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Abstract: The main goal of this work is the further development of the neoclassical analysis. To do this,

we utilize the theory of fuzzy limits. It provides for a construction of a fuzzy extension for the classical

theory of differentiation. In the second part of this work, going after introduction, elements of the theory of

fuzzy limits are presented to make the exposition more complete. The third part is devoted to the

construction of fuzzy derivatives of real functions. Two kinds of fuzzy derivatives are introduced: weak

and strong ones. Strong fuzzy derivatives are similar to ordinary derivatives of real functions being their

fuzzy extensions. Weak fuzzy derivatives generate a new concept of a weak derivative even in a classical

case of exact limits.

In the fourth part of this work, fuzzy differentiable functions are studied. Different properties of such

functions are obtained. Some of them are the same or at least similar to the properties of the differentiable

functions while other properties differ in many aspects from those of the standard differentiable functions.

Many classical results are obtained as direct corollaries of propositions for fuzzy derivatives, which are

proved in this paper. Some of the classical results are extended and completed. The fifth part of this work

contains several interpretations of fuzzy derivatives aiming at application of fuzzy differential calculus to

solving practical problems. At the end, some open problems are formulated.
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1. Introduction

Mathematics is an efficient tool for modeling real world phenomena. However, in its essence

mathematics is opposite to real world because mathematics is exact, rigorous and abstract while

are imprecise, vague, and concrete. To lessen this gap, mathematicians elaborate methods that

make possible to work with natural vagueness and incompleteness of information using exact

mathematical structures. One of the most popular approaches to this problem is fuzzy set theory.

Traditionally, this theory has been developing in two directions (Zimmermann, 1991;

Kosko,1993). The first one has been aimed at fuzzification of different classical mathematical

structures and studying properties of these fuzzy objects. This development in many aspects has

been parallel to the classical mathematics. In such a way, fuzzy sets, fuzzy logic, fuzzy numbers,

fuzzy topologies and so on were introduced and studied.

The second direction takes or elaborates fuzzy structures and applies them to different practical

problems. In such a way, fuzzy sets were introduced and fuzzy set theory has found many useful

applications to problems of Artificial Intelligence, pattern recognition, decision-making, operation

research and many others.

Neoclassical analysis (Burgin and Šostak, 1992; 1994; Burgin, 1992; 1995; 1997; 1997a; 1999;

2000; Janiš, 1999) is the third direction in fuzzy set theory. In it, ordinary structures of analysis,

that is, functions and operators, are studied by means of fuzzy concepts: fuzzy limits, fuzzy

continuity, and fuzzy derivatives. For example, continuous functions, which are studied in the

classical analysis, become a part of the set of the fuzzy continuous functions studied in the

neoclassical analysis. It extends the scope of analysis making, at the same time, its methods more

precise. Consequently, new results are obtained extending and even completing classical

theorems. In addition, facilities of analytical methods for various applications also become more

broad and efficient.

The principal goal of this work is to extend the range of the classical mathematical analysis by

finding means for differentiation of such ordinary functions that have no conventional derivatives.

It is done by introducing fuzzy strong and fuzzy weak derivatives.

The necessity to launch investigation and implementation of fuzzy principles in the classical

analysis, while studying ordinary functions, is caused by several reasons. One of the most

important of them is connected with properties of measurements. Any real measurement provides

not absolutely precise but only approximate results. For example, it is impossible to find out if any
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series of numbers obtained in experiments converges or a function determined by measurements is

continuous at a given point. Consequently, constructions and methods developed in the classical

analysis are only approximations to what exists in reality. In many situations such approximations

has been giving a sufficiently adequate representation of studied phenomena. However, scientists

and, especially, engineers have discovered many cases in which such methods did not work

because classical approach is too rough (Zimmermann, 1991; Kosko,1993).

Here, we consider only one example from physics. It is the, so-called, Barkhausen effect

discovered in 1919 (Vonsovskii, 1974; Burke, 1986).  This effect has been thoroughly studied,

analyzed, explained,  and utilized as a tool for investigation of many properties of ferro- and

ferrimagnetic materials.  There is a reasonable theoretical model of that effect.  Its essence is as

follows.  If a ferro- or ferrimagnetic sample is being magnetized in an external magnetic field, the

magnetization of the sample is increasing, along with the increase of the external magnetizing

field.  However, even if the magnetizing field is increasing in a continual way, the magnetization

of the sample is increasing via thousands of small discontinuities ("Barkhausen jumps"). In other

words, an impact of the field the change of which is described by a continuous function produces

such changes that may be adequately represented only by a fuzzy continuous function.

Many features of the Barkhausen effect has been studied, including the distributions of

Barkhausen discontinuities over their duration, and over their amplitude, and over their shape etc. 

Much is known about the mechanism of those "jumps" and about their relationship to many other

properties of the sample, such as demagnetizing factor, saturation magnetization, remnant

magnetization, etc.  However, there is no such a continuous function that provides for a

sufficiently correct description of the phenomenon. The difficulty is not mathematical but is

caused by the physical nature of the process. 

There are numerous examples of similar situations. In many cases development of

measurement methodology and achieving in such a way higher precision than before helped to

discover natural discontinuous processes that seemed continuous for a long period of time.

Besides, when scientists develop models of different phenomena, they encounter similar

problems. One of the most popular models in science and engineering is a system of differential

equations. Differential equations are used in economics and sociology. These and many other

mathematical models utilize limit processes. For example, derivatives in differential equations are

constructed as special limits of functions or points. Continuous functions and the calculus,

differential equations and topology, all are based on limits and continuity. However, when we
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perform computations and measurements, we can do only finite number of operations and

consequently, achieve only approximate results. At the same time, mathematical technique, e.g.,

calculus and optimization theory are based on operation of differentiation. This brings us to an

unexpected conclusion. Although, it is supposed that numerical computation is a precise

methodology in contrast to qualitative methods, this is true only in a very few cases. For limit

processes, this is not so and computation adds its uncertainty to the vagueness of initial data. As

writes Gregory Chaitin (1999), the fact is that in mathematics, for example, real numbers have

infinite precision, but in the computer precision is finite.  In some cases, this discrepancy between

theoretical schemes and practical actions changes drastically outcomes of a research resulting in

uncertainty of knowledge. For example, as remarked the great mathematician Henri Poincare,

series convergence is different for mathematicians, who use abstract mathematical procedures, and

for astronomers, who utilize numerical computations.

Consequently, new methods and constructions are necessary to take into account such more

sophisticated effects in different systems. Such methods and constructions are provided by

neoclassical analysis.

The main goal of this work is the further development of neoclassical analysis. To do this, we

utilize the theory of fuzzy limits, which is elaborated in (Burgin, 2000). As it is known, theory of

limits is the base for differential and integral calculi in classical analysis. Likewise, the theory of

fuzzy limits provides for construction of fuzzy extensions for both classical calculi. Here, we are

dealing with the first one developing the theory of fuzzy differentiation. It is a natural step after

elaboration of the theory of fuzzy limits and the theory of fuzzy continuous functions. For

simplicity, only functions on the real line with real values are considered in this work. However,

the main constructions and results are valid for a much broader context.

In the second part of the work, going after introduction, elements of the theory of fuzzy limits

are presented to make the exposition more complete.

 The third part is devoted to the construction of fuzzy derivatives of real functions. Two kinds

of fuzzy derivatives are introduced: weak and strong ones. Strong fuzzy derivatives are similar to

ordinary derivatives of real functions being their fuzzy extensions. At the same time, weak fuzzy

derivatives generate a new concept of a weak derivative even in a classical case of exact limits.

Properties of fuzzy derivatives are investigated and compared with the nearness derivative of a

function introduced by Janiš (1999).
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As in the classical case, a fuzzy derivative of a function represents an approximation of the rate

at which the dependent variable changes relative to the independent variable. Strong fuzzy

derivatives reflect approximations of all rates, while a weak fuzzy derivative reflects an

approximation of a particular rate. Rates of change are highly important in science; for example,

velocity is the rate of change of position, and acceleration is the rate of change of velocity. In some

cases, the exact rate does not exist. In other cases, it exists but it is impossible to measure such exact

rate. For example, if we take the rate of change of position impossibility to measure it is one of the

consequences of the Principle of Uncertainty, which was introduced by Heisenberg. Besides, there

are cases when exact rate exists, it feasible to measure it, but it is impossible to calculate the value

of this exact rate. All these and many other situations imply usefulness and necessity to study fuzzy

derivatives.

In the fourth part of this work, fuzzy differentiable functions are studied. Different properties

of such functions are obtained. Some of them are the same or at least similar to the properties of

the differentiable functions while other properties differ in many aspects from those of the

differentiable functions. Many classical results are obtained as direct corollaries of propositions

for fuzzy derivatives, which are proved in this paper. Some of the classical results are extended

and completed. For example, it is demonstrated (theorem 4.5) that any fuzzy differentiable

function f is continuous.

It is necessary to remark that the concept of a weak fuzzy derivative is closely connected to

the notion of weakly continuous (Collingwood and Lohwater, 1966) and weakly symmetrically

continuous (Ciesielski and Larson, 1993-94; Ciesielski, 1995-96) functions. These connections are

also studied in the fourth part of this work. For example, it is demonstrated (Proposition 4.2) that

any weakly fuzzy differentiable function f at a point  x is weakly continuous at x.

The fifth part of the paper contains several interpretations of fuzzy derivatives. It is aimed at

application of fuzzy differential calculus for solving practical problems.

At the end of this paper, some features of neoclassical analysis are discussed, comparison

with other related works is presented, and some open problems are formulated.

For simplicity, fuzzy differential calculus is developed for real function on R . However, it is

possible to develop by the same technique a similar calculus for function having the form f: Rn →

Rm or the form f: Cn → Cm.
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Denotations:

N is the set of all natural numbers;

ω is the sequence of all natural numbers;

∅ is the empty set;

R is the set of all real numbers;

R+ is the set of all non-negative real numbers;

R++ is the set of all positive real numbers;

C is the set of all complex numbers;

If a is a real number, then |a| or ||a|| denotes its absolute value or modulus;

ρ(x,y) = | x - y |   for  x,y∈ R;

if  l = {ai∈M; i∈ω} is a sequence, and  f: M → L is a mapping,  then   f(l) = {f(ai ); i∈ω};

a = r-lim l means that a number a is an r-limit of a sequence l;

if A = {ai; i∈I} is an infinite set, then the expression "a predicate P(x) is true for almost all

elements from A" means that P(x) can be untrue only for a finite number of elements from A . For

example, if A = ω, then almost all elements of A are bigger than 10, or another example is that

conventional convergence of a sequence l to x means that any neighborhood of x contains almost

all elements from l ;

if X is a subset of a topological space, then Cl(X) denotes the closure of the set X.

