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Preface

This is a self-contained introduction to differential geometry and the cal-
culus of differential forms. It is written primarily for physicists. The mate-
rial complements the usual mathematical methods, which emphasize
analysis rather than geometry. The reader is expected to have the stan-
dard physics background in mechanics, electrodynamics, and mathemat-
ical methods. The mathematically knowledgeable can skip directly to the
heart of the book, the calculus of differential forms, in Chapter IV.

This book falls between the usual mathematics and physics texts. On
the one hand, proofs are given only when they are especially instructive.
On the other hand, definitions, especially of mathematical structures, are
given far more carefully than is the usual practice in physics. It is very
dangerous to be sloppy in your definitions. I have taken considerable
care to give many physical applications and to respect the physical subtle-
ties of these applications. Indeed, my operational rule was to include no
mathematics for which I could not produce a useful example. These
examples form nearly half the book, and a large part of your learning
will take place while reading and thinking about them. I feel that we
learn far more from carefully chosen examples than from formal and un-
natural deductive reasoning. Most of these examples were originally prob-
lems. I wish that I had been left with still more problems for the reader.

I call this a geometric treatment. What do I mean by geometry? One
connotation is that of diagrams and pictorial representations. Indeed, I
called an early set of notes "The Descriptive Geometry of Tensors." You
will find many diagrams here, and I have gone to some effort to make
them honest diagrams: Often they can be substituted for the verbal hints
that sometimes constitute a proof.

xi
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=2x2=1

An illustration of the comparison of two areas. No metric is needed, only the construction
of parallel lines and the comparison of lengths along a line.

By geometry, however, I mean more than pictures. After all, pictorial
methods grow clumsy in spaces of dimension greater than four, or five.
To be geometric connotes for me an emphasis on the structures them-
selves, rather than on the formal manipulation of representations, espe-
cially algebraic ones.

Examples: To appreciate the distinction between the simplicity of a
geometric concept and the complexity of its numerical representa-
tion, consider an ellipse in general position. A simple idea, but rep-
resented by an appalling mess of numbers.

A determinant can be defined in terms of explicit rules of computa-
tion. But geometrically we can better define the determinant as the
factor by which a linear transformation changes volumes. Now, to
compare the volumes of two parallelopipeds does not require a
metric structure. A linear structure is sufficient. For example, a
comparison of the areas of two parallelograms is shown in the ac-
companying diagram. In this geometric view, the determinant of the
composition of the two linear transformations (matrix product) is
obviously the product of the determinants. To prove this from the
algebraic view requires an involved calculation given in Section 27.

The emphasis on the structures themselves rather than on their represen-
tations leads us naturally to use the coordinate-free language of modern
mathematics.
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This modern language makes the foundations of physical models clear
and precise. Surprisingly, it also makes the computations clearer. Fur-
ther, the coordinate-free language turns out to be very easy to illustrate.
As this material developed, there was a useful symbiosis between formal-
ism and concrete calculation. The solutions to concrete problems often
led to improvements in the formalism. For example, I taught a Jackson-
level electrodynamics class using differential forms, and this led to an im-
proved definition of the Hodge star operator. It also forced me to learn
and use twisted tensors. Thermodynamics taught me the importance of
contact manifolds and affine structures. Books that remain on the formal
level treat these important geometric objects briefly if at all.

This emphasis on concrete applications and proper geometric struc-
tures helps us avoid the formal symbol manipulations that so often lead
to nonsense or fallacious proofs of correct results. [Look at Figure 3.1 in
Soper (1976) or the horrible calculus of variations manipulations and
mistakes in Goldstein (1959).] Here we will be able to turn most of the
infinitesimals commonly seen in physics into the appropriate geometric
objects, usually into either rates (tangent vectors) or gradients (differen-
tial forms). The distinction between these is lost in the metric-blinded
symbol pushing of tensor calculus. Nor will the funny deltas of the calcu-
lus of variations with their ad hoc rules of manipulation be found here.

The material of this book grew out of the first quarter of a fairly ordi-
nary general-relativity course. After teaching the course several times, I
realized that general relativity as it is usually taught was bad for the stu-
dent. The introduction of a metric right at the start obscures the geo-
metric structures and would force us into abstract number shuffling. As I
put the metric later and later into the course, I discovered examples from
an ever-wider range of applications: classical mechanics, dispersive waves,
thermodynamics, and so on. After a while I grew embarrassed at pretend-
ing that it was still a general-relativity course and, presto, a course on
applied differential geometry appeared.

Although most of this material is fairly standard, and by intent the no-
tation is conventional, two departures from common practice should be
mentioned. One is the use of twisted tensors. The importance of twisted
tensors in physics has been neglected by nearly everyone. There is not
even agreement on the name for these objects. Some of these twisted
tensors are related to the axial vectors of physics. The second novelty is
the use of contact manifolds. These, rather than symplectic manifolds,
are the proper setting for most physical theories. Symplectic geometry is



C
D

'

Q
..
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important for special situations, primarily time-independent Hamilton-
ian mechanics.

You might ask, why not learn these fancy methods after the usual ten-
sor calculus? Ordinarily I would agree with a progressive, top-down ap-
proach. For the material here it doesn't work. The key idea is that here
we are removing structure from our geometric objects, not adding it. To
think of a space without a metric or a linear structure is much harder
than to think about adding structure to a space, for example, adding a
multiplication rule to turn a vector space into a Lie algebra. To work
hard to erase what you have just worked hard to learn is frustrating and
inefficient. Thus I recommend here the bottom-up approach. You should
not view this as the overthrow of all that you have learned, however.
Rather, view it as a natural development of vector calculus.

It is impossible for me to recall all the sources for this material. Particu-
larly helpful were Frank Estabrook, Jim Swift, Richard Cushman, Ralph
Baierlein, Kim Griest, Hume Feldman, and David Fried, but hold them
blameless for my mistakes and idiosyncrasies.

W. L. B.
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Glossary of notation

Entries are generally arranged in order of first occurrence in the text.

relates source and target sets of a map, as in f : A -> B
relates a typical source element and its corresponding target
element, as in g : x H x3
logical implication

x Cartesian product of two sets; rarely, the 3-space vector
cross product

G composition of maps
{ } encloses a list of the elements of a set

partial differentiation, as in f x
equivalence relation

[b] the equivalence class containing the element b
[a : b : c] homogeneous coordinates
E relates an element to its set, as in x E IR
C set inclusion, as in A C B
V, V* a vector space, and its dual
el basis vectors
f ` dual basis vectors
f' differentiation of a function with respect to its argument
Df(u) the differential of the function f at the point u

action of a linear operator (replaces the generally used
parentheses); also a missing argument of a function
norm on a vector space
absolute value

At transpose of the matrix A
D2f(u) second differential of f at u

xv
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xvi Glossary of notation

IR the set of real numbers, also R2, and so on
Qx tensor product

\P/
the type of tensor, that has p upper indices and q lower

9
indices; a tangent vector is of type ( o

A alternating product, sometimes called exterior product
metric inner product
a metric tensor
a Euclidean metric tensor

z the redshift; (I+ z) is the ratio of new wavelength to old
O` the ith chart map
C°° the set of infinitely differentiable functions
Sn the surface of the sphere in (n + 1)-dimensional Euclidean

space; S1 is the circle
Tp (M) the set of-tangent vectors at the point p of a manifold M
Tp (M) the set of 1-forms at the point p of a manifold M, dual to

Tp(M)
the name for an object that is like the rate of change of -y

a/ax a basis tangent vector, tangent to the x axis
dx a basis 1-form, the gradient of the x coordinate function
X(s) when the independent variable x is represented by a

function, it is usually written X
l u, V1 the Lie bracket of vector fields u and v; rarely, the

commutator of two operators
the pushforward map derived from
the pullback map derived from 1

f y w the integration of the differential form w along the curve -y
T a projection map
ir : E -- B a fiber bundle with projection map 7r, total space E, and

base space B
7_1(b) the set of elements mapped onto b by the map ir

T*M the cotangent bundle of M
TM the tangent bundle of M, dual to T*M
Tf the tangent map derived from f
CM the line-element contact bundle of M
C*M the hypersurface-element contact bundle of M, not dual

to CM
C(M, n) the bundle of n-contact elements of M
FX the name for a variable which is like a partial derivative

of F
Lb left translation by the Lie-group element b
£W S1 the Lie derivative of Sl by the vector field w
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B a 3-vector, rarely used
V the 3-vector differential operator del
9 an ideal of differential forms
Ar the set of r-forms
J the contraction operator, as in v J w
EXYZ the permutation symbol; can also be written with lower

indices
d exterior derivative
6 volume element
8 basis (n -1)-forms derived from the volume element 0
* Hodge star operator

the special Hodge star in spacetime, used when the 3-space
star is also present

# the sharp operator mapping 1-forms to tangent vectors
using a metric
used around a set of indices to indicate an ordered
summation

SUT Kronecker delta - may have any number of indices on top,
with the same number on the bottom

WA an uppercase index denotes a block index: a string of
ordinary indices of unspecified length

(010) the representation of a twisted tensor using the ordinary
tensor /3 and an orientation SZ

{B} a differential form representing the orientation of the object B
am the boundary of the set M
S the differential operator adjoint to d
A the de Rham operator, dS + Sd
div the divergence operator, as in div v
SZn when Sl is a differential form, this indicates the n-fold

exterior product
I'iv connection components
DAB the covariant derivative of the vector field B in the A

direction
torsion tensor

R(., ) curvature tensor
covariant derivative, for example, the wµ; , are the
components of the covariant derivative of the 1-form wµ dxµ

*_ equality that holds only in special coordinates
a frame of orthonormal (or pseudoorthonormal) 1-forms

wJ . connection 1-forms
SZ,j curvature 2-forms





Introduction

No one would try to teach electrodynamics without using vector calculus.
It would be crazy to give up so powerful a tool, and it is hard for us to
appreciate the resistance to vector calculus shown at the turn of the cen-
tury. The mathematics of this book can be thought of as the proper gen-
eralization of vector calculus, div, grad, curl, and all that, to spaces of
higher dimension. The generalization is not obvious. Ordinary vector
calculus is misleading because the vector cross product has special prop-
erties in three dimensions. This happens because, for n = 3, n and

n(n-1) are equal. It is also important to divorce the formalism from its
reliance on a Euclidean metric, or any metric for that matter. Other
structures are important, and we must make room for them. Also, a
metric allows some accidental identifications that obscure the natural
properties of the geometric structures. Similarly, the linear and affine
structure of Cartesian spaces should be included only if it is appropriate.
The mathematics satisfying these conditions is not classical tensor cal-
culus, but what is called calculus on manifolds and, in particular, the
calculus of differential forms.

What physical problems does this calculus address? The basic idea of
any calculus is to represent the local behavior of physical objects. Sup-
pose you have a smooth distribution of, say, electric charge. The local
behavior is called charge density. A graphical representation of this
density is to draw a box, a parallelopiped, that encloses a unit amount of
charge (on the average) in the limit where the boxes become smaller than
the variations in the density. These boxes have volumes but no particular
shapes. What they have is the idea of relative volume: Given two such
boxes, we can find the ratio of their volumes. (See the example in the
Preface.) Charges come positive and negative, and associated with each

1



2 Introduction

Figure 1. A geometric representation of the current density at a point. The box lies along
the current lines and encloses one unit of current in the limit where the box shrinks to

nothing. The arrow points in the direction of current flow.

box is a sign. These geometric objects form a one-dimensional vector
space at each point.

A more complicated situation would be to have a smooth distribution
of electric current. To represent this, draw another box, this one of indef-
inite length in one dimension. The box should be aligned so that no cur-
rent flows through the sides, and the cross section is such that it encloses
a unit amount of current in the same limit as before. In addition to the
shape and alignment, the box now needs an arrow pointing in the direc-
tion of current flow (Figure 1). In Chapter IV such geometric objects will
be discussed; they are called twisted 2-forms.

Example: A larger current is represented by a box of smaller cross
section. The cumulative particle flux in an accelerator is such a
current density, and, reasonably enough, it is commonly measured
these days in inverse nanobarns.

Such current densities form a three-dimensional vector space. The rules
for equivalence, scaling, and addition are easy to discover, and are illus-
trated in Figures 2, 3, and 4. These geometric objects also describe electric
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shear

Figure 2. The equivalence of different representations of current density. Each box
encloses the same current in the limit.

2X

Figure 3. The scaling of current densities. Each encloses the same current.

flux. The field lines appear on positive charges and disappear on negative
charges.

Another, related geometric object has a representation given by two
parallel planes. Now two of the three dimensions are of indefinite ex-
tent. With a convention marking one of these planes as the higher, this
geometric object can represent a potential gradient. In these last two
geometric objects, we see two different aspects of the electric field: first as
the quantity of flux, second as the intensity of the field. This pairing of
variables is reminiscent of thermodynamics.

All the geometric objects described so far are types of differential
forms: Charge density is of the type called a 3-form, current density is a
type of 2-form, and the potential gradient is a 1-form. Each, as you can
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Figure 4. The addition of current densities, shown here in symmetric form. Three cur-
rent densities that add up to zero are shown. The negative of any one is the sum of the

other two.

see, is a natural geometric object in its own right. Although there is some
computational convenience to defining, say, 2-forms as objects made up
from two 1-forms, this obscures the real meaning of a 2-form. Whenever
possible I will try to penetrate the accidental properties inherent in merely
convenient representations and constructions, and display the real prop-
erties of our geometric objects. For this, pictorial representations and
concrete examples will be invaluable.

These geometric objects represent the local behavior of things. Their
representations will be in terms of coordinates, but these coordinates will
not usually have any intrinsic meaning. Thus their representations must
endure under arbitrary smooth changes of the coordinates. Locally these
coordinate changes are linear transformations. Note how the construc-
tions given use only objects, such as lines, planes, and volume ratios, that
are invariant under linear transformations.

Physical laws relate the behavior of these geometric objects at different
points. In electrodynamics, flux lines and current are conserved except
where charge density is present or changing. In electrostatics, the electric
field can be derived from a potential and has no curl. We will find a
natural differential operator, the exterior derivative, with which to ex-
press these laws.
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Spaces may have additional structure, and often this can be repre-
sented in terms of differential forms. Thermodynamics takes place on a
space with a special 1-form on it; this carries the content of the first law.
Hamiltonian mechanics has a special 2-form, needed, for example, to
represent the density in Liouville's theorem. Electrodynamics uses an
operator to relate electric flux and electric field intensity; this operator
changes 1-forms into 2-forms and numbers into 3-forms. Of course, not
everything fits so simply into this scheme, but we will see that an aston-
ishing amount does.

Preliminaries

This is a section on tools. It is a brief review of the definitions, concepts,
and notational conventions to be used in the book. I have tried to follow
the advice of Schouten (1954, p. 61) and use only notation in common
use. The exception is the extended vector notation, which I will explain.

Maps

We will refer to many different sets, such as the points of a plane, the
lines through a point, or the rotations in three dimensions. One unfa-
miliar notational usage is that we will refer to points in a n-dimensional
space by a single letter, such as x. Of central importance is the generaliza-
tion of the idea of a function to such sets. A map is a relation between two
specified sets that associates a unique element of the second to each ele-
ment of the first. In different circumstances different notations for the map
and its result are useful. To allow complete freedom in choosing this nota-
tion, maps will be introduced with a mathematical sentence of the form

f:C -- B; c -f(c).

Here f is the name of the function. The first phrase specifies the sets
involved. This f takes each element of the set C and associates with it an
element b in the set B. The second phrase uses a stopped arrow, and gives
either the notation for the specific result or the rules for computing the
map. Here f(c) is the element of B resulting from f applied to the element
c of C. When the sets are obvious, the first phase will often be omitted.

Example: The Euclidean metric is a rule for computing the "dot
product" of two vectors. If we call the set of Euclidean vectors V,
then the "dot" is a map:
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:VxV--1R; (a,b)Ha.b.

The cross denotes the Cartesian product. Elements of the set A X B
are ordered pairs (a, b), one from the set A and one from the set B.
We will make no use of the vector cross product; so no confusion
can arise.

Many functions will be written in the usual form

f:x-Ax)
When our maps are linear operators, we will usually write the evaluation
with a centered dot as rather than L(x). We will use f-1(x) to
denote the set of all those elements that f maps into x; thus f -1 (read this
"f inverse") is not a function or a map. If the ranges and values are com-
patible, we can operate with two different maps in succession; this com-
position is written go f, and means that f acts first, then g acts.

I will frequently abuse precise notation by leaving out the arguments
of functions in situations where they are obvious. Be careful in such
situations not to confuse a function and its values. A precise language
would say f for the function and f(x) for its value.

One way to construct new maps from old ones is to only partially eval-
uate a map that requires several arguments. The usual notation for this is
the centered dot. Thus if we have a map

O: E x F-* R; (e, f) H q(e, f),

then 1(., f) is a map E -+ R, and so on.

Ideals

When a set has an algebraic structure, that is, a rule for the multiplica-
tion of two of its elements, then the notion of an ideal is important. An
ideal is a subset such that whenever any element in the ideal is multiplied
by any other element whatsoever, the result is in the ideal. We often can
specify an ideal by giving several elements that generate it.

Example: The ideal generated in the set of all polynomials by a
given polynomial consists of polynomials that have the value zero
whenever the generating polynomial has the value zero.

Index notation

An important notational tool is the use of indices and the summation
convention. A set of elements can be labeled by an index. The set over
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which the index ranges (often but not necessarily the integers) should be
specified if it is not obvious. Indices will be written as subscripts or super-
scripts. For tensors this is a convenient labeling of their type.

Example: The components of ordinary 3-vectors can be written

Va= {vX v}' vz}.

Here the index a ranges over the index set {x, y, zi. Sets are often
specified by listing their elements inside braces.

Great simplification comes from using the summation convention on
these indices: In an expression such as vawab where an index appears
exactly twice, once as a superscript and once as a subscript, a summation
is implied over the appropriate index set. Partial derivatives will be
denoted by a comma followed by the appropriate subscript

X- ax'

An uncommon notation I use in this book is boldface type to denote
an "obviously" missing index. This is an extension of the usual vector
notation, but without matrices or special ordering. This is a useful
heuristic tool in constructing an argument or a calculation. Often the
one-dimensional calculation needs only boldface to apply in more dimen-
sions. Be careful: The summation convention will be used on appropriate
pairs of missing indices. In detailed calculations we will usually abandon
the index notation and, for simplicity, give single-letter names to tensor
components. Also, be careful about sums such as qq. Such a sum usually
makes no sense. The missing indices are not one up and one down, and
this is a warning that something is wrong.

Equivalence relations

An important concept is that of an equivalence relation. This is a useful
tool that allows us to subtract information. An equivalence relation on a
set is a relation between pairs of elements, denoted usually by
which is reflexive,

symmetric,

x-y=,y-x,
and transitive,
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(x---y) and

Example: An equivalence relation in the plane is defined by

(x1,y1)-(x2,y2) if x1=x2.

This is called projection on the first coordinate.

The smaller set formed from the set S by using the equivalence relation
--- is written S/--- . Physicists use the idea of an equivalence relation
informally, but rarely appreciate its full power and utility.

We can often deal with an equivalence class by taking a typical member
as a representative. The equivalence class containing x will be written
using square brackets out of hierarchy, [x]. One use of equivalence
relations is to reduce a redundant notation. Such notation often sim-
plifies a problem. `'

Example: Look at the set of lines through the origin in three
dimensions. Clearly two numbers are sufficient to denote any such
line. Still, using three numbers leads to a much simpler picture.
Denote the line passing through the point (x, y, z) by the triple of
numbers [x : y : z ] . These are called the homogeneous coordinates
of the line. It is a redundant notation, and

[x:y:z]- [kx:ky:kz]
for all nonzero factors k. This redundant notation cures the prob-
lems of dealing with the poles. Problems in projective geometry,
such as those needed in computer graphics, are much simpler when
expressed in homogeneous coordinates. See Newman and Sproul
(1973). The two-dimensional set of lines described here is called the
projective plane P2.

Equivalence relations appear throughout this book. Some important
ones are as follows: An affine space is an equivalence class of vector
spaces; a tangent vector is an equivalence class of tangent curves; a
1-form is an equivalence class of tangent functions; and an orientation is
an equivalence class of ordered bases.

Implicit definitions

Another important tool that should not be ignored is the implicit defini-
tion. Often it is simpler to define something by its properties rather than
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Introduction 9

by giving a representation or a constructive algorithm. We will often use
an implicit definition, one that does not refer to a representation, as an
easy way to show that the object is independent of the arbitrary choices
involved in its representation. Of course, an implicit definition needs a
proof of consistency, which might itself be difficult. Often we will take
the best of both worlds. If we give both definitions and show that they
are equivalent, then the implicit one shows representation independence,
whereas the explicit one shows consistency.

Figures

This book uses pictures as a tool to illustrate many of its points. A pic-
ture is necessarily concrete, and this balances the abstraction of the
equations. Even when carefully drawn, pictures require careful inter-
pretation. Often several dimensions are suppressed. Also, conventional
orthography introduces a spurious orthogonality, which should be ig-
nored. All in all, there is an art to reading these pictures. I have inten-
tionally avoided the use of fancy computer-generated figures. You should
learn to draw figures like these for yourself, and use them as an aid to
your thinking.

Problems

Although I have written this book with the idea that it will be used for
self-instruction much of the time, I have not included many of the usual
exercises for the reader. Instead, they appear here as worked examples.
Furthermore, students able to use this book should be able to invent
routine exercises for themselves, and it would be a disservice not to force
them to do so. On the other hand, I have put in suggestions for further
work. These are not as cut and dried as the usual exercises, but instead
describe interesting and productive directions that the student may wish
to pursue. In some cases I have gone a good way in the suggested direc-
tion myself; in others, I have just passed on what seems like a good idea
to me.
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Tensors in linear spaces

Linear spaces and the closely related affine spaces loom large in the litera-
ture of mathematics and physics. It is not just that only linear problems
are easy to solve. The real reason lies in the fundamental idea of calculus:
the local behavior of a smooth function can be represented by a linear
function. Calculus is just the technology of these local linear approxima-
tions. The spaces in which these local approximations live are important
linear spaces.

The most important linear space for us is the space of tangent vectors
at a point. Elements of this space are local approximations to smooth
curves passing through the point. Because of this, the tangent space, as it
is called, is a local picture of the space itself. It is therefore easy to pic-
ture. Given any linear space there is an entire algebra of related linear
spaces that comprise the various linear and multilinear operators. These
operators are called tensors.

Closely related are affine spaces. These spaces have all the structure of
a linear space, except that all points are equivalent. They lack a special
point for the origin. These spaces are important because they form the
arena for much of physical theory. Newtonian mechanics and special
relativity are both set in an affine space. The straight lines and uniform
parametrization model the uniform motion of free particles. In general
relativity, this affine structure results because special relativity is a local
approximation to general relativity.

The study of the representations of linear geometric objects is of
fundamental importance, as is the covariance of these representations
under linear transformations. A smooth coordinate transformation
looks locally like a linear transformation. Geometric objects must behave

11
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in an orderly manner under coordinate changes, and their local represen-
tations must be covariant under linear transformations.

This covariance under linear transformations shows up in the dia-
grams. Constructions involving parallelism, tangency, and incidence are
allowed; ones involving perpendicularity are not. When teaching, I ask
my students to imagine that they control a machine that can make arbi-
trary linear transformations of the blackboard whenever I turn my back.
If my figures are properly covariant, I can always continue my lecture
despite these expansions, rotations, and shears.

It is possible to ascribe primary significance to the transformations
rather than to the geometric structures. We then study all those geometric
structures compatible with a given set of transformations. This is a useful
point of view, particularly in special relativity, but not one that I will
follow.

1. Linear and affine spaces

The qualifier "linear" is used losely by physicists to refer to several dif-
ferent mathematical structures, all closely related and all useful. There
are linear structures associated with vectors, with free vectors, with
covectors, and with elements of affine spaces. We will also study affine
spaces, since they are an excellent example of the process of subtracting
structure from a set.

Linear spaces

A linear space is a set with two operations, addition and scaling, defined
on it. Its elements are often called vectors, and the space a vector space.
It must have a special element called the zero vector, and obey simple
axioms that force these operations to behave in an orderly manner. Addi-
tion commutes and associates. For a, b, and c vectors,

a+b=b+a
a+(b+c)=(a+b)+c.

The zero vector must exist, with the property

a+0=a,
as must an addition inverse,

a+ (-a) = 0.

Scaling must associate. For k and m numbers,



1. Linear and affine spaces 13

Figure 1.1. The addition of three twisted vectors in three dimensions. The three shown add
up to zero.

k(ma) = (km)a.

Scaling must also distribute:

(k+rn)a=ka+ma,

k(a+b) = ka+kb.

Finally, scaling by unity must be the identity operation:

la = a.

Example: Look at the objects in three dimensions that are repre-
sented by line segments of definite length. Conventional vectors
have a direction; let us instead give these a screw sense (right-hand-
edness or left-handedness). The addition of these objects resembles
the addition of vectors, with the signs being specified by the rule
shown in Figure 1.1, which shows three such objects that add up to
zero.

This is a deliberately unusual example. These objects are called
twisted vectors. Twisted tensors are used in electrodynamics, and
will be discussed in Chapters IV and V.

A vector space is a nice example of a set that is given structure by addi-
tion. Next we will look at a structure defined by subtraction.

Affine spaces

An affine space has less structure than a vector space. If we are given
any two points of an affine space, the affine structure lets us draw a
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Figure 1.2. Use of an affine structure to draw a line parallel to L through the point P. C is
the midpoint of DB and AP.

parametrized straight line through the two points. It defines a notion of
uniformity along a family of parallel lines. There is no origin in an affine
space, and no idea of scaling. (The reader already familiar with general
relativity should not confuse these affine spaces with spaces bearing an
affine connection. There is little relation.)

Examples: An affine structure lets us draw parallel lines. To draw a
line parallel to a given line L through a point P, pick any two points
A and B on L, and follow the construction shown in Figure 1.2.

Look at a three-dimensional vector space, and add to it the choice
of a preferred direction (Figure 1.3). You can think of ordinary
3-space and the vertical direction, but without its Euclidean metric.
Now look at the set of all planes that pass through the origin but do
not lie in the preferred direction. This set has an affine structure but
no linear structure. For example, it has no special plane repre-
senting the zero vector.

The parametrization along the line passing through two points in an
affine space is not unique. Transformations of the parameter u

u'ku+b
change one uniform parametrization into another. If we single out the
parametrization that runs from zero to one between the points, then the
structure of an affine space A is given by a map

A.:AxAxR-+A; (a,b,k)HAk(a,b),
with conditions
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Figure 1.3. In 3-space with a preferred direction (the vertical line here in the figure) singled
out, we have a natural affine structure on the planes passing through the origin, but no

linear structure.

Figure 1.4. The affine map A.

A0(a,b)=a, A,(a,b)=b.

See Figure 1.4.

Example: The structure of the affine space of planes just given can
be represented as follows. Let e be a vector pointing in the preferred
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direction, and let a, b be two other vectors such that (e, a, b) is a
basis for the vector space. Any plane in the set can be represented
by the pair of numbers (u, v) such that the vectors a + ue and b + ve
lie in the plane. The affine map Ak is given by

Ak((ul, vl), (u2, v2)) = (ul+k(u2-ul), vi+k(v2-vl))

Note that the representation given has a covariance. The vectors
a and b can be replaced by any other nondegenerate pair. Although
the plane represented by (0, 0) might appear to be distinguished in
one representation, it is not covariant under the above changes.
Lacking a zero element, this set does not have a linear structure.

You might now expect a set of axioms for the operation A. Curiously, a
suitable set of axioms is neither obvious, simple, nor useful. A better way

r

to describe the structure of an affine space is subtractive. An affine space
is a linear space minus its origin. Given a linear space, we can easily see
that the affine map

Ak(a, b) =a+k(b-a)

is invariant under changes of the origin.
The consistency conditions on the operation A are best described by

saying that the choice of any element e as the zero element turns an affine
space into a linear space if we define scaling by

ka=Ak(e,a),

and addition by

a+ b = A2 (e, Al/2(a, b)). (1.1)

Were we to make extensive use of this affine structure, we would simplify
the notation by defining a special midpoint operation. In the preceding,
the choice of the element e is not essential. If it is true for any e, it is true
for all.

You should think a bit about this subtractive style of defining struc-
ture. It is less intuitive than the direct imposition of structure, but often
very efficient and natural. If you doubt this, try to give a suitable set of
axioms for Ak(a, b), and then try to prove that the preceding construc-
tion gives a linear space.

Free vectors

There is a possible confusion here between the vector spaces that a math-
ematician has in mind - abstract sets whose elements can be added and
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free

Figure 1.5. Bound and free vectors.

scaled - and the idea coming from 3-vectors that the physicist has in
mind: a line with an arrowhead on one end of it. The physicist's vector is
free to roam all over the vector space. To be precise, we call these free
vectors. Vectors in the sense of a linear vector space, with their tails all at
the origin, are called bound vectors (Figure 1.5). In an affine space only
the free vector is a well-defined object. The two different ideas are useful
in different situations, and we will need to use both of them. The idea of
putting all the tails at the origin lets us give a less-cluttered view of infinite
sets of vectors, such as curves of vectors.

Free vectors can be defined in affine spaces as the set (A x A )/ --- ,
where the equivalence relation - is defined by using the map Ak:

(a, b) --- (c, d) iff d = A2 (a, A1/2(b, c)).

This is sketched in Figure 1.6. Scaling by k is the operation

[(a, b)] - [(a, Ak(a, b)].

Here the square brackets stand for an equivalence class; [(a, b)] is the
equivalence class containing (a, b). Addition is the operation

[(a, b)]+[(c, d)] = [(a, A2(a, Al/2(b, A2(c, Al/2(a, d)))))]
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Figure 1.6. Equivalence of free vectors defined by using an affine structure.

Figure 1.7. The addition of free vectors defined by using an affine structure.

Figure 1.8. The action of the covector w on the vector b.

See Figure 1.7. This result is not given to be useful, but only to check
your understanding of the idea of defining operations on equivalence
classes.

Covectors

For any vector space, the linear operators that map vectors to real num-
bers are important. They form a vector space themselves; it is of the same
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2w

Figure 1.9. The scaling of covectors.

«+a+y=0

Figure 1.10. The addition of covectors. The three shown add up to zero.

dimension as the vector space, and is called the dual space. These linear
operators are called covectors. A covector can be represented by parallel
hypersurfaces. For a given covector w: V-- IR, the set, w, of vectors such
that w. v =1,

CO =tve

form a hyperplane in the vector space, and provide a faithful representa-
tion for w (Figure 1.8). Scaling and addition are easily performed in this
representation (Figures 1.9 and 1.10). The space dual to V is written V*.

The unit-contour w alone is a useful representation for a bound
covector. A free covector, like a free vector, can roam all over the vector
space. It requires a pair of contour lines for its representation, and the
equivalent of an arrowhead to flag the "uphill" contour.
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Example: In Figure 1.10 we drew some free covectors.

A blindness caused by the unnecessary use of metrics afflicts many physi-
cists; so they do not distinguish between vectors and covectors. It does
take practice to develop an eye that sees relations in a metric-free fashion.
An intuition that is covariant under general linear transformations is an
extremely valuable tool, and I encourage you to develop one.

Example: One way to appreciate this duality structure is to examine
a case where it breaks down. Let V be the space of continuous func-
tions on the closed interval [0,1]. Some elements of V* can be
written as integrals. For any f c- V we have the linear operator

fi
Slg : f H

J o
g(x)f(x) dx.

There is a natural map V--+ V* given by

g -
i

(1.2)

where the centered dot in parentheses indicates a missing argument.
Not all elements of V* can be found this way. For example, the
map SXo

SXo: ffH.f(xo),

is a linear operator, and so it must be in V*. It cannot be formed as
in equation (1.1), however.

We can try to add further functions to V to restore the symmetry
between V and V*, such as the functions called S-functions. Unfor-
tunately, the product of 6(x) with 6(x) cannot be defined, and this
fails.

The correct way to introduce S-functions is to envision them as
the results of a limit process that produces a class of sharply peaked
functions. This entire class is called (unfortunately) a S-function, or
a generalized function. A generalized function is thus an equiva-
lence class of functions so sharply peaked that it is irrelevant how
peaked it is. The product of a single generalized function and an
ordinary function is well-defined, and is independent of which ele-
ment of the class of sharply peaked functions is chosen. Not so for
products of generalized functions. This is why 62(x) really cannot
be defined.
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The linear structure of a vector space makes calculus easy. A parametrized
curve in a vector space V is a map -y: R -- V; s - -y (s). Suppose the vec-
tors are represented by their components in some given basis:

v=vaea=ve.

Here the va are numbers, but v and the ea are vectors. Often the va can be
thought of loosely as "the vector." The third expression is the compact
"sum over the obviously missing indices" notation. A map -y will be
represented by n functions of one variable if we write

-Y (s) ='ya(s)ea ='y(s)e.

The tangent to y at s is the vector -y(s) given by the usual expression

'y(s) = Lim ['y(s+ E) -'y(s) I/c.

This definition is equivalent to

'Y(s) = ds
(s) ea = ds (s)e.

The preceding argument adds vectors that are defined at different points.
This cannot be done on all smooth sets (try making sense out of adding
a vector at the North Pole to one on the equator). This is what forces us
to give the involved definitions of a tangent vector that we will give in
Chapter II.

I will often give the basis vectors in a linear space mnemonically con-
venient names such as e, ey, and so on. The basis covectors will have
dual names, such as f, fy, and similarly. The contractions are

f eX=1, fy . eX=O,

and so on.

Problem

1.1 Show how the two-dimensional picture of covectors and covector addition is
a section through the general picture in higher dimensions.

2. Differential calculus

Our aim in studying manifolds will be to extend the ideas of calculus to
sets more general than the real numbers. To prepare for that, let us
review ordinary multivariable calculus with an eye to streamlining the
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notation and highlighting the concepts. The main aim of this section is to
give you practice with the style and notation to be used in this book.

Differential

The two important ideas of calculus are (1) the local linear approxima-
tion to a function, and (2) the notion of a constant function. These are
both seen in the single-variable Taylor's Series expression

.f(x) =f(x0)+.f'(x0)(x-x0)+ ....

Suppose that E and F are two vector spaces, not necessarily of the
same dimension, and f : E -+ F; u - f(u). The correct generalization of
the Taylor's Series is

f(u+h) = f(u)+Df(u) (h) + .

Here h is a vector in E, and Df(u) is a linear operator depending on the
point u, Df(u) : E -* F. Recall our convection of using the centered dot
for the evaluation of linear operators. For the right-hand side to be a
local linear approximation to f, Df(u) must be the unique linear oper-
ator satisfying

Lim
11 ho

Here 11.11 denotes any convenient norm on the vector spaces E and F. The
linear operator Df(u) is called the differential of f. In spaces of finite
dimension, this differential is independent of the norm.

Examples: What is the differential of

f:1R--SIR; x-x3

at x= I? Near x= I we have

f(x)=1+3(x-1)+ .

Here the three dots denote second-order terms that vanish in the
limit. The differential at x =1 is the linear map

Df(1):x-3x.

In one dimension any such linear map can be represented by a
number, here 3, which is called the derivative (Figure 2.1). The cor-
rectness of the preceding differential is shown by the fact that

Lim
Jx3-1-3x+3I =0.

X-+1 Ix-11
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f

Figure 2.1. The differential of the function f is a linear map, which can be represented by a
number, the derivative.

Let f be a map from R -+ IR"; use Roman indices for coordinates
in IR'", Greek for those in IR". Thus f can be represented by the m
functions fµ(xa). We are following an index placement that will
ultimately make good sense. Near xa = 0 we have

µ
fµ(xa) =. fµ (O) + axa (0)x. a,

and so the differential is the linear map
afl afl af2

(xl,x21...,x'")H
axl

(Xl+ ax2x2+...,

axl
xl+...,...

which I abbreviate

a afµ a afµ
axa

x = ax x.

The differential is the linear operator whose matrix representation
is the matrix of partial derivatives.

Let M" be the linear space consisting of all n x n matrices. Look at
the function F:

F:M"---M"; AHAAt-I.

Here At is the transpose of the matrix A, and I is the identity
matrix. If F(A) = 0, then A is an orthogonal matrix. What is the
differential of F? For any matrix A we have
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F(A+h) = (A + h) (A + h)t - I,

=AAt-I+Aht+hAt+

=Aht+hAt.

Thus the differential is given by the linear map

DF(A) : h -Ah t + hAt.

Compare this simple explicit statement with the array of second
derivatives. We will use this particular differential in Section 11.

Chain rule

The chain rule is a useful theorem for the differential of the composition
of two maps. For vector spaces E, F, and G, and maps f : E -* F, and
g : F--> G, then the composite function g- f is a map

g°f: E -+ G; e' -' g[f(e) ],

whose differential is given by

The bones of the equation, leaving out the obvious arguments, are simply

D(g°.f)

Second differential

Higher differentials can be defined similarly. Second differentials D2f
make the Taylor's Series

f(u+ h) = f(u) +Df(u) h+D2f(u) (h, h) +

valid. Here D2 f(u) is a map E x E --> ]R that is linear in each argument.
Such maps are called bilinear. Note in the preceding that both Df and
D2f are really "single" symbols. We are not thinking of these as the result
of an operator "D" applied once or twice to f.

Example: For f(x) = x2, we have, at x = 0,

f(x) - f(0) +Df(0) x+D2 f(0) (x, x) = x2,

and so the first differential at zero is zero, and the second differen-
tial is the bilinear map

(x, Y) -Xy.
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Any such bilinear map from JR2 -+ JR can again be represented by a
single number, and in one-variable calculus this number is called
the second derivative.

Extrema

Many physically interesting problems can be formulated as extremum
problems. For example, the static equilibrium configurations of a mechan-
ical structure are extrema of its potential energy, and the action integral
is an extremum in wave problems. Finding such extrema is a nice exercise
in differential calculus. Here we look only at finite dimensional spaces.

The most straightforward problem is to have a map f : E -+ ]R; x -f(x),
and to seek its critical points, x, which satisfy

Df(xc) = 0.

This equation provides us with n equations for the n coordinates of xc.
These are necessary conditions for an extremum. In most physical prob-
lems it is sufficient to find the critical points rather than true extrema.

A more interesting procedure is to look for critical points of f restricted
to a subspace of E. Look at the problem in which a condition

g(xC)=0,

where g : E -+ IRk, is specified as well. We demand that Dg be a non-
singular linear map at the zero value; otherwise the subspace can be
pathological.

Examples: The case E = JR2 is simple enough to solve by inspec-
tion. Look at Figure 2.2. We are constrained to move only along
the curve g(x, y) = 0. A point (xe, yc) is a critical point of f if the
change in f(x, y) away from (xe, yc) along the g = 0 curve has no
first-order terms.

The geometric interpretation of this is that the contour lines of f
must be parallel to the curve g = 0 at the critical point. Translated
into the language of differentials, this states that there must be a
constant X, called a Lagrange multiplier, such that

Df(xc, yc) = X Dg (x, yc) (2.1)

Together with the constraint equation

g(xC, YC) = 0,

this gives three equations for the three unknowns x, yc, and X.
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v

x

Figure 2.2. A problem of constrained extrema.

Find the extrema of the function

f(X, y) = y,

on the circle

g(x,y)=x2+y2-1=0.
We compute the differentials:

of
axu+

ofayv=v,

Dg(x, y) (u, v) = 2xu+ 2yv.

Condition 2.1 yields the two equations

2xc=0, 2ycX=1,

and together with the constraint equation these give us the two crit-
ical points

(X, y, X) = (0, 1, 2), (0, -1, -2).

See Figure 2.3.

The general case is covered by the following theorem. If uc is a critical
point of the map f: E --> IR, restricted by the k conditions

g(uC) = 0,

where

g: E - IRk,

then there exists a linear map X : IRk --> IR, such that
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v+

Figure 2.3. One critical point and one ordinary point for the example.

provided that Dg(uc) is nonsingular. The linear map X gives us k Lagrange
multipliers, and the map g gives us k additional constraint equations. See
Abraham and Marsden (1978) for a proof. Similar Lagrange multiplier
results will come up when we study the calculus of variations.

3. Tensor algebra

Starting from any given linear vector space, we can construct an algebra
of multilinear operators called the tensor algebra. The multiplication in
this algebra can be specified by a few simple rules. Rather than pull these
rules out of the air, let me deduce them first for bilinear operators.

Bilinear operators

The linear operators on a vector space that map vectors into numbers are
called covectors. When in particular the vector space is the space of tan-
gent vectors, these dual vectors are called ]-forms. I will usually use
early-alphabet, lower-case Roman letters for vectors, and late-alphabet
Greek letters for covectors. A reasonable question to ask is, given the
covectors, can we construct bilinear operators from them? A bilinear
operator, say, 12, is one that acts on pairs of vectors according to

c) = c),

12 (a, b+c)=1I (a, b)+12-(a, c),
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Figure 3.1. The action of the Euclidean metric tensor on vectors lying outside the unit
circle. Use scaling if the vector originally lies inside, or reverse the construction, which is

just inversion.

and

Q.(ka, b) = Q. (a, kb) b),

where k is a real number.
A natural way to form a bilinear operator from two given covectors is

to let each one act on one of the vectors. Denote the combined operator
by w 00 v, and define it by

WOO

The multiplication on the right is the ordinary multiplication of numbers.
Objects such as WOO v are called tensors. The operator 00 : (w, v) - w0 v

is called the tensor product, and the algebra generated by this product is
called the tensor algebra. From the preceding equation we see that it has
the properties

(kw)OO v = WOx (k v) = k(W(& v),

(W+a)OX V = WOX v+o v,

WQ(a+ V) = WOX a+WOO v.

Contrast this with the Cartesian product on 1R2, which is usually given an
algebraic structure such that

k(x,y)=(kx,ky).

Every bilinear operator can be written as a sum of terms such as WOO v.
The single terms are called monomials.
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Figure 3.2 (left). The action of the Euclidean metric tensor in general linear coordinates
rather than the Cartesian coordinates of Figure 3.1.

Figure 3.3 (right). The action of the Euclidean metric on pairs of vectors.

Example: Let e, ey, and eZ be a basis for the Euclidean vectors in
3-space, and let f, f y, and fl be the dual basis. The Euclidean
metric is generated by the bilinear operator

&= fXO fX+fYQx fy+fZ(&fZ.

The action of this tensor as a linear map : vectors--+ covectors is
shown in Figure 3.1. In general coordinates the action is represented
by an ellipse (Figure 3.2). The related action : vector x vector --). num-
ber is shown in Figure 3.3.

To see that every bilinear operator can be written as a sum of monomials,
just verify that the expansion

SZ=gabfa® fb

has the desired action, where the numerical coefficients gab are given by

Slab = SZ (ea, eb) .

The space of these bilinear operators forms a vector space written
V*Q V*. The elements are called tensors of type (0). Tensors of types
o) and (;) are also bilinear operators. The former act on pairs of

covectors, and the latter on a mixed pair of one vector and one covector.
The mixed tensor product is familiar to physicists as the outer product

of row and column vectors; in bra-ket notation it is written
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®:(Ia>,<w1)-Ia><wI.

Tensor product

A tensor multiplication, Ox , can be defined on all the tensor spaces by
using the rules so far deduced. The multiplication will be associative,

a®x (b( c) = (a (& b) (& c = a®x b®x c,

will commute with real numbers,

ka®x b=a®x kb=k(a(& b),

and will distribute over addition,

a®x (b+c) = a(x b+a®x c,

where a, b, and c are tensors, and k is a real number. This tensor product
can easily be extendedfrom sets of basis vectors and covectors to tensors
in general. We can multiply tensors of type (q) with tensors of type ( s) .
The result is a tensor of type (P+r 1

q+s 1
From a given set of basis vectors, we can form a basis for the tensor

spaces by using all possible tensor products of the correct type. The
coefficients in an expansion in terms of these basis tensors are called the
components of the tensor. These components are often indexed by using
superscripts for vector terms and subscripts for covector terms:

F=Fµvaa e,, (9 e,( fa(O ,f a,

where f a is the covector dual to ea. Notice how the index placement tells
us what type of tensor is being represented. Notice also that we are being
much less abstract than is the usual practice. Usually a tensor is defined
to be a quantity with more indices than a vector, transforming in some
special manner. To us each tensor is a specific multilinear operator. This
multilinearity gives tensors symmetries that differ from the symmetries of
vectors. Real numbers act on vectors and tensors by using the scaling
operation of a vector space, and they are tensors of type (0), often called
scalars.

Contraction

If we are given a tensor space of type (P), there are natural maps into the
tensors of type ( q= i) , tensors having one less vector factor and one less
covector factor. These natural maps are called contractions. They are
called natural because every tensor space admits them. To contract, we
use term-by-term the natural operation of a covector on a vector.
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Example: In IR3 the tensor

T= ex(ey®O fX+ey®O ez( fX+ex(ex®fy

is of type (;). There are two different ways to contract this tensor.
Each results in a vector. If we contract on the first and third fac-
tors, we have

If we contract on the second and third, we find zero. It cannot be
contracted on the first and second, because these spaces are not dual.

Contractions of complicated tensors require some notation to indicate
which terms are being contracted. The most convenient notation for this
is the index notation. [See the remarks in Burke (1980), Penrose (1968),
and Schouten (1954) on the schizoid view that physicists have of the
index notation.]

Example: For our tensor T given in the preceding example, the first
contraction would be written Tab and the second Ta °.

The one-up, one-down rule in the summation convention was imposed to
force us to do the contraction correctly. For a contraction to be well-
defined, it must commute with the associative and,distributive laws of the
tensor product, which is easy to show.

4. Alternating products

Bilinear operators have symmetric and antisymmetric parts. The parts
behave quite differently, and many of the tensors of physical interest are
purely of one type or the other. Metric tensors are symmetric. The den-
sities discussed in the Introduction are totally antisymmetric tensors, also
called skew or alternating. We discuss here the geometric representations
of some alternating tensors. These geometric representations are quite
useful, and will be used throughout this book.

The alternating product of two vectors, denoted by A, is defined to be

anb=a(x b-b®x a.

We can easily extend A to triple and higher products. For example,

aAbAc

= (a(b®x c-a®x c®x b-b®x a®x c+b®x c®x a+c®x a®x b-c®x b(&a).
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Figure 4.1 (left). The action of a 2-form SZ on the vector b yields a 1-form SZ- b. The data in
this figure completely specifies SZ in two dimensions.

Figure 4.2 (right). A properly scaled vector c.

If a and b are vectors, then a A b is called a bivector. Bivectors have many
uses, and can represent, for example, pieces of a 2-surface. We can also
take the alternating product of two 1-forms

coAv=w®x v-v®xW,

and these are called 2 -forms. They will be used, for example, to represent
the electromagnetic field in spacetime. The wedge product is similar to
the vector cross product, but is associative.

Example: Let us find a geometric representation for a 2-form
12 in two dimensions. Such a (0) tensor is a map Sl : V X V--+ R;
(b, c) - 12 (b, c). By partial evaluation it is also a map 12: V--> V*;
b - 12 b = 12 (b, ), and this latter action is the one we will repre-
sent. Note the careful and consistent use of the centered dot here
for the action of linear operators. To start, pick any vector b, and
ask 12 for 12 b, which is a 1-form. Since SZ is alternating,

Q.(b,b)=0,

and the zero contour of 12 b must lie along b (Figure 4.1). Now take
any other vector c. Can we find 12 c if we know only what is given in
Figure 4.1? Yes. Because of linearity we can scale c so that

as shown in Figure 4.2. But since SZ is alternating, this says that

-1
and together with

(Slc)c=0,
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.

Figure 4.3. Finding SZ from the data in Figure 4.1.

V 0
Figure 4.4. The representation of a 2-form in two dimensions.

which is true for any skew tensor, we must have 12 c, as shown in
Figure 4.3. Thus any figure like 4.1 or 4.3 is a representation of 12.
The common feature is the area shown in Figure 4.4. The arrow
indicates the orientation, and tells whether the unit contour of 12 c
goes to the right or to the left.

Unlike that of symmetric tensors, the representation of 2-forms depends
strongly on dimension, because all 2-forms in two and three dimensions
are algebraically special. In two dimensions, every 2-form satisfies

wnw=0.

Normal forms for 2-forms will be covered in Section 26.

Example: Let us use the same methods to find a representation of a
2-form in three dimensions. Pick first a vector b, and ask for SZ b.
If it is zero, try again. Then pick another vector c such that
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Figure 4.5 (left). A 2-form in three dimensions.
Figure 4.6 (right). The action of a 2-form, represented as in Figure 4.5. Acting on a vector

d, it yields the 1-form 9-d.

Now pick a vector d such that

This vector d points along the "eggcrate" formed by 1Z b and 12 c.
Now, d cannot be a linear combination of b and c, and so b, c, and
d must form a basis. We have 12 d = 0. Thus we can find 12 v for
any vector v.

A representation based on this uses an oriented prism, as shown
in Figure 4.5. To find 12 v for any vector v, deform the prism, keep-
ing its cross-sectional area constant, until v lies along one of the
sides, as shown in Figure 4.6. Then the opposite side of the prism
will be the unit contour of SI v. This 2-form is similar to the density
given in the Introduction, differing only in the type of orientation
it has been given. The one in the Introduction is called a twisted
2-form.

The addition rules in these representations are easy to deduce.

Example: The addition of 2-forms and bivectors in two dimensions
is sketched in Figures 4.7 and 4.8. A bivector is represented by an
ordered pair of vectors, and is not changed by rotations that pre-
serve the ordering of the vectors and the area spanned by the pair,
as shown in Figure 4.9.
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Figure 4.7 (left). The addition of 2-forms in two dimensions.
Figure 4.8 (right). The addition of bivectors in two dimensions. Note the complementary

behavior in Figures 4.7 and 4.8.

I

r

Figure 4.9. Three equivalent representations of the same bivector.

The representations given so far are not typical. Only in four or more
dimensions does the full structure of 2-forms and bivectors appear. The
general representation of bivectors in 2n dimensions involves n pairs of
vectors, all linearly independent. In four dimensions

B=e Aey+eeAet
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is a typical bivector. A bivector with only one term is called simple. In
two and three dimensions all bivectors are simple.

Linear transformations V -> V are represented by tensor-product terms
of the type V* (9 V. Such terms cannot be antisymmetrized; it makes no
sense to write

e ®fy-fy®ex.
If there is a metric on the space, the metric can be used to convert
covectors into vectors, and you can then antisymmetrize the result. An
orthogonal rotation is a linear transformation that preserves a metric
inner product; whenever we talk about orthogonal rotations there is
a metric available, and we can use the preceding trick. Infinitesimal
orthogonal rotations can be represented by bivectors. A rotation in the
Euclidean plane is represented in Cartesian coordinates by the bivector
(unique up to scale)

SZ=exAey.

With a metric the operation can be defined by

This gives you the velocity of the tip of the vector v under a rotation
whose rate is J. This metric inner product, which we will use only rarely,
will be represented by a boldfaced centered dot.

Examples: The bivector

SZ=exAet

represents a Lorentz transformation. We have

12' ex = et,

I am using a Lorentz metric of signature - + + +. You can see here
how the Lorentz metric straightens out the sign. Using the metric,
the electrodynamic 2-form can be turned into a bivector. In this
form it represents the rate at which charges are accelerated by the
field, an infinitesimal Lorentz transformation.

Consider a situation like well-combed, very fine hair. This can be
described in a fluid approximation in which the individual hairs are
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ignored and only their mean density and alignment is kept. In JR3
this density can be represented by a 2-form. Using the graphical
representation given in Figures 1 and 2 in the Introduction, align
the prism along the lines, and choose the cross-sectional area to
include (on the average) one line.

Problem

4.1 Extend the last example of this section to lines in spacetime, the worldlines of
particles. Find the 3-form describing their density.

5. Special relativity

Special relativity provides a nice example of the use of geometric struc-
ture to model physical reality. The geometric structure here was invented
by Einstein in one fell swoop, and special relativity is often presented this
way. It is more instructive to build up this structure layer by layer, each
layer having its own mathematical structure.

Be careful of the naive view that a physical law is a mathematical rela-
tion between previously defined quantities. The situation is, rather, that a
certain mathematical structure represents a given physical structure.
Thus Newtonian mechanics does not assert that F = ma, with F, m, and a
separately defined. Rather, it asserts that the structure of second-order
differential equations applies to the motion of masses. A falsification of
Newtonian mechanics would entail showing, for example, that position
and velocity were not sufficient to predict the future motion (radiation
reaction), or that position alone was sufficient (Aristotelian mechanics).
If you miss this point, then our laws here will seem circular.

Topological structure

We start with the broadest structure useful in classical physics: continuity.
We assert that a continuous map : (events) --> JR4 exists. An event is a
primitive notion, corresponding to a particular location at some par-
ticular time. Events lie in the physical world, and the map 1 is an opera-
tional procedure using physical apparatus. The numbers JR4 are called
coordinates. The notion of nearby events must also be taken as a primi-
tive notion. The map 1 is continuous if nearby events have nearby coor-
dinates. A particle is something described by a continuous line of events,
called its worldline.
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Figure 5.1. An impossible situation for free particles with a projective structure.

The assertion that such a map 1 exists is an important physical state-
ment. That the mathematical structure fits the world says that the world
is four-dimensional. What appears to be only a definition is often more
than that.

Projective structure

The world has more structure than the topology of events and particles.
Among the particles there is a subclass called free particles. The structure
of these free particles is given by the assertion that in the class of con-
tinuous maps 0 we can find maps such that the worldlines of the free par-
ticles are straight lines in 1R4. This structure is called a projective struc-
ture. Note that both the straight lines and the free particles are defined by
this assertion; nor does there need to be only one projective structure. We
assert only that at least one exists.

Examples: Not every set of worldlines can be taken to be free par-
ticles. No map can straighten out two worldlines if they ever appear
as in Figure 5.1.

Suppose that the universe of physics consisted of only two classes of
particles, neutral particles and electrons, in a region of space filled
with a uniform electric field. Then either the neutrals or the elec-
trons (if far apart from each other) could be taken as free particles.

Coordinates for which the free particles go in straight lines are not unique.
Given one such 1', we can modify it by any transformation 1R4 --> 1R4 that
preserves the projective structure.



5. Special relativity 39

Figure 5.2. Affine structure used to compare clock intervals in spacetime.

Conformal structure

An additional primitive notion is the idea of a special class of worldlines
called light signals. The structure here is that of the possible directions of
light-signal worldlines in spacetime, the light cone. The light sent out in a
specified spatial direction travels with a unique speed. The special class of
directions gives spacetime what is called a conformal structure. I will
draw light signals in spacetime diagrams with dashed lines.

Affine structure

There is yet more structure in the world. A clock is another primitive
notion. It is an operation that assigns numbers to intervals along a world-
line. These intervals are called time intervals or, sometimes, proper-time
intervals. These clocks are to have an intrinsic rate. It might be that of an
ammonia molecule flipping back and forth, or of an atomic vibration, or
one given statistically by the decay of many elementary particles.

The affine structure of these clocks is contained in two assertions. One
is universality: All clocks are essentially the same. The relative rate be-
tween any two clocks carried along the same worldline does not depend
on where or when this is done, but only on the types of the clocks. The
other is uniformity. Among the projective coordinates we can find special
coordinates such that the natural affine structure of 1R4 is compatible
with the clock readings. Clocks carried along opposite sides of a parallelo-
gram must read the same time interval (see Figure 5.2). Also, the clock
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Figure 5.3. Ticking objects that cannot be given an affine structure.

ticks must subdivide intervals in the same way that the affine structure
does. Notice that we assert that a set of clocks tick uniformly, not by
comparing them with some other clocks, but by comparing them among
themselves in sets of four. Figure 5.3 shows a hypothetical set of ticking
objects that cannot be defined to be uniform clocks, showing that this is a
nontrivial assertion.

Example: Using only the linear and conformal structures, we can
define the relative velocity between two free-particle worldlines.
The time intervals shown in Figure 5.4 are to be measured, and the
relative velocity v is then defined to be

v = T2-Tl
T2 + Ti

This construction compares time intervals along only a single
worldline, and this ratio depends only on the affine structure of the
clocks and the affine structure of light signals.

Any representation of free particles and clocks in 1R4 that is compatible
with the usual affine structure of IR4 is called an inertial reference frame.

Canonical reference frames

By combining the affine and conformal structures, an observer can select
a map 1 that is unique up to rotation and overall size. For simplicity we
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Figure 5.4. The relative velocity between two worldlines defined by using two light signals,
shown as dashed lines, and an affine structure that measures the time intervals 7-1 and r2. We

need only their ratio.

1 X

Figure 5.5. The action of a Lorentz transformation.

describe this in just two dimensions. Start with maps 1 compatible with
the affine structure. Among these select those in which the light signals
move along lines of slope plus and minus one. The remaining freedom
consists of expansions and contractions along these 45 ° axes. Using coor-
dinates along these axes, we find that these transformations are given by

(u, v) - (au, v/a),

as shown in Figure 5.5. These transformations are called Lorentz trans-
formations. Note that we are using Lorentz transformations before
special relativity has even appeared. Even the absolute-time clocks of
Newtonian mechanics fit the framework so far set up. Lorentz transfor-
mations depend on only the affine and conformal structures. By choosing
the appropriate Lorentz transformation, any observer can make his or
her worldline vertical. The representation is now unique except for a
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Figure 5.6 (left). The general pattern for describing the behavior of a set of clocks that
satisfy our assumptions.

Figure 5.7 (right). The behavior of clocks compatible with the absolute time of Newton.

possible overall magnification. This representation I call a canonical ref-
erence frame for that observer. A canonical reference frame provides a
useful framework or language in which to describe further physical
observations.

Special-relativity clocks

Using a canonical reference frame as defined in the preceding, an ob-
server can now study the detailed behavior of clocks. The observation
is to measure unit time intervals along worldlines of different slopes.
Such observations can be summarized by using the affine structure to
transfer all these unit time intervals so that they start at the origin. The
behavior of clocks that satisfy our assumptions is completely contained
in the set of points that are a unit time interval away from the origin
(Figure 5.6).

Note carefully that a measurement of the set g by any one observer
is a complete theory of clocks. The transformation from one observer's
canonical reference frame to another's is a Lorentz transformation, and
is determined solely by the affine and conformal structures of space-
time.

