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Preface

The radial basis function method for multivariate approximation is one of the
most often applied approaches in modern approximation theory when the task is
to approximate scattered data in several dimensions. Its development has lasted
for about 25 years now and has accelerated fast during the last 10 years or so. It
is now in order to step back and summarise the basic results comprehensively, so
as to make them accessible to general audiences of mathematicians, engineers
and scientists alike.

This is the main purpose of this book which aims to have included all neces-
sary material to give a complete introduction into the theory and applications of
radial basis functions and also has several of the more recent results included.
Therefore it should also be suitable as a reference book to more experienced
approximation theorists, although no specialised knowledge of the field is re-
quired. A basic mathematical education, preferably with a slight slant towards
analysis in multiple dimensions, and an interest in multivariate approximation
methods will be suitable for reading and hopefully enjoying this book.

Any monograph of this type should be self-contained and motivated and
need not much further advance explanations, and this one is no exception to
this rule. Nonetheless we mention here that for illustration and motivation, we
have included in this book several examples of practical applications of the
methods at various stages, especially of course in the Introduction, to demon-
strate how very useful this new method is and where it has already attracted
attention in real life applications. Apart from such instances, the personal in-
terests of the author mean that the text is dominated by theoretical analysis.
Nonetheless, the importance of applications and practical methods is under-
lined by the aforementioned examples and by the chapter on implementations.
Since the methods are usually applied in more than two or three dimensions,
pictures will unfortunately not help us here very much which explains their
absence.

ix



x Preface

After an introduction and a summary in Chapter 2 of the types and results of
analysis that are used for the radial basis functions, the order of the remaining
chapters essentially follows the history of the development: the convergence
analysis was first completed in the setting of gridded data, after some initial
and seminal papers by Duchon, and then further results on scattered data and
their convergence orders were found; subsequently, radial basis functions on
compact support were studied, then (and now) efficient implementations and
finally wavelets using radial basis functions are the most topical themes.

Few can complete a piece of work of this kind without helping hands from
various people. In my case, I would like to thank first and foremost my teacher
Professor Michael Powell who introduced me into radial basis function research
at Cambridge some 17 years ago and has been the most valuable teacher, friend
and colleague to me ever since. Dr David Tranah of Cambridge University Press
suggested once that I should write this book and Dr Alan Harvey as an editor kept
me on the straight and narrow thereafter. Dr Oleg Davydov, Mr Simon Hubbert,
Dr Ulrike Maier, Professor Tomas Sauer and Professor Robert Schaback looked
at various parts of the manuscript and gave many helpful suggestions. Finally,
I would like to thank Mrs Marianne Pfister of ETH who has most expertly typed
an early version of the manuscript and thereby helped to start this project.

At the time of proofreading this book, the author learnt about the death of
Professor Will Light of Leicester University. Will’s totally unexpected death is
an irreplaceable less to approximation theory and much of what is being said in
this book would have been unthinkable without his many contributions to and
insights into the mathematics of radial basis functions.
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Introduction

In the present age, when computers are applied almost anywhere in science,
engineering and, indeed, all around us in day-to-day life, it becomes more and
more important to implement mathematical functions for efficient evaluation in
computer programs. It is usually necessary for this purpose to use all kinds of
‘approximations’ of functions rather than their exact mathematical form. There
are various reasons why this is so. A simple one is that in many instances it
is not possible to implement the functions exactly, because, for instance, they
are only represented by an infinite expansion. Furthermore, the function we
want to use may not be completely known to us, or may be too expensive or
demanding of computer time and memory to compute in advance, which is
another typical, important reason why approximations are required. This is true
even in the face of ever increasing speed and computer memory availability,
given that additional memory and speed will always increase the demand of the
users and the size of the problems which are to be solved. Finally, the data that
define the function may have to be computed interactively or by a step-by-step
approach which again makes it suitable to compute approximations. With those
we can then pursue further computations, for instance, or further evaluations
that are required by the user, or display data or functions on a screen. Such cases
are absolutely standard in mathematical methods for modelling and analysing
functions; in this context, analysis can mean, e.g., looking for their stationary
points with standard optimisation codes such as quasi-Newton methods.

As we can see, the applications of general purpose methods for functional
approximations are manifold and important. One such class of methods will be
introduced and is the subject area of this book, and we are particularly interested
when the functions to be approximated (the approximands)

(a) depend on many variables or parameters,
(b) are defined by possibly very many data,

1



2 1. Introduction

(c) and the data are ‘scattered’ in their domain.

The ‘radial basis function approach’ is especially well suited for those
cases.

1.1 Radial basis functions

Radial basis function methods are the means to approximate the multivariate
functions we wish to study in this book. That is, in concrete terms, given data
in n dimensions that consist of data sites ξ ∈ R

n and ‘function values’ fξ =
f (ξ ) ∈ R (or C but we usually take R), we seek an approximant s: R

n → R to
the function f : R

n → R from which the data are assumed to stem. Here n > 0
is the dimension of underlying space and, incidentally, one often speaks – not
quite correctly – of ‘data’ when referring just to the ξ . They can also be restricted
to a domain D ⊂ R

n and if this D is prescribed, one seeks an approximation
s: D → R only. In the general context described in the introduction to this
chapter, we consider f (ξ ) as the explicit function values we know of our f ,
which itself is unknown or at least unavailable for arbitrarily large numbers of
evaluations. It could represent magnetic potentials over the earth’s surface or
temperature measurements over an area or depth measurements over part of an
ocean.

While the function f is usually not known in practice, for the purpose of
(e.g. convergence) analysis, one has to postulate the existence of f , so that s
and f can be compared and the quality of the approximation estimated. More-
over, some smoothness of f normally has to be required for the typical error
estimates.

Now, given a linear space S of approximants, usually finite-dimensional, there
are various ways to find approximants s ∈ S to approximate the approximand
(namely, the object of the approximation) f . In this book, the approximation
will normally take place by way of interpolation, i.e. we explicitly require
s|� = f |�, where � ⊂ R

n is the discrete set of data sites we have mentioned
above. Putting it another way, our goal is to interpolate the function between
the data sites. It is desirable to be able to perform the interpolation – or indeed
any approximation – without any further assumptions on the shape of �, so that
the data points can be ‘scattered’. But sometimes we assume � = (hZ)n , h a
positive step size, Z the integers, for example, in order that the properties of the
approximation method can more easily be analysed. We call this type of data
distribution a square (cardinal) grid of step size h. This is only a technique for
analysis and means no restriction for application of the methods to scattered ξ .
Interpolants probably being the most frequent choice of approximant, other
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choices are nonetheless possible and used in practice, and they can indeed be
very desirable such as least squares approximations or ‘quasi-interpolation’, a
variant of interpolation, where s still depends in a simple way on fξ , ξ ∈ �,
while not necessarily matching each fξ exactly. We will come back to this type
of approximation at many places in this book. We remark that if we know how to
approximate a function f : R

n → R we can always approximate a vector-valued
approximand, call it F : R

n → R
m , m > 1, componentwise.

From these general considerations, we now come back to our specific con-
cepts for the subject area of this monograph, namely, for radial basis function
approximations the approximants s are usually finite linear combinations of
translates of a radially symmetric basis function, say φ(‖ · ‖), where ‖ · ‖ is the
Euclidean norm. Radial symmetry means that the value of the function only
depends on the Euclidean distance of the argument from the origin, and any
rotations thereof make no difference to the function value.

The translates are along the points ξ ∈ �, whence we consider linear combi-
nations of φ(‖ ·−ξ‖). So the data sites enter already at two places here, namely
as the points where we wish to match interpolant s and approximand f , and as
the vectors by which we translate our radial basis function. Those are called the
centres, and we observe that their choice makes the space S dependent on the
set �. There are good reasons for formulating the approximants in this fashion
used in this monograph.

Indeed, it is a well-known fact that interpolation to arbitrary data in more than
one dimension can easily become a singular problem unless the linear space S
from which s stems depends on the set of points � – or the � have only very
restricted shapes. For any fixed, centre-independent space, there are some data
point distributions that cause singularity.

In fact, polynomial interpolation is the standard example where this problem
occurs and we will explain that in detail in Chapter 3. This is why radial basis
functions always define a space S ⊂ C(Rn) which depends on �. The simplest
example is, for a finite set of centres � in R

n ,

(1.1) S =
{∑
ξ∈�

λξ‖ · −ξ‖
∣∣∣∣ λξ ∈ R

}
.

Here the ‘radial basis function’ is simply φ(r ) = r , the radial symmetry stem-
ming from the Euclidean norm ‖ · ‖, and we are shifting this norm in (1.1) by
the centres ξ .

More generally, radial basis function spaces are spanned by translates

φ(‖ · −ξ‖), ξ ∈ �,
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whereφ: R+ → R are given, continuous functions, called radial basis functions.
Therefore the approximants have the general form

s(x) =
∑
ξ∈�

λξφ(‖ · −ξ‖), x ∈ R
n,

with real coefficients λξ .
Other examples that we will encounter very often from now on are φ(r ) =

r2 log r (‘thin-plate splines’), φ(r ) = √
r2 + c2 (c a positive parameter, ‘mul-

tiquadrics’), φ(r ) = e−αr2
(α a positive parameter, ‘Gaussian’). As the later

analysis will show, radial symmetry is not the most important property that
makes these functions such suitable choices for approximating smooth func-
tions as they are, but rather their smoothness and certain properties of their
Fourier transform. Nonetheless we bow to convention and speak of radial basis
functions even when we occasionally consider general n-variate φ: R

n → R

and their translates φ(· − ξ ) for the purpose of approximation. And, at any
rate, most of these basis functions that we encounter in theory and practice are
radial. This is because it helps in applications to consider genuinely radial ones,
as the composition with the Euclidean norm makes the approach technically in
many respects a univariate one; we will see more of this especially in Chapter 4.
Moreover, we shall at all places make a clear distinction between considering
general n-variate φ: R

n → R and radially symmetric φ(‖·‖) and carefully state
whether we use one or the other in the following chapters.

Unlike high degree spline approximation with scattered data in more than
one dimension, and unlike the polynomial interpolation already mentioned, the
interpolation problem from the space (1.1) is always uniquely solvable for sets
of distinct data sites ξ , and this is also so for multiquadrics and Gaussians. For
multivariate polynomial spline spaces on nongridded data it is up to now not
even possible in general to find the exact dimension of the spline space! Thus
we may very well be unable to interpolate uniquely from that spline space.
Only several upper and lower bounds on the spatial dimension are available.
There exist radial basis functions φ of compact support, where there are some
restrictions so that the interpolation problem is nonsingular, but they are only
simple bounds on the dimension n of R

n from where the data sites come. We
will discuss those radial basis functions of compact support in Chapter 6 of
this book.

Further remarkable properties of radial basis functions that render them
highly efficient in practice are their easily adjustable smoothness and their
powerful convergence properties. To demonstrate both, consider the ubiquitous
multiquadric function which is infinitely often continuously differentiable for
c > 0 and only continuous for c = 0, since in the latter case φ(r ) = r and
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φ(‖ · ‖) is the Euclidean norm as considered in (1.1) which has a derivative
discontinuity at zero. Other useful radial basis functions of any given smooth-
ness are readily available, even of compact support, as we have just mentioned.
Moreover, as will be seen in Chapter 4, on � = (hZ)n , e.g. an approximation
rate of O(hn+1) is obtained with multiquadrics to suitably smooth f . This is
particularly remarkable because the convergence rate increases linearly with
dimension, and, at any rate, it is very fast convergence indeed. Of course, the
amount of work needed (e.g. the number of centres involved) for performing
the approximation also increases at the same rate. Sometimes, even exponen-
tial convergence orders are possible with multiquadric interpolation and related
radial basis functions.

1.2 Applications

Consequently, it is no longer a surprise that in many applications, radial basis
functions have been shown to be most useful. Purposes and applications of such
approximations and in particular of interpolation are manifold. As we have al-
ready remarked, there are many applications especially in the sciences and in
mathematics. They include, for example, mappings of two- or three-dimensional
images such as portraits or underwater sonar scans into other images for com-
parison. In this important application, interpolation comes into play because
some special features of an image may have to be preserved while others need
not be mapped exactly, thus enabling a comparison of some features that may
differ while at the same time retaining others. Such so-called ‘markers’ can be,
for example, certain points of the skeleton in an X-ray which has to be compared
with another one of the same person, taken at another time. The same structure
appears if we wish to compare sonar scans of a harbour at different times, the
rocks being suitable as markers this time. Thin-plate splines turned out to be
excellent for such very practical applications (Barrodale and Zala, 1999).

Measurements of potential or temperature on the earth’s surface at ‘scat-
tered’ meteorological stations or measurements on other multidimensional ob-
jects may give rise to interpolation problems that require the aforementioned
scattered data. Multiquadric approximations are performing well for this type
of use (Hardy, 1990).

Further, the so-called track data are data sites which are very close together on
nearly parallel lines, such as can occur, e.g., in measurements of sea temperature
with a boat that runs along lines parallel to the coast. So the step size of the
measurements is very small along the lines, but the lines may have a distance
of 100 times that step size or more. Many interpolation algorithms fail on
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such awkward distributions of data points, not so radial basis function (here
multiquadric) methods (Carlson and Foley, 1992).

The approximation to so-called learning situations by neural networks usu-
ally leads to very high-dimensional interpolation problems with scattered data.
Girosi (1992) mentions radial basis functions as a very suitable approach to
this, partly because of their availability in arbitrary dimensions and of their
smoothness.

A typical application is in fire detectors. An advanced type of fire detector
has to look at several measured parameters such as colour, spectrum, inten-
sity, movement of an observed object from which it must decide whether it is
looking at a fire in the room or not. There is a learning procedure before the
implementation of the device, where several prescribed situations (these are the
data) are tested and the values zero (no fire) and one (fire) are interpolated, so
that the device can ‘learn’ to interpolate between these standard situations for
general situations later when it is used in real life.

In another learning application, the data come from the raster of a screen
which shows the reading of a camera that serves as the eye of a robot. In this
application, it is immediately clear why we have a high-dimensional problem,
because each point on the square raster represents one parameter, which gives
a million points even on a relatively low resolution of 1000 by 1000. The data
come from showing objects to the robot which it should recognise as, for in-
stance, a wall it should not run into, or a robot friend, or its human master or
whatever. Each of these situations should be interpolated and from the inter-
polant the robot should then be able to recognise other, similar situations as
well. Invariances such as those objects which should be recognised indepen-
dently of angle etc. are also important in measurements of neural activity in the
brain, where researchers aim to recognise those activities of the nerve cells that
appear when someone is looking at an object and which are invariant of the an-
gle under which the object is looked at. This is currently an important research
area in neuro-physics (Eckhorn, 1999, Kremper, Schanze and Eckhorn 2002)
where radial basis functions appear often in the associated physics literature.
See the above paper by Eckhorn for a partial list.

The numerical solution of partial differential equations also enters into the
long list of mathematical applications of radial basis function approximation.
In the event, Pollandt (1997) used them to perform approximations needed in
a multidimensional boundary element method to solve nonlinear elliptic PDEs
on a domain 
, such as �u� = p�(u(x), x), x ∈ 
 ⊂ R

n , � = 1, . . . , N ,
with Dirichlet boundary conditions u�|∂
 = q�, when u = (u1, . . . , uN )T

are suitably smooth functions and p� are multivariate polynomials. Here, �
denotes the Laplace operator. The advantage of radial basis functions in this
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application is the already mentioned convergence power, in tandem with easy
formulation of interpolants and quasi-interpolants and their introduction into
the PDE. Moreover, especially for boundary element methods, it is relevant
that several radial basis functions are Green’s functions of elliptic differential
operators, i.e. the elliptic differential operator applied to them including the
composition with the ubiquitous Euclidean norm yields the Dirac δ-operator.

The same reasons led Sonar (1996) to use radial basis functions for the
local reconstruction of solutions within algorithms which solve numerically
hyperbolic conservation laws. It was usual to employ low order polynomial
approximation (mostly linear) for this purpose so far, but it turned out that radial
basis functions, especially thin-plate splines, help to improve the accuracy of
the finite volume methods notably to solve the hyperbolic equations, because
of their ability to approximate locally (‘recover’ in the language of hyperbolic
conservation laws) highly accurately.

They appear to be remarkably resilient against irregular data distributions,
for not only track data but also those that occur, for instance, when local models
are made for functions whose stationary points (or extrema) are sought (Powell,
1987). This is problematic because algorithms that seek such points will nat-
urally accumulate data points densely near the stationary point, where now an
approximation is made, based on those accumulated points, to continue with
the approximant instead of the original function (which is expensive to evalu-
ate). Furthermore, it turned out to be especially advantageous for their use that
radial basis functions have a variation-diminishing property which is explained
in Chapter 5. Thin-plate splines provide the most easily understood variant of
that property and thus they were used for the first successful experiments with
radial basis functions for optimisation algorithms. Not only do the variation-
diminishing properties guarantee a certain smoothness of the approximants,
but they are tremendously helpful for the analysis because many concepts of
orthogonal projections and norm-minimising approximants can be used in the
analysis. We shall do so often in this book.

In summary, our methods are known from practice to be good and general
purpose approximation and interpolation techniques that can be used in many
instances, where other methods are unlikely to deliver useful results or fail
completely, due to singular interpolation matrices or too high dimensionality.
The methods are being applied widely, and important theoretical results have
been found that support the experimental and practical observations, many of
which will enter into this book. Among them are the exceptional accuracy that
can be obtained, when interpolating smooth functions.

Thus the purpose of this book is to demonstrate how well radial basis
function techniques work and why, and to summarise and explain efficient
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implementations and applications. Moreover, the analysis presented in this
work will allow a user to choose which radial basis functions to use for his
application based on its individual merits. This is important because the theory
itself, while mathematically stimulating, stands alone if it does not yield itself
to support practical use.

1.3 Contents of the book

We now outline the contents and intents of the following chapters. The next
chapter gives a brief summary of the schemes including precise mathemati-
cal details of some specific methods and aspects, so that the reader can get
sufficient insight into the radial basis function approach and its mathematical
underpinning to understand (i) the specifics of the methods and (ii) the kind of
mathematical analysis typically needed. This may also be the point to decide
whether this approach is suitable for his needs and interests and whether he or
she wants to read on to get the full details in the rest of the book or, e.g., just
wants to go directly to the chapter about implementations.

Chapter 3 puts radial basis functions in the necessary, more general context
of multivariate interpolation and approximation methods, so that the reader can
compare and see the ‘environment’ of the book. Especially splines, Shepard’s
method, and several other widely used (mostly interpolation) approaches will
be reviewed briefly in that chapter. There is, however, little on practice and
implementations in Chapter 3. It is really only a short summary and not
comprehensive.

Chapter 4 introduces the reader to the very important special case of � =
(hZ)n , h > 0, i.e. radial basis functions on regularly spaced (integer) grids. This
was one of the first cases when their properties were explicitly and comprehen-
sively analysed and documented, because the absence of boundaries and the
periodicity of � allow the application of powerful analysis tools such as Fourier
transforms, Poisson summation formula etc. While the analysis is easier, it still
gives much insight into the properties of the functions and the spaces generated
by them, such as unique existence of interpolants, conditioning of interpolation
matrices and exactness of approximations to polynomials of certain degrees,
and, finally but most importantly, convergence theorems. Especially the latter
will be highly relevant to later chapters of the book. Moreover, several of the re-
sults on gridded � will be seen to carry through to scattered data, so that indeed
the properties of the spaces generated by translates of radial basis functions
were documented correctly. Many of the results are shown to be best possible,
too, that is, they explicitly give the best possible convergence results.
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The following chapter, 5, generalises the results of Chapter 4 to scattered data,
confirming that surprisingly many approximation order results on gridded data
carry through with almost no change, whereas, naturally, new and involved
proofs are needed. One of the main differences is that there are usually finitely
many data for this setting and, of course, there are boundaries of the domain
wherein the ξ ∈ � reside, which have to be considered. It is usual that there
are less striking convergence results in the presence of boundaries and this is
what we will find there as well.

This Chapter 5, dealing with the many and deep theorems that have been
established concerning the convergence rates of approximations, is the core
of the book. This is because, aside from the existence and uniqueness the-
orems about interpolation, convergence of the methods is of utmost impor-
tance in applications. After all, the various rates of convergence that can be
achieved are essential to the choice of a method and the interpretation of its
results. Besides algebraic rates of convergence that are related to the polyno-
mial exactness results already mentioned, the aforementioned spectral rates are
discussed.

In Chapter 6, radial basis functions with compact support are constructed.
They are useful especially when the number of data or evaluations of the inter-
polant is massive so that any basis functions of global support incur prohibitive
costs for evaluation. Many of those radial basis functions are piecewise polyno-
mials, and all of them have similar nonsingularity properties for the interpolation
problem to the ones we have mentioned before. Moreover, radial basis functions
with compact support are suitable for, and are now actually used in, solving
linear partial differential equations by Galerkin methods. There, they provide
a suitable replacement for the standard piecewise polynomial finite elements.
It turns out that they can be just as good as means for approximation, while
not requiring any triangulation or mesh, so they allow meshless approxima-
tion which is easier when the amount of data has to be continuously enlarged
or made smaller. That is often the case when partial differential equations are
solved numerically. By contrast, finite elements can be difficult to compute in
three or more dimensions for scattered data due to the necessity of triangulating
the domain before using finite elements and due to the complicated spaces of
piecewise polynomials in more than two dimensions.

While many such powerful theoretical results exist for radial basis functions,
the implementation of the methods is nontrivial and requires careful attention.
Thus Chapter 7 describes several modern techniques that have been developed to
implement the approach, evaluate and compute interpolants fast and efficiently,
so that real-time rendering of surfaces that interpolate the data is possible now,
for example. The methods we describe are iterative and they include so-called
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particle methods, efficient preconditioners and the Beatson–Faul–Goodsell–
Powell (BFGP) algorithm of local Lagrange bases.

As outlined above, the principal application of radial basis functions is clearly
with interpolation. This notwithstanding, least squares methods are frequently
asked for, especially because often in applications, data are inaccurate, too
many, and/or need smoothing. Hence Chapter 8 is devoted to least squares
approaches both using the standard Euclidean least squares setting and with the
so-called Sobolev inner products. Existence and convergence questions will be
considered as well as, briefly, implementation.

Closely related to the least squares problem, whose solution is facilitated by
computing orthogonal or orthonormal bases of the radial basis function spaces in
advance, are ‘wavelet expansions’ by radial basis functions. In these important
wavelet expansions, the goal is to decompose a given function simultaneously
into its local parts in space and in frequency. The purpose of this can be the anal-
ysis, approximation, reconstruction, compression, or filtering of functions and
signals. In comparison with the well-known Fourier analysis we can, e.g., tell
from a wavelet expansion when a frequency appears in a melody, say, and not just
that it appears and with what amplitude. This is what we call localness, not only
in frequency for the wavelet expansions. Radial basis functions are bound to be
useful for this because of their approximational efficacy. After all, the better we
can approximate from a space, the fewer coefficients are needed in expansions
of functions using bases of that space. All this is detailed, together with several
examples of radial basis (especially multiquadric) wavelets, in Chapter 9.

Chapter 10 concerns the most recent and topical results in review form and an
outlook and ideas towards further, future research. Many aspects of these tools
are studied in research articles right now and in Chapter 10 we attempt to catch
up with the newest work. Of course this can only be discussed very briefly. Sev-
eral important questions are still wide open and we will outline some of those.

We conclude with an extensive bibliography, our principal aim being to
provide a good account of the state of the art in radial basis function research.
Of course not all aspects of current or past interest in radial basis functions
can be covered within the scope of a book of this size but the aim is at least
to provide up to date references to those areas that are not covered. We also
give a commentary on the bibliography to point the reader to other interesting
results that are not otherwise in this book on one hand, and to comment on
generalisations, other points of view etc. on those results that are.

Now, in the following chapter, we give the already mentioned summary of
some aspects of radial basis functions in detail in order to exemplify the others.



2

Summary of Methods and Applications

We have seen in the introduction what a radial basis function is and what the
general purposes of multivariate interpolation are, including several examples.
The aim of this chapter is more specifically oriented to the mathematical analysis
of radial basis functions and their properties in examples.

That is, in this chapter, we will demonstrate in what way radial basis function
interpolation works and give several detailed examples of its mathematical, i.e.
approximation, properties. In large parts of this chapter, we will concentrate
on one particular example of a radial basis function, namely the multiquadric
function, but discuss this example in much detail. In fact, many of the very typ-
ical properties of radial basis functions are already contained in this example
which is indeed a nontrivial one, and therefore quite representative. We delib-
erately accept the risk of being somewhat repetitive here because several of the
multivariate general techniques especially of Chapter 4 are similar, albeit more
involved, to the ones used now. What is perhaps most important to us in this
chapter, among all current radial basis functions, the multiquadric is the best-
known one and best understood, and very often used. One reason for this is its
versatility due to an adjustable parameter c which may sometimes be used to
improve accuracy or stability of approximations with multiquadric functions.

2.1 Invertibility of interpolation matrices

The goal is, as before, to provide interpolants to data (ξ, fξ ) ∈ R
n × R which

are arbitrary (but the ξ are distinct and there are, at this point, just finitely many
of them). The data sites ξ are from the set �, which is still a finite subset of R

n

with more than one element, and our interpolants are required to have the form

s(x) =
∑
ξ∈�

λξ φ(‖x − ξ‖), x ∈ R
n.

11
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The λξ are real coefficients. They are required to satisfy the interpolation con-
ditions s|� = f |�, that is f (ξ ) = s(ξ ) for all ξ from �, where we think of the
fξ as f (ξ ) for an f : R

n → R, as before, which usually needs to have a certain
minimal smoothness. One of the central results of this chapter shows that the
matrix that determines the λξ using the fξ , namely the so-called interpolation
matrix

(2.1) A = {φ(‖ζ − ξ‖)}ζ,ξ∈�,
is always nonsingular for the multiquadric function φ(r ) = √

r2 + c2. Indeed,
the entries λξ of the vector λ = {λξ }ξ∈� are found by premultiplying { fξ }ξ∈�
by A−1, as the linear system we solve is

Aλ = { fξ }ξ∈� = f.

In practical computations, however, one uses a solver for the above linear system
and does not invert the matrix. We have much more on this in Chapter 7.
As it turns out, for our approach the interpolation matrix is sometimes (for
some radial basis functions, especially for the compactly supported ones) even
positive definite, i.e. for all vectors λ = {λξ }ξ∈� that are not identically zero,
the quadratic form

λT Aλ

is positive at λ.
Hence using the fact that A is nonsingular or even positive definite, we can

conclude that the λξ and s exist uniquely, for all data and for all n. There are no
restrictions for any of those parameters. After demonstrating this remarkable
observation in detail, we shall describe some further important properties of
this interpolation process.

We give a definition and several results that explain the nonsingularity prop-
erties of (2.1) for multiquadrics now.

The principal concept that serves to show nonsingularity of the interpolation
matrix is complete monotonicity. We will define this concept and show its
usefulness in the next few results. In its definition we use the standard notation
C∞ for the set of infinitely continuously differentiable functions on a set stated
in parentheses thereafter. Of course the analogous notation C�, say, stands for
� times continuously differentiable functions.

Definition 2.1. A function g ∈ C∞(R>0) is completely monotonic if and only
if, for � = 0, 1, 2, . . . , (−1)� g(�)(t) ≥ 0 for all positive t .

The prototype of a completely monotonic function is the exponential function
g(t) = e−αt for any nonnegative α. This is a prototype because in some sense
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all completely monotonic functions are generated by integration of a measure
with g as a kernel. Soon we will see in what way this is meant.

We will encounter many other simple examples of completely monotonic
functions later, but we note at once that g(t) = (t + c2)−1/2 is an example for a
continuous completely monotonic function for all c. Although this g is not the
multiquadric function, it serves well to show the usefulness of the following
proposition to which we will hark back very soon in connection with the actual
multiquadric function. The following result was shown first by Schoenberg
(1938), but he had quite different applications in mind from ours.

Proposition 2.1. Let g: R+ → R be a continuous completely monotonic
function. Then, for all finite � ⊂ R

n of distinct points and all n, the matrix A
in (2.1) is positive definite for φ(r ) = g(r2), unless g is constant. In particular,
the matrix A in (2.1) is nonsingular.

As an example, we note that the above proposition immediately shows that the
Gaussian kernel function φ(r ) = e−r2

gives rise to an invertible interpolation
matrix A. In fact, Schoenberg established a characterisation of positive semi-
definite gs in his original theorem, but we only require the single implication
stated in the proposition above.

The proof of Proposition 2.1 requires a lemma, which characterises com-
pletely monotonic functions. It is called the Bernstein–Widder representation,
often just referred to as the Bernstein representation theorem (Widder, 1946).

Bernstein–Widder representation. A function g is completely monotonic if
and only if it is the Laplace transform

g(t) =
∫ ∞

0
e−tα dµ(α), t > 0,

of a nondecreasing measure µ that is bounded below, so that, in particular,
dµ ≥ 0.

Trivial cases, i.e. constant completely monotonic functions, can be excluded by
not letting µ be a point measure. Incidentally, the function g is also continuous
at the origin if the measure remains finite.

Proof of Proposition 2.1: Let λ ∈ R
�\{0}, i.e. λ is a vector with components

λξ where ξ ranges over �. Then,

(2.2) λT Aλ =
∑
ζ∈�

∑
ξ∈�

λζλξ g(‖ζ − ξ‖2),

where A still denotes the matrix (2.1).
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This is, according to the Bernstein–Widder representation, by exchanging
sums and integration (the sums are finite, so it is permitted to interchange
integration and summation), the same as the quadratic form∫ ∞

0

∑
ζ∈�

∑
ξ∈�

λζλξ e−α‖ζ−ξ‖
2
dµ(α),

now inside the integral. Hereµ is not a point measure because g is not a constant,
and moreover dµ ≥ 0 and dµ �= 0. This quadratic form and, a fortiori, (2.2)
are positive, as required, by virtue of the positive definiteness of the matrix

{e−α‖ζ−ξ‖2}ξ,ζ∈�

for all positive α.
Indeed, there are many straightforward ways to show positive definiteness of

the matrix in the above display for all positive α; see, for example, Stein and
Weiss (1971). We demonstrate a standard approach here. That is, one can use
for instance the fact that the Fourier transform of e−αr2

is

πn/2 · e−r2/(4α) · α−n/2, r ≥ 0,

to deduce for all nonzero vectors λ ∈ R
� and positive α

∑
ξ,ζ∈�

λζλξe−α‖ζ−ξ‖
2 = πn/2

(2π )n

∫
Rn

∣∣∣∣∣∑
ξ∈�

λξe−iξ ·y
∣∣∣∣∣
2

e−‖y‖2/(4α) · α−n/2 dy

which is positive, as required, because of the linear independence of exponential
functions with distinct (imaginary) exponents.

In summary, we have by now made the observation that all A for the inverse mul-
tiquadric function φ(r ) = (r2+c2)−1/2 are positive definite, hence nonsingular.
This is an application of the above proposition. It turns out to be a fairly simple
consequence of this analysis that A is also nonsingular for φ(r ) = √

r2 + c2.

Theorem 2.2. Let g ∈ C∞[0,∞) be such that g′ is completely monotonic
but not constant. Suppose further that g(0) ≥ 0. Then A is nonsingular for
φ(r ) = g(r2).

The result is due to Micchelli (1986). Before we embark on its proof, note
that this theorem does apply to the multiquadric, namely g(t) = √

t + c2 and
φ(r ) = √

r2 + c2, and it gives the desired nonsingularity result.
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Proof of Theorem 2.2: As g ∈ C∞[0,∞), we can rewrite it as

g(t) = g(0)+
∫ t

0
g′(x)dx .

We now insert the Bernstein–Widder representation of g′(x) and exchange
integrals. This is admissible because of Fubini’s theorem. We get

g(t) = g(0)+
∫ t

0

∫ ∞

0
e−αx dµ(α) dx .

Let λ ∈ R
� be such that its components sum to zero, i.e.

∑
ξ∈� λξ = 0.

Thus, because of the Bernstein–Widder representation, used for g′(x), we get

λT Aλ = −
∫ ∞

0

∑
ξ∈�

∑
ζ∈�

λζλξ α−1e−α‖ζ−ξ‖
2
dµ(α).

We are using here that
∫ t

0 e−αx dx = −α−1 e−αt+α−1 and that the sum overλ’s
components cancels the α−1 term which is constant with respect to x . Therefore
λT Aλ < 0 for all such λ unless λ = 0. Hence all but one of A’s eigenvalues
are negative. Otherwise, we could take γ and δ as two nonnegative ones and
let z and t their associated orthonormal eigenvectors; they exist because A is
symmetric. Thus there would be a nonzero vector λ whose components sum to
zero and that has the representation λ = az + bt . It fulfils

0 > λT Aλ = a2γ + b2δ ≥ 0,

and this is a contradiction. Thus, indeed, all but one of the matrix’s eigenvalues
are negative.

On the other hand, as A’s trace is nonnegative, the remaining eigenvalue
must be positive, since it is a well-known fact that the trace of the matrix is the
sum of its eigenvalues. Hence det A �= 0. Indeed, the sign of its determinant
is (−1)|�|−1.

Thus we have now established the important result that multiquadric interpo-
lation is always nonsingular, i.e. uniquely possible. Note that this also applies
to the special case c = 0, which is the case φ(r ) = r . The sign of the matrix
determinant is always (−1)|�|−1, that is the same as multiquadrics also for this
choice of the parameter c.

The fact that Euclidean norms are used here, incidentally, is of the essence.
There are examples for �1 and �∞ norms and choices of�, where {‖ζ−ξ‖p}ζ,ξ∈�
is singular for p = 1,∞. More precisely, the matrix is always nonsingular (for
all n and �, that is) for p ∈ (1, 2]. It always can be singular (for some n and/or
�) otherwise. The case p = 1 was studied in particular by Dyn, Light and
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Cheney (1989) who give general theorems that characterise point constellations
leading to singularity. The positive and negative results on p-norms, p ∈ (1, 2]
and 2 < p <∞, respectively, are due to Baxter (1991).

Many other radial basis functions exist for which either Proposition 2.1
or Theorem 2.2 applies: for example φ(r ) = e−αr2

, φ(r ) = e−αr , φ(r ) =
(r2 + c2)−1, and others. As has also been proved, the condition of complete
monotonicity can be relaxed to λ-fold (finite or ‘incomplete’) monotonicity
(Micchelli, 1986, Buhmann, 1989), which is closely related to certain radial
basis functions of compact support. We will return to those later on in Chapter 6
and explain λ times monotonic functions with examples there.

2.2 Convergence analysis

After showing the unique existence of multiquadric interpolants, the next im-
portant question is that of their usefulness for approximation. Only if they turn
out to be able to approximate smooth functions well (depending on step size
of the centres and the actual smoothness of the approximand) will they be
suitable for applications. This question is, within the scope of this chapter, best
discussed for n = 1 and the infinite set of equally spaced centres� = hZ, where
h is a positive step size. Note that this means that the approximand f : R → R

must be defined everywhere and at least continuous on the real axis and that, in
particular, no boundary conditions need be considered. In fact we give up the
interpolation conditions altogether for the first part of the convergence analysis
because the goodness of approximation can very well be discussed within the
context of ‘quasi-interpolation’ which we introduce now as

sh(x) =
∑
j∈Z

f ( jh) ψ
( x

h
− j

)
, x ∈ R,

where f is the approximand andψ is a finite linear combination of multiquadric
functions

ψ(x) =
∑
|k|≤N

λk φ(|x − k|), x ∈ R.

It is important to notice that we are using here the so-called stationary case,
where we are using a fixed ψ which is scaled by the reciprocal of h in its
argument. It is also possible to study the nonstationary case, where ψ depends
on h in another way and where ψ = ψh is evaluated at x − jh without scaling.
We shall, however, use only stationary analysis in this chapter and address the
nonstationary case briefly in Chapters 4 and 9.
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The N is a positive integer in the expression for ψ . It is understood that sh

depends on h as well as on f . The function sh need not satisfy any interpolatory
properties but it should be such that sh ≈ f is a good uniform approximation
on the real line by virtue of properties of the function ψ . It is reasonable to
address this form of approximants, as the quality of the approximation depends
more on the space of approximants than on any particular choice of methods
such as interpolation. The above form is especially helpful for our consideration
because of its particularly simple form: f enters directly into the expression
without any preprocessing and ψ is completely independent of f .

We want to explain this further and give an example. Note first that we indeed
remain in the space spanned by translates of a radial basis function, in spite of
the fact that we formulate the approximant as a linear combination of ψs. This
is because we are using finite linear combinations. Thus, later on, we will be
able to deduce properties of interpolation with multiquadrics on the equally
spaced points from the analysis of the present situation.

The idea is to find λk such that ψ is local, e.g. by requiring the absolute sum

(2.3)
∑
j∈Z

|ψ(x − j)|

to be uniformly bounded for all x ∈ R and by demanding that the absolutely
convergent series gives ∑

j∈Z

ψ(x − j) ≡ 1,

so that s = f at a minimum for constant f . Here, we abbreviate s1 by s. Both
conditions are eminently reasonable for approximation and in spite of their
relative weakness they will provide good methods. However, all this should
happen irrespective of the asymptotic linear growth of the multiquadric func-
tion! We will show now that this is possible and that furthermore s = f for all
linear f . This provides essentially second order convergence of s to f when
f is smooth enough and h → 0. Indeed, let ψ be a second divided difference
of φ, i.e.

ψ(x) = 1

2
φ(|x − 1|)− φ(|x |)+ 1

2
φ(|x + 1|).

Then we can show that s is at least well-defined for at most linearly growing
f and that in particular the boundedness condition that (2.3) be finite holds
for all x . We let without loss of generality c > 0, because otherwise our
quasi-interpolation is the usual piecewise interpolation and then the following
statements are trivial, ψ being then the hat-function or equivalently the linear
B-spline B1, see Powell (1981) for example, for a comprehensive treatment of
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B-splines. For us here, it suffices to remark that B1 is the continuous piecewise
linear function which is one at zero, zero at all nonvanishing integers and whose
breakpoints are the integers.

The next proposition shows the boundedness of (2.3).

Proposition 2.3. The above second divided difference ψ satisfies, for |x |
greater than 1,

|ψ(x)| ≤ Cc2|x |−3,

where C is a generic positive constant, independent of x and c. We note in
particular the trivial estimate |ψ(x)| ≤ C(1+ c2) for all arguments.

We remark that this proposition shows that, although φ is an unbounded
function, the linear combination ψ of φ’s translates decays cubically as
x → ±∞. Uniform boundedness of (2.3) is thus a trivial consequence of
absolute convergence of the series, because ψ is continuous and bounded
anyway.

Proof of Proposition 2.3: According to the Peano kernel theorem (Powell,
1981, p. 270)

ψ(x) = 1

2

∫ ∞

−∞
B1(x − t) φ′′(t)dt,

where B1 is the linear B-spline with knots at 0, ±1. Because φ′′(t) = c2(t2 +
c2)−3/2, the proof now follows from the compact support of B1, thus from the
finiteness of the integral.

This proof will, incidentally, also apply to general second divided differences
of φ with respect to nonequidistant ξ , as does the following result on linear
polynomial reproduction.

Theorem 2.4. The second divided difference ψ satisfies also the polynomial
reproduction property∑

j∈Z

(a + bj)ψ(x − j) = a + bx, x, a, b ∈ R.

Note that Proposition 2.3 implies the series in Theorem 2.4 above converges
uniformly and absolutely. Note also that Theorem 2.4 means, in particular,
s = f for constant and for linear approximands f .



2.2 Convergence analysis 19

Proof of Theorem 2.4: As in the previous proof, we express ψ by the Peano
kernel theorem and exchange integrals:∑

j∈Z

(a + bj)ψ(x − j) = 1

2

∫ ∞

−∞

∑
j∈Z

(a + bj) B1(x − j − t)φ′′(t)dt

= 1

2

∫ ∞

−∞
(a + b(x − t))φ′′(t)dt

= (a + bx)
1

2

∫ ∞

−∞
φ′′(t)dt

= a + bx,

where we have used that sums over linear B-splines recover linear polynomials.
We have also used that the integral over φ′′ is 2 and the integral over tφ′′(t)
vanishes. Here, a and b are arbitrary reals. The proof is complete.

We observe that this result gives the polynomial recovery indicated above.
This, in tandem with the localisation result Proposition 2.3 opens the door to
a uniform convergence result by suitable Taylor series arguments when twice
differentiable functions are approximated. Moreover, these two results above
exemplify very well indeed how we are going to approach the convergence
questions elsewhere in the book, namely almost always via polynomial recovery
and locality estimates, that is asymptotic decay estimates. In most instances, the
difficulty in the proofs for several dimensions lies much more in establishing the
decay of the basis function, that is its locality, than in the polynomial recovery
which is relatively standard and straightforward, once we know the principles
behind polynomial exactness. More precisely, the same requirements on the
aforementioned coefficients of ψ which lead to a suitable decay behaviour also
imply polynomial exactness with no further work. The convergence estimates,
however, need a more difficult analysis than the familiar ones from spline theory
for instance, because compact support of the basis functions makes the proof
techniques much simpler.

We point out once more that the above results are not just confined to integer
data. Indeed, as Powell (1991) has shown, it suffices to have a strictly increasing
sequence of centres ξ on the real axis that have ±∞ as upper and lower limits,
respectively, to achieve the same results.

Convergence results are obtained in various guises. They always use the
asymptotic decay at an algebraic rate of the basis function: not the radial basis
functions but linear combinations of its translates; it is important to distinguish
carefully between those. The basis function we use in the approximation is



20 2. Summary of methods

our ψ . They use this decay in tandem with polynomial recovery of a nontrivial
order to show that smooth functions can be locally approximated by Taylor
polynomials which are recovered by the approximant. An easy but quite rep-
resentative convergence theorem is the following theorem. In it ‖ · ‖∞ denotes
the uniform or Chebyshev norm on the whole axis R, as is usual.

Theorem 2.5. Let f be twice differentiable and such that ‖ f ′‖∞ and ‖ f ′′‖∞
are finite. Then for any nonnegative c

‖ f − sh‖∞ = O(h2 + c2h2 | log h|), h → 0.

Proof: Let x ∈ R be arbitrary. Let p(y) := f (x) + (y − x) f ′(x) be a local
Taylor polynomial. Thus p is x-dependent, but recall that we fix x . We have
therefore

| f (y)− p(y)| ≤ 2‖ f ′‖∞‖x − y‖∞
and

| f (y)− p(y)| ≤ 1

2
‖ f ′′‖∞‖x − y‖2

∞.

Both estimates follow from Taylor expansions, with two and three terms, respec-
tively, and with the respective remainder terms estimated by their maximum.
We note that by the assumptions | f ′(x)| is bounded and f is therefore of at most
linear growth. Thus, by Theorem 2.4 and the definition of the Taylor polynomial

| f (x)− sh(x)| =
∣∣∣∣∣ ∑

j∈Z

(
f (x)+ ( jh − x) f ′(x)− f ( jh)

)
ψ

( x − jh

h

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
j∈Z

(
p( jh)− f ( jh)

)
ψ

( x − jh

h

)∣∣∣∣∣ .
Using the bound in Proposition 2.3 several times, we get, for a generic (i.e.
independent of x and h) positive constant C which may even change its asso-
ciated value from line to line, the required estimates by dividing the sums up
into three parts, as follows.

| f (x)− sh(x)| ≤
∑

|x− jh|<2h

|p( jh)− f ( jh)|
∣∣∣ψ ( x − jh

h

)∣∣∣
+

∑
2h≤|x− jh|≤1

|p( jh)− f ( jh)|
∣∣∣ψ ( x − jh

h

)∣∣∣
+

∑
|x− jh|>1

|p( jh)− f ( jh)|
∣∣∣ψ ( x − jh

h

)∣∣∣.
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These are at most a fixed positive multiple of

‖ f ′′‖∞h2 max
|x− jh|<2h

∣∣∣ψ( x − jh

h

)∣∣∣
+ C‖ f ′′‖∞c2h2

∑
2h≤|x− jh|≤1

h

|x − jh|

+ C‖ f ′‖∞c2h2
∑

|x− jh|>1

h

|x − jh|2 .

This is the same as a fixed multiple of

‖ f ′′‖∞(h2 + c2h2)+ C‖ f ′′‖∞c2h2
∫ 1

h
y−1dy

+ C‖ f ′‖∞c2h2
∫ ∞

1−h
y−2dy.

We can summarise these expressions by an order term in c and h

O(h2 + c2h2 | log h|),
thus finishing the proof.

We note that for the first derivatives also, a similar convergence statement can
be made. Indeed, with the same assumptions as in Theorem 2.5 in place, the
derivatives of f and sh have the property that

‖ f ′ − s ′h‖∞ = O(h + c2/h), h → 0.

Of course, in order for the above to tend to zero, it is necessary that c tends to
zero as well. With the above proof of Theorem 2.5 in mind, establishing this
second estimate is routine work.

Thus we have now made a first important step towards a quantitative analysis
of the radial basis function method, specifically about convergence: Theorem 2.5
gives, in particular, uniform, essentially quadratic convergence of approximants
from multiquadrics to sufficiently smooth approximands which clearly shows
the usefulness of multiquadric approximation. It is the most important positive
result in this chapter. On the other hand, we may ask whether such constructions
are always possible with the well-known examples of radial basis functions,
such as all the ones mentioned already in this book, multiquadrics, inverse
multiquadrics, thin-plate splines etc. It turns out that they are not. That is, there
is a further result relevant in this context, but it is a negative one, namely,

Theorem 2.6. Let φ be the inverse multiquadric φ(r ) = (r2 + c2)−1/2. Then,
for all finite linear combinations ψ of translates of φ, absolute integrability can
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only be achieved for a basis function ψ of zero means, that is∫ ∞

−∞
|ψ(x)|dx <∞ =⇒

∫ ∞

−∞
ψ(x)dx = 0.

Before we embark on the proof, we note that such a result is useful for radial basis
function approximations in the context we are considering; that is, the theorem
gives us the interesting information that no satisfactory approximations can
be obtained from linear combinations of translates of inverse multiquadrics.
This is because all such linear combinations will have zero means, whence
even approximations to simple data such as constants f will be bad unless
we use approximations in L2(R) such as will be discussed in Chapter 9 of
this book. Therefore Theorem 2.6 shows an instance where, surprisingly, linear
combinations of the increasing multiquadric give much better approximations
than the decaying inverse multiquadrics. This was so far unknown to many users
of the radial basis function method, to whom the inverse multiquadric appeared
falsely to be more useful because of its decay – which is albeit too slow to give
any actual advantage. Later in this book, there will be many further such results
that classify radial basis functions according to their ability to approximate.

Now to the proof of Theorem 2.6.

Proof of Theorem 2.6: Let ε > 0 be arbitrary and N the largest modulus |i |
of a translate φ(· − i) of φ incorporated in the definition of ψ . Let M be such
that |φ(x)| ≤ ε ∀ |x | ≥ M − N and∫

R\[−M,M]
|ψ(x)|dx < ε.

It is possible to find such M and ε because ψ is absolutely integrable, and
because φ decays linearly for large argument.

For any m ≥ M ,∣∣∣ ∫ ∞

−∞
ψ(x)dx

∣∣∣ ≤ ∣∣∣ ∫ m

−m
ψ(x)dx

∣∣∣+ ε

=
∣∣∣∣∣
∫ m

−m

∑
|i |≤N

λi φ(x − i)dx

∣∣∣∣∣+ ε.

This is at most∣∣∣∣∣ ∑
|i |≤N

λi

∫ m+i

−m+i
φ(x − i)dx

∣∣∣∣∣+ ε + 2εN
∑
|i |≤N

|λi |

≤
∣∣∣∣∣ ∑
|i |≤N

λi

∣∣∣∣∣ ∣∣∣ ∫ m

−m
φ(x)dx

∣∣∣+ ε

(
1+ 2N

∑
|i |≤N

|λi |
)
.
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Now, the first term must be zero which can be seen by changing + ε to − ε

and reversing the inequality signs in the above display, recalling φ ≥ 0 and
φ /∈ L1(R), and finally letting m → ∞. Since ε was chosen arbitrarily, the
theorem is proved.

2.3 Interpolation and convergence

2.3.1 Central results about existence

Our Theorem 2.5 in the last section, providing upper bounds for the error of
best approximation in the aforementioned stationary case, gives insight into
the approximational accuracy of multiquadric quasi-interpolation. We shall see
later that very similar bounds hold for both gridded and scattered data sites
alike, also in higher dimensions.

Furthermore, for interpolation, the results can sometimes be significantly
improved, both in one and in more dimensions, albeit for very special classes of
functions f only. Although already our quasi-interpolation results give highly
relevant information about radial basis function spaces and their efficiency as
spaces for approximants, we are still keenly interested in interpolation.

Indeed, it is not hard to show that these convergence results for equally spaced
data (and f with certain differentiability properties like those in Theorem 2.5)
hold for interpolation as well. Therefore we now look at multiquadric interpo-
lation in one dimension and still with centres � = hZ. We claim that we can
find a ‘cardinal function’ (also known as a Lagrange function) denoted by L
which is here a linear combination of shifts of ψ , namely

L(x) =
∑
j∈Z

c j ψ(x − j), x ∈ R,

where ψ is still the same as before. The existence of Lagrange functions is
fundamental in interpolation theory, because, if they exist, we know the generic
interpolation problem is well-posed, the interpolant being expressible as a sim-
ple linear combination of Lagrange functions multiplied by the function values.
Furthermore, it is much simpler to work with ψ instead of φ in both theory and
practice because of ψ’s decay properties, which are in stark contrast with the
unboundedness of most radial basis functions.

As a cardinal function, L is required to satisfy the ‘cardinality conditions’

L( j) = δ0 j , j ∈ Z.

Here δ denotes the Kronecker δ, i.e. δ0 j = δ(− j) with δ(0) = 1, δ|Z\{0} ≡ 0. If
that is so, we can build interpolants extremely easily in Lagrange form even on
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scaled lattices as

sh(x) =
∑
j∈Z

f ( jh) L
( x

h
− j

)
, x ∈ R,

which fulfil the interpolation conditions s|hZ = f |hZ. We are still using the
stationary setting as before and want to study the error f − s as h → 0 in
this set-up. For this, it is helpful to know more about L , and, indeed, we have
not even proved L’s existence yet. (Note that we are dealing with infinitely
many data at present, so that our earlier results do not apply. This fact is related
especially with the question of convergence of the infinite series that occur in
the Lagrange formulation of interpolants.) To this end, consider the equation
that has to be fulfiled by L’s coefficients for every �, namely∑

j∈Z

c j ψ(�− j) = δ0�, � ∈ Z.

At first purely formally, ignoring the question of convergence of the following
series, we can form the so-called discrete Fourier transform of these conditions
by multiplying by exponentials to the �th imaginary power and summing over �.
By recalling that such a sum over exponentials, multiplied by convolutions as
above, can be decomposed into a product, we get the product of Fourier series∑

j∈Z

c j e−i jϑ
∑
�∈Z

ψ(�) e−i�ϑ = 1, ϑ ∈ T,

through use of the Cauchy formula for products of infinite sums. This is equiva-
lent to the previous display, denoting the convolution of the Fourier coefficients
of the two Fourier series of the last display. Here T = [−π, π ].

Hence, according to a theorem of Wiener, which is traditionally called
Wiener’s lemma (Wiener, 1933, Rudin, 1991), the desired {c j } j∈Z exist uniquely
as an absolutely summable sequence if and only if the so-called symbol

σ (ϑ) =
∑
�∈Z

ψ(�) e−i�ϑ , ϑ ∈ T,

which is an infinite, absolutely convergent series, has no zero. For later refer-
ence, we state the lemma already for several unknowns but restrict its application
in this section to one variable only.

Wiener’s lemma. If the Fourier series∑
j∈Zn

d j e
−iϑ · j , ϑ ∈ T

n,
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is absolutely convergent and has no zero, its reciprocal can also be expanded
in an absolutely convergent Fourier series with coefficients c j :

1∑
j∈Zn d j e−iϑ · j =

∑
j∈Zn

c j e
−iϑ · j , ϑ ∈ T

n.

The statement of Wiener’s lemma can also be phrased as a statement about
the ring of absolutely convergent Fourier series, namely, the ring of absolutely
convergent Fourier series is an algebra, the so-called Wiener algebra.

Now, in this event, the c j of the above are the Fourier coefficients of the 2π -
periodic continuous reciprocal σ (ϑ)−1 and we have to look for its positivity.
Because ψ is such that |ψ(�)| decays cubically, the series above converges
absolutely and we may apply the Poisson summation formula (Stein and Weiss,
1971) to obtain the alternative formulation for the ‘symbol’ σ that will show us
that the symbol has no zero and will be very important also later in this book.
Following is the pertinent result, and we recall that the Fourier transform of an
integrable function f is defined by

f̂ (x) =
∫

Rn

e−i x ·t f (t) dt, x ∈ R
n,

cf. the Appendix. For the same reasons as above we define this and state the
following result already in several dimensions; its usage in this chapter is only
for n = 1.

Poisson summation formula. Let s ∈ L1(Rn) be such that its Fourier trans-
form ŝ is also absolutely integrable. Then we have the equality∑

j∈Zn

s( j)e−iϑ · j =
∑
�∈Zn

ŝ(ϑ + 2π�), ϑ ∈ T
n,

the convergence of the sums being in L1(Tn). If s satisfies the two estimates
|s(x)| = O((1 + ‖x‖)−n−ε) and |ŝ(x)| = O((1 + ‖x‖)−n−ε) for positive ε,
then the two sums above are absolutely convergent and their limiting functions
continuous. Therefore the above identity holds pointwise.

It follows for our purposes that the symbol is

σ (ϑ) =
∑
�∈Z

ψ̂(ϑ + 2π�), ϑ ∈ T.

So ψ̂ ≥ 0 or ψ̂ ≤ 0 everywhere is sufficient for σ (ϑ) �= 0 for all ϑ , as long
as ψ̂ has no 2π-periodic zero. We will now check this condition as well as the
absolute convergence of the series of the symbol in the new formulation. We
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commence with the latter which is the more difficult issue. The other condition
will come out as a by-product.

To this end we note that ψ̂ decays even exponentially, so that the series in the
last display converges absolutely. Indeed, this can be verified by computing the
Fourier transform of ψ explicitly. It is composed of the distributional Fourier
transform ofφ times a trigonometric polynomial coming from taking the second
divided difference: that is,

1

2
φ(|x − 1|)− φ(|x |)+ 1

2
φ(|x + 1|)

gives through Fourier transformation

ψ̂(x) = φ̂(|x |)
( 1

2
e−i x − 1+ 1

2
eix

)
.

The distributional or generalised Fourier transforms will be discussed in more
detail in Section 4.1. Here it is only relevant that for our choice of ψ above,

ψ̂(ϑ) = (cosϑ − 1) φ̂(|ϑ |),
where φ̂(|ϑ |) is−(2c/|ϑ |)K1(c|ϑ |), the distributional Fourier transform in one
dimension of

φ(|x |) =
√

x2 + c2, x ∈ R.

This K1 is a modified Bessel function; the Fourier transform φ̂ is found in Jones
(1982). The ψ̂ satisfies our condition of nonnegativity because K1(z) > 0 and
K1(z) ∼ z−1, z → 0+ (Abramowitz and Stegun, 1972). Moreover, it shows
that ψ̂ and φ̂ decay exponentially, because K1(z) does for growing argument
z → ∞. Finally, there is no 2π -periodic zero; in particular ψ̂(0) =
limϑ→0 ψ̂(ϑ) �= 0.

Later on when we work in n dimensions instead of one, we use that the
Fourier transform φ̂ for the multiquadric function is a constant multiple of
(c/|ϑ |)−(n+1)/2 K(n+1)/2(c|ϑ |). We will also explain distributional Fourier trans-
forms in more detail in the fourth chapter.

2.3.2 Properties of the Lagrange function

Hence we have shown the unique existence of a bounded cardinal function,
where the uniqueness means ‘the only one with absolutely summable coeffi-
cients’ in the sense of Wiener’s lemma. We claim that L does in fact decay
cubically for large argument just as ψ does, and we will prove in Chapter 4,
in a more general context, that its multidimensional analogue even decays for
general n like ‖x‖−2n−1 as ‖x‖ → ∞. For now, however, the following result
suffices.
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Theorem 2.7. Let φ be the multiquadric function and ψ be the second divided
difference mentioned above. Then there is a unique absolutely summable set of
coefficients {c j } j∈Z such that L satisfies the cardinality conditions

L( j) = δ0 j , j ∈ Z,

and is bounded. Moreover, |c j | = O(| j |−3), and so in particular L decays
cubically at infinity because ψ does as well.

Proof: The first part of the theorem has already been shown. We only
have to show the cubic decay of the cardinal function’s coefficients. That
this implies that |L(x)| also decays cubically is an easy consequence of
the convolution form of L because ψ decays cubically as well (e.g. from
Lemma 4.14 of Light and Cheney, 1992a). Indeed, it is straightforward to show
that a convolution in one variable of two cubically decaying functions decays
cubically.

Further, the coefficients are of the form of a discrete inverse Fourier transform
as we have noted before, namely

c j = 1

2π

∫ π

−π

ei jϑ

σ (ϑ)
dϑ.

This is well-defined because σ has no zero as we have seen already by using the
Poisson summation formula. It is straightforward to verify that the c j provide the
desired cardinal function L once we have established their asymptotic decay;
that follows from the fact that we can expand the reciprocal of the symbol
in an absolutely convergent Fourier series whose coefficients are our desired
coefficients. Assuming for the moment that we have already established their
decay, we get by Cauchy’s formula for the multiplication of infinite absolutely
convergent series∑

j,�∈Z

c jψ(�− j)e−i�ϑ =
(∑

�∈Z

c�e
−i�ϑ

)(∑
j∈Z

ψ( j)e−i jϑ

)
= σ (ϑ)

σ (ϑ)
= 1,

as required. We have used here in particular that the c� are the Fourier coefficients
of the reciprocal of the symbol and therefore the Fourier series with those
coefficients reproduces σ (ϑ)−1. Thus we now only consider the coefficients’
decay.

In order to establish the result, it suffices to prove that σ (ϑ)−1 is three times
differentiable except perhaps at zero or indeed at any finite number of points,
while all those derivatives are still integrable over T. Then we can apply integra-
tion by parts to our above integral to show that |c j | · | j |3 is uniformly bounded
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through the absolute integrability of the third derivative of the reciprocal of the
symbol. For that, we integrate the exponential function and differentiate the
reciprocal of the symbol:∫ π

−π

ei jϑ

σ (ϑ)
dϑ = −1

j i

∫ π

−π
ei jϑ d

dϑ

1

σ (ϑ)
dϑ.

There are no boundary terms because of the periodicity of the integrand. Each
time this integration by parts gives a factor of −1

i j in front of the integral;
performing it three times gives the desired result so long as the remaining
integrand is still absolutely integrable. To this end, the symbol’s reciprocal is
further differentiated while the integration of the exponential function provides
the required powers of j . Moreover, because K1 ∈ C∞(R>0), and therefore
the same is true for the whole Fourier transform φ̂, we only have to prove the
integrability assertions in a neighbourhood of the origin.

Indeed, near zero, setting without loss of generality c = 1, and letting

ĉ1, ĉ2, ĉ3, ĉ4

be suitable real constants, we have the following short expansion of the recip-
rocal of σ (ϑ), where the expression

∑′ in the display denotes
∑

�∈Z\{0}, and

where we have used the expression for ψ̂ derived above:

σ (ϑ)−1 = (1− cosϑ)−1
{
φ̂(|ϑ |)+

∑′
φ̂(|ϑ + 2π�|)

}−1

=
{1

2
ϑ2 − 1

24
ϑ4 + O(ϑ6)

}−1

× {
ĉ1 ϑ

−2 + ĉ2 logϑ + ĉ3 + ĉ4ϑ + O(ϑ2 logϑ)
}−1

, ϑ → 0+.

This is because we have in our case the particularly simple form

φ̂(r ) = −(2/r ) K1(r ), r > 0,

and because of the expansion of K1 to be found in Abramowitz and Stegun
(1972, p. 375). It is as follows:

K1(z) = 1

z
+ 1

2
z log

(1

2
z
)
− 1

4
(1− 2γ )z + O(z3 log z), z → 0+,

where γ denotes Euler’s constant. The sum
∑′

φ̂(|ϑ + 2π�|) is infinitely dif-
ferentiable near zero. This reciprocal of the symbol given for the radial basis
function in question is therefore

σ (ϑ)−1 = c̃1 + c̃2ϑ
2 logϑ + c̃3ϑ

2 + c̃4 ϑ
3 + O(ϑ4 logϑ), ϑ → 0+.
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Here, again, c̃1, c̃2, c̃3, c̃4 are suitable nonzero constants, whose particular values
are unimportant to us.

The first four terms give no or an O(| j |−3) contribution to the inverse gen-
eralised Fourier transform of σ (ϑ)−1, because the inverse Fourier transform of
ϑ2 logϑ in one dimension is O(ϑ−3) and the Fourier transform of a polynomial
is a linear combination of derivatives of the δ-distribution (Jones, 1982), which
gives no contribution to the decay at infinity.

The remaining terms in the above short asymptotic expansion are all at least
three times continuously differentiable, as is σ (ϑ)−1 everywhere else other than
at zero. Therefore the c j , which are computed by the inverse transform of the
2π -periodic function σ (ϑ)−1, are composed of terms which all decay at least
as fast as a multiple of | j |−3. Hence the theorem is true.

We note that a convergence theorem such as the one we have derived above for
quasi-interpolation follows immediately for cardinal interpolation too. This is
because, as we have just seen, L decays at least as fast as ψ does, and cardinal
interpolation recovers linear polynomials as well, because it is a projection
onto the space spanned by translates of ψ , by the uniqueness of interpolation.
Therefore cardinal interpolation recovers all polynomials reproduced by quasi-
interpolation, namely linear ones. The convergence proof, however, has made
no use of any further properties of ψ .

All of this work on interpolation will be generalised considerably in
Chapter 4. Most notably, it will apply to all n and to much larger classes of
radial basis functions. We will also show strong decay results that lead to high
approximation orders. Specifically, multiquadric interpolation on h-scaled in-
teger grids in n dimensions incurs approximation errors of at most O(hn+1)
if f is sufficiently smooth. (Interestingly enough, the polynomial recovery
properties are the same for interpolation and quasi-interpolation, so, e.g., linear
polynomial recovery is the best we can do in one dimension with multiquadrics.
This says also that it is not necessary to perform all the work which interpola-
tion requires, as quasi-interpolation will do from the viewpoint of asymptotic
error analysis.) Nonetheless, the work demonstrated so far gives insight into
the achievable results and the proof techniques. We now give some concrete
examples for mathematical applications.

2.4 Applications to PDEs

Perhaps the most important concrete example of applications is the use of ra-
dial basis functions for solving partial differential equations. These methods
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are particularly interesting when nonlinear partial differential equations are
solved and/or nongrid approaches are used, e.g. because of nonsmooth do-
main boundaries, where nonuniform knot placement is important to mod-
elling the solution to good accuracy. This is no contradiction to our analysis
above, where equal spacing was chosen merely for the purpose of theoret-
ical analysis. As we shall see in the next chapter, there are, for more than
two or three-dimensions, not many alternative methods that allow nongrid
approaches.

Two ways to approach the numerical solution of elliptic boundary value prob-
lems are by collocation and by the dual reciprocity method. We begin with a
description of the collocation approach. This involves an important decision
whether to use the well-known, standard globally supported radial basis func-
tions such as multiquadrics or the new compactly supported ones which are
described in Chapter 6 of this book. Since the approximation properties of the
latter are not as good as the former ones, unless multilevel methods (Floater
and Iske, 1996) are used, we have a trade-off between accuracy on one hand
and sparsity of the collocation matrix on the other hand. Compactly supported
ones give, if scaled suitably, banded collocation matrices while the globally
supported ones give dense matrices. When we use the compactly supported
radial basis functions we have, in fact, another trade-off, because even their
scaling pits accuracy against population of the matrix. We will come back to
those important questions later in the book.

One typical partial differential equation problem suitable for collocation
techniques reads

Lu(x) = f (x), x ∈ 
 ⊂ R
n,

Bu|∂
 = q,

where
 is a domain with suitably smooth, e.g. Lipschitz-continuous, boundary
∂
 and f , q are prescribed functions. The L is a linear differential operator and
B a boundary operator acting on functions defined on ∂
. Often, B is just point
evaluation (this gives rise to the so-called Dirichlet problem) on the boundary or
taking normal derivatives (for Neumann problems). We will come to nonlinear
examples soon in the context of boundary element techniques.

