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Preface

The radial basis function method for multivariate approximation is one of the
most often applied approaches in modern approximation theory when the task is
to approximate scattered data in several dimensions. Its development has lasted
for about 25 years now and has accelerated fast during the last 10 years or so. It
is now in order to step back and summarise the basic results comprehensively, so
as to make them accessible to general audiences of mathematicians, engineers
and scientists alike.

This is the main purpose of this book which aims to have included all neces-
sary material to give a complete introduction into the theory and applications of
radial basis functions and also has several of the more recent results included.
Therefore it should also be suitable as a reference book to more experienced
approximation theorists, although no specialised knowledge of the field is re-
quired. A basic mathematical education, preferably with a slight slant towards
analysis in multiple dimensions, and an interest in multivariate approximation
methods will be suitable for reading and hopefully enjoying this book.

Any monograph of this type should be self-contained and motivated and
need not much further advance explanations, and this one is no exception to
this rule. Nonetheless we mention here that for illustration and motivation, we
have included in this book several examples of practical applications of the
methods at various stages, especially of course in the Introduction, to demon-
strate how very useful this new method is and where it has already attracted
attention in real life applications. Apart from such instances, the personal in-
terests of the author mean that the text is dominated by theoretical analysis.
Nonetheless, the importance of applications and practical methods is under-
lined by the aforementioned examples and by the chapter on implementations.
Since the methods are usually applied in more than two or three dimensions,
pictures will unfortunately not help us here very much which explains their
absence.

iX



X Preface

After an introduction and a summary in Chapter 2 of the types and results of
analysis that are used for the radial basis functions, the order of the remaining
chapters essentially follows the history of the development: the convergence
analysis was first completed in the setting of gridded data, after some initial
and seminal papers by Duchon, and then further results on scattered data and
their convergence orders were found; subsequently, radial basis functions on
compact support were studied, then (and now) efficient implementations and
finally wavelets using radial basis functions are the most topical themes.

Few can complete a piece of work of this kind without helping hands from
various people. In my case, I would like to thank first and foremost my teacher
Professor Michael Powell who introduced me into radial basis function research
at Cambridge some 17 years ago and has been the most valuable teacher, friend
and colleague to me ever since. Dr David Tranah of Cambridge University Press
suggested once that I should write this book and Dr Alan Harvey as an editor kept
me on the straight and narrow thereafter. Dr Oleg Davydov, Mr Simon Hubbert,
Dr Ulrike Maier, Professor Tomas Sauer and Professor Robert Schaback looked
at various parts of the manuscript and gave many helpful suggestions. Finally,
I would like to thank Mrs Marianne Pfister of ETH who has most expertly typed
an early version of the manuscript and thereby helped to start this project.

At the time of proofreading this book, the author learnt about the death of
Professor Will Light of Leicester University. Will’s totally unexpected death is
an irreplaceable less to approximation theory and much of what is being said in
this book would have been unthinkable without his many contributions to and
insights into the mathematics of radial basis functions.
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Introduction

In the present age, when computers are applied almost anywhere in science,
engineering and, indeed, all around us in day-to-day life, it becomes more and
more important to implement mathematical functions for efficient evaluation in
computer programs. It is usually necessary for this purpose to use all kinds of
‘approximations’ of functions rather than their exact mathematical form. There
are various reasons why this is so. A simple one is that in many instances it
is not possible to implement the functions exactly, because, for instance, they
are only represented by an infinite expansion. Furthermore, the function we
want to use may not be completely known to us, or may be too expensive or
demanding of computer time and memory to compute in advance, which is
another typical, important reason why approximations are required. This is true
even in the face of ever increasing speed and computer memory availability,
given that additional memory and speed will always increase the demand of the
users and the size of the problems which are to be solved. Finally, the data that
define the function may have to be computed interactively or by a step-by-step
approach which again makes it suitable to compute approximations. With those
we can then pursue further computations, for instance, or further evaluations
that are required by the user, or display data or functions on a screen. Such cases
are absolutely standard in mathematical methods for modelling and analysing
functions; in this context, analysis can mean, e.g., looking for their stationary
points with standard optimisation codes such as quasi-Newton methods.

As we can see, the applications of general purpose methods for functional
approximations are manifold and important. One such class of methods will be
introduced and is the subject area of this book, and we are particularly interested
when the functions to be approximated (the approximands)

(a) depend on many variables or parameters,
(b) are defined by possibly very many data,
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(c) and the data are ‘scattered’ in their domain.

The ‘radial basis function approach’ is especially well suited for those
cases.

1.1 Radial basis functions

Radial basis function methods are the means to approximate the multivariate
functions we wish to study in this book. That is, in concrete terms, given data
in n dimensions that consist of data sites £ € R” and ‘function values’ f; =
f(&) € R (or C but we usually take R), we seek an approximant s: R* — R to
the function f: R" — R from which the data are assumed to stem. Here n > 0
is the dimension of underlying space and, incidentally, one often speaks — not
quite correctly —of ‘data’ when referring just to the £. They can also be restricted
to a domain D C R" and if this D is prescribed, one seeks an approximation
s: D — R only. In the general context described in the introduction to this
chapter, we consider f(&) as the explicit function values we know of our f,
which itself is unknown or at least unavailable for arbitrarily large numbers of
evaluations. It could represent magnetic potentials over the earth’s surface or
temperature measurements over an area or depth measurements over part of an
ocean.

While the function f is usually not known in practice, for the purpose of
(e.g. convergence) analysis, one has to postulate the existence of f, so that s
and f can be compared and the quality of the approximation estimated. More-
over, some smoothness of f normally has to be required for the typical error
estimates.

