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Chapter 1

Metric spaces

1.1 Introduction

1.1.1. In this chapter we will introduce the notion of a metric space. Metric
spaces are examples of topological spaces that are the true objects of these
notes, and we will not develop any theory exclusively for metric spaces. (The
only exception is the appendix on completion of metric spaces.) This chapter
merely gives a good number of examples and some techniques that apply to
produce even more examples.

1.1.2. Consider two points x, y in a set X. We want a measure of the ‘dis-
tance’ between x and y. Intuitively, this distance should measure the shortest
path from x to y without actually specifying any path.

In some cases there is a rather natural definition of distance: If X = R we
may take the distance to be |x− y|. In other cases it may not be so obvious
what to understand by the distance between x and y.

Example 1.1.3. Let X be the surface of the earth. What is the distance
between the Eiffel Tower in Paris and the Statue of Liberty in New York? If
you travel by plane, you’ll probably realize that the shortest way is by flying
just above sea level following the great circle that contains the two relevant
points. But if you were able to dig your way through the interior of the earth,
you could probably find a shorter path.

1.1.4. Note that in some sense the first definition of distance on the surface
of the earth X is the most intrinsic in the sense that our shortest paths
never leave the surface X (if we fly low enough), while the second definition
obviously depends on the fact that X is a subset of a larger ambient space,
namely the earth it self.
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1.1.5. What kind of properties do we want the distance to have? It is natural
to require the distance between x and y to be non-negative. Moreover, it
should be 0 exactly when x = y. We also want it to be symmetric in the
sense that the distance from x to y is the same as the distance from y to x.

What more? If we think in terms of ’shortest paths’, then we would
expect that if we pick a third point z, then the total distance of following
the shortest path from x to y and then the shortest path from y to z should
be at least as big as the shortest distance from x to z.

If we forget about ‘paths’ (you better do this from now on, or you may
get into troubles with some of the examples) this amounts to the following
definition.

Definition 1.1.6. Let X be a set. A metric (or distance function) on X is
a function d : X ×X−→R≥0 which satisfies

1. For any x, y ∈ X: d(x, y) = 0 if and only if x = y (faithfulness)

2. For any x, y ∈ X: d(x, y) = d(y, x) (symmetry)

3. For any x, y, z ∈ X: d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The pair (X, d) is called a metric space.

Example 1.1.7. The most important example of a metric is the Euclidean
metric d : Rn × Rn−→R≥0 on Rn. If x = (x1, . . . , xn) and y = (y1, . . . , yn)
are points in Rn, let

d(x, y) = |x− y| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

This is clearly faithful and symmetric. To prove the triangle inequality,
recall that we have an inner product < −,− >: Rn × Rn−→R on Rn such
that |x|2 =< x, x >. Schwartz’ inequality says that | < x, y > | ≤ |x||y| for
all x, y. Thus, for x, y, z ∈ Rn we have

|x− z|2 =< x− z, x− z >
=< (x− y) + (y − z), (x− y) + (y − z) >
=< x− y, x− y > + < y − z, y − z > +2 < x− y, y − z >
≤ |x− y|2 + |y − z|2 + 2|x− y||y − z| = (|x− y|+ |y − z|)2.

Taking square roots we get the triangle inequality.

Exercise 1.1.8. Let X be a set, and define d : X×X−→R≥0 by the assign-
ment

d(x, y) =

{
0, if x = y
1, if x 6= y.

Show that d defines a metric.
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Exercise 1.1.9. Let (X, d) be a metric space, and let a ∈ R>0. Define a
function da : X ×X−→R≥0 by the assignment

da(x, y) =

{
d(x, y), if d(x, y) < a
a, if d(x, y) ≥ a.

Show that da defines a metric.

Recall our Example 1.1.3 from above where X was the surface of the
earth. In mathematical terms this becomes

Example 1.1.10. Let X = S2 = {x ∈ R3 | |x| = 1} be the 2-sphere. We
define a metric d : X ×X−→R≥0 by d(x, y) = cos−1(< x, y >) for x, y ∈ X,
where cos : [0, π]−→[−1, 1] is the restriction of the cosine function. This way
cos is monotone decreasing and cos−1 is well-defined.

Geometrically, d(x, y) may be described as follows. If x = y, put d(x, y) =
0; if x = −y, put d(x, y) = π; otherwise, there exists a unique great circle
(geodesic) that passes through both x and y, and d(x, y) is the length of the
shortest arc connecting x and y on this great circle.

Let us prove that d is a metric. Only the triangle inequality causes
problems. For convenience, let a = d(x, y) and b = d(y, z) and c = d(x, z).
We must show that c ≤ a+ b.

Since a ≤ π, then sin(a) =
√

1− cos2(a) =
√

1− < x, y >2. Let x̄ =
x− < x, y > y denote the projection of x onto the orthogonal complement
in R3 to the vector y. Then a direct calculation shows that |x̄|2 =< x̄, x̄ >=
1− < x, y >2, so sin(a) = |x̄|. Similarly, if z̄ = z− < z, y > y, then sin(b) =
|z̄|. Moreover, < x, z > − < x̄, z̄ >=< x, y >< y, z >= cos(a) cos(b). Using
the addition formula for cosine and Schwartz’ inequality we get

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
= < x, z > −(< x̄, z̄ > +|x̄||z̄|)
≤ < x, z >= cos(c).

If a+ b ≤ π, apply the monotone decreasing function cos−1 to this inequality
to get c ≤ a+ b. Otherwise, c ≤ π ≤ a+ b.

1.2 Normed vector spaces

An important class of examples of metric spaces are the normed vector spaces.

Definition 1.2.1. Let V be a vector space over k = R or k = C. A norm
on V is a map N : V−→R≥0 that satisfies
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1. For all x ∈ V : N(x) = 0 if and only if x = 0 (faithfulness)

2. For all x ∈ V and a ∈ k: N(ax) = |a|N(x). (homogeneity)

3. For all x, y ∈ V : N(x+ y) ≤ N(x) +N(y) (subadditivity)

The pair (V,N) is called a normed vector space.

1.2.2. Let (V,N) be a normed vector space. Then we may define a metric
d : V × V−→R≥0 on V by letting d(x, y) = N(x− y) for all x, y ∈ V . Then
d is faithful, since N is faithful:

d(x, y) = 0⇔ N(x− y) = 0⇔ x− y = 0⇔ x = y.

Also, d is symmetric since d(x, y) = N(x−y) = N((−1)(y−x)) = |−1|N(y−
x) = d(y, x), and the triangle inequality is a consequence of subadditivity of
N in the following way

d(x, z) = N(x−z) = N((x−y)+(y−z)) ≤ N(x−y)+N(y−z) = d(x, y)+d(y, z).

Example 1.2.3. It is obvious that the Euclidean metric on Rn is the one
induced from the norm N(x) = |x| on Rn.

Exercise 1.2.4. Let k be one of the fields R or C, and let X = [0, 1] be
the closed unit interval. By C(X) we denote the set of k-valued continuous
functions, f : X−→k. Show that C(X) is a k-vector space. For f ∈ C(X)
we define ‖f‖∞ = supx∈X |f(x)|. Show that the map ‖−‖∞ : C(X)−→R≥0

defines a norm on C(X). This norm is called the supremum norm or the
uniform norm.

Example 1.2.5. With C(X) as in Exercise 1.2.4, we may actually define
quite a lot of other norms on the vector space C(X). For p ≥ 1 a real
number, the Lp-norm ‖−‖p : C(X)−→R≥0 is defined by the assignment

‖f‖p =

(∫
X

|f(x)|pdx
)1/p

.

It is an easy exercise to prove that ‖−‖p is faithful and homogeneous. Sub-
additivity is known as Minkowski’s inequality and is a little harder to prove
(see e.g. [Rudin], Theorem 3.5).

For k = C, let Lp(X) denote the completion of C(X) in the Lp-norm
(see Theorem 1.6.15 in the Appendix on completion). Then Lp(X) is a
Banach space. For p = 2, the L2-norm is actually an inner-product norm,
and hence L2(X) becomes a Hilbert space. Hilbert and Banach spaces play
an important rôle in analysis.
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1.3 Subspace metrics

1.3.1. Let (Y, dY ) be a metric space, and let X ⊂ Y be a subset of Y . Then
we may restrict dY to a metric dX : X × X−→R≥0 on X: For x, y ∈ X,
let dX(x, y) = dY (x, y). It is an easy exercise to convince oneself that dX
satisfies 1., 2. and 3. of Definition 1.1.6 given that dY does. We call dX the
subspace metric or induced metric on X.

Exercise 1.3.2. As before, X = S2 is naturally a subset of Y = R
3. Equip

Y with the Euclidean metric dY of Example 1.1.7. Then the induced metric
dX is different from the metric d of Example 1.1.10. Prove that

2

π
≤ dX(x, y)

d(x, y)
≤ 1

for all x, y ∈ X for which x 6= y. Maybe you want to reread the geographical
example 1.1.3.

Exercise 1.3.3. Let n and p be natural numbers. For which pairs (n, p) is
it possible to find a subset X ⊂ Rn with p elements, such that the metric dX
on X induced from the Euclidean metric on Rn coincides with the metric d
of Exercise 1.1.8?

1.4 Open subsets and continuous maps

We are now going to consider maps between metric spaces. Often in mathe-
matics we are interested in identifying those maps which preserve the struc-
tures on the spaces it maps between. In our case, the relevant structures
would be the metrics. So, if f : X−→Y is a map of metric spaces (X, dX)
and (Y, dY ), we might require that dX(x, y) = dY (f(x), f(y)). A map satis-
fying this requirement is called an isometry.

But isometries are rare, and very often we are only interested in a weaker
property like ‘if x and y are close to each other, then f(x) and f(y) are also
close to each other’. Mathematically, this may be formulated as follows.

Definition 1.4.1. Let x ∈ X. Then f is continuous at x if for all ε > 0
there exists δ > 0 such that

dX(x, z) < δ ⇒ dY (f(x), f(z)) < ε for all z ∈ X.

If f is continuous at all x ∈ X, then we say that f is continuous.

This definition should be familiar to the reader if X and Y are subsets of
R
n.
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1.4.2. Let (X, d) be a metric space. For x ∈ X a point in X and r > 0, the
open ball around x of radius r is the set Bd(x, r) = {y ∈ X | d(x, y) < r}.

We define a subset U ⊂ X to be an open subset of X, if for each point
x ∈ U there exists an rx > 0 such that B(x, rx) ⊂ U .

1.4.3. With this definition at hand we see that a map f : X−→Y as before
is continuous at x ∈ X if and only if for all ε > 0 there exists δ > 0 such
that f(BdX (x, δ)) ⊂ BdY (f(x), ε).

We will give one statement about continuous maps and otherwise refer
to the treatment in the next chapter.

Theorem 1.4.4. f is continuous if and only if f−1(V ) is an open subset of
X for any open subset V of Y .

Proof. Suppose f is continuous. Let V be an open subset of Y and x ∈
f−1(V ) a point. Then by openness of V there exists an ε > 0 withBdY (f(x), ε) ⊂
V . Now choose δ > 0 such that f(BdX (x, δ)) ⊂ BdY (f(x), ε). ThenBdX (x, δ) ⊂
f−1(BdY (f(x), ε)) ⊂ f−1(V ). This holds for all x ∈ f−1(V ) and shows that
f−1(V ) is open.

For the converse, suppose that f−1(V ) is an open subset of X for each
open subset V of Y . Let x ∈ X be a point. We will show that f is continuous
at x. Given ε > 0, let V = BdY (f(x), ε). Then V is an open subset in Y
by Exercise 1.4.7 below, so f−1(V ) is an open subset of X by assumption.
Since x ∈ f−1(V ), this implies that there exist δ > 0 such that BdX (x, δ) ⊂
f−1(V ). Or, put differently, f(BdX (x, δ)) ⊂ BdY (f(x), ε). This shows that f
is continuous at x.

1.4.5. This theorem suggests that we should focus more on the open subsets
of a metric space rather than on the metric itself. In particular, we may ask
when two different metrics on a set give rise to the same open subsets.

We will say that two metrics d and d′ on a set X are equivalent, if for all
x ∈ X and ε > 0 there exist δ, δ′ > 0 such that

Bd(x, δ) ⊂ Bd′(x, ε) and Bd′(x, δ
′) ⊂ Bd(x, ε).

Proposition 1.4.6. The following are equivalent for a set X with two met-
rics d and d′.

1. d and d′ are equivalent.

2. Any subset U ⊂ X which is open with respect to one of the metrics is
also open with respect to the other.
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Proof. 1. ⇒ 2.: Suppose d and d′ are equivalent and U is open with respect
to one of the metrics, say d. Fix x ∈ U . By openness, Bd(x, ε) ⊂ U for some
ε > 0. By equivalence of d and d′ there exist δ′ > 0 such that Bd′(x, δ

′) ⊂
Bd(x, ε) ⊂ U . This shows that U is also open with respect to d′.

2. ⇒ 1.: Assume 2., and let x ∈ X and ε > 0 be given. Then U = Bd(x, ε)
is open with respect to d (1.4.7), hence also with respect to d′ by assumption.
This implies that there exists δ′ > 0 with Bd′(x, δ

′) ⊂ U = Bd(x, ε). By
interchanging d and d′ we see that there also exists δ > 0 with Bd(x, δ) ⊂
Bd′(x, ε). Together, this shows that d and d′ are equivalent.

Exercise 1.4.7. Let (X, d) be a metric space. Show that Bd(x, r) is open
for all x ∈ X and r > 0.

Exercise 1.4.8. For a metric space (X, d), prove the following assertions:

1. Let I be any set, and assume that for each i ∈ I we have an open
subset Ui of X. Then

⋃
i∈I Ui is an open subset of X.

2. Let I be a finite set, and assume that for each i ∈ I we have an open
subset Ui of X. Then

⋂
i∈I Ui is an open subset of X.

3. ∅ and X are open subsets of X.

Exercise 1.4.9. Consider again the metric space (X, d) from Exercise 1.1.8.
Describe the open subsets of X.

Exercise 1.4.10. Let (X, d) be a metric space, and let da be the metric from
Exercise 1.1.9 for some a > 0. Show that d and da are equivalent.

Exercise 1.4.11. In Exercise 1.3.2 we considered two different metrics on
S2. Use the result of that exercise to show that they are equivalent.

Exercise 1.4.12. Let V be a vector space over k with k = R or k = C. As-
sume that N1, N2 are two norms on V . We say that N1 and N2 are equivalent
if there exist positive real numbers A,B > 0 such that A ·N1(x) ≤ N2(x) ≤
B ·N1(x) for all x ∈ V .

1. Show that this is an equivalence relation on the set of norms on V .

2. Assume N1 and N2 are equivalent norms. Show that the associated
metrics are equivalent.

3. Assume N1 and N2 define equivalent metrics, show that N1 and N2 are
equivalent norms.
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Exercise 1.4.13. Let X = (0, 1) be the open unit interval. The following
picture indicates a map f : X−→R2.

1P0

f

10 f(P )

1

1. Find/guess/outline an expression for f . (The curved part is circular.)

Consider the function d′ : X ×X−→R≥0 defined by d′(x, y) = |f(x)− f(y)|
for x, y ∈ X.

2. Argue why d′ is a metric on (0, 1).

3. Let U ⊂ X be an open subset of X with respect to d′, and assume that
P ∈ U . Show that U contains the interval (1− ε, 1) for some ε > 0.

4. Show that any subset of X which is open with respect to d′ is also open
with respect to the usual metric, d, on X = (0, 1). Describe the subsets
that are open with respect to d but not with respect to d′.

1.5 Metrics on products

1.5.1. In this section we will discuss the possibility of defining a metric on a
space which arises as the product of other metric spaces. If we are dealing
with only a finite product of metric spaces, then there are various possible
definitions of a ‘product metric’, all of which are equivalent in the sense of
1.4.5. But for an infinite product there is no satisfactory general construction.
In the next chapter we will see that despite of this, we may still give a precise
definition of the ‘open subsets’ of an arbitrary product space.

1.5.2. Let I be a set, and assume that for each i ∈ I we have a metric space
(Xi, di). The product space

X =
∏
i∈I

Xi

is the space that consists of all I-tuples (xj)j∈I with xj ∈ Xj. If I =
{1, . . . , n} we also write X = X1 × · · · ×Xn.

Definition 1.5.3. Assume I = {1, . . . , n}. We may define a metric d :
X×X−→R≥0 on X as follows. If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
are elements of X, let

d(x, y) = sup
i=1,...,n

di(xi, yi).
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It is an easy exercise to check that d satisfies the requirements of Definition
1.1.6. We will call d the product metric on X.

1.5.4. This is just one possible choice of a metric on the product space.
Another choice might be d′(x, y) = d1(x1, y1) + d2(x2, y2) + · · · + dn(xn, yn),
which is also easily seen to define a metric on X.

It follows directly from the definitions that d′ and the product metric d
satisfy d(x, y) ≤ d′(x, y) ≤ nd(x, y) for x, y ∈ X. From this it is easy to
check that d and d′ are equivalent. (cf. 1.4.5).

Exercise 1.5.5. The Euclidean metric on Rn is not the same as the product
metric when we consider Rn the n-fold product of R. Show that the two
metrics are equivalent.

Exercise 1.5.6. (You may consider this a hard one...) Given metric spaces
(X1, d1), (X2, d2), . . . , (Xn, dn) and a positive real number p > 0, define a
function d : X ×X−→R≥0 (X = X1 ×X2 × · · · ×Xn) by the assignment

d(p)(x, y) =
(
d1(x1, y1)p + d2(x2, y2)p + · · ·+ dn(xn, yn)p

)1/p
,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are elements of X.

1. Show that d(p) is faithful and homogeneous for all p > 0

2. Show that d(p) is a metric for p ≥ 1 by establishing subadditivity. (Hint:
Use a discrete version of the Minkowski inequality [Rudin], Theorem.
3.5.)

3. Show that d(p) is equivalent to the product metric for all p ≥ 1.

4. Show by example that d(p) need not be subadditive, hence not a metric,
if p < 1.

1.5.7. Consider again a product X =
∏

i∈I Xi, where for each i ∈ I, Xi is a
metric space with metric di. Suppose now that I is infinite.

If we try to mimic the defininition of the product metric from the finite
situation above, we put d(x, y) = supi∈I di(xi, yi), where x = (xi)i∈I and
y = (yi)i∈I are two points in X. But this is only well-defined if there is a
common upper bound on the metrics di. By replacing each di by an equivalent
metric, we may actually achieve this (cf. 1.4.10). But then the next problem
appears: As Exercise 1.5.9 below shows, the equivalence class of d is not
uniquely determined by the equivalence classes of the di.
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1.5.8. Another (and even more dubious) approach to obtaining a metric on
X would be by addition: d(x, y) =

∑
i∈I di(xi, yi). This will not make sense

in general, but if I = N and the bounds on the di are decaying rapidly, then
there is a chance. In Example 3.3.8 we will see that this may be fruitful in
certain cases.

