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Geometric Control of Mechanical Systems

Scientific Interests

(i) success in linear control theory is unlikely to be repeated for nonlinear systems.

In particular, nonlinear system design. no hope for general theory

mechanical systems as examples of control systems

(ii) nonlinear control and geometric mechanics

Framework based on affine connections

(i) reduction from 2n to n dimensional computations

(ii) controllability, kinematic models, planning, averaging not stabilization
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Outline: from geometry to algorithms

(i) modeling

(ii) approach #1

(a) analysis: kinematic reductions and controllability

(b) design: inverse kinematics catalog

(iii) approach #2

(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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1 Models of Mechanical Control Systems
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Ex #1: robotic manipulators with kinetic energy and forces at joints

systems with potential control forces

Ex #2: aerospace and underwater vehicles

invariant systems on Lie groups

Ex #3: systems subject to nonholonomic constraints

locomotion devices with drift, e.g., bicycle, snake-like robots
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1.1 Basic geometric objects

• manifold Q ⊂ RN Rn,Tn, Sn, SO(3), SE(3)

• vector fields X = (X1, . . . , Xn) : Q 7→ TQ

• metric M is an inner product on TQ and its inverse M−1

matrix representations Mij and inverse Mlm

(i) a connection ∇ is a set of functions Γijk : Q → R, i, j, k ∈ {1, . . . , n}
(ii) the acceleration of a curve q : I → Q

(∇q̇ q̇)
i
= q̈i + Γijkq̇

j q̇k

(iii) the covariant derivative ∇XY of two vector fields

(∇XY )i =
∂Y i

∂qj
Xj + ΓijkX

jY k 〈X : Y 〉 = ∇XY + ∇YX
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1.2 Constraints, distributions and kinematic modeling
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1.3 SMCS with Constraints: definition

A simple mechanical control system with constraints is

(i) an n-dimensional configuration manifold Q,

(ii) a metric M on Q describing the kinetic energy,

(iii) a function V on Q describing the potential energy,

(iv) a dissipative force Fdiss,

(v) a distribution D of feasible velocities describing the constraints

(vi) a set of m covector fields F = {F 1, . . . , Fm} defining the control forces

(Q,M, V, Fdiss,D ,F = {F 1, . . . , Fm})
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1.4 SMCS with Constraints: governing equations

Given (Q,M, V, Fdiss,D ,F ), there exists procedure:

∇q̇ q̇ = Y0(q) +R(q̇) +

m
∑

a=1

Ya(q)ua (1)

or, in coordinates:

q̈k + Γkij(q)q̇
iq̇j = Y0(q)

k +Rki (q)q̇
i +

m
∑

a=1

Y ka (q)ua

or, in different coordinates for the velocities,

q̇ = viXi(q)

v̇k + Γkij(q)v
ivj = Y0(q)

k +Rki (q)q̇
i +

m
∑

a=1

Y ka (q)ua
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1.5 Modeling construction (Lewis, IEEE TAC ’00)

From (Q,M, V, Fdiss,D ,F ) to

∇q̇ q̇ = Y0(q) +R(q̇) +

m
∑

a=1

Ya(q)ua

(i) P : TQ → TQ is the M-orthogonal projection onto D

(ii) Y0(q) = −P (M−1(dV ))

(iii) R(q̇) = P (M−1(Fdiss(q̇)))

(iv) Ya = P (M−1(F a))

(v) M∇ is the Levi-Civita connection on (Q,M)

Γkij =
1

2
M
mk

(

∂Mmj

∂qi
+
∂Mmi

∂qj
− ∂Mij

∂qm

)

(2)

(vi) ∇ is the constrained affine connection on (Q,M,D)

∇XY = M∇XY −
(

M∇XP
)

(Y ) (3)
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1.6 Planar two links manipulator
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(θ1, θ2) ∈ Q = T
2

