shakespeare’s plays.

Despite these challenges, Cantor succeeded in creating national 
and international networks of mathematicians. He helped to estab-
lish the Deutsche Mathematiker-Vereinigung (Association of German 
Mathematicians) in 1890 and served as its first president until 1893. 
In 1897 he played a prominent role in the organization of the first 
International Congress of Mathematicians in Zurich. He expended 
considerable effort promoting the exchange of mathematical ideas 
among scholars from different institutions and countries.

In the decade of the 1890s Cantor contributed several additional 
original ideas to the growing field of set theory. In his 1891 paper 
“Über eine elementare Frage der Mannigfaltigkeitslehre” (On 
an elementary problem in the study of manifolds) published in 
the Jahresbericht der Deutschen Mathematiker-Vereinigung (Annual 
Report of the Association of German Mathematicians) he presented 
his diagonal proof that the real numbers were not a countable set 
and proved the important subset theorem. For any set S he denoted 
by P(S) its power set—the collection of all the subsets of S. In the 
subset theorem Cantor showed that for any infinite set S its power 
set P(S) had a larger cardinality than S. Generalizing his earlier 
theorem on the cardinality of the continuum where he proved that 
there were at least two different sizes of infinity, the subset theorem 
also known as Cantor’s theorem established the fact that there were 
infinitely many cardinalities, which he called transfinite numbers.

Cantor’s final mathematical treatise “Beiträge zur Begründung 
der transfiniten Mengenlehre” (Contributions to the foundation 
of the study of transfinite sets) was published in two parts in 1895 
and 1897 in the journal Mathematische Annalen. Philip Jourdain’s 



English translation of this pair of papers appeared in book form in 
1915. In this treatise he developed rules for arithmetic with transfi-
nite numbers, showing how to add and multiply infinite quantities. 
He also introduced without proof the principle that for two infinite 
sets A and B, if A has the same cardinality as a subset of B and B 
has the same cardinality as a subset of A, then A and B must have 
the same cardinality. Felix Bernstein in 1896 and Ernst Schröder 
in 1898 independently developed proofs of this principle, which is 
now known as the Cantor-Schröder-Bernstein equivalence theo-
rem. In addition to introducing new ideas on transfinite numbers, 
Cantor’s comprehensive treatise presented a polished summary of 
his 20 years of work on the development of set theory.

While writing this treatise, Cantor discovered several seemingly 
contradictory results that he called antinomies or paradoxes. In an 
1896 letter to Hilbert he posed one of these antinomies about the 
set of all sets. Cantor suggested that since this was the largest pos-
sible set its cardinality would be the largest possible cardinal but, 
as he had proved earlier, its power set would have an even larger 
cardinality. Neither Hilbert nor Cantor could settle the appar-
ent inconsistency of this problem. Mathematical logicians later 
resolved the issue by redefining the rules of set theory to preclude 
the existence of a set of all sets.

Cantor spent his final 20 years defending his controversial 
theory of sets and the validity of his methods of proof against criti-
cism from other German mathematicians. Beyond the borders of 
his own country, his international colleagues admired his work. He 
became an honorary member of the London Mathematical Society 
in England and the Mathematical Society of Kharkov in Russia. 
He received honorary degrees from Christiania University in 
Norway and St. Andrew’s School in Scotland. Cantor’s mental and 
physical health deteriorated, requiring more frequent periods of 
hospitalization. He died on January 6, 1918, at Halle University’s 
psychiatric clinic.

Conclusion
After his death Cantor’s ideas about infinite sets gained strong 
support throughout the mathematical community. His idea of set 
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became a unifying concept underlying all branches of mathematics 
and led to the development of the new fields of topology, mea-
sure theory, and set theory. At the Second International Congress 
of Mathematicians in Paris in 1900 Hilbert identified Cantor’s 
continuum hypothesis as the first of 23 problems that would be 
central to the development of mathematics in the 20th century. 
The subsequent research on the continuum hypothesis, the well-
ordering principle, the trichotomy of cardinalities, and the set of 
all sets played important roles in the establishment of a rigorous 
theory of sets. Geometers have constructed fractal images such as 
the Sierpinski carpet and the Menger sponge that form two- and 
three-dimensional generalizations of the Cantor set. Mathematical 
logicians and number theorists continue to model their proofs on 
Cantor’s elegant diagonal method.
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Pioneering Woman Mathematician

Sonya Kovalevsky (pronounced ko-va-LEV-skee) broke gender 
barriers in mathematics by becoming one of the first women to 
receive a doctoral degree in mathematics and to be appointed as 
a university professor. In her first research paper she discovered 
one of the fundamental principles of partial differential equations. 
Her analysis of the rotation of an asymmetric object called the 

Sonya Kovalevsky, one of the first 
women to receive a doctoral degree 
in mathematics, discovered one of 
the fundamental principles of partial 
differential equations and won first 
prize in an international mathematics 
competition for her analysis of rotat-
ing objects. 
(Courtesy of the Library of Congress)

9
Sonya Kovalevsky

(1850–1891)



Kovalevsky top won first prize in an international mathematics 
competition. She also discovered properties of elliptic integrals, 
the ring of Saturn, and the bending of light as it passes through 
crystals.

Kovalevsky’s name has been translated in a number of different 
ways from her native Russian alphabet and has been reported in dif-
ferent forms in various sources. Her first name is sometimes given 
as Sonya or Sonia and at other times as Sophia, Sofia, or Sofya. Her 
last name appears as Kovalevsky, Kovalevskaya, or Kovalevskaia.

Early Mathematical Influences
Sonya Vasilevna Krukovsky was born on January 15, 1850, in 
Moscow, Russia, to parents who were educated members of the 
upper class of Russian society. Vasily Krukovsky, her father, was 
an artillery general in the Russian army, whose military rank and 
substantial income afforded the Krukovsky family a comfortable 
lifestyle. Velizaveta Schubert, her mother, was an educated woman 
from a prosperous family. Her grandfather, Fyodor Fyodorovich 
Schubert, had been a mathematician in charge of the army’s 
mapmaking division and her great-grandfather, Fyodor Ivanovich 
Schubert, had been a mathematician and a noted astronomer.

Sonya was the middle child in a family of three children. 
Competing with her older sister, Anuita, and her younger brother, 
Feyda, for their parents’ affection and attention, she became 
focused on personal achievements. Through the harsh discipline 
of her governesses and nannies, she became a perfectionist. At the 
family’s rural estate in the town of Palibino, where she had few 
playmates, Sonya developed a vivid imagination. This aspect of her 
childhood developed characteristics of her personality that served 
her well in her mathematical career.

During her childhood and teenage years five major influences 
stimulated Sonya’s interest in mathematics. When her parents 
redecorated the family’s house, the workers did not have enough 
wallpaper to finish her room, so they papered some of her walls 
with copies of lecture notes from a calculus book that her father 
had used as a young student. She spent many hours trying to under-
stand the strange words and symbols on her walls and attempting to 
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determine the proper ordering of the pages. Although she did not 
understand the meaning of the mathematics, she memorized many 
of the formulas and symbols.

Sonya’s uncle Peter Krukovsky introduced her to interesting 
mathematical ideas such as the problem of constructing a square 
and a circle, both having the same area, and the concept of curves 
that approach a straight line without touching it. His enthusi-
asm and respect for mathematics stirred Sonya’s imagination and 
sparked her interest in the subject.

The Krukovskys hired tutors to teach their three children a 
broad range of subjects. Although she enjoyed learning about his-
tory, literature, and foreign languages, Sonya devoted most of her 
time to her math lessons. When her father discovered that she was 
neglecting her other subjects, he ordered the tutor to stop teaching 
her mathematics. Defiantly, Sonya secretly borrowed an algebra 
book and studied at night while her family slept.

When the Krukovskys’ neighbor Professor N. N. Tyrtov gave 
the family a copy of a physics textbook that he had written, Sonya 
read it with great interest. Although her tutoring sessions had not 
included any trigonometry, she reconstructed the proper mean-
ing of the sine and cosine functions as ratios of distances between 
points on a circle. Recognizing Sonya’s profound ability and inter-
est, Professor Tyrtov tried to persuade her father to let Sonya 
pursue further study in mathematics.