2. Elements of the theory of fuzzy limits

Let r∈R and l = {ai∈R; i∈ω}.

Definition 2.1 (Burgin, 2000). A number a is called an r-limit of a sequence l (it is denoted a

= r-limi→∞ ai  or a = r-lim l ) if for any  ε∈ R++ the inequality  ρ(a, ai ) ≤ r + ε  is valid for almost

all  ai , i.e., there is such n that for any i>n,  we have ρ(a, ai ) ≤ r + ε.

Example 2.1. Let l = {1/i; i∈ω}. Then 1 and -1 are 1-limits of l ;  1/2 is a (1/2)-limit of l but 1

is not a (1/2)-limit of l.

Informally, a is an r-limit of a sequence l for an arbitrarily small ε the distance between a and

all but a finite number of elements from l is smaller than r + ε .
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When r = 0, the r-limit coincides with the conventional limit of a sequence as the following

result demonstrates.

Lemma 2.1.  a = lim l  if and only if  a = 0-lim l.

This result demonstrates that the concept of an r-limit is a natural extension of the concept of

conventional limit. However, the concept of an r-limit actually extends the conventional

construction of a limit (cf. Example 2.2).

Lemma 2.2. If  a = r-lim l  then  a = q-lim l  for any q > r.

Let r∈R+, l = {ai∈R; i∈ω} , h = {bi∈R; i∈ω} , k = {ci∈R; i∈ω} , and  l  is the disjoint union

of h and  k .

Lemma 2.3.   a = r-lim l if and only if a = r-lim h  and a = r-lim k .

Definition 2.2 (Burgin, 2000). a) A number a is called a fuzzy limit of a sequence l if it is an

r-limit of l for some r∈R+.

b) a sequence l fuzzy converges if it has a fuzzy limit.

Example 2.2. Let us consider sequences l = {1 + 1/i; i∈ω},   h = {1 + (-1)i; i∈ω}, and  k = {1

+ [(1 - i)/i]i ; i∈ω}. Sequence l has the conventional limit equal to 1 and many fuzzy limits (e.g., 0,

0.5 , 2 are 1-limits of l ). Sequence h does not have the conventional limit but has different fuzzy

limits (e.g., 0 is a 1-limit of h, while 1, -1, and 1/2  are 2-limits of h ). Sequence k does not have

the conventional limit but has a variety of fuzzy limits (e.g., 1 is a 1-limit of k, while 2, 0, 1.5, 1.7,

and 0.5  are 2-limits of k ).

Thus, we see that many sequences that do not have the conventional limit have lots of fuzzy

limits.

Remark 2.1.  The measure of convergence of l to points from R defines the normal fuzzy set

Lim l = [L, µ(x=lim l)] of fuzzy limits of l (Burgin, 2000).

Definition 2.3. A number a is called a partial  r-limit of a sequence l (it is denoted a = r-plim l)

if for any  ε∈ R++ the inequality  ρ(a, ai ) ≤ r+ε is valid for infinitely many elements ai  from  l .

In the classical mathematical analysis, some cases of partial limits (such as lim or lim ) are

considered. A general case of partial limits is treated in (Randolph, 1968) where partial limits, i.e.,

partial 0-limits by Lemma 2.4, are called subsequential limits. These limits make it possible to

define by a standard limit construction weakly continuous and uniformly antisymmetric functions

studied in (Collingwood and Lohwater, 1966; Ciesielski and Larson, 1993-94; Ciesielski, 1995-

96).
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Lemma 2.4. A point a is a subsequential (partial) limit of a sequence l  if and only if  a is a

partial 0-limit of l.

Proposition 2.1. The following conditions are equivalent:

         1) a sequence l has no fuzzy limits;

         2) some subsequence of l diverges;

         3) some subsequence of l has no fuzzy limits;

         4) the diameter  d({ai; ai ∈ l})  is infinite.

Theorem 2.1 (Burgin, 2000). If  a = r-lim l  and  a > b+r , then ai   >  b   for almost all ai   

from l.

Corollary  2.1 (Ribenboim, 1964; Fihtengoltz, 1955). If  a = lim l  and  a > b,  then ai > b   for

almost all ai   from  l.

Corollary  2.2 (Ribenboim, 1964; Fihtengoltz, 1955). If  a = lim l  and  a > 0 , then ai > 0  for

almost all ai from  l.

Corollary  2.3.  If ai ≤ q  for almost all ai   from l and  a = r-lim l,   then  a ≤ q+r.

Corollary  2.4 (Ribenboim, 1964; Fihtengoltz, 1955). If ai ≤ q  for almost all ai from l and  a =

lim l,  then  a ≤ q.

Theorem  2.2 (Burgin, 2000). For an arbitrary number r∈R+, all r-limits of a sequence l

belong to some interval, the length of which is equal to 2r.

When r = 0, this interval shrinks to one point, and we have the following result.

Corollary  2.5 (any course of mathematical analysis, cf., for example, (Ribenboim, 1964;

Fihtengoltz, 1955)).  A limit of a sequence is unique (if this limit exists).

Theorem 2.3 (Burgin, 2000). A sequence l fuzzy converges if  and  only  if  it  is bounded.

It gives a criterion for boundedness of a sequence while classical results give only sufficient

conditions (Ribenboim, 1964; Fihtengoltz, 1955).

It is possible to define infinite fuzzy limits.

Definition 2.4.  ∞ (-∞)  is an r-limit of  l  if almost all elements ai are bigger (less)  than r (- r).

Example 2.3. ∞  is a 10-limit of the sequence l = {10 + 1/i; i∈ω}, 0-limit of the sequence h =

{i ; i∈ω}, and 2-limit of the sequence k = {1 + (i - 1)/i ; i∈ω}.

Lemma 2.5.  ∞ (-∞) is the limit of l (in the classical sense (Ribenboim, 1964; Fihtengoltz,

1955) if and only if it is an r-limit  of l for any r > 0 ( r < 0 )
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Lemma 2.6. ∞ (-∞) is an r-limit of l = {ai∈R; i∈ω} if and only if 0 is a 1/r-limit of the inverse

sequence h = {ai
-1; i∈ω} .

Lemma 2.7.  If  ∞  is an r-limit of  l, then any  q-limit of l  is bigger than r - q .

Corollary  2.6. If  ∞  is an r-limit of  l, then any  r-limit of l  is positive .

Proposition 2.2. If  ∞  is an r-limit of  l and b is a  q-limit of l, then:

a) r≤ b-q  implies that ∞ is a (b-q)-limit of l ;

b) b) r> b-q  implies that l  has a  0.5⋅(q+b-r)-limit.

Remark 2.2. Not all properties of ordinary limits are properties of fuzzy limits. For example,

an r-limit may be not unique (Burgin, 2000). In the same way, for ordinary (exact) limits, we have

the following result: if ai<bi  for almost all i∈ω  and a =lim ai , b = lim bi,  then a ≤ b (Ribenboim,

1964; Fihtengoltz, 1955). For fuzzy limits, the resulting inequality is not always true (Burgin,

2000). However, some similar statements for fuzzy limits may be proved (cf. Proposition 2.6).

Proposition 2.3. If  q = δ(l) = inf {r; ∃ a = r-lim l }  and  b = q-lim l  then the q-limit of  l  is

unique.

Theorem 2.4 (Burgin, 2000). For an arbitrary number r∈R+, the set L r(l) = {a∈R; a = r-lim

l}  of  all  r-limits  of a sequence  l  is a convex closed set, i.e., either L r(l) = [a,b] for some  a,b ∈

R , or L r(l) = ∅  when l has no r-limits.

Let L r(l) = [b,c].

Proposition 2.4.  a)  r ≤ c - b ≤ 2r ;

    b)  the sequence l  has a  0.5⋅(2r-c+b)-limit.

Corollary  2.7.   c - b = 2r  if and only if the sequence  l  converges.

Corollary  2.8.   c - b = r  if and only if  c is the smallest and  b  is the biggest of the partial

limits of l.

Let  b < c be two  r-limits of l .

Proposition 2.5. If d is an r-limit of  l and  b < d < c, then:

a)  c - d < r  implies that l  has a  0.5⋅(r + c - d)-limit;

a) d - b < r  implies that l  has a  0.5⋅(r + d - b)-limit.

Proposition 2.6. If ai < bi  for almost all i∈ω, l = {ai∈R; i∈ω}, h = {bi∈R; i∈ω}, Lr(l) = [a,c],

and Lr(h) = [b,d],  then   a ≤ b and  c ≤ d.
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Corollary 2.9. If  h  is a subsequence of l, then   Lr(h) ⊆ Lr(l)   for all r∈R+.

Corollary 2.10 (Ribenboim, 1964). If ai < bi  for almost all i∈ω  and a = lim ai , b = lim bi,

then a ≤ b.

Lemma 2.8.  If  r ≤ p, then   Lr(l) ⊆ Lp(l)   for any sequence l .

Let  l = {ai∈R; i∈ω}, h = {bi∈R; i∈ω}, k = {ci∈R; i∈ω}, and  ai ≤ bi ≤ ci   for almost all i∈ω.

Proposition 2.7. If Lr(l) = [a,u], Lr(h) = [b,v], and Lr(k) = [c,w],    then:

a) Lr(h) ⊆ [a,w];

b) Lr(l) = Lr(k) ≠ ∅  implies Lr(h) = Lr(l) ≠ ∅.

Corollary  2.11 (Ribenboim, 1964; Fihtengoltz, 1955; Randolph, 1968; Goldstein et al, 1987;

Shenk,1979). If both sequences l and k converge to the same limit  a , then h converges and  lim h

= a.