M =





I1 + (l21(m1 + 4m2))/4 (l1l2m2 cos[θ1 − θ2])/2

(l1l2m2 cos[θ1 − θ2])/2 I2 + (l22m2)/4





V (θ1, θ2) = m1gl1 sin θ1/2 + m2g(l1 sin θ1 + l2/2 sin θ2)

no Fdiss

no constraints

F 1 = dθ1, F
2 = dθ2 − dθ1

Equations of motion:




θ̈1 + Γ1
11θ̇1θ̇1 + Γ1

12θ̇1θ̇2 + Γ1
22θ̇2θ̇2

θ̈2 + Γ2
11θ̇1θ̇1 + Γ2

12θ̇1θ̇2 + Γ2
22θ̇2θ̇2



 = Y0 + u1Y1 + u2Y2
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1.7 The snakeboard
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(x, y, θ, ψ, φ) ∈ Q=SE(2) × T
2

F 1 = dψ, F 2 = dφ

M =
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v3

v̇1 +
Jr
m`2

(cosφ)v2v3 = 0

v̇2 −
m`2 cosφ

m`2 + Jr(sinφ)2
v1v3 −

Jr cosφ sinφ

m`2 + Jr(sinφ)2
v2v3 =

m`2

m`2Jr + J2
r (sinφ)2

uψ

v̇3 =
1

Jw
uφ .

q̇ = viXi(q), v̇k + (XΓ)kij(q)v
ivj = Y0(q)

k +Rki (q)q̇
i +

m
∑

a=1

Y ka (q)ua
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1.8 Underwater Vehicle in Ideal Fluid

3D rigid body with three forces:

(i) (R, p) ∈ SE(3), (Ω, V ) ∈ R6

(ii) KE = 1
2ΩT JΩ + 1

2V
TMV ,

M = diag{m1,m2,m3},
J = diag{J1, J2, J3}

(iii) f1 = e4, f2 = −he3 + e5, f3 = he2 + e6

Equations of Motion:





Ṙ

ṗ



 =





RΩ̂

RV



 ,





JΩ̇ − JΩ × Ω + MV × V

MV̇ − MV × Ω.



 = u1f1 + u2f2 + u3f3
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Outline: from geometry to algorithms

(i) modeling

(ii) approach #1

(a) analysis: kinematic reductions and controllability

(b) design: inverse kinematics catalog

(iii) approach #2

(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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2 Analysis of Kinematic Reductions

Goal: (low-complexity) kinematic representations for mechanical control systems

Assume: no potential energy, no dissipation: (Q,M, V = 0, Fdiss = 0,D ,F )

(i) dynamic model with accelerations as control inputs mechanical systems:

∇q̇ q̇ =

m
∑

a=1

Ya(q)ua(t) Y = span{Y1, . . . , Ym}

(ii) kinematic model with velocities as control inputs

q̇ =
∑̀

b=1

Vb(q)wb(t) V = span{V1, . . . , V`}

` is the rank of the reduction
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2.1 When can a second order system follow the solution of a first order?

�

�

ex:
Can follow any straight line and can turn

2 preferred velocity fields

(plus, configuration controllability)
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Ok ? ? ?
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2.2 Kinematic reductions (Bullo and Lynch, IEEE TRA ’01)

V = span{V1, . . . , V`} is a kinematic reduction if any curve q : I → Q solving the

(controlled) kinematic model can be lifted to a solution to a solution of the

(controlled) dynamic model.

rank 1 reductions are called decoupling vector fields

Theorem The kinematic model induced by {V1, . . . , V`} is a kine-

matic reduction of (Q,M, V =0, Fdiss =0,D ,F)

if and only if

(i) V ⊂ Y

(ii) 〈V : V 〉 ⊂ Y
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2.3 Examples of kinematic reductions (Bullo and Lewis, IEEE TRA ’03)
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Two rank 1 kinematic reductions (decoupling vector fields)

no rank 2 kinematic reductions
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2.4 Examples of maximally reducible systems
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2.5 When is a mechanical system kinematic? (Lewis, CDC ’99)

When are all dynamic trajectories executable by a single kinematic model?

A dynamic model is maximally reducible (MR) if all its controlled trajectory

(starting from rest) are controlled trajectory of a single kinematic reduction.

