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A solution of a problem of Sophus Lie: Normal

forms of 2-dim metrics admitting two projective

vector fields.

Robert L. Bryant∗, Gianni Manno†, Vladimir S. Matveev‡

Abstract

We give a complete list of normal forms for the 2-dimensional metrics

that admit a transitive Lie pseudogroup of geodesic-preserving transfor-

mations and we show that these normal forms are mutually non-isometric.

This solves a problem posed by Sophus Lie.

1 Introduction

1.1 Main definition and result

Let g be a Riemannian or pseudo-Riemannian metric on a 2-dimensional surface
D. A diffeomorphism φ : U1 → U2 between two open subsets of D is said to be
projective with respect to g if it takes the unparametrized geodesics of g in U1

to the unparametrized geodesics of g in U2.
Lie showed that what is (nowadays) called the pseudo-group P (g) of projec-

tive transformations of g is a Lie pseudo-group. A vector field v on D is said to
be projective with respect to g, if its (locally defined) flow belongs to P (g). As
Lie showed, the set of vector fields projective with respect to a given g forms a
Lie algebra. We will denote this Lie algebra by p(g).

Clearly, any Killing vector field for g is projective with respect to g. Metrics
of constant curvature give examples of metrics admitting projective vector fields
that are not Killing. It has been known since the time of Lagrange and Beltrami
[3, 14] that a metric g of constant curvature on a simply connected domain D
has dim (p(g)) = 8. (In fact, in this case, p(g) ≃ sl(3,R) as Lie algebras.)

The following problem was posed by Sophus Lie1 in 1882:

Problem (Lie). Find all metrics g such that dim p(g) ≥ 2.

∗Duke University Mathematics, PO Box 90320, Durham, NC 27708
†Department of Mathematics, via per Arnesano, 73100 Lecce Italy
‡Institute of Mathematics, FSU Jena, 07737 Jena Germany, matveev@minet.uni-jena.de
1 German original from [15], Abschn. I, Nr. 4, Problem II: Man soll die Form des Bo-

genelementes einer jeden Fläche bestimmen, deren geodätische Kurven mehrere infinitesimale

Transformationen gestatten.
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The following theorem, which is the main result of our paper, essentially
solves this problem.

Theorem 1. Suppose that a metric g on D2 possesses two projective vector
fields that are linearly independent at some p ∈ D2. Then either g has constant
curvature on some neighborhood of p or else, on some neighborhood of p, there
exist coordinates x, y in which the metric g takes one of the following forms:

1. Metrics with dim p(g) = 2.

(a) ε1e
(b+2) x dx2 + ε2e

b x dy2, where b ∈ R \ {−2, 0, 1} and εi ∈ {−1, 1}
are constants,

(b) a
(

e(b+2) xdx2

(eb x+ε2)2 + ε1
eb xdy2

eb x+ε2

)

, where a ∈ R \ {0}, b ∈ R \ {−2, 0, 1}, and

εi ∈ {−1, 1} are constants, and

(c) a
(

e2 xdx2

x2 + εdy2

x

)

, where a ∈ R\ {0}, and ε ∈ {1,−1} are constants.

2. Metrics with dim p(g) = 3.

(a) ε1e
3xdx2 + ε2e

xdy2, where εi ∈ {−1, 1} are constants,

(b) a
(

e3xdx2

(ex+ε2)2
+ ε1

exdy2

(ex+ε2)

)

, where a ∈ R \ {0}, εi ∈ {−1, 1} are con-

stants, and

(c) a
(

dx2

(cx+2x2+ε2)2x + ε1
xdy2

(cx+2x2+ε2)

)

, where a > 0, εi ∈ {−1, 1}, c ∈ R

are constants.

No two distinct metrics from this list are isometric.

Strictly speaking, what Theorem 1 gives is a list of local normal forms for
metrics g whose projective pseudo-group P (g) is locally transitive. Naturally,
for such metrics, one has dim p(g) ≥ 2. In Sections 2.2.2 and 2.2.3 it will
be shown that, for a metric g of nonconstant curvature on a surface D, any
two-dimensional subalgebra s ⊂ p(g) acts locally transitively on a dense open
subset of D. (One can further show that this open set has full measure.) Thus,
if dim p(g) ≥ 2, then either g has constant curvature or else, outside a closed set
with no interior,2 g is locally isometric to one of the metrics given in Theorem 1.

Remark 1. The higher dimensional analog of Lie’s question is easier, possibly
because the systems of PDE that appear have a higher degree of overdetermi-
nacy. It was treated with success by Solodovnikov [33, 34, 35]. The global (i.e.,
when the manifold and the projective vector fields are complete) version of Lie’s
question was explicitly asked by Schouten [32]; for the Riemannian case, it was
solved in [22, 23, 24, 25].

2Examples show that this closed set can be nonempty.
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1.2 Killing vector fields for metrics with dim p(g) ≥ 2 and

results of A.V. Aminova

It appears to be commonly believed that A.V. Aminova solved Lie’s problem in
[1], [2]. Indeed, she claimed

Theorem 2. If a metric g satisfies dim p(g) ≥ 2, then it admits a Killing vector
field.

She then used this result to classify the metrics g with dim (p(g)) ≥ 2.
Unfortunately, Aminova’s proof of Theorem 2 has a serious gap. Namely,

she assumed (see [1, pp. 3,6] or [2, pp. 414,424]) that Koenigs [12] had proved
that if the geodesic flow of a metric admits three linearly independent quadratic
integrals3, then the metric admits a nontrivial Killing vector field.

However, a careful reading of Koenigs’ note [12] shows that he had instead
proved that if the geodesic flow of a metric admits four linearly independent
quadratic integrals, then the metric admits a nontrivial Killing vector field.

Indeed, Koenigs’ examples already show that the existence of three linearly
independent quadratic integrals does not imply the existence of a nontrivial
Killing vector field.

Example 1 ([12]). Consider the metric g given by (4x2+y2+1)(dx2 + dy2). The
geodesic flow of this metric has three linearly independent quadratic integrals.
They are

F0 = (4x2+y2+1)(dx2 + dy2),

F1 = (4x2+y2+1)
(

y2 dx2 − (4x2+1) dy2
)

,

F2 = (4x2+y2+1)
(

xy2(dx2 + dy2) + (4x2+y2+1)dy (xdy − y dx)
)

.

However this metric admits no nontrivial Killing vector field. Indeed, the scalar
curvature R of this metric and its g-Laplacian ∆gR are independent functions,
which is impossible for metrics admitting nontrivial Killing vector fields.

On the other hand, all the normal forms listed in Theorem 1 admit ∂
∂y as

a Killing vector field. Thus, Theorem 1 implies Theorem 2 (in the proof of
Corollary 3 we will show, that if a projective vector field is a Killing vector field
on an open subset, then it is a Killing vector field on the whole connected man-
ifold). Consequently, Aminova’s description of the metrics g with dim p(g) ≥ 2
is correct and can be obtained from ours by coordinate changes. However, we
prefer our description because it is simpler. For example, all the metrics in our
list are given by elementary functions, while some of Aminova’s metrics include
functions implicitly given as a solution of a certain differential equation.

Finally, we would like to remark that we have not found a way to prove
Theorem 2 directly, i.e., without constructing the list of the metrics first.

3For a discussion of the notion of ‘quadratic integrals’ of a geodesic flow and their inde-
pendence, see Section 2.2.4.
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2 Proof

2.1 Outline of the proof

In Section 2.2 we recall some classical results of Lie, Liouville, Tresse, Cartan,
and Koenigs. In Section 2.3 we use these results to describe all projective
connections admitting two projective vector fields. In Sections 2.4 and 2.5 we
determine which of these connections come from (pseudo)Riemannian metrics.
In order to do this, given a projective connection, we first find a system of PDE
such that the existence of nontrivial solutions of this system implies the existence
of metrics with this projective connection (see Lemma 5 in Section 2.4). This
equation ((10) in Section 2.4) is seen to be linear4 in the components of the
matrix g/ det(g)2/3.

In Section 2.5 we use the linearity of the equations and the good normal form
for the projective connection from Section 2.3 to reduce this system of partial
differential equations to a system of ordinary differential equations under the
additional assumption that the metric is not superintegrable5. Then we solve
this system of ODE and obtain the list of the metrics. In Section 2.6.3 we
describe all metrics g with nonconstant curvature and dim p(g) ≥ 3 (which turn
out to be preciesly the superintegrable ones, see Lemma 2 and Corollary 3).
Finally, in Section 2.7 we explain why the metrics from Theorem 1 are mutually
nonisometric.

4This linearity observation is a coordinate-free version of an observation that Darboux
attributed to Dini. See Darboux [6, §§600–608]. However, the general result was already
known to R. Liouville in 1887 [18].

