
INTERNATIONAL SCHOOL

FOR ADVANCED STUDIES

Trieste

U. Bruzzo

INTRODUCTION TO

ALGEBRAIC TOPOLOGY AND

ALGEBRAIC GEOMETRY

Notes of a course delivered during the academic year 2002/2003
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Preface

These notes assemble the contents of the introductory courses I have been giving at
SISSA since 1995/96. Originally the course was intended as introduction to (complex)
algebraic geometry for students with an education in theoretical physics, to help them to
master the basic algebraic geometric tools necessary for doing research in algebraically
integrable systems and in the geometry of quantum field theory and string theory. This
motivation still transpires from the chapters in the second part of these notes.

The first part on the contrary is a brief but rather systematic introduction to two
topics, singular homology (Chapter 2) and sheaf theory, including their cohomology
(Chapter 3). Chapter 1 assembles some basics fact in homological algebra and develops
the first rudiments of de Rham cohomology, with the aim of providing an example to
the various abstract constructions.

Chapter 4 is an introduction to spectral sequences, a rather intricate but very power-
ful computational tool. The examples provided here are from sheaf theory but this
computational technique is also very useful in algebraic topology.

I thank all my colleagues and students, in Trieste and Genova and other locations,
who have helped me to clarify some issues related to these notes, or have pointed out
mistakes. In this connection special thanks are due to Fabio Pioli. Most of Chapter 3 is
an adaptation of material taken from [2]. I thank my friends and collaborators Claudio
Bartocci and Daniel Hernández Ruipérez for granting permission to use that material.
I thank Lothar Göttsche for useful suggestions and for pointing out an error and the
students of the 2002/2003 course for their interest and constant feedback.

Genova, 4 December 2003
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Part 1

Algebraic Topology





CHAPTER 1

Introductory material

The aim of the first part of these notes is to introduce the student to the basics of
algebraic topology, especially the singular homology of topological spaces. The future
developments we have in mind are the applications to algebraic geometry, but also
students interested in modern theoretical physics may find here useful material (e.g.,
the theory of spectral sequences).

As its name suggests, the basic idea in algebraic topology is to translate problems
in topology into algebraic ones, hopefully easier to deal with.

In this chapter we give some very basic notions in homological algebra and then
introduce the fundamental group of a topological space. De Rham cohomology is in-
troduced as a first example of a cohomology theory, and is homotopic invariance is
proved.

1. Elements of homological algebra

1.1. Exact sequences of modules. Let R be a ring, and let M , M ′, M ′′ be
R-modules. We say that two R-module morphisms i : M ′ → M , p : M → M ′′ form an
exact sequence of R-modules, and write

0 →M ′ i−−→M
p−−→M ′′ → 0 ,

if i is injective, p is surjective, and ker p = Im i.

A morphism of exact sequences is a commutative diagram

0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0y y y
0 −−−−→ N ′ −−−−→ N −−−−→ N ′′ −−−−→ 0

of R-module morphisms whose rows are exact.

1.2. Differential complexes. Let R be a ring, and M an R-module.

Definition 1.1. A differential on M is a morphism d : M →M of R-modules such
that d2 ≡ d ◦ d = 0. The pair (M,d) is called a differential module.

The elements of the spaces M , Z(M,d) ≡ ker d and B(M,d) ≡ Im d are called
cochains, cocycles and coboundaries of (M,d), respectively. The condition d2 = 0 implies

3



4 1. INTRODUCTORY MATERIAL

that B(M,d) ⊂ Z(M,d), and the R-module

H(M,d) = Z(M,d)/B(M,d)

is called the cohomology group of the differential module (M,d). We shall often write
Z(M), B(M) and H(M), omitting the differential d when there is no risk of confusion.

Let (M,d) and (M ′, d′) be differential R-modules.

Definition 1.2. A morphism of differential modules is a morphism f : M →M ′ of
R-modules which commutes with the differentials, f ◦ d′ = d ◦ f .

A morphism of differential modules maps cocycles to cocycles and coboundaries to
coboundaries, thus inducing a morphism H(f) : H(M) → H(M ′).

Proposition 1.3. Let 0 → M ′ i−−→M
p−−→M ′′ → 0 be an exact sequence of dif-

ferential R-modules. There exists a morphism δ : H(M ′′) → H(M ′) (called connecting
morphism) and an exact triangle of cohomology

H(M)
H(p)

// H(M ′′)

δyyttttttttt

H(M ′)

H(i)

OO

Proof. The construction of δ is as follows: let ξ′′ ∈ H(M ′′) and let m′′ be a
cocycle whose class is ξ′′. If m is an element of M such that p(m) = m′′, we have
p(d(m)) = d(m′′) = 0 and then d(m) = i(m′) for some m′ ∈ M ′ which is a cocycle.
Now, the cocycle m′ defines a cohomology class δ(ξ′′) in H(M ′), which is independent of
the choices we have made, thus defining a morphism δ : H(M ′′) → H(M ′). One proves
by direct computation that the triangle is exact. �

The above results can be translated to the setting of complexes of R-modules.

Definition 1.4. A complex of R-modules is a differential R-module (M•, d) which
is Z-graded, M• =

⊕
n∈ZM

n, and whose differential fulfills d(Mn) ⊂ Mn+1 for every
n ∈ Z.

We shall usually write a complex of R-modules in the more pictorial form

. . .
dn−2−−→Mn−1 dn−1−−→Mn dn−−→Mn+1 dn+1−−→ . . .

For a complex M• the cocycle and coboundary modules and the cohomology group
split as direct sums of terms Zn(M•) = ker dn, Bn(M•) = Im dn−1 and Hn(M•) =
Zn(M•)/Bn(M•) respectively. The groups Hn(M•) are called the cohomology groups
of the complex M•.
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Definition 1.5. A morphism of complexes of R-modules f : N• → M• is a collec-
tion of morphisms {fn : Nn →Mn|n ∈ Z}, such that the following diagram commutes:

Mn fn−−−−→ Nn

d

y yd

Mn+1 fn+1−−−−→ Nn+1

.

For complexes, Proposition 1.3 takes the following form:

Proposition 1.6. Let 0 → N• i−−→M• p−−→P • → 0 be an exact sequence of com-
plexes of R-modules. There exist connecting morphisms δn : Hn(P •) → Hn+1(N•) and
a long exact sequence of cohomology

. . .
δn−1−−→Hn(N•)

H(i)−−→Hn(M•)
H(p)−−→Hn(P •) δn−−→

δn−−→Hn+1(N•)
H(i)−−→Hn+1(M•)

H(p)−−→Hn+1(P •)
δn+1−−→ . . .

Proof. The connecting morphism δ : H•(P •) → H•(N•) defined in Proposition
1.3 splits into morphisms δn : Hn(P •) → Hn+1(N•) (indeed the connecting morphism
increases the degree by one) and the long exact sequence of the statement is obtained
by developing the exact triangle of cohomology introduced in Proposition 1.3. �

1.3. Homotopies. Different (i.e., nonisomorphic) complexes may nevertheless
have isomorphic cohomologies. A sufficient conditions for this to hold is that the two
complexes are homotopic. While this condition is not necessary, in practice the (by far)
commonest way to prove the isomorphism between two cohomologies is to exhibit a
homototopy between the corresponding complexes.

Definition 1.7. Given two complexes of R-modules, (M•, d) and (N•, d′), and two
morphisms of complexes, f, g : M• → N•, a homotopy between f and g is a morphism
K : N• →M•−1 (i.e., for every k, a morphism K : Nk →Mk−1) such that d′ ◦K+K ◦
d = f − g.

The situation is depicted in the following commutative diagram.

. . . // Mk−1

�� 



d // Mk

f

��
g





d //

K

{{wwwwwwww
Mk+1

�� 



//

K

{{wwwwwwww
. . .

. . . // Nk−1
d′
// Nk

d′
// Nk+1 // . . .

Proposition 1.8. If there is a homotopy between f and g, then H(f) = H(g),
namely, homotopic morphisms induce the same morphism in cohomology.
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Proof. Let ξ = [m] ∈ Hk(M•, d). Then

H(f)(ξ) = [f(m)] = [g(m)] + [d′(K(m))] + [K(dm)] = [g(m)] = H(g)(ξ)

since dm = 0, [d′(K(m))] = 0. �

Definition 1.9. Two complexes of R-modules, (M•, d) and (N•, d′), are said to
be homotopically equivalent (or homotopic) if there exist morphisms f : M• → N•,
g : N• →M•, such that:

f ◦ g : N• → N• is homotopic to the identity map idN ;

g ◦ f : M• →M• is homotopic to the identity map idM .

Corollary 1.10. Two homotopic complexes have isomorphic cohomologies.

Proof. We use the notation of the previous Definition. One has

H(f) ◦H(g) = H(f ◦ g) = H(idN ) = idH(N)

H(g) ◦H(f) = H(g ◦ f) = H(idM ) = idH(M)

so that both H(f) and H(g) are isomorphism. �

Definition 1.11. A homotopy of a complex of R-modules (M•, d) is a homotopy
between the identity morphism on M , and the zero morphism; more explicitly, it is a
morphism K : M• →M•−1 such that d ◦K +K ◦ d = idM .

Proposition 1.12. If a complex of R-modules (M•, d) admits a homotopy, then it is
exact (i.e., all its cohomology groups vanish; one also says that the complex is acyclic).

Proof. One could use the previous definitions and results to yield a proof, but it
is easier to note that if m ∈Mk is a cocycle (so that dm = 0), then

d(K(m)) = m−K(dm) = m

so that m is also a coboundary. �

Remark 1.13. More generally, one can state that if a homotopy K : Mk → Mk−1

exists for k ≥ k0, then Hk(M,d) = 0 for k ≥ k0. In the case of complexes bounded
below zero (i.e., M = ⊕k∈NM

k) often a homotopy is defined only for k ≥ 1, and it
may happen that H0(M,d) 6= 0. Examples of such situations will be given later in this
chapter.

Remark 1.14. One might as well define a homotopy by requiring d′◦K−K◦d = . . . ;
the reader may easily check that this change of sign is immaterial.
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2. De Rham cohomology

As an example of a cohomology theory we may consider the de Rham cohomology
of a differentiable manifold X. Let Ωk(X) be the vector space of differential k-forms
on X, and let d : Ωk(X) → Ωk+1(X) be the exterior differential. Then (Ω•(X), d) is
a differential complex of R-vector spaces (the de Rham complex), whose cohomology
groups are denoted Hk

dR(X) and are called the de Rham cohomology groups of X. Since
Ωk(X) = 0 for k > n and k < 0, the groups Hk

dR(X) vanish for k > n and k < 0.
Moreover, since ker[d : Ω0(X) → Ω1(X)] is formed by the locally constant functions on
X, we have H0

dR(X) = RC , where C is the number of connected components of X.

If f : X → Y is a smooth morphism of differentiable manifolds, the pullback morph-
ism f∗ : Ωk(Y ) → Ωk(X) commutes with the exterior differential, thus giving rise to a
morphism of differential complexes (Ω•(Y ), d) → (Ω•(X), d)); the corresponding morph-
ism H(f) : H•

dR(Y ) → H•
dR(X) is usually denoted f ].

We may easily compute the cohomology of the Euclidean spaces Rn. Of course one
has H0

dR(Rn) = ker[d : C∞(Rn) → Ω1(Rn)] = R.

Proposition 1.1. (Poincaré lemma) Hk
dR(Rn) = 0 for k > 0.

Proof. We define a linear operator K : Ωk(Rn) → Ωk−1(Rn) by letting, for any
k-form ω ∈ Ωk(Rn), k ≥ 1, and all x ∈ Rn,

(Kω)(x) = k

[∫ 1

0
tk−1ωi1i2...ik(tx) dt

]
xi1 dxi2 ∧ · · · ∧ dxik .

One easily shows that dK+Kd = Id; this means that K is a homotopy of the de Rham
complex of Rn defined for k ≥ 1, so that, according to Proposition 1.12 and Remark
1.13, all cohomology groups vanish in positive degree. Explicitly, if ω is closed, we have
ω = dKω, so that ω is exact. �

Exercise 1.2. Realize the circle S1 as the unit circle in R2. Show that the in-
tegration of 1-forms on S1 yields an isomorphism H1

dR(S1) ' R. This argument can
be quite easily generalized to show that, if X is a connected, compact and orientable
n-dimensional manifold, then Hn

dR(X) ' R.

If a manifold is a cartesian product, X = X1 ×X2, there is a way to compute the
de Rham cohomology of X out of the de Rham cohomology of X1 and X2 (Künneth
theorem, cf. [3]). For later use, we prove here a very particular case. This will serve
also as an example of the notion of homotopy between complexes.

Proposition 1.3. If X is a differentiable manifold, then Hk
dR(X × R)

' Hk
dR(X) for all k ≥ 0.
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Proof. Let t a coordinate on R. Denoting by p1, p2 the projections of X ×R onto
its two factors, every k-form ω on X × R can be written as

(1.1) ω = f p∗1ω1 + g p∗1ω2 ∧ p∗2dt

where ω1 ∈ Ωk(X), ω2 ∈ Ωk−1(X), and f , g are functions on X×R.1 Let s : X → X×R
be the section s(x) = (x, 0). One has p1◦s = idX (i.e., s is indeed a section of p1), hence
s∗ ◦p∗1 : Ω•(X) → Ω•(X) is the identity. We also have a morphism p∗1 ◦s∗ : Ω•(X×R) →
Ω•(X×R). This is not the identity (as a matter of fact one, has p∗1◦s∗(ω) = f(x, 0) p∗1ω1).
However, this morphism is homotopic to idΩ•(X×R), while idΩ•(X) is definitely homotopic
to itself, so that the complexes Ω•(X) and Ω•(X ×R) are homotopic, thus proving our
claim as a consequence of Corollary 1.10. So we only need to exhibit a homotopy
between p∗1 ◦ s∗ and idΩ•(X×R).

This homotopy K : Ω•(X × R) → Ω•−1(X × R) is defined as (with reference to
equation (1.1))

K(ω) = (−1)k

[∫ t

0
g(x, s) ds

]
p∗2 ω2.

The proof that K is a homotopy is an elementary direct computation,2 after which one
gets

d ◦K +K ◦ d = idΩ•(X×R) − p∗1 ◦ s∗.

�

In particular we obtain that the morphisms

p]
1 : H•

dR(X) → H•
dR(X × R), s] : H•

dR(X × R) → H•
dR(X×)

are isomorphisms.

Remark 1.4. If we take X = Rn and make induction on n we get another proof of
Poincaré lemma.

Exercise 1.5. By a similar argument one proves that for all k > 0

Hk
dR(X × S1) ' Hk

dR(X)⊕Hk−1
dR (X). �

Now we give an example of a long cohomology exact sequence within de Rham’s the-
ory. Let X be a differentiable manifold, and Y a closed submanifold. Let rk : Ωk(X) →
Ωk(Y ) be the restriction morphism; this is surjective. Since the exterior differential com-
mutes with the restriction, after letting Ωk(X,Y ) = ker rk a differential d′ : Ωk(X,Y ) →

1In intrinsic notation this means that

Ωk(X × R) ' C∞(X × R)⊗C∞(X) [Ωk(X)⊕ Ωk−1(X)].

2The reader may consult e.g. [3], §I.4.
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Ωk+1(X,Y ) is defined. We have therefore an exact sequence of differential modules, in
a such a way that the diagram

0 // Ωk−1(X,Y ) //

d′

��

Ωk−1(X)

d
��

rk−1 // Ωk−1(Y ) //

d
��

0

0 // Ωk(X,Y ) // Ωk(X)
rk // Ωk(Y ) // 0

commutes. The complex (Ω•(X,Y ), d′) is called the relative de Rham complex, 3 and its
cohomology groups by Hk

dR(X,Y ) are called the relative de Rham cohomology groups.
One has a long cohomology exact sequence

0 → H0
dR(X,Y ) → H0

dR(X) → H0
dR(Y ) δ→ H1

dR(X,Y )

→ H1
dR(X) → H1

dR(Y ) δ→ H2
dR(X,Y ) → . . .

Exercise 1.6. 1. Prove that the space ker d′ : Ωk(X,Y ) → Ωk+1(X,Y ) is for all
k ≥ 0 the kernel of rk restricted to Zk(X), i.e., is the space of closed k-forms on X

which vanish on Y . As a consequence H0
dR(X,Y ) = 0 whenever X and Y are connected.

2. Let n = dimX and dimY ≤ n − 1. Prove that Hn
dR(X,Y ) → Hn

dR(X) surjects,
and that Hk

dR(X,Y ) = 0 for k ≥ n + 1. Make an example where dimX = dimY and
check if the previous facts still hold true.

Example 1.7. Given the standard embedding of S1 into R2, we compute the relative
cohomology H•

dR(R2, S1). We have the long exact sequence

0 → H0
dR(R2, S1) → H0

dR(R2) → H0
dR(S1) δ→ H1

dR(R2, S1)

→ H1
dR(R2) → H1

dR(S1) δ→ H2
dR(R2, S1) → H2

dR(R2) → 0 .

As in the previous exercise, we have Hk
dR(R2, S1) = 0 for k ≥ 3. Since H0

dR(R2) ' R,
H1

dR(R2) = H2
dR(R2) = 0, H0

dR(S1) ' H1
dR(S1) ' R, we obtain the exact sequences

0 → H0
dR(R2, S1) → R r→ R → H1

dR(R2, S1) → 0

0 → R → H2
dR(R2, S1) → 0

where the morphism r is an isomorphism. Therefore from the first sequence we get
H0

dR(R2, S1) = 0 (as we already noticed) and H1
dR(R2, S1) = 0. From the second we

obtain H2
dR(R2, S1) ' R. �

From this example we may abstract the fact that whenever X and Y are connected,
then H0

dR(X,Y ) = 0.

Exercise 1.8. Consider a submanifold Y of R2 formed by two disjoint embedded
copies of S1. Compute H•

dR(R2, Y ).

3Sometimes this term is used for another cohomology complex, cf. [3].
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3. Mayer-Vietoris sequence in de Rham cohomology

The Mayer-Vietoris sequence is another example of long cohomology exact sequence
associated with de Rham cohomology, and is very useful for making computations.
Assume that a differentiable manifold X is the union of two open subset U , V . For
every k, 0 ≤ k ≤ n = dimX we have the sequence of morphisms

(1.2) 0 → Ωk(X) i→ Ωk(U)⊕ Ωk(V )
p→ Ωk(U ∩ V ) → 0

where
i(ω) = (ω|U , ω|V ), p((ω1, ω2)) = ω1|U∩V − ω2|U∩V .

One easily checks that i is injective and that ker p = Im i. The surjectivity of p is
somehow less trivial, and to prove it we need a partition of unity argument. From
elementary differential geometry we recall that a partition of unity subordinated to the
cover {U, V } of X is a pair of smooth functions f1, f2 : X → R such that

supp(f1) ⊂ U, supp(f2) ⊂ V, f1 + f2 = 1.

Given τ ∈ Ωk(U ∩ V ), let
ω1 = f2 τ, ω2 = −f1 τ.

These k-form are defined on U and V , respectively. Then p((ω1, ω2)) = τ . Thus the
sequence (1.2) is exact. Since the exterior differential d commutes with restrictions, we
obtain a long cohomology exact sequence

(1.3) 0 → H0
dR(X) → H0

dR(U)⊕H0
dR(V ) → H0

dR(U ∩ V ) δ→ H1
dR(X) →

→ H1
dR(U)⊕H1

dR(V ) → H1
dR(U ∩ V ) δ→ H2

dR(X) → . . .

This is the Mayer-Vietoris sequence. The argument may be generalized to a union
of several open sets.4

Exercise 1.1. Use the Mayer-Vietoris sequence (1.3) to compute the de Rham
cohomology of the circle S1.

Example 1.2. We use the Mayer-Vietoris sequence (1.3) to compute the de Rham
cohomology of the sphere S2 (as a matter of fact we already know the 0th and 2nd
group, but not the first). Using suitable stereographic projections, we can assume that
U and V are diffeomorphic to R2, while U ∩ V ' S1 ×R. Since S1 ×R is homotopic to
S1, it has the same de Rham cohomology. Hence the sequence (1.3) becomes

0 → H0
dR(S2) → R⊕ R → R → H1

dR(S2) → 0

0 → R → H2
dR(S2) → 0.

From the first sequence, since H0
dR(S2) ' R, the map H0

dR(S2) → R ⊕ R is injective,
and then we get H1

dR(S2) = 0; from the second sequence, H2
dR(S2) ' R.

4The Mayer-Vietoris sequence foreshadows the Čech cohomology we shall study in Chapter 3.
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Exercise 1.3. Use induction to show that if n ≥ 3, then Hk
dR(Sn) ' R for k = 0, n,

Hk
dR(Sn) = 0 otherwise.

Exercise 1.4. Consider X = S2 and Y = S1, embedded as an equator in S2.
Compute the relative de Rham cohomology H•

dR(S2, S1).

4. Elementary homotopy theory

4.1. Homotopy of paths. Let X be a topological space. We denote by I the
closed interval [0, 1]. A path in X is a continuous map γ : I → X. We say that X
is pathwise connected if given any two points x1, x2 ∈ X there is a path γ such that
γ(0) = x1, γ(1) = x2.

A homotopy Γ between two paths γ1, γ2 is a continuous map Γ: I × I → X such
that

Γ(t, 0) = γ1(t), Γ(t, 1) = γ2(t).

If the two paths have the same end points (i.e. γ1(0) = γ2(0) = x1, γ1(1) = γ2(1) = x2),
we may introduce the stronger notion of homotopy with fixed end points by requiring
additionally that Γ(0, s) = x1, Γ(1, s) = x2 for all s ∈ I.

Let us fix a base point x0 ∈ X. A loop based at x0 is a path such that γ(0) = γ(1) =
x0. Let us denote L(x0) th set of loops based at x0. One can define a composition
between elements of L(x0) by letting

(γ2 · γ1)(t) =

{
γ1(2t), 0 ≤ t ≤ 1

2

γ2(2t− 1), 1
2 ≤ t ≤ 1.

This does not make L(x0) into a group, since the composition is not associative (com-
posing in a different order yields different parametrizations).

Proposition 1.1. If x1, x2 ∈ X and there is a path connecting x1 with x2, then
L(x1) ' L(x2).

Proof. Let c be such a path, and let γ1 ∈ L(x1). We define γ2 ∈ L(x2) by letting

γ2(t) =


c(1− 3t), 0 ≤ t ≤ 1

3

γ1(3t− 1), 1
3 ≤ t ≤ 2

3

c(3t− 2), 2
3 ≤ t ≤ 1.

This establishes the isomorphism. �

4.2. The fundamental group. Again with reference with a base point x0, we
consider in L(x0) an equivalence relation by decreeing that γ1 ∼ γ2 if there is a homotopy
with fixed end points between γ1 and γ2. The composition law in Lx0 descends to a
group structure in the quotient

π1(X,x0) = L(x0)/ ∼ .
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π1(X,x0) is the fundamental group of X with base point x0; in general it is nonabelian,
as we shall see in examples. As a consequence of Proposition 1.1, if x1, x2 ∈ X and
there is a path connecting x1 with x2, then π1(X,x1) ' π1(X,x2). In particular, if
X is pathwise connected the fundamental group π1(X,x0) is independent of x0 up to
isomorphism; in this situation, one uses the notation π1(X).

Definition 1.2. X is said to be simply connected if it is pathwise connected and
π1(X) = {e}.

The simplest example of a simply connected space is the one-point space {∗}.
Since the definition of the fundamental group involves the choice of a base point, to

describe the behaviour of the fundamental group we need to introduce a notion of map
which takes the base point into account. Thus, we say that a pointed space (X,x0) is a
pair formed by a topological space X with a chosen point x0. A map of pointed spaces
f : (X,x0) → (Y, y0) is a continuous map f : X → Y such that f(x0) = y0. It is easy
to show that a map of pointed spaces induces a group homomorphism f∗ : π(X,x0) →
π1(Y, y0).

4.3. Homotopy of maps. Given two topological spaces X, Y , a homotopy betwe-
en two continuous maps f, g : X → Y is a map F : X×I → Y such that F (x, 0) = f(x),
F (x, 1) = g(x) for all x ∈ X. One then says that f and g are homotopic.

Definition 1.3. One says that two topological spaces X, Y are homotopically equi-
valent if there are continuous maps f : X → Y , g : Y → X such that g ◦ f is homotopic
to idX , and f ◦ g is homotopic to idY . The map f , g are said to be homotopical equi-
valences,.

Of course, homeomorphic spaces are homotopically equivalent.

Example 1.4. For any manifold X, take Y = X×R, f(x) = (x, 0), g the projection
onto X. Then F : X × I → X, F (x, t) = x is a homotopy between g ◦ f and idX , while
G : X ×R× I → X ×R, G(x, s, t) = (x, st) is a homotopy between f ◦ g and idY . So X
and X × R are homotopically equivalent. The reader should be able to concoct many
similar examples.

Given two pointed spaces (X,x0), (Y, y0), we say they are homotopically equivalent
if there exist maps of pointed spaces f : (X,x0) → (Y, y0), g : (Y, y0) → (X,x0) that
make the topological spaces X, Y homotopically equivalent.

Proposition 1.5. Let f : (X,x0) → (Y, y0) be a homotopical equivalence. Then
f∗ : π∗(X,x0) → (Y, y0) is an isomorphism.

Proof. Let g : (Y, y0) → (X,x0) be a map that realizes the homotopical equival-
ence, and denote by F a homotopy between g ◦ f and idX . Let γ be a loop based at x0.
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Then g ◦ f ◦ γ is again a loop based at x0, and the map

Γ: I × I → X, Γ(s, t) = F (γ(s), t)

is a homotopy between γ and g ◦ f ◦ γ, so that γ = g ◦ f ◦ γ in π1(X,x0). Hence,
g∗ ◦ f∗ = idπ1(X,x0). In the same way one proves that f∗ ◦ g∗ = idπ1(Y,y0), so that the
claim follows. �

Corollary 1.6. If two pathwise connected spaces X and Y are homotopic, then
their fundamental groups are isomorphic.

Definition 1.7. A topological space is said to be contractible if it is homotopically
equivalent to the one-point space {∗}.

A contractible space is simply connected.

Exercise 1.8. 1. Show that Rn is contractible, hence simply connected. 2. Com-
pute the fundamental groups of the following spaces: the punctured plane (R2 minus a
point); R3 minus a line; Rn minus a (n− 2)-plane (for n ≥ 3).

4.4. Homotopic invariance of de Rham cohomology. We may now prove the
invariance of de Rham cohomology under homotopy.

Lemma 1.9. Let X, Y be differentiable manifolds, and let f, g : X → Y be two
homotopic smooth maps. Then the morphisms they induce in cohomology coincide,
f ] = g].

Proof. We choose a homotopy between f and g in the form of a smooth5 map
F : X × R → Y such that

F (x, t) = f(x) if t ≤ 0, F (x, t) = g(x) if t ≥ 1 .

We define sections s0, s1 : X → X × R by letting s0(x) = (x, 0), s1(x) = (x, 1). Then
f = F ◦ s0, g = F ◦ s1, so f ] = s]

0 ◦ F ] and g] = s]
1 ◦ F ]. Let p1 : X × R → X,

p2 : X × R → R be the projections. Then s]
0 ◦ p

]
1 = s]

1 ◦ p
]
1 = Id. By Proposition 1.3 p]

1

is an isomorphism. Then s]
0 = s]

1, and f ] = F ] = g]. �

Proposition 1.10. Let X and Y be homotopic differentiable manifolds. Then
Hk

dR(X) ' Hk
dR(Y ) for all k ≥ 0.

Proof. If f , g are two smooth maps realizing the homotopy, then f ]◦g] = g]◦f ] =
Id, so that both f ] and g] are isomorphisms. �

5For the fact that F can be taken smooth cf. [3].
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4.5. The van Kampen theorem. The computation of the fundamental group
of a topological space is often unsuspectedly complicated. An important tool for such
computations is the van Kampen theorem, which we state without proof. This theorem
allows one, under some conditions, to compute the fundamental group of an union U∪V
if one knows the fundamental groups of U , V and U ∩ V . As a prerequisite we need
the notion of amalgamated product of two groups. Let G, G1, G2 be groups, with fixed
morphisms f1 : G→ G1, f2 : G→ G2. Let F the free group generated by G1 qG2 and
denote by · the product in this group.6 Let R be the normal subgroup generated by
elements of the form7

(xy) · y−1 · x−1 with x, y both in G1 or G2

f1(g) · f2(g)−1 for g ∈ G.

Then one defines the amalgamated product G1 ∗G G2 as F/R. There are natural maps
g1 : G1 → G1 ∗G G2, g2 : G2 → G1 ∗G G2 obtained by composing the inclusions with
the projection F → F/R, and one has g1 ◦ f1 = g2 ◦ f2. Intuitively, one could say that
G1 ∗G G2 is the smallest subgroup generated by G1 and G2 with the identification of
f1(g) and f2(g) for all g ∈ G.

Exercise 1.11. (1) Prove that if G1 = G2 = {e}, and G is any group, then
G1 ∗G G2 = {e}.

(2) LetG be the group with three generators a, b, c, satisfying the relation ab = cba.
Let Z → G be the homomorphism induced by 1 7→ c. Prove that G ∗Z G is
isomorphic to a group with four generators m, n, p, q, satisfying the relation
mnm−1 n−1 p q p−1 q−1 = e. �

Suppose now that a pathwise connected space X is the union of two pathwise con-
nected open subsets U , V , and that U ∩V is pathwise connected. There are morphisms
π1(U ∩ V ) → π1(U), π1(U ∩ V ) → π1(V ) induced by the inclusions.

Proposition 1.12. π1(X) ' π1(U) ∗π1(U∩V ) π1(V ).

This is a simplified form of van Kampen’s theorem, for a full statement see [6].

Example 1.13. We compute the fundamental group of a figure 8. Think of the figure
8 as the union of two circles X in R2 which touch in one pount. Let p1, p2 be points
in the two respective circles, different from the common point, and take U = X −{p1},
V = X − {p2}. Then π1(U) ' π1(V ) ' Z, while U ∩ V is simply connected. It follows
that π1(X) is a free group with two generators. The two generators do not commute;
this can also be checked “experimentally” if you think of winding a string along the

6F is the group whose elements are words xε1
1 x2 . . . xε

n or the empty word, where the letters xi are

either in G1 or G2, εi = ±1, and the product is given by juxtaposition.
7The first relation tells that the product of letters in the words of F are the product either in G1

or G2, when this makes sense. The second relation kind of “glues” G1 and G2 along the images of G.
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figure 8 in a proper way... More generally, the fundamental group of the corolla with n
petals (n copies of S1 all touching in a single point) is a free group with n generators.

Exercise 1.14. Prove that for any n ≥ 2 the sphere Sn is simply connected. Deduce
that for n ≥ 3, Rn minus a point is simply connected.

Exercise 1.15. Compute the fundamental group of R2 with n punctures.

4.6. Other ways to compute fundamental groups. Again, we state some res-
ults without proof.

Proposition 1.16. If G is a simply connected topological group, and H is a normal
discrete subgroup, then π1(G/H) ' H.

Since S1 ' R/Z, we have thus proved that

π1(S1) ' Z.

In the same way we compute the fundamental group of the n-dimensional torus

Tn = S1 × · · · × S1 (n times) ' Rn/Zn,

obtaining π1(Tn) ' Zn.

