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1. Introduction

One of the most successful approaches to geometry is the one suggested by Felix Klein.
According to Klein, a geometry is a G-space M , that is, a set M together with a group G
of transformations of M . This approach provides a powerful link between geometry and
algebra. Of particular importance is the situation when the group G acts transitively on
M , that is, for any two points p and q in M there exists a transformation in G which
maps p to q. In this situation M is called a homogeneous G-space. Basic examples
of homogeneous geometries are Euclidean geometry, affine geometry, projective geometry
and elliptic geometry. In the homogeneous situation many geometric problems can be
reformulated in algebraic terms which are often easier to solve. For instance, Einstein’s
equations in general relativity form a complicated system of nonlinear partial differential
equations, but in the special case of a homogeneous manifold these equations reduce to
algebraic equations which can be solved explicitly in many cases.

The situation for inhomogeneous geometries is much more complicated. Nevertheless,
one special case is currently of particular importance. This special case is when the action
of the transformation group G has an orbit of codimension one in M , in which case the
action is said to be of cohomogeneity one and M is called a cohomogeneity one G-space.
In this situation the above mentioned Einstein equations reduce to an ordinary differential
equation which can also be solved in many cases. A fundamental problem is to investigate
and to classify all cohomogeneity one G-spaces satisfying some given properties.

These notes are based on a graduate course given by the author at Sophia University in
Tokyo during October 2002. I would like to thank Reiko Miyaoka for inviting me to give
this course and all the participants of the course for their hospitality.
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2. Riemannian geometry

In this section we summarize some of the basics of Riemannian geometry that is used
in this course. Some modern introductions to Riemannian geometry can be found in the
books by Chavel [21], Gallot-Hulin-Lafontaine [29], Jost [37], Petersen [58] and Sakai [59].

2.1. Riemannian manifolds. Let M be an m-dimensional smooth manifold. By smooth
we always mean C∞, and manifolds are always assumed to satisfy the second countability
axiom and hence are paracompact. For each p ∈ M we denote by TpM the tangent space
of M at p. The tangent bundle of M is denoted by TM .

Suppose each tangent space TpM is equipped with an inner product 〈·, ·〉p. If the function
p 7→ 〈Xp, Yp〉p is smooth for any two smooth vector fields X, Y on M , then this family of
inner products is called a Riemannian metric, or Riemannian structure, on M . Usually
we denote a Riemannian metric, and each of the inner products it consists of, by 〈·, ·〉.
Paracompactness implies that any smooth manifold admits a Riemannian structure. A
smooth manifold equipped with a Riemannian metric is called a Riemannian manifold.

2.2. Length, distance, and completeness. The presence of an inner product on each
tangent space allows one to measure the length of tangent vectors, by which we can define
the length of curves and a distance function. For the latter one we have to assume that
M is connected. If c : [a, b] → M is any smooth curve into a Riemannian manifold M , the
length L(c) of c is defined by

L(c) :=

∫ b

a

√
〈ċ(t), ċ(t)〉dt ,

where ċ denotes the tangent vector field of c. The length L(c) of a piecewise smooth curve
c : [a, b] → M is then defined in the usual way by means of a suitable subdivision of
[a, b]. The distance d(p, q) between two points p, q ∈ M is defined as the infimum over all
L(c), where c : [a, b] → M is a piecewise smooth curve in M with c(a) = p and c(b) = q.
The distance function d : M × M → R turns M into a metric space. The topology on
M induced by this metric coincides with the underlying manifold topology. A complete
Riemannian manifold is a Riemannian manifold M which is complete when considered as
a metric space, that is, if every Cauchy sequence in M converges in M .

2.3. Isometries. Let M and N be Riemannian manifolds with Riemannian metrics 〈·, ·〉M
and 〈·, ·〉N , respectively. A smooth diffeomorphism f : M → N is called an isometry if
〈f∗X, f∗Y 〉N = 〈X,Y 〉M for all X,Y ∈ TpM , p ∈ M , where f∗ denotes the differential of
f at p. If M is connected, a surjective continuous map f : M → M is an isometry if and
only if it preserves the distance function d on M , that is, if d(f(p), f(q)) = d(p, q) for all
p, q ∈ M . An isometry of a connected Riemannian manifold is completely determined by
both its value and its differential at some point. In particular, an isometry which fixes
a point and whose differential at this point is the identity is the identity map. If M is
a connected, simply connected, complete, real analytic Riemannian manifold, then every
local isometry of M can be extended to a global isometry of M .
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The isometries of a Riemannian manifold form a group in an obvious manner, which we
shall denote by I(M) and call the isometry group of M . We consider this group always
as a topological group equipped with the compact-open topology. With respect to this
topology it carries the structure of a Lie group acting on M as a Lie transformation group.
We usually denote by Io(M) the identity component of I(M), that is, the connected
component of I(M) containing the identity transformation of M .

2.4. Riemannian products and covering spaces. Let M1 and M2 be Riemannian
manifolds. At each point (p1, p2) ∈ M1 × M2 the tangent space T(p1,p2)(M1 × M2) is
canonically isomorphic to the direct sum Tp1M1 ⊕ Tp2M2. The inner products on Tp1M1

and Tp2M2 therefore induce an inner product on T(p1,p2)(M1 × M2). In this way we get
a Riemannian metric on M1 × M2. The product manifold M1 × M2 equipped with this
Riemannian metric is called the Riemannian product of M1 and M2. For each connected
Riemannian manifold M there exists a connected, simply connected Riemannian manifold

M̃ and an isometric covering map M̃ → M . Such a manifold M̃ is unique up to isometry
and is called the Riemannian universal covering space of M . A Riemannian manifold

M is called reducible if its Riemannian universal covering space M̃ is isometric to the
Riemannian product of at least two Riemannian manifolds of dimension ≥ 1. Otherwise
M is called irreducible. A Riemannian manifold M is said to be locally reducible if for
each point p ∈ M there exists an open neighborhood of p in M which is isometric to the
Riemannian product of at least two Riemannian manifolds of dimension ≥ 1. Otherwise
M is said to be locally irreducible.

2.5. Connections. There is a natural way to differentiate smooth functions on a smooth
manifold, but there is no natural way to differentiate smooth vector fields on a smooth
manifold. The theory that consists of studying the various possibilities for such a differen-
tiation process is called the theory of connections, or covariant derivatives. A connection
on a smooth manifold M is an operator ∇ assigning to two vector fields X, Y on M another
vector field ∇XY and satisfying the following axioms:

(i) ∇ is R-bilinear;
(ii) ∇fXY = f∇XY ;
(iii) ∇X(fY ) = f∇XY + (Xf)Y .

Here X and Y are vector fields on M , f is any smooth function on M and Xf = df(X)
is the derivative of f in direction X. If M is a Riemannian manifold it is important
to consider connections that are compatible with the metric, that is to say, connections
satisfying

(iv) Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉 .

A connection ∇ satisfying (iv) is called metric. A connection ∇ is called torsion-free if it
satisfies

(v) ∇XY −∇Y X = [X,Y ] .



4 JÜRGEN BERNDT

On a Riemannian manifold there exist is a unique torsion-free metric connection, i.e. a
connection satisfying properties (iv) and (v). This connection is usually called the Rie-
mannian connection or Levi Civita connection of the Riemannian manifold M . If not stated
otherwise, ∇ usually denotes the Levi Civita connection of a Riemannian manifold. Explic-
itly, from these properties, the Levi Civita connection can be computed by the well-known
Koszul formula

2〈∇XY, Z〉 = X〈Y, Z〉+ Y 〈X, Z〉 − Z〈X,Y 〉+ 〈[X, Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉 .

2.6. Parallel vector fields and parallel transport. Given a piecewise differentiable
curve c : I → M defined on an interval I there is a covariant derivative operator along c
which maps smooth tangent vector fields X of M along c to smooth tangent vector fields
X ′ of M along c. The covariant derivative of vector fields along a curve c is completely
determined by the following properties:

(i) (Z1 + Z2)
′(t) = Z ′

1(t) + Z ′
2(t) for all vector fields Z1, Z2 along c;

(ii) (fZ)′(t) = f ′(t)Z(t) + f(t)Z ′(t) for all vector fields Z along c and all smooth
functions f : I → R;

(iii) (Y ◦ c)′(t) = ∇ċ(t)Y for all vector fields Y on M .

Since ∇ is metric we have

〈X,Y 〉′(t) = 〈X ′(t), Y (t)〉+ 〈X(t), Y ′(t)〉
for all vector fields X,Y along c. We remark that if c ≡ p is a constant curve and X is a
vector field along c, i.e. for all t we have X(t) ∈ TpM , then X ′(t) is the usual derivative in
the vector space TpM .

A vector field X along c is called parallel if X ′ = 0. The above equality implies that
〈X,Y 〉 is constant if both vector fields are parallel along c. From the theory of ordinary
differential equations one can easily see that for each v ∈ Tc(to)M , to ∈ I, there exists a
unique parallel vector field Xv along c such that Xv(to) = v. For each t ∈ I there is then a
well-defined linear isometry τ c(t) : Tc(to) → Tc(t), called the parallel transport along c, given
by

τ c(t)(v) = Xv(t) .

The covariant derivative operator and parallel transport along c(t) are related by

X ′(t) =
d

dh

∣∣∣∣
h=0

(τ c(t + h))−1X(t + h) .

Note that the parallel transport does not depend on the parametrization of the curve.

2.7. Killing vector fields. A vector field X on a Riemannian manifold M is called a
Killing vector field if the local diffeomorphisms ΦX

t : U → M are isometries into M . This
just means that the Lie derivative of the Riemannian metric of M with respect to X
vanishes. A useful characterization of Killing vector fields is that a vector field X on a
Riemannian manifold is a Killing vector field if and only if its covariant derivative ∇X is
a skew-symmetric tensor field on M . A Killing vector field is completely determined by
its value and its covariant derivative at any given point. In particular, a Killing vector
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field X for which Xp = 0 and (∇X)p = 0 at some point p ∈ M vanishes at each point of
M . For a complete Killing vector field X on a Riemannian manifold M the corresponding
one-parameter group (ΦX

t ) consists of isometries of M . Conversely, suppose we have a
one-parameter group Φt of isometries on a Riemannian manifold M . Then

Xp :=
d

dt

∣∣∣∣
t=0

(t 7→ Φt(p))

defines a complete Killing vector field X on M with ΦX
t = Φt for all t ∈ R. If X is a

Killing vector field on M and Xp = 0 then

d

dt

∣∣∣∣
t=0

(t 7→ (ΦX
t )∗p) = (∇X)p

for all t ∈ R.

2.8. Distributions and the Frobenius Theorem. A distribution on a Riemannian man-
ifold M is a smooth vector subbundle H of the tangent bundle TM . A distribution H on
M is called integrable if for any p ∈ M there exists a connected submanifold Lp of M such
that TqLp = Hq for all q ∈ Lp. Such a submanifold Lp is called an integral manifold of H.
The Frobenius Theorem states that H is integrable if and only if it is involutive, that is, if
the Lie bracket of any two vector fields tangent to H is also a vector field tangent to H.
If H is integrable, there exists through each point p ∈ M a maximal integral manifold of
H containing p. Such a maximal integral manifold is called the leaf of H through p. A
distribution H on M is called autoparallel if ∇HH ⊂ H, that is, if for any two vector fields
X,Y tangent to H the vector field ∇XY is also tangent to H. By the Frobenius Theorem
every autoparallel distribution is integrable. An integrable distribution is autoparallel if
and only if its leaves are totally geodesic submanifolds of the ambient space. A distribution
H on M is called parallel if ∇XH ⊂ H for any vector field X on M . Obviously, any parallel
distribution is autoparallel. Since ∇ is a metric connection, for each parallel distribution
H on M its orthogonal complement H⊥ in TM is also a parallel distribution on M .

2.9. Geodesics. Of great importance in Riemannian geometry are the curves that min-
imize the distance between two given points. Of course, given two arbitrary points such
curves do not exist in general. But they do exist provided the manifold is connected and
complete. Distance-minimizing curves γ are solutions of a variational problem. The cor-
responding first variation formula shows that any such curve γ satisfies γ̇′ = 0. A smooth
curve γ satisfying this equation is called a geodesic. Every geodesic is locally distance-
minimizing, but not globally, as a great circle on a sphere illustrates. The basic theory of
ordinary differential equations implies that for each point p ∈ M and each tangent vector
X ∈ TpM there exists a unique geodesic γ : I → M with 0 ∈ I, γ(0) = p, γ̇(0) = X, and
such that for any other geodesic α : J → M with 0 ∈ J , α(0) = p and α̇(0) = X we have
J ⊂ I. This curve γ is often called the maximal geodesic in M through p tangent to X,
and we denote it sometimes by γX . The Hopf-Rinow Theorem states that a Riemannian
manifold is complete if and only if γX is defined on R for each X ∈ TM .
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2.10. Exponential map and normal coordinates. Of great importance is the expo-

nential map exp of a Riemannian manifold. To define it we denote by T̃M ⊂ TM the set
of all tangent vectors for which γX(1) is defined. This is an open subset of TM containing

the zero section. A Riemannian manifold is complete if and only if T̃M = TM . The map

exp : T̃M → M , X 7→ γX(1)

is called the exponential map of M . For each p ∈ M we denote the restriction of exp to

TpM ∩ T̃M by expp. The map expp is a diffeomorphism from some open neighborhood
of 0 ∈ TpM onto some open neighborhood of p ∈ M . If we choose an orthonomal basis
e1, . . . , em of TpM , then the map

(x1, . . . , xm) 7→ expp

(
m∑

i=1

xiei

)

defines local coordinates of M in some open neighborhood of p. Such coordinates are called
normal coordinates.

2.11. Riemannian curvature tensor, Ricci curvature, scalar curvature. The major
concept of Riemannian geometry is curvature. There are various notions of curvature which
are of great interest. All of them can be deduced from the so-called Riemannian curvature
tensor

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

The Riemannian curvature tensor has the properties

〈R(X, Y )Z, W 〉 = −〈R(Y,X)Z, W 〉 ,

〈R(X, Y )Z, W 〉 = −〈R(X,Y )W,Z〉 ,

〈R(X, Y )Z, W 〉 = 〈R(Z, W )X,Y 〉 ,

and
R(X,Y )Z + R(Y, Z)X + R(Z, X)Y = 0 .

These equations are often called the algebraic curvature identities of R, the latter one also
the algebraic Bianchi identity or first Bianchi identity. Moreover, R satisfy the equation

(∇XR)(Y, Z)W + (∇Y R)(Z,X)W + (∇ZR)(X, Y )W = 0 ,

which is known as the differential Bianchi identity or second Bianchi identity.
Let p ∈ M , X,W ∈ TpM , and denote by ricp(X, W ) the real number which is obtained

by contraction of the bilinear map

TpM × TpM → R , (Y, Z) 7→ 〈R(X,Y )Z, W 〉 .

The algebraic curvature identities show that ricp is a symmetric bilinear map on TpM . The
tensor field ric is called the Ricci tensor of M . The corresponding selfadjoint tensor field
of type (1,1) is denoted by Ric. A Riemannian manifold for which the Ricci tensor satisfies

ric = f〈·, ·〉
with some smooth function f on M is called an Einstein manifold.



LIE GROUP ACTIONS ON MANIFOLDS 7

The weakest notion of curvature on a Riemannian manifold is the scalar curvature. This
is the smooth function on M which is obtained by contracting the Ricci tensor.

2.12. Sectional curvature. The perhaps most geometric interpretation of the Riemann-
ian curvature tensor arises via the sectional curvature. Consider a 2-dimensional linear
subspace σ of TpM , p ∈ M , and choose an orthonormal basis X, Y of σ. Since expp is a
local diffeomorphism near 0 in TpM , it maps an open neighborhood of 0 in σ onto some
2-dimensional surface S in M . Then the Gaussian curvature of S at p, which we denote
by K(σ), satisfies

K(σ) = 〈R(X,Y )Y, X〉 .

Let G2(TM) be the Grassmann bundle over M consisting of all 2-dimensional linear sub-
spaces σ ⊂ TpM , p ∈ M . The map

K : G2(TM) → R , σ 7→ K(σ)

is called the sectional curvature function of M , and K(σ) is called the sectional curvature of
M with respect to σ. It is worthwhile to mention that one can reconstruct the Riemannian
curvature tensor from the sectional curvature function by using the curvature identities.

A Riemannian manifold M is said to have constant curvature if the sectional curvature
function is constant. If dim M ≥ 3, the second Bianchi identity and Schur’s Lemma imply
the following well-known result: if the sectional curvature function depends only on the
point p then M has constant curvature. A space of constant curvature is also called a space
form. The Riemannian curvature tensor of a space form with constant curvature κ is given
by

R(X,Y )Z = κ(〈Y, Z〉X − 〈X,Z〉Y ) .

Every connected three-dimensional Einstein manifold is a space form. It is an algebraic
fact (i.e. does not involve the second Bianchi identity) that a Riemannian manifold M has
constant sectional curvature equal to zero if and only if M is flat, i.e. the Riemannian
curvature tensor of M vanishes.

A connected, simply connected, complete Riemannian manifold of nonpositive sectional
curvature is called a Hadamard manifold. The Hadamard Theorem states that for each
point p in a Hadamard manifold M the exponential map expp : TpM → M is a diffeomor-
phism. More generally, if M is a connected, complete Riemannian manifold of nonpositive
sectional curvature, then the exponential map expp : TpM → M is a covering map for each
p ∈ M .

2.13. Holonomy. A Riemannian manifold M is said to be flat if its curvature tensor
vanishes. This implies that locally the parallel transport does not depend on the curve
used for joining two given points. If the curvature tensor does not vanish the parallel
transport depends on the curve. A way of measuring how far the space deviates from being
flat is given by the holonomy group. Let p ∈ M and Ω(p) the set of all piecewise smooth
curves c : [0, 1] → M with c(0) = c(1) = p. Then the parallel translation along any curve
c ∈ Ω(p) from c(0) to c(1) is an orthogonal transformation of TpM . The set of all these
parallel translations forms in an obvious manner a subgroup Holp(M) of the orthogonal
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group O(TpM), which is called the holonomy group of M at p. As a subset of O(TpM) it
carries a natural topology. With respect to this topology, the identity component Holop(M)
of Holp(M) is called the restricted holonomy group of M at p. The restricted holonomy
group consists of all those transformations arising from null homotopic curves in Ω(p). If
M is connected then all (restricted) holonomy groups are congruent to each other, and in
this situation one speaks of the (restricted) holonomy group of the manifold M , which we
will then denote by Hol(M) resp. Holo(M). The connected Lie group Holo(M) is always
compact, whereas Hol(M) is in general not closed in the orthogonal group. A reduction of
the holonomy group corresponds to an additional geometric structure on M . For instance,
Hol(M) is contained in SO(TpM) for some p ∈ M if and only if M is orientable. An
excellent introduction to holonomy groups can be found in the book by Salamon [60].

