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Manifolds

Systems evolve on a manifold, Q.

Definition 1 Let X,Y be subsets of
two Euclidean spaces and let f: X —

Y be bijective. If f and f~1 are contin-
uous, then f is a homeomorphism. If f
and f—! are smooth, then f is a diffeo-
morphism.

Definition 2 A Ek-dimensional mani-
fold, M, is locally diffeomorphic to R”.
l.e., foreach x € M, there exists a nbhd
of z, V. .C M, which is diffeomorphic to

an open setU c RF.
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Manifolds, continued

Definition 3 A coordinatizable surface,
S, is the image of a map f: U — R’
where

#® U Is an open connected subset of
R=.

® The vectors %L and 9L are linearly
Independent for all (u v) eU.

® fI1s a homeomorphism.

(f,U) Is a coordinate system for S with coordinates u, v.

f~1is termed a local parametrization.
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Example (Unit Sphere)

One coordinate system for the sphere is:

U={(u,v) | —g<u<g;—7r<v<7r}

cos(u) cos(v)

f(u,v) = | — cos(u) sin(v)

sin (u)

Note that 92 . 9L — ¢, implying that (f,U) is an orthogonal
coordinate system.
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Tangent Spaces, Vectors

Definition 4 The tangent space fo M atx € M, denoted
by T. M, is the image of df | sy,

Remarks:
1. 7,5, is the closest linear approximation to M at p.

2. Generally, if p; # po, then T, S # T, 5.

3. The dimension of a manifold, M, is defined as the
dimension of its tangent space: dim (M) = dim(T, M ).

4. The definition of the tangent space is intrinsic.

® A tangent vectorat p € M is a vector in T),M.
# The union of all tangent spaces is the tangent bundle.
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Example (sphere continued)

Let p = £(0,0) = [1 0 0]' (where the z-axis intersects the
sphere’s surface). Then

Therefore, T,,M is the plane passing through p and parallel
to the y-z plane.
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Bundles

Definition 5 The manifold B is a fiber bundle if the
following exist:

1. a manifold M called the base space,
2. aprojection T : B — M, and
3. aspaceY called the fiber .

The set Y, defined by

Y, = 7T_1(£L')

Is called the fiber over the point x of M.
Each Y, is homeomorphicto Y. \

B is a vector bundle if Y is a vector space.
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Vector Fields

A vector field is a section defined
on the tangent bundle T'Q), denoted

X:0Q—=T0

For each element ¢ € Q, X (q) € T,Q.

If the vector field is time dependent,
then it is written X (q,t) with shorthand notiation,
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The Jacobi-Lie Bracket

The Jacobi-Lie bracket is defined as,

Xy =Lxy =lim - ((9F) v(0) - V()

where, ®;* is the flow of the vector field X.

The Jacobi-Lie bracket is used to characterize:

1. Involutivity (closure of bracket).
2. Flows (noncommutativity).
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Lie Groups
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Definition of a Lie Group

Definition 5 A group /s a nonempty set GG with a product
operation, =, such that the following hold:

1. Associativity Law: a x (bxc) = (a *x b) * c.
2. Closed Operation:axbe G if a,b € G
3. ldentity: exx =z xe = x.

4. Inverse:Vaxe G, dy : xxy=y*xx =e.

Definition 5 A Lie group is a manifold G whose group
structure isconsistent with its manifold structure. l.e., group
multiplication,

uw:GxG—G, (g,h) — gh,

Is C°°, as is inversion.
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The Classical Matrix Groups

Definition 5 The set of n x n invertible matrices under
matrix multiplication forms group, denoted by GL(n).

Definition 5 A subset, H C G, is a subgroup of G, if H Is
itself a group under the operation of G.

Some of the classical subgroups of GL(n):

1.

ok Db

SL(n): n x n matrices with det = +1

O(n): n x n orthogonal matrices (A? A = I)
SO(n): n xninboth SL(n)and O(n)
U(n): n x n complex orthogonal matrices
SU(n): matrices in U(n) with det = +1.
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Actions of Lie Groups

The product structure can be used to define a left
translation ,

Ly:G— G, Lg(h) = gh,

and similarly a right translation,
R,:G— G, Ryh)=hg
Note that,
Ly oLy, =1Ly g and Ry oR, =Ry, .
An inner automorphism may be defined,

I,: G— G, Ij(h)=LyRy1(h)=Ry1Ly(h) = ghg™’
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Lie Group: SO(3)

SO(3) is the group of rotations in Euclidean space, R°.
As a matrix Lie group, g € SO(3) satisfies:

® gg =1 y \<
® det(g) = 1. 8 |
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Lie Group: SO(3)
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9 8 g
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Lie Group: SE(2)

SFE(2) describes rigid body motions in the Euclidean plane.
As a matrix Lie group, g € SE(2) takes the form:

y
1 N

cosf —sinf x
gh

8
g= |sinf) cosf vy l_/

0 0 1 h
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Lie Group: Dif f,o (M)

Dif foo1(M) Is the Lie group of volume preserving
diffeomorphisms of a manifold M.

