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Lecture 1. Basic Systems

1.1. What is an exterior differential system?

An exterior differential system (EDS) is a pair (M, I) where M is a smooth manifold and I ⊂ Ω∗(M)
is a graded ideal in the ring Ω∗(M) of differential forms on M that is closed under exterior differentiation,
i.e., for any φ in I, its exterior derivative dφ also lies in I.

The main interest in an EDS (M, I) centers around the problem of describing the submanifolds f : N →
M for which all the elements of I vanish when pulled back to N , i.e., for which f∗φ = 0 for all φ ∈ I. Such
submanifolds are said to be integral manifolds of I. (The choice of the adjective ‘integral’ will be explained
shortly.)

In practice, most EDS are constructed so that their integral manifolds will be the solutions of some
geometric problem one wants to study. Then the techniques to be described in these lectures can be brought
to bear.

The most common way of specifying an EDS (M, I) is to give a list of generators of I. For φ1, . . . , φs ∈
Ω∗(M), the ‘algebraic’ ideal consisting of elements of the form

φ = γ1 ∧ φ1 + · · ·γs ∧ φs

will be denoted 〈φ1, . . . , φs〉alg while the differential ideal I consisting of elements of the form

φ = γ1 ∧ φ1 + · · ·γs ∧ φs + β1 ∧ dφ1 + · · ·βs ∧ dφs

will be denoted 〈φ1, . . . , φs〉.

Exercise 1.1: Show that I = 〈φ1, . . . , φs〉 really is a differentially closed ideal in Ω∗(M). Show also that a
submanifold f : N → M is an integral manifold of I if and only if f∗φσ = 0 for σ = 1, . . . , s.

The p-th graded piece of I, i.e., I ∩ Ωp(M), will be denoted Ip. For any x ∈ M , the evaluation
of φ ∈ Ωp(M) at x will be denoted φx and is an element of Ωp

x(M) = Λp(T ∗
x M). The symbols Ix and Ip

x

will be used for the corresponding concepts.

Exercise 1.2: Make a list of the possible ideals in Λ∗(V ) up to isomorphism, where V is a vector space
over R of dimension at most 4. (Keep this list handy. We’ll come back to it.)

1.2. Differential equations reformulated as EDSs

Élie Cartan developed the theory of exterior differential systems as a coordinate-free way to describe and
study partial differential equations. Before I describe the general relationship, let’s consider some examples:

Example 1.1: An Ordinary Differential Equation. Consider the system of ordinary differential equations

y′ = F (x, y, z)
z′ = G(x, y, z)

where F and G are smooth functions on some domain M ⊂ R
3. This can be modeled by the EDS (M, I)

where
I = 〈 dy − F (x, y, z) dx, dz − G(x, y, z) dx 〉.

It’s clear that the 1-dimensional integral manifolds of I are just the integral curves of the vector field

X =
∂

∂x
+ F (x, y, z)

∂

∂y
+ G(x, y, z)

∂

∂z
.

2



Example 1.2: A Pair of Partial Differential Equations. Consider the system of partial differential
equations

zx = F (x, y, z)
zy = G(x, y, z)

where F and G are smooth functions on some domain M ⊂ R
3. This can be modeled by the EDS (M, I)

where
I = 〈 dz − F (x, y, z) dx− G(x, y, z) dy 〉.

On any 2-dimensional integral manifold N2 ⊂ M of I, the differentials dx and dy must be linearly indepen-
dent (Why?). Thus, N can be locally represented as a graph

(
x, y, u(x, y)

)
The 1-form dz−F (x, y, z) dx−G(x, y, z) dy

vanishes when pulled back to such a graph if and only if the function u satisfies the differential equations

ux(x, y) = F
(
x, y, u(x, y)

)
uy(x, y) = G

(
x, y, u(x, y)

)
for all (x, y) in the domain of u.

Exercise 1.3: Check that a surface N ⊂ M is an integral manifold of I if and only if each of the vector
fields

X =
∂

∂x
+ F (x, y, z)

∂

∂z
and Y =

∂

∂y
+ G(x, y, z)

∂

∂z

is tangent to N at every point of N . In other words, N must be a union of integral curves of X and also a
union of integral curves of Y . By considering the special case F = y and G = −x, show that there need not
be any 2-dimensional integral manifolds of I at all.

Example 1.3: Complex Curves in C
2. Consider M = C

2, with coordinates z = x + i y and w = u + i v.
Let I = 〈φ1, φ2〉 where φ1 and φ2 are the real and imaginary parts, respectively, of

dz ∧ dw = dx ∧ du− dy ∧ dv + i (dx ∧ dv + dy ∧ du).

Since I1 = (0), any (real) curve in C
2 is an integral curve of I. A (real) surface N ⊂ C

2 is an integral
manifold of I if and only if it is a complex curve. If dx and dy are linearly independent on N , then locally N
can be written as a graph

(
x, y, u(x, y), v(x, y)

)
where u and v satisfy the Cauchy-Riemann equations:

ux − vy = uy + vx = 0. Thus, (M, I) provides a model for the Cauchy-Riemann equations.

In fact, any ‘reasonable’ system of partial differential equations can be described by an exterior differ-
ential system. For concreteness, let’s just stick with the first order case. Suppose, for example, that you
have a system of equations of the form

F ρ
(
x, z,

∂z
∂x

)
= 0, ρ = 1, . . . , r,

where x = (x1, . . . , xn) are the independent variables, z = (z1, . . . , zs) are the dependent variables, and ∂z
∂x

is the Jacobian matrix of z with respect to x. The hypotheses that I want to place on the functions F ρ is
that they are smooth on some domain D ⊂ R

n × R
s × R

ns and that, at every point (x, z, p) ∈ D at which
all of the F ρ vanish, one can smoothly solve the above equations for r of the p-coordinates in terms of x, z,
and the ns−r remaining p-coordinates. If we then let Mn+s+ns−r ⊂ D be the common zero locus of the F ρ,
set

θα = dzα − pα
i dxi

and let I = 〈 θ1, . . . , θs〉. Then any n-dimensional integral manifold N ⊂ M of I on which the {dxi}1≤i≤n

are linearly independent is locally the graph of a solution to the original system of first order PDE.
Obviously, one can ‘encode’ higher order PDE as well, by simply regarding the intermediate partial

derivatives as dependent variables in their own right, constrained by the obvious PDE needed to make them
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be the partials of the lower order partials. For example, in the classical literature, one frequently sees a
second order scalar PDE

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0

written in the standard classical notation

0 = F (x, y, u, p, q, r, s, t)
0 = du − p dx− q dy

0 = dp − r dx − s dy

0 = dq − s dx − t dy

We would interpret this to mean that the equation F = 0 defines a smooth hypersurface M7 in xyupqrst-
space and the differential equation is then modeled by the differential ideal I ⊂ Ω∗(M) given by

I = 〈 du−p dx−q dy, dp−r dx−s dy, dq−s dx−t dy 〉.

The assumption that the PDE be ‘reasonable’ is then that not all of the partials (Fr, Fs, Ft) vanish along
the locus F = 0, so that x, y, u, p, q, and two of r, s, and t can be taken as local coordinates on M .

Exercise 1.4: Show that a second order scalar equation of the form

A(x, y, u, p, q) r + 2B(x, y, u, p, q) s + C(x, y, u, p, q) t

+D(x, y, u, p, q) (rt− s2) + E(x, y, u, p, q) = 0

(in the classical notation described above) can be modeled on xyupq-space (i.e., M = R
5) via the ideal I

generated by θ = du−p dx−q dy together with the 2-form

Υ = Adp ∧ dy + B (dq ∧ dy−dp ∧ dx) − C dq ∧ dx + D dp ∧ dq + E dx ∧ dy.

(Equations of this kind are known as Monge-Ampere equations. They come up very frequently in differential
geometry.)

Example 1.4: Linear Weingarten Surfaces. This example assumes that you know some differential
geometry. Let M5 = R

3 × S2 and let x : M → R
3 and u : M → S

2 ⊂ R
3 be the projections on the two

factors. Notice that the isometry group G of Euclidean 3-space acts on M in a natural way, with translations
acting only on the first factor and rotations acting ‘diagonally’ on the two factors together.

Consider the 1-form θ = u · dx, which is G-invariant. If ι : N ↪→ R
3 is an oriented surface, then the

lifting f : N → M given by f(p) =
(
ι(p), ν(p)

)
where ν(p) ∈ S2 is the oriented unit normal to the immersion ι

at p, is an integral manifold of θ. (Why?) Conversely, any integral 2-manifold f : N → M of θ for which the
projection x◦f : N → R

3 is an immersion is such a lift of a canonically oriented surface ι : N ↪→ R
3.

Exercise 1.5: Prove this last statement.

In the classical literature, the elements of M are called the (first order) contact elements of (oriented)
surfaces in R

3. (The adjective ‘contact’ refers to the image from mechanics of two oriented surfaces making
contact to first order at a point if and only if they pass through the point in question and have the same
unit normal there.)

It is not hard to show that any G-invariant 1-form on M is a constant multiple of θ. However, there
are several G-invariant 2-forms (in addition to dθ). For example, the 2-forms

Υ0 = 1
2u · (dx× dx), Υ1 = 1

2u · (du× dx), Υ2 = 1
2u · (du× du).

are all manifestly G-invariant.
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Exercise 1.6: For any oriented surface ι : N ↪→ R
3 with corresponding contact lifting f : N → M , show

that
f∗(Υ0) = dA, f∗(Υ1) = −H dA, f∗(Υ2) = K dA.

where dA is the induced area form of the immersion ι and H and K are its mean and Gauss curvatures,
respectively. Moreover, an integral 2-manifold of θ is a contact lifting if and only if Υ0 is nonvanishing on it.

From this exercise, it follows, for example, that the contact liftings of minimal surfaces in R
3 are integral

manifolds of I = 〈θ, Υ1〉. As another example, it follows that the surfaces with Gauss curvature K = −1
are integral manifolds of the ideal I = 〈θ, Υ2 + Υ0〉. In fact, any constant coefficient linear equation of the
form a K+b H +c = 0 is modeled by I = 〈θ, a Υ2−b Υ1 +c Υ0〉. Such equations are called linear Weingarten
equations in the literature.

Exercise 1.7: Fix a constant r and consider the mapping Φr : M → M satisfying Φr(x, u) = (x + ru, u).
Show that Φ∗θ = θ and interpret what this means with regard to the integral surfaces of θ. Compute Φ∗Υi

for i = 0, 1, 2 and interpret this in terms of surface theory. In particular, what does this say about the
relation between surfaces with K = +1 and surfaces with H = ±1

2
?

Exercise 1.8: Show that the cone z2 = x2 + y2 is the projection to R
3 of an embedded smooth cylinder

in M that is an integral manifold of 〈θ, Υ2〉. Show that the double tractrix (or pseudosphere), a rotationally
invariant singular ‘surface’ with Gauss curvature K = −1 at its smooth points, is the projection to R

3 of an
embedded cylinder in M that is an integral manifold of 〈θ, Υ2+Υ0〉.

1.3. The Frobenius Theorem

Of course, reformulating a system of PDE as an EDS might not necessarily be a useful thing to do. It
will be useful if there are techniques available to study the integral manifolds of an EDS that can shed light
on the set of integral manifolds and that are not easily applicable to the original PDE system. The main
techniques of this type will be discussed in lectures later in the week, but there are a few techniques that
are available now.

The first of these is when the ideal I is algebraically as simple as possible.

Theorem 1: (The Frobenius Theorem) Let (M, I) be an EDS with the property that I = 〈I1〉alg and
so that dimI1

p is a constant r indepdendent of p ∈ M . Then for each point p ∈ M there is a coordinate
system x = (x1, . . . , xn+r) on a p-neighborhood U ⊂ M so that

IU = 〈dxn+1, . . . , dxn+r〉.

In other words, if I is algebraically generated by 1-forms and has constant ‘rank’, then I is locally
equivalent to the obvious ‘flat’ model. In such a case, the n-dimensional integral manifolds of I are described
locally in the coordinate system x as ‘slices’ of the form

xn+1 = c1, xn+2 = c2, . . . , xn+r = cr .

In particular, each connected integral manifold of I lies in a unique maximal integral manifold, which has
dimension n. Moreover, these maximal integral manifolds foliate the ambient manifold M .

If you look back at Example 1.2, you’ll notice that I is generated algebraically by I1 if and only if it is
generated algebraically by

ζ = dz − F (x, y, z) dx− G(x, y, z) dy,

and this, in turn, is true if and only if ζ∧dζ = 0. (Why?) Now

ζ ∧ dζ =
(
Fy − Gx + G Fz − F Gz

)
dx ∧ dy ∧ dz.

Thus, by the Frobenius Theorem, if the two functions F and G satisfy the PDE Fy −Gx +G Fz −F Gz = 0,
then for every point (x0, y0, z0) ∈ M , there is a function u defined on an open neighborhood of (x0, y0) ∈ R

2

so that u(x0, y0) = z0 and so that u satisfies the equations ux = F (x, y, u) and uy = G(x, y, u).
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Exercise 1.9: State and prove a converse to this last statement.

Note, by the way, that it may not be easy to actually find the ‘flat’ coordinates x for a given I that
satisfies the Frobenius condition.

Exercise 1.10: Suppose that u and v are functions of x and y that satisfy the equations

ux − vy = eu sin v, uy + vx = eu cos v.

Show that uxx +uyy = e2u and that vxx +vyy = 0. Conversely, show that if u(x, y) satisfies uxx +uyy = e2u,
then there exists a one parameter family of functions v so that the pair (u, v) satisfies the displayed equations.
Prove a similar existence theorem for a given arbitrary solution of vxx + vyy = 0. (This peculiar system is
an elementary example of what is known as a Bäcklund transformation. More on this later.)

1.4. The Pfaff Theorem

There is another case (or rather, sequence of cases) in which there is a simple local normal form.

Theorem 2: (The Pfaff Theorem) Let (M, I) be an EDS with the property that I = 〈ω〉 for some
nonvanishing 1-form ω. Let r ≥ 0 be the smallest integer for which ω∧(dω)r+1 ≡ 0. Then for each
point p ∈ M at which ω∧(dω)r is nonzero, there is a coordinate system x = (x1, . . . , xn+2r+1) on a p-
neighborhood U ⊂ M so that IU = 〈dxn+1〉 if r = 0 and, if r > 0, then

IU = 〈 dxn+1 − xn+2 dxn+3 − xn+4 dxn+5 − · · ·xn+2r dxn+2r+1 〉.

Note that the case where r = 0 is really a special case of the Frobenius Theorem. Points p ∈ M for
which ω∧(dω)r is nonzero are known as the regular points of the ideal I. The regular points are an open set
in M .

Exercise 1.11: Explain why the integer r is well-defined, i.e, if I = 〈ω〉 = 〈η〉, then you will get the same
integer r if you use η as the generator and you will get the same notion of regular points.

In fact, the Pfaff Theorem has a slightly stronger form. It turns out that the maximum dimension of
an integral manifold of I that lies in the regular set is n+r. Moreover, if Nn+r ⊂ M is such a maximal
dimensional integral manifold and N is embedded, then for every p ∈ N , one can choose the coordinates x
so that N ∩ U is described by the equations

xn+1 = xn+2 = xn+4 = · · · = xn+2r = 0.

In fact, any integral manifold in U near this one on which the n+r functions x1, . . . , xn, xn+3, xn+5, . . . , xn+2r+1

form a coordinate system can be described by equations of the form

xn+1 = f(xn+3 , xn+5, . . . , xn+2r+1),

xn+2k =
∂f

∂yk
(xn+3, xn+5, . . . , xn+2r+1), 1 ≤ k ≤ r

for some suitable function f(y1 , . . . , yr). Thus, one can informally say that the integral manifolds of maximal
dimension depend on one arbitrary function of r variables.
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Exercise 1.12: Consider the contact ideal
(
R

3×S2 , 〈u·dx〉
)

introduced in Example 1.4. Show that one can
introduce local coordinates (x, y, z, p, q) in a neighborhood of any point of M5 = R

3×S2 so that

〈u·dx〉 = 〈 dz−p dx−q dy 〉

and conclude that θ = u·dx satisfies θ∧(dθ)2 �= 0. Explain how this shows that each of the ideals I =
〈θ, a Υ2 − b Υ1 + c Υ0〉 is locally equivalent to the ideal associated to a Monge-Ampere equation, as defined
in Exercise 1.4.

1.5. Jørgen’s Theorem

I want to conclude this lecture by giving one example of the advantage one gets by looking at even a
very classical problem from the point of view of an exterior differential system.

Consider the Monge-Ampere equation

zxx zyy − zxy
2 = 1.

It is easy to see that this has solutions of the form

z = u(x, y) = a x2 + 2b xy + c y2 + d x + e y + f

for any constants a, . . . , f satisfying 4(ac − b2) = 1. According to a theorem of Jørgen, these are the only
solutions whose domain is the entire xy-plane. I now want to give a proof of this theorem.

As in Exercise 1.4, every (local) solution z = u(x, y) of this equation gives rise to an integral manifold
of an ideal I on xyupq-space where

I = 〈 du− p dx− q dy, dp ∧ dq − dx ∧ dy 〉
= 〈 du− p dx− q dy, dp ∧ dx + dq ∧ dy, dp ∧dq − dx ∧dy 〉alg.

Now, consider the mapping Φ : R
5 → R

5 defined by

Φ(x, y, u, p, q) = (x, q, u−qy, p,−y).

Then Φ is a smooth diffeomorphism of R
5 with itself and it is easy to check that

Φ∗(I) = 〈 du− p dx− q dy, dp ∧ dy + dx ∧ dq 〉

However, this latter ideal is the ideal associated to uxx + uyy = 0! In other words, ‘solutions’ to the
Monge-Ampere equation are transformed into ‘solutions’ of Laplace’s equation by this mapping.

The reason for the scare quotes around the word ‘solution’ is that, while we know that the integral
surfaces of the two ideals correspond under Φ, not all of the integral surfaces actually represent solutions,
since, for example, some of the integral surfaces of I won’t even have dx and dy be linearly independent,
and these must somehow be taken into account.

Still, the close contact with the harmonic equation and thence the Cauchy-Riemann equations suggests
an argument: Namely, the integral surface N ⊂ R

5 of a solution to the Monge-Ampere equation must satisfy

0 = dp ∧ dx + dq ∧ dy + i(dp ∧ dq − dx ∧ dy) = (dp + i dy) ∧ (dx + i dq).

Thus the projection of N into xypq-space is a complex curve when p+ i y and x+ i q are regarded as complex
coordinates on this R

4. In particular, N can be regarded as a complex curve for which each of p+i y and
x+i q are holomorphic functions.

Since dx and dy are linearly independent on N , it follows that neither of the 1-forms dp+i dy nor dq−i dx
can vanish on N . Thus, there exists a holomorphic function λ on N so that

dp + i dy = λ (dx + i dq).
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Because dx∧dy is nonvanishing on N , the real part of λ can never vanish.
Suppose that the real part of λ is always positive. (I’ll leave the other case to you.) Then |λ + 1|2 >

|λ − 1|2, which implies that

|λ + 1|2(dx2 + dq2) > |λ − 1|2(dx2 + dq2) > 0

and, by the above relation, this is

|(dp + i dy) + (dx + i dq)|2 > |(dp + i dy) − (dx + i dq)|2

or, more simply,
d(p+x)2 + d(q+y)2 > d(p−x)2 + d(q−y)2.

In particular, the left hand quadratic form is greater than the average of the left and right hand quadratic
forms, i.e.,

d(p+x)2 + d(q+y)2 > dp2 + dx2 + dq2 + dy2 > dx2 + dy2.

If the solution is defined on the whole plane, then the right hand quadratic form is complete on N , so the
left hand quadratic form must be complete on N also. It follows from this that the holomorphic map

(p+x) + i(y+q) : N → C

is a covering map and hence must be a biholomorphism, so that N is equivalent to C as a Riemann surface.
By Liouville’s Theorem, it now follows that λ (which takes values in the right half plane) must be constant.
The constancy of λ implies that dp and dq are constant linear combinations of dx and dy, which forces u to
be a quadratic function of x and y. QED.

Exercise 1.13: Is it necessarily true that any entire solution of

uxx uyy − uxy
2 = −1

must be a quadratic function of x and y? Prove or give a counterexample.
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Lecture 2. Applications 1: Scalar first order PDE, Lie Groups

2.1. The contact system

For any vector space V of dimension N over R, let Gn(V ) denote the set of n-dimensional subspaces
of V . When 0 < n < N (which I will assume from now on), the set Gn(V ) can naturally be regarded as
a smooth manifold of dimension n(N − n). To see this, set s = N − n and, for any E ∈ Gn(V ) choose
linear coordinates (x, u) = (x1, . . . , xn; u1, . . . , us) so that the xi restrict to E to be linearly independent.
Let Gn(V, x) ⊂ Gn(V ) denote the set of Ẽ ∈ Gn(V ) to which the xi restrict to be linearly independent.
Then there are unique numbers pa

i (Ẽ) so that the defining equations of Ẽ are

ua − pa
i (Ẽ)xi = 0, 1 ≤ a ≤ s.