Now, given a linear space S of approximants, usually finite-dimensional, there
are various ways to find approximants s € S to approximate the approximand
(namely, the object of the approximation) f. In this book, the approximation
will normally take place by way of interpolation, i.e. we explicitly require
slg = flg, where E C R” is the discrete set of data sites we have mentioned
above. Putting it another way, our goal is to interpolate the function between
the data sites. It is desirable to be able to perform the interpolation — or indeed
any approximation — without any further assumptions on the shape of E, so that
the data points can be ‘scattered’. But sometimes we assume E = (hZ)", h a
positive step size, Z the integers, for example, in order that the properties of the
approximation method can more easily be analysed. We call this type of data
distribution a square (cardinal) grid of step size 4. This is only a technique for
analysis and means no restriction for application of the methods to scattered &.
Interpolants probably being the most frequent choice of approximant, other
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choices are nonetheless possible and used in practice, and they can indeed be
very desirable such as least squares approximations or ‘quasi-interpolation’, a
variant of interpolation, where s still depends in a simple way on f¢, £ € E,
while not necessarily matching each f; exactly. We will come back to this type
of approximation at many places in this book. We remark that if we know how to
approximate a function f: R" — R we can always approximate a vector-valued
approximand, call it F: R" — R™, m > 1, componentwise.

From these general considerations, we now come back to our specific con-
cepts for the subject area of this monograph, namely, for radial basis function
approximations the approximants s are usually finite linear combinations of
translates of a radially symmetric basis function, say ¢(|| - ||), where || - || is the
Euclidean norm. Radial symmetry means that the value of the function only
depends on the Euclidean distance of the argument from the origin, and any
rotations thereof make no difference to the function value.

The translates are along the points £ € E, whence we consider linear combi-
nations of ¢(|| - —&||). So the data sites enter already at two places here, namely
as the points where we wish to match interpolant s and approximand f, and as
the vectors by which we translate our radial basis function. Those are called the
centres, and we observe that their choice makes the space S dependent on the
set E. There are good reasons for formulating the approximants in this fashion
used in this monograph.

Indeed, it is a well-known fact that interpolation to arbitrary data in more than
one dimension can easily become a singular problem unless the linear space S
from which s stems depends on the set of points E — or the E have only very
restricted shapes. For any fixed, centre-independent space, there are some data
point distributions that cause singularity.

In fact, polynomial interpolation is the standard example where this problem
occurs and we will explain that in detail in Chapter 3. This is why radial basis
functions always define a space S C C(R") which depends on E. The simplest
example is, for a finite set of centres E in R”,

(1.1) S = {stn-—sn

EcE

).g S R}

Here the ‘radial basis function’ is simply ¢(r) = r, the radial symmetry stem-
ming from the Euclidean norm || - ||, and we are shifting this norm in (1.1) by
the centres &.

More generally, radial basis function spaces are spanned by translates

o(l- =&, &€&,
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where ¢: R, — Rare given, continuous functions, called radial basis functions.
Therefore the approximants have the general form

s() =Y heop(ll- =€), xR,
E€B
with real coefficients A¢.

Other examples that we will encounter very often from now on are ¢(r) =
r? log r (‘thin-plate splines’), ¢(r) = /72 + 2 (c a positive parameter, ‘mul-
tiquadrics’), ¢(r) = e—or’ (o a positive parameter, ‘Gaussian’). As the later
analysis will show, radial symmetry is not the most important property that
makes these functions such suitable choices for approximating smooth func-
tions as they are, but rather their smoothness and certain properties of their
Fourier transform. Nonetheless we bow to convention and speak of radial basis
functions even when we occasionally consider general n-variate ¢: R" — R
and their translates ¢(- — &) for the purpose of approximation. And, at any
rate, most of these basis functions that we encounter in theory and practice are
radial. This is because it helps in applications to consider genuinely radial ones,
as the composition with the Euclidean norm makes the approach technically in
many respects a univariate one; we will see more of this especially in Chapter 4.
Moreover, we shall at all places make a clear distinction between considering
general n-variate ¢: R" — R and radially symmetric ¢(|| - ||) and carefully state
whether we use one or the other in the following chapters.

Unlike high degree spline approximation with scattered data in more than
one dimension, and unlike the polynomial interpolation already mentioned, the
interpolation problem from the space (1.1) is always uniquely solvable for sets
of distinct data sites &, and this is also so for multiquadrics and Gaussians. For
multivariate polynomial spline spaces on nongridded data it is up to now not
even possible in general to find the exact dimension of the spline space! Thus
we may very well be unable to interpolate uniquely from that spline space.
Only several upper and lower bounds on the spatial dimension are available.
There exist radial basis functions ¢ of compact support, where there are some
restrictions so that the interpolation problem is nonsingular, but they are only
simple bounds on the dimension n of R” from where the data sites come. We
will discuss those radial basis functions of compact support in Chapter 6 of
this book.

Further remarkable properties of radial basis functions that render them
highly efficient in practice are their easily adjustable smoothness and their
powerful convergence properties. To demonstrate both, consider the ubiquitous
multiquadric function which is infinitely often continuously differentiable for
¢ > 0 and only continuous for ¢ = 0, since in the latter case ¢(r) = r and
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¢(]| - |I) is the Euclidean norm as considered in (1.1) which has a derivative
discontinuity at zero. Other useful radial basis functions of any given smooth-
ness are readily available, even of compact support, as we have just mentioned.
Moreover, as will be seen in Chapter 4, on E = (hZ)", e.g. an approximation
rate of O(h"*!) is obtained with multiquadrics to suitably smooth f. This is
particularly remarkable because the convergence rate increases linearly with
dimension, and, at any rate, it is very fast convergence indeed. Of course, the
amount of work needed (e.g. the number of centres involved) for performing
the approximation also increases at the same rate. Sometimes, even exponen-
tial convergence orders are possible with multiquadric interpolation and related
radial basis functions.