5We recall the definition of superintegrable metrics in Section 2.2.4. We also prove that
superintegrable metrics are those admitting precisely three linearly independent projective
vector fields.
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2.2 Classical results of Beltrami, Lie, Liouville, Koenigs,

Cartan, and Tresse

2.2.1 Projective connections

A second order ordinary differential equation of the form

y′′ = K0(x, y) +K1(x, y) y′ +K2(x, y) (y′)2 +K3(x, y) (y′)3, (1)

where the functions Ki are defined on some connected domain D in the xy-
plane, is classically referred to as a projective connection.6

For any symmetric affine connection on the domainD2 with coordinates x, y,
say, Γ(x, y) =

(

Γi
jk(x, y)

)

=
(

Γi
kj(x, y)

)

, the projective connection associated
to Γ is defined to be

y′′ = −Γ2
11 + (Γ1

11−2Γ2
12) y

′ − (Γ2
22−2Γ1

12)(y
′)2 + Γ1

22(y
′)3. (2)

It has been known since the time of Beltrami [3], that the solutions of this ODE
and the geodesics of the connection Γ are closely related: Namely for every
solution y(x) of (2) the curve

(

x, y(x)
)

is, up to reparametrization, a geodesic
of Γ.

It is well-known (and easy to verify directly) that, under any coordinate
change of the form (x, y) =

(

F (x̄, ȳ), G(x̄, ȳ)
)

, the projective connection (1) is
transformed into another projective connection, now expressed in terms of (x̄, ȳ).

A vector field7

Z = Z1(x, y)
∂

∂x
+ Z2(x, y)

∂

∂y

on D is an infinitesimal symmetry of the projective connection (1) if its (local)
flow preserves (1). It is known [15, 31], that a vector field Z as above is an
infinitesimal symmetry of (1) if and only if it satisfies the PDE system

Z2
xx − 2K0Z1

x −K1Z2
x +K0Z2

y −K0
xZ

1 −K0
yZ

2 = 0

−Z1
xx + 2Z2

xy −K1Z1
x − 3K0Z1

y − 2K2Z2
x −K1

xZ
1 −K1

yZ
2 = 0

−2Z1
xy + Z2

yy − 2K1Z1
y − 3K3Z2

x −K2Z2
y −K2

xZ
1 −K2

yZ
2 = 0

−Z1
yy +K3Z1

x −K2Z1
y − 2K3Z2

y −K3
xZ

1 −K3
yZ

2 = 0































. (3)

The set of vector fields in D whose flows preserve the projective connec-
tion (1) form a Lie algebra, which will be denoted p(D, (1)), or, more sim-
ply, p((1)) when the domain D is clear from context. We will also use the
notation p(Γ) for the equation (2), and for a metric g, we will use the nota-
tion p(g) to denote infinitesimal symmetries of the the projective connection
associated to the Levi-Civita connection of g.

6For the relation of this classical notion with the modern formulation of projective connec-
tions due to Cartan, see [5].

7When the xy-coordinates are clear from context, we will also use the more compact
notation Z = (Z1, Z2) for this vector field.
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For use below, we want to point out the following consequence of (3): Dif-
ferentiating the equations (3) with respect to x and y, one obtains a system of
8 third order equations for the Zi that can be solved for all of the third order
derivatives of the Zi as linear expressions in their lower order derivatives.

In particular, consider the R
8-valued function

Ẑ = (Z1, Z2, Z1
x, Z

2
x, Z

1
y , Z

2
y , Z

1
xy, Z

2
xy).

The system (3) and its derivatives can be written in the vectorial form

dẐ = Ẑ (X dx+ Y dy).

where X = X(x, y) and Y = Y (x, y) are certain 8-by-8 matrices whose entries
are constructed from the functions Ki and their first two derivatives. One can
thus regard the gl(8,R)-valued 1-form ψ = (X dx + Y dy) as defining a linear
connection on the bundle D × R8, one whose parallel sections Ẑ on an open
set U ⊂ D correspond to the elements of p(U, (1)). This interpretation of (3)
has some useful consequences.8

First, if U ⊂ D is connected, then, for any point p ∈ U , the evaluation
mapping

evp(Z) =
(

Z1(p), Z2(p), Z1
x(p), Z2

x(p), Z1
y(p), Z2

y(p), Z1
xy(p), Z

2
xy(p)

)

defines a linear injection evp : p(U, (1)) → R8. In particular, if any Z ∈ p((1))
vanishes to order 3 at any point of D (assumed connected), then Z vanishes
identically.

Second, for any p ∈ D, one can define its local infinitesimal symmetry al-
gebra p(p, (1)) to be the inverse limit of the symmetry algebras p(U, (1)) as U
ranges over the open neighborhoods of p in D. The above formulation then
implies that p(p, (1)) = p(U, (1)) for some connected open neighborhood U of p
in D.

Third, differentiating dẐ = Ẑ ψ yields 0 = d(dẐ) = Ẑ(dψ + ψ ∧ ψ), so that
one gets the relation ẐL = 0, where

dψ + ψ ∧ ψ = (Yx −Xy + [X,Y ]) dx ∧ dy = L(x, y) dx ∧ dy

is the curvature form of the connection ψ. Thus, if L(p) is nonzero, one gets
that dim p(p, (1)) < 8. Also, when L is nonzero, one gets more relations on Ẑ
by differentiating 0 = ẐL, which yields 0 = Ẑ(dL + ψ L). On the other hand,
when L vanishes identically on a simply-connected open p-neighborhood U , the
flatness of the connection ψ implies that dim p(U, (1)) = 8.

8For those interested in an invariant formulation, we offer the following description: The
linear differential equations (3) define in J2(D, TD), the bundle of 2-jets of vector fields on D,
a vector subbundle P ⊂ J2(D, TD) of rank 8. The contact plane field on J2(D, TD) (i.e.,
the plane field of codimension 6 to which all of the holonomic sections of J2(D, TD) are
tangent) produces a horizontal 2-plane field H ⊂ TP that defines a linear connection on the
bundle P → D. The 2-jets of projective vector fields on D are then sections of P that are
parallel with respect to this connection.
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2.2.2 Lie algebras of projective vector fields

Lie [15] classified the possible local infinitesimal symmetry algebras of projective
vector fields of projective connections. He proved9 that such a local Lie algebra
is isomorphic to one of the following

1. {0}, 2. R, 3. s, 4. sl(2,R), 5. sl(3,R).

where s is the non-commutative Lie algebra of dimension 2 (i.e., the algebra
spanned by two elements X and Y that satisfy [X,Y ] = X). Since we will
be considering the cases when a metric has at least two linearly independent
projective vector fields, the first two algebras will not arise.

Both of the algebras sl(2,R) and sl(3,R) contain s as a subalgebra. Thus,
by Lie’s classification, if a connection Γ satisfies dim p(Γ) ≥ 2, it admits two
projective vector fields X 6≡ 0 and Y satisfying the relation [X,Y ] = X.

Lie [17] also investigated the possible realizations of s as an algebra of vector
fields on R2. He showed that, for two vector fields X,Y on R2 satisfying the
relation [X,Y ] = X , almost every point p ∈ R2 has a neighborhood on which
there are coordinates x, y in which

transitive case X = ∂
∂y , Y = ∂

∂x + y ∂
∂y ,

nontransitive case X = ey ∂
∂y , Y = − ∂

∂y , or

trivial case X ≡ 0.

Note that there exist examples of smooth vector fields X 6≡ 0 and Y on the
plane that satisfy the relation [X,Y ] = X and are such that they are as in the
transitive case in some open set and as in the trivial case in another open set.

Example 2. Let the function f : R → R be given by

f(y) =

{

e
− 1

2y2 for y > 0,

0 for y ≤ 0.

Then the vector fields X = f(y) ∂
∂x and Y = −y3 ∂

∂y , satisfy [X,Y ] = X and are
as in the transitive case for y > 0 but are as in the trivial case for y < 0.

Moreover, the vector fields X = ∂
∂x and Y = x ∂

∂x + f(y) ∂
∂y also sat-

isfy [X,Y ] = X and fall into the transitive case for y > 0 but into the non-
transitive case for y < 0.

From the results of Section 2.2.1 it follows, that this phenomena cannot hap-
pen, if the vector fields are infinitesimal symmetries of a projective connection
(on a connected D). Indeed, if X ∈ p((1)) vanishes at every point of an open
subset U , then for every p ∈ U we evidently have evp(X) = 0 implying X ≡ 0.

Thus, if two infinitesimal symmetries X,Y of a projective connection on
a connected surface satisfy [X,Y ] = X and X 6≡ 0, then, in a neighborhood of
almost every point, they are as in the transitive case, or as in the nontransitive
case.

9Modern version of Lie’s proof can be found, for example, in [9, 27].
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2.2.3 Invariants that decide whether a projective connection corre-
sponds to the metric of constant curvature.

We say that a projective connection on D2 is flat, if every point of D2 has local
coordinates x, y such that the projective connection has the form y′′ = 0 (i.e.,
if the geodesics of the projective connection can be mapped into straight lines).
Lie [15] showed that the projective connection of a metric is flat if and only if
the metric has constant curvature, and that the (local) Lie algebra p(g) of a
metric g of constant curvature is sl(3,R). (Of course, this follows immediately
from Beltrami’s earlier result that the geodesics of a metric can be mapped to
straight lines in the plane if and only if the metric has constant curvature.)

