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Manifolds

Systems evolve on a manifold, Q.

Definition 1 Let X,Y be subsets of
two Euclidean spaces and let f : X →

Y be bijective. If f and f−1 are contin-
uous, then f is a homeomorphism. If f

and f−1 are smooth, then f is a diffeo-
morphism.

Definition 2 A k-dimensional mani-
fold, M , is locally diffeomorphic to Rk.
I.e., for each x ∈ M , there exists a nbhd
of x, V ⊂ M , which is diffeomorphic to
an open set U ⊂ Rk.
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Manifolds, continued

Definition 3 A coordinatizable surface,
S, is the image of a map f : U → R3

where

U is an open connected subset of
R2.

The vectors ∂f
∂u and ∂f

∂v are linearly
independent for all (u, v) ∈ U .

f is a homeomorphism.

u
v

S
f

f-1

(f, U) is a coordinate system for S with coordinates u, v.

f−1 is termed a local parametrization.
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Example (Unit Sphere)

One coordinate system for the sphere is:

U = {(u, v) | −
π

2
< u <

π

2
;−π < v < π}

f(u, v) =







cos(u) cos(v)

− cos(u) sin(v)

sin(u)







Note that ∂f
∂u · ∂f

∂v = 0, implying that (f, U) is an orthogonal
coordinate system.
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Tangent Spaces, Vectors

Definition 4 The tangent space to M at x ∈ M , denoted
by TxM , is the image of df |f−1(x)

Remarks:

1. TpS, is the closest linear approximation to M at p.

2. Generally, if p1 6= p2, then Tp1
S 6= Tp2

S.

3. The dimension of a manifold, M , is defined as the
dimension of its tangent space: dim(M) = dim(TpM).

4. The definition of the tangent space is intrinsic.

A tangent vector at p ∈ M is a vector in TpM .

The union of all tangent spaces is the tangent bundle.
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Example (sphere continued)

Let p = f(0, 0) = [1 0 0]T (where the x-axis intersects the
sphere’s surface). Then

df(0,0) =
[

∂f
∂u

∂f
∂v

]

(0,0)
=







0 0

0 −1

1 0







Therefore, TpM is the plane passing through p and parallel
to the y-z plane.
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Bundles

Definition 5 The manifold B is a fiber bundle if the
following exist:

1. a manifold M called the base space,

2. a projection π : B → M , and

3. a space Y called the fiber .

The set Yx, defined by

Yx = π−1(x)

is called the fiber over the point x of M .
Each Yx is homeomorphic to Y .

M

Y

B

B is a vector bundle if Y is a vector space.
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Vector Fields

q
Q

A vector field is a section defined
on the tangent bundle TQ, denoted

X : Q → TQ

For each element q ∈ Q, X(q) ∈ TqQ.

If the vector field is time dependent,
then it is written X(q, t) with shorthand notiation,

Xt(·) ≡ X(·, t)

Verona Short Course, August 25-29, 2002 – p.8/28



The Jacobi-Lie Bracket

The Jacobi-Lie bracket is defined as,

[X,Y ] = LX Y ≡ lim
t→0

1

t

((

ΦX
t

)

∗

Y (q) − Y (q)
)

where, ΦX
t is the flow of the vector field X.

The Jacobi-Lie bracket is used to characterize:

Q

ΦX
t

ΦY
t

ΦX
−t

ΦY
−t

1. Involutivity (closure of bracket).

2. Flows (noncommutativity).
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The Jacobi-Lie Bracket

The Jacobi-Lie bracket is defined as,

[X,Y ] = LX Y ≡ lim
t→0

1

t

((

ΦX
t

)

∗

Y (q) − Y (q)
)

where, ΦX
t is the flow of the vector field X.

The Jacobi-Lie bracket is used to characterize:

Q

ΦX
t

ΦY
t

ΦX
−t

ΦY
−t

1. Involutivity (closure of bracket).

2. Flows (noncommutativity).

[X(z), Y (z)] =
∂Y

∂z
X −

∂X

∂z
Y
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Lie Groups
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Definition of a Lie Group

Definition 5 A group is a nonempty set G with a product
operation, ∗, such that the following hold:

1. Associativity Law: a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. Closed Operation: a ∗ b ∈ G if a, b ∈ G

3. Identity: e ∗ x = x ∗ e = x.

4. Inverse: ∀ x ∈ G, ∃ y : x ∗ y = y ∗ x = e.

Definition 5 A Lie group is a manifold G whose group
structure isconsistent with its manifold structure. I.e., group
multiplication,

µ : G × G → G, (g, h) 7→ gh,

is C∞, as is inversion.
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The Classical Matrix Groups

Definition 5 The set of n × n invertible matrices under
matrix multiplication forms group, denoted by GL(n).

Definition 5 A subset, H ⊂ G, is a subgroup of G, if H is
itself a group under the operation of G.

Some of the classical subgroups of GL(n):

1. SL(n): n × n matrices with det = +1

2. O(n): n × n orthogonal matrices (ATA = I)

3. SO(n): n × n in both SL(n) and O(n)

4. U(n): n × n complex orthogonal matrices

5. SU(n): matrices in U(n) with det = +1.
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Actions of Lie Groups

The product structure can be used to define a left
translation ,

Lg : G → G, Lg(h) = gh,

and similarly a right translation,

Rg : G → G, Rg(h) = hg.

Note that,

Lg1
◦ Lg2

= Lg1 g2
and Rg1

◦ Rg2
= Rg2 g1

.