1.2 Applications

Consequently, it is no longer a surprise that in many applications, radial basis
functions have been shown to be most useful. Purposes and applications of such
approximations and in particular of interpolation are manifold. As we have al-
ready remarked, there are many applications especially in the sciences and in
mathematics. They include, for example, mappings of two- or three-dimensional
images such as portraits or underwater sonar scans into other images for com-
parison. In this important application, interpolation comes into play because
some special features of an image may have to be preserved while others need
not be mapped exactly, thus enabling a comparison of some features that may
differ while at the same time retaining others. Such so-called ‘markers’ can be,
for example, certain points of the skeleton in an X-ray which has to be compared
with another one of the same person, taken at another time. The same structure
appears if we wish to compare sonar scans of a harbour at different times, the
rocks being suitable as markers this time. Thin-plate splines turned out to be
excellent for such very practical applications (Barrodale and Zala, 1999).

Measurements of potential or temperature on the earth’s surface at ‘scat-
tered’ meteorological stations or measurements on other multidimensional ob-
jects may give rise to interpolation problems that require the aforementioned
scattered data. Multiquadric approximations are performing well for this type
of use (Hardy, 1990).

Further, the so-called track data are data sites which are very close together on
nearly parallel lines, such as can occur, e.g., in measurements of sea temperature
with a boat that runs along lines parallel to the coast. So the step size of the
measurements is very small along the lines, but the lines may have a distance
of 100 times that step size or more. Many interpolation algorithms fail on
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such awkward distributions of data points, not so radial basis function (here
multiquadric) methods (Carlson and Foley, 1992).

The approximation to so-called learning situations by neural networks usu-
ally leads to very high-dimensional interpolation problems with scattered data.
Girosi (1992) mentions radial basis functions as a very suitable approach to
this, partly because of their availability in arbitrary dimensions and of their
smoothness.

A typical application is in fire detectors. An advanced type of fire detector
has to look at several measured parameters such as colour, spectrum, inten-
sity, movement of an observed object from which it must decide whether it is
looking at a fire in the room or not. There is a learning procedure before the
implementation of the device, where several prescribed situations (these are the
data) are tested and the values zero (no fire) and one (fire) are interpolated, so
that the device can ‘learn’ to interpolate between these standard situations for
general situations later when it is used in real life.

In another learning application, the data come from the raster of a screen
which shows the reading of a camera that serves as the eye of a robot. In this
application, it is immediately clear why we have a high-dimensional problem,
because each point on the square raster represents one parameter, which gives
a million points even on a relatively low resolution of 1000 by 1000. The data
come from showing objects to the robot which it should recognise as, for in-
stance, a wall it should not run into, or a robot friend, or its human master or
whatever. Each of these situations should be interpolated and from the inter-
polant the robot should then be able to recognise other, similar situations as
well. Invariances such as those objects which should be recognised indepen-
dently of angle etc. are also important in measurements of neural activity in the
brain, where researchers aim to recognise those activities of the nerve cells that
appear when someone is looking at an object and which are invariant of the an-
gle under which the object is looked at. This is currently an important research
area in neuro-physics (Eckhorn, 1999, Kremper, Schanze and Eckhorn 2002)
where radial basis functions appear often in the associated physics literature.
See the above paper by Eckhorn for a partial list.

The numerical solution of partial differential equations also enters into the
long list of mathematical applications of radial basis function approximation.
In the event, Pollandt (1997) used them to perform approximations needed in
a multidimensional boundary element method to solve nonlinear elliptic PDEs
on a domain €2, such as Auy = p(u(x),x),x €e Q C R, £ =1,...,N,
with Dirichlet boundary conditions u¢|sq = g¢, When u = (uy, ..., uy)"
are suitably smooth functions and p, are multivariate polynomials. Here, A
denotes the Laplace operator. The advantage of radial basis functions in this
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application is the already mentioned convergence power, in tandem with easy
formulation of interpolants and quasi-interpolants and their introduction into
the PDE. Moreover, especially for boundary element methods, it is relevant
that several radial basis functions are Green’s functions of elliptic differential
operators, i.e. the elliptic differential operator applied to them including the
composition with the ubiquitous Euclidean norm yields the Dirac §-operator.

The same reasons led Sonar (1996) to use radial basis functions for the
local reconstruction of solutions within algorithms which solve numerically
hyperbolic conservation laws. It was usual to employ low order polynomial
approximation (mostly linear) for this purpose so far, but it turned out that radial
basis functions, especially thin-plate splines, help to improve the accuracy of
the finite volume methods notably to solve the hyperbolic equations, because
of their ability to approximate locally (‘recover’ in the language of hyperbolic
conservation laws) highly accurately.

They appear to be remarkably resilient against irregular data distributions,
for not only track data but also those that occur, for instance, when local models
are made for functions whose stationary points (or extrema) are sought (Powell,
1987). This is problematic because algorithms that seek such points will nat-
urally accumulate data points densely near the stationary point, where now an
approximation is made, based on those accumulated points, to continue with
the approximant instead of the original function (which is expensive to evalu-
ate). Furthermore, it turned out to be especially advantageous for their use that
radial basis functions have a variation-diminishing property which is explained
in Chapter 5. Thin-plate splines provide the most easily understood variant of
that property and thus they were used for the first successful experiments with
radial basis functions for optimisation algorithms. Not only do the variation-
diminishing properties guarantee a certain smoothness of the approximants,
but they are tremendously helpful for the analysis because many concepts of
orthogonal projections and norm-minimising approximants can be used in the
analysis. We shall do so often in this book.