There is a simple test for when the projective connection (1) is flat. Consider
the following two functions (sometimes improperly called Cartan invariants al-
though they were already known to Liouville [18] in 1889):

L1 = 2K1
xy −K2

xx − 3K0
yy − 6K0K3

x − 3K3K0
x

+ 3K0K2
y + 3K2K0

y +K1K2
x − 2K1K1

y

L2 = 2K2
xy −K1

yy − 3K3
xx + 6K3K0

y + 3K0K3
y

− 3K3K1
x − 3K1K3

x −K2K1
y + 2K2K2

x

(4)

Liouville [18] proved that the expression

λ = (L1 dx+ L2 dy) ⊗ (dx ∧ dy)

is a differential invariant10 (w.r.t. coordinate changes) of the projective con-
nection (1). Moreover, Liouville [18], Tresse [31], and Cartan [5] each gave
independent proofs that a projective connection is flat on an open set U if and
only λ vanishes there.

Remark 2. A calculation shows that the equation ẐL = 0 from Section 2.2.1 is
just the condition that the Lie derivative of λ with respect to Z be zero, see for
example [27].

A direct corollary of this classical result is the following:

Lemma 1. Consider the projective connection (1) on a connected domain D
and assume that its Liouville invariant λ is nonvanishing on D. Suppose that
vector fields X and Y in p((1)) satisfy [X,Y ] = X and that X is not identi-
cally 0. Then, at every point of a dense open subset of D the vector fields X
and Y are linearly independent (and hence fall into the transitive case).

Proof. As we explained in the previous section, D contains a dense open subset
on which the pair (X,Y ) falls into either the transitive case or the nontransitive
case. We need only show that the invariant λ vanishes on any open set on
which (X,Y ) falls into the nontransitive case.

Thus, assume that we are in the nontransitive case, i.e., that one can choose
local coordinates x and y such that X = ey ∂

∂y and Y = − ∂
∂y . Since Y belongs

10In fact, it is the lowest order tensorial invariant.
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to p((1)), for every solution y(x) of (1) and for every t ∈ R, we have that
y(x) + t is also a solution. It follows without difficulty that the functions Ki

depend on x only. Substituting Z := X = (0, ey) in the equations (3), we
obtain K0 = K2 = K3 = 0, which, together with K1 = K1(x), implies, by the
formulae (4), that L1 = L2 = 0 and hence λ = 0. The Lemma is proved.

2.2.4 Superintegrable metrics have dim(p) = 3

Let g be a (pseudo-)Riemannian metric on a connected surface M . The geodesic
flow of g is then a well-defined flow on TM . A function h : TM → R is an
integral of the geodesic flow of g if it is constant on the orbits of the geodesic
flow of g. The necessary and sufficient condition that h be an integral of the
geodesic flow of g is that it satisfy the linear first order PDE

{h, g}g = 0

where {, }g is the Poisson bracket on TM that is transferred from the canonical
one on T ∗M via the bundle isomorphism ♭g : TM → T ∗M .

An integral h of the geodesic flow of g is said to be a quadratic integral if
it is a quadratic function on each tangent space TpM . For example g itself is a
quadratic integral of the geodesic flow.11

For quadratic forms h : TM → R, the linear equation {h, g}g = 0 is an
overdetermined PDE system of finite type. Hence, the quadratic integrals
of the geodesic flow of g always form a finite dimensional vector space I(g).
Koenigs [12] proved that, on a connected surface M , the dimension of I(g) is
1, 2, 3, 4, or 6. Moreover, if dim (I(g)) = 6, then (M, g) is isometric to a con-
nected domain in a surface of constant curvature. The metrics g of nonconstant
curvature such that dim (I(g)) = 4 (the next highest value) are sometimes said
to be superintegrable (or Darboux-suprintegrable) [10].

Two metrics g and ḡ on (the same) D2 are said to be projectively equivalent
if they have the same geodesics, considered as unparameterized curves. The
following result connecting projective equivalence and the space I(g) is proved
in Darboux [6, §608] and is based on Darboux’ generalization of the work of
Dini (see [6, §601]). For recents proofs, see [19, 20, 21, 28].

Theorem 3. Let g, ḡ be metrics on M2. Then they are projectively equivalent
if and only if the function I : TM2 → R defined by

I(ξ) := ḡ(ξ, ξ)

(

det(g)

det(ḡ)

)2/3

(5)

is an integral of the geodesic flow of g.

11The importance of quadratic integrals other than g itself for studying the geodesic flow was
recognized long ago. Indeed, it was Jacobi’s realization that the geodesic flow of the ellipsoid
admitted such an ‘extra’ quadratic integral that allowed him to integrate the geodesic flow on
the ellipsoid.
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Remark 3. Theorem 3 has the corollary that each metric ḡ that is projectively
equivalent to g is of the form

ḡ =

(

det(g)

det(h)

)2

h

where h ∈ I(g) satisfies the condition det(h)/ det(g) 6= 0.

Another direct corollary of Theorem 3 (see, for example, [26, 28], or Sec-
tion 2.8 for explanations) is the following result due to Knebelman.

Corollary 1 ([11]). Let two metrics g and ḡ on M2 be projectively equivalent.
Suppose K = Ki is a Killing vector field for g. Then,

K̄ =

(

det(ḡ)

det(g)

)1/3

ḡ−1g(K) :=

(

det(ḡ)

det(g)

)1/3

ḡαjgαiK
i

is a Killing vector field for ḡ.

Remark 4. The mapping K 7→ K̄, though linear, is not always a Lie algebra ho-
momorphism. For example, when g is flat and ḡ has nonzero constant curvature,
this mapping clearly cannot be a Lie algebra homomorphism.

Koenigs [12] proved that superintegrable metrics always have a Killing vector
and classified them [12, Tableau I].12 Though Koenigs proved this result locally,
the global (i.e. on every connected manifold) version of this result follows from
his list and from the trivial observation that two Killing vector fields of a metric
of nonconstant curvature are proportional.

The existence of a Killing vector field, combined with Corollary 1 and with
Theorem 3 gives

Lemma 2. If g on M2 is superintegrable, then dim (p(g)) = 3.

Proof. Corollary 1 combined with Theorem 3 says that if K = Ki is a Killing
vector field of a metric g, then for every quadratic integral F = fijξ

iξj (where
fij = fji), the vector field

ZF =
det(f)

det(g)
f−1g(K) :=

det(f)

det(g)
f iαgαjK

j (6)

is a projective vector field.
Note that, because, on 2-by-2 matrices, the operation f 7→ det(f)f−1 is

linear in f , the mapping F 7→ ZF is a linear map from I(g) to p(g). Its kernel
is at most one-dimensional. Indeed, consider H(ξ) = hijξ

iξj with hij = hji.
Since two symmetric 2-by-2 matrices with the same one-dimensional kernel are
proportional, the equality ZF = ZH = 0 implies F = λH , or λF = H , where

12One must bear in mind, when consulting [12], particularly the Tables, that Koenigs worked
over the complex domain, so that he did not distinguish between the Riemannian and pseudo-
Riemannian cases. It requires a little work (and careful reading of his notation) to separate
out the possible normal forms of superintegrable Riemannian metrics.
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λ : M2 → R. If F , H ∈ I(g), the function λ must also be an integral implying
it is constant. Thus, the kernel of the mapping F 7→ ZF is at most one-
dimensional. Since dim (I(g)) = 4 and the kernel of the linear map F 7→ ZF

(from I(g) to p(g)) is at most one-dimensional, dim (p(g)) ≥ 3. Since as we
recalled in Section 2.2.2 metrics of nonconstant curvature have dim (p) ≤ 3, we
obtain dim (p(g)) = 3. Lemma 2 is proved.

Remark 5. For use in Section 2.8, let us note that the kernel of the mapping
F 7→ ZF from the proof of Lemma 2 is the linear hull of the function FK(ξ) :=
(

gijK
iξj
)2 ∈ I(g), which can be checked by direct calculations.

Corollary 2. If the space of metrics having a given projective connection is
more than 3-dimensional, then each metric g from this space has dim

(

p(g)
)

> 2.

Proof. Because of Theorem 3 and Remark 3, superintegrable metrics are those
admitting a 4-parameter family of projectively equivalent metrics. By Lemma 2,
they have dim

(

p
)

> 2. Corollary 2 is proved.
Corollary 2 is actually what we will need from this section. Let us note that

the converse statement is also true.

Corollary 3. A metric g of nonconstant curvature on connected M2 such that
dim

(

p
)

= 3 is superintegrable.

We will prove Corollary 3 at the very end of the paper, in Section 2.8.

