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Chapter 1

Introduction

1.1 Introduction

This book is written in the following divisions: (1) the introductory chapters
consisting of Chapters 1 and 2; (2) introduction to fuzzy probability in Chap-
ters 3-5; (3) introduction to fuzzy estimation in Chapters 6-11; (4) fuzzy/crisp
estimators of probability density (mass) functions based on a fuzzy maximum
entropy principle in Chapters 12-14; (5) introduction to fuzzy hypothesis test-
ing in Chapters 15-18; (6) fuzzy correlation and regression in Chapters 19-25;
(7) Chapters 26 and 27 are about a fuzzy ANOVA model; (8) a fuzzy estima-
tor of the median in nonparametric statistics in Chapter 28; and (9) random
fuzzy numbers with applications to Monte Carlo studies in Chapter 29.

First we need to be familiar with fuzzy sets. All you need to know about
fuzzy sets for this book comprises Chapter 2. For a beginning introduction to
fuzzy sets and fuzzy logic see [8]. One other item relating to fuzzy sets, needed
in fuzzy hypothesis testing, is also in Chapter 2: how we will determine which
of the following three possibilities is true M < N , M > N or M ≈ N , for
two fuzzy numbers M , N .

The introduction to fuzzy probability in Chapters 3-5 is based on the book
[1] and the reader is referred to that book for more information, especially
applications. What is new here is: (1) using a nonlinear optimization program
in Maple [13] to solve certain optimization problems in fuzzy probability,
where previously we used a graphical method; and (2) a new algorithm,
suitable for using only pencil and paper, for solving some restricted fuzzy
arithmetic problems.

The introduction to fuzzy estimation is based on the book [3] and we
refer the interested reader to that book for more about fuzzy estimators.
The fuzzy estimators omitted from this book are those for µ1 − µ2, p1 − p2,
σ1/σ2, etc. Fuzzy estimators for arrival and service rates is from [2] and
[4]. The reader should see those book for applications in queuing networks.
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Also, fuzzy estimators for the uniform probability density can be found in [4],
but the derivation of these fuzzy estimators is new to this book. The fuzzy
uniform distribution was used for arrival/service rates in queuing models in
[4].

The fuzzy/crisp probability density estimators based on a fuzzy maximum
entropy principle are based on the papers [5],[6] and [7] and are new to this
book. In Chapter 12 we obtain fuzzy results but in Chapters 13 and 14 we
determine crisp discrete and crisp continuous probability densities.

The introduction to fuzzy hypothesis testing in Chapters 15-18 is based
on the book [3] and the reader needs to consult that book for more fuzzy
hypothesis testing. What we omitted are tests on µ1 = µ2, p1 = p2, σ1 = σ2,
etc.

The chapters on fuzzy correlation and regression come from [3]. The
results on the fuzzy ANOVA (Chapters 26 and 27) and a fuzzy estimator for
the median (Chapter 28) are new and have not been published before.

The chapter on random fuzzy numbers (Chapter 29) is also new to this
book and these results have not been previously published. Applications
of crisp random numbers to Monte Carlo studies are well known and we
also plan to use random fuzzy numbers in Monte Carlo studies. Our first
use of random fuzzy numbers will be to get approximate solutions to fuzzy
optimization problems whose solution is unknown or computationally very
difficult. However, this becomes a rather large project and will probably be
the topic of a future book.

Chapter 30 contains selected Maple/Solver ([11],[13],[20]) commands used
in the book to solve optimization problems or to generate the figures. The
final chapter has a summary and suggestions for future research.

All chapters can be read independently. This means that some material
is repeated in a sequence of chapters. For example, in Chapters 15-18 on
fuzzy hypothesis testing in each chapter we first review the crisp case, then
fuzzify to obtain our fuzzy statistic which is then used to construct the fuzzy
critical values and we finally present a numerical example. However, you
should first know about fuzzy estimators (Chapters 6-11) before going on to
fuzzy hypothesis testing.

A most important part of our models in fuzzy statistics is that we always
start with a random sample producing crisp (non-fuzzy) data. Other authors
discussing fuzzy statistics usually begin with fuzzy data. We assume we
have a random sample giving real number data x1, x2, ..., xn which is then
used to generate our fuzzy estimators. Using fuzzy estimators in hypothesis
testing and regression obviously leads to fuzzy hypothesis testing and fuzzy
regression.

Prerequisites, besides Chapter 2, are a basic knowledge of crisp elementary
statistics. We will cover a lot of elementary statistics that can be found in
Chapters 6-9 in [15]. We do not discuss contingency tables, or most of
nonparametric statistics.
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1.2 Notation

It is difficult, in a book with a lot of mathematics, to achieve a uniform
notation without having to introduce many new specialized symbols. Our
basic notation is presented in Chapter 2. What we have done is to have a
uniform notation within each chapter. What this means is that we may use
the letters “a” and “b” to represent a closed interval [a, b] in one chapter but
they could stand for parameters in a probability density in another chapter.
We will have the following uniform notation throughout the book: (1) we
place a “bar” over a letter to denote a fuzzy set (A, B, etc.), and all our
fuzzy sets will be fuzzy subsets of the real numbers; and (2) an alpha-cut of
a fuzzy set (Chapter 2) is always denoted by “α”. Since we will be using α
for alpha-cuts we need to change some standard notation in statistics: (1)
we use β in confidence intervals; and (2) we will have γ as the significance
level in hypothesis tests. So a (1 − β)100% confidence interval means a 95%
confidence interval if β = 0.05. When a confidence interval switches to being
an alpha-cut of a fuzzy number (see Chapter 6), we switch from β to α. Also
a hypothesis test H0 : µ = 0 verses H1 : µ �= 0 at γ = 0.05 means given that
H0 is true, the probability of landing in the critical region is 0.05.

All fuzzy arithmetic is performed using α-cuts and interval arithmetic and
not by using the extension principle (Chapter 2). Fuzzy arithmetic is needed
in fuzzy hypothesis testing, fuzzy prediction and Monte Carlo studies.

The term “crisp” means not fuzzy. A crisp set is a regular set and a crisp
number is a real number. There is a potential problem with the symbol “≤”.
It usually means “fuzzy subset” as A ≤ B stands for A is a fuzzy subset of
B (defined in Chapter 2). However, also in Chapter 2, A ≤ B means that
fuzzy set A is less than or equal to fuzzy set B. The meaning of the symbol
“≤” should be clear from its use. Also, throughout the book x will be the
mean of a random sample, not a fuzzy set, and we explicitly point this out
when it first arises in the book and then usually not point it out again,

Let N(µ, σ2) denote the normal distribution with mean µ and variance σ2.
Critical values for the normal will be written zγ (zβ) for hypothesis testing
(confidence intervals). We have P (X ≥ zγ) = γ. The binomial distribution
is b(n, p) where n is the number of independent trials and p is the probability
of a “success”. Critical values for the (Student’s) t distribution are tγ (tβ)
so that P (X ≥ tγ) = γ. Critical values for the chi-square distribution
are χ2

γ (χ2
β) so that P (χ2 ≥ χ2

γ) = γ. We also use χ2
L,β/2 (χ2

R,β/2) where
P (χ2 ≤ χ2

L,β/2) = β/2 (P (χ2 ≥ χ2
R,β/2) = β/2). Critical values for the F

distribution are Fγ (Fβ) where P (X ≥ Fγ) = γ. The degrees of freedom
associated with the t (χ2, F ) will all be stated when they are used and will
usually not show up as subscripts in the symbol t ( χ2, F ).
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1.3 Previous Research

Our results on fuzzy probability falls in the intersection of the areas of impre-
cise probabilities, interval valued probabilities and fuzzy probabilities. See
the references in Chapter 1 of [1] for a list of papers in these areas. The im-
precise probability researchers have their own web site [19] which has links to
basic papers in their area and to conferences on imprecise probabilities. The
journal “Fuzzy Sets and Systems” recently (volume 154, September 2005) had
a section devoted to fuzzy probabilities. Of course, you can always put “im-
precise probability”, “interval probability” or “fuzzy probability” into your
favorite search engine.

Different from those papers on imprecise probabilities, which employ sec-
ond order probabilities, possibilities, upper/lower probabilities, etc., we are
using fuzzy numbers to model uncertainty in some of the probabilities, but
we are not employing standard fuzzy arithmetic to combine the uncertainties.
We could use crisp intervals to express the uncertainties but we would not be
using standard interval arithmetic to combine the uncertainties. We do sub-
stitute fuzzy numbers for uncertain probabilities but we are not using fuzzy
probability theory to propagate the uncertainty through the model. Our
method is to use fuzzy numbers for imprecise probabilities and then through
restricted fuzzy arithmetic calculate other fuzzy probabilities, expected val-
ues, variances, etc.

Statistical theory is based on probability theory. So fuzzy statistics can
take many forms depending on what probability (imprecise, interval, fuzzy)
theory you are using. A few key references to this relatively new area are
([9],[10],[12],[14],[16]-[18]) where you can find many more references. Also try
“fuzzy statistics” in a search engine. The main difference with our method
is that we always begin with crisp (non-fuzzy) data and other authors start
with fuzzy data.

1.4 Figures

Some of the figures, graphs of certain fuzzy numbers, in the book are difficult
to obtain so they were created using different methods. Many graphs were
done first in Maple [13] and then exported to LaTeX2ε. We did these figures
first in Maple because of the “implicitplot” command in Maple. Let us ex-
plain why this command was important in this book. Suppose X is a fuzzy
estimator we want to graph. Usually in this book we determine X by first
calculating its α-cuts. Let X[α] = [x1(α), x2(α)]. So we get x = x1(α) de-
scribing the left side of the triangular shaped fuzzy number X and x = x2(α)
describes the right side. On a graph we would have the x-axis horizontal and
the y-axis vertical. α is on the y-axis between zero and one. Substituting y
for α we need to graph x = xi(y), for i = 1, 2. But this is backwards, we
usually have y a function of x. The “implicitplot” command allows us to
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do the correct graph with x a function of y when we have x = xi(y). Fig-
ures 2.5,3.2,4.2,4.5,5.1,5.2,5.5,11.1-11.3,13.1,14.1,14.2,28.1 were constructed
in LaTeX and all the rest in Maple first as described above.

1.5 Maple/Solver Commands

Some of the Maple commands we used to solve certain optimization problems
and to create the figures are included in Chapter 30. Also, some of the Solver
([11],[20]) commands we used to solve the optimization problems in Chapter
13 are also included in Chapter 30.
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Chapter 2

Fuzzy Sets

2.1 Introduction

In this chapter we have collected together the basic ideas from fuzzy sets
and fuzzy functions needed for the book. Any reader familiar with fuzzy
sets, fuzzy numbers, the extension principle, α-cuts, interval arithmetic, and
fuzzy functions may go on and have a look at Section 2.5. In Section 2.5
we present a method of ordering a finite set of fuzzy numbers from smallest
to largest to be employed in fuzzy hypothesis testing, and in Monte Carlo
studies (Chapter 29). Basically, given two fuzzy numbers M and N , we
need a method of deciding which of the following three possibilities is true:
M < N , M ≈ N , M > N . A good general reference for fuzzy sets and fuzzy
logic is [4] and [10].

Our notation specifying a fuzzy set is to place a “bar” over a letter. So
A, B, . . ., X, Y , . . ., α, β, . . . , will all denote fuzzy sets.

2.2 Fuzzy Sets

If Ω is some set, then a fuzzy subset A of Ω is defined by its membership
function, written A(x), which produces values in [0, 1] for all x in Ω. So, A(x)
is a function mapping Ω into [0, 1]. If A(x0) = 1, then we say x0 belongs to
A, if A(x1) = 0 we say x1 does not belong to A, and if A(x2) = 0.6 we say
the membership value of x2 in A is 0.6. When A(x) is always equal to one or
zero we obtain a crisp (non–fuzzy) subset of Ω. For all fuzzy sets B, C, . . .
we use B(x), C(x), . . . for the value of their membership function at x. Most
of the fuzzy sets we will be using will be fuzzy numbers .

The term “crisp” will mean not fuzzy. A crisp set is a regular set. A
crisp number is just a real number. A crisp matrix (vector) has real numbers
as its elements. A crisp function maps real numbers (or real vectors) into
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real numbers. A crisp solution to a problem is a solution involving crisp sets,
crisp numbers, crisp functions, etc.

2.2.1 Fuzzy Numbers

A general definition of fuzzy number may be found in ([4],[10]), however
our fuzzy numbers will be almost always triangular (shaped), or trapezoidal
(shaped), fuzzy numbers. A triangular fuzzy number N is defined by three
numbers a < b < c where the base of the triangle is the interval [a, c] and its
vertex is at x = b. Triangular fuzzy numbers will be written as N = (a/b/c).
A triangular fuzzy number N = (1.2/2/2.4) is shown in Figure 2.1. We see
that N(2) = 1, N(1.6) = 0.5, etc.

0

0.2

0.4

0.6

0.8

1

alpha

0.5 1 1.5 2 2.5 3
x

Figure 2.1: Triangular Fuzzy Number N

A trapezoidal fuzzy number M is defined by four numbers a < b < c < d
where the base of the trapezoid is the interval [a, d] and its top (where the
membership equals one) is over [b, c]. We write M = (a/b, c/d) for trapezoidal
fuzzy numbers. Figure 2.2 shows M = (1.2/2, 2.4/2.7).

A triangular shaped fuzzy number P is given in Figure 2.3. P is only
partially specified by the three numbers 1.2, 2, 2.4 since the graph on [1.2, 2],
and [2, 2.4], is not a straight line segment. To be a triangular shaped fuzzy
number we require the graph to be continuous and: (1) monotonically in-
creasing on [1.2, 2]; and (2) monotonically decreasing on [2, 2.4]. For tri-
angular shaped fuzzy number P we use the notation P ≈ (1.2/2/2.4) to
show that it is partially defined by the three numbers 1.2, 2, and 2.4. If
P ≈ (1.2/2/2.4) we know its base is on the interval [1.2, 2.4] with vertex
(membership value one) at x = 2. Similarly we define trapezoidal shaped
fuzzy number Q ≈ (1.2/2, 2.4/2.7) whose base is [1.2, 2.7] and top is over
the interval [2, 2.4]. The graph of Q is similar to M in Figure 2.2 but it has
continuous curves for its sides.
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0
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Figure 2.2: Trapezoidal Fuzzy Number M

0
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Figure 2.3: Triangular Shaped Fuzzy Number P

Although we will be using triangular (shaped) and trapezoidal (shaped)
fuzzy numbers throughout the book, many results can be extended to more
general fuzzy numbers, but we shall be content to work with only these special
fuzzy numbers.

We will be using fuzzy numbers in this book to describe uncertainty. For
example, in Chapter 3 a fuzzy probability can be a triangular shaped fuzzy
number, it could also be a trapezoidal shaped fuzzy number. In Chapters
4 and 5 parameters in probability density (mass) functions, like the mean
in a normal probability density function, will be a triangular fuzzy number.
Also, fuzzy estimators will be triangular shaped fuzzy numbers and fuzzy
test statistics in fuzzy hypothesis testing are also triangular shaped fuzzy
numbers.
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2.2.2 Alpha–Cuts

Alpha–cuts are slices through a fuzzy set producing regular (non-fuzzy) sets.
If A is a fuzzy subset of some set Ω, then an α–cut of A, written A[α] is
defined as

A[α] = {x ∈ Ω|A(x) ≥ α} , (2.1)

for all α, 0 < α ≤ 1. The α = 0 cut, or A[0], must be defined separately.
Let N be the fuzzy number in Figure 2.1. Then N [0] = [1.2, 2.4]. No-

tice that using equation (2.1) to define N [0] would give N [0] = all the real
numbers. Similarly, M [0] = [1.2, 2.7] from Figure 2.2 and in Figure 2.3
P [0] = [1.2, 2.4]. For any fuzzy set A, A[0] is called the support, or base,
of A. Many authors call the support of a fuzzy number the open interval
(a, b) like the support of N in Figure 2.1 would then be (1.2, 2.4). However in
this book we use the closed interval [a, b] for the support (base) of the fuzzy
number.

The core of a fuzzy number is the set of values where the membership
value equals one. If N = (a/b/c), or N ≈ (a/b/c), then the core of N is the
single point b. However, if M = (a/b, c/d), or M ≈ (a/b, c/d), then the core
of M = [b, c].

For any fuzzy number Q we know that Q[α] is a closed, bounded, interval
for 0 ≤ α ≤ 1. We will write this as

Q[α] = [q1(α), q2(α)] , (2.2)

where q1(α) (q2(α)) will be an increasing (decreasing) function of α with
q1(1) ≤ q2(1). If Q is a triangular shaped or a trapezoidal shaped fuzzy
number then: (1) q1(α) will be a continuous, monotonically increasing func-
tion of α in [0, 1]; (2) q2(α) will be a continuous, monotonically decreasing
function of α, 0 ≤ α ≤ 1; and (3) q1(1) = q2(1) (q1(1) < q2(1) for trape-
zoids). We sometimes check monotone increasing (decreasing) by showing
that dq1(α)/dα > 0 (dq2(α)/dα < 0) holds.

For the N in Figure 2.1 we obtain N [α] = [n1(α), n2(α)], n1(α) = 1.2 +
0.8α and n2(α) = 2.4 − 0.4α, 0 ≤ α ≤ 1. Similarly, M in Figure 2.2 has
M [α] = [m1(α),m2(α)], m1(α) = 1.2 + 0.8α and m2(α) = 2.7 − 0.3α, 0 ≤
α ≤ 1. The equations for ni(α) and mi(α) are backwards. With the y–axis
vertical and the x–axis horizontal the equation n1(α) = 1.2 + 0.8α means
x = 1.2 + 0.8y, 0 ≤ y ≤ 1. That is, the straight line segment from (1.2, 0) to
(2, 1) in Figure 2.1 is given as x a function of y whereas it is usually stated as
y a function of x. This is how it will be done for all α–cuts of fuzzy numbers.

2.2.3 Inequalities

Let N = (a/b/c) . We write N ≥ δ, δ some real number, if a ≥ δ, N > δ
when a > δ, N ≤ δ for c ≤ δ and N < δ if c < δ. We use the same notation
for triangular shaped and trapezoidal (shaped) fuzzy numbers whose support
is the interval [a, c].
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If A and B are two fuzzy subsets of a set Ω, then A ≤ B means A(x) ≤
B(x) for all x in Ω, or A is a fuzzy subset of B. A < B holds when A(x) <
B(x), for all x. There is a potential problem with the symbol ≤. In some
places in the book , for example see Section 2.5 and in fuzzy hypothesis
testing, M ≤ N , for fuzzy numbers M and N , means that M is less than or
equal to N . It should be clear on how we use “≤” as to which meaning is
correct.

2.2.4 Discrete Fuzzy Sets

Let A be a fuzzy subset of Ω. If A(x) is not zero only at a finite number of
x values in Ω, then A is called a discrete fuzzy set. Suppose A(x) is not zero
only at x1, x2, x3 and x4 in Ω. Then we write the fuzzy set as

A = {µ1

x1
, · · · , µ4

x4
}, (2.3)

where the µi are the membership values. That is, A(xi) = µi, 1 ≤ i ≤ 4,
and A(x) = 0 otherwise. We can have discrete fuzzy subsets of any space Ω.
Notice that α-cuts of discrete fuzzy sets of IR, the set of real numbers, do not
produce closed, bounded, intervals.

2.3 Fuzzy Arithmetic

If A and B are two fuzzy numbers we will need to add, subtract, multiply and
divide them. There are two basic methods of computing A + B, A − B, etc.
which are: (1) extension principle; and (2) α–cuts and interval arithmetic.

2.3.1 Extension Principle

Let A and B be two fuzzy numbers. If A + B = C, then the membership
function for C is defined as

C(z) = sup
x,y

{min(A(x), B(y))|x + y = z} . (2.4)

If we set C = A − B, then

C(z) = sup
x,y

{min(A(x), B(y))|x − y = z} . (2.5)

Similarly, C = A · B, then

C(z) = sup
x,y

{min(A(x), B(y))|x · y = z} , (2.6)

and if C = A/B,

C(z) = sup
x,y

{min(A(x), B(y))|x/y = z} . (2.7)
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In all cases C is also a fuzzy number [10]. We assume that zero does not
belong to the support of B in C = A/B. If A and B are triangular (trape-
zoidal) fuzzy numbers then so are A + B and A−B, but A ·B and A/B will
be triangular (trapezoidal) shaped fuzzy numbers.

We should mention something about the operator “sup” in equations
(2.4) – (2.7). If Ω is a set of real numbers bounded above (there is a M so
that x ≤ M , for all x in Ω), then sup(Ω) = the least upper bound for Ω. If Ω
has a maximum member, then sup(Ω) = max(Ω). For example, if Ω = [0, 1),
sup(Ω) = 1 but if Ω = [0, 1], then sup(Ω) = max(Ω) = 1. The dual operator
to “sup” is “inf”. If Ω is bounded below (there is a M so that M ≤ x for all
x ∈ Ω), then inf(Ω) = the greatest lower bound. For example, for Ω = (0, 1]
inf(Ω) = 0 but if Ω = [0, 1], then inf(Ω) = min(Ω) = 0.

Obviously, given A and B, equations (2.4) – (2.7) appear quite compli-
cated to compute A + B, A − B, etc. So, we now present an equivalent
procedure based on α–cuts and interval arithmetic. First, we present the
basics of interval arithmetic.

2.3.2 Interval Arithmetic

We only give a brief introduction to interval arithmetic. For more informa-
tion the reader is referred to ([12],[13]). Let [a1, b1] and [a2, b2] be two closed,
bounded, intervals of real numbers. If ∗ denotes addition, subtraction, mul-
tiplication, or division, then [a1, b1] ∗ [a2, b2] = [α, β] where

[α, β] = {a ∗ b|a1 ≤ a ≤ b1, a2 ≤ b ≤ b2} . (2.8)

If ∗ is division, we must assume that zero does not belong to [a2, b2]. We may
simplify equation (2.8) as follows:

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] , (2.9)
[a1, b1] − [a2, b2] = [a1 − b2, b1 − a2] , (2.10)

[a1, b1] / [a2, b2] = [a1, b1] ·
[

1
b2

,
1
a2

]
, (2.11)

and
[a1, b1] · [a2, b2] = [α, β] , (2.12)

where

α = min{a1a2, a1b2, b1a2, b1b2} , (2.13)
β = max{a1a2, a1b2, b1a2, b1b2} . (2.14)

Multiplication and division may be further simplified if we know that
a1 > 0 and b2 < 0, or b1 > 0 and b2 < 0, etc. For example, if a1 ≥ 0 and
a2 ≥ 0, then

[a1, b1] · [a2, b2] = [a1a2, b1b2] , (2.15)
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and if b1 < 0 but a2 ≥ 0, we see that

[a1, b1] · [a2, b2] = [a1b2, a2b1] . (2.16)

Also, assuming b1 < 0 and b2 < 0 we get

[a1, b1] · [a2, b2] = [b1b2, a1a2] , (2.17)

but a1 ≥ 0, b2 < 0 produces

[a1, b1] · [a2, b2] = [a2b1, b2a1] . (2.18)

2.3.3 Fuzzy Arithmetic

Again we have two fuzzy numbers A and B. We know α–cuts are closed,
bounded, intervals so let A[α] = [a1(α), a2(α)], B[α] = [b1(α), b2(α)]. Then
if C = A + B we have

C[α] = A[α] + B[α] . (2.19)

We add the intervals using equation (2.9). Setting C = A − B we get

C[α] = A[α] − B[α] , (2.20)

for all α in [0, 1]. Also
C[α] = A[α] · B[α] , (2.21)

for C = A · B and
C[α] = A[α]/B[α] , (2.22)

when C = A/B, provided that zero does not belong to B[α] for all α. This
method is equivalent to the extension principle method of fuzzy arithmetic
[10]. Obviously, this procedure, of α–cuts plus interval arithmetic, is more
user (and computer) friendly.

Example 2.3.3.1

Let A = (−3/ − 2/ − 1) and B = (4/5/6). We determine A · B using α–cuts
and interval arithmetic. We compute A[α] = [−3 + α,−1 − α] and B[α] =
[4+α, 6−α]. So, if C = A·B we obtain C[α] = [(α−3)(6−α), (−1−α)(4+α)],
0 ≤ α ≤ 1. The graph of C is shown in Figure 2.4.

2.4 Fuzzy Functions

In this book a fuzzy function is a mapping from fuzzy numbers into fuzzy
numbers. We write H(X) = Z for a fuzzy function with one independent
variable X. Usually X will be a triangular (trapezoidal) fuzzy number and
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Figure 2.4: The Fuzzy Number C = A · B

then we usually obtain Z as a triangular (trapezoidal) shaped fuzzy number.
For two independent variables we have H(X,Y ) = Z.

Where do these fuzzy functions come from? They are usually extensions
of real–valued functions. Let h : [a, b] → IR. This notation means z = h(x)
for x in [a, b] and z a real number. One extends h : [a, b] → IR to H(X) = Z
in two ways: (1) the extension principle; or (2) using α–cuts and interval
arithmetic.

2.4.1 Extension Principle

Any h : [a, b] → IR may be extended to H(X) = Z as follows

Z(z) = sup
x

{
X(x) | h(x) = z, a ≤ x ≤ b

}
. (2.23)

Equation (2.23) defines the membership function of Z for any triangular
(trapezoidal) fuzzy number X in [a, b].

If h is continuous, then we have a way to find α–cuts of Z. Let Z[α] =
[z1(α), z2(α)]. Then [6]

z1(α) = min{ h(x) | x ∈ X[α] } , (2.24)
z2(α) = max{ h(x) | x ∈ X[α] } , (2.25)

for 0 ≤ α ≤ 1.
If we have two independent variables, then let z = h(x, y) for x in [a1, b1],

y in [a2, b2]. We extend h to H(X,Y ) = Z as

Z(z) = sup
x,y

{
min

(
X(x), Y (y)

)
| h(x, y) = z

}
, (2.26)
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for X (Y ) a triangular or trapezoidal fuzzy number in [a1, b1] ([a2, b2]). For
α–cuts of Z, assuming h is continuous, we have

z1(α) = min{ h(x, y) | x ∈ X[α], y ∈ Y [α] } , (2.27)
z2(α) = max{ h(x, y) | x ∈ X[α], y ∈ Y [α] } , (2.28)

0 ≤ α ≤ 1. We use equations (2.24) – (2.25) and (2.27) – (2.28) throughout
this book.

Applications

Let f(x1, ..., xn; θ1, ..., θm) be a continuous function . Then

I[α] = {f(x1, ..., xn; θ1, ..., θm)| S }, (2.29)

for α ∈ [0, 1] and S is the statement “θi ∈ θi[α], 1 ≤ i ≤ m”, for fuzzy
numbers θi, 1 ≤ i ≤ m, defines an interval I[α]. The endpoints of I[α] may
be found as in equations (2.24),(2.25) and (2.27),(2.28). I[α] gives the α-cuts
of f(x1, ..., xn; θi, ..., θm).

This result will be used throughout the book.

2.4.2 Alpha–Cuts and Interval Arithmetic

All the functions we usually use in engineering and science have a computer
algorithm which, using a finite number of additions, subtractions, multipli-
cations and divisions, can evaluate the function to required accuracy [5].
Such functions can be extended, using α–cuts and interval arithmetic, to
fuzzy functions. Let h : [a, b] → IR be such a function. Then its exten-
sion H(X) = Z, X in [a, b] is done, via interval arithmetic, in computing
h(X[α]) = Z[α], α in [0, 1]. We input the interval X[α], perform the arith-
metic operations needed to evaluate h on this interval, and obtain the interval
Z[α]. Then put these α–cuts together to obtain the value Z. The extension
to more independent variables is straightforward.

For example, consider the fuzzy function

Z = H(X) =
A X + B

C X + D
, (2.30)

for triangular fuzzy numbers A, B, C, D and triangular fuzzy number X in
[0, 10]. We assume that C ≥ 0, D > 0 so that C X + D > 0. This would be
the extension of

h(x1, x2, x3, x4, x) =
x1x + x2

x3x + x4
. (2.31)

We would substitute the intervals A[α] for x1, B[α] for x2, C[α] for x3, D[α]
for x4 and X[α] for x, do interval arithmetic, to obtain interval Z[α] for Z.
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Alternatively, the fuzzy function

Z = H(X) =
2X + 10
3X + 4

, (2.32)

would be the extension of

h(x) =
2x + 10
3x + 4

. (2.33)

2.4.3 Differences

Let h : [a, b] → IR. Just for this subsection let us write Z
∗

= H(X) for the
extension principle method of extending h to H for X in [a, b]. We denote
Z = H(X) for the α–cut and interval arithmetic extension of h.

We know that Z can be different from Z
∗
. But for basic fuzzy arithmetic

in Section 2.3 the two methods give the same results. In the example below
we show that for h(x) = x(1 − x), x in [0, 1], we can get Z

∗ �= Z for some X
in [0, 1]. What is known ([6],[12]) is that for usual functions in science and
engineering Z

∗ ≤ Z. Otherwise, there is no known necessary and sufficient
conditions on h so that Z

∗
= Z for all X in [a, b]. See also [11].

There is nothing wrong in using α–cuts and interval arithmetic to evaluate
fuzzy functions. Surely, it is user, and computer friendly. However, we should
be aware that whenever we use α–cuts plus interval arithmetic to compute
Z = H(X) we may be getting something larger than that obtained from
the extension principle. The same results hold for functions of two or more
independent variables.

Example 2.4.3.1

The example is the simple fuzzy expression

Z = (1 − X) X , (2.34)

for X a triangular fuzzy number in [0, 1]. Let X[α] = [x1(α), x2(α)]. Using
interval arithmetic we obtain

z1(α) = (1 − x2(α))x1(α) , (2.35)
z2(α) = (1 − x1(α))x2(α) , (2.36)

for Z[α] = [z1(α), z2(α)], α in [0, 1].
The extension principle extends the regular equation z = (1 − x)x, 0 ≤

x ≤ 1, to fuzzy numbers as follows

Z
∗
(z) = sup

x

{
X(x)|(1 − x)x = z, 0 ≤ x ≤ 1

}
. (2.37)
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Let Z
∗
[α] = [z∗1(α), z∗2(α)]. Then

z∗1(α) = min{(1 − x)x|x ∈ X[α]} , (2.38)
z∗2(α) = max{(1 − x)x|x ∈ X[α]} , (2.39)

for all 0 ≤ α ≤ 1. Now let X = (0/0.25/0.5), then x1(α) = 0.25α and x2(α) =
0.50 − 0.25α. Equations (2.35) and (2.36) give Z[0.50] = [5/64, 21/64] but
equations (2.38) and (2.39) produce Z

∗
[0.50] = [7/64, 15/64]. Therefore,

Z
∗ �= Z. We do know that if each fuzzy number appears only once in the fuzzy

expression, the two methods produce the same results ([6],[12]). However,
if a fuzzy number is used more than once, as in equation (2.34), the two
procedures can give different results.

2.5 Ordering Fuzzy Numbers

Given a finite set of fuzzy numbers A1, ..., An we want to order them from
smallest to largest. For a finite set of real numbers there is no problem in
ordering them from smallest to largest. However, in the fuzzy case there
is no universally accepted way to do this. There are probably more than
40 methods proposed in the literature of defining M ≤ N , for two fuzzy
numbers M and N . Here the symbol ≤ means “less than or equal” and not
“a fuzzy subset of”. A few key references on this topic are ([1],[7]-[9],[14],[15]),
where the interested reader can look up many of these methods and see their
comparisons.

Here we will present only one procedure for ordering fuzzy numbers that
we have used before ([2],[3]). But note that different definitions of ≤ between
fuzzy numbers can give different ordering. We first define < between two
fuzzy numbers M and N . Define

v(M ≤ N) = max{min(M(x), N(y))|x ≤ y}, (2.40)

which measures how much M is less than or equal to N . We write N < M
if v(N ≤ M) = 1 but v(M ≤ N) < η, where η is some fixed fraction in (0, 1].
In this book we will usually use η = 0.8. Then N < M if v(N ≤ M) = 1
and v(M ≤ N) < 0.8. We then define M ≈ N when both N < M and
M < N are false. M ≤ N means M < N or M ≈ N . Now this ≈ may not be
transitive. If N ≈ M and M ≈ O implies that N ≈ O, then ≈ is transitive.
However, it can happen that N ≈ M and M ≈ O but N < O because M
lies a little to the right of N and O lies a little to the right of M but O lies
sufficiently far to the right of N that we obtain N < O.

But this ordering is still useful in partitioning the set of fuzzy numbers
Ai, 1 ≤ i ≤ n, up into disjoint sets H1, ...,HK where ([2],[3]): (1) given any
Ai and Aj in Hk, 1 ≤ k ≤ K, then Ai ≈ Aj ; and (2) given Ai ∈ Hi and
i < j, there is a Aj ∈ Hj with Ai < Aj . We say a fuzzy number Ai is
dominated if there is another fuzzy number Aj so that Ai < Aj . So HK will
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Figure 2.5: Determining v(N ≤ M)

be all the undominated Ai. Now HK is nonempty and if it does not contain
all the fuzzy numbers we then define HK−1 to be all the undominated fuzzy
numbers after we delete all those in HK . We continue this way to the last set
H1. Then the highest ranked fuzzy numbers lie in HK , the second highest
ranked fuzzy numbers are in HK−1, etc. This result is easily seen if you graph
all the fuzzy numbers on the same axis then those in HK will be clustered
together farthest to the right, proceeding from the HK cluster to the left the
next cluster will be those in HK−1, etc.

There is an easy way to determine if M < N , or M ≈ N , for many fuzzy
numbers. This will be all we need in fuzzy hypothesis testing and Monte
Carlo studies. First, it is easy to see that if the core of N lies completely
to the right of the core of M , then v(M ≤ N) = 1. Also, if the core of M
and the core of N overlap, then M ≈ N . Now assume that the core of N
lies to the right of the core of M , as shown in Figure 2.5 for triangular fuzzy
numbers, and we wish to compute v(N ≤ M). The value of this expression is
simply y0 in Figure 2.5. In general, for triangular (shaped), and trapezoidal
(shaped), fuzzy numbers v(N ≤ M) is the height of their intersection when
the core of N lies to the right of the core of M .
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Chapter 3

Fuzzy Probability Theory

3.1 Introduction

The first thing to do is explain how we will get fuzzy probabilities, which
will be fuzzy numbers, from a set of confidence intervals. This is done in
the next section. Then we discuss “restricted fuzzy arithmetic” in Section
3.4. Throughout this book whenever we wish to find the α-cut of a fuzzy
probability, or a certain fuzzy number, we usually need to solve an optimiza-
tion problem. We discuss this computation problem in more detail in Section
3.4.3. Then we turn to the development of the elementary properties of
discrete (finite) fuzzy probability distributions in Sections 3.5-3.8. Some ap-
plications are in the last section Section 3.9. Fuzzy probability density/mass
functions are in the next two chapters.

3.2 Fuzzy Probabilities
from Confidence Intervals

We have an experiment in mind in which we are interested in only two possible
outcomes labeled “success” and “failure”. Let p be the probability of a success
so that q = 1 − p will be the probability of a failure. We want to estimate
the value of p. We therefore gather a random sample which here is running
the experiment n independent times and counting the number of times we
had a success. Let x be the number of times we observed a success in n
independent repetitions of this experiment. Then our point estimate of p is
p̂ = x/n.

We know that (Section 7.5 in [5]) that (p̂ − p)/
√

p(1 − p)/n is approxi-
mately N(0, 1) if n is sufficiently large. Throughout this book we will always
assume that the sample size is large enough for the normal approximation to
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www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

Fuzzy Probability and Statistics, StudFuzz 196, 21 – 49 (2006)
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the binomial. Then

P (−zβ/2 ≤ p̂ − p√
p(1 − p)/n

≤ zβ/2) ≈ 1 − β, (3.1)

where zβ/2 was defined by

P (X ≥ zβ/2) = β/2, (3.2)

for a N(0, 1) random variable X. Solving the inequality for the p in the
numerator we have

P (p̂ − zβ/2

√
p(1 − p)/n ≤ p ≤ p̂ + zβ/2

√
p(1 − p)/n) ≈ 1 − β. (3.3)

This leads to the (1 − β)100% approximate confidence interval for p

[p̂ − zβ/2

√
p(1 − p)/n, p̂ + zβ/2

√
p(1 − p)/n]. (3.4)

However, we have no value for p to use in this confidence interval. So, still
assuming that n is sufficiently large, the usual procedure is to substitute p̂
for p in equation (3.4), using q̂ = 1 − p̂, and we get the final (1 − β)100%
approximate confidence interval

[p̂ − zβ/2

√
p̂q̂/n, p̂ + zβ/2

√
p̂q̂/n]. (3.5)

Assume that 0.01 ≤ β < 1. Staring at 0.01 is arbitrary and you could begin
at 0.001 or 0.10 etc. In this book we usually start at 0.01. Denote these
confidence intervals as

[p1(β), p2(β)], (3.6)

for 0.01 ≤ β < 1. Add to this the interval [p̂, p̂] for the 0% confidence interval
for p. Then we have a (1−β)100% confidence interval for p for 0.01 ≤ β ≤ 1.

Now place these confidence intervals, one on top of another, to produce
a triangular shaped fuzzy number p whose alpha-cuts are the confidence
intervals. We have

p[α] = [p1(α), p2(α)], (3.7)

for 0.01 ≤ α ≤ 1. All that is needed is to finish the “bottom” of p to make it
a complete fuzzy number. We will simply drop the graph of p straight down
to complete its α-cuts so

p[α] = [p1(0.01), p2(0.01)], (3.8)

for 0 ≤ α < 0.01. In this way we are using more information in p than just
a point estimate or just a single confidence interval. Then p, a triangular
shaped fuzzy number, will be our fuzzy estimator for p

The following example shows that p will be a triangular shaped fuzzy
number. However, for simplicity, throughout this book we will always use
triangular fuzzy numbers for the fuzzy values of uncertain parameters (like
means, variances,etc.) in probability density (mass) functions.

The method used above to construct p will be used throughout the book
in obtaining fuzzy estimators from data.
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Figure 3.1: Fuzzy Estimator p in Example 3.2.1, 0.01 ≤ β ≤ 1

Example 3.2.1

Assume that n = 350, x = 180 so that p̂ = 0.5143. The confidence intervals
become

[0.5143 − 0.0267zβ/2, 0.5143 + 0.0267zβ/2], (3.9)

for 0.01 ≤ β ≤ 1.
To obtain a graph of fuzzy p, or p, we use 0.01 ≤ β ≤ 1. We evaluated

equation (3.9) using Maple [12] and then the graph of p is shown in Figure
3.1, without dropping the graph straight down to the x-axis at the end points.
The Maple commands for this figure are similar to those for Figure 6.2 which
are in Chapter 30.

To complete the picture we draw short vertical line segments, from the
horizontal axis up to the graph, at the end points of the base of the fuzzy
number p. The base (p[0]) in Figure 3.1 is a 99% confidence interval for p.

3.3 Fuzzy Probabilities from Expert Opinion

Some of the fuzzy probabilities and fuzzy constants in our models may have to
be estimated by experts. That is, we have no statistical data to generate the
fuzzy numbers from a set of confidence intervals as discussed in the previous
section. So let us briefly see how this may be accomplished. First assume we
have only one expert and he/she is to estimate the value of some probability
p. We can solicit this estimate from the expert as is done in estimating job
times in project scheduling ([18], Chapter 13). Let a = the “pessimistic”
value of p, or the smallest possible value, let c = be the “optimistic” value of
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p, or the highest possible value, and let b = the most likely value of p. We
then ask the expert to give values for a, b, c and we construct the triangular
fuzzy number p = (a/b/c) for p. If we have a group of N experts all to
estimate the value of p we solicit the ai, bi and ci, 1 ≤ i ≤ N , from them.
Let a be the average of the ai, b is the mean of the bi and c is the average of
the ci. The simplest thing to do is to use (a/b/c) for p.

3.4 Restricted Fuzzy Arithmetic

Restricted fuzzy arithmetic was first proposed in the papers ([6]-[9],[13]-[15],
see also [11]). In these papers restricted fuzzy arithmetic due to probabilistic
constraints is mentioned but was not developed to the extent that it will be
in this book. Also, in [15] the authors extend the results in [14] to fuzzy num-
bers for probabilities under restricted fuzzy arithmetic due to probabilistic
constraints similar to what we use in this book. But in [15] they concentrate
only on Bayes’ formula for updating prior fuzzy probabilities to posterior
fuzzy probabilities.

In this section we will first discuss three methods that you may obtain
crisp/fuzzy probabilities. Next we explain what we mean by restricted fuzzy
arithmetic for a finite, discrete, fuzzy probability distribution ([1],[2]). Then
we will extend it to how it will be used in this book. Restricted fuzzy arith-
metic is used only in Chapters 3 and 4.

3.4.1 Probabilities

Let X = {x1, ..., xn} be a finite set and let P be a probability function defined
on all subsets of X with P ({xi}) = ai, 1 ≤ i ≤ n, 0 < ai < 1, all i, and∑n

i=1 ai = 1. Starting in this chapter we will substitute a fuzzy number ai

for ai, for some i, to obtain a discrete (finite) fuzzy probability distribution.
Where do these fuzzy numbers come from?

In some problems, because of the way the problem is stated, the values
of all the ai are crisp and known. For example, consider tossing a fair coin
and a1 = the probability of getting a “head” and a2 = is the probability
of obtaining a “tail”. Since we assumed it to be a fair coin we must have
a1 = a2 = 0.5. In this case we would not substitute a fuzzy number for a1 or
a2 because they are crisp numbers 0.5. But in many other problems the ai

are not known exactly and they are either estimated from a random sample
or they are obtained from “expert opinion” .

Suppose we have the results of a random sample to estimate the value
of a1. We would construct a set of confidence intervals for a1 and then put
these together to get the fuzzy number a1 for a1. This method of building a
fuzzy number from confidence intervals was discussed in Section 3.2.

Assume that we do not know the values of the ai and we do not have any
data to estimate their values. Then we may obtain numbers for the ai from
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some group of experts. This group could consist of only one expert. This
case includes subjective, or “personal”, probabilities and it is used to estimate
certain probabilities and certain parameters in this book. We discussed this
case in Section 3.3 above.

So, when we have to estimate probabilities/parameters from data/expert
opinion, we will use fuzzy numbers for these uncertain items.

3.4.2 Restricted Arithmetic: General

Let X = {x1, ..., xn} be a finite set and let P be a probability function
defined on all subsets of X with P ({xi}) = ai, 1 ≤ i ≤ n, 0 < ai < 1 all i and∑n

i=1 ai = 1. X together with P is a discrete (finite) probability distribution.
In practice all the ai values must be known exactly. Many times these values
are estimated, or they are provided by experts. We now assume that some of
these ai values are uncertain and we will model this uncertainty using fuzzy
numbers. Not all the ai need to be uncertain, some may be known exactly
and are given as a crisp (real) number. If an ai is crisp, then we will still
write it as a fuzzy number even though this fuzzy number is crisp.

Due to the uncertainty in the ai values we substitute ai, a fuzzy number,
for each ai and assume that 0 < ai < 1 all i. If some ai is known precisely,
then this ai = ai but we still write ai as ai. Then X together with the ai

values is a discrete (finite) fuzzy probability distribution. We write P for
fuzzy P and we have P ({xi}) = ai, 1 ≤ i ≤ n, 0 < ai < 1.

The uncertainty is in some of the ai values but we know that we have
a discrete probability distribution. So we now put the following restriction
on the ai values: there are ai ∈ ai[1] so that

∑n
i=1 ai = 1. That is, we can

choose ai in ai[α], all α, so that we get a discrete probability distribution.
Let A and B be (crisp) subsets of X. We know how to compute P (A)

and P (B) so let us find P (A) and P (B), the fuzzy probabilities of A and B,
respectively. To do this we introduce restricted fuzzy arithmetic. There may
be uncertainty in some of the ai values, but there is no uncertainty in the
fact that we have a discrete probability distribution. That is, whatever the
ai values in ai[α] we must have a1 + ... + an = 1. This is the basis of our
restricted fuzzy arithmetic. Suppose A = {x1, ..., xk}, 1 ≤ k < n, then define
(this is an α-cut of the fuzzy probability )

P (A)[α] = {
k∑

i=1

ai| S }, (3.10)

for 0 ≤ α ≤ 1, where S stands for the statement “ai ∈ ai[α], 1 ≤ i ≤ n,∑n
i=1 ai = 1 ”. This is our restricted fuzzy arithmetic. Notice that we first

choose a complete discrete probability distribution from the α-cuts before we
compute a probability in equation (3.10). Notice also that P (A)[α] is not
the sum of the intervals ai[α], 1 ≤ i ≤ k, using interval arithmetic because
this sum can many times exceed one. The α-cuts defined in equation (3.10)
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are then put together to obtain a fuzzy number for the fuzzy probability.
P (A)[α] will be an interval, and we will use the right side of equation (3.10)
to compute the end points of this interval as in equations (2.27) and (2.28)
in Chapter 2.

3.4.3 Computing Fuzzy Probabilities

Throughout this book whenever we wish to find the α-cut of a fuzzy prob-
ability we will need to solve an optimization problem. The problem is to
find the max and min of a function f(p1, ..., pn) subject to linear constraints.
There will be two types of problems. The first one, needed in this chapter and
Chapter 4 will be described in the next subsection (called the “First Prob-
lem”) and the other type of problem, used in Chapters 4 and 5, is discussed
in the second subsection (called the “Second Problem”).

First Problem

The structure of this problem is

max/minf(pi1 , ..., piK
) (3.11)

subject to
ai ≤ pi ≤ bi, 1 ≤ i ≤ n, (3.12)

and
p1 + ... + pn = 1. (3.13)

The set {pi1 , ..., piK
} is a subset of {p1, ..., pn}. The pi must be in interval

[ai, bi], 1 ≤ i ≤ n and their sum must be one. In the application of this
problem : (1) the pi will be probabilities ; (2) the intervals [ai, bi] will be
α-cuts of fuzzy numbers used for fuzzy probabilities; and (3) the sum of the
pi equals one means the sum of the probabilities is one. This problem is
actually solving for the α-cuts of a fuzzy probability.

In this subsection we explain how we will obtain numerical solutions to
this problem. If f(pi1 , ..., piK

) is a linear function of the p′is, then this problem
is a linear programming problem and we can solve it using the “Optimization”
call in Maple [12]. So now assume that the function f is not a linear function
of the p′is. We used three methods of solution: (1)graphical; (2) calculus; and
(3) Maple/Solver. The calculus procedure is discussed in the three examples
below, so now let us first discuss the graphical method. Solver ([4],[17]) is
nonlinear optimization software which is a free add on to Microsoft Excel.
Solver was used mostly in Chapter 13. Maple can solve many nonlinear
optimization problems with the “NLPSolve” command.

The graphical method is applicable for n = 2, and sometimes for n = 3.
First let n = 2 and assume that p2 = 1 − p1 so that we may substitute
1 − p1 for p2 in the function f and obtain f a function of p1 only. The
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optimization problem is now max/minf(p1) subject to a1 ≤ p1 ≤ b1. We
simply used Maple to graph f(p1) for a1 ≤ p1 ≤ b1. From the graph we
can sometimes easily find the max, or min, especially if they are at the
end points. Now suppose the max (min) is not at an end point. Then we
repeatedly evaluated the function in the neighborhood of the extreme point
until we could estimate its value to our desired accuracy. Next let n = 3 and
assume that p3 = 1 − (p1 + p2). For example p1 = (0.2/0.3/0.4) = p2 and
p3 = (0.2/0.4/0.6) satisfies this constraint. Then substitute 1− (p1 + p2) for
p3 in f to get f a function of only p1 and p2. Then the optimization problem
becomes max/minf(p1, p2) subject to a1 ≤ p1 ≤ b1, a2 ≤ p2 ≤ b2. We used
Maple to graph the surface over the rectangle ai ≤ pi ≤ bi, i = 1, 2. Then, as
in the n = 2 case, we found by inspection extreme points, or we used Maple
to repeatedly evaluate the function in the neighborhood of an extreme point
to estimate the max, or min, value. This method of looking at the surface
z = f(p1, p2) is also applicable when n = 2 and we can not use p2 = 1 − p1.

