

http://www.cambridge.org/9780521806152

This page intentionally left blank



CAMBRIDGE MONOGRAPHS ON
APPLIED AND COMPUTATIONAL
MATHEMATICS

Series Editors
P. G. CIARLET, A. ISERLES, R. V. KOHN, M. H. WRIGHT

15

Collocation Methods for Volterra Integral
and Related Functional Equations



The Cambridge Monographs on Applied and Computational Mathematics reflects the
crucial role of mathematical and computational techniques in contemporary science. The
series publishes expositions on all aspects of applicable and numerical mathematics, with
an emphasis on new developments in this fast-moving area of research.
State-of-the-art methods and algorithms as well as modern mathematical descriptions
of physical and mechanical ideas are presented in a manner suited to graduate research
students and professionals alike. Sound pedagogical presentation is a prerequisite. It is
intended that books in the series will serve to inform a new generation of researchers.

Also in this series:

1. A Practical Guide to Pseudospectral Methods, Bengt Fornberg

2. Dynamical Systems and Numerical Analysis, A. M. Stuart and A. R. Humphries

3. Level Set Methods and Fast Marching Methods, J. A. Sethian

4. The Numerical Solution of Integral Equations of the Second Kind, Kendall E.
Atkinson

W

. Orthogonal Rational Function, Adhemar Bultheel, Pablo Gonzdlez-Vera, Erik
Hendiksen, and Olav Njdstad

. The Theory of Composites, Graeme W. Milton

. Schwarz-Christoftel Mapping Tofin A. Driscoll and Lloyd N. Trefethen

. High-Order Methods for Incompressible Fluid Flow, M. O. Deville, P. F. Fischer
and E. H. Mund

6
7. Geometry and Topology for Mesh Generation Herbert Edelsbrunner
8
9

10. Practical Extrapolation Methods, Avram Sidi

11. Generalized Riemann Problems in Computational Fluid Dynamics, Matania
Ben-Artzi and Joseph Falcovitz

12. Radial Basis Functions: Theory and Implementations, Martin D. Buhmann

13. Iterative Krylov Methods for Large Linear Systems, Henk A. van der Vorst



Collocation Methods for Volterra
Integral and Related Functional
Differential Equations

HERMANN BRUNNER
Memorial University of Newfoundland

@7 CAMBRIDGE
&) UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S3o Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521806152

© Cambridge University Press 2004

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2004

ISBN-13  978-0-511-26442-9  eBook (EBL)
ISBN-10  0-511-26442-9  eBook (EBL)

ISBN-13  978-0-521-80615-2  hardback
ISBN-10  0-521-80615-1  hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.


http://www.cambridge.org
http://www.cambridge.org/9780521806152

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9
1.10
1.11

2.1
2.2
23
24
2.5
2.6

3.1
32
33

Preface
Acknowledgements

The collocation method for ODEs: an introduction
Piecewise polynomial collocation for ODEs
Perturbed collocation methods

Collocation in smoother piecewise polynomial spaces
Higher-order ODEs

Multistep collocation

The discontinuous Galerkin method for ODEs
Spectral and pseudo-spectral methods

The Peano theorems for interpolation and

quadrature

Preview: Collocation for Volterra equations

Exercises

Notes

Volterra integral equations with smooth kernels
Review of basic Volterra theory (I)

Collocation for linear second-kind VIEs
Collocation for nonlinear second-kind VIEs
Collocation for first-kind VIEs

Exercises and research problems

Notes

Volterra integro-differential equations with smooth kernels

Review of basic Volterra theory (II)
Collocation for linear VIDEs
Collocation for nonlinear VIDEs

page ix
Xiii

1

1

29

31

34

38

40

43

43
46
47
49

53
53
82
114
120
139
143

151
151
160
183



Vi

34
3.5
3.6

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8

5.1
5.2
53
54
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5

6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

Contents

Partial VIDESs: time-stepping
Exercises and research problems
Notes

Initial-value problems with non-vanishing delays
Basic theory of Volterra equations with delays (I)
Collocation methods for DDEs: a brief review
Collocation for second-kind VIEs with delays
Collocation for first-kind VIEs with delays
Collocation for VIDEs with delays

Functional equations with state-dependent delays
Exercises and research problems

Notes

Initial-value problems with proportional (vanishing) delays
Basic theory of functional equations with proportional delays
Collocation for DDEs with proportional delays

Second-kind VIEs with proportional delays

Collocation for first-kind VIEs with proportional delays
VIDEs with proportional delays

Exercises and research problems

Notes

Volterra integral equations with weakly singular kernels
Review of basic Volterra theory (IIT)

Collocation for weakly singular VIEs of the second kind
Collocation for weakly singular first-kind VIEs
Non-polynomial spline collocation methods

Weakly singular Volterra functional equations with
non-vanishing delays

Exercises and research problems

Notes

VIDEs with weakly singular kernels

Review of basic Volterra theory (IV)

Collocation for linear weakly singular VIDEs
Hammerstein-type VIDEs with weakly singular kernels
Higher-order weakly singular VIDEs

Non-polynomial spline collocation methods

Weakly singular Volterra functional integro-differential
equations

Exercises and research problems

Notes

186
188
192

196
196
217
221
234
237
245
246
249

253
253
266
284
304
308
333
337

340
340
361
395
409

410
413
418

424
424
435
449
450
455

456
457
460



8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2

9.3

Contents

Outlook: integral-algebraic equations and beyond
Basic theory of DAEs and IAEs

Collocation for DAEs: a brief review

Collocation for IAEs with smooth kernels
Collocation for IDAEs with smooth kernels

IAEs and IDAEs with weakly singular kernels
Exercises and research problems

Notes

Epilogue

Semigroups and abstract resolvent theory

C*-algebra techniques and invertibility of approximating
operator sequences

Abstract DAEs

References

Index

vii

463
463
479
484
489
493
497
499

503
503

504
505
506






Preface

The principal aims of this monograph are (i) to serve as an introduction and a
guide to the basic principles and the analysis of collocation methods for a broad
range of functional equations, including initial-value problems for ordinary
and delay differential equations, and Volterra integral and integro-differential
equations; (ii) to describe the current ‘state of the art’ of the field; (iii) to
make the reader aware of the many (often very challenging) problems that
remain open and which represent a rich source for future research; and (iv) to
show, by means of the annotated list of references and the Notes at the end of
each chapter, that Volterra equations are not simply an ‘isolated’ small class of
functional equations but that they play an (increasingly) important — and often
unexpected! — role in time-dependent PDEs, boundary integral equations, and
in many other areas of analysis and applications.
The book can be divided in a natural way into four parts:

e In Part I we focus on collocation methods, mostly in piecewise polyno-
mial spaces, for first-kind and second-kind Volterra integral equations (VIEs,
Chapter 2), and Volterra integro-differential equations (Chapter 3) possess-
ing smooth solutions: here, the regularity of the solution on the interval of
integration essentially coincides with that of the given data. This situation is
similar to the one encountered in initial-value problems for ordinary differ-
ential equations. Hence, Chapter I serves as an introduction to collocation
methods applied to initial-value problems for ODEs: this will allow us to
acquire an appreciation of the richness of these methods and their analysis
for more general functional equations encountered in subsequent chapters
of this book.

¢ Part Il deals with Volterra integral and integro-differential equations contain-
ing delay arguments. For non-vanishing delays (Chapter 4), smooth data will
in general no longer lead to solutions with comparable regularity on the entire

ix



Preface

interval of integration, and hence optimal orders of convergence in colloca-
tion approximations comparable to those seen in the previous chapters can
only be attained by a careful choice of the underlying meshes. For equations
with (vanishing) proportional delays (Chapter 5) the situation is completely
different. Here, the solution inherits the regularity of the given data, but on
uniform meshes the analysis of the attainable order of superconvergence is
much more complex, due to the ‘overlap’ between the collocation points
and their images under the given delay function. This is not yet completely
understood, and a number of problems remain open.

In Part IIT we study collocation methods for Volterra integral equations
(Chapter 6) and integro-differential equations (Chapter 7) with weakly sin-
gular kernels. The presence of these kernel singularities gives rise to a sin-
gular behaviour (different in nature from the non-smooth behaviour encoun-
tered in Chapter 4) of the solutions at the initial point of the interval of in-
tegration, and at the primary discontinuity points if there is a non-vanishing
delay: typically, the first- or second-order derivatives of the solutions, or
(in the case of first-kind Volterra integral equations) the solution itself, are
unbounded at these points. Thus, a decrease in the order of convergence
can only be avoided either by introducing suitably graded meshes, or by
switching to appropriate non-polynomial spline spaces, reflecting the nature
of this singular behaviour. This insight is then combined with results gained
in Chapter 4 when turning, at the end of Chapters 6 and 7, to collocation
methods for Volterra equations possessing weakly singular kernels and delay
arguments.

In Part IV (Chapters 8 and 9) we shall have reached the current ‘frontier’ in
the analysis of collocation methods when considering their use for solving
integral-algebraic equations (IAEs, which may be viewed as differential-
algebraic equations (DAEs) with memory terms, or as ‘abstract’ DAEs in an
infinite-dimensional setting) and singularly perturbed Volterra integral and
integro-differential equations. It is known from the numerical analysis of
DAEs that the ‘direct’ application of collocation (even for index-1 problems)
will in general not yield the ‘expected’ convergence (and stability) behaviour
since very often the given problem is not ‘numerically well formulated’. But
while this is now well understood for DAEs, we have a far way to go when
analysing collocation methods for suitably reformulated IAEs. Thus, much
of Chapter 8 consists of a look into the future. Chapter 9 adds some additional
dimensions to this outlook: it points to a number of — to me — promising and
important directions of research that may contain the keys to obtaining deeper
insight into a number of the open problems we met in previous chapters.
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It will become apparent that the number of unanswered questions and open
problems becomes larger as we move through the chapters. For example, the
analysis of asymptotic stability of collocation solutions for most classes of
Volterra integral and functional differential equations is still in its infancy (I
believe that relatively little essential progress has been made since Pieter van
der Houwen and I wrote down a similar observation in the preface of our 1986
book), and this lack of progress and new results is reflected in the fact that
the present monograph deals with this topic only peripherally. It has also be-
come clear from recent advances in the analysis of the asymptotic properties
of numerical solutions to ordinary differential equations (Hairer and Wanner
(1996)), dynamical systems (Stuart and Humphries (1996)), and delay dif-
ferential equations (Bellen and Zennaro (2003)), that the study of the anal-
ogous properties of collocation methods for more general functional differ-
ential and integral equations will eventually have to be treated in a separate
monograph.

Most chapters begin with a section reviewing the relevant elementary theory
of the class of equations to be discretised by collocation. It goes without saying
that a thorough understanding of the theoretical aspects of a given functional
equation is imperative since a successful analysis of its discretisation will often
be inspired, and thus helped along, by insight into the essential features in the
analysis of the given equation and the corresponding discrete analogue derived
by collocation.

At the end of each chapter the reader will find exercises and extensive notes.
The Exercises range from ‘hands-on’ problems (intended to illustrate and com-
plement the theory of the respective chapter) to research topics of various degree
of difficulty, and these will often include important unsolved problems. The pur-
pose of the Notes is twofold: they contain remarks complementing the contents
of the given chapter (giving, e.g., the sources of original results), and they point
out papers on related topics not treated in the book.

