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SERIES EDITOR’S INTRODUCTION

Although many of the books in our series are about statistical methods, one

departure from this norm is reflected in a small number of the titles dealing

with mathematical topics. For example, Nos. 108 and 109 by Hagle provide

an introduction to basic math for social scientists, and No. 110 by Iversen

has calculus as the focus. A more specialized treatment is No. 27, Dynamic

Modeling by Huckfeldt, Kohfeld, and Likens, where difference equations

are presented to the social scientist. Extending our coverage of mathematics,

Brown’s Differential Equations: A Modeling Approach takes us one step

farther by treating time as continuous instead of discrete as with difference

equations.

There are some fundamental differences between mathematics and statis-

tics, which used to be considered a branch of applied mathematics, in how

they apply in the social sciences even though both use mathematical symbols

to express variables, parameters, and functions: Statistical models are char-

acteristically stochastic whereas mathematical models are typically determi-

nistic (though stochastic processes can be incorporated in models such as

stochastic differential equations); statistical models assist the social scientist

in theory testing whereas mathematical models help the researcher do theo-

retical exploration and theory building; statistical models involve data reduc-

tion (i.e., estimating a few parameters from a large number of observations)

whereas mathematical models imply knowledge expansion (i.e., predicting

an array of behavioral patterns from a few initial conditions).

Differential equations, then, can be applied to build our theories and

expand our knowledge; Brown’s Differential Equations shows us how this

can be done.

In spite of its early development in the 17th century by Leibniz and

Newton, the application of differential equations in the social sciences has

been much later. For example, the Malthusian population growth model

can be cast in terms of a single ordinary differential equation, dp=dt ¼ rp,

where the size of population, p, is an exponential function of time t and the

rate of exponential growth is determined by parameter r. The actual applica-

tion of differential equations in the social sciences, however, occurred after

demographer-ecologist Afred Lotka proposed the two-species predator-prey

model in 1925, known as the Lotka-Volterra model. Since then the model

has been extended to one for multiple species, and to other kinds of demo-

graphic applications. Beyond population studies, differential equations have

seen success in the 20th century in the classical arms race model by mathe-

matician-physicist-psychologist Lewis Fry Richardson (illustrated in the

viii



current book and in discrete form in No. 27 on difference equations) and in

the mathematical model of the Durkheimian division of labor in society by

sociologist Kenneth Land, among many others such as the analyses of social,

cultural, and technological diffusion and the spread of rumors.

Brown’s addition to the series thus serves not only to cover a topic we

did not use to have a book for but also to challenge the social scientist to

step out of the variable-oriented mindset to think more in terms of pro-

cesses, an understanding of which is no doubt crucial for a proper under-

standing of humans’ political, psychological, and social behavior.

—Tim F. Liao

Series Editor
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DIFFERENTIAL EQUATIONS

A Modeling Approach

Courtney Brown

Emory University

1. DYNAMIC MODELS AND SOCIAL CHANGE

Humans live in continuous time. All social phenomena manifest in the

context of continuous time. Differential equations model change in contin-

uous time. The widespread use of differential equations to model social

and political change can open up vast new vistas of pioneering research in

the social sciences. Understanding that such widespread use has not yet

occurred is the social science equivalent of hearing from a reliable source

that unclaimed gold is available for the taking in a given mountain setting.

Throughout the physical and natural sciences, scientists routinely use dif-

ferential equations to model change with respect to all sorts of phenomena.

They do this not because all the phenomena that they study exhibit pro-

cesses of change that are dynamically unique and different from social and

political processes. For example, contagion and diffusion processes can

occur in chemical reactions just as readily as they can manifest in social

settings. Rather, physical and natural scientists use differential equations

because they want their models to approximate most closely the continuous-

time nature of the real-world phenomena that they study. That is, the phe-

nomena themselves dictate the use of differential equations.

Social scientists also study change, and there have been some highly

noteworthy instances of social scientists using differential equations to

model processes of change. Many of these seminal instances have become

permanent fixtures in the extant social science literatures as examples of

brilliant theoretical thinking. The arms race model of Lewis Fry Richardson

is one such example.

Nonetheless, the extent to which differential equations are used in the

social sciences is nowhere near that of the natural and physical sciences.

There are two primary reasons for this. One reason is theoretical and the other

is legacy. In terms of the former, a great deal of early empirical research in

the social sciences has its grounding in the emergence of population surveys
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that were conducted in the 1950s (e.g., Berelson, Lazarsfeld, & McPhee,

1954; Campbell, Converse, Miller, & Stokes, 1960). Researchers analyzed

these survey data using techniques such as cross-tabulation tables and diverse

forms of correlational analysis. This early empirical research led to tremen-

dous advances in our understanding of society and social processes. The

methodological approaches adopted by this research consequently led to

the now dominant application of regression models that appear in much of

the extant social science empirical literature. For these theoretical reasons,

social scientists have long been trained to use statistical models that do not

rely on differential equations, and the focus on statistical training is now a

historical legacy of the development of commonly applied social science

methodologies. But given the fact that many social and political processes

of change occur in the context of continuous time, it is logical to assume

that the potential for discovering important new findings within the social

sciences will increase dramatically as social scientists more commonly use

continuous-time models of change that closely parallel the dynamical struc-

ture of the processes under investigation.

One of the primary purposes of this book is to introduce differential

equation modeling to a wider audience in the social sciences. Moreover,

I write this book with the full expectation that social scientists who increas-

ingly use differential equations in their models of social and political

change will open themselves up to new avenues of theoretical thinking, and

that these new avenues of thought will lead to a host of important discov-

eries. It is also worth noting that theory-building graphical techniques

originating from systems theory exist that can assist social scientists in

developing differential equation models that embrace high levels of theo-

retical complexity and nuanced sophistication (see especially Brown, 2008;

also Cortés, Przeworski, & Sprague, 1974).

It is normal for social scientists to ask what advantages the study of dif-

ferential equations may have over other approaches to specifying change

over time. Two types of equations are normally used to express change in

terms of time: differential equations and difference equations. Differential

equations are different from difference equations because they specify time

in a continuous rather than a discrete manner. Other than that, differential

equations and difference equations are more similar than they are dissimi-

lar. Thus, much of this book is conceptually applicable to the study of

difference equations as well, although the mechanics of working with

difference equations differ from those used with differential equations.

Both differential and difference equations also work with independent vari-

ables other than time, but since the dominant application of such equations

is with respect to time, this book focuses on that use. Before diving into
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the mathematics of differential equations, it is worth spending some time

outlining more specifically why social scientists might want to use differen-

tial equations in the first place.

Theoretical Reasons for Using Differential
Equations in the Social Sciences

While it is more common for social scientists to work with statistical

models than with differential equation models, it would be wrong to claim

that one form of modeling is superior to another. Each approach to model-

ing has its own advantages and disadvantages. Statistical models are tre-

mendously useful in terms of testing empirical theories, especially when

attempting to identify causal relationships between variables through the

use of some form of correlational analysis. Thus, when we want to know

if hours spent reading causes an increase in reading comprehension test

scores, a statistical model that correlates the former with the latter is the

approach of choice.

But there are also reasons why a social scientist may be inclined to use a

statistical model in situations in which a differential equation model might

be more appropriate or perhaps simply more interesting. Many statistical

models can be applied ‘‘out of the box.’’ The ease with which this can be

done may inadvertently encourage some social scientists to avoid working

with (and thinking about) more interesting and nonlinear deterministic

dynamic model specifications, especially continuous-time specifications.

One of the most important reasons for working with differential equation

models is theoretical. Social scientists can use differential equations to

develop theories of social and political phenomena that are particularly rich

with respect to the specification of time-dependent processes. Of course it

can be argued that statistical models also address social theory, and indeed

they do. But in general, statistical models are more confined in functional

form in a manner that is quite alien to differential equation models. There is

a practical and important reason for this. Statistical models must be appli-

cable to a wide variety of empirical settings, and thus the analytic solutions

to such models need to be known in their entirety in the form of program-

mable formulae in advance of any empirical testing. This requirement

forces most statistical models to adhere to known functional forms for

which the probabilistic mathematics are entirely known and mathemati-

cally tractable, a topic I address more fully below. But this requirement

is usually not applicable to differential equation modeling. Indeed, with

differential equations, the specification of a model is limited only by a
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researcher’s creativity with respect to social theory. Due to advances in

both mathematical theory and computing technology, it is now possible for

a researcher to work with differential equation models that address social

and political theories of unprecedented complexity and sophistication.

A growing number of social scientists now use differential equations to

model social phenomena, and even a short and partial list of such applica-

tions demonstrates the great variety and depth of these efforts. Some of the

classic examples of the use of differential equation modeling in the social

sciences include the landmark treatments by Simon (1957), Coleman

(1964), and Rapoport (1983). In the field of international relations, Richard-

son’s (1960) classic treatment of arms races remains a frequently cited

application of differential equation modeling. Also, Przeworski and Soares

(1971) explore a variety of specifications using differential equations that

address the dynamics of class consciousness and the left vote. From a socio-

logical perspective, Tuma and Hannan (1984) discuss a variety of methodo-

logical approaches to the study of social dynamics using differential equation

systems. Gottman, Murray, Swanson, Tyson, and Swanson (2003) exploit

both differential and difference equations to examine the psychological

dynamics of marriage. Kadera (2001) uses differential equations in an award-

winning treatment of political interstate rivalries. Brown (1994, 1995a)

uses differential equations to model environmental degradation as a conse-

quence of political decisions to either exploit or defend the environment.

Brown (1987b, 1988, 1991, 1993, 1995a) also uses differential equations to

‘‘re-create’’ the dynamics of partisan struggle between elections when using

both survey and aggregate data for situations in both the United States and the

Weimar Republic. (This is called a ‘‘boundary-value problem.’’)

More generally, there are many reasons why a researcher might want

to develop a model that specifies time in a continuous manner. Social scien-

tists often think in terms of discrete units of time because data involving

societies are frequently collected in intervals of substantial lengths. For

example, census data are normally collected every 10 years, and electoral

data are collected every few years. But many processes of change are con-

tinuous in nature, and there are instances in which social scientists need to

use differential equations to model this type of social change. This requires

that social scientists take into account the fact that measurements of a con-

tinuous process may be conducted in discrete intervals merely for matters

of convenience. In such situations, using difference equations to model a

continuous-time process of change can sometimes significantly alter the

specification of time away from its reality, which in turn can result in a loss

of understanding of that which is being investigated. (See especially, Brown

1995a, Chap. 2, for a detailed discussion of this.)
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An Example

Let us begin our discussion of differential equations with an example that

can demonstrate how powerfully even a simple single-equation differential

equation model may address a sophisticated theory. There is currently

a great deal of concern these days about the subject of global warming.

Carbon dioxide and other heat-trapping gases are being released into the

atmosphere through human activity. Global warming has the potential to

drastically alter the ability of human civilization to continue to develop

without encountering highly unpleasant challenges. Indeed, if global warm-

ing continues as many scientists are saying it is progressing, we may be

facing a situation in which many coastal cities will need to be evacuated

due to rising sea levels. Imagine a world in which the only way to travel

down 5th Avenue in New York is with a canoe or scuba gear! Where will

the capital of the United States be relocated once Washington, D.C. is

flooded? If the U.S. capital is relocated to, say, Atlanta (which is safely

1,000 ft above sea level), will Atlantans lose their representation in the U.S.

Congress in the manner in which residents of Washington, D.C. currently

lack voting representation? What will happen to the global weather with all

that water and heat thrown into the mix? And what will happen to our food

crops when the weather turns sour? The possible consequences of global

warming are as countless as they are bone chilling. These are all interesting

questions that serve as motivation to understanding the following example

of a differential equation model.

The following model was developed by Anatol Rapoport (1983, pp. 86–91)

to study the growth of pollution and its effect on both human population

numbers and the quality of life. Rapoport also uses this model to extend simi-

lar theoretical and pioneering discussions initiated by Jay W. Forrester (1971).

Let us consider heat-trapping gases a form of pollution, and let us label the

level of this pollution with the variable P. (Here, I use the original notation

offered by Rapoport.) We are interested in modeling change in this variable

with respect to time. One approach is to state simply that there will be a

constant rate of release of this pollutant into the environment. In this respect,

this is a conservative model since the rate of release will actually grow as

human industrial activity increases over time. But even with this conservative

simplification, Rapoport’s model holds surprising consequences. We can

describe this constant rate by writing change in the level of heat trapping

pollution as

dP=dt ¼ I;

where I is the constant rate of pollutant released into the atmosphere.
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But carbon dioxide does not simply stay in the atmosphere forever. It is

eventually absorbed by plants. Thus, we need to incorporate into our model

some means of reducing the level of heat-trapping pollution. A straightfor-

ward approach is to say that the rate of decrease will be proportional to the

level of the pollutant. Thus, plants will absorb more carbon dioxide when

there is more carbon dioxide to absorb since an increased concentration of

this gas will assist plants in their growth processes. Mathematically, we can

write this as

dP=dt ¼ I � aP;

where a is a constant parameter, and the term −aP reflects the removal of

carbon dioxide from the atmosphere because of its being absorbed by plants.

This is a ‘‘safe’’ model with a happy ending, in the sense that it has a

tidy equilibrium. That is, change in the growth of pollution will cease when

dP/dt = 0, which will occur when I ¼ aP. Thus, as the pollution levels

grow, the rate of decrease (aP) will eventually equal the constant rate of

increase (I), and the overall growth of pollution will stop. But is this realis-

tic? Is it not the case that when the level of carbon dioxide builds up in the

environment, there will also be consequences that will inhibit the growth of

plant life? For example, increases in carbon dioxide will coincide with

increased industrial activity that will result in lots of forests being chopped

down. Concomitant human activity will also result in other forms of pollu-

tion that will harm plant life.

Because of the collateral effects, we probably want to say that the rate of

decrease in the levels of carbon dioxide will not simply be proportional to

the level of P. Rather, we will want to say that the parameter a is no longer

a constant, but rather it assumes a value that decreases as the level of P

increases. One way to specify the decreasing effectiveness of the parameter

a in reducing the level of carbon dioxide from the atmosphere is to write

this parameter as a ¼ a0e�kP, where a0 is an initial value for this para-

meter (i.e., when P ¼ 0) and k is a constant parameter. Note that as the

value of P grows larger, the value of e�kP moves asymptotically toward

zero. Rapoport’s pollution model then becomes

dP=dt ¼ I � a0Pe�kP:

Initially, the rate of increase (I) for the pollutant will cause P to increase,

and the partial term a0P will tend gradually to slow this growth as in the

case of the previous version of the model. But as P continues to grow, the

term e�kP will increase in importance, and the entire term that describes

the reduction in carbon dioxide due to absorption by plants (�a0Pe�kP) will
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approach zero, leaving only the constant rate of growth, I. This allows P to

grow unbounded, and this is a formula for planetary disaster. Crucially, we

can understand that this consequence from a simple model has a great deal

of realism built into it. Fully understanding this model can make one think

seriously about global warming in new and profound ways.

Much more can be done in terms of analyzing Rapoport’s pollution

model. However, it is already clear from even this short discussion that dif-

ferential equations can capture highly complex and nuanced theoretical

ideas. The differential equation model above adds a great deal of theoretical

richness to our understanding of some of the dynamic complexities of

the problem of global warming. It is hard to imagine doing the same thing

with a linear regression model. A linear regression model can be used to

address other issues related to global warming, such as finding a correlation

between carbon dioxide levels and atmospheric temperature increases, and

this too is a crucially important scientific aspect of the overall issue. So we

clearly are not minimizing the importance of statistical models when we

use differential equations. Indeed, all social scientists I know who use dif-

ferential equations also work with statistical models. But the idea of using

differential equations to contribute uniquely to the process of theory build-

ing is a general characteristic of differential equation modeling. One should

also note that it is entirely feasible to estimate the parameters of differential

equation models (although this is not done in this book), making them fully

complementary to statistical models.

The Use of Differential Equations
in the Natural and Physical Sciences

While the focus of this book is the application of differential equations

in the social sciences, such deterministic models have long been a mainstay

of mathematical analyses in the natural and physical sciences, and it is

worth making a brief mention of this use here. With respect to the natural

sciences, differential equations have been used extensively in population

biology to study the interactions of species in model ecosystems (see May,

1974). The well-known predator and prey equations of Lotka (1925) and

Volterra (1931) fall into this category. The use of differential equations in

biology is algebraically similar in many respects to the application of such

equations in epidemiology. Epidemiology is fundamentally concerned with

the spread of disease. Infectious diseases can spread through a variety of dif-

fusion and contagion mechanisms which are readily modeled with differen-

tial equations. The seasonal and other periodic aspects of disease spread are

7



also well suited to such equations. In physics, differential equations have

been used extensively in countless settings going all the way back to Newton.

Indeed, Newton’s second law stating that force equals the product of mass

and acceleration (F ¼ ma) is a second-order differential equation (since

velocity is a derivative, and acceleration is the derivative of velocity). Most

of these differential equation models are deterministic.

Interestingly, natural and physical scientists are currently expanding

their use of probabilistic and statistical models that have long been a main-

stay of the social sciences, and it is natural to ask if this means that determi-

nistic models are losing some of their usefulness. For example, many of the

contemporary needs of physicists from probabilistic and statistical points of

view are being driven by new discoveries in quantum mechanics. They

have discerned that quantum phenomena are fundamentally probabilistic in

nature. This goes back to a famous theorem by John Bell that helped to

determine that the Einstein, Podolsky, and Rosen debate with Neils Bohr

was truly and finally resolved (see Aczel, 2001). It was only in the 1980s

and 1990s that experimental results for the phenomenon known as ‘‘entan-

glement’’ demonstrated unambiguously that Einstein’s belief that the quan-

tum universe is fundamentally deterministic is incorrect, and that there are

no hidden local variables that can explain the entanglement phenomenon.

Thus, quantum phenomena place an added emphasis on the use of probabil-

istic and statistical methods. But despite this increased interest in probabil-

istic models, physicists still use deterministic methods to model quantum

and other phenomena. In particular, they continue to exploit the full range

of differential equation approaches, both probabilistic and deterministic.

One reason physicists seem to be drawn toward the use of more statistics is

that they want to include more statistical measures with their differential

equation models. They are not limiting their use of differential equations.

Thus, in large measure, as social scientists increasingly use differential

equations, and as natural and physical scientists expand their use of prob-

abilistic and statistical models, the types of mathematics that are commonly

encountered in all the sciences (including the social sciences) are becoming

much more similar across disciplines.

Deterministic Versus Probabilistic
Differential Equation Models

Why should social scientists use deterministic mathematics? This is a ques-

tion that has long been debated within social science circles (see Coleman,

1964, pp. 526–528). Quite honestly, most of the debates appear to have

been ‘‘won’’ by the advocates of probabilistic mathematics who usually
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drown out the determinists both quantitatively (by having the greater num-

ber of supporters) and argumentatively (by positing the inherently stochas-

tic nature of social phenomena). The latter point might at first seem to

clinch the case for the probabilistic side, but the answer to the debate is not

nearly so clear cut. The real answer to this always boils down to the issue of

specification richness. Remember that all mathematical models, both deter-

ministic and probabilistic, are approximations of more complex processes.

It is an essential feature of any model-building enterprise that many factors

are ignored in any model so that the most important ingredients may be cap-

tured with some degree of parsimony. The bottom line then becomes the

degree of complexity that can be captured by each modeling strategy (deter-

ministic vs. probabilistic) such that the finished mathematical model most

closely represents the real-world process that it approximates. My basic

argument (which I explain further below) is that the relatively greater alge-

braic richness that is possible with deterministic mathematics more than

compensates for any informational loss that is a consequence of dropping

the more complex probabilistic baggage that accompanies stochastically

oriented models.

With deterministic mathematics, one can specify models that are much

more algebraically nuanced than is possible with most stochastic models.

Stochastic models are also equations, but the only ones that can effectively

be used in most settings are the algebraically tractable statistical variety.

This is because stochastic models are built upon a foundation of probability

distributions. Incorporating probability distributions directly into a model

increases its complexity greatly, with even modest increases in specifica-

tion richness quickly producing models that are hopelessly intractable. That

is, stochastic models are useful only if they are accompanied by algebraic

solutions to their parameters that can be programmed into standard statisti-

cal software. Such software is typically designed to evaluate correlations

between variables, thereby identifying causal ingredients with respect to a

dependent variable. The models themselves are generally ‘‘plug and chug,’’

in the sense that researchers can put their own variables into predefined posi-

tions of an algebraic form. But when one develops a deterministic model,

one dives into the realm of algebraic variety to a degree that can rarely be

imagined with stochastic models. This often requires an abandonment of

the ‘‘plug and chug’’ estimation programs that are so useful with simpler

models. (See also Brown, 1991, Chap. 3.)

There is yet another aspect to this debate. While stochastic models are

theoretically bound to at least one random variable, their specifications

are nonetheless structured around an inner deterministic ‘‘core,’’ that is, a

deterministic form combined with a stochastic component. In terms of this

core, the primary thing that normally marks one model as ‘‘deterministic’’
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and another as ‘‘statistical’’ is that the deterministic model usually ends up

being more algebraically nuanced than the core components of the statisti-

cal model. For example, the equation of a line is deterministic, and equa-

tions of lines are the bedrock of most statistical models. The simplicity of

the linear form enables statisticians to solve explicitly for the parameters of

the equations (e.g., the slopes and intercepts). Statisticians can also asso-

ciate probabilistic assumptions with such models. The explicit solutions

for the parameters, plus the incorporation of probability distributions into

the models, together act to transform a deterministic core of the model into

a statistical one. But to do all this, one has to work with a model that is

amenable to finding explicit solutions for the parameters, and the probabil-

ity distributions associated with the various parts of the model similarly

have to be approachable. One does not have to develop a very complicated

model before all of these things are no longer feasible using probabilistic

mathematics.