Proposition  2.8. If a = r-lim l and ρ(a,b) = p, then b = (r+p)-lim l.

Theorem  2.5. If   a = r-lim l  and  b = q-lim h  then:

  a) a+b = (r+q)-lim(l+h)  where l+h = {a + b ; i∈ω };

  b) a-b = (r+q)-lim(l-h)  where l-h = {a - b ; i∈ω};

  c) ka = |k|⋅r-lim (kl)  for any k∈R  where kl = {ka ; i∈ω}.

  Corollary  2.12. (any course of the calculus, cf., for example, (Ribenboim, 1964; Fihtengoltz,

1955)).  If  a=lim  l, b=lim h  then:

                  a) a+b = lim (l + h);

                  b) a-b = lim (l - h);

                  c) ka = lim (kl) for any k∈ R.

Corollary  2.13.  If  a  is a fuzzy limit of  l  and  b  is a fuzzy limit of  h  then (a+b) ( (a - b),

and  ka)  is a fuzzy limit of  l + h  (of (l - h), and  kl),  respectively.

Definition 2.5. A sequence l  is called  r-fundamental if for any  ε∈ R++ there is such  n∈ω

that for any i,j ≥ n  we have   ρ(aj, ai ) ≤ 2r + ε .

Definition 2.6. A sequence l is called fuzzy fundamental if it is r-fundamental for some r∈ R+.

Lemma 2.9. If  r ≤ p, then any r-fundamental sequence is p-fundamental.

Lemma 2.10. A sequence l is fundamental (in the ordinary sense, i.e., it is a Cauchy sequence)

if and only if it is 0-fundamental.

Lemma 2.11. A subsequence of an r-fundamental sequence is r-fundamental.
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Theorem  2.6 ( the Extended Cauchy Criterion). The sequence l has an r-limit if and only if

it is r-fundamental.

Proof. Necessity.  Let a = r-lim l  and ε∈ R++ . Then by the definition ∃n∈ω ∀i > n (ρ(a, ai )

≤ r+ε/2. Consequently, for any  i, j > n,  we have   ρ(ai, aj ) ≤ ρ(a, ai ) + ρ(a, aj ) ≤ 2r+2(ε/2) <2r

+ ε. Thus, l is an r-fundamental sequence.

Sufficiency. Let l be an r-fundamental sequence and εm=1/m. Then for each number n(m),

which is dependent on  m, and for all i, j > n(m), we have   ρ(ai, aj ) ≤ 2r+1/m , i.e., all points ai

with i > n(m) belong to a closed interval Im  whose length is equal to 2r+1/m. Really, let  Tm = {ai ;

i>n(m) } , b = sup Tm , and  c = inf Tm . Then all   ai∈[c, b]  for  i > n(m).

Let us estimate the length of Im . Suppose that  ρ(b, c) > 2r + 1/m . It means that  ρ(b, c ) =

2r+1/m + h for some positive number h. At the same time, as l is an r-fundamental sequence, there

are such  ai, aj , for which  i, j > n(m) , ρ(b, aj ) ≤ (1/10)⋅h , and  ρ(c, ai ) ≤ (1/10)⋅h  because  b  is

the supremum and  c  is the infinum of all these elements. Consequently, ρ(ai, aj ) > 2r+1/m

+(4/5)⋅h . It contradicts the choice of the number n(m). Thus, the length of  Im= [c, b]  is not bigger

than  2r+1/m .

We can choose these intervals  Im  so that the inclusion Im+1⊆ Im  will be valid for all m .  In

such a way, we obtain a sequence of imbedded closed intervals  { Im ; n ∈ω}. The space R is

locally compact. Consequently, the intersection I = ∩ Im  is non-void. That is, either the set I

consists of one point d or I is a closed interval having the length not bigger than 2r. When I is a

one-point set {d},  the sequence l converges to d, and thus, it is fundamental (cf. Lemma 2.8 and

(Ribenboim, 1964). This means (by Lemma 2.10 and Lemma 2.9) that l is r-fundamental.

When I is a closed interval, its middle e is an r-limit of l because for any  ε∈ R++ there is some

interval Im ⊇ I, for which ε > 1/m , ρ(e, em) < (1/3)ε for the center em of Im and almost all ai

belong to Im . Consequently, ρ( e,  ai ) ≤ ρ( em, ai ) + ρ( e, em) < (1/3)ε + r +(1/3)ε < r + ε , i.e., e

is an r-limit of l .

  Theorem is proved.

From  Theorem 2.6, we obtain the following result.

 Theorem  2.7 (the General Fuzzy Convergence Criterion). The sequence l fuzzy converges

if and only if  it is fuzzy fundamental.

Corollary  2.14 (the Cauchy Criterion) (Ribenboim, 1964). The sequence l converges if and

only if it is fundamental.
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This result and Lemma 2.10 demonstrate that the concept of fuzzy convergence is a natural

extension of the concept of conventional convergence.

Proposition 2.9. The following conditions are equivalent:

         1) a sequence l is not fuzzy fundamental;

         2) the sequence  l  is not bounded;

         3) some subsequence of l has no fuzzy limits;

         4) ∞  or  -∞  is the partial limit of  l.

The neoclassical analysis makes possible not only to extend ordinary concepts obtaining new

results for classical structures, but also provides for elaboration of new useful concepts. One of

such concepts is given in the definition of fuzzy limits of sets of sequences.

Definition 2.7. A number a is called an r-limit of a set E = { lj ; j∈ω } of sequences of real

numbers (it  is denoted a = r-lim E ) if a is an r-limit  of each sequence  li from  E.

Remark 2.3. If  E  has a 0-limit a , then this 0-limit is unique and all sequences from  E

converge to a. In contrast to this sequences from a given set may have different limits but a

common fuzzy limit. For example, the set E = { {1/2n; n = 1, 2,…}, {1+ 1/3n; n = 1, 2,…}, {2+

1/5n; n = 1, 2,…} } has a 1-limit 1.

Lemma 2.1 implies the following result.

Corollary  2.15. If  a = r-lim E  then  a = q-lim E  for any q>r.

From  Theorem 2.1, we obtain the following result.

Corollary  2.16. If  a = r-lim E  and  a > b+r , then aij   >  b   for almost all aij   from each   l ∈

E .

From  Theorem 2.2, we obtain the following result.

Corollary  2.17. All r-limits of a set E of sequences belong to  some  interval the length of

which is equal to 2r.

Since an intersection of closed intervals is a closed interval (Kuratowski, 1966; 1968), from

Theorem 2.4 we obtain the following result.

Corollary  2.18. The set L r(E) = {a∈R; a = r-lim E} is a closed interval.

It is necessary to remark that some of the results contained in this part of the work are proved

in (Burgin, 2000) and given here for completeness without proofs, while other results are new.
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3. Fuzzy derivatives

Let  X, Y ⊆ R,  f: X → Y be a function,   b ∈ R, and r ∈ R+.

Definition 3.1. A number b is called a weak centered (left, right, two-sided) r-derivative of  f

at a point  x∈X  if  b = r-lim ( f(x)  -  f(xi)) /(x – xi )    (and all  xi  < x ;  and all  xi  > x ; b = r-lim

(f(zi)  -  f(xi)) / (zi – xi ),  with  zi  < x <  xi  for all i∈ω, and  the sequences {xi}, {zi} converging to

x) for some sequence {xi} converging to x .  It is denoted by b = wr
ctd/dx f(x)  (b =  wr

ld/dx f(x) ,  b

= wr
rd/dx f(x), and b =  wr

td/dx f(x), correspondingly) .

When r is not specified, we call weak centered (left, right, two-sided) r-derivatives of f at a

point x∈X fuzzy weak centered (left, right, two-sided, correspondingly) derivatives of f at a point

x∈X .

Example 3.1. Let us take the membership function mQ(x) of the set of rational numbers, i.e.,

mQ(x)  is equal to 1 when x is a rational number and mQ(x)  is equal to 0 when x is an irrational

number. This function is not even continuous, consequently it does not have derivatives neither in

classical sense (Randolph, 1968; Goldstein et al, 1987) nor as a generalized function (Shwartz,

1950-51). However, at any point x from R, mQ(x) has a weak derivative, which is equal to 0.

The construction of a weak centered (left, right, two-sided) r-derivative of f at a point x∈X

give birth to a new concept in classical calculus of a weak centered (left, right, two-sided)

derivative of f at a point  x∈X.

Definition 3.2. A number b is called a weak centered (left, right, two-sided) derivative of  f  at

a point  x∈X  if  b = lim ( f(x)  -  f(xi)) /(x – xi )    (and all  xi  < x ;    and all  xi  > x ; b = r-lim (f(zi)

-  f(xi)) / (zi – xi ),  with  zi  < x <  xi  for all i∈ω, and  the sequences {xi}, {zi} converging to x) for

some sequence {xi} converging to x. It is denoted by b = wctd/dx f(x) (b = wld/dx f(x), b = wrd/dx

f(x), and  b = wt
 d/dx f(x), correspondingly) .

Remark 3.1. Weak derivatives of functions are special cases of extraderivatives of the same

functions (Burgin, 1993).

Definition 3.3. A number b is called a strong centered (left, right, two-sided) r-derivative of  f

at a point x∈X  if b = r-lim ( f(x)  -  f(xi)) /(x – xi ) (and all  xi  < x ;  and all  xi  > x ; b = r-lim

(f(zi)  -  f(xi)) / (zi – xi ),,  with  zi  < x <  xi  for all i∈ω, and  the sequences {xi}, {zi} converging to

x) for   all  sequences {xi ; i∈ω } converging to x .
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A strong centered (left, right, two-sided) r-derivative of  f  at a point x∈X is denoted by b =

str
ctd/dx f(x)   (b =  str

ld/dx f(x) ,  b = str
rd/dx f(x), and   b = str

td/dx f(x), correspondingly ) .

 Remark 3.2. In what follows, str
zd/dx f(x) denotes one of these four types of strong and wr

zd/dx

f(x), denotes one of these four types of weak r-derivatives of f(x). Here z ∈ {ct, l, r, t}.