2.3 Projective connections admitting two infinitesimal

symmetries

Lemma 3. Let the projective connection (1) admit two infinitesimal symmetries
that are linearly independent at the point p. Then there exists a coordinate
system x, y in a neighborhood of p such that the vector fields X := (0, 1) and Y :=
(1, y) belong to p((1)). In such a coordinate system, the projective connection (1)
has the form

y′′(x) = Aex +By′(x) + Ce−x(y′(x))2 +De−2x(y′(x))3, (7)

where A,B,C,D are constants. Moreover, such a coordinate system can be
chosen so that one of the following conditions holds:

1. D 6= 0, C = 0,

2. D = 0, C 6= 0, B = 0, or

3. D = C = B = A = 0.

The vector fields (0, 1) and (1, y) are always infinitesimal symmetries of the
projective connection (7). Therefore, dim p((7)) ≥ 2. For certain values of A,
B, C, and D, one can have dim p((7)) > 2. The following lemma describes all
such values of A, B, C, and D.

11



Lemma 4. The following statements hold

1. The projective connection y′′(x) = Aex + By′(x) + De−2x(y′(x))3 with
D 6= 0 admits a infinitesimal symmetry that is not a linear combination
of the vector fields (0, 1) and (1, y) if and only if A = 0 and B ∈ {1/2, 2}.
Moreover, if A = 0 and B = 2, then the projective connection is flat. If
A = 0 and B = 1/2, every infinitesimal symmetry is a linear combination
of the vector fields (0, 1), (1, y), and (y, y2/2).

2. For C 6= 0 the algebra of infinitesimal symmetries of the projective con-
nection y′′(x) = Aex + Ce−x(y′(x))2 is spanned by the vector fields (0, 1)
and (1, y).

Proof of Lemmas 3, 4. These lemmas follow from the results of Beltrami, Lie,
Cartan, and Tresse that we recalled in Section 2.2 and are not new, see for
example [13, 27]. We give their proofs to make this article self-contained.

We assume that the projective connection is not flat. By Lemma 1, in a
certain coordinate system u = (1, y) and v = (0, 1) are projective vector fields
of this connection.

It is easy to construct the flows of these vector fields. Indeed, the flow of v
is Ψτ (x, y) = (x, y + τ). The flow of u is Φτ (x, y) = (x+ τ, eτy). Since the flow
of the vector field u = (0, 1) preserves the geodesics, for every solution y(x) and
for every τ the function y(x) + τ is also a solution of the equation (1). Thus,
the coefficients K0,K1,K2,K3 are independent of y.

Similarly, since the flow of the vector field u = (1, y) preserves the geodesics,
for every solution y(x) and for every τ the function eτ y(x + τ) is a solution of
the equation (1). Hence,

eτy′′(x+ τ) = K0 + eτK1y′(x+ τ) + e2τK2 (y′(x+ τ))2 + e3τK3(y′(x + τ))3.

Thus, the projective connection has the form (7).
Now let us show that we can change coordinates so that the constants

A,B,C,D will satisfy conditions 1, 2, or 3. Consider the following new co-
ordinate system: xnew := xold, ynew := yold + αexold . In these new coordinates,
(7) becomes

y′′(x) = Anewe
x + Bnewy

′(x) + Cnewe
−x(y′(x))2 +Dnewe

−2x(y′(x))3

=
(

A− α +Bα + Cα2 +Dα3
)

ex +
(

3Dα2 + 2Cα+B
)

y′ (x)

+ (3Dα+ C) e−x (y′ (x))
2
+De−2 x (y′(x))

3
.

This new equation has the same form as (7) and therefore the vector fields
(0, 1), (1, y) are infinitesimal symmetries of this equation (which is not surprising
because the coordinate change preserves the vector field (0, 1) and sends the
vector field (1, y) to a linear combination of (1, y) and (0, 1)).

We see that if D 6= 0, then by the appropriate choice of α we can make
Cnew = 0 so that the constants Anew, Bnew, Cnew, Dnew will satisfy the first
case from Lemma 3. Similarly, if D = 0 and C 6= 0, then by the appropriate
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choice of α we can make Bnew = 0 so that the constants Anew, Bnew, Cnew, Dnew

will satisfy the second case of Lemma 3. If D = C = 0, then both Cartan
invariants (recalled in Section 2.2.3) vanish and therefore, in some coordinate
system, A = B = C = D = 0. Lemma 3 is proved.

Let us now prove Lemma 4. Suppose first that the algebra p((7)) is 8-
dimensional. Then, by the result of Lie, Liouville, Tresse and Cartan recalled
in Section 2.2.3, we have L1 = L2 = 0. Substituting the coefficients of the
connection in the formulae for L2 and L1, we obtain

6D(B − 2) − 2C2 = 0

C + 9AD −BC = 0.

Finally, if B = D = 0 then the second equation implies C = 0. If D 6= 0 and
C = 0 then the equations imply A = 0, B = 2. Lemma 4 is proved under the
assumption that the algebra of infinitesimal symmetries is 8-dimensional.

Now suppose the projective connection (7) has a three-dimensional algebra
of infinitesimal symmetries. Then, it is isomorphic to sl(2,R), see Section 2.2.2,
and therefore is generated by three vector fields X,Y, Z satisfying

[X,Y ] = X , [X,Z] = Y , [Y, Z] = Z .

Without loss of generality, in view of Lemma 1, we can assume that X = (0, 1)
and Y = (1, y). Indeed, the vector fields (0, 1) and (1, y) satisfy [X,Y ] = X
and therefore form a Borel subalgebra in the algebra sl(2,R) of infinitesimal
symmetries, and all Borel subalgebras of sl(2,R) are isomorphic. Then, the
vector field Z must satisfy the conditions

[X,Z] = Y , [Y, Z] = Z .

These conditions are equivalent to the following system of partial differential
equations on the components Z1, Z2 of the vector field Z.

∂Z1

∂y − 1 = 0

∂Z2

∂y − y = 0

∂Z1

∂x + y ∂Z1

∂y − Z1 = 0

∂Z2

∂x + y ∂Z2

∂y − 2Z2 = 0































.

Solving the system we obtain Z = (Z1, Z2) =
(

y + C1e
x, y2

2 + C2e
2x
)

, where

C1, C2 are constants. But if such a vector Z is an infinitesimal symmetry, then
the equations (3) corresponding to the connection from the second statement of
Lemma 4 imply the equality

−Ce−x = C1C + 1 = (3A+ 4CC2 + C1)e
x = (4C2 − 3C1A)e2x = 0,

which is incompatible. Thus, the second statement of Lemma 4 is proved.
Similarly, the equations (3) corresponding to the connections from the second
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statement of Lemma 4 imply the equality

3C1De
−x = (1−2B−6DC2) = −(C1B+C1+3A)ex = (4C2−3C1A−2BC2)e

2x = 0.

Thus,
{

C1 = 0, C2 = − 1
2D , A = 0, B = 2

}

, or
{

C1 = 0, C2 = 0, A = 0, B = 1
2

}

.
As we explained above, the first case corresponds to a connection with 8-
dimensional space of infinitesimal symmetries. Lemma 4 is proved.

2.4 When does a given projective connection come from

a metric?

Consider a projective connection

y′′(x) = K0(x, y) +K1(x, y)y′(x) +K2(x, y)
(

y′(x)
)2

+K3(x, y)
(

y′(x)
)3
. (8)

We ask when there exists a metric with this projective connection and, if any
exist, how to find them. Lemma 5 below, due to R. Liouville [18, Chapter III,
§XI], gives a useful tool to answer this question.

Fix a coordinate system x, y (which, for notational ease, we shall sometimes
refer to as (x1, x2)). Given a metric g = E dx2 + 2F dxdy + Gdy2, construct
the symmetric nondegenerate matrix

a =

(

a11 a12

a12 a22

)

:= det(g)−2/3 g =
1

(EG− F 2)2/3

(

E F
F G

)

. (9)

Lemma 5 ([18]). The projective connection of the metric g is (8) if and only
if the entries of the matrix a satisfy the linear PDE system

a11x − 2
3 K

1 a11 + 2K0 a12 = 0

a11y + 2 a12x − 4
3 K

2 a11 + 2
3 K

1 a12 + 2K0 a22 = 0

2 a12y + a22x − 2K3 a11 − 2
3 K

2 a12 + 4
3 K

1 a22 = 0

a22y − 2K3 a12 + 2
3 K

2 a22 = 0































(10)

Remark 6. Before proving the lemma, let us explain how to define the sys-
tem (10) more conceptually. Consider the jet space J1

1 (since we are working
locally we can think of J1

1 as R3 with coordinates (x, y, yx)). Consider the
function

F : J1 → R, F (x, y, yx) := a11 + 2a12yx + a22yx
2,

(i.e., the function F is the square of the length of the vector (1, yx) in the
quadratic form corresponding to the matrix a), the function

α(x, y, yx) :=
∂yxx

∂yx
:= K1 + 2K2(yx) + 3K3(yx)2,
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and the ‘total derivative’ Dx restricted to (1)

Dx :=
∂

∂x
+ yx

∂

∂y
+ (K0 +K1yx +K2(yx)2 +K3(yx)3)

∂

∂yx
.