When she was 15 years old, her father reluctantly agreed to let 
her travel to the naval school in St. Petersburg to take a calculus 
course from Alexander Strannoliubsky, a respected professor of 
mathematics. Amazed by her rapid mastery of the subject, he asked 
if she had previously studied calculus. Sonya explained that since 
she had already memorized the formulas from her wallpaper, she 
needed only an explanation of their meaning.

Mathematical Studies in Germany
Sonya and her sister, Anuita, wanted to study at universities and 
travel to Europe. In the 1860s Russian universities did not admit 
female students, and Russian women were not allowed to travel 
to foreign countries unless they were accompanied by their hus-



bands or male family members. Determined to study and travel, 
the two sisters arranged for Sonya to marry Vladimir Kovalevsky, 
a student at Moscow University and an idealistic revolutionary 
who sympathized with their plans. To obtain her father’s blessing 
on the marriage, Sonya sent a note to her parents during a din-
ner party announcing her intention to marry Vladimir. When the 
party guests learned of Sonya’s engagement, her father was forced 
to agree to the marriage rather than be publicly embarrassed by 
the rebelliousness of his daughter. In September 1868, 18-year-old 
Sonya Krukovsky married 26-year-old Vladimir Kovalevsky.

In the spring of 1869 the three traveled to Europe to pursue uni-
versity educations—Anuita to Paris, France; Vladimir to Vienna, 
Austria; Sonya to Heidelberg, Germany. At Heidelberg University, 
Germany’s oldest and most respected university, women could not 
formally enroll in courses, but Kovalevsky obtained permission 
from several professors who allowed her to attend their lectures. 
Mathematics professor Leo Königsberger informally directed 
her studies for a year and a half. Recognizing that she possessed 
exceptional mathematical talents, he recommended that she attend 
Berlin University to study with his former professor and research 
director, Karl Weierstrass.

In August 1870 Kovalevsky arrived in Berlin with letters of 
recommendation from her professors in Heidelberg to meet 
Weierstrass. To assess her abilities, he gave her a set of difficult 
math problems, which she solved in just one week. Her clever 
and clear solutions so impressed Weierstrass that he insisted she 
study with him. Berlin University, like Heidelberg, did not allow 
women to register for classes officially. Although he was known 
as the father of mathematical analysis and was one of Europe’s 
leading mathematicians, Weierstrass was unable to persuade the 
university to make an exception for Kovalevsky. He agreed to tutor 
her privately.

Important Discovery in Differential 
Equations
For four years Kovalevsky read Weierstrass’s lecture notes and met 
with him to review any details that she did not understand. She 
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read his published and unpublished research papers and discussed 
the latest theories of geometry and functional analysis with him. 
Under his direction she worked on several research projects and 
wrote up her results in three major papers.

Kovalevsky’s first research paper was titled “Zur Theorie der 
partiellen Differentialgleichungen” (Toward a theory of partial dif-
ferential equations). Differential equations provide mathematical 
descriptions of the rate at which one quantity changes compared to 
another quantity such as the rate at which a company’s profit will 
change as it raises the price of its product or the rate at which the 
population of fish in a lake will increase or decrease as the water 
temperature changes. Weierstrass had previously published some 
work about rates of change for situations involving one variable. 
French mathematician Augustin-Louis Cauchy extended this work 
to situations involving many variables. Kovalevsky completed the 
project by identifying the conditions under which a partial differ-
ential equation would have a solution and determining when that 
solution would be the only solution.

This paper on the existence and uniqueness of solutions made 
a major contribution to the field of differential equations and 
appeared in 1875 as the lead article in Germany’s leading math-
ematics journal Journal für die reine und angewandte Mathematik
( Journal for pure and applied mathematics). The work drew imme-
diate praise from other mathematical researchers. Charles Hermite 
called it the point of departure for all future research on the sub-
ject. Henri Poincaré regarded it as a significant improvement over 
Cauchy’s method of proof. This result has come to be known as the 
Cauchy-Kovalevsky theorem and remains a basic principle in the 
theory of partial differential equations.

Kovalevsky’s second research paper was titled “Über die 
Reduction einer bestimmten Klasse von Abel’scher Integrale 3-en 
Ranges auf elliptische Integrale” (On the reduction of a definite 
class of Abelian integrals of the third range). This paper extended 
one of Weierstrass’s results in an area of advanced calculus and 
showed how to convert certain types of expressions called Abelian 
integrals to simpler elliptic integrals, making those difficult prob-
lems easier to solve. The paper eventually appeared in 1884 in the 
journal Acta Mathematica (Mathematical activities).



Her third paper was “Zusätse und Bemerkungen zu Laplace’s 
Untersuchung über die Gestalt des Saturnringes” (Supplementary 
research and observations on Laplace’s research on the form of 
the Saturn ring). The French mathematician Pierre-Simon 
Laplace had proposed a revolutionary theory about the forma-
tion of the Sun and the planets. Kovalevsky gave mathematical 
explanations for some of the properties of the thick ring of ice 
and rocks that orbits around the equator of the planet Saturn. She 
proved that the ring was not a circle or an ellipse but was more 
egg-shaped and that its shape was continuously changing. In this 
research Kovalevsky introduced a novel way to use mathematical 
objects known as power series. Adapting this approach, Poincaré 
and other mathematicians applied her power series method to 
additional problems. While her first two papers addressed top-
ics in more abstract areas of mathematics, this research paper 
demonstrated Kovalevsky’s ability to solve problems in applied 
mathematics and science. It was eventually published in 1885 in 
the journal Astronomische Nachrichten (Astronomical news).

After four years of productive work, Weierstrass felt that 
Kovalevsky’s research was sufficient to earn her a Ph.D. in math-
ematics. Because she was not enrolled as a student at Berlin 

Using the method of power series, Kovalevsky determined that the ring of 
Saturn was not a circle or an ellipse but was more egg-shaped and that its 
shape was continuously changing. (Courtesy of the National Aeronautics and 

Space Administration)
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University, the university’s officials refused to grant her a doc-
toral degree. Weierstrass contacted his colleagues at the nearby 
University of Göttingen, who reviewed her work and found it to 
be of the highest quality. In August 1874, when the University of 
Göttingen awarded Sonya Kovalevsky a doctorate in mathemat-
ics summa cum laude (with highest honors), she became the first 
woman outside of Renaissance Italy to earn a doctorate in math-
ematics.

Mathematics Professor
Although Kovalevsky’s work in differential equations and her 
extraordinary accomplishments as a woman in mathematics 
were well known throughout the mathematical community, no 
European university would appoint a woman to a faculty position. 
She encountered the same discriminatory practices as she applied 
for positions teaching mathematics in Russian gymnasiums, the 
equivalent of American high schools. Her husband, Vladimir, who 
had received his doctorate from Austria’s Jena University in pale-
ontology, the study of fossils, was also unable to obtain a teaching 
position. Disappointed and discouraged, the couple moved back to 
Russia to rejoin her family.

During the next four years Kovalevsky engaged in nonmath-
ematical activities. When her father died in 1875, she and Vladimir 
moved to St. Petersburg, where they enjoyed an active social life 
and attempted a variety of business enterprises, including ventures 
in publishing, real estate, and oil. Novoe vremia (New times), a 
newspaper run by her husband, published four of her articles on 
popular science themes and many of her reviews of theater produc-
tions. She wrote poetry, a novel entitled The University Lecturer, 
and many articles about women’s rights. Serving as a member 
of the fund-raising committee, she helped to establish Higher 
Women’s Courses, a college for women in St. Petersburg, yet was 
not invited to join the faculty. On October 17, 1878, Kovalevsky 
gave birth to her only child, a daughter named Sofya Vladimirovna, 
affectionately called Fufa.

Soon after her daughter’s birth, Kovalevsky turned her attention 
back to mathematics. She translated her paper on Abelian integrals 



into Russian and in 1879 presented it at a Russian mathematical 
and scientific conference, the Sixth Congress of Naturalists and 
Physicians, in St. Petersburg. Even though the research was six 
years old, mathematicians at the conference praised the paper and 
encouraged Kovalevsky to pursue her mathematical interests. She 
attended meetings of the Moscow Mathematical Society and, on 
March 29, 1881, this group of professional mathematicians elected 
her as a member. After spending 10 months in Berlin conducting 
research with Weierstrass on light waves and crystals, Kovalevsky 
moved to Paris, where she quickly became active within the French 
community of mathematicians. The Paris Mathematical Society 
admitted her as an official member in July 1882. Although she was 
deeply affected by her husband’s suicide in April 1883, Kovalevsky 
continued her mathematical research on the refraction of light 
waves in a crystalline medium. In August 1883 she presented a 
paper on this topic at the Seventh Congress of Naturalists and 
Physicians in Odessa, Russia.

