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Abstract

We present a Maple11+GRTensorII based symbolic calculator for

instanton metrics using Newman-Penrose formalism. Gravitational

instantons are exact solutions of Einstein’s vacuum field equations

with Euclidean signature. The Newman-Penrose formalism, which

supplies a toolbox for studying the exact solutions of Einstein’s field

equations, was adopted to the instanton case and our code translates

it for the computational use.
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1 Introduction

The interest in symbolic computational study of general relativity is growing
rapidly as the capacity of the the computer systems increase. The computer
is no longer an apparatus for the numerical relativist, but as the symbolic
manipulators get easier to use, the more researchers get into the subject by
using these systems. Thanks to the symbolic calculators, lengthy calculations
needing time and care are no longer a problem for scientists. The preliminary
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works on symbolic calculation goes back to 1965, Fletcher’s program GRAD
ASSISTANT could calculate Ricci tensor for simple metrics [1]. Two years
later, in 1967, M. Veltman developed SCHOONSCHIP, a symbolic manip-
ulation program to study renormalizability of gauge theories [2]. At 1968,
Macsyma, the first comprehensive symbolic mathematics system, began to be
developed by MIT scientists under the leadership of B. Martin [3]. Following
the path of SCHOONSCHIP and Macsyma, a group leaded by S. Wolfram
began designing SMP which is the ancestor of today’s Mathematica [4]. A
historical review can be found in reference [5]. Recent platforms like Maple
[6], Mathematica [7], Matlab [8], Maxima [9] and Reduce [10] offer developed
and optimized solutions with their easy to learn interfaces. There are more
alternatives and all these platforms have their advantages and disadvantages.
Therefore, the user should make a decision before getting deeper into pro-
gramming. Another important point to consider is the specialized packages
which run under these platforms. Using a profession based package reduces
the work of the end-user. A package having a nice designed interface can
be used even by the people having no idea about the platform. There are
such packages for the general relativistic purposes. Some of the best known
examples are: GRTensorII [11], Riemann [12], Riegeom [13], Riccir [14] and
MathTensor [15]. GRTensorII, being a widespread package led significant
progress in the area [16][17][18][19][20][21].
The Newman-Penrose (NP) formalism supplies a toolbox for investigating the
exact solutions of the Einstein’s field equations [22][23]. Goldblatt has devel-
oped NP formalism for gravitational instantons based on the SU(2)×SU(2)
spin structure of positive definite metrics [24][25]. In the gravitational in-
stanton case, the gravitational field decomposes into its self-dual and anti-
self-dual parts and this decomposition is natural in the spinor approach
which necessitates two independent spin frames for the spinor structure of
4-dimensional Rieman manifolds with Euclidean signature [26].
Gravitational instantons are exact solutions of Einstein’s vacuum field equa-
tions with Euclidean signature. They are analogous to the Yang-Mills instan-
tons, the finite action solutions of the classical Yang-Mills equations. They
admit hyper-Kähler structure [26][27]. For a detailed overview one can see
Eguchi et al’s review and the articles cited in this paper [28].
Aliev and Nutku applied differential forms to the NP formalism for gravita-
tional instantons which made the formalism more suitable for the symbolic
computation [26]. The main source of our work will be the Aliev and Nutku’s
paper which will be referred as I.
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2 The program

Our program, NPInstanton, consists of procedures calculating physical and
mathematical quantities for instanton metrics using Newman-Penrose formal-
ism. It is coded under Maple 11 and GRTensorII package. The procedures
calculate these quantities:

- massless scalar equation,
- massless Dirac equation,
- source-free Maxwell equations,
- covariant and contravariant Dirac γ matrices,
- coframe l(= lµdx