The real reason for wanting to work with deterministic models then

resolves to a desire to develop interesting model specifications that cor-

rectly explain social phenomena, but for which there may not be a ‘‘plug

and chug’’ statistical counterpart. With such models, specific probabilistic

assumptions may be impossible to apply, and the probabilistic distributions

associated with the model and its parameters may be unknown. But the

algebra of such models is the core of their value. The algebra of determinis-

tic models can be as nuanced as necessary in order to capture the essence

of the social phenomena being examined. Indeed, any statistician will tell

you that the greatest mistake any modeler can make is to misspecify a

model in the first place. The parameter estimates of a misspecified model

are often worthless. Thus, if a researcher has a nuanced theory that explains

a social phenomenon, then that researcher is much better off working with a

deterministic model that captures that theory correctly than a statistical

model that sloughs off the nuanced aspects of the theory in order to make

use of a plug and chug estimation program.

We talk about differential equations as being ‘‘deterministic’’ because

only the most elementary of such models have exact statistical counterparts.

Fortunately, the field of deterministic mathematics has advanced greatly in

recent years, and it is now possible to estimate fully nearly all deterministic

models. This includes conducting significance tests on all of the parameter

estimates. Thus, the gap between deterministic models and statistical mod-

els is shrinking in practical terms, and the day may arrive when one will

simply be able to talk about a model as a ‘‘model’’ rather than as a determi-

nistic or a statistical model.

Differential equations come in both deterministic and probabilistic

varieties. This book focuses on only deterministic differential equations.
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Probabilistic differential equations are different from their deterministic

counterparts in basically two respects. First, with probabilistic differential

equations, one models the probability of an event occurring. Thus, prob-

abilistic models give birth to whole events. But with deterministic models,

one directly models the event itself (not the probability of the event), and it

is possible to predict a fraction of an event. This is normally not a problem

except in situations in which event counts or population sizes are very

small. (See Mesterton-Gibbons, 1989, for a detailed discussion of this.)

Second, probabilistic differential equations offer some descriptive rich-

ness that their deterministic counterparts lack. Both, the probabilistic and

deterministic versions, offer mean predictions. But only probabilistic mod-

els supply formulas for variances to go along with these mean predictions.

Again, the trouble is that there exists an enormous increase in algebraic and

computational difficulty when using probabilistic differential equations

(see Brown 1995b, Chap. 1), and this is true even with the simplest of such

models. More complicated probabilistic model specifications quickly

become intractable from a mathematical perspective. It is essential to

emphasize that the variance associated with mean predictions is all that is

lost by using deterministic models. Again, a broad range of statistical mea-

sures can still be employed with deterministic models, complete with full

capabilities for estimating the values of the parameters together with their

statistical significance. Ultimately, modeling phenomena with determinis-

tic differential equations allows us to investigate much more interesting and

complex algebraic specifications than would otherwise be possible from a

probabilistic perspective. Thus, when using deterministic models, we gain

a tremendous amount of specification flexibility while losing only a small

amount of probabilistic richness.

What Is a Differential Equation?

With elementary algebra, equations are normally written to specify a

dependent variable as a function of one or more independent variables.

For example, the equation y ¼ mxþ b is the equation of a line in which y is

the dependent variable, x is the independent variable, m is the slope of the

line, and b is the intercept of the line. However, a differential equation is

one in which a derivative also exists in the equation. Thus, Equation 1.1 is a

differential equation.

dy=dt ¼ ay ½1:1�

In this equation, y is the dependent variable, t (time) is the independent vari-

able, and a is a parameter. In this instance, we are not given an equation that
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defines the value of y; but rather we are given an equation that defines

change in y. Thus, Equation 1.1 says that the rate of change in y depends on

the value of y itself. As the value of y increases, its rate of change will also

increase (as long as the value of the parameter a is positive). This type of

equation is called an ‘‘ordinary differential equation’’ since it contains only

an ordinary derivative and not a partial derivative. An equation that con-

tains a partial derivative is called a ‘‘partial differential equation.’’ A partial

derivative might look something like ∂y=∂x. In this book, we examine only

ordinary differential equations. In some texts, the abbreviation ‘‘ODE’’ is

sometimes used to reference the words ‘‘ordinary differential equations.’’

To ease exposition, throughout this book, the words ‘‘differential equations’’

will simply refer to ordinary differential equations.

Note that in Equation 1.1 the independent variable does not appear expli-

citly on the right-hand side. This type of differential equation is said to be

‘‘autonomous.’’ If the independent variable t appears in the equation as

an explicit variable, then the equation is ‘‘nonautonomous.’’ Equation 1.2

would be a nonautonomous version of Equation 1.1.

dy=dt ¼ ayþ cosðtÞ ½1:2�

The ordinary differential equation 1.1 is also called a ‘‘first-order’’ differen-

tial equation. The order refers to the order of the highest derivative appear-

ing in the equation. In this instance, the highest derivative is dy/dt. Equation

1.3 is a second-order differential equation since the highest-order derivative

in the equation is d2y=dt2. In such equations, lower-order derivatives also

may or may not be present.

d2y=dt2 ¼ ay ½1:3�

A differential equation can also be referenced by degree. Sometimes a deri-

vative in an equation is raised to a power, and the magnitude of this power

is called its ‘‘degree.’’ The degree of a differential equation refers to the

algebraic degree of the highest-order derivative in the equation. Thus,

Equation 1.4 is a first-order differential equation of degree 2.

ðdy=dtÞ2 ¼ ay ½1:4�

The notation in Equation 1.4 is a bit awkward. Thus, sometimes various

authors will use the form y′ to refer to the first derivative, y′′ to refer to the

second derivative, and so on. Thus, Equation 1.4 might be more economic-

ally written as

y′2 ¼ ay: ½1:5�
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There is yet another way a derivative may be written. Sometimes a deriva-

tive is written with ‘‘dot’’ notation, as is often the case when time t is the

independent variable. For example, Equation 1.1 could be rewritten using

Newton’s ‘‘dot’’ notation as

_y ¼ ay:

To offer consistency in presentation, only the notations as shown in Equa-

tions 1.1 and 1.5 are used in the remainder of this book.

A differential equation is linear if its algebraic form contains only addi-

tive combinations of its variables together with appropriate parameters.

Everything else is nonlinear. Thus, a linear differential equation cannot

contain powers or interactive terms with respect to the independent or

dependent variables. Thus, Equations 1.1 and 1.3 are examples of linear

autonomous differential equations of degree 1, whereas Equation 1.6 is

a nonlinear autonomous first-order differential equation of degree 1. More

exactly, one would say that Equations 1.1 and 1.3 are linear in the depen-

dent variable y, whereas Equation 1.6 is nonlinear in y.

dy=dt ¼ ay2 ½1:6�

In this book, we focus our attention on first- and second-order linear and

nonlinear differential equations of degree 1. Some of the most profound

uses of differential equations can be found in investigations of systems of

two or more first-order ordinary differential equations. Indeed, any second-

order differential equation can be expressed as a system of first-order differ-

ential equations, as I describe in a later chapter. Also, a nonautonomous

differential equation can be rewritten as a system of first-order differential

equations (again, explained later). Thus, understanding how to work with

first-order differential equations (isolated and in systems) is the key to

working with many different situations involving differential equations,

which is why first-order differential equations are a primary thrust of this

book.

Fundamental to the study of differential equations is ‘‘solving’’ the equa-

tions. To solve a differential equation traditionally means to find a function

that explicitly specifies a rule to determine the values of the dependent vari-

able, not change in the dependent variable. There are methods that can be

used to find explicit solutions for a variety of classes of differential equa-

tions. It is often useful to know how the solutions for such equations are

derived since this allows one to understand many of the general behaviors

of differential equation models. For example, Equation 1.1 is a model of

exponential growth over time, a process of the sort described by Thomas

Malthus (1798) with regard to his concern about population size. Why this
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equation models ‘‘exponential growth’’ is not immediately clear from an

algebraic examination of the differential equation itself. However, this

becomes quite evident with an examination of the solution for this problem,

as is done in the next chapter.

In terms of first-order differential equations, this book presents the

separation of variables technique for finding explicit solutions to some dif-

ferential equations. Traditionally, texts for differential equations typically

spend a great deal of time also explaining a variety of other special-

ized methods for solving an assortment of differential equation types. But

this approach is increasingly falling from fashion. Many (some would say

‘‘most’’) interesting differential equation specifications do not work with

any given collection of approaches to determining explicit solutions. In the

past, one needed an explicit solution for a differential equation in order to

understand its behavior. But current research into differential equations

focuses on the behavior of differential equations often for which no explicit

solution can be found. This new research has been made possible due to the

development of modern computers. Computers are now used to solve dif-

ferential equations using numerical techniques that do not require explicit

solutions for the equations. This book follows this trend by explaining dif-

ferential equations in terms of their behaviors. Moreover, numerical meth-

ods are used throughout this book to solve for these equations, with only two

exceptions. The first exception explains the separation of variables tech-

nique, and the other explains solutions to systems of first-order linear differ-

ential equations. These exceptions are made for heuristic reasons only, and

they do not diminish the importance of the numerical methods. Since numer-

ical solutions to differential equations are so important to our current efforts,

it is worth spending a bit more time explaining the rationale for their use.

When we model social phenomena using differential equations, we want

to extend our modeling efforts well beyond the limits of linear differential

equations for which there are straightforward solutions. Equation 1.1 is the

simplest of differential equations, and it is not hard to find a solution for it.

But it is usually not possible to find a tidy solution (or any solution) for most

interesting differential equation problems, and nonlinear differential equa-

tions pose special difficulties in this regard. We are fortunate that there are

now easily applied computationally based ways to calculate solutions for

the dependent variables of differential equation models. Such numerical

methods work with nearly all differential equations. One only needs the ori-

ginal differential equation and an initial condition to use these numerical

methods.

The number of such numerical methods is quite large and is steadily

increasing, with each method having its own particular advantage in com-

putational speed and/or numerical agility. This book covers the three most
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important of these methods. Indeed, the first two (Euler’s method and Heun’s

method) are used here mostly as heuristic vehicles to help us understand the

fourth-order Runge-Kutta method, which is the workhorse of choice in most

situations. All of this is explained more thoroughly in the next chapter.

What This Book Is and Is Not

When someone takes a full college course in most subjects, it is normal for

the person to remember only a certain proportion of the material from that

course, even soon after the course is finished. This book is written to

approximate that proportion of knowledge that would be both readily

remembered and often used by someone who took a college course in dif-

ferential equations and then later applied that knowledge in his or her own

research. Thus, this book is written to address the core information that one

must retain after taking a full course in differential equations to use them in

a scientific study. This means that a full course in differential equations

and its associated text would cover more information than that which is

presented here.

Let me offer an example. In most courses on differential equations, some

time would be spent on the existence and uniqueness theorems. That is,

when studying a differential equation, mathematicians want to know if the

equation actually has a solution, and whether that solution is unique for any

given value of the independent variable. This is more important to the the-

ory of differential equations than to their application because proving exis-

tence and uniqueness is not too difficult for most reasonable differential

equation models. Indeed, it is rare to see an application of differential equa-

tions that spends publication space on existence and uniqueness. To include

a discussion of existence and uniqueness for the models presented in this

book would require that I then omit a significant amount of other informa-

tion that would be highly valued with respect to the application of differ-

ential equations to modeling. Indeed, and for this same reason, it is not

uncommon for many books that focus on modeling applications to omit dis-

cussions of topics such as existence and uniqueness. While the topics are

important, it is assumed that students of differential equations will be intro-

duced to them elsewhere.

A primary focus of this book is on the use of numerical methods to solve

differential equation systems, and this focus follows a recent trend among

some scholars. While numerical methods are covered in many books on

differential equations, the primary emphasis for a traditional approach to

differential equations is on deriving methods to obtain analytical solutions

to differential equations. Both the more recent emphasis on numerical
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methods and the traditional focus on analytical solutions are interesting in

their own right. But analytical solutions are often difficult or impossible to

obtain with all but the simplest of nonlinear models, whereas numerical

methods may be applied in any context, linear or nonlinear. For this reason, I

offer only a limited treatment of analytical solutions to differential equations.

In particular, this book covers the separation of variables technique in the

case of first-order differential equations, as well as the solution to second-

order linear differential equations in which there are two real and distinct

roots. Solutions of other classes of second-order linear differential equa-

tions are also given, but they are not derived. Some mathematicians will

disagree with this omission and argue that this treatment is incomplete.

However, the derivations of other classes of solutions for the linear case are

readily available elsewhere in longer treatments of the subject, and no argu-

ment is made here that students of differential equations should limit their

exposure to the subject to this one book should they want to extend their

studies further. Moreover, some mathematicians have argued that given the

fact that the analytical solutions themselves are of little use outside of the

linear case, there are heuristic advantages to emphasizing the more univer-

sally applicable numerical approaches in a treatment that focuses on model-

ing applications (see especially Koçak, 1989). Indeed, Blanchard, Devaney,

and Hall (2006) have argued that ‘‘the traditional emphasis on specialized

tricks and techniques for solving differential equations is no longer appropri-

ate given the technology that is readily available,’’ and ‘‘many of the most

important differential equations are nonlinear, and numerical and qualitative

techniques are more effective than analytic techniques in this setting’’

(p. vii). Let readers be aware at the outset that this book aligns itself with this

latter view.

This book also does not cover the broad topic of how to test differential

equations with respect to empirical data. Parameter estimation with differ-

ential equation models can be quite challenging when compared to the ease

with which linear regression models are evaluated. The challenges reside

not only with the issue of dealing with continuous time, but also the non-

linear algebraic complexity that so often accompanies differential equation

models. Methods of parameter estimation often employ computationally

intensive numerical techniques that are quite common in the fields of engi-

neering. Given the modern reality of fast computers, such methods of model

evaluation are entirely feasible and more commonly encountered. Useful

examples of fully estimated continuous-time differential equation systems

together with explanations of the methods used (as well as additional
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references) can be found in Brown (1995a). (For an accessible yet more

general treatment of the subject of model evaluation using numerical meth-

ods, see Hamming, 1971. See also Hamming, 1973.)

Despite these limitations, this book is more than simply a primer in the

subject of differential equations. Here, I cover the essential material that

will likely be considered the most valuable by those who apply differential

equations in their own social scientific projects. In essence, if one conducts

social scientific research by applying the methods discussed here, it is likely

that all (or at least most) of the requisite bases will have been covered, plus

some. Thus, while this is not a definitive and complete treatment of ordinary

differential equations, it nonetheless is a sufficiently complete treatment

such that many practitioners of these methods will be able to satisfy the bulk

of their needs with the information contained here. Researchers can then

extend their knowledge of this material by using additional sources as

required by their own applications.

2. FIRST-ORDER DIFFERENTIAL EQUATIONS

The study of differential equations begins with the subject of how to solve

them. There is a reason why we need to solve differential equations, and why

we cannot just leave the equations ‘‘as is.’’ Since this book approaches the

application of differential equations with respect to time, we can say that a

solution to a differential equation must be a function of time. Let us say that

we have a differential equation dy/dt, then our solution for this equation is the

function f ðtÞ. This means that we can replace the dependent variable y with

f ðtÞ. We are interested in the solution for this differential equation because

we would like to know a function that will give us the value of the variable

y for any given point in time. Our role as scientists requires us to study the

values of our dependent variable y, not just change in y. So if we are to study

y itself, then we need to find a way to obtain values of this variable.

There are two ways to solve differential equations. The first involves ana-

lytical solutions that use indefinite integration, whereas the second involves

computationally intensive numerical methods that approach the problem

using easily applied techniques of definite integration. We begin the subject

of finding solutions to differential equations by exploring analytical solu-

tions to these equations.
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Analytical Solutions to Linear
First-Order Differential Equations

Let us begin with an example. Consider the following differential equation:

dy=dt ¼ �3y;

or equivalently,

dy=dt þ 3y ¼ 0: ½2:1�

Equation 2.1 is a very typical way of writing differential equations, with

both the derivatives of y and y on the same side of the equation. One solu-

tion for Equation 2.1 is the function f ðtÞ ¼ 4e�3t. To demonstrate that this

is a solution for Equation 2.1, we need to show that f ′ðtÞ ¼ dy=dt. Note that

f ′ðtÞ ¼ ð4e�3tÞ′ ¼ �12e�3t. Now let us rewrite Equation 2.1 by substitut-

ing f ′ðtÞ for dy/dt, and 4e�3t for y, giving us

�12e�3t þ 3ð4e�3tÞ ¼ �12e�3t þ 12e�3t ¼ 0:

From this we can see that a solution for the differential Equation 2.1 is

y ¼ 4e�3t.

Interestingly, y ¼ 4e�3t is not the only solution for Equation 2.1. Read-

ers are encouraged to try the functions y ¼ 5e�3t, y ¼ 6e�3t, y ¼ 7e�3t, or

even y ¼ 1298e�3t as solutions for Equation 2.1. You will find that they all

work. If we want to find a particular solution for Equation 2.1, then we need

one more piece of information. We need to know an initial condition (or

initial value) of the dependent variable y. Once we are given the differential

equation and its initial condition (normally when t ¼ 0), the problem of

determining a unique solution to this is called an ‘‘initial-value problem.’’

It is worthwhile noting at this point that a solution for a differential equa-

tion is different from the solution for a typical algebraic equation in two

crucial respects. First, algebraic equations have solutions that are numbers,

whereas the solutions for differential equations are functions. For example,

the algebraic equation 3x� 6 ¼ 0 has the solution that is the number 2.

Second, differential equations can potentially have an infinite number of

solutions, any particular one of which will depend on an initial value for the

differential equation.

Solving First-Order Differential
Equations Using Separation of Variables

If a differential equation is ‘‘separable,’’ then an explicit analytical solution

can be derived for it using a method called the ‘‘separation of variables.’’
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A differential equation is called ‘‘separable’’ if it can be expressed as the

product (or quotient) of two functions, each of which depends on only one

variable. For example, Equation 2.2 is separable because gðtÞ depends only

on the independent variable t, and hðyÞ depends only on the dependent vari-

able y. As we will see below, it is also perfectly fine if either gðtÞ or hðyÞ
does not even appear in the equation.

dy=dt ¼ gðtÞ=hðyÞ ½2:2�

The solution for Equation 2.2 is obtained by rewriting it as hðyÞdy ¼ gðtÞdt

and then integrating this equation as in Equation 2.3.

Z
hðyÞdy ¼

Z
gðtÞdt ½2:3�

It may not at first be clear why we can simply rearrange the differentials in

Equation 2.2 so that we can integrate Equation 2.3. Let the functions G and

H be the antiderivatives of functions g and h, respectively. That is, g is the

derivative of G and h is the derivative of H. Using the chain rule of differen-

tiation, we can then write the derivative of HðyÞ � GðtÞwith respect to t as

H′ðyÞdy=dt � G′ðtÞ ¼ hðyÞdy=dt � gðtÞ:

But note from a rearrangement of Equation 2.2 that hðyÞdy=dt � gðtÞ ¼ 0.

This means that the derivative of HðyÞ � GðtÞ with respect to t also equals

zero. Only the derivatives of constants are equal to zero, however. This

means that HðyÞ � GðtÞ equals a constant, which we can now call C. Since

HðyÞ � GðtÞ ¼ C, we can rearrange this as HðyÞ ¼ GðtÞ þ C. This last

statement is exactly the same as

Z
hðyÞdy ¼

Z
gðtÞdt þ C;

which is what we needed to prove to show why the separation of variables

method works.

The separation of variables method is best introduced with examples,

and four different specifications of differential equations for which explicit

analytical solutions can be easily derived are introduced below. These spe-

cifications are basic components in many commonly encountered advanced

differential equation models, and readers are encouraged to study each of

these four specifications thoroughly. Indeed, James Coleman (1964, pp. 41–46)

has identified these classic specifications as ‘‘ideal types’’ that are widely

applicable to the entire class of diffusion models.
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Exponential Growth

The first of these four example specifications we have already seen, and

it is the specification for exponential growth, dy=dt ¼ ay, which is Equation

1.1 in the previous chapter. In this autonomous equation, the variable t does

not appear on the right-hand side. But Equation 2.2 still applies because we

note that t0 ¼ 1; and thus gðtÞ ¼ 1 in Equation 2.2.

Equation 1.1 has the explicit solution that can be found using traditional

methods of integration, as is done below. After separating the variables for

Equation 1.1, we have

ð1=yÞdy ¼ adt:

This results in the simplified integration problem,Z
ð1=yÞdy ¼

Z
adt:

The intermediate steps leading to a solution for this problem are

ln |y| ¼ at þ C;

where C is a constant of integration

eln|y| ¼ eðatþCÞ ¼ eateC;

y ¼ ± eCeat:

At t ¼ 0; we have y0 ¼ ± eC , where y0 is the initial condition for the

dependent variable. Thus, our solution for Equation 1.1 can be expressed

as Equation 2.4. This is called the ‘‘general solution’’ of our differential

equation.

y ¼ y0eat ½2:4�

We are normally given the initial condition for a dependent variable when

we are given its differential equation. As mentioned previously, the combi-

nation of the differential equation and the initial condition of the dependent

variable is called an ‘‘initial-value problem.’’ Once you have a solution

such as Equation 2.4 and an initial value for y, you can then solve for the

‘‘particular solution’’ of the differential equation. This particular solution

gives you a function that allows you to find any value of the dependent vari-

able at any point in time.

For example, let us say that our differential equation is dy/dt = 3y.

Moreover, let us say that the variable y has the value of 0.1 at t ¼ 0: Now

we have an initial-value problem since we are given a differential equation
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and its initial condition. We first find the general solution of the differential

equation, which is

y ¼ y0e3t: ½2:5�

Since we are told that y ¼ 0:1 at t ¼ 0; we can substitute this information

into Equation 2.5 to obtain the intermediate step, 0:1 ¼ y0e0, which gives us

0:1 ¼ y0. Thus, our particular solution for the differential equation is

y ¼ 0:1e3t, and we are done. It is now easy to see from this particular solu-

tion why the differential equation as given in Equation 1.1 is used to model

exponential growth, since the value of y will increase exponentially as time

goes from zero to infinity. A plot of this differential equation over time (with

a ¼ 3) is given in Figure 2.1. This type of plot is called a ‘‘time series’’

because the values of the dependent variable are represented on one of

the axes while time is represented on the other axis. The norm is to use the
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horizontal axis for time, although this is not required. The values for the

dependent variable as shown in a time series plot can be found directly

from the particular solution of the differential equation by simply supplying

various values of the independent variable t.