In the fall of 1883 Kovalevsky finally obtained a teaching position 
at the University of Stockholm, a progressive institution in Sweden 
that had been established in 1879 to educate both men and women. 
The university’s director, mathematician Gösta Mittag-Leffler, 
who, like Kovalevsky, had studied with Weierstrass, wanted his 
institution to be the first in Europe to have a distinguished female 
mathematician on its faculty. Due to opposition from other faculty 
members, he was only able to offer Kovalevsky a one-year posi-
tion at the lowest faculty rank of Privatdozent (assistant professor), 
which meant that she could lecture at the university but would have 
to collect her fees directly from her students rather than receive a 
salary from the institution.

Research on Light Waves
During the next seven years Kovalevsky progressed from this 
marginal appointment to become an active, recognized, and 
respected member of the European mathematical community. 
The hundreds of faculty members and students who attended her 
first classroom lecture on differential equations applauded at its
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conclusion. Within six months she learned enough Swedish to teach 
the students in their native language. By the end of her first year, 
Mittag-Leffler had raised enough money from private donations to 
offer her a five-year appointment as an “extraordinary” or assistant 
professor, making her the first female mathematician to hold a 
regular faculty appointment at a European university in more than 
100 years. When Acta Mathematica appointed her to their editorial 
board, she became the first woman to serve as an editor of a major 
scientific journal. In this new role she read research papers submit-
ted by mathematicians from many countries and helped to organize 
conferences throughout Europe.

Kovalevsky continued her research on light waves and published 
her results in three mathematical journals. In 1884 the prominent 
French scientific journal Comptes rendus hebdomadaires de l’Academie 
des Sciences (Weekly rendering of the accounts of the Academy of 
Sciences) published a brief summary of her research in the paper 
“Sur la propagation de la lumière dans un milieu cristallisé” (On the 
propagation of light in a crystalline medium). A similar summary 
titled “Om ljusets fortplannting uti ett kristalliniskt medium” (On 
the refraction of light in a crystalline medium) appeared in 1884 in 
the Swedish journal Öfversigt Akademiens Forhandlinger (Overview 
of academic achievements). The next year the German journal Acta 
Mathematica published her full 55-page research report entitled 
“Über die Brechung des Lichtes in cristallinischen Mitteln” (On 
the refraction of light in a crystal medium).

Prize-Winning Work on Rotation of 
Kovalevsky Top
In 1888 Kovalevsky entered the competition for the Prix Bordin 
(Bordin Prize) offered by the French Academy of Sciences. The 
competition required contestants to investigate the rotation of a 
solid object around a fixed point. Kovalevsky had been interested 
in this topic since the start of her mathematical career and had 
been actively researching it since 1884. Some examples of this type 
of motion are a spinning top, a gyroscope, and the pendulum of a 
clock. Many famous mathematicians, including Leonhard Euler, 



Joseph-Louis Lagrange, Siméon-Denis Poisson, and Carl Jacobi 
had worked on this problem in the previous 100 years and had 
described two possible types of rotation. Kovalevsky discovered 
that an object that is not symmetrical could turn in a third way. 
The irregular spinning object that she investigated became known 
as the Kovalevsky top. Her elegant solution to this difficult prob-
lem easily won the competition. The judges considered her entry 
to be such an extraordinary contribution to mathematical physics 
that they increased the prize money from 3,000 to 5,000 francs. On 
Christmas Eve, 1888, she was awarded the Bordin Prize before a 
gathering of the best mathematicians and scientists in France. She 
was only the second woman to receive a significant prize from the 
French Academy of Sciences.

Acta Mathematica published Kovalevksy’s solution in the paper 
“Sur le problème de la rotation d’un corps solide autour d’un 
point fixe” (On the problem of the rotation of a solid body about 
a fixed point) in 1889. Her continued research on this problem led 
to two additional research papers. “Sur une propriété du système 
d’équations différentielles qui définit la rotation d’un corps solide 
autour d’un point fixe” (On a property of the system of differential 
equations that define the rotation of a solid body about a fixed 
point) appeared in Acta Mathematica in 1890. “Mémoire sur un cas 
particulier du problème de la rotation d’un corps pesant autour 
d’un point fixe, où l’intégration s’effectue à l’aide de fonctions 
ultraelliptiques du temps” (Report on a particular case of the prob-
lem of the rotation of a heavy body about a fixed point, where the 
integration is accomplished with the use of hyperelliptic functions 
of time) was printed as the 62-page lead article in the 1894 edition 
of Mémoires présentés par divers savants à l’Académie des Sciences de 
l’institute national de France (Reports presented by various scholars 
to the Academy of Sciences of the National Institute of France).

Kovalevsky’s work on the rotation problem had a signifi-
cant influence on research in the area of mathematical physics. 
Mathematicians from many European countries praised her adept 
use of complex analysis, Abelian functions, and hyperelliptic 
integrals as well as her simple, direct, and complete analysis of 
the general problem. Russian mathematician N. E. Zhukovski
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recommended that her excellent analysis be included as a standard 
component of all university level analytical mechanics courses. 
More than 100 years later, mathematical physicists continue to 
use the asymptotic method that she employed. Her analysis of the 
problem was so complete that, even though the rotation problem 
continues to be studied today, no new cases have been discovered.

The Bordin Prize was the first of many ways that the European 
mathematical community honored Kovalevsky for her work on the 
rotation problem. In 1889 the Stockholm Academy of Sciences 
awarded her a prize of 1,500 kroner. That same year the French 
Ministry of Education named her an “officer of public instruction,” 
an honorary title indicating the respect she had earned within that 
country’s mathematical community. In June 1889 the University 
of Stockholm made her a permanent member of their faculty by 
appointing her to the position of professor of mathematics with 
tenure. No other woman had held a tenured appointment at a 
European university since the Italian Renaissance. On December 
2, 1889, she became the first woman to be elected as a correspond-
ing member of Russia’s Imperial Academy of Sciences. Although 
she hoped that this recognition signaled a shift in Russian society, 
this honorary title did not permit her to attend meetings of the 
academy and did not lead to the offer of a teaching position at a 
Russian university.

Novelist and Playwright
In addition to her mathematical research, Kovalevsky maintained 
a lifelong interest in literature and the performing arts. Since her 
childhood when she and her sister, Anuita, became friends with 
Russian novelist Fyodor Dostoyevsky, she had developed friend-
ships with many European writers and had written novels and plays 
dealing with social rebellion. Her short novel Vera Vorontsova (A 
nihilist girl) depicted Russian life during the social revolution of 
the 1870s. Her autobiography Recollections of Childhood, describ-
ing her life as a young girl growing up in Russia, was published in 
Russian, Swedish, and Danish. A fictionalized account of this book 
titled From Russian Life: The Sisters Rayevsky appeared in 1890 in 
two issues of the Russian magazine Vestnik Evropy (European mes-



senger). Both versions received enthusiastic reviews from literary 
critics who compared them to the best Russian literature of the 
time. During her years in Sweden Kovalevsky and Mittag-Leffler’s 
sister Anna Carlotta Leffler cowrote a pair of plays titled A Struggle 
for Happiness: How It Was and How It Might Have Been, which were 
performed in Sweden and Russia in 1890.

Kovalevsky made her final contribution to mathematics in 
1890, when she discovered a simplified proof of a theorem from 
potential theory that physicist Heinrich Bruns had proven ear-
lier. Her short paper on this subject, “Sur un théorème de M. 
Bruns” (On a theorem by Mr. Bruns), appeared in 1891 in Acta 
Mathematica.

While returning to Sweden from a vacation on the French 
Riviera, Kovalevsky was caught in a winter storm and became seri-
ously ill with pneumonia and the flu. Six days later, on February 
10, 1891, she died at the age of 41. She was buried in Sweden, her 
adopted country.

Conclusion
During her career Sonya Kovalevsky made two significant contribu-
tions to mathematical research. The Cauchy-Kovalevsky Theorem 
is a fundamental result in the area of partial differential equations. 
Her research on the rotation problem and the Kovalevsky top 
remains the most advanced work on this subject. Through her 
many achievements as a student, professor, editor, and researcher, 
she demonstrated to a male-dominated mathematical community 
that women were capable of understanding and contributing to the 
field of mathematics.