Exercise 1.17. Compute the fundamental group of a 2-dimensional punctured torus
(a torus minus a point). Use van Kampen’s theorem to compute the fundamental
group of a Riemann surface of genus 2 (a compact, orientable, connected 2-dimensional
differentiable manifold of genus 2, i.e., “with two handles”). Generalize your result to
any genus.

Exercise 1.18. Prove that, given two pointed topological spaces (X,x0), (Y, y0),
then

π1(X × Y, (x0, y0)) ' π1(X,x0)× π1(Y, y0). �

This gives us another way to compute the fundamental group of the n-dimensional
torus Tn (once we know π1(S1)).

Exercise 1.19. Prove that the manifolds S3 and S2 × S1 are not homeomorphic.

Exercise 1.20. Let X be the space obtained by removing a line from R2, and a
circle linking the line. Prove that π1(X) ' Z ⊕ Z. Prove the stronger result that X is
homotopic to the 2-torus.





CHAPTER 2

Singular homology theory

1. Singular homology

In this Chapter we develop some elements of the homology theory of topological
spaces. There are many different homology theories (simplicial, cellular, singular, Čech-
Alexander, ...) even though these theories coincide when the topological space they
are applied to is reasonably well-behaved. Singular homology has the disadvantage of
appearing quite abstract at a first contact, but in exchange of this we have the fact that
it applies to any topological space, its functorial properties are evident, it requires very
little combinatorial arguments, it relates to homotopy in a clear way, and once the basic
properties of the theory have been proved, the computation of the homology groups is
not difficult.

1.1. Definitions. The basic blocks of singular homology are the continuous maps
from standard subspaces of Euclidean spaces to the topological space one considers. We
shall denote by P0, P1, . . . , Pn the points in Rn

P0 = 0, Pi = (0, 0, . . . , 0, 1, 0, . . . , 0) (with just one 1 in the ith position).

The convex hull of these points is denoted by ∆n and is called the standard n-simplex.
Alternatively, one can describe ∆k as the set of points in Rn such that

xi ≥ 0, i = 1, . . . , n,
n∑

i=1

xi ≤ 1.

The boundary of ∆n is formed by n + 1 faces F i
n (i = 0, 1, . . . , n) which are images of

the standard (n − 1)-simplex by affine maps Rn−1 → Rn. These faces may be labelled
by the vertex of the simplex which is opposite to them: so, F i

n is the face opposite to
Pi.

Given a topological spaceX, a singular n-simplex inX is a continuous map σ : ∆n →
X. The restriction of σ to any of the faces of ∆n defines a singular (n − 1)-simplex
σi = σ|F i

n
(or σ ◦ F i

n if we regard F i
n as a singular (n− 1)-simplex).

If Q0, . . . , Qk are k+1 points in Rn, there is a unique affine map Rk → Rn mapping
P0, . . . , Pk to the Q’s. This affine map yields a singular k-simplex in Rn that we denote
< Q0, . . . , Qk >. If Qi = Pi for 0 ≤ i ≤ k, then the affine map is the identity on Rk, and
we denote the resulting singular k-simplex by δk. The standard n-simplex ∆n may so

17
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also be denoted < P0, . . . , Pn >, and the face F i
n of ∆n is the singular (n − 1)-simplex

< P0, . . . , P̂i, . . . , Pn >, where the hat denotes omission.

Choose now a commutative unital ring R. We denote by Sk(X,R) the free group
generated over R by the singular k-simplexes in X. So an element in Sk(X,R) is a
“formal” finite linear combination (called a singular chain)

σ =
∑

j

aj σj

with aj ∈ R, and the σj are singular k-simplexes. Thus, Sk(X,R) is an R-module, and,
via the inclusion Z → R given by the identity in R, an abelian group. For k ≥ 1 we
define a morphism ∂ : Sk(X,R) → Sk−1(X,R) by letting

∂σ =
k∑

i=0

(−1)i σ ◦ F i
k

for a singular k-simplex σ and exteding by R-linearity. For k = 0 we define ∂σ = 0.

Example 2.1. If Q0, . . . , Qk are k + 1 points in Rn, one has

∂ < Q0, . . . , Qk >=
k∑

i=0

(−1)i < Q0, . . . , Q̂i, . . . , Qk > .

Proposition 2.2. ∂2 = 0.

Proof. Let σ be a singular k-simplex.

∂2σ =
k∑

i=0

(−1)i ∂(σ ◦ F i
k) =

k∑
i=0

(−1)i
k−1∑
j=0

(−1)j σ ◦ F i
k ◦ F

j
k−1

=
k∑

j<i=1

(−1)i+j σ ◦ F j
k ◦ F

i−1
k−1 +

k−1∑
0=i≤j

(−1)i+j σ ◦ F i
k ◦ F

j
k−1

Resumming the first sum by letting i = j, j = i− 1 the last two terms cancel. �

So (S•(X,R), ∂) is a (homology) graded differential module. Its homology groups
Hk(X,R) are the singular homology groups of X with coefficients in R. We shall use
the following notation and terminology:

Zk(X,R) = ker ∂ : Sk(X,R) → Sk−1(X,R) (the module of k-cycles);

Bk(X,R) = Im ∂ : Sk+1(X,R) → Sk(X,R) (the module of k-boundaries);

therefore, Hk(X,R) = Zk(X,R)/Bk(X,R). Notice that Z0(X,R) ≡ S0(X,R).

1.2. Basic properties.

Proposition 2.3. If X is the union of pathwise connected components Xj, then
Hk(X,R) ' ⊕jHk(Xj , R) for all k ≥ 0.
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Proof. Any singular k-simplex must map ∆k inside a pathwise connected compon-
ents (if two points of ∆k would map to points lying in different components, that would
yield path connecting the two points). �

Proposition 2.4. If X is pathwise connected, then H0(X,R) ' R.

Proof. This follows from the fact that a 0-cycle c =
∑

j aj xj is a boundary if and
only if

∑
j aj = 0. Indeed, if c is a boundary, then c = ∂(

∑
j bjγj) for some paths γj , so

that c =
∑

j bj(γj(1)− γj(0)), and the coefficients sum up to zero. On the other hand,
if
∑

j aj = 0, choose a base point x0 ∈ X. Then one can write

c =
∑

j

aj xj =
∑

j

aj xj − (
∑

j

aj)x0 =
∑

j

aj(xj − x0) = ∂
∑

j

ajγj

if γj is a path joining x0 to xj .

This means thatB0(X,R) is the kernel of the surjective map Z0(X,R) = S0(X,R) →
R given by

∑
j aj xj 7→

∑
j aj , so that H0(X,R) = Z0(X,R)/B0(X,R) ' R. �

Let f : X → Y be a continuous map of topological spaces. If σ is a singular k-simplex
in X, then f ◦σ is a singular k-simplex in Y . This yields a morphism Sk(f) : Sk(X,R) →
Sk(Y,R) for every k ≥ 0. It is immediate to prove that Sk(f) ◦ ∂ = ∂ ◦ Sk+1(f):

Sk(f)(∂σ) = f ◦
k+1∑
i=0

(−1)iσ ◦ F i
k+1 = ∂(f ◦ σ) = ∂(Sk(f)(σ)) .

This implies that f induces a morphism Hk(X,R) → Hk(Y,R), that we denote f[. It
is also easy to check that, if g : Y → W is another continous map, then Sk(g ◦ f) =
Sk(g) ◦ Sk(f), and (g ◦ f)[ = g[ ◦ f[.

1.3. Homotopic invariance.

Proposition 2.5. If f, g : X → Y are homotopic map, the induced maps in homo-
logy coincide.

It should be by now clear that this yields as an immediate consequence the homotopic
invariance of the singular homology.

Corollary 2.6. If two topological spaces are homotopically equivalent, their singu-
lar homologies are isomorphic.

To prove Proposition 2.5 we build, for every k ≥ 0 and any topological space X, a
morphism (called the prism operator) P : Sk(X) → Sk+1(X × I) (here I denotes again
the unit closed interval in R). We define the morphism P in two steps.

Step 1. The first step consists in definining a singular (k + 1)-chain πk+1 in the
topological space ∆k × I by subdiving the polyhedron ∆k × I ⊂ Rk+1 (a “prysm”
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A0 A1

B0 B1

Figure 1. The prism π2 over ∆1

over the standard symplesx ∆k) into a number of singular (k + 1)-simplexes, and sum-
ming them with suitable signs. The polyhedron ∆k × I ⊂ Rk+1 has 2(k + 1) vertices
A0, . . . , Ak, B0, . . . , Bk, given by Ai = (Pi, 0), Bi = (Pi, 1). We define

πk+1 =
k∑

i=0

(−1)i < A0, . . . , Ai, Bi, . . . , Bk > .

For instance, for k = 1 we have

π2 =< A0, B0, B1 > − < A0, A1, B1 > .

Step 2. If σ is a singular k-simplex in a topological spaceX, then σ×id is a continous
map ∆k × I → X × I. Therefore it makes sense to define the singular (k + 1)-chain
P (σ) in X as

(2.1) P (σ) = Sk+1(σ × id)(πk+1).

The definition of the prism operator implies its functoriality:

Proposition 2.7. If f : X → Y is a continuous map, the diagram

Sk(X) P //

Sk(f)

��

Sk+1(X × I)

Sk+1(f×id)
��

Sk(Y ) P // Sk+1(Y × I)

commutes.

Proof. It is just a matter of computation.

Sk+1(f × id) ◦ P (σ) = Sk+1(f × id) ◦ Sk+1(σ × id)(πk+1)

= Sk+1(f ◦ σ × id)(πk+1) = P (Sk(f)) .

�

The relevant property of the prism operator is proved in the next Lemma.
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Lemma 2.8. Let λ0, λi : X → X × I be the maps λ0(x) = (x, 0), λ1(x) = (x, 1).
Then

(2.2) ∂ ◦ P + P ◦ ∂ = Sk(λ1)− Sk(λ0)

as maps Sk(X) → Sk(X × I).

Proof. Let δk : ∆k → ∆k be the identity map regarded as singular k-simplex in
∆k. Notice that P (δk) = πk+1.

We first check the identity (2.2) for X = ∆k, applying both sides of (2.2) to δk. The
right side yields

< B0, . . . , Bk > − < A0, . . . Ak > .

We compute now the action of the left side of (2.2) on δk.

∂P (δk) =
k∑

i=0

(−1)i∂ < A0, . . . , Ai, Bi, . . . , Bk >

=
k∑

j≤i=0

(−1)i+j < A0, . . . , Âj , . . . Ai, Bi, . . . , Bk >

+
k∑

i≤j=0

(−1)i+j+1 < A0, . . . Ai, Bi, . . . , B̂j , . . . Bk > .

All terms with i = j cancel with the exception of < B0, . . . , Bk > − < A0, . . . Ak >. So
we have

∂P (δk) = < B0, . . . , Bk > − < A0, . . . Ak >

+
k∑

j<i=1

(−1)i+j < A0, . . . , Âj , . . . Ai, Bi, . . . , Bk >

−
k∑

i<j=1

(−1)i+j < A0, . . . Ai, Bi, . . . , B̂j , . . . Bk > .

On the other hand, one has

∂δk =
k∑

j=0

(−1)j < P0, . . . , P̂j , . . . , Pk > .

Since

P (< P0, . . . , P̂j , . . . , Pk >) =
∑
i<j

(−1)i < A0, . . . , Ai, Bi, . . . , B̂j , . . . , Bk >

−
∑
i>j

(−1)i < A0, . . . , Âj , . . . , Ai, Bi, . . . , Bk >

we obtain the equation (2.2) (note that exchanging the indices i, j changes the sign).
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We must now prove that if equation (2.2) holds when both sides are applied to δk,
then it holds in general. One has indeed

∂P (σ) = ∂Sk+1(σ × id)(P (δk)) = Sk(σ × id)(∂P (δk))

P (∂σ) = P∂(Sk(σ)(δk))

= P (Sk−1(σ)(∂δk)) = Sk(σ × id)(P (∂δk))

so that

∂P (σ) + P (∂σ) = Sk+1(σ × id)(∂P (δk)) + P (∂δk))

= Sk+1(σ × id)(Sk(λ̄1)− Sk(λ̄0)) = Sk(λ1)− Sk(λ0)

where λ̄0, λ̄1 are the obvious maps ∆k → ∆k × I. �

Equation (2.2) states that P is a hotomopy (in the sense of homological algebra)
between the maps λ0 and λ1, so that one has (λ1)[ = (λ2)[ in homology.

Proof of Proposition 2.5. Let F be a hotomopy between the maps f and g. Then,
f = F ◦ λ0, g = F ◦ λ1, so that

f[ = (F ◦ λ0)[ = F[ ◦ (λ0)[ = F[ ◦ (λ1)[ = (F ◦ λ1)[ = g[.

�

Corollary 2.9. If X is a contractible space then

H0(X,R) ' R, Hk(X,R) = 0 for k > 0.

1.4. Relation between the first fundamental group and homology. A loop
γ in X may be regarded as a closed singular 1-simplex. If we fix a point x0 ∈ X, we
have a set-theoretic map χ : L(x0) → S1(X,Z). The following result tells us that χ
descends to a group homomorphism χ : π1(X,x0) → H1(X,Z).

Proposition 2.10. If two loops γ1, γ2 are homotopic, then they are homologous
as singular 1-simplexes. Moreover, given two loops at x0, γ1, γ2, then χ(γ2 ◦ γ1) =
χ(γ1) + χ(γ2) in H1(X,Z).

Proof. Choose a homotopy with fixed endpoints between γ1 and γ2, i.e., a map
Γ: I × I → X such that

Γ(t, 0) = γ1(t), Γ(t, 1) = γ2(t), Γ(0, s) = Γ(1, s) = x0 for all s ∈ I.

Define the loops γ3(t) = Γ(1, t), γ4(t) = Γ(0, t), γ5(t) = Γ(t, t). Both loops γ3 and
γ4 are actually the constant loop at x0. Consider the points P0, P1, P2, Q = (1, 1) in
R2, and define the singular 2-simplex

σ = Γ◦ < P0, P1, Q > −Γ◦ < P0, P2, Q >
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Figure 2

(cf. Figure 2). We then have

∂σ = Γ◦ < P1, Q > −Γ◦ < P0, Q > +Γ◦ < P0, P1 >

− Γ◦ < P2, Q > +Γ◦ < P0, Q > −Γ◦ < P0, P2 >

= γ3 − γ5 + γ1 − γ2 + γ5 + γ4 = γ1 − γ2.

This proves that χ(γ1) and χ(γ2) are homologous. To prove the second claim we need
to define a singular 2-simplex σ such that

∂σ = γ1 + γ2 − γ2 · γ1.

Consider the point T = (0, 1
2) in the standard 2-simplex ∆2 and the segment Σ

joining T with P1 (cf. Figure 3). If Q ∈ ∆2 lies on or below Σ, consider the line joining
P0 with Q, parametrize it with a parameter t such that t = 0 in P0 and t = 1 in the
intersection of the line with Σ, and set σ(Q) = γ1(t). Analogously, if Q lies above or
on Σ, consider the line joining P2 with Q, parametrize it with a parameter t such that
t = 1 in P2 and t = 0 in the intersection of the line with Σ, and set σ(Q) = γ2(t). This
defines a singular 2-simplex σ : ∆2 →X, and one has

∂σ = σ◦ < P1, P2 > −σ◦ < P0, P2 > +σ◦ < P0, P1 >

= γ2 − γ2 · γ1 + γ1.

�

We recall from basic group theory the notion of commutator subgroup. Let G be
any group, and let C(G) be the subgroup generated by elements of the form ghg−1h−1,
g, h ∈ G. The subgroup C(G) is obviously normal in G; the quotient group G/C(G) is
abelian. We call it the abelianization of G. It turns out that the first homology group
of a space with integer coefficients is the abelianization of the fundamental group.

Proposition 2.11. If X is pathwise connected, the morphism χ : π1(X,x0) →
H1(X,Z) is surjective, and its kernel is the commutator subgroup of π1(X,x0).
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Proof. Let c =
∑

j ajσj be a 1-cycle. So we have

0 = ∂c =
∑

j

ai(σj(1)− σj(0)).

In this linear combination of points with coefficients in Z some of the points may coin-
cide; the sum of the coefficients corresponding to the same point must vanish. Choose a
base point x0 ∈ X and for every j choose a path αj from x0 to σj(0) and a path βj from
x0 to σj(1), in such a way that they depend on the endpoints and not on the indexing
(e.g, if σj(0) = σk(0), choose αj = αk). Then we have∑

j

aj(βj − αj) = 0.

Now if we set σ̄j = αj + σj − βj we have c =
∑

j aj σ̄j . Let γj be the loop β−1 · σj · α;
then,

χ(
[
Πjγ

aj

j

]
) = [c]

so that χ is surjective.

To prove the second claim we need to show that the commutator subgroup of
π1(X,x0) coincides with kerχ. We first notice that since H1(X,Z) is abelian, the
commutator subgroup is necessarily contained in kerχ. To prove the opposite inclusion,
let γ be a loop that in homology is a 1-boundary, i.e., γ = ∂

∑
j ajσj . So we may write

(2.3) σj = γ0j − γ1j + γ2j

for some paths γkj , k = 0, 1, 2. Choose paths (cf. Figure 4)

α0j from x0 to γ1j(0) = γ2j(0) = P0

α1j from x0 to γ2j(1) = γ0j(0) = P1

α2j from x0 to γ1j(1) = γ0j(1) = P2

and consider the loops

β0j = α−1
0j · γ

−1
1j · α2j , β1j = α−1

2j · γ0j · α1j , β2j = α−1
1j · γ2j · α0j .
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Note that the loops

βj = β0j · β1j · β2j = α−1
0j · γ

−1
1j · γ0j · γ2j · α0j

are homotopic to the constant loop at x0 (since the image of a singular 2-simplex is
contractible). As a consequence one has the equality in π1(X,x0)

Πj [βj ]aj = e.

This implies that the image of Πj [βj ]aj in π1(X,x0)/C(π1(X,x0)) is the identity. On the
other hand from (2.3) we see that γ coincides, up to reordering of terms, with Πjβ

aj

j , so
that the image of the class of γ in π1(X,x0)/C(π1(X,x0)) is the identity as well. This
means that γ lies in the commutator subgroup. �

So whenever in the examples in Chapter 1 the fundamental groups we computed
turned out to be abelian, we were also computing the group H1(X,Z). In particular,

Corollary 2.12. H1(X,Z) = 0 if X is simply connected.

Exercise 2.13. Compute H1(X,Z) when X is: 1. the corolla with n petals, 2. Rn

minus a point, 3. the circle S1, 4. the torus T 2, 5. a punctured torus, 6. a Riemann
surface of genus g.

2. Relative homology

2.1. The relative homology complex. Given a topological space X, let A be
any subspace (that we consider with the relative topology). We fix a coefficient ring R
which for the sake of conciseness shall be dropped from the notation. For every k ≥ 0
there is a natural inclusion (injective morphism of R-modules) Sk(A) ⊂ Sk(X); the ho-
mology operators of the complexes S•(A), S•(X) define a morphism δ : Sk(X)/Sk(A) →
Sk−1(X)/Sk−1(A) which squares to zero. If we define

Z ′k(X,A) = ker ∂ :
Sk(X)
Sk(A)

→ Sk−1(X)
Sk−1(A)
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B′k(X,A) = Im ∂ :
Sk+1(X)
Sk+1(A)

→ Sk(X)
Sk(A)

we have B′k(X,A) ⊂ Z ′k(X,A).

Definition 2.1. The homology groups of X relative to A are the R-modules
Hk(X,A) = Z ′k(X,A)/B′k(X,A). When we want to emphasize the choice of the ring R
we write Sk(X,A;R).

The relative homology is more conveniently defined in a slightly different way, which
makes clearer its geometrical meaning. It will be useful to consider the following diagram

0

��
Zk(X)

qk //

��

Z ′k(X,A)

��
Sk(A) //

∂
��

Sk(X)
qk //

∂
��

Sk(X)/Sk(A)

∂
��

// 0

0 // Bk−1(A) // Bk−1(X)
qk−1

// B′k−1(X,A) // 0

Let

Zk(X,A) = {c ∈ Sk(X) | ∂c ∈ Sk−1(A)}

Bk(X,A) = {c ∈ Sk(X) | c = ∂b+ c′ with b ∈ Sk+1(X), c′ ∈ Sk(A)} .

Thus, Zk(X,A) is formed by the chains whose boundary is in A, and Bk(A) by the
chains that are boundaries up to chains in A.

Lemma 2.2. Zk(X,A) is the pre-image of Z ′k(X,A) under the quotient homomorph-
ism qk; that is, an element c ∈ Sk(X) is in Zk(X,A) if and only if qk(c) ∈ Z ′k(X,A).

Proof. If qk(c) ∈ Z ′k(X,A) then 0 = ∂ ◦ qk(c) = qk−1 ◦ ∂(c) so that c ∈ Zk(X,A).
If c ∈ Zk(X,A) then qk−1 ◦ ∂(c) = 0 so that qk(c) ∈ Z ′k(X,A). �

Lemma 2.3. c ∈ Sk(X) is in Bk(X,A) if and only if qk(c) ∈ B′k(X,A).

Proof. If c = ∂b + c′ with b ∈ Sk+1(X) and c′ ∈ Sk(A) then qk(c) = qk ◦ ∂b =
∂ ◦ qk+1(b) ∈ B′k(X,A). Conversely, if qk(c) ∈ B′k(X,A) then qk(c) = ∂ ◦ qk+1(b) for
some b ∈ Sk+1(X), then c− ∂b ∈ ker qk−1 so that c = ∂b+ c′ with c′ ∈ Sk(A). �

Proposition 2.4. For all k ≥ 0, Hk(X,A) ' Zk(X,A)/Bk(X,A).
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Proof. What we should do is to prove the commutativity and the exactness of the
rows of the diagram

0 // Sk(A)

∼
��

// Bk(X,A)
qk //

��

B′k(X,A)

��

// 0

0 // Sk(A) // Zk(X,A)
qk // Z ′k(X,A) // 0

Commutativity is obvious. For the exactness of the first row, it is obvious that Sk(A) ⊂
Bk(X,A) and that qk(c) = 0 if c ∈ Sk(A). On the other hand if c ∈ Bk(X,A) we have
c = ∂b + c′ with b ∈ Sk+1(X) and c′ ∈ Sk(A), so that qk(c) = 0 implies 0 = qk ◦ ∂b =
∂ ◦ qk+1(b), which in turn implies c ∈ Sk(A). To prove the surjectivity of qk, just notice
that by definition an element in B′k(X,A) may be represented as ∂b with b ∈ Sk+1(X).

As for the second row, we have Sk(A) ⊂ Zk(X,A) from the definition of Zk(X,A).
If c ∈ Sk(A) then qk(c) = 0. If c ∈ Zk(X,A) and qk(c) = 0 then c ∈ Sk(A) by the
definition of Z ′k(X,A). Moreover qk is surjective by Lemma 2.2. �

2.2. Main properties of relative homology. We list here the main properties
of the cohomology groups Hk(X,A). If a proof is not given the reader should provide
one by her/himself.

• If A is empty, Hk(X,A) ' Hk(X).

• The relative cohomology groups are functorial in the following sense. Given to-
pological spaces X, Y with subsets A ⊂ X, B ⊂ Y , a continous map of pairs is a
continuous map f : X → Y such that f(A) ⊂ B. Such a map induces in natural way
a morphisms of R-modules f[ : H•(X,A) → H•(Y,B). If we consider the inclusion of
pairs (X, ∅) ↪→ (X,A) we obtain a morphism H•(X) →• H(X,A).

• The inclusion map i : A ↪→ X induces a morphism H•(A) → H•(X) and the
composition H•(A) → H•(X) → H•(X,A) vanishes (since Zk(A) ⊂ Bk(X,A)).

• If X = ∪jXj is a union of pathwise connected components, then Hk(X,A) '
⊕jHk(Xj , Aj) where Aj = A ∩Xj .

Proposition 2.5. If X is pathwise connected and A is nonempty, then H0(X,A)
= 0.

Proof. If c =
∑

j ajxj ∈ S0(X) and γj is a path from x0 ∈ A to xj , then
∂(
∑

j ajxj) = c− (
∑

j aj)x0 so that c ∈ B0(X,A). �

Corollary 2.6. H0(X,A) is a free R-module generated by the components of X
that do not meet A.

Indeed Hj(Xj , Aj) = 0 if Aj is empty.

Proposition 2.7. If A = {x0} is a point, Hk(X,A) ' Hk(X) for k > 0.



28 2. HOMOLOGY THEORY

Proof.

Zk(X,A) = {c ∈ Sk(X) | ∂c ∈ Sk−1(A)} = Zk(X) when k > 0

Bk(X,A) = {c ∈ Sk(X) | c = ∂b+ c′ with b ∈ Sk+1(X), c′ ∈ Sk(A)}
= Bk(X) when k > 0.

�

2.3. The long exact sequence of relative homology. By definition the relative
homology of X with respect to A is the homology of the quotient complex S•(X)/S•(A).
By Proposition 1.6, adapted to homology by reversing the arrows, one obtains a long
exact cohomology sequence

· · · → H2(A) → H2(X) → H2(X,A)

→ H1(A) → H1(X) → H1(X,A)

→ H0(A) → H0(X) → H0(X,A) → 0

Exercise 2.8. Assume to know that H1(S1, R) ' R and Hk(S1, R) = 0 for k >
1. Use the long relative homology sequence to compute the relative homology groups
H•(R2, S1;R).

3. The Mayer-Vietoris sequence

The Mayer-Vietoris sequence (in its simplest form, that we are going to consider
here) allows one to compute the homology of a union X = U ∪ V from the knowledge
of the homology of U , V and U ∩ V . This is quite similar to what happens in de Rham
cohomology, but in the case of homology there is a subtlety. Let us denote A = U ∩ V .
One would think that there is an exact sequence

0 → Sk(A) i→ Sk(U)⊕ Sk(V )
p→ Sk(X) → 0

where i is the morphism induced by the inclusions A ↪→ U , A ↪→ V , and p is given by
p(σ1, σ2) = σ1 − σ2 (again using the inclusions U ↪→ X, V ↪→ X). However, it is not
possible to prove that p is surjective (if σ is a singular k-simplex whose image is not
contained in U or V , it is not in general possible to write it as a difference of standard
k-simplexes in U , V ). The trick to circumvent this difficulty consists in replacing S•(X)
with a different complex that however has the same homology.

Let U = {Uα} be an open cover of X.

Definition 2.1. A singular k-chain σ =
∑

j ajσj is U-small if every singular k-
simplex σj maps into an open set Uα ∈ U for some α. Moreover we define SU

• (X) as
the subcomplex of S•(X) formed by U-small chains.1

The homology differential ∂ restricts to SU
• (X), so that one has a homology HU

• (X).

1Again, we understand the choice of a coefficient ring R.
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Figure 5. The join B(< E0, E1 >)

Proposition 2.2. HU
• (X) ' H•(X).

To prove this isomorphism we shall build a homotopy between the complexes SU
• (X)

and S•(X). This will be done in several steps.

Given a singular k-simplex < Q0, . . . , Qk > in Rn and a point B ∈ Rn we consider
the singular simplex < B,Q0, . . . , Qk >, called the join of B with < Q0, . . . , Qk >. This
operator B is then extended to singular chains in Rn by linearity. The following Lemma
is easily proved.

Lemma 2.3. ∂ ◦B +B ◦ ∂ = Id on Sk(Rn) if k > 0, while ∂ ◦B(σ) = σ− (
∑

j aj)B
if σ =

∑
j ajxj ∈ S0(Rn).

Next we define operators Σ: Sk(X) → Sk(X) and T : Sk(X) → Sk+1(X). The
operator Σ is called the subdivision operator and its effect is that of subdividing a
singular simplex into a linear combination of “smaller” simplexes. The operators Σ
and T , analogously to what we did for the prism operator, will be defined for X = ∆k

(the space consisting of the standard k-simplex) and for the “identity” singular simplex
δk : ∆k → ∆k, and then extended by functoriality. This should be done for all k. One
defines

Σ(δ0) = δ0, T (δ0) = 0.

and then extends recursively to positive k:

Σ(δk) = Bk(Σ(∂δk)), T (δk) = Bk(δk − Σ(δk)− T (∂δk))

where the point Bk is the barycenter of the standard k-simplex ∆k,

Bk =
1

k + 1

k∑
j=0

Pj .

Example 2.4. For k = 1 one gets Σ(δ1) =< B1P1 > − < B1P0 >; for k = 2, the
action of Σ splits ∆2 into smaller simplexes as shown in Figure 6. �
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Figure 6. The subdivision operator Σ splits ∆2 into the chain
< B2,M0, P2 > − < B2,M0, P1 > − < B2,M1, P2 > + < B2,M1, P0 >

+ < B2,M2, P1 > − < B2,M2, P0 >

The definition of Σ and T for every topological space and every singular k-simplex
σ in X is

Σ(σ) = Sk(σ)(Σ(δk)), T (σ) = Sk+1(σ)(T (δk)).

Lemma 2.5. One has the identities

∂ ◦ Σ = Σ ◦ ∂, ∂ ◦ T + T ◦ ∂ = Id−Σ.

Proof. These identities are proved by direct computation (it is enough to consider
the case X = ∆k). �

The first identity tells us that Σ is a morphism of differential complexes, and the
second that T is a homotopy between Σ and Id, so that the morphism Σ[ induced in
homology by Σ is an isomorphism.

The diameter of a singular k-simplex σ in Rn is the maximum of the lengths of
the segments contained in σ. The proof of the following Lemma is an elementary
computation.

Lemma 2.6. Let σ =< E0, . . . , Ek >, with E0, . . . , Ek ∈ Rn. The diameter of every
simplex in the singular chain Σ(σ) ∈ Sk(Rn) is at most k/k + 1 times the diameter of
σ.

Proposition 2.7. Let X be a topological space, U = {Uα} an open cover, and σ

a singular k-simplex in X. There is a natural number r > 0 such that every singular
simplex in Σr(σ) is contained in a open set Uα.

Proof. As ∆k is compact there is a real positive number ε such that σ maps a
neighbourhood of radius ε of every point of ∆k into some Uα. Since

lim
r→+∞

kr

(k + 1)r
= 0
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there is an r > 0 such that Σr(δk) is a linear combination of simplexes whose diameter
is less than ε. But as Σr(σ) = Sk(σ)(Σr(δk)) we are done. �

This completes the proof of Proposition 2.2. We may now prove the exactness of
the Mayer-Vietoris sequence in the following sense. If X = U ∪ V (union of two open
subsets), let U = {U, V } and A = U ∩ V .

Proposition 2.8. For every k there is an exact sequence of R-modules

0 → Sk(A) i→ Sk(U)⊕ Sk(V )
p→ SU

k (X) → 0 .

Proof. One has a diagram of inclusions

U
jU

  @
@@

@@
@@

@

A

`U

??~~~~~~~

`V ��@
@@

@@
@@

X

V

jV

>>~~~~~~~~

Defining i(σ) = (`U ◦ σ,−`V ◦ σ) and p(σ1, σ2) = jU ◦ σ1 + jV ◦ σ2, the exactness of the
Mayer-Vietoris sequence is easily proved. �

The morphisms i and p commute with the homology operator ∂, so that one obtains
a long homology exact sequence involving the homologies H•(A), H•(V ) ⊕H•(V ) and
HU
• (X). But in view of Proposition 2.2 we may replace HU

• (X) with the homology
H•(X), so that we obtain the exact sequence

· · · → H2(A) → H2(U)⊕H2(V ) → H2(X)

→ H1(A) → H1(U)⊕H1(V ) → H1(X)

→ H0(A) → H0(U)⊕H0(V ) → H0(X) → 0

Exercise 2.9. Prove that for any ring R the homology of the sphere Sn with
coefficients in R, n ≥ 2, is

Hk(Sn, R) =

{
R for k = 0 and k = n

0 for 0 < k < n and k > n .