The list of References tries to be representative, without being exhaustive,
of the developments in the research on collocation methods over the last 80
years or so. Moreover, it includes many papers on the analysis and application
of collocation methods to types of functional equations not treated in this book.
The intent of these references is to guide the reader to work that describes
results and mathematical techniques whose analogues and application are, in my
view, of potential interest for Volterra integral and related functional differential
equations, and they may thus yield the motivation for future research work. In
order to make this extensive bibliography more useful and give it a certain
guiding role, many of its items have been annotated, so as to enhance the Notes
given at the end of each chapter: the brief comments are either cross-references
torelated work, give an idea of the main content of a paper, or point to books and
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survey articles containing large bibliographies complementing the one given in
this monograph.

As mentioned above, the bibliography lists also many papers and books
dealing with topics where exciting work is currently being carried but which,
due to limitations of space (and lack of expertise on my part) are not included in
this book. Among these topics are spectral and pseudo-spectral methods (which
appear to be very promising for Volterra equations but whose theory remains to
be developed); sequential (collocation based) regularisation methods for first-
kind VIEs; the numerical treatment of Volterra equations occurring in control
theory; and a posteriori error estimation and the design of adaptive collocation
methods (especially for problems with non-smooth solutions). I hope that these
additional references, while not directly relevant to the text of the monograph,
and the accompanying notes will encourage the reader to have a closer look at
these important topics.

This monograph is intended for researchers in numerical and applied analy-
sis, for ‘users’ of collocation methods in the physical sciences and in engineer-
ing, and as an introduction to collocation methods for senior undergraduate and
graduate students.

Since the exercise section of each chapter contains a rich list of open prob-
lems, the book may also serve as a source of topics for M.Sc. and Ph.D. theses.

Prerequisites: Senior-level courses in linear algebra, the theory of ordinary
differential equations, and numerical analysis (especially numerical quadrature
and the numerical solution of ODEs). A knowledge of elementary functional
analysis will prove helpful in Chapter 8.
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1

The collocation method for ODEs:
an introduction

A collocation solution u; to a functional equation (for example an ordinary
differential equation or a Volterra integral equation) on an interval I is an
element from some finite-dimensional function space (the collocation space)
which satisfies the equation on an appropriate finite subset of points in / (the
set of collocation points) whose cardinality essentially matches the dimension
of the collocation space. If initial (or boundary) conditions are present then iy,
will usually be required to fulfil these conditions, too.

The use of polynomial or piecewise polynomial collocation spaces for the
approximate solution of boundary-value problems has its origin in the 1930s.
For initial-value problems in ordinary differential equations such collocation
methods were first studied systematically in the late 1960s: it was then shown
that collocation in continuous piecewise polynomial spaces leads to an impor-
tant class of implicit (high-order) Runge—Kutta methods.

1.1 Piecewise polynomial collocation for ODEs
1.1.1 Collocation-based implicit Runge-Kutta methods
Consider the initial-value problem
Y(t)y=f@t, y@), tel:=[0,T], y0)=yo, (1.1.1)

and assume that the (Lipschitz-) continuous function f : 1 x Q CRR — R is
such that (1.1.1) possesses a unique solution y € C'(I) for all yy € Q. Let

In:={t,: 0=ty <t <...<ty=T}

be a given (not necessarily uniform) mesh on /, and set o, := (¢, ty+1], 6, =
[t., tas1], with  h,:=t,41 —t,(mn=0,1,...,N —1). The quantity



2 1 The collocation method for ODEs: an introduction

h:=max{h,: 0<n <N — 1} will be called the diameter of the mesh
I;,; in the context of time-stepping we will also refer to /4 as the stepsize. Note
that we have, in rigorous notation,

ti=t™M o, =™ h,=r"™"(n=0,1,...,N—1), and h =hr".

However, we will usually suppress this dependence on N, the number of subin-
tervals corresponding to a given mesh [,, except occasionally in the conver-
gence analyses where N — oo, h = h™) — 0, so that NAY) remains uni-
formly bounded.

The solution y of the initial-value problem (1.1.1) will be approximated by
an element u;, of the piecewise polynomial space

SOy :={veCl): vlsg, €my (0<n <N — 1)}, (1.1.2)

where 1, denotes the space of all (real) polynomials of degree not exceeding
m. It is readily verified that S,S?)(Ih) is a linear space whose dimension is

dim SO(1,) = Nm + 1

(a description of more general piecewise polynomial spaces will be given in
Section 2.2.1). This approximation u; will be found by collocation; that is, by
requiring that u;, satisfy the given differential equation on a given suitable finite
subset X, of I, and coincide with the exact solution y at the initial point ¢ = 0.
It is clear that the cardinality of X}, the set of collocation points, will have to
be equal to Nm, and the obvious choice of X, is to place m distinct collocation
points in each of the N subintervals &,. To be more precise, let X, be given by

Xp={t=t,+ch,: 0<ci<...<c, <1 0<n=<N-1}. (1.1.3)

For a given mesh I}, the collocation parameters {c;} completely determine X,.
Its cardinality is

[ Xl
_{Nm fO0<ci<...<cp<lr0<ci<...<cp<l),

Nm—-—1)+1 ifO0=ci<c<...<c,=1 (m=>2).

The collocation solutionu;, € S (1,,) for (1.1.1) is defined by the collocation
equation

uy(t) = f(t,un (@), t € Xy, up(0)=y(0) = yo. (1.1.4)

If u;, corresponds to a set of collocation points with¢; = Oandc,, = 1 (m > 2),
it lies (if it exists on 1) in the smoother space S (1) N C(1) =: SV(1;,) of
dimension N(m — 1) + 2 whenever the given function f in (1.1.1) is contin-
uous. This follows readily by considering the collocation equation (1.1.4) at
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t =ty_1 + cmhp—1 =it and att =1, + c1h, =: t: taking the difference and
using the continuity of f leads to

u,H —u,t7)=0, n=1,...,N—1,

and this is equivalent to u}, being continuous at r = t,.

In order to obtain more insight into this piecewise polynomial collocation
method, and to exhibit its recursive nature, we now derive the computational
form of (1.1.4). This will reveal that the collocation equation (1.1.4) represents
the stage equations of an m-stage continuous implicit Runge—Kutta method for
the initial-value problem (1.1.1) (compare also the original papers by Guillou
and Soulé (1969), Wright (1970), or the book by Hairer, Ngrsett and Wanner
(1993).

Here, and in subsequent chapters of the book, it will be convenient (and
natural) to work with the local Lagrange basis representations of u;. Since
u) |y, € Tpm_1, we have

uy(ty + vhy) = ZLJ(U)Y,,J, ve (0,11, Y,;:=u,t,+c;hy), (1.1.5)

j=1

where the polynomials

Loy =]"—% G=1....m.

kA €1 T Gk

denote the Lagrange fundamental polynomials with respect to the (distinct)
collocation parameters {c;}. Setting y, := u;(¢,) and

,Bj(v):=/0 Li(s)ds (j=1,...,m),

we obtain from (1.1.5) the local representation of u;, € S\(1,) on ,, namely

m

up(t, +vh,) =y, +h, Z,Bj(v)Y,,,j, v e [0, 1]. (1.1.6)

Jj=1

The unknown (derivative) approximations Y,; (i =1,...,m) in (1.1.6) are
defined by the solution of a system of (generally nonlinear) algebraic equations
obtained by setting ¢t = ¢, ; := ¢, + c;h, in the collocation equation (1.1.4) and
employing the local representations (1.1.5) and (1.1.6). This system is

j=1

Yoi=f (t,,.,-, Yn + By Zai.jy,,,j) . G=1,...,m), (1.1.7)

where we have defined a; ; := B;(c;).
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We see that the equations (1.1.6) and (1.1.7) define, as asserted above, a
continuous implicit Runge—Kutta (CIRK) method for the initial-value prob-
lem (1.1.1): its m stage values Y, ; are given by the solution of the nonlinear
algebraic systems (1.1.7), and (1.1.6) defines the approximation u,, for each
teo,(m=0,1,..., N —1). This local representation may be viewed as the
natural interpolant in 7, on 6,, for the data {(#,, y,), (i, Yu.i) G =1,...,m)}.

It thus follows that such a continuous implicit RK method contains an em-
bedded ‘classical’ (discrete) m-stage implicit Runge—Kutta method for (1.1.1):
it corresponds to (1.1.6) with v = 1,

Vsl ::u,,(tn+h,,):y,,+h,,2bjy,,,, n=0,1,...,N—1), (1.1.8)

Jj=1
with b; := B;(1), and the stage equations (1.1.7).
If m > 2 and if the collocation parameters {c;} are such that

O=ci<c<...<cp=1,

then 1, ; = ¢, implies Y, | = f(¢,, y»), and the CIRK method (1.1.6), (1.1.7)
reduces to

m

uh(tn + vhn) =Yn+ hnﬂl(v)f([na yn) + hn E ﬂj(v)Yn,jv v e [07 1];
j=2
(1.1.9)
and

Yn,i = f <tn,iv Yn + hnai,l f(tny yn) + hy, Zai,j Yn,j) i=2,...,m).
j=2
(1.1.10)
Moreover, since ¢,, = 1, we obtain

j=2

Yn,m = f (tn+lv Yn + hnblf(tnv yn) + hn Zb]Yn]) .

Example 1.1.1 u;, € $\”(I;,) (m = 1), with ¢; =: 6 € [0, 1]:
Since L;(v) = 1 and B;(v) = v (hence a;; = 6 and b; = 1), (1.1.6) reduces to

uh(tn+vhn):yn+hnvyn,lv LS [O, 1]1
with Y, | defined by the solution of
Yn,l = f(tn + th, Yn + thYn,l)-

These equations may be combined into a single one (by setting v = 1 in the
expression for u;(t, + vh,) and solving for Y, 1); the resulting method is the
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continuous 6-method for (1.1.1),
up(t, + vh,) =1 —v)y, + vy,41, veo,1].
where

Yn+1 = Yn + hnf(tn + th» (1 - Q)Yn + 9y11+1)

implicitly defines y,;.

This family of continuous one-stage Runge—Kutta methods contains the
continuous implicit Euler method (6 = 1) and the continuous implicit mid-
point method (6 = 1/2). For 6 = 0 we obtain the continuous explicit Euler
method. Due to its importance in the time-stepping of (spatially) semidiscre-
tised parabolic PDEs (or PVIDEs) we state the continuous implicit midpoint
method for the linear ODE

YO =amy®) +g@), tel,

with a and g in C(I). Setting 6 = 1/2 we obtain

hn
Yn+1=Yn + Ta(tn + hn/z)[yn + yn+1] + g(tn + hn/z)(n =0,1,....,N— 1),

or, using the notation #,4.1/> :=t, + h, /2,

hy hy
(1 - 7“(¢n+1/2)> Yntl = (1 + Ta(thrl/Z)) Yn +hngtuy12). (1.1.11)

Observe the difference between (1.1.11) and the continuous trapezoidal
method: the latter corresponds to collocation in the space Séo)(lh), with
c1 =0, ¢y = 1being the Lobatto points; it is described in Example 1.1.2 below
(m =2).

Example 1.1.2 u,;, € Séo)(lh) (m=2),with0<c; <c, <1:
It follows from L{(v) = (c; — v)/(c2 — ¢1), La(v) = (v — c1)/(ca — c1) that
v(2cy — v) v(v — 2¢y)
pi(v) = ——=, B)=-—"—.