Exercise 1.5.9. For all i ∈ N, let Xi = [0, 1]. We consider two metrics on
Xi: di(x, y) = |x − y| and d′i(x, y) = |x − y|/i. Let X =

∏
i∈NXi, and let d

and d′ be the metrics on X defined as in 1.5.7 with respect to the di and the
d′i respectively.

1. Show that di and d′i are equivalent for all i ∈ N.

2. Let x = (0)i∈I ∈ X and let δ′ > 0 be any positive real number. Show
that Bd′(x, δ

′) * Bd(x, 1). Conclude that d and d′ are not equivalent.

1.6 Appendix: Completion

1.6.1. The Cauchy sequences in R, which are usually discussed in introduc-
tory calculus courses, can also be defined for general metric spaces. (We will
have more to say about sequences in 2.5.)

Given a metric space (X, d) you can consider

Definition 1.6.2. A Cauchy sequence in X is a sequence {xn} of points in
X such that for each ε > 0 there is an N ∈ N such that d(xn, xm) < ε for
m,n ≥ N .

A sequence {xn} converges towards x ∈ X if and only if for each ε > 0
there is an N ∈ N such that d(xn, x) < ε for n > N .

Remark 1.6.3. A Cauchy sequence converges to at most one point. To see
this, suppose that {xn} converges to both x and x′. If we put ε = d(x, x′)/2
and assume x 6= x′ then ε > 0. By convergence there exists an N such that
d(xn, x) < ε and d(xn, x

′) < ε for n > N . From the triangle inequality we
get d(x, x′) ≤ d(x, xN+1) + d(xN+1, x

′) < 2ε = d(x, x′), which is impossible.
This contradicts the assumption x 6= x′ and proves our claim.

1.6.4. It is an easy exercise to show that a convergent sequence in a metric
space is a Cauchy sequence. Conversely, a Cauchy sequence in the metric
space of real numbers always converges towards some x. But this is not so
in general. For instance, let X = Q be the subset of rational numbers in R.
Let {xn} be a Cauchy sequence of rational numbers that converges towards
an irrational number. As a Cauchy sequence in X, this sequence does not
converge to any point in X.
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Definition 1.6.5. A metric space (X, d) is complete if every Cauchy sequence
in X converges.

Exercise 1.6.6. Let A ⊂ X where X is a complete metric space. Prove that
A is closed in X if and only if each Cauchy sequence in A converges towards
an element of A (so A is complete).

Definition 1.6.7. Let (X, d) and (X̂, d̂) be metric spaces. A distance pre-
serving map i : X → X̂ is called a completion if

• X is dense in X̂.

• X̂ is complete.

That X is dense in X̂ means that for any point x ∈ X̂ there exists a sequence
in X converging to x.

Exercise 1.6.8. Prove that the inclusion Q ⊂ R (with the usual metrics) is
a completion.

1.6.9. If a metric space is not complete, we can construct a completion of it.
The points of this completion are defined in a very formal and abstract way,
which ‘patches the holes’ in the space we are considering.

The philosophy of this is the following: A point x in the completion
X̂ will be represented by a Cauchy sequence {xn} in X, which converges
towards the point x. Since X is dense in X̂, it is possible to represent every
point of X̂ in this way. But of course, different Cauchy sequences in X might
converge towards the same point in X̂. In that case, we call those two Cauchy
sequences ‘equivalent’.

To turn this into a program for constructing X̂ from X, we first need to
formulate the equivalence relation on Cauchy sequences without any reference
to the space X̂, since we have not constructed that space yet.

Definition 1.6.10. Two Cauchy sequences {xn} and {yn} are equivalent if
limn→∞ d(xn, yn) = 0.

1.6.11. We write {xn} ∼ {yn} if the two sequences are equivalent. The reader
may check that this defines an equivalence relation.

Let C(X) be the set of Cauchy sequences in X.
Given a point x ∈ X we consider the constant Cauchy sequence i(x) =

{xn}, which satisfies that xn = x for all n.

Definition 1.6.12. The set X̂ = C(X)/∼ is the set of equivalence classes
of Cauchy sequences in X. The distance d̂ is given by d̂({xn}, {yn}) =
limn→∞ d(xn, xn).

13



Remark 1.6.13. The distance does not depend on the choice of Cauchy se-
quence in an equivalence class. If {yn} ∼ {zn}, by the triangle inequality
we have that d(xn, yn) − d(yn, zn) ≤ d(xn, zn) ≤ d(xn, yn) + d(yn, zn) Tak-
ing limits, we get limn→∞ d(xn, yn)− limn→∞ d(yn, zn) ≤ limn→∞ d(xn, zn) ≤
limn→∞ d(xn, yn) + limn→∞ d(yn, zn) which evaluates to d({xn}, {yn}) − 0 ≤
d({xn}, {zn}) ≤ d({xn}, {yn}) + 0. This shows that the distance d is wellde-
fined on the quotient C(X)/∼.

Theorem 1.6.14. (X̂, d̂) is a metric space. The map i from X to the sub-
space of constant Cauchy sequences xi = x preserves the distance, that is
d̂(i(x), i(y)) = d(x, y)

Proof. We check the conditions.

• d̂({xn}, {yn}) = 0 implies that limn→∞(d(xn, yn)) = 0. By definition,
this implies that {xn} and {yn} are equivalent Cauchy sequences. so
{xn} = {yn} ∈ C(X)/∼.

• Symmetry and the triangle inequality for d̂ follow directly from the
symmetry and triangle inequality for d.

• Let i(x) = {xn} be the constant Cauchy sequence xn = x, and i(y) =
{yn} the constant Cauchy sequence yn = y. Then,

d̂({xn}, {yn}) = lim
n→∞

d(xn, yn) = lim
n→∞

d(x, y) = d(x, y)

We now consider (X, d) as a subspace of (X̂, d̂) by the inclusion i of the
constant Cauchy sequences.

Theorem 1.6.15. The inclusion i : (X, d) ⊂ (X̂, d̂) is a completion.

Proof. We already know that i is distance preserving. There are two things
to check.

First, i(X) is dense in X̂. If {xn} ∈ C(X), then the sequence {xn}
is a Cauchy sequence in X. Since i is distance preserving, {i(xn)} is a
Cauchy sequence in X̂. We claim that this Cauchy sequence converges to-
wards {xn} ∈ C(X). To see this, we just observe that

lim
n→∞

d̂(i(xn), {xm}) = lim
n→∞

lim
m→∞

d(xn, xm) = 0

since {xn} is Cauchy.

14



Secondly, to see that X̂ is complete, we have to show that a Cauchy se-
quence {zn} ∈ X̂ converges. This is a Cauchy sequence of Cauchy sequences.
Written down in detail, zn is the equivalence class of some {(xn)m} (where n
is fixed).

As before, the Cauchy sequence i((xn)m) converges in X̂ towards zn.
So for each zn we can choose a particular element xn = (xn)mn . We think

of xn as an approximation to zn in the sense that by choosing mn big, we
can make i(xn) arbitrary close to zn. We choose these approximations closer
and closer with increasing n, so that limn→∞(d̂(zn, i(xn))) = 0.

I claim that the sequence xn is a Cauchy sequence in X. For ε > 0, we
find N so that if n > N , then d̂(zn, i(xn)) < ε

3
, and simultaneously, if m1 > N

and m2 > N , then d̂(zm1 , zm2) < ε
3

For m1 > N and m2 > N we have that

d(xm1 , xm2) = d̂(i(xm1), i(xm2))

≤ d̂(i(xm1), zm1) + d̂(zm1 , zm2) + d̂(zm2 , i(xm2))

< ε.

(1.1)

We write x ∈ X̂ for the element represented by {xn}. Finally, the in-
equality

d̂(zn, x) ≤ d̂(zn, i(xn)) + d̂(i(xn), x)

shows that the Cauchy sequence {zn} in X̂ converges towards z = {xn}.

1.6.16. The completion of a space depends on the metric in a sensitive way.
If you change the metric to an equivalent metric, the completion of (X, d)
will change, and not necessarily to an equivalent metric space.

Exercise 1.6.17. Compute the completion of the following metric spaces.
Find the completions. Show that the number of points in X̂ \X is different
in the three cases.

• X = R with its usual metric

• X = (0, 1) ⊂ R

• X = (0,∞) ⊂ R

When you have read the following chapters, you will realize that these
completions are pairwise non-homeomorphic despite the fact that R, (0, 1)
and (0,∞) are homeomorphic (cf. 2.2.11).
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Remark 1.6.18. Without scruples we have been using the real numbers through-
out this course (already in the definition of a metric). If you look back in
your first year books, you will probably find a list of properties of the real
numbers but no formal construction. That is, you might not have seen a
proof of the existence of R. One way of defining R is by completion of Q.
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Chapter 2

Topological spaces

2.1 Introduction

2.1.1. In the first chapter saw a lot of examples of metric spaces. In particular,
we saw that very often one may equip a set X with many different metrics
(cf. Example 1.1.9), but that these different metrics may define the same
open subsets of X (cf. the examples and exercises of Section 1.4).

For many purposes it is sufficient to know just the family open subsets
of X, regardless of how these are defined (e.g. which metric has been used).
For example, continuity of maps is entirely a question of manipulations with
open subsets. In its most basic form, topology could be called the theory of
open subsets. But we will will also use the word topology in a different way:

Definition 2.1.2. Let X be a set. A topology on X is family τ of subsets of
X that satisfies the following axioms:

1. Let I be any set, and assume that for each i ∈ I we have an element
Ui ∈ τ . Then

⋃
i∈I Ui ∈ τ .

2. Let I be a finite set, and assume that for each i ∈ I we have an element
Ui ∈ τ . Then

⋂
i∈I Ui ∈ τ

The pair (X, τ) is called a topological space. An element of τ is called an open
subset of X. If x is a point in X, then an open subset of U ⊂ X containing
x is also called an open neighbourhood of x.

2.1.3. We should emphasize that for any topological space (X, τ) the following
condition is automatically satisfied

3. ∅ ∈ τ and X ∈ τ.
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This follows from applying the two axioms for a topology to the case I = ∅:
By convention, an empty union of subsets is void, while an empty intersection
of subsets is equal to X.

In some books you will find 3. included as an extra axiom in the definition
of a topology.

2.1.4. In the following you will often meet sentences beginning with “Let
X be a topological space...”. By this we mean that X is a set that comes
equipped with a topology. Whenever we speak about open subsets in X,
open neighbourhoods of points in X etc., it is with reference to this unnamed
topology.

Example 2.1.5. On any set X we may define at least two different topolo-
gies. The trivial topology is the smallest possible, namely τtrivial = {∅, X}.
The discrete topology is the biggest possible, namely τdiscrete = 2X , which by
definition is the family of all subsets of X. It is an easy exercise to show that
these two definitions really define topologies.

2.1.6. In the above example, τtrivial ⊂ τdiscrete. In any such situation where
a space has two topologies, τcoarse and τfine say, with τcoarse ⊂ τfine, then we
say that the topology τfine is finer than the topology τcoarse (or that τcoarse is
coarser than τfine).

Exercise 2.1.7. Describe all topologies on a set with two elements. Do the
same for a set with three elements. (If you feel like doing it for a set with
four or more elements, go ahead!)

Example 2.1.8. For a metric space (X, d), let

τ = {U ⊂ X | U is an open subset of X},

where open subsets are defined as in Section 1.4.2. Then Exercise 1.4.8 shows
that τ is a topology on X. We call τ the topology induced from the metric
d. We will also say that τ is a metric topology.

Note, as Exercise 2.1.10 will show: There exist non-metric topologies.

2.1.9. The above construction applies in particular to X = R
n with the

Euclidean metric. The induced Euclidean topology consists of all subsets of
R
n which are open in the traditional sense.

Exercise 2.1.10. Let X be a set.

1. Show that the topology defined by the metric in Exercise 1.1.8 defines
the discrete topology on X. (If you have done Exercise 1.4.9 correctly,
this should not be too hard.)
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2. Show that if X contains more than one point, then there is no metric
on X whose induced topology coincides with the trivial topology.

Example 2.1.11. In Exercise 1.4.13 we displayed two different metrics, d
and d′, on X = (0, 1). Let τ and τ ′ be the topologies induced from d and d′

respectively. We then saw that τ is finer than τ ′, since we have a (proper)
inclusion τ ′ ⊂ τ .

2.1.12. Let X be a topological space and Y ⊂ X a subset. A point x ∈ Y is
called an interior point of Y , if there exists an open neighbourhood Ux of x
with Ux ⊂ Y . The set of interior points of Y is denoted Y ◦.

We claim that Y ◦ is an open subset of X. More precisely, Y ◦ is the
biggest open subset of X contained in Y in the sense that if U ⊂ Y is an
open subset of X, then U ⊂ Y ◦.

To see this, first observe that if U ⊂ Y is an open subset of X, then each
x ∈ U is an interior point of Y (just take Ux = U), so U ⊂ Y ◦. On the other
hand, if x ∈ Y ◦, then x is an interior point of Y , so there exists an open
neighbourhood Ux contained in Y . By what we just showed, Ux ⊂ Y ◦, so Y ◦

is a neighbourhood of each of its points. This proves that Y ◦ is open, and
indeed the biggest open subset of X contained in Y .

The set Y ◦ is called the interior of Y . We say that Y is a neighbourhood
of x ∈ Y if x is an interior point of Y . This extends our previous definition
of an open neighbourhood, since Y is open in X if and only if Y = Y ◦.

2.1.13. Assume that X \Y is open, i.e. X \Y ∈ τ . Then Y is called a closed
subset of X. Exercise 2.1.15 below shows that any intersection of closed sets
and any finite union of closed sets is again closed. This allows us to define,
for any subset Y ⊂ X, the closure of Y in X to be the set Y =

⋂
C, where

the intersection is taken over all closed subsets C of X containing Y . Then
Y is closed and contained in any other closed set containing Y . From the
definition we see that Y is a closed subset of X if and only if Y = Y .

The notions of ‘interior’ and ‘closure’ are each others counterparts due to
the equality X \ Y = (X \ Y )◦.

We say that Y is dense in X, if X = Y .
The difference ∂Y = Y \ Y ◦ is called the boundary of Y . A point in ∂Y

is called a boundary point for Y and may or may not be a member of Y .

Remark 2.1.14. Note that a subset Y ⊂ X of a topological space X is open
if and only if Y = Y ◦. This may be phrased as follows:

Y is open if and only if Y is a neighbourhood of x for all x ∈ Y .
This simple criterion is often convenient when we want to check if a given

subset Y ⊂ X is open or not.
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Exercise 2.1.15. Let (X, τ) be a topological space. Recall that a subset
C ⊂ X of X is closed if X \ C ∈ τ . Let τ cl denote the family of closed sets,
and show that τ cl satisfies the following axioms.

1. Let I be any set, and assume that for each i ∈ I we have an element
Ci ∈ τ cl. Then

⋂
i∈I Ci ∈ τ cl. (In particular, X ∈ τ cl).

2. Let I be a finite set, and assume that for each i ∈ I we have an element
Ui ∈ τ cl. Then

⋃
i∈I Ui ∈ τ cl. (In particular, ∅ ∈ τ cl).

Conversely, show that given a familiy τ cl of subsets of X which satisfies 1.
and 2., then τ =

{
X \ C | C ∈ τ cl

}
defines a topology on X.

Exercise 2.1.16. (This is an easy one...) Let Y be a subset of a topological
space (X, τ). Show

1. ∂Y ⊂ Y if and only if Y is closed in X.

2. ∂Y ∩ Y = ∅ if and only if Y is open in X.

2.2 Continuous maps

Definition 2.2.1. Suppose (X, τX) and (Y, τY ) are topological spaces. A
map f : X−→Y is continuous at a point x ∈ X if f−1(V ) ⊂ X is a neigh-
bourhood of x for any neighbourhood V ⊂ Y of y = f(x).

The map f is continuous if it is continuous at all points x ∈ X.

Exercise 2.2.2. When X and Y are metric spaces, this definition of conti-
nuity is equivalent to the definition from 1.4.1. Prove this!

Proposition 2.2.3. The following conditions are equivalent for a map f :
X−→Y of topological spaces and a point x ∈ X.

1. f is continuous at x.

2. For any subset A ⊂ X with x ∈ A, then f(x) ∈ f(A).

Proof. Note that x ∈ A is equivalent to x /∈ X\A = (X\A)◦, which says that
X \ A is not a neighbourhood of x. Similarly, f(x) ∈ f(A) is equivalent to
saying that Y \ f(A) is not a neighbourhood of f(x). Hence, 2. is equivalent
to

2’. For any subset A ⊂ X: If Y \ f(A) is a neighbourhood of f(x), then
X \ A is a neighbourhood of x.
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1. ⇒ 2’.: Let A ⊂ X be given, such that Y \ f(A) is a neighbourhood of
f(x), and assume that f is continuous at x. Then f−1(Y \ f(A)) ⊂ X \A is
a neighbourhood of x, as wanted.

2’. ⇒ 1.: Given a neighbourhood V of f(x), let A = X \ f−1(V ). Then
Y \ f(A) ⊃ V is a neighbourhood of f(x), so by applying 2’. we see that X \
A = f−1(V ) is a neighbourhood of x. Since this holds for any neighbourhood
V of f(x), then f is continuous at x, as desired.

Theorem 2.2.4. The following conditions are equivalent for a map f :
X−→Y of topological spaces.

1. f is continuous

2. f−1(V ) ⊂ X is open whenever V ⊂ Y is open.

3. f−1(C) ⊂ X is closed whenever C ⊂ Y is closed.

4. f(A) ⊂ f(A) for any subset A ⊂ X.

Proof. 1. ⇒ 2.: Let V ⊂ Y be open and f continuous. Put U = f−1(V ). We
must show that U is open in X. But for each x ∈ U , V is a neighbourhood
of f(x), so U is a neighbourhood of x by continuity of f at x. By Remark
2.1.14, this implies that U is open.

2. ⇒ 3.: If C ⊂ Y is closed, then V = Y \ C is open. If we assume 2.,
then X \ f−1(C) = f−1(V ) is open, so f−1(C) is closed. This shows 3.

3. ⇒ 4.: Given any subset A ⊂ X, then C = f(A) is a closed subset of
Y . If we assume 3., then f−1(C) is a closed subset of X containing A, hence
A ⊂ f−1(C). Apply f to this inclusion to get f(A) ⊂ f(f−1(C)) ⊂ C =
f(A), as desired.

4. ⇒ 1.: Assuming 4., we must show that f is continuous at any point
x ∈ X. Let A ⊂ X be any subset with x ∈ A. Then by 4., f(x) ∈ f(A) ⊂
f(A). But according to Proposition 2.2.3 this implies that f is continuous
at x, as desired.

Remark 2.2.5. From the above theorem we see that if a set X has two
topologies, τ1 and τ2, then τ1 is finer than τ2 if and only if the identity
map (X, τ1)

id−→(X, τ2) is continuous.