Then the system (10) is equivalent to the equation Dx(F ) = 2
3Fα. More

precisely, the equation Dx(F ) − 2
3Fα = 0 is polynomial of third degree in yx

and the equations from the system (10) are coefficients of this polynomial.

Remark 7. The proof that we will give below is essentially Liouville’s proof, just
in different notation.

At first glance, the change of variables (9) that renders the obvious equations
on E, F , and G linear in the unknowns aij seems miraculous.13 However, as
Liouville himself noted, the occurrence of the matrix a via (9) in Lemma 5 can
be motivated by considering its link with the linear equation for quadratic first
integrals, as we will now explain.

If the projective connection (1) were known to be that of a metric associated
to a quadratic function h : TM → R, then, by Theorem 3, a metric g would
have the same geodesics as h (and hence have (1) as its projective connection)
if and only if it were to satisfy

{

(

det(h)
det(g)

)

2
3
g, h

}

h

= 0, (11)

where { , }h is the Poisson bracket transplanted from T ∗M to TM by the bundle
isomorphism ♭h : TM → T ∗M . (Note that, although det(g) depends on a

choice of coordinates, the ratio det(h)
det(g) does not, so (11) is actually a coordinate-

independent equation.)
The equation (11) is visibly linear in a = g/ det(g)2/3, which motivates

expressing the projective geodesic condition for g in terms of a.

Proof. We will first derive a system of PDE on the components of the metric g
whose solvability corresponds to the existence of metric with the projective
connection (8) and then show that this system is equivalent to the system (10).

First of all, it is easy to obtain all symmetric affine connections whose pro-
jective connection is (8). Indeed, by the definition of the projective connection
corresponding to an affine connection (see Section 2.2.1), the components of the
symmetric affine connection should satisfy the system of four linear equations

K0 = −Γ2
11, K1 = Γ1

11 − 2Γ2
12, K2 = −Γ2

22 + 2Γ1
12, K3 = Γ1

22.

Solving this system for the Γi
jk gives

Γ2
11 = −K0, Γ1

11 = K1 + 2p1, Γ1
21 = Γ1

12 = p2,

Γ1
22 = K3, Γ2

22 = −K2 + 2p2, Γ2
21 = Γ2

12 = p1,

13Indeed, Liouville himself seems to have regarded this linearity as a remarkably lucky
circumstance.
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where p1 and p2 are functions on D2.
By definition, Γi

jk is the Levi-Civita connection of the unknown metric g =
gij , if and only if the covariant derivative gij,k in this connection vanishes. The
standard formula

gij,k =
∂gij

∂xk
−

2
∑

α=1

(

Γα
jkgiα + Γα

ikgαj

)

then gives us the following six first order PDE on five unknown functions, which
are the components E, F , and G of the metric and the functions p1, p2.

∂E
∂x − 2K1E + 2K0 F − 4E p1 = 0

∂E
∂y − 2 p2E − 2 p1 F = 0

∂F
∂y −K3E +K2 F − 3 p2 F − p1G = 0

∂F
∂x −K1 F +K0G− 3 p1 F − p2E = 0

∂G
∂x − 2 p2 F − 2 p1G = 0

∂G
∂y − 2K3 F + 2K2G− 4Gp2 = 0























































(12)

Thus, the metric g =

(

E F
F G

)

has projective connection (8) if and only

if there exist functions p1 p2 such that E, F , G, p1, and p2 satisfy the system
(12).

Assuming that EG − F 2 6= 0, solving the second and fifth equation of (12)
for p1 and p2, and then substituting the result into the remaining equations, we
obtain a system of four first order PDE for the three functions E, F , and G,
whose solvability is equivalent to the existence of a metric with the projective
connection (8).

Now making the substitution

(

E F
F G

)

=
a

det(a)2
=









a11

(a11a22 − a2
12)

2

a12

(a11a22 − a2
12)

2

a12

(a11a22 − a2
12)

2

a22

(a11a22 − a2
12)

2









,

(which is equivalent to (9)) into these equations yields, after some computation,
the system (10). Lemma 5 is proved.

2.5 Reducing the system (10) to a system of ODE and

solving it

In this section we assume that our metric g admits precisely two linearly inde-
pendent projective vector fields. Then, by Lemma 3, in some coordinate system
near this point the projective connection of this metric is given as

y′′(x) = Aex +By′(x) + Ce−x(y′(x))2 +De−2x(y′(x))3. (13)
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By Lemma 5, the components a11, a12, a22 of the matrix a constructed for the
metric g by the formula (9) satisfy the system (10). Meanwhile, the coefficients
of (10), considered as a linear first order system for a, do not depend on y
because they are either constants or constant multiples of the Ki, which are
independent of y for the projective connection (13).

Thus, if a = (aij) is a solution of (10), then ∂a
∂y , ∂2a

∂y2 ,and ∂3a
∂y3 are also

solutions. However, by Corollary 2, our assumption that the space of projective
vector fields is precisely two-dimensional implies that the space of metrics having
(13) as projective connection has dimension at most three. Thus, there exist
constants λ0, λ1, λ2, λ3 (with at least one of λ1, λ2, λ3 being nonzero) such that

λ0 a+ λ1
∂a

∂y
+ λ2

∂2a

∂y2
+ λ3

∂3a

∂y3
= 0.

Hence, the functions a11, a12, and a22 all satisfy some linear ordinary differential
equation of at most third order with constant coefficients.

Depending on the multiplicity of the roots of the characteristic polynomial
of this equation, the functions a11, a12, and a22 are given by one of the following
formulae.

Case 1: a11 = c01 e
α1y+c02 e

α2y+c03 e
α3y , a12 = 2c11 e

α1y+2c12 e
α2y+

2c13 e
α3y , a22 = c21 e

α1y + c22 e
α2y + c23 e

α3y, where α1 ∈ R, α2, α3 ∈ C

are mutually different constants and cij are functions of x.

Case 2: a11 = c01 e
α1y + c02 e

α2y + c03y e
α2y , a12 = 2c11 e

α1y +
2c12 e

α2y + 2c13y e
α2y , a22 = c21 e

α1y + c22 e
α2y + c23y e

α2y, where α1 ∈
R, α2 ∈ C are mutually different constants and cij are functions of x.

Case 3: a11 = c01 e
αy+c02y e

αy+c03y
2 eαy , a12 = 2c11 e

αy+2c12y e
αy+

2c13y
2 eαy , a22 = c21 e

αy +c22y e
αy +c23y e

αy, where α ∈ R is a constant
and cij are functions of x.

In Cases 1 and 2, we allow also complex-conjugated αi.
Substituting the above ansatz for aij in the equations (10) and using that

the functions yjeαiy are linearly independent for different j and αi, we see that
the system (10) is equivalent to the following system of ODE on the functions
cij . The system contains 9 ordinary differential equations of the form

d

dx
c = Mc, (14)

where c is the column with entries (c01, c02, c03, c11, c12, c13, c21, c22, c23) and M
is the following 9-by-9 matrix,

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2
3

B 0 0 −Aex 0 0 0 0 0

0 2
3

B 0 0 −Aex 0 0 0 0

0 0 2
3

B 0 0 −Aex 0 0 0
4
3

Ce−x
− α1 k1 0 −

1
3

B 0 0 −2Aex 0 0

0 4
3

Ce−x
− α2 k2 0 −

1
3

B 0 0 −2Aex 0

0 0 4
3

Ce−x
− α3 0 0 −

1
3

B 0 0 −2Aex

2De−2x 0 0 1
3

Ce−x
− α1 k1 0 −

4
3

B 0 0

0 2De−2x 0 0 1
3

Ce−x
− α2 k2 0 −

4
3

B 0

0 0 2De−2x 0 0 1
3

Ce−x
− α3 0 0 −

4
3

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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and three linear equations on cij , which can be written as




α1 + 2
3Ce

−x k1 0
0 α2 + 2

3Ce
−x k2

0 0 α3 + 2
3Ce

−x









c21
c22
c23



 = De−2x





c11
c12
c13



 , (15)

where, the parameters αi ∈ C, ki ∈ {0,−1,−2} satisfy

1. α1 6= α2 6= α3 6= α1 , k1 = k2 = 0 for the case 1,

2. α1 6= α2 = α3 , k1 = 0, k2 = −1 for the case 2,

3. α1 = α2 = α3 , k1 = −1 k2 = −2 for the case 3.

Thus, every metric admitting precisely two projective vector fields comes
from the solution of the system above. Note that in view of Lemmas 3 and 4
we can assume

(a) C 6= 0 and D = B = 0,

(b) or D 6= 0, C = 0, and if A = 0, then B 6= 2 and B 6= 1/2.

Lemma 6. Consider the above system of ODE corresponding to one of the cases
1,2,3. Then, the following holds.

1. If the condition (a) holds, the system admits the trivial solution cij ≡ 0
only.

2. If the condition (a) holds and A 6= 0, then the system admits the trivial
solution cij ≡ 0 only.

3. If the condition (b) holds and A = 0, then

(∗) for B 6= 1 the general solution of the system corresponds to

a = λ

(

e
2
3Bx 0

0
(

D e2(B−1)x

B−1 +H
)

e−
4
3Bx

)

(16)

where H ∈ R, or

(∗∗) for B = 1 the general solution of the system corresponds to

a = λ

(

e
2
3x 0

0 (2Dx+H) e−
4
3x

)

(17)

where H ∈ R.