Give Gn(V ) the manifold structure so that the maps (pa
i ) : Gn(V, x) → R

ns are smooth coordinate charts.

Exercise 2.1: Check that this does work, i.e., that these charts are smooth on overlaps.

Now let X be a manifold of dimension N . The set of n-dimensional subspaces of the tangent spaces TxX
as x varies over X will be denoted by Gn(TX). Any E ∈ Gn(TX) is an n-dimensional subspace E ⊂ Tπ(E)X
for a unique π(E) ∈ X. Obviously, the fiber of the map π : Gn(TX) → X over the point x ∈ X is Gn(TxX).
It should not be surprising, then, that there is a natural manifold structure on Gn(TX) for which π is a
submersion and for which Gn(TX) has dimension n+s+ns.

In fact, consider a coordinate chart (x, u) : U → R
n × R

s defined on some open set U ⊂ X, where x =
(x1, . . . , xn) and u = (u1, . . . , us). Let Gn(TU, x) ⊂ Gn(TU) denote the set of n-planes to which the
differentials dxi restrict to be independent. Then each E ∈ Gn(TU, x) satisfies a set of linear relations of
the form

dua − pa
i (E) dxi = 0, 1 ≤ a ≤ s.

for some unique real numbers pa
i (E). Set p = (pa

i ) : Gn(TU, x) → R
ns. Then the map

(x, u, p) : Gn(TU, x) → R
n × R

s × R
ns

embedds Gn(TU, x) as an open subset of R
n+s+ns. Give Gn(TX) the manifold structure for which these

maps are smooth coordinate charts.

Exercise 2.2: Check that this does work, i.e., that these charts are smooth on overlaps.

The coordinate chart
(
(x, u, p), Gn(TU, x)

)
will be called the canonical extension of the coordinate

chart
(
(x, u), U

)
.

Any diffeomorphism φ : X → Y lifts to a diffeomorphism φ(1) : Gn(TX) → Gn(TY ) defined by the rule

φ(1)(E) = dφ(E) ⊂ T
φ
(
π(E)

)Y.

Now Gn(TX) comes endowed with a canonical exterior system C called the contact system. Abstractly,
it can be defined as follows: There is a canonical (n+ns)-plane field C ⊂ TGn(TX) defined by

CE = dπ−1(E) ⊂ TEGn(TX).

Then C is the ideal generated by the set of 1-forms on Gn(TX) that vanish on C. From the canonical nature
of the deifinition, it’s clear that for any diffeomorphism φ : X → Y , the corresponding lift φ(1) : Gn(TX) →
Gn(TY ) will identify the two contact systems.

Now, why is C called a ‘contact’ system? Consider an immersion f : N → X where N has dimension n.
This has a canonical ‘tangential’ lift f(1) : N → Gn(TX) defined by

f(1)(p) = df(TpN) ⊂ Tf(p)X.

Almost by construction, df(1)(TpN) ⊂ Cf(1)(p), so that f(1) : N → Gn(TX) is an integral manifold of C.
Conversely, if F : Nn → Gn(TX) is an integral manifold of C that is transverse to the fibration π : Gn(TX) →
X, i.e., f = π ◦ F : Nn → M is an immersion, then F = f(1).
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Exercise 2.3: Prove this last statement.

Thus, the contact system C essentially distinguishes the tangential lifts of immersions of n-manifolds
into X from arbitrary immersions of n-manifolds into X. As for the adjective ‘contact’, it comes from
the interpretation that two different immersions f, g : N → X will satisfy f(1)(p) = g(1)(p) if and only
if f(p) = g(p) and the two image submanifolds share the same tangent n-plane at p. Intuitively, the two
image submanifolds f(N) and g(N) have ‘first order contact’ at p.

Exercise 2.4: (Important!) Show that, in canonically extended coordinates (x, u, p) on Gn(TX, x),

CGn(TX,x) = 〈 du1 − p1
i dxi, . . . , dus − ps

i dxi 〉,
I.e., C is locally generated by the 1-forms θa = dua − pa

i dxi for 1 ≤ a ≤ s in any canonically extended
coordinate system.

As a consequence of the previous exercise, we see that the integral manifolds of C in Gn(TX, x) to
which x restricts to be a coordinate system are described by equations of the form

ua = fa(x1, . . . , xn), pa
i =

∂fa

∂xi
(x1, . . . , xn)

for some differentiable functions fa on an appropriate domain in R
n.

Once the construction of the contact system
(
Gn(TX), C

)
is in place, it can be used to construct other

canonical systems and manifolds. For example, Let X have dimension n and U have dimension s. Let
J1(X, U) ⊂ Gn

(
T (X×U)

)
denote the open (dense) set consisting of the n-planes E ⊂ T(x,u)X×U that are

transverse to the subspace 0 ⊕ TuU ⊂ T(x,u)X×U . The graph (id, f) : X → X×U of any smooth map f :
X → U then has the property that j1f = (id, f)(1) lifts X into J1(X, U). In fact, two maps f, g : X → U
satisfy j1f(p) = j1g(p) if and only if f and g have the same 1-jet at p. Thus, J1(X, U) is canonically
identified with the space of 1-jets of mappings of X into U . The contact system then restricts to J1(X, U)
to be the usual contact system defined in the theory of jets.

If one chooses a submanifold M ⊂ Gn(TX) and lets I be the differential ideal on M generated by the
pullbacks to M of elements of C, then the integral manifolds of (M, I) can be thought of as representing the
n-dimensional submanifolds of X whose tangent planes lie in M . In other words, M can be thought of as a
system of first order partial differential equations for submanifolds of X. As we will see, this is a very useful
point of view.

Exercise 2.5: Let X4 be an almost complex 4-manifold and let M ⊂ G2(TX) be the set of 2-planes that
are invariant under complex multiplication. Show that M has (real) dimension 6 and describe the fibers of
the projection M → X. What can you say about the surfaces in X whose tangential lifts lie in M?

2.2. The method of characteristics

I now want to apply some of these ideas to the classical problem of solving a single, scalar first order
PDE

F
(
x1, . . . , xn, u, ∂u

∂x1 , . . . , ∂u
∂x1

)
= 0.

As explained before, I am going to regard this as an exterior differential system as follows: Using the standard
coordinates x = (x1, . . . , xn) on R

n and u = (u) on R, the canonical extended coordinates on J1(Rn, R) =
Gn

(
T (Rn×R), x

)
become (x, u, p) where p = (p1, . . . , pn). The equation

F (x1, . . . , xn, u, p1, . . . , pn) = 0

then defines a subset M ⊂ J1(Rn, R). I am going to suppose that F is smooth and that not all of the
partials ∂F/∂pi vanish at any single point of M . By the implicit function theorem, it follows then that M
is a smooth manifold of dimension 2n and that the projection (x, u) : M → R

n×R is a smooth submersion.
Let I be the exterior differential system on M generated by the contact 1-form

θ = du− pi dxi.

Note that, on M , the 1-forms dxi, du, dpi are not linearly independent (there are too many of them), but
satisfy a single linear relation

0 = dF = ∂F
∂xi dxi + ∂F

∂u du + ∂F
∂pi

dpi .

Of course, θ∧(dθ)n = 0, but θ∧(dθ)n−1 is nowhere vanishing.
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Exercise 2.6: Prove this last statement.

By the Pfaff theorem, it follows that every point in M has a neighborhood U on which there exist
coordinates (z, y1, . . . , yn−1, v, q1, . . . , qn−1) so that

〈θ〉 = 〈 dv−q1 dy1 − q2 dy2− · · ·−qn−1 dyn−1 〉.

I.e., there is a nonvanishing function µ on U so that

θ = µ
(
dv−q1 dy1 − q2 dy2− · · ·−qn−1 dyn−1

)
.

Notice what this says about the vector field Z = ∂
∂z . Not only does it satisfy θ(Z) = 0, but it also satisfies

Z dθ = dµ(Z) θ.

Moreover, up to a multiple, Z is the only vector field that satisfies θ(Z) = 0 and Z dθ ≡ 0 mod θ.

Exercise 2.7: Prove this last statement. Moreover, show that the vector field

Z =
∂F

∂pi

∂

∂xi
+ pi

∂F

∂pi

∂

∂u
−

(
∂F

∂xi
+ pi

∂F

∂u

)
∂

∂pi

defined on J1(Rn, R) is tangent to the level sets of F (and M = F−1(0) in particular), satisfies θ(Z) = 0,
and satisfies Z dθ ≡ 0 mod {θ, dF }. Conclude that this Z is, up to a multiple, equal to the Z described
above in Pfaff coordinates on M . This vector field is known as the Cauchy characteristic vector field of the
function F .

A solution to the above equation is then represented by a function f : R
n → R so that N = j1f(Rn) lies

in M . In other words, j1f : R
n → M is an integral manifold of I. Now, an n-dimensional integral manifolds

of I is locally described in some Pfaff normal coordinates as above in the form

v = g(y1 , . . . , gn−1), qi =
∂g

∂yi
(y1 , . . . , gn−1)

for a suitable function g on a domain in R
n−1. In particular, such an integral manifold is always tangent to

the Cauchy characteristic vector field.
This gives a prescription for solving a given initial value problem for the above partial differential

equation: Use initial data for the equation to find an (n−1)-dimensional integral manifold P n−1 ⊂ M of I
that is transverse to the Cauchy characteristic vector field Z. Then construct an n-dimensional integral
manifold of I by taking the union of the integral curves of Z that pass through P .

This method of solving a single scalar PDE via ordinary differential equations (i.e., integrating the flow
of a vector field) is known as the method of characteristics. For some explicit examples, consult pp. 25–27
of the EDS notes.

2.3. Maps into Lie groups – existence and uniqueness

Let G be a Lie group with Lie algebra g = TeG, and let η be its canonical left-invariant 1-form. Thus, η
is a 1-form on G with values in g that satisfies the conditions that, first ηe : TeG = g → g is the identity,
and, second, that η is left invariant, i.e., L∗

a(η) = η for all a ∈ G, where La : G → G is left multiplication
by a.
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Exercise 2.8: Show that if G is a matrix group, with g : G → Mn(R) the inclusion into the n-by-n matrices,
then

η = g−1 dg.

It is well-known (and easy to prove) that η satisfies the Maurer-Cartan equation

dη = −1
2 [η, η].

(In the matrix case, this is equivalent to the perhaps-more-familiar equation dη = −η∧η.)
There are many cases in differential geometry where a geometric problem can be reduced to the following

problem: Suppose given a manifoldN and a g-valued 1-form γ on N that satisfies the Maurer-Cartan equation
dγ = −1

2 [γ, γ]. Prove that there exists a smooth map g : N → G so that γ = g∗(η).
The fundamental result concerning this problem is due to Elie Cartan and is the foundation of the

method of the moving frame:

Theorem 3: (Maurer-Cartan) If N is connected and simply connected and γ is a smooth g-valued 1-form
on N that satisfies dγ = −1

2 [γ, γ], then there exists a smooth map g : N → G, unique up to composition
with a constant left translation, so that g∗η = γ.

I want to sketch the proof as an application of the Frobenius theorem. Here are the ideas: Let M = N×G
and consider the g-valued 1-form

θ = η − γ.

It’s easy to compute that
dθ = −1

2 [θ, θ] − [θ, γ].

In particular, writing θ = θ1 x1 + · · ·+ θs xs where x1, . . . , xs is a basis of g, the differential ideal

I = 〈 θ1, . . . , θs 〉

satisfies I = 〈 θ1 , . . . , θs 〉alg. Moreover, the θa are manifestly linearly independent since they restrict to each
fiber {n}×G to be linearly independent. Thus, the hypotheses of the Frobenius theorem are satisfied, and M
is foliated by maximal connected integral manifolds of I, each of which can be shown to project onto the
first factor N to be a covering map.

Exercise 2.9: Prove this. (You will need to use the fact that the foliation is invariant under the maps id×La :
N×G → N×G.)

Since N is connected and simply connected, each integral leaf projects diffeomorphically onto N and
hence is the graph of a map g : N → G. This g has the desired property. QED

Exercise 2.10: Use Cartan’s Theorem to prove that for every Lie algebra g, there is, up to isomorphism,
at most one connected and simply connected Lie group G with Lie algebra g. (Such a Lie group does exist
for every Lie algebra, but this is proved by other techniques.) Hint: If G1 and G2 satisfy these hypotheses,
consider the map g : G1 → G2 that satisfies g∗η2 = η1 and g(e1) = e2.

2.4. The Gauss and Codazzi equations

As another typical application of the Frobenius Theorem, I want to consider one of the fundamental
theorems of surface theory in Euclidean space.

Let x : Σ → R
3 be an immersion of an oriented surface Σ and let u : Σ → S2 be its Gauss map. In

particular u · dx = 0. The two quadratic forms

I = dx · dx , II = − du · dx

are known as the first and second fundamental forms of the oriented immersion x.
It is evident that if y = Ax+b where A lies in O(3) and b lies in R

3, then y will be an immersion with the
same first and second fundamental forms. (NB. The Gauss map of y will be v = det(A)Au = ±Au.) One of
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the fundamental results of surface theory is a sort of converse to this statement, namely that if x, y : Σ → R
3

have the same first and second fundamental forms, then they differ by an ambient isometry. (Note that the
first or second fundamental form alone is not enough to determine the immersion up to rigid motion.) This
is known as Bonnet’s Theorem, although it appears to have been accepted as true long before Bonnet’s proof
appeared.

The standard argument for Bonnet’s Theorem goes as follows: Let π : F → Σ be the oriented orthonor-
mal frame bundle of Σ endowed with the metric I. Elements of F consist of triples (p, v1, v2) where (v1, v2) is
an oriented, I-orthonormal basis of TpΣ and π(p, v1, v2) = p. There are unique 1-forms on F , say ω1, ω2, ω12

so that
dπ(w) = v1 ω1(w) + v2 ω2(w)

for all w ∈ T(p,v1,v2)F and so that

dω1 = −ω12 ∧ ω2 , dω2 = ω12 ∧ω1 .

Then
π∗I = ω1

2 + ω2
2, π∗II = h11 ω1

2 + 2h12 ω1ω2 + h22 ω2
2,

for some functions h11, h12, and h22. Defining ω31 = h11 ω1 + h12 ω2 and ω32 = h12 ω1 + h22 ω2, it is not
difficult to see that the R

3-valued functions x, e1 = x′(v1), e2 = x′(v2), and e3 = e1×e2 must satisfy the
matrix equation

d

[
1 0 0 0
x e1 e2 e3

]
=

[
1 0 0 0
x e1 e2 e3

]


0 0 0 0
ω1 0 ω12 −ω31

ω2 −ω12 0 −ω32

0 ω31 ω32 0


 .

Now, the matrix

γ =




0 0 0 0
ω1 0 ω12 −ω31

ω2 −ω12 0 −ω32

0 ω31 ω32 0




takes values in the Lie algebra of the group G ⊂ SL(4, R) of matrices of the form

[
1 0
b A

]
, b ∈ R

3, A ∈ SO(3),

while the mapping g : F → G defined by

g =
[

1 0 0 0
x e1 e2 e3

]

clearly satisfies g−1 dg = γ. Thus, by the uniqueness in Cartan’s Theorem, the map g is uniquely determined
up to left multiplication by a constant in G.

Exercise 2.11: Explain why this implies Bonnet’s Theorem as it was stated.

Perhaps more interesting is the application of the existence part of Cartan’s Theorem. Given any
pair of quadratic forms

(
I, II

)
on a surface Σ with I being positive definite, the construction of F and the

accompanying forms ω1, ω2, ω12, ω31, ω32 and thence γ can obviously be carried out. However, it won’t
necessarily be true that dγ = −γ∧γ. In fact,

dγ + γ ∧ γ =




0 0 0 0
0 0 Ω12 −Ω31

0 −Ω12 0 −Ω32

0 Ω31 Ω32 0
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where, for example,
Ω12 =

(
K − h11h22 + h12

2
)
ω1 ∧ ω2

where K is the Gauss curvature of the metric I. Thus, a necessary condition for the pair
(
I, II

)
to come from

an immersion is that the Gauss equation hold, i.e.,

detI II = K.

The other two expressions Ω31 = h1 ω1∧ω2 and Ω32 = h2 ω1∧ω2 are such that there is a well-defined 1-form
η on Σ so that π∗η = h1 ω1 + h2 ω2. The mapping δI from quadratic forms to 1-forms that II → η defines is
a first order linear differential operator. Thus, another necessary condition that the pair

(
I, II

)
come from

an immersion is that the Codazzi equation hold, i.e.,

δI(II) = 0.

By Cartan’s Theorem, if a pair
(
I, II

)
on a surface Σ satisfy the Gauss and Codazzi equations, then, at

least locally, there will exist an immersion x : Σ → R
3 with

(
I, II

)
as its first and second fundamental forms.

Exercise 2.12: Show that this immersion can be defined on all of Σ if Σ is simply connected. (Be careful:
Just because Σ is simply connected, it does not follow that F is simply connected. How do you deal with
this?) Is this necessarily true if Σ is not simply connected?

Exercise 2.13: Show that the quadratic forms on Σ = R
2 defined by

I = cos2 u dx2 + sin2 u dy2

II = cos u sinu
(
dx2 − dy2

)
satisfy the Gauss and Codazzi equations if and only if the function u(x, y) satisfies uxx−uyy = sin u cos u �= 0.
What sorts of surfaces in R

3 correspond to these solutions? What happens if u satisfies the differential
equation but either sinu or cosu vanishes? Does Cartan’s Theorem give anything?
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Lecture 3. Integral Elements and the Cartan-Kähler Theorem

The lecture notes for this section will mostly be definitions, some basic examples, and exercises. In
particular, I will not attempt to give the proofs of the various theorems that I state. The full details can be
found in Chapter III of the exerpts of the EDS book that were handed out.

Before beginning the lecture proper, let me just say that our method for constructing integral manifolds
of a given exterior differential system will be to do it by a process of successively ‘thickening’ p-dimensional
integral manifolds to (p+1)-dimensional integral manifolds by solving successive initial value problems. This
will require some tools from partial differential equations, phrased in a geometric language, but it will
also require us to understand the geometry of certain ‘infinitesimal’ integral manifolds known as ‘integral
elements’. It is to this study that I will first turn.

3.1. Integral elements and their extensions

Let (M, I) be an EDS. An n-dimensional subspace E ⊂ TxM is said to be an integral element of I if

φ(v1, . . . , vn) = 0

for all φ ∈ In and all v1, . . . , vn ∈ E. The set of all n-dimensional integral elements of I will be de-
noted Vn(I) ⊂ Gn(TM).

Our main interest in integral elements is that the tangent spaces to any n-dimensional integral mani-
fold Nn ⊂ M are integral elements. Our ultimate goal is to answer the ‘converse’ questions: When is an
integral element tangent to an integral manifold? If so, in ‘how many’ ways?

It is certainly not always true that every integral element is tangent to an integral manifold.

Example 3.1: Non-existence. Consider

(M, I) =
(
R, 〈x dx 〉

)
.

The whole tangent space ToR is clearly a 1-dimensional integral element of I, but there can’t be any 1-
dimensional integral manifolds of I.

For a less trivial example, do the following exercise.

Exercise 3.1: Show that the ideal I1 = 〈 dx∧dz, dy∧(dz − y dx) 〉 has exactly one 2-dimensional integral
element at each point, but that it has no 2-dimensional integral manifolds. Compare this with the ideal
I2 = 〈 dx∧dz, dy∧dz 〉.

Now, Vn(I) is a closed subset of Gn(TM). To see why this is so, let’s see how the elements of I
can be used to get defining equations for Vn(I) in local coordinates. Let (x, u) : U → R

n+s be any local
coordinate chart and let (x, u, p) : Gn(TX, x) → R

n+s+ns be the canonical extension described in Lecture 2.
Every E ∈ Gn(TX, x) has a well-defined basis

(
X1(E), . . . , Xn(E)

)
, where

Xi(E) =
∂

∂xi
+ pa

i (E)
∂

∂ua
.

(This is the basis of E that is dual to the basis dx1, . . . , dxn) of E∗.) Using this basis, we can define a
function φx on Gn(TX, x) associated to any n-form φ by the rule

φx(E) = φ
(
X1(E), . . . , Xn(E)

)
.

It’s not hard to see that φx will be smooth as long as φ is smooth.

Exercise 3.2: Prove this last statement.

With this notation, Vn(I) ∩ Gn(TX, x) is seen to be the simultaneous zero locus of the set of func-
tions {φx φ ∈ In}. Thus Vn(I) ∩ Gn(TX, x) is closed. It follows that Vn(I) is a closed subset of Gn(TX),
as desired.
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Exercise 3.3: Describe V1(I) and V2(I) for

i. (M, I) =
(
R

4, 〈 dx1∧dx2 + dx3∧dx4 〉
)
.

ii. (M, I) =
(
R

4, 〈 dx1∧dx2, dx3∧dx4 〉
)
.

iii. (M, I) =
(
R

4, 〈 dx1∧dx2 + dx3∧dx4, dx1∧dx4 − dx3∧dx2 〉
)
.