In summary, our methods are known from practice to be good and general
purpose approximation and interpolation techniques that can be used in many
instances, where other methods are unlikely to deliver useful results or fail
completely, due to singular interpolation matrices or too high dimensionality.
The methods are being applied widely, and important theoretical results have
been found that support the experimental and practical observations, many of
which will enter into this book. Among them are the exceptional accuracy that
can be obtained, when interpolating smooth functions.

Thus the purpose of this book is to demonstrate how well radial basis
function techniques work and why, and to summarise and explain efficient
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implementations and applications. Moreover, the analysis presented in this
work will allow a user to choose which radial basis functions to use for his
application based on its individual merits. This is important because the theory
itself, while mathematically stimulating, stands alone if it does not yield itself
to support practical use.

1.3 Contents of the book

We now outline the contents and intents of the following chapters. The next
chapter gives a brief summary of the schemes including precise mathemati-
cal details of some specific methods and aspects, so that the reader can get
sufficient insight into the radial basis function approach and its mathematical
underpinning to understand (i) the specifics of the methods and (ii) the kind of
mathematical analysis typically needed. This may also be the point to decide
whether this approach is suitable for his needs and interests and whether he or
she wants to read on to get the full details in the rest of the book or, e.g., just
wants to go directly to the chapter about implementations.

Chapter 3 puts radial basis functions in the necessary, more general context
of multivariate interpolation and approximation methods, so that the reader can
compare and see the ‘environment’ of the book. Especially splines, Shepard’s
method, and several other widely used (mostly interpolation) approaches will
be reviewed briefly in that chapter. There is, however, little on practice and
implementations in Chapter 3. It is really only a short summary and not
comprehensive.

Chapter 4 introduces the reader to the very important special case of E =
(hZ)", h > 0,1.e.radial basis functions on regularly spaced (integer) grids. This
was one of the first cases when their properties were explicitly and comprehen-
sively analysed and documented, because the absence of boundaries and the
periodicity of E allow the application of powerful analysis tools such as Fourier
transforms, Poisson summation formula etc. While the analysis is easier, it still
gives much insight into the properties of the functions and the spaces generated
by them, such as unique existence of interpolants, conditioning of interpolation
matrices and exactness of approximations to polynomials of certain degrees,
and, finally but most importantly, convergence theorems. Especially the latter
will be highly relevant to later chapters of the book. Moreover, several of the re-
sults on gridded E will be seen to carry through to scattered data, so that indeed
the properties of the spaces generated by translates of radial basis functions
were documented correctly. Many of the results are shown to be best possible,
too, that is, they explicitly give the best possible convergence results.
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The following chapter, 5, generalises the results of Chapter 4 to scattered data,
confirming that surprisingly many approximation order results on gridded data
carry through with almost no change, whereas, naturally, new and involved
proofs are needed. One of the main differences is that there are usually finitely
many data for this setting and, of course, there are boundaries of the domain
wherein the £ € E reside, which have to be considered. It is usual that there
are less striking convergence results in the presence of boundaries and this is
what we will find there as well.

This Chapter 5, dealing with the many and deep theorems that have been
established concerning the convergence rates of approximations, is the core
of the book. This is because, aside from the existence and uniqueness the-
orems about interpolation, convergence of the methods is of utmost impor-
tance in applications. After all, the various rates of convergence that can be
achieved are essential to the choice of a method and the interpretation of its
results. Besides algebraic rates of convergence that are related to the polyno-
mial exactness results already mentioned, the aforementioned spectral rates are
discussed.

In Chapter 6, radial basis functions with compact support are constructed.
They are useful especially when the number of data or evaluations of the inter-
polant is massive so that any basis functions of global support incur prohibitive
costs for evaluation. Many of those radial basis functions are piecewise polyno-
mials, and all of them have similar nonsingularity properties for the interpolation
problem to the ones we have mentioned before. Moreover, radial basis functions
with compact support are suitable for, and are now actually used in, solving
linear partial differential equations by Galerkin methods. There, they provide
a suitable replacement for the standard piecewise polynomial finite elements.
It turns out that they can be just as good as means for approximation, while
not requiring any triangulation or mesh, so they allow meshless approxima-
tion which is easier when the amount of data has to be continuously enlarged
or made smaller. That is often the case when partial differential equations are
solved numerically. By contrast, finite elements can be difficult to compute in
three or more dimensions for scattered data due to the necessity of triangulating
the domain before using finite elements and due to the complicated spaces of
piecewise polynomials in more than two dimensions.

While many such powerful theoretical results exist for radial basis functions,
the implementation of the methods is nontrivial and requires careful attention.
Thus Chapter 7 describes several modern techniques that have been developed to
implement the approach, evaluate and compute interpolants fast and efficiently,
so that real-time rendering of surfaces that interpolate the data is possible now,
for example. The methods we describe are iterative and they include so-called
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particle methods, efficient preconditioners and the Beatson—Faul-Goodsell-
Powell (BFGP) algorithm of local Lagrange bases.

As outlined above, the principal application of radial basis functions is clearly
with interpolation. This notwithstanding, least squares methods are frequently
asked for, especially because often in applications, data are inaccurate, too
many, and/or need smoothing. Hence Chapter 8 is devoted to least squares
approaches both using the standard Euclidean least squares setting and with the
so-called Sobolev inner products. Existence and convergence questions will be
considered as well as, briefly, implementation.