When clocks are studied in the real world, the set g is adequately
described by the hyperbola

t2-x2=1,

or in four dimensions by the hyperboloid

t2-x2-y2-z2-1.
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We are using the second as our unit of time, and the light-second as our
unit of length. A marvelous feature of this clock behavior is that it is
unchanged by Lorentz transformations. Every observer sees the same
clock behavior. This is called Lorentz invariance. Note that the formalism
can represent clocks that are not Lorentz-invariant.

Example: The absolute-time clocks of Newton are represented by a
set q such as is shown in Figure 5.7.

An interesting unification is that the asymptotes of this hyperbolic set J
represent the conformal structure of light signals.

Further physical instances of this type of structure will be given in Sec-
tion 53, where wave packets of dispersive waves will be discussed. An
application to water waves is discussed in Burke (1980).

Metric structure

The clock structure described by the hyperbola t 2_ x2 =1 is special. It
can be represented by a symmetric tensor of type (0). °The set of unit

time intervals is given by vectors a such that

a) = -1,

where q is the tensor

=.f"O.f"-.ft ®f`

It is easy to show directly that this tensor has the same Lorentz invariance
as the clocks that it describes. This metric represents light-signal world-
lines by the requirement that time intervals measured along them vanish.
The application of this metric structure to the Doppler shift and to aber-
ration will be given in the next section.

Problems

5.1 Show by constructing an explicit counterexample that clock uniformity is not
a projective invariant.

5.2 The Newtonian idea of time as absolute and universal leads to clocks whose
unit-time set q is given by the line t =1 rather than by the hyperbola t2 =

x2+1. can this be described by using a metric tensor? Discuss its invariance,
especially under Galilean transformations.

5.3 See Figure 5.8.
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Figure 5.8. What happens?

6. The uses of covariance

If we are calculating real physical quantities, then the results must be
independent of the representation we use. This is called covariance. Only
the final result of calculation need be covariant. Great calculational
advantage is often gained, however, by casting the results into a form in
which the various pieces are themselves covariant. Often the form of an
expression can be deduced in advance, once a covariant notation elimi-
nates spurious coordinate dependencies. This is a matter of style, and I
will give here several examples from special relativity of what I consider
good style in using covariance in calculations. Manifest covariance is not
always the best tactic; the noncovariant coordinates that we will use for
contact bundles in Section 15 are a good counterexample.

Doppler shift

Special relativity provides several good examples for us. Suppose an
observer moving with 4-velocity d sends a light signal to another observer
moving with 4-velocity b. Let the direction of the light signal be specified
by a vector c. The Doppler shift observed will be the ratio (1+z) of
received wavelength to emitted wavelength. This ratio can depend on
only the three vectors d, b, and c, and the metric tensor (Figure 6.1). The
metric tensor allows us to form dot products, and to normalize the
velocity vectors

V = 29.99
MPH

IIII WTS -
%z TON
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b

1/1

Figure 6.1. The spacetime geometry of the Doppler shift.

-1.

The light signal satisfies

The dot here stands for the inner'product using the Lorentz metric. The
Doppler shift cannot depend on a generalization of the scalar triple
product, since that would introduce a spurious handedness into the
problem. Nor can the result depend on the magnitude of c. The only pos-
sibility consistent with these conditions is

(1+z)=F d

(c-b).
To evaluate the function f, we could do the calculation in a special ref-
erence frame chosen for simplicity, or just notice that, if we think of c
as a 1-form that describes the geometric arrangement of wavecrests in
spacetime, then is the rate at which the observer with velocity d
sees wavecrests pass. Thus we must have

(1+z) =

This expression applies to nonplanar motions as well as to plane or linear
motions.

Aberration

A similar problem involves a single observer d who measures the angle
between two light signals b and c. Again this angle must be some scalar
combination of the various dot products of these vectors. There are now
three such dot products that are nontrivial. The angle will not depend on
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the magnitudes of either b or c. There is only one such combination, and
we must have

O=F

To evaluate the function F, we look at two light signals that have an
angle 0 between them:

d=et, b=et - ex,

c =et-cos0ex- sin0ey;

here we use ex to denote the unit vector in the x direction, and so on.
These vectors satisfy

-1, 0.

The preceding combination reduces to

cos 8-1 .

Both sides of this equation are covariant; so this is the general expres-
sion. This same expression could be derived by a more direct approach:
projecting the vectors b and c perpendicular to d, normalizing the result,
and measuring their angle.

The dihedral product

Look at the geometric situation defined by two planes, one specified by
vectors d and b, the other by vectors b and c. The vector b is common to
the two planes. In Euclidean geometry the intersection of two planes
defines a dihedral angle. This angle depends on a covariant function of
the dot products of the three vectors, with the following additional
properties.
1. It is independent of the magnitudes of the three vectors (none of them

are assumed to be normalized).
2. It is independent of changes in d that leave it in the same plane, and

similarly for c.
The second condition can be satisfied by using the alternating tensor
products d A b and CA b. These alternating products are called bivectors,
and have the property that changes in d such as

d -d+kb

leave the bivector unchanged.



Q
..

Q
..

I
-
,

6. The uses of covariance 47

These bivectors can be given a metric structure by using the definition

which preserves the second condition, no matter whether the metric is
Euclidean or Lorentzian. Our problem involves two such bivectors, one
for each plane, and thus three possible dot products. The combination
that is independent of the magnitudes of d, b, and c is easily seen in
bivector form as

that is

A Euclidean dihedral angle 0 in special position is given by

b=ee, d=ex,

c = cos 0 ex + sin 0 ey,

and we have

[ ]2

[ ][ ]
=cos20.

Since both sides of this equation are covariant separately, we have in
general

cos 0=

This combination of three vectors I call the dihedral product.

Spacetime dihedrals

Let us look at three observers who are moving at constant velocity away
from an event. They can exchange light signals, and each observer can
measure the apparent angle between the other two. We have here a
combination of two effects: a geometric diminution caused by their
separation, and a magnification caused by aberration. The situation is
self-similar in time, and the apparent angles will necessarily be time-
independent.

The apparent angle will depend on only the 4-velocity vectors of the
three observers. Look at Figure 6.2. For observer b, only the light signal
is important. Changing the source velocity so that it stays in the same
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Figure 6.2. The spacetime geometry of aberration.

Figure 6.3. A hexagonal array of six observers moving radially outward.

plane will have no effect on the angles. The observer will merely see the
source with a different Doppler shift. Again we have a situation with -the
symmetry of the dihedral product.

A special case for easy computation is

b = et, d = cosh et + sinh ex,

c = cosh et+ sinh (cos 0 e, + sin 0 ey),

from which we find the general expression

cos 8

Note the sign changes caused by the Lorentz metric.

Example: Suppose we have six equivalent observers arranged in
a hexagon in a plane, all moving radially away from the origin
(Figure 6.3). What is their radial rapidity if each observer, such as B,
sees his or her two neighbors, A and C, as being separated by 90°?
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In the frame of symmetry, we have for the normalized tangent
vectors

b = cosh et + sinh t ex,

(a)= cosh bet+sinh Y'(Zex± ey).

A right angle requires

0,

which gives us

sinh ' = V.

Pseudospherical geometry

If we take the radially moving observers of the last example as points in
the space of the observers, then we can define a geometry on that space.
Take the distance between these points to be the relative velocity between
the observers, measured by using rapidity, so that it will be additive. The
normalized velocity vectors of these observers form a unit hyperboloid in
spacetime. Because of Lorentz invariance, this geometry has the same
symmetries as the usual pseudospherical geometry and is therefore equiv-
alent to it. Here we are projecting everything onto the unit hyperboloid
by using straight lines through the origin. Light rays between observers
project down into geodesics of the unit hyperboloid. The angles between
these geodesics correspond to the apparent angular separations.

The geometry of the unit timelike lyperboloid is the non-Euclidean
geometry of a surface of uniform negative curvature called the
pseudosphere. The analogs of the rules for spherical trigonometry are the
law of sines (for a triangle with sides a, b, and c, and opposite angles A,
B, and C, as shown in Figure 6.4),

sinh a _ sinh b _ sinh c
sin A sin B sin C '

the law of cosines,

cos A = -cos Bcos C+ sin B sin C cosh a

and the law of hyperbolic cosines,

cosh a = cosh b cosh c - sinh b sinh c cos A.

Example: The preceding hexagon of observers contains twelve of
the pseudospherical triangles ABC shown in Figure 6.5. We have
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Figure 6.4 (left). A pseudospherical triangle.
Figure 6.5 (right). The pseudospherical triangle defined by two of our previous six observers.

cos 45 ° + cos 45 ° cos 600 _
cosh a =

sin 45 ° sin 60 0

The relative rapidity between observers is

cos 60 ° + cos 2 45 °
cosh c = =1 + V.

sin2 45 °

As an amusing example of non-Euclidean geometry, note that the right-
angled hexagons found in the preceding example will tile the pseudo-
sphere, with four such hexagons meeting at every vertex.
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Manifolds

Most of the sets on which we need to do analysis are not linear spaces.
The surface of a sphere is a familiar example of a smooth set that does
not have the structure of a linear space. It has no origin (zero vector).
Also, we cannot define addition on pairs of points (free vectors) on a
sphere in a manner consistent with the axioms for a linear space, nor can
we define a constant vector field on such a surface. Nonlinear spaces of
cosmological interest are 3-spheres and pseudospheres. In this chapter we
develop the basic tools for dealing with such spaces, a subject called
calculus on manifolds.

The manifolds that come up in applications are of two types. First, we
have manifolds such as the configuration space of a rigid body in free
fall; the points of this manifold are all possible rotations. The choice of
an identity rotation for the body is arbitrary, and the points of this con-
figuration space are all equivalent. Although coordinates will usually be
needed to describe concrete situations, the geometric structures will not
involve the coordinates directly. Second, we have manifolds like the
space of energy, temperature, entropy, pressure, and volume, which
describes a thermodynamic system. Here the coordinates all have direct
physical interpretation. Surprisingly, the coordinate-free methods devel-
oped for the first kind of manifolds are also useful and efficient tools for
manifolds with distinguished coordinates.

Example: Even though space and time have distinct physical inter-
pretations, the nondispersive wave equation

a2f a2f

are - aX2

51
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is often studied in rotated coordinates

u=t-x, v=t+x,

where it becomes

a2f = 0.
au av

A parallel situation in vector analysis is the usefulness of grad, div, and
curl even in situations that do not have rotational symmetry.

Associated with every point in a manifold is a local approximation to
the manifold called the tangent space. This is a linear vector space whose
elements, called tangent vectors, form the basic building blocks for
calculus on manifolds. We will give here two different definitions of a
tangent vector. They are equivalent, both are useful, and they have an
agreeable duality. A firm grasp of the idea of a tangent space (the space
of all tangent vectors) and the tangent bundle (the collection of all tan-
gent spaces) is essential for what follows.

The geometric structures introduced in this chapter go beyond ordi-
nary tensor calculus. Contact structure is a prime example, as is manifold
structure itself. Of course, tensor calculus is useful, and some of these
additional structures have convenient representations in terms of special
tensors.

7. Manifolds

Well-behaved sets with enough structure on them so that we can "do
calculus" are called differential manifolds, or, for short, manifolds. The
least structure that a set can have would allow us only to name the points
and to discuss the identity of points and their membership in various
other sets. Interesting sets usually have more structure. A minimal addi-
tional structure is a topology, which is enough structure that continuity
of curves and maps can be discussed. The sets called manifolds have even
more structure, and the smoothness of curves and maps (that is, their
higher derivatives) can also be discussed. Smooth curves in a manifold
have local linear approximations called tangent vectors. 1R' has all this
structure and more. The additional structures of 1R' allow us to define
straight lines, global parallelism, and a special point called the origin.
They are not structures that we necessarily want to demand of our mani-
folds. We are going to define manifolds so that locally they look like IR",
but do not have this excess structure.
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y

X
Figure 7.1. Three points in the line-element contact bundle of R2

Examples: Let P be the set of all straight lines through the origin in
Euclidean 3-space. We will soon see that this set is a manifold.

Let G be the set of all great circles on the sphere. This set too is a
manifold.

Let Q be the set of number triples (x : y : z) except for (0:0:0),
modulo the equivalence relation

(x:y:z)- (kx:ky:kz)
for all real numbers k. Q is also a manifold with essentially the
same structure as the manifolds P and G in the preceding. The
common manifold structure is called P2, projective 2-space. We
will use this space as an example many times. (Sometimes it is called
RP2, real projective 2-space. I will not deal with any complex
spaces here, and so I will leave off the R.)

Let CIR2 be the set consisting of pairs (q, p), where q is a point in JR2
and p is a straight line in JR2 through q. In Figure 7.1 I sketch three
points of CR2, which can easily and conveniently be represented in
1R2 itself. In Figure 7.2 I draw five curves in CR2.

CR2 is a very useful manifold called the line-element contact
bundle of JR2. You can see that this is one of a family of such mani-
folds, and we will meet them repeatedly, both as a useful examples
and as building blocks in thermodynamics, mechanics, and partial
differential equations.

Charts

To add the structure of a manifold to a set, we must show how to map an
open region around any point in a 1:1 and continuous manner onto an
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Figure 7.2. Five curves in the line-element contact bundle of R2. These could be called
partly dotted curves. Only a finite number of points are fully drawn.

Figure 7.3. Two charts for a manifold M. The charts are drawn on separate copies of R".

open region of JR'7. The inverse map must also be continuous. Each such
map is called a chart. The charts must satisfy a compatibility condition.
Whenever two charts overlap in the manifold, they define maps of JR'7
into itself, as shown in Figure 7.3. If the set is a smooth manifold, then
these maps will be smooth (infinitely differentiable) and have smooth
inverses. We subtract the special structure of R' from our manifold by
allowing all possible compatible charts on an equal footing. The point in
the manifold mapped onto the origin in one chart will not be mapped
onto the origin in most other charts. Thus no point is distinguished as the
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Figure 7.4. The pattern of stereographic projection.

origin of a manifold. The collection of all compatible charts is called an
atlas for the manifold.

Examples: Any linear vector space can be covered with one chart
that maps each vector onto the number n-tuple given by its compo-
nents in some basis. An atlas consists of all charts derived from this
one by smooth transformations, called coordinate transformations.

All of the n-spheres, Sn, can be covered by two charts by using
stereographic projection. If the n-sphere is defined as the set of
points in an (n + 1) -dimensional Euclidean space that satisfy

W2+X12+X22+ ".Xn2 = 1,

then a chart for the region w P6 -1 is the map

(w,x)-(x/1+w). (7.1)

The geometric picture for this is shown in Figure 7.4.
In chart 7.1 not only are angles preserved, but even finite circles

on S' appear as Euclidean circles.

The sets P and Q defined at the start of this section can be given a
manifold structure in the same manner. The Euclidean coordinates
of any point on a line in the set P give a number triple, and the
equivalence relation of set Q identifies number triples belonging to
the same line. The set CR2 in the third example is the Cartesian
product of 1R2 and the set P.



Q
..

Q
..

C
r.

Q
..

56 II. Manifolds

To show that the set Q is a manifold, look at the point [a : b : c] in
Q. Suppose that c is the largest of a, b, and c. Then a chart around
the point [a : b : c] is given by the map

[x:y:z]-(x/z,y/z)

for the open set of points satisfying

z3"- 0. (7.2)

Both the chart and condition 7.2 are compatible with the equiva-
lence relation, and it maps all of Q except for a circle onto the
entire plane. Two other such charts can be defined, and every point
in Q appears inside at least one of these charts. If we add to these
all other compatible charts, we will have an atlas for Q.

The set of points in Minkowski spacetime satisfying

t2=X2+y2+z2

form a manifold called the 3-pseudosphere. It can be covered by a
single chart, say, the (x, y, z) coordinates of its points.

The smoothness of structures on a manifold will be defined in terms of
the smoothness of their representations in the charts. The compatibility
conditions ensure that this smoothness is chart-independent. The charts
must be open so that no point is on an edge. In Section 11 we will find a
more efficient way to show that a set can be given a manifold structure,
one that does not require us to actually construct the charts. Still, it is
important to understand in principle what it means to be a manifold.

Example: Let us show that two of the charts for P2 are compatible:

01: U1--+ 1R2 ; [x : y : Z] '-' (u, v) = (y/x, z/x),

U1=I[x:y:z] I xP6 0},

and

02 : U2 -+ 1R2 ; [x: y : z] - (r, w) = (x/y, z/y),

U2=[[X:y:z] ly?6OJ.

The overlap between the charts 01 and 02 is the set

U={[x:y:z] O, yP6 01,
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w.1

Figure 7.5. The transition map between the two charts for p2.

sketched in Figure 7.5. It consists of two disjoint open sets. The
transition map is

42°(41)-1: (u, v) - (r, w) = (1/u, v/u),

which is smooth and is its own inverse. We will continue this
example in Section 10.

The utility of these charts is that they enable us to transfer questions
from the local neighborhoods in the manifold to open sets in JR". Thus
we can graft onto manifolds much of the machinery of multivariable
calculus.

Defective atlas

We can often use a defective atlas as a more efficient representation of a
manifold. Proper care must be taken with them. If we drop the require-
ment that the charts be open, then problems can hide on the boundaries.
We might not notice discontinuities that coincide with such a boundary.
If we drop the 1:1 requirement, then we can end up with functions that
are not well-defined, because they take different values at different ap-
pearances of the same point.

Example: In polar coordinates the function 0 is either not con-
tinuous or not single-valued.

The best of both worlds is to have a single useful defective chart for the
manifold, plus some easy local charts for the edges and other bad points
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Figure 7.6. A partition of unity for the line.

Figure 7.7.

to settle questions of continuity. Often we can translate the message
of these edge charts into junction conditions for the single defective
chart.

Partitions of unity

The transition functions between different charts are to be smooth, that
is, infinitely differentiable (C°°). It is important that we do not demand
that they be analytic. The physicists' emphasis on analytic functions
reflects an early training on elliptic equations, a neglect of hyperbolic
equations, and a pathological reliance on the crutch of Fourier trans-
forms, which are appropriate only for linear theories.

In the space of C°° functions we can find a set of functions that are
each strictly zero outside a bounded region, of which only a finite num-
ber are nonzero at any point, and that add up to unity at every point.
Such a set is called a partition of unity. Given a set of charts that cover
the manifold, we can always find a partition of unity such that each
function is nonzero on only a single chart. Figure 7.6 sketches the idea.

Such a partition of unity lets us break down an integral on the mani-
fold into a set of pieces that are each contained in a single chart. It also
lets us assemble a smooth geometric object on the manifold by piecing
together smooth pieces in the charts. We will appeal to this construction
to show, for example, that there is a smooth, global contact structure on
a contact bundle.
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Problems

7.1 The configuration space of the system of n rigid links shown in Figure 7.7 is a
familiar manifold. What is it?

7.2 Is the cone a 2-manifold? What about the tip?
7.3 Show that there is no natural isomorphism between the manifolds P and G

defined in the example at the beginning of this section. A natural isomor-
phism would be independent of the Euclidean metric.

7.4 Find a partition of unity for the torus.

8. Tangent vectors and 1-forms

One of the basic concepts in the calculus of manifolds is the tangent space,
the space of tangent vectors. There are two complementary ideas merged
in the idea of a tangent vector. One is that of the local behavior of a
curve or a family of curves. The other is that of a differential operator
acting on functions. We will base our development of the idea of a tangent
vector on the tangent vector as the description of the local behavior of
curves. This is the geometric approach and lets us, for example, easily
make sense of the common practice of drawing the tangent vectors right
on the manifold itself. The differential-calculus idea of local linear ap-
proximations does not work directly. In a vector space, curves inherit a
linear structure from the global linear structure of the vector space itself.
In a manifold the local linear structure comes directly from the ideas of
tangency and contact. By constructing our tangent vectors from curves in
the manifold rather than as a space outside the manifold, we auto-
matically arrive at a concept that is invariant under mappings.

Tangency of maps

Tangency is the local agreement of maps. Consider two maps, 0 and
both IR' -+ IR'. At any point they can be represented by Taylor's Series
expansions. If these expansions agree up to terms of order p, then the
maps are said to have pth-order tangency at that point. Tangency
requires agreement not only in direction, but also in parameter rate. We
will use tangency here to mean only first-order tangency.

Example: The maps JR --> IR2:

u'(u,u3), u-(sin u,0)

are tangent at u = 0.
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Figure 8.1. Two curves in CR2 that are tangent.

Tangency for maps between manifolds is defined in terms of charts by
using the preceding definition. It is a routine calculation to show that tan-
gency in one chart implies tangency in all compatible charts.

Example: In the manifold CR2 introduced in Section 7, let 0 be
the right-hand curve shown in Figure 8.1. The line element at every
point is horizontal. The other curve 1 is the circle, with line ele-
ments always pointing to the center. These curves are tangent at the
point P.

Tangency is a structure that is preserved by smooth maps. We will also
use the weaker notion of contact, when the maps agree in direction but
not necessarily in parameter rate.

Tangent vector

A tangent vector is an abstraction meant to represent the structure com-
mon to a class of parametrized curves all tangent at a point. It is the local
structure of maps of the form JR -+ M, in a manifold M. A tangent vector
will be defined to be an equivalence class of tangent curves. We can repre-
sent this equivalence class in several ways: by some arbitrarily selected
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member, by some canonical member, or by some numerical algorithm.
The tangent to the curve -y: s H -y(s) at -y(s) will be written i(s). My con-
vention is to use the dot for a mnemonic label, and the apostrophe for
differentiation with respect to an argument. This ' is not a derivative but
an equivalence class of tangent curves. The space of tangent vectors at
the point p in the manifold M will be written Tp(M). It is the space of
rates.

Example: In the space Q of number triples modulo scaling (from
Section 7) look at three curves through the point [1:1:1],

u - [1+u:1:1], u'[1+2u:1:1],
and

u- P+ + sin u :cosh u:cos u].

Only the first and third are tangent. The first and second are obvious
choices for canonical representatives of equivalence classes. All
three have first-order contact.

]-Forms

We can also discuss tangency of functions, maps of the form f : M -+ R.
The local behavior of a function can be represented by an equivalence
class of such maps, all tangent at a point. The space of such tangent
functions is the space of local gradients, written Tp (m).

Example: The functions

JR3 --> IR; (X, Y, z) '-' X,

and

(x, y, z) H sin x cos y

are tangent at (0, 0, 0).

These local gradients are called 1-forms, a name that will never really make
sense. The space of 1-forms is naturally dual to the tangent space. The
operation taking a tangent vector and a 1-form to a number is the natural
operation of taking the rate of change of a function along a curve.

Example: The curve JR --> IR3:

-y:s-(coss,sins,s)
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has a tangent vector at (1, 0, 0)

y= [ss,s)]
Remember, a tangent vector is an equivalence class of curves. Here
s- (1, s, s) is a curve, and the square brackets denote the equiva-
lence class containing this curve. In this equation I am representing
this equivalence class by a particularly simple curve in the class.
Similarly, the function

f : (x, y, z)'-'x2+y cos z

has a local gradient at (1, 0, 0) given by the equivalence class

[(x, y, z) - (I+2x+y)].

The function f evaluated along the curve -y is the map

s- cos2s+sinscos s,

and the rate of change of f with respect to the parameter s at s = 0
is just the ordinary derivative

2 sin s cos s + cos 2 s- sin 2 s,

which at s = 0 has the value 1. This local rate can also be deduced
from the local approximations

s'--'1+2x+y=1+s.

Because of this duality, the space of 1-forms is called the cotangent
space. For spaces of finite dimension this duality relation is reciprocal.

Graphical representations

As defined, the tangent space and the cotangent space are abstract spaces.
Each has convenient representations in the charts for the manifold. For a
tangent vector, take that curve in the equivalence class that appears
straight in that chart. This special curve in turn can be represented by the
piece of it that extends for one unit of parameter change. With an arrow-
head on the end, this is the usual idea of a tangent vector, drawn right on
the chart of the manifold. The curve itself is chart-dependent, and there
is no intrinsic significance to the point in the manifold that lies under the
arrowhead. That point changes as you change charts. What remains
invariant is the equivalence class represented by that special curve.

A similar trick allows us to represent 1-forms directly on a chart also.
We now pick the function in the equivalence class that appears linear in
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Figure 8.2. Gradient 1-forms and contours for a topographic map.

that chart. It can be conveniently represented graphically by drawing two
contour lines a unit increment apart, one passing through the given
point. Again, the points in the manifold under these contour lines have
no intrinsic significance.

Example: To see how natural this representation of a 1-form is,
consider the problem of making a topographic map for a billiard
table. The local gradient at any point can be found by taking a level
and a shim of unit thickness and moving the shim out until the level
is indeed level. Repeat in any other direction. This gives you two
points on the unit contour of the gradient 1-form at the point - pro-
vided, of course, that the level and shim are small compared to the
hills and valleys of interest, but large compared to the irregularities
in the felt. From a gridwork of gradients, it is easy to sketch in the
contours of a topographic map of the surface. See Figure 8.2.

1-forms are important geometric objects. They can represent, among
other things, force, momentum, and phase velocity. We will see that the
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Figure 8.3. The addition of two curves in JR2.

connection between classical mechanics and wave mechanics through
Hamilton-Jacobi theory is remarkably simplified by a geometric treat-
ment that uses 1-forms. The representation of classical thermodynamics
to be developed in Section 16 will base its structure on a special 1-form.

Linear structure

Both the tangent space and the cotangent space have the structure of a
linear vector space, and these linear structures are compatible with the
taking of local linear approximations.

One way to add two tangent vectors is to go to any chart and there add
their linear representatives. Or you could add any two representations as
shown in Figure 8.3. Nor would the interpolating curves have to be
straight lines: any smooth parametrized curves would do. Of course, the
addition of curves is chart-dependent, except for the part that is the
tangent vector.

Examples: The sum of the tangent vectors

[s'(1,s,s)]
and

[s'(1+2s,0, -s)]
at the point (1, 0, 0) is

[s'(1+2s,s,0)].
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In the space Q given earlier the three curves

ry1: u - [1+u:1:1],

rye:

u - [1:1:1+u]

might seem to be a natural choice for a basis at the point [ 1:1:1 ] .
Clearly every curve through that point can be written as a linear
combination of these curves; or, rather, any curve is tangent to
some curve that is a linear combination of these curves. But these
curves are not independent. In fact, we have

, 1+, 2+, 3=0,

where the zero curve is the equivalence class of curves with no
linear term, such as

1 - - + u : cos u:1].

The tangent space of Q is, in fact, only two-dimensional. Any two
of these tangent vectors form a basis for the tangent space at most
points.

It is even easier to add 1-forms. For this, merely add any two functions in
the equivalence class. Of course, adding the special linear representations
is usually the easiest. Because the linear structure of the cotangent space
is more apparent than that of the tangent space, it is sometimes easier to
find the latter from the cotangent space and duality.

You can see that working on manifolds is very nearly the same as
working in a vector space; if you use the right concepts, all it takes is the
occasional addition of equivalence-class brackets. But if you use the
wrong concepts, such as adding vectors defined at different points, you
get nonsense.

Basis vectors

In any given chart we can find natural basis vectors for the tangent and
cotangent spaces. These basis vectors will not be invariant objects,
because they depend on the selection of a particular coordinate chart.
This chart-dependent basis uses the tangents to the curves

a

ax
= [s xo+s, yo, ... )],

a
ay =Is-(xo,.Yo+s,...)],
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Y

x

Figure 8.4. A chart for CR2.

and so on, where the square brackets stand for equivalence class. I will
explain soon why these curves have been given differential operators as
names. All we are doing here is formalizing the graphical construction
given earlier.

In a parallel manner we can find a chart-dependent basis for the cotan-
gent space by using the local gradients of the coordinate functions

dx= [x], dy= [y],

and so on.
The cotangent space is nearly always simpler than the tangent space.

For example, the tangent vector a/ax depends on the choice of all the
coordinate functions. The 1-form dx depends only on the coordinate
function x.

Usually several charts are needed to cover a manifold, and the basis
vectors and 1-forms of a single chart need not cover the entire manifold.
Smooth vector fields are constructed by using a partition of unity to piece
together several chart-dependent parts.

Example: A chart for most of CIR2 is given by (x, y, p), where p is
the slope of the line element as defined in Figure 8.4. In Figure 8.5
the three basis vectors defined by these coordinates are drawn. The
basis vectors are equivalence classes of curves. These are repre-
sented here by simple members of the equivalence class. Note the
construction used to get the correct parametrization of a/ap, using
equal intervals on the vertical line.

Numerical representation

If we are given a chart, the coefficients in the Taylor's Series expansion
can be used as a numerical representation for the tangent vector. For a
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Figure 8.5. Basis vectors defined by the coordinates of the chart of Figure 8.4.

curve y: R --> M and a chart 0: M -+ 1R', we have m functions of one
variable, X1(s) and so on:

The m-tuple

dX1 dX2
ds

(u),
ds

(u), ...

represents the tangent to y at u. The tangent vector corresponding to the
m-tuple (a, b, ...) is the equivalence class

[s-(xo+as,yo+bs,...)].

In different charts different m-tuples will represent this tangent vector, of
course.

Derivations

A differential operator is an operator that measures some of the terms in
the Taylor's Series expansion of a map. A first-order differential oper-
ator, called a derivation, is sensitive to the linear terms. From the bi-
nomial theorem, we have

(I+Ex)(I+Ex') = I+Ex+C-X"
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and to capture this algebraic structure, a derivation X must operate on
products of functions according to

X(fg) =fX(g)+gX(f)
This is the Leibniz rule for derivatives. It guarantees that X is insensitive
to quadratic and higher-order terms.

We showed earlier how a curve operates on a function as a derivation.
The derivation aspect is emphasized in the notation a/ax for coordinate-
chart basis vectors. We could have defined tangent vectors as derivations.
Many authors do. I prefer the more geometric approach, using curves.
By reading the Taylor's Series backward, we can see that in spaces of
finite dimension every linear derivation is also a tangent vector.

Problems

8.1 We can graphically represent points of 1R4 as pairs: a point in 1R2 and a vector
at that point. Invent a representation of tangent vectors compatible with this,
and show how to add them.

8.2 Represent Pz using homogeneous coordinates [x : y : z ] . Is dx a smooth
1-form field?

9. Lie bracket

The Lie bracket is important in the study of symmetries and transforma-
tion groups. This discussion should also help clarify for you the idea of a
tangent vector on a manifold, and prepare you for the discussion of
tensors on manifolds to follow. An unfortunate fallout from the "pile of
numbers transforming properly" approach to tensors is the impression
that only tensors are well-defined geometric objects, and, conversely,
that any well-defined, coordinate invariant object (to speak old tensor)
must be a tensor.

Suppose that we have two vector fields, A and B. A vector field is a rule
for picking a tangent vector at every point in the manifold. If we are
given in addition a function f : M - R, then we can operate on f with A
to find at every point the derivative of f in the A direction, A(f ).

Example: The derivative of f=x2+y2 in the (a/ax+a/ay) direc-
tion is

ax
(_+X2+y2=2X+Y.

ay



°'0

9. Lie bracket 69

Thus A(f) is another function; so we can consider the vector field B
operating on it.

What about this double operation? It maps functions to functions. Is
it a vector? That is, is it a derivation? To be a vector is to be a differential
operator sensitive to only the linear terms in a Taylor's Series expansion.
Clearly AB is not a vector.

Example: A vector at the point (0, 0) operating on f(x, y) =x2+y2
must give zero. But we have

ax ax
(x2+y2) = 2.

So far this is not surprising. What is remarkable is that there is a vector
concealed in the second derivatives. A person familiar with quantum
mechanics will think "spin 1 times spin 1 surely has some spin 1 in it" and
be on the right track. Look in more detail at what goes wrong with AB.
In a coordinate chart (x', x2, ...) we have

A=aµ ax"' B=b" axµ'

and operating on a product of two functions f and g we have

(BA) (fg) = bµ
axµ

[ap as (fg) .

Note that the index on the A summation must be different from the index
on the B summation:

(BA) (fg) = bµ
axµ

[av(f vg+fg, v)]

Subscript commas stand for partial derivatives.

(BA) (fg) = bµa°[f vµg+J vg,µ+Jµg, v+fg, vµ]

+bµa,µ(f vg+gf v),

and now we try to put this back together again. We have

BA(fg) =g(BA)f+f(BA)g+bµa°(f µg,v+f ,g,µ).

The third term contains the garbage that ruins the Leibniz rule. Look at
it. It is symmetric. Thus if we define the Lie bracket operator by

[B, A] = (BA-AB),
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then it will satisfy

[B, A] (fg) =f [B, Al g+g[B, Alf

And so it will be a derivation, sensitive only to the linear terms in the
functions that it operates on.

The preceding calculation is better done without using explicit coor-
dinates. We have

BA(fg) = B[fA(g) + gA(f) ]

- f(BA)g+g(BA)f+B(f)A(g)+B(g)A(f ),

and so on.
The Lie bracket is easily computed if the vectors are given explicitly,

using

a a

ax" , ax,
0

and

[fB, gA] = fg[B, A] + fB(g)A-gA(f )B. (9.1)

The general expression for the components can be read off from the
above calculation

[B, A] = (bµa", aµbv ) a
µ 'µ 0x"

In 3-vector notation this would be written

[B,A] =

The Lie bracket satisfies the Jacobi identity

{A, [B, C]]+[B, [C',A]]+[C, [A,B]] =0.

Geometric construction

The Lie bracket is a tangent vector, that is, an equivalence class of curves.
We can construct it directly as a curve. For any vector field we can find
parametrized curves whose tangents everywhere match the vector field.
These are called integral curves (discussed further in Section 14). For two
given vector fields A and B, suppose that we know their integral curves.
The curve representing the Lie bracket [A, B] at a point p is the map
E'-X1'(0, constructed as follows.
1. Go out along an integral curve of A from p a parameter distance + 1/E.
2. Go out from there along an integral curve of B a distance + 1/E.
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Figure 9.1. The geometric construction of the Lie bracket.

Figure 9.2. Two vector fields with zero Lie bracket. They are the tangents to curves that
form a 2-surface.

3. Come back from there along an integral curve of A a distance -1/E.
4. Finally, come back from there along an integral curve of B a distance

-1/E. This point is xµ(E) for c- > 0. For c- < 0, just change the signs of
all the square roots above.

The limit E -+ 0 is a curious one here. The squares shrink to zero, but less
rapidly than the tangent vectors. This is sketched in Figure 9.1.

Frobenius Theorem

Another geometric interpretation of the Lie bracket is shown in Figure
9.2. If at every point the Lie bracket of the tangent vectors to two fami-
lies of curves is a linear combination of the two vectors, then these
curves fit together to form 2-surfaces. This result is called the Frobenius
Theorem and holds for any number of vectors, with submanifolds of the
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appropriate dimension. The proof is not illuminating, and can be found
in most standard books. This will be important when we discuss exterior
differential systems.

10. Tensors on manifolds

Once we have constructed a vector space, such as the tangent space, then
an entire algebra of tensors becomes available. Here we will highlight the
ideas of tensor fields on manifolds. A vector field, for example, is a
choice of a tangent vector at every point. Each of these tangent vectors
lives in its own tangent space. The fundamental notion is linearity. For
tensors on manifolds, we demand linearity over functions, not just over
numbers. This forces our tensors to be local linear operators.

Example: The Lie bracket operator V X V--+ V;

(a, b) - [a, b]

is not a tensor of type (Z) since

[fa, b] P6 f[a, b]

for functions f.

When the manifold requires several charts to cover it, we must be careful
to connect the tensor fields smoothly from chart to chart.

Example: Continue with the manifold P2 from Section 7. Use first
the coordinate chart

[x:y:z] - (u, v) _ (.v/x,z/x).

Are the 1-forms du and dv, a basis in this chart, continuous over all
of P2?

No, they are not. In the chart

[x: y : z] '-' (r, w) _ (x/y, z/y )

we have the function v, given by

v = w/r,

and its gradient is

dv=dw/r-wdr/r2.

This is sketched in Figure 10.1. It is infinite on the dotted line and
not continuous along the x axis.
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Figure 10.1. The discontinuity in the chart-dependent basis 1-form dv.

Figure 10.2. A symmetric tensor of type (o 1.

Symmetric tensors

Symmetric tensors of type ( °), tensors in the space Tp (M) Q Tp (M), are
very important because they define metric structures. They also describe
crystal optics, electrical conductivity, and some wave-propagation prob-
lems. These tensors also have a representation in the tangent space. To
represent the tensor, use the second-degree curve

T(u,u)=1,
where u is a tangent vector.

Example: In Figure 10.2 I sketch the tensor

T: as +ba, aa +ba -a2+4b2
ax ay ax ay
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The action of this tensor as a map

T: Tp(M)-->TT(M); uH[vHT(u, v)]

is also shown; v - T(u, v) is a 1-form, taking in the vector v and
producing a number.

Since 1-forms appeared as the gradients of functions, you might expect
that some appropriate combination of the second partial derivatives will
produce these second-rank tensors. In general they do not, and it should
help you to grasp the idea of tensors to see how they fail.

The index notation might tempt us to use the second derivative as a
map Vx V-* IR;

a f µ v(u, v) H u v
axµax°

To see that this cannot work, look at the following counterexample.

Example: Let f : lR2 -+ IR;

(x,y)'x+2x2+2y2.

At the point (0, 0) the second derivative is an operator that in these
coordinates is identical with the tensor

B= dx2+dy2.

In another coordinate system this tensor may not coincide with the
second derivative operator. Go, for example, to coordinates (u, v),

u=x+y2, v=y.

Then at (0, 0) the tensor B is given by

due+dv2,

since at (0, 0)

du=dx+2ydy=dx, dv=dy.

But in these new coordinates

f=u+2u2-2v2-uv3+2v4,

and the second-derivative operator now corresponds to the tensor
(due-dv2). This is an important example. Please think through it
carefully.
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On the other hand, the index-free notation suggests the construction of
an operator

Hf: (u, v) - v(uf ).

This Hf will be a tensor if it is function-linear, that is, if

v(gu) f ' gv(uf ),

for any function g. We have

v((gu)f) = v(g(uf )),

and, because v is a derivation,

v(g(uf )) = gv(uf)+(uf)(vg).

The second term here prevents Hf from being a tensor. However, at a
critical point of f, a point where we have

df=0,

Hf does form a tensor, called the Hessian. If you think about the con-
tours around a critical point, you will see that they are ellipses or some
second-order curve, just like the curves used to represent symmetric
tensors.

Metric tensors

The metric structure of a set can be represented (except for some exotic
cases) by a symmetric second-rank tensor. People used to think, several
centuries ago, that they were studying the geometry of space. We now
take a more pragmatic viewpoint. For such-and-such purposes, we can
put a metric on set so-and-so. A nice example of this is the metric on
velocity space in special relativity that makes velocity space isometric
with the 3-pseudosphere defined in Section 7.

Example: The geometry of a rotating disc has generated an enor-
mous literature, much of it an excellent catalog of mistaken inter-
pretations of special relativity. In particular, many have tried to
answer the question of whether that space is curved or not. A cru-
cial prior question is "what space are we talking about?" There are
no gravitational fields in the problem, and no need for general rela-
tivity, and no spacetime curvature. The rotating disc can be ade-
quately represented in any of the inertial reference frames (which
are linear vector spaces) of special relativity. We can also define a
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x

Figure 10.3. The physical operation represented by a metric tensor on the space of
observers on a rotating disc. The dashed lines represent light signals. The time interval 7 is

being measured.

new space for the problem, the space of observers on the disc. Each
"point" of this space is a spacetime helix. Thus the three-parameter
family of helices,

- Y lR -> 1R4; u H (p cos(O+cou), p sin(O+wu), , u),

for any value of the parameter w describes a family of uniformly
rotating observers. Clearly the 3-tuple (p, is a coordinate
chart for this manifold.

To measure the distance between any two nearby observers, we
adopt the geometric construction that corresponds to a radar-
ranging experiment, shown in Figure 10.3. Geometrically, we find
any vector 77 connecting the two worldlines, and project this onto
the subspace perpendicular to the vector X, which is the tangent to
the observers' worldlines. This is the operation

77 l

where the dot represents the Lorentz metric of special relativity.
Here u is not proper time, and we have not bothered to normalize
this vector. We define the "distance" between the observers by an
operator (R,

= (X.X)2(j77)-(X.X)(71X)2
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The dot here denotes the metric inner product. For our observers
we have, at a point corresponding to the observer (p, 0, ),

a
-pwsin(O+wu)

ax
a

+pwCos(0+wu)
ay
a

+ at,

and for the connecting vector for a nearby observer (p + Op,
0 + 0O, + z ) we have a vector in spacetime

il=[Opcos(O+wu)-p0Osin(O+wu)] ax

+[Op sin(0+wu)+p0O cos(0+wu)] av az .

Here is one of the few good uses of the traditional infinitesimals of
physics. It would be clumsy to avoid using them here. To avoid
confusing them with 1-forms, I use "A" for them. Now we have

p2w2-1,

77'77= (AP)2+P2(0O)2+(A )2,

q'X=p2w0O.

Grinding through the algebra, we find the distance between these
observers to be

(OP)2+ I _ P2w2 (0O)2+ (A )2,

and on the space of observers this is represented by a metric tensor

2

dpOdp+ P 2 21-p w

This metric is curved. It is not a spacetime metric, however, and its
curvature has no more to do with the Einstein field equations than
does the curvature of the velocity-space metric.

11. Mappings

77

Suppose that M and N are manifolds, and that we have a map 1 : N -3 M.
What about the calculus of such maps? How do we describe their local
behavior? This is an important problem. If N is smaller than M, then the
map t defines a subspace of M. It may be a submanifold, depending on



.-
r

,r
.

ra
n

vi
i

ra
n

..O

4-,

78 H. Manifolds

M

Figure 11.1. The pattern of the pushforward map, pushing a curve yin the direction of the
map 0.

the good behavior of the map 1. If M is smaller than N, then 1 can be
thought of as a function on N, perhaps a vector-valued function. If N
and M are the same manifold, then t specifies an automorphism, a trans-
formation of the manifold into itself. If M and N are different charts for
a manifold, then t represents a coordinate transformation. The behavior
of our geometric structures under mappings is very simple.

Pushforward

Suppose that in addition to the map t we have a parametrized curve in
N, y: IR - N. Then this leads automatically to a curve in M,

( °y):IR-3M,
called the pushforward of the curve y (Figure 11.1). As a local linear
approximation, a tangent vector in N can be pushed forward to M as
long as the map 1 is smooth. The smoothness of 1 is established by ex-
amining the smoothness of its representation in terms of charts for M
and N. Pushforward is a linear operator, written *, and the pushfor-
ward of the tangent vector v by the map t is the linear transformation
written * v. Let x be n coordinates for Nand y be m coordinates for M.
1' is represented by m functions Y1(xl, x2, ... , x"), .... The curve -y is rep-
resented by functions y(u), and its tangent vector is-

d,y a

ry ' du ax

Using the chain rule we have

aYa a.yµ a

du ay"* ry ax" ) ( )
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N M

Figure 11.2. The pattern of the pullback map, pulling a function f in the opposite direc-
tion to the map 0.

and the general rule for pushing forward a basis vector is thus

a aya a

ax
1--+

ax aya

Note the mnemonic simplicity. It is easy to see that the pushforward map
is compatible with the linear structure of the tangent space. For maps
s : IR'7 , lRm, the pushforward map * is just the differential Dt'.

Pullback

The dual situation is to have a function on M, f : M --> R. This leads
immediately to a function on N, (f- li) : N -3 IR, called the pullback of f
by 1 (Figure 11.2). The gradients of functions are equivalence classes of
functions, and for smooth maps the pullback is compatible with the
linear structure and the equivalence relation. The pullback operator is
written (*. The pullback of the basis 1-forms can easily be found to be

dy - ax,
dx

These two expressions are easily remembered; they are just analogs of the
chain rule. The linear-operator structure of these spaces is preserved by
mapping, and we have

Example: We will use pullback to define integrals on manifolds.
Let y be a curve in M, y : I --> M; s H y(s), for some interval I C IR,
and let w be a 1-form field on M. We want to define the integral
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Figure 11.3. The geometric idea of integration on a manifold, here a line integral.

J
w

ti

to be the net number of contour lines of w crossed by the curve y. If
we push forward the vector alas, we have the tangent to the curve,
y, and

'Y* as

gives us the net rate at which contour lines are being crossed relative
to the parameter s (Figure 11.3). We also have

as

Integrating the rate over the interval gives us the net change

w= J2 ('YW) ads= S2y*
'Y S1 as Si

which will be taken as the definition of the integral of a 1-form. The
third form is a convenient shorthand. In coordinates

J = i
S2

wA
dX

ds,
ry S,

where the functions X" specify the curve. Integration will be studied
carefully in Section 29.
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We pull back a tensor product by pulling back each separate factor.

Coordinate transformations

If M and N have the same dimension, and if the map has a smooth
inverse, then 1-forms can be pushed forward and tangent vectors pulled
back. A legitimate coordinate transformation does have these properties,
and our preceding formulae lead immediately to the usual coordinate-
transformation laws of tensor analysis:

aya

ax"
axµ

Wa - aya ww

where the va are the components of v in the y-coordinate chart, and so
on. In practice it is usually easier to make explicit transformations than
to use these expressions.

Automorphisms

An automorphism is a map of a space into itself that preserves whatever
geometric structures of the space are of interest. The local behavior of an
automorphism is described by the pushforward of its basis vectors.

Example: An instructive map, much studied in ergodic theory, is
the Henon map,

:IR2-->IR2; (X, y)
H(y+1-axe, b2x),

which depends on two parameters, a and b. We can find out about
its local behavior, what it does to volumes, shapes, and orienta-
tions, by studying its local approximation.

Tangent vectors are pushed forward according to

a - -2ax ax +b2 a ,
y

a a

ay ax

A unit volume element is described by the bivector a/ax A a/ay, and
this is pushed forward into

a a a

a^ aHb2
a Aaxy

ay

Thus volumes are magnified by a factor of b2 for each iteration of
the map, and the orientation is reversed.
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Another local property is the rate of spreading of nearby points.
For this we need to find the eigenvectors of the linear transforma-
tion of the tangent space

-2ax b2
1 0

This is just the Jacobian of the transformation. It has a positive
eigenvector with eigenvalue

(a2x2+b2)'/2-ax;

so some vector is magnified at each iteration by this factor. From
this we can estimate the distortion that a small circle would under-
go. In fact, the map stretches in one direction and compresses in
another, like bread being kneaded or milk being stirred into coffee.
Thus even a smooth map can still stir up a space and destroy infor-
mation about the initial state.

Submanifolds

A map t : N--+ M, where N is smaller than M, can be viewed as inserting
N into M as a subspace. Such an insertion can have cusps, corners, and
other pathologies. A good way to study such a map is to look at the
manner in which the tangent spaces of N are mapped into M. At a patho-
logical point the tangent vectors of N will be compressed, and not span a
subspace of the tangent space of M of the correct dimension.

Example: Steiner's surface is a 2-surface in 1R3 defined informally
by the equation

x2y2+x222+y2z2-xyz = 0.

Actually, the x, y, and z axes also satisfy this equation, but we do
not want to include them. A better specification is given by the map

Q 1R3; [X: /t: v]

The manifold Q is a projective 2-space represented in homogeneous
coordinates, defined in Section 7. First, we should check that the
map ( is properly homogeneous, because [X : µ : v] is an equiva-
lence class. This is obvious.

Except for the circle of points X = 0, we can represent Q by
the chart
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µ v
/t: V] - (u, V) = (__ 9 X

0-1: (u, v)'--, [1: u : v]

The representation of t in this chart is the map

(0.0-1):IR2-*1R3; (u, v)'-4(uv, v, u)/(1+u2+v2),

and if we call the denominator 0, we have the pushforward map

02
au

Hv(1-u2+v2) ax -2uv a +(1-u2+v2)a ,
ay

aa2 a
2 2 2

0 -2-u(1-v+u ) +(1-v +u ) uv-.
av ax ay az

Now, the map 1i will be pathological anywhere that either of these
vectors vanishes; that will indicate a crease or worse. At the points

(u, v) = (1, 0), (-1, 0), (0,1), (0, -1),

we have a crease. We will also have bad points wherever these two
vectors are parallel. There is a good discussion of this surface in
Hilbert and Cohn-Vossen (1952).

Implicit arguments for manifolds

There is a nice implicit way to show that a set is a.manifold. It is much
easier than the actual construction of an atlas of charts. As in the example
of the Steiner surface, many manifolds of interest are formed from larger
manifolds by imposing some condition.

Example: The 3-sphere is the subset of 1R4 given by

x2+y2+z2+w2-1=0.

The following theorem handles many such cases. Let Vi: N--+M be a
smooth map, let m be a point in M, and P the inverse image of m:

P= 0-1(m).

If * : T (N) -* Tm (M) is always surjective for n c- P, then P is a mani-
fold. Surjective means that for every b in T,,,,(M), the equation

has at least one solution a.
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Examples: For the 3-sphere we consider the map

IR4-S 2 22 2-I),IR; (x, y, z,w)H(x+y+z+w

and look at >G-1(0). We have

a a*' ax
= 2x as ,

and so on. * fails to be surjective only if we have x = y = z = w = 0,
and that point is not in the inverse image. Thus S 3 and, in fact, all
of the S" are manifolds.

In Section 2 we computed the differential of the matrix map

F: Mn --> Mn; A -AA- I

to be

DF(A) : h - Ah t + hAt,

where Mn is the space of n x n matrices. The matrices (AAt - I) are
always symmetric. Both M" and also the symmetric matrices are
manifolds, even vector spaces. The orthogonal matrices go to zero
under the above map. They form a manifold if the pushforward is
surjective, that is, if we can always find a matrix h such that, for
every symmetric matric C, and for A satisfying AAt = I,

Ah t + hAt = C.

This is easy. Pick, for example

h-!CA.
Thus the orthogonal matrices form a manifold.

Problem

11.1 Sketch Steiner's surface near a bad point.

12. Cotangent bundle

We are now going to consider a larger space, the space of all cotangent
spaces to a manifold M, called the cotangent bundle and written T*M.
Points in this space are pairs: a point in the original space together with a
1-form at that point. In Figure 12.1, 1 sketch two points in the cotangent
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Figure 12.1. A few points and curves in the cotangent bundle.

bundle and two curves. There is a natural projection map on the co-
tangent bundle,

,7r: T *M ---> M; (q, w) q,

which forgets the 1-form. The points in T*M are grouped into subsets
that share the same base point q, called fibers. Such a mathematical
structure is called a fiber bundle. These special manifolds will be used
often and are introduced informally in this section.

Fiber bundles

A common mathematical structure in physical theories is the idea of a
field. At each point of some space some geometric object is specified.

Example: Inside a strained elastic body there exists a temperature
field, which assigns to each point in the body a real number, the
temperature at that point. There also exists a stress field inside the
body; it assigns to each point a symmetric tensor.

The field is a simple extension of the idea of a function. It is often useful
to study real-valued functions in terms of their graphs. The graph is in a
space with one additional dimension for the function value. Any func-
tion is now a hypersurface in this larger space (see Figure 12.2). Simi-
larly, we will study fields by going to a larger space where both the orig-
inal space (this is generally called the base space) and the field variables



ra
n

86 II. Manifolds

Figure 12.2. The pattern of a bundle illustrated by the graph of a function in JRZ.

are independent coordinates (degrees of freedom). Such a larger space
containing the original space and also the field is an example of a fiber
bundle.

An additional generalization is needed to make the idea of a fiber
bundle useful. The values of a real-valued function at different points can
be directly compared. The local rate of change is the geometric structure,
known as the gradient. We need to consider fields for which the field
values at different points are not directly comparable. The canonical
example of this is a vector field. Unless additional structure (representing
new physics) is added to the manifold, vectors at different points cannot
be compared. Thus we will demand that the field values all lie in spaces of
similar structure, but not that they all lie in the same space. Thus you
should look at Figure 12.2 as a two-parameter collection of copies of R.
The idea that a given field value is associated with a particular point of
the base space is crucial to the idea of a bundle.

A fiber bundle is a pair of manifolds, say, E and B, and a projection
map it : E -+ B. The space B, the base space, is to be the space on which
the field is defined; E is the space in which we graph the field; and it is the
map that assigns to each point on the graph the point in B where that
field variable is defined. For any point b c- B, the space ?r -1(b) is called
the fiber over b. It is the space of field variables. Usually these fibers will
have further geometric structure. If they are all vector spaces, then we
refer to 7r: E --> B as a vector bundle, and so on.

A particular field is called a section and is given by a map

r: B-+E
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Figure 12.3 (left). An 1R-bundle over the circle.
Figure 12.4 (right). Another 1R-bundle over the circle. This one has a different topology

from the one shown in Figure 12.3.

such that

-x-r(b) = b.

The map r assigns to each point a field quantity at that point.
The demand that the space E be a manifold lets us discuss the smooth-

ness of curves in E and also the smoothness of sections. In contrast to
this local orderliness, a bundle allows more large-scale freedom; this is
crucial for the applications of these bundles, say, in gauge theories. In
Figures 12.3 and 12.4, I sketch two different bundles of the type
w : E -+ S1. In both the fibers are just R. They differ because the second
has a global twist. Notice that the second bundle has the property that
every continuous section has a zero. The first bundle has the topology of
a Cartesian product, S1 x R. Such a bundle is called trivial. A fiber
bundle must have the property that around each point in the base space
there is a region U in the base space such that r -1(U) is a trivial bundle.
The set 7r (U) is the set of points in the bundle that the map it sends
onto U.

The cotangent bundle

The simplest bundle of interest is the one that represents a 1-form field on
a manifold. The fibers will be the various cotangent spaces. The cotan-
gent bundle of a space M is written T*M. Although each 1-form repre-
sents a gradient in the infinitesimal neighborhood of a point, not every
1-form field is the gradient of a function. If q are coordinates for the
points in M, and the components of the 1-form w are p,
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Figure 12.5. A tangent vector to the cotangent bundle, using the representation where the
tangent vectors are drawn right on the manifold.

W=pdq=p« dq", (12.1)

then reasonable coordinates for the point in T*M that is the 1-form CO at
the point q are (q1, ; , pl, ). This index placement looks peculiar, but
it will keep the summation indices paired one up and one down. This use
of p for the 1-form coordinates will fit in with the applications both to
contact manifolds and to classical mechanics.

Example: Figure 12.2 represents a section of the cotangent bundle
T*R2.

Natural structures

T*M has more structure than just its manifold structure. There is a
natural way to lift a function on M into a section of T*M. Just assign to
each point of M the 1-form that is the gradient of the function.

Cotangent bundles have even more structure. In Figure 12.5, I sketch a
tangent vector to T*M. In Figure 12.6, I sketch the tangent bundle itself.
Note that this picture of a tangent vector suggests a natural operation. A
tangent vector in T*M can be pushed forward by the projection map to
give a tangent vector in M, and from the base point of the tangent vector
in T*M we find a 1-form on M. Let them act on each other. From each
tangent vector in T*M we can thus form a number. This operation is the
map

a a
4 aq +P ap '-'p4

It is a linear operator on tangent vectors, obviously, and so must be
represented by a 1-form on T*M; this 1-form is an element of the cotan-
gent space to the cotangent bundle. By inspection this 1-form is
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Figure 12.6. A geometric sketch of the entire cotangent bundle. The fibers are lacking one
dimension.

8=pdq.

There is some chance of confusion here. The 1-form p dq in the pre-
ceding equation is a point in the space T*(T*M). The 1-form p dq in
equation 12.1 is a point in T*M. The degenerate notation comes from
our using q in two different ways. As long as we are careful to know what
space we are using, we can exploit this degenerate notation without
danger.

The 1-form 0 on T*M is called the canonical 1-form on T*M. It is inde-
pendent of the coordinates q used on M. To see this, we can translate our
verbal description into a coordinate-free prescription for the action of 0.
At the point (a, w), the action of 0 on a vector v is given by

The projection map 7r: (a, w) -a is used to push forward the tangent
vector v from T*M to M.

The 1-form 0 is related to the natural lift we have been discussing. The
pullback of the 2-form

dp A dq

onto a lifted section vanishes.
The cotangent bundle most familiar to you is, no doubt, the phase

space of time-independent Hamiltonian mechanics. The canonical
1-form p dq comes up repeatedly. The full geometric significance of this
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1-form involves the exterior derivative, and will be developed in Chapter
IV. There are very close relations between cotangent bundles and the
contact manifolds that are to be developed in the next chapter and that
form the basic structure of mechanics and classical thermodynamics.

13. Tangent bundle

The next important space for us is the tangent bundle. This is what the
physicist calls velocity space. It is the collection of all the tangent spaces
of a manifold. The tangent bundle of M is written TM. A point in TM is
a pair, a point in M and a tangent vector at that point.

Example: In Figure 13.1 I sketch three points in TIR2; in Figure
13.2 I draw two curves in TIR2 in this representation. TIR2 is IR4. It
is better for many uses to use a representation on IR2 itself rather
than attempt a four-dimensional drawing.

TM is a manifold. An atlas for it can be generated from the atlas of M by
taking the Cartesian product of a chart for M and an open set in IR".
Globally the tangent bundle need not have the structure of a Cartesian
product.

Example: TS2 is not S2 X R2; otherwise we could find a vector field
on S2 that does not vanish anywhere.

Since TM is a manifold, it has its own tangent space, and so on.

Example: Tangent vectors to TIR2 can be represented as pairs of
points, because TIR2 happens to be a vector space. In Figure 13.3 I
draw two tangent vectors in T(TIR2) and add them. The base points
follow ordinary vector addition. The vectors have to be added rela-
tive to the vector at the base point. Use the affine midpoint con-
struction, equation 1.1, for this.

Natural coordinates

A coordinate chart (q) on a manifold M generates natural coordinates
on TM. Call the tangent vector components q, using the dot as a mne-
monically convenient part of the symbol, not a time derivative. It is to
remind us that Tq(M) is the space of rates. This was Newton's notation
for fluxions, which is what these are. Leibnizian partials, on the other
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v

x

Figure 13.1 (left). Three points in the tangent bundle to JR2.
Figure 13.2 (right). Two curves in TIR2 in the same representation as Figure 13.1.

x

Figure 13.3. Two tangent vectors to TIR2 and their sum.

hand, are cotangent space objects. In one dimension these can be, and
were, confused. The point in TM with coordinates (q, q) is the vector

a asu=q
aq

=q aqa,

at the point in M with coordinates q. This is the same as using coordi-
nates p for the 1-form p dq in the cotangent bundle. There is again the
convenient abuse of notation here. I am using the q both for the coordi-
nates on M and for half the coordinates on TM. It should cause no
trouble.

