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PREFACE

Mathematics is a human endeavor. Behind its numbers, equa-
tions, formulas, and theorems are the stories of the people 

who expanded the frontiers of humanity’s mathematical knowledge. 
Some were child prodigies while others developed their aptitudes 
for mathematics later in life. They were rich and poor, male and 
female, well educated and self-taught. They worked as professors, 
clerks, farmers, engineers, astronomers, nurses, and philosophers. 
The diversity of their backgrounds testifies that mathematical tal-
ent is independent of nationality, ethnicity, religion, class, gender, 
or disability.

Pioneers in Mathematics is a five-volume set that profiles the 
lives of 50 individuals, each of whom played a role in the develop-
ment and the advancement of mathematics. The overall profiles do 
not represent the 50 most notable mathematicians; rather, they are 
a collection of individuals whose life stories and significant con-
tributions to mathematics will interest and inform middle school 
and high school students. Collectively, they represent the diverse 
talents of the millions of people, both anonymous and well known, 
who developed new techniques, discovered innovative ideas, and 
extended known mathematical theories while facing challenges and 
overcoming obstacles.

Each book in the set presents the lives and accomplishments 
of 10 mathematicians who lived during an historical period. The 
Birth of Mathematics profiles individuals from ancient Greece, 
India, Arabia, and medieval Italy who lived from 700 b.c.e. to 1300 
c.e. The Age of Genius features mathematicians from Iran, France, 
England, Germany, Switzerland, and America who lived between 
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the 14th and 18th centuries. The Foundations of Mathematics presents 
19th-century mathematicians from various European countries. 
Modern Mathematics and Mathematics Frontiers profile a variety of 
international mathematicians who worked in the early 20th and the 
late 20th century, respectively.

The 50 chapters of Pioneers in Mathematics tell pieces of the 
story of humankind’s attempt to understand the world in terms of 
numbers, patterns, and equations. Some of the individuals profiled 
contributed innovative ideas that gave birth to new branches of 
mathematics. Others solved problems that had puzzled mathemati-
cians for centuries. Some wrote books that influenced the teaching 
of mathematics for hundreds of years. Still others were among the 
first of their race, gender, or nationality to achieve recognition for 
their mathematical accomplishments. Each one was an innovator 
who broke new ground and enabled their successors to progress 
even further.

From the introduction of the base-10 number system to the 
development of logarithms, calculus, and computers, most sig-
nificant ideas in mathematics developed gradually, with countless 
individuals making important contributions. Many mathematical 
ideas developed independently in different civilizations separated 
by geography and time. Within the same civilization, the name of 
the scholar who developed a particular innovation often became 
lost as his idea was incorporated into the writings of a later math-
ematician. For these reasons, it is not always possible to identify 
accurately any one individual as the first person to have discovered 
a particular theorem or to have introduced a certain idea. But then 
mathematics was not created by one person or for one person; it is 
a human endeavor.
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INTRODUCTION

Mathematics Frontiers, the fifth volume of the book set Pioneers 
in Mathematics, profiles the lives of 10 mathematicians of 

the second half of the 20th century. Each has left his or her own 
mark, but collectively they constitute a cross section of the interna-
tional mathematics community during an era when that community 
became more diverse and when the United States emerged as a 
leading center for mathematical research. This period of years also 
witnessed the resolutions of many long-standing open problems, 
significant developments in both pure and applied mathematics, 
and the introduction of new mathematical ideas that made possible 
major technological advances.

The mathematicians profiled in this volume exemplify a growing 
diversity within the mathematical community. The advancement of 
mathematical knowledge today draws on the talents of individuals 
from all nationalities, races, ethnicities, and genders. This particu-
lar group of women and men from the United States, Great Britain, 
Hong Kong, Taiwan, Belgium, and Ireland are representative of 
the broader international community of scholars.

During the latter half of the 20th century, the United States 
rose to prominence within the international mathematical com-
munity. The Institute for Advanced Study in Princeton, New 
Jersey, emerged as a leading research center, attracting many of the 
world’s top mathematicians for extended periods of collaboration. 
The establishment of strong research groups at many U.S. universi-
ties and at industrial sites such as Bell Laboratories in New Jersey 
drew prominent scholars from around the world and fostered the 
development of talented young people. Although only three of the 
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10 mathematicians profiled in this book were born in the United 
States, eight of them spent or have spent the majority of their 
careers at American institutions.

Several of these mathematicians solved problems that had resisted 
solution for many years. Julia Robinson’s work of more than 20 years 
with Diophantine equations produced research results that were 
essential in solving Hilbert’s 10th problem, a question that mathema-
ticians had been investigating since the beginning of the 20th centu-
ry. Shing-Tung Yau solved the Calabi conjecture about geometrical 
properties of surfaces and many other open problems in differential 
geometry. In one of the most celebrated mathematical achievements 
of the century, Andrew Wiles proved Fermat’s last theorem, a prob-
lem that had remained unsolved for more than 300 years.

Mathematicians in the 20th century made significant discover-
ies in both pure and applied mathematics. John H. Conway helped 
complete the classification of all finite groups, invented the Game 
of Life, and performed extensive mathematical analysis of other 
games of strategy. J. Ernest Wilkins, Jr., developed techniques for 
radiation shielding to guard against the effects of the gamma rays 
produced by nuclear reactions. Stephen Hawking established the 
mathematical basis for black holes and other advanced theories in 
mathematical physics. John Nash won the Nobel Prize in econom-
ics for his introduction of Nash equilibrium for cooperative and 
noncooperative games.

Advances in mathematics made possible many of the technologi-
cal developments of the electronic age. Fan Chung developed an 
encoding and decoding algorithm for cellular telephone calls and 
analyzed aspects of the mathematical structure of the network of 
computers that forms the Internet. Ingrid Daubechies’s develop-
ment of Daubechies wavelets led to new image processing tech-
niques for fingerprint analysis, computer animation, and medical 
imaging. Sarah Flannery developed a new cryptographical method 
for securely and efficiently transmitting coded messages.

The 10 individuals profiled in this volume represent the thou-
sands of scholars who have made modest and momentous math-
ematical discoveries that have advanced the world’s knowledge. 
The stories of their achievements provide a glimpse into the lives 
and the minds of some of the pioneers in mathematics.
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Discoveries in Number Theory and 
Mathematical Logic

Working for most of her professional career without a full-time 
faculty appointment, Julia Robinson made significant discover-
ies in mathematical logic and number theory. The theorems she 
proved about decision problems in rings and fields contributed new 
results to mathematical logic. In number theory her formulation 
of the Robinson hypothesis and her proofs of key theorems about 
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Julia Robinson
(1919–1985)

1

Julia Robinson formulated the 
Robinson hypothesis and proved 
key theorems about exponential 
Diophantine equations that were 
essential to the solution of Hilbert’s 
10th problem. (Courtesy of Constance 
Reid)
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exponential Diophantine equations were essential to the solution of 
Hilbert’s 10th problem. She became the first woman mathematician 
to be elected to the National Academy of Science, serve as president 
of the American Mathematical Society, and receive the MacArthur 
Foundation Prize for contributions to mathematics.

Student of Mathematics
Julia Hall Bowman was born on December 8, 1919, in St. Louis, 
Missouri, to Ralph Bowers Bowman, the owner of a machine tool 
and equipment business, and Helen Hall Bowman, a business col-
lege graduate. When her mother died in 1922, Julia and her older 
sister, Constance, went to live with their grandmother in a small 
desert community near Phoenix, Arizona. A year later her father 
sold his business and moved to Arizona with his second wife, Edenia 
Kridelbaugh, a former schoolteacher. In 1925 the family moved to 
Point Loma, California, where Julia attended the local elementary 
school until the age of nine, when she contracted scarlet fever, rheu-
matic fever, and chorea. After spending a year in bed at the home of 
a practical nurse and another year recuperating at her family’s new 
home in San Diego, she worked with a tutor three mornings a week 
and within 12 months had successfully mastered the curriculum for 
grades five through eight.

In addition to pistol and rifle shooting, horseback riding, and art, 
Bowman developed a deep interest in mathematics that evolved dur-
ing her years in high school and college. When she graduated from 
San Diego High School in 1936, she won the school’s awards for 
mathematics, biology, and physics as well as general excellence in sci-
ence. At the age of 16 she entered San Diego State College, intending 
to pursue her certification as a teacher of mathematics. Upon reading 
Eric Temple Bell’s book Men of Mathematics for a course on the his-
tory of mathematics, however, she became fascinated by the idea of 
mathematical research and developed an interest in number theory. 
After her junior year she transferred to the University of California 
at Berkeley to pursue a career as a research mathematician.

At Berkeley Bowman became a member of a large, supportive 
community of mathematics students and faculty members. She 
graduated with a bachelor’s degree in mathematics in 1940 and 
enrolled in Berkeley’s graduate program, where she was elected to 



the honorary mathematics fraternity. During her first year of grad-
uate studies she worked for the Russian statistician Jerzy Neyman 
as a laboratory assistant in the Berkeley Statistical Laboratory, and 
in 1941 she completed her master’s degree in mathematics. She 
passed the civil service examination to become a junior statistician 
but declined the offer of a position as a night clerk in Washington, 
D.C., deciding instead to continue her graduate studies in math-
ematics. During her second year of graduate school she obtained a 
teaching assistantship to teach introductory statistics. In December 
1941 she married Raphael Robinson, who had been her profes-
sor for a number theory course during her first year at Berkeley. 
Because university regulations prohibited a husband and a wife from 
teaching for the same department, she worked on military projects 
as a research assistant in the Berkeley Statistical Laboratory during 
World War II, while continuing to audit graduate mathematics 
classes. Her work at the “stat lab” led to her first publication, a 1948 
paper titled “A Note on Exact Sequential Analysis,” which appeared 
in the University of California Publications in Mathematics. In this 
paper she presented a new proof of a recently published result on 
the statistical analysis of sequences of numbers.

Decision Problems in Arithmetic
While spending the academic year 1946–47 at Princeton University 
in New Jersey, where her husband was a visiting professor, Robinson 
became interested in problems in the area of mathematical logic, 
the branch of mathematics dealing with formal argumentation and 
consistent reasoning about abstract structures. When she returned 
to Berkeley in 1947, she started a doctoral program under the 
direction of Polish logician Alfred Tarski. In June 1948 she earned 
her Ph.D. for a dissertation titled “Definability and Decision 
Problems in Arithmetic,” which was published the following year 
in the Journal of Symbolic Logic. Her research extended the work of 
Tarski and Moravian-born American logician Kurt Gödel. In his 
1931 undecidability theorem for the arithmetic of natural numbers, 
Gödel had proven that there could not be a single algorithm capable 
of deciding the truth of every statement involving addition, multi-
plication, elementary logic, and variables representing positive inte-
gers. In 1939 Tarski had shown that the arithmetic of real numbers 
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is decidable by proving that there was an algorithm to determine 
the truth of such statements about real numbers. Robinson’s dis-
sertation proved that the arithmetic of rational numbers—numbers 
that can be written as fractions of two integers—was undecidable 
by showing that every equation involving rational numbers could 
be transformed into an equation involving integers by an algorithm 
with finitely many steps. Although mathematicians have continued 
to work on this problem, no one has improved on Robinson’s result 
that the arithmetic of rational numbers is adequate for the formu-
lation of all problems of elementary number theory and that the 
rational number field is algorithmically unsolvable.

In subsequent years Robinson continued this line of research, 
publishing three additional papers on decision problems in math-
ematical logic. Her 1959 paper “The Undecidability of Algebraic 
Rings and Fields,” published in the Proceedings of the American 
Mathematical Society, extended the results of her dissertation to 
decision problems for more general mathematical structures known 
as rings and fields. In her 1962 paper “On Decision Problems for 
Algebraic Rings,” appearing in Studies in Mathematical Analysis and 
Related Topics: Essays in Honor of George Pólya, she showed that rings 
of integers of various fields of algebraic numbers are undecidable. At 
the 1963 International Symposium at Berkeley, she presented fur-
ther results in a paper titled “Definability and Decision Problems in 
Rings and Fields,” published in 1965 in the monograph The Theory 
of Models. Her work enabled other mathematicians to show that the 
decision problem for arbitrary number fields was unsolvable.

Game Theory and Politics
From 1949 to 1950 Robinson worked as a junior mathematician at 
RAND Corporation in Santa Monica, California, where she investi-
gated strategies for finite two-person zero-sum games in which two 
competing participants make choices that result in a payoff for one 
player and a penalty of equal magnitude for the other. She devel-
oped an iterative solution for the value of the “fictitious play” prob-
lem in which each player utilizes an optimal strategy in response to 
all the opponent’s moves so far. In her paper “An Iterative Method 
of Solving a Game,” which was published in 1951 in Annals of 



Mathematics, she proved that as the number of plays increases, the 
payoffs for the two players will converge to the value of the game. 
This paper, her only work in this branch of mathematics, remains a 
fundamental result in game theory more than 50 years later.

Throughout the 1950s Robinson continued her involvement in a 
number of endeavors outside her primary area of research in math-
ematics. In 1951–52 she worked as an applied mathematician at 
Stanford University under a grant from the Office of Naval Research 
performing research on hydrodynamics, the study of the properties 
of fluids in motion. When the administrators of California’s state 
universities required all employees to sign an anticommunism 
loyalty oath, Robinson worked to support the faculty members 
who had lost their jobs for refusing to comply. She became deeply 
involved in Democratic Party politics, actively working for Illinois 
governor Adlai Stevenson’s unsuccessful 1952 and 1956 presidential 
campaigns. In 1958 she served as a county campaign manager for 
Alan Cranston who was elected as state controller.

Hilbert’s 10th Problem
While pursuing her diverse interests, Robinson continued to engage 
in mathematical research in the area of number theory, the branch 
of mathematics concerned with the properties of the positive inte-
gers. The primary focus of her research for most of her mathemati-
cal career was Diophantine analysis, the area of number theory 
that deals with methods for finding integer solutions of polynomial 
equations with integer coefficients. In 1900 German mathematician 
David Hilbert had proposed a set of 23 problems that he viewed 
as central to the progress of mathematics during the 20th century. 
The 10th problem on his list challenged mathematicians to find an 
algorithm to determine if a given Diophantine equation had any 
integer solutions. From 1948, when she first started working on 
Hilbert’s 10th problem, to 1976, when she published her last paper 
on the subject, she made a number of significant discoveries that 
were indispensable to the resolution of this problem.

Robinson’s initial contributions to the solution of Hilbert’s 10th 
problem involved recursive functions, functions in which the value at 
each positive integer is defined in terms of its values at smaller positive 
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integers. In 1950 at the International Congress of Mathematicians 
at Harvard University in Cambridge, Massachusetts, she presented 
a brief talk entitled “General Recursive Functions” that was later 
published in the Proceedings of the American Mathematical Society. 
In this paper she proved that all general recursive functions of one 
variable can be obtained from two special primitive recursive func-
tions by two operations known as composition and inversion. She 
discovered additional properties of recursive functions and recur-
sively defined sets in several later papers.

In her 1952 paper “Existential Definability in Arithmetic,” 
published in the Transactions of the American Mathematical Society, 
Robinson proved several important results about existential defin-
ability and exponential functions. A set of positive integers is exis-
tentially definable if a parameter in a solvable Diophantine equation 
generates all the values in the set. Exponentiation is the higher-order 
operation, more sophisticated than addition and multiplication, in 
which the power or exponent in an algebraic expression is a variable
rather than a fixed number. In this paper Robinson proved that the 
binomial coefficients, the factorials, and the prime numbers are exis-
tentially definable in terms of exponentiation. She also proved that 
the exponential relation x = yz is existentially definable in terms of any 
function that demonstrates roughly exponential growth. By broad-
ening the scope of the investigation beyond polynomial Diophantine 
equations to exponential Diophantine equations, this paper made a 
major contribution to the solution of Hilbert’s 10th problem.

From 1959 to 1961 Robinson collaborated with U.S. researchers 
Martin Davis and Hilary Putnam to produce a result that brought 
them within one step of the complete solution of Hilbert’s 10th 
problem. In 1959 Davis and Putnam sent Robinson an early draft 
of a paper they were writing about exponentiation and recursive 
sets. Robinson helped simplify the proof and strengthen the theo-
rem by removing one of the restrictive conditions. Their collab-
orative efforts resulted in the paper “The Decision Problem for 
Exponential Diophantine Equations” that appeared in 1961 in the 
Annals of Mathematics. In this paper they proved that every recur-
sively enumerable set is existentially definable in terms of exponen-
tiation. As a consequence of this result, they showed that there is 
no algorithm for deciding if an exponential Diophantine equation 
has integer solutions.



In this paper Robinson proposed a conjecture known as the 
Robinson hypothesis in which she theorized that there exists a 
Diophantine equation that grows faster than a polynomial but not 
as fast as an exponential function. If true, exponentiation would be 
existentially definable, exponential Diophantine equations would 
be equivalent to polynomial Diophantine equations, and there-
fore the answer to Hilbert’s 10th problem would be negative—
it would be impossible to create an algorithm to determine if a 
given Diophantine equation had integer solutions. At the 1960 
International Congress on Logic, Methodology, and Philosophy 
of Science, she presented their joint work in a paper titled “The 
Undecidability of Exponential Diophantine Equations.”

Julia Robinson  7

The graph of the exponential function y = 2x grows faster than the graph of the 
polynomial function y = x2. The Robinson hypothesis that formed the essential 
step in the solution of Hilbert’s 10th problem conjectured that there exists a 
Diophantine equation that grows faster than a polynomial but not as fast as an 
exponential function.
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Robinson underwent heart surgery in 1961 to remove scar tissue 
related to her childhood bout with rheumatic fever. After the surgery 
her health improved so that she could enjoy bicycling, hiking, and 
canoeing and could teach one graduate mathematics course per year 
as a part-time lecturer at Berkeley. She became a frequent participant 
at number theory conferences, presenting papers about her continu-
ing work on Diophantine equations. In her 1968 paper “Recursive 
Functions of One Variable,” which appeared in the Proceedings 
of the American Mathematical Society, she showed that all general 
recursive functions can be obtained from two functions known as 
the zero function and the successor function by using the opera-
tion of composition and the technique of general recursion. The 
same journal published her related research in a 1968 paper titled 
“Finite Generation of Recursively Enumerable Sets” and her 1969 
papers “Finitely Generated Classes of Sets of Natural Numbers” 
and “Unsolvable Diophantine Problems.” She also wrote summary 
articles that surveyed the current status of research on Hilbert’s 10th 
problem. Two of these were her 1969 article “Diophantine Decision 
Problems,” which appeared in Studies in Number Theory, and her pre-
sentation at the 1969 Summer Institute on Number Theory at Stony 
Brook, New York, titled “Hilbert’s Tenth Problem.”

In January 1970, 22-year-old Russian mathematician Yuri 
Matijasevich provided the final step in the solution of Hilbert’s 
10th problem by discovering a Diophantine equation that sat-
isfied the Robinson hypothesis. He showed that the relation
n = F2m, where F2m is the 2mth element of the sequence of Fibonacci 
numbers 1,1,2,3,5,8,13,21, . . . , can be expressed as a polynomial 
Diophantine equation involving n, 2m, and other integer-valued 
variables. Matijasevich’s construction of this example provided 
the necessary existential definition of a Diophantine relation that 
grows faster than a polynomial but not as fast as an exponential 
function, as Robinson had conjectured. Having completed the solu-
tion of Hilbert’s 10th problem, Robinson, Matijasevich, Davis, and 
Putnam joined the “Honors Class” of mathematicians who earned 
international recognition by solving Hilbert’s problems.

After the negative resolution of this famous question, Robinson 
started to investigate other properties of Diophantine equations. 
At the Fourth International Congress on Logic, Methodology, 
and Philosophy of Science held in 1971 in Bucharest, Romania, 



she presented a paper titled “Solving Diophantine Equations” 
in which she classified Diophantine equations for which known 
methods provided integer solutions. In her 1973 paper “Axioms for 
Number Theoretic Functions,” which appeared in Selected Questions 
of Algebra and Logic, she gave a finite set of axioms for number-theo-
retic functions from which the Peano axioms can be derived.

Initiating a research collaboration with Matijasevich, Robinson 
succeeded in developing methods to reduce the number of vari-
ables needed in a Diophantine equation. In their 1974 paper 
“Two Universal Three-Quantifier Representations of Enumerable 
Sets,” published in the Russian journal Theory of Algorithms and 
Mathematical Logic, they proved that the relation of exponential 
growth could be defined using only three variables. The follow-
ing year their joint paper “Reduction of an Arbitrary Diophantine 
Equation to One in 13 Unknowns” published in Acta Arithmetica 
showed how any Diophantine equation could be rewritten as an 
equivalent equation using at most 13 variables. Matijasevich later 
succeeded in reducing the necessary number of variables to nine. 
He insisted that Robinson be listed as a coauthor of this discov-
ery in recognition of her contributions to the methods used, but 
Robinson refused to accept any credit for the improved result. As 
a consequence, the discovery was not published until 1982 when 
Canadian mathematician James Jones included it in his paper 
“Universal Diophantine Equation” in the Journal of Symbolic Logic.

Robinson, Matijasevich, and Davis collaborated on a 1974 paper 
titled “Hilbert’s Tenth Problem. Diophantine Equations: Positive 
Aspects of a Negative Solution.” Robinson presented this paper in 
May 1974 at the Symposium on Hilbert’s Problems held at Northern 
Illinois University in De Kalb. The paper presented a nontechnical 
introduction to many results obtained by mathematical logicians in 
connection with Hilbert’s 10th problem. Published in 1976 in the 
conference proceedings, titled Mathematical Developments Arising 
from Hilbert’s Problems, this article was her final published paper.

Honors and Service to the Profession
From 1976 to 1985 Robinson spent most of her time working in 
service to her professional colleagues and accepting honors that her 
role in the solution of Hilbert’s 10th problem had merited. In 1976 
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she was elected to the National Academy of Sciences (NAS). That 
same year the University of California at Berkeley, where she had 
been teaching as a part-time lecturer, appointed her to their per-
manent faculty as a full professor with a reduced teaching load. In 
1978 she was elected vice president of the American Mathematical 
Society (AMS) and was inducted into the American Association for 
the Advancement of Science.

Two professional mathematical societies honored Robinson by 
asking her to deliver major lectures at national conferences. In 1980 
the AMS invited her to present the prestigious Colloquium Lectures 
at their 84th summer meeting at the University of Michigan in Ann 
Arbor. Her four lectures, collectively titled “Between Logic and 
Arithmetic,” addressed the spectrum of her interests in mathemati-
cal logic and number theory: Gödel’s work and the concept of com-
putability, Hilbert’s 10th problem and exponential Diophantine 
equations, decision problems for various rings and fields, and 
nonstandard models of arithmetic. The Association for Women in 
Mathematics (AWM) named her their Emmy Noether Lecturer 
for the Joint Mathematics Meetings in Cincinnati, Ohio, in January 
1982. At that conference thousands of mathematicians from the 
Society of Industrial and Applied Mathematics, the Mathematical 
Association of America, the AMS, and the AWM gathered to hear 
her lecture “Functional Equations in Arithmetic.”

Over the next few years the AMS and other organizations con-
tinued to recognize Robinson’s achievements. In 1982 her mathe-
matical colleagues elected her to become the president of the AMS. 
During her term of office as president-elect in 1982–83 and presi-
dent in 1983–84, she worked to support programs that provided 
greater opportunities for women and underrepresented minorities 
in mathematics and the sciences. In 1983 she was awarded the John 
D. and Catherine T. MacArthur Foundation Prize for contributions 
to mathematics, an award that provided her an annual research sti-
pend of $60,000 for five years. In 1985 the American Academy of 
Arts and Sciences elected her to membership. That same year the 
Council of Scientific Society Presidents elected her as their chair, 
but she declined due to her failing health.

On July 30, 1985, after a yearlong battle with leukemia, Robinson 
died at the age of 65. To honor her memory San Diego High School 



instituted the Julia Robinson Prize in Mathematics, an annual award 
presented to the outstanding mathematics student in the graduating 
class. Her husband established the Julia B. Robinson Fellowship 
Fund to provide fellowships for graduate students in mathematics 
at Berkeley. These memorial awards encourage and enable talented 
young people to pursue their interests in mathematics.

Conclusion
Before she died, Julia Robinson asked that she be remembered not 
as the first woman to receive particular honors or to be elected to 
certain offices but rather for the problems she solved and the theo-
rems she proved. Although she was the first woman mathematician 
to be elected to the NAS, to serve as president of the AMS, and to 
win the MacArthur Foundation Prize, she earned her reputation as 
a research mathematician by the significance of her discoveries in 
mathematical logic and number theory. The results she obtained 
in her doctoral dissertation and subsequent research papers about 
decision problems in rings and fields contributed new discoveries 
to the understanding of decision problems in mathematical logic. 
Her conjecture of the Robinson hypothesis and her proofs of key 
theorems about exponential Diophantine equations proved to be 
essential steps in the resolution of Hilbert’s 10th problem.
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develop radiation shields to guard 
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Mathematician, Scientist, and 
Engineer

In his productive 60-year career, J. Ernest Wilkins, Jr., earned 
national recognition for his contributions to mathematics, sci-
ence, and engineering. He was among the first African Americans 
to earn a doctoral degree in mathematics, have an appointment at 
the Institute for Advanced Study, and be elected to the National 
Academy of Engineering. His mathematical research contributed 
to differential equations, advanced calculus, geometry, function 
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theory, and the study of polynomials. He designed optical instru-
ments for space telescopes and heat fins to cool engines. His 
most significant achievements—his discoveries about gamma-ray
penetration and the distribution of neutron energies—were impor-
tant for designing nuclear power plants and radiation shields.

Early Achievements
Jesse Ernest Wilkins, Jr., was born in Chicago on November 23, 
1923, to J. Ernest Wilkins, Sr., and Lucille Robinson Wilkins. 
A successful attorney, Ernest’s father served as president of the 
Cook County Bar Association, the professional society of African-
American lawyers in the cities and towns near Chicago. In the 
1950s he achieved national prominence when President Dwight D. 
Eisenhower appointed him to the Civil Rights Commission and to 
the position of assistant secretary of labor. After graduating from 
college, Ernest’s mother earned a master’s degree and pursued a 
career as a teacher in the Chicago schools. Ernest’s younger broth-
ers, John and Julian, both earned law degrees and joined their 
father’s legal practice.