Proposition 2.2.6. Let f : X−→Y and g : Y−→Z be maps between topo-
logical spaces. Suppose f is continuous at a point x ∈ X, and g is continuous
at f(x). Then g ◦ f : X−→Z is continuous at x.

In particular, if f and g are continuous, then g ◦ f is continuous.
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Proof. This is quite simple: Let W ⊂ Z be a neighbourhood of (g ◦ f)(x) =
g(f(x)). Then V = g−1(W ) is a neighbourhood of f(x) by continuity of g at
f(x), and so (g ◦ f)−1(W ) = f−1(V ) is a neighbourhood of x by continuity
of f at x. This proves that g ◦ f is continuous at x.

Exercise 2.2.7. Equip R with the Euclidean topology and consider the map
f : R−→R given by the expression

f(x) =

{
1, if x ∈ [0, 1)
0, otherwise.

Show that f is continuous at x ∈ R if and only if x /∈ {0, 1}. Suppose we
replaced all occurrences of ‘neighbourhood’ in Definition 2.2.1 with ‘open
neighbourhood’. At how many points would f then be continuous?

2.2.8. Suppose f : X−→Y is a map from a set X to a topological space
(Y, τY ). Then f induces a topology on X,

τ(f) =
{
f−1(V ) | V ∈ τY

}
.

It is straightforward to check that τX satisfies the axioms of a topology, and
that f is continuous as a map from (X, τ(f)) to (Y, τY ). We call τ(f) the
least fine topology that makes f continuous.

If X comes equipped with a topology τX , then f is continuous as a map
between (X, τX) and (Y, τY ) if and only if τ(f) ⊂ τX .

2.2.9. Suppose (Y, τY ) is a topological space and X ⊂ Y is a subset. Then
we may equip X with the least fine topology, τ(ι), that makes the inclusion
ι : X ↪→ Y continuous. This is called the subspace topology on X.

By definition,

τ(ι) = {V ∩X | V is open in Y }.

Note the curious fact that even if X is neither open nor closed as a subset
of Y , then X is always both open and closed in its subspace topology by
definition.

Exercise 2.2.10. Let (Y, dY ) be a metric space, and and let τY be the metric
topology. Let X be a subset of Y . Then we have an induced metric dX on X
(cf. 1.3.1). Show that the metric topology on X coincides with the subspace
topology.

2.2.11. Let f : X−→Y be a map between two topological spaces. We call f
open, if f(U) is open in Y for any open subset U of X. Similarly, f is closed
if f(C) is closed in Y for any closed subset C of X.
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If f is bijective, continuous and open, then f is called a homeomorphism.
This is equivalent to saying that both f and its inverse f−1 : Y−→X are con-
tinuous. Whenever there exists a homeomorphism between two topological
spaces X and Y , we say that X and Y are homeomorphic.

A continuous injective map f is called an embedding, if the induced map
f : X−→f(X) is open, when f(X) ⊂ Y is equipped with the subspace
topology. This is equivalent to demanding that f : X−→f(X) is a homeo-
morphism, or, as we will also say, that f is a homeomorphism on its image.
In Exercise 2.2.13 and Proposition 3.2.10 we will see examples of this phe-
nomena.

A homeomorphism may also be called an isomorphism of topological
spaces: it preserves all the relevant structure.

Exercise 2.2.12. For a < b real numbers, find a homeomorphism R−→(a, b).
Argue why there cannot be a homeomorphism (a, b)−→[a, b]. (Compare with
Exercise 2.7.2.)

Exercise 2.2.13. Let f : (0, 1)−→R2 be the map from 1.4.13. Let Y =
f(0, 1) be the image of f . Argue why f is not an embedding (cf. 2.2.11).
How about the map g : (0, 1)−→R2, g(x) = (x, 0)?

2.3 Bases

2.3.1. You will probably be familiar with the notion of a basis for a finite
dimensional vector space: It is a minimal collection of vectors that spans the
vector space. If you know a basis, you can always recover the vector space.

A basis for a topology is in a quite similar fashion a family of open subsets
that ‘span’ the topology. If you know a basis, then you know the topology.
There is no good notion of minimality for a basis here, so there is no such
requirement, but it is often convenient to have a basis with as few elements
as possible.

Definition 2.3.2. Let (X, τ) be a topological space.

1. A subfamily σ ⊂ τ is called a basis for the topology τ , if any element
U ∈ τ can be expressed as a union of elements in σ, i.e. there is a
subfamily ρ ⊂ σ such that U =

⋃
V ∈ρ V .

2. Let x ∈ X be a point of X. A family σx of neighbourhoods of x in X
is called a neighbourhood basis for x, if for any neighbourhood U of x
there exists an element V ∈ σx such that V ⊂ U .
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Proposition 2.3.3. Given a family σ of subsets of X, for each x ∈ X let
σx = {U ∈ σ | x ∈ U}. Equip X with a topology τ . Then σ is a basis for τ
if and only if σx is a neighbourhood basis for x for all x ∈ X.

Proof. Suppose σ is a basis for τ , and x is a point in X. Given a neighbour-
hood U of x we may write U◦ as a union of elements in σ. At least one of
these elements, say V , will contain x, hence V ∈ σx and V ⊂ U . This shows
that σx is a neighbourhood basis for x.

Conversely, assume σx is a neighbourhood basis for x for all x ∈ X, and
let U ∈ τ . Then for each x ∈ U we may find Ux ∈ σx ⊂ σ with x ∈ Ux ⊂ U ,
and U =

⋃
x∈U Ux is a union of elements in σ. This shows that σ is a basis

for τ .

Exercise 2.3.4. Let a set X be equipped with two topologies, τ and τ ′, and
let σ be a basis for τ . Show that τ is coarser than τ ′ (i.e. τ ⊂ τ ′) if for any
U ∈ σ and any x ∈ X, there exists an open neighbourhood V of x in the
topology τ ′ such that V ⊂ U .

Example 2.3.5. Let X be a set equipped with the discrete topology. Then
a basis for the topology is given by σ = {{x} | x ∈ X}.

Moreover, assume σ′ is another basis, and let x ∈ X. Then since {x}
is an open neighbourhood of x, there exists an element U ∈ σ′ such that
x ∈ U ⊂ {x}. That is, {x} ∈ σ′. This shows that σ is contained in any basis
for the discrete topology.

Example 2.3.6. Let (X, d) be a metric space and τ the induced topology.
By definition (cf. 1.4.2), U ⊂ X is open if for each x ∈ U there exists a
ball B(x, rx) of some radius rx > 0 which is contained in U . Thus, U =⋃
x∈U B(x, rx). According to our definitions, this shows that

σ = {B(x, r) | x ∈ X and r ∈ R>0}

is a basis for τ , and σx = {B(x, r) | r ∈ R>0} is a neighbourhood basis for
x ∈ X.

2.3.7. Let X be a set, and assume that for each element i in some index set
I we have a topology τi on X. Then it is easy to check that the intersection
of all these topologies, τ =

⋂
i∈I τi, is again a topology on X.

Now suppose we have a family σ of subsets on X. Then there is a least
fine topology containing σ, namely

τ(σ) =
⋂
τ⊃σ

τ,
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where the intersection is taken over all topologies τ on X containing σ. This
intersection is non-trivial since any family σ is contained in the discrete
topology.

In general, σ is not a basis for τ(σ) (see Exercise 2.3.8). The problem is
that any finite intersection of elements in σ will necessarily belong to τ(σ)
but may not be expressible as a union elements of σ. Instead, consider the
family σ′ of all finite intersections of elements in σ. We claim that σ′ is a
basis for τ(σ).

To see this, let τ ′ be the familiy consisting of arbitrary unions of elements
of σ′. It is straightforward to check that τ ′ is a topology, and that σ′ is a
basis for τ ′. From the axioms it follows that any topology containing σ must
also contain τ ′. We conclude that τ ′ = τ(σ), and σ′ is indeed a basis for
τ(σ).

Whenever (X, τ) is a topological space and σ ⊂ τ is a subfamily with
τ = τ(σ), then σ is called a subbasis for the topology τ . Clearly, a basis for
τ is also a subbasis.

Exercise 2.3.8. Show that a subbasis σ for a topology on a set X is a basis
for the topology if and only if any finite intersection of elements in σ can be
expressed as a union of elements in σ.

2.4 The axioms of countability

Definition 2.4.1. Let (X, τ) be a topological space.

1. (X, τ) is separable if there exists an at most countable dense subset of
X.

2. (X, τ) satisfies the first axiom of countability if every point in X has
an at most countable neighbourhood basis.

3. (X, τ) satisfies the second axiom of countability if τ has an at most
countable basis

Proposition 2.4.2. Let (X, τ) satisfy the second axiom of countability. Then
(X, τ) is separable and satisfies the first axiom of countability.

Proof. It is clear that (X, τ) satisfies the first axiom of countability, and we
only need to show separability.

Let σ ⊂ τ be an at most countable basis. For each U ∈ σ, pick a point
yU ∈ U , and define Y = {yU | U ∈ σ}. Clearly, Y is at most countable. We
must show that Y = X. Put U = X \ Y . Then U is open, and if U is not
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empty, then it is a non-trivial union of elements of σ. But each element of
σ contains a point in Y , hence so does U . This is impossible, so U = ∅, as
desired.

Exercise 2.4.3. Let τ = {C \ F | F ⊂ C is finite or empty} ∪ {∅}.

1. Show that τ defines a topology on C. (This is called the Zariski topol-
ogy.)

2. Show that τ is separable but does not satisfy the first axiom of count-
ability.

Lemma 2.4.4. Let (X, d) be a metric space. Then the induced topology
satisfies the first axiom of countability.

Proof. Let x ∈ X. As we saw in Example 2.3.6, σx = {B(x, r) | r ∈ R>0} is a
neighbourhood basis for x. But then σ′x = {B(x, r) | r ∈ Q>0} is a countable
neighbourhood basis for x. In fact, it will suffice to show that for any r ∈ R>0,
the ball B(x, r) contains a ball B(x, r′) from σ′x, and this is not hard: Given
r, choose any rational r′ with 0 < r′ < r.

Remark 2.4.5. In general, metric spaces are not separable (and hence, do not
satisfy the second axiom of countability). As an example, take X = R with
the discrete topology which is metric by 2.1.10. Since any subset of X is
closed, then the only dense subset is X itself, and X is not countable.

Lemma 2.4.6. The Euclidean topology on Rn satisfies the second axiom of
countability. In particular, Rn is separable.

Proof. By induction in n, one easily proves that Qn is a countable subset of
R
n. Let Q>0 be the positive rational numbers and put

σ = {B(q, r) | q ∈ Qn and r ∈ Q>0}

Then σ is in bijective correspondance with the countable set Qn ×Q>0 and
is thus countable. We must show that σ is a basis for the topology.

Let U ⊂ Rn be open, and let x ∈ U . Then we may choose rx ∈ R>0

such that B(x, rx) ⊂ U . Now pick qx ∈ Qn such that qx ∈ B(x, rx/2), and
r′x ∈ Q>0 such that |qx − x| < r′x < rx/2. Then by the triangle inequality,
x ∈ B(qx, r

′
x) ⊂ B(x, r) ⊂ U . Since B(qx, r

′
x) ∈ σ and U =

⋃
x∈U B(qx, r

′
x),

this shows that σ is indeed a basis.
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2.5 Sequences

Let X be a set. A sequence in X is simply a map x· : N−→X. We write it
as {xi}i∈N where xi ∈ X is the image of i ∈ N.

A subsequence of a sequence N
x·−→X is a sequence arising from the fol-

lowing construction: Take a strictly increasing function c : N−→N. Then
the composite N

c−→N x·−→X is a subsequence. If c(j) = ij, j ∈ N, then the
subsequence is denoted

{
xij
}
j∈N.

Definition 2.5.1. Let X be a set, A ⊂ X a subset of X, and {xi}i∈N a
sequence in X.

1. We say that {xi}i∈N is frequently in A, if there is a subsequence con-
tained in A. (Equivalently, there are infinitely many i ∈ N such that
xi ∈ A.)

2. We say that {xi}i∈N is eventually (read as: sooner or later) in A, if any
subsequence is frequently in X. (Equivalently, there exists N ∈ N such
that xi ∈ A for i ≥ N .)

Definition 2.5.2. Let (X, τ) be a topological space, x ∈ X a point, and
{xi}i∈N a sequence in X.

1. We say that {xi}i∈N converges to x, if {xi}i∈N is eventually in U for all
open neighbourhoods U of x. In this case we also say that x is a limit
point for {xi}i∈N and write x = limi→∞ xi.

2. We say that {xi}i∈N accumulates at x, or that x is an accumulation
point for {xi}i∈N, if {xi}i∈N is frequently in U for each open neighbour-
hood U of x.

Remark 2.5.3. Warning! A sequence {xi}i∈N has in general no limit points,
and if it has, it need not be unique (cf. Exercise 2.5.5). When we write
x = limi→∞ xi, then x is one of possibly many limit points for {xi}i∈N.

Exercise 2.5.4. Assume that (X, τ) satisfies the first axiom of countability,
and that {xi}i∈N is a sequence in X. Show that a point x is an accumu-
lation point for {xi}i∈N if and only if there exists a subsequence of {xi}i∈N
converging to x.

Exercise 2.5.5. Prove that if X is a set equipped with the trivial topology,
then any sequence {xi}i∈N in X converges to any x ∈ X.
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2.5.6. Given a topological space (X, τ) and a subset A ⊂ X, we define the
sequential closure of A by

A
s

= {x ∈ X | there exists a sequence in A converging to x}.

If x ∈ A, then the sequence which is constantly equal to x converges to x, so
we always have A ⊂ A

s
.

Proposition 2.5.7. We have an inclusion A
s ⊂ A. Conversely, if x ∈ A

and x has an at most countable neighbourhood basis in X, then x ∈ As.

Corollary 2.5.8. If X is a metric space or more generally, if X satisfies the
first axiom of countability, then A

s
= A for any subset A ⊂ X.

Proof. (Of 2.5.7) Let x ∈ As. Then there exists a sequence {yi}i∈N of points
in A converging to x, so for any open neighbourhood U of x in X, the
sequence is eventually in U . But if x does not belong to A, then U = X \A
is an open neighbourhood of x in X which does not contain any points from
the sequence. This gives a contradiction, and we see that A

s ⊂ A.
Now suppose x ∈ A, and that x has an at most countable neighbourhood

basis, σx ⊂ τ . By Lemma 2.5.9 below we may assume that there exists
a surjective descending map c : N−→σx. For any i ∈ N, c(i) is an open
neighbourhood of x, so it must intersect A non-trivially. Choose xi ∈ A∩c(i).
This defines a sequence {xi}i∈N in A, which we claim converges to x. In fact,
if i ∈ N, then for j ≥ i we have xj ∈ c(j) ⊂ c(i), so {xi}i∈N is eventually
in c(i). Since the c(i) run through a neighbourhood basis for x, this implies
that x = limi→∞ xi, as claimed. We conclude that x ∈ As.

Lemma 2.5.9. Suppose x ∈ X has an at most countable neighbourhood
basis. Then there exist a neighbourhood basis σx of x and a surjective map
c : N−→σx which is descending, i.e. i ≤ j ⇒ c(i) ⊃ c(j).

Proof. Suppose σ′x is an at most countable neighbourhood basis for x. Then
there exists a surjective map c′ : N−→σ′x. For i ∈ N, put c(i) = c′(1)∩c′(2)∩
· · ·∩c′(i). Then it is easy to check that σx = {c(i) | i ∈ N} is a neighbourhood
basis for x, and the map c : N−→σx, i 7→ c(i) is clearly surjective.

Proposition 2.5.10. Suppose f : X−→Y is a map between topological
spaces, and let x ∈ X be a point. Then 1. implies 2.

1. f is continuous at x.

2. f(x) = limi→∞ f(xi) for any sequence {xi}i∈N in X with x = limi→∞ xi.
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If moreover x has an at most countable neighbourhood basis, then 1. and 2.
are equivalent.

Proof. 1. ⇒ 2.: Suppose f is continuous at x and {xi}i∈N is a sequence
in X with x = limi→∞ xi. Consider a neighbourhood V ⊂ Y of f(x). By
continuity, f−1(V ) ⊂ X is a neighbourhood of x, so eventually xi will be in
f−1(V ). But then eventually, f(xi) will be in V . This shows that f(x) =
limi→∞ f(xi), as claimed.

2. ⇒ 1.: Assume that x has a countable neighbourhood basis, and let
A ⊂ X be any subset with x ∈ A. By Proposition 2.5.7, this implies that
x ∈ A

s
. Now, condition 2. immediately gives that f(x) ∈ f(A)

s
⊂ f(A),

and by Proposition 2.2.3 we conclude that f is continuous at x.

Corollary 2.5.11. If f : X−→Y is a map between topological spaces and X
satisfies the first axiom of countability, then f is continuous if and only if
f(limi→∞ xi) = limi→∞ f(xi) for any convergent sequence {xi}i∈N.

In the above Corollary, we are abusing our notation: By f(limi→∞ xi) =
limi→∞ f(xi) we mean that if {xi}i∈N converges to a point x ∈ X, then
{f(xi)}i∈N converges to f(x). The abuse lies in the fact that a convergent
sequence {xi}i∈N potentially has more than one limit point, so limi→∞ xi is
not a well-defined point.

2.6 Product topologies

Let I be a set, and assume that for each i ∈ I we have a topological space
(Xi, τi). Let X =

∏
i∈I Xi be the product space. For each i ∈ I there is a

natural projection map pri : X−→Xi, pri((xj)j∈I) = xi.

Definition 2.6.1. The product topology on X is the least fine topology that
makes all the pri, i ∈ I, continuous.

2.6.2. Let us give a more precise description of the product topolgy, τ . For
each i ∈ I, pri : X−→Xi should be continuous. This amounts to saying that
τ is the least fine topology that contains the family

σ =
{
pr−1

i (Ui) ⊂ X | i ∈ I, Ui ∈ τi
}
,

so τ = τ(σ), and σ is a subbasis for τ . Note that pr−1
i (Ui) =

∏
j∈I U

′
j, where

U ′i = Ui and U ′j = Xj for j 6= i. If we intersect pr−1
i (Ui) with another set of

the same type, pr−1
i′ (Ui′) say, with i 6= i′, then we get

pr−1
i (Ui) ∩ pr−1

i′ (Ui′) =
∏
j∈I

U ′j
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with U ′i = Ui, U
′
i′ = Ui′ and U ′j = Xj for j /∈ {i, i′}. From the construction

in 2.3.7 it is now clear that a basis for the product topology is given by

σ′ =

{∏
i∈I

Ui ⊂ X | Ui ∈ τi for all i ∈ I, and Ui = Xi for all but finitely many i ∈ I

}
.