Structure of TM

These tangent bundles have more structure than just that of a manifold.
There is a natural projection,
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Tq (M) TM

M

Figure 13.4 (left). The bundle structure of TM.
Figure 13.5 (right). Lifting a curve from M to TM.

,7r: TM-->M; (q, 4)'-' (q).

See Figure 13.4. This projection is what lets us call it a bundle. The in-
verse images of this projection are just the tangent spaces

7r -' (q) = Tq(M)

These tangent spaces are the fibers of the tangent bundle.
A tangent bundle has yet more structure. If we are given a curve in M,

there is a natural curve in TM given by

s Q(s), dQ (s)

in our natural coordinates. This is called lifting the curve into the tan-
gent bundle (Figure 13.5). It is similar to lifting a function into a section
of the cotangent bundle. Not every curve in TM is the lift of some curve
in M. TM has structure given by this special class of curves. A curve
ry : IR -+ TM; s H (Q, Q) is the lift of a curve in M if we have

Q=dQ/ds.

The coordinate-free statement of this is that for the map

-y: IR -*TM; s- (m, v),

where v is a tangent vector at m in M,
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The geometric structure of TM is more subtle than that of T*M.
Although p dq turned out to be both a definition of the coordinates p and
a 1-form on T*M, this is not true for

which only defines the coordinates q. It is not a vector field on TM; that
is, using different coordinates q for M leads to different vector fields
q a/aq on TM. A counterexample appears in the next section.

Further geometric structure for TM is the vertical-rotation map that
takes vectors in TM and rotates them up into the fiber. In coordinates
this is

a a
a +ba

q 84 q

To see that this does not depend on coordinates, note that it is just the
pushforward map it*. The disparity between the tangent and cotangent
bundles, which might at first offend your sense of duality, comes from
the projection map ir. For any bundle, 7r* can act only on vectors. This
breaks the duality.

Vector fields

A vector field X is defined as a smooth map

X:M-ATM

such that

7r -X = identity.

That is, it is a section of the tangent bundle.

Tangent map

Given a map f : M --> N, we can collect all the various pushforward maps
into a map Tf called the tangent map:

Tf:TM-*TN.

Here the point (m, u) in TM, that is, the vector u at the point m, is
mapped according to

(m, u) - (.f(m), f* u) .

Note that f* u is a vector in N at the point f(m). In coordinates, if
we have
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f: q'-'F,
then

aF tTf: (q, 4) - F, aqt q

Here both F and aF/aq` are evaluated at q. The map Tf is really just a
bookkeeping trick for automatically keeping track of the base points of
the pushforward maps.

14. Vector fields and dynamical systems

One important way to add mathematical structure to a manifold is to
give a vector field on it. This is the basic framework for ordinary differen-
tial equations, dynamical systems theory, and part of the structure of
Hamiltonian mechanics.

The local structure of a vector field is quite uninteresting. We can
almost always find coordinates such that the vector field is given by
a/ax'. Such coordinates need not cover the entire manifold, or even very
much of it. Also, there are special points called critical points, around
which this cannot be done because the vector field vanishes at the point.
Still, the interesting qualitative questions to ask about a vector field are
global and quite difficult. Here I am basically interested in establishing
just the equivalence between vector fields, systems of ordinary differen-
tial equations, and infinitesimal transformations.

Integral curves

A curve -y: s - Q(s) is called an integral curve of a vector field v : M -3 TM
if the tangent to the curve at every point is equal to the vector field at that
point:

'Y(s) = dQ (s) a = v[Q(s)]
q

Examples: In IR2 the vector field

aa
v = yx - (Y+x)

ay

has integral curves satisfying

dX = Y(s), dY = -[Y(s)+X(s)],
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which are equivalent to

d 2X dX
ds2+ds+X=O.

The integral curves are spirals representing damped harmonic
motion.

To see that q(a/aq) is not a coordinate-independent vector field on
the tangent bundle, look at IR2 in both rectangular and polar coor-
dinates. Project the vector field down onto IR2. In rectangular coor-
dinates the vector field

a a

axay
has integral curves that are Euclidean straight lines. The vector field

ra +800

has some circular integral curves, those having r = 0. Thus the two
vector fields must be different, because they have qualitatively
different integral curves.

A vector field and an autonomous system of first-order ordinary differen-
tial equations are equivalent. An autonomous system is one in which the
dependent variable does not appear explicitly. Any system can be written
as an autonomous system by adding one more dimension, taking the
dependent variable as a new independent variable whose rate of change is
set equal to unity.

Flows

Well-behaved vector fields have integral curves that can be extended for
all values of the parameter s. For simple systems we can sometimes even
find general expressions that describe all the integral curves. If the inte-
gral curves exist for all parameter values, backward and forward, then
we can define a transformation of M called the flow of the vector field as

4): MxR-*M; (q,s)- 4 (q),
such that for a fixed point q in M the curve

s~-'45(q)

is an integral curve.
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Since s does not appear explicitly, we have

4)s04)t = `)(s+t),

and these transformations form a one-parameter group. A vector field is
often called an infinitesimal transformation. Note that an infinitesimal
transformation is not a transformation; it is the limiting behavior of a
family of transformations. Limits usually are new objects. A smooth
family of unparametrized curves, one passing through each point of a
space, is called a congruence.

Dynamical systems

A dynamical system is a physical system that can be described by a point
in a state space, and whose future evolution is determined by the location
of that point. These systems are thus described by first-order ordinary
differential equations, i.e., vector fields. These state spaces are sometimes
IR", but more often are manifolds of more general type. When we study
dynamical systems, we are more interested in global questions of topology,
stability, and qualitative behavior than in the study of ordinary differen-
tial equations. For an elementary but sophisticated introduction, see
Hirsch and Smale (1974).

Example: A dynamical system described by a time-independent
Hamiltonian H is represented by the vector field

aH a aH av_ap
aq aq ap

on a cotangent bundle (q, p). These will be studied in Sections 50,
51, and 52. Time-independent Hamiltonian systems live naturally
in the cotangent bundle.

Singular systems

Even if the true state space of a dynamical system is IR'z, some of the
dynamics may operate so fast that they appear in the description of the
system only as a constraint. Useful approximations for such systems
often live on manifolds.

Example: Look at the singular dynamical system on 1R2

w=yax +X(y-y3-x) a
y
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Figure 14.1. The vector field and the slow manifold.

for large values of the parameter X. The vector field has an enor-
mous component

X(y-y3-x)
ay

that acts to move the system rapidly unless the condition

x=y-y3 (14.1)

is satisfied. The action of the fast dynamics is to "snap" the system
onto the set that satisfies equation 14.1, which is sometimes called
the slow manifold. After rapidly snapping onto the slow manifold,
the system then crawls slowly along it.

The dynamics on the slow manifold is described by the slow
vector

if we use x as a local coordinate for pieces of the slow manifold.
From the sketch of these vector fields in Figure 14.1, we see that the
system faces a crisis at points A and B. To see what happens there,
we must look more closely at the approach of the system to these
points. In Figure 14.2 we show the details of the approach of the
system to point A. The system is riding a small distance O(1/X)
above the slow manifold. It does this to pick up the small down-
ward component needed to stay on the slow manifold. You might
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Figure 14.2. The crisis point A. From here the system snaps down onto the lower branch of
the slow manifold.

worry about stability and oscillations about this path. Remember
that these are first-order systems; the dynamics has no inertia, and
is more Aristotelian than Newtonian. Upon reaching the neighbor-
hood of point A, the system overshoots and snaps down to the
lower curve. It continues along this curve until it hits B, snaps up,
and so continues around in what is called a limit cycle. This system
is called a relaxation oscillator.

Most physical systems have dynamical processes that occur on a large
variety of time scales. The ones that are too fast to be followed in detail
are put in as constraints. The hiker does not worry about the electrical
forces that act to keep his feet from penetrating the ground. Some pro-
cesses are too slow to be of any interest. Dynamical systems theory
studies those with interesting intermediate time scales. This is the way
that strange manifolds can arise in mechanics, although dynamical sys-
tems often pick out sets that are much less well-behaved than manifolds.

Examples: The motion of a rigid body takes place on a state
space that is the tangent bundle of the orthogonal group described
earlier. We ignore the fast interactions that hold the rigid body
together, thus we eliminate about 1024 unnecessary equations.

A single first-order partial differential equation is equivalent to a
vector field whose integral curves are called characteristics. The full
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theory of this takes more technical machinery than we have yet
developed, but let us consider here a single linear partial differential
equation. It can be put in the form

aufaq +au=0,

where a and the f's can depend on the position coordinates q.
Consider the vector field

v=f a
.

q

The partial differential equation gives the rate of change in this
direction. The behavior of u along an integral curve of this vector
field (called a characteristic) is known and does not depend on what
happens at points off the curve. The partial differential equation
breaks up into ordinary differential equations along the character-
istics. We will use this in Section 16 and return to the full theory in
Section 32.

15. Contact bundles

There is a manifold that describes the local behavior of unparametrized
curves, just as the tangent bundle describes parametrized curves. This
type of manifold is called a contact bundle. There is also a contact
bundle that represents the direction of the local gradients of functions
without regard to strength; it is an analog of the cotangent bundle. In
between there are lots of other contact bundles that represent the calculus
of maps of various dimensions. These contact bundles are very useful,
although they are not usually given sufficient attention by either mathe-
maticians or physicists.

Line-element contact bundles

Locally an unparametrized curve is just a one-dimensional submanifold.
The local approximation to this is called a line element; it is like a tangent
vector of unspecified length. Be careful: books written in "old tensor"
unfortunately call a metric tensor a line element. If you wish to be pre-
cise, a line element is an equivalence class of curves, and is also, there-
fore, an equivalence class of tangent vectors, say, [v], under

v -- kv,

where k can be positive or negative but not zero.
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TM CM

Figure 15.1. A comparison of the tangent bundle TM and the line-element contact
bundle CM.

The line-element contact bundle that I call CM consists of pairs, a
point in the manifold M, and a line element at that point (Figure 15.1).

Example: The contact bundle CIR2 was discussed in Sections 7
and 8.

There are several natural coordinate systems for the CM. One of them
uses homogeneous coordinates for the line element. For any line element
[v], represented by a vector

v=q aq

we use the homogeneous coordinates [ q 1: q2 : ] . Although homoge-
neous coordinates preserve the symmetry of the coordinates and do not
require numerous coordinate charts, they do not provide a natural basis
for the tangent and cotangent spaces of CM.

We find another natural coordinate system for CM if we arbitrarily
select one homogeneous coordinate and set it equal to 1. We will call the
special coordinate t and the others q. Our unparametrized curve can be
written in terms of (m-1) functions Q(t), and the derivatives

dQ
q

dt

describe the line element. Despite their lack of symmetry, these (t, q, q)
are the most useful coordinates for CM. Although these coordinates do
not cover all of CM, they leave out only points that can be easily added
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Figure 15.2. Line elements tangent to the circle as represented by special tangent vectors.

on the edges. A complete atlas can be formed from several such charts,
each one selecting a different special coordinate.

Example: The line elements tangent to a circle in 1R2 can all be
described in these natural coordinates, except for the points A and
B shown in Figure 15.2.

Hypersurface-element contact bundles

Another important class of contact bundles are the hypersurface-element
contact bundles of manifolds. They are closely related to the cotangent
bundles. We will denote the hypersurface-element contact bundle of M
by C*M. Be careful: this is not the dual of CM. Elements of C*M are
pairs: a point in M and a hypersurface contact element at the point. Ele-
ments of T*M, on the other hand, are pairs of points and 1-forms. A
hypersurface contact element is a ray of 1-forms, all having the same
alignment but different magnitudes (Figure 15.3).

We can find convenient coordinates for C*M by again breaking the
symmetry of the coordinates. Pick one dimension, call it f, and describe
a hypersurface implicitly by giving f as a function of the other coordi-
nates q. The local behavior of the hypersurface is given by the partial
derivatives

ofp__

aq
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Figure 15.3. A ray of 1-forms.

Figure 15.4. Two submanifolds having first-order contact.

and we maintain notational consistency by putting the index on p down
rather than up. A coordinate chart for most of C*M is given by (q, f, p).

Contact bundles

A submanifold is a subset of a manifold that is itself a manifold. It can
be represented by a map 1: N--+M such that both t and T are 1:1. The
pair (N, 1') is often called a submanifold. First-order contact (which I
will just call contact) between two submanifolds (N, 1) and (N', 1') at a
common point gy(p) = 1"(p') means that

Ti[Tp(N)] = Ti'[Tp-(N')],

as shown in Figure 15.4. T is the tangent map described in Section 13.
The arguments of the maps are sets, not points; equated on the two sides
are the sets resulting from transforming all the points of each tangent
space. The equality is not point by point. This would make no sense. An
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Figure 15.5. The four degrees of freedom of a 2-surface contact element in JR4. The fourth
dimension is indicated here by the shading.

equivalence class of submanifolds in contact at a point q e M will be
called a contact element at q. We will write this equivalence class [N, f].
A contact element is equivalent to a linear subspace of the tangent space.

This notion of contact is a weaker equivalence relation than tangency.
Two curves are tangent if their tangent vectors are equal; the curves are
in contact if their tangent vectors agree in direction but not necessarily in
magnitude or sign.

For any given manifold M, and a given dimension n for the submani-
fold N, the n-element contact bundle of M, C(M, n), is the manifold of
pairs, consisting of a point in M and an n-contact element at that point.

Example: Look at 2-surface elements in 1R4. The 2-element contact
bundle here has eight dimensions. The four degrees of freedom of
the contact element are sketched in Figure 15.5. The fourth dimen-
sion is indicated by the shading, and these are three-dimensional
perspective drawings.

Contact structure

These contact bundles have two natural geometric structures on them.
First, they are bundles, using the natural projection that forgets the
contact element. Second, they have what is called a contact structure.
Look at C(M, n), the bundle of n-dimensional contact elements to
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Figure 15.6. Four curves in CR2. Two of these are lift of curves in R2.

M. For every n-dimensional submanifold (N, 0) in M, there is a natural
lift

a: M-+ C(M, n); q - (q, [N, ])

where [N, 0] is an n-dimensional contact element. On the other hand,
not every n-submanifold of C(M, n) is such a lift. A contact structure
picks out these special submanifolds.

We can find a simple chart for most of C(M, n) by picking n of the
coordinates of M as special, calling them q, and looking at the remaining
(m - n) coordinates y as functions of the q. The graphs of the functions
Y(q) can represent most of the n-dimensional submanifolds of M. Note
here the use of upper case for the y when they are functions rather than
coordinates. The contact elements are represented by the matrix of par-
tial derivatives

aYa
paµ aqµ

Latin indices run over n labels; Greek indices run over (m-n) labels.
The index placement agrees with that chosen before for CM and C*M,
where the ps were called q and p; and the ys were called q and f.

In Figure 15.6, I sketch some curves in CIR2, two that are lifts and two
that are not. For any m-submanifold to be a lift, we must have the ps
equal to the partial derivatives. Look at the 1-forms
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Figure 15.7. The geometric structure of CM. One fiber dimension has been left out.

as = dya-paµ dqµ.

and pull these back onto a submanifold of C(M, n):

0: N-+ C(M, n) ; q - (q, Y(q), P(q))

Here we are using special coordinates in N as well. Pull back the 0 using
a

aY dqµ,
qµ

and we have
a

as =
ay

- pa dqµ
aqµ µ

(see Figure 15.7). If this is a lifted submanifold, then these pullbacks all
vanish. This is also a sufficient condition. We will see later that these
lifted submanifolds are what are called integral submanifolds of the con-
tact ideal.

A contact structure is represented by these 1-forms, which are called
contact 1-forms. We must be a little careful here. These 0 are not coor-
dinate-independent, nor are they continuous over M. These difficulties
are resolved if we form an ideal of 1-forms based on these 0 and on ones
from other charts, and smoothly patch it together by using a partition of



'C
3

"C
s

.
s
:

.
s
:

106 H. Manifolds

unity. (See Preliminaries for the definition of an ideal.) The ideal is
coordinate-independent, and, because we have used a partition of unity
to smoothly patch it together, is composed only of smooth 1-forms. This
is all usually just a matter of principle. In practice, we generally avoid the
problem by picking coordinates such that we do not have to work at a
point of discontinuity.

The simplicity of the representation of contact structure by an ideal of
differential forms contrasts with the difficulty of recognizing those curves
in the tangent bundle that are lifts. This is why we find contact bundles so
useful. In addition, CM is one dimension smaller than TM.

Example: In statistical mechanics, we have a manifold M with par-
ticles going in all possible directions. In the space CM the world-
lines are unscrambled, and we have there a smooth congruence of
lifted worldlines. Despite the special significance of t in the repre-
sentation of CM, this is fully compatible with special relativity.

The density of particles per unit volume per unit direction is
represented by a (2m-2)-form, p, on CM, which has dimension
(2m - 1). Not all congruences in CM are lifts of particle worldlines.
The conditions on p are that

pAO=0, (15.1)

where the 0 are the contact forms. (This is not supposed to be
obvious until you get to Section 23.)

Jet bundles

Given any bundle .7r: E -> B, the sections of this bundle define submani-
folds of E whose contact structure is often important. A section, recall,
is a map 0: B -> E that commutes with the projection .7r.

Example: Look at functions on the plane that are maps

F: IR2 - IR.

The graphs of these functions are sections of the bundle

.7r: IR3 -> IR2; (s,.Y, f )'-' (X,.Y)

The sections are the maps

0: IR2 - IR3 ; (X, .Y) '-' (X, .Y, f) _ (X, .Y, F(X, y)),

which define 2-submanifolds of IR3. Note my convention of using
lowercase letters for independent variables, and the corresponding
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uppercase letter for that variable as a dependent variable [here, f
and F(x, y)].

A contact element at the point p = (xo, yo, F(xo, yo)) is an equiv-
alence class of 2-submanifolds having first-order contact at p.
This class can be represented by the linear submanifold (in these
coordinates)

(x,y)- (xYF+ ax (x-xo)+aF(y-yo)

The partial derivatives aF/ax and aF/ay are evaluated at (xo, yo).
They form useful coordinates for the contact elements.

The jet bundle is the bundle formed from the original bundle by adding a
fiber of contact elements at each point. The structure of the jet bundle is
again given by contact forms that specify where the contact elements are
in contact with a lifted submanifold.

Example: Coordinates for the jet bundle of the bundle 1R3 -+ IR2
in the preceding example are (x, y, f, fx, fy). Here fx is a single
symbol, the name for a particular coordinate, not a partial deriva-
tive. The contact 1-form is

df-fxdx-fydy.
If we pull back this 1-form onto a submanifold

(x, .Y) - (x, .Y, F, Fx, Fy),

we find

df- fx dx - fy dy - aF
dx + aF dy - Fx dx - Fy dy,

y

which vanishes only if

aF aFFx=ax, Fy= ay.

Since sections can never be tangent to the fibers, these coordinates
cover all of the jet bundle.

If the fibers of the original bundle are n-dimensional, then n contact
1-forms form the ideal that represents the contact structure. We can look
at the coordinates used for contact manifolds as being the result of arti-
ficially imposing a bundle structure on the manifold by singling out a
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special coordinate. Jet bundles differ from contact bundles in having
bundles for their base spaces whose projection map 7r automatically
singles out special directions.

Problems

15.1 Draw a 1-form on CIR2. Draw one that is in the contact ideal. Use the
representation of Figure 15.1.

15.2 Show how to form an atlas for CM from the coordinates (t, q, q).
15.3 Describe the manifold of directed line elements, that is, vectors with a direc-

tion (plus or minus) but no particular length. What are the natural coor-
dinates? What is its contact structure?

15.4 Show that the contact ideal dt -p dq on C*M does not single out the t coor-
dinate. Study the question first in CIR2 and there explicitly rotate coordinates.

16. The geometry of thermodynamics

A thermodynamic system is a homogeneous assembly that includes a
very large number (say, 1024) of unexamined and mutually interacting
subparts. The energy shared among the unmeasured degrees of freedom
of these subparts is called heat. Think, for instance, of a sample of gas.
The atoms are subparts with translational degrees of freedom whose
kinetic energy is shared among them. In addition, a thermodynamic
system has some degrees of freedom (or combinations) that are measured,
such as its volume, magnetization, electric charge, and number of par-
ticles. These aggregate variables are called extensive variables. Along
with these extensive variables are forces or potentials that describe the
energy transfer into and out of these degrees of freedom. The energy
changes associated with volume changes depend on the pressure, changes
associated with the magnetization depend on the magnetic field, and so
on. We are going to describe thermodynamic systems in a contact bundle
whose coordinates are total energy, entropy, temperature, all the exten-
sive variables, and the potentials associated with the extensive variables.
These potentials are called intensive variables.

Three important geometric structures will be needed to describe a
thermodynamic system: a linear structure, a contact structure, and a con-
vexity structure. The linear structure models the physical idea of short-
range interactions and the possibility of homogeneous systems with a
scaling symmetry. The contact structure incorporates energy conserva-
tion and the First Law. The convexity incorporates the Second Law and
the increase of entropy when systems are mixed. The proper geometric
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setting for thermodynamics is a contact bundle. In this geometric setting
we will be able to rationally handle the profusion of different differen-
tials. Some will go to dxs and some to (a/ax)s, a useful distinction lost in
the usual notation. None of the funny deltas will remain.

Fundamental equation

The state space for the system consists of all the preceding exten-
sive variables, plus one aggregate variable for the unexamined degrees
of freedom. This aggregate variable is called entropy, S, and its corre-
sponding potential is called temperature, T. State space is a manifold
whose coordinates have physical meaning by themselves.

Example: For a system consisting of a fixed amount of an ideal
gas, the state space is two-dimensional, with coordinates entropy
and volume (S, V). A system with a variable amount of gas would
need another coordinate, N, to represent the amount of gas in the
system.

The state space describes the current condition of a given system. The
system itself is specified by giving the energy stored in the system for all
possible states. This relation is called the fundamental equation, and
gives the internal energy U as a function of the state variables. It is a
complete description of the system.

Example: For a system consisting of N molecules of an ideal gas,
the fundamental equation is

U(S,V)=N513V-20 exp(2S/3Nk). (16.1)

Here k is Boltzmann's constant. This equation is probably not familiar to
you, and it is certainly not supposed to be obvious. We will discuss the
relation of this equation to PV= NkT in a moment.

Linear structure

Thermodynamics deals with homogeneous systems, systems that can be
subdivided into subsystems that behave like the whole. The physical idea
is that the system is much larger than the range of its interactions, and
that for most atoms (or whatever elementary pieces it has, spins, macro-
molecules, etc.) these interactions are saturated. The energy stored in
them will just be proportional to their number. These systems for which
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the shape does not matter are sometimes called limp systems. The internal
energy of a subsystem is proportional to its size. This is a scaling sym-
metry, and it requires that the energy function U must be homogeneous
of degree one in all the extensive variables taken together. Thus we must
have, by Euler's theorem, for a fundamental equation U(S, V, )

U=S -U+VaU+..., (16.2)

The geometric interpretation of this will follow once we have an inter-
pretation of these partial derivatives in a contact manifold. You might
wonder how we are to change both the volume and the surface area by
the same factor. It is important to realize that the shape of the system is
not fixed. If energy were needed to deform the body, then this energy
must be included in the fundamental equation, along with additional
degrees of freedom describing the shape of the body.

Contact structure

In thermodynamics the potential or force on a given degree of freedom is
the rate at which work must be done to change that degree of freedom.
Since energy is conserved, which is the First Law of thermodynamics,
this work must change the internal energy.

Example: Thus for the preceding example we must have for the
pressure

P= - au
aV

and for the temperature

T
au
as

The force or potential associated with every extensive variable is called
an intensive variable. In a system twice the size, these intensive variables
are the same, not doubled.

The geometric structure here is clearly that of a surface given by the
fundamental equation and its various slopes, the potentials. This is
naturally described in a contact bundle. The graph of the fundamental
equation is an n-surface in (n + 1)-space, and the potentials are the
components of the contact element to that surface. The contact bundle
is the (2n+ 1)-space with coordinates of internal energy, which are
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the potentials, the degrees of freedom, and a contact ideal generated by
the 1-form

a = dU+ Z (forces) d(degrees of freedom).

Again we see that we can geometrize a problem with infinitesimals by
finding the correct space in which the infinitesimals become honest
1-forms.

Example: The ideal gas system given earlier is described in the five-
dimensional contact bundle with coordinates (U, T, S, P, V) and a
contact ideal generated by

a=dU-TdS+PdV.

The homogeneity condition 16.2 becomes

U= TS-PV,

and is known as the Gibbs-Duhem relation.

A thermodynamic system in the contact bundle is an n-dimensional
integral submanifold of the contact ideal. The pullback of a onto the
system submanifold must be zero.

Convexity

To complete the geometric interpretation of classical thermodynamics,
we must include the constraint of the Second Law. This appears in our
geometric structure as the requirement that the fundamental equation for
the energy function U must be a convex function, which implies that, in
the fundamental equation, U must be a convex function of its argu-
ments. There is an excellent discussion of the geometric role of convexity
in the introduction by A. S. Wightman to R. B. Israel (1979).

Equation of state

A thermodynamic system is usually specified not by its fundamental
equation, but by an equation of state describing the potentials. Such a
relation is more convenient, but contains less information.

Example: The equation of state for an ideal gas is the familiar
relation

PV= NkT.
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To fully describe the system, we also need

U= (3/2)NkT.

The system in the contact manifold will be described by the map

(S, V) (U, T, S, P, V) = (U(S, V), T(S, V), S, P(S, V), V).

The three functions U, T, and P must satisfy the first two equa-
tions, as well as

We can write our map as

(S, V) - (3NkT/2, T, S, NkT/V, V),

involving now the single function T(S, V). For the pullbacks we
have

0* dU= (3/2)Nk(aS dS+ aV dV ,

so

T must satisfy

i* 0 = (3/2)Nk aS dS+ aV dV

-TdS+(NkT/V) dV=O.

1 aT 1 aT_
T as

2/3Nk,
_

T aV
-2/3V.

The first gives us

In T=2S/3Nk+C(V)

and the second determines the function C(V), and leads to

T=A V -2/3 exp (2S/3Nk) .

This leads to the fundamental equation given in equation 16.1. The
factor of N513 ensures that a system of twice the volume and with
twice the number of molecules has twice the energy.

Interactions

The degrees of freedom of different thermodynamic systems can be cou-
pled. We show this in Figure 16.1 for two ideal gas systems. Equilibrium
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Figure 16.1. Two thermodynamic systems, here gases, with their volume degrees of
freedom coupled.

demands that the respective potentials be equal. Two containers of gas in
contact must be at the same pressure. If they can also exchange energy
between their thermal degrees of freedom, then in equilibrium they must
also be at the same temperature. We often measure the properties of a
system by allowing it to interact with special systems such as pressure
regulators, volume regulators, heat baths (temperature regulators), and
batteries (electric potential regulators).

A magnetic system

Look at a magnetic system with state variables of entropy S and magne-
tization M. The contact structure here is

a = dU-TdS-HdM.

Some of these systems can be described by the empirical Curie law

M = aH/T,

where a magnetic field magnetizes the system, but an increased tempera-
ture disorders the system and reduces the magnetization. Suppose further
that the thermal properties in zero magnetic field are described by a heat
capacity

CH = (f3T)3, (16.3)

typical of a crystaline substance storing energy in lattice vibrations.
We can find the fundamental equation at zero field, U(S), from the

given heat capacity. We work in the contact bundle (U, T, S), which
describes the system at zero magnetic field. The system lies along a curve
in (U, T, S) space, which we parametrize by S itself:

(U, T, S) = (U(S), Us(S), S).

The subscripts here denote partial derivatives. The tangent vector is

a a a

UsaU+UssaT+M'
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The heat capacity is the rate at which U changes relative to the rate at
which T changes along this line. Equation 16.3 gives us

Us/Uss = (fUs)3.

A solution to this is

U(S) _ (3S)4//4f3. (16.4)

For nonzero magnetic field, the Curie law is a partial differential equa-
tion for U:

aUM= Us M,

that is,

aaM-MaS U- 0.

This states that U is constant along the parabolas

(S- SO) = -M2/2a.

So parametrizes the parabolas in terms of their intersection with the S
axis. This is the method of characteristics mentioned in Section 14. The
value of U at the M= 0 axis is given by equation 16.4, and so we have the
fundamental equation for our magnetic system

U(S, M) = (1/43) (3S+3M2/2a)4/3.

The temperature is given by

T=(1/(3)(35+3M2/2a)1"3.

Such a system can be used as a refrigerator. We start with the system
unmagnetized at some temperature To. While keeping it in contact with a
heat bath at this temperature, we increase the magnetic field strength to
H. Heat flows out, and the entropy changes to

S = (1TO)3/3 - aH2/2T0 .

Now insulate the system from the heat bath and reduce the field to zero.
No heat flow means that S is constant. The final temperature is lower and
satisfies

(T/T0)3 =1- 3aH2/2,63T0 .

Of course, the Curie law is not true down to T= 0, but this procedure,
called adiabatic demagnetization, can in practice cool systems from a few
degrees Kelvin down to 10-3 or so.

We will continue the discussion of classical thermodynamics in Sec-
tions 20 and 37.
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III
Transformations

Transformations are maps of a set into itself. The symmetries of a math-
ematical structure are given by those transformations that do not change
the structure. We can even define a mathematical structure by starting with
the transformations, and finding the mathematical structure compatible
with these transformations. Thus we can define Euclidean geometry as
the study of those mathematical structures invariant under orthogonal
transformations. Similarly, the mathematics of special relativity can be
defined as the study of all structures compatible with Lorentz transfor-
mations. This approach is quite abstract and far removed from the world
of experiment. Still, it is an interesting approach.

We can also use symmetry transformations to solve problems. Some-
times a problem can be transformed into a simpler problem. If the struc-
ture of the problem is invariant under the transformation, then the solu-
tion of the simpler problem gives us a solution of the original problem.
At one time it was hoped that all problems in mechanics could be solved
by finding transformations that reduced them to trivial problems. As
might have been expected, such transformations were even harder to find
than solutions of the original problem.

The prime tool in the study of transformations is the infinitesimal
transformation, described by a vector field. The operation of this vector
field on geometric objects is given by the Lie derivative, one of the most
important ideas in this book. Like contact structure, it is sometimes
slighted by both mathematicians and physicists.

17. Lie groups

A Lie group is a set that has the structure of both a group and a mani-
fold, and for which the rules of group multiplication are given by smooth
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functions. The classification of such groups is an involved mathematical
field; fortunately, we do not need it here. A scant familiarity with a few
of the simpler groups will do. We usually discuss Lie groups in terms of
their matrix representations (and now we must be careful, because in
group theory "representation" has a technical meaning). Discussions of
Lie groups for physicists focus on the computational details of the repre-
sentations - again, detail that we do not need here.

Example: Without a doubt, the most important group to a physi-
cist is the orthogonal group in three dimensions, called 0(3). This
is the set of all rotations and inversions in three dimensions that
preserve the lengths according to the Euclidean metric. The argu-
ment of Section 11 showed that all the orthogonal groups are mani-
folds. One coordinate chart for part of 0(3) would be the Euler
angles, although-these are really of limited use. Group multiplica-
tion is just matrix multiplication. Since it involves only poly-
nomials, it is clearly smooth. Thus the 0(n) are Lie groups.

It is not altogether clear to me why Lie groups are so important. For
example, they are the fundamental building blocks for gauge theories.
One additional structure that groups have is a set of global translations.
For a given group G and element a in the group, the map

La: G-+ G; b-ab

is called left translation. It is a transformation of the group, and it leaves
no element unmoved.

Transformation groups

For our purposes the most important use of Lie groups is to represent the
symmetries of mathematical structures on manifolds. We want transfor-
mations that leave the structure of interest unchanged.

We have a Lie group action on a manifold M if we have a map

µ: GxM-3M; (a, q) -Aa(q),

where G is a Lie group, satisfying

ie(q)=q
where e is the identity element in G, and

µa°Pb - µab (17.1)
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This last rule could have been given in the other order. Our action is
called a left action.

Examples: The left translation just defined is an action of a Lie
group upon itself.

The proper Lorentz group acting on a two-dimensional spacetime
can be represented by the one-parameter family of matrices

cosh 0 sinh 0
sinh 0 cosh 0

The group is one-dimensional, and the group manifold is just R.
The identity element is given by 0 = 0. We have an action on IR2

(t, x) - (cosh 0 t + sinh 0 x, sinh 0 t + cosh 0 x).

The composition of two transformations is just the addition of the
rapidities, Oa+ Ob. Relation 17.1 is easily verified.

Lie algebra

The behavior of a Lie group is determined largely by its behavior in the
neighborhood of the identity element e. The behavior can be represented
by an algebraic structure on the tangent space of e, called the Lie algebra
of the group. Each element of the tangent space of the identity corre-
sponds to an infinitesimal transformation. On the manifold M on which
the group acts, these infinitesimal transformations are represented by
vector fields. The Lie bracket of Section 9 gives these vector fields an
algebraic structure. The structure depends only on the Lie group, as you
can see by using equation 17.1.

Any Lie group acts on itself by left translation, and the vector fields
generated by this action are a convenient representation of the Lie
algebra. These vector fields are invariant under right translation:

TLa(e, v(e)) = (a, v(a)),

where TLa : TG -+ TG is the tangent map of Section 13.

Examples: This relation is easily seen heuristically by thinking of
the head and tail of a vector as points in the Lie group. Figure 17.1
shows that the infinitesimal left translation generated by f takes
a - fa. Ra, the finite right translation by the element a, takes e to a
and f to fa.
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e

Figure 17.1. The finite right translation of an infinitesimal left translation, which is a vector
field.

This heuristic trick can be justified by going to a matrix represen-
tation of the Lie group, and using the matrix exponential to gen-
erate a one-parameter subgroup satisfying equation 17.1.

It is a famous result called the hairy-ball theorem that every con-
tinuous vector field on S2 has a zero. But an infinitesimal transla-
tion on a Lie group leaves no element unmoved. Thus S2 cannot be
a Lie group. Of all the spheres, only S1 and S3 are Lie groups.

The Lie algebra of the group is the algebra of infinitesimal transforma-
tions, which are vector fields on M. To find these, look at the path of a
single point of M under a one-parameter family of transformations. The
tangent vectors to this path are the vector field. We have a vector at every
point, and hence an infinitesimal transformation. The paths are integral
curves of the vector field.

Examples: The Lorentz-group action defined earlier has an integral
curve through the point (to, xo),

s (cosh s to + sinh sxo, cosh sxo + sinh s to),

and the infinitesimal transformation is the vector field

a av=x
at

+t
ax
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The set of all points in a space (t, x, y) with Lorentz metric satis-
fying the condition

t2=x2+y2, t>0,

form a manifold E called the future null cone. The Lorentz-group
action on this spacetime is generated by the three infinitesimal
transformations

a aLX=xat+t ax,

a aL =yat+tay

a aR=-xay+yax.

The finite transformations are easily written down.
All three of these vector fields are tangent to the future null cone,

and points on E remain on E. Thus we also have an action of the
Lorentz group on E. If we use the coordinates (x, y) as coordinates
for E, then we can find vector fields on E representing these infini-
tesimal transformations. These are

a
LX= x2+y2 ax'

Ly = Jx 2 ++y2 ,
ay

a ax=ya-xay.

These are all smooth vector fields.

Look at the future null cone in four-dimensional spacetime, and
reduce this to the 2-manifold SZ of null directions. This is the 2-
manifold that you see when you look around you in various direc-
tions. There is a Lorentz group action on it as well.

Let us use a stereographic representation to find a coordinate
chart for 0:

x y
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elements that are equivalent

quotient
space

Figure 17.2. A group action on a quotient space.

An infinitesimal Lorentz transformation in the z direction is repre-
sented by the vector field in Lorentz 4-space:

a aw=z+ta
at

z.

To show that we have a group action on 0, we must check that the
action on 4-space passes to the quotient of the equivalence relation
defining Q. The general idea is sketched in Figure 17.2. Here this is
obvious. Since the map 0 is homogeneous in the coordinates, all
rays map onto the same (u, v) point. As an infinitesimal action on
4-space, w describes the equivalence class of curves

[s - (t+sz, x, y, z+st)],

and in our chart this representative curve is the curve

s - (u, v) = (x, y)/(t+z) (1 +s).

Using the binomial theorem, we find an equivalent curve

v-sv);

so the action of the Lorentz group on the space SZ in a stereographic
chart is just the dilation given by
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a a-uau-vav.
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We have just done a transformation of tensor components by hand.

Problem

17.1 There is a Lorentz-group action on the pseudospheres of Section 6. The
equations describing it, however, are nonlinear and complicated. The
pseudosphere can be embedded into a Minkowski spacetime, and there the
Lorentz-group action is linear and represented by matrices. Show how to
use this to simplify drawing accurate figures of the pseudosphere, such as
the tiling mentioned in Section 6.

18. Lie derivative

A group action that acts on the points of a manifold also acts on sets of
points - on curves and surfaces, for example - and also on tangent vec-
tors and 1-forms. These are, remember, just equivalence classes of curves
and functions.

Given a transformation, we naturally ask how it modifies our various
geometric objects. Most of our geometric objects have representations in
the tangent space. Once the action of a transformation on points is given,
the action on tangent vectors and other geometric objects is determined.
The geometric operation measuring this change is called the Lie derivative.

Tensors and most other geometric objects can be compared only if
they are defined at the same point in the manifold. To define the change
in a 1-form field, say, under a transformation, we use the pullback map
to pull back the 1-form at the new point to the old point; then we com-
pare this pulled-back 1-form with the 1-form already there (see Figure
18.1).

For a 1-parameter transformation

II)E:M-->M; q'-'qE

we define the Lie derivative of a 1-form field co to be

\ * (qE)-o ( ))Lie derivative (co) = Lim
E->0 E

For tangent vectors we must use the pushforward map; since we are
demanding a group action, the transformation is invertible, and the
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Figure 18.1. Using a flow to compare 1-forms at different points.

inverse transformation can be used to push tangent vectors back from
the new point to the old point.

In this way, any geometric objects that are defined in the tensor product
spaces of the tangent space can be Lie-differentiated. The sign is given by
the rule

Lie derivative = Lim (value pulled back - value already there).

For a continuous transformation, the Lie derivative depends only on the
vector field that describes the infinitesimal transformation. The Lie
derivative of the geometric object SZ with respect to the vector field w is
written £w Q.

Functions

If we are given a vector field w that represents an infinitesimal transfor-
mation, the Lie derivative of a function f is just its derivative in the w
direction:

£w f = Lim[ f(x+ Ew) - f(x)]/E
E - 0

=f
There are many different notations for this, because there are several
different ideas that happen to coincide here in their simplest cases.

Example: Look at a transformation that moves you around in the
room. If the Lie derivative of the temperature vanishes, then it is
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Figure 18.2. The pattern of a Lie derivative.

the same temperature everywhere along the integral curves of the
transformation.

Tangent vectors

Now, carrying along a number takes no thought at all, but carrying
along a vector takes some care. Still, it should be possible to do this.
After all, once you know how to transform points, you can transform
curves and hence tangents, which are equivalence classes of curves.
Assume that our transformation is given by the flow I ; then, for
fixed s,

I :M-->M

is a transformation of M. Suppose now that a vector field v is given on
M. Using the tangent map T(D(_S), we can bring back vectors from along
an integral curve

0:s-Tc(_S).v(cS(q)). (18.1)

This says to take the vector v (cS (q)) at the point DS (q) and push it back
to q by using the inverse of the tangent map. Note that our vectors are
going against the flow. They can do so only because IS is invertible.
Now, the map 0 in equation 18.1 is a curve in the vector space TMq; all
the vectors are in the same tangent space. The Lie derivative is just the
derivative of this curve at s = 0:

d
£wv=

ds
(0).

See Figure 18.2.
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An immediate and important conclusion that results from defining Lie
derivatives in terms of maps is that Lie differentiation commutes with
pullback and pushforward.

To show that there is nothing conceptually difficult here, I will first cal-
culate the Lie derivative of a vector field in a totally pedestrian manner.
A more elegant calculation will then follow. In a coordinate chart with
origin at the point of interest, we have the vector field

v = (vf"+ v",aXa+ ...) a ,
aXµ

the infinitesimal transformation

a
W=(Wµ+.Wµ,aXa+...)

aXµ

and, for small s,

DS (0) = sw.

V((Ds(O)) = Vµ+SV/',aWa ax l"µ

The transformation is locally,

Xµ'4Xµ+Wµ+SWµ,aXa.

The basis vectors are pushed forward according to

a a a
µ

3x a We + W , a ax µ

and in components this is

V
a aXaa H(vµ+wµ'ava)

axµ

Note carefully the indices on wµ, a. The use of a/axµ for the basis vectors
at different points makes this confusing. If you use a/ayµ for the new
basis vectors, things are much clarified in the middle of the computation.
Thus the inverse pushforward of v gives us the curve

s F-' Vµ'+SVµ, aWa-SW/"
a Va.

The Lie derivative is just the linear term, and this is our old friend the Lie
bracket of Section 9:

£wv= [w, v]. (18.2)
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Now, how could we have found that out with less trouble? Since all
the operations are specified in coordinate-free language, we are free
to choose any coordinates we wish. It is always possible to pick coordi-
nates (q, t) such that any nonzero vector field w appears in the normal
form

aw=at.

This will be discussed in Section 26. The pushforward map on tangent
vectors is now just the identity, and so

a a aQ a aT a
£w

Q aq + T at - at aq + at at

But we also have for the Lie bracket

a a a aQ a aT a
at ' Q aq + T at = at aq + at at

Hence in these special coordinates

£wv= [w, v],

and since both sides are coordinate-independent, this is true in general.
Although the normal form a/at cannot be used where w has a zero,
the linearity of the Lie derivative allows us to add a constant field and
remove any zero we wish.

A vector field v such that

£wv=0

is said to be Lie-transported or dragged along the vector field w. The geo-
metric interpretation of dragging a vector is to picture its head and tail
being carried along neighboring integral curves, as in Figure 18.3.

Example: We have

a a a a
£(1+y)Wax) ay

= (1+y) ax ay = ax
In Figure 18.4 I sketch this.

We will see in Section 46 that the magnetic field in a conducting
fluid obeys
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Figure 18.3. A vector field that is Lie-transported by a flow. Tick marks indicate equal
parameter increments.

Y
Y

T1R2

a s=1 s=0

0

(1 +y) a/ax

Figure 18.4. The Lie derivative of a constant vector field with respect to a shear.

aB
at = -V xE,

and for high conductivity we have

E= - VxB,

where V is the 3-velocity of the fluid. Thus the evolution of the field
for slow fluid motions follows

aB =Vx(VxB),
at

and for incompressible fluid motion this becomes
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aB

at
=VB V-VvB.

For steady motions we have the Lie bracket

-[B, V] =£VB=O.

For unsteady motions we define a nonrelativistic 4-velocity

a av=
at

+Vaq,

and now take B to be a four-vector with no t component. Then
again we have a Lie derivative

-VBV=0.

For both steady and unsteady motions the magnetic field vector is
dragged along by the fluid. Note how the Lie derivative gives direc-
tional changes as well.

1-Forms

The preceding rules let us drag along the local tangent spaces; so we can
easily discuss the Lie derivative of any geometric object that can be repre-
sented in the tangent space. Since the Lie derivative is to be a local ap-
proximation, it must satisfy Leibniz's rule (i.e., be a derivation). This lets
us break up a product, such as a tensor product, into factors.

£K,a®x b = (£K,a)Qx b+a®x (£K,b).

The Lie derivative of a 1-form a can be found by taking any vector
field v, and the function

We Lie-differentiate f :

From this we find

(£,,a) v= d(a v)w-a [w, v]. (18.3)

All the operations on the right-hand side have been defined before; so
this is an explicit, coordinate-free definition of £w as a 1-form. This is a
typical coordinate-free definition of a 1-form, given in terms of its action
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on a vector. The vector must appear explicitly, of course. In terms of a
coordinate basis,

£w a = (aN,, ,, w'+ a,, w', ,,) dx L. (18.4)

Example: Consider in 1R2

£x(a/ax) dx.

First think about the sign. The transformation x(a/ax) is an expan-
sion. The pullback is a contraction, and so the pullback of dx has
its contour lines closer together. The Lie derivative is thus positive.

From

we have, differentiating

a a a __
(£x(a/ax) dx) ax

+ dx x
ax 31 ax 0,

__

(£x(a/ax) dx)
a

ax
- dx a

ax
0,

hence

£x(a/ax) dx = dx.

Note that

£x(a/ax) dx x£a/ax dx.

As can be seen in the preceding example, the Lie derivative does not act
like a directional derivative. It is not linear on the functions that appear
in the directional argument. For 1-forms we have, from equation 18.3,

for g any smooth function. This leads to the useful computational formula

£x(a/ax)(fdx+gdy)=X
aax (fdx+gdy)+fdX,

where X is any function.

Example: What are the infinitesimal symmetries of the 1-form field
dx in three dimensions? Let w be a vector field that represents an
infinitesimal transformation that leaves dx unchanged:
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w=X ax +Y- +Za
v

Then to have

£w dx= 0,

the only requirement on w is that the X be constant.

Tensors

129

From repeated application of Leibniz's rule, we can Lie-differentiate any
tensor index-by-index:

£w Tµv...aT...
ax"

Ox axv Ox ... Q dx"( dX7( ...

= ITµv... Wa_Tav...
Wµ

Tµa... V,

+Tµv...ar... Wa a+Tµv...aa... Wa T+ ... ] a O a O ...dXa®dXT....
' aXµ axV

Other methods for calculating Lie derivatives of differential forms use
the exterior calculus to be developed in Chapter IV.

Transformations lifted to TM

An infinitesimal transformation of a manifold M can be lifted to give an
infinitesimal transformation of TM by using the tangent map of Section
13. If w(a/8Q) is the infinitesimal transformation on M with coordinates
Q, then the infinitesimal transformation on TM with coordinates (Q, Q) is
given by the vector field

a aW_

=Wµ aqµ +WA,aga aqµ

The integral curves of this vector field generate a surface that is a sec-
tion of TM, which is a vector field. The Lie derivative of this vector field
vanishes. To see this, write down the ordinary differential equations for
the integral curves of w:

dqµ dqµ
=wµ ,

ds
= wµ a,a

ds
(18.5)

For a vector field v whose graph is generated by integral curves of w, the
partial derivatives of the components of v satisfy
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d v" _
ds

The rate of change of these components is given by equation 18.5; that is,

dv"

ds
=W",ava.

Comparing these, we have

W",ava-v",aWa=0,

which is the equation of Lie transport. An integral curve of the lifted
vector field contains information not only about a single solution, but
also about the local behavior of nearby solutions. This is useful in dis-
cussing the spreading of solutions, for example. It is also useful in two-
point boundary-value problems for suggesting how to improve successive
approximations.

Similarly, we can lift a transformation up into the cotangent bundle.
The vector field there comes from writing the Lie-derivative condition

a",vW v +upW v,"0

and, if we use canonical coordinates (q, p) on T*M, this leads to the
vector field

W"a_Wv a

aq" '
"pv ap"

Example: What happens in the shear

W=y2 a ?
ax

The transformation in TM is

y2a + 2yy
a

ax 3x

This shows that a vector above the x axis with a positive y com-
ponent is rotated clockwise (see Figure 18.5).

The transformation in T*M is

2 a a
y ax +2yk a1,

where we u coordinates (x, y, k, 1) for T*M. In the cotangent
space this transformation is shown in Figure 18.6, in contrast with
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Y

2 a
Y ax

V

x

Figure 18.5. The transport of a vector by a shear.

1
Y

Y

/4

x

Figure 18.6 (left). The action of the same shear as in Figure 18.5, this time acting on an ele-
ment a of the cotangent space.

Figure 18.7 (right): The action of the same shear on the tangent space.

Y

x

Figure 18.8. The action on a 1-form, sketched on the manifold. Contrast with Figure 18.5.
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the tangent space transformation shown in Figure 18.7. The trans-
formation of the tangent-space representation of the 1-form a is
sketched in Figure 18.8.

19. Holonomy

A surprising and delightful feature of transformations is that successive
transformations often do not commute. When they do commute, they
are called holonomic. Holonomy is a general idea that describes what
happens when we perform a cycle of transformations: ABA-'B-1
(Figure 19.1).

The geometry of parking a car is a nice example of the exploitation of
noncommutation. This fun example is taken from Nelson (1967), an
otherwise very serious book.

Specify the state of a car by four coordinates: the (x, y) coordi-
nates of the center of the rear axle, the direction 0 of the car, and the
angle 0 between the front wheels and the direction of the car (Figure
19.2).

The driver has two different transformations at his disposal. He can
turn the steering wheel, or he can drive the car forward or back. The
infinitesimal transformations will be the vector fields

a
STEER = a ,

and

DRIVE = COS 9 ax + sin 0 a + tan
0

Wy

The geometry used to compute DRIVE iS shown in Figure 19.3. Now, STEER
and DRIVE do not commute; otherwise you could do all your steering at
home before driving off on a trip. We have, in fact,

[S, D]
L COS2 Cp as =

ROTATE.

The operation [S, D] is the infinitesimal version of the sequence of trans-
formations: steer, drive, steer back, drive back. Now, ROTATE can get you
out of some parking spaces, but not tight ones. As Figure 19.4 shows,
you may not have enough room to ROTATE out. The usual tight parking
space restricts the DRIVE transformation, but not STEER. A truly tight
parking space restricts STEER as well by putting your front wheels against
the curb.
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Figure 19.1. The pattern for lack of holonomy as the lack of commutativity
of transformations.

Y

x

Figure 19.2. The state-space variables for a simplified model of an automobile.

Fortunately, there is still another commutator available:-

[D, R] =
L cost

sin 0 a - Cos 0 a = SLIDE.
y

SLIDE is a displacement at right angles to the car, and can get you out of
any parking place. Just remember to steer, drive, steer back, drive some
more, steer, drive back, steer back, drive back [SDS-'DSD-'S-1D-I].
You have to reverse steer in the middle of the parking place. This is not
intuitive, and no doubt is part of the problem with parallel parking. Thus
from only two controls you can form the vector fields STEER, DRIVE, ROTATE,

and SLIDE, which span the full tangent space at every point. You can
move anywhere in the four-dimensional configuration space.
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As

Figure 19.3. The action of the DRIVE transformation on our car.

Figure 19.4. A parking space too tight to ROTATE out of.

Vector fields that do not commute are called anholonomic. If two
transformations commute, then the system could never leave a 2-surface.
This obvious result is called the Frobenius Theorem. Suppose we are given
a field of contact elements on a manifold M. These contact elements are
linear subspaces of the tangent spaces Tp(M), sometimes called distribu-
tions (nothing to do with 6-functions). A submanifold is called a com-
plete integral submanifold of the field of contact elements, if at each point
the contact element of the submanifold equals the given contact element.
A submanifold of lower dimension is called an integral submanifold if its
contact element is contained within the given contact element.

A given field of contact elements is said to be completely integrable if
for any two vector fields lying in the contact-element field, their commu-
tator does also. The Frobenius Theorem says that a completely integrable
contact-element field has a complete integral submanifold. A proof can
be found in Choquet-Bruhat (1977).

If you think of two-dimensional contact elements in three dimensions
as little "floor tiles," then an integrable field is one where these tiles fit
together to form a surface.
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Figure 19.5. A nonintegrable field of Contact 2-elements.

Examples: A field of two-dimensional contact elements on 1R3 can
be specified by giving two basis vectors, and then adding to these all
possible linear combinations. For the two vector fields a/ay and
a/ax+y(a/az), sketched in Figure 19.5, we have

a a a a

ay ' ax
+Y

az az

so they do not have a two-dimensional integral submanifold.

In classical mechanics we often consider constraints that force
the system to move along only a linear subspace of the tangent
space. If these subspaces are integrable, then the system must re-
main on a subspace of smaller dimension. These are called holo-
nomic constraints.

An important application of the Frobenius Theorem is to the computa-
tion of integrability conditions for partial differential equations.

Example: Suppose we want to solve the partial differential equation

ao =v
ax

for a specified vector field v. The geometric view of this equation is
found by taking the space (0, x), with a contact-element field gen-
erated by the set of vector fields
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a a

ax
-val.

A solution to this equation is an integral submanifold of this con-
tact-element field. Each vector points in a direction that keeps all
but one coordinate constant; this is the definition of a partial
derivative.

The Frobenius Theorem states that an integral submanifold exists
if the contact-element field is completely integrable. This requires
that for every pair of vector fields in the contact element, such as

a=a a -v a and b=b a -v a
,ax a ax _-

we have [a, b] also in the contact element. This is equivalent to the
demand that

a a s a a[---i-vi--, ax-I. -Vi --
_-(vi,l-vl,j)ao

be in the contact element, using linearity. Since a/ao is not in the
ideal, we must have

vi,i-vl,1=0;
that is,

Vxv=O

in 3-vector notation. The Frobenius Theorem assures us that this is
a sufficient condition as well as a necessary one.

Problems

19.1 Discuss the parking problem for a semitrailer, a full trailer, and an elephant
train of n cars. Can all of these be parked?

19.2 Will the number of cycles around the commutator loop be of order 1/E if the
parking space is longer than the car by only E? What if you are tight against
the curb as well?

20. Contact transformations

Contact transformations are those transformations that preserve the
contact structure of a contact bundle. The most common contact trans-
formations are the Legendre transformations.
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Figure 20.1 (left). A contact transformation preserves the contact structure by taking lifted
curves to other lifted curves.

Figure 20.2 (right). A transformation that is not a contact transformation.

Contact transformations

Contact structure singles out those special submanifolds that are lifted
from the base space. A transformation between contact bundles

K: C(M, n) -3 C(M', n)

preserves the contact structure if it maps these special submanifolds into
other such special submanifolds. Figure 20.1 sketches a transformation
that does preserve the contact structure, and Figure 20.2 sketches one
that does not. A submanifold (N, 0), with 0: N-3 C(M, n), is the lift of
a submanifold of M if we have

0 are the 1-forms that generate the contact ideal in C(m, n), and 0*
is the pullback operator for the map 0. The image of the submanifold
must also satisfy this condition

where 0' are 1-forms generating the contact ideal in C(M', n). Thus

and the condition for us to have a contact transformation is that
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where J is the ideal generated by all possible linear combinations of

Legendre transformations

Examples: Look at the transformation of CIR2 into itself given in
our standard coordinates by

K : (x, y, p) '-' (X, Y, P) = (p, px -y, x).

Uppercase letters denote the new coordinates of the point. They are
functions of the old coordinates. The contact 1-form in the new
coordinates is

O=dY-PdX;

the pullbacks are

and so the pullback of the contact 1-form

K*.O=pdx-dy

is just the negative of the original contact 1-form. Thus K is a con-
tact transformation, called a Legendre transformation.

Let us use a contact transformation to transform the nonlinear par-
tial differential equation

X+f ay =oy

into a linear equation. We go to a large-enough manifold,
C(IR3, 2), with coordinates (x, y, f, p, q) and a contact 1-form

0=df-pdx-qdy.
This 1-form tells us what the coordinates mean. On a lifted sub-
manifold we have p =f X and q =f. In this space a solution to our
problem is a 2-submanifold 0:1R2 - C(IR3, 2) satisfying

go0=0
for

g : C(IR3, 2) -+ IR; (x, y, f, p, q) -p +fq,



ti.

20. Contact transformations 139

Figure 20.3. A sketch of our use of a contact transformation to simplify a nonlinear partial
differential equation.

and ' must also be an integral submanifold of 0:

The trick now is to move the nonlinearity from the original depen-
dent variable to the independent variables. We use the contact
transformation

L : (X, .Y, f, p, q) '-' (X, Y, F, P, Q) = (p, q, px+ q.Y -f, X, .Y) ,

which is a higher-dimensional form of the Legendre transforma-
tion. The transformed problem is to find an integral submanifold
(1R2, ') of the contact ideal satisfying

Go*=O

(see Figure 20.3). We must have

G = goL-1

to reproduce solutions of the original problem. We have

L-1: (X, Y, F, P, Q) -(X,Y,.f,p, q) = (P, Q, PX+QY-F,X, Y),

and so

G: (X, Y,F,P, Q) - X+(PX+QY-F)Y.

As a partial differential equation, this is

X +XY aX + Y2 aY - YF= 0,
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which is linear in F. The nonlinearity has been traded for variable
coefficients. Solutions to the new equation can be superposed. This
is not true of the original equation.

Look at the line-element contact bundle to two-dimensional space-
time, CIR2, and let us find the contact transformation that is the lift
of a Lorentz transformation on spacetime.

Using coordinates (t, x, X), we find that the contact 1-form is

9=xdt-dx.
The contact transformation will be of the form

(t, x, X) - (cosh 1 t + sinh 0 x, cosh 0 x+ sinh 0 t, X(t, x, X),

for some function k(t, x, x). We can find k by demanding that the
contact 1-form 0 pull back to a multiple of itself. From

dt-dx-(cosh 0dt+sinh 0dx)X-cosh 0dx-sinh 0dt,

we have

dt-dxH X cosh 0-sinh 0 )dt-(cosh 0-Xsinh 0) dx,

and we see that we must have

x cosh 0 + sinh 0
cosh 0 + X sinh 0

This is the usual velocity-addition rule of special relativity. To see
that, introduce a and a' such that

tanh a, tanh a',

We have then

Enthalpy

Many thermodynamic systems are studied under conditions of constant
pressure. Their thermodynamic description will be simplified if we take
entropy and pressure as independent variables, rather than entropy and
volume.

Ordinary gas thermodynamics takes place in the 2-surface contact
bundle to the bundle (U, S, V) - (S, V). The contact structure is given by
the 1-form

dU-TdS+PdV, (20.1)
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which defines the potentials

au au
T and P

as aV .

