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The symmetry group method is applied to a generalized Korteweg-de Vries equation and
several classes of group invariant solutions for it are obtained by means of this technique.
Polynomial, trigonometric, and elliptic function solutions can be calculated. It is shown
that this generalized equation can be reduced to a first-order equation under a particular
second-order differential constraint which resembles a Schrödinger equation. For a par-
ticular instance in which the constraint is satisfied, the generalized equation is reduced to
a quadrature. A condition which ensures that the reciprocal of a solution is also a solution
is given, and a first integral to this constraint is found.

1. Introduction

Recently, there has been interest in the fact that a particular generalization of the classical
korteweg-de Vries (KdV) equation can support a new type of solitary wave, which has
been referred to as a compacton in the literature. This type of wave has a compact support
and a width which is independent of the amplitude of the wave [11, 12]. This equation
is defined by the real parameters (m,n) and given in terms of the function u(x, t) by the
fully nonlinear KdV equation [4]

ut +
(
um
)
x +
(
un
)
xxx = 0. (1.1)

The classical KdV equation has been studied extensively [1, 3, 6], in particular, by means
of the inverse scattering method, and the Bäcklund transformation has been determined
[7], but relatively few papers which mention (1.1) have appeared.

Dynamical solitons appear as a result of a balance between weak nonlinearity and dis-
persion. However, it has been shown numerically at least, that when the wave dispersion
is purely nonlinear, some novel features in the nonlinear dynamics may be observed. The
most striking and novel is the existence of a new type of soliton, which has been referred
to as a compacton in certain quarters [4]. This is in contrast to the standard KdV soliton
solution, which narrows as the amplitude increases. The width of this new type of soliton
is independent of the amplitude.
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The fully nonlinear KdV equation is of some importance to study on physical grounds
[5]. For example, several equations pertaining to a discrete lattice have continuous lim-
its which are partial differential equations either resembling (1.1) or having compacton
properties similar to those of the generalized KdV equation. As an example, consider
a one-dimensional lattice in which each atom interacts only with its nearest neighbors
by purely anharmonic forces. If xn(t) is the dimensionless displacement of the nth atom
from its equilibrium position, and the atoms interact via quartic anharmonic potentials,
the equation of motion for the nth atom is given by

d2xn
dt2

=
[(
xn+1− xn

)3
+
(
xn−1− xn

)3
]

, (1.2)

where dimensionless units have been used. In the long- and short-wavelength limits, the
resulting partial differential equations have properties similar to the generalized KdV
equation (1.1).

Not many solutions to (1.1) are known at the moment, and so it would be useful
to have whatever new results that can be obtained at this point. In this paper, it will be
shown that the symmetry group of (1.1) can be determined. By this, we mean the classical
symmetry group [8, 9, 10] of (1.1). In this procedure, the coefficients of the infinitesimal
generator v of a hypothetical one-parameter symmetry group are unknown functions of
t, x, and u. The coefficients of the prolonged infinitesimal generator pr(3)v will be explicit
expressions involving the partial derivatives of the coefficient functions with respect to
both t, x, and u. Eliminating any dependencies among the derivatives of u modulo the
original system, the coefficients of the remaining unconstrained partial derivatives of u
are equated to zero. This results in a large number of determining equations for the sym-
metry group, which are solved. The symmetry group will first be determined for the case
n= 1 in (1.1). The Lie symmetry algebra is found to be a subalgebra of the usual Lie al-
gebra for the standard KdV equation, which corresponds to the case m = 2 here. When
m= 1, the equation becomes completely linear in u, and when m= 2, the standard KdV
symmetries are found. The corresponding symmetry variables can be calculated, and it is
found that symmetry reduction to ordinary differential equations can be carried out. The
calculation has been repeated for the case in which n is not one, and the symmetry group
is found to be much more restrictive in this case. The vector fields which are obtained sim-
ply correspond to translations in space and translations in time. Nonetheless, it is shown
how some of these reductions can be used to integrate (1.1) and to produce explicit ex-
amples of solutions to (1.1). Finally, a connection is made between (1.1) when n= 1 and
a nonlinear type of Schrödinger equation, which acts as a differential constraint. This re-
sult can also be used to generate new solutions to (1.1). It is shown how this can be done
by obtaining a quadrature for the solution in terms of a symmetry variable.