Exercise 2.10. Show that the relative homology of S2 mod S1 with coefficients in
Z is concentrated in degree 2, and H2(S2, S1) ' Z⊕ Z.

Exercise 2.11. Use the Mayer-Vietoris sequence to compute the homology of a
cylinder S1 × R minus a point with coefficients in Z. (Hint: since the cylinder is
homotopic to S1, it has the same homology). The result is (calling X the space)

H0(X,Z) ' Z, H1(X,Z) ' Z⊕ Z, H2(X,Z) = 0 .

Compare this with the homology of S2 minus three points.
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4. Excision

If a space X is the union of subspaces, the Mayer-Vietoris suquence allows one to
compute the homology of X from the homology of the subspaces and of their intersec-
tions. The operation of excision in some sense gives us information about the reverse
operation, i.e., it tells us what happen to the homology of a space if we “excise” a sub-
pace out of it. Let us recall that given a map f : (X,A) → (Y,B) (i.e., a map f : X → Y

such that f(A) ⊂ B) there is natural morphism f[ : H•(X,A) → H•(Y,B).

Definition 2.1. Given nested subspaces U ⊂ A ⊂ X, the inclusion map (X−U,A−
U) → (X,A) is said to be an excision if the induced morphism Hk(X − U,A − U) →
Hk(X,A) is an isomorphism for all k.

If (X − U,A− U) → (X,A) is an excision, we say that U “can be excised.”

To state the main theorem about excision we need some definitions from topology.

Definition 2.2. 1. Let i : A → X be an inclusion of topological spaces. A map
r : X → A is a retraction of i if r ◦ i = IdA.

2. A subspace A ⊂ X is a deformation retract of X if IdX is homotopically equivalent
to i ◦ r, where r : X → A is a retraction.

If r : X → A is a retraction of i : A→ X, then r[ ◦ i[ = IdH•(A), so that i[ : H•(A) →
H•(X) is injective. Moreover, if A is a deformation retract of X, then H•(A) ' H•(X).
The same notion can be given for inclusions of pairs, (A,B) ↪→ (X,Y ); if such a map is
a deformation retract, then H•(A,B) ' H•(X,Y ).

Exercise 2.3. Show that no retraction Sn → Sn−1 can exist.

Theorem 2.4. If the closure U of U lies in the interior int(A) of A, then U can be
excised.

Proof. We consider the cover U = {X − U, int(A)} of X. Let c =
∑

j ajσj ∈
Zk(X,A), so that ∂c ∈ Sk−1(A). In view of Proposition 2.2 we may assume that c is U-
small. If we cancel from σ those singular simplexes σj taking values in int(A), the class
[c] ∈ Hk(X,A) is unchanged. Therefore, after the removal, we can regard c as a relative
cycle inX−U mod A−U ; this implies that the morphism Hk(X−U,A−U) → Hk(X,A)
is surjective.

To prove that it is injective, let [c] ∈ Hk(X −U,A−U) be such that, regarding c as
a cycle in X mod A, it is a boundary, i.e., c ∈ Bk(X,A). This means that

c = ∂b+ c′ with b ∈ Sk+1(X), c′ ∈ Sk(A) .

We apply the operator Σr to both sides of this inequality, and split Σr(b) into b1 + b2,
where b1 maps into X − Ū and b2 into int(A). We have

Σr(c)− ∂b1 = Σr(c′) + ∂b2 .
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The chain in the left side is in X−U while the chain in the right side is in A; therefore,
both chains are in (X − U) ∩A = A− U . Now we have

Σr(c) = Σr(c′) + ∂b2 + ∂b1

with Σr(c′)+∂b2 ∈ Sk(A−U) and ∂b1 ∈ Sk+1(X−U) so that Σr(c) ∈ Bk(X−U,A−U),
which implies [c] = 0 (in Hk(X − U,A− U)). �

Exercise 2.5. Let B an open band around the equator of S2, and x0 ∈ B. Compute
the relative homology H•(S2 − x0, B − x0; Z).

To describe some more applications of excision we need the notion of augmented
homology modules. Given a topological space X and a ring R, let us define

∂] : S0(X,R) → R∑
j

ajσj 7→
∑

j

aj .

We define the augmented homology modules

H]
0(X,R) = ker ∂]/B0(X,R) , H]

k(X,R) = Hk(X,R) for k > 0 .

If A ⊂ X, one defines the augmented relative homology modules H]
k(X,A;R) in a

similar way, i.e.,

H]
k(X,A;R) = Hk(X,A;R) if A 6= ∅, H]

k(X,A;R) = Hk(X,R) if A = ∅ .

Exercise 2.6. Prove that there is a long exact sequence for the augmented relative
homology modules.

Exercise 2.7. Let Bn be the closed unit ball in Rn+1, Sn its boundary, and let E±n
be the two closed (northern, southern) emispheres in Sn.

1. Use the long exact sequence for the augmented relative homology modules to
prove that H]

k(S
n) ' H]

k(S
n, E−n ) and H]

k−1(S
n−1) ' H]

k(B
n, Sn−1). So we have

H]
k(B

n, Sn−1) = 0 for k < n, H]
n(Bn, Sn−1) ' R

2. Use excision to show that H]
k(S

n, E−n ) ' H]
k(B

n, Sn−1).

3. Deduce that H]
k(S

n) ' H]
k−1(S

n−1).

Exercise 2.8. Let Sn be the sphere realized as the unit sphere in Rn+1, and let
r : Sn → Sn → Sn be the reflection

r(x0, x1, . . . , xn) = (−x0, x1, . . . , xn).
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Prove that r[ : Hn(Sn) → Hn(Sn) is the multiplication by −1. (Hint: this is trivial for
n = 0, and can be extended by induction using the commutativity of the diagram

Hn(Sn) ∼ //

r[

��

H]
n−1(S

n−1)

r[

��

Hn(Sn) ∼ // H]
n−1(S

n−1)

which follows from Exercise 2.7.

Exercise 2.9. 1. The rotation group O(n + 1) acts on Sn. Show that for any
M ∈ O(n + 1) the induced morphism M[ : Hn(Sn) → Hn(Sn) is the multiplication by
detM = ±1.

2. Let a : Sn → Sn be the antipodal map, a(x) = −x. Show that a[ : Hn(Sn) →
Hn(Sn) is the multiplication by (−1)n+1.

Example 2.10. We show that the inclusion map (E+
n , S

n−1) → (Sn, E−n ) is an
excision. (Here we are excising the open southern emisphere, i.e., with reference to the
general theory, X = Sn, U = the open southern emisphere, A = E−n .)

The hypotheses of Theorem 2.4 are not satisfied. However it is enough to consider
the subspace

V =
{
x ∈ Sn |x0 > −1

2

}
.

V can be excised from (Sn, E−n ). But (E+
n , S

n−1) is a deformation retract of (Sn −
V,E−n − V ) so that we are done. �

We end with a standard application of algebraic topology. Let us define a vector
field on Sn as a continous map v : Sn → Rn+1 such that v(x) · x = 0 for all x ∈ Sn (the
product is the standard scalar product in Rn+1).

Proposition 2.11. A nowhere vanishing vector field v on Sn exists if and only if
n is odd.

Proof. If n = 2m+ 1 a nowhere vanishing vector field is given by

v(x0, . . . , x2m+1) = (−x1, x0,−x3, x2, . . . ,−x2m+1, x2m) .

Conversely, assume that such a vector field exists. Define

w(x) =
v(x)
‖v(x)‖

;

this is a map Sn → Sn, with w(x) · x = 0 for all x ∈ Sn. Define

F : Sn × I → Sn

F (x, t) = x cos tπ + w(x) sin tπ.

Since
F (x, 0) = x, F (x, 1

2) = w(x), F (x, 1) = −x
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the three maps Id, w, a are homotopic. But as a consequence of Exercise 2.9, n must
be odd. �





CHAPTER 3

Introduction to sheaves and their cohomology

1. Presheaves and sheaves

Let X be a topological space.

Definition 3.1. A presheaf of Abelian groups on X is a rule1 P which assigns an
Abelian group P(U) to each open subset U of X and a morphism (called restriction map)
ϕU,V : P(U) → P(V ) to each pair V ⊂ U of open subsets, so as to verify the following
requirements:

(1) P(∅) = {0};
(2) ϕU,U is the identity map;

(3) if W ⊂ V ⊂ U are open sets, then ϕU,W = ϕV,W ◦ ϕU,V .

The elements s ∈ P(U) are called sections of the presheaf P on U . If s ∈ P(U) is
a section of P on U and V ⊂ U , we shall write s|V instead of ϕU,V (s). The restriction
P|U of P to an open subset U is defined in the obvious way.

Presheaves of rings are defined in the same way, by requiring that the restriction
maps are ring morphisms. If R is a presheaf of rings on X, a presheaf M of Abelian
groups on X is called a presheaf of modules over R (or an R-module) if, for each open
subset U , M(U) is an R(U)-module and for each pair V ⊂ U the restriction map
ϕU,V : M(U) → M(V ) is a morphism of R(U)-modules (where M(V ) is regarded as
an R(U)-module via the restriction morphism R(U) → R(V )). The definitions in this
Section are stated for the case of presheaves of Abelian groups, but analogous definitions
and properties hold for presheaves of rings and modules.

Definition 3.2. A morphism f : P → Q of presheaves over X is a family of morph-
isms of Abelian groups fU : P(U) → Q(U) for each open U ⊂ X, commuting with the

1This rather naive terminology can be made more precise by saying that a presheaf on X is a

contravariant functor from the category OX of open subsets of X to the category of Abelian groups.

OX is defined as the category whose objects are the open subsets of X while the morphisms are the

inclusions of open sets.

37
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restriction morphisms; i.e., the following diagram commutes:

P(U)
fU−−−−→ Q(U)

ϕU,V

y yϕU,V

P(V )
fV−−−−→ Q(V )

Definition 3.3. The stalk of a presheaf P at a point x ∈ X is the Abelian group

Px = lim−→
U

P(U)

where U ranges over all open neighbourhoods of x, directed by inclusion.

Remark 3.4. We recall here the notion of direct limit. A directed set I is a partially
ordered set such that for each pair of elements i, j ∈ I there is a third element k such
that i < k and j < k. If I is a directed set, a directed system of Abelian groups is
a family {Gi}i∈I of Abelian groups, such that for all i < j there is a group morphism
fij : Gi → Gj , with fii = id and fij ◦ fjk = fik. On the set G =

∐
i∈I Gi, where

∐
denotes disjoint union, we put the following equivalence relation: g ∼ h, with g ∈ Gi

and h ∈ Gj , if there exists a k ∈ I such that fik(g) = fjk(h). The direct limit l of the
system {Gi}i∈I , denoted l = lim−→i∈I

Gi, is the quotient G/ ∼. Heuristically, two elements
in G represent the same element in the direct limit if they are ‘eventually equal.’ From
this definition one naturally obtains the existence of canonical morphisms Gi → l. The
following discussion should make this notion clearer; for more detail, the reader may
consult [12]. �

If x ∈ U and s ∈ P(U), the image sx of s in Px via the canonical projection
P(U) → Px (see footnote) is called the germ of s at x. From the very definition of direct
limit we see that two elements s ∈ P(U), s′ ∈ P(V ), U , V being open neighbourhoods
of x, define the same germ at x, i.e. sx = s′x, if and only if there exists an open
neighbourhood W ⊂ U ∩ V of x such that s and s′ coincide on W , s|W = s′|W .

Definition 3.5. A sheaf on a topological space X is a presheaf F on X which fulfills
the following axioms for any open subset U of X and any cover {Ui} of U .

S1) If two sections s ∈ F(U), s̄ ∈ F(U) coincide when restricted to any Ui, s|Ui
=

s̄|Ui
, they are equal, s = s̄.

S2) Given sections si ∈ F(Ui) which coincide on the intersections, si|Ui∩Uj
=

sj |Ui∩Uj
for every i, j, there exists a section s ∈ F(U) whose restriction to

each Ui equals si, i.e. s|Ui
= si.

Thus, roughly speaking, sheaves are presheaves defined by local conditions. The
stalk of a sheaf is defined as in the case of a presheaf.
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Example 3.6. If F is a sheaf, and Fx = {0} for all x ∈ X, then F is the zero sheaf,
F(U) = {0} for all open sets U ⊂ X. Indeed, if s ∈ F(U), since sx = 0 for all x ∈ U ,
there is for each x ∈ U an open neighbourhood Ux such that s|Ux

= 0. The first sheaf
axiom then implies s = 0. This is not true for a presheaf, cf. Example 3.14 below. �

A morphism of sheaves is just a morphism of presheaves. If f : F → G is a morphism
of sheaves onX, for every x ∈ X the morphism f induces a morphism between the stalks,
fx : Fx → Gx, in the following way: since the stalk Fx is the direct limit of the groups
F(U) over all open U containing x, any g ∈ Fx is of the form g = sx for some open
U 3 x and some s ∈ F(U); then set fx(g) = (fU (s))x.

A sequence of morphisms of sheaves 0 → F ′ → F → F ′′ → 0 is exact if for every
point x ∈ X, the sequence of morphisms between the stalks 0 → F ′

x → Fx → F ′′
x → 0 is

exact. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves, for every open subset
U ⊂ X the sequence of groups 0 → F ′(U) → F(U) → F ′′(U) is exact, but the last
arrow may fail to be surjective. An instance of this situation is contained in Example
3.11 below.

Exercise 3.7. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of sheaves. Show
that 0 → F ′ → F → F ′′ is an exact sequence of presheaves.

Example 3.8. Let G be an Abelian group. Defining P(U) ≡ G for every open
subset U and taking the identity maps as restriction morphisms, we obtain a presheaf,
called the constant presheaf G̃X . All stalks (G̃X)x of G̃X are isomorphic to the group
G. The presheaf G̃X is not a sheaf: if V1 and V2 are disjoint open subsets of X, and
U = V1 ∪V2, the sections g1 ∈ G̃X(V1) = G, g2 ∈ G̃X(V2) = G, with g1 6= g2, satisfy the
hypothesis of the second sheaf axiom S2) (since V1 ∩V2 = ∅ there is nothing to satisfy),
but there is no section g ∈ G̃X(U) = G which restricts to g1 on V1 and to g2 on V2.

Example 3.9. Let CX(U) be the ring of real-valued continuous functions on an open
set U of X. Then CX is a sheaf (with the obvious restriction morphisms), the sheaf of
continuous functions on X. The stalk Cx ≡ (CX)x at x is the ring of germs of continuous
functions at x.

Example 3.10. In the same way one can define the following sheaves:

The sheaf C∞X of differentiable functions on a differentiable manifold X.

The sheaves Ωp
X of differential p-forms, and all the sheaves of tensor fields on a

differentiable manifold X.

The sheaf of holomorphic functions on a complex manifold and the sheaves of holo-
morphic p-forms on it.

The sheaves of forms of type (p, q) on a complex manifold X.

Example 3.11. Let X be a differentiable manifold, and let d : Ω•X → Ω•X be the
exterior differential. We can define the presheaves Zp

X of closed differential p-forms, and



40 3. SHEAVES AND THEIR COHOMOLOGY

Bp
X of exact p-differential forms,

Zp
X(U) = {ω ∈ Ωp

X(U) | dω = 0},

Bp
X(U) = {ω ∈ Ωp

X(U) |ω = dτ for some τ ∈ Ωp−1
X (U)}.

Zp
X is a sheaf, since the condition of being closed is local: a differential form is closed if

and only if it is closed in a neighbourhood of each point of X. On the contrary, Bp
X is

not a sheaf. In fact, if X = R2, the presheaf B1
X of exact differential 1-forms does not

fulfill the second sheaf axiom: consider the form

ω =
xdy − ydx

x2 + y2

defined on the open subset U = X − {(0, 0)}. Since ω is closed on U , there is an
open cover {Ui} of U by open subsets where ω is an exact form, ω|Ui

∈ B1
X(Ui) (this is

Poincaré’s lemma). But ω is not an exact form on U because its integral along the unit
circle is different from 0.

This means that, while the sequence of sheaf morphisms 0 → R → C∞X
d−−→Z1

X → 0

is exact (Poincaré lemma), the morphism C∞X (U) d−−→Z1
X(U) may fail to be surjective.

1.1. Étalé space. We wish now to describe how, given a presheaf, one can natur-
ally associate with it a sheaf having the same stalks. As a first step we consider the case
of a constant presheaf G̃X on a topological space X, where G is an Abelian group. We
can define another presheaf GX on X by putting GX(U) = {locally constant functions
f : U → G}, 2 where G̃X(U) = G is included as the constant functions. It is clear that
(GX)x = Gx = G at each point x ∈ X and that GX is a sheaf, called the constant sheaf
with stalk G. Notice that the functions f : U → G are the sections of the projection
π :
∐

x∈X Gx → X and the locally constant functions correspond to those sections which
locally coincide with the sections produced by the elements of G.

Now, let P be an arbitrary presheaf on X. Consider the disjoint union of the stalks
P =

∐
x∈X Px and the natural projection π : P → X. The sections s ∈ P(U) of the

presheaf P on an open subset U produce sections s : U ↪→ P of π, defined by s(x) = sx,
and we can define a new presheaf P\ by taking P\(U) as the group of those sections
σ : U ↪→ P of π such that for every point x ∈ U there is an open neighbourhood V ⊂ U

of x which satisfies σ|V = s for some s ∈ P(V ).

That is, P\ is the presheaf of all sections that locally coincide with sections of P. It
can be described in another way by the following construction.

Definition 3.12. The set P, endowed with the topology whose base of open subsets
consists of the sets s(U) for U open in X and s ∈ P(U), is called the étalé space of the
presheaf P.

2A function is locally constant on U if it is constant on any connected component of U .
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Exercise 3.13. (1) Show that π : P → X is a local homeomorphism, i.e., every
point u ∈ P has an open neighbourhood U such that π : U → π(U) is a
homeomorphism.

(2) Show that for every open set U ⊂ X and every s ∈ P(U), the section s : U → P
is continuous.

(3) Prove that P\ is the sheaf of continuous sections of π : P → X.
(4) Prove that for all x ∈ X the stalks of P and P\ at x are isomorphic.
(5) Show that there is a presheaf morphism φ : P → P\.
(6) Show that φ is an isomorphism if and only if P is a sheaf. �

P\ is called the sheaf associated with the presheaf P. In general, the morphism
φ : P → P\ is neither injective nor surjective: for instance, the morphism between the
constant presheaf G̃X and its associated sheaf GX is injective but nor surjective.

Example 3.14. As a second example we study the sheaf associated with the presheaf
Bk

X of exact k-forms on a differentiable manifold X. For any open set U we have an
exact sequence of Abelian groups (actually of R-vector spaces)

0 → Bk
X(U) → Zk

X(U) → Hk
X(U) → 0

where Hk
X is the presheaf that with any open set U associates its k-th de Rham cohomo-

logy group, Hk
X(U) = Hk

DR(U). Now, the open neighbourhoods of any point x ∈ X

which are diffeomorphic to Rn (where n = dimX) are cofinal3 in the family of all open
neighbourhoods of x, so that (Hk

X)x = 0 by the Poincaré lemma. In accordance with
Example 3.6 this means that (Hk

X)\ = 0, which is tantamount to (Bk
X)\ ' Zk

X .

In this case the natural morhism Hk
X → (Hk

X)\ is of course surjective but not
injective. On the other hand, Bk

X → (Bk
X)\ = Zk

X is injective but not surjective. �

Definition 3.15. Given a sheaf F on a topological space X and a subset (not
necessarily open) S ⊂ X, the sections of the sheaf F on S are the continuous sections
σ : S ↪→ F of π : F → X. The group of such sections is denoted by Γ(S, F).

Definition 3.16. Let P, Q be presheaves on a topological space X. 4

(1) The direct sum of P and Q is the presheaf P ⊕ Q given, for every open subset
U ⊂ X, by (P ⊕Q)(U) = P(U)⊕Q(U) with the obvious restriction morphisms.

3Let I be a directed set. A subset J of I is said to be cofinal if for any i ∈ I there is a j ∈ J

such that i < j. By the definition of direct limit we see that, given a directed family of Abelian groups

{Gi}i∈I , if {Gj}j∈J is the subfamily indexed by J , then

lim−→
i∈I

Gi ' lim−→
j∈J

Gj ;

that is, direct limits can be taken over cofinal subsets of the index set.
4Since we are dealing with Abelian groups, i.e. with Z-modules, the Hom modules and tensor

products are taken over Z.
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(2) For any open set U ⊂ X, let us denote by Hom(P|U , Q|U ) the space of morph-
isms between the restricted presheaves P|U and Q|U ; this is an Abelian group in a nat-
ural manner. The presheaf of homomorphisms is the presheaf Hom(P, Q) given by
Hom(P, Q)(U) = Hom(P|U , Q|U ) with the natural restriction morphisms.

(3) The tensor product of P and Q is the presheaf (P ⊗Q)(U) = P(U)⊗Q(U).

If F and G are sheaves, then the presheaves F ⊕ G and Hom(F , G) are sheaves.
On the contrary, the tensor product of F and G previously defined may not be a sheaf.
Indeed one defines the tensor product of the sheaves F and G as the sheaf associated
with the presheaf U → F(U)⊗ G(U).

It should be noticed that in general Hom(F , G)(U) 6' Hom(F(U), G(U)) and
Hom(F , G)x 6' Hom(Fx, Gx).

1.2. Direct and inverse images of presheaves and sheaves. Here we study
the behaviour of presheaves and sheaves under change of base space. Let f : X → Y be
a continuous map.

Definition 3.17. The direct image by f of a presheaf P on X is the presheaf f∗P
on Y defined by (f∗P)(V ) = P(f−1(V )) for every open subset V ⊂ Y . If F is a sheaf
on X, then f∗F turns out to be a sheaf.

Let P be a presheaf on Y .

Definition 3.18. The inverse image of P by f is the presheaf on X defined by

U → lim−→
U⊂f−1(V )

P(V ).

The inverse image sheaf of a sheaf F on Y is the sheaf f−1F associated with the inverse
image presheaf of F .

The stalk of the inverse image presheaf at a point x ∈ X is isomorphic to Pf(x).
It follows that if 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves on Y , the
induced sequence

0 → f−1F ′ → f−1F → f−1F ′′ → 0

of sheaves on X, is also exact (that is, the inverse image functor for sheaves of Abelian
groups is exact).

The étalé space f−1F of the inverse image sheaf is the fibred product 5 Y ×X F . It
follows easily that the inverse image of the constant sheaf GX on X with stalk G is the
constant sheaf GY with stalk G, f−1GX = GY .

5For a definition of fibred product see e.g. [15].
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2. Cohomology of sheaves

We wish now to describe a cohomology theory which associates cohomology groups
to a sheaf on a topological space X.

2.1. Čech cohomology. We start by considering a presheaf P on X and an open
cover U of X. We assume that U is labelled by a totally ordered set I, and define

Ui0...ip = Ui0 ∩ · · · ∩ Uip .

We define the Čech complex of U with coefficients in P as the complex whose p-th term
is the Abelian group

Čp(U,P) =
∏

i0<···<ip

P(Ui0...ip) .

Thus a p-cochain α is a collection {αi0...ip} of sections of P, each one belonging to the
space of sections over the intersection of p+ 1 open sets in U. Since the indexes of the
open sets are taken in strictly increasing order, each intersection is counted only once.

The Čech differential δ : Čp(U,P) → Čp+1(U,P) is defined as follows: if α = {αi0...ip}
∈ Čp(U,P), then

{(δα)i0...ip+1} =
p+1∑
k=0

(−1)kαi0...bık...ip+1|Ui0...ip+1
.

Here a caret denotes omission of the index. For instance, if p = 0 we have α = {αi} and

(3.1) (δα)ik = αk|Ui∩Uk
− αi|Ui∩Uk

.

It is an easy exercise to check that δ2 = 0. Thus we obtain a cohomology theory. We
denote the corresponding cohomology groups by Hk(U,P).

Lemma 3.1. If F is a sheaf, one has an isomorphism H0(U,F) ' F(X)

Proof. We have H0(U,F) = ker δ : Č0(U,P) → Č1(U,P). So if α ∈ H0(U,F) by
(3.1) we see that

αk|Ui∩Uk
= αi|Ui∩Uk

.

By the second sheaf axiom this implies that there is a global section α̃ ∈ F(X) such
that α̃|Ui

= αi. This yields a morphism H0(U,F) → F(X), which is evidently surjective
and is injective because of the first sheaf axiom. �

Example 3.2. We consider an open cover U of the circle S1 formed by three sets
which intersect only pairwise. We compute the Čech cohomology of U with coefficients
in the constant sheaf R. We have C0(U,R) = C1(U,R) = R ⊕ R ⊕ R, Ck(U,R) =
0 for k > 1 because there are no triple intersections. The only nonzero differential
d0 : C0(U,R) → C1(U,R) is given by

d0(x0, x1, x2) = (x1 − x2, x2 − x0, x0 − x1).
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Hence

H0(U,R) = ker d0 ' R

H1(U,R) = C1(U,R)/ Im d0 ' R.

�

It is possible to define Čech cohomology groups depending only on the pair (X,F),
and not on a cover, by letting

Hk(X, F) = lim−→
U

Ȟk(U,F).

The direct limit is taken over a cofinal subset of the directed set of all covers of X (the
order is of course the refinement of covers: a cover V = {Vj}j∈J is a refinement of U if
there is a map f : I → J such that Vf(i) ⊂ Ui for every i ∈ I). The order must be fixed
at the outset, since a cover may be regarded as a refinement of another in many ways.
As different cofinal families give rise to the same inductive limit, the groups Hk(X, F)
are well defined.

2.2. Fine sheaves. Čech cohomology is well-behaved when the base space X is
paracompact. (It is indeed the bad behaviour of Čech cohomology on non-paracompact
spaces which motivated the introduction of another cohomology theory for sheaves,
usually called sheaf cohomology; cf. [5].) In this and in the following sections we consider
some properties of Čech cohomology that hold in that case.

Definition 3.3. A sheaf of rings R on a topological space X is fine if, for any
locally finite oper cover U = {Ui}i∈I of X, there is a family {si}i∈I of global sections of
R such that:

(1)
∑

i∈I si = 1;

(2) for every i ∈ I there is a closed subset Si ⊂ Ui such that (si)x = 0 whenever
x /∈ Si.

The family {si} is called a partition of unity subordinated to the cover U. For
instance, the sheaf of continuous functions on a paracompact topological space as well
as the sheaf of smooth functions on a differentiable manifold are fine, while sheaves of
complex or real analytic functions are not.

Definition 3.4. A sheaf F of Abelian groups on a topological space X is said to be
acyclic if Hk(X,F) = 0 for k > 0.

Proposition 3.5. Let R be a fine sheaf of rings on a paracompact space X. Every
sheaf M of R-modules is acyclic.
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Proof. Let U = {Ui}i∈I be a locally finite open cover of X, and let {ρi} be a
partition of unity of R subordinated to U. For any α ∈ Čq(U,M) with q > 0 we set

(Kα)i0...iq−1 =
∑
j∈I

j<i0

ρj aji0...iq−1 −
∑
j∈I

i0<j<i1

ρj ai0ji1...iq−1 + . . .

=
q∑

k=0

(−1)k
∑
j∈I

ik−1<j<ik

ρj ai0...ik−1jik...iq−1 .

This defines a morphism K : Čk(U,M) → Čk−1(U,M) such that δK + Kδ = id (i.e.,
K is a homotopy operator); then α = δKα if δα = 0, so that Hk(U,M) = 0 for k > 0.
Since on a paracompact space the locally finite open covers are cofinal in the family
of all covers, we can take direct limit on such covers, thus getting Hk(X,M) = 0 for
k > 0. �

Example 3.6. Using this result we may recast the proof of the exactness of the
Mayer-Vietoris sequence for de Rham cohomology in a slightly different form. Given a
differentiable manifold X, let U be the open cover formed by two sets U and V . Since
Č2(U,Ωk) = 0 (there are no triple intersections) we have an exact sequence

0 → H0(U,Ωk) → Č0(U,Ωk) δ→ Č1(U,Ωk) → 0 .

which in principle is exact everywhere but at C1(U,Ωk). However since the sheaves Ωk

are acyclic by Proposition 3.5, one has H1(U,Ωk) = 0, which means that δ is surjective,
and the sequence is exact at that place as well. We have the identifications

H0(U,Ωk) = Ωk(X), C0(U,Ωk) = Ωk(U)⊕ Ωk(V ), C1(U,Ωk) = Ωk(U ∩ V )

so that we obtain the exactness of the Mayer-Vietoris sequence.

2.3. Long exact sequences in Čech cohomology. We wish to show that when
X is paracompact, any exact sequence of sheaves induces a corresponding long exact
sequence in Čech cohomology.

Lemma 3.7. Let X be any topological space, and let

(3.2) 0 → P ′ → P → P ′′ → 0

be an exact sequence of presheaves on X. Then one has a long exact sequence

0 → H0(X,P ′) → H0(X,P) → H0(X,P ′′) → H1(X,P ′) → . . .

→ Hk(X,P ′) → Hk(X,P) → Hk(X,P ′′) → Hk+1(X,P ′) → . . .
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Proof. For any open cover U the exact sequence (3.2) induces an exact sequence
of differential complexes

0 → Č•(U,P ′) → Č•(U,P) → Č•(U,P ′′) → 0

which induces the long cohomology sequence

0 → H0(U,P ′) → H0(U,P) → H0(U,P ′′) → H1(U,P ′) → . . .

→ Hk(U,P ′) → Hk(U,P) → Hk(U,P ′′) → Hk+1(U,P ′) → . . .

Since the direct limit of a family of exact sequences yields an exact sequence, by taking
the direct limit over the open covers of X one obtains the required exact sequence. �

Lemma 3.8. Let X be a paracompact topological space, P a presheaf on X whose
associated sheaf is the zero sheaf, let U be an open cover of X, and let α ∈ Čk(U,P).
There is a refinement W of U such that τ(α) = 0, where τ : Čk(U,P) → Čk(W,P) is
the morphism induced by restriction.

Proof. The proof relies on a standard paracompactness argument. See [13] §2.9.
�

Proposition 3.9. Let P be a presheaf on a paracompact space X, and let P\ be the
associated sheaf. For all k ≥ 0, the natural morphism Hk(X,P) → Hk(X,P\) is an
isomorphism.

Proof. One has an exact sequence of presheaves

0 → Q1 → P → P\ → Q2 → 0

with

(3.3) Q\
1 = Q\

2 = 0 .

This gives rise to

(3.4) 0 → Q1 → P → T → 0 , 0 → T → P\ → Q2 → 0

where T is the quotient presheaf P/Q1, i.e. the presheaf U → P(U)/Q1(U). By Lemma
3.8 the isomorphisms (3.3) yield Hk(X,Q1) = Hk(X,Q2) = 0. Then by taking the long
exact sequences of cohomology from the exact sequences (3.4) we obtain the desired
isomorphism. �

Using these results we may eventually prove that on paracompact spaces one has
long exact sequences in Čech cohomology.

Theorem 3.10. Let

0 → F ′ → F → F ′′ → 0
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be an exact sequence of sheaves on a paracompact space X. There is a long exact
sequence of Čech cohomology groups

0 → H0(X,F ′) → H0(X,F) → H0(X,F ′′) → H1(X,F ′) → . . .

