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Wacław Sierpiński (1882–1969): Number Theory and

the Polish School of Mathematics 25

Early Work in Number Theory 26
Research on Set Theory 29
Polish School of Mathematics 32
Further Research in Number Theory 34
Conclusion 38
Further Reading 38

CHAPTER 4
Amalie Emmy Noether (1882–1935): Abstract Algebraist 41

Early Years 42
Invariant Theory 43
Struggle for Faculty Appointment 45
Ideal Theory 46
International Influence 47
Noncommutative Algebras 48
Honors and Recognitions 49
Last Years in America 49
Conclusion 50
Further Reading 51

CHAPTER 5
Srinivasa Iyengar Ramanujan (1887–1920): Indian

Number Theorist 53
Societal Influences 54
The Notebook Years, 1904–1914 56
Years in England, 1914–1919 60
Return to India, 1919–1920 64
Conclusion 65
Further Reading 66

CHAPTER 6
Norbert Wiener (1894–1964): Father of Cybernetics 69

Child Prodigy 70
Harmonic Analysis 72



Research during the War Years 76
Cybernetics 78
Conclusion 80
Further Reading 81

CHAPTER 7
John von Neumann (1903–1957): Mathematics for Science

and Technology 83

Early Research in Set Theory 84
Quantum Theory 86
Game Theory 87
Operator Theory 89
Atomic Weapons and Nuclear Energy 89
Computer Architecture and Numerical Analysis 91
Automata Theory 94
Conclusion 95
Further Reading 96

CHAPTER 8
Grace Murray Hopper (1906–1992): Computer Software 

Innovator 99

Early Life and Education 100
Programming and Debugging the Mark Series of Computers 101
Compilers and COBOL Programming 105
Return to Active Duty in the Navy 108
Conclusion 110
Further Reading 111

CHAPTER 9
Alan Turing (1912–1954): Father of Modern Computing 113

Education and the Central Limit Theorem 114
Introduction of the Turing Machine 115
Deciphering German Naval Codes 119
ACE and MADAM Computer Projects 120
Turing Test for Artificial Intelligence 123
Mathematical Ideas in Biological Growth 124



Conclusion 125
Further Reading 126

CHAPTER 10
Paul Erdös (1913–1996): Traveling Research Partner 127

Brilliant Childhood 128
First Research Papers 129
Joint Research Collaborations 130
Traveling Mathematician 132
Diverse Mathematical Contributions 133
Eccentric Genius 135
Conclusion 138
Further Reading 138

Glossary 141
Further Reading 153
Associations 159
Index 160



vii

PREFACE

Mathematics is a human endeavor. Behind its numbers, equa-
tions, formulas, and theorems are the stories of the people 

who expanded the frontiers of humanity’s mathematical knowledge. 
Some were child prodigies while others developed their aptitudes 
for mathematics later in life. They were rich and poor, male and 
female, well educated and self-taught. They worked as professors, 
clerks, farmers, engineers, astronomers, nurses, and philosophers. 
The diversity of their backgrounds testifies that mathematical tal-
ent is independent of nationality, ethnicity, religion, class, gender, 
or disability.

Pioneers in Mathematics is a five-volume set that profiles the 
lives of 50 individuals, each of whom played a role in the develop-
ment and the advancement of mathematics. The overall profiles do 
not represent the 50 most notable mathematicians; rather, they are 
a collection of individuals whose life stories and significant con-
tributions to mathematics will interest and inform middle school 
and high school students. Collectively, they represent the diverse 
talents of the millions of people, both anonymous and well known, 
who developed new techniques, discovered innovative ideas, and 
extended known mathematical theories while facing challenges and 
overcoming obstacles.

Each book in the set presents the lives and accomplishments 
of 10 mathematicians who lived during an historical period. The 
Birth of Mathematics profiles individuals from ancient Greece, 
India, Arabia, and medieval Italy who lived from 700 b.c.e. to 1300 
c.e. The Age of Genius features mathematicians from Iran, France, 
England, Germany, Switzerland, and America who lived between 
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the 14th and 18th centuries. The Foundations of Mathematics presents 
19th-century mathematicians from various European countries. 
Modern Mathematics and Mathematics Frontiers profile a variety of 
international mathematicians who worked in the early 20th and the 
late 20th century, respectively.

The 50 chapters of Pioneers in Mathematics tell pieces of the 
story of humankind’s attempt to understand the world in terms of 
numbers, patterns, and equations. Some of the individuals profiled 
contributed innovative ideas that gave birth to new branches of 
mathematics. Others solved problems that had puzzled mathemati-
cians for centuries. Some wrote books that influenced the teaching 
of mathematics for hundreds of years. Still others were among the 
first of their race, gender, or nationality to achieve recognition for 
their mathematical accomplishments. Each one was an innovator 
who broke new ground and enabled their successors to progress 
even further.

From the introduction of the base-10 number system to the 
development of logarithms, calculus, and computers, most sig-
nificant ideas in mathematics developed gradually, with countless 
individuals making important contributions. Many mathematical 
ideas developed independently in different civilizations separated 
by geography and time. Within the same civilization the name of 
the scholar who developed a particular innovation often became 
lost as his idea was incorporated into the writings of a later math-
ematician. For these reasons it is not always possible to identify 
accurately any one individual as the first person to have discovered 
a particular theorem or to have introduced a certain idea. But then 
mathematics was not created by one person or for one person; it is 
a human endeavor.
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INTRODUCTION

M    odern Mathematics, the fourth volume of the Pioneers in 
Mathematics book set, profiles the lives of 10 mathemati-

cians who excelled during the first half of the 20th century. They 
made important discoveries in both pure and applied mathemat-
ics, contributed to diverse branches of science, and participated 
in the development of computer technology. These individuals 
introduced new branches of mathematics and changed the way that 
mathematicians do their work.

An international community of scholars who shared their innova-
tive ideas and worked together on joint research projects character-
ized mathematics in the 20th century. At the Second International 
Congress of Mathematicians in 1900, German mathematician 
David Hilbert drew his colleagues’ attention to a list of 23 problems 
that set the research agenda for the early part of the century. Polish 
mathematician Wacław Sierpiński helped to establish and cultivate 
a productive national community of mathematicians known as the 
Polish school. English mathematician Godfrey Hardy brought 
self-taught Indian number theorist Srinivasa Iyengar Ramanujan to 
Cambridge University to spend five years doing research together. 
Hungarian mathematician Paul Erdös traveled the world writing 
1,500 books and papers with 500 research collaborators. American 
mathematician Norbert Wiener and Hungarian mathematician 
John von Neumann worked with numerous scientific and engineer-
ing colleagues to produce fundamental results in physics, biology, 
economics, and computer technology.

For many mathematicians the realities of two world wars im-
pacted their lives and shaped their professional careers. Sierpiński 



xii  Modern Mathematics

was detained as a prisoner of war during both military conflicts. 
World War II prevented English mathematician Grace Chisholm 
Young from being with her husband during the last two years of 
his life. At the height of her career, German Jew Amalie Emmy 
Noether was forced to leave her country under Adolf Hitler’s 
Nazi regime. During World War II, English mathematician Alan 
Turing devised computer techniques to decipher German naval 
codes, while American Grace Murray Hopper developed methods 
to computerize the calculation of ballistics tables. Wiener created 
algorithms to improve the effectiveness of antiaircraft guns and 
von Neumann performed essential mathematical analyses for the 
development of atomic bombs and nuclear weapons.

The group of mathematicians profiled in this volume made 
influential discoveries and pioneered new branches of mathemat-
ics, science, and technology. Hilbert and Noether introduced the 
infinite dimensional vector spaces and algebraic rings that bear 
their names. Ramanujan helped lay the foundations of probabilistic 
number theory. Erdös contributed to the establishment of Ramsey 
theory and extremal theory as new branches of mathematics. 
Wiener was the father of cybernetics. Turing machines and von 
Neumann architecture laid the foundations for modern computing 
machines. Hopper created the first compiler program and influ-
enced the development of the COBOL programming language for 
data processing.

During the first half of the 20th century, mathematics became 
an international discipline that led to major advances in science and 
technology. The 10 individuals profiled in this volume represent the 
thousands of scholars who made modest and momentous mathemati-
cal discoveries that contributed to this growth of knowledge. The 
stories of their achievements provide a glimpse into the lives and the 
minds of some of the pioneers who discovered mathematics.
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Problems for a New Century

David Hilbert was a central figure in mathematics in the early 
20th century, conducting research in six areas of the discipline 
and influencing the direction of mathematical research for the 
entire century. His finite basis theorem changed invariant theory 
from a computational discipline to an algebraic one. His report on 
number theory set the course for the next generation of research-
ers in algebraic number theory. The 21 axioms of geometry that 
he developed introduced a new approach to a classic area of the 
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David Hilbert
(1862–1943)

1

David Hilbert introduced new 
approaches in invariant theory, num-
ber theory, geometry, analysis, and 
logic and proposed a set of 23 prob-
lems that influenced the direction of 
mathematical research for the 20th 
century. (Aufnahme von A. Schmidt, 
Göttingen, courtesy of AIP Emilio 
Segrè Visual Archives)
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discipline. His introduction of infinite-dimensional Hilbert spaces 
played an important role in analysis and mathematical physics. The 
Hilbert program to establish a rigorous basis for all of mathemat-
ics was central to the development of mathematical logic. The 23 
Hilbert problems that he posed at an international conference in 
1900 stimulated wide-ranging mathematical research throughout 
the course of the 20th century.

Early Years
David Hilbert was born on January 23, 1862, in Wehlau, a small 
town in East Prussia near the Baltic Sea. He was the first of two 
children of Otto Hilbert, a county judge, and Maria Therese 
Erdtmann, the educated daughter of a merchant. When David’s 
father received an appointment as a city judge a few years later, the 
family moved to the neighboring capital city Königsberg (present-
day Kaliningrad, Russia). From 1870 to 1879 Hilbert attended 
school at Friedrichskolleg, a private school in Königsberg, where 
he studied German, Greek, Latin, history, grammar, and math-
ematics. He excelled in mathematics, effortlessly mastering the 
subject and at times explaining problems to his teachers. He 
completed his final year of high school at Wilhelm Gymnasium 
and passed the Arbitur, the entrance examination for German 
universities.

In 1880 Hilbert entered the University of Königsberg, where he 
concentrated exclusively on mathematics. After spending the spring 
semester of 1881 at the University of Heidelberg, he returned to 
Königsberg to complete his studies. In 1883 he met Hermann 
Minkowski, an 18-year-old fellow mathematics student and resi-
dent of Königsberg, who earlier that year had won the grand prize 
in an international mathematics competition sponsored by the 
French Academy of Sciences for his work on writing positive inte-
gers as sums of five perfect squares. Every afternoon at five o’clock, 
Hilbert, Minkowski, and Adolf Hurwitz, a new faculty member who 
was only three years older than Hilbert, met for a long walk and a 
wide-ranging discussion of mathematical ideas. The three became 
lifelong friends and colleagues collaborating on research projects 
and influencing one another’s work.



Invariant Theory
Hilbert completed his coursework in 1884 and started a nine-year 
program of research on the topic of algebraic forms and invari-
ant theory. He did his doctoral research under the direction of 
Ferdinand von Lindemann, earning his Ph.D. for a dissertation 
on invariant forms titled “Über invariante Eigenschaften specieller 
binärer Formen, insbesondere der Kugelfunctionen” (On invariant 
properties of special binary forms, in particular the spherical func-
tions). After earning his doctorate he spent a semester in Leipzig 
studying with Felix Klein, one of Germany’s most prominent math-
ematicians, and another semester in Paris studying with Charles 
Hermite and Henri Poincaré, two of France’s leading mathemati-
cians. At the end of this period of additional study, Hilbert presented
a paper on invariant theory and a lecture on periodic functions to 
qualify for his Habilitation, the additional requirement needed to 
lecture at a German university. In the fall of 1886 he accepted a 
position at the University of Königsberg as a Privatdozent (assistant 
professor), allowing him to teach courses at the university, although 
he had to collect his fees directly from his students.

In 1888 Hilbert solved an open problem in invariant theory 
known as Gordan’s problem by proving a property that has since 
been named Hilbert’s basis theorem. Twenty years earlier Paul 
Gordan, the leading researcher in the field, had proven the exis-
tence of a finite basis for the infinite collection of binary forms—
polynomials with two variables in which every term had the same 
degree. Hilbert proved that for any number of variables, every 
form could be written as a sum of a finite set of basic forms. His 
1890 paper “Über die Theorie der algebraischen Formen” (On the 
theory of algebraic forms) published in the journal Mathematische 
Annalen (Annals of mathematics) was controversial because it 
proved that a finite basis existed but did not show how to construct 
it. Although Gordan, who reviewed the paper for the journal, criti-
cized the proof as being theology rather than mathematics, Klein, 
the journal’s editor, approved its publication. Two years later, after 
Hilbert produced a proof in which he showed how to construct a 
finite basis for any infinite sequence of forms, Klein described his 
resolution of the problem as the most important algebraic work 
ever published by the journal.

David Hilbert  3
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In the same paper in which he presented the first proof of his 
basis theorem, Hilbert proved another major result in invariant 
theory known as the Nullstellensatz, or zero set theorem. This 
theorem showed that if a polynomial p was equal to zero at the 
same points as all the polynomials in a set known as an ideal, then 
some power of p had to be a member of the ideal. This important 
result became a cornerstone of algebraic geometry, the branch of 
mathematics concerned with the study of the roots of polynomial 
equations.

Hilbert’s papers on Gordan’s problem introduced new tech-
niques into the discipline of invariant theory, changing the empha-
sis from lengthy computational arguments to more streamlined 
algebraic proofs. His new approach resolved most of the leading 
questions in invariant theory and established him as one of the lead-
ing researchers in the field. He wrote a paper for the International 
Mathematical Congress in Chicago in 1893 in which he presented 
a summary of the history and current status of invariant theory. 
Having solved the major problem in invariant theory, he turned his 
attention for the next five years to a different area of mathematics
—the theory of algebraic number fields.

Algebraic Number Theory
The international recognition of his research on invariant theory 
enabled Hilbert to advance within his profession and embrace new 
opportunities. His successful research earned him an appointment 
as associate professor at Königsberg in 1892 and a rapid promo-
tion to full professor the following year. In October 1892 he mar-
ried Käthe Jerosch, the daughter of a Königsberg merchant. He 
changed the focus of his research to number theory and rapidly 
established his reputation as a capable researcher in this area of 
mathematics by reproving some known results using more elegant 
methods. For example, in 1873 Charles Hermite had proven that 
the number e was transcendental, meaning that it was not the 
solution of a polynomial equation with integer coefficients. Using 
similar methods Lindemann had proven in 1882 that the number π 
was also transcendental. Early in 1893 Hilbert gave a simple, direct 
proof of the transcendental nature of both e and π. Later that year 



he discovered two new proofs of a more advanced idea known as the 
splitting of the prime ideal.

At their annual meeting in 1893, the Deutsche Mathematiker-
Vereinigung (Association of German Mathematicians) asked 
Hilbert and Minkowski to prepare a report surveying the his-
tory and current status of research in number theory. Although 
Minkowski was unable to complete his portion of the project, 
in 1897 Hilbert presented to the society a 400-page manuscript 
titled Bericht über die Theorie der algebraischen Zahlkörper (Report 
on the theory of algebraic number fields). The comprehensive 
report he produced far exceeded the original intent of the project. 
In addition to collecting the results of prior research in the field, 
Hilbert reorganized the elements of the discipline, supplied new 
proofs of many results, and laid the groundwork for evolving ideas 
such as class field theory and relative cyclic fields. This treatise, 
which became known simply as the Zahlbericht (Number report), 
shaped the direction of work in number theory for the coming 
half-century.

During the next two years Hilbert published a sequence of 
papers on various topics in number theory including reciprocity 
laws and prime spots. In the last of these works, his 1898 paper 
Über die Theorie der relativ-Abelschen Körper (On the theory of rela-
tive abelian fields), which was published in Jahrsbericht den Deutsche 
Mathematiker-Vereinigung (Annual report of the Association of 
German Mathematicians), he sketched out the theory of class 
fields and developed the concepts and methods required for the 
full development of the subject, leaving a wealth of problems for 
other mathematicians to investigate. After publishing this paper, he 
turned his attention to another area of mathematics and returned 
to number theory only once more, 11 years later, when he proved 
Waring’s theorem. In 1707 English mathematician Edward Waring 
had conjectured that every positive integer could be written as the 
sum of four squares, nine cubes, 19 fourth powers, and so on. In 
1909 Hilbert successfully proved that for every positive integer n, 
there was a corresponding positive integer k for which every posi-
tive integer could be written as the sum of k integers raised to the 
nth power.

David Hilbert  5
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Geometry
In 1895 Hilbert left Königsberg to accept an appointment to the 
mathematics faculty at the University of Göttingen, a position that 
he held until his retirement 35 years later. Klein, who had moved 
to Göttingen 10 years earlier, was working to develop the reputa-
tion of the university’s mathematics department. He attracted a 
faculty of capable researchers, introduced weekly seminars, and 
established a mathematical library. As editor in chief of the jour-
nal Mathematische Annalen, he solicited papers on a wide range of 
mathematical topics and appointed Hilbert to the editorial staff. 
Under the direction of Klein and Hilbert, Göttingen became 
the leading international center for mathematical research. After 
Klein’s retirement in 1913, Hilbert and his former student Richard 
Courant established the Mathematical Institute at Göttingen, 
which would become the model for other research institutes in 
many countries.

Having reshaped invariant theory and reorganized algebraic 
number theory, Hilbert turned to geometry, where he accom-
plished a similar restructuring. In his third year at his new insti-
tution, he delivered a series of lectures on geometry that he 
had published in 1899 under the title Grundlagen der Geometrie 
(Foundations of Geometry). In this book he redeveloped all the theo-
rems of Euclidean geometry from a fundamental set of 21 axioms 
that were consistent, complete, and independent. The quality of 
consistency meant that no combination of axioms led to a contra-
diction. Completeness meant that every theorem in geometry fol-
lowed as a logical consequence of these 21 principles. Independence 
guaranteed that no one axiom was a logical consequence of the 
others. Hilbert insisted that all concepts in geometry must derive 
their properties exclusively from the axioms; no extrinsic notions 
could contribute to their meaning. He asserted that the validity of 
geometry must be retained even if one substituted the words table, 
chair, and mug for the terms point, line, and plane.

Hilbert’s book had more influence on the subject of geometry 
than any other book since Elements, the classic work on geometry 
and number theory that had been written in the third century b.c.e. 
by Greek mathematician Euclid of Alexandria. Hilbert’s treatise 



exerted a major influence on mathematical thought, promoting 
the axiomatic method for all branches of mathematics. Poincaré 
described the work as a classic that reestablished the stature that 
Euclidean geometry had lost after the discovery of non-Euclidean 
geometries. Hilbert’s work has been translated into many languages 
and continues to appear in new editions, the 14th English edition 
having been issued in 1999.

Mathematical Problems for the 
Twentieth Century
At the Second International Congress of Mathematicians held 
in Paris in 1900, Hilbert presented a talk titled “Mathematische 
Problemen” (Mathematical problems) in which he identified 10 
problems that he viewed as central to the progress of mathematics 
during the next century. The full text of his speech that circulated 
internationally in many mathematical journals listed 23 problems 
drawn from all areas of mathematics. They included six problems 
from the axiomatic foundations of mathematics, six from algebraic 
number theory, six from algebra and geometry, and five from analy-
sis. Few of the problems were narrowly focused; most represented 
entire programs of research. Throughout the 20th century, the 
entire international mathematical community took notice each 
time that a mathematician solved another one of Hilbert’s prob-
lems. German mathematician Hermann Weyl called the solvers the 
“Honors Class” of mathematics.

The first problem in the group on axiomatics, asking for a proof of 
the continuum hypothesis, led to fundamental results that reshaped 
the whole of mathematics. The continuum hypothesis, proposed by 
Russian-born mathematician Georg Cantor in 1879, asserted that 
every infinite subset of the real numbers was either countably infinite, 
like the set of positive integers, or had the cardinality of the contin-
uum, like the set of all real numbers. After Ernst Zermello, Bertrand 
Russell, and Kurt Gödel each made significant progress on aspects of 
the problem, American mathematician Paul Cohen showed in 1963 
that this hypothesis could not be proven from the other axioms of set 
theory. Although the resolution of the problem was quite different 

David Hilbert  7
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than what Hilbert had anticipated, it fully achieved the purpose he 
had intended by stimulating wide-ranging research in mathematics, 
including the questioning of basic assumptions.

Hilbert’s seventh problem, one of the more specific questions 
on algebraic number theory, accomplished another of Hilbert’s 
goals by generating new questions after it was solved. This 
problem asked for a proof that any expression of the form ab was 
transcendental if a and b were algebraic numbers (the roots of 
polynomial equations with integer coefficients) but b was irra-
tional (not a fraction of two integers). Numbers of this form 
included , now known as Hilbert’s number. In 1934 Russian 
mathematician Aleksandr Gelfond produced the desired proof, 
and the solved problem became known as Gelfond’s theorem. 
Broadening the scope of the original question, mathematicians 
asked whether ab is transcendental if both a and b are transcen-
dental. This more general problem remains open and continues 
to inspire research more than 70 years after the resolution of the 
original question.

The 23 Hilbert problems were more than a collection of diffi-
cult mathematical questions. In his carefully crafted speech Hilbert 
explained why each problem addressed an important mathematical 
issue. He argued that the solution to each problem would lead to 
theories that shed light on the particular topic and related con-
cepts. He asserted that the existence of so many good problems 
was evidence of the health of the discipline of mathematics. The 
international mathematical community enthusiastically responded 
by embracing the challenge of solving his visionary problems.

Analysis and Theoretical Physics
Hilbert joined his colleagues in their work on the 23 problems 
he had identified. Concentrating on the last group of problems, 
he made analysis the focus of his research agenda from 1902 until 
1912. His 1904 generalization of the Dirchlet principle helped 
make some progress on the 20th problem that asked for methods 
to find functions that take prescribed values on the boundary of a 
given region and whose derivatives satisfy a given partial differen-
tial equation on the interior of the region. In 1905 he provided a 



partial solution of the 21st problem about the existence of a linear 
differential equation that satisfies two specified criteria. Hilbert 
did wide-ranging research on the topic of calculus of variations, 
the branch of mathematics in which one searches for functions 
that satisfy a set of differential equations and that minimize the 
value of a related expression. His work in this area contributed 
to the most general of all the problems, the 23rd problem, that 
required extensive development of the techniques of the calculus 
of variations.

Hilbert’s most significant contribution to analysis was his work 
with infinite-dimensional vector spaces, today called Hilbert 
spaces. These sets containing an infinite number of functions that 
satisfied certain convergence criteria arose in his work with inte-
gral equations, equations involving an unknown function and inte-
grals of that function. He summarized his six years of work from 
1904 to 1910 with these infinite-dimensional spaces in his book 
Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen 
(Principles of the algebraic theory of linear integral equations), 
published in 1912. As his number theory report had done 15 years 
earlier, this treatise laid out new areas of research for generations 
of mathematicians.

Hilbert’s work in analysis, together with his 23 problems and his 
accomplishments in invariant theory, number theory, and geome-
try, solidified his reputation as one of the leading mathematicians in 
the world. In 1910 the Hungarian Academy of Science awarded him 
their Bolyai Prize. This award, named after Hungarian geometer 
János Bolyai, honored Hilbert for the impact his career had made 
on the field of mathematics. In bestowing this tribute the academy 
cited the depth of his thoughts, the originality of his methods, and 
the rigor of his logical proofs as the outstanding characteristics of 
his influential body of work.

As Hilbert spaces proved to be useful in the analysis of physical 
phenomena, Hilbert’s research next evolved into the area of math-
ematical physics. He made contributions to quantum mechanics, 
kinetic gas theory, and the theory of radiation. In 1915 he commu-
nicated daily by postcard with Albert Einstein, his colleague across 
campus in Göttingen’s physics department, while the two worked 
independently to develop the field equations for the theory of

David Hilbert  9
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general relativity. In 1924 Courant included Hilbert as coau-
thor of his book Methoden der Mathematischen Physik (Methods of 
Mathematical Physics) in which he presented the rigorous math-
ematical basis for a variety of theories in physics. This work and 
the second volume by the same title that Courant published in 1937 
drew heavily from Hilbert’s lectures and papers.

Foundations of Mathematics and the 
Infinite
In the 1920s Hilbert turned his attention to the foundations of 
mathematics. He started to develop a set of axioms from which 
all of mathematics could be logically deduced. The fundamental 
assumption of the “Hilbert program,” as the project came to be 
known, was that every mathematical statement could be proved 
or disproved. His 1926 papers “Über das Unendliche” (On the 
infinite) and “Aus dem Paradies das Cantor uns geschaffen, soll 
uns niemand vertreiben können” (No one shall expel us from the 
paradise that Cantor has created for us) appearing in Mathematicsche 
Annalen showed his heavy reliance on Cantor’s techniques with 
infinite quantities in his attempt to prove that mathematics was a 
discipline free from contradiction. He further explained this con-
nection in the 1928 book Grundzüge der theoretischen Logik (Principles 
of Mathematical Logic) that he wrote with Wilhelm Ackermann. 
Gödel’s 1931 proof of the incompleteness theorem—the principle 
that every axiomatic mathematical system included propositions 
that could neither be proved or disproved—rendered the goals of 
the Hilbert program impossible.

Throughout his career Hilbert maintained a strong interest in 
Cantor’s ideas of infinity. As early as 1891, in a paper titled “Über 
die stetige Abbildung einer Linie auf ein Flachenstück” (On the 
continuous mapping of a line into a planar region) that appeared 
in Mathematische Annalen, he demonstrated that a one-dimensional 
curve could have as many points as a two-dimensional region. He 
presented an iterative method for creating a space-filling curve that 
passed through every point inside a square. Starting with a curve 
formed by three line segments in the shape of an upside down U, 
he replaced the entire curve by four smaller U-shapes connected by 



three shorter line segments. In each subsequent step he made simi-
lar replacements resulting in four times as many of the fundamental 
U shapes. He demonstrated that the limiting curve in this infinite 
sequence of images called a fractal would pass through every point 
in the square.

In discussions with other mathematicians about the idea of infin-
ity, Hilbert posed several paradoxes about a hotel with infinitely 
many rooms numbered 1, 2, 3, . . . . He explained that even if all 
the rooms were occupied the hotel’s manager could accommodate 
one more guest by moving each existing guest into the next higher-
numbered room. His solution to move the occupant of room n to 
room n + 1 for every positive integer n guaranteed every person 
a new room and made the first room available for the new guest. 
If k people arrived, the manager could move the guest in room n 
to room n + k. Stretching the problem further, Hilbert suggested 
that if a train arrived with infinitely many new guests, the manager 
could accommodate them by moving the current occupant of room 
n to room 2n, making all the odd-numbered rooms available for the 
new guests. He even suggested that if an infinite number of trains 
arrived, the manager could move the existing resident of room n to 
room 2n leaving rooms 3, 32, 33, . . . for the new guests in the first 
train, rooms 5, 52, 53, . . . for the new guests in the second train, 
rooms 7, 72, 73, . . . for the new guests in the third train, and so 
on, with a new prime number for each additional train. “Hilbert’s 
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Hilbert’s space-filling curve passes through every point inside a square. To 
construct the curve, start with a U-shaped curve formed by three line segments 
and replace the entire curve by four smaller U shapes connected by three short-
er line segments. In each subsequent step make similar replacements resulting 
in four times as many of the fundamental U shapes. The Hilbert curve is the 
limit of an infinite sequence of steps.
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hotel,” as the paradoxical setting came to be called, provided tan-
gible examples of the arithmetic of infinite quantities that Cantor 
had introduced into set theory.

Wars and Retirement
In 1930, when Hilbert reached the mandatory retirement age of 
68, he delivered his farewell lecture on invariant theory to a packed 
auditorium of professors and students, a marked contrast to the 
winter semester of 1891–92 at Königsberg when only a single 
student had signed up for his course on complex function theory. 
During his career he had supervised the doctoral dissertations of 69 
students. Weyl, his former student and his successor as head of the 
Mathematical Institute at Göttingen, likened him to the Pied Piper, 
having lured so many innocent young minds into the deep river of 
mathematics. He was popular with both the faculty and the students 
and shunned the formality of tradition to freely socialize with and 
work with both groups. At conferences and lectures he sat with the 
young faculty members. At parties he danced with their wives. On 
occasion he arrived in his lecture hall on his skis or his bicycle. He 
invited visitors at his home to grab a piece of chalk and attempt to 
solve a problem on the 18-foot blackboard that he had mounted on 
the wall in his backyard.

An outspoken individual with strongly held beliefs, Hilbert had 
made his opinions known throughout his career. In 1914 he had 
defied government authorities by refusing to sign the Declaration 
to the Cultural World, a document that sought to absolve 
Germany and the kaiser of all responsibility for the atrocities of 
World War I. In 1917, while German and French soldiers were 
fighting each other during the war, he published an obituary in 
Mathematische Annalen honoring deceased French mathematician 
Gaston Darboux. He supported female mathematician Emmy 
Noether’s appointment to the faculty at Göttingen, declaring at 
a faculty meeting that her gender was not a relevant issue since 
this was a university, not a bathhouse. Adolf Hitler’s decision 
to remove all Jewish faculty members from German universi-
ties in the early 1930s decimated the Mathematical Institute at 
Göttingen, which until then had been the leading international 



center for mathematical research. In 1935, when the Nazi min-
ister of education asked Hilbert about the state of mathematics 
at Göttingen, he replied that there was no more mathematics at 
Göttingen.