2. Analysis of the equation with one power of u in the third derivative

Consider the family of fully nonlinear KdV equations given by (1.1) and written in the
equivalent form with n= 1 and m �= 0 as

ut +uxxx +mum−1ux = 0. (2.1)
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Three conservation laws for (2.1) exist and are given by

ut +
(
um +uxx

)
x = 0,

(
u2)

t +
(

2m
m+ 1

um+1 + 2uuxx −u2
x

)
x
= 0,

(
1

m+ 1
um+1− 1

2
u2
x

)
t
+
(
umuxx +

1
2
u2
xx +

1
2
u2m−uxuxxx −mum−1u2

x

)
x
= 0.

(2.2)

Of course, an equation of the form (1.1) is trivially a conservation law itself. Let

v = ξ(x, t,u)
∂

∂x
+ τ(x, t,u)

∂

∂t
+ϕ(x, t,u)

∂

∂u
(2.3)

be a vector field on X ×U . All possible coefficient functions ξ, τ, and ϕ are to be deter-
mined such that the corresponding one-parameter group exp(εv) is a symmetry group
of this equation. To obtain the prolonged equation, the operator

pr(3)v = v +ϕx
∂

∂ux
+ϕt

∂

∂ut
+ϕxx

∂

∂uxx
+ϕxt

∂

∂uxt
+ϕtt

∂

∂utt
+ϕxxx

∂

∂uxxx
(2.4)

is applied to (2.1). Only the terms relevant to this case have been retained in writing
(2.4). Applying (2.4) to (2.1), it is found that the coefficient functions in pr(3)v satisfy the
equation

ϕt +ϕxxx +mϕxum−1 +m(m− 1)ϕum−2ux = 0. (2.5)

The coefficient functions in (2.4) can be calculated and then substituted into (2.5) to
obtain

ϕt − ξtux +
(
ϕu− τt

)
ut − ξuuxut − τuu2

t +D3
xϕ−uxD3

xξ −utD3
xτ − 3uxxD2

xξ − 3uxtD2
xτ

− 3uxxxDxξ − 3uxxtDxτ +mϕxum−1 +m
(
ϕu− ξx

)
um−1ux −mτxum−1ut

−mξuum−1u2
x −mτuum−1uxut +m(m− 1)ϕum−2ux = 0.

(2.6)

In (2.6), Dw represents the total derivative of the indicated function with respect to w.
Substituting the total derivatives into (2.6) and replacing the term ut using (2.1), the
next step is to collect all like derivative terms together and equate the coefficients to zero
to obtain the set of determining equations. The highest derivative terms uxxt and uxuxxt
provide the constraints τx = 0 and τu = 0, respectively. These imply that τ = τ(t) is a
function of only the t variable. The coefficient of u2

xx gives the condition ξu = 0, hence ξ
is independent of u.

The terms which multiply uxxx give the constraint

τt = 3ξx. (2.7)

Since τ depends only on t, this equation can be integrated to obtain ξ as a linear function
of x:

ξ(x, t)= 1
3
τt(t)x+ σ(t). (2.8)
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The coefficients of uxuxx and uxx give the constraints ϕuu = 0 and ϕxu = ξxx. Since ξ(x, t)
is just linear in x, this pair of equations reduces to simply ϕuu = 0 and ϕxu = 0. These
constraints imply that ϕ is at most linear in the function u, and the coefficient of u is a
function of t alone. The remaining terms of (2.6) under these constraints are given by

ϕt − ξtux −m
(
ϕu− τt

)
um−1ux +mϕxum−1 +m

(
ϕu− ξx

)
um−1ux

+m(m− 1)ϕum−2ux +ϕxxx = 0.
(2.9)

