Review of Manifolds, Lie Groups, and Lie Algebras

Joel W. Burdick and Patricio Vela

California Institute of Technology Mechanical Engineering, BioEngineering Pasadena, CA 91125, USA

Manifolds

Systems evolve on a manifold, Q.

Definition 1 Let X, Y be subsets of two Euclidean spaces and let $f: X \rightarrow$ Y be bijective. If f and f^{-1} are continuous, then f is a homeomorphism. If fand f^{-1} are smooth, then f is a diffeomorphism.

Definition 2 *A k*-dimensional manifold, *M*, is locally diffeomorphic to \mathbb{R}^k . I.e., for each $x \in M$, there exists a nbhd of $x, V \subset M$, which is diffeomorphic to an open set $U \subset \mathbb{R}^k$.

Manifolds, continued

Definition 3 A coordinatizable surface, S, is the image of a map $f: U \to \mathbb{R}^3$ where

- U is an open connected subset of \mathbb{R}^2 .
- The vectors $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ are linearly independent for all $(u, v) \in U$.
- *f* is a homeomorphism.

(f, U) is a *coordinate system* for S with coordinates u, v.

 f^{-1} is termed a *local parametrization*.

Example (Unit Sphere)

One coordinate system for the sphere is:

$$U = \{(u, v) \mid -\frac{\pi}{2} < u < \frac{\pi}{2}; -\pi < v < \pi\}$$
$$f(u, v) = \begin{bmatrix} \cos(u) \cos(v) \\ -\cos(u) \sin(v) \\ \sin(u) \end{bmatrix}$$

Note that $\frac{\partial f}{\partial u} \cdot \frac{\partial f}{\partial v} = 0$, implying that (f, U) is an orthogonal coordinate system.

Tangent Spaces, Vectors

Definition 4 The tangent space to M at $x \in M$, denoted by T_xM , is the image of $df|_{f^{-1}(x)}$

Remarks:

- 1. T_pS , is the closest linear approximation to M at p.
- 2. Generally, if $p_1 \neq p_2$, then $T_{p_1}S \neq T_{p_2}S$.
- 3. The *dimension* of a manifold, M, is defined as the dimension of its tangent space: $dim(M) = dim(T_pM)$.
- 4. The definition of the tangent space is intrinsic.
- A tangent vector at $p \in M$ is a vector in T_pM .
- The union of all tangent spaces is the tangent bundle.

Example (sphere continued)

Let $p = f(0,0) = [1 \ 0 \ 0]^T$ (where the *x*-axis intersects the sphere's surface). Then

$$df_{(0,0)} = \begin{bmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \end{bmatrix}_{(0,0)} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Therefore, T_pM is the plane passing through p and parallel to the y-z plane.

Bundles

Definition 5 The manifold \mathcal{B} is a fiber bundle if the following exist:

- 1. a manifold M called the base space,
- 2. a projection $\pi : \mathcal{B} \to M$, and
- 3. a space Y called the fiber .

The set Y_x , defined by

$$Y_x = \pi^{-1}(x)$$

is called the *fiber over the point* x of M. Each Y_x is homeomorphic to Y.

 \mathcal{B} is a vector bundle if Y is a vector space.

Vector Fields

A vector field is a section defined on the tangent bundle TQ, denoted

$$X: Q \to TQ$$

For each element $q \in Q$, $X(q) \in T_qQ$.

If the vector field is time dependent, then it is written X(q, t) with shorthand notiation,

$$X_t(\cdot) \equiv X(\cdot, t)$$

The Jacobi-Lie bracket is defined as,

$$[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)$$

where, Φ_t^X is the flow of the vector field X.

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

The Jacobi-Lie bracket is defined as,

$$[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)$$

where, Φ_t^X is the flow of the vector field X.

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

$$[X,Y]\in\Delta, \ \forall X,Y\in\Delta$$

The Jacobi-Lie bracket is defined as,

$$[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)$$

where, Φ_t^X is the flow of the vector field X.

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

$$[X,Y] \neq 0$$

The Jacobi-Lie bracket is defined as,

$$[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)$$

where, Φ_t^X is the flow of the vector field X.

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

$$[X(z), Y(z)] = \frac{\partial Y}{\partial z} X - \frac{\partial X}{\partial z} Y$$

Lie Groups

Definition of a Lie Group

Definition 5 A group is a nonempty set G with a product operation, *, such that the following hold:

- 1. Associativity Law: a * (b * c) = (a * b) * c.
- 2. Closed Operation: $a * b \in G$ if $a, b \in G$
- *3.* Identity: e * x = x * e = x.
- 4. Inverse: $\forall x \in G, \exists y : x * y = y * x = e$.