Now let us look at three examples of the calculus method. But first we
need to define what we will mean by saying that a certain subset of the
pi, 1 ≤ i ≤ n, is feasible. To keep the notation simple let n = 5 and we
claim that p1,p2 and p4 are feasible. This means that we may choose any
pi ∈ pi[α], i = 1, 2, 4, and then we can then find a p3 ∈ p3[α] and a p5 ∈ p5[α]
so that p1 + p2 + p3 + p4 + p5 = 1. Assume that f is a function of only
p1,p2 and p4. Also assume that f is: (1) an increasing function of p1 and
p4; and (2) a decreasing function of p2. We will be using [ai, bi] = pi[α],
1 ≤ i ≤ 5. If p1,p2 and p4 are feasible, then, as in the examples below,
we may find that for α ∈ [0, 1] : (1) minf(p1, p2, p4) = f(a1, b2, a4); and
(2)maxf(p1, p2, p4) = f(b1, a2, b4).

Example 3.4.3.1

Consider the problem
max/minf(p1, p2) (3.14)

subject to
p1 ∈ [a1, b1], p2 ∈ [a2, b2], p1 + p2 = 1, (3.15)

where 0 ≤ ai ≤ bi ≤ 1, i = 1, 2. Also assume that ∂f/∂p1 > 0 and ∂f/∂p2 <
0 for the pi in [0, 1]. Now the result depends on the two intervals [a1, b1] and
[a2, b2].

First assume that 1 − a1 = b2 and 1 − b1 = a2. This means that p1 = a1

and p2 = b2 are feasible because a1 + b2 = 1. Also, p1 = b1 and p2 = a2 are
feasible since b1 + a2 = 1. For example, [0.3, 0.6] and [0.4, 0.7] are two such
intervals. Then

minf(p1, p2) = f(a1, b2), (3.16)

and
maxf(p1, p2) = f(b1, a2). (3.17)
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Now assume that 1 − a1 does not equal b2 or 1 − b1 is not equal to a2.
Then the optimization problem is not so simple and we may try to use the
graphical procedure presented above, graphing the surface f(p1, p2) over the
rectangle a1 ≤ pi ≤ bi for i = 1, 2, to approximate max/minf(p1, p2). We
might also employ Maple or Solver.

Example 3.4.3.2

Now we have the problem

max/minf(p1, p2, p3), (3.18)

subject to
pi ∈ [ai, bi], 1 ≤ i ≤ 3, p1 + p2 + p3 = 1, (3.19)

where 0 ≤ ai ≤ bi ≤ 1, i = 1, 2, 3. Also assume that ∂f/∂p1 > 0, ∂f/∂p2 < 0
and ∂f/∂p3 < 0. If a1 + b2 + b3 = 1 and b1 +a2 +a3 = 1, then the solution is

minf(p1, p2, p3) = f(a1, b2, b3), (3.20)

and
maxf(p1, p2, p3) = f(b1, a2, a3). (3.21)

When these sums do not add up to one, we need to employ some numerical
optimization method like Maple or Solver.

Example 3.4.3.3

The last problem is
max/minf(p1, p3), (3.22)

subject to
pi ∈ [ai, bi], 1 ≤ i ≤ 3, p1 + p2 + p3 = 1, (3.23)

where 0 ≤ ai ≤ bi ≤ 1, 1 ≤ i ≤ 3. Assume that ∂f/∂p1 > 0 and ∂f/∂p3 < 0.
Also assume that: (1)p1 = a1 and p3 = b3 are feasible, or a1 + p2 + b3 = 1 for
some p2 ∈ [a2, b2]; and (2) p1 = b1 and p3 = a3 are feasible, or b1+p2+a3 = 1
for some p2 ∈ [a2, b2]. Then the solution is

minf(p1, p3) = f(a1, b3), (3.24)

and
maxf(p1, p3) = f(b1, a3). (3.25)

We first try the calculus method and if that procedure is not going to
work, then we next try the graphical method. The graphical, or calculus,
method was applicable in many types of problems in [1]. However, one can
easily consider situations where neither procedure is applicable. Then we will
use Maple or Solver.
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New Algorithm

When the objective function is linear we have a new algorithm [16] that
many be used. We do not guarantee that it will always work but it is easy
to employ using just pencil and paper. This method may be used to solve
various optimization problems, without the need of “Optimization” in Maple,
in [1] but we shall present only the following two examples. The first simple
example is from the first page in that book.

Example 3.4.3.4

Consider
max/min(a1 + a2), (3.26)

subject to

a1 ∈ [0.1, 0.3], a2 ∈ [0.3, 0.7], a3 ∈ [0.2, 0.4], a1 + a2 + a3 = 1. (3.27)

First look at the maximum. Give the ai their minimum values a1 = 0.1,
a2 = 0.3, a3 = 0.2. Then a1 + a2 + a3 = 0.6 and 0.4 must be added to the ai.
The remaining 0.4 is added to maximize a1 + a2. The order is a1, a2, a3 or
a2, a1, a3. First consider a1, a2, a3. Now a1 takes 0.2 to get to its max. of 0.3
and the remaining 0.2 is given to a2 making its value 0.5. The max. is 0.8
for a1 = 0.3, a2 = 0.5 and a3 = 0.2. With the order a2, a1, a3 we first give all
of 0.4 to a2 making it 0.7 and a1 = 0.1, a2 = 0.7, a3 = 0.2 for an alternate
max. of 0.8.

Next consider the minimum. Give the minimum values to the ai and the
remaining 0.4 is given to the ai in the order a3, a1, a2 or a3, a2, a1. Assume
the first ordering. Give the max. 0.2 to a3 to make its value 0.4 and the
remaining 0.2 goes to a2 making a2 = 0.5. The minimum is 0.6 for a1 = 0.1,
a2 = 0.5 and a3 = 0.4. An alternate minimum solution may exist using the
other ordering. Maple commands to solve this problem are given in Chapter
30.

Example 3.4.3.5

This problem is from the “Blood Types” example in Section 3.9.1 in this
chapter. We want to maximize pa + pb + pab subject to 0.3 + 0.03α ≤ pa ≤
0.36−0.03α, 0.2+0.03α ≤ pb ≤ 0.26−0.03α, 0.32+0.03α ≤ pab ≤ 0.38−0.03α,
0.06 + 0.03α ≤ p0 ≤ 0.12 − 0.03α, pa + pb + pab + p0 = 1. First set pa =
0.3 + 0.03α,pb = 0.2 + 0.03α,pab = 0.32 + 0.03α,p0 = 0.06 + 0.03α. Then
pa + pb + pab + p0 = 0.88 + 0.12α. The amount to be added to get sum
one is 0.12 − 0.12α. The order will be pa,pb,pab and p0. pa is raised with
0.06 − 0.06α to 0.36 − 0.03α. Remaining to be added is 0.06 − 0.06α. This
amount is added to pb which now equals 0.26−0.03α. Then the maximum of
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pa +pb +pab is (0.36−0.03α)+(0.26−0.03α)+(0.32+0.03α) = 0.94−0.03α.
In a similar manner, by raising p0 to its maximum first as in Example 3.4.3.4,
we find the minimum to be 0.88 + 0.03α. We leave this part as an exercise
for the interested reader.

Second Problem

This type of problem is
max/minf(θ), (3.28)

subject to
θi ∈ [ai, bi], 1 ≤ i ≤ n, (3.29)

where θ = (θ1, ..., θn). Notice in this case we do not have the constraint that
the θi must sum to one. In applications of this problem the intervals [ai, bi] are
α-cuts of fuzzy numbers used for uncertain parameters in probability density
(mass) functions. This problem is actually solving to obtain the α-cuts of a
fuzzy probability.

In this subsection we explain how we will obtain numerical solutions to
this problem. In this book n will be one or two, and n will be two only
for the normal probability density function. When n = 1 we may employ a
calculus method (Example 3.4.3.6 below) or a graphical procedure (discussed
in the previous subsection). When n = 2 we used the graphical method (see
Example 5.3.1). To see more detail on this type of problem let us look at the
next three examples. Because of the nature of the objective function in the
first two examples our nonlinear solution software Solver was not applicable.
However, Maple can be used.

Example 3.4.3.6

Let N(µ, σ2) be the normal probability density with mean µ and variance
σ2. To obtain the fuzzy normal we use fuzzy numbers µ and σ2 for µ and
σ2, respectively. Set P [c, d] to be the fuzzy probability of obtaining a value
in the interval [c, d]. Its α-cuts are gotten by solving the following problem
(see Section 5.3)

max/minf(µ, σ2) =
∫ z2

z1

N(0, 1)dx, (3.30)

subject to
µ ∈ [a1, b1], σ2 ∈ [a2, b2], (3.31)

where ai ≤ bi, 1 ≤ i ≤ 2, a2 > 0, and z1 = (d − µ)/σ and z2 = (c − µ)/σ,
and N(0, 1) is the normal with zero mean and unit variance. We use the
graphical method, discussed above, to solve this problem in Example 5.3.1.
We may also use “NLPSolve” in Maple to solve this problem (see Example
5.3.1 and the Maple commands for Example 5.3.1 are in Chapter 30).
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Example 3.4.3.7

The negative exponential has density f(x;λ) = λ exp(−λx) for x ≥ 0, and
the density is zero for x < 0. The fuzzy negative exponential has a fuzzy
number, say λ = (2/4/6), substituted for crisp λ. We wish to calculate the
fuzzy probability of obtaining a value in the interval [6, 10]. Let this fuzzy
probability be P [6, 10] and its α-cuts , see Section 5.4, are determined from
the following problem

max/minf(λ) =
∫ 10

6

λ exp(−λx)dx, (3.32)

subject to
λ ∈ [a, b], (3.33)

where [a, b] will be an α-cut of (2/4/6). This problem is easy to solve because
f(λ) is a decreasing function of λ, df/dλ < 0, across the interval [a, b] ( which
is a subset of [2, 6]). Hence,

minf(λ) = f(b), (3.34)

and
maxf(λ) = f(a). (3.35)

Maple commands for this problem are in Chapter 30.

Example 3.4.3.8

Here we have a fuzzy, discrete, probability distribution pi, 0 ≤ i ≤ M , over
X = {0, 1, 2, ...,M}. We want to find the mean of this fuzzy probability
distribution. The mean µ is

µ =
M∑

k=0

kpk, (3.36)

which is evaluated by α-cuts and restricted fuzzy arithmetic. So

µ[α] = {
M∑

k=0

kpk| S }, (3.37)

where S is “pi ∈ pi[α], 0 ≤ i ≤ M , and p0 + ... + pM = 1”. Let µ[α] =
[µ1(α), µ2(α)]. The optimization problems are

µ1(α) = min
M∑

k=0

kpk, (3.38)
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subject to the constraints in statement S, and

µ2(α) = max

M∑
k=0

kpk, (3.39)

subject to the same constraints.
Both optimization problems are linear programming problems and hence

can be solved using Maple [12].

3.5 Fuzzy Probability

Let A and B be (crisp) subsets of X = {x1, ..., xn}. We have a discrete
(finite) fuzzy probability distribution P ({xi}) = a1, 0 < ai < 1, 1 ≤ i ≤ n.
Suppose A = {x1, ..., xk}, 1 ≤ k < n, then define

P (A)[α] = {
k∑

i=1

ai| S }, (3.40)

for 0 ≤ α ≤ 1, where S stands for the statement “ai ∈ ai[α], 1 ≤ i ≤ n,∑n
i=1 ai = 1 ”. This is restricted fuzzy arithmetic. We now show that the

P (A)[α] are the α-cuts of a fuzzy number P (A). But first we require some
definitions.

Define

S = {(x1, ..., xn)|xi ≥ 0 all i,
n∑

i=1

xi = 1}, (3.41)

and then also define

Dom[α] = (
n∏

i=1

ai[α])
⋂

S, (3.42)

for 0 ≤ α ≤ 1. In equation (3.42) we first take the product of n closed
intervals producing a “rectangle” in n dimensional space which is then in-
tersected with the set S. Now define a function f mapping Dom[α] into the
real numbers as

f(a1, ..., an) =
k∑

i=1

ai, (3.43)

for (a1, ..., an) ∈ Dom[α]. f is continuous, Dom[α] is connected, closed, and
bounded implying that the range of f is a closed, and bounded, interval of
real numbers. Define

Γ[α] = f(Dom[α]), (3.44)

for 0 ≤ α ≤ 1. But, from equation (3.40), we see that

P (A)[α] = Γ[α], (3.45)
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for all α. Hence, P (A) is a fuzzy number since it is normalized ( P (A)[1] �= φ).
We are using the general definition of fuzzy numbers ([3],[10]).

We can now argue that:

1. If A ∩ B = φ, then P (A) + P (B) ≥ P (A ∪ B).

2. If A ⊆ B and P (A)[α] = [pa1(α), pa2(α)] and P (B)[α] =
[pb1(α), pb2(α)], then pai(α) ≤ pbi(α) for i = 1, 2 and 0 ≤ α ≤ 1.

3. 0 ≤ P (A) ≤ 1 all A with P (φ) = 0, P (X) = 1.

4. P (A) + P (A′) ≥ 1, where A′ is the complement of A.

5. When A ∩ B �= φ, P (A ∪ B) ≤ P (A) + P (B) − P (A ∩ B).

It is easy to see that (2) and (3) are true and (4) follows from (1) and
(3). So we now demonstrate that (1) and the generalized addition law (5)
are true. Then we show by Example 3.5.1 below that in cases (1) and (5) we
may not get equality.

We show that (P (A) + P (B))[α] = P (A)[α] + P (B)[α] ⊇ P (A ∪ B)[α]
, for all α. To simplify the discussion assume that A = {x1, ..., xk}, B =
{xl, ..., xm} for 1 ≤ k < l ≤ m ≤ n. Again let S denote the statement
“ai ∈ ai[α], 1 ≤ i ≤ n,

∑n
i=1 ai = 1”. Then we need to show, based on

equation (3.10), that

{
k∑

i=1

ai| S } + {
m∑
i=l

ai| S } ⊇ {
k∑

i=1

ai +
m∑
i=l

ai| S }. (3.46)

Let r = s + t be a member of the right side of equation (3.46) where s =
a1 + ... + ak and t = al + ... + am. Then s belongs to the first member of
the left side of equation (3.46) and t belongs to the second member. Hence
r = s + t belongs to the left side of equation (3.46) and equation (3.46) is
correct.

However, there are situations where P (A) + P (B) = P (A ∪ B) when A
and B are disjoint. We also give an example of equality in Example 3.5.1
below.

Next we wish to show (5) is also true. Using the notation defined above
assume that A = {x1, ..., xk}, B = {xl, ..., xm} but now 1 ≤ l ≤ k ≤ m ≤ n.
We show that P (A)[α]+P (B)[α]−P (A∩B)[α] ⊇ P (A∪B)[α]. Or, we show
that

{
k∑

i=1

ai|S} + {
m∑
i=l

ai|S} − {
k∑

i=l

ai|S} ⊇ {
m∑

i=1

ai|S}. (3.47)

Let r be in the right side of equation (3.47). Then we may write r as r =
s + t− u where s = a1 + ... + ak, t = al + ... + am and u = al + ... + ak. Now
s belongs to the first member on the left side of equation (3.47), t belongs to
the second member and u belongs to the third member. Hence r belongs to
the left side of equation (3.47).
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Example 3.5.1

We first show by example that you may not obtain equality in equation
(3.46). Let n = 5, A = {x1, x2}, B = {x4, x5}, ai = 0.2 for 1 ≤ i ≤ 5. All
the probabilities are uncertain except a3 so let a1 = a2 = (0.19/0.2/0.21),
a3 = 0.2 and a4 = a5 = (0.19/0.2/0.21). Then P (A)[0] = [0.38, 0.42] because
p1 = 0.19 = p2 are feasible (see Section 3.4.3)and p1 = p2 = 0.21 are feasible.
We also determine P (B)[0] = [0.38, 0.42] so the left side of equation (3.46),
for α = 0, is the interval [0.76, 0.84]. However, P (A∪B)[0] = [0.8, 0.8]. For A
and B disjoint, we can get P (A∪B)[α] a proper subset of P (A)[α]+P (B)[α].

Let n = 6, A = {x1, x2, x3}, B = {x3, x4, x5}, ai = 0.1 for 1 ≤ i ≤ 5
and a6 = 0.5, Assuming all probabilities are uncertain we substitute ai =
(0.05/0.1/0.15) for 1 ≤ i ≤ 5 and a6 = (0.25/0.5/0.75). Then we easily
deduce that P (A ∪ B)[0] = [0.25, 0.75], P (A)[0] = P (B)[0] = [0.15, 0.45] and
P (A ∩ B)[0] = [0.05, 0.15]. Then, from interval arithmetic, we see that

[0.25, 0.75] �= [0.15, 0.45] + [0.15, 0.45] − [0.05, 0.15], (3.48)

where the right side of this equation is the interval [0.15, 0.85]. So P (A∪B)[α]
can be a proper subset of P (A)[α] + P (B)[α] − P (A ∩ B)[α].

Now we show by example we can obtain P (A) + P (B) = P (A∪B) when
A and B are disjoint. Let X = {x1, x2, x3}, A = {x1}, B = {x3}, a1 =
(0.3/0.33/0.36), a2 = (0.28/0.34/0.40) and a3 = a1. Then P (A) = a1,
P (B) = a3 so P (A) + P (B) = (0.6/0.66/0.72). Alpha-cuts of P (A ∪ B) are

P (A ∪ B)[α] = {a1 + a3| S }. (3.49)

Let ai[α] = [ai1(α), ai2(α)], for i = 1, 2, 3. We can evaluate equation (3.49)
by using the end points of these α-cuts because; (1) for any α there is a
a2 ∈ a2[α] so that a11(α) + a2 + a31(α) = 1; and (2) for each α there is a
a2 ∈ a2[α] so that a12(α) + a2 + a32(α) = 1. Then

P (A ∪ B)[α] = [a11(α) + a31(α), a12(α) + a32(α)], (3.50)

so that P (A ∪ B) = (0.6/0.66/0/72).
We will finish this section with the calculation of the mean and variance

of a discrete fuzzy probability distribution. The fuzzy mean is defined by its
α-cuts

µ[α] = {
n∑

i=1

xiai| S }, (3.51)

where, as before, S denotes the statement “ ai ∈ ai[α], 1 ≤ i ≤ n,
∑n

i=1 ai =
1”. The variance is also defined by its α-cuts as

σ2[α] = {
n∑

i=1

(xi − µ)2ai| S , µ =
n∑

i=1

xiai}. (3.52)
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The mean µ and variance σ2 will be fuzzy numbers because µ[α] and σ2[α]
are closed, bounded, intervals for 0 ≤ α ≤ 1. The same proof, as was given
for P (A)[α], can be used to justify these statements.

Example 3.5.2

Let X = {0, 1, 2, 3, 4} with a0 = a4 = 1
16 , a1 = a3 = 0.25 and a2 = 3

8 . Then
µ = 2 and σ2 = 1. Assume there is uncertainty only in a1 and a3 so we
substitute a1 for a1 and a3 for a3. Let us use a1 = a3 = (0.2/0.25/0.3). First
compute µ[α]. Use the numerical values for the xi, a0, a2 and a4 but choose
a1 ∈ a1[α] and a3 = 0.5 − a1 in a3[α] so that the sum of the ai equals one.
Then the formula for crisp µ = f1(a1) = 2.5−2a1 is a function of only a1. We
see that ∂f1/∂a1 < 0. This allows us to compute the end points of the interval
µ[α] which gives [1.9 + 0.1α, 2.1 − 0.1α] = µ[α], so that µ = (1.9/2/2.1), a
triangular fuzzy number. Since a1[α] = [0.2 + 0.05α, 0.3 − 0.05α], we used
0.3 − 0.05α to get 1.9 + 0.1α and 0.2 + 0.05α to obtain 2.1 − 0.1α. We do
the same with the crisp formula for σ2 and we deduce that σ2 = f2(a1) =
0.75+ 2a1 − 4a2

1, for a1 in a1[α]. If σ2[α] = [σ2
1(α), σ2

2(α)] we determine from
f2(a1) that σ2

1(α) = f2(0.2 + 0.05α) but σ2
2(α) = 1 all α. So the α-cuts of

the fuzzy variance are [0.99 + 0.02α− 0.01α2, 1], 0 ≤ α ≤ 1. The uncertainty
in the variance is that it can be less than one but not more than one. The
graph of the fuzzy variance is shown in Figure 3.2.

It can be computationally difficult, in general, to compute the inter-
vals P (A)[α] (equation (3.40)), µ[α] (equation (3.51)), and σ2[α] (equation
(3.52)). All we need to do is to determine the end points of these intervals
which can be written as a non-linear optimization problem. For example, for
σ2[α], we have

σ2
1(α) = min{

n∑
i=1

(xi − µ)2ai| S }, (3.53)

0.99 0.992 0.994 0.996 0.998 1
x

1

y

Figure 3.2: Fuzzy Variance in Example 3.5.2
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and

σ2
2(α) = max{

n∑
i=1

(xi − µ)2ai| S }, (3.54)

where S is the statement “ai ∈ ai[α], 1 ≤ i ≤ n, µ =
∑n

i=1 xiai,
∑n

i=1 ai = 1”.
One may consider using Maple to estimate the σ2

i (α) values for selected α.

3.6 Fuzzy Conditional Probability

Let A = {x1, ..., xk}, B = {xl, ..., xm} for 1 ≤ l ≤ k ≤ m ≤ n so that A and
B are not disjoint. We wish to define the fuzzy conditional probability of
A given B. We will write this fuzzy conditional probability as P (A|B). We
now present two definitions for fuzzy conditional probability and then argue
in favor of the first definition.

Our first definition is

P (A|B)[α] = {
∑k

i=l ai∑m
i=l ai

| S }. (3.55)

In this definition the numerator of the quotient is the sum of the ai in the
intersection of A and B, while the denominator is the sum of the ai in B.

Our second definition is

P (A|B) =
P (A ∩ B)

P (B)
. (3.56)

This second definition seems very natural but, as to be shown in Example
3.6.1 below, because of fuzzy arithmetic this conditional fuzzy probability can
get outside the interval [0, 1]. The first definition always produces a fuzzy
probability in [0, 1].

Example 3.6.1

Let n = 4, A = {x1, x2}, B = {x2, x3} and all the ai are uncertain with a1 =
(0.1/0.2/0.3), a2 = (0.2/0.3/0.4), a3 = (0/0.1/0.2) and a4 = (0.3/0.4/0.5).
We show that, using the second definition, P (A|B) is not entirely in [0, 1]

Since A ∩ B = {x2} we find that P (A ∩ B) = a2. We also easily find
that P (B) = (0.2/0.4/0.6). Then this definition produces a fuzzy number
[(0.2/0.3/0.4)]/[(0.2/0.4/0.6)] whose α = 0 cut is the interval [13 , 2] with right
end point greater than one. We would expect this to occur quite often using
the second definition so we drop the second definition and adopt the first
definition for fuzzy conditional probability.



3.6. FUZZY CONDITIONAL PROBABILITY 37

Example 3.6.2

We will use the same data as given in Example 3.6.1 in the first definition to
compute the fuzzy conditional probability of A given B. We need to evaluate

P (A|B)[α] = { a2

a2 + a3
| S }, (3.57)

for 0 ≤ α ≤ 1. If we let y = f(a2, a3) = a2
a2+a3

we find that ∂y/∂a2 > 0 and
∂y/∂a3 < 0. This allows us to find the end points of the interval defining the
α-cuts of the fuzzy conditional probability. We obtain

P (A|B)[α] = [0.5 + 0.25α, 1 − 0.25α], (3.58)

for all α ∈ [0, 1]. Let ai[α] = [ai1(α), ai2(α)] for 1 ≤ i ≤ 4. We see that; (1)
a21(α) and a32(α) are feasible; and (2) a22(α) and a31(α) are feasible. What
we did, to obtain the left end point of the interval in equation (3.58), was in
the function f we : (1) substituted the left end point of the interval a2[α],
which is 0.2 + 0.1α, for a2; and (2) substituted the right end point of the
interval a3[α], which is 0.2 − 0.1α, for a3. To get the right end point of the
interval: (1) substitute the right end point of the interval a2[α] for a2; and (2)
substitute the left end point of a3[α] for a3. Hence, P (A|B) = (0.5/0.75/1)
a triangular fuzzy number.

We will use the first definition of fuzzy conditional probability in the
remainder of this book. Now we will show the basic properties of fuzzy
conditional probability which are:

1. 0 ≤ P (A|B) ≤ 1;

2. P (B|B) = 1;

3. P (A1 ∪ A2|B) ≤ P (A1|B) + P (A2|B), if A1 ∩ A2 = φ;

4. P (A|B) = 1, if B ⊆ A; and

5. P (A|B) = 0, if B ∩ A = φ.

Items (1), (2) and (4) follow immediately from our definition of fuzzy
conditional probability. If we define the value of an empty sum to be zero,
then (5) is true since the numerator in equation (3.55) will be empty when
A and B are disjoint. So let us only present an argument for property (3).
We show that P (A1 ∪ A2|B)[α] ⊆ P (A1|B)[α] + P (A2|B)[α], for 0 ≤ α ≤ 1.
Choose and fix α. Let x belong to P (A1∪A2|B)[α]. Then x = r+s

t where: (1)
r is the sum of the ai for xi ∈ A1∩B; (2) s is the sum of the ai for xi ∈ A2∩B;
and (3) t is the sum of the ai for xi ∈ B. Of course, the ai ∈ ai[α] all i and
the sum of the ai equals one. Then r/t ∈ P (A1|B)[α] and s/t ∈ P (A2|B)[α].
Hence x ∈ P (A1|B)[α] + P (A2|B)[α] and the result follows. The following
example shows that we may obtain P (A1 ∪ A2|B) �= P (A1|B) + P (A2|B)
when A1 ∩ A2 = φ.
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Example 3.6.3

We will use the same data as in Examples 3.6.1 and 3.6.2 but let A1 = {x2}
and A2 = {x3} so that A1 ∪ A2 = B and P (A1 ∪ A2|B) = 1. We quickly
determine, as in Example 3.6.2 that P (A1|B) = (0.5/0.75/1) and P (A2|B) =
(0/0.25/0.5) so that P (A1|B)+P (A2|B) = (0.5/1/1.5). Notice that when we
add two fuzzy numbers both in [0, 1] we can get a fuzzy number not contained
in [0, 1]. Clearly, P (A1∪A2|B) ≤ P (A1|B)+P (A2|B) but they are not equal.

3.7 Fuzzy Independence

We will present two definitions of two events A and B being independent
and two versions of the first definition. We then argue against the second
definition and therefore adopt the first definition for this book.

The first definition uses fuzzy conditional probability from the previous
section. We will say that A and B are strongly independent if

P (A|B) = P (A), (3.59)

and
P (B|A) = P (B). (3.60)

Since the equality in equations (3.59) and (3.60) are sometimes difficult to
satisfy we also have a weaker definition of independence. We will say that A
and B are weakly independent if

P (A|B)[1] = P (A)[1], (3.61)

and
P (B|A)[1] = P (B)[1]. (3.62)

In the weaker version of independence we only require the equality for the
core (where the membership values are one) of the fuzzy numbers. Clearly,
if they are strongly independent they are weakly independent.

Our second definition of independence follows from the usual way of spec-
ifying independence in the crisp (non-fuzzy) case. We say that A and B are
independent if

P (A ∩ B) = P (A)P (B). (3.63)

We now argue in favor of the first definition because, due to fuzzy multi-
plication, it would be very rare to have the equality in equation (3.63) hold.
The following example shows that events can be strongly independent (first
definition) but it is too difficult for them to be independent by the second
definition.
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Example 3.7.1

Let n = 4 and ai = (0.2/0.25/0.3), 1 ≤ i ≤ 4. Also let A = {x1, x2} and
B = {x2, x3}. First, we easily see that P (A) = (0.4/0.5/0.6) = P (B). To
find P (A|B) we need to compute

P (A|B)[α] = { a2

a2 + a3
| S }, (3.64)

for all α. We do this as in Example 3.6.2 and obtain P (A|B) =
(0.4/0.5/0.6) = P (A). Similarly we see that P (B|A) = (0.4/0.5/0.6) = P (B)
and A and B are strongly independent. Now we go to the second definition
and find P (A∩B) = a2 = (0.2/0.25/0.3). But P (A)P (B) ≈ (0.16/0.25/0.36)
a triangular shaped fuzzy number. Even if P (A|B), P (A) and P (B) are all
triangular fuzzy numbers, P (A)P (B) will not be a triangular fuzzy number.
Because of fuzzy multiplication we would not expect the second definition of
independence to hold, except in rare cases.

We will adopt the first definition of independence. Now let us see what
are the basic properties of independence for fuzzy probabilities. In crisp
probability theory we know that if A and B are independent so are A and
B′, and so are A′ and B, and so are A′ and B′, where the “prime” denotes
complement. However, this result may or may not be correct for strong
independence and fuzzy probabilities. For the data in Example 3.7.1, A and
B are strongly independent and so are A and B′, as are A′ and B, and this is
also true for A′ and B′. The following example shows that this is not always
true.

Example 3.7.2

Let n = 4 but now ai = (0.2/0.25/0.30), 1 ≤ i ≤ 3 with a4 =
(0.1/0.25/0.4),and A = {x1, x2}, B = {x2, x3}. As in Example 3.7.1 we
find that A and B are strongly independent but we can now show that A and
B′ are not strongly independent. That is, we argue that P (A|B′) �= P (A).
We know that P (A) = (0.4/0.5/0.6). To find α-cuts of P (A|B′) we compute

{ a1

a1 + a4
| S }. (3.65)

Now the fraction in equation (3.65) is an increasing function of a1 but it is
decreasing in a4. Hence we obtain

P (A|B′)[α] = [
0.2 + 0.05α

0.6 − 0.1α
,
0.3 − 0.05α

0.4 + 0.1α
], (3.66)

for all α ∈ [0, 1]. So P (A|B′) ≈ ( 1
3/0.5/0.75) a triangular shaped fuzzy

number. We see that A and B′ are not strongly independent.
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However, the situation is possibly changed for weakly independent. Sup-
pose all the ai are triangular fuzzy numbers, A and B are not disjoint,
pi[1] = 1

n , 1 ≤ i ≤ n, and A and B are weakly independent. Then it is
true that: (1) A and B′ are weakly independent; (2) A′ and B are weakly
independent; and (3) A′ and B′ are also weakly independent?

3.8 Fuzzy Bayes’ Formula

Let Ai, 1 ≤ i ≤ m, be a partition of X = {x1, ..., xn}. That is, the Ai are
non-empty, mutually disjoint and their union is X. We do not know the
probability of the Ai but we do know the conditional probability of Ai given
the state of nature. There is a finite set of chance events, also called the
states of nature, S = {S1, ..., SK} over which we have no control. What we
do know is

aik = P (Ai|Sk), (3.67)

for 1 ≤ i ≤ m and 1 ≤ k ≤ K. If the operative state of nature is Sk, then
the aik give the probabilities of the events Ai.

We do not know the probabilities of the states of nature, so we enlist a
group of experts to give their estimates of ak = P (Sk). The ak, 1 ≤ k ≤ K,
is called the prior probability distribution over the states of nature. From
their estimates we construct fuzzy probabilities ak, see Section 3.3. We first
present Bayes’ formula using the crisp probabilities for the states of nature.

The probability that the state of nature Sk is in force, given the informa-
tion that outcome Aj has occurred, is given by Bayes’ formula

P (Sk|Aj) =
P (Aj |Sk)P (Sk)∑K

k=1 P (Aj |Sk)P (Sk)
, (3.68)

for 1 ≤ k ≤ K. The akj = P (Sk|Aj) , 1 ≤ k ≤ K, is the posterior probability
distribution over the states of nature.

Let us see how this result may be used. Using the aik and the prior
distribution ak, we may calculate P (Ai) as follows

P (Ai) =
K∑

k=1

P (Ai|Sk)P (Sk), (3.69)

for 1 ≤ i ≤ m. Now we gather some information and observe that event Aj

has occurred. We update the prior to the posterior and then obtain improved
estimates of the probabilities for the Ai as

P (Ai) =
K∑

k=1

P (Ai|Sk)P (Sk|Aj), (3.70)

for 1 ≤ i ≤ m.
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Now substitute ak for ak, 1 ≤ k ≤ K. Suppose we observe that event Aj

has occurred. Alpha-cuts of the fuzzy posterior distribution are

P (Sk|Aj)[α] = { ajkak∑K
k=1 ajkak

| S }, (3.71)

for 1 ≤ k ≤ K, where S is the statement “ ak ∈ ak[α] , 1 ≤ k ≤ K,∑K
k=1 ak = 1 ”. It may not be difficult to find these α-cuts. Suppose K = 3,

k=2 and let
f(a1, a2, a3) =

aj2a2∑3
k=1 ajkak

. (3.72)

Then ∂f/∂a1 < 0, ∂f/∂a2 > 0 and ∂f/∂a3 < 0. Let ak[α] = [ak1(α), ak2(α)]
for k = 1, 2, 3. If a12(α)+a21(α)+a32(α) = 1 and a11(α)+a22(α)+a31(α) =
1 , then we get the left (right) end point of the interval for the α-cut by
substituting a12(α), a21(α), a32(α) (a11(α), a22(α), a31(α)) for a1, a2, a3,
respectively.

Once we have the fuzzy posterior, we may update our fuzzy probability
for the Ai.

There is an alternate method of computing fuzzy Bayes’ rule. We could
just substitute the fuzzy numbers P (Sk) = ak into equation (3.68) and com-
pute the result. However, we would come up against the same problem noted
in Section 3.6, see Example 3.6.1, where the result can produce a fuzzy num-
ber not in the interval [0, 1].

3.9 Applications

We first present two applications of fuzzy probability followed by two appli-
cations of fuzzy conditional probability. Then we give an application of fuzzy
Bayes’ formula. We have a change of notation in this section: we will use pi

for probability values instead of ai used in previous sections of this chapter.

3.9.1 Blood Types

There are four basic blood types: A, B, AB and O. A certain city is going to
have a blood drive and they want to know that if they select one person at
random, from the pool of possible blood donors, what is the probability that
this person does not have blood type O? Type O is the universal blood donor
group. They conduct a random sample of 1000 people from the pool of blood
donors and they determine the following point estimates: (1) pa = 0.33, or
33% have blood type A; (2) pb = 0.23, or 23% have blood type B; (3) pab =
0.35, or 35% are of blood type AB; and (4) po = 0.09, or 9% belong to blood
type O. Because these are point estimates based on a random sample we will
substitute fuzzy numbers for these probabilities. Let pa = (0.3/0.33/0.36),
pb = (0.2/0.23/0.26), pab = (0.32/0.35/0.38) and po = (0.06/0.09/0.12).
Next let P (O′) stand for the fuzzy probability of a donor not having blood
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α P (O′)[α]
0 [0.88,0.94]
0.2 [0.886,0.934]
0.4 [0.892,0.928]
0.6 [0.898,0.922]
0.8 [0.904,0.916]
1.0 0.91

Table 3.1: Alpha-Cuts of P (O′)
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Figure 3.3: Fuzzy Probability in the Blood Type Application

type O. From the discussion in Section 3.5 we do not expect P (O′) to equal
1 − P (O). However, we find α-cuts of this fuzzy probability as

P (O′)[α] = {pa + pb + pab| S }, (3.73)

for all α, where S denotes the statement “pa ∈ pa[α], pb ∈ pb[α], pab ∈ pab[α],
po ∈ po[α], pa + pb + pab + po = 1”. Define pw[α] = [pw1(α), pw2(α)] for
w = a, b, ab, o. Let P (O′)[α] = [on1(α), on2(α)]. We would like to substitute
pa1(α)+pb1(α)+pab1(α) for pa+pb+pab in equation (3.73) to get on1(α), but
this set of p′is is not feasible. What we mean is that pa1(0)+pb1(0)+pab1(0) =
0.82 and there is no value of p0 ∈ po[0] that can make the sum equal to one.
Therefore we need to use some numerical method to compute these α-cuts.
We used Maple [12]. The Maple commands used to solve this problem are
similar to those for Example 3.4.3.4 whose Maple commands are in Chapter
30. The results are displayed in Table 3.1. From the data in Table 3.1 we
compute P (O′)[α] = [0.88 + 0.03α, 0.94 − 0.03α], or it is a triangular fuzzy
number (0.88/0.91/0.94), which is shown in Figure 3.3. See also Example
3.4.3.5.
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3.9.2 Resistance to Surveys

Pollsters are concerned about the increased level of resistance of people to an-
swer questions during surveys. They conduct a study using a random sample
of n people, from a large population of people who are candidates for surveys,
ages 18 to 40. This random sample is broken up into two subpopulations:
(1) a population of n1 “young” people with ages 18 to 29; and (2) a popu-
lation n2 (n1 + n2 = n) of “older” people ages 30-40. From this data they
obtain the following point estimates: (1) p1 = 0.18, or 18% of young people
said they will respond to questions in a survey; (2) p2 = 0.05, or 5% of the
young people said that they would not respond to questions in a survey; (3)
p3 = 0.68, or 68% of the older people responded that they would participate
in a survey; and (4) p4 = 0.09, or 9% of the older people indicated that they
would not participate in a survey. The pollsters want to know if they choose
at random one person from this group, aged 18 to 40, what is the probability
that this person is young or is someone who would refuse to respond to the
questions in a survey?

All these probabilities were estimated and so we substitute fuzzy numbers
for the pi. Assume that we decide to use : (1) p1 = (0.16/0.18/0.20) for p1;
(2) p2 = (0.03/0.05/0.07) for p2; (3) p3 = (0.61/0.68/0.75) for p3; and (4)
p4 = (0.07/0.09/0.11) for p4. Let A be the event that the person is young
and set B to be the event that the person will not respond to a survey. We
therefore wish to find the fuzzy probability P (A ∪ B). From Section 3.5 we
know that this fuzzy probability may not equal P (A) + P (B) − P (A ∩ B),
since A and B are not disjoint. However, we may still find the α-cuts of
P (A ∪ B) as follows

P (A ∪ B)[α] = {p1 + p2 + p4| S }, (3.74)

for 0 ≤ α ≤ 1, where S is the statement “ pi ∈ pi[α], 1 ≤ i ≤ 4, and
p1+...+p4 = 1”. Let pi[α] = [pi1(α), pi2(α)], 1 ≤ i ≤ 4 and set P (A∪B)[α] =
[P1(α), P2(α)]. Then

P 1(α) = p11(α) + p21(α) + p41(α), (3.75)

and
P 2(α) = p12(α) + p22(α) + p42(α), (3.76)

for all α because now these pi
′s are feasible. What this means is: (1) for all

α there is a p3 ∈ p3[α] so that p11(α) + p21(α) + p41(α) + p3 = 1; and (2) for
all α there is a value of p3 ∈ p3[α] so that p12(α) + p22(α) + p42(α) + p3 = 1.
The graph of the fuzzy probability P (A ∪ B) is in Figure 3.4. It turns out
that P (A ∪ B) is a triangular fuzzy number (0.26/0.32/0.38).

3.9.3 Testing for HIV

It is important to have an accurate test for the HIV virus. Suppose we have a
test, which we shall call T , and we want to see how accurately it predicts that
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Figure 3.4: Fuzzy Probability in the Survey Application

a person has the HIV virus. Let A1 be the event that a person is infected with
the HIV virus, and A2 is the event that a person is not infected. Also, let B1

be the event that the test T is “positive” indicating that the person has the
virus and set B2 to be the event that the test T gives the result of “negative”,
or the person does not have the virus. We want to find the conditional
probability of A1 given B1, or P (A1|B1). To estimate this probability we
gather some data. From a large population of the “at-risk” population we
take a random sample to estimate the probabilities p11 = P (A1 ∩B1), p12 =
P (A1 ∩B2), p21 = P (A2 ∩B1) and p22 = P (A2 ∩B2). Assume we obtain the
estimates p11 = 0.095, p12 = 0.005, p21 = 0.045 and p22 = 0.855. To show
the uncertainty in these point estimates we now substitute fuzzy numbers
for the pij . Let p11 = (0.092/0.095/0.098), p12 = (0.002/0.005/0.008), p21 =
(0.042/0.045/0.048) and p22 = (0.825/0.855/0.885).

The fuzzy probability we want is P (A1|B1) whose α-cuts are

P (A1|B1)[α] = { p11

p11 + p21
| S }, (3.77)

for all α, where S is “pij ∈ pij [α], 1 ≤ i, j ≤ 2 and p11 + ... + p22 = 1”. Let
H(p11, p21) = p11

p11+p21
. We determine that H is an increasing function of p11

and it is a decreasing function of p21. Hence, if P (A1|B1)[α] = [Pl(α), Pu(α)],
then

Pl(α) = H(p111(α), p212(α)), (3.78)

and
Pu(α) = H(p112(α), p211(α)], (3.79)

where pij [α] = [pij1(α), pij2(α)], for 1 ≤ i, j ≤ 2. Equations (3.78) and (3.79)
are correct because : (1) for any α there are values of p12 ∈ p12[α] and p22 ∈
p22[α] so that p111(α) + p212(α) + p12 + p22 = 1; and (2) for any α there are
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Figure 3.5: Fuzzy Probability of HIV Given Test Positive

values of p12 ∈ p12[α] and p22 ∈ p22[α] so that p112(α)+p211(α)+p12+p22 = 1.
The graph of P (A1|B1) is in Figure 3.5. We get a triangular fuzzy number
( 92
140/ 95

140/ 98
140 ) for P (A1|B1).

3.9.4 Color Blindness

Some people believe that red-green color blindness is more prevalent in males
than in females. To test this hypothesis we gather a random sample form
the adult US population. Let M be the event a person is male, F is the
event the person is female, C is the event the person has red-green color
blindness and C ′ is the event he/she does not have red-green color blindness.
From the data we obtain point estimates of the following probabilities: (1)
p11 = P (M∩C) = 0.040; (2) p12 = P (M∩C ′) = 0.493; (3) p21 = P (F ∩C) =
0.008; and (4) p22 = P (F ∩ C ′) = 0.459. The uncertainty in these point
estimates will be shown in their fuzzy values : (1) p11 = (0.02/0.04/0.06);
(2) p12 = (0.463/0.493/0.523); (3) p21 = (0.005/0.008/0.011); and (4) p22 =
(0.439/0.459/0.479).

We wish to calculate the fuzzy conditional probabilities P (M |C) and
P (F |C). The α-cuts of the first fuzzy probability are

P (M |C)[α] = { p11

p21 + p11
| S }, (3.80)

for α ∈ [0, 1] and S denotes “pij ∈ pij [α], 1 ≤ i, j ≤ 2 and p11 + ...+p22 = 1”.
Let H(p11, p21) = p11

p11+p21
. Then H is an increasing function of p11 but

decreasing in p21. So, as in the previous application, we obtain

P (M |C)[α] = [H(p111(α), p212(α)),H(p112(α), p211(α))], (3.81)

for all α. This fuzzy conditional probability is shown in Figure 3.6. Maple
commands for this figure are in Chapter 30.
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Figure 3.6: Fuzzy Probability of Male Given Color Blind
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Figure 3.7: Fuzzy Probability of Female Given Color Blind

Alpha-cuts of the second fuzzy conditional probability are

P (F |C)[α] = { p21

p21 + p11
| S }, (3.82)

for all α. Let G(p11, p21) = p21
p21+p11

. Then G increases in p21 but decreases
in p11. We may check that the following result is “feasible”.

P (F |C)[α] = [G(p112(α), p211(α)), G(p111(α), p212(α))], (3.83)

for all α. This fuzzy probability is in Figure 3.7.
Do we obtain P (F |C) ≤ P (M |C), where here ≤ means “less that or equal

to”? See Section 2.5 of Chapter 2.
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3.9.5 Fuzzy Bayes

This is a numerical application showing how a fuzzy probability P (A1)
changes from the fuzzy prior to the fuzzy posterior. Let there be only two
states of nature S1 and S2 with fuzzy prior probabilities p1 = P (S1) =
(0.3/0.4/0.5) and p2 = P (S2) = (0.5/0.6/0.7). There are also only two
events A1 and A2 in the partition of X with known conditional probabilities
p11 = P (A1|S1) = 0.2, p21 = P (A2|S1) = 0.8, p12 = P (A1|S2) = 0.7 and
p22 = P (A2|S2) = 0.3. We first find the fuzzy probability P (A1) using the
fuzzy prior probabilities. Its α-cuts are

P (A1)[α] = {(0.2)p1 + (0.7)p2| S }, (3.84)

where S is “ pi ∈ pi[α], 1 ≤ i ≤ 2, and p1 + p2 = 1”. We easily eval-
uate this equation (3.84) and get the triangular fuzzy number P (A1) =
(0.41/0.50/0.59).

Now suppose we have information that event A1 will occur. We need to
obtain P (S1|A1) and P (S2|A1) from fuzzy Bayes’ formula in Section 3.8. We
first compute

P (S1|A1)[α] = { (0.2)p1

(0.2)p1 + (0.7)p2
| S }, (3.85)

and

P (S2|A1)[α] = { (0.7)p2

(0.2)p1 + (0.7)p2
| S } (3.86)

where S is “pi ∈ pi[α], i = 1, 2 and p1 + p2 = 1”. Both α-cuts are easily
found. Let pi[α] = [pi1(α), pi2(α)], for i = 1, 2. Then

P (S1|A1)[α] = [
0.2p11(α)

0.2p11(α) + 0.7p22(α)
,

0.2p12(α)
0.2p12(α) + 0.7p21(α)

], (3.87)

and

P (S2|A1)[α] = [
0.7p21(α)

0.2p12(α) + 0.7p21(α)
,

0.7p22(α)
0.2p11(α) + p22(α)

], (3.88)

for all α. We get

P (S1|A1)[α] = [
0.06 + 0.02α

0.55 − 0.05α
,
0.10 − 0.02α

0.45 + 0.05α
], (3.89)

and
P (S2|A1)[α] = [

0.35 + 0.07α

0.45 + 0.05α
,
0.49 − 0.07α

0.55 − 0.05α
]. (3.90)

Now we may compute P (A1) using the fuzzy posterior probabilities. It has
α-cuts

(0.2)P (S1|A1)[α] + (0.7)P (S2|A1)[α]. (3.91)
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Figure 3.8: P (A1) Using the Fuzzy Prior
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Figure 3.9: P (A1) Using the Fuzzy Posterior

The graphs of P (A1) using the fuzzy prior is in Figure 3.8 and P (A1) from
the fuzzy posterior is shown in Figure 3.9. Maple commands for Figure 3.9
are in Chapter 30. The fuzzy number in Figure 3.8 is the triangular fuzzy
number (0.41/0.50/0.59). The fuzzy number in Figure 3.9 may look like a
triangular fuzzy number, but it is not. The sides of the fuzzy number in
Figure 3.9 are slightly curved and are not straight lines. Why does P (A1) in
Figure 3.9 lie to the right of P (A1) shown in Figure 3.8?
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Chapter 4

Discrete Fuzzy Random
Variables

4.1 Introduction

We start with the fuzzy binomial. The crisp binomial probability mass func-
tion, usually written b(m, p) where m is the number of independent exper-
iments and p is the probability of a “success” in each experiment, has one
parameter p. We assume that p is not known exactly and is to be estimated
from a random sample or from expert opinion. In either case the result is,
justified in Sections 3.2 and 3.3, that we substitute a fuzzy number p for p
to get the fuzzy binomial. Then we discuss the fuzzy Poisson probability
mass function. The crisp Poisson probability mass function has one parame-
ter, usually written λ, which we also assume is not known exactly. A fuzzy
estimator for λ, derived from data, is in Chapter 10. Hence we substitute
fuzzy number λ for λ to obtain the fuzzy Poisson probability mass function.
The fuzzy binomial and the fuzzy Poisson comprises the next two sections.
We look at some applications of these two discrete fuzzy probability mass
functions in Section 4.4.

4.2 Fuzzy Binomial

As before X = {x1, ..., xn} and let E be a non-empty, proper, subset of X. We
have an experiment where the result is considered a “success” if the outcome
xi is in E. Otherwise, the result is considered a “failure”. Let P (E) = p so
that P (E′) = q = 1 − p. P (E) is the probability of success and P (E′) is the
probability of failure. We assume that 0 < p < 1.