Now, there are some relations among the various Vk(I). An easy one is that if E belongs to Vn(I), then
every p-dimensional subspace of E is also an integral element, i.e, Gp(E) ⊂ Vp(I). This follows because I is
an ideal. The point is that if E′ ⊂ E were a p-dimensional subspace and φ ∈ Ip did not vanish when pulled
back to E′, then there would exist an (n−p)-form α so that α∧φ (which belongs to I) did not vanish when
pulled back to E.

Exercise 3.4: Prove this last statement.

On the other hand, obviously not every extension of an integral element is an integral element. In fact,
from the previous exercise, you can see that the topology of the space of integral elements of a given degree
can be surprisingly complicated. However, describing the integral extensions one dimension at a time turns
out to be reasonably simple:

Let E ∈ Vk(I) be an integral element and let (e1, . . . , ek) be a basis for E ⊂ TxM . The set

H(E) = { v ∈ TxM κ(v, e1, . . . , ek) = 0, ∀κ ∈ Ik+1} ⊆ TxM

is known as the polar space of E, though it probably ought to be called the extension space of E, since a
vector v ∈ TxM lies in H(E) if and only if either it lies in E (the trivial case) or else E+ = E + Rv lies
in Vk+1(I). In other words, a (k+1)-plane E+ containing E is an integral element of I if and only if it lies
in H(E).

Now, from the very definition of H(E), it is a vector space and contains E. It is traditional to define
the function r : Vk(I) → {−1, 0, 1, 2, . . .} by the formula

r(E) = dimH(E) − k − 1.

The reason for subtracting 1 is that then r(E) is the dimension of the set of (k+1)-dimensional integral
elements of I that contain E, with r(E) = −1 meaning that there are no such extensions. When r(E) ≥ 0,
we have

{E+ ∈ Vk+1(I) E ⊂ E+ } � P
(
H(E)/E

)
� RP

r(E).

Exercise 3.5: Compute the function r : V1(I) → {−1, 0, 1, 2, . . .} for each of the examples in Exercise 3.3.
Show that V3(I) is empty in each of these cases. What does this say about r on V2(I)?

3.2. Ordinary and Regular Elements

Right now, we only have that Vk(I) is a closed subset of Gn(TX) and closed subsets can be fairly nasty
objects in the eyes of a geometer. We want to see if we can put a nicer structure on Vk(I).

First, some terminology. If S ⊂ C∞(M) is some set of smooth functions on M , we can look at the
common zero set of S, i.e.,

ZS = { x ∈ M f(x) = 0, ∀f ∈ S }.

Of course, this is a closed set, but we’d like to find conditions that will make it be a smooth manifold. One
such case is provided by the implicit function theorem: Say that z ∈ ZS is an ordinary zero of S if there is
an open neighborhood U of z in M and a set of functions f1, . . . , fc ∈ S so that

(1). df1∧df2∧ · · ·∧dfc �= 0 on U , and
(2). ZS ∩ U = { y ∈ U | f1(y) = · · · = fc(y) = 0 }.

By the implicit function theorem, ZS ∩U is an embedded submanifold of U of codimension c. Let Zo
S ⊂

ZS denote the set of ordinary zeros of S.
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Exercise 3.6: Show that ZS and Zo
S depend only on the ideal generated by S in C∞(M). Also, show

that for z ∈ Zo
S , the integer c described above is well-defined, so that one can speak without ambiguity of

the codimension of Zo
S at z.

This idea can now be applied to the Vn(I). Say that E ∈ Vn(I) is an ordinary integral element if it is
an ordinary zero of the set

Sx = {φx φ ∈ In}

for some local coordinate chart (x, u) : U → R
n+s with E in Gn(TM, x).

Exercise 3.7: Show that on the intersection Gn(TM, x)∩Gn(TM, y), the two sets of functions Sx and Sy

generate the same ideal. Conclude that this notion of ordinary does not depend on the choice of a coordinate
chart, only on the ideal I.

Let V o
n (I) ⊂ Vn(I) be the set of ordinary integral elements of dimension n. By the implicit function

theorem, the connected components of V o
n (I) are smooth embedded submanifolds of Gn(TM). They may

not be closed or even all have the same dimension, but at least they are smooth manifolds and are cut out
‘cleanly’ by the condition that the n-forms vanish on them.

Exercise 3.8: Find an example of an integral element that is not ordinary. Now find a non-trivial example.

Exercise 3.9: Check to see whether or not all the integral elements you found in Exercise 3.3 are ordinary.

Even the ordinary integral elements aren’t quite as nice as you could want. For example, the function r :
Vn(I) → {−1, 0, 1, . . .} might not be locally constant on V o

n (I).

Example 3.2: Polar Jumping. Look back to the first ideal given in Exercise 3.1. There, V1(I1) = G1(TR
3)

because I1
1 = (0). Now a 1-dimensional integral element E based at (x, y, z) will be spanned by a vector

e1 = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

where not all of a, b, and c vanish. Using the definition of the polar space, we see that

v = f
∂

∂x
+ g

∂

∂y
+ h

∂

∂z

lies in H(E) if and only if dx∧dz(v, e1) =
(
dy∧(dz − y dx)

)
(v, e1) = 0, i.e.,

c f − a h = −yb f − (c − y a) g + b h = 0.

These two linear equations for (f, g, h) will be linearly independent, forcing H(E) = E and r(E) = −1, unless
c − y a = 0, in which case the two equations are linearly dependent and dimH(E) = 2, so that r(E) = 0.

We say that an ordinary integral element E ∈ V o
n (I) is regular if r is locally constant in a neighborhood

of E in V o
n (I). Denote the set of regular integral elements by V r

n (I) ⊂ V o
n (I).

The regular integral elements are extremely nice. Not only do they ‘vary smoothly’, but their possible
extensions ‘vary smoothly’ as well.

Exercise 3.10: Show that V r
n (I) is a dense open subset of V o

n (I). Hint: Show that if E ⊂ TxM is regular,
then one can choose a fixed set of (n+1)-forms, say κ1, . . . , κm ∈ In+1, where m is the codimension of H(E)
in TxM , so that

H(E∗) = { v ∈ TxM κµ(v, e1 , . . . , ek) = 0, 1 ≤ µ ≤ m }

for all E∗ in a neighborhood of E in V o
n (I). This shows that it is open. To get denseness, explain why r is

lower semicontinuous and use that.

One more bit of terminology: An integral manifold Nk ⊂ M of I will be said to be ordinary if all of
its tangent planes are ordinary integral elements and regular if all of its tangent planes are regular integral
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elements. Note that if N ⊂ M is a connected regular integral manifold of I then the numbers r(TxN) are
all the same, so it makes sense to define r(N) = r(TxN) for any x ∈ N .

3.3. The Cartan-Kähler Theorem

I can now state one of the fundamental theorems in the subject. A discussion of the proof will be
deferred to the next lecture. Here, I am just going to state the theorem, discuss the need for the hypotheses,
and do a few examples. In the next lecture, I’ll try to give you a feeling for why it works.

Theorem 4: (Cartan-Kähler) Let (M, I) be a real analytic EDS and suppose that
(1) P ⊂ M is a connected, k-dimensional, real analytic, regular integral manifold of I with r(P ) ≥ 0 and
(2) R ⊂ M is a real analytic submanifold of codimension r(P ) containing P and having the property

that TpR ∩ H(TpP ) has dimension k+1 for all p ∈ P .
There exists a unique, connected, (k+1)-dimensional, real analytic integral manifold X of I that satisfies P ⊂
X ⊂ R.

The sudden appearance of the hypothesis of real analyticity is somewhat unexpected. However the PDE
results that the enter in the proof of the Cartan-Kähler theorem require this assumption and, as will be seen,
the theorem is not even true without this hypothesis in the generality stated.

Example 3.3: The importance of regularity for existence. Consider the case of Exercise 3.1. For either of
the ideals, the line L defined by x = z = 0 is an integral curve of the ideal with the property that r(TpL) = 0
for all p ∈ L. However, I1 has no integral surfaces while I2 has the integral surface z = 0 that contains L. In
both cases, however, L is an ordinary integral manifold but not a regular one, so the Cartan-Kähler Theorem
does not apply.

Example 3.4: The importance of regularity for existence. Consider the case of Exercise 3.3,ii. The line L
defined by x2 = x3 = x4 = 0 is a non-regular integral curve of this ideal, and has r(TpL) = 1 for all p ∈ L,
with the polar space H(TpL) being spanned by the vectors

∂

∂x1
,

∂

∂x3
,

∂

∂x4
.

for all p ∈ L. If you take R to be the 3-plane defined by x3 = 0, then TpR ∩H(TpL) has dimension 2 for all
p ∈ L, but there is no integral surface X of I satisfying L ⊂ X ⊂ R, even though there are integral surfaces
of I that contain L.

Example 3.5: The meaning of R. The manifold R that appears in the Cartan-Kähler Theorem is
sometimes known as the ‘restraining manifold’. You need it when r(P ) > 0 because then the extension
problem is actually underdetermined in a certain sense. (I’ll try to make that precise in the next lecture.)
However, you can see a little bit of why you need it by looking at the case of Exercise 3.3, (i). There, you
should have computed that all of the integral elements E ∈ V1(I) = G1(TR

4) are regular, with r(E) = 1.
This means that every integral element has a 1-dimensional family of possible extensions to a 2-dimensional
integral element. Suppose, for example, that you start with the curve P ⊂ R

4 defined by the equations x2 =
x3 = x4 = 0. Then it is easy to compute that H(TpP ) is spanned by the vectors

∂

∂x1
,

∂

∂x3
,

∂

∂x4
.

for all p ∈ P . In particular, any (real analytic) hypersurface R given by an equation x4 = F (x1, x2, x3)
where F satisfies F (x1, 0, 0) = 0 will satisfy the conditions of the Theorem. If we pull the ideal I back to
this hypersurface and use x1, x2, x3 as coordinates on R, then the ideal on R is generated by the 2-form

dx1 ∧ dx2 + dx3 ∧ (F1 dx1 + F2 dx2) =
(
dx1 + F2 dx3

)
∧

(
dx2 − F1 dx3

)
Of course, this is a closed 2-form on R and its integral surfaces are swept out by integral curves of the vector
field

X = −F2
∂

∂x1
+ F1

∂

∂x2
+

∂

∂x3
.
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(Why?). Thus, to get the integral surface X, we take the union of these integral curves that pass through
the initial curve P . Clearly, x1 and x3 are independent coordinates on a neighborhood of P in X, so X can
also be written locally as a graph

x2 = f(x1, x3), x4 = g(x1, x3).

where f and g are functions that satisfy f(x1, 0) = g(x1, 0) = 0. The condition that these define an integral
surface then turns out to be that there is another function h so that

x2 =
∂h

∂x1
(x1, x3), x4 =

∂h

∂x3
(x1, x3).

On the other hand, any such function works as long as its first partials vanish along the line x3 = 0. This
shows why you don’t usually get uniqueness without a restraining manifold.

Example 3.6: The importance of real analyticity. Consider the case of Exercise 3.3, (iii). You’ll probably
recognize this as the ideal generated by the real and imaginary parts of the complex 2-form

(
dx1 − i dx3

)
∧

(
dx2 + i dx4

)
,

so the 2-dimensional integral manifolds are complex curves in R
4 � C

2. Now, if you have done the exercises
up to this point, you know that all of the 1-dimensional elements E ∈ V1(I) = G1(TM) are regular and
satisfy r(E) = 0, so that each one can be extended uniquely to a 2-dimensional integral element. The
Cartan-Kähler theorem then says that any real analytic curve in M lies in a unique connected, real analytic
integral surface of I (i.e., a complex curve). As you know, a complex curve is necessarily real analytic when
considered as a surface in R

4. Now suppose that you had a curve described by

x2 = f(x1), x3 = 0, x4 = g(x1),

where f and g are smooth, but not real analytic. Then I claim that there is no complex curve that can
contain this curve, because if there were, it could be described locally in the form x2 + i x4 = F (x1 − i x3)
where F is a holomorphic function of one variable. However, setting x3 = 0 in this equation shows that the
original curve would be described by x2 + i x4 = F (x1), which is absurd because the real and imaginary
parts of a holomorphic function are themselves real analytic.

Example 3.7: Linear Weingarten Surfaces, again. I now want to return to Example 1.4 and compute
the integral elements, determine the notions of ordinary and regular, etc., and see what the Cartan-Kähler
Theorem tells us about the integral manifolds.

For example, I claim that, for the EDS
(
M, 〈θ, Υ1〉

)
, the space V1(I) is a smooth bundle over M , whose

fiber at every point is diffeomorphic to RP
3, that V1(I) consists entirely of regular integral elements, and

that r(E) = 0 for all E ∈ V1(I). By the Cartan-Kähler Theorem, it will then follow that every real analytic
integral curve of I lies in a unique real analytic integral surface.

Now, the integral curves of I are easy to describe: They are just of the form
(
x(t), u(t)

)
, where x :

(a, b) → R
3 is a space curve and u : (a, b) → S2 is a unit length curve with u(t) · x′(t) = 0. The condition

that this describe an immersed curve in M is, of course, that x′ and u′ do not simultaneously vanish.
We have already said that the integral surfaces of I are ‘generalized’ minimal surfaces, so what the

Cartan-Kähler Theorem says in this case is the geometric theorem that every real analytic ‘framed curve’,(
x(t), u(t)

)
in space lies on a unique, oriented minimal surface S for which u(t) is the unit normal.

Exercise 3.11: Use this result to show that every nondegenerate real analytic space curve is a geodesic on
a unique connected minimal surface. Also, use this result to prove the existence of a minimal Möbius band.
(You’ll have to think of a trick to get around the non-orientability of the Möbius band.)

Now, here is how this computation can be done. The principal difficulty in working with M = R
3×S2 is

that, unlike R
4 and other simple manifolds that we have been mostly dealing with, there is no obvious basis
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of 1-forms in which to compute. However, we can remedy this situation by regarding M as a homogeneous
space of the group G of rigid motions of R

3. Recall that

G =
{[

1 0
b A

]
b ∈ R

3, A ∈ SO(3)
}

.

and that G acts on R
3 by [

1 0
b A

]
· y = Ay + b.

Writing out the columns of the inclusion map g : G → GL(4, R) as

g =
[

1 0 0 0
x e1 e2 e3

]
,

we have the structure equations

d

[
1 0 0 0
x e1 e2 e3

]
=

[
1 0 0 0
x e1 e2 e3

] 


0 0 0 0
ω1 0 ω12 −ω31

ω2 −ω12 0 −ω32

ω3 ω31 ω32 0


 ,

i.e., the classical structure equations

dx = ej ωj , dei = ej ωji

where ωi and ωij = −ωji satisfy

dωi = −ωij ∧ωj , dωij = −ωik ∧ ωkj.

Now, consider the map π : G → M = R
3 × S2 given by

π(g) = (x, e3).

This map is a smooth submersion and its fibers are the circles that are the left cosets of the circle subgroup H
consisting of matrices of the form 


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 .

Now, the 1-forms ω1, ω2, ω3, ω12, ω31, ω32 are a convenient basis for the left-invariant 1-forms on G, so we
should be able to express the pullbacks of the various forms we have constructed on M in terms of these.

Exercise 3.12: Prove the formulae:

π∗θ = ω3 ,

π∗Υ0 = ω1 ∧ω2 ,

π∗Υ1 = −1
2

(
ω31 ∧ ω2 + ω1 ∧ω32

)
,

π∗Υ2 = ω31 ∧ ω32 .

In particular, it follows from this exercise that

π∗(〈θ, Υ1〉
)

= 〈ω3, ω31 ∧ω2 + ω1 ∧ ω32〉
= 〈 ω3, ω31 ∧ω1+ω32 ∧ω2, ω31 ∧ω2+ω1 ∧ω32 〉alg.
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Now, let E ⊂ T(x,u)M be a 1-dimensional integral element of 〈θ, Υ1〉 = 〈θ, dθ, Υ1〉alg. I want to compute the
polar space H(E). If e1 ∈ E is a basis element, then

H(E) = { v ∈ T(x,u) θ(v) = dθ(v, e1) = Υ1(v, e1) = 0 },

so, a priori, the dimension of H(E) could be anywhere from 2 (if the three equations on v are all linearly
independent) to 4 (if the three equations on v are all multiples of θ(v) = 0, which we know to be nontrivial).
To see what actually happens, fix a g ∈ G so that π(g) = (x, u) and choose vectors ẽ1 and ṽ in TgG so
that π∗(ẽ1) = e1 and π∗(ṽ) = v. Define ai = ωi(ẽ1) and aij = ωij(ẽ1) and define vi = ωi(ṽ) and vij = ωij(ṽ).
Then by the formulae from the exercise, we have

θ(v) = ω3(ṽ)
= v3

dθ(v, e1) = −(ω31 ∧ ω1 + ω32 ∧ω2)(ṽ, ẽ1)
= a31 v1 + a32 v2 − a1 v31 − a2 v32

−2Υ1(v, e1) = (ω31 ∧ω2 + ω1 ∧ω32)(ṽ, ẽ1)
= a32 v1 − a31 v2 + a2 v31 − a1 v32

Now, unless a1 = a2 = a31 = a32 = 0, these are three linearly independent relations for (v1, v2, v3, v31, v32).
However, since e1 is nonzero, we cannot have a1 = a2 = a31 = a32 = 0 (Why?). Thus, the three relations
are linearly independent and it follows that H(E) has dimension 2 for all E ∈ V1(I), as I wanted to show.

Exercise 3.13: Show that the same conclusion holds for all of the ideals of the form I = 〈 θ, Υ1 +
c Υ0 〉. Thus, every real analytic framed curve

(
x(t), u(t)

)
lies in a unique (generalized) surface S with mean

curvature H = c. Do the same for the ideal I = 〈 θ, Υ2 − c2 Υ0 〉, and give a geometric interpretation of this
result.

However, it is not always true that every integral element is regular, even for the linear Weingarten
ideals.

Example 3.8: Surfaces with K = −1. Consider I = 〈 θ, Υ2 +Υ0 〉, whose integrals correspond to surfaces
with K ≡ −1. If you go through the same calculation as above for this ideal, everything runs pretty much
the same until you get to

θ(v) = ω3(ṽ)
= v3

dθ(v, e1) = −(ω31 ∧ω1 + ω32 ∧ ω2)(ṽ, ẽ1)
= a31 v1 + a32 v2 − a1 v31 − a2 v32

(Υ2 + Υ1)(v, e1) = (ω31 ∧ω32 + ω1 ∧ω2)(ṽ, ẽ1)
= a2 v1 − a1 v2 + a32 v31 − a31 v32

Now, these three relations on (v1, v2, v3, v31, v32) will be independent except when (a31, a32) = ±(a2,−a1),
when the last two relations become dependent. For such integral elements E ∈ V1(I), we have r(E) = 1 but
for all the other integral elements, we have r(E) = 0.

Exercise 3.14: Show that if
(
x(t), u(t)

)
is an integral curve of θ, then its tangent vectors are all irregular

if and only if x : (a, b) → R
3 is an immersed space curve of torsion τ = ±1 and u(t) is its binormal (up to a

sign). Thus, these are the framed curves for which we cannot say that there exists a surface with K = −1
containing the curve with u as the surface normal along the curve. Even if there exists one, we cannot claim
that it is unique.

Exercise 3.15: Determine which of the ideals I = 〈 θ, a Υ2 + b Υ1 + c Υ0〉 (where a, b, and c are constants,
not all zero) have irregular integral elements in V1(I).
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Lecture 4. The Cartan-Kähler Theorem: Ideas in the Proof

4.1. The Cauchy-Kowalewski Theorem

The basic PDE result that we will need is an existence and uniqueness theorem for initial value problems
of a very special kind. You are probably familiar with the ODE existence and uniqueness theorem: If D ⊂
R×R

n is an open set and F : D → R
n is a smooth map, then for any (t0, u0) ∈ D, the initial value problem

u′(t) = F
(
t, u(t)

)
, u(t0) = u0

has a solution u : I → R
n on some open interval I ⊂ R containing t0, this solution is smooth, and this

solution is unique in the sense that, if ũ : Ĩ → R
n is another solution for some interval Ĩ containing t0,

then ũ = u on the intersection Ĩ ∩ I. Of course, smoothness of F is a much more restrictive assumption
than one actually needs; one can get away with locally Lipschitz, but the idea of the theorem is clear.

When one comes to initial value problems for PDE, the theorem we will need is the oldest known such
result.