Definition 5 A Lie group is a manifold G whose group structure isconsistent with its manifold structure. I.e., group multiplication,

$$\mu: G \times G \to G, \quad (g,h) \mapsto gh,$$

is C^{∞} , as is inversion.

The Classical Matrix Groups

Definition 5 The set of $n \times n$ invertible matrices under matrix multiplication forms group, denoted by GL(n).

Definition 5 A subset, $H \subset G$, is a subgroup of G, if H is itself a group under the operation of G.

Some of the classical subgroups of GL(n):

- 1. *SL(n):* $n \times n$ matrices with det = +1
- 2. *O(n):* $n \times n$ orthogonal matrices $(A^T A = I)$
- 3. SO(n): $n \times n$ in both SL(n) and O(n)
- 4. *U(n):* $n \times n$ complex orthogonal matrices
- 5. *SU(n):* matrices in U(n) with det = +1.

Actions of Lie Groups

The product structure can be used to define a *left translation*,

$$L_g: G \to G, \quad L_g(h) = gh,$$

and similarly a *right translation*,

$$R_g: G \to G, \quad R_g(h) = hg.$$

Note that,

$$L_{g_1} \circ L_{g_2} = L_{g_1 g_2}$$
 and $R_{g_1} \circ R_{g_2} = R_{g_2 g_1}$.

An inner automorphism may be defined,

$$I_g: G \to G, \quad I_g(h) = L_g R_{g^{-1}}(h) = R_{g^{-1}} L_g(h) = ghg^{-1}$$

Lie Group: SO(3)

SO(3) is the group of rotations in Euclidean space, \mathbb{R}^3 . As a matrix Lie group, $g \in SO(3)$ satisfies:

Lie Group: SO(3)

SO(3) is the group of rotations in Euclidean space, \mathbb{R}^3 . As a matrix Lie group, $g \in SO(3)$ satisfies:

Lie Group: SE(2)

SE(2) describes rigid body motions in the Euclidean plane. As a matrix Lie group, $g \in SE(2)$ takes the form:

$$g = \begin{bmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{bmatrix}$$

Lie Group: SE(2)

SE(2) describes rigid body motions in the Euclidean plane. As a matrix Lie group, $g \in SE(2)$ takes the form:

Lie Group: $Diff_{vol}(M)$

 $Diff_{vol}(M)$ is the Lie group of volume preserving diffeomorphisms of a manifold M.

An element $g \in Diff_{vol}(M)$ is a mapping

$$g: M \to M$$

Lie Group: $Diff_{vol}(M)$

 $Diff_{vol}(M)$ is the Lie group of volume preserving diffeomorphisms of a manifold M.

An element $g \in Diff_{vol}(M)$ is a mapping

$$g: M \to M$$

Invariant Vector Fields

A vector field X on G is *left-invariant* if

 $(T_h L_g) X(h) = X(gh)$

The set of left-invariant vector-fields, $\mathcal{X}_L(G)$, form a Lie sub-algebra since,

$$L_g^*\left[X,Y\right] = \left[L_g^*X, L_g^*Y\right] = \left[X,Y\right]$$

The Lie Algebra

Elements in $\mathcal{X}_L(G)$ can be identified with T_eG .

$$X(g) = X_{\xi}(g) = T_e L_g \xi$$

The Jacobi-Lie bracket defined at the point $e \in G$,

$$\left[\xi,\eta\right] = \left[X_{\xi}, X_{\eta}\right](e)$$

gives the tangent space T_eG a bracket structure.

This bracket is called the *Lie bracket*, and makes T_eG , denoted by \mathfrak{g} into a Lie algebra.

Notes on Lie Algebras

Lie Algebra: A real vector space, V, with a multiplication operation [,] which satisfies for $A, B \in V$:

1.
$$[A, B] = -[B, A];$$

2. $[A, B + C] = [A, B] + [A, C]; \quad [A + B, C] = [A, C] + [B, C];$

- **3.** for $r \in \mathbb{R}$, r[A, B] = [rA, B] = [A, rB]
- **4.** [A, [B, C]] + [B, [A, C]] + [C, [A, B]] = 0

The set of smooth vectors fields on a manifold M forms a Lie Algebra under Jacobi-Lie bracket operation.