µ) and m(= mµdx
µ),

- spin rotation coefficients,
- Weyl scalars,
- trace-free Ricci scalars,
- spinor equivalent of the connection 1-forms,
- basis 2-forms,
- curvature 2-forms,
- integrands of the Euler number and the Hirzebruch signature curvature

part integrals,
- Petrov class of the spacetime

As one can see, some of the objects could be calculated by standard means
and without using a signature-dependent package. But for the sake of com-
pleteness, we added these features to the program. By these, the program
becomes a complete symbolic calculator for an instanton metric. The NP cal-
culator of GRTensorII is not designed for the Euclidean signature and could
give unexpected results. Therefore, a complete NP based calculator, com-
bining the power of GRTensorII and NP formalism for these special metrics
is useful.
Throughout the program, only the output variables of the procedures are
the global ones, so, naturally, the user should be aware of the output names
of the procedures that are being used. A few commands for simplification
are added to the code which can be evaluated easily by an average personal
computer (i.e. having a 512 Mb of memory), but it is always more conve-
nient for the user to choose the right simplification technique for the problem
after the calculation. The output must be regarded as a ”raw material” for
a simplification routine that is to be chosen by the user. The user having
a computer with insufficient memory can extract the simplification routines
from the program, simply by modifying it in an editor but it is not recom-
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mended as it may lead to miscalculation of some properties such as Petrov
type or (anti-)self-duality.
One can reach the program files using the web site given in the ”Final Re-
marks” section.

2.1 Requirements

Any system that can run Maple 11 and GRTensorII is able to run NPInstan-
ton.
The program uses,

1. GRTensorII Package: The famous and widely used free general rela-
tivity package. It has two versions, the one which NPInstanton uses works
under Maple and a limited version for Mathematica is available. The devel-
opers of GRTensorII are Peter Musgrave, Denis Pollney and Kayll Lake [11].
Several objects (Ricci scalar, covariant Weyl tensor, etc.) are calculated by
this package in our program. The package also has a powerful NP calculator
but it is not designed for the metrics with Euclidean signature.

2. DifferentialGeometry Package of Maple 11: One of the most impor-
tant new features of Maple 11 is the new package: ”DifferentialGeometry”.
It is more convenient to use this package with linear algebraic quantities.
The rather old ”difforms” package would be another solution but it has some
conflicts with linear algebraic quantities which are the major elements of our
program. The DifferentialGeometry package is based upon the Vessiot pack-
age developed by I. M. Anderson, Florin Catrina, Cinnamon Hillyard, Jeff
Humphries, Jamie Jorgersen, and Charles Miller at Utah State University.
The redesign and expansion of Vessiot to DifferentialGeometry for Maple 11
was done by I. M. Anderson and E. S. Cheb-Terrab [29]. The definition of
the wedge product is supplied by this package in our program.

3. linalg package of Maple: This rather old internal package is used for
an eigenvalue calculation in Petrov classification section.
The program is set for a computer having a 512 Mb of RAM (Average value
for today’s personal computers). If the system has less memory, the user
must change the line

kernelopts(gcfreq=10^7):

of the npinstanton.mws file to a lower value (10ˆ6 is the standard value
of Maple). For a computer having larger than 1 Gb of memory, the user
may change the gcfreq value as 10ˆ8. ”gc” is the abbreviation of ”garbage
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collection” and it is the Maple’s internal routine which cleans the memory
after an amount of memory is allocated. For a computer having a large
amount of memory, one can increase the frequency of this process. The
larger the gc frequency value results in more memory to be wasted but for
a system having a large amount of memory it increases the performance for
some calculations.

2.2 Running the program

The program consists of several procedures for calculations. The user runs
the procedures by calling some specific commands and the output will be
available for further calculations after the procedure is finished.

The program comes with four files:
i. NPInstanton program (npinstanton.mws)
ii. Sample input file (eguchihanson)
iii. Sample metric file in the GRTensorII format (eguchihanson.mpl) (This

file should be copied into the GRTensor’s metric directory.)
iv. README file containing short definitions of the commands (README.txt)

Sample input file should be in ”C:/npinstanton” directory. If the user wishes
to change this location permanently, in the NPInstanton program,

currentdir("C:/npinstanton"):

line should be changed in the appropriate way. Or the user may choose to
give the path of the file after running the program. Changes to the npinstan-
ton.mws file should be made using an editor such as notepad. The changes
should not be made within Maple as, on saving the file, the Maple editor
adds a ”signature” which causes errors when executing the worksheet.
To run NPInstanton:

1. Open a Classic worksheet in Maple. Standard worksheet can also be
used technically but GRTensorII suggests Classic worksheet.