→ Hk(X,F ′) → Hk(X,F) → Hk(X,F ′′) → Hk+1(X,F ′) → . . .

Proof. Let P be the quotient presheaf F/F ′; then P\ ' F ′′. One has an exact
sequence of presheaves

0 → F ′ → F → P → 0 .

By taking the associated long exact sequence in cohomology (cf. Lemma 3.7) and using
the isomorphism Hk(X,P) = Hk(X,F ′′) one obtains the required exact sequence. �

2.4. Abstract de Rham theorem. We describe now a very useful way of com-
puting cohomology groups; this result is sometimes called “abstract de Rham theorem.”
As a particular case it yields one form of the so-called de Rham theorem, which states
that the de Rham cohomology of a differentiable manifold and the Čech cohomology of
the constant sheaf R are isomorphic.

Definition 3.11. Let F be a sheaf of abelian groups on X. A resolution of F is a
collection of sheaves of abelian groups {Lk}k∈N with morphisms i : F → L0, dk : Lk →
Lk+1 such that the sequence

0 → F i→ L0 d0→ L1 d1→ . . .

is exact. If the sheaves L• are acyclic (fine) the resolution is said to be acyclic (fine).

Lemma 3.12. If 0 → F → L• is a resolution, the morphism iX : F(X) → L0(X) is
injective.

Proof. Let Q be the quotient L0/F . Then the sequence of sheaves

0 → F → L0 → Q→ 0

is exact. By Exercise 3.7, the sequence of abelian groups

0 → F(X) → L0(X) → Q(X)

is exact. This implies the claim. �

However the sequence of abelian groups

0 → L0(X) d0−−→L1(X) d1−−→ . . .

is not exact. We shall consider its cohomology H•(L•(X), d). By the previous Lemma
we have H0(L•(X), d) ' H0(X,F).

Theorem 3.13. If 0 → F → L• is an acyclic resolution there is an isomorphism
Hk(X,F) ' Hk(L•(X), d) for all k ≥ 0.
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Proof. Define Qk = ker dk : Lk → Lk+1. The resolution may be split into

0 → F → L0
X → Q1 → 0 , 0 → Qk → Lk → Qk+1 → 0 . k ≥ 1

Since the sheaves Lk are acyclic by taking the long exact sequences of cohomology we
obtain a chain of isomorphisms

Hk(X,F) ' Hk−1(X,Q1) ' · · · ' H1(X,Qk−1) ' H0(X,Qk)
ImH0(X,Lk−1)

By Exercise 3.7 H0(X,Qk) = Qk(X) is the kernel of dk : Lk(X) → Lk+1 so that the
claim is proved. �

Corollary 3.14. (de Rham theorem.) Let X be a differentiable manifold. For all
k ≥ 0 the cohomology groups Hk

DR(X) and Hk(X,R) are isomorphic.

Proof. Let n = dimX. The sequence

(3.5) 0 → R → Ω0
X

d−−→Ω1
X

d−−→ · · · → Ωn
X → 0

(where Ω0
X ≡ C∞X ) is exact (this is Poincaré’s lemma). Moreover the sheaves Ω•X are

modules over the fine sheaf of rings C∞X , hence are acyclic. The claim then follows for
the previous theorem. �

Corollary 3.15. Let U be a subset of a differentiable manifold X which is diffeo-
morphic to Rn. Then Hk(U,R) = 0 for k > 0. �

2.5. Soft sheaves. For later use we also introduce and study the notion of soft
sheaf. However, we do not give the proofs of most claims, for which the reader is referred
to [2, 5, 22]. The contents of this subsection will only be used in Section 4.5.

Definition 3.16. Let F be a sheaf a on a topological space X, and let U ⊂ X be
a closed subset of X. The space F(U) (called “the space of sections of F over U”) is
defined as

F(U) = lim−→
V⊃U

F(V )

where the direct limit is taken over all open neighbourhoods V of U .

A consequence of this definition is the existence of a natural restriction morphism
F(X) → F(U).

Definition 3.17. A sheaf F is said to be soft if for every closed subset U ⊂ X the
restriction morphism F(X) → F(U) is surjective.

Proposition 3.18. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of soft sheaves
on a paracompact space X, for every open subset U ⊂ X the sequence of groups

0 → F ′(U) → F(U) → F ′′(U) → 0

is exact.
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Proof. One can e.g. adapt the proof of Proposition II.1.1 in [2]. �

Corollary 3.19. The quotient of two soft sheaves on a paracompact space is soft.

Proposition 3.20. Any soft sheaf of rings R on a paracompact space is fine.

Proof. Cf. Lemma II.3.4 in [2]. �

Proposition 3.21. Every sheaf F on a paracompact space admits soft resolutions.

Proof. Let S0(F) be the sheaf of discontinuous sections of F (i.e., the sheaf of
all sections of the sheaf space F). The sheaf S0(F) is obviously soft. Now we have an
exact sequence 0 → F → S0(F) → F1 → 0. The sheaf F1 is not soft in general, but it
may embedded into the soft sheaf S0(F1), and we have an exact sequence 0 → F1 →
S0(F1) → F2 → 0. Upon iteration we have exact sequences

0 → Fk
ik−−→Sk(F)

pk−−→Fk+1 → 0

where Sk(F) = S0(Fk). One can check that the sequence of sheaves

0 → F → S0(F)
f0−−→S1(F)

f1−−→ . . .

(where fk = ik+1 ◦ pk) is exact. �

Proposition 3.22. If F is a sheaf on a paracompact space, the sheaf S0(F) is
acyclic.

Proof. The endomorphism sheaf End(S0(F)) is soft, hence fine by Proposition
3.20. Since S0(F) is an End(S0(F))-module, it is acyclic.6 �

Proposition 3.23. On a paracompact space soft sheaves are acyclic.

Proof. If F is a soft sheaf, the sequence 0 → F(X) → S0F(X) → F1(X) → 0
obtained from 0 → F → S0F → F1 → 0 is exact (Proposition 3.18). Since F and
S0F are soft, so is F1 by Corollary 3.19, and the sequence 0 → F1(X) → S1F(X) →
F2(X) → 0 is also exact. With this procedure we can show that the complex S•(F)(X)
is exact. But since all sheaves S•(F) are acyclic by the previous Proposition, by the
abstract de Rham theorem the claim is proved. �

Note that in this way we have shown that for any sheaf F on a paracompact space
there is a canonical soft resolution.

6We are cheating a little bit, since the sheaf of rings End(S0(F)) is not commutative. However a

closer inspection of the proof would show that it works anyways.
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2.6. Leray’s theorem for Čech cohomology. If an open cover U of a topolo-
gical space X is suitably chosen, the Čech cohomologies H•(U,F) and H•(X,F) are
isomorphic. Leray’s theorem establishes a sufficient condition for such an isomorphism
to hold. Since the cohomology H•(U,F) is in generally much easier to compute, this
turns out to be a very useful tool in the computation of Čech cohomology groups.

We say that an open cover U = {Ui}i∈I of a topological space X is acyclic for a sheaf
F if Hk(Ui0...ip ,F) = 0 for all k > 0 and all nonvoid intersections Ui0...ip = Ui0∩· · ·∩Uip ,
i0 . . . ip ∈ I.

Theorem 3.24. (Leray’s theorem) Let F be a sheaf on a paracompact space X, and
let U be an open cover of X which is acyclic for F and is indexed by an ordered set.
Then, for all k ≥ 0, the cohomology groups Hk(U,F) and Hk(X,F) are isomorphic.

To prove this theorem we need to construct the so-called Čech sheaf complex. For
every nonvoid intersection Ui0...ip let ji0...ip : Ui0...ip → X be the inclusion. For every p
define the sheaf

Čp(U,F) =
∏

i0<···<ip

(ji0...ip)∗F|Ui0...ip

(every factor (ji0...ip)∗F|Ui0...ip
is the sheaf F first restricted to Ui0...ip and the exteded by

zero to the whole of X). The Čech differential induces sheaf morphisms δ : Čp(U,F) →
Čp+1(U,F). From the definition, we get isomorphisms

(3.6) Čp(U,F)(X) ' Čp(U,F) ,

i.e., by taking global sections of the Čech sheaf complex we get the Čech cochain group
complex. Moreover we have:

Lemma 3.25. For all p and k,

Hk(X, Čp(U,F)) '
∏

i0<···<ip

Hk(Ui0...ip ,F) .

We may now prove Leray’s theorem. It is not difficult to prove that the complex
Č•(U,F) is a resolution of F (cf. [2], Prop. II.3.3). Under the hypothesis of Leray’s
theorem, by Lemma 3.25 this resolution is acyclic. By the abstract de Rham theorem,
the cohomology of the global sections of the resolution is isomorphic to the cohomology
of F . But, due to the isomorphisms (3.6), the cohomology of the global sections of the
resolution is the cohomology H•(U,F).

2.7. Good covers. By means of Leray’s theorem we may reduce the problem of
computing the Čech cohomology of a differentiable manifold with coefficients in the
constant sheaf R (which, via de Rham theorem, amounts to computing its de Rham
cohomology) to the computation of the cohomology of a cover with coefficients in R;
thus a problem which in principle would need the solution of differential equations on
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topologically nontrivial manifolds is reduced to a simpler problem which only involves
the intersection pattern of the open sets of a cover.

Definition 3.26. A locally finite open cover U of a differentiable manifold is good
if all nonempty intersections of its members are diffeomorphic to Rn.

Good covers exist on any differentiable manifold (cf. [17]). Due to Corollary 3.15,
good covers are acyclic for the constant sheaf R. We have therefore

Proposition 3.27. For any good cover U of a differentiable manifold X one has
isomorphisms

Hk(U,R) ' Hk(X,R) , k ≥ 0 .

�

The cover of Example 3.2 was good, so we computed there the de Rham cohomology
of the circle S1.

2.8. Flabby sheaves. Another kind of sheaves which can be introduced is that of
flabby sheaves (also called “flasque”). A sheaf F on a topological space X is said to
be flabby if for every open subset U ⊂ X the restriction morphism F(X) → F(U) is
surjective. It is easy to prove that flabby sheaves are soft: if U ⊂ X is a closed subset,
by definition of direct limit, for every s ∈ F(U) there is an open neighbourhood V of
U and a section s′ ∈ F(V ) which restricts to s. Since F is flabby, s′ can be extended
to the whole of X. So on a paracompact space, flabby sheaves are acyclic, and by the
abstract de Rham theorem flabby resolution can be used to compute cohomology. We
should also notice that the canonical soft resolution S•(F) we constructed in Section
2.5 is flabby, as one can easily check by the definition itself.

One can further pursue this line and use flabby resolutions (for instance, the canon-
ical flabby resolution of Section 2.5) to define cohomology. That is, for every sheaf F ,
its cohomology is by definition the cohomology of the global sections of its canonical
flabby resolution (it then turns out that cohomology can be computed with any acyclic
resolution). This has the advantage of producing a cohomology theory (called sheaf
cohomology) which is bell-behaved (e.g., it has long exact sequences in cohomology) on
every topological space, not just on paracompact ones. In this connection the reader
may refer to [5, 4, 2], or to [20] where a different and more general approach to sheaf
cohomology (using injective resolutions) is pursued; also the original paper by Grothen-
dieck [8] can be fruitfully read. It follows from our treatment that on a paracompact
topological space the sheaf and Čech cohomology coincide, but in general they do not
(cf. [11], especially the exercise section, for a discussion of the comparison between the
two cohomologies).
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2.9. Comparison with other cohomologies. In algebraic topology one attaches
to a topological space X several cohomologies with coefficients in an abelian group
G. Loosely speaking, whenever X is paracompact and locally Euclidean, all these
cohomologies coincide with the Čech cohomology of X with coefficients in the constant
sheaf G. In particular, we have the following result:

Proposition 3.28. Let X be a paracompact locally Euclidean topological space, and
let G be an abelian group. The singular cohomology of X with coefficients in G is
isomorphic to the Čech cohomology of X with coefficients in the constant sheaf G. �



CHAPTER 4

Spectral sequences

Spectral sequences are a powerful tool for computing homology, cohomology and
homotopy groups. Often they allow one to trade a difficult computation for an easier
one. Examples that we shall consider are another proof of the Čech-de Rham theorem,
the Leray spectral sequence, and the Künneth theorem.

Spectral sequences are a difficult topic, basically because the theory is quite intrin-
cate and the notation is correspondingly cumbersome. Therefore we have chosen what
seems to us to be the simplest approach, due to Massey [18]. Our treatment basically
follows [3].

1. Filtered complexes

Let (K, d) be a graded differential module, i.e.,

K =
⊕
n∈Z

Kn , d : Kn → Kn+1 , d2 = 0 .

A graded submodule of (K, d) is a graded subgroup K ′ ⊂ K such that dK ′ ⊂ K ′, i.e.,

K ′ =
⊕
n∈Z

K ′n , K ′n ⊂ Kn , d : K ′n → K ′n+1
.

A sequence of nested graded submodules

K = K0 ⊃ K1 ⊃ K2 ⊃ . . .

is a filtration of (K, d). We then say that (K, d) is filtered, and associate with it the
graded complex1

Gr(K) =
⊕
p∈Z

Kp/Kp+1, Kp = K if p ≤ 0 .

Note that by assumption (since every Kp+1 is a graded subgroup of Kp) the filtration
is compatible with the grading, i.e., if we define Ki

p = Ki ∩Kp, then

(4.1) Kn = Kn
0 ⊃ Kn

1 ⊃ Kn
2 ⊃ . . .

is a filtration of Ki, and moreover dKn
p ⊂ Kn+1

p .

1The choice of having Kp = K for p ≤ 0 is due to notational convenience.

53
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Example 4.1. A double complex is a collection of abelian groups Kp,q, with p, q ≥
0,2 and morphisms δ1 : Kp,q → Kp+1,q, δ2 : Kp,q → Kp,q+1 such that

δ1
2 = δ2

2 = 0 , δ1δ2 + δ2δ1 = 0 .

Let (T, d) be the associated total complex :

T i =
⊕

p+q=i

Kp,q , d : T i → T i+1 defined by d = δ1 + δ2

(note that the definition of d implies d2 = 0). Then letting

Tp =
⊕

i≥p, q≥0

Ki,q

we obtain a filtration of (T, d). This satifies Tp ' T for p ≤ 0. The successive quotients
of the filtration are

Tp/Tp+1 =
⊕
q∈N

Kp,q .

�

Definition 4.2. A filtration K• of (K, d) is said to be regular if for every i ≥ 0
the filtration (4.1) is finite; in other words, for every i there is a number `(i) such that
Ki

p = 0 for p > `(i).

For instance, the filtration in Example 4.1 is regular since T i
p = 0 for p > i, and

indeed

T i
p = T i ∩ Tp =

i−p⊕
j=0

Ki−j,j .

2. The spectral sequence of a filtered complex

At first we shall not consider the grading. Let K• be a filtration of a differential
module (K, d), and let

G =
⊕
p∈Z

Kp .

The inclusions Kp+1 → Kp induce a morphism i : G → G (“the shift by the filtering
degree”), and one has an exact sequence

(4.2) 0 → G
i−−→G

j−−→E → 0

2This assumption is made here for simplicity but one could let p, q range over the integers; however

some of the results we are going to give would be no longer valid.
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with E ' Gr(K). The differential d induces differentials in G and E, so that from (4.2)
one gets an exact triangle in cohomology (cf. Section 1.1)

(4.3) H(G) i // H(G)

j{{vvv
vv

vv
vv

H(E)
k

ccHHHHHHHHH

where k is the connecting morphism.

Let us now assume that the filtration K• has finite length, i.e., Kp = 0 for p greater
than some ` (called the length of the filtration).

Since dKp ⊂ Kp for every p, we may consider the cohomology groups H(Kp). The
morphism i induces morphisms i : H(Kp+1) → H(Kp). Define G1 to be the direct sum
of the terms on the sequence (which is not exact)

0 → H(K`)
i−−→H(K`−1)

i−−→ . . .

i−−→H(K1)
i−−→H(K) ∼−−→H(K−1)

∼−−→ . . . ,

i.e., G1 =
⊕

p∈ZH(Kp) ' H(G). Next we define G2 as the sum of the terms of the
sequence

0 → i(H(K`))) → i(H(K`−1)) → . . .

→ i(H(K1)) → H(K) ∼−−→H(K−1)
∼−−→ . . .

Note that the morphism i(H(K1)) → H(K) is injective, since it is the inclusion of the
image of i : H(K1) → H(K) into H(K). This procedure is then iterated: G3 is the sum
of the terms in the sequence

0 → i(i(H(K`)))) → i(i(H(K`−1))) → i(i(H(K2))

→ i(H(K1)) → H(K) ∼−−→H(K−1)
∼−−→ . . .

and now the morphisms i(i(H(K2)) → i(H(K1)) and i(H(K1)) → H(K) are injective.
When we reach the step `, all the morphisms in the sequence

0 → i`(H(K`))) → i`−1(H(K`−1)) → . . .

→ i(H(K1)) → H(K) ∼−−→H(K−1)
∼−−→ . . .

are injective, so thatG`+2 ' G`+1, and the procedure stabilizes: Gr ' Gr+1 for r ≥ `+1.
We define G∞ = G`+1; we have

G∞ '
⊕
p∈Z

Fp

where Fp = ip(H(Kp)), i.e., Fp is the image of H(Kp) into H(K). The groups Fp

provide a filtration of H(K),

(4.4) H(K) = F0 ⊃ F1 ⊃ · · · ⊃ F` ⊃ F`+1 = 0 .
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We come now to the construction of the spectral sequence. Recall that since dKp ⊂
Kp, and E =

⊕
pKp/Kp+1, the differential d acts on E, and one has a cohomology

group H(E) wich splits into a direct sum

H(E) '
⊕
p∈Z

H(Kp/Kp+1, d) .

The cohomology group H(E) fits into the exact triangle (4.3), that we rewrite as

(4.5) G1
i1 // G1

j1~~||
||

||
||

E1

k1

``BBBBBBBB

where E1 = H(E). We define d1 : E1 → E1 by letting d1 = j1 ◦ k1; then d2
1 = 0 since

the triangle is exact. Let E2 = H(E1, d1) and recall that G2 is the image of G1 under
i : G1 → G1. We have morphisms

i2 : G2 → G2, , j2 : G2 → E2 , k2 : E2 → G2

where

(i) i2 is induced by i1 by letting i2(i1(x)) = i1(i1(x)) for x ∈ G1;

(ii) j2 is induced by j1 by letting j2(i1(x)) = [j1(x)] for x ∈ G1, where [ ] denotes
taking the homology class in E2 = H(E1, d1).

(iii) k2 is induced by k1 by letting k2([e]) = i1(k1(e)).

Exercise 4.1. Show that the morphisms j2 and k2 are well defined, and that the
triangle

(4.6) G2
i2 // G2

j2~~||
||

||
||

E2

k2

``BBBBBBBB

is exact. �

We call (4.6) the derived triangle of (4.5). The procedure leading from (4.5) to the
triangle (4.6) can be iterated, and we get a sequence of exact triangles

Gr
ir // Gr

jr~~||
||

||
||

Er

kr

``BBBBBBBB

where each group Er is the cohomology group of the differential module (Er−1, dr−1),
with dr−1 = jr−1 ◦ kr−1.

As we have already noticed, due to the assumption that the filtration K• has finite
length `, the groups Gr stabilize when r ≥ ` + 1, and the morphisms ir : Gr → Gr
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become injective. Thus all morphisms kr : Er → Gr vanish in that range, which implies
dr = 0, so that the groups Er stabilize as well: Er+1 ' Er for r ≥ `+ 1. We denote by
E∞ = E`+1 the stable value.

Thus, the sequence
0 → G∞

i∞−−→G∞ → E∞ → 0

is exact, which implies that E∞ is the associated graded module of the filtration (4.4)
of H(K):

E∞ '
⊕
p≤`

Fp/Fp+1 .

Definition 4.2. A sequence of differential modules {(Er, dr)} such that H(Er, dr)
' Er+1 is said to be a spectral sequence. If the groups Er eventually become stationary,
we denote the stationary value by E∞. If E∞ is isomorphic to the associated graded
module of some filtered group H, we say that the spectral sequence converges to H.

So what we have seen so far in this section is that if (K, d) is a differential module
with a filtration of finite length, one can build a spectral sequence which converges to
H(K).

Remark 4.3. It may happen in special cases that the groups Er stabilize before
getting the value r = ` + 1. That happens if and only if dr = 0 for some value r = r0.
This implies that dr = 0 also for r > r0, and Er+1 ' Er for all r ≥ r0. When this
happens we say that the spectral sequence degenerates at step r0. �

Now we consider the presence of a grading.

Theorem 4.4. Let (K, d) be a graded differential module, and K• a regular filtration.
There is a spectral sequence {(Er, dr)}, where each Er is graded, which converges to the
graded group H•(K, d).

Note that the filtration need not be of finite length: the length `(i) of the filtration
of Ki is finite for every i, but may increase with i.

Proof. For every n and p we have d(Kn
p ) ⊂ Kn+1

p , therefore we have cohomology
groups Hn(Kp). As a consequence, the groups Gr are graded:

Gr '
⊕
n∈Z

Fn
r =

⊕
n,p∈Z

ir−1(Hn(Kp))

and the groups Er are accordingly graded. We may construct the derived triangles as
before, but now we should pay attention to the grading: the morphisms i and j have
degree zero, but k has degree one (just check the definition: k is basically a connecting
morphism).

Fix a natural number n, and let r ≥ `(n+ 1) + 1; for every p the morphisms

ir : Fn+1
r → Fn+1

r
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are injective, and the morphisms

kr : En
r → Fn+1

r

are zero. These are the same statements as in the ungraded case. Therefore, as it
happened in the ungraded case, the groups En

r become stationary for r big enough.
Note that Gn

∞ = ⊕p∈ZF
n
p , where Fn+1

p+1 = i`(n+1)(Hn+1(Kp+1)), and that the morphism
i∞ sends Fn

p+1 injectively into Fn
p for every n, and there is an exact sequence

0 → Gn
∞

i∞−−→Gn
∞ → En

∞ → 0 .

This implies that Er is the graded module associated with the graded complex H•(K, d).
�

The last statement in the proof means that for each n, Fn
• is a filtration of Hn(K, d),

and En
∞ '

⊕
p∈Z F

n
p /F

n
p+1.

3. The bidegree and the five-term sequence

The terms Er of the spectral sequence are actually bigraded; for instance, since the
filtration and the degree of K are compatible, we have

Kp/Kp+1 '
⊕
q∈Z

Kq
p/K

q
p+1 '

⊕
q∈Z

Kp+q
p /Kp+q

p+1

and E0 = E is bigraded by

E0 =
⊕
p,q∈Z

Ep,q
0 with Ep,q

0 = Kp+q
p /Kp+q

p+1 .

Note that the total complex associated with this bidegree yields the gradation of E.

Let us go to next step. Since d : Kp+q
p → Kp+q+1

p , i.e., d : Ep,q
0 → Ep,q+1

0 , and
E1 = H(E, d), if we set

Ep,q
1 = Hq(Ep,•

0 , d) ' Hp+q(Kp/Kp+1)

we have E1 '
⊕

p,q∈ZE
p,q
1 .

If we go one step further we can show that

d1 : Ep,q
1 → Ep+1,q

1 .

Indeed if x ∈ Ep,q
1 ' Hp+q(Kp/Kp+1) we write x as x = [e] where e ∈ Kp+q

p /Kp+q
p+1 so

that k1(x) = i1(k(e)) ∈ Hp+q+1(Kp+1) and

d1(x) = j1(k1(x)) = j1(k(e)) ∈ Hp+q+1(Kp+1/Kp+2) ' Ep+1,q
1 .

As a result we have E2 '
⊕

p,q∈ZE
p,q
2 with

Ep,q
2 ' Hp(E•,q1 , d1) .

The same analysis shows that in general Er '
⊕

p,q∈ZE
p,q
r with

dr : Ep,q
r → Ep+r,q−r+1

r
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and moreover we have
Ep,q
∞ ' F p+q

p /F p+q
p+1 .

The next two Lemmas establish the existence of the morphisms that we shall use to
introduce the so-called five-term sequence, and will anyway be useful in the following.

Lemma 4.1. There are canonical morphisms Hq(K) → E0,q
r .

Proof. Since Kp ' K for p ≤ 0 we have Fn
p ' Hn(Kp) = Hn(K) for p ≤ 0,

hence Ep,q
∞ = 0 for p < 0 and E0,q

∞ ' F q
0 /F

q
1 ' Hq(K)/F q

1 , so that there is a surjective
morphism Hq(K) → E0,q

∞ .

Note now that a nonzero class in E0,q
r cannot be a boundary, since then it should

come from E−r,q+r−1
r = 0. So cohomology classes are cycles. Since cohomology classes

are elements in E0,q
r+1, we have inclusions E0,q

r+1 ⊂ E0,q
r (E0,q

r+1 is the subgroup of cycles
in E0,q

r ). This yields an inclusion E0,q
∞ ⊂ E0,q

r for all r.

Combining the two arguments we obtain morphisms Hq(K) → E0,q
r . �

Lemma 4.2. Assume that Kn
p = 0 if p > n (so, in particular, the filtration is

regular). Then for every r ≥ 2 there is a morphism Ep,0
r → Hp(K).

Proof. The hypothesis of the Lemma implies that Ep,q
r = 0 for q < 0 (indeed,

F p+q
p = ir(Hp+q(Kp)) for r big enough, so that F p+q

q = 0 if q < 0 since then Kp+1
p = 0).

As a consequence, for r ≥ 2 the differential dr : Ep,0
r → Ep+r,1−r

r maps to zero, i.e., all
elements in Ep,0

r are cycles, and determine cohomology classes in Ep,0
r+1. This means we

have a morphism Ep,0
r → Ep,0

r+1, and composing, morphisms Ep,0
r → Ep,0

∞ .

Since Fn
p = 0 for p > n we have Ep,0

∞ ' F p
p /F

p
p+1 ' F p

p so that one has an injective
morphism Ep,0

∞ → Hp(K). Composing we have a morphism Ep,0
r → Hp(K). �

Proposition 4.3. (The five-term sequence). Assume that Kn
p = 0 if p > n. There

is an exact sequence

0 → E1,0
2 → H1(K) → E0,1

2
d2−−→E2,0

2 → H2(K) .

Proof. The morphisms involved in the sequence in addition to d2 have been defined
in the previous two Lemmas. We shall not prove the exactness of the sequence here, for
a proof cf. e.g. [5]. �

4. The spectral sequences associated with a double complex

In this Section we consider a double complex as we have defined in Example 4.1.
Due to the presence of the bidegree, the result in Theorem 4.4 may be somehow refined.

We shall use the notation in Example 4.1. The group

G =
⊕
p∈Z

Tp =
⊕
p∈Z

⊕
n≥p, q∈N

Ki,q
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has natural gradation G = ⊕n∈ZG
n given by

(4.7) Gn =
⊕
p∈Z

Tn
p '

⊕
p∈Z

n−p⊕
j=0

Kn−j,j

but it also bigraded, with bidegree

Gp,q = T p+q
q .

Notice that if we form the total complex
⊕

p+q=nG
p,q we obtain the complex (4.7) back:

⊕
p+q=n

Gp,q '
⊕

p+q=n

q⊕
j=0

Kp+q−j,j =
n−p⊕
j=0

Kn−j,j = Gn .

The operators δ1, δ2 and d = δ1 + δ2 act on G:

δ1 : Gn,q → Gn+1,q , δ2 = Gn,q → Gn,q+1 , d : Gk → Gk+1 .

We analyze the spectral sequence associated with these data. The first three terms
are easily described. One has

Ep,q
0 ' T p+q

p /T p+q
p+1 ' Kp,q

so that the differential d0 : Ep,q
0 → Ep,q+1

0 coincides with δ2 : Kp,q → Kp,q+1, and one
has

(4.8) Ep,q
1 ' Hq(Kp,•, δ2) .

At next step we have d1 : Ep,q
1 → Ep+1,q

1 with Ep,q
1 ' Hp+q(Tp/Tp+1) and Tp/Tp+1 '⊕

q∈Z K
p,q. Hence the differential

d1 : Hp+q(
⊕
n∈Z

Kp,n) → Hp+q+1(
⊕
n∈Z

Kp+1,n)

is identified with δ1, and

(4.9) Ep,q
2 ' Hp(E•,q1 , δ1) .

One should notice that by exchanging the two degrees in K (i.e., considering another
double complex ′K such that ′Kp,q = Kq,p), we obtain another spectral sequence, that
we denote by { ′Er,

′dr}. Both sequences converge to the same graded group, i.e., the
cohomology of the total complex (but the corresponding filtrations are in general differ-
ent), and this often provides interesting information. For the second spectral sequence
we get

′Eq,p
1 ' Hp(K•,q, δ1)(4.10)

′Eq,p
2 ' Hq(′Ep,•

1 , δ2) .(4.11)
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Example 4.1. A simple application of the two spectral sequences associated with
a double complex provides another proof of the Čech-de Rham theorem, i.e., the iso-
morphism H•(X,R) ' H•

DR(X) for a differentiable manifold X. Let U = {Ui} be a
good cover of X, and define the double complex

Kp,q = Čp(U,Ωq) ,

i.e., K•,q is the complex of Čech cochains of U with coefficients in the sheaf of differential
q-forms. The first differential δ1 is basically the Čech differential δ, while δ2 is the
exterior differential d.3 Actually δ and d commute rather than anticommute, but this
is easily settled by defining the action of δ1 on Kp,q as δ1 = (−1)qδ (this of course
leaves the spaces of boundaries and cycles unchanged). We start analyzing the spectral
sequences from the terms E1. For the first, we have

Ep,q
1 ' Hq(Kp,•, d) '

∏
i0<···<ip

Hq
DR(Ui0...ip) .

Since all Ui0...ip are contractible we have

Ep,0
1 ' Čp(U,R)

Ep,q
1 = 0 for q 6= 0 .

As a consequence we have Ep,q
2 = 0 for q 6= 0, while

Ep,0
2 ' Hp(Č•(U,R), δ) = Hp(U,R) .

This implies that d2 = 0, so that the spectral sequence degenerates at the second step,
and Ep,q

∞ = 0 for q 6= 0 and Ep,0
∞ ' Hp(U,R). The resulting filtration of Hp(T,D) has

only one nonzero quotient, so that Hp(T,D) ' Hp(U,R).

Let us now consider the second spectral sequence. We have

′Ep,q
1 ' Hq(K•,p, δ) = Hq(Č•(U,Ωp), δ) = Hq(U,Ωp) .

Since the sheaves Ωp are acyclic, we have

Ep,0
1 ' H0(U,Ωp) ' Ωp(X)

Ep,q
1 = 0 for q 6= 0 .

At next step we have therefore ′Ep,q
2 = 0 for q 6= 0, and

′Ep,0
2 ' Hp(Ω•(X), d)) ' Hp

DR(X) .

Again the spectral sequence degenerates at the second step, and we have Hp(T,D) '
Hp

DR(X). Comparing with what we got from the first sequence, we obtain Hp
DR(X) '

Hp(U,R). Taking a direct limit on good covers, we obtain Hp(X,R) ' Hp
DR(X).

3Here a notational conflict arises, so that we shall denote by D the differential of the total complex

T .
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Remark 4.2. From this example we may get the general result that if at step r,
with r ≥ 1, we have Ep,q

r = 0 for q 6= 0 (or for p 6= 0) then the sequence degenerates at
step r, and Ep,0

r ' Hp(T, d) (or E0,q
r ' Hq(T, d)).