T 2=y T A —a)

Hence, by = B1(1) = 2c2—1)/(2(c2—c1)), ba = fo(1) = (1=2¢1)/(2c2—c1)).
The resulting continuous two-stage Runge—Kutta method thus reads:

uh(tn + vhn) =Yn + hn{ﬁl(v)yn,l + ﬂZ(v)Yn,Z}s S [O, 1]’

where

Yn,i = f(tn,iv Yn + hn{ai,lYn,l + ai,2Yn,2}) (l = l, 2)
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We present three important special cases:

* Gauss points c; = (3 — «/§)/6, =03+ «/§)/6:
We obtain

Biv) =v(l + V31 —v)/2,  Bav) = v(l = V3(1 —))/2,

and

IS
B
|
%
| I
Il
—
S &
N
[
Il
—

A::[a,‘,j]:|:

The discrete version of this fwo-stage implicit Runge—Kutta—Gauss method
(of order 4; cf. Section 1.1.3, Corollary 1.1.6) was introduced by Hammer and
Hollingsworth (1955) and generalised by Kuntzmann in 1961 (see Ceschino
and Kuntzmann (1963) for details).

® Radau Il points c; = 1/3, ¢, = 1:
Here, we have

Bi(w) =32 —v)/4,  fa(v) = 3v(v —2/3)/4,

5 _1
12 12
g 7

This represents the continuous two-stage Radau IIA method.
® Lobatto pointsc1 =0, c; =1 (= uy € S;l)(l;,)):
The continuous weights are now

and

Bl—= AW

Bi(v) =v(2 —v)/2,  Po(v) = v?/2,

3 []

This yields the continuous trapezoidal method: it can be written in the form

and hence

(ST ST

hy
wn(ty + vha) = yu + = (V2 = V)Y, +v°Y,0), vel0 1],

with
Yn,l = f(tnv yn)a Yn,2 = f(tl’lJrl’ Yn + (hn/z){Yn,l + Yn,2})~

(See also Hammer and Hollingsworth (1955).)
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For the linear ODE y'(¢) = a(t)y(t) + g(¢) the stage equation assumes the
form

(1 - M) Yo = <1+h"az(t”)> alty+)yn + Mg(tn) + &)tn+1).

2 2

Remark Other examples of (discrete) RK methods based on collocation, in-
cluding methods corresponding to the Radau I points (c; = 0, ¢, = 2/3 when
m = 2), may be found for example in the books by Butcher (1987, 2003),
Lambert (1991), and Hairer and Wanner (1996).

There is an alternative way to formulate the above continuous implicit
Runge—Kutta method (1.1.6),(1.1.7). Setting

Ui i=Yn+hn Y aijYo; (=1...m),

j=1
we obtain the symmetric formulation

m

up(ty + vhy) = yn + hy Zﬂj(v)f(tn,j, Upj) vel0 1],  (1.1.12)
=1

with
m

Uni=Yn+hn Y aijftn;.Upj) G=1,....m). (1.1.13)
j=1

Here, the unknown stage values U, ; represent aproximations to the solution
y at the collocation points #,; (i = 1,...,m). For v =1, (1.1.12) yields the
symmetric analogue of (1.1.8),

m
Y+l = Yn + hy, ijf(ln,js Un,j); (1114)

Jj=1
if ¢,, = 1 we have y,; = Uy, .

For later reference, and to introduce notation needed later, we also write down
the above CIRK method (1.1.6), (1.1.7) for the linear initial-value problem

Y@y =a®)y@), tel, y0)=y,

where a € C(I). Setting A := (a; ;) € L(R™), B(v) := (B1(v), ..., Bn(W)T €
R",and Y, := Y1, .-, Yn,m)T € R™, the CIRK method can be written in
the form

wp(ty + vhy) = Yo +h BT W)Y, v €0, 1], (1.1.15)
with Y,, given by the solution of the linear algebraic system

[Z — haAn1Y, = diag(a(t,))e -y, (m=0,1,....,N—1). (1.1.16)
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Here, 7,, denotes the identity in L(R™), A, := diag(a(t,;))A, and e :=
(1,....,DF eRrR™.

The derivation of the analogue of (1.1.15),(1.1.16) corresponding to the sym-
metric formulation (1.1.12),(1.1.13) of the CIRK method is left as an exercise
(Exercise 1.10.1).

The classical conditions for the existence and uniqueness of a solution y €
C'(I) to the initial-value problem (1.1.1) (see, e.g. Hairer, Ngrsett and Wanner
(1993, Sections 1.7-1.9) assure the existence and uniqueness of the collocation
solution u, € S,(,?)(Ih) to (1.1.1) or its linear counterpart for all 4 := max,, h,
in some interval (0, i), provided that fy is bounded (or a and g lie in C(/)
when the ODE is y' = a(¢)y + g(#)). In the latter case, the existence of such
an & follows from the Neumann Lemma which states that (Z,, — h,A,)"! is
uniformly bounded for all sufficiently small 4, > 0, so that &,||A,|| < 1 for
some (operator) matrix norm. We shall give the precise formulation of this
result in in Chapter 3 (Theorem 3.2.1) for VIDEs which contains the version
for ODE:s as a special case.

It is clear that not every implicit Runge—Kutta method can be obtained by
collocation as described above (see, for example, Ngrsett (1980), Hairer, Ngrsett
and Wanner (1993)): a necessary condition is clearly that the parameters c;
are distinct. The framework of perturbed collocation (Ngrsett (1980), Ngrsett
and Wanner (1981); see also Section 1.2 below) encompasses all implicit)
Runge—Kutta methods. There is also an elegant connection between continuous
Runge—Kutta methods and discontinuous collocation methods (Hairer, Lubich
and Wanner (2002, pp. 31-34)). The following result (which can be found in
Hairer, Ngrsett and Wanner (1993, p. 212)) characterises those implicit Runge—
Kutta methods that are collocation-based.

Theorem 1.1.1 The m-stage implicit Runge—Kutta method defined by (1.1.7)
and (1.1.8), with distinct parameters c; and order at least m, can be obtained

by collocation in S©)(I),), as described above, if and only if the relations

m CV

v—1 i .

E aijc; = —, v=1,....m (i=1,...,m),
=t Y

hold.

The proof of this result is left as an exercise. Recall that a (discrete) Runge—
Kutta method for (1.1.1) is said to be of order p if

|y(t1) — yil < Ch?
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for all sufficiently smooth f = f(z, y) in (1.1.1). The next section will reveal
that the collocation solution u, € S(1;,) to (1.1.1) is of global order p > m
on /.

1.1.2 Convergence and global order on /

Suppose that the collocation equation (1.1.4) defines a unique collocation so-
lution u;, € S©(1y,) for all sufficiently small mesh diameters & € (0, 7). What
are the optimal values of p, and p} (v = 0, 1) in the (global and local) error
estimates

1YY = oo = sup [y*6) — u(0)] < C,h" (1.1.17)
tel
and
D0 = oo 1= max [0 =01 < G, (1L118)
h

respectively? These values depend of course on the regularity of the solution
y of the initial-value problem (1.1.1). For arbitrarily regular y we will refer
to the largest attainable p, (v = 0, 1) as the (optimal) orders of global (super-)
convergence (on the interval 1) of u, and u),, respectively, and the corresponding
p5 will be called the (optimal) orders of local superconvergence (at the mesh
points I, \ {0}) of u; and u),, provided p} > p,.

In order to introduce the essential ideas underlying the answer to the above
question regarding the optimal orders, we first present the result on global
convergence for the linear initial-value problem

V(@) =a®)y®)+g), tel, y0)=yp. (1.1.19)
Theorem 1.1.2 Assume that

(a) the given functions in (1.1.19) satisfy a, g € C"(I);

(b) the collocation solution uj, € S,(,?)(I;,)for the initial-value problem (1.1.19)
corresponding to the collocation points Xy, is defined by (1.1.15), (1.1.16);

(¢) h > 0 is such that, for any h € (0, h), each of the linear systems (1.1.16)
has a unique solution.

Then the estimates
1y = unlloc := max [y(6) = un(t)] < Colly™*Vlloh™ (1.1.20)
and

1Y = ) lloo 1= sup |y'() — u;, ()] < Cilly" V]| ooh™, (1.1.21)
tel
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hold for h € (0, h) and any X, with0 <c¢; < ... < ¢y < 1. The constants C,
depend on the collocation parameters {c;} but are independent of h, and the
exponent m of h cannot in general be replaced by m + 1.

Proof Assumption (a) implies that y € C"*!(I) and hence y’ € C™(I). Thus
we have, using Peano’s Theorem (Corollary 1.8.2 with d = m) for y’ on &,,,

m

Yty +vhy) =Y Lj(W)Zyj + HUR (), velo, 1], (1.1.22)

j=1

with Z,, ; := y'(t,, ;). The Peano remainder term and Peano kernel are given by

1
R, ()= f K (v, 2y 0, + zhy)dz, (1.1.23)
0

and
1 I -
Kn(v,2) = = {(v -t - ;Lk(v)(c’k -2 1} , vel01].

Integration of (1.1.22) leads to

m

Yt +vhy) = y(t) +h Y BjW)Z, + 1y Ry (), v € [0, 1],

j=l1
(1.1.24)
where

v
Rm-H,n(v) = / anl_),'_l’n(S)dS
0

(see also Exercise 1.10.3).

Recalling the local representation (1.1.6) of the collocation solution u; on
G,, and setting &, ; := Z, ; — Y, ;, the collocation error e;, 1=y — u, on &,
may be written as

m

en(ty + vhy) = en(tn) + hy Y BiWE j + By Rypra(v), v €0, 1],

j=1
(1.1.25)
while

m

¢}ty + vh,) = Z Li&.; +h'RY, (), ve 1],  (1.1.26)

j=1
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with e, (t,,;) = Eqi + hfl"Rf,}il‘n(c,-). Since e, is continuous in /, and hence at

the mesh points, we also have the relation

en(ty) = ep(th1 + hnfl) = ep(th-1) + hu—1 ijgnfl,j + h:,njllRerl,nfl(l)

j=1

(mn=1,..., N —1),with b; := B;(1). The fact that ¢,(0) = 0 yields

n—1 m n—1
en(t) = he ) bi€j+ Y W Ry (n=1,....N —1).
=0  j=1 =0
(1.1.27)

We are now ready to establish the estimates in Theorem 1.1.2: since the collo-
cation error satisfies

ep(tn:) = altyDen(ty), i=1,....m (O0<n<N—1), (1.1.28)
with e, (t,) = en(t,—1 + h,—1), it follows from (1.1.25) and (1.1.26) that

Eni = altn;) (ehan) +hy Y Bie)En + h21+1Rm+1,n(c,-)> — 'R ()

j=1

(i =1,...,m). Recalling that B;(c;) = a; ; and employing (1.2.24), this be-
comes

n—1 m m
Eni = alty) (Z he ijgl,j + hy Z%‘,/&,]) + o0 (G=1,...,m),
=0 j=I1 J=1

(1.1.29)
where the remainder terms p,, ; are defined by

n—1
pni = alty;) {thl“RmH,e(l) + h;"“RmH,n(ci)} — hY'R) L (ch).