Remark 8. By (9) we have g = a/(det(a))2. Then, the solution (16) for H =
0 (H 6= 0, respectively) corresponds to the metric (1a) (to the metric (1b),
respectively) from Theorem 1, after the coordinate change (xnew, ynew) = (x +
c1, c2y) for the appropriate c1, c2 ∈ R and by setting b := 2(1−B). Recall that
B 6= 1

2 , 1, 2 by assumptions, which implies b 6= 1, 0,−2. Similarly, the solution
(17) corresponds to the metric (1c) from Theorem 1.
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Sketch of the proof of Lemma 6. Before giving detailed calculations (below),
let us explain the ideas staying behind, and one more proof which is actually
simpler than one staying below, if we allow calculations done with the help of
modern computer algebra programs.

The ’computer algebra’ proof is very straightforward: the system (14) can
be explicitly solved (Maple does it), the general solution depends on 9 con-
stants, say C1, ..., C9. Substituting the solution in the equations (15), we obtain
algebraic relations on the constants C1, ...C9 and A,B,C,D. Analyzing these
relations, one obtains the Lemma.

Now let us explain a trick which allowed us to give a hand-written ( = with-
out the help of computer algebra programs) proof. Differentiate the equations
(15) by x and substitute the values of d

dxcij given by (14) inside. We obtain
three new linear equations on cij . Repeat the procedure: Differentiate these
new equations by x and substitute the values of d

dxcij given by (14) inside. We
obtain another triple of linear equations on cij . These two triples of equations
together with (15) gives us 9 linear equations on 9 functions cij . The corre-
sponding 9−by−9 matrix can be explicitly constructed. One immediately sees
that under assumptions of the first and the second statements of the Lemma
this matrix is nondegenerate almost everywhere implying cij ≡ 0. Under as-
sumptions of the third statement of the Lemma, the matrix has rank 7 implying
that the system (14) can be reduced to two ODE, which can be explicitly solved.
Their solution gives us the third statement of the Lemma.
Proof of Lemma 6. Assume B = D = 0, C 6= 0. Then, the equations (15)
imply c21 ≡ c22 ≡ c23 ≡ 0. Substituting this in the last three equations of (14),
we obtain the system





1
3Ce

−x − α1 k1 0
0 1

3Ce
−x − α2 k2

0 0 1
3Ce

−x − α3









c11
c12
c13



 =





0
0
0



 ,

which evidently implies c11 ≡ c12 ≡ c13 ≡ 0. Substituting c11 ≡ c12 ≡ c13 ≡
c21 ≡ c22 ≡ c23 ≡ 0 in the fourth, fifth and sixth equations of (14), we obtain
the system





4
3Ce

−x − α1 k1 0
0 4

3Ce
−x − α2 k2

0 0 4
3Ce

−x − α3









c01
c02
c03



 =





0
0
0



 ,

implying c01 ≡ c02 ≡ c03 ≡ 0. Thus, the system admits only trivial solutions.
The first statement of the lemma is proved.

Now let us prove the second statement of the lemma. We assume D 6= 0,
C = 0, A 6= 0 and show that the system admits only trivial solutions.

Let us take the thrid, the sixth and the ninth equations of (14) and the last
equation of (15). We see that these equations contain only c03, c13, c23 and can
be written as follows.
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d

dx





c03
c13
c23



 =





2
3B −Aex 0
−α3 − 1

3B −2Aex

2De−2x −α3 − 4
3B









c03
c13
c23



 (18)

α3c23 = De−2xc13 (19)

Take the equation (19), differentiate it by x (we obtain a linear equation
in ci3 and d

d xci3), and substitute the values of d
d xci3 given by (18) inside. We

obtain new linear equations in ci3. Let us play the same game with this new
equation, i.e., differentiate by x and substitute the values of d

d xci3 inside. We
obtain one more linear equation in ci3. The equation (19) together with two
new obtained equations can be written as M1c1 = 0, where c1 is the column
with components c03, c13, c23 and M1 is the following 3-by-3 matrix

0 −e−2 xD α3

3 α3 e−2 xD −α3
2 + 2 e−2 xD + 1/3 e−2 xDB −4/3 α3 B + 2 e−xDA

α3
3
− α3 Be−2 xD− 5/3 α3

2B − 5 e−xDAα3 − 4 e−2 xD− 2α3
2Aex + 16

9
α3 B2

8α3 e−2 xD + 4 e−3 xD2A 4/3 e−2 xDB − 1/9 e−2 xDB2
−6 e−xDA − 10/3 e−xDAB

We see that if A 6= 0, then the determinant of the matrix is nonzero at
almost every point (because the term at e−6x is equal to −8D4A2). Then,
c03 ≡ c13 ≡ c23 ≡ 0.

Let us substitute c03 ≡ c13 ≡ c23 ≡ 0 in the second, fifth and eighth equations
of (14) and in the second equation of (15). We obtain the equation of the form

d

dx





c02
c12
c22



 =





2
3B −Aex 0
−α2 − 1

3B −2Aex

2De−2x −α2 − 4
3B









c02
c12
c22



 ,

α2c22 = De−2xc12.

We see that these equations are very similar to (18) and (19) (the only difference
is α2 in the place of α3). Arguing as above, we obtain c02 ≡ c12 ≡ c22 ≡
0. Substitutingc03 ≡ c13 ≡ c23 ≡ c02 ≡ c12 ≡ c22 ≡ 0 in the first, fourth
and seventh equations of (14) and in the first equation of (15), we obtain the
equations in the form

d

dx





c01
c11
c21



 =





2
3B −Aex 0
−α1 − 1

3B −2Aex

2De−2x −α1 − 4
3B









c01
c11
c21



 ,

α1c21 = De−2xc11.

We see that these equations are again very similar to (18)and (19) (the only
difference is α1 in the place of α3). Arguing as above, we obtain c01 ≡ c11 ≡
c21 ≡ 0. Finally, the system admits only trivial solutions. The second statement
of the lemma is proved.

Now let us prove the last statement of the lemma. Our first goal is to
prove that if αi 6= 0, then the components c0i, c1i, c2i of the solution are identi-
cally zero. Indeed, otherwise, arguing as in the proof of the second statement,
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we come to the system M1c1 = 0, where c1 is the column with components
c03, c13, c23 and M1 is the 3-by-3 matrix from the proof of the second proposi-
tion.

If α3 6= 0 then the determinant of the matrix is still nonzero at almost every
point (because the term at e−2x is equal to 5α2

4K (B − 2), and B 6= 2 by
assumption). Then, the components c03, c13, c23 vanish. Doing the same for
every i, we obtain that if αi 6= 0 then c0i ≡ c1i ≡ c2i ≡ 0.

Finally, without loss of generality, we can assume that α1 = α2 = α3 = 0,
so our system becomes:

d

dx











c01
c02
c03
c11
c12
c13
c21
c22
c23











=















2
3

B 0 0 0 0 0 0 0 0

0 2
3

B 0 0 0 0 0 0 0

0 0 2
3

B 0 0 0 0 0 0

0 −1 0 −

1
3

B 0 0 0 0 0

0 0 −2 0 −

1
3

B 0 0 0 0

0 0 0 0 0 −

1
3

B 0 0 0

2De−2x 0 0 0 −1 0 −

4
3

B 0 0

0 2De−2x 0 0 0 −2 0 −

4
3

B 0

0 0 2De−2x 0 0 0 0 0 −

4
3

B

























c01
c02
c03
c11
c12
c13
c21
c22
c23











(20)




0 −1 0
0 0 −2
0 0 0









c21
c22
c23



 = De−2x





c11
c12
c13



 , (21)

This system can easily be solved. Indeed, assume first B 6= 1. The second
and the third equations of (20) give

c02 (x) = C2 e
2/3 Bx, c03 (x) = C1 e

2/3 Bx. (22)

The last equation of (21) gives c13 = 0. Substituting all these into the two last
equations of (20) gives two ordinary differential equations

d
dxc12 (x) + 4/3Bc12 (x) = 2DC2 e

(2/3 B−2)x

d
dxc13 (x) + 4/3Bc13 (x) = 2DC1 e

(2/3 B−2)x

}

, (23)

whose solutions are

c12 (x) = e−4/3 BxC4 +
e−2 x+2/3 BxDC2

−1 +B
(24)

c23 (x) = e−4/3 BxC3 +
e−2 x+2/3 BxDC1

−1 +B
. (25)

Substituting all these into the fourth and fifth equation of (20), we obtain

(B − 1)(B − 2)C4 (e(−4/3 B+2)x + 1) = DC2 (2B − 1) e2/3 x(B−1)

(B − 1) (B − 2)C3 e
−2 x(B−1) = DC1 (2B − 1)

}

(26)

implying C1 = C2 = C3 = C4 = 0. Therefore, c02 ≡ c03 ≡ c12 ≡ c13 ≡ 0, which,
in view of equations (21), implies c22 ≡ c23 ≡ 0.
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Finally, c02 ≡ c03 ≡ c12 ≡ c13 ≡ c22 ≡ c23 ≡ 0, and the equations(20)
become

d

dx

(

c01
c03

)

=

(

2/3B 0
2De−2x −4/3B

)(

c01
c03

)

,

implying c01 = Const1e
2/3Bx, c03 = Const1(

D
B−1e

2(B−1)x + H)e−4/3B x which
means that the matrix a is as in Lemma 6.