2.14. The de Rham Decomposition Theorem. The de Rham Decomposition Theorem
states that a connected Riemannian manifold M is locally reducible if and only if TpM is
reducible as a Holo(M)-module for some, and hence for every, point p ∈ M . Since Holo(M)
is compact there exists a decomposition

TpM = V0 ⊕ V1 ⊕ . . .⊕ Vk

of TpM into Holo(M)-invariant subspaces of TpM , where V0 ⊂ TpM is the fixed point
set of the action of Holo(M) on TpM and V1, . . . , Vk are irreducible Holo(M)-modules. It
might happen that V0 = TpM , for instance when M = Rn, or V0 = {0}, for instance
when M is the sphere Sn, n > 1. The above decomposition is unique up to order of the
factors and determines integrable distributions V0, . . . , Vk on M . Then there exists an open
neighborhood of p in M which is isometric to the Riemannian product of sufficiently small
integral manifolds of these distributions through p. The global version of the de Rham
decomposition theorem states that a connected, simply connected, complete Riemannian
manifold M is reducible if and only if TpM is reducible as a Holo(M)-module. If M is
reducible and TpM = V0 ⊕ . . .⊕ Vk is the decomposition of TpM as described above, then
M is isometric to the Riemannian product of the maximal integral manifolds M0, . . . , Mk

through p of the distributions V0, . . . , Vk. In this situation M = M0 × . . . ×Mk is called
the de Rham decomposition of M . The Riemannian manifold M0 is isometric to a, possibly
zero-dimensional, Euclidean space. If dim M0 > 0 then M0 is called the Euclidean factor
of M . A connected, complete Riemannian manifold M is said to have no Euclidean factor

if the de Rham decomposition of the Riemannian universal covering space M̃ of M has no
Euclidean factor.

2.15. Jacobi vector fields. Let γ : I → M be a geodesic parametrized by arc length. A
vector field Y along γ is called a Jacobi vector field if it satisfies the second order differential
equation

Y ′′ + R(Y, γ̇)γ̇ = 0 .

Standard theory of ordinary differential equations implies that the Jacobi vector fields
along a geodesic form a 2n-dimensional vector space. Every Jacobi vector field is uniquely
determined by the initial values Y (t0) and Y ′(t0) at a fixed number t0 ∈ I. The Jacobi
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vector fields arise geometrically as infinitesimal variational vector fields of geodesic vari-
ations. Jacobi vector fields may be used to describe the differential of the exponential
map. Indeed, let p ∈ M and expp the exponential map of M restricted to TpM . For each
X ∈ TpM we identify TX(TpM) with TpM in the canonical way. Then for each Z ∈ TpM
we have

expp∗XZ = YZ(1) ,

where YZ is the Jacobi vector field along γX with initial values YZ(0) = 0 and Y ′
Z(0) = Z.

2.16. Kähler manifolds. An almost complex structure on a smooth manifold M is a
tensor field J of type (1,1) on M satisfying J2 = −idTM . An almost complex manifold is
smooth manifold equipped with an almost complex structure. Each tangent space of an
almost complex manifold is isomorphic to a complex vector space, which implies that the
dimension of an almost complex manifold is an even number. An Hermitian metric on an
almost complex manifold M is a Riemannian metric 〈·, ·〉 for which the almost complex
structure J on M is orthogonal, that is,

〈JX, JY 〉 = 〈X,Y 〉
for all X, Y ∈ TpM , p ∈ M . An orthogonal almost complex structure on a Riemannian
manifold is called an almost Hermitian structure.

Every complex manifold M has a canonical almost complex structure. In fact, if z =
x + iy is a local coordinate on M , define

J
∂

∂xν

=
∂

∂yν

, J
∂

∂yν

= − ∂

∂xν

.

These local almost complex structures are compatible on the intersection of any two coor-
dinate neighborhoods and hence induce an almost complex structure, which is called the
induced complex structure of M . An almost complex structure J on a smooth manifold
M is integrable if M can be equipped with the structure of a complex manifold so that J
is the induced complex structure. A famous result by Newlander-Nirenberg says that the
almost complex structure J of an almost complex manifold M is integrable if and only if

[X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] = 0

for all X, Y ∈ TpM , p ∈ M . A Hermitian manifold is an almost Hermitian manifold with
an integrable almost complex structure. The almost Hermitian structure of an Hermitian
manifold is called an Hermitian structure.

The 2-form ω on an Hermitian manifold M defined by

ω(X, Y ) = 〈X, JY 〉
is called the Kähler form of M . A Kähler manifold is an Hermitian manifold whose Kähler
form is closed. A Hermitian manifold M is a Kähler manifold if and only if its Hermitian
structure J is parallel with respect to the Levi Civita connection∇ of M , that is, if∇J = 0.
The latter condition characterizes the Kähler manifolds among all Hermitian manifolds by
the geometric property that parallel translation along curves commutes with the Hermitian
structure J . A 2m-dimensional connected Riemannian manifold M can be equipped with
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the structure of a Kähler manifold if and only if its holonomy group Hol(M) is contained
in the unitary group U(m).

2.17. Quaternionic Kähler manifolds. A quaternionic Kähler structure on a Riemann-
ian manifold M is a rank three vector subbundle J of the endomorphism bundle End(TM)
over M with the following properties: (1) For each p in M there exist an open neighbor-
hood U of p in M and sections J1, J2, J3 of J over U so that Jν is an almost Hermitian
structure on U and

JνJν+1 = Jν+2 = −Jν+1Jν (index modulo three)

for all ν = 1, 2, 3; (2) J is a parallel subbundle of End(TM), that is, if J is a section in J
and X a vector field on M , then ∇XJ is also a section in J. Each triple J1, J2, J3 of the
above kind is called a canonical local basis of J, or, if restricted to the tangent space TpM
of M at p, a canonical basis of Jp. A quaternionic Kähler manifold is a Riemannian mani-
fold equipped with a quaternionic Kähler structure. The canonical bases of a quaternionic
Kähler structure turn the tangent spaces of a quaternionic Kähler manifold into quater-
nionic vector spaces. Therefore, the dimension of a quaternionic Kähler manifold is 4m for
some m ∈ N. A 4m-dimensional connected Riemannian manifold M can be equipped with
a quaternionic Kähler structure if and only if its holonomy group Hol(M) is contained in
Sp(m) · Sp(1).

3. Lie groups and Lie algebras

Lie groups were introduced by Sophus Lie in the framework of his studies on differential
equations as local transformation groups. The global theory of Lie groups was developed by
Hermann Weyl and Élie Cartan. Lie groups are both groups and manifolds. This fact allows
us to use concepts both from algebra and analysis to study these objects. Some modern
books on this topic are Adams [1], Carter-Segal-Macdonald [20], Knapp [39], Varadarajan
[66]. Foundations on Lie theory may also be found in Onishchik [56], and the structure of
Lie groups and Lie algebras is discussed in Onishchik-Vinberg [57]. A good introduction
to the exceptional Lie groups may be found in Adams [2].

3.1. Lie groups. A real Lie group, or briefly Lie group, is an abstract group G which is
equipped with a smooth manifold structure such that G × G → G , (g1, g2) 7→ g1g2 and
G → G , g 7→ g−1 are smooth maps. For a complex Lie group G one requires that G
is equipped with a complex analytic structure and that multiplication and inversion are
holomorphic maps.

Two Lie groups G and H are isomorphic if there exists a smooth isomorphism G → H,
and they are locally isomorphic if there exist open neighborhoods of the identities in G and
H and a smooth isomorphism between these open neighborhoods.

Examples: 1. Rn equipped with its additive group structure is an Abelian (or commuta-
tive) Lie group.

2. Denote by F the field R of real numbers, the field C of complex numbers, or the
skewfield H of quaternionic numbers. The group GL(n,F) of all nonsingular n×n-matrices
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with coefficients in F is a Lie group, a so-called general linear group (over F). Moreover,
GL(n,C) is a complex Lie group.

Proof: For F = R: We have GL(n,R) = {A ∈ Mat(n, n,R) | det(A) 6= 0}, which

shows that GL(n,R) is an open subset of Mat(n, n,R) ∼= Rn2
and hence a manifold. The

smoothness of matrix multiplication is clear, and the smoothness of the inverse map follows
from Cramer’s rule. The proof for F = C or H is similar.

3. The isometry group I(M) of a connected Riemannian manifold is a Lie group.

3.2. Lie subgroups. An important way to obtain Lie groups is to consider certain sub-
groups of Lie groups. A subgroup H of a Lie group G is called a Lie subgroup if H is a Lie
group and if the inclusion H → G is a smooth map.

Examples: 1. For every Lie group G the connected component of G containing the
identity of G is called the identity component of G. We denote this component usually by
Go. Then Go is a Lie subgroup of G.

2. Every closed subgroup of a Lie group is a Lie subgroup. This is a very important and
useful criterion! The proof is nontrivial and will be omitted. We just give some applications
below. A closed subgroup of GL(n,F) is also called a closed linear group.

3. The special linear group

SL(n,F) = {A ∈ GL(n,F) | det A = 1}
is a closed subgroup of GL(n,F). The group SL(n,C) is a complex Lie group.

4. For A ∈ GL(n,F) we denote by A∗ the matrix which is obtained from A by conjugation
and transposing, that is, A∗ = Āt. By In we denote the n × n-identity matrix. Then we
get the following closed subgroups of GL(n,F): The orthogonal group

O(n) = {A ∈ GL(n,R) | A∗A = In} ,

the unitary group
U(n) = {A ∈ GL(n,C) | A∗A = In} ,

and the symplectic group

Sp(n) = {A ∈ GL(n,H) | A∗A = In} .

We denote by 〈·, ·〉 the Hermitian form on Fn × Fn given by

〈x, y〉 =
n∑

ν=1

xν ȳν .

Then O(n), U(n), Sp(n) is precisely the group of all A ∈ GL(n,F) preserving this Her-
mitian form. The orthogonal group has two connected components, corresponding to the
determinant ±1. The identity component

SO(n) = {A ∈ O(n) | det A = 1}
is called the special orthogonal group. The determinant of a unitary matrix is a complex
number of modulus one. The subgroup

SU(n) = {A ∈ U(n) | det A = 1}
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is called the special unitary group. Every symplectic matrix has determinant one.
5. Let m,n be positive integers and consider the Hermitian form on Fm+n × Fm+n given

by
〈x, y〉 = x1ȳ1 + . . . + xmȳm − xm+1ȳm+1 − . . .− xm+nȳm+n .

The group of all A ∈ GL(m + n,F) leaving this Hermitian form invariant is denoted by
O(m,n), U(m,n) and Sp(m,n), respectively. Alternatively, if we denote by Im,n the matrix

Im,n =

(
Im 0
0 −In

)
,

we have
O(m,n) = {A ∈ GL(m + n,R) | A∗Im,nA = Im,n} ,

U(m,n) = {A ∈ GL(m + n,C) | A∗Im,nA = Im,n} ,

and
Sp(m,n) = {A ∈ GL(m + n,H) | A∗Im,nA = Im,n} .

The subgroups of determinant one matrices are denoted by

SO(m,n) = {A ∈ O(m,n) | det A = 1}
and

SU(m,n) = {A ∈ U(m,n) | det A = 1} .

Every matrix in Sp(m,n) has determinant one. All the above subgroups are closed.
6. The complex special orthogonal group

SO(n,C) = {A ∈ SL(n,C) | AtA = In}
and the complex symplectic group

Sp(n,C) = {A ∈ SL(2n,C) | AtJnA = Jn}
are complex Lie groups. Here,

Jn =

(
0 In

−In 0

)
.

The real version of the latter group is the real symplectic group

Sp(n,R) = {A ∈ SL(2n,R) | AtJnA = Jn} .

Finally, we define
SO∗(2n) = {A ∈ SU(n, n) | AtKnA = Kn} ,

where

Kn =

(
0 In

In 0

)
.

Remark. All the classical groups SL(n,C), SO(n,C), Sp(n,C) and SO(n), SU(n),
Sp(n), SL(n,R), SL(n,H), SU(m,n), Sp(m,n), Sp(n,R) and SO∗(2n) are connected,
and SO(m,n) has two connected components. We will see later that these groups play a
fundamental role in Lie group theory, since they essentially provide all classical simple real
and complex Lie groups.
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7. The holonomy group of a connected Riemannian manifold is in general not a Lie
group (in general it is not closed in the orthogonal group), but its identity component, the
restricted holonomy group, is always a Lie group (since it is compact and hence a closed
subgroup of the special orthogonal group).

3.3. Abelian Lie groups. Let Γ be a lattice in Rn, that is, Γ is a discrete subgroup of
rank n of the group of translations of Rn. Then Γ is a normal subgroup of Rn and hence
the quotient T n = Rn/Γ is also an Abelian group. Since T n and Rn are locally isomorphic,
T n is also a Lie group. One can see easily that T n is compact. Hence T n is a compact
Abelian Lie group, a so-called n-dimensional torus. One can show that every Abelian Lie
group is isomorphic to the direct product Rn × T k for some nonnegative integers n, k ≥ 0.

3.4. Direct products and semidirect products of Lie groups. Let G and H be Lie
groups. The direct product G × H of G and H is the smooth product manifold G × H
equipped with the multiplication and inversion

(g1, h1)(g2, h2) = (g1g2, h1h2) , (g, h)−1 = (g−1, h−1) .

Let τ be a homomorphism from H into the group Aut(G) of automorphisms of G. The
semidirect product G×τ H is the smooth manifold G×H equipped with the group structure

(g1, h1)(g2, h2) = (g1τ(h1)g2, h1h2) , (g, h)−1 = (τ(h−1)g−1, h−1) .

If τ is the trivial homomorphism, then G×τ H is just the direct product G×H.
Examples: 1. The isometry group of Rn is the semidirect product Rn×τ O(n), where Rn

acts on itself isometrically by translations and τ : O(n) → Aut(Rn) is given by τ(A)x = Ax
for A ∈ O(n) and x ∈ Rn.

2. O(n) = SO(n) ×τ Z2 with τ : Z2 → Aut(SO(n)) given by τ(x)A = XAX−1, where
X is the diagonal matrix with entries x, 1, . . . , 1 and x ∈ Z2 = {±1}. Similarily, U(n) =
SU(n) ×τ U(1) with τ : U(1) → Aut(SU(n)) given by τ(x)A = XAX−1, where X is the
diagonal matrix with entries x, 1, . . . , 1 and x ∈ U(1) = {x ∈ C | |x| = 1}. In particular,
this shows that as a manifold U(n) is diffeomorphic to SU(n) × S1, where S1 is the one-
dimensional sphere.

3.5. Universal covering groups. Let G be a connected Lie group, and let G̃ be the
universal covering space of G with covering π : G̃ → G. Let ẽ ∈ π−1({eG}), where eG is
the identity of G. Then there exists a unique Lie group structure on G̃ such that ẽ is the
identity of G̃ and π is a Lie group homomorphism. The Lie group G̃ is called the universal
covering group of G. It is unique up to isomorphism.

Example: The fundamental group of SO(n) is Z2 for n ≥ 3. The universal covering
group of SO(n) is the so-called Spin group Spin(n). It can be explicitly constructed from
Clifford algebras. For n = 3 we have Spin(3) = SU(2) = Sp(1). If we identify R3 with
the imaginary part of H, then Sp(1) acts isometrically on R3 by conjugation. This induces
the covering map Sp(1) → SO(3), which is fundamental in physics for describing rotations
and angular momenta.
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3.6. Left and right translations, inner automorphisms. For each g ∈ G the smooth
diffeomorphisms

Lg : G → G , g′ 7→ gg′ and Rg : G → G , g′ 7→ g′g

are called the left translation and right translation on G with respect to g, respectively. A
vector field X on G is called left-invariant resp. right-invariant if it is invariant under any
left translation resp. right translation, i.e. if Lg∗X = X ◦ Lg resp. Rg∗X = X ◦ Rg for all
g ∈ G. The smooth diffeomorphism

Ig = Lg ◦Rg−1 : G → G , g′ 7→ gg′g−1

is called an inner automorphism of G.

3.7. Lie algebras and subalgebras. A (real or complex) Lie algebra is a (real or com-
plex) vector space g equipped with a skew-symmetric bilinear map [·, ·] : g × g → g
satisfying

[[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0

for all X,Y, Z ∈ g. The latter identity is called the Jacobi identity. We will always assume
that a Lie algebra is finite-dimensional.

Two Lie algebras g and h are isomorphic if there exists an algebra isomorphism g → h.
Example: The real vector space gl(n,R) of all n × n-matrices with real coefficients

together with the product [A,B] = AB − BA is a Lie algebra. Analogously, the complex
vector space gl(n,C) of all n × n-matrices with complex coefficients together with the
product [A,B] = AB −BA is a complex Lie algebra.

A subalgebra of a Lie algebra g is a linear subspace h ⊂ g such that [h, h] ⊂ h. An ideal of
g is a subalgebra h with [g, h] ⊂ h. If h is an ideal in g, then the vector space g/h becomes
a Lie algebra by means of [X +h, Y +h] = [X, Y ]+h. This is the so-called quotient algebra
of g and h. A subalgebra h is Abelian if [h, h] = 0.

3.8. The Lie algebra of a Lie group. To every Lie group G there is associated a Lie
algebra g, namely the vector space of all left-invariant vector fields equipped with the
bilinear map arising from the commutator of vector fields. Since each left-invariant vector
field is uniquely determined by its value at the identity e ∈ G, g is isomorphic as a vector
space to TeG. In particular, we have dim g = dim G. If G and H are locally isomorphic
Lie groups then their Lie algebras are isomorphic.

In case G is a closed linear group, the Lie algebra g of G can be determined in the
following way. Consider smooth curves c : R → G with c(0) = eG. Then TeG

G = {c′(0)}
forms a set of matrices which is closed under the bracket [X, Y ] = XY − Y X. In this
way we see that gl(n,R) is the Lie algebra of GL(n,R) and gl(n,C) is the Lie algebra of
GL(n,C). The Lie algebras of the classical complex Lie groups we discussed above are

sl(n,C) = {X ∈ gl(n,C) | trX = 0} ,

so(n,C) = {X ∈ gl(n,C) | X + X t = 0} ,

sp(n,C) = {X ∈ gl(2n,C) | X tJn + JnX = 0} .
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From this we can easily calculate the dimensions of the classical complex Lie groups,

dimC SL(n,C) = n2 − 1 , dimC SO(n,C) = n(n− 1)/2 , dimC Sp(n,C) = 2n2 + n .

For low dimensions there are some isomorphisms,

sl(2,C) ∼= so(3,C) ∼= sp(1,C) , so(5,C) ∼= sp(2,C) , sl(4,C) ∼= so(6,C) .

Moreover,
so(4,C) ∼= sl(2,C)⊕ sl(2,C) .

For the classical compact real Lie groups we get the following Lie algebras

o(n) = so(n) = {X ∈ gl(n,R) | X + X∗ = 0} ,

u(n) = {X ∈ gl(n,C) | X + X∗ = 0} ,

su(n) = {X ∈ gl(n,C) | X + X∗ = 0 , trX = 0} ,

sp(n) = {X ∈ gl(n,H) | X + X∗ = 0} .

Here we have the analogous isomorphisms

so(3) ∼= su(2) ∼= sp(1) , so(4) ∼= su(2)⊕ su(2) , so(5) ∼= sp(2) , so(6) ∼= su(4) .

For the remaining classical Lie groups we get

sl(n,R) = {X ∈ gl(n,R) | trX = 0} ,

sl(n,H) = {X ∈ gl(n,H) | Re(trX) = 0} ,

so(m, n) = {X ∈ gl(m + n,R) | X∗Im,n + Im,nX = 0} ,

su(m, n) = {X ∈ sl(m + n,C) | X∗Im,n + Im,nX = 0} ,

sp(m, n) = {X ∈ gl(m + n,H) | X∗Im,n + Im,nX = 0} ,

sp(n,R) = {X ∈ gl(2n,R) | X tJn + JnX = 0} ,

so∗(2n) = {X ∈ su(n, n) | X tKn + KnX = 0} .