The term which multiplies ux is given by

−ξt −m
(
ϕu− τt

)
um−1 +m

(
ϕu− ξx

)
um−1 +m(m− 1)um−2ϕ= 0, (2.10)

and the remaining term requires that

ϕt +mum−1ϕx +ϕxxx = 0. (2.11)

Collecting like terms in (2.10), we can write

−ξt +m
(
τt − ξx

)
um−1 +m(m− 1)ϕum−2 = 0. (2.12)

Substituting (2.8) and ϕ(t,u)= α(t)u+β into (2.12), we obtain that

−1
3
τtt(t)x− σt(t) +m

(
2
3
τt + (m− 1)α

)
um−1 +m(m− 1)βum−2 = 0. (2.13)

In order that the coefficient of x vanishes, we must have τtt(t)= 0, hence τ(t)= c2 + c4t.
The coefficients of the remaining powers of u must also be equated to zero, and how this
is carried out depends on the value ofm to some extent. There are three cases to consider,
and we discuss each of these cases in turn.

(i) Suppose thatm �= 1,2, then there are three independent terms in (2.13), which yield
the constraints

σt(t)= 0,
2
3
τt + (m− 1)α= 0, β = 0. (2.14)

The general solution to (2.17) is given by

σ = c1, α=− 2
3(m− 1)

c4, β = 0. (2.15)

Therefore, the components of the vector field can be written as

ξ = 1
3
c4x+ c1, ϕ= 2c4

3(m− 1)
u, τ = c2 + c4t, (2.16)

and the vector field (2.3) can be written as

v =
(

1
3
c4x+ c1

)
∂

∂x
+
(
c2 + c4t

) ∂
∂t
− 2c4

3(m− 1)
u
∂

∂u
. (2.17)
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(ii) When m = 0 or m = 1, (2.1) reduces to a linear equation. When m = 1, the last
term in (2.13) is absent, giving

σt(t)= 0, τt(t)= 0. (2.18)

These imply that

σ = c1, τ = c2, ϕ(t,u)= α(t)u+β. (2.19)

Substituting ϕ(t,u) into (2.11), it is found that α and β must be constants and the vector
field is given by

v = c1
∂

∂x
+ c2

∂

∂t
+ (au+ b)

∂

∂u
, (2.20)

with a, b decoupled from c1 and c2.
When m = 0, (2.1) is a third-order linear equation and (2.13) implies that τtt(t) = 0

and σt(t)= 0. Therefore, τ(t)= c2 + c4t and σ = c1.
(iii) Finally, when m= 2, the last term in (2.13) can be grouped with the first term to

give the pair of equations

2
3
τt(t) +α= 0, σt(t)= 2β. (2.21)

Integrating these, we find that

ξ = 1
3
c4x+ 2c3t+ c1, τ = c2 + c4t, ϕ=−2

3
c4u+ c3, (2.22)

and the vector field (2.3) is given explicitly as follows:

v =
(

1
3
c4x+ 2c3t+ c1

)
∂

∂x
+
(
c2 + c4t

) ∂
∂t

+
(
c3− 2

3
c4u
)
∂

∂u
. (2.23)

The case m= 2 of course corresponds exactly to the classical nonlinear KdV equation. It
can be seen then that for the general case m �= 1, the symmetry generators are very close
in structure to the classical KdV case. In fact, there are three independent generators,
or vector fields specified by (2.17), which are shown in Table 2.1. These generate a Lie
subalgebra of the algebra for the classical KdV equation. Exponentiation shows that if u=
f (x, t) is a solution of (2.1), then so are the functions in the second column of Table 2.1.

A symmetry reduction can be carried out using v3 for case (i). This gives rise to the
following system:

dx

x
= dt

3t
=−1

2
(m− 1)

du

u
. (2.24)

Integrating the first pair provides the symmetry variable defined by

χ = t−1/3x. (2.25)
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Table 2.1. Symmetry algebra spanning vector fields and exponentiated solutions for (2.1). The case
m= 2 corresponds to the usual KdV equation.