Theorem 5: (Cauchy-Kowalewski) Suppose that D ⊂ R × R
n × R

s × R
ns is an open set and suppose

that F : D → R
s is real analytic. Suppose that U ⊂ R

n is an open set and that φ : U → R
s is a real analytic

function with the property that its ‘1-graph’{ (
t0, x, φ(x),

∂φ

∂x
(x)

)
x ∈ U

}

lies in D for some t0. Then there exists a domain V ⊂ R × R
n for which {t0}×U ⊂ V and a real analytic

function u : V → R
s satisfying

∂u
∂t

(t, x) = F
(
t, x, u(t, x),

∂u
∂x

(t, x)
)
, for (t, x) ∈ V

u(t0, x) = φ(x), for x ∈ U .

Moreover, u is unique as a real analytic solution in the sense that any other such (Ṽ , ũ) with ũ real analytic
satisfies ũ = u on any component of Ṽ ∩ V that meets {t0}×U .

This may seem to be a complicated theorem, but it basically says that if the equation and initial data
are real analytic and they have domains so that the initial data make sense, then you can find a solution u
by expanding it out in a power series

u(t, x) = φ(x) + φ1(x)(t−t0) + 1
2φ2(x)(t−t0)2 + · · · .

The equation will allow you to recursively solve for the sequence of analytic functions φk and the domains
of convergence of the functions F and φ give you estimates that allow you to show that the above series
converges on some domain V containing {t0}×U . (In fact, proving convergence of the series is the only really
subtle point.)

Without the hypothesis of real analyticity, this theorem would not be true. The problem can fail to
have a solution or can have more than one solution. There are even examples with F smooth for which there
are no solutions to the equation at all, whatever the initial conditions.

In any case, it is traditional to refer to a system of PDE written in the form

∂u
∂t

= F
(
t, x, u, v,

∂u
∂x

,
∂v
∂x

)
as a system in Cauchy form, ‘underdetermined’ if there are ‘unconstrained’ functions v present. In this case,
we can always reduce to the determined case by simply specifying the functions v ‘arbitrarily’ (subject to
the condition that the equations still make sense after the specification).
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4.2. Equations not in Cauchy form.

Many interesting equations cannot be put in Cauchy form by any choice of coordinates. For example,
consider the equation familiar from vector calculus curlu = f where f is a known vector field in R

3 and u is
an unknown vector field. Certainly, by inspection of the equations

∂u2

∂x3
− ∂u3

∂x2
= f1 ,

∂u3

∂x1
− ∂u1

∂x3
= f2,

∂u1

∂x2
− ∂u2

∂x1
= f3

it is hard to imagine how one might solve for all of the u-partials in some direction. This appears even more
doubtful when you realize that there is no hope of uniqueness in this problem: If u is a solution, then so
is u + gradg for any function g. Even worse, assuming that f is real analytic doesn’t help either since it is
also clear that there can’t be any solution at all unless div f = 0.

Of course, this is a very special equation, and we know how to treat it by ordinary differential equations
means (e.g., the proof of Poincaré’s Lemma).

Example 4.1: Self-Dual Equations. A more interesting problem is to consider the so-called ‘self-dual
equations’ in dimension 4. Remember that there is the Hodge star operator ∗ : Ωp(Rn) → Ωn−p(Rn), which
is invariant under rigid motions in R

n and satisfies ∗∗α = (−1)p(n−p) α. In particular, when n = 4 and p = 2,
the 2-forms can be split into the forms that satisfy ∗α = α, the self-dual 2-forms Ω2

+(R4), and the forms that
satisfy ∗α = −α, the anti-self-dual 2-forms Ω2

−(R4). For example, every φ ∈ Ω2
+(R4) is of the form

φ = u1 (dx2 ∧ dx3+dx1 ∧ dx4)

+ u2 (dx3 ∧ dx1+dx2 ∧ dx4) + u3 (dx1 ∧ dx2+dx3 ∧ dx4).

The equation dφ = 0 then represents four equations for the three unknown coefficients u1, u2, u3. Obviously,
this overdetermined system cannot be put in Cauchy form. This raises the interesting question: How can
one describe the space of local solutions of these equations? Well, let’s look at the equations. They can be
written in the form

0 =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
,

∂u1

∂x4
=

∂u2

∂x3
− ∂u3

∂x2
,

∂u2

∂x4
=

∂u3

∂x1
− ∂u1

∂x3
,

∂u3

∂x4
=

∂u1

∂x2
− ∂u2

∂x1
.

Setting aside the first one, the remaining equations are certainly in Cauchy form and we could solve them
(at least near x4 = 0) for any real analytic initial conditions

ui(x1, x2, x3, 0) = f i(x1, x2, x3), for i = 1, 2, 3.

Unfortunately, there’s no reason to believe that the resulting functions will satisfy the first equation. Indeed,
unless the functions f i satisfy

0 =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
,

the resulting ui can’t satisfy the first equation.
However, suppose that we choose the f i on R

3 to satisfy the above equation on R
3 (and to be real

analytic, of course). Then do we have a hope that the resulting ui will satisfy the remaining equation? In
fact, we do, for they will always satisfy it! Here is how you can see this: Define the ‘error’ to be

E =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
.
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By the choice of f , we know that E(x1, x2, x3, 0) = 0. Moreover, by the above equations and commuting
partials, we have

∂E

∂x4
=

∂

∂x1

(
∂u1

∂x4

)
+

∂

∂x2

(
∂u2

∂x4

)
+

∂

∂x3

(
∂u3

∂x4

)

=
∂

∂x1

(
∂u2

∂x3
− ∂u3

∂x2

)
+

∂

∂x2

(
∂u3

∂x1
− ∂u1

∂x3

)
+

∂

∂x3

(
∂u1

∂x2
− ∂u2

∂x1

)
= 0.

Of course, this implies that E(x1, x2, x3, x4) = 0, which is what we wanted to be true.
Thus, the solutions to the full system are found by choosing initial conditions f i to satisfy the single

equation on R
3

0 =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
.

Of course, this can be regarded as an equation in Cauchy form, now underdetermined, by writing it in the
form

∂f3

∂x3
= −∂f1

∂x1
− ∂f2

∂x2
.

By Cauchy-Kowalewski, we can solve this equation uniquely by choosing f1 and f2 as arbitrary real analytic
functions and then choosing the initial value f3(x1, x2, 0) as a real analytic function on R

2.

Exercise 4.1: Show that you don’t need to invoke the Cauchy-Kowalewski Theorem for this problem
on R

3 and you also don’t need real analyticity to solve the initial value problem. However, show that any
solutions ui on R

4 to the self-dual equations are harmonic and so must be real analytic. What does this tell
you about the need for Cauchy-Kowalewski in the system for the ui?

The upshot of all this discussion is that, although the system can’t be put in Cauchy form, it can be
regarded as a sequence of Cauchy problems. Moreover, this sequence has the unexpectedly nice property
that, when you solve one of the Cauchy problems then use the solution as initial data for the next Cauchy
problem, the satisfaction of the first set of equations is ‘propagated’ by the equations at the next level.

Exercise 4.2: Consider the overdetermined system

zx = F (x, y, z)
zy = G(x, y, z)

z(0, 0) = z0

for z as a function of x and y. Show that if you set it up as a sequence of Cauchy problems, first

wx(x) = F
(
x, 0, w(x)

)
, w(0) = z0

and then use the resulting function w to consider the equation

zy(x, y) = G
(
x, y, z(x, y)

)
, z(x, 0) = w(x),

then the resulting solutions will satisfy the equation zx = F (x, y, z) for all choices of z0 only if F and G
satisfy the condition needed for the system 〈dz − F (x, y, z) dx− G(x, y, z) dy〉 to be Frobenius.

Exercise 4.3: Go back to the equation curl u = f and show that you can write that as a sequence of
Cauchy problems. Show also that they won’t have this ‘propagation’ property unless div f = 0.

Exercise 4.4: Now consider the equation curlu = u+f . Of course, this equation can’t be put in Cauchy form
either, since it differs from the previous one only by terms that don’t involve any derivatives. However, show
now that when you apply the divergence operator to both sides, you get, not a condition on f , but another
first order equation on u. Show that you can write this system of four equations for the three unknowns as
a sequence of Cauchy problems and that this system does have the good ‘propagation’ property. How much
freedom do you get in specifying the initial data to determine a solution?
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Exercise 4.5: Back to the self-dual equations: Now consider the ui as free coordinates and set M = R
4×R

3

with coordinates x1, x2, x3, x4, u1, u2, u3. Define the 3-form

Φ = du1 ∧ (dx2 ∧ dx3+dx1 ∧ dx4)

+ du2 ∧ (dx3 ∧ dx1+dx2 ∧ dx4) + du3 ∧ (dx1 ∧ dx2+dx3 ∧ dx4).

Explain why the 4-dimensional integral manifolds in M of I = 〈Φ〉 on which dx1∧dx2∧dx3∧dx4 �= 0 can be
thought of locally as representing closed self-dual 2-forms. Describe V4(I)∩G4(TM, x). Are these ordinary
or regular integral elements? What about V3(I) ∩ G3

(
TM, (x1, x2, x3)

)
?

With all these examples in mind, I can now describe how the proof of the Cartan-Kähler Theorem
goes: Remember that we start with a real analytic EDS (M, I) and P ⊂ M a connected, k-dimensional, real
analytic, regular integral manifold of I with r = r(P ) ≥ 0. For each p ∈ P , the dimension of H(TpP ) ⊂ TpM
is r + k + 1 and the generic subspace S ⊂ TpM of codimension r will intersect H(TpM) is a subspace S ∩
H(TpM) of dimension k +1. Thus, choosing the ‘generic’ codimension R submanifold of M that contains P
will have the property that TpR ∩ H(TpP ) has dimension k+1 and so will be an integral element. So now
suppose that we have a real analytic R containing P and satisfying this genericity condition. We now want
to find a (k+1)-dimensional integral manifold X satisfying P ⊂ X ⊂ R.

Because of the real analyticity assumption, it’s enough to prove the existence and uniqueness of X in a
neighborhood of any point p ∈ P , so fix such a p and let e1, . . . , ek be a basis of TpP . Choose κ1, . . . , κm ∈
Ik+1 so that

H(TpP ) = { v ∈ TpM κµ(v, e1, . . . , ek) = 0, 1 ≤ µ ≤ m }

where m = dimTpM − (r+k+1). Because of the regularity assumption, the forms κ1, . . . , κm can be used
to compute the polar space of any integral element E ∈ Vk(I) that is sufficiently near TpP .

Now R has dimension m+k+1 and, when you pull back the forms κµ to R, they are ‘independent’ near p
because we assumed TpR ∩H(TpP ) to have dimension k+1. When you write them out in local coordinates,
they become a system of m PDE in Cauchy form for extending P to a (k+1)-dimensional integral manifold
of the system J = 〈κ1, . . . , κm〉, and P itself provides the initial condition. Thus, the Cauchy-Kowalewski
Theorem applies: there is a unique, connected, real analytic X of dimension k+1 satisfying P ⊂ X ⊂ R that
is an integral manifold of J .

Now, all of the k-forms in I vanish when pulled back to P , but we need them to vanish when pulled
back to X. Here, finally, is where the assumption that I be differentially closed comes in, as well as the need
for the integral elements to be ordinary in the first place. What we do is show that the differential closure
condition plus the ordinary assumption allows us to write down a system in Cauchy form for the coefficients
of the k-forms in I pulled back to X. This system has ‘zero’ initial conditions since P is an integral manifold
of I and to have all of the coefficients be zero is a solution of the system. By the uniqueness part of the
Cauchy-Kowalewski Theorem, it follows that ‘zero’ is the only solution, i.e., that all of the k-forms of I
must vanish on X. However, this, coupled with the vanishing of the κµ and the fact that they determine the
integral extensions (at least near p) forces all of the tangent spaces to X to be integral elements of I, i.e.,
forces X to be an integral manifold of the whole ideal I.

Well, that, in outline, is the proof of the Cartan-Kähler Theorem. The full details are in Chapter III of
the EDS book that was handed out earlier, and I encourage you to look at them at some point, probably
after you have been convinced by seeing its applications that the Cartan-Kähler Theorem is worth knowing.

Exercise 4.6: How would you describe the 2-forms on R
5 that are both closed and coclosed? What I’m

asking for is an analysis of the local solutions to the equations dα = d(∗α) = 0 for α ∈ Ω2(R5). If you
think you have a handle on this, you might want to go ahead and try the general case: dα = d(∗α) = 0
for α ∈ Ωp(Rn).
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4.3. Integral Flags and Cartan’s Test

In light of the Cartan-Kähler Theorem, there is a simple sufficient condition for the existence of an
integral manifold tangent to E ∈ Vn(I).

Theorem 6: Let (M, I) be a real analytic EDS. If E ∈ Vn(I) contains a flag of subspaces

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E ⊂ TpM

where Ei ∈ V r
i (I) for 0 ≤ i < n, then there is a real analytic n-dimensional integral manifold P ⊂ M passing

through p and satisfying TpP = E.

The proof is the obvious one: Just apply the Cartan-Kähler Theorem one step at a time, noting
that, because V r

k (I) is an open subset of Vk(I), any k-dimensional integral manifold of I that is tangent
to Ek ∈ V r

k (I) will perforce be a regular integral manifold in some neighborhood of p.

Now this is a nice result but it leaves a few things to be desired. First of all, this sufficient condition is
not necessary. As we will see, there are quite a few cases in which the integral manifolds we are interested
in cannot be constructed by the above process, simply because the integral elements to which they would
be tangent are not the terminus of a flag of regular integral elements. Second, as things stand, it is a lot of
work to check whether or not a given integral element is the terminus of a flag of regular integral elements.

Exercise 4.7: Look back at the two ideals of Exercise 3.1. Show that in neither case does any E ∈ V2(Ii)
contain a E1 ∈ V r

1 (Ii). Now, I1 has no 2-dimensional integral manifolds anyway. For I2, however, ...

Exercise 4.8: For Exercise 4.5, determine which integral elements of I are the terminus of a flag of regular
integral elements.

As you can see, computing with flags of subspaces can be a bit of work. I am now going to describe
a simplification of this process that will make these computations almost routine. First, though, some
simplifications and terminology.

A flag of integral elements

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E ⊂ TpM

where Ei ∈ V r
i (I) for 0 ≤ i < n and En ∈ Vn(I) will be known as a regular flag for short. (Note that the

terminus En of a regular flag is not required to be regular and, in fact, it can fail to be. However, it does
turn out that En is ordinary.)

Note that the assumption that E0 = 0p ⊂ TpM be regular implies, in particular, that is it ordinary, i.e.,
E0 is an ordinary zero of the set of functions I0 ⊂ Ω0(M). Now, the set V o

0 (I) is a smooth submanifold
of G0(TM) = M .

Exercise 4.9: Explain why any n-dimensional integral element E ⊂ TpM with p ∈ V o
0 (I) must be tangent

to V o
0 (I). Is this necessarily true if p does not lie in V o

0 (I)?

Obviously, every integral manifold of I that is constructed by the ‘regular flag’ approach will lie in V o
0 (I)

anyway. Thus, at least on theoretical grounds, nothing will be lost if we simply replace M by V o
0 (I), i.e.,

restrict to the ordinary part of the zero locus of the functions in I. I am going to do this for the rest of this
section. This amounts to the blanket assumption that I0 = (0), i.e., that I is generated in positive degree.

Now, corresponding to any integral flag

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E ⊂ TpM

(regular or not), there is the descending flag of corresponding polar spaces

TpM ⊇ H(E0) ⊇ H(E1) ⊇ · · · ⊇ H(En−1) ⊇ H(En) ⊇ En .
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It will be convenient to keep track track of the dimensions of these spaces in terms of their codimension
in TpM . For k < n, set

c(Ek) = dim(TpM) − dimH(Ek) = n + s − k − 1 − r(Ek)

where dimM = n+s. It works out best to make the special convention that c(En) = s. (In practice, it
is usually the case that H(En) = En, in which case, the above formula for c(Ek) works even when you
set k = n.) Since dimH(Ek) ≥ dimEn = n, we have c(Ek) ≤ s. Because of the nesting of these spaces, we
have

0 ≤ c(Ek) ≤ c(E1) ≤ · · · ≤ c(En) ≤ s.

For notational convenience, set c(E−1) = 0. The Cartan characters of the flag F = (E0, E1, . . . , En) are the
numbers

sk(F ) = c(Ek) − c(Ek−1) ≥ 0.

They will play an important role in what follows.
I’m now ready to describe Cartan’s Test , a necessary and sufficient condition for a given flag to be

regular. First, let me introduce some terminology: A subset X ⊂ M will be said to have codimension at
least q at x ∈ X if there is an open x-neighborhood U ⊂ M and a codimension q submanifold Q ⊂ U
so that X ∩ U is a subset of Q. In the other direction, X will be said to have codimension at most q
at x ∈ X if there is an open x-neighborhood U ⊂ M and a codimension q submanifold Q ⊂ U containing x
so that Q ⊂ X ∩ U .

Theorem 7: (Cartan’s Test) Let (M, I) be an EDS and let F = (E0, E1, . . . , En) be an integral flag
of I. Then Vn(I) has codmension at least

c(F ) = c(E0) + c(E1) + · · ·+ c(En−1)

in Gn(TM) at En. Moreover, Vn(I) is a smooth submanifold of Gn(TM) of codimension c(F ) in a neigh-
borhood of En if and only if the flag F is regular.

This is a very powerful result, because it allows one to test for regularity of a flag by simple linear
algebra, computing the polar spaces H(Ek) and then checking that Vn(I) is smooth near En and of the
smallest possible codimension, c(F ). In many cases, these two things can done by inspection.

Example 4.2: Self-Dual 2-Forms. Look back at Exercise 4.5. Any integral element E ∈ V4(I)∩G4(TR
7, dx)

is defined by linear equations of the form

πa = dua − pa
i (E) dxi = 0.

In order that Φ vanish on such a 4-plane, it suffices that the pa
i (E) satisfy four equations:

p1
1+p2

2+p3
3 = p1

4−p2
3+p3

2 = p2
4−p3

1+p1
3 = p3

4−p1
2+p2

1 = 0

It’s clear from this that V4(I) ∩ G4(TR
7, dx) is a smooth manifold of codimension 4 in G4(TR

7). On the
other hand, if we let Ek ⊂ E be defined by the equation dxk+1 = dxk+2 = · · · = dx4 = 0 for 0 ≤ k < 4, then
it is easy to see that

H(E0) = H(E1) = Tp(M)
H(E2) = {v ∈ Tp(M) π3(v) = 0 }
H(E3) = {v ∈ Tp(M) π1(v) = π2(v) = π3(v) = 0 }
H(E4) = {v ∈ Tp(M) π1(v) = π2(v) = π3(v) = 0 }

so c(E0) = c(E1) = 0, c(E2) = 1, c(E3) = 3, and c(E4) = 3. Since c(F ) = 0+0+1+3 = 4, which is the
codimension of V4(I) in G4(TR

7), Cartan’s Test is verified and the flag is regular.
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Exercise 4.10: Show that, for E ∈ V4(I) ∩ G4(TR
7, dx), every flag is regular. (Hint: Rotations in R

4

preserve the self-dual equations.)

Exercise 4.11: Write the exterior derivative d : Ω1(R4) → Ω2(R4) as a sum d+ +d− where d± : Ω1(R4) →
Ω2

±(R4). Show that if a 1-form λ satisfies d+λ = 0, then locally it can be written in the form λ = df + ψ,
where ψ is real analytic. Use this result to show that if d+λ = 0, then there exist non-vanishing self-dual
2-forms Υ satisfying dΥ = λ∧Υ. (Hint: You will want to recall that any closed self-dual or anti-self-dual
2-form is real analytic and also that if Υ is self-dual while Λ is anti-self dual, then Υ∧Λ vanishes identically.
What can you say about the local solvability of the equation dΥ = λ∧Υ for Υ ∈ Ω2

+(R4) if you don’t
have d+λ = 0? (I don’t expect a complete answer to this yet. I just want you to think about the issue. We’ll
come back to this later.

Example 4.3: Special Lagrangian Manifolds in C
n. Let M = C

n with standard complex coordi-
nates z1, . . . , zn. Write zk = xk + i yk, as usual. Let I be the ideal generated by the Kähler 2-form

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

and the n-form
Φ = Im(dz1 ∧ · · · ∧ dzn)

= dy1 ∧ dx2 ∧ · · · ∧ dxn + dx1 ∧ dy2 ∧ · · · ∧ dxn + · · ·
+ dx1 ∧ dx2 ∧ · · · ∧ dyn + (higher order terms in {dyk})

The n-dimensional integral manifolds of I are known as special Lagrangian. They and their generalizations
to the special Lagrangian submanifolds of Kähler-Einstein manifolds are the subject of much interest now
in mathematical physics.

Consider the integral element E ∈ Vn(I) based at 0 ∈ C
n defined by the relations

dy1 = dy2 = · · · = dyn = 0.

