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� Introduction

Fuzzy logic and fuzzy systems have recently been receiving a lot of attention� both from
the media and scienti�c community� yet the basic techniques were originally developed in
the mid
sixties� In fact� last year marked the �	th anniversary of Professor Zadeh�s seminal
paper on the subject� Fuzzy logic provides a formalism for implementing expert or heuristic
rules on computers� and while this is the main goal in the �eld of expert or knowledge�

based systems� fuzzy systems have had considerably more success and have been sold in

�



automobiles� cameras� washing machines� rice cookers� etc� Two years ago� the market for
consumer products was estimated to be �� billion and while the application of neural networks
has been very much academically led� research into fuzzy systems only started seriously once
they had proved to be a useful engineering tool�
This report will describe the theory behind basic fuzzy logic and investigate how fuzzy

systems work� This leads naturally on to neurofuzzy systems which attempt to fuse the
best points of neural and fuzzy networks into a single system� Throughout this report� the
potential limitations of this method will be described as this provides the reader with a
greater understanding of how the techniques can be applied�

��� History

In addition to Arti�cial Neural Networks �ANNs�� another technology that came into promi

nence during the mid
sixties and was subject to a large amount of scepticism was fuzzy logic�
Lofti Zadeh was a professor in the electrical engineering department at UC Berkeley when
he �rst discovered what was to become known as fuzzy logic� He had had a long background
in linear systems theory� and had come to the conclusion that engineers and scientists had
become overly concerned with the pursuit of precision� In ����� he formulated this in what
became known as the principle of incompatibility ����

as the complexity of a system increases� our ability to make precise and yet sig�

ni�cant statements about it diminishes until a threshold is reached beyond which

precision and signi�cance �or relevance� become almost mutually exclusive char�

acteristics�

Indeed� he also� at that time� expressed a view that was to hold true when� in the late
eighties�early nineties� there was an explosion of fuzzy systems in consumer products


excessive concern with precision has a stultifying in�uence in control and systems

theory� largely because it tends to focus research in this �eld on those and only

those problems which are susceptible to exact solutions�

Fuzzy logic therefore places the human designer at the centre of the engineering process and
in contrast to the model�based mathematical techniques that have traditionally been used and
the data�driven ANNs� fuzzy logic is a human�centred design technique�
Zadeh� with a �air for publicity� termed this new technology fuzzy logic� yet the ideas

behind graded set membership had a long history� stretching back to the turn of the century
when Charles Sanders Peirce �����
������ regarded by some as America�s most innovative
philosopher claimed in ��	� to �have worked out the logic of vagueness with something like
completeness�� Unfortunately� no technical papers that mark this discovery have ever been
found� Vague logic had another prominant proponent in the early twentieth century when
Bertrand Russell �����
���	� ���� claimed that


All language is vague

and

Vagueness� clearly� is a matter of degree

However� it was Jan Lukasiewicz who proposed the �rst formal model of vagueness when
he introduced three valued logic in ���	 and a host of other famous logicians
 Kurt G�odel�
John von Neumann� Donald Kleene� Max Black etc�� extended this to include multivalued
and continuous logics�

�



Fuzzy� or vague� logic therefore has a history that extends beyond Zadeh�s seminal paper
in ���� ����� where he introduced a terminology and expressions which gave the impression
that here was a new technology� This proved to be almost a killer blow in terms of scienti�c
credibility� as many established academics poured scorn on the ideas postulated by Zadeh�
although it did serve to emphasise the fact that a new approach to problem solving was
being proposed and fuzzy logic was one such algorithm� Incorporating humans directly in
the design process means that mechanisms must be found to quantify exactly what is meant
by the vague statements made by experts� Whether or not this information source will prove
useful is application dependent� but probably the main result from the many applications of
fuzzy systems is that human insight and expertise is an important part of any design process�
and approaches like fuzzy logic which emphasise the role of the expert are crucial in many
applications�
In the late sixties� the US funding agencies were actively sponsoring research into expert

systems� although these techniques were not accepted until the late seventies when appli

cations such as MYCIN and PROSPECTOR proved that the expert system approach was
valid� However� it has been found that a large number of rules are needed for these systems
and as such they are di�cult to build� validate and maintain� even with the development of
advanced expert systems shells� The whole of the Arti�cial Intelligence �AI� �eld can be de

scribed as a search for a better representation and this is especially true for work into expert
systems� where researchers have been searching for better ways of modelling and representing
uncertainty� Uncertainty can take many forms and in the past� probability and statistical
theory has been used to model di�erent types of uncertainty� However� fuzzy logic has been
widely applied to modelling linguistic uncertainty� and it is only recently that probability
theorists have tried to apply their methods in this domain� Fuzzy systems have proved to
be simple to develop and the �rst application of this technology in control by Professor Abe
Mamdani and his PhD student Sedrak Assilian in ���� took just over a weekend to build�

��� Uncertainty and Natural Language Vagueness

Fuzzy logic allows an element to be a partial member of a set� so its membership value can
lie between 	 and � and can be interpreted as


the degree to which an event may be classi�ed as something�

It allows elements to be members of di�erent sets with varying degrees at the same time�
and also allows ordering information to be retained in the class membership values� Yet it
is important to realise that the uncertainty is not an inherent property of the event� rather
it comes about because of the classi�cation system� This is very important in the area of
expert systems� as natural language terms such as small and hot are imprecise or vague yet
humans reason and convey useful information using such terms� expecting a system to be
able to generalise between neighbouring concepts� Rules such as


IF �the room is hot� THEN �turn down the heating�

OR IF �the room is warm� THEN �keep the heating constant�

OR IF �the room is cold� THEN �turn up the heating�

involve natural language statements which should not be modelled using conventional sets
as this produces the result illustrated in �gure �a� Fuzzy sets are graded� which allows the
system to generalise or interpolate between rules as shown in �gure �b�
Generalisation or interpolation between concepts�rules is taken for granted in much of

natural language� However this is not generally modelled in conventional expert systems�
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Figure �
 The output of a binary �a� and a fuzzy �b� expert system�

and fuzzy logic with its graded or multivalued set membership� is a better representation
for this type of vagueness or uncertainty� It is important to realise that simply adopting
a fuzzy or multivalued set membership scheme is not su�cient to completely represent all
natural language statements� as using fuzzy� or multivalued� logic in order to represent expert
knowledge is necessary but not in general su�cient for this problem�

��� Information Representation

When data are presented to a network �neural� fuzzy� etc�� they can be classi�ed according
to the type of information they contain�

Nominal variables refer to quantities for which no ordering relationships exist between
the elements and the only tests which can be performed are equality and inequality� An
example of this is the set


fruit � fapple� pear� banana� carrot g �

This is how elements are represented in a conventional set where they are either a member
or not a member� and no other information is contained in the set membership value�

Ordinal variables refer to quantities where an ordering relationship also exists between
the individual elements� An example of this is the set intelligent


intelligent � fMick� Sue� Rita� Bob g

where

intelligence�Bob� � intelligence�Sue� � intelligence�Rita� � intelligence�Mick��

The fact that Bob is more intelligent than Mick must be re�ected in the value of the set
memberships� Bob is the more intelligent� hence his qualities must be closer to the ideal
de�nition of �intelligence�� and this implies that representing vagueness is strongly related
to the ideas of expressing abstract distances from a set�s ideal� Fuzzy sets employ graded set
membership and as such its output is an ordinal variable�
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Interval variables provide a richer description than ordinal variables� as the di�erence
between variables can be interpreted and ranked� Therefore� the di�erences in intelligence
for the members of the previous �fuzzy� set could be expressed as


intelligence�Bob� � intelligence�Sue� � intelligence�Rita� � intelligence�Mick�

Fuzzy sets can be designed to incorporate this interval
type knowledge� and it is up to the
designer and user to see that it is incorporated correctly�

Ratio variables are like interval variables except that the elements are measured with
respect to an absolute scale� This means that it is correct to say that x is twice as hot as y
�measured with respect to Kelvin� because x�y � �� or Bob is twice as intelligent as Mick
because intelligence�Bob��intelligence�Mick� � �� Again� fuzzy sets can be designed to
incorporate this ratio
type information� but they must be carefully designed and used�

��� Fuzzy Representation

Fuzzy sets can therefore represent two types of information which a conventional set is unable
to� This means that they provide a richer representation which is potentially closer to the
way that humans use vague� natural language knowledge�

Graded set membership allows the value of the set membership to be interpreted as
meaning that some elements are more representative of the concept than other elements� The
relationship intelligence�Bob� � intelligence�Mick� implies that Bob is more representative of
the concept of intelligence than Mick and the relative values can be used to infer information
about the relative degree of intelligence�

Multi	set membership allows an element to be a partial member of two or more classes�
and also the value of the membership can be used to infer which class is most representative
of that element� if necessary� For instance� in the previous de�nition of the class fruit� a carrot
was included as a member� This is a real
world example as they manufacture carrot jam in
Portugal and current EU regulations specify that you can have only fruit jam� implying that
a carrot is a fruit� However� it is common
sense that a carrot is a vegetable� and so a more
sensible� richer classi�cation scheme would be


fruit�carrot� � 	��
vegetable�carrot� � 	��

which re�ects the fact that a carrot can be classi�ed as either fruit or a vegetable� but it
is more representative of the latter concept� In the real
world most sets are non
mutually
exclusive� and an appropriate set theory should be able to model this appropriately�

��� Current Information

Research into fuzzy logic and neurofuzzy systems is currently undergoing something of a
renaissance� as people are integrating the learning abilities of neural networks with the rule

based representation of fuzzy systems� and the interested reader may �nd extra information
about this topical subject in the following places�
Currently� there are many books being published in the area of fuzzy logic and fuzzy

control� the simplest being a non
technical book ���� which describes the development of
fuzzy logic research and applications� Introductory technical books include ��� �� ��� ���� and
there are several research books out that describe the current state of the art in fuzzy and
neurofuzzy systems theory ��� �� ��� ��� ���� There are also two main journals in this area


�



Fuzzy Sets and Systems

IEEE Transactions on Fuzzy Systems

where the former is published by North Holland �Amsterdam�� Many other AI and engineer

ing journals frequently publish papers about fuzzy logic�
A subscription to the largest fuzzy mailing list can be obtained by sending a message to


listproc�vexpert�dbai�tuwien�ac�at

with the following lines of text


help

subscribe fuzzy�mail YourName

This is a very active mailing list that contains information about contacts in the �eld and
sometimes has extremely useful discussions about the exact nature of fuzzy logic� fuzzy control
etc�
A useful source of current information about share�free and commercial software� hard


ware� mailing lists� homepages� conferences etc�� is maintained in the Image� Speech and
Intelligent Systems �ISIS� research group web entry at


http���www�isis�ecs�soton�ac�uk�research�nfinfo�fuzzy�html

and a European network for uncertainty modelling and fuzzy technology has a homepage at


http���www�mitgmbh�de�erudit�

This is being led by Prof Zimmermann�s group at Aachen


http���www�mitgmbh�de�elite�elite�html

who maintain a commercial database which contains details about neural and fuzzy research�
The Berkeley Initiative into Soft Computing �BISC�� of which Lofti Zadeh is the director�
has a web homepage at


http���http�cs�berkeley�edu�projects�Bisc�bisc�welcome�html

which includes information about the centre itself� links with other homepages and contact
information with many leaders in the �eld of soft computing as well as employment openings�
Also� the North American Fuzzy Information Processing Society �NAFIPS� web homepage
is located at


http���serphim�csee�usf�edu�nafips�html

Finally� the address of the fuzzy newsgroup is


comp�ai�fuzzy
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� Fuzzy Set Theory

One of the main reasons for using static fuzzy logic� is to exploit any available vague expert
knowledge in a computer programme� An expert�s knowledge is frequently expressed in terms
of a fuzzy algorithm which is composed of IF
THEN production rules� that relate vague input
statements to vague output actions or states� For instance� the following two rules might
form part of a larger rule base in a fuzzy expert system that tries to model human behaviour


IF �Martin is hungry� THEN �eat a snack�

OR IF �Martin is starving� THEN �eat a large dinner�

The terms in the rules� antecedents �the input part of the rule� specify imprecisely the state
of well
being of a �ctional character called Martin and the consequents represent courses of
action which could be taken to rectify these undesirable events�
Fuzzy sets give the designer a method for providing a precise representation of vague�

natural language terms such as hungry� starving� large etc� Fuzzy logic provides the necessary
mechanisms for manipulating and inferring conclusions based on this vague information� In
this report� we will look at how this is performed in greater detail� from the choice of the
fuzzy membership functions to the operators that are used to implement intersection� union
etc�� and try to analyse what is happening inside the fuzzy system� It is perhaps one of the
great fallacies that all fuzzy systems are transparent to the designer�� as the type of decision
surfaces formed are generally poorly understood� and the fuzzy rules give the designer only
a partial insight into its internal structure�

��� Classical Sets

Fuzzy sets were introduced to overcome some of the limitations of classical �boolean or binary�
sets� Classical set theory has been extremely useful� and it now underpins much of the theory
of mathematics� although when practitioners tried to apply it to real
world objects and events�
they kept coming across a phenomenon that has been termed the Sorites paradox� This can
be explained as


When does a heap of sand stop being a heap of sand if you keep taking one grain

away�

Classical sets introduce a threshold value which speci�es exactly how many grains of sand
constitute a heap� as shown in �gure �a�
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Figure �
 A classical set �a� representation of sand heap as well as a fuzzy one �b��

�Adaptive fuzzy systems form their own rule base�
�A system is transparent if its internal workings can be easily understood�

�



A classical set is generally represented by listing its set of members� or else by giving a
concise functional relationship which its members must satisfy� For example� the two sets
greater than �� and cars would be represented as


greater than � � fx � � 
 x � �g

cars � fMini� Rover� Ferrari� � � �g

Note that for the �rst example� the set of possible inputs is in�nite and so it is represented
as a mathematical expression whereas for the second� a �nite list is used�
It is also possible to de�ne a set in terms of whether or not an element is a member of

that set� and this is determined by the characteristic function� Suppose that the space on
which the elements of a set are de�ned is called the universe of discourse �this could be the
real line� or the set of all objects in the world� or a particular input measurement�� then the
characteristic function is de�ned by


De
nition ��� �Characteristic Function
 The classical set A� which is de�ned on its
universe of discourse X� is de�ned by its characteristic function �A�� 
 X � f	� �g which

maps each element of X to either � or 	 depending on whether or not that element is a

member of the set� This is represented as	

�A�x� �

�
� if x � A
	 otherwise

���

For the sand heap example� the characteristic function would have the form


�heap�x� �

�
� if x � �
	 otherwise

���

where x is the volume of sand in the pile and � is the value of the threshold� A subtle but
often overlooked point is that characterising a pile of sand as a heap would also depend on its
shape� as well as other factors� However� humans have a remarkable tendency to round
o�
details that may be important in certain situations� Similarly� the value of a threshold would
not be constant for di�erent situations� rather it would depend on the context in which it is
used� Classical set theory is extremely well understood� but a major problem occurs with its
interface to the real
world�
This binary representation of the concept of a heap of sand is unable to represent the

transition process from heap to not heap� as illustrated by the Sorites paradox� This does not
mean that boolean sets are an inappropriate representation for every real
world set� rather the
introduction of a threshold value means that a lot of ordering information �ordinal variables�
is lost�
The fuzzy set characterisation of the concept of a heap of sand is shown in �gure �b�

and it can be clearly seen that the idea of partial membership of a set allows the designer to
represent a gradual ordering process as the degree of membership can now take any value in
the unit interval� It may be that in the decision making process� a threshold value will have
to be applied� but this process can be delayed as no information has been lost in representing
the input variable as a �fuzzy� set membership value� as in this case the fuzzy membership
function is invertible�

��� Fuzzy Membership Functions

Just as a classical set is de�ned by its characteristic function� a fuzzy set is represented by
its membership function ���� � �	� ��� This means that an element can be a partial member
of a particular set� and as mentioned in the introduction� this can be viewed as representing


�



The degree to which an event may be classi�ed as something�

It does not measure the frequency of occurrence of an event �that would be relative probabil

ity� or necessarily an individual�s uncertainty about an event �subjective probability�� rather
it allows real
world events to be classi�ed using a �nite number of linguistic classes�
Imagine that a Remote Sensing system was being developed where the maximum sensor

resolution was a kilometer square� Within that land area� the land
usage may be partially
urban� partially green space and partially agriculture� The measurement is exact� the classes
furban� green space� agricultureg are well
speci�ed� but just about every measurement should
produce a classi�cation which is composed of a combination of land
usage� Developing a
statistical �maximum
likelihood� classi�er would produce an answer which represented the
class with the highest land usage� whereas the true picture is that each event �pixel
value�
corresponds to a �non
zero� membership in several classes�
Generally� fuzzy membership functions are de�ned on just one variable or measurement

�univariate�� but this need not be the case as we shall see in the following sections where logical
connectives are used to generate fuzzy membership functions de�ned on several variables or
measurements �multivariate� from the standard univariate ones�

De
nition ��� �Fuzzy Membership Function
 The fuzzy membership function of a set

A is de�ned on its universe of discourse X and is characterised by the function �A��� 
 X �
�	� �� which maps each element of X to a real number that lies in the unit interval �	� ���
For a particular input� the value of the fuzzy membership function represents the degree of

membership of that set�

The membership functions provide an interface between the real
valued feature �input�
space and an expert�s vague� linguistic sets� They form precise representations of vague
concepts� but this precision is useful because it contains an expert�s domain speci�c knowledge
about a particular situation� If you need to model the imprecision associated with a particular
vague set� probability or rough set theory may be used to model the variance in the set�s
shape� but in most successful fuzzy systems the standard membership function has proved to
be su�ciently useful�
This idea of graded set membership can be used to represent the concept of a heap� yet still

retain the important ordering information� When �heap�x� is slightly greater than �heap�y��
this would imply that the volume of sand x is only a little more than y� and so this important
quantitative ordering information is retained in the fuzzy set representation�
A single fuzzy set by itself can model ordering information� but the main reason for em


ploying fuzzy logic and developing fuzzy systems is to infer decisions and information from
several pieces of expert knowledge� Humans learn to build up a �nite number of appropriate
categories for describing a potentially in�nite number of real world events and because we
communicate using similar vocabularies� vague but important information can be communi

cated� For the vast majority of applications� the power of a fuzzy system comes about because
of its ability to generalise and as such the de�nition of one fuzzy set is related the de�nition
of its neighbouring ones� The de�nition of a fuzzy set is relative to how its neighbours are
de�ned�

����� Terminology

De
nition ��� �Crisp
 The fuzzy membership function �A��� is said to be crisp if	

�A�x� � f	� �g �x � X ���

�	



and this is illustrated in �gure �a� A crisp fuzzy set is therefore just a conventional set and
under this restriction� a fuzzy reasoning system often employs standard boolean logic� This
terminology may initially seem unnecessary but some real
world concepts are crisp� and if
fuzzy logic is to be seen as a complete system� it should be able to model this appropriately�

De
nition ��� �Singleton
 The fuzzy membership function ��x��� is referred to as a single

ton when	

��x�x� �

�
� if x � �x
	 otherwise

���

It follows therefore that a singleton fuzzy set is a type of crisp set for which it is non
zero
only at a single input value� as shown in �gure �b�

De
nition ��� �Unimodal
 The fuzzy membership function �A��� is said to be unimodal�
if	

�x� y � X� �� � �	� �� 
 �A��x ��� ��y� � minf�A�x�� �A�y�g ���

A unimodal fuzzy membership function is often known as convex� but the author prefers the
former terminology as it is more descriptive of membership function�s shape �see �gure �c��
The vast majority of fuzzy membership functions are unimodal� and while all of the fuzzy
theory described in the following sections is true for any shaped set� we shall be only concerned
with unimodal ones� A unimodal membership function implies that the linguistic term only
has a local �or one
sided� in�uence on the overall rule base� It is di�cult for humans to
understand how large numbers of rules interact� so this is an important property for a fuzzy
system if it is required to be transparent to the designer�
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Figure �
 An illustration of a crisp fuzzy set �a�� a singleton fuzzy set centred on the input
� �b�� a unimodal �c� and a bimodal �d� fuzzy membership function�
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De
nition ��� �Support
 The support of a fuzzy set SA is given by the following set	

SA � fx � X 
 �A�x� � 	g ���

The support of a fuzzy set A is therefore the part of the input space for which its membership
function is activated to a degree greater than zero� An important� related concept is when
a membership function has a compact support� Compactness refers to the fact that the size
of its support is strictly less than the size of the original universe of discourse� and this is
illustrated in �gure �� The support of a fuzzy membership function therefore determines
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Figure �
 A non
compact support and a compact support fuzzy set�

which inputs will activate fuzzy rules that have the corresponding linguistic term as part of
their antecedent� If the fuzzy membership functions have a non
compact support then every
rule will be activated by each input� and the important concept of local knowledge storage
and retrieval may be lost�

De
nition ��� The �
cut of a fuzzy set A is given by the membership function	

�A��x� �

�
�A�x� when �A�x� � �
	 otherwise

���

where � � �	� ���

Hence any unimodal membership function with a non
compact support can be transformed
into a �discontinuous� membership function by taking the appropriate �
cut� as illustrated
in �gure ��
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 Taking the �
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De
nition ��� The height of a fuzzy set A is de�ned as	

HA � max
x�X

f�A�x�g ���

and a set is known as normal if HA � �� and sub�normal otherwise�

De
nition ��� The fuzzy set A is known as a fuzzy number when it is normal and de�ned

on the real�line�

It is important to notice that all of these concepts are local to one particular fuzzy set�
whereas the power of a fuzzy system comes through its ability to generalise locally between
neighbouring sets and rules� Probably the main use of fuzzy sets is to locally interpolate or
extrapolate between several rules in a fuzzy system� hence� it is di�cult to say whether a
particular membership function is well
designed without reference to the remaining ones in
the fuzzy system� This point will be re
emphasised in sections ����� and ����

����� Distance Measures and Fuzzy Membership Functions

A unimodal fuzzy membership function contains ordering information such that when


�A�x� � �A�y� ���

for a particular fuzzy set A� we can interpret this as meaning that x is �closer� to the
ideal de�nition of A than y� Thus fuzzy sets and distance measures are synonymous as the
membership function �A�x� and a distance measure d�A� x� are related by


d�A� x� �

�
� if �A�x� � 	

�
�A�x�

� � otherwise
��	�

as illustrated in �gure �� When a fuzzy set is designed� its centre� represents a template of
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Figure �
 The fuzzy set A and its associated distance measure d�A� x� and vice versa�

the de�nition or the set of ideal members and the tail o� determines how this set interacts
with others in a complete fuzzy rule base�
The inverse relationship can also �obviously� be used as a formal de�nition of a fuzzy

membership function if the set�s sensitivity is de�ned in terms of a distance measure� This
produces


�A�x� �

�
� if d�A� x� � 	

�
d�A�x�  � otherwise

����

�The centre of a fuzzy set is de�ned as being those elements which activate it to membership ��

��



����� Fuzzy Linguistic Variables

In order to describe or represent a real
world measurement as a symbolic or fuzzy label� it
is necessary to de�ne two or more fuzzy sets on that particular variable� For instance� the
temperature of the water may be described as cold� warm or hot� and the de�nition of each
term is relative to the neighbouring sets� Once the number of linguistic terms that are used
to model a variable have been decided� and their form has been speci�ed� the complete set of
fuzzy membership functions is known as a fuzzy variable� Describing a variable using a single
linguistic symbol does not provide any more information than simply ignoring that variable
from the inferencing calculations� If a variable is always classi�ed as being hot� we don�t need
to measure the temperature as this is known a priori and can be implicitly incorporated
into the rule base� Therefore� the power of fuzzy sets and fuzzy system is due to the relative
de�nition of each of the linguistic terms�
Loosely speaking� a fuzzy variable VX is formed when a group of fuzzy membership

functions and their corresponding linguistic terms are associated with a particular variable�
A fuzzy set A� is uniquely associated with its universe of discourse� so a fuzzy variable can
be imagined as being the group of all the fuzzy sets associated with this particular variable�
More precisely


De
nition ���� �Fuzzy Variable
 A fuzzy variable VX is de�ned as the 
�tuple	 fX�L� ��MXg�
where	

� X is the symbolic name of a linguistic variable� such as age�

� L is the set of linguistic labels associated with X such as fyoung� middle aged� oldg�

� � is the domain over which L is de�ned on the universe of discourse of X� For a real�
valued variable� this could be a continuous interval such as �	� ��	� �years� or a discrete�

sampled set such as f��������������� 	� �� �� �� �� �g�

� MX is a semantic function that returns the meaning of a given linguistic label in terms

of the elements of X and the corresponding values of the fuzzy membership function�

A fuzzy variable therefore is a collection of all the information used to represent a particular
measurement as a fuzzy linguistic set�

Example ��� �Fuzzy Variable
 Consider designing a one�touch grill for barbecueing sausages

where the symbolic name of the linguistic variable is X � cooking time �in minutes� and the

linguistic term set de�ned on this variable is L � frare� medium� well
done� charcoaledg�
Then the real domain over which X is de�ned could be from � to �� minutes and the seman�

tic functions which return the membership functions are illustrated in �gure 
�

Fuzzy variables are very important in the overall system� as a single fuzzy membership
function and rule by itself is often no richer than a single crisp rule� This may initially seem
counterintuitive� but consider the following �fuzzy� rule


IF �medium pressure is applied to the throttle�
THEN �the car goes fast�

and the result of being presented with the following pieces of evidence


a small amount of pressure is applied

a large amount of pressure is applied
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Figure �
 A fuzzy variable corresponding to the length of cooking time for sausages on a
barbecue�

Intuitively� we know that the former would need an output less than that contained in the
original rule and the latter should produce an output which is greater� However� this infor

mation cannot be contained in a single fuzzy set� and it is its neighbouring sets �and rules�
which describe how a throttle is pressed which determine how this set a�ects the overall
system� Indeed� using simple fuzzy inferencing operations would cause the system to produce
an output that was the same as the original rule� Hence� it is impossible to consider how a
single set in�uences a system�s performance without looking at the rules associated with the
complete fuzzy variable�
Just as a single fuzzy membership function has certain properties �unimodal� compact

support etc��� there are a number of important properties that need to be assessed about
each fuzzy variable that is de�ned�

De
nition ���� �Completeness
 The fuzzy variable VX is said to be complete if for each
x � X there exists a fuzzy set A such that	

�A�x� � 	 ����

Obviously� when a fuzzy variable is not complete� there exist inputs which have no linguistic
interpretation in terms of the current term set and hence the output of any system that is
based on these linguistic sets will be zero �unde�ned�� A useful� related concept is that of
��completeness where the �
cut membership functions are tested for completeness� This will
provide the designer with some measures about how well the fuzzy membership functions
cover the universe of discourse�

De
nition ���� �Partition of Unity
 The fuzzy variable forms a partition of unity �some�
times known as a fuzzy partition� if for each input x	

pX
i��

�Ai�x� � � ����

Obviously� this is a stronger condition than completeness� and a su�cient condition for com

pleteness is that the fuzzy variable forms a partition of unity� Requiring a fuzzy variable to
form a partition of unity is a restrictive condition and is similar to one of the fundamental
axioms of probability theory where it is required that the sum over the probabilities always
equals one� However� for many engineering applications� it can be shown that when the de

signer incorporates this property into the overall fuzzy system� the system is more transparent

��



and its performance is improved� Indeed� the �nal operation in many fuzzy systems is a type
of normalisation calculation and any fuzzy variables that do not form a partition of unity
have this property implicitly imposed on them� Therefore� it gives the system designer much
greater control to impose this condition explicitly on the fuzzy membership functions� prior
to the reasoning and inferencing calculations� and this is discussed further in section ������

��� Types of Fuzzy Membership Functions

The actual shape of the fuzzy membership functions that are used to represent the linguistic
terms are relative� subjective and context dependent and as such are ill
de�ned� However�
the basic form should satisfy the following two points�

� It must broadly possess the properties that are representative of the fuzzy linguistic
terms� For instance� it may be required that the membership functions are unimodal�
have a compact support and form a partition of unity�

� The membership functions must have a simple representation so that their form can
easily be stored in a computer�s memory and to ensure that the membership of a
particular input can be quickly and accurately evaluated�

Unlike probability theory� where a unique probability density function is determined by the
statistics of the signal� a fuzzy membership function by its very nature is extremely di�cult to
determine precisely� Therefore� simple shapes such as the Gaussian bell curve or the piecewise
polynomial B
splines are often used to represent the fuzzy membership functions or else they
are learnt directly from some training data�

����� B	spline Membership Functions

B�spline basis functions are piecewise polynomials of order k� which have been widely used
in surface �tting applications� but they also can be used as a technique for designing fuzzy
variables� B
splines basis functions are de�ned on a �univariate� real
valued measurement
and are parameterised by the order of the piecewise polynomial k and also by the knot

vector which is simply a set of values de�ned on the real
line that break it up into a number
of intervals� This information is su�cient to specify a set of basis �membership� functions
de�ned on the real
line whose shape is determined by the order k and where each membership
function has a compact support k units wide� In addition� the set of membership functions
form a partition of unity �see de�nition ������ The di�erent shapes of membership functions�
for di�erent values of k� are shown in �gure �� and it can be seen that they can be used
to implement binary� crisp fuzzy sets �k � �� or the standard triangular fuzzy membership
functions �k � �� as well as smoother representations ��� �� �	�� The B
spline basis function
therefore provide the designer with a �exible set of fuzzy set shapes� all of which can be
evaluated e�ciently�
As well as choosing the shape �or order� of the membership functions� the designer must

also supply a knot vector which determines how the membership functions are de�ned on its
universe of discourse� Suppose there exist p linguistic terms �and hence fuzzy membership
functions� in the fuzzy variable� then the membership functions are de�ned on an interior
space p � k  � intervals wide and the designer must specify p  k knot values� �i� which
satisfy the following relationship


xmin 	 �� 	 �� 	 
 
 
 	 �p�k 	 xmax� ����

These knots roughly correspond to the centres of the individual basis functions� and as
such can be used to distribute them such that there is a �ne resolution �large number of
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Figure �
 B
spline fuzzy membership functions of orders � � �� The dotted lines show how
trapezoidal and ! fuzzy membership functions can be formed from an additive combination
of piecewise linear and quadratic basis functions� respectively�

basis functions� in areas of interest and a course resolution �small number of basis functions
otherwise� A set of the extrema knot values which de�ne the basis functions at each end
must also be speci�ed and these should satisfy


��k�� 	 
 
 
 	 �� � xmin ����

xmax � �p�k�� 	 
 
 
 	 �p ����

and this is illustrated in �gure � for order � �triangular� fuzzy membership functions�
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Figure �
 Six B
spline fuzzy membership functions of order k � � where a non
uniform knot
placement strategy is used�

The output of B
spline membership functions can also be calculated using the following
simple and stable recurrence relationship


�Ak
j
�x� �

�
x� �j�k

�j�� � �j�k

�
�
Ak��
j��
�x�  

�
�j � x

�j � �j�k��

�
�
Ak��
j
�x�

��



�A�

j
�x� �

�
� if x � ��j��� �j�
	 otherwise

����

where �Ak
j
�x� is the jth membership function of order k� Therefore using B
spline basis

functions as a framework for fuzzy membership functions has several important properties


� A simple and stable recurrence relationship can be used to evaluate the degree of mem

bership�

� The basis functions have a compact support which means that knowledge is stored
locally across only a small number of basis functions�

� The basis functions form a partition of unity which also implies that the corresponding
fuzzy variable is complete�

Many of the piecewise polynomial fuzzy membership functions that have been used in the
literature are simply particular types of standard� additive or dilated B
splines ���� ����

����� Gaussian Membership Functions

Another fuzzy membership function that is often used to represent vague� linguistic terms is
the Gaussian which is given by


�Ai�x� � exp

�
�
�ci � x��

�
�i

�
����

where ci and 
i are the centre and width of the i
th fuzzy set Ai� respectively� This is illustrated

in �gure �	� Gaussian fuzzy sets have some very desirable properties in that both their spatial
and frequency content �a Fourier transform of an exponential is another exponential� is local�
although not strictly compact� and the output is very smooth in that it can be di�erentiated
as many times as you like� However� it is important to note that although these functions
can also represent �scaled� probability density functions� their meaning in this context is
generally di�erent� Probability density functions can be used to calculate the probability
�or relative frequency� and a measurement will lie in an interval� whereas fuzzy set theory
provides a measurement of the degree of membership that an exact measurement satis�es a
vague concept� Gaussian functions can be used to model both situations but the underlying
meaning is very di�erent�
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Figure �	
 Gaussian fuzzy sets�

Multivariate Gaussian functions are formed from the product of the univariate sets� and
this is one of the reasons why Gaussian fuzzy sets are popular� the multivariate radial basis
functions can be expressed as a product of univariate ones� This emphasises the relationship
between fuzzy sets and distance measures� An interesting compact support Gaussian
type
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function has also been proposed ����� and this membership function has a strictly compact
support property and is also in�nitely di�erentiable


�Ai�x� �

�
exp������ � exp

�
�

��i����i���
��	

��i���x��x��i���

�
if x � ��i��� �i���

	 otherwise

and this is also shown in �gure �	�
Gaussian fuzzy membership functions are quite popular in the fuzzy logic literature� as

they are the basis for the link between fuzzy systems and Radial Basis Function �RBF� neural
networks�

����� Partitions of Unity and Fuzzy Variables

It is worthwhile emphasising that any complete fuzzy variable can be transformed into a fuzzy
variable that forms a partition of unity by normalising the membership functions according
to


� 
Ai�x� �
�Ai�x�Pp
j�� �Aj �x�

for each i � �� � � � � p� ����

as by de�nition� the modi�ed fuzzy membership functions form a partition of unity