From Figure 2.1 it is clear that the rate of growth (dy/dt) for the variable

y increases over time (and as the value of y increases). This means that the

second derivative of y is positive. Potentially explosive properties can result

from such processes if left unchecked, and this was the concern of Thomas

Malthus with regard to population growth. Situations in which the rate of

growth is proportional to the level of the dependent variable are said to be

experiencing ‘‘positive feedback’’ (Crosby, 1987). This is because increases

in the levels of the dependent variable feed back into the system to produce

additional growth in that variable that increases the previous rate of growth.

Exponential Decay

Exponential decay is similar to exponential growth. The only difference

algebraically is that the parameter a in Equation 1.1 assumes a negative

value. This type of dynamic process can be very important in modeling phe-

nomena in which the rate of decay for a quantity is proportional to the size

of the same quantity. Radioactive half-life is a classic example of such a

process, but there are many social phenomena which also exhibit decay

properties. Indeed, among theorists who study social systems (e.g., Brown,

2008; Cortés et al., 1974), the idea of ‘‘system memory’’ is closely con-

nected to the half-life concept. Systems are typically dynamic in nature,

and they respond to various inputs to produce outputs. When an input enters

a system, it is natural to ask how long its impact remains in the system,

and this is another way of wanting to evaluate the half-life of the system.

Essentially, when most events happen, the effect of such events on the

relevant social system eventually fades away. For example, riots flare up

and then diminish gradually, scandals create a big media sensation but

eventually fade from public awareness, many diseases (such as a flu) cause

mass illness but then gradually pass out of the populace. More specifically,

Przeworski (1975) examines system memory with respect to electoral

instability, and Brown (1991, Chap. 7) investigates system memory with

respect to the U.S. congressional mobilization cycle. It is useful to note that

system memory is equally appropriate for both differential and difference

equations.

A time series plot demonstrating exponential decay can be found in

Figure 2.2. In this figure, the parameter a in Equation 1.1 is given the value

of −3. The initial value for this plot is y0 ¼ 1:8. The half-life of this plot is

the time when half of the initial value is gone, the time when y ¼ 0:9.
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Learning Curves and Noninteractive Diffusion

When someone is given a new task to do, the person may initially

perform the task with a low level of efficiency. For example, the person

may run into many unexpected situations that require the assistance of an

instructor or supervisor. But as the person continues to work at the task, the

person becomes more proficient at it. Initially, training is highly beneficial

to this person. But as the person becomes more familiar with the parameters

of the task, additional training produces less and less benefit. Thus, the per-

son gradually approaches peak efficiency at doing this task. This process is

often modeled with something called a ‘‘learning curve’’ because psycho-

logists use functions that model such dynamics to describe the relation-

ship between experience or training and performance efficiency. The more

experience or training someone has in doing a task, the more efficient the
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person is at performing it. The level of efficiency tends to approach an

upper bound over time.

Consider another example that has a similar dynamic process. When a

major event is first reported in the news, many people in the populace will

learn about the event because there are many people who do not know about

it. As time moves forward, steadily fewer new people learn about the event

because there are fewer who do not yet know about it. Thus, the rate at which

the news of the major event spreads is proportional to the number of people

who do not yet know about the event. This is also a learning process, one in

which learning is measured in terms of how many people in the populace are

being introduced to information about the event. Eventually, fewer and

fewer new people will learn about the event even if the news media con-

tinues to broadcast the same story. We can say that the number of people

who know about the event is approaching an upper bound over time, and the

continued broadcast of information about the event will have a steadily

decreasing effect on the numbers of new people who learn about it.

Processes of this sort are often modeled with differential equations of the

sort shown here as Equation 2.6. Sometimes diffusion models lacking inter-

active components are specified in this manner as well (see Coleman, 1964,

p. 43). (A diffusion model that does contain an interactive component is the

logistic model, which I discuss in the next section.) In the learning model,

the dependent variable, y, represents the numbers (or proportion) of people

who have a certain characteristic, such as the number of people who know

about a particular news story. The upper bound of the growth process is

represented by U. The quantity (U � y) represents the number of people

who do not yet have the characteristic of interest. Finally, the parameter a

represents the rate at which people who do not yet have the characteristic of

interest become people who do have this characteristic.

dy=dt ¼ aðU � yÞ ½2:6�

We can separate our variables for Equation 2.6 by writing the equation as

½1=ðU � yÞ�dy ¼ adt:

We then integrate this asZ
½1=ðU � yÞdy� ¼

Z
adt;

yielding

�ln|U � y| ¼ at þ C;

where C is a constant of integration.
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Note that U � y can never be negative since y cannot exceed its upper

bound. This is not a mathematical result but a consequence of the context of

our substantive problem. Thus, we can drop the absolute value sign and

write the equation as

�lnðU � yÞ ¼ at þ C;

or equivalently

lnðU � yÞ ¼ �at � C:

This then yields

U � y ¼ e�ate�C;

or after rearranging,

y ¼ U � e�Ce�at:

Since e�C is a constant, we can write the general solution of the model in

finished form as Equation 2.7.

y ¼ U � Be�at ½2:7�
Equation 2.7 is the functional form of a learning curve. Note that when

t ¼ 0; y0 ¼ U � B. As time moves forward (i.e., t gets larger), Be�at shrinks

to zero in the limit and y approaches U.

A time series plot of this process is shown in Figure 2.3. In this plot,

a ¼ 3; U ¼ 1:6, and y0 ¼ 0:1. Note how the value of the dependent vari-

able, y, approaches the value of U as time moves forward. We can say that y

asymptotically approaches the constant value of U over time, which means

that y continues to approach its limit, U, with steadily smaller increments

without actually ever reaching this limit. This limit is also called an ‘‘equili-

brium value’’ of y, since it is a value at which change in y ceases. That is, at

y ¼ U, then dy/dt = 0, as can be seen from an examination of Equation 2.6.

From Figure 2.3 it is clear that the rate of growth (dy/dt) for the variable y

decreases over time (and as the value of y increases). This means that the

second derivative of y is negative. Such situations are said to be experi-

encing ‘‘negative feedback’’ (Crosby, 1987). This is because increases in the

level of the dependent variable result in diminished rates of growth for that

variable. The dependent variable is still growing (since dy/dt is positive), but

it grows at a steadily slower rate.

Logistic Curve

The logistic curve is one of the most useful (and heavily exploited) mod-

eling strategies used in the social sciences. It combines exponential growth

and decay with the asymptotic approach to a limit that is found in the
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learning curve. Logistic processes begin with rapid growth characteristic of

positive feedback systems, followed by slower growth that is dominated by

negative feedback.

The logistic model can be written in a variety of ways. One common

approach is to specify it as in Equation 2.8.

dy=dt ¼ ayðU � yÞ ½2:8�

In Equation 2.8, U serves the same purpose as it did in the learning curve

model found in Equation 2.6. It is the upper bound for growth in y. When

the level of y is low relative to U, then the quantity U � y is large, and the

rate of growth is exponential. Positive feedback dominates the process dur-

ing that time. But when the level of y approaches its limit, U, then the quan-

tity U � y approaches zero and the negative feedback dominates.

0.00

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.25 0.50

Time

D
ep

en
d

en
t 

V
ar

ia
b

le

0.75 1.00 1.25 1.50 1.75 2.00

Figure 2.3 A Learning Curve

26



Social processes that can be usefully described using a logistic model

often involve the interaction between people who have one quality with

people who do not have that quality. For example, Przeworski and Soares

(1971) use a logistic model to describe the interaction of workers who sup-

port leftist parties with workers who do not yet support leftist parties. Also,

scientists who model infectious diseases often utilize logistic models to

describe the process of contagion, where people who have a disease interact

with those who do not yet have it. But logistic processes can be found in

other settings as well. For example, Brown (1995a, Chap. 6; also 1994) uses

a logistic structure to describe processes that lead to the destruction of the

environment.

Equation 2.8 is separable, and we can write the integration problem asZ
1

yðU � yÞ dy ¼
Z

adt: ½2:9�

To solve Equation 2.9, it is useful to rewrite the integrand on the left-hand

side as

1

yðU � yÞ ¼
1

U

U

yðU � yÞ

� �
¼ 1

U

U � yþ y

yðU � yÞ

� �

¼ 1

U

U � y

yðU � yÞ þ
y

yðU � yÞ

� �
¼ 1

U

1

y
þ 1

ðU � yÞ

� �
:

Thus, we can now solve this integration easily by writing
Z

1

U

1

y
þ 1

ðU � yÞ

� �
dy ¼ 1

U

Z
1

y
dyþ 1

U

Z
1

ðU � yÞ dy ¼
Z

adt:

Now we have

1

U
ln|y|� 1

U
ln|U � y| ¼ at þ C;

which in turn can be rewritten as

1

U
ln

y

U � y

����
���� ¼ 1

U
ln

y

U � y
¼ at þ C: ½2:10�

We can eliminate the absolute values signs in Equation 2.10 since we

know that U > y, and y is positive. Multiplying both sides of Equation 2.10

by U and then taking the exponent of both sides gives us

y

U � y
¼ eUatþUC ¼ eUateUC ¼ MeUat;

where M ¼ eUC is a constant.
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Rearranging this to isolate our dependent variable, y, gives us

y ¼ MUeUat

1þMeUat
¼ U

ð1=MÞe�Uat þ 1
: ½2:11�

Since 1=M is a constant, we can write K ¼ 1/M, and then restate

Equation 2.11 as

y ¼ U

1þ Ke�Uat
: ½2:12�

Equation 2.12 is our final form for the general solution for the logistic

model.

It is clear that it was more difficult to obtain the general solution for the

logistic curve than the general solutions for either the exponential growth

or learning curve models. This is the way it is with differential equations.

As the models get more complicated, the challenge of finding an analytic

solution to the models becomes more serious. Quite soon the challenge

becomes impossible to overcome. It is for this reason that it is normal prac-

tice to use the numerical methods presented later in this chapter to solve dif-

ferential equation models.

A time series plot of the logistic model (Equation 2.8) is presented in

Figure 2.4. The data for this plot can be calculated using Equation 2.12 or

by using the numerical methods presented later in this chapter. In Figure

2.4, the parameters are the same as with Figure 2.3: a ¼ 3; U ¼ 1:6, and

y0 ¼ 0:1.

Comparing Figures 2.3 and 2.4 makes it clear that the logistic model pro-

duces a slower initial level of growth that more clearly resembles that of

exponential growth. The time series for both the learning curve and the

logistic model asymptotically approach the limit, U, which is also an equili-

brium point for both models. But the logistic model has a more complex

dynamic structure. When the time series for the logistic model begins, posi-

tive feedback dominates and the second derivative of the model is positive,

which means that the first derivative (i.e., the model itself, Equation 2.8) is

increasing over time (also, as y increases). But the second derivative soon

becomes negative, which means that negative feedback dominates and the

first derivative is decreasing in value over time. The closer the values of y

are to the limit, U, the more closely the first derivative is to zero. The point

in the curve in Figure 2.4 where the second derivative equals zero is called

an ‘‘inflection point,’’ and this point defines the boundary between the

realms of positive and negative feedback for the model.
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An Example From Sociology

Coleman, Katz, and Menzel’s (1957) now classic study of the introduction

of a new drug into a community of prescribing doctors is a useful example

of many of the features of the first-order differential equations described in

this chapter. (See also Coleman, 1964, pp. 43–46.) In their study, they are

interested in explaining when a doctor will introduce a new drug to his or

her patients. A key variable in this respect is whether or not the doctor is

integrated into his or her community of doctors. Integration is measured by

determining from a sample of the community of doctors how many times a

doctor’s name is referenced as a friend or as a colleague with whom other

doctors interact. Doctors who score high on this measure are identified as
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‘‘integrated,’’ and doctors who score low on this are labeled as ‘‘isolated.’’

Crucially, integrated doctors introduce new drugs to their patients on the

average of 4 months earlier than isolated doctors.

Two hypotheses are used to explain this phenomenon. The first hypoth-

esis is that the integrated doctors are more professionally competent, in the

sense that they are more up-to-date. So the factors that lead to their integra-

tion (professional competence and peer respect) are the same as those that

lead to their incorporation of new drugs. The second hypothesis is that the

integrated doctors are more able to learn of these new drugs because of their

integration. They more often engage in conversations with their colleagues

and thus are able to hear about the use of the new drugs more quickly from

their colleagues. The isolated doctors need to wait until a drug salesperson

knocks on the door and explains about a new drug in persuasive terms.

To test these hypotheses, two models are used. The first is the logistic

model, such as given in Equation 2.8. The second is the learning (or nonin-

teractive diffusion) model, such as given in Equation 2.6. When these mod-

els are compared with empirical data where one is trying to predict the time

it takes for doctors to begin prescribing a new drug, the logistic model

describes well the behavior of the integrated doctors, whereas the learning

model describes well the behavior of the isolated doctors. For this reason,

the first hypothesis is rejected and the second hypothesis is accepted. The

integrated doctors adopt new drugs more quickly than the isolated doctors

not because the integrated doctors are more professionally competent, but

because they interact with their peers more often, thereby receiving infor-

mation about the new drugs through the process of interactive informational

diffusion. Again, the presence of interaction between the exposed and not

yet exposed communities is the primary advantage that the logistic model

has over the learning model with respect to integrated doctors in this exam-

ple. The learning model performs better with the isolated doctors because

peer interaction is not a factor with these doctors in terms of when they

begin prescribing a new drug.

Numerical Methods Used to Solve
Differential Equations

Numerical methods for solving differential equations have been around for

a long while. But their use has benefited tremendously from the availability

of fast computers. There have also been great advances in the development

of new numerical methods in recent years, many of which are more efficient

than the older methods. Runge-Kutta methods have long been a primary
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workhorse for finding numerical solutions for differential equations.

Despite their age, they remain exceptionally useful, and they are the starting

point for anyone interested in using numerical methods to solve differential

equations.

This section presents three Runge-Kutta methods: (1) Euler’s method,

(2) Heun’s method, and (3) a fourth-order Runge-Kutta method. Euler’s

method is actually a first-order Runge-Kutta method, and Heun’s method is

a second-order Runge-Kutta. Euler’s and Heun’s methods are rarely used in

practice since a fourth-order Runge-Kutta is both more accurate and easy to

use. But understanding Euler’s and Heun’s methods helps explain how

Runge-Kuttas work in general, and they are introduced here heuristically in

this regard.

Many social scientists will probably find that a fourth-order Runge-Kutta

is a perfect solution to most or all of their differential equation needs, in the

sense that such scientists will probably not need to use one of the more

modern approaches to finding numerical solutions to differential equations.

But, of course, some scientists will undoubtedly still find these more mod-

ern approaches interesting, and perhaps preferable, for their own needs.

A good starting point for experimenting with these other methods is with

a computer program named ‘‘Phaser’’ written by Hüseyin Koçak (www.

phaser.com). But the point to be made here from a practical point of view is

that many scientists will need to go no further than to understand how to use

a fourth-order Runge-Kutta to solve their differential equations. (General

discussion of the importance of the Runge-Kutta methods can be found

in many treatments of differential equations, but see especially Blanchard

et al., 2006; Boyce & DiPrima, 1977, Chap. 8; Koçak, 1989.)

Euler’s Method

As with all Runge-Kutta methods of numerical integration, there is no

need to obtain an analytical solution to the differential equation when

obtaining values of the dependent variable. Runge-Kutta methods can work

just as easily with systems of differential equations in which there are a

variety of variables that interact with one another. The Euler method is the

simplest of all the Runge-Kutta methods, and it is easily explained.

On an intuitive level, the basic idea is that the differential equations (e.g.,

Equations 1.1, 2.6, or 2.8) are themselves derivatives of dependent vari-

ables with respect to time. As derivatives, they are telling us that the values

of the dependent variables are increasing or decreasing once we supply

whatever is needed for the right-hand side of those equations (such as para-

meter values). Euler’s method works by simply adding a small amount to a
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current value of the dependent variable to find the next value of this same

variable when the derivative is positive. On the other hand, when the deriva-

tive is negative, we know that the values of the dependent variable must go

down, so Euler’s method subtracts a small amount from the current value of

the dependent variable to find the next value of this variable. Thus, the rule

is simple. When the derivative is positive, increase y; when the derivative is

negative, decrease y.

The mechanics of how to do this are not much more complicated than the

rule. We are looking for a way to determine the point (tnext, ynext) from the

point (t, yÞ. First, we need a way to move along the time axis to get from t to

tnext. To do this, we pick a very small number that we will use to ‘‘crawl’’

along the dimension of time. A typically small number to use with Euler’s

method is 0.01, and greater accuracy can be obtained if this is reduced

further. We shall see that this number can be increased significantly for the

other Runge-Kutta methods. We use an especially small number for Euler’s

method because this method is less accurate than the other methods, requir-

ing us to move in very small steps. This small number is called the ‘‘step

size,’’ and one can think of this number as the size of the steps that we use

as we slowly move in time. Thus, to get from time period 0 to time period 1,

we need to take 100 steps, with each step being only 0.01 large. The formula

for this is tnext ¼ t þ�t, where �t is the step size.

Now we need to calculate. At each step along the time axis, we want to

calculate a value for our dependent variable, y. We do this by calculating

the next value of y given the current value of y. Beginning with an initial

condition for y, we find the next value of y based on the direction that the

derivative is telling us to go (i.e., up or down in y). At this point, we take

another step along the time axis and get another value of y, and so on. We

repeat this process until we have a time series that is sufficiently long to

satisfy our needs. This obviously needs to be done with a computer program

that contains ‘‘loops,’’ which is a way of repeating the same procedure over

and over again. With each trip through the loop, we calculate a new value

of y, save that value for future use, and then repeat the loop again to obtain

another new value of y, over and over again.

The exact formula for Euler’s method is shown here as Equation 2.13.

ynext ¼ yþ hðdy=dtÞ ½2:13�
Equation 2.13 is contained within the computer program’s loop that calcu-

lates the values of the dependent variable, y. In Equation 2.13, the value of

y on the right-hand side is the current value of this variable given any single

pass through the loop. The value of ynext is the next value of y that will

become the current value of y in the next pass through the loop. The

parameter h is the step size. Here we are multiplying the step size by the
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derivative (which is the original model, such as Equation 1.1), and then

adding this to the current value of y to obtain the next value of y. After we

calculate the next value of y, we need to remember to save both the current

and next values of y, and then to reassign the next value of y to be the cur-

rent value of y so that the loop can be repeated. We also need to save our

current value of time, which is the previous value of time plus the step size,

h. Sample computer code (written in SAS, but self-explanatory and adapta-

ble to any language) that does this could resemble the following:

There is a geometric interpretation to Euler’s method that is based on the

definition of the slope of the line that is tangent to the curve of the model at

any given point in time. The model itself is a derivative, and the value of

this derivative is the slope of the tangent line. From the definition of the

slope of a line, we can say that

ynext � y

tnext � t
¼ ynext � y

�t
¼ f ðt; yÞ; ½2:14�

where f ðt; yÞ is simply our differential equation model. If we rearrange

Equation 2.14, we have

ynext ¼ yþ f ðt; yÞ�t;

DATA;

A=0.3; * The parameter value;

H=0.01; * The step size;

Y=0.01; * The initial condition for the dependent variable, Y;

TIME=0; * The initial value for time;

DO LOOP=1 TO 2000; * The beginning of the loop;

DERIV=A*Y; * The differential equation model;

YNEXT=Y + (H*DERIV); * Euler’s method;

TIME=TIME+H; * Incrementing time;

OUTPUT; * Outputs the data in the loop so they can be plotted;

Y=YNEXT; * Shuffles the value of Y obtained by Euler’s method

   back to Y;

END; * This ends the loop;

SYMBOL1 COLOR=BLACK V=NONE F=CENTB I=JOIN

PROC GPLOT;

   PLOT YNEXT*TIME;

TITLE "Time Series Using Euler's Method";

RUN;

QUIT;
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which is the formula for Euler’s method as given in Equation 2.13. Some

readers may note that Euler’s method is also equivalent to the first two

terms of a Taylor series approximation for the original differential equa-

tion model (see Blanchard et al., 2006, p. 641; also see Atkinson, 1985,

pp. 310–323).

At this point it should be clear why Euler’s method produces inaccura-

cies. With each step, Euler’s method follows not the curve of the model but

the line that is tangent to the curve at a particular point on the curve. The lar-

ger the step size, the greater potential there is for Euler’s method to move

away from the true curve (depending on how ‘‘curvy’’ the curve is!). Each

step adds to the error created with the last step, and the problem thereby

accumulates. Smaller step sizes minimize this problem, but the better solu-

tion is to use a better algorithm. A fourth-order Runge-Kutta is based on the

Euler concept, but it produces highly accurate results. (For a more detailed

discussion of the error associated with Euler’s method, see Blanchard et al.,

2006, pp. 627–637.)

Heun’s Method

Heun’s method is sometimes called an ‘‘improved Euler’’ method, and it

is a second-order Runge-Kutta. Some readers may wonder why it is impor-

tant to discuss Heun’s method at all given the fact that a fourth-order

Runge-Kutta method is the one that they will probably use in practice. But

Heun’s method is introduced here because it is more manageable to explain

with the second-order case how higher-order Runge-Kutta methods work in

principle. While we do not need to go into too many details here, it is worth-

while noting that the ‘‘order’’ of a Runge-Kutta method is related to a char-

acteristic of its error (see Blanchard et al., 2006, pp. 646–647, as well as Zill,

2005, pp. 373–374). Even a second-order Runge-Kutta produces remarkable

improvements in accuracy over Euler’s method.