James J. Buckley:
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Suppose we have m independent repetitions of this experiment. If P (r)
is the probability of r successes in the m experiments, then

P (r) =
(

m

r

)
prqm−r, (4.1)

for r = 0, 1, 2, ...,m, gives the binomial distribution.
In these experiments let us assume that P (E) is not known precisely and

it needs to be estimated, or obtained from expert opinion. So the p value is
uncertain and we substitute p for p and a q for q so that there is a p ∈ p[1]
and a q ∈ q[1] with p+ q = 1. q could equal 1− p. Now let P (r) be the fuzzy
probability of r successes in m independent trials of the experiment. Under
our restricted fuzzy arithmetic we obtain

P (r)[α] = {
(

m

r

)
prqm−r| S }, (4.2)

for 0 ≤ α ≤ 1, where S is the statement “p ∈ p[α],q ∈ q[α], p+q = 1”. Notice
that P (r) is not

(
m
r

)
prqm−r. If P (r)[α] = [Pr1(α), Pr2(α)], then

Pr1(α) = min{
(

m

r

)
prqm−r| S }, (4.3)

and

Pr2(α) = max{
(

m

r

)
prqm−r| S }. (4.4)

Example 4.2.1

Let p = 0.4, q = 0.6 and m = 3. Since p and q are uncertain we use
p = (0.3/0.4/0.5) for p and q = (0.5/0.6/0.7) for q. Now we will calculate
the fuzzy number P (2). If p ∈ p[α] then q = 1 − p ∈ q[α]. Equations (4.3)
and (4.4) become

Pr1(α) = min{3p2q| S }, (4.5)

and
Pr2(α) = max{3p2q| S }. (4.6)

Since d(3p2(1 − p))/dp > 0 on p[0] we obtain

P (2)[α] = [3(p1(α))2(1 − p1(α)), 3(p2(α))2(1 − p2(α))], (4.7)

where p[α] = [p1(α), p2(α)] = [0.3 + 0.1α, 0.5 − 0.1α].
Alpha-cuts of the fuzzy mean and the fuzzy variance of the fuzzy binomial

distribution are calculated as in equations (3.51) and (3.52) in Chapter 3,
respectively. In the crisp case we know µ = mp and σ2 = mpq. Does µ = mp
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and σ2 = mp · q? We now argue that the correct result is µ ≤ mp and
σ2 ≤ mp · q.We see that

µ[α] = {
m∑

r=1

r

(
m

r

)
prqm−r| S }, (4.8)

which simplifies to
µ[α] = {mp| S }. (4.9)

Let s ∈ µ[α]. Then s = mp for p ∈ p[α], q ∈ q[α] and p + q = 1. Hence,
s ∈ mp[α]. So µ ≤ mp. To show they may not be equal let p = (0.2/0.3/0.4)
and q = (0.65/0.7/0.75). Then µ[0] = m[0.25, 0.35] but mp[0] = m[0.2, 0.4].
If q = 1 − p, then µ = mp.

To show σ2 ≤ mp · q we see first, as we get equation (4.9) from equation
(4.8), that

σ2[α] = {mpq| S }. (4.10)

Then we argue, just like before, that given s ∈ σ2[α], then s ∈ mp[α]q[α].
This shows σ2 ≤ mp · q. Now, to show that they may not be equal let
p and q be given as above. Then mp[0]q[0] = m[0.13, 0.30] but σ2[0] =
m[(0.25)(0.75), (0.35)(0.65)] = m[0.1875, 0.2275].

Example 4.2.2

We may find the α-cuts of σ2 if q = 1 − p. Let p = (0.4/0.6/0.8) and
q = (0.2/0.4/0.6). Then

σ2[α] = {mp(1 − p)|p ∈ p[α]}, (4.11)

from equation (4.10). Let h(p) = mp(1 − p). We see that h(p) : (1) is
increasing on [0, 0.5]; (2) has its maximum of 0.25m at p = 0.5; and (3) is
decreasing on [0.5, 1]. So, the evaluation of equation (4.11), see Section 3.4.3,
depends if p = 0.5 belongs to the α-cut of p. Let p[α] = [p1(α), p2(α)] =
[0.4 + 0.2α, 0.8 − 0.2α]. So, p = 0.5 belongs to the α-cut of p only for
0 ≤ α ≤ 0.5. Then

σ2[α] = [h(p2(α)), 0.25m], (4.12)

for 0 ≤ α ≤ 0.5, and

σ2[α] = [h(p2(α)), h(p1(α))], (4.13)

for 0.5 ≤ α ≤ 1. We substitute in for p1(α) and p2(α) to finally obtain σ2

and its graph, for m = 10, is in Figure 4.1.
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Figure 4.1: Fuzzy Variance in Example 4.2.2

4.3 Fuzzy Poisson

Let X be a random variable having the Poisson probability mass function. If
P (x) stands for the probability that X = x, then

P (x) =
λx exp(−λ)

x!
, (4.14)

for x = 0, 1, 2, 3, ..., and parameter λ > 0. Now substitute fuzzy number
λ > 0 for λ to produce the fuzzy Poisson probability mass function. Set P (x)
to be the fuzzy probability that X = x. Then we find α-cuts of this fuzzy
number as

P (x)[α] = {λx exp(−λ)
x!

|λ ∈ λ[α]}, (4.15)

for all α ∈ [0, 1]. The evaluation of equation (4.15) depends on the relation
of x to λ[0]. Let h(λ) = λx exp(−λ)

x! for fixed x and λ > 0. We see that
h(λ) is an increasing function of λ for λ < x, the maximum value of h(λ)
occurs at λ = x, and h(λ) is a decreasing function of λ for λ > x. Let
λ[α] = [λ1(α), λ2(α)], for 0 ≤ α ≤ 1. Then we see that : (1) if λ2(0) < x,
then P (x)[α] = [h(λ1(α)), h(λ2(α))]; and (2) if x < λ1(0), then P (x)[α] =
[h(λ2(α)), h(λ1(α))]. The other case, where x ∈ λ[0], is explored in the
following example.

Example 4.3.1

Let x = 6 and λ = (3/5/7). We see that x ∈ [3, 7] = λ[0]. We determine
λ[α] = [3 + 2α, 7 − 2α]. Define P (6)[α] = [p1(α), p2(α)]. To determine the
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Figure 4.2: Fuzzy Probability in Example 4.3.1

α-cuts of P (6) we need to solve (see equations (2.24) and (2.25) in Chapter
2)

p1(α) = min{h(λ)|λ ∈ λ[α]}, (4.16)

and
p2(α) = max{h(λ)|λ ∈ λ[α]}. (4.17)

It is not difficult to solve equations (4.16) and (4.17) producing

P (6)[α] = [h(3 + 2α), h(6)], (4.18)

for 0 ≤ α ≤ 0.5, and

P (6)[α] = [h(3 + 2α), h(7 − 2α)], (4.19)

for 0.5 ≤ α ≤ 1. The graph of P (6) is shown in Figure 4.2.
Let us consider another, slightly more complicated, example of finding

fuzzy probabilities using the fuzzy Poisson.

Example 4.3.2

Let λ = (8/9/10) and define P ([3,∞)) to be the fuzzy probability that X ≥ 3.
Also let P ([3,∞))[α] = [q1(α), q2(α)]. Then

q1(α) = min{1 −
2∑

x=0

h(λ)|λ ∈ λ[α]}, (4.20)

and

q2(α) = max{1 −
2∑

x=0

h(λ)|λ ∈ λ[α]}, (4.21)
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Figure 4.3: Fuzzy Probability in Example 4.3.2

for all α. Let k(λ) = 1 − [
∑2

x=0 h(λ)]. Then dk/dλ > 0 for λ > 0 Hence, we
may evaluate equations (4.20) and (4.21) and get

P ([3,∞))[α] = [k(λ1(α)), k(λ2(α))]. (4.22)

This fuzzy probability is shown in Figure 4.3. Maple commands for this figure
are in Chapter 30.

To finish this section we now compute the fuzzy mean and the fuzzy
variance of the fuzzy Poisson probability mass function. Alpha-cuts of the
fuzzy mean, from equation (3.51) of Chapter 3, are

µ[α] = {
∞∑

x=0

xh(λ)|λ ∈ λ[α]}, (4.23)

which reduces to, since the mean of the crisp Poisson is λ, the expression

µ[α] = {λ|λ ∈ λ[α]}. (4.24)

Hence, µ = λ. So the fuzzy mean is just the fuzzification of the crisp mean.
Let the fuzzy variance be σ2 and we obtain its α-cuts as

σ2[α] = {
∞∑

x=0

(x − µ)2h(λ)|λ ∈ λ[α], µ = λ}, (4.25)

which reduces to, since the variance of the crisp Poisson is also λ, the expres-
sion

σ2[α] = {λ|λ ∈ λ[α]}. (4.26)

It follows that σ2 = λ and the fuzzy variance is the fuzzification of the crisp
variance.
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4.4 Applications

In this section we look at three applications: (1) using the fuzzy Poisson
to approximate values of the fuzzy binomial; (2) using the fuzzy binomial
to calculate the fuzzy probabilities of “overbooking”; and (3) then using
the fuzzy Poisson to estimate the size of a rapid response team to terrorist
attacks.

4.4.1 Fuzzy Poisson Approximating Fuzzy Binomial

Let X be a random variable having the binomial probability mass function
b(n, p). From crisp probability theory [1] we know that if n is large and p
is small we can use the Poisson to approximate values of the binomial. For
non-negative integers a and b, 0 ≤ a ≤ b, let P ([a, b]) be the probability that
a ≤ X ≤ b. Then using the binomial we have (q = 1 − p)

P ([a, b]) =
b∑

x=a

(
n

x

)
pxqn−x. (4.27)

Using the Poisson, with λ = np, we calculate

P ([a, b]) ≈
b∑

x=a

λx exp(−λ)
x!

. (4.28)

Now switch to the fuzzy case. Let p be small, which means that all p ∈ p[0]
are sufficiently small. Let P ([a, b]) be the fuzzy probability that a ≤ X ≤ b.
For notational simplicity set P bα = P ([a, b])[α] using the fuzzy binomial.
Also set P pα = P ([a, b])[α] using the fuzzy Poisson approximation. Then

P bα = {
b∑

x=a

(
n

x

)
px(1 − p)n−x|p ∈ p[α]}, (4.29)

and

P pα = {
b∑

x=a

λx exp(−λ)
x!

|λ ∈ np[α]}. (4.30)

Notice that in equation (4.29) we are using a slightly different model of the
fuzzy binomial from equation (4.2) which is similar to, but not exactly equal
to, q = 1 − p. We now argue that P bα ≈ P pα for all α. This approximation
is to be interpreted as follows: (1) given z ∈ P bα, there is a y ∈ P pα so that
z ≈ y; and (2) given y ∈ P pα there is a z ∈ P bα so that y ≈ z. Also, z ≈ y
and y ≈ z are to be interpreted as in crisp probability theory. To show (1)
let z ∈ P bα, then z =

∑b
x=a

(
n
x

)
px(1−p)n−x for some p ∈ p[α]. For this same

p let λ = np and set y =
∑b

x=a
λx exp(−λ)

x! . Then z ≈ y. Similarly we show
(2).
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α P bα P pα

0 [0.647,0.982] [0.647,0.981]
0.2 [0.693,0.967] [0.692,0.966]
0.4 [0.737,0.948] [0.736,0.946]
0.6 [0.780,0.923] [0.779,0.921]
0.8 [0.821,0.893] [0.819,0.891]
1.0 0.859 0.857

Table 4.1: Fuzzy Poisson Approximation to Fuzzy Binomial

Example 4.4.1.1

Let n = 100 and p = 0.02. Then set p = (0.01/0.02/0.03). Now let a = 0 and
b = 3 so P bα = P ([0, 3])[α] using the fuzzy binomial and P pα = P ([0, 3])[α]
using the fuzzy Poisson approximation. We have computed values of P bα

and P pα for α = 0, 0.2, 0.4, 0.6, 0.8, 1 and these are shown in Table 4.1. The
data in this table shows that, for this example, the fuzzy Poisson is a good
approximation to the fuzzy binomial.

To compute P bα we simply graphed the function F (p) =
∑3

x=0

(
n
x

)
px(1−

p)n−x for p in the interval p[α] , using the software package Maple [2], to
pick out the end points of the α-cut. It turns out that F (p) is a decreasing
function of p over the interval p[0].

Computing P pα was easier. Let G(λ) =
∑3

x=0
λx exp(−λ)

x! . We see that
dG/dλ < 0 so if λ[α] = [λ1(α), λ2(α)], then P pα = [G(λ2(α)), G(λ1(α))].
Here we use λ = np = (1/2/3).

4.4.2 Overbooking

Americana Air has the policy of booking as many as 120 persons on an
airplane that can seat only 114. Past data implies that approximately only
85% of the booked passengers actually arrive for the flight. We want to find
the probability that if Americana Air books 120 persons, not enough seats
will be available.

This is a binomial situation with p ≈ 0.85. Since p has been estimated
from past data we use a set of confidence intervals, see Section 3.2, to con-
struct a fuzzy number p = (0.75/0.85/0.95) for p producing the fuzzy bino-
mial. Let P 0 be the fuzzy probability of being overbooked, then its α-cuts
are

P 0[α] = {
120∑

x=115

(
120
x

)
px(1 − p)120−x|p ∈ p[α]}. (4.31)

Again, as in the previous subsection, we are using a slightly different form of
the fuzzy binomial than given in Section 4.2. The graph of the fuzzy proba-
bility of overbooking is shown in Figure 4.4. LetF (p) =

∑120
x=115

(
120
x

)
px(1 −
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Figure 4.4: Fuzzy Probability of Overbooking

p)120−x for p ∈ p[0]. We graphed F (p) using Maple and found that this func-
tion is an increasing function of p on the interval p[0]. This made it easy to
evaluate equation (4.31) and obtain the graph in Figure 4.4. Figure 4.4 does
not show the left side of the fuzzy number because the left side of the α-cuts
involve very small numbers. Selected α-cuts of P 0 are: (1) [0.9(10)−9, 0.4415]
for α = 0; (2) [0.5(10)−6, 0.0160] for α = 0.5; and (3) [0.00014, 0.00014] for
α = 1. Maple commands for Figure 4.4 are in Chapter 30.

Notice that the core of P 0, where the membership is one, is just the crisp
probability of overbooking using p = 0.85. The spread of the fuzzy number
P 0 shows the uncertainty about the crisp result.

4.4.3 Rapid Response Team

The US government is planning a rapid response team to terrorist attacks
within continental US. They need to compute the probability of multiple
attacks in a single day to see if they will need one team or multiple teams. It
is difficult to do, but they estimate that the mean number of terrorist attacks
per day is approximately λ = 0.008, or about 3 per year starting in 2006.
Using the Poisson probability mass function, find the probability that the
number of attacks in one day is 0, or 1, or at least 2.

The value of λ was estimated by a group of experts and is very uncertain.
Hence we will use a fuzzy number λ = (0.005/0.007, 0.009/0.011), a trape-
zoidal fuzzy number, for λ. Let Pm be the fuzzy probability of 2 or more
attacks per day, which will be used to see if multiple rapid response teams
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Figure 4.5: Fuzzy Probability of Multiple Attacks

will be needed. Alpha-cuts of this fuzzy probability are

Pm[α] = {1 −
1∑

x=0

λx exp(−λ)
x!

|λ ∈ λ[α]}, (4.32)

for 0 ≤ α ≤ 1. Let v(λ) = 1−
∑1

x=0
λx exp(−λ)

x! . We find that dv/dλ > 0 so if
λ[α] = [λ1(α), λ2(α)], then

Pm[α] = [v(λ1(α)), v(λ2(α))]. (4.33)

The graph of Pm is in Figure 4.5. Notice that this fuzzy number is a trape-
zoidal shaped fuzzy number. Do they need multiple rapid response teams?

4.5 References
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Chapter 5

Continuous Fuzzy Random
Variables

5.1 Introduction

We consider the fuzzy uniform in Section 5.2, the fuzzy normal is in Section
5.3, followed by the fuzzy negative exponential in Section 5.4. In each case of
a fuzzy density function we first discuss how they are used to compute fuzzy
probabilities and then we find their fuzzy mean and their fuzzy variance.
We always substitute fuzzy numbers for the parameters in these probability
density functions, to produce fuzzy probability density functions. Fuzzy es-
timators for these parameters will be discussed in: (1) Chapter 11 for the
uniform; (2) Chapters 6,7 and 9 for the normal; and (3) Chapter 10 for the
exponential.

We will denote the normal probability density as N(µ, σ2) and the fuzzy
normal density as N(µ, σ2). The uniform density on interval [a, b] is written
U(a, b) and the fuzzy uniform U(a, b) for fuzzy numbers a and b. The negative
exponential is E(λ) with fuzzy form E(λ).

5.2 Fuzzy Uniform

The uniform density U(a, b) , a < b, has y = f(x; a, b) = 1/(b − a) for a ≤
x ≤ b and f(x; a, b) = 0 otherwise. Now consider U(a, b) for fuzzy numbers
a and b. If a[1] = [a1, a2] and b[1] = [b1, b2] we assume that a ∈ [a1, a2],
b ∈ [b1, b2] so that a ( b ) represents the uncertainty in a (b). Now using the
fuzzy uniform density we wish to compute the fuzzy probability of obtaining
a value in the interval [c, d]. Denote this fuzzy probability as P [c, d]. We can
easily generalize to P [E] for more general subsets E.

James J. Buckley:
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

Fuzzy Probability and Statistics, StudFuzz 196, 6 1 – 74 (2006)
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There is uncertainty in the end points of the uniform density but there
is no uncertainty in the fact that we have a uniform density. What this
means is that given any s ∈ a[α] and t ∈ b[α] , s < t, we have a U(s, t), or
f(x; s, t) = 1/(t − s) on [s, t] and it equals zero otherwise , for all 0 ≤ α ≤ 1.
This enables us to find fuzzy probabilities. Let L(c, d; s, t) be the length of
the interval [s, t] ∩ [c, d]. Then

P [c, d][α] = {L(c, d; s, t)/(t − s)|s ∈ a[α], t ∈ b[α], s < t}, (5.1)

for all α ∈ [0, 1]. Equation (5.1) defines the α-cuts and we put these α-cuts
together to obtain the fuzzy set P [c, d]. To find an α-cut of P [c, d] we find the
probability of getting a value in the interval [c, d] for each uniform density
U(s, t) for all s ∈ a[α] and all t ∈ b[α], with s < t.

Example 5.2.1

Let a = (0/1/2) and b = (3/4/5) and [c, d] = [1, 4]. Now P [c, d][α] =
[p1(α), p2(α)] an interval whose end points are functions of α. Then p1(α) is
the minimum value of the expression on the right side of equation (5.1) and
p2(α) is the maximum value. That is

p1(α) = min{L(1, 4; s, t)/(t − s)|s ∈ a[α], t ∈ b[α]}, (5.2)

and
p2(α) = max{L(1, 4; s, t)/(t − s)|s ∈ a[α], t ∈ b[α]}. (5.3)

It is easily seen that p2(α) = 1 all α in this example. To find the minimum
we must consider four cases. First a[α] = [α, 2−α] and b[α] = [3 + α, 5−α].
Then the cases are: (1) α ≤ s ≤ 1, 3+α ≤ t ≤ 4; (2) α ≤ s ≤ 1, 4 ≤ t ≤ 5−α;
(3) 1 ≤ s ≤ 2 − α, 3 + α ≤ t ≤ 4; and (4) 1 ≤ s ≤ 2 − α, 4 ≤ t ≤ 5 − α.
Studying all four cases we obtain the minimum equal to 3/(5 − 2α). Hence
the α-cuts of P [1, 4] are [3/(5− 2α), 1] and the graph of this fuzzy number is
in Figure 5.1.

Next we want to find the mean and variance of U(a, b). Let the mean be
µ and we find its α-cuts as follows

µ[α] = {
∫ t

s

(x/(t − s))dx|s ∈ a[α], t ∈ b[α], s < t}, (5.4)

for all α. But each integral in equation (5.4) equals (s+t)/2. Hence, assuming
a[0] = [s1, s2], b[0] = [t1, t2] and s2 < t1,

µ = (a + b)/2. (5.5)

So, µ is the fuzzification of the crisp mean (a+b)/2. If the variance of U(a, b)
is σ2, then its α-cuts are

σ2[α] = {
∫ t

s

[(x−µ)2/(t−s)]dx|s ∈ a[α], t ∈ b[α], µ = (s+t)/2, s < t}, (5.6)
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Figure 5.1: Fuzzy Probability in Example 5.2.1

for all α. Each integral in equation (5.6) equals (t − s)2/12. Hence σ2 =
(b − a)2/12, the fuzzification of the crisp variance.

Next we look at the fuzzy normal probability density.

5.3 Fuzzy Normal

The normal density N(µ, σ2) has density function f(x;µ, σ2), x ∈ R, mean µ
and variance σ2. So consider the fuzzy normal N( µ, σ2) for fuzzy numbers µ
and σ2 > 0. We wish to compute the fuzzy probability of obtaining a value in
the interval [c, d]. We write this fuzzy probability as P [c, d]. We may easily
extend our results to P [E] for other subsets E of R. For α ∈ [0, 1], µ ∈ µ[α]
and σ2 ∈ σ2[α] let z1 = (c − µ)/σ and z2 = (d − µ)/σ. Then

P [c, d][α] = {
∫ z2

z1

f(x; 0, 1)dx|µ ∈ µ[α], σ2 ∈ σ2[α]}, (5.7)

for 0 ≤ α ≤ 1. The above equation gets the α-cuts of P [c, d]. Also, in the
above equation f(x; 0, 1) stands for the standard normal density with zero
mean and unit variance. Let P [c, d][α] = [p1(α), p2(α)]. Then the minimum
(maximum) of the expression on the right side of the above equation is p1(α)
(p2(α)). In general, it could be difficult to find these minimums (maximums)
and one might consider using some numerical software (Maple). However,
as the following example shows, in some cases we can easily compute these
α-cuts.
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Example 5.3.1

Suppose µ = (8/10/12), or the mean is approximately 10, and σ2 = (4/5/6),
or the variance is approximately five. Compute P [10, 15]. First it is easy to
find the α = 1 cut and we obtain P [10, 15][1] = 0.4873. Now we want the
α = 0 cut. Using the software package Maple [3] we graphed the function

g(x, y) =
∫ z2

z1

f(u; 0, 1)du, (5.8)

for z1 = (10 − x)/y, z2 = (15 − x)/y, 8 ≤ x ≤ 12, 4 ≤ y2 ≤ 6. Notice that
the α = 0 cut of (8/10/12) is [8, 12], the range for x = µ , and of (4/5/6)
is [4, 6] the range for y2 = σ2. The surface clearly shows: (1) a minimum
of 0.1584 at x = 8 and y = 2; and (2) a maximum of 0.7745 at x = 12 and
y = 2. Hence the α = 0 cut of this fuzzy probability is [0.1584, 0.7745]. But
from this graph we may also find other α-cuts. We see from the graph that
g(x, y) is an increasing function of: (1) x for y fixed at a value between 2 and√

6; and (2) y for x fixed at 8. However, g(x, y) is a decreasing function of
y for x = 12. This means that for any α-cut: (1) we get the max at y = its
smallest value and x = at its largest value; and (2) we have the min when y =
at is smallest and x = its least value. Some α-cuts of P [10, 15] are shown in
Table 5.1 and Figure 5.2 displays this fuzzy probability. The graph in Figure
5.2 is only an approximation because we did not force the graph through all
the points in Table 5.1.

α P [10, 15][α]
0 [0.1584,0.7745]

0.2 [0.2168,0.7340]
0.4 [0.2821,0,6813]
0.6 [0.3512,0.6203]
0.8 [0.4207,0.5545]
1.0 [0.4873,0.4873]

Table 5.1: Alpha-Cuts of the Fuzzy Probability in Example 5.3.1

When [1] was originally published the author’s copy of Maple did not
contain a nonlinear optimization solver. So we used the graphical method
of solution in this example. Now Maple 9 [3] has a non-linear optimization
procedure and the Maple commands for this example are in Chapter 30.

We now show that the fuzzy mean of N(µ, σ2) is µ and the fuzzy variance
is σ2, respectively, the fuzzification of the crisp mean and variance. Let the
fuzzy mean be M . Then its α-cuts are

M [α] = {
∫ ∞

−∞
xf(x;µ, σ2)dx|µ ∈ µ[α], σ2 ∈ σ2[α]}. (5.9)
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Figure 5.2: Fuzzy Probability in Example 5.3.1

But the integral in the above equation equals µ for any µ ∈ µ[α] and any
σ2 ∈ σ2[α]. Hence M = µ. Let the fuzzy variance be V . Then its α-cuts are

V [α] = {
∫ ∞

−∞
(x − µ)2f(x, µ, σ2)dx|µ ∈ µ[α], σ2 ∈ σ2[α], }. (5.10)

We see that the integral in the above equation equals σ2 for all µ ∈ µ[α] and
all σ2 ∈ σ2[α]. Therefore, V = σ2.

5.4 Fuzzy Negative Exponential

The negative exponential E(λ) has density f(x;λ) = λ exp(−λx) for x ≥ 0
and f(x;λ) = 0 otherwise, where λ > 0. The mean and variance of E(λ)
is 1/λ and 1/λ2, respectively. Now consider E(λ) for fuzzy number λ > 0.
Let us find the fuzzy probability of obtaining a value in the interval [c, d],
c > 0. Denote this probability as P [c, d]. One may generalize to P [E] for
other subsets E of R. We compute

P [c, d][α] = {
∫ d

c

λ exp(−λx)dx|λ ∈ λ[α]}, (5.11)

for all α. Let P [c, d][α] = [p1(α), p2(α)], then

p1(α) = min{
∫ d

c

λ exp(−λx)dx|λ ∈ λ[α]}, (5.12)

and

p2(α) = max{
∫ d

c

λ exp(−λx)dx|λ ∈ λ[α]}, (5.13)
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for 0 ≤ α ≤ 1. Let

h(λ) = exp(−cλ) − exp(−dλ) =
∫ d

c

λ exp(−λx)dx, (5.14)

and we see that h: (1) is an increasing function of λ for 0 < λ < λ∗; and (2)
is a decreasing function of λ for λ∗ < λ. We find that λ∗ = −[ln(c/d)]/(d −
c). Assume that λ > λ∗. So we can now easily find P [c, d]. Let λ[α] =
[λ1(α), λ2(α)]. Then

p1(α) = h(λ2(α)), (5.15)

and
p2(α) = h(λ1(α)). (5.16)

We give a picture of this fuzzy probability in Figure 5.3 when: (1) c = 1 and
d = 4; and (2) λ = (1/3/5).

Next we find the fuzzy mean and fuzzy variance of E(λ). If µ denotes the
mean, we find its α-cuts as

µ[α] = {
∫ ∞

0

xλ exp(−λx)dx|λ ∈ λ[α]}, (5.17)

for all α. However, each integral in the above equation equals 1/λ. Hence
µ = 1/λ. If σ2 is the fuzzy variance, then we write down an equation to find
its α-cuts we obtain σ2 = 1/λ

2
. The fuzzy mean (variance) is the fuzzification

of the crisp mean (variance).
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Figure 5.3: Fuzzy Probability for the Fuzzy Exponential
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5.5 Applications

In this section we look at some applications of the fuzzy uniform, the fuzzy
normal and the fuzzy negative exponential.

5.5.1 Fuzzy Uniform

Customers arrive randomly at a certain shop. Given that one customer ar-
rived during a particular T -minute period, let X be the time within the
T minutes that the customer arrived. Assume that the probability density
function for X is U(0, T ). Find Prob(4 ≤ X ≤ 9). However, T is not known
exactly and is approximately 10, so we will use T = (8/10/12) for T . So the
probability that 4 ≤ X ≤ 9 becomes a fuzzy probability P [4, 9]. Its α-cuts
are computed as in equation (5.1). We find that for 0 ≤ α ≤ 0.5 that

P [4, 9][α] = {min{t, 9} − 4
t

|t ∈ [8 + 2α, 12 − 2α]}, (5.18)

and for 0.5 ≤ α ≤ 1,

P [4, 9][α] = {5
t
|t ∈ [8 + 2α, 12 − 2α]}. (5.19)

From this we determine that

P [4, 9][α] = [
5

12 − 2α
,
5
9
], (5.20)

for 0 ≤ α ≤ 0.5, and

P [4, 9][α] = [
5

12 − 2α
,

5
8 + 2α

], (5.21)

for 0.5 ≤ α ≤ 1. The graph of this fuzzy probability is in Figure 5.4.

5.5.2 Fuzzy Normal Approximation to Fuzzy Binomial

We first review some basic information about the fuzzy binomial distribution
from Chapter 4. Define X = {x1, ..., xn} and let E be a non-empty, proper,
subset of X. We have an experiment where the result is considered a “success”
if the outcome xi is in E. Otherwise, the result is considered a “failure”. Let
P (E) = p so that P (E′) = q = 1 − p. P (E) is the probability of success and
P (E′) is the probability of failure. We assume that 0 < p < 1.

Suppose we have m independent repetitions of this experiment. If P (r)
is the probability of r successes in the m experiments, then

P (r) =
(

m

r

)
pr(1 − p)m−r, (5.22)
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Figure 5.4: Fuzzy Probability P [4, 9] for the Fuzzy Uniform

for r = 0, 1, 2, ...,m, gives the binomial distribution. We write b(m; p) for the
crisp binomial and b(m; p) for the fuzzy binomial. Throughout this section
we are using q = 1 − p which is different from the discussion of the fuzzy
binomial in Chapter 4.

In these experiments let us assume that P (E) is not known precisely and
it needs to be estimated, or obtained from expert opinion. So the p value is
uncertain and we substitute p for p. Now let P (r) be the fuzzy probability
of r successes in m independent trials of the experiment. Then

P (r)[α] = {
(

m

r

)
pr(1 − p)m−r|p ∈ p[α]}, (5.23)

for 0 ≤ α ≤ 1 . If P (r)[α] = [Pr1(α), Pr2(α)], then

Pr1(α) = min{
(

m

r

)
pr(1 − p)m−r|p ∈ p[α]}, (5.24)

and

Pr2(α) = max{
(

m

r

)
pr(1 − p)m−r|p ∈ p[α]}. (5.25)

Example 5.5.2.1

Let p = 0.4 and m = 3. Since p is uncertain we use p = (0.3/0.4/0.5) for p.
Now we will calculate the fuzzy number P (2). Equations (5.24) and (5.25)
become

Pr1(α) = min{3p2(1 − p)|p ∈ p[α]}, (5.26)
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and
Pr2(α) = max{3p2(1 − p)|p ∈ p[α]}. (5.27)

Since d(3p2(1 − p))/dp > 0 on p[0] we obtain

P (2)[α] = [3(p1(α))2(1 − p1(α)), 3(p2(α))2(1 − p2(α))], (5.28)

where p[α] = [p1(α), p2(α)] = [0.3 + 0.1α, 0.5 − 0.1α].
We now need the mean and variance of the fuzzy binomial distribution

b(m; p) which was discussed in Section 4.2. Let µ be the fuzzy mean of the
fuzzy binomial and let σ2 be its fuzzy variance. We showed that, in general,
µ ≤ mp and σ2 ≤ mp(1− p). But when we use q = 1− p we obtain µ = mp.

Now consider b(100; p) and we wish to find the fuzzy probability of ob-
taining from 40 to 60 successes. Denote this fuzzy probability as P [40, 60]
and direct calculation would be

P [40, 60][α] = {
60∑

i=40

(
100
i

)
pi(1 − p)100−i|p ∈ p[α]}, (5.29)

for each α-cut. Now let us try to use the fuzzy normal to approximate this
fuzzy probability. Let f(x; 0, 1) be the normal probability density function
with zero mean and unit variance. In the following equation z1 = (39.5−µ)/σ,
z2 = (60.5 − µ)/σ, , then

P [40, 60][α] ≈ {
∫ z2

z1

f(x; 0, 1)dx|µ ∈ µ[α], σ2 ∈ σ2[α]}, (5.30)

for all α, where µ is the fuzzy mean of the fuzzy binomial and σ2 is the fuzzy
variance of the fuzzy binomial. Let us show that equation (5.30) is correct
through the following example.

Example 5.5.2.2

Let m = 100, p ≈ 0.6 so that we use p = (0.5/0.6/0.7). For the normal
approximation to the binomial to be reasonably accurate one usually assumes
that [2] mp > 5 and m(1 − p) > 5. For the fuzzy normal approximation
to the fuzzy binomial to be reasonably good we assume that mp > 5 and
m(1 − p) > 5, which is true in this example. We now argue that equation
(5.30) will give a good approximation to P [40, 60]. Pick and fix a value of α
in [0, 1). Choose p0 ∈ p[α]. Let

w =
60∑

i=40

(
100
i

)
pi
0(1 − p0)100−i, (5.31)

with w ∈ P [40, 60][α].
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Now we need to compute the fuzzy mean and the fuzzy variance of this
fuzzy binomial. We get µ = 100p. We next compute σ2 as in Example 4.2.2.
We obtain

σ2[α] = [h(p2(α), h(p1(α)], (5.32)

where h(p) = 100p(1− p), and p[α] = [p1(α), p2(α)] = [0.5+0.1α.0.7− 0.1α].
The result is σ2[α] = [21 + 4α − α2, 25 − α2]. Then the α-cuts for σ will be
the square root of the α-cuts of σ2.

Now let µ0 = 100p0 in 100p[α] and let σ0 ∈ σ[α] which was computed
above. Then

w ≈
∫ z2

z1

f(x; 0, 1)dx, (5.33)

where z1 = (39.5 − µ0)/σ0, z2 = (60.5 − µ0)/σ0.
Now we turn it around and first pick µ0 ∈ 100p[α] and σ0 ∈ σ[α]. But

this determines a p0 ∈ p[α], which then gives a value for w in equation(5.31).
The approximation in equation (5.30) now holds.

So we see that under reasonable assumptions the fuzzy normal can
approximate the fuzzy binomial. Table 5.2 shows the approximation for
α = 0, 0.2, 0.4, 0.6, 0.8, 1. Let us explain how we determined the values in
Table 5.2. First we graphed the function

H(p) =
60∑

x=40

(
100
x

)
px(1 − p)100−x, (5.34)

for p ∈ [0.5, 0.7] and found it is a decreasing function of p on this interval. We
then easily found the α-cuts for the fuzzy binomial in Table 5.2. We calculated
the α-cuts for the fuzzy normal using Maple [3]. The Maple commands are
similar to those in the next example which are given in Chapter 30.

5.5.3 Fuzzy Normal Approximation to Fuzzy Poisson

The fuzzy Poisson was discussed in Section 4.3. Let X be a random variable
having a Poisson probability mass function so that, if P (x) is the probability

α P [40, 60][α] Normal Approximation
0 [0.0210,0.9648] [0.0191,0.9780]
0.2 [0.0558,0.9500] [0.0539,0.9621]
0.4 [0.1235,0.9025] [0.1228,0.9139]
0.6 [0.2316,0.8170] [0.2329,0.8254]
0.8 [0.3759,0.6921] [0.3786,0.6967]
1.0 [0.5379,0.5379] [0.5406,0.5406]

Table 5.2: Fuzzy Normal Approximation to Fuzzy Binomial
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that X = x, we have P (x) = λx exp(−λ)/x!, for x = 0, 1, 2, 3... and λ > 0. We
know, if λ is sufficiently large [2], that we can approximate the crisp Poisson
with the crisp normal. Let λ = 20 and let P (16, 21] be the probability that
16 < X ≤ 21. Then

P (16, 21] ≈
∫ z2

z1

f(x; 0, 1)dx, (5.35)

where z1 = (16.5 − λ)/
√

λ,z2 = (21.5 − λ)/
√

λ, and f(x; 0, 1) is the normal
probability density function with mean zero and variance one. We used the
fact that the mean and variance of the crisp Poisson are both equal to λ to
define the zi. In equation (5.35) the exact value using the Poisson is 0.4226
and the normal approximation gives 0.4144. We now argue that we may use
the fuzzy normal to approximate the fuzzy Poisson.

Example 5.5.3.1

Let λ = (15/20/25) and denote the fuzzy probability that 16 < X ≤ 21 as
P (16, 21] whose α-cuts are

P (16, 21][α] = {
21∑

x=17

λx exp(−λ)/x!|λ ∈ λ[α]}, (5.36)

for all α in [0, 1]. In the following equation z1 = (16.5 − λ)/
√

λ and z2 =
(21.5 − λ)/

√
λ, then

P (16, 21][α] ≈ {
∫ z2

z1

f(x; 0, 1)dx|λ ∈ λ[α]}, (5.37)

for all α. The argument that this equation is correct is the same as that
used in the previous subsection for the fuzzy binomial and the fuzzy normal.
Table 5.3 shows the approximation for α = 0, 0.2, 0.4, 0.6, 0.8, 1. We used
Maple [3] to estimate the α-cuts in Table 5.3. We notice that in this example
the approximation is quite good. The Maple commands are in Chapter 30.

α P (16, 21][α] Fuzzy Normal Approximation
0 [0.2096,0.4335] [0.1974,0.4363]

0.2 [0.2577,0.4335] [0.2420,0.4363]
0.4 0.3073,0.4335] [0.2896,0.4363]
0.6 [0.3546,0.4335] [0.3371,0.4363]
0.8 [0.3948,0.4335] [0.3804,0.4337]
1 [0.4226,0.4226] [0.4144,0.4144]

Table 5.3: Fuzzy Normal Approximation to Fuzzy Poisson
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5.5.4 Fuzzy Normal

This example has been adapted from an example in [4]. Cockpits in fighter
jets were originally designed only for men. However, the US Air Force now
recognizes that women also make perfectly good pilots of fighter jets. So var-
ious cockpit changes were required to better accommodate the new women
pilots. The ejection seat used in the fighter jets was originally designed for
men who weighted between 140 and 200 pounds. Based on the data they
could get on the pool of possible new women pilots their weight was approx-
imated normally distributed with estimated mean of 143 pounds having an
estimated standard deviation of 25 pounds. Any women weighing less than
140 pounds, or more than 200 pounds, would have a greater chance of injury
if they had to eject. So the US Air Force wanted to know , given a ran-
dom sample on n possible women pilots, what is the probability that their
mean weight is between 140 and 200 pounds. Answers to such questions are
important for the possible redesign of the ejection seats.

The mean of 140 pounds, with standard deviation of 25 pounds, are point
estimates and to use just these numbers will not show the uncertainty in these
estimates. So we will instead use a set of confidence intervals, as described
in Chapters 6,7 and 9, to construct fuzzy numbers µ , for the mean, and σ ,
for the standard deviation. Assume µ = (140/143/146) and σ = (23/25/27).
Suppose y is the mean of the weights of the random sample of n = 36 possible
women pilots. We now want to calculate the fuzzy probability P [140, 200]
that 140 ≤ y ≤ 200 for y having the fuzzy normal with mean µ and standard
deviation σ/

√
36. We therefore need to calculate the α-cuts

P [140, 200][α] = {
∫ z2

z1

f(x; 0, 1)dx|µ ∈ µ[α], σ ∈ σ[α]}, (5.38)

all α, where z1 = 6(140−µ)/σ and z2 = 6(200−µ)/σ. The value of equation
(5.38) is easily found for α = 1 and it is 0.7642 . Also, as in Example 5.3.1
we can get the value when α = 0. We used Maple [3] to estimate the α-cuts
in Table 5.4. The graph of this fuzzy probability is shown in Figure 5.5. The
graph in Figure 5.5 is not completely accurate because we did not force it to
go through all the points given in Table 5.4.

α P [140, 200][α]
0 [0.5000,0.9412]

0.2 [0.5538,0.9169]
0.4 [0.6083,0,8869]
0.6 [0.6622,0.8511]
0.8 [0.7146,0.8100]
1.0 [0.7642,0.7642]

Table 5.4: Alpha-Cuts of the P [140, 200]
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Figure 5.5: Fuzzy Probability in the Ejection Seat Example

5.5.5 Fuzzy Negative Exponential

The crisp negative exponential probability density function is related to the
crisp Poisson probability mass function and the same is true in the fuzzy
case. A machine has a standby unit available for immediate replacement
upon failure. Assume that failures occur for these machines at a rate of λ
per hour. Let X be a random variable which counts the number of failures
during a period of T hours. Assume that X has a Poisson probability mass
function and the probability that X = x, denoted by PT (x), is

PT (x) = (λT )x exp(−λT )/x!, (5.39)

for x = 0, 1, 2, 3... Now let Y be the random variable whose value is the
waiting time to the first failure. It is well known [2] that Y has the exponential
probability density function so that

Prob[Y > t] =
∫ ∞

t

λ exp(−λx)dx, (5.40)

which is the probability that the first failure occurs after t hours.
Now switch to the fuzzy Poisson with λ = (0.07/0.1/0.13) for λ and

denote the fuzzy probability that the first failure occurs after 10 hours as
P [10,∞]. Then its α-cuts are

P [10,∞][α] = {
∫ ∞

10

λ exp(−λx)dx|λ ∈ λ[α]}, (5.41)

for all α. These α-cuts are easy to find because the integral in the above
equation is simply exp(−10λ) for λ ∈ λ[α]. So, if λ[α] = [λ1(α), λ2(α)], then

P [10,∞][α] = [exp(−10λ2(α)), exp(−10λ1(α))], (5.42)
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which equals

P [10,∞][α] = [exp(−1.3 + 0.3α), exp(−0.7 − 0.3α)]. (5.43)

To summarize, if we substitute λ for λ in Equation (5.39) the fuzzy Poisson
can be used to find the fuzzy probability of x failures in time interval T
and the fuzzy negative exponential gives the fuzzy times between successive
failures. An important property of the crisp exponential is its “forgetfulness”.
The probability statement of this property is

Prob[Y > t1 + t2|Y > t2] = Prob[Y > t1]. (5.44)

The time interval remaining until the next failure is independent of the time
interval that has elapsed since the last failure. We now show this is also true
for the fuzzy exponential using our definition of fuzzy conditional probability
in Section 3.6. Using the fuzzy negative exponential α-cuts of the fuzzy
conditional probability, relating to the left side of equation (5.44), is

P [Y > t1 + t2|Y > t2][α] = {
∫ ∞

t1+t2
λ exp(−λx)dx∫ ∞

t2
λ exp(−λx)dx

|λ ∈ λ[α]}, (5.45)

for α ∈ [0, 1]. Now the quotient of the integrals in equation (5.45) equals,
after evaluation, exp(−t1λ), so

P [Y > t1 + t2|Y > t2][α] = {
∫ ∞

t1

λ exp(−λx)dx|λ ∈ λ[α]}, (5.46)

which equals P [Y > t1][α]. Hence, equation (5.44) also holds for the fuzzy
negative exponential and it has the “forgetfulness” property.

5.6 References

1. J.J. Buckley: Fuzzy Statistics, Springer, Heidelberg, Germany 2004.

2. R.V. Hoog and E.A. Tanis: Probability and Statistical Inference, Sixth
Edition, Prentice Hall, Upper Saddle River, N.J., 2001.

3. Maple 9, Waterloo Maple Inc. Waterloo, Canada.

4. M.F. Triola: Elementary Statistics Using Excel, Second Edition,
Addison-Wesley, N.Y., 2004.



Chapter 6

Estimate µ, Variance
Known

6.1 Introduction

This starts a series of chapters, Chapters 6-11, on elementary fuzzy estima-
tion. In this chapter we first present some general information on fuzzy esti-
mation and then concentrate on the mean of a normal probability distribution
assuming the variance is known. The rest of the chapters on elementary fuzzy
estimation can be read independently. More fuzzy estimation is in Chapters
12-14,19,20,23 and 28.

6.2 Fuzzy Estimation

We have been using (Chapters 4 and 5), and will continue to use, fuzzy num-
bers for estimators of parameters in probability density functions (probability
mass functions in the discrete case) and in this section we show how we obtain
these fuzzy numbers from a set of confidence intervals. The discussion here
is similar to, but more general than, that presented in Section 3.2. Let X
be a random variable with probability density function (or probability mass
function) f(x; θ) for single parameter θ. Assume that θ is unknown and it
must be estimated from a random sample X1, ...,Xn. Let Y = u(X1, ...,Xn)
be a statistic used to estimate θ. Given the values of these random variables
Xi = xi, 1 ≤ i ≤ n, we obtain a point estimate θ∗ = y = u(x1, ..., xn) for
θ. We would never expect this point estimate to exactly equal θ so we often
also compute a (1 − β)100% confidence interval for θ. We are using β here
since α, usually employed for confidence intervals, is reserved for α-cuts of
fuzzy numbers. In this confidence interval one usually sets β equal to 0.10,
0.05 or 0.01.
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We propose to find the (1−β)100% confidence interval for all 0.01 ≤ β <
1. Starting at 0.01 is arbitrary and you could begin at 0.10 or 0.05 or 0.005,
etc. Denote these confidence intervals as

[θ1(β), θ2(β)], (6.1)

for 0.01 ≤ β < 1. Add to this the interval [θ∗, θ∗] for the 0% confidence
interval for θ. Then we have (1 − β)100% confidence intervals for θ for
0.01 ≤ β ≤ 1.

Now place these confidence intervals, one on top of the other, to produce a
triangular shaped fuzzy number θ whose α-cuts are the confidence intervals.
We have

θ[α] = [θ1(α), θ2(α)], (6.2)

for 0.01 ≤ α ≤ 1. All that is needed is to finish the “bottom” of θ to make it
a complete fuzzy number. We will simply drop the graph of θ straight down
to complete its α-cuts so

θ[α] = [θ1(0.01), θ2(0.01)], (6.3)

for 0 ≤ α < 0.01. In this way we are using more information in θ than just
a point estimate, or just a single interval estimate.

6.3 Fuzzy Estimator of µ

Consider X a random variable with probability density function N(µ, σ2),
which is the normal probability density with unknown mean µ and known
variance σ2. To estimate µ we obtain a random sample X1, ...,Xn from
N(µ, σ2). Suppose the mean of this random sample turns out to be x, which
is a crisp number, not a fuzzy number. We know that x is N(µ, σ2/n) (Section
7.2 in [1]). So (x − µ)/(σ/

√
n) is N(0, 1). Therefore

P (−zβ/2 ≤ x − µ

σ/
√

n
≤ zβ/2) = 1 − β, (6.4)

where zβ/2 is the z value so that the probability of a N(0, 1) random variable
exceeding it is β/2. Now solve the inequality for µ producing

P (x − zβ/2σ/
√

n ≤ µ ≤ x + zβ/2σ/
√

n) = 1 − β. (6.5)

This leads directly to the (1 − β)100% confidence interval for µ

[θ1(β), θ2(β)] = [x − zβ/2σ/
√

n, x + zβ/2σ/
√

n], (6.6)

where zβ/2 is defined as
∫ zβ/2

−∞
N(0, 1)dx = 1 − β/2, (6.7)
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and N(0, 1) denotes the normal density with mean zero and unit variance.
Put these confidence intervals together as discussed above and we obtain µ
our fuzzy estimator of µ.

The following examples show that the fuzzy estimator of the mean of the
normal probability density will be a triangular shaped fuzzy number.

Example 6.3.1

Consider X a random variable with probability density function N(µ, 100),
which is the normal probability density with unknown mean µ and known
variance σ2 = 100. To estimate µ we obtain a random sample X1, ...,Xn

from N(µ, 100). Suppose the mean of this random sample turns out to be
28.6. Then a (1 − β)100% confidence interval for µ is

[θ1(β), θ2(β)] = [28.6 − zβ/210/
√

n, 28.6 + zβ/210/
√

n]. (6.8)

To obtain a graph of fuzzy µ, or µ, let n = 64 and first assume that 0.01 ≤
β ≤ 1. We evaluated equation (6.8) using Maple [2] and then the final graph
of µ is shown in Figure 6.1, without dropping the graph straight down to the
x-axis at the end points.