2. Run NPInstanton from its location by read command.
For example,

read"C:/npinstanton/npinstanton.mws";
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runs the program from ”C:/npinstanton/” directory.
3. Enter the input file as requested. No ”;” or ”:” is required after the file

name. Now, the program will load GRTensorII package, DifferentialGeome-
try package, information from the input file and check the Newman-Penrose
legs. After the program checks the Newman-Penrose legs, the user will be
prompted as

npinstanton>

and the session is ready for calculations. Most of the calculations are finished
in seconds (even less than a second) but some spacetimes may have properties
that may need more time to finish the calculation.

2.3 The input file

A sample input file containing the information about the Eguchi-Hanson
instanton [28] is included in the package. The definitions should be given
using Maple’s syntax. The lines to be used will be explained below using the
sample input file:

metric:=eguchihanson:

Enter the name of the metric file here. The metric file of the Eguchi-Hanson
spacetime is included in the package. This metric file should be placed in the
GRTensorII’s metric directory.

# Enter the general definitions here:

assume(a::real):

A:=sqrt(1-(a/r)^4):

This place is reserved for the user’s personal definitions. The constants,
assumptions, etc. should be set here.

l_covar[1]:=1/(sqrt(2)*A):

l_bar_covar[1]:=1/(sqrt(2)*A):

l_covar[2]:=0:

l_bar_covar[2]:=0:
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l_covar[3]:=-I*r*A*cos(theta)/(2*sqrt(2)):

l_bar_covar[3]:=I*r*A*cos(theta)/(2*sqrt(2)):

l_covar[4]:=-I*r*A/(2*sqrt(2)):

l_bar_covar[4]:=I*r*A/(2*sqrt(2)):

m_covar[1]:=0:

m_bar_covar[1]:=0:

m_covar[2]:=r*exp(-I*xi)/(sqrt(2)*2):

m_bar_covar[2]:=r*exp(I*xi)/(sqrt(2)*2):

m_covar[3]:=I*r*exp(-I*xi)*sin(theta)/(sqrt(2)*2):

m_bar_covar[3]:=-I*r*exp(I*xi)*sin(theta)/(sqrt(2)*2):

m_covar[4]:=0:

m_bar_covar[4]:=0:

The components of the covariant NP legs are entered here. l covar[1] be-
ing the first component of the covariant lµ leg and l bar covar[1] being the
complex conjugate of l covar[1], etc.. Maple does not do the complex simpli-
fications because they need assumptions that may cause wrong calculations.
Therefore, the most appropriate way to define the legs is to give the both by
hand. This definitions are the Maple forms of the Eguchi-Hanson NP legs
[28]:

l =
1√
2





1
√

1 − a4

r4

dr − ir

2

√

1 − a4

r4
(dξ + cos θdφ)



 , (1)

m =
re−iξ

2
√

2
(dθ + i sin θdφ) . (2)

The A value being
√

1 − a4

r4 was given in the general definitions section.

spinorcomponent1:=exp(I*(m+(1/2))*xi)*psi1[r,theta,phi]:

spinorcomponent2:=exp(I*(m+(1/2))*xi)*psi2[r,theta,phi]:

spinorcomponent3:=exp(I*(m-(1/2))*xi)*psi3[r,theta,phi]:

spinorcomponent4:=exp(I*(m-(1/2))*xi)*psi4[r,theta,phi]:

Spinor components can be given here if the user will be calculating the Dirac
equation. They can be choosen as,

ψ1 = ei(m+ 1

2
)ξΨ1(r, θ, φ), (3)
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ψ2 = ei(m+ 1

2
)ξΨ2(r, θ, φ), (4)

ψ3 = ei(m−
1

2
)ξΨ3(r, θ, φ), (5)

ψ4 = ei(m−
1

2
)ξΨ4(r, θ, φ) (6)

in the traditional form for the Eguchi-Hanson space [30].

scalarfunction:=exp(I*m*xi)*Phi(r,theta,phi):

The scalar function can be given here for the calculation of the scalar equa-
tion. This definition can be skipped if the used does not need to calculate
this object. It can be choosen as

ϕ = eimξΦ(r, θ, φ) (7)

for the Eguchi-Hanson space, ϕ being the scalar function.