Case Symmetry vector field Exponentiated solution

v1 = ∂

∂x
u(1) = f (x− ε, t)

m �= 1,2 v2 = ∂

∂t
u(2) = f (x, t− ε)

v3 = x ∂
∂x

+ 3t
∂

∂t
− 2
m− 1

u
∂

∂u
u(3) = f

(
e−εx,e−3εt

)
e−2ε/(m−1)

v1 = ∂

∂x
u(1) = f (x− ε, t)

m= 1 v2 = ∂

∂t
u(2) = f (x, t− ε)

v3 = (u+ 1)
∂

∂u
u(3) = e−ε f (x, t) + ε

m= 2

v1 = ∂

∂x
u(1) = f (x− ε, t)

v2 = ∂

∂t
u(2) = f (x, t− ε)

v3 = 2t
∂

∂x
+
∂

∂u
u(3) = f (x− 2εt, t) + ε

v4 = x ∂
∂x

+ 3t
∂

∂t
− 2u

∂

∂u
u(4) = e−2ε f

(
e−εx,e−3εt

)

Integrating the last pair, we obtain that

u= t−αv(χ), α= 2
3(m− 1)

. (2.26)

Now u in (2.26) can be differentiated with respect to t and x, where the derivatives of the
symmetry variable are given by χx = t−1/3, χt =−t−4/3x/3. We obtain

ux = t−α−1/3v′, uxxx = t−α−1v′′′, ut = t−α−1
(
−αv− 1

3
χv′
)

, (2.27)

where differentiation here is with respect to χ. Substituting these derivatives into (2.1),
the equation takes the form

v′′′ +mvm−1v′ − 1
3
χv′ −αv = 0. (2.28)

A similar analysis can be done with v4 in the third case, and it is found that the same
form (2.28) is obtained with α= 2/3. In this case, the equation can be transformed into
the form of a second Painlevé transcendent.

Now v1 and v2 are common in all three cases, and this suggests that a solution of the
form

u(x, t)= f (kx−ωt) (2.29)



Paul Bracken 2165

can be determined. In this case, the symmetry variable is y = kx−ωt, and writing the
required derivatives in terms of y, (2.1) can be written as

−ω fy + k3 fyyy + k
(
f m
)
y = 0. (2.30)

Integrating this once, it reduces to a second-order equation,

−ω f + k3 fyy + k f m = 1
2
C0. (2.31)

Multiplying on both sides by fy and integrating, we obtain the first-order equation for f ,

f 2
y = C0 f +

ω

k3
f 2− 2

k2(m+ 1)
f m+1 + γ. (2.32)

This equation can be separated and then integrated on both sides to give

∫
df√

C0 f +
(
ω/k3

)
f 2− (2/(m+ 1)k2

)
f m+1 + γ

= εy + a, ε =±1. (2.33)

For specific values of m, large classes of solutions to (2.1) can be determined from (2.33)
by varying m, in particular, elliptic function solutions.

As an example, we take m= 3 and take C0 = γ = 0 in (2.33) to obtain

∫
df(

f 2
(
A−B f 2

))1/2 = εy + a, (2.34)

where A= ω/k3 and B = 1/2k2. Then f is a solution of the following expression:

f
(
A−B f 2

)1/2

(
f 2
(
A−B f 2

))1/2√
A

ln


2
(
A+

√
A
(
A−B f 2

)1/2
)

f


= εy− a. (2.35)

3. Symmetries of the fully nonlinear equation

This analysis can be extended to the case of (1.1) when n �= 1. To apply pr(3)v to (1.1), it
should be expanded into its constituent derivatives in the following form:

ut +n(n− 1)(n− 2)un−3u3
x + 3n(n− 1)un−2uxuxx +nun−1uxxx +mum−1ux = 0. (3.1)

