Review of Manifolds, Lie Groups, and Lie Algebras

Joel W. Burdick and Patricio Vela

California Institute of Technology Mechanical Engineering, BioEngineering Pasadena, CA 91125, USA

Manifolds

Systems evolve on ^a manifold, Q.

Definition 1 Let X, Y be subsets of two Euclidean spaces and let $f: X \rightarrow$ Y be bijective. If f and f^{-1} are continuous, then f is a homeomorphism. If f and f^{-1} are smooth, then f is a diffeomorphism.

Definition 2 A k-dimensional manifold, M, is locally diffeomorphic to \mathbb{R}^k . I.e., for each $x \in M$, there exists a nbhd of $x, V \subset M$, which is diffeomorphic to an open set $U \subset \mathbb{R}^k$.

Manifolds, continued

Definition 3 A coordinatizable surface, S, is the image of a map $f: U \to \mathbb{R}^3$ where

- U is an open connected subset of \mathbb{R}^2 .
- The vectors $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ are linearly independent for all $(u, v) \in U$.
- \bullet f is a homeomorphism.

 (f, U) is a coordinate system for S with coordinates u, v .

 f^{-1} is termed a *local parametrization.*

Example (Unit Sphere)

One coordinate system for the sphere is:

$$
U = \{(u, v) \mid -\frac{\pi}{2} < u < \frac{\pi}{2}; -\pi < v < \pi\}
$$
\n
$$
f(u, v) = \begin{bmatrix} \cos(u)\cos(v) \\ -\cos(u)\sin(v) \\ \sin(u) \end{bmatrix}
$$

Note that $\frac{\partial f}{\partial u}\cdot\frac{\partial f}{\partial v}=0,$ implying that (f,U) is an orthogonal coordinate system.

Tangent Spaces, Vectors

Definition 4 The tangent space to ^M at ^x [∈] ^M, denoted by T_xM , is the image of $df|_{f^{-1}(x)}$

Remarks:

- 1. $\; T_pS,$ is the closest linear approximation to M at $p.$
- 2. Generally, if $p_1\neq p_2$, then $T_{p_1}S\neq T_{p_2}S.$
- 3. The *dimension* of a manifold, M , is defined as the dimension of its tangent space: $dim(M) = dim(T_pM)$.
- 4. The definition of the tangent space is intrinsic.
- A *tangent vector* at $p \in M$ is a vector in $T_pM.$
- The union of all tangent spaces is the *tangent bundle*.

Example (sphere continued)

Let $p = f(0, 0) = [1 \ 0 \ 0]^T$ (where the x-axis intersects the sphere's surface). Then

$$
df_{(0,0)} = \begin{bmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \end{bmatrix}_{(0,0)} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}
$$

Therefore, T_pM is the plane passing through p and parallel to the $y-z$ plane.

Bundles

Definition 5 The manifold B is a fiber bundle if the following exist:

- 1. $\,$ a manifold M called the base space,
- 2. $\,$ a projection $\pi : \mathcal{B} \longrightarrow M,$ and
- 3. a space Y called the fiber.

The set Y_x , defined by

$$
Y_x = \pi^{-1}(x)
$$

is called the fiber over the point x of M . Each Y_x is homeomorphic to Y .

 $\mathcal B$ is a *vector bundle* if Y is a vector space.

Vector Fields

A vector field is a section defined on the tangent bundle TQ , denoted

$$
X:Q\to TQ
$$

For each element $q \in Q$, $X(q) \in T_qQ$.

If the vector field is time dependent, then it is written $X(q,t)$ with shorthand notiation,

$$
X_t(\cdot) \equiv X(\cdot, t)
$$

The Jacobi-Lie bracket is defined as,

$$
[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)
$$

where, Φ^X_t is the flow of the vector field $X.$

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

The Jacobi-Lie bracket is defined as,

$$
[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)
$$

where, Φ^X_t is the flow of the vector field $X.$

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

$$
[X,Y]\in\Delta,\ \ \forall\, X,Y\in\Delta
$$

The Jacobi-Lie bracket is defined as,

$$
[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)
$$

where, Φ^X_t is the flow of the vector field $X.$

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

$$
[X,Y]\neq 0
$$

The Jacobi-Lie bracket is defined as,

$$
[X,Y] = L_X Y \equiv \lim_{t \to 0} \frac{1}{t} \left(\left(\Phi_t^X \right)^* Y(q) - Y(q) \right)
$$

where, Φ^X_t is the flow of the vector field $X.$

- 1. Involutivity (closure of bracket).
- 2. Flows (noncommutativity).

$$
[X(z), Y(z)] = \frac{\partial Y}{\partial z}X - \frac{\partial X}{\partial z}Y
$$

Lie Groups

Definition of ^a Lie Group

Definition 5 A **group** is ^a nonempty set G with ^a product operation, [∗], such that the following hold:

- 1. Associativity Law: $a*(b*c)=(a*b)*c$.
- 2. Closed Operation: $a * b \in G$ if $a, b \in G$
- 3. Identity: $e * x = x * e = x$.
- 4. Inverse: $\forall\;x\in G,\;\exists\,y\,:\;x\ast y=y\ast x=e.$

Definition 5 A Lie group is ^a manifold G whose group structure isconsistent with its manifold structure. I.e., group multiplication,

$$
\mu: G \times G \to G, \quad (g, h) \mapsto gh,
$$

is C^{∞} , as is inversion.