Example 3.2. There exist functions even in mathematics that fail to have a classical derivative at

some given point. However, they may have a fuzzy derivative at the same point. A simple example

is the following: Let f(x) = x if x is positive or zero and f(x) = -x if x is negative (that is, f(x) = |x|, the

absolute value of x) and choose x0 to be 0. It follows that, if h is positive, the difference quotient is

the number 1, as shown by calculation; whereas, if h is negative, the quotient is -1. Thus, f(x) does

not have a derivative at x0 = 0 because, arbitrarily close to 0, the difference quotient assumes the

values 1 and -1; i.e., this difference quotient does not approach one unique number as h approaches

zero

However, 0 is the strong two-sided 1-derivative of f(x) at 0 , 1 is a strong right while -1 is a

strong left 0-derivatives of f(x) at 0.

Example 3.3. Piecewise linear transformations on the interval have been widely studied in the

theory of dynamical systems (Collet and Eckmann, 1980; Marcuard and Visinescu, 1992) and

under different names as well: broken linear transformations (Gervois and Mehta, 1977) or weak

unimodal maps (Misiurewicz, 1989). An example of such functions if given by a skew tent map

fa,b(x) that is equal to b + ((1-b)/a)x when 0 ≤ x < a and equal to (1-x)/(1-a) when a ≤ x ≤ 1 .

Piecewise linear transformations do not have conventional derivatives at some points but they

have strong fuzzy derivatives at all points. It provides for application of differential methods to

these mappings as well as to dynamics generated by them.

Remark 3.3. In contrast to the classical derivative, it is possible that different numbers are

strong centered (or left, right, two-sided) r-derivatives of a given function f at a point  x .

Remark 3.4. An alternative approach to fuzzy differentiation is suggested by Janiš (1999).

His construction for differentiation is based on the concept of fuzzy continuity from (Burgin and

Šostak, 1992; 1994). He considers the set R with nearness in the sense of (Kalina, 1997).

Definition 3.4 (Kalina, 1997).  A continuous function N: R×R→ [0, 1] is called a nearness on

R if it satisfies the following conditions:

1) for each x, y ∈R, N(x, y) = 1 if and only if x = y;

2) for each x, y ∈R, N(x, y)  = N(y, x);
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3) if x < y < z, then N(x, y)  ≥ N(x, z);

4) for each x ∈R, lim y→±∞ N(x, y)  = 0;

5) for each x, y, c ∈R, N(x, y) = N(x+ c, y+ c) .

Remark 3.5. Another kind of nearness spaces was introduced by Herrlich (1974; 1974a).

Let α∈ (0, 1), f: R→ R , and a ∈R. Then Dα (f, a) = { ( f(x)  -  f(a)) /(x – a ); x ≠ a , N(x, a) ≥ α }.

Definition 3.5. If X is a set of real numbers, then its interval closure int(X) is equal to the least

interval that contains X.

Remark 3.6. The interval closure of a set may be infinite. For example, int(N) = [1, ∞].

This makes possible to define the α-nearness derivative fα’(a) of a function f at a point a by the

following formula:             fα’(a) = int(Dα  (f, a) ) = [inf Dα (f, a), sup Dα (f, a) ] .

Here int(Dα (f, a)) is the interval closure of the set Dα (f, a).

In this definition, the α-nearness derivative fα’(a) of a function f at a point a is a set. In contrast

to this, all derivatives that are studied in this work are real numbers, which are the points of the real

line. There are interesting relations between nearness derivatives and sets of weak and fuzzy weak

derivatives of the same function. These relations are considered further in this section.

Remark 3.7. It is possible to possible to develop all constructions from this work in the space

R with nearness.

Let x be an isolated point of X .

Lemma 3.1. Any number b∈R is a strong centered (left, right, two-sided) r-derivative of  f  at

a point   x∈X  for any r ∈ R+.

Lemma 3.2. Any strong centered (left, right, two-sided) r-derivative of  f  at a point x∈X is a

weak one-sided (left, right, two-sided) r-derivative of  f  at the same point for any r ∈R+.

Lemma 3.3.  b = str
zd/dxf(x) if and only if  b = r-lim E  where E = { { (f(x)  -  f(xi)) /(x – xi );

i∈ω}; { xi; i∈ω} is a corresponding sequence converging to x }.

Lemma 3.4. Any strong (weak) centered r-derivative of f at a point x∈X is both (either) a

strong (weak) left and strong (weak) right r-derivative of  f  at the same point for any r ∈ R+.

Lemma 3.5. If  b is both a strong (weak) left and strong (weak) right  r-derivative of  f  at a

point   x∈ X, then strong (weak) centered r-derivative of  f  at the same point for any  r ∈ R+.
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Proof. Let us consider a sequence {xi∈R; i∈ω} converging to x∈X and let b be both strong

(weak) left and strong (weak) right r-derivatives of f at x. Then the sequence {xi∈R; i∈ω}

consists of two subsequences {vi∈R; i∈ω}  and {zi∈R; i∈ω}  such that vi  < x and zi  > x for all .

Each of them either is finite or it converges to x. When one of these subsequences is finite, then b

= r-lim ( f(x)  -  f(xi))/( x – xi) .

Let both subsequences {vi∈R; i∈ω}  and {zi∈R; i∈ω}  be infinite. By the definition of strong

 r-derivatives   b = r-lim ( f(x) -  f(vi)) /(x – vi )) and  b = r-lim ( f(x)  -  f(xi)) /(x – xi ). Then by

Lemma 2.3, b =  r-lim ( f(x) -  f(xi)) /(x – xi ).   As the sequence {xi∈R; i∈ω} is chosen arbitrarily,

Lemma 3.5 is proved.

Definition 3.6. A number b is called a complete r-derivative of  f  at a point x∈X  if b is at the

same time a strong centered, left, right, and two-sided r-derivative of  f  at the point  x .

Proposition 3.1. If  b is a strong centered r-derivative of  f  at a point x∈ X , then b is a

strong two-sided r-derivative of  f  at the point x∈ X .

Proof. Let us consider an arbitrary sequence { (f(zi)  -  f(xi)) /(zi – xi ); zi   > x >   xi  , i ∈ω }.

Geometrical considerations demonstrate that either   (f(x)  -  f(xi)) /(x – xi ) ≤ (f(zi)  -  f(xi)) /(zi – xi )

≤  (f(x)  -  f(zi)) /(x – zi )  or   (f(x)  -  f(xi)) /(x – xi ) ≥ (f(zi)  -  f(xi)) /(zi – xi ) ≥  (f(x)  -  f(zi)) /(x – zi ).

Consequently, if  b is a strong centered r-derivative of  f at x , then b is an r-limit of the sequences

{ (f(x) - f(zi)) /(x – zi ); i ∈ω } and { (f(x)  -  f(xi)) /(x – xi ); i ∈ω }. Properties of  r-limits imply that

b is an r-limit of the sequence { (f(zi)  -  f(xi)) /(zi – xi ); i ∈ω }. As { (f(zi)  -  f(xi)) /(zi – xi ); zi   > x

>   xi  , i ∈ω } is an arbitrary system, then b is (by the definition) a strong two-sided r-derivative of

f  at the point   x∈ X .

Proposition 3.1 is proved.

Let  f  be a continuous function at a point x∈X.

Proposition 3.2.  If a strong two-sided r-derivative of  f  at a point x∈ X exists (and is equal

to b ) then  both one-sided strong r-derivatives of  f  at a point   x∈ X  exist (and coincide with b) .

Proof. Let us consider a sequence {xi∈R; i∈ω}, which converges to x∈ X and in which all  xi

< x . As f  is a continuous function at x, it is possible to correspond to each xi such zi that x < zi

and |x – zi |  < 1/i  .Then   | b - ( f(x)  - f(xi) )/( x – xi)| <  | b - ( f(x) - f(xi) )/( zi – xi)| + εi < | b - ( f(zi) -

f(xi) )/( zi – xi)| + εi .   Both sequences {| b - ( f(zi) -  f(xi) )/( zi – xi)| ; i∈ω} and {εi; i∈ω} converge

to zero. Consequently, number b∈R+ is a strong left r-derivative of  f  at the point  x .
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In a similar way, we prove that b is a strong right r-derivative of  f  at the point   x.

Corollary 3.1.  If the strong two-sided r-derivative of f at a point x∈ X exists (and is equal to

b ), then a strong centered r-derivative of  f  at a point   x∈ X  exists (and coincides with b) .

Remark 3.8.  Continuity of f is essential for the validity of Proposition 3.2. It is demonstrated

by the following example.

 Let   f(x) = x for all x>0,  f(x) = -x for all x < 0, and   f(0) =1 . Then f  has a strong two-sided

3-derivative at 0 having no strong one-sided r-derivatives at 0 for any r ∈R .

Proposition 2.10 from (Burgin, 2000) and Proposition 3.2 imply the following result.

Corollary  3.2. If  b  is a strong centered r-derivative of  f  at a point x∈X , then 2b is a strong

centered (b+r)-derivative of  f  at a point   x∈X .

From  Lemmas 3.4, 3.5, Proposition 3.2, and Corollary 3.1, we obtain the following result.

Corollary  3.3. If  b  is a strong centered r-derivative of  f  at a point   x∈ X , then 2b is a

strong complete (b+r)-derivative of  f  at a point   x∈ X .

Corollary  3.4. If  b  is a strong centered r-derivative of  f  at a point   x∈X , then b is a strong

complete (b+2r)-derivative of  f  at a point   x∈X .

Proposition 3.3. a) If a strong centered 0-derivative st0dc/dx f(x)  of f at a point x∈ X exists,

then it is unique and equal to the classical derivative f '(x) of f  at   x .

b) If the classical derivative f '(x) of f  at x exists, then it is equal to the strong centered 0-

derivative st0dc/dx f(x) of f  at   x .

Proof follows from the definition of a strong centered 0-derivative and uniqueness of the

classical derivative f ’(x).

This result demonstrates that the concept of a fuzzy derivative is a natural extension of the

concept of the conventional derivative.

Lemma 3.6. If    b =  wrdz/dx  f(x)  (b =  strdz/dx  f(x) )    then  b =  wqdz/dx f(x) ( b =  stqdz/dx f(x)

) for any q>r.

Proposition 3.4. If  b is a weak (strong) r-derivative of f at x and ρ(b, e) < k  then e is a weak

(strong) (r+k)-derivative of f at x.