As a young child Wilkins demonstrated advanced mental abili-
ties, reciting the alphabet when he was only 13 months old and 
learning how to add, subtract, multiply, and divide by the age of 
five. In elementary school his score of 163 on an IQ test classi-
fied him as a genius. A competitive person, he mastered the card 
game of blackjack when he was seven and a few years later won his 
community’s Ping-Pong championship.

In school Wilkins established a record of academic distinction. 
Excelling in all his subjects, he finished high school four years early 
and, at the age of 13, became the youngest student ever to enroll 
at the University of Chicago. There his professors selected him 
for membership in Phi Beta Kappa, the oldest and most respected 
national honor society for college students. In the William Lowell 
Putnam Mathematical Competition, a national problem-solving 
contest sponsored by the Mathematical Association of America, he 
finished among the top-10 competitors in the country. In 1940, at 
the age of 16, he graduated from college with a bachelor’s degree 
in mathematics.



The University of Chicago invited Wilkins to continue his 
education and pursue a doctoral degree in mathematics. To earn 
this degree, a student must take additional courses and conduct 
research to prove a new theorem or rule in mathematics. After 
completing a year of advanced courses, Wilkins earned a master’s 
degree in mathematics in 1941. In the next year and a half, he 
completed specialized high-level mathematics courses and worked 
with his research adviser Magnus Hestenes to develop a technique 
that could be used to solve some problems from advanced cal-
culus. He presented the results of his research in his dissertation 
“Multiple Integral Problems in Parametric Form in the Calculus of 
Variations.” In December 1942, a few weeks after his 19th birthday, 
Wilkins became the eighth African American to earn a doctoral 
degree in mathematics.

Mathematics Professor
The School of Mathematics at the Institute for Advanced Study 
(IAS) in Princeton, New Jersey, offered Wilkins a postdoctoral 
fellowship to be one of eight mathematicians conducting research 
for the year 1942–43 at the country’s most prominent institution 
for mathematics. He embraced this opportunity, becoming only 
the second African-American mathematician to receive a visit-
ing appointment at the IAS. Devoting his full-time efforts to his 
research, Wilkins discovered new results in advanced geometry and 
wrote papers describing his findings. In 1943 the Duke Mathematical 
Journal published his first two research papers: “The First Canonical 
Pencil” and “A Special Class of Surfaces in Projective Differential 
Geometry.”

After his postgraduate year at the IAS, Wilkins had difficulty 
obtaining a position as a college mathematics professor. The only 
institutions willing to hire an African-American faculty member were 
the few colleges and universities in the South that are often referred 
to as the “historically black colleges and universities” (HBCUs). 
These schools had been established primarily to educate African-
American men and women because most institutions of higher 
learning refused to accept them as students. One of these institu-
tions, Tuskegee Institute in Alabama, hired Wilkins as a professor in 
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its mathematics department for the year 1943–44. Although he was 
younger than some of his students, his knowledge of mathematics 
and his concern for their education earned their respect. In addition 
to his teaching, he continued his research developing new theories 
and techniques to solve problems in differential equations, advanced 
calculus, advanced geometry, statistics, and the spread of diseases. 
Six mathematics journals published seven of his research papers on 
these topics in the next two years. These included “On the Growth 
of Solutions of Linear Differential Equations,” published in 1944 
in the Bulletin of the American Mathematical Society; his dissertation, 
published in 1944 in the Annals of Mathematics; “A Note on Skewness 
and Kurtosis,” published in 1945 in the Annals of Mathematical 
Statistics; and “The Differential Difference Equation for Epidemics,” 
published in 1945 in the Bulletin of Mathematical Biophysics.

Scientist and Engineer
Although Wilkins’s early achievements indicated that he would 
become a successful mathematical researcher and college professor, 
he left the academic world and spent the next 26 years working in 
industry and on government-sponsored research projects. From 
1944 to 1946 he worked as a physicist at the University of Chicago’s 
Metallurgical Laboratory (Met Lab), where researchers were devel-
oping techniques to change uranium into radioactive plutonium, 
a process that generated incredible heat. Wilkins helped develop 
methods for cooling the equipment that produced the radioactive 
substances. His work at Met Lab was part of the Manhattan Project, 
the U.S. government program to develop a powerful atomic bomb. 
This massive scientific research project brought together the talents 
of thousands of the best mathematicians, scientists, and engineers 
in the world, including 21 scientists who would receive the Nobel 
Prize, the highest recognition for achievement in science.

In 1946 Wilkins joined the American Optical Company in 
Buffalo, New York. For four years he worked as a mathemati-
cian helping design space-probing telescopes. The designs of the 
sophisticated lenses required a knowledge of the curves known as 
conic sections as well as other advanced ideas from geometry and 
physics. He continued to conduct mathematical research, discover-



ing new results in function theory, geometry, differential equations, 
and advanced calculus. Ten of his research papers on these subjects 
were published in mathematics journals. These included “The 
Isoperimetric Problem of Bolza with Finite Side Conditions,” pub-
lished in 1947 in the Bulletin of the American Mathematical Society; “A 
Note on the General Summability of Functions,” published in 1948 
in the Annals of Mathematics; “Neumann Series of Bessel Functions,” 
published in 1948 in the Transactions of the American Mathematical 
Society; and “The General Term of the Generalized Schlömilch 
Series,” published in 1950 in the American Journal of Mathematics. 
In 1947 he married Gloria Stewart; in the next few years the couple 
had a daughter, Sharon, and a son, J. Ernest Wilkins III.

Wilkins experienced another incident of racial discrimination 
in 1947 when he planned to attend a professional meeting of 
the American Mathematical Society (AMS) at the University of 
Georgia, with hundreds of other mathematicians and math profes-
sors. When the organizers of the conference learned that he was 
a black man, they informed him that he would not be allowed to 
stay in the same hotels or eat in the same restaurants as the white 
mathematicians. Instead, they had arranged for him to stay with and 
have his meals with a black family who lived nearby. Angered that 
he was being treated as a second-class citizen, Wilkins canceled his 
travel plans, and for many years he refused to attend mathematics 
conferences in the South.

Gamma Rays
For the next 20 years Wilkins worked to develop peaceful uses of 
nuclear reactions. In 1950 he joined a group of six other scientists 
at Nuclear Development Corporation of America (NDA) in White 
Plains, New York. In his roles as senior mathematician, manager of 
physics and mathematics, director of research and development, and 
a major stockholder in the corporation, he helped make important 
decisions about the company’s future as it grew into an organization 
of more than 300 scientists during the next 10 years.

Wilkins and his NDA colleague Herbert Goldstein studied the 
process of fission in which the nucleus of an atom gives off high-
energy and low-energy rays. Through a series of experiments, they 
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discovered that the high-energy gamma rays penetrate through cer-
tain materials and not through others. Their work, announced in the 
1953 paper “Systematic Calculations of Gamma-Ray Penetration” 
in the journal Physical Review, was important for designing nuclear 
reactors that generate electric power. These discoveries were also 
crucial in the development of radiation shields that protect astro-
nauts and their equipment from gamma rays and other high-energy 
particles that are produced by nuclear reactions that take place in 
the Sun.

Working with Nobel Prize–winning scientist Eugene Wigner, 
Wilkins determined how to predict the quantity of high-energy 
and low-energy rays that would be absorbed by different materials 
during a nuclear reaction. Their work, called the Wigner-Wilkins 
approach to estimating the distribution of neutron energies, was 
an important step in the development of nuclear fuel that could be 
used to produce electricity or to power a submarine or a spacecraft. 
Wilkins presented this work on neutron absorption to other sci-
entists at the 1956 International Conference on Peaceful Uses of 
Atomic Energy.

In addition to his groundbreaking research and his other respon-
sibilities at NDA, Wilkins continued his education. For two-and-
a-half years he attended evening classes at New York University, 
earning a bachelor’s degree in mechanical engineering in 1956. He 
graduated with honors, was elected to the two honorary engineer-
ing societies Pi Tau Sigma and Tau Beta Pi, and received the award 
for the most promising graduating engineer. Three years later, at 
the age of 37, he earned his master’s degree in mechanical engi-
neering from the same university.

From 1960 to 1970 Wilkins continued his research on nuclear 
energy at the Atomic Division of General Dynamics Corporation in 
San Diego, California, where he progressed from assistant chairman 
of theoretical physics and assistant director of defense science and 
engineering to director of computational research. One of his proj-
ects during these years involved cooling nuclear-powered engines. 
Nuclear reactions generate incredible heat that can be directed 
away from the engine by attaching metal fins known as heat sinks. 
He used his knowledge of mathematics to determine what shape 
the fins should be to draw the most heat from the engine. The 



1961 paper “Minimum-Mass Thin Fins with Specified Minimum 
Thickness,” published in the Journal of the Society for Industrial and 
Applied Mathematics, was one of many papers and technical reports 
that detailed the results of his research.

Professor Again
In 1970 Wilkins returned to the academic world, accepting a posi-
tion as distinguished professor of applied mathematical physics at 
Howard University in Washington, D.C. He taught his students 
how to use the theories and techniques of mathematics and phys-
ics to solve applied problems in optics, nuclear power, and other 
branches of science and engineering. His new research interests, 
which spanned gambling strategies, linear systems, roots of polyno-
mials, Hilbert spaces, and multiple integrals, generated eight more 
articles in mathematics journals. Among these were “The Bold 
Strategy in Presence of House Limit,” published in 1972 in the 
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Proceedings of the American Mathematical Society; “An Upper Bound 
for the Expected Number of Real Zeros of a Random Polynomial,” 
published in 1973 in the Journal of Mathematical Analysis Applied; 
and “A Variational Problem in Hilbert Spaces,” published in 1975 
 in Applied Mathematics of Optimization.

In addition to his research and teaching, Wilkins worked with 
James Donaldson, the chairman of Howard’s mathematics depart-
ment, to address the reality that very few African Americans were 
earning graduate degrees in mathematics. Together they organized 
a doctoral program, and in 1976 Howard University became the 
first HBCU to offer a Ph.D. in mathematics. Beyond the boundar-
ies of the university’s campus, Wilkins continued to be active in 
professional communities. He served as president of the American 
Nuclear Society in 1974–75 and was a council member of the AMS 
from 1975 to 1977.

Wilkins left Howard University and spent the years 1977 to 1984 
at EG&G Idaho, a large engineering firm in Idaho Falls. In his 
position as vice president and deputy general manager for science 
and engineering, he coordinated projects involving nuclear science 
and optics. His research papers “Minimum Critical Mass Nuclear 
Reactors, Part I and Part II,” published in 1982 in Nuclear Science 
and Engineering, discussed critical aspects involved in the design 
and operation of nuclear reactors. In “Apodization for Maximum 
Critical Irradiance of Resolution, II,” published in 1984 in the 
Journal of the Optical Society of America A: Optics and Image Science, 
he presented his work on the design and manufacture of optical 
equipment. He spent the year 1984–85 as a visiting scientist at the 
Argonne National Laboratory, the new name of Met Lab where he 
had worked on the Manhattan Project 30 years earlier. By this time 
the focus of work at the facility had become research on the peace-
ful uses of nuclear energy for the U.S. Department of Energy.

Temporary Retirement
Wilkins retired in 1985 but five years later joined the faculty at 
Clark Atlanta University in Georgia as a distinguished professor 
of applied mathematics and mathematical physics. In his 13 years 
at this institution, another of America’s HBCUs, he taught his 



students to use mathematics to solve problems from the areas of 
science and engineering to which he had devoted his career. At 
mathematics conferences he talked to students from other universi-
ties about careers in math and science. In 1992 he made a videotape 
for the AMS, Optimization of Extended Surfaces for Heat Transfer, in 
which he explained how he used mathematics to design the cooling 
fins for nuclear-powered engines. Continuing his own mathemati-
cal research on the roots of polynomials with random coefficients, 
he wrote six more papers, including “Mean Number of Real Zeros 
of a Random Trigonometric Polynomial,” published in 1991 in the 
Proceedings of the American Mathematical Society, and “The Expected 
Value of the Number of Real Zeros of a Random Sum of Legendre 
Polynomials,” published in 1997 in the same journal. In 2003, at 
the age of 79, he retired again and moved back to his hometown of 
Chicago.

Conclusion
Throughout his distinguished career, Wilkins has received honors 
and awards for his achievements in three different fields—science, 
engineering, and mathematics. In 1956, at the age of 32, he was 
elected a fellow of the American Association for the Advancement of 
Science in recognition of the significance of his research on gamma 
rays and radiation shields. He was elected a fellow of the American 
Nuclear Society in 1964 in honor of his work in the field of nucle-
ar engineering. In 1976 the National Academy of Engineering 
acknowledged the importance of his work on the design and devel-
opment of nuclear reactors for generating electrical power by mak-
ing him their second African-American member. The United States 
Army awarded him the 1980 Outstanding Civilian Service Medal. 
The National Association of Mathematicians (NAM) gave him its 
lifetime achievement award in 1994 and established an annual lec-
ture series named in his honor. Every year a different mathematician 
is selected to present his or her work in this, the most important 
lecture at NAM’s annual undergraduate mathematics conference.

During his 60-year career as a mathematician, a scientist, and 
an engineer working for universities, the government, and private 
companies, J. Ernest Wilkins, Jr., produced more than 100 technical 
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reports and research papers in science, engineering, and mathemat-
ics journals. His discoveries on gamma rays and radiation shielding 
have had significant impacts on the aerospace, nuclear medicine, 
and nuclear power industries. Mathematical researchers continue 
to develop his ideas from advanced calculus, advanced geometry, 
and function theory.
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Nobel Prize–Winning Game Theorist

John Nash won the Nobel Prize in economics for his work in game 
theory. His introduction of the concept of Nash equilibrium for 
cooperative and noncooperative games significantly impacted the 
development of game theory and revealed widespread applica-
tions to economics, biology, and political science. His innovative 
research on the imbedding of manifolds and the analysis of fluid 
flows established his reputation as a creative and promising young 
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mathematician. He endured a 30-year struggle with mental illness 
to return to his research in the 1990s.

Education and Early Years
John Forbes Nash, Jr., was born on June 13, 1928, in Bluefield, 
West Virginia, to John Forbes Nash, Sr., an electrical engineer 
with Appalachian Power Company, and Margaret Virginia Martin, 
an English and Latin teacher. Both parents were well educated: 
his father earned a bachelor’s degree from the Agricultural and 
Mechanical College of Texas (now Texas A&M University), and his 
mother studied languages at Martha Washington College and West 
Virginia University. Nash and his younger sister, Martha, attended 
the local public schools and received additional tutoring at home 
from their parents.

As a boy Nash developed interests beyond the standard school 
curriculum. A shy child with underdeveloped interpersonal skills, 
he preferred to read books and perform experiments with elec-
tricity, chemicals, and explosives rather than play sports or attend 
social events. At school he discovered nonstandard methods for 
solving mathematical problems that were superior to the tech-
niques his teachers taught. Reading Eric Temple Bell’s book Men of 
Mathematics, he became interested in the lives of research mathema-
ticians and worked out the proofs of some classic results in number 
theory. During his senior year of high school, he took additional 
mathematics courses at Bluefield College. With his father, Nash, at 
the age of 17, authored the paper “Sag and Tension Calculations 
for Cable and Wire Spans Using Catenary Formulas,” which was 
published in the journal Electrical Engineering in 1945. The article 
described an improved method for calculating the proper tensions 
for electric cables and wires, a project that had entailed weeks of 
field measurements followed by mathematical analysis.

In 1945 Nash won one of 10 George Westinghouse Scholarships in 
a national competition and entered Carnegie Institute of Technology 
(now Carnegie-Mellon University) in Pittsburgh, Pennsylvania. 
Originally enrolled in a degree program in chemical engineer-
ing, he changed his major to mathematics after taking courses in 
tensor calculus and relativity. He competed twice in the William 



Lowell Putnam Mathematical Competition, a national problem-
solving contest for college students sponsored by the Mathematical 
Association of America, but he considered it a failure that he did not 
rank among the top five students in the country either year. As an 
undergraduate, he independently reproved the Brouwer fixed-point 
theorem, the principle from algebraic topology that any continuous 
function on the surface of an n-dimensional sphere must map at least 
one point back into itself. While taking a course in international 
economics, he sketched out original ideas on bargaining strategies 
that formed the basis of a paper he published in 1950.

After earning both a bachelor’s degree and a master’s degree in 
mathematics in 1948, Nash applied to graduate schools to pursue 
his doctoral degree in mathematics. In a one-sentence letter of rec-
ommendation, his mathematics professor Richard J. Duffin wrote 
that Nash was a genius. He turned down offers from the graduate 
programs at Harvard University, the University of Chicago, and 
the University of Michigan to accept a prestigious John S. Kennedy 
Fellowship from Princeton University in New Jersey.

In September 1948 Nash entered Princeton, where he pursued 
broad interests in several branches of pure mathematics, includ-
ing topology, algebraic geometry, game theory, and mathemati-
cal logic. He seldom attended lectures or read the recommended 
textbooks, preferring instead to rediscover mathematical properties 
independently from fundamental principles, a habit that helped 
him develop original methods of inquiry and unique perspectives 
on problems. In the common room of the dormitory he frequently 
played games of logic and strategy, including chess, Go, and 
Kriegspiel. He invented a topological game similar to Hex that the 
other graduate students called “Nash.”

Revolutionizing Game Theory
During a three-year period, from 1948 to 1951, Nash wrote a 
doctoral dissertation and four research papers that revolutionized 
game theory, the branch of mathematics dealing with the study of 
competition and cooperation. In the 1920s Hungarian mathemati-
cian John von Neumann had analyzed two-person, zero-sum games 
in which two competing participants made choices that resulted in 
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a payoff for one player and a penalty of equal magnitude for the 
other. In von Neumann’s later papers and the 1944 book Theory 
of Games and Economic Behavior that he coauthored with Princeton 
economist Oskar Morgenstern, von Neumann had applied the for-
mal mathematical theory of games to the field of economics. Nash 
broadened the scope of game theory to include situations with 
more than two participants and the analysis of general strategies 
for games in which players can either cooperate or compete with 
one another. He introduced concepts, tools, and techniques that 
became fundamental components in the full development of game 
theory and that enabled game theory to be broadly applied to evo-
lutionary biology, economic theory, and political strategies.

Nash’s first published work on game theory was a two-page 
paper titled “Equilibrium Points in n-Person Games” that appeared 
in 1950 in the Proceedings of the National Academy of Sciences. 
Completed during his first 14 months at Princeton and submit-
ted to the academy in November 1949, this brief work introduced 
the definition of an n-person, finite, noncooperative game, a game 
with more than two competitors in which each player selects one 
of finitely many strategies without consulting the other players in 
order to obtain an outcome that is personally advantageous. Using 
the Brouwer fixed-point theorem, Nash concisely proved that in 
any such game, there exists at least one strategic equilibrium, or 
a collection of strategies, one for each player, having the property 
that if all players follow these strategies, no individual player can 
improve his or her outcome by switching to a different strategy.  
The idea of strategic equilibrium, now known as Nash equilibrium, 
has become the most widely used solution concept in game theory. 
Nash equilibriums produced the same results as von Neumann’s 
technique for two-person, zero-sum games and addressed a more 
general class of games in which stable sets, a necessary feature of 
von Neumann’s analysis, did not always exist.

The work presented in his first game theory paper formed the cen-
tral idea of Nash’s doctoral dissertation “Non-Cooperative Games,” 
which he wrote under the direction of his research adviser, Albert 
W. Tucker. In this unpublished 27-page paper that he defended in 
May 1950, he more fully explained the general theory of nonco-
operative n-person games and provided a more detailed proof that 



every such game must have at least one Nash equilibrium point. As a 
concrete example of an equilibrium point, Nash and fellow graduate 
student Lloyd Shapley used Nash’s ideas to analyze a three-handed 
game of poker. When Tucker recommended that Nash not include 
the application in his dissertation, he and Shapley instead published 
their joint work in the paper “A Simple Three-Person Poker Game” 
that appeared later in 1950 in the Annals of Mathematical Studies.

In his dissertation Nash introduced two interpretations of equi-
librium points for rational and mass action games. He defined a 
rational game as a game that is played only once and in which the 
participants reason logically from knowledge of the full structure of 
the game. In a mass action game the game is repeatedly played by 
participants who do not necessarily act rationally and who may not 
know the full structure of the game but who accumulate informa-
tion on the relative advantages of the available strategies. The mass 
action concept did not appear in any of his published papers but was 
independently discovered in the 1970s by biologists studying evolu-
tionary strategies in which the process of natural selection achieves 
equilibrium by driving organisms toward the maximization of fit-
ness. In economics the theory of mass action provided a mathemati-
cal basis for the principle of “survival of the fittest,” which asserts 
that under market conditions, only companies that maximize their 
profits will survive in the long run.

In late 1950 Nash’s paper titled “The Bargaining Problem” was 
published in Econometrica, a journal of mathematical economics. In 
this work he introduced a solution concept for two-person, coop-
erative games with fixed threats known as the Nash bargaining solu-
tion. For games involving two participants who agree in advance 
to pursue a mutually advantageous course of action and to accept 
specified penalties for deviating from the agreed-upon behavior, a 
Nash bargaining solution provided a resolution of the problem that 
was satisfactory to both players. Nash had developed some of the 
basic ideas for this paper while taking an economics course dur-
ing his undergraduate years at Carnegie Institute of Technology. 
He produced a more sophisticated treatment of the problem at 
Princeton during the spring semester of 1949. By introducing four 
axioms, or basic principles, that any solution would have to satisfy, 
he proved the existence of a unique solution that maximized the 
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collection of outcomes for the players. The editors of the journal 
that published the paper were unable to persuade him to replace an 
example involving two children bargaining over a bat, a ball, a toy, 
and a knife with a more sophisticated situation.

The paper also introduced the concept of a Nash bargaining game, 
a simple two-person game in which each player demanded a portion 
of an available resource. If the sum of the two players’ demands did 
not exceed the total value of the resource, both players received what 
they had requested; otherwise, both players received nothing. Nash 
showed that any pair of numbers that added up to the total value 
of the resource constituted one of the infinitely many equilibrium 
points. He also explained that the alternative resources available to 
the two players and the consequences of obtaining no benefit from 
the game introduced many rational alternatives in addition to the 
obvious “50-50” split of the resource. The paper became a classic in 
economic theory and impacted international negotiation strategies.

In 1951 the Annals of Mathematics published Nash’s paper “Non-
Cooperative Games.” One section of this paper extended portions 
of his dissertation by elaborating additional ideas about Nash 
equilibriums and providing a new proof of their existence based on 
Shizuo Kakutani’s fixed-point theorem. The major contribution of 
this article was its introduction of the “Nash Program,” a call by the 
author to reformulate cooperative games into the larger framework 
of noncooperative games. Nash reasoned that a cooperative game 
together with its preplay negotiation or bargaining process among 
the players constituted a larger noncooperative game. This realiza-
tion unified the mathematical analysis of both types of games.

The last of Nash’s five seminal works on game theory was his 
1953 paper “Two-Person Cooperative Games,” which appeared in 
Econometrica. He had originally intended to present the ideas from 
this paper in a section of his dissertation, but his adviser, Tucker, 
had recommended that he remove the topic from an early draft of 
the work. In this paper he more fully developed his ideas on Nash 
bargaining solutions for games with fixed threats that he had dis-
cussed in his “Bargaining” paper and presented Nash bargaining 
solutions for games with variable threats. Nash showed that with 
rational players, a variable threats game—a game in which a player 
can select one of a choice of penalties when the opponent deviates 



from the agreed-upon strategy—reduces to a fixed threat game, 
with each player employing an optimal threat strategy. In contrast 
to traditional economic theory, Nash’s paper showed that the 
rational division of an economic surplus leads to a unique outcome 
rather than being dependent on the players’ negotiation skills.

Nash’s dissertation and four published papers on game theory 
impacted developments in mathematics, economics, politics, and 
biology. His ideas encouraged game theorists to develop the 
mathematical theories of cooperative and noncooperative games 
independently and under the unified umbrella of noncooperative 
models. Economists used Nash equilibrium as a precise mathemati-
cal approach to analyzing human behavior in diverse competitive 
situations. His ideas on cooperative and noncooperative games 
reshaped modern economic theory. Governmental and military 
leaders used his ideas to analyze strategies for diplomatic negotia-
tions and international military conflicts. In contrast to the typical 
pattern of the acceptance and the use of mathematical ideas, the 
concept of Nash equilibrium flowed gradually from the social

In a 1951 paper Nash gave this example of a two-person noncooperative game 
having two equilibrium points. The payoff matrix indicates that if player 1 uses 
strategy a and player 2 employs strategy A, player 1 will earn a reward of 1 unit 
and player 2 will receive a reward of 2 units. Nash showed that although both 
(a, A) and (b, B) were equilibrium points, in practice both players usually avoid 
the penalty of -4 resulting in a tendency toward state (a, A).
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sciences to the natural sciences, where 20 years later biologists 
started to use his work to understand the logic of animal and plant 
evolution and interaction.

Research on Manifolds and Fluid Flows
Within the international mathematical community Nash acquired a 
reputation as a talented researcher with original ideas. Although his 
work on game theory had brought him some recognition, he earned 
his reputation as a research mathematician primarily for the results 
he obtained in the 1950s on embeddings of manifolds and the anal-
ysis of continuous fluid flows. After receiving his doctoral degree 
from Princeton in 1950, he remained at the university for a year as 
an instructor. In 1951 he accepted a two-year appointment as a C. 
L. E. Moore Instructor in the Department of Mathematics at the 
Massachusetts Institute of Technology (MIT) in Cambridge, where 
he became an assistant professor in 1953. Although his unorthodox 
methods of teaching and examining made him unpopular with the 
students, his broad-ranging research on real algebraic varieties, 
Riemannian geometry, parabolic and elliptic equations, and partial 
differential equations earned him the respect of his colleagues.