Let us go through more detail on how Maple creates the graph of the
fuzzy estimator in Figure 6.1. Some information was given in Section 1.4 of
Chapter 1 and the Maple commands for selected figures are in Chapter 30.
In equation (6.8) the left (right) end point of the interval describes the left
(right) side of µ. Let the horizontal axis be called the x-axis and the vertical
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Figure 6.1: Fuzzy Estimator µ in Example 6.3.1, 0.01 ≤ β ≤ 1
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Figure 6.2: Fuzzy Estimator µ in Example 6.3.1, 0.10 ≤ β ≤ 1

axis the y-axis. We now substitute y for β in equation (6.8). then

x = 28.6 − (1.25)zy/2, (6.9)

gives the left side of µ and

x = 28.6 + (1.25)zy/2, (6.10)

is the right side of the fuzzy estimator. We have used n = 64 in equation
(6.8). But equations (6.9) and (6.10) are “backwards” in that they give x
a function of y. But using the “implicitplot” command in Maple equations
(6.9) and (6.10) can be graphed and the result for 0.01 ≤ y ≤ 1 is Figure 6.1.

We next evaluated equation (6.8) for 0.10 ≤ β ≤ 1 and then the graph
of µ is shown in Figure 6.2, again without dropping the graph straight down
to the x-axis at the end points. The Maple commands for Figure 6.2 are in
Chapter 30. Finally, we computed equation (6.8) for 0.001 ≤ β ≤ 1 and the
graph of µ is displayed in Figure 6.3 without dropping the graph straight
down to the x-axis at the end points.

The graph in Figure 6.2 is a little misleading because the vertical axis
does not start at zero. It begins at 0.08. To complete the pictures we draw
short vertical line segments, from the horizontal axis up to the graph, at the
end points of the base of the fuzzy number µ. The base (µ[0]) in Figure 6.1
(6.2, 6.3) is a 99% (90%, 99.9%) confidence interval for µ.

In future chapters we usually do not explicitly mention the short vertical
line segments at the two ends of the graph connecting the graph and the
horizontal axis. Also, in when we used a fuzzy estimator µ in the fuzzy
normal (Section 5.3) for simplicity we used a triangular fuzzy number.
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Figure 6.3: Fuzzy Estimator µ in Example 6.3.1, 0.001 ≤ β ≤ 1
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Chapter 7

Estimate µ, Variance
Unknown

7.1 Fuzzy Estimator of µ

Consider X a random variable with probability density function N(µ, σ2),
which is the normal probability density with unknown mean µ and unknown
variance σ2. To estimate µ we obtain a random sample X1, ...,Xn from
N(µ, σ2). Suppose the mean of this random sample turns out to be x, which
is a crisp number, not a fuzzy number. Also, let s2 be the sample variance.
Our point estimator of µ is x. If the values of the random sample are x1, ..., xn

then the expression we will use for s2 in this book is

s2 =
n∑

i=1

(xi − x)2/(n − 1). (7.1)

We will use this form of s2, with denominator (n−1), so that it is an unbiased
estimator of σ2.

It is known that (x − µ)/(s/
√

n) has a (Student’s) t distribution with
n − 1 degrees of freedom (Section 7.2 of [1]). It follows that

P (−tβ/2 ≤ x − µ

s/
√

n
≤ tβ/2) = 1 − β, (7.2)

where tβ/2 is defined from the (Student’s) t distribution, with n − 1 degrees
of freedom, so that the probability of exceeding it is β/2. Now solve the
inequality for µ giving

P (x − tβ/2s/
√

n ≤ µ ≤ x + tβ/2s/
√

n) = 1 − β. (7.3)

For this we immediately obtain the (1 − β)100% confidence interval for µ

[x − tβ/2s/
√

n, x + tβ/2s/
√

n]. (7.4)
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Put these confidence intervals together, as discussed in Chapter 6, and we
obtain µ our fuzzy number estimator of µ.

Example 7.1.1

Consider X a random variable with probability density function N(µ, σ2),
which is the normal probability density with unknown mean µ and unknown
variance σ2. To estimate µ we obtain a random sample X1, ...,Xn from
N(µ, σ2). Suppose the mean of this random sample of size 25 turns out to
be 28.6 and s2 = 3.42. Then a (1 − β)100% confidence interval for µ is

[28.6 − tβ/2

√
3.42/25, 28.6 + tβ/2

√
3.42/25]. (7.5)

To obtain a graph of fuzzy µ, or µ, first assume that 0.01 ≤ β ≤ 1. We
evaluated equation (7.5) using Maple [2] and then the graph of µ is shown
in Figure 7.1, without dropping the graph straight down to the x-axis at the
end points. The Maple commands for Figure 7.1 are in Chapter 30.

We next evaluated equation (7.5) for 0.10 ≤ β ≤ 1 and then the graph
of µ is shown in Figure 7.2, again without dropping the graph straight down
to the x-axis at the end points. Finally, we computed equation (7.5) for
0.001 ≤ β ≤ 1 and the graph of µ is displayed in Figure 7.3 without dropping
the graph straight down to the x-axis at the end points.

The graph in Figure 7.2 is a little misleading because the vertical axis
does not start at zero. It begins at 0.08. To complete the pictures we draw
short vertical line segments, from the horizontal axis up to the graph, at the
end points of the base of the fuzzy number µ. The base (µ[0]) in Figure 7.1
(7.2, 7.3) is a 99% (90%, 99.9%) confidence interval for µ.
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Figure 7.1: Fuzzy Estimator µ in Example 7.1.1, 0.01 ≤ β ≤ 1
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Figure 7.2: Fuzzy Estimator µ in Example 7.1.1, 0.10 ≤ β ≤ 1

0

0.2

0.4

0.6

0.8

1

alpha

27.5 28 28.5 29 29.5 30
x

Figure 7.3: Fuzzy Estimator µ in Example 7.1.1, 0.001 ≤ β ≤ 1
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Chapter 8

Estimate p, Binomial
Population

8.1 Fuzzy Estimator of p

This has been previously discussed in Section 3.2, but for completeness it
is repeated here with the other fuzzy estimators. We have an experiment
in mind in which we are interested in only two possible outcomes labeled
“success” and “failure”. Let p be the probability of a success so that q = 1−p
will be the probability of a failure. We want to estimate the value of p. We
therefore gather a random sample which here is running the experiment n
independent times and counting the number of times we had a success. Let
x be the number of times we observed a success in n independent repetitions
of this experiment. Then our point estimate of p is p̂ = x/n.

We know that (Section 7.5 in [1]) that (p̂ − p)/
√

p(1 − p)/n is approxi-
mately N(0, 1) if n is sufficiently large. Throughout this book we will always
assume that the sample size is large enough for the normal approximation to
the binomial. Then

P (zβ/2 ≤ p̂ − p√
p(1 − p)/n

≤ zβ/2) ≈ 1 − β, (8.1)

where zβ/2 was defined in equation (6.7) in Chapter 6. Solving the inequality
for the p in the numerator we have

P (p̂ − zβ/2

√
p(1 − p)/n ≤ p ≤ p̂ + zβ/2

√
p(1 − p)/n) ≈ 1 − β. (8.2)

This leads to the (1 − β)100% approximate confidence interval for p

[p̂ − zβ/2

√
p(1 − p)/n, p̂ + zβ/2

√
p(1 − p)/n]. (8.3)

However, we have no value for p to use in this confidence interval. So, still
assuming that n is sufficiently large, we substitute p̂ for p in equation (8.3),
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using q̂ = 1 − p̂, and we get the final (1 − β)100% approximate confidence
interval

[p̂ − zβ/2

√
p̂q̂/n, p̂ + zβ/2

√
p̂q̂/n]. (8.4)

Put these confidence intervals together, as discussed in Chapter 6, and we
get p our triangular shaped fuzzy number estimator of p.

Example 8.1.1

Assume that n = 350, x = 180 so that p̂ = 0.5143. The confidence intervals
become

[0.5143 − 0.0267zβ/2, 0.5143 + 0.0267zβ/2], (8.5)

for 0.01(0.10, 0.001) ≤ β ≤ 1.
To obtain a graph of fuzzy p, or p, first assume that 0.01 ≤ β ≤ 1. We

evaluated equation (8.5) using Maple [2] and then the graph of p is shown
in Figure 8.1, without dropping the graph straight down to the x-axis at the
end points. The Maple commands for Figure 8.1 are in Chapter 30.

We next evaluated equation (8.5) for 0.10 ≤ β ≤ 1 and then the graph
of p is shown in Figure 8.2, again without dropping the graph straight down
to the x-axis at the end points. Finally, we computed equation (8.5) for
0.001 ≤ β ≤ 1 and the graph of is displayed in Figure 8.3 without dropping
the graph straight down to the x-axis at the end points.

The graph in Figure 8.2 is a little misleading because the vertical axis
does not start at zero. It begins at 0.08. To complete the pictures we draw
short vertical line segments, from the horizontal axis up to the graph, at the
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Figure 8.1: Fuzzy Estimator p in Example 8.1.1, 0.01 ≤ β ≤ 1
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Figure 8.2: Fuzzy Estimator p in Example 8.1.1, 0.10 ≤ β ≤ 1
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Figure 8.3: Fuzzy Estimator p in Example 8.1.1, 0.001 ≤ β ≤ 1

end points of the base of the fuzzy number µ. The base (µ[0]) in Figure 8.1
(8.2, 8.3) is a 99% (90%, 99.9%) confidence interval for p.
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Chapter 9

Estimate σ2 from a Normal
Population

9.1 Introduction

We first construct a fuzzy estimator for σ2 using the usual confidence intervals
for the variance from a normal distribution and we show this fuzzy estimator
is biased. Then in Section 9.3 we construct an unbiased fuzzy estimator for
the variance.

9.2 Biased Fuzzy Estimator

Consider X a random variable with probability density function N(µ, σ2),
which is the normal probability density with unknown mean µ and unknown
variance σ2. To estimate σ2 we obtain a random sample X1, ...,Xn from
N(µ, σ2). Our point estimator for the variance will be s2. If the values of the
random sample are x1, ..., xn then the expression we will use for s2 in this
book is

s2 =
n∑

i=1

(xi − x)2/(n − 1). (9.1)

We will use this form of s2, with denominator (n−1), so that it is an unbiased
estimator of σ2.

We know that (Section 7.4 in [1]) (n−1)s2/σ2 has a chi-square distribution
with n − 1 degrees of freedom. Then

P (χ2
L,β/2 ≤ (n − 1)s2/σ2 ≤ χ2

R,β/2) = 1 − β, (9.2)

where χ2
R,β/2 (χ2

L,β/2) is the point on the right (left) side of the χ2 den-
sity where the probability of exceeding (being less than) it is β/2. The χ2
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distribution has n− 1 degrees of freedom. Solve the inequality for σ2 and we
see that

P (
(n − 1)s2

χ2
R,β/2

≤ σ2 ≤ (n − 1)s2

χ2
L,β/2

) = 1 − β. (9.3)

From this we obtain the usual (1 − β)100% confidence intervals for σ2

[(n − 1)s2/χ2
R,β/2, (n − 1)s2/χ2

L,β/2]. (9.4)

Put these confidence intervals together, as discussed in Chapter 6, and we
obtain σ2 our fuzzy number estimator of σ2.

We now show that this fuzzy estimator is biased because the vertex of
the triangular shaped fuzzy number σ2, where the membership value equals
one, is not at s2. We say a fuzzy estimator is biased when its vertex is not
at the point estimator. We obtain the vertex of σ2 when β = 1.0. Let

factor =
n − 1
χ2

R,0.50

=
n − 1
χ2

L,0.50

, (9.5)

after we substitute β = 1. Then the 0% confidence interval for the variance
is

[(factor)(s2), (factor)(s2)] = (factor)(s2). (9.6)

Since factor �= 1 the fuzzy number σ2 is not centered at s2. Table 9.1 shows
some values of factor for various choices for n. We see that factor → 1 as
n → ∞ but factor is substantially larger than one for small values on n.
This fuzzy estimator is biased and we will construct an unbiased (vertex at
s2) in the next section.

n factor

10 1.0788
20 1.0361
50 1.0138
100 1.0068
500 1.0013
1000 1.0007

Table 9.1: Values of factor for Various Values of n

9.3 Unbiased Fuzzy Estimator

In deriving the usual confidence interval for the variance we start with recog-
nizing that (n− 1)s2/σ2 has a χ2 distribution with n− 1 degrees of freedom.
Then for a (1 − β)100% confidence interval we may find a and b so that

P (a ≤ (n − 1)s2

σ2
≤ b) = 1 − β. (9.7)
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The usual confidence interval has a and b so that the probabilities in the “two
tails” are equal. That is, a = χ2

L,β/2 (b = χ2
R,β/2) so that the probability of

being less (greater) than a (b) is β/2. But we do not have to pick the a and
b this way ([1], p. 378). We will change the way we pick the a and b so that
the fuzzy estimator is unbiased.

Assume that 0.01 ≤ β ≤ 1. Now this interval for β is fixed and also n
and s2 are fixed. Define

L(λ) = [1 − λ]χ2
R,0.005 + λ(n − 1), (9.8)

and
R(λ) = [1 − λ]χ2

L,0.005 + λ(n − 1). (9.9)

Then a confidence interval for the variance is

[
(n − 1)s2

L(λ)
,
(n − 1)s2

R(λ)
], (9.10)

for 0 ≤ λ ≤ 1. We start with a 99% confidence interval when λ = 0 and end
up with a 0% confidence interval for λ = 1. Notice that now the 0% confidence
interval is [s2, s2] = s2 and it is unbiased. As usual, we place these confidence
intervals one on top of another to obtain our (unbiased) fuzzy estimator σ2

for the variance. Our confidence interval for σ, the population standard
deviation, is

[
√

(n − 1)/L(λ)s,
√

(n − 1)/R(λ)s]. (9.11)

Let us compare the methods in this section to those in Section 9.2. Let
χ2 be the chi-square probability density with n − 1 degrees of freedom. The
mean of χ2 is n − 1 and the median is the point md where P (X ≤ md) =
P (X ≥ md) = 0.5. We assume β is in the interval [0.01, 1]. In Section 9.2
as β continuously increases from 0.01 to 1, χ2

L,β/2 (χ2
R,β/2) starts at χ2

L,0.005

(χ2
R,0.005) and increases (decreases) to χ2

L,0.5 (χ2
R,0.5) which equals to the

median. Recall that χ2
L,β/2 (χ2

R,β/2) is the point on the χ2 density where
the probability of being less (greater) that it equals β/2. From Table 9.1 we
see that the median is always less than n − 1. This produces the bias in the
fuzzy estimator in that section. In this section as λ continuously increases
from zero to one L(λ) (R(λ)) decreases (increases) from χ2

R,0.005 (χ2
L,0.005)

to n − 1. At λ = 1 we get L(1) = R(1) = n − 1 and the vertex (membership
value one) is at s2 and it is now unbiased.

We will use this fuzzy estimator σ2 constructed in this section for σ2 in
the rest of this book. Given a value of λ = λ∗ ∈ [0, 1] one may wonder what
is the corresponding value of β for the confidence interval. We now show how
to get the β. Let L∗ = L(λ∗) and R∗ = R(λ∗). Define

l =
∫ R∗

0

χ2dx, (9.12)
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and
r =

∫ ∞

L∗
χ2dx, (9.13)

and then β = l + r. Now l (r) need not equal β/2. Both of these integrals
above are easily evaluated using Maple [2]. The chi-square density inside
these integrals has n − 1 degrees of freedom.

Example 9.3.1

Consider X a random variable with probability density function N(µ, σ2),
which is the normal probability density with mean µ and unknown variance
σ2. To estimate σ2 we obtain a random sample X1, ...,Xn from N(µ, σ2).
Suppose n = 25 and we calculate s2 = 3.42. Then a confidence interval for
σ2 is

[
82.08
L(λ)

,
82.08
R(λ)

]. (9.14)

To obtain a graph of fuzzy σ2, or σ2, first assume that 0.01 ≤ β ≤ 1. We
evaluated equation (9.14) using Maple [2] and then the graph of σ2 is shown
in Figure 9.1, without dropping the graph straight down to the x-axis at the
end points. The Maple commands for Figure 9.1 are in Chapter 30.

We next evaluated equation (9.14) for 0.10 ≤ β ≤ 1 and then the graph
of σ2 is shown in Figure 9.2, again without dropping the graph straight
down to the x-axis at the end points. Finally, we computed equation (9.14)
for 0.001 ≤ β ≤ 1 and the graph of σ2 is displayed in Figure 9.3 without
dropping the graph straight down to the x-axis at the end points.
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Figure 9.1: Fuzzy Estimator σ2 in Example 9.3.1, 0.01 ≤ β ≤ 1
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Figure 9.2: Fuzzy Estimator σ2 in Example 9.3.1, 0.10 ≤ β ≤ 1
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Figure 9.3: Fuzzy Estimator σ2 in Example 9.3.1, 0.001 ≤ β ≤ 1

The graph in Figure 9.2 is a little misleading because the vertical axis
does not start at zero. It begins at 0.08. To complete the pictures we draw
short vertical line segments, from the horizontal axis up to the graph, at the
end points of the base of the fuzzy number σ2. The base (σ2[0]) in Figure
9.1 (9.2, 9.3) is a 99% (90%, 99.9%) confidence interval for σ2.
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Figure 9.4: Fuzzy Estimator σ in Example 9.3.1, 0.01 ≤ β ≤ 1

To complete this chapter let us present one graph of our fuzzy estimator
σ of σ. Alpha-cuts of σ are

[
9.06√
L(λ)

,
9.06√
R(λ)

]. (9.15)

Assuming 0.01 ≤ β ≤ 1, the graph is in Figure 9.4.
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Chapter 10

Fuzzy Arrival/Service
Rates

10.1 Introduction

In this chapter we concentrate on deriving fuzzy number estimators for the
arrival rate, and the service rate, in a queuing system. These results have
been employed in [1] and [2].

10.2 Fuzzy Arrival Rate

We assume that we have Poisson arrivals [5] which means that there is a
positive constant λ so that the probability of k arrivals per unit time is

λk exp(−λ)/k!, (10.1)

the Poisson probability function. We need to estimate λ, the arrival rate, so
we take a random sample X1, ...,Xm of size m. In the random sample Xi is
the number of arrivals per unit time, in the ith observation. Let S be the
sum of the Xi and let X be S/m. Here, X is not a fuzzy set but the mean.

Now S is Poisson with parameter mλ ([3], p. 298). Assuming that mλ
is sufficiently large (say, at least 30), we may use the normal approximation
([3], p. 317), so the statistic

W =
S − mλ√

mλ
, (10.2)

is approximately a standard normal. Then

P [−zβ/2 < W < zβ/2] ≈ 1 − β, (10.3)
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where the zβ/2 was defined in equation (6.7) in Chapter 6. Now divide
numerator and denominator of W by m and we get

P [−zβ/2 < Z < zβ/2] ≈ 1 − β, (10.4)

where

Z =
X − λ√

λ/m
. (10.5)

From these last two equations we may derive an approximate (1 − β)100%
confidence interval for λ. Let us call this confidence interval [l(β), r(β)].

We now show how to compute l(β) and r(β). Let

f(λ) =
√

m(X − λ)/
√

λ. (10.6)

Now f(λ) has the following properties: (1) it is strictly decreasing for λ > 0;
(2) it is zero for λ > 0 only at X = λ; (3) the limit of f , as λ goes to ∞ is
−∞; and (4) the limit of f as λ approaches zero from the right is ∞. Hence,
(1) the equation zβ/2 = f(λ) has a unique solution λ = l(β); and (2) the
equation −zβ/2 = f(λ) also has a unique solution λ = r(β).

We may find these unique solutions. Let

V =
√

z2
β/2/m + 4X, (10.7)

z1 = [−
zβ/2√

m
+ V ]/2, (10.8)

and
z2 = [

zβ/2√
m

+ V ]/2. (10.9)

Then l(β) = z2
1 and r(β) = z2

2 .
We now substitute α for β to get the α-cuts of fuzzy number λ. Add the

point estimate, when α = 1, X, for the 0% confidence interval. Now as α
goes from 0.01 (99% confidence interval) to one (0% confidence interval) we
get a triangular shaped fuzzy number for λ. As before, we drop the graph
straight down at the ends to obtain a complete fuzzy number.

Example 10.2.1

Suppose m = 100 and we obtained X = 25. We evaluated equations (10.7)
through (10.9) using Maple [4] and then the graph of λ is shown in Figure 10.1,
without dropping the graph straight down to the x−axis at the end points.
However, in applications, for simplicity we usually use a triangular fuzzy
number for λ. The Maple commands are in Chapter 30.
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Figure 10.1: Fuzzy Arrival Rate λ in Example 10.2.1

10.3 Fuzzy Service Rate

Let µ be the average (expected) service rate, in the number of service com-
pletions per unit time, for a busy server. Then 1/µ is the average (expected)
service time. The probability density of the time interval between successive
service completions is ([5], Chapter 15)

(1/µ) exp(−t/µ), (10.10)

for t > 0, the exponential probability density function. Let X1, ...,Xn be a
random sample from this exponential density function. Then the maximum
likelihood estimator for µ is X ([3],p.344), the mean of the random sample
(not a fuzzy set). We know that the probability density for X is the gamma
([3],p.297) with mean µ and variance µ2/n ([3],p.351). If n is sufficiently large
we may use the normal approximation to determine approximate confidence
intervals for µ. Let

Z = (
√

n[X − µ])/µ, (10.11)

which is approximately normally distributed with zero mean and unit vari-
ance, provided n is sufficiently large. See Figure 6.4-2 in [3] for n = 100
which shows the approximation is quite good if n = 100. The graph in Fig-
ure 6.4-2 in [3] is for the chi-square distribution which is a special case of the
gamma distribution. So we now assume that n ≥ 100 and use the normal
approximation to the gamma.

An approximate (1 − β)100% confidence interval for µ is obtained from

P [−zβ/2 < Z < zβ/2] ≈ 1 − β, (10.12)
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where β was defined in equation (6.7) of Chapter 6. After solving for µ we
get

P [L(β) < µ < R(β)] ≈ 1 − β, (10.13)

where
L(β) = [

√
n X]/[zβ/2 +

√
n], (10.14)

and
R(β) = [

√
n X]/[

√
n − zβ/2]. (10.15)

An approximate (1 − β)100% confidence interval for µ is

[
√

n X

zβ/2 +
√

n
,

√
n X√

n − zβ/2
]. (10.16)

Example 10.3.1

If n = 400 and X = 1.5, then we get

[
30

zβ/2 + 20
,

30
20 − zβ/2

], (10.17)

for a (1− β)100% confidence interval for the service rate µ. Now we can put
these confidence intervals together, one on top of another, to obtain a fuzzy
number µ for the service rate. We evaluated equation (10.17) using Maple [4]
for 0.05 ≤ β ≤ 1 and the graph of the fuzzy service rate, without dropping
the graph straight down to the x-axis at the end points, is in Figure 10.2.
For simplicity we usually use triangular fuzzy numbers for µ in applications.
Maple commands for this figure are in Chapter 30.
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Figure 10.2: Fuzzy Service Rate µ in Example 10.3.1
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Chapter 11

Fuzzy Uniform

11.1 Introduction

Let U(a, b), for 0 ≤ a < b, denote the uniform distribution whose density
function is f(x) = 1/(b − a) for a < x < b, and f(x) = 0 otherwise. We
have used the fuzzy uniform distribution to model times between arrivals in
a queuing system and/or service times in a server ([1],[2]).

11.2 Fuzzy Estimators

Assume that we do not know a and b precisely so they must be estimated.
Let X1, ...,Xn be a random sample from U(a, b) and let x1, ..., xn be the
values of this random sample. Define xmin = min{xi|1 ≤ i ≤ n} and xmax =
max{xi|1 ≤ i ≤ n}. Then xmin (xmax) is our point estimator of a (b). We
may now construct (1−β)100% confidence intervals for a (b), for 0.01 ≤ β ≤
1, and placing these intervals one on top of another,with completing the base
as described in Chapter 6, to obtain our fuzzy estimator a (b) of a (b).

We will describe the mechanics of building these confidence intervals in
the next section. The solution for the confidence intervals is complicated
[4] and not to be found in the usual statistics books. In fact, we will first
construct a joint confidence region for (a, b) and project it onto the a− axis
(b − axis) for a confidence interval for a (b).

11.2.1 Details

Let A = a + ε(b − a) and B = b − ε(b − a) for some 0 ≤ ε ≤ 1. Consider the
event E1 = {xmin|a ≤ xmin ≤ A} and the event E2 = {xmax|B ≤ xmax ≤ b}.
We know that a ≤ xmin and xmax ≤ b are both always true, so it is the other
inequalities xmin ≤ A and B ≤ xmax we are interested in. Now (P denotes
probability, Ec denotes compliment) a joint confidence region for (a, b) is
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defined by
P (E1 ∩ E2) = 1 − β, (11.1)

for 0.01 ≤ β ≤ 1. We see that

P (E1 ∩E2) = 1−P (Ec
1 ∪Ec

2) = 1−P (Ec
1)−P (Ec

2) + P (Ec
1 ∩Ec

2) = (11.2)

1 − P (xmin > A) − P (xmax < B) + P (A < all x′
is < B) = (11.3)

1 − [(b − A)/(b − a)]n − [(B − a)/(b − a)]n + [(B − A)/(b − a)]n = (11.4)

1 − (1 − ε)n − (1 − ε)n + (1 − 2ε)n = 1 − β, (11.5)

or
2(1 − ε)n − (1 − 2ε)n = 1 − β. (11.6)

Given β we solve the last equation for ε which is used in the definitions of A
and B.

Let f(ε) = 2(1− ε)n − (1−2ε)n −1+β for 0 ≤ ε ≤ 1. As β increases from
0.01 to 1 we solve f(ε) = 0 for ε, construct A and B and the joint confidence
region for (a, b). Solutions for selected values of n and for β = 0.01, 0.50
are shown in Tables 11.1 and 11.2, respectively. We have two situations,
determined from the graph of f(ε), which are: (1) if n is even the is a unique
solution for ε in [0, 1]; (2) if n is odd there are two solutions for ε in [0, 1] and
we always picked the smaller value. Solutions and graphs were done using
Maple [3].

The joint confidence region for (a, b) is defined by the following four in-
equalities:

a ≤ xmin, (11.7)

xmin ≤ A = a + ε(b − a), (11.8)

xmax ≤ b, (11.9)

B = b − ε(b − a) ≤ xmax. (11.10)

n ε

20 0.23272
21 0.22297
30 0.16187
31 0.15708
50 0.10052
51 0.09865

Table 11.1: Values of ε for Various Values of n, Given β = 0.01
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n ε

20 0.06030
21 0.05748
30 0.04044
31 0.03915
50 0.02438
51 0.02391

Table 11.2: Values of ε for Various Values of n, Given β = 0.50

Example 11.2.1

Let a = 1, b = 10, n = 20, and β = 0.05 for 95% confidence intervals for a
and b. Assume that we obtained xmin = 2 and xmax = 8. Now construct
a coordinate system with the a axis horizontal and the b axis vertical as in
Figure 11.1. We solve for ε using Maple and get ε = 0.16821. First put in the
graph of A = (1 − ε)a + εb = 2 = xmin giving a-intercept 2.4 and b-intercept
11.9. Next make the graph of B = εa + (1− ε)b = 8 = xmax with a-intercept
47.6 and b-intercept 9.6. The confidence region is below B, above A, to the

xmax

0 1 xmin 3 4 5

Confidence
Region

B

A

(s↪ t)

a

3

6

9

12

b

Figure 11.1: Determining Joint Confidence Region for (a, b)
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Figure 11.2: Fuzzy Estimators a and b in U(a, b)

left of xmin and above xmax. We computed (s, t) = (0.479, 9.521) where (s, t)
is shown in Figure 11.1. Now project the confidence region onto the a-axis
and we get [0.479, 2] as our 95% confidence interval for a. Next project onto
the b-axis and we obtain [8, 9.521] as the 95% confidence interval for b.

Do this for β increasing from 0.01 to 1 producing a family of confidence
intervals. We place these intervals one on top of another as described in
Chapter 6 generating half triangular shaped fuzzy number estimators a and
b for a and b, respectively. Then we complete the bottoms of these fuzzy
numbers as discussed in Chapter 6. The bottoms of the fuzzy estimators are
99% confidence intervals.

Typical fuzzy estimators a and b are shown in Figures 11.2 and 11.3. In
Figure 11.2 the left side of a was cut off as we assume that a is non-negative.
These graphs were done using LaTeX .

If we go back to the fuzzy uniform distribution in Section 5.2 in Chapter
5 we see that there we used (whole) triangular fuzzy number estimators for
both a and b. This is not correct since the a and b in Figures 11.2 and 11.3 are
not complete triangular shaped fuzzy numbers. They are half of a triangular
shaped fuzzy number. It is just a habit of the author to use triangular
fuzzy numbers in applications. So go back to Section 5.2 and change those
triangular fuzzy estimators to be a half of a triangular fuzzy number. The
left half for a and the right half for b. We leave this as an exercise for the
interested reader. Changing a and b in Section 5.2 to look like those in Figure
11.3 will probably only cause small changes in the results. Is this true?
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Figure 11.3: Fuzzy Estimators a and b in the Uniform Distribution
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Chapter 12

Fuzzy Max Entropy
Principle

12.1 Introduction

We first discuss the maximum entropy principle, subject to crisp (non-fuzzy)
constraints, in the next section. This presentation is based on [1]. Then we
show how this principle may be extended to handle fuzzy constraints (fuzzy
numbers model the imprecision) in Section 12.3. In Section 12.3 we obtain
solutions like a fuzzy discrete probability distribution, the fuzzy normal prob-
ability distribution, the fuzzy negative exponential distribution, etc. which
were all discussed in Chapters 4 and 5. These results are modeled after
[2]. The following two chapters continues our work with the fuzzy maximum
entropy principle.

12.2 Maximum Entropy Principle

We first consider discrete probability distributions and then continuous prob-
ability distributions. The entropy principle has not gone uncriticized, and
this literature, together with that justifying the principle, has been surveyed
in [1].

12.2.1 Discrete Probability Distributions

We start with a discrete, and finite, probability distribution. Let X =
{x1, ..., xn} and pi = P (xi), 1 ≤ i ≤ n, where we use P for probability. We
do not know all the pi values exactly but we do have some prior information,
possibly through expert opinion, about the distribution. This information
could be in the form of: (1) its mean; (2) its variance; or (3) interval esti-
mates for the pi. The decision problem is to find the “best” p = (p1, ..., pn)
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subject to the constraints given in the information we have about the distri-
bution. A measure of uncertainty in our decision problem is computed by
H(p) = H(p1, ..., pn) where

H(p) = −
n∑

i=1

pi ln(pi), (12.1)

for p1 + ... + pn = 1 and pi ≥ 0, 1 ≤ i ≤ n. Define 0 ln(0) = 0. H(p) is called
the entropy (uncertainty) in the decision problem.

Let F denote the set of feasible probability vectors p. F will contain all
the p satisfying the constraints dictated by the prior information about the
distribution. The maximum entropy principle states that the “best” p, say
p∗, has the maximum entropy subject to p ∈ F . Therefore p∗ solves

max[−
n∑

i=1

pi ln(pi)], (12.2)

subject to p ∈ F . With only the constraint that p1 + ... + pn = 1 and pi ≥ 0
all i the solution is the uniform distribution pi = 1/n all i.

It is easy to extend this decision problem to the infinite case of X =
{x1, ..., xn, ...}.

Example 12.2.1.1

Suppose we have prior information, possibly through expert opinion, about
the mean m of the discrete probability distribution. Our decision problem is

max[−
n∑

i=1

pi ln(pi)], (12.3)

subject to
p1 + ... + pn = 1, pi ≥ 0, 1 ≤ i ≤ n, (12.4)

n∑
i=1

xipi = m. (12.5)

The solution is [1]
p∗i = exp[λ − 1] exp[µxi], (12.6)

for 1 ≤ i ≤ n and λ and µ are Lagrange multipliers whose values are obtained
from the constraints

exp[λ − 1]
n∑

i=1

exp[µxi] = 1, (12.7)

exp[λ − 1]
n∑

i=1

xi exp[µxi] = m. (12.8)
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An example where the constraints are p1 + ... + pn = 1, pi ≥ 0 all i and
ai ≤ pi ≤ bi all i with a1 + ... + an ≤ 1 ≤ b1 + ... + bn is in [1].

Example 12.2.1.2

Now assume that X = {0, 1, 2, 3, ...} so that we have a discrete, but infinite,
probability distribution. If we have prior information about the expected
outcome m, then the decision problem is

max[−
∞∑

i=0

pi ln(pi)], (12.9)

subject to
∞∑

i=0

pi = 1, pi ≥ 0, all i, (12.10)

∞∑
i=0

ipi = m. (12.11)

The solution, using Lagrange multipliers, is [1]

p∗i = (
1

m + 1
)(

m

m + 1
)i, i = 0, 1, 2, 3, ... (12.12)

which is the geometric probability distribution.

12.2.2 Continuous Probability Distributions

Let E be (a, b),−∞ < a < b < ∞, or (0,∞), or (−∞,∞). The probability
density function over E will be written as f(x). That is, f(x) ≥ 0 for
x ∈ E and f(x) is zero outside E. We do not know the probability density
function exactly but we do have some prior information, possibly through
expert opinion, about the distribution. This information could be in the
form of: (1) its mean; or (2) its variance. The decision problem is to find
the “best” f(x) subject to the constraints given in the information we have
about the distribution. A measure of uncertainty (entropy) in our decision
problem is H(f(x)) computed by

H(f(x)) = −
∫

E

f(x) ln[f(x)]dx, (12.13)

for f(x) ≥ 0 on E and the integral of f(x) over E equals one. Define 0 ln(0) =
0. H(f(x)) is called the entropy (uncertainty) in the decision problem.

Let F denote the set of feasible probability density functions. F will
contain all the f(x) satisfying the constraints dictated by the prior infor-
mation about the distribution. The maximum entropy principle states that
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the “best” f(x), say f∗(x), has the maximum entropy subject to f(x) ∈ F .
Therefore f∗(x) solves

max[−
∫

E

f(x) ln[f(x)]dx], (12.14)

subject to f(x) ∈ F . With only the constraint that
∫

E
f(x)dx = 1, f(x) ≥ 0

on E and E = (a, b) the solution is the uniform distribution on E.

Example 12.2.2.1

Suppose we have prior information, possibly through expert opinions, about
the mean m and variance σ2 of the probability density. Our decision problem
is

max{−
∫

E

f(x) ln[f(x)]dx}, (12.15)

subject to ∫
E

f(x)dx = 1, f(x) ≥ 0 on E, (12.16)
∫

E

xf(x)dx = m, (12.17)
∫

E

(x − m)2f(x)dx = σ2. (12.18)

The solution, using the calculus of variations, is [1]

f∗(x) = exp[λ − 1] exp[µx] exp[γ(x − m)2], (12.19)

where the constants λ, µ, γ are determined from the constraints given in equa-
tions (12.16) through (12.18).

Example 12.2.2.2

Let E = (0,∞) and omit the constraint that the variance must equal the
positive number σ2. That is, in Example 12.2.2.1 drop the constraint in
equation (12.18). Then the solution is [1]

f∗(x) = (1/m) exp[− x

m
], x ≥ 0, (12.20)

the negative exponential.

Example 12.2.2.3

Now assume that E = (−∞,∞) together with all the constraints of Example
12.2.2.1. The solution is [1] the normal probability density with mean m and
variance σ2.
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12.3 Imprecise Side-Conditions

We first consider discrete probability distributions and then continuous prob-
ability distributions. We will only consider imprecise side-conditions relating
to the mean and variance of the unknown probability distribution. These
imprecise conditions will be stated as the mean is “approximately” m and
the variance is “approximately” σ2. We will model this imprecision using
triangular fuzzy numbers.

How will we obtain these fuzzy numbers? One way is through expert
opinion discussed in Section 3.3 or from data in Chapters 6,7 and 9. We will
use the triangular fuzzy number m = (m1/m2/m3) for “approximately” m.
Similarly we use σ2 = (σ2

1/σ2
2/σ2

3) with σ2
1 > 0 for ≈ σ2.

We now show how to solve the maximum entropy principle with imprecise
side-conditions through a series of examples patterned after the examples in
the previous section.

12.3.1 Discrete Probability Distributions

Example 12.3.1.1

This is the same as Example 12.2.1.1 except equation (12.5) becomes
n∑

i=1

xipi = m. (12.21)

We solve by taking α-cuts. So the above equation becomes
n∑

i=1

xipi = m[α], (12.22)

for α ∈ [0, 1]. Now we solve the decision problem, equations (12.3), (12.4)
and (12.22), for each m ∈ m[α] giving

Ω[α] = {p∗ | m ∈ m[α]}, (12.23)

for each α. We put these α-cuts together to obtain the fuzzy set Ω, a fuzzy
subset of Rn.

We can not project the joint fuzzy probability distribution Ω onto the
coordinate axes to get the marginal fuzzy probabilities because the α-cuts of
Ω are not “rectangles” in Rn. In fact, Ω is a fuzzy subset of the hyperplane
{p = (p1, ..., pn)|p1 + ... + pn = 1}.

How can we compute fuzzy probabilities using Ω? The basic method is
like our restricted fuzzy arithmetic contained in Chapter 3. Let A be a subset
on X. Say A = {x1, x2, ..., x6}. We want P (A) the fuzzy probability of A. It
is to be determined by its α-cuts

P (A)[α] = {p1 + ... + p6 | p ∈ Ω[α]}, (12.24)
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for all α. Now this α-cut will be an interval so let P (A)[α] = [τ1(α), τ2(α)].
Then the optimization problems give the end points of this interval

τ1(α) = min{p1 + ... + p6 | p ∈ Ω[α]}, (12.25)

τ2(α) = max{p1 + ... + p6 | p ∈ Ω[α]}, (12.26)

all α.
Next we might ask is the mean of Ω equal to m. We now see if this is

true. The fuzzy mean is computed by α-cuts. Let this unknown fuzzy mean
be M . Then

M [α] = {
n∑

i=1

xipi | p ∈ Ω[α] }, (12.27)

all α. But each p ∈ Ω[α] corresponds to a m ∈ m[α] so the sum in equation
(12.27) equals the m that produced the p we chose in Ω[α]. Hence, M [α] =
m[α] all α and M = m.

Example 12.3.1.2

This is the same as Example 12.2.1.2 except equation (12.11) is

∞∑
i=0

ipi = m. (12.28)

As in the previous example we solve by α-cuts producing Ω[α] and Ω.
It is easier to see what we get in this case because the p ∈ Ω[α] are given

by equation (12.12) for all m ∈ m[α]. We again may find that the fuzzy mean
of Ω is m.

12.3.2 Continuous Probability Distributions

Example 12.3.2.1

This example continues Example 12.2.2.1 but now we have fuzzy mean m and
fuzzy variance σ2. We solve by α-cuts. That is, we solve the optimization
problem in Example 12.2.2.1 for all m in m[α] and for all σ2 in σ2[α]. This
produces Ω[α] and Ω. That is

Ω[α] = {f∗(x) | m ∈ m[α], σ2 ∈ σ2[α] }. (12.29)

How do we compute fuzzy probabilities with this joint fuzzy distribution?
Let G be a subset of E.Then an α-cut of P (G) is

P (G)[α] = {
∫

G

f∗(x)dx | m ∈ m[α], σ2 ∈ σ2[α] }, (12.30)



12.4. SUMMARY AND CONCLUSIONS 113

for all α. P (G) is a fuzzy subset of R and its interval α-cuts are given in the
above equation.

We may also find the fuzzy mean and fuzzy variance of Ω and compute
m and σ2, respectively. For example, if we denote the fuzzy mean of Ω as M
its alpha-cuts are

M [α] = {
∫

E

xf∗(x)dx | m ∈ m[α], σ2 ∈ σ2[α] }, (12.31)

for all alpha. Now the integral in the above equation equals m for each m in
the alpha-cut of m and σ2 in the alpha-cut of σ2. So M [α] = m[α] all alpha
and M = m.

Example 12.3.2.2

This is the same as Example 12.2.2.2 but it has a fuzzy mean m. Solving by
α-cuts we obtain the fuzzy negative exponential.

Example 12.3.2.3

The same as Example 12.2.2.3 having a fuzzy mean and a fuzzy variance.
Solving by α-cuts we get the fuzzy normal with mean m and variance σ2.

Let N(c, d) denote the normal probability density with mean c and vari-
ance d. Then

Ω[α] = {N(m,σ2) | m ∈ m[α], σ2 ∈ σ2[α] }, (12.32)

for α ∈ [0, 1]. We compute with the fuzzy normal as follows

P (G)[α] = {
∫

G

N(m,σ2)dx | m ∈ m[α], σ2 ∈ σ2[α] }, (12.33)

for all alpha giving fuzzy probability P (G). We may also find that the fuzzy
mean of Ω is m and the fuzzy variance of Ω is σ2.

12.4 Summary and Conclusions

We solved the maximum entropy principle with imprecise side-conditions,
which were modeled as fuzzy sets, producing fuzzy probability distributions.
It seems very natural if you start with a fuzzy mean, variance, etc, you need to
end up with a fuzzy probability distribution. Fuzzy probability distributions
produce fuzzy means, variances, etc. In the next two chapters we restrict the
solutions to be crisp (not fuzzy).
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Chapter 13

Max Entropy: Crisp
Discrete Solutions

13.1 Introduction

We first discuss the maximum entropy principle, subject to crisp (non-fuzzy)
constraints, in the next section. This was presented in the previous chapter
but for completeness we repeat some of that discussion again in this chap-
ter. This presentation is restricted to discrete probability distributions and
is based on [2]. Then we show how this principle may be extended to han-
dle fuzzy constraints (fuzzy numbers model the imprecision) in Section 13.3.
In Section 13.3 we obtain crisp solutions to the discrete probability case.
These results are based on [3]. In the previous chapter we obtained solutions
like fuzzy discrete probability distributions, the fuzzy normal probability dis-
tribution, and the fuzzy negative exponential distribution to the maximum
entropy problem.

13.2 Max Entropy: Discrete Distributions

The entropy principle has not gone uncriticized, and this literature, together
with that justifying the principle, has been surveyed in [2].

We have a discrete, and finite, probability distribution. Let X =
{x1, ..., xn} and pi = P (xi), 1 ≤ i ≤ n, where we use P for probability. We
do not know all the pi values exactly but we do have some prior information,
possibly through expert opinion, about the distribution. This information
could be in the form of: (1) its mean; (2) its variance; or (3) interval esti-
mates for the pi. The decision problem is to find the “best” p = (p1, ..., pn)
subject to the constraints given in the information we have about the distri-
bution. A measure of uncertainty in our decision problem is computed by

James J. Buckley:
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F (p) = F (p1, ..., pn) where

F (p) = −
n∑

i=1

pi ln(pi), (13.1)

for p1 + ... + pn = 1 and pi ≥ 0, 1 ≤ i ≤ n. Define 0 ln(0) = 0. F (p) is called
the entropy (uncertainty) in the decision problem.

Let F denote the set of feasible probability vectors p. F will contain all
the p satisfying the constraints dictated by the prior information about the
distribution. The maximum entropy principle states that the “best” p, say
p∗, has the maximum entropy subject to p ∈ F . Therefore p∗ solves

max[−
n∑

i=1

pi ln(pi)], (13.2)

subject to p ∈ F . With only the constraint that p1 + ... + pn = 1 and pi ≥ 0
for all i, the solution is the uniform distribution pi = 1/n for all i.

Example 13.2.1

Suppose we have prior information, possibly through expert opinion, about
the mean m of the discrete probability distribution and its variance σ2. Our
decision problem is

max[−
n∑

i=1

pi ln(pi)], (13.3)

subject to
p1 + ... + pn = 1, pi ≥ 0, 1 ≤ i ≤ n, (13.4)

n∑
i=1

xipi = m, (13.5)

n∑
i=1

(xi − m)2pi = σ2. (13.6)

13.3 Max Entropy: Imprecise Side-Conditions

We will only consider imprecise side-conditions relating to the mean and
variance of the unknown probability distribution. These imprecise condi-
tions will be stated as the mean is “approximately” m and the variance is
“approximately” σ2. We will model this imprecision using triangular fuzzy
numbers. How will we obtain these fuzzy numbers? From expert opinion
(Section 3.3)and/or from data (Chapters 6-9). We will use the triangular
fuzzy number m = (m1/m2/m3) for “approximately” m. Similarly we use
σ2 = (σ2

1/σ2
2/σ2

3) with σ2
1 > 0 for ≈ σ2.
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We now show how to solve the maximum entropy principle with imprecise
side-conditions through a series of examples. We first assume that the only
prior information is about the mean and we solve both problems: mean=m
and mean=m. Then we assume that the prior information extends to also
include the variance and solve both problems. All optimization problems are
solved using “SOLVER” in Excel ([4],[6]). Further information on SOLVER
and the programming of SOLVER is contained in Chapter 30. All examples
use the data x1 = 0, x2 = 1, ..., x5 = 4. We can easily expand to cover larger
problems (more xi values).

Example 13.3.1

We want to find the pi, 1 ≤ i ≤ 5, which solve

max[−
5∑

i=1

pi ln(pi)], (13.7)

subject to
p1 + ... + p5 = 1, pi ≥ 0, 1 ≤ i ≤ 5, (13.8)

5∑
i=1

xipi = 3. (13.9)

The prior information was that the mean equals 3. This is easily solved using
SOLVER and the results are in Table 13.1. More details on how Solver was
used to solve this optimization problem is in Chapter 30. One may also solve
this optimization problem by solving a system of two nonlinear equations
simultaneously, given in [2], and we did this using Maple [5], with the results
agreeing with those in Table 13.1. Also, we solved this crisp problem only to
contrast with the fuzzy problem solved next.

x P (x)
0 0.0477
1 0.0841
2 0.1481
3 0.2608
4 0.4594

Table 13.1: Solution to Crisp Maximum Entropy in Example 13.3.1

The value of the mean for the probability distribution in Table 13.1 is
3 and the maximum value of the objective function (equation (13.7)) was
0.8351.
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Example 13.3.2

Now we want to find the pi, 1 ≤ i ≤ 5, which solve

max[−
5∑

i=1

pi ln(pi)], (13.10)

subject to
p1 + ... + p5 = 1, pi ≥ 0, 1 ≤ i ≤ 5, (13.11)

5∑
i=1

xipi = 3. (13.12)

The prior information was that the mean should equal approximately three
which we model as fuzzy three 3 = (2/3/4), represented as the triangular
fuzzy number (2/3/4). The problem has changed to a fuzzy optimization
problem and we will set up fuzzy goals for each objective and follow the
method given in [1]. We need to construct a fuzzy goal for equation (13.10)
and also for equation (13.12).

First consider equation (13.10). The function F (p) = −
∑5

i=1 piln(pi),
where p = (p1, ..., p5), varies from zero to ln(5) and attains its maximum
value of ln(5) for pi = 1/5 for all i. A fuzzy goal G(p) for this objective
is shown in Figure 13.1. The membership function for this fuzzy goal is
G(p) = F (p)/ln(5) for 0 ≤ F (p) ≤ ln(5) and G(p) = 1 for F (p) ≥ ln(5).

Next we need to get a fuzzy goal for equation (13.12). Let

M(p) =
5∑

i=1

xipi, (13.13)

0 ln(5) F (p)

1

G(p)

Figure 13.1: Fuzzy Goal G(p) for Example 13.3.2
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which is the mean of the discrete probability distribution. For notational
convenience also let A denote fuzzy three 3 = (2/3/4). Then the member-
ship function for the second fuzzy goal is A(p) = A(M(p)). Then the fuzzy
optimization problem becomes

max{min(G(p), A(p))}, (13.14)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5. (13.15)

We intersected the two fuzzy goals, denoted by the “min” and then we want
the p of maximum membership in G(p)

⋂
A(p), subject to the crisp con-

straints. The constraints are crisp and there is no need to fuzzify them.
To solve using SOLVER we want all functions/expressions to be “smooth”

(continuous derivatives) so we need to eliminate max and min. An equivalent
problem to solve, without max and min, is

max(X) (13.16)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.17)

X ≤ G(p),X ≤ A(p). (13.18)

Finally, we need to take care of the triangular fuzzy number A. We will do
this by making two subproblems, solving each using SOLVER, and putting
the results together to have the overall solution. Looking at the graph of
A = (2/3/4) we see that the left side of the triangle is the graph of y = x− 2
and the right side is described by y = 4−x. Then the first subproblem #1 is

max(X) (13.19)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.20)

X ≤ G(p),X ≤ M(p) − 2, 2 ≤ M(p) ≤ 3, (13.21)

and the second subproblem #2 is

max(X) (13.22)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.23)

X ≤ G(p),X ≤ 4 − M(p), 3 ≤ M(p) ≤ 4. (13.24)

Both subproblems were solved by SOLVER and the overall results are in
Table 13.2. More details on SOLVER is in Chapter 30.