=0
(1.1.30)
Setb := (by, ..., b,)" anddefine p, := (0.1, ..., Pn.m)" . It then follows from
the above equation (1.2.29) that £, := (&1, - . - Sn,m)T is the solution of the
linear algebraic system
n—1
[Zn — hu An)E, = diag(a(ty))e Y hb"E; + py. (1.1.31)

=0

where, as in (1.1.16), we have set A, := diag(a(#,;))A. This system has the
same structure (due to the choice of the local representation for y” and y) as the
linear system (1.1.16) defining Y, in the representation (1.1.15), except that
now the role of y, is assumed by e (t,) (which can be expressed in the recursive
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form (1.1.27)). The matrices on the left-hand side of (1.1.31) coincide with those
in (1.1.16); hence, all have bounded inverses whenever 1 = max,) &, € (0, h),
for some & > 0. That is, there exists a constant Dy < 0o so that the uniform
bound

(T — AW <Dy (n=0,1,...,N—1)

holds. Here, for B € L(IR™), || B||; denotes the matrix (operator) norm induced
by the £'-norm in R™. If we define

1
Ao = Nlalloos Mus1 = [V ey k1= maxf KV, 2)ldz,
vel0.1] Jo

then, by (1.1.30),

n—1

1Pl < Aotk Mypam Y R 4 W2 kg Myt + ey Moy < oMy B
=0

with obvious meaning of p. Using the above estimates in equation (1.1.31)
(solved for £,) and defining b := max i 1bjl, we readily see that

n—1
lEAII < Do (AomBZhensem +pMm+1h'"> :
=0

which we write as

n—1

NEall <0 Y hell€ully + YiMypih™ (0 =0.1,....N —1), (1.1.32)
=0

where the meaning of the positive constants y and y; is again clear.
The inequality (1.1.32) is a generalised discrete Gronwall inequality (see
Corollary 2.1.18)); its solution is bounded by

n—1
NEI < YiMyq1h™ exp ()/0 hz)
=0

<y My h"exp(nT) (n=0,1,...,N —1).
In other words, there exists a constant B < oo so that, uniformly for 2 € (0, h),
E.lW < BMy h" for n=0,1,...,N — 1.

Recall now the local representations (1.1.25) and (1.1.26) for e, and ej: for
n=0,1,...,N —land v € [0, 1], they yield the estimates

|e;,(tn + Uhn)| = Am”gn”l + hmM}n+1km = AmBMm+1hm + Mm+1kmhm
=: Ci M1 h"™,
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and

len(ty + vhy)| < len(®)| + hBIE I + B My ki

n—1

< b hellEddly + B MysrknT + hBlIEnIl1 + " My 1k T
=0

< (bBT + k,,T + BBh + k,,h)M,, ;. "™

=: CoM, 11 h™,

where A, := maxj) ||L||s and B := max;) ||8;||cc. This establishes the de-
sired estimates of Theorem 1.1.2. We note that Guillou and Soulé (1969) derived
these estimates for the first subinterval &.

We have presented the proof of the global convergence estimates in Theorem
1.1.2 in some detail because, as we shall soon see, analogous global collocation
error estimates for various types of Volterra integral and integro-differential
equations can be established along very similar lines. In other words, the key to
the proof of such results consists in a suitable local representation (on o,,) of the
solution y of the given integral or integro-differential equation which reflects
(i) the regularity of vy, and (ii) the choice of the (local) basis employed in the
representation of the piecewise polynomial collocation solution uj,. Since the
latter is most conveniently chosen to be the local Lagrange basis, the Peano
Kernel Theorem is clearly the appropriate tool for the local representation of y
(or y'), especially if the exact solution does not have full regularity.

Remark The above proof reveals that we could have stated Theorem 1.1.2
under weaker regularity conditions on y: if assumption (a) is replaced by a, g €
C4(I), with 1 < d < m (implying y € C4+!(I)), then its proof can be trivially
modified to show that now u,, € S,(,?)(Ih) satisfies only

1Y = oo < CullY“ Pllch? 0 =0, D). (1.1.33)
Compare also Theorem 3.2.4 which contains the above result as a special case.

For certain choices of the collocation parameters {c;} we obtain global su-
perconvergence on I; that is, the estimate (1.1.20) holds with m replaced by
m + 1, as is made precise in the following theorem.

Theorem 1.1.3 Assume that the assumptions (b), (c) of Theorem 1.1.2 hold
and let (a) be replaced by a, g € CUI), withd > m + 1. If the m collocation
parameters {c;} are subject to the orthogonality condition

1 m
Jo = —ci)ds =0, 1.1.34
0 /O,H(S ¢;)ds ( )
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then the corresponding collocation solution uy € S,(,?)(Ih) satisfies, for h €
(0, h),

1y — unlloo < CR™, (1.1.35)

with C depending on the collocation parameters and on ||y ?||« but not
on h. The exponent m + 1 cannot, in general, be replaced by m + 2. For the
derivative u;, we attain only ||y’ — u} || = O(W™).

We remind the reader that the orthogonality condition (1.1.34) implies that
the interpolatory m-point quadrature formula over [0, 1] whose abscissas are
the collocation parameters c; possesses the higher degree of precision of (at
least) m, while for arbitrary {c;} the degree of precision is only m — 1 (see,
for example, Davis and Rabinowitz (1984), Atkinson (1989), or Plato (2002)).
This orthogonality condition is often written in the form

1
Jo = / M, (s)ds = 0,
0
where (see also Lemma 1.1.12)
Mats) =~ 6= se0.1]
m(s) = — | |G —c), s , 11,
m!
denotes the so-called collocation polynomial associated with the collocation

parameters {c;}.

Proof Let
Su(t) == —uj (1) + f(t,un()), tel, (1.1.36)

denote the defect (or: residual) associated with the collocation solution u;, €
SO(1,) to the initial-value problem (1.1.1). By definition of the collocation
solution the defect §;, vanishes on the set Xj:

Sp(t) =0 forall t € Xj.

Moreover, the uniform convergence of u;, and u}1 established in Theorem 1.1.2
implies the uniform boundedness (as & — 0) of 8, on I, as well as that of its
derivatives of order not exceeding d (compare also Exercise 1.10.4).

Consider now the linear ODE (1.1.19): it follows from (1.1.36) that the
collocation error e, = y — uy, satisfies the equation

Su(t) = e, (t) — a(t)en(t), trel.
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Hence, using the estimates in Theorem 1.1.2 and the notation in its proof we
readily derive the estimate

18nl10e < CillY™ P lsch™ + agColly "™ Vl|och™ < DiMyiih™, (1.1.37)

and this holds for any choice of the {c;}. On the other hand, the collocation error
ey, solves the initial-value problem

e;l(t) =a(t)e,(t) +6,(), tel, e,(0)=0,

whose solution is given by

1 t
en(t) = r(t, 0)e,(0) +/ r(t, $)8,(s)ds = / r(t,s)8,(s)ds, tel.
0 0
(1.1.38)
The function r = r(t, s) denotes the ‘resolvent’ (or: resolvent kernel) of the
ODE (1.1.19)):

t
r([, S) = exp <./ a(U)dU) , Wlth re Cm+l(D),

where D := {(t,s): 0 <s <t <T}.Fort =t, + vh, € &, the integral term
on the right-hand ide of (1.1.38) may be written as

1
0

t n—1
f r(t, $)Su(s)ds = thf r(t, ty + sho)8u(te + she)ds
0 £=0
+hn/ r(t, t, + shy)on(t, + shy,)ds
0

n—1 1 v
=3 e [ gutte+shods -y [ 6,0+ shois.
£=0 0 0

Suppose now that each of the integrals over [0, 1] is approximated by the
interpolatory m-point quadrature formula with abscissas {c;},

m

1
f Gu(ty + sho)ds = ijanm +cjh) + EP®w), velo, 1] (¢ <n).
0 j=1

(1.1.39)
Here, terms EY(v) denote the quadrature errors induced by these quadrature
approximations. By assumption (1.1.34) each of these quadrature formulas has
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degree of precision m, and thus the Peano Theorem for quadrature (Corol-
lary 1.8.4, withd = m + 1, p = m) implies that the quadrature errors can be
bounded by

IEOW)| < Qb ™™, vel0,1] (¢ <n),

because the defect 8, is in C™*! on each subinterval o, and has a bounded
derivative 8;!"”1) on &, (see Exercise 1.10.4). This follows from (1.1.36), with
f(t,y)=a(t)y + g(t), and the assumed regularity of @ and g (which is inher-
ited by r(z, s)). Due to the special choice of the quadrature abscissas, we have
n(te + cjhy) =0, because 6;,(t) = 0 whenever ¢ € X;,. Hence, the equation
(1.1.38) reduces to

n—1

v
eh(tn + Uhn) = ZhZE:,K)(v) + hn / r(tn + Uhns t, + Shn)Sh(tn + Shn)dss

=0 0
(1.1.40)
vel0,1], 0 <n < N — 1. This leads to the estimate
n—1
len(tn + V)l <3 he Qehl™ + hurol 18]l oo, (1.1.41)

=0
and so, by (1.1.37) and with ry := max,¢; fot |r(z, s)|ds, to

N-1
|eh(tn + Uhn)| = hm+] Q Z hé + hrODlM;11+lhm+] s
£=0
vel0,1] O<n<N-1).

The constant Q :=max{Q,: 0 < ¢ <n < N — 1} depends on |[y"?||.
Since this is true uniformly in v and #n, the assertion of Theorem 1.1.3 that
llenlloo < CR™ ! follows.

Remark In the above proof (cf. (1.1.38)) the representation of the collocation
error in terms of the resolvent r of the (homogeneous) ODE and the subsequent
quadrature argument already give an indication that a much higher order of
convergence may be attained at the mesh points t = t, (local superconvergence
on Ij,). Details will be given in the next section, and it will be shown in Sections
2.2.5 and Section 3.2.4 that the principle underlying the analysis of the attainable
order of global and local superconvergence extends to Volterra integral and
integro-differential equations, as well as to Volterra functional equations with
non-vanishing delays (Chapter 4).
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1.1.3 Local superconvergence results on /,

We observed in the proof of Theorem 1.1.3 on global superconvergence of the
collocation solution i, that there is a close link between the attainable (optimal)
order on / and the degree of precision of the m-point interpolatory quadrature
formula whose abscissas are the collocation parameters {c;}. The reason (cf.
(1.1.41) and (1.1.38)) that the order of global superconvergence cannot exceed
p = m + 1 is given by the fact that on 7 \ X}, the defect §;, is in general only
O(h'™). If, however, we restrict e, to the points of the mesh I, then, by (1.1.40)
with v = 0, the inequality (1.1.41) reduces to

n—1

len(t)l <> he Qe 1<n <N, (1.1.42)
=0

where Q; := max{|E®(v)| : v € [0, 11} (¢ < n). Since the exponent in 2}
reflects the degree of precision of the quadrature formulas governed by (1.1.34),
we are able to replace these terms by hfz"“ with 0 < k¥ < m, provided that the
collocation parameters {c;} satisfy the more general orthogonality condition

1 m
J, :=/ s”H(s—c,-)ds:O, v=0,...,k—1, (1.1.43)
0 i=1

with J, # 0, and the solution y has the appropriate regularity. This condition —
which says that the collocation polynomial M,,(s) is orthogonal with respect to
the polynomial space 7, _; — implies that the m-point interpolatory quadrature
formula with the m distinct abscissas {c;} has degree of precision m + « (see,
e.g. Davis and Rabinowitz (1984)). In other words, the quadrature argument
that formed the basis of the the proof of Theorem 1.1.3 now shows that 1.1.42
can be replaced by

n—1
len(ta)l <> heQuhy™ < K" QT (hy < h € (0,h); k <m), (1.1.44)
£=0

uniformly for v € [0, 1]and 1 < n < N. Thus we have
Theorem 1.1.4 Assume:

(a) The solution of the initial-value problem (1.1.1) lies in C"™ (1), for some
Kk with 1 < k < m and value as specified in (b) below.