Now, make a Legendre transformation to a new contact bundle, revers-
ing the roles of P and V. The new bundle is

(H,T,S, V, P) - (H, S, P),

and the new variable H is called enthalpy. The contact structure is now
given by the 1-form

dH- TdS- VdP, (20.2)

which defines the new coordinates as partial derivatives of the funda-
mental equation H(S, P) :

T,- aH
V =

aH
aS' aP'

The map between these contact bundles is given by

(U,T,S,P, V)-(H,T,S, V,P)=(U+PV,T,S, V,P).

The pullback of the new contact 1-form given in equation 20.2 is exactly
the original contact 1-form given in equation 20.1.

A gas system can be fully described by the enthalpy tabulated as a
function of entropy and pressure. When heat is added to a system at
constant pressure, the change in enthalpy is equal to the heat added. The
PdV work is automatically accounted for.

21. Symmetries

The various structures that we will study have symmetries that are an
important part of their description. A symmetry is a transformation that
leaves the structure essentially unchanged. Some symmetries, such as
reflection in a plane, are discrete. Others, such as translations and rota-
tions, form continuous sets. Continuous symmetries are best approached
via their infinitesimal generators, and these are represented by vector
fields. Structures that have representations in the tangent space are modi-
fied by infinitesimal transformations according to the Lie derivative.

Metric symmetry

The most familiar symmetry of a structure is metric symmetry. A transfor-
mation is a metric symmetry, called an isometry, if the distance between
transformed points is the same as the original distance between them.
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Figure 21.1. The pattern of an isometry. The metric ellipses are carried along by the
transformation.

Example: Using the graphical representation of a metric tensor
from Section 3, we sketch an isometry in Figure 21.1.

A vector field that generates an infinitesimal isometry is called a Killing
vector. It must satisfy Killing's equation

£k9=0,

where 9 is the metric tensor.

Example: Take Euclidean plane geometry:

9=dx®x dx+dy®x dy.

For a vector field k to be a Killing vector field

k=Xax +Yay,

we must have

£k9=0,
that is,

£k dx®x dx+dx®x £k dx+£k dy®dy+dy0£k dy=0.

The Lie derivative, like any derivative, obeys a Leibniz rule for
products; so we must have
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dXQx dx+dx®x dX+dYOdy+dyOdY=o.
Now,

dX = ax dx+ dy;
y

so we have, finally,

2 ax dxQ dx+
ay

(\_+ aY (dx® dy+dy® dx)
y

+2aydy0dy=O.
y

Any solution will be a linear combination of the translations

a a
k ax' kay,

and the rotation

k=yax-x .

y

Killing's equation is best handled in components. Using equation 18.4 we
have

Lk(gµv dx"Odxv) = (g"v,Qka+gvka,µ+gµvk, y) dx"OO dxv = 0. (21.1)

Examples: For the Euclidean plane the g",v are constant, and we
have the equations

X,X=0, Yy=O, X, y+YX=O,

found earlier.

For spacetime we have

9=dt2-dx2,

and equations for the Killing vector

k =T
+Xat ax

are now

T r=0, X,X=O, TX-X,r=O.

These are satisfied by translations and the Lorentz transformation
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k=xt +t aa

x

Four-dimensional spacetime has ten fundamental symmetries.
Four are translations, three are rotations, and three are Lorentz
transformations.

A 2-cylinder has only two global symmetries, not three as does the
plane. A rotation, which is locally a solution of Killing's equation,
cannot be made continuous over the whole manifold.

The Killing equations can also be used in reverse, to find metrics with
prescribed symmetries. This is complicated by the fact that we do not
know what the coordinates mean until we have the metric. Isometries will
be discussed more in Section 25.

Contact symmetry

Transformations that preserve the contact structure of a contact bundle
are called contact transformations. A Legendre transformation is a dis-
crete contact transformation. An infinitesimal contact transformation
must satisfy

where 9 is the contact ideal.

Example: Look at a mechanical system with a state space (q,p)
evolving under the action of the Hamiltonian vector field

aH a aH av_ap
aq aq ap

This evolution can be represented by an infinitesimal contact trans-
formation in the (2n+1) =dimensional space (q,h,p). The h
dimension is a "Hamiltonian" dimension,, which allows the Hamil-
tonian H(q,p) to be represented by a hypersurface. First, we show
that dq) is a perfect differential. (This calculation is much
easier using the exterior calculus to be developed in Chapter IV.
The coordinate calculation is a bit tricky and a good exercise in
index shuffling. A lot happens between the lines here, and you
should fill it in. It will be redone using the more efficient calculus of
differential forms in Section 23.)
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We let Latin indices run over the full 2n q and p variables, and let
Greek run over either the nqs or the nps. Using equation 18.3, we
have

£v(p dq) = (pµ,ava) dqµ+p d aH
pv

Now the p are independent variables, and we have

apv
0,

aq,,
apl'- Sv

apv

and so we have

£v(p dq) _ - aH dqµ+pv d aH = -dH+d pv H
q PI

Pv

Thus we do have a perfect differential.
Now look at the infinitesimal transformation

aH a aH a au=apaq-agap+Xah.

Can we pick X so that this is a contact transformation? We com-
pute £u(dh-p dq). We have

£u dh = dX,

and

£u(p dq) = £v(p dq) +£x(a/ah) (p dq)

= -dH+ d p aH
ap

so we have

£u(dh-pdq)=d X+H-p aH =0
p

if we take

X=P aH -H.
p

Thus every motion of a Hamiltonian system is a contact transfor-
mation in (q, h,p) space. The contact structures of mechanics will
be discussed further in Chapter VII.
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The calculus of differential forms

This chapter develops a set of tools for manipulating differential forms.
This calculus of differential forms is the promised generalization of ordi-
nary vector calculus. It carries to manifolds such basic notions as gradi-
ent, curl, and integral.

In this chapter, I will develop these tools. In the next chapter, I will pre-
sent some simple applications of them. The true value of these tools will
be seen in Chapter VI, where they are applied to electrodynamics, and in
the following chapters on mechanics and gravitation. Some specialized
tools only make sense when seen in the context of a specific problem.
These have been deferred. Thus the concept of an exterior system waits
until we have some partial differential equations to play with. These tools
of the calculus of differential forms are so efficient that we now go to
some lengths to cast problems into a form amenable to these methods.

22. Differential forms

The calculus of differential forms, often called exterior calculus, is an
efficient system for manipulating functions, vectors, and differential
forms, both ordinary and twisted. It is natural and very efficient for cal-
culations, especially ones that do not involve a metric or a covariant
derivative. In a later section we will bring Riemannian geometry into the
exterior calculus by using the method of moving frames. The exterior cal-
culus is particularly efficient for computations in which tensors are rep-
resented explicitly rather than as indexed arrays. One important use of
differential forms is in integration. In fact, one book defines differen-
tial forms as those objects that can be integrated. This is a bit extreme.
A differential r-form is a totally antisymmetric tensor of type (0); it

147
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148 IV. The calculus of differential forms

Figure 22.1. The geometric idea of a line integral.

takes in r vectors and yields a number. The space of r-forms is denoted
by A'.

One use for differential forms is to describe subspaces of the tangent
space. The vectors v in a p-dimensional subspace can be efficiently de-
scribed by giving (n -p) differential 1-forms w such that

We have used this before in describing contact structure.
The antisymmetry of forms is important and useful, particularly in

integration. Integration is the summation of objects described by a den-
sity over some region.

Example: A line integral measures the number of hyperplanes
crossed by the line, as shown in Figure 22.1. The density of hyper-
planes can be represented locally by a 1-form. This 1-form cuts off a
standard length on the line. The line integral counts up the num-
ber of standard lengths along the line, in terms of the ideas about
limits that are usual in calculus. Areas and volumes can be treated
similarly.

We see from this example that we need a coordinate-free measure of the
ratio of the sizes of two regions. This measure is called its extension, and
this ratio is independent of metric notions. The measure of extension
should have the following properties: (1) linearity in the size of the
region, and (2) invariance under shears, since these transformations pre-
serve areas. Thus, to represent an element of 2-extension, we could use
two vectors, say, a and b, lying on the sides of the area as shown in
Figure 22.2. Condition (1) suggests using the tensor product of a and b
to represent the extension spanned by a and b, but condition (2) says that
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Figure 22.2. The geometric representation of an element of 2-extension. The dashed
element is an equivalent representation.

Figure 22.3. A situation with a finite number of lines in the plane.

we need instead to take the wedge product a A b. Then we will have the
expected invariance of area under shears:

(a+kb)Ab=aAb,

for all constants k. The extensions of small pieces of surface can thus be
represented by bivectors.

Dual to the idea of extension is that of density. The combination of a
density and an extension is to be a number: the number of standard sizes
contained in the given piece. Thus the densities will be antisymmetric, co-
variant tensors, that is, r-forms. Since they are being contracted with
totally skew multivectors, any part not skew would be of no importance.

These r-forms also have a nice geometric interpretation. An r-form
can represent the local density and alignment of a family of (n - r) sur-
faces in n-space.

Example: Suppose the plane is filled with a finite number of non-
intersecting lines, for example, the grain lines in a piece of wood.
Figure 22.3 sketches the situation. All the lines are drawn there;
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Figure 22.4. Using a 1-form to represent the density of lines at a point.

Figure 22.5. An ordinary tangent vector and a twisted tangent vector.

there are no lines that are between those drawn. At any point the
local density and alignment can be represented by drawing a 1-form
lying along the lines and with a spacing equal to the local line spac-
ing (see Figure 22.4). Note that the density at point Q is higher than
that at P, and is represented by a larger 1-form.

So far we have a representation of the magnitude and alignment of
objects. What about the sign? This depends on the objects whose density
is being represented, and we need to generalize the idea of a sign to the
idea of an orientation.
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Figure 22.6. A closed curve in two dimensions has an inside and an outside. This gives it
a transverse orientation and leads to twisted tangent vectors.

Examples: Lines in 3-space can have two types of orientations.
They can have a direction specified along the line. A piece of such a
line is the usual idea of a vector in physics. Alternatively, the lines
can have a circulation specified around the line. This leads to the
twisted vectors given as an example in Section 1. See Figure 22.5.

Lines in two dimensions also have two possible types of orienta-
tions. Twisted lines have a transverse direction specified. This is the
natural orientation for the boundary of a two-dimensional region.
The transverse direction specifies the distinction between inside and
outside. See Figure 22.6.

For the plane filled with lines, if we had lines with a twisted orienta-
tion, then the density would be specified by an ordinary 1-form as
shown in Figure 22.7. If the lines have the ordinary orientation,
such as would represent fluid-flow streamlines, then to represent the
density we will have to use twisted 1-forms, as shown in Figure 22.8.

Most of our densities will be represented by twisted differential forms. In
fact, some authors call twisted forms densities. We will discuss twisted
forms in detail in Section 28. For now we will mention them only occa-
sionally and informally.

Examples: Suppose the plane is filled with points, say, fly specks.
The density of the points is represented by a twisted 2-form. The



0.+

ow
n

152 IV. The calculus of differential forms

Figure 22.7 (left). An ordinary 1-form represents the density of twisted lines in two
dimensions.

Figure 22.8 (right). A twisted 1-form represents the density of directed lines in two
dimensions.

Figure 22.9. Using a 2-form to represent the local density of small, point-like objects.

2-form is an area of the plane that includes on the average one point
(see Figure 22.9). A point has no orientation, but we can assign a
weight, positive or negative, to the points if we wish. This also
works for a continuous distribution of material. The 2-form now
encloses a unit amount of material, in the appropriate limit.

A twisted 2-form in 3-space represents the density of a field of lines,
as shown in Figure 22.10. We will use these 2-forms in electro-
dynamics. Note that a 2-form is best thought of as a thing-in-itself,
not necessarily something made from two 1-forms.
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Figure 22.10. A twisted 2-form in three dimensions represents the density of directed lines.

An n-form in n dimensions gives us a standard oriented volume. As a
tensor this operator takes in n vectors and yields a number. The standard
n-form

8=dx'Adx2Adx3

takes the determinant of the components of n vectors.

23. Exterior calculus

The exterior calculus defines several operations on differential forms. We
can contract an r-form with a vector. We can multiply forms by using the
exterior product. We can extend the usual idea of a curl to an exterior
derivative. We can take the Lie bracket of two vector fields, and the Lie
derivative of differential forms. Metric ideas can be brought in by means
of a duality operation, the Hodge star (to be discussed in the next sec-
tion). Here we will give coordinate-free definitions of these operations.
In Section 27 we will translate these operations into the index notation,
and there provide the proofs that are messy in coordinate-free notation.

Contraction

The contraction operation J (read this "angle") is a map

J : Vx Ar--* Ar-'; (a, w)-aJ w.
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I J

Figure 23.1. The pattern for the contraction of a 2-form with a vector.

Some use the notation ia(w) for a J w. Here V is the space of tangent vec-
tors, and Ar is the space of r-forms. Now, remember than an r-form is a
tensor of type (0), and hence maps r vectors into a real number. Here
a J w is the (r-

1)_form
such that

aJ

w is an r-form, the right-hand side is well-defined. To show that
aJ w is an (r-1)-form, we must show that the operation is both multi-
linear and skew. These follow from the fact that w is an r-form. We also
have

aJ fw=faJ w=f(aJ w),

for any function f. I am trying to follow the convention of using first part
of the alphabet to denote vectors, Greek for forms, and f and g for func-
tions (which are also 0-forms).

Example: The contraction (a/ax) J dxAdy is sketched in Figure
23.1.

Exterior product

The most fundamental operation is the extension of the wedge operation
from pairs of 1-forms to any pair of forms:

A: lip x Aq -+ lip+q

We want the resulting algebra to be associative

an(0A-y)=(an0)A-y,

and to satisfy (not so obvious)

aJ (wnv)=(aJ w)Av+(-)pwA(aJ v),

where w is a p-form. This last equation lets us compute contractions
by reducing them to contractions of single forms, which have already
been defined.
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A

Figure 23.2. The pattern for the wedge product of two 1-forms.

Examples: The product dxndy is sketched in 2-space in Figure
23.2.

Consider (dx A dy) A dz. From equation 23.1 we must have

(dxndy)Adz aX, , a = a J [(dxndy)ndz]
a

a a )
azy y

= [-_ J (dxndy) Adz- ay a

= dyndz
a ' az =1.y

We are about to show that (dx A dy) A dz is a 3-form; so it must be,
and in fact is,

(dxndy)Adz=dx®x dy®x dz-dx®dzOdy-dy®x dx®x dz

+dy®dzOdx+dzOdxOdy-dz®dy®dx.

To show that w A v as calculated by the preceding rule is a (p+q)-form,
we must show that it is multilinear, which is obvious, and skew. Remem-
ber, tensors are linear operators. Note how irrelevant the coordinate
transformation properties are for this discussion. To show that it is skew
on the first two indices, we calculate

bJ [aJ (wnv)]=bJ [(aJ w)Av+(-)pwA(aJ v)]

=(bJ aJ w)Av+(-)''-'(aJ w)A(bJ v)

+(-)p(bJ w)A(aJ v)-wn(bJ aJ v).

This is clearly antisymmetric in a and b. We can extend this to all the
other indices by using induction, but it is not an interesting proof. Asso-
ciativity can also be shown by a routine induction argument [see Hermann
(1968) for details]. We will prove associativity in Section 27 by using the
index notation.
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We have

wnv=(_)P Aw.

This is easy to see and remember if you write this out as a sum of terms of
the form d x A d y A . These are antisymmetric, and there must be p
times q sign changes in passing w through P. Calling a function a 0-form
field is consistent. It passes right through because of linearity.

It is convenient to omit the A and write dx dy for dx A dy, and we will
usually do this.

We will often need the volume element in n-space,

8=dgldg2...dqn,

as well as its contractions,

(23.2)

a
J 0o 23 3.f =

aq

These satisfy the identity

( . )

dq`AO =05J.

In three dimensional rectangular coordinates we also have

(23.4)

dq` AdgJ = E`ikOk

where E`jk is the totally antisymmetric permutation symbol, with

EXyz=1.

The familiar vector cross product can be seen in the wedge product of
two 1-forms in 3-space:

A, dq`ABi . dgJ. = E1J'kA,BjOk.

The output here is a 2-form. To produce another 1-form requires the
Hodge star operator, which will be discussed in the next section.

Exterior derivative

Just as we extended A to operate on forms of any rank, so too we can ex-
tend the operator d, defined thus far as a map from 0-forms to 1-forms,
to an operator

wNdw,

called the exterior derivative. The operator d acts on monomials accord-
ing to the rule



'Z
3

'Z
3

'Z
3

'Z
3

23. Exterior calculus 157

d(fdq'dq.i...) =dfdq`dq',

and linearly on sums of terms. The operator so defined is the unique such
operator satisfying the conditions:
(1) d(w+ v) = dw+ dv,
(2) d(w A v) = dw A v+ (-)pw ndv, where w is a p-form,
(3) d is the usual operator on 0-forms,
(4) d(df) = 0 on functions.
This invariant characterization shows that the d is independent of coordi-
nates. This d is a curl operator, and condition (4) is the familiar curl-grad
0 = 0 identity. The exterior derivative is as much differentiating as we can
do on a manifold without giving it further structures, such as a vector
field (Lie derivative) or a metric (covariant derivative). Uniqueness is
obvious, since these four rules are a sufficient algorithm for the calcula-
tion of d in any basis.

Example: For w = 3x2y dy + dx, we have

dw=d[(3x2y)Ady]+ddx

= d(3x2y) Ady+ 3x2y Addy

_ (6xydx+3x2 dy)Ady

= 6xy dx dy.

An important result is that

d(dw)=0

for w a form of any rank. The proof will be an easy calculation in the
index notation. Another important result is that d and pullback com-
mute. We also have the useful explicit formula for a 1-form a

v)-wJd(vJa)-vJd(wJa)-[w,v]Ja=v] wJda. (23.5)

and when a is a 2-form

v, u) = wJ u))-vJ u))+uJ v))

v], u], u], w).

The general formula can be found in Abraham and Marsden (1978, page
121).

The familiar curl operator appears when we apply the exterior deriva-
tive to a 1-form in 3-space:
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d(A dq) = aAx dy dx+ a X dz dx+ ---
ay

(My - aAX

ax ay

The divergence operator appears when we apply d to a 2-form

d (AB) = d (Ax dy dz + Ay dz dx + Az dxdy)

aAX My aAzax+ay+az e.

Here 0 is the contracted volume element defined in equation 23.3.

Lie derivative

This operation was defined earlier for geometric objects in general. For
r-forms we have the important Cartan identity

dw+d(vJ w). (23.6)

This is easily shown in coordinates where v is in normal form, a/aql.
(Such normal forms will be discussed in Section 26.) Some useful theo-
rems with uninteresting and often messy proofs are:

£
£U(aJw)=[v,a]Jw+aJ£w;

a);

£U£w-£w£v=£[U,w]. (23.7)

Using equations 23.6 and 18.2, we can prove 23.5. Another useful rela-
tion is

[v,b],c,...)+
where parentheses here delimit arguments; both sides of this equation are
numbers.

The explicit form of equation 23.6 is useful in calculations:
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£x(a/aX) Fdz = X
aF

dz + dX A a J Fdz , (23.8)
ax ax

where dz is some basis r-form, with d(dz) = 0.

Example: If F in equation 23.8 is independent of some particular
coordinate, say, x, then the vector a/ax is a symmetry:

£(a/ax)Fdz = 0.

Let us redo the calculation of Section 21. For the vector field

_ aH a aH a
V

ap aq aq ap

with H a function of the qs and the ps, using the Cartan identity
(equation 23.6), we compute

p
H
p

=--Hdp --Hdq+d
p p

= d -H+p aH
ap .

Recall also that Lie derivatives commute with smooth maps. This is
important, and shows that symmetries are invariant under pullback.

Problem

23.1 Show that equation 15.1 is correct.

24. The * operator

The exterior calculus is so efficient for calculations that its extension to
spaces with a metric is worthwhile. In n dimensions we do this by intro-
ducing an operator called star

A -). 11"-p

This star contains both metric and orientation structure. To avoid any
confusion with star for pullback or pushforward, this star operator,
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Figure 24.1. The sharp operator for two-dimensional Euclidean space.

called the Hodge star, is centered vertically and precedes the differential
form.

Given a metric, we can define the sharp operator, which maps any 1-
form, say, a, into a tangent vector, which we will call #a.

Example: We illustrate #dx in Euclidean 2-space in Figure 24.1.

We define the * operator to be the unique linear operator satisfying, for
f3 any r-form and a a 1-form,

*(j3Aa)=#aJ *1.

This reduces the problem of starring an (r+ 1)-form to that of starring
an r-form. To begin the sequence, we have to define the star of a 0-form.
Pick * 1 to be an n-form of unit density and positive orientation.

Example: In two-dimensional Euclidean space we have

#dx=ax, #dy= a
y

and

* 1= dx dy.

This leads to

* dx = dy, * dy = - dx.
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*a

*a

Figure 24.2. The star operator for two-dimensional Euclidean space.

The operation of * is sketched in Figure 24.2. The 1-forms a and
*a form an oriented square, as shown.

An equivalent definition of the Hodge star operator uses an orthonormal
basis of 1-forms, w 1, w2, ... , w n, and defines the star operator first on
monomials

* (w1w2...
wk) _ (_)pwk+lwk+2... wnI

where p is the number of 1-forms in the set w 1, ... 1W k of negative squared
length, and

Q-WIw2...wn

is an n-form of positive orientation. Using the antisymmetry of 9, we can
star any monomial term; and using the linear and distributive rules, we
can star any differential form whatsoever.

To prove this equivalence, apply the definition k times to find

* (w1w2... wk) = #wk j ... J #w2 J #w1 J *1.

Examples: In Minkowski 2-space we have

#dt = - at , #dx = ax
,
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a

Figure 24.3. The star operator for two-dimensional spacetime.

and we take

Then

and

*1=dtdx.

*dt= -dx,

*dx= -dt.

The operation of this * is sketched in Figure 24.3. The 1-forms a
and *a now form Lorentz-perpendicular squares.

In spherical polar coordinates we have

cJ = dr2+ r2 d02+ r2 sin2 0 d02

and a suitable choice for * 1 will be

*1=drArdOArsin Odq.

In three-dimensional Euclidean space, if we take

*1=dxdydz,

then we have

* dx = dy dz, * dy = dz dx, * dz = dx dy,
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Unit
distance

Figure 24.4. The star operator for three-dimensional Euclidean space. The 1-form a turns
into the 2-form * a.

and

*(dxdy)=dz

and cyclic; and finally

*(*1)=1.

If we use the dq, 0, 0 notation (equations 23.2 and 23.3), we have
succinctly

*1 = 0, * dq = 0, *0 = dq,

and

*0=1.

See Figure 24A for the action of this star operator.

In spacetime we have another Hodge star operator, which we write
as *. We can relate it to the 3-space operator * if we take

*1=dtA*1.

If E is a spatial 1-form,

*E=*(1AE)=#EJ *1

=#EJ (dtA *1) = -dtA[#EJ *1]
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and so

*E= -dt *E.

Similarly,

*dt=-*1, *dtE=-*E,
and if B is a purely spatial 2-form,

*B=dt*B, *dtB=-*B,
Note finally that

* *1 = -dt.

*(*1) = -1.

Using the 3-space dq, 0, 0 notation, we have

*1=dt0, *dq=-dt0,
*dt= -0, *0=dtdq,

* dt dq = -0, *8 = -dt,

*dt0=-dq, **1=-1.
Although these may seem peculiar, such hybrid relations will be
very useful when we come to discuss electrodynamics.

The vector cross product can be represented by

aXo= *(anf).

Since * and A do not distribute, there is no way to reduce multiple
products, and hence x is not associative. Much of the efficiency of the
exterior calculus arises because the wedge operator is associative.

Example: The rarely used differential operator

(AxV)xB,

where A, B are vector fields, cannot be translated into the exterior
calculus.

The operator (r x V) does come up when discussing rotations,
but is easily translated into a Lie, derivative.

The star operator can be defined even for degenerate metrics, which are
those for which # cannot be inverted.
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Figure 24.5. The sharp operator # mapping 1-forms into vectors for a degenerate metric.

Example: We illustrate # for the degenerate metric (a/ax) 0 (a/ax)
in Figure 24.5.

We show now that for a positive-definite, nondegenerate metric,

**W = (-)(n-r)rw = (_)nr+rw

where w is an r-form in n dimensions. Thus for n odd we have

and for n even

Some autl.ors define a conjugation operation

a=(-Iraq

(24.1)

which simplifies the formulas a little bit. We will not use it here.
To prove equation 24.1, take an orthonormal basis w 1, w 2, ... , w n, with

*I=W1w2...wnI

and look at a monomial r-form a = w 1 w r. We have lost no generality
by taking these to be the leading terms. We have from our definition

*a=(_)qwr+l...n

where q is the number of timelike 1-forms in the first r basis 1-forms.
Now permute * 1 into the form
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*1 = (_)r(_)n-rWr+1... nWI... Wr

so that we have

** (X = (_)p(_)r(n-r) a,

where p is the total number of timelike basis 1-forms, proving the result.
We also need the following theorem: if a and f3 are both r-forms, then

for a nondegenerate metric

*aA/3= *f3Aa.

Since these are linear operators, it suffices to prove this for monomials.
Both sides vanish unless a and j3 contain the same basis forms. When
they do, the result is obvious. Since * is a linear operator, it is true for
r-forms in general, not just monomials. This operator extends a metric
naturally to r-forms. We define such that

aA*f3=(a.f3)*1

and from the preceding calculation this is symmetric. Many authors take
this as the definition of the star operator. It gives * only as the solution
of a set of simultaneous equations, and is not as direct as our definition.

Laplace's equation

The exterior calculus provides a natural language for discussing the famil-
iar partial differential equations of mathematical physics. We will look at
two examples here, starting with Laplace's equation

ago + ago + ago °.
ax ay a.z

We write this as the first-order system

ao ao aop=ax' q= ay, r=az,

ap aq ar _
ax+ay+az-0,

and introduce the 2-form

a =pdydz+qdzdx+rdxdy;

we use the Hodge star operator for the Euclidean metric, so that

*a=pdx+qdy+rdz.
Then our first-order system is equivalent to the equations
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Note that 0 looks like a potential for a. Here a is a closed 2-form, and so
describes the density of conserved lines. These are the familiar flux lines
of electrostatics. Laplace's second-order equation can be written

d*dq=0.

The same pair of equations also describes Laplace's equation in two
dimensions. Here a nice pictorial representation of the solution can be
given. Recall the construction of *a from a using a Euclidean square.
Any 1-form w describes the density of lines in 2-space, and one with
dw = 0 describes lines that are conserved, neither beginning nor ending.
Here the 1-form a describes these lines. The 1-form *a describes hyper-
surfaces, which in two dimensions are also curves, orthogonal to these
lines. These are sketched in Figure 24.6.

Linear wave equation

The equation

a2o a2o a2o a2o
ateaxeaye-az2=0 (24.2)

describes linear waves in three dimensions. Again, it is easier to spot the
correct geometric objects if we write the equation as a first-order system.
Use contact variables u, v, w, r defined by the contact form

dqi-udx-vdy-wdz-rdt.
Define a 3-form a by

*a=udx+vdy+wdz+rdt,

using the spacetime star operator. We have

and so

Equation 24.2 turns into

do = *a,

d*a=0.

da = 0.
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Figure 24.6 (left). The pattern for Laplace's equation. The two families of lines meet at
right angles and form curvilinear squares.

Figure 24.7 (right). The pattern for the wave equation. The two families of lines now are
Lorentz-perpendicular.

Solutions of the wave equation can be described by conserved flux
lines, crossed now by Lorentz-orthogonal hypersurfaces. In two dimen-
sions, one space and one time, this is easily sketched, and leads to a con-
struction using curvilinear Lorentzian squares, as shown in Figure 24.7.

Laplace-de Rham operator

Contrary to what you might guess, the operator * d * d does not produce
the Laplacian on differential forms in general, but only on 0-forms. The
correct operator is, up to an overall sign,

0= *d*d+(-)71d*d*,

where n is the dimension of the space. There are numerous conventions
for the overall sign. This operator, called the Laplacian or the Laplace-
de Rham operator, yields the vector Laplacian or the vector wave equa-
tion, depending on the metric.

If you need more applications, you can now skip to Chapter V. We
have covered everything needed for the first four sections of that chapter.

Problem

24.1 Use * to define a cross product on a three-dimensional Lorentz space. Does
this lead to an easy derivation of the rules of pseudospherical trigonometry?
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25. Metric symmetries

Here we examine further the symmetries of a metric. We will use differen-
tial forms and the * operator to study both isometries and conformal
symmetries.

Isometries

A transformation that preserves the metric is called an isometry. Such a
transformation maps a figure into an image that is the same metric size
and shape. Recall the discussion of Figure 21.1. An infinitesimal isometry
is represented by a vector field that satisfies

£kg=O.

This is equivalent to the commutator

£k#W = #£kW, (25.1)

which has an elegant translation into the exterior calculus if we use the
star operator to represent the metric,

£k*w-*£kW=If k, *]W=O, (25.2)

for all differential forms w. Although the methods of Section 18 are ade-
quate and efficient for the discussion of isometries, it will be useful for us
to reformulate those ideas in terms of the exterior calculus.

To verify equation (25.2), first note that the commutator is linear over
the functions. That is

[£k, * ] fW = f[£k, *1
The calculation is similar to that for the Lie bracket. Now, a Killing vec-
tor field must preserve the unit density * 1, and so for all 1-forms

[£k, *] f=0.

Now we use induction. For 0 a 1-form, a an r-form, we assume

[£k, *]a=0,

and show that this implies that

If k,*](aAf3)=0.

We have

(25.3)

£k*(anf)-*£k(anf) =£k[#j3J *a]- *£k(a/\f). (25.4)
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Since £k is a derivation, this is equal to

(£k#f)J *U+#j3J £k*a- *[(£ka)nfl]- *[an£kf]

=£k#f J *a+#I3J £k*a-#(3J *£ka-#(£kI3)J *a, (25.5)

and this vanishes by virtue of equations 25.1 and 25.3.
The isometries of a given manifold with a metric form a Lie group,

and the infinitesimal isometries form a Lie algebra. The Lie-algebra
product is the Lie bracket of Section 9. If vector fields k and k' are both
Killing vector fields, then so is the bracket [k, k']. This follows from an
easy calculation using equation 23.7.

Equation 25.2 can be used to find Killing vector fields. It is sufficient to
satisfy this for a 0-form and a basis of 1-forms. The bracket operation
[£k, * ] is function-linear, and an induction similar to that we have just
done shows that if the operation is satisfied for 0-forms and 1-forms,
then it is satisfied for all higher-rank forms. This is no more efficient than
a straightforward use of equation 21.1 in components.

Conformal symmetry

A weaker requirement for a transformation is that it preserves only the
shapes but not the absolute sizes of figures. In terms of the metric, this is
the requirement that

[£k,#]=0 (25.6)

for some scalar function 0. Again, this translates into a requirement on
the Hodge star. We start with

£k*1= - 2 *1, (25.7)

where n is the dimension of the space. This follows from a consideration
of the unit volume element, which requires n unit vectors. Each of these
scales like (gµv)112. This is opposite to the scaling of #, which scales like

gµv. Thus we have here the factors of n, two, and the minus sign. An
induction similar to that in equations 25.4 and 25.5, but using 25.6
instead of 25.1, gives us

[£k, *]W- r- ,*, (25.8)

for any r-form. This is the same scale factor 0 that appears in equation
25.6. Equation 25.6 can be solved for conformal Killing vector fields,
and again it is sufficient to satisfy the equation for 0-forms and 1-forms.
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Conformal symmetries of Euclidean space

Let us find the conformal symmetries of Euclidean 3-space. Write the
symmetry vector field

k=X-+Y +Z- .

y

Equation 25.7 gives us

(X,X+Yy+Z,z) dxdydz= - 2 dxdydz.

Equation 25.8 applied to dx gives us

(YX+X,y) dxdz+(Z,X+X,z) dydx+(Yy+Z,z-X,X+ 10) dydz=0.

Setting the components of these two equations and the two cyclic permu-
tations of the second to zero gives us the system

X,X = Y Y = Zz, (25.9)

X,y+ ,Y X= 0, (25.10)

(25.11)X,z+Z,X=

Yz+Z,y=0. (25.12)

These are now a bit too complicated to solve by inspection. We can de-
rive, after following a loop through the equations, that

X,yz=0,

but this is not much of a start; we can replace X, a function of three
variables, with two functions each of two variables.

A better approach is to use the Lie-algebra properties of the solutions.
First, note that the solutions can be broken up into pieces that are each
homogeneous in the variables x, y, and z. Examples of such homogeneous
solutions are the translations (degree zero) and the rotations (degree one),
which are isometries and hence are also conformal isometries.

It is easy to find all conformal Killing vector fields of degree one by an
exhaustive search. The most general such vector field has nine arbitrary
constants, and we can just slug it out. We can use the discrete symmetry
of permuting x, y, and z to reduce the labor. In any event we turn up one
additional independent symmetry, the expansion

ak=x
ax

+ya +z az .
ay
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What about quadratic (degree two) solutions? Suppose k is such a
solution. Then [(a/ax), k] will also be a solution, of degree one; so it
must be some linear combination of the four that we know. We can re-
verse this process to find candidate solutions by integration. This involves
arbitrary constants of integration, which must be chosen so that the
equations are satisfied.

Example: From the expansion vector field we generate the candi-
date solution

kx2ax +2xya+2xzay

plus terms independent of x. Equation 25.9 is satisfied. To satisfy
equation 25.10, we must add a term -y2 to X. To satisfy equation
25.11 we must add a term -z2 to X as well. Equation 25.9 remains
satisfied, and so does equation 25.12. Thus we have found one
quadratic solution

k= (x2-y2-z2) ax +2xya +2xz a
y

and two more by cyclic permutation.
The same trick can be used on the other linear solutions. By sym-

metry only two are needed, and these just give us the same three
solutions. There can thus be no nthers.

We can proceed to search for higher and higher solutions. Whenever we
find none, as happens here for cubic solutions, then there are no further
solutions anywhere. Any higher solution could have been lowered by
successive differentiations until it passed through our cubic "window,"
and would be seen in the above analysis.

Conformal symmetries of spacetime

These calculations can be done for the Minkowski metric. Beyond the
ordinary Killing vector fields, we find dilations

ak=tat +xax +ya+z
azay

and four transformations called proper conformal transformations:

k= (t2+x2+y2+z2) a +2t xa+y a +zaat ax ay az
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,k=(x2+t2-y2-.z2)ax +2x tat +y a +.Z
a

y

and the two cyclic permutations of the last equation.

Symmetries of 2-spaces

You might have expected us to study 2-spaces first as simpler examples.
Unfortunately, 2-spaces are special and cast no insight on the general
case. Of course, Euclidean and Minkowski metrics are themselves spe-
cial. For the general metric there will be no symmetries at all, and only
very rarely any conformal symmetries except isometries.

For Euclidean 2-space we have equations for conformal Killing vector
fields:

X,x=Yy, X,y+YX=O.

No longer do these form an overdetermined system. Any solution of
Laplace's equation generates a symmetry, for example,

k = sin x cosh y ax + cos x sinh y a
y

The algebra of symmetries is no longer finite-dimensional. This corre-
sponds to the well-known invariance of Laplace's equation under con-
formal mapping.

26. Normal forms

A useful tactic is to pick coordinates in which the strucure of the problem
is particularly simple. If the structure of Euclidean geometry is part of a
problem, then orthonormal coordinates will simplify this part of the
problem. Naturally we are not forced to use special coordinates, and
sometimes the structure of the rest of the problem may be so messed up
by the special coordinates that they become useless. We will discuss here
the use of special coordinates that simplify either a smooth, nonzero tan-
gent vector field, or a smooth 1-form field, or a closed (n -1)-form field.
We will find these normal forms useful later, and they illustrate very well
the differences between tangent vectors and 1-forms.

Tangent vectors

We can always find coordinates locally such that any given smooth non-
zero tangent vector field can be written as (a/ax 1), where x 1 is the first co-
ordinate in the system. It is easy to see how to construct such coordinates.
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The x2, ... , x" coordinates should have level surfaces containing the vec-
tor field. The x1 coordinate will have level surfaces that can be found by
taking any surface transverse to the vector field and using the flow gener-
ated by the vector field to transport it over some neighborhood. This nor-
mal form for the vector field holds only locally, of course.

Example: Consider the equation

£va=j3 (26.1)

for 0 a specified r-form field. Can this equation always be solved
for a? Yes, locally. To see this, work in coordinates where

a
v= ax1 .

Expand the r-form j3 in a sum of terms

Since the Lie-derivative operation is linear, we have, expanding a
similarly,

a =
a G, dxµ dx"... + ...

and the coefficients G, etc. are given by integration

aG
ax1

=F.

Therefore there are no obstructions that prevent us from solving
equation 26.1 in some local region.

1-Forms

The situation here is much richer. A nonzero differential form has a nor-
mal form in n dimensions that looks like

W =X1dx2+X3dx4+... +x2m-1dx2m+dxn.

The value of m depends on the algebraic structure of the 2-form dw, and
the factor dx" may or may not be present.

Taking for granted the result, we can distinguish the cases as follows.
We must have
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(dw)m = dW Adwn Adw 0 (m factors),

but

(dW)m+l = 0.

Thus we can find m. Also, we must have

wA(dW)m=O

if the factor dx' is absent, but not otherwise. See Slebodzinski (1970) or
Sternberg (1964) for proofs and fuller discussion. A special case will be
proven as an example in Section 38.

Example: Let us find the necessary and sufficient condition for a
scalar function eO to be an integrating factor for a 1-form w. That
is, we wish to find eo such that

d(eOw) =0. (26.2)

The condition is

wndw = 0 (26.3)

called an integrability condition. To see that it is necessary, we ex-
pand equation 26.2, find

dw+dq Aw=0,

and wedge in w to find equation 26.3. To see that it is sufficient,
suppose we put w into normal form:

W = X1 dX2+X3 dX4+ + dXn.

Now clearly it cannot have a dxn term and still satisfy the integra-
bility condition; we would have terms in wndw like dxn A dx 1 A dx2.
Neither can we have more than a single monomial, or we would
find terms such as x1 dx2Adx3Adx4. Thus any 1-form satisfying
equation 26.3 can be written in the form

w=x1dx2,

and this has the integrating factor 1/x1.

The normal form for 1-forms leads immediately to a normal form for
closed 2-forms:

dw =dxlAdX2+ ... +dxm-1AdXm.
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This result is called the Darboux theorem, and will be used when we dis-
cuss symplectic geometry in Section 51.

Clebsch form

This is a local normal form for closed (n -1)-forms and general (n - 2)-
forms. The (n -1)-form can be written

dw = dxl dx2... dxn-1.

This is geometrically obvious, and corresponds to the simple normal
form for tangent vectors. Locally, then, we have

where a is some (n - 3) -form.

Example: In lR3 we can write any closed 2-form as

dw=dxdy

and any 1-form as

w=da+xdy.

This agrees with our previous normal form for 1-forms.

Problem

26.1 What conditions must a 1-form w satisfy in order to generate a contact struc-
ture in a (2n + 1)-dimensional space? Would

w=xdy+ydz+wdx+tdw

do in 1R5? Would

w= (3x2+t) dx+dy-(y+z) dz+tdt+w(3wt-2y-2z) dw?

27. Index notation

Both index-free and index-intensive notations are useful. Some problems
fall easily to one approach, some to the other. Although the coordinate-
free methods of the exterior calculus are excellent for dealing with dif-
ferential forms, they must be strained quite a bit to handle stress-energy
tensors, as we will see in Section 41. The index notation, although typo-
graphically baroque, is the most versatile notation, and should be used
for those few cases where the abridged notations become clumsy or
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ambiguous. [There is a good discussion of all this in Schouten (1954).
This section is mainly for reference. Don't get ill reading it.]

Differential forms

With a coordinate basis dxµ, an r-form w has components

W=Wµv... dxµ&dxv....

The components are totally antisymmetric. This can also be written

w = dx'A dx" ...,

where the vertical bars indicate an ordered collection of indices µ <
v< .

Example: A 2-form w in IR3 has a tensor expansion

W=wµ dx'OO dxv,

with components

WXx = Wyy = wzz = 0,

WXy = -WyX, Wyz = -Wzy, Wxz = -Wzx

Only three of these nine components are independent. If we use an
ordered summation, we can ignore all components but wwy, wyz,
and wxz, writing

W = dxi'Adx =Wµ dx'µAdxv'.

Exterior product

We introduce for this the permutation tensor Sµ Qy::'. This function of the
labels a, 0, -y, ... and µ, v, S, ... equals + 1 if the labels a, j3, 'y, ... are all
different and are an even permutation of the labels µ, v, a, ... ; equals -1
for an odd permutation; and vanishes otherwise. They are called Kron-
ecker deltas. To avoid the cumbersome summations over an indetermi-
nant number of indices, we introduce block indices: subscript and super-
script capital letters will stand for a string of indices of unspecified length.
We will use the obvious summation convention on these block indices.

The exterior product -y = a A 13 is written in terms of block indices

YA=SACaJBI 01CI - (27.1)

Not all strings represented by block indices need to have the same length.
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Example: If a and j3 are 2-forms, we have, in ordinary indices,

'Yµvcr = SµvQe 01n01

If we take the specific example

a=dxdy, 0 =dxdz+dzdw,

and an ordering (x, y, z, w), then the sum includes only the single
term

= Sxyzw
yµvaT µvaT

and we have

7=dxdydzdw.

Equation 27.1 is easily proven. It is a linear operator on a and /3; so it is
sufficient to prove it on the basis r-forms, and this is easy.

We can now easily prove the associative rule for exterior multiplica-
tion. Recall the use of S. to relabel indices:

T'5 =Tµ,

which can be extended to all the deltas,

TASIAI = TB = (1/N! )TASA, (27.2)

where an ordered summation avoids multiple counting; N is the number
of indices in a block. Thus we wish to show that

aA(fA-y) = (aAf)A-y,

which is equivalent to

alAt SCESEDOIBI'YIDI = aIAI SEBPIBI SCD'ylDI .

This follows from

UCESED _6E BSCD = SCBD

using equation 27.2. Note that the ordering bars can be shifted from one
term in a sum to the other.

Many books use the antisymmetrization operation denoted by square
brackets

T{AI _ (1/N! )TB6A,

where N is the number of indices in the string.
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Exterior derivative

W= WIAI dXA=(1/'p!)WA dxA,

dXA=dXadxadx1...

179

A

We have the explicit formula

dw = dWIAI A dXA.

Now we can verify that this definition satisfies the four properties we
demanded in Section 23. Number two is the only one that is not immedi-
ate. If we have

ry=wnv

for w E AP and v e Ar (that is, w is a p-form and v is an r-form), then

1

7 = YIAI dxA =
(r+ p)! r! P! SACwB VC dXA

BC A

dry=
r!

p! (vc dwB+wB dvc)n
r +d p)

1 BC A= BC A_ BC - B C(r
+

p) ! SA dx SIA I dx - dx - dx n dx

dwBAdxB vC dxc WB dXB dvCndxC
dry= pi A

r!
+( )p

p!
A

r!

where the (-)P comes from pulling the 1-form dvC through the p-form
dxA. Finally

dry=dwAv+(-)pwAdv.

This shows the consistency of our definition in Section 23.
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Determinants

A geometric discussion of the determinant was given in the Preface. The
algebraic discussion of determinants is done by introducing permutation
symbols EA and EA with exactly as many indices as the space has dimen-
sions. Both EA and EA are totally antisymmetric, and are +1 if A contains
an even permutation of the coordinate labels. We will see soon that if
these definitions are used in different coordinate systems, they are the
components of different tensors. Clearly we have

A A
E EB = SB

and

EAEA=N!

The determinant of a matrix can be written in a number of ways:

M1aM20M3y... Eaay... = Det(M),

MAaMvaMay... Eaay... = Eµva... Det(M),

MAUMvaMay ... E a01'. N! Det(M);

and if we extend the idea of block indices to include multiple copies of
the tensor when it does not have enough indices otherwise, we can write
these last equations as

MBAEA = EB Det(M), (27.3)

MBA EAEB = N! Det(M), (27.4)

where the index blocks have N indices. In fact, if our index blocks are
shorter than the dimension of the space, the left-hand side of equation
27.4 gives us all the algebraic invariants of a matrix from the trace on up.

An important theorem is that the determinant of the product of two
matrices is the product of the determinants. This is easily shown by
means of block indices. The product of two matrices Maa and N' is
Ma N-16. Using block indices, we find it is MAGNGD. Thus the product
of the determinants is

Det(M) Det(N) = (1/N! )2MAB 6ANCD SD.

But

6A6D= EBEAEDEC= SBSD
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and so

Det(M) Det(N) = (1/N!)2(MAB6C)NcDSD

= (1/N! )MAIN CD SD = Det (MN).

Cramer's rule follows easily from these definitions. We define the
minor of the matrix alb to be the array

A`J _ Ejp...Eilq...I apq.. .

The inverse of the matrix alb is then

a'j =A`j/Det(a),

because we have

,i AtJask
a ii = Det(a)

Eip...Ei1q...I
Q JkQp4...

Det(a)

= Ekq... E! I
q... 1=6i

.

We can also find the partial derivative of a determinant

Det(Q) =
E12...Epq...QIp

Q2q"'9

aak (Det a) = E12... Epq... azlk a2q. + ..

= Apt
aQJp

axk

so in terms of the inverse we have

1 a

Det(a) axk
Det(a) = a'Jaip,k.

Permutation tensors

To see that these permutation symbols are not the components of ten-
sors, we check to see if they transform like the components of a tensor. If
they were tensors, then in a new, primed coordinate system

B
EA = JA' EB,

where J is the Jacobian matrix
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ax"Jy= v,.
ax

But, using equation 27.3, we find that this leads to

EA, ' Det(J)EA, (27.5)

which contradicts the definition that gives EA the same numerical compo-
nents in all coordinate systems. Only for coordinates related by transfor-
mations preserving volume and orientation will it define the same tensor.

On a space with a metric and an orientation, we can compensate for
the determinant in the transformation law (equation 27.5) by using the
determinant of the metric tensor. We define

g = Det(gµv) _ (1/N! )gABEAEB

Note that N copies of g,,v are needed when you write out the summation.
This determinant in a new system of coordinates will be given by

gN! gA'B'EAEB = N! gCD- E`4 EB

=
1

I gCDECEDDet2(J)=Det2(J)g. (27.6)

Thus we are led to define the quantity

?JA=VIgI EA

As a tensor ?JA maps r-multivectors into (n-r)-forms. In new coordi-
nates its components are given by

EA' V I I? JA' EA V 19 I

and from equation 27.6 we have

EA'IDet(J)I ' Det(J)EA, .

The determinants of the two Jacobian matrices cancel up to a sign. Sim-
ilarly we can define

EA

n A = sgn(g)
N11 9-1

and these are related by

gAB17B=ry1A-

What about the lost sign? The sign changes under odd permutations,
and this means that CIA represents not an n-form but a twisted n-form,
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which will be discussed in detail in the next section. We can also define rlA
on a space with a volume element but no metric, the transformation of
the volume element being also a source of Det J.

Problems

27.1 Show that the geometric definition of a determinant given in the Preface is
independent of the parallelopiped chosen.

27.2 Does -qA exist on a space, such as the phase space of mechanics, that has only
a distinguished volume element but no metric?

28. Twisted differential forms

It is now time to carefully discuss twisted tensors and twisted differential
forms. Although most of the material in this book is quite standard,
twisted tensors are not. This is partly the fault of tensor analysis and its
myopic emphasis on coordinate transformations. Twisted tensors do
transform with a sign change under inversion of coordinates, and that
may seem unnatural. But the fact is that under such an inversion a
twisted tensor does not itself change, and its coordinate representation
changes sign only to follow the changing coordinates. Most of the geo-
metric objects that we will need in our physical theories are actually
twisted tensors. However, the coordinate representations of ordinary
tensors are simpler; so we will represent our twisted tensors in terms of
ordinary tensors. The precise representation will be developed in this sec-
tion. (You might now like to leaf through Section 42 to see how twisted
forms will be used.)

Twisted tensors were introduced by Hermann Weyl (1922). Schouten
(1951) developed them, and called them Weyl tensors or W-tensors. Synge
and Schild (1949) refer to them as oriented tensors, and de Rham (1960)
called them tensors of odd kind. Nowadays they are usually called twisted
tensors. We could make out a good case that the usual differential forms
are actually the twisted ones, but the language is forced on us by history.
Twisted differential forms are the natural representations for densities,
and sometimes actually are called densities, which would be an ideal
name were it not already in use in tensor analysis. I agonized over a nota-
tion for twisted tensors, say, a different typeface. In the end I decided
against it. There is too much notation already floating around here. Most
of the time twisted forms will be written just like ordinary forms. When I
need to identify a form a as twisted, it will be written (a, 9) to emphasize
that it differs from an ordinary form a by an orientation Si.
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I will discuss twisted tensors in two ways: first, in terms of their intrin-
sic properties, to emphasize that they are geometric objects and are as
natural and fundamental as ordinary tensors; then in terms of a represen-
tation involving ordinary tensors, which is the easiest representation to
manipulate although it unfortunately makes them seem like subsidiary
objects. A careful definition of twisted tensors will appear only in the
second discussion.

Orientations

To orient an n-dimensional vector space is to chose an ordered basis,
which is an ordered set of n vectors that span the space. Even permuta-
tions of these vectors specify the same orientation; odd ones define the
opposite orientation. Further, any basis related by a transformation with
a positive determinant defines the same orientation. A basis deformed in
any way that maintains a nonzero volume will still represent the same
orientation.

Example: In three dimensions we can deform a basis as long as no
vector passes through the plane defined by the other two.

An orientation can also be specified by giving an ordered set of n 1-forms
that span the dual space; that is, the n-form that results from multiplying
them together using wedge is nonzero. For our purposes, it is more con-
venient to specify orientations by this n-form.

Now consider a linear subspace of a vector space, say, of dimension k.
One natural way to orient the k-subspace is to treat it as a vector space
and choose a basis of k 1-forms for the subspace. This is called an inner
orientation. Another and different way to orient the linear subspace is to
choose an ordered set of (n - k) 1-forms, all of which pull back to zero
on the subspace and which wedge together to form a nonzero (n-k)-
form. This is called an outer orientation or a transverse orientation.

Example: The two transverse orientations for the line x = y = 0
could be represented by the 2-forms dx dy and dy dx. The two inner
orientations are represented by dz and - dz.

A transverse orientation may be deformed as long as its elements all pull
back to zero and their product remains nonzero. A transverse orienta-
tion for the entire vector space is by convention just a choice of sign,
plus or minus.

These two types of orientation, inner and outer, distinguish twisted
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Figure 28.1. A twisted vector in two dimensions (left) and one in three dimensions (right).

2-D 3D

Figure 28.2. The addition of ordinary vectors contrasted with the addition of
twisted vectors.

geometric objects from ordinary ones. Look at an ordinary vector: it is a
directed line segment of definite length. It has an outer orientation. On
the other hand, a twisted vector is a line segment of definite length, but
having an outer orientation instead of an inner orientation. In Figure
28.1, I sketch twisted vectors in two and three dimensions. These twisted
vectors form a vector space. Their addition is compared with that for
ordinary vectors in Figure 28.2. In each I show three vectors that add up
to zero.

The usual representation of a 1-form as a pair of hyperplanes has an
outer orientation relative to the hyperplanes given by the 1-form itself.
The usual representation of a 2-form is a tube of specified area and align-
ment. The linear subspace here lies along the tube. The orientation is
given by the 2-form itself.

A twisted 1-form will be an object in the vector space dual to the
twisted vectors. A geometric picture of this operator in two dimensions is
given in Figure 28.3, and in three dimensions in Figure 28.4. For ordinary
1-forms the level surfaces have an outer orientation; for twisted 1-forms
they have an inner orientation. In Figure 28.5, I compare the addition of
twisted 1-forms with the addition of ordinary 1-forms in two dimensions.
The method will be explained in a moment.
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= +2

Figure 28.3. The duality between twisted 1-forms and twisted vectors in two dimensions.

= -3

Figure 28.4. The duality between twisted 1-forms and twisted vectors in three dimensions.

a.

Figure 28.5. The addition of ordinary 1-forms in two dimensions contrasted with that of
twisted 1-forms.

Example: In Figure 28.6 I draw a set of ordinary basis vectors and
a set of twisted basis vectors in three dimensions. These twisted vec-
tors were generated from the ordinary basis vectors by the right-
hand rule.
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a
aZ

a

i a

ax

CL

V
Figure 28.6. Basis vectors and twisted basis vectors in three dimensions.

Figure 28.7. The addition of bivectors and twisted bivectors in three dimensions.

A bivector has a representation in the tangent space as a parallelogram of
definite area with an inner orientation. A twisted bivector has instead an
outer orientation. In Figure 28.7 I sketch the addition of both types of
bivectors in three dimensions.

A twisted 2-form will be a linear operator on twisted bivectors. Again,
it is related to an ordinary 2-form by a right-hand rule. Note that a
twisted 2-form is the correct geometric object to represent the flow of
electric charge. The tube lies along the flow of current, has a size that
encloses unit current, and has an orientation given by the direction of the
current flow.
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Figure 28.8. A field of twisted vectors on the Moebius strip. The vectors are all transverse
to the edge.

A

B

B

A

Figure 28.9. The twisted vector field of Figure 28.8, drawn using the representation in
terms of ordinary vectors shown in Figure 28.10.

In a similar manner we can extend the idea of twisted tensors to multi-
vectors and differential forms of any rank. In three dimensions a 3-form
has a screw sense; a twisted 3-form has a sign, plus or minus.

Example: To see that there is a nontrivial distinction here, consider
a Moebius strip. We cannot find a continuous vector field on it that
is everywhere transverse to the edge. A twisted vector field satisfy-
ing these conditions is sketched in Figure 28.8.

Representation of twisted tensors

To deal analytically with tensors of any sort, we choose a basis and rep-
resent the tensors as linear combinations of these basis elements. A given
coordinate system leads naturally to a basis for ordinary vectors and
1-forms.

The basis of tangent vectors leads naturally to a basis for all the ordi-
nary tensor spaces. When dealing with differential forms, we saw that it
was economical to pick an orientation for the whole space and to use
ordered summations to eliminate redundant terms. Choosing an orienta-
tion for the whole space also simplifies the representation of twisted ten-
sors. We can formally define a twisted tensor as a pair, consisting of an
ordinary tensor and an orientation, reduced by the equivalence relation
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Figure 28.10. The representation of a twisted vector by an ordinay vector paired with
an orientation.

Figure 28.11. The representation of a twisted 1-form in two dimensions.

Figure 28.12. The representation of a twisted 1-form in three dimensions.

(w, S2) = (-w, -a),

where -12 is the orientation opposite to 12.

Examples: Let us use this representation for twisted vectors on
Figure 28.8. A cut-apart Moebius strip is shown in Figure 28.9. The
preceding equivalence is needed to have continuity across the join.

Figure 28.10 shows the representation scheme for vectors. The rule
for 1-forms is shown in Figure 28.11 for two dimensions, and in
Figure 28.12 for three dimensions. The rule will be given in equa-
tion 28.1.

Do not let the fact that twisted forms are being represented in terms of
ordinary forms lead you to think that twisted forms are less fundamental.



190 IV. The calculus of differential forms

Figure 28.13. The addition of twisted 1-forms shown both directly and by using the
representation in terms of ordinary 1-forms paired with orientations.

The situation here is symmetric: we could define an ordinary vector as
a pair consisting of a twisted vector and an orientation under the same
equivalence relation.

Example: The addition of twisted 1-forms shown in Figure 28.5
can be demonstrated by using the representation in terms of ordi-
nary forms, as shown in Figure 28.13.

To use a specific orientation SZ of the whole space to represent twisted
forms, we give the twisted form (a, 12) an orientation S2« satisfying

S2« A a =12. (28.1)

Great care is needed in picking the conventions here. A careless choice
will have peculiar signs all over the place.

Examples: The 1-form dx has an orientation specified by the 1-form
dx. The twisted 1-form (dx, dxdydz) must have the orientation
specified by dy dz. This is the usual right-hand rule, pictured in Fig-
ure 28.14. The representation dx - (dx,12) pictured depends on 12
but not on the coordinates.

The twisted basis vectors in two dimensions, (dx, dxdy) and
(dy, dxdy) are sketched in Figure 28.15.

A basis for twisted 2-forms in three dimensions is given by

jX = (dy dz, dx dy dz)

and so on. Note that the orientation is being used only to give an
unnatural y-z-ish name to a purely x-ish object. See Figure 28.16.



28. Twisted differential forms 1191

z

x

Figure 28.14. The representation of dx by the right-hand rule.

`i

v

(dx, 92)

- (dY, 92)

x

Figure 28.15. Twisted basis 1-forms in two dimensions.

z

Figure 28.16. The basis twisted 2-form ix in three dimensions.
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Most of the time I will write the twisted form (a, 12) as just a unless con-
fusion would result.

Operations on twisted forms

We can extend the usual operations of the exterior calculus to twisted
forms.

The wedge product of a twisted form and an ordinary form is itself
twisted. We use the rule

(aAf3,12)_(a,12)Af3=aA

The orientation given by this satisfies

{{aA(f3,12)), {a)) _ {(f3,12)),

where I am writing {a) for the differential form that specifies the orienta-
tion of a, and so on. If a is a p-form and 0 is a twisted q-form in n-space,
then each side of the preceding equation is an (n-q)-form.

The exterior derivative of a twisted form is again twisted. We define it
using

d(a,12)=(da,12).

Pullback

One reason why differential forms are so much more useful then vectors
is their nice behavior under pullback. With twisted forms this behavior is
not so simple. Twisted forms can be pulled back only onto surfaces that
have a transverse orientation.

Example: In Figure 28.17 we pull back a twisted 2-form in IR3 onto
a two-dimensional subspace. A twisted 2-form in two dimensions
has a sign, here positive if the orientations of the subspace and the
2-form are equal.

If the transverse orientation is given by -q, then the pullback 0* (u, 0) has
the orientation given by

{(a,1Z)).