Corollary 3.5. If  b = f ’(x) and ρ(b, e) < k  then e is a strong  k-derivative of f at x.

Proposition 3.5. If  b is a strong r-derivative of a function f at at a point x and is not a strong

k-derivative of f for any k < r , then:
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a) for any weak p-derivative u  of f at x the inequality   ρ(b, u) < r+p  is valid;

b) there is exactly one weak 0-derivative  w of f at x,  for which  ρ(b, w)= d.

Definition 3.7. Any r-derivative of  f  at a point x∈ X is called a fuzzy derivative of  f  at the

same point and of the same type (i.e., weak, strong, centered, right, left, or two-sided).
 It is denoted    b =  wdz/dxf(x)      ( b =  stdz/ dxf(x) ) .

From Proposition 3.4., we have the following result.

Corollary 3.6. If  b =f '(x), then b =  stdct/ dxf(x)  .

 Let x be a non-isolated point of X .

Corollary 3.7.  If    b =  stdz/dxf(x), then   b =  wdz/dx f(x) .

Let    WCFDr(f,x) (WLFDr(f,x) , WRFDr(f,x) , WTFDr(f,x) , SCFDr(f,x) , SLFDr(f,x) ,

SRFDr(f,x) , STFDr(f,x) )  be the set of all weak centered (weak left, weak right, weak two-sided,

strong centered, strong left, strong right, strong two-sided) r-derivatives of f at a point x∈ X . In

what follows, YXFDr(f,x) denotes one of these sets (i.e., Y may be equal to W or S, while X may

be equal to C, L, R, or T ) and is called the complete r-derivative of  f  at a point x∈ X having type

(Y,X) .

Example 3.4. Let  f(x) = |x| . Then   SCFD0(f,1) = {1},   SCFD0(f,0) = [-1, 1], and

SCFD1(f,1) = [0,2] .

Theorem 3.1. Each set SXFDr(f,x) is a convex closed set, i.e., SXFDr(f,x) = [a,b] for some

numbers a, b ∈ R, or  SXFDr(f,x) = ∅  if f has no strong r-derivatives of the type X.

Proof. By the definition and Lemma 3.3, SXFDr(f,x) is the set of all r-limits of the sequences

having form ( f(x)  -  f(xi)) /(x – xi ). At the same time, by Corollary 2.18, the set L r(E) = {a∈R; a

= r-lim E} of all r-limits for any set E of sequences is a closed interval. Consequently, SXFDr(f,x)

is a convex closed set.

Theorem 3.2. The following conditions are equivalent:

         1) a function f has a strong fuzzy derivative at x of the type X;

2) the sets WXFDr(f,x) are non-empty and bounded for all r ≥ 0 ;

         3) there is such t ≥ 0 that the sets SXFDr(f,x) are non-empty for all r ≥ t ;

         4) the set WXFD0(f,x) is non-empty and bounded.

Proposition 3.6. The set WCFD0(f,x) consists of a single point if and only if the classical

derivative f '(x) exists.
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Lemma 3.2 implies the following result.

Corollary 3.8. SXFDr(f,x) ⊆ WXFDr(f,x) when X is equal to C, L, R, or T.

From  Theorems 2.2 and 2.3, we obtain the following results.

Proposition 3.7. The set YXFDr(f,x) is a union of closed intervals.

Proposition 3.8.  If  r ≤  p , then YXFDr(f,x) ⊆ YXFDp(f,x) .

Proposition 3.9. If  b is a weak (strong) r-derivative of f at x, then ρ(b, WXFD0(f,x)) ≤ r .

Corollary 3.9. If  b is a weak (strong) r-derivative of f at x, then ρ(b, WXFDk(f,x)) ≤ r − k

where r − k = r − k when  r ≤ k , otherwise r − k = 0 .

The sets YXFDr(f,x)  define complete global r-derivatives YXFDrf  of  f  on R. Each YXFDrf

is a binary relation on R, and namely, YXFDrf = { (x,z); x∈R, z∈ YXFDr(f,x) }.

Proposition 3.10. A set YXFDrf  is closed in R for all r ≥ 0.

Proposition 3.11. If the slope of the straight line that connects any point of the graph of a

function f and the point (x, f(x)) is bounded (from the left, from the right) in some neighborhood of

a point x from X, then f has at least one weak centered (left, right, correspondingly) derivative at

this point.

Remark 3.9. Boundedness is an essential condition for validity of Proposition 3.11 as the

following examples show.

Example 3.5. Let us take the function f(x) that is equal to 0 at the points of the form kπ with k

= 1, 2, 3, … and equal to the function cot x at all other points from R. At the point 0, this function

has no weak derivatives.

Example 3.6. Let us consider the function f(x) that is equal to 1 + √ 1 - x2  at the interval [0,

1] and is equal to 1 + √ 1 – (x - 2)2 at the interval [1, 3] . At the point 1, this function has no weak

derivatives.

Let us consider the set WLFDr(f,a) of all weak left and the set WRFDr(f,a) of all weak right r-

derivatives of f at a point a∈X  and the set WLD(f,a) of all weak left and the set WRD(f,a) of all

weak right derivatives of f at a point a∈X. By  There are definite relations between these sets and

the set-valued α-nearness derivative fα’(a) of a function f at a point a, which is defined by Janis

(1999).
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Proposition 3.11. For any function f, any point a∈X, any nearness N, and any number α

from the interval (0, 1) the following inclusions are valid: WLD(f,a) ⊆  fα’(a) and WRD(f,a) ⊆

fα’(a).

Proof. Let us take an arbitrary point d from WLD(f,a) and some number α from the interval (0, 1).

Then there is a sequence {xi∈R; i∈ω} converging to a∈X, for which lim i→∞ (f(a)  -  f(xi)) /(a – xi )

= d. As the nearness N is a continuous mapping, there is some m∈ω that for all n > m, all numbers

belong to Dα (f, a) = { ( f(x)  -  f(a)) /(x – a ); x ≠ a , N(x, a) ≥ α }. Consequently, d is an adherent

point of the set Dα (f, a).

By the definition, fα’(a) is a closed set that contains Dα (f, a). Consequently, fα’(a) contains d.

As d is an arbitrary point from WLD(f,a), fα’(a) contains WLD(f,a).

The proof for the set WRD(f,a) is similar.

Corollary 3.10. For any function f, any point a∈X, and number α from the interval (0, 1) the

following inclusion is valid: the interval closure int(WLD(f,a), WRD(f,a)) is a subset of the set

fα’(a).

Let us assume that for a given function f and point a from R, all closures Cl(Dα (f, a)) of the

sets Dα (f, a) are connected sets when α>β for some fixed number β from the interval (0, 1).

Proposition 3.12. For any function f , any nearness N, and any point a∈X, the following

equality is valid

∩α>0 fα’(a) = int(WLD(f,a), WRD(f,a)).

Proof. As Proposition 3.11 is proved for arbitrary number α from the interval (0, 1), Corollary

3.10 implies that ∩α>0 fα’(a) ⊇ int(WLD(f,a), WRD(f,a)).

Let us take some point d that belongs to all closures Cl(Dα (f, a)) of the sets Dα (f, a). By the

definition of the nearness derivative fα’(a), we have three options:

1) for each number 1/n with n = 1, 2, … , there is such an element xn from X that N(xn, a)

≥ 1 – 1/n and (f(a)  -  f(xi)) /(a – xi ) = d;

2) d = lim n→∞ dn where dn = (f(a)  -  f(xi)) /(a – xi ), n = 1, 2, … ;

3) in each set Dα (f, a), there is a sequence that converges to d.

It is possible to reduce the third case to second case by standard methods. Besides, we may

suppose that either xi < a or xi > a for all n = 1, 2, … . At first, we consider the first case.
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As the nearness N is a continuous mapping, a = lim n→∞ xn . Consequently, d belongs to the

set WLD(f,a). If we take the case when xi > a for all n = 1, 2, … , we come to the conclusion

that d belongs to the set WRD(f,a).

As d is an arbitrary point from the set ∩α>0 Cl(Dα (f, a)), this implies the inclusion

∩α>0 Cl(Dα (f, a)) ⊆ int(WLD(f,a), WRD(f,a)).

By the definition,  fα’(a) = int(Dα (f, a)) = int(Cl(Dα (f, a))) = Cl(Dα (f, a)) as all Cl(Dα (f, a))

are connected sets by the initial condition. Consequently, ∩α>0 fα’(a) = ∩α>0 Cl(Dα (f, a)) ⊆

int(WLD(f,a), WRD(f,a)).

Thus, ∩α>0 fα’(a) = int(WLD(f,a), WRD(f,a)).

Proposition 3.12 is proved.

However, for all α > 0, fα’(a) may be arbitrarily larger than int(WLFD(f,a), WRFD(f,a)). This

not true for weak fuzzy derivatives as it is proved in the following result.

Corollary 3.11. For any point a from R and any positive number r there is such number α

from the interval (0, 1) that fα’(a) belongs to the set  int(WLFDr (f,a), WRFDr (f,a)).

However, it is possible that for this point a and for some number α from the interval (0, 1)

there exists no such number r that fα’(a) belongs to the set int(WLFDr (f,a), WRFDr (f,a)).

From Theorem 2.5, we obtain the following result demonstrating local linearity and additivity

of strong fuzzy derivatives.

Theorem 3.3. a) If  b is a strong centered (left, right, two-sided)  a-derivative of f at x and c

is a strong d-derivative of g at x, then b ± c  is a strong centered (left, right, two-sided)  (a + d)-

derivative of f ± g  at x  .

b) If  b is a strong centered (left, right, two-sided)    a-derivative of f at x and r∈R, then r⋅b is

a strong centered (left, right, two-sided)  r⋅a-derivative of  r⋅f  at x  .

Remark 3.10. When the conditions of Theorem 3.3 are satisfied, the point b - c is not

necessarily a strong (a - d)-derivative of  f - g  at x. However, in some cases, it might be such a

derivative.
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As a consequence, Theorem 3.3 gives the well-known result of the classical analysis.

Corollary 3.12 (Goldstein, et al, 1987). a) If  b = f '(x) and c = g'(x) ,then b ± c  = (f ± g)'(x).

    b) If  b = f '(x) and r∈R, then   rb  = rf '(x).