The basic concept of Heun’s method is quite simple. With Euler’s

method, we used the differential equation to tell us if the values of the

dependent variable are increasing or decreasing at a particular point on

the curve. How much the dependent variable is increasing or decreasing

depends on the value of the derivative of y, which is the differential equa-

tion itself. Heun’s method works by giving us a better idea of how much to

increase or decrease our dependent variable. To do this, it calculates two

derivatives of y and then takes the average of these. This average is then

multiplied by the step size (exactly as is done by Euler’s method) in order to

get the next value of y. Since Heun’s method is more accurate than Euler’s

method, it is possible to use a larger step size, thereby increasing the

efficiency (and speed) of the calculations.
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More specifically, Heun’s method begins with an application of Euler’s

method. That is, we use Euler’s method to give us the next value of y based

on the current value of y. This means that we are applying Euler’s method

to the point (t0; y0). We will later need the value of the derivative that we

used with this application of Euler’s method, so we save it and call it m. We

now have the points (t0; y0) and (tnext; ynext), where the second point came

from the application of Euler’s method. Now we apply Euler’s method

again, but this time to the point (tnext; ynextÞ. We will also need the value of

the derivative used with this step, so we save it and call it n. Finally, we go

back to our original point (t0; y0) and apply Euler’s method once more, but

this time we use the average of m and n for our derivative. Thus, we obtain

our next value of y by applying the formula

ynext ¼ yþ h
mþ n

2

� �
; ½2:15�

where h is the step size, and [(mþ nÞ=2] is the average of the two deriva-

tives calculated from two different values of y, the second of which was a

result of using Euler’s method with the original value of y.

The geometry of why Heun’s method works is related to an application

of the trapezoid rule for approximating areas under a curve, and interested

readers can find accessible treatments of this in Blanchard et al. (2006, pp.

642–644). A different geometric explanation of why Heun’s method works

is that the error produced by using the first derivative (m) with the initial

application of Euler’s method is overcompensated for (with respect to the

original starting point) by the next derivative (n) that is used with the second

application of Euler’s method. The average of these derivatives (m and n)

produces a better predictor of the next value of y when applied as in Equation

2.15. Readers can find an accessible but more detailed discussion of this rea-

soning in Zill (2005, pp. 370–371). From this reasoning, it is easy to see that

the use of the derivative n in Equation 2.15 acts to correct the error intro-

duced by the use of the derivative m. This is why Heun’s method is also

occasionally referred to as a ‘‘predictor-corrector’’ method. Some readers

may also note that Heun’s method is analogous to the application of a

second-degree Taylor series expansion of the original differential equation

model (see Zill, 2005, p. 374).

The Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method (named after its developers, Carle

Runge and Martin Kutta) is a highly accurate method of solving for first-

order differential equations, and it will be the workhorse of choice in most

situations. Whereas Heun’s method obtains a value for the dependent
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variable y using an average of two slopes, a fourth-order Runge-Kutta does

the same thing using a weighted average of four slopes. This method is

often abbreviated as ‘‘RK4.’’

The mechanics of the RK4 method are quite simple, but there is greater

housekeeping than with Heun’s method. The most commonly used applica-

tion of the RK4 method uses the following formulas:

ynext ¼ yþ ðh=6Þðk1 þ 2k2 þ 2k3 þ k4Þ;

where

k1 ¼ f ðt; yÞ;
k2 ¼ f ½t þ h=2; yþ ðh=2Þk1�;
k3 ¼ f ½t þ h=2; yþ ðh=2Þk2�;
k4 ¼ f ½t þ h; yþ hk3�:

Note that the values of k2 and k3 are computed at only half of a step size

from the original starting point (t0, y0Þ, whereas the value of k1 is computed

from the starting point and k4 is determined at a full step size from the start-

ing point. A geometric interpretation of why the RK4 method works can be

found in Blanchard et al. (2006, pp. 650–651). But briefly, we can see from

the equations above that the value of ynext is computed using an approach

similar to Euler’s method, with the difference being that instead of using

one value of the derivative, we use four, and the inner two (k2 and k3Þ are

given double weights (for a total of six weights, which is why we divide by

6 to get the average). Other than the fact that we are using a weighted aver-

age of four derivatives, we are still multiplying this by the step size, h, and

then adding this product to the original value of y to get the next value of y.

Readers should note that in some books, the formulas for the RK4 method

use the notation rk1, rk2, rk3, and rk4 instead of k1 through k4.

Summary

This chapter has focused on first-order differential equations. We begin with

analytical solutions to linear first-order differential equations, with the

emphasis on the separation of variables technique. In situations in which the

separation of variables technique can successfully be applied, this is an easy

and straightforward method of obtaining an equation from which one can

obtain x and y values useful for plotting and analysis. In situations in which

the separation of variables technique cannot be applied, we use numerical

methods of integration. Among first-order differential equations, there are

36



four ‘‘ideal types’’ that we explore: (1) exponential growth, (2) exponential

decay, (3) learning curves and noninteractive diffusion, and (4) the logistic

curve. A classic example from sociology is presented that compares types

3 and 4 above. The chapter then introduces three numerical methods for

solving differential equations. The first two, Euler’s and Heun’s, are used to

help introduce the fourth-order Runge-Kutta method, which is the method

of choice for most applications. Many other numerical methods exist, but

the fourth-order Runge-Kutta serves as a good starting point and a useful

workhorse in most settings. Numerical methods are particularly useful

because they work well in nearly all real-world situations, both linear and

nonlinear. Analytical methods of indefinite integration normally do not work

for most interesting nonlinear models. In highly complex (and unusual)

situations in which neither analytical methods nor numerical methods can

solve a differential equation, one must resort to a careful study of the equa-

tion’s algebra.

Chapter 2 Appendix

To show how these formulas are used in practice, the program below

(written in SAS, but easily adaptable to other languages) was used to

prepare Figure 2.3 for the learning curve. It is important to show how

this works with a program, since some social scientists will inevitably

find themselves programming their own RK4 models. There are soft-

ware packages that contain RK4 methods within them, and some scien-

tists may find these packages useful. But other scientists may find that

the packages offer insufficient flexibility for the oddities associated with

particular real-life situations, and programming one’s own model with

an RK4 method may be required. The bright side is that once one has

programmed one model with an RK4 method, it is easy to cut and paste

the code into any number of other applications. Remember, with only

slight modifications (e.g., step size, initial conditions, parameter values),

the same code works with nearly all differential equations.

With the code below, capitalization is for style only, and whether

something is capitalized or not does not affect the running of the pro-

gram. There are two subroutines: RK4 and EQS. BUILDIT is a label in

the program that is found below the RK4 and EQS subroutines, and the

RK4 subroutine is called there. The EQS subroutine is called from within

the RK4 subroutine, and it houses the differential equation model.
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GOPTIONS lfactor=10 hsize=6 in vsize=6 in horigin=1 in

 vorigin=3 in;

TITLE f=swissb h=1.6 c=black 'Figure 2.3:  A Learning Curve';

PROC IML;

a=3.0; * The parameter value for the model;

Y=0.1;U=1.6; * The initial condition for Y, and the limit U;

h=0.02;time=0; * The step size, h, and the initial value of time;

START;

GOTO BUILDIT;

RK4:

* Fourth Order Runge-Kutta;

time=0;

DO LOOP=1 to 100;

m1=Y; * This sets the initial value of the dependent variable to Y

 for the first RK4 step;

LINK EQS; * This links the equation subroutine for the first step

 of the RK4;

RK1=DYDT; *This completes the first RK4 step;

m1=Y+(.5#h#RK1); * m1 is now given its second value that is

 used in the second RK4 step;

LINK EQS; * This links the equation subroutine for the second

 step of the RK4;

RK2=DYDT; * This completes the second RK4 step;

m1=Y+(.5#h#RK2); * m1 is now given its third value that is used

 in the third RK4 step;

LINK EQS; * This links the equation subroutine for the third step

 of the RK4;

RK3=DYDT; * This completes the third RK4 step;

m1=Y + h#RK3; * m1 is now given its fourth value that is used in

 the final RK4 step;

LINK EQS; * This links the equation subroutine for the final step

 of the RK4;

RK4=DYDT; * This completes the fourth and final RK4 step;

YNEXT=Y+((h/6)#(RK1+(2#RK2)+(2#RK3)+RK4)); * This is

 the RK4;
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timenext=time+h;

YE=YE//Y;TE=TE//time; * Saving the values of Y and T in

 vectors;

trajects=YE||TE;

Y=YNEXT;time=timenext;

end; * The end of the loop;

RETURN;

* The Learning Curve Model using various values of Y as m1 for

 the four RK4 steps;

EQS:

DYDT = a#(U - m1); * This is the model;

RETURN;

BUILDIT:

LINK RK4;

party={'Y' 'Time'};

create traject from trajects (|colname=party|);

append from trajects;

close traject;

finish;run;

data traject;set traject; * This plots the results;

sym=1;

symbol1 color=black v=none f=simplex i=join;

proc gplot data=traject;

axis1 color=black minor=none order=0 to 2 by .2 minor=none

value=(h=1.5 f=swissb c=black)

label=(a=90 r=0 h=2 f=swissb c=black 'Dependent Variable');

axis2 color=black minor=none order=0 to 2 by .25 minor=none

value=(h=1.5 f=swissb c=black)

label=(h=2 f=swissb c=black 'Time');

plot Y*time=sym / skipmiss nolegend

vaxis=axis1 haxis=axis2 vminor=0 hminor=0 vref=1.6;

run;

quit;                               
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3. SYSTEMS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS

With single differential equations, there is only one dependent variable. But

very few things in the world can be studied in isolation. It is normal for A to

influence B, and for B to influence A (and perhaps C as well), and so on. For

this reason, we study systems. Systems are among the most important areas

in the application of differential equations. In this chapter we examine first-

order differential equation systems. This is the most important category of

differential equation systems. The reason is that higher-order and nonauto-

nomous differential equations can be expressed in terms of first-order dif-

ferential equation systems. Indeed, first-order differential equation systems

are required to conduct numerical investigations of higher-order equations

using, say, a fourth-order Runge-Kutta (RK4). Thus, first-order differential

equation systems are exceptionally useful to the study of differential equa-

tions in general.

There are two types of first-order differential equation systems: linear

and nonlinear. We can analyze linear systems using analytic, qualitative,

and numerical methods. Analytic methods involve finding explicit solu-

tions for the differential equation systems, which is analogous to how we

used the separation of variables technique to solve some single differential

equations in a previous chapter. However, nonlinear systems can usually

only be analyzed using qualitative and numerical methods since it is rare

that we can derive general and explicit solutions for most nonlinear sys-

tems. Analytic methods are still interesting to use with linear systems, how-

ever, since such methods help us understand types of behaviors for such

systems, and these behaviors can be surprisingly varied. It is useful to note

that nonlinear systems can behave similarly to linear systems near equili-

bria, and thus knowing how linear systems behave helps us understand

much about nonlinear systems as well. I present material involving analytic

solutions to linear systems later in this book.

Qualitative and numerical methods are of general use for investigating all

differential equation systems since they are widely applicable to both linear

and nonlinear systems. Also, within the social sciences, it is exceptionally

common for specification nonlinearities to arise within social scientific

dynamic models. For example, every time one population interacts with

another population, such as when workers and nonworkers interact, there are

nonlinearities in the model specification (e.g., Przeworski & Soares, 1971;

see also Przeworski & Sprague, 1986 with respect to difference equations).

The focus of this chapter is on qualitative and numerical methods that are

used to study first-order differential equation systems.
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The Predator-Prey Model

The differential equation system that is probably the most useful with

respect to introducing the basic concepts of first-order differential equations

systems is the predator-prey model of Lotka and Volterra (see Hirsch &

Smale, 1974, pp. 258–265; Koçak, 1989, pp. 121–122; May, 1974). While

the model arises out of population biology, its linear and nonlinear compo-

nents have been widely used in many social scientific settings, and readers

are encouraged to study it closely. To introduce this model, I will stick to its

population biology interpretation, although I will later extend the discus-

sion of the model’s components to human social examples.

The basic idea with the predator-prey system is that there are two popu-

lations, one of which preys upon the other. Using a real-life example, in

the presence of food, rabbits breed new rabbits, and the rabbit population

grows. As the rabbit population grows, there is more food for foxes to eat.

This causes the fox population to grow. Eventually, there are so many foxes

that the rabbit population begins to decline in numbers. This results in hav-

ing many foxes die due to starvation and hardship. When the fox population

diminishes, there is little to restrain the rabbit population, so the rabbits

again grow in numbers, the fox population follows, and the cycle repeats

itself.

This is an example of a closed system, in the sense that everything that

affects the system is contained in the system. There are no external factors

that influence the fox and rabbit populations. Some theorists also call this

an ‘‘isolated system.’’ In the physical sciences, the terms ‘‘closed system’’

and ‘‘isolated system’’ differ somewhat. For example, a closed system can

exchange heat and work from outside of its boundaries, while an isolated sys-

tem cannot. Neither type can exchange matter. But these distinctions do not

affect us here, and in the current context the terms can be used interchange-

ably. An open system is one in which external factors can affect the dynamics

of the variables, and in this case, populations could rise or fall because of

these factors.

If we identify the rabbit population with the letter X and the fox popula-

tion with the letter Y , we can express this predator-prey relationship as in

Equations 3.1 and 3.2,

dX=dt ¼ aX � bXY � mX2; ½3:1�

dY=dt ¼ cXY � eY � nY2; ½3:2�

where a, b, m, c, e, and n are constant parameters. These two equations form

an interdependent system of two first-order nonlinear differential equations.
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They are nonlinear because of the interactive and power terms (e.g., XY,

X2, and Y2) in both equations. They are interdependent because the vari-

ables X and Y appear in both equations, which means that dY=dt depends

on both X and Y , as does dX=dt. These are the more generalized versions

of the classic predator-prey equations of Lotka (1925) and Volterra (1930,

1931). Less general versions of these equations set the parameters m and n

to zero, which I explain further below.

Both X and Y depend on time in the above representation. In the classic

predator-prey scenario, the number of rabbits increases exponentially (aX)

until they are either eaten by the foxes (−bXY) or their population rises to its

limit due to limitations in food resources (−mX2Þ. The population of foxes

grows only when there are rabbits to eat (cXY). Fox populations decline due

to natural causes (−eY) or due to their own crowding and overexploitation

of their available resources (−nY2).

It is worthwhile noting commonalities between the specification of the

predator-prey model and the logistic model described earlier as Equation

2.8. In the absence of foxes, Equation 3.1 could have been rewritten as

dX=dt ¼ Xða� mXÞ: ½3:3�

The connection between Equation 3.3 and Equation 2.8 can be found in the

following algebra:

dX=dt ¼ aX½1� ðm=aÞX�;
dX=dt ¼ aðm=aÞX½a=m� X�;
dX=dt ¼ mX½U � X�;

where U ¼ a=m. However, the full predator-prey model adds interaction

between the two species via the multiplicative term XY, and this is its pri-

mary departure from the single-equation logistic model.

Note also that in Equation 3.3, there is a logistic limit of a=m. This is

found by setting the Equation 3.3 equal to zero (which is what the derivative

equals when X is at its limit) and then solving for X. Similarly, in the

absence of rabbits, Equation 3.2 shows that the limit for the fox population

is zero (since growth can only occur in the presence of rabbits). These are

also called ‘‘equilibrium values’’ of the dependent variables, which I dis-

cuss more thoroughly below.

The predator-prey model is often introduced without the crowding and

resource limitation terms (mX2 and nY2) found in Equations 3.1 and 3.2

to show how the population interactions work by themselves. One way to

represent the interactions between these two variables is with a time series

plot, as is done in Figure 3.1. In this figure, the scale of the vertical axis is
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arbitrary, and one can think of the numbers more realistically in terms of

hundreds. To create this plot, the parameters m and n are set equal to zero.

Note here that the fox population ‘‘chases’’ the rabbit population in terms

of overall quantities, there being a lag as the number of foxes adjusts to

changes in the number of rabbits.

The time series plot takes on a distinctly different character for the full

predator-prey model that includes the crowding and resource limitation

terms (mX2 and nY2). Such a plot is presented as Figure 3.2. Note that the

time series for both the predator and prey populations settle down at equili-

brium values, which we can identify throughout this book using the nota-

tion (X∗, Y∗).
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The Phase Diagram

It is common when working with systems of differential equations to want

to know how one variable changes with respect to another variable. In this

sense, time gets in the way. We can eliminate time from the analysis by

dividing Equation 3.1 by Equation 3.2, as is done with Equation 3.4.

dX

dY
¼ aX � bXY � mX2

cXY � eY � nY2
½3:4�

Various analytics can be accomplished using Equation 3.4, but more gener-

ally we use a set of graphical techniques that allows us to investigate the

joint behaviors of the system variables in the absence of a time axis. The

most basic of such techniques is a ‘‘phase portrait’’ (or ‘‘phase diagram’’)
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of the system. We use phase portraits to portray graphically the sequential

dynamics of the variables X and Y while suppressing time. One such phase

portrait of this system is presented as Figure 3.3. Figure 3.3 corresponds

with Figure 3.1, in the sense that the parameters n and m are set to zero. This

is a situation in which there are no crowding and resource limitations.

In Figure 3.3, note that the time axis no longer exists. Rather, we now have

a representation of the sequential changes in X and Y independent of time.

The elliptical curve in the figure is called a ‘‘trajectory,’’ and this trajectory is

located in the ‘‘phase space’’ (i.e., the dimensions absent time) of this system

with two variables. If time were to be included, a third axis would be required

that would project off the page toward the reader’s face. The trajectory would

then spiral outward from the page in the manner of a rocket’s smoke trail

rather than remain as in Figure 3.3 as a curve on a flat surface.
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Note the oscillatory nature of the trajectory in Figure 3.3. The placement

and size of the elliptical orbit of the trajectory is determined by the initial con-

dition, which in this case is ðX0; Y0Þ ¼ ð1; 0:2Þ. With only one exception,

wherever one starts in this system, an elliptical orbit will result as the predator

and prey populations cycle indefinitely following the exact same path with

each orbit. This, of course, assumes a purely deterministic world, which we

never have. Stochasticity will introduce variations in this path, but the general

cyclical nature of the underlying deterministic system will persevere.

Equilibria Within Phase Diagrams

The one exception to the pattern of elliptical orbits as shown in Figure

3.3 is at a point called the ‘‘equilibrium.’’ An equilibrium point is where

change in the dependent variables ceases to exist. This is where the deriva-

tives (Equations 3.1 and 3.2) are equal to zero.

In Figure 3.3, the equilibrium is located somewhere in the center of the

elliptical orbit of the trajectory, and its X and Y coordinates are obtained by

solving the two equations simultaneously. Since the parameters m and n are

equal to zero for the situation found in Figure 3.3, we have

0 ¼ aX � bXY;

0 ¼ cXY � eY :

This produces the formulas (X∗; Y∗) = (e=c; a=b). This type of equilibrium

that resides inside of an elliptical trajectory is called a ‘‘center,’’ and it is

stable (a quality that I discuss below). To produce Figure 3.3, I set the para-

meters equal to the following values: a ¼ 1; b ¼ 1; c ¼ 3; e ¼ 1: Thus, the

equilibrium for this system is (1/3, 1). There is also another equilibrium at

(0, 0), but this point is boring.

Aside from determining the specification of the original model, the two

most important things to do with any differential equation system are (1) to

determine the equilibria for the system and (2) determine if the equilibria are

stable or unstable. The system presented in Figure 3.3 clearly has an equili-

brium value, so we have accomplished our first objective. For the second

objective, we note that an unstable equilibrium acts to repel trajectories

away from it. The repelling movement can be slight, as in a slow drifting

away from the equilibrium, or more rapid. But if the trajectories near an

equilibrium do not drift way from it over time, then the equilibrium is

stable. Some stable equilibria can be attractors while others can be neutral.

An attracting equilibrium draws trajectories in phase space toward itself. A

neutral equilibrium neither attracts nor repels trajectories, and the vector

(X∗, Y∗) = (e=c, a=b) in Figure 3.3 is neutral. If the initial condition for the
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system shown in Figure 3.3 were to be placed exactly on the point (e=c,

a=b), then the system would not vary, and the values would stay fixed on that

point forever. But any stochastic movement off that point would result in

oscillations of the type described above. Since the oscillations would not

drift systematically and continually away from the equilibrium, the equili-

brium is stable.

If we reintroduce the crowding and resource limitation terms for the

predator-prey model by setting the parameters m and n to nonzero values,

then the qualitative characteristic of the equilibrium changes to become

both stable and attracting. This can be seen in the phase portrait shown in

Figure 3.4. In this figure, note that the trajectory begins in the lower right

corner of the figure and then follows a curving path that both circles and

gets closer to the equilibrium point. The area within phase space that falls
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under the attracting influence of a stable equilibrium is called the ‘‘basin’’ of

the attractor. In this figure, all of the visible phase area falls within the basin of

the attractor. To produce Figure 3.4, I set the values of the parameters as

follows: a ¼ 1; b ¼ 1; c ¼ 3; e ¼ 1; m ¼ 1:5, n ¼ 0:5, with the initial

conditions X ¼ 1 and Y ¼ 0:1: The equilibrium value of this system is found

by setting Equations 3.1 and 3.2 equal to zero and then solving the set of

simultaneous equations for the values of X∗ and Y∗. Here, X∗ ¼ ðebþ anÞ=
ðcbþ mnÞ, and Y∗ ¼ ðca� emÞ=ðbcþ mnÞ, which is the equilibrium for this

system. In the example given in Figure 3.4, ðX∗; Y∗Þ ¼ ð0:4; 0:4Þ.

Vector Field and Direction Field Diagrams

While a phase portrait as shown in Figures 3.3 and 3.4 is useful in showing

how one or more trajectories move through a model’s phase space, one can

always wonder where a trajectory might have gone had it passed through a

different area in the phase space. One way to answer this question is with a

vector field diagram or a direction field diagram. The two types of diagrams

are closely related. To create a vector field diagram of a two-dimensional

system, one establishes a grid of points within the area of interest. In terms

of theory, you obtain the slope of the line (dX=dY) that intersects each of the

points in the grid. This slope is the same as Equation 3.4 for the predator-

prey model discussed above. Then you draw a line (often with an arrow-

head) that begins on each grid point and goes in the direction of the slope for

each respective point. The length of the line is dependent on the values of

the system equations at any selected point in the phase space, and it is the

magnitude of the vector V(dX=dt; dY=dt).