5. Some applications

5.1. The spectral sequence of a resolution. In this section we extend Example
4.1 to a much general situation. Let (L•, f) be a complex of sheaves on a paracompact
topological space X, and let U be an open cover of X. We introduce the double complex
Kp,q = Čp(U,Lq). We shall denote by Hq(L•) the cohomology sheaves of the complex
L•. These are the sheaves associated with the quotient presheaves

H̃q(U) =
ker f : Lq(U) → Lq+1(U)
Im f : Lq−1(U) → Lq(U)

.

The E1 term of the first spectral sequence is

Ep,q
1 ' Hq(Kp,•, δ2) = Hq(Čp(U,L•), f)) ' Čp(U, H̃q(L•)) .

The second term of the sequence is

Ep,q
2 ' Hp(E•,q1 , δ1) ' Hp(Č•(U, H̃q(L•)), δ) ' Hp(U,Hq(L•))

where, since X is paracompact, we have replaced the presheaves H̃• with the corres-
ponding sheaves H• (possibly replacing the cover U by a suitable refinement).

For the second spectral sequence we have

′Ep,q
1 ' Hq(K•,p, δ1) ' Hq(Č•(U,Lp), δ1) ' Hp(U,Lq)

′Eq,p
2 ' Hp(′Eq,•

1 , δ2) ' Hp(Hq(U,L•), f) .

Let assume now that L• is a resolution of a sheaf F ; then Hq(L•) = 0 for q 6= 0,
and H0(L•) ' F . The first spectral sequence degenerates at the second step, and we
have Ep,q

2 = 0 for q 6= 0 and Ep,0
2 ' Hp(U,F). The second spectral sequence does not

degenerate, but we may say that it converges to the graded group H•(U,F) (since the
same does the first sequence). By taking direct limit over the cover U, we have:

Proposition 4.1. Given a resolution L• of a sheaf F on a paracompact space X,
there is a spectral sequence E• whose second term is E

p,q
2 = Hq(Hp(X,L•), f), which

converges to the graded group H•(X,F).

The canonical filtrations of a double complex always satisfy the hypothesis of Lemma
4.2. So, considering the first spectral sequence, we obtain morphisms (again taking a
direct limit)

Hq(L•(X), f) → Hq(X,F) .
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In general these are not isomorphisms. The same morphisms could be obtained by
breaking the exact sequence 0 → F → L• into short exact sequences, taking the asso-
ciated long exact cohomology sequences and suitably composing the morphisms, as in
the proof of the abstract de Rham theorem 3.13.

A further specialization is obtained if the resolution L• is acyclic; then the second
spectral sequence degenerates at the second step as well, and we get isomorphisms
Hp(X,F) ' Hp(L•(X), f), i.e., we have another proof of the abstract de Rham theorem
3.13.

5.2. The spectral sequence of a fibred space. Let F be a sheaf on a para-
compact space X and π : X → Y a continuous map, where Y is a second paracompact
space. We shall use the fact that every sheaf of abelian groups on space admits flabby
resolutions (cf. Sections 3.2.5 and 3.2.8). We shall associate a spectral sequence to these
data. We consider the complex

(4.12) 0 → π∗F → π∗L0
f−−→π∗L1

f−−→ . . .

where (L•, f) is a flabby resolution of F . The morphism π∗F → π∗L0 is injective, but
otherwise the complex (4.12) is no longer exact. However, the sheaves π∗L• are flabby.
We denote by Rkπ∗F the cohomology sheaves Hk(π∗L•).These sheaves are called the
higher direct images of F . Note that R0π∗F ' π∗F .

Proposition 4.2. The sheaf Rkπ∗F is isomorphic to the sheaf associated with the
presheaf Pk on Y defined by Pk(U) = Hk(π−1(U),F).

This implies that the sheaves Rkπ∗F do not depend, up to isomorphism, on the
choice of the resolution.

Proof. Rkπ∗F is by definition the sheaf associated with the presheaf

U  
ker f : Lk(π−1(U)) → Lk+1(π−1(U))
Im f : Lk−1(π−1(U)) → Lk(π−1(U))

= Hk(L•(π−1(U), f) .

Since the restriction of a flabby sheaf to an open subset is flabby, by the abstract de
Rham theorem we have isomorphisms

Hk(L•(π−1(U), f) ' Hk(π−1(U),F) ,

whence the claim follows. �

Let us consider the double complex Čp(U, π∗Lq), where U is a locally finite open
cover of Y . The two spectral sequences we have previously studied yield at the second
term

Ep,q
2 ' Hp(U, Rqπ∗F)

′Ep,q
2 ' Hq(Hp(U, π∗L•), f)
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Since the sheaves π∗L• are soft (hence acyclic) the second spectral sequence degenerates,
and one has ′Ep,q

∞ = 0 for p 6= 0, and

′E0,q
∞ ' ′E0,q

2 ' Hq(H0(Y, π∗L•), f)

' Hq(L•(X), f) ' Hq(X,F) .

Again after taking a direct limit, we have:

Proposition 4.3. Given a continuous map of paracompact spaces π : X → Y and a
sheaf F on X, there is a spectral sequence E• whose second term is E

p,q
2 = Hp(Y,Rqπ∗F),

which converges to the graded group H•(X,F).

We describe without proof the relation between the stalks of the sheaf Rkπ∗F
at points y ∈ Y and the cohomology groups Hk(π−1(y),F); here F is to be con-
sidered as restricted to π−1, i.e., more precisely we should write Hk(π−1(y), i−1

y F) where
iy : π−1(y) → X is the inclusion. Since

(Rkπ∗F )y = lim−→
y∈U

(Rkπ∗F)(U) ' lim−→
y∈U

Hk(π−1(U),F) ,

while Hk(π−1(y),F) is the direct limit of the groups Hk(V,F) where V ranges over all
open neighbourhoods of π−1(y), there is a natural map

(4.13) (Rkπ∗F)y → Hk(π−1(y),F) .

This is an isomorphism under some conditions, e.g., if Y is locally compact and π is
proper (cf. [5]). This happens for instance when both X and Y are compact.

As a simple Corollary to Proposition 4.3 one obtains Leray’s theorem:

Corollary 4.4. If every point y ∈ Y has a system of neighbourhoods whose pre-
images are acyclic for F , then Hk(X,F) ' Hk(Y, π∗F) for all k ≥ 0.

Proof. The hypothesis of the Corollary means that every y ∈ Y has a system of
neighbourhoods {U} such that Hk(π−1(U),F) = 0 for all k > 0. This implies that
Rkπ∗F = 0 for k > 0, so that the only nonzero terms in the spectral sequence E2 are
E

p,0
2 ' Hp(Y, π∗F). The sequence degenerates and the claim follows. �

5.3. The Künneth theorem. Let X, Y be topological spaces, and G an abelian
group. We shall denote by the same symbol G the corresponding constant sheaves on
the spaces X, Y and X × Y . The Künneth theorem computes the cohomology groups
H•(X × Y,G) in terms of the groups H•(X,Z) and H•(Y,G).

We shall need the following version of the universal coefficient theorem.

Proposition 4.5. If X is a paracompact topological space and G a torsion-free
group, then Hk(X,G) ' Hk(X,Z)⊗Z G for all k ≥ 0.

Proof. Cf. [19]. �
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Proposition 4.6. Assume that the groups H•(Y,G) have no torsion over Z, and
that X and Y are compact Hausdorff and locally Euclidean. Then,

Hk(X × Y,G) '
⊕

p+q=k

Hp(X,Z)⊗Hq(Y,G) .

Proof. Let π : X × Y → X be the projection onto the first factor. If U is a
contractible open set in U , then by the homotopic invariance of the cohomology with
coefficients in a constant sheaf (which follows e.g. from its isomorphism with singular
cohomology) we have H•(U × Y,G) ' H•(Y,G). If V ⊂ U , the morphism H•(U ×
Y,G) → H•(V × Y,G) corresponds to the identity of H•(Y,G). Under the present
hypotheses the morphism (4.13) is an isomorphism. These facts imply that Rpπ∗G is the
constant sheaf on X with stalk Hp(Y,G). The second term of the spectral sequence of
Proposition 4.3 becomes E

p,q
2 ' Hp(X,Hq(Y,G)). By the universal coefficient theorem,

since the groups Hq(Y,G) have no torsion over Z, we have E
p,q
2 ' Hp(X,Z)⊗ZH

q(Y,G).
�





Part 2

Introduction to algebraic geometry





CHAPTER 5

Complex manifolds and vector bundles

In this chapter we give a sketchy introduction to complex manifolds. The reader is
assumed to be acquainted with the rudiments of the theory of differentiable manifolds.

1. Basic definitions and examples

1.1. Holomorphic functions. Let U ⊂ C be an open subset. We say that a
function f : U → C is holomorphic if it is C1 and for all x ∈ U its differential Dfx : C →
C is not only R-linear but also C-linear. If elements in C are written z = x + iy, and
we set f(x, y) = α(x, y) + iβ(x, y), then this condition can be written as

(5.1) αx = βy, αy = −βx

(these are the Cauchy-Riemann conditions). If we use z, z̄ as variables, the Cauchy-
Riemann conditions read fz̄ = 0, i.e. the holomorphic functions are the C1 function of
the variable z. Moreover, one can show that holomorphic functions are analytic.

The same definition can be given for holomorphic functions of several variables.

Definition 5.1. Two open subsets U , V of Cn are said to biholomorphic if there
exists a bijective holomorphic map f : U → V whose inverse is holomorphic. The map
f itself is then said to be biholomorphic.

1.2. Complex manifolds. Complex manifolds are defined as differentiable mani-
folds, but requiring that the local model is Cn, and that the transition functions are
biholomorphic.

Definition 5.2. An n-dimensional complex manifold is a second countable Haus-
dorff topological space X together with an open cover {Ui} and maps ψi : Ui → Cn which
are homeomorphisms onto their images, and are such that all transition functions

ψi ◦ ψ−1
j : ψj(Ui ∩ Uj) → ψi(Ui ∩ Uj)

are biholomorphisms.

Example 5.3. (The Riemann sphere) Consider the sphere in R3 centered at the
origin and having radius 1

2 , and identify the tangent planes at (0, 0, 1
2) and (0, 0,−1

2) with
C. The stereographic projections give local complex coordinates z1, z2; the transition
function z2 = 1/z1 is defined in C? = C− {0} and is biholomorphic.

69
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1-dimensional complex manifolds are called Riemann surfaces. Compact Riemann
surfaces play a distinguished role in algebraic geometry; they are all algebraic (i.e. they
are sets of zeroes of systems of homogeneous polynomials), as we shall see in Chapter
7.

Example 5.4. (Projective spaces) We define the n-dimensional complex projective
space as the space of complex lines through the origin of Cn+1, i.e.

Pn =
Cn+1 − {0}

C∗
.

By standard topological arguments Pn with the quotient topology is a Hausdorff second-
countable space.

Let π : Cn+1 − {0} → Pn be the projection, If w = (w0, . . . , wn) ∈ Cn+1 we shall
denote π(w) = [w0, . . . , wn]. The numbers (w0, . . . , wn) are said to be the homogeneous
coordinates of the point π(w). If (u0, . . . , un) is another set of homogeneous coordinates
for π(w), then ui = λwi, with λ ∈ C∗ (i = 0, . . . , n).

Denote by Ũi ⊂ Cn+1 the open set where wi 6= 0, let Ui = π(Ũi), and define a map

ψi : Ui → Cn, ψ([w0, . . . , wn]) =
(
w0

wi
, . . . ,

wi−1

wi
,
wi+1

wi
, . . . ,

wn

wi

)
.

The sets Ui cover Pn, the maps ψi are homeomorphisms, and their transition functions

ψi ◦ ψ−1
j : ψj(Uj) → ψi(Ui),

ψi ◦ ψ−1
j (z1, . . . , zn) =

(
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

1
zi
, . . .

zn

zi

)
,

↑
j-th argument

are biholomorphic, so that Pn is a complex manifold (we have assumed that i < j). The
map π restricted to the unit sphere in Cn+1 is surjective, so that Pn is compact. The
previous formula for n = 1 shows that P1 is biholomorphic to the Riemann sphere.

The coordinates defined by the maps ψi, usually denoted (z1, . . . , zn), are called
affine or Euclidean coordinates.

Example 5.5. (The general linear complex group). Let

Mk,n = {k × n matrices with complex entries, k ≤ n}

M̂k,n = {matrices in Mk,n of rank k}, i.e.

M̂k,n =
⋃̀
i=1

{A ∈Mk,n such that detAi 6= 0}

where Ai, . . . , A` are the k × k minors of A. Mk,n is a complex manifold of dimension
kn; M̂k,n is an open subset in Mk,n, as its second description shows, so it is a complex
manifold of dimension kn as well. In particular, the general linear group Gl(n,C) =
M̂n,n is a complex manifold of dimension n2. Here are some of its relevant subgroups:
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(i) U(n) = {A ∈ Gl(n,C) such that AA† = I};
(ii) SU(n) = {A ∈ U(n) such that detA = 1};

these two groups are real (not complex!) manifolds, and dimR U(n) = n2, dimR SU(n) =
n2 − 1.

(iii) the group Gl(k, n; C) formed by invertible complex matrices having a block
form

(5.2) M =

(
A 0
B C

)
where the matrices A, B, C are k × k, (n− k)× k, and (n− k)× (n− k), respectively.
Gl(k, n; C) is a complex manifold of dimension k2 +n2−nk. Since a matrix of the form
(5.2) is invertible if and only if A and C are, while B can be any matrix, Gl(k, n; C) is
biholomorphic to the product manifold Gl(k,C)×Gl(n− k,C)×Mk,n. �

1.3. Submanifolds. Given a complex manifold X, a submanifold of X is a pair
(Y, ι), where Y is a complex manifold, and ι : Y → X is an injective holomorphic map
whose jacobian matrix has rank equal to the dimension of Y at any point of Y (of course
Y can be thought of as a subset of X).

Example 5.6. Gl(k, n; C) is a submanifold of Gl(n,C).

Example 5.7. For any k < n the inclusion of Ck+1 into Cn+1 obtained by setting
to zero the last n− k coordinates in Cn+1 yields a map Pk → Pn; the reader may check
that this realizes Pk as a submanifold of Pn.

Example 5.8. (Grassmann varieties) Let

Gk,n = {space of k-dimensional planes in Cn}

(so G1,n ≡ Pn − 1). This is the Grassmann variety of k-planes in Cn. Given a k-plane,
the action of Gl(n,C) on it yields another plane (possibly coinciding with the previous
one). The subgroup of Gl(n,C) which leaves the given k-plane fixed is isomorphic to
Gl(k, n; C), so that

Gk,n '
Gl(n,C)
Gl(k, n; C)

.

As the reader may check, this representation gives Gk,n the structure of a complex
manifold of dimension k(n−k). Since in the previous reasoning Gl(n,C) can be replaced
by U(n), and since Gl(k, n; C)∩U(n) = U(k)×U(n−k), we also have the representation

Gk,n '
U(n)

U(k)× U(n− k)

showing that Gk,n is compact.

An element in Gk,n singles out (up to a complex factor) a decomposable element in
ΛkCn,

λ = v1 ∧ · · · ∧ vk



72 5. COMPLEX MANIFOLDS AND VECTOR BUNDLES

where the vi are a basis of tangent vectors to the given k-plane. So Gk,n imbeds into
P(ΛkCn) = PN , where N =

((
n
k

))
− 1 (this is called the Plücker embedding. If a basis

{v1, . . . , vn} is fixed in Cn, one has a representation

λ =
n∑

i1,...,ik=1

Pi1...ik vi1 ∧ · · · ∧ vik ;

the numbers Pi1...ik are the Plücker coordinates on the Grassmann variety.

2. Some properties of complex manifolds

2.1. Orientation. All complex manifolds are oriented. Consider for simplicity the
1-dimensional case; the jacobian matrix of a transition function z′ = f(z) = α(x, y) +
iβ(x, y) is (by the Cauchy-Riemann conditions)

J =

(
αx αy

βx βy

)
=

(
αx αy

−αy αx

)
so that det J = α2

x + α2
y > 0, and the manifold is oriented.

Notice that we may always conjugate the complex structure, considering (e.g. in the

1-dimensional case) the coordinate change z 7→ z̄; in this case we have J =

(
1 0
0 −1

)
,

so that the orientation gets reversed.

2.2. Forms of type (p, q). Let X be an n-dimensional complex manifold; by the
identification Cn ' R2n, and since a biholomorphic map is a C∞ diffeomorphism, X
has an underlying structure of 2n-dimensional real manifold. Let TX be the smooth
tangent bundle (i.e. the collection of all ordinary tangent spaces to X). If (z1, . . . , zn) is
a set of local complex coordinates around a point x ∈ X, then the complexified tangent
space TxX ⊗R C admits the basis((

∂

∂z1

)
x

, . . . ,

(
∂

∂zn

)
x

,

(
∂

∂z̄1

)
x

, . . . ,

(
∂

∂z̄n

)
x

)
.

This yields a decomposition

TX ⊗ C = T ′X ⊕ T ′′X

which is intrinsic because X has a complex structure, so that the transition functions
are holomorphic and do not mix the vectors ∂

∂zi with the ∂
∂z̄i . As a consequence one has

a decomposition

ΛiT ∗X ⊗ C =
⊕

p+q=i

Ωp,qX where Ωp,qX = Λp(T ′X)∗ ⊗ Λq(T ′′X)∗ .

The elements in Ωp,qX are called differential forms of type (p, q), and can locally be
written as

η = ηi1...ip,j1...jq(z, z̄) dz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .
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The compositions

Ωp+1,qX

Ωp,qX
d // Λp+q+1T ∗X

∂
77ooooooooooo

∂̄ ''OOOOOOOOOOO

Ωp,q+1X

define differential operators ∂, ∂̄ such that

∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0

(notice that the Cauchy-Riemann condition can be written as ∂̄f = 0).

3. Dolbeault cohomology

Another interesting cohomology theory one can consider is the Dolbeault cohomology
associated with a complex manifold X. Let Ωp,q denote the sheaf of forms of type (p, q)
on X. The Dolbeault (or Cauchy-Riemann) operator ∂̄ : Ωp,q → Ωp,q+1 squares to zero.
Therefore, the pair (Ωp,•(X), ∂̄) is for any p ≥ 0 a cohomology complex. Its cohomology
groups are denoted by Hp,q

∂̄
(X), and are called the Dolbeault cohomology groups of X.

We have for this theory an analogue of the Poincaré Lemma, which is sometimes
called the ∂̄-Poincaré Lemma (or Dolbeault or Grothendieck Lemma).

Proposition 5.1. Let ∆ be a polycylinder in Cn (that is, the cartesian product of
disks in C). Then Hp,q

∂̄
(∆) = 0 for q ≥ 1.

Proof. Cf. [9]. �

Moreover, the kernel of the morphism ∂̄ : Ωp,0 → Ωp,1 is the sheaf of holomorphic
p-forms Ωp. Therefore, the Dolbeault complex of sheaves Ωp,• is a resolution of Ωp,
i.e. for all p = 0, . . . , n (where n = dimCX) the sheaf sequence

0 → Ωp → Ωp,0 ∂̄−−→Ωp,1 ∂̄−−→ . . .
∂̄−−→Ωp,1 → 0

is exact. Moreover, the sheaves Ωp,q are fine (they are C∞X -modules). Then, exactly as
one proves the de Rham theorem (Theorem 3.3.14), one obtains the Dolbeault theorem:

Proposition 5.2. Let X be a complex manifold. For all p, q ≥ 0, the cohomology
groups Hp,q

∂̄
(X) and Hq(X,Ωp) are isomorphic. �

4. Holomorphic vector bundles

4.1. Basic definitions. Holomorphic vector bundles on a complex manifold X are
defined in the same way than smooth complex vector bundles, but requiring that all the
maps involved are holomorphic.
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Definition 5.1. A complex manifold E is a rank n holomorphic vector bundle on
X if there are

(i) an open cover {Uα} of X

(ii) a holomorphic map π : E → X

(iii) holomorphic maps ψα : π−1(Uα) → Uα × Cn

such that

(i) π = pr1 ◦ψα, where = pr1 is the projection onto the first factor of Uα × Cn;

(ii) for all p ∈ Uα ∩ Uβ, the map

pr2 ◦ψβ ◦ ψ−1
α (p, •) : Cn → Cn

is a linear isomorphism.

Vector bundles of rank 1 are called line bundles.

With the data that define a holomorphic vector bundle we may construct holo-
morphic maps

gαβ : Uα ∩ Uβ → Gl(n,C)

given by
gαβ(p) · x = pr2 ◦ψα ◦ ψ−1

β (ψ, x) .

These maps satisfy the cocycle condition

gαβ gβγ gγα = Id on Uα ∩ Uβ ∩ Uγ .

The collection {Uα, ψα} is a trivialization of E.

For every x ∈ X, the subset Ex = π−1(x) ⊂ E is called the fibre of E over x. By
means of a trivialization around x, Ex is given the structure of a vector space, which is
actually independent of the trivialization.

A morphism between two vector bundles E, F over X is a holomorphic map f : E →
F such that for every x ∈ X one has f(Ex) ⊂ Fx, and such that the resulting map
fx : Ex → Fx is linear. If f is a biholomorphism, it is said to be an isomorphism of
vector bundles, and E and F are said to be isomorphic.

A holomorphic section of E over an open subset U ⊂ X is a holomorphic map
s : U → E such that π ◦ s = Id. With reference to the notation previously introduced,
the maps

s(α)i : Uα → E, s(α)i(x) = ψ−1
α (x, ei), i = 1, . . . , n

where {ei} is the canonical basis of Cn, are sections of E over Uα. Let E(Uα) denote
the set of sections of E over Uα; it is a free module over the ring O(Uα) of holomorphic
functions on Uα, and its subset {s(α)i}i=1,...,n is a basis. On an intersection Uα ∩Uβ one
has the relation

s(α)i =
n∑

k=1

(gαβ)ik s(β)k.
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Exercise 5.2. Show that two trivializations are equivalent (i.e. describe isomorphic
bundles) if there exist holomorphic maps λα : Uα → Gl(n,C) such that

(5.3) g′αβ = λα gαβ λ
−1
β

�

Exercise 5.3. Show that the rule that to any open subset U ⊂ X assigns the
OX(U)-module of sections of a holomorphic vector bundle E defines a sheaf E (which
actually is a sheaf of OX -modules).

If E is a holomorphic (or smooth complex) vector bundle, with transition functions
gαβ , then the maps

(5.4) g′αβ = (gT
αβ)−1

(where T denotes transposition) define another vector bundle, called the dual vector
bundle to E, and denoted by E∗. Sections of E∗ can be paired with (or act on) sections
of E, yielding holomorphic (smooth complex-valued) functions on (open sets of) X.

Example 5.4. The space E = X × Cn, with the projection onto the first factor, is
obviously a holomorphic vector bundle, called the trivial vector bundle of rank n. We
shall denote such a bundle by Cn (in particular, C denotes the trivial line bundle). A
holomorphic vector bundle is said to be trivial when it is isomorphic to Cn.

Every holomorphic vector bundle has an obvious structure of smooth complex vector
bundle. A holomorphic vector bundle may be trivial as a smooth bundle while not being
trivial as a holomorphic bundle. (In the next sections we shall learn some homological
techniques that can be used to handle such situations).

Example 5.5. (The tangent and cotangent bundles) If X is a complex manifold,
the “holomorphic part” T ′X of the complexified tangent bundle is a holomorphic vector
bundle, whose rank equals the complex dimension of X. Given a holomorphic atlas
for X, the locally defined holomorphic vector fields ∂

∂z1 . . . ,
∂

∂zn provide a holomorphic
trivialization of X, such that the transition functions of T ′X are the jacobian matrices
of the transition functions of X. The dual of T ′X is the holomorphic cotangent bundle
of X.

Example 5.6. (The tautological bundle) Let (w1, . . . , wn+1) be homogeneous co-
ordinates in Pn. If to any p ∈ Pn (which is a line in Cn+1) we associate that line we
obtain a line bundle, the tautological line bundle L of Pn. To be more concrete, let us
exhibit a trivialization for L and the related transition functions. If {Ui} is the standard
cover of Pn, and p ∈ Ui, then wi can be used to parametrize the points in the line p. So
if p has homogeneous coordinates (w0, . . . , wn), we may define ψi : π−1(Ui) → Ui × C
as ψi(u) = (p, wi) if p = π(u). The transition function is then gik = wi/wk. The dual
bundle H = L∗ acts on L, so that its fibre at p = π(u), u ∈ Cn+1 can be regarded as
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the space of linear functionals on the line Cu ≡ Lp, i.e. as hyperplanes in Cn+1. Hence
H is called the hyperplane bundle. Often L is denoted O(−1), and H is denoted O(1)
— the reason of this notation will be clear in Chapter 6.

In the same way one defines a tautological bundle on the Grassmann variety Gk,n;
it has rank k.

Exercise 5.7. Show that the global sections ofO(1) can be identified with the linear
polynomials in the homogeneous coordinates, so that dimH0(Pn,O(1) = n+ 1. Hence,
the global sections of O(r) are homogeneous polynomials of order r in the homogeneous
coordinates. �

4.2. More constructions. Additional operations that one can perform on vector
bundles are again easily described in terms of transition functions.

(1) Given two vector bundles E1 and E2, of rank r1 and r2, their direct sum E1⊕E2

is the vector bundle of rank r1 + r2 whose transition functions have the block matrix
form (

g
(1)
αβ 0

0 g
(2)
αβ

)

(2) We may also define the tensor product E1 ⊗ E2, which has rank r1r2 and has
transition functions g(1)

αβ g
(2)
αβ . This means the following: assume that E1 and E2 trivialize

over the same cover {Uα}, a condition we may always meet, and that in the given
trivializations, E1 and E2 have local bases of sections {s(α)i} and {t(α)k}. Then E1⊗E2

has local bases of sections {s(α)i⊗ t(α)k} and the corresponding transition functions are
given by

s(α)i ⊗ t(α)k =
r1∑

m=1

r2∑
n=1

(g(1)
αβ )im(g(2)

αβ )kn s(β)m ⊗ t(β)n .

In particular the tensor product of line bundles is a line bundle. If L is a line
bundle, one writes Ln for L ⊗ · · · ⊗ L (n factors). If L is the tautological line bundle
on a projective space, one often writes Ln = O(−n), and similarly Hn = O(n) (notice
that O(−n)∗ = O(n)).

(3) If E is a vector bundle with transition functions gαβ , we define its determinant
detE as the line bundle whose transition functions are the functions det gαβ . The
determinant bundle of the holomorphic tangent bundle to a complex manifold is called
the canonical bundle K.

Exercise 5.8. Show that the canonical bundle of the projective space Pn is iso-
morphic to O(−n− 1).

Example 5.9. Let π : Cn+1 − {0} → Pn be the usual projection, and let (w1, . . . ,

wn+1) be homogeneous coordinates in Pn. The tangent spaces to Pn are generated by
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the vectors π∗ ∂
∂wi , and these are subject to the relation

n+1∑
i=1

wi π∗
∂

∂wi
= 0 .

If ` is a linear functional on Cn+1 the vector field

v(w) = `(w)
∂

∂wi

(i is fixed) satisfies v(λw) = λ v(w) and therefore descends to Pn. One can then define
a map

E : H⊕(n+1) → TPn

(σ1, . . . , σn+1) 7→
n+1∑
i=1

σi(w)
∂

∂wi

(recall that the sections of H can be regarded as linear functionals on the homogeneous
coordinates). The map E is apparently surjective. Its kernel is generated by the section
σi(w) = wi, i = 1, . . . , n+ 1; notice that this is the image of the map

C → H⊕(n+1), 1 7→ (w1, . . . , wn+1) .

The morphism H⊕(n+1) → TPn may be regarded as a sheaf morphism OPn(1)⊕(n+1)

→ TPn, the second sheaf being the tangent sheaf of Pn, i.e., the sheaf of germs of
holomorphic vector fields on Pn, and one has an exact sequence

0 → OPn → OPn(1)⊕(n+1) → TPn → 0

called the Euler sequence. �

5. Chern class of line bundles

5.1. Chern classes of holomorphic line bundles. Let X a complex manifold.
We define Pic(X) (the Picard group of X) as the set of holomorphic line bundles on X
modulo isomorphism. The group structure of Pic(X) is induced by the tensor product
of line bundles L⊗L′; in particular one has L⊗L∗ ' C (think of it in terms of transition
functions — here C denotes the trivial line bundle, whose class [C] is the identity in
Pic(X)), so that the class [L∗] is the inverse in Pic(X) of the class [L].

Let O denote the sheaf of holomorphic functions on X, and O∗ the subsheaf of
nowhere vanishing holomorphic funtions. If L ' L′ then the transition functions gαβ ,
g′αβ of the two bundles with respect to a cover {Uα} of X are 2-cocycles O∗, and satisfy

g′αβ = gαβ
λα

λβ
with λα ∈ O∗(Uα),

so that one has an identification Pic(X) ' H1(X,O∗). The long cohomology sequence
associated with the exact sequence

0 → Z → O exp−−→O∗ → 0
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(where exp f = e2πif ) contains the segment

H1(X,Z) → H1(X,O) → H1(X,O∗) δ−−→H2(X,Z) → H2(X,O)

where δ is the connecting morphism. Given a line bundle L, the element

c1(L) = δ([L]) ∈ H2(X,Z)

is the first Chern class1 of L. The fact that δ is a group morphism means that

c1(L⊗ L′) = c1(L) + c1(L′) .

In general, the morphism δ is neither injective nor surjective, so that

(i) the first Chern class does not classify the holomorphic line bundles on X; the
group

Pic0(X) = ker δ ' H1(X,O)/ ImH1(X,Z)

classifies the line bundles having the same first Chern class.

(ii) not every element in H2(X,Z) is the first Chern class of a holomorphic line
bundle.

The image of c1 is a subgroup NS(X) of H2(X,Z), called the Néron-Severi group of X.

Exercise 5.1. Show that all line bundles on Cn are trivial.

Exercise 5.2. Show that there exist nontrivial holomorphic line bundles which are
trivial as smooth complex line bundles. �

Notice that when X is compact the sequence

0 → H0(X,Z) → H0(X,O) → H0(X,O∗) → 0

is exact, so that Pic0(X) = H1(X,O)/H1(X,Z). If in addition dimX = 1 we have
H2(X,O) = 0, so that every element inH2(X,Z) is the first Chern class of a holomorphic
line bundle.2

From the definition of connecting morphism we can deduce an explicit formula for
a Čech cocycle representing c1(L) with respect to the cover {Uα}:

{c1(L)}αβγ = 1
2πi (log gαβ + log gβγ + log gγα) .

From this one can easily prove that, if f : X → Y is a holomorphic map, and L is a line
bundle on Y , then

c1(f∗L) = f ](c1(L)) .

1This allows us also to define the first Chern class of a vector bundle E of any rank by letting

c1(E) = c1(det E).
2Here we use the fact that if X is a complex manifold of dimension n, then Hk(X,O) = 0 for all

k > n.
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5.2. Smooth line bundles. The first Chern class can equally well be defined
for smooth complex line bundles. In this case we consider the sheaf C of complex-
valued smooth functions on a differentiable manifold X, and the subsheaf C∗ of nowhere
vanishing functions of such type. The set of isomorphism classes of smooth complex line
bundles is identified with the cohomology group H1(X, C∗). However now the sheaf C
is acyclic, so that the obstruction morphism δ establishes an isomorphism H1(X, C∗) '
H2(X,Z). The first Chern class of a line bundle L is again defined as c1(L) = δ([L]),
but now c1(L) classifies the bundle (i.e. L ' L′ if and only if c1(L) = c1(L′)).