Corollary 3.13. The set  SXFD(f,x) =  ∪r≥0 SXFDr(f,x) of all fuzzy derivatives of f at x is a

real linear space.

Corollary 3.14.  a) (Global additivity)  If  b = stdr
z/dxf    and    c = stdq

z/dxg , then    b ± c  =

stdr+q
z/dx (f±g).

b) (Global uniformity)  If  b = stdr
z/dxf   and   a∈R, then   ab  = stdr

z/dx af(x).

Corollary 3.15. The set SXFD(f) = ∪r≥0 SXFDr(f) of all fuzzy derivatives of f  is a real linear

space.

Remark 3.11. For weak fuzzy derivatives and weak derivatives, the result of Theorem 3.3.a

is invalid as the following example demonstrates.

Example 3.7. Let  f(x) = 1  when  x ≠ un = 1/n ;   f(x) = 1/n when x = un , and  g(x) =1  when   x

≠ vn = 1/2n;  g(x) =1/n when x = vn .

Then 1 is a weak 0-derivative of f and g at 0, but 1+1 =2  is not a weak (0+0)-derivative of f + g

at 0.

However, for weak fuzzy derivatives, it is possible to deduce some weaker properties of

additivity than those possessed by strong fuzzy derivatives.

Let us assume that:

1)  f: X→ R   and    g: X → R   are arbitrary real functions;

2) the sets { wda
z/dx f(x) }  of all weak  a-derivatives of f at x  and { wdd

z/dx g(x)  }  of all weak

d-derivatives of g at x  are bounded;

and

3)  sup { wda
z/dx f(x)}  = u ,  sup { wdd

z/dx g(x) } = v .

Proposition 3.13. If  b is a weak  a-derivative of f at x and c is a weak d-derivative of g at x,

then there is such number e∈ R  that e  is a weak  (a+d)-derivative of f + g  at x  and  e ≤ min

{b+v; c+u }.
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4. Fuzzy differentiable functions

Definition 4.1. A real function  f  is fuzzy differentiable (from the left, from the right, from two

sides) at a point  x from  X  if there is some number  a such that  f  has a strong centered (strong

left, strong right, strong two-sided) a-derivative at  x .

Remark 4.1. There are such functions that have no derivatives at any point of R but are fuzzy

differentiable at all points of R. To demonstrate this, let us consider the function f(x) defined by

the following formula:
           ∞
f(x) = Σ   g(4n-1x)/4n-1  where  g(x + n) = |x|  for all  x  with |x| ≤ 1/2   .
             n = 1

It is demonstrated in (Gelbaum and Olmsted, 1964) that this function has no derivative at any

point of R. At the same time, it is possible to prove that 0 is a strong centered and two-sided 5-

derivative of f at any point x from R.

Theorem 3.2 provides for the following criterion for fuzzy differentiability.

Proposition 4.1. A function  f  is fuzzy differentiable (from the left, from the right) at a point

x  from  X   if and only if ) the set WXFD0(f,x) is non-empty and bounded.

Theorem 4.1. If a function  f  is fuzzy differentiable at a point  x  from  X , then  there is such

a minimal number  a  that  f  has a strong centered a-derivative at  x , i.e., a = min {r; SCFDr(f,x)

≠ ∅}.

Proof.   Let us consider the set   FD (f,x) = { r;  f has a strong centered r-derivative at x } and

the number  a= inf FD (f,x) . If  c is a number from FD (f,x) , then for any sequence  l = { ( f(zi)  -

f(xi ) )/( zi – xi);  zi   > x >   xi  , i ∈ω,  x = limi→∞ xi = limi→∞ zi } there is such a point u in X that u =

c-lim l. By Proposition 2.9 from (Burgin, 2000) the set FD l = { r;  l has an r-fuzzy limit} is a

closed ray. By the definition of a strong centered fuzzy derivative,  FD(f,x) = ∩t FD lt   for all such

sequences lt that have the form that is similar to the form of l .

Any intersection of closed rays is a closed set. It may be void, but in our case FD(f,x) ≠ ∅.

 Consequently, it  is a closed ray of positive numbers. As a closed set, FD(f,x)  contains the point a ,

q.e.d.

Corollary 4.1. A function f has the classical derivative at x if and only if FD(f,x) = 0 .

Corollary 4.2. A function f is differentiable on X if and only if  FD(f,x) = 0 for all points x

from X .
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These results and some others (e.g., Theorems 4.2 - 4.5) demonstrate that the concept of a

fuzzy differentiability is a natural extension of the concept of the conventional differentiability.

Remark 4.2. For weak fuzzy derivatives Theorem 4.1 is invalid.

The sets YXFDr(f,x), introduced in the previous section,  define the complete fuzzy derivative

YXFD(f,x) of  f at a point x∈X having type Y,X . It is called also a complete local fuzzy derivative

of f . Each YXFD(f,x) is a fuzzy subset of R, and namely, YXFD(f,x) =(R, µx , [0,1]) where the

membership function µx  is defined by the equality µx(z) = 1/(1 + m(x,z) )   where m(x,z) = min

{r∈R+;  z ∈ YXFDr(f,x)}. This minimum exists by Theorem 4.1.

If we take the join of all complete fuzzy derivatives YXFD(f,x), we obtain the complete

global fuzzy derivative YXFD f   of  f on X  having type Y,X. Here YXFD(f,x) is a fuzzy binary

relation on R, and namely, YXFD f  = (R2, µ , [0,1]) where the membership function µ is defined

by the equality µ(x,z) = 1/(1 + m(x,z) ) . The result of Theorem 4.1 provides for correctness of the

definition of the fuzzy sets YXFD(f,x) for all x∈R as well as of the fuzzy set  YXFD f . By

Corollary 4.1 , µx(z) = µ(x,z) = 1 if and only if z = f ' (x) at the point x . Consequently fuzzy sets

YXFD(f,x) and YXFD f  are fuzzy set derivatives of crisp (ordinary) functions related to similar

constructions from (Kalina, 1997; 1998; 1999).

Here we can see in an explicit form how investigation of ordinary functions involves

construction of fuzzy sets and relations.

Remark 4.3. Complete fuzzy derivatives do not possess many properties of ordinary

derivatives as well as of other (strong centered, left, right, two-sided etc.) fuzzy derivatives. For

example, let us take f(x) = |x| and g(x) = -|x| . Then f + g is the function identically equal to zero.

All its derivatives are also equal to zero at all points. Consequently, µ0(0) = 1 for f + g .

At the same time, the value of the membership function µ0(0) for the sum of any pair of fuzzy

sets YXFD(f,0) and YXFD(g,0) is equal to 1/2 . Thus the complete fuzzy derivative of the sum f +

g of these functions is not equal to the sum of the complete fuzzy derivatives of f and of g .

However, it is well-known that the conventional differentiation is a linear operator (Dieudonné,

1960) and the same is true for all kinds (strong centered, left, right, two-sided etc.)  of strong fuzzy

derivatives (cf. Corollary 3.12).

Let us investigate interrelations between different types of fuzzy differentiation and

continuity of functions.
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Theorem 4.2. If a function f  is fuzzy differentiable from the right (left) at a point  x  from  X,

then f is continuous at x from the right (left).

Proof. Let f  be a fuzzy differentiable from the right function at a point  x  from  X. Then by

Definition 4.1, then there is some number  a such that  f  has a strong right a-derivative b at x . By

the definition it means that for any sequence {xn; xn∈ X and xn > x}, if  x = limn→∞ xn , then  b = a-

lim l  where l =  { ( f(x)  -  f(xn ) )/( x – xn) ; n∈ω } .

By the definition of fuzzy limits (cf. Section 2), there is some m ∈ ω that for all n > m the

following inequality is valid: ρ(  b, ( f(x)  -  f(xn ) )/( x – xn)) ≤ a .  It implies the inequality  | ( f(x)

-  f(xn ) )/( x – xn) | ≤  a + |b|  .

Consequently, we have  | f(x)  -  f(xn ) | ≤ ( a + |b|)| x – xn| . Thus, convergence of a sequence

{xn ; xn > x , n∈ω } to the point x implies that f(xn) → f(x).

It means that the function f is continuous at x from the right.

Theorem 4.3. If a function f  is fuzzy differentiable from two sides at a point  x  from  X, then f

is either continuous at x or has a removable singularity at x.

Proof. Let f  be a fuzzy differentiable from two sides function at a point x from X. Then by

Definition 4.1, then there is some number  a such that  f  has a strong two-sided a-derivative b at x.

By the definition it means that for any two sequences {xn; xn∈ X and xn < x} and {zn; zn∈ X and zn

> x}, if  x = limn→∞ xn = limn→∞ zn , then  b = a-lim l  where l =  { ( f(zn) -  f(xn ) )/( zn – xn) ; n∈ω }.

By the definition of fuzzy limits (cf. Section 2), there is some m ∈ ω that for all n > m the

following inequality is valid: ρ(  b, ( f(x)  -  f(xn ) )/( x – xn)) ≤ a .  It implies the inequality   | ( f(x)

-  f(xn ) )/( x – xn) | ≤  a + |b|  .

Consequently, we have  | f(zn)  -  f(xn ) | ≤ ( a + |b|)| zn – xn| . Thus, convergence of the

sequences {xn ; xn > x , n∈ω } and {zn; zn∈ X and zn > x} to the point x implies that sequences

{f(xn) ; n∈ω }  and { f(zn) ; n∈ω } have the same limit when n → ∞. As these sequences are taken

arbitrarily, this means that the function f is either continuous at x or has a removable singularity at

x.

Theorem is proved.

Theorem 4.4. The following conditions are equivalent:

1) a function f  is fuzzy differentiable at a point  x  from  X;
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2) a function f is fuzzy differentiable from the left and from the right at a point  x  from

X;

3) a function f is continuous at x and is fuzzy differentiable from two-sides at x.

Proof.    1)  3)   Let   f  be a fuzzy differentiable function at a point  x  from  X. Then by the

definition 4.1, then there is some number  a such that  f  has a strong centered a-derivative b at  x .