During the 1930s Hilbert and his colleagues published sev-
eral volumes of his mathematical research. In 1932 with Stefan 
Cohn-Vossen he wrote Anschauliche Geometrie (Geometry and the 
Imagination), a descriptive survey of the geometry of curves and 
surfaces. In 1934 and 1939 with Paul Bernays he published a two-
volume treatise titled Grundlagen der Mathematik (Foundations of 
Mathematics) on the axiomatization of mathematics. As Courant 
had done with the two-volume treatise on mathematical phys-
ics, Cohn-Vossen and Bernays based these two works on lectures 
Hilbert had given in the early 1920s and included his name as 
coauthor although they did almost all of the writing. All three 
coauthored works were translated into multiple languages and 
distributed internationally. Between 1932 and 1935 Hilbert col-
lected his papers on number theory, algebra, and analysis and pub-
lished them as the three-volume work Gesammelte Abhandlungen 
(Collected works).

In the last year of his life, Hilbert’s physical activity was limited 
by a broken arm that he had sustained during a fall on a Göttingen 
street. He died on February 14, 1943. Due to the war, less than a 
dozen people attended his funeral service at his home.

Conclusion
David Hilbert influenced multiple areas of mathematics through his 
research and through his visionary set of 23 problems. The meth-
ods he used to solve Gordan’s problem and establish his finite basis 
theorem transformed invariant theory from a computational disci-
pline to an algebraic one. His Zahlbericht set the course for the next 
generation of researchers in algebraic number theory. His book on 
the foundations of geometry dominated the approach to that area 
of mathematics for the next half-century. In analysis and math-
ematical physics, his introduction of infinite-dimensional Hilbert 
spaces played an important role. Although the Hilbert program to 
axiomatize all of mathematics did not reach its ultimate goal, his 
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work on mathematical logic contributed to the rigorous develop-
ment of many branches of the discipline. The 23 Hilbert problems 
that he challenged his colleagues to solve successfully stimulated 
wide-ranging mathematical research throughout the course of the 
20th century, as he had intended.
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Grace Chisholm Young wrote papers 
on infinite derivatives and
nondifferentiable functions. She 
also coauthored books on set theory 
and the geometry of paper folding. 
(Sydney Jones Library, the University 
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Mathematical Partnership

Grace Chisholm Young was the first woman to earn a doctoral 
degree from a German university through the standard process of 
coursework, examination, and dissertation. Her papers on infinite 
derivatives and nondifferentiable functions won the Gamble Prize 
and established a portion of the Denjoy-Saks-Young theorem. 
With her mathematician husband she coauthored a children’s book 
on the geometry of paper folding, an influential book on set theory, 
and more than 200 papers on various topics in mathematics.
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Early Life and Education
Grace Emily Chisholm was born on March 15, 1868, in Haslemere, 
England, a town in Sussex County, southwest of London. Henry 
William Chisholm, her father, served as warden of the standards 
supervising the government’s department of weights and measures. 
Anna Louisa Bell, her mother, was an accomplished pianist who 
performed in public recitals. Unlike their older brother, Hugh, who 
attended grammar school, a private boarding school, and Oxford 
University, Grace and her older sister, Helen, received their early 
education at home from their mother. The young Grace suffered 
from headaches and nightmares, and her doctors recommended that 
her parents teach Grace only those subjects in which she expressed 
an interest. Accordingly, her education focused primarily on music 
and mathematics until she was 10 years old, when her health 
improved and her parents hired a governess to teach her a fuller 
range of subjects. At the age of 17 she passed the entrance exam for 
Cambridge University. She hoped to study medicine at the univer-
sity, but in accordance with her parents’ wishes, she instead became 
involved in social work among the poor in London.

Chisholm eventually persuaded her parents to allow her to study 
mathematics, and she applied to Cambridge University’s Girton 
College, an institution established in 1869 as England’s first resi-
dential college for women. At the age of 21 she entered Girton as 
the institution’s Sir Francis Goldsmid Scholar of Mathematics. In 
1892, after completing her coursework, she passed the Mathematical 
Tripos, comprehensive examinations that determined the students’ 
final class rankings at graduation. Chisholm placed 23rd among the 
top-scoring group of students who graduated with the equivalent 
of a bachelor’s degree. In addition, Chisholm unofficially took the 
final mathematics examination at Oxford University, finishing with 
the highest score for all students at Oxford that year. Yet, despite 
her performance she did not receive a formal degree; women were 
permitted to take courses at Cambridge but were not granted offi-
cial degrees.

In the course of Chisholm’s studies at Girton, she met William 
Henry Young, one of the college’s mathematics tutors and her 
future husband. Young, who was five years older than Chisholm, 
had earned his degree in mathematics from Cambridge University 



in 1884. He was a fellow at Cambridge’s Peterhouse College from 
1886 to 1892 and tutored students in preparation for the Tripos. He 
served as Chisholm’s tutor for one of her years at Girton, directing 
her studies and preparing her for her examinations.

After completing her coursework at Girton, Chisholm wanted to 
continue her education in mathematics, but universities in England 
did not permit women to take graduate-level courses. In 1893 she 
obtained permission from the Berlin Ministry of Culture to enroll 
at the University of Göttingen, in Germany, where the faculty had 
recently established a course for women in mathematics, physics, 
and astronomy. Under the direction of Felix Klein, she completed 
a doctoral dissertation titled “Algebraisch-gruppentheoretische 
Untersuchungen zur sphärischen Trigonometrie” (Algebraic group 
theoretic examination on spherical trigonometry). Her research 
focused on properties associated with the sines and cosines of the 
angles in a triangle drawn on the surface of a sphere. In August 1895 
she received her Ph.D. with the distinction magna cum laude (with 
high honors), becoming the first woman to earn a doctoral degree 
from a German university by completing the standard program of 
formal coursework, doctoral examination, and written thesis.

Partners in Life and in Mathematics
After receiving her degree, Chisholm returned to England to care 
for her 86-year-old father and 71-year-old mother. She sent a 
copy of her doctoral thesis to Young, her former tutor. Impressed 
by her work he invited her to coauthor an astronomy book with 
him. The two mathematicians developed a close relationship and 
married in June 1896. During their first year of marriage they 
lived at Cambridge University, where she conducted mathemati-
cal research, while he taught classes. Although they never com-
pleted the proposed astronomy book, her paper “On the Curve 
y = (x2 + sin2 ψ)-3/2, and Its Connection with an Astronomical
Problem” appeared in 1897 in the Monthly Notices, Royal 
Astronomical Society under the name “Mrs. W. H. Young [Miss 
Grace Chisholm].”

When her thesis adviser Klein visited Cambridge in 1897 to 
accept an honorary degree, he encouraged Young and her husband 
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to devote their talents to joint mathematical research. After the birth 
of their first child, Francis, later that year, they moved to Göttingen 
and became active members of the mathematical research commu-
nity, as Klein had suggested. The next 32 years they collaborated on 
more than 200 articles and several books covering a range of topics 
in mathematics, academia, and education. Although most of their 
early work was published only in her husband’s name, Grace Young 
was an equal partner in their research collaboration, developing 
creative ideas, constructing detailed proofs, and corresponding with 
publishers.

After spending a year in Turin, Italy, Young and her husband 
returned to Göttingen, where they stayed until 1908. During those 
years they had five more children: three daughters named Cecily, 
Janet, and Helen and two sons named Laurence and Patrick. Young, 
who taught her children at home, wrote three books on mathematics 
and science for young people. In 1905 she and her husband wrote 
The First Book of Geometry in which they used paper-folding projects 
to introduce children to elementary concepts of geometry involving 
angles, symmetry, surface areas, and volumes of three-dimensional 
figures. The book was translated into German, Italian, and Hebrew 
during the next 16 years and was rereleased in the United States in 
1969. Young independently wrote two science books whose titles 
incorporated her oldest son’s nickname. Bimbo, published in 1905, 
and Bimbo and the Frogs, published two years later, introduced chil-
dren to biology by providing simple scientific explanations of the 
facts of reproduction, including the process of cell division.

In addition to writing books for children, Young and her husband 
coauthored an advanced mathematics text titled The Theory of Sets 
of Points. Published in 1906, their book presented the first system-
atic exposition of set theory, a new branch of mathematics recently 
introduced by Russian mathematician Georg Cantor. Their detailed 
treatise introduced formal definitions of technical terms associated 
with sets of points in one and two dimensions. For an interval [a, b] 
on the real line, they defined a point to be an internal point if it was 
not one of the endpoints of the interval. They designated a point 
x to be a limit point of a set of points if every interval containing 
x as an internal point included other points of the set. Building on 
these definitions, they defined a set to be closed if it contained all its 



limit points and unclosed if it did not. For regions in the plane, they 
distinguished internal points, boundary points, and external points 
based on whether triangles containing the points were completely 
inside the region, included some points in the region, or were com-
pletely outside the region, respectively. They redefined Cantor’s 
definition of a connected set in terms of limit points rather than 
using his idea of the minimal distance between points in the set. 
With these new definitions they reformulated and proved known 
theorems about sets of points in the real line and generalized them 
to corresponding statements about regions in the plane.

The ideas the Youngs presented in The Theory of Sets of Points 
impacted other branches of mathematics. The couple demonstrated 
that the techniques in the developing area of set theory could be 
applied to many established branches of mathematics, including 
projective geometry, complex function theory, calculus of variations, 
and differential equations. Their careful definitions and reworking 
of informal concepts provided a more rigorous foundation for a 
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In their book The Theory of Sets of Points, the Youngs introduced formal defini-
tions for many fundamental concepts in set theory. For a region R in the x-y 
plane, a point a was an internal point if some triangle containing a was com-
posed only of points in R. A point b was a boundary point if every triangle con-
taining b included points in R and points not in R. A point c was an external 
point if some triangle containing c included no points of R.
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number of concepts that became important in topology, the branch 
of mathematics dealing with the properties of geometrical surfaces. 
Cantor commented enthusiastically on their joint work, praising 
the Youngs for their diligence, skill, and acuteness of mind.

The theory of sets continued to play a central role in the Youngs’ 
research for many years. Their 1914 paper “On the Reduction 
of Sets of Intervals,” published in the Proceedings of the London 
Mathematical Society, presented results about intervals on the 
one-dimensional real line. They discussed sets of points in two-
dimensional space in their 1916 paper “Sur la frontière normale 
d’une région ou d’un ensemble” (On the normal frontier of a region 
or of a set), which appeared in the French journal Comptes rendus 
hebdomadaires des séances de l’Académie des Sciences (Rendering of the 
accounts of the weekly sessions of the Academy of Sciences). Their 
1917 paper “On the Internal Structure of a Set of Points in Space 
of Any Number of Dimensions,” published in the Proceedings of the 
London Mathematical Society, analyzed sets in higher dimensional 
spaces. Other papers that the Youngs wrote collaboratively and 
independently contributed important results to the theory of clus-
ter sets and prime sets.

Young and her husband engaged in a fruitful mathematical 
partnership despite frequent periods of separation. William held 
a sequence of positions as an examiner at Cambridge University, 
the University of London, and the University of Wales and later 
became a part-time mathematics professor at Calcutta University, 
the University of Liverpool, and University College in Wales. 
When they were apart, Young and her husband wrote frequent 
letters to each other accompanied by drafts of mathematical manu-
scripts. When they were together, they worked so hard on their 
research that Grace often became exhausted and slept for several 
days after William had left. When her husband was out of town, 
one of her two unmarried sisters-in-law often came to live with 
Young, enabling her to work on her own research and writing and, 
at times, to accompany her husband on some of his trips abroad.

In addition to conducting mathematical research, Young main-
tained a variety of other interests. Pursuing her dream to become 
a physician, she studied medicine at the University of Göttingen. 
When she and her husband moved their family to Geneva, 



Switzerland, in 1908, she continued her studies at the University of 
Geneva, where she completed all the requirements for a degree in 
medicine with the exception of an internship. She also learned to 
speak six languages and taught each of her children how to play a 
musical instrument.

Independent Work on Infinite Derivatives
Between 1914 and 1916 Young produced her most significant 
independent mathematical work. During this period she wrote 
several papers on the foundations of differential calculus that 
were published under her own name in an assortment of inter-
national journals. Her 1914 paper “A Note on Derivatives and 
Differential Coefficients,” which appeared in the Swedish journal 
Acta Mathematica (Mathematical activities), presented some of her 
preliminary results on particular properties of derivatives. In 1915 
her essay “On Infinite Derivatives” won the Gamble Prize from 
Girton College. Published in 1916 in the Quarterly Journal of Pure 
and Applied Mathematics, this lengthy treatise discussed functions 
that were continuous but were not differentiable. She continued 
this research theme with the short paper “Sur les nombres dérivés 
d’une function” (On the numbers derived from a function), which 
appeared in the same year in the journal Comptes rendus hebdoma-
daires des séances de l’Académie des Sciences.

In 1916 the Proceedings of the London Mathematical Society pub-
lished Young’s paper titled “On the Derivatives of a Function” in 
which she discussed four variations of the classical derivative of a 
function known as the upper left, lower left, upper right, and lower 
right Dini derivatives. In this paper she categorized the behavior of 
the four Dini derivatives for continuous functions and for measur-
able functions. She showed that except at a small set of points, the 
four Dini derivatives had to behave in one of three ways: they were 
all equal; two were positively infinite, and two were negatively infi-
nite; or one was positively infinite, another was negatively infinite, 
and the other two were equal to some common finite value. The 
results she proved, together with similar results obtained by the 
French mathematician Arnaud Denjoy and the Polish mathema-
tician Stanisław Saks, became known as the Denjoy-Saks-Young 
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theorem. The theorem allows researchers to use a process of elimi-
nation to show that a particular function is differentiable by demon-
strating that the second and third cases do not occur.

The Young family’s move from Geneva to Lausanne, also in 
Switzerland, in 1915 did not slow Grace’s research productivity. She 
continued to generate publishable research results on calculus through 
the end of the 1920s. She wrote about Lebesgue integrals in a 1919 
paper titled “Démonstration du lemme de Lebesgue sans l’emploi 
des nombres de Cantor” (Demonstration of Lebesgue’s lemma with-
out the use of the Cantor numbers), which appeared in the Bulletin 
des sciences mathématiques (Bulletin of the mathematical sciences). Her 
1922 paper on Riemann integrals, titled “A Note on a Theorem of 
Riemann’s,” was published in the Messenger of Mathematics. In 1922 
she wrote about multivariable calculus in the paper “On the Partial 
Derivatives of a Function of Many Variables,” which was published 
in the Proceedings of the London Mathematical Society. The journal 
Fundamenta Mathematicae (Fundamentals of mathematics) published 
her 1929 paper “On Functions Possessing Differentials.”

Young’s writings in the 1920s addressed additional mathemati-
cal topics beyond calculus. Two of her papers were inspired by 
mathematical ideas contained in the writings of the ancient 
Greek philosopher Plato. In 1924 she wrote “On the Solution of 
a Pair of Simultaneous Diophantine Equations Connected with 
the Nuptial Number in Plato,” published in the Proceedings of the 
London Mathematical Society. Five years later she cowrote with her 
husband “A Time-Honoured Mystery from the Meno of Plato,” 
which appeared in the journal O Instituto (O tradition). In 1926 she 
wrote an expository article for an educational journal explaining the 
Greek mathematician Pythagoras’s proof of his famous theorem 
that related the lengths of the sides of a right triangle. The paper 
“Pythagore, comment a-t-il trouvé son théorème?” (Pythagoras. 
How did he prove his theorem?) appeared in L’Enseignement mathé-
matique (Mathematics education).

Final Years of Her Career
While Young was earning an international reputation as a research 
mathematician, her husband was also receiving honors for his work. 



In 1907 William was elected a fellow of the Royal Society, Britain’s 
academy of science. His influential 1910 textbook, The Fundamental 
Theorems of the Differential Calculus, introduced a new approach to 
functions of several variables that all advanced calculus books have 
since employed. In recognition of his contributions to mathemat-
ics, he received the 1917 DeMorgan Medal from the London 
Mathematical Society and the 1928 Sylvester Medal from the 
Royal Society. He served as president of the London Mathematical 
Society from 1922 to 1924 and as president of the International 
Mathematical Union from 1929 to 1936.

By the end of the 1920s both Young and her husband had ceased 
their mathematical research. In 1929 Grace started a five-year 
project to write a 16th-century historical novel titled The Crown of 
England but never completed the work. In 1940, at the beginning of 
World War II, she flew to England with two of her grandchildren, 
intending to return to Switzerland. Unable to rejoin her husband 
because of the war, she stayed in England, while he remained 
in Switzerland. Isolated and separated from his family, William 
became depressed and died in 1942. Young lived in England for 
another two years until she died of a heart attack at her daughter’s 
house in Croydon, in 1944. The fellows at Girton College had 
decided to award her an honorary degree, but she died before the 
ceremony could be arranged.

All six of the Youngs’ children earned college degrees, three of 
them in mathematics. Laurence and Cecily became mathematics 
professors. Janet earned a medical degree and became the first 
female member of the Royal College of Surgeons. The Youngs’ 
granddaughter Sylvia Wiegand continues the family legacy today as 
a professor of mathematics at the University of Nebraska.

Conclusion
During a 40-year career in which she never held a formal appoint-
ment, Grace Chisholm Young established a solid reputation as a 
research mathematician. She was the first woman to earn a doctoral 
degree from a German university through the standard process 
of coursework, examination, and dissertation. Her paper on con-
tinuous, nondifferentiable functions won the Gamble Prize from 
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Girton College. Her discoveries about infinite Dini derivatives 
proved a portion of the Denjoy-Saks-Young theorem in calculus. 
With her husband she cowrote a children’s book on the geometry 
of paper folding and an influential book on set theory. During their 
prolific collaboration they produced more than 200 papers in vari-
ous branches of mathematics.
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Number Theory and the Polish School 
of Mathematics

In a career that spanned 60 years, Wacław Sierpiński (pronounced 
shur-PIN-skee) wrote 50 books and more than 700 research papers. 
In the fields of set theory and topology, he discovered many rela-
tionships between the continuum hypothesis and properties of 
metric spaces. His Sierpiński snowflake and Sierpiński triangle 
provided early examples of fractal patterns. In number theory he 

Wacław Sierpiński
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Wacław Sierpiński developed fractal 
patterns in set theory, introduced 
new categories of integers in number 
theory, discovered the first absolutely 
normal number, and helped to
establish the Polish school of
mathematics. (Archives of the Polish 
Academy of Sciences)
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introduced Sierpiński numbers of the first and second kind, inves-
tigated properties of prime numbers, and discovered the first abso-
lutely normal number. Despite incarceration twice as a prisoner of 
war, he was a leader in the Polish school of mathematics, helping to 
establish research institutions, specialized journals, and professional 
societies.

Early Work in Number Theory
Wacław Franciszek Sierpiński was born on March 14, 1882, in 
Warsaw, Poland, to Constantine Sierpiński, a prominent physician, 
and Louise Lapinska. As a high school student he demonstrated 
strong mathematical abilities and helped organize free courses 
for boys who could not afford to attend formal schools. In 1900 
he enrolled as a student of mathematics and physics at the Czar’s 
University, formerly known as the University of Warsaw, where the 
Russian government that ruled Poland at the time had replaced all 
faculty members with Russian professors and had mandated that all 
classes were to be taught in the Russian language. The university’s 
academic and political environment nourished his talent for math-
ematics and his commitment to Polish nationalism.

Sierpiński studied under the guidance of Georgy Voronoy, an 
accomplished Russian mathematician who influenced his early 
research. In 1903 he won a gold medal in the department’s competi-
tion for the best student essay on Voronoy’s contributions to number 
theory, the mathematical study of the properties of positive integers. 
His paper “O pewnym zagadnieniu z rachunku funkcji asymptoty-
cznych” (On a problem of the theory of asymptotic functions) was 
scheduled to be printed in the university’s journal, but Sierpiński, 
who did not want his first work to be printed in Russian, had it with-
drawn. The paper instead appeared in 1906 in the Polish journal Prace 
Matematyczne-Fizyczne (The works of mathematics and physics).

Sierpiński’s prize-winning paper concerned the quantity
R(r) that represented the number of points with integer coor-
dinates that lie inside or on the boundary of a circle of radius r.
In 1837 German mathematician Carl Friedrich Gauss had shown 
that R(r) provided an estimate for the area of the circle that
differed from the actual value of π r 

2 by a constant multiple of the



radius. This theorem led to a more general question known as the
Gauss circle problem, which asked for the minimum value of k for
which|R(r) – π r 

2|< Cr 
k. Sierpiński’s proof that k ≤ 2/3 was a 

significant improvement on Gauss’s result of k = 1. Although 
mathematicians have continued to analyze this question, the most 
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recent bound of k ≤ 46/73 that Welsh mathematician Martin N. 
Huxley obtained in 1990 represents only a slight improvement over 
Sierpiński’s work.

During his final year at the university, Sierpiński made a political
statement by refusing to answer any questions on the Russian-
language examination that was required for graduation. The
sympathetic examiner gave him a passing grade, allowing him 
to graduate in 1904 with the degree “candidate of sciences,” the 
equivalent of a bachelor of science degree. He taught mathematics 
and physics at a girls’ school in Warsaw until the Russian revolution 
of 1905, when he participated in a school strike, resigned his teach-
ing position, and entered the graduate program in mathematics at 
the Jagiellonian University in Kraków, Poland. In 1908 he earned 
his Ph.D. for a doctoral dissertation titled “O sumowaniu szeregu 
∑ τ (n) f (n), gdzie τ (n) oznacza liczbę rozktadow liczbę n na sumę 
kwadratów dwóch liczb calkowitych” (On the summation of the series
∑ τ (n) f (n), where τ (n) denotes the number of decompositions of n 
into a sum of two squares of integers). In this work, which was pub-
lished later that year in Prace Matematyczne-Fizyczne, he determined 
the values of several infinite summations involving the number of 
ways to write a positive integer as the sum of two squares.

Between 1904 and 1910 Sierpiński published 18 papers on num-
ber theory. Half of these research papers were in the area of analytic 
number theory involving the representation of integers as sums or 
differences of two squares. An equal number of papers from the 
area of Diophantine analysis addressed the problem of finding inte-
ger solutions to polynomial equations. In his 1909 paper titled “O 
pewnym twierdzeniu z teorii przybliżeń wymiernych” (On a theo-
rem in the theory of Diophantine approximation), which appeared 
in Comptes rendus de la Société des Sciences de Varsovie (Rendering 
of the accounts of the Society of Sciences of Warsaw), Sierpiński 
investigated the number of fractions whose values closely approxi-
mated a given decimal quantity. He proved that if x is a real num-
ber and n is a positive integer, then there are at most two fractions

 with 1 ≤ q ≤ n for which . For the values x = 3.71 and 

n = 5, his result meant that the fractions  



were the only two fractions that satisfied the required inequality.
Problems like these, whose solutions illustrated fundamental proper-
ties of mathematics, attracted his attention throughout his career.

In addition to his research papers, Sierpiński published two 
books on number theory during this early phase of his career. Teoria 
liczb niewymiernych (The theory of irrational numbers), published 
in 1910, and Teoria liczb (The theory of numbers), published in 
1911, were part of a series of books collectively titled Poradnik dla 
Samouków (Guidebooks for self-instruction). This initiative was 
one of several projects funded by the Mianowski Foundation that 
enabled Polish scholars to circumvent governmental restrictions 
and provide Polish students with high-quality textbooks on current 
topics.

Research on Set Theory
From 1908 to 1914 Sierpiński taught as a member of the math-
ematics faculty at Jan Kazimierz University in Lwów, Poland
(present-day Lviv, Ukraine), where he became an assistant professor 
in 1908 and an associate professor in 1910. In Lwów his research 
interests turned to set theory, a new branch of mathematics that 
Russian mathematician Georg Cantor had introduced in the 1870s. 
Drawing on disparate ideas that Cantor and other set theorists had 
presented in their papers and books, Sierpiński developed an orga-
nized approach to the general theory of sets. In 1909 he delivered 
one of the first systematic lecture courses in set theory given at 
any university. His 1912 book Zarys teorii mngości (Outline of set 
theory), based on his lecture notes for this course, became a popular 
textbook throughout Europe and earned an award from the Polish 
Academy of Sciences in Kraków.

The problem that stimulated Sierpiński’s original interest in set 
theory was Cantor’s 1878 paper establishing a one-to-one corre-
spondence between the points in the unit square
S = {(x, y)|0 ≤ x, y ≤ 1} and the points in the unit interval
I = {z|0 ≤ z ≤ 1}. Sierpiński introduced an alternative variation on 
this idea in his 1912 paper “Sur une nouvelle courbe continué qui 
remplit toute une aire plane” (On a new continuous curve that 
completely fills a plane area), which appeared in the Bulletin de 
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l’Académie des Sciences Cracovie (Bulletin of the Academy of Sciences 
of Kraków). The Sierpiński curve, or Sierpiński snowflake, that 
he developed was a closed path that passed through every point 
in the interior of the unit square. This space-filling curve that 
mapped a one-dimensional interval into a two-dimensional area had 

infinite length and enclosed an area of . The Sierpiński curve is 

an example of a fractal, a recursively defined geometrical object in 
which each section of the pattern is similar to the entire design.

When World War I started, in 1914, Russian military authori-
ties detained Sierpiński as a prisoner of war in Vyatka, Russia. 
Through the intercession of Russian mathematicians Nikolai Luzin 
and Dimitri Egorov, he was relocated to a facility near Moscow 
University. This arrangement allowed him to continue his own work 
and to conduct joint research with his Russian colleagues in set-
theoretic topology and the theory of analytic and projective sets.

His 1915 paper “Sur une courbe dont tout point est un point de 
ramification” (On a curve for which every point is a ramification 
point) appearing in the French journal Comptes rendus mathéma-
tiques de l’Académie des Sciences (Rendering of the mathematical 
accounts of the Academy of Sciences) introduced another frac-
tal known as the Sierpiński triangle, the Sierpiński sieve, or the 
Sierpiński gasket. The image is derived from an equilateral triangle 

The Sierpiński curve, also known as the Sierpiński snowflake, is a one-
dimensional curve that passes through every point inside a square. To con-
struct the curve, each L-shaped corner piece of a square must be replaced by a 
linked sequence of five shorter corner pieces. In each subsequent step, similar 
replacements result in five times as many of the fundamental L shapes. The 
Sierpiński curve is the limit of an infinite sequence of steps.



by cutting it into four equal triangles, removing the central piece, 
and repeatedly applying the same procedure to each remaining tri-
angle. Sierpiński showed that after n iterations there are 3n triangles 

and that the side of each triangle is  as long as a side of the 

original triangle. The total area and perimeter of the collection of 

triangles are
  

of the corresponding dimensions of 

the original triangle.
Ever since he published this paper, Sierpiński’s triangle has 

inspired geometers who study fractal images to design several related
objects that they have named in his honor. The two-dimensional 
Sierpiński carpet is constructed from a square by cutting it into 
nine equal squares, removing the central piece, and repeatedly 
applying the same procedure to each remaining square. Its three-
dimensional analog, known as the Sierpiński sponge, is constructed 
by subdividing a cube into 27 equal cubes, removing the central 
piece, and replicating the process with each smaller cube. Repeatedly 
subdividing a pyramid with a triangular base into five similar shapes 
and removing the central piece produces the Sierpiński tetrahedron, 
the three-dimensional generalization of the Sierpiński triangle. 
The graphical and numerical capabilities of computers have further 
stimulated interest in the early 20th-century work of Sierpiński and 
his contemporaries.

Sierpiński’s work with sets of numbers led him to the discovery 
of the first absolutely normal number, a real number whose digits 

The Sierpiński triangle is constructed from an equilateral triangle by cutting it 
into four equal triangles, removing the central piece, and repeatedly applying 
the same procedure to each remaining triangle.

Wacław Sierpiński  31
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occur with equal frequency in every number base. In 1909 French 
mathematician Émile Borel had proven the existence of such 
numbers. Sierpiński gave the first example of an absolutely nor-
mal number in his 1917 paper “Démonstration élémentaire d’un 
théorème de M. Borel sur les nombres absolument normaux et 
détermination effective d’un tel nombre” (Elementary demonstra-
tion of a theorem of Mr. Borel on absolutely normal numbers and 
the effective determination of one such number), which appeared 
in the Bulletin de la Société Mathématique de France (Bulletin of the 
Mathematical Society of France). Sierpiński developed an intricate 
construction of his number as the lower bound of a well-defined 
set of real numbers. Mathematicians have not yet discovered a 
general method to determine whether a given number is absolutely 
normal.

Polish School of Mathematics
When Sierpiński regained his freedom in 1918, at the end of World 
War I, he assumed a leadership role within the Polish mathemati-
cal community. After a brief return to Jan Kazimierz University, he 
accepted an appointment at the University of Warsaw, where he 
was promoted to full professor in 1919 and dean of the faculty in 
1921. With Zygmunt Janiszewski and Stefan Mazurkiewicz, he for-
mulated and implemented a plan to create an active community of 
research mathematicians in Poland that became known as the Polish 
school of mathematics. The three established the University of 
Warsaw as the country’s mathematical research center, assembling 
a strong faculty and attracting a large number of students. In 1920 
they founded the journal Fundamenta Mathematicae (Fundamentals 
of mathematics) to publish papers in set theory, the area of the dis-
cipline in which they decided to concentrate their national research 
efforts. Under Sierpiński’s leadership as editor in chief from 
1920 to 1952, this periodical—the first mathematical journal to
specialize in one area of the discipline—published research papers 
from international contributors and became one of the leading 
journals for the publication of research on set theory.