� 
Ai�x� � � �x

This is illustrated in �gure �� for Gaussian functions where the widths have been incorrectly
set� In general� the normalised version will produce a much smoother output surface� as
it does not depend on the variation of the activation strength �de�ned as the sum over all
the fuzzy membership functions for a particular input value�� It also makes the form of
the output surface partially invariant to changes in the location and scaling of the fuzzy
membership functions� This can easily be seen as the term

Pp
i�� �Ai�x� is plotted in this

�gure as a dashed line which represents the strength with which various rules will �re� In
general� it is undesirable for this term to di�er signi�cantly from unity� although in practice
this is di�cult to achieve unless either the fuzzy variable forms a partition of unity implicitly
or it is explicitly normalised ��� ��� ����

��� Linguistic Vagueness and Fuzzy Precision

Fuzzy membership functions provide a precise representation of linguistic vagueness� This
may initially seem at odds with the original reason for adopting this technique� because� as the
name suggests� fuzzy logic should utilise an imprecise problem solving approach� However�
to implement an algorithm on a computer requires that all imprecision and uncertainty is
resolved and modelled precisely �consider modelling the noise processes in a Kalman �lter or
representing a probability density function as a normal or Poisson distribution�� Often it is
the ordering information ��A�x� � �A�z�� that is important rather than the exact value of
the fuzzy membership functions� However� the precise membership functions can be useful
for extracting an individual�s subjective view and context dependent information about the
problem� Letting several experts design their own membership functions and rule bases
may provide the system designer with important information about di�erent strategies for
implementing the system� Similarly� a single expert�s knowledge is useful precisely because it
is subjective� so clarifying any vagueness using precise membership functions is the �rst part
of any knowledge elicitation strategy�
Natural language is notoriously rich� in the sense that a single phrase can have many

meanings and there are many ways for expressing the same idea� A well
de�ned fuzzy system
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Figure ��
 Gaussian membership functions �top� and the equivalent normalised version �bot

tom� that forms a partition of unity� The dashed lines represent the sum over all the fuzzy
sets on this axis�

would use the minimum number of fuzzy terms �small� large� etc�� to adequately represent
an expert�s knowledge� and the associated membership functions should have the minimum
amount of overlap in order to distinguish the role played by each rule in the overall system�s
output� No one technique can be used to design a complete natural language system� although
methodologies like fuzzy logic can play their part� The most successful fuzzy systems only
use a very restricted and well
de�ned subset of natural language as this makes the systems
transparent�
An important point to make about fuzzy logic is that its richer representation is only

necessary if the application demands it� i�e� the system�s designer must understand the dif

ference between necessary and su�cient precision� For some applications outside the control
world �fuzzy controllers are the most popular application of this technology�� a fuzzy set may
produce an unnecessarily precise representation of the input measurements and a similar con

ventional knowledge
based system could be designed with identical input
output behaviour�
This generally occurs when the system is designed to produce a symbolic rather than a nu

meric output� where the fuzzy system must decide in which discrete state the output lies�
Consider the example shown in �gure ��� where a fuzzy and a conventional set are used to

xµ(  )xχ(  )
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age (years)
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age (years)
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Figure ��
 A conventional �a� and a fuzzy �b� representation of the concept of an adult�

represent the term adult which is assumed to only depend on a person�s age� The task is to
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work out whether or not �a crisp decision� a person is an adult� For this decision process� a
typical fuzzy rule would be of the form


IF ��adult�x� � �� THEN �adult�

and the threshold value � would determine how much a person had to be considered an
adult� before they were o�cially classi�ed as being one� As the sigmoidal fuzzy membership
function is invertible� this threshold decision can be made on the raw measurement or else
the fuzzy membership value and the two processes are equivalent�
Fuzzy sets and rules propagate a richer representation �compared to a binary set� through


out the entire system but this is only useful when the application requires it� Perhaps the
concept of an adult is de�ned to be di�erent ages for di�erent responsibilities �driving a car�
getting married� drinking alcohol�� and a fuzzy set would represent this by having di�erent
thresholds �although it could be argued that an equivalent result could be obtained using
their ages�� However� modelling a binary or crisp set with a truly fuzzy membership function
would be as inappropriate as representing vague concepts with boolean sets�

��� Discrete Fuzzy Sets

So far� this description has concentrated on continuous fuzzy sets� The universe of discourse
has been assumed to be a continuous real
valued interval and a well
de�ned mapping is used
to represent each fuzzy membership function� Discrete fuzzy sets and systems are based on a
universe of discourse that consists of a discrete number of states� and the membership function
is represented by assigning a membership value to each state� For example� consider the fuzzy
set fast� de�ned on the universe of discourse cars� the cars shown in table � are members of
this set with varying degrees� A subjective� context dependent membership function value is

car membership value

Ferrari ��� ��	
Reliant Robin 	�	
Ford Escort ���L 	��
Ford Escort XR�i 	��

Table �
 A discrete fuzzy set representing fast cars�

assigned to each car type� as shown in �gure ��� where the car
makes have been ordered to
represent their degree of fastness�
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Figure ��
 An ordered histogram representing the discrete fuzzy set of fast cars�
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It is worthwhile making the point that whether to use continuous or discrete membership
functions� depends very much on the information provided to the system� For instance�
instead of designing a discrete fuzzy set of fast cars� it could be possible to measure the
car�s top speed �a continuous� real
valued measurement� and to construct a continuous fuzzy
set whose input was this signal� However� it could be argued that the top speed of a car
is not the only indicator of how someone assesses the car�s speed� It is based rather on
your impression of the car�s make �a Ferrari is always fast� as well as information about its
top speed� The former information source would not be modelled by the continuous fuzzy
set� Continuous fuzzy systems are based only on a �nite number of measurable signals but
produce a continuous output� Discrete systems can potentially take an in�nite number of
information sources into account by receiving an individual�s fuzzy classi�cation value as
an input �or equivalently the linguistic label which accesses this key�� However� this is a
subjective� context dependent and unpredictable process and so which representation is best
is very much application dependent�
In control engineering� it has been the norm to work with discrete fuzzy sets and systems

even though the inputs and outputs are generally real
valued� Attempts have even been
made to produce a continuous output from a discrete fuzzy system by linearly interpolating
between the rules closest to the input value ����� However� while this approach achieves its
desired objective� it is usual nowadays to work completely with continuous fuzzy systems and
it is this approach that will be taken here� Discrete fuzzy membership functions should only
be used when the input domain is a set of discrete elements� The relationship between the
continuous and discrete approach is described in considerable detail in chapter �	 of ����

��� Fuzzy Set Theory and Probability Theory

Despite the fact the fuzzy set theory was introduced to model linguistic vagueness and proba

bility distributions can be thought of as modelling the uncertainty associated with a particular
measurement or process� the di�erences and the relationships between fuzzy set theory and
probability theory have been vigorously debated for as long as fuzzy logic has been in ex

istence ����� Both are important subject areas as they underpin the vast amounts of work
currently being done in the AI area of reasoning under uncertainty�

����� The Meaning of Fuzzy Membership Functions

One of the roots of this debate is the often asked question by fuzzy designers


How do I obtain my fuzzy membership function�

This seemingly innocent question has led to considerable in
depth research into the meaning
behind modelling a simple linguistic statement such as x is small� Consider trying to imple

ment an expert�s algorithm which is composed of such fuzzy terms� and trying to understand
exactly what is meant by small� One possible interpretation is that the membership value is
given by


�A�x� is given by the percentage of experts polled who would consider x to be a

full member of the �fuzzy� set A�

Here� however� the uncertainty that is being modelled is in the average person�s perception
of where the crisp concept threshold lies� not what is appropriate for the particular problem
domain� Also a human�s natural tendency to round
o� seemingly unimportant details could
easily produce biased answers�
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Figure ��
 A crisp ellipse and a �fuzzy� ellipse�

Subjective probability is perhaps the most similar concept to fuzzy logic as it measures the
uncertainty of an individual�s uncertainty about an event or object� For instance� consider
classifying the two geometrical �gures shown in �gure ��� Kosko ��	� argued that

Does it make more sense to say that the oval is probably an ellipse� or that it is

a fuzzy ellipse�

The one on the left is a perfect ellipse� whereas the one on the right may be regarded by
some as an imperfect ellipse� or some may state that this is not an ellipse� The di�erence
lies in whether or not the designer is trying to model the uncertainty in the drawing process�
An ellipse has a precise mathematical de�nition� and when a geometrical deviates from this
ideal� it is up to the observer to determine his belief in that shape being an ellipse� Sources
of �noise� could include where the author drew the �gure �in a drawing o�ce or on a rolling
ferry� and the classi�cation task at hand �extracting ellipses from noisy� pixel
based images or
scanning in �gures for a mathematical textbook� as well as many other factors� Humans make
implicit assumptions about these sources of uncertainty� and assign a subjective measure to
the �gure� For this case Id argue that the class ellipse has a precise mathematical de�nition
and any deviation from this must be assessed in terms of subjective probability�
Whether or not fuzzy logic is regarded as a subset of subjective probability theory �or

indeed vice
versa as has been proposed by Kosko ��	��� the fuzzy approach has proved useful
in many applications� hence it is su�cient for many problems�

����� Trend Information

Having made these statements about fuzzy sets and probability distributions� it is worth
re�ecting on the reason why fuzzy logic is used in engineering� Often experts use fuzzy
concepts to explain their actions as well as using inherent� domain
speci�c trend information�
For example� consider the following three rules


IF �x is small� THEN �o is small�

OR IF �x is medium� THEN �o is medium�

OR IF �x is large� THEN �o is large�

which any control engineer would implement as a linear mapping as shown in �gure ���
However� modelling each term separately utilising trapezoidal or triangular
shaped member

ship functions generates di�erent outputs� as shown in �gure ��� An expert has an inherent
idea about the form of system�s output or decision process and this must be re�ected in the
shape of the fuzzy membership functions� Here� there is a potential con�ict between system
modelling and linguistic representation� but for a fuzzy system to be successful� this type of
domain speci�c knowledge should be encoded in the design of the membership functions�
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Figure ��
 Two di�erent system outputs� �a� linear and �b� piecewise linear�constant� which
depend on the form of the fuzzy input membership functions�

����� Partitions of and Summing to Unity

One of the fundamental axioms of probability theory is that the sum of the distributions
should equal one� The events that can happen form a closed world� as every possible output
is known and a probability can be assigned to each one� Fuzzy logic makes no such restriction
as the sum over the set membership values can take any positive value� although it was argued
in section ����� that the fuzzy variables should form a partition of unity� a property that is
preserved using algebraic fuzzy operators� The reason for this is that in many fuzzy systems�
the fuzzy output set must be defuzzi�ed to produce a real
valued signal� This defuzzi�cation
generally imposes an implicit partition of unity on the fuzzy system� Therefore although
fuzzy systems do not explicitly require the fuzzy variables to form a partition of unity� it aids
the designer if they do and the defuzzi�cation operator generally implicitly imposes such a
condition on the overall system�
This normalisation operation can be visualised graphically� using the fuzzy hypercube

concept� In a fuzzy hypercube� each axis corresponds to the membership of a particular
fuzzy set� so each axis is de�ned on the interval �	� �� and a fuzzy system with n sets would
generate a fuzzy hypercube of dimension �	� ��n� In �gure ��� a system with two �n � ��
fuzzy sets is illustrated� and each input can be represented on this diagram by plotting the
point which corresponds to the memberships �A��x� and �A��x� For a fuzzy variable to form
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Figure ��
 A fuzzy hypercube �square� for two sets A� and A�� The dashed line represents
the set of points that sum to unity on which p� lies and p� is mapped onto this line when the
fuzzy sets are required to form a partition of unity�
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a partition of unity amounts to requiring that each point should lie on the diagonal line of
the fuzzy hypercube generated by


�A��x�  �A��x� � � ��	�

When a fuzzy variable is normalised to form a partition of unity� this corresponds to sliding
the point down the �dotted� line it makes with the origin until it reaches the diagonal �dashed�
line �see �gure ���� Whenever a normalising defuzzi�cation operator is used� this implicitly
imposes a partition of unity on the fuzzy variables� Hence even though a fuzzy system does
not require the membership to sum to unity� a normalising operation is generally performed
on all the membership functions�
In summary� subjective probability and fuzzy logic are quite similar in the type of uncer


tainty each technique tries to model� However� because fuzzy relations focus directly on the
input� output mapping which is arguably more natural for domain experts �as opposed to
deriving conditional probabilities�� and because of the �exibility in deriving an appropriate
membership function shape� it has proved useful in many engineering applications�
Fuzzy logic is a sound theory for generalising conventional boolean concepts to the vague�

real
world� as has been shown in numerous applications�

� Fuzzy Operators

Fuzzy sets and membership functions are the reason why fuzzy logic was introduced� since
they provide a means of representing the concept of vague membership of a set� However�
this ability to map data to fuzzy set memberships is not useful in itself as we also require a
set of operators for combining this information and making inferences about its state� Fuzzy
logical operators provide this �exibility and this section describes some of the most common�
Fuzzy operators are generalisations of the common boolean logical operators such as AND�

OR� NOT etc�� and for the binary characteristic functions� these are well
de�ned in terms of
truth tables� Perhaps the most common implementation of these functions has been using
the following truncation operators


�A AND B�x� � minf�A�x�� �B�x�g ����

�A OR B�x� � maxf�A�x�� �B�x�g ����

�NOT A�x� � �� �A�x� ����

where all of these operators map the unit interval to the unit interval� so their output can be
interpreted as a membership value of a �new� compound fuzzy set�

��� Boolean Operators

Conventional boolean logical operators such as AND� OR� NOT are well
de�ned in terms of
truth tables� as illustrated in �gure ��� The logical operators are classed as either


unary a function with only one argument� i�e� NOT� which maps the binary set
f	� �g onto itself �this can only be the identity mapping or its complement��
and

binary a function with two arguments� i�e� AND� OR� which is de�ned on f	� �g�
f	� �g � f	� �g�

where �obviously� a logical function with more than two arguments� can be written as a
composition of several binary functions�

��



0

1
A

NOT A

1

0

(a)

A AND B

1

0 0

0

0 1

0

1
A

1

0

0 1

0

1
A

A OR B

1

1

B B

(b) (c)

Figure ��
 Truth tables for the logical AND �a�� OR �b� and NOT �c� operators�

These logical operators correspond to the union� intersection and complement functions in
set theory� The ANDing of two sets refers to the intersection� ORing is equivalent to �nding
which members lie in the union of the sets and NOT is simply the complement of the original
set� This is illustrated in �gure ��� where the corresponding Venn diagrams are shown�
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c
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Figure ��
 The Venn diagrams that correspond to intersection �AND�� union �OR� and
complement �NOT��

Boolean operators have as inputs the value of the appropriate characteristic function�
and produce an output that represents the output of the compound characteristic function�
Fuzzy logical operators perform a similar mapping� generating new membership functions
from their input membership functions�
Fuzzy set theory allows membership values of between 	 and �� and hence new fuzzy

operators must be found for intersection� union� negation� implication etc�� as such operations
cannot be stored in a tabular form� Zadeh originally used the min and max operators as they
are simple to implement� are equivalent to the Boolean operators for binary arguments and
always map the unit interval to the unit interval� These truncation operators were used almost

��



exclusively during the seventies and most of the eighties� and it is only recently that other
operators have been seriously considered� ��� �� ���� These alternative algebraic operators
form the basis for neurofuzzy systems which we shall come across in section ��

��� Law of the Excluded Middle

As long ago as ����� Bertrand Russell ���� noted that


The law of the excluded middle �A AND NOT A� is true when precise symbols

are employed but it is not true when symbols are vague� as� in fact� all symbols

are�

The A AND NOT A excluded middle concept is one of the foundations of classical logic�
as it asserts that


A AND NOT A � 	

A OR NOT A � � ����

and this is at the heart of many mathematical proofs by contradiction� as the law of the
excluded middle asserts that a contradiction of the negated concept implies that the original
statement was true� For instance� the following proof by contradiction shows that there exists
an in�nite number of prime numbers�

Example ��� �Proof by contradiction
 Assume that there is only a �nite number of

primes fpig
n
i��� and construct the number	

p �

�
nY
i��

pi

�
 �

Each pi cannot be a factor of p and it also satis�es the relationship pi 	 p� Hence either p
is a prime number or else there exists a prime number q such that pi 	 q 	 p for all i� In

either case� the original assertion is false and so there must exist an in�nite number of prime

numbers�

However� suppose that the degree of membership of the set A now lies in the interval �	� ��
rather than only at its edges� The membership of the set NOT A would also be vague and
the law of the excluded middle could not hold� as an element can be a partial member of a
set and its complement at the same time� As an example of this consider the fuzzy set which
represents the concept adult� shown in �gure ��� Figure �� draws a representation of the
sets NOT A and A AND NOT A� Someone who is around �� years of age can be considered
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Figure ��
 The fuzzy set �adult AND NOT adult� shown as the shaded region�
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both an adult and not an adult at the same time� This violation of the law of the excluded
middle is typical of real
world classes where someone can be old AND NOT old� or rich AND
NOT rich� as this speci�es both a region and a membership function which gives the overlap
between A AND NOT A�
A crisp set satis�es the law of the excluded middle and has no overlap between the sets