By the definition it means that for any sequence {xn; xn∈ X}, if  x = limn→∞ xn , then  b = a-lim l

where l =  { ( f(x)  -  f(xn ) )/( x – xn) ; n∈ω } .

By the definition of fuzzy limits (cf. Section 2), there is some m ∈ ω that for all n > m the

following inequality is valid: ρ(  b, ( f(x)  -  f(xn ) )/( x – xn)) ≤ a .  It implies the inequality   | ( f(x)

-  f(xn ) )/( x – xn) | ≤  a + |b|  .

Consequently, we have  | f(x)  -  f(xn ) | ≤ ( a + |b|)| x – xn| . Thus, convergence of a sequence

{xn ; n∈ω } to the point x implies that f(xn) → f(x).

It means that the function f is continuous at x . Besides, Proposition 3.1 implies that b is a

strong two-sided a-derivative of f at  x, i.e., f is fuzzy differentiable from two-sides at x.

Implications  3)  2) and 2)  1)  follow from Definitions 4.1 and 3.3.

Theorem is proved.

Corollary 4.3. If f is a fuzzy differentiable function at a point  x ∈ X, then f is continuous at x.

Corollary 4.4 (any course of the calculus, cf., for example, (Ribenboim, 1964; Fihtengoltz,

1955)). If f is a differentiable function at a point  x ∈ X, then f is continuous at x.

From local fuzzy differentiability, we come to a global fuzzy differentiability on some set.

Let  D ⊆ X and f: X → R is a real function.

Definition 4.2. A function  f is fuzzy differentiable (from the left, from the right) on D if f is

fuzzy differentiable (from the left, from the right) at any point  x  from  D .

As a consequence of Theorem 4.4, we obtain the following results.

Theorem 4.5. Any fuzzy differentiable on a set D function f is continuous on D.

Corollary 4.5 (any course of the calculus, cf., for example, (Ribenboim, 1964; Fihtengoltz,

1955)). Any differentiable function f is continuous.

Theorem 4.6. Any fuzzy differentiable from the left and from the right on a set D function f is

continuous on D.
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The concept of a weak fuzzy derivative implies the concept of a weakly fuzzy differentiable

function.

Definition 4.3. A function f is called weakly fuzzy differentiable (from the left, from the

right) at a point x from X if there is such number a that f has a weak centered (weak left, weak

right) a-derivative at  x.

Remark 4.4. For weak differentiability, Theorems 4.2 - 4.6 are not true as it is demonstrated

by the following example.

Example 4.1. Let mQ(x) be the membership function of the set of rational numbers, i.e.,

mQ(x)  is equal to 1 when x is a rational number and mQ(x)  is equal to 0 when x is an irrational

number. This function is not continuous at any point from R, but it has a weak derivative at any

point from R, which is equal to 0.

However, existence of weak derivatives implies additional properties for functions.

Theorem 4.7. If a function f  is weakly fuzzy differentiable from the right or from the left at a

point  x  from  X, then the point (x,  f(x)) is an adherent point of the graph of the function f.

Let us consider connections between weak fuzzy differentiation and weak continuity, which

is introduced in (Collingwood and Lohwater, 1966).

Definition 4.4. A function  f  is called weakly continuous  at a point  x from  X  if there are

such sequences l = { ai ; ai >0,  i∈ω } and   h = {bi ; bi >0, i∈ω } that  lim i→∞ ai = 0 , lim i→∞ bi =

0 , lim i→∞  f(x+ ai) = f(x) = lim i→∞  (x- bi) .

Proposition 4.2. If f is a weakly fuzzy differentiable from the left and from the right function

at a point  x from X, then f is weakly continuous at x.

Corollary 4.6. Any weakly fuzzy differentiable from the left and from the right function f is

weakly continuous.

Definition 4.5. A function  f  is called weakly symmetrically fuzzy differentiable  at a point  x

from  X  if there is such number a that  f  has a weak centered a-derivative at  x  such that (cf.

Definition 3.1) x- zi = xi - x  for all i∈ω.

Definition 4.6 (Ciesielski and Larson, 1993-94; Ciesielski, 1995-96). A function f is called

weakly symmetrically continuous (or uniformly antisymmetric) at a point x from X  if there is such

a sequence l = { ai ; ai >0,  i∈ω }  that  lim i→∞ ai = 0 , lim i→∞ bi = 0 , lim i→∞ ( f(x+ ai) - f(x- ai))

= 0.
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Proposition 4.3. If f is a weakly symmetrically fuzzy differentiable function at a point  x from

X, then f is weakly symmetrically continuous at x.

Corollary 4.7. Any weakly symmetrically fuzzy differentiable function f is weakly

symmetrically continuous.

Let us consider geometrical aspects of fuzzy differentiation.

Definition 4.7. A pair of direct lines (l,h) on a plane XY is called regular if neither of these

lines is parallel to the y-coordinate line.

Each pair of direct lines (l,h) on a plane XY constitutes two pairs of two vertical angles and

thus, it divides this plane into two parts. One of these parts is the set of all points between the sides

of one pair of these vertical angles while the second part is constituted by the set of all points

between the sides of the second  pair of these vertical angles. We call this division a vertical

division of a plane.

In the Figure 1, the first part a vertical division of a plane consists of the regions 1 and 2,

while the second part consists of the regions 3 and 4 .

                                      y

                                                  3

              1                                                                2

                                                4

                                                                                                             x

Fig. 1. A vertical division of a plane by two lines
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Definition 4.8. The part of the plane which does not contain the direct line that goes through

the common vertex of the angles and is parallel to the y-coordinate line of is called regular, while

the second part is called irregular.

In the Figure 1 the first part of the plane consisting of areas 1 and 2 is regular while the

second part consisting of areas 3 and 4 is irregular.

Theorem 4.8.  A function  f  is fuzzy differentiable at a point  x  from  X  if and only if there is

such a regular pair of lines  (l, h)  and such a neighborhood Ox of  x  that all points f(z), which

belong to  Ox also belong to a regular part determined by  (l, h)  .

Theorem 4.9. If f(0)  = c  and any weak a-derivative  wd az/dx f  of f is equal to zero, then  the

graph of f is  situated inside the regular part of the plane R2, which is determined by the lines  y =

± ax + c .

When  a = 0, the pair of direct lines reduces to a single line parallel to the x-axis, and we

obtain the following result.

Corollary 4.8.  If all weak 0-derivatives of f are equal to zero, then f  is the constant function.

Corollary 4.9. If the strong centered a-derivative sda
c/dx f of f exists and is equal to zero, then

graph of f is  situated inside the regular part of the plane R2, which is determined by the lines  y =

± ax + c .

It implies the classical result.

Corollary 4.10 (Ribenboim, 1964; Randolph, 1968). If the derivative f ' of f exists and is

equal to zero, then f is the constant function.

Remark 4.5. Classical derivatives are used for approximation of arbitrary differentiable

functions by linear functions, which are simpler than the initial functions. In the same way, fuzzy

derivatives may be used for approximation of arbitrary fuzzy differentiable functions by linear

functions. Although fuzzy derivatives do not allow one to achieve infinitely exact approximation

like classical derivatives, they provide means, as Theorems 4.8 and 4.9 demonstrate, for arbitrarily

precision, are more realistic, and extend the scope of functions, to which such approximation

technique is applicable.

Remark 4.6. It is possible to define fuzzy derivatives of all types as linear approximations of

a given function, constructing fuzzy Frechet derivatives by means of fuzzy limits. This approach

connects fuzzy differential calculus of real functions with interval analysis (Moore, 1966).
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5. Interpretations

The classical geometric interpretation (cf., for example, Goldstein et al, 1987; Shenk, 1979)

of the classical derivative of a function f is that its value f’(c) at a point c is the slope of the tangent

line to the graph of f at the point (c,f(c)) . Investigation of curves and their tangent lines gave birth

to differential calculus. To specify the tangent line to f at (c,f(c)), it is necessary to consider the

line through the points (c,f(c)) and (c+h,f(c+h)). Its slope is given by the formula m(h) = ( f(c+h) -

f(c) )/( (c+h) - c)= ( f(c+h) - f(c))/h .  If limh→0 (f(c+h) - f(c) )/ h  exists, it is said that this limit is

the slope of the tangent line to f at the point (c,f(c)).

This limit is the classical derivative of f(x) at c. That is, the classical derivative of f(x) at c is

equal (in a general case by definition) to the slope of the tangent line through the point (c,f(c)).

This geometric interpretation and the argument justifying it extend equally well to other

functions, provided that their graphs are sufficiently smooth—i.e., smooth enough to guarantee the

existence of a unique tangent line passing through the point in question. Conversely, if the graph

of f(x) fails to satisfy this condition at a point, then the derivative fails to exist; it has already been

shown that the function f(x) = |x| fails to have a derivative at x0 = 0. This is reflected geometrically

by the fact that the graph of f(x) has a “corner” at the point [x0, f (x0)] = (0, 0). However, the

function f(x) has fuzzy derivatives at this point. A fuzzy derivative represents the angle in which

tangent lines to the parts of the graph of f(x), for which the point [x0, f (x0)] is an end point. In a

general case, fuzzy derivative represents the angle in which tangent lines to the parts of the graph

of f(x), for which [x0, f (x0)] is a limit point.

In general, when we consider the situation with fuzzy derivatives, we do not have, as a rule,

the tangent line because fuzzy derivatives exist for a much wider range of functions than classical

derivatives. Instead of the tangent line, the notions of the tangent angle and r-tangent line are

introduced.

Let b be a strong centered r-derivative of f at c.

Definition 5.1. Direct lines  y = (b+r)x+c  and   y = (b-r)x+c  are called boundary r-tangent

lines through the point (c,f(c)).

Definition 5.2. The pair of vertical angles defined by the boundary r-tangent lines (cf. Figure

2) is called the r-tangent angle of f at the point (c,f(c)).



32

                                       y

                 an r-tangent                   angle

                                                                                         f(x)

                                               c                                                            x

Figure 2.  The r-tangent angle of the function  f(x)  at a point (c, f(c)) .

Definition 5.3. Any line that is inside the r-tangent angle of f at the point (c,f(c)) is called an r-

tangent line of f through the point (c,f(c)).

There are many functions that have no tangent lines but have many r-tangent lines for some r.