Sierpiński helped the Polish school of mathematics flourish in 
Warsaw and extend to other parts of the country. In 1921 he was 



elected a member of the Polish Academy of Sciences. Seven years 
later he became vice chairman of the Warsaw Scientific Society 
and chairman of the Polish Mathematical Society. In 1929, as chair 
of the Congress of Mathematicians of Slavic Countries, he helped 
bring together mathematicians from Poland and neighboring coun-
tries at an international conference in Warsaw. During the same 
year he participated in the establishment of a second mathematical 
research center in Lwów and another specialized journal, Studia 
Mathematica (Mathematical studies), which concentrated on the 
area of functional analysis. In 1932 he became the first editor of 
Monografie Matematyczne (Mathematical monographs), a series of 
advanced books on selected topics.

The outbreak of World War II in 1939 presented additional 
challenges to Sierpiński and his colleagues. He joined other mem-
bers of the unofficial “Underground Warsaw University,” hold-
ing forbidden classes at secret locations, including his own home. 
Although the war forced the suspension of the publication of 
Polish mathematical journals, he sent his research results to Italian 
journals, ending each paper with a promise that the proofs of the 
theorems would appear in Fundamenta Mathematicae after the war. 
During an uprising in 1944, the Nazis burned Sierpiński’s home, 
destroyed his personal library, and imprisoned him near Kraków. 
When Allied military forces liberated the city later that year, 
Sierpiński lectured at Jagiellonian University before returning to 
Warsaw the following year. Although more than 50 percent of 
mathematicians from Polish universities died during the war, the 
Polish school reestablished itself with the creation in 1948 of the 
Institute of Mathematics in the Polish Academy of Sciences and 
the founding of new journals and publications.

During the three decades from 1918 to 1948, Sierpiński published 
hundreds of papers and books on set theory and topology. He wrote 
extensively on Cantor’s continuum hypothesis that asserted there 
were no sizes of infinity between ℵ0 (aleph-zero), the cardinality 
of the natural numbers, and ℵ1 (aleph-one), the cardinality of the 
real numbers. In his 1934 book Hypothèse du continu (Continuum 
hypothesis) that appeared in the series Monografie Matematyczne, he 
investigated properties of topological spaces that would hold if the 
continuum hypothesis were true and would fail if it were false. In 
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his 1945 paper “Sur un espace mètrique séparable universel” (On 
a universal, separable metric space), which appeared in Fundamenta 
Mathematicae, he proved that if the continuum hypothesis was true, 
a metric space with cardinality ℵ1 that was universal would exist. 
Sierpiński proved that every metric space, with cardinality ℵ1 would 
be identical to some subset of this universal space. In his 1947 paper 
“L’hypothèse généralisée du continu et l’axiome du choix” (The 
generalized continuum hypothesis and the axiom of choice), also 
published in Fundamenta Mathematicae, he showed that the axiom 
of choice could be proven from the continuum hypothesis and the 
10 axioms of set theory.

Sierpiński’s papers on topology focused primarily on metric 
spaces, collections of objects for which the distance between any 
two elements was well defined. Working with linear sets that are 
sets of real numbers and plane sets that are collections of ordered 
pairs of real numbers, he proved theorems about the properties of 
normality, separability, regularity, compactness, completeness, and 
connectedness. Typical of his results was his 1945 paper “Sur deux 
consequences d’un theoreme de Hausdorff ” (On two consequences 
of a theorem by Hausdorff ), which appeared in Fundamenta 
Mathematicae, in which he showed how to express the set of all real 
numbers as a sum of ℵ1 disjoint infinite sets.

In his honor, topologists have assigned the name Sierpiński space 
to the topological space composed of two points denoted a and b 
and having the empty set, the set {a}, and the entire set {a, b} as its 
three open sets. This simplest, nontrivial example of a topological 
space has important relations to the theory of computation and 
semantics.

Further Research in Number Theory
Between 1948 and 1968 Sierpiński wrote 11 books and more than 
100 papers in number theory. His research addressed a wide vari-
ety of topics, employed diverse techniques, and introduced several 
innovations. In 1948 his paper “Remarque sur une hypothèse des 
Chinois concernant les nombres (2n - 2)/n” (Remarks on a hypoth-
esis by Chinois concerning the numbers (2n - 2)/n) appeared in 
Colloquium Mathematicum (Mathematical colloquium), one of the 



newly founded publications of the Institute of Mathematics. The 
article investigated pseudoprimes, nonprime positive integers n that 
divide 2n - 2 without a remainder. Although the only pseudoprimes 
less than 1,000 are 341, 561, and 645, he proved that there are 
infinitely many such numbers by showing that whenever n is a 
pseudoprime, so is 2n - 1.

In several of his books and papers, Sierpiński presented unsolved 
or open problems in number theory to stimulate research on the 
topics. In his 1956 paper “Sur les décompositions de nombres 
rationels en fractions primaires” (On decompositions of rational 
numbers into unit fractions), which appeared in the French journal 
Mathesis (Mathematical papers), he challenged readers to prove the 

Sierpiński conjecture that the equation  has integer 

solutions x, y, z for all positive integers n. His books O stu protych ale 
trudnych zagadnieniach arytmetyki. Z pogranicza geometrii i arytmetyki 
(One hundred elementary but difficult problems in arithmetic. On 
the borders of geometry and arithmetic), published in 1959, and 
200 zadań z elementarnej teorii liczb (Two hundred problems in ele-
mentary number theory), published in 1964, presented collections 
of open problems to engage amateurs, students, and professional 
mathematicians.

In 1958 he revisited the subject of relationships between circles 
and integer lattice points, the topic of his prize-winning paper from 
his student years. His paper “Sur quelques problèmes concernant 
les points aux coordonnées entières” (On several problems concern-
ing points with integer coordinates) appearing in L’Enseignement 
mathématique (Mathematics education) provided a formula for the 
number of points with integer coordinates that could lie on the cir-
cumference of a circle. His 1959 paper “Sur les ensembles de points 
aux distances rationelles situés sur un cercle” (On sets of points at 
rational distances situated on a circle), which was published in the 
Swiss journal Elemente der Mathematik (Elements of mathematics), 
extended his analysis to circles having fractional radii.

Sierpiński introduced a new class of prime numbers that are 
known as Sierpiński numbers of the first kind in his 1958 paper “Sur 
les nombres premiers de la forme nn + 1” (On prime numbers of the 
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form nn + 1) published in L’Enseignement mathématique. Sierpiński 
proved that if n > 1 and nn + 1 is prime, then n must be of the form 
22k. Almost 50 years after he directed the attention of researchers to 
prime numbers of the form nn + 1, the only known prime Sierpiński 
numbers of the first kind are 2, 5, and 257.

In 1958, when the Institute of Mathematics founded the jour-
nal Acta Arithmetica (Arithmetical activities) to provide a forum 
where Polish number theorists could publish their research results, 
Sierpiński became the publication’s first editor in chief. His 1959 
paper “Sur les nombres premiers ayant des chiffres initiaux et finals 
donnés” (On the prime numbers having given initial and final dig-
its) appeared in this journal and presented a new property about the 
digits of prime numbers. His paper showed that for any two posi-
tive integers j and k and any sequences of digits a1a2 a3

 . . . aj and
b1b2 b3 . . . bk there was at least one prime number having the a’s as 
its initial digits and the b’s as its final digits provided the last digit 
was 1, 3, 7, or 9.

Although he retired from the University of Warsaw in 1960, at 
the age of 78, Sierpiński continued to conduct a seminar on number 
theory at the Polish Academy of Sciences until 1967 and remained 
an active contributor of new number theoretic ideas. He introduced 
the Sierpiński composite number theorem in his 1960 paper “Sur 
un problème concernant les nombres k · 2n + 1” (On a problem 
concerning the numbers k · 2n + 1), published in Elemente der 
Mathematik. In this paper he proved that there are infinitely many 
odd, positive integers k for which k · 2n + 1 is composite (nonprime) 
for all positive integers n. A number k having this property became 
known as a Sierpiński number of the second kind. In 1962 American 
mathematician John Selfridge proved that 78,557 was a Sierpiński 
number of the second kind and conjectured that it was the small-
est number having the required properties. During the next 40 
years researchers working on this conjecture, determined that all 
sequences of the form k · 2n + 1 based on smaller values of k con-
tained at least one prime number with the exception of 17 specific 
values of k. In 2002 a group of mathematicians and computer scien-
tists initiated a distributed computer project known as “Seventeen 
or Bust” with the aim of resolving the open question. By early 2006 
they had eliminated nine of the 17 candidates, reducing to eight the 



number of possible Sierpiński numbers of the second kind that are 
smaller than 78,557.

Throughout his career Sierpiński wrote many papers about spe-
cial classes of integers known as triangular numbers, pentagonal 
numbers, and tetrahedral numbers—integer quantities that can be 
arranged into particular geometrical patterns. He published two 
of these results in the journal Elemente der Mathematik. In a 1962 
paper titled “Sur une propriété des nombres tétraédraux” (On a 
property of tetrahedral numbers), he proved that there are infi-
nitely many positive integers x, y, and z that satisfy the equation 

 , where the notation  represents the binominal 

coefficient
 

. In his 1963 paper titled “Trois nom-

bres tétraédraux en progression arithmétique” (Three tetrahedral 
numbers in arithmetic progression), he proved that the equation 

 
also had infinitely many positive integers solu-

tions. He was able to show that the solutions x = 10, y = 15, z = 17 
for the first equation and x = 6, y = 12, z = 10 for the second equa-
tion were only the simplest of infinitely many solutions of these 
diophantine equations.

In one of his final papers Sierpiński introduced a property that 
became known as the Sierpiński prime sequence theorem. His 1964 
paper “Les binômes x2 + n et les nombres premiers” (The binomi-
als x2 + n and prime numbers), which appeared in the Bulletin de 
la Société Royale des Sciences Liège (Bulletin of the Royal Society of 
Sciences at Liege), presented his proof that for every pair of posi-
tive integers n and k, the sequence 12 + n, 22 + n, 32 + n, 42 + n, . . . 
contains at least k prime numbers.

In addition to his research papers and his problem books, 
Sierpiński wrote nine books on number theory between 1955 and 
1964. His 1955 textbook, Arytmetyka teoretyczna (The foundations 
of arithmetic), contained an exposition of elements of number theo-
ry. As a second volume to his work from 1911, he wrote Teoria liczb 
II (The theory of numbers, part II) in 1959. In 1964 he produced 
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an expanded English edition titled Elementary Theory of Numbers. 
For more general audiences he produced six popular monographs 
on Pythagorean triangles, diophantine equations, sums of unit frac-
tions, prime numbers, triangular number, and elementary aspects 
of number theory.

Sierpiński died on October 21, 1969, in Warsaw, at the age of 
87. The government of Poland had honored him in 1949 with the 
Scientific Prize (First Class) and in 1958 with the Grand Cross 
of the Order of Polonia Restituta, a civilian award for meritori-
ous service to his country. During his lifetime the prolific and 
respected mathematician wrote 724 mathematical papers and 50 
books, served on the editorial boards of five journals, received nine 
honorary degrees, and was elected to membership in 14 scientific 
societies.

Conclusion
As a researcher in number theory, Sierpiński discovered the first 
absolutely normal number, investigated many properties of prime 
numbers, and introduced Sierpiński numbers of the first and second 
kind. In set theory and topology, he discovered many properties of 
metric spaces that were consequences of the continuum hypothesis. 
The Sierpiński snowflake and the Sierpiński triangle provided early 
examples of fractal images. His work with research institutions, 
specialized journals, and professional societies helped to establish 
and sustain the Polish school of mathematics.
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~history/Mathematicians/Sierpiński.html. Accessed March 17, 
2003. Online biography from the University of Saint Andrews, 
Scotland.
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Abstract Algebraist

Amalie Emmy Noether (pronounced NER-thur) developed sig-
nificant mathematical ideas in the theories of invariants, ideals, and 
noncommutative algebras. Noether’s theorem about continuous 
symmetries and conserved quantities established the mathematical
basis for Albert Einstein’s theory of relativity. Her techniques and 
results on rings, ideals, and noncommutative algebras emphasized the 
importance of studying abstract algebraic structures. Through the 
Noether school, the informal group of researchers who conducted

Amalie Emmy Noether
(1882–1935)

Amalie Emmy Noether established 
the mathematical basis for Einstein’s 
theory of relativity and developed 
methods that showed the importance 
of studying abstract algebraic
structures. (The Granger Collection)
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research with her, her ideas changed the way mathematicians 
worked in the field of algebra.

Early Years
Amalie Emmy Noether was born on March 23, 1882, in the town of 
Erlangen in the Bavarian region of southern Germany. Max Noether, 
her father, who held a position as a professor of mathematics at 
Erlangen University, was well known throughout the German math-
ematical community for his work in the field of algebra. Ida Amalia 
Kaufmann, her mother, was a talented pianist. All four Noether chil-
dren—Emmy and her younger brothers Alfred, Fritz, and Gustav—
obtained college educations. Three of the four earned doctoral 
degrees—Alfred in chemistry and Fritz and Emmy in mathematics.

From 1889 to 1897 Noether attended Städtische Höhere 
Töchterschule, the local public school for girls, where the cur-
riculum emphasized languages, literature, and the arts, with limited 
exposure to science and mathematics. At the age of 18, after com-
pleting three years at a finishing school, she passed the examina-
tions to obtain her certificate to teach French and English at girls’ 
schools. She wanted to continue her education, but most German 
universities did not allow women to enroll as students. Only under 
exceptional circumstances and with the permission of individual 
professors could women attend lectures as auditors, but they could 
not take final exams or earn course credits.

In the winter semester of 1900–01, Noether obtained permis-
sion to audit courses in language, history, and mathematics at 
Erlangen University and became one of only two women studying 
with 984 men. Although her preparation was not as strong as her 
classmates’ backgrounds, she excelled in mathematics and focused 
her studies in that area for the next three years. In 1903 she passed 
the Reifeprüfung, the national graduation examination that entitled 
her to enter any German university. She spent the winter semes-
ter of 1903–04 auditing mathematics courses at the University of 
Göttingen, where her professors included David Hilbert and Felix 
Klein, two of the best mathematicians in Europe. When Erlangen 
University changed its policies to admit female students in 1904, 
Noether enrolled as a full-time student majoring in mathematics.

For four years Noether took advanced mathematics courses at 
Erlangen University and conducted research with professor Paul 



Gordan. Under his guidance she discovered new properties of ter-
nary biquadratic forms, algebraic operators related to polynomials 
with three variables in which the exponents in every term add up to 
four, such as f (x, y, z) = x3y + 6y2z2 - 5xyz2 + 7z4. Noether explained 
her research results in her dissertation, titled “Über die Bildung des 
Formensystems der ternären biquadratischen Form” (On the con-
struction of the system of forms for the ternary biquadratic form). 
Her research results were announced in 1907 in the publication 
Sitzung Berichten der Physikalisch-medizinische Sozietät in Erlangen 
(Conference reports of the Society for Physics and Medicine in 
Erlangen). A formal paper with the same title providing a detailed 
explanation of her work appeared in 1908 in the Journal für die reine 
und angewandte Mathematik (Journal for pure and applied math-
ematics). This 67-page paper included a complete list of the 331 
covariant forms that could be related to a single such polynomial. 
On December 13, 1907, she defended her thesis before a committee 
of mathematics professors, and at graduation ceremonies at the end 
of the spring semester, 26-year-old Noether received her doctorate 
in mathematics summa cum laude (with highest honors).

Invariant Theory
After becoming one of the first German women to earn a Ph.D. 
in any subject, Noether was unable to secure a faculty position at 
a German university. From 1908 to 1915 she worked as an infor-
mal, unpaid member of the mathematics department at Erlangen 
University, where she discussed mathematics with members of the 
faculty, continued her research, and taught her father’s classes when 
he was ill. Although not an official faculty member, she served as 
research adviser for two students, Hans Falckenberg and Fritz 
Seidelmann, who earned their doctorates under her direction.

Noether became an active member of the European mathemati-
cal community, joining two professional mathematical societies—
the Deutsche Mathematiker-Vereinigung (DMV; Association of 
German Mathematicians) and Circolo matematico di Palerma 
(Mathematical Circle of Palermo)—and frequently traveling to 
their conferences throughout Europe. In 1909 she presented her 
paper “Zur Invariantentheorie der Formen von n Variabeln” (On 
the theory of invariants for forms of n variables) at the DMV 
conference in Salzburg, Austria. An abbreviated summary of 
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her work appeared in 1910 in the journal Berichten der Deutsche 
Mathematiker-Vereinigung (Conference reports of the Association 
of German Mathematicians). A more complete account appeared 
in a paper of the same name in 1911 in the Journal für die reine und 
angewandte Mathematik. In 1913 she presented yet another paper, 
titled “Rationale Funktionenkörper” (Fields of rational func-
tions), at the DMV conference in Vienna, Austria. An extended 
report on this research, titled “Körper und Systeme rationaler 
Funktionen” (Fields and systems of rational functions), appeared 
two years later in the journal Mathematische Annalen (Annals of 
Mathematics). These two research papers along with her doc-
toral dissertation established Noether’s reputation in the area 
of mathematics known as invariant theory, in which researchers 
study properties that remain fixed when an object is subjected to 
modifying transformations.

In 1915 Hilbert and Klein invited their former student to join their 
research group at the University of Göttingen where they were con-
ducting research on applications of invariant theory. Albert Einstein, a 
physics professor at the University of Berlin, had formulated a general 
theory of relativity that explained the principles of gravity and motion 
in accelerated frames of reference. Hilbert and Klein were trying to 
determine the field equations for general relativity to describe the 
properties of a gravitational field surrounding a given mass.

During the next four years Noether produced nine research 
papers on various aspects of invariant theory. One early paper, 
“Gleichungen mit vorgeschriebener Gruppe” (Equations with pre-
assigned group), written in 1916 and published two years later in 
Mathematische Annalen, determined the conditions under which a 
given group would be the Galois group of some polynomial equa-
tion. Her work represented the most significant contribution to the 
solution of this classic problem at the time.

Noether’s landmark 1918 paper “Invariante variationsprobleme” 
(Invariant variational problems), published in Nachrichten von der 
Gesellschaft der Wissenschaften zu Göttingen (Report of the Society for 
the Sciences at Göttingen), was a major result in invariant theory. 
In this paper she proved a pair of theorems and their converses that 
are today collectively referred to as Noether’s theorem. Working 
with finite and infinite symmetry groups, she determined the con-
ditions under which symmetries of a group action corresponded 



to conserved quantities of a physical system. Because the principle 
of conservation of energy and momentum is a special case of these 
general results, Noether’s theorem forms one of the cornerstones 
of the theory of general relativity. Her work provided the rigorous 
mathematical basis for Einstein’s theory. This result has become a 
basic tool in quantum field theory and particle physics.

Struggle for Faculty Appointment
From the time that Noether first came to Göttingen, Hilbert and 
Klein had tried to obtain for her an official appointment to the 
university’s faculty. In 1915, as part of the formal process of qualify-
ing for Habilitation (lectureship), Noether presented the paper “Über 
ganze transzendentte Zahlen” (On transcendental integers) to the 
Mathematical Society in Göttingen. At a subsequent meeting of the 
faculty, some professors argued to maintain the rule that prohibited 
women from joining the faculty, asserting that it would be humiliat-
ing to require male students to learn from female professors. Hilbert 
angrily replied that it should make no difference whether a professor 
was a man or a woman because this was a university, not a bathhouse. 
Although his passionate plea did not change his colleagues’ minds, he 
did obtain permission from the government’s minister of education 
to allow Noether to teach some of his classes as his unpaid assistant.

In 1919, when the post–World War I German government 
relaxed many restrictions, Noether presented her paper “Invariante 
variationsprobleme” as her Habilitation thesis and obtained an 
appointment to the faculty at the lowest possible rank. Her title of 
Privatdozent (assistant professor) permitted her to officially teach 
courses at the university under her own name but without any pay. 
Three years later the university awarded her the higher faculty rank 
of ausserordentlicher Professor (untenured associate professor) but did 
not provide her a salary. In 1923 her mathematical colleagues secured 
for her an official Lehrauftrag (commission to teach) that paid her a 
small salary, although her contract had to be renewed every year.

With little or no financial support from the university, Noether 
lived a modest lifestyle maintained by a small inheritance from 
her mother and father, who had both died since she had come to 
Göttingen, and by money that two of her uncles sent on a regular 
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basis. Dressing plainly and eating simply, she enjoyed cooking din-
ner at her apartment for “the Noether boys,” a group of devoted 
students who were attracted by her friendly personality and her 
mathematical brilliance. In her years at Göttingen, she directed the 
thesis research of 10 Noether boys who earned their Ph.D.s, and she 
continued to help many of them with their later research papers.

Ideal Theory
From 1920 to 1926 Noether focused her work on a branch of abstract 
algebra known as ideal theory. Her work in this area profoundly 
changed the emphasis of research in algebra by focusing attention 
on abstract properties of structures called groups, rings, fields, ide-
als, and modules rather than on the specific objects themselves. She 
introduced this radical approach to studying algebraic structures in 
her 1920 paper “Modulen in nichtkommutativen Bereichen, insbe-
sondere aus Differential- und Differenzenausdrücken” (Modules in 
noncommutative domains, in particular in differential and differ-
ence equations), written in collaboration with W. Schmeidler and 
published in Mathematische Zeitschrift (Mathematical reviews). In 
the context of rings of differential operators, this paper also intro-
duced the concepts of left and right ideals.

Noether’s 1921 paper “Idelatheorie in Ringbereichen” (Theory 
of ideals in ring domains), published in Mathematische Annalen, 
presented her most important results in ideal theory. In this paper 
she proved that for a commutative ring with an ideal, the ascend-
ing chain condition was equivalent to the condition that every ideal 
have a finite basis and to the condition that every set of ideals have a 
maximal element. Because of the significance of the results obtained 
and the wide applicability of the techniques used, this paper laid the 
foundation for modern abstract algebra. With concepts that came 
to be known as Noetherian rings and Noetherian ideals, this and 
subsequent papers revolutionized the study of abstract algebra.

Noether published 15 papers on ideal theory and presented 
six of them at meetings of the DMV. The publications included 
the 1923 paper “Eliminationstheorie und allgemeine Idealtheorie” 
(Elimination theory and the general theory of ideals) and the 1927 
paper “Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und 
Funcktionenkörpern” (Abstract structures of ideal theory in algebraic 



number and function fields), both published in Mathematische Annalen. 
Her conference papers included the 1925 paper “Hillbertsche 
Anzahlen in der Idealtheorie” (Hilbert numbers in the theory of 
ideals) and the 1926 report “Gruppencharaktere und Idealtheorie” 
(Group characters and the theory of ideals). These papers demon-
strated the wide applicability of the concepts she introduced.

International Influence
During the 1920s Noether gathered around herself an excellent 
group of students and professors who worked together on research 
in abstract algebra. The Mathematical Institute at the University of 
Göttingen became the center of mathematical research in the world, 
and her research group, informally known as the Noether school, 
earned a reputation as the most talented, productive, and influen-
tial group at the institute. Mathematicians came to Göttingen from 
every country in Europe as well as from Japan, Russia, and the 
United States to conduct research with her. When these profes-
sors returned to their universities, they shared her ideas on abstract 
algebraic structures with their colleagues, enabling Noether’s ideas 
to have a profound influence on mathematics internationally.

As an unpaid editor of the journal Mathematische Annalen, 
Noether reviewed the research papers submitted by many
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mathematicians and suggested corrections, revisions, and related 
problems for consideration. Although she published 43 research 
papers in mathematical journals, she allowed other mathematicians 
and students to take credit for many ideas that she had developed 
during her class lectures and in the meetings of her research group. 
Noether’s innovative ideas significantly changed the way research-
ers conducted research in algebra and in many other branches 
of mathematics. Her theories enabled mathematicians to make 
important and fundamental discoveries in algebraic geometry and 
algebraic topology, as well as in physics and chemistry, by studying 
the abstract structure of similar collections of objects. Her ideas 
influenced the teaching of mathematics in U.S. elementary schools 
50 years later in the form of the “New Math” of the 1970s.

Noncommutative Algebras
From 1927 to 1935 Noether redirected the focus of her research 
to study noncommutative algebras, algebraic structures in which 
two objects combined in one order produce different results than 
the same two objects combined in the opposite order. She studied 
rings of matrices and functions, linear transformations, hypercom-
plex numbers, cross-products, and other noncommutative objects. 
Her research on noncommutative algebras employed the same high 
level of abstract analysis as her work on ideals, enabling her to prove 
deep and powerful theorems.

During this period of years Noether published 13 papers on non-
commutative algebras, three of which were particularly influential. 
Her 1929 paper “Hyperkomplexe Grossen und Darstellungstheorie” 
(Hypercomplex quantities and representation theory), presented at a 
conference in Bologna, Italy, and published in Mathematische Zeitschrift, 
introduced the fundamental ideas of noncommutative algebras. In her 
1933 paper “Nichtkommutative Algebren” (Noncommutative alge-
bras), published in Mathematische Zeitschrift, she more fully explained 
the general theory of the subject. The 1932 paper “Beweis eines 
Hauptsatzes in der Theorie for Algebren” (Proof of a main theorem 
in the theory of algebras), which she jointly wrote with German 
mathematicians Richard Brauer and Helmut Hasse, proved the fun-
damental result that every simple algebra over an ordinary algebraic 
number field is cyclic. German algebraist Herman Weyl regarded this 
paper as a high-water mark in the development of algebra.



Honors and Recognitions
Noether’s reputation within the larger mathematical community 
enabled her to undertake a variety of projects. She spent the 1928–29 
academic year as a visiting professor at Moscow University in Russia, 
teaching a course in abstract algebra and collaborating with Pavel 
Alexandrov and other researchers. During the summer of 1930 she 
taught as a visiting professor at Frankfurt University. With German 
mathematician Robert Fricke and the Norwegian mathematician 
Øystein Ore, she edited the Collected Mathematical Works of Richard 
Dedekind, published in three volumes between 1930 and 1932. In the 
third volume, her detailed commentaries on the German mathema-
tician’s works were so thorough that they were reprinted in 1964 as 
a separate book titled Über die Theorie der ganzsen algebraischen Zahlen 
(On the theory of algebraic integers). She also worked with French 
mathematician Jean Cavaillès to edit the correspondence between 
Russian mathematician Georg Cantor and Dedekind. Completed in 
1933 this work was published four years later in Actualités scientifiques 
et industrielles (Scientific and industrial news).

Two events in 1932 indicated the stature and reputation Noether 
had achieved within the mathematical community. Along with Aus-
trian algebraist Emil Artin, she was awarded the Alfred Ackermann-
Taubner Memorial Award for the advancement of the mathematical 
sciences. Although the monetary value of the prestigious award was 
only 500 marks (about $120), it affirmed her colleagues’ high regard 
for the quality of her research, the importance of her publications, 
and her knowledge of her discipline. In September she was invited to 
deliver one of the main addresses at the International Mathematical 
Congress in Switzerland. Her conference paper, “Hypercomplexe 
Systeme in ihren Beziehungen zur kommutativen Algebra und 
zur Zahlentheorie” (Hypercomplex systems in their relations to
commutative algebra and to number theory), was well received by 
the 800 mathematicians in attendance.

Last Years in America
Noether’s productive career was interrupted in 1933 when Adolf Hitler, 
the new German chancellor, instituted a series of laws that barred Jews 
from leadership positions within German society. In April the Prussian 
Ministry of Science, Art, and Public Education notified Noether 
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that they had withdrawn her permission to teach at the University 
of Göttingen. She continued to meet with her students and with her 
research group at her apartment while trying to secure an academic 
position in Russia, Britain, or the United States. By October, with the 
help of the Rockefeller Foundation and the Emergency Committee to 
Aid Displaced German Scholars, she obtained an appointment at Bryn 
Mawr College, a premier women’s college in Pennsylvania.

Noether made a rapid transition into the American mathematical 
community. Her colleagues at Bryn Mawr included department chair 
Anna Pell Wheeler, one of the best-known female mathematicians 
in the United States, and Olga Tausky-Todd, a postgraduate fellow 
who later became the first female professor at the California Institute 
of Technology. Both women had studied at the University of 
Göttingen and were familiar with German culture. Noether taught 
seminars in algebra, attracted a small following of ambitious students, 
and directed the Ph.D. thesis of one student, Ruth Stauffer. Each 
week Noether visited the Institute for Advanced Study in Princeton, 
New Jersey, where she gave lectures and collaborated on research 
projects with other mathematicians, including many who, like her-
self, had been forced to leave Germany. Her only research paper 
written in America, “Zerfallende verschränkte Produckte und ihre 
Maximalordnungen” (Splitting crossed products and their maximal 
orders), appeared in 1934 in Actualités scientifiques et industrielles.

In April 1935 doctors removed a large cancerous tumor from 
Noether’s abdomen. Four days later, on April 14, she died at the 
age of 53. In the months following her unexpected death, Noether’s 
international mathematical colleagues paid tribute to her. The 
mathematics journal Mathematische Annalen, which had never listed 
her name as one of their editors, defied the German government 
by publishing a lengthy article praising her life and her work. The 
Moscow Mathematical Society organized a conference in her honor 
at which mathematicians from around the world gave speeches 
about her life and presented papers about her research. The New 
York Times published a letter signed by Einstein in which he called 
Noether the greatest woman mathematician who had ever lived.