(b) The m distinct collocation parameters {c;} are chosen so that the general
orthogonality condition (1.1.43) holds, with J, # 0.
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Then, for all meshes I, with h € (0, h), the collocation solution u;, € S,(,?)(Ih)
corresponding to the collocation points X, based on these {c;} satisfies

max{|y(t) — up(t)| : ¢ € Iy} < Coh™™**, (1.1.45)

ntiet )| o but not

where Cy depends on the collocation parameters and on ||y
on h.

Moreover, if ¢;, = 1, then
max{|y'(t) — uy(1)| : t € [;\{0}} = Oh™*),
too. For ¢,, < 1 we only have e;(t,) = O(h™) (n =1,..., N).

Proof For linear IVPs, f (¢, y) = a(t)y + g(t), witha, g € C"™**(I), the proof
is obvious from the remarks preceding Theorem 1.1.3. Its extension to nonlinear
initial-value problems (1.1.1) will be studied in Section 1.1.4.

Corollary 1.1.5 For k = m the (unique) set {c;} of collocation parameters
satifying the orthogonality conditions (1.1.43) is given by the Gauss (—Legendre)
points, i.e. the zeros of the (shifted) Legendre polynomial P,,(2s — 1), and for
these points we have

max{|y(t) — up(®)| : 1 € I} < Ch™™,
while max{|y'(t) — u,(®)| : t € [,\{0} = O™) only.

Remark It was shown by Kuntzmann in 1961 (see Kuntzmann and Ceschino
(1963)) and by Butcher (1964) that ‘classical’ (discrete) m-stage implicit
Runge—Kutta—Gauss methods have order of convergence p = 2m (see also
Hammer and Hollingsworth (1955) for the case m = 2). The above result for
the corresponding continuous m-stage Runge—Kutta—Gauss methods was es-
tablished by Guillou and Soulé (1969) and by Wright (1970); see also the 1979
paper by Ngrsett and Wanner, and the book by Hairer, Ngrsett and Wanner
(1993).

In applications one is often interested in obtaining collocation solutions that
approximate the solution y and its derivative y’ on the mesh [;, with the same
(high) order. As we have shown above, this will not be true for collocation at
the Gauss points (for which ¢,, < 1). This can be seen from the differentiated
form of (1.1.38) att =t,,

ar(t,, s)
ot

with r(¢, t) = 1: while the quadrature argument employed to establish (1.1.44)
can be aplied to the integral term, (1.1.37) shows that 8,(t,) = O(h™) only

e;l(tn) = r(ty, t,)8n(ty) + / n Sn(s)ds
0
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unless#, (1 < n < N)isacollocation point. In the linear case (1.1.19) it follows
from

e,(t) = a(t)e, (1) + 8p(t), t € Xy,

that the order of e}, () matches the one of e, (¢) at t = t, if and only if 8,(z,) = 0;
that is, when ¢,, = 1. (An analogous argument shows that this is also true for
nonlinear problems; see Section 1.1.4.) Thus, k < m — 1. This observation
yields the following two corollaries on ‘balanced’ optimal local superconver-
gence.

Corollary 1.1.6 Let k = m — 1 and assume that the collocation parameters
{ci} are the Radau II points, that is, the zeros of P, (2s — 1) — P,_1(2s — 1).
Then the collocation solution uj, € SV (1) has the property that

max |el”(1)] < C,h¥" " (v =0, 1), (1.1.46)
tel,\{0}

for all meshes I, with h € (0, h).

If we consider smooth collocation solutions u;, € Sﬁnl)(lh) (m > 2), corre-
sponding to collocation parameters with ¢; = 0 and ¢,, = 1 (compare the re-
mark preceding Theorem 1.1.1), then the optimal local order cannot exceed
2(m — 1):

Corollary 1.1.7 Let the {c;} be the Lobatto points (k = m — 2, with m > 2),
given by the zeros of s(s — 1)P,,_,(2s — 1). Then the collocation error e, cor-
responding to the collocation solution u, € S\V(I),) satisfies

(v) 2(m—1) —
max |e; (1) < C,h v=20,1 1.1.47
max e ()] < (v =0.1) (1.1.47)

rel
forallh € (0, h).

The following section will reveal that all these superconvergence results
remain true for nonlinear initial-value problems.

1.1.4 Nonlinear initial-value problems

If the function f= f(z,y) describing the initial-value problem y'(¢) =
f(t, y(t)) is such that the solution y exists uniquely on I and is in C"*+!(I),
then the global convergence result of Theorem 1.1.2 remains valid for such
nonlinear equations: the role of a(#,;) in the error equation (1.1.28) is now
assumed by f,(t,;, -), where the second argument comes from the application
of the mean-value theorem (i.e. the linear version of Taylor’s Theorem). The
details of the proof are left as an exercise.
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In order to extend the superconvergence results of Theorems 1.1.3 and 1.1.4
to nonlinear initial-value problems (1.1.1) we may either employ a linearisation
argument in the equation for the collocation error,

e, (t) = f(t, y(t)) — {f(t,upn(t)) — Su(0)}, t €, (1.1.48)

where u;(t) = y(t) — en(t), and then use a ‘perturbed’ counterpart of the re-
solven representation of (1.1.38); or we may resort to the nonlinear variation-
of-constants formula of Grobner and Alekseev (see, e.g. Hairer, Ngrsett and
Wanner (1993, pp. 96-97)). We will choose the first approach and then com-
ment briefly on the second one.

Assuming that f,,(z, y) is bounded for (¢, y) € I x 2, we may write

f@, y@) = [, (@) = en(0) = f(t, y@)en(t) = (1/2) fy, (1, w(t))ej (@),

where, by Taylor’s Theorem, w(¢) := y(t) — 6e,(¢), 6 € (0, 1). Thus, the error
equation (1.1.48) assumes the form

e, (1) = ai (e, (r) + az(t)e%(t) +8,(t), tel, €,(0)=0, (1.1.49)

where a;(¢) := f,(t, y(¢)) and ax(?) := —(1/2) f,,(t, w(?)). Setting r (¢, 5) :=
exp( fs’ ai(v)ds), the solution of this perturbed linear initial-value problem is
given by

en(t) = / ri(t,s) (Sh(s) + az(s)eﬁ(s))ds, tel, (1.1.50)
0

in analogy to (1.1.38). Hence, recalling the quadrature argument of the proof of
Theorem 1.1.3 and the global error estimate of Theorem 1.1.2 we obtain, with
Ay = laz]loos

n—1

len(ta)l < Y heQuhy™ + Aslleplloo
=0

< QTH"™™ + Ay(Coh™)* = O(h"*),
since k¥ < m. This completes the proof.

As we mentioned above, another — more elegant — way of extending the
convergence estimates (1.1.45) to nonlinear problems is based on a nonlinear
version of (1.1.38). This is the nonlinear variation-of-constants formula for
(1.1.48) due to Alekseev (1961) and Grébner (1960) (see, in addition to the
reference mentioned above, the 1973 paper by Wanner and Reitberger, also for
historical references, and Ngrsett and Wanner (1981)).

Theorem 1.1.8 Let y = y(t) be the solution of the initial-value problem

y=ft.y), tel, y0) =y, (1.L51)
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and let w = w(t) be an approximate solution to y with the same initial value,
that is,

w' = f(t,w) —g(t,w), tel, w®) =y, (1.1.52)

for some g. If f, exists and is continuous on 1 x R, and if g = g(t, w) is
(piecewise) continuous, then

w(t) = y(t) +/ Oz, s, wis))g(s, wis)ds, tel. (1.1.53)
0

Here, ®(t, s, w(s)) := (3/0w)y(¢, s, w(s)) denotes the partial derivative of the
solution y passing through (s, w(s)) with respect to the initial values w(s).

A nice proof of this result can be found in Hairer, Ngrsett and Wanner (1993,
pp. 96-97). The application of this resultis now obvious: the role of w in (1.1.53)
is assumed by the collocation solution u,, and the initial-value problem (1.1.52)
is given by

u (1) = f(t, up()) —8x(t), tel, uy0)=y

(recall also (1.1.48)), where the defect §,(¢) depends by definition on u;,. The
quadrature argument introduced in the proofs of Theorems 1.1.3 and 1.1.4 can
now be used in (1.1.53) in exactly the same way, supported by our knowledge
of the regularity of the integrand.

1.1.5 Collocation for ‘integrated’ ODEs

When establishing existence and uniqueness results for an initial-value problem
of the form

Y®) = ft,y@), tel:=[0,T], y0)= y, (1.1.54)

one resorts to its integrated form,

y(t) = yo +/ f(s, y(s)ds, tel, (1.1.55)
0

and then applies Picard iteration. Suppose now that we use the Volterra integral
equation (1.1.55) as the basis for obtaining collocation approximations to the
solution y of (1.1.54). Denote by

SS ) = (v Vo, € T 0 <n <N — 1)}

m—1

the space of piecewise polynomials of degree m — 1 > 0 which may be discon-
tinuous at the interior points 71, . . ., #y—; of the mesh I, (see also Section 2.2.1
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for additional details of these collocation spaces). Since the dimension of this
linear space is

dimS$ (1) = Nm = dims©1,) — 1,

we may employ the same set X, of collocation points given by (1.1.3), as there
is now no prescribed initial condition to be satisfied.
The collocation solution v, € S,(,:f(lh) for (1.1.55) is given locally by

m

vh(tn + vhn) = Z Lj(v)vn,ja v e (0’ 1]7 with Vn,j = vh(tn + thn)»

j=1

and is defined by the collocation equation

vp(®) = Yo +/ f(s, vp(s)ds, te Xp. (1.1.56)
0

Setting

ty n—1 1
F, = / Sf(s,vp(s))ds = Zhe/ S+ she, vp(te + she))ds, (1.1.57)
0 =0 0
andt =t,, :=t, + c;h,, (1.1.56) may be written in the form

Vn,i = Yo + Fn + hn/ f(tn + Shnv Uh(tn + S/’l,,))dS
0

=yO+F,1+hn/ flt+5hy, Y Lis)Vydds (i =1,....m).
0 —
= (1.1.58)

We now introduce the iterated collocation solution v}f corresponding to the
collocation solution vy, for (1.1.55): it is defined by

U;,t(f) = Yo +f0 f(s,vp(s)ds, tel.

For ¢ € G, it can be written as

) ty+vh,
vy (ty + vhy) = yo + f f(s, vu(s))ds
0

v
=0t Byt by [ S b Y L6V s,
0 —
= (1.1.59)
where v € [0, 1] and
Yo + Fy = v}/ (ta).