In practical terms with respect to actually plotting a vector field, each

vector has two components, dX=dt and dY=dt. These derivatives evaluated

at each grid point are your displacement values that you use to move the

vector on your graph from each of the grid points to an end point for each

vector. To get the end points for each vector, you do the following: (1) sub-

stitute into dX=dt and dY=dt the values of X and Y for each grid point that

is selected for the vector diagram, (2) calculate the values of dX=dt and

dY=dt, and then (3) add these values to the X and Y points for each grid

point. The grid points are your starting values for your vectors, and the end

points of the vectors are the original starting values plus the displacement

values. One then draws the vectors in the vector field by connecting the

starting grid points with the ending points. You show direction either by

putting an arrowhead on the end of each line or by placing a large dot on the

beginning of each line.
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An example of a vector field diagram for the predator-prey model with

growth and crowding limitations is presented in Figure 3.5. While I pro-

grammed SAS to produce Figure 3.5, programs exist that can do all of this

for you. Here also Phaser is an exceptionally useful program for creating

graphics of the type presented in Figure 3.5 (www.phaser.com). Phaser is

a program that I often use in my modeling classes. It produces phase dia-

grams, vector field diagrams, and direction field diagrams as well as many

other tools for graphical analysis. Moreover, it produces these things in

real time so that students can watch the construction of the diagrams (i.e.,

‘‘live’’) as they are projected onto a screen by a data projector.
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Figure 3.5 Vector Diagram of Predator-Prey Model With Resource
Limitations
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When constructing vector diagrams, it is often necessary to scale the

length of the vectors so that they are not too long. In Figure 3.5, I did not

use a scaling factor that works by multiplying each of the displacements by

a proportion less than 1 (0.45 is often a useful number to try). Because I did

not use a scaling factor when producing Figure 3.5, some of the displace-

ments are exceptionally large, and some are so large that they were not even

printed in the figure. This is the reason why the upper-right corner of the

figure is empty; all of those vectors traveled outside of the box containing

the figure. Also, in Figure 3.5 I did not put arrowheads at the ends of the

lines because the arrowheads made the graph too ‘‘messy,’’ in the sense that

there was just too much ink on the page to make sense of what was going

on. In this instance, the arrowheads are not needed since the grid points are

visible (as asterisks), and the vectors travel away from the grid points.

Nonetheless, even without the arrowheads, this graph is still too messy. The

great thing about vector diagrams is that you can get a sense of how ‘‘fast’’

a trajectory will travel in an area of the phase space by looking at the length

of the vectors in that area. But this extra information comes at a steep price.

The vectors tend to cross over one another, and it often becomes difficult to

sort things out. For this reason, direction field diagrams are sometimes used

instead of vector field diagrams. Note also that there is an area of small dots

in Figure 3.5, and that is an ‘‘equilibrium marsh’’ as I explain below.

Direction field diagrams solve the problem of having vectors cross over

one another by scaling the vectors such that they all have the same (short)

length. This allows one to see the direction that a trajectory would take if it

passed through a point in phase space, although we now do not have an idea

of how fast that trajectory would be traveling. Because of the greater ease

of reading such graphs, direction field diagrams are often preferred over

vector field diagrams. Figure 3.6 is an example of a direction field diagram.

Here, the direction indicators are shorter than those shown in Figure 3.5,

and the lengths are obtained by dividing both the X and Y displacements

(which are the derivatives themselves) by a scaling factor. The formula for

the scaling factor is

scaling factor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdX=dtÞ2 þ ðdY=dtÞ2

length

s
;

where the length is how long you want the direction vectors to appear on

the graph.

As with vector field diagrams, readers are encouraged to use software

such as Phaser to construct direction field diagrams, especially for explora-

tory purposes. Phaser does all of the plotting and scaling for you. Nonethe-

less, it helps to know how to do this for yourself should you encounter
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unique situations related to your particular model that require you to pro-

gram your own direction field diagrams. Indeed, I often find that I need to

construct plots that address special conditions that cannot be resolved using

any of the available software graphing packages. For example, in Figure 3.7,

I present a previously published vector field diagram that has two unique

characteristics. The model upon which the vector field diagram is based

describes the landslide election in the United States between Johnson

and Goldwater in 1964 (see Brown 1995a, p. 73; also 1993). Figure 3.7 is

for areas outside of the deep southern states. Since the proportions of the

Democratic and Republican votes cannot sum to be greater than unity, I had

to be sure to eliminate any direction indicators in the upper right-hand corner
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Figure 3.6 Direction Field Diagram of Predator-Prey Model With Resource
Limitations
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of the graph, which could not be easily accomplished with prepackaged

software.

Note also in Figure 3.7 that the direction indicators differ from those typi-

cal of traditional vector field or direction field diagrams. It is my preference

sometimes to use six iterations (or some similarly small number) of an RK4

method to plot the direction field indicators rather than to use the deri-

vatives directly to create the displacements. The result is that the direction

indicators display some curvature to them rather than being straight, and

this is more artistically pleasing to me. Also, this curving quality resolves

the problem with traditional vector field diagrams of having the vectors
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Figure 3.7 Vector Field Diagram for a Partisan Competition Model Between
Democratic and Republican Parties in Nonsouthern Areas of the
United States, 1964
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cross over one another. This allows the direction indicators to have varying

lengths, thereby retaining the trajectory speed information available with

traditional vector field diagrams. This is a richer approach to vector field

diagrams, although it does require additional programming. Users of such

methods will need to decide for themselves which methods are most appro-

priate for their own particular applications.

The Equilibrium Marsh and Flow Diagrams

Now I can address those patterns of dots that appear in Figures 3.5, 3.6,

and 3.7. Each of those dotted areas is an ‘‘equilibrium marsh.’’ Equilibrium

marshes are not commonly encountered in traditional studies of differential

equations, but they are important in many social scientific applications of

differential equations. In applications of differential equations that are com-

monly encountered in the physical and natural sciences, the focus is on the

equilibria themselves and on the behaviors of trajectories near those equili-

bria. That is because such systems have the ability to run sufficiently long

(and with sufficiently higher frequencies) such that the systems have a

chance to settle down at or near the relevant equilibria. However, social sys-

tems move much slower than, say, an electronically driven harmonic oscilla-

tor. Social scientists often study systems that begin, grow, and expire before

any really discernable behavior at or near an equilibrium can be discerned.

To put the problem in the context of an example, let us say we are study-

ing an electoral competition. The election begins and ends within the span

of a few months. We do not have a situation similar to that of a physical

scientist who has the luxury of being able to watch, say, a pendulum swing

back and forth for hundreds or thousands of cycles. Indeed, social systems

may end before the trajectories arrive at anywhere near an equilibrium. For

example, when elections take place, tracking polls watch the changing pre-

ferences of the voters on a daily basis. In many elections it is not uncommon

for someone to observe, based on how the tracking polls had been moving,

that a different candidate or party might have won an election had the elec-

tion been postponed a few weeks, or, in really close elections, days. Some-

times a social system can be in equilibrium, but sometimes a social or

political event occurs that simply interrupts or terminates a dynamic pro-

cess that was not yet at or near equilibrium. What often happens in such

situations is that trajectories slow down when they approach equilibria.

Thus, in many social scientific situations, we need to know not only where

the equilibria are located, but also where the areas exist in phase space in

which change slows down to a crawl. These areas are equilibrium marshes.
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They are important to social scientists because it is likely that trajectories in

phase space will terminate within those equilibrium marshes rather than

at equilibria. Equilibria are found within equilibrium marshes, but trajec-

tories of social phenomena are likely to get ‘‘stuck’’ and terminate inside

the marshes before arriving at or even near the equilibria themselves.

Equilibrium marshes are calculated by evaluating the magnitudes (i.e.,

the absolute values) of the derivatives of the system, which are, of course,

the differential equations themselves. For example, in a two-dimensional

system, when the magnitudes of both derivatives, dX=dt and dY=dt, are

below some specified sensitivity level, then that area in the phase space is

identified as an equilibrium marsh. In such areas, change in both of the vari-

ables is so slight that it is likely that the social system will terminate or

be interrupted before progressing much further. The sensitivity level is

arbitrary and needs to be adjusted experimentally on a case-by-case basis,

depending largely on how long the system is allowed to progress before it is

terminated or interrupted. However, useful starting values are typically

between 0.1 and 0.01.

There is another type of plot that is similar to Figure 3.7 that can be used

to show in a realistic fashion how the model’s trajectories actually look with

respect to data. Since the trajectories for social scientific studies may not

progress all the way to an equilibrium, it is normal to ask just how far they

really do progress. The actual length of a trajectory will be determined by

the step size and the number of iterations used for the RK4 method. These

are established when one is estimating the model’s parameters with respect

to data, and a discussion of how this is done can be found in Brown (1995a,

see especially the appendix). Once one has the parameter values for a differ-

ential equation model, it is useful to create a ‘‘flow diagram’’ that presents

the paths of a number of trajectories in phase space. Each of the trajectories

is given a realistic initial condition and is allowed to travel only as long as

would be allowed by the estimation program that determined the values of

the parameters. The actual initial conditions for this plot can be randomly

chosen as long as the values are realistic of the data encountered in the study.

An example of such a flow diagram is presented in Figure 3.8 (see also

Brown 1995a, p. 75). This flow diagram corresponds with the same model

and parameter values as with Figure 3.7. Readers should note that the pro-

gram Phaser (again, www.phaser.com) can also draw flow diagrams with

point and click ease, although I programmed Figure 3.8 myself using SAS.

Also, it is important to note that flow diagrams can be made without

restricting the length of the trajectories. One can let the trajectories proceed

all the way to a close neighborhood surrounding the equilibria, and

indeed this heuristically useful approach is the normal way of making flow
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diagrams. But flow diagrams can also be exceptionally useful in realistically

showing how the data behave within a system. When a system is interrupted

due to, say, an electoral calendar, a revolution, an assassination, or whatever,

reproducing truncated flows in a phase portrait helps to portray the extent of

the system’s influence on the data.

Summary

This chapter introduces systems of differential equations. Most researchers

will want to work with systems rather than single equation models since this
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Figure 3.8 A Flow Diagram for a Partisan Competition Model Using Randomly
Chosen Initial Conditions Within Reasonable Ranges
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is where the real power of differential equation modeling becomes appar-

ent. The primary emphasis in this chapter is on using graphical techniques

to analyze systems of differential equations. The primary graphical techni-

que is the phase diagram, which is a plot of sequential variable values with

the time axis suppressed. With most phase diagrams, it is normal to place

system equilibria within the diagrams, and then to give examples of trajec-

tories that flow through the phase space. The chapter then introduces the

classic predator-prey model that originates from the field of population

biology. Elements of this model can be found in many systems in a wide

variety of fields, including the social sciences. Additional graphical tech-

niques are introduced to analyze differential equation systems, such as

vector field and direction field diagrams, with direction field diagrams often

being the preferred approach due to their inherent advantage in neatness.

Especially with social science topics in which change is slow, differential

equation systems often do not have a chance to evolve to the point where

the system trajectories actually arrive at an equilibrium. In reality, the tra-

jectories ‘‘bog down’’ when they pass anywhere near the equilibrium in

what is called an ‘‘equilibrium marsh.’’ Placing the equilibrium marshes in

the phase diagram is a useful way to identify those areas where trajectory

velocity is so slow that the system essentially comes to a near halt even

though equilibrium has not been achieved.

Chapter 3 Appendix

Below is a program written in SAS that uses an RK4 method with

a system of two equations. Readers should note how easy it is to

extend the program for a single differential equation as presented in

the appendix for Chapter 2 to a system of equations as done below.

This particular program was used to produce Figure 3.2 in this book.

This program can also be adapted easily to produce a phase diagram

such as Figure 3.4, as I explain at the end of this appendix. The RK4

algorithm can be understood using the comment statements found in

the appendix to Chapter 2.

GOPTIONS lfactor=10 hsize=6 in vsize=6 in horigin=1 in

 vorigin=3 in;

TITLE f=swissb h=1.6 c=black 'Figure 3.2:  The Predator-Prey

 Model';

PROC IML;
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a=1;b=1; c=3; e=1; m=1.5; n=0.5;

X=1;Y= 0.2;

h=0.1;time=0; * The step size, h, and the initial value of time;

start;

goto buildit;

RK4:

*  Fourth-Order Runge-Kutta;

time=0;

do LOOP=1 to 125;

x1=X;x2=Y;

LINK EQS;

RK1=DXDT;CK1=DYDT;

x1=X+(.5#h#RK1);x2=Y+(.5#h#CK1);

LINK EQS;

RK2=DXDT;CK2=DYDT;

x1=X+(.5#h#RK2);x2=Y+(.5#h#CK2);

LINK EQS;

RK3=DXDT;CK3=DYDT;

x1=X + (h#RK3);x2=Y + (h#CK3);

LINK EQS;

RK4=DXDT;CK4=DYDT;

XNEXT=X+((h/6)#(RK1+(2#RK2)+(2#RK3)+RK4));

YNEXT=Y+((h/6)#(CK1+(2#CK2)+(2#CK3)+CK4));

timenext=time+h;

YE=YE//Y;XE=XE//X;TE=TE//time;

trajects=XE||(YE||TE);

Y=YNEXT;X=XNEXT;time=timenext;

end;

RETURN;

* The Predator-Prey Model;

EQS:

DXDT =(a - b#x2 - m#x1)#x1;

DYDT =(c#x1 - e - n#x2)#x2;

RETURN;

BUILDIT:
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To change this program so that it produces a phase diagram such as

Figure 3.4, simply change the plot statements at the end. For example,

to produce Figure 3.4, replace the end of the above program with the

following:

LINK RK4;

party={'X' 'Y' 'Time'};

create traject from trajects (|colname=party|);

append from trajects;

close traject;

finish;run;

data traject;set traject;

sym=1;

if t=0 then sym=3;

label Y='Predator and Prey Populations';

label t='Time';

symbol1 color=black v=NONE f=centb i=join;

symbol2 color=black f=centb v='.';

proc gplot data=traject;

axis1 color=black minor=none

value=(h=1.5 f=swissb c=black)

label=(h=1.3 a=90 r=0 f=swissb c=black);

axis2 color=black minor=none

value=(h=1.5 f=swissb c=black)

label=(h=1.3 f=swissb c=black);

plot Y*Time X*Time / overlay nolegend skipmiss

vaxis=axis1 haxis=axis2 vminor=0 hminor=0;

run;

quit;

data traject;set traject;

sym=1;

if t=0 then sym=3;

label Y='Predator Population';
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4. SOME CLASSIC SOCIAL SCIENCE
EXAMPLES OF FIRST-ORDER SYSTEMS

At this point, it is most useful to introduce a number of classic differential

equation systems that have made a significant impact in the social sciences.

Readers will find that many aspects of these systems have parallels with

parts of the predator-prey model described previously. The discussion below

will lead naturally to additional methods for analyzing such systems.

More specifically, three classic models are introduced that have been

very influential in the more general development and application of differ-

ential equations in the social sciences. They are (1) Richardson’s (1960)

arms race model, three scenarios of Lanchester’s (1916) combat model, and

Rapoport’s (1960) production and exchange model. Studying these models

closely allows us to more fully understand the underlying processes that are

captured in the models. We can also run simulations with the models to test

‘‘what if?’’ ideas that could tell us more about the dynamics of the pro-

cesses. Some of these explorations can increase our predictive understand-

ing with respect to these processes. If we are modeling things that we do not

want to happen in real life, such as a run-away arms race or catastrophic

global warming, then extrapolating from our models can be crucial in terms

label X='Prey Population';

label t='Time';

symbol1 color=black v=NONE f=centb i=join;

symbol2 color=black f=centb v='.';

proc gplot data=traject;

axis1 color=black minor=none

value=(h=1.5 f=swissb c=black)

label=(h=1.3 a=90 r=0 f=swissb c=black);

axis2 color=black minor=none

value=(h=1.5 f=swissb c=black)

label=(h=1.3 f=swissb c=black);

plot Y*X / nolegend skipmiss

vaxis=axis1 haxis=axis2 vminor=0 hminor=0;

run;

quit;
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of learning how to manage our world more effectively. Indeed, to this day

many militaries use Lanchester’s combat model to simulate various battle-

field scenarios before committing their troops. Simulation is one of the

great benefits of modeling in general.

The use of differential equation modeling is not a panacea for any applica-

tion. All models are simplifications of reality. Sometimes simple ordinary least

squares (OLS) regression models are all we need for a given situation. But

quite often, the complexity of a dynamic process is only fully revealed in the

context of its more accurate specification with respect to time. In such situa-

tions, using differential equations allows us to approximate more closely the

actual continuous-time processes such that we can make the most out of our

explorations and extrapolations. The three models presented below are excel-

lent examples of such an appropriate use of differential equation modeling.

Richardson’s Arms Race Model

The arms race model of Lewis F. Richardson is without doubt among

the most deservedly famous of differential equation models in the social

sciences. A great deal has been written about Richardson’s ideas and his

models, and it is not possible here to reference that huge literature. But the

basic arms race model itself is still of fundamental importance to the study

of arms races and to society more generally. Indeed, Richardson himself

seems to have believed that his perceptions relating to the way nations com-

pete militarily might have been useful in preventing the outbreak of hos-

tilities in World War II (see Richardson, 1960, Preface, p. ix). The model

itself—a system of two interdependent differential equations—is quite sim-

ple, and it is possible to manipulate the equations analytically in order to

obtain many useful results. However, I do little of this here since these

manipulations are not particularly useful with other more complicated mod-

els. Rather, I focus here on methods of analysis that are generally useful to

the entire class of systems of ordinary differential equations.

There are three basic premises underlying Richardson’s arms race model

(see Richardson, 1960, pp. 13–16). The first is that a nation spends more on

weapons when it observes that other nations are spending more on weapons.

However, military spending is an economic burden to society, and greater

levels of spending will inhibit future increases in spending, which is the

second premise. Finally, there are grievances and ambitions relating to both

cultures and national leaders that either encourage or discourage changes in

military spending. All of this can be summarized algebraically as
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dx=dt ¼ ay� mxþ g; ½4:1�
dy=dt ¼ bx� nyþ h: ½4:2�

Here we have two nations, X and Y . Changes in their respective spending

on arms is represented by dx=dt and dy=dt. The positive terms ay and bx

represent the drive to spend more on arms due to the level of spending of

the other nation, and the negative terms mx and ny reflect a nation’s desire

to inhibit future military spending because of the economic burden of its

own current spending. The constants g and h represent the grievances and

ambitions of the leaders for nations X and Y , respectively.

This is a system of two linear interdependent equations. The system’s

linearity is what makes it so easy to manipulate algebraically. Some of this

manipulation is useful to reinterpret the meaning of the parameters them-

selves. For example, we could say that Equation 4.1 is actually measuring

the imbalance between the spending levels x and y. Note that ay� mx ¼
aðy� mx=aÞ, and we can say that the parameter a now represents a more

generalized rate of military spending with respect to this balance. The para-

meter grouping m=a is itself a constant which acts to establish the desired

level of balance (see Danby, 1997, p. 48).

As with most systems of differential equations, the first thing we want

to determine is if there is an equilibrium (or multiple equilibria). We

determine this by setting the differential equations (Equations 4.1 and 4.2)

to zero and solving for X∗ and Y∗. Here we have the equations of two

lines,

0 ¼ ay� mxþ g; ½4:3�
0 ¼ bx� nyþ h; ½4:4�

and the equilibrium is the intersection of the two lines. In this case,

X∗ ¼ ðahþ gnÞ=ðmn� ab) and Y∗ ¼ ðbgþ hmÞ=ðmn� ab). This equili-

brium exists as long as mn� ab 6¼ 0:
The next thing we want to know is if the equilibrium is stable. That is, do

trajectories that exist in the neighborhood of (X∗; Y∗) flow toward the equi-

librium and stay in that neighborhood, or are they repelled away from the

equilibrium? The answer to this depends on the values of the parameters.

One way to determine whether the equilibrium is stable for any particular

set of parameter values is to draw the two lines (Equations 4.3 and 4.4) on a

graph and then to note the signs of the derivatives in the various sectors of

the graph as they are determined by the two lines. This has been usefully

demonstrated by Richardson (1960, pp. 24–27), Danby (1997, pp. 49–50),

and others.
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However, stability of a two-dimensional system of first-order differential

equations is explicitly connected to the stability of a second-order differen-

tial equation, and it is useful at this point to show why this is true. Later in

this book, I demonstrate how to change a second-order differential equation

into a system of two first-order differential equations. But it also works in

the reverse, and we can rephrase a system of two first-order differential

equations in terms of one second-order differential equation. In terms of the

Richardson arms race model, begin with Equation 4.1 and differentiate it to

obtain d2x=dt2. Thus, we have

d2x=dt2 ¼ aðdy=dtÞ � mðdx=dtÞ: ½4:5�

Now, substitute Equation 4.2 for dy/dt in Equation 4.5 to obtain

d2x=dt2 ¼ aðbx� nyþ hÞ � mðdx=dtÞ: ½4:6�

The next step is to isolate y in Equation 4.1 and substitute this into Equation

4.6. After rearranging, you have the second-order differential equation.

d2x=dt2 þ ðmþ nÞðdx=dtÞ þ ðmn� abÞx� ðahþ ngÞ ¼ 0

In general, we do not need to transform systems of first-order differential

equations into second-order differential equations to analyze them. In fact,

the situation is the reverse. We need to transform second-order differential

equations into systems of first-order equations to use the methods of analy-

sis presented in this book. Nonetheless, the demonstration above is neces-

sary on the level of understanding to show that we truly are working with

higher-order differential equations when we work with systems of first-

order differential equations. Second-order differential equations can ‘‘do

more’’ than first-order differential equations, in the sense that the behaviors

that second-order differential equations can exhibit are more varied than

those that are possible for first-order differential equations. Thus, when we

work with systems of first-order differential equations, we are purchasing

all of the behavioral ‘‘power’’ of second-order differential equations.

Richardson’s arms race model is capable of producing a remarkably

varied set of behaviors. We can see these by using flow diagrams. Figure

4.1 is a combination of a flow diagram and a direction field diagram. In this

instance, I used the program Phaser to construct this plot as well as some

additional figures shown below. The equations together with the parameter

values that are used for this figure are dx=dt ¼ 0:1y� 0:1xþ 0:02 and

dy=dt ¼ 0:1x� 0:1yþ 0:03: With this set of parameters, there is a fairly

equal level of distrust of the opposing nation (i.e., a ¼ 0:1 and b ¼ 0:1) and

economic burden (m ¼ 0:1 and n ¼ 0:1), but the historical and leadership

factors of nation Y (h ¼ 0:03) are slightly more exacerbated as compared
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with those of nation X (g ¼ 0:02). Figure 4.1 can be a terrifying scenario

since what we have is a runaway arms race for both nations.