Conclusion
Despite societal prejudices against women and Jews, Noether 
became an accomplished mathematician and made significant dis-



coveries in physics and mathematics. Noether’s theorem rigorously 
established the mathematical basis for Einstein’s theory of relativity 
and has become a fundamental tool in quantum field theory and 
particle physics. She wrote numerous important research papers 
in ideal theory and the theory of noncommutative algebras. As 
the leader of the Noether school, she demonstrated the benefits 
of studying the abstract structure of collections of mathematical 
objects, changing the way that mathematicians conduct research in 
the field of algebra.
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Indian Number Theorist

Working in isolation for most of his life, Srinivasa Iyengar 
Ramanujan (pronounced shreen-ee-VAH-sah eye-YEN-gahr rah-
MAH-noo-jah) developed thousands of theorems about infinite 
series and the properties of positive integers. During a five-year stay 
in England, he published papers on techniques for approximating 
the constant π, the analysis of highly composite numbers, the num-
ber of prime factors of a positive integer, and the number of ways to 
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Iyengar Ramanujan developed
techniques for approximating the
constant π, analyzing highly composite 
numbers, and determining the number 
of ways to partition a given integer. 
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partition a given integer. His innovative methods for investigating 
these and other topics in number theory contributed to the develop-
ment of probabilistic and additive number theory. Mathematicians 
continue to study the mock theta functions he introduced as well as 
the contents of the notebooks where he recorded his discoveries.

Societal Influences
Srinivasa Iyengar Ramanujan was born on December 22, 1887, 
at his grandmother’s house in the town of Erode in the Madras 
province of southern India. A year later his family moved 100 miles 
north to the city of Kumbakonam. Srinivasa, his father, worked as 
a clerk for a cloth merchant, earning a meager salary of 20 rupees 
a month. Komalatammal, his mother, supplemented the family’s 
income by singing devotional songs at a nearby temple. As the old-
est of six children, three of whom died as infants, he was the focus 
of his mother’s attention and affection.

Ramanujan and his family belonged to the Brahmin caste and 
were devoted followers of the Hindu religion. According to tradi-
tional Indian customs, Ramanujan took his father’s name, Srinivasa, 
followed by the name his parents chose for him, Ramanujan, mean-
ing “younger brother of Rama,” the model of Indian manhood 
from the epic Indian tale the Ramayana. His middle name, Iyengar, 
indicated the subsect of the caste of Brahmins to which his family 
belonged. Although most of India’s priests, scholars, and religious 
leaders came from this highest class, his family’s financial situation 
prevented him from taking advantage of the opportunities available 
to Brahmins for education, career, marriage, and other aspects of 
life. Following the rules of the Brahmin caste, the family ate a strict 
vegetarian diet and carefully prepared their food according to spe-
cific guidelines. They prayed to many Hindu gods and goddesses 
at home and at shrines. Ramanujan and his mother developed a 
devotion to the goddess Namagiri, whom they believed to be his 
special protector.

In his appearance, Ramanujan was dark skinned and overweight. 
Although skin tones among Indians varied widely from fair to 
brown to black, his skin color was so dark that his university pro-
fessors in England referred to him as a black man. In a country 



where many children were underfed and most residents were thin, 
Ramanujan’s stout stature was due to his doting mother’s insistence 
that her favorite child have plenty to eat and his preference for quiet 
games rather than sports and rugged activities.

Even though he did not speak until he was three years old, 
Ramanujan excelled in all his subjects when he attended Kangayan 
Primary School. At the age of nine, he earned the highest score 
in the Tanjore school district on the Primary Examination, a 
standardized test of English, arithmetic, geography, and his native 
Tamil language. The following year he earned a half-tuition 
scholarship and was admitted to “Form I,” the equivalent of sixth 
grade, at Town High School, where his talent for mathematics 
became evident to both his teachers and his classmates. In the 
eighth grade his teacher presented the fundamental property 
of division that any number divided by itself is one by explain-
ing that whether three fruits were divided equally among three 
people or 1,000 fruits were divided equally among 1,000 people, 
each person would get one piece of fruit. Yet, Ramanujan asked 
if zero divided by zero was also one; if there was no fruit and no 
people, would each person still get one? When he was 14, an 
older classmate challenged him to find two whole numbers x and 
y that satisfied the equations  + y = 7 and  + x = 11. After 
thinking for less than a minute, Ramanujan produced the answer 
x = 9, y = 4 and then explained how to solve the problem in two 
efficient steps.

Ramanujan’s poor family was often unable to buy paper, pencils, 
or the textbooks that he needed for school. He did most of his cal-
culations using chalk to write on a slate, a small piece of blackboard 
enclosed in a wooden frame. When he had filled his slate with num-
bers and had no more room to write, he would erase the figures by 
rubbing his elbow across them. He frequently borrowed books from 
the college students who rented rooms at his family’s home. By the 
age of 13 he had mastered the mathematics in a borrowed copy of 
Sidney L. Loney’s Trigonometry from which he learned that the sine 
and cosine of an angle could be calculated by adding up the terms 
of an infinite series rather than by dividing the lengths of the sides 
of a right triangle. Through independent investigations he devel-
oped the mathematical theory that explained the correspondence 
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between the two approaches to trigonometric functions and showed 
his original analysis to his teacher. When his teacher explained that 
Swiss mathematician Leonhard Euler had made the same discov-
ery 150 years earlier, Ramanujan was so embarrassed that he went 
home and hid the papers beneath the roof of his house.

Mathematics became Ramanujan’s passion at the age of 15 when 
he borrowed a copy of George S. Carr’s Synopsis of Elementary 
Results in Pure and Applied Mathematics. This large book contained 
thousands of mathematical rules from algebra, geometry, calculus, 
and differential equations without any proofs to explain why the 
statements were true. Ramanujan spent months working through 
the listing of theorems, formulas, and geometrical diagrams, devel-
oping his own style of reasoning to justify the validity of each result. 
Many times he would go to bed thinking of unsolved math prob-
lems and get up at night to write down ideas that had occurred to 
him while he slept.

During his high school years Ramanujan received many awards 
for excellence in mathematics and literature. He regularly won 
problem-solving competitions and ranked as the top student in 
mathematics each year. When headmaster Krishnaswami Iyer 
awarded him the K. Ranganatha Rao Prize for mathematics in 
1904, he remarked that Ramanujan’s work was so good that he 
deserved more than the maximum score of 100 points. In addition 
to his merit certificates for achievement in mathematics, he also 
received books of poetry for winning several English contests.

The Notebook Years, 1904–1914
During his final year of high school Ramanujan passed the 
Matriculation Examination of the University of Madras and won 
the Junior Subrahmanyan Scholarship for excellence in English 
and mathematics. In 1904, at the age of 16, he became a student 
at Government College in Kumbakonam. Dedicating his energies 
exclusively to the study of mathematics, he failed his other subjects, 
lost his scholarship, and ran away from home for three months. In 
1906 he was admitted to Pachaiyappa’s College in Madras where he 
excelled in mathematics but failed the fine arts exam twice and was 
dismissed from the college.



Although his intensive study of mathematics had resulted in his 
dismissal from two colleges, Ramanujan’s independent investiga-
tions during those years had led him to discover new mathematical 
ideas. In three large notebooks he recorded theorems and formulas 
that did not appear in the books he had borrowed from librar-
ies and professors. For several years he earned money as a tutor 
but spent most of his time studying mathematics and researching 
original ideas. In his notebooks he organized his discoveries into 
38 chapters and numbered the theorems consecutively. The topics 
included methods for constructing magic squares, approximations 
for mathematical constants, properties of prime numbers, and tech-
niques for analyzing infinite series, continued fractions, and infinite 
products. In 10 years he recorded more than 3,500 results in the 
640 pages of his three notebooks.

In 1909 Ramanujan entered into an arranged marriage with 
Srimathi Janaki Ammal, his 10-year-old distant cousin. While 
his wife continued to live with her parents, Ramanujan traveled 
throughout southern India showing his notebooks to friends, math-
ematics professors at many colleges and universities, and the leaders 
of the Indian Mathematical Society. In 1911 Ramachandra Rao, 
district collector in the city of Nellore and secretary of the Indian 
Mathematical Society, supported him with a monthly stipend of 25 
rupees so he could continue his research in Madras while seeking a 
more suitable position. The following year he obtained a job mak-
ing 30 rupees per month as a clerk in the accounting department 
of the Madras Port Trust, the government office that managed 
the ship traffic in the harbor at Madras. Two of his supervisors 
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were Narayana Iyer, the treasurer of the Indian Mathematical 
Society, and Sir Francis Spring, an English engineer who had high-
ranking British contacts throughout India. Although neither man 
understood Ramanujan’s work, both of them recognized his talent, 
encouraged him to keep working on his notebooks, helped him to 
submit his research results to mathematical journals, and tried to 
obtain a research fellowship for him at a university.

Between 1911 and 1913 the Journal of the Indian Mathematical 
Society published five pieces of Ramanujan’s work. In his first paper, 
“Some Properties of Bernoulli’s Numbers,” he used the infinite 
series for the cotangent function to produce efficient methods 
for determining the values of Bernoulli’s numbers, a sequence of 
fractions that occurred in many applications in number theory 
and analysis. His 1912 papers “On Question 330 of Professor 
Sanjana” and “Note on a Set of Simultaneous Equations” presented 
a method for summing a particular infinite series and a technique 
for solving a system of 10 equations with 10 unknowns. In his 1913 
paper “Irregular Numbers” he gave several formulas involving the 
sequence of integers 2, 3, 5, 7, 8, 11, 12, 13, 17, 18, … that have 
an odd number of prime factors and the sequence of integers 2, 3, 
5, 6, 7, 10, 11, 13, 14, 15, … that have no repeated prime factors. 
He used these sequences to determine values for infinite products 

such as  and for infinite 

sums such as . In the brief note “Squaring 

the Circle” that was published in 1913, he provided a simple method 
for constructing a line segment whose square produced an approxi-
mation for the area of a given circle. He noted that for a circle 
having an area of 140,000 square miles, the length of the segment 
constructed by his method differed by approximately an inch from 
the true length of the side of the square having the same area.

A regular feature of many mathematical periodicals was the 
publication of challenging problems submitted by readers. Be-
tween 1911 and 1919 the journal published 59 problems posed 
by Ramanujan, including nine in the first of these years. His 



collection of problems involved derivatives, integrals, infinite 
series, infinite products, simultaneous equations, perfect squares, 
and arithmetic identities. One of his questions asked readers to 
find pairs of positive rational numbers that satisfied the equation

xy = yx, such as x = 4, y = 2 and x = , y = . Another problem re- 

quested a proof that every positive integer satisfied the identity 

, where the symbol
  

indicated the
 

greatest integer that was less than or equal to the expression inside 
the brackets. None of the journal’s readers was able to answer 
his question that asked them to determine why the expression 

 was equal to 3.

In January 1913 Ramanujan sent a letter and 10 pages of formu-
las from his notebooks to Godfrey Hardy, one of the leading math-
ematicians at Cambridge University in England. When Hardy and 
his colleague John Littlewood reviewed the sample of Ramanujan’s 
work, they discovered that although some of the formulas were 
incorrect and other results had been discovered previously, there 
were many profound and elegant formulas that hinted at his deep 
mathematical talent. Hardy talked excitedly to the other professors 
about the “new Euler” he had discovered in India and wrote back to 
Ramanujan, inviting him to come to England to work.

Although Ramanujan was pleased by Hardy’s offer and under-
stood the opportunity it offered to advance in his career, he 
declined. As a member of the Brahmin caste, he would be consid-
ered “unclean” if he traveled to a foreign country and would be 
“shunned,” meaning he would no longer be allowed to be with his 
family or friends. Hardy’s interest in supporting Ramanujan led 
officials at the University of Madras to appoint him as a special 
research scholar and award him a monthly stipend of 75 rupees 
beginning in May 1913. During his first 10 months as a professional 
mathematician, he continued his correspondence with Hardy, 
prepared several articles on his notebook results for publications, 
and submitted three reports to the university’s Board of Studies in 
Mathematics on the progress of his research.
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Four of Ramanujan’s research articles from this period appeared 
in the 1915 volume of the Journal of the Indian Mathematical Society. 
“On the Number of Divisors of a Number” provided an upper 
limit for the number of positive integers that divide a given number 
without leaving a remainder. “On the Sum of the Square Roots of 
the First n Natural Numbers” presented formulas for sums such as 

 and . The other 

two papers analyzed an integral involving the arctangent function 
and an infinite product of fractions.

Late in December 1913, after Ramanujan spent three nights at 
the shrine of the goddess Namagiri in Namakkal, he decided to 
accept Hardy’s invitation to study in England. When his mother 
had a dream in which Namagiri warned her not to interfere with her 
son’s career, she gave her permission for him to travel. In February 
the University of Madras awarded him a two-year research stipend 
of £250 per year, plus traveling expenses. Hardy arranged for a 
full scholarship for Ramanujan to study at Cambridge University’s 
Trinity College and an additional £60 stipend. He left India by boat 
in March and arrived in London a month later.

Years in England, 1914–1919
Ramanujan immediately started classes and began to work with 
Hardy and Littlewood. In his classes he extended his instructors’ 
presentations to new theorems that they had not yet discovered. 
He explained to Hardy the unusual notations in his notebooks, 
shared the inspirations that had led him to his ideas, and revealed 
the techniques he had used to justify his results. Hardy showed 
Ramanujan how to write rigorous mathematical proofs. Littlewood 
taught him about doubly periodic functions, complex functions, and 
other topics that filled gaps in his uneven knowledge of mathemat-
ics. Neither professor was completely successful, because as soon as 
Ramanujan learned a new idea, his active mind thought of several 
more that took him in a different direction than his professors 
had intended to go. Sensitive to this tendency, Hardy tried not to 
destroy Ramanujan’s creative genius by forcing him to think like 



other mathematicians. Together they prepared for publication the 
best results from his notebooks and started conducting research in 
new directions.

Ramanujan’s first publication in a European mathematics jour-
nal, his 1914 paper “Modular Equations and Approximations to 
π,” which appeared in the Quarterly Journal of Mathematics, pre-
sented a variety of methods for generating estimates for the value 

of π. His simple calculations  = 3.1415926526  . . .  and 

 = 3.141592653589794 . . . provided approximations

for the actual value of π = 3.141592653589798 . . . that were accu-
rate to eight and 14 digits, respectively. Using logarithms and 
square roots, he produced additional estimates that were correct 
to as many as 31 decimal places. Among all the estimates he had 
discovered, the most original were the seven-digit approximation 

 = 3.14159273 . . . provided by a single term of an 

infinite series and the nine-digit estimate  = 

3.1415926538 . . . given by the ratio to two surds, expressions of the 
form a + , where a, b, and c are integers. This paper also pro-
vided new insights into the properties of elliptic and modular func-
tions. Today, mathematicians working with computers continue to 
use some of the infinite series presented in this paper to calculate 
the digits of π.

At the June 1914 meeting of the London Mathematical Society, 
Hardy presented some of Ramanujan’s results from number theory, 
the branch of mathematics dealing with properties of integers. 
The full text of Ramanujan’s lengthy treatise on the topic, “Highly 
Composite Numbers,” appeared in 1915 in the Proceedings of the 
London Mathematical Society. His work described highly composite 
numbers, positive integers having more factors than any smaller 
number. The first highly composite numbers are 2, 4, 6, 12, 24, and 
36; they have 2, 3, 4, 6, 8, and 9 factors, respectively. Ramanujan 
provided upper and lower bounds for the value of the function d(n) 
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that specified the number of factors of the positive integer n. His 
analysis of the properties of this class of numbers demonstrated his 
mastery of the algebra of inequalities.

In less than two years, Ramanujan submitted his treatise on 
highly composite numbers and six other papers on various topics in 
number theory to the faculty at Trinity College. In March 1916 the 
institution awarded him a “Bachelor of Science by Research,” which 
became known four years later as a doctor of philosophy, or Ph.D. 
The University of Madras extended its financial support of his 
work for an additional three years, during which time he published 
15 more papers in his own name and an additional seven papers in 
collaboration with Hardy.

In 1917 Ramanujan and Hardy published a series of joint papers 
about prime numbers, whole numbers such as 2, 3, 5, 7, 11, 13, 
and 17 that are greater than one but cannot be divided by any 
other positive numbers except themselves and one. In their paper 
“The Normal Number of Prime Factors of a Number n,” which 
appeared in the Quarterly Journal of Mathematics, they presented a 
formula that almost always gave the correct value for the number 
of primes that divided each positive integer n. By showing that a 
general positive integer n had about log(log(n)) prime factors, they 
demonstrated that round numbers—numbers having many prime 
factors—were very rare. This paper and the related papers they 
produced during that year presented the first systematic discus-
sion of the number of prime divisors of a positive integer. During 
the next 30 years, other mathematicians built on their results and 
developed the branch of mathematics known as probabilistic num-
ber theory.

In a series of three papers published between 1916 and 1918, 
Ramanujan presented new ideas on the topic of representing num-
bers as the sum of squares. His 1916 paper “On Certain Arithmetical 
Functions” and his 1918 paper “On Certain Trigonometrical Sums 
and Their Applications in the Theory of Numbers,” both of which 
appeared in the Transactions of the Cambridge Philosophical Society, 
introduced infinite series that provided estimates for important 
number theoretic functions such as σ (n), the sum of the divisors 
of the positive integer n, and φ (n), the number of prime numbers 
less than n. In his 1917 paper “On the Expression of a Number in 



the Form ax 

2 + by2 + cz2 + dt 

2,” published in the Proceedings of the 
Cambridge Philosophical Society, he proved that there were 55 sets 
of positive integers a, b, c, and d for which every positive integer 
could be expressed in the form ax2 + by2 + cz2 + dt2. His papers on 
the representation of numbers as sums of squares enabled other 
mathematicians to discover many new results in this area of classical 
number theory.

In his first letter to Hardy in 1913, Ramanujan had mentioned 
his analysis of partitions of positive integers, ways of expressing 
a number as a sum of positive integers. In a 1918 paper titled 
“Asymptotic Formulae in Combinatory Analysis” that appeared in 
the Proceedings of the Cambridge Philosophical Society, he and Hardy 
presented an asymptotic, or approximation, formula that came very 
close to giving the exact value of p(n), the number of partitions of 
the positive integer n. By taking the sum of a specified number of 
terms of an infinite series and rounding off the decimal answer to 
the nearest integer, their formula produced the correct value of 
p(n). In the next several years other mathematicians built on their 
ideas to discover an exact formula for p(n) and developed their 
asymptotic approach into a formal method called the circle method 
that could be used to solve many problems in the field of additive 
number theory.

In the five years that Ramanujan worked with Hardy in 
England, they published 28 research papers in British math-
ematical journals. These papers made substantial contributions 
to number theory and to the analysis of elliptic functions, con-
tinued fractions, and infinite series. Their work led to major 
developments in many areas of mathematics. In recognition of 
Ramanujan’s contribution to mathematics, he was elected a fellow 
of the London Mathematical Society, a fellow of Trinity College, 
and a fellow of the Royal Society of London. He was the first 
Indian and the first Asian to be honored by the Royal Society. 
In 1918 when he was elected to the Royal Society, only 15 of the 
104 candidates who were nominated from all branches of science 
were chosen.

Although Ramanujan’s years in England were productive math-
ematically, he suffered from physical and mental illnesses. Lonely 
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for his wife, his mother, and his friends; bothered by the cold, 
damp climate of England; prevented from returning to India by 
World War I; and unable to cook the traditional foods for his 
Brahmin vegetarian diet, he became so depressed that he tried to 
commit suicide by throwing himself onto the tracks in front of a 
train. Suffering from an illness with symptoms similar to tubercu-
losis that doctors were unable to diagnose, he spent most of the 
years 1917 and 1918 in hospitals and sanatoria in Wells, Matlock, 
and London.

During a visit to one of Ramanujan’s hospital rooms, Hardy 
remarked that the taxicab in which he had just ridden had a bor-
ing number, 1729. Ramanujan quickly replied that it was actually 
an interesting number because it was the smallest number that 
could be written as the sum of two cubes in two different ways—as
123 + 13 = 1728 + 1 = 1729 and as 103 + 93 = 1000 + 729 = 1729—a
discovery that he had made and had recorded in his notebooks while 
in India. After Hardy shared the story, now known as the taxicab 
problem, mathematicians started investigating Ramanujan’s claim 
and other numbers with related mathematical properties. Today a 
set of four integers a, b, c, and d that satisfy the equation a3 + b3 = c3 + d3

are called Ramanujan numbers. Mathematicians have proven that 
there are infinitely many such sets of numbers.

Return to India, 1919–1920
In February 1919, after the war ended and his health improved, 
Ramanujan sailed to India, where he arrived as a celebrated and 
accomplished mathematician. The University of Madras offered 
him a five-year appointment as a research mathematician with an 
annual stipend of £250. Trinity College promised to fund his travel 
expenses, enabling him to continue his research partnership with 
Hardy. Despite his continuing health problems, he worked ambi-
tiously, investigating new ideas in mathematics. In January 1920 
he wrote to Hardy that he had discovered a concept that he called 
“mock theta functions,” infinite sums of rational expressions such as 

φ(q) = .



He recorded 650 results about mock theta functions on 130 sheets of 
loose paper that mathematicians came to call his “Lost Notebook” 
because after his death they remained hidden in a library in Madras 
until 1976.

Ramanujan worked on his mathematical research until four days 
before he died. When he became so involved in his work that he 
refused to stop for meals, his wife, Janaki, would feed him rice while 
he continued to work. On April 26, 1920, 32-year-old Ramanujan 
died of hepatic amoebiasis, a parasitic infection of the liver and 
intestines, at a rented home in Chetput near Madras.

Fifteen years after Ramanujan’s death, Hardy offered his per-
sonal rankings of mathematicians on the basis of pure talent. On a 
scale from one to 100, he rated himself a 25 and Ramanujan a 100. 
In the years since his death, the 4,000 theorems that Ramanujan 
wrote in his notebooks have been studied extensively by mathema-
ticians from around the world. They have determined that about 
two-thirds of these results were not known to other mathemati-
cians at the time that he discovered them. In 2005 the Abdus Salam 
International Centre for Theoretical Physics and the International 
Mathematical Union honored his memory by establishing the 
Ramanujan Prize to be awarded annually to a young mathematician 
from a developing country.

Conclusion
Despite his lack of formal training in higher mathematics, Rama-
nujan was a creative mathematician whose insight into algebraic 
formulas and infinite series enabled him to make significant con-
tributions to number theory. He created new techniques for 
approximating π that mathematicians continue to employ and 
introduced the analysis of highly composite numbers. The methods 
he developed to determine the number of prime factors of a posi-
tive integer led to the establishment of probabilistic number theory. 
His asymptotic formula for the number of partitions of a positive 
integer introduced the circle method, which led to significant 
developments in additive number theory. Mathematicians continue 
to study the mock theta functions he discovered as well as the thou-
sands of formulas from his notebooks.
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Norbert Wiener provided a math-
ematical explanation for Brownian 
motion, established a rigorous math-
ematical basis for classical potential 
theory, and founded the discipline of 
cybernetics. (Massachusetts Institute 
of Technology Museum and Historical 
Collections, courtesy of AIP Emilio 
Segrè Visual Archives)
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Father of Cybernetics

Norbert Wiener (pronounced WEE-ner) was a child prodigy 
who discovered new mathematical techniques to solve a range 
of applied problems in pure mathematics, physics, biology, and 
engineering. His introduction of the Wiener measure provided 
a mathematical explanation for Brownian motion and led to 
advances in probability and stochastic processes. The Wiener 
criterion and his analysis of the Dirichlet problem established a
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rigorous mathematical basis for classical potential theory. His 
work in general harmonic analysis and Tauberian theorems pro-
vided techniques for the investigation of nonperiodic phenomena. 
He founded the discipline of cybernetics, to which he intro-
duced statistical methods to understand and manage interactions 
between humans and machines.

Child Prodigy
Norbert Wiener was born on November 26, 1894, in Columbia, 
Missouri, to Leo Wiener, a professor of modern languages at 
the University of Missouri, and Bertha Kahn, the daughter of a 
department store owner. In 1895 his father accepted a position as a 
professor of Slavic languages and literature at Harvard University 
and moved the family to Massachusetts. As a young child, Wiener 
showed signs of brilliance, learning to read when he was three years 
old. Tutored at home by his father and encouraged to read in his 
father’s extensive library, he became a child prodigy, entering high 
school at the age of nine. He graduated from Ayer High School 
when he was 11 and earned his bachelor’s degree in mathematics 
from Tufts College in Medford, Massachusetts at the age of 14. 
After studying a year of zoology at Harvard University and then a 
year of philosophy at Cornell University, he returned to Harvard 
to complete a Ph.D. in philosophy by 1913, at the age of 18. His 
dissertation in mathematical logic, titled “A Comparison of the 
Algebra of Relatives of Schroeder and of Whitehead and Russell,” 
compared the system of logic developed by Welsh mathemati-
cian Bertrand Russell and English mathematician Alfred North 
Whitehead in their Principia mathematica (Principles of mathemat-
ics) with the earlier algebraic system created by German mathema-
tician Ernst Schroeder.

Supported by a one-year fellowship from Harvard University, 
he traveled to Europe, where he wrote papers on philosophy and 
worked with several leading international mathematicians. At 
England’s Cambridge University he studied the philosophy of math-
ematics with Russell and complex variables and Lebesgue integra-
tion under the direction of Godfrey Hardy. In 1914 he traveled to 
the University of Göttingen, in Germany, where he studied differ-



ential equations with David Hilbert and group theory with Edmund 
Landau. While in England he wrote and published his first paper, 
a brief treatise on set theory titled “On a Method of Rearranging 
the Positive Integers in a Series of Ordinal Numbers Greater Than 
That of Any Given Fundamental Sequence of Omegas,” which 
appeared in 1913 in the journal Messenger of Mathematics. In 1914 
his paper titled “The Highest Good” won a Bowdoin Prize for 
philosophical essays written by Harvard students or graduates and 
was published in the Journal of Philosophy, Psychology, and Scientific 
Methods. Among the 15 papers he published on philosophy and 
logic before focusing his attention on mathematics, Wiener consid-
ered the most significant one to be his 1914 paper “A Simplification 
of the Logic of Relations” that appeared in the Proceedings of the 
Cambridge Philosophical Society. In it he described a method for 
reducing the theory of relations to the theory of classes.

Shortly before the outbreak of World War I, in June 1914, 
Wiener returned to the United States, where he held a variety 
of temporary positions during the next five years. He lectured on 
mathematical logic at Harvard University during the academic year 
1915–16 and was an instructor of mathematics at the University 
of Maine for the following academic year. After graduating from 
Reserve Officer Training School at Harvard, he worked briefly 
in the engineer training program at General Electric Company in 
Lynn, Massachusetts, running steam consumption tests on turbine 
engines, and spent a year as a staff writer for Encyclopedia Americana 
in Albany, New York. In 1918, at the invitation of mathematician 
Oswald Veblin, he joined the ballistics group at the Aberdeen 
Proving Ground in Maryland. There he participated with other 
mathematicians in the calculation of range tables for new army 
artillery and ammunition based on the gun’s angle of elevation, the 
size of the charges, wind speed, air pressure, and other variable fac-
tors. After the end of the war, he worked as a reporter for the Boston 
Herald newspaper, writing stories on the presidential candidacy of 
General Clarence Edwards and the plight of immigrant laborers in 
the textile mills of Lawrence, Massachusetts.

In 1919 Wiener secured a position as an instructor of math-
ematics at the Massachusetts Institute of Technology (MIT). At 
the time of his appointment, the mathematics department was
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primarily a service department that taught courses to prepare stu-
dents for careers in science and engineering. His initial responsibili-
ties were to teach calculus classes to undergraduates 20 hours per 
week. During his 41 years on the faculty, Wiener helped transform 
the mathematics department by engaging in an ambitious program 
of research, developing research collaborations with other depart-
ments at the university, and attracting a large number of capable 
mathematicians. His productive work helped establish MIT’s repu-
tation as one of the country’s leading schools for research in both 
pure and applied mathematics.

Harmonic Analysis
Wiener’s first major research project at MIT involved the math-
ematical analysis of Brownian motion. In 1827 British botanist 
Robert Brown had observed and studied the rapid movements of 
pollen and other organic particles suspended in water. While study-
ing the phenomenon in 1905, German physicist Albert Einstein 
had theorized that water molecules randomly collided with the 
floating particles, causing them to move erratically. By studying 
the collection of paths of individual particles, Wiener showed that 
almost all paths were continuous but nondifferentiable due to their 
sudden changes in direction. In his 1921 paper “The Average of 
an Analytical Functional and the Brownian Movement,” which 
appeared in the Proceedings of the National Academy of Sciences, he 
introduced a technique known as the Wiener measure that produced 
an average for the collection of paths by assigning probabilities to 
the individual paths. He presented a more generalized formulation 
of this method in a 1923 paper, “Differential Space,” that appeared 
in MIT’s Journal of Mathematics and Physics. This highly theoretical 
work remained relatively unnoticed for two decades until Paul Lévy 
in France and Andrei Kolmogorov in Russia used it as the basis for 
the theory of stochastic processes and the modern theory of prob-
ability. The Wiener measure allows researchers to construct math-
ematical models to study the net effect of a large number of tiny 
contributions from mutually independent sources in applications 
such as stock market averages and the transmission of distorted 
electrical signals.