For centres � that are partitioned into two disjoint sets �1 and �2, the former
from the domain, the latter from its boundary, the usual approach to collocation
is to solve the so-called Hermite interpolation system

�ξuh = f (ξ ), ξ ∈ �1,

�ζuh = q(ζ ), ζ ∈ �2,
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which involves both derivatives of different degrees and function evaluations.
The approximants uh are defined by the sums

uh(x) =
∑
ξ∈�1

cξ�ξφ(‖x − ξ‖)+
∑
ζ∈�2

dζ�ζφ(‖x − ζ‖).

The �ξ and �ζ are suitable functionals to describe our operators L and B on
the discrete set of centres. This is usually done by discretisation, i.e. replacing
derivatives by differences.

Thus we end up with a square symmetric system of linear equations whose
collocation matrix is nonsingular if, for instance, the radial basis function is
positive definite and the aforementioned linear functionals are linearly inde-
pendent functionals in the dual space of the native space of the radial basis
functions (see Chapter 5 for the details about ‘native spaces’ which is another
name, commonly used in the literature, for the reproducing kernel semi-Hilbert
spaces treated there).

An error estimate is given in Franke and Schaback (1998). For those error
estimates, it has been noted that more smoothness of the radial basis func-
tion is required than for a comparable finite element setting, but clearly, the
radial basis function setting has the distinct advantage of availability in any
dimension and the absence of grids or triangulations which take much time to
compute.

If a compactly supported radial basis function is used, it is possible to scale so
that the matrix is a multiple of the identity matrix, but then the approximation
quality will necessarily be bad. In fact, the conditioning of the collocation
matrix is also affected which becomes worse the smaller the scaling η is with
φ(·/η) being used as scaled radial basis function. A Jacobi preconditioning by
the diagonal values helps here, so the matrix A is replaced by P−1AP−1 where
P = √

diag(A) (Fasshauer, 1999).
We now outline the second method, that is a boundary element method

(BEM). The dual reciprocity method as in Pollandt (1997) uses the second
Green formula and a fundamental solution φ(‖ · ‖) of the Laplace operator

� = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

to reformulate a boundary value problem as a boundary integral problem over a
space of one dimension lower. No sparsity occurs in the linear systems that are
solved when BEM are used, but this we are used to when applying noncompactly
supported radial basis functions (see Chapter 7).
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The radial basis function that occurs in that context is this fundamental solu-
tion, and, naturally, it is highly relevant in this case that the Laplace operator is
rotationally invariant. We wish to give a very concrete practical example from
Pollandt (1997), namely, for a nonlinear problem on a domain 
 ⊂ R

n with
Dirichlet boundary conditions such as

�u(x) = u2(x), x ∈ 
 ⊂ R
n,

u|∂
 = q,

one gets after two applications of Green’s formula (Forster, 1984) the equation
on the boundary (where g will be defined below)

(2.4)
1

2

(
u(x)− g(x)

)
+

∫
∂


(
φ(‖x − y‖)

∂

∂ny

(
u(y)− g(y)

)
−

(
u(y)− g(y)

) ∂

∂ny
φ(‖x − y‖)

)
d �y = 0, x ∈ ∂
,

where ∂
∂ny

is the normal derivative with respect to y on �y = � = ∂
. We will
later use (2.4) to approximate the boundary part of the solution, that is the part
of the numerical solution which satisfies the boundary conditions. In order to
define the function g which appears in (2.4), we have to assume that there are
real coefficients λξ such that the – usually infinite – expansion (which will be
approximated by a finite series in an implementation)

(2.5) u2(y) =
∑
ξ∈�

λξ φ̃ (‖y − ξ‖), y ∈ 
,

holds, and set

g(y) =
∑
ξ∈�

λξ �̃ (‖y − ξ‖), y ∈ 
,

so that �g = u2 everywhere with no boundary conditions. Here φ̃, �̃ are
suitable radial basis functions with the property that ��̃ (‖ · ‖) = φ̃(‖ · ‖) and
the centres ξ are from 
.

The next goal is to approximate the solution u of the PDE on the domain
by g which is expanded in radial basis functions plus a boundary term r̃ that
satisfies �r̃ ≡ 0 on 
. To this end, we require that (2.4) holds at finitely many
boundary points x = ζ j ∈ ∂
, j = 1, 2, . . . , t , only. Then we solve for the
coefficients λξ by requiring that (2.5) holds for all y ∈ �. The points in � ⊂ 


must be chosen so that the interpolation problem is solvable.
Therefore we have fixed theλξ by interpolation (collocation in the language of

differential equations), whereas (2.4) determines the normal derivative ∂
∂ny

u(y)
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on �, where we are replacing ∂
∂ny

u(y) by another approximant, a spline, say, as
in Chapter 3, call it τ (y). Thus the spline is found by requiring (2.4) for all x =
ζ j ∈ �, j = 1, 2, . . . , t , and choosing a suitable t . Finally, an approximation
ũ(x) to u(x) is determined on 
 by the identity

ũ(x) := g(x) +
∫
�

(q(y)− g(y))
∂

∂ny
φ(‖x − y‖) d�y

−
∫
�

φ(‖x − y‖)
(
τ (y)− ∂g(y)

∂ny

)
d�y, x ∈ 
,

where r̃ corresponds to the second and third terms on the right-hand side of the
display (Pollandt, 1997).

Now, all expressions on the right-hand side are known. This is an outline
of the approach but we have skipped several important details. Nonetheless,
one can clearly see how radial basis functions appear in this algorithm; indeed,
it is most natural to use them here, since many of them are fundamental so-
lutions of the rotationally invariant Laplace operators in certain dimensions.
In the above example and n = 2, φ(r ) = 1

2π log r, φ̃(r ) = r2 log r (thin-
plate splines) and �̃(r ) = 1

16 r4 log r − 1
32 r4 are the correct choices. An

undesirable feature of those functions for this application, however, is their
unbounded support because it makes it harder to solve the linear systems for
the λξ etc., especially since in the approximative solution of partial differen-
tial equations usually very many collocation points are used to get sufficient
accuracy.

One suitable approach to such problems that uses radial basis functions with
compact support is with the ‘piecewise thin-plate spline’ that we shall describe
now. With it, the general form of the thin-plate spline is retained as well as
the nonsingularity of the interpolation matrix for nonuniform data. In fact, the
interpolation matrix turns out to be positive definite. To describe our new radial
basis functions, let φ be the radial basis function

(2.6) φ(r ) =
∫ ∞

0
(1− r2/β)λ+ (1− βµ)ν+dβ, r ≥ 0.

Here ( · )t
+ is the so-called truncated power function which is zero for negative

argument and ( · )t for positive argument. From this we see immediately that
supp φ = [0, 1]; it can be scaled for other support sizes. An example with
µ = 1

2 , ν = λ = 1 is

(2.7) φ(r ) =
{

2r2 log r − 4
3 r3 + r2 + 1

3 , if r ≤ 1,
0 otherwise.
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which explains why we have called φ a ‘piecewise thin-plate spline’. The pos-
itive definiteness of the interpolation matrix follows from a theorem which is
stated and established in full generality in Chapter 6.

We now state a few more mathematical applications explicitly where the
methods turned out to be good. Casdagli (1989) for instance used them to
interpolate componentwise functions F : R

n → R
n that have to be iterated to

simulate what is called a discrete dynamical system. In such experiments we
especially seek the attractor of the discrete dynamical system that maps F :
R

2 → R
2. An example is the Hénon map

F(x, y) = (y, 1+ bx − ay2)

(a and b being suitable parameters). Note that often in such mathematical
applications, the dimension is much larger than two, so that radial basis functions
are very suitable.

Since F often is far too expensive to be evaluated more than a few times, the
idea is to interpolate F by s and then iterate with s instead. For instance, if F
can reasonably be evaluated m times, beginning from a starting value ξ0 ∈ R

n ,
interpolation points

ξ1 = F(ξ0), ξ2 = F(ξ1), . . . , ξm = F(ξm−1)

are generated, and we let � = {ξ j }mj=0. Then we wish to interpolate F by s on
the basis of that set�. We note that thus the points in� can be highly irregularly
distributed, and at any rate their positions are not foreseeable. Moreover it is
usual in this kind of application that n is large. Therefore both spline and poly-
nomial interpolation are immediately ruled out, whereas Casdagli notes that,
e.g., interpolation by multiquadrics is very suitable and gives good approxima-
tions to the short term and long term asymptotic behaviour of the dynamical
system.

Hence radial basis functions are useful for such applications where inter-
polation is required to arbitrarily distributed data sites. There is, so far, no
comprehensive theoretical explanation of this particular successful application,
but the numerical results are striking as documented in Casdagli (1989).

In summary, this chapter has presented several concepts fundamental to ra-
dial basis functions and highly relevant to Chapters 4–10, namely complete
monotonicity, positive definiteness, quasi- and cardinal interpolation, polyno-
mial reproduction and convergence orders, localness of cardinal functions, ra-
dial basis functions of compact support. Three of the principal tools that we
use here, namely the Bernstein representation theorem, Wiener’s lemma, the



2.4 Applications 35

Poisson summation formula, are so central to our work that they will come up
frequently in the later chapters as well.

In the following chapter we will show several other approaches to approxi-
mation and interpolation of functions with many variables. The main purpose of
that chapter is to enable the reader to contrast our approach with other possible
methods.



3

General Methods for Approximation
and Interpolation

In this chapter we summarise very briefly some general methods other than
radial basis functions for the approximation and especially interpolation of
multivariate data. The goal of this summary is to put the radial basis function
approach into the context of other methods for approximation and interpolation,
whereby the advantages and some potential disadvantages are revealed. It is
particularly important to compare them with spline methods because in one
dimension, for example, the radial basis function approach with integral powers
(i.e. φ(r ) = r or φ(r ) = r3 for instance) simplifies to nothing else than a
polynomial spline method. This is why we will concentrate on polynomial and
polynomial spline methods. They are the most important ones and related to
radial basis functions, and we will only touch upon a few others which are
non(-piecewise-)polynomial. For instance, we shall almost completely exclude
the so-called local methods although they are quite popular. They are local in
the sense that there is not one continuous function s defined over the whole
domain, where the data are situated, through the method for approximating all
data. Instead, there is, for every x in the domain, an approximation s(x) sought
which depends just on a few, nearby data. Thus, as x varies, this s(x) may not
even be continuous in x (it is in some constructions). Typical cases are ‘natural
neighbour’ methods or methods that are not interpolating but compute local
least-squares approximations.

Such methods are not to be confused with our global methods which usually
should also depend locally on the data to approximate well; the difference is
that our methods define just one continuous function normally over the whole
of R

n , or anyway over a very specific nontrivial range, a subset of R
n .

We begin in the next section with polynomial methods, especially polynomial
interpolation in more than one dimension, where the data � are allowed to be
scattered in R

n . Then we will deal with piecewise polynomial methods, and we
conclude the chapter with a few remarks about nonpolynomial methods.

36
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3.1 Polynomial schemes

The most frequently employed techniques for multivariate approximation, other
than radial basis functions, are straight polynomial interpolation, and piecewise
polynomial splines. We begin with polynomial interpolation. There are various,
highly specific techniques for forming polynomial interpolants. Very special
considerations are needed indeed because as long as � is a finite generic set
of data sites from an open set in more than one dimension, and if we are
interpolating from a polynomial space independent of �, there can always be
singularity of the interpolation problem. That is, we can always find a finite set
of sites � that causes the interpolation problem to be singular, whenever the
dimension is greater than one and the data sites can be varied within an open
subset of the underlying Euclidean space.

This is a standard result in multivariate interpolation theory and it can be
shown as follows. Suppose that � is such that the interpolation matrix for a
fixed polynomial basis, call the matrix A, is nonsingular. If � stems from an
open set in two or more dimensions, two of �’s points can be swapped, causing
a sign change in det A, where for the purpose of the swap the two points can
be moved along paths that do not intersect. Hence there must be a constellation
of points for which det A vanishes, det A being continuous in each ξ ∈ � due
to the independence of the polynomial basis of the points in �. So we have
proved the result that singularity can always occur (see Mairhuber, 1956). Of
course, this proof works for all continuous finite bases, but polynomials are the
prime example for this case.

As a consequence of this observation, we need either to impose special re-
quirements on the placement of � – which is nontrivial and normally not very
attractive in applications – or to make the space of polynomials dependent on
�, a more natural and better choice.

The easiest cases for multivariate polynomial interpolation with prescribed
geometries of data points are the tensor-product approach (which is useless in
most practical cases when the dimension is large because of the exponential
increase of the required number of data and basis functions) and the interpolation
e.g. on intersecting lines. Other approaches admitting m scattered data have been
given by Goodman (1983), Kergin (1980), Cavaretta, Micchelli and Sharma
(1980) and Hakopian (1982). All these approaches have in common that they
yield unique polynomials in P

m−1−ν
n , i.e. polynomials of total degree m−1−ν in

n unknowns, where ν < m varies according to the type of approach. They also
have in common the use of ridge functions as a proof technique for establishing
their properties, i.e. forming basis functions for the polynomial spaces which
involve functions g(λ · x) where λ and x are from R

n so that this function is
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constant in directions orthogonal to λ and g ∈ Cm−1−ν(R). The approach by
Goodman is the most general among these. The remarkable property of Kergin
interpolation is that it simplifies to the standard Hermite, Lagrange or Taylor
polynomials in one dimension, as the case may be. The work by Cavaretta et al.
is particularly concerned with the question which types of Hermite data (i.e.
data involving function evaluations and derivatives of varying degrees) may be
generalised in this way.

A completely different approach for polynomial interpolation in several un-
knowns is due to Sauer and Xu (1995) who use divided differences represented
in terms of simplex splines and directional derivatives to express the polyno-
mials. Computational aspects are treated in Sauer (1995), see also the survey
paper, Gasca and Sauer (2000).

The representations of the approximants are usually ill-conditioned and there-
fore not too useful in practical applications. Some convergence results for the
approximation method are available in the literature (Bloom, 1981, Goodman
and Sharma, 1984).

The interpolation of points on spheres by polynomials has been studied by
Reimer (1990) including some important results about the interpolation oper-
ator. The key issue is here to place the points at which we interpolate suitably
on the sphere. ‘Suitably’ means on one hand that the interpolation problem
is well-posed (uniquely solvable) and on the other hand that the norm of the
interpolation operator does not grow too fast with increasing numbers of data
points. The former problem is more easily dealt with than the latter. It is eas-
ier to distribute the points so that the determinant of the interpolation matrix
is maximised than to find point sets that give low bounds on operator norms.
Surprisingly, the points that keep the operator norms small do not seem to
be distributed very regularly, while we get a fairly uniform distribution if for
instance the potentials in the three-dimensional setting∑

ξ �=ζ

1

‖ξ − ζ‖
are minimised with a suitable norm on the sphere. This work is so far only avail-
able computationally for the two-dimensional sphere in R

3, whereas theoretic
analysis extends beyond n = 3.

Another new idea is that of de Boor and Ron which represents the interpo-
lating polynomial spaces and is dependent on the given data points. In order to
explain the various notions involved with this idea, we need to introduce some
simple and useful new notations now. They include the so-called least term of
an analytic function – it is usually an exponential – and the minimal totality of
a set of functionals, which is related to our interpolation problem.
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Definition 3.1. We call the least term f↓ of a function f that is analytic at
zero the homogeneous polynomial f↓ of largest degree j such that

f (x) = f↓(x)+ O(‖x‖ j+1), ‖x‖ → 0.

Also, for any finite-dimensional space H of sufficiently smooth functions, the
least of the space H is

H↓ := { f↓ | f ∈ H}.
This is a space of polynomials.

Let P∗ be a space of linear functionals on the continuous functions. We recall
that such a space P∗ of linear functionals is ‘minimally total’ for H if for any
h ∈ H , λh = 0 ∀λ ∈ P∗ implies h = 0, and if, additionally, P∗ is the smallest
such space. Using Definition 3.1 and the notion of minimal totality, de Boor and
Ron (1990) prove the following important minimality property of H↓. Here,
the overline means, as is usual, complex conjugation.

Proposition 3.1. Among all spaces P of polynomials defined on C
n which

have the property that P∗ is minimally total for H, the least H↓ is one of least
total degree, that is, contains the polynomials of smallest degree.

The reason why Proposition 3.1 helps us to find a suitable polynomial space
for interpolation when the set of data � is given is that we can reformulate the
interpolation problem, which we wish to be nonsingular, in a more suitable form.
That is, given that we wish to find a polynomial q from a polynomial space Q,
say, so that function values on � are met, we can represent the interpolation
conditions alternatively in an inner product form as the requirement

fξ = q∗ exp
(
ξ · ( · )

)
, ξ ∈ �.

Here, the first · in the exponential’s argument denotes the standard Euclidean
inner product, while the · in parentheses denotes the argument to which the
functional q∗ is applied. The latter is, in turn, defined by application to any
sufficiently smooth p through the formula

q∗ p =
∑
α∈Z

n+

1

α!

(
Dα q

)
(0) ·

(
Dα p

)
(0),

using standard multiindex notation for partial derivatives

Dα =
(

∂α1

∂xα1
1

,
∂α2

∂xα2
2

, . . . ,
∂αn

∂xαn
n

)
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and α! = α1! · α2! . . . αn!, a notation that occurs often in the book. This func-
tional is well-defined, whenever p is a function that is sufficiently smooth at
the origin. It implies that our polynomial interpolation problem, as prescribed
through Q and �, is well-posed (i.e. uniquely solvable) if and only if the dual

problem of interpolation from H :=
{∑

ξ∈� aξ exp
(
ξ · ( · )

) ∣∣∣ aξ ∈ C

}
with

interpolation conditions defined through q∗ is well-posed. Hence the minimal
totality of the set H↓ can be used to prove the following important result.

Theorem 3.2. Given a finite set of data � ⊂ C
n, let H be as above. Then H↓

is a polynomial space of least degree that admits unique interpolation to data
defined on �.

The authors de Boor and Ron state this result more generally for Hermite
interpolation, i.e. it involves interpolation of derivatives of various degrees and
various centres.

There is also an algorithm for computing the least of a space that is a re-
cursive method and is closely related to the Gram–Schmidt orthogonalisation
procedure. We refer to the paper by de Boor and Ron for the details of this
algorithm.

We give a few examples for the polynomials involved in two dimensions. If
� contains just one element, then

H =
{

aξ exp
(
ξ · ( · )

)}
,

with

exp
(
ξ · ( · )

)
= 1+ ξ · ( · )+ 1

2

(
ξ · ( · )

)2
+ · · · .

Thus H↓ = span{1}. Therefore our sought polynomial space, call it P, is P
0
2, i.e.

constant polynomials in two variables. In general we let P
k
n be all polynomials

in Pn of total degree at most k. If � contains two elements ξ and τ , then

H = {aξ exp(ξ · ( · ))+ aτ exp(τ · ( · ))},
hence H↓ = span{1, ( · ) · (ξ − τ )}. Therefore P = P

1
1 ◦ (λ ·), where ◦ denotes

composition and where the vector λ is parallel to the affine hull of �, a one-
dimensional object. If |�| = 3, then P = P

2
1◦ (λ ·) or P

1
2, depending on whether

the convex hull of� is a line parallel to the vectorλ or not. Finally, if� contains
four elements and they are on a line, P = P

3
1 ◦ (λ ·); otherwise P

1
2 ⊂ P ⊂ P

2
2.

E.g. if � = {0, ξ, τ, ξ + τ }, ξ = first coordinate unit vector, τ = second
coordinate unit vector, then P is the space of bi-linear polynomials, i.e. we have
linear tensor-product interpolation.
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3.2 Piecewise polynomials

Spline, i.e. piecewise polynomial, methods usually require a triangulation of the
set � in order to define the space from which we approximate, unless the data
sites are in very special positions, e.g. gridded or otherwise highly regularly
distributed. The reason for this is that it has to be decided where the pieces of the
piecewise polynomials lie and where they are joined together. Moreover, it then
has to be decided with what smoothness they are joined together at common
vertices, edges etc. and how that is done. This is not at all trivial in more than
one dimension and it is highly relevant in connection with the dimension of the
space. Since triangulations or similar structures (such as quadrangulations) can
be very difficult to provide in more than two dimensions, we concentrate now
on two-dimensional problems – this in fact is one of the severest disadvantages
of piecewise polynomial techniques and a good reason for using radial basis
functions (in three or more dimensions) where no triangulations are required.
Moreover, the quality of the spline approximation depends severely on the
triangulation itself, long and thin triangles, for instance, often being responsible
for the deterioration of the accuracy of approximation.

Let�with elements ξ be the given data sites in R
2. We describe the Delaunay

triangulation which is a particular technique for triangulation, and give a stan-
dard example. We define the triangulation by finding first the so-called Voronoi
tessellation which is in some sense a dual representation. Let, for ζ from �,
Tζ = {x ∈ R

2 | ‖x− ζ‖ = min ‖x− ξ‖, ξ ∈ �}. These Tζ are two-dimensional
tiles surrounding the data sites. They form a Voronoi diagram and there are
points where three of those tiles meet. These are the vertices of the tessellation.
(In degenerate cases there could be points where more than three tiles meet.)
Let tζ be any vertex of the tessellation; in order to keep the description simple,
we assume that degeneracy does not take place. Let Dζ be the set of those three
ξ such that ‖tζ − ξ‖ is least. Then the set of triangles defined by the Dζ is
our triangulation, it is the aforementioned dual to the Voronoi diagram. This
algorithm is a reliable method for triangulation with a well-developed theory,
at least in two dimensions (cf., e.g., Braess, 1997, Brenner and Scott, 1994). In
higher dimensions there can be problems with such triangulations, for instance
it may be difficult to re-establish prescribed boundary faces when triangula-
tions are updated for new sets of data, which is important for solving PDEs
numerically with finite element methods.

Now we need to define interpolation by piecewise polynomials on such a
triangulation. It is elementary how to do this with piecewise linears. However,
often higher order piecewise polynomials and/or higher order smoothness of
the interpolants are required, in particular if there is further processing of the
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approximants in applications to PDE solving etc. needed. For instance, piece-
wise quadratics can be defined by interpolating at all vertices of the triangulation
plus the midpoints of the edges, which gives the required six items of informa-
tion per triangle. Six are needed because quadratics in two dimensions have six
degrees of freedom. This provides an interpolant which is still only continuous.
In order to get continuous differentiability, say, we may estimate the gradient of
the proposed interpolant at the vertices, too. This can be done by taking suitable
differences of the data, for example. In order to have sufficient freedom within
each of the triangles, they have to be further subdivided. The subdivision into
subtriangles requires additional, interior C1 conditions.

Powell and Sabin (1977) divide the triangles into six subtriangles in such
a way that the approximant has continuous first derivatives. To allow for this,
the subdivision must be such that, if we extend any internal boundary from the
common internal vertex to an edge, then the extension is an internal boundary
of the adjacent element. Concretely, one takes the midpoint inside the big
triangle to be the intersection of the normals at the midpoints of the edges. By this
construction and by the internal C1 requirement we get nine degrees of freedom
for interpolating function values and gradients at the vertices, as required.
Continuity of the first derivatives across internal edges of the triangulation
is easy to show due to the interpolation conditions and linearity of the gradient.

Another case is the C1-Clough–Tocher interpolant (Ciarlet, 1978). It is a
particularly easy case where each triangle of the triangulation is divided into
three smaller ones by joining the vertices of the big triangle to the centroid. If we
wish to interpolate by these triangles over a given (or computed) triangulation,
we require function and gradient values at each of the vertices of the big triangle
plus the normal derivatives across its edges (this is a standard but not a necessary
condition; any directional derivative not parallel to the edges will do). Therefore
we get 12 data for each of the big triangles inside the triangulation, each of which
is subdivided into three small triangles. On each of the small triangles, there
is a cubic polynomial defined which provides 10 degrees of freedom each.
The remaining degrees of freedom are taken up by the interior smoothness
conditions inside the triangle.

In those cases where the points� form a square or rectangular grid, be it finite
or infinite, triangulations such as the above are not needed. In that event, tensor-
product splines can be used or, more generally, the so-called box-splines that are
comprehensively described in the book by de Boor, Höllig and Riemenschneider
(1993). Tensor-product splines are the easiest multivariate splines, but here we
start by introducing the more general notion of box-splines and then we will
simplify again to tensor-product splines as particular examples. Box-splines
are piecewise polynomial, compactly supported functions defined by so-called
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direction sets X ⊂ Z
n and the Fourier transform of the box-spline B,

(3.1) B̂(t) =
∏
x∈X

sin 1
2 x · t

1
2 x · t

, t ∈ R
n .

We recall the definition of the Fourier transform from the previous chapter.
They can also be defined directly in the real domain without Fourier transforms,
e.g. recursively, but for our short introduction here, the above is sufficient and
indeed quite handy. In fact, many of the properties of box-splines are derived
from their Fourier transform which has the above very simple form. Degree of
the polynomial pieces, smoothness, polynomial recovery and linear indepen-
dence are among the important properties of box-splines that can be identified
from (3.1).

The direction sets X are fundamental to box-splines; they are responsible via
the Fourier transform for not only degree and smoothness of the piecewise poly-
nomial B but also its approximation properties and its support X [0, 1]|�| ⊂ R

n .
By the latter expression we mean all elements of the |�|-dimensional unit cube,
to which X seen as a matrix (and as a linear operator) is applied. Usually, X
consists of multiple entries of vectors with components from {0, ±1}, but that is
not a condition on X . Due to the possibly repeated entries, they are sometimes
called multisets. The only condition is that always span X = R

n . If in two
dimensions, say, the vectors ( 1

0 ), ( 0
1 ), ( 1

1 ) are used, one speaks of a three-
directional box-spline, if ( 1

−1 ) is added, a four-directional one, and any number
of these vectors may be used. These two examples are the Courant finite element,
and the Zwart–Powell element, respectively. If X contains just the two unit
vectors in two dimensions, we get the characteristic function of the unit
square.

In the simplest special case, X consists only of a collection of standard unit
vectors of R

n , where it is here particularly important that multiple entries in the
set X are allowed. If that is so, B is a product B(y) = B�1 (y1)·B�2 (y2) . . . B�n (yn)
of univariate B-splines, where y = (y1, y2, . . . , yn)T and the degrees �i−1 of the
B-splines are defined through the multiplicity �i of the corresponding unit vector
in X . When X has more complicated entries, other choices of box-splines B
occur, i.e. not tensor-products, but they are still piecewise polynomials of which
we have seen two examples in the paragraph above. In order to determine the
accuracy that can be obtained from approximations by B and its translates along
the grid (or the h-scaled grid) it is important to find out which polynomials lie
in the span of those translates. This again depends on certain properties of X ,
as does the linear independence of the translates of the box-spline. The latter is
relevant if we want to interpolate with linear combinations of the translates of
the box-spline.
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Linear independence, for instance, is guaranteed if X is ‘unimodular’, i.e.
the determinants of each collection of n vectors from X are either 0 or ±1
(Dahmen and Micchelli, 1983a), which is important, not only for interpolation
from the space but also if we wish to create multiresolution analyses as defined
in Chapter 9.

Out of the many results which are central to the theory and applications of
box-splines we choose one that identifies the polynomials in the linear span
of the box-splines. It is especially important to the approximational power of
box-splines. Another one, which we do not prove here, is the fact that the
multiinteger translates of a box-spline such as the above form a partition of
unity.

Theorem 3.3. Let S be the linear span of the box-spline B defined by the
direction set X ⊂ Z

n, span X = R
n. Let Pn be the space of all n-variate

polynomials. Then

Pn ∩ S =
⋂

{Z⊂X |span(X\Z )�=Rn}
ker

∏
z∈Z

Dz,

where Dz, z ∈ R
n, denotes in this theorem directional derivative in the direction

of z.

For the proof and further discussion of this result, see de Boor, Höllig and
Riemenschneider (1993). A corollary whose simple proof we present is

Theorem 3.4. Let P
k
n be all polynomials in Pn of total degree at most k, let

d := max{r | span X\Z = R
n, ∀Z ⊂ X with |Z | = r}. Then P

k
n ⊂ S ⇐⇒

k ≤ d.

Proof: ‘⇐=’: Let Z be a subset of X . Since
∏

z∈Z Dz reduces the degree of
any polynomial by |Z | or less (|Z | being attained) and since by the definition
of d

min
{Z⊂X |span (X\Z )�=Rn}

|Z | = d + 1,

it follows that P
d
n ⊂ ker

∏
Dz , as required, for such Z .

There is, again for one such Z , |Z | = d+1 attained, whence
∏

z∈Z Dz p �= 0
for some p ∈ P

d+1
n . This proves the other implication.

We remark that the number d used in Theorem 3.4 is also related to the smooth-
ness of the box-spline. The box-spline with direction set X and the quantity
d as defined above is d − 1 times continuously differentiable and its partial
derivatives of the next order are bounded if possibly discontinuous.
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In what way convergence rates are obtained from such results as the above
Theorem 3.4 will be exemplified in the chapter about interpolation (albeit with
radial basis functions, not with box-splines) but the approach there is similar to
how we would go about it here (and as it is done, for instance, in the book by
de Boor, Höllig and Riemenschneider). In fact, convergence proofs would be
in principle much simpler here than they will be with our radial basis functions,
because the latter are not of compact support which the box-splines are.

Additionally to the simple examples of tensor-product (univariate) splines
that have been given above, we wish to give further examples of box-splines.
Two well-known ones that are not tensor-product are the aforementioned
Courant finite element or hat-function that occurs if

X =
{(1

0

)
,
(0

1

)
,
(1

1

)}
and the Zwart–Powell element

X =
{(1

0

)
,
(0

1

)
,
(1

1

)
,
( 1

−1

)}
.

The Courant finite element is well-known to be continuous piecewise linear;
the Zwart–Powell element is piecewise quadratic and C1(R2). Using certain
recursions for derivatives of box-splines, it is in fact quite easy to establish that
B ∈ Cd−1(R2), where d is the same as in Theorem 3.4. We will not go into
further details here because this is not our goal in this book on radial basis
functions.

3.3 General nonpolynomial methods

Perhaps the best-known global, multivariate interpolation scheme for uni-
versal scattered distributions of data sites, which is not using polynomials, is
Shepard’s method. It is, however, not really the most successful one in the sense
of accuracy of approximations, although it does give easy-to-define interpolants
in any dimension which are not hard to evaluate either. These two facts give
a clear advantage to the application of the method in practice. With finitely
many data � prescribed as in Chapter 1, a Shepard approximant is usually of
the form

(3.2) s(x) =

∑
ξ∈�

fξω(x − ξ )∑
ξ∈�

ω(x − ξ )
=

∑
ξ∈�

fξ ‖x − ξ‖−µ∑
ξ∈�

‖x − ξ‖−µ , x ∈ R
n,

where µ > 0 and ω(x − ξ ) = ‖x − ξ‖−µ are the so-called weight functions;
also weights ω other than ω(x) = ‖x‖−µ are admitted, namely exponentially
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decaying ones for example. It is easy to see that s does indeed yield s|� = f |�,
as is required for interpolation, due to the singularities of the weight functions
at the data sites.

Unless µ is very small, s depends locally on the data, because the influence
of fξ diminishes quickly at a rate of −µ when the argument of s moves away
from ξ . Shepard’s method’s Lagrange functions are

Lξ (x) = ‖x − ξ‖−µ∑
ζ∈�

‖x − ζ‖−µ , x ∈ R
n,

so that we can reformulate s = ∑
ξ∈� fξ Lξ . This Lξ clearly decays when x

moves away from ξ . If we wish to have completely local dependence of s on the
fξ , we can arrange for that too: that is, even compactly supported weights which
make s completely local, are possible. For example, a useful weight function
ω is defined by

ω(x) =


exp

(
−r̂2/(r̂−‖x‖)2

)
exp(‖x‖2/h2)−1 , if ‖x‖ ≤ r̂ ,

0, otherwise,

with positive radius r̂ and scaling h parameters given by the user. Thus ω has
compact support in Br̂ (0), namely the ball of radius r̂ about the origin, a notation
we shall use frequently in the book.

A severe disadvantage of Shepard’s method (3.2) is that s has stationary
points (vanishing gradients) at all data sites ξ if µ > 1 which is a strange and
undesirable property, as there is no reason to believe that all underlying func-
tions f with fξ = f (ξ ) should have this feature. Several possible remedies
for this unsatisfactory behaviour have been proposed, mostly in the shape of
adding derivative information about the data. Such modifications are described
in Powell (1996), e.g. one remedy is to modify s so as to satisfy ∇s(ξ ) = gξ

for some approximations gξ to the gradient of f at ξ , or indeed for the actual
gradient of the approximand, where we are assuming that now a differentiable
function f underlies the data in the aforementioned manner. The weight func-
tions ω are further modified so as to give the limits lim‖x‖→0 ‖x‖ω(x) = 0.
Then the approximant s is defined afresh by the formula

(3.3) s(x) =

∑
ξ∈�

(
fξ + (x − ξ ) · gξ

)
ω(x − ξ )∑

ξ∈�
ω(x − ξ )

, x ∈ R
n.
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Thus s interpolates fξ and∇s interpolates the prescribed approximative gradient
gξ at each point ξ in the finite set�. More generally, the term fξω(x−ξ ) in (3.3)
can be replaced by any ‘good’ approximation hξ (x) to f (x) for x → ξ . For
Shepard’s method, there is also a convergence analysis in Farwig (1986) that
considers it both with and without augmentation by derivatives. However, the
convergence of Shepard’s method is unsatisfactory unless it is augmented by
derivative information about the approximand. This is usually an undesirable
requirement as for most data sets, derivative information is not available, or too
‘expensive’ to obtain.

Other multivariate approximation schemes are so-called ‘moving’ least
squares schemes, such as the one proposed by McLain (1974). These methods
are local in the sense of the first paragraph in our chapter. The famous McLain
scheme seeks, for each prescribed x ∈ R

n , a multivariate function g from a
function space X that is given in advance, and which minimises the expression∑

ξ∈�
ωξ (x)(g(ξ )− fξ )2, g ∈ X.

We call the solution g of this requirement gx because it depends on x , so that
s(x) := gx (x) for all x . If we choose weight functions ωξ that are nonnegative
and continuous, except that ωξ (x) →+∞ for x → ξ , then this clearly implies
that interpolation in � is achieved. Usually, the weight’s supports are required
to be small in practical algorithms and X is a space with dimension much
smaller than |�|, so that a least squares approach is suitable. In particular, some
smoothing of rough or noisy data can be achieved in this way (cf. our Chapters 8
and 9). Thus the values of s depend indeed locally on x . Uniqueness is achieved
by asking X to be such that, for each x , the only function g from that space
which satisfies

g ∈ X ∧ g(ξ ) = 0 ∀ξ with ωξ (x) > 0

is the zero function. The main disadvantage of those methods is that they nor-
mally do not give an explicit analytic expression for one approximant for all
the provided data at once.

In summary, we have seen that there are many approximation methods in
several dimensions other than radial basis functions, the most attractive ones
being probably the ones that generate piecewise polynomials. However, those
require much set-up work especially in more than two dimensions and this,
among others previously mentioned, is a strong argument in favour of radial
basis functions.
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Radial Basis Function Approximation on
Infinite Grids

Inasmuch as radial basis function approximations are used mainly for the pur-
pose of scattered data approximation in applications, the assumption that the
data lie at the vertices of an infinite regular grid gives rise to an interesting
special case. In this chapter, data at the vertices of a scaled grid will lead us
to highly relevant theoretical results about their approximation power in this
chapter. Such results are important in terms of understanding the usefulness of
the approximation spaces, especially if the best approximation orders (so-called
saturation orders) are known. The L p(Rn)-approximation order is at least µ for
approximants from an h-dependent space S = Sh of the approximants with
centres hZ

n if

distL p(Rn )( f,S) := inf
g∈S

‖ f − g‖p = O(hµ)

for all f from the given space of approximands. (In some of our estimates an
extra factor of log h occurs.) The approximation order is exactly µ if the O
cannot be replaced by o on the right-hand side (as used elsewhere sometimes:
if µ cannot be replaced by µ + ε for any positive ε). In this chapter, the h-
dependence of S comes only from the fact that shifts of the radial basis function
on a scaled integer grid hZ

n = �, which is our set of data sites, are employed.
The results in this chapter, regarding interpolation and quasi-interpolation,

are extensions of the results in Chapter 2 in various directions. The remark about
reasons for studying regular grids is, incidentally, true for the study of multi-
variate polynomial splines as well (e.g. de Boor, Höllig and Riemenschneider,
1993), whose approximation properties were intensely investigated on regular
square grids. Although we do not normally intend to compute approximations in
practice on such grids, statements about their approximation power – especially
if they are optimal (best approximation orders, saturation orders) – are helpful
for making choices of radial basis functions for approximation when they are

48
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used in applications. It must be kept in mind that for applications for data on
square grids there are many other suitable methods, such as tensor-product
methods or the box-splines mentioned in Chapter 3. Among those, tensor-
product B-splines are most often used and best understood, because the B-
splines have a particularly simple univariate form, are piecewise polynomials
and are of small, compact support, while radial basis functions are usually not
compactly supported.

Further, for the analysis of their properties in computer experiments it is usual
to do computations on finite cardinal (i.e. regular, square, equally spaced) grids,
in order to elucidate their approximational behaviour. Finally, approximation
on so-called sparse grids, which are being studied at present and which are
regular grids thinned out by removal of many points, are useful in applications
for the numerical solution of partial differential equations. In short, radial basis
functions were born to be applied to scattered data interpolation, but for the
purpose of analysis, it makes perfect sense to study them on infinite grids, and
we shall do so now.

4.1 Existence of interpolants

The interpolants we consider now are defined on equally spaced grids. A crucial
property of grids with equal spacing, e.g.

Z
n = {( j1, j2, . . . , jn)T | ji ∈ Z, i = 1, 2, . . . , n}

or (hZ)n , is that they are periodic and boundary-free. This enables us to apply
Fourier transform techniques during the analysis, since discrete Fourier trans-
forms are defined on infinite equally spaced lattices. The spaces spanned by
shifts of a basis function, call it ψ (not to be confused with our radial basis
function), namely by

ψ(· − j), j ∈ Z
n,

are called shift-invariant because for any f in such a space, its shift f (· − k),
k ∈ Z

n , is an element of the same space. Shift-invariant spaces were studied
extensively in the literature, see for instance the various papers by de Boor,
DeVore and Ron mentioned in the bibliography. We are only using them im-
plicitly at this stage, because their analysis in the literature is (mostly) restricted
to square-integrable or even compactly supported basis functions which is not
the case for our radial basis functions, although most of the known theory of
shift-invariant spaces can be adapted to and used for radial basis functions (e.g.
Halton and Light, 1993).
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One of the main tools in the analysis of our approximants is the Poisson
summation formula, which will be used often in this chapter. In fact, the
Lagrange functions of our interpolants will be defined only by stating their
form in the Fourier domain. Even if we actually wish to compute approximants
on such grids, their periodicity can be used e.g. by the application of FFT
techniques.

The goal of approximation on grids is to find approximants which in our
study have the relatively simple form∑

j∈Zn

f ( j) ψ(x − j), x ∈ R
n,

where f : R
n → R is the function we wish to approximate (the approximand)

and ψ has the following expansion which is a finite sum in many instances:

ψ(x) =
∑
k∈Zn

ck φ(‖x − k‖), x ∈ R
n,

all sums being assumed at present to be absolutely convergent, φ being our
radial function and {ck}k∈Zn suitable, f -independent coefficients that may or
may not be of compact support with respect to k. Of course, so far we have
written an approximant based on Z

n-translates of φ(‖·‖) but to get convergence
on the whole underlying space R

n of the approximant to f , it is necessary to
base the approximant on hZ

n , h being positive and becoming small. In fact, it
is desirable in the latter case to remain with exactly the same ψ , but then we
must scale the argument of the ψ as follows:∑

j∈Zn

f ( jh) ψ
( x

h
− j

)
, x ∈ R

n.

In the language of shift-invariant spaces and multiresolution analysis which we
shall use in Chapter 9, what we do here is a ‘stationary’ scaling as mentioned
already in Chapter 2, since for all h the same function ψ is used which is scaled
by h−1 inside its argument.

In contrast, a nonstationary approximation process would correspond
to making h-dependent choices ψh of ψ , which would typically result in
approximations ∑

j∈Zn

f ( jh) ψh
(
x − hj

)
, x ∈ R

n.

We shall encounter this in Chapter 9 and briefly in Chapter 5 but give no further
attention to this more complicated nonstationary version at present.
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In this chapter about radial basis functions on infinite lattices, we are partic-
ularly interested in the question of uniform approximation orders of the above
to sufficiently differentiable approximands f when h → 0. This order should
only depend on φ and n (and in certain ways on the smoothness of the ap-
proximand f ), ψ being assumed to be chosen in some way optimally for any
given φ. This function may in fact not at all be unique, but ‘optimally’ is to be
understood anyway only in a very weak sense: it means that the error for a class
of sufficiently smooth approximands decreases for h → 0 at the best possible
asymptotic rate for the particular radial function under investigation. This does
not exclude, for instance, that an error which is smaller by a constant factor
cannot be achieved with another ψ . It also does not exclude a − log h term as
a multiplier of the determining power of h since the logarithm grows so slowly
that its presence will hardly show up in practical computations.

Incidentally, we only consider uniform approximations and convergence or-
ders; Binev and Jetter (1992) in contrast offer a different approach to radial basis
functions approximation altogether and in particular cardinal interpolation only
by means of L2-theory. This facilitates many things in the theory through the
exclusive use of Hilbert space and Fourier transform techniques.

There is a variety of methods to achieve our goal outlined above. One way is
via the so-called Strang and Fix theory. This is the method of choice especially
when the functions φ are compactly supported, such as box-splines or other
multivariate piecewise polynomials. Strang–Fix theory is, in particular, almost
always used when finite element methods are discussed. Indeed, it is possible
to apply this in the present context of our noncompactly supported radial basis
functions and we shall discuss this briefly below. The main feature of this
approach is that certain zero-conditions are imposed on the Fourier transform
of ψ at 2π -multiples of multiintegers – which guarantee that the approximants
reproduce polynomials of a certain degree that in turn is linked to the order of
the imposed zero-conditions at 2π -multiples of multiintegers.

At this point, however, we shall address the problem from a slightly different
point of view, namely that of the theory of interpolation by radial basis functions.
Starting with interpolation, the question of approximation orders obtainable via
the Strang and Fix conditions is answered almost automatically, as we shall see.

One way to choose ψ is by interpolation, and in that special case it is nor-
mally unique in the sense that the coefficients are unique within the class of all
absolutely summable coefficient sequences. So in this instance we choose ψ to
be a Lagrange function

L(x) =
∑
k∈Zn

ck φ(‖x − k‖), x ∈ R
n,
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that satisfies the Lagrange conditions which are also familiar, e.g. from uni-
variate polynomial Lagrange interpolation and from Chapter 2 of this book,
namely

L( j) = δ0 j =
{

1 if j = 0,
0 if j ∈ Z

n\{0}.

If L is so, then our above approximants, setting ψ = L , will automatically
interpolate f on hZ

n or Z
n , depending on whether we scale or not.

We want to pursue this approach further and ask first, whether such L exist
and what their properties are. Much of the analysis of our radial basis function
methods on lattices boils down to exactly those questions. Many of the properties
of the approximants can be identified through relatively simple facts about
Lagrange functions. It is very helpful to the analysis at this time to fix the
coefficients of the functions through the Lagrange conditions, because this way
they are identified easily, and fortunately, the Lagrange functions have the best
possible properties, as we shall see. This means that they have the highest
polynomial exactness of the approximation and best local behaviour. This is
in spite of the fact that for the formulation of the approximants the Lagrange
conditions are not always necessary unless we really want to interpolate. We
shall see that this is true later in our convergence theorems where the Lagrange
conditions as such are not required.

Under the following weak conditions we can show that there are {ck}k∈Zn

which provide the property L( j) = δ0 j . To begin our analysis, let us assume
that the radial basis function in use decays so fast that φ(‖ · ‖) ∈ L1(Rn), an as-
sumption which we will have to drop soon in order to apply the
theory to our general class of radial basis functions, most of which are any-
way not integrable or even decaying for large argument. At first, however, we
can prove the following simple result with fairly weak conditions that hold
for decaying and integrable radial basis functions such as the Gauss-kernel
φ(r ) = e−αr2

.

Proposition 4.1. Let φ be such that |φ(r )| ≤ C(1 + r )−n−ε for some fixed
positive constant C and ε > 0, so that in particular φ(‖ · ‖) ∈ L1(Rn). Suppose
that

σ (ϑ) =
∑
j∈Zn

φ(‖ j‖) e−iϑ · j �= 0, ∀ ϑ ∈ T
n.

Then there are unique absolutely summable coefficients {ck}k∈Zn such that the
above cardinal function L satisfies L( j) = δ0 j . Moreover, the conditions that
the Fourier transform of the radially symmetric φ(‖ · ‖), namely φ̂(‖ · ‖), satisfy
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|φ̂(r )| ≤ C(1+ r )−n−ε and be positive, are sufficient for the symbol σ (ϑ) to be
positive everywhere.

Remark: We recall that the Fourier transform of a radially symmetric func-
tion is always radially symmetric, too. Specifically, if f : R

n → R is radially
symmetric, F : R+ → R being its radial part, its Fourier transform f̂ is as well
and the radial part of that Fourier transform, call it F̂ , is

F̂(r ) = (2π )n/2r−n/2+1
∫ ∞

0
F(s)sn/2 Jn/2−1(rs) ds, r ≥ 0.

Here, J denotes the standard Bessel function (Abramowitz and Stegun, 1972,
p. 358). The above expression comes from the fact that the Fourier transform
of a radially symmetric function has the following shape that leads to Bessel
functions: ∫

Rn

e−i x ·t F(‖t‖) dt =
∫ ∞

0
F(s)

∫
‖t‖=s

eix ·t dt ds.

The Bessel function occurring in the previous display is a result of the second
integral on the right-hand side in this display, because of the following identity:∫

‖t‖=s
eix ·t dt = sn

∫
‖t‖=1

eisx ·t dt

= (2π )n/2‖x‖−n/2+1sn/2 Jn/2−1

(
‖x‖s

)
.

This fact about radially symmetric Fourier transforms remains true for the
distributional or generalised Fourier transforms which we shall use below. We
also remark that, instead of the Fourier transform φ̂ being required to be positive
in the statement of Proposition 4.1, it suffices that it is nonnegative and has no
2π -periodic zero.

Proof of Proposition 4.1: The first statement of the proposition is an appli-
cation of Wiener’s lemma, performed exactly as in our work in the second
chapter. The coefficients of the Lagrange function are the Fourier coefficients
of the periodic reciprocal of the symbol exactly as before, even though we are
now in more than one dimension.

The second assertion follows from an application of the Poisson summation
formula:

σ (ϑ) =
∑
j∈Zn

φ(‖ j‖) e−iϑ · j =
∑
j∈Zn

φ̂(‖ϑ − 2π j‖)

which is positive whenever the radial function’s Fourier transform is positive.
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An example of a suitable radial function for the above is φ(r ) = e−αr2
for a

positive parameter α. As we noted in Chapter 2, the Fourier transform is also a
positive multiple of an exponential function in −r2 itself. Although the above
proposition does not apply for instance toφ(r ) = r , it contains two fundamental
facts which will prove to be of great importance, namely

(1) The ‘symbol’ σ can be reformulated as

σ (ϑ) =
∑
j∈Zn

φ̂(‖ϑ − 2π j‖), ϑ ∈ T
n,

through the use of Poisson’s summation formula.
(2) The {ck}k∈Zn can be expressed by Wiener’s lemma as Fourier coefficients

of the reciprocal of the 2π -periodic symbol, that is

(4.1) ck = 1

(2π )n

∫
Tn

eiϑ ·k

σ (ϑ)
dϑ, k ∈ Z

n,

provided the symbol has no zero. Further, these coefficients are absolutely
summable.

The last formula (4.1) follows from a simple reformulation of the Lagrange
conditions and from σ (ϑ) �= 0 for all arguments ϑ :∑

j∈Zn

∑
k∈Zn

ck φ(‖ j − k‖) e−i j ·ϑ = 1

which can be rewritten equivalently as[ ∑
k∈Zn

cke−iϑ ·k
][ ∑

j∈Zn

φ(‖ j‖) e−iϑ · j
]
= 1

and because σ does not vanish anywhere

∑
k∈Zn

cke−iϑ ·k = 1

σ (ϑ)
, ϑ ∈ T

n.

We now go backwards, beginning by expressing the symbol σ (ϑ) as the series
of Fourier transforms ∑

j∈Zn

φ̂(‖ϑ − 2π j‖),

which we require to be well-defined and without a zero, and define the coeffi-
cients of the Lagrange function ck as the symbol’s Fourier coefficients. For this
purpose, we consider a larger class of radial basis functions and admit anyφ that
is polynomially bounded, thus has a radially symmetric distributional Fourier
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transform (e.g., Jones, 1982) φ̂(‖ · ‖): R
n\{0} → R, with the properties (A1)–

(A3) which we state below. Those conditions guarantee the well-definedness of
the symbol and that it has no zero. Thus the aforementioned Fourier coefficients
exist.

To aid the analysis we briefly review some of the salient points of the dis-
tributional Fourier theory. We recall that any function that grows at most like
a polynomial of arbitrary degree (also called tempered functions) has a gener-
alised (distributional) Fourier transform which need not be everywhere contin-
uous, unlike conventional Fourier transforms of integrable functions (see the
Appendix). In fact a distributional Fourier transform usually has singularities
at the origin. Actually, the order of the singularity reflects the speed of the
growth of the aforementioned polynomial type at infinity. In order to define the
generalised Fourier transform we have to state a few facts about generalised
functions first.

One way to represent generalised functions or distributions is by equivalence
classes of sequences of good functions (test functions) v j , j ∈ N. The set S
of good functions is the set of infinitely differentiable functions on R

n with all
derivatives (including the function itself) decaying faster than the reciprocal of
any polynomial at infinity. Therefore, g is a generalised function, represented
by a sequence with entries v j ∈ S, if there exists a sequence of good functions
v j , j ∈ N, such that ∫

Rn

v j (x)γ (x) dx, j ∈ N,

is a convergent sequence for any good γ . As a consequence, the Fourier
transform of such a generalised function may be defined by the sequence
v̂ j ∈ S, j ∈ N. An example of such a generalised function is Dirac’s δ-
function, which is represented in one dimension by a sequence of good functions
v j (x) = √

j/π exp(− j x2), j ∈ N. For any γ ∈ S we then have

lim
j→∞

∫
R

γ (x)v j (x) dx = γ (0)

which is also expressed by ∫
R

δ(x)γ (x) dx = γ (0).

The Fourier transform of δ is then 1 because

lim
j→∞

∫
R

γ (x)v̂ j (x) dx =
∫

R

γ (x) dx .
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More generally, generalised Fourier transforms of derivatives of the δ-function
are polynomials and generalised Fourier transforms of polynomials are deriva-
tives of the δ-function.

In fact, we need very few properties of these generalised Fourier transforms.
The key fact which we shall rely on is that they exist for the radial basis functions
of at most polynomial growth which we study here and that they agree for those
radial basis functions with continuous functions almost everywhere (in the
event, everywhere except zero). Then, we have certain properties which we
demand from those almost everywhere continuous functions that we take from
the literature. In addition to the part of the generalised Fourier transform that
is continuous except at zero, the generalised Fourier transforms of radial basis
functions often contain a term that comprises a δ-function and its derivatives.
This can be removed by changing the radial basis function by adding an even
degree polynomial, containing only even powers. We always assume therefore
that this δ-function term is not present. Indeed, we shall learn in Sections 4.2
and 5.1 that the linear combinations of translates of radial basis functions which
we study always contain coefficients which cancel out any such polynomial
addition to φ. Therefore it is not loss of generality that already at this time, we
consider the radial basis functions and their Fourier transforms modulo an even
degree polynomial and derivatives of the δ-function respectively. We illustrate
this by an example.

The generalised Fourier transforms can be computed by standard means using
the above definition as limiting functions. An example is the generalised Fourier
transform of the thin-plate spline function φ(r ) = r2 log r in two dimensions,
that is (Jones, 1982)

φ̂(‖x‖) = 4π‖x‖−4 + 4π2(log 2+ 1− γ )�δ(x), x ∈ R
2,

where γ = 0.5772 . . . is Euler’s constant and � is the two-dimensonal Laplace
operator. Therefore we consider only

φ̂(‖x‖) = 4π‖x‖−4

as the two-dimensional generalised Fourier transform of the thin-plate spline
function that we thus consider modulo a quadratic polynomial.

Another useful way of stating that a function φ̂(‖x‖) with a singularity at
the origin is the generalised Fourier transform (again, modulo an even degree
polynomial) is by the integral identity that demands∫

Rn

φ̂(‖x‖)v(x) dx =
∫

Rn

φ(‖x‖)v̂(x) dx .
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Again, this is for all test functions v ∈ S. Also the test functions which are used
in the above have to satisfy ∫

Rn

p(x)v̂(x) dx = 0

for all polynomials of some order which depends on φ. Thus the right-hand
side of the last but one display is well-defined by the fast decay of the Fourier
transform of the test function and the continuity and limited growth of the radial
basis function. The left-hand side is well-defined by the fast decay of v and by
the above display that requires the v to have a sufficiently high order of zero at
zero to meet the singularity of φ̂. What the correct order of the polynomials p
is will be seen below.

Indeed, since for nonintegrable radial basis functions the generalised or dis-
tributional Fourier transform will usually not agree with a continuous function
everywhere, the last but one display admits the singularity of the generalised
Fourier transform at the origin, cancelling singularities of the same order. There-
fore both sides are well-defined, absolutely convergent integrals and may be
used to define generalised Fourier transforms. We will give examples of those
below, having encountered the multiquadrics example already in the second
chapter.

We need conditions that ensure that the interpolation problem set on the
scaled lattice h ·Zn is well-defined and uniquely solvable. These conditions are
always formulated in terms of the generalised Fourier transform of the radial
basis function. The three required properties are

(A1) φ̂(r ) > 0, r > 0,
(A2) φ̂(r ) = O(r−n−ε), ε > 0, r →∞,
(A3) φ̂(r ) ∼ r−µ, µ ≥ 0, r → 0+.

In these conditions, we use the notation∼ to mean that, if f (x) ∼ g(x), then
f (x) = const. × g(x)+ o(g(x)) with a nonvanishing constant. Condition (A1)
here is responsible for the positivity of the symbol, although nonnegativity of
the Fourier transform and absence of 2π -periodic zeros would be sufficient.
It is standard in the analysis of radial basis function methods to demand strict
positivity, however. Indeed, almost all radial basis functions that are in use and
that are mentioned in this book exhibit this property. We remark that the one
exception to this rule is the radial basis functions having compact support that
are treated in Chapter 6.

Of course, a function whose Fourier transform is negative everywhere is
also acceptable, sign changes can always be absorbed into the coefficients
of the approximants. We have noted already in the second chapter that the
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generalised Fourier transform of the multiquadric function satisfies the condi-
tions above, object to a sign-change.

Indeed, a large class of radial basis functions exhibiting properties (A1)–(A3)
above can be identified. For instance, the thin-plate spline

φ(r ) = r2 log r

has a generalised Fourier transform which also satisfies all conditions above
except for some δ-functions.

The second condition takes care of absolute convergence of the series defining
the symbol, while (A3) controls the Fourier transform’s singularity (if any) at
the origin. Thus, at a minimum, σ and 1

σ
are still well-defined, except perhaps

at the origin, and thus in particular the coefficients

ck = 1

(2π )n

∫
Tn

eiϑ ·k

σ (ϑ)
dϑ, k ∈ Z

n,

exist, so long as we interpret the symbol σ as only of the form of the series

σ (ϑ) =
∑
j∈Zn

φ̂(‖ϑ − 2π j‖), ϑ ∈ T
n\{0},

and no longer use the standard form of the symbol as a Fourier series in φ(‖ · ‖)
we started with. We may, however, no longer use Wiener’s lemma to deduce
the absolute summability of the ck and have to derive this property separately.

Note that φ̂’s allowed singularity at the origin does not create any harm since
1
σ

, and not σ , is decisive for the definition and the properties of the Fourier
coefficients {ck}k∈Zn . Indeed, the singularities of the symbol translate only to
zeros of its reciprocal. Nonetheless, the lack of decay at infinity of φ forces us to
examine the decay of the ck carefully, i.e. their anticipated decay for ‖k‖ → ∞,
so as to ensure the convergence of the defining series for L . As is usual with
Fourier coefficients, this will depend fundamentally on the smoothness and
integrability of 1

σ
and its derivatives.

It is just as important to study the localness of L itself since we need to know
what f we may introduce into the interpolating (infinite) series. Of course we
can always admit compactly supported approximands f since then the approx-
imating (interpolating) series is finite for any given x . However, we wish to
interpolate more general classes of f , to which, the hope is, even some poly-
nomials will belong. This is interesting because if we can admit interpolation
to (low degree) polynomials we have a chance of exactly reproducing certain
polynomials which will help us with establishing approximation order results
by local Taylor series approximations and other standard arguments.
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One way of introducing smoothness into the reciprocal of the symbol, 1
σ

,
in order to establish approximation orders is through strengthening conditions
(A2) and (A3) by additional conditions on derivatives: we do so now and specif-
ically require that for a fixed positive ε and a positive integer M

(A2a) φ̂(�)(r ) = O(r−n−ε), r →∞, � = 0, 1, . . . , M , and in particular
φ̂ ∈ C M (R>0),

(A3a) φ̂(�)(r ) =̇ r−µ−� + O(r−µ−�+ε), r → 0+, 0 ≤ � ≤ M , for a positive
exponent µ.

Here, the =̇means equality up to a nonzero constant multiple which we do not
state because it is unimportant to the analysis. Thus, for instance, the reciprocal
1
σ

of the symbol is in C M (Tn \ {0}), and we can deduce decay estimates for ck .
In our work here we want more precise estimates that supply the dominant term
and indeed we get more general and more precise results than, e.g., in Theorem
2.7. In the sequel we denote the upper part by "µ# = min{m ∈ Z |m ≥ µ}.
Theorem 4.2. Let φ satisfy (A1), (A2a), (A3a), M > "n+µ#. Then, for k �= 0
and for some positive ε the coefficients (4.1) satisfy

|ck | =


C‖k‖−n−µ + O(‖k‖−n−µ−ε) if µ /∈ 2Z,

O(‖k‖−n−µ−ε) otherwise.

Proof: It follows from the form (4.1) that the ck are the Fourier coefficients
of the reciprocal of the symbol. In other words,

|ck | · (2π )n =
∫

Tn

eix ·k dx

φ̂ (‖x‖)+∑′
φ̂ (‖x − 2π j‖)

.

Moreover,
∑′ denoting as before

∑
j∈Zn\{0}, we have for a nonzero constant C1

|ck | · (2π )n =
∫

Tn

eix ·k dx

C1 ‖x‖−µ + φ̃ (‖x‖)+∑′
φ̂ (‖x − 2π j‖)

,

where φ̃(r ) = φ̂(r ) minus the dominant term in r of order −µ of (A3a). That
is by cancellation

=
∫

Tn

C−1
1 eix ·k ‖x‖µ dx

1+ C−1
1 ‖x‖µ

(
φ̃ (‖x‖)+∑′

φ̂ (‖x − 2π j‖)
) .

Now, let ρ: R
n → R be a so-called cut-off function, that is one that vanishes

outside the unit ball B1(0), is one inside B1/2(0) and is in C∞(Rn). It is easy to
construct such cut-off functions from certain ratios of exponential functions.
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With this preparation, we may reduce the problem in the following fashion.
As M is greater than "n + µ# and φ̂ ∈ C M (R>0), we can now apply stan-
dard methods of partial integration as explained in Chapter 2 to deduce that
(1 − ρ) times the integrand gives rise to Fourier coefficients which decay
as O(‖k‖−M ) = O (‖k‖−n−µ−ε). This is because we have excluded the sin-
gularity of φ̂ from the range of integration and thereby made the integrand
smooth.

Next, we may even shrink the cut-off function’s support further by introducing
any fixed ε̂ > 0 and by multiplying the integrand by (1−ρ( ·

ε̂
)) for the part that

contributes the O(‖k‖−n−µ−ε) term and by ρ( ·
ε̂
) for the rest. Hence it remains

to show that for large ‖k‖

(4.2)
∫

Tn

eix ·k ‖x‖µ ρ( x
ε̂
) dx

1+ C−1
1 ‖x‖µ

(
φ̃ (‖x‖)+∑′

φ̂ (‖x − 2π j‖)
)

is the same as a constant multiple of ‖k‖−n−µ+O(‖k‖−n−µ−ε), where the first
term in the short asymptotic expansion is absent if µ is an even integer, i.e. we
have then only to establish O(‖k‖−n−µ−ε).

If ε̂ is small enough, then we can expand one over the denominator in an
absolutely convergent geometric series: so, if ε̂ is sufficiently small,

1

1+ C−1
1 ‖x‖µ

(
φ̃ (‖x‖)+∑′

φ̂ (‖x − 2π j‖)
)

is the same as the infinite series

∞∑
�=0

‖x‖µ�(−C1)−�
(
φ̃ (‖x‖)+

∑′
φ̂ (‖x − 2π j‖)

)�

.

We note that the smoothness of the �th term in that series increases linearly
with �, that is, the expression for a single summand is∫

Tn

eix ·k ‖x‖(�+1)µ ρ
( x

ε̂

)
(−C1)−�

(
φ̃ (‖x‖)+

∑′
φ̂ (‖x − 2π j‖)

)�

dx,

for � = 0, 1, . . . .So they contribute faster and faster decaying terms to the
Fourier transform. Hence, instead of treating (4.2), we may show that∫

Tn

eix ·k ‖x‖µ ρ
( x

ε̂

)
dx =

∫
Rn

eix ·k ‖x‖µ ρ
( x

ε̂

)
dx

should be =̇ ‖k‖−n−µ + O(‖k‖−n−µ−ε), where, again, the first term is omitted
if µ is an even integer.
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This, however, follows from the fact that the distributional Fourier transform
of ‖ · ‖µ is a fixed constant multiple of ‖ · ‖−n−µ (Jones, 1982, p. 530) if µ is
not an even integer. In the opposite case, the distributional Fourier transform is
anyway a multiple of a δ-function or a derivative thereof. Thus we get O(‖k‖−�)
for any � in that case from the above display. The theorem is proved.

In summary, we have shown that the coefficients of L exist under the above
assumptions and that

(4.3) L(x) =
∑
k∈Zn

ck φ(‖x − k‖), x ∈ R
n,

is well-defined if |φ (‖x‖)| = O(‖x‖µ−ε) for any ε > 0. These assumptions
are true for all radial basis functions of the form (with ε = n/2 for instance)

(4.4) φ(r ) =
{

r2k−n log r, 2k − n an even integer,
r2k−n, 2k − n �∈ 2Z ,

where 2k > n, µ = 2k and k need not be an integer. In those cases, all
M are admitted due to properties of the Fourier transform φ̂(r ) which is a
constant times r−2k . The same µ and M are suitable for shifted versions of (4.4)
that are smoother, i.e. where r is replaced by

√
r2 + c2, c a positive constant,

since as pointed out in Chapter 2, modified Bessel functions then occur in the
transform

φ̂(r ) =̇ Kk(cr )/(r/c)k ∼ r−2k, r → 0+,

which are C∞ except at the origin and nonzero, decay exponentially and satisfy
Kk(r ) ∼ r−k for r → 0+ and positive real k. Here k = (n + 1)/2 when multi-
quadric functions are studied. Hence, in particular, the multiquadric function is
included for µ = n+ 1. For instance, in one dimension, the Lagrange function
coefficients for the multiquadric function decay at least cubically.

As a by-product of (4.1) we note the following form of L , where we use the
Fourier inversion theorem. To wit, at least in the distributional sense, the Fourier
transform of L can be computed as follows. Later, in Theorem 4.3, we shall
see that the Fourier transform of L exists even in the classical sense, because
L is absolutely integrable. For now, using distributional Fourier theory, we can
write

L̂(y) =
∑
k∈Zn

cke−iy·k φ̂(‖y‖).
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By virtue of the form of our symbol,

L̂(y) = σ (y)−1φ̂(‖y‖)

= φ̂ (‖y‖)∑
�∈Zn

φ̂ (‖y − 2π�‖)
.

Now, due to the properties of the radial basis function’s Fourier transform,
namely, in particular, (A2a), this function is absolutely integrable and can be
extended to a continuous, absolutely integrable function. Therefore we can
represent L as

(4.5) L(x) = 1

(2π )n

∫
Rn

eix ·y φ̂ (‖y‖)∑
�∈Zn

φ̂ (‖y − 2π�‖)
dy.