Shortly after her death, the Higher Women’s Courses, the 
college for women in St. Petersburg that Kovalevsky helped to 
establish, raised money for a scholarship to be given in her name. 
To honor her memory, the Russian post office issued a stamp 
displaying her picture. As a living tribute, every year since 1985 
the Association for Women in Mathematics has sponsored Sonya 
Kovalevsky Mathematics Days, during which high school girls 
participate in workshops, presentations, and problem-solving
competitions.
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Universal Mathematician

In an era of specialization, Henri Poincaré (pronounced ahn-REE 
PWON-kar-ray) was a universalist contributing influential ideas 
to many branches of mathematics and physics, including analy-
sis, topology, algebraic geometry, and number theory, as well as 
celestial mechanics, fluid mechanics, and the theory of relativity. 
In complex analysis he developed the concept of automorphic 
functions and introduced the theory of analytic functions of sev-
eral complex variables. His idea of the fundamental group of a 

In his 500 books and papers Henri 
Poincaré introduced algebraic topol-
ogy, chaos theory, and the theory 
of several complex variables as new 
branches of mathematics. 
(Courtesy of the Library of Congress)
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surface led to the establishment of algebraic topology. Attempts to 
prove the Poincaré conjecture about the topological properties of a 
sphere resulted in a century of productive research. In mathemati-
cal physics his work on the three-body problem won first prize in 
an international mathematics competition and established chaos 
theory. He wrote widely circulated books on celestial mechanics 
and established two of the basic propositions of the special theory 
of relativity. The breadth and depth of his accomplishments earned 
him membership in all five sections of France’s Académie des 
Sciences (Academy of Sciences).

Early Life and Education
Jules-Henri Poincaré was born on April 29, 1854, in the city of 
Nancy in the Lorraine region of eastern France. Léon Poincaré, his 
father, was a physician and professor of medicine at the University 
of Nancy. Eugenie Launois, his mother, was a learned woman who 
taught him and his younger sister, Aline, to read and write before 
they attended school. His distinguished relatives included Raymond 
Poincaré, his cousin, who served as prime minister of France and 
president of the French Republic during World War I.

Poincaré was a shy, frail child who had poor eyesight and lacked 
coordination. A bout with diphtheria at the age of five paralyzed his 
larynx, leaving him unable to speak for nine months. From 1862 to 
1873 he attended elementary and high school at the Nancy Lycée, 
now renamed Lycée Henri Poincaré in his memory. He earned 
good grades in most of his courses and demonstrated a gift for writ-
ten composition. During his final year of high school he won first 
prize in mathematics in the concours general (general competition), 
the national scholastic competition for high school students.

In 1873 Poincaré took the entrance examination for École 
Polytechnique (Polytechnic University), a university in Paris that 
provided training in mathematics, science, and engineering, leading 
to careers in service to the state of France. Although he scored a 
grade of zero on the drawing portion of the exam, his scores on the 
other sections of the test were so superior that the examiners made 
an exception to their rules and admitted him as a student. Consistent 
with his prior experiences, he struggled with physical exercise, art, 
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and piano playing but excelled in mathematics, writing, and the 
sciences. Finding it difficult to read the blackboard, he took no 
notes in lectures, preferring instead to listen, absorb the informa-
tion, and visualize the concepts. He also developed the abilities to 
remember material accurately after a single reading and to create 
well-written compositions without the need for revisions. Under 
the direction of mathematician Charles Hermite he wrote his first 
research paper, Démonstration nouvelle des propriétés de l’indicatrice 
d’une surface (New demonstration of the properties of the indicator 
of a surface), which was published in 1874 in the journal Nouvelles 
annales de mathématiques (New annals of mathematics).

After graduating from École Polytechnique in 1875, Poincaré 
continued his studies at École des Mines (School of Mines), where 
he investigated the scientific and commercial methods of the min-
ing industry and continued his study of advanced mathematics. In 
1879 he received the degree of ordinary engineer and worked for 
the Corps des Mines (Forces of the Mines) as an inspector for the 
Vesoul region of northeastern France. One of his responsibilities 
during his first year was to investigate the cause of a mine disaster 
that killed 18 miners in Magny, France. From 1881 to 1885 he 
worked at the Ministry of Public Services as an engineer in charge 
of northern railway development. Maintaining a lifelong interest in 
mining, he rose to the position of chief engineer of the Corps des 
Mines in 1893 and became inspector general in 1910.

While studying for his degree as a mining engineer, Poincaré 
also pursued an advanced degree in mathematics. Supervised by 
Hermite, he wrote a doctoral dissertation titled “Sur les propriétés 
des functions définies par les équations aux différences partielles” 
(On properties of functions defined by partial difference equations) 
in which he studied the geometric properties of functions whose 
derivatives satisfied specified conditions. The mathematicians who 
reviewed his thesis remarked favorably on the depth of his analy-
sis. This work earned him a doctorate in mathematics from the 
University of Pairs in 1879.

After a two-year appointment as a junior lecturer of mathematics 
at the University of Caen in France, Poincaré joined the faculty at 
the University of Paris as a professor of mathematical analysis. At 
various times during his 31-year career at this institution he held 



the chairs of physical and experimental mechanics, mathematical 
physics and probability, and celestial mechanics and astronomy. 
In 1881, the same year that he accepted the appointment in Paris, 
he married Jeanne-Louise-Marie Poulain d’Andecy. In the next 
12 years they had three daughters named Jeanne, Yvonne, and 
Henriette, and a son, Léon.

Poincaré was a prolific writer, publishing nearly 500 research 
papers and 30 books during his career. Within the field of math-
ematics his work contributed to differential equations, algebraic 
geometry, complex function theory, algebraic topology, number 
theory, algebra, and probability. His applied research in physics 
developed ideas in celestial mechanics, mathematical physics, rela-
tivity, electromagnetic theory, fluid mechanics, and the theory of 
light. In several branches of mathematics and physics his research 
extended for more than a dozen years, overlapping with his work in 
other areas. At many points in his career he simultaneously worked 
on five different projects.

Automorphic Functions
One of the most productive areas of Poincaré’s early mathematical 
research was the topic of complex function theory. Between 1881 
and 1883 he published 14 papers titled “Sur les fonctions fuchsi-
ennes” (On Fuchsian functions) in Comptes rendus de l’Académie des 
Sciences (Rendering of the accounts of the Academy of Sciences). 
These papers introduced the class of functions now known as 

automorphic functions, which could be written as . 

Poincaré called them fuchsian functions after German mathemati-
cian Lazarus Fuchs, whose work had led him to their discovery. 
These functions were the first example of a class of infinitely peri-
odic functions meaning that each such function f (z) had infinitely 
many constants k for which f (z) = f (z + k). They provided a full 
generalization of the simply periodic trigonometric functions and 
the doubly periodic elliptic functions. He established relationships 
between the algebraic properties of groups of automorphic func-
tions and the geometrical properties of their corresponding funda-
mental domains.
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Poincaré’s related paper “Mémoire sur les fonctions fuchsiennes” 
(Memoir on fuchsian functions) that appeared in 1882 in Acta 
Mathematica (Mathematical activities) introduced a type of infinite 
summation known as a theta-series that summed all the periods 
of an automorphic function. His paper analyzed the convergence 
of such series, the relationships between their derivatives, and the 
geometric properties of their corresponding domains. In later 
papers he extended the concepts to thetafuchsian and zetafuchsian 
functions produced by combinations of automorphic functions and 
their derivatives. As a result of his extensive research on automor-
phic functions, Poincaré was elected to the Académie des Sciences 
(Academy of Sciences) in 1887 at the age of 32.

In his 1883 paper “Sur les functions entières” (On entire func-
tions), which appeared in the Bulletin de la Société Mathématique de 
France (Bulletin of the Mathematical Society of France), Poincaré 
established several properties of entire functions—functions that 
have derivatives at all points in the complex plane. He explained 
how the genus of an entire function, one of its geometrical 
features, was related to the coefficients of the infinite series that 
represented the function. He established the general uniformiza-
tion theorem that specified conditions under which the surface 
corresponding to an entire function was related to a simpler geo-
metrical surface.