As a graduate student at Princeton in 1949, Nash had made 
substantial progress on the solution of a problem from algebraic 
geometry, the branch of mathematics concerned with the study of 
the roots of polynomial equations. He had considered the theo-
rem to be an alternative dissertation topic had his work on game 
theory not been accepted by the mathematics department. In this 
alternate research, Nash was trying to prove that any member of 
a broad category of geometrical surfaces known as manifolds was 
closely related to an algebraic variety, or a surface defined by a 
polynomial equation in a higher-dimensional space. After pre-
senting a preliminary report titled “Algebraic Approximations of 
Manifolds” at the International Congress of Mathematicians held 
at Harvard University in September 1950, Nash spent an additional 
year completing the work. The final paper, titled “Real Algebraic 
Manifolds,” which appeared in the November 1952 issue of the 
Annals of Mathematics, represented a significant contribution to alge-
braic geometry. His result surprised other mathematicians who had 



considered manifolds to be more complicated objects than algebraic 
varieties. His work enabled mathematicians to study manifolds and 
functions related to them by analyzing the zeros of polynomials.

During the next two years Nash further developed his result, 
leading to two additional papers on isometric imbeddings, maps 
from a manifold to a higher-dimensional space that preserve the 
distances between corresponding pairs of points in both spaces. 
In a seminar at Princeton in the spring of 1953, he presented a 
method for imbedding a Riemannian manifold into a three-dimen-
sional Euclidean space. His paper “C1 Isometric Imbeddings” 
describing this method appeared in the November 1954 issue of 
Annals of Mathematics. The imbedding preserved the measurement 
of distances between points but introduced irregularities known 
as singular points where the new surface had undesirable proper-
ties. By the time the paper was published, Nash had resolved the 
difficulties and had submitted a more detailed paper titled “The 
Imbedding Problem for Riemannian Manifolds,” which appeared 
in the January 1956 issue of Annals of Mathematics. His two-part 
technique involved an iterative procedure for finding roots of a 
polynomial equation followed by a smoothing technique to remove 
the singularities. Nash’s imbedding theorem introduced new tech-
niques for solving the set of partial differential equations that arose 
in the process, an ingenious innovation that Russian geometer 
Mikhail Gromov described as a “lightning strike.” Princeton math-
ematician John H. Conway classified Nash’s imbedding theorem as 
one of the most important pieces of mathematical analysis in the 
20th century. When German mathematician Jürgen Moser modi-
fied Nash’s technique and applied it to celestial mechanics in 1966, 
the method became known as the Nash-Moser theorem.

In addition to his work on manifolds, Nash investigated hydro-
dynamics, the study of the properties of fluids in motion. In 1954 
the Bulletin of the American Mathematical Society published his 
paper “Results on Continuation and Uniqueness of Fluid Flow” 
in which he used partial differential equations—equations involv-
ing the derivatives of functions of several variables—to analyze the
irregular motion of fluid dynamics. He obtained a Sloan Fellowship 
that allowed him to spend the academic year 1956–57 at the Institute 
for Advanced Study (IAS) in Princeton and to visit other research 
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mathematicians at New York University’s Courant Institute of 
Mathematical Sciences. During this year he completed research that 
resulted in the conference presentation “Parabolic Equations,” pub-
lished in 1957 in the Proceedings of the National Academy of Sciences, 
and the more detailed paper “Continuity of Solutions of Parabolic 
and Elliptic Equations,” which appeared in 1958 in the American 
Journal of Mathematics. In these papers he developed existence, 
uniqueness, and continuity theorems for parabolic and elliptic equa-
tions. He introduced another innovative approach by transforming 
nonlinear differential equations into simpler linear equations that 
he then solved by nonlinear means. Although his breakthrough 
attracted much attention, including the offer of an appointment at 
the Courant Institute, he was disappointed when he learned that the 
Italian mathematician Ennio De Giorgi had recently obtained the 
same result by different means in the case of elliptic functions.

From 1950 to 1954 Nash also worked as a consultant to the 
RAND Corporation, a research and development agency in Santa 
Monica, California, funded by the United States Air Force. He pro-
duced a collection of technical reports and memorandums analyzing 
applications of game theory to military and diplomatic strategies. 
In August 1950 he submitted a report titled “Rational Nonlinear 
Utility” and the memorandum “Two-Person Cooperative Games” 
that led to his 1953 publication on games involving threats. His 
1952 memo “Some Games and Machines for Playing Them” 
discussed the computerization of game-playing algorithms. With 
RAND colleague Robert M. Thrall he coauthored the 1952 memo 
“Some War Games” that analyzed potential military applications 
of game theory. With Gerhard Kalisch and Evar D. Nering, two 
RAND researchers from the University of Michigan, and John W. 
Milnor, a colleague from Princeton, he cowrote a 1954 report that 
was published in the book Decision Processes under the title “Some 
Experimental n-Person Games.” This joint work reported on the 
results of a bargaining experiment involving hired subjects that 
led to foundational work in the field of experimental economics. 
His 1954 RAND memos “Higher Dimensional Core Arrays for 
Machine Memories,” “Continuous Iteration Method for Solution 
of Differential Games,” and “Parallel Control” focused on com-
puter applications of game theory. Nash lost his security clearance 



and was dismissed from RAND in 1954 after police arrested him
on charges of illicit behavior.

Struggles with Paranoid Schizophrenia
From the late 1950s through the late 1980s, Nash’s life and promis-
ing career deteriorated into a lengthy struggle with mental illness 
interrupted by occasional periods of mathematical insight. He 
married his former student Alicia Esther Larde in February 1957, 
and MIT awarded him tenure a year later, but he soon started to 
exhibit symptoms of a serious mental illness. He experienced audi-
tory hallucinations and claimed that aliens were sending encrypted 
messages to him through articles written in the New York Times. In 
April 1959 his wife committed him to McLean Hospital, a private 
psychiatric institution outside Boston, where doctors diagnosed him 
as paranoid schizophrenic. When he was released from the hospital 
two months later, he resigned his position at MIT, left his wife 
and their newborn son, John Charles Martin Nash, and traveled 
to Europe, where he attempted to renounce his U.S. citizenship. 
After reuniting with his family and moving to Princeton, he spent 
several months at Trenton State Hospital in New Jersey, where he 
was treated with insulin shock therapy.

During a period of remission Nash’s colleagues obtained money 
from the National Science Foundation to provide him with an 
appointment at the IAS for the academic year 1961–62. Returning 
to the topic of hydrodynamics, he extended his prior work on the 
use of partial differential equations to analyze fluid flow. In his 
1962 paper “Le problème de Cauchy pour les équations differen-
tielles d’un fluide general” (Cauchy’s problem for the differential 
equations of a general fluid) published in the Bulletin de la Société 
Mathematique de France (Bulletin of the Society of Mathematics of 
France), he proved the existence and uniqueness of solutions to a 
problem that French mathematician Augustin-Louis Cauchy had 
formulated in the 19th century. His work enabled other researchers 
to develop related results on the general Navier-Stokes equations in 
partial differential equations.

In the mid-1960s Nash experienced two more periods of math-
ematical productivity after extended stays in sanatoriums. In 1963, 
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after his wife filed for divorce, he spent five months at the Carrier 
Clinic in Belle Meade, New Jersey, where doctors treated him with 
the antipsychotic drug thorazine. While at the IAS for the 1963–64 
academic year, he developed a technique to resolve singularities 
on surfaces. Japanese mathematician Heisuke Hironaka named the 
technique the “Nash blowing up transformation” when he described 
the method in his 1983 book Arithmetic and Geometry II. After an 
eight-month stay at the Carrier Clinic in 1965, he worked for two 
years as a research associate at Brandeis University in Waltham, 
Massachusetts. In 1966 the Annals of Mathematics published his 
paper “Analyticity of Solutions of Implicit Function Problems with 
Analytic Data” in which he extended his previous work on the iso-
metric imbedding theorem. During the same year he wrote another 
paper titled “Arc Structure of Singularities” that remained unpub-
lished until 1995, when the Duke Journal of Mathematics published 
it in a special issue dedicated to his lifetime of work.

During the 1970s and 1980s Nash became known as the 
“Phantom of Fine Hall,” a solitary figure who wandered through 
the mathematics building on Princeton’s campus and scribbled 
cryptic messages on blackboards during the night. Living at his 
ex-wife’s house, he spent his time working on independent projects 
at Princeton’s library and computer center. Although most of his 
work during the 1970s was unproductive, he eventually developed 
computer programs to calculate the exact values of large numerical 
quantities. In the early 1990s Nash made a gradual recovery from 
his mental illness and returned to teaching on a limited basis.

Awarded the Nobel Prize
Many organizations have recognized the significance of Nash’s work. 
In 1978 the Institute for Operations Research and Management 
Science awarded him their John von Neumann Theory Prize for 
his introduction of Nash equilibrium in noncooperative games. The 
Econometric Society elected him a fellow in 1990, the American 
Academy of Arts and Sciences elected him a fellow in 1995, and the 
National Academy of Sciences inducted him as a member in 1996. 
The American Mathematical Society awarded him the 1999 Leroy 
P. Steele Prize for Seminal Contribution to Research for his paper 



“The Embedding Problem for Riemannian Manifolds.” In 1994, 
with Hungarian economist John C. Harsanyi and German math-
ematician Reinhard Selten, he was named as cowinner of the Nobel 
Prize in economic sciences for his pioneering work in game theory.

During the past 10 years Nash has returned to his work as a 
mathematician. In August 1996 he described his struggles with 
mental illness in the plenary lecture at the 10th World Congress 
of Psychiatry in Madrid, Spain. The following year he published a 
collection of seven of his articles on game theory in the book Essays 
on Game Theory. In 2001 he remarried his ex-wife, who had helped 
him recover from his illness, and the movie A Beautiful Mind pre-
sented a biographical portrait of his life. Nash holds a position on 
Princeton’s faculty as a senior research mathematician and contin-
ues to pursue research in mathematical logic, game theory, cosmol-
ogy, and gravitation. He lectured at Pennsylvania State University 
in 2003 on the topics of ideal money, space-time and gravitational 
waves, and noncooperative games.

Conclusion
During an intensive 10-year period from 1948 to 1958, John Nash 
made fundamental contributions to game theory, algebraic geom-
etry, and hydrodynamics. His introduction of the concepts of Nash 
equilibrium, the Nash bargaining solution, and the Nash program 
revolutionized the study of cooperative and noncooperative games. 
The Nash-Moser theorem for isometric imbeddings of manifolds 
solved an important problem in algebraic geometry. His work on 
fluid dynamics introduced new techniques in the theory of partial 
differential equations. After recovering from a 30-year struggle 
with mental illness, he was awarded the Nobel Prize in economics.
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Inventor of the Game of Life

John Conway’s creation of the Game of Life introduced a wide audi-
ence to the concept of cellular automata and to the mathematical 
analysis of games. His concept of surreal numbers changed math-
ematicians’ understanding of numbers and games. The Conway 
group and his atlas of finite groups answered long-standing ques-
tions in group theory. His numerous books and papers made signif-
icant contributions to the study of sphere packings, lattices, codes, 
knots, and numerous other areas of mathematics.

John H. Conway
(1937– )

John H. Conway introduced new ideas 
into the mathematical analysis of 
games, the theory of numbers, and 
the classification of finite groups. 
(Robert Matthews)
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Geometrical Puzzles and Finite Groups
John Horton Conway was born on December 26, 1937, in 
Liverpool, England, to Cyril Horton Conway and Agnes Boyce 
Conway. His father, who worked as a laboratory assistant at the 
Liverpool Institute for Boys, introduced Conway and his two older 
sisters to scientific and mathematical ideas at an early age. By the 
time he was four years old, he could mentally perform arithmetical 
computations such as calculating the integer powers of two: 21 = 2, 
22 = 4, 23 = 8, 24 = 16, and so on. He excelled in elementary school, 
where he was one of the top students in most subjects. At the age of 
11, Conway announced that his career goal was to become a math-
ematics professor at Cambridge University. In secondary school 
he was the best student in his mathematics classes and developed 
interests in astronomy, spiders, and fossils.

After completing his high school education, Conway became a 
scholarship student at Gonville and Caius College of Cambridge 
University, where he earned a bachelor’s degree in mathemat-
ics in 1959. He continued his studies at Cambridge, conducting 
graduate-level research under the direction of number theorist 
Harold Davenport. For his doctoral dissertation he solved an open 
problem from classic number theory by proving that every posi-
tive integer can be written as the sum of 37 integers, each raised to 
their fifth power. While in graduate school, he became interested 
in mathematical logic and the properties of transfinite numbers, or 
numbers that specify different degrees of infinity. In 1960 he won 
the college’s Brown Prize for Pure Mathematics. He received his 
doctoral degree two years later and accepted an appointment as a 
lecturer in pure mathematics at Cambridge.

During his years as a student at Cambridge and in the early 
portion of his professional career, Conway pursued his deep 
interest in geometrical puzzles and relationships. In 1961 he and 
fellow student Michael Guy mathematically analyzed the Soma 
cube, a three-dimensional puzzle introduced by Danish inventor 
Piet Hein. They determined all 240 ways to combine the seven 
irregular shapes to form a 3 × 3 × 3 cube. Conway later invented 
a larger variation known as the Conway puzzle whose 18 pieces 
formed a 5 × 5 × 5 cube. In his 1964 paper “Mrs. Perkin’s Quilt,” 
which was published in the Proceedings of the Cambridge Philosophical 



Society, he presented an investigation of the minimum number of 
squares of assorted sizes that would cover an n × n square with no 
gaps and no overlapping areas. Throughout his career he wrote a 
number of articles about similar tiling, tessellation, and covering 
problems. He and Guy also investigated four-dimensional geo-
metrical shapes known as polytopes or polychora. In a paper titled 
“Four-Dimensional Archimedean Polytopes” that he presented at 
the 1965 Colloquium on Convexity in Copenhagen, Denmark, he 
presented their enumeration of the 64 convex, nonprismatic, uni-
form polychora, including a new shape they discovered called the 
Grand Antiprism.

Conway developed new ideas and introduced an innovative 
notation in knot theory, the mathematical study of the properties 
of knots. While in high school he had investigated tangles, the 
fundamental two-dimensional components of knots. In his 1967 
paper titled “An Enumeration of Knots and Links, and Some of 
Their Algebraic Properties,” published in Computational Problems 
in Abstract Algebra, he introduced the Conway knot notation that 
provided a concise method for identifying knots in terms of their 
tangles. He also introduced Conway’s knot—a new knot with 11 
crossings that could not be produced from a combination of sim-
pler knots—and the Conway polynomial—a polynomial whose 
algebraic properties corresponded to the geometric properties of 
the associated knot.

In the late 1960s Conway’s analysis of a massive geometrical 
structure led to the discovery of three new objects and the solution 
of a classic problem in group theory, the branch of algebra con-
cerned with the analysis of mathematical structures. In 1965 English 
mathematician John Leech had found a way to pack hyperspheres in 
24 dimensions so that each object touched 196,560 others. During 
a single 12-hour research session Conway completely analyzed 
the mathematical properties of this Leech lattice. He announced 
his discovery in a 1968 article titled “A Perfect Group of Order
8,315,553,613,086,720,000 and the Sporadic Simple Groups” that 
was published in the Proceedings of the National Academy of Science, 
USA and provided a fuller description of the group in his 1969 
paper “A Group of Order 8,315,553,613,086,720,000,” which 
appeared in the Bulletin of the London Mathematical Society. In his 
research Conway provided the details of a massive group that 
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contained within itself the structures of almost all of the then-
known finite, sporadic simple groups. He showed that the struc-
ture also contained three previously unknown groups now known 
as the Conway groups: Co1, having 4,157,776,806,543,360,000
elements; Co2, having 42,305,421,312,000 elements; and Co3, hav-
ing 495,766,656,000 elements.

During the next 15 years Conway and four of his former doctoral 
students from Cambridge University, Robert T. Curtis, Simon 
P. Norton, Richard A. Parker, and Robert A. Wilson compiled a 
complete listing of all finite groups, a problem that algebraists had 
been trying to solve for more than a century. Their 1985 book 
Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters 
for Simple Groups presented a comprehensive categorization of all 
finite groups—sets with finitely many elements that satisfy four 
algebraic properties—and a detailed description of their structures. 
During the intervening years Conway produced numerous papers 
discussing specific groups, including his 1979 paper with Norton, 
“Monstrous Moonshine,” which appeared in the Bulletin of the 
London Mathematical Society. In this paper they analyzed the mon-
ster group that has more than 8 × 1053 elements and proposed the 
moonshine conjecture relating the monster group with the theory 
of elliptic functions, a conjecture whose solution earned English 
mathematician Richard Borcherds the 1998 Fields Medal.

The Game of Life
The mathematics of games and the invention of new games became 
a hobby and a topic of research for Conway. In the 1960s he and 
Cambridge University colleague Michael S. Patterson invented the 
game Sprouts, a two-person game played with pencil and paper. 
Starting with two dots on a piece of paper, players take turns join-
ing any two dots with a curve that does not cross any curve already 
drawn and then add a new dot somewhere on the new curve. The 
game ends when one player cannot draw a curve joining two dots 
without crossing another curve or connecting to a dot that already 
is connected to three dots. Conway later introduced a modified ver-
sion of this game known as Sprouts that used crosses instead of dots 
and allowed four edges to meet at each cross.



Two other games that Conway invented and analyzed were 
Phutball and Sylver Coinage. Philosopher’s Football, or Phutball, 
is a two-person game played with black and white markers on a 
square grid such as a Go board. After a black marker representing 
the ball is placed at the center of the board, the players take turns 
placing a white stone on the board or jumping the ball over one 
or more white stones in an attempt to move the ball past the goal 
line at the opponent’s edge of the board. In the 1970s Conway 
created the numbers game Sylver Coinage in which two players 
take turns naming a positive integer as the value of a new coin that 
represents a monetary amount that cannot be generated by any 
combination of previously introduced coins. British-born Canadian
mathematician Richard Guy’s article “Twenty Questions 
Concerning Conway’s Sylver Coinage,” which appeared in 1976 
in the American Mathematical Monthly discussed the mathematical 
aspects of this game.

In 1970 Conway invented his most widely known game, the 
Game of Life. In it, each cell on a square grid is designated as either 
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One of the pencil and paper games Conway invented was Sprouts. Starting 
with two crosses, A and B, a possible move for the first player is to join one arm 
of each cross and add a new crossbar at C. The second player might choose to 
connect an arm of C to an arm of B and add a new crossbar at D. The game 
continues until one player cannot connect two arms without crossing an
existing curve.
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alive or dead. In successive time steps, or generations, each live cell 
survives or dies and each dead cell remains dead or springs to life 
based on the status of their eight neighboring cells. A live cell with 
fewer than two neighbors dies of isolation in the next generation, 
while a live cell with more than three neighbors dies of overcrowd-
ing. A dead cell having exactly three neighbors comes to life in the 
next time step.

With this simple set of rules known as “23/3,” Conway discov-
ered configurations of cells that grew, reproduced, and interacted 
with their environment. He found many configurations of cells that 
produced recurring patterns or converged to a fixed pattern with 
the passage of time. A row or column of three cells that he called 

In Conway’s Game of Life, a row of three cells (A) or a column of three cells (B) 
form blinkers that alternate horizontally and vertically from one generation to 
the next. An L–shaped group of three cells (C) becomes a 2 × 2 block of cells 
(D) that remains fixed. A T-shaped pattern of four cells (E) stabilizes to form 
a set of four blinkers after nine generations. Five cells arranged into a pattern 
known as a glider (F) move one space diagonally every four generations.



blinkers alternated horizontally and vertically from one genera-
tion to the next. An L-shaped group of three cells became a 2 × 2 
block of cells that remained fixed. A T-shaped pattern of four cells 
stabilized to form a set of four blinkers after nine generations. Five 
cells arranged into a pattern known as a glider moved one space 
diagonally every four generations.

Mathematics writer Martin Gardner publicized Conway’s Game 
of Life in a series of 10 installments in his “Mathematical Games” 
column in Scientific American magazine between October 1970 
and December 1975. An instant success, Life introduced a wide 
audience to the concept of cellular automata, the generation of 
patterns on grids of cells according to rules concerning the status 
of a cell and its neighbors. Amateur and professional mathemati-
cians implemented Life on computers to analyze a variety of initial 
configurations. When Conway challenged the readers of Gardner’s 
column to create a self-perpetuating life-form, William Gosper at 
the Massachusetts Institute of Technology’s Artificial Intelligence 
Laboratory discovered the glider gun that produced and ejected 
an unending series of gliders. Scientific researchers have used Life 
and other forms of cellular automata to model the role of DNA in 
carrying information between generations of living organisms and 
to investigate questions about the process of evolution and natural 
selection.

Conway’s interest in the mathematical analysis of games led him 
to develop a new category of numbers that became known as sur-
real numbers. While analyzing the game Go in the early 1970s, he 
observed that the last portion of each contest consisted of a collec-
tion of smaller games whose combinations shared many properties 
with numbers. Pursuing this observation, he developed an expanded 
concept of number in which every two-person game is a number. 
His surreal numbers form a natural completion of the number sys-
tem containing the integers, rationals, reals, complex, and transfinite 
numbers. American computer scientist Donald Knuth introduced 
the term surreal in his 1974 novel Surreal Numbers: How Two Ex-
Students Turned on to Pure Mathematics and Found Total Happiness, a 
work of fiction that portrayed Conway in the role of God.

Conway wrote three books about games, their analysis, and 
their relation to numbers. In his 1975 book, All Games Bright and 
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Beautiful, he presented his formal analyses of a large collection 
of games, including some of the games he invented. His 1976 
work, On Numbers and Games, or ONAG as the book has become 
known, explained the relationship between surreal numbers and the 
mathematical analysis of games. In 1982, with fellow mathemati-
cians Richard Guy and Elwyn Berlekamp, he coauthored a two-
volume work titled Winning Ways for Your Mathematical Plays, 
which presented the sophisticated mathematical analysis of hun-
dreds of games of strategy. In chapter 25 of this work, they proved 
that the Game of Life is a universal Turing machine, meaning that 
it can be used as a computer to answer any question that can be 
answered using mathematics.

His work with geometrical puzzles, knot theory, finite groups, 
and the theory of games earned Conway recognition within the 
mathematical community. He was elected a fellow at Cambridge 
University’s Sidney Sussex College in 1964 and at Gonville and 
Caius College in 1970. The London Mathematical Society awarded 
him their 1971 Berwick Prize for his work on finite groups. In 
1975 Gardner dedicated his book Mathematical Carnival to Conway 
for his contributions to recreational mathematics. That same year 
Cambridge promoted him from lecturer to reader in pure math-
ematics and mathematical statistics, a position he held until 1983 
when they promoted him to the rank of professor. He received his 
country’s highest academic honor in 1981 when he was elected a 
fellow of the Royal Society of London.

Analysis of Numbers
In addition to puzzles, games, groups, and knots, Conway made 
many discoveries about numbers and number sequences. He 
published some of his early observations of numerical properties 
in his 1972 book All Numbers Great and Small. In his 1973 paper 
“Tomorrow Is the Day after Doomsday,” published in the journal 
Eureka, he explained his Doomsday algorithm that enabled him 
to calculate mentally the day of the week for any given date in the 
past or the future within two seconds. Using a similar method, he 
was able to determine the phase of the Moon in a similar amount 
of time.



Conway developed an algorithm for generating the entire 
sequence of prime numbers using only the operation of multiplying 
fractions. He presented his technique in 1980 as “Problem 2.4” in 
the journal Mathematical Intelligencer and challenged readers to ana-
lyze his method. His prime producing machine consisted of a list of 
14 fractions lettered A through N. Starting with the number 2, one 
multiplied the current number by the first listed fraction that gen-
erated an integer result. One repeated this process until the answer 
was a power of two. The exponent in this expression was the next 
prime number, and the process of multiplication continued. This 
simple but inefficient algorithm required 280 steps to produce the 
first three prime numbers, 2, 3, and 5.

In his 1986 paper “The Weird and Wonderful Chemistry of 
Audioactive Decay,” which was published in the journal Eureka, 
Conway introduced the look and say sequence and presented a 
thorough analysis of its properties. Beginning with the digit 1, each 
subsequent term of the sequence is generated by reading the num-
ber of consecutive occurrences of each distinct digit in the current 
term. By this rule the second term is “one 1” which is written 11; 
the third term is “two 1s” and is written 21; the fourth term is “one 
2 one 1” or 1211. The next few terms are 111221, 312211, and 
13112221. In his paper Conway proved that the number of digits 
in the nth term of the sequence was proportional to λn, where λ is 
the Conway constant whose value of approximately 1.303577 is the 
only positive root of a particular polynomial of degree 71.
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Conway created this sequence of 14 fractions that form an inefficient but
simple-minded prime-producing machine. Starting with the number 2,
repeatedly multiply the current value by the first fraction in the list that
produces an integer result. When the answer is a power of 2, the exponent is the 
next prime number. The first 19 steps produce 2M = 15, 15N = 825, 825E = 725, . . . ,
68I = 4 = 22, so 2 is the first prime number. After 50 more steps one obtains
8 = 23 to conclude that 3 is the second prime number.
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During the lecture “Some Crazy Sequences” that he delivered 
in 1988 at AT&T Bell Labs, Conway introduced the recursively 
defined sequence whose first two terms are A(1) = 1, A(2) = 1 and 
whose nth term is defined by the expression A(n) = A(A(n – 1)) + 
A(n – A(n – 1)). The first several terms of this sequence, known 
as Conway’s recursive sequence, are 1,1,2,2,3,4,4,4,5,6,7,8, . . . . 
He showed that A(2k) = 2k – 1 for any positive integer k, A(2n) ≤
2 · A(n) for any positive integer n, and for large values of n, the general 

term of the sequence is very close to . He offered a $1,000 prize 

to anyone who could find an integer N so that
  

when-

ever n > N. In 1991 Bell Labs researcher Colin L. Mallows proved 
that N = 1,489 had the required property and claimed the monetary 
prize.

During the last 10 years Conway has written two books about 
numbers and their properties. The Book of Numbers, which he coau-
thored in 1996 with Richard Guy, presents an array of ideas about 
numbers, including properties of classes of numbers such as inte-
gers, fractions, and surreal numbers; important results from num-
ber theory; and properties of special numbers such as π ≈ 3.14159. 
Pointing out the inconsistent usage of terms such as billion and 
trillion, the book introduced the term Nth zillion for the number 
1 followed by 3N + 3 zeros in the United States and 6N zeros in 
Great Britain. The 2003 book On Quaternions and Octonions: Their 
Geometry, Arithmetic, and Symmetry that he cowrote with his former 
student Derek Smith presents an investigation of the four- and 
eight-dimensional geometries that can be analyzed using the classes 
of numbers known as quaternions and octonions.