This expression will be of fundamental importance to us. As a first straightfor-
ward consequence we note the following result.

Theorem 4.3. Under the assumptions of Theorem 4.2, L satisfies

|L(x)| = O
(

(1+ ‖x‖)−n−µ
)

;

in particular, L is absolutely integrable and has the Fourier transform

L̂(y) = φ̂ (‖y‖)∑
j∈Zn

φ̂ (‖y − 2π j‖)
, y ∈ R

n.

Precisely, it is true that with this Fourier transform, L satisfies

|L(x)| = ε C (1+ ‖x‖)−n−µ + O
(

(1+ ‖x‖)−n−µ−ε
)

with ε ≡ µ (mod 2), ε ∈ {0, 1}.
Proof: Exactly the same technique as in the previous proof can be applied and
(4.5) used for the proof of decay.

Hence we observe that any f with polynomial growth

| f (x)| = O
(

(1+ ‖x‖)µ−ε
)
,
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with a positive constant ε, can be interpolated by

(4.6) s(x) =
∑
j∈Zn

f ( j) L(x − j), x ∈ R
n,

or by

(4.7) sh(x) =
∑
j∈Zn

f ( jh) L
( x

h
− j

)
, x ∈ R

n.

In particular, all polynomials f can be interpolated if their total degree is less
than µ.

It is a remark which we shall not prove here that for radial basis functions of
the form (4.4) with k ∈ N, n even and less than k

2 , the decay in Theorems 4.2
and 4.3 is in fact exponential (Madych and Nelson, 1990a). This is related to
the fact that the Fourier transform of even powers of ‖x‖ is supported at a
point (it is the multiple of a δ-function or a partial derivative thereof) and the
Fourier transform is analytic in a tube about the real axis. Now, for analytic
integrable functions, the exponential decay of their Fourier transforms can be
proved in a standard way by using Cauchy’s theorem for analytic functions.
If the function is not just analytic but entire and of exponential type with a
growth condition on the real axis, then the Fourier transform is even compactly
supported, but this fact is not used, and is beyond the interest of this monograph
anyway.

Incidentally, similar facts (but not the full analyticity) were already employed
in the proof of Theorem 4.2 and account for the presence of the ε there. (Here
ε is as used in Theorem 4.2.)

In fact, it requires hardly any more work from us to show that under no fur-
ther conditions, polynomials such as the above are reproduced exactly. That
is a highly relevant fact to the establishment of convergence orders, when
functions are approximated by their values on the scaled grids hZ

n . We have
already seen the reason for this remark in Chapter 2, where the linear poly-
nomial reproduction properties of univariate multiquadric interpolation were
used to prove – essentially – quadratic convergence of quasi-interpolation and
interpolation with multiquadrics. The same features of radial basis function
approximation will be established here in several dimensions and for our larger
class of radial basis functions with the aid of Theorem 4.4. Thus, the polyno-
mial reproduction property is of fundamental importance to the analysis in this
chapter.

We remark that the property is in fact quite straightforward to establish as
the following result shows.
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Theorem 4.4. Under the assumptions of Theorem 4.2, it is true that we have
the recovering property for interpolation

(4.8)
∑
j∈Zn

p( j) L(x − j) = p(x), x ∈ R
n,

for all polynomials p in n unknowns of total degree less than µ (µ need not be
integral). Further, there is a polynomial of degree at leastµ that is not recovered
by the above sum, even if the infinite sum in (4.8) is well-defined for that higher
degree polynomial.

Proof: Let p be a polynomial in n unknowns of degree less than µ. Then, by
the Poisson summation formula, the left-hand side of expression (4.8) is, using
again the standard notation

D = Dt =
(

∂

∂t1
,

∂

∂t2
, . . . ,

∂

∂tn

)T

,

the sum of partial derivatives of an exponential times the Lagrange function’s
Fourier transform: ∑

j∈Zn

p(i D) {e−i x ·t L̂(t)}t=2π j .

We note that the multivariate polynomial p applied to i D gives rise to a linear
combination of partial derivatives. The index t = 2π j indicates that those partial
derivatives are computed first, and only then does the evaluation take place. We
separate the term with index j = 0 from the rest of the sum. Therefore, it
becomes

(4.9)
∑

j∈Zn\{0}
p(i D) {e−i x ·t L̂(t)}t=2π j + L̂(0)p(x).

We claim that the above expression is in fact p(x), as demanded. This is true
because (4.5) implies

L̂(0) = 1

and

(Dα L̂)(2π j) = 0 ∀ j ∈ Z
n\{0}, |α| < µ,

and finally

(Dα L̂)(0) = 0 ∀α, 0 < |α| < µ,

where α ∈ Z
n
+. Indeed, all these properties of the Fourier transform of the

Lagrange function L come from the singularity of the Fourier transform of φ̂ at
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the origin, because this singularity which occurs in the denominator of L̂ induces
the manifold zeros of L̂ at nonzero multiples of 2π . We can for example expand
L̂ in neighbourhoods about zero and nonzero multiples of 2π to verify that the
above zero properties are therefore direct consequences of condition (A3).

Thus the first part of the theorem is proved. As to the second, it is clear
that the above sum (4.8) is ill-defined if µ is not an even integer and thus
L(x) ∼ ‖x‖−n−µ, and when p has total degree ≥ µ. However, (4.8) may very
well be well-defined if µ is an even positive integer and L thus decays faster.
Let p(x) = ‖x‖µ, µ an even positive integer. Thus p is a polynomial of total
degree µ. In this case (4.9) contains terms like

(4.10) e−i2π j ·x ‖i D‖µ L̂(2π j), j ∈ Z
n,

where the right-hand factor is a nonzero constant (it is a certain nonzero multiple
of the reciprocal of the nonzero coefficient of the r−µ term in φ̂(r )). Thus (4.8)
cannot be true, and there cannot be cancellation in the sum of expressions (4.10)
because of the linear independence of the exponential functions with different
arguments.

Note that this theorem implies polynomial exactness of degree <2k for all
examples (4.4) and their shifts; e.g. for the multiquadric function where 2k =
n + 1, we can recover all polynomials exactly if their total degree does not
exceed n in R

n . This is in itself a remarkable observation, namely that infinite
linear combinations of nonanalytic (often nondifferentiable), nonpolynomial
radial basis functions can recover polynomials exactly. We will come back to
and use this fact often in the book.

4.2 Convergence analysis

4.2.1 Approximation orders on gridded data

It is a natural question to ask now whether the polynomial recovery enables us
to deduce convergence (or synonymously approximation) orders for approxi-
mations (4.7) if f is a sufficiently differentiable target function. The answer
is affirmative, as we shall see in this subsection. There are two very practi-
cal purposes of this convergence analysis. The first one is a question asked
often by anyone who uses radial basis functions in practice, namely to clas-
sify the radial basis functions according to the convergence orders that can
be obtained in order to know more about their usefulness in applications.
The second one comes up in the very frequent situation when radial basis



66 4. Approximation on infinite grids

functions are used as approximants within other numerical algorithms which
also have certain convergence orders. It is usual in those cases to use approx-
imants inside of ‘outer’ algorithms which have at least the same convergence
orders.

As we shall see, the convergence orders are closely related to the order of the
singularity of the radial function’s Fourier transform at zero. In our conditions
on φ we have denoted this order – which need not be integral – by µ. Indeed,
we can always show that (4.7) approximates f uniformly up to order O(hµ)
and that that is the best possible order. This approximation order is of course
only obtained for sufficiently smooth f and the smoothness we need to require
depends on the speed of L’s decay, the polynomial recovery being fixed as we
have seen above. In order to demonstrate the techniques, we begin with an easy
case. That is, the simplest result along those lines is the following Theorem 4.5.
Note that in these convergence results, the fact that L satisfies the Lagrange
conditions is immaterial. We only use its decay and its polynomial recovery
properties. Therefore the results we obtain on convergence are true both for
quasi-interpolation and for interpolation where the translates of ψ and L are
used, respectively. We formulate the approximants below only with ψ and state
the (e.g. decay-) conditions as conditions on L .

Theorem 4.5. Let the approximant (4.6) on the multivariate integers be exact
for all polynomials of total degree less than µ and suppose

|L(x)| = O
(

(1+ ‖x‖)−n−µ−ε
)

with ε > "µ# − µ. Then the scaled approximant (4.7) gives the uniform con-
vergence estimate ‖sh− f ‖∞ = O(hµ) for all f ∈ C"µ−1#(Rn) whose "µ−1#st
derivatives are Lipschitz-continuous.

Proof: For any given x ∈ R
n , let p be the following x-dependent (!) polyno-

mial. To wit, we take it to be the ("µ# − 1)st degree Taylor polynomial to f at
the point x . This Taylor polynomial

p(y) = f (x)+
∑

0<|α|<"µ#

Dα f (x)

α!
(y − x)α

is recovered by (4.6) because its degree is less than µ as "µ# < µ+ 1. It is in
particular true that

f (x)− sh(x) =
∑
j∈Zn

(
f (x)− f ( jh)

)
L
( x

h
− j

)
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is the same as ∑
j∈Zn

(
p( jh)− f ( jh)

)
L
( x

h
− j

)
,

because ∑
j∈Zn

( jh − x)α L
( x

h
− j

)
= 0

for all monomials ( · )α of total degree less than µ. Thus using the Lipschitz
continuity condition and the decay of the function L stated in Theorem 4.3,
there exist some fixed positive constants Ci , i = 1, 2, such that

| f (x)− sh(x)| =
∣∣∣∣∣ ∑

j∈Zn

(
f ( jh)− p( jh)

)
L
( x

h
− j

)∣∣∣∣∣(4.11)

≤
∑

‖x− jh‖∞≤2h

| f ( jh)− p( jh)|
∣∣∣L( x

h
− j

)∣∣∣
+

∑
‖x− jh‖∞>2h

| f ( jh)− p( jh)|
∣∣∣L( x

h
− j

)∣∣∣.
This is at most

C1

∑
‖x− jh‖∞≤2h

‖x − jh‖"µ#∞

+C2

∑
‖x− jh‖∞>2h

‖x − jh‖"µ#∞
hµ+n

‖x − jh‖ε+n+µ
∞

which equals

O(hµ)+ C2 hµ
∑

‖x− jh‖∞>2h

hn

‖x − jh‖n+ε+(µ−"µ#)
∞

.

That is O(hµ), as desired. We note that we reach the final conclusion because
the sum that multiplies C1 contains only a finite number of terms, independently
of h, and because the final sum is uniformly bounded as h goes to zero, "µ#−µ

being less than ε.

The message from the above proof is that we need precise information about
the decay of the cardinal function to obtain the best convergence results. The
polynomial recovery cannot be improved upon what we have already, cf. the last
result of the previous section, and hence it cannot be used to any more advantage
than it is. However, better decay, that is, better localised cardinal functions, can
give optimal approximation orders. Now, there are various other forms of such
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convergence results when L has different orders of decay. Their main purpose
is to admit ε = 0 in the above result, but they require extra conditions on the
derivatives of f . A slightly more complicated version than the previous result is

Theorem 4.6. Let the assumptions of Theorem 4.5 hold for noninteger µ and
ε = 0. Then (4.7) gives the error estimate

‖sh − f ‖∞ = O(hµ), h → 0,

for all f ∈ C"µ#(Rn) whose "µ#th and ("µ# − 1)st total order derivatives are
uniformly bounded.

Proof: We begin as in the previous proof and define the Taylor polynomial in
the same way. Therefore we also use the polynomial exactness in the same way
and consider the sum of shifts and dilates of L multiplied by p( jh) − f ( jh).
However, then we consider three different ranges of indices in the approxi-
mant now. That is, we divide (4.11) up into an O(hµ) term plus two further
expressions, namely for positive constants C2 and C3

C2

∑
2h<‖x− jh‖∞<1

‖x − jh‖"µ#∞
hµ+n

‖x − jh‖µ+n
∞

plus

C3

∑
‖x− jh‖∞≥1

‖x − jh‖"µ#−1−µ−n
∞ hµ+n,

where the last term is a consequence of the boundedness of the ("µ#−1)st order
derivatives and it is, indeed, O(hµ) as before, because "µ#−1 < µ. Moreover,
we bound the newly introduced second term by an integral from above:∑

2h<‖x− jh‖∞<1

‖x − jh‖−n−(µ−"µ#)
∞ hµ+n ≤ C4 hµ

∫ 1

h
y−(µ−"µ#)−1 dy

which is O(hµ), because in this theorem the hypotheses giveµ−"µ# ∈ (−1, 0),
as required.

In order to drop the positive ε in the assumptions for an integer-valued µ, much
more work is required (note that the above derivation in the final display of the
proof of Theorem 4.6 could give a log h term in that case unless we change the
proof because

∫ 1
h y−1dy = (− log h)). This is done in the next theorem. It is

taken from a paper by Powell (1992a).

Theorem 4.7. Let the assumptions of Theorem 4.6 hold except that now µ is
an odd integer. Then (4.7) gives the error estimate

‖sh − f ‖∞ = O(hµ), h → 0,
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for h tending to zero and for all f ∈ C"µ+1#(Rn) whose partial derivatives of
total orders µ− 1, µ and µ+ 1 are uniformly bounded.

Proof: Let k = µ− 1. Let p be the same Taylor polynomial as before. Next,
let q be the polynomial of degree µ that vanishes at x of order k + 1, that is, it
vanishes at x with all its partial derivatives of total degree≤ k vanishing at x as
well, and that also matches all partial derivatives of total degree µ = k+1 of f
at this point. Thus, for all x̃ , there are (x, x̃)-independent constants Ci such that
the following inequalities hold due to Taylor’s theorem and the boundedness
assumptions in the statement of Theorem 4.7:

| f (̃x)− p(̃x)| ≤ C1 ‖x − x̃‖k
∞,

| f (̃x)− p(̃x)| ≤ C2 ‖x − x̃‖k+1
∞ ,

|q (̃x)| ≤ C3 ‖x − x̃‖k+1
∞ ,

| f (̃x)− p(̃x)− q (̃x)| ≤ C4 ‖x − x̃‖k+2
∞ .

Moreover, according to Theorem 4.3, there is a bounded function η: R
n → R

such that for an ε > 0 and any x

|L(x)− η(x) (1+ ‖x‖)−n−µ| = O
(
(1+ ‖x‖)−n−µ−ε) .

We consider once more the error formula

f (x)− sh(x) =
∑
j∈Zn

(
p( jh)− f ( jh)

)
L
( x

h
− j

)
.

By periodicity of the grid of centres and because we are considering uniform
norms, there is no loss in generality if we assume subsequently ‖x‖∞ ≤ h

2 for
evaluating and estimating the error. We divide the ranges of indices in the sum
much as in the previous proofs. In particular, showing that the expression∑

‖ jh‖∞>1

|p( jh)− f ( jh)|
∣∣∣L( x

h
− j

)∣∣∣
is O(hµ) follows precisely the same lines as before using the decay of the
cardinal function. This we do not repeat here. Thus we must show that for
‖x‖∞ ≤ h

2 we have this estimate for the error:

(4.12)

∣∣∣∣∣ ∑
‖ jh‖∞≤1

(
p( jh)− f ( jh)

)
L
( x

h
− j

)∣∣∣∣∣ = O(hµ).
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We replace the first term in parentheses in (4.12) by q( jh) which incurs an error
of at most a multiple of∑

‖ jh‖∞≤1

‖x − jh‖k+2
∞

(
1+

∥∥∥ x

h
− j

∥∥∥
∞

)−n−k−1

≤ hk+2
∑

‖ jh‖∞≤1

(
1+

∥∥∥ x

h
− j

∥∥∥
∞

)−n+1

≤ C5 hk+1
∫ 1

0
(h + y)0 dy = O(hk+1).

We note that here we have lost a power hn in the summand. This is due to a
change in coordinates which replaces the sum in n dimensions by a univariate
integral, that is by changing to polar coordinates when we have replaced the
sum by an integral as in the previous proof. If we additionally replace L( x

h − j)
by η( x

h − j)(1+‖ x
h − j‖)−n−k−1 in the revised form (4.12) we get an error that

does not exceed a fixed constant multiple of∑
‖ jh‖∞≤1

‖x − jh‖k+1
∞

(
1+

∥∥∥ x

h
− j

∥∥∥
∞

)−n−µ−ε
≤ C6hµ+ε

∫ 1

0
(h + y)k−µ−εdy

which is, as desired, O(hk+1) = O(hµ) for h → 0.
Thus it remains to show that, still for ‖x‖∞ ≤ h

2 , it is true that

(4.13)

∣∣∣∣∣ ∑
‖ jh‖∞≤1

(q( jh) η
( x

h
− j

) (
1+

∥∥∥ x

h
− j

∥∥∥
∞

)−n−k−1
∣∣∣∣∣ = O(hµ).

We wish to make a final change in the error expression above. We want to replace
q by q(· + x) in (4.13). What additional error does this change introduce? By
the mean-value theorem and because of the bounds on q and ‖x‖∞ stated above,

|q( jh + x)− q( jh)| ≤ C7 · h(h + ‖x − jh‖∞)k, ‖ jh‖∞ ≤ 1.

Thus we may replace q by q(· + x) and get an error of at most a fixed constant
multiple of the following sum:

‖η‖∞ h
∑

‖ jh‖∞≤1

(h + ‖x − jh‖∞)k
(

1+
∥∥∥ x

h
− j

∥∥∥
∞

)−n−k−1

which is at most

C8hk+2
∫ 1

0
(h + y)−2 dy = O(hk+1),

and which is therefore of the order that we desire to obtain in our required result.
Therefore we may make the proposed change in (4.13) without changing the
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final result beyond a term of O(hµ). Further, as q(· + x) is a homogeneous
polynomial of degree µ, µ being an odd integer, we have q(−hj + x) =
−q(hj + x), ‖ jh‖∞ ≤ 1. Thus we bound, for j ∈ Z

n
+ and ‖x‖∞ ≤ h

2 ,∣∣∣∣∣ ∑
‖ jh‖∞≤1

(
q( jh + x)

(
1+

∥∥∥ x

h
− j

∥∥∥
∞

)−n−k−1
η
( x

h
− j

)

+ q(− jh + x)
(

1+
∥∥∥ x

h
+ j

∥∥∥
∞

)−n−k−1
η
( x

h
+ j

)) ∣∣∣∣∣.
Moreover, we may factor out the function η and bound, by Hölder’s inequality,
by ‖η‖∞. In addition, if we employ the estimate∣∣∣(1+

∥∥∥ x

h
− j

∥∥∥
∞

)−n−k−1
−

(
1+

∥∥∥ x

h
+ j

∥∥∥
∞

)−n−k−1∣∣∣ ≤ C9(1+‖ j‖∞)−n−k−2

we can deduce that the above sum is in fact bounded by a fixed constant multiple
of ∑

‖ jh‖∞≤1

‖ jh‖k+1
∞ (1+ ‖ j‖∞)−n−k−2 = O(hk+1) = O(hµ), h → 0,

as required. The theorem is proved.

We note that for even µ, the dominant term in the expression for L(x) of
Theorem 4.3 does not occur, so that we always have faster decay than
(1+ ‖x‖)−n−µ. Therefore we have always Theorem 4.5 at hand which applies.
It is natural now to ask two further questions that we shall discuss next.

The first one is, are the orders stated in the last three theorems saturation
orders, i.e. do there exist different classes of functions (smaller than those
having fixed Lipschitz smoothness) for which a larger power of the spacing
h is possible (see Theorem 4.5)? And the second one is, can those orders be
achieved without using interpolation?

4.2.2 Quasi-interpolation versus Lagrange interpolation

We address the second one first because the answer to it is simpler and more
familiar to us, especially in view of the work we have already done in Chapter 2;
it leads to the so-called quasi-interpolation, where approximants

s(x) =
∑
j∈Zn

f ( j) ψ(x − j), x ∈ R
n,
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are studied for – during the rest of this section – only finite linear combinations

(4.14) ψ(x) =
∑
k∈Zn

ck φ(‖x − k‖), x ∈ R
n,

i.e. the sequence {ck}k∈Zn in (4.14) has finite support with respect to k. The
essential feature of this quasi-interpolation, which has in fact been studied for
radial basis functions much earlier than interpolation on Z

n (e.g. in Jackson,
1988, Rabut 1990) is that it can obtain in many cases the same polynomial
recovery and (almost) the same localisation properties for ψ as Lagrange func-
tions. Therefore, from the point of view of approximation quality, it is just as
attractive as interpolation. It achieves essentially the same approximation orders
and we do not need to solve linear systems for the interpolation coefficients. On
the other hand, certain finite systems of equations have to be solved in order to
compute the coefficients, and we shall explain this and give examples now.

These polynomial reproduction and convergence features are achieved by
recalling that it is the Fourier transform (4.5) of the function whose shifts we
use in (4.6) which helps in the proof of polynomial recovery (and, of course, just
as much in the localisation as we have demonstrated in the various convergence
proofs above). Now, observing that we can consider the Fourier transform of
ψ like considering L̂ above, at least in a ‘generalised’ sense of distributional
Fourier transforms, namely in the form

(4.15) ψ̂(t) = φ̂(‖t‖)
∑
k∈Zn

ck e−i t ·k, t ∈ R
n,

we can try to mimic the essential features of L̂ , that is, in particular, its properties
at the points in 2πZ

n .
As stated above we shall assume that the above sum in (4.15) is a trigono-

metric polynomial, i.e. that the {ck}k∈Zn are compactly supported. This we do
in full appreciation of the fact that thereby we exclude many important cases,
which are, however, taken care of by our Lagrange functions. In other words,
the only real gain we get with quasi-interpolation from our point of view is if
the {ck}k∈Zn are compactly supported because they are simpler to work with;
if they are not, we can just as well use the previously demonstrated theory on
Lagrange functions.

Now, given any µ which we assume to be integral, it follows from the proof
of Theorem 4.4 that what we need to do is find finitely many coefficients ck ,
such that ψ̂ as stated in (4.15) satisfies the following conditions that induce the
same behaviour of ψ̂ on 2πZ

n as L̂ has. The first condition is that the integral
of ψ is one or, in the Fourier domain, it has the property

(4.16) ψ̂(0) = 1.
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The second condition concerns the partial derivatives of total order less than µ

at zero,

(4.17) (Dα ψ̂)(0) = 0 ∀α, 0 < |α| < µ,

and the final condition is responsible for the polynomial recovery as in the proof
of Theorem 4.4:

(4.18) (Dα ψ̂)(2π j) = 0 ∀ j ∈ Z
n\{0}, 0 ≤ |α| < µ.

Among those three conditions, (4.17) and (4.18) are, however, simple linear
conditions that can always be satisfied by choosing a large enough support
set for the coefficients ck . It has to be noticed that a zero of g at the origin
forces zeros of the same order at all 2π j , j ∈ Z

n , by the 2π -periodicity. As a
consequence, the conditions are nothing else than moment conditions on the

g(t) =
∑
k∈Zn

ck e−i t ·k, t ∈ T
n,

our simple trigonometric polynomial, where satisfaction of the conditions
(4.16)–(4.18) essentially means g(t) = O(‖t‖µ) in a neighbourhood of the
origin.

These conditions (4.16)–(4.18) are also known as the Strang and Fix condi-
tions (see, e.g., Jia and Lei, 1993) and there is very much important work on
their sufficiency and necessity – in tandem with extra conditions for so-called
controlled approximation order – for the establishment of polynomial reproduc-
tion and approximation order through approximation with quasi-interpolation
(4.14). In particular, one distinguishes between the conditions for polynomial
preservation, for which it is sufficient that (4.18) holds which guarantees that
the quasi-interpolant to a polynomial is again a polynomial, and the conditions
for the actual polynomial reproduction (4.16)–(4.18). While the meaning of
polynomial reproduction is self-explanatory, we mean by polynomial preser-
vation that the result of the application of the operator to a polynomial is a
polynomial.

Results are available both when ψ is of compact support, a case particularly
important for box-splines (see our third chapter and, for instance, de Boor,
Höllig and Riemenschneider, 1993), and when ψ is not of compact support
(Light and Cheney, 1992a) which applies to our radial basis functions and has
been studied much more recently. Also, results are available for general L p-
norms and not only for uniform error estimates. Finally, there are extensions to
the theory of the Strang and Fix type conditions when the approximants are not
just linear combinations of one basis function ψ , but when ψ can be chosen
from a finite set " of basis functions. This is especially suitable when we wish
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to generate a whole space of multivariate piecewise polynomials of a given total
degree and given smoothness by box-splines, because one box-spline and its
translates alone may not be sufficient for this purpose (in contrast to univariate
spline interpolation where the B-splines of one fixed degree alone are good
enough). This is not needed for radial basis function approximation.

A particularly important issue in the discussion of Strang and Fix conditions
is their necessity for the polynomial preservation or reproduction. This becomes
especially delicate when larger sets " of bases are used as described above,
and this is where the aforementioned conditions on controlled approximation
come in to render the conditions necessary.

All this being said, in this monograph we do not, however, especially build
on this theory, because for our applications, the available approximation or-
ders come very specifically from our conditions (A1)–(A3) on the radial basis
functions which lead to Lagrange functions. The latter then lead directly to our
approximations and their properties which are, as we shall argue now, optimal
anyhow, and fortunately no more general theory is required.

The crux lies in satisfying (4.16) as well as (4.17) which requiresµ to be even
in the first place for quasi-interpolation, because otherwise the short expansion
at zero, namely,

g(t) =
∑
k∈Zn

ck e−i t ·k ∼ ‖t‖µ, ‖t‖ → 0,

can never be achieved for a compactly supported coefficient sequence, when-
ever ‖t‖µ, µ /∈ 2Z+, is not a polynomial. If µ ∈ 2Z+, however, then all is
well and (4.16)–(4.18) can be attained. Many examples are given in Jackson
(1988). No further discussion of the polynomial recovery is needed therefore,
because the same methods with the Poisson summation formula are employed
as above in the theorems about interpolation, but we need to know how rapidly
ψ decays. Generally speaking, almost the same decay rates as with cardinal
interpolation can be provided. At any rate, if µ is an even integer, sufficient
decay for the polynomial recovery and for obtaining convergence rates as in the
theorems above can be achieved – except for a log h term in the error estimate
that reflects the sometimes not-quite-as-good decay. The techniques to prove
decay, however, are the same as before, albeit slightly more complicated to
handle due to the extra freedom by the choice of g, quite unlike the canonical
form of L̂ . We conclude that we have to concentrate on the decay of the quasi-
interpolating basis functions ψ and how to get the coefficients for ψ to have
sufficient decay.

To exemplify the theory of quasi-interpolation, we present just one theorem,
as a central result giving all essential facts, namely, the following theorem.
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Theorem 4.8. Let φ satisfy (A1), (A2a), (A3a) for µ ∈ 2Z+. Then there is
a multivariate trigonometric polynomial g such that the function ψ renders
(4.14) exact for polynomials of degree less than µ and has the asymptotic
property

|ψ(x)| = O(‖x‖−n−µ)

for large ‖x‖.

Note that in all our examples where µ includes an n-term, µ is integral (for
example µ = n + 2 for thin-plate splines) and thus that µ be even is actu-
ally a condition on the parity of n. For instance, the above result applies to
multiquadrics, φ(r ) = r and φ(r ) = r3 in odd dimensions, and for thin-plate
splines in even dimensions. This is typical for quasi-interpolation with radial
basis functions.

The convergence theorems above obviously do not require the function L in
(4.6) to be a Lagrange function as observed before in this section – only polyno-
mial recovery and asymptotic decay are essential. We may therefore apply those
results for quasi-interpolation instead of interpolation by virtue of Theorem 4.8.
On the other hand, we benefited from the simplicity of the Lagrange formulation
when we began the analysis not with quasi-interpolation but with cardinal in-
terpolation and presented our convergence theorems. Moreover, as we shall see
soon, the convergence properties attained by the interpolants are best possible
at least in an asymptotic way and therefore it is natural to focus on interpolation
so far.

The convergence rates which are attained by quasi-interpolation follow now
from Theorem 4.6 except that the presence of an integer-valued µ forces
a− log h factor into the convergence estimate. This follows from the last display
in the proof of Theorem 4.6. This is the only way in which the approximation
power of quasi-interpolation is weaker than that obtainable by interpolation.
Disregarding this log-factor which grows very slowly indeed – in fact it is in
practical applications usually not noticeable – we have the same asymptotic
convergence behaviour of interpolation and quasi-interpolation.

Therefore we get without any further elaboration a convergence estimate of
‖sh − f ‖∞ = O(hµ| log h|) for

sh(x) =
∑
j∈Zn

f ( jh) ψ
( x

h
− j

)
, x ∈ R

n,

and sufficiently smooth approximands f , for instance those that satisfy the
smoothness conditions of Theorem 4.5. In fact, sometimes the logarithmic term
can even be removed due to further properties ofφ much as in Theorems 4.6–4.7.
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This, however, requires many careful extra considerations we do not undertake
here, because we always have the cardinal interpolation at hand which gives
the full orders without a logarithmic contribution.

We do not give a proof in all details of the result Theorem 4.8, but we
indicate nonetheless how to approach the proof because it is instructive as to
the functioning of the approximations. Clearly, the first necessary step is to seek
suitable linear conditions on the {ck}k∈Zn such that (4.16)–(4.18) hold. Among
those, condition (4.18) is the easiest one because it is always fulfilled as long as
g has a sufficiently high order zero at zero which forces zeros of the same order
at all 2π j , j ∈ Z

n , by the 2π -periodicity. Therefore, this feature can always be
achieved by letting g be a product of suitable powers of (1− cos x j ), where x j ,
j = 1, 2, . . . , n, are the components of x ∈ R

n . However, (4.16) checks the
order of the zeros we can impose, because it forces g(t) ∼ ‖t‖µ at zero. The most
difficult conditions are conditions (4.17), and they essentially mean that there is
a gap between the ‖t‖µ term in the Taylor expansion of g(t) about 0 and the next
higher order term that may appear – that latter one may not be of any order lower
than 2µ, so that φ̂(‖t‖)g(t) = 1+ O(‖t‖µ) in a neighbourhood of the origin.

Alternatively, we can therefore view g’s task as approximating 1
σ

at zero (the
rest is again a consequence of periodicity) up to a certain order. It suffices to
achieve

g(t)− 1

σ (t)
= O(‖t‖2µ), ‖t‖ → 0+,

including those estimates according with the derivatives on the left-hand side,
to satisfy (4.16)–(4.18) if (A1), (A2a), (A3a) hold for the radial function.

This leaves us with showing the decay rate of ψ at infinity. What is used here
again is the smoothness of g(t) φ̂(‖t‖) to prove that its inverse Fourier transform,
namely the absolutely convergent and therefore well-defined integral

ψ(x) = 1

(2π )n

∫
Rn

eix ·t φ̂(‖t‖)g(t) dt, x ∈ R
n,

decays at infinity at a rate that is related to the smoothness of ψ̂ . For this, one
notes that the decays of the inverse Fourier transforms of ψ̂ and of φ̂(‖t‖)g(t)−1
are the same and that the latter function is smooth enough everywhere to provide
quick decay of the inverse Fourier transform in the above display, except at the
origin. There it is asymptotically ∼ ‖t‖µ for small t . The same techniques as
in Theorem 4.3 are then applied to derive the assertion of Theorem 4.8 but one
has to look very carefully at the properties of g induced by the fulfilment of
conditions (4.16)–(4.18). This is more difficult than the proof of Theorem 4.3
where only φ̂(‖ · ‖) and σ were involved and 1

σ
took the task our g performs
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here. We omit the tedious details because they give no further insight into our
particular problem.

An example presented by Jackson (1988) for the multiquadric function in
three dimensions is as follows (all coefficients have to be divided by 8π for
normalisation): the coefficients c j , j ∈ Z

3, ‖ j‖∞ ≤ 2, are

c0 = −49− 81c2,

c(±1,0,0) = c(0,±1,0) = c(0,0,±1) = (142+ 369c2)/12,

c(±2,0,0) = c(0,±2,0) = c(0,0,±2) = (−25− 54c2)/12,

c(±3,0,0) = c(0,±3,0) = c(0,0,±3) = (2+ 3c2)/12,

c(±1,±1,±1) = (−4− 27c2)/2,

c(±2,±2,±2) = (1+ 72c2)/48,

c(±2,±1,0) = c(±2,0,±1) = c(±1,±2,0)

= c(0,±2,±1) = c(±1,0,±2) = c(0,±1,±2) = 3c2

4
.

All coefficients not specified above are set to zero.

4.2.3 Upper bounds on approximation orders

Another very important aspect of convergence analysis is to bound approxima-
tion orders from above, since, so far, we have just offered lower bounds for the
obtainable approximation orders. Several central results along this line are due
to Johnson (1997 and several later articles). Among other things he shows that
our O(hµ) convergence orders for approximation on grids are best possible for
the class of radial basis functions we studied above, even if we choose to mea-
sure the error not in the uniform norm but in other L p-norms, 1 ≤ p ≤ ∞, and
even if we only admit arbitrarily smooth functions as approximands into the in-
terpolation or quasi-interpolation schemes. The proof of this result by Johnson
is very advanced and beyond the scope of the book, but several examples will
be given now. The examples will confirm in particular that the convergence
orders on grids we had already obtained are the best possible orders.

We recall the usual notation f̌ for the inverse Fourier transform of a function

f̌ (x) = 1

(2π)n

∫
Rn

eix ·t f (t) dt, x ∈ R
n,

see also the Appendix.
Further we recall the cut-off function ρ that has been used before in this

chapter in the proof of Theorem 4.2. We remark that the next result, like many
others in this book, does not require the ‘radial’ basis function to be radial; the
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result holds for general φ: R
n → R with a measurable distributional Fourier

transform φ̂. Nonetheless, because we especially study functions that are truly
radial, we restrict the statement of the theorem to radial basis functions. In
fact, the theorem is entirely expressed in terms of the Fourier transform. We
recall finally the definition of band-limited functions, i.e. those functions whose
Fourier transform is of compact support.

Theorem 4.9. Let 1 ≤ p ≤ ∞. Let φ̂(‖·‖): R
n → R be continuous on R

n \{0}
and such that for some j0 ∈ Z

n\{0} and some ε ∈ (0, 1),

(i) φ̂(r ) �= 0 for almost all r ∈ [0, ε],
(ii) the inverse Fourier transform

(
ρ
( ·
ε

) φ̂(‖ · +2π j0‖)

φ̂(‖ · ‖)

)̌
is absolutely integrable for the above cut-off function ρ with support in
the unit ball,

(iii) for a measurable function ρ̃ which is locally bounded and for all positive
m ∥∥∥hµ ρ̃ − φ̂(‖h · +2π j0‖)

φ̂(‖h · ‖)

∥∥∥
∞,Bm (0)

= o(hµ), h → 0.

Then the L p(Rn)-approximation order from a shift-invariant space which is
spanned by using integer shifts with a scaling of h of φ cannot be more than
µ. That is the error of the best approximation in the L p-norm from the L p-
closure of

span{φ(‖ · /h − j‖) | j ∈ Z
n}

to the class of band-limited f whose Fourier transform is infinitely differentiable
cannot be o(hµ) as h tends to zero.

We note that the class of all band-limited f whose Fourier transform is in-
finitely differentiable is a class of very smooth local functions and if the L p-
approximation order to such smooth functions cannot be more than hµ, it cannot
be more than hµ to any general (super)set of functions with lesser smoothness
properties.

Examples: We consider the multiquadric function where the generalised
transform φ̂(‖x‖) (namely, the radially symmetric Fourier transform of the
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radially symmetric multiquadric function as a function of n variables) is

−π−1 K(n+1)/2(cr )/(r/[2πc])(n+1)/2, r = ‖x‖ ≥ 0.

Letting without loss of generality c = 1 we take

φ̂(r ) = −π−1 K(n+1)/2(r )/(r/2π )(n+1)/2

in Theorem 4.9. This function is negative with a singularity of order n + 1 at
the origin. Then (i) of Theorem 4.9 is certainly fulfiled.

Now consider, for a cut-off function ρ as stated above, the fraction

ρ
( x

ε

) φ̂(‖x + 2π j0‖)

φ̂(‖x‖)
= ρ

( x

ε

) φ̂(‖x + 2π j0‖)

C‖x‖−n−1(1+ ‖x‖n+1φ̃(x))

with the same notation φ̃ as in the proof of Theorem 4.2. This is the same as

ρ
( x

ε

)C−1φ̂(‖x + 2π j0‖)‖x‖n+1

1+ ‖x‖n+1φ̃(x)

whose inverse Fourier transform can be shown, precisely with the same tech-
niques as in the proof of Theorem 4.2, to decay at least as fast as a constant
multiple of (1+ ‖x‖)−2n−1. The latter, however, is absolutely integrable over n
dimensions so that (ii) holds, as required.

We wish to show (iii) now. Let K̃ν(z) = Kν(z)·zν which is a positive function
on R+ without a singularity at the origin (precisely: it has a removable singular-
ity at the origin) whenever ν is positive. Furthermore, letting in condition (iii)

ρ̃(x) = K̃(n+1)/2(2π j0)

K̃(n+1)/2(0)
‖x‖n+1

gives the desired result (iii) for µ = n + 1, namely that hn+1 is the highest
obtainable order in any L p-norm, confirming our earlier lower bound on the
approximation rate to be best possible and thus the aforementioned saturation
order.

As a second example, consider the easier case of a thin-plate spline radial
basis function whose Fourier transform is

φ̂(r ) = r−n−2, r > 0,

where for the sake of simplicity we are omitting a constant nonzero multiplying
factor and δ-function terms, and again we write φ̂ as a multivariate function in
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agreement with our notation in Theorem 4.9. It is obvious that condition (i) is
true. Moreover,

ρ
( ·
ε

) φ̂(‖ · +2π j0‖)

φ̂(‖ · ‖)
= ρ

( ·
ε

)
‖ · ‖n+2 ‖ · +2π j0‖−n−2.

If ε is small, then this is at a minimum in Cn+1(Rn), so that its inverse Fourier
transform is of order O(‖ · ‖−n−1) for large argument, and it is continuous
anyway since ρ is of compact support and infinitely differentiable. Thus (ii)
holds as well. Moreover, let µ = n + 2 and

ρ̃(x) = ‖x‖n+2 ‖2π j0‖−n−2.

Thus, j0 still being nonzero, and letting x ∈ Bm(0),

hµ ρ̃(x)− φ̂(‖h · +2π j0‖)

φ̂(‖h · ‖)

= hn+2‖x‖n+2 ‖2π j0‖−n−2 − hn+2‖x‖n+2 ‖h · +2π j0‖−n−2,

that is, by the mean-value theorem, clearly o(hµ) for diminishing h with µ =
n + 2 uniformly in all Bm(0).

Hence hn+2 is, as expected, the best obtainable approximation order with
thin-plate splines on a uniform grid which is scaled by a positive h, thus once
more cementing our earlier lower bound as the best possible and the saturation
order.

4.2.4 Approximation orders without Fourier transforms

It is evident that one needs to compute the Fourier transform of all the radial
basis functions to which the above theorems apply in order to get the required
results. This is not always easy except for our standard choices where they are
mostly available from suitable tables (e.g. Jones, 1982) of Fourier transforms.
Thus it is interesting and useful to avail oneself of results that no longer need
these Fourier transforms and that have direct conditions on φ instead. One
such theorem is the next result. It is highly instructive and suitable for this
chapter, because it reveals a link between the completely monotonic functions
of Section 2.1 and our cardinal functions.

Theorem 4.10. Let k̂ be a nonnegative integer and φ ∈ C(R+) ∩ C∞(R>0).

Suppose that η(t): = dk̂

dt k̂ φ(
√

t), t > 0, is completely monotonic and satisfies
the short asymptotic expansions (i.e. an expansion with a single element)

η(t) ∼ A∗ t−α, t →∞, A∗ �= 0,
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and

η(t) ∼ A0 t−α
′
, t → 0+,

for positive and nonnegative exponents α and α′ respectively. If k̂ = 0 we also
assume that η′(0+) is bounded. If α, α′ ≤ n

2 − k̂ + 1, α < n
2 + 1 and, when

k̂ > 0, also α′ < k̂, then there are {c j } j∈Zn such that with µ = 2k̂ + n − 2α

(i) |c j | = O(‖ j‖−n−µ),
(ii) (4.3) is a Lagrange function that satisfies

|L(x)| = O
(

(1+ ‖x‖)−n−µ
)

and all the conclusions of Theorems 4.3–4.7 are true, where the additional
conditions on µ in those theorems have to be fulfilled too.

Note the absence of the (−1)k factor in the function η which is required to be
completely monotonic here, in contrast with the result of Section 2.1. This is
because any sign or indeed any constant factor is unimportant here for the
cardinal functions, because it will cancel in the form (4.5) of the cardinal
function anyhow.

We give a few examples for application of this result. For instance, φ(r ) = r
satisfies the assumptions of the above theorem with η(t) = 1

2 t−1/2 which
clearly provides the required properties of a completely monotonic function.
Our µ here is µ = n + 1, as before for the results that did include the Fourier
transform of φ, and further k = 1, α = α′ = 1

2 . A similar result holds for
the thin-plate spline radial function φ(r ) = r2 log r , where η(t) = 1

2 t−1 and
µ = n + 2, k = 2, α = α′ = 1. Finally, the multiquadric function satisfies the
assumptions too, with µ = n+1, and η (t) = 1

2 (t+c2)−1/2, α′ = 0, α = 1
2 and

k = 1. In order to verify this, we note that this η is clearly completely monotonic
and that it satisfies the required short asymptotic expansions at zero and for large
argument. It is easy to check that the exponents for those expansions are within
the required bounds.

Of course, the way this theorem is established is by showing that φ has a
distributional Fourier transform φ̂(‖ · ‖) which satisfies the assumptions (A1),
(A2a), (A3a) as a consequence of the theorem’s requirements. In order to do
this, one begins by noticing that the Bernstein–Widder theorem implies the
function η in Theorem 4.10 has the following representation (much like the
case we studied in Chapter 2), where we start with the choice k̂ = 0:

η(t) =
∫ ∞

0
e−tβ dγ (β), t ≥ 0.
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Thus

φ(r ) =
∫ ∞

0
e−r2β dγ (β), r ≥ 0,

where the γ is the measure of the Bernstein–Widder theorem. We may take gen-
eralised Fourier transforms on both sides to get from the exponential’s transform
from Section 2.1

φ̂(r ) = πn/2
∫ ∞

0
e−r2/(4β) dγ (β)

βn/2
, r > 0.

This means we take a classical Fourier transform of the exponential kernel on
the right-hand side of the previous display.

When is this last step allowed so that φ̂ is still well-defined, i.e. continuous
except at the origin? It is allowed if

(4.19)
∫ ∞

1

dγ (β)

βn/2
<∞,

because the integral over the range from zero to one is finite at any rate due to
the exponential decrease of the exponential e−r2/(4β) in the integrand towards
β = 0, and the integrand is continuous elsewhere.

In order to conclude that (4.19) is true from the properties of η which we
required in the statement of the theorem, we need to understand the asymptotic
behaviour of γ (β), β → +∞. Fortunately, a so-called Tauberian theorem for
Laplace transforms helps us here, because it relates the asymptotic behaviour
of η at 0+ with that of γ at infinity. We shall also see from that the reasons for
the various conditions on the short asymptotic expansions of η.

Theorem 4.11. (Widder, 1946, p. 192) If the Laplace transform

η(t) =
∫ ∞

0
e−tβ dγ (β)

satisfies at zero

η(t) ∼ A0 t−α
′
, t → 0+,

with a nonzero constant factor A0, then we have the short asymptotic expansion

γ (β) ∼ A0 βα′/�(α′ + 1), β →+∞.

The � used in Theorem 4.11 is the usual �-function. It is a consequence
of this result that, in our case, γ remains bounded at +∞, recalling that η is
bounded at 0, thus α′ = 0 in Theorem 4.11, so long as k̂ = 0. Hence we may
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apply integration by parts to (4.19) and re-express the left-hand side of (4.19)
as the sum [γ (β)

βn/2

]∞
1
+ n

2

∫ ∞

1

γ (β) dβ

β
n
2+1

<∞.

This integral is finite for all dimensions n, as required because our measure is
bounded and because n > 0.

We may also apply Theorem 4.11 using the properties of φ̂ at infinity to deduce
γ ’s asymptotic properties at the origin – only a change of variables is required
for that. Indeed, since η(t) ∼ A∗ t−α , for large argument t , we get γ (β) ∼
A∗ βα/�(α + 1), β → 0+, and thus a change of variables and integration by
parts yield

φ̂(r ) = −πn/2
∫ ∞

0
e−βr2/4 βn/2 dγ (β−1)(4.20)

= −πn/2
∫ ∞

0
e−βr2/4 d(βn/2 γ (β−1))

+ 2πn/2 n

r2

∫ ∞

0
e−βr2/4 d(βn/2−1 γ (β−1))

∼ A∗∗ r−n+2α, r → 0+.

When this computation is performed, it always has to be kept in mind that there
is necessarily a square in the argument of the exponential due to the definition
of η.

For the final step in (4.20) we have applied an Abelian theorem of the following
type and the fact that βn/2−1γ (1/β) ∼ Aβn/2−1−α .

Theorem 4.12. (Widder, 1946, p. 182) If we consider the Laplace transform

η(t) =
∫ ∞

0
e−tβ dγ (β)

and the measure γ (β) satisfies

γ (β) ∼ Aβα′, β →+∞,

with a nonvanishing A, then η(t) satisfies

η(t) ∼ A�(α′ + 1) t−α
′
, t → 0+.

Now we can compare the last line in (4.20) with (A3a) and set µ as defined
in the statement of Theorem 4.10, recalling that still k̂ = 0. This is the salient
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technique in the proof of Theorem 4.10. The differentiability conditions come
from the analyticity and the fast decay of the exponential kernel: all the φ̂

that occur in the above Laplace transforms are infinitely differentiable on the
positive real axis because the factors of the exponential function that come from
the differentiation do not change the continuity of the resulting integral, due to
the exponential decay of the kernel.

Further, the radial function’s asymptotic conditions on the derivatives are
quite easily derived from the above form of φ̂(r ) with the same techniques as
we have just applied, namely using the Abelian and Tauberian theorems. This is
true both for its behaviour near the origin and for r →+∞. What remains, then,
is to show the positivity of φ̂ which is straightforward due to the positivity of
the exponential function and dγ ≥ 0, dγ not being identically zero. Therefore
we have established all our conditions for the existence of a cardinal function.
Moreover, the asserted properties of L are satisfied and the theorem is therefore
proved for k̂ = 0.

When k̂ is positive, the techniques remain almost the same, but they are
combined with the techniques which are known to us from the proofs of the
nonsingularity properties of Chapter 2. Indeed, we begin as in Chapter 2 by
stating the derivative as

dk̂

dt k̂
φ(
√

t) =
∫ ∞

0
e−tβ dγ (β)

and integrate on both sides as in the proof of Theorem 2.3, but now k̂ times.
Then we take Fourier transforms, ignoring at first the polynomials of degree
k̂ − 1 that come up through the integration. We arrive at the following Fourier
transform of a radial basis function:

"̂(r ) = (−1)k̂ πn/2
∫ ∞

0
e−r2/(4β) dγ (β)

βn/2+k̂
, r > 0.

Before we justify below why we could leave out the polynomial terms and why
therefore the "̂ is identical to our required φ̂, we observe that an analysis which
uses the properties of η at 0+ and +∞, and thus, by Theorems 4.11 and 4.12,
the properties of γ at those two ends, leads to the conclusions stated through
the short asymptotic expansions

"̂ (ν)(r ) ∼ Ãν r−n−2k̂+2α−ν, r → 0+, ν ≥ 0,

"̂ (ν)(r ) ∼ B̃ν r−n−2k̂+2α′−ν, r →+∞, ν ≥ 0.

The coefficients in this display are suitable, ν-dependent constants. This suffices
for (A2a) and (A3a), (A1) being known to be true anyhow because of the
condition on α′.
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Leaving out the aforementioned polynomials in the radial basis function is
justified because the coefficients of the cardinal functions would annihilate them
anyway when the infinite sums

(4.21)
∑
j∈Zn

c j φ(‖x − j‖), x ∈ R
n,

are formed. This is actually a very important point, important to the understand-
ing of the present theory, and therefore we wish to explain it in somewhat more
detail. We still let {c j } j∈Zn be the coefficients of our cardinal function that results
where φ meets the criteria (A1), (A2a), (A3a). Thus, as we recall from above,

(4.22)
∑
j∈Zn

c j e−i x · j ∼ ‖x‖µ, ‖x‖ → 0+,

where we are omitting a nonzero constant factors in front of ‖x‖, and this is
true for any µ in our condition that leads to a cardinal function. (We recall that
for quasi-interpolation by contrast, we are only able to achieve (4.22) for µ an
even positive integer, because only in that case is ‖x‖µ a polynomial in x , as
a result of the compact support of the {c j } j∈Zn whereupon the left-hand side
of (4.22) must be a trigonometric polynomial.) Now, however, (4.22) means in
particular that moment conditions

(4.23)
∑
j∈Zn

c j j α̃ = 0 ∀α̃ ∈ Z
n
t , 0 ≤ |α̃| < µ,

hold, the coefficients decaying fast enough for guaranteeing absolute conver-
gence of the infinite series in (4.23). This is a consequence of the high order
zero which (4.22) has at zero. It furthermore implies that in (4.21) any addition
of a polynomial p of degree less than µ in x (or, rather, in x − j) to the radial
function φ(‖ · ‖) is harmless, i.e.∑

j∈Zn

c j

(
φ(‖x − j‖)+ p(x − j)

)
, x ∈ R

n,

is the same as the expression (4.21). Going back to our representation of η and its
k̂-fold integration, we ask whether the polynomials of degree 2(k̂−1) (remem-
ber that we replace t by r2 after the integration!) can in fact be disregarded in the
vein outlined above. For that we need the inequality on the polynomial degrees

2k̂ − 2 < µ = 2k̂ + n − 2α,

or α < n
2 +1 which is indeed a condition we explicitly demand in the statement

of the theorem.
It is interesting to observe further that we do not need the ‘full’ infinite con-

dition of complete monotonicity of η. There is another concept, called multiple
monotonicity, which suffices. We shall also use it extensively in our Chapter 6,
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and in fact it provides a beautiful link between the work in this chapter and
Chapter 6.

Definition 4.1. The function g ∈ Cλ−2(R>0) ∩ C(R≥0) is λ times monotonic
if (−1) j g( j) is ≥ 0, nonincreasing and convex for j = 0, 1, . . . , λ − 2. If
g ∈ C(R≥0) is nonnegative and nondecreasing, then it is called monotonic.

Our claim is that all conclusions of Theorem 4.10 can be reached with the
above condition replacing complete monotonicity. Naturally, a bound on λ, i.e.
the minimal number of monotonicity required of the function involved, will be
required as well. Radial basis functions closely related to the multiply mono-
tonic functions will re-occur in the aforementioned chapter about compactly
supported radial basis functions. The strategy is to show that the multiple mono-
tonicity conditions plus suitable asymptotic conditions as in Theorem 4.10 lead
to a radial function whose Fourier transform is such that we can invoke our
previous work to deduce existence of a cardinal function. This will then again
allow reproduction of polynomials of the same degrees as before and give fast
enough decay to admit applications of Theorems 4.5–4.6.

For all that, we need first a characterisation of multiply monotonic func-
tions; specifically, the proof of the following Theorem 4.14 is based on the
‘Williamson representation theorem’ which is in our book contained in the
following statement.

Theorem 4.13. A function g is λ times monotonic if and only if there is a
nondecreasing measure γ that is bounded below with

g(t) =
∫ ∞

0
(1− tβ)λ−1

+ dγ (β), t ≥ 0.

For the proof, see Williamson (1956), but note that the sufficiency is obvious. It is
a consequence of this theorem that g(t) = (1− t)λ−1

+ is the standard example for
a λ times monotonic function but note that all completely monotonic functions
are multiply monotonic of any order due to Definition 4.1. We have the following
theorem, where λ and k̂ are nonnegative integers.

Theorem 4.14. Let λ > 3k̂ + 1
2 (5n + 1). Let φ ∈ Cλ+k̂(R>0) ∩ C(R≥0).

Suppose that the η of Theorem 4.10 is λ times monotonic and that (−1)λ ×
βλ+k̂+ n

2− 3
2 η(λ)(β2) is twice monotonic. If there are real constants A0, A∗ �= 0,

− 1
4 < α′ < k̂, 0 < α < min(1, k̂)+ n

2 , such that

η(λ)(t) ∼ A0 t−α
′−λ, t → 0+,

η(λ)(t) ∼ A∗ t−α−λ, t →+∞,

then all conclusions of Theorem 4.10 hold.
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We observe that indeed for the application of this theorem, only finitely many
conditions need to be verified. We do not give a proof of this result (see Buhmann
and Micchelli, 1991, for one), but the tools are very similar to our theorem with
completely monotonic functions. We can be precise about the differences in
proving Theorems 4.10 and 4.14: in fact, the only extra work that is required
concerns the Tauberian and Abelian theorems which have to be re-invented for
Hankel transforms that come through the Fourier transforms of the compactly
supported kernels in Theorem 4.14. We do not perform this generalisation be-
cause it is technical and does not help much in the understanding of the radial ba-
sis functions. Instead, we state here without proof that, for instance, the Hankel
integral with the standard Bessel function Jν and 
̃ν(r, s) := Jν(rs)(s/r )νs,

F(r ) =
∫ ∞

0

̃ν(r, β)g(β2) dβ

for a suitable positive ν which depends on our individual application, satisfies
the asymptotic property

F(r ) = Cr−2u−2ν−2 + O(r−2u−2ν−2−ε), r →∞,

whenever

g(t) = C ′tu + O(tu+ε′ ), t → 0+.

This u has to be larger than−ν−1, and we require positive ε and ε′. Here C,C ′

are fixed positive quantities. Moreover, the Hankel transform has the property

F(r ) = Cr2s−2ν−2 + O(r2s−2ν−2+ε), r → 0+,

if

g(t) = C ′t−s + O(t−s−ε′ ), t →∞.

Similar short expansions are available also for the inverse statements which
have asymptotics of g as consequences of asymptotic properties of F at zero
and for large argument.

In order to explain and give at least a part of the proof, we do, however, show
how the extra condition on the λth derivative of η being twice monotonic leads
to the positivity of φ̂. To that end we begin with an auxiliary result.

Lemma 4.15. Let g be a twice monotonic function that is not identically zero.
Then, for any real ν ≥ 3

2 , the Hankel transform∫ ∞

0
Jν(rβ)

√
rβg(β)β dβ, r > 0,

is positive provided that this integral is absolutely convergent for all positive r .
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Proof: It is proved by Gasper (1975a, p. 412) that for ν ≥ 3
2 , for positive t

and positive r the inequality∫ ∞

0
(1− tβ)+β3/2 Jν(rβ) dβ > 0

is satisfied. We note that we can express g in the Williamson form because it is
twice monotonic, so

g(β) =
∫ ∞

0
(1− tβ)+ dγ (t), β > 0,

for a nondecreasing measure γ that is bounded below. Further, we have for all
real numbers 0 < a < b <∞∫ b

a

∫ ∞

0
(1− tβ)+β3/2 Jν(rβ) dβ dγ (t) > 0.

This implies ∫ ∞

0

∫ b

a
(1− tβ)+ dγ (t)β3/2 Jν(rβ) dβ > 0,

since
∫ b

a (1 − tβ)+ dγ (t) is bounded above by g(β), while g(β)β3/2 Jν(rβ) is
absolutely integrable with respect to β according to the assumptions in the
statement of the lemma. We can let a and b tend to zero and infinity respectively
because

∫ b
a (1 − tβ)+ dγ (t) ↗ g(β) – the integrand being nonnegative – and

we obtain ∫ ∞

0
g(β)β3/2 Jν(rβ) dβ > 0,

for positive r and ν ≥ 3
2 , which completes the proof.

Now we may apply Lemma 4.15 to the Fourier transform ofφ. We recall that this
Fourier transform is the Fourier transform of η, after being integrated k times,
and after replacing its argument by the square of the argument.

Before we state this Fourier transform, we wish to find a form of the dγ (β)
of the Williamson representation which is explicitly related to η. Specifically,
define ελ := (−1)λ/�(λ); then ελη

(λ)(β−1)/βλ+1 dβ is the same as the dγ (β)
from the characterisation of multiply monotonic functions, written in a weight
form, i.e. γ ′(β)dβ = dγ (β). This is straightforward to verify by direct compu-
tation and especially by λ-fold differentiation:

η(t) =
∫ ∞

0
(1− tβ)λ−1

+ dγ (β)
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and therefore

η(λ)(t) = ε−1
λ

∫ ∞

0
βλδ(1− tβ)γ ′(β) dβ

with the Dirac δ-distribution in the last display. The last displayed equation
implies

η(λ)(t) = ε−1
λ t−λ−1γ ′(t−1)

which provides the required form of γ ′.
Therefore we have as a representation for our radial basis function

(4.24) φ(r ) = (−1)k̂ελ

(λ)k̂

∫ ∞

0
(1− r2β)λ+k̂−1

+ β−λ−k̂−1η(λ)(β−1) dβ,

where the expression (λ)k̂ denotes the Pochhammer symbol

(λ)k̂ = λ(λ+ 1) . . . (λ+ k̂ − 1).

Hence we get by Fourier integration and change of variables that φ̂(r ) is the
same as 2λ+k̂+n/2(−1)λ+k̂+1πn/2 times

(4.25)
∫ ∞

0

̃λ+k̂+n/2−1(r, β)η(λ)(β2) dβ

to which we may apply our lemma directly (and our hypothesis in the statement
of the theorem) to show that no zero occurs.

With these remarks we conclude our work on the existence and convergence
power of radial function interpolation and quasi-interpolation on lattices. There
is only one last issue that we want to discuss in this chapter. It has to do with
the stability of the computation of interpolants and it is the theme of the next
section.

4.3 Numerical properties of the interpolation linear system

Many important facts are known about the norms of inverses of interpolation
matrices with radial basis functions and their dependence on the spacing of
the data points. This is especially relevant to applications of interpolation with
radial basis functions because it admits estimates of the �p-condition numbers
(mostly, however, �2-condition numbers are considered) that occur. Indeed,
most readers of this book will be aware of the relationship between condition
numbers of matrices and the numerical stability of the interpolation problem,
i.e. the dependence of the accuracy of the computed coefficients on (rounding)
errors of the function values.
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For instance, if � fξ is the error (rounding error, recording error, instrument
error from a physical device etc.) in each fξ , and if furthermore �f, �λ denote
the vectors with entries� fξ and the errors in the computedλξ , respectively, then
we have the following familiar bounds for the relative errors in the Euclidean
norm:

‖�λ‖
‖λ‖ ≤ cond2(A)

‖�f‖
‖f‖ ,

where cond2(A) = ‖A‖2‖A−1‖2 is the condition number in Euclidean norm of
A and where the linear system Aλ = f defines the λ = {λξ } from the f = { fξ }
with A = {φ(‖ζ − ξ‖)}ξ,ζ∈�. In a more general setting, such issues are, for
instance, most expertly treated in the recent book by Higham (1996).

The work we are alluding to is particularly relevant when the data points
are allowed to be scattered in R

n , because this is the case which usually ap-
pears in practice. In addition, for scattered data, we are usually faced with
more computational difficulties. In some cases, they may be circumvented
by using FFT or other stable – and fast – techniques for the computation
of Lagrange functions and their coefficients otherwise (see, e.g., Jetter and
Stöckler, 1991).

However, the analysis is very delicate for scattered data due to potentially
large discrepancies between the closest distance of the points that are used
and the largest distance of neighbouring points, there being no concept of
uniform distance. This is why we defer the treatment of condition numbers of
interpolation matrices for scattered data points to the next chapter, and just give
some very specialised remarks about multiquadrics and p-norms of inverses of
interpolation matrices for equally spaced data here. For instance, Baxter (1992a)
proves the next theorem which gives best upper bounds for the Euclidean norm
of the inverse of the interpolation matrix. To get to the condition numbers from
that is straightforward by standard estimates of the missing Euclidean norm of
the interpolation matrix itself.

Theorem 4.16. Suppose φ(‖ · ‖): R
n → R has a distributional Fourier trans-

form with radial part φ̂ ∈ C(R>0) which is such that (A2), (A3) hold for
µ ≤ n + 1. Further, let � ⊂ Z

n be a finite subset of distinct points and A be
the associated interpolation matrix {φ(‖ξ − ζ‖)}ξ,ζ∈�. Then

‖A−1‖2 ≤
{∑

k∈Zn

|φ̂(‖π + 2πk‖)|
}−1

,

where π = (π, π, . . . , π)T , and this is the least upper bound that holds uni-
formly for all finite subsets of Z

n.



4.3 Numerical properties 91

We note that we have not explicitly demanded that the symbol which appears
in disguise on the right-hand side of the display in the statement of the theorem
be positive, so that the bi-infinite matrix A should be invertible, because then
the right-hand side would be infinity anyway.

In order to show the behaviour of the multiquadric interpolation matrix as an
example, we wish to apply this result for instance to the multiquadric radial basis
function. The required bound is obtained from the above theorem in tandem
with standard expansions of the modified Bessel function and the known Fourier
transform of the multiquadric function – from our second section – because we
have to estimate the reciprocal of the symbol at π. It is highly relevant to this
that there is a lower bound for the Bessel function K(n+1)/2 in Abramowitz and
Stegun (1972, p. 378) that reads, for z with positive real part,

K(n+1)/2(z) ≥
√

π

2z
e−z .

Thus, with this we can bound for the multiquadric function with positive pa-
rameter c{∑

k∈Zn

|φ̂(‖π + 2πk‖)|
}−1

≤ π
(‖π‖/[2πc]

)(n+1)/2

√
2c‖π‖

π
ec‖π‖.

Note that we have bounded the reciprocal of the symbol by the reciprocal of
the term for k = 0 only. Therefore we cannot a priori be certain whether the
bound we shall get now is optimal. It is reasonable to expect, however, that it is
asymptotically optimal for large c because the bound in the display before last
is best for all positive z.

Next we insert ‖π‖ = π
√

n and get for the right-hand side of the last display

n(n+2)/4π(√
2c

)n ec
√

nπ .

For instance for n = 1 and multiquadrics, this theorem implies by inserting
n = 1 into the last display

‖A−1‖2 ≤ π√
2c

ecπ .

This is in fact the best possible upper bound asymptotically for large c. It is
important to verify that in general the exponential growth for larger c is genuine
because this is the dominating term in all of the above bounds.

Indeed, Ball, Sivakumar and Ward (1992) get, for the same interpolation
matrix with centres in Z

n ,

‖A−1‖2 ≥ Cec
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with a positive constant C which is independent of c, i.e. we have obtained an
independent verification that the exponential growth with c is genuine.

Furthermore, Baxter, Sivakumar and Ward (1994) offer estimates on such
p-norms when the data are on a grid just as we have treated them in this chapter
all along. The result rests on the observation that we may restrict attention to
p = 2, but it is applied only to the Gauss-kernel. Its proof is a nice application of
the so-called Riesz convexity theorem from the theory of operator interpolation
and it is as follows.

Theorem 4.17. Let A = {φ(‖ j − k‖)} j,k∈Zn , for φ(r ) = e−c2r2
, c �= 0. Then

‖A−1‖p ≡ ‖A−1‖2, for all p ≥ 1, where p = ∞ is included.

Proof: Because A is a Toeplitz matrix, that is a matrix whose entries are
constant along its diagonals, we know already that {ck}k∈Zn have the form (4.1)
with

A−1 = {c j−k} j,k∈Zn .

This is true because the Toeplitz matrix A has as an inverse the Toeplitz matrix
with the said shifts of the Fourier coefficients of the symbol’s reciprocal. Fur-
thermore, we know from Theorem 4.16 that

(4.26) ‖A−1‖2 = 1

min σ (x)
= 1

σ (π)
=

∑
k∈Zn

(−1)k1+···+kn ck .

Here, we use the components k = (k1, k2, . . . , kn) of an n-variate multiinteger
k ∈ Z

n . Note that not just a bound, but an explicit expression is provided for the
norm of the inverse of A, because the bound given in Theorem 4.16 is the best
uniform bound for all finite subsets of Z

n and therefore it is readily established
that equality is attained for � = Z

n . We recall thatπ denotes the n-dimensional
vector with π as all of its components.

Now, because of symmetry of the matrix A, we have equal uniform and
1-norms, i.e.

‖A−1‖∞ = ‖A−1‖1 =
∑
k∈Zn

|ck |.