Changing the focus of his research, Wiener investigated a 
fundamental problem in electrostatics: the determination of the 
shapes that permitted electrical conductors to carry a fixed charge 
without spontaneously discharging. His research on this question 
led him to the more general Dirichlet problem, the determination 
of functions that have well-behaved derivatives in a given region 
and that take specified values on its boundary. In his 1923 paper 
“Nets and the Dirichlet Problem” written with MIT mathemat-
ics colleague Henry Bayard Phillips and published in the Journal 
of Mathematics and Physics, he presented some initial results about 
electric fields determined by a rectangular arrangement of conduc-
tors. His 1924 paper “The Dirichlet Problem,” which also appeared 
in the Journal of Mathematics and Physics, resolved many questions 
about spontaneous discharge, presented a fuller treatment of the 
Dirichlet problem, and had a major impact on potential theory, the 
study of electric, magnetic, and gravitational fields. Another 1924 
paper, “Une condition nécessaire et suffisante de possibilité pour 
le problème de Dirichlet” (A necessary and sufficient condition of 
possibility for the Dirichlet problem), that appeared in Comptes ren-
dus de l’Académie des Sciences de Paris (Rendering of the accounts the 
Academy of Sciences of Paris) introduced a test now known as the 
Wiener criterion to determine the points on a conductor at which 
the voltage was discontinuous. In this group of papers he addressed 
the specific question in electrostatics by describing all shapes for 
which unstable charges occurred and provided a larger framework 
for more general questions by establishing a rigorous mathematical 
basis for classical potential theory.

Throughout the decade of the 1920s, Wiener experienced
changes in his personal and professional life, as well as finding 
additional opportunities for collaborative research. In 1924 MIT 
promoted him to the rank of assistant professor. Two years later 
he married Margaret Engemann, an assistant professor of mod-
ern languages at Juniata College in Pennsylvania. Supported by a 
Guggenheim fellowship for the academic year 1926–27, Wiener and
his wife visited England, Germany, Switzerland, Italy, and Denmark.

During their travels he conducted research with mathematicians 
whom he had met on his previous trips to Europe, established 
working relationships with new colleagues, and developed ideas for 
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generalizing the work he had already published. A year after the 
Wieners returned to the United States, their first child, Barbara, 
was born. In 1929 they had another daughter, Peggy, and MIT 
promoted Wiener to the rank of associate professor.

Wiener’s research in the late 1920s focused on mathematical 
techniques for processing electrical signals. Mathematicians and 
engineers used the technique of Fourier analysis to decompose a 
periodic signal that repeated a regular pattern into an infinite sum 
of sine waves. In his 1930 paper “Generalized Harmonic Analysis,” 
which appeared in the journal Acta Mathematica (Mathematical 
activities), he developed a more general technique that extended 
this analysis to nonperiodic signals. In this paper he introduced 
the technique of autocorrelation to measure the average energy 
in a signal over intervals of time. Proving equations such as 

 he devel-

oped a general theory for showing the equivalence of different 
weighted averages of measurable functions and spectral distributions.

This work with generalized harmonic analysis led Wiener to 
develop numerous Tauberian theorems, results about the weighted 
averages of divergent infinite series. His 1932 paper “Tauberian 
Theorems,” published in the Annals of Mathematics, won the 1933 
Bôcher Memorial Prize from the American Mathematical Society 
(AMS) for the quality of work and originality of exposition. Among 
the many results presented in this 100-page paper was an elegant 
proof of the prime number theorem, the important principle of 
number theory stating that the probability of an integer N being 

prime is approximately . His innovative work with gener-

alized harmonic analysis and its consequences for infinite series 
established Wiener’s reputation as an accomplished mathematician. 
In 1932 MIT promoted him to the rank of full professor, and in 
1933 the National Academy of Sciences elected him as a fellow.

This international reputation enabled Wiener to collaborate for 
extended periods of time with mathematicians at foreign institu-
tions and to bring distinguished colleagues to MIT as visiting 



scholars. Through these collaborative efforts, in the early 1930s 
he contributed new results to Fourier analysis, the branch of 
mathematics concerned with expressing a function as an infinite 
sum of sine and cosine waves. He brought Austrian mathemati-
cian Eberhard Hopf to MIT to work on the solutions to integral 
equations that arose in ergodic theory where the average value of a 
function played a central role. Their joint paper “Über eine Klasse 
singulärer Integralgleichungen” (On a singular class of integral 
equations), which appeared in 1931 in Sitzungsberichte Deutsch 
Akademie Wissenschaften zu Berlin, Klasse Mathematisch-Physikalische-
Technische (Conference proceedings of the German Academy of 
Sciences at Berlin, mathematical-physical-technological class), 

introduced the Wiener-Hopf equation  
that became important in Wiener’s later research in the 1940s 
and 1950s. He spent the academic year 1931–32 at Cambridge 
University delivering a series of lectures on his recent work in 
Fourier analysis. In 1933 he published these lectures as the book 
The Fourier Integral and Certain of Its Applications. When he returned 
to MIT the following year, he brought with him Raymond Paley, 
a young English mathematician from Cambridge University. The 
two researchers coauthored the 1934 book Fourier Transforms in 
the Complex Domain, which presented new results about complex-
valued functions.

In the late 1930s Wiener broadened the collection of applica-
tions that he successfully analyzed using techniques of integra-
tion by addressing chaos and ergodic theory. In his 1938 paper 
“The Homogeneous Chaos,” published in the American Journal of 
Mathematics, he generalized the mathematical explanation of ran-
dom motion that he had developed to describe Brownian motion 
and applied his broader techniques to other situations involving the 
nonlinear, random movement of particles such as air turbulence, 
fluid flows, and noise in the transmission of an electrical signal. His 
1939 paper “The Ergodic Theorem,” which appeared in the Duke 
Mathematical Journal, reproved and extended the ergodic theorem 
about the random but well-behaved motion of particles. In the fol-
lowing decades physicists built on his ideas to develop theories in 
quantum mechanics.
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Research during the War Years
As World War II approached, in the late 1930s Wiener became 
involved with several programs to aid in the war effort. He worked 
with the Emergency Committee in Aid of Displaced Foreign 
Scholars to secure housing accommodations and visiting appoint-
ments at U.S. universities for European mathematicians and scien-
tists who were fleeing their homelands. In 1940 he joined the War 
Preparedness Committee that had been jointly established by the 
AMS and the Mathematical Association of America to organize 
mathematicians to work on applications with potential military 
uses.

Working for the government’s Office of Scientific Research 
and Development (OSRD), Wiener sketched out the preliminary 
design of a computer capable of mechanically solving differential 
equations. Rather than modify existing calculating machines that 
represented numbers in decimal notation as sums of powers of 10, 
he envisioned a binary, or base-two, machine that would represent 
numerical values as sums of powers of two, a notation in which 

1101.101 would indicate 23 + 22 + 20 + 2-1 + 2-3 = 8 + 4 + 1 +  = 

13.625. He planned to store data on magnetic tapes and to employ 
a Monte Carlo method to solve differential equations by averaging 
the results determined by large sets of random data. Although his 
supervisor rejected his preliminary report, Wiener’s visionary ideas 
of binary representation, magnetic tape storage, and Monte Carlo 
algorithms became standard features of multipurpose digital com-
puters in subsequent decades.

Later in 1940 Wiener secured a grant from OSRD to develop 
a more effective fire-control apparatus for anti-aircraft guns. As 
part of their solution of the problem, his research team developed 
two algorithms that were extensions of his previous work on the 
Wiener-Hopf equation. They devised a filtering technique to mini-
mize the error in the radar signal used to track the path of a targeted 
aircraft by separating the actual message from the distorting noise. 
They also created an extrapolation algorithm to statistically predict 
where a targeted plane would likely fly in the next 20 seconds based 
on its path in the previous 10 seconds. Wiener’s most innovative 



contribution to the solution of the problem was to treat the human 
operator of a gun as a component in the tracking and firing process. 
His team developed a hybrid control process that combined input 
from the operator with the results of the mechanized filtering and 
extrapolation algorithms.

Wiener amplified his ideas on negative feedback loops and 
human-machine interaction in a 1942 classified report titled 
Extrapolation, Interpolation and Smoothing of Stationary Time Series 
with Engineering Applications. Nicknamed the “Yellow Peril” for the 
color of its cover and the difficulty of the subject matter, this hand-
book was widely used during the later stages of the war by designers 
of systems to control the aiming and firing of antiaircraft guns. In 
1949 he produced an amplified version of the book that addressed 
industrial applications and influenced the design of automated 
control systems and electrical communication equipment. The sta-
tistical treatment of prediction theory and communication theory 
described in this book led to a general statistical point of view in 
communication engineering that has been gradually adopted in 
meteorology, sociology, and economics.

At the end of the war Wiener publicly voiced his strong opin-
ions on social issues. After the U.S. government decided to drop 
atomic bombs on two Japanese cities in 1945, he became a vocal 
opponent of military conflict and declined to participate in con-
ferences and research projects that had potential military applica-
tions. He expressed his opposition to war and to the development 
of weapons of destruction in two letters: “A Scientist Rebels,” 
which appeared in 1947 in the Atlantic Monthly magazine, and “A 
Rebellious Scientist after Two Years,” which was published in 1948 
in the Bulletin of Atomic Scientists. He cautioned his mathemati-
cal and scientific colleagues to consider the moral implications of 
their research and its impact on society. He also considered the 
consequences of computer-controlled machinery and the advent 
of automatic factories in which human workers would be regi-
mented or eliminated. In a 1949 presentation to the Society for 
the Advancement of Management and a 1952 talk to the American 
Society of Mechanical Engineers, he discussed the advantages and 
risks of automation and encouraged the members of these groups to 
ensure that displaced workers became trained for thoughtful work 
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as troubleshooters, skilled craftsworkers, and programming special-
ists. His 1950 book, The Human Use of Human Beings, stressed the 
social implications of embracing a highly mechanized society.

Cybernetics
The interaction between humans and machines and the analysis 
of the human body as a machine became the focus of Wiener’s 
research from the mid-1940s to the end of his career 20 years later. 
With Mexican physiologist Arturo Rosenblueth, he used a statistical 
theory of time series analysis to model the electrical signals carried 
in human brain waves. Using MIT’s autocorrelation machine and 
collaborating with researchers at Massachusetts General Hospital, 
Wiener and Rosenblueth determined that the flow of electrical 
impulses from nerve to nerve was similar to the discrete process of 
electrical current in computer circuits. They explained their work 
in many articles, including the 1946 paper “The Mathematical 
Formulation of the Problem of Conduction of Impulses in a 
Network of Connected Excitable Elements, Specifically in Cardiac 
Muscle” that appeared in Archivos del Instituto de Cardiología de 
México (Archives of the Mexican Institute of Cardiology).

Wiener concentrated his research on the methods used by the 
human machine to communicate and to control its own function-
ing. He worked to develop an interactive iron lung that would allow 
signals from patients’ nervous systems to influence the operation of 
the artificial breathing device as their muscles learned to breathe 
again. His 1949 paper “Sound Communication with the Deaf,” 
published in the journal Philosophy of Science, explored possible ways 
to convey sound impulses to the hearing impaired through patterns 
of pressure applied to the skin. In his 1951 paper “Problems of 
Sensory Prosthesis,” which appeared in the Bulletin of the American 
Mathematical Society, he discussed methods that would allow patients 
to manipulate mentally artificial limbs. He investigated homeostatic 
processes such as blood pressure, body temperature, and balance in 
which the human body maintains a measure of equilibrium through 
semiautomatic systems of negative feedback that enable it to react to 
deviations from the norm. He published his findings on this subject 
in a 1951 paper, “Homeostasis in the Individual and Society,” that 



appeared in the Journal of the Franklin Institute and a 1953 paper, 
“The Concept of Homeostasis in Medicine,” that appeared in the 
Transactions and Studies of the College of Physicians of Philadelphia.

These individual projects were part of Wiener’s larger research 
program on systems of control, communications, and organization. 
He introduced the word cybernetics, from the Greek word kubernētēs, 
meaning “steersman,” to describe this new field of study. His 
approach involved creating a mathematical framework to express 
the interdependence between various components in a structure, 
system, or organization. He contended that since most systems 
functioned on partial or imprecise information, statistical methods 
had to play central roles in the interplay between information theo-
ry, prediction theory, and communication theory. Despite its heav-
ily mathematical explanations, his 1948 book, Cybernetics, or Control 
and Communication in the Animal and the Machine, became a best-
seller and introduced the terms feedback, stability, homeostasis, predic-
tion, and filtering into common usage. The prevalence of nonlinear 
methods in the mathematical foundation of cybernetics led Wiener 
to write his 1958 book, Nonlinear Problems in Random Theory. These 
books and his significant contributions to the establishment of the 
field earned Wiener the title “Father of Cybernetics.”

Wiener’s work in cybernetics generated interest and recognition 
throughout the international scientific community. In 1949 the 
AMS selected him to deliver a talk on prostheses for the prestigious 
Joshua Gibbs lecture at their annual meeting. As a Fulbright fellow 
in 1950–51, he lectured about cybernetics in Britain, Spain, France, 
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and Mexico. In subsequent years he traveled to India, Japan, and 
China, sharing with scientists and mathematicians his work on 
mathematical explanations of the functioning of the human body 
and on his analysis of human-machine interaction.

In his later years Wiener wrote an increasing number of works 
for nontechnical audiences. He wrote two short stories, titled “The 
Brain” and “Miracle of the Broom Closet,” that appeared in two 
1952 issues of Technology and Engineering News. In his two-part 
autobiography, Ex-Prodigy. My Childhood and Youth, published in 
1953, and I Am a Mathematician. The Later Life of a Prodigy, which 
appeared three years later, he reflected on his life as a mathemati-
cian and his relationships with his professional colleagues. After 
he retired from MIT in 1959, he wrote a novel titled The Tempter 
about an idealistic scientist and tried to interest film director 
Orson Welles in developing the story into a movie. He contin-
ued to expound on moral and social themes, publishing the 1960 
paper “Some Moral and Technical Consequences of Automation” 
in Science and the 1964 book God and Golem, Inc.: A Comment on 
Certain Points Where Cybernetics Impinges on Religion. He died in 
Stockholm, Sweden, after suffering a heart attack, on March 18, 
1964, two months after President Lyndon Johnson had awarded 
him the National Medal of Science.

After Wiener’s death several organizations made efforts to honor 
his lifetime of work. The AMS paid tribute to him by printing a 
special issue of their Bulletin in 1966 that described his contribu-
tions to eight areas of mathematics and science. In 1967 the mathe-
matics department at MIT, the AMS, and the Society for Industrial 
and Applied Mathematics established the Norbert Wiener Prize in 
Applied Mathematics, a $5,000 prize awarded every three years for 
an outstanding contribution to the field of applied mathematics. 
The Computer Professionals for Social Responsibility instituted 
the annual Norbert Wiener Award for Social and Professional 
Responsibility in 1987 to recognize computer professionals for 
socially responsible uses of computers.

Conclusion
In his lengthy professional career Norbert Wiener published more 
than 200 books and papers that developed applications of math-



ematics to problems that could be stated in physical terms. His 
research on Brownian motion and his development of the Wiener 
measure led to advances in probability and stochastic processes. In 
the area of harmonic analysis and Tauberian theorems, he devel-
oped techniques to investigate nonperiodic phenomena. His work 
with control systems for antiaircraft guns, human brain waves, and 
human-machine interaction led to the founding of cybernetics.
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John von Neumann developed the
theory of von Neumann algebras,
established game theory as a rigorous 
branch of mathematics, popularized the
von Neumann architecture for computers,
and helped to develop nuclear weapons. 
(The Granger Collection)
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Mathematics for Science and 
Technology

After establishing his reputation as an accomplished pure math-
ematician, John von Neumann (pronounced von NOY-man) made 
significant contributions to several branches of science and technol-
ogy. Early in his career he introduced a new definition of ordinal 
numbers in set theory, developed the theory of von Neumann alge-
bras, established game theory as a rigorous branch of mathematics, 
and introduced a new axiomatic basis for quantum mechanics. In the 
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latter half of his career he developed the von Neumann architecture 
for computers, applied the concepts of game theory to economics, 
introduced new computer algorithms for numerical analysis, helped 
to develop nuclear weapons, and used cellular automata to model 
the reproduction of biological organisms.

Early Research in Set Theory
János Lajos Neumann was born on December 28, 1903, in Budapest, 
Hungary. He was the oldest of three sons of Max Neumann, a pros-
perous banker, and Margit Kann, the daughter of a prominent busi-
nessman. In 1913 his father purchased a title of nobility and formally 
changed the family name to Neumann von Margitta. János, who 
was nicknamed Jancsi as a child, later anglicized his name to John 
von Neumann. As a child he learned to speak Hungarian, English, 
German, and French and to read Latin and Greek. At the age of 
six he could divide eight-digit numbers in his head. He entertained 
family visitors by reciting names, addresses, and phone numbers 
that he had memorized from the telephone directory.

Von Neumann was educated at home by tutors until the age 
of 10, when he entered Lutheran Gymnasium, a private elemen-
tary and secondary school in Budapest. Recognizing that he had 
already mastered most of the standard mathematics curriculum, the 
school’s administrators arranged for him to be tutored by profes-
sors from the University of Budapest. At the age of 17 he coau-
thored an original research paper with Michael Fekete, one of his 
tutors from the university. The article, titled “Über die Lage der 
Nullstellen gewisser Minimumpolynome” (On the location of the 
zero sets of certain minimum polynomials) and published in 1922 in 
Jahresbericht der Deutsche Mathematiker-Vereinigung (Annual report 
of the Association of German Mathematicians) generalized a theo-
rem about the roots of a particular class of polynomial functions.

When von Neumann completed his studies at the gymnasium 
in 1921, he enrolled as a mathematics student at the University 
of Budapest and as a chemistry major at the University of Berlin 
in Germany. He attended classes in Berlin, traveling to Budapest 
only at the end of each semester to take his final examinations. 
In 1923 the Hungarian journal Acta Universitatis Szegediensis 



(Activities at the University of Szeged) published his paper “Zur 
Einfuhrung der transfiniten Ordnungszahlen” (On the introduction 
of the transfinite ordinal numbers) in which he gave a definition 
of ordinal numbers that improved on the original formulation of 
the concept, introduced 50 years earlier by Russian mathematician 
Georg Cantor. After two years of study in Berlin, he transferred 
to Eidgenössische Technische Hochschule (Federal Institute of 
Technology) in Zurich, Switzerland, where he earned his diploma 
in chemical engineering in 1925. He received a Ph.D. in mathemat-
ics from the University of Budapest the following year, submitting 
a doctoral dissertation titled “Az áltálanos Halmazelmélet axiomati-
kus felépitése” (An axiomatic construction of universal set theory) 
in which he proposed a new set of axioms for set theory.

Von Neumann received a Rockefeller Fellowship for the aca-
demic year 1926–27, enabling him to continue his research in 
set theory with German mathematician David Hilbert at the 
University of Göttingen in Germany. He lectured in mathematics 
as a Privatdozent (assistant professor) at the University of Berlin 
from 1926 to 1929 and at the University of Hamburg the following 
year. He participated in Hilbert’s program to prove that mathemat-
ical theory was free from contradiction and to establish a rigorous 
axiomatic foundation from which all mathematical results could 
be proven. In his 1927 paper “Zur Hilbertschen Beweistheorie” 
(On the Hilbert theory of proof ) that appeared in Mathematische 
Zeitschrift (Mathematical reviews), he showed that the collection 
of mathematical results that could be obtained using finitely many 
logical steps formed a consistent subsystem of mathematics. His 
1928 paper “Die Axiomatisierung der Mengenlehre” (The axiomat-
ization of set theory), which was also published in Mathematische 
Zeitschrift, expanded on his doctoral dissertation. In this work he 
presented a concise list of axioms and demonstrated how most of 
set theory could be derived from them. In 1931 Austro-Hungarian 
logician Kurt Gödel rendered the goals of the Hilbert program 
impossible when he proved the incompleteness theorem, the prin-
ciple that every axiomatic mathematical system included proposi-
tions that could neither be proved nor disproved. Before leaving the 
discipline of set theory, von Neumann proved additional theorems 
about decompositions of intervals of real numbers, solvable groups, 
Haar measure, and linear topological spaces.
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Quantum Theory
Von Neumann extended his work with axiomatic systems, mak-
ing fundamental contributions to the new discipline of quantum 
theory, the branch of mathematical physics concerned with the 
study of subatomic particles. In a series of papers that he wrote 
between 1927 and 1929, he developed the mathematical framework 
of quantum mechanics by applying the techniques of Hermitian 
operators on infinite dimensional Hilbert spaces. Within this 
mathematical structure he presented a finite set of axioms that 
unified both the wave and particle theories of quantum mechan-
ics. His influential papers on the subject included the 1927 paper 
“Über die Grundlagen der Quantenmechanik” (On the founda-
tions of quantum mechanics), published in Mathematische Annalen 
(Annals of mathematics), that he coauthored with Hilbert and 
German physicist Lothar Nordheim; a pair of 1928 papers written 
with Hungarian physicist Eugene Wigner titled “Zur Erklärung 
einiger Eigenschaften der Spektren aus der Quantenmechanik 
des Drehelektrons, I, II” (On a united explanation of the spectral 
properties for the quantum mechanics of rotating electrons, I, 
II), which appeared in Zeitschrift fur Physik (Reviews of physics); 
and a 1929 paper from Mathematische Annalen titled “Allgemeine 
Eigenwerttheorie Hermitescher Funcktionaloperatoren” (General 
theory of eigenvalues for Hermitian functional operators).

In his 1932 book Mathematische Grundlagen der Quantenmechanik 
(Mathematical Foundations of Quantum Mechanics), von Neumann 
presented a comprehensive summary of his axiomatic formulation of 
quantum physics. He devoted two chapters of the book to an analysis 
of the question of causality versus indeterminacy, concluding that 
the introduction of hidden parameters in an attempt to explain com-
pletely events was inconsistent with the basic structure of quantum 
theory. The work made contributions to the theory of quantum 
measurement by discussing how the process of observation inter-
fered with the measurement of the phenomenon being studied. The 
book also included a discussion of the weak ergodic theorem about 
the statistical distribution of particles that he had proven earlier in 
the year in his paper “Proof of the Quasi-Ergodic Hypothesis,” pub-
lished in the Proceedings of the National Academy of Sciences.



By the time his book on quantum mechanics appeared, von 
Neumann enjoyed an international reputation as a mathematician 
and had relocated to America. In 1929 he married Marietta Koevesi, 
an economics student at the University of Budapest. The follow-
ing year they moved to the United States, where he accepted an 
appointment as a visiting professor at Princeton University, in New 
Jersey. He remained at the university until 1933, when he joined 
the newly founded Institute for Advanced Studies in Princeton as 
one of the six original mathematics professors, along with James 
Alexander, Albert Einstein, Marston Morse, Oswald Veblen, and 
Hermann Weyl. In 1933 he also became coeditor of the journals 
Annals of Mathematics and Compositio Mathematica (Compilation 
of mathematics). His only child, Marina, was born in 1936. After 
divorcing his first wife in 1937, he traveled to Poland to marry his 
second wife, Klára Dán, who later became one of the first computer 
programmers.

Game Theory
One of von Neumann’s research areas in the 1930s was game 
theory, the mathematical study of competition and cooperation. In 
the 1920s he had studied two-person zero-sum games in which two 
competing participants made choices that resulted in a payoff for 
one player and a penalty of equal magnitude for the other. In his 
1928 article “Zur Theorie der Gesellschaftsspiele” (On the theory 
of games of strategy), published in Mathematische Annalen, he had 
proven the minimax principle that in any two-person zero-sum 
game, each player had one optimal strategy. This paper also pro-
vided a formal definition of a game among n players, formalizing 
ideas that had been introduced in 1921 by French mathematician 
Émile Borel and establishing a rigorous mathematical basis for 
game theory.

In his 1937 paper “Über ein okönomisches Gleichungssystem 
und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes” 
(On a model of general economic equilibrium and an application of 
the Brouwer fixed point theorem), which appeared in the Austrian 
monograph Ergebnisse eines mathematischen Kolloquium 1935–36 
(Outcome of a mathematical colloquium, 1935–36), he applied the 

John von Neumann  87



88  Modern Mathematics

theoretical concepts of game theory to the discipline of economics. 
This influential paper introduced a variety of quantitative tech-
niques to explain mathematically economic phenomena, including 
price-cost and demand-supply inequalities, activity analysis pro-
duction sets, steady-state growth, saddlepoint characterizations, 
and complementary slackness conditions. Using the Brouwer fixed 
point theorem from topology and other results from geometry, von 
Neumann proved that good strategies existed under very general 
conditions. With mathematical models he showed that the rate of 
interest is related to the rate of growth rather than the quantity of 
capital in an economy. Economists use the term the von Neumann 
revolution to describe the collection of changes this paper brought 
to the economic study of equilibrium, growth, and capital.

In 1944 von Neumann coauthored the Theory of Games and 
Economic Behavior with German economist Oskar Morgenstern. 
This book provided an axiomatic basis for the theories of util-
ity and choice under uncertainty that modeled the behavior of an 
economic player who must select a strategy with only probabilistic 
knowledge of the value of the available options. Von Neumann 
and Morgenstern broadly applied the concepts of game theory to 
situations involving coalitions in which economic players cooperate 
with one another, monopolies in which there is no competition, 
and free trade among multiple participants. This seminal work in 
mathematical economics significantly influenced the international 
practice of economic theory.

Von Neumann maintained his interest in this branch of math-
ematics, continuing to write on various topics within game theory 
throughout his career. In 1953 he coauthored two chapters for the 
book Contributions to Theory of Games, Volume I. In “Solutions of 
Games by Differential Equations,” he and American mathemati-
cian George W. Brown used the continuous techniques of analysis 
to solve game theory problems that were stated discretely. The 
chapter “Two Variants of Poker” that he wrote with his doctoral 
students Donald B. Gillies and John P. Mayberry demonstrated 
the applicability of game theory to a situation that combined both 
chance and strategy. His 1954 paper “A Numerical Method to 
Determine Optimum Strategy,” which appeared in Naval Research 
Logistics Quarterly, presented computer-based solutions that he had 
helped to develop and implement for military applications.



Operator Theory
Nearly one-third of von Neumann’s published works dealt with 
the branch of algebra known as operator theory. In his research on 
quantum mechanics he had introduced new ideas in the study of 
infinite dimensional Hilbert spaces that led to the reformulation of 
the theory of bounded and unbounded symmetric operators. His 
1929 article “Zur Theorie der unbeschränkten Matrizen” (On the 
theory of unbounded matrices), published in Journal fur reine und 
angewandte Mathematik (Journal of pure and applied mathematics), 
and his 1931 paper “Über Funcktionen von Funcktionaloperatoren” 
(On functions of functional operators), which appeared in Annals of 
Mathematics, were two of a number of papers in which he more fully 
developed the properties of functions that manipulated vectors.

In his 1929 paper “Zur Algebra der Funcktionaloperatoren 
und Theorie der normalen Operatoren” (On the algebra of func-
tional operators and the theory of normal operators), appearing 
in Mathematische Annalen, von Neumann introduced the concept 
of a ring of operators that later became known as a von Neumann 
algebra. With American mathematician Francis Murray he wrote a 
series of four papers titled “On Rings of Operators, I, II, III, IV,” 
which appeared in Annals of Mathematics between 1936 and 1943. 
These articles explained how to decompose von Neumann algebras 
into sums of fundamental structures known as factors and to clas-
sify them into five different types. Functional analysts continue to 
regard highly this set of papers for its thorough development and 
elegant resolution of an unexpected set of properties.

Atomic Weapons and Nuclear Energy
As the United States prepared to enter World War II in the early 
1940s, von Neumann changed the primary focus of his research 
from pure to applied mathematics. Having become a naturalized 
American citizen in 1937, he frequently worked as a scientist and 
a consultant for military and governmental organizations. He was 
a member of the Scientific Advisory Committee to the Ballistics 
Research Laboratories at Aberdeen Proving Ground in Maryland 
from 1940 to 1957, worked for the Naval Bureau of Ordnance in 
Washington, D.C., from 1943 to 1955, and served as a consultant 
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to the Naval Ordnance Laboratory in Silver Spring, Maryland, 
from 1947 to 1955. Initially his responsibilities with all three orga-
nizations involved the computation of ballistics tables that indicated 
the distance an artillery weapon would fire its shell based on the 
gun’s angle of elevation, the size of the charge, the wind speed, the 
air pressure, and other variable factors. In later years he partici-
pated in the design of computer hardware and the development of 
numerical techniques for solving additional problems with military 
applications.

In 1943 von Neumann became a consultant to the Los Alamos 
Scientific Laboratory where the government had assembled a 
large group of scientists to develop atomic weapons as part of the 
Manhattan Project. Von Neumann analyzed the constraints of 
spherical geometry that impacted the initial implosion required to 
create a sufficient amount of fissionable material in a coordinated 
manner. Borrowing time on several early computer systems, he 
devised and ran programs to analyze the hydrodynamics of shock 
waves and deterioration waves that would be created by such an 
explosion. He reported his research finding in internal docu-
ments such as the 1942 report “Theory of Detonation Waves,” the 
1944 report “Surface Water Waves Excited by an Underground 
Explosion,” and the 1945 report “Refraction, Intersection and 
Reflection of Shock Waves.” In July 1946, after atomic bombs were 
dropped on the Japanese cities of Hiroshima and Nagasaki, he was 
among the observers of the tests of nuclear bombs at the Bikini 
Atoll off the Marshall Islands in the Pacific Ocean. The following 
year he was awarded the Presidential Medal of Merit and the U.S. 
Navy’s Distinguished Civilian Award in recognition of his work for 
the military during the war.

During the next five years von Neumann played a key role in the 
development of a new generation of bombs based on the principle 
of nuclear fusion. In “Los Alamos Scientific Laboratory Report LA-
575,” an internal technical report submitted in June 1946, he and 
Hungarian-born scientist Edward Teller recommended the devel-
opment of a superbomb 1,000 times as powerful as the first atomic 
bomb. As a member of the U.S. Armed Forces Special Weapons 
Project from 1950 to 1955, a member of the U.S. Air Force’s 
Scientific Advisory Board from 1951 to 1957, a member of the 



General Advisory Committee to the Atomic Energy Commission 
from 1952 to 1954, and a consultant to the Los Alamos Scientific 
Laboratory from 1943 to 1955, von Neumann participated in both 
the scientific and political developments that led to the detonation 
of the first hydrogen bomb in November 1952.