For low dimensions there are the following isomorphisms:

sl(2,R) ∼= su(1, 1) ∼= so(2, 1) ∼= sp(1,R) , sl(4,R) ∼= so(3, 3) , sl(2,H) ∼= so(5, 1) ,

sp(2,R) ∼= so(3, 2) , so∗(4) ∼= su(2)⊕ sl(2,R) , so∗(6) ∼= su(3, 1) , so∗(8) ∼= so(6, 2) ,

so(2, 2) ∼= sl(2,R)⊕ sl(2,R) , so(4, 1) ∼= sp(1, 1) , so(4, 2) ∼= su(2, 2) .

3.9. Complexifications and real forms. Let g be a real Lie algebra and gC = g ⊕ ig
be the complexification of g considered as a vector space. By extending the Lie algebra
structure on g complex linearly to gC we turn gC into a complex Lie algebra, the com-
plexification of g. Any complex Lie algebra h can be considered canonically as a real Lie
algebra hR by restricting the scalar multiplication to R ⊂ C. If g is a real Lie algebra and
h is a complex Lie algebra so that h is isomorphic to gC, then g is a real form of h.

Examples: gl(n,R)C ∼= gl(n,C), gl(n,C)R ∼= gl(2n,R), sl(2,C)R ∼= so(3, 1).
su(n) and sl(n,R) are real forms of sl(n,C), sl(n,H) is a real form of sl(2n,C), su(m,n)

is a real form of sl(m + n,C), so(n) is a real form of so(n,C), so(m,n) is a real form
of so(m + n,C), so∗(2n) is a real form of so(2n,C), sp(n) and sp(n,R) are real forms of
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sp(n,C), and sp(m + n) is a real form of sp(m + n,C). Since the real dimension of a real
form g of a complex Lie algebra gC is equal to the complex dimension of gC, we easily get
the dimensions of the above classical real Lie algebras.

3.10. The differential of smooth Lie group homomorphisms. Let G and H be Lie
groups and Φ : G → H be a smooth homomorphism. Then the differential φ of Φ at the
identity eG of G is a linear map from the tangent space TeG

G into the tangent space TeH
H,

and hence from g into h by means of our identification of the Lie algebra of a Lie group
with the tangent space at the identity. If X is a left-invariant vector field on G, and Y is
the left-invariant vector field on H with YeH

= φ(XeG
), then we have dgΦ(Xg) = YΦ(g) for

all g ∈ G. It follows that φ : g → h is a Lie algebra homomorphism. This also shows that,
if G is connected, the Lie algebra homomorphism φ : g → h uniquely determines the Lie
group homomorphism Φ : G → H. The image of Φ is a Lie subgroup of H, and the map
Φ from G into this Lie subgroup is smooth.

3.11. Direct sums and semidirect sums of Lie algebras. Let g and h be Lie algebras.
The direct sum g⊕ h of g and h is the vector space g⊕ h (direct sum) equipped with the
bracket operation such that g brackets with g as before, h with h as before, and [g, h] = 0.

A derivation on g is an endomorphism D of g satisfying

D[X, Y ] = [DX, Y ] + [X, DY ]

for all X,Y ∈ g. The vector space Der(g) of all derivations on g is a Lie algebra with
respect to the usual bracket for endomorphisms. One can prove that the Lie algebra of the
automorphism group Aut(g) of g is isomorphic to the Lie algebra Der(g) of all derivations
on g.

Let π be a homomorphism from h into the Lie algebra Der(g) of derivations on g. The
semidirect sum g ⊕π h is the vector space g ⊕ h (direct sum) equipped with the bracket
operation such that g brackets with g as before, h with h as before, and [X, Y ] = π(X)Y
for all X ∈ h and Y ∈ g. If π is the trivial homomorphism, then g ⊕π h is just the direct
sum g⊕ h.

Let G×τH be a semidirect of G and H. Then we have a homomorphism τ : H → Aut(G).
The differential of τ at the identity is a Lie algebra homomorphism π from h into the Lie
algebra of Aut(G), which is isomorphic to the Lie algebra of Aut(g), and hence into Der(g).
One can show that the Lie algebra of G×τ H is g⊕π h.

3.12. Lie exponential map. Let G be a Lie group with Lie algebra g. Any X ∈ g is a
left-invariant vector field on G and hence determines a flow ΦX : R×G → G. The smooth
map

Exp : g → G , X 7→ ΦX(1, e)

is called the Lie exponential map of g or G. For each X ∈ g the curve t 7→ Exp(tX) is a
one-parameter subgroup of G and we have ΦX(t, g) = RExp(tX)(g) for all g ∈ G and t ∈ R.
The Lie exponential map is crucial when studying the interplay between Lie groups and
Lie algebras. It is a diffeomorphism of some open neighborhood of 0 ∈ g onto some open
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neighborhood of eG ∈ G. If g is a matrix Lie algebra, then Exp is the usual exponential
map for matrices. The Lie exponential map is neither injective nor surjective in general.

If G is a Lie group and h is a subalgebra of g, then there exists a unique connected Lie
subgroup H of G with Lie algebra h. The subgroup H is the smallest Lie subgroup in G
containing Exp(h).

If Φ : G → H is a Lie group homomorphism, then the differential φ of Φ at eG is a Lie
algebra homomorphism from g into h with the property Φ ◦ Expg = Exph ◦ φ.

Let G and H be Lie groups and φ : g → h a Lie algebra homomorphism. If G is simply
connected, then there exists a unique Lie group homomorphism Φ : G → H such that φ is
the differential of Φ at eG.

3.13. The Lie algebra of the isometry group of a Riemannian manifold. Let M
be a connected Riemannian manifold. The Lie algebra i(M) of the isometry group I(M)
can be identified with the Lie algebra k(M) of all Killing vector fields on M in the following
way. The Lie bracket on k(M) is the usual commutator of vector fields. For X ∈ i(M) we
define a vector field X∗ on M by

X∗
p =

d

dt

∣∣∣∣
t=0

(t 7→ Exp(tX)(p))

for all p ∈ M . Then the map

i(M) → k(M) , X 7→ X∗

is a vector space isomorphism satisfying

[X, Y ]∗ = −[X∗, Y ∗] .

In other words, if one would define the Lie algebra i(M) of I(M) by using right-invariant
vector fields instead of left-invariant vector fields, then the map i(M) → k(M) , X 7→ X∗

would be a Lie algebra isomorphism.

3.14. Adjoint representation. The inner automorphisms Ig of G determine the so-called
adjoint representation of G by

Ad : G → GL(g) , g 7→ Ig∗e ,

where Ig∗e denotes the differential of Ig at e and we identify TeG with g by means of the
vector space isomorphism

g → TeG , X 7→ Xe .

The kernel of Ad is the center Z(G) of G,

Z(G) = {g ∈ G | ∀h ∈ G : gh = hg} .

In general, a representation of G is a homomorphism π : G → GL(V ), where V is a real
or complex vector space.

The adjoint representation of g is the homomorphism

ad : g → gl(g) , X 7→ (g → g , Y 7→ [X, Y ]) .
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The kernel of ad is the center z(g) of g,

z(g) = {X ∈ g | ∀Y ∈ g : [X, Y ] = 0} .

In general, a representation of g is a homomorphism π : g → gl(V ), where V is a real or
complex vector space. The image ad(g) is a Lie subalgebra of Der(g), the Lie algebra of
Aut(g). The connected Lie subgroup of Aut(g) with Lie algebra ad(g) is denoted by Int(g),
and the elements in Int(g) are called inner automorphisms of g.

The homomorphism ad can be obtained from Ad by means of

ad(X)Y =
d

dt

∣∣∣∣
t=0

(t 7→ Ad(Exp(tX))Y ) .

The relation between Ad and ad is described by

Ad(Exp(X)) = ead(X) ,

where e· denotes the exponential map for endomorphisms of the vector space g.

3.15. Cartan-Killing form. The symmetric bilinear form B on g defined by

B(X, Y ) = tr(ad(X)ad(Y ))

for all X,Y ∈ g is called the Cartan-Killing form of g. Every automorphism σ of g has the
property

B(σX, σY ) = B(X, Y )

for all X, Y ∈ g.
Proof. Since [σX, Y ] = σ[X, σ−1Y ] we have ad(σX) = σad(X)σ−1. Since tr(AC) =

tr(CA) this implies B(σX, σY ) = tr(ad(σX)ad(σY )) = tr(σad(X)σ−1σad(Y )σ−1) =
tr(ad(X)ad(Y )) = B(X, Y ).

This implies that
B(ad(Z)X, Y ) + B(X, ad(Z)Y ) = 0

for all X, Y, Z ∈ g.
Proof. Differentiate B(Ad(Exp(tZ))X, Ad(Exp(tZ))Y ) = B(X, Y ) at t = 0.

3.16. Solvable and nilpotent Lie algebras and Lie groups. Let g be a Lie algebra.
The commutator ideal, or derived subalgebra, [g, g] of g is the ideal in g generated by all
vectors in g of the form [X, Y ], X, Y ∈ g. The commutator series of g is the decreasing
sequence

g0 = g , g1 = [g0, g0] , g2 = [g1, g1] , . . .

of ideals of g. The Lie algebra g is solvable if this sequence is finite, that is, if gk = 0 for
some k ∈ N. The lower central series of g is the decreasing sequence

g0 = g , g1 = [g, g0] , g2 = [g, g1] , . . .

of ideals in g. The Lie algebra g is nilpotent if this sequence is finite, that is, if gk = 0 for
some k ∈ N. One can show by induction that gk ⊂ gk for all k. Hence every nilpotent Lie
algebra is solvable.

Examples: 1. The Lie algebra of all upper triangular n× n-matrices is solvable.
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2. The Lie algebra of all upper triangular n× n-matrices with zeroes in the diagonal is
nilpotent. For n = 3 this is the so-called Heisenberg algebra.

Every subalgebra of a solvable (resp. nilpotent) Lie algebra is also solvable (resp. nilpo-
tent). A Lie algebra is solvable if and only if its derived subalgebra is nilpotent.

A Lie group G is solvable or nilpotent if and only if its Lie algebra g is solvable or
nilpotent, respectively.

The Lie exponential map Exp : n → N of a simply connected nilpotent Lie group N is
a diffeomorphism from n onto N . Thus N is diffeomorphic to Rn with n = dim N .

3.17. Cartan’s criterion for solvability. A Lie algebra g is solvable if and only if its
Cartan-Killing form B satisfies B(g, [g, g]) = 0.

3.18. Simple and semisimple Lie algebras and Lie groups. Let g be a Lie algebra.
There exists a unique solvable ideal in g which contains all solvable ideals in g, the so-called
radical rad(g) of g. If this radical is trivial the Lie algebra is called semisimple.

A semisimple Lie algebra g is called simple if it contains no ideals different from {0}
and g. A Lie group is semisimple or simple if and only if its Lie algebra is semisimple or
simple, respectively.

A Lie algebra g is called reductive if for each ideal a in g there exists an ideal b in g such
that g = a⊕ b. One can show that a Lie algebra is reductive if and only if it is the direct
sum of a semisimple Lie algebra and an Abelian Lie algebra. A Lie group is reductive if
and only if its Lie algebra is reductive.

3.19. Cartan’s criterion for semisimplicity. A Lie algebra is semisimple if and only if
its Cartan-Killing form is nondegenerate. Recall that B is nondegenerate if B(X, Y ) = 0
for all Y ∈ g implies X = 0.

3.20. The Levi-Malcev decomposition. Let g be a finite-dimensional real Lie algebra.
Then there exists a semisimple subalgebra s of g and a homomorphism π : s → Der(rad(g))
such that g is isomorphic to the semidirect sum rad(g)⊕π s.

3.21. Structure theory of semisimple complex Lie algebras. Let g be a semisimple
complex Lie algebra and B its Cartan-Killing form. A Cartan subalgebra of g is a maximal
Abelian subalgebra h of g so that all endomorphisms ad(H), H ∈ h, are simultaneously
diagonalizable. There always exists a Cartan subalgebra in g, and any two of them are
conjugate by an inner automorphism of g. The common value of the dimension of these
Cartan subalgebras is called the rank of g.

Any semisimple complex Lie algebra can be decomposed into the direct sum of simple
complex Lie algebras, which were classified by Elie Cartan: The simple complex Lie algebras
are

An = sl(n + 1,C) , Bn = so(2n + 1,C) , Cn = sp(n,C) , Dn = so(2n,C)(n ≥ 3) ,

which are the simple complex Lie algebras of classical type, and

G2 , F4 , E6 , E7 , E8 ,
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which are the simple complex Lie algebras of exceptional type. Here, the index refers to the
rank of the Lie algebra. Note that there are isomorphisms A1 = B1 = C1, B2 = C2 and
A3 = D3. The Lie algebra D2 = so(4,C) is not simple since D2 = A1 ⊕ A1.

Let h be a Cartan subalgebra of a semisimple complex Lie algebra g. For each one-form
α in the dual vector space g∗ of g we define

gα = {X ∈ g | ad(H)X = α(H)X for all H ∈ h} .

If gα is nontrivial and α is nonzero, α is called a root of g with respect to h and gα is called
the root space of g with respect to α. The complex dimension of gα is always one. We
denote by ∆ the set of all roots of g with respect to h. The direct sum decomposition

g = h⊕
⊕
α∈∆

gα

is called the root space decomposition of g with respect to the Cartan subalgebra h.
The Cartan-Killing form B restricted to h × h is nondegenerate. Thus there exists for

each α ∈ ∆ a vector Hα ∈ h such that α(H) = B(Hα, H) for all H ∈ Hα. Let h0 be the
real span of all vectors Hα, α ∈ ∆. Then ho is a real form of the Cartan subalgebra h and
∆ forms a reduced abstract root system on the real vector space h∗0.

We recall that an abstract root system on a finite-dimensional real vector space V with
an inner product 〈·, ·〉 is a finite set ∆ of nonzero elements of V such that ∆ spans V , the
orthogonal transformations

sα : V → V , v 7→ v − 2〈v, α〉
〈α, α〉 α

map ∆ to itself for all α ∈ ∆, and
2〈β, α〉
〈α, α〉 ∈ Z

for all α, β ∈ ∆. An abstract root system is reduced if 2α /∈ ∆ for all α ∈ ∆. The maps sα

are orthogonal reflections in hyperplanes of V , and the group generated by these reflections
is called the Weyl group of ∆.

We now fix a notion of positivity on h∗o, for instance by means of a lexicographic ordering.
We fix a basis v1, . . . , vn of h0 and say that α > 0 if there exists an index k such that
α(vi) = 0 for all i ∈ {1, . . . , k − 1} and α(vk) > 0. A root α ∈ ∆ is called simple if it is
positive and if it cannot be written as the sum of two positive roots. Let Π = {α1, . . . , αn}
be the set of simple roots of ∆. The n× n-matrix A with coefficients

Aij =
2〈αj, αi〉
〈αi, αi〉 ∈ Z

is called the Cartan matrix of ∆ and Π. The Cartan matrix depends on the enumeration
of Π, but different enumerations lead to Cartan matrices that are conjugate to each other
by a permutation matrix. We now associate to Π a diagram in the following way. For each
simple root αi we draw a vertex. We connect the vertices αi and αj by AijAji edges. If
|αi| > |αj| we draw an arrow pointing from αi to αj. The resulting diagram is called the
Dynkin diagram of the root system ∆ or of the Lie algebra g.
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Example: G = SL(n + 1,C). A Cartan subalgebra h of g is given by all diagonal
matrices with trace zero. We denote by εi the one-form on h given by εi(H) = xi, where
H = Diag(x1, . . . , xn+1) ∈ h. Let Eij be the (n+1)× (n+1)-matrix with 1 in the i-th row
and j-th column, and zeroes everywhere else. Then we have

ad(H)Eij = [H,Eij] = (xi − xj)Eij = (εi − εj)(H)Eij

for all H ∈ h and i 6= j. It follows that

∆ = {εi − εj | i 6= j , i, j ∈ {1, . . . , n + 1}} .

The resulting root space decomposition is

sl(n + 1,C) = h⊕
⊕

i6=j

CEij .

A set of simple roots is given by

αi = εi − εi+1 , i ∈ {1, . . . , n} ,

and the resulting Dynkin diagram is

©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄
α1 α2 αn−1 αn

.

In a similar way one can calculate explicitly the Dynkin diagrams of the other simple
complex Lie algebras of classical type:
so(2n + 1,C):

©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄
α1 α2 αn−2 αn−1 αn

+3

sp(n,C):
©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄

α1 α2 αn−2 αn−1 αn

ks

so(2n,C):

©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄
©²ª±°®̄

©²ª±°®̄α1 α2 αn−3 αn−2

αn−1

αn

oooooo
OOOOOO

The Dynkin diagrams of the complex simple Lie algebras of exceptional type are:
E6:

©²ª±°®̄

©²ª±°®̄

©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄
α1

α2

α3 α4 α5 α6

E7:

©²ª±°®̄

©²ª±°®̄

©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄
α1

α2

α3 α4 α5 α6 α7
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E8:

©²ª±°®̄

©²ª±°®̄

©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄
α1

α2

α3 α4 α5 α6 α7 α8

F4:
©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄ ©²ª±°®̄

α1 α2 α3 α4

+3

G2:
©²ª±°®̄ ©²ª±°®̄

α1 α2

_jt

The exceptional complex Lie algebras are related to algebraic structures that are con-
structed from the octonions (or Cayley numbers).

One can reconstruct the simple complex Lie algebra from its Dynkin diagram. The basic
idea for the classification of the simple complex Lie algebras is to show that there are no
other Dynkin diagrams (or equivalently, no other reduced root systems).

3.22. Structure theory of compact real Lie groups. Let G be a connected compact
real Lie group. The Lie algebra g of G admits an inner product so that each Ad(g), g ∈ G,
acts as an orthogonal transformation on g and each ad(X), X ∈ g, is a skew-symmetric
endomorphism of g. This yields the direct sum decomposition

g = z(g)⊕ [g, g] ,

where z(g) is the center of g and [g, g] is the commutator ideal in g, which is always
semisimple. The Cartan-Killing form of g is negative semidefinite. If, in addition, g
is semisimple, or equivalently if z(g) = 0, then its Cartan-Killing form B is negative
definite and hence −B induces an Ad(G)-invariant Riemannian metric on G. This metric
is biinvariant, that is, all left and right translations are isometries of G. Let Z(G)o be the
identity component of the center Z(G) of G and Gs the connected Lie subgroup of G with
Lie algebra [g, g]. Both Z(G)o and Gs are closed subgroups of G, Gs is semisimple and has
finite center, and G is isomorphic to the direct product Z(G)o ×Gs.

A torus in G is a connected Abelian Lie subgroup T of G. The Lie algebra t of a torus
T in G is an Abelian Lie subalgebra of g. A torus T in G which is not properly contained
in any other torus in G is called a maximal torus. Analogously, an Abelian Lie subalgebra
t of g which is not properly contained in any other Abelian Lie subalgebra of g is called a
maximal Abelian subalgebra. There is a natural correspondence between the maximal tori
in G and the maximal Abelian subalgebras of g. Any maximal Abelian subalgebra t of g
is of the form

t = z(g)⊕ ts ,

where ts is some maximal Abelian subalgebra of the semisimple Lie algebra [g, g].
Any two maximal Abelian subalgebras of g are conjugate via Ad(g) for some g ∈ G.