Exercise 5.3. (A rather pedantic one, to be honest...) Show that if X is a complex
manifold, and L is a holomorphic line bundle on it, the first Chern classes of L regarded
as a holomorphic or smooth complex line bundle coincide. (Hint: start from the inclusion
O ↪→ C, write from it a diagram of exact sequences, and take it to cohomology ...) �

6. Chern classes of vector bundles

In this section we define higher Chern classes for complex vector bundles of any rank.
Since the Chern classes of a vector bundle will depend only on its smooth structure, we
may consider a smooth complex vector bundle E on a differentiable manifold X. We
are already able to define the first Chern class c1(L) of a line bundle L, and we know
that c1(L) ∈ H2(X,Z). We proceed in two steps:

(1) we first define Chern classes of vector bundles that are direct sums of line bundles;

(2) and then show that by means of an operation called cohomology base change we
can always reduce the computation of Chern classes to the previous situation.

Step 1. Let σi, i = 1 . . . k, denote the symmetric function of order i in k arguments.3.
Since these functions are polynomials with integer coefficients, they can be regarded as
functions on the cohomology ring H•(X,Z). In particular, if α1, . . . , αk are classes in
H2(X,Z), we have σi(α1, . . . , αk) ∈ H2i(X,Z).

If E = L1⊕ · · · ⊕Lk, where the Li’s are line bundles, for i = 1...k we define the i-th
Chern class of E as

ci(E) = σi(c1(L1), . . . , c1(Lk)) ∈ H2i(X,Z) .

3The symmetric functions are defined as

σi(x1, . . . , xk) =
X

1≤j1<···<ji≤n

xj1 · · · · · xji .

Thus, for instance,

σ1(x1, . . . , xk) = x1 + · · ·+ xk

σ2(x1, . . . , xk) = x1x2 + x1x3 + · · ·+ xk−1xk

. . .

σk(x1, . . . , xk) = x1 · · · · · xk.

As a first reference for symmetric functions see e.g. [21].
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We also set c0(E) = 1; identifying H0(X,Z) with Z (assuming that X is connected) we
may think that c0(E) ∈ H0(X,Z).

Step 2 relies on the following result (sometimes called the splitting principle), which
we do not prove here.

Proposition 5.1. Let E be a complex vector bundle on a differentiable manifold
X. There exists a differentiable map f : Y → X, where Y is a differentiable manifold,
such that

(1) the pullback bundle f∗E is a direct sum of line bundles;

(2) the morphism f ] : H•(X,Z) → H•(Y,Z) is injective;

(3) the Chern classes ci(f∗E) lie in the image of the morphism f ].

Definition 5.2. The i-th Chern class ci(E) of E is the unique class in H2i(X,Z)
such that f ](ci(E)) = ci(f∗E).

We also define the total Chern class of E as

c(E) =
k∑

i=0

ci(E) ∈ H•(X,Z) .

The main property of the Chern classes are the following.

(1) If two vector bundles on X are isomorphic, their Chern classes coincide.

(2) Functoriality: if f : Y → X is a differentiable map of differentiable manifolds,
and E is a complex vector bundle on X, then

f ](ci(E)) = ci(f∗E) .

(3) Whitney product formula: if E, F are complex vector bundles on X, then

c(E ⊕ F ) = c(E) ∪ c(F ) .

(4) Normalization: identify the cohomology group H2(Pn,Z) with Z by identifying
the class of the hyperplane H with 1 ∈ Z. Then c1(H) = 1.

These properties characterize uniquely the Chern classes (cf. e.g. [13]). Notice that,
in view of the splitting principle, it is enough to prove the properties (1), (2), (3) when
E and F are line bundles. Then (1) and (2) are already known, and (3) follows from
elementary properties of the symmetric functions.

The reader can easily check that all Chern classes (but for c0, obviously) of a trivial
vector bundle vanish. Thus, Chern classes in some sense measure the twisting of a
bundle. It should be noted that, even in smooth case, Chern classes do not in general
classify vector bundles, even as smooth bundles (i.e., generally speaking, c(E) = c(F )
does not imply E ' F ). However, in some specific instances this may happen.

Exercise 5.3. Prove that for any vector bundle E one has c1(E) = c1(detE). �
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7. Kodaira-Serre duality

In this section we introduce Kodaira-Serre duality, which will be one of the main
tools in our study of algebraic curves. To start with a simple situation, let us study
the analogous result in de Rham theory. Let X be a differentiable manifold. Since the
exterior product of two closed forms is a closed form, one can define a bilinear map

H i
DR(X)⊗Hj

DR(X) → H i+j
DR(X), [τ ]⊗ [ω] → [τ ∧ ω].

As we already know, via the Čech-de Rham isomorphism this product can be identified
with the cup product. If X is compact and oriented, by composition with the map4

∫
X

: Hn
DR(X) → R, ∫

X
[ω] =

∫
X
ω

where n = dimX, we obtain a pairing

H i
DR(X)⊗Hn−i

DR (X) → R, [τ ]⊗ [ω] → ∫
X

[τ ∧ ω]

which is quite easily seen to be nondegenerate. Thus one has an isomorphism

H i
DR(X)∗ ' Hn−i

DR (X)

(this is a form of Poincaré duality).

If X is an n-dimensional compact complex manifold, in the same way we obtain a
nondegenerate pairing between Dolbeault cohomology groups

(5.5) Hp,q

∂̄
(X)⊗Hn−p,n−q

∂̄
(X) → C,

and a duality

Hp,q

∂̄
(X)∗ ' Hn−p,n−q

∂̄
(X).

Exercise 5.1. (1) Let E be a holomorphic vector bundle on a complex manifold
X, denote by E the sheaf of its holomorphic sections, and by E∞ the sheaf of its smooth
sections. Show (using a local trivialization and proving that the result is independent
of the trivialization) that one can define a C-linear sheaf morphism

(5.6) ∂̄E : E∞ → Ω0,1 ⊗ E∞

which obeys a Leibniz rule

∂̄E(fs) = f∂̄Es+ ∂̄f ⊗ s

for s ∈ E∞(U), f ∈ C∞(U).

(2) Show that ∂̄E defines an exact sequence of sheaves

(5.7) 0 → Ωp ⊗ E → Ωp,0 ⊗ E∞ ∂̄E−−→Ωp,1 ⊗ E∞ ∂̄E−−→ . . .
∂̄E−−→Ωp,n ⊗ E∞ → 0.

4This map is well defined because different representatives of [ω] differ by an exact form, whose

integral over X vanishes.
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Here Ωp is the sheaf of holomorphic p-forms. In particular, E = ker(∂̄E : E∞ → Ω0,1 ⊗
E∞).

(3) By taking global sections in (5.7), and taking coholomology from the resulting (in
general) non-exact sequence, one defines Dolbeault cohomology groups with coefficients
in E, denoted Hp,q

∂̄
(X,E). Use the same argument as in the proof of de Rham’s theorem

to prove an isomorphism

(5.8) Hp,q

∂̄
(X,E) ' Hq(X,Ωp ⊗ E).

�

By combining the pairing (5.5) with the action of the sections of E∗ on the sections
of E we obtain a nondegenerate pairing

Hp,q

∂̄
(X,E)⊗Hn−p,n−q

∂̄
(X,E∗) → C

and therefore a duality

Hp,q

∂̄
(X,E)∗ ' Hn−p,n−q

∂̄
(X,E∗).

Using the isomorphism (5.8) we can express this duality in the form

Hp(X,Ωq ⊗ E)∗ ' Hn−p(X,Ωn−q ⊗ E∗).

This is the Kodaira-Serre duality. In particular for q = 0 we get (denoting K = Ωn =
detT ∗X, the canonical bundle of X)

Hp(X, E)∗ ' Hn−p(X,K ⊗ E∗).

This is usually called Serre duality.

8. Connections

In this section we give the basic definitions and sketch the main properties of con-
nections. The concept of connection provides the correct notion of differential operator
to differentiate the sections of a vector bundle.

8.1. Basic definitions. Let E a complex, in general smooth, vector bundle on a
differentiable manifold X. We shall denote by E the sheaf of sections of E, and by Ω1

X

the sheaf of differential 1-forms on X. A connection is a sheaf morphism

∇ : E → Ω1
X ⊗ E

satisfying a Leibniz rule
∇(fs) = f∇(s) + df ⊗ s

for every section s of E and every function f on X (or on an open subset). The Leibniz
rule also shows that ∇ is C-linear. The connection ∇ can be made to act on all sheaves
Ωk

X ⊗ E , thus getting a morphism

∇ : Ωk
X ⊗ E → Ωk+1

X ⊗ E ,
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by letting
∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ⊗∇(s).

If {Uα} is a cover of X over which E trivializes, we may choose on any Uα a set
{sα} of basis sections of E(Uα) (notice that this is a set of r sections, with r = rkE).
Over these bases the connection ∇ is locally represented by matrix-valued differential
1-forms ωα:

∇(sα) = ωα ⊗ sα .

Every ωα is as an r × r matrix of 1-forms. The ωα’s are called connection 1-forms.

Exercise 5.1. Prove that if gαβ denotes the transition functions of E with respect
to the chosen local basis sections (i.e., sα = gαβ sβ), the transformation formula for the
connection 1-forms is

(5.9) ωα = gαβ ωβ g
−1
αβ + dgαβ g

−1
αβ .

The connection is not a tensorial morphism, but rather satifies a Leibniz rule; as a
consequence, the transformation properties of the connection 1-forms are inhomogeneous
and contain an affine term.

Exercise 5.2. Prove that if E and F are vector bundles, with connections ∇1 and
∇2, then the rule

∇(s⊗ t) = ∇1(s)⊗ t+ s⊗∇2(t)

(minimal coupling) defines a connection on the bundle E⊗F (here s and t are sections
of E and F , respectively).

Exercise 5.3. Prove that is E is a vector bundle with a connection ∇, the rule

< ∇∗(τ), s >= d < τ, s > − < τ,∇(s) >

defines a connection on the dual bundle E∗ (here τ , s are sections of E∗ and E, respect-
ively, and < , > denotes the pairing between sections of E∗ and E). �

It is an easy exercise, which we leave to the reader, to check that the square of the
connection

∇2 : Ωk
X ⊗ E → Ωk+2

X ⊗ E

is f -linear, i.e., it satisfies the property

∇2(fs) = f∇2(s)

for every function f on X. In other terms, ∇2 is an endomorphism of the bundle E
with coefficients in 2-forms, namely, a global section of the bundle Ω2

X ⊗ End(E). It is
called the curvature of the connection ∇, and we shall denote it by Θ. On local basis
sections sα it is represented by the curvature 2-forms Θα defined by

Θ(sα) = Θα ⊗ sα.
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Exercise 5.4. Prove that the curvature 2-forms may be expressed in terms of the
connection 1-forms by the equation (Cartan’s structure equation)

(5.10) Θα = dωα − ωα ∧ ωα .

Exercise 5.5. Prove that the transformation formula for the curvature 2-forms is

Θα = gαβ Θβ g
−1
αβ .

Due to the tensorial nature of the curvature morphism, the curvature 2-forms obey a
homogeneous transformation rule, without affine term. �

Since we are able to induce connections on tensor products of vector bundles (and
also on direct sums, in the obvious way), and on the dual of a bundle, we can induce
connections on a variety of bundles associated to given vector bundles with connec-
tions, and thus differentiate their sections. The result of such a differentiation is called
the covariant differential of the section. In particular, given a vector bundle E with
connection ∇, we may differentiate its curvature as a section of Ω2

X ⊗ End(E).

Proposition 5.6. (Bianchi identity) The covariant differential of the curvature of
a connection is zero, ∇Θ = 0.

Proof. A simple computation shows that locally ∇Θ is represented by the matrix-
valued 3-forms

dΘα + ωα ∧Θα −Θα ∧ ωα .

By plugging in the structure equation (5.10) we obtain ∇Θ = 0. �

8.2. Connections and holomorphic structures. If X is a complex manifold,
and E a C∞ complex vector bundle on it with a connection ∇, we may split the latter
into its (1,0) and (0,1) parts, ∇′ and ∇′′, according to the splitting Ω1

X⊗C = Ω1,0
X ⊕Ω0,1

X .

Analogously, the curvature splits into its (2,0), (1,1) and (0,2) parts,

Θ = Θ2,0 + Θ1,1 + Θ0,2 .

Obviously we have

Θ2,0 = (∇′)2, Θ1,1 = ∇′ ◦ ∇′′ +∇′′ ◦ ∇′, Θ0,2 = (∇′′)2.

In particular ∇′′ is a morphism Ωp,q
X ⊗ E → Ωp,q+1

X ⊗ E . If Θ0,2 = 0, then ∇′′ is a
differential for the complex Ωp,•

X ⊗E . The same condition implies that the kernel of the
map

(5.11) ∇′′ : E → Ω0,1
X ⊗ E

has enough sections to be the sheaf of sections of a holomorphic vector bundle.
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Proposition 5.7. If Θ0,2 = 0, then the C∞ vector bundle E admits a unique
holomorphic structure, such that the corresponding sheaf of holomorphic sections is iso-
morphic to the kernel of the operator (5.11). Moreover, under this isomorphism the
operator (5.11) concides with the operator δ̄E defined in Exercise 5.1.

Proof. Cf. [16], p. 9. �

Conversely, if E is a holomophic vector bundle, a connection ∇ on E is said to be
compatible with the holomorphic structure of E if ∇′′ = ∂E .

8.3. Hermitian bundles. A Hermitian metric h of a complex vector bundle E is
a global section of E ⊗ E∗ which when restricted to the fibres yields a Hermitian form
on them (more informally, it is a smoothly varying assignation of Hermitian structures
on the fibres of E). On a local basis of sections {sα}, of E, h is represented by matrices
hα of functions on Uα which, when evaluated at any point of Uα, are Hermitian and
positive definite. The local basis is said to be unitary if the corresponding matrix h is
the identity matrix.

A pair (E, h) formed by a holomorphic vector bundle with a hermitian metric is
called a hermitian bundle. A connection ∇ on E is said to be metric with respect to h
if for every pair s, t of sections of E one has

dh(s, t) = h(∇s, t) + h(s,∇t) .

In terms of connection forms and matrices representing h this condition reads

(5.12) dhα = ω̃α hα + hα ω̄α

where˜denotes transposition and¯denotes complex conjugation (but no transposition,
i.e., it is not the hermitian conjugation). This equation implies right away that on a
unitary frame, the connection forms are skew-hermitian matrices.

Proposition 5.8. Given a hermitian bundle (E, h), there is a unique connection ∇
on E which is metric with respect to h and is compatible with the holomorphic structure
of E.

Proof. If we use holomophic local bases of sections, the connection forms are of
type (1,0). Then equation (5.12) yields

(5.13) ω̃α = ∂hα h
−1
α

and this equations shows the uniqueness. As for the existence, one can easily check
that the connection forms as defined by equation (5.13) satisfy the condition (5.9) and
therefore define a connection on E. This is metric w.r.t. h and compatible with the
holomorphic structure of E by construction. �
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Example 5.9. (Chern classes and Maxwell theory) The Chern classes of a complex
vector bundle E can be calculated in terms of a connection on E via the so-called Chern-
Weil representation theorem. Let us discuss a simple situation. Let L be a complex line
bundle on a smooth 2-dimensional manifold X, endowed with a connection, and let F
be the curvature of the connection. F can be regarded as a 2-form on X. In this case
the Chern-Weil theorem states that

(5.14) c1(L) =
i

2π

∫
X
F

where we regard c1(L) as an integer number via the isomorphism H2(X,Z) ' Z given
by integration over X. Notice that the Chern class of F is independent of the connection
we have chosen, as it must be. Alternatively, we notice that the complex-valued form F

is closed (Bianchi identity) and therefore singles out a class [F ] in the complexified de
Rham group H2

DR(X) ⊗R C ' H2(X,C); the class i
2π [F ] is actually real, and one has

the equality

c1(L) =
i

2π
[F ]

in H2
DR(X). If we consider a static spherically symmetric magnetic field in R3, by

solving the Maxwell equations we find a solution which is singular at the origin. If we
do not consider the dependence from the radius the vector potential defines a connection
on a bundle L defined on an S2 which is spanned by the angular spherical coordinates.
The fact that the Chern class of L as given by (5.14) can take only integer values is
known in physics as the quantization of the Dirac monopole.



CHAPTER 6

Divisors

Divisors are a powerful tool to study complex manifolds. We shall start with the one-
dimensional case. The notion will be later generalized to higher dimensional manifolds.

1. Divisors on Riemann surfaces

Let S be a Riemann surface (a complex manifold of dimension 1). A divisor D on
S is a locally finite formal linear combinations of points of S with integer coefficients,

D =
∑

aipi, ai ∈ Z, pi ∈ S,

where “locally finite” means that every point p in S has a neighbourhood which contains
only a finite number of pi’s. If S is compact, this means that the number of points is
finite. We say that the divisor D is effective if ai ≥ 0 for all i. We shall then write
D ≥ 0.

The set of all divisors of S forms an abelian group, denoted by Div(S).

Let f a holomorphic function defined in a neighbourhood of p, and let z be a local
coordinate around p. There exists a unique nonnegative integer a and a holomorphic
function h such that

f(z) = (z − z(p))a h(z)

and h(p) 6= 0. We define
ordp f = a.

Notice that

(6.1) ordp fg = ordp f + ordp g.

If f is a meromorphic function which in a neighbourhood of p can be written as f = g/h,
with g and h holomorphic, we define

ordp f = ordp g − ordp h.

We say that f has a zero of order a at p if ordp f = a > 0 (then f is holomorphic in a
neighbourhood of p), and that it has a pole of order a if ordp f = −a < 0.

With each meromorphic function f we may associate the divisor

(f) =
∑
p∈S

ordp f · p;

if f = g/h with g and h relatively prime, then (f) = (g)− (h).

87
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1.1. Sheaf-theoretic description of divisors. The group of divisors Div can
be described in sheaf-theoretic terms as follows. Let M∗ be the sheaf of meromorphic
functions that are not identically zero. We have an exact sequence

0 → O∗ →M∗ →M∗/O∗ → 0

of sheaves of abelian groups (notice that the group structure is multiplicative).

Proposition 6.1. There is a group isomorphism Div(S) ' H0(S,M∗/O∗).

Proof. Given a cover U = {Uα} of X, one has a commutative diagram of exact
sequences

0y
H0(S,M∗/O∗)y

C0(U,M∗) −−−−→ C0(U,M∗/O∗) −−−−→
∏

αH
1(Uα,O∗) = 0

δ

y δ

y
C1(U,O∗) −−−−→ C1(U,M∗) −−−−→ C1(U,M∗/O∗)

where H1(Uα,O∗) = 0 because Uα ' C holomorphically (here δ denotes the Čech
cohomology operator). This diagram shows that a global section s ∈ H0(S,M∗/O∗)
can be represented by a 0-cochain {fα ∈M∗(Uα)} ∈ Č0(U,M∗) subject to the condition
fα/fβ ∈ O∗(Uα ∩Uβ), so that ordp fα does not depend on α, and the quantity ordp s is
well defined. We set D =

∑
p ordp s · p.

Conversely, given D =
∑
aipi, we may choose an open cover {Uα} such that each

Uα contains at most one pi, and functions giα ∈ O(Uα) such that that giα has a zero of
order one at pi if pi ∈ Uα. We set

fα =
∏

i

gai
iα.

Then fα/fβ ∈ O∗(Uα ∩ Uβ), so that {fα} determines a global section of M∗/O∗.

The two constructions are one the inverse of the other, so that they establish an
isomorphism of sets. The fact that this is also a group homomorphism follows from the
formula (6.1), which holds also for meromorphic functions. �

1.2. Correspondence between divisors and line bundles. Let D ∈ Div(S),
and let {Uα} be an open cover of S with meromorphic functions {fα} which define the
divisor, according to Proposition 6.1. Then the functions

gαβ =
fα

fβ
∈ O∗(Uα ∩ Uβ)
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obviously satisfy the cocycle condition, and define a line bundle, which we denote by [D].
The line bundle [D] in independent, up to isomorphism, of the set of functions defining
D; if {f ′α} is another set, then ordpi fα = ordpi f

′
α, so that the functions hα = fα/f

′
α are

holomorphic and nowhere vanishing, and

g′αβ =
f ′α
f ′β

=
fα

fβ

hβ

hα
= gαβ

hβ

hα
,

so that the transition functions g′αβ define an isomorphic line bundle.

If D = D(1) +D(2) then fα = f
(1)
α f

(2)
α by eq. (6.1), so that [D(1) +D(2)] = [D(1)]⊗

[D(2)], and one has a homomorphism Div(S) → Pic(S).

We offer now a sheaf-theoretic description of this homomorphism. Let f = {fα} ∈
H0(S,M∗); let us set fα = gα/hα, with gα,hα ∈ O(Uα) relatively prime. We have
(f) = (g)− (h), with (g) and (h) effective divisors. The line bundle [(f)] has transition
functions

gαβ =
gα

gβ

hβ

hα
=
fα

fβ
= 1

(since f is a Čech cocycle) so that [(f)] = C, i.e. [(f)] is the trivial line bundle.

Conversely, let D be a divisor such that [D] = C; then the transition functions of
[D] have the form

gαβ =
hα

hβ
with hα ∈ O∗(Uα).

Let {fα} be meromorphic functions which define D, so that one also has gαβ = fα

fβ
, and

fα

hα
= gαβ

fβ

hα
=
fβ

hβ
;

the quotients fα

hα
therefore determine a global nonzero meromorphic function, namely:

Proposition 6.2. The line bundle associated with a divisor D is trivial if and only
if D is the divisor of a global meromorphic function.

In view of the identifications Div(S) ' H0(S,M∗/O∗) and Pic(S) ' H1(S,O∗) this
statement is equivalent to the exactness of the sequence

H0(S,M∗) → H0(S,M∗/O∗) → H1(S,O∗).

Definition 6.3. Two divisors D, D′ ∈ Div(S) are linearly equivalent if D′ = D+(f)
for some f ∈ H0(S,M).

Quite evidently, D and D′ are linearly equivalent if and only if [D] ' [D′], so that
there is an injective group homomorphism

Div(S)/{linear equivalence} → Pic(S).
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1.3. Holomorphic and meromorphic sections of line bundles. If L is a line
bundle on S, we denote by O(L) the sheaf of its holomorphic sections, and by M(L) the
sheaf of its meromorphic sections, the latter being defined as M(L) = O(L)⊗OM. If L
has transition functions gαβ with respect to a cover {Uα} of S, then a global holomorphic
section s ∈ H0(S,O(L)) of L corresponds to a collection of functions {sα ∈ O(Uα)}
such that sα = gαβsβ on Uα ∩ Uβ. The same holds for meromorphic sections. A first
consequence of this is that, if s, s′ ∈ H0(S,M(L)), we have

sα

s′α
=
gαβsβ

gαβs
′
β

=
sβ

s′β
on Uα ∩ Uβ,

so that the quotient of s and s′ is a well-defined global meromorphic function on S.

Let s ∈ H0(S,M(L)); we have
sα

sβ
= gαβ ∈ O∗(Uα ∩ Uβ)

so that

ordp sα = ordp sβ for all p ∈ Uα ∩ Uβ;

the quantity ordp s is well defined, and we may associate with s the divisor

(s) =
∑
p∈S

ordp s · p.

By construction we have [(s)] ' L. Obviously, s is holomorphic if and only if (s) is
effective.

So we have

Proposition 6.4. A line bundle L is associated with a divisor D (i.e. L = [D] for
some D ∈ Div(S)) if and only if it has a global nontrivial meromorphic section. L is the
line bundle associated with an effective divisor if and only if it has a global nontrivial
holomorphic section.

Proof. The “if” part has already been proven. For the “only if” part, let L = [D]
with D a divisor with local equations fα = 0. Then fα = gαβ fβ, where the functions
gαβ are transition functions for L; the functions fα glue to yield a global meromorphic
section s of L. If D is effective the functions fα are holomorphic so that s is holomorphic
as well. �

Corollary 6.5. The line bundle [p] trivializes over the cover {U1, U2}, where U1 =
S − {p} and U2 is a neighbourhood of p, biholomorphic to a disc in C.

Proof. Since [p] is effective it has a global holomorphic section which vanishes only
at p, so that [p] is trivial on U1. Of course it is trivial on U2 as well. �

So the same happens for the line bundles [kp], k ∈ Z.
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For the remainder of this section we assume that S is compact. Let us define the
degree of a divisor D =

∑
aipi as the integer

degD =
∑

ai .

For simplicity we shall write O(D) for O([D]).

Corollary 6.6. If degD < 0, then H0(S,O(D)) = 0. �

If L is a line bundle we denote by
∫
S c1(L) the number obtained by integrating over S

a differential 2-form which via de Rham isomorphism represents1 the Čech cohomology
class c1(L) regarded as an element in H2(S,R).

Proposition 6.7. For any D ∈ Div(S) one has∫
S
c1(D) = degD.

Before proving this result we need some preliminaries. We define a hermitian metric
on a line bundle L as an assignment of a hermitian scalar product in each Lp which is
C∞ in p; thus a hermitian metric is a C∞ section h of the line bundle L∗⊗L∗ such that
each h(p) is a hermitian scalar product in Lp. In terms of a local trivialization over an
open cover {Uα} a hermitian metric is represented by nonvanishing real functions hα on
Uα. On Uα∩Uβ one has hα = |gαβ |2hβ , so that the 2-form i

2π ∂̄∂ log hα does not depend
on α, and defines a global closed 2-form on S, which we denote by Θ.

Lemma 6.8. The class of Θ is the image in H2
DR(S) of c1(L).

Proof. We need the explicit form of the de Rham correspondence. One has exact
sequences

(6.2) 0 → R → C∞ → Z1 → 0, 0 → Z1 → Ω1 → Z2 → 0 .

(Here Ω1 is the sheaf of smooth real-valued 1-forms.) From the long exact cohomology
sequences of the second sequence we get

H0(S,Ω1) → H0(S,Z2) → H1(S,Z1) → 0

so that the connecting morphism H0(S,Z2) → H1(S,Z1) induces an isomorphism
H2

DR(S) → H1(S,Z1). Since we may write Θ = i
2πd∂ log hα a cocycle representing

the image of [Θ] in H1(S,Z1) is {θα − θβ}, with

θα = i
2π∂ log hα.

Notice that
θα − θβ = i

2π∂ (log hα − log hβ) = i
2π d log gαβ

so that d(θα − θβ) = 0.

1The reader should check that the integral does not depend on the choice of the representative.
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If we consider now the first of the sequences (6.2) we obtain from its long cohomology
exact sequence a segment

0 → H1(S,Z1) → H2(S,R) → 0

so that the connecting morphism is now an isomorphism. If we apply it to the 1-cocycle
{θα − θβ} we get the 2-cocycle of R

1
2πi log gαβ + 1

2πi log gβγ + 1
2πi log gγα = (c1(L))αβγ .

�

Proof of Proposition 6.7: Since c1 and deg are both group homomorphisms, it is
enough to consider the case D = [p]. Consider the open cover {U1, U2}, where U1 =
S − {p}, and U2 is a small patch around p. Then∫

S
c1(D) =

∫
S

Θ = i
2π lim

ε→0

∫
S−B(ε)

d∂ log h1

where B(ε) is the disc |z| < ε, with z a local coordinate around p, and z(p) = 0. Since
∂̄∂ = 1

2d(∂− ∂̄), and assuming that h1|U2−B(ε) = |z|2, which can always be arranged, we
have ∫

S
c1(D) = 1

2πi lim
ε→0

∫
∂B(ε)

∂ log zz̄ = 1
2πi

∫
∂B(ε)

dz

z
= 1

having used Stokes’ theorem and the residue theorem (note a change of sign due to a
reversal of the orientation of ∂B(ε)). �

This result suggests to set

degL =
∫

S
c1(L)

for all line bundles on S.

Corollary 6.9. If degL < 0, then H0(S,O(L)) = 0.

Proof. If there is a nonzero s ∈ H0(S,O(L)), then L = [D] with D = (s). Since
degD < 0 by the previous Proposition, this contradicts Corollary 6.6. �

Corollary 6.10. A global meromorphic function on a compact Riemann surface
has the same number of zeroes and poles (both counted with their multiplicities).

Proof. If f global meromorphic function, we must show that deg(f) = 0. But f
is a global meromorphic section of the trivial line bundle C, whence

deg(f) =
∫

S
c1(C) = 0 .

�
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1.4. The fundamental exact sequence of an effective divisor. Let us first
define for all p ∈ S the sheaf kp as the 1-dimensional skyscraper sheaf concentrated at
p, namely, the sheaf

kp(U) = C if p ∈ U, kp(U) = 0 if p /∈ U.

kp has stalk C at p and stalk 0 elsewhere.

Let D =
∑
aipi be an effective divisor. Then the line bundle L = [D] has at least

one section s; this allows one to define a morphism O → O(D) by letting f 7→ f s|U for
every f ∈ O(U). We also define the skyscraper sheaf kD =

∑
i(kpi)

ai concentrated on
D.

Proposition 6.11. The sequence

(6.3) 0 → O → O(D) → kD → 0

is exact.

Proof. We shall actually prove the exactness of the sequence

(6.4) 0 → O(−D) → O → kD → 0

from which the previous sequence is obtained by tensoring by O(D).2 Notice also that
kD ⊗O O(D) ' kD because in a neighbourhood of every point pi the sheaf O(D) is
isomorphic to O.

The exactness of the sequence (6.4) follows from the fact the any local holomorphic
function can be represented around pi in the form (Taylor polynomial)

f(z) = f(z0) +
ai−1∑
k=1

1
k!
f (k)(z0) (z − z0)k + (z − z0)ai g(z)

where z0 = z(p), and g is a holomorphic function. The term (z − z0)ai g(z) is a section
of O(−D), while the first two terms on the right single out a section of kD. �

The sheaf O(−D) can be regarded as the sheaf of holomorphic functions which at
pi have a zero of order at least ai. Since O(D) ' O(−D)∗, the O(D) may be identified
with the sheaf of meromorphic functions which at pi have a pole of order at most ai.

In particular one may write

0 → O(−2p) → O → kp ⊕ T ∗pS → 0

where T ∗pS is considered as a skyscraper sheaf concentrated at p (indeed the quantity
f ′(z0) determines an element in T ∗pS).

If E is a holomorphic vector bundle on S, let us denote E(D) = E ⊗ [D]. Then by
tensoring the exact sequence (6.4) by O(E) we get

2Here we use the fact that tensoring all elements of an exact sequence by the sheaf of sections of a

vector bundle preserves exactness. This is quite obvious because by the local triviality of E the stalk of

O(E) at p is Ok
p , with k the rank of E.
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0 → O(E(−D)) → O(E) → ED → 0

where ED = ⊕iE
⊕ai
pi

is a skyscraper sheaf concentrated on D.

2. Divisors on higher-dimensional manifolds

We start with some preparatory material.

Definition 6.1. An analytic subvariety V of a complex manifold X is a subset of
X which is locally defined as the zero set of a finite collection of holomorphic functions.

An analytic subvariety V is said to be reducible if V = V1 ∪ V2 with V1 and V2

properly contained in V . V is said to be irreducible if it is not reducible.

A point p ∈ V is a smooth point of V if around p the subvariety V is a submanifold,
namely, it can be written as f1(z1, . . . , zn) = . . . fk(z1, . . . , zn) = 0 with rank J = k,
where {z1, . . . , zn} is a local coordinate system for X around p, and J is the jacobian
matrix of the functions f1, . . . fk. The set of smooth points of V is denoted by V ∗; the
set Vs = V − V ∗ is the singular locus of V . The dimension of V is by definition the
dimension of V ∗.