Note that v;;’ € C(I), in contrast to vy, itself.
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In general, the integrals occurring in the above collocation equations (1.1.58)
and (1.1.59) cannot be found analytically and thus will have to be approximated
by suitable quadrature formulas. Suppose that these quadrature formulas are
interpolatory m-point quadrature rules whose abscissas coincide with, or are
based on, the collocation parameters {c; }. Hence,

1 m
f Fe+ she, vp(te + sh)ds =Y bj f(te + cjhe, valte + ¢jhe)) (€ < n),
0 j=1

and

m

f F 4 shy, vpty + shy)ds =Y ai j f (tn + ¢, Viltn + ¢jhy)),
j=1
where a; j := B;(c¢;) and b; := B;(1) (cf. (1.1.7)). Due to the presence in gen-
eral of quadrature errors the so-discretised collocation equation generates a

‘perturbed’ collocation solution in the same space, v, € S,(n 11(1;,), and corre-

sponding iterated collocation solution 9!’ they are given respectively by

oty + vhy) = > L)V, ve 1], (1.1.60)
j=1

with Vn,_,‘ := Dp(t,,;) defined by the solution of the algebraic system

Vii=yo+ Futhy Y aijftnj. Vo) G=1,....m),  (1.L61)

j=1
where
n—1 m
=Y he Y b fle Vey)
=0 j=1
and by

O (tn + vhy) 1= yo + Fon + hy Zﬂ(v)f(tn,, Vi), vel0,1]. (1.1.62)
j=1

Setting VAVn,i = f(tyi, \A/n,i) we may write (1.1.62) as

m
Ot + ) = 0}/ 6) +n D Bj@IWoj v el0 1], (1.1.63)
j=1
with
Wn,i = f(tn,i’ f);lt(tn) + h" Zai-j W"vj) (l = 1’ Tt m) (1]64)

j=1
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Comparing the last two equations with (1.1.6) and (1.1.7), the analogous ones
for uj, a simple induction argument shows that ¥, ; = VAV,“- for all i and n, and
hence

up(t) = 0'(t) forall tel.

There is a way of avoiding the use of quadrature approximations when
employing collocation for the integrated IVP (1.1.55). Suppose the integral
equation (1.1.55) is written in implicitly linear form: defining z(¢) := f (¢, y(¢)),
it becomes

y(t)=y0+/ z2(s)ds, tel, (1.1.65)
0

where z(¢) is the solution of the implicitly linear Volterra integral equation

z(t) = f(l,yo+f z(s)ds), tel (1.1.66)
0

(which is a simple example of a Volterra—Hammerstein equation; see Section
2.3). We now approximate the solution z of this nonlinear integral equation
(1.1.66) by the collocation solution z;, € an__ll)(lh), using the same collocation
points X, as before. With the local representation

2ty +vhy) =Y Lj()Z, 5, v€,1],

j=1

the corresponding collocation equation becomes

In,i
Zni = 2n(tni) = ftnis Yo +/ zp(s)ds) (i =1,...,m),
0

or

m

Zni = [lnis Yo+ Pu+hy Y ai;Znj). aij:=pic),  (1.167)

j=1
with

A
o, :=/ zp(8)ds.
0

Once z;, is known we obtain the approximation yj to the solution y of (1.1.55)
by setting

ty+vh,
yh(tn + Uhn) = Yo +/ Zh(S)dS
0

m

= Yo+ ®u+hy Y BiWZyj. ve[01]. (1.1.68)

Jj=1
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Note that

I
Yu(tn) = yo + / zn(s)ds = yo + D,.
0

How are these approximations, vy, vi’, 4, 9;', and yj, related to u; €
S,(,?)(Ih), the ‘direct’ collocation approximation to the solution y of (1.1.54)?
It is clear from the above analysis that, in general, v, # u; and, especially,
v};’ # uy;, (‘wrong’ function space!). But, as the comparison of (1.1.63), (1.1.64)
with (1.1.66), (1.1.65) and (1.1.6), (1.1.7) readily reveals, the following is true.

Theorem 1.1.9 Letu;, € S,s?)(lh) denote the ‘direct’ collocation solution to the
initial-value problem 1.1.54), and let y;, and f)};’ be the implicitly linear collo-
cation aproximations to (1.1.55) defined by (1.1.66) and (1.1.68), respectively.
Then, for all sufficiently small h > 0,

up(t) = yu(t) = 01 (1), tel.

Ifin (1.1.54) we have f(z, y) = ay for some constant a # 0, then the inter-
polatory quadrature formulas used in the discretisation of (1.1.58) and (1.1.59)
are exact. This leads to the following

Corollary 1.1.10 Under the assumptions of Theorem 1.1.9 we have, for
(1.1.54) with f(t,y) = ay,

up(t) = vl @), tel.
Remarks

1. Local superconvergence results for collocation-based implicit Runge—Kutta
methods applied to the integrated form of the given initial-value problem
were first derived by Axelsson (1969) for the Radau and Lobatto points.

The reader is also referred to the results in Theorems 5.3.5 and 5.3.6
(for ¢ = 1) which reveal more explicitly, and in a more general setting, the
connection between u(t), v;,(t) and vjl’(t) att = h.

2. The nonlinear Volterra integral operator of (1.1.55) is a special case of a

Volterra—Hammerstein integral operator. Its general form is

(Hy)(@) := / K(,5)G(s, y(s))ds, tel,
0

where G is a (usually smooth) function from 7 x 2 C R — R. We shall
study collocation methods for this important class of nonlinear second-kind
Volterra integral equations in Section 2.3.3 (for bounded kernels K (¢, s)),
Section 4.3.4 (VH equations with non-vanishing delays), and Section 6.2.9
(VH equations with weakly singular kernels).
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1.1.6 Padé approximations to exp(z)

There is a close connection between the attainable order of local superconver-
gence (and the asymptotic stability) of the collocation solution u;, € S©(I;,) on
I;, and certain Padé approximants to the exponential function f(z) = exp(z) —

which, for z := ah, is the solution at + = & of the initial-value problem
y'(@®) =ay@), y0)=1.

Since this connection will also play a role in Chapter 5 we briefly describe its
main points. Additional details may be found in, e.g. Iserles and Ngrsett (1991)
and Hairer and Wanner (1996).

Definition Let f = f(z) be a complex function that is analytic at z = 0 and
denote, for given non-negative integers k, £, by my . the set of all rational
functions of the form P/Q where P and Q (with Q(0) = 1) are polynomials
of degree not exceeding k and £, respectively. A function Ry, € my . is called
a [k/£]-Padé approximant to f if

Riyo(z) — f(z) = OGEP ") near 7 =0,
with

p*=max{p: Remy sothat R(z)— f(z) = O™y

It can be shown that p* > k + £ implies that the Padé approximant Ry, is
unique. This is in particular the case for f(z) = exp(z): here, p* =k + £. In
the following we will use the notation Ry, to denote rational functions in 7z
which are [k/£]-Padé approximants while R, will be a generic element of
TTk/e-

The following lemma describes the general form of Padé approximants to
exp(z).

Lemma 1.1.11 Letk and € be given non-negative integers. Then the [k, £]-Padé
approximant to f(z) = exp(z) is given by

Ri/e(2) = Pro(2)/ Ok e(2), (1.1.69)
with
B (N ) 12
Pl = 2 G s DLt
and

- Utk = (=2
Qr.e(2) '_;(Z—j)!(k+€)! i
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Suppose now that we solve the linear ODE

Y@ =ay), tel, y0)=y =1, (1.1.70)

by collocation in SIS?)(I;,), with uniform mesh 7, and collocation points X de-
scribed by {c; : 0 <c; < ... < ¢, < 1}. It follows from the collocation equa-
tion

W (t) = aup(t), t€ Xy, up(0)=1, (1.1.71)

and its computational form for the subinterval [0, #; = k],

Uoi =ayo+ahy aijUp; (i=1,....m) (1.1.72)
j=1

(cf. (1.1.16)), that the value of

m

wy(to + vh) = up(wh) = 1+ h Y L;)Uo;, v el0,1],

Jj=1

att = t; = h can be expressed in the form

up(h) = pn(2)/qm(z) =: Rmfm(z)’ z = abh,

where the right-hand side is a rational function whose numerator p,, and de-
nominator g, are polynomials of degree not exceeding m. This rational function
is obviously an approximation (or, more precisely, an interpolant) to the exact
solution y(h) = exp(z) of (1.1.70) at t = h. For special choices of the colloca-
tion parameters {c;} the rational approximant is a Padé approximant to exp(z).
We mention the two most important cases:

1. If the collocation parameters {c;} are the Gauss points (corresponding to the
zeros of the shifted Legendre polynomial P, (2s — 1)), then the resulting
rational approximation R, ,,(z) is the the Padé approximant is R,,,,,(z) for
exp(z).

2. For the Radau II points (given by the zeros of P,,(2s — 1) — P,_1(2s — 1))
we obtain the Padé approximant R, ,,(z) = Rin—1)/m(2)-

We summarise these facts in the next lemma; we shall return to its result (and
its proof) in Section 5.2.3.

Lemma 1.1.12 Ler M(s) = M, (s) := (1/m) [, (s — ¢;) denote the collo-
cation polynomial associated with the collocation parameters {c;}. Then the
value of the collocation solution uj, € Sf,?)(lh) to (1.1.70) at t = h is given by
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the rational function

Pm,m(Z) _ Z7=0 M(m_j)(l)zj
Qm,m(Z) N Z?:O M(m_j)(())zj ’

Rym(2) := (1.1.73)
with z := ah. If the {c;} are the m Gauss points, then R, ,(2) is the [m/m]-
Padé approximant R,y ;,(2) to y(h) = exp(z), as described in Lemma 1.1.11: it
is given by

"omlQm — j)lz/
Pmm = e — 1.1.74
n(@) ;(m—J)!(zm)!J! (1174
"\ 2m — )(—z)
Qm,m(Z) = Z mi(2m — J=2) s (1.1.75)

= (m — HIC2m)!j!
and hence
y(h) = up(h) = OR>"*).
If the {c;} are the Radau II points, then

Rm—l/m(z) = Pm—l,m(z)/Qm—l,m(Z)a

with the polynomials Py _1 ,,(z) and Q,,—1.m(2) obtained from Lemma 1.1.11
by replacing k by m — 1 and £ by m. We now have

y(h) — uy(h) = O(h*™).

Analogous results hold for the Radau I points (zeros of P,(2s — 1)+
Py,_1(2s — 1), yielding Ry /on-1)(z)) and the Lobatto points (zeros of s(s —
)P, _,(2s — 1); leading to R(u—2)/m(z)). Details and proofs of these classical
results may be found in in the books by Lambert (1991), Iserles and Ngrsett
(1991, pp. 48-51), Strehmel and Weiner (1992, pp. 75-76), Hairer and Wanner
(1996), or in the papers by Guillou and Soulé (1969), Axelsson (1969), and
Wright (1970). The comprehensive theory of so-called C-polynomials under-
lying the above result is is due to Ngrsett (1975); see also the generalisation in
Iserles (1981).

We shall see in Chapter 5 (Theorem 5.2.7 and Theorem 5.2.8) that the result
of Lemma 1.1.12 will no longer be valid if the ODE y'(t) = ay(¢) is replaced
by a (seemingly closely related) delay differential equation with proportional
(vanishing) delay,

y(t)=bygt), 0<g<1, t>0.
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1.2 Perturbed collocation methods

We have seen at the beginning of Section 1.1 that the (continuous) implicit
m-stage Runge-Kutta methods generated by collocation for (1.1.1) in $(7,,)
form a proper subset of all implicit m-stage RK Methods. Since this insight
leads to a very elegant analysis of the optimal superconvergence properties
of methods from this subset, there arises the question of whether a similar
approach is possible for other implicit RK methods. Ngrsett (1980) and Ngrsett
and Wanner (1981) introduced such a framework in the form of perturbed
collocation methods which we will briefly describe in his section.