This readily implies that any two maximal tori in G are conjugate. Furthermore, if T is
a maximal torus in G, then any g ∈ G is conjugate to some t ∈ T . Any two elements in
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T are conjugate in G if and only if they are conjugate via the Weyl group W (G, T ) of G
with respect to T . The Weyl group of G with respect to T is defined by

W (G, T ) = NG(T )/ZG(T ) ,

where NG(T ) is the normalizer of T in G and ZG(T ) = T is the centralizer of T in G.
In particular, the conjugacy classes in G are parametrized by T/W (G, T ). The common
dimension of the maximal tori of G (resp. of the maximal Abelian subalgebras of g) is
called the rank of G (resp. the rank of g). Let t be a maximal Abelian subalgebra of g.
Then tC is a Cartan subalgebra of gC. For this reason t is also called a Cartan subalgebra
of g and the rank of g coincides with the rank of gC.

We assume from now on that g is semisimple, that is, the center of g is trivial. Then g
is called a compact real form of gC. Each semisimple complex Lie algebra has a compact
real form which is unique up to conjugation by an element in the connected Lie subgroup
of the group of real automorphisms of gC with Lie algebra ad(g). The compact real forms
of the simple complex Lie algebras are for the classical complex Lie algebras

su(n + 1) ⊂ An , so(2n + 1) ⊂ Bn , sp(n) ⊂ Cn , so(2n) ⊂ Dn ,

and for the exceptional complex Lie algebras

g2 ⊂ G2 , f4 ⊂ F4 , e6 ⊂ E6 , e7 ⊂ E7 , e8 ⊂ E8 .

Let

gC = tC ⊕
⊕
α∈∆

(gC)α

be the root space decomposition of gC with respect to tC. Each root α ∈ ∆ is imaginary-
valued on t and real-valued on it. The subalgebra it of tC is a real form of tC and we may
view each root α ∈ ∆ as a one-form in the dual space (it)∗. Since the Cartan-Killing form
B of g is negative definite, it leads via complexification to a positive definite inner product
on it, which we also denote by B. For each λ ∈ (it)∗ there exists a vector Hλ ∈ it such
that

λ(H) = B(H, Hλ)

for all H ∈ it. The inner product on it induces an inner product 〈·, ·〉 on (it)∗. For each
λ, µ ∈ ∆ we then have

〈λ, µ〉 = B(Hλ, Hµ) .

For each α ∈ ∆ we define the root reflection

sα(λ) = λ− 2〈λ, α〉
〈α, α〉 α (λ ∈ (it)∗) ,

which is a transformation on (it)∗. The Weyl group of G with respect to T is isomorphic to
the group generated by all sα, α ∈ ∆. Equivalently one might view W (G, T ) as the group
of transformations on it generated by the reflections in the hyperplanes perpendicular to
iHλ, λ ∈ ∆.
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3.23. Structure theory of semisimple real Lie algebras. Let G be a connected
semisimple real Lie group, g its Lie algebra and B its Cartan-Killing form. A Cartan
involution on g is an involutive automorphism θ of g so that

Bθ(X, Y ) = −B(X, θY )

is a positive definite inner product on g. Each semisimple real Lie algebra has a Cartan
involution, and any two of them are conjugate via Ad(g) for some g ∈ G. Let θ be a Cartan
involution on g. Denoting by k the (+1)-eigenspace of θ and by p the (−1)-eigenspace of
θ, we get the Cartan decomposition

g = k⊕ p .

This decomposition is orthogonal with respect to B and Bθ, B is negative definite on k
and positive definite on p, and

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k .

The Lie algebra k⊕ ip is a compact real form of gC.
Let K be the connected Lie subgroup of G with Lie algebra k. Then there exists a unique

involutive automorphism Θ of G whose differential at the identity of G coincides with θ.
Then K is the fixed point set of Θ, is closed, and contains the center Z(G) of G. If K is
compact then Z(G) is finite, and if Z(G) is finite then K is a maximal compact subgroup
of G. Moreover, the map

K × p → G , (k, X) 7→ kExp(X)

is a diffeomorphism onto G. This is known as a polar decomposition of G.
Let a be a maximal Abelian subspace of p. Then all ad(H), H ∈ a, form a commuting

family of selfadjoint endomorphisms of g with respect to the inner product Bθ. For each
α ∈ a∗ we define

gα = {X ∈ g | ad(H)X = α(H)X for all H ∈ a} .

If λ 6= 0 and gλ 6= 0, then λ is called a restricted root and gλ a restricted root space of g
with respect to a. We denote by Σ the set of all restricted roots of g with respect to a.
The restricted root space decomposition of g is the direct sum decomposition

g = g0 ⊕
⊕

λ∈Σ

gλ .

We always have

[gλ, gµ] ⊂ gλ+µ

and

θ(gλ) = g−λ

for all λ, µ ∈ Σ. Moreover,

g0 = a⊕m ,



LIE GROUP ACTIONS ON MANIFOLDS 25

where m is the centralizer of a in k. We now choose a notion of positivity for a∗, which
leads to a subset Σ+ of positive restricted roots. Then

n =
⊕

λ∈Σ+

gλ

is a nilpotent Lie subalgebra of g. Any two such nilpotent Lie subalgebras are conjugate
via Ad(k) for some k in the normalizer of a in K. The vector space direct sum

g = k⊕ a⊕ n

is called an Iwasawa decomposition of g. The vector space s = a ⊕ n is in fact a solvable
Lie subalgebra of g with [s, s] = n. Let A,N be the Lie subgroups of G with Lie algebra
a, n respectively. Then A and N are simply connected and the map

K × A×N → G , (k, a, n) 7→ kan

is a diffeomorphism onto G, a so-called Iwasawa decomposition of G.
Example: If G = SL(n,R), then K = SO(n), A is the Abelian Lie group of all diagonal

n×n-matrices with determinant one, and N is the nilpotent Lie group of upper triangular
matrices with entries 1 in the diagonal. This decomposition of matrices with determinant
one is well-known from Linear Algebra.

If t is a maximal Abelian subalgebra of m, then h = a ⊕ t is a Cartan subalgebra of g,
that is, hC is a Cartan subalgebra of gC. Consider the root space decomposition of gC with
respect to hC,

gC = hC ⊕
⊕
α∈∆

(gC)α .

Then we have
gλ = g ∩

⊕

α∈∆, α|a=λ

(gC)α

for all λ ∈ Σ and
mC = tC ⊕

⊕

α∈∆, α|a=0

(gC)α .

In particular, all roots are real on a⊕ it. Of particular interest are those real forms of gC

for which a is a Cartan subalgebra of g. In this case g is called a split real form of gC. Note
that g is a split real form if and only if m, the centralizer of a in k, is trivial. The split real
form of sl(n,C) is sl(n,R), the one of so(2n + 1,C) is so(n + 1, n), the one of sp(n,C) is
sp(n,R), and the one of so(2n,C) is so(n, n).

The classification of real simple Lie algebras is difficult, and we just mention the result.
Every simple real Lie algebra is isomorphic to one of the following Lie algebras:

1. the Lie algebra gR, where g is a simple complex Lie algebra (see Section 3.21);
2. the compact real form of a simple complex Lie algebra (see Section 3.22);
3. the classical real simple Lie algebras so(m,n), su(m,n), sp(m,n), sl(n,R), sl(n,H),

sp(n,R), so∗(2n);
4. the exceptional real simple Lie algebras e6

6, e2
6, e−14

6 , e−24
6 , e7

7, e−5
7 , e−25

7 , e8
8, e−24

8 , f44,
f−20
4 , g2

2.
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All the exceptional real simple Lie algebras are related to algebraic structures constructed
from the octonions.

4. Homogeneous spaces

A homogeneous space is a manifold with a transitive group of transformations. Homoge-
neous spaces provide prominent examples for studying the interplay of analysis, geometry,
algebra and topology. A modern introduction to homogeneous spaces can be found in
Kawakubo [38]. Further results on Lie transformation groups may be found in [56].

4.1. Transformation groups. Let G be a group and M be a set. We say that G is a
transformation group on M if there exists a map

G×M → M , (g, p) 7→ gp

such that ep = p for all p ∈ M , where e is the identity of G, and g2(g1p) = (g2g1)p for
all g1, g2 ∈ G and p ∈ M . Such a map is also called a G-action on M . If p ∈ M , then
G · p = {gp | g ∈ G} is the orbit of G through p and Gp = {g ∈ G | gp = p} is the isotropy
subgroup or stabilizer of G at p. The action is transitive if for all p, q ∈ M there exists a
transformation g ∈ G with gp = q, that is, if there exists only one orbit in M . In this
situation M is called a homogeneous G-space.

4.2. Closed subgroups of Lie groups. In the framework of homogeneous spaces, closed
subgroups of Lie groups play an important role. For this reason we summarize here some
sufficient criteria for a subgroup of a Lie group to be closed. Let G be a connected Lie
group and K a connected Lie subgroup of G. Denote by g and k the Lie algebra of G and
K, respectively.

1. (Yosida [71]) If G = GL(n,C) and k is semisimple, then K is closed in G.
2. (Chevalley [23]) If G is simply connected and solvable, then K is simply connected

and closed in G.
3. (Malcev [47]) If the rank of K is equal to the rank of G, then K is closed in G.
4. (Chevalley [24]) If G is simply connected and k is an ideal of g, then K is closed in

G.
5. (Goto [30]) If Exp(k) is closed in G, then K is closed in G.
6. (Mostow [53]) If G is simply connected or compact, and if k is semisimple, then K

is closed in G.
7. (Borel-Lichnerowicz [14]) If G = SO(n) and K acts irreducibly on Rn, then K is

closed in G.

4.3. The quotient space G/K. Let G be a Lie group and K a closed subgroup of G. By
G/K we denote the set of left cosets of K in G,

G/K = {gK | g ∈ G} ,

and by π the canonical projection

π : G → G/K , g 7→ gK .
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We equip G/K with the quotient topology relative to π. Then π is a continuous map
and, since K is closed in G, a Hausdorff space. There exists exactly one smooth manifold
structure on G/K (which is even real analytic) so that π becomes a smooth map and local
smooth sections of G/K in G exist. If K is a normal subgroup of G, then G/K becomes
a Lie group with respect to the multiplication g1K · g2K = (g1g2)K.

If K is a closed subgroup of a Lie group G, then

G×G/K → G/K , (g1, g2K) 7→ (g1g2)K

is a transitive smooth action of G on G/K. In fact, the smooth structure on G/K can be
characterized by the property that this action is smooth. Conversely, suppose we have a
transitive smooth action

G×M → M , (g, p) 7→ gp

of a Lie group G on a smooth manifold M . Let p be a point in M and

Gp = {g ∈ G | gp = p}
the isotropy subgroup of G at p. If q is another point in M and g ∈ G with gp = q,
then Gq = gGpg

−1. Thus the isotropy subgroups of G are all conjugate to each other.
The isotropy group Gp is obviously closed in G. Thus we may equip G/Gp with a smooth
manifold structure as described above. With respect to this structure the map

G/Gp → M , gGp 7→ gp

is a smooth diffeomorphism. In this way we will always identify the smooth manifold M
with the coset space G/K. In this situation π : G → G/K is a principal fiber bundle with
fiber and structure group K, where K acts on G by multiplication from the right.

In the following we will always assume that M is a smooth manifold and G is a Lie
group acting transitively on M , so that M = G/K with K = Go for some point o ∈ M .

4.4. Connected homogeneous spaces. If M is a connected homogeneous G-space, then
also the identity component Go of G acts transitively on M . This allows us to reduce many
problems on connected homogeneous spaces to connected Lie groups and thereby to Lie
algebras.

Proof: Since π : G → G/K is an open map and G/K → M is a homeomorphism, the
orbit of each connected component of G through a point p ∈ M is an open subset of M .
If M is connected this implies that each of these open subsets is M itself, because orbits
are either disjoint or equal.

4.5. Compact homogeneous spaces. If M = G/K is a compact homogeneous G-space
with G and K connected, then there exists a compact subgroup of G acting transitively
on M (Montgomery [50]). This provides the possibility to use the many useful features of
compact Lie groups for studying compact homogeneous spaces.
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4.6. The fundamental group. Let M = G/K be a homogeneous G-space and assume
that G is connected. If K is connected, then the first fundamental group π1(G/K) of
M = G/K is a subgroup of the first fundamental group π1(G) of G and hence Abelian. If
K is not connected, then π1(G/Ko) is an Abelian normal subgroup of π1(G/K) with index
#(K/Ko).

4.7. The Euler characteristic. Recall that for a compact smooth manifold M the Euler
characteristic χ(M) vanishes if and only if there exists a nowhere vanishing smooth vector
field on M . Since any compact Lie group is parallelizable, the Euler characteristic of any
Lie group vanishes. For homogeneous spaces Hopf and Samelson [33] proved:

Let M = G/K be a homogeneous G-space with G compact. Then χ(M) ≥ 0, and
χ(M) > 0 if and only if G and K have the same rank.

Recall that the rank of a compact Lie group is the dimension of a maximal torus in it,
and that any two maximal tori are conjugate to each other by an inner automorphism of
the group.

As an application of the Hopf-Samelson result we see that a compact surface M of
genus g ≥ 2 cannot be a homogeneous space with respect to any compact Lie group, since
χ(M) = 2− 2g < 0.

The result by Hopf and Samelson naturally leads to the question: What are the homo-
geneous spaces with a given Euler characteristic? For G/K simply connected, Wang [67]
proved:

1. If χ(G/K) = 1, then G/K is a point.
2. If χ(G/K) = 2, then G/K is diffeomorphic to the sphere S2n for some n ∈ N.

Wang also classified all simply connected compact homogeneous spaces for which the
Euler characteristic is a prime number. This is a rather short list.

4.8. Effective actions. Let M be a homogeneous G-space and φ : G → Diff(M) be the
homomorphism from G into the diffeomorphism group of M assigning to each g ∈ G the
diffeomorphism

ϕg : M → M , p 7→ gp .

One says that the action of G on M is effective if ker φ = {e}, where e denotes the identity
in G. In other words, an action is effective if just the identity of G acts as the identity
transformation on M . Writing M = G/K, we may characterize ker φ as the largest normal
subgroup of G which is contained in K. Thus G/ker φ is a Lie group with an effective
transitive action on M .

4.9. Reductive decompositions. Let M = G/K be a homogeneous G-space. We denote
by e the identity of G and put o = eK ∈ M . Let g and k be the Lie algebras of G and K,
respectively. As usual we identify the tangent space of a Lie group at the identity with the
corresponding Lie algebra. We choose a linear subspace m of g complementary to k, so that
g = k ⊕ m (direct sum of vector spaces). Then the differential π∗e at e of the projection
π : G → G/K gives rise to an isomorphism

π∗e|m : m → ToM .
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One of the basic tools in studying homogeneous spaces is to use this isomorphism to identify
tangent vectors of M at o with elements in the Lie algebra g. But there are many choices of
complementary subspaces m, and certain ones turn out to be quite useful. We will describe
this now.

Let AdG : G → GL(g) be the adjoint representation of G. The subspace m is said to be
AdG(K)-invariant if AdG(k)m ⊂ m for all k ∈ K. If m is AdG(K)-invariant and k ∈ K,
the differential ϕk∗o at o of the diffeomorphism ϕk : M → M , p 7→ kp has the simple
expression

ϕk∗o = AdG(k)|m .

For this reason one is interested in finding AdG(K)-invariant linear subspaces m of g.
Unfortunately, not every homogeneous space admits such subspaces. A homogeneous space
G/K is called reductive if there exists an AdG(K)-invariant linear subspace m of g so that
g = k⊕m. In this situation g = k⊕m is called a reductive decomposition of g.

We list below a few sufficient criteria for a homogeneous space G/K to admit a reductive
decomposition:

1. K is compact.
2. K is connected and semisimple.
3. K is a discrete subgroup of G.

4.10. Isotropy representations and invariant metrics. The homomorphism

χ : K → GL(ToM) , k 7→ ϕk∗o

is called the isotropy representation of the homogeneous space G/K, and the image χ(K) ⊂
GL(ToM) is called the linear isotropy group of G/K. In case G/K is reductive and g = k⊕m
is a reductive decomposition, the isotropy representation of G/K coincides with the adjoint
representation AdG|K : K → GL(m) (via the identification m = ToM).

The linear isotropy group contains the information whether a homogeneous space G/K
can be equipped with a G-invariant Riemannian structure. A G-invariant Riemannian
metric 〈·, ·〉 on M = G/K is a Riemannian metric so that ϕg is an isometry of M for each
g ∈ G, that is, if G acts on M by isometries. A homogeneous space M = G/K can be
equipped with a G-invariant Riemannian metric if and only if the linear isotropy group
χ(K) is a relative compact subset of the topological space gl(ToM) of all endomorphisms
ToM → ToM . It follows that every homogeneous space G/K with K compact admits a
G-invariant Riemannian metric. Each Riemannian homogeneous space is reductive.

If G/K is reductive and g = k⊕m is a reductive decomposition, then there is a one-to-
one correspondence between the G-invariant Riemannian metrics on G/K and the positive
definite AdG(K)-invariant symmetric bilinear forms on m. Any such bilinear form defines a
Riemannian metric on M by requiring that each ϕg is an isometry. The AdG(K)-invariance
of the bilinear form ensures that the inner product on each tangent space is well-defined.
In particular, if K = {e}, that is, M = G is a Lie group, then the G-invariant Riemannian
metrics on M are exactly the left-invariant Riemannian metrics on G.
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4.11. Levi Civita connection of Riemannian homogeneous spaces. There is an
explicit formula for the Levi Civita connection of a Riemannian homogeneous space. This
of course allows us to investigate the Riemannian geometry of Riemannian homogeneous
spaces in great detail. We will describe the Levi Civita connection now.

Let M = G/K be a reductive homogeneous space with reductive decomposition g =
k ⊕ m, and assume that 〈·, ·〉 is an AdG(K)-invariant inner product on m. We denote by
g the induced G-invariant Riemannian metric on M . For each X ∈ g we obtain a Killing
vector field X∗ on M by means of

X∗
p =

d

dt

∣∣∣∣
t=0

(t 7→ Exp(tX)p)

for all p ∈ M . Then

k = {X ∈ g | X∗
o = 0} ,

and

m → ToM , X 7→ X∗
o

is a vector space isomorphism. A simple calculation yields

[X,Y ]∗ = −[X∗, Y ∗]

for all X, Y ∈ g. For a vector X ∈ g we denote by Xm the m-component of X with respect
to the decomposition g = k⊕m. We define a symmetric bilinear map U : m×m → m by

2〈U(X,Y ), Z〉 = 〈[Z, X]m, Y 〉+ 〈X, [Z, Y ]m〉 , X, Y, Z ∈ m .

Then the Levi Civita connection ∇ of (M, g) is given by

(∇X∗Y ∗)o =

(
−1

2
[X, Y ]m + U(X, Y )

)∗

o

for all X, Y ∈ m.

4.12. Naturally reductive Riemannian homogeneous spaces. The condition U ≡ 0,
with U as in the previous section, characterizes the so-called naturally reductive Riemann-
ian homogeneous spaces. More precisely, a Riemannian homogeneous space M is said to
be naturally reductive if there exists a connected Lie subgroup G of the isometry group
I(M) of M which acts transitively and effectively on M and a reductive decomposition
g = k⊕m of the Lie algebra g of G, where k is the Lie algebra of the isotropy subgroup K
of G at some point o ∈ M , such that

〈[X, Z]m, Y 〉+ 〈Z, [X, Y ]m〉 = 0

for all X,Y, Z ∈ m, where 〈·, ·〉 denotes the inner product on m which is induced by
the Riemannian metric on M . Any such decomposition is called a naturally reductive
decomposition of g. The above algebraic condition is equivalent to the geometric condition
that every geodesic in M through o is of the form Exp(tX)o for some X ∈ m.