Let Ek ⊂ E be defined by the additional relations dxj = 0 for j > k. Then, for k < n−1, the polar
space for Ek is easily seen to be defined by the relations dyj = 0 for j ≤ k. In particular, c(Ek) = k
for k < n−1. However, for k = n−1, the form Φ enters into the computation of the polar equations, showing
that H(En−1) = En. Consequently, c(En−1) = n. It follows that Vn(I) must have codimension at least

0 + 1 + · · ·+ (n−2) + n = 1
2(n2−n+2).

On the other hand, on any nearby integral element E∗, the 1-forms dxi are linearly independent, so it can
be described by relations of the form

dya − pa
i dxi = 0.

The condition that ω vanish on E∗ is just that pa
i = pi

a, while the condition that Φ vanish on E∗ is a
polynomial equation in the pa

i of the form

0 = p1
1+p2

2+ · · ·+pn
n + (higher order terms in {pa

i }).

This equation has independent differential from the equations pa
i = pi

a at the integral element E (defined
by pa

i = 0). Consequently, Vn(I) is smooth near E and of codimension 1
2
(n2−n+2) in Gn(TC

n). Thus, by
Cartan’s Test, the flag is regular.

4.4. The notion of generality of integral manifolds

It is very useful to know not only that integral manifolds exist, but ‘how many’ integral manifolds exist.
I now want to make this into a precise notion and give the answer.

Suppose that F = (E0, E1, . . . , En) is a regular flag of a real analytic EDS (M, I). By the Cartan-Kähler
Theorem, there exists at least one real analytic integral manifold Nn ⊂ M containing the basepoint p of En

and satisfying TpN = En. Set

ck =

{ 0 for k = −1;
c(Ek) for 0 ≤ k < n; and
s for k = n.
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and define sk = ck − ck−1 for 0 ≤ k ≤ n.
Choose a real analytic coordinate system

(x, u) = (x1, . . . , xn, u1, . . . us) : U → R
n+s

centered on p ∈ U with the following properties:
(i) N ∩ U ⊂ U is defined by ua = 0.

(ii) Ek ⊂ En is defined by dxj = 0 for j > k.
(iii) H(Ek) is defined by dua = 0 for a ≤ ck when 0 ≤ k < n.

Exercise 4.12: Explain why such a coordinate system must exist.

Define the level λ(a) of an integer a between 1 and s to be the smallest integer k ≥ 0 for which a ≤ ck.
Note that 0 ≤ λ(a) ≤ n. Note that there are exactly sk indices of level k.

Now, let C denote the collection of real analytic integral manifolds of (U, I) that are ‘near’ N in the
following sense: An integral manifold N∗ belongs to C if it can be represented by equations of the form

ua = F a(x1, . . . , xn)

where the F a are real analytic functions defined on a neighborhood of x = 0 and, moreover, these functions
and their first partial derivatives are ‘sufficiently small’ near x = 0. (‘Sufficiently small’ can be made precise
in terms of a connected neighborhood of the flag F = (E0, . . . , En) in the space of regular flags.)

If the index a has level k, define the function fa on a neighborhood of 0 in R
k by

fa(x1, . . . , xk) = F a(x1, . . . , xk, 0, . . . , 0).

Then fa is a function of k variables. (By convention, we will sometimes refer to a constant as a function
of 0 variables.) We then have a mapping

N∗ −→ {fa}1≤a≤s.

A close analysis of the proof of the Cartan-Kähler Theorem then shows that this correspondance between
the elements of C and collections of ‘small’ functions {fa}1≤a≤s consisting of

s0 constants,
s1 functions of one variable,
s2 functions of two variables,

...
sn functions of n variables.

is one-to-one and onto.

Example 4.4: Self-Dual 2-Forms again. Looking at the self-dual 2-forms example, one sees the real
analytic functions

f1(x1, x2) = u3(x1, x2, 0, 0)

f2(x1, x2, x3) = u1(x1, x2, x3, 0)

f3(x1, x2, x3) = u2(x1, x2, x3, 0)

can be specified arbitrarily and that there is only one solution with any such triple of functions f i as it’s
‘initial data’.

Exercise 4.13: Consider the EDS (R2n, 〈dx1∧dy1+ · · ·+dxn∧dyn〉) whose n-dimensional integral manifolds
are the Lagrangian submanifolds of R

2n. Compare and contrast the Cartan-Kähler description of these
integral manifolds near the n-plane N defined by y1 = y2 = · · · = yn = 0 with the more common description
as the solutions of the equations

yi =
∂f

∂xi

where f is an arbitrary differentiable function of n variables. Is there a contradiction here?
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Lecture 5. Applications 2: Weingarten Surfaces, etc.

This lecture will consist entirely of examples drawn from geometry, so that you can get some feel for
the variety of applications of the Cartan-Kähler Theorem.

5.1. Weingarten surfaces

Let x : N → R
3 be an immersion of an oriented surface and let u : N → S2 be the associated oriented

normal, sometimes known as the Gauss map. Recall that we have the two fundamental forms

I = dx · dx, II = −du · dx.

The eigenvalues of II with respect to I are known as the principal curvatures of the immersion. On the open
set N∗ ⊂ N where the two eigenvalues are distinct, they are smooth functions on N . The complement N \N∗

is known as the umbilic locus. For simplicity, I am going to suppose that N∗ = N , though many of the
constructions that I will do can, with some work, be made to go through even in the presence of umbilics.

Possibly after passing to a double cover, we can define vector-valued functions e1, e2 : N → S
2 so

that e1 × e2 = u and so that, setting ηi = ei · dx, we can write

dx = e1 η1 + e2 η2 ,

−du = e1 κ1 η1 + e2 κ2 η2 ,

where κ1 > κ2 are the principal curvatures. The immersion x defines a Weingarten surface if the principal
curvatures satisfy a (non-trivial) relation of the form F (κ1, κ2) = 0. (For a generic immersion, the functions κi

satisfy dκ1∧dκ2 �= 0, at least on a dense open set.) For example, the equations κ1+κ2 = 0 and κ1κ2 = 1
define Weingarten relations, perhaps better known as the relations H = 0 (minimal surfaces) and K = 1,
respectively.

I want to describe a differential system whose integral surfaces are the Weingarten surfaces. For un-
derlying manifold M , I will take G × R

2 where G is the group of rigid motions of 3-space as described in
Example 3.7 (I will mantain the notation established there) and the coordinates on the R

2 factor will be κ1

and κ2. Consider the ideal I = 〈 θ0, θ1, θ2, Υ 〉, where

θ0 = ω3 , θ1 = ω31 − κ1 ω1 , θ2 = ω32 − κ2 ω2 , Υ = dκ1 ∧ dκ2 .

Exercise 5.1: Explain how every Weingarten surface without umbilic points gives rise to an integral 2-
manifold of (M, I) and, conversely why every integral 2-manifold of (M, I) on which ω1∧ω2 is nonvanishing
comes from a Weingarten surface in R

3 by the process you have described.

Now let’s look a little closer at the algebraic structure of I. First of all, by the structure equations

dθ0 = dω3 = −ω31 ∧ω1 − ω32 ∧ ω2

= −(θ1 + κ1 ω1) ∧ ω1 − (θ2 + κ2 ω2) ∧ω2

= −θ1 ∧ω1 − θ2 ∧ω2 .

Then, again, by the structure equations

dθ1 = dω31 − dκ1 ∧ω1 − κ1 dω1

= −ω32 ∧ ω21 − dκ1 ∧ω1 + κ1 (ω12 ∧ω2 + ω13 ∧ω3)
= −(θ2 + κ2 ω2) ∧ ω21 − dκ1 ∧ω1 + κ1 (−ω21 ∧ω2 + ω13 ∧ θ0)
≡ −dκ1 ∧ω1 − (κ1−κ2)ω12 ∧ω2 mod {θ0, θ1, θ2}.

A similar computation gives

dθ2 ≡ −(κ1−κ2)ω21 ∧ω1 − dκ2 ∧ω2 mod {θ0, θ1, θ2}.
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Thus, setting π1 = dκ1, π2 = (κ1−κ2)ω21, and π3 = dκ2, we have

I = 〈 θ0, θ1, θ2, π1 ∧ω1+π2 ∧ω2, π2 ∧ω1+π3 ∧ ω2, π1 ∧π3 〉alg

Now, on the open set M+ ⊂ M where κ1 > κ2, the 1-forms

ω1, ω2, θ0 , θ1, θ2, π1, π2, π3

are linearly independent and are a basis for the 1-forms. For any e ∈ TM+ we can write its components in
this basis as

ωi(e) = ai , (i = 1, 2),
θj(e) = tj , (j = 0, 1, 2),
πk(e) = pk , (k = 1, 2, 3).

The vector e spans a 1-dimensional integral element E if and only if it is nonzero and satisfies t0 = t1 = t2 = 0.

Exercise 5.2: Explain why this shows that all of the elements in V1(I) are ordinary.

Now, assuming e spans E ∈ V1(I), the polar space H(E) is then defined as the set of vectors v that
annihilate the 1-forms θi and the three 1-forms

e (π1 ∧ ω1+π2 ∧ω2) = p1 ω1 + p2 ω2 − a1 π1 − a2 π2

e (π2 ∧ ω1+π3 ∧ω2) = p2 ω1 + p3 ω2 − a1 π2 − a2 π3

e (π1 ∧π3) = − p3 π1 + p1 π3 .

Clearly, for any ‘generic’ choice of the quantities (a1, a2, p1, p2, p3), these three 1-forms will be linearly
independent, so that H(E) will have dimension 2. (Remember that M+ has dimension 8.) In this case, the
flag

(
0, E, H(E)

)
will be regular with characters (s0, s1, s2) = (3, 3, 0). From the description of the generality

of solutions given in the last Lecture, it follows that the ‘general’ Weingarten surface depends on 3 constants
and 3 functions of one variable.

Exercise 5.3: Describe the set of E2 ⊂ V2(I) on which ω1∧ω2 is nonzero. Show that this is not a smooth
submanifold of G2(TM) and describe the singular locus. Show, however, that every E2 ∈ V r

2 (I) on which
ω1∧ω2 is nonzero does contain a regular flag.

Exercise 5.4: Describe which curves
(
x(t), e1(t), e2(t), e3(t), κ1(t), κ2(t)

)
in M+ represent regular 1-

dimensional integral manifolds of I.

Exercise 5.5: Suppose that you want to prescribe the relation F (κ1, κ2) = 0 beforehand and then describe
all of the (umbilic-free) surfaces in R

3 that satisfy F (κ1, κ2) = 0. How would you set this up as an exterior
differential system? What are its characters?

5.2. Orthogonal Coordinates on 3-manifolds

Suppose now that N3 is a 3-manifold and that g : TN → R is a Riemmanian metric, i.e., a smooth
function on TN with the property that, on each TxN , g is a positive definite quadratic form. A coordinate
chart (x1, x2, x3) : U → R

3 is said to be g-orthogonal if, on U ,

g = g11 (dx1)2 + g22 (dx2)2 + g33 (dx3)2,

i.e., if the coordinate expression g = gij dxi dxj satisfies gij = 0 for i different from j. This is three
equations for the three coordinate functions xi. I now want to describe an exterior differential system whose
3-dimensional integral manifolds describe the solutions to this problem.

First, note that, if you have a solution, then the 1-forms ηi = √
gii dxi form a g-orthonormal coframing,

i.e.,
g = η1

2 + η2
2 + η3

2.
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This coframing is not the most general coframing, though, because it satisfies

η1 ∧ dη1 = η2 ∧ dη2 = η3 ∧ dη3 = 0,

since each ηi is a multiple of an exact 1-form. Conversely, any g-orthonormal coframing (η1, η2, η3) that
satisfies ηi∧dηi = 0 for i = 1, 2, 3 is locally of the form ηi = Ai dxi for some functions Ai > 0 and xi, by the
Frobenius Theorem. (Why?)

Thus, up to an application of the Frobenius Theorem, the problem of finding g-orthogonal coordinates
is equivalent to finding g-orthonormal coframings (η1, η2, η3) satisfying ηi∧dηi = 0. I now want to set up an
exterior differential system whose integral manifolds reprsent these coframings.

To do this, let π : F → N be the g-orthonormal coframe bundle of N , i.e, a point of F is a quadruple f =
(x, u1, u2, u3) where x = π(f) belongs to N and ui ∈ TxN are g-orthonormal. This is an O(3)-bundle over N
and hence is a manifold of dimension 6. There are canonical 1-forms ω1, ω2, ω3 on F that satisfy

ωi(v) = ui

(
π′(v)

)
, for all v ∈ TfM with f = (x, u1, u2, u3).

These 1-forms have the ‘reproducing property’ that, if η = (η1, η2, η3) is a g-orthonormal coframing
on U ⊂ M , then regarding η as a section of F over U via the map

ση(x) =
(
x, (η1)x, (η2)x, (η3)x

)
,

we have σ∗
η(ω1, ω2, ω3) = (η1, η2, η3).

Exercise 5.6: Prove this statement. Prove also that π∗(∗1) = ω1∧ω2∧ω3, and that a 3-dimensional
submanifold P ⊂ F can be locally represented as the graph of a local section σ : U → F if and only
if ω1∧ω2∧ω3 is nonvanishing on P .

Consider the ideal I = 〈ω1∧dω1, ω2∧dω2, ω3∧dω3 〉. The 3-dimensional integral manifolds of I on which
ω1∧ω2∧ω3 is nonvanishing are then the desired local sections. We now want to describe these integral
manifolds.

First, it is useful to note that, just as for the orthonormal (co-)frame bundle of Euclidean space, there
are unique 1-forms ωij = −ωji that satisfy the structure equations

dωi = −
3∑

j=1

ωij ∧ωj .

The 1-forms ω1, ω2, ω3, ω23, ω31, ω12 are then a basis for the 1-forms on F .
By the structure equations, an alternative description of I is

I = 〈ω2 ∧ ω3 ∧ω23, ω3 ∧ω1 ∧ω31, ω1 ∧ω2 ∧ ω12 〉.

Let G3(TF, ω) denote the set of tangent 3-planes on which ω1∧ω2∧ω3 is nonvanishing. Any E ∈ G3(TF, ω)
is defined by equations of the form

ω23 − p11 ω1 − p12 ω2 − p13 ω3 = 0
ω31 − p21 ω1 − p22 ω2 − p23 ω3 = 0
ω12 − p31 ω1 − p32 ω2 − p33 ω3 = 0

Such a plane E is an integral element of I if and only the coefficients pij satisfy p11 = p22 = p33 = 0, which
shows that V3(I) ∩ G3(TF, ω) consists entirely of ordinary integral elements. (Why?) Since I is generated
in degree 3, each 1-plane or 2-plane is an ordinary integral element of I. Moreover, since I is generated
by three 3-forms, it follows that for any E2 ∈ V2(I), the codimension of H(E2) in TpF is at most 3. In
particular, every such E2 has at least one extension to a 3-dimensional integral element, so that r(E2) ≥ 0
for every E2 ∈ V2(I).
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If the metric g is real analytic, then the Cartan-Kähler Theorem applies and it follows that there will
be 3-dimensional integral manifolds of I and that, in fact, the generic real analytic surface in F lies in such
an integral manifold.

This would be enough to solve our problem, but it is useful to determine the explicit condition that
makes a surface in F be a regular integral manifold. To do this, we need to determine V r

2 (I). Now, suppose
that E2 is spanned by two vectors a and b and set ai = ωi(a) and bi = ωi(b). A vector v will lie in the polar
space of E2 if and only if it is annihilated by the three 1-forms

(a ∧ b) (ω2 ∧ω3 ∧ω23) ≡ (a2b3−a3b2)ω23

(a ∧ b) (ω3 ∧ω1 ∧ω31) ≡ (a3b1−a1b3)ω31

(a ∧ b) (ω1 ∧ω2 ∧ω12) ≡ (a1b2−a2b1)ω12


 mod {ω1, ω2, ω3} .

In particular, r(E2) = 0 and H(E2) = E3 lies in G3(TF, ω) when all of the numbers {(a2b3−a3b2), (a3b1−a1b3), (a1b2−a2b1)}
are nonzero.

Exercise 5.7: Show that this computation leads to the following geometric description of the regular integral
surfaces of I. A regular integral surface can be seen as a surface S ⊂ M and a choice of a g-orthonormal
coframing η = (η1, η2, η3) along S such that none of the ηi vanish on the tangent planes to the surface S.
By the Cartan-Kähler Theorem, a real analytic coframing satisfying this nondegeneracy condition defined
along a real analytic surface S can be ‘thickened’ uniquely to a real analytic coframing in a neighborhood
of S in such a way that each of the ηi become integrable (i.e., locally exact up to multiples).

5.3. The existence of local Lie groups

As you know, every Lie group G has an associated Lie algebra structure on the tangent space g = TeG.
This Lie algebra structure is a skewsymmetric bilinear pairing [, ] : g×g → g that satisfies the Jacobi identity[

u, [v, w]
]
+

[
v, [w, u]

]
+

[
w, [u, v]

]
= 0

for all u, v, w ∈ g. One way this shows up in the geometry of G (there are many ways) is that, as discussed
in Lecture 2, the canonical left invariant 1-form η on G satisfies the Mauer-Cartan equation dη = −1

2 [η, η].
We have already seen Cartan’s Theorem, which says that any g-valued 1-form ω on a connected and

simply connected manifold M that satisfies dω = −1
2
[ω, ω] is of the form ω = g∗η for some g : M → G, unique

up to composition with left translation. This implies, in particular, that there is at most one connected and
simply connected Lie group associated to each Lie algebra.

I now want to consider the existence question: Suppose that we are given a Lie algebra, i.e., a vector
space g over R with a skewsymmetric bilinear pairing [, ] : g× g → g that satisfies the Jacobi identity. Does
there exist a Lie group G with Lie algebra g? Now, the answer is known to be ‘yes’, but it’s rather delicate
because of certain global topological issues that I don’t want to get into here. What I want to do instead
is use the Cartan-Kähler Theorem to give a quick, simple proof that there exists a local Lie group with Lie
algebra g.

What this amounts to is showing that there exists a g-valued 1-form η on a neighborhood U of 0 ∈ g with
the property that η0 : T0g → g is the identity and that it satisfies the Maurer-Cartan equation dη = −1

2
[η, η].

Exercise 5.8: Assuming such an η exists, prove that there exists some 0-neighborhood V ⊂ U and a
smooth (in fact, real analytic) map µ : V × V → U satisfying

(1) (Identity) µ(0, v) = µ(v, 0) = v for all v ∈ V ,
(2) (Inverses) For each v ∈ V , there is a v∗ ∈ V so that µ(v, v∗) = µ(v∗, v) = 0.
(3) (Associativity) For u, v, w ∈ V , µ

(
µ(u, v), w

)
= µ

(
u, µ(v, w)

)
when both sides make sense,

and so that, if Lv is defined by Lv(u) = µ(v, u), then (Lv)′
(
ηv(w)

)
= w for all w ∈ Tvg = g.

To prove the existence of η, we proceed as follows: First identify g with R
n by choosing linear coor-

dinates x = (xi). Now, let M = GL(n, R) × R
n, with u : M → GL(n, R) and x : M → R

n being the
projections onto the first and second factors. Now set

Θ = d(u dx) + 1
2

[
u dx, u dx

]
=

(
Θi

)
.
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Exercise 5.9: Show that the Jacobi identity implies that (in fact, is equivalent to the fact that)
[
ψ, [ψ, ψ]

]
=

0 for any g-valued 1-form ψ. Conclude that Θ satisfies dΘ = 1
2

[
Θ, u dx

]
− 1

2

[
u dx, Θ

]
.

From this exercise, it follows that the ideal I generated by the n component 2-forms Θi is generated
algebraically by these 2-forms.

Exercise 5.10: If u = (ui
j), then show that there exist (linearly independent) 1-forms πi

j satisfying

πi
j ≡ dui

j mod {dx1, . . . , dxn}

for which Θi = πi
j∧dxj.

The existence of η will be established if we can show that there exists an n-dimensional integral mani-
fold N ⊂ M of I passing through p = (In, 0) on which the n-form dx1∧ · · ·∧dxn is nonvanishing.

To do this, consider the integral element En ⊂ TpM defined by the equations πi
j = 0, and let Ek ⊂ En

be defined by the additional equations dxj = 0 for j > k for 0 ≤ k ≤ n. Since the πi
j are linearly independent,

it follows that
H(Ek) = { v ∈ TpM πi

j(v) = 0 for 1 ≤ j ≤ k },

so c(Ek) = nk for 0 ≤ k ≤ n. Thus, for the flag F = (E0, . . . , En), we have

c(F ) = 0 + n + 2n + · · ·+ (n−1)n = 1
2
n2(n−1).

On the other hand an n-plane E ∈ Gn(TM, x) is defined by equations of the form

πi
j − pi

jk dxk = 0

and it will be an integral element if and only if the 1
2n2(n−1) linear equations pi

jk = pi
kj hold. Consequently,

Cartan’s Test is satisfied and the flag is regular. The Cartan-Kähler Theorem now implies that there is an
integral manifold of I tangent to En. QED

Exercise 5.11: If you are familiar with the proof of this theorem that uses only ODE techniques (see, for
example, [Helgason]), compare that proof with this one. Can you see how the two are related?