Spheres, Lattices, and Codes
Conway completed much of his work on numbers in the United 
States. He left Cambridge in 1984 to accept a temporary appoint-
ment as the Rademacher Lecturer at the University of Pennsylvania. 
After spending the fall semester of 1985 as a visiting professor at the 
University of Illinois at Chicago, he accepted a permanent posi-
tion as the John von Neumann Chair of Mathematics at Princeton 



University in New Jersey. At Princeton he has continued to gener-
ate papers and books on a collection of related topics, including 
sphere packing, integral lattices, and coding theory.

In 1988 Conway and American mathematician Neil J. H. Sloane 
coauthored the book Sphere Packing, Lattices, and Groups, which 
presented a survey of recent research results in combinatorics, the 
study of counting techniques. Other mathematicians who analyze 
the geometry of sphere packing—the most efficient arrangement of 
equal-sized spheres into a space having a fixed volume—refer to this 
book as the “bible” on the subject. Between 1988 and 1997 Conway 
and Sloane cowrote a series of seven papers about algebraic struc-
tures known as lattices, sets of points laid out in a regular, repeating 
pattern in a multidimensional space. In their articles, collectively 
titled “Low-Dimensional Lattices,” which were published in the 
Proceedings of the Royal Society of London, they explored quadratic 
forms, perfect forms, groups of matrices, and issues involving coor-
dinates. The two are currently working on a book tentatively titled 
The Geometry of Low-Dimensional Groups and Lattices.

Conway has also produced research results in the related area 
of coding theory, the analysis of methods for manipulating and 
transmitting blocks of data. His work on this topic dates back to 
the late 1970s when he wrote papers on self-dual binary codes. In 
1985 he and Sloane received a patent for “Decoding Techniques 
for Multi-Dimensional Codes.” His more recent work includes 
the 1990 paper “Integral Lexicographic Codes,” published in the 
journal Discrete Mathematics; the 1993 paper “Self-Dual Codes over 
the Integers Modulo 4,” published in the Journal of Combinatorial 
Theory; and the 1994 paper “Sphere Packings, Lattices, Codes 
and Greed,” which appeared in the Proceedings of the International 
Congress of Mathematicians.

Three papers written in the last 15 years typify the diversity of 
Conway’s interests. In his 1992 paper “The Orbifold Notation for 
Surface Groups,” published in the conference proceedings Groups, 
Combinatorics and Geometry, he introduced a simple way to enumer-
ate crystallographic, spherical, and wallpaper groups, three types of 
algebraic structures that satisfy additional geometric properties. His 
1996 paper “The Angel Problem,” which appeared in Games of No 
Chance, challenged readers to determine whether a devil who can 
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remove one square at a time from an infinite-sized chess board can 
capture an angel capable of jumping up to 1,000 squares at a time. 
In 2004 Conway and his Princeton colleague Simon Kochen proved 
the free will theorem, a result from quantum mechanics stating that 
under certain conditions elementary particles are free to choose 
their spins. Both mathematicians have lectured widely on their con-
troversial result but have not yet published their proof.

Since joining the faculty at Princeton, Conway has continued 
to earn awards and honors similar to those that he received while 
at Cambridge. In 1987 the London Mathematical Society awarded 
him their Pólya Prize for creativity and imaginative expository 
writing. That same year the Institute for Electrical and Electronics 
Engineers (IEEE) presented him and Sloane an award for outstand-
ing paper of the year for their 1986 paper “Lexicographic Codes: 
Error-Correcting Codes from Game Theory,” which appeared in 
the IEEE Transactions on Information Theory. In 1991 Conway deliv-
ered the Earle Raymond Hedrick Lectures at the Joint Summer 
Meetings of the American Mathematical Society (AMS) and the 
Mathematical Association of America, a set of lectures that formed 
the basis for his 1997 book The Sensual (Quadratic) Form. The 
American Academy of Arts and Sciences elected him a fellow in 
1992. He received the 1998 Frederic Esser Nemmers Prize in 
Mathematics from Northwestern University for having made major 
contributions to new knowledge. In 2000 the AMS named him the 
recipient of the Leroy P. Steele Prize for Mathematical Exposition 
in recognition of his expository contributions to many branches of 
mathematics.

Conclusion
During a career that has spanned five decades, John H. Conway has 
written 10 books, published approximately 150 research papers, and 
directed the dissertation research of 13 doctoral students. His cre-
ation of the Game of Life exposed a broad audience to the study of 
cellular automata and mathematical games. Through his introduc-
tion of surreal numbers he redefined mathematicians’ understand-
ing of numbers and games. His discovery of the Conway group and 
his work to complete the classification of finite groups resolved 



important open questions in group theory. By raising questions and 
by writing books and papers, he has made significant contributions 
to the study of sphere packings, lattices, codes, knots, and numerous 
other areas of mathematics.
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The Mathematics of Black Holes

Stephen Hawking helped develop topological and geometrical tools 
that enabled him to show that the big bang theory was consistent 
with the principles of general relativity. He discovered a mathemati-
cal proof that Hawking radiation escapes from black holes and can 
cause them to collapse and evaporate. In his position as Cambridge 
University’s Lucasian Professor of Mathematics, he introduced the 
controversial “no-boundary” proposal and the “information paradox.”

Stephen Hawking
(1942– )

Stephen Hawking developed the 
mathematical basis for the theory of 
black holes. (Michael S. Yamashita/
CORBIS)
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As a popular science writer, he authored books on cosmology that 
have made advanced scientific ideas accessible to nonspecialists.

Early Life and Education
Stephen William Hawking was born on January 8, 1942, in Oxford, 
England, to Frank Hawking, a medical researcher specializing in 
tropical diseases, and Isobel Hawking, the daughter of a physi-
cian. His parents, both of whom had graduated from University 
College at Oxford University, provided an intellectually stimulating 
environment for Hawking and his three younger siblings, Mary, 
Philippa, and Edward. After his father became head of the divi-
sion of parasitology at the National Institute of Medical Research 
in Mill Hill in the late 1940s, the family moved from Highgate, a 
northern suburb of London, to St. Albans in Hertfordshire to be 
closer to their father’s work.

From 1952 to 1959 Hawking attended St. Albans School where 
he placed in the highest of the school’s three academic tracks. He 
demonstrated insight and natural ability for mathematics, master-
ing his coursework in the subject with minimal effort. He also 
developed an interest in chemistry and wrote a prize-winning paper 
in theology. In 1958, with his fellow students and their mathematics 
teacher, he helped design and build a primitive computer called the 
Logical Uniselector Computing Machine (LUCE). Outside school 
he enjoyed constructing model airplanes, building electronic devic-
es, and inventing board games that incorporated highly developed 
characters and intricate rules.

In 1959 Hawking won a scholarship to attend Oxford’s University 
College. Although his father wanted him to study medicine and 
biology, he enrolled as a student in the natural sciences with spe-
cializations in physics and mathematics. During his first year he 
attended only mathematics lectures and tutorials and completed his 
college examinations in that subject. At the end of his second year 
he won the University Physics Prize and received a Blackwell Book 
Award for excellence in physics. He participated in intercollegiate 
rowing competitions as a coxswain with one of the university’s crew 
teams. In 1962 he graduated with honors, earning a bachelor of arts 
degree in natural sciences, first class.



After leaving Oxford, Hawking spent four years as a graduate 
student in the Department of Applied Mathematics and Theoretical 
Physics at Cambridge University, where he conducted research in 
cosmology and general relativity under the direction of professor 
Dennis Sciama. Cosmology, the study of the origin and evolution 
of the universe, is a highly mathematical branch of physics. The 
general theory of relativity, invented in the early 20th century by 
German-born physicist Albert Einstein, explains the laws of gravity 
and the behavior of the universe at large. Quantum theory, another 
branch of physics, explains the properties of atoms, molecules, 
light, and the radiation of small particles. When Hawking entered 
graduate school, relativity and quantum theory were prominent 
but separate branches of modern physics that along with classical 
physics, formulated by Sir Isaac Newton and his contemporaries, 
constituted the basis of his physics curriculum.

In January 1963, after experiencing difficulty speaking and 
walking, Hawking underwent two weeks of medical tests. Doctors 
diagnosed him with motor neuron disease, a degenerative disorder 
of the muscular system also known as amyotrophic lateral sclerosis 
(ALS) or Lou Gehrig’s disease. His physicians explained that his 
physical condition would cause his body, but not his mind, to dete-
riorate quickly and estimated that he would die within two-and-a-
half years.

Hawking refused to allow his medical condition to prevent him 
from pursuing his personal and professional interests. In July 1965 
he married Jane Wilde, an undergraduate pursuing a degree in 
modern languages at Westfield College in London and who later 
earned a doctorate in medieval Portuguese literature. Between 
1967 and 1979 the couple had three children, Robert, Lucy, and 
Timothy. Although Hawking was confined to a wheelchair within 
five years and his ability to speak deteriorated progressively, he was 
able to commute daily to the university from their rented house 
near Cambridge’s campus.

Investigations of Black Holes
Hawking rapidly became an active member of the research com-
munity of cosmologists. At a 1965 meeting of the Royal Society in 
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London, he challenged an assertion made by Cambridge astronomy 
professor Sir Fred Hoyle and his graduate student Jayant Narlikar 
during their presentation on the theory of a steady-state universe. 
Hawking observed that a mathematical quantity in one of their 
equations diverged rather than adding up to a finite total. He sum-
marized the mathematical findings that led him to this conclusion 
in a paper titled “On the Hoyle-Narlikar Theory of Gravitation,” 
published later that year in the Proceedings of the Royal Society of 
London. This article was well received by his peers and established 
his reputation as a promising young researcher.

In 1966 Hawking earned his Ph.D. in physics for a dissertation 
titled “Occurrence of Singularities in Cosmology,” which was pub-
lished during the next year in three parts in the Proceedings of the Royal 
Society of London. His doctoral research built on the work of Roger 
Penrose, a professor of applied mathematics at Birkbeck College, 
London, who had been investigating black holes. American physicist 
John Wheeler introduced the term black hole to describe a dense 
concentration of mass so great that its gravitational field prevents any 
mass or energy, including light, from escaping. Penrose had developed 
a mathematical theory to explain space-time singularities at the center 
of a black hole, points where the curvature of space-time is infinite. In 
his dissertation Hawking applied Penrose’s ideas of singularity theory 
to the universe as a whole. His unpublished essay “Singularities and 
the Geometry of Space-Time” that presented a continuation of his 
thesis work won the 1966 Adams Prize from Cambridge University.

After receiving his doctoral degree, Hawking secured a two-
year appointment as a research fellow in theoretical physics at 
Cambridge’s Gonville and Caius College and in 1968 joined the 
staff at the university’s Institute of Astronomy. He and Penrose 
worked to investigate further their joint ideas about singularities 
and the origin of the universe. They developed an extensive set 
of topological and geometrical tools, now known as global meth-
ods, for making general relativity calculations. In their joint work 
they showed that if the general theory of relativity provided an 
accurate description of the universe, then there must have been a 
singularity at the beginning of time. The Hawking-Penrose theo-
rem mathematically proved the big bang theory that the universe 
began with the explosion of a black hole. Their 1970 paper explain-



ing this work, “The Singularities of Gravitational Collapse and 
Cosmology,” which appeared in the Proceedings of the Royal Society of 
London made a major contribution to black hole theory.

In the course of developing his theories about black holes, Hawking 
published some incomplete ideas that he later disproved. One of 
these topics concerned his initial analysis of the event horizon, the 
boundary of a black hole beyond which no electromagnetic energy 
can travel. His paper “Gravitational Radiation from Colliding Black 
Holes” that was published in 1971 in Physical Review Letters presented 
his claim that the surface area of a black hole’s event horizon can 
never decrease. In a 1973 paper titled “The Four Laws of Black Hole 
Mechanics” that appeared in Communications in Mathematical Physics, 
he and coauthors James Bardeen, an American physicist, and Brandon 
Carter, a British theoretical physicist, attempted to explain why black 
holes were not subject to the laws of thermodynamics, or the study 
of heat and motion. Within two years Hawking had abandoned both 
positions and used the opposing ideas to develop additional theories.

Hawking left the Institute of Astronomy in 1973 to join the 
research staff at Cambridge’s Department of Applied Mathematics 
and Theoretical Physics. That same year, after six years of work, 
he and George Ellis, a South African cosmologist, completed their 
book The Large-Scale Structure of Space-Time. Although the work 
presented classical theories of cosmology for an audience of experts 
and did not include recently developed theories on black holes, the 
book sold more than 16,000 copies and became one of the best-
selling monographs published by Cambridge University Press.

Hawking Radiation and the Information 
Paradox
Reconsidering some of his earlier claims about black holes, Hawking 
applied the principles of quantum theory, general relativity, and 
thermodynamics to their study. Combining all three techniques, he 
succeeded in proving the surprising result that black holes emit a 
type of radiation now known as Hawking radiation. This discovery 
contradicted his earlier belief that the surface area of a black hole’s 
event horizon could never decrease and meant that the escaping 
mass and energy could eventually cause a black hole to shrink and 
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disappear. He announced his results in an essay titled “Black Holes 
Aren’t Black” that won the 1974 Gravity Research Foundation 
Award, and he provided a more complete description of the proof 
in his paper “Black Hole Expansions?” that appeared later that year 
in the journal Nature. Sciama described the latter article as one of 
the most beautiful papers on physics ever written. In March 1974, 
on the basis of this discovery and his earlier work on the big bang 
theory, the Royal Society elected 32-year-old Hawking as a fellow.

The discovery of Hawking radiation presented physicists with 
an apparent contradiction known as the information paradox. 

The dense concentration of mass in a black hole is so great that its gravitational 
field prevents any mass or energy, including light, from escaping beyond its 
event horizon and creates a curvature in space-time. Using the principles of 
quantum theory, general relativity, and thermodynamics, Hawking
mathematically established the controversial idea that black holes emit 
Hawking radiation.



According to Hawking’s theory, the radiation escaping from a black 
hole had “no hair,” meaning that it conveyed no information about 
the matter inside the black hole that would distinguish it from 
another black hole having the same mass, electrical charge, and 
angular momentum. After a sufficient amount of radiation escaped 
from the black hole, it would collapse and the information would 
be lost. This paradox contradicted a fundamental principle of phys-
ics that information is preserved as the universe evolves. Hawking 
formulated and explored the information paradox in his 1976 paper 
“Breakdown of Predictability in Gravitational Collapse,” published 
in Physical Review D. He supported the idea that the intense gravi-
tational field that resulted in the collapse of a black hole constituted 
a singularity to which the laws of quantum physics did not apply. 
Other physicists criticized the controversial information paradox 
because it would mean that science was no longer able to fully know 
the past or to predict the future.

By the mid-1970s Hawking’s contributions to science had earned 
recognition in England and abroad. He had spent the year 1974 
studying cosmology at the California Institute of Technology 
as a Sherman Fairchild Distinguished Scholar. Upon his return 
to England, Cambridge University provided him a wheelchair-
accessible house near the campus and appointed him a reader of 
gravitational physics. In 1975 the Royal Astronomical Society 
awarded him the Eddington Medal and the Pontifical Academy of 
Science presented him with the Pius XII Medal. The following year 
Hawking won the Hopkins Prize, the Dannie Heinemann Prize, 
the Maxwell Prize, and the Royal Society’s Hughes Medal. In 1977 
Cambridge promoted him to the rank of professor of gravitational 
physics, Gonville and Caius College awarded him the status of 
professorial fellow, and Oxford’s University College made him an 
honorary fellow. He was awarded the 1978 Albert Einstein Award, 
an honor similar in prestige to the Nobel Prize.

The End of Physics and the No-Boundary
Proposal
Throughout his career Hawking continued to raise controversial 
issues and stimulate debate within the physics community. In 1980 
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Cambridge University appointed him the 17th Lucasian Professor 
of Mathematics, a chair previously held by Sir Isaac Newton and a 
series of distinguished mathematicians. For his inaugural address 
as Lucasian Professor, he delivered a lecture titled “Is the End in 
Sight for Theoretical Physics?” In this talk he predicted that by the 
end of the 20th century physicists would discover a grand unified 
theory that encompassed both pillars of modern physics—quantum 
theory and general relativity—leaving no significant discoveries
to be made. He further predicted that as computers develop more 
sophistication and artificial intelligence becomes a reality, advanced 
technology will execute most of the current activities now performed 
by physicists. His predictions generated lively debate among his sci-
entific colleagues. Although his research that led to the discovery of 
Hawking radiation provided a model for combining both quantum 
mechanics and relativity, scientists have made little progress toward 
achieving a grand unified theory.

In 1981 Hawking generated additional controversy when he 
announced his “no-boundary” proposal and discussed its religious 
implications at the Vatican Conference organized by the Pontifical 
Academy of Sciences in Rome, Italy. He and American physicist 
James Hartle had proposed the idea that both time and space were 
finite in extent but had no edges or singular points where the laws 
of science failed to hold. In particular their proposal implied that in 
the range of possible universes, our universe was so highly probable 
that there was no need to believe in the existence of a creator. Their 
proposal generated strong criticism within both the religious and 
the scientific communities.

Popular Science for General Audiences
From the mid-1980s to the present, Hawking has devoted a signifi-
cant portion of his time to writing books that make mathematical 
and scientific ideas accessible to nonspecialists. From 1983 to 1988 
he worked on a project to explain concepts of modern cosmology, 
such as the big bang theory, black holes, and Hawking radiation, 
in a manner that general audiences could understand. The product 
of his five years of work was the 1988 book A Brief History of Time: 
From the Big Bang to Black Holes. The book sold 10 million copies, 



was translated into 40 languages, and remained on the best-seller 
lists of both the New York Times and London’s Sunday Times for 
four years. The book became a movie in 1991. In 1992 he produced 
an accompanying book, titled Stephen Hawking’s A Brief History of 
Time: A Reader’s Companion, and in 1994 he released the CD-ROM 
version, A Brief History of Time: An Interactive Adventure. The 1995 
paperback edition of A Brief History of Time became a best-seller in 
three days. In 2005 he produced an updated and simplified version 
of the work, A Briefer History of Time.

The unexpected popularity of A Brief History of Time led 
to numerous newspaper and magazine articles about Hawking, 
requests for radio and television appearances, invitations for public 
presentations and lectures, and proposals for additional book proj-
ects. In 1993 he edited a collection of 14 essays on cosmology titled 
Black Holes and Baby Universes that communicated current theories 
to an audience of educated lay readers. His 2001 book The Universe 
in a Nutshell, which offered simplified explanations of scientific 
ideas and was illustrated with colorful diagrams on every page, won 
the 2002 Aventis Book Prize, one of the United Kingdom’s most 
prestigious nonfiction book awards. In 2002 he published the book 
On the Shoulders of Giants: The Great Works of Physics and Astronomy, 
which combined lengthy portions of influential works by Nicolaus 
Copernicus, Johannes Kepler, Galileo Galilei, Sir Isaac Newton, 
and Albert Einstein with biographical sketches of the five scientists 
and Hawking’s explanations of the meaning and significance of 
their contributions to physics and astronomy. His 2005 book God 
Created the Integers: The Mathematical Breakthroughs That Changed 
History included reprints of 31 landmarks of mathematical thought, 
Hawking’s commentary on the significance of each work, and 
biographical profiles of the 17 mathematicians who made these 
momentous discoveries.

Science for Scientists
While creating written and visual works to interest the general 
public in cosmology and mathematics, Hawking continued to con-
tribute to the discussion and development of new theories in phys-
ics. In 1979 he and German-born Canadian physicist Werner Israel 
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edited General Relativity: An Einstein Centenary Survey, a collection 
of 16 articles written by leading physicists in commemoration of the 
100th anniversary of Einstein’s birth. His 1983 paper “Fluctuations 
in the Inflationary Universe,” which appeared in the journal Nuclear 
Physics, and his 1984 article “Limits on Inflationary Models of the 
Universe,” which was published in Physics Letters, contributed to 
the discussion among his colleagues about the causes, extents, and 
implications of the expansion of the universe.

In August 1985, while conducting research at the European 
Center for Nuclear Research (CERN) in Geneva, Switzerland, 
Hawking contracted pneumonia. Doctors performed a tracheotomy 
that saved his life but deprived him of his ability to speak. American 
computer researchers provided him with a computer-generated 
voice synthesizer. This initial device and a series of subsequent 
upgrades provided him the ability to continue to lecture and com-
municate with his family members and other researchers.

Hawking’s successful career as a scientist living with disabilities 
has enabled him to be a visible advocate for the needs of people 
with disabilities. In 1979 the Royal Association for Disability and 
Rehabilitation named him “Man of the Year.” During the late 
1980s he convinced Cambridge University to construct a hostel 
for handicapped students and persuaded Bristol University to build 
a dormitory for physically challenged students that they named 
Hawking House. In 1996 he wrote the foreword to the book 
Computer Resources for People with Disabilities.

After his surgery Hawking continued to share his ideas on cur-
rent developments in physics with his colleagues. In his 1988 paper 
“Wormholes in Space-Time,” published in Physical Review; his 
1991 paper “Alpha Parameters of Wormholes,” which appeared 
in Physica Scripta; and many additional papers that he wrote on 
the topic, he discussed the mathematical possibility of time travel 
within a single universe and between parallel universes. He engaged 
his colleagues in discussions on string theory, the concept that 
strings of matter form the fundamental building blocks of all sub-
stances. His papers on string theory include his 1989 article “Black 
Holes from Cosmic Strings,” which appeared in Physics Letters, and 
his paper “Pair Production of Black Holes on Cosmic Strings,” 
which was published in 1995 in Physical Review Letters. In 1994, at 



Cambridge's Isaac Newton Institute, Hawking and Penrose gave a 
series of public lectures collectively titled “The Nature of Space and 
Time” that reviewed the developments of black hole theory since 
their collaboration began, 30 years earlier.

Over the past 20 years Hawking’s accomplishments have earned 
him additional recognition and honors. In 1988 he and Penrose 
were jointly awarded the Wolf Foundation Prize in Physics for 
their work on black holes. Having already been honored by 
Queen Elizabeth II with the title Commander of the Order of 
the British Empire (CBE) in 1982, he was awarded the additional 
title Companion of Honour in 1989. The National Academy of 
Sciences of the United States inducted him as a member of the 
astronomy section in 1992. The London Mathematical Society 
awarded Hawking its 1999 Naylor Prize and Lectureship in Applied 
Mathematics. In January 2002 an international assemblage of 200 
physicists gathered at Cambridge University to attend “The Future 
of Theoretical Physics and Cosmology, Stephen Hawking 60th 
Birthday Scientific Workshop,” an international conference to cel-
ebrate his 60th birthday and to discuss the ideas he contributed to 
the field during his 40-year career.

After writing almost 200 books and papers and supervising the 
doctoral dissertations of 30 graduate students, Hawking contin-
ues to work on the frontier of cosmology. At the International 
Conference on General Relativity and Gravitation (GR17) held in 
Dublin, Ireland, in July 2004, he announced that he had resolved 
the information paradox by reversing his earlier position and show-
ing that information is not lost in the formation and evaporation of 
a black hole. Over the course of three decades he had come to the 
conclusion that the event horizon of a black hole includes quantum 
fluctuations that gradually allow all information in the black hole 
to escape. He continues to work to produce a formal mathematical 
proof of this claim.

Conclusion
Stephen Hawking’s controversial mathematical proof that black 
holes emit radiation and that Hawking radiation can result in 
their eventual collapse represented a significant contribution to
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20th-century cosmology. He helped to develop topological and 
geometrical tools that enabled him to establish the validity of 
the big bang theory. As Lucasian Professor of Mathematics at 
Cambridge University, he engaged his colleagues in investigations 
of the mathematical principles underlying the no boundary pro-
posal, the information paradox, the grand unified theory, and other 
developing concepts in physics. His popular books have enabled the 
general public to gain a greater understanding of advanced scien-
tific ideas about cosmology.
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Surfaces in Differential Geometry

Shing-Tung Yau (pronounced YOW) developed new ideas and 
methods in differential geometry and used them to solve many open 
problems. He proved the Calabi conjecture and introduced Calabi-
Yau manifolds as important concepts in mathematical physics. His 
proof of the positive mass conjecture helped establish a firm mathe-
matical basis for the theory of black holes. In collaboration with other 



66  Mathematics Frontiers

colleagues, he solved Plateau’s problem, the Frankel conjecture, 
and Hitchin-Kobayashi conjecture in differential geometry. He also 
made discoveries about minimal surfaces, eigenvalues of manifolds, 
and mirror symmetries. His work in geometry impacted research in 
many areas of mathematics and physics, including topology, algebraic 
geometry, general relativity, astronomy, and string theory.

Student of Mathematics
Shing-Tung Yau was born on April 4, 1949, in Shantou, a city in 
Guangdong Province, southern China. When he was an infant his 
family moved to Hong Kong, where his father, Chen Ying Chiou, 
became a professor of economics and philosophy at the Chinese 
University of Hong Kong (CUHK). Yeuk-Lam Leung Chiou, his 
mother, sold hand-crafted goods to supplement her husband’s low 
salary and to help support their eight children. At the local high 
school that Yau attended, the science laboratories were poorly 
equipped. Consequently, the science curriculum emphasized math-
ematics, a subject his father encouraged him to study.

In 1966 Yau enrolled as a mathematics major at Chung Chi 
College, a small undergraduate institution in Hong Kong. Because 
the college offered a limited number of mathematics courses, he 
also audited classes at United College and at CUHK. In 1969 he 
earned his bachelor’s degree in mathematics and entered the gradu-
ate school at the University of California at Berkeley on a fellow-
ship from International Business Machines (IBM). He earned his 
Ph.D. in mathematics in 1971, completing a dissertation titled “On 
the Fundamental Group of Compact Manifolds of Nonpositive 
Curvature” under the direction of Chinese mathematician Shiing-
Shen Chern. Published in the Annals of Mathematics in 1971, his 
doctoral research analyzed algebraic structures associated with 
manifolds, which are general types of geometrical surfaces.