Note that the definition of natural reductivity depends on the choice of the subgroup G.
A useful criterion for natural reductivity was proved by Kostant [42]:
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Let M = G/K be a reductive homogeneous space with reductive decomposition g =
k ⊕ m. An AdG(K)-invariant inner product 〈·, ·〉 on m induces a naturally reductive Rie-
mannian metric on M if and only if on the ideal g′ = m + [m,m] of g there exists a
nondegenerate symmetric bilinear form q such that q(g′ ∩ k,m) = 0, 〈·, ·〉 = q|(m×m), and
q is AdG(G′)-invariant, where G′ is the connected Lie subgroup of G with Lie algebra g′.

4.13. Normal Riemannian homogeneous spaces. A homogeneous space M = G/K
with a G-invariant Riemannian metric g is called normal homogeneous if there exists an
AdG(G)-invariant inner product q on g such that g is the induced Riemannian metric from
q|(m×m), where m = k⊥ is the orthogonal complement of k in g with respect to q. It follows
immediately from Kostant’s result in the previous section that each normal homogeneous
space is naturally reductive.

It is well-known that there exists an AdG(G)-invariant inner product on the Lie algebra
g of a Lie group G if and only if G is compact. Thus every normal homogeneous space
is compact. If G is compact and semisimple, then the Cartan-Killing form B is negative
definite. Thus we may choose q = −B, in which case M = G/K is called a standard
Riemannian homogeneous space, and the induced Riemannian metric on M is called the
standard homogeneous metric or Cartan-Killing metric on M . Every standard Riemann-
ian homogeneous space is normal homogeneous and hence also naturally reductive. To
summarize, if G is a compact and semisimple Lie group and K is a closed subgroup of
G, then the Cartan-Killing form of G induces a G-invariant Riemannian metric g on the
homogeneous space M = G/K such that (M, g) is normal homogeneous.

If, in addition, there exists an involutive automorphism σ on G such that (Gσ)o ⊂ K ⊂
Gσ, where Gσ denotes the fixed point set of σ, then the standard homogeneous space
M = G/K is a Riemannian symmetric space of compact type (see next section for more
details on symmetric spaces).

An example of a naturally reductive Riemannian homogeneous space which is not normal
is the 3-dimensional Heisenberg group with any left-invariant Riemannian metric.

4.14. Curvature of naturally reductive Riemannian homogeneous spaces. Let
M = G/K be a naturally reductive Riemannian homogeneous space with naturally reduc-
tive decomposition g = k⊕m. Using the explicit expression for the Levi Civita connection
of M , a straightforward lengthy calculation leads to the following expression for the Rie-
mannian curvature tensor R of M :

Ro(X, Y )Z = −[[X, Y ]k, Z]− 1

2
[[X,Y ]m, Z]m − 1

4
[[Z, X]m, Y ]m +

1

4
[[Z, Y ]m, X]m

for all X, Y, Z ∈ m ∼= ToM .
From the curvature tensor one can easily calculate the sectional curvature. If X, Y ∈ m

are orthonormal, we denote by KX,Y the sectional curvature with respect to the 2-plane
spanned by X and Y . If M is normal homogeneous, then

KX,Y = ||[X,Y ]k||2 +
1

4
||[X,Y ]m||2 ≥ 0 .

Thus every normal Riemannian homogeneous space has nonnegative sectional curvature.
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One can easily deduce formulae for the Ricci curvature and the scalar curvature from
the above expression for the Riemannian curvature tensor.

5. Symmetric spaces and flag manifolds

Symmetric spaces form a subclass of the homogeneous spaces and were studied intensely
and also classified by Elie Cartan [17], [18]. The fundamental books on this topic are Hel-
gason [31] and Loos [46]. Another nice introduction may be found in [64]. Flag manifolds
are homogeneous spaces which are intimately related to symmetric spaces.

5.1. (Locally) symmetric spaces. Let M be a Riemannian manifold, p ∈ M , and
r ∈ R+ sufficiently small so that normal coordinates are defined on the open ball Br(p)
consisting of all points in M with distance less than r to p. Denote by expp : TpM → M
the exponential map of M at p. The map

sp : Br(p) → Br(p) , exp(tv) 7→ exp(−tv)

reflects in p the geodesics of M through p and is called a local geodesic symmetry at p. A
connected Riemannian manifold is called a locally symmetric space if at each point p in
M there exists an open ball Br(p) such that the corresponding local geodesic symmetry sp

is an isometry. A connected Riemannian manifold is called a symmetric space if at each
point p ∈ M such a local geodesic symmetry extends to a global isometry sp : M → M .
This is equivalent to saying that there exists an involutive isometry sp of M such that
p is an isolated fixed point of sp. In such a case one calls sp the symmetry of M in
p. If M is a symmetric space, then the symmetries sp, p ∈ M , generate a group of
isometric transformations which acts transitively on M . Hence every symmetric space is a
Riemannian homogeneous space.

Let M be a Riemannian homogeneous space and suppose there exists a symmetry of M
at some point p ∈ M . Let q be any point in M and g an isometry of M with g(p) = q. Then
sq := gspg

−1 is a symmetry of M at q. In order to show that a Riemannian homogeneous
space is symmetric it therefore suffices to construct a symmetry at one point. Using this
we can easily describe some examples of symmetric spaces. The Euclidean space Rn is
symmetric with s0 : Rn → Rn , p 7→ −p. The map

Sn → Sn , (p1, . . . , pn, pn+1) 7→ (−p1, . . . ,−pn, pn+1)

is a symmetry of the sphere Sn at (0, . . . , 0, 1). In a similar way, using the hyperboloid
model of the real hyperbolic space RHn in Lorentzian space Ln+1, one can show that RHn

is a symmetric space. Let G be a connected compact Lie group. Any Ad(G)-invariant
inner product on g extends to a biinvariant Riemannian metric on G. With respect to such
a Riemannian metric the inverse map se : G → G , g 7→ g−1 is a symmetry of G at e.
Thus any connected compact Lie group is a symmetric space.

We recall some basic features of (locally) symmetric spaces. A Riemannian manifold
is locally symmetric if and only if its Riemannian curvature tensor is parallel, that is,
∇R = 0. If M is a connected, complete, locally symmetric space, then its Riemannian
universal covering is a symmetric space. Note that there are complete locally symmetric
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spaces which are not symmetric, even not homogeneous. For instance, let M be a compact
Riemann surface with genus ≥ 2 and equipped with a Riemannian metric of constant
curvature −1. It is known that the isometry group of M is finite, whence M is not
homogeneous and therefore also not symmetric. On the other hand, M is locally isometric
to the real hyperbolic plane RH2 and hence locally symmetric.

5.2. Cartan decomposition and Riemannian symmetric pairs. To each symmetric
space one can associate a Riemannian symmetric pair. We first recall the definition of a
Riemannian symmetric pair. Let G be a connected Lie group and s a nontrivial involutive
automorphism of G. We denote by Gs ⊂ G the set of fixed points of s and by Go

s the
connected component of Gs containing the identity e of G. Let K be a closed subgroup of
G with Go

s ⊂ K ⊂ Gs. Then σ := s∗e is an involutive automorphism of g and

k = {X ∈ g | σX = X} .

The linear subspace

m = {X ∈ g | σX = −X}
of g is called the standard complement of k in g. Then we have g = k ⊕ m (direct sum of
vector spaces) and

[k,m] ⊂ m , [m,m] ⊂ k .

This particular decomposition of g is called the Cartan decomposition or standard decom-
position of g with respect to σ. In this situation, the pair (G,K) is called a Riemannian
symmetric pair if AdG(K) is a compact subgroup of GL(g) and m is equipped with some
AdG(K)-invariant inner product.

Suppose (G,K) is a Riemannian symmetric pair. The inner product on m determines a
G-invariant Riemannian metric on the homogeneous space M = G/K, and the map

M → M , gK 7→ s(g)K ,

where s is the involutive automorphism on G, is a symmetry of M at o = eK ∈ M . Thus
M is a symmetric space. Conversely, suppose M is a symmetric space. Let G be the
identity component of the full isometry group M , o any point in M , so the symmetry of
M at o, and K the isotropy subgroup of G at o. Then

s : G → G , g 7→ sogso

is an involutive automorphism of G with Go
s ⊂ K ⊂ Gs, and the inner product on the

standard complement m of k in g is AdG(K)-invariant (using our usual identification m =
ToM). In this way the symmetric space M determines a Riemannian symmetric pair
(G,K). This Riemannian symmetric pair is effective, that is, each normal subgroup of
G which is contained in K is trivial. In the way described here there is a one-to-one
correspondence between symmetric spaces and effective Riemannian symmetric pairs.
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5.3. Riemannian geometry of symmetric spaces. Since the Cartan decomposition
is naturally reductive, everything that has been said about the Riemannian geometry of
naturally reductive spaces holds also for symmetric spaces. We summarize here a few basic
facts.

Let M be a symmetric space, o ∈ M , G = Io(M), K the isotropy group at o and
g = k ⊕ m the corresponding Cartan decomposition of g. For each X ∈ g we have a
one-parameter group Exp(tX) of isometries of M . We denote the corresponding complete
Killing vector field on M by X∗. As usual, we identify m and ToM by means of the
isomorphism m → ToM , X 7→ X∗

o . The Levi Civita connection of M is given by

(∇X∗Y ∗)o = 0

for all X, Y ∈ m. For each X ∈ m the geodesic γX : R→ M with γX(0) = o and γ̇X(0) = X
is the curve t 7→ Exp(tX)o. Let ΦX∗

be the flow of X∗. Then the parallel translation along
γX from o = γX(0) to γX(t) is given by

(ΦX∗
t )∗o : ToM → TγX(t)M .

The Riemannian curvature tensor Ro of M at o is given by the simple formula

Ro(X,Y )Z = −[[X, Y ], Z]

for all X, Y, Z ∈ m = ToM .

5.4. Semisimple symmetric spaces, rank, and duality. Let M be a symmetric space

and M̃ its Riemannian universal covering space. Let M̃0 × . . . × M̃k be the de Rham

decomposition of M̃ , where the Euclidean factor M̃0 is isometric to some Euclidean space

of dimension ≥ 0. Each M̃i, i > 0, is a simply connected, irreducible, symmetric space. A

semisimple symmetric space is a symmetric space for which M̃0 has dimension zero. This

notion is due to the fact that if M̃0 is trivial then Io(M) is a semisimple Lie group. A
symmetric space M is said to be of compact type if M is semisimple and compact, and it

is said to be of noncompact type if M is semisimple and each factor of M̃ is noncompact.
Symmetric spaces of noncompact type are always simply connected. An s-representation is
the isotropy representation of a simply connected, semisimple, symmetric space M = G/K
with G = Io(M).

The rank of a semisimple symmetric space M = G/K is the dimension of a maximal
Abelian subspace of m in some Cartan decomposition g = k ⊕ m of the Lie algebra g of
G = Io(M).

Let (G,K) be a Riemannian symmetric pair so that G/K is a simply connected Rie-
mannian symmetric space of compact type or of noncompact type, respectively. Consider
the complexification gC = g + ig of g and the Cartan decomposition g = k⊕m of g. Then
g∗ = k⊕ im is a real Lie subalgebra of gC with respect to the induced Lie algebra structure.
Let G∗ be the real Lie subgroup of GC with Lie algebra g∗. Then G∗/K is a simply con-
nected Riemannian symmetric space of noncompact type or of compact type, respectively,
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with Cartan decomposition g∗ = k⊕ im. This feature is known as duality between symmet-
ric spaces of compact type and of noncompact type and describes explicitly a one-to-one
correspondence between these two types of simply connected symmetric spaces.

5.5. Classification of symmetric spaces. Every simply connected symmetric space de-
composes into the Riemannian product of a Euclidean space and some simply connected, ir-
reducible, symmetric spaces. Thus the classification problem for simply connected symmet-
ric spaces reduces to the classification of simply connected, irreducible symmetric spaces.
Any such space is either of compact type or of noncompact type. The concept of duality
enables one to reduce the classification problem to those of noncompact type. The cru-
cial step for deriving the latter classification is to show that every noncompact irreducible
symmetric space is of the form M = G/K with some simple noncompact real Lie group
G with trivial center and K a maximal compact subgroup of G. If the complexification
of g is simple as a complex Lie algebra, then M is said to be of type III, otherwise M
is said to be of type IV. The corresponding compact irreducible symmetric spaces, which
are obtained by duality, are said to be of type I and II, respectively. The complete list of
simply connected irreducible symmetric spaces is as follows:

1. Classical types I and III:

Type I (compact) Type III (noncompact) Dimension Rank

SU(n)/SO(n) SL(n,R)/SO(n) (n− 1)(n + 2)/2 n− 1
SU(2n)/Sp(n) SL(n,H)/Sp(n) (n− 1)(2n + 1) n− 1
SU(p + q)/S(U(p)× U(q)) SU(p, q)/S(U(p)× U(q)) 2pq min{p, q}
SO(p + q)/SO(p)× SO(q) SOo(p, q)/SO(p)× SO(q) pq min{p, q}
SO(2n)/U(n) SO∗(2n)/U(n) n(n− 1) [n/2]
Sp(n)/U(n) Sp(n,R)/U(n) n(n + 1) n
Sp(p + q)/Sp(p)× Sp(q) Sp(p, q)/Sp(p)× Sp(q) 4pq min{p, q}
The symmetric space SO(p + q)/SO(p) × SO(q) is the Grassmann manifold of all p-

dimensional oriented linear subspaces of Rp+q and will often be denoted by G+
p (Rp+q).

The Grassmann manifold G+
2 (R4) is isometric to the Riemannian product S2 × S2 and

hence reducible. So, strictly speaking, this special case has to be excluded from the above
table. Disregarding the orientation of the p-planes we have a natural 2-fold covering map
G+

p (Rp+q) → Gp(Rp+q) onto the Grassmann manifold Gp(Rp+q) of all p-dimensional linear
subspaces of Rp+q, which can be written as the homogeneous space SO(p + q)/S(O(p) ×
O(q)). Similarily, the symmetric space SU(p+q)/S(U(p)×U(q)) is the Grassmann manifold
of all p-dimensional complex linear subspaces of Cp+q and will be denoted by Gp(Cp+q).
Eventually, the symmetric space Sp(p + q)/Sp(p) × Sp(q) is the Grassmann manifold of
all p-dimensional quaternionic linear subspaces of Hp+q and will be denoted by Gp(Hp+q).
The Grassmann manifold G+

1 (R1+q) is the q-dimensional sphere Sq. And the Grassmann
manifold G1(R1+q) (resp. G1(C1+q) or G1(H1+q)) is the q-dimensional real (resp. complex
or quaternionic) projective space RP q (resp. CP q or HP q). The dual space of the sphere
Sq is the real hyperbolic space RHq. And the dual space of the complex projective space
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CP q (resp. the quaternionic projective space HP q) is the complex hyperbolic space CHq

(resp. the quaternionic hyperbolic space HHq).
All these spaces have interesting applications in geometry. For instance, if M is a p-

dimensional submanifold of Rp+q, then the map

M → Gp(Rp+q) , p 7→ TpM

is the so-called Gauss map of M . It provides an important tool for studying the geometry
of submanifolds. For instance, for p = 2 and oriented surfaces M2 in R2+q the Gauss map
takes values in the oriented Grassmann manifold G+

2 (R2+q). This Grassmann manifold is an
Hermitian symmetric space (see next section) and hence is equipped with a Kähler structure
J . Assume that M2 is an oriented surface in R2+q whose Gauss map f : M → G2(R2+q) is
an immersion. Since M is oriented it has a natural holomorphic structure. Then one can
prove that f is a holomorphic map if and only if M is contained in a sphere in R2+q, and
f is an anti-holomorphic map if and only if M is a minimal surface.

In low dimensions certain symmetric spaces are isometric to each other (with a suitable
normalization of the Riemannian metric):

S2 = CP 1 = SU(2)/SO(2) = SO(4)/U(2) = Sp(1)/U(1) , S4 = HP 1 ,

S5 = SU(4)/Sp(2) , CP 3 = SO(6)/U(3) , G+
2 (R5) = Sp(2)/U(2) ,

G+
2 (R6) = G2(C4) , G+

2 (R8) = SO(8)/U(4) , G+
3 (R6) = SU(4)/SO(4) .

In the noncompact case one has isometries between the corresponding dual symmetric
spaces.

2. Exceptional types I and III:

Type I (compact) Type III (noncompact) Dimension Rank

E6/Sp(4) E6
6/Sp(4) 42 6

E6/SU(6)× SU(2) E2
6/SU(6)× SU(2) 40 4

E6/T · Spin(10) E−14
6 /T · Spin(10) 32 2

E6/F4 E−26
6 /F4 26 2

E7/SU(8) E7
7/SU(8) 70 7

E7/SO(12)× SU(2) E−5
7 /SO(12)× SU(2) 64 4

E7/T · E6 E−25
7 /T · E6 54 3

E8/SO(16) E8
8/SO(16) 128 8

E8/E7 × SU(2) E−24
8 /E7 × SU(2) 112 4

F4/Sp(3)× SU(2) F 4
4 /Sp(3)× SU(2) 28 4

F4/Spin(9) F−20
4 /Spin(9) 16 1

G2/SO(4) G2
2/SO(4) 8 2

Here we denote by E6, E7, E8, F4, G2 the connected, simply connected, compact, real Lie
group with Lie algebra e6, e7, e8, f4, g2, respectively. This is the same notation as we used
for the corresponding simple complex Lie algebras, but it should always be clear from the
context what these symbols represent. The compact real Lie group G2 can be realized
as the automorphism group of the (nonassociative) real division algebra O of all Cayley
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numbers (or octonions). The compact real Lie group F4 can be explicitly realized as the
automorphism group of the exceptional Jordan algebra of all 3 × 3-Hermitian matrices
with coefficients in O. The symmetric space F4/Spin(9) is the Cayley projective plane
OP 2 and the dual space F−20

4 /Spin(9) is the Cayley hyperbolic plane OH2. Unlike their
counterparts for R, C and H, the Cayley projective plane and the Cayley hyperbolic plane
cannot be realized as a set of lines in a 3-dimensional vector space over O. This is due to the
nonassociativity of the Cayley numbers. The exceptional symmetric space E6/T ·Spin(10)
is sometimes viewed as the complexification of OP 2 (for more about this see the paper [6]
by Atiyah and the author).

3. Classical types II and IV:

Type II (compact) Type IV (noncompact) Dimension Rank

SU(n + 1) SL(n + 1,C)/SU(n + 1) n(n + 2) n
Spin(2n + 1) SO(2n + 1,C)/SO(2n + 1) n(2n + 1) n
Sp(n) Sp(n,C)/Sp(n) n(2n + 1) n
Spin(2n) SO(2n,C)/SO(2n) n(2n− 1) n

Since Spin(2) is isomorphic to U(1), and Spin(4) is isomorphic to SU(2) × SU(2), we
have to assume n ≥ 3 for the spaces in the last row this table. In low dimensions there are
the following additional isomorphisms:

Spin(3) = SU(2) = Sp(1) , Spin(5) = Sp(2) , Spin(6) = SU(4) .

In the noncompact case there are isomorphisms between the corresponding dual spaces.