Poincaré extended his research on complex functions to func-
tions involving more than one variable, establishing the basic 
methods of the theory of functions of several complex variables. 
With countryman Emile Picard he published the 1883 paper 
“Sur un théorème de Riemann relatif aux fonctions de n variables 
indépendantes admettant 2n systèmes de périodes” (On a theorem 
by Riemann relative to functions of n independent variables admit-
ting 2n systems of periods) in Comptes rendus. In this paper they 
proved that certain types of functions of two variables known as 
meromorphic functions could occur only when an entire function 
is divided by another entire function. In later papers about func-
tions of several complex variables Poincaré studied such concepts 
as pluriharmonic functions, conformal mappings, and residues of 
integrals of complex functions. Unlike his work on automorphic 
functions, Poincaré’s contributions to the study of entire functions 



and functions of several complex variables opened areas of produc-
tive research that continues to the present day.

Algebraic Topology
In a series of six papers written between 1895 and 1904 Poincaré 
created the branch of mathematics known as algebraic topology, in 
which groups of functions are used to study the properties of geo-
metrical surfaces. His 1895 paper “Analysis Situs” (Positional analysis) 
appearing in Journal de l’École Polytechnique (Journal of the Polytechnic 
University) gave the original name to the subject that is now known 
by its more descriptive title, algebraic topology. This paper introduced 
the concept of a fundamental group of a surface and generalized it to 
an infinite sequence of related groups known as homotopy groups. In 
the other five papers bearing similar titles he introduced additional 
sequences of groups, known as homology and cohomology groups, 
whose structures corresponded to other features of the surface. He 
connected these ideas in the Poincaré duality theorem, which estab-
lished one-to-one correspondences between the kth homology group 
and the n-kth cohomology group of an n-dimensional surface.

In this series of six publications Poincaré also introduced new 
methods for analyzing the properties of surfaces that were con-
structed from simpler geometrical shapes. Using techniques known 
as triangulation and barycentric subdivision, he proved that every 
surface had an Euler-Poincaré characteristic—a constant formed 
by adding and subtracting the number of geometrical shapes of 
each dimension that comprised the surface. This concept general-
ized the “edges plus two” formula for polyhedra that Swiss math-
ematician Leonhard Euler had discovered in the 18th century.

One significant idea Poincaré raised in his set of papers on 
algebraic topology has come to be known as the Poincaré conjec-
ture. He proved that any two-dimensional surface having the same 
homotopy, homology, and cohomology groups as the sphere was 
topologically equivalent to the sphere. In 1900 he conjectured that 
the same property would hold in all dimensions, but discovered a 
counterexample for the three-dimensional case. Since that time 
topologists have proven that the proposed theorem is valid for all 
dimensions higher than three. Their work on the solution of this 
difficult problem has led to many new techniques and discoveries in 
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the field. In 2000 the Clay Mathematics Institute offered a million-
dollar prize for a valid proof of the conjecture. Russian mathemati-
cian Grigori Perelman published a paper in 2003 that might have 
solved the three-dimensional case of the problem; mathematicians 
are still scrutinizing his methods to determine if his proof is valid.

Contributions to Other Areas of 
Mathematics
In addition to his research on complex functions and algebraic 
topology, Poincaré contributed new ideas and techniques to five 

The Euler-Poincaré characteristic is a topological invariant of a surface. For 
any triangulation of a particular surface, the alternating sum of the number 
of components of each dimension produces the same numerical value for the 
characteristic. These triangulations of a torus into a collection of 2 points, 4 
curved line segments, and 2 planar regions and a different collection of 4 
points, 8 segments, and 4 regions both give zero as its Euler-Poincaré charac-
teristic since 2 – 4 + 2 = 0 and 4 – 8 + 4 = 0.



other areas of mathematics. In almost every year from 1878 to 1912 
he wrote at least one paper on differential equations—equations that 
specify relationships between the derivatives of an unknown func-
tion and the function itself. The set of four papers titled “Mémoire 
sur les courbes définies par une équation différentielle” (Memoir 
on the curves defined by a differential equation) that appeared 
between 1880 and 1886 in the Journal de mathématiques pures et 
appliquées ( Journal of pure and applied mathematics) advanced the 
theory of differential equations beyond the limited techniques of 
integration. The first two papers of the set introduced a qualitative 
approach to describing the complete set of solutions of a given dif-
ferential equation. By projecting the x-y plane onto the surface of 
a sphere, Poincaré was able to analyze the solutions in terms of the 
number of nodes, saddles, spiral points, and centers—four types of 
special points where the projected image had particular geometri-
cal features. In the third paper he projected the plane onto more 
general surfaces and identified an invariant numerical quantity 
called the genus of the curve whose value was related to the number 
of nodes, saddles, and spiral points. The fourth paper extended the 
theory to equations involving higher order derivatives. Poincaré’s 
research on the qualitative approach was so thorough that he 
developed the complete theory, leaving little for other researchers 
to contribute. His later papers on differential equations dealt with 
applications from celestial mechanics.

Between 1881 and 1911 Poincaré published as many pages of 
research on algebraic geometry as he did on automorphic func-
tions. One focus of this work involved identifying conditions under 
which groups of Abelian functions could be reduced to a sum of 
simpler functions. He proved the complete reducibility theorem 
that showed that Abelian varieties could be decomposed into the 
sum of simple varieties having finitely many elements in common. 
His most important contribution to this branch of mathematics was 
his 1910 paper “Sur les courbes tracées sur les surfaces algébriques” 
(On curves traced on algebraic surfaces), which appeared in the 
Annals de l’École Normale Supérieur (Annals of the Normal Superior 
University). In this paper he introduced a technique for repre-
senting algebraic curves on a surface as sums of Abelian integrals 
that were easier to analyze. This technique enabled him to create 
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simpler proofs of some known results and to resolve several open 
problems in algebraic geometry.

Poincaré published research papers on number theory from 
1878 to 1901. Influenced by his thesis adviser, Hermite, his early 
work presented results on quadratic and cubic forms, including 
the first general definition of the genus of a form with inte-
ger coefficients. His most important work in this area was his 
1901 paper “Sur les propriétés arithmétiques des courbes algé-
briques” (On the arithmetic properties of algebraic curves), which 
appeared in the Journal de mathématiques pures et appliqués. In this 
paper he solved the Diophantine problem of finding the points (x, 
y) with rational coordinates that satisfied a polynomial equation 
having rational coefficients. As the first paper involving algebraic 
geometry over the field of rational numbers, this work introduced 
new research techniques for investigating classical problems in 
number theory.

In the area of algebra two of the many new ideas Poincaré 
developed were of particular significance. His 1899 paper “Sur les 
groupes continues” (On continuous groups) published in Comptes 
rendus introduced a concept known as an enveloping algebra and 
provided a method for constructing its basis. This theorem, now 
known as the Poincaré-Birkhoff-Witt theorem, has become a fun-
damental result in the modern theory of Lie algebras. In his 1903 
paper “Sur l’intégration algébrique des équations linéaires et les 
périodes des intégrales abéliennes” (On the algebraic integration 
of linear equations and the periods of Abelian integrals), which 
appeared in the Journal de mathématiques pures et appliqués, he 
introduced the important concept of left and right ideals that led 
to many future developments in ring theory.

As chair of mathematical physics and probability at the University 
of Paris, Poincaré wrote a number of papers for nonspecialists on 
the subject of probability theory. His 1907 article “Le hazard” 
(Chance), which appeared in Revue du mois (Review of the month), 
explained how events that were not predictable as individual occur-
rences collectively followed patterns that could be described by the 
laws of probability. For his students at the university he wrote a 
more formal textbook, Calcul des probabilités (Theory of probabili-
ties), in 1896 and published a revised second edition in 1912.