A and NOT A� hence Kosko ���� proposed it as a basis for the measure of the fuzziness of a
set and termed it fuzzy entropy�

����� Fuzzy Entropy

Fuzzy entropy is the measure of a particular set�s fuzziness� and is de�ned by the formula


E�A� �
c�A AND NOT A�

c�A OR NOT A�
����

where c refers to a count �addition or integration� over all the corresponding membership
values� For a crisp set� the numerator is always zero and the denominator is always unity�
hence the fuzzy entropy of a crisp set is zero�
Fuzzy entropy is a measure of a sets own fuzziness� although its in�uence on the overall

system is determined by its interaction with neighbouring sets� The standard fuzzy entropy
measure tells you nothing about this� although using the normalised fuzzy membership func

tions de�ned in equation ��� results in the complement of a set being the union �algebraic
sum� of all the remaining sets� Therefore� the fuzzy entropy in this case would be a measure
of the fuzzy set�s interaction with neighbouring membership functions�
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Figure �	
 The shaded shape represents the fuzzy set A AND NOT A� whose relative area
determines the fuzzy entropy of a set�

This is illustrated in �gure �	 where its is shown how the entropy of a fuzzy set can
be calculated� using the sum operator to represent OR �as the fuzzy membership variable
forms a partition of unity� and max operator to represent AND� The fuzzy entropy measure is
therefore the ratio between the area between the intersection of the membership function and
its complement� and the total size of the universe of discourse� In this example� X � �	� �	�
hence


c�A AND NOT A� � �

c�A OR NOT A� � �	

and the fuzzy entropy of A is given by


E�A� � 	����
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The concept of fuzzy entropy is sometimes useful as it indicates the relative amount of
overlap� but it is a fairly course measure�

��� Fuzzy Rule Bases

Often� experts will articulate their knowledge in terms of simple IF 
 THEN production
rules which map an input state directly to an output� The vague linguistic premises and
conculsions such as


the error is postive small�

or

the system�s response is almost zero�

can be represented using fuzzy sets and combined using fuzzy operators and for much of the
remainder of this course� we�ll be studying the a�ect of di�erent implementation methods�
A fuzzy algorithm is usually composed of fuzzy production rules of the form


r��� 
 IF �x is A�� THEN �o is B�� 	��

r��� 
 OR IF �x is A�� THEN �o is B�� 	��

���
��� ����

ri�j 
 OR IF �x is Ai� THEN �o is Bj� ��	

���
���

rp�q 
 OR IF �x is Ap� THEN �o is Bq� 	�	

where ri�j rule is the ij
th fuzzy production rule which relates the ith input fuzzy set� Ai� to

the jth output fuzzy set� Bj� In more detail� each fuzzy production rule has a structure of
the form


IF �x� is A
i
� AND 
 
 
 AND xn is Ai

n� THEN �y is Bj� cij ����

or linguistically as


IF �antecedent� THEN �consequent� cij ����

The degree or con�dence with which the input fuzzy set Ai �which is composed of the fuzzy
intersection �AND� of several univariate fuzzy sets� is related to the output fuzzy set Bj is
given by a rule con�dence cij � �	� ��� When cij is zero� the rule is never active and hence
does not contribute to the system�s output� Otherwise the rule partially �res whenever its
antecedent is activated to a degree greater than zero� Therefore� the rule base is characterised
by the set of rule con�dence fcijg �i � �� �� � � � � p� j � �� �� � � � � q�� and these can naturally
be stored in a rule con�dence matrix C whose ijth element is cij � A zero entry in the rule
con�dence matrix means that the corresponding rule does not in�uence the system in any way�
Once the fuzzy membership functions have been de�ned� the rule con�dences encapsulate
the expert�s knowledge about a particular process and they also form a convenient set of
parameters to train�
The vast majority of fuzzy systems successfully deployed are �at in the sense that the rules

directly relate the system�s input to its output� There are no intermediate or hidden states�
Deep fuzzy systems have the potential to represent the desired input� output mapping using
a lot fewer rules� see section ������ although is is quite di�cult to determine an appropriate
representation if its not natural for that particular application�
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Before delving deeper into how these fuzzy rule bases are represented in a computer� it
is worth discussing what a fuzzy algorithm actually represents� Originally� it was proposed
as a technique for modelling the way humans think and reason� although this rather grand
idea has now been replaced with the thought that a fuzzy algorithm is simply the linguistic
interface between humans and computers� Because humans explain much of their actions
using vague� linguistic statements� it makes sense to develop techniques which are capable of
implementing this knowledge in a precise� but appropriate manner� Indeed� the authors take
the view that


irrespective of how humans think and reason� they explain their actions using

vague� linguistic statements� Fuzzy logic is one technique for representing this

knowledge on a computer�

Hence� we take a fairly pragmatic view about the usefulness of fuzzy logic� in that a fuzzy
approach will only be successful when


�� there exists su�cient linguistic expert knowledge to completely characterise the solution
to the problem� and

�� fuzzy logic is an appropriate mechanism for representing this knowledge�

����� Fuzzy Rule Con
dences

The rule con�dences depend neither on the shape or form of the fuzzy sets� nor on the fuzzy
logical operators� both of which are stored separately in the knowledge base� Discrete fuzzy
systems� which have been widely used in self
organising controllers� construct a relational ma

trix which completely characterises the knowledge base as it implicitly contains information
about the fuzzy set shapes� logical operators and rule con�dences ���� ���� Storing knowledge
in a distributed fashion as has been described is preferable as it makes it easier to understand
how di�ering implementation methods will a�ect the system�s output�
Associated with each multivariate fuzzy input set is a rule con�dence vector ci which

represents the estimated output of the system for that particular input set� These rule
con�dence vectors are generally normalised �sum to unity� as this implies that there is total
knowledge about the system�s output for that particular input set� These parameters can
easily be updated when the knowledge in the rule base is changed� In a lot of adaptive fuzzy
systems� the fuzzy output membership functions are altered by shifting their centres which
amounts to rede�ning the designer�s subjective interpretation of a linguistic statement� It
could therefore be argued that these adaptive fuzzy systems cannot be validated after training
because the form of the fuzzy sets is not consistent with their original de�nition� However�
when rule con�dences are used and stored separately from the fuzzy sets� it is possible to adapt
the strength with which a rule �res and still retain its original fuzzy� linguistic interpretation�

����� Terminology

Completeness and inconsistency of rule bases are two concepts that have well
de�ned mean

ings in conventional expert systems� which must be generalised to be used in fuzzy systems�

De
nition ��� �Rule Base Completeness
 A rule base is said to be complete if for each
x � X� there exists a o such that	

�R�x� o� � 	 ����

�	



where �R�x� o� is the membership function for the complete rule base de�ned on X � O�
which is known as the relational surface� It is obtained from the union of all of the individual
rules� as described in section ������
In general� any rule base that uses membership functions with a non
compact support will

be complete� as each rule�s membership function will be non
zero over the whole input�output
space� However� this would provide the designer will little� or no� information about the rule
base�s coverage� and a possibly more useful measure would be described as �
completeness�

De
nition ��� �Rule Base �	Completeness
 A rule base is said to be �
complete if the
��cut relational surface is complete�

Note that this de�nition takes into account both the membership functions used and the value
of the rule con�dences� When the rules are binary �cij � �	� ���� the de�nitions of completeness
only take into account whether there exists a rule antecedent membership function which
covers that part of the input space and is equivalent to fuzzy variable completeness �see
section �������

De
nition ��� �Rule Base Inconsistency
 A set of fuzzy rules are said to be inconsistent
if two rules that have the same linguistic fuzzy antecedent map to two non
overlapping fuzzy
output sets�

There are several commonly used de�nitions of rule base consistency and inconsistency� but
this one is especially important for the relationship between the fuzzy and neurofuzzy systems
which will be described in this report� When two rules with the same antecedent map to
di�erent� overlapping output sets� this can be interpreted as meaning that the overall output
associated that particular input set should lie somewhere between the output sets� centres� in
the area of overlap� When the output sets are non
overlapping� then either the fuzzy output
variable has an inappropriate representation or else the rule base is inconsistent�

��� Fuzzy Intersection� AND

The fuzzy intersection of two sets A and B refers to a linguistic statement of the form


x is A AND y is B

where x and y could potentially refer to the same variable� A new fuzzy membership function
is generated by this operation de�ned onX�Y space� and is denoted by �A�B�x� y�� where the
fuzzy 
 notation is an obvious generalisation of the binary � symbol� For binary arguments
�crisp sets�� these operators are well
de�ned and can be tabulated in a truth
table� but there
are many possible generalisations for fuzzy logic� The family of potential operators is known
as the set of triangular norms� or T�norms� and the new membership function is generated
by


�A�B�x� y� � �A�x�b��B�y� ��	�

where b� is the T
norm operator� For ease of notation in the following de�nition� let a� b� c� d �
�	� �� denote the value of the fuzzy membership functions�

De
nition ��� �T	norm
 The set of triangular norms� or T�norms� is the class of functions

which obey the following relationships	

�� ab�b � bb�a
�� �ab�b� b�c � ab� �bb�c�

��



�� if a 	 c and b 	 d then ab�b 	 cb�d

� ab�� � a

In addition� a T
norm is said to be Archimedean when


ab�a 	 a �a � �	� �� ����

There are many possible operators which satisfy these conditions� but the two most com

monly used are the product and min functions


�A�B�x� y� � �A�x� � �B�y� ����

�A�B�x� y� � min f�A�x�� �B�y�g ����

for which the former is an Archimedean T
norm� Historically� the min operator was used since
it was emphasised by Zadeh when he started writing about fuzzy logic� but more recently the
algebraic product operator has been shown to perform better in many situations� although
the correct one to use is very much situation dependent� It can be shown that for any T
norm


�A�x�b��B�y� 	 min f�A�x�� �B�y�g ����

therefore the min operator forms an upper bound on the space of fuzzy intersection operators�
It is useful to visualise the intersection operator graphically� and in �gure ��� a �


dimensional fuzzy membership function formed from the product of two triangular �B
splines
of order �� membership functions is shown� Obviously� the shape of the multivariate fuzzy
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Figure ��
 A two
dimensional fuzzy membership function formed from the intersection �prod

uct operator� of two triangular� univariate fuzzy membership functions�

membership function depends on both the shapes of the univariate membership functions and
the operator used to represent the T
norm� The multivariate membership functions formed
using the product operator retain more information than when the min operator is used to
implement the fuzzy AND because the latter scheme only retains one piece of information
whereas the product operator depends on both pieces� Using the product operator also allows
error information to be back propagated through the network as the �rst derivative is well

de�ned� It also generally gives a smoother output surface �as will be demonstrated later��
as when univariate B
spline and Gaussian fuzzy membership functions are used to represent
each linguistic statement� the multivariate membership function is simply a multi
dimensional
B
spline or Gaussian basis function� which is illustrated in �gure ���
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 A comparison between the minimum and product fuzzy intersection operators�

In a fuzzy algorithm� the antecedent of a fuzzy production rule is formed from the fuzzy
intersection of n univariate fuzzy sets


x� is A
i
� AND 
 
 
 AND xn is Ai

n

which produces a new multivariate membership function �Ai
�
�����Ai

n
�x�� � � � � xn� or �Ai�x�

de�ned on the original n
dimensional input space and whose output is given by


�Ai�x� �
cY �

�Ai
�

�x��� � � � � �Ai
n
�xn�

�
where bQ is the multivariate T
norm operator�

����� Fuzzy Logical Connectives and Probability Theory

Fuzzy sets and probability density functions may initally appear to have a similar shape and
functionality but their interpretations are very di�erent� Similar comments can be made
about fuzzy connectives and probability operators� as the probability that two events x and
y occur can be calculated from


Pr�x y� � Pr�xjy� � Pr�y� ����

where Pr�xjy� is the probability that x will occur given that y has occured� When the two
events are totally dependent


Pr�x y� � � � Pr�y� � Pr�y� ����

as this corresponds to a linguistic statement such as


John is tall AND John is tall

When the events are completely independent


Pr�x y� � Pr�x� � Pr�y� ����

this corresponds to a linguistic statement such as


John is tall AND Mary is short

Fuzzy logic combines individual membership function values to obtain the set membership
of the �
dimensional set� and so there does not exist any concepts of terms like Pr�xjy��

��



The two fuzzy operators that have been discussed so far� min and product� evaluate to
the same value as the probability calculation when the events are totally dependent and
independent� respectively� However� this does not imply that under some circumstances
fuzzy and probability theory are equivalent� rather it is used to illustrate that the operators
which combine di�erent uncertainty or vague measures are similar� In fuzzy systems� the
type of logical operators used are chosen independently from the statistics of the input signal
and as such cannot be related to probability theory
It can be argued that in most situations the product operator is more natural and gives

the system a smoother output� In ���� they give an example of a prisoner breaking out
through two windows� where the ease with which a prisoner can get through each window
is 	�� and 	��� It is argued that the ease with which a prisoner can escape should be given
by minf	��� 	��g � 	��� although they do note that the prisoner will become somewhat tired
getting through the �rst window� Taking this argument to its extremes� you could imagine a
situation where there were twenty windows that were 	�� easy to get through and one window
which was 	�� easy to get through� Common sense indicates that the ease with which a
prisoner will escape would be quite a bit less than 	��� but the min operator does not re�ect
this� Using the product operator means that all of the properties of the fuzzy variables� such
as partitions of unity� will be retained by the set of multivariate fuzzy membership functions�

����� Multivariate Fuzzy Input Set Distribution

When all possible fuzzy intersections are taken of n sets of fuzzy membership functions� this
implicitly generates an n
dimensional lattice in the original input space on which the new�
multivariate fuzzy membership functions are de�ned� As illustrated in �gure ��� when the
fuzzy intersection is taken of every possible combination of univariate fuzzy input sets� the

1

2x

x

Figure ��
 A complete set of �
dimensional fuzzy membership functions generated by two
sets of triangular� univariate fuzzy sets� The bold circles denote their centres and the shaded
area illustrates how two univariate fuzzy sets are combined using the intersection operator�

number of multivariate fuzzy membership functions is an exponential function of the number
of input variables �note that the y axis is scaled logarithmically��

����� Curse of Dimensionality

The Curse of Dimensionality was a phrase coined by Bellmann in ���� ��� and it refers to
the exponential increase in resources required by a system when the input space dimension

��



increases� For a complete� lattice
based fuzzy system� the number of combinations of the
linguistic input terms is


p �
nY
i��

pi ����

where the ith fuzzy variable is composed of pi fuzzy sets �univariate basis functions�� For
a typical fuzzy system that has � sets on each axis� p is plotted against n in �gure ���
This exponential increase in the number of multivariate fuzzy membership functions has
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Figure ��
 The number of possible combinations of linguistic inputs �pni � plotted against the
size of the input space�

implications not only for the size of the fuzzy system� but also for the calculation time and
the amount of training data for adaptive fuzzy systems�
A fuzzy system which has triangular membership functions as described above is always

complete� if and only if each of the fuzzy variables are complete and every combination of
linguistic terms is taken� Removing just one of the �
dimensional fuzzy sets in �gure �� would
mean that the rule
base was no longer complete since the membership of every basis function
is zero at the centre of the missing set� this is a consequence of the compact support property
of the triangular membership functions� Therefore� unless special techniques are used to
structure the inputs to a fuzzy network� these systems su�er from the curse of dimensionality�
which limits their application to small
dimensional �� or � inputs� engineering problems�
Multi
Layer Perceptron networks do not directly su�er from the curse of dimensionality

as the computational cost �size� of the network depends on the number of nodes in the hidden
layer �as well as the number of hidden layers�� Each node in the hidden layer has an associated
weight vector where each element multiplies a corresponding input� so its activation value is
given by


i �
nX
i��

wixi ����

Hence including an extra input simply increases the number of parameters in the weight vector
by �� The number of nodes required in the hidden layer is determined by the complexity
of the data� and the more hidden nodes in the network� the more complex a mapping can
be produced as each hidden layer node e�ectively splits the input space into two regions� in
the same manner as a single Perceptron node� If the desired mapping is very complex� the
number of hidden layer nodes may be exponentially dependent on the size of the input space�
although a lot of training data will be required�
Many static fuzzy systems implement only a small number of these rules� as it is di�cult

for an expert to correctly articulate more than about �		 production rules� However� this
leaves the possibility that the fuzzy system may no longer be complete� and hence its overall
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behaviour is more di�cult to verify and validate� We shall return to this problem in sec

tion � where simple �additive� fuzzy systems are described and extra resources are included�
depending on the complexity of the underlying data�

����� Variable Independence

The concept of independence is fundamental in probability theory and it is useful to consider
the choice of the fuzzy intersection operator from this perspective� Probability theory says
that two events A and B are independent if


Pr�AB� � Pr�A�Pr�B� ��	�

and the probability of them both occurring is simply equal to the product of the individual
probabilities� If however the two events are dependent� the probability of AB occurring is
given by