Applying the operator pr(3)v to this differential equation, we obtain

ϕt +n(n− 1)(n− 2)(n− 3)ϕun−4u3
x + 3n(n− 1)(n− 2)ϕxun−3u2

x

+ 3n(n− 1)(n− 2)ϕun−3uxuxx + 3n(n− 1)ϕxun−2uxx + 3n(n− 1)ϕxxun−2ux

+n(n− 1)ϕun−2uxxx +nϕxxxun−1 +m(m− 1)ϕum−2ux +mϕxum−1 = 0.
(3.2)

The next step is to substitute the coefficients of the prolongation operator into (3.2). It is
understood that ut is replaced by (3.1), and the coefficients of the respective x derivatives
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are collected and set to zero. Here, the expression obtained is much longer than that of
the previous example, and most of the details will be left out. Starting with the highest
derivatives uxxt, uxuxxt and u2

xx, again we find that τ = τ(t) and ξu = 0. The coefficient of
uxxx is then given by

un−1(3ξx − τt)− (n− 1)ϕun−2 = 0. (3.3)

Since n �= 1, the only way to eliminate the term in un−2 is to require that ϕ= 0. This im-
mediately restricts the form of the symmetry generator. The coefficient of un−1 must also
vanish, and this gives the constraint τt = 3ξx, which can be integrated to yield ξ(x, t) =
(τt/3)x+ σ(t). The prolonged equation now collapses to the form

− ξtux +n(n− 1)(n− 2)
(
τt − 3ξx

)
un−3u3

x + 3n(n− 1)
(
τt − 3ξx

)
un−2uxuxx

+m
(
τt − ξx

)
um−1ux = 0.

(3.4)

The second and third terms vanish due to the constraint τt = 3ξx. This requires that ξ = c2

and τ = c1, where c1 and c2 are constants. Since ϕ= 0, the general symmetry vector field
is given by

v = c1
∂

∂t
+ c2

∂

∂x
. (3.5)

This is again a subalgebra, but even more restrictive than the previous case in which
n= 1. Only the two translational symmetries survive in this case. It is worth noting that
the conclusions of this analysis are the same for the more general version of (1.1) given in
the form

ut + κ
(
um
)
x + δ

(
un
)
xxx = 0, (3.6)

where κ and δ are real constants.
Based on the symmetry (3.5), group invariant solutions of the form

u(x, t)= g(kx−ωt) (3.7)

can be obtained. Using the symmetry variable y = kx−ωt and transforming the deriva-
tive into the y variable, (1.1) can be written in the form

−ωgy + k
(
gm
)
y + k3(gn)yyy = 0. (3.8)

Integrating once, this takes the form

n
(
gn−1gy

)
y =

ω

k3
g − 1

k2
gm +C. (3.9)

Multiplying on both sides of this by gn−1gy , we can integrate both sides once more to find

(
gn−1gy

)2 = 2ω
n(n+ 1)k3

gn+1− 2
n(m+n)k2

gm+n +
2C
n2
gn + γ. (3.10)
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Here, C and γ are constants of integration. Solving this for gy , this equation can be sepa-
rated and then integrated to give

∫
gn−1dg√

2ω/n(n+ 1)k3gn+1− 2/n(m+n)k2gm+n + 2C/n2gn + γ
= εy + a, ε =±1. (3.11)

The final integration constant is written a, which appears as a result of the last integration.
We work out the integral in (3.11) for several values of m and n in the case in which

the constants of integration C and γ vanish. It may be assumed that ω and k are positive
constants.