An inner automorphism may be defined,

Ig : G → G, Ig(h) = LgRg−1(h) = Rg−1Lg(h) = ghg−1
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Lie Group: SO(3)

SO(3) is the group of rotations in Euclidean space, R
3.

As a matrix Lie group, g ∈ SO(3) satisfies:

ggT = I.

det(g) = 1. x

y

z

z

y
x

g

h gh
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Lie Group: SE(2)

SE(2) describes rigid body motions in the Euclidean plane.
As a matrix Lie group, g ∈ SE(2) takes the form:

g =







cos θ − sin θ x

sin θ cos θ y

0 0 1







x

y

g gh

h
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Lie Group: Diffvol(M)

Diffvol(M) is the Lie group of volume preserving
diffeomorphisms of a manifold M .

An element g ∈ Diffvol(M)
is a mapping

g : M → M

g

A

g(A)
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Invariant Vector Fields

A vector field X on G is left-invariant if

(ThLg)X(h) = X(gh)

X(h)

X(gh)
T Lh  g

gh

h

The set of left-invariant vector-fields, XL(G), form a Lie
sub-algebra since,

L∗

g [X,Y ] =
[

L∗

gX,L∗

gY
]

= [X,Y ]
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The Lie Algebra

Elements in XL(G) can be identified with TeG.

X(g) = Xξ(g) = TeLgξ

The Jacobi-Lie bracket defined at the point e ∈ G,

[ξ, η] =
[

Xξ, Xη

]

(e)

gives the tangent space TeG a bracket structure.

This bracket is called the Lie bracket, and makes TeG,
denoted by g into a Lie algebra.
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Notes on Lie Algebras

Lie Algebra: A real vector space, V , with a
multiplication operation [ , ] which satisfies for A,B ∈ V :

1. [A,B] = −[B,A];

2. [A,B + C] = [A,B] + [A,C]; [A + B,C] = [A,C] + [B,C];

3. for r ∈ R, r[A,B] = [rA,B] = [A, rB]

4. [A, [B,C]] + [B, [A,C]] + [C, [A,B]] = 0

The set of smooth vectors fields on a manifold M forms a
Lie Algebra under Jacobi-Lie bracket operation.
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Examples

Lie Algebra of GL(n,R): Set of all n × n real
matrices

Lie Algebra of SO(3): Set of 3 × 3 skew-symmetric
matrices, denoted by so(3):

ω̂ =







0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0







The Lie Bracket is the matrix commutator:

ω̂1, ω̂2 = ω̂1ω̂2 − ω̂2ω̂1
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Examples Continued

Lie Algebra of SE(3): Matrices in se(3) take the
form:

ξ̂ =

[

ŵ ~v

~0T 1

]

; ω̂ ∈ so(3); ~v ∈ R3

The Lie Bracket is given by:

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1 =

[

[ω̂1, ω̂2] ω̂1~v2 − ω̂2~v1

~0T 0

]
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The Adjoints

Differentiation of the inner automorphism leads to the
adjoint operator:

Adg : g → g, Adgη ≡ TeIg · η

Differentiation of the adjoint operator (with respect to g)
leads to the Lie bracket, sometimes denoted by ad,

adξη ≡ Te(Adη) · ξ = [ξ, η]

Transformation of observer.

Used for body/spatial transformations.
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The Exponential Map

A flow is obtained by solving for the differential equations
defined by a left-invariant vector field,

ġ = Xξ(g) = TeLg ξ= gξ

This flow defines the exponential map,

exp : g → G, ξ 7→ eξ

Keeping the time parametrization gives, exp(ξt).

G

exp(ξt)

eξ
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Actions of Lie Groups 2

Definition 5 Let Q be a manifold and let G be a Lie group.
A left action of a Lie group G on M is a smooth mapping
Φ : G × Q → Q such that:

1. Φ(e, x) = x, ∀x ∈ Q, and

2. Φ(g,Φ(h, x)) = Φ(gh, x), ∀ g, h ∈ G.

The action of g ∈ G on q ∈ Q will typically be written as g · q
of simply gq.

1. free: for all x ∈ Q, Φg(x) = x implies that g = e.

2. proper: W ⊂ Q compact implies Φ−1(W ) ⊂ G × Q

compact.
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Infinitesimal Generators

The action of G on Q induces a vector field on Q.

The Lie algebra exponential exp defines a curve on Q,

Φξ
t (q) ≡ exp(ξt) · q

which after time differentiation,

ξQ(q) ≡
d

dt

∣

∣

∣

∣

t=0

exp(ξt) · q= ξ · q

gives the infinitesimal generator.
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Group Orbits

Definition 5 Given an action of G on Q and q ∈ Q, the orbit
of q is defined by

Orb (q) ≡ {Φg(q) | g ∈ G } ⊂ Q

The tangent space at q to the group orbit through q0 is given
by,

TqOrb (q0) =
{

ξQ(q) | ξ ∈ g
}

q
0

Q

Orb(q)

T Orb(q)q
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Principal Bundles

Definition 5 A principal bundle is a fiber bundle such that
the model fiber is a Lie group, G.

For mechanical systems the base space, M , is sometimes
called the shape space.

Many control systems decompose
this way.

Shape → Directly controlled.

Group → What we want to control
(locomote within).

Inherits all structures discussed.

r

π

q

r

G

T Orb(q)q
M

M

Q
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Examples

Snakeboard Planar Fish

(x,y)

l

ψ

φ
b

θ
back wheels

fφfront wheels

ϕ

ϕ
1

2

bp
l

T
3 × SE(2) T

2 × SE(2)

Hilare Robot Planar Amoeba

T
2 × SE(2) R

3 × SE(2)
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