5.4. Hyper-Kähler metrics

This example is somewhat more advanced that the previous ones. I’m including it for the sake of those
who might be interested in seeing how the Cartan-Kähler theorem can be used to study more advanced
problems in differential geometry.

A hyper-Kähler structure on a manifold M4n is a quadruple (g, I, J, K) where g is a Riemannian metric
and I, J, K : TM → TM are g-parallel and orthogonal skewcommuting linear transformations of TM that
satisfy

I2 = J2 = K2 = −1, IJ = −K, JK = −I, KI = −J.

In other words (I, J, K) define a right quaternionic structure on the tangent bundle of M that is orthogonal
and parallel with respect to g.

Suppose we have such a structure on M . Set

ω1(v, w) = g(Iv, w), ω2(v, w) = g(Jv, w), ω3(v, w) = g(Kv, w).

Then these three 2-forms are g-parallel and hence closed. Moreover, these three 2-forms are enough data
to recover I, J , K and even g. For example, I is the unique map that satisfies ω3(Iv, w) = −ω2(v, w) and
then g(v, w) = ω1(v, Iw).

There remains the question of ‘how many’ such hyper-Kähler metrics there are locally. One obvious
example is to take M = H

n with its standard metric and let I, J , and K be the usual multiplication (on the
right) by the obvious unit quaternions. However, this is not a very interesting example.
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Two of these 2-forms at a time can indeed be made flat in certain coordinates: If we set Ω = ω2 − i ω3,
it is easy to compute that

Ω(Ix, y) = Ω(x, Iy) = iΩ(x, y)

for all tangent vectors x, y ∈ TpM . Thus, Ω is a closed 2-form of type (2, 0) with respect to the complex
structure I. Moreover, it is easy to compute that Ωn is nowhere vanishing but that Ωn+1 = 0. It follows
from the complex version of the Darboux Theorem that every p ∈ M has a neighborhood U on which there
exist complex coordinates z1, . . . , z2n that are holomorphic for the complex structure I and for which

Ω = dz1 ∧ dzn+1 + dz2 ∧ dzn+2 + · · ·+ dzn ∧ dz2n.

These coordinates are unique up to a holomorphic symplectic transformation. Meanwhile, the 2-form ω1 in
these coordinates takes the form

ω1 =
√
−1
2 uī dzi ∧ dz̄j

where U = (uī) is a positive definite Hermitian matrix of functions that satisfies the equation tU Q U = Q
where

Q =
(

On In
−In On

)
.

One cannot generally choose the coordinates to make U be the identity matrix. Indeed, this is the necessary
and sufficient condition that the hyper-Kähler structure be locally equivalent to the flat structure mentioned
above.

Conversely, if one can find a smooth function U on a domain D ⊂ C
2n with values in positive defi-

nite Hermitian 2n-by 2n matrices satisfying the algebraic condition tU Q U = Q as well as the differential
condition that the 2-form

ω1 =
√
−1
2 uī dzi ∧ dz̄j

be closed, then setting

ω2 − i ω3 = dz1 ∧ dzn+1 + dz2 ∧ dzn+2 + · · ·+ dzn ∧ dz2n

defines a triple (ω1, ω2, ω3) on D that determines a hyper-Kähler structure on D.
This suggests the construction of a differential ideal whose integral manifolds will represent the desired

functions U . First, define

Z = {H ∈ GL(2n, C) H = tH̄ > 0, tH Q H = Q }.

Exercise 5.12: Show that Z can also be described as the space of matrices H = tĀA with A ∈ Sp(n, C) =
{A ∈ GL(2n, C) tAQ A = Q } and hence that Z is just the Riemannian symmetric space Sp(n, C)/Sp(n),
whose dimension is 2n2+n. In particular, Z is a smooth submanifold of GL(2n, C).

Now define M = Z × C
2n and let H = (hī) : M → Z be the projection onto the first factor and z :

M → C
2n be the projection onto the second factor. Let I be the ideal generated by the (real) 3-form

Θ =
√
−1
2 dhī ∧ dzi ∧ dz̄j = d

( √
−1
2 hī dzi ∧ dz̄j

)
.

Obviously I is generated algebraically by Θ, since Θ is closed. One integral manifold of Θ is given by the
equations H = I2n, which corresponds to the flat solution. We want to determine how general the space of
solutions is near this solution.

First, let me note that the group Sp(n, C) acts on M preserving Θ via the action

A · (H, z) =
(
tĀH A, A−1z

)
.

The additive group C
2n also acts on M via translations in the C

2n-factor, and this action also preserves Θ.
These two actions combined generate a transitive action on M preserving Θ, so the ideal I is homogeneous.
Thus, we can do our computations at any point, say p = (I2n, 0), which I fix from now on.
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Let E4n ⊂ TpM be the tangent space at p to the flat solution H = I2n. Let F = (E0, . . . , E4n) be any
flag. Because I is generated by a single 3-form, it follows that

c(Ek) ≤
(

k

2

)

for all k. (Why?) On the other hand, since the codimension of E4n in TpM is 2n2+n = dimZ, equality
cannot hold for k > 2n+1.

Now, I claim that there exists a flag F for which c(Ek) =
(
k
2

)
for k ≤ 2n+1 while c(Ek) = 2n2+n

when 2n+1 < k ≤ 4n. Moreover, I claim that Cartan’s Test is satisfied for such a flag, i.e., V4n(I) ∩
G4n(TM, z) is a smooth submanifold of G4n(TM, z) of codimension

c(F ) = c(E0) + · · ·+ c(E4n−1) =
4
3
n(2n − 1)(2n + 1).

Consequently, such a flag is regular.
Since sk(F ) = k−1 for 0 < k ≤ 2n+1 and sk(F ) = 0 for k > 2n+1, the description of the generality

of solutions near the flat solution now shows that the solutions depend on 2n ‘arbitrary’ functions of 2n+1
variables and that a solution is determined by its restriction to a generic (real analytic) submanifold of
dimension 2n+1. Since the symplectic biholomorphisms depend only on arbitrary functions of 2n variables
(why?), it follows that the generic hyper-Kähler structure is not flat. In fact, as we shall see in the next
lecture, this calculation will yield much more detailed information about the local solutions.

I’m only going to sketch out the proof of these claims and leave much of the linear algebra to you.
The first thing to do is to get a description of the relations among the components of dHp. Computing

the exterior derivatives of the defining relations H = tH̄ and tH Q H = Q gives

dH = tdH, t(dH)Q H + tH Q dH = 0.

Evaluating this at p = (I4n, 0), gives

dHp = tdHp,
t(dHp)Q + Q dHp = 0,

so it follows that

dHp =
(

α β
β̄ −ᾱ

)

where α = tᾱ and β = tβ are n-by-n matrices of complex-valued 1-forms. Writing zi = ui and zi+n = vi

for 1 ≤ i ≤ n, it follows that

Θp =
√
−1
2 αī ∧

(
dui ∧ dūj − dvj ∧ dv̄i

)
+

√
−1
2 βij ∧

(
dui ∧ dv̄j + dvi ∧ dūj

)
Now the only relations among the α-components and the β-components are αī + αjı̄ = βij − βji = 0.
Using this information, you can verify the computation of the c(Ek) simply by finding an E2n+1 ⊂ E4n for
which c(E2n+1) = 2n2+n, since this forces all the rest of the formulae for c(Ek). (Why?) (Such an E2n+1

shouldn’t be hard to find, since the generic element of G2n+1(E4n) works.)
Now, to verify the codimension of V4n(I), note that any E∗

4n ⊂ TpM that is transverse to the Z factor
can be defined by equations of the form

αī = Aīk̄ duk − Ajı̄k̄ dūk + Bīk̄ dvk − Bjı̄k̄ dv̄k

βij = Pijk̄ duk + Qijk dūk + Rijk̄ dvk + Sijk dv̄k

where the coefficients are arbitrary subject to the relations Pijk̄ = Pjik̄, Qijk = Qjik, Rijk̄ = Rjik̄, Sijk =
Sjik. Now you just need to check that the condition that Θp vanish on E∗

4n is exactly 4
3n(2n+1)(2n−1)

linear relations on the coefficients A, B, P , Q, R, and S.

Exercise 5.13: Fill in the details in this proof.
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Lecture 6. Prolongation

Almost all of the previous examples have been carefully chosen so that there will exist regular flags, so
that the Cartan-Kähler theorem can be applied. Unfortunately, this is not always the case, in which case
other methods must be applied. In this lecture, I’m going to describe those other methods.

6.1. When Cartan’s Test fails.

We have already seen one case where the Cartan-Kähler approach fails, in the sense that it fails to find
the integral manifolds that are actually there. That was in Exercise 3.1, where M = R

3 and the ideal was

I = 〈 dx ∧dz, dy ∧ dz 〉.

Although there are 2-dimensional integral manifolds, namely the planes z = c, no 2-dimensional integral
element is the terminus of a regular flag. It’s not too surprising that this should happen, though, because
the ideal

I ′ = 〈 dx ∧ dz, dy ∧ (dz−y, dx) 〉
which is virtually indistinguisable from I in terms of the algebraic properties of the spaces of integral elements
does not have any 2-dimensional integral manifolds. Some finer invariant of the ideals must be brought to
light in order to distinguish the two cases.

Now, the above examples are admittedly a little artificial, so you might be surprised to see that they
and their ‘cousins’ come up quite a bit.

Example 6.1: Surfaces in R
3 with constant principal curvatures. You may already know how to solve

this problem, but let’s see what the näıve approach via differential systems will give. Looking back at the
discussion of surface theory in Lecture 5, you can see that if we want to find the surfaces in R

3 with principal
curvatures equal to some fixed constants κ1 and κ2 (distinct), then we should look for integral manifolds of
the ideal I on G that is generated by the three 1-forms

θ0 = ω3 , θ1 = ω31 − κ1 ω1 , θ2 = ω32 − κ2 ω2 .

Now, if you compute the exterior derivatives of these forms, you’ll get

dθ0 ≡ 0
dθ1 ≡ −(κ1−κ2)ω12 ∧ ω2

dθ2 ≡ −(κ1−κ2)ω21 ∧ ω1


 mod {θ0, θ1, θ2}.

So
I = 〈 θ0, θ1, θ2, (κ1−κ2)ω12 ∧ω2, (κ1−κ2)ω21 ∧ω1 〉)alg .

Now there are two cases: One is that κ1 = κ2, in which case I is Frobenius.

Exercise 6.1: Explain why the integral manifolds in the case κ1 = κ2 correspond to the planes in R
3

when κ1 = κ2 = 0 and to spheres in R
3 when κ1 = κ2 �= 0.

In the second case, where κ1 �= κ2, you’ll see that the 2-dimensional integral elements on which ω1∧ω2

is non-zero (and there are some) never contain any regular 1-dimensional integral elements, just as in our
‘toy’ example.

Exercise 6.2: Describe V2(I) when κ1 �= κ2. Show that there is a unique 2-dimensional integral element
of I at each point of G on which ω1∧ω2 is nonvanishing. Explain why this shows, via Cartan’s Test, that
such integral elements cannot be the terminus of a regular flag.

Exercise 6.3: Redo this problem assuming that the ambient 3-manifold is of constant sectional curvature c,
not necessarily 0. You may want to recall that the structure equations in this case are of the form

dωi = −ωij ∧ωj , dωij = −ωik ∧ ωkj + c ωi ∧ωj .

Does anything significant change?
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Exercise 6.4: Set up an exterior differential system to model the solutions of the system uxx = uyy = 0
(where u is a function of x and y). Compare this to the analogous model of the system uxx = uxy = 0. In
particular, compare the regular integral curves of the two systems and their ‘thickenings’ via the Cartan-
Kähler Theorem.

Exercise 6.5: What can you say about the surfaces in R
3 with the property that each principal curvature κi

is constant on each of its corresponding principal curves?
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6.2. Prolongation, systems in good form

In each of the examples in the previous subsection, we found an exterior differential system for which
the interesting integral manifolds (if there are any) cannot be constructed by thickening along a regular flag.
Cartan proposed a process of ‘regularizing’ these ideals which he called ‘prolongation’. Intuitively, prolon-
gation is just differentiating the equations you have and then adjoining those equations as new equations in
the system. You can see why such a thing might work by looking at the following situation:

We know how to check whether the system

zx = f(x, y), zy = g(x, y)

is compatible. You just need to see whether or not fy = gx, a first order condition on the equations that is
by looking at the exterior ideal generated by the 1-form ζ = dz−f(x, y) dx−g(x, y) dy. On the other hand,
if you consider the system

zxx = f(x, y), zyy = g(x, y),

the compatibility condition is not revealed until you differentiate twice, i.e, fyy = gxx. Now, it’s not clear
how to get to this condition by looking at the ideal on xyzpqs-space generated by

θ0 = dz − p dx− q dy

θ1 = dp − f(x, y) dx − s dy

θ2 = dq − s dx− g(x, y) dy

because the exterior derivatives of these forms will only contain first derivatives of the functions f and g.
And, sure enough, Cartan’s Test fails for this system.

However, if you differentiate the given equations once, you can see that they imply

zxxy = fy(x, y), zxyy = gx(x, y)

which suggests looking at the ideal on xyzpqs-space generated by
θ0 = dz − p dx− q dy

θ1 = dp− f(x, y) dx − s dy

θ2 = dq − s dx − g(x, y) dy

θ3 = ds− fy(x, y) dx− gx(x, y) dy.

Now, this ideal is Frobenius if and only if fyy = gxx, so the obvious compatibility condition is the necessary
and sufficient condition for there to exist solutions to the original problem.

Exercise 6.6: What can you say about the solutions of the system

zxx = z zyy = z?

A systematic way to ‘adjoin derivatives as new variables’ for the general exterior differential sys-
tem (M, I) is this: Suppose that you are interested in studying the n-dimensional integral manifolds of (M, I)
whose tangent planes lie in some smooth submanifold (usually a component)

Z ⊂ Vn(I) ⊂ Gn(TM).

As explained in Lecture 2, every such integral manifold f : N ↪→ M has a canonical lift to a submanifold f(1) :
N ↪→ Z defined simply by

f(1)(p) = f ′(TpN) ⊂ Tf(p)M.

Now, f(1) : N ↪→ Z ⊂ Gn(TM) is an integral manifold of the contact system C and is transverse to the
projection π : Z → M . Conversely, if F : N → Z ⊂ Gn(TM) is an integral manifold of the contact system C
that is transverse to the projection π, then F = f(1) where f = π ◦ F , and so, a fortiori , the tangent spaces
of the immersion f : N → M all lie in Z ⊂ Vn(I). (In particular, f : N → M is an integral manifold of I.)

Let I(1) ⊂ Ω∗(Z) denote the exterior ideal on Z induced by pulling back C on Gn(TM) via the inclu-
sion Z ⊂ Gn(TM). The pair

(
Z, I(1)

)
is known as the Z-prolongation of I. Our argument in the above

paragraph has established that the integral manifolds of I whose tangent planes lie in Z are in one-to-one
correspondance with the integral manifolds of

(
Z, I(1)

)
that are transverse to the projection π : Z → M .

Usually, there is only one component of V o
n (I) of interest anyway. In this case, it is common to refer to

it as M (1) ⊂ V o
n (I) and then simply say that

(
M (1), I(1)

)
is the prolongation of I, imprecise though this is.
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Example 6.2: The toy model again. Look at the EDS(
R

3, 〈 dx ∧dz, dy ∧ dz〉
)
.

There is exactly one 2-dimensional integral element at each point, namely, the 2-plane defined by dz = 0.
Since these 2-dimensional integral elements define a Frobenius system on R

3, there is a unique integral
surface passing through each point of R

3.
It’s instructive to go through the above prolongation process explicitly here: Using the coordinates (x, y, z),

consider the open set G2

(
TR

3, (x, y)
)

consisting of the 2-planes on which dx∧dy is nonzero. This 5-manifold
has coordinates (x, y, z, p, q) so that E ∈ G2

(
TR

3, (x, y)
)

is spanned by{
∂

∂x
+ p(E)

∂

∂z
,

∂

∂y
+ q(E)

∂

∂z

}
.

In these coordinates, the contact system C is generated by the 1-form

θ = dz − p dx− q dy.

Now, Z = V2(I) ⊂ G2

(
TR

3, (x, y)
)

is defined by the equations p = q = 0, so pulling back the form θ to
this locus yields that (x, y, z) are coordinates on Z and that I(1) = 〈 dz 〉, an ideal to which the Frobenius
Theorem applies.

Exercise 6.7: Repeat this analysis for the EDS(
R

3, 〈dx ∧dz, dy ∧ (dz − y dx) 〉
)
.

Frequently, M has a coframing (ω1, . . . , ωn, π1, . . . , πs) (i.e., a basis for the 1-forms on M) and one is
interested in the n-dimensional integral manifolds of some I on which the 1-forms (ω1, . . . , ωn) are linearly
independent. Let Vn(I, ω) denote the integral elements on which ω = ω1∧ . . .∧ωn is nonvanishing. The usual
procedure is then to describe Vn(I, ω) as the set of n-planes defined by equations of the form

πa − pa
i ωi = 0

where the pa
i are subject to the constraints that make such an n-plane be an integral element. In this way,

the pa
i become functions on Vn(I, ω). Moreover, the contact ideal C pulls back to Vn(I, ω) to be generated

by the 1-forms
θa = πa − pa

i ωi ,

thus giving us an explicit expression for the ideal I(1) as

I(1) = 〈 θ1, . . . , θs 〉.

Example 6.3: Constant principal curvatures. Look back at Example 6.1, with κ1 �= κ2, where we found
an ideal

I = 〈ω3, ω31−κ1 ω1, ω32−κ2 ω2, (κ1−κ2)ω12 ∧ ω2, (κ1−κ2)ω21 ∧ω1 〉alg.

There is a unique 2-dimensional integral element at each point of G, defined by the equations

ω3 = ω31−κ1 ω1 = ω32−κ2 ω2, = ω12 = 0.

Thus V2(I) is diffeomorphic to G. By the same reasoning employed above, we have that

I(1) = 〈ω3, ω31−κ1 ω1, ω32−κ2 ω2, ω12 〉

Computing exterior derivatives and using the structure equations, we find that

I(1) = 〈ω3, ω31−κ1 ω1, ω32−κ2 ω2, ω12, κ1κ2 ω1 ∧ω2 〉.

Now we can see a distinction: If κ1κ2 �= 0, then this ideal has no 2-dimensional integral elements at all,
and hence no integral surfaces. On the other hand, if κ1κ2 = 0 (i.e., one of the κi is zero), then I(1) is a
Frobenius system and is foliated by 2-dimensional integral manifolds.
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Exercise 6.8: Repeat this analysis of the surfaces with constant principal curvatures for the other 3-
dimensional spaces of constant sectional curvature. What changes? (You may want to look back at Exercise
6.3, for the structure equations.)

I want to do one more example of this kind of problem so that you can get some sense of what the
process can be like. (I warn you that this is a rather involved example.)

Example 6.4: Restricted Principal Curvatures. Consider the surfaces described in Exercise 6.5, i.e., the
surfaces with the property that each principal curvature κi is constant along each of its corresponding prin-
cipal curves. A little thought, together with reference to the discussion of Weingarten surfaces in Lecture 5
should convince you that these surfaces are the integral manifolds in M = G×R

2 of the ideal

I = 〈 θ0, θ1, θ2, π1 ∧ω1+π2 ∧ ω2, π2 ∧ω1+π3 ∧ω2, π1 ∧ω2, π3 ∧ ω1 〉alg .

(I am maintaining the notation established in Lecture 5.1.) Now, each 2-dimensional integral element on
which ω1∧ω2 is non-vanishing is defined by equations of the form

θ0 = θ1 = θ2 = π1 − p1 ω2 = π2 − p1 ω1 − p2 ω2 = π3 − p2 ω1 = 0.

where p1 and p2 are arbitrary parameters. I’ll leave it to you to check that these integral elements are not
the terminus of any regular flag. Consequently, we cannot apply the Cartan-Kähler Theorem to construct
examples of such surfaces.

It turns out to be computationally advantageous to parametrize the integral elements by q1 = p1/(κ1−κ2)
and q2 = p2/(κ1−κ2) rather than by p1 and p2 as defined above, so that is what we will do. (This change
of scale avoids having to divide by (κ1−κ2) several times later.)

Now, following the prescription already given, construct
(
M (1), I(1)

)
as follows: We let M (1) = M ×R

2,
with p1 and p2 being the coordinates on the R

2-factor and set

I(1) = 〈 θ0, θ1, θ2, θ3 , θ4, θ5 〉

where
θ3 = π1 − p1 ω2 = dκ1 − p1 ω2

(κ1−κ2) θ4 = π2 − p1 ω1 − p2 ω2 = (κ1−κ2)ω21 − p1 ω1 − p2 ω2

θ5 = π3 − p2 ω1 = dκ2 − p2 ω1

or, in terms of the qi, we have
θ3 = dκ1 − (κ1−κ2)q1 ω2 ,

θ4 = ω21 − q1 ω1 − q2 ω2 ,

θ5 = dκ2 − (κ1−κ2)q2 ω1 .