Definition

(a) For given (real) polynomials
1 & o
N;(t) :=F2(p,,j—5,,,»)r' G=1,....m), (1.2.1)
' =0
the operator P, ; : m, — m, defined by

(Pun2)(t) :=2(t) + Y Nj((t = )/ h)z2V(t)h), 1 €6, (0<n<N—1),
=1
! (1.2.2)
is called a perturbation operator with respect to the mesh I, = {r, : 0=
<t <...<ty=T}
(b) Let {c;} be a given set of m distinct points in [0, 1] and let P, ; be the per-
turbation operator introduced in (1.2.2). The perturbed collocation method
corresponding to P, , consists in finding u, € S©(1,) so that

up(tn) = Yn,
u;l(tn + Cihn) = f(tn + Cihnv (Pn,huh)(tn + Cihn) (l = 17 ) m)v
Vpa1 = upty, +hy) m=0,1,..., N —1). (1.2.3)

Remark The choice N;(t) =0 (j =1, ..., m) obviously reduces (1.2.3) to
the ‘classical’ collocation method (1.1.7),(1.1.8), since P, ; is now the identity
operator.

We observe also that if to each polynomial N;(¢) we add an arbitrary con-
stant multiple of the collocation polynomial M,,(s) := (1/m!) ]_[kmzl(s —cr)
(corresponding to t = t,, + sh, € &,), the method (1.2.3) remains unchanged
because M,,(s) vanishes for each s = ¢;.
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Theorem 1.2.1 The perturbed collocation method (1.2.3) is equivalent to an
implicit RK method of the form

Yoi= fltn+cihn yo+ha Y aijYe) (=1,....m), (1.24)
j=1
Yt =Yntha Yy bi¥Ypi (n=0,1,...,N—1),

i=1

where the matrix A := (a;; ) € LAOR™) and the vector bT :=(by,...,by)
are now given by
A=V,P,J, V! (1.2.5)
and
b =(1,1,...,1)J,V " (1.2.6)
Here,
1 ¢ c'l"*]
- 1 cg’.*l ’
1 ¢, c;”;’l

A

Vin is the rectangular matrix formed by augmenting V,, by a new last column
(ct'y. .o, cm VI, and

L pox --- Ppom 0 0 ... 0

0 P oo Pim 1 0 ... 0
P,=1. . Sl =012 ... 0

0 pm1 - Pmm 0 0 ... 1l/m

The entries p; ; in P, are the coefficients occurring in (1.2.1).

The proof of this result is straightforward. It, and the one for Theorem 1.1.2,
can also be found in Ngrsett and Wanner (1981).

We have the following converse of Theorem 1.2.1, in which a RK method
will be called interpolatory if (1.2.6) holds.

Theorem 1.2.2 Consider any m-stage interpolatory RK method with distinct
parameters {c;}. Then this method is equivalent to a perturbed collocation
method (1.2.3).
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We conclude this brief description of perturbed collocation methods with a
result on the attainable order (Ngrsett and Wanner (1981)).

Theorem 1.2.3 Assume that for given integers | and k < m we have:

(a) Nj(t)=0 for j=1,...,1—1, and N; has exact degree j for j =
l,....,m;

1
(b) / s'Nij(s)ds =0 forj=I1,....m;v=0,....m+x—j—1;
0

1
(c) / S'My,(s)ds =0 forv=0,...,k —1;
0
(d) 2l > m+«.
Then the perturbed collocation method has order p* > m + k on the mesh I,.

The proof can again be based on the nonlinear variation-of-constants formula
of Alekseev and Grobner (cf. Theorem 1.1.8): now, the defect is given by

Sn(0) = —uy, (1) + f{t, (Popun)(®)), € Gy

However, the argument (degree of (piecewise) regularity of &, etc.) is rather
more complex than in the classical case. The reader is referred to Ngrsett and
Wanner (1981) for details; see also Exercise 1.10.7 for the case of a linear ODE.

1.3 Collocation in smoother piecewise polynomial spaces

1.3.1 Divergence of collocation solutions

What can be said about the aproximation properties of collocation solutions
uy, that lie in smooth collocation spaces S,(f)(lh) withu >2and 1 <d < u?
It was shown by Loscalzo and Talbot (1967) (compare also Loscalzo (1968,
1969), Hung (1970), and Schoenberg’s 1974 survey paper) that collocation
in the ‘classical’ spline space Sf)(lh) (which corresponds, in the notation of
Section 2.1, to S,(,ﬁd(lh) with m = 1, d = 3) at the collocation points 7, +
c1h, based on the single collocation parameter ¢; = 1 is divergent. On the
other hand, Callender (1971) proved that collocation in S (1}, (1 > 2) leads to

convergent collocation solutions when the {c;} are equidistant: ¢; =i /(u — 1)
i=1,....,u—=1).

Piecewise polynomial collocation methods where some (or all) of the col-
location parameters coalesce were briefly considered by Guillou and Soulé
(19609, pp. 24-26). Important related work was carried out by Kastlunger and
Wanner (1972) on implicit Turan—Runge—Kutta methods; see also Chapter I1.13
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of Hairer, Ngrsett and Wanner (1993). A comprehensive divergence and con-
vergence analysis was provided by Miilthei in the late 1970s and the early 1980s
(see especially Miilthei (1979, 1980a)).

Here, we summarise his results on the divergence of piecewise polynomial
collocation solutions u,, including Hermite-type methods where some of the
collocation points have multiplicity greater than one. See also Ngrsett (1984)
for a good overview and numerous examples.

Let u, € Sfld)(lh) where the mesh [, is supposed to be uniform. The di-
mension of this linear space is N(u — d) + (d + 1) (see Section 2.2.1). Set
q := n — d (this integer is sometimes called the defect of the piecewise poly-
nomial spline space Sftd)(lh)), andletcy,...,c,, withO <c¢; <...<c¢, =1,
be given collocation parameters with multiplicities §; > 1, where

Z5i=q=M—d~
io1

Instead of using local representations of u;, on &, based on Hermite canonical
polynomials (see, e.g. Hairer, Ngrsett and Wanner (1993, pp. 274-276)), it will
be more convenient for our purpose to write

d Dyl n

h .
unty +vh) = 32 4 3 g, 07, velo, 1,

1
= ! j=d+1
with y{) := ug)(t,,). The collocation equation for uy, att, ; :=t, + c;h, € o, is
u;z‘))(tn,i) = (D(U_l)(tn,ivuh(tn,i))7 V= 17"'58i; l = 17‘-'5r7

where
oW (r, y) := &V, )+ XV f (e y). k=1 O, y) = f(t, y).

In the methods of Loscalzo and Talbot (1967) wehaved = u — landc; = 1;
hence ¢ = 1, §; = 1 andr = 1. The generalisation encompasses two possibil-
ities:

D g=upn—d=>1,butc; = 1 with §; = g: this corresponds to Hermite collo-
cationatt =t,,; n=0,..., N —1).

)g=p—d>1,withl <r <gq, § > 1.If r = u — d then all the param-
eters ¢; have multiplicity one.

We consider first the case (I) where ¢; = --- = ¢, = 1, generalising the
original approach by Loscalzo and Talbot. In the first paper of Miilthei (1979)
the following general result was proved.

Theorem 1.3.1 Let uy € Sftd)(lh) be the collocation solution to (1.1.1)
corresponding to (Hermite) collocation at the collocation points
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t=ty1(n=0,...,N—1), each having multiplicity q:=pu—d. The
uy, is divergent, as h — 0 (Nh = T) whenever

w>2(q+1), orequivalently, if d>q+ 2.

For collocation in the classical spline space Sf)(lh) (corresponding to
u =4, d =3 and hence to ¢ = 1) collocation at t = ¢, (c; = 1) leads to a
divergent collocation solution u;,. This is the result due to Loscalzo and Talbot
(1967). More generally, we have:

Corollary 1.3.2 If u, € SEL"’D(I,,) (g =1) and c; = 1, then u;, diverges, as
h — 0, whenever . > 4.

If there are interior collocation points present, the divergence/convergence of
the collocation solution may or may not depend on the location of these points.
The following general divergence result was proved in Miilthei (1980b); it uses
the above assumptions and notation.

Theorem 1.3.3 (i) Assume thatd > q + 1+ 8,1, where §; ; denotes the Kro-
necker symbol. Then the collocation solution u; € S,&")(Ih) is divergent,
regardless of the location of the (interior) collocation parameters.

(ii) If we have ¢, =i/ri=1,....,r—1)and 6,_; <& @G =1,..., (r —
1)/2]), then uy, is divergent whenever d > 5, + 2.

The last theorem (Miilthei (1980b)) shows that for non-equally spaced col-
location parameters {c; } the convergence/divergence of the collocation solution

will in general depend on their location in (0, 1).

Theorem 1.3.4 Assume that the degree of regularity d in SLd)(Ih) satisfies d =
8, + 1 (= 2), withr > 1. Then the collocation solution uy, is divergent if

r—1 1—c i
n( o l) > 1.

i=1

Example 1.3.1

(i) r=1, g =1, c; = 1: Method of Loscalzo and Talbot (1967) (see also
Loscalzo (1968, 1969)).
) r=1,qg>1(ld <wu—1), c; = 1: Method of Miilthei, analysed in his
first three papers of 1980.
Gi)d=1, ¢; =i/r i=1,...,r), §; = 1foralli:the convergence of collo-
cation solutions in S}"(7;) with (simple) equidistant collocation parameters
was studied by Callender (1971).

Example 1.3.2 1, € S (I,):
For ¢; =1, 6 =q =m (r =1), Miilthei (1980a, II) showed that u; is
convergent. However, Hermite collocation in the smoother space Sg:’fl)(lh (g =
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m — 1) leads to divergent approximations, sinced = m + 1 = g + 2 (Theorem
1.3.1).

Example 1.3.3 u), € Siz)(lh):
Here we have u =4, d = g = 2, and the dimension of this linear space is
2N + 3. If the collocation parameters are chosen so that 0 < ¢; < ¢, = 1, then
the collocation solution u,, is divergent whenever

1-— (&}

> 1,
C1

that is, when ¢; < 1/2.
Example 1.3.4 u; € S (I)):
This space correspondsto . =5, d = 2, g = 3, and its dimension is 3N + 3.
For
O<ci<cp<cy=1,

wehaver =3 andd = 2 = §, 4 1. The collocation solution is divergent when-
ever
d—ce)d - )
A A S A
C1C2

1.

The last two examples reveal that collocation in SP(1;,) (1 > 4), with the u — 2
parameters {c;} given by the Radau II points, leads to divergence.
We summarise this general divergence result in the following corollary.

Corollary 1.3.5 Let u, € Sff)(lh) (i = 4) be the collocation solution corre-
sponding to the it — 2 Radau Il points {c;} in (0, 1]. Then uy, is divergent.

Proof The Radau II points are the zeros of P,_»(2s —1) — P,_3(2s — 1).
The corresponding points ciI i=1—-c,_1-i(i =1,..., u —2)are the Radau I
points (given by the zeros of P,_>(2s — 1) + P,_3(2s — 1)). Thus, we may

write

r—1 .1

C.