A different scenario can be seen in Figure 4.2. Here the equations are

dx/dt= y� 2x+ 3 and dy/dt = 4x� 5y + 6. In this instance, I am using para-

meter values suggested by Danby (1997, p. 51). Here it is clear that we have

a stable equilibrium point near the center of the graph since all trajectories

move toward this point. Another way to say this is that all of the trajectories

fall within the basin of this attractor. This is an arms race that finds a bal-

ance of power.

Changing the parameter values even slightly can produce a remarkably

different outcome, however, as is shown in Figure 4.3. For Figure 4.3, the

equations are dx=dt ¼ 2y� x� 1 and dy=dt ¼ 5x� 4y� 1. With this

scenario, the equilibrium point in the lower left corner of the graph is

unstable, which means that it is a repeller. Trajectories eventually flow

away from it, either safely toward zero or catastrophically upward without

end. Which way one ends up depends on where one starts, and this is hardly

a comforting situation. Of the three scenarios shown here, only Scenario

Two portrayed in Figure 4.2 offers any significant real comfort. But note

that to move from the relative stability of Scenario Two to the repelling
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Figure 4.1 Richardson’s Arms Race, Scenario One
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Figure 4.2 Richardson’s Arms Race, Scenario Two
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Figure 4.3 Richardson’s Arms Race, Scenario Three
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instability of Scenario Three (Figure 4.3) required only leadership changes

(parameters h and gÞ with respect to the model. It is this lesson that appar-

ently worried Richardson so much.

Much more could be written (and has been written) about Richardson’s

arms race model. As a starting point, some readers may find the discussions

of this model by Rapoport (1960), Braun (1983), Danby (1997), and Huck-

feldt, Kohfeld, and Likens (1982) to be useful. But the outline of the basic

ideas above demonstrates how social scientists can use even simple differen-

tial equation models to extract from them sometimes profound lessons about

human society.

Lanchester’s Combat Models

F. W. Lanchester published in 1916 a collection of differential equation

models that described quantitatively how various types of armies interact

on the battlefield with respect to their relative troop gains and losses. The

models eventually became classics, and they are still studied closely (with

extensions) in general modeling courses as well as in courses involving ana-

lyses of military combat operations. Readers can find interesting treatments

of these models in Braun (1983) as well as Danby (1997, pp. 139–140). A

discussion of a famous application of these models to the battle of Iwo Jima

during World War II can be found in Braun (1983) as well as Engel (1954).

Three scenarios are normally considered with respect to Lanchester’s

combat models. The variations between these models depend on whether

the combatants are members of conventional or guerilla armies. The mili-

tary strength of the two armies are identified using the variables x and y.

There are two types of loss rates for both armies and one source of gain

(from reinforcement). The first loss rate is operational. Operational losses

occur simply as a result of having one’s own army deployed. Such losses

include deaths due to traffic accidents, accidental aircraft crashes, disease,

and desertion. An army’s operational loss rate is proportional to the number

of troops that are deployed by this same army. This type of loss is identical

across all three scenarios of Lanchester’s combat models.

The second loss rate is combat. Combat losses are deaths due to the kill-

ing activities of the enemy army. When an army comprises conventional

forces, then its members are visible to the enemy combatants (or out in the

open). Also, conventional forces are assumed to be within the killing range

of the opposing forces. Combat losses for conventional forces are propor-

tional to the total number of enemy combatants. For example, if army X is a

conventional force, then its combat loss rate would be ay, where y is the
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number of enemy combatants, and the parameter a is the coefficient of pro-

portionality. This parameter is called army Y’s ‘‘combat effectiveness coef-

ficient.’’ The higher the value of this parameter, the more effective army Y

is at killing members of army X.

Combat losses for guerilla armies are different from those of conventional

armies. Members of guerilla armies hide within either urban or natural envir-

onments and are not easily visible to the members of the opposing forces. To

kill members of a guerilla army typically requires that the opposing army

physically engage the guerilla forces either one-on-one or in small groups.

Thus, personal interaction with such forces is required. Mathematically, this

type of interaction is normally accomplished by multiplying the two vari-

ables, x and y, together. In this case, if army X is a guerilla army, then its

combat loss rate is cxy, where c is the combat effectiveness coefficient of

army Y in killing members of the guerilla army X.

The only way forces can gain members is through reinforcement. This

gain can vary with circumstances on the battlefield. It is important to note

that most of the short-term action in Lanchester’s combat models is obtained

through killing or operational deaths. Reinforcement thus becomes a crucial

additional ingredient in any battlefield situation involving combat that

extends over an appreciable length of time.

Scenario One

In the first scenario of Lanchester’s combat models, two conventional

armies are fighting. This scenario can be depicted as in Equations 4.7 and 4.8.

dx=dt ¼ �ay� exþ f ðtÞ ½4:7�
dy=dt ¼ �bx� nyþ gðtÞ ½4:8�

In Equations 4.7 and 4.8, parameter a is the combat effectiveness coeffi-

cient of army Y in killing army X, and parameter b is the comparable coeffi-

cient of army X in killing army Y . The operational loss rate for army X is

determined by the term ex, and the comparable loss rate for army Y is deter-

mined by ny. All of these loss rates are preceded by negative signs, of

course. The functions f ðtÞ and gðtÞ are the reinforcement rates for armies X

and Y , respectively.

This first scenario produces a linear system of two first-order interdepen-

dent ordinary differential equations. The behavioral characteristics of such

a system can be highly varied, depending on the choice of parameter values.

One way to approach the analysis of these equations is by manipulating

their algebra directly. For example, one might naturally ask if there is an

analytical method to discern from the algebra of the model how one army

might have advantage over another, and indeed there is. If we say that there
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are no reinforcements, and that there are no operational loss rates, we can

divide Equation 4.7 by Equation 4.8 to obtain dx=dy ¼ ay=bx. We can inte-

grate this using the separation of variables method to obtain

bx2 ¼ ay2 þ C;

where C is the constant of integration. Rearranging, this becomes bx2�
ay2 ¼ C, which works for any solution to the differential equation system.

This implies that army X will win the battle as long as bx2
0 > ay2

0. Here, x0

and y0 are the initial values of these variables. This is an example of Lanches-

ter’s ‘‘square law’’ as it applies to combat between conventional forces.

Scenario Two

The second scenario of Lanchester’s combat models involves combat

between one guerilla army and one conventional army. An interactive com-

bat loss term is required only to describe losses to the guerilla army. This

scenario can be described as in Equations 4.9 and 4.10.

dx=dt ¼ �cxy� exþ f ðtÞ ½4:9�
dy=dt ¼ �bx� nyþ gðtÞ ½4:10�

Note that the only algebraic difference between this scenario and that of

Scenario One is the substitution of the term cxy for the combat loss rate

for army X. This term makes this system of two differential equations

nonlinear.

Scenario Three

The third scenario of Lanchester’s combat models involves conflict

between two guerilla armies. We can portray such a situation as in Equa-

tions 4.11 and 4.12.

dx=dt ¼ �cxy� exþ f ðtÞ ½4:11�
dy=dt ¼ �kxy� nyþ gðtÞ ½4:12�

In this instance, both armies have interactive combat loss rates.

Rapoport’s Production and Exchange Model

The following model was developed by Anatol Rapoport (1960) and later

adapted by Danby (1997, pp. 140–141). It is a useful example of the applica-

tion of differential equations to be included here because it shows how such

equations can be used in economics as well as social choice theory. The
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basic idea of the model is quite simple, although the analysis of the model

reveals surprising complexities with respect to the behavior of individuals.

We begin with two individuals, X and Y . Both individuals produce

goods, which we will identify respectively as x and y. To increase their hap-

piness, each person desires to trade some of his or her own goods in order to

obtain some of the goods that are produced by the other person. Working

with proportions, if a person keeps p of her goods, then she trades q, where

q ¼ 1� p. A person’s happiness in having and trading goods is normally

measured in terms of ‘‘utility,’’ a term that is ubiquitous in economics and

social choice discussions. Utility is used as a ‘‘common denominator’’ that

allows the comparison of different things. For example, the goods produced

by person X are presumably different from those produced by person Y . So

it would be natural to ask how many units of x will be worth one unit of y in

terms of a person’s level of satisfaction or happiness. If one says that a per-

son obtains so much utility from a unit of x, and so much utility from a unit

of y, then we can simply add utilities to find out how much we get from hav-

ing both x and y. We want to model change in the levels of x and y (i.e.,

changes in the level of goods produced by persons X and Y) as a conse-

quence of their levels of utility.

To do this, we need to express the utility of persons X and Y in terms of

gains and losses due to production and trade. Rapoport makes the assump-

tion that people do not want to work unless they have to. Thus, there is a loss

in utility due to having to produce goods. How much loss there is in utility

is simply a function of how many goods are produced. But gains in utility

are different. People like to have goods, so there is a gain in utility when

they own the product of their labor as well as the product of another per-

son’s labor. Addressing an idea common to the subject of psychophysics

known as Fechner’s law (sometimes called Weber’s law), individuals regis-

ter arithmetic increases in perception only when the originating stimulus is

increased geometrically. Thus, starting from a common base of zero dol-

lars, a poor person will be greatly satisfied by a doubling of his or her goods,

whereas a rich person will not receive the same level of satisfaction from a

similar doubling. The original idea of Fechner’s law is with respect to the

perception of increases in physical stimuli such as light and sound from

some base level.

Thus we can model each person’s utility as

Ux ¼ logð1þ pxþ qyÞ � rxx;

Uy ¼ logð1þ qxþ pyÞ � ryy:

Here, Ui stands for person i’s utility due to gains and losses in goods, the

terms�rxx and�ryy represent losses in utility due to having to produce the
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goods, and the terms logð1þ pxþ qyÞ and logð1þ qxþ pyÞ are the gains

in utility due to the possession of goods. The parameters for the loss terms

are subscripted because it may be that person X feels differently about

working for a living than person Y . The 1 in the log term is necessary to

avoid negative values for gains when x and y are low [since log(1) = 0].

But what we want to model is changes in x and y, not the utilities for

persons X and Y . With the rational perspective embraced by this modeling

concept, it is assumed that changes in the levels of production will only

occur when there are changes in the level of utility. One approach to a spe-

cification is to express changes in x and y as proportional to the partial deri-

vatives of their respective utility functions. Thus, we can state that

dx

dt
¼ cx

p

ð1þ pxþ qyÞ � rx

� �
; ½4:13�

dy

dt
¼ cy

p

ð1þ qxþ pyÞ � ry

� �
: ½4:14�

The analysis of this model begins with determining the equilibrium

values. Numerical investigations of this model then begin by assuming var-

ious values of the parameters. Sometimes this is done by setting cx ¼ cy

and rx ¼ ry. Phase diagrams can be constructed that portray various beha-

viors of this model given the changes in the parameter values. For example,

parasitism occurs when either X or Y (but not both) stops producing goods,

a consequence of a long term and serious overall trade imbalance that can

result from even slight relative differences in a work ethic (i.e., parameters

rx and ry). This fascinating model can be easily extended to portray interac-

tions between nations, not just individual people.

Summary

This chapter presents three classic examples of differential equation model-

ing from the social sciences. All three of these examples involve systems of

first-order differential equations. The first two models, Richardson’s arms

race model and Lanchester’s combat model, address military concepts.

They are among the most widely referenced models with social science

themes in the entire literature of differential equation modeling. Both mod-

els have algebraic components that were previously found in the predator-

prey model discussed in the previous chapter. The final social science

model introduced in this chapter is Rapoport’s production and exchange

model, a model with an economic theme. This is an example with a more

complex algebraic structure, and it helps show how differential equation
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modeling may be used to address issues such as consumer preference and/or

individual utility. These examples, as interesting as they are, only begin to

touch the breadth and potential for differential equation modeling in the

social sciences. More advanced models that push the boundaries of model

specification in new and interesting ways are increasingly appearing in

social scientific research.

5. TRANSFORMING SECOND-ORDER AND
NONAUTONOMOUS DIFFERENTIAL EQUATIONS INTO

SYSTEMS OF FIRST-ORDER DIFFERENTIAL EQUATIONS

So far in this book, we have discussed only first-order differential equa-

tions. However, sometimes a theorist needs to work with a model that

involves a derivative of a higher order, such as a second-order derivative.

Indeed, we have already been working with second-order derivatives indir-

ectly since systems of first-order differential equations can be expressed in

terms of second-order differential equations, as was discussed in relation to

Richardson’s arms race model in the previous chapter. In general, we rarely

need to worry about transforming a system of first-order differential equa-

tions into a second-order differential equation since all of the techniques

presented in this book work with first-order systems. A problem occurs,

however, when we start out with a second-order differential equation and

need to transform it into a system of first-order equations to conduct our

analyses using these same techniques.

In the physical sciences it is quite common to encounter second-order

differential equation models. Again, Newton’s law relating force to the pro-

duct of mass and acceleration is a second-order differential equation since

acceleration is the derivative of velocity, which itself is a derivative. But in

the social sciences, most differential equation models start out as first-order

systems. Why then might it be important for social scientists to know how

to transform second-order differential equations into first-order systems if

they are going to be working with first-order systems in the first place?

There are two answers to this, one technical and the other substantive. The

first is that all modelers learn from the examples of others, and large num-

bers of second-order differential equation models exist that exhibit extraor-

dinary properties that social scientists will want to study. For example, the

program Phaser comes with a large inventory of dynamical systems that

may be understood in terms of second-order differential equations. Unless

we can examine and understand the works of others, how can we proceed

with our own innovations? But the second answer to the above question is
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that similar mathematical models can often approximate dynamical pro-

cesses that originate from very different fields of study. Thus, it is likely that

social scientists will encounter second-order differential equation models

originating in the physical and natural sciences that are isomorphic in struc-

ture to models that they might want to apply with respect to social and politi-

cal phenomena that have similar dynamical properties. This is a point argued

eloquently by Anatol Rapoport, a mathematician with an expansive view of

mathematical modeling across many fields (Rapoport, 1983, pp. 25–26).

Again, second-order differential equations are those in which a second

derivative exists (as the highest order) in the equation. For example, Equa-

tion 5.1 is a homogeneous and linear differential equation with constant

coefficients.

a
d2y

dt2
þ b

dy

dt
þ cy ¼ 0 ½5:1�

Equation 5.1 is homogeneous because the right-hand side is set equal to

zero. It is linear because there are no nonlinear elements in the equation,

such as y2. It has constant coefficients because the parameters a, b, and c do

not vary. If the right-hand side of Equation 5.1 is not equal to zero, then the

equation is nonhomogeneous.

There are two general approaches to working with second-order linear dif-

ferential equations. The first is to find explicit solutions for such equations,

while the second involves rephrasing the problem in terms of a system of

first-order equations. In terms of finding explicit solutions for second-order

linear differential equations, this is a bit of an art form since it can involve

some intelligent guessing (often called a ‘‘guess and test’’ method), followed

by rules for exploiting the initial guesses to obtain a complete and general

solution for the equation. In this chapter, I discuss an alternative approach to

working with second- and higher-order differential equations that reframes

the problem in terms of systems of first-order differential equations.

There are a variety of reasons for emphasizing this alternative approach

here. First, the methods that are appropriate for finding general solutions

to second- and higher-order linear differential equations are less useful

for nonlinear differential equations. Second, detailed discussions of such

approaches with regard to second- and higher-order linear differential equa-

tions are quite standard, and they can easily be found in any number of other

books on differential equations. Also, I cover much of this material in the

next chapter in a discussion related to stability analyses for differential

equation systems. Interested readers can find useful and complete discus-

sions of approaches to finding explicit solutions to second- and higher-order

linear differential equations in Blanchard et al. (2006, see especially

pp. 324–329), as well as Zill (2005, Chap. 4).
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More important, the alternative methods mentioned above can be used to

resolve the qualitative behavior of second- and higher-order linear differ-

ential equations in a manner that finds correspondence with the overall

approach to differential equation modeling that is used throughout this

book. Indeed, these other methods are preferable for our purposes since

they rephrase the issue of explicit solutions for second- and higher-order

differential equations to one involving systems of first-order differential

equations. It is necessary to do this if one wants to use numerical analyses

to study differential equations, and, indeed, this approach is increasingly

favored by many mathematicians. Nonetheless, readers should note that the

approach preferred here (working with systems of first-order differential

equations) is by no means the approach favored by all, and some readers

may find traditional approaches to finding explicit solutions to second- and

higher-order linear differential equations to be helpful in some situations.

The discussion of this subject in the next chapter within the context of stabi-

lity analyses will be useful in this regard.

Second- and Higher-Order
Differential Equations

It is easy to transform a second- and higher-order differential equation into

a system of first-order differential equations (e.g., see Blanchard et al.,

2005, pp. 159–161). There is no loss of information or generality in doing

this. Again, this type of transformation is necessary to study second- or

higher-order differential equations using numerical methods.

Let us say that we have a differential equation that is of any order higher

than first-order. To transform this equation into a system of first-order differ-

ential equations, begin by isolating the highest-order derivative on one side,

putting everything else on the other. For example, let us begin with Equation

5.2, using notation and phrasing suggested by Koçak (1989, pp. 6–7).

dny

dtn
¼ F y;

dy

dt
; . . . ;

dn�1y

dtn�1

� �
½5:2�

To proceed, we will need initial conditions for everything except the

highest derivative (i.e., the left-hand side in Equation 5.2). Thus, we require

the initial conditions

yðt0Þ; dy=dt at t0; all the way up to dn�1y=dtn�1 at t0: ½5:3�

Now we need to introduce new variables. These variables will take the

place of y, dy=dt, and all other derivatives up to dn�1y=dtn�1. Since all of
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these things vary, we are making variables out of all of them, and consider-

ing them as separate dimensions in a system of equations. The new vari-

ables look like this:

x1ðtÞ ¼ y;

x2ðtÞ ¼ dy=dt; . . . ;

xnðtÞ ¼ dn�1y=dtn�1: ½5:4�

Now we want to take the derivatives of all of the xi new variables so that

we can establish our system of differential equations using those deriva-

tives. Thus we have

dx1=dt ¼ x2; (from Equation 5.4)

dx2=dt ¼ x3; (again, from Equation 5.4)

dxn=dt ¼ Fðx1; x2; . . . ; xnÞ; (from Equation 5.2 after substituting xiÞ:

We can use an RK4 method with this set of equations in the normal man-

ner. Remember that we will need the initial conditions for these variables,

which we obtain from Equation 5.3. Thus,

x1ðt0Þ ¼ yðt0Þ;
x2ðt0Þ ¼ dy=dtðt0Þ; . . . ;

xnðt0Þ ¼ dn�1y=dtn�1ðt0Þ;

and we are finished.

An Example

Consider the second-order differential Equation 5.5,

d2y

dt2
¼ �7

dy

dt
� 10y: ½5:5�

We begin by setting up our new variables, xi. Thus we have,

x1ðtÞ ¼ y; and x2ðtÞ ¼ dy=dt; ½5:6�

and our new set of first-order differential equations is found using substitution:

dx1=dt ¼ x2;

dx2=dt ¼ �7x2 � 10x1:

We need only initial conditions for y (which is x1Þ and dy=dt (which is

x2) in order to conduct a numerical analysis using an RK4 method with this

system. Other helpful examples can be found in Koçak (1989, pp. 6–7).
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Nonautonomous Differential Equations

In politics, an ‘‘autonomous’’ region or body is self-governing. One can

even have an autonomous committee in, say, a university. The idea is that

the region or body does not depend on external conditions for its operations.

For example, a truly autonomous body does not have to ask for permission

to do something. With differential equations, the meaning is quite similar.

Autonomous differential equations operate based on their own internal

values. In practical terms, this means that an autonomous system of differ-

ential equations operates based only on the values of its dependent vari-

ables. But a nonautonomous system requires information other than from

its dependent variables. It requires the value of the independent variable as

well. Thus, nonautonomous differential equations are those in which the

independent variable t is explicitly included in the model. For example,

Equation 5.7 is a nonautonomous differential equation containing what is

called a ‘‘forced oscillator’’ component.

dx=dt ¼ ay� mxþ g½cosðptÞ� ½5:7�

Readers will note that this equation is a modification of Equation 4.1 for

Richardson’s arms race model. Here, the assumption is made that country X

will experience cyclical variations in its concern regarding its armament

spending. These variations could be a consequence of, say, an electoral

cycle in which the leaders of the country try to whip up fear of country Y

right before regularly scheduled elections in an effort to gain fear-based

votes. Since the value of the independent variable t is included explicitly in

the model, the model is not self-governing.

There are a few ways to handle the inclusion of the independent variable

in the model when conducting numerical experiments. One way is simply

to keep track of the value of t as one proceeds forward in time according

to the step size for the RK4 method. But a more general (yet equivalent)

approach is to increase the dimension of the system by one by creating a

new equation that does this for you. Thus, you establish a new variable,

xnþ1, where n is the number of dimensions (i.e., dependent variables) in the

original differential equation system. The new differential equation is

dxnþ1

dt
¼ 1; ½5:8�

with an initial condition of xnþ1ð0Þ ¼ t0.

Integrating Equation 5.8 with respect to t produces the solution xnþ1 ¼
t þ t0 (see also Koçak, 1989, pp. 7 and 8). Now that we have this new vari-

able, xnþ1, we can substitute it for t wherever it occurs in our system.
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For example, our new version of Richardson’s arms race model using this

approach would be

dx1=dt ¼ ax2 � mx1 þ g½cosðpx3Þ�; ½5:9�
dx2=dt ¼ bx1 � nx2 þ h; ½5:10�
dx3=dt ¼ 1;with x3ð0Þ ¼ t0: ½5:11�

Note that I have changed the variables to be of the form xi. It is interesting

to note that this version of Richardson’s arms race model has the potential to

encounter high degrees of longitudinal variability due to the inclusion of a

forced oscillator term in Equation 5.9 (see Brown, 1995b).