For subproblem #1, 2 ≤ M(p) ≤ 3, the optimal solution was: (1) F (p) =
0.8755; (2) M(p) = 2.8755 with A(p) = 0.8755; and (3) max(X) = 0.8755. In
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x P (x)
0 0.0615
1 0.0994
2 0.1605
3 0.2594
4 0.4192

Table 13.2: Solution to Fuzzy Maximum Entropy in Example 13.3.2

subproblem #2, 3 ≤ M(p) ≤ 4, the optimal solution was: (1) F (p) = 0.8351;
(2) M(p) = 3 so that A(p) = 1; and (3) max(X) = 0.8351. The best of the
two subproblems was #1 whose values for the pi are given in Table 13.2.

In comparing these results to Example 13.3.1 we see F (p) increased from
0.8351 to 0.8755 because we relaxed the crisp constraint that the mean should
be exactly equal 3 to the mean should be approximately (modeled as a fuzzy
number) equal to 3. In the fuzzy problem the optimal value of the mean ends
up equal to 2.8755.

Example 13.3.3

Now assume that prior information about the discrete probability distribution
encompasses both the mean and the variance. So we want to find the pi,
1 ≤ i ≤ 5, which solve

max[−
5∑

i=1

pi ln(pi)], (13.25)

subject to
p1 + ... + p5 = 1, pi ≥ 0, 1 ≤ i ≤ 5, (13.26)

M(p) =
5∑

i=1

xipi = 2, (13.27)

σ2(p) =
5∑

i=1

(xi − M(p))2pi = 1. (13.28)

The prior information was that the mean equals 2, a change from Example
13.3.1, and the variance is one. This is easily solved using SOLVER and the
results are in Table 13.3. One may also solve this optimization problem
by solving a system of three nonlinear equations simultaneously, a direct
extension of the two nonlinear equations used in Example 13.3.1, and we did
this using Maple [5], with the results the same as in Table 13.3. More details
on how Solver was used to solve this optimization problem is in Chapter 30.



13.3. MAX ENTROPY: IMPRECISE SIDE-CONDITIONS 121

x P (x)
0 0.0638
1 0.2447
2 0.3830
3 0.2447
4 0.0638

Table 13.3: Solution to Crisp Maximum Entropy in Example 13.3.3

Also, we solved this crisp problem only to contrast with the fuzzy problem
solved next.

The value of the mean for the probability distribution in Table 13.3 is
2, the variance equals 1, and the maximum value of the objective function
(equation (13.25)) was 0.8747.

Example 13.3.4

The imprecise side-conditions are that the mean is approximately 2 and the
variance is approximately one. A = (1/2/3) is the fuzzy 2 for the mean
and B = (0/1/2) a fuzzy “one” for the variance. As in Example 13.3.2
A(p) = A(M(p)) and let B(p) = B(σ2(p)).

Following Example 13.3.2 our fuzzy maximum entropy problem is now to
solve

max{min(G(p), A(p), B(p))}, (13.29)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5. (13.30)

We intersected the three fuzzy goals, denoted by the “min” and then we want
the p of maximum membership in G(p)

⋂
A(p)

⋂
B(p), subject to the crisp

constraints. The constraints are crisp and we will not fuzzify them.
An equivalent problem to solve, without max and min, is

max(X) (13.31)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.32)

X ≤ G(p),X ≤ A(p),X ≤ B(p). (13.33)

Lastly, we need to take care of the triangular fuzzy numbers A and B.
We will do this by making four subproblems, solving each using SOLVER,
and putting the results together to have the overall solution. Looking at the
graph of A = (1/2/3) we see that the left side of the triangle is the graph of
y = x − 1 and the right side is described by y = 3 − x. For B = (0/1/2) the
left side is y = x and the right side is described by equation y = 2 − x.
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Now consider a xy-coordinate system where we label the horizontal axis
M(p) and the vertical axis σ2(p). The base of A sits on the interval [1, 3] on
the horizontal axis and the base of B is on the interval [0, 2] on the vertical
axis. We partition up the region [1, 3]× [0, 2] into four subregions as follows:
(1) region #1 is [2, 3] × [1, 2]; (2) region #2 is [1, 2] × [1, 2]; (3) region #3 is
[1, 2] × [0, 1]; and (4) region #4 is [2, 3] × [0, 1]. Each region corresponds to
a subproblem.

Subproblem #1 is
max(X) (13.34)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.35)

X ≤ G(p),X ≤ 3 − M(p), 2 ≤ M(p) ≤ 3,X ≤ 2 − σ2(p), 1 ≤ σ2(p) ≤ 2,
(13.36)

and subproblem #2 is
max(X) (13.37)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.38)

X ≤ G(p),X ≤ M(p) − 1, 1 ≤ M(p) ≤ 2,X ≤ 2 − σ2(p), 1 ≤ σ2(p) ≤ 2.
(13.39)

Continuing this way subproblem #3, corresponding to region #3, is

max(X) (13.40)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.41)

X ≤ G(p),X ≤ M(p)− 1, 1 ≤ M(p) ≤ 2,X ≤ σ2(p), 0 ≤ σ2(p) ≤ 1, (13.42)

and subproblem #4 is
max(X) (13.43)

subject to
p1 + ... + p5 = 1, 0 ≤ pi ≤ 1, i = 1, ..., 5, (13.44)

X ≤ G(p),X ≤ 3−M(p), 2 ≤ M(p) ≤ 3,X ≤ σ2(p), 0 ≤ σ2(p) ≤ 1. (13.45)

All subproblems were solved by SOLVER and the final results, the best
one from all four subproblems, is in Table 13.4. More details on SOLVER is
in Chapter 30.

The optimal solution for each subproblem is as follows: (1) in subproblem
#1 (2 ≤ M(p) ≤ 3, 1 ≤ σ2(p) ≤ 2) F (p) = 0.900463, M(p) = 2, A(p) = 1,
σ2(p) = 1.099537, B(p) = 0.900463 , max(X) = 0.900463; (2) in subproblem
#2 (1 ≤ M(p) ≤ 2, 1 ≤ σ2(p) ≤ 2) F (p) = 0.900463, M(p) = 2, A(p) = 1,
σ2(p) = 1.099537, B(p) =0.900463 , max(X) = 0.900463; (3) in subproblem
#3 (1 ≤ M(p) ≤ 2, 0 ≤ σ2(p) ≤ 1) F (p) = 0.874689, M(p) = 2, A(p) = 1,
σ2(p) = 1, B(p) = 1 , max(X) = 0.874689; and (4) in subproblem #4



13.4. SUMMARY AND CONCLUSIONS 123

x P (x)
0 0.0764
1 0.2440
2 0.3592
3 0.2439
4 0.0765

Table 13.4: Solution to Fuzzy Maximum Entropy in Example 13.3.4

(2 ≤ M(p) ≤ 3, 0 ≤ σ2(p) ≤ 1) F (p) = 0.874689, M(p) = 2, A(p) = 1,
σ2(p) = 1, B(p) = 1 , max(X) = 0.874689. Put these four subproblems
together to obtain the overall optimal solution which was the results in both
subproblem #1 and #2 whose pi values are given in Table 13.4.

In comparing to Example 13.3.3 we see that F (p) increased from 0.8747
in Example 13.3.3 to 0.9005 in Example 13.3.4. This was accomplished by
relaxing the crisp constraints from M(p) = 2 and σ2(p) = 1 to M(p) ≈ 2 and
σ2(p) ≈ 1 with these imprecise constraints modeled by fuzzy numbers.

The above examples may be extended/generalized in various ways. We
can easily add more, and different, xi values. We can also easily add more
constraints like (approximate) values for higher order moments of the discrete
probability distribution. We do not have to use triangular fuzzy numbers for
A and B. For example, let A be a triangular shaped fuzzy number with
base the interval [2,4] and vertex at x = 3, with y = f1(x) (y = f2(x))
describing the left (right) side of A. The sides of A are now curves, not
straight line segments. Then change equation (13.21) in Example 13.3.2 to
X ≤ f1(M(p)) and equation (13.24) to X ≤ f2(M(p)). Surely, we could also
employ trapezoidal (shaped) fuzzy numbers.

13.4 Summary and Conclusions

In this chapter we showed how to solve the maximum entropy problem with
imprecise side-conditions for a crisp (non-fuzzy) discrete probability distri-
bution. The next step would be to solve for a crisp continuous probability
density. That is the topic of the next chapter.
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Chapter 14

Max Entropy: Crisp
Continuous Solutions

14.1 Introduction

We first discuss the maximum entropy principle, subject to crisp (non-fuzzy)
constraints, in the next Section. This presentation is restricted to continu-
ous probability density functions and is based on [2]. This discussion was
given in Chapter 12 and repeated here for completeness. Then we show how
this principle may be extended to handle fuzzy constraints (fuzzy numbers
model the imprecision) in Section 14.3. In Chapter 12 we obtained solutions
like fuzzy discrete probability distributions, the fuzzy normal probability dis-
tribution, and the fuzzy negative exponential distribution to the maximum
entropy problem with fuzzy side-conditions. Then in Chapter 13 we added
the constraint that the solution must be non-fuzzy and showed how to solve
the problem for discrete probability distributions. This chapter is about the
same problem but now we wish to solve it for crisp continuous probability
densities. The results are based on [3].

Let f(x) denote a non-fuzzy continuous probability density so that
∫

E

f(x)dx = 1, f(x) ≥ 0, x ∈ E. (14.1)

The discussion will depend on the set E. There will be three cases: (1)
E = [0,M ], M > 0; (2) E = [0,∞); and (3) E = (−∞,∞). The first
case is covered in Section 14.4, case (2) in Section 14.5 followed by Section
14.6 devoted to case (3). In each section we first consider the side-condition
involving only the mean and then both the mean and the variance. Also,
in each section we first solve the crisp problem (non-fuzzy side-condition(s))
and then the fuzzy problem.
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14.2 Max Entropy: Probability Densities

The entropy principle has not gone uncriticized, and this literature, together
with that justifying the principles, has been surveyed in [2].

We have a continuous probability density f(x). We do not know an exact
formula for f(x) but we do have some prior information, possibly through
expert opinion, about the distribution. This information could be in the form
of: (1) its mean; and/or (2) its variance. The decision problem is to find the
“best” f(x) subject to the constraints given in the information we have about
the density. A measure of uncertainty in our decision problem is computed
by Ω(f) where

Ω(f) = −{
∫

E

f(x)ln(f(x))dx}, (14.2)

for f(x) ≥ 0 on E,
∫

E
f(x)dx = 1. Define 0 ln(0) = 0. Ω(f) is called the

entropy (uncertainty) in the decision problem.
Let F denote the set of feasible probability density functions f . F will

contain all the f satisfying the constraints dictated by the prior informa-
tion about the distribution. The maximum entropy principle states that the
“best” f , say f∗, has the maximum entropy subject to f ∈ F . Therefore f∗

solves
max[−

∫
E

f(x)ln(f(x))dx], (14.3)

subject to f ∈ F .

Example 14.2.1

Suppose we have prior information, possibly through expert opinion, about
the mean m of the density function and its variance σ2. Our decision problem
is

max[−
∫

E

f(x)ln(f(x))dx], (14.4)

subject to ∫
E

f(x) = 1, f(x) ≥ 0, x ∈ E, (14.5)

∫
E

xf(x)dx = m, (14.6)

∫
E

(x − m)2f(x)dx = σ2. (14.7)
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14.3 Max Entropy: Imprecise Side-Conditions

We will only consider imprecise side-conditions relating to the mean and
variance of the unknown probability density function. These imprecise con-
ditions will be stated as the mean is “approximately” m and the variance is
“approximately” σ2. We will model this imprecision using triangular fuzzy
numbers.

How will we obtain these fuzzy numbers? From expert opinion (Section
3.3)and/or from data (Chapters 6-9). We will use the triangular fuzzy number
m = (m1/m2/m3) for “approximately” m. Similarly we use σ2 = (σ2

1/σ2
2/σ2

3)
with σ2

1 > 0 for ≈ σ2.
We now show how to solve the maximum entropy principle with imprecise

side-conditions through a series of examples in the next three sections. We
first assume that the only prior information is about the mean and we solve
both problems: mean=m and mean=m. Then we assume that the prior
information extends to also include the variance and solve both problems.
All optimization problems are solved using Maple [5].

14.4 E = [0, M ]

We start with the crisp problem having no side-conditions. It is max Ω(f)
subject to

∫
E

f(x)dx = 1 and f(x) ≥ 0 for x ∈ E. The solution [2] is the
uniform density f(x) = 1/M for 0 ≤ x ≤ M . Using the uniform density
Ω(f) = ln(M). Then for any other feasible set F , determined by certain
side-conditions, we have Ω(f) ≤ ln(M) for f ∈ F . We will use this result
later on in the section.

Now we add the side-condition involving the mean. The crisp maximum
entropy problem is

max Ω(f) = −{
∫ M

0

f(x)ln(f(x))dx}, (14.8)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.9)

and ∫ M

0

xf(x)dx = m. (14.10)

Of course, we assume that m belongs to (0,M). Using the calculus of varia-
tions [4] the Euler equation is [2]

−ln(f) − 1 + λ + µx = 0, (14.11)

where λ and µ are Lagrange multipliers. The solution is

f∗(x) = ceµx, (14.12)
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where c = eλ−1. The exact values of λ and µ are obtained from the equations

c

∫ M

0

eµxdx = 1, (14.13)

c

∫ M

0

xeµxdx = m. (14.14)

Example 14.4.1

Let M = 10 and assume that m = 3. Using Maple [5] we solved equations
(14.13) and (14.14) for c and µ and obtained c = 0.28705 and µ = −0.26721
producing solution

f∗(x) = 0.28705e−0.26721x, 0 ≤ x ≤ 10, (14.15)

with max Ω(f) = 2.04974. We solved this crisp problem to compare to the
following fuzzy problem in Example 14.4.2. We will need to normalize Ω(f) so
that its maximum is at most one, for the fuzzy goal for the objective function
in the next example, and then Ω(f)/ln(10) = 0.89019 since M = 10. The
Maple commands for this solution are in Chapter 30.

Now we make the information about the mean imprecise information so
that it is ∫ M

0

xf(x)dx ≈ m. (14.16)

The prior information was that the mean should be approximately m. We
model this imprecise information using a triangular fuzzy number
A = (m1/m/m2). The maximum entropy problem has become

max Ω(f) = −{
∫ M

0

f(x)ln(f(x))dx}, (14.17)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.18)

and ∫ M

0

xf(x)dx = A. (14.19)

The problem has changed to a fuzzy optimization problem and we will set
up fuzzy goals for each objective, then intersect these fuzzy sets, look for the
f of maximum membership in the intersection and follow the method given
in [1]. We need to construct a fuzzy goal for equation (14.17) and also for
equation (14.19).

First consider equation (14.17). The expression Ω(f) attains its maximum
value of ln(M) for f(x) = 1/M , 0 ≤ x ≤ M . A fuzzy goal G(f) for this
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0 ln(M) Ω(f)

1

G(f)

Figure 14.1: Fuzzy Goal G(f) in Section 14.4

objective is shown in Figure 14.1. The membership function for this fuzzy
goal is G(f) = Ω(f)/ln(M) for 0 ≤ Ω(f) ≤ ln(M) and G(f) = 1 if Ω(f) ≥
ln(M).

Next we need to get a fuzzy goal for equation (14.19). Let

m = Mean(f) =
∫ M

0

xf(x)dx, (14.20)

which is the mean of the continuous probability density function f(x). The
membership function for the second fuzzy goal is A(f) = A(Mean(f)) =
A(m). Then the fuzzy optimization problem becomes

max{min(G(f), A(f))}, (14.21)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ]. (14.22)

We intersected the two fuzzy goals, denoted by the “min” and then we want
the f of maximum membership in G(f)

⋂
A(f), subject to the crisp con-

straints in equation (14.22). The constraints are crisp and there is no need
to fuzzify them.

Example 14.4.2

Let M = 10 and A = (2/3/4). Using Maple [5] we computed values of the
fuzzy goal G(f∗) for selected values of m in (0, 5]. These are shown in Table
14.1. We found that G(f∗) was an increasing function of m. Therefore, the
max−min solution is easily found and it is shown as point S in Figure 14.2.
Figure 14.2 contains the graph of A and G(f∗) for 2 ≤ m ≤ 4. The optimal
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m G(f∗)
1.0 0.4343
2.0 0.7321
2.5 0.8225
3.0 0.8902
3.4 0.9311
4.0 0.9736
5.0 1.0000

Table 14.1: Values of the Fuzzy Goal G(f∗) in Example 14.4.2

0 1 2 3 4 5 m

1

y

A

Ω(f∗) S

Figure 14.2: Solution to Example 14.4.2

results are m = 3.09870, c = 0.273311, µ = −0.251128, A(f∗) = G(f∗) =
0.90130 and f∗(x) = 0.273311e−0.251128x for 0 ≤ x ≤ 10.

The next thing to do is add previous information on the variance. The
new maximum entropy problem is

max Ω(f) = −{
∫ M

0

f(x)ln(f(x))dx}, (14.23)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.24)

and ∫ M

0

xf(x)dx = m,

∫ M

0

(x − m)2f(x)dx = s2. (14.25)

Of course, we assume that m belongs to (0,M) and s2 > 0. Using the calculus
of variations [4] the Euler equation is [2]

−ln(f) − 1 + λ + µx + γ(x − m)2 = 0, (14.26)
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where λ, µ and γ are Lagrange multipliers. The solution is

f∗(x) = ceµxeγ(x−m)2 , (14.27)

where c = eλ−1. The exact values of λ, µ and γ are obtained from the
equations

c

∫ M

0

eµxeγ(x−m)2dx = 1, (14.28)

c

∫ M

0

xeµxeγ(x−m)2dx = m, (14.29)

c

∫ M

0

(x − m)2eµxeγ(x−m)2 = s2. (14.30)

Example 14.4.3

Let M = 10 and assume that m = 3 and s2 = 1. Using Maple [5] we
solved equations (14.28)-(14.30) for c, µ and γ and obtained c = 0.40237,
µ = −0.00477 and γ = −0.49285 producing the optimal solution

f∗(x) = 0.40237e−0.00477xe−0.49285(x−3)2 , 0 ≤ x ≤ 10, (14.31)

with max Ω(f) = 1.41754. We solved this crisp problem to compare to the
following fuzzy problem in Example 14.4.4. We normalize Ω(f) so that its
maximum is at most one and then Ω(f)/ln(10) = 0.61563 because M = 10.
Maple commands for this problem are in Chapter 30.

The last thing to do in this section is to make the information about the
variance (and the mean) imprecise information so that it is

∫ M

0

(x − m)2f(x)dx ≈ s2. (14.32)

The prior information was that the variance should be approximately s2.
We model this imprecise information using a triangular fuzzy number B =
(s1/s2/s2). The maximum entropy problems has become

max Ω(f) = −{
∫ M

0

f(x)ln(f(x))dx}, (14.33)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.34)

and ∫ M

0

xf(x)dx = A,

∫ M

0

(x − m)2f(x)dx = B. (14.35)
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The problem has changed to a fuzzy optimization problem and we will set up
fuzzy goals for each objective, then intersect these fuzzy sets, look for the f
of maximum membership in the intersection and follow the method given in
[1]. We need to construct a new fuzzy goal for the variance. We will continue
to use the fuzzy goals G(f) and A(f).

Define

s2 = V ar(f) =
∫ M

0

(x − m)2f(x)dx, (14.36)

and then our third fuzzy goal will be B(f) = B(V ar(f)) = B(s2). Then the
fuzzy optimization problem is

max{min(G(f), A(f), B(f))}, (14.37)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ]. (14.38)

We intersected the three fuzzy goals, denoted by the “min” and then we want
the f of maximum membership in G(f)

⋂
A(f)

⋂
B(f), subject to the crisp

constraints. The constraints are crisp and there is no need to fuzzify them.
Finally, we need to consider the triangular fuzzy numbers A and B. We

will do this by making four subproblems and putting the results together to
have the overall solution. We now assume that A = (2/3/4) and B(0/3/6).
Notice this is a change from before where we had the variance equal to one and
now the variance is approximately three. Looking at the graph of A = (2/3/4)
we see that the left side of the triangle is the graph of y = x−2 and the right
side is described by y = 4 − x. The left side of B has the equation y = 1

3x
and its right side is y = 2− 1

3x. Clearly, we need m in the interval [2, 4] and
s2 ∈ [0, 6] else the objective function is surely zero.

Partition the rectangle [2, 4]× [0, 6] up into four subregions: (1) subregion
#1 is [3, 4] × [3, 6]; (2) subregion #2 is [2, 3] × [3, 6]; (3) subregion #3 is
[2, 3]×[0, 3]; and (4) subregion #4 is [3, 4]×[0, 3]. Each subregion corresponds
to a subproblem.

The first subproblem #1 is

max{min(G(f), A(f), B(f))}, (14.39)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.40)

A(f) = 4 − m, 3 ≤ m ≤ 4, B(f) = 2 − 1
3
s2, 3 ≤ s2 ≤ 6. (14.41)

And the second subproblem #2 is

max{min(G(f), A(f), B(f))}, (14.42)
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subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.43)

A(f) = m − 2, 2 ≤ m ≤ 3, B(f) = 2 − 1
3
s2, 3 ≤ s2 ≤ 6. (14.44)

The third subproblem #3 is

max{min(G(f), A(f), B(f))}, (14.45)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.46)

A(f) = m − 2, 2 ≤ m ≤ 3, B(f) =
1
3
s2, 0 ≤ s2 ≤ 3. (14.47)

And the last subproblem #4 is

max{min(G(f), A(f), B(f))}, (14.48)

subject to ∫ M

0

f(x)dx = 1, f(x) ≥ 0, x ∈ [0,M ], (14.49)

A(f) = 4 − m, 3 ≤ m ≤ 4, B(f) =
1
3
s2, 0 ≤ s2 ≤ 3. (14.50)

We solve for each m ∈ [2, 4] and each s2 ∈ [0, 6] as in Example 14.4.3 pro-
ducing the solution f∗(x) = ceµxeγ(x−m)2 . Put f∗ into Ω(f) and it simplifies
to

Ω(f∗) = −ln(c) − µm − γs2. (14.51)

The result is:

1. For each m ∈ [3, 4], s2 ∈ [3, 6] solve for f∗ and them compute
max[min([−ln(c) − µm − γs2]/ln(10), 4 − m, 2 − 1

3s2)];.

2. For each m ∈ [2, 3], s2 ∈ [3, 6], solve for f∗ and determine
max[min([−ln(c) − µm − γs2]/ln(10),m − 2, 2 − 1

3s2)].

3. For each m ∈ [2, 3], s2 ∈ [0, 3], solve for f∗ and determine
max[min([−ln(c) − µm − γs2]/ln(10),m − 2, 1

3s2)].

4. For each m ∈ [3, 4], s2 ∈ [0, 3], solve for f∗ and determine
max[min([−ln(c) − µm − γs2]/ln(10), 4 − m, 1

3s2)].

5. Combine the results into the overall optimal solution.

We illustrate how to solve these problems in the next example.
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m s2 G(f∗) MIN
2.3 1.0 0.6107 0.3
2.3 2.0 0.7301 0.3
2.3 3.0 0.7743 0.3
2.3 4.0 0.7887 0.3
2.3 5.0 0.7862 0.3
2.7 1.0 0.6146 1

3
2.7 2.0 0.7498 2

3
2.7 3.0 0.8108 0.7
2.7 4.0 0.8402 2

3
2.7 5.0 0.8513 1

3
3.0 1.0 0.6156 1

3
3.0 2.0 0.7574 2

3
3.0 3.0 0.8271 0.8271
3.0 4.0 0.8650 2

3
3.0 5.0 0.8842 1

3
3.3 1.0 0.6160 1

3
3.3 2.0 0.7617 2

3
3.3 3.0 0.8376 0.7
3.3 4.0 0.8820 2

3
3.3 5.0 0.9076 1

3
3.7 1.0 0.6162 0.3
3.7 2.0 0.7646 0.3
3.7 3.0 0.8457 0.3
3.7 4.0 0.8963 0.3
3.7 5.0 0.9283 0.3

Table 14.2: Values of the Fuzzy Goals in Example 14.4.4

Example 14.4.4

Let m = 10, A = (2/3/4) and B = (0/3/6). Using Maple [5] we computed
values of the fuzzy goal G(f∗) for selected values of m and s2. These are
shown in Table 14.2. We must have s2 > 0 and that is why we start its
values at 1.0. MIN in Table 14.2 stands for min(G(f∗), A(f∗), B(f∗)).

From Table 14.2 we see that: (1) for m fixed in [2, 4] G(f∗) is an increasing
function of s2 in [0, 6]; and (2) for s2 fixed in [0, 6] the fuzzy goal is an
increasing function of m. It looks like the optimal solution is in region [3, 4]×
[3, 6] and close to the point m = 3, s2 = 3. We now computed the fuzzy goal
and MIN for values of m and s2 in this region close to the point m = 3,
s2 = 3. Our solution is m = 3.146, s2 = 3.438, c = 0.2696, µ = −0.1018,
γ = −0.0974, G(f∗) = A(m) = B(s2) = 0.854 with

f∗(x) = 0.2696e−0.1018xe−0.0974(x−3.146)2 , 0 ≤ x ≤ 10. (14.52)
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Notice that G(f∗) increased from 0.6156 in Example 14.4.3 to 0.854 in
Example 14.4.4. However we did use the variance approximately 3 in Example
14.4.4 because Maple had trouble solving the equations when s2 was close to
zero. If we used B = (0/1/2) for the imprecise variance then we would have
s2 equal to 0.3 with no Maple solution for c, µ and γ.

14.5 E = [0,∞)

We pattern this section after Section 14.4. The only difference is that now
E = [0,∞) so we have to make sure the improper integrals all converge.

First look at the maximum entropy problem with no side-conditions. It
is max Ω(f) subject to

∫ ∞
0

f(x)dx = 1 and f(x) ≥ 0 for x ≥ 0. The Euler
equation is [2]

−ln(f) − 1 + λ = 0, (14.53)

where λ is a Lagrange multiplier. The solution is

f∗(x) = c, (14.54)

where c = eλ−1. But the integral of this f∗ over E = [0,∞) surely diverges.
The Euler equation has no solution. Also we can show that the objective
function Ω(f) is unbounded (max = ∞) over the feasible set F . Clearly the
uniform density f(x) = 1/M for 0 ≤ x ≤ M is in F but for this density
Ω(f) = ln(M) → ∞ as M → ∞. This problem has no solution.

We next consider the crisp problem having one side-condition with respect
to its mean. It is max Ω(f) subject to

∫ ∞
0

f(x)dx = 1, f(x) ≥ 0 for x ≥ 0
and

∫ ∞
0

xf(x)dx = m. The solution [2] is the exponential density f∗(x) =
(1/m)e−x/m for x ≥ 0. The Euler equation (equation (14.11)), the structure
of f∗(x) (equation (14.12)) and the equations (equations (14.13) and (14.14))
to solve for the constants c and µ are all the same except change E = [0,M ]
to E = [0,∞). However, we need to assume that µ < 0 so that the improper
integrals converge. Using the exponential density Ω(f∗) = ln(m) + 1. Then
for any other feasible set F , determined by side-conditions relating to the
mean, variance,..., we have Ω(f) ≤ ln(m) + 1 for f ∈ F . We will use this
result later on in the section.

Now we add an imprecise side-condition involving the mean. The maxi-
mum entropy problem is

max Ω(f) = −{
∫ ∞

0

f(x)ln(f(x))dx}, (14.55)

subject to ∫ ∞

0

f(x)dx = 1, f(x) ≥ 0, for x ≥ 0, (14.56)

and ∫ ∞

0

xf(x)dx ≈ m. (14.57)
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Of course, we assume that m belongs to (0,∞). We model this imprecise in-
formation using a triangular fuzzy number A = (m1/m/m2). The maximum
entropy problems has become

max Ω(f) = −{
∫ ∞

0

f(x)ln(f(x))dx}, (14.58)

subject to ∫ ∞

0

f(x)dx = 1, f(x) ≥ 0, for x ≥ 0, (14.59)

and ∫ ∞

0

xf(x)dx = A. (14.60)

The problem has changed to a fuzzy optimization problem and we will set up
fuzzy goals for each objective, then intersect these fuzzy sets, look for the f of
maximum membership in the intersection and follow the method given in [1].
We use the same fuzzy goals as in Section 14.4. Then the fuzzy optimization
problem becomes

max{min(G(f), A(f))}, (14.61)

subject to ∫ ∞

0

f(x)dx = 1, f(x) ≥ 0, for x ≥ 0, (14.62)

We illustrate how to solve the problem in the next example.

Example 14.5.1

Let A = (2/3/4). So 2 ≤ m ≤ 4, and for each value of m f∗ is the exponential,
and the maximum Ω(f∗) can be is ln(4) + 1. We normalize Ω(f∗), so that
its maximum will be one, for the fuzzy goal G and then G(f) = [ln(m) +
1]/[ln(4) + 1]. Obviously G(f) is an increasing function of m so the optimal
solution will be where y = [ln(m) + 1]/[ln(4) + 1] intersects the right side of
A. Hence we must solve

[ln(m) + 1]/[ln(4) + 1] = 4 − m, (14.63)

for m in [3, 4]. The solution is m = 3.1060 producing f∗(x) =
(0.32196)e−0.32196x, for x ≥ 0, G(f∗) = 0.8940 = A(f∗).

The next thing to do is add previous information on the variance. The
new maximum entropy problem is

max Ω(f) = −{
∫ ∞

0

f(x)ln(f(x))dx}, (14.64)

subject to ∫ ∞

0

f(x)dx = 1, f(x) ≥ 0, for x ≥ 0, (14.65)
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and ∫ ∞

0

xf(x)dx = m,

∫ ∞

0

(x − m)2f(x)dx = s2. (14.66)

Of course, we assume that m > 0 and s2 > 0. The Euler equation (equation
(14.26)), the structure of f∗(x) (equation (14.27)) and the equations (equa-
tions (14.28)–(14.30)) to solve for the constants c,µ and γ are all the same
except change E = [0,M ] to E = [0,∞). However, we need to assume that
µ < 0 and γ < 0 so that the improper integrals converge. Evaluate Ω(f) at
f = f∗ and we obtain Ω(f∗) = −(ln(c) + µm + γs2).

Example 14.5.2

Assume that m = 3 and s2 = 1. Maple [5] solved equations (14.28)–(14.30),
using E = [0,∞), for c, µ and γ and obtained c = 0.40237, µ = −0.004767
and γ = −0.49285 producing the optimal solution

f∗(x) = 0.40237e−0.004767xe−0.49285(x−3)2 , x ≥ 0, (14.67)

with max Ω(f) = 1.41753. We solved this crisp problem to compare to
the following fuzzy problem in Example 14.5.3. We normalize Ω(f) so that
its maximum is at most one and then Ω(f)/[ln(4) + 1] = 0.59403, since we
previously argued that the maximum was ln(m) + 1. Maple command for
this example are in Chapter 30.

The last thing to do in this section is to make the information about the
variance (and the mean) imprecise information so that it is

∫ ∞

0

(x − m)2f(x)dx ≈ s2. (14.68)

The prior information was that the variance should be approximately s2.
We model this imprecise information using a triangular fuzzy number B =
(s1/s2/s2). The maximum entropy problems has become

max Ω(f) = −{
∫ ∞

0

f(x)ln(f(x))dx}, (14.69)

subject to ∫ ∞

0

f(x)dx = 1, f(x) ≥ 0, for x ≥ 0, (14.70)

and ∫ ∞

0

xf(x)dx = A,

∫ ∞

0

(x − m)2f(x)dx = B. (14.71)

We will employ the same fuzzy goals. Then the fuzzy optimization problem
becomes

max{min(G(f), A(f), B(f))}, (14.72)
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m s2 G(f∗) MIN
2.3 1.0 0.5893 0.3
2.3 2.0 0.7045 0.3
2.3 3.0 0.7473 0.3
2.3 4.0 0.7634 0.3
2.3 4.8 0.7676 0.3
2.7 1.0 0.5930 1

3
2.7 2.0 0.7235 2

3
2.7 3.0 0.7824 0.7
2.7 4.0 0.8119 2

3
2.7 5.0 0.8265 1

3
3.0 1.0 0.5940 1

3
3.0 2.0 0.7308 2

3
3.0 3.0 0.7982 0.7982
3.0 4.0 0.8356 2

3
3.0 5.0 0.8570 1

3
3.3 1.0 0.5944 1

3
3.3 2.0 0.7350 2

3
3.3 3.0 0.8083 0.7
3.3 4.0 0.8519 2

3
3.3 5.0 0.8791 1

3
3.7 1.0 0.5946 0.3
3.7 2.0 0.7378 0.3
3.7 3.0 0.8162 0.3
3.7 4.0 0.8658 0.3
3.7 5.0 0.8990 0.3

Table 14.3: Values of the Fuzzy Goals in Example 14.5.3

subject to ∫ ∞

0

f(x)dx = 1, f(x) ≥ 0, for x ≥ 0. (14.73)

Example 14.5.3

Let A = (2/3/4) and B = (0/3/6). Using Maple [5] we computed values of
the fuzzy goal G(f∗) for selected values of m and s2. These are shown in
Table 14.3. MIN in Table 14.3 stands for min(G(f∗), A(f∗), B(f∗)).

From Table 14.3 we see that: (1) for m fixed in [2, 4] G(f∗) is an increasing
function of s2 in [0, 6]; and (2) for s2 fixed in [0, 6] the fuzzy goal is an
increasing function of m. It looks like the optimal solution is in region [3, 4]×
[3, 6] and close to the point m = 3, s2 = 3. We now computed the fuzzy goal
and MIN for values of m and s2 in this region close to the point m = 3,
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s2 = 3. Our solution is m = 3.172, s2 = 3.516, c = 0.2685, µ = −0.1020,
γ = −0.0962, G(f∗) = A(m) = B(s2) = 0.828 with

f∗(x) = 0.2685e−0.1020xe−0.0962(x−3.172)2 , 0 ≤ x ≤ 10. (14.74)

14.6 E = (−∞,∞)

This section is also patterned after Section 14.4. The difference is that now
E = (−∞,∞) so we have to make sure all the improper integrals converge.

First look at the maximum entropy problem with no side-conditions. It
is max Ω(f) subject to

∫ ∞
−∞ f(x)dx = 1 and f(x) ≥ 0. As at the beginning

of Section 14.5 we may argue that this problem has no solution.
Then we move on to the crisp problem having one side-condition with

respect to its mean. It is max Ω(f) subject to
∫ ∞
−∞ f(x)dx = 1, f(x) ≥ 0 and∫ ∞

−∞ xf(x)dx = m. We now argue that this problem also has no solution. The
Euler equation (equation (14.11)), the structure of f∗(x) (equation (14.12))
and the equations (equations (14.13) and (14.14)) to solve for the constants c
and µ are all the same except change E = [0,M ] to E = (−∞,∞). However,
equations (14.13) and (14.14) with E = (−∞,∞) will never converge. We
can not solve for the constants c and µ. But, as we now show, the objective
function Ω(f) is unbounded (max = ∞) over the feasible set F . Let N(m, b)
denote the normal probability density with mean m and variance b. Clearly
N(m, b) ∈ F . We find that

Ω(N(m, b)) = ln
√

2π + 0.5ln(b) + 0.5. (14.75)

Hence Ω(N(m, b)) → ∞ as b → ∞. The problem has no solution. Now
suppose the side-condition on the mean is imprecise as it should be approxi-
mately m. For the reasons given above, it also has no solution.

But the maximum entropy problem with precise/imprecise conditions on
both the mean and variance, for E = (−∞,∞), does have solutions. First
consider

max Ω(f) = −{
∫ ∞

−∞
f(x)ln(f(x))dx}, (14.76)

subject to ∫ ∞

−∞
f(x)dx = 1, f(x) ≥ 0, (14.77)

and ∫ ∞

−∞
xf(x)dx = m,

∫ ∞

−∞
(x − m)2f(x)dx = s2. (14.78)

The solution is N(m, s2), see [2].
Finally, we make the information about the mean and variance imprecise.

The fuzzy optimization problem is

max{min(G(f), A(f), B(f))}, (14.79)
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subject to ∫ ∞

−∞
f(x)dx = 1, f(x) ≥ 0. (14.80)

The fuzzy goals A(f) and B(f) are the same as before just use E = (−∞,∞).
We need to redefine the fuzzy goal G(f).

For any m in the support of A and for any s2 in the support of B we
know the solution f∗ is N(m, s2). Then Ω(f∗) = ln

√
2π + ln(s) + 0.5, which

is independent of m and an increasing function of the variance s2. Let the
support of B be the interval (s1, s2). Now s1 ≤ s2 ≤ s2 so that Ω(f∗) ≤ K +
ln
√

s2 for K = ln
√

2π+0.5. Hence, we normalize Ω(f∗) to get G(f) and then
the membership function for the fuzzy goal is G(f) = [K+ln(s)]/[K+ln

√
s2]

for s1 ≤ s2 ≤ s2 and G(f) = 1 if s2 ≥ s2.

Example 14.6.1

Let A = (2/3/4) and B = (0/1/2). Since G(f) is independent of m we set
m = 3 so that A(f) = 1. Because G(f) is an increasing function of s2 the
max − min solution will be where the graph of G(f), as a function of s2,
intersects the right side of the graph of B(f). Similar to Figure 14.2. We
need to solve

G(f) = 2 − s2. (14.81)

Using Maple [5] the answer is s2 = 1.15540, B(f) = G(f) = 0.8446. We may
take as a solution N(3, 1.15540).

14.7 Summary and Conclusions

We showed how to solve the maximum entropy problem, for a crisp continu-
ous probability density, when the side-conditions, crisp or fuzzy, involved the
mean and the variance. We considered three cases for the interval of integra-
tion: [0,M ], [0,∞) or (−∞,∞). For fuzzy side-conditions we employed the
method in [1] to model the optimization problem.

Looking over the numerical examples we can see two major patterns.
First, when you change a crisp (non-fuzzy) constraint to a fuzzy constraint
the maximum value of the entropy function increases. Secondly, when you
add constraints, crisp or fuzzy, the maximum value of the entropy function
decreases. The adding of constraints decreases the feasible set.
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Chapter 15

Tests on µ, Variance
Known

15.1 Introduction

This chapter starts a series of chapters (Chapters 15-19,22,25-27) on fuzzy
hypothesis testing. In each chapter we first review the crisp case first before
proceeding to the fuzzy situation. We give more details on fuzzy hypothesis
testing in this chapter.

In the previous chapters on estimation , Chapters 6-11, we sometimes
gave multiple graphs of the fuzzy estimators, like for 0.10 ≤ β ≤ 1 and
0.01 ≤ β ≤ 1 and 0.001 ≤ β ≤ 1. We shall not do this again in this book.
Unless specified differently, we will always use 0.01 ≤ β ≤ 1 in the rest of
this book. Also, in these previous chapters on estimation we kept reminding
the reader about those very short vertical line segments at the two ends of
any fuzzy estimator. We will mention this fact only a couple of more times
in the rest of this book.

15.2 Non-Fuzzy Case

We obtain a random sample of size n from a N(µ, σ2), variance σ2 known,
in order to do the following hypothesis test

H0 : µ = µ0, (15.1)

verses
H1 : µ �= µ0. (15.2)

In this book we will usually start with the alternate hypothesis H1 two-sided
(µ �= µ0) instead of one-sided (µ > µ0 or µ < µ0). Using a two-sided alternate
hypothesis makes the discussion a little more general, and at the end of this
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chapter we will show what changes need to be made for the one-sided tests.
From the random sample we compute its mean x (a real number), and then
determine the statistic

z0 =
x − µ0

σ/
√

n
. (15.3)

Let γ, 0 < γ < 1, be the significance level of the test. Usual values for γ
are 0.10, 0.05, 0.01. Now under the null hypothesis H0 z0 is N(0, 1) (Section
8.2 in [1]) and our decision rule is: (1) reject H0 if z0 ≥ zγ/2 or z0 ≤ −zγ/2;
and (2) do not reject H0 when −zγ/2 < z0 < zγ/2. The numbers ±zγ/2

are called the critical values (cv’s) for the test. In the above decision rule
zγ/2 is the z-value so that the probability of a random variable, having the
N(0, 1) probability density, exceeding z is γ/2. Usually authors use α for the
significance level of a test but in this book we will use α for α-cuts of fuzzy
numbers.

15.3 Fuzzy Case

Now proceed to the fuzzy situation where our estimate of µ, as explained in
Chapter 6, is the triangular shaped fuzzy number µ where its α-cuts are

µ[α] = [x − zα/2σ/
√

n, x + zα/2σ/
√

n], (15.4)

for 0.01 ≤ α ≤ 1. In the rest of the book we will always have the base of the
fuzzy estimator a 99% confidence interval. Recall that the alpha-cuts of µ,
for 0 ≤ α ≤ 0.01, all equal µ[0.01].

Calculations will be performed by alpha-cuts and interval arithmetic (Sec-
tions 2.3.2 and 2.3.3). Our fuzzy statistic becomes

Z =
µ − µ0

σ/
√

n
. (15.5)

Now substitute alpha-cuts of µ, equation (15.4), into equation (15.5) and
simplify using interval arithmetic producing alpha-cuts of Z

Z[α] = [z0 − zα/2, z0 + zα/2]. (15.6)

We put these α-cuts together to get a triangular shaped fuzzy number Z.
Since our test statistic is fuzzy the critical values will also be fuzzy. There

will be two fuzzy critical value sets: (1) let CV 1 correspond to −zγ/2; and
(2) let CV 2 go with zγ/2. Set CV i[α] = [cvi1(α), cvi2(α)], i = 1, 2. We show
how to get cv21(α) and cv22(α). The end points of an alpha-cut of CV 2 are
computed from the end points of the corresponding alpha-cut of Z. We see
that to find cv22(α) we solve

P (z0 + zα/2 ≥ cv22(α)) = γ/2, (15.7)
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for cv22(α). The above equation is the same as

P (z0 ≥ cv22(α) − zα/2) = γ/2. (15.8)

But under H0 z0 is N(0, 1) so

cv22(α) − zα/2 = zγ/2, (15.9)

or
c22(α) = zγ/2 + zα/2. (15.10)

By using the left end point of Z[α] in equation (15.7) we have

cv21(α) = zγ/2 − zα/2. (15.11)

Hence an alpha-cut of CV 2 is

[zγ/2 − zα/2, zγ/2 + zα/2]. (15.12)

In the above equation for CV 2[α], γ is fixed, and α ranges in the interval
[0.01, 1]. Now CV 1 = −CV 2 so

CV 1[α] = [−zγ/2 − zα/2,−zγ/2 + zα/2]. (15.13)

Both CV 1 and CV 2 will be triangular shaped fuzzy numbers. When the
crisp test statistic has a normal, or t, distribution we will have CV 1 = −CV 2

because these densities are symmetric with respect to zero. However, if the
crisp test statistic has the χ2, or the F , distribution we will have CV 1 �=
−CV 2 because these densities are not symmetric with respect to zero.

Let us present another derivation of CV 2. Let 0.01 ≤ α < 1 and choose
z ∈ Z[α]. This value of z is a possible value of the crisp test statistic cor-
responding to the (1 − α)100% confidence interval for µ. Then the critical
value cv2 corresponding to z belongs to CV 2[α]. In fact, as z ranges through-
out the interval Z[α] its corresponding cv2 will range throughout the interval
CV 2[α]. Let z = τ(z0 − zα/2) + (1 − τ)(z0 + zα/2) for some τ in [0, 1]. Then

P (z ≥ cv2) = γ/2. (15.14)

It follows that
P (z0 ≥ cv2 + (2τ − 1)zα/2) = γ/2. (15.15)

Since z0 is N(0, 1) we obtain

cv2 + (2τ − 1)zα/2 = zγ/2, (15.16)

or
cv2 = τ(zγ/2 − zα/2) + (1 − τ)(zγ/2 + zα/2), (15.17)
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which implies that cv2 ∈ CV 2[α]. This same argument can be given in the
rest of the book whenever we derive the CV i, i = 1, 2, however, we shall not
go through these details again.

Our final decision (reject, do not reject) will depend on the relationship
between Z and the CV i. Now it is time to review Section 2.5 and Figure
2.5 of Chapter 2. In comparing Z and CV 1 we will obtain Z < CV 1 (reject
H0), or Z ≈ CV 1(no decision), or Z > CV 1 (do not reject). Similar results
when comparing Z and CV 2. Let R stand for “reject” H0, let DNR be “do
not reject” H0 and set ND to be “no decision”. After comparing Z and the
CV i we get (A,B) for A,B ∈ {R,DNR,ND} where A (B) is the result of
Z verses CV 1 (CV 2). We suggest the final decision to be: (1) if A or B is R,
then “reject” H0; (2) if A and B are both DNR, then “do not reject” H0, (3)
if both A and B are ND (not expected to occur), then we have “no decision”;
and (4) if (A,B) = (ND,DNR) or (DNR,ND), then “no decision”. The
only part of the above decision rule that might be debatable is the fourth
one. Users may wish to change the fourth one to “do not reject”. However,
the author prefers “no decision”.

It is interesting that in the fuzzy case we can end up in the “no decision”
case. This is because of the fuzzy numbers, which incorporate all the uncer-
tainty in the confidence intervals, that we can get M ≈ N for two different
fuzzy numbers M and N .

Let us go through some more details on deciding Z <,≈, > CV i using
Section 2.5 and Figure 2.5 before going on to examples. First consider Z
verses CV 2. We may have z0 > zγ/2 or z0 = zγ/2 or z0 < zγ/2. First
consider z0 > zγ/2. So draw Z to the right of CV 2 and find the height of the
intersection (the left side of Z with the right side of CV 2). Let the height of
the intersection be y0 as in Section 2.5. If there is no intersection then set
y0 = 0. Recall that we are using the test number η = 0.8 from Section 2.5.
The results are: (1) if y0 < 0.8, then Z > CV 2; and (2) if y0 ≥ 0.8, then
Z ≈ CV 2. If z0 = zγ/2 then Z ≈ CV 2. So now assume that z0 < zγ/2. The
height of the intersection y0 will be as shown in Figure 2.5. The decision is:
(1) if y0 < 0.8, then Z < CV 2; and (2) if y0 ≥ 0.8, then Z ≈ CV 2. Similar
results hold for Z verses CV 1.

A summary of the cases we expect to happen are: (1) CV 2 < Z reject;
(1) CV 1 < Z ≈ CV 2 no decision; (3) CV 1 < Z < CV 2 do not reject; (4)
CV 1 ≈ Z < CV 2 no decision; and (5) Z < CV 1 reject.

Example 15.3.1

Assume that n = 100, µ0 = 1, σ = 2 and the significance level of the test
is γ = 0.05 so zγ/2 = 1.96. From the random sample let x = 1.32 and we
then compute z0 = 1.60. Recall that we will be using 0.01 ≤ α ≤ 1 in these
chapters on fuzzy hypothesis testing.

Since z0 < zγ/2 we need to compare the right side of Z to the left side of
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Figure 15.1: Fuzzy Test Z verses CV 2 in Example 15.3.1(Z left, CV 2 right)

CV 2. These are shown in Figure 15.1. The Maple [2] commands for Figure
15.1 are in Chapter 30. The right side of Z decreases form (1.60, 1) towards
zero and the left side of CV 2 increases from just above zero to (1.96, 1). Draw
a horizontal line through 0.8 on the vertical axis and we observe that the
height of intersection is greater than 0.8. From this comparison we conclude
Z ≈ CV 2.

Next we evaluate Z verses CV 1. The results are in Figure 15.2. Since the
height of the intersection is less than 0.8 we conclude CV 1 < Z. Our final
conclusion is no decision on H0. In the crisp case since −zγ/2 < z0 < zγ/2

we would decide: do not reject H0.