Closely related to the least squares problem, whose solution is facilitated by
computing orthogonal or orthonormal bases of the radial basis function spaces in
advance, are ‘wavelet expansions’ by radial basis functions. In these important
wavelet expansions, the goal is to decompose a given function simultaneously
into its local parts in space and in frequency. The purpose of this can be the anal-
ysis, approximation, reconstruction, compression, or filtering of functions and
signals. In comparison with the well-known Fourier analysis we can, e.g., tell
from a wavelet expansion when a frequency appears in a melody, say, and not just
that it appears and with what amplitude. This is what we call localness, not only
in frequency for the wavelet expansions. Radial basis functions are bound to be
useful for this because of their approximational efficacy. After all, the better we
can approximate from a space, the fewer coefficients are needed in expansions
of functions using bases of that space. All this is detailed, together with several
examples of radial basis (especially multiquadric) wavelets, in Chapter 9.

Chapter 10 concerns the most recent and topical results in review form and an
outlook and ideas towards further, future research. Many aspects of these tools
are studied in research articles right now and in Chapter 10 we attempt to catch
up with the newest work. Of course this can only be discussed very briefly. Sev-
eral important questions are still wide open and we will outline some of those.

We conclude with an extensive bibliography, our principal aim being to
provide a good account of the state of the art in radial basis function research.
Of course not all aspects of current or past interest in radial basis functions
can be covered within the scope of a book of this size but the aim is at least
to provide up to date references to those areas that are not covered. We also
give a commentary on the bibliography to point the reader to other interesting
results that are not otherwise in this book on one hand, and to comment on
generalisations, other points of view etc. on those results that are.

Now, in the following chapter, we give the already mentioned summary of
some aspects of radial basis functions in detail in order to exemplify the others.



2
Summary of Methods and Applications

We have seen in the introduction what a radial basis function is and what the
general purposes of multivariate interpolation are, including several examples.
The aim of this chapter is more specifically oriented to the mathematical analysis
of radial basis functions and their properties in examples.

That is, in this chapter, we will demonstrate in what way radial basis function
interpolation works and give several detailed examples of its mathematical, i.e.
approximation, properties. In large parts of this chapter, we will concentrate
on one particular example of a radial basis function, namely the multiquadric
function, but discuss this example in much detail. In fact, many of the very typ-
ical properties of radial basis functions are already contained in this example
which is indeed a nontrivial one, and therefore quite representative. We delib-
erately accept the risk of being somewhat repetitive here because several of the
multivariate general techniques especially of Chapter 4 are similar, albeit more
involved, to the ones used now. What is perhaps most important to us in this
chapter, among all current radial basis functions, the multiquadric is the best-
known one and best understood, and very often used. One reason for this is its
versatility due to an adjustable parameter ¢ which may sometimes be used to
improve accuracy or stability of approximations with multiquadric functions.

2.1 Invertibility of interpolation matrices

The goal is, as before, to provide interpolants to data (§, fz) € R" x R which
are arbitrary (but the £ are distinct and there are, at this point, just finitely many
of them). The data sites & are from the set &, which is still a finite subset of R”
with more than one element, and our interpolants are required to have the form

s) =) redllx —&l), xeR".

Ee€l

11
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The ¢ are real coefficients. They are required to satisfy the interpolation con-
ditions s|g = f|z, thatis f(&) = s(§) for all £ from E, where we think of the
feas f(§) foran f: R" — R, as before, which usually needs to have a certain
minimal smoothness. One of the central results of this chapter shows that the
matrix that determines the A¢ using the f;, namely the so-called interpolation
matrix

2.1 A ={o(It =D} .ses,

is always nonsingular for the multiquadric function ¢(r) = +/r2 + ¢2. Indeed,
the entries Az of the vector A = {As}¢cz are found by premultiplying { fz}ees
by A~!, as the linear system we solve is

AX = {fi)eez = 1.

In practical computations, however, one uses a solver for the above linear system
and does not invert the matrix. We have much more on this in Chapter 7.
As it turns out, for our approach the interpolation matrix is sometimes (for
some radial basis functions, especially for the compactly supported ones) even
positive definite, i.e. for all vectors A = {A¢}scz that are not identically zero,
the quadratic form

ATAX

is positive at A.

Hence using the fact that A is nonsingular or even positive definite, we can
conclude that the A¢ and s exist uniquely, for all data and for all n. There are no
restrictions for any of those parameters. After demonstrating this remarkable
observation in detail, we shall describe some further important properties of
this interpolation process.

We give a definition and several results that explain the nonsingularity prop-
erties of (2.1) for multiquadrics now.

The principal concept that serves to show nonsingularity of the interpolation
matrix is complete monotonicity. We will define this concept and show its
usefulness in the next few results. In its definition we use the standard notation
C for the set of infinitely continuously differentiable functions on a set stated
in parentheses thereafter. Of course the analogous notation C*, say, stands for
£ times continuously differentiable functions.

Definition 2.1. A function g € C*(R..) is completely monotonic if and only
if, fort =0,1,2,..., (=Dt g(z)(t) > 0 for all positive t.

The prototype of a completely monotonic function is the exponential function
g(t) = e~ for any nonnegative «. This is a prototype because in some sense



2.1 Invertibility of interpolation matrices 13

all completely monotonic functions are generated by integration of a measure
with g as a kernel. Soon we will see in what way this is meant.