Examples

Lie Algebra of $GL(n, \mathbb{R})$: Set of all $n \times n$ real matrices

Lie Algebra of SO(3): Set of 3×3 skew-symmetric matrices, denoted by so(3):

$$\hat{\omega} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

The Lie Bracket is the matrix commutator:

$$\hat{\omega}_1, \hat{\omega}_2 = \hat{\omega}_1 \hat{\omega}_2 - \hat{\omega}_2 \hat{\omega}_1$$

Examples Continued

Lie Algebra of SE(3): Matrices in se(3) take the form:

$$\hat{\xi} = \begin{bmatrix} \hat{w} & \vec{v} \\ \vec{0}^T & 1 \end{bmatrix}; \quad \hat{\omega} \in so(3); \quad \vec{v} \in \mathbb{R}^3$$

The Lie Bracket is given by:

$$[\hat{\xi}_1, \hat{\xi}_2] = \hat{\xi}_1 \hat{\xi}_2 - \hat{\xi}_2 \hat{\xi}_1 = \begin{bmatrix} [\hat{\omega}_1, \hat{\omega}_2] & \hat{\omega}_1 \vec{v}_2 - \hat{\omega}_2 \vec{v}_1 \\ \vec{0}^T & 0 \end{bmatrix}$$

The Adjoints

Differentiation of the inner automorphism leads to the *adjoint* operator:

$$\operatorname{Ad}_g: \mathfrak{g} \to \mathfrak{g}, \quad \operatorname{Ad}_g \eta \equiv T_e I_g \cdot \eta$$

Differentiation of the adjoint operator (with respect to g) leads to the Lie bracket, sometimes denoted by ad,

$$\mathrm{ad}_{\xi}\eta \equiv T_e(\mathrm{Ad}\eta) \cdot \xi = [\xi,\eta]$$

- Transformation of observer.
- Used for body/spatial transformations.

The Exponential Map

A flow is obtained by solving for the differential equations defined by a left-invariant vector field,

$$\dot{g} = X_{\xi}(g) = T_e L_g \,\xi = g\xi$$

This flow defines the exponential map,

$$\exp:\mathfrak{g}\to G,\quad \xi\mapsto e^{\xi}$$

Keeping the time parametrization gives, $\exp(\xi t)$.

The Exponential Map

A flow is obtained by solving for the differential equations defined by a left-invariant vector field,

$$\dot{g} = X_{\xi}(g) = T_e L_g \,\xi = g\xi$$

This flow defines the exponential map,

$$\exp:\mathfrak{g}\to G,\quad \xi\mapsto e^{\xi}$$

Keeping the time parametrization gives, $\exp(\xi t)$.

Actions of Lie Groups 2

Definition 5 Let Q be a manifold and let G be a Lie group. A left action of a Lie group G on M is a smooth mapping $\Phi: G \times Q \rightarrow Q$ such that:

- 1. $\Phi(e, x) = x, \forall x \in Q$, and
- **2.** $\Phi(g, \Phi(h, x)) = \Phi(gh, x), \forall g, h \in G.$

The action of $g \in G$ on $q \in Q$ will typically be written as $g \cdot q$ of simply gq.

- 1. *free*: for all $x \in Q$, $\Phi_g(x) = x$ implies that g = e.
- 2. *proper*: $W \subset Q$ compact implies $\Phi^{-1}(W) \subset G \times Q$ compact.

Infinitesimal Generators

The action of G on Q induces a vector field on Q.

The Lie algebra exponential exp defines a curve on Q,

$$\Phi_t^{\xi}(q) \equiv \exp(\xi t) \cdot q$$

which after time differentiation,

$$\xi_Q(q) \equiv \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(\xi t) \cdot q = \xi \cdot q$$

gives the infinitesimal generator.

Infinitesimal Generators

The action of G on Q induces a vector field on Q.

The Lie algebra exponential exp defines a curve on Q,

$$\Phi_t^{\xi}(q) \equiv \exp(\xi t) \cdot q$$

which after time differentiation,

$$\xi_Q(q) \equiv \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(\xi t) \cdot q = \xi \cdot q$$

gives the infinitesimal generator.

Group Orbits

Definition 5 Given an action of G on Q and $q \in Q$, the orbit of q is defined by

Orb
$$(q) \equiv \{ \Phi_g(q) \mid g \in G \} \subset Q$$

The tangent space at q to the group orbit through q_0 is given by,

$$T_q$$
Orb $(q_0) = \left\{ \xi_Q(q) \mid \xi \in \mathfrak{g} \right\}$

Principal Bundles

Definition 5 A principal bundle is a fiber bundle such that the model fiber is a Lie group, G.

For mechanical systems the *base space*, *M*, is sometimes called the *shape space*.

- Many control systems decompose this way.
- **•** Shape \rightarrow Directly controlled.
- Group \rightarrow What we want to control (locomote within).
- Inherits all structures discussed.

Examples