Example 15.3.2

All the data is the same as in Example 15.3.1 except now assume that x =
0.40. We compute z0 = −3.0. Since z0 < −zγ/2 we first compare Z and CV 1.
This is shown in Figure 15.3. The right side of Z decreases from (−3.0, 1)
towards zero and the left side of CV 1 increases from near zero to (−1.96, 1).
The height of the intersection is clearly less than 0.8 so Z < CV 1. It is
obvious that we also have Z < CV 2. Hence we reject H0. In the crisp case
we would also reject H0.
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Figure 15.2: Fuzzy Test Z verses CV 1 in Example 15.3.1(CV 1 left, Z right)
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Figure 15.3: Fuzzy Test Z verses CV 1 in Example 15.3.2(Z left, CV 1 right)

15.4 One-Sided Tests

First consider
H0 : µ = µ0, (15.18)

verses
H1 : µ > µ0. (15.19)
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Then we would reject H0 when z0 ≥ zγ , here we use γ and not γ/2, and do
not reject if z0 < zγ .

In the fuzzy case we still have the same fuzzy statistic Z , no CV 1, and
now CV 2 would be centered (membership value one) at zγ . The final decision
would be made only through the comparison of Z and CV 2. The three case
are: (1) if Z < CV 2, then do not reject, (2) if Z ≈ CV 2, then no decision on
H0; and (3) if Z > CV 2, then reject H0.

Obvious changes are to be made if we have the other one-sided test

H0 : µ = µ0, (15.20)

verses
H1 : µ < µ0. (15.21)

We shall use these one-sided fuzzy hypothesis tests in Chapters 22 and
25.
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Chapter 16

Tests on µ, Variance
Unknown

16.1 Introduction

We start with a review of the crisp case and then present the fuzzy model.

16.2 Crisp Case

We obtain a random sample of size n from a N(µ, σ2), mean and variance
unknown, in order to do the following hypothesis test

H0 : µ = µ0, (16.1)

verses
H1 : µ �= µ0. (16.2)

From the random sample we compute its mean x, this will be a real number
and not a fuzzy set, and the sample variance s2 and then determine the
statistic

t0 =
x − µ0

s/
√

n
. (16.3)

Let γ, 0 < γ < 1, be the significance level of the test. Under the null
hypothesis H0 t0 has a t-distribution with n− 1 degrees of freedom (Section
8.2 of [1]) and our decision rule is: (1) reject H0 if t0 ≥ tγ/2 or t0 ≤ −tγ/2; and
(2) do not reject H0 when −tγ/2 < t0 < tγ/2. The numbers ±tγ/2 are called
the critical values (cv’s) for the test. In the above decision rule tγ/2 is the
t-value so that the probability of a random variable, having a t-distribution
with n − 1 degrees of freedom, exceeding t is γ/2.
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16.3 Fuzzy Model

Now proceed to the fuzzy situation where our statistic for t0 will become fuzzy
T . In equation (16.3) for t0 substitute an alpha-cut of our fuzzy estimator
µ for x, equation (7.4) of Chapter 7; and substitute an alpha-cut of our
fuzzy estimator σ for s, the square root of equation (9.10) of Chapter 9. Use
interval arithmetic to simplify and we obtain

T [α] = [Π1(t0 − tα/2),Π2(t0 + tα/2)], (16.4)

where

Π1 =

√
R(λ)
n − 1

, (16.5)

and

Π2 =

√
L(λ)
n − 1

, (16.6)

for L(λ) (R(λ)) defined in equation (9.8) ((9.9)) of Chapter 9. In the inter-
val arithmetic employed above, we assumed that all intervals were positive
([a, b] > 0 if a > 0). It may happen that for certain values of alpha: (1)
the interval in the numerator the left end point is negative, the other end
point is positive, but the other interval in the denominator is positive; or (2)
the interval in the numerator the right end point of the interval is negative,
and so the other end point is also negative, and the other interval in the
denominator is positive. These special cases will be discussed at the end of
this section. For now we assume that all intervals are positive.

Since our test statistic is fuzzy the critical values will also be fuzzy. There
will be two fuzzy critical value sets: (1) let CV 1 correspond to −tγ/2; and
(2) let CV 2 go with tγ/2. Set CV i[α] = [cvi1(α), cvi2(α)], i = 1, 2. We show
how to get cv21(α) and cv22(α). The end points of an alpha-cut of CV 2 are
computed from the end points of the corresponding alpha-cut of T . We see
that to find cv22(α) we solve

P (Π2(t0 + tα/2) ≥ cv22(α)) = γ/2, (16.7)

for cv22(α). The above equation is the same as

P (t0 ≥ (cv22(α)/Π2) − tα/2) = γ/2. (16.8)

But t0 has a t distribution so

(cv22(α)/Π2) − tα/2 = tγ/2, (16.9)

or
c22(α) = Π2(tγ/2 + tα/2). (16.10)

By using the left end point of T [α] we have

cv21(α) = Π1(tγ/2 − tα/2). (16.11)
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Hence an alpha-cut of CV 2 is

[Π1(tγ/2 − tα/2),Π2(tγ/2 + tα/2)]. (16.12)

In the above equation for CV 2[α], γ is fixed, and α ranges in the interval
[0.01, 1]. Now CV 1 = −CV 2 so

CV 1[α] = [Π2(−tγ/2 − tα/2),Π1(−tγ/2 + tα/2)]. (16.13)

Both CV 1 and CV 2 will be triangular shaped fuzzy numbers.
The details of comparing T to CV 1 and CV 2, and our method of coming

to a final decision (reject, no decision, or do not reject), is all in Chapter
15. Before we can go on to work two examples we need to solve a major
problem with these fuzzy numbers T and the CV i: their α-cuts depend on
two variables λ and α. R(λ) and L(λ) are obviously functions of λ and tα/2

is a function of α. But, as pointed out in Chapter 9 α = f(λ), or α is a
function of λ. This comes from equations (9.12) and (9.13) of Chapter 9

α = f(λ) =
∫ R(λ)

0

χ2dx +
∫ ∞

L(λ)

χ2dx, (16.14)

as λ goes from zero to one. The chi-square density in the integrals has n− 1
degrees of freedom. When λ = 0 then α = 0.01 and if λ = 1 so does
α = 1. Notice that T [1] = [t0, t0] = t0, CV 1[1] = [−tγ/2,−tγ/2] = −tγ/2 and
CV 2[1] = [tγ/2, tγ/2] = tγ/2.

To generate the triangular shaped fuzzy number T from its α-cuts in
equation (16.4) we increase λ from zero to one (this determines the Πi),
compute α from λ in equation (16.14), which gives tα/2, and we have the
alpha-cuts since t0 is a constant. Put these alpha-cuts together to have T .
Similar remarks for the other two triangular shaped fuzzy numbers CV i,
i = 1, 2.

16.3.1 T [α] for Non-Positive Intervals

In finding equation (16.4) we divided two intervals

T [α] =
[a, b]
[c, d]

, (16.15)

where
a = x − tα/2s/

√
n − µ0, (16.16)

and
b = x + tα/2s/

√
n − µ0, (16.17)

and

c =

√
n − 1
L(λ)

(s/
√

n), (16.18)
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and

d =

√
n − 1
R(λ)

(s/
√

n). (16.19)

Now c and d are always positive but a or b could be negative for certain
values of alpha.

First assume that t0 > 0 so that b > 0 also. Also assume that there is a
value of alpha, say α∗ in (0, 1), so that a < 0 for 0.01 ≤ α < α∗ but a > 0
for α∗ < α ≤ 1. Then we compute, using interval arithmetic,

T [α] = [a, b][1/d, 1/c] = [a/c, b/c], (16.20)

for 0.01 ≤ α < α∗ when a < 0 and

T [α] = [a, b][1/d, 1/c] = [a/d, b/c], (16.21)

when α∗ < α ≤ 1 for a > 0. This case will be in the following Example
16.3.1. The a > 0 was what we were using above for equation (16.4). We saw
in Chapter 15 that the alpha-cuts of the fuzzy statistic determines the alpha-
cuts of the fuzzy critical values. In this case T [α] will determine CV 2[α]. So
if we change how we compute T [α] when a < 0, then we need to use this to
find the new α-cuts of CV 2 and then CV 1 = −CV 2.

Now if t0 < 0 then a < 0 but b may be positive for some alpha and
negative for other α. So assume that b < 0 for 0 < α∗ < α ≤ 1 and b > 0
otherwise. then

T [α] = [a, b][1/d, 1/c] = [a/c, b/d], (16.22)

when b < 0 and
T [α] = [a, b][1/d, 1/c] = [a/c, b/c], (16.23)

for b > 0. In Example 16.3.2 below we will be interested in the b < 0 case
(because t0 < 0). The alpha-cuts of the test statistic will determine those
of the fuzzy critical values. In this case T [α] determines CV 1[α]. When we
change how we get alpha-cuts of T when b > 0 we use this to compute the
new α-cuts of CV 1 and CV 2 = −CV 1.

Assuming a < 0 and b < 0 (at least for 0 < α∗ < α ≤ 1) since t0 < 0,
then

T [α] = [Π2(t0 − tα/2),Π1(t0 + tα/2)], (16.24)

and
CV 1[α] = [Π2(−tγ/2 − tα/2),Π1(−tγ/2 + tα/2)], (16.25)

and CV 2 = −CV 1 so that

CV 2[α] = [Π1(tγ/2 − tα/2),Π2(tγ/2 + tα/2)], (16.26)

These equations will be used in the second example below.
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Example 16.3.1

Assume that the random sample size is n = 101 and µ0 = 1, γ = 0.01 so
that tγ/2 = 2.626 with 100 degrees of freedom. From the data suppose we
found x = 1.32 and the sample variance is s2 = 4.04. From this we compute
t0 = 1.60. In order to find the Πi we obtain χ2

R,0.005 = 140.169 and χ2
L,0.005 =

67.328. Then L(λ) = 140.169 − 40.169λ and R(λ) = 67.328 + 32.672λ and

Π2 =
√

1.40169 − 0.40169λ, (16.27)

and
Π1 =

√
0.67329 + 0.32672λ. (16.28)

Using α = f(λ) from equation (16.14) we may now have Maple [2] do the
graphs of T and the CV i. Notice that in equations (16.4),(16.12) and (16.13)
for the alpha-cuts instead of tα/2 we use tf(λ)/2.

In comparing T and CV 2 we can see the result in Figure 16.1. The Maple
commands for this figure are in Chapter 30. Since t0 < tγ/2 we only need
to compare the right side of T to the left side of CV 2. The height of the
intersection is y0 > 0.8 (the point of intersection is close to, by just greater
than 0.8)and we conclude that T ≈ CV 2 with no decision.

The graphs in Figure 16.1 are correct only to the right of the vertical
axis. The left side of T goes negative, and we should make the adjustment
described in Subsection 16.3.1 to both T and CV 2, but we did not because
it will not effect our conclusion.

Next we compare T to CV 1. We need to take into consideration here that
the left side of T will go negative (see subsection on this topic just preceding
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Figure 16.1: Fuzzy Test T verses CV 2 in Example 16.3.1(T left, CV 2 right)
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Figure 16.2: Fuzzy Test T verses CV 1 in Example 16.3.2(T right, CV 1 left)

this example). Noting this fact we find that the height of the intersection (the
left side of T with the right side of CV 1) is less than 0.8. Hence CV 1 < T
with do not reject. It is easy to see the relationship between T and CV 1

because CV 1 = −CV 2.
Our final conclusion is no decision on H0. In the crisp case the conclusion

would be do not reject since −tγ/2 < t0 < tγ/2.

Example 16.3.2

Assume the data is the same as in Example 16.3.1 except x = 0.74 so that
t0 = −1.3. Now we use the results for a < 0 and b < 0 (for 0 < α∗ < α ≤ 1)
discussed in the Subsection 16.3.1 above. Since −tγ/2 < t0 < 0 we first
compare the left side of T to the right side of CV 1. We see that the height
of the intersection is close to, but less than, 0.8. Hence CV 1 < T and we do
not reject H0. Again, the graph of T in Figure 16.2 is not accurate to the
right of the vertical axis, which also effects the right side of CV 1, but this
does not change the conclusion.

Next we compare the right side of T , taking into account that now b will
become positive, with the left side of CV 2. We determine that T < CV 2

since CV 2 = −CV 1 and we do not reject H0.
Out final conclusion is to not reject H0. In the crisp case we also do not

reject.
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Chapter 17

Tests on p for a Binomial
Population

17.1 Introduction

We begin with the non-fuzzy test and then proceed to the fuzzy test.

17.2 Non-Fuzzy Test

We obtain a random sample of size n from a binomial in order to perform
the following hypothesis test

H0 : p = p0, (17.1)

verses
H1 : p �= p0. (17.2)

From the random sample we compute an estimate of p. In the binomial p
represents the probability of a “success”. Suppose we obtained x successes in
n trials so p̂ = x/n is our point estimate of p. Then determine the statistic

z0 =
p̂ − p0√
p0q0/n

, (17.3)

where q0 = 1 − p0. If n is sufficiently large, say n > 30, then under the null
hypothesis we may use the normal approximation to the binomial and z0 is
approximately N(0, 1) (Section 8.1 of [1]).

Let γ, 0 < γ < 1, be the significance level of the test. Our decision rule
is: (1) reject H0 if z0 ≥ zγ/2 or z0 ≤ −zγ/2; and (2) do not reject H0 when
−zγ/2 < z0 < zγ/2.
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17.3 Fuzzy Test

In Chapter 8 our fuzzy estimator for p is a triangular shaped fuzzy number
p where its α-cuts are

p[α] = [p̂ − zα/2

√
p̂q̂/n, p̂ + zα/2

√
p̂q̂/n], (17.4)

where q̂ = 1 − p̂.
Calculations will be performed by alpha-cuts and interval arithmetic.

Substitute p for p̂ in equation (17.3) and we obtain the following alpha-cut
of our fuzzy statistic Z

Z[α] = [z0 − zα/2

√
p̂q̂

p0q0
, z0 + zα/2

√
p̂q̂

p0q0
]. (17.5)

The critical region will now be determined by fuzzy critical values CV i,
i = 1, 2. They are determined as in the previous two chapters and they are
given by their alpha-cuts

CV 2[α] = [zγ/2 − zα/2

√
p̂q̂

p0q0
, zγ/2 + zα/2

√
p̂q̂

p0q0
], (17.6)

all α where γ is fixed, and because CV 1 = −CV 2

CV 1[α] = [−zγ/2 − zα/2

√
p̂q̂

p0q0
,−zγ/2 + zα/2

√
p̂q̂

p0q0
]. (17.7)

Now that we have Z, CV 1 and CV 2 we may compare Z and CV 1 and
then compare Z with CV 2. The final decision rule was presented in Chapter
15.

Example 17.3.1

Let n = 100, p0 = q0 = 0.5, p̂ = 0.54 so q̂ = 0.46, and γ = 0.05. We then
calculate zγ/2 = 1.96, and z0 = 0.80. This is enough information to construct
the fuzzy numbers Z, CV 1 and CV 2 from Maple [2].

We first compare Z and CV 2 to see which Z < CV 2, Z ≈ CV 2 or
Z > CV 2 is true. Since z0 < zγ/2 all we need to do is compare the right
side of Z to the left side of CV 2. From Figure 17.1 we see that the height of
the intersection is less than 0.8 so we conclude that Z < CV 2. The Maple
commands for Figure 17.1 are in Chapter 30.

Next we compare Z and CV 1. Since z0 > −zγ/2 we compare the left side
of Z to the right side of CV 1. We easily see that CV 1 < Z.
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Figure 17.1: Fuzzy Test Z verses CV 2 in Example 17.3.1(Z left, CV 2 right)

We do not reject H0 because CV 1 < Z < CV 2, which is the same result
as in the crisp test.

We note again, as in previous chapters, that the graph of Z in Figure 17.1
is not accurate to the left of the vertical axis. This will also effect the left
side of CV 2. However, this does not effect the conclusion.
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Figure 17.2: Fuzzy Test Z verses CV 2 in Example 17.3.2(Z right, CV 2 left)
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Example 17.3.2

Assume all the data is the same as in Example 17.3.1 except p̂ = 0.65 so
q̂ = 0.35. We compute z0 = 3.00. Now z0 > zγ/2 = 1.96 so let us start
with comparing the left side of Z to the right side of CV 2. This is shown in
Figure 17.2. We decide that CV 2 < Z because the height of the intersection
in Figure 17.2 is less than 0.8. Clearly we also obtain CV 1 < Z. Hence, we
reject H0.
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Chapter 18

Tests on σ2, Normal
Population

18.1 Introduction

We first describe the crisp hypothesis test and then construct the fuzzy test.

18.2 Crisp Hypothesis Test

We obtain a random sample of size n from a N(µ, σ2), variance σ2 unknown,
in order to do the following hypothesis test

H0 : σ2 = σ2
0 , (18.1)

verses
H1 : σ2 �= σ2

0 . (18.2)

From the random sample we compute its sample variance s2 and then deter-
mine the statistic

χ2
0 =

(n − 1)s2

σ2
0

. (18.3)

Let γ, 0 < γ < 1, be the significance level of the test. Now under the
null hypothesis H0 χ2

0 has a chi-square distribution with (n − 1) degrees of
freedom (Section 8.2 in [1]). Our decision rule is: (1) reject H0 if χ2

0 ≥ χ2
R,γ/2

or χ2 ≤ χ2
L,γ/2; and (2) do not reject H0 when χ2

L,γ/2 < χ2
0 < χ2

R,γ/2. In the
above decision rule χ2

L,γ/2 (χ2
R,γ/2) is the χ2-value, on the left (right) side of

the density, so that the probability of less than (exceeding) it is γ/2.
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18.3 Fuzzy Hypothesis Test

Our fuzzy estimator of σ2 is the triangular shaped fuzzy number σ2 having
α-cuts given by equation (9.10) in Chapter 9. Now substitute σ2 in for s2

in equation (18.3) and simplify using interval arithmetic and we obtain our
fuzzy statistic χ2 whose alpha-cuts are given by

χ2[α] = [
n − 1
L(λ)

χ2
0,

n − 1
R(λ)

χ2
0], (18.4)

where L(λ) (R(λ)) was defined in equation (9.8) ((9.9)) in Chapter 9. Recall
that α is determined from λ, 0 ≤ λ ≤ 1, as shown in equations (9.12) and
(9.13) in Chapter 9.

Using this fuzzy statistic we determine the two fuzzy critical value sets
whose alpha-cuts are

CV 1[α] = [
n − 1
L(λ)

χ2
L,γ/2,

n − 1
R(λ)

χ2
L,γ/2], (18.5)

and
CV 2[α] = [

n − 1
L(λ)

χ2
R,γ/2,

n − 1
R(λ)

χ2
R,γ/2]. (18.6)

In the above equations for the CV i γ is fixed and λ ranges from zero to
one. Notice that now CV 1 �= −CV 2. When using the normal, or the t,
distribution we were able to use CV 1 = −CV 2 because those densities were
symmetric with respect to zero.

Having constructed these fuzzy numbers we go on to deciding on χ2 <
CV 1,.....,χ2 > CV 2 and then our method of making the final decision (reject,
do not reject, no decision) was outlined in Chapter 15.

Example 18.3.1

Let n = 101, σ2
0 = 2, γ = 0.01 and from the random sample s2 = 1.675.

Then compute χ2
0 = 83.75, χ2

L,0.005 = 67.328, χ2
R,0.005 = 140.169.

Figure 18.1 shows CV 1 on the left, χ2 in the middle and CV 2 on the
right. The height of the intersection between CV 1 and χ2, and between χ2

and CV 2, are both below 0.8. We conclude CV 1 < χ2 < CV 2 and we do not
reject H0. The Maple [2] commands for Figure 18.1 are in Chapter 30. The
crisp test also concludes do not reject H0.

Example 18.3.2

Assume everything is the same as in Example 18.3.1 except that s2 = 2.675,
Then χ2

0 = 133.75. The graphs of all three fuzzy numbers are shown in
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Figure 18.1: Fuzzy Test in Example 18.3.1(CV 1 left, χ2 middle, CV 2 right)
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Figure 18.2: Fuzzy Test in Example 18.3.2(CV 1 left, χ2 middle, CV 2 right)

Figure 18.2. In Figure 18.2 χ2 and CV 2 are very close together, with χ2 just
to the left of CV 2, so CV 2 ≈ χ2. The final result is CV 1 < χ2 ≈ CV 2 and
we have no decision on H0. The crisp test would decide to not reject H0.
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Chapter 19

Fuzzy Correlation

19.1 Introduction

We first present the crisp theory and then the fuzzy results. We have taken
the crisp theory from Section 8.8 of [1].

19.2 Crisp Results

Let random variables X and Y have a bivariate normal distribution with
parameters µx, µy, σ2

x, σ2
y and ρ the (linear) correlation coefficient. We want

to first estimate ρ and then perform the test

H0 : ρ = 0, (19.1)

verses
H1 : ρ �= 0. (19.2)

To estimate ρ we obtain a random sample (xi, yi), 1 ≤ i ≤ n, from the
bivariate distribution. R, the sample correlation coefficient, is the point
estimator of ρ and it is computed as follows

R = sxy/sxsy, (19.3)

where

sxy = [
n∑

i=1

(xi − x)(yi − y)]/(n − 1), (19.4)

sx =

√√√√[
n∑

i=1

(xi − x)2]/(n − 1), (19.5)
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sy =

√√√√[
n∑

i=1

(yi − y)2]/(n − 1). (19.6)

To obtain a confidence interval for ρ we make the transformation

W (R) = 0.5 ln
1 + R

1 − R
, (19.7)

which has an approximate normal distribution with mean W (ρ) and standard

deviation
√

1
n−3 . This leads to finding a (1− β)100% confidence interval for

ρ. Let the confidence interval be written [ρ1(β), ρ2(β)]. Then

ρ1(β) =
1 + R − (1 − R) exp(s)
1 + R + (1 − R) exp(s)

, (19.8)

ρ2(β) =
1 + R − (1 − R) exp(−s)
1 + R + (1 − R) exp(−s)

, (19.9)

s = 2zβ/2/
√

n − 3. (19.10)

To perform the hypothesis test we determine the test statistic

z0 =
√

n − 3[W (R) − W (0)], (19.11)

because under H0 ρ = 0 and then W (0) = 0 also. So, z0 =
√

n − 3W (R) has
an approximate N(0, 1) distribution. Let γ, 0 < γ < 1, be the significance
level of the test. Usual values for γ are 0.10, 0.05, 0.01. Now under the null
hypothesis H0 z0 is N(0, 1) and our decision rule is: (1) reject H0 if z0 ≥ zγ/2

or z0 ≤ −zγ/2; and (2) do not reject H0 when −zγ/2 < z0 < zγ/2.

19.3 Fuzzy Theory

The first thing we want to do is construct our fuzzy estimator for ρ. We just
place the (1− β)100% confidence intervals given in equations (19.8)-(19.10),
one on top of another to get ρ.

Example 19.3.1

Let the data be n=16 with computed R = 0.35. This is enough to get the
graph of the fuzzy estimator ρ which is shown in Figure 19.1. The Maple [2]
commands for this figure are in Chapter 30.

Next we go to the fuzzy test statistic. Substitute α-cuts of ρ for R in
equation (19.11), assuming all intervals are positive and simply using interval
arithmetic, we obtain alpha-cuts of our fuzzy statistic Z

Z[α] =
√

n − 3
2

[ln
1 + ρ1(α)
1 − ρ1(α)

, ln
1 + ρ2(α)
1 − ρ2(α)

]. (19.12)
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Figure 19.1: Fuzzy Estimator ρ in Example 19.3.1
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Figure 19.2: Fuzzy Test Z verses the CV i in Example 19.3.2(CV 1 left, Z
middle, CV 2 right)

Now substitute the expressions for the ρi(α) into the above equation and
simplify giving the surprising result

Z[α] = [z0 − zα/2, z0 + zα/2]. (19.13)
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Using this result we easily determine that

CV 1[α] = [−zγ/2 − zα/2,−zγ/2 + zα/2], (19.14)

CV 2[α] = [zγ/2 − zα/2, zγ/2 + zα/2]. (19.15)

Example 19.3.2

Use the same data as in Example 19.3.1 and let γ = 0.05 so that ±zγ/2 =
±1.96 and we compute z0 = 1.3176. The graphs of Z and the CV i are shown
in Figure 19.2. This figure shows that CV 1 < Z < CV 2 since the heights
of the intersections are both less than 0.8. Hence we do not reject H0. The
crisp test will produce the same result.

If we reject H0 we believe that we have significant linear correlation be-
tween X and Y and then proceed on to the next three chapters to investigate
this linear relationship.
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Chapter 20

Estimation in Simple
Linear Regression

20.1 Introduction

Let us first review the basic theory on crisp simple linear regression. Our
development, throughout this chapter and the next two chapters, follows
Sections 7.8 and 7.9 in [1]. We have some data (xi, yi), 1 ≤ i ≤ n, on two
variables x and Y . Notice that we start with crisp data and not fuzzy data.
Most papers on fuzzy regression assume fuzzy data. The values of x are
known in advance and Y is a random variable. We assume that there is
no uncertainty in the x data. We can not predict a future value of Y with
certainty so we decide to focus on the mean of Y , E(Y ). We assume that
E(Y ) is a linear function of x, say E(Y ) = a + b(x − x). Here x is the mean
of the x-values and not a fuzzy set. Our model is

Yi = a + b(xi − x) + εi, (20.1)

where εi are independent and N(0, σ2) with σ2 unknown. The basic regres-
sion equation for the mean of Y is y = a+b(x−x) and now we wish to estimate
the values of a and b. Notice our basic regression line is not y = a + bx, and
the expression for the estimator of a will differ between the two models.

We will need the (1 − β)100% confidence interval for a and b. First we
require the crisp point estimators of a, b and σ2. The crisp estimator of a is
â = y the mean of the yi values. Next b̂ is B1/B2 where

B1 =
n∑

i=1

yi(xi − x), (20.2)

B2 =
n∑

i=1

(xi − x)2. (20.3)
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Finally

σ̂2 = (1/n)
n∑

i=1

[yi − â − b̂(xi − x)]2. (20.4)

Using these expressions we may construct confidence intervals for a and b.

20.2 Fuzzy Estimators

A (1 − β)100% confidence interval for a is

[â − tβ/2

√
σ̂2/(n − 2), â + tβ/2

√
σ̂2/(n − 2)], (20.5)

where tβ/2 is the value for a t-distribution, n− 2 degrees of freedom, so that
the probability of exceeding it is β/2. From this expression we can build the
triangular shaped fuzzy number estimator a for a by placing these confidence
intervals one on top of another.

A (1 − β)100% confidence interval for b is

[̂b − tβ/2

√
C1/C2, b̂ + tβ/2

√
C1/C2], (20.6)

where
C1 = nσ̂2, (20.7)

and

C2 = (n − 2)
n∑

i=1

(xi − x)2. (20.8)

These confidence intervals for b will produce the fuzzy number estimator b
for b.

We will also need the fuzzy estimator for σ2 in Chapter 22. A (1−β)100%
confidence interval for σ2 is

[
nσ̂2

χ2
R,β/2

,
nσ̂2

χ2
L,β/2

], (20.9)

where χ2
R,β/2 (χ2

L,β/2) is the point on the right (left) side of the χ2 density
where the probability of exceeding (being less than) it is β/2. This χ2 distri-
bution has n− 2 degrees of freedom. Put these confidence intervals together
and we obtain σ2 our fuzzy number estimator of σ2. However, as discussed
in Chapter 9, this fuzzy estimator is biased. It is biased because when we
evaluate at β = 1 we should obtain the point estimator σ̂2 but we do not get
this value. So to get an unbiased fuzzy estimator we will define new functions
L(λ) and R(λ) similar to those (equations (9.8) and (9.9)) in Chapter 9. We
will employ these definitions of L(λ) and R(λ) in this chapter and in Chapter
22.

L(λ) = [1 − λ]χ2
R,0.005 + λn, (20.10)
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x y

70 77
74 94
72 88
68 80
58 71
54 76
82 88
64 80
80 90
61 69

Table 20.1: Crisp Data for Example 20.2.1

R(λ) = [1 − λ]χ2
L,0.005 + λn, (20.11)

where the degrees of freedom are n− 2. Then a unbiased (1− β)100% confi-
dence interval for σ2 is

[
nσ̂2

L(λ)
,

nσ̂2

R(λ)
], (20.12)

for 0 ≤ λ ≤ 1. If we evaluate this confidence interval at λ = 1 we obtain
[σ̂2, σ̂2] = σ̂2. Now β (α) will be a function of λ as shown in equations (9.12)
and (9.13) in Chapter 9.

Example 20.2.1

The data set we will use is shown in Table 20.1 which is the data used in
Example 7.8-1 in [1]. We will also use this data in the next two chapters.
From this data set we compute â = 81.3, b̂ = 0.742 and σ̂2 = 21.7709.

Then the (1 − β)100% confidence interval for a is

[81.3 − 1.6496tβ/2, 81.3 + 1.6496tβ/2], (20.13)

and the same confidence interval for b is

[0.742 − 0.1897tβ/2, 0.742 + 0.1897tβ/2], (20.14)

and the same confidence interval for σ2 is

[
217.709
L(λ)

,
217.709
R(λ)

], (20.15)

where
L(λ) = [1 − λ](21.955) + 10λ, (20.16)
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Figure 20.1: Fuzzy Estimator for a in Example 20.2.1
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Figure 20.2: Fuzzy Estimator for b in Example 20.2.1
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Figure 20.3: Fuzzy Estimator for σ2 in Example 20.2.1

R(λ) = [1 − λ]1.344 + 10λ. (20.17)

for 0 ≤ λ ≤ 1. All degrees of freedom are 8. We graphed equations (20.13)
and (20.14) as functions of β = α for 0.01 ≤ α ≤ 1, using Maple [2] and the
results are in Figures 20.1 and 20.2. The graph of the fuzzy estimator for
the variance, equation (20.15), was done for λ ∈ [0, 1]. Maple commands for
Figure 20.3 are in Chapter 30. The fuzzy estimator for a (b, σ2) we shall
write as a (b, σ2).

Once we have these fuzzy estimators of a and b we may go on to fuzzy
prediction in the next chapter.
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Chapter 21

Fuzzy Prediction in Linear
Regression

21.1 Prediction

From the previous chapter we have our fuzzy regression equation

y(x) = a + b(x − x), (21.1)

for y(x), with a and b fuzzy numbers and x and x real numbers. y(x) is our
fuzzy number estimator for the mean of Y (E(Y )) given x, and we show this
dependence on x with the notation y(x). Now x is a fixed real number but
we may choose new values for x to predict new fuzzy values for E(Y ).

Let a[α] = [a1(α), a2(α)], b[α] = [b1(α), b2(α)] and y(x)[α] =
[y(x)1(α), y(x)2(α)]. All fuzzy calculations will be done using α-cuts and
interval arithmetic. The main thing to remember now from interval arith-
metic (Chapter 2, Section 2.3.2) is that c[a, b] equals [ca, cb] if c > 0 but it is
[cb, ca] when c < 0. Then

y(x)1(α) = a1(α) + (x − x)b1(α), (21.2)

when (x − x) > 0 and

y(x)1(α) = a1(α) + (x − x)b2(α), (21.3)

if (x − x) < 0. Similarly

y(x)2(α) = a2(α) + (x − x)b2(α), (21.4)

when (x − x) > 0 and

y(x)2(α) = a2(α) + (x − x)b1(α), (21.5)

if (x − x) < 0. The alpha-cuts of a and b were determined in the previous
chapter. There the α-cut is the (1 − α)100% confidence interval.

James J. Buckley:
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

Fuzzy Probability and Statistics, StudFuzz 196, 1 7 7 – 179 (2006)



178 CHAPTER 21. FUZZY PREDICTION IN LINEAR REGRESSION

0

0.2

0.4

0.6

0.8

1

alpha

65 70 75 80 85
x

Figure 21.1: Fuzzy Estimator of E(Y ) given x = 60 in Example 21.1

Example 21.1

We use the same data as in Example 20.2.1 in Chapter 20. Here we will find
y(60) and y(70). Notice that we are using x = 70 which is already in the data
set in Table 20.1. First consider x = 60. Then (x − x) = −8.3 < 0 because
x = 68.3. We use equations (21.3) and (21.5). Using Maple [2] the graph of
y(60) is in Figure 21.1. If x = 70 then (x − x) = 1.7 > 0 and use equations
(21.2) and (21.4). The graph of y(70) is shown in Figure 21.2. The Maple
commands for the x = 60 case are in Chapter 30.
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Figure 21.2: Fuzzy Estimator of E(Y ) given x = 70 in Example 21.1
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Confidence Interval x = 60 x = 70
y(x)[0] [64.32, 85.96] [75.94, 89.18]

99% CI for E(Y ) [67.49, 82.79] [76.92, 88.20]
99% CI for y [56.04, 94.24] [64.17, 100.95]

Table 21.1: Comparing the 99% Confidence Intervals in Example 21.1

Now let us compare these results to those obtained from probability the-
ory. First y(x)[0] is like a 99% confidence interval for y(x) because it uses
a[0] (b[0]) which is a 99% confidence interval for a (b). So we will compare
these α = 0 cuts to: (1) the 99% confidence interval for the mean of Y (E(Y ))
given x = 60(70); and (2) the 99% confidence interval for a value of y given
x = 60 (70). Expressions for both of these crisp confidence intervals may be
found in the statistics book [1], so we will not reproduce them here. The
results are in Table 21.1 where “CI” denotes “confidence interval”. Notice
that in Table 21.1: (1) the 99% confidence interval for E(Y ) is a subset of
y(x)[0] for both x = 60 and x = 70; and (2) the 99% confidence interval for
a value of y contains the interval y(x)[0] for x = 60, 70. We know from crisp
statistics that the confidence interval for E(Y ) will always be a subset of the
confidence interval for a value of y. However, we do not always expect, for
all other data sets, y(x)[0] to be between these other two intervals.

21.2 References
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Chapter 22

Hypothesis Testing in
Regression

22.1 Introduction

We look at two fuzzy hypothesis tests in this chapter: (1) in the next section
H0 : a = a0 verses H1 : a > a0 a one-sided test; and (2) in the following
section H0 : b = 0 verses H1 : b �= 0. In both cases we first review the crisp
(non-fuzzy) test before the fuzzy test. The non-fuzzy hypothesis tests are
based on Sections 7.8 and 7.9 of [1].

22.2 Tests on a

Let us first review the crisp situation. We wish to do the following hypothesis
test

H0 : a = a0, (22.1)

verses
H1 : a > a0, (22.2)

which is a one-sided test. Then we determine the statistic

t0 =
â − a0√

σ̂2/(n − 2)
, (22.3)

which, under H0, has a t distribution with (n − 2) degrees of freedom. Let
γ, 0 < γ < 1, be the significance level of the test. Usual values for γ are
0.10, 0.05, 0.01. Our decision rule is: (1) reject H0 if t0 ≥ tγ ; and (2) do not
reject H0 when t0 < tγ . In the above decision rule tγ is the t-value so that the
probability of a random variable, having the t probability density, exceeding
t is γ. The critical region is [tγ ,∞) with critical value tγ .
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Now proceed to the fuzzy situation where our fuzzy estimator of a is
the triangular shaped fuzzy number a developed in Chapter 20. We will also
need the fuzzy estimator for σ2 also given in Chapter 20. Then our fuzzy
statistic is

T =
a − a0√

σ2/(n − 2)
. (22.4)

All fuzzy calculations will be performed via α-cuts and interval arithmetic.
We find, after substituting the intervals for an alpha-cut of a and σ2 into the
expression for T , using interval arithmetic, and simplification, that

T [α] = [Π1(t0 − tα/2),Π2(t0 + tα/2)], (22.5)

where
Π1 =

√
R(λ)/n, (22.6)

and
Π2 =

√
L(λ)/n. (22.7)

L(λ) and R(λ) were defined in equations (20.10) and (20.11), respectively, in
Chapter 20.

We have assumed that all intervals are positive in the derivation of equa-
tion (22.5). The interval for an alpha-cut of a may be positive or negative,
but the interval for an alpha-cut of σ2 is always positive. When the left end
point (or both end points) of the interval for an alpha-cut of a is negative we
have to make some changes in equation (22.5). See section 16.3.1 in Chapter
16 for the details.

Now that we know the alpha-cuts of the fuzzy statistic we can find α-cuts
of the fuzzy critical value CV 2 for this one-sided test. As in previous chapters
we get

CV 2[α] = [Π1(tγ − tα/2),Π2(tγ + tα/2)]. (22.8)

In this equation γ is fixed and alpha varies in the interval [0.01, 1].
We now have a fuzzy set T for our test statistic and a fuzzy set CV 2 for

the critical value. Our final decision will depend on the relationship between
T and CV 2. Our test becomes : (1) reject H0 if T > CV 2; (2) do not reject
if T < CV 2; and (3) there is no decision on H0 if T ≈ CV 2.

Example 22.2.1

We will still use the data in Table 20.1 and we have computed â = 81.3,
b̂ = 0.742 and σ̂2 = 21.7709 with n = 10. Let γ = 0.05, a0 = 80 and
determine t0 = 0.7880 and t0.05 = 1.860 with 8 degrees of freedom. We
compute

L(λ) = 21.955 − 11.955λ, (22.9)

R(λ) = 1.344 + 8.656λ, (22.10)



22.3. TESTS ON B 183

0

0.2

0.4

0.6

0.8

1

lambda

2 4 6
x

Figure 22.1: Fuzzy Test T verses CV 2 in Example 22.2.1(T left, CV 2 right)

Π1 =
√

0.1344 + 0.8656λ, (22.11)

Π2 =
√

2.1955 − 1.1955λ. (22.12)

From these results we may get the graphs of T and CV 2 and they are shown
in Figure 22.1. The Maple [2] commands for this figure are in Chapter 30.

From Figure 22.1 we see that T < CV 2 since the height of the intersection
is less than 0.8. We therefore conclude: do not reject H0. Of course, the crisp
test would have the same result.

The graph of T in Figure 22.1 is not entirely correct on its left side to the
left of the vertical axis. This is because in computing α-cuts of T the left
end point of the interval for the numerator (see Section 16.3.1) goes negative
for 0 ≤ α < α∗ and we had assumed it was always positive. Also, this effects
the left side of CV 2 for 0 ≤ α < α∗. However, these changes do not effect
the final decision because it depends on comparing the right side of T to the
left side of CV 2.

22.3 Tests on b

Let us first discuss the crisp hypothesis test. We wish to do the following
hypothesis test

H0 : b = 0, (22.13)

verses
H1 : b �= 0, (22.14)
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which is a two-sided test. Next determine the statistic

t0 =
b̂ − 0√

dσ̂2/(n − 2)
, (22.15)

where
d =

n∑n
i=1(xi − x)2

, (22.16)

which, under H0, t0 has a t distribution with (n− 2) degrees of freedom. Let
γ, 0 < γ < 1, be the significance level of the test. Our decision rule is: (1)
reject H0 if t0 ≥ tγ/2 or if t0 ≤ −tγ/2; and (2) otherwise do not reject H0.

Now proceed to the fuzzy situation where our estimate of b is the tri-
angular shaped fuzzy number b and our fuzzy estimator σ2 of σ2 is also a
fuzzy number. These fuzzy estimators were deduced in Chapter 20. Then
our fuzzy statistic is

T =
b − 0√

dσ2/(n − 2)
. (22.17)

All fuzzy calculations will be performed via α-cuts and interval arithmetic.
We find, after substituting the intervals for an alpha-cuts of b and σ2 into the
expression for T , using interval arithmetic, assuming all intervals are positive,
that

T [α] = [Π1(t0 − tα/2),Π2(t0 + tα/2)], (22.18)

where
Π1 =

√
R(λ)/n, (22.19)

and
Π2 =

√
L(λ)/n. (22.20)

L(λ) and R(λ) were defined in equations (20.10) and (20.11) in Chapter 20.
Now that we know the alpha-cuts of the fuzzy statistic we can find α-cuts

of the fuzzy critical values CV i, i = 1, 2. As in previous chapters we obtain

CV 1[α] = [Π2(−tγ/2 − tα/2),Π1(−tγ/2 + tα/2)], (22.21)

and because CV 2 = −CV 1

CV 2[α] = [Π1(tγ/2 − tα/2),Π2(tγ/2 + tα/2)]. (22.22)

In these equations γ is fixed and alpha varies in the interval [0.01, 1].
Given the fuzzy numbers T and the CV i, i = 1, 2, we may compare T to

CV 1 and then to CV 2 to determine our final conclusion on H0.
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Figure 22.2: Fuzzy Test T verses the CV i in Example 22.3.1 (CV 1 left, CV 2

center, T right)

Example 22.3.1

We will still use the data in Table 20.1 and we have already computed b̂ =
0.742, and σ̂2 = 21.7709 with n = 10. Let γ = 0.05, and compute t0 = 3.9111
and t0.025 = 2.306 with 8 degrees of freedom.

The values of L(λ), R(λ), Π1 and Π2 are all the same as in Example
22.2.1. All that has changed is the value of t0 and that now we use both CV 1

and CV 2 for a two-sided test.
The graphs of T and the CV i are shown in Figure 22.2. It is evident that

CV 2 < T , because the height of the intersection is less than 0.8. Hence we
reject H0, the same as in the crisp case.

22.4 References
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Chapter 23

Estimation in Multiple
Regression

23.1 Introduction

We first review the basic theory on crisp multiple linear regression. For
simplicity let us work with only two independent variables x1 and x2. Our
development, throughout this chapter, and the next two chapters, follows [1].
We have some data (x1i, x2i, yi), 1 ≤ i ≤ n, on three variables x1, x2 and Y .
Notice that we start with crisp data and not fuzzy data. The values of x1

and x2 are known in advance and Y is a random variable. We assume that
there is no uncertainty in the x1 and x2 data. We can not predict a future
value of Y with certainty so we decide to focus on the mean of Y , E(Y ). We
assume that E(Y ) is a linear function of x1 and x2, say E(Y ) = a+bx1+cx2.
Our model is

Yi = a + bx1i + cx2i + εi, (23.1)
1 ≤ i ≤ n. The basic regression equation for the mean of Y is y = a+bx1+cx2

and now we wish to estimate the values of a, b and c.
We will need the (1 − β)100% confidence interval for a, b and c. First,

we require the crisp point estimators of a, b, c and σ2. It is best now to turn
to matrix notation in order to describe the estimators and their confidence
intervals.

Let vector θ = [a, b, c], vector ε = [ε1, ..., εn] and vector y = [y1, ..., yn]. If
v is a 1 × n vector we will use the notation vt for the transpose of v. Then
vt is a n × 1 vector. Define the n × 3 matrix X as

X =




1 x11 x21

1 x12 x22

.. .. ..

.. .. ..
1 x1n x2n


 . (23.2)
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Next define θ̂ = [â, b̂, ĉ] the vector of point estimates of a, b, c. Then

θ̂t = (XtX)−1Xtyt, (23.3)

which gives â,̂b and ĉ.
The distribution of ε is also needed. We know that the expected value of

εtε is σ2I for 3 × 3 identity matrix I and unknown variance σ2. In the next
two chapters a point estimate for σ2, and confidence intervals, are required.
A point estimator σ̂2 for σ2 is

σ̂2 =
n∑

i=1

e2
i /(n − 3), (23.4)

where
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi)2, (23.5)

ŷi = â + b̂x1i + ĉx2i. (23.6)

23.2 Fuzzy Estimators

Now we may find the confidence intervals for a, b, c and σ2. Let (XtX)−1 =
A = [aij ]. A (1 − β)100% confidence interval for a is

[â − tβ/2σ̂
√

a11, â + tβ/2σ̂
√

a11], (23.7)

for a11 the first element along the main diagonal of matrix A. Then a (1 −
β)100% confidence interval for b is

[̂b − tβ/2σ̂
√

a22, â + tβ/2σ̂
√

a22], (23.8)

and for c
[ĉ − tβ/2σ̂

√
a33, â + tβ/2σ̂

√
a33]. (23.9)

In the t distribution, to find the critical value tβ/2, we use n − 3 degrees of
freedom. Now put these confidence intervals together, one on top of another,
to get the fuzzy estimators a, b, c of a, b, c, respectively.

The next item we need is a confidence interval for σ2. It is known that

(n − 3)σ̂2/σ2, (23.10)

has a chi-square distribution with n − 3 degrees of freedom. Then

P (χ2
L,β/2 <

(n − 3)σ̂2

σ2
< χ2

R,β/2) = 1 − β, (23.11)

and if we solve this equation for σ2, it leads to the (1 − β)100% confidence
interval for σ2, which is

[
(n − 3)σ̂2

χ2
R,β/2

,
(n − 3)σ̂2

χ2
L,β/2

]. (23.12)
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where χ2
R,β/2 (χ2

L,β/2) is the point on the right (left) side of the χ2 density
where the probability of exceeding (being less than) it is β/2. This χ2 distri-
bution has n− 3 degrees of freedom. Put these confidence intervals together
and we obtain σ2 our fuzzy number estimator of σ2. However, as discussed in
Chapter 9 and 20, this fuzzy estimator is biased. It is biased because when
we evaluate at β = 1 we should obtain the point estimator σ̂2 but we do
not get this value. So to get an unbiased fuzzy estimator we will define new
functions L(λ) and R(λ), similar to those in Chapter 9. We will employ these
definitions of L(λ) and R(λ) in this chapter and in Chapter 25.

L(λ) = [1 − λ]χ2
R,0.005 + λ(n − 3), (23.13)

R(λ) = [1 − λ]χ2
L,0.005 + λ(n − 3), (23.14)

where the degrees of freedom are n− 3. Then a unbiased (1− β)100% fuzzy
estimator for σ2 is σ2 whose α-cuts are

[
(n − 3)σ̂2

L(λ)
,
(n − 3)σ̂2

R(λ)
], (23.15)

for 0 ≤ λ ≤ 1. If we evaluate this confidence interval at λ = 1 we obtain
[σ̂2, σ̂2] = σ̂2. Now β will be a function of λ as shown in equations (9.12) and
(9.13) in Chapter 9.

Example 23.2.1

The data we shall use is in Table 23.1 which is from an example in [1]. This
same data will be in the examples in the next two chapters. We want to
construct the graphs of the fuzzy estimators.

We first, using Maple [2], computed the point estimators and obtained
â = −49.3413, b̂ = 1.3642, ĉ = 0.1139 and σ̂2 = 12.9236. Next we found

Y x1 x2

100 100 100
106 104 99
107 106 110
120 111 126
110 111 113
116 115 103
123 120 102
133 124 103
137 126 98

Table 23.1: Crisp Data for Example 23.2.1
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Figure 23.1: Fuzzy Estimator a for a in Example 23.2.1
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Figure 23.2: Fuzzy Estimator b for b in Example 23.2.1

the values down the main diagonal of (XtX)−1 and they were a11 = 44.7961,
a22 = 0.001586 and a33 = 0.001591. The equations that determine the alpha-
cuts of the fuzzy estimators are

−49.3413 ± tα/2(24.0609), (23.16)
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Figure 23.3: Fuzzy Estimator c for c in Example 23.2.1
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Figure 23.4: Fuzzy Estimator σ2 for σ2 in Example 23.2.1

for a, and for b it is
1.3642 ± tα/2(0.1432), (23.17)

and
0.1139 ± tα/2(0.1434), (23.18)
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goes with c, and

[
77.5416
L(λ)

,
77.5416
R(λ)

], (23.19)

for σ2. These are all graphed, 0.01 ≤ α ≤ 1, and the results are in Figures
23.1-23.4.

23.3 References
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Chapter 24

Fuzzy Prediction
in Regression

24.1 Prediction

From the previous chapter we have our fuzzy regression equation

y(x1, x2) = a + bx1 + cx2, (24.1)

for y(x1, x2), with a, b and c fuzzy numbers and x1, x2 real numbers. y(x1, x2)
is our fuzzy number estimator for the mean of Y (E(Y )) given x1 and x2,
and we show this dependence on x1 and x2 with the notation y(x1, x2). We
may choose new values for x1 and x2 to predict new fuzzy values for E(Y ).