Proposition 2.6.3. Let Z and Xi, i ∈ I, be topological spaces, and let f :
Z−→

∏
i∈I Xi be a map. Then f is continuous if and only if the “coordinate

function” fi = pri ◦ f : Z → Xi is continuous for all i ∈ I.

Proof. Assume f is continuous. Since pri is continuous by definition of the
product topology, then the composite fi = pri ◦ f is indeed continuous.

Conversely, assume that all the fi are continuous. Then for an open
subset Ui ⊂ Xi, f

−1
i (Ui) = f−1(pr−1

i (Ui)) is open in Z. But the subbasis σ
from 2.6.2 for the product topology consists of elements of the form pr−1

i (Ui),
so indeed f−1(U) will be open in Z for any element U of σ. But this means
that f−1(U) will be open in Z for any open U in

∏
i∈I Xi, and hence f is

continuous.

A refinement of the above proof will show that f is continuous at a point
z ∈ Z if and only if all of the fi are continuous at z.

Exercise 2.6.4. Prove once and for all the following subtle claim (that one
may so easily use without ever realizing that there is something to prove).
We will use this claim several times in the sequel.

For each i in some index set I0, let Xi be a topological space. Let I1 ⊂ I
be a subset, and put I2 = I \ I1. For j = 0, 1, 2, define X(j) =

∏
i∈Ij Xi

and equip it with the product topology. Then there is an obvious bijection
X(1) ×X(2)−→X(0). Show that this is an identification of topological spaces
(i.e. a homeomorphism).

Exercise 2.6.5. Another subtle fact that may be harder to appreciate than
to prove:

Let X and Y be topological spaces, and let A ⊂ X and B ⊂ Y be sub-
spaces equipped with the subspace topologies. Then A×B may be equipped
with the product topology τP . But we may also consider A× B a subset of
X × Y and give it the subspace topology τS. Show that τS = τP .

Example 2.6.6. If Y and Z are sets, then the product X =
∏

y∈Y Z may be
identified with the set Map(Y, Z) of all maps Y−→Z. Indeed, (zy)y∈Y ∈ X
defines the map y 7→ zy.
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If Z is a topological space, then Map(Y, Z) = X may be given the prod-
uct topology. Given a finite set of points {y1, . . . , yn} ⊂ Y and a family
{U1, . . . , Un} of open subsets of Z,

{g ∈ Map(Y, Z) | g(yi) ∈ Ui for i = 1, . . . , n}

defines an open subset of Map(Y, Z). The family of open subsets of this form
corresponds to the basis for X given in 2.6.2.

An application: If Y is a normed vector space over C, let Y ∗ denote the
set of continuous linear maps Y−→C. Then Y ∗ is a subset of Map(Y,C). The
subspace topology on Y ∗ is called the W ∗-topology (“weak-star-topology”)
on Y ∗ and is frequently considered in the theory of Banach spaces.

Proposition 2.6.7. Let (X1, d1), (X2, d2), . . . , (Xn, dn) be a finite collection
of metric spaces. Equip Xi with the metric topology τi for all i. Let X =∏n

i=1 Xi = X1×X2×· · ·×Xn be the product, and let d be the product metric
on X (cf. 1.5.3). Then the metric topology on X coincides with the product
topology.

Proof. Observe that for any x = (x1, . . . , xn) ∈ X and any r > 0,

Bd(x, r) = Bd1(xi, r)× · · · ×Bdn(xn, r)

by definition of d. From this we see that Bd(x, r) is open in the product
topology, so any d-open subset is product-open.

Conversely, assume U ⊂ X is open in the product topology and x =
(x1, . . . , xn) ∈ U is a point. Then there exists for all i = 1, . . . , n an open
neighbourhood Ui ⊂ Xi of xi such that U1 × · · · × Un ⊂ U . We may take Ui
to be Bdi(xi, ri) for some ri > 0. Let r = infi ri. Then Bd(x, r) ⊂

∏
i Ui ⊂ U ,

and U is open in the metric topology.

2.7 Appendix: Countability

By definition, a set S is countable, if there is a bijection c : N−→S. The
term countable comes from the fact that c allows us to count the (infinitely
many!) elements of S: c(1) is the first element of S, c(2) the second, c(3) the
third, ... Each element in S gets a number.

We will say that a set S is at most countable if S is either finite (i.e.
has only finitely many elements) or countable. Note that according to our
definition, a finite set is not countable. An infinite set which is not countable
is said to be uncountable.

Let us list some properties of (at most) countable sets.
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1. If S is countable and S−→T is an isomorphism, then T is countable.

2. Any subset of a countable set is at most countable.

3. A set S is at most countable if and only if there exists a surjective map
N−→S.

4. If S and T are countable, then S × T is countable.

5. The sets N, Z and Q are countable.

6. An at most countable union of at most countable sets is at most count-
able.

Proof. The proof of 1. and 2. are easy exercises. For 3. “if”, suppose we
have a surjective map φ : N−→S. Define

T =
{
i ∈ N | i is the least element in φ−1(φ(i))

}
.

Then the restriction of φ to T defines a bijection φ|S : T−→S, and by by
1. and 2 we conclude that T is at most countable. 3. “only if” is an easy
exercise.

For the proof of 4. it will suffice to show that N × N is countable. For
this, consider the set

C = {(n, i) | n ∈ N and i = 0, . . . , n− 1} =
∞⋃
n=1

Cn

with Cn = {n} × {0, 1, . . . , n− 1}. We may define a counting of C by first
taking the element of C1, then the two elements of C2, then the three elements
of C3 etc. This way we will sooner or later get to any element of C. Thus,
C is countable and we are done by checking that the expression (n, i) 7→
(n− i, i+ 1) defines a bijection C−→N× N.

The proof of 5. is an exercise, using 1. – 4.

Note that R is uncountable – this is the famous diagonalization argument
of Cantor.

Exercise 2.7.1. Let a < b be real numbers. Given that R is uncountable,
show that the open interval (a, b) is uncountable.

Exercise 2.7.2. For a < b real numbers, find bijections R−→(a, b) and
(a, b)−→[a, b].
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Chapter 3

Compact spaces

3.1 The Hausdorff separation axiom

3.1.1. Before starting the discussion of compactness, we introduce the Haus-
dorff axiom.

The first axiom for a metric is the requirement that the distance between
two distinct points x, y is always strictly positive. Thus, we can always find
an open set which contains x but not y – or even better, we can find disjoint
neighbourhoods of x and y. (Recall that two subsets are disjoint if their
intersection is empty.)

On the other hand, if we consider a set (with at least two elements)
equipped with the trivial topology, then the only non-empty open subset
contains all points in our set, so there is no chance of ‘separating’ points
with the topology. This, for instance, has the unfortunate and somewhat
counter-intuitive consequence that a sequence may have more than one limit
point.

For many purposes, the least measure of decency for a topological space
is that is satisfies the Hausdorff axiom. Sequences in Hausdorff spaces have
at most one limit point, and this property in fact characterizes Hausdorff
spaces among topological spaces satisfying the first axiom of countability, as
we will soon see.

Just to mention it, the Zariski-topology on an algebraic scheme is one
of the few examples of a very important non-Hausdorff topology. It is a
remarkable fact that even if most of what we have to say in this chapter does
not apply to such spaces, a lot of effort in algebraic geometry has been put
into establishing constructions that on a geometric level amount to much the
same.

Definition 3.1.2. A topological space X is a Hausdorff space, if for any two
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distinct points x, y in X there exist an open neighbourhood U of x and an
open neighbourhood V of y such that U ∩ V = ∅.

3.1.3. As we argued above, metric spaces are Hausdorff spaces. A set equipped
with the discrete topology is also a Hausdorff space. It is straightforward to
see that if Y is a Hausdorff space and X ⊂ Y is equipped with the subspace
topology, then X is likewise a Hausdorff space.

3.1.4. An important property of a Hausdorff space X is that {x} is a closed
subset for any point x ∈ X. In fact, let W = X \ {x}. Then for any y ∈ W
we may by the Hausdorff axiom choose an open neighbourhood V of y which
does not contain x, so y ∈ V ⊂ W . This shows that W is a neighbourhood
of each of its elements, so W is open, and hence {x} is closed.

This is a special case of 3.2.9.

Exercise 3.1.5. Show that a topological space X is Hausdorff if and only if
the diagonal ∆(X) = {(x, x) ∈ X ×X | x ∈ X} is a closed subset of X ×X.

Proposition 3.1.6. Let X be a topological space. If X is Hausdorff, then
every seqence in X converges to at most one point.

Conversely, if X satisfies the first axiom of countability and any sequence
converges to at most one point, then X is a Hausdorff space.

Proof. Suppose X is Hausdorff and {xi}i∈N is a sequence converging to x ∈
X. If y ∈ X \ {x} then we may choose open disjoint neighbourhoods U and
V of x and y respectively. By convergence, {xi}i∈N is eventually in U , so
only finitely many xi are in V . This means that {xi}i∈N does not converge
to y, and x must be the only point to which {xi}i∈N converges.

For the converse, assume that X satisfies the first axiom of countability.
If X is not Hausdorff, then we may find two distinct points x and y for which
any two open neighbourhoods will intersect non-trivially. From Lemma 2.5.9
we see that there exists a neighbourhood basis σx for x and a surjective
descending map cx : N−→σx. Let cy : N−→σy be a similar thing for y. Then
for each i ∈ N, the intersection cx(i) ∩ cy(i) has non-empty interior, and we
may pick a point xi in there. This defines a sequence {xi}i∈N in X. Given
a neighbourhood U of x, c(i) ⊂ U for i big enough, say i ≥ N . But then
xi ∈ cx(i) ⊂ U for i ≥ N , so the sequence is eventually in U . This holds for
any neighbourhood U of x, so {xi}i∈N converges to x. By symmetry, {xi}i∈N
will also converge to y.

This shows that if every sequence converges to at most one point, then
X is Hausdorff.

For future use we prove the following proposition.
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Proposition 3.1.7. If X =
∏

i∈I Xi is a product of Hausdorff spaces, then
X is a Hausdorff space in the product topology.

Proof. This is most elegantly done using Exercise 3.1.5: All the maps pri ×
pri : X ×X−→Xi ×Xi are continuous, and ∆(Xi) is closed in Xi ×Xi, so

∆(X) =
⋂
i∈I

(pri × pri)−1(∆(Xi))

is closed. This implies that X is Hausdorff.

3.2 Compactness

3.2.1. The aim of this chapter is to define and get some intuition for the
notion of compactness for a topological space. Many readers will know the
Borel–Heine characterization of compactness for subsets of Rn: K ⊂ Rn is
compact if and only if K is closed and bounded.

The abstract definition of compactness for a general topological space K
does not refer to an embedding of K in a larger space, but this definition
– however convenient to work with – does not in itself reveal much of the
geometric intuition behind the concept.

What we will try to advocate here is the idea that whenever a compact
space K is embedded in some larger (Hausdorff) space X, then it is indeed
a closed and ‘bounded’ subset. (And conversely, any closed and ‘bounded’
subset of X is compact).

To give proper meaning to the word ‘bounded’, recall that a sequence
{xi}i∈N in Rn is said to tend to infinity, if for any r > 0, the sequence

is eventually outside the closed ball B(0, r). (That is, for any r > 0 exists
N ∈ N such that |xi| > r for i ≥ N .) Indeed, a sequence that tends to infinity
is eventually outside any bounded subset. If you think of∞ as an extra point,
then this suggests that Rn\K should be a punctured neighbourhood of∞ for
any closed and bounded (=compact) subset. This is precisely the idea behind
the one-point-compactification of a Hausdorff space X: Let X∞ = X ∪ {∞}
where ∞ is a new abstract point which is not already in X, and declare
X∞ \K to be an open neighbourhood of ∞ for all compact K ⊂ X. Then
the compact subsets of X are precisely the closed subsets which are ‘bounded’
in the sense that they lie outside a neighbourhood of ∞.

The construction can also be modified to non-Hausdorff spaces.

3.2.2. Let us give some definitions.
Let (X, τ) be a topological space. An open cover ofX is a familiy (possibly

infinite) {Ui}i∈I of open subsets of X, such that X =
⋃
i∈I Ui. This is a finite

cover, if I is a finite set.
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A subcover of an open cover {Ui}i∈I is an open cover of X of the form
{Ui}i∈J for some J ⊂ I.

Definition 3.2.3. A topological space X is quasi-compact if any open cover
of X has a finite subcover. A quasi-compact Hausdorff space is called com-
pact.

Proposition 3.2.4. Let (X, τ) be a (quasi-)compact topological space, and
let C ⊂ X be a closed subset. Then C is (quasi-)compact in the subspace
topology.

Proof. If X is Hausdorff, then C is also Hausdorff by 3.1.3, so it is enough
to consider the case when X is quasi-compact and show that then C is also
quasi-compact.

Let {Vi}i∈I be an open cover of C in the subspace topology. By definition
of this topology there exists for all i ∈ I an open subset Ui of X such that
Vi = Ui ∩ C. Since X \ C is open, {Ui}i∈I ∪ {X \ C} is an open cover of X.
By quasi-compactness of X we may find a finite subset {i1, i2, . . . , ik} ⊂ I
such that

{X \ C,Ui1 , Ui2 , . . . , Uik}
is an open cover of X. Intersect this cover with C to conclude that

{Vi1 , Vi2 , . . . , Vik}

is a finite subcover of {Vi}i∈I . This shows that any open cover of C has a
finite subcover, so C is quasi-compact.

Exercise 3.2.5. Show that C with the (Zariski-)topology introduced in Ex-
ercise 2.4.3 is quasi-compact but not compact.

Exercise 3.2.6. Suppose K1, . . . , Kn ⊂ X are quasi-compact subsets of a
topological space X.

1. Show that
⋃n
i=1 Ki is quasi-compact.

2. Show that
⋂n
i=1 Ki is quasi-compact if each Ki is a closed subset of X.

3. Below we give an example showing that
⋂n
i=1 Ki need not be quasi-

compact if the Ki are not closed. Try to cook up your own example
before looking at 3.2.7.

Exercise 3.2.7. This is supposed to be amusing! We will produce an exam-
ple of a topology on R for which there exist two non-closed quasi-compact
subsets K1, K2 ⊂ R whose intersection is not quasi-compact, cf. Exercise
3.2.6.

For A a subset of R, let −A be the set {−a | a ∈ A}.
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1. Show that

τ = {U ⊂ R | U is open in the Euclidean topology and U = −U}

defines a new topology on R.

2. Show that K1 = [−1, 1) and K2 = (−1, 1] are quasi-compact and not
closed with respect to τ .

3. Show that K1 ∩K2 = (−1, 1) is not quasi-compact with respect to τ .

Exercise 3.2.8. Let X be a set equipped with the discrete topology. Show
that X is compact if and only if X is finite.

When X is Hausdorff, 3.2.4 has a converse (cf. 3.2.9): Any quasi-compact
subset is closed. Without the Hausdorff assumption this is no longer true.
For instance, let X be any set with at least two elements equpped with the
trivial topology; then any subset of X is quasi-compact (there are only two
open subsets of X so any open cover is finite), but only ∅ and X are closed.

Proposition 3.2.9. Let X be a Hausdorff space, and let K ⊂ X be a compact
subset. Then K is a closed subset of X.

Moreover, for each x ∈ X \ K there exist open subsets U, V ⊂ X with
x ∈ U , K ⊂ V and U ∩ V = ∅.

Proof. We first prove the second part of the proposition.
Fix x ∈ X \K. By the Hausdorff property we may to each y ∈ K find

open neighbourhoods in X of x and y which do not intersect. Let us call
them Uy and Vy, respectively. By the choice of Vy, K =

⋃
y∈K {y} ⊂

⋃
y∈K Vy,

so {Vy ∩K}y∈K is an open cover of the compact space K. Take a subcover
{Vy ∩K}y∈F with F ⊂ K a finite subset, and define U =

⋂
y∈F Uy and

V =
⋃
y∈F Vy. Then U and V are open and disjoint with x ∈ U and K ⊂ V ,

as required.
We may use this to see that K is closed in X. If x ⊂ X \K, then by what

we just proved there exists a neighbourhood Ux of x whose intersection with
K is empty. That is, x ∈ Ux ⊂ X \K. This expresses that x is an interior
point of X \ K. Since this holds for any point x in X \ K, then X \ K is
open, and K must be closed.

Proposition 3.2.10. Suppose X and Y are topological spaces with X quasi-
compact. Let f : X−→Y be a continuous map. Then f(X) is quasi-compact.

If moreover f is injective and Y is Hausdorff, then f is an embedding
with closed image (cf. 2.2.11).
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Proof. To show that f(X) is quasi-compact, let {Ui}i∈I be an open cover of
f(X). Then by continuity, {f−1(Ui)}i∈I is an open cover of X. Since X is
quasi-compact, this cover has a finite subcover, {f−1(Ui)}i∈F , for some finite
F ⊂ I. But then {Ui}i∈F is a finite cover of f(X). This shows that f(X) is
quasi-compact.

Now suppose that Y is Hausdorff. Then f(X) is compact and hence
closed in Y by 3.2.9.

If in addition we assume that f is injective, then for f to be an embedding
we need to show that f : X−→f(X) is an open map. For this we consider
an open subset U ⊂ X and aim to prove that f(U) is open in the subspace
topology on f(X). The complement C = X \ U is a closed subset of X,
hence C is quasi-compact. By the first part of our proposition, f(C) is quasi-
compact and hence compact since Y is Hausdorff. Since f(X) inherits the
Hausdorff-property from Y , then the compact subset f(C) ⊂ f(X) is closed
in f(X) by 3.2.9, and we conclude that the complement f(X) \ f(C) =
f(X \ C) = f(U) is open in f(X). This is what we had to prove.

Note that since X is homeomorphic to f(X), then X is necessarily a
Hausdorff space.

Corollary 3.2.11. Let X be a quasi-compact space, Y a Hausdorff space,
and f : X−→Y a bijective continuous map. Then f is a homeomorphism.

Proof. From 3.2.10 we know that f is an embedding. This means that f :
X−→f(X) = Y is a homeomorphism.

Exercise 3.2.12. Show that if Ki ⊂ X, i ∈ I, is a family of compact subsets
of a Hausdorff space X with

⋂
i∈I Ki = ∅, then there is a finite subset F ⊂ I

such that
⋂
i∈F Ki = ∅.

Theorem 3.2.13. Let (X, τ) be a topological space. Then 1. implies 2.:

1. X is quasi-compact.

2. Any sequence in X has an accumulation point. (Equivalently, any se-
quence has a convergent subsequence.)

If the topology τ satisfies the second axiom of countability, then 1. and 2.
are equivalent.

Proof. 1. ⇒ 2.: Let X be quasi-compact, and assume that {xi}i∈N is a
sequence in X with no accumulation points. Then for each x ∈ X there
will be an open neighbourhood Ux of X for which Ix = {i ∈ N | xi ∈ Ux} is
finite. The open cover {Ux}x∈X of X has a finite subcover {Ux}x∈F , F ⊂ X
finite, since X is quasi-compact. Each xi is contained in some Ux, x ∈ F , so
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N =
⋃
x∈F Ix. But this is clearly impossible since F and all the Ix are finite.