The Classical Matrix Groups

Definition 5 The set of ⁿ [×] ⁿ invertible matrices under matrix multiplication forms group, denoted by $GL(n)$.

Definition 5 A subset, H [⊂] G, is ^a **subgroup** of G, if H is itself a group under the operation of G .

Some of the classical subgroups of $GL(n)$:

- 1. SL(n): $n \times n$ matrices with $det=+1$
- 2. $O(n)$: $n \times n$ orthogonal matrices $(A^TA = I)$
- 3. SO(n): $n \times n$ in both $SL(n)$ and $O(n)$
- 4. U(n): ⁿ [×] ⁿ complex orthogonal matrices
- 5. SU(n): matrices in $U(n)$ with $det = +1$.

Actions of Lie Groups

The product structure can be used to define a *left* translation ,

$$
L_g: G \to G, \quad L_g(h) = gh,
$$

and similarly ^a right translation,

$$
R_g: G \to G, \quad R_g(h) = hg.
$$

Note that,

$$
L_{g_1} \circ L_{g_2} = L_{g_1 g_2} \quad \text{and} \quad R_{g_1} \circ R_{g_2} = R_{g_2 g_1}.
$$

An *inner automorphism* may be defined,

$$
I_g: G \to G
$$
, $I_g(h) = L_g R_{g^{-1}}(h) = R_{g^{-1}} L_g(h) = ghg^{-1}$

Lie Group: SO(3)

 $SO(3)$ is the group of rotations in Euclidean space, \mathbb{R}^3 . As a matrix Lie group, $g \in SO(3)$ satisfies:

Lie Group: SO(3)

 $SO(3)$ is the group of rotations in Euclidean space, \mathbb{R}^3 . As a matrix Lie group, $g \in SO(3)$ satisfies:

Lie Group: SE(2)

 $SE(2)$ describes rigid body motions in the Euclidean plane. As a matrix Lie group, $g \in SE(2)$ takes the form:

$$
g = \begin{bmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \begin{matrix} y \\ g \\ h \end{matrix} \neq \theta h
$$

x

Lie Group: SE(2)

 $SE(2)$ describes rigid body motions in the Euclidean plane. As a matrix Lie group, $g \in SE(2)$ takes the form:

Lie Group: $Diff_{vol}(M)$

 $Diff_{vol}(M)$ is the Lie group of volume preserving diffeomorphisms of ^a manifold ^M.

An element $g\in Diff_{vol}(M)$ is ^a mapping

$$
g:M\to M
$$

Lie Group: $Diff_{vol}(M)$

 $Diff_{vol}(M)$ is the Lie group of volume preserving diffeomorphisms of ^a manifold ^M.

An element $g\in Diff_{vol}(M)$ is ^a mapping

$$
g:M\to M
$$

Invariant Vector Fields

A vector field X on G is *left-invariant* if

 $(T_hL_q)X(h) = X(gh)$

The set of left-invariant vector-fields, $\mathcal{X}_L(G)$, form a Lie sub-algebra since,

$$
L_g^* \left[X, Y \right] = \left[L_g^* X, L_g^* Y \right] = \left[X, Y \right]
$$

The Lie Algebra

Elements in $\mathcal{X}_L(G)$ can be identified with T_eG .

$$
X(g)=X_\xi(g)=T_eL_g\xi
$$

The Jacobi-Lie bracket defined at the point $e \in G$,

$$
[\xi,\eta]=\left[X_\xi,X_\eta\right](e)
$$

gives the tangent space T_eG a bracket structure.

This bracket is called the Lie bracket, and makes T_eG , denoted by ^g into ^a Lie algebra.

Notes on Lie Algebras

Lie Algebra: A real vector space, V, with a multiplication operation $[,]$ which satisfies for $A, B \in V$:

1.
$$
[A, B] = -[B, A];
$$

2. $[A, B+C] = [A, B] + [A, C];$ $[A+B, C] = [A, C] + [B, C];$

- 3. for $r \in \mathbb{R}, r[A, B] = [rA, B] = [A, rB]$
- 4. $\left[A, \left[B, C \right] \right] + \left[B, \left[A, C \right] \right] + \left[C, \left[A, B \right] \right] = 0$

The set of smooth vectors fields on a manifold M forms a Lie Algebra under Jacobi-Lie bracket operation.