Let a[α] = [a1(α), a2(α)], b[α] = [b1(α), b2(α)], c[α] = [c1(α), c2(α)] and
y(x1, x2)[α] = [y(x1, x2)1(α), y(x1, x2)2(α)]. All fuzzy calculations will be
done using α-cuts and interval arithmetic. Now from Example 23.2.1, and
the data in Table 23.1, we assume the new values of x1 and x2 are positive.
The only thing to remember from interval arithmetic (Chapter 2, Section
2.3.2) is that e[a, b] equals [ea, eb] when e > 0. Then

y(x1, x2)1(α) = a1(α) + x1b1(α) + x2c1(α), (24.2)

and
y(x1, x2)2(α) = a2(α) + x1b2(α) + x2c2(α), (24.3)

for all α ∈ [0, 1]. The alpha-cuts of a, b and c were determined in the previous
chapter. There the α-cut is the (1 − α)100% confidence interval.

Example 24.1.1

We use the same data as in Example 23.2.1 in Chapter 23. Let us assume now
that the data in Table 23.1 is yearly data with the last row corresponding to
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2005. Assuming values for x1 and x2 for 2006 and 2007 we wish to predict
E(Y ) for those two future years. We will find y(128, 96) and y(132, 92).

First we graphed equations (24.2) and (24.3) using x1 = 128 and x2 = 96.
The result is in Figure 24.1. The Maple [2] commands for this figure are
in Chapter 30. Next we graphed these two equations having x1 = 132 and
x2 = 92 which is shown in Figure 24.2.
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Figure 24.1: Fuzzy Estimator of E(Y ) Given x1 = 128, x2 = 96, in Example
24.1.1
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Figure 24.2: Fuzzy Estimator of E(Y ) Given x1 = 132, x2 = 92, in Example
24.1.1
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Confidence Interval x1 = 128,x2 = 96 x1 = 132,x2 = 92
y(x1, x2)[0] [−71.98, 344.42] [−66.97, 349.42]

99% CI for E(Y ) [126.38, 146.05] [128.93, 153.49]
99% CI for y [119.65, 152.77] [123.09, 159.34]

Table 24.1: Comparing the 99% Confidence Intervals in Example 24.1.1

Now let us compare these results to those obtained from probability the-
ory. First y(x1, x2)[0] is like a 99% confidence interval for y(x1, x2) because
it uses a[0] (b[0], c[0]) which is a 99% confidence interval for a (b, c). So we
will compare these α = 0 cuts to: (1) the 99% confidence interval for the
mean of Y (E(Y )) given x1 = 128, x2 = 96(x1 = 132,x2 = 92); and (2) the
99% confidence interval for a value of y given x1 = 128, x2 = 96 (x1 = 132,
x2 = 92). Expressions for both of these crisp confidence intervals may be
found in Section 5-5 of [1] and are reproduced below.

Let d = (1, x∗
1, x

∗
2) where x∗

i are new values of xi, i = 1, 2. The 99%
confidence interval for E(Y ) is

dθ̂t ± (3.707)σ̂
√

d(XtX)−1dt, (24.4)

where t0.005 = 3.707 for 6 degrees of freedom and the rest of the terms (θ̂,
σ̂,..) were defined in Chapter 23. The 99% confidence interval for the value
of y is

dθ̂t ± (3.707)σ̂
√

1 + d(XtX)−1dt. (24.5)

The results are in Table 24.1 where “CI” denotes “confidence interval”.
Notice that in Table 24.1 that: (1) the 99% confidence interval for E(Y ) is
a subset of y(x1, x2)[0] for both x1 = 128, x2 = 96 and x1 = 132, x2 = 92;
and (2) the 99% confidence interval for a value of y is also contained in the
interval y(x1, x2)[0] for the given new values of x1 and x2. We know from
crisp statistics that the confidence interval for E(Y ) will always be a subset
of the confidence interval for a value of y. However, we do not always expect,
for all other data sets, y(x1, x2)[0] will contain the other two intervals (see
Example 21.1). If fact, in this example the interval y(x1, x2)[0] turns out
to be rather large because it combines three intervals a[0], 128(132)b[0] and
96(92)c[0]. For example, using x1 = 128 and x2 = 96, then: (1) a[0] has
length ≈ 178; (2) 128b[0] has length ≈ 136; and (3) 96c[0] has length ≈ 102.
We add these lengths up we get that the length of the interval for y(128, 96)[0]
is ≈ 416.
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Chapter 25

Hypothesis Testing
in Regression

25.1 Introduction

We look at two fuzzy hypothesis tests in this chapter: (1) in the next section
H0 : b = 0 verses H1 : b > 0 a one-sided test; and (2) in the third section
H0 : c = 0 verses H1 : c �= 0 a two-sided test. In both cases we first review
the crisp (non-fuzzy) test before the fuzzy test. We could also runs tests on a.
However, we will continue to use the data in Table 23.1 were we determined
â = −49.3413, so a is definitely negative and a test like H0 : a = 0 verses
H1 : a < 0 seems a waste of time.

25.2 Tests on b

Let us first review the crisp situation. We wish to do the following hypothesis
test

H0 : b = 0, (25.1)

verses
H1 : b > 0, (25.2)

which is a one-sided test. This is a one-sided test (see also Section 15.4 of
Chapter 15 and Section 22.2 of Chapter 22). Then we determine the statistic
[1]

t0 =
b̂ − 0
σ̂
√

a22
, (25.3)

which, under H0, has a t distribution with (n − 3) degrees of freedom. The
aii, 1 ≤ i ≤ 3, are the elements on the main diagonal of (XtX)−1 (see Section
23.2 of Chapter 23). Let γ, 0 < γ < 1, be the significance level of the test.
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Usual values for γ are 0.10, 0.05, 0.01. Our decision rule is: (1) reject H0

if t0 ≥ tγ ; and (2) do not reject H0 when t0 < tγ . In the above decision
rule tγ is the t-value so that the probability of a random variable, having
the t probability density, exceeding t is γ. The critical region is [tγ ,∞) with
critical value tγ .

Now proceed to the fuzzy situation where our estimate of b is the trian-
gular shaped fuzzy number b developed in Chapter 23. We will also need the
fuzzy estimator for σ2 also given in Chapter 23. Then our fuzzy statistic is

T =
b − 0
σ
√

a22
. (25.4)

All fuzzy calculations will be performed via α-cuts and interval arithmetic.
We find, after substituting the intervals for an alpha-cut of b and σ (square
roots of equation (23.15)) into the expression for T , using interval arithmetic,
and simplification, that

T [α] = [Π1(t0 − tα/2),Π2(t0 + tα/2)], (25.5)

where
Π1 =

√
R(λ)/(n − 3), (25.6)

and
Π2 =

√
L(λ)/(n − 3). (25.7)

The L(λ) and R(λ) were defined in equations (23.13) and (23.14), respec-
tively, in Chapter 23.

We have assumed that all intervals are positive in the derivation of equa-
tion (25.5). The interval for an alpha-cut of b may be positive or negative,
but the interval for an alpha-cut of σ2 is always positive. When the left end
point (or both end points) of the interval for an alpha-cut of b is negative we
have to make some changes in equation (25.5). See section 16.3.1 in Chapter
16 for the details.

Now that we know the alpha-cuts of the fuzzy statistic we can find α-cuts
of the fuzzy critical value CV 2 for this one-sided test. As in previous chapters
we get

CV 2[α] = [Π1(tγ − tα/2),Π2(tγ + tα/2)]. (25.8)

In this equation γ is fixed and alpha varies in the interval [0.01, 1].
We now have a fuzzy set T for our test statistic and a fuzzy set CV 2 for

the critical value. Our final decision will depend on the relationship between
T and CV 2. Our test becomes : (1) reject H0 if T > CV 2; (2) do not reject
if T < CV 2; and (3) there is no decision on H0 if T ≈ CV 2.

Example 25.2.1

We will still use the data in Table 23.1 and we have computed â = −49.3413,
b̂ = 1.3642. ĉ = 0.1139 and σ̂2 = 12.9236 with n = 9 and a22 = 0.001586.
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Figure 25.1: Fuzzy Test T verses CV 2 in Example 25.2.1(CV 2 left, T right)

Let γ = 0.05, and determine t0 = 9.5287 and t0.05 = 1.943 with 6 degrees of
freedom. We compute

L(λ) = 18.548 − 12.548λ, (25.9)

R(λ) = 0.676 + 5.324λ, (25.10)

Π1 =
√

0.1127 + 0.8873λ, (25.11)

Π2 =
√

3.0913 − 2.0913λ. (25.12)

From these results we may get the graphs of T and CV 2, using Maple [2],
and they are shown in Figure 25.1.

From Figure 25.1 we see that T > CV 2. We therefore conclude: reject
H0. Of course, the crisp test would have the same result.

25.3 Tests on c

Let us first discuss the crisp hypothesis test. We wish to do the following
hypothesis test

H0 : c = 0, (25.13)

verses
H1 : c �= 0, (25.14)

which is a two-sided test. Next determine the statistic [1]

t0 =
ĉ − 0
σ̂
√

a33
, (25.15)
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where, under H0, t0 has a t distribution with (n− 3) degrees of freedom. Let
γ, 0 < γ < 1, be the significance level of the test. Our decision rule is: (1)
reject H0 if t0 ≥ tγ/2 or if t0 ≤ −tγ/2; and (2) otherwise do not reject H0.

Now proceed to the fuzzy situation where our estimate of c is the trian-
gular shaped fuzzy number c and our fuzzy estimator σ2 of σ2 is also a fuzzy
number. These fuzzy estimators were deduced in Chapter 23. Then our fuzzy
statistic is

T =
c − 0
σ
√

a33
. (25.16)

All fuzzy calculations will be performed via α-cuts and interval arithmetic.
We find, after substituting the intervals for an alpha-cuts of c and σ2 (square
root of equation (23.15)) into the expression for T , using interval arithmetic,
assuming all intervals are positive, that

T [α] = [Π1(t0 − tα/2),Π2(t0 + tα/2)], (25.17)

where the Πi were defined in the previous section.
Now that we know the alpha-cuts of the fuzzy statistic we can find α-cuts

of the fuzzy critical values CV i, i = 1, 2. As in previous chapters we obtain

CV 2[α] = [Π1(tγ/2 − tα/2),Π2(tγ/2 + tα/2)], (25.18)

and CV 1 = −CV 2.
Given the fuzzy numbers T and the CV i, i = 1, 2, we may compare T to

CV 1 and then to CV 2 to determine our final conclusion on H0.

Example 25.3.1

We will still use the data in Table 23.1 and we have already computed ĉ =
0.1139, σ̂2 = 12.9236 with n = 9 and a33 = 0.001591. Let γ = 0.05, and
compute t0 = 0.7943 and t0.025 = 2.447 with 6 degrees of freedom.

The values of L(λ), R(λ), Π1 and Π2 are all the same as in Example
25.2.1. All that has changed is the value of t0 and that now we use both CV 1

and CV 2 for a two-sided test.
The graphs of T and the CV i are shown in Figure 25.2. It is evident that

CV 2 > T , because the height of the intersection is less than 0.8. The point
of intersection is close to 0.8, but slightly less than 0.8. Now compare T to
CV 1. The graph of T is not correct to the left of the vertical axis because in
computing the alpha-cuts of T we had assumed that all intervals were always
positive, which is not true. However, there is no need to correct this because
even if we did the height of the intersection of T and CV 1 would be less than
0.8. You see that the left side of T crosses the vertical axis below 0.8 so it
must, even with corrections for non-positive intervals, cross the right side of
CV 1 below 0.8 also. Hence CV 1 < T < CV 2 and we do not reject H0 which
supports the hypothesis that c = 0. The same is true in the crisp case.
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Figure 25.2: Fuzzy Test T verses the CV i in Example 25.3.1 (CV 1 left, CV 2

right, T center)
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Chapter 26

Fuzzy One-Way ANOVA

26.1 Introduction

We first present the details of the non-fuzzy case. We follow the development
in [1]. Then the fuzzy hypothesis test. We wish to compare the means of m
populations where each population has the N(µi, σ

2) distribution with the
same, but unknown, variance.

26.2 Crisp Hypothesis Test

The null hypothesis is

H0 : µ1 = µ2 = ... = µm = µ, (26.1)

with µ unknown and the alternative hypothesis H1 is that the means are not
all equal.

We collect independent random samples Xi1,Xi2, ...,Xi,ni
from each pop-

ulation 1 ≤ i ≤ m. Let n = n1 + ... + nm.
We introduce the “dot” notation used in ANOVA

X•• =
m∑

i=1

ni∑
j=1

Xij/n, (26.2)

and

Xi• = (1/ni)
ni∑

j=1

Xij , (26.3)

for 1 ≤ i ≤ m, where X is not a fuzzy set but a mean. Next we define various
sums of squares

SS(T ) =
m∑

i=1

ni(Xi• − X••)2, (26.4)
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SS(E) =
m∑

i=1

ni∑
j=1

(Xij − Xi•)2, (26.5)

SS(TO) =
m∑

i=1

ni∑
j=1

(Xij − X••)2, (26.6)

where “SS” denotes “sum of squares”. Then

SS(TO) = SS(E) + SS(T ). (26.7)

It can be shown that SS(TO)/σ2 has a χ2 distribution with n−1 degrees
of freedom, SS(E)/σ2 has a χ2 distribution with n − m degrees of freedom
and SS(T )/σ2 also has a χ2 distribution with m − 1 degrees of freedom. So

F (m − 1, n − m) = [SS(T )/(σ2{m − 1})]/[SS(E)/(σ2{n − m})], (26.8)

has a F distribution, degrees of freedom m− 1 and n−m, since the random
variables in the numerator and denominator are independent. We will use the
notation F (s, t) for the F probability distribution with s degrees of freedom
in the numerator and t degrees of freedom in the denominator. One can now
argue, see [1], that if H0 is true this F (m − 1, n − m) should be close to one
but if H0 is false F (m−1, n−m) will become considerably greater than one.

Let Fγ(m−1, n−m) be the value of F (n−1, n−m) so that the probability
of exceeding it equals γ. We compute this number from the F distribution
with m − 1 and n − m degrees of freedom. This will be a one-sided test.
Usually one uses γ = 0.10, 0.05, 0.01. So we reject H0 if (from equation (26.8))
F (m − 1, n − m) ≥ Fγ(m − 1, n − m) and we do not reject H0 otherwise.

Let MS(T ) = SS(T )/(m−1), MS(E) = SS(E)/(n−m) and MS(TO) =
SS(TO)/(n− 1) where “MS” denotes “mean square”. Another fact that we
will use in the next section is that under H0 MS(TO), MS(T ) and MS(E)
are all unbiased estimators of σ2.

26.3 Fuzzy Hypothesis Test

We start with MS(T ) the numerator in equation (26.8), under H0 it is an
unbiased estimator of σ2. Now SS(T )/σ2 has a χ2 distribution with m − 1
degrees of freedom, so a (1− β)100% confidence interval for σ2 would be (as
in equation (9.4) in Chapter 9)

[(m − 1)MS(T )/χ2
R,β/2, (m − 1)MS(T )/χ2

L,β/2]. (26.9)

However, this estimator is biased as shown in Chapter 9. Hence we define
L(λ) and R(λ) as in equations (9.8) and (9.9), respectively, to obtain an
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unbiased estimator. For the rest of this chapter we will use 0.01 ≤ β ≤ 1.
Let

L1(λ) = (1 − λ)χ2
R,0.005 + λ(m − 1), (26.10)

R1(λ) = (1 − λ)χ2
L,0.005 + λ(m − 1), (26.11)

for 0 ≤ λ ≤ 1. In the above equations the χ2 distribution has m − 1 degrees
of freedom. Then our fuzzy estimator of σ2 based on MS(T ) has λ-cuts

[
m − 1
L1(λ)

MS(T ),
m − 1
R1(λ)

MS(T )]. (26.12)

Next we turn to MS(E) in the denominator of equation (26.8), under H0

it is also an unbiased estimator of σ2. Now SS(E)/σ2 has a χ2 distribution
with n−m degrees of freedom, so a (1−β)100% unbiased (we skip the biased
case) confidence interval for σ2 is

[
n − m

L2(λ)
MS(E),

n − m

R2(λ)
MS(E)], (26.13)

where
L2(λ) = (1 − λ)χ2

R,0.005 + λ(n − m), (26.14)

R2(λ) = (1 − λ)χ2
L,0.005 + λ(n − m), (26.15)

for 0 ≤ λ ≤ 1. In the above equations the χ2 distribution has n − m degrees
of freedom.

Now we may compute our fuzzy statistic F for this test. F is a triangular
shaped fuzzy number with our fuzzy estimator of σ2 based on MS(T ) divided
by our fuzzy estimator of σ2 based on MS(E). Using interval arithmetic, all
intervals are positive, we get for λ-cuts

F [λ] = [Γ1(λ)
MS(T )
MS(E)

,Γ2(λ)
MS(T )
MS(E)

], (26.16)

where

Γ1(λ) =
(m − 1)R2(λ)
(n − m)L1(λ)

, (26.17)

Γ2(λ) =
(m − 1)L2(λ)
(n − m)R1(λ)

, (26.18)

for 0 ≤ λ ≤ 1. The relationship between λ and β, in equations (26.12) and
(26.13), can be determined as in equations (9.12) and (9.13) in Chapter 9.

Since our test statistic is fuzzy the critical values will also be fuzzy. There
will be only one fuzzy critical value here because this is a one-sided test. Let
CV 2 go with the critical value Fγ and define CV 2[λ] = [cv21(λ), cv22(λ)]. We
use λ here since F [λ] is now a function of λ ∈ [0, 1]. We show how to get
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cv22(λ). The end points of a λ-cut of CV 2 are computed from the end points
of the corresponding λ-cut of F . We see that to find cv22(λ) we solve

P (Γ2(λ)
MS(T )
MS(E)

≥ cv22(λ)) = γ, (26.19)

for cv22(λ). The above equation is the same as

P (
MS(T )
MS(E)

≥ 1
Γ2(λ)

cv22(λ)) = γ. (26.20)

But under H0
MS(T )
MS(E) has a F distribution so

cv22(λ) = Γ2(λ)Fγ(m − 1, n − m). (26.21)

By using the left end point of F [λ]

cv21(λ) = Γ1(λ)Fγ(m − 1, n − m). (26.22)

Hence a λ-cut of CV 2 is

[Γ1(λ)Fγ(m − 1, n − m),Γ2(λ)Fγ(m − 1, n − m)]. (26.23)

In the above equation for CV 2[λ], γ is fixed, and λ ranges in the interval
[0, 1]. CV 2 will be a triangular shaped fuzzy number.

Example 26.3.1

The data in this example comes from Problem 8.6-2 in [1]. This is a classical
agricultural study. There are i = 1, 2, 3, 4 varieties of corn and let µi be
the average yield in bushels per acre of type i. We will test at the γ = 5%
significance level that µ1 = µ2 = µ3 = µ4. Four test plots for each of the
four varieties of corn were planted. The yields in bushels per acre of the four
varieties of corn are given in Table 26.1.

We see that n = 16, m = 4, n−m = 12 and MS(T ) = 129.43, MS(E) =
26.37. The crisp F = 129.43/26.37 = 4.91 > 3.49 = F0.05(3, 12) and we reject
H0.

Now we proceed to the fuzzy test. We compute from equation (26.16)
λ-cuts of our fuzzy test statistic F to be

[1.2270
(1 − λ)4.404 + 12λ

(1 − λ)9.348 + 3λ
, 1.2270

(1 − λ)23.34 + 12λ

(1 − λ)0.216 + 3λ
], (26.24)

for 0 ≤ λ ≤ 1. We put these λ-cuts together, one on top of another, to get
the fuzzy test statistic F . Next we compute form equation (26.23) the λ-cuts
of the fuzzy critical value

[0.8725
(1 − λ)4.404 + 12λ

(1 − λ)9.348 + 3λ
, 0.8725

(1 − λ)23.34 + 12λ

(1 − λ)0.216 + 3λ
], (26.25)
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X1 X2 X3 X4

68.82 86.84 90.16 61.58
76.99 75.69 78.84 73.51
74.30 77.87 80.65 74.57
78.73 76.18 83.58 70.75

Table 26.1: Data in Example 26.3.1
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Figure 26.1: Fuzzy Test in Example 26.3.1(F right, CV 2 left)

for λ ∈ [0, 1]. We put these λ-cuts together, one on top of another, to get
the fuzzy critical value. The graphs of F and CV 2, using Maple [2], are
shown in Figure 26.1. We see that these two fuzzy numbers intersect above
the level 0.80 so we decide F ≈ CV 2 and we have no decision on H0 in the
fuzzy hypothesis test. Due to the uncertainty in the data in the fuzzy case
we obtain “no decision” but in the crisp situation we got to reject H0. The
Maple commands for Figure 26.1 are in Chapter 30.

26.4 References
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Chapter 27

Fuzzy Two-Way ANOVA

27.1 Introduction

As in previous chapters we first review the non-fuzzy hypothesis tests and
then introduce the fuzzy hypothesis tests. This is also called the two-factor
analysis of variance. We will have two factors which we call factor A and
factor B. Assume factor A has a levels and factor B has b levels. There are
then n = ab possible combinations each of which determines a cell. Let the
cells be arranged in a rows and b columns. In this chapter we have only one
observation per cell and we let Xij denote the observation in the ith row and
jth column. We assume that Xij has a normal distribution N(µij , σ

2), all
having a common variance, and the ab random variables are independent.

We will be able to test for a row effect and a column effect but not
for any interaction. You will need multiple observations per cell to test for
interaction. It is not difficult to extend the results in this chapter to handle
interactions. The development here follows that in [1].

27.2 Crisp Hypothesis Tests

We assume that the means µij contain a row effect, a column effect and some
overall effect as

µij = µ + τi + θj , (27.1)

where τi represents the row effect and θj is for the column effect. Without
loss of generality (see [1]) we may assume that the sum of the τi (θj) equals
zero. There will be two tests. The first is that there is no row effect

HAO : τ1 = τ2 = ... = τa = 0. (27.2)
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The alternate hypothesis is that they are not all equal to zero. The other
test is that there is no column effect

HBO : θ1 = θ2 = ... = θb = 0. (27.3)

The alternate hypothesis is that all the θi are not zero.
Now we have to define some notation and “sums of squares”. Using the

“dot” notation from ANOVA let

X•• =
a∑

i=1

b∑
j=1

Xij/ab, (27.4)

Xi• = (1/b)
b∑

j=1

Xij , (27.5)

and

X•j = (1/a)
a∑

i=1

Xij , (27.6)

where X is not a fuzzy set but a mean. Next we define various sums of
squares

SS(A) =
a∑

i=1

b(Xi• − X••)2, (27.7)

SS(B) =
b∑

j=1

a(X•j − X••)2, (27.8)

SS(E) =
a∑

i=1

b∑
j=1

(Xij − Xi• − X•j + X••)2, (27.9)

SS(TO) =
a∑

i=1

b∑
j=1

(Xij − X••)2, (27.10)

where “SS” denotes “sum of squares”. Then

SS(TO) = SS(A) + SS(B) + SS(E). (27.11)

First assume that HAO is true. Then it can be shown that SS(A)/σ2 has a
χ2 distribution with a−1 degrees of freedom and SS(A)/(a−1) is an unbiased
estimator of σ2 and SS(E)/σ2 has a χ2 distribution with (a−1)(b−1) degrees
of freedom and SS(E)/(a − 1)(b − 1) is an unbiased estimator of σ2. So

FA(a−1, (a−1)(b−1)) = [SS(A)/(σ2{a−1})]/[SS(E)/(σ2{(a−1)(b−1)})],
(27.12)
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has a F distribution, degrees of freedom a − 1 and (a − 1)(b − 1), since the
random variables in the numerator and denominator are independent. We
will use the notation F (s, t) for the F probability distribution with s degrees
of freedom in the numerator and t degrees of freedom in the denominator.
One can now argue, see [1], that if HAO is true this F (a − 1, (a − 1)(b − 1))
should be close to one but if HAO is false F (a− 1, (a− 1)(b− 1)) will become
considerably greater than one.

Let Fγ(a − 1, (a − 1)(b − 1)) be the value of F (a − 1, (a − 1)(b − 1)) so
that the probability of exceeding it equals γ. We compute this number from
the F distribution with a− 1 and (a− 1)(b− 1) degrees of freedom. This will
be a one-sided test. Usually one uses γ = 0.10, 0.05, 0.01. So we reject HAO

if (from equation (27.12)) F (a− 1, (a− 1)(b− 1)) ≥ Fγ(a− 1, (a− 1)(b− 1))
and we do not reject H0 otherwise.

Next assume that HBO is true. Then it can be shown that SS(B)/σ2 has a
χ2 distribution with b−1 degrees of freedom and SS(B)/(b−1) is an unbiased
estimator of σ2 and SS(E)/σ2 has a χ2 distribution with (a−1)(b−1) degrees
of freedom and SS(E)/(a − 1)(b − 1) is an unbiased estimator of σ2. So

FB(b−1, (a−1)(b−1)) = [SS(B)/(σ2{b−1})]/[SS(E)/(σ2{(a−1)(b−1)})],
(27.13)

has a F distribution, degrees of freedom b − 1 and (a − 1)(b − 1), since the
random variables in the numerator and denominator are independent. One
can now argue, see [1], that if HBO is true this F (b − 1, (a − 1)(b − 1))
should be close to one but if HBO is false F (b− 1, (a− 1)(b− 1)) will become
considerably greater than one.

Let Fγ(b− 1, (a− 1)(b− 1)) be the value of F (b− 1, (a− 1)(b− 1)) so that
the probability of exceeding it equals γ. We compute this number from the
F distribution with b− 1 and (a− 1)(b− 1) degrees of freedom. This will be
a one-sided test. Usually one uses γ = 0.10, 0.05, 0.01. So we reject HBO if
(from equation (27.13)) F (b − 1, (a − 1)(b − 1)) ≥ Fγ(b − 1, (a − 1)(b − 1))
and we do not reject H0 otherwise.

Let MS(A) = SS(A)/(a − 1), MS(B) = SS(B)/(b − 1), MS(E) =
SS(E)/(a−1)(b−1) and MS(TO) = SS(TO)/(ab−1) where “MS” denotes
“mean square”.

27.3 Fuzzy Hypothesis Tests

We first consider HAO. Start with MS(A) the numerator in equation (27.12),
under HAO it is an unbiased estimator of σ2. Now SS(A)/σ2 has a χ2

distribution with a − 1 degrees of freedom, so a (1 − β)100% confidence
interval for σ2 would be (as in equation (9.4) in Chapter 9)

[(a − 1)MS(A)/χ2
R,β/2, (a − 1)MS(A)/χ2

L,β/2]. (27.14)

However, this estimator is biased as shown in Chapter 9. Hence we define
L(λ) and R(λ) as in equations (9.8) and (9.9), respectively, to obtain an
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unbiased estimator. For the rest of this chapter we will use 0.01 ≤ β ≤ 1.
Let

L1(λ) = (1 − λ)χ2
R,0.005 + λ(a − 1), (27.15)

R1(λ) = (1 − λ)χ2
L,0.005 + λ(a − 1), (27.16)

for 0 ≤ λ ≤ 1. In the above equations the χ2 distribution has a − 1 degrees
of freedom. Then our fuzzy estimator of σ2 based on MS(A) has λ-cuts

[
a − 1
L1(λ)

MS(A),
a − 1
R1(λ)

MS(A)]. (27.17)

Next we turn to MS(E) in the denominator of equation (27.12), under H0

it is also an unbiased estimator of σ2. Now SS(E)/σ2 has a χ2 distribution
with (a − 1)(b − 1) degrees of freedom, so a (1 − β)100% unbiased (we skip
the biased case) confidence interval for σ2 is

[
(a − 1)(b − 1)

L2(λ)
MS(E),

(a − 1)(b − 1)
R2(λ)

MS(E)], (27.18)

where
L2(λ) = (1 − λ)χ2

R,0.005 + λ(a − 1)(b − 1), (27.19)

R2(λ) = (1 − λ)χ2
L,0.005 + λ(a − 1)(b − 1), (27.20)

for 0 ≤ λ ≤ 1. In the above equations the χ2 distribution has (a − 1)(b − 1)
degrees of freedom.

Now we may compute our fuzzy statistic FA for this test. FA is a trian-
gular shaped fuzzy number with our fuzzy estimator of σ2 based on MS(A)
divided by our fuzzy estimator of σ2 based on MS(E). Using interval arith-
metic, all intervals are positive, we get for λ-cuts

FA[λ] = [Γ1(λ)
MS(A)
MS(E)

,Γ2(λ)
MS(A)
MS(E)

], (27.21)

where

Γ1(λ) =
(a − 1)R2(λ)

(a − 1)(b − 1)L1(λ)
, (27.22)

Γ2(λ) =
(a − 1)L2(λ)

(a − 1)(b − 1)R1(λ)
, (27.23)

for 0 ≤ λ ≤ 1. The relationship between λ and β, in equations (27.17) and
(27.18), can be determined as in equations (9.12) and (9.13) in Chapter 9.

Since our test statistic is fuzzy the critical values will also be fuzzy. There
will be only one fuzzy critical value here because this is a one-sided test. Let
CV 2 go with the critical value Fγ and define CV 2[λ] = [cv21(λ), cv22(λ)]. We
use λ here since F [λ] is now a function of λ ∈ [0, 1]. We show how to get
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cv22(λ). The end points of a λ-cut of CV 2 are computed from the end points
of the corresponding λ-cut of FA. We see that to find cv22(λ) we solve

P (Γ2(λ)
MS(A)
MS(E)

≥ cv22(λ)) = γ, (27.24)

for cv22(λ). The above equation is the same as

P (
MS(A)
MS(E)

≥ 1
Γ2(λ)

cv22(λ)) = γ. (27.25)

But under H0
MS(A)
MS(E) has a F distribution so

cv22(λ) = Γ2(λ)Fγ(a − 1, (a − 1)(b − 1)). (27.26)

By using the left end point of FA[λ]

cv21(λ) = Γ1(λ)Fγ(a − 1, (a − 1)(b − 1)). (27.27)

Hence a λ-cut of CV 2 is

[Γ1(λ)Fγ(a − 1, (a − 1)(b − 1)),Γ2(λ)Fγ(a − 1, (a − 1)(b − 1))]. (27.28)

In the above equation for CV 2[λ], γ is fixed, and λ ranges in the interval
[0, 1]. CV 2 will be a triangular shaped fuzzy number.

Next consider HBO. Start with MS(B) the numerator in equation
(27.13), under HBO it is an unbiased estimator of σ2. Now SS(B)/σ2 has a
χ2 distribution with b − 1 degrees of freedom, so a (1 − β)100% confidence
interval for σ2 would be (as in equation (9.4) in Chapter 9)

[(b − 1)MS(B)/χ2
R,β/2, (b − 1)MS(B)/χ2

L,β/2]. (27.29)

However, this estimator is biased as shown in Chapter 9. Hence we define
L(λ) and R(λ) as in equations (9.8) and (9.9), respectively, to obtain an
unbiased estimator. Let

L3(λ) = (1 − λ)χ2
R,0.005 + λ(b − 1), (27.30)

R3(λ) = (1 − λ)χ2
L,0.005 + λ(b − 1), (27.31)

for 0 ≤ λ ≤ 1. In the above equations the χ2 distribution has b − 1 degrees
of freedom. Then our fuzzy estimator of σ2 based on MS(B) has λ-cuts

[
b − 1
L3(λ)

MS(B),
b − 1
R3(λ)

MS(B)]. (27.32)

Next we turn to MS(E) in the denominator of equation (27.13), under
HBO it is also an unbiased estimator of σ2. Now SS(E)/σ2 has a χ2 distrib-
ution with (a − 1)(b − 1) degrees of freedom, so a (1 − β)100% unbiased (we
skip the biased case) confidence interval for σ2 is

[
(a − 1)(b − 1)

L4(λ)
MS(E),

(a − 1)(b − 1)
R4(λ)

MS(E)], (27.33)
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where
L4(λ) = (1 − λ)χ2

R,0.005 + λ(a − 1)(b − 1), (27.34)

R4(λ) = (1 − λ)χ2
L,0.005 + λ(a − 1)(b − 1), (27.35)

for 0 ≤ λ ≤ 1. In the above equations the χ2 distribution has (a − 1)(b − 1)
degrees of freedom.

Now we may compute our fuzzy statistic FB for this test. FB is a trian-
gular shaped fuzzy number with our fuzzy estimator of σ2 based on MS(B)
divided by our fuzzy estimator of σ2 based on MS(E). Using interval arith-
metic, all intervals are positive, we get for λ-cuts

FB [λ] = [Γ3(λ)
MS(B)
MS(E)

,Γ4(λ)
MS(B)
MS(E)

], (27.36)

where

Γ3(λ) =
(b − 1)R4(λ)

(a − 1)(b − 1)L3(λ)
, (27.37)

Γ4(λ) =
(b − 1)L4(λ)

(a − 1)(b − 1)R3(λ)
, (27.38)

for 0 ≤ λ ≤ 1. The relationship between λ and β, in equations (27.32) and
(27.33), can be determined as in equations (9.12) and (9.13) in Chapter 9.

Since our test statistic is fuzzy the critical values will also be fuzzy. There
will be only one fuzzy critical value here because this is a one-sided test. Let
CV 2 go with the critical value Fγ and define CV 2[λ] = [cv21(λ), cv22(λ)]. We
use λ here since F [λ] is now a function of λ ∈ [0, 1]. We show how to get
cv22(λ). The end points of a λ-cut of CV 2 are computed from the end points
of the corresponding λ-cut of FB . We see that to find cv22(λ) we solve

P (Γ4(λ)
MS(B)
MS(E)

≥ cv22(λ)) = γ, (27.39)

for cv22(λ). The above equation is the same as

P (
MS(B)
MS(E)

≥ 1
Γ4(λ)

cv22(λ)) = γ. (27.40)

But under HBO
MS(B)
MS(E) has a F distribution so

cv22(λ) = Γ4(λ)Fγ(b − 1, (a − 1)(b − 1)). (27.41)

By using the left end point of FB [λ]

cv21(λ) = Γ3(λ)Fγ(b − 1, (a − 1)(b − 1)). (27.42)

Hence a λ-cut of CV 2 is

[Γ3(λ)Fγ(b − 1, (a − 1)(b − 1)),Γ4(λ)Fγ(b − 1, (a − 1)(b − 1))]. (27.43)

In the above equation for CV 2[λ], γ is fixed, and λ ranges in the interval
[0, 1]. CV 2 will be a triangular shaped fuzzy number.
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Car Gas 1 Gas 2 Gas 3 Gas 4
1 16 18 21 21
2 14 15 18 17
3 15 15 18 16

Table 27.1: Data in Example 27.3.1

Example 27.3.1

The data in this example comes from Example 8.7-1 in [1]. Each of three
cars was driven on the highway using each of four different brands of gasoline.
The three cars all have automatic transmission, six cylinders, approximately
the same weight and were driven at approximately the same maximum speed.
The four brands of gasoline were all “regular”. The miles per gallon for each
of the 12 different combinations is shown in Table 27.1. We will test at the
γ = 5% significance level for a row (A factor = car) effect and for a column
(B factor = gas) effect.

First we test HAO : τ1 = ... = τ3 = 0. We see that a = 3, b = 4 and we
easily compute SS(A) = 24, SS(B) = 30 and SS(E) = 4. So MS(A) = 12,
MS(B) = 10 and MS(E) = 2/3.

We next compute FA and its corresponding CV 2. We obtain from equa-
tion (27.21) that

FA[λ] = [6
1.237(1 − λ) + 6λ
7.378(1 − λ) + 2λ

, 6
14.45(1 − λ) + 6λ
0.051(1 − λ) + 2λ

], (27.44)

and we put these λ-cuts together, one on top of another, to get the fuzzy test
statistic FA. Next we compute from equation (26.28)

CV 2[λ] = [
5.14
3

1.237(1 − λ) + 6λ
7.378(1 − λ) + 2λ

,
5.14
3

14.45(1 − λ) + 6λ
0.051(1 − λ) + 2λ

], (27.45)

and we put these λ-cuts together, one on top of another, to get the fuzzy
critical value. The graphs of FA and CV 2, using Maple [2], are shown in
Figure 27.1. The Maple commands for this figure are in Chapter 30.

We see that these two fuzzy numbers intersect below the level 0.80 so we
decide FA > CV 2 and we reject HAO in the fuzzy hypothesis test. The same
is true in the crisp test.

Next we test HBO : θ1 = ... = θ4 = 0. We compute FB and its corre-
sponding CV 2. We obtain from equation (27.36) that

FB [λ] = [7.5
1.237(1 − λ) + 6λ
9.348(1 − λ) + 3λ

, 7.5
14.45(1 − λ) + 6λ
0.216(1 − λ) + 3λ

], (27.46)

and we put these λ-cuts together, one on top of another, to get the fuzzy test
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Figure 27.1: Fuzzy Test HAO in Example 27.3.1(F A right, CV 2 left)

statistic FB . Next we compute from equation (26.43)

CV 2[λ] = [
4.76
2

1.237(1 − λ) + 6λ
9.348(1 − λ) + 3λ

,
4.76
2

14.45(1 − λ) + 6λ
0.216(1 − λ) + 3λ

], (27.47)

and we put these λ-cuts together, one on top of another, to get the fuzzy
critical value. The graphs of FB and CV 2, using Maple [2], are shown in
Figure 27.2.

10 500 3020
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40
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0.6

0.8

1

0.2

0

Figure 27.2: Fuzzy Test HBO in Example 27.3.1(F B right, CV 2 left)
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We see that these two fuzzy numbers intersect below the level 0.80 so we
decide FB > CV 2 and we reject HBO in the fuzzy hypothesis test. The same
result holds for the crisp test.

27.4 References

1. R.V. Hogg and E.A. Tanis: Probability and Statistical Inference, Sixth
Edition, Prentice Hall, Upper Saddle River, N.J., 2001.

2. Maple 9, Waterloo Maple Inc., Waterloo, Canada.



Chapter 28

Fuzzy Estimator
for the Median

28.1 Introduction

Estimating the median of a continuous probability distribution usually falls
into the area of non-parametric statistics, or distribution free statistics, and
comes at the end of a book on statistics. We first discuss a crisp method of
estimating the median. We follow the development in Section 7.7 in [1].

28.2 Crisp Estimator for the Median

Let Xi, 1 ≤ i ≤ n, be a random sample from this continuous probability
distribution. If Y is a random variable having this continuous probability
distribution, then we define the median m to be

P (Y < m) = P (Y > m) = 0.50. (28.1)

We are not assuming the continuous probability distribution is normal, or χ2,
or exponential, etc. We order this random sample from smallest to largest
producing the order statistics X(1) < X(2) < ... < X(n). Here X(1) is the
smallest, X(2) is the next smallest, etc. We assume that no two values of the
Xi are equal. For simplicity assume n is odd. Let τ = (n + 1)/2. Then the
order statistic in the “middle” is X(τ) and this will be our point estimate of
the median m. So m̂ = X(τ).

Next we need to construct confidence intervals for m. First we determine
the probability that the random interval (X(1),X(n)) contains m. This is
not difficult because we have a binomial situation where the probability of a
success p = 0.50. Given an individual item X then P (X < m) = 0.50. In
order that X(1) to be less than m but X(n) to be greater than m we must

James J. Buckley:
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

Fuzzy Probability and Statistics, StudFuzz 196, 2 1 9 – 221 (2006)
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have at least one success but not n successes. So

P (X(1) < m < X(n)) =
n−1∑
i=1

(
n

i

)
(0.50)i(0.50)n−i = 1 − β. (28.2)

Now let the values of the order statistics be x(1) < x(2) < ... < x(n). Then

(x(1), x(n)), (28.3)

is a (1 − β)100% confidence interval for m. We generalize to

P (X(i) < m < X(j)) =
j−1∑
k=i

(
n

k

)
(0.50)k(0.50)n−k = 1 − β. (28.4)

So
(x(i), x(j)), (28.5)

is a (1−β)100% confidence interval for m.Equation (28.4) is used to determine
the value of β.

Notice that this method only gives us a finite number of distinct confidence
intervals for m.

28.3 Fuzzy Estimator

We place these confidence intervals, from the previous section, one on top of
another, to build our fuzzy estimator m for m. However, this gives us only a
finite number of confidence intervals to construct a triangular shaped fuzzy
number m. For example, with sample size n = 11 we have 5 confidence inter-
vals. So we draw a smooth curve through the end points of these intervals to
produce a triangular shaped fuzzy number m. We illustrate this construction
in the following example.

Example 28.3.1

Let n = 9 and assume the order statistics are

13.5 < 18.0 < 19.5 < 21.6 < 23.5 < 28.0 < 29.8 < 31.3 < 33.5. (28.6)

Them m̂ = 23.5. We do the computations in equations (28.2)-(28.5) and the
results are in Table 28.1.

Now we plot the points, which are shown in Figure 28.1,
(13.5, 0.004),(33.5, 0.004),
(18.0, 0.04),(31.3, 0.04), (19.5, 0.18),...,(23.5, 1) and then draw a smooth curve
through these points producing m. This is shown in Figure 28.1. This fig-
ure was done using LaTeX, not Maple. This is our triangular shaped fuzzy
number estimator for the median.
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Interval β Confidence
(13.5, 33.5) 0.004 99.6%
(18.0, 31.3) 0.04 96.0%
(19.5, 29.8) 0.18 82.0%
(21.6, 28.0) 0.508 49.2%
(23.5, 23.5) 1.0 0.0%

Table 28.1: Confidence Intervals in Example 28.3.1

10 15 20 25 30 35
x

1

y

m

Figure 28.1: Fuzzy Estimator for the Median in Example 28.3.1

28.4 Reference

1. R.V. Hogg and E.A. Tanis: Probability and Statistical Inference, Sixth
Edition, Prentice Hall, Upper Saddle River, N.J., 2001.



Chapter 29

Random Fuzzy Numbers

29.1 Introduction

We first, in this section, give a brief review of the literature on random fuzzy
numbers. Then in the next section we present out method on generating
a stream of random fuzzy numbers in some interval. Any random stream
of numbers, fuzzy or crisp, must pass certain “randomness” tests and we
perform one such test in Section 29.3. A Monte Carlo study, using our
random fuzzy numbers, on a fully fuzzified linear program is discussed in the
last section.

Mathematica has added random fuzzy numbers [25]. It can create “ran-
dom” trapezoidal, Gaussian and triangular fuzzy numbers. They are rep-
resented by thin vertical bars similar to a histogram. We would need the
functional expressions for the sides of the fuzzy numbers and it is not clear
how we could get that information from Mathematica. The web site does not
tell the user how these “random” fuzzy numbers are generated.

Most authors ([1],[12],[13],[18],[21],[22]) have used the following method
to define random fuzzy numbers. Consider LR fuzzy numbers which we
write as (a, b, c)LR. Let m, l and r be three real-valued random variables
with m < l < r. Then a random LR-fuzzy number is (m, l, r)LR. The
functions L and R are called the left and right shape functions, m is where
the membership value equals one (vertex point) and l(r) ≥ 0 is the left
(right) spread of the fuzzy number. So, once you pick and fix L and R, the
randomness is in the end points of the α = 0 cut and the vertex point of the
fuzzy number. We think the randomness should also be in the shape of the
fuzzy number. That is, we should also be able to randomly change L and R.

Next, the paper [7] has another way to construct random fuzzy numbers.
Let Fi(x), i = 1, 2, 3, be probability distribution functions. Randomly choose
y ∈ [0, 1], then a random triangular fuzzy number has base [F−1

1 (y), F−1
3 (y)]

and vertex point at F−1
2 (y). We have assumed that F−1

1 (y) < F−1
2 (y) <

James J. Buckley:
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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F−1
3 (y) for y in [0, 1]. This just randomly produces a triangular fuzzy number

but it always has the same shape (a triangle).
Finally, [20] generates a random triangular fuzzy number as (m−6/m/m+

2) for m uniform on [1, 3] and a random trapezoidal fuzzy number as (m −
4/m− 2,m + 4/m + 6) for m a standard normal random variable. Again the
shape is always the same, straight line segments for the sides of the fuzzy
number.

Our random fuzzy numbers will have random base, random vertex point
and also (limited) random shape. We believe this gives a better picture of
random fuzzy numbers for fuzzy Monte Carlo methods.

29.2 Random Fuzzy Numbers

Let N ≈ (n1/n2/n3) in [0, 1] be a triangular shaped fuzzy number. In this
section we will discuss how we plan to produce a sequence of random trian-
gular shaped fuzzy numbers in some interval [0,M ], M > 0. We first make
N in [0, 1] and multiply by M to get it in [0,M ].

Let y = f1(x) denote the function that makes the left side of the mem-
bership function y = N(x), 0 ≤ y ≤ 1, n1 ≤ x ≤ n2. We assume that f1(x) is
continuous and strictly increasing with f1(n1) = 0 and f1(n2) = 1. Next let
y = f2(x) denote the function that makes the right side of the membership
function y = N(x), 0 ≤ y ≤ 1, n2 ≤ x ≤ n3. We assume that f2(x) is con-
tinuous and strictly decreasing with f2(n2) = 1 and f2(n3) = 0. Notice that
if we substitute α for y an alpha-cut of N can be written [f−1

1 (α), f−1
2 (α)].

In this chapter we will use quadratic functions for the fi(x). Let ai1x
2 +

ai2x + ai3 = fi(x), i = 1, 2. We may easily extend the results to higher order
polynomials. Now choose n11 and n21 so that n1 < n11 < n2, n2 < n21 < n3,
and then choose y1, y2 in (0, 1). The left side of N will be determined by the
three points (n1, 0), (n11, y1), (n2, 1) because these three points, assuming
they do not lie in a straight line, uniquely determine the a1j in y = a11x

2 +
a12x + a13. The right side of N will be determined by the three points
(n2, 1), (n21, y2), (n3, 0) because these three points, assuming they do not lie
in a straight line, uniquely determine the a2j in y = a21x

2 + a22x + a23. So
we require the seven numbers n1, n11, y1, n3, n21, y2 and n3 to construct
our triangular shaped fuzzy number N . See Figure 29.1. We call these fuzzy
numbers quadratic fuzzy numbers.

To randomly generate a N in [0, 1] we randomly produce random numbers
x1, ..., x7 in [0, 1] giving the random vector w = (x1, ..., x7) ∈ [0, 1]7. In w first
randomly choose two values say, for example, x3 and x6. Then set y1 = x3

and y2 = x6. Now order the remaining five numbers from smallest to largest
giving, for example, x5 < x2 < x7 < x1 < x4. Then define n1 = x5, n11 = x2,
n2 = x7, n21 = x1 and n3 = x4. We now have the five points to get triangular
shaped fuzzy number N . See Figure 29.1.
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0 n1 n2 n3
x

1

y

(n11, y1)

(n21, y2)

(n2, 1)

Figure 29.1: Random Quadratic Fuzzy Number N

However, it is well known ([2],[10],[23])that these random vectors w will
make clusters and empty regions in [0, 1]7. So we will use quasi-random
numbers which will produce vectors w that uniformly fill the space [0, 1]7

([2],[10],[23]).
How we propose to obtain a sequence of random triangular shaped fuzzy

numbers is: (1) use quasi-random numbers to get random vectors w1, w2,...;
and (2) each wi makes a N i, i = 1, 2, 3, ....

29.3 Tests for Randomness

Assume we have a sequence of triangular shaped fuzzy numbers N i, i =
1, 2, 3, ..., n, in [0,M ] which we want to test for randomness. There are many
randomness tests for sequences of real numbers ([9],[19]). But, most are not
readily adapted to fuzzy numbers. The “run test” looks to be one of the
easiest to apply to fuzzy numbers and we will use it in this section.

Make a new sequence using the symbols +, 0 and − as follows: (1) if
N i < N i+1 use +; (2) if N i ≈ N i+1 use 0; and (3) if N i > N i+1 use −. From
the original sequence of fuzzy numbers we get, for example

++0−−−++++++00−−−−−....0++++++−−−−−++++++−−−−−−,
(29.1)

if n = 56. Now in the run test, applied to real number sequences, there will
be no zeros. We could raise η to 0.9, or 0.95, see Section 2.5 in Chapter 2,
but we will still get a few zeros. We will omit all the zeros and we obtain

++−−−++++++−−−−−++++...++++++−−−−−++++++−−−−−−,
(29.2)

for n = 50. We count the total number of runs with the first run ++, the
second run −−−, third run + + + + ++, etc. In our example above assume
we get the total runs s = 10.