We claim that this is the same as the �2-norm of the matrix. From this identity,
the equality for all p-norms will follow from the Riesz convexity theorem from
Bennett and Sharpley (1988), Stein and Weiss (1971) which we state here in this
book in a form suitable to our application. For the statement, we let (M,M, µ)
and (N ,N , ν) be measure spaces, M, N being the σ -algebras of measurable
subsets and µ, ν be the respective measures on them. We let also p−1

t and
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q−1
t be the convex combinations of p−1

0 , p−1
1 , and q−1

0 , q−1
1 , respectively, i.e.

p−1
t = tp−1

0 + (1− t)p−1
1 , and analogously for qt , 0 ≤ t ≤ 1.

Riesz convexity theorem. Let T be an operator mapping a linear space of
measurable functions on a measure space (M,M, µ) into measurable func-
tions defined on (N ,N , ν). Suppose that ‖T f ‖qi = O(‖ f ‖pi ), i = 0, 1. Then
‖T f ‖qt = O(‖ f ‖pt ) for all t ∈ [0, 1], and the constant in the O-term above
for qt is the same for all t if the associated constants for the two qi , i = 0 and
i = 1, are the same.

To prove that the above uniform and �1-norm is the same as the �2-norm of the
matrix, it suffices to show that (−1)k1+···+kn ck are always of one sign or zero for
all multiintegers k, because then the above display equals (4.26).

We establish this by a tensor-product argument which runs as follows. Since

e−c2‖x‖2 = e−c2x2
1 e−c2x2

2 . . . e−c2x2
n ,

where we recall that x = (x1, x2, . . . , xn)T , we may decompose the symbol as
a product

σ (x) = σ̃ (x1) σ̃ (x2) . . . σ̃ (xn),

where σ̃ (x) is the univariate symbol for e−c2r2
, r ∈ R. Hence the same de-

composition is true for the coefficients (4.1), i.e. ck = c̃k1 c̃k2 . . . c̃kn . Thus it
suffices to show that (−1)� c̃� is always of one sign or zero in one dimension.
This, however, is a consequence of the fact that any principal submatrix of
{φ(| j − k|)} j,k∈Z is a totally positive matrix (Karlin, 1968) whence the inverse
of any such principal submatrix exists and enjoys the ‘chequerboard’ property
according to Karlin: this means that the elements of the inverse at the position
( j, k) have the sign (−1) j+k . This suffices for the required sign property of the
coefficients. Now, however, the next lemma shows that those elements of the
inverses of the finite-dimensional submatrices converge to the c̃�. It is from
Theorem 9 of Buhmann and Micchelli (1991).

Lemma 4.18. Let the radial basis function φ satisfy the assumptions (A1),
(A2a), (A3a). Let

{0} ⊂ · · · ⊂ �m−1 ⊂ �m ⊂ · · · ⊂ Z
n

be finite nested subsets that satisfy the symmetry condition �m = −�m for all
positive integers m. Moreover, suppose that for any positive integer K there is
an m such that [−K , K ]n ⊂ �m. If cm are the coefficients of the shifts of the
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radial function which solve the interpolation problem∑
j∈�m

cm
j φ(‖k − j‖)+ pm(k) = δ0k, k ∈ �m,∑

j∈�m

cm
j q( j) = 0, q ∈ P

µ−n
n ,

with pm ∈ P
µ−n
n , then

lim
m→∞ cm

j =
1

(2π )n

∫
Tn

ei j ·t dt

σ (t)
, j ∈ Z

n.

Here, σ is the symbol associated with the radial basis function in use. So the
coefficients for solutions of the finite interpolation problem converge to the
coefficients of the solution on the infinite lattice.

It follows from this lemma that (−1) j+k c̃ j−k ≥ 0, which implies

(−1)� c̃� ≥ 0.

It is now a consequence of the aforementioned Riesz convexity theorem that

‖A−1‖∞ = ‖A−1‖1 = ‖A−1‖2

leads to our desired result, because the Riesz convexity theorem states for our
application that equality for the operator norms for p = p1 and p = p2 implies
that the norms are equal for all p1 ≤ p ≤ p2. Here p1 and p2 can be from the
interval [1,∞].

Note that the proof of this theorem also gives an explicit expression, namely
σ (π,π, . . . ,π)−1, for the value not only for the 2-norm but also for the p-
matrix-norm. It follows from this theorem, which also can be generalised in
several aspects (see the work of Baxter), that we should be particularly in-
terested in the �2-norm of the inverse of the interpolation matrix – which we
are incidentally for other reasons because the �2-norms are easier to observe
through eigenvalue computations, which can be computed stably for instance
with the QR method (Golub and Van Loan, 1989). Indeed, for a finite inter-
polation matrix the condition number is the ratio of the largest eigenvalue in
modulus of the matrix to its smallest one. We will come back to estimates of
those eigenvalues for more general classes of radial basis functions and for
finitely many, scattered data in the following chapter, which is devoted to radial
function interpolation on arbitrarily distributed data.
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4.4 Convergence with respect to parameters in the
radial function

Another theorem, which is due to Baxter (1992a), Madych (1990), is the re-
sult below, which concerns the accuracy of the multiquadric radial function
φ(r ) = √

r2 + c2 interpolants. However, rather than focussing upon how the
interpolants converge as the grid spacing decreases, these results examine the
effect of varying the user-defined parameter c. As we have seen already in our
discussion of condition numbers in Section 4.2, however, the interpolation ma-
trix becomes severely ill-conditioned with growing c (the condition numbers
grow exponentially; their exponential growth is genuine and not only contained
in any unrealistic upper bound) and thus virtually impossible to use in the prac-
tical solution of the linear interpolation system. Therefore this result is largely
of theoretical interest. For the statement of the result we recall once more the
notion of a band-limited function, that is a function whose Fourier transform is
compactly supported. We also recall in this context the Paley–Wiener theorem
(Rudin, 1991) which states that the entire functions of exponential type are
those whose Fourier transforms are compactly supported and which we quote
in part in a form suitable to our need.

Paley–Wiener theorem. Let f be an entire function which satisfies the
estimate

| f (z)| = O
(

(1+ |z|)−N exp(r |%z|)
)
, z ∈ C

n, N ∈ Z+.

Then there exists a compactly supported infinitely differentiable function whose
support is in Br (0) and whose Fourier transform is f . Here, %z denotes the
imaginary part of the complex quantity vector z.

With its aid we establish the following theorem.

Theorem 4.19. Let f ∈ C(Rn)∩ L2(Rn) be an entire function as in the Paley–
Wiener theorem of exponential type π , i.e. its Fourier transform is compactly
supported in T

n, so that the approximand is band-limited. Then the cardinal
interpolants

sc(x) =
∑
j∈Zn

f ( j) Lc(x − j), x ∈ R
n,

with cardinal Lagrange functions for multiquadrics and every positive param-
eter c

Lc(x) =
∑
k∈Zn

dc
k

√
‖x − k‖2 + c2, x ∈ R

n,
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that satisfy Lc( j) = δ0 j , j ∈ Z
n, enjoy the uniform convergence property

(4.27) ‖sc − f ‖∞ = o(1), c →∞.

Proof: Let χ be the characteristic function of [−π, π ]n , which is one for
an argument inside that cube and zero for all other arguments. Thus, since f
is square-integrable and since the Fourier transform is an isometry on square-
integrable functions (cf. the Appendix), the approximation error is the difference

(4.28) sc(x)− f (x) = 1

(2π )n

∫
Rn

∑
k∈Zn

f̂ (t + 2πk)
(

L̂c(t)− χ (t)
)

eixt dt.

It follows from (4.28) that |sc(x)− f (x)| is at most a constant multiple of∫
Tn

| f̂ (t)|
∑
k∈Zn

|L̂c(t + 2πk)− χ (t + 2πk)| dt

which is the same as∫
Tn

| f̂ (t)|
(

1− L̂c(t)+
∑

k∈Zn\{0}
L̂c(t + 2πk)

)
dt

= 2
∫

Tn

| f̂ (t)| (1− L̂c(t)
)

dt,

because of the form of the Lagrange function stipulated in Theorem 4.3. The
same theorem and the lack of sign change of L̂c (coming from the negativity
of the multiquadric Fourier transform) gives the two uniform bounds

0 ≤ 1− L̂c(t) ≤ 1.

The following proposition will evidently finish our proof of Theorem 4.19
because the problem now boils down to proving that the Lagrange function’s
Fourier transform is, in the limit for c → ∞, pointwise almost everywhere a
certain characteristic function.

Proposition 4.20. Let x ∈ R
n. Then lim

c→∞ L̂c(x) = χ (x), unless ‖x‖∞ = π .

Proof: Let x /∈ T
n . There exists a k0 ∈ Z

n\{0} such that ‖x + 2πk0‖ < ‖x‖,
and the exponential decay of φ̂c (the radial part of the Fourier transform of√
‖ · ‖2 + c2) provides the bounds

φ̂c(‖x‖) ≤ e−c‖x‖+c‖x+2πk0‖ φ̂c(‖x + 2πk0‖)(4.29)

≤ e−c‖x‖+c‖x+2πk0‖
∑
k∈Zn

φ̂c(‖x + 2πk‖),
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where we have now assumed without loss of generality that φ̂c > 0 (we may
change the sign of φ̂c without altering the cardinal function Lc in any way).
Thus, using again Theorem 4.3, we get

0 ≤ L̂c(x) ≤ e−c‖x‖+c‖x+2πk0‖ → 0 (c →∞),

as required.

Now let x ∈ (−π, π )n\{0} (the case x = 0 is trivial and our result is true
without any further computation). Thus, for all k0 ∈ Z

n\{0}, ‖x‖ < ‖x+2πk0‖,
and we have

L̂c(x) =
(

1+
∑

k∈Zn\{0}

φ̂c(‖x + 2πk‖)

φ̂c(‖x‖)

)−1

which means that it is sufficient for us to show

lim
c→∞

∑
k∈Zn\{0}

φ̂c(‖x + 2πk‖)

φ̂c(‖x‖)
= 0

for ‖x‖ < ‖x + 2πk0‖. Indeed, according to (4.29), every single entry in the
series in the last display satisfies the required limit behaviour. It thus suffices
using (4.29) term by term and summing to show that, denoting (1, 1, . . . , 1) ∈
R

n by 1,

(4.30)
∑

‖k‖≥2‖1‖
e−c‖x+2πk‖+c‖x‖ → 0 (c →∞).

However, as ‖k‖ ≥ 2‖1‖ implies

‖x + 2πk‖ − ‖x‖ ≥ 2π
(
‖k‖ − ‖1‖

)
≥ π‖k‖

for ‖x‖ ≤ π‖1‖, we get our upper bound of∑
‖k‖≥2‖1‖

e−πc‖k‖

for the left-hand side of (4.30) which goes to zero for c →∞ and it gives the
required result by direct computation.

It follows from the work in Chapter 4 that the Gaussian radial basis function
φ(r ) = e−c2r2

used for interpolation on a cardinal grid cannot provide any
nontrivial approximation order: it satisfies all the conditions (A1), (A2a), (A3a)
for µ = 0 and therefore there exist decaying cardinal functions as with all the
other radial basis functions we have studied in this book. However, according
to Theorem 4.4, there is no polynomial reproduction with either interpolation
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or quasi-interpolation using Gaussians. Therefore, as we have seen above, no
approximation orders can be obtained. This depends on the parameter c being
fixed in the definition of theφ as the spacing of the grid varies. There is, however,
a possibility of obtaining convergence orders of Gaussian interpolation on grids
if we let c = c(h) vary with h – so we get another result (of Beatson and Light,
1992) on convergence with respect to a parameter: It is the following result on
quasi-interpolation as in Section 4.1 that we state without proof.

Theorem 4.21. Let k be a natural number and ψ be a finite linear combi-
nation of multiinteger translates of the Gaussian radial basis function, whose
coefficients depend on c but the number of nonzero coefficients is fixed. If
c =

√
2π2/(k| log h|), then there is a ψ with the above properties such that

quasi-interpolation using (4.14) fulfils the error estimate for h → 0 and
f ∈ W k

∞(Rn)

‖ f − sh‖∞ ≤ Chk | log h|k/2+[(k−1)/2]‖ f ‖k,∞.

Here, [ · ] denotes the Gauss-bracket and W k
∞(Rn) is the Sobolev space of all

functions with bounded partial derivatives of total order at most k. Similarly, we
recall the definition of the nonhomogeneous Sobolev space denoted alternatively
by H k(Rn) or by W k

2 (Rn) as

(4.31)

{
f ∈ L2(Rn)

∣∣∣∣ ‖ f ‖2
k := 1

(2π )n

∫
Rn

(1+ ‖x‖)2k | f̂ (x)|2 dx <∞
}
.

Such spaces will be particularly relevant in the next chapter.



5

Radial Basis Functions on Scattered Data

While the setting of gridded data in the previous chapter was very handy to
characterise the best possible approximation orders that are obtained with in-
terpolation or quasi-interpolation using radial basis functions, the most natural
context for radial basis function approximation has always been and remains
scattered data interpolation, and this is what we shall be concerned with now.

Similarly to the beginning of the last chapter, we say that the space S = Sh

of approximants which depends on a positive h, here no longer an equal spacing
but a notion of distance between the data points, provides approximation order
hµ to the space of approximands in the L p-norm over the domain 
 (often

 = R

n), if

distL p(
)( f,S) := inf
g∈S

‖ f − g‖p,
 = O(hµ), h = max
x∈


min
ξ∈�

‖x − ξ‖,

for all f from the given space of approximands and no higher order may be
achieved (in fact more precisely we mean, as in the previous chapter: O cannot
be replaced by o in the above).

One further remark we make at the onset of this chapter, namely that in the
alternative case of quasi-interpolation, it is hard to compute the approximants
on scattered data and therefore it is desirable to choose interpolants instead of
quasi-interpolation, although we do give a little result on quasi-interpolation on
scattered data here as well. In fact, for applications in practice one sometimes
maps scattered data to grids by a local interpolation procedure (e.g. one of those
from Chapter 3), and then uses quasi-interpolation with radial basis functions
on the gridded data.

We begin by extending the fundamental results from Chapter 2, some of which
were quite simple and of an introductory character, to the more general setting
introduced by Micchelli (1986). They are related to the unique solvability of our
by-now well-known radial basis function interpolation problem. The concepts

99
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we shall use here are, however, essentially the same as before, namely complete
monotonicity, the Bernstein representation theorem, etc. They are all familiar
from the second chapter.

We shall then continue with a convergence analysis of the scattered data
interpolation problem. The concepts and tools are now altogether different
from those of the gridded data convergence analysis. Specifically, we have now
to consider boundaries and no periodicity prevails that admits the substantial
use of Fourier transform techniques. Instead, certain variational properties of
the radial basis functions and reproducing kernel Hilbert space theory will be
applied. These concepts are the basis of the seminal contribution of Duchon
(1976, 1978) and later Madych and Nelson to the convergence analysis of thin-
plate splines and other radial basis functions. Though unfortunately, as we shall
see, not quite the same, remarkable convergence orders as in the gridded case
will be obtained in the theorems about scattered centres – with the exception of
some special cases when nonstationary approximation is applied. The stationary
convergence orders established in the standard theorems are typically much
smaller than the orders obtainable in gridded data approximation. This is closely
related to the fact that we shall prove convergence results with methods that
depend on the finite domain where the interpolation takes place and which
involve the boundaries of those domains, deterioration of the convergence speed
on domain boundaries being a frequent phenomenon, even in simple cases like
univariate splines, unless additional information (such as derivative information
from the approximand f ) at the boundary is introduced.

5.1 Nonsingularity of interpolation matrices

As far as the general nonsingularity results are concerned, there is the work
by Micchelli which had a strong impact on the research into radial basis func-
tions; it is the basis and raison d’être of much of the later work we present
here.

Precisely, we recall that the unique solvability could be deduced immediately
whenever the radial basis function φ was such that φ(

√
t) is completely mono-

tonic but not constant, since then the interpolation matrix A = {φ(‖ξ−ζ‖)}ξ,ζ∈�
is positive definite if the � is an arbitrary finite subset of distinct points
of R

n . Furthermore, under certain small extra requirements, we observed it
to be sufficient if the first derivative − d

dt φ(
√

t) is completely monotonic
(Theorem 2.2). That this is in fact a weaker requirement follows from the
observation that if φ(

√
t) is completely monotonic, then all its derivatives are,

subject to a suitable sign change in the original function. Thus we may consider
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φ such that− d
dt φ(

√
t) is completely monotonic, or, so as to weaken the require-

ment further, by demanding that, for some k, (−1)k dk

dtk φ(
√

t) be completely
monotonic. If that is the case, positive definiteness of the interpolation matrix
can no longer be expected, as we have already seen even in the case when
k = 1, and it is, indeed, no longer the correct concept. Instead, we introduce
the following new notion of conditional positive definiteness. It has to do with
positive definiteness on a subspace of vectors. We recall that P

k
n denotes the

polynomial space of all polynomials of total degree at most k in n unknowns.

Definition 5.1. A function F : R
n → R is conditionally positive definite (cpd)

of order k (on R
n but we do not always mention the dimension n) if for all finite

subsets � from R
n, the quadratic form

(5.1)
∑
ξ∈�

∑
ζ∈�

λξ λζ F(ξ − ζ )

is nonnegative for all λ = {λξ }ξ∈� which satisfy
∑

ξ∈� λξ q(ξ ) = 0 for all
q ∈ P

k−1
n . F is strictly conditionally positive definite of order k if the quadratic

form (5.1) is positive for all nonzero vectors λ.

The most important observation we make now is that we can always interpolate
uniquely with strictly conditionally positive definite functions if we add poly-
nomials to the interpolant and if the only polynomial that vanishes on our set
of data sites is zero: for later use, we call a subset � of R

n unisolvent for P
k−1
n

if p(ξ ) for all ξ ∈ � implies p = 0. The interpolant has the form

(5.2)


s(x) =

∑
ξ∈�

λξ F(x − ξ )+ p(x),

0 =
∑
ξ∈�

λξ ξ
α, |α| < k.

We continue to use our standard multiindex notation here.
In (5.2), p ∈ P

k−1
n , and the interpolation requirements for (5.2) are s(ξ ) = fξ ,

ξ ∈ �, as usual. The side-conditions in (5.2) are used to take up the extra degrees
of freedom that are introduced through the use of the polynomial p.

We show now that we can interpolate uniquely with a strictly conditionally
positive definite F . Indeed, if a nonzero vector λ satisfies the above side-
conditions, then we can multiply the vector which has components s(ζ ), ζ ∈ �,
by λ on the right, and get a quadratic form with kernel F(ζ − ξ ), recalling that∑

ζ∈� p(ζ )λζ = 0. This form has to be positive because of the definition of strict
conditional positive definiteness. Therefore s(ζ ) cannot be identically zero, that
is, for all ζ ∈ �, unless all its coefficients vanish. Hence the interpolant exists
uniquely. The uniqueness within the space of polynomials is assured by the
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linear independence of polynomials of different degrees and by the unisolvency
of � with respect to P

k−1
n .

Of course, for our applications, F(x) = φ(‖x‖) is used, and now the next
result is relevant. It is due to Micchelli (1986) and generalises Theorem 2.2. Its
proof is highly instructive, much as the proof of Theorem 2.2 was, because it
shows how the side-conditions and the complete monotonicity of the derivative
of the radial basis function act in tandem to provide the nonsingularity of the
interpolation problem. Again, the proof hinges on the Bernstein representation
theorem, now applied to the derivative instead of the radial basis function itself.
Incidentally, the converse of the following result is also true (Guo, Hu and Sun,
1993), so it is in fact a characterisation, but this is not required for our work
here except in one later instance in the sixth chapter, and therefore we shall not
give a proof of that full characterisation.

Theorem 5.1. Let φ be continuous and such that

(5.3) (−1)k dk

dtk
φ(
√

t), t > 0,

is completely monotonic but not constant. Then φ(‖ · ‖) is strictly conditionally
positive definite of order k on all R

n.

Proof: The proof proceeds in much the same vein as the proofs of Theorem 2.2
and the beginning of the proof of Theorem 4.10. We call η: R>0 → R the
function defined through (5.3). Therefore, by the Bernstein representation
theorem,

(5.4) η(t) =
∫ ∞

0
e−βt dγ (β), t > 0.

We replace the infinite integral on the right-hand side of (5.4) by an integral
from δ > 0 to +∞

ηδ(t) =
∫ ∞

δ

e−βt dγ (β), t > 0.

Then, for any ε > 0, we may integrate k times on both sides between ε and
t = r2; whence we get for suitable polynomials pε,δ ∈ P

k−1
1 and qε,δ ∈ P

k−1
1 ,

and by multiplication by (−1)k ,

φε,δ(r ) := pε,δ(r
2)+

∫ ∞

δ

{e−βr2 − qε,δ(βr2)} dγ (β)

βk
,

where δ > 0 is still arbitrary and where we have restricted integration over dγ
from δ > 0 to +∞ in order to avoid the present difficulties of integrating β−k

near 0. In fact, the coefficients of the polynomials are immaterial (only their
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degree is relevant to the proof in the sequel) but it turns out that for example qε,δ

is essentially a Taylor polynomial of degree k − 1 to the exponential function
e−βt2

. Now let λ ∈ R
� satisfy the moment conditions of (5.2). Thus, we have

the following expression for a quadratic form:∑
ξ∈�

λξ
∑
ζ∈�

λζ φε,δ(‖ξ − ζ‖) =
∑
ξ∈�

λξ
∑
ζ∈�

λζ pε,δ (‖ξ − ζ‖2)

+
∫ ∞

δ

∑
ξ∈�

λξ
∑
ζ∈�

λζ {e−β‖ξ−ζ‖2 − qε,δ(β‖ξ − ζ‖2)} dγ (β)

βk
.

We may exchange summation and integration because all sums are finite. Be-
cause of the quadratic form above with each sum over {λξ }ξ∈� annihilating
polynomials of degree less than k, we get annihilation of both polynomials
over the double sum, that is∑
ξ∈�

∑
ζ∈�

λξ λζ pε,δ(‖ξ − ζ‖2) =
∑
ξ∈�

∑
ζ∈�

λξ λζ pε,δ(‖ξ‖2 − 2ξ · ζ + ‖ζ‖2)

which is zero, and for qε,δ the same, since∑
ξ∈�

∑
ζ∈�

λξ λζ‖ξ − ζ‖2 j =
∑
ξ∈�

∑
ζ∈�

λξ λζ (‖ξ‖2 − 2ξ · ζ + ‖ζ‖2) j

which vanishes for all 0 ≤ j < k. Therefore we get∑
ξ∈�

∑
ζ∈�

λξ λζ φε,δ(‖ξ − ζ‖) =
∫ ∞

δ

( ∑
ξ∈�

∑
ζ∈�

λξλζ e−β‖ξ−ζ‖
2

)
dγ (β)

βk
.

We note that the double sum (the quadratic form) in the integrand in parentheses
is O(βk) at zero because of our side-conditions in (5.2) and by expanding the
exponential in a Taylor series about zero. Hence the integral is well-defined
even when δ → 0, as the first k + 1 terms of the Maclaurin expansion of the
exponential in the integrand are annihilated. Thus we may let δ → 0 and, the
right-hand side being already independent of ε, we get for λ �= 0 and by taking
limits for ε → 0,∑

ξ∈�

∑
ζ∈�

λξ λζ φ(‖ξ − ζ‖) =
∫ ∞

0

∑
ξ∈�

∑
ζ∈�

λξ λζ e−β‖ξ−ζ‖
2 dγ (β)

βk
> 0,

as required, where we again use the positive definiteness of the Gaussian
kernel and the fact that dγ �≡ 0 due to the assumptions of the theorem.

As examples we note in particular that any radial basis function of the form (4.4)
satisfies the assumptions of the theorem. The k that appears in the statement
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of our theorem above is precisely the same k as in (4.4). We also note that
we may compose any function of the form (4.4) with

√
r2 + c2 and still get a

function that meets the assumptions of the theorem. A special case of that is
the multiquadric function, and, if we start with the thin-plate spline and make
this composition, the so-called shifted logarithm function log(r2 + c2) or the
shifted thin-plate spline (r2 + c2) log(r2 + c2) results.

In retrospect we note that we have used in Theorem 2.2 the simple fact
that−φ there was strictly conditionally positive of order one in all R

n and thus
all but one of the eigenvalues of the interpolation matrix are positive. (The matrix
is positive definite on a subspace of R

� of codimension one.) Moreover, here
we have that all but k eigenvalues of the matrix with the entries φ(‖ξ − ζ‖) are
positive and the associated quadratic form is positive definite over the subspace
of vectors that satisfy the side-conditions of (5.2). The subspace is usually a
space of small codimension. Naturally, we may no longer apply arguments such
as in Theorem 2.2 when its codimension is larger than one, because we cannot
control the sign of more than one eigenvalue (through the properties of the
trace) that is off the set of guaranteed positive ones.

Quite in contrast with the previous chapter, there is not much more to be
done for the well-posedness of the interpolation problem, essentially because
all sums are finite here, but the work for establishing convergence orders is
more involved. Except for the lack of periodicity of the data, the main problem
is the presence of boundaries in the setting of finitely many, scattered data. It is
much harder, for example, to argue through properties of Lagrange functions
here, because a new, different Lagrange function must be found for every ζ ∈ �,
and shifts of just one Lagrange function cannot be used. This would undoubt-
edly be prohibitively expensive in practice and even difficult to handle in the
theory, so this is not the way to work in this case. Instead, we always consider
interpolants of the form (5.2) and not Lagrange functions. Moreover, no poly-
nomials except those added directly in (5.2) can be reproduced by expressions
that are finite linear combinations of shifts of multiquadrics say. Indeed, the
polynomial recovery of Chapter 4 could never have come through finite sums
as the following simple demonstration shows. A finite sum

g(x) =
∑
ξ∈�

λξ ‖x − ξ‖, x ∈ R
n,

always has derivative discontinuities at all {ξ}ξ∈�, even in one dimension, unless
the coefficients vanish identically. However, we know from Chapter 4 that

1 ≡
∑
i∈Zn

∑
k∈Zn

ck ‖x − k − i‖, x ∈ R
n,
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for the Lagrange coefficients {ck}k∈Zn . The above expression is however ana-
lytic, and thus the derivative discontinuities must be cancelled through the van-
ishing sum over the ck and other moment conditions on the ck . That nonetheless
the reproduction of constants and other polynomials is possible is of course a
consequence of the infinite sums involved. They allow some of the aforemen-
tioned moment conditions on the coefficients to be true (their sum is zero etc.)
without forcing them to vanish identically.

5.2 Convergence analysis

The exposition we make here is based on the early work by Duchon (1978) that
was extended later on by Madych and Nelson (1990b and later references) and
is fundamentally based on the work by Golomb and Weinberger (1959). Also
Light and Wayne (1998), Powell (1994b), and Wu and Schaback (1993) made
important contributions to the advance of this work. As to other articles on this
question and on improving the rates of convergence, see also the Bibliography
and the various references and remarks in the commentary on that.

Although it is not absolutely necessary, the exposition is much shorter and
contains all of the salient ideas if we restrict attention to the homogeneous thin-
plate-spline-type radial basis functions of the form (4.4). Therefore we shall
yield to the temptation to simplify in this fashion. The usefulness of the specific
class defined through (4.4) will also, incidentally, show in our penultimate
chapter, about wavelets, where wavelets from such radial basis functions are
relatively easy to find, especially when compared with the more difficult ones
from spaces spanned by multiquadrics. We will, however, give and comment
on an additional theorem at the end of the current description of the case (4.4)
to explain the convergence behaviour e.g. of the multiquadric functions, so
as not to omit the nonhomogeneous radial basis functions from this chapter
completely. That part of the work is largely due to Madych and Nelson who
were the first to realise that Duchon’s approach to the question of convergence
orders with homogeneous kernels can be extended to nonhomogeneous ones
like multiquadrics and the so-called shifted thin-plate splines etc.

5.2.1 Variational theory of radial basis functions

The whole analysis is based on a so-called variational theory which involves
interpolants minimising certain semi-norms, re-interpreting the interpolants as
solutions of a minimisation problem, and which we will describe now.

To this end, we let X ⊂ C(Rn) be a linear space of continuous functions and
take ( · , · )∗: X×X → R to be a semi-inner product which may therefore have a
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nontrivial, finite-dimensional kernel but otherwise satisfies the usual conditions
on inner products, i.e. it is a bilinear and Hermitian form. We call the kernel
of this map K ⊂ X and its finite dimension �. In all our applications, this K
will be a polynomial space, namely the null-space of a differential operator
of small degree, such as the Laplacian in n dimensions (thus K = P

1
n) or the

bi-harmonic operator. As we shall see, for our functions of the form (4.4), it will
always be K = P

k−1
n . Sometimes, one also has to deal with pseudo-differential

operators, namely when nonhomogeneous radial basis functions are used like
multiquadrics, but we are not considering such radial basis functions at present
for the reasons stated above and, at any rate, the kernels in those cases still have
a simple form and consist of polynomials. Together with the semi-inner product
there is naturally a semi-norm whose properties agree with the properties of a
norm except for the finite-dimensional space on which the norm may vanish
although its argument does not.

For illustration and later use at several points, we now give an example of
such a semi-normed space: to wit, for any integer k > 1

2 n, we let our space of
continuous functions be X = D−k L2(Rn). To explain this further, we recall
the definition of

D−k L2(Rn)

as the linear function space of all f : R
n → R, all of whose kth total degree

distributional partial derivatives are in L2(Rn). That X ⊂ C(Rn) follows from
the Sobolev embedding theorem which is, as quoted in the book by Rudin
(1991), as follows.

Sobolev embedding theorem. Let n > 0, p ≥ 0, k be integers that satisfy
the inequality

k > p + n

2
.

If f : 
̃→ R is a function in an open set 
̃ ⊂ R
n whose generalised derivatives

of total order up to and including k are locally square-integrable, then there is
an f0 ∈ C p(
̃) such that f and f0 agree almost everywhere on the open set
and may therefore be identified as continuous functions.

The Sobolev embedding theorem applied for p = 0 ensures X ⊂ C(Rn) so long
as indeed k > n

2 and this will be an important condition also for the analysis
of the reproducing kernel. (Strictly speaking, of course, we are identifying X
with another, isomorphic space of continuous functions due to the Sobolev
embedding theorem.)
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In analogy to (4.31) we can also define D−k L2(Rn) as the space of all
f : R

n → R such that ∫
Rn

‖x‖2k | f̂ (x)|2dx <∞.

For this, even nonintegral k are admissible.
The semi-inner product that we use in our example as stated above is

( f, g)∗ :=
∫

Rn

∑
|α|=k
α∈Z

n
+

k!

α!
Dα f (x) Dα g(x) dx,

so that K = P
k−1
n by design. Here and subsequently, factorials of vectors α are

defined for any multiindex α = (α1, α2, . . . , αn)T with nonnegative integral
entries, and |α| = α1 + α2 + · · · + αn , by

α! := α1!α2! · · ·αn!

The notation D for partial derivatives has already been introduced. The coeffi-
cients in the above come from the identity

‖x‖2k =
∑
|α|=k

k!

α!
x2α.

We also associate the semi-norm ‖·‖∗ with the semi-inner product in a canonical
way, namely ‖ · ‖∗ := √

( · , · )∗. We shall use this semi-norm and semi-inner
product more often in this chapter and especially in Chapter 7.

Now, leaving our example for the moment and returning to the general set-
ting, we let 
 ⊂ R

n be a compact domain of R
n with a Lipschitz-continuous

boundary and nonempty interior. We also take a finite � ⊂ 
 which contains
a K -unisolvent point-set that therefore has the property

p ∈ K and p|� = 0 =⇒ p = 0.

Finally we assume that |g(x)| = O (‖g‖∗) for all g ∈ X with g(ξ ) = 0, ξ ∈ �̂,
where �̂ ⊂ � is a fixed set that also contains a K -unisolvent subset, arbitrary
for the time being. This is a boundedness condition that will lead us later to
the existence of a so-called reproducing kernel, a most useful concept for our
work. This reproducing kernel we shall study in detail and give examples which
explain the connection with our radial basis functions in the next subsection.

We observe that, by these hypotheses, the space X possesses an inner product
which is an extension of our semi-inner product and which is now equipped
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with only a trivial kernel, that is the inner product is the sum

( f, g)X = ( f, g)∗ +
∑
ξ∈�̂

f (ξ ) g(ξ ).

Indeed, if f or g is in the kernel of ( · , · )∗ and the first summand in the
above therefore vanishes, the remaining sum vanishes if and only if f or g is
identically zero. This construction works for any subset �̂ ⊂ � that contains a
K -unisolvent subset. From now on, however, we take �̂ to be a K -unisolvent
subset of smallest size, that is, whose cardinality agrees with the dimension of
K and that is unisolvent, i.e. the zero polynomial is the only polynomial which
is identically zero on �̂.

In this fashion we can begin from a semi-inner product and semi-norm, and
modify the semi-inner product so that it becomes a genuine inner product.
Indeed, with this modification, the space X is in fact a Hilbert space with the
induced norm. Conversely, we may consider the Hilbert space generated by a
factorisation X/K , where the norm of any equivalence class f +K , say, f ∈ X ,
is defined by f ’s semi-norm.

We return, however, to our previous construction; the next step is that we
assume from now on that the linear function space X is complete with respect
to the new norm ‖ · ‖X induced by the inner product ( · , · )X in the canonical
way: we let ‖ · ‖X =

√
( · , · )X . With respect to this inner product, there exists

a so-called reproducing kernel for the Hilbert space X which we have just
defined with respect to ( · , · )X , as well as for a certain subspace X̂ which we
will consider below, with respect to the inner product. The linear subspace X̂ is
chosen such that the inner product and the inner product agree on that subspace.
In fact (X̂ , ( · , · )X ) is a Hilbert space in its own right.

5.2.2 The reproducing kernel (semi-)Hilbert space

There is a close connection between the radial basis functions we study in this
book and the notion of reproducing kernels. All of the radial basis functions
we have mentioned give rise to such reproducing kernels with respect to some
Hilbert space and/or semi-Hilbert spaces, and, more generally, the conditionally
positive definite functions which occurred in the previous section give rise to
reproducing kernels and Hilbert spaces and/or semi-Hilbert spaces. A semi-
Hilbert space can also be made by considering a Hilbert space which is addi-
tionally equipped with a semi-norm and semi-inner product as defined above,
where it is usual to require that the semi-norm of any element of the space is
bounded above by a fixed constant multiple of its norm.

We define reproducing kernels as follows.
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Definition 5.2. Let X be a Hilbert space or a semi-Hilbert space of real-
valued functions on R

n, equipped with an inner product or a semi-inner product
( ·, · ), respectively. A reproducing kernel for (X, ( ·, · )) is a function k( · , · ):
R

n ×R
n → R such that for any element f ∈ X we have the pointwise equality

with respect to x

( f,k( · , x)) = f (x), x ∈ R
n.

In particular, k( · , x) ∈ X for all x ∈ R
n.

Standard properties of the reproducing kernel are that it is Hermitian and non-
negative for all arguments from X (see, for instance, Cheney and Light, 1999).

There are well-known necessary and sufficient conditions known for the
linear space X to be a reproducing kernel (semi-)Hilbert space, i.e. for the
existence of such a reproducing kernel k within the Hilbert space setting. A
classical result (Saitoh, 1988, or Yosida, 1968, for instance) states that a repro-
ducing kernel exists if and only if the point evaluation operator is a bounded
operator on the (semi-)Hilbert space. If we are in a Hilbert space setting, the
reproducing kernel is, incidentally, unique. In our case, a reproducing kernel
exists for the subspace X̂ of all functions g that vanish on the K -unisolvent
subset �̂ because the condition |g(x)| = O(‖g‖X ) = O(‖g‖∗) from the pre-
vious subsection gives boundedness, i.e. continuity, for the linear operator of
point evaluation in that subspace X̂ .

In our example above, the boundedness of the point evaluation functional
amounts to the uniform boundedness of any function g that is in X =
D−k L2(Rn) and vanishes on �̂, by a fixed g-independent multiple of its semi-
norm ‖g‖∗. That this is so is a consequence of the two following observations,
but there are some extra conditions on the domain 
.

The first one is related to the Sobolev inequality. We have taken this particular
formulation from the standard reference (Brenner and Scott, 1994, p. 32) and
restricted it again to the case that interests us. We also recall, and shall use often
from now on, the special notation for the semi-norm

| f |2k,
 :=
∫



∑
|α|=k
α∈Z

n
+

k!

α!
|Dα f (x)|2 dx

as is usual elsewhere in the – especially finite element – literature, and, as a
further notational simplification, | f |k := | f |k,Rn . Accordingly, we shall some-
times use the superspace D−k L2(
) of X = D−k L2(Rn) that contains all f
with finite semi-norm when restricted to the domain 
. If f is only defined on

, we may always extend it by zero to all of R

n .
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Sobolev inequality. Let 
 be a domain in n-dimensional Euclidean space
with Lipschitz-continuous boundary and let k > n/2 be an integer. Then there
is a constant C such that for any f ∈ D−k L2(Rn) the pointwise inequality

(5.5) | f (x)| ≤ C
k∑

j=0

| f | j,


holds on the domain 
, where C only depends on the domain, the dimension
of the underlying real space and on k.

The second one is the Bramble–Hilbert lemma (Bramble and Hilbert, 1971).
We still assume that 
 is a domain in R

n and that it has a Lipschitz-continuous
boundary ∂
. Moreover, from now on it should additionally satisfy an interior
cone condition which means that there exists a vector ξ (x) ∈ R

n of unit length
for each x ∈ 
 such that for a fixed positive r̂ and ϑ > 0,


 ⊃ {x + λη | η ∈ R
n, ‖η‖ = r̂ , η · ξ (x) ≥ cosϑ, 0 ≤ λ ≤ 1}.

Note that the radius and angle are fixed but arbitrary otherwise, i.e. they may
depend on the domain. In fact, Bezhaev and Vasilenko (2001) state that the cone
condition is superfluous if we require a Lipschitz-continuous boundary of the
domain. We recall the definition of H k from the end of the fourth chapter.

Bramble–Hilbert lemma. Let 
 ⊂ R
n be a domain that satisfies an interior

cone condition and is contained in a ball which has diameterρ. Let F be a linear
functional on the Sobolev space H k(
) such that F(q) = 0 for all q ∈ P

k−1
n .

Suppose that the inequality

|F(u)| ≤ C1

( k∑
j=0

ρ j−n/2|u| j,


)
holds for u with finite semi-norm |u| j,
, j ≤ k, with a positive constant C1 that
is independent of u and ρ. Then it is true that

|F(u)| ≤ C2

(
ρk−n/2|u|k,


)
,

where C2 does not depend on u or ρ.

For our application of the Bramble–Hilbert lemma we let k > n
2 be a positive

integer and the operator F map a continuous function f to the value of the
interpolation error by polynomial interpolation on �̂ with polynomials of total
degree less than k. Thus, it is zero if f is already such a polynomial, as a
result of �̂ being unisolvent. Therefore the first assumption of the Bramble–
Hilbert lemma is satisfied. The second assumption is a consequence of the
Sobolev inequality, where it is also important that f vanishes on �̂, since the
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interpolating polynomial for f is zero if f ∈ X̂ , as is the case for our setting.
Therefore, the Bramble–Hilbert lemma implies

| f (x)| ≤ C | f |k,
 ≤ C‖ f ‖∗,
as required, the constant C being independent of f . To this end, we also recall
that the polynomial interpolant of degree k − 1 itself vanishes when differenti-
ated k times, which is why the polynomial parts of the interpolation error expres-
sion disappear in both the middle and the right-hand side of the above inequality.

Now that we know about the existence of a reproducing kernel in our partic-
ular example (as a special case of the general radial basis function setting), we
wish to identify it explicitly in the sequel. Once more, we begin here with the
general case and, becoming progressively more specific, restrict to our examples
for the purpose of illustrating the general case later on.

The reproducing kernel has an especially simple form in our setting. In order
to derive this form, we may let, because of the condition of unisolvency of �̂,
the functions pξ , ξ ∈ �̂, be polynomial Lagrange functions, i.e. such that pξ

span K and satisfy

pξ (ζ ) = δξζ , ξ, ζ ∈ �̂.

Since we are looking for a reproducing kernel on a subspace, our reproducing
kernel k has a particular, K -dependent form. Specifically, for our application,
we can express the property of the reproducing kernel by the identity

(5.6) f (x) =
(

f, φ( · − x)−
∑
ξ∈�̂

pξ (x)φ( · − ξ )

)
∗
, x ∈ R

n, f ∈ X̂ .

We have therefore the reproducing kernel of the form

k(y, x) = φ(y − x)−
∑
ξ∈�̂

pξ (x)φ(y − ξ )

and φ is a function R
n → R which is, notably, not necessarily itself in X . This

is why φ does not appear itself on the right-hand side of the expression above
but in the shape of a certain linear combination involving the pξ . This particular
shape also includes the property that it vanishes on �̂. We will come to this in a
moment. In the case that the function f does not vanish on �̂, then we subtract
from it the finite sum of multivariate polynomials∑

ξ∈�̂
f (ξ )pξ ,

so that the difference does, and henceforth use instead the difference as follows:

(5.7) f −
∑
ξ∈�̂

f (ξ )pξ .
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The same principle was applied to the shift of φ above to guarantee that the
kernel k vanishes on �̂. If the null-space K of the semi-inner product and of the
semi-norm is trivial, no such operation is required – the sums in the preceding
two displays remain empty for K = {0}. The fact that the reproducing kernel
k(y, x) is a function of the difference of two arguments (that is, k(y, x) =
k̃(y−x)) is a simple consequence of the shift-invariance of the space X (see the
interesting paper by Schaback, 1997, on these issues), because any invariance
properties such as shift- or rotational invariance that hold for the space X are
immediately carried over to properties of the reproducing kernel k through
Definition 5.2. The proofs of these facts are easy and we omit them because we
do not need them any further in this text.

Most importantly, however, we require that the right-hand side expression of
the inner product in (5.6) above is in X . We make the hypothesis that φ is such
that, whenever we form a linear combination of shifts of φ, whose coefficients
are such that they give zero when summed against any element of K , then that
linear combination must be in X :∑

ξ∈�
λξφ( · − ξ ) ∈ X if

∑
ξ∈�

λξq(ξ ) = 0∀q∈K .

We will show later that for the X which we have given as an example above,
this hypothesis is fulfilled.

For the semi-inner product in the above display (5.6), the sum over the
coefficients of the linear combination above against any p ∈ K is indeed zero:

p(x)−
∑
ξ∈�̂

pξ (x)p(ξ ) = p(x)− p(x) = 0,

because of the Lagrange conditions on the basis elements pξ , ξ ∈ �. Therefore,
assuming our above hypothesis on φ being in place for the rest of this section
now, the right-hand side in the inner product in the display (5.6) is in the re-
quired space X . Moreover, since f (x) vanishes for x = ζ ∈ �̂ on the left-hand
side in the above identity (5.6), so must the expression

φ( · − ζ )−
∑
ξ∈�̂

pξ (ζ )φ( · − ξ )

on the right-hand side, which it does because pξ (ζ ) = δξζ , and therefore we
have verified that it is, in particular, in X̂ .

We may circumvent the above hypothesis on φ which may appear strange
at this point, because, as we shall see, it is fulfilled for all our radial basis
functions (4.4). More specifically, given a fixed basis function φ, we shall
construct a (semi-)Hilbert space X whose reproducing kernel has the required
form (5.6).
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This can be done as follows. In the case of all the radial basis functionsφ(‖·‖)
we use in this chapter, the constructed X is the same as the above X we started
with as we shall see shortly in this section. We follow especially the analysis
of Schaback (1999).

To begin with, we define now a seemingly new semi-inner product for any
two functions f : 
→ R and g: 
→ R that are finite linear combinations of
shifts of a given general, continuous function φ: R

n → R,

f =
∑
ξ∈�1

λξφ( · − ξ )

and

g =
∑
ξ∈�2

µξφ(· − ξ ),

where�1 and�2 are arbitrary finite subsets of
; those sets need not (but usually
do) agree. The functionφ is required to be continuous and conditionally positive
definite of order k, so that we let K = P

k−1
n . Therefore we have an additional

condition on the coefficients in order to define the semi-inner product which
follows, that is we require that for the given finite-dimensional linear space K ,
the coefficient sequences must satisfy the conditions

∑
ξ∈�1

λξ p(ξ ) = 0 and∑
ξ∈�2

µξ p(ξ ) = 0 for all p ∈ K . Moreover, we let L K (
) denote the linear
space of all functionals of the form

λ: h '→
∑
ξ∈�1

λξh(ξ ),

with the aforementioned property of the coefficients and with any finite set �1.
Its Hilbert space completion will beLK (
). So λ is a linear functional on C(
).
Now define the semi-inner product for the above two functions,

(5.8) ( f, g)∗ := (λ,µ)∗ :=
∑
ξ∈�1

∑
ζ∈�2

λξµζφ(ξ − ζ ),

where we identify functions f and g with linear functionals λ and µ in an
obvious way defined through their coefficients. So functionals λ and functions
f are related via λ '→ f = λxφ(x − ·), where the superscript x refers to the
variable with respect to which we evaluate the functional. Note that we can
always come back from one such functional to a function in x by applying it in
this way to φ(x − ·).

As a consequence of the conditional positive definiteness of φ, this semi-
inner product is positive semi-definite as required. Further, let �̂ still contain a
K -unisolvent set and define the modified point evaluation functional δ(x) by

δ(x) f = f (x)−
∑
ξ∈�̂

pξ (x) f (ξ ).
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Here, pξ are Lagrange polynomials. Then the modified point evaluation func-
tional is in L K (
) for every x ∈ 
, which the ordinary Dirac function δ(· − x),
i.e. the usual function evaluation at a point x , is not, as it does not annihilate the
polynomials in the space K unless K = (0). Now letX be the completion of the
range of

(L K (
), δ(x))∗, x ∈ 
,

that is in short, but very useful, notation the space generated by all functions
from L K (
) with the semi-inner product taken with δ(x), always modulo K .
This is a Hilbert space of functions defined for every x ∈ 
.

In particular, for all µ and λ from LK (
), we get µ((λ, δ(x))∗) = (λ,µ)∗,
due to our definition of the inner product in (5.8). Here it is also relevant that
the polynomials which appear in the definition of the modified point evaluation
functional are annihilated by the semi-inner product

(δ(x), λ)∗ = (δ(x), f )∗ = δ(x) f = f (x)−
∑
ξ∈�̂

pξ (x) f (ξ ),

to which then µ has to be applied in the usual way. Thereby, a semi-inner
product and a semi-norm are also defined on the aforementioned range X . All
functions in X vanish on our K -unisolvent point set �̂. To form X , take the
direct sum of K and X . That is the so-called ‘native space’. Further, let f ∈ X .
Thus there exists an f -dependent functional λ such that

f (x) = (λ, δ(x))∗ = ( f, (δ( · ), δ(x))∗)∗,

the second equality in this display being a consequence of the definition of
( f, g)∗ above. That display provides the reproducing kernel property. Indeed, it
is exactly the same identity as before, because, according to our initial definition
of the bilinear ( · , · )∗ as a semi-inner product on L K (
),

(δ( · ), δ(x))∗ = δt
( · )δ

z
(x)φ(t − z),

where the superscript fixes the argument with respect to which the linear func-
tional is applied. The above is the same as

δt
( · )

[
φ(t − x)−

∑
ξ∈�

pξ (x)φ(t − ξ )

]
= φ(· − x)−

∑
ξ∈�

pξ (x)φ(· − ξ )

−
∑
ζ∈�

pζ ( · )φ(ζ − x)+
∑
ζ∈�

pζ ( · )
∑
ξ∈�

pξ (x)φ(ξ − ζ ).
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When inserted into the semi-inner product, the last two terms from the display
disappear, since pζ ( · ) ∈ K and any such arguments in the kernel are annihi-
lated. Therefore the two expressions for the reproducing kernel are the same.

5.2.3 Minimum norm interpolants

We claim that this reproducing kernel, which is expressed as the function φ

minus a certain linear combination of its translates, gives rise to the ‘minimum
norm interpolant’ for any given data fξ , ξ ∈ �. It is no accident that the function
which appears in this kernel is also denoted by φ, similarly to our radial basis
functions, because they will form a special case of such kernels. In fact, we
shall also refer – simplifying, although somewhat confusingly, but the meaning
will be clear from the context – to φ itself as the reproducing kernel.

Proposition 5.2. Suppose a finite set� of distinct centres and the fξ are given.
Let the assumptions about φ and 
 of the previous subsection hold and K be
the �-dimensional kernel of the above semi-inner product. Then, if � contains
a unisolvent subset with respect to the kernel K of the semi-norm, there is a
unique s of the form

s(x) =
∑
ξ∈�

λξ φ(x − ξ )+ p(x), x ∈ R
n,

where p ∈ K and
∑

ξ∈� λξ q(ξ ) = 0 for all q ∈ K , such that it is the minimum
norm interpolant giving s(ξ ) = fξ , ξ ∈ �, and ‖s‖∗ ≤ ‖g‖∗ for any other such
g ∈ X which interpolates the prescribed data.

Proof: We show first that whenever s with the form in the statement of the
theorem and another g ∈ X both interpolate the prescribed data, then ‖s‖∗ ≤
‖g‖∗.

To this end, we first note that s belongs to X . This follows from our hypotheses
on φ in Subsection 5.2.2. Next, we consider the following semi-inner products,
recalling that g− s vanishes identically on � because both s and g interpolate:

‖g‖2
∗ − ‖s‖2

∗ = (g, g)∗ − (s, s)∗
= (g − s, g − s)∗ + 2(g − s, s)∗

= ‖g − s‖2
∗ + 2

(
g − s,

∑
ξ∈�

λξ φ(· − ξ )+ p

)
∗
.

Now using the side-conditions of the coefficients λξ of the interpolant, i.e.

(5.9)
∑
ξ∈�

λξq(ξ ) = 0 ∀q ∈ K ,
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together with the linearity of the semi-inner product, we get that the above is
the same as the following:

‖g − s‖2
∗ + 2

(
g − s,

∑
ξ∈�

λξ φ(· − ξ )+ p −
∑
ξ∈�

λξ
∑
ζ∈�̂

pζ (ξ )φ(· − ζ )

)
∗

= ‖g − s‖2
∗ + 2

∑
ξ∈�

λξ

(
g − s, φ(· − ξ )−

∑
ζ∈�̂

pζ (ξ )φ(· − ζ )

)
∗

+ 2(g − s, p)∗

= ‖g − s‖2
∗ + 2

∑
ξ∈�

λξ (g(ξ )− s(ξ )) = ‖g − s‖2
∗.

This follows from the interpolation conditions and is indeed nonnegative, as
required. Moreover, this is strictly positive unless g − s is in the kernel K . In
the latter case, however, g = s, because (g− s)|� = 0 and because � contains
a subset that is unisolvent with respect to K .

It remains to prove that the minimum norm interpolant exists and does in-
deed have the required form. This follows from the above proof of uniqueness,
because the space spanned by the translates of φ, and also K , are finite-
dimensional spaces. In fact we can also show that the finite square matrix
{φ(ζ−ξ )}ζ,ξ∈� is positive definite on the subspace of vectors λ ∈ R

� \{0}with
property (5.9):

∑
ζ∈�

λζ
∑
ξ∈�

λξ φ(ζ − ξ ) = (λ,λ)∗ =
∥∥∥∑
ζ∈�

λζ φ(· − ζ )
∥∥∥2

∗

≥ 0 (> 0 if λ = (λζ )ζ∈� �= 0).

Here we have used the above strict minimisation property, i.e. ‖g‖∗ > ‖s‖∗
unless g = s for all interpolating functions from X , which means that the
interpolant is unique.

5.2.4 The power functional and convergence estimates

The previous subsection provided an alternative view of radial basis function
interpolants, i.e. the so-called variational approach. Further, this development
allows us to supply error estimates by introducing the notion of a power function
which is well-known. This so-called power function will turn out to be closely
related to a functional to evaluate the pointwise error of the interpolation. The
error results which we shall obtain in Theorems 5.5 and 5.8 use the power
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function and the proposition below for their estimates. Additionally, the last
subsection of this chapter about the so-called uncertainty principle uses the
power function.

The power function is defined by the following semi-inner product of
reproducing kernels, where we maintain the notation ( · , · )∗ of the previous
subsections:

P(x) =
φ(· − x)−

∑
ξ∈�̂

pξ (x)φ(· − ξ ), φ(· − x)−
∑
ζ∈�̂

pζ (x)φ(· − ζ )


∗

,

x ∈ R
n,

where the set �̂ is still supposed to have � = dim K elements and moreover to be
unisolvent as demanded earlier, and where the Lagrange conditions pξ (ζ ) = δζξ

for all ζ, ξ ∈ �̂ are in place for a set of pξ ∈ K , ξ ∈ �̂.

Proposition 5.3. Let X,φ, the set of centres and the power function be as above
and in Subsection 5.2.1, s be the minimum norm interpolant of Proposition 5.2,
fξ = f (ξ ), ξ ∈ �, with an f from X. Then we have the pointwise error
estimate

(5.10) | f (x)− s(x)|2 ≤ P(x)( f, f )∗, x ∈ R
n.

The inequality remains true if f is replaced by f − s in both arguments of the
semi-inner product on the right-hand side, where we require f − s ∈ X instead
of f ∈ X.

Proof: We will see in this proof that P serves as nothing else, as alluded
to above, than a functional used for evaluating the pointwise error for our
interpolant.

For proving that, we wish to re-express f (x) − s(x) in terms of P and f .
Note first that f − s ∈ X̂ because of the interpolation conditions. Note also the
inequality

‖ f − s‖∗ ≤ ‖ f ‖∗

which is a simple application of a result from the proof of Proposition 5.2. That
is, we get this from setting g := f in that proof and deriving the
inequality

‖ f ‖2
∗ = ‖ f − s‖2

∗ + ‖s‖2
∗ ≥ ‖ f − s‖2

∗
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from ( f − s, s)∗ = 0. Using the Cauchy–Schwarz inequality ‘backwards’ and
our previous result, we show now that the square root of the right-hand side of
(5.10) is bounded below as follows:

P(x)( f, f )∗ = P(x)‖ f ‖2
∗

≥ P(x)‖ f − s‖2
∗ = P(x)( f − s, f − s)∗

=
φ(· − x)−

∑
ξ∈�̂

pξ (x)φ(· − ξ ),

φ(· − x)−
∑
ζ∈�̂

pζ (x) φ(· − ζ )


∗

( f − s, f − s)∗

≥
φ(· − x)−

∑
ξ∈�̂

pξ (x)φ(· − ξ ), f − s

2

∗
= ( f (x)− s(x))2,

by the reproducing kernel property, due to the definition of {pξ }ξ∈�. This is the
evaluation of the pointwise error by the power function.

If we let �̂, as in the proposition above, be a unisolvent set with � elements, and
if subsequently �̂ is enlarged over such an initial set, the larger set of centres
being �, in order to form the interpolant s, we still get the asserted inequality
(5.10) of the proposition.

In order to see that, we still take those pξ , ξ ∈ �̂, to be a set of Lagrange
functions for K and get that the right-hand side of (5.10) with �̂ used is a strict
upper bound to the left-hand side of (5.10), � being used for s. After all, the
smaller a subset �̂ is, the bigger the error will be, unless it remains the same
which is also possible. Thus we are simply being more modest in choosing a P
with a smaller �̂ ⊂ � to bound the error on the left-hand side by the right-hand
side of (5.10) from above.

In short, (5.10) remains true even if the �̂ and pξ , ξ ∈ �̂, used for P on the
right-hand side are such that �̂ is a proper subset of the actual data points �

used for the s on the left-hand side.
Now, in order to apply Proposition 5.3 and get our convergence estimates

in terms of powers of h, the density measure of the centres �, we choose X
to be the familiar linear space D−k L2(Rn) when k > n/2. As above, there
goes naturally with this space the semi-inner product ( f, g)∗ which we shall
shortly use also in a Fourier transform form by employing the standard Parseval–
Plancherel formula. In view of our work on minimum norm interpolants, we
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shall now proceed to compute the reproducing kernel for X and its semi-inner
product. There, as alluded to already, we call φ the reproducing kernel for
simplicity – and not quite correctly – although the reproducing kernel really is
the difference stated at the beginning of Subsection 5.2.2.

Proposition 5.4. For the above X = D−k L2(Rn) and its semi-inner product,
the reproducing kernel φ is a nonzero multiple of the radial basis function
defined in (4.4), according to the choice of the constants n and k.

Proof: Let f be an element of X ; in particular the function f is therefore
continuous by the Sobolev embedding theorem, since k > 1

2 n. The salient idea
for the proof is to apply the Parseval–Plancherel formula from the Appendix to
rewrite the expression for the semi-inner product with the reproducing kernel,
namely

(5.11)

 f, φ(‖ · −x‖)−
∑
ξ∈�̂

pξ (x)φ(‖ · −ξ‖)


∗

=
∫

Rn

∑
|α|=k

k!

α!
Dα f (y)Dα

φ(‖x − y‖)−
∑
ξ∈�̂

pξ (x)φ(‖y − ξ‖)

dy,

in terms of the Fourier transform because then it will contain the Fourier trans-
form of (4.4).

To begin, we assume f ∈ X̂ . Thus we can derive the required reproduc-
ing kernel property as follows from the Parseval–Plancherel formula applied
to square-integrable functions. Expression (5.11) is a (2π)−n-multiple of the
displayed equation∫

Rn

eix ·t f̂ (t)
∑
|α|=k

k!

α!
t2α

‖t‖−2k −
∑
ξ∈�̂

pξ (x)‖t‖−2kei(ξ−x)·t

 dt

=
∫

Rn

eix ·t f̂ (t) ‖t‖2k ‖t‖−2k

1−
∑
ξ∈�̂

pξ (x)ei(ξ−x)·t

 dt = (2π )n f (x),

where we use the fact that the integrals are defined in L2 due to the Lagrange
properties of pξ , and the continuity of f . Further, we have applied some standard
Fourier theory, including the Fourier inversion formula, and the fact that f |�̂ =
0. Finally, we have assumed for the sake of simplicity that φ is scaled in such
a way that

φ̂(‖t‖) = ‖t‖−2k .
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Up to a constant multiple which is immaterial here, this is precisely the distri-
butional Fourier transform of (4.4), as we have asserted. If f does not vanish
on �̂ we proceed as in Subsection 5.2.2, that is we use (5.7) instead of f . The
result now follows.

Since our main concern is interpolation, we can in fact always view the function
φ and its transform φ̂ up to a constant multiple. This is the case because any
such multiplicative constant will be absorbed into the coefficients of the unique
interpolant. We have used this fact before in the analysis of Chapter 4 where
we have stated that a sign-change in the radial basis functions is for this reason
immaterial.

We observe that for the radial basis functions (4.4), the power function can
be rephrased as

P(x) = −2
∑
ξ∈�̂

pξ (x)φ(‖x − ξ‖)+
∑
ξ∈�̂

pξ (x)
∑
ζ∈�̂

pζ (x)φ(‖ζ − ξ‖),

because, according to our original definition of the power function and because
of the Parseval–Plancherel identity again,

P(x) =
(
φ(‖·−x‖)−

∑
ξ∈�̂

pξ (x)φ(‖·−ξ‖), φ(‖·−x‖)−
∑
ζ∈�̂

pζ (x)φ(‖·−ζ‖)

)
∗

is the same as

1

(2π)n

∫
Rn

‖y‖−2k

∣∣∣∣eix ·y −
∑
ξ∈�̂

pξ (x)eiξ ·y
∣∣∣∣2 dy,

where we are still scaling the radial basis function in such a way that its gen-
eralised Fourier transform is ‖ · ‖−2k in order to keep our computations as
perspicuous as possible. Note that the integral in the last display is well-defined
because the factor in modulus signs is of order ‖y‖k by the side-conditions on its
polynomial coefficients pξ (x). Using the Fourier inversion formula gives finally

P(x) = φ(0)− 2
∑
ξ∈�̂

pξ (x) φ(‖x − ξ‖) +
∑
ξ∈�̂

∑
ζ∈�̂

pξ (x) pζ (x) φ(‖ζ − ξ‖).

This is the same as the above, as required, since φ(0) = 0.
We are also now in a position to prove that if we are given a linear combination

for the radial basis function from Proposition 5.4 above,

g(x) =
∑
ξ∈�

λξφ(‖x − ξ‖)

whose coefficients λξ satisfy the side-conditions (5.9), then g ∈ X . For settling
this statement we have to prove ‖g‖∗ < ∞. Indeed, we note that after the
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application of the Parseval–Plancherel formula and inserting the definition of g

(2π)n‖g‖2
∗ =

∫
Rn

‖t‖2k |ĝ(t)|2 dt

becomes a nonzero multiple of the integral∫
Rn

‖t‖2k‖t‖−4k

∣∣∣∣∑
ξ∈�

λξeit ·ξ
∣∣∣∣2 dt =

∫
Rn

‖t‖−2k

∣∣∣∣∑
ξ∈�

λξeit ·ξ
∣∣∣∣2 dt.

This integral is finite, because, again by the side-conditions required in (5.9)
and by expanding the exponential function in a Taylor series about the origin,
the factor in modulus signs is of order ‖t‖k which gives integrability of the
integrand in any finite radius ball about zero. The integrability over the rest of
the range is guaranteed by the fact that 2k > n and by the boundedness of the
term in modulus signs.

It follows by the same means that the two semi-inner products which we
have considered in this section are indeed the same. Specifically, the first one
we have defined in our example of thin-plate splines as used above. The second
one, corresponding to our choice of thin-plate slines, was for two functions

f =
∑
ξ∈�1

λξφ(‖ · −ξ‖)

and

g =
∑
ξ∈�2

µξφ(‖ · −ξ‖),

with the usual side-conditions on the coefficients λξ and µξ , of the symmetric
form

( f, g)∗ =
∑
ξ∈�1

∑
ζ∈�2

µζλξφ(‖ξ − ζ‖)

with the same notation for the semi-inner product as before. And indeed we can
recover – by using the Fourier transforms – the same result, namely

( f, g)∗ = 1

(2π )n

∫
Rn

1

φ̂(‖t‖)

[∑
ξ∈�1

λξeit ·ξ
][∑

ζ∈�2

µζ e−i t ·ζ
]
φ̂(‖t‖)2 dt

= lim
ε→0+

1

(2π )n

∫
Rn\Bε(0)

[∑
ξ∈�1

λξeit ·ξ
][∑

ζ∈�2

µζ e−i t ·ζ
]
φ̂(‖t‖) dt

=: lim
ε→0+

Iε(µ, λ).
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The limit exists since the side-conditions (5.9) on the coefficients λξ (and the
same for the coefficients µξ ) in the square brackets in the above display imply
that the two sums therein are O(‖t‖k) each in a neighbourhood of the origin,
so that the integral converges absolutely.

Moreover, it is a consequence of the definition of the generalised Fourier
transform of φ(‖ · ‖) and of the definition of the generalised inverse Fourier
transform that the above is the same as∑

ξ∈�1

∑
ζ∈�2

µζλξφ(‖ξ − ζ‖),

as we shall see now. Indeed, we note that φ is continuous and provides for any
good function γ ∈ C∞(Rn), cf. Chapter 4, with the property∫

Rn

γ (x)p(x) dx = 0, p ∈ K ,

the identity∫
Rn

γ (x − ξ + ζ )φ(‖x‖) dx = 1

(2π )n

∫
Rn

γ̂ (x)eix ·(ξ−ζ )φ̂(‖x‖) dx .

The last integral is well-defined because γ̂ has a sufficiently high order zero at
the origin by virtue of the above side-condition. This equation, in turn, implies
for any good γ∫

Rn

∑
ξ∈�1

∑
ζ∈�2

µζλξγ (x)φ(‖x + ξ − ζ‖) dx

= 1

(2π )n

∫
Rn

γ̂ (x)
∑
ξ∈�1

∑
ζ∈�2

µζλξeix ·(ξ−ζ )φ̂(‖x‖) dx,

where the condition in the previous display on γ can actually be waived from
now on due to the property of the coefficients µζ and λξ . This is the same as∫

Rn

γ̂ (x)

[∑
ξ∈�1

λξeix ·ξ
][∑

ζ∈�2

µξe−i x ·ζ
]
φ̂(‖x‖) dx .

Since γ is now an arbitrary good function, the required identity

( f, g)∗ = lim
ε→0+

Iε(µ, λ) =
∑
ξ∈�1

∑
ζ∈�2

µζλξφ(‖ξ − ζ‖)

is a consequence of the definition of the generalised Fourier transform. That
the semi-inner products are identical on the whole space now follows from the
fact that the space X is defined as a completion over the space of the f and g
of the above form with finite sums.
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We wish to derive error estimates for those radial basis functions by consid-
ering the error on a set 
 that satisfies the above boundedness and Lipschitz
requirements, i.e. boundedness, openness, Lipschitz-continuous boundary in-
cluding the interior cone condition. The data sites � are still assumed to stem
from such 
. The boundary of the domain in question is included in the error
estimates which is one reason why many estimates of the following type are not
quite as powerful as the error estimates for approximations on uniform grids.
We follow the ideas of Duchon, and in particular those of the more recent article
of Light and Wayne (1998) in the proof of the theorem.