If dimV = dimX − 1, V will be called an analytic hypersurface.

Proposition 6.2. Any analytic subvariety V can be expressed around a point p ∈ V
as the union of a finite number of analytic subvarieties Vi which are irreducible around
p, and are such that Vi 6⊂ Vj.

Proof. This follows from the fact that the stalk Op is a unique factorization domain
([9] page 12).3 Let us sketch the proof for hypersurfaces. In a neighbourhood of p the
hypersurface V is given by f = 0. Denoting by the same letter the germ of f in p,
since Op (where O is the sheaf of holomorphic functions on X) is a unique factorization
domain we have

f = f1 · · · · · fm,

where the fi’s are irreducible in Op, and are defined up to multiplication by invertible
elements in Op; if Vi is the locus of zeroes of fi, then V = ∪iVi. Since fi irreducible, Vi

is irreducible as well; since it is not true that fj = gfi for some g ∈ Op which vanishes
at p, we also have Vi 6⊂ Vj . �

We may now give the general definition of divisor:

3Let us recall this notion: one says that a ring R is an integral domain if uv = 0 implies that either

u = 0 or v = 0. An element u ∈ R in an integral domain is said to be irreducible if u = vw implies

that v or w is a unit; R is a unique factorization domain if any element u can be written as a product

u = u1 · · · . . . um, where the ui are irreducible and unique up to multiplication by units.
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Definition 6.3. A divisor D on a complex manifold X is a locally finite formal
linear combination with integer coefficients D =

∑
aiVi, where the Vi’s are irreducible

analytic hypersurfaces in X.

If V ⊂ X is an analytic irreducible hypersurface, and p ∈ V , we may choose around
p a coordinate system {w, z2, . . . , zn} such that V is given around p by w = 0. Given a
function f defined in a neighbourhood of p, let a be the greatest integer such that

f(w, z2, . . . , zn) = wa h(w, z2, . . . , zn)

with h(p) 6= 0. The function f has the same representation in all nearby points of V ,
so that a is constant on the connected components of V , namely, it is constant on V ,
so that we may define

ordV f = a.

With this proviso all the theory previously developed applies to this situation; the
only definition which no longer applies is that of degree of a line bundle, in that c1(L)
is still represented by a 2-form, while the quantities that can be integrated on X are
the 2n-forms if dimCX = n. Proposition 6.7 must now be reformulated as follows. Let
D =

∑
aiVi be a divisor, and let V ∗i be the smooth locus of Vi. We then have:

Proposition 6.4. For any divisor D ∈ Div(X) and any (2n− 2)-form φ on X,∫
X
c1(D) ∧ φ =

∑
i

ai

∫
V ∗

i

φ.

Proof. The proof is basically the same as in Proposition 6.7 (cf. [9] page 141). �

3. Linear systems

In this section we consider a compact complex manifold X of arbitrary dimension.
Let D =

∑
aiVi ∈ Div(X), and define |D| as the set of all effective divisors linearly

equivalent to D. We start by showing that there is an isomorphism

λ : PH0(X,O(D)) → |D| .

We fix a global meromorphic section s0 of [D], and set

(6.5) s ∈ H0(X,O(D)) 7→
(
s

s0

)
+D ∈ |D| ;

one should notice that ordpi

(
s
s0

)
≥ −ai if pi ∈ Vi so that

(
s
s0

)
+D is indeed effective.

If s′ = α s with α ∈ C∗ then
(

s
s0

)
=
(

s′

s0

)
so that equation (6.5) does define a map

PH0(X,O(D)) → |D|. This map is

(i) injective because if λ(s1) = λ(s2) then s1/s2 is a global nonvanishing holomorphic
function, i.e. s1 = α s2 with α ∈ C∗.
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(ii) Surjective because if D1 ∈ |D| then D1 = D + (f) for a global meromorphic
function f with ordpi(f) ≥ −ai if pi ∈ Vi. So fs0 is a global holomorphic section of [D].

Definition 6.1. A linear system is the set of divisors corresponding to a linear
subspace of PH0(X,O(D)). A linear system is said to be complete if it corresponds to
the whole of PH0(X,O(D)).

So a linear system is of the form E = {Dλ}λ∈Pm for some m. The number m is
called the dimension of E. A one-dimensional linear system is called a pencil, a two-
dimensional one a net, and a three-dimensional one a web. Since all divisors in a linear
system have the same degree, one can associate a degree to a linear system.

Remark 6.2. If the elements λ0, . . . , λm are independent in Pm (which means that
they are images of linearly independent elements in Cm+1), and E = {Dλ}λ∈Pm is a
linear system, then

Dλ0 ∩ · · · ∩Dλm =
⋂

λ∈Pm

Dλ.

For instance, if m = 1, and Dλ0 and Dλ1 have local equations f = 0 and g = 0, then Dλ

has local equation c0f + c1g = 0 if λ = c0λ0 + c1λ1. So Dλ0 ∩Dλ1 ⊂ ∩λ∈P1Dλ, which
implies Dλ0 ∩Dλ1 = ∩λ∈P1Dλ.

Definition 6.3. If E = {Dλ}λ∈Pm is a linear system, we define its base locus as
B(E) = ∩λ∈PmDλ.

Example 6.4. If E = {Dλ}λ∈P1 is a pencil, every p ∈ X − B(E) lies on a unique
Dλ, so that there is a well-defined map X −B(E) → P1. This map is holomorphic. We
may indeed write a local equation for Dλ in the form

(6.6) f(z1, . . . , zn) + λg(z1, . . . , zn) = 0

where f and f are local defining functions for D0 and D∞ (holomorphic because the
divisors in E are effective). f and g do not vanish simultaneously on X − B(E),
so that they do not vanish separately either. Then the above map is given by λ =
−f(z1, . . . , zn)/g(z1, . . . , zn). �

Example 6.5. Since H1(Pn,O) = H2(Pn,O) = 0, the line bundles on Pn are
classified by H2(Pn,Z) ' Z. Moreover, since c1(H) = 1 under this identification
(i.e. degH = 1), all divisors are linearly equivalent to multiples of H; in other terms,
on Pn the only complete linear system of degree d is |dH|.

Notice that |H| is base-point free, i.e. B(|H|) = ∅. �

A fundamental result in the theory of linear systems is the following.

Proposition 6.6. (Bertini’s theorem) The generic element of a linear system is
smooth away from the base locus.
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By this we mean that the set of divisors in a linear system E which have singular
points outside the base locus form a subvariety of E of dimension strictly smaller than
that of E.

Proof. If E is linear system, and D ∈ E has singularities outside B(E), Bertini’s
theorem would be violated by all pencils containing D. It is therefore sufficient to
prove the theorem for pencils; in this case genericity means that the divisors having
singularities out of the base locus are finite in number.

So let E = {Dλ}λ∈P1 be a pencil, locally described by eq. (6.6), where the coordinates
{z1, . . . , zn} can be defined on an open subset ∆ ⊂ X whose image in Cn is a polydisc.
Let pλ be a singular point of Dλ which is not contained in the base locus. We have the
conditions

(6.7) f(pλ) + λg(pλ) = 0

(6.8)
∂f

∂zi
(pλ) + λ

∂f

∂zi
(pλ) = 0, i = 1, . . . , n

f(pλ), g(pλ) 6= 0.

We then have λ = −f(pλ)/g(pλ), so that

∂f

∂zi
− f

g

∂g

∂zi
= 0 in pλ,

and

(6.9)
∂

∂zi

(
f

g

)
= 0 in pλ.

Let Y be the locus in ∆×P1 cut out by the conditions (6.7) and (6.8); Y is an analytic
variety, so the same holds true for its image V in ∆. Actually V is nothing but the locus
of all singular points of the divisors Dλ. Equation (6.9) shows that f/g is constant on
the connected components of V −B, that is, every connected component of V −B meets
only one divisor of the pencil. Since the connected components of V − B are finitely
many by Proposition 6.2, the divisors which have singularities outside B(E) are finite
in number. �

4. The adjunction formula

If V is a smooth analytic hypersurface in a complex manifold X, we may relate
the canonical bundles KV and KX . We shall denote by ιV : V → X the inclusion; one
has an injective morphism TV → ι∗V TX of bundles on V . If we choose around p ∈ V

a coordinate system (z1, . . . , zn) for X such that z1 = 0 locally describes V , then the

vector field
∂

∂z1
restricted to V locally generates the quotient sheaf NV = ι∗V TX/TV ,

so that NV is the sheaf of sections of a line bundle, which is called the normal bundle
to V .
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The dual N∗
V , the conormal bundle to V , is the subbundle of ι∗V T

∗X whose sections
are holomorphic 1-forms which are zero on vectors tangent to V .

We first prove the isomorphism

(6.10) N∗
V ' ι∗V [−V ].

We consider the exact sequence of vector bundles on V

0 → N∗
V → ι∗V T

∗X → T ∗V → 0

whence we get4

(6.11) ι∗VKX ' KV ⊗N∗
V .

If, relative to an open cover {Uα} of X, the divisor V is locally given by functions
fα ∈ O(Uα), the line bundle [V ] has transition functions gαβ = fα/fβ . The 1-form
dfα|V ∩Uα

is a section of N∗
V |V ∩Uα

, which never vanishes because V is smooth. On
Uα ∩ Uβ we have

dfα = d(gαβfβ) = dgαβ fβ + gαβ dfβ = gαβ dfβ

the last equality holding on V ∩ Uα ∩ Uβ . This equation shows that the 1-forms dfα

do not glue to a global section of N∗
V , but rather to a global section of the line bundle

N∗
V ⊗ ι∗V [V ], so that this bundle is trivial, and the isomorphism (6.10) holds.

By combining the formula (6.10) with the isomorphism (6.11) we obtain the adjunc-
tion formula:

(6.12) KV ' ι∗V (KX ⊗ [V ]).

Sometimes an additive notation is used, and then the adjunction formula reads

KV = KX |V + [V ]|V .

Example 6.1. Let V be the divisor cut out from P3 by the quartic equation

(6.13) w4
0 + w4

1 + w4
2 + w4

3 = 0

where the wi’s are homogeneous coordinates in P3. It is easily shown the V is smooth,
and it is of course compact: so it is a 2-dimensional compact complex manifold, called
the Fermat surface. By a nontrivial result, known as Lefschetz hyperplane theorem
([9] p. 156) one has H1(V,R) = 0, so that H1(V,OV ) = 0. Then the group Pic0(V ),
which classifies the line bundles whose first Chern classes vanishes, is trivial: if a line
bundle L on V is such that c1(L) = 0, then it is trivial, and every line bundle is fully
classified by its first Chern class. (The same happens on P3, since H1(P3,OP3) = 0).

4We use the fact that whenever

0 → E → F → G → 0

is an exact sequence of vector bundles, then det F ' det E⊗det G, as one can prove by using transition

functions.
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We also know that KP3 = OP3(−4H), where H is any hyperplane in P3. Therefore
ι∗VKX ' OV (−4HV ), where HV = H ∩ V is a divisor in V .

Let us compute c1([V ]|V ) = ι∗V c1([V ]). We use the following fact: if D1, D2, D3 are
irreducible divisors in P3, then we can move the divisors inside their linear equivalence
classes in such a way that they intersects at a finite number of points. This number is
computed by the integral ∫

P3

c1([D1]) ∧ c1([D2]) ∧ c1([D3])

where one considers the Chern classes c1([Di]) as de Rham cohomology classes. If we
take D1 = V , D2 = D3 = H the number of intersection points is 4, because such is the
degree of the algebraic system formed by the equation (6.13) and by the equations of
two (different) hyperplanes. Since the class h, where h = c1([H]), generates H2(P3,Z),
we have c1([V ]) = 4h, that is, V ∼ 4H. Then [V ]|V ' OV (4HV ).

From the adjunction formula we get KV ' C: the canonical bundle of V is trivial.
Since we also have H1

DR(V ) = 0, V is an example of a K3 surface.





CHAPTER 7

Algebraic curves I

The main purpose of this chapter is to show that compact Riemann surfaces can be
imbedded into projective space (i.e. they are algebraic curves), and to study some of
their basic properties.

1. The Kodaira embedding

We start by showing that any compact Riemann surface can be embedded as a
smooth subvariety in a projective space PN ; this is special instance of the so-called
Kodaira’s embedding theorem. Together with Chow’s Lemma this implies that every
compact Riemann surface is algebraic.

We recall that, given two complex manifolds X and Y , we say that (Y, ι) is a
submanifold of X is ι is an injective holomorphic map Y → X whose differential ι∗p :
TpY → Tι(p)X is of maximal rank (given by the dimension of Y ) at all p ∈ Y . In other
terms, ι maps isomorphically Y onto a smooth subvariety of X.

Proposition 7.1. Any compact Riemann surface can be realized as a submanifold
of PN for some N .

Proof. Pick up a line bundle L on S such that degL > degK + 2 (choose an
effective divisor D with enough points, and let L = [D]). By Serre duality we have

(7.1) H1(S,O(L− 2p)) ' H0(S,O(L− 2p)−1 ⊗K)∗ = 0

for any p ∈ S, since deg(K −L+ 2p) < 0 (here L− 2p = L⊗ [−2p]). Consider now the
exact sequence

0 → O(L− 2p) → O(L)
dp⊕evp−−→ T ∗pS ⊕ Lp → 0

(the morphism dp is Cartan’s differential followed by evaluation at p, while evp is the
evaluation of sections at p). Due to (7.1) we get

0 → H0(S,O(L− 2p)) → H0(S,O(L))
dp⊕evp−−→ T ∗pS ⊕ Lp → 0

so that dim |D| ≥ 1. Let N = dim |D|, and let {s0, . . . , sN} be a basis of |D|. If U is an
open neighbourhood of p, and φ : L|U → U×C is a local trivialization of L, the quantity

(7.2) [φ ◦ s0, . . . , φ ◦ sN ] ∈ PN

101
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does not depend on the trivialization φ; we have therefore established a (holomorphic)
map ιL : S → PN .1 We must prove that (1) ιL is injective, and (2) the differential (ιL)∗
never vanishes. (1) It is enough to prove that, given any two points p, q ∈ S, there is a

section s ∈ H0(S,O(L)) such that s(p) 6= λs(q) for all λ ∈ C∗; this in turn implied by
the surjectivity of the map

H0(S,O(L))
rp,q−−→Lp ⊕ Lq, s 7→ s(p) + s(q).

To show this we start from the exact sequence

0 → O(L− p− q) → O(L)
rp,q−−→Lp ⊕ Lq → 0

and note that in coholomology we have

H0(S,O(L− p− q))
rp,q−−→Lp ⊕ Lq → H1(S,O(L− p− q)) = 0

since
H1(S,O(L− p− q)) ' H0(S,O(L− p− q)−1 ⊗K)∗ = 0

because deg(L− p− q)−1 ⊗K = degK − degL+ 2 < 0.

(2) We shall actually show that the adjoint map (ιL)∗ : T ∗ιL(p)PN → T ∗pS is surject-
ive. The cotangent space T ∗pS can be realized as the space of equivalence classes of
holomorphic functions which have the same value at p (e.g,̇ the zero value) and have
a first-order contact (i.e. they have the same differential at p). Let φ be a trivializing
map for L around p; we must find a section s ∈ H0(S,O(L)) such that φ ◦ s(p) = 0
(i.e. s(p) = 0) and (φ ◦ s)∗ is surjective at p. This is equivalent to showing that the

map H0(S,O(L− p)) dp−−→T ∗pS is surjective, since O(L− p) is the sheaf of holomorphic
sections of L vanishing at p. We consider the exact sheaf sequence

0 → O(L− 2p) → O(L− p)
dp−−→T ∗pS → 0;

by Serre duality,

H1(S,O(L− 2p))∗ ' H0(S,O(−L+ 2p+K)) = 0

so that H0(S,O(L− p))
dp−−→T ∗pS is surjective. �

Given any complex manifold X, one says that a line bundle L on X is very ample
if the construction (7.2) defines an imbedding of X into PH0(X,O(L)). A line bundle
L is said to be ample if Ln is very ample for some natural n. A sufficient condition for
a line bundle to be ample may be stated as follows (cf. [9]).

Definition 7.2. A (1,1) form ω on a complex manifold is said to be positive if it
can be locally written in the form

ω = i ωij dz
i ∧ dz̄j

1This map actually depends on the choice of a basis of |D|; however, different choices correspond

to an action of the group PGl(N + 1, C) on PN and therefore produce isomorphic subvarieties of PN .
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with ωij a positive definite hermitian matrix.

Proposition 7.3. If the first Chern class of a line bundle L on a complex manifold
can be represented by a positive 2-form, then L is ample. �

While we have seen that any compact Riemann surface carries plenty of very ample
line bundles, this in general is not the case: there are indeed complex manifolds which
cannot be imbedded into any projective space.

A first consequence of the imbedding theorem expressed by Proposition 7.1 is that
any line bundle on a compact Riemann surface comes from a divisor, i.e. Div(S)/linear
equivalence ' Pic(S).

Proposition 7.4. If M is a smooth 1-dimensional 2 analytic submanifold of pro-
jective space Pn (i.e. M is the imbedding of a compact Riemann surface into Pn), and
L is a line bundle on M , there is a divisor D on M such that L = [D].

Proof. We must find a global meromorphic section of L. Let HM be the restriction
to M of the hyperplane bundle H of Pn, and let V be the intersection of M with a
hyperplane in Pn (so [V ] ' HM , and since V is effective, HM has global holomorphic
sections). We shall show that for a big enough integer m the line bundle L + mHM

(= L ⊗ Hm
M ) has a global holomorphic section s; if t is a holomorphic section of HM ,

the required meromorphic section of L is s/tm.

We have an exact sequence

0 → OM (−HM ) s−−→OM → kV → 0

so that after tensoring by L+mHM ,

(7.3) 0 → OM (L+ (m− 1)HM ) s−−→OM (L+mHM ) → kV → 0.

(Here s−−→ denotes the morphism given by multiplication by s). The associated long
cohomology exact sequence contains the segment

H0(M,OM (L+mHM )) r−−→CN → H1(M,OM (L+ (m− 1)HM ))

where N = deg V . But

H1(M,OM (L+ (m− 1)HM )) ' H0(M,KM ⊗O(−L− (m− 1)HM ))∗ = 0

by Serre duality and the vanishing theorem (if m is big enough, degKM ⊗ O(−L −
(m− 1)HM ) < 0). Therefore the morphism r in (7.3) is surjective, and H0(M,OM (L+
mHM )) 6= 0. �

We shall now proceed to identify compact Riemann surfaces with (smooth) algebraic
curves. Given a homogeneous polynomial F on Cn+1 the zero locus of F in Pn is by
definition the projection to Pn of the zero locus of F in Cn+1.

2This result is actually true whatever is the dimension of M , cf. [9].
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Definition 7.5. A (projective) algebraic variety is a subvariety of Pn which is the
zero locus of a finite collection of homogeneous polynomials. We shall say that an
algebraic variety is smooth if it is so as an analytic subvariety of Pn.

The dimension of an algebraic variety is its dimension as an analytic subvariety of
Pn. A one-dimensional algebraic variety is called an algebraic curve.

The following fundamental result, called Chow’s lemma, it is not hard to prove; we
shall anyway omit its proof for the sake of brevity (cf. [9] page 167).

Proposition 7.6. (Chow’s lemma) Any analytic subvariety of Pn is algebraic.

Exercise 7.7. Use Chow’s lemma to show that H0(Pn,H
d) — where H is the

hyperplane line bundle — can be identified with the space of homogeneous polynomials
of degree d on Cn+1. �

Using Chow’s lemma together with the imbedding theorem (Proposition 7.1) we
obtain

Corollary 7.8. Any compact Riemann surface is a smooth algebraic curve.

We switch from the terminology “compact Riemann surface” to “algebraic curve”,
understanding that we shall only consider smooth algebraic curves.3

We shall usually denote an algebraic curve by the letter C.

2. Riemann-Roch theorem

A fundamental result in the study of algebraic curves in the Riemann-Roch theorem.
Let C be an algebraic curve, and denote by K its canonical bundle.4 We denote g =
h0(K), and call it the arithmetic genus of C (this number will be shortly identified with
the topological genus of C).

Proposition 7.1. (Riemann-Roch theorem) For any line bundle L on C one has

h0(L)− h1(L) = degL− g + 1.

Proof. If L = C is the trivial line bundle, the result holds obviously (notice that
H1(C,O)∗ ' H0(C,K) by Serre duality). Exploiting the fact that L = [D] for some
divisor D, it is enough to prove that if the results hold for L = [D], then it also holds
for L′ = [D + p] and L′′ = [D − p].

In the first case we start from the exact sequence

0 → O(D) → O(D + p) → kp → 0

3Strictly speaking an algebraic curve consists of more data than a compact Riemann surface S,

since the former requires an imbedding of S into a projective space, i.e. the choice of an ample line

bundle.
4We introduce the following notation: if E is a sheaf of OC-modules, then hi(E) = dim Hi(C, E).
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which gives (since H1(C, kp) = 0)

0 → H0(S,O(D)) → H0(S,O(D + p)) → C → H1(S,O(D)) → H1(S,O(D + p)) → 0

whence

h0(L′)− h1(L′) = h0(L)− h1(L) + 1 = degL− g + 2 = degL′ − g + 1.

Analogously for L′′. �

By using the Riemann-Roch theorem and Serre duality we may compute the degree
of K, obtaining

degK = 2g − 2.

This is called the Riemann-Hurwitz formula. It allows us to identify g with the to-
pological genus gtop of C regarded as a compact oriented 2-dimensional real manifold
S. To this end we may use the Gauss-Bonnet theorem, which states that the integ-
ral of the Euler class of the real tangent bundle to S is the Euler characteristic of S,
χ(S) = 2−2gtop. On the other hand the complex structure of C makes the real tangent
bundle into a complex holomorphic line bundle, isomorphic to the holomorphic tangent
bundle TC, and under this identification the Euler class corresponds to the first Chern
class of TC. Therefore we get degK = 2gtop − 2, namely,5

g = gtop.

3. Some general results about algebraic curves

Let us fix some notations and give some definitions.

3.1. The degree of a map. Let C be an algebraic curve, and ω a smooth 2-
form on C, such that

∫
C ω = 1; the de Rham cohomology class [ω] may be regarded

as an element in H2(C,Z), and actually provides a basis of that space, allowing an
identification H2(C,Z) ' Z. If f : C ′ → C is a nonconstant holomorphic map between
two algebraic curves, then f ][ω] is a nonzero element in H2(C ′,Z), and there is a well
defined integer n such that

f ][ω] = n[ω′],

where ω′ is a smooth 2-form on C ′ such that
∫
C′ ω

′ = 1. If p ∈ C we have

deg f∗(p) =
∫

C′
c1(f∗[p]) =

∫
C′
f ]c1([p]) = n

∫
C
c1([p]) = n,

so that the map f takes the value p exactly n times, including multiplicities in the sense
of divisors; we may say that f covers C n times.6 The integer n is called the degree if f .

5This need not be true if the algebraic curve C is singular. However the Riemann-Roch theorem is

still true (provided we know what a line bundle on a singular curve is!) with g the arithmetic genus.
6Since two holomorphic functions of one variable which agree on a nondiscrete set are identical,

and since C′ is compact, the number of points in f−1(p) is always finite.
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3.2. Branch points. Given again a nonconstant holomorphic map f : C ′ → C, we
may find a coordinate z around any q ∈ C ′ and a coordinate w around f(q) such that
locally f is described as

(7.4) w = zr.

The number r−1 is called the ramification index of f at q (or at p = f(q)), and p = f(q)
is said to be a branch point if r(p) > 1. The branch locus of f is the divisor in C ′

B′ =
∑
q∈C′

(r(q)− 1) · q

or its image in C

B =
∑
q∈C′

(r(q)− 1) · f(q).

For any p ∈ C we have

f∗(p) =
∑

q∈f−1(p)

r(q) · q

deg f∗(p) =
∑

q∈f−1(p)

r(q) = n.

From these formulae we may draw the following picture. If p ∈ C ′ does not lie in
the branch locus, then exactly n distinct points of C ′ are mapped to f(p), which means
that f : C ′−B′ → C−B is a covering map.7 It p ∈ C ′ is a branch point of ramification
index r − 1, at p exactly r sheets of the covering join together.

There is a relation between the canonical divisors of C ′ and C and the branch locus.
Let η be a meromorphic 1-form on C, which can locally be written as

η =
g(w)
h(w)

dw.

From (7.4) we get

f∗η =
g(zr)
h(zr)

dzr = rzr−1 g(z
r)

h(zr)
dz

so that

ordp f
∗η = ordf(p) η + r − 1.

This implies the relation between divisors

(f∗η) = f∗(η) +
∑
p∈C′

(r(p)− 1) · p.

On the other hand the divisor (η) is just the canonical divisor of C, so that

KC′ = f∗KC +B′.

7A (holomorphic) covering map f : X → Y , with X connected, is a map such that each p ∈ Y has a

connected neighbourhood U such that f−1(U) = ∪αUα is the disjoint union of open subsets of X which

are biholomorphic to U via f .
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From this formula we may draw an interesting result. By taking degree we get

degKC′ = n degKC +
∑
p∈C′

(r(p)− 1);

by using the Riemann-Hurwitz formula we obtain

(7.5) g(C ′) = n(g(C)− 1) + 1 + 1
2

∑
p∈C′

(r(p)− 1) .

Exercise 7.1. Prove that if f : C ′ → C is nonconstant, then f ] : H0(C,KC) →
H0(C ′,KC′) is injective. (Hint: a nonzero element ω ∈ H0(C,KC) is a global holo-
morphic 1-form on C which is different from zero at all points in an open dense subset
of C. Write an explicit formula for f∗ω....) �

Both equation (7.5) and the previous Exercise imply

g(C ′) ≥ g(C).

3.3. The genus formula for plane curves. An algebraic curve C is said to be
plane if it can be imbedded into P2. Its image in P2 is the zero locus of a homogeneous
polynomial; the degree d of this polynomial is by definition the degree of C. As a
divisor, C is linearly equivalent to dH (indeed, since Pic(P2) ' Z, any divisor D on P2

is linearly equivalent to mH for some m; if D is effective, m is the number of intersection
points between D and a generic hyperplane in P2, and this is given by the degree of the
polynomial cutting D). 8

We want to show that for smooth plane curves the following relation between genus
and degree holds:

(7.6) g(C) = 1
2(d− 1)(d− 2).

(For singular plane curves this formula must be modified.) We may prove this equa-
tion by using the adjunction formula: C is imbedded into P2 as a smooth analytic
hypersurface, so that

KC = ι∗(KP2 + C),

where ι : C → P2. Recalling that KP2 = −3H we then have KC = (d− 3)ι∗H.

8We are actually using here a piece of intersection theory. The fact is that any k-dimensional

analytic subvariety V of an n-dimensional complex manifold X determines a homology class [V ] in the

homology group H2k(X, Z). Assume that X is compact, and let W be an (n− k)-dimensional analytic

subvariety of X; the homology cap product H2k(X, Z) ∩ H2n−2k(X, Z) → Z, which is dual to the cup

product in cohomology, associates the integer number [V ] ∩ [W ] with the two subvarieties. One may

pick up different representatives V ′ and W ′ of [V ] and [W ] such that V ′ and W ′ meet transversally,

i.e. they meet at a finite number of points; then the the number [V ]∩ [W ] counts the intersection points

(cf. [9] page 49).

In our case the number of intersection points is given by the number of solutions to an algebraic

system, given by the equation of C in P2 (which has degree d) and the linear equation of a hyperplane.

For a generic choice of the hyperplane, the number of solutions is d.
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To carry on the computation, we notice that, as a divisor on C, ι∗H = C ∩H, so
that

deg ι∗H = d,

and

degKC = d(d− 3) = 2g − 2

whence the formula (7.6).

Example 7.2. Consider the affine curve in C2 having equation

y2 = x6 − 1 .

By writing this equation in homogeneous coordinates one obtain a curve in P2 which
is a double covering of P1 branched at 6 points. By the Riemann-Hurwitz formula we
may compute the genus, obtaining g = 2. Thus the formula (7.6), which would yield
g = 10, fails in this case. This happens because the curve is singular at the point at
infinity. �

3.4. The residue formula. A meromorphic 1-form on an algebraic curve C is a
meromorphic section of the canonical bundle K. Given a point p ∈ C, and a local
holomorphic coordinate z such that z(p) = 0, a meromorphic 1-form ϕ is locally written
around p in the form ϕ = f dz, where f is a meromorphic function. Let a be coefficient
of the z−1 term in the Laurent expansion of f around p, and let B a small disc around
p; by the Cauchy formula we have

a =
∫

∂B
ϕ

so that the number a does not depend on the representation of ϕ. We call it the residue
of ϕ at p, and denote it by Resp(ϕ).

Given a meromorphic 1-form ϕ its polar divisor is D =
∑

i pi, where the pi’s are the
points where the local representatives of ϕ have poles of order 1.

Proposition 7.3. Let D =
∑

i pi be the polar divisor of a meromorphic 1-form ϕ.
Then

∑
i Respi(ϕ) = 0.

Proof. Choose a small disc Bi around each point pi. Then∑
i

Respi(ϕ) =
∫

∂∪iBi

ϕ = −
∫

C−∪iBi

dϕ = 0 .

�
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3.5. The g = 0 case. We shall now show that all algebraic curves of genus zero
are isomorphic to the Riemann sphere P1. Pick a point p ∈ C; the line bundle [p] is
trivial on C − {p}, and has a holomorphic section s0 which is nonzero on C − {p} and
has a simple zero at p (this means of course that (s0) = p). On the other hand, since by
Serre duality h1(O) = h0(K) = 0, by taking the cohomology exact sequence associated
with the sequence

0 → O → O(p) → kp → 0

we obtain the existence of a global section s of [p] which does not vanish at p. Of course
s vanishes at some other point s0. Then the quotient f = s/s0 is a global meromorphic
function, with a simple pole at p and a zero at p0.9 By considering ∞ as the value of f
at p, we may think of f as a holomorphic nonconstant map f : C → P1; this map takes
the value ∞ only once. Suppose that f takes the same value α at two distinct points
of C; then then function f − α has two zeroes and only one simple pole, which is not
possible. Thus f is injective. The following Lemma implies that f is surjective as well,
so that it is an isomorphism.

Lemma 7.4. Any holomorphic map between compact complex manifolds of the same
dimension whose Jacobian determinant is not everywhere zero is surjective.

Proof. Let f : X → Y be such a map, and let n = dimX = dimY . Let ω
be a volume form on Y ; since the Jacobian determinant of f is not everywhere zero,
and where it is not zero is positive, we have

∫
X f∗ω > 0. Assume q 6= Im f . Since

H2n(Y − {q},R) = 0 (prove it by using a Mayer-Vietoris argument), we have ω = dη

on Y − {q}. But then ∫
X
f∗ω =

∫
∂X

f∗η = 0,

a contradiction. �

9Otherwise one can directly identify the sections of L with meromorphic functions having (only) a

single pole at p, since such functions can be developed around p in the form

f(z) =
a

z
+ g(z) ,

where g is a holomorphic function. a ∈ C should be indentified with the projection of f onto kp. (Here

z is a local complex coordinate such that z(p) = 0.)