Serving as chairman of the Advisory Committee on Guided 
Missiles from 1954 to 1957, a group that became known as the Von 
Neumann Committee, he helped to develop long-range missiles to 
deliver nuclear bombs to their targets. As a consultant to Oak Ridge 
National Laboratory in Tennessee from 1949 to 1954, a member 
of the Technical Advisory Panel on Atomic Energy from 1953 
to 1957, and a member of the Atomic Energy Commission from 
1954 to 1957, he also investigated the peacetime uses of atomic 
energy. He presented his ideas on aspects of the nuclear age in 
three articles from 1955: “Can We Survive Technology?” which 
appeared in Fortune magazine; “Defense in Atomic War,” published 
in The Scientific Basis of Weapons; and “Impact of Atomic Energy on 
the Physical and Chemical Sciences,” which appeared in Technical 
Review. In 1956, in recognition of his work on the development of 
nuclear weapons and atomic energy, he was awarded the Presidential 
Medal of Freedom, the Albert Einstein Commemorative Award, 
and the Enrico Fermi Award.

Computer Architecture and Numerical 
Analysis
During the 1940s and 1950s von Neumann made significant 
contributions to the design of computer hardware and the devel-
opment of numerical algorithms for solving problems using com-
puter programs. In 1944 he joined American computer pioneers 
J. Presper Eckert and John Mauchly and a group of researchers 
at the University of Pennsylvania’s Moore School to work on the 
Electronic Numerical Integrator and Calculator (ENIAC), the 
first general-purpose electronic, digital computer. With Eckert 
and Mauchly he helped plan the Electronic Discrete Variable 
Automatic Computer (EDVAC), which incorporated several inno-
vative design ideas. In 1945 von Neumann issued an internal docu-
ment titled “First Draft of a Report on the EDVAC” that provided 
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an outline of the components and the functioning of the proposed 
machine. This preliminary report introduced the concept of elec-
tronically storing a program of instructions in the computer’s 
memory and allowing the computer to step through the execution 
of the program’s commands without any intervention from its 
human operators. Although Eckert and Mauchly originated most of 
the concepts, the organizational structure presented in this report 
became known as von Neumann architecture. This architecture, 
consisting of five separate units for computation, logical control, 
memory, input, and output as well as the stored program concept, 
continues to be the basic design used in most nonparallel comput-
ers. Von Neumann and American mathematician and computer 
scientist Hermann Goldstine further elaborated on these design 
ideas in 1946 in an unpublished but widely circulated paper titled 
“The Principles of Large Scale Computing Machines.”

Late in 1945 von Neumann severed his association with Eckert 
and Mauchly and initiated a project to build a computer at the 

Most nonparallel computers are organized according to von Neumann archi-
tecture with five separate units for computation, logical control, input, output, 
and a memory in which both the program and the data are stored.



Institute for Advanced Studies (IAS). Completed in 1952 the IAS 
computer implemented all the design concepts of the von Neumann 
architecture and was used for experimental scientific research. As 
chairman of the National Research Council’s Committee on High-
Speed Computing (CHSC) from 1946 to 1952, he freely shared 
the details of the computer’s design. Between 1952 and 1955, 17 
laboratories around the world built copies of the IAS machine, 
including the RAND Corporation’s JOHNNIAC computer, which 
was named after von Neumann.

In addition to his pioneering work with computer hardware, von 
Neumann developed innovative algorithms for performing numeri-
cal analysis on computers. In 1945 he introduced the merge sort 
algorithm in which the first and second halves of an array are each 
sorted recursively and then merged together. He devised methods 
of programming a computer to find eigenvalues, extreme values of 
functions of several variables, inverses of matrices, and the solutions 
of nonlinear partial differential equations. He developed general 
principles for stability analysis to ensure that the solutions gener-
ated by computers were not rendered unreliable by the propagation 
of errors due to the rounding off of numerical values and the use of 
approximation techniques.

Von Neumann’s research on numerical techniques made sig-
nificant contributions to the development of Monte Carlo meth-
ods, algorithms that use random statistical samples to generate 
approximate numerical solutions. In the paper that he presented 
at the 1949 Symposium on the Monte Carlo Method, “Various 
Techniques Used in Connection with Random Digits,” he intro-
duced the mid-square method for producing pseudo-random 
numbers. This method generates a sequence of eight-digit integers 
by squaring each entry and selecting the eight middle digits of the 
result as the next entry in the sequence. As reported in their 1950 
paper “Statistical Statement of Values of First 2,000 Decimal Digits 
of e and π Calculated on the ENIAC,” published in the CHSC’s 
journal Mathematical Tables and Other Aids to Computation, von 
Neumann, Greek-American mathematician Nicholas Metropolis, 
and German-American computer scientist George W. Reitwiesner 
determined that the digits of π that they examined were randomly 
distributed, but the digits of e deviated significantly from a random
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pattern. In the 1955 article “Continued Fraction Expansion of    ,”
which appeared in the same journal, von Neumann and American 
mathematician Bryant Tuckerman implemented the technique of 
continued fractions in a computer program to generate 2,000 par-

tial quotients of the quantity  and to analyze the randomness of 

the results. Von Neumann’s work in numerical analysis encouraged 
other researchers to use computers to conduct empirical and theo-
retical investigations of random numbers and led to the wide use of 
Monte Carlo algorithms.

Automata Theory
Paralleling his work on the design of computer hardware, von 
Neumann developed an interest in the methods by which living 
organisms transfer and process information. He started by studying 
cellular automata, collections of cells on a grid whose evolution in 
iterative time steps is determined by the states of neighboring cells 
through a fixed set of rules. In 1946 he developed a self-replicating 
automaton and later experimented with automata that produced 
increasingly complex descendants. These unpublished projects cul-
minated in his discovery of a universal constructor, an automaton 
that could encode both the information about its own structure 
and the method for replicating itself. He also used automata theory 
to investigate the possibility of designing reliable machines using 
unreliable components.

Von Neumann’s earliest publication on the subject of automata 
was the 1951 paper “The General and Logical Theory of Automata,” 
appearing in the monograph Cerebral Mechanisms in Behavior. This 
paper elaborated on the lecture “The Logic of Analogue Nets and 
Automata” that he had delivered at the Hixon Symposium in 1948 
in Pasadena, California. When he died in 1957 von Neumann left 
two unfinished works on automata theory. In 1956 he had deliv-
ered the Silliman Lectures series at Yale University on the parallels 
between the workings of the human brain and digital computers. 
His unfinished summary of these lectures was published in 1958 
as a book titled The Computer and the Brain. In 1966 his colleague 
Arthur Burks completed his draft manuscript on automata theory 



and published the book Theory of Self-Reproducing Automata, which 
detailed the concept of a universal constructor.

Throughout his career von Neumann received many honors in 
recognition of his diverse achievements. His two-part paper “Almost 
Periodic Functions and Groups,” published in 1934 and 1935 in 
the Transactions of the American Mathematical Society, earned him 
the 1938 Bôcher Memorial Prize of the American Mathematical 
Society (AMS). The year before the AMS had selected him as the 
Colloquium lecturer at their annual national conference in 1937 and 
then in 1944 the AMS chose him as its Gibbs Lecturer. He later 
served as president of the AMS, from 1951 to 1952. In addition, 
seven national academies in Italy, Peru, the Netherlands, and the 
United States elected him to membership. On February 8, 1957, 
after a painful two-year battle with cancer that confined him to a 
wheelchair and then to a hospital bed, he died in Washington, D.C., 
at the age of 53.

Several organizations have established lasting tributes to von 
Neumann in recognition of his contributions to management 
science and computer technology. The Institute for Operations 
Research and Management Science annually awards the John von 
Neumann Theory Prize to an individual who has made funda-
mental and sustained contributions to the theories of operations 
research and the management sciences. In 1990 the Institute of 
Electrical and Electronics Engineers established the John von 
Neumann Medal as an annual award to recognize outstanding 
achievements in the field of computer technology. In 2005 the 
United States Post Office issued a commemorative stamp honoring 
him as an influential American scientist.

Conclusion
In an era when knowledge was becoming increasingly specialized, 
von Neumann contributed important and original ideas to many 
branches of mathematics, science, and technology. Physicists rec-
ognize his contributions to the establishment of an axiomatic basis 
for quantum mechanics. Economists appreciate his applications of 
game theory to their social science discipline. In computer technol-
ogy the von Neumann architecture is recognized as the dominant
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model for the design of digital computers. Military leaders acknowl-
edge his contributions to the development of atomic and nuclear 
weapons. Biological researchers have continued to develop his sem-
inal ideas on self-replicating automata. Within the field of math-
ematics, von Neumann algebras continue to influence the study of 
operator theory. Because his research impacted so many disciplines 
John von Neumann is one of the most well-known mathematicians 
of the 20th century.
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Computer Software Innovator

Grace Murray Hopper left her position as a college mathematics 
professor to become one of the first programmers of the Mark I 
computer. She wrote the first compiler program to enable comput-
ers to assemble blocks of code from stored collections of routines. 
Her FLOW-MATIC software that used commands written in 
English became the basis for the widely-used COBOL program-
ming language. Through her work for the United States Navy, her 
contacts with industry leaders, her publications, and her frequent 

8

Navy commander Grace Murray 
Hopper programmed the Mark I
computer, wrote the first compiler 
program, and formulated the
essential ideas of the COBOL
programming language. (Bettmann/
CORBIS)

Grace Murray Hopper
(1906–1992)
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conference presentations, she influenced the development and stan-
dardization of software for automated data processing. She helped 
to popularize the terms computer bug and debugging a computer 
program.

Early Life and Education
Grace Brewster Murray was born on December 9, 1906, in New 
York City. She was the oldest child of Walter Fletcher Murray, 
an insurance broker, and Mary Campbell Van Horne, the daugh-
ter of a civil engineer. An inquisitive child, she enjoyed building 
mechanical toys with a metal construction set and one day disas-
sembled seven alarm clocks to examine their internal components. 
Her mother’s love of mathematics and her father’s determination 
to remain productive and self-sufficient despite a physical handicap 
influenced her outlook on life. Her parents ensured that Grace, her 
sister, Mary, and her brother, Roger, were well educated. Grace 
graduated from the Graham School and Schoonmakers School, two 
private institutions for girls in New York City, and spent a college 
preparatory year at Hartridge School in Plainfield, New Jersey. In 
addition to studying mathematics and science, she enjoyed partici-
pating in sports, playing music, and acting.

In 1924 Murray entered Vassar College in Poughkeepsie, New 
York, as a mathematics and physics major. In addition to complet-
ing her required coursework in the arts and sciences, she tutored 
students in physics and audited classes in botany, physiology, 
geology, business, and economics. During her senior year she was 
inducted into Phi Beta Kappa, the oldest collegiate honor soci-
ety in the United States. When she graduated with a bachelor’s 
degree in mathematics and physics in 1928 she earned a Vassar 
College Fellowship to attend Yale University in New Haven, 
Connecticut. Two years later she received her master’s degree in 
mathematics from Yale. In June 1930 she married Vincent Foster 
Hopper, an English instructor at New York University’s School of 
Commerce.

In 1931 Grace Murray Hopper accepted a position as a math-
ematics instructor at Vassar College for the modest salary of $800 
per year. She taught courses in algebra, geometry, trigonometry, 



calculus, probability, statistics, analysis, and mechanical drawing. 
While teaching at Vassar she continued her graduate coursework 
and mathematical research at Yale, earning a Ph.D. in mathematics 
in 1934. Under the direction of algebraist Øystein Ore, she wrote 
a doctoral dissertation titled “New Types of Irreducibility Criteria” 
that investigated conditions under which a polynomial could be 
written as the product of two simpler polynomials. Her dissertation 
earned her induction into Sigma Xi, the international scientific 
research honor society, and a promotion to the rank of associate 
professor. In 1936 the American Mathematical Monthly published 
her paper “The Ungenerated Seven as an Index to Pythagorean 
Number Theory.” After 10 years of teaching, she spent the aca-
demic year 1941–42 taking advanced courses and conducting addi-
tional research as a Vassar Faculty Fellow at the Courant Institute 
of New York University.

Programming and Debugging the Mark 
Series of Computers
When the United States entered World War II in December 1943, 
Hopper attempted to enlist in the U.S. Navy. At 36 years of age, 
standing five feet six inches tall and weighing 105 pounds, the navy 
rejected her as overage and underweight. The navy further advised 
her that they were unwilling to approve her application because 
they considered her work as a mathematics professor to be crucial 
to the war effort. Hopper took a leave of absence from her teaching 
duties at Vassar and convinced a recruiter to accept her into the 
Women Accepted for Voluntary Emergency Service (WAVES), 
the women’s branch of the U.S. Naval Reserve. At the end of 
June 1944, she graduated first in her class from the United States 
Naval Reserve Midshipman’s School for Women in Northampton, 
Massachusetts, and was commissioned a lieutenant junior grade. 
Five days later she reported for duty under the direction of Howard 
Aiken at the Bureau of Ordnance Computation Project at Harvard 
University in Cambridge, Massachusetts.

Seven years earlier, Aiken, a navy commander and a Harvard 
mathematics and physics professor, had proposed the design 
of an automatic calculating machine. From 1939 to 1943 he 
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worked with engineers from the university and the company 
International Business Machines (IBM) to build the Automatic 
Sequence Controlled Calculator (ASCC) at the IBM laboratories in 
Endicott, New York. In January 1944, after testing the computer, 
IBM disassembled it, moved it to Harvard, and donated it to the 
university, where it was leased by the navy for the remainder of the 
war. The Mark I, as the first American-made, large-scale, automati-
cally sequenced digital computer was known, weighed five tons, had 
750,000 parts, used 530 miles of wire, and stood eight feet high, 
eight feet wide, and 51 feet long. The Mark I’s 3,300 electrome-
chanical relays enabled it to perform three additions per second 
with 23 significant digits of precision.

Hopper’s first assignment was to program the computer to calcu-
late the coefficients of the arc tangent series for the computation of 
self-propelled rocket trajectories. Her responsibilities as a program-
mer required her to translate computational algorithms and formu-
las into binary coded computer instructions that were fed into the 
computer on punched paper tape. Most of the programs she cre-
ated and ran calculated ballistics tables that indicated the distance 
an artillery weapon would fire its shell based on the gun’s angle of 
elevation, the size of the charge, the wind speed, the air pressure, 
and other variable factors. She also wrote programs to calculate 
the area cleared by a minesweeping detector towed behind a ship. 
Hopper, Aiken, and a staff of eight navy personnel kept the Mark 
I running programs 24 hours a day for a variety of military appli-
cations, including determining the tensile strength of steel plates, 
analyzing the propagation of radio waves, and simulating the shock 
wave that would result from the explosion of an atomic bomb.

During her first year in Aiken’s lab, Hopper wrote a manual to 
describe the process of programming the Mark I. The 561-page 
manual provided a detailed description of the function of each of 
the computer’s assemblies and circuits as well as samples of pro-
grams to accomplish a variety of tasks. Published in 1946 under 
the title A Manual of Operation for the Automatic Sequence Controlled 
Calculator, Hopper’s handbook became the first of 35 volumes in 
the Annals of the Computation Laboratory of Harvard University.

As the staff at the Computation Laboratory grew, Hopper 
assumed responsibility for overseeing all the programming of the 



computer and for training the new programmers. Since program-
mers who were writing code in the machine language of zeros and 
ones needed to understand the functioning of the hardware at its 
most basic level, she created a timing chart for the electromechani-
cal relays, accompanied by circuit diagrams to show the sequencing 
of the operations within the machine. In a collection of notebooks 
she recorded segments of code to calculate square roots, evaluate 
trigonometric functions, sum collections of numerical values, and 
perform other fundamental tasks that might be reused in later pro-
grams. She encouraged each programmer to collect a similar library 
of code segments and to share his or her routines with coworkers to 
reduce coding errors and eliminate redundant effort.

While continuing to program, operate, and maintain the Mark I, 
Hopper and her colleagues at the Computation Laboratory built its 
successor, the Mark II. By mid-1945 the machine was operational 
and was performing arithmetic operations five times faster than 
its predecessor. On September 9, 1945, when the Mark II stopped 
running, she and a team of programmers discovered a moth trapped 
between two of its 17,000 relays. They removed the insect with 
tweezers and pasted it into the logbook with the notation that they 
had “debugged” the machine. Although Harvard personnel had 
previously used the term bug to describe problems with computing 
machines, Hopper’s frequent recounting of this episode popularized 
the use of the terms computer bug and the debugging of a computer. 
She extended the use of the terminology to software problems 
where “debugging a program” described the process of fixing errors 
of logic or syntax in the instructions fed to a computer. In 1946 the 
navy awarded Hopper its Naval Ordnance Development Award for 
her work on the Mark series of computers.

After the war ended Hopper left active military duty, resigned her 
faculty position at Vassar, and joined the U.S. Naval Reserve. She 
accepted a three-year fellowship to continue to work from 1946 to 
1949 as a civilian research fellow in engineering systems and applied 
physics at Aiken’s Computation Laboratory at Harvard. With Aiken 
she coauthored a three-part paper titled “The Automatic Sequence 
Controlled Calculator. I, II, III,” which appeared in 1946 in the 
journal Electrical Engineering. The first installment described the 
Mark I’s mechanisms and the processes that accomplished addition 
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and subtraction. In the second part of the paper, they explained how 
the computer performed the more involved operations of multipli-
cation and division. The final piece described the preparation and 
planning of the punched tapes that fed the programming instruc-
tions into the computer.

To encourage open discussion of computers and computing in 
the young but growing industry, Hopper and Aiken organized and 
ran the first international conferences on computing. Their January 
1947 “Symposium on Large Scale Digital Calculating Machinery” 
at Harvard attracted an audience of 300 representatives from labo-
ratories and research groups in universities, industry, and govern-
ment. Two years later they ran a second conference that attracted 
a larger and more international audience. Appreciating the impor-
tance of communication and collaboration with colleagues, Hopper 
continued to organize and participate in many similar endeavors 
throughout her career.

Hopper’s primary responsibilities at the Computation Laboratory 
were to direct a new staff of civilian programmers writing code for 
military, scientific, and commercial applications in areas such as 
atomic physics, radio waves, optics, and astronomy. Typical work 
included a contract for the U.S. Air Force to calculate and produce 
14 volumes of tables containing values of Bessel functions for use in 
applications involving electronics and radar. In 1948 Hopper and 
her colleagues wrote one of the first commercial data processing 
programs that computed premiums and dividends, calculated interest 
on loans, and printed customers’ bills for Prudential Life Insurance 
Company. This successful program validated her contention that 
computers could be used widely in business, an opinion that most of 
her contemporaries in the computer field did not share at the time.

Between 1946 and 1948 the staff at Computation Laboratory 
designed and built a third computer named Mark III. This elec-
tronic machine, which used vacuum tubes instead of electrome-
chanical relays, performed calculations 50 times as fast as the Mark 
I. The Mark III used magnetic tape made of paper with a metallic 
coating instead of paper tape with punched holes to feed programs 
and data into the computer. In August 1948, after Hopper and her 
staff of programmers succeeded in coding and running a variety of 
test programs for the machine, it was delivered to the air force.



Compilers and COBOL Programming
In 1949 Hopper accepted a position as senior mathematician with 
Eckert-Mauchly Computer Corporation (EMCC) in Philadelphia. 
She remained at the company for 18 years, through its 1950 
purchase by Remington Rand and its 1955 merger with Sperry 
Corporation. Computer pioneers John Mauchly and J. Presper 
Eckert had established EMCC in 1947 after leaving the Moore 
School at the University of Pennsylvania, where they had helped 
to develop the Electronic Numerical Integrator and Calculator 
(ENIAC). As EMCC’s first project, Mauchly and Eckert designed 
and built the Binary Automatic Computer (BINAC) under a con-
tract with Northrup Aircraft Corporation. Hopper learned to 
program the machine in octal notation using the symbols 0, 1, 2,
. . ., 7, a modest advance beyond the more primitive binary machine 
language of zeros and ones. In 1951 Remington Rand introduced 
the Universal Automatic Computer (UNIVAC), the first mass-
produced, commercial computer. With its electronic vacuum tubes, 
metal tapes, and magnetic core memory, UNIVAC operated 1,000 
times as fast as Mark I and could process both numeric and alpha-
betic data.

While working on programming techniques for the UNIVAC, 
Hopper played a key role in conceiving, developing, and imple-
menting the concept of a compiler, a word she introduced to 
describe a program that enabled a computer to build programs 
from smaller blocks of code. She stored in the computer’s mem-
ory a library of subroutines—segments of code that instructed 
the computer to perform specific functions—and assigned each 
subroutine a three-letter mnemonic code. In 1952 she produced 
the first compiler, a program known as A-0 that automatically 
assembled and sequenced the collection of subroutines indicated 
in the coded instructions supplied to it. The resulting program 
assembled by the computer then ran as a unit. In May 1952, at 
a conference at Mellon Institute in Pittsburgh sponsored by the 
Association of Computing Machinery, Hopper presented her ideas 
on compilers in a paper titled “The Education of a Computer.” 
Her computing colleagues were hesitant to embrace her radical 
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ideas about teaching a machine to do a substantial portion of its 
own programming.

As director of automatic programming development at the 
UNIVAC Division, Hopper persisted in her work to develop new 
compilers and to popularize their use. She helped to organize 
and publicize navy seminars on automatic computing at which 
she served as master of ceremonies. She explained the principles 
of compiling in her 1953 paper “Compiling Routines,” which 
appeared in Computers and Automation. With Mauchly she coau-
thored the paper “The Influence of Programming Techniques on 
the Design of Computers,” published in 1953 in the Proceedings 
of the Institute of Radio Engineers. In 1953 she convinced DuPont 
Chemical Company, the U.S. Census Bureau, the U.S. Navy, and 
the U.S. Air Force to adopt the A-2, a commercial compiler that 
she had created. By 1956, when UNIVAC introduced MATH-
MAGIC, Hopper’s next compiler, the computing industry had 
embraced the concept. Designed to compete with IBM’s Formula 
Translation (FORTRAN), MATH-MAGIC enabled programmers 
to write programs for scientific applications using instructions that 
included verbs in English and mathematical symbols.

In addition to developing the A-series of algebraic compilers for 
scientific applications, Hopper created a B-series of business com-
pilers for data processing. Although her supervisors had rejected 
her 1953 proposal to develop an English-language compiler for 
business applications, she had continued to work on the project. 
In January 1955 she presented an internal report titled “The 
Preliminary Definition of a Data Processing Compiler” and dem-
onstrated a prototype compiler that used commands such as Input, 
Compare, Go To, Transfer, If Greater, Jump, Rewind, and Output to 
process files of inventory and pricing information. She also ran the 
program with the same instructions written in French and German 
to impress upon her supervisors the machine’s flexible capabilities. 
Her successful demonstration convinced Sperry Rand Corporation 
to provide resources to develop the product. By the end of 1956 
her B-0, or FLOW-MATIC, compiler that allowed the computer 
to recognize 20 English words and phrases as commands had 
been adopted by U.S. Steel, Westinghouse, DuPont, Lockheed, 



the U.S. Navy, and the U.S. Air Force for payroll, billing, and 
inventory control. Hopper and the members of her group visited 
clients’ businesses to provide training in the use of the software. 
Programmers were able to learn to use FLOW-MATIC after two 
weeks of training, and the English-language commands that it 
employed reduced their programming and debugging time by a 
factor of four.

In 1957 when IBM introduced Commercial Translator 
(COMTRAN) and Honeywell Corporation introduced Fully 
Automated Compiling Technique (FACT), Hopper and other 
leaders in the computing industry recognized the need to develop 
standardized computer languages that would run on any man-
ufacturer’s machine. She helped to organize a 1959 meeting at 
the Pentagon in Washington, D.C., where leaders of industry, 
government, and universities agreed to collaborate on the devel-
opment of a uniform data processing language. To coordinate the 
massive project they formed an executive committee known as 
Conference on Data Systems Languages (CODASYL) under the 
leadership of air force colonel Charles Phillips. As a special adviser 
to CODASYL, Hopper became an influential member of a small 
group who established the forms and procedures that defined the 
work of the body. In 1960 the Short-Range Committee produced a 
first version of Common Business Oriented Language (COBOL). 
Since many of the committee’s members were UNIVAC clients, 
they incorporated the majority of the design features of Hopper’s 
FLOW-MATIC compiler into this new high-level programming 
language.

Hopper worked with her programming group at the UNIVAC 
Division to implement the COBOL language on their computer. 
On December 6, 1960, UNIVAC and RCA publicly announced 
that they had produced commercial versions of the COBOL pro-
gramming language. That day Hopper and her group ran a test 
COBOL program on their UNIVAC II. The following day the 
same program ran on an RCA 501 computer and produced identical 
results. The highly publicized demonstration proved that standard-
ization of programming languages could be achieved, resulting in a 
separation between high-level software and the particular hardware 
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platform on which the program was to be run. COBOL achieved 
Hopper’s goal of creating a readable language using English com-
mands that was portable from one machine to another. In her 
remaining years at UNIVAC, she helped to create standard manu-
als and tools for the language that became the most widely used 
high-level computer language.

In addition to developing FLOW-MATIC and influencing the 
development of COBOL in direct ways, Hopper maintained a 
busy schedule of conference appearances at which she shared her 
vision for the future of computing with colleagues from industry, 
the government, the military, and education. Typical of her pre-
sentations were the lecture “Automatic Programming in Business 
and Industry,” which she delivered at the 1958 Electronics Data 
Processing Conference; the talk titled “Automatic Programming 
Language and Programming Aids,” which she gave at the 1959 
Computers for Artillery Conference; and the speech “A Data-
Processing Compiler,” which she presented at the 1959 meeting of 
the National Machine Accountants Association.

Hopper’s increasing visibility and her accomplishments within 
the computer field led to her recognition by numerous organiza-
tions. The navy promoted her to lieutenant commander in 1952 
and to the rank of commander in 1959. In 1962 she became one 
of the first two women to be named fellows of the Institute of 
Electrical and Electronics Engineers. The following year she was 
elected a fellow of the American Association for the Advancement 
of Sciences. In 1964 the Society of Women Engineers honored her 
with its Achievement Award. UNIVAC promoted her to become 
director of research in systems and programming in 1961 and to 
senior staff scientist in 1964.

Return to Active Duty in the Navy
In 1966 the navy informed 60-year-old Hopper that since she 
had served in the U.S. Naval Reserves longer than 20 years, its 
regulations mandated that she retire at the end of the year. In 
August 1967, after a seven-month retirement, the navy recalled 
her to temporary active duty that lasted until 1986. Her initial 



assignment was to standardize computer programming languages 
for all nonweaponry navy computers. As director of the Navy 
Programming Languages Group at the Pentagon, she was respon-
sible for ensuring that all hardware vendors who provided com-
puters to the navy complied with the standards for COBOL that 
were issued by the America National Standards Institute (ANSI). 
Working with industry leaders, she helped produce a COBOL cer-
tifier, a detailed test computer program that determined whether 
a particular company’s implementation of COBOL complied with 
all the requirements of the ANSI standard. She also developed 
translator programs to convert nonstandard COBOL languages 
into the standardized version. In 1971 Hopper and her group 
produced a manual for training and reference titled Fundamentals 
of COBOL that was distributed to all navy computer contractors to 
assist them in the implementation of standard COBOL on their 
machines.

Recognition of Hopper’s service to the navy and her contribu-
tions to the field of computer science came from many organiza-
tions. The Data Processing Management Association named her its 
1969 “Computer Science Man of the Year.” In 1973 she was pro-
moted to the rank of captain by a special act of Congress because 
she was too old to be promoted through the navy’s regular process. 
That same year she was elected a member of the National Academy 
of Engineering, received the Legion of Merit, and became the first 
American and the first woman to be elected a Distinguished Fellow 
of the British Computer Society.

After a reorganization of navy hierarchy in 1977, Hopper 
became a member of the Naval Data Automation Command in 
Washington, D.C. In this capacity she was responsible for advis-
ing on the adoption of new technology and producing annual 
reports assessing the navy’s use of computer technology. She 
recommended the use of networks of microcomputers rather than 
centralized main frames and the implementation of changes to 
make the navy’s data processing installations more efficient. In 
addition to fulfilling her military responsibilities, she lectured on 
management sciences at George Washington University and in 
1984 coauthored the college textbook Understanding Computers 
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with Steven Mandell. The navy promoted her to the rank of 
commodore in 1983 and the rank of rear admiral two years later. 
In 1985 she wrote a chapter titled “Future Possibilities: Data, 
Hardware, Software, and People” for the book Naval Tactical 
Command and Control. That same year the navy named their 
new data processing center in San Diego, California, the Grace 
Murray Hopper Service Center. In 1986 Hopper received the 
Defense Distinguished Service Medal, the highest award given 
by the Department of Defense, and retired at the age of 79 as the 
oldest military officer on active duty.