Theorem (Q,M, V =0, Fdiss =0,D ,F) is maximally reducible

if and only if

(i) the kinematic reduction is the input distribution Y

(ii) 〈Y : Y 〉 ⊂ Y
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3 Controllability Analysis

Objective: controllability notions and tests for mechanical systems and reductions

Assume: no potential energy, no dissipation: (Q,M, V = 0, Fdiss = 0,D ,F )

Review: Controllable kinematic systems

q̇ =
∑̀

i=1

Xi(q)ui(t)

given two v.f.s X,Y , Lie bracket: [X,Y ]k =
∂Y k

∂qi
Xi − ∂Xk

∂qi
Y i LARC

��

�

��
�

��
�

not accessible accessible controllable (STLC)
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3.1 Controllability mechanisms

given control forces {F 1, . . . , Fm}

accessible accelerations {Y1, . . . , Ym}
Ya = P (M−1F a)

⊃

⊃

accessible velocities Sym{Y1, . . . , Ym}
{Yi, 〈Yj : Yk〉, 〈〈Yj : Yk〉 : Yh〉, . . . }

Lie{V1, . . . , V`}: configurations

accessible via decoupling v.f.s

decoupling v.f.s {V1, . . . , V`}
Vi, 〈Vi : Vi〉 ∈ {Y1, . . . , Ym}

access. configs Lie{Sym{Y1, . . . , Ym}}
{Yi, 〈Yj : Yk〉, [Yj, Yk], [〈Yj : Yk〉, Yh], . . . }
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3.2 Controllability notions and tests (Lewis and Murray, SIAM JCO ’97)

V1, . . . , V` decoupling v.f.s

rank Lie{V1, . . . , V`} = n

KC= locally kinematically controllable

(q0, 0)
u−→ (qf, 0) can reach open set of

configurations by concatenating motions

along kinematic reductions

rank Sym{Y } = n,

“bad vs good”

STLC= small-time locally controllable

(q0, 0)
u−→ (qf, vf) can reach open set

of configurations and velocities

rank Lie{Sym{Y }} = n,

“bad vs good”

STLCC= small-time locally configura-

tion controllable

(q0, 0)
u−→ (qf, vf) can reach open set

of configurations
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3.3 Controllability inferences

STLC = small-time locally controllable

STLCC = small-time locally configuration controllable

KC = locally kinematically controllable

MR-KC = maximally reducible, locally kinematically controllable

STLC

STLCC

KC MR-KC

There exist counter-examples for each missing implication sign.



CMU-20may04-p28

3.4 Cataloging kinematic reductions and controllability of example systems

System Picture Reducibility Controllability

planar 2R robot

single torque at either joint:

(1, 0), (0, 1)

n = 2,m = 1

(1, 0): no reductions

(0, 1): maximally reducible

accessible

not accessible or STLCC

roller racer

single torque at joint

n = 4,m = 1

no kinematic reductions accessible, not STLCC

planar body with single force

or torque

n = 3,m = 1

decoupling v.f. reducible, not accessible

planar body with single gen-

eralized force

n = 3,m = 1

no kinematic reductions accessible, not STLCC

planar body with two forces

n = 3,m = 2
two decoupling v.f. KC, STLC
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robotic leg

n = 3,m = 2

two decoupling v.f., maxi-

mally reducible
KC

planar 3R robot, two torques:

(0, 1, 1), (1, 0, 1), (1, 1, 0)

n = 3,m = 2

(1, 0, 1) and (1, 1, 0): two de-

coupling v.f.