4. Exceptional types II and IV:

Type II (compact) Type IV (noncompact) Dimension Rank

E6 EC
6 /E6 78 6

E7 EC
7 /E7 133 7

E8 EC
8 /E8 248 8

F4 FC4 /F4 52 4
G2 GC

2 /G2 14 2

5.6. Hermitian symmetric spaces. An Hermitian symmetric space is a symmetric space
which is equipped with a Kähler structure so that the geodesic symmetries are holomorphic
maps. The simplest example of an Hermitian symmetric space is the complex vector space
Cn. For semisimple symmetric spaces one can easily decide whether it is Hermitian or
not. In fact, let (G,K) be the Riemannian symmetric pair of an irreducible semisimple
symmetric space M . Then the center of K is either discrete or one-dimensional. The
irreducible semisimple Hermitian symmetric spaces are precisely those for which the center
of K is one-dimensional. In this case the adjoint action ad(Z) on m of a suitable element
Z in the center of k induces the almost complex sructure J on M . This gives the list
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compact type noncompact type

SU(p + q)/S(U(p)× U(q)) SU(p, q)/S(U(p)× U(q))
SO(2 + q)/SO(2)× SO(q) SOo(2, q)/SO(2)× SO(q)
SO(2n)/U(n) SO∗(2n)/U(n)
Sp(n)/U(n) Sp(n,R)/U(n)
E6/T · Spin(10) E−14

6 /T · Spin(10)
E7/T · E6 E−25

7 /T · E6

Note that SO(4)/SO(2)×SO(2) is isometric to the Riemannian product S2×S2, whence
we have to exclude the case q = 2 in the second row of the above table. Every semisimple
Hermitian symmetric space is simply connected and hence decomposes into the Riemannian
product of irreducible semisimple Hermitian symmetric spaces.

5.7. Complex flag manifolds. Let G be a connected, compact, semisimple, real Lie
group with trivial center and g its Lie algebra. Consider the action of G on g by the
adjoint representation Ad : G → End(g). For each 0 6= X ∈ g the orbit

G ·X = {Ad(g)X | g ∈ G}
is a homogeneous G-space. Let tX be the intersection of all maximal Abelian subalgebras
of g containing X and TX the torus in G with Lie algebra tX . Then the isotropy subgroup
of G at X is ZG(TX), the centralizer of TX in G, and therefore

G ·X = G/ZG(TX) .

In particular, if X is a regular element of g, that is, if there is a unique maximal Abelian
subalgebra t of g which contains X, then G · X = G/T , where T is the maximal torus
in G with Lie algebra t. Any orbit G · X of the adjoint representation of G is called a
complex flag manifold. In the special case of G = SU(n) one obtains the flag manifolds of
all possible flags in Cn in this way. In particular, when T is a maximal torus of SU(n), then
SU(n)/T is the flag manifold of all full flags in Cn, that is, of all possible arrangements
{0} ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ Cn, where V k is a k-dimensional complex linear subspace of Cn.

The importance of complex flag manifolds becomes clear from the following facts. Each
orbit G ·X admits a canonical complex structure which is also integrable (Borel [13]). If
G is simple there exists a unique (up to homothety) G-invariant Kähler-Einstein metric on
G ·X with positive scalar curvature and which is compatible with the canonical complex
structure on G ·X (Koszul [43]). Moreover, any Kähler-Einstein metric on G ·X is homoge-
neous under its own group of isometries and is obtained from a G-invariant Kähler-Einstein
metric via some automorphism of the complex structure (Matsushima [48]). Conversely,
any simply connected, compact, homogeneous Kähler manifold is isomorphic as a com-
plex homogeneous manifold to some orbit G ·X of the adjoint representation of G, where
G = Io(M) and X ∈ g. Note that each compact homogeneous Kähler manifold is the Rie-
mannian product of a flat complex torus and a simply connected, compact, homogeneous
Kähler manifold (Matsushima [49], Borel and Remmert [15]).
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5.8. Real flag manifolds. A real flag manifold is an orbit of an s-representation. Real
flag manifolds are also known as R-spaces, a notion that is used more frequently in earlier
papers on this topic. Note that the s-representation of a symmetric space of noncompact
type is the same as the one of the corresponding dual symmetric space. Thus in order to
classify and study real flag manifolds it is sufficient to consider just one type of symmetric
spaces.

Let M = G/K be a simply connected semisimple symmetric space of noncompact type
with G = Io(M), o ∈ M and K the isotropy subgroup of G at o. Note that K is connected
as M is assumed to be simply connected and G is connected. We consider the corresponding
Cartan decomposition g = k⊕m of the semisimple real Lie algebra g of G. Let 0 6= X ∈ m
and K · X the orbit of K through X via the s-representation. For each k ∈ K we have
k ·X = k∗oX = Ad(k)X and therefore K ·X = K/KX with KX = {k ∈ K | Ad(k)X = X}.
Let aX be the intersection of all maximal Abelian subspaces a of m with X ∈ a. We say
that X is regular if aX is a maximal Abelian subspace of m, or equivalently, if there exists
a unique maximal Abelian subspace of m which contains X. Otherwise we call X singular.
The isotropy subgroup KX is the centralizer of aX in K. If, in particular, g is a split real
form of gC and X is regular, then K ·X = K.

In general, a real flag manifold is not a symmetric space. Consider the semisimple real Lie
algebra g equipped with the positive definite inner product Bσ(X,Y ) = −B(X, σY ), where
σ is the Cartan involution on g coming from the symmetric space structure of G/K. For
0 6= X ∈ m the endomorphism ad(X) : g → g is selfadjoint and hence has real eigenvalues.
The real flag manifold K ·X is a symmetric space if and only if the eigenvalues of ad(X)
are −c, 0, +c for some c > 0. Note that not every semisimple real Lie algebra g admits
such an element X. A real flag manifold which is a symmetric space is called a symmetric
R-space. If, in addition, g is simple, then it is called an irreducible symmetric R-space.
Decomposing g into its simple parts one sees easily that every symmetric R-space is the
Riemannian product of irreducible symmetric R-spaces.

The classification of the symmetric R-spaces was established by Kobayashi and Nagano
[40]. It follows from their classification and a result by Takeuchi [63] that the symmetric
R-spaces consist of the Hermitian symmetric spaces of compact type and their real forms.
A real form M of a Hermitian symmetric space M̄ is a connected, complete, totally real,
totally geodesic submanifold of M̄ whose real dimension equals the complex dimension of
M̄ . These real forms were classified by Takeuchi [63] and independently by Leung [44].

Among the irreducible symmetric R-spaces the Hermitian symmetric spaces are precisely
those arising from simple complex Lie groups modulo some compact real form. This means
that an irreducible symmetric R-space is a Hermitian symmetric space or a real form
precisely if the symmetric space G/K is of type IV or III, respectively. The isotropy
representation of a symmetric space G/K of noncompact type is the same as the isotropy
representation of its dual simply connected compact symmetric space. Thus we may also
characterize the Hermitian symmetric spaces among the irreducible symmetric R-spaces as
those spaces which arise as an orbit of the adjoint representation of a simply connected,
compact, real Lie group G, or equivalently, which is a complex flag manifold. This leads
to the following table:
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G K ·X = Ad(G) ·X Remarks

Spin(n) SO(n)/SO(2)× SO(n− 2) n ≥ 5
Spin(2n) SO(2n)/U(n) n ≥ 3
SU(n) SU(n)/S(U(p)× U(n− p)) n ≥ 2, 1 ≤ p ≤ [n

2
]

Sp(n) Sp(n)/U(n) n ≥ 2
E6 E6/T · Spin(10)
E7 E7/T · E6

The real forms are always non-Hermitian and among the irreducible symmetric R-spaces
they are precisely those spaces arising from the isotropy representation of a symmetric space
G/K of type I.

G/K K ·X Remarks

SU(n)/SO(n) Gp(Rn) n ≥ 3, 1 ≤ p ≤ [n
2
]

SU(2n)/Sp(n) Gp(Hn) n ≥ 2, 1 ≤ p ≤ [n
2
]

SU(2n)/S(U(n)× U(n)) U(n) n ≥ 2
SO(n)/SO(p)× SO(n− p) (Sp−1 × Sn−p−1)/Z2 n ≥ 3, 1 ≤ p ≤ [n

2
]

SO(2n)/SO(n)× SO(n) SO(n) n ≥ 5
SO(4n)/U(2n) U(2n)/Sp(n) n ≥ 3
Sp(n)/U(n) U(n)/SO(n) n ≥ 3
Sp(2n)/Sp(n)× Sp(n) Sp(n) n ≥ 2
E6/Sp(4) G2(H4)/Z2

E6/F4 OP 2

E7/SU(8) (SU(8)/Sp(4))/Z2

E7/T · E6 T · E6/F4

The symmetric R-spaces appear in geometry and topology in various contexts. We just
mention two examples for geometry.

Every symmetric R-space is a symmetric submanifold of the Euclidean space m. Here,
a submanifold S of Rn is symmetric if the reflection of Rn in each normal space of S leaves
S invariant. Simple examples of symmetric submanifolds in Rn are affine subspaces and
spheres. It was proved by Ferus [27] that the symmetric submanifolds of Euclidean spaces
are essentially given by the symmetric R-spaces. More precisely, Ferus proved: Let S be
a symmetric submanifold of Rn. Then there exist nonnegative integers n0, n1, . . . , nk with
n = n0 + . . . + nk and irreducible symmetric R-spaces S1 ⊂ Rn1 , . . . , Sk ⊂ Rnk such
that S is isometric to Rn0 × S1 × . . .× Sk and the embedding of S into Rn is the product
embedding of Rn0 × S1 × . . .× Sk into Rn = Rn0 × . . .× Rnk .

The group of conformal transformations of the sphere Sn, the group of projective trans-
formations of the projective space CP n, HP n or OP 2, and the group of biholomorphic
transformations of a Hermitian symmetric space of compact type provides an example of a
transformation group that is larger than the isometry group of the space. A natural ques-
tion is whether every symmetric space of compact type has such a larger transformation
group. It was proved by Nagano [54] that just the symmetric R-spaces admit such larger
transformation groups.
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5.9. Isotropy irreducible Riemannian homogeneous spaces. A connected homoge-
neous space M = G/K is called isotropy irreducible if G acts effectively on M , K is
compact, and AdG|K acts irreducibly on m = g/k. It is called strongly isotropy irreducible
if also AdG|Ko acts irreducibly on m = g/k. For the classification of strongly isotropy irre-
ducible Riemannian homogeneous spaces see [70], and for isotropy irreducible Riemannian
homogeneous spaces see [68].

Let M = G/K be isotropy irreducible. Since K is compact, there exists an AdG(K)-
invariant inner product on m. Since AdG|K acts irreducibly on m, Schur’s Lemma implies
that this inner product 〈·, ·〉 is unique up to a constant factor. This implies that there is
a unique G-invariant Riemannian metric g on M up to homothety. Since the Ricci tensor
rico at o is also an AdG(K)-invariant symmetric bilinear form on m, Schur’s Lemma implies
that rico is a multiple of 〈·, ·〉. This implies that (M, g) is an Einstein manifold.

One can prove that every noncompact isotropy irreducible Riemannian homogeneous
space is a symmetric space (Besse [11]). Thus only the compact case is of interest in this
context.

Let M = G/K and G′/K ′ be simply connected, isotropy irreducible Riemannian homo-
geneous spaces. If these two spaces are isometric to each other, then one of the following
statements holds:

1. There exists an isomorphism α : G → G′ with α(K) = K ′;
2. M is isometric to the Euclidean space Rn, n = dim M ;
3. M is isometric to the 7-dimensional sphere S7 with its standard metric and the two

quotients are SO(8)/SO(7) and Spin(7)/G2;
4. M is isometric to the 6-dimensional sphere S6 with its standard metric and the two

quotients are SO(7)/SO(6) and G2/SU(3).

This result is a consequence of a classification by Onishchik [55] of closed subgroups G′ of
G which are still transitive on G/K.

5.10. The isometry group of an isotropy irreducible Riemannian homogeneous
space. Let M be a Riemannian homogeneous space. A fundamental problem is to deter-
mine the isometry group I(M) of M and its identity component Io(M).

We first describe how one can reduce this problem to the simply connected case. Let

π : M̃ → M be the Riemannian universal covering of M . Then M̃ is a simply connected

Riemannian homogeneous space and M = M̃/Γ, where Γ ⊂ I(M̃) is the group of deck

transformations of the covering. Let p, q ∈ M and p̃, q̃ ∈ M̃ with π(p̃) = p and π(q̃) = q.

Since M̃ is simply connected, there exists for each isometry f ∈ I(M) a unique isometry

f̃ ∈ I(M̃) with f̃(p̃) = q̃ and π ◦ f̃ = f ◦ π. Clearly, f̃ maps fibers of π to fibers of π.

Conversely, any f̃ ∈ I(M̃) which maps fibers of π to fibers of π induces a unique isometry

f ∈ I(M) with π ◦ f̃ = f ◦ π. Obviously, f̃ ∈ I(M̃) preserves the fibers of π if and only if

f̃Γ = Γf̃ , that is, if f̃ is in the normalizer NΓ of Γ in I(M̃). It follows that

I(M) = NΓ/Γ .
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For simply connected symmetric spaces the isometry group has been calculated by E.
Cartan. His idea also works for calculating the isometry group in the more general situ-
ation of isotropy irreducible Riemannian homogeneous spaces. Let M = G/K be a non-
Euclidean simply connected isotropy irreducible Riemannian homogeneous space, where
G is connected and acts effectively on M . We also assume that G/K is different from
Spin(7)/G2 and G2/SU(3) (see Section 5.9). Then

Io(M) = G .

In order to describe the full isometry group I(M) we denote by Aut(K)G the group of
automorphisms of K that can be extended to automorphisms of G, and by Inn(K)G the
subgroup of all inner automorphisms in Aut(K)G, which is a normal subgroup of Aut(K)G

of finite index r. Hence we can write

Aut(K)G =
r⋃

i=1

kiInn(K)G .

We define Ḡ = G∪ sG and K̄ = K ∪ sK if rk(G) > rk(K) and G/K is a symmetric space
with symmetry s, and Ḡ = G and K̄ = K otherwise. Recall that rk(G) > rk(K) means
that the Euler characteristic of M = G/K is positive. In this case the symmetric space M
is often called an outer symmetric space. Then the full isometry group I(M) of M is given
by

I(M) =
r⋃

i=1

kiḠ ,

and ∪r
i=1kiK̄ is the isotropy subgroup at o = eK.

5.11. Ricci-flat Riemannian homogeneous spaces. Every Riemannian homogeneous
space with vanishing Ricci curvature is isometric to the Riemannian product Rk × T n−k

of the Euclidean space Rk and a flat torus T n−k = Rn−k/Γ, where Γ is a lattice in Rn−k

(Alekseevsky and Kimelfeld [5]).
Proof. The Cheeger-Gromoll Splitting Theorem states that every connected complete

Riemannian manifold with nonnegative Ricci curvature is the Riemannian product of a
Euclidean space and a connected complete Riemannian manifold with nonnegative Ricci
curvature that does not contain a line (Cheeger and Gromoll [22]). A line is a geodesic
that minimizes the distance between any two points on it. Let M be a Riemannian ho-
mogeneous space with vanishing Ricci curvature. It follows from the Cheeger-Gromoll

Splitting Theorem that the Riemannian universal covering M̃ of M is isometric to the
Riemannian product Rn×N with some simply connected Riemannian homogeneous space
N with vanishing Ricci curvature. Note that N must be compact since every noncompact
Riemannian homogeneous space contains a line. Since N is compact with ric = 0, a result
by Bochner [12] implies that the dimension of the isometry group of M is equal to the
first Betti number b1(N,R). But since N is simply connected, b1(N,R) = 0. Since N is

homogeneous this implies that N is a point and hence M̃ is isometric to the flat Euclidean
space Rn. This implies that M is isometric to Rk × T n−k.
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5.12. Homogeneous quaternionic Kähler manifolds. We already mentioned the clas-
sification of homogeneous Kähler manifolds in the context of our discussion about complex
flag manifolds at the end of Section 5.7. We now want to discuss briefly homogeneous
quaternionic Kähler manifolds.

It was proved by Alekseevsky [3] that every homogeneous quaternionic Kähler manifold
M = G/K of a reductive Lie group G is a symmetric space. Recall that if G is compact
then G is reductive. Thus every compact homogeneous quaternionic Kähler manifold is
symmetric. The compact symmetric quaternionic Kähler manifolds are the Grassman-
nians HP n, G2(Cn+2) and G+

4 (Rn+4), and the exceptional symmetric spaces G2/SO(4),
F4/Sp(3)Sp(1), E6/SU(6)Sp(1), E7/Spin(12)Sp(1) and E8/E7Sp(1). It is worthwhile to
point out that for each compact simple real Lie group G there exists exactly one symmetric
space G/K which is quaternionic Kähler. It is still an open problem whether there exist
compact quaternionic Kähler manifolds with positive scalar curvature that are different
from symmetric spaces.

Alekseevsky [4] constructed many explicit examples of noncompact homogeneous quater-
nionic Kähler manifolds which are not symmetric. His result, together with a correction by
Cortés [25], yields the classification of all noncompact homogeneous quaternionic Kähler
manifolds with a transitive solvable group of isometries.

6. Cohomogeneity one actions

Actions of cohomogeneity one are of current interest in the context of various topics:
Einstein manifolds, manifolds with special holonomy, manifolds admitting metrics of pos-
itive sectional curvature, etcetera. The reason is that by a cohomogeneity one action one
can sometimes reduce a system of partial differential equations to an ordinary differential
equation. In this section we present some of the basics about cohomogeneity one actions
and discuss some classification results.

6.1. Isometric actions on Riemannian manifolds. Let M be a Riemannian manifold
and G a Lie group acting smoothly on M by isometries. Then we have a Lie group
homomorphism

ρ : G → I(M)

and a smooth map

G×M → M , (g, p) 7→ ρ(g)(p) = gp

satisfying

(gg′)p = g(g′p)

for all g, g′ ∈ G and p ∈ M . An isometric action of a Lie group G′ on a Riemannian
manifold M ′ is said to be isomorphic to the action of G on M if there exists a Lie group
isomorphism ψ : G → G′ and an isometry f : M → M ′ so that f(gp) = ψ(g)f(p) for all
p ∈ M and g ∈ G. For each point p ∈ M the orbit of the action of G through p is

G · p := {gp | g ∈ G} ,
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and the isotropy group at p is

Gp := {g ∈ G | gp = p} .

If G · p = M for some p ∈ M , and hence for any p ∈ M , then the action of G is said to
be transitive and M is a homogeneous G-space. This has been the topic in the previous
sections. Therefore we assume from now on that the action of G is not transitive. Each
orbit G · p is a submanifold of M , but in general not an embedded one. For instance,
consider the flat torus T 2 obtained from R2 by factoring out the integer lattice. For each
ω ∈ R+ the Lie group R acts on T 2 isometrically by

R× T 2 → T 2 , (t, [x, y]) 7→ [x + t, y + ωt] ,

where [x, y] denotes the image of (x, y) ∈ R2 under the canonical projection R2 → T 2.
If ω is an irrational number then each orbit of this action is dense in T 2 and hence not
an embedded submanifold. Each orbit G · p inherits a Riemannian structure from the
ambient space M . With respect to this structure G ·p is a Riemannian homogeneous space
G · p = G/Gp on which G acts transitively by isometries.

6.2. The set of orbits. We denote by M/G the set of orbits of the action of G on M
and equip M/G with the quotient topology relative to the canonical projection M →
M/G , p 7→ G · p. In general M/G is not a Hausdorff space. For instance, when ω is
an irrational number in the previous example, then T 2/R is not a Hausdorff space. This
unpleasant behaviour does not occur for so-called proper actions. The action of G on M
is called proper if for any two distinct points p, q ∈ M there exist open neighbourhoods Up

and Uq of p and q in M , respectively, so that {g ∈ G | gUp ∩ Uq 6= ∅} is relative compact
in G. This is equivalent to saying that the map

G×M → M ×M , (g, p) 7→ (p, gp)

is a proper map, that is, the inverse image of each compact set in M ×M is also compact
in G × M . Every action of a compact Lie group is proper, and the action of any closed
subgroup of the isometry group of M is proper. If G acts properly on M , then M/G is a
Hausdorff space, each orbit G · p is closed in M and hence an embedded submanifold, and
each isotropy group Gp is compact.