Zitl
Ci

r—1

I—g¢
[1- =

i=1

i=1
The assertion follows since the {c;} interlace with the {ci] }:
Och < <c£ < .- <cllk2 <cu-— =1,

and by Theorem 1.3.4 (withé; = landr =g = u — 2).

1.4 Higher-order ODEs
Let k > 2 be a given integer and consider the initial-value problem

YO = £, y@), YO, ..., y* V@), tel:=[0,T], (14.1)
YO0 =y w=01,....k—1).
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The comments in Section 1.1.1 motivating the use of the ‘natural’ collocation
space S(I),) when k = 1 imply that we will now seek the collocation solution
for (1.4.1) in the smooth piecewise polynomial space

Sutan) = {v € CUI): Vs, € Tpia 0 <n < N — 1))

withd = k — 1 > 1 (see also Section 2.2.1). The dimension of this linear vector
space is

dimS¥

D () =Nm+d+1=Nm+k.

Let X, the set of collocation points in / defined in (1.1.3). The collocation
solution uy, in this space for (1.4.1) is thus defined by

uP@) = £, up @), w), @), ..., ul V@), te Xy, (1.4.2)
u’0) =y w=0,1,....k—1).

Setting yflw = u(V)(tn) (Y = yn ) Yn j = Uy )(tn ]) and

uP(t, + vh, )_ZL (W)Y, j, ve (1],

j=1
the local Lagrange representation of uz”) (v=k—-1,...,0)ong, is given by
k—v—1 y(u+ ) m
w3y + vha) = 3 o (hg0) BT Y oYy, v €10,1],
=0 j=1
(1.4.3)
where we have defined
v ( )k v—1
B, i) = 7L i(s)ds. (144
o (k—v—1D!

For v =0, (1.4.3) yields

(O]
y" ~(h, v)£+thﬁoj(v)Y,,j, vel01]. (145)
=0 j=1

up(t, +vh,) =

This allows us to write down the computational form of the collocation equa-
tion (1.4.2) corresponding to the m collocation points t = 1, ; € &,. However,
instead of doing this in complete generality we illustrate this for the important
case k = 2.

Iustration Continuous m-stage Runge—Kutta—Nystrom method (k = 2):
Consider (1.4.1) with k = 2,

Y1) = f@t,y@®),y ), tel.
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It follows from the collocation equation on &,,,

Yn.i = f(tn,i’ uh(tn,i)r u;/l(tn,i))v i = 17 e, M, (146)

that the components of the vector ¥, := (Y, 1,..., Yym )T are given by the
solution of the nonlinear algebraic system

Yoi=f (tn,i, Yo + hoyD 4 K2 Z Bo,j(ci)Yy j, y +h, Z ﬂl,j(Q')Yn,j)
j=1 j=1
(1.4.7)

(i=1,...,m).OncethesolutionY, :=(Y,1,..., Yum )T has been computed
the values of u;, and u), on &, are determined by

ity + vha) = 3o + vy + Y fo )Y, v el0 1] (148)
j=1

and

m

) (tn + vhy) = YO + 1y Y i)Y, v E[0, 1], (1.4.9)

j=1
with

Bi.j(v) 1=f0 Lj(s)ds and Py, ;(v) :=/0 (v — $)L;(s)ds.

We now state the global and local convergence theorems for the collocation
solution u;, € Sfj_d(lh) (d = k — 1) for the linear version of (1.4.1),

k—1
yO@1) = Zau(t)y(”)(t) +g(1), tel. (1.4.10)
v=0

Asinthe case k = 1 these results remain valid for the nonlinear problem (1.4.1),
provided it has a sufficiently regular solution on / (see also Chapter 3 and the
remark following Theorem 1.4.3). The first theorem describes the attainable
order of global convergence for arbitrarily chosen collocation points.

Theorem 1.4.1 Assume that the given functions a, (0 <v <k — 1) and g in
the linear ODE (1.4.10) are m times continuously differentiable on I. Then for
all sufficiently small h > 0 and any {c;} we have the estimates

1y =l < CH" (=0, 1. k= 1)
and

sup [y® (1) — ulP (1) < Crh™.

tel

For certain special sets {c;} we obtain global superconvergence on I, as
described in the following theorem.
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Theorem 1.4.2 Assume that the given functions a, (0 <v <k — 1) and g in
(1.4.10) are in C*(I) withd > m + 1, and let the {c;} be chosen such that the
orthogonality condition

1 m
Jo = f ]_[(s —¢)ds =0
0 =1

holds. Then the collocation solution uj € S,(fid(lh) (d = k — 1) satisfies, for
all sufficiently small h > 0,

1y =10 < C™ (0= 0,1, k= 1),

While the collocation solution uj, and its derivatives u), .. ., ui,kil) are glob-

ally superconvergent on I, with order p* = m + 1, we only have O(h™)-

(k)
h

convergence for u,’ on I.

This result suggests (recalling the proof for the case k = 1) that local super-
convergence, of order up to 2m, at the mesh points is also possible.

Theorem 1.4.3 Leta, € C"(I) (0 <v <k —1), g € C"*(1), for some k
with 1 < k < m, and assume that the {c;} satisfy

1 m
Jo ;:/ s TJes—ends =0, £=0.1,....c—1,
0 i=1

with J. # 0. Then for all sufficiently small mesh diameters h > 0 the colloca-
tion solution uy € Sf,lf;,:)_l(lh) and its derivatives uzv) w=1,....,k—1) are
superconvergent on the mesh I,:

max [y"(1) = u, ()] < C,A"™ (v =0, 1. k= 1),
tely

In particular, kK = m (implying that the {c;} are the m Gauss points in (0, 1))
leads to

max [y"() =, ()] < C,H*" (v =0, 1. k= 1).
tely

Ifk =m — 1 and c,, = 1 (corresponding to the Radau Il points in (0, 1]), then
local superconvergence of order 2m — 1 holds also for u;k) atthe points I, \ {0}:
we now have

W@y —ul (1) < C,h>" ! =0,1,...,k—1,k).
ternl,,%?(()}'y () uh( )|_ (U s Ly ) ) )

We will see in Chapter 3 that these results can be viewed as corollaries to
analogous statements for Volterra integro-differential equations of order k > 2,

YOO = £, y@), Y @), ...,y V@) + VE»@),
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where
V@) = /0 K(t,5,y(5), Y (), ..., yO ).

The details will be presented in Section 3.2.5 (Theorems 3.2.12 and 3.2.13).

1.5 Multistep collocation

We have seen in Section 1.2 thatif u;, € S (1) is obtained by collocation at the
Gauss points then it is locally superconvergent (on /) of order p* = 2m. Since
the numerical implementation of the collocation method will become rather
expensive for large m and, especially, for systems of ODEs resulting from the
semidiscretisation in space of (parabolic) PDEs, there arises the question of
‘cheaper’ collocation methods of comparable order. The multistep collocation
methods (introduced by Lie (1990) and Lie and Ngrsett (1989) in the late 1980s;
see also Hairer and Wanner (1996, pp. 270-278)) — which contain as special
cases the one-leg methods of Dahlquist (1983) and the BDF methods — represent
a possible alternative. These methods form themselves a particular class of so-
called general linear methods introduced by Butcher (see, e.g. Butcher (1987,
Chapter 4) or Hairer and Wanner (1996, pp. 290-295)).

A u-step collocation method is based on piecewise polynomials uj €

S,(Sjr u—l(lh) (n > 2), and u, is defined by the w-step collocation equations

up(te) =ye b=n—p+1,....n), (1.5.1)
uy(ty + cih) = f(ty, + cih,up(ty +c;ih)) (=1,....,m), (1.5.2)

where we have assumed for simplicity that the underlying mesh I;, is uniform.
On the interval [#,_;41, t,+1] the collocation solution is described by

m m
untn +0h) = Ge)yu i +h Y VW)Y, (15.3)
k=1 j=1
with ¥, ; := u},(t, + c;h). The functions ¢ and v, are the canonical Hermite
polynomials (observe that the above problem may be viewed as an incomplete
Hermite interpolation problem for u;, and u),) defined by

() == b i } { Vi) :=0 }

’ and .
{ ¢r(ci) =0 Vilci) = dij

It is a consequence of (incomplete) Hermite (—Birkhoff) interpolation theory

(see, e.g. Lorentz et al. (1983)) that, in contrast to one-step collocation, the
multistep collocation solution need not exist. An analysis of this problem of
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existence and uniqueness is given in Lie and Ngrsett (1989) and in Hairer and
Wanner (1996). However, Lie and Ngrsett have shown that there exist u-step
collocation methods whose (optimal) order of local superconvergence is given
by p* =2m 4+ u — 1 > 2m. They correspond to sets {c;} which are the abscis-
sas of u-step Gauss quadrature formulas (see, e.g. Krylov (1962)). The global
convergence of w-step collocation methods is due to Lie (1990). Examples of
such p-step collocation methods, especially for u = 2, are presented in Lie and
Ngrsett (1989, pp. 77-78). Here, we mention without proof the following re-
sult which represents the p-step analogue of the local superconvergence result
(1.1.45) in Theorem 1.1.4:

Theorem 1.5.1 For given collocation parameters {c; : 0 <c; <...<cy <
1} let M, (s) := (1/m!) ]_[['-"ZI(S — ¢;). Assume that |u > 2 and define the deter-
minants D" by

fi)l s'M,,(s)ds e ffl sV ML (5)ds
w._ | ) e _
Dy = ff’(H) s'M,,(s)ds --- fi)(;kl) sV THIML (5)d s
fol sV M,,(s)ds e fol sUHREIML (s)ds

Then the w-step collocation solution defined by (1.5.1)—(1.5.3), if it exists, has
local order p* =m + u — 1 + « (k < m)on I, if, and only if, the {c;} are such
that

D]()l’-)zo for ]):0,],...,’(_1-

Note that for u = 1 the above theorem reduces to the first part of Theorem
1.1.4.

As Lie and Ngrsett (1989) have shown, this result can be derived either by a
suitable adaptation of the Alekseev—Grobner (nonlinear) variation-of-constants
formula, or by an algebraic approach based on the interpolation conditions un-
derlying the method. The latter leads to the following alternative characterisa-
tion of the order of local superconvergence.

Theorem 1.5.2 The u-step collocation method based on the collocation pa-
rameters {c;} possesses the order p* =m +u — 1+« on I if

d
o (,ou(s)p(s))‘szci =0 (G=1,...,m) forall pem_;.
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Here,

n—1

pu(s) = [T+

i=—

1.6 The discontinuous Galerkin method for ODEs

It was shown by Lesaint and Raviart (1974) that there is a close connection
between (collocation based) implicit Runge—Kutta methods and the discontin-
uous Galerkin (dG) method for (1.1.1). In order to describe the dG method we
introduce the following notation. For a given mesh 7, let

(61, := ¢(t,") — b(2,)
denote the jump of the function ¢ at the (interior) mesh point t = f,,, and set
V() :={¢ € L*(I): @, is continuous and bounded}.

The weak form of the (scalar) ODE (1.1.1) is then given by: find y € C'(I) so
that, for each ¢ € V(1)

N—-1
n=0

N—1

Y1) = £, YON$®)dr + Y [lad(t)) + ¥t ) = yoots).
n=1
(1.6.1)

On

(An analogous definition holds for systems of the form (1.1.1.): if y € R then
the above products are replaced by the corresponding inner products in R9.)
Eq