Summary

This chapter initially focuses on methods to transform a second- or higher-

order differential equation into a system of first-order differential equations.

One of the main purposes of doing this is to allow one to experiment numeri-

cally with second- or higher-order models that are abundant in the natural

and physical sciences. The numerical methods presented in this book (such

as the RK4) only work with first-order systems, so transforming higher-

order equations into first-order systems is a necessity in this regard. It is not

uncommon for a social scientist to find dynamic parallels between a social

process and, say, one or more aspects of a physical process that is modeled

by a second-order differential equation. Having the flexibility to work with

higher-order models in this manner gives a theorist the intellectual power to

exploit the higher-order dynamics that are associated with such models.

Similarly, this chapter then presents a method for working with nonautono-

mous differential equations. The approach is comparable with that used for

higher-order differential equations, in the sense that one increases the dimen-

sion of the system (in this case by one) as a means of keeping track of the inde-

pendent variable t. Thus, a single nonautonomous differential equation can be

rewritten as a system of two first-order autonomous differential equations.

The numerical methods used in this book (such as the RK4) can then work

with this system in the standard manner as with all first-order systems.

6. STABILITY ANALYSES OF LINEAR
DIFFERENTIAL EQUATION SYSTEMS

The analysis of differential equation models nearly always involves a minimum

of three primary aspects. The first is to identify the equilibrium points and their
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basins of attraction for the system. This may or may not include the identifica-

tion of equilibrium marshes. The second is to describe the behavior of trajec-

tories for the dependent variables within the overall relevant phase space. And

the third is to characterize the behavior of trajectories that pass within close

proximity of the equilibrium points. The current chapter focuses on this third

aspect with respect to systems of first-order linear differential equations.

Systems of differential equations usually behave similarly (with occa-

sional exceptions) within the neighborhood of an equilibrium point regard-

less of whether or not the equations are linear or nonlinear. Further away

from the equilibrium points, the behaviors of linear and nonlinear differen-

tial equations may differ markedly, and the numerical techniques presented

earlier in this book are of great importance in describing these behaviors.

But near an equilibrium point in two-dimensional systems, there are six

fundamental behaviors, and it is important to be able to recognize each one.

We can identify these behaviors clearly by examining the linear case.

A Motivating Example of How Stability
Can Dramatically Change in One System

First let us motivate this discussion of stability analysis by showing how easy

it is for a differential equation system to have equilibria that may exhibit

wildly different stability characteristics depending on the values of the sys-

tem parameters. Let us reconsider Richardson’s arms race model. Recall

from Equations 4.3 and 4.4 that the equilibrium values for Richardson’s arms

race model are given as X∗ ¼ ðahþ gnÞ=ðmn� abÞ and Y∗ ¼ ðbg� hmÞ=
ðmn� abÞ. As mentioned previously, this equilibrium exists so long as

mn� ab 6¼ 0. It is possible to vary the parameters such that the equilibrium

point (X∗; Y∗) remains approximately the same despite the fact that the para-

meters are changing. This would require changing more than one parameter

value at a time such that the equilibrium solution remains the same. In the

real world, an observer of this system might not detect any difference since

the observer would observe only, say, the steady level of arms purchases for

each nation as characterized by a stable equilibrium point. But if the para-

meters change such that the quantity mn� ab alternates from a positive

value to a negative one (i.e., mn< ab), then the stability of the equilibrium

value suddenly changes from being stable to unstable (see Richardson, 1960,

pp. 24–28, as well as Rapoport, 1983, pp. 126–128). Substantively, this

means, for example, that one can suddenly find oneself in a runaway arms

race when recent history suggested everything was ‘‘safe’’ and stable. In the

words of the comic, you never saw it coming.
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The phenomenon described above is related to a field of dynamical model-

ing called ‘‘catastrophe theory,’’ a subject I have written about and applied

empirically elsewhere (Brown, 1995a, 1995b). This addresses the idea that the

behavioral dynamics of macro social systems are dependent on the local stabi-

lity characteristics of certain states or system equilibria. Some scientists have

dealt with sudden change by establishing thresholds for their systems. When

certain parameter values pass beyond those thresholds, then the system’s beha-

vior can change, as if there are two sets of ‘‘laws’’ governing the system, each

one applicable for different situations. However, Rapoport has argued that this

is ad hoc, in the sense that it describes the behavior of the system without

describing its underlying structure (Rapoport, 1983, p. 127). When catastrophe

theory is applied to differential equations, one can describe the sudden beha-

vioral change of a system by directly relying on its underlying mechanisms.

This should help motivate the study of differential equation system stabi-

lity. Understanding what causes a system to be stable or unstable, or to have

a certain kind of stability or instability, brings us into a new world of possi-

bilities for understanding social systems. Indeed, this is currently an excit-

ing area of research in the application of differential equation systems to

real-world phenomena.

Scalar Methods

To describe the six fundamental behaviors of two-dimensional differential

equation systems near an equilibrium point, let us work with the system of

linear differential equations presented here as Equations 6.1 and 6.2. These

equations are nearly identical to Richardson’s arms race model.

dx=dt ¼ axþ by ½6:1�
dy=dt ¼ cxþ ky ½6:2�

First, let us note that the origin is the equilibrium for this system, which

can be obtained either by inspection or by setting both Equations 6.1 and 6.2

equal to zero, and then solving the two simultaneous equations. Now let us

rephrase Equations 6.1 and 6.2 as one higher-order differential equation by

first differentiating Equation 6.1. Thus, we have

d2x

dt2
¼ a

dx

dt
þ b

dy

dt
: ½6:3�

The next step is to substitute dy=dt from Equation 6.2 and y from

Equation 6.1 into 6.3 to obtain Equation 6.4.
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d2x

dt2
� ðaþ kÞ dx

dt
þ ðak � bcÞx ¼ 0 ½6:4�

This is a second-order differential equation which we will solve using the

‘‘guess and test method’’ (see Blanchard et al., 2005, pp. 117–120, 194–195).

Let us make a guess and say that x ¼ Aert, which introduces the constant

parameter r and the arbitrary constant A, and we are hoping that this may

offer a solution for x. Again, a solution for x would be an algebraic function

that does not have any derivatives in it that would give us values of x for

any given value of the independent variable, t. The possible solution Aert is

a ‘‘thoughtful’’ guess inspired by the solution for the related first-order lin-

ear differential equation (see Equation 2.4) and the idea that if the linear

combination of the various derivatives in Equation 6.4 all cancel out to

equal zero, then the derivatives would probably be repetitious in some

manner.

Note that dx=dt ¼ rAert and d2x=dt2 ¼ r2Aert. Let us substitute these

values into Equation 6.4 to obtain Equation 6.5.

r2Aert � ðaþ kÞrAert þ ðak � bcÞAert ¼ 0 ½6:5�

Factoring out the term Aert and noting that ert 6¼ 0, we extract what is

called the ‘‘characteristic equation,’’ shown here as Equation 6.6.

r2 � ðaþ kÞr þ ðak � bcÞ ¼ 0 ½6:6�

Thus, it seems that our possible solution, x ¼ Aert, can work as long as we

can find appropriate values of the parameter r.

We are concerned about the behavior of the system of two differential

equations (6.1 and 6.2) in the neighborhood of the equilibrium (0, 0). Our

solution for our dependent variables depends on the values of the roots for

the characteristic equation, which we can solve using the quadratic formula,

or with higher-order systems, Newton’s method. In the case of x, we want

to find values for the parameter r for which Equation 6.6 is true given the

values of the other parameters (a; b; c, and k). Note that there will be two

roots (r1 and r2) for Equation 6.6. If we tried simply to use x ¼ Aert as our

solution, we would have two different solutions for x. But what we want is

one general solution for x, not two separate solutions. Thus, we need to find

a way to combine the two solutions into one solution.

In the theory of differential equations, there is something called the princi-

ple of superposition (Zill, 2005, pp. 130–134). This principle is also called

the linearity principle (see Blanchard et al., 2005, pp. 114–116; also Morris

and Brown, 1952, pp. 69–71). The essence of this principle has two parts.

The first is that if one finds one solution to a differential equation, then if you
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multiply that solution by a constant, the result is also a solution to the differ-

ential equation. This part can be easily verified. Since we have Aert as one

solution for x, try substituting sAert (and its derivatives) into Equation 6.4 as

was done previously to obtain Equation 6.5. You will see that the parameter

s will divide out and be eliminated, leaving us again with Equation 6.5.

The second part of the principle of superposition states that if you have

two solutions for your differential equation, then any linear combination of

those two solutions is also a solution to the differential equation. This can

easily be extended to equations of higher order (i.e., with more solutions

placed in a linear combination). This linear combination of the two solu-

tions is the general solution to the homogeneous second-order differential

equation, and we will see how this is done below.

Keep in mind that we are doing all of this so that we can determine the

behavior of the dependent variables for our system of differential equations.

We now know that our solutions for our second-order differential equations

will involve a parameter r, for which there will be two values (i.e., roots).

This means that the behavior of our differential equation will depend on the

roots of the characteristic Equation 6.6.

At this point it is useful for us to work with real numbers to show how this

works. In this instance, I will employ parameter values suggested by Danby

(1997, pp. 52–54). Let us specify an example system of the form found in

Equations 6.1 and 6.2, which is shown here as Equations 6.7 and 6.8.

dx=dt ¼ 2xþ y ½6:7�
dy=dt ¼ xþ 2y ½6:8�

This means that a ¼ 2; b ¼ 1; c ¼ 1; and k ¼ 2: Substituting these para-

meter values into Equation 6.6, we have Equation 6.9.

r2 � 4r þ 3 ¼ 0 ½6:9�
Using the quadratic formula, we find that r1 ¼ 1 and r2 ¼ 3:
Now we need to use these roots to arrive at a general solution for our sys-

tem. Since our system is interdependent, and thus x depends on y and vice

versa, we are going to need solutions for both x and y. We shall use our

guessing method, and say that x ¼ Aert and y ¼ Bert. A nice approach is to

note that dx=dt ¼ rAert and dy=dt ¼ rBert, and then to substitute these

values into our original differential equations, 6.7 and 6.8. Doing this yields

rAert ¼ 2ðAertÞ þ Bert;

rBert ¼ Aert þ 2ðBertÞ:

Dividing through both equations by ert and then rearranging yields the

equivalent expressions,
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Að2� rÞ þ B ¼ 0;

Aþ Bð2� rÞ ¼ 0:

Note that these two equations will produce nontrivial solutions for

A and B (Hadley, 1961, p. 174) only if

det
2� r 1

1 2� r

� �
¼ 0:

This is another way of getting the characteristic equation of the system, and

I include it here so that readers can note an important similarity between the

scalar methods used here and the matrix methods described further below.

Solving for this gives us our roots, r1 ¼ 1 and r2 ¼ 3; as before. But now

let us take these roots and use them to solve for A and B using the above two

simultaneous equations. Note that when r1 ¼ 1; then A ¼ �B, and when

r2 ¼ 3; then A ¼ B, with A being arbitrary in each instance, allowing us to

rewrite and consolidate our terms with an A1 and an A2.

Now we can write our solutions in terms of only Ai. Thus we have four

solutions of interest. They are

x ¼ A1et;

y ¼ �A1et;

and

x ¼ A2e3t;

y ¼ A2e3t:

Due to the principle of superposition, our general solution should be a

linear combination of two solutions. This means that our general solutions

for the second-order differential equation as expressed in Equation 6.4 for

variable x, as well as the comparable version for y, are

x ¼ A1et þ A2e3t; ½6:10�
y ¼ �A1et þ A2e3t; ½6:11�

where Ai are arbitrary constants that depend on initial conditions for x and

y. These constants are similar in nature to the constant y0 found in Equation

2.4 with respect to a first-order linear difference equation. Note that Equa-

tions 6.10 and 6.11 are linear combinations of two separate solutions for x

and y, each of which uses one of the two roots for Equation 6.9.

At this point it should be clear that the behavior of our dependent vari-

ables, x and y, over time will depend qualitatively on the values of the roots
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of the characteristic equation. Inspection of Equations 6.10 and 6.11 reveals

that as time increases, the magnitudes of x and y will increase exponentially

since both of the roots (in this case, real numbers) are positive. This means

that our equilibrium value for this system as defined by Equations 6.7 and

6.8 is unstable, and the equilibrium value itself (i.e., the origin) is called an

‘‘unstable node.’’

Matrix Methods

At this point we need to step back and examine a different approach utiliz-

ing matrices to evaluate the qualitative behavior of a linear system of differ-

ential equations. In my view, this matrix approach is both more general and

preferable (for reasons that I explain below), although some readers may

continue to favor the guess and test method of finding solutions as described

above. This matrix approach works with linear differential equations, but it

can also be expanded conceptually to work with nonlinear differential equa-

tions, as I explain in the next chapter.

We begin by restating the system of two differential equations (6.1 and

6.2) in matrix form. We do not collapse the system into one second-order

equation as was done previously. Thus, in matrix form, we write our origi-

nal equations as

dY=dt ¼ AY; ½6:12�
where

A ¼ 2 1

1 2

� �
;

and the elements of matrix A (called the ‘‘coefficient matrix’’) are the coef-

ficients of our system of Equations 6.7 and 6.8. The vector Y has two ele-

ments, x and y, which are the dependent variables of our system. More

generally, in terms of Equations 6.1 and 6.2,

dY

dt
¼ dx=dt

dy=dt

� �
¼ axþ by

cxþ ky

� �
¼ a b

c k

� �
x

y

� �
: ½6:13�

From the principle of superposition, we know that we can manufacture a

solution to this system of equations by linearly combining any two given

solutions. Thus, if Y1ðtÞ and Y2ðtÞ are solutions to the system (Equation

6.13), then we can say that

w1Y1ðtÞ þ w2Y2ðtÞ ½6:14�
is also a solution to the system. Here, we are using wi to represent arbitrary

constants. Since we need two solutions in order to do this, we obtain them by
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looking for two special solutions for which a scalar can have the same effect

on vector Y as the original coefficient matrix when we multiply the two

together. (In many instances, these solutions can be called ‘‘straight-line

solutions’’ since they can identify trajectories in a phase diagram that are

straight lines. See Blanchard et al., 2006, pp. 258–271.) Thus, we are really

looking for two things. We need a scalar that acts the same as the coefficient

matrix, but we also need the values of our dependent variables that will

cooperate with this scalar such that it produces the same result as the coeffi-

cient matrix when they are multiplied together as in Equation 6.13.

Let us group these desired values of the dependent variable in the vector

V. Thus, V = (x; y), and we are looking for values of V such that

AV ¼ A
x

y

� �
¼ λ

x

y

� �
¼ λV ½6:15�

or alternatively, ðA� λI)V = 0. Here, λ is the scalar that acts the same as

the coefficient matrix, A, when multiplied by the vector V, and I is the iden-

tity matrix. The scalar λ is called an ‘‘eigenvalue’’ of A, and the vector V
is called the ‘‘eigenvector’’ that corresponds to the eigenvalue λ. Another

way of writing Equation 6.15 in component form is

axþ by ¼ λx;

cxþ ky ¼ λy;

or equivalently,

ða� λÞxþ by ¼ 0; ½6:16�
cxþ ðk � λÞy ¼ 0: ½6:17�

Nontrivial solutions for this system exist only if det |A� λI| ¼ 0: Thus,

in component form, we evaluate

det
a� λ b

c k � λ

� �
¼ 0: ½6:18�

Equation 6.18 involves the algebraic expansion

λ2 � ðaþ kÞλþ ðak � bcÞ ¼ 0;

which is the system’s ‘‘characteristic polynomial.’’ The eigenvalues of

the coefficient matrix, A, are the roots of this polynomial. Since this is a
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quadratic equation, there are two roots. Using the example from our linear

system (Equation 6.12), we can rewrite Equation 6.18 as

det
2� λ 1

1 2� λ

� �
¼ 0

or, after expansion, λ2 � 4λþ 3 ¼ 0:Here, λ1 ¼ 1; and λ2 ¼ 3:
Note that our eigenvalues for the coefficient matrix are identical to the

roots of the characteristic equation as found from Equation 6.9 using scalar

methods. This is not an accident. Indeed, we will soon see that we have been

working with eigenvalues all along when we calculated the roots to the

characteristic Equation 6.6 and that even our parameter a in Equation 2.4 is

an eigenvalue of a simple one-dimensional first-order linear differential

equation.

Now that we have the eigenvalues for the system (Equation 6.12), we

need to obtain our eigenvectors. There will be two eigenvectors, one for

each eigenvalue. We obtain the eigenvectors by substituting the eigenva-

lues (one at a time) into (A� λIÞV ¼ 0; having obtained this expression

from Equation 6.15. This is equivalent to solving simultaneously the scalar

forms of the Equations 6.16 and 6.17. Continuing in matrix form for our

example, we obtain our eigenvector corresponding to eigenvalue λ1 ¼ 1 by

solving the system

2� λ 1

1 2� λ

� �
V ¼ 1 1

1 1

� �
x

y

� �
¼ 0: ½6:19�

In component form, this yields two redundant equations, both of which

are xþ y ¼ 0: This means that x ¼ �y, and any vector of the form (�y; y)

is an eigenvector associated with λ1 ¼ 1; as long as y 6¼ 0. For example,

(−1, 1), (2, −2), and (−5, 5) are all equivalent eigenvectors associated with

the eigenvalue λ1 ¼ 1:We will identify this eigenvector as V1 ¼ ð�y; yÞ.
For the case in which λ2 ¼ 3; we solve the system again and obtain the

component equations

ð2� 3Þxþ 1y ¼ 0;

1xþ ð2� 3Þy ¼ 0:

This yields two redundant equations, both of which are x ¼ y. This

means that any vector of the form (y; y) is an eigenvector for this system that

is associated with the eigenvalue λ2 ¼ 3, and (1, 1) would be an example of

such an eigenvector. We will identify this eigenvector as V2 ¼ ðy; yÞ.
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Some readers will note that V1 and V2 are linearly independent and thus

constitute a basis for R2. This means that any linear combination of these

vectors will allow us to arrive at any given point in R
2. Using this fact in

combination with Equation 6.13, we can now write the general solution for

this differential equation system as

YðtÞ ¼ w1e1tV1 þ w2e3tV2: ½6:20�

Keep in mind that each vector V1 and V2 has both x and y components. It

does not matter which eigenvector we use in our solution as long as it is in

the appropriate form. For example, since (−1, 1), (1, −1), and (2, −2) are

all examples of eigenvectors associated with λ1 ¼ 1 (because they are all

scalar multiples of one another), we can use any one of them in a solution.

For simplicity, I will use eigenvector (1, −1) to be associated with λ1 ¼ 1;
and eigenvector (1, 1) to be associated with λ2 ¼ 3: In terms of our exam-

ple, this means that our x coordinate for any solution to our differential

equation system [call it xðtÞ] will be xðtÞ ¼ w1et þ w2e3t, and the y coordi-

nate for our system [call it yðtÞ] will be yðtÞ ¼ �w1et þ w2e3t. This is the

same as we obtained previously using scalar methods. (See Equations 6.10

and 6.11.) The only thing left to do is to solve for the arbitrary constants, w1

and w2, and for this we set t ¼ 0 and use the initial conditions for our depen-

dent variables, x0 and y0, to solve the two simultaneous equations.

To sum up, we want to state that the general solution form for our system

of two first-order linear differential equations with two real, unequal, and

positive eigenvalues (λjÞ is given as Equation 6.21.

YðtÞ ¼ w1eλ1tV1 þ w2eλ2tV2 ½6:21�

Here, Vj are the eigenvectors, and wj are the arbitrary constants that

depend on the initial conditions of the dependent variables.

There are now two important points to make. First, the procedures for

obtaining general solutions for first-order differential equation systems as

outlined above are somewhat different for situations in which the eigenva-

lues are repeated (i.e., both have the same value), there exists a zero eigen-

value, or the eigenvalues are complex [involving the imaginary number

iði ¼
ffiffiffiffiffiffiffi
�1
p

Þ]. In a way, that is the bad news, since we would need to know

those other methods in order to come up with general solutions to other

linear systems. But the second point is equally valuable, and it is the good

news. The qualitative behavior of the dependent variables over time for

a system of first-order linear differential equations depends on the eigenva-

lues of the system, not the eigenvectors or the arbitrary constants. This

can be seen through inspection of Equation 6.21, a point that is also

84



demonstrated through example below. Moreover, since the approach

recommended in this book is to use numerical techniques to solve and plot

systems of ordinary first-order differential equations, once we understand

the importance of the eigenvalues for linear systems, we do not need to find

the general explicit solutions to the equations. All we really need are the

eigenvalues themselves. It is worth pointing out, of course, that the general

solutions of linear systems were more important to the practical application

of systems of linear differential equations before the arrival of fast compu-

ters capable of doing the number of calculations necessary for numerical

analysis.

Equilibrium Categories

Why then did I have you (the reader) go through all the above steps to obtain

a general solution to a system of linear differential equations? It is necessary

to do this at least once in order to understand the dominant importance of the

eigenvalues. Once one understands that neither the arbitrary constants nor

the eigenvectors affect the qualitative behavior of the linear differential

equation systems, we can dispense with finding the eigenvectors and arbi-

trary constants entirely. Rather, we can move freely into classifying the beha-

vior of linear systems according to their eigenvalues only, and then we can

move directly to the use of numerical methods to solve for the differential

equations. It is difficult to overstate the importance of this point.

While the equilibrium categories described below are applicable to linear

two-dimensional differential equation systems, they are not adequate for

nonlinear higher-dimensional systems. For example, nonlinear systems

with three or higher dimensions can potentially have a ‘‘strange attractor,’’

which is a phenomenon associated with chaos theory (Brown, 1995b).

Chaos can also appear in nonautonomous nonlinear systems of two dimen-

sions. Nonetheless, the list below is a necessary beginning to the study of

all differential equation systems regardless of order and linearity. This is

emphasized further in the next chapter with respect to nonlinear differential

equation systems.

Unstable Nodes

Let us now pull all this together by categorizing various types of beha-

viors that autonomous first-order linear differential equation systems of two

dimensions can have near an equilibrium point. We begin with our first

example as defined by the parameter values found in Equations 6.7 and 6.8.