Examples: In IR2 we pull back (dy, dx dy) onto the surface x = 0
with transverse orientation dx. We have

{0*(dy,dydz))=+1.
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Figure 28.17. A twisted 2-form being pulled back onto a surface that has a
transverse orientation.

In IR3 we pull back (dy, dx dy dz) onto the surface x = 0 with trans-
verse orientation dx, finding

10* - (dy, dx dy dz) I = -dz.

This pullback operation will be used in the next section to formulate the
divergence theorem, and in Chapter VI to formulate the junction condi-
tions of electrodynamics.

Hodge star

We can define a new star operator, (*,12), that maps p-forms to twisted
(n-p)-forms in n-space. Despite its appearance, (*, 12) is independent
of orientation, because * itself depends on orientation. A more rational
notation would have used (*, 12) for the original star operator. We define
(*,12) so that

(*,12)(a,12) = *a
and

(*, Ma= (*a, J).
See Figure 28.18.
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Figure 28.18. The action of a twisted Hodge star operator, mapping a 2-form into a
twisted 1-form.

Problems

28.1 Find a representation for twisted vectors (a, Sl) compatible with that given
for twisted 1-forms.

28.2 Develop a formalism for dealing with nonoriented differential forms, such
as would be used to describe the density and alignment of unoriented lines.

29. Integration

By now it will not surprise you to learn that in an integral like f f dx, the
integrand f dx is a 1-form. This is especially obvious for a line integral:

(fdx+gdy+hdz).

The geometric idea is shown in two dimensions in Figure 29.1, and in
three dimensions in Figure 29.2. It is quite straightforward. A line inte-
gral through a field of 1-forms counts the number of unit contour lines
crossed. When the 1-form is not constant, then what we count is the aver-
age number of lines crossed. Not all of the infinitesimal expressions used
by physicists are 1-forms. For example, if we are finding the length of a
line, dl is not a 1-form.

Similar considerations hold for multiple integrals. We integrate 2-forms
over 2-surfaces, and so on. In the expression f f dx dy, the integrand
f dx dy is a 2-form. I think of the 2-surface as a piece of dough, and the
2-form as a cookie cutter, as shown in Figure 29.3. The integral tells me
how many cookies I can cut out. Since this cookie cutter has an area but
no shape, it cannot be reliably used to cut up spaghetti. Thus a 2-form
cannot be integrated along a line.
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Figure 29.1 (left). The geometric ingredients for a line integral: a curve and a field
of 1-forms.

Figure 29.2 (right). The pattern for a line integral in three dimensions.

Figure 29.3. The pattern for a surface integral.

Integration of differential forms

We define these geometric integrals by reducing them to ordinary inte-
grals. Let ]p: Rk -- M. P defines a k-dimensional subspace of the mani-
fold M. Let E be the region of IRk such that P (E) is the region in Mover
which we want to integrate. We want to define

I=
J

CO,
F(E)

where w is a k-form on M. We will use x', x2, ... , for coordinates in IRk.
We define this integral to be the ordinary multiple integral in IRk,

I=
JE

aak ...1JiJ(F*.c)1dx1dx2...dxk,

and we will usually write this
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Figure 29.4. The pullback operation in the definition of a surface integral.

I=
E

In the preceding definition, the quantity in square brackets is a number
that gives the rate at which, for example, cookies are being cut out per
unit area in IRk (see Figure 29.4).

Example: Let P be the map

P : [0, 1] --+ M

represented by the n functions 'ya(s). The pullbacks of the basis
forms are given by

a

P. dxa = ds ds,

and the pullback of a 1-form w thus gives us

a
P* (wa dxa)

= wa dd ds,

and our line integral is thus

CO

J

f1 d,ya
f

0 wa ds
ds.

Sometimes a complementary view of integration is useful. Instead of
pulling back the differential form, break the surface in IRk into little
pieces, that is, into multivectors, and push them forward. Since these
multivectors are dual to the differential form, each gives a number. Add



29. Integration 197

Figure 29.5. A dual view of a surface integral. The basis in IR2 is now being
pushed forward.

them up. (See Figure 29.5 and compare with the preceding figure.) The
region E in IRk really plays a minor role in the integral. What counts is
the interaction between the differential form and the oriented subspace.
Note that the map P automatically assigns an inner orientation to the
integration surface F (E) given by

P. 9 = dX1 dx2 .

It is easy to verify that these integrals are invariant under any change in
parametrization of the submanifold P that preserves the orientation.

Integration of twisted forms

Whereas ordinary differential forms require an inner orientation for the
region of integration, twisted forms require a transverse orientation. It
is again convenient to define the integration of twisted forms in terms
of ordinary forms. Bear in mind, however, that this again introduces a
spurious dependence on orientation, which later cancels out. It is only a
property of the representation.

We can represent the outer orientations of surfaces in terms of an
orientation for the entire space as before, using the rule given in equa-
tion 28.1. This is shown for two dimensions in Figure 29.6, and for three
dimensions in Figures 29.7 and 29.8.

For twisted forms we define

12) = r C1,

where here 12 is an orientation for the whole space, and (P, 12) is a sub-
space that has an outer orientation.
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Figure 29.6. Representing a twisted orientation for a surface, here a line,
in two dimensions.

Figure 29.7. Representing a twisted orientation for a line in three dimensions.

Figure 29.8. A twisted orientation for a 2-surface in three dimensions. The vector on t
right is coming up out of the surface.

Example: Suppose we have a Moebius strip embedded in IR3. We
cannot give the embedded Moebius strip either an inner orienta-
tion or an outer orientation. A 2-form in IR3 can be pulled back
onto the Moebius strip, but, since the Moebius strip cannot be
given a continuous inner orientation, the 2-form cannot be inte-
grated over the Moebius strip. A twisted 2-form cannot even be
pulled back onto the Moebius strip, since the Moebius strip also
lacks an outer orientation.

We can define a twisted 2-form on the Moebius strip as a mani-
fold itself. Since it is two-dimensional, we can just pick a signed
area. Such a twisted 2-form could be integrated over the Moebius
strip, to compute, for example, how much paper would be needed
to make it.
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Figure 29.9. The pattern for Stokes' Theorem.

Stokes' Theorem

In the exterior calculus the great variety of theorems that relate inte-
gration and differentiation is greatly simplified. If we write aP for the
boundary of the region P, then we have Stokes' Theorem:

CO.r
dw = L

The boundary aP has an inner orientation given by

dOAIaFJ = {P}

where 0 is a function increasing to the outside of the surface (see Fig-
ure 29.9).

Stokes' Theorem can also be applied to twisted forms. The boundary
must now be given an outer orientation. The rule consistent with the pre-
ceding equation is

[(aP,s2)}={(P,12)}Adc.

Since 12 appears on both sides of the equality, this definition does not de-
pend on 12. The orientation 12 appears only as part of the representation.

Stokes' Theorem for twisted forms is

d(w,12) =
J

(w,12).
(r, I) far, si)
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When F has the dimension of the manifold, this should really be called
the divergence theorem. [For a proof of Stokes' Theorem and further
discussion, see Spivak (1965) or Loomis and Sternberg (1968).] The gen-
eralization of integration by parts to multidimensional integrals is easy:

Jr daAf3=(-)' 1 f r and,6+Jar
aAf3,

where a is a p-form.
To integrate on manifolds we may have to use several charts, and

break up the integral into pieces by using a partition of unity. Each piece
is then done in its own chart.

The adjoint

If we are given two p-form fields on a manifold without boundary that
has a Hodge star operation defined on it, then we have a natural inner
product on these fields:

<a,0= L cz A *0.

The operator adjoint to d will be a differential operator S such that

(a, dy) = (Sa, yy>.

Clearly S must map p-forms to (p -1)-forms. Since there is no boundary,
from Stokes' Theorem we have

*g=(-)pd*.

The natural generalization of V2 is the de Rham operator 0:

0 = dS + Sd.

For the special case of functions (0-forms), we have

V20*1= d* do,

where *I must be a properly oriented unit volume element.

Green's Theorem

Starting from

d(q A*d1')=dq A*d> +c(d*d>')

= dOA*d> +OV20*1,
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where 0 and 0 are scalar fields (0-forms), and using

d0A*d'=d'A*dg,
we have

d(c*dt-t*d4)_(V2'- OV2c)*1.

In integral form this is the familiar Green's Theorem:

J v (0020 _ 0V 20) * I = Lv (0 * dO - 0 * dO)

Deformations of integrals

Look at the line integrals Jru co, where Pu is now a 1-parameter family of
curves. Suppose that TO is the curve of interest. The Fu represents a defor-
mation of that curve. The family Fu can be represented by the functions

Pu : IR x JR -* M; (s, u) - X "(s, u) .

The rate of change of the integral as we deform the curve will be given by

d
f

_ d fb aX"
du .1ru w duJaw" as ds

b [Co aX" M' +
w a2X " ds.

J "'a as au " auasa

Now the local deformation of Po is represented by a vector field v. Of
course, v need be defined only on the curve Po. In components,

ax" aV= ---
auau ax",

so we have

d
du Jr w+

b

[w",ava+wava, aas ds'U

and the term in square brackets is just the Lie derivative. In fact, this is
true not only for line integrals; we have in general

rU
ru w

_
du

CO _ Fo £v Co. (29.1)

This result will be of use in the calculus of variations. A proof is easy
if we use the normal form (a/axl) for v.
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30. Cohomology

We often face the problem of finding potentials. That is, given a closed
form w, one satisfying

dw = 0,

we want to find a differential form a such that

w=da.

If an a can be found, then w is called exact. Cohomology is the study of
this problem. It turns out that there is a surprising connection between
the conditions under which this problem is soluble and the topology of
the manifold on which it is posed. The cohomology of a manifold is a
topological invariant.

The material of this section and its later applications show the im-
portance of existence proofs, which are often derided by "practical"
physicists.

The Poincare Lemma

Suppose first that the problem is posed in IRn or in some other region that
can be contracted to a single point, as sketched in Figure 30.1. On such a
region, every closed form is exact. An explicit algorithm for computing a
can be given as follows. [This proof comes from Spivak (1965).] We write
the r-form w in a basis

w=Jj1(q)dgl,

where the I indicates a block of indices and an ordered summation, as
usual. We define the operator J by

Jw = f I tr-1 fill (tq) dt q a j dqr.
J q

In all these integrals, tr is t raised to the rth power and (tq) is the argu-
ment of fill. The points along the ray tq all lie in the region if it is con-
tractible to the origin and the coordinates are properly chosen; the region
is then called star-shaped with respect to the origin. The integral is there-
fore well-defined. We now show that for any r-form co

w=J(dw)+d(Jw).

For a closed form this gives us an explicit expression for a:

a=Jcw.
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Figure 30.1. A region that can be contracted to a single point, here, P.

We compute

But

dw = aft dq' dq
q

J(dcw) =
Jo

tr uf (tq) dt q a J (dq1 dqI )
q q

= J 1 tr of (tq) dt [q'dq1_dq'A(q a J dqI
q q

d(Jw) = tr M (tq) dt dg1A q a J dqI
q q

+
J
1 tr-1f1(tq) dt dq a J dqI.

q
Now we have

dq
a

aq
J dqI = r dqI.

Each nonzero term in the sum recreates the original term. Thus

Jdw+dJw= rtr-1f1(tq) dt+J I g1tr M. (tq) dt dqI,
q

and integrating by parts gives us the desired result. In practice a can
often be found by inspection, a process justified by the preceding explicit
calculation.
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-- -6-

f \\
Figure 30.2. The closed form do, not exact but smooth on R2 with a disc removed.

Cohomology

On a topologically more complicated manifold, such as IR3 with a ball re-
moved around the origin, it may no longer be true that every closed form
is exact. The obstruction to finding a potential is intrinsic to the mani-
fold. This property of the manifold is represented by a series of vector
spaces, Hr. Elements of Hr are closed r-forms on the manifold modulo
the exact r-forms on the manifold. That is, two closed forms in Hr are
equivalent if they differ by an exact r-form.

Examples: From Poincare's Lemma, on IR" there are no closed
forms that are not exact; so Hr is zero for all r.

Look at IR2 minus a disc at the origin. Clearly d9 gives us a closed
1-form that is not exact (see Figure 30.2). Not so easy to see is that
every other 1-form differs from d9 only by an exact form or some
multiplicative factor. Hl here is one-dimensional.

To see that every other closed form, say, a, is "cohomologous"
to do, first integrate a around the missing disc. Integrating d9 around
the disc gives us 27r. The 1-form

27ra - do a

will be exact. Write

27ra-do a=2irdf,

where f(P) is computed from the line integral from some fixed
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Figure 30.3. Different paths from P to Q must define the same differential form.

point Q to P along any path (see Figure 30.3). It is clearly path-
independent. Thus

a= 2' J
a dO+df,

and so a and dO are indeed equivalent.

Topology

Some topological information about a manifold comes from a study of
the boundary operator a acting on submanifolds. There is a surprising
duality between the operator a and the exterior derivative d. Recall
Stokes' Theorem and also the relation

a2=0.

We can make a vector space out of oriented submanifolds by formally
adding and scaling them, connecting these formal sums with reality by
the relation

k1r1+k2r2
w.

Such objects are called chains. Important topological information comes
from studying the chains that have no boundary. These are called cycles.
Some cycles are themselves boundaries; others are not. Cycles that are
boundaries are trivial, in the sense that the preceding integral on closed
forms vanishes for them:

L w= cr dw=0.

The homology classes Hr are defined as the r-cycles on the manifold
modulo those that are boundaries.
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Example: For 1R2 minus a disc, Hl is one-dimensional, and 1-cycles
are closed curves. Those not encircling the disc are boundaries.
Two different 1-cycles, each encircling the disc once, are together
the boundary of an annular region. Cycles that encircle the disc k
times are just k times a simple cycle. Thus the vector space Hl here
is one-dimensional.

The important theorem here, far too hard for us to prove, is that the
vector spaces Hr(M) and Hr(M) are isomorphic (i.e., have the same
dimension).

Example: 1R2 with k discs removed clearly has k cycles that are
not boundaries and hence k independent closed 1-forms that are
not exact.

The result of all this is the important theorem that a closed r-form is
exact if and only if its integral over all r-cycles vanishes. [See Bott and Tu
(1982) or Warner (1971) for proofs and discussion; a good introduction
without proofs is in Guillemin and Pollack (1974).]

Problems

30.1 Show that every smooth, closed 1-form on the 2-torus can be written

w=Ad9+Bdq+df,

where A and B are numbers, and f is a smooth function.
30.2 What is the relation between the cohomology of the n-spheres and their

related projective spaces?
30.3 Study the cohomology of 1Rn for the case where the differential forms all

have compact support; that is, they vanish outside of a compact region. For
example, on the line the 1-form dx is closed but no longer exact, because the
function x does not have compact support.
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Applications of the exterior calculus

In this chapter we treat several short applications of the exterior calculus.
The major uses, electrodynamics, mechanics, and gravitation, each have
their own chapter. Here we will develop some of the remaining tools of
the exterior calculus. One is the calculus of variations, which fits nicely
into our language, including problems involving constraints. We will also
study partial differential equations, representing them by an ideal of dif-
ferential forms called an exterior differential system. Viewed in this way
the distinction between dependent and independent variables disappears,
and we can see clearly the relations between symmetries, conservation
laws, and similarity solutions. This approach is among the most powerful
known for nonlinear partial differential equations.

31. Diffusion equations

Earlier we saw how naturally Laplace's equation and the wave equation
fit into our geometric language. Here we extend that discussion to the
heat equation and its generalizations.

The heat equation

We start with the heat equation

a20 _ ao

"axe
_

at

Here 0 is the temperature, proportional to the density of heat, and K is
the specific thermal diffusivity. We write this as a first-order system,

207
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Figure 31.1 (left). The heat flux in two dimensions is described by a twisted 1-form a.
A piece of the transversely oriented surface is represented by a twisted vector.

Figure 31.2 (right). The situation of Figure 31.1 represented using ordinary vectors
and forms.

ao
u=K

ax
and

au ao
ax at =

a=cdx+udt,
then equation 31.2 becomes

da=0.

(31.1)

(31.2)

The 1-form a represents the spacetime flux of heat, and the preceding
equation represents the conservation of heat (energy). A similar interpre-
tation can be given to a for other diffusion problems.

Example: The heat crossing a short line described by the vector v
is given by v J a. The geometric picture is given in Figure 31.1.
Note that both v and a are twisted. In Figure 31.2 the less natural
picture in terms of untwisted forms is shown, using the representa-
tion given in equation 28.1.

In either representation you can see that 0 is the local density of
heat; it describes the flux of heat per unit length across a spacelike
surface. Similarly, u describes the flux of heat past a given location
per unit time.
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Equation 31.1, on the other hand, is a material equation, one expressing
a property of the material being considered. It says that the heat flux u is
proportional to the temperature gradient, 0,X. We can geometrize the
material equation most naturally by introducing a degenerate metric on
(t, x) space. That this metric is degenerate should not bother you. The
heat equation is only an approximate equation. The heat transport de-
scribed by the heat equation can travel infinitely fast, corresponding to
the limit c -- oo. Thus it is not so surprising that a degenerate metric is
useful here.

We can find a Hodge star operator even for a degenerate metric. For
our applications this must be done in terms of the sharp operator:

#dx = a , #dt = 0.

This leads to a Hodge star operator

*1=dxdt, *dt=0,

*dx=dt, *dxdt=0.

We have

*a=cdt and d*a=c,Xdxdt.

This geometrizes the differential part of equation 31.1. The algebraic part
can be written using the vector (a/at) to find

a
u- at J co.

This is also geometrically natural. The vector (a/at) represents the space-
time motion of the material. Call this vector X.

Thus we arrive at the geometric form of the heat equation

da=0,

dK*a= *X J U.

(31.3)

(31.4)

Although similar to the systems describing the wave equation and La-
place's equation, it involves one additional term. This is the only way the
vector field X can be used to make a 2-form from a. For the rest of this
section, I will set K = 1; I left it in thus far only to show that it appeared in
the material equation, but not in the conservation law.

The 1-form field a still describes a field of conserved flux lines, but the
1-form * a is not the gradient of any function. These flux lines are not cut
by any nice geometric family of orthogonal hypersurfaces.
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Symmetries of the heat equation

Suppose we generate a new heat flux a' according to

a'= £k a,

where a is any given solution to the heat-equation system. When will Cl'
also be a solution of the heat equation? Since d and £k commute, we
clearly have

da'=0

for any vector field k.
If we pick k such that

[k,X]=0 31.5)

and

[£k, *] =0, (31.6)

then taking the Lie derivative of equation 31.4 gives us

d*£ka=*XJ£ka

and hence a new solution.
Vector fields that satisfy equations 31.5 and 31.6 are infinitesimal sym-

metries of the operators * and X. We now proceed to find them. Look at
equation 31.6. It is again sufficient to satisfy this equation for 0-forms
and 1-forms. Since the metric is now degenerate, we must reexamine the
earlier arguments to be sure that this is still true.

Write

k = T(t, x) at +X(t, x)
ax .

Then

so we must have

Also we must have

which gives us

£k*1=£k dxdt = dXdt+dxdT;

XX-Tt=0.

£k*dt- *£k dt = 0,

TX=O.
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The equation

[£k,*]dx=0

gives us nothing new. The isometries of * are the vector fields

k=A(t) at +[A'(t)x+B(t)]
ax

A' being the derivative of A. Of these, those that commute with (a/at)
are just the vector fields

k=A
+B

at
ax

with A and B constant. Only the translations are symmetries of both *
and X. The Galilean transformations are not symmetries, because the
material picks out a special worldline.

We have not necessarily found all the symmetries of the heat equation.
The vector field k need not be separately a symmetry of * and X. Also,
it may be necessary to change the dependent variables in a as well as x
and t.

Example: The map

e-X2/4t x 1

47rt t t

takes solutions of the heat equation into other solutions. It is called
the Appell transformation. Here 0 is changed rather than just
transported.

The best framework for studying more general symmetries is one in
which all the variables, dependent and independent, are coordinates. We
will return to this question once we have developed the tools for handling
partial differential equations in terms of exterior differential systems.

Diffusion in higher dimensions

The same equations, 31.3 and 31.4, also describe diffusive transport in
higher-dimensional spaces. For this we take a to be a twisted (n-1)-
form. Again a describes the flux of a scalar quantity, with the same con-
servation law

da = 0 (31.7)

and material law
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d*a=*(XJa). (31.8)

Here d * a is a 2-form. If we are given X, a, and *, the right-hand side is
the only 2-form that we can write. Here we still take

x=at

and * is defined by

#dt=0, #dx= x,
and so on.

Diffusion in deformable materials

The test of a good notation is the natural manner in which it generalizes.
The diffusion may be 'taking place in a deformable material, such as a
fluid. If the diffusing substance is still conserved, then the flux 1-form
will remain closed. If heat is being described, then the heat generated by
the deformation may have to be included. However, the material law
must now use a velocity vector appropriate to the moving material. For
nonrelativistic motions it will be sufficient to use a vector

a a
a = at + v

aq
where

ava
q

is the spatial velocity of the material. Again, equations 31.7 and 31.8
describe the diffusion.

Telegraph equation

It is tempting to continue the generalization, and to write a Lorentz-
invariant transport equation by using the special-relativity star operator.
Unfortunately, the preceding description fails already for speeds as large
as that of sound. There will be delay terms in the transport law, and these
will prevent whatever is diffusing from traveling infinitely fast.

For electrical signals on a lossy transmission line, the correct linear
theory is straightforward, and the equation describing these signals is

2j a

ae
LC_ -(RC+GL) ai -RGI=0;
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this is called the telegraph equation. Here R and G are resistances along
and across the lines, respectively. The term involving I, tt will limit the
speed of a current pulse. To geometrize this equation for the case G = 0,
we use a metric

#dx = a , #dt = - CL
at ,

*1=dtdx,

to find

a=dI, da=0,

d*a=RC*(XJa),

and the effects of inductance do indeed fit neatly into the modification of
the star operator. In Section 45 we will see how Maxwell's equations in a
medium with linear conductivity also fall into this geometric form.

Problems

31.1 Give a graphical justification for the appearance of a degenerate metric in
this section.

31.2 Study the case of variable conductivity.
31.3 Are there any conformal symmetries of the heat equation?

32. First-order partial differential equations

The geometric structure generated by a single first-order partial differen-
tial equation (pde) is best represented by an ideal of differential forms.
We are extending here the discussion of linear pdes given in Section 14.

In an algebra, an ideal is a subset I such that for any element a in the
entire algebra, the product of a with any element of the ideal lies in the
ideal. Multiples and sums of elements in the ideal must also be in the
ideal. For differential forms, the proper algebra is the exterior algebra,
and a set of forms constitutes an ideal if it is closed under exterior multi-
plication by any other differential form. The ideal generated by a form a
consists of all those forms that vanish when pulled back onto a surface
for which a itself pulls back to zero. An ideal is usually specified by giv-
ing a finite number of elements from which all others can be generated by
multiplication and addition. A differential ideal is an ideal of the exterior
algebra such that the exterior derivative of any element of the ideal is also
in the ideal.
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Example: A given contact-element field determines an ideal as fol-
lows. Put into the ideal all the 1-forms co such that

for all v in the contact element. Use these 1-forms to generate the
ideal.

In Section 19 I mentioned the Frobenius Theorem, which gave the con-
ditions under which a contact-element field has integral submanifolds.
There is a dual version of the theorem; it states that an ideal of differen-
tial forms defines an integrable contact-element field if and only if the
ideal is a differential ideal. The proof is an easy computation if we use
equation 23.5 and its generalizations.

Example: The contact-element field given as an example in Section
19, and there generated by

a

ay
and

a a

ax +yaz

has an ideal generated by the 1-form

w=ydx-dz.

It would be a differential ideal if the 2-form dw were also in the
ideal:

dw = dy dx.

The 2-forms in the ideal are in the linear subspace spanned by

dx dz and y dx dy + dy dz,

plus polynomials times these. There is no way we can split off the
dxdy terms. This is not a differential ideal, and again we see that
the contact-element field is not integrable.

Consider now a partial differential equation for a single dependent vari-
able u, with n independent variables x. Let p be the n partial derivatives

In the contact space (x, u, p), the pde reduces to the hypersurface given
by some function
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4(x,u,p)=0.

A solution to the pde is a subsurface lying in this hypersurface on which
the contact 1-form

a=du-pdx
pulls back to zero.

If we form a differential ideal I from the 1-forms a and do and the
2-form da, then the graph of the solution in this contact space will be an
integral manifold of the ideal I. An integral manifold is the natural gen-
eralization of an integral curve: all elements of I pull back to zero on an
integral manifold.

The solutions to a single first-order pde can be found by what is called
the method of characteristics. [The classical treatment of this is in Cour-
ant and Hilbert (1962).] We will construct the solution by finding a vector
field v that lies in the graph of the solution without first having to find the
solution. The integral curves of this vector field, called the characteris-
tics of the pde, also lie in the graph. If we have boundary values on some
(n -1)-dimensional surface, then these characteristics sweep out the n-
dimensional graph containing that boundary information. We thus re-
duce our problem to one of, first, finding consistent boundary values,
and, second, finding integral curves of a vector field. This second prob-
lem involves the solution of a system of ordinary differential equations
with initial-value information. These are much easier to solve, especially
numerically.

To say that the forms do, a, and da all pull back to zero is equivalent
to the requirements that

d4-v=0, a-v=0,

for all vectors v and w in the graph. A characteristic vector v thus must
satisfy three conditions. First, it must be tangent to the graph of 0,

vJ dq=0.

Second, to make the ps truly partial derivatives, we must have

vJ a=0.

Third, to form a surface it must be a differential ideal

wJ vJ da=0,
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Figure 32.1. The patern for the differential ideal defining a solution to a partial
differential equation.

for all vectors w that are also in the surface (see Figure 32.1). The vector
w must satisfy

wJ a=0, wJ do= 0.

The third condition on v can easily be written by using two Lagrange
multipliers, X and It, in the form

vJ da=Xa+µdo.

We have here 2n + 3 homogeneous equations for 2n + 3 unknowns. From
these we can find v up to a scale.

Look at a quasilinear pde, that is, one linear in the derivatives:

au,x+bu,y=c,

where a, b, and c may all be functions of x, y, and u. The coordinates x
are here x and y, the p are p and q. We have

a=du-pdx-qdy,
da = dxdp+dydq,

O=ap+bq-c,
do = adp + b dq+ O,x dx+c,y dy+c,u du.

A characteristic vector

V=U
aa +X a

ax
+...

must satisfy

u = pX+qY, (32.1)
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aP+bQ+0,XX+¢b,yY+0,uU=O, (32.2)

and finally

Xdp-Pdx+ Ydq- Qdy= Xa+µdg.

We can find the Lagrange multipliers by inspection. Pick the amount of
do to cancel the dp component, and the a to cancel the du, leaving three
essential equations:

bX=aY,

aP+X(g,X+pq,u)=0,

bQ+Y(o,y+qc,u)=0.

These equations are consistent with equations 32.1 and 32.2, and the five
together have a solution proportional to

v=a -+b-+c- -(O,X+pO,u) a-(O,y+qO,u) a.

y a

a

q
(32.3)

Because of the quasilinearity it is possible to project this vector field
down onto the base space (x, y, u) and ignore the (p, q) coordinates.

Example: Look at

uu,X + u,y = 1.

The projection of v, equation 32.3, onto the (x, y, u) 3-space is

a a a

ax ay au

with integral curves given by

X=u, Y=1, U=1.

The solutions are

x=x0+u0s+ZS2,

y = yo +s, u = u0 +s.

These form a three-parameter family of parabolas, with parameters
x0, yo, and u0. To find u at a given point (x1, yl), we must find the
parabola that passes through the given point, and trace that charac-
teristic curve back to an intersection with the surface on which
boundary-value data is specified (see Figure 32.2).
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Y

Figure 32.2. The characteristic curve, here a parabola, is extended until it crosses a surface
on which boundary data is specified.

Suppose we knew uo(xo) on the surface yo = 0. We must have

xo+uosl+2s1 =x1,

and

(32.4)

yo+si=Yi

Here sl is a fourth unknown, the parameter value at the point
(x1, yl). The initial-value surface is given by y = 0 and s = 0. Thus
we must have

yo = 0, and s1=Y1.

From equation 32.4 we have

xo + uoyi +
2

_jy2 = x1,

and finally the boundary data give us a fourth equation uo(xo).
Having found the four unknowns (xo, yo, uo, si), we find u from

ui = uo+si,

completing the solution.

We will extend the ideas of this section to systems of partial differential
equations in Section 38.
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Problem

32.1 Solve the equation

uu, x + u, y =1

for y ? 0 with initial data on y = 0 of

u(x, 0) = -x.

How far into the y direction is your solution valid?

33. Conservation laws

An enduring feature of physical models of the world has been the idea
that "you can't get something for nothing." Many things have a contin-
uous existence and are not created spontaneously. Of course, there have
been many wrong guesses; neither heat nor mass is truly conserved,
although each is almost conserved in restricted circumstances. In addi-
tion to objects that are strictly conserved, there are those that appear and
disappear in an orderly manner, such as electric flux lines, which appear
and disappear on charges. These situations are described by a conserva-
tion law or a balance law, and these laws take a nice geometric form
when we use the exterior calculus.

Conserved particles

If we think of small conserved objects, which we will call particles, then
conservation implies that their worldlines are continuous, and neither
start nor end. The conservation laws are the "fluid" approximation to
situations in which there are an enormous number of such particles in
any volume of interest, all with the same velocity. The density in space-
time of a family of nonintersecting worldlines is given by a twisted
3-form, call it a, pointing into the future. At any given time the number
of particles in a spatial volume E is given by

and for a situation in which the region of integration is so large that no
worldlines cross at the edges, we have a conservation law

Cl a.

The spacetime configuration is shown in Figure 33.1. The twisted 3-form
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Figure 33.1. A spacetime conservation law for particles having continuous existence.

Figure 33.2. Spacetime conservation for particles that can also move backward in time.

a can also represent worldlines moving backward in time; so the situa-
tion in Figure 33.2 also has a conservation law.

For small regions, some particles can flow out of the region of interest,
and we must include the flux through the walls. If we call the side region
E", we have

a= Ce + C1,

and if we orient E' using the outward normal, we can write this

a=0,
ar

where we now have an integral over the boundary of some 4-volume P.
Using the divergence theorem, we have

r da = 0,
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and if this is to be true for every region P, then we have the differential
form of a conservation law

da = 0. (33.1)

Examples: Suppose that the local density of particles is p, and their
velocity is U in the x direction. Let us find a. The most general
possible 3-form is

a=Adxdydz+Bdydzdt+Cdzdtdx+Ddtdxdy.

The integration over a unit spatial volume E1, must give p. This
volume E1 is represented by the map

E1: [0, 1]x[0, 1]x[0, 1]-*1R4; (u,v,w)H(x,y,z,t)=(u,v,w,0).

Since the pullback

El-dt=0,

this tells us that we must have A = p. No particles will cross a sur-
face E2 given by

E2: (u, v,w)H(u,0, V, W)

or the surface E3 given by

E3 : (u, v, W) H (u, v, 0, W).

The first has

and tells us that C = 0; and the second tells us that D = 0.
Finally, no particles cross the surface E4, shown in Figure 33.3.

For E4 we have

hence

E4: (u, v, W)-(u, V, W, Uu).

E4 dx = du, E4 dt = Udu;

(A+BU) dudvdw,

and so we must have

a= p(dx-Udt) dydz,

a useful result.
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Figure 33.3.

In spacetime for general motion we have

a= p[dxdydz-UX dydzdt+Uy dzdtdx-Uz dtdxdy];

that is,

a = p(Ot + U0)

where

0=dtdxdydz

and missing indices range over x, y, and z. Our conservation law
gives

ap. a( UX) d d dtd d d d day x yt x zz-
at

a(pU) alpU )y d d d 0d d d z d d+ ay y ,y t x- az t x z=z

that is,

0+d(pU)0=0,

which is the analog of

at

aap

This shows how the usual vector notation can be incorporated into
the exterior calculus. The differential form equation shows that the
conservation is independent of the metric.
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In addition to the fluid picture of conserved particles, there is also
the kinetic-theory picture, where, at each spacetime point, particles
are moving in all directions. The appropriate representation uses
the line-element contact bundle CIR4, which is seven-dimensional.
The density of particles is represented by a twisted 6-form j that
satisfies

jAa=O,

where the a are the contact forms

a=dq-qdt.
If the particles travel in straight lines, then we must have also

jndq=0.

Finally, the particles are conserved, and an argument similar to that
given for equation 33.1 requires

dj = 0.

These are a total of seven conditions on the seven components of j.
If we write j as

j= p(dxdydzdxdydz+xdydzdxdydzdt

-ydxdzdxdydzdt+zdxdydxdydzdt),

then the six algebraic constraints are automatically satisfied. The
remaining variable, p, must also satisfy

aP+xap+y'°a+zap=0.
y

It is quite satisfying to see the convective derivative appear natur-
ally in the context of differential forms.

The flow of cars on a single-lane road is a nice example of the utility
of a conservation law. The local density of cars is represented by a
1-form j,

j = p(dx- u dt),

where p is the spatial density and u the velocity. Conservation of
cars requires that

dj=0,
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that is,

ap
+

a(Pu)
=°.at ax

To complete the theory, we need something like an equation of
state. In the simplest models, this is an algebraic relation between
the density p and the flux pu. This turns the conservation law into a
first-order nonlinear partial differential equation for p, solvable by
the method of characteristics of Section 32.

The geometric structure of conservation laws studied here is independent
of the dimension of either the space or the subspaces. If at any instant we
have lines, not particles in spacetime, in spacetime these lines will sweep
out 2-surfaces. The density will be described by a 2-form, not a 3-form.
If these lines exist for all time, then we have a conservation law

a=0L
where now P is a 3-volume and aP is a closed 2-surface.

We will see in Chapter VI that the electrical-charge density can be rep-
resented by a twisted 3-form p. The total charge is the integral of this
3-form over a volume. The electrostatic field will be represented by a
twisted 2-form D, and half of Maxwell's equations can be written

dD=47rp.

Charge conservation is an immediate consequence of this:

dp=0.

In Section 44 we will find conservation laws associated with the electro-
magnetic field. The conserved currents there can spread to infinity, and
the surface term may diverge to prevent us from turning the differential
conservation law into a global integral conservation law.

Note that the conservation of energy and momentum does not fit into
this geometric formalism. There is no way to write a conservation law for
a symmetric 2-tensor, and in general relativity there is no global law of
energy conservation. There do exist special conservation laws for isolated
systems. These exploit asymptotic symmetries of the gravitational field,
depend on very specific details of general relativity, and do not involve
locally conserved fluxes.
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Problems

33.1 An interesting equation of state for traffic flow requires drivers to maintain
a spacing between cars that is proportional to velocity and to obey a speed
limit. Explore this equation of state, and in particular the effect of a finite
length of the cars.

33.2 Suppose the plane is filled with round holes of radius a, randomly dis-
tributed with density µ << 1/a2. Random lines are drawn until the ends hit a
hole. Describe the balance of lines in CR2 in the fluid approximation, where
the lines and holes are described by an average density.

33.3 Repeat the preceding problem, but with lines now drawn between randomly
chosen holes, one line ending at each hole. Again describe the balance of
lines and compare with the previous problem.

34. Calculus of variations

Minimal principles are much beloved by physicists as a slick way to de-
rive results already known to be true. Mathematicians tend to shy away
from them, knowing too well the pitfalls and problems associated with
them. We will give here a geometric picture of the calculus of variations,
not pretending to any rigor that we do not have, and not particularly
looking for trouble. Do realize that you must keep your common sense
turned on here.

Our geometric approach to the calculus of variations will allow us to
go beyond the standard treatment to be found in most mathematical
physics books. In particular, we will be able to give a proof of the multi-
plier rule. We will pay particular attention to what spaces we are in. The
usual discussions, say, in classical mechanics, jump between several dif-
ferent spaces with no fanfare or change in notation. This will occasion-
ally make things a bit harder for us to prove. Easy proofs sometimes
reflect the fact that there are many wrong ways to get the right answer.
In this section the promise implicit in the dedication is kept.

Hamilton's principle

One formulation of the classical mechanics of unconstrained conserva-
tive systems asserts that there exists a Lagrangian function L of the state
variables (such as position and velocity) and possibly time, and that the
dynamical behavior of the mechanical system is such that the integral

Ldt
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is extremized. This integral is called the action. We will begin with this
.special problem to gain familiarity with our geometric approach. (I as-
sume that you have already seen the standard approach.)

A line integral makes geometric sense only if its integrand is a 1-form.
Is L dt a 1-form? Well, this is the wrong question. The correct question
is: On what space is L dt a 1-form? It is not a 1-form on configuration
space, the space of positions, because it can have a nonlinear dependence
on the velocities. A 1-form must be a linear operator on the tangent vec-
tors. The correct space for L dt is the line-element contact bundle of con-
figuration space. This space has natural coordinates (t, q, 4), and on this
space L dt is an honest 1-form. This space is a contact bundle, and only
those curves on which the contact 1-forms

a=dq-qdt
pull back to zero represent possible motions of the system. This con-
strains the variations of the curves used to compute the action integral,
and the constraints are anholonomic. That is, they allow you a different
number of degrees of freedom of finite motions as opposed to infinitesi-
mal motions, as in the car-parking example of Section 9.

We now vary the integral by pushing the curve around a little bit. We
can describe this by a vector v defined along the original, undeformed
curve

v=Q(t) a +Q(t) (34.1)
q q

For simplicity we consider variations that keep time fixed; this is usually
written into Hamilton's principle. Only the curve through the space
(t, q, q) makes physical sense, not its parametrization.

The variation of the action is given by

£v(L dt),r

(recall equation 29.1), and because we want variations with fixed end
conditions, we can drop exact 1-forms to find

Jr
£v(Ldt) = Jr vJ (dLdt)

=Jr [Qidt+Qdt] .

q q

Now, to limit the variations to those satisfying the constraint condition,
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r

Figure 34.1. The deformation of a path constrained by the 1-form a.

the vector field v must move the path into another path that is parallel to
the a, as shown in Figure 34.1. An easier view is to use the integral curves
of v to pull the 1-forms a back instead of pushing the path forward. The
a pulled back from a parameter change of E are

The condition

gives us

as the condition that our variations must satisfy. If we take the v given in
equation 34.1 and extend it smoothly to the neighborhood of the curve,
we can write this

yJ (dQ-Qdt)=0. (34.2)

The final result will be independent of this extension. We are only using it
as a trick to avoid introducing some new notation.
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We can now use this to simplify our integral. Recall that integration is
equivalent to contracting the integrand with -y. Thus we can use equation
34.2 under the integral sign to turn Q dt into dQ to find

£ c Ldt=Jr [Qdt+/idQ].
r

Now integrate the second term by parts and discard the perfect differ-
ential, to find

£ Jr Ldt= Jr Q aL dt-d L
q q

The functions Q(t) can be chosen freely, and so the integrand must van-
ish at each point. If - is the tangent to the path, then we must have

[aL aL
lyJ

aq
dt-d

aq
=0,

which together with the constraints

J(dq-4dt)=0

give us 2n constraints on the 2n components of the line element. These
are the usual Euler-Lagrange equations. Note that only values of v along
the curve appear.

Now look at what we have done. We have found conditions on the
extremals of the line integral f L dt subject to constraints dq - q dt. But
we have not found the solution to the general problem of this type. The
problem here is special. First, the integrand was not a general 1-form:
L dt is special, since its exterior derivative dL dt is in the differential ideal
generated by L dt. L dt satisfies the condition

L dt A d(L dt) = 0.

Second, although the constraint 1-form is a general 1-form, to be sure, it
is special because it is in canonical form in the same coordinates in which
L dt is in canonical form. That is, da is also in the ideal generated by
L dt. It is these two special properties that allow the Euler-Lagrange
equations to be derived by the simple trick of integrating by parts. In
general this will not work.

Example: In 1R3, (t, q, q), we cannot find the extrema of

(Ldt+Rdq)
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subject to the constraint

-'J (dq-qdt)=0,

by integrating by parts. The term

-- Qdq
aq

is not reducible.

Fortunately, the general case is easily handled by the method of Lagrange
multipliers. Few books bother to prove this, however. We will do so in
the next section. Although I try to skip proofs that are easily accessible
or uninstructive, this one is neither.

Unconstrained integrals

For fun, let us look first at the case of an integral f co subject to no con-
straints. Although this might seem to be a reasonable problem, it turns
out to be surprisingly pathological.

Take a manifold M with a sufficiently smooth 1-form co defined on it.
For given points A and B in M, we seek a curve F from A to B such that
the integral

does not vary in linear order as F is deformed. Let s be the parameter
along the curve. Clearly I does not depend on the parametrization, and
we will use the same range of parametrization for all the deformed curves
as well. We will call the tangent vector to the curve 'y,

r = F as

the pushforward of the basis vector alas. Let v be a vector field defined
along IF, representing a possible deformation. From the results of Sec-
tion 29 we must have

J dw+vJ W=O.cr Lv
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Since we demand that all deformed paths still go from A to B, v must
vanish at the endpoints, and so the boundary term vanishes. We have,
from the definition of a line integral,

c vJ dw= f b vJ dw) ds=0,
a

for all v. Since the vector v at different points can take arbitrary values,
we must have, for all v,

-'J vJ dw=O,

and so we must have

y J dw = 0. (34.3)

This is an ordinary differential equation for P.

Example: In M= IR3 we consider the 1-form

Co = (y2+z2) dx

and seek a path P which extremizes f co. The path must satisfy equa-
tion 34.3, and we calculate

dw=2ydydx+2zdzdx,

a a a

ax ay az,

so that

J dw=2yydx-2yxdy+2zzdx-2zkdz.

Setting all three components of this equal to zero, we find equations

yv + zz = 0, 2yx = o, 2zx=0. (34.4)

In particular, the curve s - (s, 0, 0) is a trivial extremal. Others will
be discussed below.

The geometry of the solutions

The geometry of equation 34.3 was covered in Sections 3 and 22 when we
discussed 2-forms. Odd- and even-dimension spaces behave quite differ-
ently. If dw is of maximal rank, then in an even-dimension space we have
no solutions. The kernel of a linear operator is the subspace satisfying
equation 34.3. Maximal rank means the kernel is as small as possible.
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Figure 34.2.

Figure 34.3.

Although at first puzzling, the condition dw 0 describes a situation with
a nonzero curl, and the more we circulate around and around, the more
(or less) our line integral picks up. On the other hand, in an odd-
dimension space there is a single allowed direction at every point (see
Figure 34.2).

Example: For the preceding example we have a dw of maximal
rank. The kernel will be one-dimensional, given by equation 34.4.
For yz 0 we have this kernel specified by the vector

a a
ly =zay -yaz'

which leads to circular curves around the x-axis. If both y and z
vanish, then so does dw, and a singular solution along the x-axis
appears (see Figure 34.3).

The usual two-point problem considered in the calculus of variations has
no general solutions here. Spaces of even dimension are pathological.
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In spaces of odd dimension, the initial-value problem is soluble, pro-
vided that just one end condition is imposed. Fortunately, these peculiar-
ities disappear when constraints enter, as they will in the contact bundles
of mechanics. [See Pars (1962), Section 3.2, for more on the peculiarities
of the calculus of variations of line integrals.]

Classical notation

To practice with our notation, let us solve this problem in the style of
mathematical physics courses. We have an integral

I= J Wµ dx µ=
J

W1X µ ds

and the Euler-Lagrange equations for this are

d
Wµ, VXµ =

as
Wv,

where remember that Wµ depends on the x. This equation becomes

Wµ,UXV'=Wv,µx

or

µ-

which is just equation 34.3, written out in components.

Parameter-dependent integrals

Sometimes we need to deal with line integrals in which the parameter
enters explicitly, say, in the form

J
[f(x,y,...,s)x+...] ds.

To deal with this case geometrically, we extend the manifold M, adding
one more dimension for the parameter s. We need to do this because
f dx+ is not a 1-form on M. It depends explicitly on the path. Call this
larger space N. It has a natural projection on the original space M. If we
use coordinates (q) for the space M, then we can use coordinates (s, q)
for N. The natural projection here is 7r: M-N; (s, q) - (q). This map 7r
lets you lift 1-forms from M to N. Lifting our 1-form up to N

we can consider the integral in N, 16), and this integral has a value that
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agrees with our original integral. On N, now, Co is a true 1-form. There
s is just another coordinate, and we have a canonical problem on the
space N.

Symmetries

Suppose that we have an infinitesimal symmetry of our problem, a vector
field k such that

£kw=0.

Then clearly

Along any piece of a curve P that satisfies the Euler-Lagrange equations,

- Jdw=O.

But

kJ w=0.
r £kW= r d(kJ kJ dw= L

Thus the quantity (kJ w) is constant along the solution curves. This is a
simple example of a very general result called Noether's Theorem, relat-
ing infinitesimal symmetries and conservation laws.

35. Constrained variations

Since Hamilton's variational principle can be handled by ad hoc methods,
the general problem of constraints in the calculus of variations is of phys-
ical interest mainly for the light it sheds on symmetries and conservation
laws. Also, I present it here to show how it is handled by the use of differ-
ential forms, especially since a proof is very hard to find. It is called the
problem of Lagrange. The answer is simple and pretty.

Holonomic constraints

Here we have a constraint given by some function (or perhaps several)
0: M -+ R, such that allowed paths must lie in the 0 = 0 surface. Although
we can in principle choose new coordinates such that we can define a
smaller manifold, one in which there are no constraints, quite often that
is not convenient. Again, we look at the integral
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I=Jr w

and demand that its variation vanish

£ r w=0

for all deformations consistent with the constraint,

=0;

that is,

vJdo=O.

This is a Lagrange multiplier problem in standard form. The variation at
any point of the integral must vanish

vJ-Jdw=0
for all v satisfying the condition

vJdo=O,

which implies that there exists a X, a function of s, such that along the
curve

'' J dw = Xdg,

and, of course, the curve must also satisfy

0=0.
These equations determine both the curve and the Lagrange multiplier X.

Anholonomic constraints

For this case the constraint has the form

J a=0 (35.1)

for some given 1-form (or several) a. This is a far trickier possibility. At
any point there is no local constraint, such as the tempting condition

vJ a=0 [NO!]

despite the proof offered in Goldstein (1959). Still, the constraint does
really constrain. The correct condition is that equation 35.1 must be pre-
served by the deformation. The vector field 'y can be extended off the
curve using the condition
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Figure 35.1. Extending the tangent vector u off the curve by Lie transport.

sketched in Figure 35.1. This amounts to choosing a simple parametriza-
tion for the deformed integrals. Since the value of the integral is parame-
trization-independent, this is allowed. The constraint condition is thus

(35.2)

The difficulty is that this expression involves not just derivatives along
the curve (which we could get rid of if we integrated by parts), but trans-
verse derivatives as well.

A Lagrange multiplier again does the trick, this time in the form

J d(w+Xa)=0,

and, along with

''J a=0,

these again determine the path P. [An amazing number of good and care-
ful books, such as Courant and Hilbert (1953) and Gelfand and Fomin
(1963), decline to do more than to assert this result. I adapted the follow-
ing proof from Akhiezer (1962). See also Pars (1962).] In outline, we
must show that we can find a Lagrange multiplier X such that for a con-
strained minimum of the original problem, we have an unconstrained
minimum for the problem with 1-form co + Xa.

The argument goes as follows. We first show that a vector field w can
be chosen such that all deformations v (vector fields along P) can be writ-
ten in the form

vc satisfy the constraint and is a scalar function
that makes up for the degree of freedom lost in the constraint (Figure
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Figure 35.2. Motions along w restore the degree of freedom removed by the constraint.

35.2). Then we will show that for all deformations in this form, a X can
be found independent of and v.

The first result is shown as follows. Let v be any given deformation.
Then the deformation v - w satisfies the constraint if we have

-'J a=O.

To simplify matters we pick w to satisfy

wJ a=0,

a condition independent of v. Expanding, we have

JwJda,
and we have the explicit result that

JwJda

0,

(35.3)

and da cannot vanish or the constraint would be integrable.
Having shown that all deformations can be written as vc + w, we now

study the demand that the integral be an extremum for all deformations

J

Since the original path is assumed to be extremal for deformations satis-
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fying the constraint, we have

J
Since vc satisfies the constraint,

X J 0.

Finally

J
because the original path satisfies the constraint. Thus we have to satisfy
only

J

We use the Cartan identity and discard the exact differential to find

J wJdw+X J wJda+ J wJdXAa=0, (35.4)

and factors out of the expression. The third term vanishes because
either ' or w must hit a. Thus we have the explicit expression for X,
clearly independent of :

J w J dw
JwJda

If we have several constraint 1-forms, we handle them by introducing
several w fields and a corresponding number of Lagrange multipliers.
The Lagrange multipliers may be found either from the preceding equa-
tion or directly from the new variational problem.

When the constraints a involve higher derivatives, equation 35.3 can-
not be satisfied. Our procedure is easily modified, however. The w rep-
resenting first derivatives will satisfy 35.3, and their can be solved for
directly. The second derivatives can then be solved for, and so on. The
constraint equations do not separate, but they stratify. The only other
change is in equation 35.4. The third term need not vanish, but will only
involve derivatives along the original curve. The equations for the A
become differential equations rather than algebraic equations.

Example: The dynamics of a conservative system is given by a vari-
ational principle based on the functional

r
L(q, q, t) dt
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subject to the set of constraints

J (4 dt-dq)=0.

A suitable set of vectors w is clearly a/aq. We have

dw = aL dgdt+L dqdt,
q q

d« = dq dt,

=Qa +Qa.+at,
q q

and so

aL

The equivalent unconstrained problem is

Jr [Ldt_-(4dt_d)].
q

The Euler-Lagrange equations for this problem are

-yJ [dLdt_d()(4dt_d)_d4dt];

that is

-'J aL dgdt-d L (qdt-dq) =0.
q q

Now

-'J dgdt= yJ (dq-qdt) dt= -(dq-gdt)( J dt

and so we have

J
Lq

q

The extremals are thus integral curves of the 1-forms

aL dt-d 7aL
q q

and

dq-qdt.
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Symmetries

Suppose that we have an infinitesimal symmetry as in Section 34

£kW=0, £ka=0.

It must be a symmetry of the constraints as well. This makes it a sym-
metry of the entire problem, including the Lagrange multiplier A. The
problem thus has the same form as that in the last section. It is only
necessary that the Lie derivative of the a be in the ideal generated by a,
because

J a=0
is true along the path. This lets us bring the A inside the Lie differentia-
tion as well, and we have

£k(W+ Aa) C f (a).

From this we find

Jr {d[kJ (w+Aa)]+kJd(co+Xa))=0.

The second term is again just the Euler-Lagrange equation, and so van-
ishes, and we find

k J (co + Aa) = constant

along the solution curves. Again a symmetry leads to a conservation law.
Note that it was necessary to put the variational problem into Lagrange-
multiplier form for this.

36. Variations of multiple integrals

We now extend the calculus of variations from line integrals to integrals
of any dimension. The geometric setting is a fiber bundle it : M-+ N, with
the objects of inquiry being sections of this bundle, 0: N-+ M (see Figure
36.1). The functional on these sections is given by an n-form CO on M,
where n is the dimension of N, integrated over some region F in N:

fi(r)
w=Jr w.

The cross sections may be subject to constraints, the general anholo-
nomic constraints being given by differential forms a such that

* 0.
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Figure 36.1. A field represented by a section of a fiber bundle.

Example: The description of a field in spacetime by a variational
principle takes' place in a bundle whose points consist of a point in
spacetime, a value of the field variable i/i, and as many of its partial
derivatives as are needed. For a field Lagrangian using only first
derivatives, we need the four derivatives as addi-
tional variables. The bundle is given by

7r: (t, x, y, z, r, s, u, v) -p (t , x, y, Z)

and cross sections by

cp : (t, x, y, z) -+ (t, x, y, z, , R, S, U, V)

where S, R, etc., are all functions of t, x, y, z.
The cross sections of interest are integral submanifolds of the

contact 1-form

a=rdt+sdx+udy+vdz-dO,
which forces R to be i ' r and so on. The action integral is given by

I(c) _
r

The variational problem is to make the integral

O(r)

w

stationary for all variations v that satisfy the constraint

*a=0.
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For simplicity we deal with only a single constraint. If we have several
constraints, we need only another layer of indices. In the bundle the
constraint is

uJ £va=0,

where the u are n vectors that are pushforwards under 0 of a basis for N.
They are the analogs of -y-

We proceed as before. We factor deformations into the form

v=VC

where vc satisfies the constraint, and the n vectors w satisfy

wJ a=0, (36.1)

wJ w=0. (36.2)

Each constraint requires n vectors w. The modifications necessary when
36.1 cannot be satisfied were discussed in Section 35.

Example: For a section 1R2 -p 1R3, an arbitrary section requires two
additional adjustments, the x and y derivatives, say, to satisfy the
contact constraint

df-pdx-qdy.

The functions are now determined by the n simultaneous equations

uaJ wJ da= uaJ

and provided the 1-forms w J da are nonsingular, these equations can be
solved.

We now show that we can write this as an unconstrained problem by
using Lagrange multipliers,

I'(0) = (w+XAa). (36.3)
fi(r)

Since 0* a= 0, this integrand has the same value for all constrained
variations as our original integrand. Suppose 0 is an extremum of such
constrained variations. We must show that we can pick X, now an
(n-1)-form, such that the functional in equation 36.3 is extremal for all
variations.

As before, we write the deformation in terms of a part that satisfies the
constraint plus a remainder, and we examine the requirement
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UJ (w+XAa)=0, (36.4)

where

is a pushforward basis n-vector. Now

UJ £v_W=09

because vC is a constrained variation, and the section 0 is assumed to be a
solution of the original problem. Also

(36.5)

The first term vanishes because

uJ a=0,

and one of the n us- in U must hit a. The second term in equation 36.5
vanishes because vc satisfies the constraint

uJ

Thus our X will be independent of vc.
Look at the remaining part of equation 36.4:

UJ Aa)

= UJ [ wJ (dw+dXAa+(-)n-1XAda)+dUwJ (w+XAa)]},

giving us n equations

UJ [wJ dw+XA(wJ da)+(-)n-1(wi X)Ada} =0.

The (n-1)-form X can be chosen to be the pullback of an (n-1)-form
on N, and will then have exactly n unknown coefficients, for which we
have n linear inhomogeneous equations. In general these can be solved,
and the variational problem can then be written in Lagrange-multiplier
form, as in equation 36.3.

Example: We continue the example of the field >G. We extremize

L0,

where

0=dtdxdydz.

The constraint is
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a=pdq-d1i,

where the coordinates p are the gradients (r, s, u, v) used before.
Vectors that satisfy equations 36.1 and 36.2 are

a
ap .

Since the Lagrange multiplier is a pullback from N, it satisfies

wJ X=0,

and so we have

Here

and

Thus

Also,

UJ {wJ dw+XA(wJ da)) =0.

dw = aLdpA0+ aLd1A0

p

da = dp dq

wJ dw= a J dw= aL0.
p p

wJ da=dq;

so we have

UJ (o+xtci)q =0.
p

The 3-form X can be found by inspection.

X=(-)n L0,ap

where

and we have used

e=a J6,
q

dq`e; = 6j 'O

(equation 23.4). Thus the field-theory Lagrangian is equivalent to
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the free variational problem that uses the functional

.L (pi dql-d)A0r[Lo_ ap

The Euler-Lagrange equations follow as before. We must have

UJ [dLo_d()(Pl dq`-d1)A0- aL dpi dq`0 =0,
p p

and so

UJ Lp
Use

to find

dpAO =0.-d aL (pi dq'-di)A0-
app p

d, A 0 = (d -p dq) A 0

{ui Ld
aL

0 A(pi
p

and so the solution is given by

UJ [--o_d()o] =0,
p

equivalent to the classical Euler-Lagrange equations.

Conservation laws

Again the presence of a symmetry leads to a conservation law. Suppose
that we have a vector k on M such that

Since we have

we also have

£kw=0 and £ka=0.

uJ a=0,

UJ£k(w+XAa)=0.
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To find the conservation law, integrate over an arbitrary region IF, and,
with 0 a solution, we have

d[kJ (w+XAa)]+ kJd(w+XAa)=0.
fi(r) fi(r)

The second term in the integrand is the Euler-Lagrange equation and so
vanishes; and since the region is arbitrary, we must have

d[kJ (w+XAc )]=0.

This is a conservation law on N when pulled back using 0. Note again
how the Lagrange-multiplier form is essential.

37. Holonomy and thermodynamics

In Section 19 we discussed how a set of vector fields could determine a
submanifold by the requirement that the submanifold contain the vector
fields (see Figure 37.1). The criterion that a set of vector fields must meet
in order to define submanifolds was given by the Frobenius Theorem: the
vector fields must be closed under the Lie bracket. We have also dis-
cussed submanifolds defined by ideals of differential forms, with the
requirement that the forms pull back to zero on the submanifold (see
Figure 37.2). There is a dual version of the Frobenius Theorem. To de-
termine a submanifold, the ideal of differential forms generated by the
given forms must be closed under exterior differentiation.

With the Frobenius Theorem and the tools of the exterior calculus, we
can now finish our discussion of thermodynamics started in Section 16.
We saw there that a thermodynamic system is described by an n-surface
in a '(2n + 1)-dimensional contact bundle. This is the geometric content
of the first law. The local properties of such a system are represented by
the contact element to this surface, which in turn is described by n(n + 1)
partial derivatives. This local theory could be called differential thermo-
dynamics. Half of these coefficients are constrained by the geometric
structure of thermodynamics, and half reflect the particular properties of
the system itself.

These constraints, called Maxwell relations, are often proven by using
a Legendre transformation to change the coordinates so that the result
is obvious from the symmetry of partial derivatives.

Example: Look at the energy 2-surface as the graph of a map
1R2 -+ 1R3; (S, V) - (U, S, V), with partial derivatives defined by



S
IC

246 V. Applications of the exterior calculus

Figure 37.1. A submanifold defined by a pair of vector fields.

Figure 37.2. A submanifold defined by an ideal of differential forms.

au __ aU_ -
aS

T,
aV

P.

From the symmetry of partial derivatives, we have also

aT aP

aVas
These are thus three conditions that relate the six partial derivatives
of U, T, and P.