The case B = 1 is completely similar. In this case instead of (24) and (25)
we have:

c12(x) = (2DC2x+ C4)e
−4/3x, c13(x) = (2DC1x+ C3)e

−4/3x.

Substituting in the fifth and sixth equation of (20) we obtain:

2DC2e
−4/3x − 2DC2e

−4/3xx− C4e
−4/3x + 2C1e

2/3x = 0
4
3 (2DC1x+ C3)e

−4/3x = 0

}

(27)

implying C1 = C2 = C3 = C4 = 0. Therefore, c02 ≡ c03 ≡ c12 ≡ c13 ≡ 0, which,
in view of equations (21), implies c22 ≡ c23 ≡ 0. Therefore the equations (20)
become

d

dx

(

c01
c03

)

=

(

2/3 0
2De−2x −4/3

)(

c01
c03

)

,

implying c01 = Const1e
2/3x, c03 = Const1(2Dx +H)e−4/3x, which means that

the matrix a is as in Lemma 6. Lemma 6 is proved.

2.6 Metrics admitting precisely three vector fields

In the previous section we obtained a list of all the metrics with dim(p) = 2.
The goal of this section is to obtain the list of the metrics with dim(p) = 2.
Because of Lemmas 3 and 4, without loss of generality, we can and will assume
that our connection is

y′′(x) =
1

2
y′(x) +De−2x(y′(x))3, where D 6= 0, (28)

and that every projective vector field is a linear combination of the vector fields

X := (0, 1), Y := (1, y), Z := (2y, 1 + y2). (29)

Let us show that a metric having precisely three projective vector fields has
a Killing vector field. Because of Corollary 1, it is sufficient to find a metric
whose projective connection is (28) and that admits a Killing vector field. A
metric satisfying both properties is

e3xdx2 − 2D exdy2. (30)

It admits a Killing vector field because its entries are independent of y and
its projective connection is (28). Since only the metrics of constant curvature
admit more than one Killing vector field, the Killing vector field is unique up
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to multiplication by a constant. As we recalled in Section 2.2.2, the algebra
of the projective vector fields is isomorphic to sl(2,R). Recall that the algebra
sl(2,R) is the algebra of the 2-by-2 matrices with trace 0. It is well-known that
up to an automorphism of this algebra every element is proportional to one of
the following matrixes:

X :=

(

0 −1
0 0

)

, Y :=

(

−1/2 0
0 1/2

)

or Z :=

(

0 −1
1 0

)

. (31)

Comparing the commutation relations of the vector fields X,Y, Z with the com-
mutative relation of the matrixes X,Y,Z we see that there exists an isomor-
phism of the algebras that sends the vector field X,Y, Z to the matrixes X,Y,Z,
respectively.

Thus, without loss of generality we may assume that the Killing vector field
is X , Y , or Z. In the next three sections, we will consider each of these cases
in turn.

2.6.1 Assume X = (0, 1) is a Killing vector field.

Then the components of the matrix a = g/ det(g)2/3 do not depend on the
y-coordinate, and the equations (10) read

∂a11

∂x − 1/3 a11 = 0

2 ∂a12

∂x + 1/3 a12 = 0
∂a22

∂x + 2/3 a22 − 2Da11 = 0
−2Da12 = 0















This system can be solved, the solution is

a12 = 0, a11 = e1/3 xD−2/32−2/3C2, a22 = (C1 e
x + C2)2

1/3D1/3e−5/3.

Thus, the metric is

g =

(

e3x

C2(C1ex+C2)2
0

0 2Dex

C2
2(C1ex+C2)

)

We see that if C1 = 0, then, after an appropriate scaling ynew = c y, the
metric coincides with the metric (2a) from Theorem 1. If C1 6= 0, then, after an
appropriate coordinate change (xnew, ynew) = (x+ c1, c2 y), the metric coincides
with the metric (2b) from Theorem 1.

2.6.2 Assume Y = (1, y) is a Killing vector field.

Without loss of generality we can assume that D = ±1. Indeed, D 6= 0 by
Lemma 4, and, after the scaling ynew = α yold, the projective connection (28)
becomes

y′′ =
1

2
y′ +

D

α2
(y′)3.
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Consider the coordinate change (xnew, ynew) = (|yold|/exold, ln(|yold|)). In this
new coordinate system, the vector field Y is (0, 1) and the projective connection
is

y′′ = − 3

2x
y′ +

(x

2
−Dx3

)

(y′)3.

Then the components of the matrix a = g/ det(g)2/3 do not depend on the
y-coordinate, and the equations (10) have the form

∂a11

∂x + a11

x = 0

2 ∂a12

∂x − a12

x = 0
∂a22

∂x − 2a22

x − (x− 2Dx3)a11 = 0
−(x− 2Dx3)a12 = 0















(32)

This system can be solved, the solution a and the metric g = a/ det(a)2 are

a =

(

C2

x 0
0 x(C1 x− C2(1 + 2Dx2))

)

g =

(

1
C2(C1 x−C2(1+2 Dx2))2x 0

0 x
C2

2(C1 x−C2(1+2 Dx2))

)

(33)

We see that the metric (33) is the metric (2c) with ε1ε2 = −1 from Theo-
rem 1, possible after the coordinate change xnew = −x.

2.6.3 Assume Z = (2y, 1 + y2) is a Killing vector field.

As in the previous section, without loss of generality, we can assume D = ±1.
Consider the coordinate change

xnew = 2
y2
old + 1

exold
, ynew = 2 arctan(yold)

In this new coordinate system, the vector field Z is (0, 1) and the projective
connection is

yxx = − 3

2x
yx −

(x

2
+Dx3

)

y3
x.

Then the components of the matrix a = g/ det(g)2/3 do not depend on the
y-coordinate, and the equations (10) are

∂a11

∂x + a11

x = 0

2 ∂a12

∂x − a12

x = 0
∂a22

∂x − 2a22

x − (x+ 2Dx3)a11 = 0
−(x+ 2Dx3)a12 = 0















(34)

This system can be solved. The solution a and the metric g = a/ det(a)2 are

a =

(

C2

x 0
0 x(C1 x+ C2(1 − 2Dx2))

)

,
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g =

(

1
C2(C1 x+C2(1−2 Dx2))2x 0

0 x
C2

2(C1 x+C2(1−2 Dx2))

)

. (35)

We see that, the metric (35) is the metric (2c) with ε1ε2 = 1 from Theorem 1,
possible after the coordinate change xnew = −x.

2.7 Why are the metrics from Theorem 1 mutually differ-

ent?

Every metric from Theorem 1 has its own individual properties invariant with
respect to local isometries that distinguish it within the metrics from Theorem 1.

The individual properties we will use are

• the structure of the algebra of the projective vector fields and the place of
the Killing vector field in this algebra.

• The following three functions:

– Scalar curvature R :=
∑

i,j,k R
i
ijkg

jk

– The square of the length of the derivative of the scalar curvature
I :=

∑

i,j g
ij ∂R

∂xi

∂R
∂xj

– The laplacian of the scalar curvature

∆gR := 1√
det(g)

∑

i,j
∂

∂xi

(

gij
√

det(g) ∂R
∂xj

)

It is easy to distinguish the metrics (1a), (1b), and (1c) from the met-
rics (2a), (2b), and (2c). Indeed, the metrics (1a), (1b), and (1c) have a
two-dimensional space of projective vector fields while the metrics (2a), (2b),
and (2c) each have a three-dimensional space of projective vector fields.

Let us distinguish the metrics (2a), (2b), and (2c). By construction, the
Killing vector field for the metrics (2a), (2b) (for the metric (2c), respectively),
is the element of the Lie algebra of projective vector fields that is isomorphic to
sl(2,R), is conjugate to X from (31) (Y or Z, respectively). Thus, the metrics
(2a), (2b) cannot be isometric to (2c).

Let us distinguish the metrics (2a) and (2b). By direct calculation, one can

see that I
9R3 is equal to 1 for the metric (2a) and to 8 (ex+ε2)4

ε2 (3 ex+2 ε2)
3 for the metric

(2b). Thus, the metrics (2a) and (2b) are different.
It is easy to see that two metrics (2a) corresponding to different values of

the parameters εi are not mutually isometric. Indeed, the εi are determined by
the signature of the metric and by the sign of the square of the length of the
Killing vector field.