We will encounter many other simple examples of completely monotonic
functions later, but we note at once that g(¢t) = (r + A2 isan example for a
continuous completely monotonic function for all c. Although this g is not the
multiquadric function, it serves well to show the usefulness of the following
proposition to which we will hark back very soon in connection with the actual
multiquadric function. The following result was shown first by Schoenberg
(1938), but he had quite different applications in mind from ours.

Proposition 2.1. Let g: R, — R be a continuous completely monotonic
function. Then, for all finite E C R" of distinct points and all n, the matrix A
in (2.1) is positive definite for ¢(r) = g(r?), unless g is constant. In particular,
the matrix A in (2.1) is nonsingular.

As an example, we note that the above proposition immediately shows that the
Gaussian kernel function ¢(r) = e’ gives rise to an invertible interpolation
matrix A. In fact, Schoenberg established a characterisation of positive semi-
definite gs in his original theorem, but we only require the single implication
stated in the proposition above.

The proof of Proposition 2.1 requires a lemma, which characterises com-
pletely monotonic functions. It is called the Bernstein—Widder representation,
often just referred to as the Bernstein representation theorem (Widder, 1946).

Bernstein—~Widder representation. A function g is completely monotonic if
and only if it is the Laplace transform

o) = f e du(a), 1> 0,
0

of a nondecreasing measure |4 that is bounded below, so that, in particular,
du > 0.

Trivial cases, i.e. constant completely monotonic functions, can be excluded by
not letting 1 be a point measure. Incidentally, the function g is also continuous
at the origin if the measure remains finite.

Proof of Proposition 2.1:  Let A € RE\{0}, i.e. X is a vector with components
Mg where & ranges over =. Then,

2.2) ATAN=D" 3" heke glllc — &1,

(eE E€E

where A still denotes the matrix (2.1).
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This is, according to the Bernstein—Widder representation, by exchanging
sums and integration (the sums are finite, so it is permitted to interchange
integration and summation), the same as the quadratic form

/oo S e e I (),
0

LecE &eE

now inside the integral. Here u is not a point measure because g is not a constant,
and moreover du > 0 and du # 0. This quadratic form and, a fortiori, (2.2)
are positive, as required, by virtue of the positive definiteness of the matrix
{e*t)tII{*SIIZ}E ces
for all positive o.
Indeed, there are many straightforward ways to show positive definiteness of
the matrix in the above display for all positive «; see, for example, Stein and

Weiss (1971). We demonstrate a standard approach here. That is, one can use
for instance the fact that the Fourier transform of e™"" is

nn/2 . efrz/(4oz) . 06711/27 r> 0’

to deduce for all nonzero vectors A € RE and positive o

2
3 pneelesl = "
@) [,

£,0€B

2
e IIP/G) o =nr2 g

Z}\,éeiig‘y

Ee€l

which is positive, as required, because of the linear independence of exponential
functions with distinct (imaginary) exponents. a

In summary, we have by now made the observation that all A for the inverse mul-
tiquadric function ¢(r) = r*+c®)1?are positive definite, hence nonsingular.
This is an application of the above proposition. It turns out to be a fairly simple
consequence of this analysis that A is also nonsingular for ¢(r) = +/r2 + ¢2.

Theorem 2.2. Let g € C™[0, 00) be such that g’ is completely monotonic
but not constant. Suppose further that g(0) > 0. Then A is nonsingular for

o(r) = g(r?).

The result is due to Micchelli (1986). Before we embark on its proof, note
that this theorem does apply to the multiquadric, namely g(t) = 4/t + ¢? and
¢(r) = +/r2 + ¢2, and it gives the desired nonsingularity result.
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Proof of Theorem 2.2:  As g € C*°[0, 00), we can rewrite it as

g(t) =g(0)+/0 g'(x)dx.

We now insert the Bernstein—Widder representation of g’(x) and exchange
integrals. This is admissible because of Fubini’s theorem. We get

g(t) = g(0) + f / = diu(er) dox.
0 0

Let A € RE be such that its components sum to zero, i.e. Dcezre = 0.
Thus, because of the Bernstein—Widder representation, used for g’(x), we get

ATAN — _/ Z Z hehe @ e e,
0

EcE (e€EB

We are using here that [ e™* dx = —a~! ¢~ 4+ ! and that the sum over X’s
components cancels the @ ~! term which is constant with respect to x. Therefore
ATAX < 0 for all such X unless A = 0. Hence all but one of A’s eigenvalues
are negative. Otherwise, we could take y and § as two nonnegative ones and
let z and ¢ their associated orthonormal eigenvectors; they exist because A is
symmetric. Thus there would be a nonzero vector A whose components sum to
zero and that has the representation A = az + bt. It fulfils

0> ATAX = a®y +b% > 0,

and this is a contradiction. Thus, indeed, all but one of the matrix’s eigenvalues
are negative.

On the other hand, as A’s trace is nonnegative, the remaining eigenvalue
must be positive, since it is a well-known fact that the trace of the matrix is the
sum of its eigenvalues. Hence det A # 0. Indeed, the sign of its determinant
is (—DIE-L, a

Thus we have now established the important result that multiquadric interpo-
lation is always nonsingular, i.e. uniquely possible. Note that this also applies
to the special case ¢ = 0, which is the case ¢(r) = r. The sign of the matrix
determinant is always (—1)/Z/~1, that is the same as multiquadrics also for this
choice of the parameter c.