6.3. Slices. A fundamental feature of proper actions is the existence of slices. A subman-
ifold Σ of M is called a slice at p ∈ M if

(Σ1) p ∈ Σ,
(Σ2) G · Σ := {gq | g ∈ G , q ∈ Σ} is an open subset of M ,
(Σ3) Gp · Σ = Σ,
(Σ4) the action of Gp on Σ is isomorphic to an orthogonal linear action of Gp on an open

ball in a Euclidean space,
(Σ5) the map

(G× Σ)/Gp → M , Gp · (g, q) 7→ gq

is a diffeomorphism onto G ·Σ, where (G×Σ)/Gp is the space of orbits of the action
of Gp on G × Σ given by k(g, q) := (gk−1, kq) for all k ∈ Gp, g ∈ G and q ∈ Σ.
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Note that (G×Σ)/Gp is the fiber bundle associated with the principal fiber bundle
G 7→ G/Gp and fiber Σ and hence a smooth manifold.

It was proved by Montgomery and Yang [51] that every proper action admits a slice at
each point. One should note that a slice Σ enables us to reduce the study of the action of
G on M in some G-invariant open neighborhood of p to the action of Gp on the slice Σ.

6.4. Orbit types and the cohomogeneity of an action. The existence of a slice at
each point enables us also to define a partial ordering on the set of orbit types. We say
that two orbits G · p and G · q have the same orbit type if Gp and Gq are conjugate in
G. This defines an equivalence relation among the orbits of G. We denote by [G · p] the
corresponding equivalence class, which is called the orbit type of G · p. By O we denote
the set of all orbit types of the action of G on M . We then introduce a partial ordering
on O by saying that [G · p] ≤ [G · q] if and only if Gq is conjugate in G to some subgroup
of Gp. If Σ is a slice at p, then properties (Σ4) and (Σ5) imply that [G · p] ≤ [G · q] for
all q ∈ G · Σ. We assume that M/G is connected. Then there exists a largest orbit type
in O. Each representative of this largest orbit type is called a principal orbit. In other
words, an orbit G · p is principal if and only if for each q ∈ M the isotropy group Gp at p
is conjugate in G to some subgroup of Gq. The union of all principal orbits is a dense and
open subset of M . Each principal orbit is an orbit of maximal dimension. A non-principal
orbit with the same dimension as a principal orbit is called an exceptional orbit. An orbit
whose dimension is less than the dimension of a principal orbit is called a singular orbit.
The cohomogeneity of the action is the codimension of a principal orbit. We denote this
cohomogeneity by cohom(G,M).

6.5. Isotropy representation and slice representation of an action. We assume
from now on that the action of G on M is proper and that M/G is connected. Recall that
for each g ∈ G the map

ϕg : M → M , p 7→ gp

is an isometry of M . If p ∈ M and g ∈ Gp, then ϕg fixes p. Therefore, at each point
p ∈ M , the isotropy group Gp acts on TpM by

Gp × TpM → TpM , (g, X) 7→ g ·X := (ϕg)∗pX .

But since g ∈ Gp leaves G · p invariant, this action leaves the tangent space Tp(G · p) and
the normal space νp(G · p) of G · p at p invariant. The restriction

χp : Gp × Tp(G · p) → Tp(G · p) , (g,X) 7→ g ·X
is called the isotropy representation of the action at p, and the restriction

σp : Gp × νp(G · p) → νp(G · p) , (g, ξ) 7→ g · ξ
is called the slice representation of the action at p. If (Gp)

o is the connected component
of the identity in Gp, the restriction of the slice representation to (Gp)

o will be called
connected slice representation.
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6.6. Geodesic slices. Let p ∈ M and r ∈ R+ sufficiently small so that the restriction of
the exponential map expp of M at p to Ur(0) ⊂ νp(G · p) is an embedding of Ur(0) into M .
Then Σ = expp(Ur(0)) is a slice at p, a so-called geodesic slice. Geometrically, the geodesic
slice Σ is obtained by running along all geodesics emanating orthogonally from G · p at p
up to the distance r. Since isometries map geodesics to geodesics we see that

gΣ = expgp(g · Ur(0))

for all g ∈ G. Thus, G · Σ is obtained by sliding Σ along the orbit G · p by means of the
group action. Let q ∈ Σ and g ∈ Gq. Then gq ∈ Σ and hence gΣ = Σ. Since Σ∩G ·p = {p}
it follows that gp = p and hence g ∈ Gp. Thus we have proved: If Σ is a geodesic slice at
p, then Gq ⊂ Gp for all q ∈ Σ.

Let Σ be a geodesic slice at p. Then G · Σ is an open subset of M . As the principal
orbits form an open and dense subset of M , the previous result therefore implies that
G · p is a principal orbit if and only if Gq = Gp for all q ∈ Σ. On the other hand, each
g ∈ Gq fixes both q and p and therefore, assuming the geodesic slice is sufficiently small,
the entire geodesic in Σ connecting p and q. Thus Gq fixes pointwise the one-dimensional
linear subspace of νp(G · p) corresponding to this geodesic. This implies the following
useful characterization of principal orbits: An orbit G · p is principal if and only if the slice
representation Σp is trivial.

6.7. Polar and hyperpolar actions. Let M be a complete Riemannian manifold and
let G be a closed subgroup of I(M). A complete embedded closed submanifold Σ of M is
called a section of the action if Σ intersects each orbit of G in M such that TpΣ ⊂ νp(G · p)
for all p ∈ Σ. The action of G is called polar if it admits a section. One can prove that
every section of a polar action is totally geodesic. A polar action is called hyperpolar if it
admits a flat section. The hyperpolar actions on simply connected irreducible Riemannian
symmetric spaces of compact type have been classified by Kollross [41].

Examples. 1. The isotropy representation of a Riemannian symmetric space is hyperpo-
lar, and a section is given by a maximal Abelian subspace.

2. Let M = G/K and M ′ = G/K ′ be Riemannian symmetric spaces of the same
semisimple compact Lie group G. Then the action of K ′ on M is hyperpolar. Such an
action often referred to as an Hermann action on a symmetric space. Hermann [32] proved
that such actions are variationally complete in the sense of Bott and Samelson [16].

6.8. The orbit space of a cohomogeneity one action. Let M be a connected complete
Riemannian manifold and G a connected closed subgroup of the isometry group I(M) of M
acting on M with cohomogeneity one. We denote by M/G the space of orbits of this action
and by π : M → M/G the canonical projection that maps a point p ∈ M to the orbit G · p
through p. We equip M/G with the quotient topology relative to π. The following result
has been proved by Mostert [52] (for the compact case) and by Bérard Bergery [7] (for the
general case): The orbit space M/G is homeomorphic to R, S1, [0, 1], or [0,∞[.

This result implies that a cohomogeneity one action has at most two singular or excep-
tional orbits, corresponding to the boundary points of M/G. If there is a singular orbit,



LIE GROUP ACTIONS ON MANIFOLDS 47

each principal orbit is geometrically a tube about the singular orbit. If M/G is homeomor-
phic to R or S1, then each orbit is principal and the orbits of the action of G on M form
a Riemannian foliation on M . Moreover, since principal orbits are always homeomorphic
to each other, the projection π : M → M/G is a fiber bundle. If, in addition, M is simply
connected, then M/G cannot be homeomorphic to S1. This follows from the relevant part
of the exact homotopy sequence of a fiber bundle with connected fibers and base space
S1. Every cohomogeneity one action is hyperpolar and a geodesic intersecting an orbit
perpendicularly is a section.

Examples: 1. Let G be the group of translations generated by a line in R2. Then
R2/G = R.

2. Consider a round cylinder Z in R3 and let G be the group of translations on Z along
its axis. Then Z/G = S1.

3. Let G = SO(2) be the group of rotations around the origin in R2. Then R2/G =
[0,∞).

4. Let G = SO(2) be the isotropy group of the action of SO(3) on the 2-sphere S2.
Then S2/G = [0, 1].

6.9. Low-dimensional orbits of cohomogeneity one actions. The following result
shows that “low-dimensional” orbits of isometric cohomogeneity one actions must be to-
tally geodesic. Let G be a connected closed subgroup of the isometry group I(M) of a
Riemannian manifold M and p ∈ M . If

dim(G · p) <
1

2
(dim M − 1)

then G · p is totally geodesic in M .
Proof. We denote again by Gp the isotropy group at p and by expp the exponential map

of M at p. First suppose there exists an open neighborhood U of 0 in Tp(G · p) so that
expp(U) ⊂ G · p. Then G · p is totally geodesic at p and hence, by homogeneity, totally
geodesic at each point. Now we suppose that for each open neighborhood U of 0 in Tp(G·p)
the image expp(U) is not contained in G · p. We fix an open convex neighborhood C of
p in M . Then there exists a point q ∈ (G · p) ∩ C so that the unique geodesic segment
γ : [0, a] → M in C connecting p = γ(0) and q = γ(a), a = d(p, q), is not tangent to G · p
at p. Thus there exists a nonzero normal vector ξ ∈ νp(G · p) and a vector X ∈ Tp(G · p) so
that γ̇(0) = X + ξ. For each g ∈ Gp the curve γg = g ◦ γ is the geodesic segment in C with
γg(0) = p and γg(a) = g(γ(a)) = g(q) ∈ G · p. The initial value of γg is γ̇g(0) = g∗X + g∗ξ,
and since Gp acts on νp(G · p) with cohomogeneity one it follows that

dim(G · p) ≥ dim(Gp · q) ≥ dim νp(G · p)− 1 .

This implies

dim M = dim Tp(G · p) + dim νp(G · p) ≤ 1 + 2 dim(G · p) < dim M ,

which is a contradiction. Thus G · p is totally geodesic.
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6.10. Minimality of singular and exceptional orbits of cohomogeneity one ac-
tions. We now show that a singular or exceptional orbit of a cohomogeneity one action
is minimal. Let F be a singular or exceptional orbit of a cohomogeneity one action on a
Riemannian manifold M . Then F is a minimal submanifold of M .

Proof. Let G be a connected closed subgroup of I(M) acting on M isometrically with
cohomogeneity one and suppose there exists a singular or exceptional orbit F . Let α be
the second fundamental form of F and H the mean curvature vector of F at some point
p ∈ F . We choose an orthonormal basis e1, . . . , em of TpF with m = dim F . Since the
action is of cohomogeneity one, the isotropy group Gp at p acts transitively on vectors of
the same length in the normal space of F at p. Thus there exists some isometry g ∈ G
with g∗H = −H, and we get

mH =
m∑

i=1

α(ei, ei) =
m∑

i=1

α(g∗ei, g∗ei) =
m∑

i=1

g∗α(ei, ei) = mg∗H = −mH .

This shows that H = 0 and hence F is minimal in M .
Recall from Section 6.9 that if 2 dim F < dim M −1 then F is not only minimal but also

totally geodesic.

6.11. Cohomogeneity one actions on spheres. The cohomogeneity one actions on
spheres have been classified by Hsiang and Lawson [34]: Every cohomogeneity one action on
Sn is orbit equivalent to the isotropy representation of an (n+1)-dimensional Riemannian
symmetric space of rank two.

In fact, Hsiang and Lawson derived an explicit list of groups acting with cohomogeneity
one on spheres. It is just an observation that all the actions arising from their list cor-
respond to symmetric spaces of rank two. It is still an open problem to prove this fact
directly.

6.12. Cohomogeneity one actions on complex projective spaces. An interesting
fact is that in complex projective spaces the theories of isoparametric hypersurfaces and
hypersurfaces with constant principal curvatures are different. In fact, Wang [69] showed
that certain inhomogeneous isoparametric hypersurfaces in spheres project via the Hopf
map S2n+1 → CP n to isoparametric hypersurfaces in complex projective spaces with non-
constant principal curvatures. It is still an open problem whether any hypersurface with
constant principal curvatures in CP n is isoparametric or homogeneous. The classification
of homogeneous hypersurfaces in CP n was achieved by Takagi [62]. It is easy to see that ev-
ery homogeneous hypersurface in CP n is the projection of a homogeneous hypersurface in
S2n+1. But not every homogeneous hypersurface in S2n+1 is invariant under the S1-action
and hence does not project to a homogeneous hypersurface in CP n. In fact, Takagi proved
that those which do project are precisely those which arise from isotropy representations of
Hermitian symmetric spaces of rank two. In detail, this gives the following classification:
Every cohomogeneity one action on CP n is orbit equivalent to the projectivized isotropy
representation of an (n + 1)-dimensional Hermitian symmetric space of rank two.
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The corresponding Hermitian symmetric spaces of rank two are CP k+1 × CP n−k for
k ∈ {0, . . . , n−1}, G+

2 (Rn+3), G2(Ck+3) for k ≥ 3, SO(10)/U(5), E6/T ·Spin(10). This re-
sult was improved by Uchida [65] who classified all connected closed subgroups of SU(n+1)
acting on CP n with cohomogeneity one, that is, whose principal orbits have codimension
one. Uchida’s approach to the classification problem is completely different and uses co-
homological methods. In fact, Uchida classified all connected compact Lie groups acting
with an orbit of codimension one on a simply connected smooth manifold whose ratio-
nal cohomology ring is isomorphic to the one of a complex projective space. This in-
cludes, for instance, all odd-dimensional complex quadrics (which are real Grassmannians)
G+

2 (R2n+1) = SO(2n + 1)/SO(2)× SO(2n− 1).

6.13. Cohomogeneity one actions on quaternionic projective spaces. For quater-
nionic projective spaces HP n Iwata [35] used a method analogous to the one of Uchida and
classified all connected compact Lie groups acting with an orbit of codimension one on a
simply connected smooth manifold whose rational cohomology ring is isomorphic to the
one of a quaternionic projective space. For instance, the symmetric space G2/SO(4) has
the same rational cohomology as the quaternionic projective plane HP 2. For the special
case of HP n Iwata’s classification yields: Every cohomogeneity one action on HP n is orbit
equivalent to the action of Sp(k + 1) × Sp(n − k) for some k ∈ {0, . . . , n − 1} or to the
action of SU(n + 1).

A different proof, following the lines of Takagi, has been given by D’Atri [26]. The two
singular orbits of the action of Sp(k +1)×Sp(n−k) on HP n are totally geodesic HP k and
HP n−k−1. The two singular orbits of the action of SU(n+1) on HP n are a totally geodesic
CP n and the homogeneous space SU(n+1)/SU(2)×SU(n−1), which is the standard circle
bundle over the Hermitian symmetric space G2(Cn+1) = SU(n + 1)/S(U(2)× U(n− 1)).

6.14. Cohomogeneity one actions on the Cayley projective plane. For the Cayley
projective plane OP 2 Iwata [36] could also apply his cohomological methods and obtained:
Every cohomogeneity one action on OP 2 is orbit equivalent to the action of Spin(9) or of
Sp(3)× SU(2).

The Lie group Spin(9) is the isotropy group of the isometry group F4 of OP 2. The two
singular orbits of the action of Spin(9) are a point and the corresponding polar, which is
a Cayley projective line OP 1 = S8. The Lie group Sp(3)× SU(2) is a maximal subgroup
of maximal rank of F4, and the singular orbits of its action on OP 2 are a totally geodesic
quaternionic projective plane HP 2 and an 11-dimensional sphere S11 = Sp(3)/Sp(2).

6.15. Cohomogeneity one actions on Riemannian symmetric spaces of compact
type. The classification of cohomogeneity one actions on irreducible simply connected
Riemannian symmetric spaces of compact type is part of the more general classification
of hyperpolar actions (up to orbit equivalence) on these spaces due to Kollross [41]. We
describe the idea for the classification by Kollross in the special case when the action is of
cohomogeneity one and the symmetric space M = G/K is of rank ≥ 2 and not of group
type. Suppose H is a maximal closed subgroup of G. If H is not transitive on M , then
its cohomogeneity is at least one. Since the cohomogeneity of the action of any closed
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subgroup of H is at least the cohomogeneity of the action of H, and we are interested
only in classification up the orbit equivalence, it suffices to consider only maximal closed
subgroups of G. But it may happen that H acts transitively on G/K. This happens
precisely in four cases, where we write down G/K = H/(H ∩K):

SO(2n)/U(n) = SO(2n− 1)/U(n− 1) (n ≥ 4) ,

SU(2n)/Sp(n) = SU(2n− 1)/Sp(n− 1) (n ≥ 3) ,

G+
2 (R7) = SO(7)/SO(2)× SO(5) = G2/U(2) ,

G+
3 (R8) = SO(8)/SO(3)× SO(5) = Spin(7)/SO(4) .

In these cases one has to go one step further and consider maximal closed subgroups of H
which then never happen to act also transitively. Thus it is sufficient to consider maximal
closed subgroups of G, with the few exceptions just mentioned. In order that a closed
subgroup H acts with cohomogeneity one it obviously must satisfy dim H ≥ dim M − 1.
This rules already out a lot of possibilities. For the remaining maximal closed subgroups
one has to calculate case by case the cohomogeneity. One way to do this is to calculate
the codimension of the slice representation, this is the action of the isotropy group H ∩K
on the normal space at the corresponding point of the orbit through that point. This
procedure eventually leads to the classification of all cohomogeneity one actions up to
orbit equivalence, and hence to the classification of homogeneous hypersurfaces, on M =
G/K. It turns out that with five exceptions all homogeneous hypersurfaces arise via the
construction of Hermann. The exceptions come from the following actions:

1. The action of G2 ⊂ SO(7) on SO(7)/U(3) = SO(8)/U(4) = G+
2 (R8).

2. The action of G2 ⊂ SO(7) on SO(7)/SO(3)× SO(4) = G+
3 (R7).

3. The action of Spin(9) ⊂ SO(16) on SO(16)/SO(2)× SO(14) = G+
2 (R16).

4. The action of Sp(n)Sp(1) ⊂ SO(4n) on SO(4n)/SO(2)× SO(4n− 2) = G+
2 (R4n).

5. The action of SU(3) ⊂ G2 on G2/SO(4).

All other homogeneous hypersurfaces can be obtained via the construction of Hermann.
We refer to [41] for an explicit list of all Hermann actions of cohomogeneity one.

6.16. Cohomogeneity one actions on Hadamard manifolds. We assume from now
on that M is a Hadamard manifold, that is, a connected, simply connected, complete
Riemannian manifold of nonpositive curvature. For any point p ∈ M the isotropy group
Gp of G at p is a closed subgroup of G. As I(M)p is a compact subgroup of I(M) and G is
a closed subgroup of I(M) it follows that Gp = G∩I(M)p is a compact subgroup of G. Let
K be a maximal compact subgroup of G. Then K is also compact in I(M), and it follows
from Cartan’s fixed point theorem that K has a fixed point in M , say q. As K ⊂ Gq

and Gq is compact in G it follows that K = Gq. Thus there exists an orbit of the action
of G such that the isotropy group at any of its points is a maximal compact subgroup of
G. If M/G is homeomorphic to R this means that Gp is a maximal compact subgroup of
G for any p ∈ M . Otherwise, the orbit F := G · q is a singular orbit of the action of G
with the property that Gp is a maximal compact subgroup of G for all p ∈ F . Suppose
there exists another singular orbit F ′ and let q′ ∈ F ′. As Gq′ is a compact subgroup of G,
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there exists some g ∈ G so that Gq′ ⊂ gKg−1 = gGqg
−1 = Gg(q). There exists a unique

geodesic γ in M connecting q′ and g(q). Any isometry in Gq′ fixes γ pointwise, which
implies that Gq′ is contained in Gp for all p on γ. But as γ intersects principal orbits this
gives a contradiction. Thus the action of G cannot have two singular orbits. We conclude
that M/G is homeomorphic to R or [0,∞[.