This contradicts our assumtion that {xi}i∈N has no accumulation point and
proves the claim.

2. ⇒ 1.: For this we have to assume τ has a countable basis. We must
prove that any open cover of a space satisfying 2. has a finite subcover. We
do this in two steps. In the first step we prove that a countable open cover
has a finite subcover. The second step proves that also an uncountable cover
has a finite subcover by reducing to the countable case. This is where the
assumption that τ has a countable basis is used.

Step 1: Let {Ui}i∈I be an open cover of X. We first treat the case where

I is countable, and we may of course assume that I = N. By Vi =
⋃i
j=1 Uj

we define an increasing sequence of open subsets of X, V1 ⊂ V2 ⊂ V3 ⊂ . . . .
If Vi = X for some i ∈ N, then {U1, . . . , Ui} is a finite cover of X and we are
done. Otherwise, X \ Vi is non-empty for all i and we may choose a point
xi in there. Let x be an accumulation point for the sequence {xi}i∈N thus
defined. Since the Vi cover X, there exists an N ∈ N so that x ∈ VN . By the
definition of an accumulation point, infinitely many of the xi are contained
in VN . This contradicts the definition of the xi, and we conclude that {Ui}i∈I
has a finite subcover.

Step 2: Now suppose that I is infinite and uncountable. By assumption
we may find a countable basis σ ⊂ τ for τ . Define

ρ = {V ∈ σ | V ⊂ Ui for some i ∈ I}.

Then ρ is a countable cover of X since any Ui is a union of elements in σ.
By step 1, ρ has a finite subcover, say {V1, . . . , Vk} ⊂ ρ. Since each Vj is
contained in some Uij , then

{
Ui1 , . . . , Uij

}
is a finite subcover of {Ui}i∈I .

3.2.14. A Hausdorff space X is said to be normal, if for any two disjoint
closed subsets C,D ⊂ X there exist disjoint open subsets U, V ⊂ X with
C ⊂ U and D ⊂ V . Many reasonable spaces (metric spaces, for instance)
have this useful property.

Lemma 3.2.15. Any compact space is normal.

Proof. Let X be a compact space and C,D disjoint closed subsets. Then C
and D are compact as well by 3.2.4.

Apply the last statement in 3.2.9 to the compact subset D and a point
x ∈ C to obtain open disjoint subsets Ux, Vx ⊂ X with x ∈ Ux and D ⊂ Vx.
If we do this for all x ∈ C we obtain an open cover {Ux ∩ C}x∈C of C. Since
C is compact, we may find a subcover {Ux ∩ C}x∈F for some finite F ⊂ C.
Put U =

⋃
x∈F Ux and V =

⋂
x∈F Vx. Then U is an open set in X containing
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C, and V is an open set (since F is finite) containing D. It is easy to see
that U ∩ V = ∅ by construction.

The existence of U and V with the given properties is precisely what is
required for X to be normal.

In Exercise 3.4.12 we will show that Rn and many other non-compact
spaces are normal.

3.3 Products of compact spaces

In 2.6 we introduced a topology on the product of a family of topological
spaces. This product topology has the remarkable property of being compact
if all the spaces that enter the product are compact.

Theorem 3.3.1. Let X =
∏

i∈I Xi be an arbitrary product of (quasi-)compact
spaces Xi, i ∈ I. Then X is (quasi-)compact in the product topology.

3.3.2. This theorem is known as Tychonoff’s theorem. Since any product of
Hausdorff spaces is again Hausdorff by 3.1.7, then it suffices to consider only
the quasi-compact situation. We will not prove 3.3.1 in full generality but
restrict ourselves to two useful special cases.

Claim 3.3.3. Theorem 3.3.1 holds if the index set I is finite.

3.3.4. We will prove Claim 3.3.3 by combining the two lemmas 3.3.5 and
3.3.6 below. In total, this may not give the shortest possible proof of the
claim, but it should make the structure of the proof more transparent. In
addition, both lemmas will be useful for us later on.

Proof. (Of Claim 3.3.3.) We proceed by induction in the number n of ele-
ments in I.

For n = 2 we have to show that the product X1 × X2 of two quasi-
compact spaces X1 and X2 is quasi-compact. But this is the conclusion of
Lemma 3.3.5 when applied to the projection map pr1 : X1 × X2−→X1; it
follows directly from 3.3.6 that pr1 satisfies the assumptions.

Suppose n > 2. By Exercise 2.6.4 we may consider X as the topological
product of X ′ = X1 × · · · × Xn−1 with Xn. But X ′ is quasi-compact by
induction, and hence so is X by the case “n = 2”.

Lemma 3.3.5. Let X, Y be topological spaces and f : X−→Y a continuous
closed map. Assume that the fiber f−1(y) of f over y is quasi-compact for
all y ∈ Y , and that Y is quasi-compact as well. Then X is quasi-compact.
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Proof. Consider an open cover {Uj}j∈J of X. We must show that it has

a finite subcover. Fix a point y ∈ Y for a moment. The fiber f−1(y) is
quasi-compact by assumption, so the open cover {Uj ∩ f−1(y)}j∈J has a finite

subcover {Uj ∩ f−1(y)}j∈F for some finite subset F ⊂ J . Put U ′y =
⋃
j∈F Uj.

Then U ′y is an open subset of X containing f−1(y). Since f is a closed
map then f(X \ U ′y) is a closed subset of Y which does not contain y. Put
Vy = Y \ f(X \ U ′y). Then Vy is a neighbourhood of y, and f−1(Vy) ⊂ Uy by
construction.

If we do this for all y ∈ Y , we get an open cover {Vy}y∈Y of Y . Since Y
is quasi-compact, this cover has a finite subcover, {Vy1 , . . . , Vyk} say. Hence,

X = f−1(Y ) = f−1(Vy1) ∪ · · · ∪ f−1(Vyk) ⊂ U ′y1
∪ · · · ∪ U ′yk .

Since each U ′yi is a finite union of Uj’s, this shows that {Uj}j∈J indeed has a
finite subcover.

Lemma 3.3.6. Let X and Z be topological spaces, and let prX : X×Z−→X
be the projection on the first factor. Assume Z is quasi-compact. Then prX
is continuous and closed with quasi-compact fibers.

Proof. We already know from 2.6.3 that prX is continuous, and for each
x ∈ X the fiber pr−1

X (x) = {x} × Z is homeomorphic to Z, so prX has
quasi-compact fibers. We must show that prX is closed.

For this we consider a closed subset C ⊂ X × Z and show that f(C) is
closed in X. More precisely, we prove that X \ prX(C) is a neighbourhood
of each of its elements.

Fix x ∈ X \ prX(C). For all z ∈ Z the set (X × Z) \ C is an open
neighbourhood of (x, z) in the product topology so it has a subset of the
form Uz × Vz ⊂ (X × Z) \ C with Uz and Vz open neighbourhoods of x in
X and z in Z, respectively. Since Z is quasi-compact, the cover {Vz}z∈Z has
a finite subcover, {Vz1 , . . . , Vzk} say. Put U ′x = Uz1 ∩ · · · ∩ Uzk . Then U ′x is
open in X, and U ′x × Z ⊂ (X × Z) \ C by construction. This implies that
x ∈ U ′x ⊂ X \ prX(C) and proves that X \ prX(C) is a neighbourhood of x.
This is what we had to show.

Claim 3.3.7. Theorem 3.3.1 holds if I = N and each Xi satisfies the second
axiom of countability. In this case, also the product space X satisfies the
second axiom of countability.

Proof. Let σi be an at most countable basis for the topology on Xi, i ∈ N.
Then

σ =

{∏
i∈N

Ui | for some N ∈ N, Ui ∈ σi for i ≤ N and Ui = Xi for i > N

}
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is a basis for the product topology onX. It is an (easy?) exercise to show that
σ is countable, so X satisfies the second axiom of countability. By Theorem
3.2.13 we just have to check that any sequence in X has an accumulation
point.

Let {xj}j∈N be a sequence in X, where xj = (xj,i)i∈N with xj,i ∈ Xi.
Claim: Let N ∈ N, and suppose (x0,1, x0,2, . . . , x0,N) is an accumulation

point for the projection of the sequence {xj}j∈N on X1×X2×· · ·×XN . Then
there exists x0,N+1 ∈ XN+1 such that (x0,1, x0,2, . . . , x0,N+1) is an accumula-
tion point for the projection of {xj}j∈N on X1 ×X2 × · · · ×XN+1.

To prove the claim we may take a subsequence {xjk}k∈N of {xj}j∈N whose
projection on X1×X2×· · ·×XN converges to (x0,1, x0,2, . . . , x0,N). By quasi-
compactness of XN+1 the sequence {prN+1(xjk)}k∈N has an accumulation
point x0,N+1 in XN+1. This clearly shows that (x0,1, x0,2, . . . , x0,N+1) is an
accumulation point for the projection of {xjk}k∈N – hence also of {xj}j∈N –
on X1 ×X2 × · · · ×XN+1, as predicted by the claim.

The claim allows us to construct inductively an element x0 = (x0,i)i∈N of
X whose projection onto any finite product of the Xi’s is an accumulation
point for the projection of the sequence {xj}j∈N. We want to show that
x0 is an accumulation point for {xj}j∈N in X. For this, let U be an open
neighbourhood of x0 in X. We must show that xj is frequently in U . By
shrinking U , we may assume that U is of the form

∏
i∈N Ui, where Ui is an

open neighbourhood of x0,i in Xi for all i, and there exists an N ∈ N such
that Ui = Xi for i > N . But since the projection of {xj}j∈N on X1×· · ·×XN

accumulates to (x0,1, . . . , x0,N), then this projection is frequently in U1×· · ·×
UN , whose pre-image in X is U . This implies that {xj}j∈N is frequently in
U , as desired.

Example 3.3.8. Claim 3.3.7 applies to show that the Tychonoff cube T =∏
i∈N[0, 1] is compact and satisfies the second axiom of countability. Indeed,

we just have to observe that the compact unit interval [0, 1] satisfies the
second axiom of countability since it is a subset of R (cf. 2.4.6).

Exercise 3.3.9. This exercise will show that the product topology on the
Tychonoff cube T from Example 3.3.8 is a metric topology. For x, y ∈ T ,
define d(x, y) =

∑∞
i=1 2−i|pri(x)− pri(y)|.

1. Show that d defines a metric on T .

2. Show that this metric defines the product topology on T .

As an application of the previous theorems we get the well-known theorem
of Borel–Heine.
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Theorem 3.3.10. A subset K of Rn is compact (in the subspace topology)
if and only if it is a closed and bounded subset.

Proof. By 2.4.6, Rn and hence any subset of Rn has a countable basis for the
topology, so the two conditions 1. and 2. of Theorem 3.2.13 are equivalent
for any subspace of Rn.

Let us first show that a closed and bounded interval [a, b] ⊂ R is compact.
For this, consider an arbitrary sequence {xi}i∈N in [a, b] and let

x = lim sup
i→∞

xi = lim
i→∞

(sup
j≥i

xj).

Then x is an accumulation point for {xi}i∈N which is contained in [a, b] (Ex-
ercise!). So [a, b] is indeed compact.

Now, if K is closed and bounded in Rn, then K is a closed subset of the
product K ′ = [−r, r]n for r big enough. By 3.3.3 and what we just proved,
K ′ is compact, and hence K is compact by 3.2.4.

Conversely, assume K ⊂ R
n is compact. Then K is a closed subset

of Rn by 3.2.9. If K were not bounded then we could choose a sequence
xi ∈ K with |xi| ≥ i for all i. This has no accumulation point, and we get a
contradiction.

3.4 The one-point compactification

The construction of the one-point-compactification applies to any topological
space (X, τ) and goes as follows. Let X∞ = Xt{∞}, where∞ ∈ X∞ denotes
an abstract point not in X. We define a topology, τ∞, on X∞ by demanding
that a subset U ⊂ X∞ is open if and only if the following conditions are
satisfied

1. If ∞ /∈ U , then U is open in X.

2. If ∞ ∈ U , then X∞ \ U is a closed and quasi-compact subset of X.

Note that if X is Hausdorff, then 2. is equivalent to saying that X∞ \ U is
compact.

Before we check that 1. and 2. really define a topology on X∞, observe
that X ∩ U is open in X for any open subset U ⊂ X∞ of X∞, and that
any open subset of X is also open in X∞. This expresses the fact that the
subspace topology on X ⊂ X∞ coincides with the original topology on X,
so the inclusion X ↪→ X∞ is a homeomorphism on its image.

We check that τ∞ satisfies the axioms for a topology.
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1. Assume {Ui}i∈I is a collection of open subsets of X∞. We check that
U =

⋃
i∈I Ui is open.

If ∞ /∈ U , then ∞ /∈ Ui for all i and hence Ui is open in X. Therefore
U is open in X and hence also in X∞.

If ∞ ∈ U , then ∞ ∈ Ui0 for some i0 ∈ I, and K = X∞ \Ui0 is a closed
and quasi-compact subset of X. But then

X∞ \ U = K ∩
⋂

i∈I\{i0}

(X∞ \ Ui) = K ∩
⋂

i∈I\{i0}

(X \ (X ∩ Ui))

is a closed subset of the closed and quasi-compact subset K, hence
X∞ \ U is closed and quasi-compact. This is what is required for U to
be open in X∞.

2. Assume {Ui}ki=1 is a finite collection of elements in τ∞. We check that

U =
⋂k
i=1 Ui is open.

If∞ ∈ U , then∞ ∈ Ui for all i and so X \U =
⋃k
i=1(X \Ui) is a finite

union of closed and quasi-compact subset of X. This is again closed
and quasi-compact by 3.2.6, so U is open.

If∞ /∈ U then∞ /∈ Ui for some i and then U = X ∩U =
⋂k
i=1(X ∩Ui)

is open in X since it is a finite intersection of open subsets of X. Again,
U is open.

3. The reader should check that ∅ and X∞ are open.

Exercise 3.4.1. Consider the map f : R2−→S2 given by the expression
f(u, v) = (4u, 4v, u2 + v2 − 4)/(u2 + v2 + 4). This is the inverse of the so
called stereographic projection (see e.g. [do Carmo] p. 67 for a nice picture).

1. Show that f is injective, and that the image of f is S2 \ {(0, 0, 1)}.

2. Show that if X = R
2, then the extension of f to a map X∞−→S2

defined by mapping ∞ to (0, 0, 1) is a homeomorphism.

Exercise 3.4.2. Let N∞ be the one-point-compactification of N, where N
is equipped with the discrete topology. Show that a sequence {xi}i∈N in a
topological space X is convergent if and only if the map N−→X defined by
i 7→ xi extends to a continuous map N∞−→X.

Proposition 3.4.3. The one-point compactification X∞ of X is quasi-compact.
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Proof. Let {Ui}i∈I be an open cover of X∞. Then there exists an i0 ∈ I
such that ∞ ∈ Ui0 . Let K = X∞ \ Ui0 . Then K is a closed and quasi-
compact subset of X, and {Ui ∩K}i∈I\{i0} is an open cover of K. By quasi-
compactness, this has a finite subcover, {Ui1 ∩K, . . . , Uik ∩K} say. But then
{Ui0 , Ui1 , . . . , Uik} is a finite subcover of the original cover of X∞. This proves
that X∞ is quasi-compact.

Remark 3.4.4. Let X be a Hausdorff space. We may call a subset A ⊂ X
of X bounded, if ∞ is not contained in the closure of A inside X∞. This is
the same as saying that there exists an open neighbourhoood U of ∞ which
does not intersect A. The complement of U is by definition a closed and
quasi-compact subset of X, and since X is Hausdorff, this is compact. Thus,
A ⊂ X is bounded if and only if its closure inside X is compact.

In this way the compact subsets of X are exactly the closed and bounded
subsets.

This sentence is not a theorem! All we have been doing is to design our
notion of boundedness so conveniently that the statement of the sentence is
true. In particular, for X = R

n this is not a new proof of the Borel–Heine
theorem. The Borel–Heine theorem guarantees us that the new definition of
boundedness in Rn agrees with the old one.

Nevertheless, the above sentence is a good way to get some intuition for
compactness, and it fits well into the discussion of proper maps in the next
section.

To complete the discussion of the one-point-compactification and for later
use we introduce a few more concepts.

Definition 3.4.5. A topological space is locally compact, if it Hausdorff and
every point has a compact neighbourhood.

Exercise 3.4.6. Show that any point in a locally compact space has a neigh-
bourhood basis consisting of compact subsets. (Equivalently, any neighbour-
hood of a point contains a compact neighbourhood of the same point).

Proposition 3.4.7. X∞ is Hausdorff (and hence compact) if and only if X
is locally compact.

Proof. Assume X∞ is Hausdorff. Then X as a subspace of X∞ is also Haus-
dorff. Moreover, if x ∈ X then we may choose open neighbourhoods U and
V of x and ∞ respectively, such that U ∩ V = ∅. But then, by definition of
the topology on X∞, X∞ \ V is a compact subset of X which contains U .
Thus, there exists in X a compact neighbourhood of x.

Conversely, assume X is locally compact, and let x, y ∈ X∞ be two
distinct points. Since a locally compact space is implicitly Hausdorff it is

45



straightforward to find open disjoint neighbourhoods of x and y if both of
them lie in X.

So, suppose y =∞ and pick a compact neighbourhood K of x in X. By
definition of the topology on X∞, X∞ \K is an open neighbourhood of ∞
which is disjoint from the open neighbourhood K◦ of x. This shows that X∞
is indeed Hausdorff.

3.4.8. A Hausdorff space X is called σ-compact if it is a countable union of
compact subsets.

Exercise 3.4.9. Prove the following assertions.

1. Rn is both σ-compact and locally compact.

2. Q is σ-compact but not locally compact in the subspace topology from
R.

3. Challenge: R \Q is neither σ-compact nor locally compact.

Exercise 3.4.10. Let X be a locally compact space. Show that X is σ-
compact if and only if there exists an increasing sequence of compact subsets

K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ Ki ⊂ Ki+1 ⊂ . . .

such that
⋃∞
i=1 Ki = X and Ki ⊂ K◦i+1 ⊂ Ki+1 for all i.

Exercise 3.4.11. Show that any locally compact topological space which
satisfies the second axiom of countability is σ-compact.

Exercise 3.4.12. Show that a space which is both locally compact and σ-
compact is also normal (cf. 3.2.14). Use Exercise 3.4.9 to conclude that Rn

is normal.
(This exercise is harder than the previous ones. To get some inspiration,

it may actually be a good idea to consider Rn first.)

3.5 Properness

3.5.1. Proper maps play an important rôle in many geometric situations.
The general idea is that a proper map X−→Y is one which maps a point
‘near infinity’ of X to a point ‘near infinity’ of Y . There are various almost-
equivalent definitions of properness in the literature – we have adopted one
where this geometric idea may be given a precise meaning in terms of the
one-point-compactifications of X and Y .