Now let us show that the metrics (2c) corresponding to the different values
of the parameters a, c, and εi are different.
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By direct calculation, we see that for the metrics (2c) the functions of R, I,
∆gR are as follows

R = (3c x2 + 4 x3 + 6ε2 x+ 1/2 ε2 c)/a

I =
(

cx+ 2 x2 + ε2
)4
x/a3

∆gR =
(

2 ε2 + 5c x+ 16 x2
) (

cx+ 2 x2 + ε2
)2
/a2.

We see that the mapping

(R, I,∆gR) : R \ {x ∈ R : (cx+ 2x2 + ε2)x = 0} → R
3

is an analytic curve in R3, and can be completed at {x ∈ R : (cx+2x2+ε2)x =
0}. If metrics (2c) corresponding to different values of the parameters a, c, ε2
are isometric, the images of the corresponding curves coincide (as subsets of
R3), which is not the case.

Indeed, the point x = 0 is determined by the the condition I = 0, ∆gR 6= 0.
At this point R = ε2

c
2a and ∆gR = 2ε32/a

2. Since a > 0 and ε2 = ±1, the curves
corresponding to different values of the parameters are different, and therefore
the metrics (2c) corresponding to different values of the parameters a, c and ε2
are different as well.

The remaining parameter ε1 determines the role of the Killing vector field
in the Lie algebra of projective vector fields: if ε1ε2 = −1 (ε1ε2 = 1, respec-
tively), then the Killing vector field corresponds to the matrix Y (Z, respec-
tively) from (31).

Now let us distinguish the metrics (1a), (1b), (1c), and (2b) corresponding
to different values of the parameters. In order to do this, let us observe that
any isometry between any two of these metrics must send x to x+ x0. Indeed,
the vector (1, 0) can be canonically given in isometry-invariant terms as follows:
For every Killing vector field K, consider the projective vector field v such that

[K, v] = K. (36)

It is easy to see two such vector fields u, v satisfy u − v = λK. Indeed, every
Killing vector field for any of these metrics has the form α(0, 1), and every
projective vector field v with the property 36 has the form β(0, 1)+ γ(1, y). (In
the cases (1a), (1b), (1c) this is because the space of projective vector fields
is two-dimensional. In the case (2b), this is because in sl(2,R) the relations
[K, v] = K and [K,u] = K imply that K,u, v are linearly dependent.) Then,
the relation [K, v] = K implies γ = 1, i.e., such vector field v is uniquely defined
up to addition of λ (0, 1)

Thus, the projective vector field satisfying the condition (36) must have
γ = 1, and its projection to the normal distribution to the Killing vector field is
(1, 0). Thus, an isometry between any two of the metrics (1a), (1b), (1c) must
send x to x+ x0.

By direct calculation, we obtain that the function R for the metrics (1a),
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(1b), (1c), and (2b) takes the forms

R(1a) = ε1b e
−(b+2)x

R(1b) =
ε2 b

2 a

(

(b+ 2)e−2x + 2ε2 e
−(b+2)x

)

R(1c) = − 1

2a
(2x+ 1)e−2x

R(2b) =
ε2 (3 ex + 2 ε2)

2a e3x
.

Clearly, the change xnew = x+ c cannot translate any of these functions to the
same functions corresponding to different values of the parameters. The remain-
ing parameter (ε2 for (1a), ε1 for (1b) and for (2b), ε for (1c)) is determined
uniquely by the sign of the square of the length of the Killing vector.

Thus, all the metrics from Theorem 1 are mutually different. Theorem 1 is
proved.

2.8 Proof of Corollary 3

We will first prove that if the metrics g and ḡ on M2 are projectively equivalent,
then the spaces I(g) and I(ḡ) are isomorphic14. The canonical isomorphism is

given by h 7→
(

det ḡ
det g

)2/3

h.

Indeed, the re-parametrization map

η : TM \M → TM \M, η(ξ) =
|ξ|ḡ
|ξ|g

ξ,

where TM \M denotes the tangent bundle without its zero section, takes the
orbits of the geodesic flow of the metric ḡ to the orbits of the geodesic flow of
the metric g. Then, for every h ∈ I(g), the function

η∗h : TM → R, η∗h(ξ) =

( |ξ|ḡ
|ξ|g

)2

h(ξ) =
ḡ(ξ, ξ)

g(ξ, ξ)
h(ξ)

is constant on the orbits of the geodesic flow of ḡ, i.e., is an integral of the
geodesic flow of ḡ. Using that the functions Ē(ξ) := ḡ(ξ, ξ) and Ī(ξ) :=

g(ξ, ξ)
(

det(ḡ)
det(g)

)2/3

are integrals of the geodesic flow of ḡ, we obtain that the

function
(

det(ḡ)
det(g)

)2/3

h = Ī
Ē
η∗h is an integral of the geodesic flow of ḡ as well,

i.e., the linear mapping h 7→
(

det(ḡ)
det(g)

)2/3

h maps I(g) to I(ḡ). Since we obtain

the inverse mapping by interchanging g and ḡ, the mapping h 7→
(

det ḡ
det g

)2/3

h

is an isomorphism.

14This statement reflects the fact that the Killing equations are projectively invariant, see
[4, 7].
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A point p ∈ M2 will be called regular, if two vectors from p(g) are linearly
independent at p. As we explained in Sections 2.2.2, 2.2.3, the set of regular
points is open and everywhere dense.

Let us first prove Corollary 3 in a small neighborhood of a regular point.
From Lemma 4 it follows, that if p(g) = 3, then the projective connection has
the form (28) in a certain local coordinate system near every regular point. Since
the projective connection of the metric (30) is (28), it is sufficient to show that
the metric (30) is superintegrable, which is indeed the case since the functions

H = 1
2e

3xdx2 −D exdy2

F1 = e2xdy2

F2 = yH + e3xdxdy

F3 = yF2 + 2e3x(ydxdy + 4D2dy2)

are linearly independent integrals of the geodesic flow of the metric (30). Thus,
the restriction of every metric of nonconstant curvature with dim (p(g)) = 3 to
a neighborhood of a regular point is superintegrable.

Let us now prove Corollary 3 at every point. We will use the following
observation from [24, 29]:
If Z ∈ p(g), then the function IZ : TM2 → R defined by

IZ(ξ) = −(LZg)(ξ, ξ) +
2

3
trace(g−1LZg) g(ξ, ξ),

lies in I(g).
This observation implies that if Z ∈ p(g) is a Killing vector field on a certain

open set, then it is a Killing vector field everywhere. Indeed, if IZ ∈ I(g)
vanishes on the open subset, it vanishes everywhere, since it is constant on the
orbits on the geodesic flow.

We have shown that dim(I(g|U )) = 4 for a certain neighborhood U of a
regular point. By the result of Koenigs we recalled in Section 2.2.4, in this
neighborhood there exists a Killing vector field. As we explained above, this
implies the existence of a Killing vector field K ∈ p(g) defined on the whole M2.

Consider the linear mapping F 7→ ZF from the proof of Lemma 2 and
the integral FK from Remark 5. Since span(FK) is the kernel of this map-
ping, the mapping induces an isomorphism between p(g) and the quotient space
I(g|U )/span(FK). If two such neighborhoods U1 and U2 intersect, then the con-
structed isomorphisms coincide on the intersection and, therefore, induce an
isomorphism between p(g) and I(g|U1∪U2

)/span(FK). Thus, for every connected
component UReg of the set of the regular points, p(g) and I(g|UReg

)/span(FK)

are isomorphic.
The set of singular (= not regular) points is obviously invariant w.r.t. Killing

vector field. Let us show that the Killing vector field vanishes at singular points.
Indeed, by Theorem 1 the universal cover of UReg is isometric to a connected

domain of R2 with the metric (2a), (2b), or (2c). We denote the isometry by
φ. If p ∈ Mn approaches (the lift of) a singular point, the x−coordiate of the
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point φ(p) tends to ±∞, or to a value such that the metric is not defined, i.e.,
to the roots of the equation ex + ε2 = 0 for the metric (2b) and of the equation
(cx+x2 + ε2)x = 0 for the metric (2c). It is easy to check that in all these cases
the scalar curvature R converges to infinity, or the length of every Killing vector
field converges to infinity, or the length of every Killing vector field converges to
zero. (The formulae for the scalar curvature are in the previous section). Thus,
the Killing vector field vanishes at singular points.

Then, the set of singular points consist of a collection of isolated points,
so that the set of the regular points has only one connected component UReg.
As we explained above, p(g) and I(g|UReg

)/span(FK) are isomorphic implying
that g|UReg

is superintegrable. Since the integrals are preserved by the geodesic
flow, the metric g is superintegrable on the whole manifold. Indeed, for every
I ∈ I(g|UReg

), for every singular point p and for every geodesic γ such that
γ(0) = p and γ̇(0) 6= 0, we put I(γ̇(0)) = I(γ̇(ε)), where 1 >> |ε| 6= 0. The
obtained function is evidently smooth, quadratic in velocities and constant on
the orbits of the geodesic flow. Corollary 3 is proved.
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