Contributions to Physics
Throughout his career Poincaré applied mathematical techniques 
to the investigation of many physical phenomena. One of the first 
questions in applied science that he attempted to resolve was the 
“three-body problem.” This classical situation in celestial mechan-
ics dealt with the positions and motions of three heavenly bodies, 
such as the Sun, Earth, and the Moon, resulting from their mutual 
gravitational attraction. In his 1883 paper “Sur certaines solutions 
particulières du problème des trois corps” (On certain particular 
solutions of the three-body problem), which was published in the 
Bulletin astronomique (Astronomical bulletin), Poincaré showed that 
the problem had infinitely many solutions if the mass of the largest 
body was much greater than the masses of the two smaller ones. In 
1887 King Oscar II of Sweden sponsored a competition for the best 
paper addressing the general n-body problem. Two years later, the 
panel of judges awarded the grand prize to Poincaré for his submis-
sion that thoroughly addressed the restricted case of the three-body 
problem. While reviewing the paper for publication, Gösta Mittag-
Leffler, the editor of the journal Acta Mathematica, discovered a 
significant error that led to an incorrect conclusion. In a collection 
of 50 letters that Poincaré wrote to Mittag-Leffler during the next 
year he developed a new theory that showed how a slight change 
in one body’s initial position could cause radically different long-
term results. The 1890 paper incorporating these ideas titled “Sur 
le problème des trois corps et les equations de la dynamique” (On 
the three-body problem and the equations of dynamics) introduced 
chaos theory, the branch of mathematics that studies the orderly 
patterns that occur in seemingly random situations. In such math-
ematical systems, small changes in initial conditions can produce 
significant variations in outputs.

During his career Poincaré wrote approximately 100 books and 
papers on celestial mechanics—the branch of physics dealing with 
the motion of heavenly bodies. His three-volume book Les méthodes 
nouvelles de la mécanique céleste (New methods of celestial mechanics) 
published between 1892 and 1899 and his three volumes of lecture 
notes, Leçons de mécanique céleste (Lessons on celestial mechanics), 
published between 1905 and 1911, placed celestial mechanics on a 
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rigorous mathematical basis. In a 130-page paper “Sur l’équilibre 
d’une masse fluide animée d’un mouvement de rotation” (On the 
equilibrium of a fluid mass animated by a rotational movement) 
that was published in Acta Mathematica he proved that a rotating 
fluid such as a star changes its shape from a sphere to an ellipsoid 
to a pear-shape before breaking into two unequal portions.

Poincaré’s research in mathematical physics led him to discover 
two of the fundamental propositions of the theory of special rela-
tivity. In his 1898 paper “La mesure du temps” (The measure of 
time), which appeared in Revue de métaphysique et de morale (Review 
of metaphysics and ethics), Poincaré formulated the principle that 
absolute motion did not exist because no mechanical or electrome-
chanical experiment could distinguish between a state of uniform 

The motions of the Sun, Earth, and Moon determined by their mutual gravita-
tional attraction constitute an example of the three-body problem. Poincaré’s 
research on this topic won first prize in an international mathematics competi-
tion and led to the development of chaos theory.



motion and a state of rest. In his 1905 paper “Sur la dynamique de 
l’électron” (On the dynamics of the electron) he asserted that no 
object could travel faster than the speed of light. This paper, which 
appeared in Comptes rendus a month before the publication of the 
first of Albert Einstein’s five articles on special relativity, is recog-
nized by physicists as the first paper on the revolutionary theory.

The list of scientific topics that Poincaré researched included 
almost every aspect of physics. His 70 publications in physics 
addressed electromagnetic waves, electricity, thermodynamics, 
optics, potential theory, elasticity, and wireless telegraphs. One 
of the most influential of these diverse books and articles was his 
1896 paper “Les rayons cathodiques et la théorie de Jaumann” 
(Cathode rays and Jaumann’s theory), which appeared in the jour-
nal Eclairage électrique (Electric lighting). The ideas on the con-
nection between X-rays and phosphorescence that he presented in 
this paper led French physicist Henri Becquerel to the discovery 
of radioactivity.

Methods of Research and Popular 
Science
In 1908 Poincaré gave a lecture titled “L’invention mathématique” 
(Mathematical invention) at a meeting of Paris’s Institut général de 
psychologie (Institute of General Psychology) in which he shared 
the thought processes and work habits that led to his major math-
ematical discoveries. He elaborated on this topic in his widely dis-
tributed book Science and méthode (Science and Method ) that appeared 
later that year. In his presentation and his book he explained that 
he actively worked on his own research for four hours a day—two 
hours each morning and two hours each afternoon—and spent his 
evenings reading mathematical journals. He believed that during 
the remainder of the day when he appeared to be idle his subcon-
scious mind was working through the information he had absorbed 
seeking connections and weighing the potential successes of alter-
native directions of inquiry. According to his theory, discovery 
resulted from a combination of the conscious application of effort 
and logical analysis and the equally important subconscious spark 
of intuition.
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Believing that the acquisition of new knowledge depended only 
partially on logical analysis, Poincaré criticized Welsh mathemati-
cian Bertrand Russell and others who were working to reformulate 
all of mathematics as logical consequences of the basic axioms of 
set theory. Firmly believing that mathematics had fundamental 
substance beyond simple logic, he predicted that when future 
mathematicians looked back upon this era they would be relieved 
that mathematics had recovered from the disease of set theory.

Despite these harsh words of criticism, Poincaré was an optimis-
tic individual whose works on popular science engaged the liter-
ate public and generated interest in current scientific discoveries. 
His 1902 book La science et l’hypothèse (Science and Hypothesis) sold 
16,000 copies in France during its first 10 years of publication and 
was translated into 23 other languages. His 1905 book La valeur 
de la science (The Value of Science) and the posthumously published 
Dernières pensées (Last Thoughts) assembled in 1913 by his family 
members also conveyed his thoughts on science to wide audiences 
in many countries.

During his lifetime Poincaré’s contemporaries recognized his 
achievements with a range of honors. In 1889 the French govern-
ment named him a chevalier de la Légion d’Honneur (knight of 
the Legion of Honor) in recognition of his work on the three-
body problem. France’s Académie des Sciences elected him 
to membership in all five sections of the academy—geometry, 
mechanics, physics, geography, and navigation—and in 1906 his 
colleagues elected him as president of the Académie. The literary 
community of France honored him for the quality of his writ-
ings on popular science by electing him to membership in the 
Académie Française (French Academy), the literary branch of 
the Institut de France (Institute of France). Dozens of learned 
societies throughout Europe and America elected him to honor-
ary memberships and many universities awarded him honorary 
degrees.

Poincaré died at the age of 58 on July 17, 1912, while recover-
ing from surgery for prostate cancer. Royal delegations from many 
foreign countries and representatives from numerous scholarly 
societies attended his funeral services. Many people outside the 
mathematical and scientific community noted his passing.



Conclusion
An ambitious researcher and a prolific writer, Henri Poincaré 
contributed new ideas and methods to almost every branch of 
mathematics and physics during his productive 34-year career. 
He introduced algebraic topology, chaos theory, and the theory 
of several complex variables as new branches of mathematics. 
His work with automorphic, entire, and meromorphic functions 
advanced the study of complex function theory. He developed 
qualitative techniques in differential equations and introduced left 
and right ideals in algebra. His thorough analysis of the three-
body problem and his pioneering work on fundamental concepts 
of the special theory of relativity were only two of his many con-
tributions to diverse branches of physics. In the literary field his 
books on popular science gave the general public a glimpse into 
the methods of scientific discovery. With his ability to communi-
cate as an equal with specialists from all branches of mathematics 
and physics, Poincaré was a central figure in the scientific com-
munity of his era.
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GLOSSARY

acoustics  The study of sound.
aleph  The first letter of the Hebrew alphabet, used in set theory 

to denote different orders of infinity such as ℵ0 (aleph-zero), the 
cardinality of the natural numbers, and ℵ1 (aleph-one), the 
cardinality of the real numbers.

algebra  The branch of mathematics dealing with the manipulation 
of variables and equations.

algebraic equation  A mathematical statement equating two alge-
braic expressions. 

algebraic expression  An expression built up out of numbers and 
variables using the operations of addition, subtraction, multipli-
cation, division, raising to a power, and taking a root. 

algebraic number  A real number that is the root of a polynomial 
equation with integer coefficients.

algebraic topology  The branch of mathematics in which groups 
of functions are used to study the properties of geometrical sur-
faces. Also known as analysis situs.

analysis situs  See algebraic topology.
Analytical Engine  A steam-powered, programmable computing 

machine that Charles Babbage designed between 1830 and 1870 
but never completely built. The machine would have possessed 
many features of 20th-century electronic computers, including 
instructions fed in on punched cards, the ability to implement 
logical branching and condition-controlled looping, and reusable 
memory locations for variable data.  

analytic geometry  The algebraic study of geometric curves as a 
collection of points whose coordinates satisfy an associated equa-
tion.
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antinomy  A situation leading to an apparent logical contradiction; 
a paradox. 

arc  The portion of a curve between two specified points.
area diagram  A graphical presentation of statistical information in 

which the area of each region of the diagram is proportional to 
the value of the corresponding datum. 

arithmetic  The study of computation. 
arithmetic series  An infinite sum of the form  

a + (a + r) + (a + 2r) + (a + 3r)+ . . .
astronomy  The scientific study of stars, planets, and other heav-

enly bodies. 
automorphic function  A doubly-periodic, complex function

that can be written as . Also known as a fuchsian 

function after German mathematician Lazarus Fuchs.
axiom  A statement giving a property of an undefined term or a 

relationship between undefined terms. The axioms of a specific 
mathematical theory govern the behavior of the undefined terms 
in that theory; they are assumed to be true and cannot be proved. 
Also known as a postulate.

axis  A line used to measure coordinates in analytic geometry.
binomial coefficient  A positive integer given by the computation 

 
where n and k are integers satisfying 

binomial theorem  The general statement that the sum of 
two quantities raised to any integer or fractional power can 
be written as a finite or infinite sum of terms using the 
generalized binomial coefficients according to the formula 

 
.

calculus  The branch of mathematics dealing with derivatives and 
integrals. 