2.4 Command definitions

The list of commands can be given as,

scalaroperator()

dirac()

maxwell()

gammamatrices()

coframe()

spinrotcoeff()

weylscalar()

tfricciscalar()

conn1form()

basis2form()

curv2form()

topologicalnumbers()

and the definitions of these commands are the following,

• scalaroperator():
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This command calculates the massless scalar equation, finding the scalar
operator. The scalar operator is given as

Hϕ ≡ 1
√

|g|
∂ν

√

|g|gµν∂µϕ. (8)

Here, g is the determinant of the metric.
The procedure takes the scalar function (name: scalarfunction) from the
input file.
The output to be used thereafter:

> scalarop;

For the massive case, one can equate this object to M2ϕ2, M being the
mass of the scalar particle. As an additional property, this procedure is not
dependent on the metric signature and it does not use the NP objects so it
can be used for any spacetime in four dimensions by extracting it from the
program.

• dirac():

This command calculates the massless Dirac equations,

γµ∇µψ = 0 (9)

where

∇µ = ∂µ − Γµ (10)

and Γµ are the spin connections. The procedure takes the spinor vector
components from the input file under these names: spinorcomponent1 (ψ1),
spinorcomponent2 (ψ2), spinorcomponent3 (ψ3) and spinorcomponent4 (ψ4).
The output to be used thereafter is the components of the ”dirac” vector as
(i=1, 2, 3, 4):

> dirac[i];

For the massive case, one can equate these objects to M
i
ψ vector, M being

the spinor mass and i ≡
√
−1.

• maxwell():
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This command calculates the source-free Maxwell equations using the equa-
tions (I.102-109). Fij ’s in the output are the usual Maxwell field matrix
components. The output is set to be ”maxwell” vector whose components
are the source-free Maxwell equations as (i=1, 2, 3, 4):

> maxwell[i];

• gammamatrices():

This command finds the covariant and contravariant Dirac γ matrices and
tests them with anticommutation relations

{γµ, γν} = 2gµν . (11)

The output is ”gamma contr” (contravariant γ matrices: γµ) and ”gamma covar”
(covariant γ matrices: γµ) vectors as (i=1, 2, 3, 4):

> gamma_contr[i];

> gamma_covar[i];

The calculation of the Dirac γ matrices could be put into the dirac() proce-
dure but for further calculations involving higher dimensions may need just
these matrices. To find the γ matrix for the extra dimension, one can use
these results and look for the γ matrix of the extra dimension using the an-
ticommutation relations as in reference [31]. Therefore the procedure is a
separate one.

• coframe():

This command calculates the coframe l ≡L (= lµdx
µ) and m ≡M (= mµdx

µ).
The output variables are the following, ” bar” denoting the complex conju-
gate:

> L;

> M;

> L_bar;

> M_bar;

• spinrotcoeff():
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This procedure calculates the spin rotation coefficients using equations in
(I.20). The output can be used later by calling:

> npkappa; > nptau; > npsigma;

> nprho; > nppi; > npnu;

> npmu; > nplambda; > npgamma;

> npepsilon; > npalpha; > npbeta;

in the meaning of the spin rotation coefficients κ, τ, σ, ρ, π, ν, µ, λ, γ, ε, α,
β respectively.

• weylscalar():

This command calculates the Weyl scalars using equation (I.68). The output
variables are:

> weylscalar0; > weylscalar1; > weylscalar2, > weylscalar3;

> weylscalar4; > weylscalartilde0; >weylscalartilde1;

> weylscalartilde2; > weylscalartilde3; > weylscalartilde4;

for Ψ0, Ψ1, Ψ2, Ψ3, Ψ4, Ψ̃0, Ψ̃1, Ψ̃2, Ψ̃3, Ψ̃4 respectively. ”tilde” means the
variable has a tilde in the meaning of a different spin frame.
Another property of this procedure is that it finds out the Petrov class of
the spacetime according to equations (I.120-122). Petrov classification of
Euclidean spacetimes were first studied by Hacyan [33] and then by Karlhede
[34].