CHAPTER 8

Algebraic curves II

In this chapter we further study the geometry of algebraic curves. Topics covered
include the Jacobian variety of an algebraic curve, some theory of elliptic curves, and
the desingularization of nodal plane singular curves (this will involve the introduction
of the notion of blowup of a complex surface at a point).

1. The Jacobian variety

A fundamental tool for the study of an algebraic curve C is its Jacobian variety
J(C), which we proceed now to define. Let V be an m-dimensional complex vector
space, and think of it as an abelian group. A lattice Λ in V is a subgroup of V of the
form

(8.1) Λ =

{
2m∑
i=1

ni vi, ni ∈ Z

}

where {vi}i=1,...,2m is a basis of V as a real vector space. The quotient space T = V/Λ
has a natural structure of complex manifold, and one of abelian group, and the two
structures are compatible, i.e. T is a compact abelian complex Lie group. We shall
call T a complex torus. Notice that by varying the lattice Λ one gets another complex
torus which may not be isomorphic to the previous one (the complex structure may be
different), even though the two tori are obviously diffeomorphic as real manifolds.

Example 8.1. If C is an algebraic curve of genus g, the group Pic0(C), classifying
the line bundles on C with vanishing first Chern class, has a structure of complex torus
of dimension g, since it can be represented as H1(C,O)/H1(C,Z), and H1(C,Z) is a
lattice inH1(C,O). This is the Jacobian variety of C. In what follows we shall construct
this variety in a more explicit way. �

Consider now a smooth algebraic curve C of genus g ≥ 1. We shall call abelian
differentials the global sections of K (i.e. the global holomorphic 1-forms). If ω in
abelian differential, we have dω = 0 and ω ∧ ω = 0; this means that ω singles out a
cohomology class [ω] in H1(C,C), and that

(8.2)
∫

C
ω ∧ ω = 0.

111



112 8. ALGEBRAIC CURVES II

Moreover, since locally ω = f(z) dz, we have

(8.3) i

∫
C
ω ∧ ω̄ > 0 if ω 6= 0.

If γ is a smooth loop in C, and ω ∈ H0(C,K), the number
∫
γ ω depends only on

the homology class of γ and the cohomology class of ω, and expresses the pairing < , >
between the Poincaré dual spaces H1(C,C) = H1(C,Z)⊗Z C and H1(C,C).

Pick up a basis {[γ1], . . . , [γ2g]} of the 2g-dimensional free Z-module H1(C,Z), where
the γi’s are smooth loops in C, and a basis {ω1, . . . , ωg} of H0(C,K). We associate with
these data the g × 2g matrix Ω whose entries are the numbers

Ωij =
∫

γj

ωi.

This is called the period matrix. Its columns Ωj are linearly independent over R: if for
all i = 1, . . . g

0 =
2g∑

j=1

λjΩij =
2g∑

j=1

λj

∫
γj

ωi

then also
∑2g

j=1 λj

∫
γj
ω̄i = 0. Since {ωi, ω̄i} is a basis for H1(C,C), this implies∑2g

j=1 λj [γj ] = 0, that is, λj = 0. So the columns of the period matrix generate a
lattice Λ in Cg. The quotient complex torus J(C) = Cg/Λ is the Jacobian variety of C.

Define now the intersection matrix Q by letting Q−1
ij = [γj ] ∩ [γi] (this is the Z-

valued “cap” or “intersection” product in homology). Notice that Q is antisymmetric.
Intrinsically, Q is an element in HomZ(H1(C,Z),H1(C,Z)). Since the cup product in
cohomology is Poincaré dual to the cap product in homology, for any abelian differentials
ω, τ we have

[ω] ∪ [τ ] =< Q[ω], [τ ] > .

The relations (8.2), (8.3) can then be written in the form

ΩQ Ω̃ = 0, iΩQΩ† > 0

(here ˜ denotes transposition, and † hermitian conjugation). In this form they are called
Riemann bilinear relations.

A way to check that the construction of the Jacobi variety does not depend on the
choices we have made is to restate it invariantly. Integration over cycles defines a map

i : H1(C,Z) → H0(C,K)∗, i([γ])(ω) =
∫

γ
ω.

This map is injective: if i([γ])(ω) = 0 for a given γ and all ω then γ is homologous to
the constant loop. Then we have the representation J(C) = H0(C,K)∗/H1(C,Z).

Exercise 8.2. By regarding J(C) as H0(C,K)∗/H1(C,Z), show that Serre and
Poincaré dualities establish an isomorphism J(C) ' Pic0(C). �
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1.1. The Abel map. After fixing a point p0 in C and a basis {ω1, . . . , ωg} in
H0(C,K) we define a map

(8.4) µ : C → J(C)

by letting

µ(p) =
(∫ p

p0

ω1, . . . ,

∫ p

p0

ωg

)
.

Actually the value of µ(p) in Cg will depend on the choice of the path from p0 to p;
however, if δ1 and δ2 are two paths, the oriented sum δ1 − δ2 will define a cycle in
homology, the two values will differ by an element in the lattice, and µ(p) is a well-
defined point in J(C).

From (8.4) we may get a group homomorphism

(8.5) µ : Div(C) → J(C)

by letting

µ(D) =
∑

i

µ(pi)−
∑

j

µ(qj) if D =
∑

i

pi −
∑

j

qj .

All of this depends on the choice of the base point p0, note however that if degD = 0
then the choice of p0 is immaterial.

Proposition 8.3. (Abel’s theorem) Two divisors D,D′ ∈ Div(C) are linearly equi-
valent if and only if µ(D) = µ(D′).

Proof. For a proof see [9] page 232. �

Corollary 8.4. The Abel map µ : C → J(C) is injective.

Proof. If µ(p) = µ(q) by the previous Proposition p ∼ q as divisors, but since
g(C) ≥ 1 this implies p = q (this follows from considerations analogous to those in
subsection 7.3.5). �

Abel’s theorem may be stated in a fancier language as follows. Let Divd(C) be
the subset of Div(C) formed by the divisors of degree d, and let Picd(C) be the set of
line bundles of degree d.1 One has a surjective map ` : = Divd(C) → Picd(C) whose
kernel is isomorphic to H0(C,M∗)/H0(C,O∗). Then µ filters through a morphism
ν : Picd(C) → J(C), and one has a commutative diagram

Divd(C) ` //

µ %%KKKKKKKKKK
Picd(C)

ν

��
J(C)

;

1Notice that Picd(C) ' Picd′(C) as sets for all values of d and d′.
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moreover, the morphism ν is injective (if ν(L) = 0, set L = `(D) (i.e. L = [D]); then
µ(L) = 0, that is, L is trivial).

We can actually say more about the morphism ν, namely, that it is a bijection. It
is enough to prove that ν is surjective for a fixed value of d (cf. previous footnote).

Let Cd be the d-fold cartesian product of C with itself. The symmetric group Sd of
order d acts on Cd; we call the quotient Symd(C) = Cd/Sd the d-fold symmetric product
of C. Symd(C) can be identified with the set of effective divisors of C of degree d. The
map µ defines a map µd : Symd(C) → J(C).

Any local coordinate z on C yields a local coordinate system {z1, . . . , zd} on Cd,

zi(p1, . . . , pd) = z(pi),

and the elementary symmetric functions of the coordinates zi yield a local coordin-
ate system for Symd(C). Therefore the latter is a d-dimensional complex manifold.
Moreover, the holomorphic map

Cd → J(C), (p1, . . . , pd) 7→ µ(p1) + · · ·+ µ(pd)

is Sd-invariant, hence it descends to a map Symd(C) → J(C), which coincides with µd.
So the latter is holomorphic.

Exercise 8.5. Prove that Symd(P1) ' Pd. (Hint: write explicitly a morphism in
homogeneous coordinates.) �

The surjectivity of ν follows from the following fact, usually called Jacobi inversion
theorem.

Proposition 8.6. The map µg : Symg(C) → J(C) is surjective.

Proof. Let D =
∑
pi ∈ Symg(C), with all the pi’s distinct, and let zi be a local

coordinate centred in pi; then {z1, . . . , zg} is a local coordinate system around D. If D′

is near D we have

(8.6)
∂

∂zi
(µg(D′))j =

∂

∂zi

∫ p′i

p0

ωj = hji

where hji is the component of ωj on dzi.

Consider now the matrix

(8.7)

ω1(p1) . . . ω1(pg)
. . . . . . . . .

ωg(p1) . . . ωg(pg)


We may choose p1 so that ω1(p1) 6= 0, and then subtracting a suitable multiple of ω1

from ω2, . . . , ωg we may arrange that ω2(p1) = · · · = ωg(p1) = 0. We next choose p2 so
that ω2(p2) 6= 0, and arrange that ω3(p2) = · · · = ωg(p3) = 0, and so on. In this way the
matrix (8.7) is upper triangular. With these choices of the abelian differentials ωi and of
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the points pi the Jacobian matrix {hji} is upper triangular as well, and since ωi(pi) 6= 0,
its diagonal elements hii are nonzero at D, so that at the point D corresponding to our
choices the Jacobian determinant is nonzero. This means that the determinant is not
everywhere zero, and by Lemma 7.4 one concludes. �

Proposition 8.7. The map µg is generically one-to-one.

Proof. Let u ∈ J(C), and choose a divisor D ∈ µ−1
g (u). By Abel’s theorem the

fibre µ−1
g (u) is formed by all effective divisors linearly equivalent to D, hence it is a

projective space. But since dim J(C) = dim Symd(C) the fibre of µg is generically
0-dimensional, so that generically it is a point. �

This means that µg establishes a biholomorphic correspondence between a dense
subset of Symd(C) and a dense subset of J(C); such maps are called birational.

Corollary 8.8. Every divisor of degree ≥ g on an algebraic curve of genus g is
linearly equivalent to an effective divisor.

Proof. Let D ∈ Divd(C) with d ≥ g. We may write D = D′ +D′′ with degD′ = g

and D′′ ≥ 0. By mapping D′ to J(C) by Abel’s map and taking a counterimage in
Symg(C) we obtain an effective divisor E linearly equivalent to D′. Then E + D′′ is
effective and linearly equivalent to D. �

Corollary 8.9. Every elliptic smooth algebraic curve (i.e. every smooth algebraic
curve of genus 1) is of the form C/Λ for some lattice Λ ⊂ C.

Proof. We have J(C) = C/Λ, and the map µ1 concides with µ,

µ(p) =
∫ p

p0

ω.

By Abel’s theorem, µ(p) = µ(q) if and only if there is on C a meromorphic function
f such that (f) = p − q; but on C there are no meromorphic functions with a single
pole, so that µ is injective. µ is also surjective by Lemma 7.4 (this is a particular case
of Jacobi inversion theorem), hence it is bijective. �

Corollary 8.10. The canonical bundle of any elliptic curve is trivial.

Proof. We represent an elliptic curve C as a quotient C/Λ. The (trivial) tangent
bundle to C is invariant under the action of Λ, therefore the tangent bundle to C is
trivial as well. �

Another consequence is that if C is an elliptic algebraic curve and one chooses a
point p ∈ C, the curve has a structure of abelian group, with p playing the role of the
identity element.
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1.2. Jacobian varieties are algebraic. According to our previous discussion, any
1-dimensional complex torus is algebraic. This is no longer true for higher dimensional
tori. However, the Jacobian variety of an algebraic curve is always algebraic.

Let Λ be a lattice in Cn. Any point in the lattice singles out univoquely a cell in the
lattice, and two opposite sides of the cell determine after identification a closed smooth
loop in the quotient torus T = Cn/Λ. This provides an identification Λ ' H1(T,Z).

Let now ξ be a skew-symmetric Z-bilinear form on H1(T,Z). Since HomZ(Λ2H1(T,
Z),Z) ' H2(T,Z) canonically (check this isomorphism as an exercise), ξ may be re-
garded as a smooth complex-valued differential 2-form on T .

Proposition 8.11. The 2-form ξ which on the basis {ej} is represented by the
intersection matrix Q−1 is a positive (1,1) form.

Proof. If {ej , j = 1 . . . 2n} are the real basis vectors in Cn generating the lattice,
they can be regarded as basis in H1(T,Z). They also generate 2n real vector fields on
T (after identifying Cn with its tangent space at 0 the ej yield tangent vectors to T at
the point corresponding to 0; by transporting them in all points of T by left transport
one gets 2n vector fields, which we still denote by ej). Let {z1, . . . , zn} be the natural
local complex coordinates in T ; the period matrix may be described as

Ωij =
∫

ej

dzi.

After writing ξ on the basis {dzi, dz̄j} one can check that the stated properties of ξ are
equivalent to the Riemann bilinear relations.2 �

There exists on J(C) a (in principle smooth) line bundle L whose first Chern class
is the cohomology class of ξ. This line bundle has a connection whose curvature is
(cohomologous to) 2π

i ξ; since this form is of type (1,1), L may be given a holomorphic
structure. With this structure, it is ample by Proposition 7.3.3 This defines a projective
imbedding of J(C), so that the latter is algebraic.

2. Elliptic curves

Consider the curve C ′ in C2 given by an equation

(8.8) y2 = P (x),

2So we are not only proving that the Jacobian variety of an algebraic curve is algebraic, but, more

generally, that any complex torus satisfying the Riemann bilinear relations is algebraic.
3We are using the fact that if a smooth complex vector bundle E on a complex manifold X has a

connection whose curvature has no (0,2) part, then the complex structure of X can be “lifted” to E.

Cf. [17]. Otherwise, we may use the fact that the image of the map c1 in H2(J(C), Z) (the Néron-Severi

group of J(C), cf. subsection 5.5.1) may be represented as H2(J(C), Z) ∩ H1,1(J(C), Z), i.e., as the

group of integral 2-classes that are of Hodge type (1,1). The class of ξ is clearly of this type.
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where x, y are the standard coordinates in C2, and P (x) is a polynomial of degree 3.
By writing the equation (8.8) in homogeneous coordinates, C ′ may be completed to an
algebraic curve C imbedded in P2 — a cubic curve in P2. Let us assume that C is
smooth. By the genus formula we see that C is an elliptic curve.

Exercise 8.1. Show that ω = dx/y is a nowhere vanishing abelian differential on
C. After proving that all elliptic curves may be written in the form (8.8), this provides
another proof of the triviality of the canonical bundle of an elliptic curve. (Hint: around
each branch point, z =

√
P (x) is a good local coordinate...)

The equation (8.8) moreover exhibits C as a cover of P1, which is branched of order
2 at the points where y = 0 and at the point at infinity. One also checks that the point
at infinity is a smooth point. We want to show that every smooth elliptic curve can be
realized in this way.

So let C be a smooth elliptic curve. If we fix a point p in C and consider the exact
sequence of sheaves on C

0 → O(p) → O(2p) → kp → 0 ,

proceeding as usual (Serre duality and vanishing theorem) one shows that H0(C,O(2p))
is nonzero. A nontrivial section f can be regarded as a global meromorphic function
holomorphic in C−{p}, having a double pole at p. Moreover we fix a nowhere vanishing
holomorphic 1-form ω (which exists because K is trivial). We have

Resp(fω) = 0 .

We realize C as C/Λ; these singles out a complex coordinate z on the open subset of C
corresponding to the fundamental cell of the lattice Λ. Then we may choose ω = dz,
and f may be chosen in such a way that

f(z) =
1
z2

+O(z) .

On the other hand, the meromorphic function df/ω is holomorphic outside p, and has
a triple pole at p. We may choose constants a, b, c such that

f̃ = a
df

ω
+ bf + c =

1
z3

+O(z) .

The line bundle O(3p) is very ample, i.e., its complete linear system realizes the Kodaira
imbedding of C into projective space. By Riemann-Roch and the vanishing theorem we
have h0(3p) = 3, so that C is imbedded into P2. To realize explicitly the imbedding we
may choose three global sections corresponding to the meromorphic functions 1, f , f̃ .
We shall see that these are related by a polynomial identity, which then expresses the
equation cutting out C in P2.

We indeed have, for suitable constants α, β, γ,

f̃2 =
1
z6

+
α

z2
+O(

1
z
), f3 =

1
z6

+
β

z3
+
γ

z2
+O(

1
z
) ,
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so that, setting δ = α− β,

f̃2 + βf̃ − f3 + δf = O(
1
z
) .

So the meromorphic function in the left-hand side is holomorphic away from p, and has
at p a simple pole. Such a function must be constant, otherwise it would provide an
isomorphism of C with the Riemann sphere.

Thus C may be described as a locus in P2 whose equation in affine coordinates is

(8.9) y2 + βy = x3 − δx+ ε

for a suitable constant ε. By a linear transformation on y we may set β = 0, and then
by a linear transformation of x we may set the two roots of the polynomial in the right-
hand side of (8.9) to 0 and 1. So we express the elliptic curve C in the standard form
(Weierstraß representation)4

(8.10) y2 = x(x− 1)(x− λ) .

Exercise 8.2. Determine for what values of the parameter λ the curve (8.10) is
smooth.

We want to elaborate on this construction. Having fixed the complex coordinate
z, the function f is basically fixed as well. We call it the Weierstraß P-function. Its
derivative is P ′ = −2f̃ . Notice that P cannot contain terms of odd degree in its Laurent
expansion, otherwise P(z) − P(−z) would be a nonconstant holomorphic function on
C. So

P(z) =
1
z2

+ az2 + bz4 +O(z6)

P ′(z) = − 2
z3

+ 2az + 4bz3 +O(z5)

(P(z))3 =
1
z6

+
3a
z2

+ 3b+O(z2)

(P ′(z))2 =
4
z6
− 8a
z2
− 16b+O(z)

for suitable constants a, b. From this we see that P satisfies the condition

(P ′)2 − 4P3 + 20 a = constant′

one usually writes g2 for 20 a and g3 for the constant in the right-hand side.

In terms of this representation we may introduce a map j : M1 → C, where M1 is
the set of isomorphism classes of smooth elliptic curves (the moduli space of genus one

4Even though the Weierstraß representation only provides the equation of the affine part of an

elliptic curve, the latter is nevertheless completely characterized. It is indeed true that any affine plane

curve can be uniquely extended to a compact curve by adding points at infinity, as one can check by

elementary considerations.
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curves) 5

j(C) =
1728 g3

2

g3
2 − 27 g2

3

.

One shows that this map is bijective; in particular M1 gets a structure of complex
manifold. The number j(C) is called the j-invariant of the curve C. We may therefore
say that the moduli space M1 is isomorphic to C. 6

Exercise 8.3. Write the j-invariant as a function of the parameter λ in equation
(8.10). Do you think that λ is a good coordinate on the moduli space M1?

The holomorphic map

ψ : C → P2, z 7→ [1,P(z),P ′(z)]

imbeds C into P2 as the cubic curve cut out by the polynomial

F = y2 − 4x3 + g2x+ g3

(we use the same affine coordinates as in the previous representation). Since f̃ = df/ω

we have

ω =
dx

y

and the inverse of ψ is the Abel map,7

ψ−1(p) =
∫ p

p0

dx

y
modΛ

having chosen p0 at the point at infinity, p0 = ψ(0) = [0, 0, 1].

In terms of this construction we may give an elementary geometric visualization of
the group law in an elliptic curve. Let us choose p0 as the identity element in C. We
shall denote by p̄ the element p ∈ C regarded as a group element (so p̄0 = 0). By Abel’s
theorem, Proposition 8.3, we have that

p̄1 + p̄2 + p̄3 = 0 if and and only if p1 + p2 + p3 ∼ 3 p0

(indeed one may think that p̄ = µ(p), and one has µ(p1 + p2 + p3 − 3 p0) = 0).

Let M(x, y) = mx + ny + q be the equation of the line in P2 through the points
p1, p2, and let p4 be the further intersection of this line with C ⊂ P2. The function
M(z) = M(P(z),P ′(z)) on C vanishes (of order one) only at the points p1, p2, p4, and
has a pole at p0. This pole must be of order three, so that the divisor of M(z) is
p1 + p2 + p4 − 3 p0, i.e,̇ p1 + p2 + p4 − 3 p0 ∼ 0.

5The fancy coefficient 1728 comes from arithmetic geometry, where the theory is tailored to work

also for fields of characteristic 2 and 3.
6By uniformization theory one can also realize this moduli space as a quotient H/Sl(2, Z), where H is

the upper half complex plane. This is not contradictory in that the quotient H/Sl(2, Z) is biholomorphic

to C! (Notice that on the contrary, H and C are not biholomorphic). Cf. [10].
7One should bear in mind that we have identified C with a quotient C/Λ.
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If p1 + p2 + p3 ∼ 3 p0, then p3 ∼ p4, so that p3 = p4, and p1, p2, p3 are collinear.
Vice versa, if p1, p2, p3 are collinear, p1 +p2 +p3−3 p0 is the divisor of the meromorphic
function M , so that p1+p2+p3−3 p0 ∼ 0. We have therefore shown that p̄1+p̄2+p̄3 = 0
if and only if p1, p2, p3 are collinear points in P2.

Example 8.4. Let C be an elliptic curve having a Weierstraß representation y2 =
x3 − 1. C is a double cover of P1, branched at the three points

p1 = (1, 0), p2 = (α, 0), p3 = (α2, 0)

(where α = e2πi/3) and at the point at infinity p0. The points p1, p2, p3 are collinear, so
that p̄1 + p̄2 + p̄3 = 0.

The two points q1 = (0, i), q2 = (0,−i) lie on C. The line through q1, q2 intersects
C at the point at infinity, as one may check in homogeneous coordinates. So in this case
the elements q̄1, q̄2 are one the inverse of the other, and q1 + q2 ∼ 2 p0. More generally,
if q ∈ C is such that q̄ = −p̄, then p + q ∼ 2 p0, and q is the further intersection of C
with the line going through p, p0; if p = (a, b), then q = (a,−b). So the branch points
pi are 2-torsion elements in the group, 2 p̄i = 0. �

3. Nodal curves

In this section we show how (plane) curve singularities may be resolved by a pro-
cedure called blowup.

3.1. Blowup. Blowing up a point in a variety8 means replacing the point with all
possible directions along which one can approach it while moving in the variety. We
shall at first consider the blowup of C2 at the origin; since this space is 2-dimensional,
the set of all possible directions is a copy of P1. Let x, y be the standard coordinates in
C2, and w0, w1 homogeneous coordinates in P1. The blowup of C2 at the origin is the
subvariety Γ of C2 × P1 defined by the equation

xw1 − y w0 = 0 .

To show that Γ is a complex manifold we cover C2 × P1 with two coordinate charts,
V0 = C2 × U0 and V1 = C2 × U1, where U0, U1 are the standard affine charts in P1,
with coordinates (x, y, t0 = w1/w0) and (x, y, t1 = w0/w1). Γ is a smooth hypersurface
in C2 × P1, hence it is a complex surface. On the other hand if we put homogeneous
coordinates (v0, v1, v2) in C2, then Γ can be regarded as a open subset of the quadric in
P2 × P1 having equation v1w1 − v2w0 = 0, so that Γ is actually algebraic.

8Our treatment of the blowup of an algebraic variety is basically taken from [1].
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Since Γ is a subset of C2 × P1 there are two projections

(8.11) Γ
π //

σ

��

P1

C2

which are holomorphic. If p ∈ C2−{0} then σ−1(p) is a point (which means that there
is a unique line through p and 0), so that

σ : Γ− σ−1(0) → C2 − {0}

is a biholomorphism.9 On the contrary σ−1(0) ' P1 is the set of lines through the origin
in C2.

The fibre of π over a point (w0, w1) ∈ P1 is the line xw1−y w0 = 0, so that π makes
Γ into the total space of a line bundle over P1. This bundle trivializes over the cover
{U0, U1}, and the transition function g : U0 ∩ U1 → C∗ is g(w0, w1) = w0/w1, so that
the line bundle is actually the tautological bundle OP1(−1).

This construction is local in nature and therefore can be applied to any complex
surface X (two-dimensional complex manifold) at any point p. Let U be a chart around
p, with complex coordinates (x, y). By repeating the same construction we get a complex
manifold U ′ with projections

U ′
π−−−−→ P1

σ

y
U

and
σ : U ′ − σ−1(p) → U − {p}

is a biholomorphism, so that one can replace U by U ′ inside X, and get a complex
manifold X ′ with a projection σ : X ′ → X which is a biholomorphism outside σ−1(p).
The manifold X ′ is the blowup of X at p. The inverse image E = σ−1(p) is a divisor
in X ′, called the exceptional divisor, and is isomorphic to P1. The construction of the
blowup Γ shows that X ′ is algebraic if X is.

Example 8.1. The blowup of P2 at a point is an algebraic surface X1 (an example
of a Del Pezzo surface); the manifold Γ, obtained by blowing up C2 at the origin, is
biholomorphic to X1 minus a projective line (so X1 is a compactification of Γ). �

3.2. Transforms of a curve. Let C be a curve in C2 containing the origin. We
denote as before Γ the blowup of C2 at the origin and make reference to the diagram
(8.11). Notice that the inverse image σ−1(C) ⊂ Γ contains the exceptional divisor E,
and that σ−1(C) \ E is isomorphic to C − {0}.

9So, according to a terminology we have introduce in a previous chapter, the map σ is a birational

morphism.
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Definition 8.2. The curve σ−1(C) ⊂ Γ is the total transform of C. The curve
obtained by taking the topological closure of σ−1(C) \ E in Γ is the strict transform of
C.

We want to check what points are added to σ−1(C) \E when taking the topological
closure. To this end we must understand what are the sequences in C2 which converge to
0 that are lifted by σ to convergent sequences. Let {pk = (xk, yk)}k∈N be a sequence of
points in C2 converging to 0; then σ−1(xk, yk) is the point (xk, yk, w0, w1) with xk w1 −
yk w0 = 0. Assume that for k big enough one has w0 6= 0 (otherwise we would assume
w1 6= 0 and would make a similar argument). Then w1/w0 = yk/xk, and {σ−1(pk)}
converges if and only if {yk/xk} has a limit, say h; in that case {σ−1(pk)} converges to
the point (0, 0, 1, h) of E. This means that the lines rk joining 0 to pk approach the
limit line r having equation y = hk. So a sequence {pk = (xk, yk)} convergent to 0 lifts
to a convergent sequence in Γ if and only if the lines rk admit a limit line r; in that
case, the lifted sequence converges to the point of E representing the line r.

The strict transform C ′ of C meets the exceptional divisor in as many points as
are the directions along which one can approach 0 on C, namely, as are the tangents
at C at 0. So, if C is smooth at 0, its strict transform meets E at one point. Every
intersection point must be counted with its multiplicity: if at the point 0 the curve C
has m coinciding tangents, then the strict transform meets the exceptional divisor at a
point of multiplicity m.

Definition 8.3. Let the (affine plane) curve C be given by the equation f(x, y) = 0.
We say that C has multiplicity m at 0 if the Taylor expansion of f at 0 starts at degree
m.

This means that the curve has m tangents at the point 0 (but some of them might
coincide). By choosing suitable coordinates one can apply this notion to any point of a
plane curve.

Example 8.4. A curve is smooth at 0 if and only if its multiplicity at 0 is 1. The
curves xy = 0, y2 = x2 and y2 = x3 have multiplicity 2 at 0. The first two have two
distinct tangents at 0, the third has a double tangent. �

If the curve C has multiplicity m at 0 than it has m tangents at 0, and its strict
transform meets the exceptional divisor of Γ at m points (notice however that these
points are all distinct only if the m tangents are distincts).

Definition 8.5. A singular point of a plane curve C is said to be nodal if at that
point C has multiplicity 2, and the two tangents to the curve at that point are distinct.

Exercise 8.6. With reference to equation (8.10), determine for what values of λ
the curve has a nodal singularity.



3. NODAL CURVES 123

Exercise 8.7. Show that around a nodal singularity a curve is isomorphic to an
open neighbourhood of the origin of the curve xy = 0 in C2.

Example 8.8. (Blowing up a nodal singularity.) We consider the curve C ⊂ C2

having equation x3 + x2 − y2 = 0. This curve has multiplicity 2 at the origin, and its
two tangents at the origin have equations y = ±x. So C has a nodal singularity at the
origin. We recall that Γ is described as the locus

{(u, v, w0, w1) ∈ C2 × P1 | uw0 = v w1} .

The projection σ is described as

(8.12)

x = u

y = uw0/w1

x = v w1/w0

y = v

in Γ∩V1 and Γ∩V0, respectively. By substituting the first of the representations (8.12)
into the equation of C we obtain the equation of the restriction of the total transform
to Γ ∩ U1:

u2(u+ 1− t2) = 0

where t = w0/w1. u2 = 0 is the equation of the exceptional divisor, so that the
equation of the strict transform is u + 1 − t2 = 0. By letting u = 0 we obtain the
points (0, 0, 1, 1) and (0, 0, 1,−1) as intersection points of the strict transform with the
exceptional divisor. By substituting the second representation in eq. (8.12) we obtain
the equation of the total transform in Γ ∩ U0; the strict transform now has equation
t3 v + t2 − 1, yielding the same intersection points.

The total transform is a reducible curve, with two irreducible components which
meet at two points.

Exercise 8.9. Repeat the previous calculations for the nodal curve xy = 0. In
particular show that the total transform is a reducible curve, consisting of the excep-
tional divisor and two more genus zero components, each of which meets the exceptional
divisor at a point.

Example 8.10. (The cusp) Let C be curve with equation y2 = x3. This curve
has multiplicity 2 at the origin where it has a double tangent.10 Proceeding as in the
previous example we get the equation v t3 = 1 for C ′ in Γ∩V0, so that C ′ does not meet
E in this chart. In the other chart the equation of C ′ is t2 = u, so that C ′ meets E at
the point (0, 0, 0, 1); we have one intersection point because the two tangents to C at
the origin coincide.

The strict transform is an irreducible curve, and the total transform is a reducible
curve with two components meeting at a (double) point. �

10Indeed this curve can be regarded as the limit for α → 0 of the family of nodal curves x3 +α2 x2−
y2 = 0, which at the origin are tangent to the two lines y = ±α x.
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3.3. Normalization of a nodal plane curve. It is clear from the previous ex-
amples that the strict transform of a plane nodal curve C (i.e., a plane curve with only
nodal singularities) is again a nodal curve, with one less singular point. Therefore after
a finite number of blowups we obtain a smooth curve N , together with a birational
morphism π : N → C. N is called the normalization of C.

Example 8.11. Let us consider the smooth curve C0 in C2 having equation y2 =
x4 − 1. Projection onto the x-axis makes C0 into a double cover of C, branched at the
points (±1, 0) and (±i, 0). The curve C0 can be completed to a projective curve simply
by writing its equation in homogeneous coordinates (w0, w1, w2) and considering it as
a curve C in P2; we are thus compactifying C0 by adding a point at infinity, which in
this case is not a branch point. The equation of C is

w2
0 w

2
2 − w4

1 + w4
0 = 0 .

This curve has genus 1 and is singular at infinity (as one could have alredy guessed since
the genus formula for smooth plane curves does not work); indeed, after introducing
affine coordinates ξ = w0/w2, η = w1/w2 (in this coordinates the point at infinity on
the x-axis is η = ξ = 0) we have the equation

ξ2 = η4 − ξ4

showing that C is indeed singular at infinity. One can redefine the coordinates ξ, η so
that C has equation

(ξ − η2)(ξ + η2) = 0

showing that C is a nodal curve. Then it can be desingularized as in Example 8.8. �

A genus formula. We give here, without proof, a formula which can be used to
compute the genus of the normalization N of a nodal curve C. Assume that N has t
irreducible components N1, . . . , Nt, and that C has δ singular points. Then:

g(C) =
t∑
1

g(Ni) + 1− t+ δ.

For instance, by applying this formula to Example 8.8, we obtain that the normalization
is a projective line.
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