Cantor set  An infinite subset of points formed by removing the 
middle third of the unit interval, the middle third of each remain-
ing subinterval, and continuing for infinitely many steps. 

cardinality  A numerical value giving the size of a set.
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cardinality of the continuum  A numerical value giving the size of 
the set of real numbers in the unit interval [0, 1].

celestial mechanics  The branch of physics dealing with the 
motion of heavenly bodies.

central angle  An angle formed by two radii of the same circle. 
chaos theory  The branch of mathematics that studies the orderly 

patterns that occur in seemingly random situations and math-
ematical systems in which small changes in initial conditions 
result in significant variations in outputs.

circle  The set of all points in a plane at a given distance (the 
radius) from a fixed point (the center).

circumference  (1) The points on a circle. (2) The measure of the 
total arc length of a circle; it is 2π times the radius of the circle.

coefficient  A number or known quantity that multiplies a variable 
in an algebraic expression.

complex number  A number that can be written as the sum of a 
real number and the square root of a negative real number.

composite number  A positive integer that can be factored as the 
product of two or more primes. 

computer program  A set of instructions that controls the opera-
tion of a computer. 

cone  The surface swept out by a line that is rotated about an axis 
while keeping one point (the vertex) fixed.

conic  The curved shapes—ellipse, parabola, and hyperbola—
obtained by the intersection of a plane with a cone. Also known 
as a conic section.

conic section  See conic.
continuum hypothesis  The principle of set theory stating that 

every infinite subset of real numbers is either countable or has 
the cardinality of the continuum. 

coordinates  The numbers indicating the location of a point on a 
plane or in a higher-dimensional space.

cosine  For an acute angle in a right triangle, the ratio of the adja-
cent side to the hypotenuse.

countable  An infinite set is countable if it can be put into a one-
to-one correspondence with the set of natural numbers.

coxcomb diagram  See polar area diagram.
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cryptography  The study of coding and decoding secret messages.
cube  (1) A regular solid having six congruent faces, each of which 

is a square. (2) To multiply a quantity times itself three times; 
raise to the third power.

cubic  (1) A polynomial of degree 3. (2) An equation or curve 
(graph) corresponding to a cubic polynomial. 

degree  (1) A unit of angle measure equal to 1/360 of a circle.
(2) The number of edges that meet at a vertex in a polygon or 
polyhedron. (3) The sum of the exponents of all the variables 
occurring in a term of a polynomial or algebraic expression.

degree of a polynomial or equation  The highest exponent occur-
ring in any of its terms.

derivative  A function formed as the limit of a ratio of differences of 
the values of another function. One of two fundamental ideas of 
calculus that indicates the rate at which a quantity is changing. 

diagonal  In a square or a rectangle, the line joining two opposite 
corners.

diagonal argument  A proof technique popularized by Georg 
Cantor in which an infinite array of numbers is manipulated by 
traversing the array along a diagonal. 

diameter  (1) The distance across a circle. (2) A line segment of this 
length passing through the center of a circle joining two points 
on opposite sides of the circle. 

Difference Engine  A hand-cranked, mechanical computer 
designed and built in the 1820s by Charles Babbage that used 
the method of finite differences to calculate and print math-
ematical, navigational, and astronomical tables with six-digits of 
accuracy. 

differential equation  An equation involving derivatives.
differential geometry  The branch of mathematics dealing with 

the study of curved surfaces.
differentiation  The process of determining the derivative of a 

function.
divisible  A number is divisible by another if the resulting quotient 

has no remainder. 
elasticity  The property of a substance that determines it ability to 

bend, stretch, and vibrate.
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ellipse  The intersection of a cone with a plane that meets the cone 
in a closed curve. Equivalently, the set of points whose distances 
from two fixed points, called the foci of the ellipse, have a con-
stant sum.

elliptic function  A doubly periodic function that is the inverse of 
an elliptic integral. 

elliptic integral  An integral related to the length of an arc of an 
ellipse. 

encryption  The process of translating a message into a secret 
code. 

entire function  A function whose derivative is defined for all 
complex numbers.

equation  A mathematical sentence stating that two algebraic 
expressions or numerical quantities have the same value.

equipollent  Having the same cardinality.
Euler-Poincaré characteristic  A topological constant of a surface 

determined by adding and subtracting the number of geometri-
cal shapes of each dimension that make up the surface.

even number  An integer that can be written as two times another 
integer.

exponent  A number indicating how many repeated factors of the 
quantity occur. Also known as power.

factor  An integer that divides a given integer without leaving a 
remainder.

Fermat prime  A prime number of the form 22n 
+ 1 for some posi-

tive integer n.
Fermat’s last theorem  A principle in number theory conjectured 

by Pierre de Fermat stating that there are no positive integers x, y,
and z that satisfy the equation xn + yn = zn for any integer n > 3.

finite difference method  A numerical procedure used to evaluate 
a polynomial of degree n by combining related values in a table 
having n columns. Supplied with the initial value in each column 
and the same constant value for all entries in the last column, 
each subsequent value in the first n – 1 columns is calculated as 
the sum of the two entries directly above it and to its right.

Fourier series  An infinite series whose terms are of the form 
an sin(nx) and bn cos(nx).
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fraction See rational number.
fuchsian function  See automorphic function.
functional analysis  The branch of mathematics dealing with the 

investigation of properties of sets of functions.
fundamental theorem of algebra  The principle that every poly-

nomial equation of one variable with real coefficients can be 
written as a product of factors of the first or second degree with 
real coefficients.

fundamental theorem of arithmetic  The principle that each 
positive integer can be written as a product of prime numbers in 
only one way.

Galois theory  The branch of abstract algebra concerned with the 
study of sequences of groups that are related to the solutions of 
polynomial equations.

Gaussian curvature  A numerical value indicating the manner in 
which a surface is curved.

Gaussian integer  A complex number that can be written as the 
sum of an integer and the square root of a negative integer.

Gauss’s law  One of the four Maxwell equations that present a 
unified electromagnetic theory, this principle discovered by Carl 
Friedrich Gauss states that the electric flux through any closed 
surface is proportional to the net electric charge enclosed by the 
surface.

general binomial theorem  The statement that the sum of 
two quantities raised to any real or complex power can be 
written as a finite or infinite sum of terms using the gen-
eralized binomial coefficients according to the formula 

.

generalized binomial coefficient  An integer or fractional 

value given by the computation
  

where k is an integer and n is an integer, fractional, real, or com-
plex value. When n is a positive integer this computation agrees 
with the binomial coefficient.

genus  An invariant numerical quantity of a surface or function.
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geodesy  The scientific study of land measurement and mapmaking.
geometric series  An infinite sum of the form  

a + ar + ar2 + ar3 + . . . .
geometry  The mathematical study of shapes, forms, their trans-

formations, and the spaces that contain them.
graph theory  The branch of mathematics in which relationships 

between objects are represented by a collection of vertices and 
edges.

gravitation  The attractive force that pulls objects toward one 
other.

group theory  The branch of abstract algebra dealing with the 
structure, properties, and interaction of groups—sets of objects 
that can be combined with an operation that satisfies four basic 
conditions. 

hydrostatics  The study of the properties of fluids.
hyperbola  The intersection of a cone with a plane that intersects 

both nappes of the cone. Equivalently, the set of points whose 
distances from two fixed points, called the foci of the hyperbola, 
have a constant difference.