(0, 1, 1): two decoupling v.f.

and maximally reducible

(1, 0, 1) and (1, 1, 0): KC

and STLC

(0, 1, 1): KC

rolling penny

n = 4,m = 2
fully reducible KC

snakeboard

n = 5,m = 2
two decoupling v.f. KC, STLCC

3D vehicle with 3 generalized

forces

n = 6,m = 3

three decoupling v.f. KC, STLC
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Summary

• dynamic models (mechanics) vs kinematic models (trajectory analysis)

• general reductions (multiple, low rank) vs MR (one rank = m)

• STLCC (e.g., via STLC) vs kinematic controllability

Outline: from geometry to algorithms

(i) modeling

(ii) approach #1

(a) analysis: kinematic reductions and controllability

(b) design: inverse kinematics catalog

(iii) approach #2

(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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4 Trajectory Design via Inverse Kinematics

Objective: find u such that (qinitial, 0)
u−→ (qtarget, 0)

Assume:

(i) (Q,M, V =0, Fdiss =0,D ,F ) is kinematically controllable

(ii) Q = G and decoupling v.f.s {V1, . . . , V`} are left-invariant

=⇒ matrix exponential exp: g → G gives closed-form flow

Objective: select a finite-length combination of k flows along {V1, . . . , V`} and

coasting times {t1, . . . , tk} such that

q−1
initialqtarget = gdesired = exp(t1Vi1) · · · exp(tkVik).

No general methodology is available =⇒ catalog for relevant example systems

SO(3), SE(2), SE(3), etc
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4.1 Inverse-kinematic planner on SO(3) (Mart́ınez, Cortés, and Bullo, IROS ’03)

Any underactuated controllable system on SO(3) is equivalent to

V1 = ez = (0, 0, 1) V2 = (a, b, c) with a2 + b2 6= 0

Motion Algorithm: given R ∈ SO(3), flow along (ez, V2, ez) for coasting times

t1 = atan2 (w1R13 + w2R23,−w2R13 + w1R23) t2 = acos

(

R33 − c2

1 − c2

)

t3 = atan2 (v1R31 + v2R32, v2R31 − v1R32)

where z =





1 − cos t2

sin t2



,





w1

w2



 =





ac b

cb −a



 z,





v1

v2



 =





ac −b

cb a



 z

Local Identity Map = R
IK−→ (t1, t2, t3)

FK−→ exp(t1ez) exp(t2V2) exp(t3ez)
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4.2 Inverse-kinematic planner on SO(3): simulation

The system can rotate about (0, 0, 1) and (a, b, c) = (0, 1, 1)

Rotation from I3 onto target rotation exp(π/3, π/3, 0)

As time progresses, the body is translated along the inertial x-axis
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4.3 Inverse-kinematic planner for Σ1-systems SE(2)

First class of underactuated controllable system on SE(2) is

Σ1 = {(V1, V2)| V1 = (1, b1, c1), V2 = (0, b2, c2), b
2
2 + c22 = 1}

Motion Algorithm: given (θ, x, y), flow along (V1, V2, V1) for coasting times

(t1, t2, t3) = (atan2 (α, β) , ρ, θ − atan2 (α, β))

where ρ =
√

α2 + β2 and





α

β



 =





b2 c2

−c2 b2













x

y



 −





−c1 b1

b1 c1









1 − cos θ

sin θ









Identity Map = (θ, x, y)
IK−→ (t1, t2, t3)

FK−→ exp(t1V1) exp(t2V2) exp(t3V1)
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4.4 Inverse-kinematic planner for Σ2-systems SE(2)

Second and last class of underactuated controllable system on SE(2):

Σ2 = {(V1, V2)| V1 = (1, b1, c1), V2 = (1, b2, c2), b1 6= b2 or c1 6= c2}

Motion Algorithm: given (θ, x, y), flow along (V1, V2, V1) for coasting times

t1 = atan2
(

ρ,
√

4 − ρ2
)

+ atan2 (α, β) t2 = atan2
(

2 − ρ2, ρ
√

4 − ρ2
)

t3 = θ − t1 − t2

where ρ=
√

α2 + β2,





α

β



 =





c1 − c2 b2 − b1

b1 − b2 c1 − c2













x

y



 −





−c1 b1

b1 c1









1 − cos θ

sin θ









Local Identity Map = (θ, x, y)
IK−→ (t1, t2, t3)

FK−→ exp(t1V1) exp(t2V2) exp(t3V1)
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4.5 Inverse-kinematic planners on SE(2): simulation