Consider n=m= 2 and set β = 4ω/3k, then the integral may be written in the form

2k
∫

dg√
βg − g2

= εy + a, ε =±1. (3.12)

We take ε to be defined this way in what follows. This integral can be done, and solving
for g, we obtain that

g(y)= β

2

(
1 + sin

(εy + a
2k

))
. (3.13)

In the case in which a= kπ, using the identity 1 + cos2x = 2cos2 x, this takes the form of
the compacton which has been discussed [11], namely,

g(y)= 4ω
3k

cos2
(
y

4k

)
. (3.14)

This solution has the property that it is positive for |y| < 2πk and zero at the endpoints.
This fact enables us to define a compacton form of solution by taking a solution of the
form

u(x, t)=



4ω
3k

cos2
(
kx− ct

4k

)
, |kx− ct| < 2πk,

0, |kx− ct| > 2πk.
(3.15)

Moreover, the derivative of this u(x, t) has a derivative that is continuous at the endpoints
of this interval.

Let n= 3, m= 2, then the integral reduces to

√
15
2
k
∫

dg√
5ω/4k− g

= εy + a. (3.16)

It follows that g(y) is given by

g(y)= 5ω
4k
− 1

30k2
(y + a)2. (3.17)
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Let n= 2, m= 3, then with β = 5ω/3k, the integral takes the form

√
5
2
k
∫

dg√
βg − g3

= εy + a. (3.18)

Integrating and solving for g, a Jacobi elliptic function is obtained as a solution to (1.1)
in this case,

g(y)= β


sn



√
−5
√
β(εy + a)

2k
,

1√
2




2

− 1


 . (3.19)

Finally, for n= 3, m= 3, we set β = 3ω/2k, then the integral takes the form

3k
∫

dg√
β− g2

= εy + a. (3.20)

Integrating and solving for g(y), we have

g(y)=
√
β sin

(εy + a
3k

)
. (3.21)

Other cases could be integrated and would provide elliptic function solutions to (1.1).

4. Reduction of equation subject to a differential constraint

An interesting reduction of (2.1) takes place if we subject it to a differential constraint
which has a structure analogous to that of a Schrödinger equation. To generate further
solutions of (2.1), the following proposition can be used [2].

Proposition 4.1. Let f (x, t) and g(x, t) be functions which satisfy the differential equation

∂2ψ

∂x2
+
[

m

2(m+ 1)
um−1 + λ

]
ψ = 0, (4.1)

where u is defined as

u(x, t)= f (x, t) · g(x, t), (4.2)

and λ is a real constant. Then the generalized KdV equation (2.1) reduces to the form of the
first-order partial differential equation given as follows:

f
(
∂g

∂t
− 4λ

∂g

∂x

)
+ g
(
∂ f

∂t
− 4λ

∂ f

∂x

)
= 0. (4.3)

Proof. With u defined by (4.2), we write the last nonlinear term in (2.1) in the form

mum−1ux = b( f g)m−1 ∂u

∂x
+ aum−1

(
f
∂g

∂x
+ g

∂ f

∂x

)
, (4.4)
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where a and b are constants which satisfy a+ b =m. Differentiating u with respect to x
and t, (2.1) takes the form

f
{
∂g

∂t
+
∂3g

∂x3
+

3
f

∂2 f

∂x2

∂g

∂x
+ aum−1 ∂g

∂x
+
b

2
f m−2gm−1 ∂u

∂x

}

+ g
{
∂ f

∂t
+
∂3 f

∂x3
+

3
g

∂2g

∂x2

∂ f

∂x
+ aum−1 ∂ f

∂x
+
b

2
f m−1gm−2 ∂u

∂x

}
= 0.

(4.5)

Suppose that f and g are required to satisfy the equation

∂2ψ

∂x2
− [qus− λ]ψ = 0, (4.6)

where u is given by (4.2). We show that we can pick q and s in a unique way such that the
conclusion of the proposition holds. The third derivatives of f and g can be obtained by
differentiating this constraint with respect to x. Substituting these derivatives into (4.5),
the quantity inside the first bracket in (4.5) can be written in the form

∂g

∂t
+
(
qs f s−1gs +

b

2
f m−2gm−1

)
∂u

∂x
+
(
4qus + aum−1)∂g

∂x
− 4λ

∂g

∂x
. (4.7)