Theorem 5.5. Let 
 be as above, and let for h ∈ (0, h1) and some fixed
0 < h1 < 1, each �h ⊂ 
 be a finite set of distinct points with

sup
t∈


inf
ξ∈�h

‖t − ξ‖ ≤ h.

Then there is a minimum norm interpolant s from X = D−k L2(Rn) to data on
�h as in Proposition 5.3. It satisfies for all f ∈ D−k L2(
) ∩ L p(
) and any
p ≥ 2, including infinity,

‖ f − s‖p,
 ≤ Chk− n
2+ n

p | f |k,
.
The constant C depends on n, k, p and on the domain, but not on the approxi-
mand f or on the spacing h or �h.

Proof: The existence of the interpolants is guaranteed for small enough h1

because 
 has a nonempty interior, so that there are K -unisolvent subsets in
�h ⊂ 
 if the centres are close enough together, that is when h is small enough
but we will remark further on this later.

Next, we need a minimum norm interpolant f 
 from the ‘native space’ X
to f on the whole of 
, i.e. we seek f 
 ∈ X with f 
|
 = f |
 and | f 
|k
minimal. This will aid us in the application of our earlier results on minimum
norm interpolants. The existence of this is assured in the following simple
auxiliary result.

Lemma 5.6. Let 
 be as required for Theorem 5.5. For all f ∈ D−k L2(
)
there is an f 
 ∈ D−k L2(Rn) that satisfies f 
|
 = f and which minimises
| f 
|k among all such f 
 that meet f on 
.

Proof: Since 
 has a Lipschitz-continuous boundary, there is an

f 
 ∈ D−k L2(Rn)

with f 
|
 = f and | f 
|k < ∞, by the Whitney extension theorem (Stein,
1970, p. 181):
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Whitney extension theorem. Let 
̃ be a domain with a Lipschitz-continuous
boundary in R

n that satisfies an interior cone condition. Let g be in the space
D−k L2(
̃). Then there exists a g̃ ∈ D−k L2(Rn) that agrees with g on the domain
and whose norm is at most a fixed, g-independent multiple of that of g.

More precisely, we get that for our application with 
̃ = 


(5.12) | f 
̃|k ≤ C | f |k,
̃,
for a suitable, f -independent, but 
̃-dependent, constant C . We now have to
take from the set of all such f 
̃ one that minimises the left-hand side of (5.12).
This is possible by closedness of the set over which we minimise.

We observe that, as a consequence of the homogeneity of the semi-norm, it is
possible to choose C in (5.12) 
̃-independent if 
̃ is a ball about t of radius
s̃, Bs̃(t). In other words, for this choice of 
̃, the constant C is s̃-independent.
In order to see this, we note that we may scale f on both sides of (5.12)
by composing it with the transformation ρ−1, where ρ(x) = s̃−1(x − t) and

̃ = Bs̃(t). Thus, 
̃ on the right-hand side is replaced by the s̃-independent
B1(0), and therefore C becomes s̃-independent. The multiplicative powers of
s̃ which appear on both sides of the inequality, due to the homogeneity of the
semi-norm we use and through the transformation by ρ−1, cancel.

The purpose of the above Lemma 5.6 is to be able to use f 
 instead of f
in our error estimates, because this way they become more amenable to our
previous work which used the space X for error estimates, not the function
space D−k L2(
). For the estimates, it is useful to divide the set 
 up into balls
of a size that is a fixed multiple of h (stated more precisely: to cover the domain
by such balls which will of course overlap), and the following result helps us
with that. It is true as a consequence of the cone condition (Duchon, 1978).
We do not prove this lemma here, because it is a basic result in finite element
theory and not special in any way to radial basis functions. The proof can be
found in Duchon’s papers, in Bezhaev and Vasilenko (1993, Lemma 5.3) and
in many texts on finite elements where the interior cone property is a standard
requirement.

Lemma 5.7. Let 
 satisfy the conditions of Theorem 5.5. Then there exist M,
M1 and h0 > 0 such that for all h ∈ (0, h0) there is a finite subset Th ⊂ 
 with
O(h−n) elements and

(i) Bh(t) ⊂ 
 ∀t ∈ Th,
(ii)

⋃
t∈Th

BMh(t) ⊃ 
,
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(iii)
∑

t∈Th

χBMh (t)(x) ≤ M1 ∀x ∈ 
,

the χ being always the characteristic function of the set that is noted in its
index. The Bs̃( · ) denote balls about the points given by the argument and of
the radius s̃ given by the index.

We take now M , h and Th as in Lemma 5.7. Let t ∈ Th , where 0 < h <

min(h0, h1). We recall that the centres which are used for the interpolation
become dense in the domain 
 with shrinking h. Therefore, through possible
further reduction of h1, we may assume that in each B := BMh(t) there are at
least � = dim P

k−1
n unisolvent points that we cast into the set (not denoted by an

index t for simplicity) �̂ and which belong to the interpolating set �h . We shall
use this set �̂ now for the purpose of defining the power function and using the
error estimate of Proposition 5.3. To this end, let x ∈ B, let f 
 be an extension
according to Lemma 5.6, and let further ( f 
 − s)B be defined according to the
same lemma with B replacing 
 and ( f 
 − s) replacing f in the statement of
the lemma. In particular, ( f 
 − s)B is zero at all the ξ from our set �̂ above.

Thus, according to Lemma 5.6 and (5.12), and due to Proposition 5.3,

( f 
(x)− s(x))2 = ( f 
 − s)B (x)2

≤ P(x) |( f 
 − s)B |2k
≤ C P(x) | f 
 − s|2k,B, x ∈ B.

Recall that the positive constant C in the above line may be chosen indepen-
dent of the size of B, according to our earlier remarks concerning inequality
(5.12).

Recall further that the definition of the power function specifically depends
on the centres which we use in the sums that occur in the definition of P. In
the current proof, we are using the notion of the power function P with respect
to the ξ ∈ �̂ just introduced, of course. Thus, taking p-norms on the left-hand
side and in the last line of the displayed equation above on the ball B, where
x is the integration variable, we get the estimate below. In order to simplify
notation further, we denote f 
 simply by f from now on, because it agrees
with f on the domain 
 anyway:

‖ f − s‖p,B ≤ C
( ∫

B
|P(x)|p/2dx

)1/p
| f − s|k,B .

We immediately get a power of h from the first nontrivial factor on the right-
hand side of this display by Hölder’s inequality, in the new estimate

‖ f − s‖p,B ≤ Chn/p ‖P‖1/2
∞,B | f − s|k,B .
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Recalling from the definition (4.4) that φ(0) vanishes and inserting the def-
inition of the power function from the beginning of this subsection give the
inequality

‖P‖∞,B ≤ sup
x∈B

2

∣∣∣∣∣∣
∑
ξ∈�̂

pξ (x) φ(‖x − ξ‖)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
ζ,ξ∈�̂

pξ (x) pζ (x) φ(‖ζ − ξ‖)

∣∣∣∣∣∣
 ,

where, as before in the power function mutatis mutandis, the pξ are Lagrange
polynomials at the ξ which satisfy pξ (ζ ) = δξζ for all ξ and ζ from �̂.

We can first bound – by Hölder’s inequality again – the whole right-hand
side of the last display from above by a fixed constant multiple of

(5.13) max
0<r≤Mh

|φ(r )| max
x∈B

∑
ζ∈�̂

|pζ (x)|
2

.

We begin by bounding the second factor of (5.13) because this is straightforward.
Indeed, the second factor in (5.13), including taking the maximum, is exactly

the square of the Lebesgue constant for polynomial interpolation at the ξ (with
polynomial degree k − 1 in n dimensions), i.e. the uniform norm of the poly-
nomial interpolation operator for scattered points. As the norm of the Lagrange
interpolation operator is scale-invariant, this may be bounded independently of
h and B if the centres ξ are chosen judiciously.

This is always possible subject to a possible further reduction of h1 – recalling
that 0 < h < h1 – and choosing the ξ from �̂ afresh if needed, because the
centres become dense in the domain with shrinking h, and using the following
specific choice of ξ . We may for example first place a very fine n-dimensional
square grid over the domain with a very small grid-spacing in relation to h and
consider ξ from �̂ as taken directly from that grid (forming a subset thereof)
or being a small perturbation of such a gridpoint, the size of the perturbation
being a tiny multiple of h. This is possible for all h if h < h1 is small enough.
(Incidentally, it even helps to satisfy the aforementioned unisolvency condition
with respect to K too if we are considering points from a grid or a small
perturbation thereof, because points from a grid can be very easily chosen to
be unisolvent.)

For polynomial interpolation from such square grids, however, it is evident
that the norm of the Lagrange interpolation operator is bounded independently
of the grid-spacing, that is, it is scale-independent, because of the uniformity
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requirement. If the aforementioned perturbation is sufficiently restricted, this
remains true if the points are taken from a perturbed grid as outlined in this
paragraph. This settles the boundedness.

The first term in (5.13) can, according to (4.4), be bounded by h2k−n if n is
odd, h2k−n | log h| if n is even. We wish to remove the log h term now for even
n by replacing φ(r ) by φ(r ) + r2k−n log σ for a suitable σ which may depend
on h but not on r . This will eventually cancel the log h term. The approach
is admissible for the following reasons. In short, adding a low even power of
r to the radial basis function never changes the approximation because of the
moment conditions (5.9) on the coefficients that annihilate such augmentations.
We will demonstrate this fact by showing that the power function which occurs
in the error estimate remains the same after the augmentation of the radial basis
function by a low power of r ; a similar analysis was already done in Chapter 4
for our cardinal Lagrange functions.

To this end, we recall that the pξ are Lagrange polynomials and thus we have
the reproduction of monomials

(5.14)
∑
ζ∈�̂

pζ (x) ζ t̂ = x t̂ , t̂ ∈ Z
n
+, |t̂ | < k,

using the standard multiinteger notation for the exponent t̂ . Keeping in mind
that 2k − n is even, so that ‖x‖2k−n is an even order polynomial, we get now
for the power function with the augmented radial basis function the following
additional contribution. We consider it first in the special case when 2k−n = 2.
Then

− 2
∑
ζ∈�̂

pζ (x)‖x − ζ‖2 +
∑
ζ∈�̂

∑
ξ∈�̂

pζ (x) pξ (x)‖ξ − ζ‖2

= −2
∑
ζ∈�̂

pζ (x)‖x − ζ‖2

+
∑
ζ∈�̂

∑
ξ∈�̂

pζ (x) pξ (x)
(
‖ξ − x‖2 − 2(ζ − x) · (ξ − x)+ ‖ζ − x‖2

)
.

By the polynomial reproduction identity (5.14), the sums over the norms ‖ξ −
x‖2 and ‖ζ − x‖2 cancel, as well as the sums over (ζ − x) · (ξ − x) which
vanish too. This being a simple demonstration, we get similarly, with the aid of
simple binomial expansions, that the above holds if 2k− n > 2 without further
consideration.

Now we may replace φ(r ) in (5.13) by φ(r )+ r2k−n log σ with σ = 1/h in
the same way without changing the approximant. This removes the undesirable
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log h term when we estimate the left-hand factor of (5.13) and bound |φ(r )|
from above.

In summary, we have established so far that (5.13) is bounded by a constant
multiple of h2k−n , and that ‖ f − s‖p,B is bounded by a fixed constant multiple
of the following:

hn/p hk− n
2 | f − s|k,B .

To continue, we need an auxiliary result from Stein and Weiss (1971), namely
the famous inequality by Young:

Young’s inequality. Let f ∈ Lr (Rn) and g ∈ Lq (Rn), with r, q and the sum
(1/q)+ (1/r ) all at least one. Then

‖ f ∗ g‖p ≤ ‖ f ‖r‖g‖q ,

where (1/p) = (1/r )+(1/q)−1 and ∗ denotes convolution. The same estimate
is true if f and g come from the sequence spaces �r (Zn) and �q (Zn), respectively,
and the norms are accordingly the sequence space norms.

Now we form the ‖ f − s‖p,
 by collection of the pieces ‖ f − s‖p,B . Due to
the choice of the Bs and Lemma 5.7, we have

‖ f − s‖p,
 ≤
(∑

t∈Th

‖ f − s‖p
p,BMh (t)

)1/p

≤ Chk− n
2+ n

p

(∑
t∈Th

| f − s|pk,BMh (t)

)1/p

.

This is at most a constant multiple of

max
x∈


hk− n
2+ n

p

(∑
t∈Th

(∑
τ∈Th

| f − s|k,BMh (τ )χBMh (t−τ )(x)

)p)1/p

.

Now we appeal to Young’s inequality for p ≥ 2, r = 2 and 1/q = (1/p) +
(1/2). Employing Lemma 5.7 and recalling that the value of the characteristic
function is always one or zero, we may bound this above by a constant multiple
of

(5.15) max
x∈


hk− n
2+ n

p

(∑
t∈Th

| f − s|2k,BMh (t)

)1/2 (∑
t∈Th

χBMh (t)(x)q

)1/q

≤ Chk− n
2+ n

p | f − s|k,
 ≤ Chk− n
2+ n

p | f |k,
,
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as required, the final bound being standard for an s minimising | f − s|k,
,
see the proof of our Proposition 5.3. It is also evident from this proof why we
have the condition p ≥ 2, namely in order to apply Young’s inequality because
p ≥ 2 follows from its requirement that q ≥ 1 and the use of r = 2.

We point out that as an alternative to Young’s inequality, the end of the proof can
be carried through by an application of Jensen’s inequality (Hardy, Littlewood
and Pólya, 1952, p. 28) which bounds a series

∑
a p

i by (
∑

a2
i )p/2 for all p ≥ 2.

There is a neat way to improve the convergence order established above by
imposing more stringent requirements on f . This is known as the ‘Nitsche
trick’ from familiar univariate spline theory (Werner and Schaback, 1979, for
instance). We demonstrate it in the book both because it provides a better
convergence result closer to the results on grids, and because generally it belongs
in the toolkit of anyone dealing with uni- or multivariate splines or radial basis
functions anyway. It works as follows. Recall that |·|k is the semi-norm otherwise
called ‖ · ‖∗ associated with the space X of the last theorem. Now let f be any
function that satisfies the additional smoothness condition | f |2k < ∞, which
is stronger than demanded in the statement of the last theorem, and the further
condition that supp D2k f is a subset of 
. This is a ‘boundary condition’
imposed on f . It means that all partial derivatives of f to total degree at most
2k are supported in 
.

Next we recall that the semi-inner product (s, f − s)∗ vanishes (which is a
consequence of the orthogonality of the best least squares approximation). We
may deduce this from our earlier results about the minimum norm interpolant
s and Proposition 5.2, namely

| f |2k = | f − s|2k + |s|2k,
and it is always true that

| f − s|2k = | f |2k − |s|2k − 2(s, f − s)∗.

Thus for the s from the last theorem, by applying the orthogonality property of
the best least squares approximation and the Cauchy–Schwarz inequality, we
may now estimate

(5.16) | f − s|2k = ( f − s, f − s)∗
= ( f, f − s)∗
≤ | f |2k ‖ f − s‖2,


since the support of all derivatives of total degree 2k of f is in 
. We may carry
on by estimating this from above by a fixed constant multiple of

(5.17) | f |2k hk | f − s|k,



130 5. Radial basis functions on scattered data

due to (5.15), i.e. the last theorem used for p = 2. Now, cancelling the factor
| f − s|k from (5.17) and the left-hand side of (5.16), we get the estimate

| f − s|k ≤ C | f |2k hk .

This we may use once more in (5.15), now for general p, to get another factor
of hk . As a consequence we obtain the final result which we cast into

Theorem 5.8. Let all assumptions of Theorem 5.5 hold and assume addition-
ally f ∈ D−2k L2(Rn), supp Dα f ⊂ 
 for all α with |α| = 2k. Then, for
sufficiently small h,

‖ f − s‖p,
 ≤ Ch2k− n
2+ n

p | f |2k

holds.

Note that for p = ∞ we get O(h2k−n/2) which is better than before due to the
new ‘bounding conditions’, but still off by a factor of h−n/2 from the optimal
result in the case of a cardinal grid. Note also that for p = 2 we recover O(h2k).

We close this subsection on convergence estimates with a few remarks about
the best presently available results on approximation orders for scattered data
with radial basis functions of the form (4.4). To begin with, Johnson (1998b) has
shown that for all 1 ≤ p < 2 the estimate of Theorem 5.8 may be retained with
the exponent on the right-hand side being 2k only, where the only extra condition
on the approximand is that the support of the approximand be in a compact set
inside the interior of our domain in R

n . Without this extra condition on the
function, the best possible (and attained) L p-approximation order to infinitely
smooth functions on a domain with C2k boundary for sufficiently good k is
k + 1/p for 1 ≤ p ≤ 2 (Johnson, 2002).

The currently best contribution in the battle for optimal error estimates for
all p and for scattered data comes from the paper Johnson (2000). It is to bound
the interpolation error on scattered data to sufficiently smooth approximands
without the support property needed in Theorem 5.8, measured in L p(Rn), by
O(hγp ), where in the uniform case γ∞ = k−n/2+1/2 and in the least squares
case γ2 = k+1/2 which is best possible for p = 2 (see also our eighth chapter).

Conversely, he has also proved in Johnson (1998a) that, for any p ∈ [1,∞]
and the domain being the unit ball, there is an infinitely continuously differen-
tiable f such that the L p-error of the best approximation to f from the space
of translates of the radial basis functions (4.4) including the appropriate poly-
nomials, is not o(hk+1/p) as h → 0. This proof works by giving an example
for an approximand and a simple spherical domain, i.e. with a highly smooth
boundary, where the o(hk+1/p) is not attained. As we have seen, in particu-
lar, we cannot obtain any better approximation orders than O(h2k) with our
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interpolation method and the error measured in the uniform norm. For other
upper bounds on the convergence orders for gridded data see Chapter 4. Related
results are also in Matveev (1997).

Furthermore, Schaback and Wendland (1998) have shown that if the uniform
error of the radial basis function interpolant with (4.4) is o(h2k) on any compact
subset of 
 for an f ∈ C2k(
) then f must be k-harmonic. In other words
�k f = 0 on the domain 
 and with less smooth approximands f , no better
error estimates than O(h2k) are obtainable.

5.2.5 Further results

A result that applies specifically to the multiquadric function is the powerful
convergence theorem below. It provides an exponential convergence estimate
for a restricted class of functions f that are being interpolated. They belong
to the space corresponding to our ‘native space’ X as before. That space X
has a semi-norm which may in this context be introduced conveniently in the
following fashion. It is a least squares norm weighted with the reciprocal of the
radial basis function’s Fourier transform, thereby becoming a semi-norm:

‖ f ‖2
∗ := 1

(2π )n

∫
Rn

φ̂(‖t‖)−1| f̂ (t)|2 dt.

Here, φ̂ is as usual the generalised Fourier transform of a radial basis function
which we assume to be positive. (So multiquadrics must be taken with a negative
sign.)

In fact, this is precisely the same structure as before; for functions (4.4) such
as thin-plate splines we weighted with ‖ · ‖2k , namely the reciprocal of φ̂(‖ · ‖)
except sometimes for a fixed factor, to get the semi-norm in Fourier transform
form. Using the Parseval–Plancherel identity, we may return to the familiar
form used for the semi-norm | f |k of D−k L2(Rn) in the previous subsections.
However, here the reciprocal of the radial basis function’s Fourier transform has
bad properties because of its exponential increase (cf. Section 4.3 and the lower
bounds on p̂ used there), in contrast with the slow increase of the reciprocal
of the Fourier transforms of the radial basis functions (4.4). They are only
of polynomial growth, namely order O(‖t‖2k). Thus we have here with the
multiquadric function a least squares norm with an exponentially increasing
weight in the case of the multiquadric function, the Fourier transform of the
multiquadric decaying exponentially. In summary, the space of approximands
X only contains very smooth functions. The following remarkable theorem with
exponential convergence orders is established in Madych and Nelson (1992).
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Theorem 5.9. Let φ(‖ · ‖) ∈ C(Rn) be strictly conditionally positive definite
of order k with a positive generalised Fourier transform, and suppose there is
a ν such that ∫

Rn

‖t‖�φ̂(‖t‖) dt ≤ ν��!, ∀� > 2k.

Let for a positive b0 the set 
 be a cube of side-length at least b0. Then, there
exist positive δ0 and η ∈ (0, 1) such that for all approximands f which satisfy∫

Rn

φ̂(‖t‖)−1| f̂ (t)|2 dt <∞,

the interpolant to the data { f (ξ )} at ξ ∈ �, namely

s(x) =
∑
ζ∈�

λζφ(‖x − ζ‖)+ p(x), x ∈ R
n,

where p ∈ P
k−1
n and the λζ satisfy the appropriate side-conditions, K = P

k−1
n

being the kernel for the above semi-norm, satisfies

‖s − f ‖∞,
 = O(ηδ
−1

), 0 < δ < δ0.

Here, each subcube of 
 of side-length δ must contain at least one ξ .

The reason why we get in Theorem 5.9 much better convergence orders for
multiquadrics even as compared with the cardinal grid case is that, first, we have
a much restricted class of very smooth approximands f , due to the exponential
growth of the weight function in the above integral and semi-norm, and, second,
that we are here using the so-called nonstationary approach. In other words,
here the scaling of the radial basis function is entirely different from that of the
cardinal grid case. In the latter case we have scaled the argument of the radial
basis function by the reciprocal of h (the ‘stationary’ case) which means, if we
multiply it by the radial basis function, we multiply the parameter c by h as
well: √(

x

h

)2

+ c2 = h−1
√

x2 + c2h2.

(The h−1 factor in front of the square root has no importance as it can be ab-
sorbed into the coefficients of the interpolant or approximant.) In the above
Theorem 5.9, however, we do not scale the whole argument by the reciprocal
of h. Instead we simply decrease the spacing of the centres that we use for
interpolation, which leaves the parameter c untouched. In fact this is like in-
creasing the constant c in relation to the spacing of the data sites, which gives
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bad conditioning to the interpolation matrix, as we can see also from our results
from the fourth chapter and in the next section of this chapter.

Our observation here is confirmed by the remark that for those radial basis
functions which have homogeneous Fourier transforms and are homogeneous
themselves except for a possible log-term, where the scaling makes no dif-
ference whatsoever because it disappears into the coefficients, no such result
as the above is available. Concretely, this is related to the fact that the first
displayed condition of the theorem cannot be fulfilled by homogeneous radial
basis functions which have homogeneous Fourier transforms.

The reason why, by contrast, multiquadrics do satisfy that condition lies, as
alluded to above, in the exponential decay of their Fourier transform: indeed,
the expression ∫

Rn

‖t‖�φ̂(‖t‖)dt

is, using polar coordinates, bounded above by a constant multiple of the integral∫
Rn

‖t‖� e−c‖t‖dt ≤ C
∫ ∞

0
r �+n−1e−cr dr = C

�(n + �)

cn+�

which is at most a constant multiple of �!c−n−� for fixed dimension n, � being
the standard �-function (we may take the right-hand equation in the above
display as its definition if c = C = 1, or see Abramowitz and Stegun, 1972)
and in particular �(n + �) = (n + �− 1)!

Besides interpolation, we have already discussed the highly useful ansatz of
quasi-interpolation which, in the gridded case, gives almost the same conver-
gence results as interpolation on the equally spaced grid. We wish to show at this
instant that for scattered data approximation also, when the centres are ‘almost’
arbitrarily – this will be defined precisely later – distributed, quasi-interpolation
is possible. In connection with this, we shall also give a convergence result for
quasi-interpolation which holds, incidentally, in the special case of gridded data
too, and therefore complements our results from Chapter 4.

In practice, however, interpolation is used much more frequently when scat-
tered data occur, for the reasons given at the beginning of this chapter, but it
is worthwhile – and not only for completeness of the exposition in this book –
to explain quasi-interpolation in the presence of scattered data here anyway,
as even in practice some smoothing of the data for instance through quasi-
interpolation may be performed when scattered data are used. We will comment
further on this aspect of quasi-interpolation in Chapter 8.

So, in particular for the functions (4.4) but also for more general classes of
radial basis functions, convergence results with quasi-interpolation on scattered
data may be obtained without using interpolants and their optimality properties
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in the manner explained below. For this result, however, we require infinite
subsets � ⊂ R

n of scattered centres which satisfy the following two straight-
forward properties for a fixed positive constant C0:

(B1) every ball BC0 (x) about any x in R
n contains a centre ξ ∈ �,

(B2) for any L which is at least one, and any x ∈ R
n , BL (x) ∩� contains at

most C0Ln elements.

Condition (B1) just means that there are no arbitrarily big, empty (that is, centre-
free) ‘holes’ in � as a subset of R

n . The fact that we exclude by condition
(B1) all approximants which use only finitely many centres is of the essence.
The differences between the approximation approaches and their convergence
analyses lies much more in the alternatives finitely many versus infinitely many
centres on finite versus infinite domains than between the alternative scattered
data or gridded data. This fact is particularly clear from the convergence result
below, because we may compare it with the results of the previous subsection
and the theorems of Chapter 4.

Our condition (B2) is of a purely technical nature; it can always be satisfied
by thinning out� if necessary. After all, we are dealing with quasi-interpolation
here and not with interpolation and need not use all the given centres, while
with interpolation all given centres are mandatory.

In order to study the behaviour of the approximants for different sets of
centres which become dense in the whole Euclidean space, we also consider
sequences of centre sets {�h}h>0, namely subsets of R

n such that each ‘scaled
back’ � := h−1 �h satisfies (B1) and (B2) uniformly in C0, i.e. C0 remains
independent of h. Therefore, in particular, �h ⊂ R

n must become dense as
h → 0 and so this is a useful notion for a convergence result.

It is the case, as often before, that we do not actually have to restrict ourselves
to radially symmetric basis functions for this result, but in this book, for the
sake of uniformity of exposition, we nonetheless state the result for an n-variate
radial basis function φ(‖ ·‖): R

n → R. Therefore suppose φ(‖ ·‖) is such that it
has a generalised, n-variate Fourier transform that agrees with a function except
at zero, which we call as before φ̂: R>0 → R. This must satisfy for an even
natural number µ = 2m, a nonnegative integer m0 and a univariate function F ,
the following two additional properties:

(QI1) φ̂(r ) = F(r )r−µ, F ∈ Cm0 (R) ∩ C∞(R\{0}),
(QI2) F(0) is not zero, and for y → 0, all γ ∈ Z+ and a positive ε,∣∣∣∣∣ dγ

dyγ

(
F(y)−

m0∑
α=0

F (α)(0) yα

α!

)∣∣∣∣∣ = O(ym0+ε−γ ), y > 0.
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The condition (QI1) is nothing else than a condition about the Fourier trans-
form’s singularity at the origin. Our condition (QI2) ensures a certain smooth-
ness of the Fourier transform of the radial basis function at zero. As a con-
sequence of (B1)–(B2) and (QI1)–(QI2), we now have the next result, which
employs the conditions we have just listed. We let K be the kernel of the dif-
ferential operator ‖D‖µ, where we recall that now µ ∈ 2Z+.

Theorem 5.10. Under the assumptions (B1)–(B2), (QI1)–(QI2), (A2a) from
Chapter 4, there exist decaying finite linear combinations for a fixed positive
constant C1 of the form

(5.18) ψξ (x) =
∑

ζ∈BC1 (ξ )

µξζ φ(‖x − ζ‖), x ∈ R
n,

such that quasi-interpolants

s(x) =
∑
ξ∈�

f (ξ )ψξ (x), x ∈ R
n,

are well-defined for all f ∈ P
m0
n ∩ K and recover those f . Moreover, let f be

q := min(µ,m0 + 1) times continuously differentiable and let it have q and
q + 1 total order bounded partial derivatives. Then, for sets �h as defined in
the paragraph before last, approximants

sh(x) =
∑
ξ∈�h

f (ξ )ψh−1ξ (h−1x), x ∈ R
n,

satisfy the error estimate

‖ f − sh‖∞ = O(hq | log h|), h → 0.

When using this result, it should be noted that the conditions on the data and the
scaled back sets of data are relatively weak conditions and thus many different
distributions of data points are admitted in the above theorem.

It should also be observed that this theorem works for � = Z
n , �h = (hZ)n ,

and admits a typical convergence result for quasi-interpolation on regular grids
with spacing h as a special case. This nicely complements our work of Chapter 4.

The central idea in the proof of this theorem is, as in polynomial recovery
and convergence proofs in the fourth chapter, to construct suitable, finite linear
combinations (5.18) that decay sufficiently fast to admit polynomials into the
approximating sum. They must, like their counterparts on equally spaced grids,
give polynomial reproduction. These are the two difficult parts of the proof
while the convergence order proofs are relatively simple, and, at any rate, very
similar to the proofs in the cardinal grid case for interpolation of Chapter 4 in
Section 4.2. We do not supply the rest of the proof here as it is highly technical,
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relying heavily on our earlier results on gridded data, see Buhmann, Dyn and
Levin (1995) but below we give a few examples for the theorem’s applications.

For instance, the radial basis functions of the class (4.4) satisfy all the as-
sumptions (QI1)–(QI2) for a nonzero constant F and m = k in (QI1)–(QI2),
m0 being an arbitrary positive integer. Therefore using the quasi-interpolants of
Theorem 5.10, all polynomials f from the kernel K of the differential operator
�k are recovered, that is, all polynomials of total degree less than µ = 2k. The
resulting convergence orders are O(h2k | log h|) as the ‘spacing’ h goes to zero.
This should be compared with the O(h2k) convergence in the cardinal grid case
of the previous chapter.

Multiquadrics satisfy the assumptions for odd dimension n, and m =
(n + 1)/2, µ = n + 1, as we recall from Subsection 4.2.3

F(r ) = −π−1(2π)m K̃m(cr ), r > 0,

m0 = 2µ− 1, because F has an expansion near the origin so that F(r ) is

a0 +
2m−1∑

j=1

a j r2 j +
m−1∑
j=0

b j r2m+2 j log r + O(r2n+1), r → 0+,

where the a j s and b j s are suitable nonzero constants. The result is that all
polynomials of total order at most n are recovered and the convergence orders
that can be attained are O(hn+1| log h|). Again, a comparison with the cardinal
grid case of Chapter 4 is instructive and should be looked at by the reader.

5.3 Norm estimates and condition numbers
of interpolation matrices

5.3.1 General remarks

An important and mathematically appealing part of the quantitative analysis of
radial basis function interpolation methods is the analysis of the �2-condition
number of the radial basis function interpolation matrix. The crux of the work
of this section is in bounding below in modulus the smallest eigenvalue of
the symmetric matrix in question (often positive definite or coming from a
conditionally positive definite (radial basis) function), so that we can give an
upper bound on the �2-norm of the inverse of the matrix. What remains is an
estimate on the �2-norm of the matrix itself, which is always simple to obtain.

We have already motivated the search for those bounds in the penultimate
section of Chapter 4. As an application, the bounds are also highly relevant in the
application of conjugate gradient methods for the numerical solution of linear
systems, because there are estimates for the rate of convergence of such (often
preconditioned) conjugate gradient methods which depend crucially on those
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condition numbers in the Euclidean norm. The conjugate gradient method and
a closely related Krylov subspace method will be stated and used in Chapter 7
when we write about implementations.

In this section, we are interested in both lower and upper bounds to the condi-
tion numbers of interpolation matrices which will provide us with negative and
positive answers for the stability of computations and, for instance, speed of
convergence of conjugate gradients. The lower bounds for the condition num-
bers are essentially there in order to verify if the upper bounds are reasonable
(ideally, they should of course be best possible) or not, i.e. whether they are cor-
rect up to a constant, say, or whether there are orders of magnitude differences
between the upper bounds and the lower estimates. It turns out that the ones
which are known up to now usually are reasonable, but sometimes when we
have exponentially growing estimates, as occur for example for multiquadrics,
upper and lower bounds differ by a power and by constant factors. There, as
with multiquadrics for example, the constants, especially the multiquadric’s
parameter c, in the exponent also play a significant rôle.

Before embarking, it has to be pointed out that the following analysis applies
to the nonstationary case, when the basis functions are not scaled as they are in
Chapter 4, namely by 1/h. When a suitable scaling is applied in the stationary
case, most of the remarks below about the condition numbers are not really rel-
evant, because the matrices have condition numbers that can usually be worked
out easily and can be independent of h.

5.3.2 Bounds on eigenvalues

Surprisingly, several of the results below give bounds on the aforementioned
lowest eigenvalues that are independent of the number of centres; instead they
depend solely on the smallest distance between adjacent centres. The latter
quantity divided by two is termed the ‘separation radius’ q of the data sites
ξ , and this will appear several times in the rest of this chapter. On the other
hand, it is not surprising that the bounds tend to zero as that distance goes to
zero as well. They must do, because eventually, i.e. for coalescing points, the
interpolation matrix must become singular, as it will then have at least two
identical rows and columns.

Lemma 5.11. Letφ(‖·‖): R
n → R be strictly conditionally positive definite of

order zero or one and, in the latter case, suppose further thatφ(0) is nonpositive.
If for all d = (dξ )ξ∈� ∈ R

�,∑
ξ∈�

∑
ζ∈�

dξ dζ φ(‖ξ − ζ‖) ≥ ϑ
∑
ξ∈�

|dξ |2 = ϑ × ‖d‖2,
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and ϑ is positive, then the inverse of the invertible interpolation matrix {φ(‖ξ−
ζ‖)}ξ,ζ∈� is bounded above in the Euclidean matrix norm by ϑ−1.

The proof of this lemma is simple; it relies on exactly the same arguments as
we have applied in Chapters 2 and 5 (e.g. Theorem 5.1) of this book when we
have shown nonsingularity in the above cases – in this case here, we only need
to take ϑ × ‖d‖2 as the uniform lower bounds on the positive or conditionally
positive quadratic forms that occur there. In fact, the proof is entirely trivial
for order zero, because the definition of eigenvalues immediately provides the
desired result which is then standard for positive definite quadratic forms. This
lemma is central to this section because the radial basis functions which are
conditionally positive definite of order one or zero provide the most important
examples. Therefore we now wish to apply this auxiliary result to our radial
basis functions, notably to the negative of the ubiquitous multiquadric function,
that is φ(r ) = −√r2 + c2.

Thus, for any radial basis function φ ∈ C([0,∞)) to be such that the
expression

− d

dt
φ(
√

t), t > 0,

is completely monotonic, we note the following straightforward condition. It is
necessary and sufficient that there exists a nondecreasing measure µ such that
for some positive ε

(5.19)
φ(r ) = φ(0)−

∫ ∞

0

1− e−r2t

t
dµ(t), r ≥ 0,∫ ∞

ε

dµ(t)

t
<∞,

∫ ε

0
dµ(t) > 0.

For the sufficiency of the form in the display above, we only need to differentiate
once and apply the Bernstein representation theorem which shows that the above
indeed is completely monotonic when differentiated once.

Further, the above representation is necessary: we outline the argument as
follows. For showing that, we apply once again the Bernstein representation
theorem to the derivative of φ in the display before (5.19) and integrate once,
the first of the two extra conditions in (5.19) being responsible for the existence
of the integral after the integration of the exponential function therein. We also
know that it is necessary that the measure µ is nondecreasing and nonconstant,
and as a consequence it is in particular necessary that for some positive ε∫ ε

0
dµ(t) > 0,

as required in (5.19).
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We recall as an important example that thus the above representation (5.19)
applies to the multiquadric function; it is conditionally positive definite of order
one if augmented with a negative sign, i.e. φ(r ) = −√r2 + c2, c ≥ 0. We wish
to use Lemma 5.11 and (5.19) which imply that it suffices, in order to establish
a lower bound ϑ for the smallest eigenvalue in modulus, simply to find a lower
bound on the positive definite quadratic form with kernel e−r2t , i.e. to prove an
inequality of the form

(5.20)
∑
ξ∈�

∑
ζ∈�

dξ dζ e−t‖ξ−ζ‖2 ≥ ϑ(t)
∑
ξ∈�

|dξ |2 = ϑ(t)‖d‖2.

Then, ϑ in Lemma 5.11 can be taken from (5.19) and (5.20) by integration
against the measure

ϑ =
∫ ∞

0

ϑ(t)

t
dµ(t) > 0,

because this is how the radial basis function is defined using the representation
(5.19). When the above integral exists, the (with respect to r ) constant terms
φ(0) and 1/t disappear because we require the sum of the components of the
coefficient vector {dξ } to vanish. It is therefore, in the next step of the analysis
of the condition number, necessary to find a suitable ϑ(t) for (5.20). This we do
not do here in detail, but we state without proof that a suitable ϑ(t) is provided
by Narcowich and Ward (1991) and what its value is. It is their work that
was instructive for the presentation here. They define, for a certain constant δn

which depends on the dimension of the underlying space but whose value is
immaterial otherwise, and for the aforementioned separation radius q of points
ξ and ζ from �,

(5.21) q = 1

2
min
ξ �=ζ

‖ξ − ζ‖,

the quantity ϑ(t) for the desired estimate (5.20) as a constant multiple of

(5.22) t−
n
2 q−n e−δ

2
n/(qt), t > 0.

Note that we are leaving out a constant factor which only depends on the
dimension, our bounds being dimension-dependent in all sorts of ways anyhow;
what is most interesting to us is always the asymptotic behaviour with respect
to parameters of the radial basis function and possibly the number and spacing
of centres.

This gives a ϑ through integration as above, whose reciprocal bounds the
required �2-matrix-norm by integrating (5.22) with respect to dµ. Further, it is
easy to bound the �2-condition number now, since one can bound the �2-norm
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of the matrix A = {φ(‖ξ − ζ‖)}ξ,ζ∈� itself for instance by its Frobenius norm

‖A‖F :=
√ ∑

ξ,ζ∈�
φ(‖ξ − ζ‖)2.

This, in turn, can for example be bounded above by the following product which
uses the cardinality of the centre-set:

|�| × max
ξ,ζ∈�

|φ(‖ξ − ζ‖)|.

Here, |�| is still the notation for the finite cardinality of the set of centres �

which we use.
We give a few examples of the quantitative outcome of the analysis when

the radial basis function is the multiquadric function and its parameter c is set
to be one. Then the measure dµ is defined by the weight function that uses the
standard �-function (Abramowitz and Stegun, 1972),

(5.23) dµ(t) = e−c2t tα−1

�(α)
dt.

We let, for the multiquadric function, c = 1, n = 2 and in order to simplify
notation further

p := q2/(1+
√

1+ q2/4) ∼ q2

2
, q → 0,

for small q. Then the Euclidean matrix norm of the inverse of the interpolation
matrix is at most 24e(12/p)/p, as follows from (5.22) and the above. This is
asymptotically

48

q2
e(24/q2), q → 0.

For n = 3 one gets 36 e(16/p)/p and asymptotically

72

q2
e(32/q2), q → 0.

For q →∞ one gets in two and three dimensions the asymptotic bounds 12/q
and 18/q, respectively. Indeed, one expects quickly – here exponentially –
growing bounds for q → 0 because naturally the matrix becomes singular for
smaller q and the speed of the norm’s growth is a result of the smoothness of φ,
the multiquadric being infinitely smooth. Conversely, for large q, one expects
to get bounds that are similar to the bound for c = 0, because in that case, c
is very small compared with q. Indeed, an important result of Ball (1992) gives
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an upper bound that is a constant multiple of
√

n/q on the size of the inverse
of the interpolation matrix for c = 0.

These bounds have been refined in Ball, Sivakumar and Ward (1992) to give
for multiquadrics, general c and all n the upper bound for the Euclidean norm
of the inverse of the matrix

(5.24) q−1 exp(4nc/q),

multiplied by a universal constant that only depends on the dimension. This
again matches nicely with the aforementioned result due to Ball. We note in
particular the exponential growth of this bound when q diminishes. We note
also its important dependence on the parameter c in the exponent.

5.3.3 Lower bounds on matrix norms

Other lower bounds on the �2-norms of the inverse of the interpolation matrix
have been found by Schaback (1994). Because they confirm our earlier upper
bounds, they give an idea of the typical minimum loss of significance we must
expect in the accuracy of the coefficients for general right-hand sides which
are due to large condition numbers and the effects of rounding errors. We give
three examples of the results of this work below.

Theorem 5.12. Let q̂ be the maximal distance maxξ,ζ∈� ‖ξ − ζ‖ between the
finite number of data points � ⊂ 
. Let m = |�| be the finite cardinality of
the set of centres.

(i) For φ(r ) = √
r2 + c2, the interpolation matrix satisfies the asymptotic

bound

‖A−1‖2 ≥ C
exp

(
c[( 1

2 n!m)1/n − 1
2 ]/q̂

)
m

, m →∞.

(ii) Let φ(r ) = r2k log r and n be even. Then the interpolation matrix satisfies
the asymptotic bound

‖A−1‖2 ≥ Cm
2k−1

n −1, m →∞.

(iii) Let φ(r ) = r2k+1, and let n be odd. Then the interpolation matrix satisfies
the asymptotic bound

‖A−1‖2 ≥ Cm
2k+1

n −1, m →∞.

We observe, e.g. by an application of Stirling’s formula, that the bound in (i)
compares favourably with the upper bound on the matrix norm given above,
except for a power of q which has little effect in comparison with the exponential



142 5. Radial basis functions on scattered data

growth of the upper and lower bounds as q̂ diminishes. Also (iii) compares quite
well with the stated upper bounds for k = 0, although we are usually interested
in 2k ± 1 > n.

We remark that the above statements show that the minimum norm becomes
larger with a larger number of centres (m →∞). This is, of course, no contra-
diction to the results in the previous subsection, because the minimal separation
distance becomes smaller with a larger number of data in the same domain and
the q̂ above is the maximal, not the minimal distance between centres.

It has been noted already that, while the upper bounds on �2-matrix-norms of
the inverse of interpolation matrices above do not depend on the cardinality of
�, the bounds on the condition numbers do, as they must according to Buhmann,
Derrien and LeMéhauté (1995). This is also because the bounds on the norm
of the interpolation matrix itself depend on the number of centres. An example
is given by the following theorem which states a lower bound on the condition
number; it applies for instance to the multiquadric radial basis function.

Theorem 5.13. If−φ is conditionally positive definite of order one andφ(0) ≥
0, then the �2-condition number of the interpolation matrix with centres � is
bounded below by |�| − 1.

Proof: The �2-condition number is the same as the – in modulus – largest
eigenvalue divided by the smallest eigenvalue. We note that φ is necessarily
nonnegative. Now, because the interpolation matrix has only nonnegative en-
tries, the largest eigenvalue is bounded from below by

min
ζ∈�

∑
ξ∈�

φ(‖ζ − ξ‖) ≥
(
|�| − 1

)
φ(2q),

the separation distance q still having the same meaning as before. Moreover, the
smallest eigenvalue can be bounded from above by φ(2q) − φ(0) ≤ φ(2q).
This is because we may apply Cauchy’s interlacing theorem to the two-by-
two principal submatrix of the interpolation matrix which has entries φ(0) on
the diagonal and φ(2q) elsewhere. Concretely, this means that the smallest
eigenvalue is bounded by φ(2q), which gives the result, recalling our lower
bound on the largest eigenvalue from the above display, namely (|�|−1) times
φ(2q).

However, this Theorem 5.13 only applies when −φ is a conditionally posi-
tive definite matrix of order one; for other radial basis functions (Narcowich,
Sivakumar and Ward, 1994) are able to give �2 (actually, the statement is more
generally for �p, 1 ≤ p ≤ ∞) bounds on condition numbers that only depend
on q, as defined in (5.21). A typical result is as follows.
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Theorem 5.14. Let φ be conditionally positive definite of order zero and the
separation radius q be fixed and positive, let Dq be the collection of all finite
subsets of centres� of R

n whose separation radii are at least q. Then sup ‖A‖p

over all� ∈ Dq is finite for all 1 ≤ p ≤ ∞, where A is as usual the interpolation
matrix for the given radial basis function and centres.

There is another highly relevant feature of radial basis function interpolation
to scattered data which we want to draw attention to in the discussion in this
book. We have noted the importance of the norm estimates to the interpolation
matrices and their inverses above, and of course we know about the importance
of the convergence estimates and the approximation orders therein. What we
wish to explain now, at the end of this chapter, is that there is a remarkable
relationship between the convergence order estimates that have been presented
earlier in this chapter and the norm estimates above (precisely: the upper bounds
on �2-norms of inverses of interpolation matrices). It is called the uncertainty
principle.

5.3.4 The uncertainty principle

This relationship which we will demonstrate now was pointed out first and
termed the ‘uncertainty principle’ in Schaback (1993). It is as follows. In order
to explain it, we shall still call the interpolation matrix {φ (‖ξ − ζ‖)}ξ,ζ∈�,
for centres �, the matrix A. For simplicity, we avoid any polynomial term in
the interpolant, that is we restrict ourselves to conditionally positive definite φ

of order zero, where there is no such term. Thus if λ ∈ R
� is such that the

interpolation conditions expressed in matrix form

(5.25) Aλ = { fξ }ξ∈� =: f

hold, it is always true that by multiplication on the left by the vector λT on both
sides of the last display

(5.26) λT Aλ = λT f.

We know that the real eigenvalues of the symmetric positive definite matrix A
are bounded away from zero by a suitable quantity. We have seen such bounds
in Subsection 5.3.1. We take such a positive bound for the eigenvalues and call
it ϑ . Thus we have in hand a positive real ϑ which provides the inequality

ϑ‖λ‖2 ≤ λT Aλ,
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for all vectorsλ ∈ R
�. Therefore, we get from this and from (5.26) the important

inequality

‖λ‖ · ‖f‖ ≥ λT Aλ = λT f ≥ ϑ‖λ‖2.

Moreover, letting λ �= 0 �= ‖f‖ and dividing by the positive number ϑ‖λ‖, we
get

(5.27) ‖λ‖ ≤ ϑ−1 ‖f‖.
Now we recall the definition of the power function. Forgetting for the moment
its use for error estimates, it can be taken for any of the radial basis functions
to be the expression

P(x) = φ(0)− 2
∑
ξ∈�

pξ (x)φ(‖x − ξ‖)

+
∑
ξ∈�

∑
ζ∈�

pξ (x) pζ (x) φ(‖ξ − ζ‖),(5.28)

where the pξ may be arbitrary functions (i.e. not necessarily polynomials) so
long as we have not yet in mind the aforementioned use for error estimates. For
example, pξ (x) may be the full Lagrange functions, i.e. linear combinations of
φ(‖ · −ξ‖) which provide the conditions

pξ (ζ ) = δξζ , ξ, ζ ∈ �.

In fact, in the section about convergence of this chapter, we have taken the pξ

only from the kernel of the associated semi-inner product. The properties which
we use here remain true, however, if the pξ are Lagrange functions on the whole
of �. Moreover, we recall the important fact that by its definition through the
inner product notation at the beginning of this chapter, the power function is
always nonnegative. This is unchanged even if we no longer restrict pξ to K .
Thus, letting the new |�| + 1 vector px be

px =
(
1, (−pξ (x))ξ∈�

)T ∈ R× R
� \ {0}

and

Ax =

 φ(0)
(
φ(‖x − ξ‖)

)
ξ∈�(

φ(‖x − ξ‖)
)T

ξ∈�
A

 ,

we get the quadratic, x-dependent form

P(x) = px
T Ax px

as an alternative form of the power function above. Let x �∈ �. Now, for each
Ax there exists a ϑx > 0 that fulfils the same bound as ϑ does for A because Ax

is obtained very simply from A by amending it by a new row and a new column
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which represent the augmentation of � by x to �′ := � ∪ {x}. Consequently,
with ϑx replacing ϑ while at the same time Ax replaces A, we get from the
above lower eigenvalue estimate (5.27) now

(5.29) ϑx ‖λ̃‖2 ≤ λ̃
T

Ax λ̃, λ̃ = (λ̂,λ)T ∈ R× R
�,

for all x /∈ �. Next, it follows from setting in the above display λ̃ := px and
from computing its Euclidean norm that

ϑx

(
1+

∑
ξ∈�

p2
ξ (x)

)
≤ P(x),

because ‖px‖2 = 1+
∑
ξ∈�

p2
ξ (x). In particular, we get the so-called uncertainty

principle below. It was proved in the original article by Schaback for general
conditionally positive definite functions, and we state it so here.

Proposition 5.15. If φ is any strictly conditionally positive definite radial
basis function and P(x), ϑx are defined through (5.28) and (5.29), respectively,
then

P(x)ϑ−1
x ≥ 1,

which is the uncertainty principle.

If φ is conditionally positive definite of positive order, we can use the work of
Subsection 5.3.2 to establish a bound (5.29). Recalling thatϑx is a lower positive
bound on the smallest eigenvalue of the extended interpolation matrix Ax , thus
1/ϑx ≥ ‖A−1

x ‖2, and recalling that bounding P(x) above is a most important
intermediate step in our convergence estimates, cf. our proof of Theorem 5.5
for instance, we can see that upper bounds on �2-norms of inverses of A and
associated convergence orders are deeply interrelated through the uncertainty
principle.

Concretely, ifϑx is big – thus our norm estimate is small which is the desirable
state of affairs – then P(x) cannot be small as well. This is why this is called the
uncertainty principle in Proposition 5.15. Indeed, in most cases we use bounds
of the following form, where the first one is for the convergence proofs, and
we have encountered it already in this chapter in different shape, e.g. when
bounding (5.13):

P(x) ≤ F(h),

ϑx ≥ G(q),

with continuous and decreasing F and G for small arguments h → 0 and
q → 0. These two functions are often monomials (see Table 5.1).
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Table 5.1

Radial basis function φ(r ) F(h) G(h)

r 2k−n, 2k − n /∈ 2Z+, 2k > n h2k−n h2k−n

r 2k−n log r, 2k − n ∈ 2Z+ h2k−n h2k−n

(r 2 + c2)α, α /∈ Z+, e−δ̃/h h2e−24/h2
(2α = 1, n = 2),

α > − 1
2 n, c > 0 h e−4n/h (2α = c = 1),

h2α e−12.76cn/h

Typical functions F and G that correspond to some of our radial basis func-
tions are given in Table 5.1, where e.g. the first two expressions for G for
multiquadrins are already known from Subsection 5.3.2 and constants that are
independent of r and h are omitted from F and G in order to increase the
readability of the table, taken from the paper by Schaback (1995a). The δ̃ is a
positive constant, independent of h.

We may simplify this even further, if we make a choice of centres such that
we have for h and q and some δ > 0

q ≥ 1

2
hδ.

Then one can establish the bounds

G
(1

2
δh

)
≤ ϑx ≤ P(x) ≤ F(h)

for all x ∈ 
. In closing this chapter, we remark that our analysis above also
provides bounds on the Lagrange functions mentioned before, namely

1+
∑
ξ∈�

pξ (x)2 ≤ P(x)

ϑx
≤ F(h)

G
(

1
2δh

) .
This means in particular that they cannot grow too quickly (in other words, too
badly) in regions where there are sufficiently many regularly (not gridded, but
‘sufficiently close’ to a grid) distributed centres ξ , because then q is not too
small in relation to h, and thus δ in the penultimate display need not be very
small.
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Radial Basis Functions with Compact Support

6.1 Introduction

This chapter deals with radial basis functions that are compactly supported,
quite in contrast with everything else that we have encountered before. In fact
the constructions, concepts and results developed in this chapter are closely
related to the piecewise polynomial B- and box-splines of Chapter 3 and the
finite elements of the well-known numerical methods for the numerical solution
of (elliptic) differential equations. The radial basis functions we shall study now
are particularly interesting for those applications. Compactly supported radial
basis functions are particularly appealing amongst practitioners.

They can be used to provide a useful, mesh-free and computationally efficient
alternative to the commonly used finite element methods for the numerical
solution of partial differential equations.

All of the radial basis functions that we have considered so far have global
support, and in fact many of them do not even have isolated zeros, such as the
multiquadric function for positive c. Moreover, they are usually increasing with
growing argument, so that square-integrability and especially absolute integra-
bility are immediately ruled out. In most cases, this poses no severe restrictions
since, according to the theory of Chapter 5, we can always interpolate with these
functions. We do, however, run into problems when we address the numerical
treatment of the linear systems that stem from the interpolation conditions, as
we have seen in the discussion of condition numbers in the previous two chap-
ters and as we shall see further on in Chapter 7. On the other hand, we can form
quasi-interpolating basis functions ψ (not to be confused with our growing ra-
dial basis functions φ from which they stem), and the ψ decay quickly. This
is a change of basis as is the further use of the Lagrange functions L that we
have studied in Chapter 4 and that decay quickly too. Sometimes, we can get
very substantial, fast decay and the spaces for the radial basis functions contain

147
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bases which are ‘essentially’ locally supported. The importance of this idea is
nicely illustrated by the case of polynomial splines where we use the B-spline
basis to render the approach practicable.

A similar thought was important for our convergence proofs and it plays an
important rôle in the design of the fast algorithms of the next chapter.

The above substantive arguments notwithstanding, there are applications that
demand genuine local support which none of our radial basis functions studied
up to now can provide, in spite of their otherwise highly satisfactory approxi-
mation properties. One reason for the requirement of compact support may be
that there are such masses of data, which need to be interpolated, that even ex-
ponential or quick algebraic decay is not sufficient to localise the method well
enough so as to provide stable and fast computations. Further applications, e.g.
from meteorology, require the approximants to vanish beyond given cut-off
distances.

Among the many practical issues associated with choosing a suitable data
fitting scheme is the need to update the interpolant often with new data at new
locations, and this may need to be done fast or in ‘real time’ for applications.
Updating interpolants for radial basis functions with global support, however,
requires significant changes to the nonsparse interpolation matrix – one com-
plete (nonsparse) row and column are added each time a new centre comes
up – whereas interpolation matrices with compactly supported basis functions
are usually banded and admit easy ‘local’ changes in the sparse matrix when
centres are added, for example. Also, in standard finite element applications,
compact support for the test functions with which the inner products are formed
is usually required in order that the resulting stiffness matrices are banded and
that the inner products which form their entries are easily computable, either
explicitly or by a quadrature rule. A typical finite element application results
from a Galerkin ansatz to solve linear or even nonlinear elliptic PDEs numeri-
cally, where the given differential equation is reformulated in a weak form that
contains inner products of the test functions as outlined in the last section of
Chapter 2. In this case, the quadrature of the integrals which form the inner
products is the computational ‘bottle neck’, because the integrals have to be
computed accurately, and there are many of them in a high-dimensional stiff-
ness matrix. If the test functions are compactly supported, many of the inner
products vanish and therefore the stiffness matrix whose entries are the inner
products becomes banded.

Finally, we may be dealing with exponentially growing data that do not fit
into our algebraically localised (i.e. with algebraically decaying basis functions)
quasi-interpolating methods or radial basis function interpolation schemes
because their fast increase influences the approximants everywhere.
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In the search for compactly supported radial basis functions, it is important to
remember that we do not want to give up the remarkable nonsingularity results
of Chapters 2 and 5 which are still a fundamental reason for studying and using
radial basis functions. It turns out that there is no need to give up those desirable
properties even while remaining in our general setting of (conditionally) positive
definite functions. Therefore we address first the question what kind of results
we may expect in this direction.

It follows from the Bernstein representation theorem that a compactly sup-
ported univariate function cannot be completely monotonic so long as trivial
cases such as constant functions are excluded. This is so because a globally
supported kernel, that is one on the whole n-dimensional Euclidean space, is –
if exponentially decaying – integrated with respect to a nonnegative measure
(not identically zero), in the Bernstein representation theorem, to form and
characterise a completely monotonic function. In some sense, the ‘most local’
completely monotonic function is the exponential function, i.e. the kernel in
the Bernstein representation, which results if the measure appearing in the rep-
resentation formula is a point measure. And so a compactly supported radial
basis function cannot be (conditionally) positive definite on all R

n . Therefore,
for a start, complete monotonicity cannot be the correct concept in this chapter
about compactly supported radial basis functions.

Also, as we have seen, the property of conditional positive definiteness of pos-
itive order is closely related to the Fourier transform of the radial basis function
having a singularity at the origin; specifically, the converse of Theorem 5.1 – the
proof can be found in the literature, cf. Guo, Hu and Sun (1993) – which states
that conditional positive definiteness of the interpolation matrix for our radial
basis function requires that the derivative of some order is completely mono-
tonic, subject to a suitable sign-change. Further, the proof of Theorem 4.10
shows that the complete monotonicity of the kth derivative of a univariate
function φ: R+ → R implies that the generalised Fourier transform of the
n-variate function φ(‖ · ‖) possesses an algebraic singularity of order k at the
origin.

Now, since every continuous radial basis function of compact support is
absolutely integrable, its Fourier transform is continuous, and, in fact, analytic
and entire of exponential type, a notion which we have already encountered in
the last section of Chapter 4. This rules out conditional positive definiteness of
nonzero order for compactly supported radial basis functions. Thus we are now
looking for functions that give rise to positive definite interpolation matrices for
certain fixed, but not all, dimensions n, and are not completely monotonic. (We
shall see in the sequel that instead multiple monotonicity of a finite order is the
suitable notion in the context of compactly supported radial basis functions.)
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We remark that since it is not possible to construct compactly supported radial
basis functions that are positive definite on R

n for all n, as a result of our remarks
above, we get positive definite functions only for some dimensions, restricted
by an upper bound.

We also include a short study of the convergence of interpolants with com-
pactly supported radial basis functions in a section of this chapter. It is there
where most of the discussion in the approximation theory and radial basis func-
tion community about the usefulness of the radial basis functions with compact
support enters, because the known convergence results are not nearly as good
as those observed for the globally supported ones in the previous two chapters.
In particular, there is a significant trade-off between the size of the support of
the radial basis functions relative to the spacing of the centres – or the number
of centres within – and the estimated error of the interpolant. This may also
mean that special attention may need to be given to the condition numbers of
the matrix of interpolation when methods are used in practice.

We are now in a position to introduce the new concept of positive definite
compactly supported radial basis functions. Specifically, we present two seem-
ingly different classes of radial basis functions that have compact support and
discuss their properties.

6.2 Wendland’s functions

A particularly interesting part of the work in this direction is due to Wendland,
initiated in part by Wu (1995a, b) who was the one of the first approximation the-
orists to study positive definiteness of compactly supported radially symmetric
matrices. Indeed, Wendland demonstrated that certain piecewise polynomial
functions have all the required properties. They usually consist of only two
polynomial pieces. Note that the n-variate radially symmetric φ(‖ · ‖) is not
piecewise polynomial, however, so we are not dealing with spline spaces here
unless the dimension is one.

Moreover, for Wendland’s class of basis functions, we can identify the mini-
mal degree of these pieces such that a prescribed smoothness and positive defi-
niteness up to a required dimension are guaranteed. We have already mentioned
in the introduction to this chapter that the positive definiteness is dimension-
dependent and this clearly shows in the construction. We will describe his
approach in some detail now.

For the Wendland functions, we have to consider radial basis functions of
the form

(6.1) φ(r ) =
{

p(r ) if 0 ≤ r ≤ 1,
0 if r > 1,
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with a univariate polynomial p. As such they are supported in the unit ball,
but they can be scaled when used in applications. The Fourier transform in n
dimensions is, due to a standard formula for radially symmetric functions (see,
e.g., Stein and Weiss, 1971), the univariate transform

(6.2) φ̂(r ) = 2πn/2

�(n/2)

∫ 1

0
φ(s)sn−1
n(rs)ds, r ≥ 0.

Here,


n(x) = �
(n

2

)( x

2

)−n/2+1
Jn/2−1(x).

As always, the letter J denotes the standard Bessel function of the order indi-
cated by its index (Abramowitz and Stegun, 1972, p. 358). This is related to 
̃ν

of Chapter 4 by 
n(x) = �( n
2 )2

n
2−1
̃ n

2−1(x, 1). We only integrate over the unit
interval because of the support size [0, 1] of expression (6.1).

It is well-known that this Fourier transform as a function in n dimensions, i.e.
the expression (6.2), is positive if (6.1) is coupled with the univariate polynomial
p(r ) = (1 − r )� and an exponent � ≥ [n/2] + 1 (Askey, 1973). Beginning
with this particular choice, Wendland’s more general radial basis functions are
constructed by integration of this univariate function. This is suitable because of
the surprisingly simple result we state next. The result uses the notation I f (r )
for the integral of f in the form∫ ∞

r
s f (s)ds, r ≥ 0,

if the integral exists for all nonnegative arguments.

Lemma 6.1. If the transformed (Iφ)(‖·‖) is absolutely integrable as a function
of n variables, then the radial part of its Fourier transform is the same as the
radial part of the (n + 2)-variable Fourier transform of φ(‖ · ‖), i.e.

φ̂(r ) = 2πn/2+1

�(n/2+ 1)

∫ 1

0
φ(s)sn+1
n+2(rs)ds

= 4πn/2+1

n�(n/2)

∫ 1

0
φ(s)sn+1
n+2(rs)ds, r ≥ 0.

The last line follows from the well-known multiplication formula for the
�-function

�(x + 1) = x�(x)

(Gradshteyn and Ryzhik, 1980, p. 937). The proof of this auxiliary result
about the introduced operator I is an easy consequence of direct computa-
tion with a straightforward exercise in computing Fourier transforms and the
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expression (6.2). In fact, as Castell (2000) points out, it can be deduced from
very general principles, where the operator I = I1 is a special case of the
operator

Iκ f (r ) =
∫ ∞

r
(s2 − r2)κ−1s f (s) ds, r ≥ 0,

where κ is a positive constant. For κ = 1, this is the above definition of I.
Now, Castell (2000) shows by using the expansion for the Bessel function from
Gradshteyn and Ryzhik (1980, p. 959)


n(x) = �
(n

2

) ∞∑
k=0

(−1)k
(

x
2

)2k

k!�
(

n
2 + k

)
that


n−2(x) =
( 1

n − 2

)
I1
n(x).

From this, the lemma may be derived. Moreover, we get a one-step recurrence
if we use I1/2 instead (Castell, 2000).

In view of this lemma, we define φn,k(r ) = φ(r ) = Ik(1 − r )�+, where
Ik marks the I-operator applied k times. This is clearly of the general form
(6.1). Furthermore, we assert that φ is positive definite on R

n and 2k times
continuously differentiable if � = [n/2] + k + 1. At this point, this is easy to
establish. Indeed, the Fourier transform is nonnegative and positive on a set of
nontrivial measure by Lemma 6.1 and by the remark we made above about the
Fourier transform of (1 − r )�+. The differentiability follows directly from its
definition as a k-fold integral and from the definition of �. The following two
results claim uniqueness of this function of compact support and a representation
with recursively computable coefficients. Their proofs can be found in the work
of Wendland (1995).

Proposition 6.2. There is no nonzero function of the form (6.1) that is 2k times
continuously differentiable and conditionally positive definite of order zero and
has smaller polynomial degree than the above p.

Proposition 6.3. We have the representation

Ik(1− r )�+ =
k∑

m=0

βm,krm(1− r )�+2k−m
+

with recursively computable coefficients

β j,k+1 =
k∑

m= j−1

βm,k
[n + 1]m− j+1

(�+ 2k − m + 1)m− j+2
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and β00 = 1. Here ( · )k is the Pochhammer symbol (q)k = q(q + 1) . . . (q +
k − 1) and [q]k = q(q − 1)(q − 2) . . . (q − k + 1).

We give several examples for radial basis functions of this type for various
dimensions. Examples are for

n = 1 and k = 2 the radial basis function φ(r ) = (1− r )5
+(8r2 + 5r + 1),

n = 3 and k = 3 the radial basis function φ(r ) = (1− r )8
+(32r3 + 25r2 +

8r + 1) and
n = 5 and k = 1 the radial basis function φ(r ) = (1− r )5

+(5r + 1).

The advantage of these radial basis functions is that they have this particularly
simple polynomial form. Therefore they are easy to use in practice and popular
for PDE applications. Their Fourier transforms are nonnegative but not iden-
tically zero which implies the positive definiteness of the interpolation matrix
for distinct centres. This fact follows from Bochner’s theorem which is stated
and used below.

6.3 Another class of radial basis functions
with compact support

In another approach we require compactly supported radial basis functions with
positive Fourier transform, and pursue an altogether different route from the one
used by Wendland by defining the functions not recursively, but by an integral
that resembles a continuous convolution. We obtain a class of functions some
of which are related to the well-known thin-plate splines. Indeed, the functions
we get initially are only once continuously differentiable like thin-plate splines,
but we will later on present an extension which enables us to obtain other
functions of compact support with arbitrary smoothness. This is especially
important in connection with the convergence result which we shall prove for
the radial basis functions of compact support, because, as in the convergence
theorems established in the previous two chapters, the rate of convergence
of the interpolant to the prescribed target function is related to the smoothness
of the approximating radial basis function.