integer  A whole number such as –4, –1, 0, 2, or 5.
integral  A function formed as the limit of a sum of terms defined 

by another function. One of two fundamental ideas of calculus 
that can be used to find the area under a curve.

integration  The process of determining the integral of a func-
tion.

intersect  To cross or meet.
irrational number  A real number such as √2 or π that cannot be 

expressed as a ratio of two integers.
least squares  A numerical method to produce the equation of the 

line or curve that passes as close as possible to the points in a 
given set of data.

line diagram  A graphical presentation of statistical information in 
which the length of each line segment in the diagram is propor-
tional to the value of the corresponding datum.

mechanics  The branch of physics dealing with the laws of 
motion. 

natural number  One of the positive numbers 1, 2, 3, 4, 5, . . .
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negative number  Any number whose value is less than zero.
number theory  The mathematical study of the properties of posi-

tive integers.
odd number  An integer that is not an even number, that cannot 

be written as two times another integer.
one-to-one correspondence  A systematic pairing of the elements 

of two sets in which each element of the first set is paired with 
one element of the second set and vice versa.

optics  The branch of the physical sciences dealing with properties 
of light and vision. 

orbit  The path of one heavenly body around another such as the 
Moon’s orbit around Earth or Earth’s orbit around the Sun.

parabola  The intersection of a cone with a plane that intersects 
one nappe of the cone but not in a closed curve. Equivalently, 
the set of points equidistant from a fixed point, called the focus 
of the parabola, and from a fixed line called the directrix of the 
parabola.

parallel postulate  The axiom stated by Euclid of Alexandria that 
for a given point and line, there is only one line that can be 
drawn through the point that does not eventually meet the given 
line.

partial differential equation  An equation involving the deriva-
tives of a function of several variables. 

perfect square  See square number.
perimeter  The sum of the lengths of the sides of a polygon.
periodic function  A function whose values repeat on a regular 

basis. A function f (x) is a periodic function if there is some con-
stant k called its period so that f (x + k) = f (x) for all values of x.

philology  The study of languages.
pi (π)  The ratio of the circumference a circle to its diameter, 

approximately 3.14159.
Poincaré conjecture  A claim made by Henri Poincaré stating that 

any n-dimensional surface sharing certain properties with the n-
sphere was topologically equivalent to the n-sphere.

polar area diagram  A graphical presentation of statistical infor-
mation invented by Florence Nightingale in which the area of 
each wedge-shaped region of a diagram is proportional to the 
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value of the corresponding datum. Also known as a coxcomb 
diagram.

polygon  A planar region bounded by segments. The segments 
bounding the polygon are its sides and their endpoints are its 
vertices.

polyhedron  A solid bounded by polygons. The polygons bound-
ing the polyhedron are its faces; the sides of the polygons are its 
edges; the vertices of the polygons and its vertices. 

polynomial  An algebraic expression that is the sum of the products 
of numbers and variables. 

positive number  Any number whose value is less than zero.
postulate  See axiom.
power  See exponent.
power series  A representation of a function as an infinite sum of 

terms in which each term includes a power of the variable. 
power set  The set of all subsets of a given set.
prime number  An integer greater than 1 that cannot be divided by 

any positive integer other than itself and 1. The first few prime 
numbers are 2, 3, 5, 7, 11, 13, 17, . . .

probability theory  The branch of mathematics concerned with 
the systematic determination of numerical values to indicate the 
likelihood of the occurrence of events. 

proof  The logical reasoning that establishes the validity of a the-
orem from definitions, axioms, and previously proved results.

proper divisor  For any positive integer, those smaller positive 
numbers that divide it.

proper subset  A set containing some but not all of the elements 
of a given set.

proportion  An equality of ratios of the form a/b = c/d. 
Pythagorean Theorem  The rule about right triangles proven by 

Pythagoras of Samos that states: If a, b, and c are the lengths of 
the three sides of a triangle, then the triangle is a right triangle if 
and only if a2 + b2 = c2.

quadratic equation  An equation of the form ax2 + bx + c = 0.
quadratic formula  The formula that gives the 0, 1, or 2 solutions 

to a quadratic equation as
 

.
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quadratic reciprocity  A property in number theory that deter-
mines whether a pair of odd prime numbers can be repeatedly 
added to produce infinitely many perfect squares. 

quintic equation  A polynomial equation with degree five of the 
form a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 = 0.

quintic formula  A nonexistent formula that would solve every 
quintic equation in finitely many steps using only the operations 
of addition, subtraction, multiplication, division, and the taking 
of roots. 

radius  (1) The distance from the center of a circle to any point 
on its circumference. (2) A line segment of this length with one 
endpoint at the center of a circle and the other endpoint located 
on its circumference.

radius of convergence  Half the width of the interval of values for 
which a power series sums to a finite total. 

ratio  The fraction obtained by dividing one number by another.
rational number  A number that can be expressed as a ratio of two 

integers. Also known as a fraction.
real number  One of the set of numbers that includes zero, 

the positive and negative integers, the rationals, and the irrationals. 
regular polygon  A two-dimensional polygon such as an equilat-

eral triangle or a square in which all sides are congruent to one 
another and all angles are congruent to one another.

right angle  An angle with measure 90°.
right triangle  A triangle with one right angle.
root  (1) A solution to an equation. (2) A number that when repeat-

edly multiplied produces a given numerical value.
ruler-and-compass construction  A plane geometrical diagram 

that can be created with the use of a ruler or straight edge to 
draw line segments and a compass to replicate distances and draw 
circular arcs.

sequence  An infinitely long list of values that follow a pattern.
series  An infinite sum of numbers or terms. 
set  A well-defined collection of objects.
set theory  The branch of mathematics dealing with relationships 

between sets.
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simultaneous equations  Two or more equations relating the 
same variables that are to be solved at the same time. Also known 
as a system of equations.

sine  For an acute angle in a right triangle, the ratio of the opposite 
side to the hypotenuse. 

solvable by radicals  A polynomial equation is solvable by radicals 
if its solution can be determined in finitely many steps using only 
the operations of addition, subtraction, multiplication, division, 
and the taking of roots.

Sophie Germain prime number  A prime number p for which 
2p + 1 is also prime.

special theory of relativity  A theory in physics developed by 
Albert Einstein to explain the properties of space, matter, and 
time. 

sphere  The set of all points in three-dimensional space at a given 
distance, called the radius, from a fixed point, called the center.

spiral  A planar curve traced out by a point rotating about a fixed 
point while simultaneously moving away from the fixed point.

square  (1) A four-sided polygon with all sides congruent to one 
another and all angles congruent to one another. (2) To multiply 
a quantity times itself; raise to the second power. 

square number  A positive integer that can be written as n2 for 
some integer n. Also known as a perfect square.

statistics  The branch of mathematics dealing with the collecting, 
tabulating, and summarizing numerical information obtained 
from observational or experimental studies and drawing conclu-
sions about the population from which the data was selected.

system of equations  See simultaneous equations.
tangent  For an acute angle in a right triangle, the ratio of the 

opposite side to the adjacent side.
theorem  A mathematical property or rule.
three-body problem  A classical situation in celestial mechanics 

dealing with the positions and motions of three heavenly bod-
ies, such as the Sun, Earth, and the Moon, resulting from their 
mutual gravitational attraction.

transcendental number  A real number that is not the root of an 
algebraic equation.
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transfinite number  A number that gives the cardinality of an 
infinite set. 

triangle  A polygon with three vertices and three edges. 
trichotomy of cardinals  The principle of set theory stating that 

for any two sets A and B, the cardinality of set A must be greater 
than, less than, or equal to the cardinality of set B.

trigonometric functions  The functions sin(x), cos(x), and tan(x) 
that form the basis of the study of trigonometry.

trigonometry  The study of right triangles and the relationships 
among the measurements of their angles and sides.

uncountable  An infinite set is uncountable if it cannot be put into 
a one-to-one correspondence with the set of natural numbers.

unit interval  The set of all real numbers between 0 and 1, written 
as [0, 1] or as .

unit square  The set of all points in the x-y plane whose coordinates
lie between 0 and 1, written as .

variable  A letter used to represent an unknown or unspecified 
quantity.

vertex  The endpoint of a segment in a geometric figure. 
well-ordering principle  The principle from set theory that 

every nonempty set has a smallest element.
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