Before the year ended, Hopper joined Digital Equipment 
Corporation (DEC) as a senior consultant. From 1986 to 1990 
she represented DEC at computer industry forums and other 
speaking engagements, making as many as 200 presentations each 
year on advanced computing concepts and the value of informa-
tion and data. During her talks she often gave members of the 
audience a piece of wire 11.8 inches long, the distance an elec-
trical signal can travel in a nanosecond (a billionth of a second), 
and showed them a coil of wire 1,000 times longer representing 
a microsecond (a millionth of a second) to remind them not to 
waste time. She told her audiences that she kept a clock in her 
office that ran counterclockwise to encourage people to think in 
nonstandard ways. One of her frequently repeated recommen-
dations was that it is easier to apologize than to ask permission 
for pursuing a good idea. In 1991 she was awarded the National 
Medal of Technology, the nation’s highest honor in engineering 
and technology. On January 1, 1992, she died in her sleep at her 
home in Alexandria, Virginia, at the age of 85. She was buried 
with full military honors in Arlington National Cemetery, in 
Virginia.

Conclusion
The woman who was called “Amazing Grace,” the “Grandmother 
of the Computer Age,” the “Grand Lady of Software,” and 
“Grandma COBOL” influenced the evolution of computer pro-
gramming during the first 40 years of the computer age. Her 
introduction of compilers to select and sequence blocks of code 



from a stored library of subroutines radically changed the way 
computer programmers approached their work. Through her 
FLOW-MATIC compiler and her work with CODASYL, she 
influenced the formulation and implementation of a portable, 
English-like, standardized COBOL programming language for 
business uses. Her work for the navy and its industrial contractors 
helped standardize military and commercial data processing soft-
ware and policies.
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Father of Modern Computing

Alan Turing (pronounced TOUR-ing) helped to design and build 
some of the earliest electromechanical and electronic computers. 
His formulation of the concept of a theoretical Turing machine 
resolved the decision problem in mathematical logic and estab-
lished the basic design principles for multipurpose computers. 
During World War II he used his knowledge of statistics, cryp-
tography, and logic to design machines that deciphered German 
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military codes. He developed the Turing test to determine if a 
machine possessed artificial intelligence. His pioneering work with 
computer hardware and software earned him the title “Father of 
Modern Computing.”

Education and the Central Limit 
Theorem
Alan Mathison Turing was born on June 23, 1912, in the Paddington 
section of London, England, to Julius Mathison Turing, a member 
of the Foreign Civil Service, and Ethel Sara Stoney. Alan and his 
older brother, John, were raised in London by Colonel and Mrs. 
Ward, a retired military couple, while their parents lived in India. 
The boys attended London’s public schools, joining their parents 
for annual vacations in Wales, Ireland, Scotland, France, and Italy. 
When their father retired in 1926, their parents settled in the resort 
town of Dinard on the northern coast of France and sent Alan and 
John to Sherborne School, a public boarding school for boys in 
Dorset on the southern coast of England. During his five years at 
the school, Alan won prizes for excellence in mathematics, con-
ducted independent chemistry experiments, and became interested 
in chess and competitive running. After the death of his classmate 
Christopher Morcom in 1930, he became interested in metaphysi-
cal questions about the human mind that became central to his 
research on computers later in his life.

In 1931 Turing won a scholarship to attend King’s College at 
Cambridge University, where he focused his studies on math-
ematics. He joined the university’s Moral Science Club, and in 
December of his third year he read a paper titled “Mathematics 
and Logic” at one of the organization’s meetings. His paper pre-
sented the argument that mathematics had a variety of interpreta-
tions and could not be reduced to an application of pure logic. In 
1934, at the end of his three-year undergraduate program of stud-
ies, his performance as one of the top nine students on the three-
part mathematical examination known as the Tripos merited the 
distinction “B-Star Wrangler” and earned him a £200 stipend to 
continue his education as a research scholar for an additional year 
of graduate studies.



During the final year of his undergraduate program and his year 
of his graduate work, Turing became interested in probability and 
statistics. In the fall semester of 1933 he attended a series of lectures 
on the methodology of science in which astrophysicist Sir Arthur 
Stanley Eddington discussed the fact that experimental measure-
ments subject to observational errors tend to have an approximately 
normal, or Gaussian, distribution. Unsatisfied with Eddington’s 
informal motivation of this phenomenon, Turing developed a rig-
orous mathematical proof of the fundamental principle that is now 
known as the central limit theorem for independent random vari-
ables. Although Finnish mathematician Jarl Waldemar Lindeberg 
had proven the result 12 years earlier, Turing’s 1934 paper titled 
“On the Gaussian Error Function” earned him election as a fellow 
of King’s College in 1935, a master’s degree in mathematics from 
the college later that year, and the university’s Smith’s Prize as the 
best paper in mathematics the following year.

Introduction of the Turing Machine
During the two-year period from 1935 to 1937, Turing’s work 
focused on the question of decidability. In 1931 Austro-Hungarian 
mathematician Kurt Gödel had shown that there were mathematical 
statements that could not be proved. Three years earlier German 
mathematician David Hilbert had posed the related question 
known as Entscheidungsproblem (the decision problem) that asked if 
there existed an algorithm for deciding whether a given mathemati-
cal statement could be proved. Hilbert regarded this question as the 
principal problem of mathematical logic because an algorithm for 
the decision problem could be used to determine whether any given 
mathematical statement was true. In his paper “On Computable 
Numbers, with an Application to the Entscheidungsproblem,” which 
appeared in 1937 in the Proceedings of the London Mathematical 
Society, Turing demonstrated that no such algorithm existed.

Turing’s paper introduced an abstract machine now known as a 
Turing machine that moved from one state to another based on the 
symbols it scanned and the state it was in. He described a tape of 
infinite length that was divided into squares, each of which could 
contain a single symbol. His theoretical machine could recognize 
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the symbol in the current square of the tape; erase it, replace it, or 
leave it alone; change its state; and move to the preceding or sub-
sequent square on the tape to process another symbol. The actions 
performed by the machine when it encountered each symbol were 
predetermined by a finite set of rules known as its operation table. 
Each instruction was expressed as a set of five characters represent-
ing the current state, the current symbol, the erase/replace action, 
the new state, and the left/right movement. If there was no instruc-
tion corresponding to the current state and symbol, the machine 
would halt its operation.

Using his abstract machine Turing introduced two rigorous 
definitions that enabled him to provide the answer to the deci-
sion problem. He formally specified an algorithm as a finite set 
of instructions that could be carried out by a Turing machine. He 
also defined a real number between zero and one to be a comput-
able number if there was some Turing machine that would start 
with a blank tape and produce the number’s binary expansion as an 
infinite sequence of zeros and ones. For example, the binary expan-
sion 1101000 … represented the quantity given by the infinite sum 

 . Using these definitions Turing 

A Turing machine consists of a tape of infinite length and a finite set of instruc-
tions that determine the action to be performed when presented with any 
combination of state and character. The six rules listed in the operation table 
for this Turing machine will start with a blank tape and produce the infinite 
sequence 1010101010 … that represents the binary expansion of a computable 
number. The instructions in row SO and column b/ indicate that if the machine is 
in state 0 and the current symbol is a blank, then it should write the symbol 0, 
change to state 1, and move the tape one square to the right.



proved that there could be no algorithm to determine if any given 
Turing machine produced an infinite sequence of zeros and ones 
without halting. By showing that the truth of the statement “This 
Turing machine produces a computable number” could not be 
determined by a finite algorithm, he demonstrated that the answer 
to the decision problem was “No.”

Although Turing completed his work on this paper in April 1936, 
it did not appear in print until January 1937 because American math-
ematician Alonzo Church had arrived at the same conclusion in his 
paper “An Unsolvable Problem in Elementary Number Theory,” 
which appeared in April 1936 in the American Journal of Mathematics. 
Church had used the concept of λ-definability (lambda-definability) 
to prove the existence of an algorithmically unsolvable problem. 
As they read each other’s papers, the two mathematicians realized 
that they had independently resolved the decision problem by dif-
ferent methods. Turing proved the equivalence of their results in 
his paper “Computability and λ-Definability,” which appeared in 
1937 in the Journal of Symbolic Logic, a publication that Church had 
founded the previous year. Their independently discovered results 
became known as the Church-Turing thesis.

In addition to solving the decision problem, Turing’s paper on 
computable numbers introduced the concept of a universal Turing 
machine, a multipurpose computer that could perform the functions 
of any automatic calculating device when supplied with the proper 
algorithm. He suggested that by reading “description numbers” fed 
to it on a tape, the multipurpose machine could be programmed to 
perform any set of computations or automatic sequence of opera-
tions. The universal Turing machine detailed in this paper served 
as a model for the first working computers.

In September 1936 Turing sailed to the United States to spend 
a year conducting research with Church at Princeton University in 
New Jersey. He received one of three Procter Visiting Fellowship’s 
from Cambridge University to stay for a second year and finish his 
doctoral degree under Church’s supervision. In 1938 he completed 
a dissertation titled “Systems of Logic Based on Ordinals,” which 
was published the following year in the Proceedings of the London 
Mathematical Society. His thesis in the area of mathematical logic 
examined the solvability of questions within a logical system Lα 
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that had been constructed from an ordinal number α. The ideas he 
presented in this paper influenced the work of other mathemati-
cians during the subsequent two decades. Polish mathematician 
Emil Post, who had independently developed a concept equivalent 
to the Turing machine, drew on Turing’s thesis work in the early 
1940s as he developed a system for classifying problems according 
to degrees of unsolvability. In the late 1950s Austrian mathemati-
cian Georg Kreisel expanded on Turing’s use of ordinal logics to 
characterize informal methods of proofs.

In addition to his thesis research Turing completed other work 
in algebra, number theory, and boolean logic during his stay in 
Princeton. His paper “Finite Approximations to Lie Groups” that 
appeared in 1938 in Annals of Mathematics discussed methods for 
constructing a mathematical structure known as a finite group that 
possessed most of the properties of a related but more complicated 
Lie group. Another paper titled “The Extensions of a Group” 
that was published in the same year in Compositio Mathematica 
(Compilation of mathematics) gave a more efficient, general 
method to obtain some results on group extensions that German 
mathematician Reinhold Baer had derived. Turing pursued an idea 
for attacking the Riemann hypothesis, one of the leading open 
problems in number theory, by attempting to mechanically cal-
culate the values of the Riemann zeta function. His continuation 
of this work after leaving Princeton led to the paper “A Method 
for the Calculation of the Zeta-Function,” which he completed in 
1939, although it was not published until 1943 in the Proceedings of 
the London Mathematical Society.

When he left Princeton after receiving his doctorate in 1938, 
Turing returned to King’s College to resume his fellowship. He 
brought with him electromechanical relays that he had built in the 
graduate student machine shop in Princeton’s Physics Department. 
These electrical switches corresponded to the logical operations of 
“and,” “or,” and “not” and physically implemented the systems of 
equations known as logic gates that Turing and his colleagues had 
sketched out on paper. They had combined banks of these compo-
nents to build the first three stages of an electrical calculator that 
could multiply numbers. In 1938 Turing secured a grant of £40 to 
build a special-purpose analog computer using his electromechani-



cal relays to compute values of the Riemann zeta function. He never 
completed this project because World War II moved his career in 
other directions.

Deciphering German Naval Codes
On September 4, 1939, one day after the outbreak in Europe of 
World War II, Turing reported to the Government Code and 
Cipher School at Bletchley Park in Buckinghamshire, where he 
joined the cryptanalytic unit of the secret Ultra project charged 
with breaking German military codes. The Germans had developed 
a cipher machine called the Enigma that used three rotating wheels, 
each with 26 settings and a plugboard with 26 holes to scramble the 
letters of the alphabet, creating a cipher code that had more than a 
trillion combinations. Building on the work that a group of Polish 
mathematicians had done to decode systematically messages sent 
using an earlier, more primitive version of the Enigma machine, 
Turing and his colleagues successfully built machines to decode 
messages being sent to German U-boats stationed in the North 
Atlantic Ocean.

Turing contributed to the work of the cryptanalytic unit in several 
ways. He helped build decoding machines using electromechanical 
relays that methodically tested key codes until they found the cor-
rect combination. The machines, which were called “Bombes” after 
the ticking sound produced by the opening and closing of the relays, 
reduced the time required for decoding a message from weeks to 
hours. Turing also used his knowledge of statistics to develop new 
statistical decoding techniques that employed sequential analysis, 
empirical methods, and the logarithms of the weight of evidence. In 
1940 he wrote a classified internal document on the Enigma titled 
Mathematical Theory of ENIGMA Machine, known at Bletchley Park 
as the “Prof ’s Book.” In November 1941 Turing, who had risen to 
a position of leadership within the organization, wrote directly to 
Prime Minister Winston Churchill requesting additional trained 
staff members. Recognizing the importance of their work as part of 
the secret Ultra project, Churchill instructed his staff to make this 
request a priority. By the end of 1941 the Bombes had become so 
successful that the British were decoding German naval messages 
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within minutes after they were sent. This increased level of military 
intelligence about U-boat operations made the shipping lanes in the 
North Atlantic much safer for commercial and military convoys.

In 1943, when the Germans introduced a new coding machine 
known as the Lorenz and a new coding system known as Fish, the 
British and U.S. intelligence units collaboratively designed and 
built the first operational electronic computer. The Colossus used 
1,500 electronic vacuum tubes that were 1,000 times faster than 
the Bombes’ electrical relays. The machines incorporated most of 
Turing’s design ideas from the slower Bombes and employed many 
of his combinatorial and statistical algorithms that had contributed 
to the Bombes’ success. By early 1944 the Colossus was successfully 
deciphering messages encrypted by the Lorenz machine. In 1945, in 
recognition of the vital role he had played in the war effort, the British 
government awarded Turing the Order of the British Empire.

In addition to his work at Bletchley Park, Turing spent part of his 
time during the war years producing research papers on mathemati-
cal logic and consulting with U.S. computer designers and cryptana-
lysts. In 1941 he wrote a three-part unpublished manuscript titled 
“Some Theorems about Church’s System.” The following year the 
Journal of Symbolic Logic published the related papers “A Formal 
Theorem in Church’s Theory of Types,” which he had coauthored 
with his former Cambridge University professor Maxwell Newman, 
and “The Use of Dots as Brackets in Church’s System.” This group 
of papers contributed several refinements to Church’s system of
λ-calculus that became a valuable tool for computer scientists. At the 
end of 1942 Turing made a five-month trip to the United States where 
he visited Eastman Kodak Corporation, Bell Laboratories, National 
Cash Register Corporation, IBM, the Naval Computing Machine 
Laboratory, and the navy’s cryptanalytic service, Communications 
Supplementary Activities (Washington), to share ideas about the 
decoding of messages and the building of computers.

ACE and MADAM Computer Projects
During the first five years after the war, Turing played a central 
role in the development of two computer projects. In June 1945 
he declined the offer of a lectureship at Cambridge University 



to join the staff of the Mathematical Division of the National 
Physical Laboratory (NPL) in London, a government foundation 
established to design and build a multipurpose computer. Based on 
his work with the Bombes, Turing designed an electronic comput-
ing machine known as the Automatic Computing Engine (ACE). 
His design incorporated many fundamental features of modern 
computers, including internally stored instructions, random access 
memory, microprogramming, and the use of stacks to implement 
subroutine calls. In March 1946 he submitted a proposal titled 
“Proposed Electronic Calculator” for building the ACE. The 
report specified the complete description of the computer, includ-
ing a logical circuit diagram and a cost estimate of £11,200. He 
envisioned the proposed computer as a physical implementation 
of his universal Turing machine, capable of being programmed 
to play chess and solve puzzles as well as decode messages and 
perform numerical calculations. In lectures to the Ministry of 
Supply in December 1946 and January 1947 and to the London 
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Mathematical Society in February 1947, he described his plans 
for ACE and his vision of machines that could be programmed 
to learn, would be permitted to make mistakes, and would display 
true intelligence. Frustrated by the bureaucracy and politics that 
delayed the project’s approval for a year and prevented engineer-
ing work from beginning for an additional year, Turing resigned 
from the NPL in 1948. Two years later the laboratory successfully 
built a scaled-down version of his original proposal known as the 
Pilot ACE and subsequently produced a commercial model known 
as DEUCE.

At Newman’s invitation Turing accepted an appointment to the 
faculty of Manchester University in 1948, where he became deputy 
director of the newly formed Royal Society Computing Laboratory. 
This group of mathematicians and scientists designed and built 
the Manchester Automatic Digital Machine (MADAM). Turing 
contributed to the design of the computer’s software, develop-
ing standardized methods for writing the subroutines from which 
larger programs were built and writing programs that enabled the 
computer to accurately perform numerical analysis. In a paper 
titled “Rounding-Off Errors in Matrix Processes” that appeared in 
1948 in the Quarterly Journal of Mechanics and Applied Mathematics, 
he discussed some of the limitations of programs that manipulated 
arrays of numbers. At the June 1949 EDSAC Inaugural Conference 
that introduced Cambridge University’s newest computer, the 
Electronic Delay Storage Automatic Calculator (EDSAC), he 
presented a paper titled “Checking a Large Routine” in which 
he explained a systematic method for determining the correct-
ness of a computer program. He supervised the production of 
The Programmer’s Handbook for the Manchester Electronic Computer, 
which was published in 1950 at the Manchester University 
Computing Laboratory. Turing explained additional details about 
programming techniques for MADAM in his paper titled “Local 
Programming Methods and Conventions,” which he presented at 
the 1951 Manchester University Computer Inaugural Conference. 
In 1951, in recognition of his pioneering work with computers and 
his development of the Turing machine, he was elected a fellow of 
the Royal Society.



Turing Test for Artificial Intelligence
As he had stated in his 1947 address to the London Mathematical 
Society, Turing’s ultimate vision for computers was to design 
and build a machine that displayed true intelligence. During the 
1947–48 academic year, he studied neurology and physiology at 
Cambridge University to further develop his understanding of 
the workings of the human brain. In the 1948 report “Intelligent 
Machinery” that he wrote for NPL, he elaborated on his idea of 
a thinking computer. His major publication on the subject was 
the 1950 paper “Computing Machinery and Intelligence,” which 
appeared in the journal Mind. In this paper he proposed an experi-
ment to determine if a computer possessed artificial intelligence. 
In his “imitation game,” now known as the Turing test, a person 
typing at a keyboard sent questions to and received responses from 
a remote source. The experiment required the individual to deter-
mine whether the respondent at the other end of the conversation 
was a human or a computer. Turing predicted that within 50 years 
computers would be able to play this game so well that after five 
minutes of questioning, human interrogators would be able to 
identify correctly their remote correspondents only 70 percent of 
the time. The Turing test continues to be used as a measure of a 
computer’s acquisition of artificial intelligence.

Turing directed his work on artificial intelligence to the gen-
eral public in order to generate wide support for governmental 
funding of research on computers. In 1951 and 1952 he broadcast 
the radio programs titled “Can Digital Computers Think?” and 
“Can Automatic Calculating Machines Be Said to Think?” for the 
British Broadcasting Corporation. He contributed a section titled 
“Chess” to the chapter “Digital Computers Applied to Games” that 
appeared in the 1953 book Faster Than Thought. His comments 
emphasized that the ability to develop decision-making strategies 
in games like chess demonstrated some of the essential qualities of 
human intelligence. In his 1954 article “Solvable and Unsolvable 
Problems” that appeared in Science News, he presented to a general 
audience some insights into the limitations of computers’ abilities 
to solve problems.
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Mathematical Ideas in Biological 
Growth
In the early 1950s Turing became interested in applications of 
mathematical theory to morphogenesis, the development of pat-
terns and forms in living organisms. Although he wrote several 
manuscripts on the subject, his only published work was the 1952 
paper “The Chemical Basis of Morphogenesis” in the Philosophical 
Transactions of the Royal Society. In this paper he analyzed the math-
ematical phenomenon whereby small variations in the initial condi-
tions of the differential equations that described the growth of an 
organism could result in significant variations in the organism’s 
long-term development and behavior. He argued that this property 
accounted for asymmetrical developments in organisms as they 
adapted to their surroundings. Using this thesis, he attempted to 
explain the development of stripes and spots on the skins of animals 
and of phyllotaxis, the arrangement of leaves on plants. Turing’s 
unpublished writings on morphogenesis included “Outline of the 
Development of the Daisy”; “A Diffusion Reaction Theory of 
Morphogenesis in Plants,” written with British biologist Claude 
W. Wardlaw; and the three-part treatise “Morphogen Theory 
of Phyllotaxis” that included sections titled “Geometrical and 
Descriptive Phyllotaxis,” “Chemical Theory of Morphogenesis,” 
and “A Solution of the Morphogenetic Equations for the Case of 
Spherical Symmetry.”

While working on the subjects of artificial intelligence and 
morphogenesis, Turing continued to conduct research in pure 
mathematics. In his paper “The Word Problem in Semigroups with 
Cancellation,” published in 1950 in the Annals of Mathematics, he 
investigated the existence of an algorithm to determine if a given 
combination of algebraic elements was equal to the identity element 
of their algebraic structure. Post had proven that no such algorithm 
existed for structures known as semigroups; Turing was able to show 
that the same result applied to semigroups that satisfied an addition-
al condition known as the cancellation law. In his 1953 paper “Some 
Calculations of the Riemann Zeta-Function,” which appeared in the 
Proceedings of the London Mathematical Society, Turing implemented 



ideas that he had outlined in the late 1930s by using computing 
machines to calculate values of the Riemann zeta function.

In 1952 Turing was arrested for being a homosexual and was 
convicted of violating British law against gross indecency. He lost 
his security clearance, was sentenced to a year’s probation, and was 
subjected to treatments with the female hormone estrogen. On 
June 7, 1954, while working on an electrolysis experiment involving 
potassium cyanide, he ingested a fatal dose of the toxic chemical. 
Police officials who found cyanide on the half-eaten apple next to 
his body ruled his death a suicide.

Conclusion
During his diverse career Alan Turing worked as a pure mathe-
matician, a computer engineer, and a computer scientist. His intro-
duction of the Turing machine provided a solution to the decision 
problem in mathematical logic. He built electromechanical relays, 
helped to design special-purpose computers called the Bombe
and the Colossus for decrypting coded messages, and designed
the multipurpose ACE computer. As a computer scientist, he
developed programming techniques for the MADAM com-
puter and introduced the Turing test for artificial intelligence.
He applied his knowledge of many branches of mathematics—
statistics, cryptography, group theory, number theory, and logic—
to develop algorithms for deciphering codes, to study the mor-
phogenesis of living organisms, and to analyze the Riemann zeta 
function.

In 1966 the Association for Computing Machinery, the inter-
national professional society of computer scientists, established 
the annual A. M. Turing Award to honor computer scientists and 
engineers for outstanding contributions to the field of computer 
science. By naming their highest award for Turing, the association 
recognized the importance of his work in articulating the math-
ematical foundation and the limits of computing. His pioneering 
work with both computer hardware and software, as well as his 
vision of the future of computers, merit his designation as the 
“Father of Modern Computing.”
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Traveling Research Partner

During a career that spanned seven decades, Paul Erdös (pronounced 
AIR-dish) wrote more than 1,500 research papers with more than 
500 mathematical partners. Without a formal appointment at any 
academic institution, he traveled the world giving guest lectures and 
visiting colleagues to discuss their common mathematical interests. 
His collaborative approach to conducting joint research was influ-
ential in changing the way that mathematicians work. Erdös made 
significant contributions to graph theory, combinatorics, and set 
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theory and helped establish Ramsey theory, probabilistic number 
theory, and extremal theory as new branches of mathematics. His 
most important discoveries occurred in number theory in which 
he developed new proofs of theorems about prime numbers, abun-
dant numbers, products of consecutive integers, and sequences of 
integers. His colorful language, unique personality, and wealth 
of intriguing problems made him a celebrity in the international 
mathematical community.

Brilliant Childhood
Paul Erdös was born on March 26, 1913, in Budapest, Hungary, to 
Jewish parents Lajös and Anna Wilhelm Erdös. His sisters, Magda 
and Klára, died during an epidemic of scarlet fever a few days before 
he was born. A year later, during World War I, the Russian army 
took his father prisoner and sent him to a work camp for six years. 
Raised as an only child, he was isolated by his mother’s protective 
care. Doting on Paul’s every need, his mother did so many things 
for him that he was 11 years old before he learned to tie his own 
shoes and 21 when he first buttered his own bread. Even as an adult 
he relied heavily on the assistance of friends and colleagues, as he 
had never learned to cook or to drive a car.

As the son of two high school math teachers, Erdös spent much 
of his childhood in the world of mathematical ideas. He learned to 
do simple arithmetic by the time he was two years old. At the age of 
three he understood the idea of negative numbers, once announc-
ing to his mother that 100 minus 250 was “150 below zero.” At the 
age of four he could multiply four-digit numbers in his head. After 
being tutored at home for most of his childhood, Erdös enrolled at 
Szent István Gimnásium, the high school where his father taught. 
There he competed with his classmates to solve the problems that 
appeared in the monthly magazine Középiskolai Matematikai Lapok 
(KöMaL; Mathematical journal for secondary schools). His picture 
and his solutions to these challenging problems appeared in several 
issues of KöMaL between 1926 and 1930. Although he was skilled 
at making computations and solving problems, Erdös was even 
more fascinated by proofs, the logical arguments that explained 
why mathematical properties are true. By the age of 17 he knew 37 



proofs of the Pythagorean theorem, the famous result from geom-
etry that relates the lengths of the three sides of a right triangle.

First Research Papers
At the end of high school, Erdös placed as the top-scoring student 
on the standardized college entrance exam and chose to attend 
Pázmány Péter Tudományegyetem, the national university in 
Budapest that provided advanced education in mathematics and 
science for the most talented young men and women in Hungary. 
He made friends with a group of students who often met by a statue 
in the park or went for a hike in the countryside to work on math 
problems and proofs. Sometimes Erdös would sit completely still 
while deep in thought. When an insightful idea came to his mind, 
he would leap up, flap his arms, and walk around with a burst of 
energy. He and his friends would discuss his idea to see if it helped 
to solve the problem or prove the theorem.

As an 18-year-old college freshman, Erdös discovered a new 
proof of a mathematical property that had been proven 80 years ear-
lier by the Russian mathematician Pafnuty Chebyshev. The theorem 
involved prime numbers, or whole numbers greater than one that 
cannot be divided by any other positive numbers except themselves 
and one. Chebyshev had proven that for any number n that is greater 
than 1, there must be at least one prime number between n and 2n. 
For example, between n = 5 and 2n = 10 there is the prime number 7. 
Between 13 and 26 there are the primes 17, 19, and 23. Chebyshev 
had given a long explanation using some advanced mathematical 
ideas to prove that this result is true. Erdös found a proof that was 
much shorter and easier to understand. He also extended the theo-
rem by showing that if n > 7, there are at least two primes of the form 
4k + 1 and 4k + 3 between n and 2n. László Kalmár, a mathematics 
professor at the University of Szeged, translated Erdös’s proof into 
German and submitted it to his university’s journal, Acta Litterae 
Scientiarum Szeged (Literary and scientific achievements at Szeged). 
The paper, “Beweis eines Satzes von Tschebyscheff ” (Proof of a 
theorem of Tschebyscheff [Chebyshev]), published in 1932, was the 
first of 1,521 research papers that Erdös wrote during his long and 
productive mathematical career.
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The next year Erdös discovered a new proof of a theorem that 
number theorists James Sylvester and Issai Schur had proven 
about the distribution of abundant numbers. A positive number n 
is abundant if its factors, the smaller numbers that divide it, add 
up to more than n. For example, 12 is abundant because its fac-
tors 1, 2, 3, 4, and 6 add up to more than 12. Erdös explained his 
proof in the paper “A Theorem of Sylvester and Schur,” which was 
published in 1934 in the Journal of the London Mathematical Society. 
Schur was so impressed with Erdös’s work that he called him the 
“Magician from Budapest.” These two papers earned him a Ph.D. 
in mathematics.

Joint Research Collaborations
The circle of friends with whom Erdös discussed mathematics in 
the park had a lasting impact on the way he conducted his research 
throughout his professional life. In 1934 Erdös and Paul Turán 
published a joint paper titled “On a Problem in the Elementary 
Theory of Numbers” in the American Mathematical Monthly. In 
the same year he and George Szekeres wrote a paper, “Über die 
Anzahl der Abelschen Gruppen gegebener Ordnung und über 
ein verwandtes zahlentheoretisches Problem” (On the number of 
abelian groups of a given order and on a related number theoretic 
problem), that was published in the journal Acta Litterae Scientiarum 
Szeged. Esther Klein discovered a property about the arrangement 
of five points that were randomly placed on a piece of paper. As she, 
Erdös, and Szekeres worked to generalize this result to larger num-
bers of points, Klein and Szekeres fell in love with each other and 
eventually married. In 1935 Erdös and Szekeres wrote a paper titled 
“A Combinatorial Problem in Geometry” for the journal Compositio 
Mathematica (Compilation of mathematics) presenting their work 
on this problem, which Erdös informally named the “Happy End 
Problem.”

During his career Erdös wrote papers with more than 500 
research partners. These enthusiastic collaborations influenced 
the way mathematicians do their work. When he published his 
first research paper in 1932, only 10 percent of articles published 
in mathematical journals were authored by more than one person. 



Most mathematicians worked by themselves and did not commu-
nicate their work to one another until they had successfully proven 
a theorem. Seventy years later more than 50 percent of research 
papers in the field are coauthored. Mathematicians routinely dis-
cuss their unfinished ideas with one another and work together to 
prove theorems. Although Erdös is not solely responsible for this 
change, he had a greater impact than any other single individual.