• tfricciscalar():

This command calculates the trace-free Ricci scalars using equation (I.69)
and sets them to variables for a later use:

> tfricciscalar00; > tfricciscalar01; > tfricciscalar02;

> tfricciscalar10; > tfricciscalar11; > tfricciscalar12;

> tfricciscalar20; > tfricciscalar21; > tfricciscalar22;

> scalofcurv;

for Φ00, Φ01, Φ02, Φ10, Φ11, Φ12, Φ20, Φ21, Φ22, scalar of curvature Λ respec-
tively.

• conn1form():
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This procedure calculates the spinor equivalent of the connection 1-forms
given by equations (I.36-37). The output can be reached by calling

> GAMMA00; > GAMMA01; > GAMMA10; > GAMMA11;

> GAMMAtilde0pr0pr; > GAMMAtilde0pr1pr;

> GAMMAtilde1pr0pr; > GAMMAtilde1pr1pr;

for Γ0
0, Γ1

0, Γ0
1, Γ1

1, Γ̃0′

0′, Γ̃1′

0′ , Γ̃0′

1′ , Γ̃1′

1′ respectively where ”tilde” means the
variable has a tilde and ”pr” means ”prime” in the meaning of a different
spin frame.
Another property of the procedure is that, it finds out the gauge by checking
the necessary and sufficient conditions for (anti-)self-duality namely, Γab ≡ 0
implies self duality and Γ̃x′y′ ≡ 0 implies anti-self-duality.

• basis2form():

This command finds the basis 2-forms using the definitions in equation (I.49).
The output can be reached by

> L00; > L01; > L10;

> Ltilde0pr0pr; > Ltilde0pr1pr; > Ltilde1pr0pr;

for L0
0, L

1
0, L

0
1, L̃

0′

0′ , L̃
1′

0′ , L̃
0′

1′ respectively. Here, ”tilde” means the variable has
a tilde and ”pr” means ”prime” in the meaning of a different spin frame.

• curv2form():

This command calculates the curvature 2-forms using equations (I.90-91)
and sets them to these variables:

> Theta00; > Theta01; > Theta10;

> Thetatilde0pr0pr; > Thetatilde0pr1pr; > Thetatilde1pr0pr;

for Θ0
0, Θ1

0, Θ0
1, Θ̃0′

0′ , Θ̃1′

0′ , Θ̃0′

1′ respectively where ”tilde” means the variable
has a tilde and ”pr” means ”prime” in the meaning of a different spin frame.

• topologicalnumbers():
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This command calculates the integrands of the Euler number and the Hirze-
bruch signature curvature part integrals using the relations (I.115-117) namely,

χ =
1

4π2

∫

M

[

|Ψ0 |2 + 4 |Ψ1 |2 + 3 Ψ2
2 + | Ψ̃0 |2

+ 4 | Ψ̃1 |2 + 3 Ψ̃2
2 − 2 ( |Φ00 |2 + |Φ02 |2 )

− 4 ( |Φ01 |2 + |Φ11 |2 + |Φ12 |2 − 3Λ2 )
]

l ∧ l̄ ∧m ∧ m̄ (12)

τ = − 1

6π2

∫

M

[

|Ψ0 |2 + 4 |Ψ1 |2 + 3 Ψ2
2 − | Ψ̃0 |2

− 4 | Ψ̃1 |2 − 3 Ψ̃2
2

]

l ∧ l̄ ∧m ∧ m̄ − ηs(∂M) (13)

ηs(∂M) being the eta-invariant and this value will not be taken into consid-
eration in the program. The output can be reached by calling

> eulernumber_integrand;

> hirzebruch_signature_integrand;

These numbers have a special importance for the Atiyah-Patodi-Singer index
theorem of operators on manifolds with boundary [35][36][37][38].

3 Examples

In this section, we will apply our program to two instanton metrics and
calculate some objects using the special commands. Lengthy output values
are not written to avoid distracting the reader’s attention.