Now, it should not be a surprise that

dθ0 ≡ dθ1 ≡ dθ2 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5

(you should check this if you are surprised). Moreover, using the structure equations and the definitions of
the forms given so far, we can compute that

dθ3 ≡ −(κ1−κ2) dq1 ∧ω2

dθ4 ≡ − dq1 ∧ω1 − dq2 ∧ω2 − (q1
2+q2

2+κ1κ2)ω1 ∧ω2

dθ5 ≡ −(κ1−κ2) dq2 ∧ω1

where the congruences are taken modulo θ0, θ1, θ2, θ3, θ4, θ5. It follows from this computation that the
2-dimensional integral elements on which the 2-form ω1∧ω2 is nonzero are all of the form

θ0 = · · · = θ5 = 0

dq1 − (q3 + q1
2 + 1

2κ1κ2)ω2 = 0

dq2 − (q3 − q2
2 − 1

2κ1κ2)ω1 = 0
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for some q3. Thus, there is a 1-parameter family of such integral elements at each point. Unfortunately,
none of these integral elements are the terminus of a regular flag, so the Cartan-Kähler Theorem still cannot
be applied.

There’s nothing to do now, but do it again: We now parametrize the space of these integral elements
of

(
M (1), I(1)

)
as M (2) = M (1) × R with q3 being the coordinate on the R-factor and we consider the ideal

I(2) = 〈 θ0, θ1, θ2, θ3, θ4 , θ5, θ6 , θ7 〉

where
θ6 = dq1 − (q3 + q1

2 + 1
2κ1κ2)ω2,

θ7 = dq2 − (q3 − q2
2 − 1

2κ1κ2)ω1.

Now we get
dθ0 ≡ · · · ≡ dθ5 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7

(again, this should be no surprise), but we must still compute dθ6 and dθ7. Well, using the structure
equations, we can do this and we get

dθ6 ≡ −θ8 ∧ ω2,

dθ7 ≡ −θ8 ∧ ω1,

}
mod θ0, . . . θ7

where
θ8 = dq3 + (q3+q1

2+ 1
2κ1κ2)q2 ω1 − (q3−q1

2−1
2κ1κ2)q1 ω2 .

(Whew!) At this point, it is clear that there is only one 2-dimensional integral element of I(2) on which ω1∧ω2

is nonzero at each point of M (2) and it is defined by

θ0 = θ1 = θ2 = θ3 = θ4 = θ5 = θ6 = θ7 = θ8 = 0.

Thus M (3) = M (2) and we can take

I(3) = 〈 θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 〉

As before, it is clear that

dθ0 ≡ · · · ≡ dθ7 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 .

What is surprising (perhaps) is that

dθ8 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 !

In other words, I(3) is a Frobenius system! Consequently, M (3), a manifold of dimension 11 (count it up) is
foliated by 2-dimensional integral manifolds of I(3).

Now this rather long example is meant to convince you that the process of prolongation can actually
lead you to some answers. Unfortunately, although we now know that there is a 9-parameter family of such
surfaces (i.e., the solutions depend on s0 = 9 constants), we don’t know what the surfaces are in any explicit
way.

Exercise 6.9: Show that cylinders, circular cones and tori of revolution where the profile curve is a standard
circle are examples of such surfaces. How do you know that this is not all of them? Does every such surface
have at least a 1-parameter family of symmetries?

Exercise 6.10: Note that the forms θ0, . . . , θ9 are well defined on the locus κ1−κ2 = 0. Show that any leaf
of I(3) that intersects this locus stays entirely in this locus. What do these integral surfaces mean? (After
all, an umbilic surface does not have well-defined principal curvatures.)
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Exercise 6.11: What would have happened if, instead, we had looked for surfaces for which each principal
curvature was constant on each principal curve belonging to the other principal curvature? Write down the
appropriate exterior differential system and analyse it.

6.3. The Cartan-Kuranishi Theorem

Throughout this section, I am going to assume that all the ideals in question are generated in positive
degrees, i.e., that they contain no nonzero functions. This is just to simplify the statements of the results.
I’ll let you worry about what to do when you have functions in the ideal.

Let
(
M, I

)
be an EDS and let Z ⊂ V o

n (I) be a connected open subset of V o
n (I). We say that Z is

involutive if every E ∈ Z is the terminus of a regular flag. Usually, in applications, there is only one such Z
to worry about anyway, or else the ‘interesting’ component Z is clear from context, in which case we simply
say that (M, I) is involutive.

The first piece of good news about the prolongation process is that it doesn’t destroy involutivity:

Theorem 8: (Persistence of Involutivity) Let
(
M, I

)
be an EDS with I0 = (0) and let M (1) ⊂ V o

n (I)
be a connected open subset of V o

n (I) that is involutive. Then the character sequence
(
s0(F ), . . . , sn(F )

)
is

the same for all regular flags F = (E0, . . . , En) with En ∈ M (1). Moreover, the EDS
(
M (1), I(1)

)
is involutive

on the set M (2) ⊂ Vn

(
I(1)

)
of elements that are transverse to the projection π : M (1) → M and its character

sequence
(
s
(1)
0 , . . . , s

(1)
n

)
is given by

s
(1)
k = sk + sk+1 + · · ·+ sn .

Exercise 6.12: Define
(
M (k), I(k)

)
by the obvious induction, starting with

(
M (0), I(0)

)
= (M, I) and show

that

dimM (k) = n + s0 +
(

k+1
1

)
s1 +

(
k+2

2

)
s2 + · · ·+

(
k+n

n

)
sn .

Explain why M (k) can be interpreted as the space of k-jets of integral manifolds of I whose tangent planes
lie in M (1).

Now Theorem 8 is quite useful, as we will see in the next lecture, but what we’d really like to know is
whether prolongation will help with components Z ⊂ Vn(I) that are not involutive. The answer is a sort of
qualified ‘yes’:

Theorem 9: (Cartan-Kuranishi) Suppose that one has a sequence of manifolds Mk for k ≥ 0 together
with embeddings ιk : Mk ↪→ Gn(TMk−1) for k > 0 with the properties

(1) The composition πk−1 ◦ ιk : Mk → Mk−1 is a submersion,
(2) For all k ≥ 2, ιk(Mk) is a submanifold of Vn(Ck−2, πk−2), the integral elements of the contact

system Ck−2 on Gn(TMk−2) transverse to the fibers of πk−2 : Gn(TMk−2) → Mk−2.
Then there exists a k0 ≥ 0 so that for k ≥ k0, the submanifold ιk+1(Mk+1) is an involutive open subset
of Vn

(
ι∗kCk−1

)
, where ι∗kCk−1 is the EDS on Mk pulled back from Gn(TMk−1).

A sequence of manifolds and immersions as described in the theorem is sometimes known as a prolon-
gation sequence.

Now, you can imagine how this theorem might be useful. When you start with an EDS (M, I) and
some submanifold ι : Z ↪→ Vn(I) that is not involutive, you can start building a prolongation sequence by
setting M1 = Z and looking for a submanifold M2 ⊂ Vn(ι∗C0) that is some component of Vn(ι∗C0). You
keep repeating this process until either you get to a stage Mk where Vn(ι∗Ck−1) is empty, in which case
there aren’t any integral manifolds of this kind, or else, eventually, this will have to result in an involutive
system, in which case you can apply the Cartan-Kähler Theorem (if the system that you started with is real
analytic).

The main difficulty that you’ll run into is that the spaces Vn(I) can be quite wild and hard to describe.
I don’t want to dismiss this as a trivial problem, but it really is an algebra problem, in a sense. The other
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difficulty is that the the components M1 ⊂ Vn(I) might not submerse onto M0 = M , but onto some proper
submanifold, in which case, you’ll have to restrict to that submanifold and start over.

In the case that the original EDS (M, I) is real analytic, the set Vn(I) ⊂ Gn(TM) will also be real
analytic and so has a canonical stratification into submanifolds

Vn(I) =
⋃

β∈B

Zβ .

One can then consider the family of prolongations (Zβ, I(1)
β ) and analyse each one separately. (Fortunately,

in all the interesting cases I’m aware of, the number of strata is mercifully small.)
Now, there are precise, though somewhat technical, hypotheses that will ensure that this prolongation

Ansatz , when iterated and followed down all of its various branches, terminates after a finite number of steps,
with the result being a finite (possibly empty) set of EDSs

{
(Mγ , Iγ) γ ∈ Γ

}
that are involutive. This

result (with the explicit technical hypotheses) is due to Kuranishi and is known as the Cartan-Kuranishi
Prolongation Theorem. (Cartan had conjectured/stated this result in his earlier writings, but never provided
adequate justification for his claims.) In practice, though, Kuranishi’s result is used more as a justification
for carrying out the process of prolongation as part of the analysis of an EDS, when it is necessary.

Exercise 6.13: Analyse the system

∂nz

∂xn
= f(x, y),

∂nz

∂yn
= g(x, y),

and explain why you’ll have to prolong it (n−1) times before you reach either a system with no 2-dimensional
integral elements or one that has 2-dimensional integral elements that can be reached by a regular flag. In
the latter case, do you actually need the full Cartan-Kähler Theorem to analyse the solutions?

Exercise 6.14: Analyse the system for u(x, y, z) given by

∂2u

∂x2
− ∂2u

∂y2
= u,

∂2u

∂y2
− ∂2u

∂z2
= u.

Show that the natural system generated by four 1-forms you would write down on R
11 to model the solutions

is not involutive but that its first prolongation is. How much data do you get to specify in a solution?
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Lecture 7. Applications 3: Geometric Systems Needing Prolongation

7.1. Orthogonal coordinates in dimension n.

In this example, I take up the question of orthogonal coordinates in general dimensions, as opposed to
dimension 3, as was discussed in Lecture 5.

Let N be a manifold of dimension n endowed with a Riemannian metric g. If U ⊂ N is an open set, a
coordinate chart (x1, . . . , xn) : U → R

n is said to be orthogonal if, on U ,

g = g11 (dx1)2 + g22 (dx2)2 + · · ·+ gnn (dxn)2,

i.e., if the coordinate expression g = gij dxi dxj satisfies gij = 0 for i different from j. This is
(
n
2

)
equations

for the n coordinate functions xi. When n > 3, this is an overdetermined system and one should not expect
there to be solutions. Indeed, very simple examples in dimension 4 show that there are metrics for which
there are no orthogonal coordinates, even locally. (I’ll say more about this below.)

I want to describe an EDS whose n-dimensional integral manifolds describe the solutions to this problem.
Note that, if you have a solution, then the 1-forms ηi = √

gii dxi form an orthonormal coframing, i.e.,

g = η1
2 + η2

2 + · · ·+ ηn
2.

This coframing is not the most general orthonormal coframing, though, because it satisfies ηi∧dηi = 0
since each ηi is a multiple of an exact 1-form. Conversely, any g-orthonormal coframing (η1, . . . , ηn) that
satisfies ηi∧dηi = 0 for i = 1, . . . , n is locally of the form ηi = Ai dxi for some functions Ai > 0 and xi, by
the Frobenius Theorem. (Why?)

Thus, up to an application of the Frobenius Theorem, the problem of finding g-orthogonal coordinates
is equivalent to finding g-orthonormal coframings (η1, . . . , ηn) satisfying ηi∧dηi = 0. I now want to set up
an exterior differential system whose integral manifolds reprsent these coframings.

To do this, let π : F → N be the g-orthonormal coframe bundle of N , i.e, a point of F is of the
form f = (x, u1, . . . , un) where x = π(f) belongs to N and ui ∈ TxN are g-orthonormal. This is an O(n)-
bundle over N and hence is a manifold of dimension n +

(
n
2

)
. There are the canonical 1-forms ω1, . . . , ωn

on F that satisfy
ωi(v) = ui

(
π′(v)

)
, for all v ∈ TfM with f = (x, u1, . . . , un).

These 1-forms have the ‘reproducing property’ that, if η = (η1, . . . , ηn) is a g-orthonormal coframing
on U ⊂ N , then regarding η as a section of F over U via the map

ση(x) =
(
x, (η1)x, . . . (ηn)x

)
,

we have σ∗
η(ω1, . . . , ωn) = (η1, . . . , ηn).

Exercise 7.1: Prove this statement. Prove also that a n-dimensional submanifold P ⊂ F can be locally
represented as the graph of a local section σ : U → F if and only if ω1∧ · · ·∧ωn is nonvanishing on P .

Consider the ideal I = 〈ω1∧dω1, . . . , ωn∧dωn 〉 defined on F . The n-dimensional integral manifolds of I
on which ω1∧ · · ·∧ωn is nonvanishing are then the desired local sections. We now want to describe these
integral manifolds, so we start by looking at the integral elements.

Now, by the classical Levi-Civita existence and uniqueness theorem, there are unique 1-forms ωij = −ωji

that satisfy the structure equations

dωi = −
n∑

j=1

ωij ∧ωj .

The 1-forms ωi, ωij (i < j) are then a basis for the 1-forms on F .
By the structure equations, an alternative description of I is

I =

〈
ω1 ∧

( n∑
j=1

ω1j ∧ωj

)
, . . . , ωn ∧

( n∑
j=1

ωnj ∧ωj

) 〉
.
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Let Gn(TF, ω) denote the set of tangent n-planes on which ω1∧ · · ·∧ωn is nonvanishing. Any E ∈ Gn(TF, ω)
is defined by equations of the form

ωij =
n∑

k=1

pijk ωk

Such an n-plane will be an integral element if and only if the pijk = −pjik (which are n
(
n
2

)
in number) satisfy

the equations

0 = ωi ∧
( n∑

j=1

ωij ∧ωj

)
= ωi ∧

( n∑
j,k=1

pijk ωk ∧ωj

)
for i = 1, . . . , n.

Exercise 7.2: Show that these conditions imply that pijk = 0 unless k is equal to i or j and then that
every integral element is defined by equations of the form

ωij = pij ωi − pji ωj

where the n(n−1) numbers { pij i �= j } are arbitrary. Explain why the pii don’t matter, and conclude that
the codimension of the space Vn(I, ω) in Gn(TF, ω) is

n

(
n

2

)
− n(n − 1) = 1

2
n(n − 1)(n − 2).

Now, to check Cartan’s Test, we need to compute the polar spaces of some flag in E = En. We already
know from Lecture 5 that there are regular flags when n = 3, so we might as well assume that n > 3 from
now on. I am going to argue that, in this case, there cannot be a regular flag, so Cartan-Kähler cannot be
applied and we must prolong.

Let F = (E0, E1, . . . , En) be any flag. Because I is generated by n 3-forms, it follows that c(E0) =
c(E1) = 0 and that c(E2) ≤ n. Moreover, because En has codimension 1

2
n(n − 1), it follows that c(Ek) ≤

1
2n(n − 1) for all k. Combining these, we see that

c(F ) ≤ c(E0) + · · ·+ c(En−1) ≤ 0 + 0 + n + (n − 3) · 1
2
n(n − 1).

When n > 3, this last number is strictly less than 1
2
n(n−1)(n−2), the codimension of Vn(I, ω) in Gn(TF, ω)

that we computed above. Thus Cartan’s Test shows that the flag F is not regular.
Thus, if we want to find solutions, we will have to prolong. We make a new manifold F (1) = F ×R

n(n−1),
with { pij i �= j } as coordinates on the second factor, and define I(1) to be the ideal generated by the

(
n
2

)
1-forms

θij = ωij − pij ωi + pji ωj .

Of course, if we are going to study the algebraic properties of this ideal, we are going to have to know dθij

and this will require that we know dωij. Now, the second structure equations of Cartan are

dωij = −
n∑

k=1

ωik ∧ωkj + 1
2

n∑
k,l=1

Rijkl ωk ∧ωl ,

where the functions Rijkl are the Riemann curvature functions.
Now, using this, if you compute, you will get

dθij ≡ 1
2

n∑
k,l=1

Rijkl ωk ∧ωl − πij ∧ ωi + πji ∧ωj mod {θkl}k<l

for some 1-forms πij (i �= j), with πij ≡ dpij mod {ω1, . . . , ωn}.
Right away, this says that there is trouble: If there is a point f ∈ F for which there exist (i, j, k, l)

distinct and Rijkl(f) �= 0, then the prolonged ideal will not have any integral elements passing through f on
which ω1∧ . . .∧ωn is nonzero. (Why not?)
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Now, it turns out that the functions Rijkl with (i, j, k, l) distinct are all identically zero if and only if the
Weyl curvature of the metric g vanishes, i.e., (since n ≥ 4) if and only if g is conformally flat. Since orthogonal
coordinates don’t care about conformal factors (why not?), if we are going to restrict to the conformally flat
case, then we might as well go whole hog and restrict to the flat case, i.e., the case where Rijkl = 0 for all
quadruples of indices. In this case, the structure equations of I(1) become

dθij ≡ −πij ∧ωi + πji ∧ωj mod {θkl}k<l

for some 1-forms πij (i �= j), with πij ≡ dpij mod {ω1, . . . , ωn}.
Exercise 7.3: Use these structure equations to show that

(
F (1), I(1)

)
is involutive, with Cartan characters

(s0 , s1, · · · , sn) = (1
2n(n − 1), 1

2n(n − 1), 1
2n(n − 1), 0, 0, . . . , 0).

In particular, the last nonzero Cartan character is s2 = 1
2
n(n−1). Explain the geometric meaning of this

result: How much freedom do you get in constructing local orthogonal coordinates on R
n?

Exercise 7.4: (somewhat nontrivial) Using the above analysis as starting point, show that the Fubini-Study
metric g on CP

2 does not allow any orthogonal coordinate systems, even locally.

7.2. Isometric Embedding of Surfaces with Prescribed Mean Curvature

Consider a given abstract oriented surface N2 endowed with a Riemannian metric g and a choice of a
smooth function H . The question we ask is this: When does there exist an isometric embedding x : N2 → R

3

such that the mean curvature function of the immersion is H? If you think about it, this is four equations
for the map x (which has three components), three of first order (the isometric embedding condition) and
one of second order (the mean curvature restriction).

Since H2−K = (κ1−κ2)2 ≥ 0 for any surface in 3-space, one obvious restriction coming from the Gauss
equation is that H2 − K must be nonnegative, where K is the Gauss curvature of the metric g. I’m just
going to treat the case where H2 − K is strictly positive, though there are methods for dealing with the
‘umbilic locus’ (I just don’t want to bother with them here). In fact, set r =

√
H2 − K > 0.

The simplest way to set up the problem is to begin by fixing an oriented, g-orthonormal cofram-
ing (η1, η2), with dual frame field (u1, u2). We know that there exists a unique 1-form η12 so that

dη1 = −η12 ∧ η2, dη2 = η12 ∧ η1, dη12 = K η1 ∧ η2 .

Now, any solution x : N → R
3 of our problem will define a lifting f : N → F (the oriented orthonormal

frame bundle of R
3) via

f =
[

x x′(u1) x′(u2) x′(u1)×x′(u2)
]

Of course, this will mean that
f∗ω3 = 0
f∗ω1 = η1

f∗ω1 = η2

f∗ω31 = h11 η1 + h12 η2

f∗ω32 = h12 η1 + h22 η2

where h11 + h22 = 2H . We also know, by the uniqueness of the Levi-Civita connection, that

f∗ω12 = η12

and the Gauss equation tells us that h11h22 − h12
2 = K. This is two algebraic equations for the three hij.

Because H2 − K = r2 > 0, these can be solved in terms of an extra parameter in the form

h11 = H + r cosφ

h12 = r sinφ

h22 = H − r cosφ .
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This suggests setting up the following exterior differential system for the ‘graph’ of f in N×F . Let M =
N × F × S1, with φ being the ‘coordinate’ on the S1 factor and consider the ideal I generated by the five
1-forms

θ0 = ω3

θ1 = ω1 − η1

θ2 = ω2 − η2

θ3 = ω12 − η12

θ4 = ω31 − (H+r cosφ) η1 − r sin φ η2

θ5 = ω32 − r sin φ η1 − (H−r cosφ) η2

It’s easy to see (and you should check) that

dθ0 ≡ dθ1 ≡ dθ2 ≡ dθ3 ≡ 0 mod {θ0, θ1, θ2, θ3, θ4, θ5}.

The interesting case will come when we look at the other two 1-forms. In fact, the formula for these is simply

dθ4 ≡ rτ ∧ (sin φ η1 − cosφ η2)
dθ5 ≡ −rτ ∧ (cos φ η1 + sin φ η2)

}
mod {θ0, θ1, θ2, θ3, θ4, θ5}

where, setting dr = r1 η1 + r2 η2 and dH = H1 η1 + H2 η2 ,

τ = dφ − 2 η12 − r−1(r2 + H2 cos φ − H1 sin φ) η1

+ r−1(r1 − H1 cosφ − H2 sinφ) η2 .