Here the eigenvalues are λi ¼ ð1; 3Þ, positive, real, and unequal. From
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either Equations 6.10 and 6.11 or Equation 6.20 we can see that the depen-

dent variables will continue to increase without bound as time increases.

This produces an unstable node at the origin, which is the equilibrium point

for this system. This type of equilibrium point is called a ‘‘source.’’ The

meaning of the term is drawn from the idea that trajectories move away

from this point just as light from the sun moves outward and away from the

sun. A phase diagram for this system (using Phaser) is shown here in Figure

6.1. Note that all trajectories move away from the origin. This is the charac-

teristic of an unstable equilibrium point.

Stable Nodes

If we change the parameter values of the system so that a ¼ �4, b ¼ 1;
c ¼ 1; and k ¼ �2, then the behavior of trajectories near the origin differs

dramatically from that shown in Figure 6.1. Now the eigenvalues are

λi ¼ �3± ffiffiffi
2
p

, negative, real, and unequal. Inspection of Equation 6.21

shows that the term eλit decays to zero over time in the presence of negative

eigenvalues. With these new parameters, the trajectories move inward

toward the equilibrium. In this setting, the origin is now a ‘‘stable node.’’

Y

X

Figure 6.1 A Two-Dimensional Linear Model With an Unstable Node

NOTE: The initial conditions are represented as dots. All movement extends away from the

initial conditions along the trajectories shown.
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This type of equilibrium is also called a ‘‘sink.’’ The phase diagram of this

system is shown in Figure 6.2. Note in this figure that all of the trajectories

move toward the origin, and this type of behavior is the characteristic of a

stable equilibrium acting within its basin of attraction.

Saddle Points

If we change the parameter values of our linear system again to be a ¼ 1;
b ¼ 4; c ¼ 2; and k ¼ �1, the eigenvalues now become λi ¼ ð3;�3Þ.
Here, one root is real and positive while the other is real and negative. As

one might expect, this situation creates what is in essence a merger between

a sink and a source. The equilibrium point is now called a ‘‘saddle point.’’

The term is made to reflect the nature of a horse’s saddle. From two oppo-

site directions, the equilibrium point acts as a sink, with nearby trajectories

being pulled toward the origin. From a different set of two opposite direc-

tions, the equilibrium point acts as a source, with nearby trajectories being

pulled away from the origin. Only one straight-line solution actually gets

Y

X

Figure 6.2 A Two-Dimensional Linear Model With a Stable Node

NOTE: The initial conditions are represented as dots. All movement extends away from the

initial conditions along the trajectories shown, converging at the node in the center of the

plot.
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permanently pulled toward the origin, however. All other trajectories even-

tually become influenced by the outward pull and turn to move away from

the equilibrium. Such an equilibrium point is unstable.

This is a more complicated situation than a simple source or sink. Figure

6.3 portrays the phase portrait for this system in the neighborhood of the

origin. A direction field is added to the diagram to assist in showing the

direction of movement for the trajectories. The starting points for all trajec-

tory flows are marked with a dot. Note that trajectories that begin near the

top left or the bottom right of the diagram get initially pulled toward the ori-

gin. But eventually the unstable characteristics of the positive eigenvalue

dominate the system and the trajectories move away from the origin in

either the first or third quadrants. It is this unbounded behavior that makes a

saddle point unstable.

Unstable Spirals

When we change the parameter values of the system to be a ¼ 1; b ¼ 4;
c ¼ �2, and k ¼ 1; the eigenvalues become complex with both real and

imaginary parts. Here, λi ¼ 1± i
ffiffiffi
8
p

. This situation produces trajectories

that are unstable spirals. The spirals result from the imaginary components

Y

X

Figure 6.3 A Two-Dimensional Linear Model: The Origin as a Saddle Point
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of the eigenvalues. From Euler’s formula, we can rewrite complex numbers

in terms of sine and cosine, and we do this to obtain real-valued solutions to

our linear differential equation with complex eigenvalues (Blanchard et al.,

2006, pp. 293–296). While the imaginary parts of complex eigenvalues are

responsible for the oscillatory overtime behavior of the dependent vari-

ables, the real parts are still responsible for whether the equilibrium will be

a sink, a source, or a center. If the real part of the complex eigenvalue is

positive, the trajectories will spiral outward away from the origin, and the

equilibrium point is a spiral source.

Figure 6.4 presents the phase diagram for our system with complex

eigenvalues with positive real parts. Four initial conditions are shown. Note

that all trajectories spiral outward and away from the origin. With these

parameter values, the origin is an unstable equilibrium point.

Stable Spirals

We now use parameter values a ¼ �1, b ¼ 4; c ¼ �2, and k ¼ �1. If the

real part of the complex eigenvalue is negative, then the trajectories in phase

Y

X

Figure 6.4 A Two-Dimensional Linear Model With Unstable Spirals

NOTE: The direction of movement is outward and away from the initial conditions (the dots)

as indicated by the arrows.
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space spiral inward toward the origin, and the equilibrium point is a sink.

The eigenvalues for this system are now λi ¼ �1± i
ffiffiffi
8
p

. The negative real

parts to the solutions produce a sink in the form of a stable spiral. A phase

diagram of this system is presented in Figure 6.5. There are four initial con-

ditions represented in this figure. Note that all four trajectories spiral inward

toward the origin, which in this case is a stable equilibrium point.

Ellipses

Our final category of equilibria for first-order linear differential equation

systems is an ellipse. Ellipses form as a result of having purely imaginary

eigenvalues. That is, the real components of the eigenvalues are zero. If

we assign parameter values for our system as a ¼ 1; b ¼ 4; c ¼ �2, and

k ¼ �1, then the eigenvalues are λi ¼ ± i
ffiffiffi
7
p

. A phase diagram of this sys-

tem is presented in Figure 6.6. Now the origin is called a ‘‘center,’’ and all

trajectories forever orbit this center. A center is stable, and it is the only type

of stable equilibrium point that is not asymptotic.

Y

X

Figure 6.5 A Two-Dimensional Linear Model With Stable Spirals

NOTE: The direction of movement is inward and away from the initial conditions (the dots) as

indicated by the arrows.
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Summarizing the Stability Criteria

The stability criteria for linear differential equation systems of any dimen-

sion can be neatly summarized using a graphical portrayal of the complex

plane, as is shown in Figure 6.7. In Figure 6.7, the x-axis represents the real

parts of a system’s eigenvalues, whereas the y-axis represents the imaginary

parts. The current discussion is similar to that of May’s (1974, pp. 23–26)

with respect to the application of such techniques to model ecosystems.

This helps address the issue of completeness with respect to analytical solu-

tions for all categories of linear differential equation systems, although in a

highly compact manner suitable for this book. Readers desiring a more

detailed discussion can find it in any number of longer texts on differential

equations. (See, e.g., Blanchard et al., 2006.)

The issue is how to represent the qualitative behavior of linear differen-

tial equations in such a way as to tie together the essential ingredients

of their behavior with their associated eigenvalues. From Equation 6.21 we

can see that a system of linear differential equations will grow explosively

(due to the exponential factor) as time continues if any of the eigenvalues

have positive real parts. All such systems must be considered unstable in

Y

X

Figure 6.6 A Two-Dimensional Linear Model With Ellipses and a Center

NOTE: The directions of movement are shown by the arrows.
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the sense that they lack convergent properties with respect to the equili-

brium. If all the eigenvalues have negative real parts, then the system will

converge over time and remain stable. Moreover, the system will exhibit

oscillatory behavior if any of the eigenvalues have imaginary components.

Thus, systems with imaginary components and all negative real parts will

have trajectories that spiral into the equilibrium. Such systems are oscilla-

tory but stable. Systems with imaginary components and at least one posi-

tive real part will spiral outward away from the equilibrium. These are

unstable oscillatory systems. Neutral stability is achieved with a steady

orbit around an equilibrium, and that occurs in situations in which at least

one of the eigenvalues is purely imaginary, so long as the real parts of the

remaining eigenvalues are negative. From this discussion we can see that

the trajectories in the neighborhood of an equilibrium for a linear system of

differential equations will achieve stability if all their eigenvalues reside in

the left-hand (hatched) side of Figure 6.7. Readers should note that we will

find use for Figure 6.7 again in the next chapter when we discuss the stabi-

lity criteria in the neighborhood of an equilibrium for a nonlinear system.

Y

X
(0, 0i )

Figure 6.7 The Complex Plane Containing the Eigenvalues of Different Equation
Systems, λ ¼ x± yi

NOTE: Stable systems require negative real parts, which is the hatched region of the complex

plane.
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7. STABILITY ANALYSES OF NONLINEAR
DIFFERENTIAL EQUATION SYSTEMS

The discussion in the previous chapter regarding the stability of systems

of linear first-order differential equations near an equilibrium point can be

extended to the nonlinear case. This is exceptionally important, since a

great many social scientific models are nonlinear. Indeed, the linear models

are more the exception than the rule.

The problem of evaluating systems of nonlinear differential equations is

that the coefficient matrix A found in Equation 6.12 does not exist in the

nonlinear case. However, this problem is readily solved by realizing that one

can linearize nonlinear models for areas in phase space that reside within the

neighborhood of an equilibrium. That is, when we are examining the stabi-

lity of a nonlinear system in the proximity of an equilibrium point, we can

use a linear form of the nonlinear system to obtain an accurate portrayal of

the nonlinear system’s behavior in that area. In general, nonlinear systems

behave the same as linear systems in close proximity to equilibrium points.

While it is possible to devise an exception to this, such exceptions are rarely

encountered in practice. This means that we can continue to rely on our six

stability categories for equilibria that were developed in the previous chapter

even though we are now working with nonlinear systems.

The Jacobian

The key to linearizing any system of nonlinear differential equations is

to construct the Jacobian matrix (or simply, the ‘‘Jacobian’’) of the system.

The Jacobian is the linearized equivalent of the coefficient matrix A in

Equation 6.12. While most disciplines call this matrix the Jacobian, some

disciplines use other terminology. For example, in studies of population

biology, the Jacobian is often called the ‘‘community matrix’’ (see, e.g., the

classic work by May, 1974). The Jacobian is created by first taking the

partial derivatives of each equation with respect to all of the dependent

variables, and then substituting the equilibrium values of the dependent

variables into those expressions. The first row of the Jacobian corresponds

with the first equation of the system, the second row of the Jacobian corre-

sponds with the second equation of the system, and so on. The first column

of the Jacobian corresponds with the first dependent variable, the second

column of the Jacobian corresponds with the second dependent variable,

and so on. All of this exactly parallels the structure of coefficient matrix A

in Equation 6.12 with respect to linear systems. (Indeed, the Jacobian of a

linear system is the coefficient matrix A.)
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For example, in a situation of a system of two differential equations with

two dependent variables [f ðx; yÞ; gðx; yÞ], the Jacobian would be

J ¼
∂f ðx∗;y∗Þ

∂x
∂f ðx∗;y∗Þ

∂y
∂gðx∗;y∗Þ

∂x
∂gðx∗;y∗Þ

∂y

0
@

1
A: ½7:1�

Again, note that we must evaluate the Jacobian at the equilibrium point

whose stability is being investigated.

After obtaining the Jacobian from a nonlinear system evaluated at a parti-

cular equilibrium point, stability analysis proceeds in the normal manner as

with linear systems as described in the previous chapter. That is, one obtains

the eigenvalues of the Jacobian just as they were obtained for the coefficient

matrix A in Equation 6.12. Once the eigenvalues are obtained, one charac-

terizes the behavioral quality of the nonlinear system in the close neighbor-

hood of the equilibrium point in terms of the six categories of equilibria

stability as discussed in the previous chapter with respect to linear systems

(i.e., unstable nodes, stable nodes, saddles, unstable spirals, stable spirals,

and centers). It is important to emphasize that this type of linearized stability

analysis only works in close proximity to an equilibrium point. Beyond that,

numerical and graphical methods of the type presented in previous chapters

should be used. How close is close? This all depends on the relative influ-

ence of the nonlinear terms as one moves farther away from an equilibrium

point. This should become clear in the discussion below.

At this point it is useful to step back and ask why a linearized version of a

nonlinear system should work to evaluate the stability characteristics of an

equilibrium point, and why this linearized version will normally not work

farther away from the equilibrium. If we begin with our two nonlinear dif-

ferential equations,

dx=dt ¼ f ðx; yÞ;
dy=dt ¼ gðx; yÞ;

we can ask how this system behaves in the neighborhood of the equilibrium

point (x0; y0Þ. Let us move this equilibrium point to the origin with the

change of variables

u ¼ x� x0; ½7:2�
z ¼ y� y0: ½7:3�

It is now obvious that the new variables will be near the origin when x

and y are near the equilibrium point. (See also Blanchard et al., 2006,

pp. 458–460.)
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We can easily rewrite the system in terms of the new variables u and z.

Since x0 and y0 are constants,

du=dt ¼ dðx� x0Þ=dt ¼ dx=dt ¼ f ðx; yÞ;
dz=dt ¼ dðy� y0Þ=dt ¼ dy=dt ¼ gðx; yÞ:

From Equations 7.2 and 7.3, we can now say

du=dt ¼ f ðx0 þ u; y0 þ zÞ;
dz=dt ¼ gðx0 þ u; y0 þ zÞ:

Near the origin, u and z approach zero, and at equilibrium

du=dt ¼ f ðx0; y0Þ ¼ 0; ½7:4�
dz=dt ¼ gðx0; y0Þ ¼ 0: ½7:5�

Once we have moved the equilibrium point to the origin through the change

of variables, we note that the nonlinear terms will be smaller in magnitude

than the linear terms in the proximity of the equilibrium. For example, if

x ¼ 0:1 and y ¼ 0:1, then xy = 0.01. Thus, the linear terms dominate the

system near the equilibrium point. The best linear approximation for any

two interdependent functions is the tangent plane, which is the same as the

linear terms of the Taylor polynomial approximation for the functions.

Thus we have,

du

dt
≈ f ðx0; y0Þ þ

∂f

∂x
ðx0; y0Þ

� �
uþ ∂f

∂y
ðx0; y0Þ

� �
z; ½7:6�

dz

dt
≈ gðx0; y0Þ þ

∂g

∂x
ðx0; y0Þ

� �
uþ ∂g

∂y
ðx0; y0Þ

� �
z: ½7:7�

Note that the first term on the right-hand side of both Equations 7.6 and

7.7 vanishes due to Equations 7.4 and 7.5. If you write what remains of

Equations 7.6 and 7.7 in matrix notation, you have

du=dt

dz=dt

� �
≈ J

u

z

� �
;

where J is the Jacobian as defined in Equation 7.1.

Note that the change of variables to u and z was needed only to show that

the nonlinear terms vanish near the equilibrium. We no longer need the

change in variables to evaluate the stability of the differential equation sys-

tem. We only need the Jacobian, and the Jacobian depends only on the ori-

ginal variables x and y.

While the above discussion involving the change in variables and the

Jacobian finds correspondence with both the notation and emphasis favored
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by Blanchard et al. (2006, pp. 458–460), readers should note that this is not

the way this subject has traditionally been presented in the literature on

differential equations. I favor the above approach since it is both intuitive and

quite general. However, readers will note that the more common approach is

to model perturbations around an equilibrium point to see if those perturba-

tions decay or grow. If they decay, then the equilibrium is stable since trajec-

tories fall back to the equilibrium value. If they grow, then the trajectories

move away from the equilibrium value, and the equilibrium is thus un-

stable. Both approaches use the Jacobian. The main difference between this

approach and the approach that I favor is that the change of variables is not

used with the former. Rather, the Taylor series approximation is made around

the equilibrium point directly. While this is mathematically identical to that

which I have presented above, what is lost is an intuitive understanding of

why the nonlinear terms are of lower magnitude around the equilibrium and

can thus be discarded. When one thinks of the equilibrium as being shifted to

the origin, this realization is obvious. A useful discussion of the more tradi-

tional method of presenting this subject from the perspective of population

biology can be found in the classic treatment by May (1974, pp. 19–26). For

a social science application, see also Huckfeldt et al. (1982, pp. 40–42).

An Example

Let us reconsider the nonlinear predator-prey model (Equations 3.1 and

3.2) from the perspective of this chapter. Let us use the parameter values

that were used to create Figure 3.3. These parameter values are a ¼ 1;
b ¼ 1; c ¼ 3; e ¼ 1;m ¼ 0; and n ¼ 0:We have already seen using a phase

diagram that these parameter values produce elliptical orbits around the

system’s center, the equilibrium point (1/3, 1). We want to confirm this

using an analysis of the system’s Jacobian. The system is now as shown in

Equations 7.8 and 7.9.

dX=dt ¼ X � XY; ½7:8�
dY=dt ¼ 3XY � Y : ½7:9�

The Jacobian for this system is

J ¼ 1� y∗ �x∗
3y∗ 3x∗ � 1

� �
¼ 0 �1=3

3 0

� �
;

where x∗ and y∗ are the equilibrium values 1/3 and 1, respectively.

Now we want the eigenvalues that arise from substituting the equilibrium

values into the Jacobian and solving

det
0� λ �1=3

3 0� λ

� �
¼ 0:
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This produces the characteristic equation λ2 þ 1 ¼ 0; or λ ¼ ± ffiffiffiffiffiffiffi
�1
p

.

Thus, λ ¼ ± i, a purely imaginary result. From the results of the previous

chapter with respect to linear systems, we know that solutions to this system

form an ellipse with the center (1/3, 1). Our only restriction in using the

methods of this chapter is the knowledge that our conclusion regarding the

elliptical behavior of the dependent variables applies only to the area in

phase space that is located in the local neighborhood of the equilibrium. It

may sometimes occur that the trajectory behaviors persist further away

from the equilibrium, as is the case with this example. But this is the excep-

tion more than the rule with respect to nonlinear models, and when it does

occur, it needs to be confirmed using other methods, such as with an exami-

nation of direction field and flow diagrams.

Summary

This chapter extends our discussion of differential equations to the analysis

of nonlinear systems. Many interesting differential equation applications

will have nonlinear components, so limiting our capabilities to the linear

case is not really an option. With the nonlinear case, we are interested in

characterizing the stability of any given system in the neighborhood of an

equilibrium. Doing this is part of a more complete analysis of the system,

one that would incorporate other methods as well—such as the graphical

techniques presented in this book—to evaluate some of the more global

characteristics of the system. Crucial to the stability analysis of nonlinear

systems is the Jacobian. The Jacobian allows one to linearize the system in

the neighborhood of an equilibrium, thereby enabling one to conduct stan-

dard stability tests based on the system’s eigenvalues. We can now return to

Figure 6.7 and find that it is equally appropriate for characterizing the stabi-

lity of a system as with the linear case. The differences are that with the

nonlinear case one is locating the eigenvalues of the localized Jacobian in

Figure 6.7 rather than the eigenvalues of an entire linear system and that the

stability characterization is limited in the nonlinear case to the neighbor-

hood of the equilibrium.

8. FRONTIERS OF EXPLORATION

Cyclical behaviors of all types (chaotic or otherwise) are hugely relevant to

human behavior. We sleep each night and wake up each morning. We eat

food at periodic intervals. We conduct our elections in regular cycles of
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defined length. We collect census data at regular intervals, normally each

decade. We conduct population surveys according to our other electoral

and social cycles. Our behaviors even follow the seasons; we swim each

summer and ski each winter. In general, humans nearly always repeat them-

selves. Both differential and difference equations are ideal for analyzing

periodic behaviors of many types, and social scientists have often exploited

such equations to great benefit. The study of our vast array of human cycles

is one example of a great frontier relevant to the application of differential

equations. It is not an entirely unexplored frontier by any means. It is just

that there remains much that we do not yet know about ourselves and our

cycles. It is also one reason why this is an exciting time among those of us

who seek to apply differential equation modeling in our scientific research.

This book represents a beginning in the study of differential equations.

There are many areas within the study of differential equations that have not

been covered here. For example, it is possible to create dynamical systems

that cannot be easily analyzed using only the graphical methods suggested

in previous chapters, such as phase diagrams, direction field diagrams, vec-

tor field diagrams, and so on. It is not that such methods are useless but that

supplemental tools are needed to address some of the problems encountered

in more complex settings. This can happen when cyclical behavior does not

readily repeat itself, a characteristic of chaotic differential equation systems

with three or more dimensions (see Brown, 1995b). This also happens with

many nonautonomous systems of two dimensions, when the independent

variable t is explicitly included within the equations. In nonautonomous

situations, the vector field (defined by the differential equations themselves)

changes as time moves forward. Additional methods (such as Poincaré

maps) that go beyond the scope of this book will be called into play in the

analysis of such systems.

In general, many interesting differential equation systems can be made to

produce chaotic results, and indeed, chaos is quite the norm in nature. For

example, when water molecules flow down a river, it is impossible to pre-

dict their ultimate precise location downstream based on knowledge of their

location upstream regardless of our knowledge of the laws of physics that

govern their movement. It is not that we simply do not have enough infor-

mation. Rather, it is a characteristic of such systems that a seemingly insig-

nificant change in the initial conditions can produce large differences in

behavior over time. Again, I have written about this elsewhere (Brown,

1995b), and this is a good next step for those students who wish to pursue

the subject of differential equations further.

In many areas of mathematics, an undergraduate college student really

has little hope of encountering math at a level on which scholars are doing

active research. One needs to be fairly far along in graduate study in math
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in order to see what the ‘‘big guns’’ are doing in real time. But the study of

differential equations is different. It is one area in which undergraduate stu-

dents can confront the same problems that advanced researchers are

encountering. This is one of the reasons why the study of differential equa-

tions is so exciting today. You do not have to go very far into the subject

before you are on at least one of the frontiers of research.

If this is true of the study of differential equations in general, it becomes

obvious that this is even more true with respect to the application of differen-

tial equations in the social sciences. While there are numerous examples in

the extant literature of exemplary applications of differential equations that

address important social scientific problems (a variety of which I have men-

tioned in this book), it is just as true that we have so far seen only the tip of

the iceberg in terms of what is possible. For social scientists, the frontier is

much larger than the fully explored territory. For those students of this sub-

ject who seek excitement, know that you are in the right place at the right

time, however linear or nonlinear your perceptions of the future may be.
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