Inverse-kinematics planners for sample systems in Σ1 and Σ2. The systems

parameters are (b1, c1) = (0, .5), (b2, c2) = (1, 0). The target location is (π/6, 1, 1).
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4.6 Inverse-kinematic planners on SE(2): snakeboard simulation

snakeboard as Σ2-system
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4.7 Inverse-kinematic planners on SE(2) × R: simulation

4 dof system in R3, no pitch no roll

kinematically controllable via body-fixed constant velocity fields:

V1= rise and rotate about inertial point; V2= translate forward and dive

The target location is (π/6, 10, 0, 1)
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4.8 Inverse-kinematic planners on SE(3): simulation

kinematically controllable via

body-fixed constant velocity fields:

V1= translation along 1st axis

V2= rotation about 2nd axis

V3= rotation about 3rd axis

V3 : 0 → 1: rotation about 3rd axis

V2 : 1 → 2: rotation about 2nd axis

V1 : 2 → 3: translation along 1st axis

V3 : 3 → 4: rotation about 3rd axis

V2 : 4 → 5: rotation about 2nd axis

V3 : 5 → 6: rotation about 3rd axis

xg

zg

yg

x0

z0
y0

0

1

2

3

4

5

6
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Outline: from geometry to algorithms

(i) modeling and approach #1

• dynamic models (mechanics) vs kinematic models (trajectory analysis)

• general reductions (multiple, low rank) vs MR (one rank = m)

• STLCC (e.g., via STLC) vs kinematic controllability

• catalogs of systems and solutions

(ii) approach #2

(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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5 Averaging Analysis

Oscillations play key role in animal and robotic locomotion, oscillations generate

motion in Lie bracket directions useful for trajectory design

Objective: oscillatory controls in mechanical systems

∇q̇ q̇ = Y (q, t)

∫ T

0

Y (q, t)dt = 0

Assume: (Q,M, V, Fdiss,D ,F ). Let ε > 0

∇q̇ q̇ = Y0(q) +R(q̇) +

m
∑

a=1

1

ε
ua

(

t

ε
, t

)

Ya(q),

where ua are T -periodic and zero-mean in their first argument.
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5.1 Main Averaging Result (Mart́ınez, Cortés, and Bullo, IEEE TAC ’03)

∇q̇ q̇ = Y0(q) +R(q̇) +

m
∑

a=1

1

ε
ua

(

t

ε
, t

)

Ya(q),

∇q̇ q̇ = Y0(q) +R(q̇) −
m

∑

a,b=1

Λab(t)〈Ya : Yb〉(q)

Λab(t) =
1

2

(

U (a,b)(t) + U (b,a)(t) − U (a)(t)U (b)(t)
)

U(a)(τ, t) =

∫ t

0

ua(τ, s)ds, U(a,b)(τ, t) =

∫ t

0

ub(τ, s2)

∫ s2

0

ua(τ, s1)ds1ds2

approximation valid over certain time scale
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5.2 Averaging analysis with control potential forces

Assume no constraints (D = TQ) and F = {dϕ1, . . . , dϕm}.

Then

Ya(q) = gradϕa(q), (gradϕa)
i = M

ij ∂ϕa
∂qj

Symmetric product restricts

〈gradϕa : gradϕb〉 ≡ grad 〈ϕa : ϕb〉

where Beltrami bracket (Crouch ’81):

〈ϕa : ϕa〉 = 〈〈dϕa , dϕb〉〉 = M
ij ∂ϕa
∂qi

∂ϕb
∂qj
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5.3 Averaged potential

M∇q̇ q̇ = − gradV (q) +R(q̇) +

m
∑

a=1

ua(t) grad(ϕa)(q) .