It is clear that there is a unique integral element at each point of M and that it is described by θ0 = · · · =
θ5 = τ = 0. Thus, M (1) = M and

I(1) = 〈 θ0, θ1, θ2, θ3, θ4, θ5, τ 〉.

To get the structure of I(1) is is only necessary to compute dτ now and the result of that is

dτ ≡ r−2
(
C cosφ + S sin φ + T

)
η1 ∧ η2 mod {θ0, θ1, θ2, θ3, θ4, θ5, τ}

where the functions C, S, and T are defined on the surface by

C = 2r1H1 − 2r2H2 − rH11 + rH22 ,

S = 2r2H1 + 2r1H2 − 2rH12 ,

T = 2r4 − 2H2r2 + r(r11+r22) − r1
2 − r2

2 − H1
2 − H2

2 .

and I have defined Hij and rij by the equations

dH1 = −H2 η12 + H11 η1 + H12 η2 ,

dH2 = H1 η12 + H12 η1 + H22 η2 ,

dr1 = −r2 η12 + r11 η1 + r12 η2 ,

dr2 = r1 η12 + r12 η1 + r22 η2 .
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Exercise 7.5: Why do such functions Hij and rij exist? (What you need to explain is why H12 and r12

can appear in two places in these formulae.)

Clearly, there are no integral elements of I(1) except along the locus where C cosφ + S sin φ + T = 0,
so it’s a question of what this locus looks like.

First, off, note that if T 2 > S2 + C2, then this locus is empty. Now, this inequality is easily seen not to
depend on the choice of coframing (η1, η2) that we made to begin with. It depends only on the metric g and
the function H . One way to think of this is that the condition T 2 ≤ S2 + C2 is a differential inequality any
g and H satisfy if they are the metric and mean curvature of a surface in R

3.
Now, when T 2 < C2 +S2 , there will be exactly two values of φ (mod 2π) that satisfy C cos φ+S sin φ+

T = 0, say φ+ and φ−, thought of as functions on the surface N . If you restrict to this double cover φ = φ±,
we now have an ideal I(1) on an 8-manifold that is generated by seven 1-forms. In fact, θ0 , . . . , θ5 are clearly
independent, but now

τ = E1 η1 + E2 η2

where E1 and E2 are functions on the surface Ñ ⊂ N×S1 defined by the equation C cosφ+S sin φ+T = 0.
Wherever either of these functions is nonzero, there is clearly no solution. On the other hand, if E1 = E2 = 0
on Ñ , then there are exactly two geometrically distinct ways for the surface to be isometrically embeded
with mean curvature H . If you unravel this, you will see that it is a pair of fifth order equations on the
pair (g, H). (The expressions T and S2+C2 are fourth order in g and second order in H . Why?)

Exercise 7.6: (somewhat nontrivial) See if you can reproduce Cartan’s result that the set of surfaces
that admit two geometrically distinct isometric embeddings with the same mean curvature depend on four
functions of one variable. (In the literature, such pairs of surfaces are known as Bonnet pairs after O. Bonnet,
who first studied them.)

Another possibility is that T = C = S = 0, in which case I(1) becomes Frobenius.

Exercise 7.7: Explain why T = C = S = 0 implies that the surface admits a one-parameter family (in
fact, a circle) of geometrically distinct isometric embeddings with mean curvature H .

Of course, this raises the question of whether there exist any pairs (g, H) satisfying these equations.
One way to try to satisfy the equations is to look for special solutions. For example, if H were constant,
then H1, H2, H11, H12, and H22 would all be zero, of course, so this would automatically make C = S = 0
and then there is only one more equation to satisfy, which can now be reëxpressed, using K = H2 − r2, as

T = r2
(
∆g ln(H2 − K) − 4K

)
= 0

where ∆g is the Laplacian associated to g.
It follows that any metric g on a simply connected surface N that satisfies the fourth order differential

equation ∆g ln(H2 − K) − 4K = 0 can be isommetrically embedded in R
3 as a surface of constant mean

curvature H in a 1-parameter family (in fact, an S1) of ways. In particular, we have Bonnet’s Theorem:
Any simply connected surface in R

3 with constant mean curvature can be isometrically deformed in an circle
of ways preserving the constant mean curvature.

However, the cases where H is constant give only one special class of solutions of the three equations C =
S = T = 0. Could there be others?

Well, let’s restrict to the open set U ⊂ N where dH �= 0, i.e., where H1
2 + H2

2 > 0. Remember, the
original coframing (η1, η2) we chose was arbitrary, so we might as well use the nonconstancy of H to tack
this down. In fact, let’s take our coframing so that the dual frame field (u1, u2) has the property that u1

points in the direction of steepest increase for H , i.e., in the direction of the gradient of H . This means that,
for this coframing H2 = 0 and H1 > 0.

The equations C = S = 0 now simplify to

H12 = (r2/r)H1, H11 − H22 = (2r1/r)H1 .

Moreover, looking back at the structure equations found so far, this implies that dH = H1 η1 and that there
is a function P so that

H1
−1dH1 = (rP + r1/r) η1 + (r2/r) η2, ,

−η12 = (r2/r) η1 + (rP − r1/r) η2 .
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The first equation can be written in the form

d
(
ln(H1/r)

)
= rP η1.

Differentiating this and using the structure equations we have so far then yields that dP∧η1 = 0, so that
there is some λ so that dP = λ η1. On the other hand, differentiating the second of the two equations above
and using T = 0 to simplify the result, we see that the multiplier λ is determined. In fact, we must have

dP = (r2H2 + H1
2 − r4 − r4P 2) η1 .

Differentiating this relation and using the equations we have found so far yields

0 = 2r−4
(
H1

2 + r2H2
)
r2 η1 ∧ η2 .

In particular, we must have r2 = 0. Of course, this simplifies the equations even further. Taking the
components of 0 = dr2 = r1η12 + r11 η1 + r22 η2 together with the equation T = 0 allows us to solve for r11,
r12, and r22 in terms of {r, H, r1, H1, P }.

In fact, collecting all of this information, we get the following structure equations for any solution of
our problem:

dη1 = 0
dη2 = (rP − r1/r) η1 ∧ η2

dr = r1 η1

dH = H1 η1

dr1 = (2r3 − 2H2r + r1rP − 2r1
2/r − H1

2/r) η1

dH1 = H1(rP + r1/r) η1

dP = (r2H2 + H1
2 − r4 − r4P 2) η1

These may not look promising, but, in fact, they give a rather complete description of the pairs (g, H) that
we are seeking. Suppose that N is simply connected. The first structure equation then says that η1 = dx
for some function x, uniquely defined up to an additive constant. The last 5 structure equations then say
that the functions (r, H, r1, H1, P ) are solutions of the ordinary differential equation system

r′ = r1

H ′ = H1

r′1 = (2r3 − 2H2r + r1rP − 2r1
2/r − H1

2/r)
H ′

1 = H1(rP + r1/r)

P ′ = (r2H2 + H1
2 − r4 − r4P 2)

Obviously, this defines a vector field on the open set in R
5 defined by r > 0, and there is a four parameter

family of integral curves of this vector field. Given a solution of this ODE system on some maximal x-interval,
there will be a function F uniquely defined up to an additive constant so that

F ′ = (rP − r1/r).

Now by the second structure equation, we have d(e−F η2) = 0, so that there must exist a function y on the
surface N so that η2 = eF dy. Thus, in the (x, y)-coordinates, the metric is of the form

g = dx2 + e2F (x) dy2

where (r, H, r1, H1, P, F ) satisfy the above equations.
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Exercise 7.8: Explain why this shows that the space of inequivalent solutions (g, H) with H nonconstant
can be thought of as being of dimension 4. Also, note that the metric g has a symmetry, namely translation
in y. Can you use this to understand the circle of isometric embeddings of (N, g) into R

3 with mean
curvature H? (Hint: Look back at the EDS analysis we did earlier and apply Bonnet’s Theorem.

Exercise 7.9: Redo this analysis for isometric immersion with prescribed curvature in a 3-dimensional
space form of constant sectional curvature c. Does anything significant change?

Exercise 7.10: (somewhat nontrivial) Regarding the equations S = C = T = 0 as a set of three partial
differential equations for the pair (g, H), show that they are not involutive as they stand, carry out the
prolongation process and show how the space of integral manifolds breaks into two distinct pieces because
the space of integral elements has two distinct components at a certain level of prolongation. Show that one
of these (the one corresponding to the case where H is constant) goes into involution right away, but that
the other (corresponding to the Bonnet surfaces that we found above) takes considerably longer.

Exercise 7.11: (also somewhat nontrivial) Suppose that we want to isometrically embedd (N2, g) into R
3

in such a way that a given g-orthogonal coframing (η1, η2) defines the principal coframing. Set up the exterior
differential system and carry out the prolongations to determine how many solutions to this problem there
are in general and whether there are any special metrics and coframings for which there is a larger than
expected space of solutions.

7.3.
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Lecture 8. G-structures: Examples, pseudo-connections, and torsion

Let M be a smooth n-manifold. A coframe at x ∈ M is a linear isomorphism u : TxM → R
n. In

practice, I find it helpful to think of a coframe at x as a 1-jet of a coordinate system centered at x. The set
of coframes based at x will be denoted by F ∗

x (M) (or simply F ∗
x when the manifold M is clear from context).

The disjoint union of the F ∗
x as x varies on M will be denoted F ∗(M) (or, again, simply F ∗) and is called

the space of general coframes of M . The basepoint mapping π : F ∗ → M is defined by π(F ∗
x ) = x. The

group GL(n, R) acts on F ∗ on the right by the rule u ·A = A−1u for u ∈ F ∗ and A ∈ GL(n, R). This action
is simply transitive on each of the π-fibers F ∗

x .
For any open set U ⊂ M , a (smooth) coframing of U is a choice η = (ηi) where 1 ≤ i ≤ n and the ηi

are n (smooth) 1-forms on U that are everywhere linearly indepdendent. Associated to such a coframing η,
there is a map H : U × GL(n, R) → F ∗(U) defined by the formula

H(x, A) = A−1ηx .

This map respects the right action by GL(n, R), i.e.,

H(x, AB) = B−1 H(x, A) = H(x, A) ·B.

There is a unique smooth structure on F ∗ for which the maps H so constructed are diffeomorphisms. Indeed,
there is a unique structure of a smooth, principal GL(n, R)-bundle on F ∗ so that the inverses of these maps
are its smooth trivializations. Henceforth, this will be the smooth structure I assume on F ∗. The basepoint
mapping π : F ∗ → M is then a smooth submersion and a smooth local section of F ∗ is simply a coframing
on the domain of the section.

If N is another smooth n-manifold and f : M → N is a local diffeomorphism, then a smooth bundle
map f1 : F ∗(M) → F ∗(N) covering f is defined by the rule

f1(u) = u ◦
(
f ′(π(u)

))−1
.

The assignment f → f1 is functorial (and covariant), as expected, with πN ◦ f1 = f ◦ πM and f1 is a
diffeomorphism.

It is sometimes more useful (and conceptually clearer) to replace R
n by an abstract n-dimensional real

vector space V . One then speaks of the V -valued coframes, which are isomorphisms u : TxM → V , and
constructs the principal right GL(V )-bundle F ∗(M, V ) of V -valued coframes. The chief advantage of this
more general notation is that it is easier to keep track of the fundamental distinction between V and V ∗. I
will resort to this when necessary.

Let G be an n-by-n matrix group, i.e., a Lie subgroup of GL(n, R). A (smooth) G-structure on an
n-manifold M is simply a (smooth) G-subbundle of F ∗ = F ∗(M), i.e., a (smooth) submanifold B ⊂ F ∗ so
that the restricted basepoint mapping π : B → M is a surjective submersion whose fibers Bx = B ∩ Fx are
G-orbits.

When G is closed in GL(n, R), an alternative definition is available, for then the quotient space F ∗/G car-
ries the structure of a smooth bundle over M . Its fibers are just copies of the homogeneous space GL(n, R)/G.
A choice of a (smooth) G-structure on M is then equivalent to a choice of a (smooth) section of this bundle.
This viewpoint is frequently useful when one wants to make statements about the space of G-structures, as
I will. Since the closed case is adequate for most applications, you may simply assume that G is closed for
the remainder of these lectures.

Two G-structures B ⊂ F ∗(M) and B̃ ⊂ F ∗(M̃) are said to be equivalent if there exists a diffeomor-
phism f : M → M̃ so that f1(B) = B̃. The equivalence problem for G-structures is the problem of developing
effective methods for determining whether or not two given G-structures are equivalent (and, if so, in how
many ways). As I have already mentioned, it was Élie Cartan who first posed this general problem. He also
proposed a method, nowadays known as the equivalence method of É. Cartan, for its solution.

Before discussing this method, I will illustrate its connections with geometry (and the geometry of PDE
in particular) by the use of several examples of geometric structures that are effectively described in terms
of G-structures.

8.1. Examples of G-structures
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Example 8.1: Riemannian metrics. Let G = O(n), the orthogonal group in n dimensions with respect
to the standard inner product on R

n. If Mn is endowed with a Riemannian metric g, then one can define

Bg = { u ∈ F ∗(M) u : TxM → R
n is an isometry } .

As the reader can verify, Bg is an O(n)-structure on M . Conversely, if B is an O(n)-structure on M , then
there exists a unique Riemannian metric gB on M defined by the rule (gB)x(v, w) = u(v)·u(w) for v, w ∈ TxM
where u is any element of Bx. The very fact that B is an O(n)-structure ensures that this does well-define
gB as a Riemannian metric on M . The two correspondences are inverse to each other, so a choice of a
Riemannian metric is equivalent to a choice of O(n)-structure.

The method of equivalence applied to O(n)-structures will construct the Levi-Civita connection and the
usual Riemannian curvature apparatus.

Example 8.2: Almost complex structures. Suppose now that n = 2m and let

Jm =
(

0 −Im
Im 0

)

and define G ⊂ GL(2m, R) to be the subgroup of matrices that commute with Jm. As the reader can verify,
one can identify R

2m with C
m in such a way that Jm becomes multiplication by i and G is thereby shown

to be isomorphic to GL(m, C), so I will henceforth identify it as such.
Suppose now that J is an almost complex structure on a manifold M2m, i.e., J : TM → TM is a bundle

map satisfying J2 = −Id. The uniqueness up to isomorphism of complex vector spaces of dimension m then
implies that the set

BJ = { u ∈ F ∗
x (M) u(Jxv) = Jm u(v) for all v ∈ TxM } .

has the property that each fiber
(
BJ

)
x

is a GL(m, C)-orbit in F ∗
x . Moreover, it is not difficult to show that

when J is smooth, then so is BJ . Conversely, given a GL(m, C)-structure B ⊂ F ∗(M), there is a unique
almost complex structure J for which B = BJ . Thus, the two kinds of structure are equivalent.

The method of equivalence applied to GL(m, C)-structures in this case will, as a first step, for each almost
complex structure J , construct its Nijnhuis tensor NJ as a section of TM ⊗Λ2

(
T ∗M

)
and show that it is a

complete first order invariant. I.e., suppose that J and K are almost complex structures on 2m-manifolds M
and N respectively. Then for given points x ∈ M and y ∈ N , there exists a local diffeomorphism f : U → N ,
defined on an x-neighborhood U , that satisfies f(x) = y and the condition that f∗K − J vanishes to second
order at x if and only if there exists a linear isomorphism L : TxM → TyN satisfying L∗(Ky

)
= Jx and

L∗(NK
y

)
NJ

x . Moreover, the equivalence method will predict that K and J are locally equivalent if they
satisfy NJ = NK = 0. That this prediction is valid is the content of the Newlander-Nirenberg theorem.

This next example is of particular importance for our discussions in these lectures:

Example 8.3: Constant type ideals. Let I0 ⊂ Λ∗(Rn
)

be any graded ideal in the algebra of (constant
coefficient) alternating forms on R

n. Let G ⊂ GL(n, R) be the group of linear transformations g whose
induced action on A∗(Rn

)
preserves I0. Then a G-structure B on Mn defines an algebraic ideal I ⊂ Ω∗(M)

(which, of course, need not be differentially closed) by the requirement that a p-form φ on M belongs to I
if and only if (u−1)∗(φx) lies in I0 for all x ∈ M and u ∈ Bx. Such ideals are sometimes said to be of
constant algebraic type since for any two points x, y ∈ M , there exists a linear isomorphism L : TxM → TyM
satisfying L∗(Iy) = Ix.

Conversely, given an ideal I ⊂ Ω∗(M) of constant algebraic type in this sense, one can clearly associate
to it a G-structure where G is the group of automorphisms of a fixed representative I0 of this type. As the
examples to be presented below drawn from the study of partial differential equations indicate, the analysis
via the method of equivalence of these sorts of G-structures turns out to be an effective method of studying
the original PDE.

Exercise 8.1: Show that the Monge-Ampere ideals from Exercise 1.4 for which the coefficients satisfy the
inequality AC − B2 − DE > 0 are all of the same constant algebraic type. Do the same for the Monge-
Ampere ideals for which AC − B2 − DE < 0. (The first type are called elliptic and the second type are
called hyperbolic.)
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Exercise 8.2: Show that the ideals I = 〈θ, a Υ2−b Υ1+c Υ0〉 constructed in Example 1.4 are all of constant
algebraic type and that they are ‘elliptic’ type if ac − 4b2 < 0 and ‘hyperbolic’ type if ac − 4b2 > 0.

Example 8.4: e-structures. The triviality of this example diguises its importance. Suppose that G = {e}
is simply the identity matrix in GL(n, R). An {e}-structure on M is simply a submanifold B ⊂ F ∗(M) that
intersects each fiber in one point and projects submersively (and hence, diffeomorphically) onto M . Hence,
B is simply the image of a smooth global section of F ∗(M), i.e., a coframing η = (ηi) of M . Thus, an
{e}-structure can be identified with a global coframing of M .

8.2. Tautological forms, (pseudo-)connections, and curvature

A distinguishing feature of the coframe bundle F ∗ that is inherited by all of its subbundles is the presence
of a canonical 1-form with values in R

n: For any G-stucture B ⊂ F ∗(M), the tautological 1-form ω is defined
by

ω(v) = u
(
π′(u)(v)

)
for all v ∈ TuB.

Thus, ω is a 1-form on B with values in R
n. This 1-form seems to be known by various names in the

literature. In some physics literature, for example, it is known as the ‘soldering form’.
It is helpful to look at a formula for ω in a local trivialization. If η is a local section of B with

domain U ⊂ M , let H : U × G → B be the inverse trivialization defined earlier: H(x, g) = g−1 ηx .
Unwinding the defintions yields the pullback formula

H∗(ω) = g−1 η.

Thus, writing ω =
(
ωi

)
, one sees that the n components of ω are linearly independent 1-forms whose

simultaneous kernel consists of the vectors tangent to the π-fibers of B. In particular, ω is π-semi-basic.
This description also makes it clear that ω has the ‘reproducing property’: η∗(ω) = η for any local section η
of B.

Interest in this 1-form stems from its invariance properties: The most important property of ω is the way
it detects the prolongations of diffeomorphisms of the base manifold M : If f : M1 → M2 is a diffeomorphism
and Bi ⊂ F ∗(Mi) are G-structures satisfying f1

(
B1) = B2 , then f∗

1 (ω2) = ω1. Conversely, if U ⊂ B1 is an
open subset of a G-structure on M1 with the property that its π-fibers are connected and φ : U → F ∗(M2)
is any smooth mapping satisfying φ∗(ω2) = ω1, then there exists a unique smooth mapping f : π(U) → M2

that satisfies f ◦ π1 = π2 ◦ g. Moreover, f is a local diffeomorphism and g is the restriction to U of f1.
With the tautological 1-form in place, one can begin to see how the method of equivalence will go: To

test whether or not two G-structures B1 and B2 are locally equivalent, one looks for integral manifolds of
the 1-form θ = ω1 − ω2 on the product manifold B1 × B2. If one can find such an integral manifold Γ ⊂
B1 × B2 that projects diffeomorphically onto each of the factors, then it will be the graph of a smooth
map g : B1 → B2 that satisfies g∗(ω2) = ω1 and hence, by the proposition just proved, will be induced
by a diffeomorphism f : M1 → M2 that induces an equivalence between the two G-structures. The reader
familiar with Cartan’s ‘technique of the graph’ from the theory of Lie groups will recognize this approach as
a generalization of that technique.

The main difference (and difficulty) is that, for any matrix group G of positive dimension, the com-
ponents of ω on a G-structure B do not form a coframing of B, which the usual form of the technique of
the graph requires. I now want to discuss a method of completing ω to a coframing in a canonical way,
a method that works for many (indeed, most) matrix groups G. One can then proceed to the case of a
manifold endowed with a global coframing, i.e., the case of an {e}-structure, the case to be treated in the
next section.

8.3. Existence theorems for G-structures
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Lecture 9. Applications 4: Holonomy and special metrics

9.1. Metrics with prescribed curvatures

9.2. Holonomy problems

9.3. ???
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