Solutions to Open Problems in 
Differential Geometry
During the first 16 years of his professional career, Yau was affiliated 
with four different academic institutions. He conducted research as 



a postdoctoral fellow for the 1971–72 academic year at the Institute 
for Advanced Study (IAS) in Princeton, New Jersey. After a two-
year appointment as an assistant professor at the State University 
of New York at Stony Brook, he spent five years at Stanford 
University in California, where he quickly earned a promotion from 
associate professor to professor. He returned to the IAS in 1979 for 
a five-year period as a professor of mathematics. From 1984 to 1987 
he was Chancellor Associate Chair and Professor of Mathematics 
at the University of California at San Diego (UCSD). During this 
period he received two prestigious research awards: an Alfred P. 
Sloan Fellowship for the 1975–76 academic year and a 1980 John 
Simon Guggenheim Fellowship. In 1976 he married Yu Yun Kuo, 
whom he had met when they were students at Berkeley. Yau and his 
wife have two children.

Between 1978 and 1982 Yau established his reputation as a 
research mathematician by solving three open problems in differ-
ential geometry, the branch of mathematics that uses derivatives 
and integrals to describe and analyze geometrical objects in higher-
dimensional spaces. In his 1978 paper “On the Ricci Curvature 
of a Compact Kähler Manifold and the Complex Monge-Ampère 
Equation,” published in the journal Communications on Pure and 
Applied Mathematics, he solved the Calabi conjecture. The ques-
tion, first suggested in the 1950s by Italian mathematician Eugenio 
Calabi, concerned how volume and distance could be measured for 
certain types of surfaces in five or more dimensions. Yau proved that 
under the conditions that Calabi had suggested, surfaces known as 
compact Kähler manifolds had a special type of distance function 
known as a Ricci-flat metric. To prove this fact, Yau showed that 
the nonlinear differential equation known as the complex Monge-
Ampère equation had a solution for these surfaces. His colleagues 
in the field of differential geometry praised his achievement as a 
powerful and significant result. This class of surfaces, now called 
Calabi-Yau manifolds, are widely studied by mathematical physi-
cists in connection with string theory, the concept that strings of 
matter form the fundamental building blocks of all substances.

After resolving the Calabi conjecture, Yau collaborated with 
his former student Richard Schoen to prove the positive mass 
conjecture. This proposal from Riemannian geometry and Albert 
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Einstein’s general theory of relativity asserts that the sum of all the 
energy in the universe is positive. In their joint paper “On the Proof 
of the Positive Mass Conjecture in General Relativity,” published 
in 1979 in the journal Communications in Mathematical Physics, they 
proved a special case of the conjecture for hypersurfaces having 
zero mean curvature, a restricted class of surfaces whose tangent 
lines satisfy basic numerical conditions. Their paper “Proof of the 
Positive Mass Theorem II,” which appeared in the same journal 
in 1981, proved the general case of the conjecture by deforming 
more general surfaces into the special case that they had resolved 
earlier. Their proof used new techniques that Yau had developed 
to analyze the behavior of minimal surfaces in space-time, surfaces 
with minimum area that satisfy a specified set of conditions. These 
techniques led to new methods for working with complicated equa-
tions known as nonlinear elliptic partial differential equations in 
geometry, mathematical physics, and topology. Yau and Schoen 
applied their results to the theory of black holes in their 1983 
paper “The Existence of a Black Hole Due to the Condensation of 
Matter,” which appeared in Communications in Mathematical Physics. 
In this paper they proved that when a sufficient amount of matter is 
condensed in a small region, the resulting gravitational effects will 
be strong enough to cause the collection of matter to collapse and 
form a black hole.

In the early 1980s Yau and American mathematician William 
A. Meeks collaborated on the solution of an open question involv-
ing minimal surfaces and Plateau’s problem. Named after Joseph 
Plateau, a 19th-century Belgian physicist who experimented with 
soap films on wire frames, the question asks for the construction 
of a surface with minimum area that fits a given boundary. After 
many mathematicians had studied the problem, research done in 
the 1930s and 1940s by the American Jesse Douglas, the Hungarian 
Tibor Radó, and Charles Morrey, also American, had resolved the 
question of when a solution existed. Yau and Meeks finalized the 
remaining unanswered questions about these solutions in their 
paper “The Classical Plateau Problem and the Topology of Three-
Dimensional Manifolds. The Embedding of the Solution Given 
by Douglas-Morrey and an Analytic Proof of Dehn’s Lemma,” 
published in 1982 in the journal Topology. In this paper they proved 



that the entire surface produced by Douglas’s solution was a smooth 
surface in ordinary three-dimensional space, a result that Douglas 
had been able to prove only for localized sections of his surface. 
In their later papers on the subject, Yau and Meeks extended their 
analysis to other curves and surfaces in higher dimensions known 
as loops and spheres.

Yau’s work on partial differential equations, the topology of 
differentiable manifolds, and the properties of minimal surfaces 
earned him recognition from a number of professional societies. 
In 1981 the American Mathematical Society (AMS) awarded him 
its Oswald Veblen Prize in Geometry, and the National Academy 
of Sciences (NAS) presented him the John J. Carty Award for the 
Advancement of Science. The International Mathematical Union 
awarded him the 1982 Fields Medal, the most prestigious honor 
in mathematics. Comparable in stature to the Nobel Prize, the 
Fields Medal is awarded to a mathematician under the age of 40 
in recognition of past achievement and future promise. In 1983 
the American Academy of Arts and Sciences (AAAS) elected him a 
fellow, and in 1984 Science Digest named him one of the 100 bright-
est scientists under the age of 40. He won a 1985 John D. and 
Catherine T. MacArthur Fellowship, an award that provided him 
an annual research stipend of $60,000 for each of the next five years. 
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In 1986 the AMS invited him to present the Colloquium Lectures 
at its 90th Summer Meeting.

Analyzing Properties of Manifolds
In addition to the high-profile problems whose solutions earned 
him widespread recognition and prestigious awards, Yau made 
significant discoveries in other areas of differential geometry. With 
Shiu-Yuen Cheng, a mathematician from Hong Kong, he inves-
tigated properties of the curvature of complex manifolds in high-
dimensional spaces. Their 1976 paper titled “On the Regularity of 
the Solution of the n-Dimensional Minkowski Problem,” which 
was published in Communications on Pure and Applied Mathematics, 
resolved the question originally posed by 19th-century Russian 
mathematician Hermann Minkowski of whether a function defined 
on the surface of an n-dimensional sphere can be extended to all 
points in the interior of the sphere in more than one way. Canadian 
mathematician Louis Nirenberg, who had solved the two-dimen-
sional version of this problem, praised Yau and Cheng for the 
technical power of their methods and for the useful estimates their 
work produced.

In collaboration with Harvard University mathematician Yum-
Tong Siu, Yau coauthored a series of six research papers between 
1976 and 1982 on a question about the curvature of manifolds. In 
their paper “Compact Kähler Manifolds of Positive Bisectional 
Curvature,” which appeared in 1980 in the journal Inventiones 
Mathematicae (Mathematical inventions), they used results from the 
theory of minimal surfaces to prove the Frankel conjecture. This 
proposition asserted that the only compact Kähler manifold hav-
ing a particular curvature property was the well-known complex 
projective space. Using harmonic maps—functions whose partial 
derivatives satisfy certain properties—they successfully proved that 
the conjecture was true. In their other joint papers they investigated 
manifolds with different curvature properties.

Yau and mathematician Peter Li, who had also been a student at 
Chern’s at Berkeley, conducted collaborative research on numerical 
characteristics of surfaces known as eigenvalues. In a paper titled 
“Estimates of Eigenvalues of a Compact Riemannian Manifold” that 



they presented at the 1979 AMS-sponsored Symposium on Pure 
Mathematics in Hawaii, they derived precise estimates for the eigen-
values of classes of manifolds based on a small amount of geometri-
cal information about the curvature of the surfaces. In the paper “On 
the Upper Estimate of the Heat Kernel of a Complete Riemannian 
Manifold,” published in 1981 in the American Journal of Mathematics, 
Yau, Li, and Cheng investigated the heat kernel, another numerical 
characteristic related to the curvature of a surface.

With American mathematician Karen Uhlenbeck, Yau used 
ideas from particle physics to analyze four-dimensional mani-
folds. In their 1986 paper “On the Existence of Hermitian Yang-
Mills Connections in Stable Bundles,” which was published in 
Communications on Pure and Applied Mathematics, they established 
a connection between higher-dimensional manifolds satisfying 
certain topological conditions and functions providing metrics for 
the surfaces. In the 1950s Chinese physicist Chen Ning Yang and 
American physicist Robert Mills had introduced the Yang-Mills 
equation that explained the behavior of elementary particles. The 
joint paper of Uhlenbeck and Yau proved the Hitchin-Kobayashi 
conjecture by showing that for compact Kähler manifolds, there is a 
one-to-one correspondence between stable vector bundles—collec-
tions of functions defined on the manifold—and distance functions 
that satisfy the Yang-Mills equation.

Recent Work in Geometry
In 1987 Yau left UCSD to accept a position at Harvard University 
in Cambridge, Massachusetts. After holding an endowed chair 
at Harvard as the Higgins Professor of Mathematics from 1997 
to 2000, he assumed his present position in 2000 as the William 
Casper Graustein Professor of Mathematics. As a John Harvard 
Fellow in 1996, he spent a year at the Isaac Newton Institute for 
Mathematical Science at Cambridge University, in England. In 
1999 he was the Samuel Eilenberg Visiting Professor at Columbia 
University, and in 2000 he visited the California Institute of 
Technology as the Gordon Moore Visiting Professor.

In addition to fulfilling the duties associated with his faculty 
positions in the United States, Yau worked to improve the level of 

Shing-Tung Yau  71



72  Mathematics Frontiers

mathematical education and research in China. He spent the aca-
demic year 1991–92 as a visiting professor at CUHK and as chair 
of the mathematics department at National Tsing Hua University 
in Taiwan. In collaboration with leaders of the Chinese mathemati-
cal community, he helped establish the Institute of Mathematical 
Sciences (IMS) at CUHK in 1993 and has served as its director 
since 1994. To honor two of his undergraduate professors, he 
established the H. L. Chow Mathematics Scholarship and the S. 
Salaff Mathematics Scholarship at CUHK. He also created the 
Shiing-Shen Chern Educational Fund at the IMS in memory of 
his dissertation adviser and endowed two educational funds in 
remembrance of his parents. Since 2003 he has held the position of 
Distinguished Professor-at-Large at CUHK.

At the 1991 Symposium on the Current State and Prospects of 
Mathematics, Yau and six other winners of the Fields Medal were 
asked to share their assessments of the present and future status of 
various branches of mathematics. In his address, “The Current State 
and Prospects of Geometry and Nonlinear Differential Equations,” 
published with the other winners’ thoughts in 1992 in the collection 
Mathematical Research Today and Tomorrow: Viewpoints of Seven Fields 
Medalists, he observed that these fields are active areas of important 
research. In particular, he cited their increasing use as fundamental 
tools in computer graphics, particle physics, robotics, chemistry, 
information theory, weather prediction, and biological modeling.

In 1992 Yau edited the volume Chern: A Great Geometer of the 
Twentieth Century, a collection of papers written by dozens of 
mathematicians and dedicated to Chern on the occasion of his 79th 
birthday. The final item in the compilation was Yau’s paper “Open 
Problems in Geometry,” an updated version of a previous list of 
120 problems in differential geometry that he had identified and 
publicized 13 years earlier. In 2000 he published a further revision 
of this list, also titled “Open Problems in Geometry,” in the Journal 
of the Ramanujan Mathematical Society. These lists have provided 
direction and inspiration to researchers in the field of geometry for 
more than 25 years.

Another of Yau’s continuing initiatives has been to compile and 
circulate the most recent research on mirror symmetry, an area of 
algebraic geometry and mathematical physics that is related to his 



work on minimal surfaces. Between 1992 and 2002 he coedited four 
collections of research papers in this area under the titles Mirror 
Symmetry I, II, III, IV. He has also been an active contributor to 
this research area, coauthoring with mathematicians Bong Lian of 
Brandeis University and Kefeng Liu of Stanford University a series 
of four papers titled “Mirror Principle I, II, III, IV” that appeared 
between 1997 and 2000 in The Asian Journal of Mathematics. In their 
joint work they investigated the properties of three-dimensional 
Calabi-Yau manifolds by analyzing the corresponding properties of 
their more accessible “mirror manifolds.”

Yau’s research accomplishments have earned him numerous 
awards and prizes over the past 15 years. Germany’s Alexander 
von Humboldt Foundation awarded him the 1991 Humboldt 
Research Award. In 1993 the NAS inducted him as a member and 
the AAAS elected him as a fellow. The Royal Swedish Academy 
of Sciences awarded him its 1994 Crafoord Prize, citing his devel-
opment of nonlinear techniques in differential geometry that led 
to the solution of several outstanding problems. In 1997 U.S. 
president Bill Clinton presented Yau with the National Science 
Foundation’s National Medal of Science, an award based on the 
total impact of an individual’s work in an area of science or math-
ematics. He recently received the 2003 International Scientific 
and Technological Cooperation Award. The Chinese Academy 
of Sciences, the Russian Academy of Sciences, and the National 
Academy of Lincei, Italy, have elected him as a foreign member 
of their academies. Nine universities have awarded him honorary 
degrees, and eight universities in China have made him an honor-
ary professor.

During his 35-year career Yau has written more than 300 
papers and has edited volumes of papers. He has directed the 
doctoral dissertations of more than 30 graduate students at 
Harvard, UCSD, Princeton, CUHK, Stanford, the Massachusetts 
Institute of Technology, and Brandeis University. He has helped 
guide the direction of research in his field by serving as edi-
tor in chief of both the Journal of Differential Geometry and the 
Asian Journal of Mathematics and as an editor for the journals 
Communications in Mathematical Physics, Letters in Mathematical 
Physics, and Communications in Information and Systems.
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Conclusion
Shing-Tung Yau has made substantial contributions to the field 
of differential geometry. The techniques he has developed have 
changed the way partial differential equations are used as a tool in 
the analysis of geometrical problems. His proof of the Calabi con-
jecture established Calabi-Yau manifolds as an important research 
topic in mathematical physics. He helped to solidify the mathemati-
cal basis of the theory of black holes by his proof of the positive 
mass conjecture. His resolution of Plateau’s problem, the Frankel 
conjecture, and the Hitchin-Kobayashi conjecture provided solu-
tions to long-standing open problems. Yau’s work in geometry has 
impacted research in diverse branches of mathematics and physics, 
including topology, algebraic geometry, the theory of minimal sur-
faces, general relativity, astronomy, and string theory.
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Professor of Internet Mathematics

Fan Chung made contributions to the mathematical analysis of 
graphs and telecommunications networks as a mathematician in 
both industrial and academic settings. Her discoveries in Ramsey 
theory revealed new information about coloring the edges of graphs. 
She obtained a patent for encoding and decoding techniques that 
enable cellular telephone calls to be transmitted efficiently and 
securely. She analyzed the efficiency of Steiner trees and of algo-
rithms to manipulate graphs and networks. Her research in spectral 
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theory and random graphs has provided a deeper understanding of 
the mathematical properties of Internet computing.

Student of Mathematics
Fan Rong King was born on October 9, 1949, in Kaoshiung, 
Taiwan, to Yuan Shang King, a mechanical engineer, and Wu Chi 
King, a high school home economics teacher. Her father encour-
aged her and her younger brother, Tom, to pursue careers involv-
ing practical applications of mathematics. Observing her mother’s 
dedication to her students and her profession, she also developed an 
interest in becoming a teacher. After attending the local elementary 
and middle schools, she enrolled at Kaoshiung Girls’ High School, 
where she excelled in geometry and physics and placed as the top 
student on standardized aptitude tests.

King’s academic performance in high school earned her admis-
sion to the highly selective mathematics program at National 
Taiwan University. After a year of general studies, the institution’s 
intensive curriculum focused exclusively on mathematics. During 
these years she acquired an interest in combinatorics, the branch of 
mathematics concerned with sophisticated counting techniques that 
enable mathematicians to understand the numerical characteristics 
of discrete structures. Solving problems and studying with her fel-
low students, she developed skills for effective collaboration and 
communication of technical material. After earning her bachelor of 
science degree in mathematics in 1970, she traveled to the United 
States to pursue graduate studies.

At the University of Pennsylvania in Philadelphia, King contin-
ued to excel as a graduate student, earning her master’s degree in 
mathematics in 1972. During the following year she married and 
became known as Fan Chung. On the qualifying examinations that 
permit students to continue studying for their doctoral degree, 
she obtained the highest score among all graduate students in the 
mathematics department. Professor Herbert Wilf introduced her to 
some ideas in Ramsey theory, the area of combinatorics concerned 
with how large a collection of objects must be in order to guarantee 
that it satisfies particular conditions. Within a week she produced a 
proof that generalized a major theorem and became the central por-



tion of her dissertation. She explained her results in a presentation 
titled “On Triangular and Cyclic Ramsey Numbers with k Colors” 
that she delivered in 1973 at the Capital Conference at George 
Washington University in Washington, D.C., and in the paper “On 
the Ramsey Numbers N(3, 3, . . . 3; 2)” that appeared later that year 
in the journal Discrete Mathematics.

The problem concerned complete graphs on n vertices, collec-
tions of n points or vertices that are connected to one another by line 
segments called edges. Chung’s theorem addressed the question: If 
each edge is assigned one of k colors, how many vertices must the 
graph have to guarantee that there are three vertices joined by three 
edges of a single color? She showed that a four-coloring of a com-
plete graph must have more than 50 vertices in order to guarantee 
the existence of a single-colored triangle. Chung proved additional 
results that related the minimum sizes of such graphs when they are 
colored with k, k – 2, and k + 1 colors. She incorporated these dis-
coveries and further research on related problems in her 1974 doc-
toral dissertation, “Ramsey Numbers and Combinatorial Designs,” 
that earned her a Ph.D. in mathematics.

Industrial Mathematician
Chung spent the next 16 years conducting research as a mathema-
tician in the telecommunications field. From 1974 to 1983 she 
worked as a member of the technical staff in the Mathematical 
Foundations of Computing Department at Bell Laboratories in 
Murray Hill, New Jersey. In 1984 she joined Bell Communications 
Research (Bellcore) in Morristown, New Jersey, as manager of 
the Discrete Mathematics Research Group. From 1986 to 1990 
she served as division manager for Mathematics, Information 
Sciences, and Operations Research at Bellcore. In these positions 
she conducted research individually and in collaboration with other 
colleagues in the areas of Ramsey theory, graph theory, and combi-
natorics with emphasis on applications to telecommunications net-
works, electronic circuits, and computer algorithms. As a manager, 
she recruited other mathematicians and supervised their research.

Continuing her investigations in Ramsey theory, Chung and her 
Bell Labs colleague Ronald Graham coauthored the paper “On 
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Multicolor Ramsey Numbers for Complete Bipartite Graphs,” 
which was published in 1975 in the Journal of Combinatorial Theory. 
Their joint work presented properties of Ramsey numbers for bipar-
tite graphs, graphs in which the vertices are partitioned into two 
sets so that every edge joins a node from one set with a node from 
the other. This paper was the first of more than 60 research papers 
jointly written by the two mathematicians, who married in 1983.

In the area of graph theory Chung obtained new results about the 
efficiency of networks built from minimal spanning trees and mini-

By adding a Steiner point D at the center of the equilateral triangle formed by 
the three points A, B, and C, the four vertices can be connected by a Steiner tree 

of total length  ≈ 1.7 that is more efficient than the spanning tree of length 
2. Adding two Steiner points I and J to a square arrangement of four points E, F, 

G, and H results in a Steiner tree of total length 1 +  ≈ 2.7 rather than a span-
ning tree of total length 3.



mal Steiner trees. For a graph representing n telephone customers 
connected by a system of phone lines, n computers connected by 
a network of cables, or n electronic components wired together on 
an integrated circuit chip, a minimal spanning tree is a set of n – 1 
edges connecting all the vertices while having the smallest total 
length. A minimum Steiner tree improves on this optimal subset of 
edges by introducing new vertices and edges that result in a smaller 
total edge length. At the 1976 Conference on Algorithmic Aspects 
of Combinatorics, Chung and Graham presented a joint paper 
titled “Steiner Trees for Ladders” in which they explained how to 
construct minimum Steiner trees if the vertices lie in corresponding 
pairs on two parallel lines. In the 1978 paper “A Lower Bound for 
the Steiner Tree Problem,” published in the Society for Industrial 
and Applied Mathematics (SIAM) Journal on Applied Mathematics, 
she and Bellcore research colleague Frank Hwang proved that the 
minimum Steiner tree of a graph cannot produce a savings of more 
than 26 percent compared to the length of the minimal spanning 
tree. She and Graham improved this bound in their 1985 paper “A 
New Bound for Euclidean Steiner Minimal Trees,” which appeared 
in the Annals of the New York Academy of Sciences, by proving that 
Steiner trees cannot generate a savings of more than 18 percent. 
In the 1989 article “Steiner Trees on a Checkerboard,” published 
in Mathematics Magazine, Chung, Graham, and American math-
ematician Martin Gardner described the minimum Steiner tree 
for a graph laid out like the squares of an n × n checkerboard. The 
Mathematical Association of America (MAA) honored the three 
authors by awarding them the 1990 Carl B. Allendoerfer Award for 
expository writing.

Telecommunications Networks and 
Algorithms
Chung used the techniques of graph theory and combinatorics to 
investigate and solve a range of problems presented by telecommu-
nications networks. In the 1977 paper “On Blocking Probabilities 
for Switching Networks,” published in the Bell System Technical 
Journal, she and Hwang presented several techniques for determin-
ing the likelihood that an intermediate network of switches does 
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not provide an open path connecting a specified pair of nodes. At 
the American Mathematical Society’s (AMS) 1984 Conference on 
the Mathematics of Information Processing, she presented a paper 
titled “Diameters of Communications Networks” that discussed 
algorithms for reducing the number of links over which a message 
travels in a network. With Sandeep Bhatt, a Bellcore colleague, 
and Arny Rosenberg, an American computer scientist, she cowrote 
the paper “Partitioning Circuits for Improved Testability” that 
appeared in Advanced Research in VLSI, a volume of papers about a 
design technique for integrated circuits known as very large scale 
integration. Their article discussed methods for uniformly dis-
tributing the processing work among the registers of a computer 
circuit. In 1987 she, Rosenberg, and Frank Leighton, an American 
applied mathematician, coauthored the paper “Embedding Graphs 
in Books: A Layout Problem with Applications to VLSI Design,” 
which appeared in the SIAM Journal of Algebraic Discrete Methods. 
This paper presented their collaborative research on conditions 
that allow the edges of a graph to be arranged like the pages of a 
book and discussed the implications for incorporating such graphs 
into chip designs.

Chung investigated algorithms for solving other types of prob-
lems that arise in discrete mathematics. With the Americans 
Michael Garey, a mathematician, and David Johnson, a computer 
scientist, she coauthored the paper “On Packing Two-Dimensional 
Bins” that was published in 1982 in the SIAM Journal on Algorithms 
and Discrete Methods. Their paper presented a new method for 
efficiently arranging rectangular objects of assorted sizes into a 
minimum number of larger rectangles without any overlapping 
areas. In 1985 she collaborated with Bellcore researcher Dan Hajela 
and British mathematician Paul Seymour on the article “Self-
Organizing Sequential Search and Hilbert’s Inequalities” for the 
Association of Computing Machinery’s (ACM) Seventeenth Annual 
Symposium on the Theory of Computing. Their joint research ana-
lyzed the work involved in accessing information stored in a linear 
list. For the 1986 conference Discrete Algorithms and Complexity 
in Kyoto, Japan, she coauthored the paper “Dynamic Search in 
Graphs” with Graham and Michael Saks, a mathematician from 
Rutgers University. In this paper they discussed the difficulty of 



finding data in a graph whose structure changes in response to its 
history of requests.

During her years at Bell Labs and Bellcore, Chung developed 
commercially viable innovations that earned her two patents. In 
1988 she was granted a patent for developing a system for encoding 
and decoding audio messages so they can be reliably transmitted 
through a communications network using the technique of code 
division multiple access (CDMA). Her encoding and decoding 
scheme allowed multiple cellular phone conversations to securely 
share a common radio frequency by matching each call with a dif-
ferent cellular antenna. In addition to data security, another impor-
tant aspect of her encoding-decoding process was that it could be 
rapidly implemented to maintain the natural sound of the caller’s 
voice. In 1993 she received a second patent for developing a method 
for routing network traffic.

Academic Researcher
After working in the telecommunications industry for 15 years, 
Chung changed the direction of her career to become a university 
professor. In 1989 she taught computer science courses as a visiting 
professor at Princeton University in Princeton, New Jersey. From 
1990 to 1994 she was a Bellcore Fellow at Harvard University 
in Cambridge, Massachusetts, where she studied for a year and 
taught mathematics courses as a visiting professor for two years. 
In 1994 she left Bellcore and spent a year conducting research 
at the Institute for Advanced Study in Princeton. From 1995 to 
1998 Chung held an endowed chair as both a professor of math-
ematics and a professor of computer science at the University of 
Pennsylvania. In 1998 she moved to the University of California at 
San Diego (UCSD), where she currently holds a position as profes-
sor of mathematics, professor of computer science and engineering, 
and Akamai Professor in Internet mathematics. At UCSD she has 
developed new courses to bridge the gap between the theoretical 
mathematics that is often taught at universities and the mathematics 
that is needed for commercial applications.

In both her research and her teaching Chung emphasized con-
nections between mathematics and the disciplines of science and 
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engineering. Her article “Should You Prepare Differently for a 
Nonacademic Career?” which was published in 1991 in the Notices 
of the American Mathematical Society, counseled students studying 
mathematics who were not intending to pursue careers in education 
to obtain a broad knowledge of mathematics that can be utilized 
in diverse applied contexts. In the paper “Mathematics and the 
Buckyball” that appeared in 1993 in the American Scientist, she and 
Harvard University mathematician Shlomo Sternberg analyzed the 
mathematical properties of the carbon-60 molecule whose geomet-
rical shape is known as a buckyball. Their article included a diagram 
of 20 hexagons linked with 12 pentagons that readers could cut out 
and assemble into a soccer ball–shaped polyhedron.