The reason for seeking compactly supported analogues of thin-plate splines
is that we wish to employ their properties in applications, e.g., when differential
equations are solved by radial basis function methods (for the importance of
this issue see our remarks in the last section of Chapter 2 and in the introduction
to this chapter).
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The radial basis functions we seek are generally represented by the
convolution-type integrals

(6.3) φ(‖x‖) =
∫ ∞

‖x‖2

(
1− ‖x‖2/β

)λ

g(β) dβ, x ∈ R
n,

where g is from the space of compactly supported continuous functions on R+.
The resulting expression is clearly of compact support, the support being the
unit ball as in the previous section. It is scalable to other support sizes as may
be required in applications. Further, we shall require that g be nonnegative.
Similar radial basis functions that are related to multiply monotonic functions
and their Williamson representation were already considered in Chapter 4, but
they were not of compact support since the weight function g was not compactly
supported. However, they also gave rise to nonsingular interpolation matrices.

In principle, we can admit radial basis functions whose support radii depend
on the centres φξ (r ) = φ(r/δξ ), but then the interpolation matrix A = {φξ (‖ζ −
ξ‖)} is no longer symmetric and may be singular. Indeed if � consists of zero
and m − 1 centres on a circle of radius two, say, and the centres on the circle
have equal angular distance, then singularity can occur; for this we place m−1
of the basis functions about the points on the circle and we scale the one about
the origin by arranging its support and its coefficient in such a way that we have
a nontrivial approximant which is identically zero on �.

It is easy to see by the Williamson representation theorem that (6.3) is multiply
monotonic because by a change of variables, with nonnegative weight function
g, φ can be reformulated as

φ(r ) =
∫ r−2

0

(
1− r2β

)λ

g(1/β)β−2 dβ, r ≥ 0.

Therefore, we note already at this point that (6.3) is such that φ(
√

r ) is
(λ− 1) times monotonic (see Definition 4.1) by appealing to Theorem 4.13
as mentioned. This justifies our observation in the introduction to this chapter,
namely that radial basis functions with compact support are related to multiply
monotonic functions.

We require φ̂ > 0 everywhere; indeed, this allows an application of Bochner’s
theorem to deduce immediately the positive definiteness of the interpolation
matrix. Alternatively, φ̂ < 0 for negative definiteness. The compact support, and
therefore the integrability of φ and the existence of a smooth Fourier transform,
are guaranteed automatically by the compact support of g in (6.3).

Pertinent is therefore the following result of Bochner (Widder, 1946). We
state it only in the specific, slightly modified way which is suitable for our
application, but in fact it is available as a more general characterisation of all
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nonnegative definite distributions, which have to be the Fourier transform of a
nonnegative measure.

Bochner’s theorem. If the Fourier transform of a continuous F: R
n → R is

positive, then the symmetric matrix with entries F(ξ − ζ ), ξ, ζ ∈ �, is positive
definite for all finite sets of distinct points � ⊂ R

n. Conversely, if a continuous
F: R

n → R is such that all finite matrices with entries F(ξ − ζ ), ξ, ζ ∈ �,
are nonnegative definite, then F must be the Fourier transform of a nonnegative
finite-valued Borel measure.

We have no recursive formula as in the previous section but wish to com-
pute the Fourier transform directly. As has been used in this book before, in
the sequential computations, the symbol =̇ means equality up to a generic
positive (multiplicative) constant whose exact value is immaterial to us in the
analysis. The following evaluation of φ̂ follows the same lines as the analysis at
the end of Chapter 4 concerning multiply monotonic functions. We begin with

φ̂(‖x‖)=̇
∫ ∞

0

∫ √
β

0
(1− s2/β)λsn−1
n(s‖x‖) ds g(β) dβ.

This is, by integrating the truncated power multiplied by the Bessel function,
substituting the expression for 
n into the integral, according to equa-
tion (11.4.10) of Abramowitz and Stegun with µ = 1

2 n − 1, ν = λ,∫ π/2

0
Jµ(z sin t) sinµ+1 t cos2ν+1 t dt = 2ν�(ν + 1)

zν+1
Jµ+ν+1(z).

Making changes of variables ‖x‖√β '→ z, s '→ √
β sin t allows us to deduce

that φ̂(‖ · ‖) is a fixed constant multiple of

‖x‖−λ−n/2
∫ ∞

0
Jλ+n/2

(
‖x‖

√
β
)
βn/4−λ/2g(β) dβ.

This again becomes, by a change of variables, a constant multiple of the integral

‖x‖−n−2
∫ ∞

0
Jλ+n/2(t)tn/2−λ+1g

(
t2‖x‖−2

)
dt.

Finally, by including our particular weight function g we get an expression for
the required Fourier transform,

φ̂(‖x‖)=̇‖x‖−n−2−2µν
∫ ‖x‖

0
Jλ+n/2(t)tn/2−λ+1

(
‖x‖2µ − t2µ

)ν

dt.

As we will see below in the proof of Theorem 6.4, this weight function g
is sufficient for the Fourier transform of the radial basis function to be al-
ways nonzero, where certain additional conditions on the various exponents
are involved. Specifically, we use as additional conditions 0 < µ ≤ 1

2 , that ν
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be at least one, and the following extra requirement which depends on the
dimension:

λ ≥ max

(
1

2
,

1

2
(n − 1)

)
.

For example we can choose for feasible parameters µ = 1
2 and ν = 1, which

leads to the applicable basis functions given below.
In view of the above analysis and recalling Bochner’s theorem, we have the

following Theorem 6.4, where the positivity of the Fourier transform has still
to be settled in the proof following.

Theorem 6.4. For g(β) = (1 − βµ)ν+, 0 < µ ≤ 1
2 and ν ≥ 1, the Fourier

transform of the radial basis function of compact support stated above is ev-
erywhere well-defined and strictly positive, whenever λ satisfies the condition
in the display above. Therefore the associated symmetric interpolation matrix
{φ(‖ξ − ζ‖)}ξ,ζ∈� is positive definite for all finite sets of distinct points � in
n-dimensional Euclidean space.

Proof: We have already computed what the Fourier transform of the radial
basis function is up to a positive constant multiple. The results of Misiewicz
and Richards (1994, Corollary 2.4, using items (i), (ii) and (v)), and the strict
inequalities (1.1) and (1.5) in the paper Gasper (1975a) provide the following
result which we shall summarise here in Lemma 6.5 and shall subsequently use
in our computations.

Lemma 6.5. Let 0 < µ ≤ 1
2 , ν ≥ 1; the so-called Hankel transform, which

is defined as ∫ x

0
(x2µ − t2µ)ν tα Jβ(t) dt,

is positive for all positive reals x if α and β satisfy any of the following three
conditions:

(i) 3
2 = α ≤ β,

(ii) − 1
2 ≤ α = β ≤ 3

2 ,
(iii) α = α0 − δ, β = β0 + δ where α0, β0 satisfy either (i) or (ii) above and δ

is nonnegative.

We continue with the proof of Theorem 6.4. Now, for the case n > 1 of
Theorem 6.4, we use (i) and (iii) and set here α0 = 3

2 , α = 1
2 n − λ + 1, that

is δ = λ + 1
2 − 1

2 n, and β = λ + 1
2 n. So we see that our result is true for

λ ≥ 1
2 (n − 1) – this is in order that the constant δ be nonnegative – provided

that β0 = λ+ 1
2 n−δ ≥ 3

2 . For the latter it suffices that n is at least two, recalling
our condition on λ.
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In the univariate case we apply the result from Lemma 6.5 that the above
display is positive whenever− 1

2 ≤ α0+δ = β0−δ ≤ 3
2 , again for a nonnegative

δ. Thus we get that δ = λ − 1
2 which has to be nonnegative. In other words,

λ ≥ 1
2 . Moreover, we have a condition that α0 + δ = 1 ≥ − 1

2 which is always
true, and β0 − δ = 1 ≤ 3

2 which is easily seen to be true as well.

An example to illustrate this result is provided by the choices λ = ν = 1,
µ = 1

2 , which give

φ(‖x‖) =
{

1
3 + ‖x‖2 − 4

3‖x‖3 + 2‖x‖2 log ‖x‖ if 0 ≤ ‖x‖ ≤ 1,
0, otherwise,

by simple calculation directly from (6.3).
Another example is provided by the choices λ = 1, ν = 4, µ = 1

2 , which
give φ(‖x‖) as the function

φ(‖x‖) =


1

15 + 19
6 ‖x‖2 − 16

3 ‖x‖3 + 3‖x‖4 − 16
15‖x‖5

+ 1
6‖x‖6 + 2‖x‖2 log ‖x‖ if 0 ≤ ‖x‖ ≤ 1,

0, otherwise.

We recall that these functions can be scaled for various support sizes. We
also note that the resulting basis functions are continuously differentiable as
multivariate functions. Indeed, possessing one continuous derivative is the best
possible smoothness that can be obtained from the results of Theorem 6.4, due
to the nature of the Euclidean norm inside the truncated power in the definition
of our radial basis functions.

There is an extension to this theory which shows that positive definiteness
of the interpolation matrices prevails if we implement certain smoother radial
basis functions of compact support instead. The proofs are more involved but
nonetheless follow the same ideas as the proof of Theorem 6.4.

Theorem 6.6. Let n, µ and g be as above, ν ≥ 1, and suppose λ and ε > −1
are real numbers with

λ ≥


1, ε ≤ 1

2λ, if n = 1, or
1
2 , ε ≤ min

(
1
2 , λ− 1

2

)
, if n = 1, and

1
2 (n − 1), ε ≤ 1

2

(
λ− 1

2 (n − 1)
)
, if n > 1.

Then the radial basis function

φ(‖x‖) =
∫ ∞

‖x‖2

(
1− ‖x‖2/β

)λ

βεg(β) dβ, x ∈ R
n,

has an everywhere positive Fourier transform. It therefore gives rise to positive
definite interpolation matrices for finitely many distinct centres in n-dimensional
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Euclidean space. Moreover, those radial basis functions satisfy φ(‖ · ‖) ∈
C1+"2ε#(Rn).

Proof: We apply the same arguments as before, and therefore shall be brief
here; we note in particular that according to Lemma 6.5 (iii) the Fourier trans-
form of φ is still positive within the stated range of ε, for the following
reasons.

(1) The α in the proof of Theorem 6.4 may be replaced by α = 1
2 n − λ+ 1+

2ε, and Lemma 6.5 states that the positivity of the Fourier transform
prevails, so long as we replace δ by δ − 2ε and δ remains nonnegative.

(2) That we still require the latter to be nonnegative gives rise to the specific
conditions on ε in the statement of the theorem, i.e. that for n > 1 the
quantity ε must be in the range

ε ≤ 1

2

(
λ− 1

2
(n − 1)

)
.

(3) The analysis for n = 1 requires several special cases. Briefly, conditions
(i) and (ii) of Lemma 6.5 show that the conditions λ ≥ 1 in tandem with
ε ≤ 1

2λ are sufficient for our demands. By contrast condition (ii) alone
admits λ ≥ 1

2 , together with ε ≤ min( 1
2 , λ− 1

2 ). On the other hand, no
further comments are supplied here for the rest of the proof of positivity
of the Fourier transform. It is left as an exercise to the reader.

The next fact we need to prove is the smoothness of our radial basis function
as a multivariate, radially symmetric function.

A way to establish the asserted smoothness of the radial basis function of
compact support here is as follows. It uses results from the chapter before last.
Specifically, the Abelian and Tauberian results after the statement of Theo-
rem 4.14 in Chapter 4 can be applied to the Fourier transform of our radial
basis function of compact support. They give for the choice u = ε− λ that this
Fourier transform satisfies φ̂(r ) ∼ r−n−2−2ε for r → ∞. Therefore, recalling
that φ̂ is continuous everywhere else and in particular uniformly bounded in a
neighbourhood of the origin, we have φ̂(r ) ∼ (1+ r )−n−2−2ε. We can employ
the Fourier inversion formula from the Appendix for absolutely integrable and
rotationally invariant φ̂,

φ(r ) = 21−n

�(n/2)πn/2

∫ ∞

0
φ̂(s)sn−1
n(rs)ds, r ≥ 0,

to deduce that we may differentiate the radial basis function of compact sup-
port fewer than 1 + 2ε times and still get a continuous function, each of the
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differentiations giving a factor of order s as a multiplier to the Fourier transform
φ̂(s) in the above display.

We now use our conditions on ν and ε to verify the required conditions
for the application of the analysis of Chapter 4. Specifically, the condition
u = ε − λ > −n/2 − λ − 1 from Chapter 4 is satisfied since we demand
ε > −1 because this immediately implies ε− λ > −λ− 1

2 n− 1, together with
n > 0. The theorem is proved.

6.4 Convergence

The convergence properties with these radial basis functions are satisfactory
but not spectacular and are not, in particular, becoming better with the dimen-
sion n as with most of the other radial basis functions we have seen so far.
One typical result that shows convergence is given below. We note immedi-
ately that no universal constant scaling of the radial basis functions is suitable
when it is of compact support. Indeed, if the data are much further apart than
the support size of the compactly supported radial basis functions, we will
get a useless approximation to the data, although it always interpolates, the
interpolation matrix being a nonsingular diagonal matrix. Conversely, if the
data are far closer to each other on average than the support size of the ra-
dial basis function, we lose the benefits of compact support. Thus, the scaling
should be related to the local spacing of the centres. Therefore, one has to
apply a variable scaling which also shrinks with the distance of the data sites.
This fact is represented in the following typical result, although it only uses
a scaling which is the same for all centres and does not differ locally for dif-
ferent centres. We recall the definition of D−k L2(Rn) for nonintegral k from
Subsection 5.2.1.

Theorem 6.7. Let φ be as in the previous theorem. Let � be a finite set in a
domain 
 with the fill-distance h defined in Theorem 5.5. Finally, let s be the
interpolant to f ∈ L2(
)∩D−n/2−1−εL2(Rn) of the form (for a positive scaling
parameter δ)

s(x) =
∑
ξ∈�

λξφ
(
δ−1‖x − ξ‖

)
, x ∈ R

n,

satisfying the standard interpolation conditions (s − f )|� = 0. Then the con-
vergence estimate

‖ f − s‖∞,
 ≤ Ch1+ε(1+ δ−n/2−1−ε)

holds for h → 0.
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Proof: The interpolant exists because of Theorem 6.6. The first observation
we make is that φδ(‖ · ‖) is the reproducing kernel for the Hilbert space with
inner product defined by the integral for square-integrable f and g as usual

( f, g) = 1

(2π)n

∫
Rn

1

φ̂δ(‖t‖)
f̂ (t)ĝ(t)dt.

Here φδ denotes the scaled radial basis functions φ(·/δ). The terminology fol-
lows the description of the fifth chapter, except that the above is a proper (i.e. not
semi-) inner product.

This reproducing kernel property is actually much easier to show than in the
previous chapter, because our radial basis function here is absolutely integrable
and positive definite due to the positivity of its Fourier transform. Therefore,
the weight function in the above integral is well-defined and positive. Indeed,
let f be square-integrable and let it have finite Hilbert space norm

‖ f ‖2
φδ
= 1

(2π )n

∫
Rn

1

φ̂δ(‖t‖)
| f̂ (t)|2 dt,

as induced by the inner product. This is nothing other than an L2-norm with
positive continuous weight. Then, we get by a standard argument using the
Parseval–Plancherel theorem (see Appendix) applied to the inner product(

f, φδ(‖x − ·‖)
)

the pointwise identity(
f, φδ(‖x − ·‖)

)
= f (x),

because both f and the radial basis function are square-integrable and
continuous.

The analysis by Wu and Schaback (1993) performed with straightforward
modifications, which is similar to our proof of Theorem 5.5, provides the error
estimate for our setting on the right-hand side,

(6.4) ‖ f − s‖∞,
 ≤ C(h/δ)1+ε‖ f ‖φδ
.

We recall where the two factors in (6.4) come from. The first factor in (6.4)
comes, as in the proof of Theorem 5.5, from the bound on the power function,
and the second factor comes from Proposition 5.3 which is now applied to the
Hilbert space X of all functions with finite norm, equipped with inner product
( · , · ) as above and the reproducing kernel k(x, y) = φδ(‖x − y‖). There is no
additional polynomial term as in Section 5.2, because the radial basis functions
we use in this chapter give rise to positive definite interpolation matrices, i.e.
they are conditionally positive definite of order zero.

Now, a bound on the second factor on the right-hand side of (6.4) will lead to
the desired result. It can be bounded as follows. We use that φ̂(0) is a positive
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quantity and that φ̂(r ) ∼ r−n−2−2ε for r →∞ from the proof of Theorem 6.6.
We therefore we have the estimate φ̂(r ) ∼ (1+ r )−n−2−2ε for all r .

Next, we have, recalling the definition of φδ and its Fourier transform as can
be computed by the rules specified in the Appendix, the following integral:

(6.5) (2π )nδn‖ f ‖2
φδ
=

∫
Rn

1

φ̂(δ‖t‖)
| f̂ (t)|2 dt.

This can be bounded above uniformly by a fixed constant positive multiple of

(6.6) ‖ f ‖2
2 + δn+2+2ε

∫
Rn

‖t‖n+2+2ε| f̂ (t)|2 dt.

The first norm in (6.6) denotes the standard Euclidean function norm, as we
recall. We note in passing that this estimate implies that our reproducing kernel
Hilbert space X is a superset of

L2(Rn) ∩ D−n/2−1−εL2(Rn).

In summary, this gives the error estimate

‖ f − s‖∞,
 ≤ C(h/δ)1+ε(δ−n/2 + δ1+ε).

This provides the required result.

The same convergence analysis can be carried through for the radial basis
functions of compact support of Wendland. One available result from Wendland
(1998) is the following.

Theorem 6.8. Let φ be the unique radial basis function of the form (6.1) as
stated in Proposition 6.3 for the integer k at least one. Let s = n/2+k+1/2 and
� be a finite set in a domain
with the fill-distance h as defined in Theorem 5.5.
Let, finally, s be the interpolant to f ∈ D−s L2(Rn) of the standard form

s(x) =
∑
ξ∈�

λξφ(‖x − ξ‖), x ∈ R
n,

with the interpolation conditions (s− f )|� = 0. Then the uniform convergence
estimate

‖ f − s‖∞,
 ≤ Chk+1/2

holds for h → 0 and a fixed h-independent, but f-dependent, positive con-
stant C.

We note that here the number of centres in each of the supports of the shifted
radial basis functions grows.
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6.5 A unified class

As always in mathematics, we aim to unify results and cast separate classes of
functions into one class wherever that is possible. It turns out that it is for the
class of Wendland’s radial basis functions of compact support and those of the
subsection before last. Indeed, it is remarkable, then, that Wendland’s functions
may also be interpreted as certain special cases of our functions of Section 6.3.
This can be demonstrated as follows.

To wit, we note that if we apply the differentiation operator which is inverse
to I from Section 6.2,

D f (r ) = −1

r
f ′(r ), r ≥ 0,

to our radial basis functions of Theorem 6.6 (see also Castell, 2000), it gives
for the choice µ = 1

2 and any integral λ

Dλφ(r ) = λ!2λ

∫ 1

r2
βε−λ(1−

√
β)ν dβ, 0 ≤ r ≤ 1,

the unscaled radial basis functions being always zero outside the unit interval
in this chapter. Therefore, if we apply the differentiation operator once again
and evaluate the result explicitly, we get for Dλ+1φ(r )

Dλ+1φ(r ) = λ!2λ+1r2ε−2λ(1− r )ν+ = λ!2λ+1(1− r )ν+, 0 ≤ r ≤ 1,

for ε = λ. Now, in order to get Wendland’s functions, we let λ = k − 1,
ν = [ 1

2 n] + k + 1 and recall that, on the other hand, we know that the radial
basis functions φn,k of Wendland are such that

Dkφn,k(r ) = (1− r )
[ 1

2 n]+k+1
+ , 0 ≤ r ≤ 1,

because D is the inverse operator to I. By comparison of the two preceding
displays, we see that indeed Wendland’s functions may be written in the general
form studied in the section before last, except that there are certain multiplica-
tive constants which are irrelevant. We point out, however, that the proofs of
Section 6.3 about the positivity of the Fourier transforms φ̂ require ranges of
the λ and ν which do not contain the choices we need for Wendland’s functions
above. Therefore his proofs of positive definiteness of those functions are still
needed.
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Implementations

One of the most important themes of this book is the implementation of radial
basis function (interpolation) methods. Therefore, after four chapters on the
theory of radial basis functions which we have investigated so far, we now turn
to some more practical aspects. Concretely, in this chapter, we will focus on the
numerical solution of the interpolation problems we considered here, i.e. the
computation of the interpolation coefficients. In practice, interpolation methods
such as radial basis functions are often required for approximations with very
large numbers of data sites ξ , and this is where the numerical solution of the
resulting linear systems becomes nontrivial in the face of rounding and other
errors. Moreover, storage can also become a significant problem if |�| is very
large, even with the most modern workstations which often have gigabytes of
main memory.

Several researchers have reported that the method provides high quality so-
lutions to the scattered data interpolation problem. The adoption of the method
in wider applications, e.g. in engineering and finance, where the number of data
points is large, was hindered by the high computational cost, however, that is
associated with the numerical solution of the interpolation equations and the
evaluation of the resulting approximant.

In the case where we intend to employ our methods in a collocation
scheme in two or more dimensions in order to solve a differential or inte-
gral equation numerically with a fine discretisation, for instance, it is not at
all unusual to be faced with 105 or 106 data sites where collocation is re-
quired. The large numbers of centres result here from the number of ele-
ments of square or cubic discretisation meshes or other higher-dimensional
structures.

163
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7.1 Introduction

For most of the radial basis functions which we have encountered up to now,
solving the interpolation equations

Aλ = f,

where f = { fξ }ξ∈�, λ = {λξ }ξ∈�, as usual A = {φ(‖ξ − ζ‖)}ξ,ζ∈�, with direct
methods, such as Gauss-elimination, requires as many as O(|�|3) operations
and is therefore computationally prohibitively expensive for the above men-
tioned sizes of the �. (This is so because there is no sparsity in the interpolation
matrix A unless the radial basis functions are of compact support as in the pre-
vious chapter, when A is a band-matrix, with a certain amount of sparsity. This
helps to ease the numerical burden, but in most cases is not sufficient due to
large band-widths.) If A is positive definite, a Cholesky method may be applied
which requires less computational effort but even this reduced work will be too
much if there are 5000 points, say, or more. Incidentally, if A stems from a
conditionally positive definite radial basis function, it can be preconditioned to
become positive (semi) definite. This will be relevant in the last section of this
chapter.

In summary, it is a standard, useful approach to apply iterative methods for
solving the resulting large linear system instead of direct algorithms. This is es-
pecially suitable when the methods are used within other iterative schemes, for
instance for the numerical solution of partial differential equations, so approx-
imate solutions of the interpolation problem are acceptable if their accuracy is
within a specified range, according to the accuracy of the method inside which
the radial basis function approximations are used.

In this chapter, we will describe three efficient such types of approach
to solving the linear systems by iteration. The approaches are responsible
both for the fast solution of the aforementioned linear systems of equations
and for the fast evaluation of the approximants. The two issues are closely
related.

The first approach uses the fact that the radial basis function interpolants
for, say, thin-plate splines (but for instance also multiquadrics), are, in spite
of their global support, in fact acting locally. This is so because there exist,
as we have seen especially in the case when the data are located on a square
integer grid, quickly decaying Lagrange functions in the radial basis function
spaces for interpolation, or other decaying functions for quasi-interpolation.
Thus we are entitled to expect that we may in some sense localise the com-
putations of the interpolant’s coefficients λ as well. This motivates the basic
idea of the first approach, which we shall call after its inventors the BFGP
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(Beatson–Faul–Goodsell–Powell) method and of which there is an alternative
implementation in the shape of a Krylov subspace method; it is as follows.

We assume that the coefficients of the required interpolant depend almost
exclusively on the nearby scattered data sites, then decompose and solve the
problem accordingly and derive an iterative method that reduces the residuals
quickly in each step. The type of approach that is employed here is a domain
decomposition approach, in the language of algorithms for the computation of
numerical solutions of differential equations. Indeed, it subdivides the spatial
domain of the problem containing the full data set � into small subdomains
with few centres (small subsets of �) inside each, where the problem can be
solved more easily because it is much smaller. The idea differs from the usual
domain decomposition algorithms, however, in that the different subdomains in
which the centres we use reside are not disjoint – or even ‘essentially disjoint’,
i.e. overlapping by small amounts.

In this, as well as in the next section, we focus on the important special case
of thin-plate spline interpolation. We note, however, that the methods can, in
principle, be applied to all radial basis functions (4.4) and their shifts such as
multiquadrics, shifted logarithms log(r2 + c2) for positive parameters c, etc.

A second route we pursue is a so-called multipole method, an approach
which has been fostered in the form that is suitable for radial basis functions
mainly by Powell, Beatson, Light and Newsam. Originally, however, the basic
idea is due to Greengard and Rokhlin (1987) who used the multipole method to
solve integral equations numerically when they have globally supported kernels
that lead to large, densely populated discretisation matrices. Thereby they want
to reduce the computational complexity of particle simulations. The problems
which come up when numerical solutions of the linear systems are computed
with those matrices are the same as the ones we face with our collocation
matrices, namely the absence of sparsity, large condition numbers etc. The
multipole method we describe in the third section relies on a decomposition
(and thus structuring) of the data in a similar way to that in the BFGP algorithm,
but it does not use the locality of the approximants or any Lagrange functions as
such. Moreover, the sets into which the centres � are split, are usually disjoint
and in a grid-like structure.

Instead of the Lagrange function’s locality, the fast multipole method uses the
fact that the radial basis functions like thin-plate splines are, except at the origin,
expandable in infinite Laurent series. For numerical implementation, these se-
ries are truncated after finitely many terms, the number of retained terms being
determined by the accuracy which we wish to achieve. The idea is then to group
data sites within certain local domains together and approximate all thin-plate
spline terms related to those centres as a whole, by a single short asymptotic
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expansion. This reduces the computational cost substantially, because the thin-
plate spline terms related to each centre need no longer be computed one by one.
This is particularly pertinent in the thin-plate spline case, for example, because
of the logarithmic term that makes this one-by-one evaluation prohibitively ex-
pensive. The same is true for taking square roots when multiquadrics are in use.

This ansatz can be used in the manner outlined above whenever we wish to
evaluate the approximant s at an x which is far away from the aforementioned
group of centres. Otherwise, a direct evaluation is applied at a relatively small
cost, because it is only needed for the few nearby centres, few meaning typically
about 30, in implementations.

Bringing these ideas together, we are availing ourselves of a scheme that
admits fast evaluation of large sums of thin-plate splines in one operation per
group of centres. In addition we recall that algorithms such as conjugate gradient
methods or, more generally, Krylov space methods can be applied to solve
Aλ = f efficiently, if we can evaluate matrix by vector multiplications fast; the
latter is equivalent to evaluating the approximant

s(ζ ) =
∑
ξ∈�

λξφ(‖ζ − ξ‖)

at vectors of points ζ , because {s(ζ )}ζ∈� = Aλ. The details are described below.
In fact, as we have indicated at the beginning of this section, even if the

computation of the interpolation coefficients is not the issue, efficient and nu-
merous evaluation of the approximants may very well be. For instance, it is the
case when the interpolant, using only a few centres ξ , has to be evaluated very
often on a fine multidimensional lattice. This may be required for comparing
two approximants on that lattice or for preprocessing data that will later be
approximated by another method which is restricted to a square grid. More-
over, this may be needed for displaying a surface on a computer screen at high
resolution. In fact, even the BFGP and Krylov space methods require inside
the algorithm especially fast multiplications of interpolation matrix times co-
efficient vector for computation of the residuals, thus fast multipole methods
are also used in conjunction with the first algorithm we present in this chapter.
This is particularly relevant if we wish to use the BFGP method in more than
two dimensions (although at present implementations are mostly used only up
to n = 4 – Cherrie, Beatson and Newsam, 2000).

The third approach we offer is that of directly preconditioning the matrix A
with a preferably simple preconditioning matrix P, which is quite a standard
idea. Standard iterative methods such as a Gauss–Seidel or conjugate gradient
method can then be applied to A. However, it is normal that ill-conditioning
occurs, sometimes severely so, as we have learned in Chapters 4 and 5, and



7.2 The BFGP algorithm 167

the speed of convergence of the conjugate gradient method depends very sensi-
tively on the condition number. Moreover, often the symmetric matrix A is itself
positive definite not on the whole of R

� but only on a subspace, a hyperplane
for instance. So the radial basis function is conditionally positive definite, and
indeed a preprocessing is required to move the spectrum of A to the positive real
half-line anyhow. As such it is unsuitable to apply standard methods to solve
our linear system without extra work. In many cases, however, we have enough
information about the properties of φ to find suitable preconditioning matrices
for A. For instance, as we have learned in this book already, in many cases
φ(‖ · ‖) is the fundamental solution of an elliptic, radially invariant differential
operator, such as the Laplace operator or the bi-harmonic operator, i.e. that
operator applied to φ(‖ · ‖) gives a multiple the Dirac δ-function. Therefore we
may approximate those operators by discretisation and obtain decaying linear
combinations of shifts of φ(‖ · ‖), much like the linear combinations that oc-
curred in our discussion of quasi-interpolation in the fourth chapter. Dyn, Levin
and Rippa were the first to attempt such schemes successfully, both on square
grids and later on scattered data sites. They gave guidance to preconditioning
thin-plate spline and multiquadric interpolation matrices. Explicit expressions
for the preconditioning coefficients are presented that constitute scattered data
discretisations of bi-harmonic differential operators.

In fact, in many cases finding a suitable preconditioner is the same as finding
coefficients of quasi-interpolating basis functions ψ that are finite linear com-
binations of translates of our radial basis functions. This is not surprising, as
in both cases we wish to get a localisation of our globally acting radial basis
functions although localisation per se does not automatically mean a better con-
ditioning of the interpolation matrix A unless we achieve diagonal dominance.

In the simplest cases, however, both the coefficients of theψ and the entries of
a preconditioning matrix are coefficients of a symmetric difference scheme and
lead to better condition numbers of A and better localisation simultaneously.
This is straightforward to establish in the case of a grid of data sites (as is
quasi-interpolation in this setting) but it may be less suitable if the data are
unstructured. Again, the details are given below.

7.2 The BFGP algorithm and the new Krylov method

This algorithm is, as already outlined above, based on the observation that
there are local, sufficiently quickly decaying cardinal functions for radial basis
function interpolants for φ from a class of radial basis functions. This class
contains all radial basis functions where decaying cardinal functions for gridded
data were identified in Chapter 4 and, in particular, all φ of the form (4.4) and
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their shifts, such as thin-plate splines or multiquadrics, are included. The data
� we use now are allowed to be arbitrarily distributed in Euclidean space R

n

and the algorithm computes an interpolant at those data sites to given function
values, as we are familiar with in this book. Of course, the arbitrariness of
the distribution must be slightly restricted by the condition that � contains a
K -unisolvent subset.

7.2.1 Data structures and local Lagrange functions

The first requirement is to structure the data into groups of about q = 30 sites
at a time which are relatively close together. The number 30 (sometimes up
to 50) is used successfully for q in current thin-plate spline implementations
for two or three dimensions. Further, we assume that there is a number q∗ of
data with which we can solve the interpolation system directly and efficiently;
this is certainly the case when q∗ is also of the order of 30 points for instance
but it may be of the order of a few hundred. Often, one chooses q = q∗. In
the simplest case, we can use a standard elimination procedure for solving the
linear system such as Gauss-elimination or Cholesky factorisation if the matrix
is positive definite (see our remarks at the beginning of the previous section,
and the final section of this chapter).

Since the following method is iterative, it is helpful now to enumerate
the finite number of data (which are still assumed to be distinct) as � =
{ξ1, ξ2, . . . , ξm}.

There are various useful ways to distribute the centres in � into several
nondisjoint smaller sets. One is as follows. For each k = 1, 2, . . . ,m − q∗,
we let the set Lk consist of ξk and those q different points among ξ�, where
� = k+1, k+2,. . . , which minimise the Euclidean distances ‖ξk−ξ�‖ among
all ξk+1, ξk+2, . . . , ξm . If there are ties in this minimisation procedure, they are
broken by random choice. The set Lm−q∗+1 contains the remaining q∗ points,
that is we let

Lm−q∗+1 = {ξm−q∗+1, ξm−q∗+2, . . . , ξm}.
As an additional side-condition we also require each of the sets of points to
contain a K -unisolvent subset in the sense of Section 5.2, according to which
radial basis function is in use, K being the kernel of the semi-inner product
associated with the radial basis function φ. For instance, for two dimensions
and the thin-plate splines, K is the space of linear polynomials and we require
an additional linear polynomial. This may alter our above strategy slightly. That
this can be done, however, for each of our sets of nearby points is only a small
restriction on the � which are admitted. For higher-dimensional problems we
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may have to increase the proposed number q = 30 points for each of the local
sets Lk when K has dimension more than 30, but for example for thin-plate
splines in two dimensions, q = 30 will be sufficient.

One suitable selection is to choose the last dim K points to be unisolvent, or
renumber the points in � accordingly. Then they are included in all Lk . Three
points like that are sufficient when thin-plate splines are used in two dimensions.

Next, we introduce the central concept of local Lagrange functions L loc
k

associated with Lk . They are linear combinations

(7.1) L loc
k (x) =

∑
ξ∈Lk

λkξφ(‖x − ξ‖)+ pk(x), x ∈ R
n,

with pk ∈ K and with the usual side-conditions on the coefficients not stated
again here, which satisfy the partial cardinality conditions within the Lk

(7.2) L loc
k (ξk) = 1, L loc

k |Lk\{ξk }= 0.

Because the cardinality |Lk | is relatively small, each of the sets of coefficients
λkξ can be computed directly and efficiently by a standard method. This is done
in advance, before the iterations begin, and this is always the way we proceed
in the practical implementation of the algorithm.

The basic idea is now to approximate the interpolant at each step of the
main iteration by a linear combination of such local Lagrange functions, in lieu
of the true Lagrange functions which would have to satisfy the full Lagrange
conditions on the whole set � of centres for the given data and which would,
of course, lead to the correct interpolant without any iteration.

Using these approximate Lagrange functions during the iteration, we remain
in the correct linear space U which is, by definition, spanned by the translates
φ(‖ ·−ξ‖), ξ ∈ �, and contains additionally the semi-norm kernel K . We note
that the space U contains in particular the sought interpolant s∗. Because, in
general, it is true that the local Lagrange functions satisfy

L loc
k |�\Lk �= 0,

this produces only a fairly rough approximation to the Lagrange functions. The
reduction of the error has to be achieved iteratively by successive correction of
the residuals. Therefore, the corrections of the error come from recursive appli-
cation of the algorithm, where at each iteration the same approximate Lagrange
functions are employed. We note, however, the remarkable fact that it is not even
required that |L loc

k | restricted to � \ Lk be small. Instead, as Faul (2001) shows
in a re-interpretation of the algorithm we shall present below, the semi-inner
products (L̃ loc

j , L̃ loc
k )∗ should be small for j �= k for efficiency of the algo-

rithm. Using Faul’s approach we may view the algorithm as a Jacobi iteration
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performed on a positive definite Gram-matrix with such entries which is ex-
pected to converge faster, of course, if the off-diagonal elements are small. Here,
L̃ loc

j are the local Lagrange functions normalised to have semi-norm one, that is

L̃ loc
j = L loc

j

‖L loc
j ‖∗

.

We recall that such a Gram-matrix is always nonnegative definite, and if the gen-
erating functions are linearly independent and not in the kernel of the semi-inner
product, it is nonsingular. This is the case here, as the local Lagrange functions
L̃ loc

j , j = 1, 2,. . . , are never in K unless there are as many points as or fewer
than dim K , and they are linearly independent by the linear independence of
the translates of the radial basis functions and the cardinality conditions.

We remark already at this point that the algorithm we describe in this section
will be an O(m log m) process. This is because we require approximately m of
the local Lagrange functions, each of which requires a small, fixed number of
operations to compute the coefficients – this number is small and independent
of m – and because the evaluation of the residuals which is needed at each
iteration normally requires O(m log m) computer operations with a suitable
scheme being used for large m, such as the one related to the particle methods
presented in the next section. In fact, those methods require only O(log m)
operations for the needed function evaluation but the set-up cost for the Laurent
expansions uses up to O(m log m) operations.

7.2.2 Description of the algorithm

Throughout this section we let s denote the current numerical approximation
to the exact required radial basis function interpolant s∗; this s is always in the
set U .

To begin with, we let j = 1, s1 = s = 0. Each step of the algorithm within
one sweep replaces s j = s by s+ ηk , k = 1, 2, . . . ,m− q∗, ηk being a suitable
correction that depends on the current residuals (s − f )|� and that is defined
below. We then finish each full iteration (also called a ‘sweep’) of the algorithm
by replacing the sum

s̃ = s + η1 + η2 + · · · + ηm−q∗

by s j+1 = s̃ + η̃. Here η̃ is the radial basis function interpolant to the resid-
ual f − s̃ at the final q∗ points that may be computed either with a direct
method such as Cholesky or preconditioned Cholesky or by applying perhaps
one of the alternative preconditioning methods that will be described in detail
in Section 7.4. Thus one full ‘sweep’ of the algorithm which replaces s j by s j+1
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will be completed and constitutes a full iteration. We are now in a position to
present the details of the algorithm within each iteration step j = 1, 2, . . . .

The interpolation conditions we demand for the final, additional term η̃ are

(7.3) η̃(ξ ) = fξ − s̃(ξ ), ξ ∈ Lm−q∗+1.

This final correction term η̃ is derived by standard radial basis function interpo-
lation at q∗ points, and this part of the scheme remains identical in all variants of
the BFGP method. However, we now turn to the key question of how the other
ηk are found so that they provide the desired iterative correction to the residuals.

The simplest way is to take for each index k the update

(7.4) ηk(x) =
(∑
ξ∈Lk

(
fξ − s(ξ )

)
λkξ

)
φ(‖x − ξk‖).

This is the shift of the radial basis function φ(‖x − ξk‖) times that coefficient
which results from the definition of the local Lagrange functions when ηk

is being viewed as part of a cardinal interpolant to the residuals on Lk . The
residuals that appear in (7.3)–(7.4) can be computed highly efficiently through
the method presented in Section 7.3. We remind the reader that all coefficients
λkξ are worked out before the onset of the iteration and therefore need no further
attention.

In order to understand the method better, it is useful to recall that if the
Lk were all �, i.e. q = |�|, and we set, for simplicity, q∗ = 0, and we also
use, for illustration, K = {0}, then (7.4) would lead immediately to the usual
interpolant on all of the data, because the coefficients λ would be the ordinary
cardinal functions’ coefficients. Thus from (7.2) and from the facts that∑

ξ∈�
s(ξ )Lξ (x) = s(x),∑

ξ∈�
fξ Lξ (x) = s∗(x),

recalling that the Lξ are the full Lagrange functions, we get the following
expression in a single step of the algorithm, all sums being finite:

s(x)+
m∑

k=1

∑
ξ∈�

(
fξ − s(ξ )

)
λkξφ(‖x − ξk‖)

= s(x)+
∑
ξ∈�

(
fξ − s(ξ )

) m∑
k=1

λkξφ(‖x − ξk‖)

= s(x)+
∑
ξ∈�

(
fξ − s(ξ )

)
Lξ (x) = s∗(x),
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where we have used that λkξ j = λ jξk when Lk = � for all k. This is because the
interpolation matrix A = {φ(‖ζ − ξ‖)}ζ,ξ∈� is symmetric and so is its inverse
which contains the coefficients λkξ j of the full cardinal functions as entries.

This computational algorithm, as it is described, uses only an approximation
to the cardinal functions and therefore only an approximate correction to the
residual can be expected at each step, the iterations proceeding until conver-
gence. Under what circumstances convergence

|s j (ξ )− fξ | → 0

for j →∞ can be guaranteed is explained further below.
At any rate, it turns out to be computationally advantageous to update at each

stage with (7.5) below instead of (7.4), that is the modified expression for the
following second variant of the BFGP algorithm:

(7.5) ηk(x) = 1

λkξk

L loc
k (x)

∑
ξ∈Lk

(
fξ − s(ξ )

)
λkξ .

We note, however, that (7.5) of course contains the term (7.4). It is important
to observe that the coefficient λkξk by which we divide is positive because by
the analysis of Section 5.2, λkξk = (L loc

k , L loc
k )∗ > 0 in the semi-inner product

introduced in that section.
Indeed, since the Lagrange conditions L loc

k (ξ j ) = δ jk hold for ξ j ∈ Lk and
L loc

k has the form (7.1), we have

0 < ‖L loc
k ‖2

∗ = (L loc
k , L loc

k )∗(7.6)

=
(∑
ξ∈Lk

λkξφ(‖ · −ξ‖),
∑
ζ∈Lk

λkζ φ(‖ · −ζ‖)

)
∗
,

where the inequality follows from L loc
k �∈ K since K ’s dimension is much lower

than that of U if trivial cases are excluded. The far right-hand side of the last
display is the same as∑

ξ∈Lk

∑
ζ∈Lk

λkξ λkζ φ(‖ζ − ξ‖)

=
∑
ξ∈Lk

λkξ

(∑
ζ∈Lk

λkζ φ(‖ζ − ξ‖)+ pk(ξ )

)
= λkξk ,

according to the analysis in Section 5.2 and in particular the reproducing kernel
property of φ. We have also employed the fact that p ∈ K for any polynomial
that is added to the sum in the last but one display and used the side-conditions
on the coefficients. It is useful to recall a consequence from the work in the fifth
chapter; namely that the following lemma holds.
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Lemma 7.1. Let � contain a K -unisolvent set and let φ, U and the semi-inner
product ( ·, · )∗ be as above. Then any scalar product (t1, t2)∗ satisfies

(t1, t2)∗ =
∑
ξ∈�

λ̂ξ t2(ξ ),

as long as

t1(x) =
∑
ξ∈�

λ̂ξφ(‖x − ξ‖)+ q(x),

with the usual side-conditions on the coefficients, q ∈ K , and t2 also in U .

The same arguments and Lemma 7.1 imply that we may simplify and cast the
sum of η1, η2, . . . , ηm−q∗ into one operator by using the convenient form

η: g '→
m−q∗∑
k=1

L loc
k

λkξk

(L loc
k , g)∗,

so

f − s '→ η( f − s) =
m−q∗∑
k=1

L loc
k

λkξk

(L loc
k , f − s)∗

=
m−q∗∑
k=1

L loc
k

λkξk

(L loc
k , s∗ − s)∗,

using (L loc
k , s∗)∗ = (L loc

k , f )∗ by the interpolation conditions and by our above
Lemma 7.1.

Hence it follows that s j is replaced by s j+1 = s j + η(s∗ − s j ) + η̃ for
each sweep of the algorithm. Such an operator we will also use later, in the
subsection 7.2.4 in another algorithm.

Powell (1997), who has found and implemented most of what we explain here,
presents, among others, the computational results shown in Table 7.1 using the
update technique demonstrated above. The method was tested on four different
test problems A–D. The centres are scattered in two different problems A
and B. In the third problem C, track data situated on two straight line segments,
the endpoints of which are chosen randomly, are used. The fourth problem D is
the same as C, except that 10 tracks are used instead of 2. In each case, the tracks
must have length at least one. The centres are always in the unit square. The
thin-plate-spline approximant is used in each case and the accuracy required is
10−10. The iteration counts are within the stated ranges as shown in Table 7.1.
For the algorithm, the updates (7.5) are used.

It is important to note that in calculating the residuum at each sweep j of
the single iteration, the same s is used, namely the old approximation to our
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Table 7.1

Centres q Problem A Problem B Problem C Problem D

500 10 31–41 45–51 9–44 31–44
500 30 6–7 7 4–8 7–13
500 50 5 5–6 4–6 5–8

1000 10 43–52 54–67 16–68 39–57
1000 30 7 7–11 5–9 8–13
1000 50 5–6 5–8 4–6 6–8

required interpolant. The algorithm was found to be actually more robust if for
each k the already updated approximant is used, i.e. the ηk−1 is immediately
added to s before the latter is used in ηk . This slight modification will be used
in our convergence proof below because it leads to guaranteed convergence.
Other methods to enforce convergence are introduction of line searches (see
Faul, 2001) or the Krylov subspace method described below. The version (7.5)
above, however, gives a faster algorithm and converges almost as fast as the
more ‘expensive’ one with continuous updates at each stage. The saving in the
operations count which we make with this faster version is by a factor of q .
Incidentally, hybrid methods have also been tested where, for example, the old
s is used for the first [k/2] stages and then an update is made before continuing.

As an aside we mention that an improvement of the convergence speed of the
above method in a multigrid way (Beatson, Goodsell and Powell, 1995) may
be obtained by finding a nested sequence of subsets

� j+1 ⊂ � j , j = 1, 2, . . . , �− 1, �1 = �, |��| > q,

that is such that each � j+1 contains about half the number of elements that
� j does. Moreover, for each j , a collection of subsets {L( j)

k }
|� j |−q∗j
k=1 and the

associated local Lagrange functions are found in the same way as described
before, where each L( j)

k ⊂ � j contains approximately the same number of
elements, still q say. There is also a set L( j)

|� j |−q∗j+1 containing the remaining
points. Then the algorithm is applied exactly in the same fashion as before,
except that at each stage ηk and η̃ depend on� j . Thus we have a double iteration
here: in computing theηk we have a loop over k and then we have a loop over j for
the � j . Finally this algorithm can be repeated up to convergence, convergence
meaning, as always in this section and in the next, that the maximum of the
residuals s(ξ ) − fξ goes to zero (in practice: is smaller in modulus than a
prescribed tolerance). This strategy can lead to improved convergence if the
residuals contain smoother components. The smoother components may be
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removed using fewer centres than the full set �, while the initial updating with
the full set removes any very high frequency components from the error. This
works like a fine to coarse sweep of the well-known multigrid algorithm. For
details see Powell (1996 and 1997). We leave this aside now and turn to the
question of convergence of the algorithm in the following subsection.

7.2.3 Convergence

For the sake of demonstration, we shall prove convergence of one of the versions
of the BFGP method in this subsection for all radial basis functions of the
form (4.4). In some cases each full iteration of the scheme e.g. for thin-plate
splines in two dimensions leads in implementations to a reduction of the residual
by a factor of as much as about 10. Therefore the numerical results provide

max
ξ
| fξ − s j+1(ξ )| ≈ 0.1 max

ξ
| fξ − s j (ξ )|,

e.g. Powell (1994a).
The convergence proof is as follows. It uses the implementation of the method

we have presented where, in the individual updates ηk , each time the most
recent s, i.e. the one already updated by ηk−1, is used. We have pointed out
already that this makes the method more robust in implementations, although
more expensive, and indeed we establish its guaranteed convergence now. In
this description, we recall the notation s for the current approximant to the
‘true’ interpolant s∗. Due to the immediate update of the residuals we need to
introduce a second index k for each stage within each sweep j .

The first thing we note is the fact that the semi-norm induced by the semi-
scalar product of Chapter 5 ‖s− s∗‖∗ is always decreasing through each update
of the algorithm. Indeed, at each stage of the algorithm except the last one, where
an explicit solution of a small system takes place to compute η̃, ‖s − s∗‖2

∗ is
replaced by

‖s∗ − s j,k−1 − ϑL loc
k ‖2

∗

where the factor ϑ is defined through (7.5) as

(7.7) ϑ = 1

λkξk

∑
ξ∈Lk

(
fξ − s j,k−1(ξ )

)
λkξ .

The s is now doubly indexed; as above, the index j denotes the full sweep
number while the index k is the iteration number within each sweep. Note that
if ϑ vanishes, then the algorithm terminates. We see that here the updates are
performed immediately within each sweep. It is elementary to show that the
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quadratic form in the last but one display is least for exactly that value (7.7) of
ϑ , because this choice gives the minimum by the quotient

ϑ = (s∗ − s j,k−1, L loc
k )∗

‖L loc
k ‖2∗

due to ‖L loc
k ‖2

∗ = λkξk > 0, as we have noticed already, and due to the identity

(s∗ − s j,k−1, L loc
k )∗ =

∑
ξ∈Lk

λkξ

(
s∗(ξ )− s j,k−1(ξ )

)
=

∑
ξ∈Lk

λkξ

(
fξ − s j,k−1(ξ )

)
which follows from Lemma 7.1.

In order to complete the proof of the reduction of the semi-norm, we need
only to look at the last stage of the algorithm now. We recall that the final
stage of the iteration adds to s̃ a solution η̃ of a small linear system to obtain the
new s. With this in mind, it is sufficient to prove that the following orthogonality
condition holds (for this standard fact about best least squares approximation
cf., e.g., Section 8.1):

(s∗ − s̃ − η̃, τ ∗)∗ = 0

for all linear combinations

(7.8) τ ∗(x) =
∑

ξ∈Lm−q∗+1

τξφ(‖x − ξ‖)+ p(x),

p ∈ K being a polynomial as required by the theory of Section 5.2, linear in
the paradigmatic thin-plate spline case. We call the set of all such sums T ∗.
Under these circumstances it then follows that η̃ out of all functions from T ∗

minimises the semi-norm ‖s∗ − s̃ − η̃‖∗:
η̃ = argminτ ∗∈T ∗‖s∗ − s̃ − τ ∗‖∗,

So η̃ is the argument where the minimum is attained. Now, the orthogonality
claim is true as a consequence of Lemma 7.1 and

(s∗ − s̃ − η̃, τ ∗)∗ =
∑

ξ∈Lm−q∗+1

τξ

(
s∗(ξ )− s̃(ξ )− η̃(ξ )

)
,

the τξ being the above coefficients of the shifts of the radial basis function in
τ ∗ in (7.8). The right-hand side of the above display vanishes because all the
terms in brackets are zero due to the interpolation conditions stated in (7.3).

In summary, ‖s j−1,k−1−s∗‖2
∗ is always decreasing through each sweep of the

algorithm. Therefore, this quadratic form converges to a limit, being bounded
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from below by zero anyway. Moreover, it follows that specifically

(s∗ − s j,k−1, L loc
k ) → 0, j →∞, ∀k ≤ m − q∗,

from

‖s∗ − s j,k−1 − ϑL loc
k ‖2

∗ = ‖s∗ − s j,k−1‖2
∗ −

(s∗ − s j,k−1, L loc
k )2

∗
‖L loc

k ‖2∗
,

because of the positivity and boundedness of the denominator in the above
display on the right-hand side. Here the parameter ϑ is the same as in (7.7).

At the end of the kth iteration, the current approximation to the interpolant
is s = s j , and in particular (s∗ − s j , L loc

1 )∗ → 0 as j increases. From this it
follows that (s∗ − s j , L loc

2 )∗ → 0 for j → ∞ since at the beginning of the
( j + 1)st iteration,

s j,1 = s j + L loc
1 (s∗ − s j , L loc

1 )∗/λ1,ξ1

and thus (
s∗ − s j − L loc

1 (s∗ − s j , L loc
1 )∗/λ1,ξ1 , L loc

2

)
∗
→ 0.

Alternatively, by Lemma 7.1,
m∑

j=�
λ jξ�

(
s∗(ξ j )− sk(ξ j )

)
→ 0, k →∞,

for all � ≤ m − q∗. From this, it follows that we have pointwise convergence
for all centres, remembering that sk(ξ j ) = s∗(ξ j ) for all j > m − q∗ anyhow
and remembering that λ�ξ� in the above display is always positive.

In summary, we have established the following theorem of Faul and Powell
(1999a).

Theorem 7.2. Let the BFGP algorithm specified above generate the sequence
of iterations s0, s1, . . . .Then sk → s∗ as k →∞ in the linear space U , where
s∗ denotes the sought interpolant.

The method which we have described above extends without change (except
for the different semi-inner product with different kernel K ) to multiquadric
interpolation and there is hardly any change in the above convergence proof as
well. Moreover, work is under way at present for practical implementation of
cases when n > 2 (Cherrie, Beatson and Newsam, 2000, for example).

7.2.4 The Krylov subspace method

A more recent alternative to the implementation of the above BFGP method
makes use of a Krylov subspace method by employing once again the semi-norm
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‖ · ‖∗ used in the previous subsection and in Section 5.2. It uses basically the
same local Lagrange functions as the original BFGP method but the salient
idea of the implementation has a close relationship to conjugate gradient (it
is the same as conjugate gradients except for the stopping criterion and the
time of the updates of the elements of K in the interpolant) and optimisation
methods. There are practical gains in efficiency in this method. Also, it enjoys
guaranteed convergence in contrast with the algorithm according to (7.5) which
is faster than the one shown above to converge, but may itself sometimes fail
to converge.

We continue to let U be the space of approximants spanned by the translates
of the radial basis functions φ(‖ · −ξ‖), ξ ∈ �, plus the aforementioned poly-
nomial kernel K of the semi-inner product. Additionally U j denotes the space
spanned by

(7.9) η(s∗), η(η(s∗)), . . . , η j (s∗),

where s∗ ∈ U is still the required interpolant and η: U → U is a prescribed
operator whose choice is fundamental to the definition and the functioning of the
method. We shall define it below. (It is closely related to the η of the subsection
before last.) The main objective of any Krylov subspace method is to compute
in the j th iteration s j+1 ∈ U j such that s j+1 minimises ‖s − s∗‖∗ among all
s ∈ U j , where we always begin with s1 = 0. Here, ‖·‖∗ is a norm or semi-norm
which corresponds to the posed problem, and it is our semi-norm from above
in the radial basis function context.

We have the following three assumptions on the operator η which must only
depend on function evaluations on �:

(a) s ∈ K =⇒ η(s) = s,
(b) s ∈ U \ K =⇒ (s, η(s))∗ > 0 and
(c) s, t ∈ U =⇒ (η(s), t)∗ = (s, η(t))∗.

Subject to these conditions, the above strategy leads to the sought interpolant
s∗ in finitely many steps when we use exact arithmetic, and in particular the
familiar sequence

(7.10) ‖s∗ − s j‖∗, j = 1, 2, 3, . . . ,

s j denoting the approximation after j − 1 sweeps, decreases strictly monoton-
ically as j increases until we reach s∗. We note immediately that conditions (a)
and (b) imply the important nonsingularity statement that η(s) = 0 for some
s ∈ U only if s vanishes. Indeed, if s is an element from K , our claim is trivially
true. Otherwise, if s is not in the kernel K , then s �= 0 and if η(s) vanishes this
contradicts (b).
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Further, this nonsingularity statement is essential to the dimension of the
space generated by (7.9). In fact, in the opposing case of singularity, the se-
quence (7.9) might not generate a whole j-dimensional subspace U j and in
particular may exclude the required solution s∗ modulo an element of K , which
would, of course, be a disaster. Condition (a) guarantees that the polynomial
part of s∗ from the kernel K will be recovered exactly by the method which is
a natural and minimal requirement.

The coefficients of the iterates s j with respect to the given canonical basis of
each U j are, however, never computed explicitly, because those bases are ill-
conditioned. Instead, we begin an optimisation procedure based on the familiar
conjugate gradients (e.g. Golub and Van Loan, 1989, see also the last section
of this chapter) and compute for each iteration index j = 1, 2, . . .

(7.11) s j+1 = s j + α j d j ,

where d j is a search direction

(7.12) d j = η(s∗ − s j )+ β j d j−1,

which we wish to make orthogonal to d j−1 with respect to the native space
semi-inner product. Moreover, d0 := 0, s1 := 0, and in particular d1 = η(s∗).
No further directions have to be used in (7.12) on the right-hand side in order to
obtain the required conjugacy. This is an important fact and it is a consequence
of the self-adjointness condition (c).

We shall see that condition (b) is important for generating linearly indepen-
dent search directions. The aforementioned orthogonality condition defines the
β j in (7.12), and the α j is chosen so as to guarantee the monotonic decrease.
The calculation ends if the residuals |s j+1(ξ )− fξ | are small enough uniformly
in ξ ∈ �, e.g. close to machine accuracy. In fact, as we shall note in the theorem
below, full orthogonality

(7.13) (d j , dk)∗ = 0, 1 ≤ j < k < k∗,

is automatically obtained with the aid of condition (c), k∗ being the index of
the final iteration. This fact makes this algorithm a conjugate gradient method,
the search directions being conjugate with respect to our semi-inner product.
However, the polynomial terms which belong to the interpolant are computed
on every iteration, while a genuine conjugate gradient method only works on
the preconditioned positive definite matrix and always modulo the kernel K
of the semi-inner product. The necessary correction term from K is then added
at the end of the conjugate gradient process.
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The parameter β j from (7.12) can be specified. It is

β j = −

(
η(s∗ − s j ), d j−1

)
∗

‖d j−1‖2∗
.

The minimising parameter in (7.11) is

α j = (s∗ − s j , d j )∗
‖d j‖2∗

.

It guarantees that ‖s∗ − s j‖∗ is minimal amongst all s j ∈ U j−1 through the
orthogonality property

(s − s j , g)∗ = 0, ∀g ∈ U j−1.

We note that if the required interpolant is already in the kernel of the semi-
inner product, then (a) implies that d1 = η(s∗) = s∗ (recalling that s1 is zero)
and the choice α1 = 1 gives s2 = s∗ as required. Otherwise, s1 being zero, s2 is
computed asα1d1, where d1 = η(s∗) andα1 minimises ‖s∗−α1d1‖∗. Since s∗ �∈
K , (a) implies d1 �∈ K . Hence (d1, d1)∗ is positive and α1 = (s∗, d1)∗/(d1, d1)∗
because of (b). We get, as required, ‖s∗ − s2‖∗ < ‖s∗ − s1‖∗.

Thus, in Faul and Powell (1999b), the following theorem is proved by induc-
tion on the iteration index.

Theorem 7.3. For j > 1, the Krylov subspace method with an operator η

that fulfils conditions (a)–(c) leads to iterates s j with uniquely defined search
directions (7.12) that fulfil (7.13) and lead to positive α j and strictly monotoni-
cally decreasing (7.10) until termination. The method stops in exact arithmetic
in k∗−1 steps (which is at most m−dim K ), where in the case that‖s j−s∗‖∗ van-
ishes during the computation, the choice α j = 1 gives immediate termination.

After the general description of the proposed Krylov subspace method we have
to outline its practical implementation for the required radial basis function
interpolants. To this end, the definition of the operator η is central. If the kernel
K is trivial, i.e. the radial basis function is conditionally positive definite of
order zero – subject to a sign-change if necessary – we use the operator

(7.14) η: s '→
m∑

k=1

(L loc
k , s)∗L loc

k

λkξk

,

where the local Lagrange functions are the same as in the BFGP method defined
in the subsection before last for the sets Lk except that for all k > m − q∗ we
define additionally Lk = {ξk, ξk+1, . . . , ξm} and the associated local Lagrange
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functions. The semi-inner product ( · , · )∗ is still the same as we have used
before. This suits for instance the inverse multiquadric radial basis function.

The positive definiteness is a particularly simple case. In fact, the conditions
(a)–(c) which the operator η has to meet follow immediately. Indeed, there is
no polynomial reproduction to prove in this case. Condition (b) follows from
the fact that the local Lagrange functions L loc

k are linearly independent, as a
consequence of the positivity of their ‘leading (first nonzero) coefficient’ λkξk ,
and because the translates of the radial basis function are linearly independent
due to the (stronger) fact of nonsingularity of the interpolation matrix for distinct
centres. Property (c) is true for reasons of symmetry of the inner product and
due to the definition (7.14).

Taking the approximate Lagrange functions for this scheme is justified by the
following observations. Firstly, the theoretical choice of the identity operator
as η would clearly lead to the sought solution in one iteration (with s2 = α1s∗

and taking α1 = 1), so it is reasonable to take some approximation of that.
Secondly, we claim that this theoretic choice is equivalent to taking mutually
orthogonal basis functions in (7.14). The orthogonality is, of course, in all cases
with respect to ( · , · )∗. This claim we establish as follows.

In fact, it is straightforward to see that the η is the identity operator if and
only if the Lagrange functions therein are the full Lagrange functions, i.e.
q = |�| – see also the subsection before last – and therefore the approxi-
mate Lagrange functions are useful. Further, we can prove the equivalence of
orthogonality and fulfilment of the standard Lagrange conditions. Recalling
the reproducing kernel property of the radial basis function with respect to the
(semi-)inner product and Lemma 7.1, we observe that the orthogonality is a con-
sequence of the assumption that the basis functions satisfy the global Lagrange
conditions

(7.15) L loc
k (ξ�) = 0, � > k,

if L loc
k have the form (7.1), because condition (7.15) and the reproduction prop-

erty in Lemma 7.1 imply the orthogonality

(7.16) (L loc
k , L loc

j )∗ =
∑
ξ∈L j

λ jξ L loc
k (ξ ) = 0

whenever j > k. This is indeed the aforementioned orthogonality. The con-
verse – orthogonality implying Lagrange conditions – is also true as a conse-
quence of (7.16) and the positivity of the coefficients λkξk .

Property (7.2) is a good approximation to (7.15). For the same reasons as
we have stated in the context of the BFGP method, fulfilling the complete
Lagrange conditions is not suitable if we want to have an efficient iterative
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method because this would amount to solving the full linear system in advance,
and therefore we choose to employ those approximate Lagrange functions. This
requires at most O(mq3) operations.

When the kernel K is nontrivial, the following choice of η is fitting. We let
η be the operator

(7.17) η: s '→
m−q∗∑
k=1

(L loc
k , s)∗L loc

k

λk,ξk

+ η̄(s),

where the local Lagrange functions are the same as before. Here η̄(s) is the
interpolant from T ∗ which satisfies the interpolation conditions

η̄(s)(ξ ) = s(ξ ), ξ ∈ Lm−q∗+1.

The fact that η̄(s) agrees with s for all s which are a linear combination of radial
basis function translates φ(‖x − ξ‖), ξ ∈ Lm−q∗+1, and possibly an element
from K , by the uniqueness of the interpolants – it is a projection – immediately
leads to the fulfilment of conditions (a)–(c).

As far as implementation is concerned, it is much easier, and an essential
ingredient of the algorithm, to work as much as possible on the coefficients
of the various linear combinations of radial basis functions and polynomials
involved and not to work with the functions themselves (see Faul and Powell,
1999b). At the start of each iteration, the coefficient vectors λ(s j ) = (λ(s j )i )m

i=1

and γ (s j ) = (γ (s j )i )�i=1 are available for the current approximation, by which
we mean the real coefficients of the translates of the radial basis functions
φ(‖ ·−ξi‖) and of the monomials that span K , respectively. We shall also use in
the same vein the notations λ(d j ), λ(d j−1) etc. for the appropriate coefficients
of d j , d j−1 and other expressions which have expansions, as always, in the
translates of the radial basis functions φ(‖ · −ξi‖) plus a polynomial.

Further, we know the residuals

r j
ξ = fξ − s j (ξ ), ξ ∈ �,

and the values of the search direction at the ξs. Further, λ(d j−1) and γ (d j−1)
are also stored, as are all d j−1(ξi ), i = 1, 2, . . . ,m. The first step now is the
computation of the corresponding coefficients of η(s∗ − s) in the new search
direction which we do by putting s = s∗−s j in the definition of η and evaluating
(L loc

j , s∗ − s j )∗ as
∑

ξ∈L j
λ jξr j

ξ according to Lemma 7.1 and the above display.
When j = 1 at the beginning of the process, the coefficients λ(d j ) and γ (d j )
are precisely the coefficients of η(s∗ − s), otherwise we set

β̃ j = −
∑m

i=1 λ
(
η(s∗ − s)

)
i
d j−1(ξi )∑m

i=1 λ(d j−1)i d j−1(ξi )
.
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Table 7.2

Centres q = Iter. Kryl. φ(r ) = r Iter. Kryl. tps It. BFGP tps

400 10 13 33 29
400 30 6 8 5
400 50 5 7 4
900 10 14 42 36
900 30 7 10 6
900 50 4 8 5

Thus λ(d j ) = λ
(
η(s∗ − s)

)
+ β̃ jλ(d j−1) and γ (d j ) = γ

(
η(s∗ − s)

)
+

β̃ jγ (d j−1). Further

α̃ j =
∑m

i=1 λ(d j )i r
j
ξi∑m

i=1 λ(d j )i d j (ξi )
.

Finally, we set λ(s j+1) = λ(s j ) + α̃ jλ(d j ) and further γ (s j+1) = γ (s j ) +
α̃ jγ (d j ).