Let F be the singular orbit in the case M/G is homeomorphic to [0,∞[ or any principal
orbit in the case M/G is homeomorphic to R. Denote be k the dimension of F , by exp the
exponential map of M , by νF the normal bundle of F , and by τ : νF → F the canonical
projection. For any point q ∈ M there exists exactly one normal vector ξ ∈ νF so that
q = exp(ξ), which implies that the map f := exp |νF : νF → M is bijective. Moreover, f
is smooth and the differential of f at any point must be an isomorphism since F has no
focal points in M . Therefore f is a diffeomorphism onto M . Then τ ◦ f−1 : M → F is
a fiber bundle with typical fiber Rn−k, since at each point p ∈ F the fiber is the normal
space νpF of F at p. As M is diffeomorphic to Rn, it now follows that F is diffeomorphic
to Rk. If dim F = n − 1 and F is a singular orbit, then τ ◦ f−1 restricted to a principal
orbit is a nontrivial covering map, which contradicts π1(F ) = 0. Thus we have k = n− 1
if and only if M/G is homeomorphic to R. If F is singular, then τ ◦ f−1 restricted to a
principal orbit is a fiber bundle with typical fiber Sn−k−1. As F is contractible it follows
that any regular orbit is diffeomorphic to Rk × Sn−k−1. Eventually, as F is diffeomorphic
to Rk, there exists a solvable connected closed subgroup of G acting simply transitively on
F . In the case dim F = n − 1 this group then acts simply transitively on any orbit of G.
We summarize the previous discussion:

Let G be a connected closed subgroup of the isometry group of an n-dimensional
Hadamard manifold M acting on M with cohomogeneity one. Then one of the follow-
ing two possibilities holds:

(1) All orbits are principal and the isotropy group at any point is a maximal compact
subgroup of G. Any orbit is diffeomorphic to Rn−1 and there exists a solvable connected
closed subgroup of G acting simply transitively on each orbit.

(2) There exists exactly one singular orbit F and the isotropy group at any point in F
is a maximal compact subgroup of G. The singular orbit is diffeomorphic to Rk for some
k ∈ {0, . . . , n−2} and there exists a solvable connected closed subgroup of G acting simply
transitively on F . Any principal orbit is diffeomorphic to Rk × Sn−k−1.

6.17. Cohomogeneity one actions on Euclidean spaces. Every principal orbit of
a cohomogeneity one action has constant principal curvatures. The hypersurfaces with
constant principal curvatures in Rn have been classified by Levi Civita [45] for n = 3 and
by Segre [61] in general. This leads to the following classification (recall that the isometry
group I(Rn) is the semidirect product Rn ×τ O(n)): Every cohomogeneity one action on
Rn is orbit equivalent to one of the following cohomogeneity one actions:

(1) the action of {0} ×τ SO(n): the singular orbit is a point and the principal orbits
are spheres;

(2) the action of Rk ×τ SO(n− k) for some k ∈ {1, . . . , n− 2}: the singular orbit is a
totally geodesic Rk ⊂ Rn and the principal orbits are the tubes around it;
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(3) the action of Rn−1 ×τ {eSO(n)}; all orbits are principal and totally geodesic hyper-
planes.

6.18. Cohomogeneity one actions on real hyperbolic spaces. Every principal or-
bit of a cohomogeneity one action has constant principal curvatures. The hypersurfaces
with constant principal curvatures in a real hyperbolic space RHn have been classified by
E. Cartan [19]. His result leads to the following classification: Every cohomogeneity one
action on RHn is orbit equivalent to one of the following cohomogeneity one actions:

(1) the action of SOo(1, n): the singular orbit is a point and the principal orbits are
geodesic hyperspheres;

(2) the action of SOo(1, k)×SO(n− k) for some k ∈ {1, . . . , n− 2}: the singular orbit
is a totally geodesic RHk ⊂ RHn and the principal orbits are the tubes around it;

(3) the action of SOo(1, n − 1); all orbits are principal, one orbit is a totally geodesic
hyperplane RHn−1, and the other orbits are the equidistant hypersurfaces to it;

(4) the action of the nilpotent subgroup in an Iwasawa decomposition of SOo(1, n):
all orbits are principal and are horospheres in RHn. The resulting foliation is the
well-known horosphere foliation on RHn.

The method of Cartan does not work for the hyperbolic spaces CHn, HHn and OH2.
The reason is that the Gauss-Codazzi equations become too complicated.

6.19. Cohomogeneity one actions on Riemannian symmetric spaces of noncom-
pact type. Let M = G/K be a Riemannian symmetric space of noncompact type with
G = Io(M) and K the isotropy group of G at a point o ∈ M . Let n be the dimension of
M and r the rank of M . We denote by M the moduli space of all isometric cohomogeneity
one actions on M modulo orbit equivalence.

The orbit space of an isometric cohomogeneity one action on a connected complete
Riemannian manifold is homeomorphic to R or [0,∞). Geometrically this means that
either all orbits are principal and form a Riemannian foliation on M or there exists exactly
one singular orbit with codimension ≥ 2 and the principal orbits are tubes around the
singular orbit. This induces a disjoint union M = MF ∪MS, where MF is the set of all
homogeneous codimension one foliations on M modulo isometric congruence and MS is
the set of all connected normal homogeneous submanifolds with codimension ≥ 2 in M
modulo isometric congruence. Here a submanifold of M is called normal homogeneous if it
is an orbit of a connected closed subgroup of Io(M) and the slice representation at a point
acts transitively on the unit sphere in the normal space at that point.

Let g and k be the Lie algebra of G and K, respectively, and B the Cartan-Killing form
of g. If m is the orthogonal complement of k in g with respect to B then g = k ⊕ m is
a Cartan decomposition of g. If θ : g → g is the corresponding Cartan involution, we
get a positive definite inner product on g by 〈X, Y 〉 = −B(X, θY ) for all X, Y ∈ g. We
normalize the Riemannian metric on M such that its restriction to ToM × ToM coincides
with 〈·, ·〉, where we identify m and ToM in the usual manner.
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Let a be a maximal Abelian subspace in m and denote by a∗ the dual vector space of a.
Moreover, let

g = g0 ⊕
⊕

λ∈Σ

gλ

be the restricted root space decomposition of g with respect to a. The root system Σ is
either reduced and then of type Ar, Br, Cr, Dr, E6, E7, E8, F4, G2 or nonreduced and then
of type BCr. For each λ ∈ a∗ let Hλ ∈ a be the dual vector in a with respect to the
Cartan-Killing form, that is, λ(H) = 〈Hλ, H〉 for all H ∈ a. Then we get an inner product
on a∗, which we also denote by 〈·, ·〉, by means of 〈λ, µ〉 = 〈Hλ, Hµ〉 for all λ, µ ∈ a∗. We
choose a set Λ = {α1, . . . , αr} of simple roots in Σ and denote the resulting set of positive
restricted roots by Σ+.

By Aut(DD) we denote the group of symmetries of the Dynkin diagram associated to
Λ. There are just three possibilities, namely

Aut(DD) =





S3 , if Σ = D4 ,

Z2 , if Σ ∈ {Ar (r ≥ 2), Dr (r ≥ 2, r 6= 4), E6} ,

id , otherwise .

where S3 is the group of permutations of a set of three elements. The first two cases
correspond to triality and duality principles on the symmetric space which were discovered
by E. Cartan. The symmetric spaces with a triality principle are SO(8,C)/SO(8) and the
hyperbolic Grassmannian G∗

4(R8). Each symmetry P ∈ Aut(DD) can be linearly extended
to a linear isometry of a∗, which we also denote by P . Denote by Φ the linear isometry from

a∗ to a defined by Φ(λ) = Hλ for all λ ∈ a∗. Then P̃ = Φ ◦ P ◦ Φ−1 is a linear isometry

of a with P̃ (Hλ) = Hµ if and only if P (λ) = µ, λ, µ ∈ a∗. Since P is an orthogonal

transformation, P̃ is just the dual map of P−1 : a∗ → a∗. In this way each symmetry
P ∈ Aut(DD) induces linear isometries of a∗ and a, both of which we will denote by P ,
since it will always be clear from the context which of these two we are using.

We now define a nilpotent subalgebra n of g by

n =
⊕

λ∈Σ+

gλ ,

which then induces an Iwasawa decomposition g = k⊕ a⊕ n of g. Then a + n is a solvable
subalgebra of g with [a + n, a + n] = n. The connected subgroups A,N, AN of G with Lie
algebras a, n, a + n, respectively, are simply connected and AN acts simply transitively on
M . The symmetric space M is isometric to the connected, simply connected, solvable Lie
group AN equipped with the left-invariant Riemannian metric which is induced from the
inner product 〈·, ·〉.

Let ` be a linear line in a. Since ` lies in the orthogonal complement of the derived
subalgebra of a+n, the orthogonal complement s` = (a+n)ª` of ` in a+n is a subalgebra
of a+n of codimension one. Let S` be the connected Lie subgroup of AN with Lie algebra
s`. Then the orbits of the action of S` on M form a Riemannian foliation F` on M whose
leaves are homogeneous hypersurfaces. If M has rank one then a is one-dimensional and
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hence there exists only one such foliation, namely the one given by S` = Sa = N . This
is precisely the horosphere foliation on M all of whose leaves are isometrically congruent
to each other. One can show that also for higher rank all leaves of F` are isometrically
congruent to each other. Using structure theory of semisimple and solvable Lie algebras
one can show that two foliations F` and F`′ are isometrically congruent to each other if and
only if there exists a symmetry P ∈ Aut(DD) with P (`) = `′. It follows that the set of all
congruence classes of such foliations is parametrized my RP r−1/Aut(DD). Here, RP r−1 is
the projective space of all linear lines ` in a, and the action of Aut(DD) on RP r−1 is the
induced one from the linear action of Aut(DD) on a.

Let αi ∈ Λ, i ∈ {1, . . . , r}, be a simple root. For each unit vector ξ ∈ gαi
the subspace

sξ = a + (n ª Rξ) is a subalgebra of a + n. Let Sξ be the connected Lie subgroup of
AN with Lie algebra sξ. Then the orbits of the action of Sξ on M form a Riemannian
foliation Fξ on M whose leaves are homogeneous hypersurfaces. If η ∈ gαi

is another unit
vector the induced foliation Fη is congruent to Fξ under an isometry in the centralizer of
a in K. Thus for each simple root αi ∈ Λ we obtain a congruence class of homogeneous
foliations of codimension one on M . We denote by Fi a representative of this congruence
class. By investigating the geometry of these foliations one can prove that Fi and Fj

are isometrically congruent if and only if there exists a symmetry P ∈ Aut(DD) with
P (αi) = αj. Thus the set of all congruence classes of such foliations is parametrized by
{1, . . . , r}/Aut(DD), where the action of Aut(DD) on {1, . . . , r} is given by identifying
{1, . . . , r} with the vertices of the Dynkin diagram. The geometry of these foliations is
quite fascinating. Among all leaves there exists exactly one which is minimal. All leaves
together form a homogeneous isoparametric system on M , and if the rank of M is ≥ 3
there exist among these systems some which are noncongruent but have the same principal
curvatures with the same multiplicities. Such a feature had already been discovered by
Ferus, Karcher and Münzner [28] for inhomogeneous isoparametric systems on spheres.

Using structure theory of semisimple and solvable Lie algebras it was proved by the
author and Tamaru in [9] that every homogeneous codimension one foliation on M is
isometrically congruent to one of the above: Let M be a connected irreducible Riemannian
symmetric space of noncompact type and with rank r. The moduli space MF of all
noncongruent homogeneous codimension one foliations on M is isomorphic to the orbit
space of the action of Aut(DD) on RP r−1 ∪ {1, . . . , r}:

MF
∼= (RP r−1 ∪ {1, . . . , r})/Aut(DD) .

It is very surprising and remarkable that MF depends only on the rank and on possible
duality or triality principles on the symmetric space. For instance, for the symmetric spaces
SO(17,C)/SO(17), Sp(8,R)/U(8), Sp(8,C)/Sp(8), SO(16,H)/U(16), SO(17,H)/U(17),
E8

8/SO(16), EC
8 /E8 and for the hyperbolic Grassmannians G∗

8(Rn+16) (n ≥ 1), G∗
8(Cn+16)

(n ≥ 0), G∗
8(Hn+16) (n ≥ 0) the moduli space MF of all noncongruent homogeneous

codimension one foliations is isomorphic to RP 7 ∪ {1, . . . , 8}.
We now discuss the case when the rank r is one, that is, M is a hyperbolic space

over one of the normed real division algebras R, C, H or O. From the above theorem
we see that there are exactly two congruence classes of homogeneous codimension one



LIE GROUP ACTIONS ON MANIFOLDS 55

foliations on M . The first one, coming from the 0-dimensional real projective space, is
the well-known horosphere foliation. The second foliation is not so well-known except for
the real hyperbolic case. In case of RHn we get the foliation whose leaves are a totally
geodesic RHn−1 ⊂ RHn and its equidistant hypersurfaces. Comparing this with Cartan’s
classification for RHn we see that we got indeed all homogeneous codimension one foliations
on RHn. In case of CHn the minimal orbit of the second foliation is a minimal ruled real
hypersurface and can be constructed in the following way. Consider a horocycle in a totally
geodesic and totally real RH2 ⊂ CHn. At each point of the horocycle we attach a totally
geodesic CHn−1 orthogonal to the complex hyperbolic line determined by the tangent
vector of the horocycle at that point. By varying with the points on the horocycle we get
the minimal ruled real hypersurface in CHn.

In order to complete the classification of homogeneous hypersurfaces in connected irre-
ducible Riemannian symmetric spaces of noncompact type it now remains to determine
the moduli space MS. In the case of RHn we already know that MS consists of n − 1
elements given by the real hyperbolic subspace RHk ⊂ RHn, k ∈ {0, . . . , n − 2}, and the
tubes around RHk. An obvious consequence from Cartan’s classification is the nonobvious
fact that a singular orbit of a cohomogeneity one action of RHn is totally geodesic.

In [10] the subset Mtg
s of MS consisting of all cohomogeneity one actions for which the

singular orbit is totally geodesic has been determined. In this special situation one can
use duality between symmetric spaces of compact type and noncompact type to derive
the classification. An explicit list of all totally geodesic singular orbits can be found in
[10], which can be summarized as follows. The set Mtg

s is empty for the exceptional
symmetric spaces of EC

7 and EC
8 and all their noncompact real forms, and of EC

6 and its
split real form. For all other symmetric spaces, and this includes all classical symmetric
spaces, Mtg

S is nonempty and finite. It is # Mtg
S = n > 3 only for the hyperbolic spaces

RHn+1, CHn−1 and HHn−1. For the symmetric spaces RH4, CH2, HH2, OH2, G∗
3(R7),

G∗
2(R2n) (n ≥ 3) and G∗

2(C2n) (n ≥ 3) we have # Mtg
S = 3. For the symmetric spaces

RH3, G∗
k(Rn) (1 < k < n − k, (k, n) 6= (3, 7), (2, 2m),m > 2), G∗

3(R6), G∗
k(Cn) (1 < k <

n−k, (k, n) 6= (2, 2m), m > 2), G∗
k(Hn) (1 < k < n−k), SL(3,H)/Sp(3), SL(3,C)/SU(3),

SL(4,C)/SU(4) = SO(6,C)/SO(6), SO(7,C)/SO(7), G2
2/SO(4) and E−24

6 /F4 we have
# Mtg

S = 2. In all remaining cases we have # Mtg
S = 1.

Of course, the natural question now is whether a singular orbit of a cohomogeneity one
action on M is totally geodesic. As we already know the answer is yes for RHn. In [8], the
author and Brück investigated this question for the other hyperbolic spaces CHn, HHn

and OH2. The surprising outcome of their investigations is that in all these spaces there
exist cohomogeneity one actions with non-totally geodesic singular orbits. In the following
we describe the construction of these actions. Let M be one of these hyperbolic spaces and
consider an Iwasawa decomposition g = k + a + n of the Lie algebra of the isometry group
of M . The restricted root system Σ associated to M is of type BC1 and hence nonreduced.
The nilpotent Lie algebra n decomposes into root spaces n = gα + g2α, where α is a simple
root in Σ. The root space g2α is the center of n. The Lie algebra n is a Heisenberg algebra
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in case of CHn, a generalized Heisenberg algebra with 3-dimensional center in case of HHn,
and a generalized Heisenberg algebra with 7-dimensional center in case of OH2.

We first consider the case of CHn, n ≥ 3, in which case gα is a complex vector space of
complex dimension ≥ 2. Denote by J its complex structure. We choose a linear subspace
v of gα such that its orthogonal complement v⊥ in gα has constant Kähler angle, that is,
there exists a real number ϕ ∈ [0, π/2] such that the angle between J(Rv) and v⊥ is ϕ for
all nonzero vectors v ∈ v⊥. If ϕ = 0 then v is a complex subspace. It is easy to classify all
subspaces with constant Kähler angle in a complex vector space. In particular there exist
such subspaces for each given angle ϕ. It is clear that s = a+v+g2α is a subalgebra of a+n.
Let S be the connected closed subgroup of AN with Lie algebra S and N o

K(S) the identity
component of the normalizer of S in K = S(U(1) × U(n)). Then N o

K(S)S ⊂ KAN = G
acts on CHn with cohomogeneity one and singular orbit S ⊂ AN = G/K = CHn. If
ϕ 6= 0 then S is not totally geodesic.

A similar construction works in the quaternionic hyperbolic space HHn, n ≥ 3. In this
case the root space gα is a quaternionic vector space of quaternionic dimension n− 1 and
for v one has to choose linear subspaces for which the orthogonal complement v⊥ of v in
gα has constant quaternionic Kähler angle. If n = 2 we may choose any linear subspace v
of gα of real dimension one or two.

Finally, in case of the Cayley hyperbolic plane OH2, the root space gα is isomorphic
to the Cayley algebra O. Let v be a linear subspace of gα of real dimension 1, 2, 4, 5
or 6. Let S be the connected closed subgroup of AN with Lie algebra s = a + v + g2α

and N o
K(S) the identity component of the normalizer of S in K = Spin(9). For instance,

if dim v = 1 then N o
K(S) is isomorphic to the exceptional Lie group G2. The action

of G2 on the 7-dimensional normal space v⊥ is equivalent to the standard 7-dimensional
representation of G2. Since this is transitive on the 6-dimensional sphere it follows that
G2S ⊂ KAN = G = F4 acts on OH2 with cohomogeneity one and with S as a non-totally
geodesic singular orbit. For the dimensions 2, 4, 5 and 6 the corresponding normalizer is
isomorphic to U(4), SO(4), SO(3) and SO(2) respectively, and one also gets cohomogeneity
one actions on OH2 with a non-totally geodesic singular orbit. Surprisingly, if v is 3-
dimensional, this method does not yield such a cohomogeneity one action.

It is an open problem whether for CHn, HHn or OH2 the moduli space MS contains
more elements than described above. Also, for higher rank the explicit structure of MS is
still unknown.
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Math. Helv. 13, 240-251 (1941).
[34] Hsiang, W.Y., Lawson, H.B.jun, Minimal submanifolds of low cohomogeneity, J. Differ. Geom. 5,

1-38 (1971).
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