An element g € Dif f,, (M) )

is a mapping ﬁ&

gM—>M A
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Invariant Vector Fields

A vector field X on G is left-invariant if

(ThLg)X(h) = X(gh)

The set of left-invariant vector-fields, X7 (G), form a Lie
sub-algebra since,

Ly[X,Y]=|L;X,L}Y]| = [X,Y]
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The Lie Algebra

Elements in X7 (G) can be identified with 7,.G.
X(g) = Xelg) = TeLgt
The Jacobi-Lie bracket defined at the point e € G,
&) = [X&Xn} (e)

gives the tangent space 7.G a bracket structure.

This bracket is called the Lie bracket, and makes T.G,
denoted by g into a Lie algebra.
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Notes on Lie Algebras

Lie Algebra: A real vector space, V, with a
multiplication operation |, | which satisfies for A, B € V:

1. [A, Bl =—[B, A;

2. |[A,B+C]|=|[AB]+[AC]|; [A+B,C]=[AC|+[B,C];
3. forreR, r|A,B| =[rA,B] = |A,rB]|

4. [A,[B,C]|+[B,[A,C]|+[C,[A,B]] =0

The set of smooth vectors fields on a manifold M forms a
Lie Algebra under Jacobi-Lie bracket operation.
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Examples

Lie Algebra of GL(n,R): Setof all n x n real

matrices

Lie Algebra of SO(3): Set of 3 x 3 skew-symmetric
matrices, denoted by so(3):

0 — W3 w2
w=| w3 0 —wy
— w9 w1 0

The Lie Bracket is the matrix commutator:
W1, Wy = WiW2 — Waw1
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Examples Continued

Lie Algebra of SE/(3): Matrices in se(3) take the

form:

£ =
The Lie Bracket is given by:

€1,6) = &162 — &1 =

n
07

=
1

)

o € s0(3); 7€R’

(W1, W] W1T2 — Wath

07 0
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The Adjoints

Differentiation of the inner automorphism leads to the
adjoint operator:

Adj:g—9, Adgnm=T.l,;-n

Differentiation of the adjoint operator (with respect to g)
leads to the Lie bracket, sometimes denoted by ad,

aden = T.(Adn) - & = [£, 1)

# Transformation of observer.
o Used for body/spatial transformations.
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The Exponential Map

A flow is obtained by solving for the differential equations
defined by a left-invariant vector field,

g=Xe(g) =TeLg&— o<

This flow defines the exponential map,
exp:g— G, £ eb

Keeping the time parametrization gives, exp(&t).
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Actions of Lie Groups 2

Definition 5 Let () be a manifold and let G be a Lie group.
A left action of a Lie group G on M is a smooth mapping
d: G x () — @ such that:

1. ®(e,z) =z, Vx € Q, and
2. (I)(qu)(hax)) — (I)(ghvx)a vga hea.

The action of g € G on g € Q will typically be written as g - ¢
of simply gq.

1. free:forall z € Q, ®,(z) = x implies that g = e.

2. proper. W C @ compact implies ®~1(1W) Cc G x Q
compact.
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Infinitesimal Generators

The action of G on () induces a vector field on Q.

The Lie algebra exponential exp defines a curve on @,

s
s
s
z
s
s
s

% (q) = exp(£t) - ¢

which after time differentiation, | M
d
§o(q) = n exp(&t) - q= & - ¢ ) S ——
t=0 /

gives the infinitesimal generator.
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s
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Group Orbits

Definition 5 Given an action of G on () and q € @, the orbit
of ¢ is defined by

Orb (q) ={Py(q) g€ G} CQ

The tangent space at ¢ to the group orbit through ¢ is given
by,

TOI’b {*SQ |£Eg}
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Principal Bundles

Definition 5 A principal bundle is a fiber bundle such that
the model fiber is a Lie group, G.

For mechanical systems the base space, M, is sometimes
called the shape space.

#® Many control systems decompose

this way. : i\
® Shape — Directly controlled. I
® Group — What we want to control
(locomote within). §

® |nherits all structures discussed.

Verona Short Course, August 25-29, 2002 — p.27/2!



Examples

Snakeboard

front wheels 0

T3 x SE(2)

Planar Fish

Hilare Robot

T? x SE(2)

Planar Amoeba
R3 x SE(2)
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