During the 1990s Chung published three books about general 
topics in graph theory and combinatorics. In 1991, with Graham 
and mathematicians Yousef Alavi and D. Frank Hsu, she coauthored 
the book Graph Theory, Combinatorics, Algorithms, and Applications 
that presented a summary of recent work in these related areas of 
mathematics. With mathematicians Béla Bollobás of Cambridge 
University and Persi Diaconis of Stanford University she coedited 
the 1992 conference proceedings Probabilistic Combinatorics and Its 
Applications. This work compiled a collection of seven papers that 
presented classical results and recent developments on random 
graphs, graphs in which the existence of an edge between any two 
vertices is randomly determined by a probability distribution. In 
1998 she and Graham wrote the book Erdös on Graphs, His Legacy of 
Unsolved Problems in which they collected all the open problems in 
graph theory that Hungarian mathematician Paul Erdös had posed 
and promised to pay the prize money that he had offered for each 
problem’s solution. Chung had already coathored 12 papers with 
Erdös, who was a frequent house guest when he was not traveling to 
attend international conferences or to collaborate with his extensive 
network of research partners.

Chung published a steady stream of papers detailing her con-
tinued research on graph theory and networks. With Graham and 
Bellcore colleague Noga Alon she coauthored the paper “Routing 
Permutations on Graphs via Matchings” that appeared in 1994 in 
the SIAM Journal on Discrete Mathematics. This paper analyzed the 
problem of sending information from each vertex in a graph to a 



different vertex using nonoverlapping sets of edges at each stage 
of the multiple step process. In 1997 she and Bhatt wrote a paper 
titled “On Optimal Strategies for Cycle-Stealing in Networks of 
Workstations,” which was published in the Institute of Electrical and 
Electronics Engineers (IEEE) Transactions on Computers. In this paper 
they analyzed the increased productivity generated by allowing 
computers operating in a parallel configuration to borrow process-
ing time from one another. Chung teamed with Bhatt, Rosenberg, 
and AT&T researchers William Aiello and Ramesh Sitaraman to 
write the paper “Augmented Ring Networks,” appearing in 2001 
in the IEEE Transactions on Parallel and Distributed Systems. This 
paper examined multiple methods for improving the performance 
of a collection of computers that were sequentially linked to each 
other.

Spectral Graph Theory and Internet 
Mathematics
Chung expanded her research interests to spectral graph theory, 
the branch of graph theory concerned with the development and 
application of numerical measures that characterize the properties 
of graphs. At the 1991 AMS-MAA joint summer meetings, she pre-
sented a lecture titled “Laplacians of Graphs and Hypergraphs” that 
the AMS recorded and distributed as part of its video lecture series. 
In her presentation she described how to use the information in the 
Laplacian matrix about the degree of interconnectedness between 
the vertices of a graph and the vertices of a more general structure 
known as a hypergraph. Her 1997 book Spectral Graph Theory pre-
sented a unified treatment of this area of mathematics, emphasizing 
conclusions that can be drawn from an analysis of the numerical 
quantities known as the eigenvalues of a graph’s Laplacian. In the 
paper “Spanning Trees in Subgraphs of Lattices” that she pre-
sented at the 1997 AMS conference Applications of Curves over 
Finite Fields, she used Laplacians to estimate the number of span-
ning trees for subsets of graphs known as lattices. With French 
mathematicians Charles Delorme and Patrick Solé she wrote the 
paper “Multidiameters and Multiplicities,” which was published 
in the European Journal of Combinatorics. This paper analyzed the
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construction of large graphs with a specified diameter, the length of 
the shortest sequence of edges joining any two vertices.

As Akamai Professor in Internet mathematics at UCSD, Chung’s 
recent research has focused on the mathematical analysis of the 
international network of computers that form the World Wide Web. 
In the paper “Dynamic Location Problems with Limited Look-
Ahead” that she and Graham presented at the 1998 Computing and 
Combinatorics Conference in Taipei, Taiwan, she examined the 
efficiency of a network of computers that do not satisfy requests for 
service until they examine the past history of requests and preview a 
portion of the list of pending requests. This problem arises in con-
nection with the management of visits to Web pages. Chung and 
Graham collaborated with Mark Garrett and David Shallcross, two 
electrical engineers at Telcordia Technologies in New Jersey to 
research and write the paper “Distance Realization Problems with 
Applications to Internet Tomography,” which appeared in 2001 in 
the Journal of Computer and System Sciences. This paper presented 
their research on graphs in which vertices are linked by sequences 
of edges of specified lengths and some related issues that arise in the 
analysis of Internet data traffic models. In 2003 Chung collaborated 
with her UCSD colleagues Linyuan Lu and Van Vu on the article 
“Eigenvalues of Random Power Law Graphs,” published in the 
Annals of Combinatorics. They analyzed the numerical characteristics 
of randomly generated graphs in which the number of vertices hav-
ing k edges is proportional to some power of k. These graphs occur 
in the patterns of e-mail traffic as well as in biological networks. 
With Graham and Lu she coauthored the paper “Guessing Secrets 
with Inner Product Questions” that appeared in 2004 in the journal 
Internet Mathematics. This paper analyzed algorithms by which a 
seeker can obtain information from an adversary who tries to reveal 
as little information as possible.

In addition to her teaching and research, Chung has served the 
mathematical community as an editor of journals and as a mem-
ber of numerous committees and boards for many professional 
societies. As coeditor in chief of the journals Advances in Applied 
Mathematics, Internet Mathematics, and the Electronic Journal of 
Combinatorics and as a member of the editorial boards of 11 other 
academic journals, she reviews the work of many researchers and 



helps determine the direction of future research. From 1990 to 
1993 she served on the executive committee of the National Science 
Foundation’s Center on Discrete Mathematics and Theoretical 
Computer Science (DIMACS). In the early 1990s she served on the 
organizing committees for the Symposium on Discrete Algorithms 
and the Symposium on the Theory of Computing. Throughout 
the 1990s Chung held a variety of leadership positions in profes-
sional societies, including chairing the AMS Conference Board on 
Mathematical Sciences, the MAA’s Putnam Questions Committee, 
and the SIAM Activity Group in Discrete Mathematics. She 
continues to serve on the board of governors of the Institute of 
Mathematics and Its Applications and on the advisory board of the 
New York Academy of Sciences.

In her career Chung has written four books and more than 200 
research papers. Her collaborators include mathematicians, com-
puter scientists, statisticians, and chemists. She mentored many 
researchers during her years at Bellcore and has supervised the doc-
toral dissertations of four graduate students during the academic 
portion of her career. In 1998 the American Academy of Arts and 
Sciences elected her as a fellow.

Conclusion
During her years as a mathematician in both industry and academia, 
Fan Chung has contributed new research results to the areas of com-
binatorics, graph theory, networks, and Internet mathematics. In 
analyzing Ramsey numbers she made new discoveries about graph 
coloring. Her encoding and decoding techniques for CDMA pro-
vided a method for efficiently and securely transmitting cell phone 
calls. She analyzed the efficiency of Steiner trees and of algorithms 
to manipulate graphs and networks. Her continued work in spectral 
theory and random graphs provides a deeper understanding of the 
mathematical properties of the Internet and the World Wide Web.

FURTHER READING
Albers, Donald. “Making Connections. A Profile of Fan Chung.” 

Math Horizons, September 1995, pp. 14–18. Brief profile of 

Fan Chung  85



86  Mathematics Frontiers

Chung, with insight into her work and her approach to math-
ematical research.

Bates, Karl Leif. “Fan R. K. Chung, 1949– , Taiwan-born 
American Number Theorist.” In Notable Mathematicians: From 
Ancient Times to the Present, edited by Robyn V. Young, 115–117. 
Detroit, Mich.: Gale, 1998. Brief profile of Chung and discussion 
of some of her industrial work.

Brunner, Regina Baron. “Fan King Chung.” In Notable Women 
in Mathematics: A Biographical Dictionary, edited by Charlene 
Morrow and Teri Perl, 29–34. Westport, Conn.: Greenwood 
Press, 1998. Short biography of Chung.

Henrion, Claudia. “Fan Chung (1949– ).” In Women in 
Mathematics: The Addition of Difference, 96–107. Bloomington: 
Indiana University Press, 1997. Biographical profile offering 
insight into her career as a mathematician.

O’Connor, J. J., and E. F. Robertson. “Fan Rong K Chung
Graham.” MacTutor History of Mathematics Archive, University 
of Saint Andrews. Available online. URL: http://www-groups.
dcs.st-andrews.ac.uk/~history/Mathematicians/Chung.html. 
Accessed March 14, 2003. Biography provided by the University 
of Saint Andrews, Scotland.



FPO

87

Number Theorist Who Proved Fermat’s 
Last Theorem

After working in isolation for seven years, Andrew Wiles proved 
Fermat’s last theorem by solving a related conjecture about modular 
elliptic curves. His resolution of this problem from number theory 
that had remained unsolved for more than 300 years brought him 
international fame. Before this celebrated achievement, he had made 
significant contributions to algebraic number theory through his work 
on Iwasawa theory and the Birch and Swinnerton-Dyer conjecture.

8

Andrew Wiles used modular forms 
and elliptic curves to prove Fermat’s 
last theorem. (Denise Applewhite/
CORBIS SYGMA)

Andrew Wiles
(1953– )
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Early Interest in Mathematics
Andrew John Wiles was born on April 11, 1953, in Cambridge, 
England, to Patricia Mowll and Maurice Frank Wiles. Along with 
his brother and sister he grew up in an academically rich environ-
ment. An ordained minister, his father served as dean of Clare 
College at Cambridge University, as professor of Christian doctrine 
at King’s College in London, and as Regius Professor of Divinity 
and a canon of Christ Church at Oxford University.

As a child, Wiles enjoyed solving arithmetic problems at school 
and creating and solving similar ones at home. At the age of 10 he 
became fascinated by one particular problem known as Fermat’s 
last theorem, the conjecture that there are no nonzero integers x, y, 
and z that satisfy the equation xn + yn = zn if n is an integer greater 
than 2. Inspired by the book The Last Problem by Eric Temple 
Bell that described this famous unsolved problem and its 300-year 
history, he became determined to solve Fermat’s last theorem. 
During his teenage years he tried to approach the problem using 
only high school mathematics. As an undergraduate mathematics 
major at Merton College of Oxford University, he paid particular 
attention to the mathematical methods that other researchers had 
used to attack Fermat’s last theorem during the three prior centu-
ries. His fascination with this problem led him to deeper studies of
mathematics.

Research on Elliptic Curves
After earning his bachelor’s degree from Oxford in 1974, Wiles 
entered the graduate program at Clare College of Cambridge 
University. In 1975 he passed Part III of the mathematical Tripos, 
the fourth year of the British comprehensive examinations in math-
ematics. After earning his master’s degree in mathematics in 1977, 
he spent three years as a junior research fellow at Clare College 
and a Benjamin Pierce Assistant Professor at Harvard University 
in Cambridge, Massachusetts. During these years he conducted 
research under the direction of Cambridge professor John Coates. 
He chose to specialize in algebraic number theory—the branch of 
mathematics that employs algebraic technique to investigate prop-



erties of the integers—with the hope that his work would lead to 
the solution of Fermat’s last theorem.

Coates and Wiles performed joint research on elliptic curves, 
equations of the form y2 = x3 + ax2 + bx + c where the coefficients a, b, 
and c are integers. The graph of the points (x, y) that form the solu-
tions of an elliptic curve can be transformed into a two-dimensional
region known as a lattice and then formed into a bagel-shaped sur-
face known as a torus. Number theorists analyzing an elliptic curve
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attempt to determine the number of points with integer coordinates 
that satisfy its equation and the number of ways to modify algebra-
ically the lattice while preserving the shape of the related torus.

In their early research Coates and Wiles expanded arithmetic 
results that Austrian mathematician Emil Artin, German mathema-
tician Helmut Hasse, and Japanese mathematician Kenkichi Iwasawa 
had obtained for one type of algebraic structure and generalized it to 
a broader class of structures. They described their preliminary find-
ings in the paper “Explicit Reciprocity Laws” that they presented in 
1976 at Journées Arithmétiques de Caen (Arithmetic days at Caen), 
a number theory conference at the University of Caen in France. 
Wiles provided a more detailed description of their work in his 1978 
paper “Higher Explicit Reciprocity Laws,” which appeared in the 
Annals of Mathematics. For a pair of integers p and q, a reciprocity 
law indicates when an expression of the form xn can be written as 
both xn = p + q · j and xn = q + p · k for some integers j and k. In their 
papers Coates and Wiles established reciprocity laws when p and q 
are associated with more complicated algebraic structures.

Wiles and Coates applied their reciprocity results to solve a 
portion of an outstanding conjecture about elliptic curves. The 
points on the surface of any elliptic curve can be rearranged by 
multiplying them by an integer. If a similar rearrangement can also 
be accomplished by multiplying by a limited collection of complex 
numbers, mathematicians say that the elliptic curve has complex 
multiplication. In the 1960s British mathematicians Bryan Birch 
and Peter Swinnerton-Dyer proposed a conjecture that there is a 
simple way to determine whether an elliptic curve has a finite or 
infinite number of rational points, points whose coordinates are 
fractions or rational numbers. In their paper “On the Conjecture 
of Birch and Swinnerton-Dyer” that was published in 1977 in the 
journal Inventiones Mathematicae (Mathematical inventions), Coates 
and Wiles proved half of the weak Birch and Swinnerton-Dyer 
conjecture for elliptic curves with complex multiplication. Although 
they did not succeed in proving the entire conjecture, the signifi-
cance of their work is evident by the fact that in May 2000 the Clay 
Mathematics Institute announced that this still-unproven conjec-
ture was one of seven “millennium problems” and that the institute 
would award $1 million for its complete proof.



In 1980 Wiles earned his Ph.D. from Cambridge University for 
his dissertation, titled “Reciprocity Laws and the Conjecture of 
Birch and Swinnerton-Dyer,” that presented his partial solution of 
the famous conjecture and his work from his earlier papers on reci-
procity laws. His reputation as a rising scholar enabled him to spend 
the next six years at six different academic institutions in Germany, 
the United States, and France. In 1981 he was a visiting professor 
at the Sonderforschungsbereich Theoretische Mathematik (Special 
research center for theoretical mathematics) in Bonn, Germany. 
During the 1981–82 academic year he was a member of the Institute 
for Advanced Study (IAS) in Princeton, New Jersey. After spending 
the next year as a visiting professor at France’s Université de Paris, 
Orsay (University of Paris at Orsay), he secured an appointment to 
the mathematics faculty at Princeton University in Princeton, New 
Jersey. A Guggenheim Fellowship enabled him to travel to Paris for 
the 1985–86 academic year as a visiting professor at the Institut des 
Hautes Études Scientifiques (Institute of high scientific studies) and 
at the École Normale Supérieure (Normal superior university).

Modular Forms and Iwasawa Theory
After completing his dissertation, Wiles realized that he was not 
making any progress toward the solution of Fermat’s last theorem, 
so he set it aside to concentrate on other topics in algebraic number 
theory. His research during the next 15 years focused on modular 
forms and Iwasawa theory. Modular forms are a certain class of 
elliptic curves that have well-behaved properties related to the 
curve’s lattice. Iwasawa theory is an area of number theory that uses 
techniques introduced by Iwasawa in the 1950s to establish connec-
tions between the structures of collections of numbers and related 
collections of functions that are known as algebraic number fields 
and algebraic function fields, respectively.

The most important of Wiles’s papers on modular forms and 
Iwasawa theory was the paper “Class Fields of Abelian Extensions 
of Q,” which he coauthored with American mathematician Barry 
Mazur. In this 1984 paper published in Inventiones Mathematicae, 
they proved the main conjecture of Iwasawa theory for number fields 
that were related to the set of all rational numbers. This conjecture 
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asserted that there should be a precise relationship between p-adic 
zeta functions and Iwasawa modules, two objects associated with any 
algebraic number field. This paper constituted a major achievement 
in Iwasawa theory because it produced the first complete proof of 
the main conjecture for any class of number fields. In 1990 Wiles 
published a general proof of the main conjecture of Iwasawa theory 
for fields of real numbers in his paper “The Iwasawa Conjecture for 
Totally Real Fields,” which appeared in the Annals of Mathematics.

Wiles’s work on the main conjecture of Iwasawa theory and 
his earlier research results on the Birch and Swinnerton-Dyer 
conjecture represented major contributions to algebraic number 
theory. In 1988 the London Mathematical Society awarded him 
its Whitehead Prize, a recognition reserved for British mathemati-
cians who have achieved significant accomplishments before the 
age of 40. Wiles returned to England as a Royal Society Research 
Professor at Oxford from 1988 to 1990. During that time the Royal 
Society of London elected him as a fellow. He spent the next year 
at Princeton University and was a visiting researcher at the IAS 
for the 1991–92 academic year before rejoining the mathematics 
department at Princeton.

Proof of Fermat’s Last Theorem
From 1986 to 1993 Wiles focused his mathematical research 
exclusively on a single problem: Fermat’s last theorem. Although 
he published a small number of papers during this period, he had 
in fact completed the research for these papers before 1986 and 
was publishing his results periodically to disguise the fact that he 
was devoting all his efforts to one demanding and time-consuming 
project. When he was not teaching, he worked in isolation in his 
sparse office in the attic of his home. Only his wife, Nada, whom he 
married in 1986, and one professional colleague, Princeton math-
ematics professor Nicholas Katz, knew that he was trying to solve 
Fermat’s last theorem. The problem consumed his thoughts and 
energies every day. One of his few diversions was playing with his 
three daughters, Clare, Kate, and Olivia.

Fermat’s last theorem—the assertion that there are no integer 
solutions to the equation xn + yn = zn if the exponent n is an integer 



greater than two—was one of many statements that 17th-century 
French number theorist Pierre de Fermat claimed to have proven. 
Within 150 years after his death mathematicians were able to prove 
or disprove all his other claims, leaving this as his final unsolved 
problem. By the middle of the 19th century, researchers in France 
had proved a special case of Fermat’s last theorem for all exponents 
less than 200 but had been able to prove the full theorem only for
n = 3, 4, 5, 7, and 14. In 1976 mathematicians showed that Fermat’s 
equation had no integer solutions for all exponents less than 
125,000. Sixteen years later, with the help of a computer program, 
researchers proved that there were no integer solutions for any 
exponent less than 4,000,000.

The development that inspired Wiles to devote his full attention 
to Fermat’s last theorem was a 1986 paper by American math-
ematician Kenneth Ribet that linked the problem to an earlier 
conjecture about elliptic curves. In 1955 Japanese mathematicians 
Yutaka Taniyama and Goro Shimura had proposed the conjecture 
that every elliptic curve with rational numbers as coefficients is 
modular. Ribet connected Fermat’s last theorem to elliptic curves 
by showing that if an + bn = cn for nonzero integers a, b, and c, then
y2 = x(x – an)(x + bn) formed an elliptic curve that was not modular. 
This result meant that if the Taniyama-Shimura conjecture was 
true, then the numbers a, b, and c that satisfied Fermat’s equation 
and produced Ribet’s nonmodular elliptic curve could not exist.

In 1993, after seven years of work, Wiles proved a restricted 
version of the Taniyama-Shimura conjecture. He concentrated on 
semistable elliptic curves, elliptic curves whose three roots satisfy a 
particular condition involving prime numbers. Using ideas known 
as Galois representations, Hecke algebras, discriminants, and
j-invariants, he proved that every semistable elliptic curve was 
modular. Since the elliptic curve y2 = x(x – an)(x + bn) would be 
semistable but not modular if an + bn = cn, this result meant that 
there could not be any such numbers a, b, and c.

Wiles announced the results of his research on June 23, 1993, 
at a small conference at the Isaac Newton Institute in Cambridge, 
England. After he presented his proof that every semistable elliptic 
curve was modular and indicated that this result proved Fermat’s last 
theorem, the audience of 200 mathematicians gave him a standing
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ovation. The announcement generated excitement throughout 
the international scientific community until a mathematician dis-
covered a subtle mistake in the proof. During the next 15 months 
Wiles worked with his former student Richard Taylor to correct the 
error by replacing that portion of the proof with a valid argument 
using a different technique. In May 1995 the Annals of Mathematics 
published Wiles’s corrected proof in the 109-page paper “Modular 
Elliptic Curves and Fermat’s Last Theorem” and the accompany-
ing 48-page article “Ring-Theoretic Properties of Certain Hecke 
Algebras” coauthored by Wiles and Taylor.

The significance of Wiles’s accomplishment extended beyond 
his success in proving a theorem that had been an open problem 
for more than three centuries. His proof provided a partial realiza-
tion of the Langlands program, an effort initiated in the 1960s by 
Canadian mathematician Robert Langlands to establish unifying 
connections between seemingly unrelated branches of mathemat-
ics. Encouraged by his success, other mathematicians have begun 
to apply the techniques of modern algebraic geometry in attempts 
to solve classical conjectures and open problems from other areas 
of mathematics.

Wiles’s proof of Fermat’s last theorem earned him numerous 
awards and elevated him to the status of a celebrity. In 1993 People 
magazine named him one of the 25 Most Intriguing People of the 
Year. The following year Princeton appointed him to an endowed 
chair as the Eugene Higgins Professor of Mathematics and the 
American Academy of Arts and Sciences elected him as a fellow. 
He received the 1995 Schock Prize in Mathematics from the Royal 
Swedish Academy of Sciences, the 1995 Prix Fermat (Fermat prize) 
from the Université Paul Sabatier (University of Paul Sabatier), 
the 1996 Wolf Prize, and the 1996 Royal Medal from the Royal 
Society of London. In 1996 the United States National Academy 
of Sciences (NAS) inducted him as a foreign member and presented 
him the NAS Award in Mathematics. The American Mathematical 
Society (AMS) invited him to present the 1996 Colloquium Lectures 
at its 100th Summer Meeting and awarded him the 1997 Frank 
Nelson Cole Prize in Number Theory. The Public Broadcasting 
System filmed a 1997 documentary titled The Proof about his work 
on Fermat’s last theorem. At the 1998 Fields Medal ceremony, 



the International Mathematical Union presented Wiles a special 
silver plaque in honor of his achievement. The Clay Mathematics 
Institute named him the winner of the 1999 Clay Research Award.

Several of the prizes Wiles won provided him substantial finan-
cial rewards, in addition to the recognition of his peers. In 1997 
he claimed the Wolfskehl Prize, a monetary award that German 
mathematician Paul Wolfskehl had established in 1908 when he 
bequeathed 100,000 marks to the University of Göttingen to be 
awarded for the first complete proof of Fermat’s last theorem. The 
John D. and Catherine T. MacArthur Foundation named him as a 
fellow for the period 1997 to 2002, a designation that provided him 
an annual research stipend of $60,000. In 1998 he won the King 
Faisal International Prize for Science that included an award of 
$200,000 and a gold medal. The Shaw Prize Foundation of Hong 
Kong presented him its 2005 Shaw Prize worth $1 million.

Research after Fermat
Wiles continues to teach and conduct research as chair of Prince-
ton’s mathematics department. From 1995 to 2004 he also held an 
appointment as a professor of mathematics at the IAS. Since 1998
he has served on the Scientific Advisory Board of the Clay Math-
ematics Institute that offers million-dollar prizes for the solutions of 
seven famous open problems. He has directed the doctoral research 
of 12 graduate students and has received many invitations to lecture 
about his work and his perspective on mathematics. Typical of these 
presentations was his lecture “Twenty Years of Number Theory,” 
a survey of recent work in this branch of mathematics, that he pre-
sented in 1998 at the International Congress in Berlin.

In 2001 French mathematician Christophe Breuil and three of 
Wiles’s former doctoral students Brian Conrad, Fred Diamond, 
and Taylor proved that all elliptic curves are modular, resolving the 
full Taniyama-Shimura conjecture. Although Wiles did not directly 
participate in this collaborative research project, their work fol-
lowed the strategy and used the techniques that he had introduced 
in his earlier proof of the semistable case.

Wiles has continued to conduct research in algebraic number 
theory. In a series of papers published between 1997 and 2001, he 
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and Chris Skinner, another of Wiles’s former doctoral students, 
presented their research on properties of modular forms. Their 
1997 paper “Ordinary Representations and Modular Forms,” 
published in the Proceedings of the National Academy of Sciences of 
the United States of America, used methods from Wiles’s earlier 
work on Iwasawa theory to prove that certain types of curves are 
modular. In their paper “Residually Reducible Representations 
and Modular Forms,” which appeared in 2000 in Institut des Hautes 
Études Scientifiques. Publications Mathématiques (Institute of High 
Scientific Studies, mathematical publications), they presented new 
techniques to work with modular forms in an attempt to resolve a 
conjecture proposed by Mazur and the French mathematician Jean-
Marc Fontaine. Their two most recent papers—“Base Change and 
a Problem of Serre,” published in 2001 in the Duke Mathematical 
Journal, and “Nearly Ordinary Deformations of Irreducible Residual 
Representations,” which appeared later in the same year in Toulouse. 
Faculté des Sciences. Annales Mathématiques (Toulouse, department 
of sciences, annals of mathematics)—provided new techniques and 
additional results involving modular forms.

Conclusion
Andrew Wiles made significant contributions to algebraic number 
theory by proving a portion of the Birch and Swinnerton-Dyer 
conjecture about elliptic curves and the main conjecture of Iwasawa 
theory about modular forms. During an intensive seven-year period 
of work he proved a restricted version of the Taniyama-Shimura 
conjecture for semistable elliptic curves. This result proved Fermat’s 
last theorem, a problem from number theory that mathematicians 
had been trying to solve for more than three centuries.
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Modeling Images with Wavelets

Ingrid Daubechies (pronounced DOHB-shee) introduced 
Daubechies wavelets as an easily computed method for repre-
senting mathematical functions as sums of basic wave forms. 
Daubechies wavelets and her subsequent development of biorthog-
onal wavelets provided researchers with efficient ways to capture 
electronic signals and digitized images for storing fingerprints, pro-
cessing images, and analyzing signals. She continues to work with
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mathematicians, scientists, engineers, and biomedical researchers to 
develop new applications of wavelets.

Early Life and Education
Ingrid Chantal Daubechies was born on August 17, 1954, in 
Houthalen, a small mining town in eastern Belgium. Marcel 
Daubechies, her father, was a civil engineer who worked in the coal 
mining industry. Simone Daubechies, her mother, held a bachelor’s 
degree in economics, but as the wife of an engineer, she was discour-
aged from pursuing a career. She later earned a second bachelor’s 
degree in criminology and was employed as a social worker, dealing 
with children from criminally violent homes. Although her parents 
spoke both French and Dutch, Ingrid and her brother learned 
Dutch as their native language. As a child, Ingrid enjoyed weaving, 
making pottery, reading, and tinkering with machinery. Her early 
interest in arithmetic was apparent by her awareness of the rule 
that a number is divisible by nine if the sum of its digits is divisible 
by nine and by her ability to calculate mentally integer powers of 
two—21 = 2, 22 = 4, 23 = 8, 24 = 16, . . . . At the public elementary 
and high schools for girls that she attended, she was one of the best 
students in her mathematics and science classes.