Examples

Lie Algebra of $GL(n,\mathbb{R})$: Set of all $n \times n$ real matrices

Lie Algebra of $SO(3)$: Set of 3×3 skew-symmetric matrices, denoted by $so(3)$:

$$
\hat{\omega} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}
$$

The Lie Bracket is the matrix commutator:

$$
\hat{\omega}_1, \hat{\omega}_2 = \hat{\omega}_1 \hat{\omega}_2 - \hat{\omega}_2 \hat{\omega}_1
$$

Examples Continued

Lie Algebra of $SE(3)$: Matrices in se(3) take the form:

$$
\hat{\xi} = \begin{bmatrix} \hat{w} & \vec{v} \\ \vec{0}^T & 1 \end{bmatrix}; \quad \hat{\omega} \in so(3); \ \vec{v} \in \mathbb{R}^3
$$

The Lie Bracket is given by:

$$
[\hat{\xi}_1, \hat{\xi}_2] = \hat{\xi}_1 \hat{\xi}_2 - \hat{\xi}_2 \hat{\xi}_1 = \begin{bmatrix} [\hat{\omega}_1, \hat{\omega}_2] & \hat{\omega}_1 \vec{v}_2 - \hat{\omega}_2 \vec{v}_1 \\ \vec{0}^T & 0 \end{bmatrix}
$$

The Adjoints

Differentiation of the inner automorphism leads to the adjoint operator:

$$
\mathrm{Ad}_g: \mathfrak{g} \to \mathfrak{g}, \quad \mathrm{Ad}_g \eta \equiv T_e I_g \cdot \eta
$$

Differentiation of the adjoint operator (with respect to g) leads to the Lie bracket, sometimes denoted by ad,

$$
ad_{\xi}\eta \equiv T_e(Ad\eta) \cdot \xi = [\xi, \eta]
$$

- **Transformation of observer.**
- Used for body/spatial transformations.

The Exponential Map

A flow is obtained by solving for the differential equations defined by ^a left-invariant vector field,

$$
\dot{g} = X_{\xi}(g) = T_e L_g \xi = g \xi
$$

This flow defines the exponential map,

$$
\exp : \mathfrak{g} \to G, \quad \xi \mapsto e^{\xi}
$$

Keeping the time parametrization gives, $\exp(\xi t)$.

The Exponential Map

A flow is obtained by solving for the differential equations defined by ^a left-invariant vector field,

$$
\dot{g} = X_{\xi}(g) = T_e L_g \xi = g \xi
$$

This flow defines the exponential map,

$$
\exp : \mathfrak{g} \to G, \quad \xi \mapsto e^{\xi}
$$

Keeping the time parametrization gives, $\exp(\xi t)$.

Actions of Lie Groups 2

Definition 5 Let Q be ^a manifold and let G be ^a Lie group. A left action *of a Lie group* G *on* M *is a smooth mapping* $\Phi:G\times Q\to Q$ such that:

- 1. $\Phi(e,x)=x,~\forall\,x\in Q,$ and
- 2. $\Phi(g, \Phi(h, x)) = \Phi(gh, x), \ \forall g, h \in G$.

The action of $g \in G$ on $g \in Q$ will typically be written as $g \cdot g$ of simply gq.

- 1. *free*: for all $x\in Q,$ $\Phi_g(x)=x$ implies that $g=e.$
- 2. *proper*: $W \subset Q$ compact implies $\Phi^{-1}(W) \subset G \times Q$ compact.

Infinitesimal Generators

The action of G on Q induces a vector field on $Q.$

The Lie algebra exponential \exp defines a curve on Q ,

$$
\Phi_t^{\xi}(q) \equiv \exp(\xi t) \cdot q
$$

which after time differentiation,

$$
\xi_Q(q) \equiv \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(\xi t) \cdot q = \xi \cdot q
$$

gives the infinitesimal generator.

Infinitesimal Generators

The action of G on Q induces a vector field on $Q.$

The Lie algebra exponential \exp defines a curve on Q ,

$$
\Phi_t^{\xi}(q) \equiv \exp(\xi t) \cdot q
$$

which after time differentiation,

$$
\xi_Q(q) \equiv \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(\xi t) \cdot q = \xi \cdot q
$$

gives the infinitesimal generator.

Group Orbits

Definition 5 Given an action of G on Q and ^q [∈] Q, the orbit of q is defined by

Orb
$$
(q) \equiv \{ \Phi_g(q) \mid g \in G \} \subset Q
$$

The tangent space at q to the group orbit through q_0 is given by,

$$
T_q \text{Orb} (q_0) = \{ \xi_Q(q) \mid \xi \in \mathfrak{g} \}
$$

Principal Bundles

Definition 5 A principal bundle is ^a fiber bundle such that the model fiber is ^a Lie group, G.

For mechanical systems the *base space*, M, is sometimes called the shape space.

- Many control systems decompose this way.
- \bullet Shape \rightarrow Directly controlled.
- Group \rightarrow What we want to control (locomote within).
- Inherits all structures discussed.

Examples