Table 7.2 gives the iteration numbers needed in order to obtain accuracy ε =
10−8 with a selection of scattered centres and thin-plate splines and φ(r ) = r
using the Krylov subspace method, and using thin-plate splines and the BFGP
method, respectively. They are taken from Faul and Powell (1999a, 1999b).

7.3 The fast multipole algorithm

There is an intimate relation between the task of evaluating radial basis func-
tion approximants and performing particle simulations or the so-called N -body
problem. One of the most successful methods for the numerical solution of the
particle simulations is the fast multipole method.

The basic idea of the so-called fast multipole method is to distinguish, for
each evaluation of the linear combination s(x) of thin-plate spline terms at x ,
say, between the ‘near field’ of points in � close to x and the ‘far field’ of points
in � far away from x . All thin-plate spline terms of the near field are computed
explicitly whereas collective approximations are used to generate the far field
contributions. It is important that all the dependencies on the centres of the far
field expansions are contained in their coefficients and appear no longer in the
form of translates of a basis function, because this saves the costly individual
evaluations of the radial basis functions. Hierarchical structures on � are gen-
erated and used to track down which assemblies of points are far away from
others. This is quite comparable with the work in the previous section, where
the set of centres was decomposed into small (though overlapping) ‘clouds’ of
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points and where corresponding local Lagrange functions were computed. The
next step, however, is different.

In this method, a so-called multipole or Laurent series is used to approximate
the contribution of each whole cloud of points within that hierarchical structure
as a far field. A final step can be added by approximating several Laurent series
simultaneously by one finite Taylor expansion. To begin with we wish to be
explicit about the aforementioned Laurent expansions. We restrict this section
to thin-plate splines in two dimensions and are generally brief, the full details
are given in the introductory articles by Beatson and Greengard (1997) and
Greengard and Rokhlin (1997).

A typical Laurent series expansion to thin-plate spline terms – which we
still use as a paradigm for algorithms with more general classes of radial basis
functions – is as stated by Beatson and Newsam (1992) as given below. We take
the bivariate case which may be viewed alternatively as a case in one complex
variable.

Lemma 7.4. Let z and t be complex numbers, and define

φt (z): = ‖t − z‖2 log ‖t − z‖.
Then, for all ‖z‖ > ‖t‖,

φt (z) = )
{

(z̄ − t̄)(z − t)

(
log z −

∞∑
k=1

1

k

( t

z

)k
)}

which is the same as

(‖z‖2 − 2)(t̄ z)+ ‖t‖2) log ‖z‖ + )
{ ∞∑

k=0

(ak z̄ + bk)z−k

}
,

where we are denoting the real part of a complex number z ∈ C by )z. Here
bk = −t̄ak and a0 = −t and ak = t k+1/[k(k + 1)] for positive k. Moreover,
if the above series is truncated after p + 1 terms, the remainder is bounded
above by

‖t‖2

(p + 1)(p + 2)

c + 1

c − 1

(1

c

)p

with c = ‖z/t‖.

One can clearly see from the lemma how expansions may be used to approx-
imate the thin-plate spline radial basis functions for large argument and how
the point of truncating the series, i.e. the length of the remaining sum, influ-
ences the accuracy. A typical length of the truncated series in two-dimensional
applications using thin-plate spline is 20. There will be a multiple of log |�|
expansions needed in the implementation of the multipole algorithm.
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It transpires that an important step in the algorithm is again the set-up for
structuring the � in a suitable way. Then it is required to compute suitable
series expansions for the radial basis function at far-away points, that is φ(‖x‖)
for large ‖x‖. For the set-up we need to decide first on the desired acceptable
accuracy. This determines where the infinite expansions are to be truncated. The
next step is the hierarchical subdivision of the domain into panels, and finally
the far field expansions for each panel are computed.

The set-up stage not only constructs the data structure but also prepares
the series coefficients that are required later on in the evaluation stage. This
is again very similar to the work in the previous section, where the coeffi-
cients of the local Lagrange functions were calculated in advance. The data
are cast into a tree structure: If the data are fairly uniformly distributed within
a square in two dimensions which we assume to be a typical case, then the
whole square is the initial parent set which is then repeatedly subdivided into
four – in some implementations two – equally sized subsquare child panels.
This subdivision is then repeated iteratively until some fixed level. Here, we
still remain with the two-dimensional setting, but a three-dimensional version is
given in Greengard and Rokhlin, 1997, where an octtree rather than a quadtree is
generated.

Next, for each childless panel Q we associate an ‘evaluation list’ for that
panel. This works as follows. Every panel that is at the same or a less re-
fined level, whose points are all far away from the panel Q and whose parent
panel is not far away from a point in Q, goes into the evaluation list of Q.
Thus, the far field for any point in Q is the collection of points in the panels
in the evaluation list of Q. The near field of a panel Q contains all the re-
maining points. For each panel R in the so-called evaluation list, the method
proceeds by computing a Laurent expansion for all radial basis functions with
centres in R, and the expansion is about the mid-point of R. We always use
the highest level (largest possible) panels in the evaluation list for the far field
expansions to get the maximum savings in operational cost by evaluating as
many terms as possible at the same time. By taking the length of the expan-
sion suitably (according to the expansions and remainders given for instance
in Lemma 7.4), any accuracy can be achieved by this approach at the price
of greater computational expense. Finally, the method calculates the Laurent
expansions for higher level panels R by translating the centres of the Laurent ex-
pansions of the children of the panel R to the centre of R and combining them.
For this there is a mathematical analysis available in the paper by Beatson
and Newsam (1992) cited in the bibliography whose work we summarise
here and which shows how the series alter when their points of expansion are
translated.
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A typical expansion that approximates an interpolant without a polynomial
added

s(x) =
∑
ξ∈�

λξφ(‖x − ξ‖)

is then of the form

s(x) ≈
p∑

k=1

µkφk(x),

with the remainder ∑
ξ∈�

λξ R̂(x, ξ ),

so that remainder plus approximation gives the exact s(x). Here, we have used
an approximation of the form

p∑
k=1

φk(x)γk(ξ ) ≈ φ(‖x − ξ‖)

whose remainder is, in turn, R̂(x, ξ ), and that gives rise to the remainder in the
previous display.

The algorithm can be further improved by re-expanding and combining the
Laurent expansions as local Taylor expansions. This is possible because the
Laurent series are infinitely smooth away from their centres, so can be approxi-
mated well by polynomials. Working from parents down to children, coefficients
of the Taylor expansion centred on each panel R can be found efficiently by
re-centring (see the paragraph before last) the expansion from the parent level
to other panels and adding contributions from the other panels on the evaluation
list of the child that are not on the evaluation list of the parent. The result is that
all the contribution of a far field is contained in a single Taylor series instead
of several Laurent series which come from the various panels in the evaluation
list of a given panel.

The Laurent series may be computed also for multiquadrics for example, i.e.
not only for thin-plate splines, and have the general form for a panel R

φR(x) =
∞∑
j=0

Pj (x)

‖x‖2 j−1
, ‖x‖ * 0,

for homogeneous polynomials Pj of degree j . Then one needs also the local
Taylor expansions of truncated Laurent series.

In summary, the principal steps of the whole algorithm as designed by Beatson
et al. may be listed as follows.
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Set-up
(1) Perform as described above the repeated subdivision of the square

down to O(| log�|) levels and sort the elements of � into the finest level
panels.

(2) Form the Laurent series expansions (i.e. compute and store their
coefficients) for all fine level panels R.

(3) Translate centres of expansions and, by working up the tree towards
coarser levels, form analogous Laurent expansions for all less refined
levels.

(4) Working down the tree from the coarsest level to the finest, compute
Taylor expansions of the whole far field for each panel Q.

Evaluation at x
(1) Locate the finest level panel Q containing the evaluation point x .
(2) Then evaluate the interpolant s(x) by computing near field contributions

explicitly with a direct linear equation solver for all centres near to x , and
by using Taylor approximations of the far field. For the far field, we use
all panels R that are far away from x and are not subsets of any coarser
panels already considered.

The computational cost of the multipole method without set-up is a large
multiple of log |�| because of the hierarchical structure. The set-up cost is
O(|�| log |�|), but the constant contained in this estimate may be large due
to the computation of the various expansions and the complicated design of
the tree structure. This is so although in principle each expansion is an order
O(1) procedure. In practice it turns out that the method is superior to direct
computations if m is at least of the order of 200 points.

In what way is this algorithm now related to the computation of interpolation
coefficients? It is related in one way because the efficient evaluation of the linear
combination of thin-plate spline translates is required in our first algorithm
presented in this chapter. There the residuals fξ − s(ξ ) played an important
rôle, s(ξ ) being the current linear combination of thin-plate splines and the
current approximation to the solution we require. Therefore, to make the BFGP
algorithm efficient, fast evaluation of s is needed.

However, the importance of fast availability of residuals at the centres is
not restricted to the BFGP method. Other iterative methods for computing
radial basis function interpolants such as conjugate gradient methods are also
in need of these residuals. In order to apply those conjugate gradient methods,
however, usually a preconditioning method is needed, and this will be discussed
in Section 7.4.
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There are various possible improvements to the algorithm of this section. For
instance, we can use an adaptive method for subdividing into the hierarchical
structure of panels, so that the panels may be of different sizes, but always
contain about the same number of centres. This is particularly advantageous
when the data are highly nonuniformly distributed.

7.4 Preconditioning techniques

As we have already seen, the radial basis function interpolation matrix A is
usually ill-conditioned when � is a large set and when φ is, for example, the
multiquadric function (the conditioning is bad for any value of the parameter,
but the situation is getting worse for larger parameters c as we have noted in
Chapter 4), its reciprocal or the thin-plate spline. In this section, we want to
indicate how the matrix’s condition number may be improved before beginning
the computation of the interpolation coefficients. This is the standard approach
when large linear systems of whatever origin become numerically intractable
due to large condition numbers and ensuing serious numerical problems with
rounding errors. It is standard also with spline interpolation and finite element
methods, for instance, and indeed less related to the specific properties of the
radial basis function than the methods in the two sections above. Nevertheless
there is, of course, significant influence of the form of φ on the preconditioning
technique we choose.

We begin by assuming that A is positive definite, as is the case when φ is
the reciprocal multiquadric function. Thus, in principle, a standard conjugate
gradient method can be applied (Golub and Van Loan, 1989) or even a direct
method such as a Cholesky factorisation. The convergence speed of conjugate
gradients, however, severely depends on the condition of the matrix of the linear
system which is being solved. Indeed, if A is positive definite and we wish to
solve (5.25) with the conjugate gradient method, then the error ‖λ j − λ‖A of
the iterate λ j in the ‘A-norm’ ‖y‖A :=

√
yT Ay is bounded by a multiple of(

1−√cond2(A)

1+√cond2(A)

)2 j

.

Convergence under the above conditions may therefore be slow or, indeed, may
fail completely in practice due to rounding errors. This outcome is much more
likely when we are faced with the presence of very large linear interpolation
systems.



7.4 Preconditioning techniques 189

In order to improve the �2-condition-number of the positive definite matrix
A, we solve the system

(7.18) PAPµ = Pf

instead of (5.25), where P is a preconditioning matrix, nonsingular and usually
symmetric – if it is nonsymmetric, the left-multiplications in (7.18) have to
be by PT . P is chosen (e.g. a banded matrix) such that it is not too expensive
to compute the matrix product on the left-hand side of (7.18) and such that
the product is positive definite. We shall come to methods to achieve these
properties below. If P is symmetric and P2 = C, then the matrix product CA
should ideally have a spectrum on the positive real half-axis consisting of a
small number of clusters, one of them near one, because the conjugate gradient
algorithm can deal particularly well with such situations and because P2A ≈ I
is equivalent to PAP ≈ I. Of course, the theoretic choice of C = A−1 would
be optimal, CA being the identity matrix. If P is chosen suitably, then the
condition number of the preconditioned matrix is usually also small. There are
always several choices of P possible and having made one choice, the desired
coefficient vector is λ = Pµ which is evaluated at the end.

Even if A is not itself positive definite because φ is a strictly conditionally
positive definite function of nonzero order k, substantial savings in computa-
tional cost can often be achieved. A good example for this event is, as always,
the choice of radial basis functions (4.4). We perform the preconditioning by
choosing a P as above, except that it will be nonsymmetric and now annihi-
lates a vector {p(ξ )}ξ∈� for any polynomial p of total order less than k by
premultiplication. Equivalently

PK |� = 0,

where the left-hand side is a short notation for P applied to all elements of the
null-space K = P

k−1
n evaluated only on �.

When φ is a strictly conditionally positive definite function of nonzero order
k, some simple additional equations have to be solved in order to identify the
polynomial p in

s(x) =
∑
ξ∈�

λξφ(‖x − ξ‖)+ p(x).

If µ solves (7.18) and λ = Pµ, then the coefficient vector γ of p written as
a linear combination of a basis {p j (x)}�j=1 of K may be found by solving any
nonredundant

� = dim K = dim P
k−1
n =

(
k + n − 1

n

)
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equations from the residual

Qγ = f− Aλ,(7.19)

where Q = {p j (ξ )}�ξ∈�, j=1 and p(x) = γ T {p j (x)}�j=1. Of course, the side-
conditions on the coefficients mean that λ must be in the null-space of QT .

We take the radial basis functions (4.4) as examples with K = P
k−1
n now,

and in that case, P is a rectangular |�| × (|�| − �) matrix whose columns are
a basis for the null-space of QT . Thus PT AP is a (|�| − �)× (|�| − �) square
matrix.

We remark that PT AP is positive definite provided that P has precisely K
as null-space. If there were a larger null-space, then the product would be
positive semi-definite; indeed, a larger kernel of the matrix P would lead to
zero eigenvalues for PT AP (see also Sibson and Stone, 1991). There may be
a sign change needed in the radial basis function for this, e.g. we recall that
the multiquadric function is conditionally positive definite of order one when
augmented with a negative sign. We are left with a great deal of freedom in our
choice of P now. We use that to make as good an improvement to the condition
number of PT AP as possible. The fact that λ = Pµ guarantees that λ is indeed
in the null-space of QT , because QT P = 0.

The matrix thus preconditioned is symmetric and positive definite and there-
fore a Cholesky (direct) method may be used for the solution of the interpolation
linear system. The advantage of PT AP being positive definite is that the size of
the off-diagonal elements is thus restricted while the elements of the A otherwise
are growing off the diagonal for multiquadrics or (4.4). The Cholesky method
decomposes the preconditioned interpolation matrix into a product LLT , where
L is lower-triangular. Therefore the given linear system

LLTµ = PT f, Pµ = λ,

can be solved by backward substitution in a straightforward manner. Given,
however, that we address large sets of centres in this chapter, it is usually
preferable to use iterative methods instead, such as conjugate gradients.

When using conjugate gradients, the number of iterations for solving the
system numerically may in the worst case be of O(|�|), but, as we have pointed
out before, the work on the computer can be made more efficient by using the
results of Section 7.3. Specifically, if µ̃ is the current approximation to µ of
(7.18), the main work for getting the next estimate is always the calculation
of the matrix (times vector) product Aν̃, where ν̃ = Pµ̃, and the latter matrix
product can be made cheap – P should be designed such that this is the case. The
product Aν̃, however, is nothing other than a linear combination of radial basis
function terms with coefficients from µ̃, evaluated at the known centres which
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we have already indicated at the end of the description of the BFGP method.
We note that this numerical value is exactly what can be evaluated fast by the
algorithm in Section 7.3, in O(|�| log |�|) operations.

The preconditioning matrix P can be chosen conveniently by using our
favourite method to generate orthogonal matrices, by Householder transfor-
mations or Givens rotations (Golub and Van Loan, 1989) for instance. In order
to obtain a positive definite matrix PT AP, we follow Powell (1996) and select
the Householder method to give a suitable preconditioning matrix. Let as above

Q = {p j (ξ )}ξ∈�, j=1,2,...,�,

the p1, p2, . . . , p� still being a basis of the polynomial space K which has to
be annihiliated to make PT AP positive definite. Thus for this � Q is a |�| × �

matrix and the resulting positive definite matrix PT AP will be (|�|−�)×(|�|−
�). Now let P1 = Q and then, for j = 1, 2, . . . , �, compute the orthogonal
transformations according to Householder,

P j+1 =
(

I − 2u j uT
j

uT
j u j

)
P j ,

where the factors in parentheses are always |�| × |�|matrices and where u j is
chosen such that P j+1 has zeros below its diagonal in the first j columns. Here
as always, I denotes the identity matrix. Thus the reverse product( 1∏

j=�

(
I − 2u j uT

j

uT
j u j

))
Q

is an upper-triangular matrix whose last rows are zero by the choice of the u j .
Now let P be the last |�| − � columns of

�∏
j=1

(
I − 2u j uT

j

uT
j u j

)
.

Therefore PT AP is a (|�| − �)× (|�| − �) square positive definite matrix and
QT P = 0. There are at most O(|�|2) operations needed for that procedure,
since only �+ |�| Householder transformations are required.

We can now apply a conjugate gradient scheme to the resulting matrix PT AP.
The total work for the above process is O(|�|) operations. The only task of an
iteration of that method which may require more than O(|�|) operations is
the multiplication of a vector ν = Pµ by PT A. As pointed out already above,
fortunately, the scheme of Section 7.3 admits an O(|�| log |�|) procedure for
that.
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We mention an alternative preconditioning scheme suggested by Faul (2001).
It is noted in her thesis that a preconditioning matrix can be used with the coef-
ficients λkξ j of the local Lagrange functions. In this case, the preconditioning is
by a matrix defined through

P =
{

λkξ j√
λkξk

}
j,k

.

The matrix PT AP is then positive definite and can be used within a standard
conjugate gradient method. A disadvantage of this is that the Lagrange coeffi-
cients have to be computed first, although this can be done, according to the
work of Section 7.2.

An example of an implementation of the conjugate gradient algorithm for the
application in this context of radial basis function interpolation is as follows.
Let µk be the value of µ at the beginning of the kth iteration of the algorithm.
Let rk be the residual of (7.18)

rk = PT f− PT APµk .

We begin with a start-vector µ1 whose value is arbitrary, often just 0. Of course,
the iteration ends as soon as this residual is close to machine accuracy or any
prechosen desired accuracy componentwise. Otherwise we continue with the
choosing of a search direction vector dk and set µk+1 = µk + αkdk , where
αk is chosen such that rk+1 is orthogonal to the search direction vector dk .
Specifically, the choice

αk = − dT
k gk

dT
k PT APdk

is good, where g1 = −d1 and gk+1 = gk + αkPT APdk . The search directions
are then

dk = −gk +
dT

k−1PT APgk

dT
k−1PT APdk−1

dk−1.

We begin with d1 = r1 and let the search direction dk be as above such that the
conjugacy condition

dT
k PT APdk−1 = 0

holds. If there were no rounding errors in our computation, the residual vectors
would all be mutually orthogonal and the algorithm would terminate with the
exact solution in finite time.
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In their seminal paper of 1986, Dyn, Levin and Rippa construct precondition-
ing matrices to radial basis function approximants using radial basis functions
(4.4) in two dimensions especially for thin-plate splines by discretising the
two-dimensional iterated Laplace operator �k on a triangulation. The approach
is summarised as follows in Powell (1996). The goal is once again as in the
paragraph containing (7.18) to take P as the ‘symmetric square root’ of an
approximation C ≈ A−1. This matrix C retains the positive semi-definiteness
of A−1 with exactly � of its eigenvalues being zero, the rest being positive.
The number � is zero if k = 0. Finally, as in the paragraph containing (7.19),
QT C = 0 is required. If P2 = C, then QT P = 0 and the columns of P span the
null-space of QT . Therefore, again, λ = Pµ and we may solve (7.18) instead
of the original interpolation equation. To this, again conjugate gradients may be
applied.

The two highly important questions which remain are how to choose C and
whether we may work with C instead of its square root P in the implementation
of the conjugate gradient method. The second question is answered in the
affirmative when we work with λk = Pµk , ck = Pdk and bk = Pgk instead of
µk , dk and gk , respectively. This leads to the formulae

ck = −bk +
cT

k−1Abk

cT
k−1Ack−1

ck−1

and λk+1 = λk + αkck , bk+1 = bk + αkCAck . Here, the step-length is

αk = cT
k f− cT

k Aλk

cT
k Ack

,

recalling (rk+1)T dk = 0 and so αk = dT
k rk/cT

k Ack for this scheme.
Finding C is achieved by estimating ‖s‖2

φ by a quadrature rule with positive
coefficients that will be the entries of C. For this, a triangulation of the set � is
used and then the kth partial derivatives which occur, in ‖s‖2

φ , when written out
as an integral over partial derivatives are estimated by using finite difference
approximations in two dimensions,

δk

δxiδyk−i
, i = 0, 1, . . . , k,

to the kth partial derivatives, using the known values of s on � only. Thus
‖s‖2

φ ≈ const. fT Cf and indeed we recall that

‖s‖2
φ = const. fT A−1f

due to the reproducing kernel properties and the definition of λ and its use in s.
Since kth derivatives annihilate (k−1)st degree polynomials, QT C must be zero
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(see the last but one paragraph). Since the approximations to the derivatives are
always taken from clusters of nearby points from �, the matrix C is usually
sparse, which is important for the success of the method.

This success can be demonstrated by numerical examples as follows. In
numerical examples, the condition numbers of the thin-plate spline interpolation
matrices for three different distributions of 121 centres are reduced from 6764,
12 633 and 16 107 to 5.1, 3.9 and 116.7, respectively, by this method. The
discretisation of the above iterated Laplacian, however, becomes much simpler
if the data lie on a grid.

In fact, in that event, one particularly simple way of preconditioning can
be outlined as follows. Suppose that we have finitely many gridded data and
A = {φ(‖i− j‖)}i, j∈[−N ,N ]n∩Zn . Ifφ is, still for simplicity of exposition, such that
A is positive definite and its symbol (as in Chapter 4) is well-defined and has no
zero, then one may precondition A in the following way. We take as before σ (ϑ)
to be the symbol corresponding to the usual bi-infinite interpolation matrix. Its
reciprocal expands in an absolutely convergent series according to Wiener’s
lemma. Let the coefficients of this series be c̃k . Under these circumstances we
take as a preconditioner the finite Toeplitz matrix (that is, as we recall, one
whose elements are constant along diagonals) C = {ci j }with entries ci j = c̃i− j

if ‖i − j‖∞ ≤ M + N , for a suitable M , otherwise ci j = 0. So C is a
banded Toeplitz matrix. We let C̃ be the inverse of the full bi-infinite matrix
{φ(‖i − j‖)}i, j∈Zn . Then the symbol of the latter multiplied by the symbol of
the former is

σ (ϑ)×
∑
k∈Zn

c̃ke−iϑ ·k = 1, ϑ ∈ T
n,

that is the symbol of the identity matrix. Therefore we are entitled to expect
that CA has the desired properties, because the symbol of the matrix product
CA is the product of the symbols∑

j∈[−N ,N ]n

φ(‖ j‖)e−iϑ · j ×
∑

k∈[−M,M]n

c̃ke−iϑ ·k ≈ 1,

see also Lemma 4.18 which justifies the approximation of the solution of the full
infinite interpolation problem on a cardinal grid by using a finite section of the
bi-infinite interpolation matrix. Baxter (1992a) shows an example for the case
when the radial basis function is a Gaussian where C is indeed a positive definite
preconditioning matrix. The method is also used in a similar fashion in Buhmann
and Powell (1990) where specifically the Lagrange functions for various radial
basis functions in two dimensions (thin-plate splines, multiquadrics, linear) are
computed and displayed.
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One small further step has to be taken to obtain a suitable preconditioner: We
recall from the fourth chapter that the decay of linear combinations of translates
of a basis function and moment conditions on their coefficients are intricately
linked. Therefore, in order that decay properties of linear combinations of trans-
lates (i.e. the preconditioned entries of the interpolation matrix) are satisfied,
we may have to modify the ‘truncated’ series of coefficients c̃k , so that they
satisfy the moment conditions ∑

k∈[−M,M]n

c̃k p(k) = 0

for all p from a suitable class of polynomials of maximal total degree. Usually,
this class is the kernel K of the semi-inner product. Baxter (1992a) has shown
that this is a useful way of preconditioning the interpolation matrix if we have
finitely many centres on a grid. He described this both for the Gaussian which
gives rise to positive definite interpolation matrices and for multiquadrics. In the
latter case the conjugate gradient method solves a simple linearly constrained
minimisation problem. The conjugate gradient method here is in fact related to
the BFGP method, in that finite parts of Lagrange functions are used, except that
here no Lagrange conditions are satisfied at all, but the coefficients of the full
Lagrange functions are truncated and the aforementioned moment conditions
are required.
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Least Squares Methods

In this chapter we shall summarise and explain a few results about the orders
of convergence of least squares methods. These approximants are computed
by minimising the sum of squares of the error on the Euclidean space over all
choices of elements from a radial basis function space. The main differences in
the various approaches presented here lie in the way in which ‘sum of squares
of the error’ is precisely defined, i.e. whether the error is computed continu-
ously over an interval – or the whole space – by an integral, or whether sums
over measurements over discrete point sets are taken. In the event, it will be
seen that, unsurprisingly, the same approximation orders are obtained as with
interpolation, but an additional use of the results below is that orthogonal bases
of radial basis function spaces are studied which are useful for implementa-
tions and are also in very close connection to work of the next chapter about
wavelets.

8.1 Introduction to least squares

Interpolation was the method of choice so far in this book for approximation.
This, however, is by no means the only approximation technique which is
known and used in applications. Especially least squares techniques are highly
important in practical usage. There is a variety of reasons for this fact. For
one, data smoothing rather than interpolating is very frequently needed. This is
because data often are inaccurate, contain noise or – as happens sometimes in
practical applications – are too plentiful and cannot and need not be reasonably
all interpolated at once. An additional case when least squares methods are
required is whenever a ‘dimension reduction’ is needed, i.e. when we know from
theoretical considerations that data come actually from a lower-dimensional
linear space than – falsely – indicated by the number of data provided.

196
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Moreover, smoothing (‘regularisation’) is almost always required as long as
problems are ill-posed, which means that their solution depends – for theoretical
reasons and not just because we are using a bad method – extremely sensitively
on even the smallest changes in the input data. When in that event the so-
called ‘inverse problem’ (inverting an ill-conditioned matrix is a simple example
for this) is to be solved numerically, smoothing of the output data or data at
intermediate stages of the solution process is necessary to dampen inaccuracies,
or noise or rounding errors, which would otherwise be inflated through the ill-
posedness of the problem and dominate the – thereby false – result.

We have already met the problem of ill-conditioned bases and the conse-
quences of applying optimisation methods in our Subsection 7.2.4 on Krylov
subspace methods.

An illuminating example is the computation of derivatives of a sufficiently
differentiable function when it is given only at finitely many points that are
close to each other. If only few derivatives are needed, using divided differ-
ences as approximations to the derivatives is fine so long as we know the
function values at discrete points which are sufficiently close. However, if,
say, the first seven or eight derivatives are required, a sufficiently high order
spline, say, may be used to approximate the function in the least squares sense
initially on the basis of the points where we need it. Then the spline can be
differentiated instead, recursively and stably by a standard formula (cf., e.g.
Powell, 1981, also as an excellent reference for divided differences). Further
smoothing of the spline’s derivatives is usually required as well along the
process.

Now, interpolation is not suitable for this purpose because, if there are small
rounding errors in the initially given function values, the approximant’s deriva-
tives will soon become very ‘wiggly’ indeed even if we have started with an
actually very smooth function. In engineering and scientific applications, mea-
surements can almost never be assumed to be exact but have small errors or
noise. Therefore, smoothing of the initial information is needed, not interpola-
tion. Incidentally, in the terminology of the experts in those ‘inverse problems’,
numerical differentiation is only a weakly ill-posed problem, and there are far
worse cases.

Until now, much of the motivation for our analysis and the use of radial basis
functions came from interpolation and its highly favourable uniform conver-
gence behaviour. That is why we have concentrated on describing interpolation
(but also quasi-interpolation which can be used for smoothing because the basis
functions ψ whose translates form the quasi-interpolants usually do not fulfil
Lagrange conditions) with our examples and radial basis functions. We now
turn to the least squares ansatz. We will continue to use approximants from the
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radial basis function spaces, because the spaces as such have been established
to be highly suitable for approximation.

An important reason for still using radial function spaces is, incidentally,
that we have also in mind to integrate radial basis function approximants into
other numerical tools, e.g. to solve partial differential equations or nonlinear
optimisation problems (Gutmann, 1999). There, interpolation is normally not
demanded, because the algorithms themselves provide only approximate nu-
merical solutions to a certain order, i.e. a power of the step size, for instance.
Thus one can use quasi-interpolation, or least squares approximations, of at
least the same approximation order as the main algorithm that uses the radial
basis approximant for its specific purposes. Of course the quasi-interpolation
is not per se a least squares approximation but it can nonetheless be used for
smoothing; it may therefore be highly applicable when the given data are noisy.

It is important to recall for the work in this chapter that, given a linear space
S with an inner product (·, ·) : S × S → R (sometimes a semi-inner product
with a nontrivial kernel as in Chapter 5), seeking the least squares approximant
s∗ to f ∈ S from a linear subspace U means minimising

( f − s, f − s), s ∈ U .
The least squares approximation s∗ is achieved when the error f − s∗ is orthog-
onal to all of the space U with respect to the (semi-)inner product, i.e.

( f − s∗, s) = 0, s ∈ U .
In our setting, U is a space spanned by suitable translates of a radial basis
function which sometimes has to be scaled as well, and S is a suitable smooth-
ness space, usually a space of square-integrable functions or a Sobolev space
of distributions (or functions) whose derivatives of certain orders are square-
integrable. It follows from the expression in the last display that s∗ is especially
easy to compute if we are equipped with an orthonormal basis of U , because
then we may expand the solution in that basis with simple coefficients.

In all cases, the solution of the least squares problem is determined by the
linear equation

Gλ = F,

where F is the vector of inner products of the approximand f with the basis
functions of U and G is the auto-correlation (‘Gram’-) matrix of all inner prod-
ucts (Mi , M j ) of the basis functions Mi of U . This matrix is always nonnegative
definite, and it is positive definite if the Mi are indeed linearly independent. If
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they form an orthonormal basis, then the Gram-matrix is the identity matrix,
which makes the computation of the coefficients of the expansion trivial.

An especially interesting aspect of least squares approximations with radial
basis functions is the choice of centres. There are normally far fewer centres
than the points where we are given data, for the reasons mentioned above.
Letting the centres vary within the least squares problem makes the approach a
nonlinear one, much like spline approximations with free knots. One interesting
observation about this approach is that, when the approximand is very smooth
such as a polynomial or an analytic function, the centres of the approximants
will often tend to the boundary of the domain where we approximate due to
the polynomial reproduction properties discussed in Chapter 4. This is because
the polynomial reproduction takes place asymptotically through certain linear
combinations of the shifts of the radial basis functions (4.4), for instance, where
the coefficients of the linear combinations satisfy moment conditions such as
(4.17)–(4.18) and, in particular, sum to zero. So far this behaviour was only
observed in computational experiments and there are few theoretical results.
We will not discuss this any further in the present book, but point out that it is
a highly relevant, interesting field of research, as mentioned also in our final
chapter, Chapter 10.

8.2 Approximation order results

We start with some pertinent remarks about the approximation power of the
radial function spaces we studied already but now with respect to the standard
L2(Rn) norm. So here S = L2(Rn). Of course, the norm here is the canonical
norm induced by the Euclidean inner product between functions

(8.1) ( f, g) =
∫ ∞

−∞
f (x) g(x) dx, f, g ∈ L2(Rn),

that is the norm is the standard Euclidean norm ‖ f ‖2 =
√

( f, f ). As we see
immediately, we will need special considerations for our radial basis func-
tions which themselves are usually unbounded and not at all square-integrable,
especially if we wish to find the explicit form of best approximants to the
approximand. In other words, we shall need different basis functions for the
spaces we consider, namely closures of the spaces spanned by the integer trans-
lates of φ(‖h−1 · − j‖), j ∈ Z

n . An exception to this remark is of course the
use of our positive definite radial basis functions with compact support of
Chapter 6 which are all square-integrable due to their continuity and compact
support.
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Since the least squares approach is far more complicated when general, scat-
tered data are admitted, this chapter treats only gridded data � = hZ

n . We have
two types of results.

The first result in this chapter about least squares methods which we pre-
sent gives abstract estimates on the approximation power, measured in the least
squares norm, of radial basis function spaces without explaining exactly what
the approximants will look like. What is measured here is thus the ‘distance’
between two spaces: the space of approximants, a radial basis function space
spanned by translates of radial basis functions scaled by h, and the larger space
of approximands S. Therefore we actually need not yet worry about the in-
tegrability of our radial basis functions: the only expressions that have to be
square-integrable are the errors of the approximations to f from the aforemen-
tioned L2-closureU of all finite linear combinations of translatesφ(‖h−1 ·− j‖),
j a multiinteger, so that the errors can be measured in least squares norm. In
fact, it even suffices that the error times s from U is square-integrable in order
that the distance between these spaces may be estimated. In particular cases, the
saturation orders are given, i.e. the best obtainable least squares approximation
orders to sufficiently smooth but nontrivial functions – nontrivial in the sense
that they are not already in the approximation space or identically zero, for
instance. Recall the definition of the nonhomogeneous Sobolev space W k

2 (Rn)
from Chapter 4. Ron (1992) proves for n-variate functions φ(‖ · ‖) : R

n → R

the following theorem.

Theorem 8.1. If f ∈ W k
2 (Rn) and φ(‖·‖) : R

n → R has a generalised Fourier
transform φ̂(‖ · ‖) such that

(8.2)
∑

j∈Zn\{0}
φ̂(‖ · +2π j‖)2

is bounded almost everywhere in a neighbourhood 
 of 0, then the distance

distL2(Rn )( f,U) := inf
g∈U

‖ f − g‖2,

where we use the notation

U = span {φ(‖h−1 · − j‖) | j ∈ Z
n},

is bounded above by a constant multiple of

(8.3)

∥∥∥∥∥ f̂

φ̂(‖h · ‖)

∥∥∥∥∥
2,
h

+ o(hk) ‖ f ‖k, h → 0.

If, moreover, φ̂(‖t‖) becomes unbounded as‖t‖ → 0 and (8.2) is bounded below
in 
, then the bound in (8.3) can be attained (that is, it provides the saturation
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order) and thus the approximation error is not o(hk) for any general, nontrivial
class of arbitrarily smooth approximands.

We do not prove this result here – a related theorem will be established in the next
section – but nonetheless we wish to explain the result somewhat further through
examples. By ‘span’ in (8.3) we mean the set of all finite linear combinations (of
arbitrary length, though) of the stated translates φ(‖h−1 · − j‖), and the closure
is taken within L2(Rn). The expression ‖ · ‖2,
h denotes the Euclidean norm
with the range of integration restricted to the set {xh | x ∈ 
}.

Examples are easily derived from (4.4) because there, the distributional
Fourier transform φ̂(‖x‖) is always a constant multiple of some negative power
of ‖x‖. In other words, if φ̂(‖x‖) = ‖x‖−µ, then (8.3) provides as a dominant
term a constant multiple of hµ

∥∥‖ · ‖µ f̂
∥∥

2, i.e. we achieve approximation order
hµ for sufficiently smooth approximands. The expression (8.3) also gives an
easy bound if φ̂(‖x‖) has an expansion at zero that begins with a constant mul-
tiple of ‖x‖−µ, such as the multiquadric for µ = n+1. In both cases the bound
(8.3) is attained, i.e. it is the best possible and the saturation order according to
Theorem 8.1. Explicit forms of approximants, however, left unstated here, we
address the question of explicit solutions in the following section.

8.3 Discrete least squares

In the preceding theorem, the usual continuous least squares error estimates are
made and the resulting errors are estimated in the form of the distance between
approximation spaces and approximands. In real life, however, explicit forms
of approximants are important and, moreover, discrete norms are much more
appropriate because they can be evaluated on a computer and suit practical
applications better. Hence, a very explicit approach is taken now in the second
theorem we present, where for discrete �2-approximations, orthogonal functions
are constructed to represent the best approximations explicitly in expansions
and estimate their least squares error. We recall from the standard least squares
approximation problem that its solution can very easily be expressed once we
know orthogonal generators or even orthonormal bases for the approximation
space.

In our discrete approach, we use two grids, namely one grid whereby the inner
products and error estimates are formed (a finer grid) and then another, coarser
grid whose points are used to serve as the centres of the radial basis functions.
This represents a very reasonable model for the practical questions that arise:
measurements are usually frequent (i.e. here on a fine grid) and centres for the
radial basis functions that are used for the approximation are sparse and usually
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come from a subset of the measurement points. For convenience, the centres
form a subgrid of the fine grid, i.e. h′ = H−1 with H ∈ N, and h′ hZ

n are the
points of measurements, hZ

n are the centres. Thus, for any h>0, hZ
n ⊂ h′ hZ

n .
Of course we wish to study the case h → 0. This nestedness is, incidentally, not
necessary for the theory, but simplifies greatly the expressions we shall have to
deal with.

The inner product which we use is therefore discrete and has the form with
a suitable scaling by h′n

(8.4) ( f, g)discr:= h′n
∑
j∈Zn

f ( jhh′) g( jhh′).

These ideas admit application of our earlier approaches of interpolation with
square cardinal grids, with cardinal interpolants and quasi-interpolations which
are able to reproduce polynomials and provide approximation orders that we
were able to identify in Chapter 4. They especially admit useful applications
of Fourier transform methods such as the Poisson summation formula and the
like.

Now, in this chapter, we look for functions whose equally spaced translates
with respect to the coarsely spaced grid are orthonormal with respect to the
inner product (8.4). They are of the following form very similar to Lagrange
functions:

(8.5) Mh′ (x) =
∑

m∈Zn

ch′
m φ(‖x − m‖), x ∈ R

n.

The superscript h′ in the ch′
m indicates the coefficient’s dependence on h′. Then,

we study approximations or, rather, straight orthogonal projections on the space
spanned by the translates of functions (8.5). They have the form

(8.6) sh(x) =
∑
k∈Zn

(
f, Mh′

( ·
h
− k

))
discr

Mh′
( x

h
− k

)
, x ∈ R

n.

The inner products that appear in (8.6) are still the same discrete inner product
as defined above, and it is the orthonormality of the translates of the functions
(8.5) that allows sh to have such a simple form. Many of the properties of (8.6),
including the least squares approximation orders generated by it, are fairly
simple consequences of the properties of (8.5). We have to be concerned with
the existence of the latter first.

Indeed, the functions (8.5) exist and can, as we will show below in
Theorem 8.2, be defined by their Fourier transforms M̂h′ (x), in a form that
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is strongly reminiscent of our Lagrange functions’ Fourier transform. It is

(8.7) M̂h′ (x) =
(

h′
)−n/2

φ̂(‖x‖)√ ∑
�∈Zn∩[0,H )n

∣∣∣∣ ∑
k∈Zn

e2π i�·k/H φ̂(‖x + 2πk‖)

∣∣∣∣2
.

The validity of this form will be shown below, but we note in passing that
(8.7) and the coefficients in (8.5), namely the ch′

m , are related in much the same
way as the Lagrange functions and their coefficients of Chapter 4 are related.
Specifically, ch′

m is the multivariate Fourier coefficient

(8.8)
∫

Tn

(
2π
√

h′
)−n

eim·t dt√ ∑
�∈Zn∩[0,H )n

∣∣∣∣ ∑
k∈Zn

e2π i�·k/H φ̂(‖t + 2πk‖)

∣∣∣∣2
,

similar to the coefficients of the Lagrange functions in Section 4.1.

Theorem 8.2. Let conditions (A1), (A2a), (A3a) on the radial basis function
φ : R+ → R of Chapter 4 hold. Then the functions defined through (8.5) and
(8.8) are continuous, satisfy

(8.9) |Mh′ (x)| = O
(

(1+ ‖x‖)−n−µ
)
,

and are thus integrable with a Fourier transform (8.7). Their multiinteger
translates are orthonormal with respect to the discrete inner product (8.4).

Finally, if f is continuous, satisfies | f (x)| = O
(

(1 + ‖x‖)−
n
2−ε

)
and the

smoothness condition | f̂ (t)‖t‖µ| = O
(

(1 + ‖t‖)−
n
2−ε

)
for a positive ε, (8.6)

provides the least squares error

(8.10) ‖ f − sh‖2 = O(hµ), h → 0.

We have called the condition on f ’s Fourier transform a smoothness condi-
tion in the statement of the theorem, because asymptotic decay of the Fourier
transform at infinity, together with some additional conditions, leads to higher
differentiability of the function itself, cf. the Appendix.

Proof of Theorem 8.2: We can establish through conditions (A1), (A2a), (A3a)
and (8.7) and (8.8) that the decay estimates

|ch′
m | = O

(
(1+ ‖m‖)−n−µ

)
and (8.9), the one claimed for Mh′ , hold. This is done precisely in the same
way as in the proofs of Theorems 4.2 and 4.3. Thus, according to the work in
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the fourth chapter, M ′
h can alternatively be defined through (8.7) or its inverse

Fourier transform (note that (8.7) is absolutely integrable and square-integrable
by the properties of φ̂ through (A1), (A2a), (A3a)), or through (8.5) and (8.8),
the series (8.5) being absolutely convergent. This leaves us to show that (8.5)
does indeed satisfy the orthogonality conditions with respect to (8.4) and the
convergence result at the end of the statement of the theorem.

We demonstrate the orthogonality here, because it is very important in the
context of this chapter and shows where the explicit form of the orthogonal func-
tions Mh′ comes from. By a discrete Fourier transform applied to the required
orthogonality conditions (setting h = 1 without loss of generality)(

Mh′ , Mh′ (· − k)
)

discr
= δ0k, k ∈ Z

n, h′ > 0,

we get the requirement expressed alternatively by the identity

(8.11)
∑
j∈Zn

∑
k∈Zn

e−iϑ ·k Mh′ ( jh′) Mh′ ( jh′ − k) =
(

h′
)−n

, ϑ ∈ T
n,

because Mh′ are real-valued and so there is no complex conjugate in the inner
product.

By the Poisson summation formula applied with respect to the summation
over the index k, we get from this the alternative form

∑
j∈Zn

∑
k∈Zn

e−ih′(ϑ+2πk)· j Mh′ ( jh′) M̂h′ (ϑ + 2πk) =
(

h′
)−n

,

which is tantamount to∑
�∈Zn∩[0,H )n

∑
j∈Zn

∑
k∈Zn

e−i j ·ϑ−i�·(ϑ+2πk)/H Mh′ ( j + �/H )

×M̂h′ (ϑ + 2πk) =
(

h′
)−n

, ϑ ∈ T
n,

recalling h′ = H−1.
Another application of the Poisson summation formula leads to the equivalent

expression∑
�∈Zn∩[0,H )n

∑
j∈Zn

∑
k∈Zn

ei�·(ϑ+2π j)/H−i�·(ϑ+2πk)/H

×M̂h′ (ϑ + 2π j)M̂h′ (ϑ + 2πk) =
(

h′
)−n

.
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Finally, the last line simplifies to

∑
�∈Zn∩[0,H )n

∑
j∈Zn

∑
k∈Zn

ei2π�·( j−k)/H M̂h′ (ϑ + 2π j) M̂h′ (ϑ + 2πk)

which should equal (h′)−n . Next we insert (8.7) into the above display twice
which confirms the required identity for Mh′ ’s Fourier transform by inspection.

We now restrict the support of f ’s Fourier transform to the cube [−π/h,
π/h]n . Such an f differs from any function f which satisfies the assumptions
of the theorem by O(hµ) in the least squares norm. This is because we may
estimate∫

‖x‖∞>π/h
| f̂ (ϑ)|2 dϑ ≤

∫
‖x‖∞>π/h

‖ϑ‖−2µ(1+ ‖ϑ‖)−n−2ε dϑ = O(h2µ).

Therefore the restriction of f̂ ’s support means no loss of generality.
Hence, analogously to our manipulations of (8.11) we get by inserting the

definition of the discrete inner product and using the Poisson summation formula
that the square of the least squares error between f and sh is

∫
Rn

∣∣∣ f̂ (ϑ)− hn
∑
k∈Zn

(
f, Mh′

( ·
h
− k

))
discr

e−ihϑ ·k M̂h′ (hϑ)
∣∣∣2 dϑ

=
∫

h−1Tn

∑
m∈Zn

∣∣∣ f̂ (ϑ + h−1 2πm)− M̂h′ (hϑ + 2πm)

×
∑
k∈Zn

∑
�∈Zn

f̂
(
ϑ + 2π�

hh′
+ 2πk

h

)
M̂h′ (hϑ + 2πk)

∣∣∣2 dϑ

where we have used periodisation of f̂ . This is, by the band-limitedness, the
same as

∫
h−1Tn

∑
m∈Zn

∣∣∣∣∣ δ0m f̂ (ϑ)− M̂h′ (hϑ + 2πm) f̂ (ϑ)

×
∑
k∈Zn

M̂h′
(

hϑ + 2πk

h′
)∣∣∣∣∣

2

dϑ,

The last display may be bounded above by a fixed multiple of h2µ. This we shall
establish as follows. The integrand of the integral above consists of a product



206 8. Least squares methods

of | f (ϑ)|2 times the following expression that we get by rearranging terms:

I (hϑ) = 1− 2 ) M̂h′ (hϑ)
∑
k∈Zn

M̂h′
(

hϑ + 2πk

h′
)

+
∑

m∈Zn

∣∣∣∣∣M̂h′ (hϑ + 2πm)
∑
k∈Zn

M̂h′
(

hϑ + 2πk

h′
)∣∣∣∣∣

2

=
∑

m∈Zn

∣∣M̂h′ (hϑ + 2πm)
∣∣2 · ∣∣∣∣∣∑

k∈Zn

M̂h′
(

hϑ + 2πk

h′
)∣∣∣∣∣

2

+ 1− 2 ) M̂h′ (hϑ)
∑
k∈Zn

M̂h′
(

hϑ + 2πk

h′
)
.

By virtue of (8.7) and condition (A3a),

(8.14) I (hϑ) =
(

1+O(‖hϑ‖2µ)
)2
+1−2

(
1+O(‖hϑ‖2µ)

)
= O(‖hϑ‖2µ),

because for small h∣∣∣∣∣∑
j∈Zn

φ̂(‖hϑ + 2π j‖)

∣∣∣∣∣
−2

= C‖hϑ‖2µ + O(‖hϑ‖2µ+2ε).

Estimate (8.14) implies our desired for h → 0 result because afterwards we
may use that∫

h−1Tn

I (hϑ) | f̂ (ϑ)|2 dϑ ≤ C
∫

h−1Tn

‖hϑ‖2µ | f̂ (ϑ)|2 dϑ

≤ Ch2µ
∫

Rn

‖ϑ‖2µ | f̂ (ϑ)|2 dϑ

= O(h2µ) .

The result now follows from the assumptions of the theorem.
As in Theorem 4.4 we can easily deduce from the Fourier transform (8.7)

that the least squares approximation (8.6) recovers all polynomials exactly of
order less than µ in total, where µ is the constant from conditions (A1), (A2a),
(A3a) which, as we recall, are still assumed to hold.

To this end, we have to verify the conditions (4.16)–(4.18) in the same way
as in Chapter 4 by making use in particular of the high order zeros of (8.7) at
the 2π -multiples of multiintegers. In other words, if f is such a polynomial,
then we have the polynomial reproduction property∑

k∈Zn

(
f, Mh′

( ·
h
− k

))
discr

Mh′
( x

h
− k

)
= f (x), x ∈ R

n ,

the infinite sum being absolutely convergent by (8.9).
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8.4 Implementations

We finish this chapter with a very few remarks about aspects of implemen-
tations of the least squares approach. The implementations of least squares
methods using radial basis functions can be based on several different ap-
proaches. If we wish to implement the discrete least squares approach of the
previous section, we may compute the orthonormal bases described therein
by FFT methods because of the periodicity of the data. Concretely, the
series

√√√√ ∑
�∈Zn∩[0,H )n

∣∣∣∣∣∑
k∈Zn

e2π i�·k/H φ̂(‖x + 2πk‖)

∣∣∣∣∣
2

that appears in the definition of the Fourier coefficients of the orthonormal bases
contains a series of Fourier transforms of φ which converge fast, especially if
the radial basis function is the multiquadric function. For this, we recall that φ̂
is in this case an exponentially decaying function. Thus only very few terms
of the infinite series need be considered (summed up and then periodised) for
a good approximation to the infinite series. The coefficients can then be com-
puted by standard FFT implementations which work very fast. Once we have an
orthonormal basis, the approximations can be expressed trivially with respect
to that basis. Since the orthonormal basis functions decay quickly as we have
asserted in (8.9), the infinite expansions (8.6) may be truncated with small loss
of accuracy.

When radial basis functions are used for least squares approximations and
the centres are scattered, (Gram-)matrices turn up which are nonsingular and
can be analysed in the same fashion as at the end of Chapter 5, i.e. bounds on
their condition numbers can be found which depend especially on the separation
radius of the centres. This work has been done by Quak, Sivakumar and Ward
(1991) and it strongly resembles the analysis of the last section of Chapter 5. One
of the main differences is that the matrices are no longer collocation matrices,
but they can be reformulated as collocation matrices where the collocation
points and the centres differ, so we end up with nonsymmetric matrices. Their
properties are much harder to analyse than those of our standard symmetric
interpolation matrices.

The computation of the coefficients of the least squares solution is done
in a standard way by a QR decomposition of the Gram-matrix, rather than
solving the normal equations by a direct method (Powell, 1981, for
example).
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8.5 Neural network applications

Neural network applications can be seen as high-dimensional least squares
problems (Broomhead, 1988). For a small number of centres ξ and a prescribed
radial basis function φ, coefficients λξ are sought such that the typical linear
combination of translates matches as well as possible a given input (ξ, fξ ) of
many more trials than given centres. This is then treated usually as an overde-
termined linear system and solved by a least squares method. A radial basis
function approximation of the form∑

ξ∈�
λξφ(‖x − ξ‖), x ∈ R

n,

can be viewed as a ‘single layer neural network with hidden units’ in the lan-
guage of neural network research. In neural network applications, a multiplica-
tive term ρ > 0 is often inserted into the φ(·). The questions thus arising are
the same as in our radial basis function context: what classes of function can be
approximated well, up to what order, what algorithms are available? Answers
to the first question are provided by the research of Pinkus (1995–99), for the
others see Evgeniou, Pontil and Poggio (2000), for instance.

On the other hand, the classical, so-called regularisation networks minimise
the expressions

|�|−1
∑
ξ∈�

(
s(ξ )− fξ

)2
+ λ‖s‖2

φ

whose solution is a linear combination of translates of a radial basis function as
we know it. This is also called a smoothing spline as it does not satisfy interpo-
lation conditions, but smoothness is regulated by the above parameter λ. The
solution to the above smoothing problem exists and is unique if the � contain
a unisolvent set for the polynomial kernel of ‖ · ‖φ (Bezhaev and Vasilenko,
2001, for example). In general, a smoothing spline s from a real separable
Hilbert space X exists that minimises

‖As − f‖2
Z + λ‖�s‖2

Y

if Y and Z are real separable Hilbert spaces and A : X → Z and � are
linear bounded operators with closed ranges, the null-space of � : X → Y is
finite-dimensional, and its intersection with the null-space of A is trivial. In our
application, Z is the discrete �2-norm, A maps the argument to the vector of
evaluations on � and ‖�s‖2

Y = ‖s‖2
φ , see also Wahba (1981) for many more

details on spline smoothing.
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Wavelet Methods with
Radial Basis Functions

9.1 Introduction to wavelets and prewavelets

Already in the previous chapter we have discussed in what cases L2-approxi-
mants or other smoothing methods such as quasi-interpolation or smoothing
splines with radial basis functions are needed and suitable for approxima-
tion in practice, in particular when data or functions f underlying the data
are at the beginning not very smooth or must be smoothed further during the
computation. The so-called wavelet analysis that we will introduce now is
a further development in the general context of L2-methods, and indeed ev-
erything we say here will concern L2-functions, convergence in the L2-norm
etc. only. Many important books have been written on wavelets before, and
since this is not at all a book on wavelets, we will be fairly short here. The
reader who is interested in the specific theory of wavelets is directed to one
of the excellent works on wavelets mentioned in the bibliography, for instance
the books by Chui, Daubechies, Meyer and others. Here, our modest goal is
to describe what wavelets may be considered as in the context of radial ba-
sis functions. The radial basis functions turn out to be useful additions to
the theory of wavelets because of the versatility of the available radial basis
functions.

Given a square-integrable function f on R, say, the aim of wavelet analysis
is to decompose it simultaneously into its time and its frequency components.
Therefore, a wavelet decomposition is always a double series, which should
be contrasted with the simple orthogonal decompositions that are usual in the
L2-theory of 2π-periodic functions, i.e. mainly Fourier analysis, where only
one orthogonal series (that is, with one summation index) is employed to rep-
resent the function f . The wavelet expansion also uses basis functions that are
orthogonal, like exponential functions in the L2-theory of 2π -periodic functions
with some suitable coefficients to multiply each exponential. One consequence

209
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of our goal of decomposing in time and frequency simultaneously is that we
need to find basis functions which are

(i) mutually orthogonal or orthonormal (for example – as with our basis
functions Mh′ for least squares approximation in the previous chapter –
generated by shifting just one function, call it ω, whose integer translates
are orthogonal),

(ii) in ‘some way’, which will be explained shortly, representatives of
different frequency components of a signal to be decomposed,

(iii) spanning L2(R) so that every square-integrable function can be expanded
in series of those functions.

While it is well-known in principle how to achieve (i) and (iii) by various
function systems, such as those we have encountered in the previous chapter,
we need to be much more concrete as to condition (ii). The ‘wavelet way’ to
obtain property (ii) is to seek a univariate square-integrable function ω called a
wavelet, whose scales (‘dilates’) by powers of two are mutually orthogonal:

(9.1) ω(2 j · −k) ⊥ ω(2 j ′ · −k ′), ∀ j �= j ′, ∀k �= k ′,

for j, j ′, k, k ′ from Z. The orthogonality is always in this chapter with respect to
the standard Euclidean inner product (8.1) of two square-integrable functions.
Powers other than powers of two are possible in principle as well, but the
standard is to use 2 j . If other integral powers or rational numbers are used,
more than one wavelet ω will normally be required.

It is immediately clear why (9.1) is a reasonable condition: the scaling by
powers of two (which may be negative or may be positive powers) stretches
or compresses the function ω so that it is suitable to represent lower frequency
or higher frequency oscillations of a function. If, on top of this, ω is a local
function (e.g. compactly supported or quickly decaying for large argument),
it will be able to represent different frequencies at different locations 2− j k
individually, which is precisely what we desire, the different locations being
taken care of by translation. Moreover, the lengths of the translates are scaled
accordingly: at level 2 j we translate through 2− j k by taking ω(2 j · −k) =
ω(2 j [· − 2− j k]).

This should be contrasted with Fourier decompositions which are completely
local in frequency – the exponentials with different arguments are linearly
independent and each representing one frequency exactly – but not local at all
in real space since the exponential functions with imaginary argument do not
decay in modulus; they are constant (|eix | = 1) in modulus instead. Therefore
all frequencies that occur in a signal can be recovered precisely with Fourier
analysis but it will remain unknown where they occur. This is especially of little
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use for filtering techniques where it is usually not desirable to remove certain
frequencies independently of time everywhere. Instead, local phenomena have
to be taken into account which means that some frequencies must be kept or
removed at one time or place, but not always.

We record therefore that, in particular, for higher frequencies, which means
large j in the expression ω(2 j · −k), the translates are shorter and for lower
frequencies they are longer, which is suitable to grasp the fast and the slower
oscillations of the approximand at different times, respectively.

By these means, wavelet decompositions can be extremely efficient for com-
putation, because, in practice, almost all functions f (here also called signals)
contain different frequencies at different times (e.g. music signals or speech)
and are therefore not ‘stationary’ such as a single, pure tone represented by
just one exponential. This is also the case for example for numerical solutions
of partial differential equations that are expanded in orthonormal bases when
spectral methods are used (Fornberg, 1999, for instance).

How are ω ∈ L2(R) that satisfy (9.1) and span L2(R) computed (exactly:
whose dilates and translates span L2(R) when arbitrary square-summable co-
efficient sequences are admitted)? And, in our context, how are they identified
from radial basis function spaces?

One simple instance for a wavelet is the famous Haar wavelet ω that is, in
the one-dimensional setting, defined by

ω(x) =
 1 if 0 ≤ x < 1

2 ,
−1 if 1

2 ≤ x < 1 and
0 otherwise.

If we scale and dilate this Haar wavelet by using ω(2 j · −k), letting j and
k vary over all integers, we obtain the required orthogonal decomposition of
square-integrable functions f by double series

∞∑
j=−∞

∞∑
k=−∞

c jkω(2 j · −k),

the orthogonality

2 j1

∫ ∞

−∞
ω(2 j1 x − k1)ω(2 j2 x − k2) dx = δ j1 j2δk1k2

for all integers j1, j2, k1, k2 being trivial.
Before we embark further on those questions, we point out that what we

develop here will, strictly speaking, be prewavelets, not wavelets, in that there
is no orthogonality in (9.1) with respect to k required; we only demand that
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different scales of the ω are orthogonal whatever the k, k ′ are. It is usual to
replace orthogonality in k on each frequency 2 j by a suitable (Riesz) stability
condition, as we shall see. For the application of these functions, this is in most
instances just as good, since it is the orthogonality between different frequencies
(‘levels’) j or 2 j that is decisive especially for the existence of a fast algorithm
for the computation of the decomposition. The latter is very important for the
usefulness of the approach, since only in connection with a fast algorithm –
here it is the so-called fast wavelet transform (FWT) – will a new method for
the purpose of analysing and e.g. filtering functions and signals be acceptable
and useful in practice. The prime example for this fact is the development of the
fast Fourier transform (FFT) some 50 years ago which made the use of Fourier
techniques in science and engineering a standard, highly useful tool.

Furthermore, we point out that we will deal now with prewavelets in n
dimensions, R

n , since this book is centred on the multivariate theory; how-
ever, all the concepts and much of the notation will remain intact as compared
with the univariate explanations we have given up to now.

In the literature, especially in the books by Chui, Daubechies and Meyer
we have included in the bibliography, mostly wavelets and prewavelets either
from univariate spline spaces are studied (especially in the book by Chui) or
compactly supported (orthogonal) wavelets that are defined recursively and
have no simple analytic expression (Daubechies wavelets) are studied. In both
cases, they differ substantially from our prewavelets here, because the spaces
where they originate from are usually spanned by compactly supported func-
tions, even if the wavelets themselves are sometimes not compactly supported.
The standard approach there is not to start from the approximation spaces and
develop the prewavelets from there as we do in this book, but to begin with cer-
tain requirements on the (pre)wavelets such as compact support, smoothness
or polynomial moment conditions, and construct them and their underlying
approximation spaces from there. We prefer the reverse way as our motivation
begins in this book from the radial basis function spaces, their analysis and their
uses. Also, the objects we call prewavelets here are often called semi-orthogonal
wavelets in the literature, especially by Chui.

9.2 Basic definitions and constructions

Since radial basis functions are usually not square-integrable, we use some
quasi-interpolating basis functions of the type introduced in our Chapter 4
to generate the prewavelets instead which are. As we recall, they are finite
linear combinations of radial basis functions, so we are still dealing with radial
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basis function spaces when we form prewavelets from the quasi-interpolating
functions ψ of Chapter 4.

If the radial basis function is such that a quasi-interpolating basis function ψ

which is square-integrable exists, then we can make an ansatz for prewavelets
from radial basis function spaces. We might, incidentally, equally well use the
cardinal functions L of Chapter 4 and their translates instead which, in most
cases, have superior localisation. However, this is not strictly needed for our
prewavelet application here because everything in this chapter will be dealt
with just in the context of square-integrable functions. Furthermore, the quasi-
interpolating functions have coefficient sequences with finite support and are
thereby much simpler to use.

Now, this ansatz works particularly simply for instance for thin-plate splines
and more generally for the radial basis functions belonging to the class defined
in (4.4), and we shall begin with a description of that specific choice and add
remarks about multiquadrics below. The main reason for this is that the radial
basis functions of the thin-plate spline type (4.4) – unlike, for example, the
multiquadric radial basis function – have easy distributional Fourier transforms
which are reciprocals of even order homogeneous polynomials that have no
roots except at zero. Up to a nonzero constant whose value is immaterial here,
φ̂ corresponding to (4.4) is ‖·‖−2k as we recall. The aforementioned transforms
are therefore analytic in a small complex tube about the real axis except at the
origin. This has three consequences that are very important to us in this chapter
and that we shall consider here in sequence.

Firstly, one can construct decaying symmetric and finite differences ψ of
these radial basis functions in an especially simple way. The reason why we
prefer in this chapter a simpler approach to the one of Chapter 4 is that we wish
to use for the construction of our prewavelets the simplest possible formulation
of ψ . Symmetric differencing in the real domain amounts to multiplying the
Fourier transform of the radial basis function by an even order multivariate
trigonometric polynomial g with roots at zero, as we have seen already in the
one-dimensional case in Chapter 2. This g can be expressed as a sum of sin
functions, because, analogously to one dimension, multiplication of a function
in the Fourier domain by

g(y) =
( n∑

s=1

sin2
(1

2
ys

))k

,

where y = (y1, y2, . . . , yn)T ∈ R
n , is equivalent to applying k times symmetric

differences of that function of order two in the tensor product way, i.e. separately
in all n coordinate directions.
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The trigonometric polynomial g resolves the singularity of φ̂ at zero if the
differences are of high enough order. In this way the conditions (4.16)–(4.18)
are met. The rate at which these differences ψ decay depends only on the order
of contact of the trigonometric polynomial and ‖ · ‖−2k at the origin, i.e. on the
smoothness of the product of the trigonometric polynomial g and the Fourier
transform φ̂(‖ ·‖). It can therefore be arbitrarily high due to the aforementioned
analyticity. As a result of our differencing, a multivariate differenceψ of φ(‖·‖)
can be defined by its Fourier transform as follows:

(9.2) ψ̂(y) = g(y)φ̂(‖y‖) =
(∑n

s=1 sin2
(

1
2 ys

))k

∥∥ 1
2 y

∥∥2k ,

see also Rabut (1990). This straightforward form will also aid us as an exam-
ple in connection with the introduction of a so-called multiresolution analysis
below. Note especially that ψ̂ ∈ C(Rn) or, rather, it has a removable singular-
ity and can be extended to a continuous function because of the well-known
expansion of the sin function at the origin. If we apply the same methods to
prove decay of a function ψ at infinity by properties of its Fourier transform ψ̂

as we did in Chapter 4, we can show that this function ψ defined through (9.2)
satisfies the decay estimate

|ψ(x)| = O
(

(1+ ‖x‖)−n−2
)
.

So, in particular, ψ ∈ L2(Rn), a fact that incidentally also follows from the
fact that (9.2) denotes a square-integrable function due to 2k > n and from the
isometry property of the Fourier transform operator as a map L2(Rn) → L2(Rn)
as mentioned in the Appendix.

As a second important consequence of the aforementioned qualities which
the radial basis functions (4.4) enjoy, these differences are able to generate
a so-called multiresolution analysis. We want to explain this point in detail
in the next section, because it is central to the derivation and analysis of all
prewavelets and wavelets. The third consequence will be discussed later on, in
Subsection 9.3.4.

9.3 Multiresolution analysis and refinement

9.3.1 Definition of MRA and the prewavelets

A multiresolution analysis (abbreviated to MRA) is an infinite sequence of
closed subspaces Vj of square-integrable functions

(MRA1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(Rn)
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whose union is dense in the square-integrable functions, that is

(MRA2)
∞⋃

j=−∞
Vj = L2(Rn),

and whose intersection contains only the zero function:

(MRA3)
∞⋂

j=−∞
Vj = {0}.

It is an additional condition in the so-called stationary case that the spaces in
the infinite sequence (MRA1) satisfy

(MRA1a) f ∈ Vj if and only if f (2·) ∈ Vj+1.

Finally, it is always required that Vj have a basis of translates of a single square-
integrable function, call it ψ j :

(MRA4) Vj = span{ψ j (2
j · −i) | i ∈ Z

n},
the span being the L2-closure of the set generated by all finite linear combi-
nations. We recall from Chapter 4 that V0 is a shift-invariant space, in fact a
‘principal’ shift-invariant space, because multiinteger shifts by any i ∈ Z

n of
any function stemming from that space are again elements of the space. The
principal refers to the fact that it is only generated by one function. Often, the
generators in (MRA4) are required to form a Riesz basis but this is not always
required here. We will come back to this later.