If we take s =m− 1, then the coefficients of the second and third terms reduce to the
system of equations

q(m− 1) +
b

2
= 0, 4q+ a= 0. (4.8)

Solving these equations subject to the condition that a+ b=m, we obtain the solution

a= 2m
m+ 1

, b = m(m− 1)
m+ 1

, q =− m

2(m+ 1)
. (4.9)

This procedure can be repeated on the second bracket in (4.5) and exactly the same solu-
tion (4.9) for these constants is obtained. Therefore, combining the remaining terms in
(4.5) then gives the result (4.3). �

Now dividing both sides of (4.3) by (4.2), it is easy to see that, using the linearity of
the derivative operators, (4.3) can be put in the equivalent form

(
∂

∂t
− 4λ

∂

∂x

)
ln
(
f (x, t) · g(x, t)

)= 0. (4.10)

This result implies that u(x, t) has the particular structure

u(x, t)= f (x, t) · g(x, t)= h(x+ 4λt), (4.11)

where the function h is unspecified for the moment.
We consider an instance in which h can be determined explicitly by making use of the

constraint (4.1) as an example. Consider the case in which

f (x, t)= g(x, t)= φ(x, t). (4.12)



2170 Symmetry properties of a generalized KdV equation

From the preceding considerations, φ(x, t) must have the form φ(x, t) = φ(x + 4λt) =
φ(y), where y = x + 4λt. Of course, φ(x, t) must satisfy the second-order (4.1) as well,
which takes the form

φ̈+
m

2(m+ 1)
φ2m−1 + λφ= 0. (4.13)

Differentiation in (4.13) is with respect to the symmetry variable y. The constraint is
sufficient to determine the function h in this case. Multiplying (4.13) by φ̇, this can be
integrated to give

φ̇2 = C0− 1
2(m+ 1)

φ2m− λφ2, (4.14)

where C0 is a constant of integration. This equation can finally be integrated by quadra-
ture to give the integral

∫
dφ√

C0−
(
1/2(m+ 1)

)
φ2m− λφ2

= y + a. (4.15)

The integral (4.15) will generate solutions to (2.1) in the form of elliptic functions. As an
example, (4.15) can be integrated when m= 1 to give a solution

φ(x, t)= 2

√
C0

4λ+ 1
sin
(

1
2

√
4λ+ 1(x+ 4λt+ a)

)
. (4.16)

Squaring (4.16), we obtain an explicit solution to (2.1) of the form u(x, t)= φ(x, t)2.
We now generalize a result in [2] to the case of (2.1).

Proposition 4.2. Suppose that w = w(x, t) is a solution to the generalized KdV equation
(2.1) and satisfies the additional constraint

∂2w

∂x2
− 1
w

(
∂w

∂x

)2

+
m

6
w
(
wm−1−w−m+1)= 0. (4.17)

Then the reciprocal u= 1/w is a solution to (2.1).

To prove this, substitute u(x, t)= 1/w(x, t) into (2.1). Replacing wt from (2.1) and wxx

from (4.17), the result follows.
A first integral for (4.17) can be obtained of the form

(
∂w

∂x

)2

= awm+1 + bw−m+3 +Kw2, (4.18)

where a and b will depend on m and K is a constant of integration. Differentiating both
sides with respect to x, we obtain

∂2w

∂x2
= a

2
(m+ 1)wm− b

2
(m− 3)w−m+2 +Kw. (4.19)



Paul Bracken 2171

An expression forKw can be obtained from (4.18), and substituting this into (4.19), there
results

∂2w

∂x2
= 1
w

(
∂w

∂x

)2

+
(
m− 1

2

)
awm−

(
m− 1

2

)
bw−m+2. (4.20)

Comparing this to (4.17), it must be that a= b =−m/(3(m− 1)) when m �= 1. Thus, we
have proved the following claim.