As an interesting amusement, each mathematician has acquired 
an Erdös number that indicates how close he or she came to work-
ing with the prolific collaborator. Erdös’s own Erdös number is 
zero. Each of the approximately 500 mathematicians who wrote 
papers with him has Erdös number one. The almost 6,000 math-
ematicians who wrote a paper with one of Erdös’s coauthors but did 
not write a paper with Erdös have Erdös number two. People who 
wrote papers with them have Erdös number three, and so on. The 
fact that most living mathematicians have an Erdös number less 
than 10 indicates how central Erdös has been to the joint efforts of 
modern mathematical research.
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Traveling Mathematician
After completing his doctoral work at Pázmány in 1934, Erdös 
obtained a research fellowship at the University of Manchester, 
in England. During his four-year appointment at Manchester, he 
made so many trips to visit colleagues at other European universi-
ties that he was never in the same city for more than a few weeks at 
a time, a practice that he continued throughout his career. These 
collaborations produced 46 research papers, mostly in number 
theory. The Journal of the London Mathematical Society published 16 
of these papers, including “On the Density of Some Sequences of 
Numbers” (1935), “On the Representation of an Integer as the Sum 
of k kth Powers” (1936), “On the Sum and Difference of Squares of 
Primes” (1937), and “On the Number of Integers Which Can Be 
Represented by a Binary Form” (1938).

Erdös’s most influential works during this period were two results 
in extremal theory, a new branch of mathematics. In the 1938 paper 
“On Sequences of Integers No One of Which Divides the Product 
of Two Others and on Some Related Problems,” published in the 
Russian journal Miteilungen Forschun—Institut der Mathematik und 
der Mechanik Univität Tomsk (Research communications—Institute 
of Mathematics and Mechanics, University of Tomsk), Erdös used 
techniques from graph theory to solve a problem in number theory. 
Building on this innovative strategy, Turán developed extremal 
theory in which mathematicians investigate questions such as: How 
many edges can a graph have before it must include at least one tri-
angle? That same year Erdös, Chinese mathematician Chao Ko, and 
German mathematician Richard Rado proved the Erdös-Ko-Rado 
theorem, which immediately became one of the fundamental results 
in extremal theory even though it was not published until 1961 in 
the Quarterly Journal of Mathematics, Oxford Series under the title 
“Intersection Theorems for Systems of Finite Sets.” As this branch of 
mathematics developed, Erdös’s many contributions helped to iden-
tify the major questions and provided new problem-solving strategies.

In 1938, when Europe was on the brink of World War II, Erdös 
fled to the United States, where he obtained a one-year appointment 
as a mathematical researcher at the Institute for Advanced Study in 
Princeton, New Jersey. Inspired by Polish mathematician Mark Kac’s 



visiting lecture, he applied techniques of probability to solve prob-
lems in number theory. The two mathematicians discovered that for 
any positive integer n, the number of prime divisors of the integers 
less than n has a normal distribution. This important result, known as 
the Erdös-Kac theorem, appeared in their paper “The Gaussian Law 
of Errors in the Theory of Additive Number Theoretic Functions” in 
1940 in the American Journal of Mathematics. This paper established a 
new area of mathematics known as probabilistic number theory and 
introduced techniques called Erdös methods.

While at the institute, Erdös also proved that the product of con-
secutive integers can never be a square. This result typified the kind of 
problems that he identified and solved throughout his career—deep 
results that were easy to state but difficult to prove. His two papers on 
this topic, “Note on the Product of Consecutive Integers. I, II,” were 
published in 1939 in the Journal of the London Mathematical Society.

From 1940 to 1954 Erdös held brief appointments at the 
University of Pennsylvania, Purdue University, the University of 
Michigan, and the University of Notre Dame but was often not affili-
ated with any particular institution. Teaching an organized course for 
four months to a group of students did not interest him; he preferred 
to travel throughout North America giving guest lectures for a fee 
and visiting the homes of mathematical colleagues. At each new loca-
tion he engaged in intense research sessions for several days at a time. 
During this period of his career, Erdös produced an average of 40 
research papers annually and gained approximately 20 new research 
partners each year. Traveling lightly he carried one suitcase contain-
ing a single change of clothes, a shopping bag filled with copies of 
research papers, and a notebook in which he scribbled new ideas. He 
communicated with his international network of colleagues by send-
ing more than 1,000 letters and postcards each year. When he arrived 
at the home of a mathematician for one of his brief visits, he would 
greet them with his famous saying “Another roof, another proof.”

Diverse Mathematical Contributions
With his research collaborators and in his independent research, 
Erdös made significant contributions to many branches of math-
ematics and helped to develop new areas of investigation. His 1942 

Paul Erdös  133



134  Modern Mathematics

paper “On the Law of the Iterated Logarithm,” published in the 
Annals of Mathematics, made an important contribution to number 
theory. With Alfred Tarski he produced the first study of inacces-
sible cardinal numbers, a result that is fundamental to modern set 
theory. Their work appeared in the paper “On Families of Mutually 
Exclusive Sets,” published in 1943 in the Annals of Mathematics. 
In combinatorics, the mathematics of counting, he proved many 
results about partitions—the number of ways to write a positive 
number as the sum of other positive numbers—such as writing 4 
as 4 or 3+1 or 2+2 or 2+1+1 or 1+1+1+1. His 1973 book The Art of
Counting contains a collection of his most influential papers on this 
subject. In geometry he wrote about the ways to cut up a square 
into pieces, each of which is a different sized square. He helped 
to popularize lesser known areas of mathematics, such as Ramsey 
theory in which mathematicians study the occurrence of patterns in 
random collections of data.

Erdös introduced the probabilistic method to graph theory by 
showing the existence of a graph having certain Ramsey proper-
ties. Without constructing such a graph, he proved that there was 
a positive probability that a random graph satisfying a particular 
set of conditions would have these properties. His influential paper 
“Some Remarks on the Theory of Graphs,” published in 1947 in 
the Bulletin of the American Mathematical Society, gave the first use 
of the probabilistic method, a technique that researchers in discrete 
mathematics and in theoretical computer science still use.

In 1949 Erdös made the most significant discovery of his career 
when he and the Norwegian mathematician Atle Selberg discovered 
an elegant proof of the prime number theorem. This famous result 
from number theory states that for any large, positive integer n, the 

number of primes less than n is approximately . Adrien-Marie 

Legendre of France and Carl Friedrich Gauss of Germany had 
proposed the theorem around 1800; Frenchman Jacques Hadamard 
and Charles de la Vallée-Poussin of Belgium had given elaborate 
proofs in 1896. Working independently, Erdös and Selberg proved 
two theorems that together produced a simple proof of the famous 
theorem. Their accomplishments were celebrated by the math-
ematical community but were tarnished by controversy when each 



one accused the other of stealing his work. When the dispute was 
settled, Selberg was awarded the prestigious 1950 Fields Medal, 
the international award recognizing a significant accomplishment 
by a mathematician under the age of 40, and Erdös received the 
1951 Frank Nelson Cole Prize in Number Theory, the American 
Mathematical Society’s award for the best paper in number theory. 
Erdös’s contribution appeared in the paper “On a New Method 
in Elementary Number Theory Which Leads to an Elementary 
Proof of the Prime Number Theorem,” published in 1949 in the 
Proceedings of the National Academy of Sciences.

Eccentric Genius
At different times in his life, Erdös’s ability to travel to certain 
countries was severely limited. During the 1940s World War 
II prevented him from visiting his family and friends in eastern 
Europe. From 1954 to 1963 the U.S. government refused to allow 
him to enter the country. In August 1941 he had been arrested 
with English mathematician Arthur Stone and Japanese mathema-
tician Shizuo Kakutani for trespassing at a military radar installa-
tion on Long Island in New York. Government officials cited this 
incident and his friendships with people in Communist countries 
as evidence that he posed a threat to national security. Until his 
passport was restored, Erdös made frequent trips to Canada where 
his American colleagues would meet with him to do their collab-
orative research.

Throughout his life Erdös had a very close relationship with his 
mother. For 20 years she maintained a collection of his research 
papers, sending copies to colleagues who requested them. Each 
summer she vacationed with him at a guesthouse at the Hungarian 
Academy of Sciences, where she met many of his research partners. 
From 1964 until her death in 1971, she was his constant travel 
companion. After she died, Ron Graham and Fan Chung, two 
mathematicians from AT&T Bell Labs in New Jersey who wrote 
dozens of papers with Erdös, assumed many of the responsibilities 
that she had fulfilled for him. They forwarded his mail, updated his 
visa, made sure his taxes were paid, and arranged his transportation. 
They eventually built an addition onto their house so Erdös could 
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have a bedroom, bathroom, and library to use as his home a few 
weeks each year.

With others managing the necessary details of his life, Erdös 
devoted every possible minute to his mathematics. He usually 
awoke at 5:00 in the morning and worked for 19 hours, taking only 
brief naps during the day. At times three groups of mathematicians 
gathered in his hotel room, each working on a different problem. In 
the style of a chess master, Erdös moved from group to group help-
ing to produce proofs of all three theorems simultaneously. When 
he had surgery to repair a cataract in one eye, he asked the doctors 
to allow him to read with the other eye during the operation. They 
refused his request but did permit a mathematician to be present 
in the operating room so Erdös could productively use the time 
discussing mathematics. At a conference in Kalamazoo, Michigan, 
in 1996, Erdös collapsed and was rushed to the hospital, where 
doctors implanted a pacemaker to regulate his heart. He persuaded 
the doctors to accompany him to the conference that evening so he 
could attend the banquet as scheduled.

Known as a generous colleague, Erdös shared his time and the 
little money that he had with mathematically talented students. 
In 1984 when he won the $50,000 Wolf Prize for mathematical 
achievement, he donated $30,000 to establish a scholarship fund at 
the university Technion in Israel and gave away most of the remain-
ing money, keeping only $720 for himself. He often rearranged his 
traveling schedule to meet with promising students, offering prizes 
for the solutions to an assortment of problems. The prizes ranged 
in value from $10 for the solution of an elementary problem to 
$3,000 for a difficult problem that would likely require years of 
work. During a casual conversation at dinner, he might write down 
10 problems that would keep his guest busy for the next few years.

During his lifetime Erdös developed a collection of colorful say-
ings that others referred to as “Erdös-ese.” When he was ready to 
discuss mathematics, he would tell his friends “My brain is open.” 
He referred to a child as an “epsilon,” the letter of the Greek alpha-
bet that mathematicians usually use to represent a small quantity. 
Women were “bosses,” and men were “slaves.” When talking poli-
tics, he called the Soviet Union “Joe,” after the Communist dictator 
Joseph Stalin, and the United States “Sam,” after Uncle Sam. A 



person “arrived” when they were born and “left” when they died. 
A stupid law was “trivial,” and a mathematician who had stopped 
doing research was “dead.” He did not care for music or alcohol, 
which he called “noise” and “poison.” He did love coffee and drank 
many cups of it while trying to prove theorems; in fact, he often 
said that a mathematician was a machine for turning coffee into 
theorems.

Erdös believed that mathematics was as much an art as it was a 
science. He did not think that it was acceptable to simply prove that 
a result was true; he wanted the proof to be creative, insightful, and 
well designed. He took more pride in creating an elegant proof than 
he did in discovering a new result by a tedious method. Many of his 
research papers, including his first paper on Chebyshev’s theorem 
and his proof with Selberg of the prime number theorem, were 
beautiful proofs. He joked that the “Supreme Fascist” (his name for 
God) had a collection called “The Book,” which contained the best 
proof of each mathematical result. When he discovered or learned 
of an ingenious proof, he would say that it was “straight from The 
Book.”

Erdös frequently thought and talked about his death. When 
he was still a teenager, he often expressed concern that he was 
becoming a frail old man and was worried that he would soon die. 
He joked that, since the world was thought to be 2 billion years 
old when he was a child but scientists now estimated that it was 
4.5 billion years old, that change made him a 2.5 billion-year-old 
man. When he was 55, he started to refer to himself as Paul Erdös, 
P.G.O.M., which stood for “Poor Great Old Man.” Every five 
years he added more letters until he was Paul Erdös, P.G.O.M.
L.D.A.D.L.D.C.D., meaning “Poor Great Old Man, Living Dead, 
Archaeological Discovery, Legally Dead, Counts Dead.” The last 
two letters were a reference to the Hungarian Academy of Sciences 
whose members were no longer counted on the official roster after 
their 75th birthday.

On September 20, 1996, while visiting Warsaw, Poland, for a 
graph theory workshop, Erdös suffered a heart attack in his hotel 
room, was brought to the hospital, and died at the age of 83. For 
many years prior to his death, mathematicians had been honoring 
him for his contributions to mathematics. Fifteen universities had 
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awarded him honorary degrees and eight national academies of 
science had inducted him as a member. Mathematicians had orga-
nized many international conferences and had published collections 
of research papers in celebration of his birthday. After his death, 
Graham and Chung published a list of all the unsolved Erdös prob-
lems in graph theory and promised to pay the prize money for their 
solutions. Andrew Beal, a banker and amateur mathematician from 
Texas, created a fund to pay for the solutions of the Erdös problems 
in the other areas of mathematics.

Conclusion
The 1,521 mathematical research papers that bear Paul Erdös’s 
name make him the most prolific researcher and writer in the 
history of mathematics. His having written nearly 1,100 of these 
papers with at least one other research partner helped mathemati-
cians recognize the benefits of working collaboratively. He made 
significant contributions to established branches of mathematics 
such as number theory, combinatorics, graph theory, and set theory 
and helped develop new areas such as extremal theory, probabilistic 
number theory, and Ramsey theory. He was one of a handful of 
researchers who defined 20th-century mathematics.
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GLOSSARY

absolutely normal number A real number whose digits occur 
with equal frequency in every number base.

abundant number An integer such as 12 that is less than the sum 
of its factors. Also known as an over-perfect number.

aleph The first letter of the Hebrew alphabet, used in set theory 
to denote different orders of infinity such as ℵ0 (aleph-zero), 
the cardinality of the natural numbers, and ℵ1 (aleph-one), the 
cardinality of the real numbers.

algebra The branch of mathematics dealing with the manipula-
tion of variables and equations.

algebraic equation A mathematical statement equating two alge-
braic expressions.

algebraic expression An expression built up out of numbers and 
variables using the operations of addition, subtraction, multipli-
cation, division, raising to a power, and taking a root.

algebraic geometry The branch of mathematics concerned with 
the study of the roots of polynomial equations.

algebraic number A real number that is the root of a polynomial 
equation with integer coefficients.

algebraic topology The branch of mathematics in which groups 
of functions are used to study the properties of geometrical sur-
faces. Also known as analysis situs.

algorithm A precise set of instructions for solving a problem.
analysis See functional analysis.
analysis situs See algebraic topology.
area The amount of surface space occupied by a two-dimensional 

object.
arithmetic The study of computation.
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artificial intelligence The ability of a computer to simulate 
human reasoning and behavior.

astronomy The scientific study of stars, planets, and other heav-
enly bodies.

automaton An object, organism, or system whose evolution in 
iterative time steps is determined by its interaction with neigh-
boring objects, organisms, or systems under a fixed set of rules.

axiom A statement giving a property of an undefined term or a 
relationship between undefined terms. The axioms of a specific 
mathematical theory govern the behavior of the undefined terms 
in that theory; they are assumed to be true and cannot be proved. 
Also known as a postulate.

Bernoulli number A sequence of fractions that occur in many 
applications in number theory and analysis.

binary form A polynomial with two variables in which every term 
has the same degree.

binary notation A method used by digital computers to represent 
a number as a sum of powers of two using only the digits 0 and 1.

binomial coefficient A positive integer given by the computation 

, where n and k are integers satisfying 0 ≤ k ≤ n.

biquadratic form An algebraic operator related to polynomials in 
which the exponents in every term add up to four.

Brownian motion The rapid movements of pollen and other 
organic particles suspended in water.

calculus The branch of mathematics dealing with derivatives and 
integrals.

calculus of variations The branch of mathematics in which one 
searches for functions that satisfy a set of differential equations 
and that minimize the value of a related expression.

cardinality A numerical value giving the size of a set.
cardinality of the continuum A numerical value giving the size 

of the set of real numbers in the unit interval [0, 1].
cellular automaton A collection of cells on a grid whose evolu-

tion in iterative time steps is determined by the states of neigh-
boring cells through a fixed set of rules.



chaos theory The branch of mathematics that studies the orderly 
patterns that occur in seemingly random situations and mathe-
matical systems in which small changes in initial conditions result 
in significant variations in outputs.

circle The set of all points in a plane at a given distance (the 
radius) from a fixed point (the center).

circumference (1) The points on a circle. (2) The measure of the 
total arc length of a circle; it is 2π times the radius of the circle.

COBOL Common Business Oriented Language, the computer 
programming language developed in the 1950s that uses English 
words as instructions to perform data processing tasks.

coefficient A number or known quantity that multiplies a vari-
able in an algebraic expression.

combinatorics The branch of mathematics concerned with tech-
niques of counting.

commutative The algebraic property of a collection of objects 
in which two objects combined in one order produce the same 
results as the same two objects combined in the opposite order.

compiler A computer program that enables a computer to build 
programs by selecting and sequencing smaller blocks of code 
from a library of subroutines.

complete The property of a set of axioms that is satisfied when 
every theorem in the discipline follows as a logical consequence 
of the axioms.

complex number A number that can be written as the sum of a 
real number and the square root of a negative real number.

composite number A positive integer that can be factored as the 
product of two or more primes.

computable number A real number between zero and one whose 
binary expansion as an infinite sequence of zeros and ones can be 
produced by some Turing machine that starts with a blank tape.

computer program A set of instructions that controls the opera-
tion of a computer.

consistent The property of a set of axioms that is satisfied when 
no combination of axioms lead to a contradiction.

continuum hypothesis The principle of set theory stating that 
every infinite subset of real numbers is either countable or has 
the cardinality of the continuum.
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coordinates The numbers indicating the location of a point on a 
plane or in a higher-dimensional space.

cosine For an acute angle in a right triangle, the ratio of the adja-
cent side to the hypotenuse.

countable An infinite set is countable if it can be put into a one-
to-one correspondence with the set of natural numbers.

cryptography The study of coding and decoding secret mes-
sages.

cube (1) A regular solid having six congruent faces, each of which 
is a square. (2) To multiply a quantity times itself three times; 
raise to the third power.

cubic (1) A polynomial of degree three. (2) An equation or curve 
(graph) corresponding to a cubic polynomial.

cybernetics The branch of science concerned with the study of 
the interactions between humans and machines.

debug a computer program To find and fix errors of logic or 
syntax in the instructions fed to a computer.

decimal notation A method using the digits 0, 1, 2, … , 9 to rep-
resent a number as a sum of powers of 10.

degree (1) A unit of angle measure equal to  of a circle. (2) 

The number of edges that meet at a vertex in a polygon or poly-
hedron. (3) The sum of the exponents of all the variables occur-
ring in a term of a polynomial or algebraic expression.

degree of a polynomial or equation The highest exponent 
occurring in any of its terms.

derivative A function formed as the limit of a ratio of differ-
ences of the values of another function. One of two fundamental 
ideas of calculus that indicates the rate at which a quantity is
changing.

diameter (1) The distance across a circle. (2) A line segment of 
this length passing through the center of a circle joining two 
points on opposite sides of the circle.

differential equation An equation involving derivatives.
differentiation The process of determining the derivative of a 

function.
Diophantine analysis The branch of number theory dealing with 

methods for finding integer solutions to polynomial equations.



Dirichlet problem The determination of functions that have 
well-behaved derivatives in a given region and that take specified 
values on its boundary.

divisible A number is divisible by another if the resulting quo-
tient has no remainder.

divisor See factor.
e A naturally occurring constant whose value is approximately 

2.71828.
Elements The influential book on geometry and number theory 

written by Euclid of Alexandria.
encryption The process of translating a message into a secret 

code.
Enigma machine A special-purpose computer with rotating 

wheels and a plugboard used by the German military during 
World War II to send and receive coded messages.

entire function A function whose derivative is defined for all 
complex numbers.

equation A mathematical sentence stating that two algebraic 
expressions or numerical quantities have the same value.

equilateral A property of a polygon that is satisfied when all sides 
are equal in length.

ergodic Dealing with quantities whose values are governed by 
probability.

Euclidean geometry The mathematical system of geometry
derived from the five postulates assumed by Euclid of Alexandria.

even number An integer that can be written as two times another 
integer.

exponent A number indicating how many repeated factors of the 
quantity occur. Also known as power.

extrapolation A numerical technique to predict the future values 
associated with a phenomenon based on observations of past 
behavior.

extremal theory The branch of mathematics concerned with the 
minimum conditions that an object must satisfy to guarantee that 
a particular property holds.

factor An integer that divides a given integer without leaving a 
remainder. Also known as a divisor.
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Fourier series An infinite series whose terms are of the form an 
sin(nx) and bn cos(nx).

fractal A recursively defined geometrical object in which each 
section of the pattern is similar to the entire design.

fraction See rational number.
functional analysis The branch of mathematics dealing with the 

investigation of properties of sets of functions. Also known as 
analysis.

game theory The mathematical study of competition and coop-
eration.

geometry The mathematical study of shapes, forms, their trans-
formations, and the spaces that contain them.

graph theory The branch of mathematics in which relationships 
between objects are represented by a collection of vertices and 
edges.

group theory The branch of abstract algebra dealing with the 
structure, properties, and interaction of groups (sets of objects 
that can be combined with an operation that satisfies four basic 
conditions).

highly composite number A positive integer having more fac-
tors than any smaller positive integer. The first highly composite 
numbers are 2, 4, 6, 12, 24, and 36; they have 2, 3, 4, 6, 8, and 9 
factors, respectively.

Hilbert program Unsuccessful attempt led by David Hilbert 
to prove that mathematical theory was free from contradiction 
and to establish a rigorous axiomatic foundation from which all 
mathematical results could be proven.

Hilbert space An infinite-dimensional vector space whose ele-
ments are infinite series that satisfy particular convergence
criteria.

incompleteness theorem The principle that every axiomatic 
mathematical system includes propositions that can neither be 
proved or disproved.

independent The property of a set of axioms that is satisfied 
when no one axiom is a logical consequence of the others.

integer A whole number such as -4, -1, 0, 2, or 5.



integral A function formed as the limit of a sum of terms defined 
by another function. One of two fundamental ideas of calculus 
that can be used to find the area under a curve.

integral equation An equation involving an unknown function 
and integrals of that function.

integration The process of determining the integral of a
function.

invariant theory The branch of mathematics concerned with the 
study of properties that remain fixed when an object is subjected 
to modifying transformations.

irrational number A real number such as  or π that cannot be 
expressed as a ratio of two integers.

magic square A square array of numbers for which the sum of the 
numbers in any row, column, or diagonal is the same.

matrix A rectangular array of numbers.
mechanics The branch of physics dealing with the laws of 

motion.
metric space A collection of objects for which the distance 

between any two elements was well defined.
Monte Carlo method An algorithm that uses random statistical 

samples to generate approximate numerical solutions.
natural number One of the positive numbers 1, 2, 3, 4, 5, … .
negative number Any number whose value is less than zero.
noncommutative The algebraic property of a collection of 

objects in which two objects combined in one order produce 
different results from the same two objects combined in the 
opposite order.

non-Euclidean geometry A mathematical system of geometry 
that results from substituting different assumptions in place of 
the parallel postulate.

number theory The mathematical study of the properties of 
positive integers.

numerical analysis The branch of mathematics concerned with 
the development and analysis of iterative numerical solutions to 
mathematical problems.

octal notation A method using the digits 0, 1, 2, … , 7 to repre-
sent a number as a sum of powers of eight.

Glossary  147



148  Modern Mathematics

odd number An integer that is not an even number, that cannot 
be written as two times another integer.

ordinal number A number indicating the size of a finite or infi-
nite set of objects.

over-perfect number See abundant number.
parallel postulate The axiom stated by Euclid of Alexandria that 

for a given point and line, there is only one line that can be drawn 
through the point that does not eventually meet the given line.

partial differential equation An equation involving the deriva-
tives of a function of several variables.

partition A way of expressing a number as a sum of positive
integers.

perfect square See square number.
perimeter The sum of the lengths of the sides of a polygon.
periodic function A function whose values repeat on a regular 

basis. A function f (x) is a periodic function if there is some con-
stant k called its period so that f(x + k) = f(x) for all values of x.

pi (π) The ratio of the circumference a circle to its diameter, 
approximately 3.14159.

polygon A planar region bounded by segments. The segments 
bounding the polygon are its sides, and their endpoints are its 
vertices.

polyhedron A solid bounded by polygons. The polygons bound-
ing the polyhedron are its faces; the sides of the polygons are its 
edges; the vertices of the polygons and its vertices.

polynomial An algebraic expression that is the sum of the prod-
ucts of numbers and variables.

positive number Any number whose value is less than zero.
postulate See axiom.
potential theory The branch of physics dealing with the study of 

electric, magnetic, and gravitational fields.
power See exponent.
power series A representation of a function as an infinite sum of 

terms in which each term includes a power of the variable.
prime number An integer greater than one that cannot be divid-

ed by any positive integer other than itself and one. The first few 
prime numbers are 2, 3, 5, 7, 11, 13, 17, … .



prime number theorem The principle of number theory stating 
that the probability of an integer N being prime is approximately 

.

probability theory The branch of mathematics concerned with 
the systematic determination of numerical values to indicate the 
likelihood of the occurrence of events.

proof The logical reasoning that establishes the validity of a theo-
rem from definitions, axioms, and previously proved results.

proper divisor For any positive integer, those smaller positive 
numbers that divide it.

pseudoprime A nonprime positive integer n that divides 2n-2 - 2 
without a remainder.

Pythagorean theorem The rule about right triangles proven by 
Pythagoras of Samos that states If a, b, and c are the lengths of 
the three sides of a triangle, then the triangle is a right triangle if 
and only if a2 + b2 = c2.

quantum mechanics The branch of mathematical physics con-
cerned with the study of subatomic particles.

radius (1) The distance from the center of a circle to any point 
on its circumference. (2) A line segment of this length with one 
endpoint at the center of a circle and the other endpoint located 
on its circumference.

Ramsey theory The branch of mathematics concerned with the 
study of patterns in random collections of data.

ratio The fraction obtained by dividing one number by another.
rational number A number that can be expressed as a ratio of two 

integers. Also known as a fraction.
real number One of the set of numbers that includes zero, the 

positive and negative integers, the rationals, and the irrationals.
relativity The concept in physics concerned with the principles 

of gravity and motion in accelerated frames of reference.
right angle An angle with measure 90°.
right triangle A triangle with one right angle.
root (1) A solution to an equation. (2) A number that when 

repeatedly multiplied produces a given numerical value.
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round number A number that has many prime factors.
sequence An infinitely long list of values that follow a pattern.
series An infinite sum of numbers or terms.
set A well-defined collection of objects.
set theory The branch of mathematics dealing with relationships 

between sets.
simultaneous equations Two or more equations relating the 

same variables that are to be solved at the same time. Also known 
as a system of equations.

sine For an acute angle in a right triangle, the ratio of the oppo-
site side to the hypotenuse.

special theory of relativity A theory in physics developed by Albert
Einstein to explain the properties of space, matter, and time.

sphere The set of all points in three-dimensional space at a given 
distance, called the radius, from a fixed point, called the center.

square (1) A four-sided polygon with all sides congruent to one 
another and all angles congruent to one another. (2) To multiply 
a quantity times itself; raise to the second power.

square number A positive integer that can be written as n2 for 
some integer n. Also known as a perfect square.

statistics The branch of mathematics dealing with the collecting, 
tabulating, and summarizing of numerical information obtained 
from observational or experimental studies and drawing conclu-
sions about the population from which the data were selected.

stochastic process A statistical technique of estimation that uses 
randomly selected observations.

subroutine A segment of computer code that instructs the com-
puter to perform specific functions.

surd A numerical expression such as 2 +  and 8 -  con-
taining irrational numbers that arise solely from the operations 
of taking square or higher roots.

symmetry The property of an algebraic expression or a geometri-
cal object for which parts can be interchanged without changing 
the structure of the expression or object.

system of equations See simultaneous equations.
tangent For an acute angle in a right triangle, the ratio of the 

opposite side to the adjacent side.



Tauberian theorem A result about the weighted average of a 
divergent infinite series.

theorem A mathematical property or rule.
topology The branch of mathematics concerned with the study 

of the properties of geometrical surfaces.
transcendental number A real number that is not the root of an 

algebraic equation.
transfinite number A number that gives the cardinality of an 

infinite set.
triangle A polygon with three vertices and three edges.
triangular number A positive integer that can be written as 1 + 2 +

3 + . . . + n for some integer n.
trigonometric functions The functions sin(x), cos(x), and tan(x) 

that form the basis of the study of trigonometry.
trigonometry The study of right triangles and the relationships 

among the measurements of their angles and sides.
Turing machine An abstract machine proposed by Alan Turing 

as the logical basis for digital computers that moved from one 
state to another based on the symbols it scanned on a tape, the 
state it was in, and the rules specified in its operation table.

Turing test An experiment proposed by Alan Turing to deter-
mine if a computer possessed artificial intelligence. A person typ-
ing at a keyboard sending questions to and receiving responses 
from a remote source must determine whether the respondent at 
the other end of the conversation is a human or a computer.

uncountable An infinite set is uncountable if it cannot be put into 
a one-to-one correspondence with the set of natural numbers.

unit fraction A fraction whose numerator is 1 such as 

.

unit interval The set of all real numbers between 0 and 1, written 

as [0, 1] or as
 

.

unit square The set of all points in the x-y plane whose coordi-

nates lie between 0 and 1, written as
 

.
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variable A letter used to represent an unknown or unspecified 
quantity.

vertex The endpoint of a segment in a geometric figure.
volume The amount of space occupied by a three-dimensional 

object.
von Neumann algebra A ring of operators in a Hilbert space.
von Neumann architecture A design for computers in which the 

program is electronically stored in the memory of the computer 
and the hardware is subdivided into five functional units for com-
putation, logical control, memory, input, and output.
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Sierpiński composite number 

theorem  36
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