The exterior calculus gives us a nice geometric treatment of these re-
lations in the more complicated situation where independent variables
other than S and V are chosen. Look at systems having a single mechani-
cal degree of freedom, with a contact structure given by
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a=dU-TdS+PdV.

247

Locally the system can be described by a two-dimensional surface ele-
ment. Let us write this as the linear space spanned by the two vectors

A=a++b+c
av aT as aP

and

B=daU+aT+eas+f
aV.

These vectors have been normalized to have unit T components, and
have been oriented to be in a constant V and a constant P direction.

To be a piece of the surface describing a thermodynamic system, these
vectors must lie in the zero surface of a, and so we must have

AJa=a-A=O,
These conditions give us

a = bT and d = eT- fP.

This reduces the number of independent coefficients from six to four.
The four remaining coefficients, b, c, e, and f, have simple physical in-

terpretations. Let Cv be the heat capacity at constant volume. The vector
A represents displacements at constant volume. The heat capacity is the
ratio of Ttimes the entropy change to the temperature change. Similarly,
the thermal stress coefficient measures the pressure change at constant
volume due to a changing temperature, which we write as (dP/dT)v. The
vector A can thus be written

_a Cya dP a a
A aT+ T aS+ dT y aP+Cv aU

Likewise,

_ a CP a dV a dV a
B aT+ T aS+ (dT P aV+

[Cp_p
dT P aU

There is one final thermodynamic requirement. The ideal must be a
differential ideal, and we have to add da to the list of generators of the
ideal. This imposes a final condition

BJAJda=O.

We have

AJ da=AJ (-dTdS+dPdV) _ -dS+(Cy/T) dT+(dP/dT)vdV,
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and so

(C'v-CP)/T+ dV (dP) =0.
dT P dT v

This is a thermodynamic identity, independent of the material comprising
the system. A relation such as this is called a Maxwell relation. Because
of the Maxwell relations, only three independent parameters are needed
to describe the linear approximation to a thermodynamic system.

This completes our discussion of thermodynamics. The geometry is just
that of an n-surface in (2n+1)-space, with its local structure described
by the contact element to the surface. Note that all thermodynamic dif-
ferentials have been turned into honest differential forms.

38. Exterior differential systems

We can now extend our treatment of single partial differential equations
(pdes) (Section 32) to systems of partial differential equations. As with a
single pde, the appropriate geometric structure is an ideal of differential
forms closed under exterior multiplication and exterior differentiation.
A space with such an ideal is called an exterior differential system.

Examples: A dynamical system can be specified in two ways. Either
give a vector field, which determines parametrized curves as inte-
gral curves, or give a set of (n-1) 1-forms, which have unpara-
metrized curves as integral curves (Figure 38.1). The classical way
of writing the latter systems is in the form

pdx: qdy: rdz,

which is equivalent to the system generated by the two 1-forms

pdy-qdx and rdy-qdz.

The example without peer for this is the heat equation

ao a20
at -K axe

I use 0 for temperature, instead of T, in order to save T for the t
component of vectors. As a first-order system, we have

u=K4,X d[4dx+udt]=0. (38.1)

Now look at the 4-space with coordinates (t, x, 0, u) and the two
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Figure 38.1. Two ways to specify a dynamical system: either as the paremetrized integral
curves of a vector field; or as integral submanifolds of an ideal of differential forms.

2-forms

w=dodx+dudt, a=udxdt-Kdgdt.

The second of these is generated, roughly, by "multiplying" by
dxdt; remember that exterior multiplication is anticommutative.
The first is generated by exterior differentiation of equation 38.1. If
we have a two-dimensional submanifold

(D: R2 -+ 1R4; (t, x)'-' (t, x, 0, u),

then the condition

is just

u = Ko, x .

Thus the integral submanifolds of the ideal generated by the 2-forms
w and a are the solutions to the heat equation. It is convenient to
study the heat equation by studying the geometry of this ideal.

Note that this ideal is closed under exterior differentiation:

da=dudxdt= -dxnw.

The wave equation

ago _ a2
ate - axe
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written as the system

1,x=u, 1,t=v,
u, t = v, x, u, x = v, t ,

translates into the ideal generated by the four 2-forms

dbdt-udxdt,

d 1'dx+vdxdt,

dudx+dvdt,

dudt+dvdx.

We now check that this is a differential ideal:

-dudxdt=dx(dudt+dvdx)+dvdxdt

_ -dt(dudt+dvdx).

Had we been awake we would have noticed that we are in a con-
tact manifold, with contact 1-form

d1-udx-vdt.
This 1-form generates the first two 2-forms and gives us instead the
ideal

d1-udx-vdt, dudx+dvdt,

dudt+dvdx.

We will see in a bit that this is a better exterior differential system
for representing the wave equation. If we were not interested in i'
itself, then the ideal consisting of the last two 2-forms could be
studied in a space of only four dimensions.

Electrodynamics

Maxwell's equations in units with c =1 (details will come in Section 42) are

aB

aE

at '
= -VxE

at '
= V X B - 47rJ
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To write these as an exterior differential system, we go to a ten-dimensional
space with coordinates (t, x, ..., Ex, ..., Bx, ...) . Let our missing indices
run over just x, y, and z. The equation

VB=O

is equivalent to the 4-form

(dBx dy dz + dBy dz dx+ dBz dx dy) dt.

If we use the 3-space volume element (Section 23)

0=dxdydz

and the contractions

6x= ax A'-,

the preceding 4-form is

dB 0 dt.

Continuing in this way, we can represent Maxwell's equations by the
ideal generated by the eight 4-forms

dB1 0+(dEdq) dtdq`,

dE' 6 - (dB dq) dt dq' + 47rJ` dt 0,
(38.2)

dB 0 dt,

dEedt-4irpedt.

Just as with the wave equation, we can find simpler generators for this
idea. We play with the first three forms, using

dB19 = dBJ
.

8 0 = dB101 dq'

to write them

[ (dB 0) + (dE dq) dt] dq'.

An ideal containing the single 3-form

dB0+dEdgdt

generates the first three 4-forms above. It also generates the one given in
equation 38.2. Likewise the 3-form
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dE0-dBdgdt-47rJOdt-47rpO

generates the other four 4-forms.
The new ideal generated by these two 3-forms is closed under exterior

multiplication, provided that the functions J and p satisfy

dJOdt+dp0=0,

which is just the condition of charge conservation. Not only is this ideal
with two 3-forms simpler, but there are defects in the original ideal that
make it unusable. Try, for example, to show that the ideal generated by
4-forms is closed under exterior differentiation.

One advantage to using a differential ideal representation for a physi-
cal system rather than a system of pdes is that the distinction between
dependent and independent variables can be easily forgotten. This leads
to the possibility of simplifying a system of pdes by choosing different
variables to be the independent variables. A given differential ideal thus
represents a large family of different systems of pdes.

Example: Isentropic fluid flow in one space dimension is described
by the conservation of mass

P,t+pu,X+up,X=0

and conservation of momentum

pu,t+puu,X+C2p,X=0,

where c is the sound speed. These can be represented by the ideal

dxdp+pdudt+udpdt,

p dxdu+ pududt+c2dpdt.

As far as the ideal is concerned, one could as well take p and u to be
the independent variables, leading to equations

x,u+pt'P-ut,u=0,
px,P-put, P+c2 t,u=0.

Note that these are linear equations. Thus solutions of the original
set cannot be superposed as functions of x and t, but they can be
superposed as functions of p and u! This is called a hodograph
transformation. This trick works for any nonlinear system that is
linear in the derivatives.
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Figure 38.2.

A differential ideal is not precisely equivalent to a system of pdes. The
ideal may allow singular solutions for which the original choice of inde-
pendent variables is not appropriate. Far from being a defect, this is a
natural way of including singular solutions, such as shock waves, in an
orderly manner.

Example: The time-honored example of a system with a shock-
wave solution is the ordinary differential equation

Ey"+y'-1=0

with boundary conditions

.Y(0)=0, y(1)=2,

in the limit E -* 0. The solution is sketched in Figure 38.2. Define

then the equation can be represented by the ideal generated by

dy-pdx,
(38.3)

Edp+(p-1) dx.

An alternative ideal, equivalent except for singular solutions, is to
use not the slope, which blows up at a shock wave, but the angle 0
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defined by replacing equation 38.3 with

a = sin O dx - cos Ody.

The original differential equation then goes over to the 1-form gen-
erator

13= Ed0+cos 0(sin 0-cos 0) dx.

When E = 0, this ideal has integral submanifolds of three types

y=x+C,

7r
0 = 2 , x = constant,

and

x = constant, y = constant.

The E = 0 shock-wave solution can be constructed from pieces of
these.

Regular integral submanifolds

Many different ideals can represent a physical system. Of particular util-
ity are those for which the integral submanifolds are regular, by which
we mean that the local construction of the integral submanifolds pro-
ceeds in an orderly fashion, as follows. Pick a curve satisfying the 1-
forms in the ideal (with a great deal of freedom here, corresponding to
different allowable boundary conditions), then extend this curve to a 2-
surface that also satisfies the 2-forms in the ideal (and with less freedom),
and so on up to the largest dimension, which is the dimension of the
space of independent variables. Note the dual viewpoint here. Instead of
pulling back the forms, we are pushing forward the tangent vectors. Reg-
ular integral submanifolds arise when this process ends with just the right
number of conditions on the submanifold.

Examples: Look at Laplace's equation in two space dimensions. It
is equivalent to the ideal generated by

d4-pdx-qdy, (38.4)

dpdx+dgdy, (38.5)

dp dy - dq dx. (38.6)
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Suppose we are given boundary conditions along the line y = 0.
That is, we want an integral submanifold that starts from the curve

-Y: x - (x, y, p, q, /) = (x, 0, V(x), Q(x), (D (x)),

which contains two arbitrary functions. These functions allow us
to match the boundary conditions. This curve is a one-dimensional
integral submanifold, because

'y*.(dc-pdx-qdy)=0.
Now, consider pushing out into the y direction. Since here we

have two independent variables, we expect the extension into the y
direction to be unique. Look at the point on the curve

(x, y, p, q, 0) = (X, 0, V(X), Q(X), c(X))

The tangent to the original curve at this point is

u = ax + "(x) a + Q'(X) a + '(x) ap q

Take a vector in the y direction,

v=a+Aa +Ba+Ca.
p q

We have three conditions on v:

vJ (dg-pdx-qdy)=0,

vJ uJ (dpdx+dqdy)=0,

vJ uJ (dpdy-dqdx)=0.

From these v is uniquely determined (up to an overall length, which
we have fixed by picking the y component to be unity)

v=a+Q'(x)a-"(X)a+Q(x)a
y p q

The ideal given by equations 38.4, 38.5, and 38.6 thus has regular
two-dimensional integral submanifolds.

Because v was uniquely determined, there are no three-dimen-
sional integral submanifolds. If there were any, then another in-
dependent two-dimensional integral submanifold could be found.
This contradicts the fact that v was uniquely determined.
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The ideals for the wave equation and Maxwell's equations in their
first forms in our examples do not have regular integral submani-
folds.

Suppose we are given a 1-form co and want to find functions a and
such that

ado=w.

If we take the exterior derivative of both sides, and then wedge it
with the original equation, we see that the left-hand side vanishes
identically. Thus a necessary condition for this problem to be sol-
uble is

wAdw=O.

Likewise we must also have

dw A dw = 0.

Look at the special case

w=xdy+2ydx,

which satisfies the given conditions. This is equivalent to the ex-
terior differential system generated by

ado-xdy-2ydx
and

dadf+dxdy

in four dimensions. In order to make it a differential ideal, we had
to explicitly include the exterior derivative of the first form in the
generators. The original problem will be soluble, provided that this
ideal has regular two-dimensional integral submanifolds.

To see that the ideal does indeed have regular integral 2-mani-
folds, we go to a typical point and try to pick two linearly indepen-
dent vectors that will lie in the integral manifold, and see to what
degree they are constrained by the ideal. Start with a vector

u=Aaa +B +C--+D a
.

a

a ay

It must satisfy
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aB-xD-2yC=O.

The length of u is arbitrary; let us normalize it by taking C=1.
Then we have two arbitrary components, say, A and D, with B
given by

B= xD+2y
a

Now, pick a second vector,

v=Eaa +Faa +Gxa +Hay

It must satisfy

aF-xH- 2yG = 0,

and, from the 2-form generator, it must satisfy

AF-EB+CH-GD=O.

Again the length is arbitrary; we set H=1. Any vector proportional
to u will be a trivial solution; we rule this out by setting G = 0. This
leaves us two equations:

aF- x = 0,

xD+2yAF- E+1=0.
a

These have a unique solution

xF=
a

_ xA + a
E

xD+2y

Thus our ideal does have regular integral 2-manifolds; so our origi-
nal problem is soluble in the neighborhood of a typical point. In
fact, we have

x3d(yx-2)=xdy-2ydx.

This is a special case of the normal form for 1-forms discussed in
Section 26.
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Problems

38.1 Show that the ideal of 4-forms for Maxwell's equations does not have regu-
lar integral submanifolds.

38.2 Consider a set of 1-forms (called a Pfaffian system) that satisfy

w'ndwi=0.

Show that these form a differential ideal.
38.3 Generalize the last example, first to arbitrary forms in two dimensions, and

then to higher dimensions.

39. Symmetries and similarity solutions

One of the main uses of the representation of a system of pdes as an ideal
of differential forms is to study the symmetries of the system. We will
concentrate here on continuous families of symmetries. An infinitesimal
transformation will be represented by a vector field on the space where
the differential ideal lives. Using the ideal of differential forms will make
it easy for us to study even those symmetries that mix up dependent and
independent variables. Also, by using the ideal to represent the system,
we automatically achieve a treatment of its symmetries that is indepen-
dent of any special choice of coordinates. [The basic reference for this is
Harrison and Estabrook (1971).]

Isovectors

A transformation is a symmetry if it takes one solution into itself or
another solution. This means that the ideal representing the exterior dif-
ferential system must be invariant under the transformation. If S is a vec-
tor field that is an infinitesimal symmetry, then we must have, for any
differential form a in 5,

£SaE 5.

Such vector fields are called isovectors.

Examples: The vector field

is an isovector of the heat-equation ideal,

0=udxdt-d4dt,
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a=dodx+dudt,
taking K =1 for simplicity. We have, in fact

£s 0 = 3u dx dt - 3 dg dt = 30,

£sa2dodx+2dudt=2a.

Not all symmetries are obvious. Another isovector for the heat-
equation ideal is

S= -2t ax +xo a + (0+xu)
--

We expect that the fluid-flow ideal of Section 38,

a=dxdp+pdudt+udpdt,

= pdxdu+pududt+c2dpdt,

will have a Galilean symmetry corresponding to adding a uni-
form velocity to everything. This shears worldlines by an operator
t(a/ax), translates velocities by an operator a/au, and leaves den-
sities unchanged. Thus we expect

a aS=t
+ax au

to be an isovector, and it is.

We can search systematically and exhaustively for isovectors by methods
similar to those used to search for Killing vector fields. We find a set of
linear pdes for the components of the isovector. The set is overdeter-
mined, and will have only a few, special solutions, if any. It is tedious,
but usually routine to find its solutions.

Example: For the heat-equation ideal given earlier we look for an
isovector

that contains four unknown functions T, X, U, and 4). These func-
tions must satisfy the linear pdes

Tu=O, (39.1)
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(39.2)

T't-X,u=O, Tx-4,u+u(X,u+Tt)=0,
O+X,x-Uu-Tt=0,

(D,t-Ux-u(X,t+U0)=0,

U-Cb,x+u(X x-(.D ,0)+u2X0,

which we find from the equations

£s(udxdt-dodt) =0mod J,

£s (dg5 dx + du dt) = 0 mod f,

by using the ideal to eliminate the 2-forms dt do and dx do. Several
pages of work are needed to get these pdes. We solve these equa-
tions by replacing the dependent variables with more variables that
depend on fewer, independent variables. For example, from equa-
tions 39.1 and 39.2 we have

D,uu=0;

so we can write c in terms of new variables A and B as

(D (t, x, u, 0)=A(t,x, 0)+uB(t,x, 0).

The process continues until the new variables introduced depend on
nothing at all. Then they are just what we call constants of integra-
tion. In this way we can find a complete list of isovectors for the
heat equation:

a as,=at s2=ax

a a a a a
au, S4=2tat+xax-uau

SS = -2t a+xc-(0+ux)
x au,

S6=2t2aa +2xt
a +(Zx2+t) u-(Zx2u+3ut+xO) u,

and

s' = f(x, t)
a

+
of a

a ax au '
for any function f satisfying
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Any linear combination of these is also an isovector. It would have
been difficult to find these symmetries even in the geometric lan-
guage of Section 31.

In the preceding example we see that the heat equation has an isovector
that depends on an arbitrary function. This reflects the special symmetry
of superposition. Any equation that has a superposition principle, not
necessarily in the variables originally used, will have such an isovector.
Recall the nonobvious superposition principle for the fluid flow ideal
given earlier.

Similarity solutions

Given a symmetry, we can also search for special solutions that are them-
selves invariant under the transformation. That is, the transformation
takes the solution into itself, not just into another solution. The solutions
that satisfy this extra condition are integral submanifolds of the ideal
generated by adding to the original ideal all the forms found by contract-
ing the original ideal with S. It is clear that any similarity solution must
annul these forms, because it will contain the isovector S in its tangent
space. Think of pushing forward the tangent space rather than pulling
back the forms. The new ideal is automatically closed under exterior dif-
ferentiation if and only if S is an isovector.

A vector field that satisfies

VJfCf
is called a Cauchy characteristic vector of the ideal. Its integral curves are
characteristics in the sense of Section 32. The flow generated by a Cauchy
characteristic vector field sweeps an m-dimensional integral manifold
into an (m+1)-dimensional integral manifold (see Figure 39.1). The aug-
mented ideal constructed earlier automatically has the isovector S as a
Cauchy characteristic. Thus the problem of finding similarity solutions
for a single isovector involves one fewer dimension than the original
problem.

Example: Look at the one-parameter family of isovectors to the
heat equation,

Sx=2t -t +xa -X a -(X+1)uu
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Figure 39.1. Cauchy characteristics used to sweep compatible boundary data
into an integral submanifold with one more dimension.

Remember, the equation for isovectors is linear, and they can be
superposed. The contractions of this vector with the original ideal
give us the 1-forms

2tdg-2tudx+(ux-XO) dt

and

Xq dx+xdg+(X+1)udt+2tdu.

Now, we first find a one-dimensional integral manifold, say, lying
along the t = l line. We have then 0 and u, which are just functions
of x, satisfying

and

2du+xdO+X0=0.

The latter equation is an eigenvalue equation. The solutions vanish-
ing at infinity occur for X =1, 2, ... , and are

= e-X2/4Ha+i 2

where the H1z are Hermite polynomials (Ho = 1, H1= 2x, H2 =
4x2-2).

Look at the lowest solution, X =1,
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4(1,x)=e-x2/4.

We extend this solution by using the vector field

a a a a2t at +x ax-2u au-Oao

which has integral curves

s - (t, x, u, 0) = (e2s, Aec, Be -2S, Ce -s).

To find the field 0 at a point (t, x), we must find which of these inte-
gral curves passes through that point. Clearly it has

A= x
Vt t

This integral curve crosses the t =1 line at an x value of

x
xo=A= t ,

and there 0 has the value

4(1, x0) =
e-xz14t,

which give us

e -x2/4tC=

and a value of 0 at (t, x) of

t= I e-x2/4t

This is the familiar impulse solution of the heat equation.

Note that the sum of the similarity solutions that correspond to two iso-
vectors is not a similarity solution of their sum. It may not even satisfy
the original equation unless it is linear.

The classical similarity solutions are found by dimensional analysis.
These correspond to isovectors of the form

S=At at+Bxax+

with A, B, ... being constants. A systematic search for isovectors in this
special form is very easy.
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Problems

39.1 What happened to the solution of the heat equation involving the error
functions?

39.2 Show that the only isovector for the fluid-flow ideal of Section 38 that has
the form

a aaS=vt ax+U(x't) au+P(x't)
ap

is the Galilean symmetry given in the example.

40. Variational principles and conservation laws

It is a bit of physics lore that to every symmetry there corresponds a con-
servation law and vice versa. We saw earlier that every isovector gener-
ates a similarity solution. Sometimes an isovector leads to one or more
conservation laws, but not always. A conservation law does always lead
to a potential, however.

Conservation laws

A conservation law for an exterior differential system is a differential
form whose restriction to the integral manifolds is closed. To be non-
trivial it should not be identically closed. Any closed generator of the
ideal leads to a conservation law.

Example: The heat-equation ideal,

w=dodx+dudt,

a=udxdt-dq dt,
has w closed. The 1-form

j=SJw
satisfies

dj=£Sw-SJdw

and, because dw pulls back to zero, this vanishes for every isovector
S. For some closed generators this leads to trivial conservation laws,

at
J (dq dx- du dt) = du,

or well-known ones,
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7 a

+ u
a

1J dx- u dt,as au w=q

here the conservation of heat. Some surprising conservation laws
can also appear. The isovector called S5 in the preceding section
leads to a conserved current,

j=2tdu-uq dx+(4+ux)dt.

Subtracting the exact form 2d(ut), we find an equivalent current

j= -uodx+(q5+ux-2u) dt.

Some "stuff" with density (-uo) is conserved, and can be assigned
a flux (gyp+ux-2u). I know of no use or physical interpretation for
this. It could be used to check on a numerical integration.

Variational principles

We now take the view that the ideal is the given, and ask when can it
be derived from a variational principle. That is, when does a differential
form exist such that

for all vector fields v? The form is called a Cartan form. It should gen-
erate in the preceding fashion all of the ideal, except, perhaps, low-rank
forms, such as contact 1-forms. Even these turn up as common factors of
the preceding forms. We will here study only complete variational prin-
ciples where all of the ideal can be found from the Cartan form. We call
such a form a variational principle, because the integral of over any
piece of an integral manifold is unchanged by any infinitesimal deforma-
tion of the piece that keeps the boundary fixed. The Cartan form is the
integrand of the variational problem in Lagrange-multiplier form.

The Cartan form is unique only up to the addition of any exact form.
This complicates the discussion of symmetries and their associated con-
servation laws. The definition of a symmetry used in Noether's Theorem

is not unchanged if we add an exact form to . Suppose we tried to define
a symmetry of the variational problem as any S for which there exists a
such that

£s( +do) e J.
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We can show that for every vector field S, we can find a 0 to satisfy this
equation. Just pick 0 to satisfy

There are no obstructions to solving this equation, as was shown in Sec-
tion 26. For the "symmetries" found this way, the current

j=SJ
is identically conserved and not interesting.

A nontrivial conservation law comes from a vector field S that satisfies

£S d = 0. (40.1)

All Noetherian symmetries are included here, and it is clearly indepen-
dent of any exact form added to . We have

and hence can find a j such that

dj=SJd e J.

This j is a nontrivial conservation law, provided S J d is not zero.

Example: The Lagrangian dynamics of a particle with one degree
of freedom is described by the ideal

dq-vdt,
dL, v - L, q d t,

where L = L(q, v) is the usual Lagrangian function.
A Cartan form for this system is

=Ldt+Lv(dq-vdt).

For a free particle

L=2v2,

vdq-2v2dt,

contracting in a/aq gives us dv, and contracting in a/av gives us
dq- v dt. This Cartan form reproduces the whole ideal.

The vector field a/aq is even a Noetherian symmetry:

£alaq = 0,
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and the conserved current here can be written down explicitly as

For a complete variational principle, every symmetry of the Cartan form,
equation 40.1, is an isovector. Every generator can be written in the form
v J d for some v, and we have

The converse is not true in general.

Example: A vector field S that satisfies

£S d = Add'

is not a symmetry of the Cartan form, but is an isovector, because

£SVJ d = [S, v] J d+ XvJ

assuming a complete variational principle.

Potentials

Whenever we have a conservation law for an exterior differential system,
a form j with dj in the ideal, then we can automatically introduce poten-
tials. We add new coordinates to the space to represent the potential, y,
and relate it to the other variables by adding to the ideal another generator

dy - j.

Since dj is in the original ideal, the new ideal is still closed under exterior
differentiation.

Example: We saw in Section 38 that electrodynamics can be repre-
sented by the ideal

dB0+dEdgdt,

dE8-dBdqdt-47JOdt-4-xpO.

One conservation law for this ideal is the 2-form

j=BO+Edgdt.

This conservation law is what is usually called Faraday's law
of induction. The potential associated with this law is a 1-form
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A dq - V d t. We enlarge the space, introduce four new coordinates
A and V, and add another generator

-Vdt+dAdq-BO-Edqdt

to the ideal. These are the usual vector and scalar potentials.

It is also possible to introduce potentials in the form

dy-j
with dj not in the original ideal but in the new, larger ideal. These are
called pseudopotentials. Unfortunaely, no systematic method for finding
them is known.

Problem

40.1 What electrodynamic conservation law comes from the field equation with
source terms?

41. When not to use forms

It is time to correct the impression I may have given that differential
forms are the solution to all mathematical problems. I tend to be over-
zealous. The formalism of differential forms and the exterior calculus is a
highly structured language. This structure is both a strength and a limita-
tion. In this language there are things we cannot say. This leads to an
advantage: what can be said usually makes sense (i.e., is well-defined and
coordinate-independent). This structure is also a disadvantage. Sometimes
a calculation or a proof involves steps in which terms are split into pieces
that are separately not coordinate-independent. Such calculations are
either impossible in differential-forms language, or else involve arduous
circumlocutions. I must admit that in several places in this book I first
had to work things out in "old tensor."

The limitation of most relevance to physics involves metrics. The Hodge
star operator allows the algebraic entry of the metric into exterior calcu-
lus. Combined with the Lie derivative, this leads to a natural and efficient
discussion of isometries. What does not fit in so naturally is the notion
of a connection, such as a covariant derivative based on a metric. Even
then, the situation is not hopeless, as we will see when we come to the
method of moving frames in Section 66.

Such problems arise in the study of conservation laws. Some conserved
objects are intrinsically geometric: flux lines, fly specks, etc. Yet some



41. When not to use forms 269

conserved objects are not: momentum, for example. Momentum is vector-
like stuff. Putting momentum into a box and sending it somewhere is one
realization of the mathematical structure of a connection on the tangent
bundle. We cannot usually describe momentum balance naturally and
efficiently by using differential forms. Electromagnetism appears to be
the outstanding exception to this.

As a concrete example of the difficulty that the exterior calculus has
with momentum conservation, let us consider the hypothetical case of a
scalar field and its associated stress-momentum-energy tensor.

If we consider the field by itself, and ignore the complications of
sources, we have a field equation

d*dq =0,

which falls naturally into the language of differential forms. The bind
comes in trying to construct a stress-momentum-energy tensor for the
field. This tensor is a linear map from Killing vectors to conserved cur-
rents.

If we use the first derivative of 0 and the metric tensor, there are only
two possible terms quadratic in gyp:

and 0,aCb,ag"19µv.

The combination

TIP- µ0,v 20, a0,aga09µv

has zero divergence as a consequence of the field equations. The calcula-
tion is easily done if we use covariant derivatives:

Tµv;agPa=10;1"0,v+0, 1, 0;P,-0;"0,W ogµv]gDa.

Since the covariant derivative of gµv vanishes, and two covariant deriva-
tives of a scalar field commute, we have

T vo = 0,og ,

and from this in general we find conserved currents Tµv k v for every Kill-
ing vector. Well, we don't yet know about covariant derivatives. They
will only appear in Chapter VII. Can't we do this by using differential
forms and the Hodge star operator?

Well, yes, we can, but it is surprisingly difficult and unnatural. The
conserved current associated with the Killing vector k is

j = [(kJ dip) dip- I(u ] dO)a],
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where

u=#dc, k=#a,

and the sharp operator denotes the use of the metric to map a 1-form into
a tangent vector. Is it not routine to show that dj = 0? Definitely not.
Any serious student of differential forms should try to prove this for him-
self or herself before reading the following hints.

Start by expanding

dj = (kJ 0) d*do +d(kJ do) A *do

- 2 d(u J do) A(kJ *1) - L(u J dip) d(kJ *1),

where

*CJ= * (I Ace)= kJ *1,

was used. The first term drops out because of the field equations. Now
use equations 23.5, 18.1, and the Leibniz rule for Lie differentiation,
and in a dozen lines the last three terms will cancel.

Only if you try to complete the proof (good practice with forms) will
you appreciate how clumsy it is. For a few days I was even convinced that
a proof did not exist within the set of relations that I had given for forms.
The moral: Use the right tool for the job, even if it is encrusted with
indices.
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The test of a mathematical formalism is shown in the applications. Al-
though I have long been convinced of this, it was emphasized to me again
when I decided to teach a graduate electrodynamics course using differ-
ential forms instead of the usual vector notation. I expected only modest
gains, but in fact it made a tremendous improvement. The mathematics
became "transparent" and the underlying physical structures became
visible. The clarity and economy of the differential-forms language for
electrodynamics led me to include a separate chapter on it.

Example: Electrostatics in 2-space using differential forms in pic-
tured in Figure VI.1, showing a potential difference of +4 between
two conductors. The Hodge star construction of Section 24 is being
used here.

Nor was it all to the advantage of the physics. Actually using the formal-
ism led me to an important theorem for the star operator, and to a defini-
tion of the star operator that is more direct and useful than the conven-
tional one. It also led to the characterization of Killing vectors in the
beautiful and useful expression

£k* = *£k.

It will be a while before anyone can write a standard textbook on elec-
trodynamics using differential forms. I hope that this chapter shows you
that it is inevitable. The exterior calculus is to multivariate calculus what
del, cross, and dot are to three-dimensional Euclidean calculus.

Every classical field theory must have a force law. Electrodynamics is a
very special classical field theory. Force is geometrically a 1-form. Think
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Figure VI.1. The pattern of electrostatics, showing field lines and equipotentials.
Similar to Figure 24.6.

of it either as the rate of change of momentum or as the operator taking
displacements into energy changes. In order to keep the rest masses of
charges unchanged, the 4-force f must satisfy

uJ f=0,

where u is the 4-velocity of the charge. A natural way to ensure this is to
use a field tensor F, which is a 2-form, and a force law

f=uJF.
A 2-form in spacetime has six degrees of freedom, the three components
of E and the three components of B. There is a natural match between
electrodynamics and differential forms, and they do more for electro-
dynamics than, say, for elasticity or fluid mechanics.

Both the spacetime theory and the 3 +1 space and time theory are use-
ful, and both appear in this chapter. I will use here * for the 3-space
Hodge star and * for the Hodge star in spacetime. For d you will have to
keep awake. Also, most of the differential forms used here are twisted. I
will mention this when they are introduced, but I will not use any special
notation for them. For charge density I will keep p a scalar, and write the
charge-density twisted 3-form p0.

42. Electrodynamics and differential forms

Undoubtedly the most useful electrodynamic formalism lives in 3-space,
with time treated as a parameter. This 3 +1 splitting reflects the behavior
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of physical systems, and also the structure of the equations themselves,
for which the initial-value problem is of particular importance. The sec-
tion after this one will develop the spacetime formalism and discuss
Lorentz invariance.

Before we develop the geometric aspects of electrodynamics, we must
clear up the always troublesome question of units. It is not a problem
that we can lightly push aside; I intend to use different types of geometric
objects for the various electric and magnetic fields: twisted differential
forms for D and H, and ordinary differential forms for E and B. Thus I
need a notation that keeps them distinct. Gaussian units fit the bill except
for their cumbersome dual units, esu and emu. This problem disappears,
however, if you set c = 1; then no distinction is needed. On the other
hand, nearly all textbooks today use SI units. I will use here unrational-
ized c =1 Gaussian units. Use equations from Jackson (1962) by setting
c= 1; use SI like Panofsky and Phillips (1955) by setting 47rEo = µo/47r = 1.
Maxwell's equations in these units are

aB
at

-V x E,

aE
at

=VxB-47rJ,

and

(42.1)

(42.2)

F=q(E+vxB).

The geometric unit of length is the light-second,

1 sec = 2.998 x 108 meters

(light travels 1 sec in 1 sec). The geometric unit of mass is

1 sec = 4.04 x 1035 kg

(at a distance of 1 sec from a mass of 1 sec the gravitational acceleration
will be 1 sec-1) and that of force is

1=1.211 x 1044 newtons_

(unit force gives a mass of 1 sec an acceleration of 1 secWe add elec-
tromagnetic units of charge

1 sec = 3.480 x 1025 coulombs
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(two unit charges 1 sec apart have unit electrical force between them),
current density

1 sec-2 = 3.872 x 108 amp/meter2,

electric field

1 sec-1= 3.5 x 1018 volts/meter,

(unit charge in unit electric field feels unit force), and magnetic field

1 sec -1=1.16 x 1010 tesla.

Differential forms

We start in Cartesian coordinates. Once we have translated electro-
dynamics into differential forms, we will have a theory that can easily be
used in curvilinear coordinates. Consider first the electric field. From the
force law we see that the electric field gives directly the force on a particle.
Since force is geometrically a 1-form, we define the electric field 1-form

E- Ex dx+Ey dy+E,z dz=Edq,

using the ordinary Cartesian components of the electric field.
The dynamical equation for the magnetic field requires the curl of the

electric field. If we look at the exterior derivative of E, we find

aE aE
dE = ax ay

dxdy

+
aEz oozy

dydz+
a zX as z dzdx.

y

The operator d here is the 3-space exterior derivative. Time is just a
parameter. If we introduce the magnetic field 2-form

B = Bz dxdy + BX dydz + By dz dx = BO,

then the dynamical equation for B becomes

aB
=-dE.

at

What about dB? We calculate

dB=
aBX+aay+aaz

dxdydz
y

and so equation 42.1 for B can be written

dB=O.
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How will we get the curl of B and the divergence of E? A divergence
comes from an exterior derivative acting on a 2-form; so we use the star
operator,

*E = EX dydz + Ey dz dx + EE dxdy = EO,

and then Poisson's equation becomes

d*E=47rp0,

provided we introduce the charge density 3-form

pdxdydz=p0.

Here p is the usual scalar charge density, and 0 is the 3-space volume ele-
ment. Similarly, we use

*B=BX dx+By dy+Bz dz=Bdq

and the current 2-form

J=JX dydz+Jy dzdx+Jz dxdy=Je.

Thus we have Maxwell's equation in vacuum:

aB
= -dE

at
, (42.3)

a*E
at

=d*B-47rJ, (42.4)

dB=O, d*E=47rp0.

In all of these, d is the 3-space exterior derivative. The force law trans-
lates into

F= q(E- v J B),

where v, the 3-velocity, is a tangent vector. When we consider materials
in Section 45, we will introduce a D field for *E and an H field for *B.

Geometric structure

The preceding translation was motivated by the algebraic structure of
the equations. We could have used instead the geometric structure, most
apparent in the integral form of the equations.

Charge density is naturally a twisted 3-form. In the egg-crate picture,
Figure 42.1, the 3-form basic cell contains exactly one unit of charge.
The zero 3-form is represented by an infinite box, and that is the correct
description of the size of box needed when the charge density goes to zero.



276 VI. Classical electrodynamics

Figure 42.1. Charge density represented by a 3-form; the cell encloses a unit amount
of charge in the limit.

*E

Figure 42.2. The relation between electrostatic flux tubes described by the twisted 2-form
*E and their source in the twisted 3-form representing charge density.

The integral form of equation 42.2 relates a surface integral of *E to the
volume integral of p6. Only a 3-form can be integrated over a volume,
and only a 2-form over an area. Thus we need to represent the electric
field here as a twisted 2-form *E. The pictorial representation of *E is a
flux tube oriented to point away from positive charges, as sketched in
Figure 42.2. In regions where there is no charge, flux is conserved and the
flux tubes are continuous.
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a*E
at

aB

at

Figure 42.3 (left). The relation between the magnetic intensity twisted 1-form *B and its
source in the twisted 2-form representing current density.

Figure 42.4 (right). The relation between the electric field intensity 1-form E and its source
in a changing magnetic flux represented by the 2-form (aB/at).

Currents are also represented by twisted 2-forms. The relation between
currents (and displacement current) and the magnetic-field twisted 1-form
is shown in Figure 42.3. Note how naturally the signs go, with no need
for awkward right-hand rules.

Finally, we sketch the law of induction in Figure 42.4. This relates the
B-field 2-form to the electric-field 1-form.

The initial-value problem

Equations 42.3 and 42.4 provide a complete description of the time evo-
lution of the field quantities. For consistency, the equations

dB = 0,

d*E=4irpO,

must be preserved by this dynamics. To check this we compute their time
derivatives. First,

at (dB) = d aB = -ddE = 0.

Thus if the initial B field satisfies dB = 0, then the dynamics preserves this
condition. Next we compute

at
(d*E-4irpO)=d(d*B-4iJ)-47r

at

0,
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and this derivative vanishes only if the sources satisfy

ap O+dJ=O.

An equation arising this way is called an integrability condition. The
equation here expresses the conservation of charge. If you are asked to
solve Maxwell's equations for sources that do not satisfy charge conser-
vation, you should refuse. They will have no consistent solution.

Curvilinear coordinates

The operations d, wedge, and angle can be performed in any coordinate
system whatsoever. Only star is at all tricky. To find the star operator in
curvilinear coordinates, pick an orthonormal basis of 1-forms. Star acts
on this orthonormal basis just as it does on dx, dy, and dz. Note that the
curvilinear coordinates create only an algebraic complication. The exte-
rior differentiations are all straightforward.

Example: Let us write. out Poisson's equation in spherical polar co-
ordinates. That is, write out

d*dV= -4-p6

for a space with metric tensor

9=dr2+r2d62+r2sin2OdO2.

Picking an orthonormal basis (this is not unique, of course) is easily
done by just factoring the metric. The 1-forms dr, r d6, and r sin 0 dip
clearly form an orthonormal basis. We have

dV= aV dr+ ae d6+ aV dip

and in terms of our orthonormal basis we have

dV= aV dr+ r ae rd6+rsin 8
aV rsin 6dg5,

and so

*dV= aV resin 6dOdo+

r

aV rsin 0dodr+
r sin 8 aV rdrd6.o

From this
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*dV=r2 sin e
aV

dedo+sin a
aV dodr+ 1

aV
drde

ar ae sine ao

and so

d*dV= 1a r2 sin 0
aV

+ a sin e
aV

ar ar ae ae

+ a sin 6 aV
dr d6 dip,

from which Poisson's equation can be read off.

Note the mechanical nature of this example. Although dull, such routine
calculational algorithms are a safe way to get the correct answers. A cal-
culation using the rotations of a field of unit vectors is pretty tricky, and
unlikely to lead to the correct answer without careful debugging.

Junction conditions

In addition to considering a charge continuously distributed throughout
a volume, electrodynamics considers charge and current confined to a sur-
face of negligible thickness. Because electrodynamics is a linear theory,
we can find a description of these that ignores the internal details of the
surface. We replace Maxwell's differential equations with algebraic con-
ditions on how solutions on the two sides of the surface are to be joined
together. These conditions have a natural description in terms of the pull-
back of ordinary and twisted differential forms.

I will use square brackets here to denote the operator that computes
the discontinuity in a twisted differential form across a surface: [F] = the
sum of the pullbacks from either side, using the appropriate vector point-
ing away from the surface on each side. Note that we do not need to orient
the surface nor do we need to choose an arbitrary normal direction.

Look at Gauss's law

tr *E= r
4irpe

for a region r that is a tuna-fish can of negligible height, shown in Figure
42.5. For a surface distribution of charge X, the right-hand integral is
equivalent to a surface integral

47rr pe=4i X,
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Figure 42.5. The geometry for the junction condition on *E.

Figure 42.6. The junction condition on the electric flux generated by a
surface charge density.

where E is the part of the surface inside the tuna-fish can. Here X is a
twisted 2-form; its egg crate encloses unit charge, and it has a plus sign
for positive charge.

Now, note that the vector away from E is an outward normal vector for
ar on both sides. Thus, letting the can shrink in all dimensions, we find

[ *E] = 47A

for junction conditions across any surface E with surface charge density
A. See Figure 42.6 for this.

A similar argument can be applied to the equation

a*E
at

=d*B-r7rJ.
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Figure 42.7.

Figure 42.8. The junction condition on magnetic intensity generated by a surface current
density. Note that the pullbacks of the fields on the two sides are equal.

For fields that are finite but possibly discontinuous, we must have

ar*B=47r J

for F (shown in Figure 42.7). Again, we can pull back the twisted forms
from the two sides to find

[*B]=4-xK,

where K is a twisted 1-form on the surface giving the distribution of the
surface current. The result is shown in Figure 42.8.

The two homogeneous Maxwell equations involve the pullback of ordi-
nary differential forms. Since the relations are homogeneous, again no
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Figure 42.9. The junction condition on electric field intensity.

Figure 42.10. The junction condition on magnetic flux density.

arbitrary sign need be chosen. The pullback of both E and B into the sur-
face from the two sides must be equal. Examples of this are shown in Fig-
ures 42.9 and 42.10. Note how important it is that the inhomogeneous
equations involve twisted forms.

43. Electrodynamics in spacetime

The 3-space theory of the preceding section, although useful for the initial-
value problem and many explicit problems, can be considerably simpli-
fied by a spacetime representation. In this section we use the exterior
derivative of spacetime unless specifically noted otherwise; we retain the
dq, 0, and 0 of 2-space. This hybrid notation is very useful. We have,
then, for a scalar f,
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df of dq+ at
dt.

g

This leads us to combine the homogeneous equations into the form

d3B8+ aB dt8+dtd3Edq=0,

which collapses neatly into

d(BO+Edgdt)=0.

Thus we define the four-dimensional field 2-form

F=BB+Edqdt=B+Edt,

satisfying

dF = 0.

Repeat this trick on the inhomogeneous equation

d3E8+ aE dt8-dtd3Edq= -4-JOdt+4-p6,

and it collapses to

d(EO-Bdgdt) =4-(p6-JOdt).

The 4-space dual of F is easily found from the results in Section 24,

*F=EO-Bdqdt = *E- *Bdt,

and using a spacetime current 3-form

j = pO-JOdt= *p-Jdt

we have

d*F= 4irj. (43.1)

Current conservation is just

dj = 0.

Some of the symmetries of electrodynamics are now obvious: the sym-
metries of *.

Potentials

Whenever we have a conservation law, we can reduce the problem by intro-
ducing potentials, using the Poincare Lemma of Section 30. Here we have
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d(BO+Edq dt) = 0,

and hence we know that we can find a 1-form, which we write as

gyp=Adq - Vdt,

satisfying

d(A dq- Vdt) =BO+Edq dt.

The spatial part gives us

B8 = dA dq,

and the spacetime part gives

Edq dt = -dVdt- aA
dg dt.

You can't factor out the dt unless you change dV to the 3-space d oper-
ating on V.

Now, this vector potential is not unique, and any closed form can be
added to it without changing E or B. We can find a closed form 1 such that

d* (A dq - Vdt - d1) = 0,

since this just requires solving

d* dl = d* (A dq- Vdt),

which is the ordinary wave equation (Section 24). This condition is the
familiar Lorentz gauge condition.

From equation 43.1 we have

*d*dq = 47r*j.

Now, recall that the vector wave equation needs an additional term,
d* d*. This can be added here, because in Lorentz gauges it vanishes.
Thus in Lorentz gauges the potentials satisfy the wave equation.

Well, we can go on. The vector potential itself is not free, but satisfies
in Lorentz gauges

d*q =0

and we can introduce a potential for this as well. This route leads to the
Hertz potentials.

Fields seen by a local observer

An observer moving with spacetime velocity u sees a current density
2-form
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J=-uJj
and a charge density 3-form

pO= -uJ (*j)O.

He sees an electric field

E= -uJ F
and a magnetic field

B= *(uJ *F).

These relations are obvious in a frame at rest, and being tensors are true
in general. From these we can find the usual result that a moving observer
sees an electric field even when an observer at rest sees a pure magnetic
field.

Problem

43.1 Study the Hertz potentials. Do they fit into the scheme of Section 40? How
do we get wave equations for the Hertz potentials (Section 38)?

44. Laws of conservation and balance

The electromagnetic field deposits energy and momentum on charges and
currents. If energy and momentum are to be conserved, then this energy
and momentum must come from the electromagnetic field. Although this
may seem like only a bookkeeping trick, it turns out that just as charge
conservation is essential for the consistency of electrodynamics, so too
energy and momentum conservation are essential for the consistency of
general relativity.

Electrostatic body force

We need here the continuum version of the Lorentz force law. Now, this
cannot strictly be derived from the particle force law, nor is the reverse
possible. There is always the possibility that a charge that is truly a point
charge does not behave like the limit of a continuous charge distribution.
We will here guess a plausible continuum force, called a body force, and
show that in the limit it is consistent with the Lorentz force law. This
body force is verified by experiments. There will be several unusual fea-
tures of our development, all of them visible in the electrostatic case, and
we do it first.
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We will work in a 3 +1 formalism, with * and d being the 3-space
and d. We expect a body-force operator to be one that takes in a small
volume element and gives out a force 1-form. We are going to interpret
the force 1-form a bit differently here. It will not be the operator that
maps displacements into work done. Instead, it will map Killing vec-
tors into the rate at which the corresponding momentum appears on the
body. Viewing them in this way, we can treat all ten conserved quantities
uniformly.

We will take the x component of the force on the charge in a unit vol-
ume to be

f= axJE pd;

in terms of how the Killing vector k = a/ax generates x-momentum, this is

fk = (k J E) 0 = (k J pO) AE. (44.1)

The last equality follows from

OAE=O,

because a purely spatial 4-form must vanish. We will assume that this is
true for all Killing vectors, not just those representing linear momentum.
This is a definite physical generalization. Equation 44.1 lets us calculate
both the forces and the torques on a static charge distribuion. No work
can be done on a fixed charge distribution, nor does the momentum of its
center of mass change; so these four conserved quantities are trivially
constant.

Let us recover the static Lorentz force law from this body force. We
consider a charge distribution contained in a small volume, in the limit as
the volume shrinks to zero. The net body force on the entire body B will be

Lfk=fB(kJpd)AE.

The E field here has two parts, one due to the charges themselves and
another due to charges external to the body. Since the electrostatic force
is a central force, equal and opposite on pairs of charges, the self-force
on the body should vanish. To verify this without multiple integrals over
Green functions requires a useful bit of trickery. The body force is a spa-
tial 3-form and hence necessarily exact. More important, however, it can
be written as the exterior derivative of field quantities. We have, in fact,

(kJ pO)AE=
8

d[(kJE)A*E-(kJ *E)AE] =dK, (44.2)
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provided that the fields satisfy Maxwell's equations and that k is a Kill-
ing vector. It will be useful to work this out for any p-form E such that
dE = 0 in a space of p + q dimension. The general identity is

d[(-)pq(kJE)A*E-(kJ *E)AE] = (2kJ (d*E))AE.

To derive this identity we bring the d inside, using

d(an0) = daA0+(-)pando
and

£ka=d(kJ a)+kJ da,
to arrive at

d[ ] _ (kJ d*E) AE+(-)q(d*E) A(kJ E)

+ (-)pq£kEA *E- (£k*E) AE.

The first two terms are equal, because

(d*E)AE=0.

Now we use the properties of *,

aA*,¢= f3A*a

for a, a forms of the same rank, and of the Lie derivative with respect to
a Killing vector,

£k * _ * £k,

to eliminate the last term. We have then a balance law for k-momentum,

dK=(kJ pO) AE

with the flux K given by equation 44.2.
Back to the total force on a body,

JB fk=
JB

(kJ pe)A(Eint+Eext),

where Eint is the electric field due to the charge itself, and Eext is the field
due to all the other charges.

Write the first term, using our conservation law, as

8 J [(kJE)A*E-(kJ *E) AE]

and since p = 0 outside the body, the surface aB can be pushed off to
infinity. Since both E and *E die off like 1/r2, and k grows only as fast
as r (for angular momentum), this surface integral must vanish.
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E

x

Figure 44.1. The generation of an electric field by the surface charge on a conductor.

The body force comes only from the external field. To calculate this,
write

JBfk-JB

where, as the body shrinks, both k and Eext are essentially constant over
the body.

Thus we have recovered the Lorentz force law, and in addition, picked
up the balance law for k-momentum,

A= (kJ PO) AE,

with

87rK=(kJE)A*E-(kJ *E)AE.

It is a physical fact that these continuum balance laws work. This law can
be used to compute the total force on a body in terms of surface integrals
surrounding it.

Examples: We compute the stress on the surface of a charged con-
ductor. Here p is complicated and depends on the details of the sur-
face of the conductor. Instead, we evaluate the rate at which linear
momentum is deposited in this surface layer by using the conserva-
tion law to find the linear momentum flowing into a box surround-
ing the surface layer. If the surface is along the plane x = 0, and the
surface charge density is given by X, then we have an electric field
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E = 4iX dx,

* E = 4-X dy dz,

as shown in Figure 44.1. The net momentum flux into the region is
given by surface integrals over the six faces of the box, which we
take to be a unit cube. The stress (x-momentum flux density) is

K = 2lrX2 dy dz,

and only integrals over the surfaces x = constant contribute. Of
these one is inside the conductor where the field is zero. The other
has an orientation dy dz, and so there is a stress on the surface of
strength 27rA2. On an area A of the surface, 2irX2A worth of out-
ward momentum appears per unit time.

To see that a charge exerts the same force on a conductor as it would
on its image charge, just surround the conductor with a surface and
note that the same stress would be calculated for either situation.

Spacetime conservation laws

The equations of electrostatics in terms of differential forms are the same
as those for electrodynamics in spacetime, with the correspondence F for
E, j for p6, * for *, and d for d3. A spacetime body-force density

fk= -(kJ j) AF

completes the analogy. The balance of k-momentum

877K= (kJ *F)/F-(kJ F)A*F

is given by

dK= -(kJ j)AF.

Does this lead to the usual Lorentz force law? Well, yes and no. There
are some fine points here. For an accelerating charge, the radiation fields
drop off only like 1/r, and this is not fast enough to remove self-force
terms. Here is where a charge that is truly a point charge can behave dif-
ferently from the continuum limit. Indeed, a controversy about runaway
charges has gone on for years. [For my opinion, see Burke (1970).]

For a charge moving with uniform velocity, everything works out as
before. Look, then, at a ball of charge and current moving with con-
stant velocity v in our reference frame. We compute the k-momentum
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time

Figure 44.2.

deposited in unit time by integrating over a spacetime region of unit
extent in time and over a spatial region following the ball, as shown in
Figure 44.2. We have, first of all,

coming from

FAj=O,

because all 5-forms in spacetime vanish. Now, in the limit as the ball
shrinks to zero, the 1-form (kJ F) is sensibly constant. Write it

(kJF)=da.

Then we have, since dj = 0,

Jr (kJI)AF= f r danj= r d(aj)= L aj

Because j vanishes outside the ball, the only contributions to the surface
integral come from the two t = constant ends.

Jar
aj= Lt0+1 apO -

Jt - to
ap6=0a p6=0aQ.

The change in a is given by



44. Laws of conservation and balance

Ace =: +v J da
( at

at+v JkJF

=-kJ
at

+v JF

= -kJ at +v J (B-dtAE)

_ +kJ (E-vJ B),

and so the force is given by

QkJ (E-vJB).

291

The Poynting-Heaviside Theorem

Look at the balance law generated by k = a/at. We have, in 3 +1 language,

87rK = *BAB+ *EAE+2 dt A *BAE.

Thus the energy density is

(*BAB+ *EAE)/87r,

and the flux density is

(EA *B)/47r.

The 3 +1 version of the conservation law is

d t

A at
(*BAB+ *EAE)+2d(*BAE) = -dtAJAE.

8w I

We know that this conservation law is connected with energy, not because
a a/at symmetry always generates energy conservation, but because for
this k we have

dK -dtAJAE,

and the right-hand side here is indeed the rate at which energy is appear-
ing on the currents. Not every mathematical balance law represents a
physically interesting quantity. Also, remember that this conservation
law is unique only up to the addition of any closed 3-form.
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Look also at the linear momentum-conservation law. The density It of
k-momentum is given by the projection operator (a/at) J * acting on the
k-momentum 3-form

it
8w at

J *[(kJ *F) AF- (kJ F) A*F].

We expect that this will equal the energy flux in the k-direction, which is
given by

_ 1 a a

µ' 8I kJ * [(at J *F AF- (at J F A*F . (44.3)

To verify this symmetry, look at the first term in equation 44.3, and use a
general vector v instead of a/at:

kJ *[(vJ *F)AF] _ *[(vJ *F)AFn0],

where the 1-form 0 satisfies

k=#q5.

Here # is the sharp operator defined in Section 24, and the metric is being
used to convert a 1-form into a vector. Thus the first term of 44.3 equals

*[*(FAv)A(FA0)].

Here v is similarly associated with v. Since FA P and FA 0 have the same
rank, it also equals

*[*(FA0)A(FAv)],

and now reversing all the steps demonstrates the symmetry of this first
term. The second term is also symmetric by the same argument. The sym-
metry tells us that the momentum density is the same as the energy-flux
density.

Uniqueness

One use of the law of energy conservation is to show that Maxwell's
equations have a unique solution. This is an important result, for it
allows us to guess solutions and to verify them by merely checking Max-
well's equations. To prove uniqueness, we show that two solutions with
the same charge and current distributions that agree on an initial surface
and on the boundaries must be identical.

Look at the difference of two such solutions. It satisfies homoge-
neous Maxwell's equations and hence the energy-conservation law with
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no sources. Its energy density on the initial surface is zero, because the
two solutions agree there by assumption. Similarly, there is no energy
flux into the region, because the two solutions agree on the boundaries,
the difference field vanishes there, and the energy flux is bilinear in these
fields. The total energy is thus always zero. Finally, since the energy is
positive definite, the difference field must vanish everywhere. Of crucial
importance here is the restriction to fixed currents and charges. Solutions
are not unique if the currents, say, are allowed to vary, as in the dynamo
theory of the Earth's magnetic field.

Problem

44.1 Where is the angular momentum in a circularly polarized plane electromag-
netic wave? (See remarks at the end of Section 33.)

45. Macroscopic electrodynamics

So far we have set up a theory of electrodynamics that discusses the elec-
tric and magnetic fields of charges and currents in vacuum. This is called
microscopic electrodynamics. We need to extend the theory to include
some simple properties of materials. Much of the behavior is indepen-
dent of the detailed structure of the matter. The detailed structure is the
proper realm of solid-state physics or plasma physics. The universal
behavior common to much matter in bulk is called macroscopic electro-
dynamics.

Conductors

The simplest type of matter is the conductor, in which an electric field
causes currents to flow according to Ohm's law,

J=a*E,
which is true only in the rest frame of the conductor. This restriction to
the rest frame is important, and a correct description of moving conduc-
tors will be given in the next section. As stated, Ohm's law neglects the
dynamical aspects of the current carriers, and applies in the limit of low
frequencies. A more general conductivity law would be

J(t) =
t

s(t-t')*E(t') dt',

corresponding to a frequency-dependent conductivity.
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Example: Let us repeat the commonly given argument that shows an
exponential decay for free charge inside a conductor. Starting from

p O+dJ= 0

and using Ohm's law

r0+ad*E=O,
we have

p + 4irap = 0.

This shows exponential decay of the charge density on a time scale
of (47ra) -1

For materials -tonsidered very good conductors, this time scale is,
in fact, too short for Ohm's law to be valid. [See Jackson (1962),
problem 7.7]

Inside a conductor, Maxwell's equations can be written

dF= 0, d*F= -4na*(X J F),

as promised in Section 31.

Polarizable materials

In addition to conductivity, matter can also respond to an applied elec-
tric field by a rearrangement of its charges rather than with a steady cur-
rent flow. Such a body is called polarizable, and the resulting charge dis-
tribution is called polarization charge or bound charge. We will study the
nearly static limit of this behavior. Here both * and d refer to 3-space.
We will first show that for any rearrangement of the charge, the bound
charge can be represented by a 2-form P such that

P0= -dP,

with the important property that P vanishes outside the body. For small
displacements of the charge, a Taylor's Series expansion is useful, and
the leading term P is then the induced dipole moment per unit volume.

To see that any deformation of a charge distribution of zero total
charge can be written in terms of a polarization 2-form with P = 0 out-
side the body, we proceed as follows. We have
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Figure 45.1.

d(pe)=0

everywhere; hence we can write

p6 = da

for some a not necessarily vanishing outside the body. Outside the body
we have

da=0

and so

a=dO

provided that we have

over every 2-cycle in the region F outside the body, as shown in Figure
45.1. The 2-cycle aB is the only one of interest, and we have

because our requirement was that the total charge vanish. Thus we can
write

a=dO

outside the body. Extend a inside the body in any smooth fashion. Define
the polarization
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P=a-d,6,
which clearly satisfies our conditions. The spacetime proof proceeds in a
similar fashion. Note the usefulness of cohomology for regions that are
not simply connected.

D and H

A useful trick in polarizable materials is to define a 2-form D field. We
have

d*E=47rPFO-4wdP,

where pF is the charge not accounted for as a bound charge, called free
charge. If we define

D= *E+47rP,

then we have

dD = 47rpFO.

In vacuum this agrees with our previous use of *E. The bound charge
must move as the field changes, and this leads to a current as well. The
bound-charge current, as well as other currents induced by magnetic
fields, can be written

JB = - d-y,

where the spacetime 2-form -y vanishes outside the body. As with conduc-
tivity, this applies only to matter at rest. Any 2-form in spacetime can be
decomposed

-y=P+dtAM,

where the 2-form P and the 1-form M are purely spatial. We have, then,

PB = -dP, JB = dM+ ap .

The 1-form M describes possible persistent currents that can be set up in
the material by a magnetic field, and it is called the magnetization.

Much as we did for D, we redefine H so that the equation

at
(*E)=d(*B)-4irJ

reads

aD_
at

d(* B) - 47rJF - 47r dM,
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and taking

H= *B-4-W,

we have the macroscopic equations

aB - - dE, aD = dH- 47rJF,
at at

dB = 0, dD = 47rpF,

whose sources are only the free charge and the free current.
These equations are useful only if we understand enough of the prop-

erties of matter to find relations between P and M and the applied fields
E and B. A great many materials are modeled by the linear, isotropic
relations

D=E*E, B=µ*H,

where E and It are scalar parameters characterizing the matter, just like a.
These equations hold only in an inertial frame in which the matter is
at rest.