Proposition 4.3. When m �= 1, the equation

(
∂w

∂x

)2

=− m

3(m− 1)
w2(wm−1 +w−m+1)+Kw2 (4.21)

is a first integral for (4.17).

More can be said with regard to the class of functions referred to in Proposition 4.2.
This will generalize what was done in [2] for the usual KdV equation. Differentiating the
first integral in (4.19) with respect to x, another relation for wxxx results in

wxxx = a

2
m(m+ 1)wm−1wx +

b

2
(m− 3)(m− 2)w−m+1wx +Kwx. (4.22)

Replacing the third derivative (4.21) in (2.1), a first-order nonlinear equation is obtained:

(
αwm−1 +βw−m+1 +K

)
wx +wt = 0, (4.23)

where

α= a

2
m(m+ 1) +m, β = b

2
(m− 3)(m− 2). (4.24)

Equation (4.23) is a quasilinear equation and the following initial value problem can be
solved:

τ(w)wx +wt = 0, w(x,0)=w0(x), (4.25)

where τ(w)= αwm−1 +βw−m+1 +K . Consider the equivalent problem

xr = τ(w), tr = 1, wr = 0,

x(0,s)= s, t(0,s)= 0, w(0,s)=w0(s).
(4.26)

Here w0 is an arbitrary function of one variable for the moment. Integrating this first-
order system, we obtain the result w = w0(s), t = r, and s = x − τ(w)t, from which it
follows that

w =w0
(
x− τ(w)t

)
. (4.27)

This will actually furnish the solution to (4.26) provided that the equation Φ(x, t,w) =
w−w0(x− τ(w)t) = 0 can be solved for w as a function of x and t. Substituting (4.27)
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into (4.18), it is reduced to an ordinary differential equation

ẇ2
0 = awm+1

0 + bw−m+3
0 +Kw2

0, (4.28)

which can be put in the form of a quadrature

∫
dw0(

awm+1
0 + bw−m+3

0 +Kw2
0

)1/2 =±
(
x− τ(w)t

)
+ c. (4.29)

This will determine the class of functions w0 which will determine w by solving (4.27)
and satisfy Proposition 4.2.

The analog of Proposition 4.2 for (1.1) is as follows.

Proposition 4.4. Suppose that w = w(x, t) is a solution of the generalized KdV equation
(1.1) and in addition, satisfies the third-order constraint

(
wn−w−n+2)∂3w

∂x3
+
[

3
(
(n+ 1)w−n+1 + (n− 1)wn−1)∂2w

∂x2
+
m

n

(
wm−w−m+2)]∂w

∂x

+
(
wn−2(n2− 3n+ 2

)−w−n(n2 + 3n+ 2
))(∂w

∂x

)3

= 0.

(4.30)

Then the reciprocal function u= 1/w is also a solution of (1.1). When n= 1, (4.30) reduces
to (4.17).

Proposition 4.5. Whenm= n in (1.1), there exists a separation of variables solution of the
form

u(x, t)= f (x) · g(t), (4.31)

provided that f and g can be found which satisfy the equations

(
f n
)
x +
(
f n
)
xxx + λ f = 0,

gt − λgn = 0.
(4.32)

The second equation in (4.32) can be integrated to give g(t) from (n− 1)gn−1 =−(λt+ c)−1

when n �= 1, and g(t)= ceλt when n= 1 and c is a constant here.

5. Summary

To conclude, the symmetry group for the generalized KdV equation has been calculated.
The translational symmetry which was found, although of frequent occurrence in such
types of equations, for the case of compacton solutions leads to the idea of using this
system to model sets of bubbles and droplets or bubble patterns. Thus, one can imag-
ine sequences of bubbles which are juxtaposed in some order, such that the pattern can
be translated into itself. In classical soliton theory, integrability and elastic collisions are
closely connected. Some conservation laws have been found for (1.1) previously, but it
is not known whether the equation is integrable [11]. It might be hoped that symmetry
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methods can be useful in searching for new conservation laws, and perhaps to help settle
the question of integrability for this system.
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