We shall make no attempt of doing things in the greatest possible gener-
ality. For instance, we will always assume the spaces we map between to be
Hausdorff.
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Definition 3.5.2. A continuous map f : X−→Y between Hausdorff spaces
is proper if f−1(K) compact in X for any compact subspace K of Y .

Example 3.5.3. If X and Z are Hausdorff spaces with Z compact, then the
projection prX : X × Z−→X onto the first factor is proper.

Exercise 3.5.4. Show that if X is compact and Y is a Hausdorff space, then
any continuous map f : X−→Y is proper.

3.5.5. Given a continuous map f : X−→Y of Hausdorff spaces, we may define
a map from the one-point compactification X∞ = X t {∞X} of X to the
one-point compactification Y∞ = Y t {∞Y } of Y as follows.

f∞(x) =

{
f(x), if x ∈ X
∞Y , if x =∞X .

Proposition 3.5.6. f is proper if and only if f∞ is continuous.

Proof. Assume f is proper, and let U be open in Y∞. If ∞ /∈ U , then U
is open in Y , and f−1

∞ (U) = f−1(U) is open in X. If ∞ ∈ U , then Y∞ \ U
is compact in Y , hence f−1

∞ (Y∞ \ U) = f−1(Y∞ \ U) is compact in X. The
complement f−1

∞ (U) is then open in X∞. This shows that f∞ is continuous.
Conversely, assume f∞ is continuous, and let K ⊂ Y be compact. Since

Y is Hausdorff, K is a closed subset of Y , and thus K ′ = f−1(K) = f−1
∞ (K) is

a closed subset of X∞. Since X∞ is quasi-compact, then K ′ is quasi-compact,
and since X is Hausdorff then K ′ is compact.

Remark 3.5.7. In continuation of Remark 3.4.4 we see that Proposition 3.5.6
gives a very concrete meaning to the slogan:

Proper maps are the ones that send infinity to infinity.
Think about this and make your own sense of it!

3.5.8. We will now present a couple of alternative characterizations of proper-
ness. A very attractive approach is to define the subset Z(f) ⊂ Y of ‘im-
proper points’. Under certain extra conditions, f is proper if and only if
Z(f) = ∅ (i.e. there are no ‘improper points’). This way, Z(f) gives a
measure of how far f is from being proper, and it also helps locating the
non-proper behaviour.

Definition 3.5.9. Let f : X−→Y be a continuous map between Hausdorff
spaces X and Y .

1. A point y ∈ Y is called an improper point for f , if there exists a sequence
{xi}i∈N in X with no accumulation points, such that y = limi→∞ f(xi).
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2. The improper point set for f is the following subset of Y ,

Z(f) = {y ∈ Y : y is an improper point for f}.

Exercise 3.5.10. Compute Z(f) for each of the following maps f : R \
{0}−→R2: x 7→ 0, x 7→ 1/x, x 7→ log |x|, x 7→ e−x

2
. Which of them are

proper?
Compute Z(id) for the identity map id : Rn−→Rn.

Exercise 3.5.11. Let {xi}i∈N be a sequence in a locally compact space X.
Show that the sequence tends to ∞ (in X∞) if and only if it has no accumu-
lation points in X. Conclude that in the situation of Definition 3.5.9, a point
y ∈ Y is improper for f if and only if there exists a sequence in X tending
to ∞, whose image sequence tends to y.

Exercise 3.5.12. Let {xi}i∈N be a sequence in a Hausdorff space X converg-
ing to some x ∈ X. Show that K = {xi | i ∈ N}∪{x} ⊂ X is quasi-compact.

Lemma 3.5.13. Let f : X−→Y be a continuous map of Hausdorff spaces.
Assume that X satisfies the second axiom of countability and Y satisfies
the first axiom of countability. Then f−1(K) is compact for any compact
K ⊂ Y \ Z(f).

Proof. LetK ⊂ Y \Z(f) be compact and let {xi}i∈N be a sequence in f−1(K).
Since K is compact, then the sequence {f(xi)}i∈N in K has a subsequence{
f(xij)

}
j∈N which converges to some y ∈ Y . By assumption y /∈ Z(f), so{

xij
}
j∈N must have an accumulation point in x ∈ X. In particular, x is an

accumulation point for {xi}i∈N, and x is contained in f−1(K) since this is a
closed subset of X. Now apply Theorem 3.2.13: Since X (and hence f−1(K))
satisfies the second axiom of countability, and any sequence in f−1(K) has
an accumulation point, then f−1(K) is compact.

Proposition 3.5.14. Let f : X−→Y be a continuous map of Hausdorff
spaces.

1. If f is proper, then Z(f) = ∅.

2. If Z(f) = ∅ and X satisfies the second axiom of countability and Y
satisfies the first axiom of countability, then f is proper.

Proof. 1.: Let f be proper. Assume Z(f) 6= ∅ and pick y ∈ Z(f). Then
there is a sequence {xi}i∈N in X with no accumulation point, such that y =
limi→∞ f(xi). Let K = {f(xi) | i ∈ N} ∪ {x} ⊂ Y . Then K is compact (Y is
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Hausdorff by assumption) by Exercise 3.5.12, so by properness of f , f−1(K)
is a compact set containing {xi}i∈N. By 3.2.13, {xi}i∈N has an accumulation
point in f−1(K) and hence in X. This contradicts the assumption Z(f) 6= ∅,
so Z(f) must be empty.

2. is immediate from Lemma 3.5.13.

The following theorem collects our findings up to now and adds yet an-
other criterion for properness.

Theorem 3.5.15. Consider the following four conditions on a continuous
map f : X−→Y between Hausdorff spaces X and Y .

1. f is closed and all fibers are compact.

2. f is proper.

3. f∞ is continuous (cf. 3.5.5).

4. Z(f) = ∅.

Then 1. ⇒ 2. ⇔ 3. ⇒ 4.
If Y is locally compact, then 1. is equivalent to 2. and 3.
If X satisfies the second axiom of countability and Y satisfies the first axiom
of countability, then 4. is equivalent to 2. and 3.

Proof. We only have to show that 1. implies 2., and that 2. implies 1.
provided Y is locally compact. The other assertions have already been proved
above.

1. ⇒ 2.: Let K ⊂ Y be compact. We must show that f−1(K) is compact
as well. Consider the map f ′ : f−1(K)−→K given by restriction of f . Clearly
f ′ has compact fibers since f has. We claim that f ′ is a closed map. To
see this, let C be a closed subset (in the subspace topology) of f−1(K).
Since f−1(K) is closed in X, then C is also closed as a subset of X, and
f ′(C) = f(C) is closed since f is a closed map. This closes the discussion:
f ′ is indeed a closed map.

We are now in a position where we may apply Lemma 3.3.5 to the map
f ′, and the conclusion is that f−1(K) is compact, as desired.

2. ⇒ 1.: Assume that f is proper and Y is locally compact. For any
y ∈ Y , {y} is compact so the fiber f−1(y) is compact by properness of f . It
remains to be proved that f is closed. So, let C ⊂ X be a closed subset, and
let y be a point in Y \f(C). We must show that Y \f(C) is a neighbourhood
of y.

Let K ⊂ Y be a compact neighbourhood of y. (Recall that this means
that K is compact and y is an interior point of K.) Then f−1(K) is compact
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by properness of f and hence closed since X is Hausdorff. The intersection
C ′ = C ∩ f−1(K) is then compact. By continuity of f , f(C ′) is compact,
hence closed, and does not contain y. We conclude that K \ f(C ′) is a
neighbourhood of y. Since K \ f(C ′) ⊂ Y \ f(C), then also Y \ f(C) is a
neighbourhood of y, as desired.
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Chapter 4

Quotient topology and gluing.

4.1 The quotient topology

4.1.1. One of the nice things about topological spaces, is that it is easy to
glue them together to make new spaces.

For instance, a sheet of cloth is a nice topological space. You can take
this sheet, cut it a little, sew things together, and you might obtain a shirt.
Which is a completely different topological space.

Let us take a more general topological space X. We assume that we
are given an equivalence relation ∼ on X, and we want to give the set of
equivalence classes X/ ∼ a topology.

There is a quotient map of sets π : X → X/∼. We also write x̃ for π(x).

Definition 4.1.2. Let U ⊂ X/∼ be open if and only if π−1(U) ⊂ X is open.

Lemma 4.1.3. With this definition, the open sets in X/∼ form a topology.
The map X → X/∼ is continuous, and if Y is a topological space, a map

X/∼ → Y

is continuous if and only if the composite

X → X/∼ → Y

is continuous

Proof. To see that we have defined a topology, we have to check the axioms.

• π−1(∅) = ∅, so ∅ ⊂ X/∼ is open.

• π−1(X/∼) = X, so X/∼ ⊂ X/∼ is open.
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• If U, V ⊂ X/∼ is open, then π−1(U ∩ V ) = π−1(U) ∩ π−1(V ) is open.
So U ∩ V ∈ X/∼ is open. Hence any finite intersection of open sets is
open.

• If Ui ⊂ X/∼ is open, i ∈ I, then π−1(
⋃
i∈I Ui) =

⋃
i∈I π

−1(Ui) is open,
so that

⋃
i∈I Ui ∈ X/∼ is open.

That the map π is continuous means exactly that if U ⊂ X/∼ is open,
then π−1(U) ⊂ X is open. But this is a direct consequence of the definition
of the topology on X/∼.

Now, let f : X/∼ → Y be any map. By the definition of continuity, it is
continuous if and only if for each open set V ⊂ Y , the set f−1(V ) ⊂ X/∼
is open. But this is so, if and only if π−1(f−1(V )) ⊂ X is open. However,
π−1(f−1(V )) = (f ◦ π)−1(V ), so the condition that f is continuous can also
reformulated as: f is continuous if and only if for each open set U ⊂ Y ,
the set (f ◦ π)−1(U) is open. This is exactly the same as saying that the
composite f ◦ π is continuous.

4.1.4. One interesting point is that it is much easier to glue topological spaces
than to glue metric spaces. If X has a metric, there is no gluing construction
of a metric on X/∼. The price we pay for this greater flexibility of topo-
logical spaces is that in some situations, the topology on X/∼ can be rather
mysterious!

Exercise 4.1.5. Let X = [0, 1], the closed interval in R with its usual topol-
ogy. Let ∼ be the equivalence relation for which a ∼ b if and only if a− b is
a rational number. Show that the only open sets in X/∼ are the empty set
and the whole space. That is, X/∼ has the trivial topology. Conclude that
X/∼ is not even a Hausdorff space.

4.1.6. The lesson from this is that sometimes a quotient space of a reasonable
space by an equivalence relation is not a Hausdorff space. This is a bad thing.
What it is usually telling you is that one should not consider those quotient
spaces anyhow.

But from a more enthusiastic point of view, this phenomenon also shows
that the definition of topological space is pretty clever. The way it is defined,
an equivalence relation on a topological space always defines a topology on
the quotient. If we had insisted on building the Hausdorff property into the
definition, we would have had to check some properties to show that the
quotient is even defined!

Often we want to show that a space we have obtained from a gluing
construction agrees with a space we already know.
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Exercise 4.1.7. Let X = [0, 1] as in 4.1.5. But this time, we pick the
equivalence relation generated by requirering that 0 ∼ 1. So if a ∼ b, either
a = b or {a, b} = {0, 1}. There is a map f : X/∼ → S1 ⊂ R2 given by

f(x) = (cos(2πx), sin(2πx)).

Show that this map induces a homeomorphism X/∼ → S1.

4.1.8. The previous exercise is an instance of a more general procedure. If
f : X → Y is a map, it induces an equivalence relation on X by a ∼ b if
and only if f(a) = f(b). The map f : X → Y factors as a map of sets as

X
π→ X/∼

f̃→ Y .

Remark 4.1.9. Recall that a map f is said to be injective if f(a) = f(b) only
can happen in case a = b. Note that f̃ is injective by its construction: If
ã, b̃ ∈ X/∼, and f̃(ã) = f̃(b̃), then f(a) = f(b) so a ∼ b; this means that
ã = b̃.

Lemma 4.1.3 informs us that the map f̃ is continuous if and only if f is
continuous.

Definition 4.1.10. If f̃ is a homeomorphism, we say that f is a quotient
map.

4.1.11. If f is a quotient map, the map f̃ is bijective, so in particular it is
surjective. But this is only possible if the original map f is surjective.

Recall that f : X → Y is said to be surjective if every y ∈ Y can be
written as y = f(x) for some x ∈ X.

Proposition 4.1.12. Assume that X is quasi-compact, and Y is a Hausdorff
space. Then any continuous surjective map f : X → Y is a quotient map.

Proof. The space X/∼ is quasi-compact by 3.2.10 since π : X → X/∼ is a
surjective continuous map. The induced map f̃ : X/∼ → Y is thus a map
from a quasi-compact space to a Hausdorff space. It is also a bijection, so by
refering to 3.2.10 once more we see that it is a homeomorphism.

Remark 4.1.13. The compactness ofX is essential for this! Below, in 4.4.2, we
give an embarrassingly simple counterexample to 4.1.12, if the compactness
assumption is foolishly dropped.

There is a converse to 4.1.3.

Lemma 4.1.14. Let f : X → Y be a surjective map. The following condi-
tions are equivalent.
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• f is a quotient map.

• A map g : Y → Z is continuous if and only if g ◦ f : X → Z is
continuous.

Proof. One direction is easy. If f is a quotient map, it is continuous. So
the first condition implies the second (using 4.1.3). In the other direction,
suppose that g : Y → Z is continuous if and only if g ◦ f : X → Y is. The
map f̃ is a surjection by assumption.

It is also injective by 4.1.9, so it is bijective, and we can define the map
(f̃)−1 : Y → X/∼ as a map of sets.

To show that f̃ is a homeomorphism, we have to show that (f̃)−1 is
continuous.

But by the assumption on f , this map is continuous if and only if the
composite

X
f→ Y

(f̃)−1

→ X/∼

is continuous. We have to compute (f̃)−1(f(x)). The recipe for computing
(f̃)−1(y) is: ”Find a z ∈ X so that y = f(z). Then (f̃)−1(y) = π(z)”. We
have to do this for y = f(x). But by definition of f̃ , we can chose z = x,
which shows that

(f̃)−1(f(x)) = π(z) = π(x).

So, (f̃)−1 ◦f = π, which is a continuous map. It follows from the assumption
on f that (f̃)−1 is continuous, so that f̃ is a homeomorphism.

Corollary 4.1.15. If q2 : X2 → X1 and q1 : X1 → X0 are quotient maps, so
is q1 ◦ q2.

Proof. A map f : X0 → Y is continuous if and only if f ◦ q1 is, and this is
continuous if and only if f ◦ q1 ◦ q2 is.

Exercise 4.1.16. Prove the last corollary directly from the definition of
quotient topology.

4.2 Gluing surfaces out of charts.

4.2.1. The following example might feel especially relevant for those who
have been/will be exposed to an introduction to surfaces, like the one in
[do Carmo].
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Example 4.2.2. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. Also,
D2 = {(x, y) ∈ R2 | x2 + y2 < 1}. We like this disc so much that we make
six copies of it, labeling them D1, D2, D3, D4, D5, D6. Let

X =
∐

1≤i≤6

Di.

That is, X is as a topological space the disjoint union of six discs. Now,
consider the following six maps, fi : Di−→S2,

f1(x, y, z) = (x, y,
√

1− x2 − y2),

f2(x, y, z) = (x, y,−
√

1− x2 − y2),

f3(x, y, z) = (x,
√

1− x2 − z2, z),

f4(x, y, z) = (x,−
√

1− x2 − z2, z),

f5(x, y, z) = (
√

1− y2 − z2, y, z),

f6(x, y, z) = (−
√

1− y2 − z2, y, z).

Exercise 4.2.3. Show that these maps combine to define a continuous, sur-
jective map f : X → S2. Show that f is a quotient map. Conclude that a
map g : S2 → Y is continuous if and only if all the composites g◦fi : D2 → Y
are continuous.

The last example can be vastly extended.

Exercise 4.2.4. Let X be a topological Hausdorff space and I an index
set, such that for each φ ∈ I there exists a topological space Uφ, and a
continuous map fφ : Uφ → X. Assume that each fφ : Uφ → fφ(Uφ) ⊂ X
is a homeomorphism to an open subset of X. Finally, assume that X =⋃
φ fφ(Uφ). Show that these maps induce a continuous, surjective map

F :
∐
φ

Uφ → X

which is a quotient map.

4.2.5. ?? Consider the special case where all the spaces Uφ are open subsets
of the plane : Uφ ⊂ R2. Then, a space X satisfying 4.2.4 is called a surface.
The maps fφ : Uφ → X are called charts on X. And the point of it is that
the topology of X is completely described by those charts.

Examples of surfaces are the subspaces of R3, which are called surfaces in
[do Carmo]. For the purely topological properties of surfaces, the above defi-
nition is more general than do Carmo’s. In particular, the ambient Euclidean
space R3 has completely evaporated from the picture!
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One problem with the definition is that there are certain large, strange,
but not very interesting spaces, which locally are homeomorphic to open
subsets of a plane. (For an example of this, see for instance [Bredon] I.17.5)
To exclude these from being honored by the name of surface, one usually
includes the additional condition that X should satisfy the second axiom of
countability.

Even if the study of surfaces usually involves properties (like curvature)
that are not merely topological, this definition captures at least some of their
properties.

Remark 4.2.6. If we more generally glue together open sets in Rn instead
of open sets in R2 we obtain what is called an n-dimensional (topological)
manifold.

Exercise 4.2.7. Find all homeomorphism classes of compact, 1-dimensional
manifolds. (This exercise is probably too difficult to do formally! But at
least try to guess the answer.)

Example 4.2.8. Let

I2 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}.

We introduce an equivalence relation by requirering that (x, 0) ∼ (x, 1) and
(0, x) ∼ (1, x). The quotient space is a torus T = I2/∼. Se figure below.

Exercise 4.2.9. Let a > r > 0. Show that the map f : T → R
3 given by

f(x, y) = ((a+ r cos(2πx)) cos(2πy), (a+ r cos(2πx)) sin(2πy), r sin(2πx))

defines a homeomorphism f : T → f(T ). Sketch the image f(T ).

Exercise 4.2.10. Prove that the torus of 4.2.8 is a surface in the sense of
??!

Exercise 4.2.11. We can define a different equivalence relation on the
space I2 from 4.2.8 as the equivalence relation generated by the require-
ment (x, 0) ∼ (x, 1) and (0, x) ∼ (1, 1 − x). The quotient space K is called
a ”Klein bottle”. Prove that K is a surface in the sense of 4.2.4. Se figure
below.

Remark 4.2.12. The Klein bottle is not homeomorphic to a subset of R3, so
it is not a surface in the sense of [do Carmo].
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4.2.13. The posh way of defining new geometrical spaces from old is to glue
them together in this fashion from old ones, using equivalences.