M∇q̇ q̇ = − gradVaveraged(q) +R(q̇)

Vaveraged = V +

m
∑

a,b=1

Λab〈ϕa : ϕb〉
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5.4 Oscillations stabilization example: a 2-link manipulator

� �

�

� �
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Two-link damped manipulator with oscillatory control at first joint. The averaging

analysis predicts the behavior. (the gray line is θ1, the black line is θ2).
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6 Trajectory Design via Oscillatory Controls and

Approximate Inversion

Objective: steer configuration of (Q,M, V, Fdiss,D ,F ) along target trajectory

γtarget : [0, T ] → Q via oscillatory controls:

∇q̇ q̇ = Y0(q) +R(q̇) +

m
∑

a=1

uaYa(q),

Low-order STLC assumption:

(i) span{Ya, 〈Yb : Yc〉| a, b, c ∈ {1, . . . ,m}} is full rank

(ii) “bad vs good” condition: 〈Ya : Ya〉 ∈ Y = span{Ya}.
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6.1 From the STLC assumption ...

(i) fictitious inputs zatarget, z
ab
target : [0, T ] → R, a < b, with

∇γ′

target
γ′target = Y0(γtarget) +R(γ′target)

+

m
∑

a=1

zatargetYa(γtarget(t)) +
∑

a<b

zabtarget〈Ya : Yb〉(γtarget(t)),

(ii) for a, b ∈ {1, . . . ,m}, bad/good coefficient functions αa,b : Q → R

〈Ya : Ya〉 =

m
∑

b=1

αa,bYb .

Also, there are N = m(m− 1)/2 pairs of elements (a, b) in {1, . . . ,m}, with

a < b. Let (a, b) 7→ ω(a, b) ∈ {1, . . . , N} be a enumeration of these pairs, and

define ω-frequency sinusoidal function

ψω(a,b)(t) =
√

2ω(a, b) cos(ω(a, b)t)
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6.2 Trajectory tracking via Approximate Inversion

(Mart́ınez, Cortés, and Bullo, IEEE TAC ’03)

Theorem Consider (Q,M, V, Fdiss,D ,F ). Let

ua = va(t, q) +
1

ε
wa

(

t

ε
, t

)

with

wa(τ, t) =

m
∑

c=a+1

zactarget(t)ψω(a,c)(τ) −
a−1
∑

c=1

ψω(c,a)(τ)

va(t, q) = zatarget(t)+
1

2

m
∑

b=1

αa,b(q)



j − 1 +

m
∑

c=j+1

(zbctarget(t))
2





Then, t 7→ q(t) follows γtarget with an error of order ε over the time scale 1.
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6.3 Oscillatory controls ex. #1: A second-order nonholonomic integrator

Consider

ẍ1 = u1 , ẍ2 = u2 , ẍ3 = u1x2 + u2x1 ,

Controllability assumption ok. Design controls to track (xd1(t), x
d
2(t), x

d
3(t)):

u1 = ẍd1 +
1√
2ε

(

ẍd3 − ẍd1x
d
2 − ẍd2x

d
1

)

cos

(

t

ε

)

u2 = ẍd2 −
√

2

ε
cos

(

t

ε

)
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7 Summary: from geometry to algorithms

Trajectory design via kinematic reductions

• dynamic models (mechanics) vs kinematic models (trajectory analysis)

• general reductions (multiple, low rank) vs MR (one rank = m)

• STLCC (e.g., via STLC) vs kinematic controllability

• catalogs of systems and solutions

Trajectory design via averaging

• high-amplitude high-frequency two time-scales averaging

• general tracking result based on STLC assumption

trajectory analysis: reduction, controllability, averaging

trajectory design: inverse kinematics and approximate inversion
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Future research

(i) weaken strict assumptions for reductions approach

V = 0, kinematic controllability, group actions

(ii) render second approach more realistic

(iii) integrate with numerical and passivity methods for trajectory design

(iv) locomotion in fluid (fishes, flying insects, etc)

(v) computational geometry and coordination in multi-vehicle systems
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Research work reflected in this talk: (http://motion.csl.uiuc.edu)

(i) F. Bullo and M. Žefran. On mechanical control systems with nonholonomic constraints and symmetries.