We do a statistical hypothesis test with null hypothesis H0 the sequence of
fuzzy numbers is random and the alternative hypothesis H1 that the sequence
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is not random. We choose the level of significance (type I error) to be γ =
0.05. Under the null hypothesis the mean of s is (2n− 1)/3 and the variance
of s is (16n− 29)/90. Also, we know that for large samples (say n ≥ 50) the
distribution of s is approximately normal ([9],[19]). In our example we have
n = 50, the mean of s is 33 and the variance equals 8.5667. Doing a two
sided test, and incorporating a continuity correction of 0.5, the left critical
region is

(s + 0.5 − 33)/
√

8.5667 ≤ −1.96, (29.3)

and the right critical region is

(s − 0.5 − 33)/
√

8.5667 ≥ 1.96. (29.4)

So we reject H0 when s ≤ 26 or s ≥ 40. In our example with s = 10 we reject
H0 and conclude that this sequence of fuzzy numbers is not random.

The left critical value guards against trends and the right critical value
guards against cycles. A trend would be a sequences of increasing, or de-
creasing, fuzzy numbers leading to too few runs and s ≤ 26. Cycles would
produce something like ++−−++−−++−− .... and too many runs with
s ≥ 40.

There are two other variations on the run test that could be used. Let
M be the median of the sequence N i, i = 1, ..., n. The fuzzy median of
a finite sequence of fuzzy numbers would need to be defined. Make a new
sequence using the symbols +, 0 and − as follows: (1) if N i < M use −; (2)
if N i ≈ M use 0; and (3) if N i > M use +. Omit the zeros. Count the runs
below the median, count the runs above the median and let s be the total
number of runs. Then using a normal approximation, similar to equations
(29.3) and (29.4), we can do the hypothesis test of H0 it is a random sequence
versus H1 it is not random ([11],[19]). A third test involves using the first
sequence of +′s and −′s described above, not constructed from the median,
and counting the length of a run of +′s or a run of −′s. An asymptotically
chi-square distributed test statistic based on the number of runs of length
L = 1, 2, 3, 4, 5 and L ≥ 6 is given in [17]. However, the author in [17]
suggests a sample size of n ≥ 4000 for a good approximation. But we shall
use only the first run test given in equations (29.3) and (29.4) in this chapter.

Example 29.3.1

This example is the result of research on random fuzzy numbers done by Mr.
Leonard J. Jowers [15] at the University of Alabama at Birmingham. We
decided to implement this example in two steps. Both steps provide statistics
on what they create. The first step was a crisp random number generator
(RNGenerator) which prepares a file stream of crisp integer random numbers.
The second step was RNAnalysis which takes a stream of crisp integer random
numbers and generates random fuzzy numbers.
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29.3.1 RNGenerator

The RNGenerator may be linked with any of several random number (RN)
generator subroutines. The ones which we used were:

1. TrueRandom: A million 8-bit (in binary notation) true random num-
bers were downloaded from http://www.random.org. This routine sup-
plies one 16-bit true random number (put two 8-bit numbers together),
sequentially from that list, with each call.

2. PseudoRandom: This routine supplies one 16-bit pseudo random num-
ber from rand() with each call.

3. QuasiRandom: A Sobol quasi-random number routine from [24] was
used as the basis for a quasi-random number generator (Section 7.7,
“Quasi- Random Sequences,” from [23] provides background to Sobol
sequences). To make the use compatible with the other random number
generators, it creates the Sobol numbers in vectors of length 5, but
releases them one at a time with each call.

Type Chi-Square Minimum Maximum Equal Pairs
True 11.5182 0 32767 16

Pseudo 5.1051 0 32767 8
Quasi 219370 0 32766 59

Table 29.1: RNGenerator Chi-Square Results

RNGenerator does statistics on the stream of RNs it generates. A chi-
square test is done for 12 bins (11 degrees of freedom) on 500,000 random
numbers generated by each method. In Table 29.1: (1) “Chi-Square” is
the value of the chi-square statistic; (2) “Minimum” is the smallest random
number produced; (3) “Maximum” is the value of the largest random number
generated; and (4) “Equal Pairs” means that two consecutively generated
random numbers were equal.

The chi-square test was the standard randomness test applied to sequences
of real numbers. The null hypothesis is H0 that the sequence is random
and the alternate hypothesis is H1 that the sequence is not random. The
significance level of the test was γ = 0.05. We place the random numbers
into 12 equally spaced bins where, assuming H0 is true, the expected number
in each bin would be 500, 000/12. The critical value is χ2 = 19.675 for 11
degrees of freedom. So the true random numbers and the pseudo random
numbers pass the randomness test (do not reject H0) but the quasi-random
numbers do not pass the test (reject H0). The use of the quasi-random
numbers will be explained in the next subsection.
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29.3.2 RNAnalysis

Using streams of 500,000 “random” integers generated by the three meth-
ods, we completed the experiment in this second step. RNAnalysis creates
quadratic fuzzy numbers (Section 29.2), displays them, and computes a ran-
domness test on them.

In our preparation, we recognized that a quadratic fuzzy number could
be represented by five points, one each at the left and right end points of
the support, one at the vertex, and one each between the end points of the
support and the vertex. We also realized that this representation in the
computer requires a 7-tuple, a vector of length 7. See Figure 29.1. We also
knew from [6] that random numbers suffer from a “curse of dimensionality”,
randomness quality degrades as the dimensionality of the vector increases.
As explained in Section 29.2 the quasi-random method of producing vector w
does not suffer from this problem. We will use the quasi-random procedure
to get random vectors that will define our fuzzy numbers.

Next we are able to reduce the vector of length 7 to length 5 to obtain
quadratic fuzzy numbers. This alternative representation, suggested by [16],
is called Quadratic Bézier Generated Fuzzy Numbers (QBGFNs) and it re-
quires only five numbers. QBGFNs are FNs whose membership functions, left
and right, are defined by weighted quadratic rational Bézier curves ([8],[14]).
This representation requires a vector of length 5. In addition to the three
values normally required for a triangular fuzzy number, a left weight, and
a right weight are needed. A full explanation of QBGFNs is lengthy and
beyond the scope of this experiment, but is available from [15].

We now explain how we produce a quadratic fuzzy number from a “ran-
dom” vector v = (z1, ..., z5) generated from the quasi-random method. First
we specify the range over which we allow the support, which we now assume
to be [0.0,6.0], and the range for the two weights which we fix as [-3.5,3.5].
The quasi-random method gives a vector of length 5 and we first map each
component into [0.0,1.0]. So assume zi ∈ [0, 1] all i. Let the final “random”
vector, used for the quadratic fuzzy number A be w = (x1, ..., x5). Then
x3 = 6z1 gives the coordinate for the vertex of A. If A ≈ (a1/a2/a3) then
a2 = x3 = z1, x1 = a1 = x3 − z2x3 and x5 = a3 = x3 + z3(6 − x3). Now
we transform z4 and z5 into [−3.5, 3.5] giving x2 and x4, respectively. The
quadratic membership function on the left (right) is determined by x2 (x4).
So we have v = (z1, ..., z5) mapped to w = (x1, ..., x5) translated to quadratic
fuzzy number A.

In Figure 29.2, which shows two QBGFNs, the example on the right is
for the 5-tuple (1.27,−3.50, 5.81, 1.53, 5.99).

As we create these QBGFNs, we apply the “run test” described in Sec-
tion 29.3. Let the sequence of “random” fuzzy numbers be A1,.....,An. The
method used to decide on Ai < Ai+1, Ai ≈ Ai+1 and Ai > Ai+1 is discussed
in Section 2.5 using η = 0.8. If in the comparison of two fuzzy numbers in
the sequence we get Ai ≈ Ai+1, then we discard (reject) Ai+1. Each test
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Figure 29.2: QBGFN Fuzzy Numbers

consists of evaluating QBGFNs until 100 are accepted. For a stream of 100
accepted FNs, as we showed in Section 29.3 for 50, the mean is 66.33334 and
the variance is 17.45556. The null hypothesis (that the stream is random) is
rejected, if the number of runs is ≤ 57 or ≥ 76 (similar to equations (29.3)
and (29.4)).

Minimum 59
Maximum 77

Mean 67.76238
Standard Deviation 3.910101

Table 29.2: Summary Statistics on the Number of Runs for All Tests Using
Quasi-Random Numbers

We replicated the test 100 times. We show, in Tables 29.2, 29.3 and Figure
29.3, results for the quasi-random number stream. On average, 16 QBGFNs
were rejected in each test because of Ai ≈ Ai+1. Notice from Figure 29.3 that
the null hypothesis of randomness was only rejected twice in 100 tests. Using
γ = 0.05 we would expect rejection, assuming randomness, on the average 5
times for 100 tests.

We also did this run test on sequences of quadratic fuzzy numbers gener-
ated from the true random method and from the pseudo random procedure.
We summarize these results in Table 29.3. In Table 29.3 “Average Discards”
is the average, over all 100 test runs, we had to discard a fuzzy number be-
cause Ai ≈ Ai+1. Also, in Table 29.3 “Reject H0” means the number of
times, in 100 test runs, we rejected the null hypothesis of randomness.

Based on only one randomness test, the quasi-random method generated
the “best” sequence of random fuzzy numbers. In the future we need to apply
a few more randomness tests to our sequences of fuzzy numbers obtained by
the quasi-random method. Assuming they also pass these new tests, then
they will be used in our Monte Carlo studies.
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Figure 29.3: Results on the Number of Runs for All Tests Using Quasi-
Random Numbers

Type Mean Minimum Maximum Average Discards Reject H0

True 70.7 61 84 41.6 16
Pseudo 71.5 61 78 44.1 15
Quasi 67.8 59 77 16.2 2

Table 29.3: Results of All “Runs Tests”

29.4 Monte Carlo Study

We consider one application of our fuzzy Monte Carlo method to the fully
fuzzified linear program.

Fuzzy linear programming has long been an area of application of fuzzy
sets. Consider the classical linear program

max Z = c1x1 + · · · + cnxn

subject to: (29.5)
ai1x1 + · · · + ainxn ≤ bi , 1 ≤ i ≤ m

xi ≥ 0 , for all i .

We need to have values for all the parameters ci, aij and bi to completely
specify the optimization problem. Many of these must be estimated and are
therefore uncertain. It is then natural to model these uncertain parameters
using fuzzy numbers. The problem then becomes a fuzzy linear programming
problem.
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We are going to allow all the parameters to be fuzzy and we obtain what
we have called the fully fuzzified linear programming problem. The fully
fuzzified linear program is ([3]-[5])

maxZ = C1X1 + · · · + CnXn

subject to: (29.6)
Ai1X1 + · · · + AinXn ≤ Bi, 1 ≤ i ≤ m,

Xi ≥ 0, for all i.

where the Ci, Aij and Bi can all be triangular fuzzy numbers. Since the para-
meters are fuzzy, the variables Xi will be triangular (shaped) fuzzy numbers.
In the fuzzy Monte Carlo method the Xi are triangular shaped fuzzy num-
bers.

We will use the method in Section 2.5 of Chapter 2 for deciding if M ≤ N
is true for two fuzzy numbers M and N . We continue to employ η = 0.8 for
the height of the intersection. Also, depending on the constraints, we need
to decide on intervals [0, Ii] for our random fuzzy numbers Xi, i = 1, 2, 3, ....
We will do this in the example presented below. Also, for simplicity, assume
that for this discussion m = n = 2. So we generate a stream of random
fuzzy numbers and take them two at a time producing random fuzzy vectors
V = (X1,X2) for Xi ∈ [0, Ii], i = 1, 2. Next we test V to see if it is feasible.
V is feasible if

A11X1 + A12X2 ≤ B1, (29.7)

and
A21X1 + A22X2 ≤ B2. (29.8)

Once we have a feasible V we compute

Z = C1X1 + C2X2. (29.9)

Now go back to Section 2.5 of Chapter 2 and review the hierarchy of sets of
fuzzy numbers H1,H2,H3,...HK where the highest ranked are all in HK . It
is a partitioning of all the Z values we get from feasible V . Let the Z values
from feasible V be Zi, i = 1, 2, 3, .... Then if Za and Zb are in HK we get
Za ≈ Zb and if Zc ∈ Hj , j < K, then Za > Zc. The general solution to the
fuzzy optimization problem will be HK . For each Z ∈ HK we have stored
the corresponding V . If we require a single solution, show the Z in HK to
the decision maker(s) for them to pick one for the final solution.

However, if we produce 100, 000 random V we may end up with hundreds
of Z values, with their corresponding V , in HK . Then we could employ
another method to choose a “best” Z and V in HK as used in ([3]-[5]).

Fuzzy Product Mix Problem

A company produces three products P1, P2 and P3 each of which must be
processed through three departments D1, D2 and D3. The approximate time,
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Department

D1 D2 D3

P1 6 12 2
Product P2 8 8 4

P3 3 6 1

Table 29.4: Approximate Times Product Pi is in Department Dj

in hours, each Pi spends in each Dj is given in Table 29.4.
Each department has only so much time available each week. These times

can vary slightly from week to week so the following numbers are estimates
of the maximum time available per week, in hours, for each department: (1)
for D1 288 hours; (2) 312 hours for D2; and (3) D3 has 124 hours. Finally,
the selling price for each product can vary a little due to small discounts to
certain customers but we have the following average selling prices: (1) $6 per
unit for P1; (2) $8 per unit for P2, and (3) for P3 $6/unit. The company
wants to determine the number of units to produce for each product per week
to maximize its revenue.

Since all the numbers given are uncertain, we will model the problem as
a fully fuzzified linear program. We substitute a triangular fuzzy number for
each value given where the peak of the fuzzy number is at the number given.
So, we have the following fully fuzzified linear program

max Z = (5.8/6/6.2)X1 + (7.5/8/8.5)X2 + (5.6/6/6.4)X3 (29.10)
subject to:
(5.6/6/6.4)X1 + (7.5/8/8.5)X2 + (2.8/3/3.2)X3 ≤ (283/288/293) ,

(11.4/12/12.6)X1 + (7.6/8/8.4)X2 + (5.7/6/6.3)X3 ≤ (306/312/318) ,

(1.8/2/2.2)X1 + (3.8/4/4.2)X2 + (0.9/1/1.1)X3 ≤ (121/124/127) ,

X1,X2,X3 ≥ 0 ,

where the Xi are triangular (shaped) fuzzy numbers for the amount to pro-
duce for Pi per week.

Now we need to find the intervals [0, Ii] for the Xi, i = 1, 2, 3. This can be
fairly complicated depending on the number of constraints and the method
used to determine if M ≤ N is true. It is important to accurately determine
these intervals because: (1) if they are too big the Monte Carlo simulation
will be inefficient in producing too many infeasible fuzzy vectors; and (2) if
they are too small we can miss a solution.

For comparison to the fuzzy solution we need to calculate the solution to
the crisp linear program which is the one obtained by using the vertex values
(where the membership function is one) of all the Ci, Aij and Bi. The crisp
solution is x1 = 0 for (P1), x2 = 27 (for P2) and x3 = 16 (for P3) with
max z = 312.
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We will not continue solving this problem since it will take us further
away from the basic topics of fuzzy probability and fuzzy statistics of this
book. Solution will be contained in a future book on this topic.
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Chapter 30

Selected Maple/Solver
Commands

30.1 Introduction

This chapter contains selected Maple and Solver commands for optimization
problems and figures in this book. We start with Solver.

30.2 SOLVER

SOLVER is an optimization package which is an add-in to Microsoft Excel.
It is free and if your Excel does not have it, then contact Microsoft or ([1],[3]).
We used SOLVER because of the wide availability of Excel.

We will discuss how SOLVER was used to solve the four optimization
problems in Examples 13.3.1 - 13.3.4. Excel is a spread sheet whose columns
are labeled A,B,C,... and rows are labeled 1,2,3,... So “cell” B4 means the
cell in the fourth row and B column. When we say H2 = K we mean put
into cell H2 the formula/expression/data K.

30.2.1 Example 13.3.1

1. A1 = 0, A2 = 1, ..., A5 = 4 (the xi values)

2. B1 = 0, B2 = 1, ..., B5 = 16 (the x2
i values)

3. C1 = p1,...,C5 = p5 (initial values for the pi )

4. D1 = LN(C1), ...,D5 = LN(C5) (LN=natural log)

5. E1 = SUM(C1 : C5) (sum of the pi)

6. F1 = SUMPRODUCT (A1 : A5 ∗ C1 : C5) (mean=M(p))

James J. Buckley:
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

Fuzzy Probability and Statistics, StudFuzz 196, 2 3 5 – 251 (2006)
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7. G1 = SUMPRODUCT (B1 : B5 ∗ C1 : C5)

8. G2 = G1 − (F1 ∗ F1) (variance=σ2(p))

9. H1 = SUMPRODUCT (C1 : C5 ∗ D1 : D5)

10. H2 = −H1/LN(5) (F (p)/ln(5) = G(p))

Now open the SOLVER window. Do the following: (1) target cell= H2
(what to max); (2) changing cells= C1 : C5 (the variables); and (3) con-
straints are 0.000001 ≤ pi ≤ 1 for all i and E1 = 1, F1 = 3. Choose
“max” and click the solve button. A pi can not be zero because of the
ln(pi). In the options box we used automatic scaling, estimates=tangent,
derivatives=forward, and search=Newton.

30.2.2 Example 13.3.2

We take SOLVER from Example 13.3.1 and add a few things for each sub-
problem. First consider subproblem #1. Add I1 = F1 − 2.

Open the SOLVER window. Then: (1) target cell= J1; (2) changing
cells = C1 : C5, J1 ; (3) for the constraints change F1 = 3 to 2 ≤ F1 ≤ 3
and add J1 ≤ H2, J1 ≤ I1. Choose max and click solve.

For subproblem #2 Make I1 = 4 − F1 and change 2 ≤ F1 ≤ 3 to
3 ≤ F1 ≤ 4.

30.2.3 Example 13.3.3

Assuming SOLVER was just used for Example 13.3.2 we do not need to
change much for Example 13.3.3. Open the SOLVER window. Then: (1)
target cell= H2; (2) changing cells C1 : C5; (3) with constraints changed as
omit 2 ≤ F1 ≤ 3, omit J1 ≤ H2 and omit J1 ≤ I1 and add F1 = 2, G2 = 1.
Choose max and click solve.

30.2.4 Example 13.3.4

Assume that SOLVER just finished subproblem #1 Example 13.3.2.

1. Subproblem #1. Make I1 = 3 − F1 and I2 = 2 − G2. Open the
SOLVER widow. Add constraints 1 ≤ G2 ≤ 2, J1 ≤ I2 Solve the max
problem.

2. Subproblem #2. Change I1 to I1 = F1− 1. Change the constraints to
1 ≤ F1 ≤ 2. Solve.

3. Subproblem #3. Change I2 to I2 = G2. Change the constraints to
0 ≤ G2 ≤ 1. Solve.

4. Subproblem #4. Change I1 to I1 = 3−F1. Change the constraints to
2 ≤ F1 ≤ 2. Solve.
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30.2.5 Problems

The major problems with SOLVER are: (1) it can get out of the feasible set;
and (2) it can stop at a local maximum. If Solver gives an error message (left
the feasible set) just abort that run and start again. To guard against finding
local maximums you will need to run SOLVER many times (the more the
better) with different initial conditions. The initial pi values need not sum
to one but they must be positive.

30.3 Maple

In this section we give some of the Maple commands to solve optimization
problems and to construct figures in the book. The commands are mostly in
Maple 6 and a few are for Maple 9. The Maple 6 commands should be good
for Maple 7, 8 and 9 [2].

When you do a figure in Maple and then export it to LaTeX you get two
files. The first one is in LaTeX and the second is a “eps” file. In Maple 6 go
into the “eps” file and then go to the “ (backslash)drawborder true def” line
and change it to “(backslash)drawborder false def” if you do not want the
border. Also for the figures we will use y in place of α (or λ) for the variable
in the vertical axis.

30.3.1 Chapter 3

Maple commands for Example 3.4.3.4 are:

1. with(Optimization);

2. obj:=x+y;

3. cnsts:=[x <= 0.3, x >= 0.1, y >= 0.3, y <= 0.7, z >= 0.2, z <=
0.4, x + y + z = 1];

4. LPSolve(obj,cnsts,maximize);

5. LPSolve(obj,cnsts);
(for minimization problem)

Maple commands for Example 3.4.3.7 are:

1. with(Optimization);

2. y:=exp(−6 ∗ x) − exp(−10 ∗ x);
(after integrating equation (3.30))

3. NLPSolve(y,x=2..6);
(min. problem equation (3.32))
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4. NLPSolve(y,x=2..6,maximize);
(equation (3.33))

The Maple commands for Figure 3.6 are:

1. with(plots);

2. P111:=y->0.02+0.02*y;
(using y for α)

3. P112:=y->0.06-0.02*y;

4. P212:=y->0.011-0.003*y;

5. P211:=y->0.005+0.003*y;

6. eq1:=x=P111(y)/(P111(y)+P212(y));

7. eq2:=x=P112(y)/(P112(y)+P211(y));

8. implicitplot({eq1,eq2},x=0..1,y=0..1,color=black,
thickness=1,labels=[x,alpha]);

Maple commands for Figure 3.9 are:

1. with(plots);

2. N11:=y->0.06+0.02*y;
(using y for α)

3. N12:=y->0.35+0.07*y;

4. D11:=y->0.55-0.05*y;

5. D12:=y->0.45+0.05*y;

6. N21:=y->0.10-0.02*y;

7. N22:=y->0.49-0.07*y;

8. D21:=y->0.45+0.05*y;

9. D22:=y->0.55-0.05*y;

10. eq1:=x=0.2*(N21(y)/D21(y))+0.7*(N22(y)/D22(y));

11. eq2:=x=0.2*(N11(y)/D11(y))+0.7*(N12(y)/D12(y));

12. implicitplot({eq1,eq2},x=0..1,y=0..1,color=black,
thickness=1,labels=[x,alpha]);
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30.3.2 Chapter 4

Maple commands for Figure 4.3 are:

1. with(plots);

2. f1:=y-> 1−(exp(−8−y)+(8+y)∗exp(−8−y)+(8+y)2∗exp(−8−y)/2);

3. f2:=y-> 1 − (exp(−10 + y) + (10 − y) ∗ exp(−10 + y) + (10 − y)2 ∗
exp(−10 + y)/2);

4. eq1:=x=f1(y);

5. eq2:=x=f2(y);

6. implicitplot({eq1,eq2},x=0..1,y=0..1,color=black,thickness=1,labels=
[x,alpha]);

Maple commands for Figure 4.4 are:

1. with(plots);

2. with(stats);

3. f11:=y->statevalf[pf,binomiald[120,y]](115);

4. f12:=y->statevalf[pf,binomiald[120,y]](116)

5. f13:=y->statevalf[pf,binomiald[120,y]](117);

6. f14:=y->statevalf[pf,binomiald[120,y]](118);

7. f15:=y->statevalf[pf,binomiald[120,y]](119)

8. f16:=y->statevalf[pf,binomiald[120,y]](120);

9. f21:=y->statevalf[pf,binomiald[120,y]](115);

10. f22:=y->statevalf[pf,binomiald[120,y]](116);

11. f23:=y->statevalf[pf,binomiald[120,y]](117);

12. f24:=y->statevalf[pf,binomiald[120,y]](118);

13. f25:=y->statevalf[pf,binomiald[120,y]](119);

14. f26:=y->statevalf[pf,binomiald[120,y]](120);

15. f1:=y->f11(y)+f12(y)+f13(y)+f14(y)+f15(y)+f16(y);

16. f2:=y->f21(y)+f22(y)+f23(y)+f24(y)+f25(y)+f26(y);

17. eq1:=x=f1(0.75+0.10*y);

18. eq2:=x=f2(0.95-0.10*y);

19. implicitplot({eq1,eq2},x=0..1,y=0..1,color=black,thickness=1,
labels=[x,alpha]);
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30.3.3 Chapter 5

Maple commands for Example 5.3.1 are:

1. with(Optimization);

2. z:=int(0.398942*exp(−x2/2),x=(10-a)/b..(15-a)/b);

3. NLPSolve(z,a=8..12,b=2..
√

6);
(gives the min for α = 0)

4. NLPSolve(z,a=8..12,b=2..
√

6,maximize);
(gives the max for α = 0)

Maple commands for Example 5.5.3.1 are:

1. with(Optimization);

2. z:=int(0.398942*exp(−x2/2),x=(16.5-a)/
√

a..(21.5-a)/
√

a);

3. NLPSolve(z,a=15..25);
(gives the min for α = 0 cut for the normal)

4. NLPSolve(z,a=15..25,maximize);
(gives the max for α = 0 cut for the normal)

5. w:=sum(akexp(−a)/k!,k=17..21);

6. NLPSolve(w,a=15..25);
(gives the min for α = 0 cut for the Poisson)

7. NLPSolve(w,a=15..25,maximize);
(gives the max for α = 0 cut for the Poisson)

30.3.4 Chapter 6

The Maple commands for Figure 6.2 are:

1. with(plots);

2. with(stats);

3. f1:=y->28.6-(1.25)*(statevalf[icdf,normald](1-(y/2)));

4. f2:=y->28.6+(1.25)*(statevalf[icdf,normald](1-(y/2)));

5. eq1:=x=f1(y);

6. eq2:=x=f2(y);

7. implicitplot({eq1,eq2},x=20..36,y=0.1..1,color=black,thickness=3,
labels=[x,alpha]);
(for the other graphs use y = 0.01..1 or y = 0.001..1)
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30.3.5 Chapter 7

The Maple commands for Figure 7.1 are:

1. with(plots);

2. with(stats);

3. f1:=y->28.6-(0.3699)*(statevalf[icdf,studentst[24]](1-(y/2)));

4. f2:=y->28.6+(0.3699)*(statevalf[icdf,studentst[24]](1-(y/2)));

5. eq1:=x=f1(y);

6. eq2:=x=f2(y);

7. implicitplot({eq1,eq2},x=20..36,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);
(for the other graphs use y = 0.10..1 or y = 0.001..1)

30.3.6 Chapter 8

The Maple commands for Figure 8.1 are:

1. with(plots);

2. with(stats);

3. f1:=y->0.5143-(0.0267)*(statevalf[icdf,normald](1-(y/2)));

4. f2:=y->0.5143+(0.0267)*(statevalf[icdf,normald](1-(y/2)));

5. eq1:=x=f1(y);

6. eq2:=x=f2(y);

7. implicitplot({eq1,eq2},x=0..1,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);
(for the other graphs use y = 0.10..1 or y = 0.001..1)

30.3.7 Chapter 9

We substitute y for λ and then the Maple commands for Figure 9.1 are:

1. with(plots);

2. f1:=y->(1-y)*45.559 + y*24;

3. f2:=y->(1-y)*9.886 + y*24;

4. eq1:=x=82.08/f1(y);
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5. eq2:=x=82.08/f2(y);

6. implicitplot({eq1,eq2},x=0..10,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);
(for the other graphs use y = 0.10..1 or y = 0.001..1)

30.3.8 Chapter 10

Maple commands for Figure 10.1 are:

1. with(plots);

2. with(stats);

3. f12:=y->statevalf[icdf,normald[0,1]](1-(y/2));

4. f11:=y-> 0.01 ∗ (f12(y))2 + 100;

5. f1:=y->sqrt(f11(y));

6. f2:=y-> (0.5 ∗ f1(y) − 0.05 ∗ f12(y))2;

7. eq1:=x=f2(y);

8. f3:=y-> (0.5 ∗ f1(y) + 0.05 ∗ f12(y))2;

9. eq2:=x=f3(y);

10. implicitplot({eq1,eq2},x=20..30,y=0.01..1,color=black,
thickness=1,labels=[x,alpha]);

Maple commands for Figure 10.2 are:

1. with(plots);

2. with(stats);

3. f1:=y->statevalf[icdf,normald[0,1]](1-0.5*y);

4. f2:=y->30/(20+f1(y));

5. f3:=y->30/(20-f1(y));

6. eq1:=x=f2(y);

7. eq2:=x=f3(y);

8. implicitplot({eq1,eq2},x=0..2,y=0.05..1,color=black,
thickness=1,labels=[x,alpha]);

30.3.9 Chapters 11–13

No Maple commands are given.
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30.3.10 Chapter 14

Maple commands for Example 14.4.1 are:

1. with(student);

2. m:=3;

3. f1:=x->(10*x*exp(10*x))/(exp(10*x)-1) - m*x -1;
(Equations (14.13) and (14.14) together as one equation in only x = µ)

4. u:=fsolve(f1(x),x);
(solves for µ)

5. f2:=x->x/(exp(10*x)-1);
(Equation (14.13)

6. c:=f2(u);

7. f3:=(-ln(c)-u*m)/ln(10);

8. evalf(%);
(computes Ω(f)/ln(10))

Maple commands for Example 14.4.3 are:

1. with(student);

2. m:=3;

3. s:=1;
(variance is one)

4. c:= ′c′;

5. u:= ′u′;
(u=µ)

6. g:= ′g′;
(g=γ)

7. eq1:=int(c ∗ exp(u ∗ x) ∗ exp(g ∗ (x − m)2), x = 0..10) = 1;

8. eq2:=int(c ∗ x ∗ exp(u ∗ x) ∗ exp(g ∗ (x − m)2), x = 0..10) = m;

9. eq3:=int(c ∗ (x − m)2 ∗ exp(u ∗ x) ∗ exp(g ∗ (x − m)2), x = 0..10)=s;

10. sols:=fsolve({eq1,eq2,eq3},{c,u,g},{c=0..1,u=-1..0,g=-1..0});
(Solutions are given)

Maple commands for Example 14.5.2 are:

1. with(student);
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2. m:=3;

3. s:=1;
(variance is one)

4. c:= ′c′;

5. u:= ′u′;
(u=µ)

6. g:= ′g′;
(g=γ)

7. assume(u<0,g<0,−u + 6 ∗ g < 0);
(so improper integrals converge)

8. eq1:=int(c ∗ exp(u ∗ x) ∗ exp(g ∗ (x − m)2), x = 0..infinity) = 1;

9. eq2:=int(c ∗ x ∗ exp(u ∗ x) ∗ exp(g ∗ (x − m)2), x = 0..infinity) = m;

10. eq3:=int(c∗(x−m)2 ∗exp(u∗x)∗exp(g∗(x−m)2), x = 0..infinity)=s;

11. sols:=fsolve({eq1,eq2,eq3},{c,u,g},{c=0..1,u=-1..0,g=-1..0});
(Solutions are given)

30.3.11 Chapter 15

Maple commands for Figure 15.1 are:

1. with(plots);

2. with(stats);

3. f1:=y->1.6+(statevalf[icdf,normald](1-(y/2)));

4. f2:=y->1.6-(statevalf[icdf,normald](1-(y/2)));

5. f3:=y->1.96+(statevalf[icdf,normald](1-(y/2)));

6. f4:=y->1.96-(statevalf[icdf,normald](1-(y/2)));

7. eq1:=x=f1(y);

8. eq2:=x=f2(y);

9. eq3:=x=f3(y);

10. eq4:=x=f4(y);

11. implicitplot({eq1,eq2,eq3,eq4},x=-10..10,y=0.01..1,color=black,
thickness=3,labels=[x,alpha]);



30.3. MAPLE 245

30.3.12 Chapter 16

We give the Maple commands for Figure 16.1. All the numerical values of
the data items have been loaded into the functions. We use y for λ.

1. with(plots);

2. with(stats);

3. f1:=y->
√

1.40169 − 0.40169 ∗ y;
(f1(y) = Π2)

4. f2:=y->
√

0.67328 + 0.32672 ∗ y;
(f2(y) = Π1)

5. L:=y-> 140.169 − 40.169 ∗ y;

6. R:=y-> 67.328 + 32.672 ∗ y;

7. z2:=1-statevalf[cdf,chisquare[100]](L(y));

8. z1:=statevalf[cdf,chisquare[100]](R(y));

9. z:=z1+z2;
(computes α = z = f(λ), y = λ)

10. eq1:=x=f2(y)*(1.6-statevalf[icdf,studentst[100]](1-(z/2)));
(the left side of T )

11. eq2:=x=f1(y)*(1.6+statevalf[icdf,studentst[100]](1-(z/2)));
(the right side of T )

12. eq3:=x=f2(y)*(2.626-statevalf[icdf,studentst[100]](1-(z/2)));
(the left side of CV 2)

13. eq3:=x=f1(y)*(2.626+statevalf[icdf,studentst[100]](1-(z/2)));
(the right side of CV 2)

14. implicitplot({eq1,eq2,eq3,eq4},x=-10..10,y=0.01..1,color=black,
thickness=3,labels=[x,alpha]);

30.3.13 Chapter 17

Maple commands for Figure 17.1 are:

1. with(plots);

2. with(stats);

3. f1:=y->0.8-(0.9968)*(statevalf[icdf,normald](1-(y/2)));
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4. f2:=y->0.8+(0.9968)*(statevalf[icdf,normald](1-(y/2)));

5. f3:=y->1.96-(0.9968)*(statevalf[icdf,normald](1-(y/2)));

6. f4:=y->1.96-(0.9968)*(statevalf[icdf,normald](1-(y/2)));

7. eq1:=x=f1(y);

8. eq2:=x=f2(y);

9. eq3:=x=f3(y);

10. eq4:=x=f4(y);

11. implicitplot({eq1,eq2,eq3,eq4},x=-5..5,y=0.01..1,color=black,
thickness=3,labels=[x,alpha]);

30.3.14 Chapter 18

The Maple commands for Figure 18.1 are, using y for λ:

1. with(plots);

2. L:=y->140.169 -40.169*y;

3. R:=y->67.328+32.672*y;

4. eq1:=x=8375/L(y);
(left side χ2)

5. eq2:=x=8375/R(y);
(right side χ2)

6. eq3:=x=6732.8/L(y);
(left side CV 1)

7. eq4:=x=6732.8/R(y);
(right side CV 1)

8. eq5:=x=100*140.169/L(y);
(left side CV 2)

9. eq6:=x=100*140.169/R(y);
(right side CV 2)

10. implicitplot({eq1,eq2,eq3,eq4,eq5,eq6 },x=0..300,y=0.01..1,color=black,
thickness=3,labels=[x,alpha]);
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30.3.15 Chapter 19

The Maple commands for Figure 19.1 are:

1. with(plots);

2. with(stats);

3. f1:=y->statevalf[icdf,normald](1-(y/2));

4. f2:=y->1.35-0.65*exp((2/sqrt(13))*f1(y));

5. f3:=y->1.35+0.65*exp((2/sqrt(13))*f1(y));

6. f4:=y->1.35-0.65*exp((-2/sqrt(13))*f1(y));

7. f5:=y->1.35+0.65*exp((-2/sqrt(13))*f1(y));

8. eq1:=x=f2(y)/f3(y);

9. eq2:=x=f4(y)/f5(y);

10. implicitplot({eq1,eq2},x=-1..1,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);

30.3.16 Chapter 20

The Maple commands for Figures 20.1 and 20.2 are similar to those in Chap-
ter 7 and are omitted.
The Maple commands for Figure 20.3 are (using y for λ):

1. with(plots);

2. f1:=y->(1-y)*21.955 + y*10;

3. f2:=y->(1-y)*1.344 + y*10;

4. eq1:=x=217.709/f1(y);

5. eq2:=x=217.709/f2(y);

6. implicitplot({eq1,eq2},x=0..50,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);
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30.3.17 Chapter 21

The Maple commands for Figure 21.1 are:

1. with(plots);

2. with(stats);

3. f1:=y->81.3-(1.6496)*(statevalf[icdf,studentst[8]](y/2));

4. f2:=y->81.3+(1.6496)*(statevalf[icdf,studentst[8]](y/2));
(two sides of a)

5. f3:=y->0.742+(0.1897)*(statevalf[icdf,studentst[8]](y/2));

6. f4:=y->0.742-(0.1897)*(statevalf[icdf,studentst[8]](y/2));
(two sides of b)

7. g1:=y-> f1(y)+(-8.3)*f4(y);

8. g2:=y-> f2(y)+(-8.3)*f3(y);

9. eq1:=x=g1(y);

10. eq2:=x=g2(y);

11. implicitplot({eq1,eq2},x=60..90,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);

30.3.18 Chapter 22

The Maple commands for Figure 22.1 are (using y for λ):

1. with(plots);

2. with(stats);

3. f2:=y->
√

2.1955 − 1.1955 ∗ y;
(f2(y) = Π2)

4. f1:=y->
√

0.1344 + 0.8656 ∗ y;
(f1(y) = Π1)

5. L:=y-> 21.955 − 11.955 ∗ y;

6. R:=y-> 1.344 + 8.656 ∗ y;

7. z2:=1-statevalf[cdf,chisquare[8]](L(y));

8. z1:=statevalf[cdf,chisquare[8]](R(y));
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9. z:=z1+z2;
(computes α = z = f(λ), y = λ)

10. eq1:=x=f2(y)*(0.7880+statevalf[icdf,studentst[8]](1-(z/2)));
(the right side of T )

11. eq2:=x=f1(y)*(0.7880-statevalf[icdf,studentst[8]](1-(z/2)));
(the left side of T )

12. eq3:=x=f2(y)*(1.860+statevalf[icdf,studentst[8]](1-(z/2)));
(the right side of CV 2)

13. eq3:=x=f1(y)*(1.860-statevalf[icdf,studentst[8]](1-(z/2)));
(the left side of CV 2)

14. implicitplot({eq1,eq2,eq3,eq4},x=-10..10,y=0.01..1,color=black,
thickness=3,labels=[x,alpha]);

30.3.19 Chapter 23

The Maple commands for Figures 23.1-23.3 are similar to those for Figure
7.1. The Maple commands for Figure 23.4 are like those for Figure 9.1.

30.3.20 Chapter 24

The Maple commands for Figure 24.1 are:

1. with(plots);

2. with(stats);

3. f11:=y->-49.3413-(24.0609)*(statevalf[icdf,studentst[6]](1-(y/2)));

4. f12:=y->-49.3413+(24.0609)*(statevalf[icdf,studentst[6]](1-(y/2)));

5. f21:=y->128*(1.3642-(0.1432)*(statevalf[icdf,studentst[6]](1-(y/2)));

6. f22:=y->128*(1.3642+(0.1432)*(statevalf[icdf,studentst[6]](1-(y/2)));

7. f31:=y->96*(0.1139-(0.1434)*(statevalf[icdf,studentst[6]](1-(y/2)));

8. f32:=y->96*(0.1139+(0.1434)*(statevalf[icdf,studentst[6]](1-(y/2)));

9. eq1:=x=f11(y)+f21(y)+f31(y);

10. eq2:=x=f12(y)+f22(y)+f32(y);

11. implicitplot({eq1,eq2},x=-100..400,y=0.01..1,color=black,thickness=3,
labels=[x,alpha]);



250 CHAPTER 30. SELECTED MAPLE/SOLVER COMMANDS

30.3.21 Chapter 25

The Maple commands for Figures 25.1 and 25.2 are similar to those for Figure
22.1.

30.3.22 Chapter 26

The Maple commands for Figure 26.1 are (we use y for λ):

1. with(plots);

2. L1:=y->9.348-6.348*y;
(using y for λ)

3. R1:=y->0.216+2.784*y;

4. L2:=y->23.34-11.34*y;

5. R2:=y-> 4.404+7.596*y;

6. eq1:=x=1.227*(R2(y)/L1(y));

7. eq2:=x=1.227*(L2(y)/R1(y));

8. eq3:=x=0.8725*(R2(y)/L1(y));

9. eq4:=x=0.8725*(L2(y)/R1(y));

10. implicitplot({eq1,eq2,eq3,eq4},x=1..100,y=0..1,color=black,
thickness=1,labels=[x,lambda]);

30.3.23 Chapter 27

The Maple commands for Figure 27.1 are (we use y for λ):

1. with(plots);

2. L1:=y->7.378-5.378*y;
(using y for λ)

3. R1:=y->0.051+1.949*y;

4. L2:=y->14.45-8.45*y;

5. R2:=y->1.237+4.763*y;

6. eq1:=x=6.0*(R2(y)/L1(y));

7. eq2:=x=6.0*(L2(y)/R1(y));

8. eq3:=x=1.713*(R2(y)/L1(y));
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9. eq4:=x=1.713*(L2(y)/R1(y));

10. implicitplot({eq1,eq2,eq3,eq4},x=1..50,y=0..1,color=black,
thickness=1,labels=[x,lambda]);

The Maple commands for Figure 27.2 are similar to those for Figure 17.1.

30.3.24 Chapter 28

The only figure was done in LaTeX.

30.3.25 Chapter 29

To obtain a copy of the C++ code to generate sequences of random fuzzy
numbers described in Example 29.3.1 in Chapter 29 please contact Mr.
Leonard J. Jowers, Department of Computer and Information Sciences, Uni-
versity of Alabama at Birmingham, Birmingham, Alabama, 35294, jow-
ersl@cis.uab.edu.

30.4 References

1. Frontline Systems (www.frontsys.com).

2. Maple 9, Waterloo Maple Inc., Waterloo, Canada.

3. www.solver.com.



Chapter 31

Summary and Future
Research

31.1 Summary

This book is an updated, and combination of, the two books [1] and [3].
Basically we took theoretical results from these two books and put them into
this new book together with some new results.

First we took the end of Chapter 2 on restricted fuzzy arithmetic and
Chapters 3, 4 and 8 of [1] into Chapters 3-5 of this book. We left out all the
applications in [1]. What is new here is: (1) using a nonlinear optimization
program in Maple [5] to solve certain optimization problems in fuzzy prob-
ability, where previously we used a graphical method or calculus; and (2)
a new algorithm, suitable for using only pencil and paper, for solving some
restricted fuzzy arithmetic problems. The introduction to fuzzy estimation
in Chapters 6-9 is based on the book [3] and we refer the interested reader
to that book for more about fuzzy estimators. The fuzzy estimators omitted
from this book are those for µ1 − µ2, p1 − p2, σ1/σ2, etc. Fuzzy estimators
for the arrival and service rates in Chapter 10 is from [2] and [4]. The reader
should see those books for applications in queuing networks. Also, fuzzy esti-
mators for the uniform probability density in Chapter 11 can be found in [4],
but the derivation of these fuzzy estimators is new to this book. The fuzzy
uniform distribution was used for arrival/service rates in queuing models in
[4].

The estimation of fuzzy/crisp probability (mass) density functions based
on a maximum entropy principle subject to fuzzy constraints in Chapters
12-14 are new to this book. In Chapter 12 we obtain fuzzy results but in
Chapters 13 and 14 we determine crisp discrete and crisp continuous proba-
bility densities.

James J. Buckley:
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

(2006)Fuzzy Probability and Statistics, StudFuzz 196, 2 5 3 – 256
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The introduction to fuzzy hypothesis testing in Chapters 15-18 is based
on the book [3] and the reader needs to consult that book for more fuzzy
hypothesis testing. What we omitted are tests on µ1 = µ2, p1 = p2, σ1 = σ2,
etc.

The chapters on fuzzy correlation and regression come from [3]. The
results on the fuzzy ANOVA (Chapters 26 and 27) and a fuzzy estimator for
the median (Chapter 28) are new and have not been published before.

The chapter on random fuzzy numbers (Chapter 29) is also new to this
book and these results have not been previously published. Applications
of crisp random numbers to Monte Carlo studies are well known and we
also plan to use random fuzzy numbers in Monte Carlo studies. Our first
use of random fuzzy numbers will be to get approximate solutions to fuzzy
optimization problems whose solution is unknown or computationally very
difficult. However, this becomes a rather large project and will probably be
the topic of a future book.

Chapter 30 contains selected Maple/Solver ([5]-[7]) commands used in the
book to solve optimization problems or to generate the figures.

31.2 Future Research

Certain decisions were made in the book which will now be formulated as
topics for future research.

31.2.1 Fuzzy Probability

More work can be done on the basic properties of our fuzzy probability includ-
ing fuzzy conditional probability and fuzzy independence. There are other
discrete, and continuous, fuzzy random variables to investigate together with
their applications.

31.2.2 Unbiased Fuzzy Estimators

We faced the problem of getting an unbiased fuzzy estimator starting in
Chapter 9. We said that our fuzzy estimator was unbiased if the vertex
(where the membership function equals one) of the fuzzy number is at the
crisp point estimator. For example, if we are estimating the variance of
a normally distributed population, the vertex should be at s2 the sample
variance. Otherwise, it is a biased fuzzy estimator. Using the usual confidence
intervals to construct our fuzzy estimator produced a biased fuzzy estimator.
We proposed a solution to this problem giving an unbiased fuzzy estimator.
Is there a “better” solution?



31.2. FUTURE RESEARCH 255

31.2.3 Comparing Fuzzy Numbers

In fuzzy hypothesis testing we need to be able to determine which of the
following three possibilities for two fuzzy numbers M and N is true: (1)
M < N , (2) M ≈ N , or (3) M > N . In this book we used the procedure
outlined in Section 2.5 in Chapter 2. If we use another method of comparing
two fuzzy numbers (see the references in Chapter 2), how will the results of
fuzzy hypothesis testing be effected? Is fuzzy hypothesis testing robust with
respect to the method of comparing fuzzy numbers?

31.2.4 No Decision Conclusion

Starting in Chapter 15 our final conclusion in fuzzy hypothesis testing was:
(1) reject the null hypothesis; (2) do not reject the null hypothesis; or (3)
no decision on the null hypothesis. Let the fuzzy test statistic be Z and the
two fuzzy critical values CV i, i = 1, 2. The “no decision” conclusion resulted
from CV 1 ≈ Z < CV 2 or CV 1 < Z ≈ CV 2. In this case should the final
decision be “do not reject the null hypothesis”?

31.2.5 Fuzzy Uniform

We need mathematical expressions for the confidence intervals in Chapter 11
so that we can accurately construct the fuzzy estimators.

31.2.6 Interval Arithmetic

These problems started in Chapter 16 where we were calculating α−cuts of
our fuzzy statistic from the quotient of two intervals [a, b]/[c, d]. We know that
the interval in the denominator is usually positive (c > 0) but the interval
in the numerator can be positive (a > 0), negative (b < 0) or “mixed”
(a < 0 < b). Due to interval arithmetic (Section 2.3.2 in Chapter 2) we
do the computation differently in the three cases of [a, b] positive, negative
or mixed. We discussed this in some detail in Section 16.3.1 in Chapter 16
but we did not implement these results formally in the rest of the book. For
example, some of our graphs of our fuzzy statistic and its fuzzy critical values
were not precisely correct. When this happened we mentioned this fact and
that it did not effect the final result of reject H0, do not reject H0 or no
decision on H0. We need to correct this so that all the graphs are completely
correct.

31.2.7 Fuzzy Prediction

We need theoretical results in Chapter 21 (and 24) on the comparison of
y(x)[0], the 99% confidence interval for E(Y ) and the 99% confidence interval
for y.
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31.2.8 Fuzzy ANOVA

Extend the results in Chapter 27 to fuzzy two-way ANOVA with multiple
data items per cell, and other models in this area.

31.2.9 Nonparametric Statistics

Nonparametric statistics is a large area and all we looked at in Chapter 28
was a fuzzy estimator for the median. Much more work can be done in this
area of fuzzy nonparametric statistics.

31.2.10 Randomness Tests Fuzzy Numbers

We should expand our method of generating “random” fuzzy numbers to
trapezoidal shaped fuzzy numbers. Also the sides of the fuzzy numbers may
be described by polynomials of degree three or more. We need to develop
more randomness tests for sequences of fuzzy numbers.

31.2.11 Future

In the Introduction we mentioned that we cover most of elementary statistics
that can be found in an introductory course in statistic except contingency
tables and nonparametric statistics. So where to next? Our method starts
with crisp data producing fuzzy number estimators. Any statistical method
based on estimation, not covered in this book, could be next.

31.3 References

1. J.J. Buckley: Fuzzy Probabilities: New Approach and Applications,
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4. J.J. Buckley: Simulating Fuzzy Systems, Springer, Heidelberg, Ger-
many, 2005.

5. Frontline Systems (www.frontsys.com).
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