A particularly simple and useful case is the following:

Example 4.2.14. Let X and Y be topological spaces, A ⊂ X be a subspace,
and f : A→ Y a continuous map. Then we form the space obtained from X
by attaching Y along f as the quotient space

X
⋃

f :A→Y

Y =
(
X
∐

Y
)
/∼

where the equivalence relation is generated by the requirement that x ∼ y if
x ∈ A ⊂ X and f(x) = y.

4.3 The importance of being Hausdorff.

It is nice to have a way of telling that a certain quotient space is Hausdorff.
Here is a necessary criterion:

Lemma 4.3.1. Let X be compact, ∼ an equivalence relation on X, and
assume that X/∼ is a compact space. If A ⊂ X is a closed set, then the set
π−1π(A) of all points equivalent to a point in A is a closed set.

Proof. Since A is a closed subset of a compact space, it is itself a compact
space. The image π(A) of A in X/∼ is quasi-compact by 3.2.10, and since
X/∼ is Hausdorff this implies that π(A) is a closed subset by 3.2.9. But by
the definition of the quotient topology, the closedness of this set is exactly
the statement of the lemma.

57



Remark 4.3.2. As you can see by taking complements, the condition in the
lemma is exactly equivalent to the following condition. If U ⊂ X is open,
and

S(U) = {x ∈ X | If x ∼ y then y ∈ U} = X \ π−1π(X \ U)

is the union of all equivalence classes that are entirely contained in U , then
S(U) is an open set. It also follows that π(S(U)) ⊂ π(U) is an open set in
X/∼, since π−1π(S(U)) = S(U).

Actually, lemma 4.3.1 has a converse.

Theorem 4.3.3. Let X be a compact topological space, Y a set. Let π : X →
Y be a surjective map of sets. We give Y the quotient topology. Suppose that
for every closed set A ∈ X, the set π−1π(A) of all points equivalent to points
in A is a closed set. Then, Y is a Hausdorff space.

Proof. We use the reformulation in 4.3.2 of the assumption of the theorem
into an assumption about open sets.

Let a, b ∈ Y . By assumption, the sets π−1(a) and π−1(b) are closed in X.
Since X is compact, by 3.2.15 it is a normal space. That means that we can
find disjoint open sets U, V in X, so that π−1(a) ⊂ U and π−1(b) ⊂ V .

But following the notation in 4.3.2, a ∈ π(S(U)) and b ∈ π(S(V )). And
these sets are disjoint open sets. So we have checked the Hausdorff property.

Exercise 4.3.4. Use 4.3.3 to show that the torus defined in 4.2.8 is a Haus-
dorff space.

Exercise 4.3.5. Show that if A ⊂ X is compact subset of a Hausdorff space,
and f : A→ Y is a continuous map to a Hausdorff space, then the space we
get by attaching Y to X by means of f (as in 4.2.14) is a Hausdorff space.

Example 4.3.6. Let X be the union of the closed intervals [0, 1] and [2, 3].
Let ∼ be the equivalence relation generated by requirering that x ∼ x + 2
unless x = 1

2
.

• Show that every point of X/∼ has an open neighbourhood homeomor-
phic to an open interval.

• Show that X is not a Hausdorff space.
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4.4 Compatibility of quotient topology with

products.

4.4.1. It is sometimes not so easy to combine quotient constructions with
other constructions.

For instance, if Y ⊂ X, and ∼ is an equivalence relation, we can give Y/∼
a topology in two different ways.

We can either give Y/∼ the subspace topology from X/∼. Let us denote
Ỹ = Y/∼ with this topology by Ỹss. We could also give it the quotient
topology from the equivalence relation ∼ restricted to Y . Let us denote Ỹ
with this topology by Ỹqt.

Since Y → X → X/∼ is continuous, the map Ỹqt → X/∼ is continuous.
So by the definition of the subspace topology, the ”identity” map Ỹqt → Ỹss

is continuous. But it is not necessarily a homeomorphism! That is, the two
topologies might not agree.

Exercise 4.4.2. Recall the definitions of 4.1.7. Let Y be the half-open
interval Y = {x | 0 ≤ x < 1}. Then Y ⊂ X = [0, 1] is an open subset, and it
has the subspace topology. The map f restricted to Y is bijective. Is it also
a quotient map? Realize that this gives an example of a situation where the
map Ỹqt → Ỹss is not a homeomorphism. (Cf. Remark 4.1.13.)

4.4.3. The situation with respect to products is also not too satisfactory: If
X, Y and Z are topological spaces and π : X−→Y is a quotient map, then
π× idZ : X ×Z−→Y ×Z is not necessarily a quotient map. We will give an
example of this in 4.4.7 below, but let us first show some results in a positive
direction. Once you have understood them, you will probably realize that
one has to be rather inventive to cook up a counter-example.

One comparatively easy result, which we will use later, is the following:

Theorem 4.4.4. Let π : X → Y be an open quotient map, and Z a topolog-
ical space. Then, the product map

ρ = π × idZ : X × Z → Y × Z

is also an open quotient map.

Proof. We first check that the map is open. But this is really obvious, since it
is enough to show that if UX ⊂ X and UZ ⊂ Z are open sets, then ρ(UX×UZ)
is an open set. But ρ(UX × UZ) = π(UX)× UZ is open.

To prove that ρ is a quotient map, we have to prove that a subset A ⊂
Y × Z is open if and only if ρ−1(A) ⊂ X × Z is open. Since ρ is continuous,

59



if A is open, so is ρ−1(A), and we only have to prove that if ρ−1(A) is open,
so is A.

Let (y, z) ∈ A ⊂ Y × Z. Since π is a quotient map, it is surjective, and
we can pick an x ∈ X so that π(x) = y. Assume that ρ−1(A) is open. We
claim that we can find an open neighborhood of (y, z) which is contained in
A. There are open subsets UX ⊂ X and UZ ⊂ Z so that (x, z) ∈ UX ×UZ ⊂
π−1(A). Since π is an open map, π(UX) × Z is an open set in Y × Z. And
(y, z) = (π(x), y) ∈ π(UX)× Z ⊂ A.

A more difficult result is the following lemma, which is useful in applica-
tions of the theory to geometrical situations.

Lemma 4.4.5. Let π : X → Y be a quotient map, and let Z be a locally
compact space. Then the product map

π × idZ : X × Z → Y × Z

is also quotient map.

Proof. The criterion for showing this is that a map g : Y × Z → W is
continuous if and only if the composite

f : X × Zπ×idZ−→ Y × Z g−→W

is continuous.
If g is continuous, f is continuous as the composition of continuous func-

tions.
Now assume that f is continuous. We need to show that g is continuous.

We do this by showing that it is continuous at an arbitrary (y0, z0) ∈ Y ×Z.
Let V ⊂ W be an open subset, such that g(y0, z0) ∈ V . We must show

that g−1(V ) is a neighbourhood of (y0, z0).
Chose x0 ∈ X so that y0 = π(x0). By the assumption that f is continuous,

there are open sets UX ⊂ X and UZ ⊂ Z so that (x0, z0) ⊂ UX × UZ , and
f(UX × UZ) ⊂ V .

Since we are assuming that Z is locally compact, then by Exercise 3.4.6 z0

has a compact neighbourhood KZ contained in UZ , i.e. z0 ∈ K0
Z ⊂ KZ ⊂ UZ .

Let
A = {y ∈ Y | g(y ×KZ) ⊂ V }.

Then (y0, z0) ∈ A × K0
Z ⊂ A × KZ ⊂ g−1(V ), so if we can show that A is

open in Y , then g−1(V ) will be a neighbourhood of (y0, z0) as desired. The
rest of the proof is devoted to checking this.
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First reduction. Since π : X → Y is a quotient map, A ⊂ Y is open if
and only if the subset π−1(A) ⊂ X is open. We compute this set, in the hope
that it will turn out to be so:

π−1(A) = {x ∈ X | g(π(x)×KZ) ⊂ V } = {x ∈ X | x×KZ ⊂ f−1(V )}.

It is not yet visible to the naked eye whether this set is open or not. But
we know that it is open if and only if its complement is a closed set.

Second reduction. The complement X \ π−1(A) consists of points x ∈ X
with the property that there exists a z ∈ KZ such that f(x, z) =6∈ V . That
is,

X \ π−1(A) = {x ∈ X | ∃z ∈ KZ so that (x, z) 6∈ f−1(V )}
= prX(X ×KZ \ f−1(V )),

where prX : X ×KZ−→X denotes the projection on the first factor. Since
KZ is compact, this is a closed map by 3.3.6. And since X ×KZ \ f−1(V ) is
a closed subset of X ×KZ , this implies that X \ π−1(A) is closed in X. This
is what we needed to show.

4.4.6. The two previous results show that we have been rather unfortunate if
the product of a quotient map π : X−→Y with an identity map idZ : Z−→Z
turns out not to be a quotient map: in such a situation the quotient map π
cannot be open, and Z is not locally compact. But, as the following exercise
shows, there do exist examples of this phenomena.

Exercise 4.4.7. Let Q>0 denote the positive rational numbers. Let ∼1 be
the equivalence relation on the numbers generated by the requirement that
x ∼1 y if both x and y are integers. Let Q>0/∼1 be the quotient space, with
quotient map π1 : Q>0 → Q>0/∼1 . In the same way, consider the equivalence
relation ∼2 on Q>0 × Q, generated by requirering that (x, y) ∼2 (u, y) if
both x and u are integers. Denote the corresponding quotient map by π2 :
Q>0 ×Q→ (Q>0 ×Q)/∼2 .

1. Show that there is unique map (of sets)

f : (Q>0 ×Q)/∼2 → Q>0/∼1 ×Q

with the property that f(π2(x, y)) = (π1(x), y). Show that f defines a
continuous, bijective map.
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2. For each natural number n ≥ 1, we define

Un = {(x, y) ∈ Q>0 ×Q
∣∣ |x− n| < min{|y −

√
2

n
|, 1

2
} },

and we put

U =
⋃
n≥1

Un.

Show that π2(U) is open. (Hint: Use that
√

2 is irrational to prove
that π−1

2 π2(U) = U .)

3. Let ε > 0 and n ∈ N. Assume that
√

2
n
< ε. Prove that there are no

a < n < b so that

{(x, y) ∈ Q>0 ×Q
∣∣a < x < b and − ε < y < ε} ⊂ Un.

4. Show that f(π2(U)) is not a neighborhood of the element (π1(1), 0). In
particular, the set is not open.

5. Conclude that f is not a homeomorphism.
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Chapter 5

Topological groups

Sometimes, a topological space has a group structure. If the algebraic oper-
ations defining the group structure are continuous, we say that the group is
a topological group.

5.1 Definition. The group GLn(R).

Definition 5.1.1. A Hausdorff space G is a topological group if there are
continuous maps

µ : G×G→ G

χ : G→ G

and an element e ∈ G, so that µ defines an associative multiplication with e
as unit element, and so that µ(x, χ(x)) = e. As usual, we write gh := µ(g, h)
and g−1 := χ(g).

Just like the guy who had been speaking in prose all his life without
knowing it, you already know many example of topological groups.

Exercise 5.1.2. Addition makes R into a topological group with unit 0.

Exercise 5.1.3. Multiplication makes R \ {0} into a topological group with
unit 1.

Exercise 5.1.4. Show that a topological Hausdorff space G with a group
multiplication is a topological group if and only if the map G×G→ G given
by (g, h) 7→ gh−1 is continuous.

More fancy examples are matrix groups.
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Example 5.1.5. Recall that GLn(R) is the set of all invertible n×n-matrices
with entries in R. Matrix multiplication makes GLn(R) into a topological
group. There are things to check! For instance, we have to say in which way
we define the topology on GLn(R). To specify this topology, we first put a
topology and a metric on the space of all matrices, invertible or not.

We can identify the vector space Mn(R) of n × n matrices with an Eu-
clidean space of dimension n2, simply by sending a matrix to the vector
consisting of a list of its entries.

Let us temporarily call this isomorphism of vector spaces Ln : Mn(R)→
R
n2

. This makes Mn(R) into a vector space with inner product

< A,B >Mn(R)=< Ln(A), Ln(B) >
Rn

2 .

Using the inner product we make Mn(R) into a normed vector space.

Exercise 5.1.6. The following fact has nothing to do with topology, but it
is cute: Let AT be the transpose of A. Show that

< A,B >Mn(R)= Tr(ATB).

5.1.7. We give GLn(R) the induced metric, and thus the induced topology
from its inclusion in the normed space of all matrices:

GLn(R)
i
⊂Mn(R) ∼= R

n2

.

The composed map g = f ◦ i : GLn(R) → R
n2

has n2 components, gij.
Each of these components gives a particular entry in the matrix we feed it
with. That is, it is given as A 7→ gij(A) = Aij for fixed i and j. In particular,
by its very definition, the topology on GLn(R) has the property that the map
gij : GLn(R)→ R taking a matrix to its (i, j)’th entry is a continuous map.

5.1.8. Armed with this remark, we go to check that multiplication is also
continuous. That is, we have to see that the composite map

GLn(R)×GLn(R)
µ→ GLn(R)→ R

n2

is continuous. Fortunately, multiplication extends to matrix multiplication,
and we have a commutative diagram of maps:

GLn(R)×GLn(R)
µ−−−→ GLn(R)

(i,i)

y i

y
Mn(R)×Mn(R)

µM−−−→ Mn(R).
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So it is enough to show that matrix multiplication µM is a continuous map.
But this is true, since we know that multiplication is given by formulas
entirely consisting of polynomials in the matrix entries. For instance, in
dimension 2 we have the well known formula

µ((a11, a12, a21, a22), (b11, b12, b21, b22)) = (a11b11 + a12b21, . . . ).

This proves that the multiplication is continuous. However, this is not
enough. We also need to prove that the inverse is continuous.

5.1.9. In the same way as before, it suffices to prove that the composite

GLn(R)
χ→ GLn(R)

i→Mn(R)

is continuous. Unfortunately, this time the map does not extend to the space
of all matrices. (Why?)

5.1.10. We do remember that there is a formula for computing the inverse of
a matrix. The entries in the inverse matrix g−1 are given by polynomials in
the entries in g, divided by the determinant det(g) of g. Those polynomials
on the entries are continuous functions of g, and so is the determinant. But
since the determinant of g cannot be 0, the inverse of the determinant is also
a continuous function:

GLn(R)
det−→R \ {0} 1/x−→R.

This makes each entry of χ(g) into a continuous function of g, and proves
that matrix inversion χ is continuous.

There are many other topological groups!

Exercise 5.1.11. Prove that if you give the orthogonal matrices On ⊂
GLn(R) the subset topology, then On with the matrix multiplication is a
topological group. (Recall that an n× n-matrix A is in On if ATA = I.)

5.2 Quotient groups.

5.2.1. If we are dealing with groups, one thing we often want to do is to form
quotient groups. And we want to be able to say that if H ⊂ G is a normal
subgroup, then G/H is a topological group.

At least it is clear what the topology should be : G/H is defined as the
set of equivalence classes of elements in G under the equivalence relation ∼,
where g ∼ gh for h ∈ H. So we give G/H the quotient topology, as in 4.1.2.
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Remark 5.2.2. The quotient map π : G−→G/H has a special property: It is
an open map. That is, if U ⊂ G is open, so is π(U) ⊂ G/H. This is true
because π−1π(U) =

⋃
h⊂H Uh is a union of open sets. (Here we use that the

map µ(−, h) is a homeomorphism for any h.)

Exercise 5.2.3. Let H ⊂ G be an open subgroup. Prove that H is also
closed.

Lemma 5.2.4. G/H is a Hausdorff space exactly if H is a closed subgroup.

Proof. If G/H is Hausdorff, the set consisting only of the point π(e) is closed.
So, by definition of the quotient topology, H = π−1(e) ⊂ G is closed.

In the other direction, suppose that H is closed. Then we consider the
continuous map

f : G×G→ G

f(g, h) = g−1h.

Since H is closed, the inverse image of its complement f−1(G\H) is open.
Suppose that g1, g2 ∈ G define two distinct points π(g1) and π(g2) in G/H.
This amounts to saying that g−1

1 g2 = f(g1, g2) 6∈ H. Or equivalently, (g1, g2)
belongs to the open subset f−1(G \H) of G×G.

By the definition of the product topology we can find open sets U1 and
U2 in G such that g1 ∈ U1, g2 ∈ U2 and f(U1 × U2) ∩ H = ∅. But the last
condition immediately translates into π(U1)∩π(U2) = ∅. The π(Ui) are open
sets because of 5.2.2, so we can use them as the open sets asked for by the
Hausdorff property.

5.2.5. Let us now consider the case where H ⊂ G is a normal subgroup.
Then G/H inherits a group structure from G. We definitely want this quo-
tient group to be a Hausdorff space, so we now only consider closed normal
subgroups H ⊂ G, even though this is not strictly necessary.

5.2.6. To show that G/H is a topological group, we need to show that the
multiplication and the inverse are continuous maps.

It is easy to show that the inverse is continuous since G → G/H is a
quotient map. So to check that χG/H : G/H → G/H is continuous, we have
to check that the composite π◦χG/H : G→ G/H is continuous. But this map
is also the composition χG ◦ π which is continuous, being the composition of
continuous maps.

The key to the continuity of the group composition is the following

66



Lemma 5.2.7. Let G be a topological group, and H a closed, normal sub-
group. The map

π × π : G×G→ G/H ×G/H

is a quotient map.

Proof. It follows from 5.2.2 that the map

π : G→ G/H

is an open quotient map. By 4.4.4,

idG × π : G×G→ G×G/H

is also an open a quotient map. Apply the same argument once more to
obtain that

π × idG/H : G×G/H → G/H ×G/H

is also an open quotient map. And the composition of quotient maps is a
quotient map by 4.1.15.

Theorem 5.2.8. Let G be a compact topological group, and H a closed nor-
mal subgroup. Then G/H is a topological group.

Proof. We have to check that product µG/H : G/H × G/H−→G/H is con-
tinuous. But because of the previous lemma, we only have to show that

π × π : G×G→ G/H ×G/H
µG/H→ G/H

is continuous. This follows from the following commutative diagram of maps.

G×G µ−−−→ G

π×π
y π

y
G/H ×G/H

µG/H−−−→ G/H.
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Chapter 6

Connectedness and countable
product of finite sets.

6.1 Connectedness

6.1.1. Connectedness is a simple property, which tells you whether a space
X consists of one single piece.

Definition 6.1.2. A topological space X is connected if it is not a union of
two non-empty, open, disjoint subsets.

Since the complement of an open set is closed, this is equivalent to saying
that the only subsets of X which are both open and closed are X and ∅.

Example 6.1.3. A set with the discrete topology is not connected - unless
it is empty or consists of only one point.

The fundamental example of a connected space is the following:

Lemma 6.1.4. The unit interval [0, 1] is connected.