The fact that Euclidean norms are used here, incidentally, is of the essence.
There are examples for £! and £*° norms and choices of &, where {||¢ —£|| plreE
is singular for p = 1, co. More precisely, the matrix is always nonsingular (for
all n and E, that is) for p € (1, 2]. It always can be singular (for some n and/or
&) otherwise. The case p = 1 was studied in particular by Dyn, Light and
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Cheney (1989) who give general theorems that characterise point constellations
leading to singularity. The positive and negative results on p-norms, p € (1, 2]
and 2 < p < oo, respectively, are due to Baxter (1991).

Many other radial basis functions exist for which either Proposition 2.1
or Theorem 2.2 applies: for example ¢(r) = e“”z, ¢(r)y = e, ¢(r) =
(r? + ¢®)7!, and others. As has also been proved, the condition of complete
monotonicity can be relaxed to A-fold (finite or ‘incomplete’) monotonicity
(Micchelli, 1986, Buhmann, 1989), which is closely related to certain radial
basis functions of compact support. We will return to those later on in Chapter 6
and explain XA times monotonic functions with examples there.

2.2 Convergence analysis

After showing the unique existence of multiquadric interpolants, the next im-
portant question is that of their usefulness for approximation. Only if they turn
out to be able to approximate smooth functions well (depending on step size
of the centres and the actual smoothness of the approximand) will they be
suitable for applications. This question is, within the scope of this chapter, best
discussed forn = 1 and the infinite set of equally spaced centres E = hZ, where
h is a positive step size. Note that this means that the approximand f: R — R
must be defined everywhere and at least continuous on the real axis and that, in
particular, no boundary conditions need be considered. In fact we give up the
interpolation conditions altogether for the first part of the convergence analysis
because the goodness of approximation can very well be discussed within the
context of ‘quasi-interpolation’ which we introduce now as

. X .
s =Y fGm (3 —i). xek
JEL
where f is the approximand and v is a finite linear combination of multiquadric
functions

Y= > Mo(x—k|), xeR.
[kl=N
It is important to notice that we are using here the so-called stationary case,
where we are using a fixed ¥ which is scaled by the reciprocal of 4 in its
argument. It is also possible to study the nonstationary case, where 1 depends
on % in another way and where v = v, is evaluated at x — jh without scaling.
We shall, however, use only stationary analysis in this chapter and address the
nonstationary case briefly in Chapters 4 and 9.
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The N is a positive integer in the expression for . It is understood that s,
depends on & as well as on f. The function s;, need not satisfy any interpolatory
properties but it should be such that s, & f is a good uniform approximation
on the real line by virtue of properties of the function . It is reasonable to
address this form of approximants, as the quality of the approximation depends
more on the space of approximants than on any particular choice of methods
such as interpolation. The above form is especially helpful for our consideration
because of its particularly simple form: f enters directly into the expression
without any preprocessing and v is completely independent of f.

We want to explain this further and give an example. Note first that we indeed
remain in the space spanned by translates of a radial basis function, in spite of
the fact that we formulate the approximant as a linear combination of s. This
is because we are using finite linear combinations. Thus, later on, we will be
able to deduce properties of interpolation with multiquadrics on the equally
spaced points from the analysis of the present situation.

The idea is to find A; such that ¢ is local, e.g. by requiring the absolute sum

2.3) pBRIZEE

JEZ
to be uniformly bounded for all x € R and by demanding that the absolutely
convergent series gives
dv—pH=1,

JEZ

so that s = f at a minimum for constant f. Here, we abbreviate s; by s. Both
conditions are eminently reasonable for approximation and in spite of their
relative weakness they will provide good methods. However, all this should
happen irrespective of the asymptotic linear growth of the multiquadric func-
tion! We will show now that this is possible and that furthermore s = f for all
linear f. This provides essentially second order convergence of s to f when
f is smooth enough and 7 — 0. Indeed, let i be a second divided difference
of ¢, i.e.

1 1
V@) =5 ¢lx = 1)) = o(x) + 5 o(lx + 1)).

Then we can show that s is at least well-defined for at most linearly growing
f and that in particular the boundedness condition that (2.3) be finite holds
for all x. We let without loss of generality ¢ > 0, because otherwise our
quasi-interpolation is the usual piecewise interpolation and then the following
statements are trivial, ¥ being then the hat-function or equivalently the linear
B-spline By, see Powell (1981) for example, for a comprehensive treatment of



18 2. Summary of methods

B-splines. For us here, it suffices to remark that B is the continuous piecewise
linear function which is one at zero, zero at all nonvanishing integers and whose
breakpoints are the integers.

The next proposition shows the boundedness of (2.3).

Proposition 2.3. The above second divided difference  satisfies, for |x|
greater than 1,

Y (x)] < Cc?x| 73,

where C is a generic positive constant, independent of x and c. We note in
particular the trivial estimate | (x)| < C(1 + ¢?) for all arguments.

We remark that this proposition shows that, although ¢ is an unbounded
function, the linear combination ¥ of ¢’s translates decays cubically as
x — = oo. Uniform boundedness of (2.3) is thus a trivial consequence of
absolute convergence of the series, because ¥ is continuous and bounded
anyway.

Proof of Proposition 2.3: According to the Peano kernel theorem (Powell,
1981, p. 270)

1 o0
wm=5/ Bi(x — 1) ¢"(1)dt,

where Bj is the linear B-spline with knots at 0, +1. Because ¢”(t) = (1> +
c2)73/2, the proof now follows from the compact support of Bj, thus from the
finiteness of the integral. O

This proof will, incidentally, also apply to general second divided differences
of ¢ with respect to nonequidistant &, as does the following result on linear
polynomial reproduction.