As an example, we can take the function from the remark 4.1.

Let us find some properties of these constructions.

Proposition 5.1. A 0-tangent line (if it exists) is unique and coincides with the classical

tangent line.

From Theorem 3.1, we obtain two following results.

Proposition 5.2. If at least one r-tangent line of f through the point (c,f(c))  exists, then for any

real function f, any number r from R+ and number c from R, there two r-tangent lines of f through

the point (c,f(c)) such that one of them has the maximal slope and the second one has the minimal

slope.

Proposition 5.3. For any function f, numbers r from R+ and  c from R, there are the biggest

and the least r-tangent angles of f at the point (c,f(c)) .

Definition 5.4. If α is the angle determined by two direct lines y = nx and y = mx, then the

direct measure of  α is equal to |n -m| .

From Theorem 4.1, we obtain the following result.

Proposition 5.4. For any real function f, any number r from R+ and any number c from R ,

there exists the r-tangent angle for f at the point (c,f(c)) with the least direct measure.
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Taking the definitions, we see that the classical derivatives of functions are idealizations

because their values cannot be computed in practice. Really, there is a traditional method to

compute the value of the derivative of  f(x):

1. First calculate  (f(x+h) - f(x) )/ h   for  h≠0 .

2. Then let h  approach zero.

3. The quantity  (f(x+h) - f(x) )/ h  will approach f '(x).

However, this method does not take into consideration that it is possible to perform all

calculations only to some precision which is bigger than zero. As a consequence, such a procedure

when realized on a computer or calculator provides only for a calculation of a fuzzy derivative.

Methods of fuzzy differential calculus make possible to estimate its fuzziness.

An important interpretation of the ordinary derivative of a function is as a rate of change. The

same is true for fuzzy derivatives only their estimation is, as a rule more exact. Let us consider an

example from (Goldstein et al). A weight of an animal may be treated as a function of time, say

W(t). Then the average rate of change of W(t) with respect to t from time u to time u+h is equal to

(W(u+h) -  W(u)/ h. When  h converges to 0, we obtain the ordinary derivative of W(t) at u. But in

reality measurements of W(t) may be conducted only from time to time, i.e., at some discrete

points of time. Consequently, we can speak realistically only about some fuzzy derivative (a-

derivative) of W(t) at u. It is taken with some precision equal to the number a. At the same time

the ordinary derivative of W(t) at u gives the rate of change of W(t) with respect to t from time u

to time u+h precisely, while no such precision exists in practical situation. Any change of the

variable number a  reflects precisely the change of precision.

An important physical application of the classical derivative is embodied in the concept of

instantaneous velocity. In fact, a precise definition of the velocity of a moving particle at a given

time, t, involves exactly the same limiting process that occurred in the definition of the derivative.

Consequently, the fuzzy derivative represents an approximation to the exact value of instantaneous

velocity. At points of collision, particles do not have the instantaneous velocity, as their trajectory is

not differentiable at such points. However, we can correspond to particles an approximate

instantaneous velocity at these points as the trajectory may be fuzzy differentiated at these points.

The next example of interpretation is connected with economics. In recent years economic

decision making has become more urgent. It caused higher mathematical orientation of the

corresponding procedures. Faced with huge masses of statistical data, depending on hundreds or

even thousands of different variables, business analysis and economists have increasingly turned
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to mathematical methods helping them to analyze what is going on and what might happen. In this

area, different methods and constructions of classical calculus are utilized. Thus, the theory of the

firm utilizes such functions as

C(x) = cost of producing  n units of the product,

R(x) = revenue generated by producing  n units of the product,

P(x) = R(x) - C(x)  = the profit (or loss) generated by producing  n units of the product, and so

on.

Their derivatives are called marginal function. In such a way, the function C'(x) is called the

marginal cost function. Its value, C'(a) for x = a is called the marginal cost of production at level

a.  In reality, levels are not points but intervals. Consequently, values of C’(x) may be determined

computed not exactly but only with some precision giving an approximation of the considered

function. It means that such values are fuzzy derivatives. Moreover, the functions C(x), R(x), and

P(x) often are defined only for nonnegative integers giving rise to a set of discrete points. In

studying these functions, economists usually draw a smooth curve through these points and study

this curve. However, such approximation is not the best because a more detailed consideration

involves fuzzy continuous functions introduced and studied in (Burgin and Šostak, 1992; 1994;

Burgin, 1992; 1995).

6. Conclusions

Thus we have demonstrated that in a broader context of fuzzy limits and derivatives, it is

possible to extend the majority of basic results of the classical mathematical analysis. In particular,

it is shown that investigation of properties of ordinary functions involves construction of fuzzy

sets and relations. Moreover, such a transition to a fuzzy context provides for completion of some

basic results of the classical mathematical analysis. For example, it is well known that any

convergent sequence of real numbers is bounded. The converse is not true. So, convergence is

only sufficient but not necessary condition for boundedness. However, fuzzy convergence makes

attainable to prove (cf. Theorem 2.3) a complete criterion of boundedness. Namely, a sequence of

real numbers is bounded if and only if it is fuzzy convergent. A similar completion of a classical

result is obtained in (Burgin and Šostak, 1992; Burgin, 1995) for such basic theorem of analysis

that states that a continuous function on a closed interval is bounded.
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It is necessary to remark that fuzzy set theory has been developing in many aspects parallel to

the classical mathematics. Consequently, differential calculus has been developed for different kinds

of conventional fuzzy functions by Zadeh (1978), Dubois and Prade (1980; 1982), Goetshel and

Voxman (1986), Puri and Ralescu (1983), Kaleva (1987), Buckley and Yunxia (1991), and Kalina

(1997; 1998; 1999). In contrast to all these works, the research of Janiš (1999) belongs to

neoclassical analysis and we consider it separately.

The attention of the authors in the first four papers is focused on functions that are not

necessarily fuzzy but “carry” the possible fuzziness of their arguments (cf., also (Zimmermann,

1991)). The uncertainty of knowledge about the precise location of the argument induces an

uncertainty about the value of the derivative of a function at this point. This is represented by

treating functions with fuzzy numbers as their domain and/or range. Kalina (1997; 1999) considers

three basic types of vagueness (on the y-axis, on the x-axis, and on both). It implies three

constructions for fuzzy derivatives, which are investigated in this work.

Janiš (1999) introduces and studies a nearness derivative int(Dα) for functions in spaces of

real numbers with a nearness. It is a set-valued function in contrast to fuzzy derivatives, which are

considered in this work and are point-valued functions. His construction is based on the concept of

fuzzy continuity from (Burgin and Šostak, 1992; 1994). His main result gives necessary and

sufficient condition for a real function to be increasing/decreasing. As corollaries, Janiš proves

generalizations of Rolle and Lagrange mean value theorems for arbitrary real functions.

Neoclassical analysis does not only bring new results, which complete their classical

analogues, but also produces deeper insights and a better understanding of the classical theory. In

addition to this, the neoclassical analysis makes possible not only to extend ordinary concepts

obtaining new results for classical structures, but also provides for elaboration of new useful

concepts for the classical mathematical analysis. One of such concepts is introduced in this work.

Namely, it is fuzzy limits of sets of sequences.

This does not only bring new mathematical results, but also produces deeper insights and a

better understanding of the classical theory. In addition to this, it makes possible to eliminate

discrepancies existing in numerical analysis. The problem is that computations are realized on

finite machines, while many processes of mathematics, such as differentiation and integration,

demand the use of a limit, which is an infinite process. As a consequence, correct algorithms based

on classical methods of calculus, when implemented, turn into unreliable programs. Neoclassical

analysis treats such processes more adequately. It is demonstrated by applications of neoclassical
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analysis to problems of numerical computations and control (Burgin and Westman, 2000).

Consequently, the new technique provides for a better utilization of numerical computations for

artificial intelligence, especially in the case when uncertainty of computation is multiplied by the

uncertainty of input information.

Structures from neoclassical analysis are also used for the development of algorithmical tools

for computer simulation (Burgin, 2001).

For the further development of neoclassical analysis, it would be useful to consider the

following problems.

Problem 1. Investigate specific properties of the complete local and global fuzzy derivatives of

ordinary functions.

Analysis of function of one variable is only the first step in functional analysis. After making

it, it is necessary to consider functions of several variables.

Problem 2. Develop fuzzy differential calculus for functions in the n-dimensional real vector

space Rn .

The next step is to analyze functions on infinite dimensional spaces.

Problem 3. Develop fuzzy differential calculus for functions in Hilbert spaces.

After solving this problem, it is natural to extend fuzzy analysis to more general contexts.

Problem 4. Develop fuzzy differential calculus for extrafunctions (Burgin, 1993).

Problem 5. Develop a non-standard fuzzy differential calculus.

Methods developed by Zadeh (1978), Goetshel and Voxman (1986), Puri and Ralescu (1983),

Kaleva (1987), Buckley and Yunxia (1991), and Kalina (1997; 1998; 1999) provide means for

differentiation of fuzzy functions. In some sense, it is an exact differentiation of fuzzy functions

because it is based on the standard concept of a limit. However, basing on the theory of fuzzy

limits, it is possible to elaborate new methods for differentiation of fuzzy relations, in particular,

fuzzy functions. Consequently we have the following problem.

Problem 6. Construct a theory of fuzzy differentiation of fuzzy functions.

Such a theory might be obtained by synthesizing methods that are developed for differentiation

of fuzzy functions with constructions defined in this work. The first stage in doing this is

connected with the following problem.
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Problem 7. Elaborate a theory of fuzzy limits for sequences of fuzzy numbers and fuzzy

functions.

As it is demonstrated in Section 3, weakly differentiable functions are linked to weakly

continuous functions. Let us consider some problems related to these connections. It is proved in

(Collingwood and Lohwater, 1966) that any real function is weakly continuous on the complement

of a countable set.

Problem 8. Are there real functions that are nowhere weakly differentiable (from the left, from

the right)?

The following problem is connected to a similar problem for weakly symmetrically continuous

functions (Ciesielski and Larson, 1993-94; Thomson, 1994).

Problem 9. Does there exist a weakly differentiable function f with the range f(R) being: (a)

finite; (b) bounded ?
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