After high school Daubechies enrolled as an undergraduate stu-
dent at Vrije Universiteit Brussel (VUB; Brussels Free University) 
in Brussels, Belgium. She chose to major in physics as a compromise 
between her interest in studying mathematics, her mother’s desire 
for her to become an engineer, and her father’s encouragement to 
become a scientist. The first two years of her focused curriculum 
included many mathematics courses and no classes in the liberal 
arts. During her last two years of undergraduate studies, her courses 
were almost exclusively physics lectures and laboratories. In 1975 
she graduated with a bachelor of science degree in physics.

Research in Quantum Physics
For the next five years Daubechies worked to earn her doctoral 
degree in the Department of Theoretical Physics at VUB. As a 
graduate research fellow, she spent eight to 10 hours each week 



conducting problem-solving sessions for students enrolled in 
undergraduate physics courses. These relatively light teaching 
duties enabled her to concentrate her efforts on her research in 
quantum mechanics, the branch of theoretical physics concerned 
with the analysis of atoms, electrons, and other extremely small 
particles. Her initial interests were to find functions that described 
or quantified the movements of subatomic particles. In her first 
research paper, “An Application of Hyperdifferential Operators 
to Holomorphic Quantization,” which was published in 1978 in 
the journal Letters in Mathematical Physics, she established some 
topological properties of these quantifying functions and their 
derivates.

While in graduate school, Daubechies and fellow student 
Diederik Aerts wrote a series of five research papers about quantum 
physics applications of Hilbert spaces, mathematical structures in 
which objects known as vectors can be combined by an inner prod-
uct operation. One of their joint papers, “Physical Justification for 
Using the Tensor Product to Describe Two Quantum Systems as 
One Joint System,” was published in 1978 in the Swiss physics jour-
nal Helvetica Physica Acta (Helvetica physics activities). In this paper 
they proved that if two physical systems formed the components 
of a compound system in quantum physics, then the compound 
system’s Hilbert space was the tensor product of the Hilbert spaces 
of its two subsystems. Their other papers focused on related aspects 
of the same topic.

Daubechies earned her Ph.D. in physics in 1980 under the 
direction of Belgian physicist Jean Reignier and French physicist 
Alexander Grossmann for a dissertation titled “Representation of 
Quantum Mechanical Operators by Kernels on Hilbert Spaces of 
Analytic Functions.” In her doctoral research she analyzed proper-
ties of coherent states, mathematical tools that can be applied to 
establish a correspondence between quantum mechanics and classi-
cal mechanics. Her work involved creating localized functions in a 
Hilbert space that closely correspond to both the position and the 
momentum of subatomic particles.

Although she accepted a position at VUB as a research assis-
tant, Daubechies spent the years from 1981 to 1983 on a leave of 
absence as a postdoctoral research fellow at Princeton University 
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in Princeton, New Jersey, and at New York University’s Courant 
Institute of Mathematical Sciences in New York City. She contin-
ued her research on theoretical particle physics and wrote papers 
individually and in collaboration with several research partners. 
Typical of her work during this period was her paper “One-
Electron Molecules with Relativistic Kinetic Energy: Properties 
of the Discrete Spectrum,” published in 1984 in Communications 
in Mathematical Physics. In this paper she analyzed the eigenvalues 
and other numerical characteristics of functions that described the 
behavior of small particles.

In 1984 Daubechies won the Louis Empain Prize for Physics, 
an award given every five years to a Belgian scientist for scientific 
contributions completed before the age of 29. Her award-winning 
paper was titled “Weylkwantisatie bestudeerd via een integraal-
transformatie met behulp van het koherentetoestanden-formal-
isme” (Weyl quantization studied by an integral transformation 
with the use of the coherent states formalism). In this paper she 
presented work that extended her dissertation research on the use 
of functions in a Hilbert space to measure both the position and the 
momentum of small particles. In the same year she was promoted 
to the rank of research professor with tenure at VUB.

Between 1984 and 1987 Daubechies collaborated with American 
mathematical physicist John Klauder to analyze the construction 
of path integrals, methods for calculating the distance traveled by 
quantum particles. In their technique they used the path averaging 
methods introduced earlier by American mathematician Norbert 
Wiener. They described their joint work in their 1984 paper 
“Quantum Mechanical Path Integrals with Wiener Measures for 
All Polynomial Hamiltonians,” which was published in Physical 
Review Letters, and their 1985 paper “Quantum Mechanical Path 
Integrals with Wiener Measures for All Polynomial Hamiltonians 
II,” which appeared in the Journal of Mathematical Physics.

Daubechies Wavelets
In 1985 Daubechies started working on the topic of wavelets, 
elementary mathematical functions that can be used as funda-
mental building blocks to construct more complicated functions. 



As she became interested in this new technique for representing 
wave forms, she left Belgium to become a member of the technical 
staff at the Mathematics Research Center at Bell Laboratories in 
Murray Hill, New Jersey. Her work at Bell Labs focused on devel-
oping and analyzing mathematical techniques for signal processing, 
the branch of applied mathematics concerned with transmitting, 
manipulating, storing, and reconstructing electrical and electronic 
signals. During that same year she married A. Robert Calderbank, 
a British mathematician who also worked at Bell Labs.

The idea of expressing a function as a sum of simpler components 
had its origins in the work of French mathematician Jean-Baptiste-
Joseph Fourier, who pioneered the idea in the early 19th century. 
His method of Fourier series enabled scientists and engineers to 
represent sound waves and other periodic functions as infinite sums 
of basic sine and cosine functions. In 1909 Hungarian mathemati-
cian Alfred Haar introduced basic functions now known as Haar 
wavelets that enabled mathematicians to roughly approximate 
more complicated functions as sums of short positive and nega-
tive pulses. British mathematicians John Littlewood and Raymond 
Paley improved on this method in the 1930s by grouping frequen-
cies by octaves to represent sound waves. In the 1940s Hungarian 
mathematician Dennis Gabor introduced the Gabor transform that 
separated a wave into time-frequency packets. By the 1980s, math-
ematicians, scientists, and engineers had developed additional tech-
niques to express functions, especially electrical signals and periodic 
wave forms, as sums of more basic components, but none of their 
techniques were widely used outside specialized disciplines.

During the 1980s four French scientists developed a system-
atic general theory of wavelets. Jean Morlet, a geologist trying to 
improve seismic wave techniques for detecting underground oil 
reserves, developed the concepts of wavelets of constant shape, fun-
damental functions that retained their shape when they were shifted, 
stretched, or reduced. In 1984 Grossmann and Morlet confirmed 
that functions could be decomposed into wavelets of constant shape 
and then reconstructed into smooth signals, even if small errors of 
measurement or computation had occurred. Physicist Yves Meyer 
improved on their work by introducing systems of wavelets that were 
orthogonal, meaning that each wavelet represented information
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that was independent of the information captured by all other 
wavelets. In 1986 computer scientist Stéphane Mallat reduced the 
process of computing wavelets to a simple calculation of averages 
and differences of small portions of each signal.

During February and March of 1987 Daubechies developed a 
new theory of compactly supported, orthonormal wavelets, now 
known as Daubechies wavelets. The quality of compact support 
meant that each wavelet took nonzero values only on a finite 
interval. Orthonormality meant that each wavelet independently 
represented a different aspect of the function being modeled and 
that the wavelets were all of a uniform size. She introduced her 
ideas in a conference presentation titled “Orthonormal Bases 
of Wavelets with Finite Support—Connections with Discrete 
Filters” that she presented at the 1987 International Workshop on 
Wavelets and Applications in Marseille, France. Her 87-page paper 
“Orthonormal Bases of Compactly Supported Wavelets,” which 
was published in 1988 in the journal Communications on Pure and 
Applied Mathematics, provided a more thorough explanation of her 
new theory. This paper made wavelets readily available to a broad 

A typical Daubechies wavelet is an irregularly shaped curve with rough edges 
and frequent spikes. A sound wave can be efficiently reproduced by adding a 
collection of these basic curves that each capture different features of the
original wave.



audience of mathematicians, scientists, and engineers for a wide 
range of applications.

Daubechies’s new class of wavelets had many desirable properties 
that made them more useful than all prior variations of wavelets. 
They were easily implemented on computers using simple, well-
known techniques of digital filtering. Although each wavelet was a 
jagged curve with irregular edges the signal produced by the sum 
of a collection of Daubechies wavelets was smooth. Because they 
were an orthonormal set of waves, they efficiently captured the 
characteristics of the wave being modeled without any redundancy. 
As a compactly supported function, each Daubechies wavelet rep-
resented information from a small section of the larger function in 
a simpler way than the basic functions did in more cumbersome 
techniques such as windowed Fourier transforms.

At the end of her landmark 1988 paper, Daubechies included 
a table of coefficients that provided explicit information about 
expressing a function as a sum of its Daubechies wavelets. This 
practical information allowed engineers to begin applying imme-
diately her ideas to the processing of digitized electronic signals. 
They were able to compress all the characteristics of a wave form 
into a discrete set of coefficients that provided instructions on how 
to reconstruct the curve from scaled and shifted copies of a “father” 
wavelet. Daubechies wavelets rapidly became fundamental tools for 
signal processing.

Digital Image Compression
During the 1990s Daubechies made a transition from an industrial 
environment back to an academic setting. Although she remained 
on the technical staff at Bell Labs until 1994, she spent a six-
month leave of absence at the University of Michigan in 1990, and 
from 1991 to 1993 she taught as a professor in the Department 
of Mathematics at Rutgers University in New Brunswick, New 
Jersey. In 1992 she published the book Ten Lectures on Wavelets 
that provided a review of the most recent developments in the 
theory of wavelets and a tutorial explaining how to apply the theory 
to practical problems in signal processing, image processing, and 
numerical analysis. This book won the 1994 Leroy P. Steele Prize 
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for Mathematical Exposition from the American Mathematical 
Society (AMS) and immediately became recognized as the standard 
reference work on the subject of wavelets.

Traveling around the United States, Daubechies gave lectures 
on wavelets to diverse audiences of mathematicans and scientists. 
In an invited address at the joint annual meetings of the AMS, the 
Mathematical Association of America (MAA), and the Society for 
Industrial and Applied Mathematics (SIAM) in Baltimore, Maryland, 
in January 1992, she presented a lecture titled “Wavelets Making 
Waves in Mathematics and Engineering.” The AMS published the 
videotape of this presentation on the history of wavelets as part of 
its series Selected Lectures in Mathematics. At the 1992 Frontiers of 
Science symposium sponsored by the National Academy of Science 
(NAS), she explained how wavelets were used to represent, trans-
mit, and reconstruct electronic waves in a paper titled “Wavelets 
and Signal Analysis.” Daubechies explained additional applications 
of wavelets in her June 1992 lecture “Wavelets: A Tool for Time-
Frequency Analysis” that she delivered at the Spring Meeting of the 
Northeastern Section of the MAA at Merrimack College in North 
Andover, Massachusetts, and in her presentation titled “Wavelet 
Transforms and Orthonormal Wavelet Bases” at the 1993 AMS 
conference “Different Perspectives on Wavelets” in San Antonio, 
Texas.

Daubechies developed additional techniques that expanded 
the applications of wavelets. With French mathematicians Albert 
Cohen and Jean-Christophe Feauveau she coauthored the paper 
“Biorthogonal Bases of Compactly Supported Wavelets,” which 
was published in 1992 in the journal Communications on Pure and 
Applied Mathematics. In this paper they introduced a technique 
that used two sets of mutually orthogonal wave forms to represent 
two-dimensional images, one set for decomposition and the other 
for reconstruction of the image. Within a year, researchers at the 
Federal Bureau of Investigation (FBI) and the Los Alamos National 
Laboratory used this technique to develop a method for digitally 
storing and matching fingerprints. The wavelet scalar quantization 
(WSQ) method allows images of fingerprints to be compressed at a 
20-to-one ratio without any significant loss of image detail. In 1993 
the FBI adopted this method to store and match their database of 



200 million fingerprints and achieved a savings of 93 percent in the 
space required to store the information.

In the biomedical field, researchers use Daubechies’s techniques 
to process and analyze signals from imaging devices such as electro-
cardiograms (EKGs), electroencephalograms (EEGs), and magnetic 
resonance images (MRIs). Because wavelets are not compromised 
by corruptions in the acquisition or transmission of small amounts 
of data, wavelet-based images provide more reliable representations 
of the anatomical region being scanned. Additionally, wavelet-based 
images can be more efficiently analyzed for evidence of abnormali-
ties or disease because their more efficient representation requires 
the processing of less information.

The biorthogonal bases introduced by Daubechies, Cohen, and 
Feauveau have become the most commonly used wavelets for image 
processing. In addition to their uses in biomedicine and fingerprint-
ing analysis, researchers in other fields use Daubechies wavelets 
and biorthogonal wavelets to find meaningful patterns in turbulent 
systems such as the flow of air around the wing of an airplane, the 
path of electrically charged gases in a nuclear reactor, and the flow 
of water through a network of pipes. Geologists employ wavelet-
based images of sound waves traveling through layers of rock to 
analyze the composition of the material and detect layers of coal, 
salt, or oil. Filmmakers use wavelets in the computer animation of 
cartoon characters. Musical researchers employ wavelets to identify 
and remove static from imperfect recordings. Wavelets allowed 
researchers in the image processing field to introduce new stan-
dards in 2000 for storing digital images as JPEG files.

The broad impact of her research on wavelets earned Daubechies 
widespread recognition. In 1992 she received a John D. and 
Catherine T. MacArthur Fellowship, an award of $60,000 per 
year to fund her travel and research activities for a period of five 
years. The following year the American Academy of Arts and 
Sciences elected her as a fellow. In 1997 the AMS awarded her 
the Ruth Lyttle Satter Prize in Mathematics in recognition of her 
pioneering work with wavelets and their applications. The NAS 
inducted her as a member in 1998 and presented her the NAS 
Award in Mathematics in 2000. In 1998 the Institute of Electrical 
and Electronics Engineers (IEEE) elected her as a fellow and 
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awarded her the IEEE Information Theory Society Golden Jubilee 
Award for Technological Innovation. Daubechies received the 
1998 International Society for Optical Engineering Recognition 
of Outstanding Achievement and was elected a foreign member 
of Royal Netherlands Academy of Arts and Sciences in 1999. 
The Eduard Rhein Foundation honored her with its 2000 Basic 
Research Award for the invention, mathematical advancement, 
and application of wavelets. The MAA named her its 2001 Earle 
Raymond Hedrick Lecturer.

Continued Research on Wave 
Representations
Daubechies, and French mathematicians Stéphane Jaffard and Jean-
Lin Journe developed a new tool for analyzing waves that combined 
some of the advantages of wavelets with some of the strengths of 
Fourier series. In their 1991 paper “A Simple Wilson Orthonormal 
Basis with Exponential Decay,” published in the SIAM Journal on 
Mathematical Analysis, they introduced a collection of orthonormal 
basis functions involving sines and cosines that are damped so that 
their values diminish with time. Their method quickly became a 
standard tool for time frequency analysis and for the numerical 
analysis of partial differential equations, equations involving the 
derivates of functions of several variables.

In 1994 she joined the faculty at Princeton University in 
Princeton, New Jersey, as a professor in the mathematics depart-
ment and in the university’s Program in Applied and Computational 
Mathematics (PACM). From 1997 to 2001 she directed the PACM, 
which provides intensive training in applied mathematics to a select 
group of undergraduate and graduate students. Since 2004 she 
has held an endowed chair as Princeton’s William R. Kenan, Jr., 
Professor. At Princeton she teaches undergraduate and graduate 
courses, directs the research of doctoral students, and collaborates 
with postdoctoral research fellows and her colleagues. She has also 
helped create curriculum materials that reflect current applications 
of mathematics for students in kindergarten through grade 12.

Through her recent and current research Daubechies has been 
working to extend the applications of wavelets to new areas. In 1996 



she and IBM scientist Stéphane Maes coauthored a chapter titled “A 
Nonlinear Squeezing of the Continuous Wavelet Transform Based 
on Auditory Nerve Models” for the book Wavelets in Medicine and 
Biology. Their joint work applied wavelet techniques to model the 
human process of hearing. In 2002 Daubechies and Cohen col-
laborated with electrical engineer Onur Guleryuz from Brooklyn’s 
Polytechnic University and Michael Orchard from Rice University 
to cowrite the paper “On the Importance of Combining Wavelet-
Based Nonlinear Approximation with Coding Strategies,” which was 
published in the IEEE Transactions on Information Theory. Their arti-
cle explained the advantages and disadvantages of using only a lim-
ited number of the largest coefficients of the wavelet expansion for a 
digital signal that is transmitting data. With mathematician Bin Han 
from the University of Alberta, computer scientist Amos Ron from 
the University of Wisconsin-Madison, and mathematician Zuowei 
Shen from the University of Singapore she coauthored a paper 
titled “Framelets: MRA-Based Constructions of Wavelet Frames,” 
which appeared in 2004 in the journal Applied and Computational 
Harmonic Analysis. In this paper the four researchers explained 
how framelets—the individual elements of certain types of wavelet 
systems—provide methods for conducting multiresolution analysis 
(MRA). Other engineers and scientists are attempting to build on 
Daubechies’s work to analyze shock waves produced by explosions, 
to encode multiple signals traveling through a single transmission 
line, and to develop better systems for predicting the weather.

In addition to writing more than 100 research papers on quantum 
mechanics and wavelets and directing students’ doctoral research, 
Daubechies has served the mathematical community through 
her work for journals, committees, and professional societies. As 
coeditor in chief of the journal Applied and Computational Harmonic 
Analysis and as a member of the editorial boards of 10 other journals, 
she reviews the work of mathematical and scientific researchers and 
helps set the direction for future research. Daubechies served as a 
member of the United States National Committee on Mathematics 
and the European Mathematical Society’s Commission on the 
Applications of Mathematics. She is a member of five professional 
societies: the AMS, MAA, SIAM, IEEE, and the Association for 
Women in Mathematics.
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Conclusion
Ingrid Daubechies’s introduction of the concept of compactly 
supported orthonormal wavelets, known as Daubechies wavelets, 
provided an accessible computational tool for signal and image pro-
cessing. Her landmark paper and her classic book have become two 
of the most frequently referenced works on the subject. Daubechies 
wavelets and her subsequent introduction of biorthogonal wavelets 
made possible the efficient storage, manipulation, and analysis 
of fingerprints, animated images, electronic signals, biomedical 
images, seismic waves, and musical recordings.
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New Algorithm for Cryptography

As a 16-year-old high school student, Sarah Flannery developed a 
new algorithm for encoding and decoding digital messages. In her 
project that won national and international science competitions, 
she demonstrated that her technique was faster than the industry 
standard RSA cryptosystem. She works as a researcher developing 
mathematical software.
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Solving Puzzles
Sarah Flannery was born on January 31, 1982, in the village of 
Blarney in County Cork, Ireland, to David Flannery, a mathema-
tician, and Sarah Flannery, a biologist. She and her four younger 
brothers, Michael, Brian, David, and Eamonn, grew up on a rural 
dairy farm five miles from Cork Institute of Technology (CIT), 
where her father was a professor in the mathematics depart-
ment and her mother was a part-time microbiology lecturer. She 
obtained the first six years of her education at the local primary 
school for girls and spent the next six years at Scoil Mhuire gan 
Smál (School of Mary the Immaculate), a coeducational secondary 
school in Blarney.

During her childhood Flannery’s father challenged her and her 
brothers to solve puzzles on a chalkboard that hung in the family’s 
kitchen. One classic puzzle that she solved at the age of five involved 
using a five-gallon jug and a three-gallon jug to measure out four 
gallons of water. Another puzzle asked how long it would take a 
rabbit to climb out of a hole 30 meters deep if it climbed up three 
meters each day and slipped back two meters each night. Other 
puzzles involved a farmer transporting a lion, a goat, and a cabbage 
across a river, a fly flying back and forth between two approaching 
trains, a monk climbing up and down a mountain, and three run-
ners competing in a race.

One particular puzzle whose solution typified the reasoning pro-
cesses that Flannery employed was the construction of all the 3 × 3 
magic squares for the numbers 1, 2, 3, . . . , 9. In order to solve this 
puzzle, one needs to insert the integers from 1 through 9 into a grid 
of squares arranged into three rows and three columns so that each 
row, each column, and each diagonal produces the same sum. Rather 
than sift through the 362,880 possible ways to arrange the numbers 
in the grid of nine squares, Flannery reasoned logically that there 
were only eight solutions and that they were all simple variations 
of a single solution. Since each number must occur exactly once in 
the matrix, she reasoned that the sum of all three rows is 1 + 2 + 3 +
. . . + 9 = 45. She concluded that the sum of each row, column, and 
diagonal must be 15 and generated the eight different combinations 
of three numbers that summed to that common total. Flannery 



observed that the entry in the center of the magic square must be 
5 because the value in this position will be involved in four sums 
(one row, one column, and two diagonals), and 5 is the only number 
having this property. Since each of the even numbers, 2, 4, 6, and 
8, can be included in three sums that add up to 15 while each of 
the odd numbers, 1, 3, 7, and 9, can be included in only two such 
sums, she reasoned that the even numbers must occupy the corners 
of the magic square while the odd numbers must be placed in the 
four remaining noncorner positions. She completed her analysis 
by noticing that four of the eight resulting magic squares were the 
same arrangement of numbers rotated a quarter of a turn from each 
other and that the final four solutions could be obtained by flipping 
the first four.

Successfully wrestling with the logic and mathematics of the 
magic square and other puzzles helped Flannery develop strong 
skills in problem solving and abstract thinking. Talking her way 
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through multiple strategies and developing creative solution meth-
ods increased her confidence in her ability to take on challenges. In 
addition to solving puzzles, Flannery maintained interests in team 
sports such as basketball, Gaelic football, cross-country running, 
and hurling and in individual activities including boating, playing 
the piano, and playing the tin whistle. An avid horseback rider, she 
participated in show jumping competitions with her horse Clydie.

Cryptography Project for Science Fair
As a 10th-grade student in 1997, Flannery decided to participate in 
a transition year—an optional year of project-based learning with 
no examinations—before completing her final two years of high 
school. She and her classmates established a business to manufacture 
and sell Christmas cards and decorations, sold shares in the com-
pany, marketed their products, generated a profit, and dissolved the 
company. During a trip to an outdoor education center her group 
learned survival techniques, orienteering, and rappelling. In another 
project she organized and participated in a fashion show after tak-
ing a professional modeling course. Pursuing her interest in math-
ematics she enrolled in a Saturday morning program for advanced 
high school students titled “Enrichment Course in Mathematics” at 
University College Cork (UCC). One evening each week she also 
attended her father’s noncredit course “Mathematical Excursions” at 
CIT in which she explored ideas in higher-level mathematics.

Flannery’s most time-consuming activity during her transition 
year was her science fair project on cryptography, the study of 
coding and decoding messages. Combining ideas she learned from 
her father’s course with information she obtained through her 
independent research, she developed a project that explained the 
terminology and basic ideas of classical and modern cryptosystems. 
She explained methods that ranged from the Caesar cipher that 
Roman military officers had used 2,000 years ago to public key 
cryptography, a collection of techniques developed in the late 20th 
century that allow the sender to make public the process used to 
encrypt a message without revealing how to decrypt it. Using the 
software package Mathematica, she implemented several crypto-
graphical methods on laptop computers to demonstrate the process 



of encrypting messages from plaintext to ciphertext and decrypting 
the coded ciphertext back to the original message.

In January 1998 Flannery traveled to the Royal Dublin Society 
in Ballsbridge, Dublin, to participate in the Esat Young Scientist 
and Technology Exhibition, the national science fair sponsored 
by the Irish telecommunications and Internet company Esat 
Telecommunication Limited. Her entry, “Cryptography—The 
Science of Secrecy,” earned first place in the Individual Intermediate 
Mathematics, Physics, and Chemistry category, won a Display Award 
for the same section, and received the Intel Excellence Award. As 
the winner of the Intel prize, she gave a short talk on cryptography 
to her Saturday morning classmates at UCC and became Ireland’s 
representative at the Intel International Science and Engineering 
Fair (ISEF), held in May in Fort Worth, Texas, under the sponsor-
ship of the computer manufacturer Intel Corporation.

Cayley-Purser Cryptography Algorithm
In April 1998 Flannery spent a one-week internship at Baltimore 
Technologies, a Dublin-based data security company, to fulfill 
another requirement of her transition year of high school. William 
Whyte, Baltimore’s senior cryptologist, gave her an unpublished 
paper written by Michael Purser, the company’s founder and head 
cryptographer. In the paper Purser had proposed a method for 
encrypting digital signatures using quaternions, a four-dimensional 
generalization of complex numbers. Within three days Flannery 
mastered the advanced undergraduate-level mathematics that 
formed the theoretical basis of the algorithm and produced a work-
ing implementation of the system.

After completing her internship, Flannery developed Purser’s 
ideas into a cryptographical scheme using 2 × 2 matrices of non-
negative integers. Her method was based on the selection of two 
large prime numbers, p and q, each at least 100 digits in length, 
and the calculation of their product n = p · q. All arithmetic was 
performed modulo n, meaning that the result of each computation 
was adjusted to a corresponding integer value between 0 and n – 1. 
After identifying a pair of matrices, A and C for which A · C ≠ C · A, 
she calculated matrices B, D, E, G, and K that played various roles 
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in the algorithm. For each 2 × 2 matrix P whose entries represented 
four letters of the plaintext message, her algorithm produced the 
encrypted ciphertext matrix S = K · P · K. When the sender trans-
mitted the collection of ciphertext matrices and the auxiliary matrix 
E, the receiver could form the deciphering key L by combining 
matrices E and C and then decipher each ciphertext matrix by the 
simple operation P = L · S · L.