In the case of a stationary MRA,ψ j remains the same, singleψ0:ψ j (2 j ·−i) =
ψ(2 j · −i). That this is so is an easy consequence of the condition (MRA1a).

We summarise our statements so far in the following important definition.

Definition 9.1. We call a sequence of closed subspaces (MRA1) a multires-
olution analysis (MRA) if (MRA2), (MRA3) and (MRA4) hold. It is called a
stationary MRA when additionally (MRA1a) holds, otherwise it is a nonsta-
tionary MRA.

In the stationary case, it follows from (MRA4) and from our remarks in the
paragraph before the definition that the stationary multiresolution analysis has
the form (MRA1), where the Vj are defined by

(9.3) Vj := span{ψ(2 j · −i) | i ∈ Z
n}

for a single j-independent square-integrable function ψ .
We shall explain later several cases of sequences (MRA1) when conditions

(MRA2) and (MRA3) are automatically fulfilled under the weak condition that
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the support of ψ̂ j which is, as we recall, per definitionem a closed set, be R
n

for each j . This condition is fulfilled, for instance, by the functions defined
by (9.2).

We now define for an MRA the prewavelet spaces W j by the orthogonal and
direct sum

Vj+1 = W j ⊕ Vj ,

so in particular Vj ∩ W j = {0}. This can be expressed in a rather informal but
very useful way of writing

W j = Vj+1 . Vj ,

with orthogonality W j ⊥ Vj with respect to the standard Euclidean inner prod-
uct for all integers j and, in particular, W j ⊂ Vj+1. This decomposition is
always possible because the spaces Vj which form the multiresolution analy-
sis are closed: as a result, the elements of W j can be defined by the set of all
elements of Vj+1 minus their least squares projection on Vj . By virtue of the
conditions of the MRA it is an easy consequence of this definition that

L2(Rn) =
∞⊕

j=−∞
W j .

For the sake of completeness we provide the standard proof of this fact. Indeed,
given any positive ε and any square-integrable f , there exist integral j and
f j ∈ Vj such that the error ‖ f − f j‖2 is less than 1

2ε, say. This is due to condition
(MRA2). Moreover, it is a consequence of our orthogonal decomposition of the
spaces Vj and of (MRA3) that there are i ∈ Z and

g j−1 ∈ W j−1, g j−2 ∈ W j−2, . . . , g j−i ∈ W j−i ,

and f j−i ∈ Vj−i such that ‖ f j−i‖2 < 1
2ε and

f j = g j−1 + g j−2 + · · · + g j−i + f j−i

∈ W j−1 + W j−2 + · · · + W j−i + Vj−i .

Since ε was chosen arbitrarily, the assertion is proved, by letting both j and i
tend to infinity, the series in g j converging in L2, and by appealing to (MRA2)
once again.

Our demanded decomposition is a consequence of the last displayed equation:
If f is a square-integrable function, then there are g j ∈ W j such that f is
the infinite sum of the g j , the sum being convergent in L2, and each g j is
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decomposable in the form

g j =
∑
i∈Z

n

e∈E∗

c j,iω j,e(2 j · −i).

In this equation, the translates of the ω j,e span W j , where e ∈ E∗ and E∗ is
a finite suitable index set of which we have standard examples below. The
functions ω j,e that therefore must span the space

W j = span
{
ω j,e(2 j · −i)

∣∣∣i ∈ Z
n, e ∈ E∗

}
will be called the prewavelets. We shall give a more formal definition in
Definition 9.4.

9.3.2 The fast wavelet transform FWT

In fact, it is straightforward to derive the method of the so-called fast wavelet
transform FWT (also known as the cascade algorithm or pyramid scheme)
from the above description of decomposing any square-integrable f into its
prewavelet parts, or reconstructing it from them. The FWT is a recursive method
whose existence and efficiency are central to the usefulness of the wavelet theory
in practice as we have pointed out in the introduction to this chapter. To explain
the method, let ψ j+1, that is the generator of Vj+1, be represented by infinite
linear combinations

(9.4) ψ j+1(2(· − e)) =
∑
i∈Zn

a j
i,eψ j (· − i)+

∑
i∈Z

n

f∈E∗

b j,f
i,eω j,f(· − i).

Here, e ∈ E, the set of corners of the unit cube [0, 1/2]n in R
n . This decompo-

sition is possible for suitable infinite coefficient sequences a j
·,e and b j,f

·,e because
Vj+1 = Vj ⊕ W j and because Z

n = 2(Zn + E). The coefficient sequences are
at least square-summable, but we will require them to be absolutely summable
below. In the stationary setting, the dependencies of the coefficient sequences
on j may be dropped. Then we note that, for each element f j+1of Vj+1, we can
split the expansion in the following way:

f j+1 =
∑
i∈Zn

c j+1
i ψ j+1(2 j+1 · −i)(9.5)

=
∑
e∈E

∑
m∈Zn

c j+1
2(m+e)ψ j+1

(
2 j+1 · −2(m + e)

)
=

∑
e∈E

∑
m∈Zn

c j+1
2(m+e)ψ j+1

(
2
(
2 j · −(m + e)

))
with square-summable coefficients c j+1

i . Next it can be decomposed into its
parts from Vj and W j . For this, we insert and translate the decomposition (9.4)
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into the expansion (9.5) as follows (questions of convergence and interchanges
of infinite series etc. will be settled below):

f j+1 =
∑
e∈E

∑
m∈Zn

∑
i∈Zn

c j+1
2(m+e)a

j
i,eψ j (2

j · −m − i)

+
∑
e∈E

∑
m∈Zn

∑
i∈Z

n

f∈E∗

c j+1
2(m+e)b

j,f
i,eω j,f(2

j · −m − i)

=
∑
i∈Zn

∑
e∈E

∑
m∈Zn

c j+1
2(m+e)a

j
i−m,eψ j (2

j · −i)

+
∑
i∈Z

n

f∈E∗

∑
e∈E

∑
m∈Zn

c j+1
2(m+e)b

j,f
i−m,eω j,f(2

j · −i).

Through the use of Cauchy’s summation formula we see that the result can
be identified by convolving the coefficient sequence c j+1 = {c j+1

i }i∈Zn with
a j = {a j

i,e}i∈Zn ,e∈E and b j,f = {b j,f
i,e }i∈Zn ,e∈E, respectively. Call the resulting

discrete convolutions and new coefficient sequences

c j = a j ∗ c j+1 =


∑

m∈Z
n

e∈E

c j+1
2(m+e)a

j
�−m,e


�∈Zn

and d j,f = b j,f ∗ c j+1. The first one of those, namely c j , leads, if square-
summable, to another function f j in Vj with a decomposition into its parts in
Vj−1 and W j−1 etc. Therefore we get a recursive decomposition of any square-
integrable function f which is initially to be approximated by f j+1 ∈ Vj+1 for
a suitable j , and then decomposed in the fashion outlined above. The important
initial approximation is possible to any accuracy due to condition (MRA2).

The decompositions are computed faster if the a j
·,e and b j,f

·,e sequences are
local, e.g. exponentially decaying or even compactly supported with respect to
the index, because then the convolutions, i.e. the infinite series involved, can
be computed faster, although c j , d j,f ∈ �2(Zn) are already ensured by Young’s
inequality from the fifth chapter if the sequences a j

·,e, b j,f
·,e are absolutely

summable. This also implies validity of the above operations on the series.
In summary the decomposition can be pictured by the sequence

f ≈ f j+1 → g j and f j → g j−1 and f j−1 → · · ·
or, with respect to its coefficients that are obtained by convolution as described
above,

c j+1 → d j,e and c j → d j−1,e and c j−1 → · · · .
Re-composing a function from its prewavelets parts is executed in the same,
recursive way, albeit using different coefficient sequences for the convolution,
see also Daubechies (1992).
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It is relatively easy to analyse the complexity of the above FWT. At each
stage the complexity only depends on the length of the expansions which use
the coefficient sequences a j and b j,f. If they are compactly supported with
respect to their index, this introduces a fixed constant into the complexity count.
Otherwise, it is usual to truncate the infinite series, which is acceptable at least
if they are exponentially decaying sequences. The number of stages we use
in the decomposition or reconstruction depends on the resolution we wish to
achieve because the remainder f j−1 ∈ Vj−1 that we get at each stage of the
algorithm becomes a more and more ‘blurred’ part of the original function and
will finally be omitted.

9.3.3 The refinement equation

It is now our task to find suitable bases or generators

{ω j,e(2 j · −i)}i∈Zn ,e∈E∗

for these prewavelet spaces W j . They are the prewavelets which we seek. There
is a multitude of ways to find these generators and consequently there is a
multitude of different prewavelets to find. It is standard, however, at least to
normalise the prewavelets to Euclidean norm one. Our restricted aim in this
chapter is to exhibit a few suitable choices of prewavelets involving radial basis
functions and therefore we begin by constructing multiresolution analyses with
radial basis functions.

There is a convenient and very common sufficient condition for the first
property of multiresolution analysis (MRA1), that is the nestedness condition
(MRA1) is always a consequence of the so-called refinement equation which is
a standard requirement in the stationary setting and which we shall employ in
connection with radial basis functions. We shall explain this notion as follows.
We recall the notation �1(Zn) for the set of absolutely summable sequences
indexed ones Z

n .

Definition 9.2. The square-integrable function ψ satisfies a stationary refine-
ment equation if there exists a sequence a ∈ �1(Zn) such that

ψ(x) =
∑
j∈Zn

a jψ(2x − j), x ∈ R
n,

where a = {a j } j∈Zn . If ψ and ψ1 from L2(Rn) satisfy for a sequence a ∈ �1(Zn)

ψ(x) =
∑
j∈Zn

a jψ1(2x − j), x ∈ R
n,

then they provide a nonstationary refinement equation.
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This implies indeed in both cases that the spaces defined in (MRA4) are nested
if ψ ∈ V0, ψ1 ∈ V1 are the respective generators, that is V0 ⊂ V1, as desired
for a stationary or nonstationary MRA.

That fact is again due to Young’s inequality quoted in Chapter 5. We apply
it for the stationary case: the inequality implies that, if we replace the shifts
of ψ(2·) on the right-hand side of the refinement equation by a sum of such
translates (with �2-coefficients, i.e. square-summable ones), then the result can
be written as a sum of translates of ψ with �2-coefficients:∑

k∈Zn

ckψ(· − k) =
∑
k∈Zn

ck

∑
j∈Zn

a jψ(2 · −2k − j) =
∑
j∈Zn

d jψ(2 · − j).

Here d j =
∑

k∈Zn a j−2kck for all multiintegers j . (Incidentally, a ∈ �1(Zn) is for
this not a necessary condition but suffices. It is only necessary that a ∈ �2(Zn).
We usually require summability because of the above application of Young’s
inequality which makes the analysis simple, and because then the associated
trigonometric sum

a(x) :=
∑
j∈Zn

a j e
−i j ·x

is a continuous function.)
In particular the above coefficients d j are square-summable. In the nonsta-

tionary case, the argument remains essentially the same, where ψ has to be
replaced by ψ1 on the right-hand side of the refinement equation.

We continue with our example of radial basis functions (4.4) for the appli-
cation of the above in order to show its usefulness. To this end, we shall show
next that the refinement equation is always satisfied in our setting for the radial
basis functions (4.4) or, rather, for the thereby generated differences ψ , due to
the homogeneity of φ̂ when our radial basis functions (4.4) are used.

In our case of choosing quasi-interpolating radial basis functions as above,
the a j are a constant multiple of the Fourier coefficients of g(2·)/g, where
g: T

n → R is the numerator in (9.2). Indeed, if we take Fourier transforms in the
first display in Definition 9.2 on both sides, then the refinement equation reads

ψ̂(x) = 1

2n

∑
j∈Zn

a j e
−i j ·x/2ψ̂

( x

2

)
,

from which we get for our example that(1

2

)n
a(x) = ψ̂(2x)

ψ̂(x)
= g(2x)

22k g(x)
,

the single isolated zero in T
n of the denominator on the right-hand side can-

celling against the same in the numerator because of the form of g in (9.2).
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That the Fourier coefficients of the expansion on the left-hand side of the above
display are absolutely summable is therefore a consequence of Wiener’s lemma
stated in Chapter 2, so indeed the trigonometric sum converges absolutely and
is a continuous function. In order to finish the example, it is required further
that the above ψ , and the Vj generated from its translates and dilates, generate
a multiresolution analysis, i.e. our remaining assertion to be established is that
the conditions (MRA2) and (MRA3) hold, (MRA1) being true anyhow by the
construction and the refinement equation.

Indeed, the second condition of multiresolution analysis (MRA2) holds be-
cause the translates and dilates of ψ provide approximations in Vj to all con-
tinuous, at most linearly growing functions f , say, and those approximations
converge uniformly for j → ∞. We exemplify those approximants by using
the simplest form of a quasi-interpolant – which we recognise from Chapter 4 –
with spacing h = 2− j ,

Q2− j f (x) =
∑
k∈Zn

f (k2− j )ψ(2 j x − k), x ∈ R
n.

This quasi-interpolant is well-defined and exact at least on all linear polyno-
mials and, additionally, converges uniformly to f on the whole n-dimensional
Euclidean space as j →∞ for all functions f from a suitable class that is dense
in L2(Rn), for instance the class of twice continuously differentiable square-
integrable functions with bounded derivatives, cf. for instance Theorem 4.5. We
recall that this is only a simple example of a suitable approximation and much
better approximation results can be found but this it sufficient in our present
context of square-integrable functions, because we are satisfied if we can show
density. Therefore condition (MRA2) of MRA is verified while (MRA3) re-
quires further work which will be addressed in the next subsection.

9.3.4 The Riesz basis property

The condition (MRA3) of multiresolution analysis holds because the translates
and dilates of ψ form Riesz bases of the Vj . This is, again, a most useful and
commonly required property to fulfil the third property of multiresolution anal-
ysis (MRA3), which also has other pertinent consequences. We will define and
explain Riesz bases now for stationary multiresolution analyses.

Definition 9.3. Let j be an integer. The translates ψ(2 j ·−k) for multiintegers
k form a Riesz basis of Vj if there exist positive finite constants µ j and M j such
that the ‘Riesz stability’ inequalities

(9.6) µ j‖c‖ ≤
∥∥∥∥∥∑

k∈Zn

ckψ(2 j · −k)

∥∥∥∥∥
2

≤ M j‖c‖, c = {ck}k∈Zn ∈ �2(Zn),
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hold for all j ∈ Z independently of c and the ratio M j/µ j ≥ 1 is uniformly
bounded in j . Here ‖ · ‖ is the norm for the sequence space �2(Zn), while ‖ · ‖2

denotes the standard L2(Rn) norm.

In Fourier transform form, that is, after an application of the Parseval–Plancherel
identity, this expression (9.6) reads for j = 0, using here the common and
convenient abbreviation c(x) for the trigonometric series

∑
k∈Zn cke−i x ·k ,

(2π )n/2µ0‖c‖ ≤ ‖c( · )× ψ̂( · )‖2 ≤ M0‖c‖(2π )n/2.

It is useful to express this Riesz condition after periodisation in the alternative
formulation

(9.7) (2π)n/2µ0‖c‖ ≤
∥∥∥∥∥c( · )

∑
k∈Zn

ψ̂(· + 2πk)

∥∥∥∥∥
2,Tn

≤ (2π)n/2 M0‖c‖,

with the new notation ‖·‖2,Tn denoting the Euclidean norm now restricted to the
cube T

n in (9.7). We absorb constant multipliers such as (2π)n/2 in (9.7) into the
constants µ0 and M0 from now on to keep our formulae as simple as possible.

We wish to come back to our example now and apply our theory to that
example. Thus we shall establish that the translates and scales of our choice of
ψ form a Riesz basis of each Vj , for a suitable g, by fulfilling (9.7). This is in fact
the third important consequence that we have already alluded to of the particular
shape of φ̂ when φ is from the class (4.4). Indeed, if ψ̂( · ) = g( · ) × φ̂(‖ · ‖),
then the last display (9.7) reads by g’s periodicity

µ0‖c‖ ≤
∥∥∥∥∥c( · )g( · )

∑
k∈Zn

φ̂(‖ · +2πk‖)

∥∥∥∥∥
2,Tn

≤ M0‖c‖.

The reason why these inequalities hold for the ψ in (9.2) here is that φ̂ has no
zero and that our chosen g exactly matches φ̂’s singularity at zero by a high
order zero at the origin without having any further zeros elsewhere or higher
order zeros at 0. Still taking j = 0, the upper and the lower bounds in the
display above can be easily specified. They are the finite supremum and the
positive infimum of the square root of∑

k∈Zn

|ψ̂(t + 2πk)|2 = |g(t)|2
∑
k∈Zn

φ̂(‖t + 2πk‖)2, t ∈ T
n,

respectively, because of the well-known identity for Fourier series and square-
integrable sequences

(9.8) ‖c( · )‖2 = (2π )n/2‖c‖
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from the Appendix and because of the following simple estimate. We get by
appealing to Hölder’s inequality and taking supremum∥∥∥∥∥c( · )g( · )

∑
k∈Zn

φ̂(‖ · +2πk‖)

∥∥∥∥∥
2,Tn

≤ ‖c( · )‖2 sup
t∈Tn

√∑
k∈Zn

|ψ̂(t + 2πk)|2.

Similarly we get an estimate for the infimum by reversing the inequality. Both
of these quantities sup and inf are positive and finite due to the positivity of |ψ̂ |2
and by the definition of g, the summability of the infinite series being guaranteed
as usual because 2k > n. For other integers j , (9.6) follows immediately from
scaling of the so-called Riesz constants µ0 and M0 by 2 jn/2, but it is sufficient
to consider the decomposition V1 = V0 +W0 instead of all the decompositions
Vj+1 = Vj + W j when establishing the Riesz property of bases. In particular,
the ratios M j/µ j are constant here. It is usual to restrict the above condition
(9.6) of a Riesz property to j = 0. We leave the examples (9.2) now and return
to the general case.

Having verified the Riesz basis property, we can prove that the property
(9.6) implies (MRA3) by the following argument. We get from (9.6) that for
every f ∈ V0 with expansion f = ∑

k∈Zn ckψ(· − k) by the Cauchy–Schwarz
inequality

‖ f ‖∞ = sup

∣∣∣∣∣∑
k∈Zn

ckψ(· − k)

∣∣∣∣∣ ≤ C‖c‖ ≤ Cµ−1
0 ‖ f ‖2.

Here, sup denotes the essential supremum, i.e. the supremum taken everywhere
except on a set of measure zero.

Therefore, by a change of variables, we get for a specific g ∈ V− j , j ∈ Z,
and a special f , namely that specified by f := g(2 j ·),

‖g‖∞ ≤ Cµ−1
0 ‖ f ‖2 = 2− j/2Cµ−1

0 ‖g‖2 → 0, j →∞.

Thus it follows that g = 0 almost everywhere as soon as it lies in the intersection
of all V− j , j ∈ Z, and (MRA3) is therefore established by this argument.

As we have already pointed out, this Riesz property is a condition that is some-
times incorporated into the requirements of stationary multiresolution analysis
as well. It can be viewed as a suitable replacement for the orthonormality
condition that is imposed on the translates of wavelets (as opposed to pre-
wavelets) at each level j of scaling. In fact, if the translates are orthonormal,
then µ j ≡ M j ≡ 1 are the correct choices in (9.6) because the orthonormality
of translates of square-integrable functions ψ is equivalent to

(9.9)
∑
j∈Zn

|ψ̂(· + 2π j)|2 ≡ 1
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almost everywhere and because of (9.8). The identity (9.9) is equivalent to
orthonormality because the orthonormality conditions are, by application of the
Parseval–Plancherel formula for square-integrable functions from the Appendix
and by periodisation of ψ ,

δ0k =
∫

Rn

ψ(x)ψ(x − k) dx

= 1

(2π )n

∫
Rn

eix ·k |ψ̂(x)|2 dx

= 1

(2π )n

∫
Tn

∑
j∈Zn

|ψ̂(x + 2π j)|2eix ·k dx .

This equals δ0k for all k ∈ Z
n precisely whenever (9.9) is true.

9.3.5 First constructions of prewavelets

It is time to make use of multiresolution analysis because it opens the door
to many simple and useful constructions of prewavelets for us both in general
settings and in our example which is relevant in the context of radial basis
functions and in our book.

Definition 9.4. Let a sequence of closed subspaces Vj of L2(Rn) satisfy the
conditions of a stationary multiresolution analysis. A set {ωe}e∈E∗ , E∗ being an
index set, of functions with L2-norm one is a set of prewavelets if its elements
are in V1, are orthogonal to V0, and if their translates together span V1 . V0.
In the nonstationary case, the functions ω j,e must be in Vj+1, orthogonal to Vj

and the ω j,e(2 j · −i), i ∈ Z
n, e ∈ E∗, span Vj+1. Vj for all integral j in order

that they be prewavelets.

The simplest method to find prewavelets is to note that in the stationary case,
where we remain for the time being,

V1 = span

{
ψ1(· − e− j)

∣∣∣∣ j ∈ Z
n, e ∈ E

}
,

where ψ1 := ψ(2·), and define

ωe = ψ1(· − e)− Pψ1(· − e)

for all e ∈ E∗ := E \ {0}. Here P: V1 → V0 is the least squares (orthogonal)
projection. Then it is easy to see that those ωe and their multiinteger translates
generate W0 due to the fact that W0 = V1.V0 contains precisely the residuals of
the least squares projection from V1 onto V0 and this is what we compute in the
above display for V1’s generators. In particular, orthogonality of the prewavelets
on V0 is a trivial consequence of the projection we are using in the prewavelet’s
definition.
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A description by Fourier transform of thisωe defined in the previous display is

ω̂e := ψ̂e −
∑

j∈Zn ψ̂e(· + 2π j)ψ̂(· + 2π j)∑
j∈Zn |ψ̂(· + 2π j)|2 × ψ̂,

if the denominator is positive, where ψe is defined by ψe = ψ1(·−e) and where
the ψ̂ can be for example the function (9.2). This is so because the orthogonal
(L2)-projection P: V1 → V0 can be characterised through the useful proposition
below. We still assume the Vj to form an MRA.

Proposition 9.1. Let f ∈ V1 and ψ be as above. Then the orthogonal (‘least
squares’) projection P f of f with respect to the standard Euclidean inner
product on square-integrable functions from V1 → V0 is characterised by its
Fourier transform

P̂ f = ψ̂ ×
∑

j∈Zn f̂ (· + 2π j)ψ̂(· + 2π j)∑
j∈Zn |ψ̂(· + 2π j)|2

so long as the right-hand side of the display is in L2(Rn).

Proof: The proof of this fact is easy and it works out as follows. As we have
pointed out in the previous chapter, we just need to show the orthogonality of
f − P f , P f being defined through its Fourier transform in the last display, to
any element of V0.

Recalling ψ’s square-integrability and using the Parseval–Plancherel iden-
tity for square-integrable functions, again from the Appendix, this amounts to
showing for all k ∈ Z

n the identity∫
Rn

(
f̂ (x)− P̂ f (x)

)
¯̂ψ(x)eik·x dx = 0.

That is, by 2π -periodisation of the integrand, and inserting the P̂ f (x) from the
above definition,∫

Tn

(∑
j∈Zn

f̂ (x + 2π j)ψ̂(x + 2π j)
∑
j∈Zn

|ψ̂(x + 2π j)|2

−
∑
j∈Zn

|ψ̂(x + 2π j)|2
∑
j∈Zn

f̂ (x + 2π j)ψ̂(x + 2π j)

)

×
(∑

j∈Zn

|ψ̂(x + 2π j)|2
)−1

eik·x dx = 0.

This is true by construction for all k.
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9.4 Special constructions

9.4.1 An example of a prewavelet construction

In this first set-up, the prewavelets are found that are described in our next
theorem. Their construction is related to the construction that led to the or-
thonormalisation used in our Theorem 8.2 and to the work in Chui and Wang
(1991) and Micchelli, Rabut and Utreras (1991).

Theorem 9.2. Let ψ be as specified through (9.2), and let the MRA be gener-
ated by the Vj as above. Define the square-integrableω0 by its Fourier transform

ω̂0(y) = ‖y‖2k |ψ̂( y
2 )|2∑

�∈Zn |ψ̂( y
2 + 2π�)|2 , y ∈ R

n,

where as before 2k > n. Further define the translates along the set E∗ of corners
of the unit cube, except zero, by the identity

(9.10) ωe(y) = ω0(y − e), y ∈ R
n, e ∈ E∗.

Let finally spaces be defined by

W j,e := span{ωe(2 j · −i) | i ∈ Z
n}, e ∈ E∗,

and their direct sum

W j :=
⊕
e∈E∗

W j,e, j ∈ Z.

Then we have orthogonality W j ⊥ W�, and in particular Vj+1 = Vj ⊕ W j ,
W j ⊥ Vj , for all integers j �= �, and we have the expansion for all square-
integrable functions as an infinite direct sum

L2(Rn) =
∞⊕

j=−∞
W j .

In particular, the normalised ωe/‖ωe‖2, e ∈ E∗, form a set of prewavelets.

We note first that the functions defined in (9.10) are indeed in V1. If we take the
Fourier transform of (9.10), we get

e−iy·e‖y‖2k |ψ̂( y
2 )|2∑

�∈Zn |ψ̂( y
2 + 2π�)|2 = h(y)|ψ̂( y

2 )|2φ̂(‖y‖)−1,

where h is a square-integrable 4π -periodic function. Moreover,∣∣∣ψ̂( y

2

)∣∣∣2φ̂(‖y‖)−1
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is a constant multiple of ḡ( 1
2 y)ψ̂( 1

2 y), so in total we have an expression of
the form h̃(y)ψ̂( 1

2 y), where h̃ is 4π-periodic and square-integrable. Hence, by
reverting from the Fourier domain to the real domain and recalling that V1 is
spanned by translates ψ(2 · −i), we get that (9.10) indeed defines a function in
V1, as required.

This Theorem 9.2 is, in the context of this chapter, too difficult to prove
completely, but we shall show as an example the orthogonality claim that is
being made. This is in fact quite straightforward. We observe first that it suffices
to show W0 ⊥ V0. Let f be from E∗. Then we have that for any k ∈ Z

n∫
Rn

e−iy·kψ̂(y)ω̂f(y) dy

is the same as a fixed constant multiple of∫
Rn

ei2y·(f−k)g(2y)
|ψ̂(y)|2 dy∑

�∈Zn |ψ̂(y + 2π�)|2 =
∫

Tn

ei2y·(f−k)g(2y) dy,

the latter by standard 2π-periodisation of the integrand. This, however, vanishes
because f �= 0, so the inner product is zero, as required. Therefore we have
established the orthogonality claim for W0 ⊥ V0, from which it follows by
an inductive argument and from the condition (MRA1a) of the multiresolution
analysis that the full orthogonality claim between spaces as asserted in the
theorem statement is true.

9.4.2 Generalisations, review of further constructions

We now go into the more general concept of nonstationary MRA and observe
that a considerable generalisation can be achieved by continuing to let

V0 = span

{
ψ(· − j)

∣∣∣∣ j ∈ Z
n

}
,

but introducing a new space

V1 = span

{
ψ1

(
2 · − j

) ∣∣∣∣ j ∈ Z
n

}
,

where ψ and ψ1 are related not by scaling but only by the nonstationary refine-
ment equation, or, in the Fourier domain, by the relation

(9.11) ψ̂ = a
(1

2
·
)
ψ̂1

which they must obey with a 2π -periodic, square-integrable function a( · ). In
the special case when the nonstationary refinement equation holds for summable
coefficients a j of a( · ), then a( · ) is continuous, as we have noted before.
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Now, we assume, additionally, that supp ψ̂ = supp ψ̂1 = R
n , which is true

in all our examples and is true, in particular, when ψ and ψ1 are compactly
supported such as B-splines or box-splines. This is because the Fourier trans-
forms of compactly supported functions are entire functions and therefore their
(closed) support must be the whole space, unless they vanish identically. In the
case of our radial basis functions, the fact that supp ψ̂ = R

n for our example
(9.2) can be verified directly by inspecting its Fourier transform and the Fourier
transform of the radial basis function. It is a consequence of this that the above
condition (MRA2) is immediately fulfilled in that case. Indeed, it would be
sufficient that ψ̂ and ψ̂1 do not vanish at zero, that furthermore ψ and ψ1 be in-
tegrable and square-integrable and that therefore both their Fourier transforms
be continuous and bounded away from zero in a neighbourhood of the origin.
Condition (MRA3) is always true in that case up to a subspace Y of dimension
one or zero, i.e. the intersection of all Vj is Y (condition (MRA3) means that
Y ’s dimension is zero) and the case Y = {0} is automatically fulfilled if we
are in the stationary setting. Therefore (MRA2) and (MRA3) need no further
attention in the case considered here.

A general treatise on prewavelets is given in de Boor, DeVore and Ron (1993)
that includes the proofs of the claims of the previous paragraph. The authors
also show the sufficiency of supp ψ̂ j = R

n in order that the W j are finitely
generated shift-invariant spaces, i.e. generated by the multiinteger translates of
just finitely many functions, and derive which are specific basis functions ωe,
e ∈ E∗, in Vj+1 which generate the desired spaces W j .

In Micchelli (1991), this subject is generalised by admitting scaling fac-
tors other than 2. In fact, scaling by integer matrices M with | det M | > 1
is admitted where it is also required that lim j→∞ M− j = 0. This is usually
achieved by requiring the sufficient condition that all of M’s eigenvalues be
larger than one in modulus. In this event, | det M | − 1 prewavelets are re-
quired and their integer shifts together span each W j . Except for some tech-
nical conditions which we do not detail here and which hold for our radial
basis functions here, it is sufficient for the existence of the prewavelets that a
square-integrableψ which decays at least as (1+‖x‖)−n−ε for ε > 0 and whose
Fourier transform has no 2π -periodic zeros generates spaces Vj in the fashion
described above, albeit by scaling ψ j := ψ(M j ·), that satisfy the conditions
of stationary with scaling by M MRA and a refinement equations, again with
scaling by two componentwise, replaced by M . Hence, the V1 for instance is
now of the form

V1 := span

{
ψ1(M · − j)

∣∣∣∣ j ∈ Z
n

}
,
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where the standard choice for M which corresponds to our earlier choice of
scaling by two is the unit matrix multiplied by two. The nesting property of the
V1 is now ensured by the refinement condition

(9.12) ψ(x) = ψ0(x) =
∑
j∈Zn

a jψ1(Mx − j), x ∈ R
n,

with the condition a = {ai } j∈Zn ∈ �1(Zn) as usual.
Utreras (1993) constructs prewavelets in the same way as in Theorem 9.2

and points to the important fact that no multiresolution analysis can be found
for shifts of (4.4), i.e. when φ is replaced by φ(

√
r2 + c2) for c > 0. More

generally, he shows that the exponential (that is, too fast) decay of the Fourier
transform φ̂ of the resulting basis function φ prohibits the existence of a mul-
tiresolution analysis generated by shifts and scales of φ or a linear combination
of translates of φ. (It is the nestedness condition of the spaces in the sequence
that fails.) This applies for example to the multiquadric radial basis function
for odd n. This statement, however, only holds if the multiresolution analy-
sis is required to be stationary, i.e. results from the dilates and shifts of just
one function as in (9.3). On the other hand, several authors have studied the
aforementioned nonstationary multiresolution analyses with radial basis func-
tions, where the generating function of each Vj may be a different L2(Rn)
function ψ j .

For instance, in the author’s paper (1993b), univariate prewavelets from
spaces spanned by (integer) translates of multiquadric and related functions
are constructed. In order to get a square-integrable basis function first, deriva-
tives of multiquadric functions are taken and convolved with B-splines. This
is the same as taking divided differences of the radial basis function as in the
beginning of this chapter, but it is more amenable to analysis because one can
make use of the positivity of φ’s distributional Fourier transform. After all,
convolution of functions in the real domain means function multiplication in
the Fourier domain (cf. Appendix). This fact is extensively used in the proofs
of the results that follow. Let ψ ∈ C(R) with

(9.13)
∣∣ψ(x)

∣∣ = O(|x |−1−ε), x →±∞,

ψ̂(t) > 0, for all t ∈ R, and ψ̂(0) = 1 be given. The quantity ε is fixed and
positive. We restrict ourselves here to the example ψ(x) = k̂φ(2λ)(x), where
2λ = n̂+1, k̂ is a suitable normalisation parameter,φ(x) = φ̃(

√
x2 + c2), c ≥ 0,

and φ̃ is one of the functions φ̃(r ) = r2λ−1, λ ∈ N, but the theory in Buhmann
(1993b) is more general. Nevertheless, this covers the multiquadric example
(for λ = 1). We consider the continuous convolutions – whose properties are
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summarised in the Appendix –{
C j := Bc

j ∗ ψ, j ∈ Z,

Fj := Bf
j ∗ ψ, j ∈ Z.

(9.14)

The B-splines are the same as those in Chapter 2; the quantity n̂ is their degree
and Bc

j has knots in Z and support in [ j, j+ n̂+1], whereas Bf
j has knots in 1

2 Z

and support in 1
2 [ j, j + n̂+ 1]. Thus, C j and Fj are in L1(R)∩ L2(R), because

the B-splines are and because ψ ∈ L1(R). We now define V0 and V1 as
V0 :=

{
∞∑

j=−∞
c j C j

∣∣∣∣ c = {c j }∞j=−∞ ∈ �2(Z)

}
,

V1 :=
{

∞∑
j=−∞

c j Fj

∣∣∣∣ c = {c j }∞j=−∞ ∈ �2(Z)

}
.

(9.15)

Then the ω� := F� − P F�, � ∈ Z, is a prewavelet. Here P : V1 → V0 is the
same L2-projection operator as above. It is furthermore true that the prewavelet
decays at least as fast as

(9.16) |ω�(x)| = O
(
(1+ |x − �|)−3

)
, x ∈ R.

So, although not of compact support or exponential decay, these prewavelets
have quick algebraic decay (9.16) which is comparable with the properties of
the quasi-interpolating basis functions ψ of the fourth chapter.

In summary, prewavelets with radial basis functions are also an admissible
tool for approximation that has many useful properties which led to the de-
velopment of wavelets and prewavelets. It is an alternative to the interpolation
studied earlier in the book, depending on the particular application we wish to
address.
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Further Results and Open Problems

This book ends with a short chapter that has two goals. The first one is to catch
up with some recent results on radial basis function approximation which have
not been included in the main body of the book, so as to keep the book on
a sufficiently introductory level and homogeneous as to the direction of the
results. Nonetheless, there are many additional, new results which deserve to
be mentioned in a monograph like this about radial basis functions. We take
care of some of them by way of a short summary of results with a reference to
a cited paper or book that is suitable for further study.

The second one is to mention several open problems that have, as far as
the author is aware, not yet been solved at the time of writing this book and
which are, partly, in close connection with the recent results in this chapter.
(Since writing this book was a long term project, some very recent solutions
may almost certainly have been overlooked by the author.) We hope to raise
interest in the reader in those problems as subjects of general further, perhaps
their own, research work.

10.1 Further results

This section enlists and briefly discusses a number of further results in the
analysis of radial basis functions.

One of the very recent developments under much investigation now is the
idea of the so-called radial basis function multilevel methods. The idea came
up with the observation that radial basis functions with compact support have
no remarkable convergence orders to speak of if they are used in the way
classical radial basis functions are employed, i.e. with centres becoming dense
in a domain, and therefore additional work for improvement is needed. We have
already seen this to an extent in the sixth chapter where we briefly discussed

231
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their convergence properties. The first proposers of this idea were Narcowich,
Schaback and Ward (1999), Floater and Iske (1996) and, later, Fasshauer (1999)
who made particular use of this idea for the numerical solution of differential
equations.

The idea is one of iterative refinement of an initial, quite crude approxima-
tion with radial basis functions with compact support by updating the residuals
iteratively. For the first step, radial basis functions are employed for interpo-
lation whose support sizes may even be such that no convergence at all could
be expected if they were used without iteration, and only with the standard
refinement of the spacing of the set of data points. Therefore the latter, stan-
dard approach is not the final approximation, but an iterative refinement of the
residuals is applied, similar to the BFGP method of Chapter 7, by using at each
level different radial basis functions and, especially, differently scaled ones.

In other words, an interpolant to the residual of the previous interpolation
process is computed with different basis functions and/or scales and subse-
quently added to the previous residual. This process is repeated at each itera-
tion. Unfortunately, there is, at present, not enough known about convergence
orders of this idea of approximation but it works well in practice (Fasshauer,
1999, Chen et al., 1999). The idea behind the approach is of course the notion
of capturing various features of the approximand at different resolutions (fre-
quencies) at different levels of the multilevel algorithm. In that, it resembles
the well-known prewavelet approximations outlined in Chapter 9. One of the
principal applications is the solution of (elliptic, in some applications nonlinear)
partial differential equations by Galerkin methods, where radial basis functions
with compact support are ideal for generating the test functions and the associ-
ated inner products for the so-called stiffness matrices, much like the piecewise
polynomials of compact support in finite elements, but they have a priori the
aforementioned, possibly bad, convergence behaviour.

Convergence analysis for radial basis functions of global support has been
undertaken in much more general settings than indicated in our Chapter 5.
For instance, Duchon-type radial basis functions which use inner products like
those in Chapter 5 but apply fractional derivatives in very general settings
have been studied in many contexts. They are often called thin-plate splines
under tension. The analysis is in principle the same and uses the same analytic
ideas, but requires some changes in the convergence orders for the scattered
data interpolants of Chapter 5. The fractional derivatives result in nonintegral
powers µ in condition (A1) on our radial basis function’s Fourier transform. A
suitable reference is the thesis by Bouhamidi (1992).

Very general results characterising approximation orders for gridded data and
quasi-interpolation – in fact characterisations of the radial basis functions and
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other functions of global support for being able to provide such convergence
orders – are given by Jia and Lei (1993). The results are general especially in the
sense that they hold for L p-spaces and L p-convergence orders and not only for
uniform convergence which is the most often considered choice. The necessary
and sufficient conditions are expressed in terms of the so-called Strang and
Fix conditions that were used implicitly many times in Chapter 4 and were
described there. Especially for making the conditions necessary, the notion
of controlled approximation order is required which does not feature in our
book, whereas this paper is a suitable reference to it. On the whole, this is an
excellent paper which nicely complements the work presented in this book in
the fourth chapter. A closely related paper is the article by Halton and Light
(1993).

If the multiquadric function is used with a fixed parameter c, then exponential
convergence orders can be achieved, as we have noted in Chapter 5. Another
paper in the same vein which established spectral convergence orders for mul-
tiquadric interpolation with fixed c and gridded data is the one by Buhmann
and Dyn (1993). The spectral convergence orders depend only on the smooth-
ness of the approximand, once a certain minimal smoothness is guaranteed,
and increase linearly with its smoothness. It is measured in terms of the Fourier
transform of the approximand.

A long and detailed article, especially about quasi-interpolation with radial
basis functions on an integer grid, is the one by Dyn, Jackson, Levin and Ron
(1992) which shows how quasi-interpolating basis functions and the uniform
(Chebyshev) convergence orders are obtained from large, general classes of
radial basis functions and how the connection with their Fourier transforms is
made. It is shown in more general contexts than we did in Chapter 4 how a
particular form of the Fourier transform and its singularity at zero is necessary
and sufficient for the existence of suitable quasi-interpolants. It also details
more explicitly how the quasi-interpolating basis functions that we called ψ

are found from φ, our work by contrast focussing more on interpolation, where
the Ls are prescribed by the cardinality conditions.

In the previous two chapters we have used only L2-theory to explain our
wavelets and least squares approximations. Binev and Jetter (1992) offer an
approach to radial basis function approximation as a whole and in particular
cardinal interpolation only by means of L2-theory which facilitates many things
in the theory through the exclusive use of Hilbert space and Fourier transform
techniques. The results obtained contain not many surprises as compared with
our results, but the exclusive use of this L2-approach makes their contribution
extremely elegant and provides an analysis of the L2-stability of radial basis
function bases which we have not considered.
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In Chapter 5 we have used error estimates with the aid of the so-called power
functions and native spaces where on each ‘side’ of the error estimate, the same
radial basis function is used. An interesting generalisation which can lead to
larger classes of approximands that may be included in the error estimate is that
of Schaback (1996). He proposes the use of different radial basis functions for
the approximation on one hand and for the error estimate and the power function
involved therein on the other hand. If the radial basis functions used for the
power function leads to a larger native space, then the class of approximands
considered in the error estimate is enlarged. By these means, no better error
estimates can be expected as the approximation spaces are not changed, the
approximation order being a result of the choice of the space of approximants,
but the spaces of the approximands which are admitted to the error estimate are
substantially enlarged.

Two other papers about radial basis function approximation on infinitely
many scattered data are the ones by Buhmann and Ron (1994) and Dyn and
Ron (1995). In both cases, very particular methods are developed for converting
the known approximation methods and results (especially quasi-interpolation)
to the setting of scattered data. The second paper mentioned is more compre-
hensive, as it shows how to do this conversion in very general cases. The former
treats, on the other hand, convergence orders not only in Chebyshev norm but
for general L p-norms. In both articles, interpolation is not specifically used but
general approximation from the radial basis function spaces, and the approxi-
mants are not explicit.

Other extensions and variations of the ‘gridded data convergence theory’
include the work by Bejancu (1997) on finitely many gridded data in a unit cube
where he shows that for all radial basis functions belonging to the class of (4.4)
in the inside of this unit cube, the same convergence orders are obtained as with
the full set of multiintegers scaled by a step size h. The uniform convergence
is measured for this on any compact set strictly inside the unit cube. The main
tool for this proof is to use the localness of the cardinal functions for the full
grid which we know from Chapter 4 in order to show that the approximants on
the finite cube and on the full scaled integer grid vary only by a magnitude that
is bounded above by an O(h2k) term.

We have already mentioned in Chapter 4 how convergence with radial ba-
sis functions can also occur when we restrict ourselves to the fixed integer
grid and let certain parameters in the radial basis functions (e.g. parameters
in multiquadrics and Gaussians) vary. Another recent contribution to this as-
pect of radial basis function interpolation is the article by Riemenschneider and
Sivakumar (1999) which studies Gaussians and their convergence behaviour
for varying parameters in the exponential.
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Due to the many applications that suit radial basis functions for instance
in geodesy, there is already a host of papers that specialise the radial basis
function approximation and interpolation to spheres. Freeden and co-workers
(1981, 1986, 1995) have made a very large impact on this aspect of approx-
imation theory of radial basis functions. There are excellent and long review
papers available from the work of this group (see the cited references) and
we will therefore be brief in this section here. Of course, we no longer use
the conventional Euclidean norm in connection with a univariate radial func-
tion when we approximate on the (n − 1)-sphere Sn−1 within R

n but apply
so-called geodesic distances. Therefore the standard notions of positive defi-
nite functions and conditional positive definiteness no longer apply, and one
has to study new concepts of (conditionally) positive definite functions on the
(n − 1)-sphere. These functions are often called zonal rather than radial basis
functions.

This work started with Schoenberg (1942) who characterised positive defi-
nite functions on spheres as those ones whose expansions in series of
Gegenbauer polynomials always have nonnegative coefficients. Xu and Cheney
(1992) studied strict positive definiteness on spheres and gave necessary and suf-
ficient conditions. This was further generalised by Ron and Sun in 1996. Recent
papers by Jetter, Stöckker and Ward (1999) and Levesley et al. (1999) use native
spaces, (semi-)inner products and reproducing kernels to derive approximation
orders in very similar fashions to the work of Chapter 5.

A recent thesis by Hubbert (2002) generalises the approach of Chapter 5
to zonal basis functions, especially native spaces and the necessary extension
theorems for obtaining error estimates.

Not only standard interpolation but also Hermite interpolation in very general
settings was studied by Narcowich and Ward (1995). They not only addressed
the Hermite interpolation problem but considered it also on manifolds rather
than Euclidean spaces as we do in this book (see also our next section on open
problems).

There is another aspect of radial basis function which is related to the ques-
tions of convergence we studied in this book, namely the question when gen-
eral translates, that is with arbitrary knots, are dense in the set of continuous
functions on a domain, say. An alternative question is for what sets � of centres
we get denseness in the space of continuous functions on a domain when the
radial function φ is allowed to vary over a specified set of univariate contin-
uous functions, φ ∈ A ⊂ C(R+), say. These two and other related questions
were studied especially by Pinkus, and we mention his 1999 paper from the
bibliography. This question and paper are also related to applications of neural
networks using radial basis function approximations, an application which has
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been alluded to many times in this book. A suitable recent reference is the paper
by Evgeniou, Pontil and Poggio (2000).

10.2 Open problems

The first of the open problems which the reader is invited to pursue research
work in is the question of the saturation orders of scattered data interpolation
with radial basis functions for all dimensions, even from the apparently simple
thin-plate spline class (4.4). At present, this is arguably the most urgent question
in the approximation theory of radial basis functions, but the univariate thin-
plate spline case has been settled by Powell (2001) as well as the case for
1 ≤ p ≤ 2 by Johnson (2002).

As we have remarked at several places in the book, notably in Chapters 4
and 5, saturation orders are available for large classes of radial basis functions
φ, including those defined in (4.4), so long as we work on square grids of
equally spaced infinitely many data, but not enough is known for scattered
sets of data sites �, in spite of the fine results by Johnson which give upper
bounds for approximation orders (1998a and b) and indeed saturation orders
for special cases (2002). This question is especially pertinent if we formulate
it for general L p-approximations, 2 ≤ p ≤ ∞, because it may well be that it
can be answered once we have the complete answers by Johnson (2002) with
restriction to p ≤ 2.

We known from Johnson’s work that the gridded data results with the highest
approximation orders are always unavailable in the general case of scattered
data even when very smooth domain boundaries are required, to be contrasted
with the highly plausible conjecture that the ‘full’ orders are obtained if we stay
well away from domain boundaries or impose suitable, strong conditions on
the approximand. On the other hand, what are the precise convergence orders
obtained on the boundaries depending on their smoothness and that of the
approximand for p = ∞, for example? Suitable boundary conditions for the
univariate thin-plate spline case for getting the best possible convergence orders
were given by Powell (2001).

These questions are, incidentally, particularly important in the context of
using radial basis functions for the numerical solution of partial differential
equations on domains.

Not only in the approximate numerical solution of partial differential equa-
tions is the study of approximations at the boundary of a domain important. It
requires particular attention in the setting of the ‘classical’ radial basis func-
tions studied in this work because of their global support and expected difficul-
ties at the boundaries. For instance, the approximants may become unbounded
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outside the finite domain and make approximations at the boundary especially
difficult.

A second important question to address is always the choice of various pa-
rameters within the radial basis functions, notably the notorious c parameter in
the ubiquitous multiquadric radial basis function. Work has been done on these
questions (Rippa, 1999) but it is mostly empirical. No doubt, the experimental
work shows that there will be a data-dependence in the choice of c, at least on
the (local) spacing of the data sites as in our section about parameter-dependent
convergence of radial basis function interpolants. It is conjectured that there are
also dependences of the smoothness (parameters) of the approximand, such as
its second partial derivatives. This is underlined by the empirical results.

In the context of multiquadric interpolation and choice of parameters, there
is still the question of existence and uniqueness of interpolants with different
parameters c = cξ , the main problem being that the interpolation matrix is no
longer a symmetric matrix and – presumably – the concepts of (conditional)
positive definiteness or similar ones are no longer available. The same problems
come up when radial basis functions of different compact support are used in
the same approximant.

Of course within the context of choice of parameters, the question of optimal
choices of centres arises too for interpolation with radial basis functions (see
below and Chapter 8 for this point in the least squares setting). It is questionable
from comparative work e.g. by Derrien whether grids form the optimal (regular)
distribution of data sites, even when they are chosen to be function-value-
independent. This can also be related to the condition numbers of interpolation
matrices which are geometry-dependent, if independent of the number of centres
as we have seen in Chapter 5. There are some practical experiments which
indicate for example that hexagonal grids may be superior in two dimensions
to square ones as far as the condition numbers of interpolation matrices are
concerned (Derrien, private communication).

Incidentally, in practice it is not really the condition number of the direct
interpolation (collocation) matrix which is relevant. Another quantity which is
open for much research and analysis is the uniform (say) norm of the interpo-
lation operator, even for uniform gridded data, and all the more for scattered
data. Good estimates for those norms can be highly valuable for theory and
implementations of radial basis function interpolation methods, because they
are basis-independent in contrast with condition numbers which are not: on the
contrary, we usually attempt to improve them by changing bases.

We have pointed out already at various places in the book that interpolation is
not the only method of use with radial basis functions. Among others, we have
mentioned quasi-interpolation and least squares approaches. Smoothing splines
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with additional parameters that can be fixed by so-called cross-validation can
provide further options that have already partly been studied in the literature
(e.g. Wahba, 1981, and the above empirical results about optimal c parameters
use cross-validation for finding best cs). This will certainly be useful not only
for the radial basis functions we mention in this book but for large classes of
radial or indeed nonradial, multivariate functions that give rise to conditional
positive definiteness.

Many applications that involve the numerical solution of partial differen-
tial equations which have already been outlined in the second chapter require
evaluation of inner products of radial basis functions and their translates, à la
Galerkin methods, for producing the entries of the stiffness matrices. It has so
far not been looked at sufficiently how to do this efficiently unless the radial
basis functions are of compact support. Ideally there could be recursive methods
such as with polynomial splines to compute the inner products, i.e. integrals,
but this will undoubtedly be a new and difficult area of research, again due to
the unbounded support and the relative difficulty of the analytic expressions of
the common radial basis functions, involving logarithms, square roots and the
like. Most applications of radial basis functions for the numerical solution of
partial differential equations are still open anyway, since there is much work to
do for treating boundary conditions suitably.

Wavelets with radial basis functions have already been addressed in this
book, not so wavelets with radial basis functions of compact support. Much as
with spline wavelets which originate from B-splines this research could lead
to highly relevant results and the creation of new, efficient wavelet methods in
several dimensions.

Fast computations of radial basis function interpolants are already available,
as we have seen in the central, seventh chapter of this book. However, not at all
everything which could be done has been done in this vein, and an important
gap in this work is the availability of fast practical methods in high dimensions.
In two, three and four dimensions, algorithms are readily available, but it is
really for large dimensions n when radial basis functions come into the centre
of interest, due to the problematic spline and polynomial methods then for
interpolation. We mentioned this in the third chapter. Therefore, there should
be algorithms for moderate numbers of data points ξ (a few thousand, say)
but large n – at present the bottleneck being the methods for fast evaluation
in high dimension. This includes approximations on manifolds within high-
dimensional spaces which should be specially considered within these high-
dimensional applications.

Indeed, it is not at all uncommon to have approximations which happen, at
face value, in very high-dimensional Euclidean spaces, but in fact the important
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phenomena (say, the qualitative behaviour of the solution of a partial differential
equation or the asymptotic behaviour) happen in lower-dimensional manifolds
or subspaces at least asymptotically. There are two things that can be helped
in this context by the availability of radial basis functions in high dimensions:
firstly they can help to identify those manifolds or subspaces (so this is a question
of dimension reduction) and secondly they can themselves model the solution on
those lower-dimensional structures. For this, it has to be kept in mind that, even
after a dimension reduction, the structures may still be fairly high-dimensional.

It has already been mentioned in the chapter about least squares approxima-
tions that least squares approximations with free knots (here, with free centres)
would be an interesting field of study and undoubtedly fruitful. This will be
a nonlinear approximation method and probably give much better approxi-
mations than are available so far, because a data-dependent choice of centres
should allow better fits for functions and data of various smoothness. Among
some of the other fields mentioned in this section, this is one of the most warmly
recommended new subjects for empirical and theoretical research.

Finally, neural networks lie between the sheer practical applications of radial
basis function approximations and their theoretical study, because they them-
selves give rise to new analysis methods and approaches for the radial basis
function spaces. They are particularly connected with the high-dimensional
ansatz and their practical aspects demand smoothness as well as fast computa-
tion in high dimensions. Therefore the link between these two research areas
should be fostered and enforced from the radial basis function side by particular
attention to the needs of neural network approximations.



Appendix: Some Essentials
on Fourier Transforms

Since we require in this book so many facts about the Fourier transform in
n-dimensional Euclidean space, we have collected in this appendix several
essential facts. They are mostly taken from Stein and Weiss’s excellent and
famous book of 1971.

Definition. Let f be an absolutely integrable function with n real variables.
Then its Fourier transform, always denoted by f̂ , is the continuous function

f̂ (x) =
∫

Rn

e−i x ·t f (t) dt, t ∈ R
n.

This function f̂ satisfies f̂ (x) = o(1) for large argument, which is a conse-
quence of the multidimensional Riemann–Lebesgue lemma.

We also observe the trivial fact that the Fourier transform of f is always
uniformly bounded by the integral of | f |, that is by its L1-norm. Moreover,
the Fourier transform of f is uniformly continuous under that integrability
condition.

Definition. Let ‖ · ‖2 denote the Euclidean norm defined by its square

‖ f ‖2
2 :=

∫
Rn

| f (t)|2 dt.

Here, f is a function of n real variables. There is an inner product associated
with this norm in the canonical way: for two functions f and g with finite
Euclidean norm,

( f, g) =
∫

Rn

f (t) g(t) dt.

The space of all measurable f : R
n → R with finite Euclidean norm is called

L2(Rn).
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In this definition, all measurable f that differ only on a set of measure zero are
considered the same.

Theorem. For two absolutely integrable functions f and g of n real variables,
the convolution defined through

f ∗ g(x) :=
∫

Rn

f (x − t) g(t) dt, x ∈ R
n,

satisfies

f̂ ∗ g = f̂ · ĝ.

In particular, the convolution f ∗g is itself absolutely integrable due to Young’s
inequality.

Theorem. If f is absolutely integrable, so are f (x−y), x ∈ R
n, and eix ·y f (x),

x ∈ R
n, for a fixed y ∈ R

n, and their Fourier transforms are

e−i x ·y f̂ (x)

and

f̂ (x − y),

respectively. Moreover, the Fourier transform of f (M ·), where M is a non-
singular square n × n matrix, is f̂ (M−T ·)/| det M |. Here, the exponent ‘−T ’
means inverse and transpose.

Theorem. If f and x1 f (x), x ∈ R
n, are both absolutely integrable, where

x1 denotes the first component of x, then f̂ is once continuously differentiable
with respect to the first coordinate and the partial derivative is

∂ f̂ (x)

∂x1
= ̂(−i t1 f (t))(x),

where t1 is the first component of t .

Conversely we can also obtain the Fourier transform of the first partial derivative
of f , if it exists and is absolutely integrable, as i x1 f̂ (x). Both of these statements
can be generalised to higher order derivatives in a straightforward manner.

Theorem. If f and its Fourier transform are both absolutely integrable, then
the inversion formula

f (x) = 1

(2π )n

∫
Rn

eix ·t f̂ (t) dt, x ∈ R
n,

holds. The process of inverting the Fourier transform is denoted by the symbol
ˇ̂f = f .

Furthermore, we observe that f̌ = f̂ (−·)/(2π )n .
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The bounded linear extension of the Fourier transform operator to the space
of square-integrable functions L2(Rn) is also called Fourier transform with
the same notation, and it has the following properties. Note that the functions
and their Fourier transforms are defined no longer pointwise but only almost
everywhere, because the integrals no longer converge absolutely.

Theorem. The Fourier transform is an isometry L2(Rn) → L2(Rn) in the
sense that ‖ f̂ ‖2 agrees with ‖ f ‖2 up to a constant factor. (The factor is one if
we normalise f̂ by introducing an extra factor 1/(2π )n/2.)

There also holds the famous Parseval–Plancherel identity:

Theorem. For two n-variate and square-integrable functions f and g and
their Fourier transforms f̂ and ĝ, it is true that

( f̂ , ĝ) = (2π )n( f, g)

for the Euclidean inner product.

A closely related fact is that the L2(Tn)-norm of a Fourier series is the same as
(2π )n/2 times the �2(Zn)-norm of its Fourier coefficients.



Commentary on the Bibliography

We finish this book by adding a few remarks about the current state of the literature on
radial basis functions. To start with, we point out that there are many excellent reviews
and research papers about radial basis function approximation, such as the ones by
Dyn (1987, 1989), Hardy (1990) and Powell (1987, 1992a). The present book gives,
unsurprisingly, the author’s personal view and therefore depends on many of his own
papers cited above. Moreover, there is another review with different emphasis recently
published by the journal Acta Numerica, also by the same author but more focussed on
surveying the very recent results and several applications. However, we wish to add to
our fairly extensive list of references a few remarks that also concern the history of the
development of radial basis functions.

Many ideas in and basic approaches to the analysis of radial basis functions date
back to Atteia, and to Pierre-Jean Laurent and his (at the time) student in Grenoble
Jean Duchon whose papers we have quoted in the Bibliography. The papers we have
listed there are the standard references for anyone who is working with thin-plate splines
and they initiated many of the ideas we have used in Chapter 5 of the book. They are
also closely related to the work by Micchelli, and Madych and Nelson, about radial
function interpolants, their unique existence and convergence properties. Duchon was
certainly one of the pioneers on the important classes of thin-plate spline type radial
basis functions (4.4) while the ideas on radial basis functions with compact support
probably started with Askey whose paper (a technical report) we quote above as well.
Duchon’s approach was exclusively via the variational principles of Section 5.2.

With those papers having started the radial basis function idea in the 1970s as far as
scattered data are concerned, much of what followed then in the 1980s and 1990s was
based on the idea of studying data on grids for the analysis of convergence/approximation
orders etc. Since the analysis is far more complete (and, in some sense, easier, as the
reader will have seen by now) we have included the description of this analysis one
chapter before the work of Duchon and its ‘derivatives’. Much of that chapter goes back
to the author’s own work, but includes important contributions by Baxter (Theorem 4.19
describes his ideas for instance), Jackson (especially about quasi-interpolation as out-
lined in Section 4.2 and convergence), Powell (e.g. the proof of Theorem 4.7 is due
to his ideas), joint work with Micchelli (1991, e.g. Theorem 4.10), and several others.
The precursor of this work is in part the work by de Boor and collaborators, Dahmen
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and Micchelli and many others on box-splines because the box-splines (sometimes also
called cube-splines, they are closely related to B-splines in multiple dimensions, but
only defined on lattices) too were analysed on square grids first, and they gave beau-
tiful applications to the Strang and Fix theory which we have quoted (but used only
implicitly) in Chapter 4. In fact they were the reason why much of that theory has been
developed. They benefited from the idea of square grids and the applications of Fourier
analysis, the Poisson summation formula etc. in the same way as we have used in the
analysis of radial basis functions too. They do have the simplification of dealing with
basis functions (the box- or cube-splines) which have compact support. This difference
is, from the analytical point of view, especially significant when proofs of approximation
orders are established.

The multiquadric function (as well as the inverse multiquadric) has been especially
fostered by Hardy who introduced their main applications in geophysics and gave them
their name – often they are in fact called ‘Hardy (inverse) multiquadrics’ for this rea-
son. Franke with his 1982 paper in Mathematics of Computation comparing several
techniques of multivariate approximation brought the multiquadrics to the attention of
many more mathematicians because of this very favourable review of their properties
and convincing statements about their advantages in applications.

Few aspects of approximation theory can be discussed without mentioning the contri-
butions of Schoenberg who envisaged many methods and theories suitable in multiple di-
mensions even before they were studied in detail generations later. We have mentioned in
the Bibliography only his contributions to the nonsingularity of distance matrices (i.e., as
they are sometimes called, linear basis functions) and complete monotonicity, but there
are also contributions to the theory of approximation on equally spaced data with the
use of Fourier transforms as in the Strang and Fix theory. He studied those especially for
univariate, equally spaced data and the exponentially decaying Lagrange functions. The
ideas about establishing existence and polynomial reproduction stem from his work. We
recommend that the reader sees his selecta edited by Carl de Boor for this.

Micchelli, and Madych and Nelson, have extended the ideas of complete monotonicity
and conditionally positive functions to apply to all those radial basis functions mentioned
in Chapter 4 of this book, where Micchelli in his seminal 1986 paper concentrated on the
nonsingularity of the radial basis function interpolation matrix and Madych and Nelson
more on the convergence questions. Micchelli’s work is mentioned in Chapters 2 and
5, while some of Madych and Nelson’s contributions are quoted in Chapter 5. Later
contributions of the 1990s are due to Schaback and Wu and others whose papers are
also included in the bibliography. Finally, probably the sharpest upper bounds on the
approximation orders are due to Michael Johnson who has developed into an expert in
providing those ‘inverse’ results. Some of this work we have included in Chapters 4
and 5.

Many applications, both potential and topical, are mentioned especially in the In-
troduction and in Chapter 2, and we cite Hardy’s papers as an excellent reference to
applications, but in order to avail oneself of the methods for those practical applications,
efficient computer implementations are needed as well. Some of the main contributors
to the development of fast algorithms have been mentioned in Chapter 7, and we point
here once more to the papers by Beatson, Goodsell, Light and Powell.

Using wavelets with all kinds of approximation spaces has been a topic of interest for
more than 10 years now within approximation theory and now also within multivariate
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approximation theory. As far as the wavelets with radial basis functions are concerned,
this is an area that is only beginning to develop now, and in Chapter 9 we have only
reviewed some of the first moderate contributions. It is to be hoped, as was also pointed
out in Chapter 10, that more will be known in the not too distant future. As to the general
theory of wavelets, a reference to Daubechies’ work for instance must not be missing
from any typical bibliography on the subject.

The author of this book is grateful for all the fine contributions to the research into
radial basis functions which have been provided by the many colleagues, many, but
certainly not all, of whose papers are cited above, and which have made this monograph
possible.
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Jetter, K., J. Stöckler and J.D. Ward (1999) ‘Error estimates for scattered data interpo-
lation on spheres’, Math. Comp. 68, 733–747.

Jia, R.Q. and J. Lei (1993) ‘Approximation by multiinteger translates of functions having
global support’, J. Approx. Th. 72, 2–23.

Johnson, M.J. (1997) ‘An upper bound on the approximation power of principal shift-
invariant spaces’, Constructive Approx. 13, 155–176.

Johnson, M.J. (1998a) ‘A bound on the approximation order of surface splines’, Con-
structive Approx. 14, 429–438.

Johnson, M.J. (1998b) ‘On the error in surface spline interpolation of a compactly
supported function’, manuscript, University of Kuwait.

Johnson, M.J. (2000) ‘The L2-approximation order of surface spline interpolation’,
Math. Comp. 70, 719–737.

Johnson, M.J. (2002) ‘The L p-approximation order of surface spline interpolation for
1 ≤ p ≤ 2’, manuscript, University of Kuwait, to appear in Constructive Approx.

Jones, D.S. (1982) The Theory of Generalised Functions, Cambridge University Press,
Cambridge.

Karlin, S. (1968) Total Positivity, Stanford University Press, Stanford, Calif.
Katznelson, Y. (1968) An Introduction to Harmonic Analysis, Dover, New York.
Kergin, P. (1980) ‘A natural interpolation of Ck-functions’, J. Approx. Th. 29, 278–293.
Kremper, A., T. Schanze and R. Eckhorn (2002) ‘Classification of cortical signals with

a generalized correlation classifier based on radial basis functions’, J. Neurosci.
Meth. 116, 179–187.

Laurent, P.-J. (1972) Approximation et optimisation, Hermann, Paris.



Bibliography 253

Laurent, P.-J. (1991) ‘Inf-convolution splines’, Constructive Approx. 7, 469–484.
Levesley, J. (1994) ‘Local stability of translates of polyharmonic splines in even space

dimension’, Numer. Funct. Anal. Opt. 15, 327–333.
Levesley, J., W.A. Light, D. Ragozin and X. Sun (1999) ‘A simple approach to the varia-

tional theory for interpolation on spheres’, in New Developments in Approximation
Theory, M.D. Buhmann, M. Felten, D. Mache and M.W. Müller, (eds.), Birkhäuser-
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Reimer, M. (1990) Constructive Theory of Multivariate Functions with an Application
to Tomography, BI Wissenschaftsverlag, Mannheim.

Riemenschneider, S.D. and Sivakumar (1999) ‘Gaussian radial basis functions: cardinal
interpolation of �p and power growth data’, Adv. Comp. Math. 11, 229–251.

Rippa, S. (1999) ‘An algorithm for selecting a good parameter c in radial basis function
interpolation’, Adv. Comp. Math. 11, 193–210.

Ron, A. (1992) ‘The L2-approximation orders of principal shift-invariant spaces
generated by a radial basis function’, in Numerical Methods of Approximation
Theory, D. Braess and L.L. Schumaker (eds.), Birkhäuser-Verlag, Basel, 245–
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