Smoothing

The macroscopic fields ignore the detailed structure of matter and the
complex fields inside the body. They represent only the smooth proper-
ties of the fields. For a cloud of electrons, the charge density is highly ir-
regular. For a great many questions, this highly irregular charge density
is equivalent to a smooth averaged charge density. These questions must
involve a length scale much larger than that typical of the irregularities.
A smoothed function will be an equivalence class of functions all of which
agree when integrated with smooth integrands over macroscopic regions.
This is very similar to delta functions.

A smoothed function is best represented by finding the equivalent
smooth function. This process involves averaging the microscopically
rough function over regions intermediate in size between microscopic
and macroscopic regions. To see that Maxwell's equations still hold for
the smooth functions representing classes of smoothed functions, look at
just a two-point average. Now, the averaging is supposed to be done over
a length scale small compared with the scale of the smooth functions, but
large compared with the microscopic fields that we are averaging. Thus
we cannot represent the changes in the fields by a Taylor's Series or a Lie
derivative.
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It is clear from the linearity of Maxwell's equations that if we average
together two solutions, we will get another solution, provided that the
points of the average are separated by a rigid displacement in spacetime.
Smoothed functions cannot be multiplied, nor can delta functions. What,
then, are we to do with the force law

(kJ j)AF?

Well, if you look at a volume of intermediate size, then the F field from
external sources will be smooth over that volume. The internal field will,
however, not be smooth. The smoothed force law allows us to compute
the average force (momentum deposition) on a volume, but leaves the
internal stresses undetermined. A correct treatment of internal stresses
requires a microscopic theory. Nor will this smoothed theory apply to
radiation fields with wavelengths on the scale of atomic spacings, but we
already know that classical electrodynamics is not the theory to use for
that.

46. Electrodynamics of moving bodies

The usual constitutive relations

J= rE, D = EE, B = µH.

we write as

j=a*E, D=E*E, B= L*H.

They are true only in the rest frame of the material. In our notation this
is obvious, because * is Lorentz-invariant, but * is not. In this section
we will find the correct extension of these laws for moving bodies, assum-
ing that the preceding relations remain true for small fluid elements in a
frame in which they are momentarily at rest.

Conductivity

One approach to this problem would be to transform the fields from the
lab frame to the fluid frame, use the standard laws, and then transform
back. An equivalent but better approach is to write the basic laws in a
form that makes no reference to the frame whatsoever, a manifestly
Lorentz-invariant form.

In the fluid rest frame, we have

at J F= -E,
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* at J F = dt A *E,

c* at
J F = dt AJ.

Unlike the situation with a solid conductor, some free charge may be
convected along with the body; let us call its density 0 * 1. The spacetime
current 2-form is thus

j = -a*(uJ F)+0(uJ *1),

where u is the fluid 4-velocity. In the rest frame

a
u

at .

(46.1)

The preceding expression for the spacetime current involves only Lorentz-
invariant quantities and so can be used in any frame, not just the fluid
frame.

The 3 +1 splitting of this equation will be useful. In general we have

a
u='Y

(at
+v

where v is a purely spatial vector, and -y is the usual Lorentz factor.
We have

u J F= -y[-E+uJ B+dt(uJ E)]

and so

J=a-y*(E-uJB)+'yO(uJ *1),

p=-y[a(uJ E)+0]6.

Another condition needed for the electrodynamics of conducting bodies
is that for finite conductivity there can be no surface currents in the rest
frame of the material; otherwise the electric field would be infinite. There
can be a delta-function surface charge density, and for a moving conduc-
tor this will be convected along with the conductor and lead to delta-
function surface currents.

Free charge in a conductor

In equation 46.1 we allowed for the possibility of free charge convecting
with the moving conductor. The dynamics of this free charge is specified
by the condition dj = 0. This gives us
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-d[a*(uJ F)]+dOA(uJ *1)+od(uJ *1) =0. (46.2)

The second term here can be written

(uJ *dO)*1= (£u 0)*1

and this is the convective derivative of the density of free charge. The
third term here involves the divergence of the velocity field. For slow
motions, with

a
U=

at
+ V,

we have

and so

uJ*1=0-dtn(vJ0)

d(uJ*1)=dtnd(vJ0)

=dtn£U0

_ (div v)*1

and this vanishes for solids and incompressible fluids.
The first term in equation 46.2 can be simplified if we use the 1-form,

v obtained from u by using the metric; the definition of star gives us

*(uJF)= -*(FAv),

using the fact that on 2-forms in four dimension ** _ -1. Thus

d*(uJF)=4irjnv-*Fndv

and recycling Ohm's law gives us

d*(uJF)=47ra*(uJF)Av-4ro(uJ*1)nv.

The first term here vanishes because

*[*(uJ F)nv] _ -uJ uJ F=O,

since F is antisymmetric. For the second term here, we have

(uJ *1)Av = -(uJ v)*1= *1.

Remember that u is a timelike vector, with u u = u J v = -1. Thus the
dynamics of the free charge in a conductor is specified by

[£u0+4iacp+(div =0.

Inside a solid conductor this gives us
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£u0 +4iaq=0
and the free charge decays in a time T=1/4ira.

Frozen flux

Suppose we consider the problem of a conducting fluid moving in a mag-
netic field. Let L be a typical spatial dimension, and T be a typical time
scale. One dimensionless number characterizing the problem is

S = L/T.

The conductivity is another parameter. From it a second dimensionless
number can be formed,

Rm = aL2/T.

Rm is called the magnetic Reynold's number. We will consider only slow
motions, S << 1.

If the electric field is generated only by induction, it will be of size
LB/T. With these sizes taken into account, we have Maxwell's equations

aB

a
t -Ld

LT
,

T

a ET
2

S2 L J-
Ta( t)

-4irS2rpT
vT

J 6.

The sizes are now explicit, and our slow-motion approximation will ig-
nore the S2 terms here, just as it ignored the S2 factors in Ohm's law.
Note that the basis 1-forms are dimensionless, there being one length in x
and an inverse length in the d. The size of the charge density came from
Maxwell's equations. We see that we have a singular dynamical system,
such as we studied in Section 25, since our small parameter multiplies one
of the time derivatives. An initial situation will have a rapid flow of
charge until the condition

d*B=47ra*(E-vJB)

is established. The dynamics then evolves to preserve this condition and

aB

at
dE. (46.3)

An initial unrelaxed state will snap to this state in a time S 2T.
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For a fluid with good conductivity,

1
1<<Rm<< S,

which in terms of the skin depth l is

we must have

l << L << T,

E= v J B. (46.4)

Example: This E field gives us a charge density

4irpO=d*(vJB).

This does not necessarily vanish, and this distinguishes the conduct-
ing fluid in differential motion from the stationary conductor. For
example, if

B=dxdy and v=y a
,

ax

representing a fluid with shear in a constant magnetic field, then we
have a nonzero density of free charge.

We now repeat the Lie-derivative calculation of Section 18. Using equa-
tion 46.4 in equation 46.3 give us

aB

at '
+d(vJB)=0

and since dB = 0 this can be written

aB

at v+£ B=o

For steady motions the B field satisfies

£vB=0,

which is commonly said to imply that the magnetic field is frozen into the
fluid. This statement requires caution in uniform magnetic fields, since
this equation does allow a uniform field to slide through a conductor.

For time-dependent motions we have

£(a/at+v)B=0,

and again the flux is frozen into the fluid.
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Polarization and magnetization

The spacetime version of the macroscopic equations involves

F=B-dtAE and G=D+dtAH.

Maxwell's equations are

dF= 0, dG = 4irj.

In the rest frame of the material, we have, using u = a/at,

uJF= -E, uJ *F= *B,

uJ G=H, uJ *G= *D.

These allow us to write the constitutive equations for a linear, isotropic
material in the invariant form

uJ*G= -EuJF, uJ*F=µuJG.
Let us write out these equations in a frame where the fluid velocity is

small. Then again we have

au= at +v

and

u J F= v J B-E+ dt(v J E),

u J *F= v J *E+ *B- dt(v J *B),

uJ G=vJD+H-dt(vJH),

uJ *G= -vJ *H+ *D-dt(vJ *D).

Thus our equations become

*D-vJ *H=E(E-vJB),

(v J *D) = E(v J E),

*B+vJ *E=µ(H+vJD),

(vJ B) =µ(vJ *H).

To solve these, contract them with v and discard terms quadratic in
velocity, to find

*D=EE+(1-Eµ)vJB,

H= *B+(1-Eµ)(vJ *E).
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These clearly have the correct limits for v = 0 and for E = µ =1 (moving
nonexistent material).

Problem

46.1 Repeat the discussion of the conducting fluid in a magnetic field, Section 18,
using differential forms.



VII
Dynamics of particles and fields

Classical mechanics displays the advantages of differential forms as well
as electrodynamics does. The development of mechanics that I give here
is slightly unusual, in that it takes place in the special contact bundles
called jet bundles rather than in the tangent and cotangent bundles. Only
for time-independent systems are the tangent and cotangent bundles the
proper ones. Contact bundles are not usually mentioned, perhaps because
they lack natural coordinates. This lack forces us to use generators for
the contact ideal that appear to single out the t direction. Once the lack
of symmetry in the generators is understood, however, the contact
bundle CM is seen to be much simpler than the tangent bundle TM. The
geometric structure of both TM and CM consists in the fact that there are
special curves in the bundles, and these, when projected down to the base
space, have tangent vectors that are truly tangent or contact elements
truly in contact. In CM such curves are characterized as integral sub-
manifolds of the contact ideal. TM has no such simple characterization.
In fact, the structure of TM is best described by adding one more dimen-
sion and making it into a contact bundle.

Of course, analytical dynamics has been able to deal with time-
dependent Hamiltonians, but only by adding a spurious extra dimension,
going to the cotangent bundle of spacetime. This extra dimension is in
the way, and fouls up the geometry of kinetic theory, for example. The
phase-space density in kinetic theory should be a 6-form, but that repre-
sents the density of lines only in 7-space, not in 8-space.

I will start with a careful development of mechanics from F= ma par-
ticle mechanics. This will lead naturally into the study of families of solu-
tions and the Lagrangian and Hamiltonian formulations. I will also give
a deductive picture of particle dynamics as a special case of wave-packet

305
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dynamics in the high-frequency limit. This gives us a much needed physi-
cal picture of the ps in Hamilton's equations.

47. Lagrangian mechanics of conservative systems

Let us start from Newtonian particle mechanics and see how far we can
go. Start by considering n particles described by 3n rectangular coordi-
nates q moving under the influence of forces derivable from a potential
V(q, t). If ml is the mass appropriate to the ith coordinates, we have

d2q' _ aV
m` dt 2 aR'; (no sum),

with m; constant over index triples. Our first task is to recast this into
proper geometric language.

Mechanics and differential forms

The first step, always, is to get into the right space. The state of the
mechanical system is best described by giving its position and velocity as
a function of time. Thus we are naturally led to the line-element contact
bundle

it : CQ -* Q : (t, q, q) - (t, q )

with contact structure given by the ideal generated by the 3n 1-forms

dq-qdt.
In fact, the t coordinate is special, and we are dealing with the special
contact bundles called jet bundles.

The dynamics on this space is described by the vector field

a a Y 1 aV a

at aq i ml aq` aq`

which is everywhere tangent to the path of the system through the con-
tact bundle CQ. The length of this vector is irrelevant. I have chosen a
convenient normalization.

The proper geometric structure is really a line element tangent to the
preceding vector. This can be described by the ideal of differential forms
that annul the line element. By inspection, these are the 3n contact forms
and also the 3n 1-forms

m; d4'+ a
V

dt (no sum),
R'
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both sets pulling back to zero on the given vector. There are 3n forms in
each set, and since this contact bundle is (6n+1)-dimensional, these de-
termine the line element completely.

We can put this into better geometric shape by introducing the func-
tion on CQ called the Lagrangian,

L: (t, q,1ml4`4`-V(t,q)

Now we can describe the mechanical system as the exterior differential
system generated by

a=dq-qdt,
and

#=d aL aL dt. (47.1)
q q

We can now use the summation convention. Pragmatically, this calcula-
tion was driven by the urge to get the indices properly tucked away. The
geometric view of this result is that a mechanical system moves along a
path in CQ that is an integral curve of the ideal of 1-forms generated by
a and 3.

As a bonus we recognize this ideal as that belonging to a variational
problem on the contact bundle for the integral

Ldt.

This interpretation is called Hamilton's principle. This makes it obvious
that the preceding ideal depends only on L and the contact structure, not
on the coordinates. Recall the 1-form appearing in the variational prin-
ciple, called the Cartan form

W=Ldt+ La.aq

We have the useful identity

dco=anti.

The conditions that

yJ dcw=0, yJ a=0,

easily give us

-J /3=0,
using the preceding identity.



308 VII. Dynamics of particles and fields

Figure 47.1. The system path is an integral curve of the 1-form a.

Example: For a free particle in one dimension, we have a Lagrangian

-14L: (t, q, q) - 2,

and so the system path is an integral curve of the ideal generated by

a=dq-4dt, 0 =dq.

The path stays in a plane of given q and moves along the contours
of a as shown in Figure 47.1. A three-dimensional view is sketched
in Figure 47.2. You could make a model of this by gluing together
rafts of soda straws, twisting the various layers progressively.

Generalized coordinates

Thus far we have only restated F= ma in fancy notation. Now comes the
beautiful move. Consider stiff systems, systems that have very different
time scales for the dynamics of different parts of the system.

Example: Look at the pendulum shown in Figure 47.3, in which a
mass m is hung on a spring of strength k and length 1, and swings
freely in a gravitational field of strength g. If the swinging fre-
quency (g/l)1/2 is much less than the vibrational frequency (k1m)1/2
then the system is stiff.

If we have a stiff system, then for some situations we can just ignore the
stiff degrees of freedom and consider a reduced system. This requires not
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I

Figure 47.2. The kinematics of the system in the bundle CR2.

Figure 47.3. The springy pendulum, a system with two independent time scales.

only a high frequency for the stiff degrees of freedom, but also low forcing
frequencies and sufficient damping to keep the stiff degrees of freedom
from being excited.

Examples: For the stiff pendulum in the preceding example, with
initial conditions

.z=.y= V0,

we cannot ignore the stiff mode until it has damped out. Nor is it
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Figure 47.4.

generally obvious what are the correct initial conditions on the re-
duced system. Here angular momentum conservation gives it to
you. In general you are faced with a singular dynamical system in
the sense of Section 14, and must look closely at the path by which
it snaps onto the slow manifold.

Although billiard balls are the staple of mechanics metaphors, they
are stiff systems that are not easily reducible. Every mechanics stu-
dent should contemplate the marvels of the pool table. In particu-
lar, try to explain the "throw" of frozen balls, shown in Figure
47.4. [See Martin and Reeves (1977).]

When a stiff system can be reduced, then we use the coordinate invari=
ance of our exterior differential system to write the system in a form
where the stiff modes are described by separate coordinates. To reduce
the system just set them equal to their fixed values. The remaining co-
ordinates are called generalized coordinates.

Example: For our stiff pendulum the angle is a generalized coordi-
nate.

The task of writing the Lagrangian function L in generalized coordinates
is simplified if we note that the term Z, 2 m; q'ql is just the total kinetic
energy. The Lagrangian is just the kinetic energy minus the potential
energy. We can usually write down the Lagrangian for a physical system
by inspection, but try writing one for a bicycle.

Symmetries

Suppose we have a vector field k such that

£kLdt=O,

£ka=£k(dq-qdt) E 1(ct).
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The symmetry k leads to a conserved quantity using the Cartan 1-form

w=Ldt+ aLa.
q

Since

£kCE 1(ac),

we have along the solution curve

£kw=0,

and if we write this out, one term is the Euler-Lagrange equation and the
other gives

d(kJ CO) = 0;

that is, kJ w is constant.
In fact, the question of conserved quantities for discrete mechanical

systems is pathological. Along every trajectory the initial conditions are
conserved. Thus every such system has the full number of conservation
laws allowed. Of course, these trivial ones are not useful. The useful ones
are those that can be found without first solving the equations of motion.

48. Lagrange's equations for general systems

We are now ready to extend the equations of motion given in the last sec-
tion, which were based on the Lagrangian function, to systems that can
have nonconservative forces, perhaps velocity-dependent forces, and con-
straints that may be anholonomic. There is no new physics here. These
are all still consequences of F= ma.

Generalized forces

Not all forces come from the gradients of potentials. In general, we only
have a force 1-form telling us how much it costs to "push the system" in
different directions. Look back at the last section to see how the potential
entered into our equation of motion. The Lagrangian is given by

L = T- V,

where V is the potential generating the forces. This shows up as a term
in d w,

aV

aq '

dq dt
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and, after the contraction - J dw, becomes

av)(-)[Q'dt_T'd1,
q

and this is the value, along the path, of the 1-form on the contact bundle

a-(qdt-dq).
q

Thus, if we had not wanted to include this force in L, we would have
written the correct equations if we had included it as a separate force term

fa= - aV (dq-g'dt) 'V )C1,
q q

and used equations of motion

yJdw= -fa.

Any force that is not derivable from a potential can be treated this
way. If the force in configuration space is given by f dq, then we lift it up
to a force on the contact bundle of f et, and find the system motion from
the preceding exterior differential system, equation 47.1. This leads to
what are called Lagrange's equations. They are the most general dynami-
cal equations. Lagrangian mechanics based only on the Lagrangian func-
tion cannot handle velocity-dependent forces. Likewise, the Hamiltonian
description to be covered in Section 50 is also less general.

Anholonomic constraints

Return to the idea of physical systems with forces on them so strong that
they dominate the dynamics. Such forces are called constraints, and the
constraint is presumed to be able to apply whatever force is needed to
keep the constraint satisfied. A common form for such constraints in-
volves local conditions on the derivatives. These are called anholonomic
constraints.

Example: Consider a wheelbarrow, free to move on the (x, y)
plane. Three coordinates are needed to specify its position, say, the
x and y coordinates of the wheel and an angle for the direction of
the wheelbarrow. We cannot change the wheelbarrow's state arbi-
trarily, though. The wheel cannot be dragged sideways. The condi-
tion for this is that

,y =.x tan 0,
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Y

Figure 48.1. The wheelbarrow as an example of a system with an anholonomic constraint.

where 0 gives the angle between the x axis and the direction that the
wheelbarrow is pointing. In terms of 1-forms this condition is

J (dy-tan 0 dx) = 0.

See Figure 48.1.

For a constraint condition

-J cs=0,

with 0 a 1-form, we have a system able to produce sufficiently strong
forces in the 0 direction to keep the constraint condition satisfied. Put-
ting these (as yet) unknown forces in with a strength parameter µ(s), we
have a system

( Jii)dq=fdq+µo,

J a=0, -yJ 0=0.

The unknown strength µ(s) is very much like a Lagrange multiplier. You
no doubt expect that the variational formalism given earlier will apply to
anholonomic mechanical constraints. Although that puts you in good
company, it is not true. [I gather from some remarks in Sommerfeld
(1952) that the argument over this dates back to Hertz at least. Goldstein
(1959) is wrong; Whittaker (1965) has an honest but confusing treatment;
Saletan and Cromer (1971) have an adequate algebraic discussion; and
Pars (1965) has a clear, lucid discussion and gives a useful example.]

The trouble is that if we take the action to be extremal over variations
that are consistent with the constraint, then when the constraint is an-
holonomic, we get the wrong equations of motion. Rather than abandon
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a variational approach, some authors redefine the idea of a variation.
For mechanical constraints they make variations satisfying the condition

vJ 0=0

instead of the correct condition, given in equation 35.2. The claim in
Goldstein (1959) that this follows from

J 0 = 0

is incorrect. The problem appears to be one of taking a symbolic nota-
tion too seriously. For anholonomic constraints it is not true that their
operators d and S commute. The modified variations, which need to be
introduced in order to yield the correct equations of motion, do not
move the path into another acceptable path. It seems to be a rather forced
way to produce the equations. One goal of this book is to eliminate all
such funny deltas..;-

Problems

48.1 Write Lagrange's equations for a charged particle moving in a magnetic
field.

48.2 Show that the procedure used to lift the force 1-form up into the jet bundle
is really coordinate-independent. Try to find an elegant argument rather'
than just grinding it out.

49. Lagrangian field theory

We can easily extend our discussion of dynamics to continuum systems
and field theory. The proper geometric setting is again a contact mani-
fold. For a scalar field this is the manifold of the independent variables,
the dependent variable, and its derivatives.

There is a temptation to view continuum systems as systems with an in-
finite number of degrees of freedom, and so jump into spaces of infinite
dimension, Sobolev spaces or worse. That leads into the morass of func-
tional analysis. Powerful theorems come from this approach, but it is
outside the scope of this book and not congenial to my style. Here I will
reap what geometric advantages I can from the finite-dimensional set-
ting. For some systems, notably electrodynamics, the entire discussion
can even be given in spacetime itself.

The continuum limit that we arrive at here is special, in that it does
not include materials with intrinsic spin. The angular-momentum density
here all comes from bulk motions. To include intrinsic spin, we must
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develop continuum mechanics directly from the ten conservation laws
and the appropriate constitutive relations.

Hamilton's principle

We will ignore systems with anholonomic constraints and base our dis-
cussion on a variational principle. The Lagrangian for a distributed sys-
tem involves an integration over spatial variables as well as the time inte-
gration demanded by Hamilton's principle.

Example: The usual linearized stretched elastic string has a kinetic
energy

2

T=
Jo 2p at

dx,

where x is a coordinate labeling points on the string and y(x, t) is
the transverse displacement of the point x at time t. The potential
energy for small slopes and perfect elasticity is

2

V= Jo 2T ax dx.

Thus Hamilton's principle demands that the double integral
2 2

t2

Jr Jo'° at -T ax
dxdt

be stationary for variations of the function y(x, t). In the contact
manifold described by coordinates (x, t, y, u, v) with contact 1-form

a=dy-udt-vdx, (49.1)

this integral is

Jr 2(pu2-Tv2)e,

where the volume-element 2-form is

0=dxdt.

Note that u and v are defined by equation 49.1.

As was true in particle mechanics, this is a degenerate form of the calcu-
lus of variations, and the Euler-Lagrange equations can be found by the
integration-by-parts trick. The integral is to be stationary for infinitesi-
mal variations given by the vector field
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w=Ya +Pa ,
y p

in which the graph of the field variable y and its partial derivatives p are
deformed while keeping the graph an integral submanifold of a. This
condition constrains w so that

uJ£wa=0

for any vector u in the graph. Now,

£wa= -wJ dpdq+dY,

and so we must have

uJ (dY-Pdq)=0.

The deformation of the integral is

£w
J r

L0 =
J r

£w(L0) =
J r

w J (dL A O)

-fr
(aLO+PaL

a O .

Y p
Look at the second term. Restoring the indices, we have

aLP10=aLPj010=aLPj dg101,

pi p, pi

using the identity

dq'O,=010.

Now we can use the contact form to find

Jr p L 0 = Jrap rap
and integrating by parts we find

£wJ LO =J Y aL0-d M 0 + YM0.r r ay ap ar ap

From the volume integral we find the Euler-Lagrange equations
exterior differential system

d aL e- aye,
P

as the

dy -p dq.
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Figure 49.1. An elastic string with an end free to move up and down.

The surface integral does not vanish identically. Hamilton's principle de-
mands that Y vanish at the initial and final times, but not necessarily at
intermediate times. The boundary conditions determine the surface term.
Conversely, if the boundary conditions are not specified, the requirement
that the surface terms vanish provides natural boundary conditions.

Example: Suppose that for our elastic string the ends are not fixed,
but free to slide up and down (Figure 49.1). The surface term is

r Y aL e_ r Y aL a
J dt dx +

aL aL
J d t dx

Jar ap Jar au at av ax

giving us

Y[pudx+Tvdt]=O.
ar

This is satisfied for arbitrary Y on the sides only if

This is indeed the correct boundary condition for the elastic string
with free ends.

Elastic beam

A nice illustration of all this is the simple, ,linear, elastic beam. The
kinetic energy involves only the transverse velocity, and the potential
energy involves only bending. More complicated beam models take into
account rotational kinetic energy and other factors. They are routine
extensions of this problem.

Some care is needed to pick the right contact manifold. It should have
all the necessary variables and no more. The dependent variable y and
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the independent variables x and t are surely needed. Both first derivatives
will also be needed; let us call them u and v, and constrain them using the
contact 1-form

a = dy- udt- vdx.

The solution must be an integral submanifold of this 1-form. Because the
potential energy involves the curvature, we need to introduce second
derivatives as well, but only in the spatial direction. Call the second spa-
tial derivative r, and introduce the additional contact 2-form

0 =(dv-rdx)dt.

The dt factor is necessary to kill off a v, t term. If we require that our so-
lution be an integral submanifold of this form as well, then r will be y,xx.

We write Hamilton's principle

£w Jr 2(u2-r2) dtdx=0.

There are also material parameters. For clarity I will keep them constant;
and I have absorbed them into the length and time variables.

The deformation of the integral is given by the vector field

w=Y a

ay

and the functions Y, U, V, R are constrained by

aJ £wa=0, aJ £w,13=0,

where a is any surface element. This implies that under the integral we
have

(dY- Udt - Vdx) =0

and

(dV-R dx) dt = 0.

We proceed in the now familiar fashion. The deformation of the inte-
gral is given by

£w r LO =
r

(uU- rR) dt dx.

Here u is the value of u on the submanifold, whereas U is the u component
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of the deformation. The first term reduces as usual:

-Jr udxUdt= judx(dY-Vdx)= Jr udYdx

= -f Ydudx+f Yudx.
r ar

319

The surface integral vanishes identically; Y must vanish at the initial and
final times, and dx pulls back to zero on the ends.

The second term is more challenging. We have

rRdtdx=
J

rdVdt= -J Vdrdt+ rVdt. (49.2)r r r ar

It seems that we can proceed no further. The problem is that we need to
do another integration by parts to change V into Y. This involves another
derivative, but we lack a variable for it. We introduce s = y,XXX, using the
2-form

-y=(dr-sdx)dt,

which is suggested strongly by equation 49.2. None of the earlier work is
changed by this enlarging of our space. Now we can proceed

- Vdrdt= -c Vsdxdt= -f sdYdtr r r

and integrating by parts again

= Ydsdt- f sYdt.
ar

Collecting all this, we have

£w r LO = r Y[dxdu-dsdt]+ (rV-sY) dt.
ar

At long last we find the Euler-Lagrange exterior differential system

dsdt+dxdu, dy-udt-vdx,
du dt + dv dx,

dvdt-rdxdt, drdt-sdxdt.
The surface integrals provide natural boundary conditions

sY= 0, rV= 0.
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If the ends are free to move, then s must vanish there. If they are free to
.rotate, then r must vanish there.

Problem

49.1 How much less will a bookshelf sag if the ends of the shelf are built in and
not free to rotate, compared with a shelf whose ends are simply supported?

50. Hamiltonian systems

Classical mechanics is a highly evolved subject, and many obscure moves
have been explored and found to be useful. The transformation of a
dynamical system into Hamiltonian form is one of these. It is difficult to
motivate this transformation. Perhaps it was easier when everyone had a
thorough background in thermodynamics. Then a Legendre transforma-
tion would come naturally to mind. Furthermore, many of the reasons
given in textbooks to motivate this transformation are wrong. It is often
said that Lagrange's equations are n second-order equations, whereas
Hamilton's equations are 2n first-order equations. This is nonsense, as
the exterior differential form of Lagrange's equations shows.

The true advantage of the Hamiltonian form is in the contact and sym-
plectic structures that arise. This will be clear when the applications are
studied. Thus when we describe optics as a Hamiltonian system in Sec-
tion 52, we will find it to be an obvious result that no lens can increase the
brightness of an object. With this apology, let us now wander up, down,
and across a veritable forest of contact bundles.

Lagrangian systems in the jet bundle

Use enough dimensions. This seems to be a good general rule. Suppose
we look at the bundle CQ x IR, where CQ is the line-element contact
bundle to configuration space. We will use the extra coordinate to graph
the Lagrangian function. In this space a given Lagrangian system is
described by a submanifold, the graph of L. Call this extra coordinate 1.
We have a natural projection

(t,q,4,1)F-'(t,q,4)

and using this we pull the basis forms dq, d4, and dt up to the larger
bundle.

The 1-jet of this new bundle has additional coordinates for all the par-
tial derivatives of L. A useful mnemonic labeling for these coordinates is
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lq, 1q, and lt. The contact structure of this 1-jet is given by

dl - lq dq - lq dq - It dt.

A Lagrangian dynamical system on CQ can be lifted to a system on
CQ x IR by pulling up the contact form

d4-qdt,
and the Lagrange equations

d aL - aL
dt.

aq aq

We impose the requirement that the motion remain in the graph of L

1 = L(q, q, t),

and this implies

dl = dL. (50.1)

Continue upward, and pull these forms up into the 1-jet bundle, to find
the exterior differential system

dl - lq dq - lq dq - It dt, (50.2)

dq-qdt, dlq - lqdt,

dl -dL.

We have used equation 50.1 to simplify the Lagrange equations. Now
they involve only coordinates and basis vectors, not functions. This sim-
Fplification is the whole reason for this construction. Note the clarity that
results from a notation that separates the independent variable l and the
function L. As an exterior system, the one given in the preceding is not
closed under d. This does not matter, because the maximal integral sub-
manifolds are only one-dimensional; 2-forms do not matter. This exte-
rior differential system defines a line-element field on the jet bundle.

The Hamiltonian bundle

If we start instead with the hypersurface contact-element bundle C*Q,
with coordinates (t, q, p) and contact structure

dt-p dq,

we can generate the same tree of bundles. We now have the graph of a
function called the Hamiltonian. We look at the 1-jet of the bundle
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(t, q,p, h) (t, q,p)

with contact structure

dh - hq dq - hp dp - ht dt. (50.3)

Again, this equation should be read as a convenient packaging of the
definitions of the new coordinates. This jet bundle and also the Lagrangian
jet bundle both have hypersurface-element contact structures, equations
50.2 and 50.3. Contrast this with the different contact structures of CQ
and C*Q. We can find a contact transformation between the jet bundles
that preserves their contact structures; this is the Legendre transformation:

(q,4,t,1,1q,1q,lt)'--'(q,p,t,h,hq,hp,ht)=(q,1q,t,1q 4-l, -1q,4, -lt).

Note that this involves only the coordinates, not the functions L or H.
They enter the problem only by defining the submanifolds on which the
system moves. The inverse transformation is

(q,p,t,h,hq,hp,ht)-(q,4,t,1,1g91q,1t)

= (q, hP, t, hpp-h, -hq, p, -ht). (50.4)

These transformations map integral submanifolds of 50.2 into integral
submanifolds of the 1-form in equation 15.3 and vice versa.

Hamilton's equations

Using the inverse transformation, equation 50.4, we can pull our
Lagrangian system over to the Hamiltonian jet bundle. Because it con-
sists of only basis 1-forms and coordinates, this is easy. We find the system

dh-hq dq-hp dp-ht dt,

dq-hp dt, dp+hq dt,

dh-dH,

where the hypersurface l = L is mapped onto the hypersurface h = H.
The Hamiltonian function H is found by inverting

p = a(q, Q(q,p, t), t)Lq

for the functions Q(t, q, p). Then we have

H=pQ-L(q, Q, t).

Again the exterior system defines a line-element field on the jet bundle.
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Now to descend. The jet bundles are used only for the Legendre trans-
formation. The Hamiltonian exterior system is the pullback of the exte-
rior system on C*Q generated by

dq - aH dt, dp + aH dt.
p q

A direct map between CQ and C*Q is very difficult. (Try it!) A partial
derivative such as aL/aq does not transform simply. The function part
goes against the map, and the derivation goes with it. The trick was to go
to a space where the partial derivatives are just coordinates.

A Cauchy characteristic vector for the exterior system on C*Q is

aH a aH a a
u

__ _
+ap aq aq ap at

This vector field yields the usual set of Hamilton's equations.

Integral in varian is

We now jump from considering a single integral curve to studying prop-
erties of families of them. Here there is additional structure not apparent
in any single integral curve.

Look at a 1-parameter family of integral curves that have the topology
of the circle, that is, a 1-cycle (see Figure 50.1). The integral curves of our
system sweep this into a cylinder in C*Q. The integral

Jar (pdq-Hdt)

is called the action for this ensemble. The action is the same for any
1-cycle aP around this cylinder. Different parts of the 1-cycle aP can be
pushed forward along the integral curves at different rates.

I will show this invariance in the next section. There are also higher
forms of these conservation laws. For any two-dimensional ensemble, we
have an invariant integral

Jr (dpdq-dHdt)

provided F is carried along by the integral curves (Figure 50.2). Remem-
ber that H is a function on C*Q. For an n-dimensional ensemble, wedge
the above integrand with itself, and so on, up to n factors. The last in-
variance is called Liouville's Theorem. After n factors they all vanish
identically.
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Figure 50.1.

rl

Figure 50.2.

Hamilton's principle

Associated with any Hamiltonian system is a variational principle. This
variational principle is a useful tool for guessing Hamiltonian functions.
Look at the action, the line integral in C*Q

S= (pdq-Hdt).

Hamilton's principle states that the motion of the system is along an
extremum of this integral, that is

Along a solution curve

we must have

'yJ (dpdq-dHdt) =0.

s-(Q(s),P(s),s),

P'dq-Q'dp+ aH dq + aH dp + Q' aH dt+P aH dt=0,
q P q P

where
dQ
ds

Q' _

and so on. These lead to the usual Hamiltonian equations

dQaH dP_ aH
dt ap ' dt aq
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and also
dH aH
dt at

which follows from the first two.

Problem

50.1 What is the relation between Hamiltonian mechanics and the exterior differ-
ential system generated by dp n dq and dH?

51. Symplectic geometry

We now specialize to the situation in which the Hamiltonian function
does not depend on one coordinate, usually time. Here the special geom-
etry of the cotangent bundle plays a central role. This special situation
is so much studied that you could mistakenly think that it is all of the
Hamiltonian dynamics. In Section 12 we saw that the structure of the co-
tangent bundle manifested itself in the canonical 1-form

O=pdq,

and the 2-form

This 2-form satisfies

dQ=O

(51.1)

and is of maximum rank. Such a 2-form generates a mathematical struc-
ture called symplectic geometry. A manifold of even dimension with such
a 2-form is called a symplectic manifold. Manifolds with odd dimension
can have the closely related contact structure.

In Section 26, on normal forms, we saw that any closed 2-form can be
written in some finite region in the manner of equation 51.1. Thus all
symplectic geometries are locally the same, and are thus quite different
from metric geometries. A finite piece of a sphere is intrinsically different
from a finite piece of the plane.

Geometric significance of SZ

The 2-form I determines special submanifolds (N, ) that are integral
submanifolds
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An integral submanifold of I of half the dimension of the space, which is
the largest possible, is called a Lagrangian submanifold.

Suppose we have a 1-form field, a section v : M-+ T*M. If we have

d v = 0, (51.2)

then this section is a Lagrangian submanifold. Locally the reverse is true,
but there can be bad points where the Lagrangian submanifold is vertical
and is not the graph of any 1-form field.

To prove equation 51.2, represent the map v : M-+ T*M by functions W

v:q-(q,p)=(q, W(q)).

Then

V* - dq = dq

and

and so

But

hence

v*,dp= aW dqa
q

v* (dpa dqa) = aWc dql dqa.

d(W, dqa) = awl dql dga,
aq

v* (dp dq) = dv,

proving the assertion.

Symplectic gradient

The 2-form SI has many of the properties of a metric. We can use it to
transfer vectors to the cotangent space and vice versa, using the relation

uJSZ=v. (51.3)

If SI is nondegenerate, that is, u J SZ never vanishes unless u itself does,
then equation 51.3 can be solved for u. The gradient of a function is a co-
vector. Using the preceding operation, we can turn it into a vector, called
the symplectic gradient.

Hamiltonian dynamical systems

A dynamical system is a vector field on a manifold. Some dynamical sys-
tems have more structure; here we will look at the special systems that
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have a symplectic structure as well. These special systems are most famil-
iar to physicists from classical mechanics. These dynamical systems can
be derived from a Hamiltonian function that is independent of time.

If t does not appear in H, then we can reduce the dimension of the rep-
resentation by one, and relegate t to being only the parameter along the
integral curves. Thus the parametrization becomes significant, and we re-
place the exterior differential system by the vector field

aH a aH a
ap aq aq ap

Geometrically we have a function H: T*(M) -+ IR, called the Hamil-
tonian function. We can use the 2-form I to convert the gradient of H
into a vector field

v J Q= -dH, (51.4)

going from H to a dynamical system by using symplectic geometry.

Example: Let us show that this produces the usual Hamiltonian
equations of classical mechanics. Write

a av=qaq +pap;
then

vJ SZ=pdq-qdp,

and so from equation 51.4 we have

that is

pdq-qdp= -
aH
aq dq-

aH
ap dp;

aH
q= 'ap

aH
p aq

Where do these Hamiltonian systems come from? For a few physical sys-
tems there are informal algorithms for producing a suitable Hamiltonian
function to describe the system. In these situations the Hamiltonian is a
quick way to produce the equations of motion. In many situations we
have the equations already; so we search around and find a suitable
Hamiltonian function. Why do that if we already have the equations of
motion? Because Hamiltonian systems are special, and they have a great
deal of useful structure. Also, we can use the connection between Lagran-
gian systems and Hamiltonian systems. There are quite precise algorithms
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for the Lagrangian description of a mechanical system. Finally, Hamil-
tonian systems also arise in the high-frequency limit of dispersive wave
propagation.

The Hamiltonian flow

In Euclidean geometry the divergence of a vector field measures the ex-
tent to which a fluid carried along with the flow of the vector field is com-
pressed or expanded. The idea can be carried over to a manifold provided
that we are given some way to compare densities at different points. Such
a standard density is available if we are given some particular n-form (n
being the dimension of the manifold) at every point. The extent to which
the flow of the vector field v expands relative to the given density is
described by the divergence (div v), defined by

(div v) co.

Remember that the n-forms are a one-dimensional vector space. Since
£vw is an n-form, it must be proportional to w; (div v) is the constant of
proportionality.

Example: The familiar Euclidean divergence uses the 3-form

e =dxdydz.

For a vector

a a av=aax+ba +caz,
ay

we have

£vO=d(vJ 9)

=d(adydz+bdzdx+cdxdy)

ax+ay b+az
dx dy dz

and so we have the familiar result

div v =

ax

+
ay + az .

For a density

w=adxldx2.
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we have
a(av )

2l d£ d

and so

...xxcw = axe

div v =
1 a(av-1)- 51.5)
a axi

There is a natural density on any contangent bundle T*M

where, if M is n-dimensional, there are n factors of SZ on the right. Since
we have for our Hamiltonian vector field v

we also have

and so

£USZ=d(vJ9)+vJdQ=O,

£UW = O

div v = 0.

Thus the flow of any Hamiltonian vector field has no divergence and is
similar to the flow of an incompressible fluid.

Systems with damping cannot be Hamiltonian systems. If all initial
states collect at a single point, then this implies a negative divergence no
matter what co is chosen. Of course, in small, local, regions any system
can be written as a Hamiltonian system. Recall that any vector field can
be transformed into a constant vector field in some small region. These
limited transformations are usually unnatural and of little interest, since
the systems usually run out of the local regions before anything interest-
ing happens. [See Santilli (1978) for more on this.]

Integral in varian is

The representation of systems in the cotangent bundle is very well-suited
to a study of ensembles of systems. Consider a 1-parameter family of sys-
tems, each moving along an integral curve of some given Hamiltonian H.
Suppose further that they have the topology of a circle. The action inte-
gral is defined to be

S=Jarpdq,

and we want to see under what conditions S has the same value for any
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Figure 51.1.

cycle aP that goes around the family of integral curves, not necessarily at
constant time (see figure 51.1).

We will calculate the effect of pushing the curve aP along the integral
curves, not necessarily with the same rate for all of its parts. The change
in S is given by

£0v Jar p
dq,

where v is the Hamiltonian vector field satisfying equation 51.4, and 0 is
an arbitrary function. We have the change given by

Lr£Ov(pdq)=Jar gvJdpdq=-LrgdH.

Now, integrating by parts we find that this equals

Hdq.L
If the value of H is the same on all of aP, then H can be factored out of
the integral and the integral vanishes. If H is not constant, then we must
take 0 constant, and aP must be carried along at the uniform rate of the
flow.

Using Stokes' Theorem, we can write this as a surface integral

r Q= c dpdq= ar pdq

invariant under the same conditions. Using the Liebniz rule we see that
products like
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r
are also invariant.

Parameter invariance

Suppose we compare a Hamiltonian system with Hamiltonian function
H with one with Hamiltonian function H' = f(H). From

v'J SZ = -f '(H) dH,

we have

v'= f'(H)v,

and the same curves in T*M are traced out, but at a different rate.
For some Hamiltonian systems the states of interest do not fill the co-

tangent bundle. It is common to have systems confined to a hypersurface
H =constant. For these systems an even more drastic reparametrization
is possible: H can be replaced by any other function that preserves the
H= constant hypersurface. This allows the Hamiltonian vector to be re-
scaled at every point, tracing out the same curves but at a different rate.
Since the states of interest do not fill T*M, we can go to a smaller space to
describe the dynamics. This may or may not be more efficient.

Example: A free particle in special relativity is described by a
Hamiltonian

H= gaapapo.

With this Hamiltonian the parameter turns out to be proper time.
Exactly the same Hamiltonian describes free particles in general
relativity as well. The value of the Hamiltonian is the square of the
mass of the particle. An ensemble of particles all of the same mass
will not fill T* 1R4.

Time-dependent systems

Although it is clear that time-independent systems are a special case of
time-dependent ones, that the converse is true seems surprising. Still, it is
so. By enlarging the space, we find that a time-dependent system on a
space (t, q, p) of odd dimension leads to a time-independent Hamiltonian
system on the even-dimensional space (q, t, p, r), with new Hamiltonian
function
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W= H(t, q,p) + r.

The symplectic structure is given by dp dq + d r d t. The parameter along
the integral curves should be called something other than t.

Hamilton's equations for the preceding Hamiltonian are

dqaH dt
ds ap ' ds

dp _ aH d r _ aH
ds aq ' ds at

From these we see that the curve parameter is indeed time, and that the
momentum r is just minus the value of the Hamiltonian.

The utility of this approach is that we can use directly the proof of
the integral invariants for time-dependent systems. This is much simpler
than a direct discussion. The action is

larpdq+rdt= ar pdq-Hdt.

Now, in lifting a given state (t, q,p) up into (q, t,p, r) space, we must
give some rule for assigning the momentum r. A constant shift in r makes
no change in other variables, and we can pick r such that the Hamilton-
ian W vanishes identically. This is therefore a special situation in which
the action can be computed for any 1-cycle enclosing the integral curve,
not necessarily at constant time or constant parameter increment.

This leads us to augment our earlier discussion for time-independent
systems. We have the integral in the symplectic bundle

Jarpdq

unchanged by uniform displacement along the integral curves. The inte-
gral in the contact bundle

pdq-Hdt,
ar

on the other hand, is unchanged by any displacements whatsoever along
the integral curves. Thus we see that even time-independent systems dis-
play their full structure only in the contact bundle rather than in the sym-
plectic bundle.
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52. Hamiltonian optics

Rather than repeat the familiar examples of elementary mechanics, let
me illustrate the ideas of Hamiltonian systems with the interesting and
useful application to optics. It will be instructive to see an example that is
not a mechanical system. We will find the results useful when we discuss
gravitational lenses in Section 65. Historically, the applications in optics
preceded those in mechanics. In this section, z, the distance along the
optical axis of the system, plays the role of time.

The description of a light ray requires two spatial coordinates and two
directional ones. A Lagrangian description would take place on CIR3
with coordinates (z, x, y, z,,y) and a contact structure generated by the
1-forms

xdz-dx and ydz-dy.

The Hamiltonian description takes place in C*1R3 with coordinates
(z, x, y, a, 13) and a contact structure generated by

dz - a dx -,0 dy.

In early drafts I used the six-dimensional symplectic manifold T*1R3, but
this turns out to be remarkably clumsy. The system properly lives in the
five-dimensional contact bundle.

The Hamiltonian

To begin, we need the Hamiltonian function. We start with Snell's law,
which says that if the index of refraction n is independent of x, then

n sin 0 = constant.

As a Hamiltonian system, this is a system with a translational symmetry
and hence a constant momentum. Thus we expect a momentum variable

a = n sin 0.

We must write this in the proper variables, of course:

a = nxl 1 + (.z)2.

Solving for z we have

X=a/ n2-a2.
This should be one of Hamilton's equations, and so we must have
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aH a
as n2 - a2

and this leads us to guess the Hamiltonian

H= - n2-a2
or in 3-space

H= - [ -a2-(32.

Variational principle

From Section 50 we know that the line integral

S=
J
(pdq-Hdt)

is stationary along light rays. Here this integral is (using two dimensions
for clarity)

n2-a2 dz.

Using Hamilton's equations gives us Fermat's principle, that

_ n dzS-
cos 0

is stationary. You might have expected me to start from Fermat's prin-
ciple. That would be circular reasoning, however. What we really know
about light rays is Snell's law. Here the actual inductive step is clearly
displayed.

Brightness

Turn now to study bundles of rays. There is a four-parameter family of
rays near any given ray.

Example: The four-parameter family of rays around the ray

s-(x,y,z)=(0,0,s)
is given by

(u,v,m,n)-[s-(x,y,z)=(u+ms,v+ns,s)].

See Figure 52.1.
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Figure 52.1. The four-parameter family of rays in the neighborhood of a given ray.

Ray bundles are simple to discuss in the five-dimensional phase space
C*IR3. Whereas in IR3 the rays crisscross everywhere, in C*IR3 they form
a smooth congruence, with only one ray passing through any given point.

The local density of rays is called brightness. The density of rays in five
dimensions is represented by a 4-form aligned along the rays, with a
cross-sectional area enclosing a single ray. 'The direction of the rays is
specified by the Hamiltonian vector field

aH a aH a aH a aH a a

as ax+ a,3 ay- ax aa- ay a(3+az'
We can find a 2-form aligned along this direction

da dx+d,6 dy-
7au

da+ ao d,6+ ax dx+ ayH dy Adz.
a

This is just our old friend

SZ = dp dq - dHdz,

and we clearly have

vJSZ=O.

A 4-form aligned along the rays will be SZ A SZ.
The phase-space density of a four-parameter set of rays is called bright-

ness. The scalar brightness B is such that the 4-form describing the density
of rays is BOA Q. If rays are conserved, then we must have

d(BSZA9) = 0.
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z

Figure 52.2.

We have

(£vB)QAQ=£v(BS2AQ)=vJd(BSZA )+d(vJBSZA1l)=O.

The scalar brightness B is constant along a ray.
Associated with 'this brightness is an integral

E=JBSZA ,

where the surface E describes some four-parameter family of rays. If the
surface E is carried along with the rays, the value of the integral does not,
change. If E contains all the rays passing through an optical instrument,
then E is an invariant of the instrument called the etendue or through-
put. The information-carrying capacity of an instrument depends on the
etendue, there being E/X2 picture elements, a number often called the
space-bandwidth of the instrument. For an instrument with an oblique
pupil, we would need the dHdz terms. These are often left out.

Gaussian optics

Look at light spreading in vacuum from a small source. The propagation
of a ray a distance d along the z axis is described by the transformation

+
ad 6d

I-«2-02X
'
Y+ 1-«2-(32

(see Figure 52.2). For small angles this is just the shear

(x, y, a, 0)-(x+ad, y+Od, «,,13).

Look next at the passage of light through a thin lens in the limit of small
angles. Again we have a shear

(x, Y, a, 0)'-'(x,Y, «-x/f, 0-Y/f)

Both of these are obviously symplectic transformations; that is, they pre-
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Figure 52.3 (left). The rays emitted by a source of width b.
Figure 52.4 (right). The rays intercepted by a receiver of finite width after the rays of

Figure 52.3 have propagated some distance.

serve da dx+do dy. The theory of optical instruments based on these
approximate transformations is called Gaussian optics.

Examples: To see that the parameter fin the preceding equation is
the focal length, take a two-parameter family of parallel rays

(u, v)- (x,y,a,0)=(u,v,0,0)
After the rays pass through the lens, we have the family

(u, v, -u/f, -v/f).

Let the resulting beam propagate a distance d; then we find

(u-ud/f, v-vd/f, -u/f, -v/f).
Indeed, after a distance d = f, this parallel beam is focused on the
z axis.

To see how conservation of brightness is compatible with the inverse-
square law, look at a beam emitted from a source of small size b.
The rays now form a four-parameter family. For simplicity let us
ignore the y direction, and derive a 1/r law. The rays originally lie
in the strip of width b shown in Figure 52.3. After the rays propa-
gate a distance r, this strip is sheared, as shown in Figure 52.4. The
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energy collected by a detector of fixed size in x is contained in the
parallelogram shown. Since brightness is constant, the energy col-
lected will be just the area of this parallelogram. And indeed, we
see that this is proportional to 11r.

Perfect lens

Our final application of Hamiltonian optics will be to show that a perfect
lens is impossible, even allowing for a continuously variable index of re-
fraction. We take from geometrical optics the result that any imaging
system that maps straight lines into straight lines must obey exactly the
thin-lens law

1 1 1f sd,

perhaps with allowance for thickness of the lens. This leads to a transfor-
mation

(x,a)-(x,a')
with a' given by

sin 0 = a,

tan 0'= tan 0 - x/f,

a' = sin 0'.

Such a transformation is not a symplectic transformation. To preserve
areas it must be a simple shear in a, which the preceding is not. Thus the
geometrical properties of an imaging system are incompatible with the
behavior of bundles of light rays.

Problem

52.1 Are there conservation laws for the intensity of point sources?

53. Dynamics of wave packets

In this section I will discuss the high-frequency (WKB) limit of wave mo-
tion. This is a metatheory for Hamiltonian dynamics. It contains Hamil-
tonian dynamics as the frequency tends to infinity.

Wave packets

We start with a linear partial differential equation, or perhaps a set of
them. We consider high-frequency solutions, where the phase of the wave
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Figure 53.1. The geometric representation of a wave packet of dispersive waves in
spacetime. The light lines are wavecrests, drawn only where the wave packet has a

significant amplitude.

train changes rapidly compared with all other variables. We can make
up lumps of these wave trains, lumps containing many waves and with
slowly varying amplitude and frequency. These lumps I call wave pack-
ets. We will see that they behave very much like particles, but with the
additional physical phenomenon of interference.

These wave packets are described geometrically by sections of the tan-
gent and cotangent bundles of spacetime. The wave packet has a 1-form
defined at every point, the gradient of its phase, which describes the
alignment and spacing of its wavecrests. This 1-form is the geometric rep-
resentation of phase velocity. The wave packet also has a vector showing
its motion through spacetime, the group velocity. Many elementary books
try to treat phase velocity as a vector. This is possible only in two-dimen-
sional spacetime. Phase velocity is really a 1-form. Our view of a wave
packet is sketched in Figure 53.1.

Dispersion relation

The original partial differential equation constrains the phase velocity of
the wave packet to a hypersurface in the cotangent space.

Example: Look at the ordinary wave equation

a2 a2
ate - aX2
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w

Figure 53.2. The dispersion relation for waves in liquid helium.

and consider solutions of the form

---A exp[i(wt+kx)],

where A. k, and co can all be slowly varying functions. The deriva-
tives of ( will have the phase gradients as their largest terms, here

(k2-w2)A exp[i(wt+kx)],

and the phase gradient 1-form

P=Pdq=wdt+kdx
must satisfy

k2-w2=0.

The wave number k used here has a sign opposite to that usually
given. I do this so that x and t can be treated uniformly. This con-
straint on the phase gradient is a function W: T*M- IR called the
dispersion relation. Wave equations can be characterized by their
dispersion relations. Deep-water waves on still water satisfy

w4 - g2k2 = 0.

Elastic waves on a beam with both tension and stiffness satisfy

w2-k2+k4=0

(I have left out material constants here). Figure 53.2 shows the dis-
persion relation for some quantum waves in liquid helium. Quantum
wave packets are called quasiparticles, here, phonons and rotons.

Dynamics

To find one of these high-frequency solutions to a wave equation, we
must solve the following geometric problem. Find a section P of the
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cotangent bundle such that it satisfies the dispersion relation W,

such that

W°P = 0

dP = 0. (53.1)

The latter condition comes from the fact that P is already the gradient
of the phase

P = dg.

This geometric problem can readily be translated into'an exterior differ-
ential system. The section P must be an integral submanifold of the ideal
generated by

dp dq and dW. (53.2)

The relation between equations 53.1 and 53.2 was shown in Section 51.
The section P is a Lagrangian submanifold.

This exterior system has a Cauchy characteristic vector

aw a aw au_ap
aq aq ap

satisfying

(53.3)

uJdqdq=O, uJdW=O.

Given initial conditions on the wave packet, this vector generates the sec-
tion, i.e., the dynamics of the wave packet. The projection of u onto
spacetime is the group velocity vector.

We see from this that these wave packets behave like particles follow-
ing Hamiltonian dynamics. The relation to our classical dynamics picture
is clear. The group velocity has no particular scale, and is really a line ele-
ment. This is the Lagrangian picture in CQ. The Hamiltonian picture
does not see the 1-form, the frequency having gone to infinity. This is the
contact element in C*Q. Thus we finally see a physical interpretation for
the Ps in Hamilton's equations; they are the residue of the phase velocity
as the frequency goes to infinity.

Wave diagram

So far the group velocity has been specified by only a line element. We
can use a vector to represent the group velocity in spacetime if we pick a
normalization. We will take

uJPdq=1. (53.4)
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Figure 53.3. Wave diagram for waves on an elastic beam.

This leads to a group-velocity vector

aw a aW
U= =

app aq1
p ap

The dispersion relation is a hypersurface in the cotangent space. Corre-
sponding to this there is the set of group-velocity vectors in the tangent
space, each phase velocity being associated with a unique group-velocity
vector. This set I call the wave diagram. Although the dispersion relation
is a fairly tame surface, being the zero contour of a smooth function, the
corresponding surface in the tangent space is not. It generally has cusps,
asymptotes, and other interesting peculiarities.

Example: The wave diagram for an elastic beam is shown in Fig-
ure 53.3. The beam has bending stiffness, a compressive load, and
transverse elastic support. The dispersion relation is

W2=k4-k2+1.

Fortunately, the peculiarities of the wave diagram are all important physi-
cally, and so it is good that the wave diagram brings them to our attention.

Examples: An asymptote corresponds to a wave packet with no
dispersion. The group velocity then lies in the constant-phase sur-
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phase
velocity

Figure 53.4. The relation between group velocity and phase velocity provided by
the wave diagram.

faces. Although the general dispersive wave pulse will spread with
time into a nearly harmonic wavetrain, this is not true for modes
around such nondispersive points.

A cusp corresponds to a turning point in velocity. In the preceding
wave diagram, it was a local maximum velocity. If wave energy is
smoothly distributed over frequencies, then this turning point will
be very prominent. This occurs in rainbows.

From equation 53.3 it follows that these wave packets follow Hamilton-
ian dynamics. Using the normalization given in 53.4 gives us Hamilton's
equations in the form

dq` aw aW
dt api p ap

dpi aW aW
dt aq` pap

The group velocity and the phase velocity are related by the wave dia-
gram as shown in Figure 53.4. The phase-velocity 1-form is the tangent to
the wave diagram at the group-velocity vector.

Example: In Figure 53.5 I sketch the turning-point wave train for
the elastic beam shown in Figure 53.3. Observe that the wavecrests
are moving to the left, but the energy is flowing to the right.

In fact, the dispersion relation and the wave diagram are related by a
Legendre transformation. In general this is singular at cusps and cannot
be inverted blindly.
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Figure 53.5. Theiwave train for the elastic beam at the turning point (cusp).

To see that the phase velocity is tangent to the wave diagram, we can
argue directly, rather than making the Legendre transform. From the
normalization in equation 53.4, we see that the unit contour of Pdq
passes through the group-velocity vector. It will be tangent provided

(u+Au)JPdq=1

for a small change in group velocity Au. This is equivalent to showing that

u] LP dq =0

for P+ AP a nearby phase velocity. We have

uJ AP= (aW/aPi)Api
p(aW/ap)

The numerator is the change in W along the dispersion relation. Since the
dispersion relation is in fact specified by W= 0, this vanishes.

Interactions

When a wave packet hits a mirror or interacts linearly with a perturba-
tion or another wave packet, we must have the various disturbances all in
phase over the many cycles that make up the wave packet. This leads to
kinematic constraints on the interactions.

Example: For waves described by the squiggle shown in Figure
53.6, an incident wave train can only reflect off the moving mirror
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x

Figure 53.6. Phase-velocity relations at a moving mirror.

as shown. The mirror must see the same local frequency on its sur-
face (pullback of the phase-velocity 1-form) from each wave train.

Some further examples of wave-packet dynamics, including a discussion
of relativity and the twin paradox for water waves, can be found in Burke
(1980).

Problem

53.1 Derive the Hamiltonian for geometric optics from a dispersion relation.
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VIII
Calculus on fiber bundles

Physical theories today are predominantly field theories. The geometric
view of fields is that they are sections of fiber bundles. Handling the local
relations (partial differential equations) between fields requires some care
when we are working on manifolds, and the difficulty comes from an
unexpected direction. We can do ordinary calculus with no trouble. The
local affine approximations to these sections will be contact elements. This
calculus is done in the jet bundle. The difficulty lies in deciding which
contact element represents a constant field. A similar problem exists, say,
for angles. Until we are given the geometric structure of a metric, the idea
of an angle on a manifold does not exist.

Example: There is no problem in deciding what a constant real-
valued function is. Thus it is easy to physically measure the temper-
ature everywhere in a building, and mathematically easy to recog-
nize when it is constant.

Not so for a field variable that is a vector. Because of this we are
unable to define globally the state of rest on spacetime, and thus are
not able to define, for example, the total energy of an expanding
universe. Does the kinetic energy of the expansion count or not?
This is not a problem of inadequate mechanics. There is no physical
meaning to the question.