IFAC Syst. & Control L., 45(2):133–143, 2002

(ii) F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory planning in underactuated

mechanical systems. IEEE T. Robotics Automation, 17(4):402–412, 2001

(iii) F. Bullo, N. E. Leonard, and A. D. Lewis. Controllability and motion algorithms for underactuated

Lagrangian systems on Lie groups. IEEE T. Automatic Ctrl, 45(8):1437–1454, 2000

(iv) F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM JCO, 40(1):166–190,

2001

(v) F. Bullo. Averaging and vibrational control of mechanical systems. SIAM JCO, 41(2):542–562, 2002

(vi) S. Mart́ınez, J. Cortés, and F. Bullo. Analysis and design of oscillatory control systems. IEEE T.

Automatic Ctrl, 48(7):1164–1177, 2003

(vii) F. Bullo and A. D. Lewis. Kinematic controllability and motion planning for the snakeboard. IEEE T.

Robotics Automation, 19(3):494–498, 2003

(viii) F. Bullo and A. D. Lewis. Low-order controllability and kinematic reductions for affine connection control

systems. SIAM JCO, January 2004. To appear

(ix) S. Mart́ınez, J. Cortés, and F. Bullo. A catalog of inverse-kinematics planners for underactuated systems

on matrix Lie groups. In Proc IROS, pages 625–630, Las Vegas, NV, October 2003

(x) F. Bullo. Trajectory design for mechanical systems: from geometry to algorithms. European Journal of

Control, December 2003. Submitted
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7.1 Examples
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7.2 Comparison with perturbation methods for mechanical control systems

forced response of Lagrangian system from rest

I) High magnitude high frequency

“oscillatory control &

vibrational stabilization”

H = H(q, p) +
1

ε
ϕ

(

q, p, u

(

t

ε

))

p(0) = p0

II) Small input from rest

“small-time local controllability”
H = H(q, p) + εϕ(q, p, u(t))

p(0) = 0

III) Classical formulation

integrable Hamiltonian systems
H = H(q, p) + εϕ(q, p)

p(0) = p0
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7.3 A planar vertical takeoff and landing (PVTOL) aircraft

�

�

�

� �

� �� � �

� � 	�


� 

� � 	


� 

ẋ = cos θvx − sin θvz

ż = sin θvx + cos θvz

θ̇ = ω

v̇x − vzω = −g sin θ + (−k1/m)vx + (1/m)u2

v̇z + vxω = −g(cos θ − 1) + (−k2/m)vz + (1/m)u1

ω̇ = (−k3/J)ω + (h/J)u2

Q = SE(2) : Configuration and velocity space via (x, z, θ, vx, vz, ω). x and z are

horizontal and vertical displacement, θ is roll angle. The angular velocity is ω and

the linear velocities in the body-fixed x (respectively z) axis are vx (respectively vz).

u1 is body vertical force minus gravity, u2 is force on the wingtips (with a net

horizontal component). ki-components are linear damping force, g is gravity

constant. The constant h is the distance from the center of mass to the wingtip,

m and J are mass and moment of inertia.
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7.4 Oscillatory controls ex. #2: PVTOL model

Controllability assumption ok. Design

controls to track (xd(t), zd(t), θd(t)):

�

�

�

� �

� �� � �

� � 	


� �

� � 	


� �

u1 =
J

h
θ̈d +

k3

h
θ̇d −

√
2

ε
cos

(

t

ε

)

u2 =
h

J
− f1 sin θd + f2 cos θd − J

√
2

hε

(

f1 cos θd + f2 sin θd
)

cos

(

t

ε

)

,

where we let c = J
h
θ̈d + k3

h
θ̇d and

f1 = mẍd +
(

k1 cos2 θd + k2 sin2 θd
)

ẋd +
sin(2θd)

2
(k1 − k2)ż

d +mg sin θd
− c cos θd ,

f2 = mz̈d +
sin(2θd)

2
(k1 − k2)ẋ

d +
(

k1 sin2 θd + k2 cos2 θd
)

żd +mg(1 − cos θd) − c sin θd .
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7.5 PVTOL Simulations: trajectories and error
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Trajectory design at ε = .01. Tracking errors at t = 10.
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