Flannery’s algorithm differed in a fundamental way from the 
RSA algorithm, the commercial public-key cryptosystem that is 
used on 300 million computer systems worldwide. Cryptologists 
Ronald Rivest, Adi Shamir, and Leonard Adleman had invent-
ed the RSA method in 1977 when they were students at the 
Massachusetts Institute of Technology (MIT) in Cambridge. Their 
technique is also based on the product of two large primes but 
uses exponentiation rather than matrix multiplication to encode 
and decode messages. After calculating the products n = p · q and
m = (p – 1) · (q – 1), the three men determined two positive integers 
c and d for which c · d = 1 modulo m, meaning that c · d  = 1 + m · k
for some integer k. For each 2 × 2 plaintext matrix P, their algo-
rithm produced the encrypted ciphertext matrix S = P c through the 
process of exponentiation, or repeated multiplication. The receiver 
could decrypt each ciphertext matrix by performing the operation 
P = Sd. Both algorithms derived their strength from the difficulty of 
factoring the 200-digit number n into a product of large primes.

To fully implement her algorithm, Flannery read articles from 
scholarly journals about advanced techniques for factoring and 
extracting roots of matrices, methods for finding inverses of matri-
ces, properties of modular arithmetic, and mathematical structures 
known as groups, rings, and finite fields. Using the mathematical 
software package Mathematica, she wrote computer programs 
to implement her algorithm and the RSA algorithm. When she 
ran both programs to encrypt and decrypt 12 copies of German-
American poet Max Ehrmann’s poem “Desiderata” and compared 
the execution times, she discovered that her algorithm ran faster. 
Although her encryption key and her ciphertext were about eight 
times as long as those produced by the RSA algorithm, incorporat-
ing the process of matrix multiplication rather than matrix exponen-
tiation significantly reduced the amount of computations required. 



She was not able to prove that her algorithm was secure—that mes-
sages encoded using her algorithm could not be decoded without 
knowing the decryption matrix—but it did survive the variety of 
attacks that she attempted.

At the weeklong ISEF fair in May 1998, Flannery’s revised 
project won a third-place Karl Menger Memorial Award from 
the American Mathematical Society (AMS), a fourth-place Grand 
Award in the mathematics category, and the prestigious $2,000 
Intel Fellows Achievement Award. After the fair, she named her 
algorithm the Cayley-Purser (CP) algorithm in honor of Arthur 
Cayley, the 19th-century English mathematician who developed 
the algebra of matrices, and Michael Purser, whose quaternion-
based cryptographical scheme she adapted for 2 × 2 matrices.

Ireland’s Young Scientist of the Year
In the fall of 1998 Flannery took her father’s “Mathematical 
Excursions” course again and made additional revisions to her CP 
algorithm. She improved her computer programs and ran both the 
CP and RSA algorithms for moduli ranging in size from 200-digit 
to 300-digit integers. Her program executions revealed that CP was 
22 to 30 times faster than RSA. When she presented her project and 
a 50-page report titled “Cryptography—A New Algorithm Versus 
the RSA” at the January 1999 Esat Telecom Young Scientist and 
Technology Exhibition, she won first place in the physics, chem-
istry, and mathematics category; was honored as the competition’s 
overall winner; and was named Ireland’s Young Scientist of the 
Year for 1999. At the awards ceremony, Bertie Ahern, Ireland’s 
taoiseach (prime minister), presented her with a silver trophy and an 
award of 1,000 Irish pounds (approximately $1,400). Her first-place 
finish earned her a one-week trip to Thessaloníki, Greece, to rep-
resent Ireland at the European Union Contest for Young Scientists 
in September.

Flannery’s achievement generated much publicity and brought 
her widespread recognition. During the next three weeks she sat for 
300 interviews with reporters from local, national, and international 
newspapers, magazines, radio stations, and television programs. 
The lord mayor of Cork named her Cork Person of the Month, 
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she met with Irish president Mary McAlese, and the organizers 
of the information technology exhibition IT@Cork presented her 
with a laptop computer. Although she rejected a lucrative offer to 
appear in an advertisement for Pepsi-Cola, Flannery permitted the 
promotion company for the Spice Girls singing group to include in 
their fan magazine an article about her titled “Smart Spice—Pop 
Babes Think Irish Whizzkid Has Girl Power.” Some media reports 
proclaimed her a genius and predicted that she would become rich 
when her new algorithm was implemented by banks, businesses, 
and governmental agencies. After lengthy consideration she turned 
down numerous offers of college scholarships and business partner-
ships and decided not to seek a patent for her algorithm.

Flannery declined invitations to lecture about the CP algorithm at 
math department seminars and meetings of student math and com-
puter clubs at numerous colleges and universities but did accept three 
speaking engagements. She traveled to Singapore to speak at the 
closing ceremony of the National Science Talent Search Contest and 
to give four talks to groups of high school students. At a leadership 
conference for women in Milan, Italy, sponsored by International 
Business Machines (IBM), she described her project to an interna-
tional audience of 200 executives. Her final speaking engagement 
was at the annual meeting of the Dublin Mathematics Teachers’ 
Association at St. Patrick’s College in Drumcondra, Dublin.

The publicity generated by the media reports focused scrutiny 
on the security of Flannery’s algorithm. Although she had success-
fully tested her algorithm against several types of attacks, it had not 
undergone the extensive peer review process required to establish 
an encryption scheme as being satisfactorily secure. After reading 
her report, a mathematician who specializes in cryptography iden-
tified a crucial flaw that enables a person to use the publicly avail-
able portions of the algorithm to create a matrix that will decrypt 
the ciphertext. Flannery, Purser, and Whyte analyzed the breach 
and concluded that it was not possible to patch the defect. The CP 
algorithm was an effective private key algorithm, but it could not be 
classified as a public key cryptosystem.

Flannery spent four weeks in July and August at the Smart Card 
Division of IBM Development Laboratories in Böblingen, Germany. 
During this internship she used the Java programming language to 



program smart cards, plastic cards similar to credit cards containing 
microprocessor chips that enable the cards to store information and 
modify that information during transactions. These cards that have 
been used in the telephone, transportation, banking, and health care 
industries incorporate more sophisticated security features than 
cards that use the simpler technology of magnetic strips.

In September Flannery displayed her project at the 1999 
European Union Young Scientist Contest in Thessaloníki. Her 
condensed 10-page report, titled “Cryptography: An Investigation 
of a New Algorithm Versus the RSA,” compared the design and 
performance of the two algorithms and included an appendix 
explaining the mathematical deficiency that made her CP algorithm 
insecure as a public key cryptosystem. She won one of three first 
prizes, was named European Young Scientist of the Year 1999, and 
received an award of 5,000 euros (worth approximately $6,000). 
With the other winners of the competition she spent a week in 
December in Stockholm, Sweden, attending the Nobel Prize cer-
emonies and participating in the Youth Science Seminar.

College and Professional Life
After graduating from high school in 2000, Flannery enrolled as 
a computer science major at Peterhouse College of Cambridge 
University in Cambridge, England. In addition to completing 
her academic work, she cowrote a book with her father about her 
experiences with the CP algorithm and the four science fairs. The 
book, In Code—A Mathematical Journey, also discussed some of the 
puzzles she had solved and the basic mathematics involved in cryp-
tography. During the summer of 2001 the release of the American 
edition of the book took her on a lecture tour of eight cities around 
the United States.

In 2003 Flannery earned her bachelor’s degree in computer sci-
ence from Cambridge and accepted a position as a research associ-
ate in the Scientific Information Group at Wolfram Research, the 
company that produces the Mathematica software package. She 
participated in the 2003 NKS Summer School, a program for young 
scientists sponsored by Steven Wolfram, the author of the book
A New Kind of Science and the founder of Wolfram Research.
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During this summer program for talented young scientists, she 
completed a project titled “An Investigation of Cellular Auto-
maton Rule Number 699927 and Other Distractions!” in which 
she investigated patterns produced in a rectangular grid of cells by 
repeated application of simple rules involving the states of neigh-
boring cells.

As a research associate at Wolfram, Flannery works on the 
development of technical computing software and coordinates the 
company’s educational outreach programs. In August 2005 she 
presented a lecture titled “Exploring Mathematics and Science 
with Mathematica” at Macquarie University in Sydney, Australia. 
During the Wolfram Research Tour of Ireland and Northern 
Ireland, she gave a series of presentations in November 2005 titled 
“Using Mathematica in Teaching and Research.”

Conclusion
Sarah Flannery won national and international science competi-
tions for developing and analyzing the Cayley-Purser cryptographic 
algorithm. She demonstrated that her method of encoding and 
decoding data was more than 20 times faster than RSA, the leading 
commercial public key cryptosystem, and explained the underlying 
mathematical reasons that make it vulnerable to attacks. A graduate 
of Cambridge University, she develops mathematical software for 
Wolfram Research.
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GLOSSARY

algebra The branch of mathematics dealing with the manipula-
tion of variables and equations.

algebraic equation A mathematical statement equating two alge-
braic expressions.

algebraic expression An expression built up out of numbers and 
variables using the operations of addition, subtraction, multipli-
cation, division, raising to a power, and taking a root.

algebraic geometry The branch of mathematics concerned with 
the study of the roots of polynomial equations.

algebraic number theory The branch of mathematics that 
employs algebraic technique to investigate properties of the 
integers.

algebraic topology The branch of mathematics in which groups 
of functions are used to study the properties of geometrical
surfaces.

algebraic variety A surface defined by a polynomial equation in 
a higher-dimensional space.

algorithm A precise set of instructions for solving a problem.
arithmetic The study of computation.
astronomy The scientific study of stars, planets, and other heav-

enly bodies.
axiom A statement giving a property of an undefined term or a 

relationship between undefined terms. The axioms of a specific 
mathematical theory govern the behavior of the undefined terms 
in that theory; they are assumed to be true and cannot be proved. 
Also known as a postulate.

big bang theory The theory in physics that asserts that the uni-
verse began with the explosion of a black hole.
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bipartite graphs A graph in which the vertices are partitioned 
into two sets so that every edge joins a node from one set with a 
node from the other.

black hole A dense concentration of mass so great that its gravi-
tational field prevents any mass or energy, including light, from 
escaping.

Brouwer fixed-point theorem The principle from algebraic 
topology that any continuous function on the surface of an
n-dimensional sphere must map at least one point back into itself.

buckyball A polyhedron constructed from 20 hexagons and 12 
pentagons.

Calabi conjecture A question, suggested by Eugenio Calabi and 
solved by Shing-Tung Yau, concerning how volume and distance 
can be measured for certain types of surfaces in five or more 
dimensions.

calculus The branch of mathematics dealing with derivatives and 
integrals.

cardinality A numerical value giving the size of a set.
Cayley-Purser A cryptographic algorithm created by Sarah 

Flannery that uses the multiplication of 2 × 2 matrices to code 
and decode messages.

celestial mechanics The branch of physics dealing with the 
motion of heavenly bodies.

cellular automata The generation of patterns on grids of cells 
according to a set of rules concerning the status of a cell and its 
neighbors.

circle The set of all points in a plane at a given distance (the 
radius) from a fixed point (the center).

coding theory The analysis of methods for manipulating and 
transmitting blocks of data.

coefficient A number or known quantity that multiplies a vari-
able in an algebraic expression.

coherent states Mathematical tools that can be applied to estab-
lish a correspondence between quantum mechanics and classical 
mechanics.

combinatorics The branch of mathematics concerned with the 
study of counting techniques.



complete graphs A graph in which every pair of vertices is con-
nected by an edge.

complex number A number that can be written as the sum of a 
real number and the square root of a negative real number.

computer program A set of instructions that controls the opera-
tion of a computer.

conjecture A mathematical statement that has been proposed but 
not yet proved.

Conway groups Three large finite groups—Co1, Co2, and Co3—
discovered by John Conway.

Conway polynomial A polynomial introduced by John Conway 
whose algebraic properties correspond to the geometric proper-
ties of the associated knot.

Conway’s knot A particular knot introduced by John Conway 
that has 11 crossings and cannot be produced from a combina-
tion of simpler knots.

coordinates The numbers indicating the location of a point on a 
plane or in a higher-dimensional space.

cosine For an acute angle in a right triangle, the ratio of the adja-
cent side to the hypotenuse.

cosmology The branch of physics concerned with the study of 
the origin and evolution of the universe.

countable An infinite set is countable if it can be put into a one-
to-one correspondence with the set of natural numbers.

cryptography The study of coding and decoding secret
messages.

cube (1) A regular solid having six congruent faces, each of which 
is a square. (2) To multiply a quantity times itself three times; 
raise to the third power.

cubic (1) A polynomial of degree 3. (2) An equation or curve 
(graph) corresponding to a cubic polynomial.

Daubechies wavelets Compactly supported orthonormal wave-
lets introduced by Ingrid Daubechies to efficiently represent 
signals and images as sums of irregular but basic wave forms.

decidable A set of numbers such as the integers or real numbers 
is decidable if there exists a single algorithm capable of deciding 
the truth of every statement involving addition, multiplication, 
elementary logic, and variables representing numbers in this set.
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decryption The process of translating a coded message from 
ciphertext to plaintext.

degree (1) A unit of angle measure equal to  of a circle.

(2) The number of edges that meet at a vertex in a polygon or 
polyhedron. (3) The sum of the exponents of all the variables 
occurring in a term of a polynomial or algebraic expression.

degree of a polynomial or equation The highest exponent 
occurring in any of its terms.

derivative A function formed as the limit of a ratio of differences 
of the values of another function. One of two fundamental ideas 
of calculus that indicates the rate at which a quantity is chang-
ing.

diagonal In a square or a rectangle, the line joining two opposite 
corners.

differential equation An equation involving derivatives.
differential geometry The branch of mathematics that uses 

derivatives and integrals to describe and analyze geometrical 
objects such as surfaces in higher-dimensional spaces.

differentiation The process of determining the derivative of a 
function.

Diophantine analysis The area of number theory dealing with 
methods for finding integer solutions of equations (usually 
involving polynomials) with integer coefficients.

divisible A number is divisible by another if the resulting quo-
tient has no remainder.

elliptic curve An equation of the form y2 = x3 + ax2 + bx + c, where 
the coefficients a, b, and c are integers.

encryption The process of translating a message into a secret 
code.

equation A mathematical sentence stating that two algebraic 
expressions or numerical quantities have the same value.

event horizon The boundary of a black hole beyond which no 
electromagnetic energy can travel.

existential definability A set of positive integers is existentially 
definable if a parameter in a solvable Diophantine equation gen-
erates all the values in the set.



exponent A number indicating how many repeated factors of the 
quantity occur. Also known as power.

exponentiation The process of raising a quantity to a power.
factor An integer that divides a given integer without leaving a 

remainder.
Fermat’s last theorem A principle in number theory conjectured 

by Pierre de Fermat stating that there are no positive integers 
x, y, and z that satisfy the equation xn + yn = zn for any integer
n > 2.

Fibonacci numbers A sequence of integers beginning 1, 1, 2, 
3, 5, 8, 13, 21, . . . in which each number is the sum of the two 
numbers immediately preceding it.

finite group A set with finitely many elements that satisfy four 
algebraic properties.

Fourier series An infinite series whose terms are of the form an 
sin(nx) and bn cos(nx).

fraction See rational number.
framelets The individual elements of certain wavelet systems.
Game of Life See life.
game theory The branch of mathematics dealing with the study 

of competition and cooperation.
gamma rays High-energy, potentially harmful radiation generat-

ed in nuclear reactions that penetrate through certain materials.
general theory of relativity Theory from physics that explains 

the laws of gravity and the behavior of the universe at large.
geometry The mathematical study of shapes, forms, their trans-

formations, and the spaces that contain them.
graph (1) A collection of points or vertices that are connected to 

one another by line segments called edges. (2) A picture of all the 
points whose coordinates satisfy a given equation.

graph theory The branch of mathematics in which relationships 
between objects are represented by a collection of vertices and 
edges.

gravitation The attractive force that pulls objects toward each 
other.

group A set of objects that can be combined with an operation 
that satisfies four basic conditions.
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group theory The branch of abstract algebra dealing with the 
structure, properties, and interaction of groups.

Hawking radiation Theoretical radiation emitted by black holes 
according to a theory introduced by Stephen Hawking.

Hilbert’s 10th problem One of 23 questions posed by David 
Hilbert in 1900, it asks if it is possible to create a single algo-
rithm that will determine if any given Diophantine equation has 
integer solutions.

hydrodynamics The branch of physics dealing with the study of 
the properties of fluids in motion.

information paradox Controversial concept in physics asserting 
that information about the matter and energy that formed a black 
hole is irretrievably lost when the black hole collapses.

integer A whole number such as –4, –1, 0, 2, or 5.
integral A function formed as the limit of a sum of terms defined 

by another function. One of two fundamental ideas of calculus 
that can be used to find the area under a curve.

integration The process of determining the integral of a function.
irrational number A real number such as  or π that cannot be 

expressed as a ratio of two integers.
isometric imbedding A map from a manifold to a higher-

dimensional space that preserves the distances between corre-
sponding pairs of points in both spaces.

Iwasawa theory An area of number theory that uses techniques 
introduced by Kenkichi Iwasawa to establish connections between 
the structures of collections of numbers and related collections of 
functions that are known as algebraic number fields and algebraic 
function fields, respectively.

knot theory The mathematical study of the properties of knots.
Langlands program An effort initiated in the 1960s by Robert 

Langlands to establish unifying connections between seemingly 
unrelated branches of mathematics.

lattice (1) A regular geometrical arrangement of points in the 
plane. (2) The fundamental four-sided region of the plane cor-
responding to an elliptic curve and its associated torus.

Life A game invented by John Conway, who called it the Game 
of Life, in which each cell on a square grid is designated as either 



alive or dead. In successive time steps or generations, each live 
cell survives or dies, and each dead cell remains dead or springs 
to life based on the status of their eight neighboring cells.

magic square An assignment of numbers to the cells of a 3 × 3 
grid that are arranged into three rows and three columns so that 
each row, each column, and each diagonal produces the same 
sum.

manifold A surface satisfying general mathematical conditions.
mass action game A game that is repeatedly played by par-

ticipants who do not necessarily act rationally and who may not 
know the full structure of the game but who accumulate informa-
tion on the relative advantages of the available strategies.

Mathematica Mathematical computer software package created 
by Wolfram Research.

mathematical logic The branch of mathematics dealing with the 
laws of formal argumentation and consistent reasoning about 
abstract structures.

mathematical physics The branch of physics concerned with 
the development of mathematical theories to explain physical 
phenomena.

mechanics The branch of physics dealing with the laws of 
motion.

minimal spanning tree For a graph with n vertices, a set of n – 1 
edges connecting all the vertices while having the smallest total 
length.

minimal surface A surface with minimum area that satisfies a 
specified set of conditions.

minimum Steiner tree A graph that improves on a minimal 
spanning tree by introducing new vertices and edges that result 
in a smaller total edge length.

modular form A type of elliptic curve that has well-behaved 
properties related to the curve’s lattice.

Nash bargaining game A simple two-person game in which each 
player demands a portion of an available resource.

Nash equilibrium In game theory, a collection of strategies, 
one for each player, having the property that if all players fol-
low these strategies, no individual player can improve his or her 
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outcome by switching to a different strategy. Also known as a 
strategic equilibrium.

Nash program A call by John Nash to reformulate cooperative 
games into the larger framework of noncooperative games.

natural number One of the positive integers 1, 2, 3, 4, 5, . . . .
noncooperative game A game in which each player selects 

one of finitely many strategies without consulting the other 
player(s) in order to obtain an outcome that is personally 
advantageous.

number theory The mathematical study of the properties of 
positive integers.

octonions A set of numbers that form an eight-dimensional gen-
eralization of the complex numbers.

open problem A mathematical question that has not been 
solved.

optics The branch of the physical sciences dealing with proper-
ties of light and vision.

orthogonal Independent objects that have no redundancy as 
measured by an inner product operator.

partial differential equation An equation involving the deriva-
tives of a function of several variables.

path integrals Methods for calculating the distance traveled by 
quantum particles.

periodic function A function whose values repeat on a regular 
basis. A function f (x) is a periodic function if there is some con-
stant k, called its period, so that f (x + k) = f (x) for all values of x.

Plateau’s problem A question named after physicist Joseph 
Plateau asking for the construction of a surface with minimum 
area that fits a given boundary.

polygon A planar region bounded by segments. The segments 
bounding the polygon are its sides, and their endpoints are its 
vertices.

polyhedron A solid bounded by polygons. The polygons bound-
ing the polyhedron are its faces; the sides of the polygons are its 
edges; the vertices of the polygons are its vertices.

polynomial An algebraic expression that is the sum of the prod-
ucts of numbers and variables.



positive mass conjecture Proposal from Riemannian geometry 
and Einstein’s general theory of relativity asserting that the sum 
of all the energy in the universe is positive.

positive number Any number whose value is greater than zero.
postulate See axiom.
power See exponent.
power series A representation of a function as an infinite sum of 

terms in which each term includes a power of the variable.
prime number An integer greater than 1 that cannot be divided 

by any positive integer other than itself and 1. The first few 
prime numbers are 2, 3, 5, 7, 11, 13, 17, . . . .

private key cryptography A collection of techniques for sending 
messages in which the sender does not make public the process 
used to encrypt or decrypt a message.

probability theory The branch of mathematics concerned with 
the systematic determination of numerical values to indicate the 
likelihood of the occurrence of events.

proof The logical reasoning that establishes the validity of a theo-
rem from definitions, axioms, and previously proved results.

proper divisor For any positive integer, those smaller positive 
numbers that divide it.

public key cryptography A collection of techniques developed 
in the late 20th century that allow the sender to make public 
the process used to encrypt a message without revealing how to 
decrypt it.

quantum theory Branch of physics that explains the properties of 
atoms, molecules, light, and the radiation of small particles.

quaternions A set of numbers that form a four-dimensional gen-
eralization of the complex numbers.

radiation shields Protective layers that block gamma rays 
and other high-energy particles that are produced by nuclear
reactions.

Ramsey theory Area of combinatorics concerned with how large 
a collection of objects must be in order to guarantee that it satis-
fies particular conditions.

random Numerical values are random if no one value can be pre-
dicted from the knowledge of the other values.
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random graph A graph in which the existence of an edge between 
any two vertices is randomly determined by a probability
distribution.

rational game A game that is played only once and in which the 
participants reason logically from knowledge of the full structure 
of the game.

rational number A number that can be expressed as a ratio of two 
integers. Also known as a fraction.

real number One of the set of numbers that includes zero, 
the positive and negative integers, the rationals, and the
irrationals.

reciprocity law For a pair of integers p and q, a reciprocity law 
indicates when an expression of the form xn can be written as 
both xn = p + q · j and xn = q + p · k for some integers j and k.

recursive function A function in which the value at each posi-
tive integer is defined in terms of its values at smaller positive 
integers.

root (1) A solution to an equation. (2) A number that when 
repeatedly multiplied produces a given numerical value.

RSA algorithm The standard for commercial public key cryp-
tosystems that was created in 1977 by MIT scientists Ronald 
Rivest, Adi Shamir, and Leonard Adleman.

secure An encryption algorithm is secure if messages encoded 
using the algorithm cannot be decoded without knowing the 
decryption matrix.

semistable elliptic curve An elliptic curve whose three roots 
satisfy a particular condition involving prime numbers.

sequence An infinitely long list of values that follow a pattern.
series An infinite sum of numbers or terms.
set A well-defined collection of objects.
set theory The branch of mathematics dealing with relationships 

between sets.
signal processing The branch of applied mathematics concerned 

with transmitting, manipulating, storing, and reconstructing 
electrical and electronic signals.

sine For an acute angle in a right triangle, the ratio of the oppo-
site side to the hypotenuse.



singularity (1) Point at the center of a black hole where the cur-
vature of space-time is infinite. (2) An irregularity where a surface 
has an undesirable property, usually related to the derivatives of 
the underlying function. Also known as a singular point.

singular point See singularity.
smart cards Plastic cards similar to credit cards that contain 

microprocessor chips enabling the cards to store information and 
modify that information during transactions.

special theory of relativity A theory in physics developed by 
Albert Einstein to explain the properties of space, matter, and 
time.

spectral graph theory Branch of graph theory concerned with 
the development and application of numerical measures that 
characterize the properties of graphs.

sphere The set of all points in three-dimensional space at a given 
distance, called the radius, from a fixed point, called the center.

sphere packing The mathematical analysis of the most efficient 
arrangement of equal-sized spheres into a space having a fixed 
volume.

Sprouts A two-person game invented by John Conway played 
with pencil and paper. Starting with two dots on a piece of paper, 
players take turns joining any two dots with a curve that does 
not cross any curve already drawn and then add a new dot some-
where on the new curve.

square (1) A four-sided polygon with all sides congruent to one 
another and all angles congruent to one another. (2) To multiply 
a quantity times itself; raise to the second power.

statistics The branch of mathematics dealing with the collecting, 
tabulating, and summarizing numerical information obtained 
from observational or experimental studies and drawing conclu-
sions about the population from which the data was selected.

strategic equilibrium See Nash equilibrium.
string theory The theory from physics asserting that strings of 

matter form the fundamental building blocks of all substances.
surreal numbers Numbers related to strategies in games that 

form a natural completion of the number system containing the 
integers, rationals, reals, complex, and transfinite numbers.
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Sylver Coinage A numbers game invented by John Conway in 
which two players take turns naming a positive integer as the 
value of a new coin that represents a monetary amount that can-
not be generated by any combination of previously introduced 
coins.

tangent (1) For an acute angle in a right triangle, the ratio of the 
opposite side to the adjacent side. (2) A line that touches a curve 
or surface indicating the direction of its curvature at the point of 
tangency.

tangle One of the fundamental two-dimensional components of 
a mathematical knot.

theorem A mathematical property or rule that has been proved.
thermodynamics The branch of physics concerned with the 

study of heat and motion.
topology The branch of mathematics concerned with the proper-

ties of geometrical surfaces.
transfinite number A number that gives the cardinality of an 

infinite set.
triangle A polygon with three vertices and three edges.
trigonometric functions The functions sin(x), cos(x), and tan(x) 

that form the basis of the study of trigonometry.
trigonometry The study of right triangles and the relationships 

among the measurements of their angles and sides.
uncountable An infinite set is uncountable if it cannot be put into 

a one-to-one correspondence with the set of natural numbers.
variable A letter used to represent an unknown or unspecified 

quantity.
variable threats game A game in which a player can select one 

of a choice of penalties when the opponent deviates from the 
agreed-upon strategy.

vertex The endpoint of a segment in a geometric figure.
wavelets Irregular but basic wave forms that can be used to rep-

resent efficiently signals and images.
zero-sum game A game in which competing participants make 

choices that result in payoffs for some players and penalties of 
equal magnitudes for the others.
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