Pr�AB� � Pr�A�Pr�AjB� ����

and when the two events are the same� Pr�AjB� � �� this simply reduces to a form which is
consistent with using the min operator�
In fuzzy logic� the product and min operator have proved to be the most popular choices

for representing fuzzy intersection and as can be seen from the preceding discussion this
corresponds to the two extremes of two events being totally independent and dependent�
respectively� However� except in the simplest of cases� these concepts do not necessarily
apply to fuzzy logic� Obviously� when A and B are equivalent� the non
Archimedean min
operator should be used


�A�B�x� � minf�A�x�� �B�x�g � �A�x�

as this corresponds to a linguistic statement such as


John is Tall AND John is Tall

In this case� the univariate fuzzy membership functions can be recovered by projecting the
multivariate fuzzy membership function back onto any of the input axes� because intersection
is represented using the min operator�

��� Fuzzy Implication� IF �	 THEN �	

Fuzzy implication relationships are used to encapsulate an expert�s knowledge about how a
vague linguistic input set is related to an output set� This can be represented as


A� B ����

or linguistically as

B is true whenever A is true ����

However� its usage in fuzzy systems generally di�ers from its common de�nition in standard
and multi
valued logics� In standard binary logic� implication is represented as


A� B � Ac �B

� �A �B� �Ac

and has a truth table given shown in �gure ��� Thus even when A is false� B will be activated
as the implication is true�
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Figure ��
 Boolean implication truth table�

In fuzzy systems� implication represents a causal relationship between input and output
sets� where the ideas of local knowledge representation are particularly important� Rule con

�dences store the strength of the association between A and B� and it would be unreasonable
to adapt every rule con�dence in the rule con�dence matrix based on a single piece of knowl

edge� In a fuzzy system which has fuzzy variables that form partitions of unity� NOT A
refers to every other membership function and even if the data doesn�t activate these sets�
the rule con�dences will be set to non
zero values which depends on the activation of B� This
is undesirable as you�d expect that a locally de�ned rule should only have local in�uence�
and so fuzzy implication is often treated as a generalised intersection operator where the rule
con�dence is changed if and only if both A and B are non
zero�
Therefore� to represent a relationship �IF antecedent THEN consequent�� let the rule

that maps the ith multivariate fuzzy input set Ai to the jth univariate output set Bj with a
con�dence cij be labelled by rij� i�e�


rij 
 IF �x is Ai� THEN �y is Bj� cij

Then the degree to which element x is related to element y is represented by the �n  ��

dimensional membership function �rij �x� y� de�ned in the product space A� � 
 
 
 �An �B
by


�rij �x� y� � �Ai�x�b�cijb��Bj �y� ����

where b� is the triangular norm usually chosen to be the min or the product operator� The
fuzzy set �rij �x� y� represents the con�dence in the output being y given that the input is x
for the ijth fuzzy rule�
There are several other methods of implementing the implication operator and the in


terested reader is referred to ��� for a good discussion of their merits� However� the one
described above is particularly important as it allows a relationship to be made between
fuzzy and neural systems�

��� Fuzzy Union� OR

The fuzzy union of two sets A and B refers to a linguistic statement of the form


x is A OR y is B

where x and y could potentially refer to the same variable� A new fuzzy membership function
is generated by this operation de�ned on X � Y space� and is denoted by �A�B�x� y�� where
the fuzzy � mirrors the binary � symbol� Once more� fuzzy and binary union are equivalent
for binary arguments� but there exist many ways of generalising it in fuzzy logic� This family
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of operators is known as triangular co
norms �S�norms�� and the new membership functions
are obtained from


�A�B�x� y� � �A�x�b �B�y� ����

where b is the binary S
norm operator� Again letting a� b� c� d � �	� �� denote the value of the
fuzzy membership functions� we have the following de�nition�

De
nition ��� �S	norm
 The set of triangular co�norms� or S�norms� is the class of func�

tions which obey the following relationships	

�� ab b � bb a
��
�
ab b� b c � ab �bb c�

�� if a 	 c and b 	 d then ab b 	 cb d

� ab 	 � a

Two of the most commonly used operators that satisfy these conditions are the sum and
max functions


�A�B�x� y� � �A�x�  �B�y� ����

�A�B�x� y� � max f�A�x�� �B�y�g ����

and if the fuzzy membership functions do not form a partition of unity� the sum operator is
sometimes replaced with the bounded sum


�A�B�x� y� � �A�x�  �B�y�� �A�x� � �B�y� ����

which always has a membership value that lies in the unit interval�
The max operator can be shown to be the most pessimistic S
norm as


max f�A�x�� �B�y�g 	 �A�x�b �B�y� ����

Unlike the class of T
norms� when the arguments of an S
norm are unimodal� the resulting
membership function is unlikely to retain this property� This is illustrated in �gure ��� where
the max and sum operators are compared and it can clearly be seem that non
unimodal
membership functions may be produced by the union operator�
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Figure ��
 A comparison of the max and sum union operators� where the shaded area repre

sents the membership function �B��B�����
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����� Fuzzy Relational Surfaces

For simple� fuzzy algorithms� the union operator is generally used to connect the outputs of
di�erent rules� although it is also informative to consider the union of all the rules de�ned
on both the input and output universes� When p multivariate fuzzy input sets Ai map to q
univariate fuzzy output sets Bj� there are pq overlapping �n  ��
dimensional membership
functions formed using the intersection and implication operators� one for each relation� The
pq relations can then be connected to form a fuzzy rule base R by taking the union �OR� of
the individual membership functions� and this operation is de�ned by


�R�x� o� �
dX

i�j
�rij �x� o� ��	�

where cP is the multivariable S
norm operator�
The union of all the individual relational membership functions forms a ridge or relational

surface in the input�output space which represents how individual input�output pairs are
related and can be used to infer a fuzzy output membership function given a particular input
measurement� a process known as fuzzy inferencing� A typical relational surface is shown in
�gure ��� where four triangular fuzzy sets �B
splines of order �� are de�ned on each variable�
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Figure ��
 A fuzzy relational surface� �R�x� o�� and associated contour plot for a single
input� single output fuzzy system with normalised rule con�dence vectors and algebraic fuzzy
operators� Each peak corresponds to a fuzzy rule�

the algebraic functions are used to implement the logical operators and the fuzzy algorithm
is given by


r��� IF �x is AZ � THEN �o is AZ � ��	

r��� OR IF �x is PS � THEN �o is AZ � 	��

r��� OR IF �x is PS � THEN �o is PS � 	��

r��� OR IF �x is PM � THEN �o is PS � 	��

r��� OR IF �x is PM � THEN �o is PM � 	��

r	�	 OR IF �x is PL� THEN �o is PL� ��	
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This produces a fuzzy relational surface which is piecewise linear between rule centres and
the general trend of the input� output relationship� almost a linear mapping� is obvious from
the contour plot�
When the input is known� the fuzzy inferencing algorithms produce a single fuzzy output

set for each rule� and the output of the fuzzy rule base is the union of all these membership
functions de�ned on the output universe� It should therefore be clear that when a fuzzy
algorithm is implemented� fuzzy membership function intersection generally occurs across
di�erent universes whereas fuzzy union usually takes place on the same universe�

��
 Inferencing

Inferencing is the process of reasoning about a particular state� using all available knowledge
to produce a best estimate of the output� In a fuzzy system� the inference engine is used to
pattern match the current fuzzy input set �A�x� with the antecedents of all the fuzzy rules
and to combine their responses� producing a single fuzzy output set �B�o�� This is de�ned
by


�B�y� �
dX

x
��A�x�b��R�x� o�� ����

where the triangular co
norm cP
x is taken over all possible values of x� and the triangular


norm computes a match between two membership functions for a particular value of x� WhencP and bQ are chosen to be the integration �sum� and the product operators� respectively� then

�B�y� �

Z
D
�A�x��R�x� o� dx ����

which for an arbitrary fuzzy input set requires an n
dimensional integral to be evaluated over
the input domain D� The calculated fuzzy output set depends on the fuzzy input set �A����
the relational surface �R��� as well as the actual inferencing operators�
As long as there exists an overlap between the fuzzy input set and the antecedents of the

rule base� then the fuzzy system is able to generalise in some sense� The ability to generalise
information about neighbouring states is one of the strengths of fuzzy logic� but their actual
interpolation properties are poorly understood� The neurofuzzy systems studied in this re

port are particularly important as their approximation abilities can be both determined and
analysed theoretically which has many important consequences for practical systems�

��� Fuzzi�cation and Defuzzi�cation

The fuzzy membership functions are the interface between the real
valued world outside the
fuzzy system and its own internal rule
based representation� Hence� a real
valued input
must be represented as a fuzzy set in order to perform the inferencing calculations and the
information contained in the fuzzy output set must be compressed to a single number which
is the real
valued output of the fuzzy system� This section discusses di�erent methods for
performing these operations�

����� Fuzzi
cation

The process of representing a real
valued signal as a fuzzy set is known as fuzzi�cation and
is necessary when a fuzzy system deals with real
valued inputs� There are many di�erent
methods for implementing a fuzzi�er but the most commonly used is the singleton that maps
the input x to a crisp fuzzy set with membership


��x�x� �

�
� if x � �x
	 otherwise

����

�	



For inputs that are corrupted by noise� the shape of the fuzzy set can re�ect the uncer

tainty associated with the measurement process� For example� a triangular fuzzy set may
be used where the vertex corresponds to the mean of some measurement data and the base
width is a function of the standard deviation� If the model input is a linguistic statement�
a fuzzy set must be found that adequately represents this statement� Unless the input is a
linguistic statement� there is no justi�cation for fuzzifying the input using the same mem

bership functions used to represent the linguistic statements such as x is small� The latter
membership functions are chosen to represent vague linguistic statements whereas the input
fuzzy sets re�ect the uncertainty associated with the imprecise measurement process� and
these two quantities are generally distinct� A fuzzy input distribution e�ectively low pass
�lters or averages neighbouring outputs and as the width of the input set grows �increasingly
imprecise measurements�� a greater emphasis is placed on neighbouring output values and
the system becomes more conservative in its recommendations ����

����� Defuzzi
cation

When a fuzzy output set �B�o� is formed as the output of the inferencing process� it is
necessary to compress this distribution to produce a single value� representing the output of
the fuzzy system� This process is known as defuzzi�cation and currently there are several
commonly used methods� Perhaps the two most widely used are the Mean of Maxima �MOM�
and the Centre of Gravity �COG� algorithms which are illustrated in �gure ��� These can
be classed as truncation and algebraic defuzzi�cation methods� respectively� as the former
bases the output estimate on only one piece of information �or at most an average of several�
because the output is the value which has the largest membership in �B�o�� whereas the latter
uses the normalised weighted contribution from every point in the output distribution� The
COG defuzzi�cation algorithm tends to give a smoother output surface as there is a more
gradual transition between the rules as the input is varied�
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Figure ��
 The Mean of Maxima and Centre of Gravity defuzzi�cation algorithms�

The COG defuzzi�cation process is de�ned by


o�x� �

R
O �B�o� o doR
O �B�o� do

����

and the whole of the output distribution contributes to determining the network�s output�
This is in direct contrast with the MOM procedure where only the elements with maximal
membership are considered and the rest of the distribution is taken as being unimportant�
This can be expressed as


o�x� �

R
O �BH �o� o doR
Y �BH �o� do

����

where �BH �o� is the fuzzy set obtained by taking the �
cut at the height� HB� of B�
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Just as there exists a whole family of T
norms and S
norms� there is a large number of
defuzzi�cation algorithms� In practice though� the COG defuzzi�cation procedure is most
widely used� for reasons that will be explained in the next section�

� Fuzzy Systems

A fuzzy system contains all the components necessary to implement a fuzzy algorithm and
resolve all of the associated vagueness� It is composed of four basic elements


� a knowledge base which contains de�nitions of the fuzzy sets and the fuzzy operators�

� an inference engine which performs all the output calculations�

� a fuzzi
er which represents the real valued inputs as fuzzy sets� and

� a defuzzi
er which transforms the fuzzy output set to a real valued output�

and this is illustrated in �gure ��� The knowledge base contains the de�nitions of each of the
fuzzy sets and maintains a store of operators used to implement the underlying logic �AND�
OR etc��� as well as a rule con�dence matrix which represents the fuzzy rule mappings�
The inference unit� together with the fuzzi�er and the defuzzi�er allows real
valued outputs
to be calculated from real valued inputs� The fuzzi�er represents the input as a fuzzy set
which allows the inferencing unit to match it against the antecedents of the rules stored in
the knowledge base� Then the inferencing unit calculates how strongly each rule �res and
outputs a fuzzy distribution �union of all the fuzzy output sets� that represents its fuzzy
estimate of the true output� Finally� this information is defuzzi�ed �compressed� into a single
value which is the output of the fuzzy system�
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Figure ��
 A fuzzy system is composed of a knowledge base� an inference engine� a fuzzi�er
and a defuzzi�er�

These systems are extremely �exible and can be used as a basic plant model� a controller�
an estimator� or to represent a performance function or as a desired trajectory generator�
They implement a general nonlinear mapping and as such can be used for many approximation
or classi�cation tasks depending on how the inputs and outputs are chosen� Fuzzy systems
have a fuzzy algorithm as their knowledge base� but once it�s implemented on a computer�
any vagueness is resolved and the mapping is completely deterministic and in some cases has
quite a simple mathematical representation�
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��� Functional Mapping

Many engineering applications require a fuzzy system that simply operates as a functional
mapping� mapping real
valued inputs to real
valued outputs where the task is to approximate
a function o � f�x� on a bounded area �compact� of the input space� In contrast to the
data
driven methods used to train ANNs� fuzzy systems are designed using human
centred
engineering techniques where the system is used to encode the heuristic knowledge articulated
by a domain
speci�c expert� A �nite number of vague or fuzzy rules forms the basis for
the fuzzy system�s knowledge base and to generalise or interpolate between these rules� the
inference engine weights each rule according to its �ring strength� which in turn is determined
by both the shape of the fuzzy membership functions and the logical operators used by the
inference engine� This section shows that when a centre of gravity defuzzi�cation algorithm is
used in conjunction with algebraic operators� then the type of functional mapping performed
by the system is directly dependent on the shape of the fuzzy input sets� The rule con�dence
matrix is a set of parameters that determines the magnitude �height� of the fuzzy mapping�
but it is the fuzzy input sets that determine its form�

����� Analysis

Consider a fuzzy system that uses a centre of gravity defuzzi�cation algorithm� then the
network�s output is
 given by


o�x� �

R
O �B�o� o doR
O �B�o� do

� ����

When the T
norm and S
norm operators are implemented using product and sum functions�
respectively� then the centre of gravity defuzzi�cation algorithm becomes


o�x� �

R
O

R
X �A�x�

P
ij �Ai�x��Bj �o� cij o dx doR

O

R
X �A�x�

P
ij �Ai�x��Bj �o� cij dx do

� ����

But for bounded and symmetric fuzzy output sets the integrals
R
O �Bj �o� do� for all j� are

equal and so the following relationship holds
R
O �Bj �o� o doR
O �Bj �o� do

� ocj

where ocj is the centre of the j
th output set� and equation �� therefore reduces to


o�x� �

R
X �A�x�

P
i �Ai�x�

P
j cij o

c
j dxR

X �A�x�
P

i �Ai�x�
P

j cij dx
�

Suppose that the multivariate fuzzy input sets form a partition of unity� ie�
P

i �Ai�x� � �
and that the ith rule con�dence vector ci � �ci�� � � � � ciq�

T is normalised� ie�
P

j cij � �� then
the defuzzi�ed output becomes


o�x� �

R
X �A�x�

P
i �Ai�x�wi dxR

X �A�x� dx
����

where wi �
P

j cij o
c
j is the weight associated with the i

th fuzzy membership function� The
transformation from the weight wi to the vector of rule con�dences ci is a one
to
many
mapping� although for fuzzy sets de�ned by symmetric B
splines of order r � �� it can be
inverted in the sense that for a given wi there exists a unique ci that will generate the desired
output� This will be explained further in section ������ It should also be emphasised that
using weights in place of rule con�dence vectors provides a considerable reduction in both
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the storage requirements and the computational cost� and is also relevant to the discussion
on training given in section ����
When the fuzzy input set �A�x� is a singleton� the numerator and denominator integrals

in equation �� cancel to give
os�x� �

X
i

�Ai�x�wi ����

where os�x� is called the fuzzy singleton output� This is an important observation since os�x�
is a linear combination of the fuzzy input sets and does not depend on the choice of fuzzy
output sets� It also provides a useful link between fuzzy and neural networks and allows both
approaches to be treated within a uni�ed framework� and this is discussed in section �� The
reduction in the computational cost of implementing a fuzzy system in this manner and the
overall algorithmic simpli�cation is illustrated in �gure �	�
The analysis also illustrates how the centre of gravity defuzzi�cation procedure implicitly

imposes a partition of unity on the fuzzy input membership functions� Consider the above
system when the fuzzy input sets do not sum to unity� which could be due to their univariate
shape or the operator used to represent fuzzy intersection� The output is then given by


os�x� �

P
i �Ai�x�wiP
j �Aj �x�

�
X
i

� 
Ai�x�wi ��	�

where the normalised fuzzy input membership functions � 
Ai�x�
�
�Ai�x��

P
j �Aj �x�

�
form

a partition of unity� This normalisation step is very important because it determines the
actual in�uence of the fuzzy set on the system�s output and can make previously convex sets�
non
convex�
When the input to the fuzzy system is a fuzzy distribution rather than a singleton� it is

possible to substitute equation �� into �� giving


o�x� �

R
X �A�x� o

s�x� dxR
X �A�x� dx

� ����

The defuzzi�ed output is a weighted average of the fuzzy singleton outputs over the support
of the fuzzy input set �A�x�� and the e�ect is to smooth or low pass �lter the system�s
output� o� This is illustrated in �gure ��� It can be seen that as the width of the fuzzy input
set increases� the overall output of the system becomes less sensitive to the shape of either
the input set or the sets used to represent the linguistic terms� However this is not always
desirable as the output also becomes less sensitive to individual rules and the input variable�
and in the limit as the input set shape has an arbitrarily large width �representing complete
uncertainty about the measurement� the system�s output will be constant everywhere�
An important consequence of the above analysis is that using centre of gravity defuzzi�


cation in conjunction with the sumand productoperators has reduced fuzzy composition and
defuzzi�cation to a single operation� It is no longer necessary to calculate and store �R�x� o��

����� Rule Con
dences and Weights

The simple relationship between a single weight wi� the corresponding rule con�dence vector
ci and the fuzzy output membership function illustrates their role when a fuzzy algorithm
is implemented as a fuzzy system� The weight wi can be interpreted as being a local esti

mate of the output of the system given that the input lies in the corresponding fuzzy input
membership function Ai� and this can be expressed linguistically as


IF �x is Ai� THEN �o is wi� ����
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 An illustration of the information �ow through a fuzzy system �top� and the
resulting simpli�cation �bottom� when algebraic operators are used in conjunction with a
centre of gravity defuzzi�cation algorithm� and the singleton input is represented by a crisp
fuzzy set�
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Figure ��
 Four fuzzy input sets and their corresponding defuzzi�ed outputs� when the fuzzy
rule base consists of triangular membership functions� The original triangular membership
functions used to represent the linguistic terms are shown on the bottom of the graphs on
the right� and it can clearly be seen that as the width of the input set increases the system
becomes less sensitive to the input variable and the set shapes�
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Therefore the fuzzy rule con�dences and the fuzzy output membership functions simply
provide a linguistic
based technique for setting these weights� Despite the fact that a fuzzy
algorithm is composed of vague� linguistic terms� the defuzzi�cation algorithm reduces each
rule con�dence vector to a single numerical value
 the weight� For example� consider part of
the fuzzy algorithm shown in �gure ��


IF �x is PS� THEN �o is AZ� 	��

IF �x is PS� THEN �o is PS� 	��

where the output sets AZ and PS are centred on 	 and �� respectively� Specifying these two
rules is equivalent to saying that


IF �x is Ai� THEN �o is 	��� ����

except that for the former� it is arguably more natural for an expert to express both inputs
and outputs as linguistic terms� However� it should be emphasised that the expert is really
providing a precise value� even though he has expressed a set of actions using vague termi

nology� Sometimes� researchers confuse the issues and talk about a fuzzy singleton output
set centred on the numerical value� This is numerically consistent as the output of a network
con�gured like this would be the same as one that stored numerical values� although in real

ity� linguistic terminology is only useful for initialising and validating the neurofuzzy system�
Saying that the output is a singleton fuzzy set centred on a value of 	�� is no more helpful
than saying that the corresponding numerical value is 	��� Linguistic inputs and output sets
are only useful because they speak the same language as an expert�
The mapping from rule con�dences to weights is also invertible in the sense that given a

system which composed of rules such as that in ��� a fuzzy algorithm with rule con�dences
and linguistic outputs can be generated� This is possible because wi can be interpreted as
a local estimate of the network�s output� therefore it is consistent to evaluate its degree of
membership in the fuzzy output sets� and assign this to the corresponding rule con�dence


cij � �Bj �wi� ����

In ���� it is shown that no information is lost when this transformation is made �using sym

metric B
splines as the fuzzy output membership functions� as when the corresponding rule
con�dence vector is defuzzi�ed� the original weight is obtained� Hence� a fuzzy system which
uses a centre of gravity defuzzi�cation algorithm and algebraic operators can be implemented
using the reduced form shown in equation �� and still have a linguistic interface for initiali

sation and validation purposes because of the invertible mapping that exists between weights
and rule con�dences�

��� Factors a
ecting the Functional Mapping

Having derived the very simple relationship between the fuzzy input sets and the network�s
output� as well as the one between the weights and rule con�dences� the following section
investigates some of implications of this observation and also looks at slightly di�ering im

plementation strategies�
As an illustration� consider the following fuzzy algorithm which is composed of � rules


IF �x is small� THEN �o is small�

OR IF �x is medium� THEN �o is medium�

OR IF �x is large� THEN �o is small�

forms part of a knowledge base in two systems using


��



�� triangular fuzzy sets and algebraic operators� and

�� Gaussian fuzzy membership functions and truncation operators�

The rule con�dence matrix is binary and hence each fuzzy rule either totally �res or else is
completely inactive� Similarly� the fuzzy algorithm has only one input and so the only fuzzy
operations on the fuzzy membership functions are implication and union�
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Figure ��
 A comparison between a fuzzy system based on triangular membership functions
and algebraic operators �left� and one that uses Gaussian membership functions and trunca

tion operators �right�� The appropriate membership functions are shown along the respective
axes�

From the two diagrams shown in �gure ��� it should be clear that the outputs of the
two systems are similar� but di�erent� The triangular�algebraic fuzzy system simply joins
the rule centres with straight lines which is because the triangular membership functions are
simply straight lines on each interval� The Gaussian fuzzy system has an output which is
�more curved� between the set centres and has a sharp peak in the centre� It is interesting
to note that this peak is due to the choice of truncation operators� as a similar system that
uses algebraic operators is shown in �gure ���
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Figure ��
 The output of a Gaussian fuzzy system with algebraic operators�

Therefore� it should be clear that the type of decision surface that is formed by the fuzzy
system depends on the fuzzy algorithm� the fuzzy variables and the fuzzy operators� and these
points will be further discussed in the following sections�
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��� Algebraic Operators

In section �� two families of operators were introduced �T
norms and S
norms� and it was
shown that there exist many simple functions which can belong to each class� It is impossible
to say that one operator will always be better than another as this very much depends on
the available knowledge and the form of the underlying mapping�
The e�ect of di�erent fuzzy operators will be described �rst� as they play a major role in

determining the form of the fuzzy system�s output�

��� Fuzzy Membership Functions

It has been shown that when algebraic fuzzy operators are used� the form of the fuzzy
decision surface is directly related to the shape of the fuzzy input membership functions� and
this is illustrated in �gures �� and �� where the output of the fuzzy system is formed from
a linear combination of the membership functions� This comparatively simple but pertinent
observation reopens the debate about how fuzzy membership functions should be chosen and
again illustrates how there may be a potential con�ict between modelling and representational
requirements�
For algebraic fuzzy operators� the form of the fuzzy surface is directly related to the

shape of the fuzzy input membership functions� and if the normalised fuzzy variable �one
which forms a partition of unity� is piecewise constant or linear on an interval in the input
space� the network�s output will also be piecewise constant and linear� respectively� This is
illustrated using trapezoidal fuzzy membership functions in �gure ��� The shape of the fuzzy
membership function locally determines the form of the decision surface and this should be
taken into account when they are designed� as discussed in section ������

����� Locally Constant Membership Functions

The direct relationship between the shape of the fuzzy input membership functions and
the decision surface may initially seem intuitive but consider what implications it has for
Gaussian and ! fuzzy membership functions� A ! fuzzy membership function is described
by


�A�x� �

���	��

	 for jx� cj � �

�c�x���	��

��� for 
 	 jx� cj 	 �


��
�
x�c
c��

��
otherwise

����

where c represents the centre of the membership function and 
 is its width �distance from
the centre to a membership value of 	���� and its form is illustrated in �gure �� This fuzzy
membership function� like a Gaussian� has a zero derivative at its centre� therefore unless
the sets overlap signi�cantly at the centre and another membership function has a non
zero
derivative at this point� it is di�cult to model linear functions in this region as the decision
surface will be almost constant� ! fuzzy membership functions are generally arranged like
triangular sets� with at most two overlapping at any one time and at the centre of a rule�
only one is non
zero� This causes problems as at a rule�s centre� every membership function
would have a zero derivative and the fuzzy decision surface would always be locally constant
around this point� and its form would resemble a series of plateaus� How noticeable this is
for Gaussian fuzzy membership functions depends on the degree of overlap as they do not
have a strictly compact support� but this e�ect can be seen when the widths are chosen
inappropriately� as illustrated in �gure ��� In this �gure� the output of a Gaussian fuzzy
system is plotted together with its membership functions and their normalised counterparts
which form a partition of unity� The overall form of the mapping is a �
shape with a
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Figure ��
 The output of a fuzzy system when the Gaussian fuzzy membership functions�
widths are badly chosen� Also shown are the normalised fuzzy membership functions on the
bottom �gure�

downwards trend until the centre of the third basis function and an upwards slope thereafter�
The locally constant regions can easily be identi�ed� roughly corresponding to the centres of
the second and fourth membership function� and this could have been predicted by looking
at the shape of the normalised membership functions as they have a similar structure�
For many engineering applications� a set of locally constant regions around each rule centre

is undesirable� as the system�s output will change rapidly in some regions and not about a
rule�s centre� For most systems� it would be illogical to require the output to be locally
constant around a rule centre and such as network would not even be able to approximate
linear functions satisfactorily� Hence� the fuzzy membership functions should be chosen
such that these piecewise constant regions are either explicit in its shape �using trapezoidal
functions� or else they overlap su�ciently so that there is the potential to model locally linear
behaviour about a rule�s centre�

����� Normalised Fuzzy Variables

One of the main points from the last section which discussed locally constant membership
functions must be that the normalised fuzzy variables which form a partition of unity are
important in predicting the form of the functional mapping� especially when the original
fuzzy membership functions do not possess this property� From equation ��� it can be seen
that the network�s output is always formed from a linear combination of the normalised

fuzzy membership functions� hence even when the original fuzzy membership functions do
not form a partition of unity� the network will implicitly perform a normalising operation
before calculating the output� The importance of understanding this property is illustrated in
�gures � and �� where normalised and unnormalisedmembership functions are displayed� The
normalised fuzzy variables have piecewise constant regions whenever only one rule contributes
to the output and the piecewise linear regions also mean that the network�s output will also
be piecewise linear in this region� These� and other� factors may not be immediately obvious
from the original unnormalised fuzzy membership functions�
Choosing the shape of the fuzzy membership functions biases the network as it e�ectively

determines which mappings the network can and cannot e�ectively approximate� When the

�	
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Figure ��
 The almost discontinuous fuzzy decision surface caused by the interaction between
truncation operators and rule con�dences� The equivalent algebraic system�s output is shown
as a dashed line�

membership functions do not form a partition of unity� then the designer has little under

standing about how they have biased the network�s structure� Calculating the normalised
fuzzy variables will not change the network�s mapping ability� but it does provide extra insight
into the in�uence of the membership function and rule on the overall system�s output�

��� Fuzzy Algorithms and Rule Con�dences

The fuzzy algorithm obviously has an in�uence on the actual output of the fuzzy system�
but sometimes the rule con�dences can interact with truncation operators to produce strange
behaviours� This can be illustrated with the following example�
Consider a single input� single output fuzzy system which has the following four rules in

its knowledge base


IF �x is small� THEN �o is negative large� 	���

OR IF �x is small� THEN �o is positive large� 	���

OR IF �x is large� THEN �o is negative large� 	���

OR IF �x is large� THEN �o is positive large� 	���

where the fuzzy membership functions and the output surface is shown in �gure ���
Despite the fact that piecewise linear input membership functions are de�ned on the

interval ���� ��� the output surface is nearly discontinuous at the point 	� This is caused by
the interplay between the rule con�dences and the truncation implication operator and its
e�ect is magni�ed because the output sets are large distances apart �but still overlapping��
The use of the max operator to represent fuzzy union �ORing� also causes the output to
be �	�� and 	�� at the centres of the two input sets� whereas using the addition operator
produces an output of �� and �� respectively� When the algebraic product operator is used
to represent implication as well� the output is simply a straight line between �� and � as
would be expected and this is also illustrated in �gure ���

��� Discussion

With the countless number of ways for implementing a fuzzy system� it is di�cult to prove
or say anything meaningful about their generalisation properties and to use this information
to develop new construction and learning algorithms� It is trivial to show that fuzzy systems

��



are universal approximators	 � although so are look
up tables and the power of a fuzzy system
is contained in its ability to represent human expertise and to locally generalise �interpolate
and extrapolate� the information smoothly� It is impossible to say that one type of fuzzy
system will always perform better than another type� as it would always be possible to �nd
�construct� a dataset that was of the same form as the output of any fuzzy system� However�
researchers and practitioners should focus their attention on those implementations that are
transparent�
A fuzzy system is transparent when its internal workings are clearly understood by the de


signer� This means that when a fuzzy algorithm is stored in the knowledge base� the designer
has a good understanding of how the fuzzy system will generalise between rules� It has been
shown that the truncation operators can produce some strange� nearly unpredictable sharp
nonlinearities due to subtle interplays between individual rules� Using algebraic operators
results in a fuzzy system whose form is directly related to the shape of the input membership
functions� Therefore its interpolation abilities can be as simple as


joining the dots with straight lines

when triangular fuzzy membership functions are used� and smoother curves when quadratic
�and higher
order� B
splines and Gaussian membership functions are employed�
These algebraic fuzzy networks have the structure of a � or �
layer arti�cial neural network

hence they are termed neurofuzzy systems� These systems and their implementation will be
discussed in the remainder of this report�

� Neurofuzzy Networks

Neurofuzzy systems are currently one of the ��avours of the month� in the neural network
and fuzzy logic communities� They attempt to combine the structural and learning abilities
of a neural network with the linguistic initialisation and validation aspects of a fuzzy system�
Neurofuzzy networks are a particular type of fuzzy system that uses algebraic operators and
continuous fuzzy membership functions� as it has been shown that these are generally the
best for surface �tting problems� There are several types of neurofuzzy system� and these
are categorised by the type of membership functions� the two most common are B�splines
and Gaussians� By regarding these fuzzy systems as types of neural networks� the role of the
membership function in determining the form of the decision surface is highlighted� rather
than its accuracy in modelling the vagueness or uncertainty associated with a particular
linguistic term� This interpretation also provides several possibilities for utilising inductive
learning
type techniques to produce parsimonious rule bases� Thus the mathematical rigour
associated with adaptive neural networks can be used to analyse the behaviour of learn

ing neurofuzzy systems and improve their performance as data
driven and human
centred
approaches are being combined to improve the network�s overall performance�
Originally� ANNs were �sold� as black
box learning systems and they�ve had a consid


erable amount of success in modelling and controlling ill
de�ned problems� However� users
are beginning to demand a greater degree of understanding of the network�s performance
and structure as these networks are beginning to be applied in safety critical systems and
also designers always want to improve the performance� It is only possible to improve the
performance of a system manually� if the designer has a good insight into how changing a
particular parameter a�ects the overall output� The rule
based representation of neurofuzzy
systems o�ers this transparency�

�A universal approximator can model any continuous nonlinear function to any desired degree of accuracy

on a compact domain given su�cient resources�
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��� Architecture

Neurofuzzy systems can be regarded as particular types of fuzzy systems where the input
is represented as a singleton� and centre of gravity and algebraic fuzzy operators are used
in the inferencing calculations� Therefore the output of such a network is calculated using
equation �� and is very simple to implement in software or hardware�
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Figure ��
 A typical neurofuzzy network where the fuzzy input membership functions are
distributed across the input space in a regular fashion and the output is formed from a linear
combination of these functions�

Neurofuzzy systems have a particular structure and can be drawn as either � or �
layer
networks depending on the level of detail� In �gure ��� the network�s functionality is separated
into � distinct operations� The �rst is the input to multivariate fuzzy input set mapping
represented as


f 
 x� a ����

where a � ��A��x�� � � � � �Ap�x�� is the p
dimensional vector containing the outputs of all the
multivariate fuzzy input sets� The second transformation is simply a �normalised� linear sum


g 
 a� o ����

where


o �

Pp
i�� aiwiPp
j�� aj

����

The second transformation is identical for each of the neurofuzzy systems as it is only the
type of fuzzy input membership function which distinguishes the di�erent architectures� This
will be emphasised when the B
spline and the Gaussian neurofuzzy systems are described�
All the neurofuzzy systems can therefore be represented using linguistic rules such as ��� and
can be given a full linguistic interpretation because of the invertible relationship that exists
between the weights and rule con�dences�
This decomposition of the output calculation into two separate mappings also illustrates

how these networks can be trained� As the second mapping g is simply a linear combination of
the fuzzy input membership functions� any of the adaptive linear training algorithms that has
been developed over the past �	 years can be used to train the weights� It is also worthwhile
re
emphasising that a rule con�dence matrix can be generated from the weight vector� hence
any of these adaptive neurofuzzy networks can be represented as a fuzzy linguistic algorithm�
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The �rst mapping f is highly nonlinear as it is described by the type and position of the
fuzzy input membership functions� However� the dual interpretation of the network as either
an ANN or a fuzzy system means that it is possible to use either inductive learning
type
algorithms to train these basis functions or else used supervised or unsupervised �neural�
training rules�

����� B	splines

When the membership functions in a fuzzy variable are represented using univariate B
splines
of order k �see section ������� a centre of gravity defuzzi�cation algorithm is used� algebraic
fuzzy reasoning operators are employed together with a singleton fuzzi�cation procedure�
the output of the fuzzy system is given in equation ��� This is equivalent to a standard
B
spline �neural� network that is often used for surface �tting applications where the fuzzy
input sets are known as basis functions� and the set of linear weights are calculated using
standard matrix pseudo
inversion routines� Using the terminology basis functions instead of
�multivariate� fuzzy input sets also emphasises that they determine the form of the network�s
decision surface� and these two terms will both be used for the remainder of this report�
This link between a conventional surface �tting algorithm and the class of fuzzy systems

is important both for implementing fuzzy systems and for analysing their performance the

oretically� It is trivial to show that these systems are universal approximators� as a B
spline
neurofuzzy system produces piecewise polynomial mappings and by the Stone
Weierstrass
theorem� the set of polynomial functions are universal approximators� It is also worth noting
that by increasing either the number of the B
spline fuzzy sets or the order of the splines� it
is possible to prove this result� This interpretation is also important because� as is described
in section ���� the set of adjustable parameters �weights� is linear and there exists a lot of
standard learning theory that can be applied to analyse the behaviour of these adaptive sys

tems ���� It also means that there is a considerable reduction in the computational cost of
the system when it is implemented as described in equation �� rather than performing the
full fuzzi�cation� inference� defuzzi�cation calculation� Finally� and perhaps most impor

tantly� this interpretation allows more advanced neurofuzzy learning algorithms to be devel

oped which can exploit redundancy in the training data and be applied to high
dimensional
modelling and control problems�
As was described in section ������ the multivariate B
splines are formed from the tensor

product of the univariate ones �this means that every possible combination of univariate basis
functions is multiplied together�� hence they are evenly distributed across a lattice� This can
cause problems that are well
known in the surface �tting community and the main ones are


Curse of Dimensionality where the number of basis functions required to pop

ulate the input space grows exponentially with respect to the input space
dimension�

Irregular Data where there are holes in the training data which make it impos

sible to directly determine some of the weights� as there is no data in the
support of the basis function�

Ridge Functions as it is di�cult to approximate ridge functions which do not
run parallel to an axis using lattice
based techniques�

These problems occur in all lattice
based fuzzy systems� but their e�ect is di�cult to quantify
because of the other algorithmic complexities such as truncation operators� Focusing on
these problems directly though� means that potential solutions can be proposed such as using
additive networks to overcome the curse of dimensionality �see section ��� using regularisation

��



techniques or non
lattice based rules to reduce the e�ect of irregular data and non
axis parallel
knot lines can improve the quality of �t for ridge functions in certain cases ����
In summary� B
spline neurofuzzy systems are extremely useful as they�ve been exten


sively developed as data
driven surface �tting algorithms and because the fuzzy linguistic
interpretation means that experts can initialise and validate the network�s behaviour� Also�
the regular placement of the basis functions in the input space �on a lattice� allows simple
addressing algorithms to be developed that allow real
time operation ����

����� Gaussian Radial Basis Functions

When the fuzzy system is implemented as described previously� but with univariate mem

bership functions represented as Gaussians� the fuzzy network is structurally identical to a
normalised Gaussian Radial Basis Function �GRBF� algorithm� which is another technique
that originated in the surface �tting community� GRBF networks provide an alternative to
the lattice
based B
spline neurofuzzy systems� as they allow basis functions to be centred any

where in the input space� The multivariate basis �fuzzy membership� functions are formed
by multiplying each of the univariate basis functions together and this is equivalent to taking
a Euclidean or elliptical measure �hence their name �radial�� in the input space between the
input and the basis function�s centre and then passing this quantity through a univariate
Gaussian as


ai�x� � exp

�
�
kci � xk��
�
�i

�
�

nY
j��

exp

�
�
�cij � xj�

�

�
�i

�
����

This makes the link between radial basis functions and Gaussian fuzzy membership functions
explicit ���� ���� It also emphasises the fact that unimodal �multivariate� fuzzy membership
functions can be regarded as an inverse distance measure �see section ������ where the distance
between the set�s centre and an input is calculated and this quantity is then passed through
an appropriate �unimodal� nonlinearity� Unimodal fuzzy input sets simply partition up the
input space and de�ne what the network means by local�
The fuzzy systems considered in this report always use a COG defuzzi�cation algorithm�

so they implicitly impose a partition of unity on the multivariate Gaussian basis functions�
This is an interesting feature that is not widely used in the GRBF community but it has been
shown many times to improve the quality of the approximation ����� although sometimes the
results can be unexpected as illustrated in �gure ���
Interpreting the multivariate fuzzy input membership functions as normalised Gaussian

mappings has one important advantage in that it can be used to overcome the restriction that
the basis functions� centres must be de�ned on an n
dimensional lattice� Various supervised
and unsupervised learning rules can be used to select� optimise and cluster the fuzzy sets�
centres� and therefore this representation is extremely useful when the data �training and

testing� lie in a restricted part of the input space ����� Gaussian functions are also in�nitely
di�erentiable and hence the fuzzy approximation and its derivatives of any order can be
estimated �whether the model is trained accurately enough is another question though��
Another important property is due to the local �but not strictly compact� support of the
Gaussian basis functions� Normalising the output can make their supports appear global
when only one basis function signi�cantly contributes to the output� but almost compact
when other basis function are de�ned near by� Hence the basic form is very �exible� A
truly compact support� in�nitely di�erentiable Gaussian
type basis function has also been
proposed by Werntges ����� and this is shown in �gure �	�
Despite these desirable numerical properties� the freedom in allowing the basis functions

to be distributed anywhere in the input space often makes it di�cult to interpret them
using linguistic labels� The lattice
based B
spline basis functions can be interpreted as the

��



fuzzy intersection �AND� of the univariate fuzzy membership functions� However� there is no
constraint on the placement of the multivariate basis functions� and projecting the univariate
basis functions back onto each input axis could result in there being as many univariate input
sets as multivariate input sets� It would be di�cult to �nd that many linguistic terms to label
each univariate set� so the usefulness of the fuzzy representation� in this case� is debatable�

��� Adaptive Systems

So far� this report has concentrated on static fuzzy and neurofuzzy systems where it has been
assumed that both the network�s structure and its internal rule base have been provided by
the designer� The last part of this report will investigate how these features can be generated
directly from training data� thus combining the data
driven design method normally associ

ated with ANNs with the human
centred design techniques used to produce fuzzy systems�
In section �� a set of algorithms will be investigated that can automatically determine the
structure of the rule base� but this section will consider the easier problem of determining
the rule base directly from the data�
Assuming that the fuzzy variables that refer to the inputs and outputs� are all �xed

and that COG defuzzi�cation and singleton fuzzi�cation algorithms are used together with
algebraic fuzzy operators� then the output of the neurofuzzy network is given by equation ���
where the only unknown parameters are the weights� or equivalently the rule con�dences� It
can be shown that it is computationally much easier to adapt the weight vector and due to
the invertible relationship that exists between a weight and its corresponding rule con�dence
vector� a fuzzy algorithm with linguistic outputs can be extracted from the trained neurofuzzy
network
The network�s output is linearly dependent on the weight vector� see equation ��� therefore

any of the linear training rules are applicable to these networks� This means that the Least
Mean Square and Normalised Least Mean Square instantaneous training algorithms can be
used to cycle through the training set fxp� dpgPp�� and adapt the weights in an iterative
manner� Similarly� the batch gradient descent and steepest descent algorithms can be used
to train the parameters� where the whole training set is presented to the network before

updating the parameters� However� because the output is a linear function of the weights�
the optimal �with respect to the Mean Squared Error cost function� values can be calculated
directly using the Moore
Penrose pseudo
inverse or using Singular Valued Decomposition
algorithms�

� Construction Algorithms

So far� this report has discussed how fuzzy and neurofuzzy systems can be implemented and
also described how the weights can be updated using a variety of batch and instantaneous
learning rules� This section looks at the basic structure of these networks
 the number�
form and position of the membership functions as well as the structure of the fuzzy rules�
and describes some construction algorithms that can automatically learn an appropriate
structure directly from a set of training data� It has been stressed that the main advantage
of a fuzzy approach is that it can be used to encode prior expert knowledge� but a fuzzy
representation is also useful for validating a network trained directly from a dataset� When
an ANN or a neurofuzzy network is designed using a data
driven approach� the de�ciencies
that exist in the data are not always obvious to the designer and any network that is trained
directly from input� output data should always be subject to a stringent set of veri�cation
and validation tests� These tests can be numerical� but other qualitative measures would
include investigating how well the training data had excited the input space� how well the
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network represented these regions and investigating the network�s output surface by looking
at smoothness features and also trying to validate any vague or symbolic rules that can be
used to describe the system� Neurofuzzy systems have basis functions with a compact �or
local� support and their behaviour can be described using a fuzzy algorithm� therefore they
allow an expert to perform qualitative veri�cation tests�
The construction techniques outlined in this section are biased towards the lattice
based

B
spline neurofuzzy networks but similar techniques can also be applied to Gaussian RBF
neurofuzzy systems�

��� Additive�type Decomposition

The curse of dimensionality occurs in neurofuzzy systems because of the fact that for a
complete rule base� the number of rules is exponentially dependent on the dimension of the
input space� see section ������ In order to simplify the structure of the neurofuzzy system and
retain desirable properties such as rule
base completeness� the designer must understand how
both the network and the desired function maybe structured� A convenient framework for this
is the ANalysis Of VAriance �ANOVA� representation ��	� which expresses an n
dimensional
function as


f�x� � f�  
nX
i��

fi�xi�  
nX
i��

nX
j�i��

fi�j�xi� xj�  
 
 
 f��������n�x� ��	�

where f� represents the function�s bias and the other terms represent the univariate� bivariate
etc� additive components of the function f���� It should immediately be noticed that each
component in the ANOVA description can be approximated by a separate neurofuzzy system�
as illustrated in �gure ��� The ANOVA representation is simply a generalisation of the well
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Figure ��
 An additive ANOVA decomposition of a neurofuzzy rule base�

known Gabor
Kolmogorov polynomial expansion where each function is the product of its
input components�
Any function can be represented in the ANOVA framework� and the advantage with this

type of formalism is that it expands the unstructured mapping into simple and complex
additive components� where each component can be modelled by a neurofuzzy network�
When a neurofuzzy network is used to approximate part of the ANOVA description� it is

termed a subnetwork� so the output of the overall system is formed from the sum of various
simpler subnetworks� A rule within each subnetwork may have the form


IF �x� is PS AND x� is AZ� THEN �o is PS� 	�� ����
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where the antecedent of the rule involves only a small subset of the input vector� and the
overall rule base looks something like


IF �x� is NM� THEN �o is PS� ��	

OR IF �x� is PS AND x� is AZ� THEN �o is PS� 	��

OR IF �x	 is NS AND x� is PL� THEN �o is PM� 	��

Each of the rule�s antecedents is composed of only a small subset of the total number of
input variables� hence the number of rules in that subnetwork is generally relatively small�
It should be noted that this representation is only useful when a signi�cant number of the
ANOVA terms are identically zero� i�e� when the memory requirements for this representation
is less than that used in a full neurofuzzy system� This is illustrated by the example shown in
�gure ��� where � basis functions are de�ned on each axis and the ANOVA system uses � �		
weights whereas a full �
dimensional neurofuzzy system would require � ��� �		 weights� a
potential saving of over � orders of magnitude�
Finally� it is worth emphasising that because each neurofuzzy subnetwork is linear in

the weight vector �equivalently rule con�dence matrix�� the overall system is linear in the
concatenated parameter vector� Hence� any of the basic convergence and stability results that
are derived for standard neurofuzzy systems also apply to this ANOVA representation� This
additive property also ensures that the form of output surface with respect to a particular
input variable is the same as that of the appropriate subnetwork�

����� Rule Base Completeness

Letting si��� be the i
th neurofuzzy subnetwork in the ANOVA representation �i � �� � � � � r��

and suppose each subnetwork forms a partition of unity� then the sum over all the subnetworks
is r� Hence the overall neurofuzzy ANOVA network forms a partition of r� It is not di�cult
to incorporate this in the standard neurofuzzy theory as it is an arbitrary choice to make
the membership functions and rule bases form a partition of unity� in fact it could be any
constant value �although care would have to be taken over the choice of T and S
norms��
Fuzzy and neurofuzzy systems could have membership values that ranged from 	 to �	� or
from 	 to 	��� as long as the information is treated consistently� Therefore� in an ANOVA
neurofuzzy system� we should scale each subnetwork by a factor ��r as this will make the
overall ANOVA network form a partition of unity�
An ANOVA neurofuzzy network rule base is complete when all of the rule bases associated

with each of the individual subnetworks are complete� In addition� when each input variable
occurs at most once in the subnetworks� the ANOVA rule base is complete if and only if all
the subnetworks� rule bases are complete� Therefore the global properties associated with the
ANOVA expansion can be inferred from the properties of each of the individual subnetworks�

����� Basis Function Shape

Using an additive� ANOVA
type decomposition changes the generalisation properties of each
of the basis �membership� functions� as they become global with respect to every input
variable that does not contribute to that subnetwork� These basis functions have been termed
semi�local as they�re strictly local with respect to some input variables but do not depend
on other measurements� They are characterised by the fact that their membership value is
constant with respect to every input variable which is not part of that subnetwork� hence
their contours are parallel to these axes� This is illustrated in �gure ��� where a basis function
is plotted that only depends on one variable �x���
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Figure ��
 A semi
local basis function which only depends on x��

This distinction between local and semi
local basis functions is precisely why this ANOVA
representation is useful� Often the training data is not distributed well enough to excite
all of the basis functions on a lattice structure� However� using semi
local basis functions
means that the network is able to locally extrapolate information parallel to a subnetwork�s
unmodelled input variables� thus potentially overcoming the curse of dimensionality�

����� Additive Functions

When all the bivariate and higher order terms in the ANOVA decomposition are identically
zero� the function can be expressed as


f�x� � f�  
nX
i��

fi�xi� ����

This is called an additive function as it involves only univariate nonlinear functions� and it
has been studied extensively for many years ����� It is clear that this representation does
not su�er from the curse of dimensionality as its computational cost grows linearly with the
number of input variables� However� an additive network is unable to model functions which
involve products of inputs and this can be a serious restriction�
An interesting iterative method for training these univariate functions which is loosely

based on a block Gauss
Seidel technique has been developed called back�tting� Each sub

network is iteratively trained to approximate the residual signal �the di�erence between the
desired function and the current network�s output� so each subnetwork tends closer to its
optimal value �����

��� ANOVA Parameterisation

The basic ANOVA framework is very appealing as it retains all of the important properties of a
neurofuzzy network �smoothness� linear in the parameter vector� simple fuzzy interpretation
etc�� and yet has the ability to reduce the e�ect of the curse of dimensionality when the
unknown function is structured appropriately� However� it is di�cult for human designers
to correctly articulate the structure of the subnetworks �which inputs are important� how
many basis functions� how many subnetworks"�� therefore it is appropriate to investigate how
this task would bene�t from a data
driven approach where these parameters are determined
directly from the training data�
Building an ANOVA
type neurofuzzy system directly from a set of training data therefore

involves determining
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� whether or not an input measurement is relevant for the current modelling problem and
if so� how it interacts with the other important variables� and

� the number of basis functions in each subnetwork as well as calculating their position�

����� Input Variable Selection

One important consideration for developing parsimonious neurofuzzy networks is to determine
which input components are useful in predicting the value of the unknown function� Each
redundant input variable increases the network�s complexity without adding any useful �ex

ibility� Unfortunately� determining which inputs �or combinations of inputs� are signi�cant
requires an extensive search procedure as the number of possible combinations of subnetworks
with r inputs where the original input space is n
dimensional is equal to


nCr �
n�

r��n� r��
����

and this is illustrated in table � for various values of n and r� As can be seen from this table�

n
r � � � � � �� ��

� � � � � � �� ��
� � � �	 �� �� ��	
� � �	 �� ��� ����	
� � �� ����� �	����
� � ����� �	����	