Theorem 2.4. The second divided difference r satisfies also the polynomial
reproduction property

Y @+bpyx—j)=a+bx, x.abeR.
jez

Note that Proposition 2.3 implies the series in Theorem 2.4 above converges
uniformly and absolutely. Note also that Theorem 2.4 means, in particular,
s = f for constant and for linear approximands f.
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Proof of Theorem 2.4:  As in the previous proof, we express ¥ by the Peano
kernel theorem and exchange integrals:

1 o0
S@rbpua-i=5 [ 3 @ropsit—j-ngwd

JEZ JEZ

= % / (a +b(x — 1) ¢"(t)dt

oo

1 o0
= (a + bx) 3 / @”(t)dt
=a + bx,

where we have used that sums over linear B-splines recover linear polynomials.
We have also used that the integral over ¢” is 2 and the integral over t¢"(t)
vanishes. Here, a and b are arbitrary reals. The proof is complete. O

We observe that this result gives the polynomial recovery indicated above.
This, in tandem with the localisation result Proposition 2.3 opens the door to
a uniform convergence result by suitable Taylor series arguments when twice
differentiable functions are approximated. Moreover, these two results above
exemplify very well indeed how we are going to approach the convergence
questions elsewhere in the book, namely almost always via polynomial recovery
and locality estimates, that is asymptotic decay estimates. In most instances, the
difficulty in the proofs for several dimensions lies much more in establishing the
decay of the basis function, that is its locality, than in the polynomial recovery
which is relatively standard and straightforward, once we know the principles
behind polynomial exactness. More precisely, the same requirements on the
aforementioned coefficients of ¥ which lead to a suitable decay behaviour also
imply polynomial exactness with no further work. The convergence estimates,
however, need a more difficult analysis than the familiar ones from spline theory
for instance, because compact support of the basis functions makes the proof
techniques much simpler.

We point out once more that the above results are not just confined to integer
data. Indeed, as Powell (1991) has shown, it suffices to have a strictly increasing
sequence of centres £ on the real axis that have +00 as upper and lower limits,
respectively, to achieve the same results.

Convergence results are obtained in various guises. They always use the
asymptotic decay at an algebraic rate of the basis function: not the radial basis
functions but linear combinations of its translates; it is important to distinguish
carefully between those. The basis function we use in the approximation is
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our . They use this decay in tandem with polynomial recovery of a nontrivial
order to show that smooth functions can be locally approximated by Taylor
polynomials which are recovered by the approximant. An easy but quite rep-
resentative convergence theorem is the following theorem. In it || - ||, denotes
the uniform or Chebyshev norm on the whole axis R, as is usual.

Theorem 2.5. Let f be twice differentiable and such that || f' || oo and || f” |l
are finite. Then for any nonnegative c¢

If = sulloo = Oh* + c*h* |loghl), h — 0.

Proof: Let x € R be arbitrary. Let p(y) := f(x) + (y — x) f'(x) be a local
Taylor polynomial. Thus p is x-dependent, but recall that we fix x. We have
therefore

£ = DI = 201 oo llx = Yoo

and

1
£ = POl = S loollx = vl

Both estimates follow from Taylor expansions, with two and three terms, respec-
tively, and with the respective remainder terms estimated by their maximum.
We note that by the assumptions | f/(x)| is bounded and f is therefore of at most
linear growth. Thus, by Theorem 2.4 and the definition of the Taylor polynomial

Lf(x) = sn(x)] =

> (et Gh -0 - rim) v (S22

JEZ !
_ ‘ > (vgm — rum) v (50|
Jj€EZ

Using the bound in Proposition 2.3 several times, we get, for a generic (i.e.
independent of x and &) positive constant C which may even change its asso-
ciated value from line to line, the required estimates by dividing the sums up
into three parts, as follows.

"))

FO =@l = Y IpGm = fGnl v (5

[x—jh|<2h

h
+ Y G = fGml | (S

2h<|x—jh|<1

5)

h
+ Y G- rGml v (5 ﬂ)‘

|[x—jh|>1
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These are at most a fixed positive multiple of

17 en? max fo (S50

x—jh|<2h
h
+ cnf”nooczh2 > —
an<ix—yni<t ¥ — 0
h
+ C|l f'llooc?h? —_—.
” |x—%;>1 e — jhP

This is the same as a fixed multiple of
1
17 ol + )+ CLF W [ 57y
h

o0
+ Cll f'llooc*h? / y~*dy.
1-h

We can summarise these expressions by an order term in ¢ and A
O(h* + c¢*h? | log h|),

thus finishing the proof. O

We note that for the first derivatives also, a similar convergence statement can
be made. Indeed, with the same assumptions as in Theorem 2.5 in place, the
derivatives of f and s; have the property that

If = splle = Oh+c*/h),  h— 0.

Of course, in order for the above to tend to zero, it is necessary that ¢ tends to
zero as well. With the above proof of Theorem 2.5 in mind, establishing this
second estimate is routine work.

Thus we have now made a first important step towards a quantitative analysis
of the radial basis function method, specifically about convergence: Theorem 2.5
gives, in particular, uniform, essentially quadratic convergence of approximants
from multiquadrics to sufficiently smooth approximands which clearly shows
the usefulness of multiquadric approximation. It is the most important positive
result in this chapter. On the other hand, we may ask whether such constructions
are always possible with the well-known examples of radial basis functions,
such as all the ones mentioned already in this book, multiquadrics, inverse
multiquadrics, thin-plate splines etc. It turns out that they are not. That is, there
is a further result relevant in this context, but it is a negative one, namely,

Theorem 2.6. Let ¢ be the inverse multiquadric ¢(r) = (r2 + ¢2)~V2. Then,
for all 