Proof. Assume that [0, 1] = U ∪ V , where U and V are disjoint open sets.
Then they are also closed sets. Without restriction on the assumption, 0 ∈ U .
Let s = inf{x ∈ V }. This is some number, 0 ≤ s ≤ 1. By its definition, in
every neighborhood of s, there is some element of V (This element could be
s itself). Since V is closed, s ∈ V . In particular, s > 0.

But every number less than s is not in V , since s is the infimum. So these
points have to be in U . Also, since s > 0, we have an entire half open inteval
[0, s) ⊂ U . Since U is closed, s ∈ U .

This contradicts that U ∩ V = ∅.
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Exercise 6.1.5. Prove that an open interval (a, b) ⊂ R is connected.

Exercise 6.1.6. Prove that the unit interval with one point removed [0, 1] \ {1
2
}

is not connected.

Exercise 6.1.7. Show that if a ∈ [0, 1] × [0, 1] ⊂ R
2, the space [0, 1] ×

[0, 1] \ {a} is still connected. Conclude from this and 6.1.6 that [0, 1] and
[0, 1]× [0, 1] are not homeomorphic (as if anyone ever suspected they would
be...).

Definition 6.1.8. A map f : X → Y from a topological space X to a set Y
is locally constant if every x ∈ X has an open neighborhood U in X, so that
f is constant on U .

This is equivalent to demanding that f is continuous when Y is equipped
with the discrete topology.

One important use of connectedness is the following principle:

Remark 6.1.9 (The principle of connectedness). Let f : X → Y be a map
from a connected topological space X to a set Y . If f is locally constant,
then f is constant.

In fact, for each y ∈ Y , the set f−1(y) is open. So is f−1(Y \ {y}) =⋃
z 6=y f

−1(z). Since these two sets are open, disjoint and with union X, one
of them has to be empty. That is, if f(x) = a for one single x ∈ X, then
f(x) = a for all x ∈ X. In other words, f is constant on the space X.

Exercise 6.1.10. Let U be an open subset of Rn. Let f : U → R be a
differentiable function. Assume that for every partial derivative, ∂f

∂xi
= 0.

• Prove that f is constant if U is connected.

• Give an example of this situation where f is not constant on U .

There is a stronger property, which is often of interest

Definition 6.1.11. A topological space X is path connected if for every
pair of points a, b ∈ X there is a map f : [0, 1]→ X such that f(0) = a and
f(1) = b.

A continuous map f : [0, 1]→ X is called a path from f(0) to f(1) in X.

Remark 6.1.12. If there is a path f from a to b and a path g from b to c, the
map h : [0, 1]→ X

h(x) =

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 1
2
≤ t ≤ 1
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is a path from a to c. We have to check that h is continuous. h is obviously
continuous at all points except possibly at 1

2
. We have to prove that for an

open U such that f(1
2
) ∈ U , the set h−1(U) contains an open interval around

1
2
.

To do this, we argue that by the continuity of f and g it contains half
open intervals (f(1

2
) − ε, f(1

2
)] and [f(1

2
), f(1

2
) + ε). That is, since h is left

and right continuous at 1
2
, it is continuous.

Exercise 6.1.13. For a, b ∈ X we define that a ∼ b if there is a path from
a to b. Prove that this defines an equivalence relation.

Lemma 6.1.14. A path connected space is connected.

Proof. Assume that X is path connected. Assume that X = U ∪ V , where
U and V are two disjoint, non empty, open subsets. Pick a ∈ U and b ∈ V .
There is a path f from a to b as in 6.1.11. Then f−1(U) and f−1(V ) are
open, disjoint subsets of [0, 1]. This contradicts lemma 6.1.4.

In general, the two notions are not equivalent. But if you have some
assumptions on the local structure of X they might be. Here is an example:

Lemma 6.1.15. An open subset U ⊂ Rn is connected if and only if it is path
connected.

Proof. In view of lemma 6.1.14 we only have to show that if U is connected,
then it is also path connected.

Let a, b ∈ U be two points in U . We must show that there exists a path
in U from a to b. For this, we use the principle of connectedness.

Let Y be the set {0, 1}. Let f : U → Y be the function defined by

f(x) =

{
0 if there is a path in U from a to x

1 if there is no path in U from a to x.

If x and y are in the same open ball, they can be connected by a linear
path f(t) = tx + (1− t)y. So, using 6.1.12, we see that either both x and y
or neither of them can be connected to a by a continuous path.

This translates exactly to that f is locally constant. Using remark 6.1.9,
we see that f is constant on U . This allow us to conclude that f(b) = f(a) =
0, so there is indeed a path in U from a to b.

Exercise 6.1.16. Let X be a connected topological space, and f : X → Y
be a continuous surjective map. Show that Y is connected.

Exercise 6.1.17. Let X, Y be connected spaces. Show that X × Y is con-
nected.
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6.2 The Cantor set

6.2.1. If a Hausdorff topological space has only finitely many points, then it
is a discrete space. Surprisingly, if you form the product of infinitely (but
countably) many of these discrete spaces, we get a topological space with an
interesting topology.

Definition 6.2.2.

Cp ∼=
∞∏
i=1

Xi.

Each Xi is a set with p elements.

Here is another manifestation of the infinite product C2.

Example 6.2.3. The Cantor set is a closed subset of the closed unit interval
[0, 1]. It can be defined in various ways. Here is a simple way of doing it:

C =

{
x ∈ [0, 1] | x =

i=∞∑
i=1

ai
3i
,where each ai either equals 0 or 2.

}

Exercise 6.2.4. A more complicated way of defining the Cantor set is the
following. Let [0, 1] be the closed interval. We remove infinitely many open
intervals from it as follows.

The first interval we remove is the open middle third of the original in-
terval, that is (1

3
, 2

3
). Then two closed intervals [0, 1

3
] and [1

3
, 1] remain. From

each of these, we remove the open middle third. What is left is the union
of four closed intervals, and we continue in the same way, removing open
middle intervals forever.

Show that the closed set that remains after we have finished doing this
interval removing infinitely many times is the Cantor set.

Exercise 6.2.5. Show that there are points in C which are not end points
of intervals in [0, 1] \ C.

Lemma 6.2.6. A point x ∈ C determines the coefficients ai uniquely. This
defines for all i a map ai : C → {0, 2}. This map is continuous.

Proof. Assume that x, y ∈ C. Let us write

x =
∞∑
i=1

ai
3i
, y =

∞∑
i=1

bi
3i
.
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Claim:
If |x− y| < 3−n, then ai = bi for i ≤ n. (6.1)

We compute the distance in terms of the ai and bi:

|x− y| = |
∞∑
i=1

ai − bi
3i
|

Let us assume that x and y give a counterexample to the statement.
That is, |x − y| < 3−n but am 6= bm for some m ≤ n. Without restriction,
we can assume that am = 2 and bm = 0. We can also as well assume m is
minimal with this property. Stated in formulas: ai = bi for i < m. To arrive
at a contradiction, we compute the distance from x to y using the previous
formula.

|x− y| = | 2

3m
+

∞∑
i=m+1

ai − bi
3i
| ≥ 2

3m
− (

∞∑
i=m+1

2

3i
) =

1

3m
≥ 1

3n

which is in contradiction to the assumption. This proves our claim.
It immediately follows from the claim that x ∈ C determines ai.
To show that an defines a continuous map, we resort to an ε and δ ar-

gument. Given ε > 0, choose δ = 3−n (Yes, that is independent of ε). The
inequality 6.1 shows that if |x− y| < δ , then an(x)− an(y) = 0 < ε.

6.2.7. We conclude that we have a continuous map

A =
∞∏
i=0

ai : C →
∞∏
i=1

{0, 2} = C2.

This map is surjective, since a given sequence {ai} is equal to A(x), where
x =

∑i=∞
i=1

ai
3i

. It is injective by 6.2.6.

Theorem 6.2.8. The map A is a homeomorphism

Proof. Since C is a closed bounded set in R, it is compact. Because A is a
continuous bijective map from a compact space to a Hausdorff space, it is a
homeomorphism.

Corollary 6.2.9. The topology of the space C2 is induced from a metric.

Exercise 6.2.10. Show that the Cantor set does not have the discrete topol-
ogy.

Exercise 6.2.11. Show that given two distinct points a, b ∈ C, we can
always find two disjoint open sets U, V so that C = U ∪ V , and a ∈ U ,
b ∈ V . Conclude that any continuous map from a connected space into C is
constant.

72



6.3 Space filling curves

6.3.1. The homeomorphism of 6.2.8 can be used in a surprising way to con-
struct a so called space filling curve. We will construct a surjective, continu-
ous map from the interval to the square. The existence of such maps should
be viewed with scepticism. They hint that the concept of continuity might
be more liberal than what our intuition assumes.

We will need the following remarks

Lemma 6.3.2. Let A ⊂ R1 be a closed subset. The complement U = R1 \A
is the union U = ∪i(ai, bi) of disjoint, open intervals where each ai is either
−∞ or in A, each bi is either ∞ or in A.

Proof. It is enough to show that any x ∈ U is contained in some such interval
x ∈ (a, b) ⊂ U , where a ∈ A∪{−∞} and b ∈ A∪{∞}, since any two intervals
have to be disjoint. Let a be the infimum of the set {y | (y, x) ⊂ U} and
b the supremum of the set {z | (x, z) ⊂ U}. Then (a, b) ⊂ U , and a 6∈ U ,
b 6∈ U . The lemma follows.

Lemma 6.3.3. Let X be a topological space, and let fn : X → R be a
sequence of continuous maps. Suppose that there exists a convergent series∑∞

n=0 an of non-negative numbers such that |fn(x)| ≤ an for all x ∈ X. Then

∞∑
n=0

fn(x)

converges to a continuous function F (x).

Proof. For each x ∈ X the sum converges by the comparison criterion for
infinite sums. So the function F (x) is defined, and the only issue is whether
it is continuous. To check continuity at x, given an ε, we first find N so
that

∑∞
n=N+1 an < ε

3
. Let FN(x) =

∑N
n=0 fn(x). By the choice of N ,

|F (y) − FN(y)| < ε
3

for all y ∈ X. Moreover, FN is continuous, so there
is a neighbourhood U ⊂ X of x such that |FN(y)−FN(x)| < ε

3
for all y ∈ U .

But then, for y ∈ U , we have the estimate

|F (x)− F (y)| ≤ |F (x)− FN(x)|+ |FN(x)− FN(y)|+ |FN(y)− F (y)|

<
ε

3
+
ε

3
+
ε

3
= ε.

This shows that F is continuous at x for any x ∈ X.

Theorem 6.3.4. There exists a continuous, surjective map

f : [0, 1]→ [0, 1]× [0, 1].
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Proof. We first show that there is a continuous, surjective map g : C → [0, 1].
The map can be written explicitly as

g(x) = g

(
∞∑
i=1

ai(x)

3i

)
=
∞∑
i=1

ai(x)

2(2i)
.

This map is clearly surjective, since every number has a binary ’decimal’
expansion.

Here is a formal proof of the last statement: Let 0 ≤ x ≤ 1. For each
n ∈ N, let xn be the biggest number of the form xn = yn

2n
such that yn is

an integer, and xn ≤ x. There are uniquely determined choices of numbers
ai(n), each one either equalling 0 or 2, so that you can write xn =

∑n
i=1

ai(n)
2(2i)

.
The numbers xn form a nondecreasing sequence, converging towards x.

Moreover, ai(n) = aj(n) for i, j ≤ n. Put ai = ai(n) for n ≥ i. Then
x =

∑∞
i=1

ai
2(2i)

.
The map g is continuous by 6.3.3.
There is also a homeomorphism ∆ : C → C × C. This homeomorphism

is easiest to establish if we replace C by C2, which after all is homeomorphic
to C by 6.2.8. We define a map C2 → C2 × C2 by

(a1, a2, . . . ) 7→ ((a1, a3, a5, . . . ), (a2, a4, a6, . . . ))

according to the principle of the zipper. This is clearly bijective, and by
applying 2.6.3 one may check that both the map itself and its inverse are
continous. This way we obtain a homeomorphism C2 → C2 × C2 and hence
a homeomorphism ∆ : C → C × C.

By composition we obtain a surjective, continuous map

fC : C
∆→ C × C g×g→ [0, 1]× [0, 1].

Finally, we claim that there is an extension of this map from C to the interval
[0, 1]. That is, there is a map f : [0, 1]→ [0, 1]× [0, 1] so that the restriction
of f to the Cantor set agrees with fC . Note that it does not matter what
this extension is, as long as it is continuous and agrees with f on the subset
C ⊂ [0, 1].

In general, it is often a difficult or even impossible task to extend a
continuous functions defined on a subset of a space to a continuous function
defined on the entire space. But in this very special case we can do the
extension easily.

The point is that since C is a closed subset of an interval, the complement
[0, 1] \ C is a union of disjoint open intervals (6.3.2). So to extend the map
fC : C → [0, 1]× [0, 1] we have to extend it on each such interval [p, q], when
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it is already defined on the endpoints p and q. We can do this linearly, since
the square we are mapping to is a convex set. For 0 ≤ λ ≤ 1 we define:

f(λp+ (1− λ)q) := λf(p) + (1− λ)f(q) ⊂ [0, 1]× [0, 1]

This gives an extension of fC : C → [0, 1] × [0, 1] to a continuous surjective
map f : [0, 1] → [0, 1] × [0, 1]. This map is continuous at every point of the
open intervals (since it is linear in a neighborhood). By the same argument,
f is left continuous at any point q ∈ C which is a right endpoint of one
of those intervals. (Left continuity at q of course means that for any open
neighbourhood V of f(q) there exists a neighbourhood U of q such that
f(y) ⊂ V for all y ∈ U with y ≤ q.) To prove that f is left continuous
everywhere on [0, 1], it remains to check the left continuity of f at points
x ∈ C which are not right endpoints of intervals. At such a point x, any
nontrivial interval U around x contains points in C smaller than x. Given
an open interval V ∈ [0, 1] so that f(x) ∈ V , we can find an open interval
U ⊂ [0, 1] such that U ∩C ⊂ f−1

C (V ) by continuity of fC . Pick y ∈ C so that
y < x and y ∈ U . Then, (y, x] ∩ U ⊂ f−1(V ) since V is convex. This shows
that f is left continuous at x.

We prove right continuity in the same way, and the continuity of f follows.

Exercise 6.3.5. There are other ways to construct such space filling curves.
Try to complete the following outline to an inductive construction:

• Let f1 : [0, 1]→ [0, 1]2 be the diagonal map f1(x) = (x, x).

• Let f2 : [0, 1]→ [0, 1]2 be a map that is linear on every interval [a
9
, a+1

9
]

for an integer a. The image of the first and second half of the interval
is specified by the following drawings:
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The curve passes diagonally through every of the nine small squares
exactly once.

• Let f3(x) = f2(x) whenever x = a
9

for some integer a. On each interval
[a
9
, a+1

9
], we change f2, in the same way as we changed f1 to f2. That is,

where f1 ran through the diagonal of each 1
3
× 1

3
square once, f3 takes a

longer road, passing through each 1
9
× 1

9
square exactly once. The map

f3 will be linear on every interval [ a
81
, a+1

81
] for integers a.

• Continue this procedure. This is the hard part if you want to do it in
details! Show that fi converges uniformly towards a function f .

• Prove that f is continuous and surjective.

Exercise 6.3.6. Show that there exists a continuous, surjective map f :
R→ R

2.

Exercise 6.3.7. Show that there exists a continuous, surjective map [0, 1]→
[0, 1]n.

6.3.8. The existence of space filling curves leads to the question whether there
are homeomorphisms [0, 1]→ [0, 1]2, or perhaps homeomorphisms Rn → R

n

for n 6= m.
Such homeomorphisms intuitively seem very implausible, but after you

have accepted that space filling curves exist, you realise that without a proof
one cannot be sure that there are no such things.

Actually, if one could modify the map we just constructed so that it were
bijective instead of merely surjective, the usual trick about bijective maps
from compact spaces would show that the map was a homeomorphism.

We have already decided - in 6.1.7 - that there are no homeomorphisms
between a closed interval and a square. It is much harder to decide the more
general question, whether there are homeorphisms [0, 1]n → [0, 1]m.

But it is a famous result of algebraic topology, the “invariance of domain”,
that there is no homeomorphism from an open set in Rn to an open set in
R
m unless m = n.

Exercise 6.3.9. Assuming the “invariance of domain”, show that there is
no homeomorphism between [0, 1]m and [0, 1]n for m 6= n.

6.4 The p-adic integers

6.4.1. A very different example of a space homeomorphic to the product
spaces Cn is from number theory.
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We fix a prime p. The p-adic valuation vp(n) of an integer n is defined as
vp(n) = r, where pr is the highest power of p that divides n.

We define a metric on the set of integers in the following way:

d(m,n) = p−vp(m−n).

(By definition, vp(0) = +∞ and p−∞ = 0.)

Exercise 6.4.2. Prove that this is a metric. Prove that the sets a+ prZ for
all a and r form a basis for the topology on Z.

6.4.3. The p-adic integers Z(p) are the completion of the integers with respect
to this metric. That is, an element x ∈ Z(p) is an equivalence class of Cauchy
sequences of integers.

6.4.4. You can write a number in a unique way in the number system based
on the prime p. That is, for x ∈ Z, there is a unique sequence of numbers
ai(x) so that 0 ≤ ai(x) ≤ p− 1 and

x =
∞∑
i=0

ai(x)pi.

The remainder we get from dividing x by pr is the truncated sum

x =
r−1∑
i=0

ai(x)pi.

6.4.5. Recall that if x and y give the same remainder after division by n,
we say that x ≡ y mod (n). We see that x ≡ y mod (pr) is equivalent to
ai(x − y) = 0 for 0 ≤ i < r. It is also equivalent to vp(x − y) ≥ r, which
again is equivalent to d(x, y) ≤ p−r.

This gives a simple reformulation of what it means to be a Cauchy se-
quence in (Z, d).

Lemma 6.4.6. A sequence of integers {xi} is a Cauchy sequence for the
p-adic metric, exactly if for each natural number r there is a number Nr so
that if i, j are greater than Nr, then xi ≡ xj mod (pr).

Proof. If {xi} is a Cauchy sequence, we can find an Nr so that d(xi, xj) ≤ p−r

for i, j greater than Nr. But this says that xi − xj is divisible by pr, so that
xi ≡ xj mod (pr). Conversely, if the condition is true, then d(xi, xj) ≤ p−r

for i, j greater than Nr. So {xi} is indeed a Cauchy sequence.

Exercise 6.4.7. Show that an is a well defined continuous map from Z(p) to
the discrete set Xp of integers in the interval [0, p− 1].
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6.4.8. By the previous exercise, we get a continuous map

A =
∞∏
i=0

ai : Z(p) →
∞∏
i=0

Xp.

Exercise 6.4.9. Show that the map A is bijective.

6.4.10. It follows that A is a homeomorphism, so Z(p) is homeomorphic to
the space Cp of Definition 6.2.2.
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