Table �
 The number of ways of selecting r from n inputs variables� The blank entries denote
impossible situations�

when n and r are large� an unfeasibly large search procedure must be carried to determine
which additive subnetwork structure is appropriate� therefore methods must be developed to
determine which subnetwork structures are relevant� These are generally based on one
step

ahead inductive learning
type procedures� as will be described in section ����

����� Basis Function Selection

Choosing which basis �fuzzy membership� function distribution is appropriate for a partic

ular variable is a complex� nonlinear optimisation problem� which involves introducing and
deleting certain basis functions as well as altering the shape of the remaining ones� The
techniques used to implement these functions are very much dependent on the type of basis
functions used in the neurofuzzy network� and here we will be exclusively concerned with
B
spline basis functions�
Univariate B
spline basis functions are piecewise polynomials of order k de�ned on a set

of intervals which partition of the input variable� On each interval� the function is a polyno

mial or order k and the partition values are contained in the knot vector� see section ������
Introducing a new basis function amounts to inserting a new interior knot in the knot vector
and deleting a basis function is equivalent to removing a knot� as illustrated in �gure ���
Introducing a knot means that the new network can reproduce the old one exactly �because

they�re both polynomials across the old interval�� but the new network also has an extra degree
of �exibility at the new knot because the surface can now be piecewise linear� Deleting a knot
is equivalent to removing this degree of �exibility and two intervals are merged into one� As
the nonlinear optimisation procedure for placing these knots is very hard �badly conditioned��
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Figure ��
 Adding and removing a basis function is equivalent to introducing a new knot and
deleting an old one� respectively�

it is usual to just consider knot insertion and deletion� where new knots can be inserted at
the centre of an interval� rather than adapting their values directly� This is a widely used
technique in inductive learning algorithms� and it generally simpli�es the procedure�
It is worth commenting on the number of new basis functions inserted in a multivariable

subnetwork� when one of the fuzzy variables has a knot inserted� Assuming that the subnet

work has r inputs� and there exist pj basis functions on each axis �j � �� � � � � r�� then the
number of new multivariable basis functions introduced by inserting a knot on the ith axis is


#p �
rY

j��

j ��i

pj ����

This occurs because the linguistic intersection �AND� must be taken between the new uni

variate basis function and all the remaining basis functions de�ned on the other axes� in order
to retain the partition of unity property�

��� ANOVA Construction Algorithms

One important iterative construction algorithm for B
spline neurofuzzy systems was initially
developed and proposed by Kavli in ����� ����� which attempts to construct an additive
neurofuzzy ANOVA model of the unknown function� The Adaptive Spline Modelling of Ob

servation Data �ASMOD� procedure works by a one step ahead error minimisation procedure�
as at each time step a number of possible rule base re�nements are evaluated and the one
that is most statistically signi�cant is incorporated in the neurofuzzy system�
Given a current ANOVA neurofuzzy model �possibly empty�� possible candidate re�ne


ments that extend the �exibility of the model are to


�� include extra inputs in the model by introducing a new additive univariate subnetwork�

�� extend the �exibility of a subnetwork by introducing a new variable in it �taking the
tensor product of the old subnetwork with a univariate subnetwork�� and therefore
increasing its dimension by one� and

�� introducing a new basis function in a subnetwork�

Each type of re�nement extends the �exibility of the network in di�erent ways and they all
introduce di�erent numbers of new parameters into the network� Obviously� a more �exible
network should be able to �t the data better� but these construction algorithms are aimed at
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producing parsimonious systems �� as a simpler network is both easier to verify and validate
and cheaper to implement� Therefore instead of of just choosing the re�nement that reduces
the MSE the most� it is usual to weight this reduction with factors that take into account
the number of parameters introduced into the problem� Probably the most common such
measure is the Baysian Statistical Signi�cance �BSS� measure given by


EBSS � P ln �EMSE�  p lnP ����

where JBSS and JMSE are the BSS and MSE performance functions� respectively� p is the
number of parameters in the model and L is the amount of training data� The re�nement
that is the most statistically signi�cant is included in the current model and this procedure
is then repeated until the overall model is su�ciently accurate� This process is illustrated in
�gure �	�

network
train construct

and evaluate
refinements

incorporate
optimal step

network
initialise

stop

no

yes

satisfactory
model?

Figure �	
 A typical one
step
ahead inductive learning algorithm cycle� as used in the AS

MOD algorithm�

Although the ASMOD procedure was originally proposed as a constructive algorithm� it
is both desirable and necessary to introduce a set of pruning re�nements which simplify the
network�s structure� This is because either the algorithm may be initialised with a complex
rule base and the designer would like to see whether there exists a simpler� more parsimonious
network that can form an adequate model� or else to �backtrack� when the construction
algorithm makes an inappropriate re�nement� The three possible pruning actions are the
mirror of the candidate re�nements


�� remove a univariate� additive subnetwork�

�� split up a tensor product subnetwork into several simpler subnetworks� and

�� remove a set of basis functions from a subnetwork by deleting a knot�

����� Limitations and Possible Solutions

The ASMOD algorithm is a one
step
ahead iterative construction procedure� and like all such
techniques it can have problems where a single re�nement does not indicate any improvement
but a k
step
re�nement would vastly improve the network�s structure� As an example of this�
consider the following function


f�x�� x�� � sin�� x�x��

�A network should be �exible enough to model the data to a speci�ed accuracy� but no larger�
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where the training samples are drawn with a uniform probability from the input space ���� ���
���� ��� The integral with respect to either x� or x� �due to symmetry� is identically zero�
so including an additive term in either x� or x� would not result in a reduction in the error
and a one
step
ahead construction algorithm would never form a bivariate function� This
situation could be overcome by looking more than one
step
ahead but �not surprisingly� the
number of possible re�nements increases almost exponentially fast� and some �intelligence�
must be used in evaluating which ones to consider� This is similar to the heuristics developed
to search large trees in a near
optimal fashion�

��� ASMOD Example

The ASMOD structuring algorithm is now used to construct a suitable B
spline model for
predicting the two
input� single
output nonlinear mapping described by


o�t� �
�
	��� 	�� exp

�
�o��t� ��

��
o�t� ����

	��  	�� exp
�
�o��t� ��

��
o�t� ��  	�� sin��o�t� ���  ��t� ����

where ��t� denotes the additive noise at time t� When ��t� � 	� this di�erence equation
has an unstable equilibrium at the origin and a globally attracting limit cycle as shown in
�gure ��� The �surface� of the time series which the above di�erence equation represents is
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Figure ��
 Iterated time series mapping from the initial condition �	��� 	���T � The time series
�spirals� out from the unstable equilibrium at the origin towards the globally attracting limit
cycle�

also shown in �gure ��� From this �gure and equation ��� it can clearly be seen that when
o�t � �� is held constant� o�t� is linear in o�t � �� and so the basic structure of the desired
function with respect to the two inputs is di�erent�
De�ning the two
dimensional input vector x�t� � �o�t� ��� o�t� ���T and using o�t� as

the �scalar� desired output� a set of noisy training samples can be collected by iterating
equation �� from an initial condition x���� The data set then represents the noisy dynamical
behaviour of the discrete time series� From an initial condition x��� � �	� 	�� the �		 training
inputs that represent the noisy iterated dynamics of equation �� are shown as a scatter plot
in �gure ���
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Figure ��
 Time series output surface o�t� v� o�t����o�t���� where y�t� lies in the interval
�������� �������
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Figure ��
 The noisy iterated dynamics of the time series from an initial position at the
origin�
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The unknown recurrence relationship can also be expressed as


o�t� � f�o�t� ���  g�o�t� ���o�t � ��  ��t� ����

for two appropriate nonlinear functions f��� and g���� and an additive disturbance ��t�� The
aim of this section is to illustrate how the ASMOD procedure works and to demonstrate that
incorporating a priori knowledge into the B
spline network design improves its generalisation
abilities� Neural networks are often cited as being model free estimators� but this is generally
not true� The network�s structure is generally decided a priori by the designer and a set
of parameters �weights� are adapted using an appropriate learning algorithm� Due to the
underlying �exibility of many of the networks considered in this report� the authors have
termed these algorithms weak or soft modelling algorithms� One of the main advantages of
using B
spline networks is that they allow limited a priori knowledge to be incorporated into
their structure� although it should be remembered that if the underlying structure of the
network is not �exible enough �or even too �exible� to represent the training data adequately
�a biased system�� it performs poorly�

����� ASMOD Re
nements

Equation �� shows how the discrete recurrence relationship can be expressed as a sum and
product of two nonlinear univariate functions f��� and g���� The important point to notice is
that the desired function is a linear function of o�t���� when o�t��� is held constant� whereas
it is a strongly nonlinear function of o�t � ��� If this type of knowledge is available during
the network design process� it should be incorporated into the basic network structure� as it
simpli�es the learning process� Otherwise any algorithm that adapts the network�s structure
should be able to generate such information automatically� This kind of a priori knowledge
can easily be incorporated into the B
spline network design by de�ning univariate basis
functions of di�erent shapes and sizes �orders� on each �univariate� axis� as the multivariate
basis functions are formed by taking the tensor product�
To begin the ASMOD procedure� two� order � univariate basis functions were used to

represent both o�t � �� and o�t � �� on the input domain ������ ����� The initial optimal
ASMOD network was empty� so one of these univariate submodels must be included from
the store to start the re�nement algorithm� The most statistically signi�cant subnetwork
s� to include was the one representing o�t � �� which produced the model output shown in
�gure ��� After this re�nement� the network was able to model the variable o�t��� additively�
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Figure ��
 The �rst ASMOD re�nement which introduces a univariate subnetwork on o�t����
The network�s output lies in the range ������� ������

Three possible candidate re�nement steps could then be performed
 inserting a knot at zero
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in s�� introducing the univariate function s��o�t � ��� as another subnetwork or forming a
tensor product between s� and s� resulting in a new B
spline subnetwork s��o�t���� o�t�����
The tensor product re�nement was estimated to be the best� and the new output surface is
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Figure ��
 The second ASMOD re�nement step which forms a tensor produce model� The
network�s output lies in the range ������� ������

shown in �gure ��� Only two possible actions could now be taken
 a knot insertion at zero
on either axis� Inserting a knot at zero on o�t� �� was statistically the most signi�cant and
any further re�nements reduced the amount of information stored in the network� according
to the BSS statistical signi�cance measures� Therefore the �nal model was composed of just
one subnetwork s����� which has two piecewise linear basis functions de�ned on o�t� �� and
three on o�t� ��� resulting in the prediction surface shown in �gure ���
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Figure ��
 The �nal ASMOD model which has had a knot inserted at o�t � �� � 	� The
network�s output lies in the range �����	� ������

It is important to notice that the ASMOD algorithm has discovered the correct represen

tation for o�t� �� and models it using a globally linear mapping�

����� Model Evaluation

The network�s output is plotted in �gure ��� and while this may seem a gross simpli�cation
of the original surface� it is su�cient for representing the dynamical behaviour� This is
con�rmed in �gure �� where the iterated dynamics of the B
spline network is displayed� It
is a very good approximation to the true plot shown in �gure ��� as the knowledge that
has been incorporated into the network�s structure improves its ability to generalise in the
interior of the limit cycle� It also improves the network�s ability to extrapolate information�
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Figure ��
 Iterated dynamics of a B
spline network from the initial condition x��� �
�	��� 	���T � The very good approximation of the interior �ve arm spiral is because of the
knowledge encoded in the model�s structure�

with the minimum and maximum network outputs being ����� and ����� respectively� which
are very close to the true values�
The network�s prediction ability is shown in �gure �� where the mean square k
step
ahead

prediction errors are plotted� It shows that good estimates can be obtained by iterating the
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Figure ��
 Variance of the k
step
ahead prediction errors�

network up to �at least� �	 steps into the future and this is con�rmed in �gure ��� where
the network and the noiseless time series are run in parallel for �	 iterations� As can be seen
from these two �gures� there is very good agreement between the true and the estimated time
history� and other statistical tests con�rm that this is a good� simple model of the �unknown
function��

��� Alternative Input Space Partitioning Algorithms

The lattice partitioning of the original input space that is generated by many fuzzy and
neurofuzzy systems is convenient because the linguistic interpretation is easy to formulate
as the logical intersection �AND� of the individual univariate fuzzy sets and it is computa

tionally e�cient to implement� However� there is sometimes con�ict between modelling and
representational requirements as a particular input space partitioning scheme may not have
a direct fuzzy interpretation� despite it being the most appropriate for the problem under
consideration� This is not really a serious objection though� as any axis orthogonal partition
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Figure ��
 The noiseless time series and the B
spline network iterated mappings from an
initial condition o���� � 	��� o�	� � ��	� The dashed line represents the true time series and
the solid line shows the B
spline iterated mapping�

can be represented as a �ne lattice with a set of constraints determining the outputs of the
extra basis functions� a kind of regularisation�� There is also a direct interpretation of the
�ne lattice as a �larger� set of fuzzy rules and these could be used to aid the designer� but
the basic principle of developing a parsimonious rule base would not apply�
The aim of abandoning the lattice based representation of a standard neurofuzzy system

is to try to achieve a parsimonious representation within each subnetwork� It is still desirable
to model the ANOVA additive relationships� but each lattice
based subnetwork also su�ers
from the curse of dimensionality� Therefore consider the two alternative schemes shown in
�gure �	� Both of these schemes have the potential to model local variations with fewer

(c)

(a) (b)

Figure �	
 Three di�erent input space partitioning strategies
 �a� a lattice �b� a k
tree and
�c� a quad tree�

basis functions as a k
tree only introduces � new basis function when a knot is added and a
quad
tree introduces �n� both of which are generally signi�cantly smaller than that given in
equation ��� ����
All of these methods produce axis orthogonal splits� which while aiding the representa


tional aspects of the neurofuzzy system �see the comments made about Gaussian neurofuzzy
systems in section ������� can limit the modelling abilities of the subnetwork �although pro


�Regularisation is a technique which incorporates an extra term in the cost function which measures the

curvature of the output surface� thus biasing the network to produce smooth output surfaces�

��



jection pursuit may help� see the next section�� and examples using both these schemes have
appeared in the literature�

����� Hierarchical Systems

k
trees and quad
trees can also be imagined as providing a hierarchical
type rule base where
an area is recursively �hierarchically� decomposed until the discretisation is �ne enough to
allow an adequate approximation� as illustrated in �gure �� However� hierarchical fuzzy and
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Figure ��
 A comparison between a fuzzy hierarchical rule base and two hierarchical systems�

neurofuzzy systems are usually composed of several subnetworks �like the ANOVA represen

tation� but they are arranged to form deep� nested concepts where the output of one network
is an input to another� This is also illustrated in �gure ��� and it can clearly be seen that
the overall aim is to produce parsimonious representations by structuring the overall network
from smaller dimensional subnetworks� These structures however� do not retain the additive
property of the ANOVA representation and as such require complex nonlinear optimisation
algorithms even to train the weight vector in each subnetwork�
All of these more advanced neurofuzzy systems retain the partition of unity property

within each subnetwork� although� apart from the ANOVA representation� the fuzzy algo

rithm�s structure is more complex and unless the application demands it� the simpler neuro

fuzzy ANOVA networks is a powerful methodology that is fairly simple to apply�

� Summary

Fuzzy sets and fuzzy logic provide a means for representing an expert�s knowledge on a
computer� where the graded representation of a fuzzy set allows a gradual transition from
one rule to another� without the hard breaks or jumps that are due to using standard binary
sets� This may appear to be a fairly simplistic generalisation of conventional rule
based
system� but probably the main result of the hundreds �possibly thousands� of applications
developed in the Far East is that this representation is natural for both the designer and the
expert and that the restricted natural language term set employed in fuzzy logic is rich enough
to represent just about all of the ideas necessary for developing real
world systems� Indeed�

��



a fuzzy system uses a linguistic interface which is much closer to the problem domain than to
its actual implementation� and this makes it easier for the expert to validate and create new
behaviours within the system� Researchers and engineers should not be blinded by the data

driven design technologies �such as ANNs� as sometimes it is di�cult to obtain training data�
but an expert may have a good� high
level understanding of the basic processes� Techniques
such as fuzzy logic can make use of this information source and indeed the neurofuzzy systems
can be �trained� using both numerical and expert information�
This report provides an incomplete survey of the �eld of fuzzy logic� Notable omissions

from the description include the fuzzy c
means clustering algorithm ���� discrete fuzzy systems
and the development of self
organising controllers ����� rough set theory and several other
important areas� However� its aim is to provide the reader with the basic concepts involved

fuzzy sets and membership functions� fuzzy operators and rule bases as well as to describe
the relationship that exists between fuzzy logic and arti�cial neural networks
 the so called
neurofuzzy systems� This has been achieved by focusing on B
spline and Gaussian neurofuzzy
systems and it has been argued that the type of fuzzy operators that are used in these networks
are also appropriate for most fuzzy systems as the quality of the decision surface is improved�
Concepts that are useful for neurofuzzy systems� such as data excitation� regularisation�
construction algorithms have their parallels in fuzzy networks and the extra insights that
they provide are useful for validating the trained network�
This report has also highlighted the comparatively simple structure of a neurofuzzy system

and shown how it can be trained using relatively simple linear optimisation techniques� The
problems associated with the curse of dimensionality have been outlined and some techniques
for overcoming it have been described� The report�s aim therefore has been to describe the
basic principles associated with fuzzy and neurofuzzy systems as well as outlining how the
simplest structures may be developed in practice�
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