3.1 Example 1: Calculations for the Eguchi-Hanson

metric

Eguchi-Hanson instanton [28] is the most similar to the Yang-Mills instanton
of Belavin et al. [39] and the metric is given as

ds2 =
1

1 − a4

r4

dr2 + r2(σ2
x + σ2

y) + r2(1 − a4

r4
)σ2

z . (14)
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Here,

σx =
1

2
(− cos ξdθ − sin θ sin ξdφ),

σy =
1

2
(sin ξdθ − sin θ cos ξdφ), (15)

σz =
1

2
(−dξ − cos θdφ).

and the dyad was given in eqn. 1 and eqn. 2. We run our program in Maple
and type the name of the input file:

> read("C:/npinstanton/npinstanton.mws");

Enter the name of the definition file (include the

path if other than C:/npinstanton): eguchihanson

The program now checks the definitions of the NP legs and shows the primary
definitions (metric, coordinates, command list). When

npinstanton>

is prompted the session is ready for calculations. Now, let us calculate the
connection 1-forms:

npinstanton> conn1form();

The program calculates and shows the calculated values. Then the gauge is
found by the program as:

SELF DUAL GAUGE because all connection 1-forms without tilde are zero

before prompting for another calculation, the procedure shows the output
variables which can be used for a later calculation. for example, let us call
Γ1

0 of equation (I.36):

npinstanton> GAMMA01;

The scalar operator can be calculated by using the command,

npinstanton> scalaroperator();

and the output will be the scalar operator. This result can be used by calling
the name ”scalarop” afterwards.
To find the Weyl scalars and the Petrov class, one can run,

14



npinstanton> weylscalar();

After the Weyl scalars are shown, the Petrov type is found to be:

Petrov-type D according to anti-self-dual part

The whole results aggree with the literature [34].

3.2 Example 2: Calculations for the Nutku helicoid

metric

The Nutku helicoid metric is given as

ds2 =
1

√

1 + a2

r2

[dr2 + (r2 + a2)dθ2 +

(

1 +
a2

r2
sin2 θ

)

dy2

−a
2

r2
sin 2θdydz+

(

1 +
a2

r2
cos2 θ

)

dz2] (16)

where 0 < r < ∞, 0 ≤ θ ≤ 2π, y and z are along the Killing directions and
are taken to be periodic coordinates on a 2-torus [40]. This is an example
of a multi-center metric. This metric reduces to the flat metric if we take
a = 0. Since this solution has curvature singularities, it has not been studied
extensively aside from three articles [30][31][32][41]. The NP legs can be
chosen as,

lµ =
a
√

sinh 2x

2
(1, i, 0, 0), (17)

mµ =
1√

sinh 2x
(0, 0, cosh(x− iθ), i sinh(x− iθ)). (18)

Let us calculate the basis 2-forms:

npinstanton> basis2form();

After the calculation, to call L0
0 of equation (I.49),

npinstanton> L00;

and the output will be
-1
2
Ia2 cosh(x) sinh(x)dx1 ∧ dx2-1

2
Idx3 ∧ dx4

dx’s were defined previously, at the very beginning of the session in terms of
the real coordinates. We can calculate the Dirac equation by,
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npinstanton> dirac();

and

npinstanton> dirac[3];

calls the third component of the Dirac equation vector which can be simplified
and used for calculations.
We can calculate the connection 1-forms as,

npinstanton> conn1form();

For this definition the gauge turns out to be:

ANTI-SELF DUAL GAUGE because all connection 1-forms with tilde are zero

and the connection 1-forms are shown.
For the Weyl scalars and the Petrov class, one can run,

npinstanton> weylscalar();

After the Weyl scalars are shown on the screen, the Petrov type is found to
be:

Petrov-type I according to self-dual part

The whole results aggree with the literature [40].

4 Final remarks

We introduced a Maple11+GRTensorII based symbolic calculator consisting
of procedures for instanton metrics using a Euclidean Newman-Penrose for-
malism. The program and sample files are available via the author’s webpage:

http://atlas.cc.itu.edu.tr∼birkandant/npinstanton.htm
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[32] T. Birkandan, M. Hortaçsu, J. Math. Phys. 48, 092301 (2007)

[33] S. Hacyan, Phys. Lett. A 75, 23 (1979)

[34] A. Karlhede, Class. Quant. Grav. 3, L1 (1986)

[35] M. F. Atiyah, V. K. Patodi and I. M. Singer, Math. Proc.Camb.Phil.

Soc. 77, 43 (1975)

[36] M. F. Atiyah, V. K. Patodi and I. M. Singer, Math. Proc. Camb.Phil.

Soc.77, 405 (1975)
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