If there is to be physical meaning to the idea of a constant field, then
it must be added to the bundle, and we need some mathematical struc-
ture to represent it. The appropriate mathematical structure is called a
connection, and the calculus that it leads to is called (for shaky histori-
cal reasons) covariant differentiation. That name can be misleading. The

347
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Figure VIII.1. A simple illustration that a 2-sphere does not allow a constant vector field to
be consistently defined.

,yr

differentials of fields are well-defined and coordinate-independent. They
lack only a reference value, the constant differential.

Note the preceding restriction to a local idea of a constant field. The
useful concept here is not the idea of a globally constant field, but only
that of a field with vanishing first derivative. In fact, a field constant over
a loop of finite area may not exist.

Example: The embedding of the 2-sphere in Euclidean 3-space lets
us define locally constant vector fields. In Figure VIII.1, I sketch a
failed attempt to find a constant vector field along the (truly) right
triangle ABC.

Constant vectors can be thought of as parallel. To pick vectors along a
curve that are parallel is called parallel transport. The preceding example
shows that a parallel transport may very well be path-dependent. Such
connections are called anholonomic. One useful physical operation that
is modeled by using the mathematical idea of parallel transport is the
propagation of a wave packet of dispersive waves. The wave packet gives
us a phase-gradient 1-form along the path of the wave packet. We can
represent this physical structure using a connection, and this connection
is the one used in general relativity.

In this chapter we will develop the theory of connections in the tangent
bundle and its associated tensor bundles. All these bundles have a linear
structure on their fibers, and the connection will be compatible with this
linear structure. These connections are usually called affine connections,
although they could better be called linear connections.
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Figure 54.1. The geometric pattern of a connection.

54. Connections

A connection is the geometric structure used to answer the question:
What is the constant field in the neighborhood of a given point? The geo-
metric picture is shown schematically in Figure 54.1. The field is repre-
sented by a section of a fiber bundle. The local affine approximation to a
section is a contact element. Taken literally, Figure 54.1 shows a field
with one degree of freedom defined over a two-dimensional base space.
If the field is a vector field or a 1-form field, then both the fibers and the
base space have the same dimension. In Section 1 we discussed this geo-
metric situation and found that it had an affine structure. Given two con-
tact elements, b and c, we can find a unique parametrized line of contact
elements passing through b and c. The situation does not have a linear
structure, however. Given a contact element b, we have no way to single
out a contact element k times b. An affine space can be made into a linear
space only if a particular element is singled out as the origin. This is what
a connection does. A connection is a choice at each point in the bundle of
a contact element representing there the idea of a constant field. This
contact element is often called horizontal. A section tangent to this con-
tact element has no first derivative at the point. A bundle can have many
different connections defined on it. A connection is a geometric structure,
and different ones are used to model different physical situations, just
as a vector field is a geometric structure used to model, for example,
dynamical systems.
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Compatibility

Our bundle may have other geometric structures as well, and usually we
will want our connections to be compatible with these structures. The
tangent bundle has a linear structure. A connection there should respect
this linear structure. The sum of two constant fields should also be con-
stant. Addition there is to be done fiber by fiber. Other structures that
can arise are groups, group actions, and metric structure. In this chapter
we will be concerned only with connections in the tangent bundle and
its associated tensor bundles. By some miscarriage these are called affine
connections, even though they preserve not just an affine structure on the
fibers but also a linear structure.

Example: A physical realization of a connection on the tangent
bundle to a curved 2-manifold such as an automobile fender is
given by a sheet of graph paper. Pasted onto the surface it locally
defines constant vector fields, such as the vectors on the sides of the
squares. It only works in the neighborhood of the point, however.
Over finite distances it wrinkles, and there is no unique way to
squash it onto the surface.

Representation of a connection

There are two ways to represent a contact element. We can specify a
linear subspace of the tangent space of the bundle by giving a set of tan-
gent vectors that span the contact element. Alternatively, we can give an
ideal of 1-forms that have the contact element as an integral submani-
fold. The number of tangent vectors is the dimension of the base space.
The number of 1-forms is the dimension of the fiber.

Example: For a connection in the tangent bundle, it takes either n
vectors or n 1-forms to specify the connection.

If we take coordinates yµ for the fibers and x' for the base space, then
any contact element can be specified by the vectors

x-=a-f;a
` ax` ay

or by the 1-forms

a = dy+f; dx'.

The coefficients f; (x, y) represent the connection.
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For a linear connection these fl coefficients must satisfy certain com-
patibility conditions. Suppose the y are linear coordinates for the fibers.
Let x - (x, Y(x)) and x - (x, Y'(x)) be two sections, each constant at
x = a. The sum of these is the section x - (x, Y+ Y'). For the sections
to be constant at x = a, we must have the pullbacks of the a vanishing.
Thus if we have

ax`
+.f, (Y) dx` = 0

and

ay,
ax`

+f' (Y') dx` = 0,

then for a linear connection we must have

f,(Y)+f,(Y') =f1(Y+Y').

This plus scaling implies that the f; can be written in terms of the linear
coordinates in the form

f; (x, Y) = r,µ Yµ,

and the connection can be specified by either the 1-forms

aA=dyµ+r vyvdx1,

or the vectors

(54.1)

µX ax, -rµivyv aay

The coefficients r /'.v depend only on x. If the bundle is the tangent
bundle, then they are the usual affine-connection components of tensor
analysis.

Despite the fact that the r v are festooned with indices in a tensorial
manner, they are not tensors. We can demonstrate this by calculating
how the r v transform under a change in coordinates.

Example: In the tangent bundle, the y coordinates are usually de-
noted by x. If we transform to new curvilinear coordinates

z` = Z`(x),

then the new fiber coordinates are given by

aZ`
z axi

x .



(
-
n

C
FO

Ii
i

.(2

352 VIII. Calculus on fiber bundles

The basis 1-forms transform according to
a t

dt' = ax dV + axkaXj zj dxk

and the new connection 1-forms can be written

d 1 +P`jktkdzi
i k j 2 i

ax dxj+P`jk.zl dxm
axl axm

+ axkax j zj dxk. (54.2)

The tensorial nature of the r`jk is ruined by the last term on the
right-hand side, which prevents the new components from being
linear functions of the old components. Note that it is an affine
function. Perhaps this is the historical reason for calling it an affine
connection rather than a linear connection. The old-timers were ob-
sessed with these transformation properties. In Section 56 we will
see the use of these transformation equations.

Since for a linear connection the r`jk depend only on x, the 1-forms

k=r'jkdxj
are the pullbacks of 1-forms on the base space. They do depend on the'
choice of the coordinates x and y. They are called connection 1-forms,
and often are an efficient representation of a linear connection. The entire
set of them is, of course, coordinate-independent.

The linear connection as a derivation

A linear connection on the tangent bundle can be introduced abstractly
as an operator mapping pairs of vector fields to another vector field,

AXB-C=VAB,

satisfying, for smooth functions f and g

V(fA+gB)C= f VAC+gVBC, (54.3)

VA(B+ C) = VAB+ VA C,

and

VA(fB) = (54.4)

The last equation forces the operator VA to recognize only linear terms
in a Taylor's Series; it is a form of Liebniz rule.
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Figure 54.2. The relation between a connection and its associated covariant derivative.

Note that the operator

V.A:B-VBA

is a tensor, but VA is not. The geometric picture of V. A is shown in Fig-
ure 54.2. Clearly the piece cut off from the vector spaces by the two
planes will be linear. This also shows that the difference of two connec-
tions is a tensor.

We can represent V by giving its action on basis vector fields. The co-
efficients rk,j in the expansion

_ k a
V a/ ax' axf

- I' i j ax k

are sufficient to compute the action of V on any vector field. For a locally
constant vector field, Yj (a/axi) we have

J

V8l8xr Yj az = axl + rJik Yk axj =0

and comparing this with equation 54.1 we see that these are the same P`jk
defined earlier. On the tangent bundle the Y could be called x.

The abstract definition of a connection is efficient, but we need the in-
sight of the geometric definition to fully appreciate the structure that is
being introduced.
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55. Parallel transport

Given a connection on a fiber bundle and a curve in the base space, we
can find fields that are constant along the curve. If we are in the tangent
bundle, then the field is a field of vectors. If we are given one vector on
the curve, all the rest are determined. This operation is called parallel
transport.

The geometric picture is sketched in Figure 55.1 for a space with one-
dimensional fibers. For a given curve u -X(u), and a bundle it : (x, y) - (x)
whose fibers are n-dimensional, we look in the sheet of fibers over the
curve, with coordinates (u, y). If we pull back the connection 1-forms

w=dy+f, dx'

onto this sheet, we have n 1-forms in n + 1 dimensions. This is a line-
element system that'can be integrated by the method of characteristics.
From any starting value, the solutions to this line-element system deter-
mine a field that is constant along the given curve. We have

(u,Y)- (X(u),Y)

and so the pullback is

dy+f; d u du

and the characteristic equations are

dy dX
du

+fi du = 0.

For a linear connection we have
µ i

+rµtvYvdu =0.
du

The operation of parallel transport is often the physical operation
actually modeled by a connection. An inertial navigation system uses
gyroscopes to parallel-transport a reference frame along the worldline of
a plane or missile. Often the operation of parallel transport can be used
to find the components of the connection.

If we have a connection on the tangent bundle, then we can define
special curves called geodesics for which the tangent vector is parallel-
transported:
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y

Figure 55.1. Parallel transport defined by a connection.

d 2X ` dX1 dXk
due

+F jk
du du = 0.

This equation also singles out an affine family of parameters for the curve.
A connection is fully specified by the law of parallel transport. At a

given point in the bundle, lift all the curves passing through the base
point, using parallel transport. They have a unique contact element,
which is the horizontal subspace of the connection.

The metric connection

If a manifold has metric structure, then this defines geodesics and a law
of parallel transport. We can work out explicitly the linear parallel trans-
port on a 2-sphere embedded in Euclidean 3-space. Use the tangent cylin-
drical strip to define parallel transport. Along any meridian we have

Valae
a

a
o= 0.

There is no reason for the vector to deviate to one side in preference to
the other. This is really the original idea of a geodesic: it divides the
sphere into two equal parts. Going away from the pole, the vector a/a4
increases its length. The constant vector in its direction is given by

1 a
Va/ae sin 8 aO = 0;

that is,



356 VIII. Calculus on fiber bundles

Da/ae
a _ cose a

ao sin 6 ao

The arguments in the 0 direction are more complicated. The results are

Va/ao a = -sin 6 cos a
ae

and

a cose a

ae sin 9 ao .

The equations of parallel transport are
due

-sinecos9yo du =0

and

(55.1)

'a0du

+ lio
e d

n e y du +y de = o. (55.2)

Note that parallel transport on S2 is path-dependent. In Section 60 we
will find an easier and safer way to find these connection components.

The geodesy connection

An instructive linear connection can be defined as follows. Take 1R2 with
its standard Euclidean metric. Take any smooth congruence of curves fill-
ing 1R2, one curve through every point. At every point form a reference
frame by pointing one vector along the curve, and give it unit Euclidean
length. Take the second vector at a Euclidean right angle to the first (Fig-
ure 55.2). Let these vectors define parallel transport by asserting that they
are parallel-transported. For a linear connection this specifies the parallel
transport. In Grossman (1974) this is used to model long-distance survey-
ing, where the Euclidean geometry is used only to describe the construc-
tion of the sighting instruments (transits, etc.). The curved lines model
astronomical observations of a star through a refracting atmosphere.
Laser surveying has-made this mathematical model less useful, but it is a
fine example of a connection. It was discussed earlier in Schouten (1954).
Note that parallel transport here is path-independent.

Lie-group connections

At any point in a Lie group, there are two natural definitions of parallel
transport. Let us transport the vector A from the point g along the curve
-y(u). Do it as follows. Pick any curve having A as a tangent vector, say,
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Figure 55.2. A connection representing some features of geodetic surveying.

Figure 55.3. One of the two natural connections on a Lie group.

a(v), with a(0) = g. The curve

v -,y(u)g-'a(v)

defines a tangent vector at y(u) that is called the left translation of A.
The curve

v- a(v)g-'yy(u)

defines a vector at y(u) called the right translation of A. Juxtaposition
here indicates group multiplication (see Figure 55.3). Either of these laws
of transport can be used to define a connection. These will not be linear
connections, but rather ones compatible with the group structure.



358 VIII. Calculus on fiber bundles

i

Figure 55.4. A connection representing a dislocation in a crystal.

The crystal connection

We can use the regular lattice structure of a crystal to define a law of
parallel transport. Let us consider a limit where the lattice spacing is far
smaller than our regions of interest, and where the lattice has a density
of dislocation defects that is small compared with the lattice size (nearly
perfect crystal), but large enough so that over regions of interest the dis-
locations can be described by a continuous density.

Look at a circuit surrounding a single dislocation (Figure 55.4). The
instructions, "Go k steps, turn, and repeat three times," generate not a
closed path, but one that has a gap of exactly one lattice spacing. A large
circuit will have an error of closure proportional to the number of dis-
locations that it contains, that is, proportional to its area. In the next sec-
tion we will see how to model this property of a connection. [See Bilby
(1955) for more on this.]

Problem

55.1 Study the construction called Schild's Ladder in Misner, Thorne, and
Wheeler (1973) and criticize it.

56. Curvature and torsion

The geometric structure of a connection can be represented by the ideal
of differential forms
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dy+fl dx'.

For any representation there arises the problem of equivalence. When
are two different representations really representing the same geometric
structure? Here different representations of a connection could arise from
different base-space or fiber coordinates, different generators for the
ideal, and so on. One approach to the equivalence problem is the study
of invariants, properties that are independent of the representation. For
connections the most important invariant is its curvature. In general it is
the only local invariant. For connections on the tangent bundle there is
another local invariant called torsion.

Curvature

The curvature of a connection reflects the path-dependence of its parallel
transport. If the parallel transport law of a connection is path-indepen-
dent, then the horizontal contact elements line up to form integral sub-
manifolds of the same dimension as the base space. Equivalently, the
ideal of connection 1-forms would then be closed under exterior differ-
entiation.

Example: The metric connection on S2 given in the last section has
connection forms that can be directly read off from equations 55.1
and 55.2. Calling the fiber coordinates e and , we have generators

d9 -sin 9 cos 9 do

and

dq+ cos 6 (e
do+4 d9).

sin 9

To see that here parallel transport is path-dependent, just take the
exterior derivative of the first generator

(sin 29-cos29)4dOdo-sin 0cos0dodo.

To see that this is not in the ideal generated by the connection
forms, use them to eliminate dO and d4. This leads to

sin 20 dodo,

which is clearly not in the ideal. Any further use of the ideal brings
in a dO or a d term.

I am going to discuss curvature only for connections on the tangent bundle.
The general framework, suitable for gauge theories, would require the
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momentary introduction of principal bundles, associated bundles, and a
great deal of formalism. The pedestrian approach that I give has the vir-
tue of simplicity and may even seem reasonably motivated.

We will study parallel transport around infinitesimal paths, following
closely the discussion of the Lie bracket in Section 9. The infinitesimal
circuit will be similar. The sides will now be geodesics rather than integral
curves. To keep opposite sides as parallel as possible, both tangent vec-
tors must be parallel-transported along the sides. (You can see how we
might reasonably want to introduce a bundle whose fibers were frames
at each point.) The gap in the diagram must be at the origin, of course.
Other diagrams are meaningless. We will discuss parallel transport around
this circuit in two stages. First, we will discuss the closure of the circuit;
then we will discuss the twists undergone by an arbitrary vector parallel-
transported around the circuit. The circuit is of linear size VIE , and the ef-
fects that we calculate are O(E). The discussion will be simplified greatly by
a careful choice of coordinates. We first discuss these special coordinates.

Gaussian coordinates

Pick a particular point P in a manifold M, and a representation for the
tangent space at P, a basis a/aq. If the space has a connection on its tan-
gent bundle, then we can find particularly simple coordinates for the
neighborhood of P as follows. For each vector q(a/aq) in the tangent
space at P, find the geodesic through P with that vector as tangent vector.
Follow that geodesic for one unit of parameter change, to some point in
M. This is a map Tp(M) -> M, called the exponential map. Until the geo-
desics start to cross, the numbers q can be used as coordinates. These are
called Gaussian or normal coordinates.

In these coordinates, a geodesic through P has the simple form

sHq=qs.

A glance at the geodesic equation

d2q' dqj dqk
due

+ "'Jk
du du = 0

shows 'that at P the symmetric part of r must vanish,

r;k+rlkj=0.

The derivatives at P will not necessarily have this symmetry, nor can it be
imposed simultaneously at every point of M.
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Figure 56.1. The failure of a geodesic square to close to terms linear in the area indicates
torsion in a connection.

We will use these special coordinates to simplify proofs. First we will
prove the desired relation in Gaussian coordinates. Then we will express
the result in terms of tensors or operations that are manifestly coordinate-
independent. Such a result must hold in every coordinates system if it
holds in any one. For safety, I will usually use a modified equals sign,
one with a superposed *, to indicate relations true only in Gaussian
coordinates.

Torsion

The failure of a circuit to close to linear terms in E is called torsion. Going
around circuits of different sizes generates a curve of points (see Figure
56.1), whose tangent vector represents the linear error of closure. We
expect to represent torsion by an operator T(X, Y) that takes in two vec-
tors X and Y, representing the sides of the circuit, and yields the mis-
match vector.

We describe the circuit in Gaussian coordinates. The first step is to
move in the X direction for a parameter increment of +V -E-. Let the co-
ordinates of the starting point be zero for simplicity. Then we have this
leg of the circuit given by the curve

s H,IS X`+ 2sr1,kXJXk

Using Gaussian coordinates will eliminate the term linear in s. Next we
parallel-transport Y out to the end of this first leg, to find a vector with
components

Y`+Jr`jkYkXf. (56.1)

We will need these vectors only to a precision of v .
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Now proceed in the direction of the vector in equation 56.1 for a para-
meter increment of +NFE-. This moves us to the point

,rxi+,/E [Y`+,/E rl,kYkXJ].

Even though the symmetric part of the connection vanishes only at a
single point, things are still simplified because the symmetric part is of
order V .

Now we must parallel-transport X out to the end of the second leg. To
order V this is

X`+Vr`ikXkY'.

We now move back a distance V along a geodesic in a direction opposite
to this. This takes us to the point

w v Y` +Erl,k ykXj - Erl,kxkYj.

Now we need to carry Y' out to this point. We find that it is just Y`. The
final point of the circuit is found by a retreat for a parameter increment
V in the - Y direction, to the point

E(rl,k-rlkj)YkXj.

As advertised, there is a mismatch that is linear in E. It is due to the anti-
symmetric part of the connection. A connection without torsion is sym-
metric, and is often called a symmetric connection.

To complete our argument we need to show that this operation is a ten-
sor. To do this write this operation in the following tricky fashion. Start
with

T(X, Y) _* (rl,k-r`ki)YkXj a

as
(56.2)

The modified equals sign is used to show that this result is proven so far
only for Gaussian coordinates. Now use

and

to write this

VxY= YjXj+rl,ikYkXJ

[X, Y] = Y`,.iX J -X !,J YJ

T(X, Y) _ Vx Y- VyX - [X, Y]. (56.3)

So far, so good; the operator T is coordinate-independent, but is it a ten-
sor? The right-hand side is defined only for X and Y, which are vector
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fields. If T is a tensor, then any vector fields that agree with X and Y at
the point of interest will do. It must depend only on the values of X and
Y at a point. This will be true provided that

T(fX, Y) = f T(X, Y)

for f any function. This is similar to the argument in Section 9. The result
is not obvious, since several derivatives of f occur. In fact, it is an easy
consequence of equations 54.4 and 9.1, and T is indeed a tensor, of type

2). Since the antisymmetric components of the connection do form a
tensor, no coordinate change can eliminate them if they are nonzero.

Thus both our original description in terms of geodesics and our final
result in terms of the tensor T(X, Y) make no reference to the Gaussian
coordinates used to simplify the calculation. Thus the result is true in
general. In fact, using equation 56.3 we can show that equation 56.2
holds in all coordinate systems, not just in Gaussian coordinates. We can
also see directly from the transformation law given in equation 54.2 that
it is a linear transformation law for the antisymmetric part of r; hence
that the antisymmetric part is a tensor.

Examples: The geodesy connection of the last section is a connec-
tion with nonzero torsion. To see this, let X and Y be the two con-
stant vector fields defined by the special curves. Thus we have

VXY=O, vyX=O,

but unless the curves are parallel, we will not have

[X, Y] = 0

and so T(X, Y) is nonzero.

Every dispersive wave system has its wave packets tracing out the
geodesics of a linear connection with no torsion. The system of geo-
desics is equivalent to equations

d 2x' i dx' dxk _
due

+r'' du du 0'

and these are insensitive to the torsion, which can be set equal to
zero. Remember, to find torsion it was necessary to parallel-transport
a pair of directions around the circuit, as well as follow geodesics.

The crystal connection of the last section has a torsion tensor pro-
portional to the density of dislocations.
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Torsion does not play a large role in our applications. Still, we need to
know what it is in order to assert that it is zero. Also, it is good practice
for the curvature calculation to follow.

Curvature tensor

Proceed now to the second phase of the study of the infinitesimal cir-
cuit, and discuss the change in a vector parallel-transported around the
V circuit defined previously. The operation will be represented by a map
R (., ) and if X and Y define the circuit, and Z is the vector transported
around the circuit, then R(X, Y)Z is the linear rate of change of the
transported vector. For a linear connection on the tangent bundle, all
of these vectors are tangent vectors. Unlike torsion, curvature can be
defined for any linear connection in this same fashion, although now the
field variable Z and its rate of change are not in the tangent space with X
and Y.

The calculation proceeds just as for torsion, although more precision
must be retained in the transport of Z. The calculation involves more
tedious expansions. The result in special coordinates is

R(X, (r fk,l-r`Ik,j)ZkXIYi. (56.4)

Just as with torsion, this can be written in a manifestly covariant form

R(X, Y1Z. (56.5)

In this form we can check that R(., -) - is a linear operator on all of its
arguments. This tensor is called the Riemann curvature tensor, of type

3). Its components are given by

R(X, Y) Z = R`jklZjXkyr

with

R'jkl=r`Ij,k-rrkj,1 T krr 1j-rllmrmkj. (56.6)

Be careful. There are several different sign conventions for the Riemann
tensor and its contractions. I am following Misner, Thorne, and Wheeler
(1973).

Problems

56.1 Give a direct treatment of the curvature of 2-manifolds that are surfaces of
revolution.

56.2 Compute the torsion tensor for the crystal connection of Figure 55.4.
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57. Covariant differentiation

In the tangent bundle the operation

V.A:B-VBA

is a tensor of type (;). This follows from equation 54.3. This A-depen-
dent tensor is called the covariant derivative of A. We define its com-
ponents by

asVBA=A`;.iB1
a

It depends on the connection, and we could as well call it a covariant
derivative. We have

Al;r =A',.i +r'jkA". (57.1)

A geometric picture of this was given in Figure 54.2.

Connection on T*M

Once we are given a linear connection on TM, we can find a natural con-
nection on all of the associated tensor bundles. We demand compatibility
of all these connections with the linear structure, and this is sufficient to
determine the connection uniquely. Thus we will demand that the covari-
ant derivative of a 1-form be compatible with the linear operation of that
1-form on any tangent vector. Using the same semicolon notation, we
demand a Liebniz rule

(a`wi);.i = a' ;JWi + a`Wi;.i

and compatibility of covariant differentiation and partial differentiation
for scalar functions f (a scalar is a tensor of type ( o)),

f;[ - f,l'

From these we deduce that

a`Wj;.i = a` wi,.i -akr`.ikWl

for all a`. Relabel the second term, and cancel the a` to find

Wl;
_ -Wi,j-r k

j; Wk- (57.2)

In a similar fashion a connection can be put on any of the tensor
bundles associated with a given vector bundle. The index-intensive ex-
pressions are easy to write down. There will be a correction term like that
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in equation 57.1 for each contravariant index, and a correction term like
that in equation 57.2 for each covariant index.

Example: For a second rank, covariant tensor we have
hii;k=hij,k-1P 1kihlj-17 1kjhil

Symmetric connections

We will deal almost exclusively with torsion-free connections on the tan-
gent bundle. These are called symmetric connections, because their co-
efficients satisfy

rijk=rikj.

From equation 56.3 we therefore have

VX Y- VYX = [X, Y].

(57.3)

Considering the close relation of the bracket operation to Lie derivatives,
it is not too surprising that a similar simplification occurs also for Lie
derivatives. In equation 18.3, all the partial derivatives can be replaced
by covariant derivatives without changing the result. Similarly for exte-
rior derivatives; we have, for example,

Wi,j - Wj,i = Wi;j - Wj;i,

which follows easily from equation 57.3.

Commutation of covariant derivatives

The covariant derivative a i; j is a tensor and so a further covariant deriva-
tive of it can be taken. As with repeated partial derivatives, we abbreviate
this

al;jk= (a';j);k.

The symmetry of partial derivatives

a`,jk=a`,kj

suggest that there should be some similar relation for repeated covariant
derivatives.

If we write out equation 56.5 in covariant-derivative notation, we have

RijklZ'Xkyl

- (Z`;jYj);kXk-(Z';kXk);jYj-Z';j Yj;kXk+Z';kXk;j yj

and expanding the covariant derivatives using Leibniz's rule, we have
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R`jkiZjXkYl = (Z`;lk-Zi;kl)YIXk

Since this is true for all X and Y, we have

Z`;kl-Zl;lk=R°jikZj. (57.4)

Bianchi identity

Since equation 56.6 is quadratic in the undifferentiated terms, Gaussian
coordinates also simplify the first derivatives

R` *- III. P`jkl;m- l,km- jk,lm-

Using the symmetry of partial derivatives, we have

i i iR jkl;m+R jmk;1+R jlm;k=O,

which is true in all coordinates, because it involves tensors. This is called
the Bianchi identity.

58. Metric connections

A linear connection compatible with a metric on the fibers is called a
metric connection. Compatibility with a metric determines a unique sym-
metric connection.

Compatibility demands that the dot product of two vectors that are
parallel-transported be constant. This in turn requires that the covariant
derivative of the metric

9=gijdx'( dxj
vanish:

gij,k-Plkiglj-P l,'kgil=O. (58.1)

We can relabel this equation

gjk,i-Plijglk-Plkigjl =O,

and again

gki,j-I Jkgli-Plljgkl =O.

If we add the first and third of these, subtract the second, and use the
symmetry of the gi j and the P 1 jk, we find

P`jk= zg`l(glj,k+glk,j gjk,1). (58.2)

Thus our conditions do determine a unique symmetric connection.



Q
..

o
1
%368 VIII. Calculus on fiber bundles

Killing vectors

The infinitesimal symmetries of a metric are given by Killing vectors,
which are vectors k such that

£k9=0.
In coordinate components this is

gij,lkl+gilkl,j +gljkl,i = 0. (58.3)

As we observed earlier, we can change all these derivatives to covariant
derivatives. If we define the associated 1-form

ki=gijk',
then we have Killing's equation

ki;j+kj;i=0. (58.4)

Despite the apparent simplicity of equation 58.4, the expression in equa-
tion 58.3 is easier to use in explicit calculations. Equation 58.4 is useful
primarily in proofs and formal calculations.

Symmetries of the Riemann tensor

These are easily discussed in Gaussian coordinates. For a metric connec-
tion we have at the point of interest

ri *jk=0
and hence

gij,kIt* 0
Combining this with the definition, equation 56.6, we can write

giMR jkl = Rijkl,

and find that

2Rijkl gil,jk-gjl,ik-gik,jl+gjk,il

and in this form we can see the following symmetries:

Rijkl= -Rijlk, Rijkl= -Rjikl,

Rijkl = Rklij, (58.5)

and

Rijkl+Riklj+Riljk=0. (58.6)
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Note that these are all tensor equations, and the conditional equality has
been replaced with general equality.

Example: These symmetries greatly restrict the number of indepen-
dent components of the Riemann tensor. In four dimensions there
are only 20 independent components. Suspend the summation con-
vention for this discussion. There are no nonzero components of the

form Raaaa, Raaab, Raaaa, Rabaa, or Rbaaa Components of the form
Rabab need not vanish, and there are six independent possible pairs
of indices. Similarly we can have terms such as Rabac. There are
four choices for the a index. The symmetry in equation 58.5 shows
that the order of b and c does not matter. There are three pairs for
each choice of a, and so a further 12 components. Finally, we have
terms with all indices distinct. We can arrange each pair in alpha-
betical order, and also put the first index in the first block. This
leaves components Rabcd, Racbd, and Radbc, which are indepen-
dent under the first three symmetries. Equation 58.6 gives one rela-
tion between these. Thus we have in four dimensions 6 + 12 + 2 = 20
independent components for the Riemann tensor of a metric con-
nection.

Divergence

A manifold with a metric has a natural density defined on it

w= dx'Adx2...,

This is the tensor 77A defined in Section 27. Here g is the determinant of
the covariant components of the metric tensor. The divergence of a vec-
tor field v with respect to this natural density is given by

and

div v =
1 ax` ( v`).

See equation 51.5. We can differentiate this determinant to find

div v= vl,l+?v`
I a

i gaxif
and this is

div v= v`,1+?vlg1kgJk,f,
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which can be written

div v= v°,i+ Vigjk(gjk,i+gik,j'-gij,k)-

This collapses into a covariant derivative

div v = vi ;i .
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IX
Gravitation

Differential geometry originally sneaked into theoretical physics through
Einstein's theory of general relativity. Never before had tensors played
such a fundamental role in a physical theory, nor had so much emphasis
been placed before on the transformation properties of physical quanti-
ties under coordinate change. Indeed, the class from which this book
sprang was originally a general-relativity class. By now you have grasped
the message of this book: differential geometry is useful everywhere in
physics. That feeling, plus the number of good books specializing in gen-
eral relativity, led me to include very little about gravitation here, just
enough to fill out the geometric message of the book. Also, since general
relativity is a metric theory, it could lead you into the bad habit of failing
to distinguish between tangent vectors and 1-forms. By now you realize
that that is a poor style of thinking.

In Chapter VI I argued that electrodynamics was a special classical
field theory, arguing from the need of the force law to preserve rest
masses. Since in electrodynamics like charges repel, no theory like elec-
trodynamics can explain gravity. How, then, is gravity to be described?
Give up the constancy of rest mass. Settle instead for the constancy only
of mass ratios. This allows us to include one additional classical field
theory, one not satisfying u J f = 0. This field theory must be universal,
with the same coupling to all matter. We can finish by rescaling lengths
and times so that masses appear constant. The price paid is the introduc-
tion of a curved spacetime.

Now this new theory has a symmetry. The original flat background is
not observable, and cannot be recovered uniquely from the curved space-
time. We finish the generalization by saying boldly that the original flat
background does not exist. This is very similar to what happened in special

371
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relativity. There Lorentz symmetry made absolute rest unobservable,
and we boldly said that therefore absolute rest does not exist. Of course,
neither special relativity nor general relativity was discovered this way.
Still it is very instructive to consider this mock-historical approach.

The loss of the flat-background spacetime with its global affine struc-
ture leads to a surprising loss. No longer can the total energy of a system
be defined. To do so requires a global idea of rest; otherwise the account-
ing of kinetic energy is not possible. General relativity is a complete
theory, and all of its local pieces and fields go about their business of
obeying the laws of physics, but without any conservation of total
energy. There is now no longer a ban on the free lunch, and speculation
that the entire universe is nothing but a vacuum fluctuation can now be
sensibly entertained.

59. General relativity

A nice understanding of general relativity results if we pretend that it is
being invented in a straightforward, logical manner, in response to obser-
vational evidence that was in fact barely available at the time. In such a
mock-historical approach, we can view general relativity as a theory in-
vented to resolve two crises. The first is the incompatibility of Newtonian
gravity with special relativity. The second is its lack of compatibility with
an infinite universe. The resolution of the first of these crises leads to
theories in which influences can spread no faster than the speed of light.
This leads to the existence of gravitational waves as the influence of
changing gravitational fields spreads out at a finite speed. The resolution
of the second crisis leads to the expanding universe, and to an explana-
tion of the mystery of the dark night sky, called Olber's paradox.

General relativity as a theory of gravity involves a very interesting para-
digm shift. In special relativity the free particles were identified as a reali-
zation of an affine structure of spacetime. In general relativity this affine
structure is changed to that of a Riemannian spacetime. This by itself is a
fairly natural curvilinearization. The striking feature of general relativity
is that a physically different set of particles are identified as the free par-
ticles. This is really a paradigm shift. It is rare that there should be two
different physical realizations of a mathematical structure. General rela-
tivity switches the class of free particles with no forces acting on them to
those particles with no forces acting except gravity. Viewed operationally
this is reasonable. Gravity is a universal force. There is no known possi-
bility of shielding a system from gravity. Such a universal force is quite
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naturally built right into the very language of our physical theory. The
inability to identify "truly free" particles is a reflection of our inability to
identify the background affine structure mentioned in the Introduction.

Why should gravitation be a universal force? Experimentally this is
known to be true. The experiment is known as the Eotvos experiment.
Should it have been expected theoretically? Philosophically? Surpris-
ingly, the answer here is yes.

Consider any continuum field theory. Energy conservation demands
that the field itself carry energy. Only if this energy is positive will the
theory have a stable vacuum. Now in electrodynamics this leads to the
following reasonable thought experiment.

Take two like charges very far apart. Each has a certain amount of
field energy. Now push the charges together. The field strength has now
doubled everywhere, and since the field energy is quadratic, there is now
four times as much of it as there was around a single charge, twice as
much as we started with. This reflects the fact that work needed to be
done to force the two like charges together.

For a field theory of gravitation, nothing changes except that we extract
work from the system as the two masses are brought together. How can
that be? Here we see what makes electrodynamics such a special theory.
A charge moved through an electrodynamic potential difference does not
change its strength or its mass. This cannot be true for a theory where
likes attract, such as gravitation. The energy deficit in this scenario must
be made up by a decrease in the rest masses of the particles.

Now this can lead to all sorts of interesting problems. For matter to
maintain its properties, all masses had better vary by the same factor.
Thus we are led to expect that any theory with likes attracting must be
universal. If masses can change with position, then so too will the sizes of
atoms, meter sticks, and physics professors. Thus, without even asking
for it, the metric tensor describing physical measurements will describe a
curved spacetime. Even with the best of intentions we are forced into a
geometric theory of gravity.

Actually, the situation in general relativity is even more complicated.
There are consistency conditions similar to those for current conservation
in electrodynamics. These consistency conditions constrain the motion of
sources; no additional assumption, such as about geodesic motion, is
needed. This was not realized at first, and geodesic motion was first taken
to be an additional postulate. To derive this result from general relativity
is rather delicate, especially for bodies moving slowly enough for grav-
itation to be important. The approximations seem by now reasonably
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reliable, and the result that small bodies move along the geodesics of a
background pseudo-Riemannian metric is nearly a theorem of general
relativity.

Not only is general relativity set in the context of pseudo-Riemannian
geometry, but this geometry is also a dynamical variable, comparable to
the electrodynamic field. The geometry is constrained by the stress, energy,
and momentum present in spacetime. Einstein picked the simplest intrin-
sic equations to represent this constraint. There is no observational evi-
dence that anything more complicated is needed.

There are solutions to these field equations that represent both the
outer regions around spherically symmetric bodies and, if properly con-
tinued, singularities of the geometry with no source at all. These singular
solutions are quite romantic and go under the general name of black
holes. Probably no one has escaped the vivid popular accounts of these
objects. There arealso solutions known that describe both finite and in-
finite models of the universe.

In the first few sections to follow we will take the simplest spherically
symmetric solution as a given spacetime and study it carefully. We follow
the behavior of clocks, test particles, and light rays in its vicinity. Only in
this fashion can we discover the intrinsic properties of the spacetime.
Remember, the coordinates in which the solution is written do not neces-
sarily have any observational significance.

Problem

59.1 Study explicitly the energy balance as two scalar charges attract one another.
The energy-momentum tensor was given in Section 41.

60. Geodesics

In a manifold M with a linear connection on its tangent bundle, we can
define geodesics as the curves -y:IR-+M; u-X(u) satisfying

(60.1)

This determines both a curve and also a special parametrization on the
curve unique up to affine transformations. Such a parameter is called a
special affine parameter. Such curves are straight; the condition here says
that they do not turn in any direction relative to a parallel-transported
frame of reference.
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When the connection can be derived from a metric, then these same
curves are also extrema for the integrals

L =
J

[gijXiXj]1/2du,

and

E =
J

gi jX`Xj du. (60.2)

The first of these says that the length of the curve is extremal. It is clearly
independent of the parameter u. The second is a stronger condition and
easier to work with. It is not independent of the parametrization, and
forces the parameter u to be the special affine parameter for which equa-
tion 60.1 holds. For indefinite metrics a minus sign will have to be in-
serted under the square root for some curves, and curves with null tan-
gents will take some special care. We now discuss these two integrals.

Extremal length

We first discuss curves of extremal length. This is a simple problem in the
calculus of variations. The extrema of

satisfy the Euler-Lagrange equations

d a.C _ M
A ax ax

(60.3)

We are interested only in paths for which u is a special affine parameter,
but the variations need not satisfy this condition. We can set

gijX`Xj l =1

only after we have done the differentiations off the curve. From equation
60.3 we have

d
gij, kX iX j = du (2gkj Xj) (60.4)

and expanding this we have

dXi
du +2gii(gjk,l+gjl,k-gkl,j)XkX1 =0 (60.5)

which is precisely equation 60.1. This shows that straight curves and
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extremal curves (shortest curves in some cases, longest curves in space-
time) coincide.

Extremal energy

The variation given in equation 60.2 is easier, because it lacks the square
root. Its extrema satisfy the same equation, 60.4, and so it leads to the
same extremal curves. The parameter is now forced to be a special affine
parameter. The variations of the energy integral are well-behaved even
for curves with null tangent vectors, and it is the most comprehensive
variational principle.

Calculation of connection components

The energy extremal is the basis of an efficient scheme for calculating the
connection components. It is most efficient when many of the compo-
nents are zero.

Example: The connection on the 2-sphere given as an example in
Section 54 comes from a metric

9=d02+sin2Odc2.

The energy integral is

E= (92+sin20g2) du.

The Euler-Lagrange equations are

du
(2e) = 2 sin 0 cos 042,

du (2 sin2 0q) = 0,

and if we put these in standard form

O -sin 0 cos 000 = 0,

cos a
q5+ sine (eq+qe)=0,

we can read off the nonzero components of the connection. The
equations must have the form

Xi+ri.OXjXk=0

and so we find
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r o., = -sin 0 cos 0,

rope = cos 0/Sin 0 = roes,

all others vanishing.

This method is easier and far safer than a direct computation using equa-
tion 58.2. In Section 66 we will find another scheme that is even better if
we want the Riemann tensor components as well.

Hamiltonian system for geodesics

The geodesic equations can be put into Hamiltonian form. The Hamil-
tonian

H(q,p)=g1Jp1pj

leads to equations of motion

dq` =
du g pk,

dpi _ i jk
du 2g , IPJPk

Here g`1 is the inverse of the usual metric tensor, defined by

gJgjk = Sk.

It is a routine exercise to eliminate the ps from these equations and re-
cover equation 60.4.

This Hamiltonian system does not involve the parameter s explicitly,
and so generates a symplectic geometry in the cotangent bundle based on
the 2-form

dpi dq'.

All the usual integral invariants follow from this.

Problem

60.1 Show that the geodesic equations do indeed form a Hamiltonian system.

61. Geodesic deviation

Every space with a connection on its tangent bundle can be covered with
geodesics. Through every point they pass in all possible directions. A
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Figure 61.1. Simplifying a set of geodesics by lifting them into the tangent bundle.

natural question to ask now is about the behavior of nearby geodesics.
We could approach this "calculus of geodesics" either in the manifold it-
self, or by lifting all the geodesics up into the tangent bundle. The latter
simplifies things somewhat, because there the geodesics generally form a
well-behaved congruence, with one and only one geodesic through each
point (see Figure 61.1). The tangent-bundle discussion is no more than
the local behavior of integral curves of a vector field. The description in
the manifold is simpler, but involves second-order equations. We have
considerable intuition about these second-order equations, and we will
follow here this Lagrangian-like approach. The Riemann tensor describes
the behavior of nearby geodesics, and this provides us with another way -
not really all that different, to be sure - of grasping the physical signifi-
cance of the Riemann tensor.

Deformations of a geodesic

We start with a given geodesic y: u -y(u), with tangent vector ry = X. A
deformation of this curve will be a 1-parameter family of curves given by
a map A: IR2 -+ M such that the curves

A,,:1R--+ M; u-A(u, v)
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are all geodesics with special parameter u, and with AO identical with 'y.
We are interested in the behavior of A only up to linear terms in v. This
nearby behavior of curves can be represented by a vector 77(u) defined
along the curve y. This vector q, called the connection vector, is the tan-
gent to the curves

Au: v-A(u, v).

To specify a nearby geodesic, we need to know one point on the geo-
desic, say, q(0), and also the direction at that point, given by o,,n(0).
These should be enough to specify the geodesic completely; so we do not
expect to be able to freely choose the second derivative of q.

Equation of geodesic deviation

Let us compute this second derivative. We are given that the curves Au
and A. fit together to form coordinate lines on a 2-surface; hence we have

[X,77]=0.

Also, the curves are all geodesics with a special parameter, so that

V X=0.

We will consider only zero torsion; so we have

V),q-V,jX=[X"q]=0.

We take the second derivative, and use the preceding equation to find

VX VX n = V V X

and now interchange the order of differentiation, using equation 57.4,

VIV X=V V X

to find the equation of geodesic deviation

V V n-R(X, n)X=0.

This is a second-order equation for the connection vector q, as promised.
The derivatives are covariant derivatives, however, and the interpreta-
tion of this is not exactly F= ma, as we shall see. A vector field along a
geodesic satisfying the preceding equation is called a Jacobi vector field.

Tides

The most natural interpretation of the Riemann tensor is in terms of tidal
forces, that is, gravitational field gradients.
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Example: If we consider geodesics to be the worldlines of freely
falling particles, then we can use the equation of geodesic deviation
to find some of the components of the corresponding Riemann ten-
sor. Consider geodesics that are near a free particle that is falling
straight down toward the center of a spherical gravitating body.
The path of this fiducial particle is well-described by Newtonian
gravitation, and satisfies

d2r_ M
dt2

r2

I am using units with G =1 here. They were defined in Section 42.
We will compute the Riemann tensor at the point where the velocity
of this particle is zero. A parallel-propagated frame of vectors
along this curve is easily found, working only to terms linear in M.
If the particles on the equator, then

1 a 1 aex_

r ae
and ey =

ao

will be two such parallel propagated vectors, and

a
ez

ar

a third. Near points of nonzero velocity, this a/ar vector must be
tipped into the a/at direction as well.

Look at a neighboring geodesic a distance away in the a/ar
direction. We have

M
dt2 (r+ )2

that is,
d2 2M
dt2 r3

From this we find the Riemann tensor components

Rztzt = -2M/r3
(see Figure 61.2).

We can also put the particles side by side, as in Figure 61.3. The
motion is linear in r, but quadratic in time

=Ar=A(ro-Mt2/2r02).
Hence
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z z

(to center of
the Earth)

10-

X

Figure 61.2 (left). Two particles falling along the same vertical line.
Figure 61.3 (right). Two particles falling side by side.

df_ AM_ M!
dt r2

_
r3

This gives us the tidal-force matrix

1 0 0
R't.t= r3

0 1 0 ,
r

0 0 -2-
compressive in two directions and extensional in the third.

Computations

The equation of geodesic deviation is split into two covariant pieces. This
split is analytically useful, but not efficient for the actual computation of
geodesics. Many of the derivatives of the Ps appearing in the VV term are
canceled by the curvature term. The situation is reminiscent of Killing's
equation, where equation 21.1 is far easier to use than 58.4, which con-
tains covariant derivatives. The efficient equation here is

d 2 1 dx' d k dx' dxk77

ds 2
+ 2 F i,

ds ds + 1' jk,1 ds ds
1= 0.

[For a proof and discussion, see Faulkner and Flannery (1978).]

Problem

61.1 Use the equation of geodesic deviation to compute the flattening of the Sun
at sunset.
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62. Symmetries and conserved quantities

We consider here a manifold with a metric (not necessarily positive defi-
nite) and its associated symmetric connection. Important properties of
such a manifold are its symmetries. Most manifolds have none, but the
manifolds that arise in applications are special and do often have symme-
tries. Every symmetry eases the problem of solving the geodesic equation.

Conserved quantities

We suppose that we have a geodesic with special parameter

u'-''Y(u), V = 0,
and a Killing vector k

k

Here the quantity

is constant along the geodesic.
A direct calculation gives

and in components

; ;j +kj;;=0.

E=k

VV(k.'y) = V,k''y

0.

(62.1)

Examples: Minkowski spacetime has ten Killing vectors and hence
ten conserved quantities. The time translation a/at generates the
conserved quantity called energy. The three space translations, such
as a/ax, give us momentum conservation. The rotations such as
x(a/ay) - y(a/ax) give us angular-momentum conservation.

What about the Lorentz transformations, such as t(a/ax)+
x(a/at)? For a single particle these lead to conserved quantities pro-
portional to x - vt, and are trivial. For composite systems we will see
that these are nontrivial, and force the center of mass of a system to
move with constant velocity. These last three conservation laws pre-
vent us from making a rocketlike engine that does not throw momen-
tum away in its exhaust.

Look at geodesics on a surface of revolution. Useful coordinates
are the angle 0 and proper distance s along the surface at constant
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Figure 62.1.

0 (see Figure 62.1). The metric is

9= ds2+R2(s) d4 2.

The vector field a/a0 is a Killing vector field, since 0 does not
appear in the metric.

Look at a geodesic with unit tangent vector

X=aas+ba
where

a2+R2b2 2= 1

Our symmetry gives us a conserved quantity

L=k,X =bR2,

and we have

a2=1-L2/R2.

If the surface of revolution becomes flat for large s, then the geo-
desic becomes a straight line and the constant of motion L is related
to the apparent impact parameter d by Euclidean geometry, as
shown in Figure 62.2,

sin 0 = L/R.
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Figure 62.2. The apparent impact parameter.

sin 0 = dIR;

hence

d = L.

Now, no matter how the surface is curved, the geodesic will have
a radial turning point at the radius where a = 0:

L=R=d.
Thus we have a remarkable result: The closest approach to the axis
is independent of the shape of the surface! John Faulkner devised
this pretty example.

Continuum systems

The mechanical description of a continuum system is given by a stress-
energy-momentum tensor Pi subject to the Cauchy equations

Tij;j=0.

General relativity extends the laws to curved spacetime by replacing par-
tial derivatives with covariant derivatives.

The total energy, momentum, etc., of a system will be given by an inte-
gral over the system. Now, recall that an integral over an m-space can
be defined only for an m-form. The metric of spacetime provides us with
an oriented volume element

''lijkl = Eijklll _ I

(recall Section 58). This volume element can be written as the correctly
ordered product of any orthonormal basis. If we parallel-transport the
orthonormal basis along any curve, it will define this same volume ele-
ment. Thus the covariant derivative of the volume element is zero.
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Given only a stress-energy tensor and a volume element, we cannot
produce a 3-form. Thus we cannot produce any conserved quantities,
and so we cannot define what we could mean by, for example, the total
energy of a system at some particular time. The problem is insoluble
without additional geometric structure. A Killing vector will do. For each
symmetry we can write down the 3-form

jklm =
flklmnTnpkp.

This 3-form gives us a conservation law if it is closed. Define the vector

v`=Tljk

Now we have

=(divv)

and we will have a conservation law provided that

(Tljkj);1= 0.

Now T i is symmetric and satisfies

T lj; j = 0;

so we have

(T"ki);1= T 1Jkj;1= 2 Tlj(kj; l + kl;j) = 0.

Every Killing vector leads to a conserved current Tljkj. If we integrate
over any volume, then the conservation law says that

LV j = 0,

and for a confined system we have

S, j JS2 '

for the situation sketched in Figure 62.3.

Examples: In Minkowski spacetime the Killing vector

a a
k tax +x

at

leads to a conserved quantity

(xTtt+tTtx) dxdydz.
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Figure 62.3.

The first term is the x coordinate of the center of mass; the second
is the total momentum P, separately conserved because of the Kill-
ing vector a/ax. Thus the center of mass moves with a constant
velocity related to the total momentum of the system.

The 2-cylinder has two Killing vector fields that are continuous over
the entire cylinder, a/ae and a/ao. However, the vector field

k=8aza -zaea

is not continuous all around the cylinder. The angular momentum
defined by this Killing vector will be conserved only for systems that
do not stretch all the way around the cylinder. A spider living on
the surface of a slippery cylinder could stop himself from spinning
around only by encircling the cylinder with a strand of spider web.

Problems

62.1 Show that Cauchy's equations

Ti"'; =0

areare equivalent to

d(*kJT)=0,
where k is almost a Killing vector, satisfying at that point

[£k, *I=0.

Is this good for anything?
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62.2 On a spacetime IR X S3 there are only seven, not ten, Killing vectors. No
longer are there constraints on the motion of the center of mass of a mechan-
ical system. Construct a mechanical device that can move from rest an arbi-
trarily large distance, then come to rest again in its original state (reaction-
less rocket).

63. Schwarzschild orbit problem

We illustrate now the effectiveness of symmetry in simplifying a geodesic
problem. The motion of particles of negligible mass near a spherically
symmetric gravitating body is described in general relativity by the geo-
desics of the spacetime metric,

g_ -(1 -2m/r) dt2+dr2/(1-2m/r)+r2(d82+sin20do2).

This representation is valid only for r > 2m. We can find a wealth of de-
tail about this region of spacetime by exploiting the symmetries and with-
out integrating any differential equations.

Symmetries

The spacetime was constructed to have the full set of Killing vectors rep-
resenting spherical symmetry. Geodesics will be confined to a plane, and
without loss of generality we can take that plane to be the 0 -7r/2 equa-
torial plane. In that plane we have a Killing vector a/8 , and hence a con-
served angular momentum

L=X0,

where X is the 4-velocity of the geodesic. In physical terms, L is the angu-
lar momentum per unit mass. We have also the time-shift symmetry a/at
and its conserved quantity

E= -Xt,

which is physically the energy (including rest-mass energy) per unit mass.
Finally, since X is a 4-velocity, we have the algebraic relation

9(X, X) _ -K.

Here K=1 for particles with nonzero rest mass and K = 0 for light rays.
Physically this says that the rest mass of a particle is constant. With three
equations for the three nonzero components of the 4-velocity, we can
solve immediately for the 4-velocity as a function of radius. If we write
out the preceding equation we find



,.Q

f
l
.

388 IX. Gravitation

L
M

27m2

I

2m 3m r

Figure 63.1. Light rays in the Schwarzschild metric.

2 r 2

( 0+K+1-2m r) 2m r1 )

and dropping the positive (Xr)2 term, we have the inequality

L2-r2(E2-K)-2mrK<-2mL2/r. (63.1)

For comparison the Newtonian expression is

L2-2r28-2mr<-0.

Here E is the kinetic energy. The relativistic energy E includes the rest
mass. The other differences are that equation 63.1 also applies to pho-
tons, and the extra potential on the right-hand side of equation 63.1 con-
tains modifications of Newtonian gravity coming from general relativity.

Light rays

For light rays the two parameters E and L are not independent. This re-
flects the fact that all light signals travel with a unique velocity. We have

L2 - r 2E 2 <- 2mL2/r,

and this can be written

r3/(r-2m) >- (L/E)2. (63.2)

This inequality is sketched in Figure 63.1. An incoming light ray must
turn when Xr = 0, which corresponds to equality in equation 63.1. Light
rays with

(LIE)2 < 27m2
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27m
r

Figure 63.2. The impact parameter of the critical ray.

have no turning point anywhere in the region r > 2m. A global analysis
shows that in fact it has none in any region that we can describe with
general-relativity physics. This one-way behavior is why such spacetimes
are called black holes. What about the critical ray, with (L/E)2 = 27m2?
Far from the gravitating body, spacetime becomes flat, and an ortho-
normal basis is given by the vectors a/at, a/8r, and r The 4-
velocity of the light ray in that region is given by

a+ 27m a
+

a

at r2 8 ar

The angle this ray makes with the radial direction can be found from the
components in the orthonormal basis (see Figure 63.2)

e = 27 m/r.

A drop in angular size like 1/r is characteristic of Euclidean geometry.
The rays that are trapped are those that have an impact parameter at in-
finity less than 27 m. The optical cross section is thus 27 7rm 2.

Particles with nonzero rest mass

For particles with rest mass we put K =1 and sketch the four possibilities
in Figures 63.3 to 63.6. Particles with E > 1 are unbound and can escape
to infinity. Particles with E < 1 are bound and cannot get out beyond
some finite radius. The contacts between pairs of possibilities correspond
to two turning points on top of one another. These are circular orbits.
There are two types of circular orbits, shown in Figures 63.7 and 63.8.

We can easily discuss the stability of these circular orbits. We consider
perturbations of E, L, and r, which are physically allowed by our in-
equality. For the situation shown in Figure 63.8 there are perturbations
of E and L that give us Figure 63.9, and no matter how you perturb r, the
particle will run away a finite distance. These circular orbits are unstable.
The ones shown in Figure 63.7 are stable. The boundary between stable
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deflected
particle

r

Figure 63.5 (left). A bound particle, E < 1, trapped in a noncircular orbit.
Figure 63.6 (right). A bound particle with no stable orbit.

and unstable circular orbits comes when there is triple contact. There we
have contact up to the second derivative.

Zero-order contact, intersection, at a radius a requires

L2-a2(E2-1) -2ma = 2mL2/a, (63.3)

and first-derivative contact there requires

-2a(E2 -1) - 2m = -2mL2/a2.

IX. Gravitation

Figure 63.3 (left). Particles with E> 1, unbound, with a turning point.
Figure 63.4 (right). Another unbound particle, this one captured.
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Figure 63.7. A double contact of the two outside points leads to a stable circular orbit.

Figure 63.8 (left). A double contact of the two inside points leads to an unstable circular
orbit, as shown in Figure 63.9.

Figure 63.9 (right). A deformation of the preceding figure. The allowed orbits all fall
into the center.

From these we can find the equations of circular orbits

E = (a-2m)/ a(a-3m), L=a m/(a-3m) . (63.4)

Matching the second derivatives as well gives us

-2(E2-1) = 4mL2/a3,

and together with the other conditions this gives us r = 6m as the radius
of the smallest stable circular orbit.

Suppose that a particle is in a circular orbit and by some frictional
process, energy and angular momentum are extracted and sent off to
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infinity. This process can continue slowly only until the orbit gets to r =
6m. Beyond this the particle falls out of orbit and plunges into the black
hole. The Killing vector a/at ensures that the entire process must con-
serve energy. The energy that appears at infinity is just the energy E lost
by the body. The maximum energy loss can be found from equation 63.4.
At most a fraction 1- (2V /3) ~_ 6% of the rest-mass energy of the par-
ticle can be extracted by such a process.

Capture of slow particles

As another example, let us compute the capture cross section for slow
particles, ones having E just a little longer than unity. The critical situa-
tion involves an unstable circular orbit from which particles can fall into
the origin. From equation 63.4 we find a radius of 4m for the orbit having
E = 1, and from equation 63.3 we see that for this orbit we have L = 4m.

As seen in the Euclidean geometry at infinity, the angular momentum
is just the velocity times the impact parameter, and so the cross section
for slow particles will be equal to

167rm 2/u 2,

where u (<< 1) is the velocity of the particle at infinity.

Circular orbits

We can find the periods of these circular orbits without detailed integra-
tion. The coordinate r is not directly measurable, and it is good style to
state this law in terms of observable quantities. Let us calculate the period
seen by an observer at infinity for a circular orbit of apparent radius b, as
measured by its angular size as seen from infinity.

To relate the apparent size to the r-coordinate size a, we follow a graz-
ing light ray out to infinity. If it has a turning point on the circular orbit,
then it has

a3/(a-2m) = (L/E)2.

The 4-velocity of this light ray at infinity is

2L(I a
X=E at+ r r a +

E2-L2

r
a

ar'

and its apparent angular size is

tan 0 =L/ E2r2-L2.
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As r goes to infinity,

and so

0 = (b/r) = (L/Er)

b= [a3/(a-2m)]1/2. 63.5)

The coordinate-time period of a particle in this circular orbit as mea-
sured by any time-invariant process will just be the coordinate increment
,At, since a/at generates the time-shift symmetry. We have

dcb X

dt Xt

and so we have
do a-2m L
dt a3 E'

so the period is

P = 2'ira3/m.

This is related to the observable apparent size b by equation 63.5.

64. Light deflection

One of the earliest confirmations of Einstein's theory of gravitation was
the observation that light passing the Sun is deflected by an amount

0=4rn/b,

where b is the distance of closest approach. This expression neglects cor-
rections of order (rn/b)2.

It seems that everything we try to calculate in general relativity turns
into a big mess. Here there is a conflict between spherical coordinates, in
which the spacetime metric is simple, and rectangular coordinates, in
which the orbit is simple. Writing the Euler-Lagrange equations in either
coordinates is very messy.

You might think to exploit the spherical symmetry, as we did in the last
section. From this we can find the orbit equation

dO X

dr =
V

And from here the calculation of the deflection is straightforward. [The
details of this approach can be found in Weinberg (1972).] A clever trick
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here is to convert the orbit equation into a second-order equation. The
perturbation is more easily done in this form. [For details see Robertson
and Noonan (1968).]

The straightforward calculations are so involved that they conceal the
interesting features of the calculation. I am going to give a different cal-
culation of the light deflection. It will seem at first like the long way
around the barn, but it exploits coordinate invariance and leads to some
insight into what is going on and why the deflection is twice the New-
tonian result.

Spacetime with two metrics

The light deflection is the difference between the flat-spacetime orbit, a
simple straight line, and the true curved orbit in Schwarzschild space-
time. Flat spacetime describes the Schwarzschild spacetime far from the
mass, where the angles are actually measured. We can exploit this differ-
ential nature of the problem and use the fact that the difference of two
affine connections is a tensor.

If we write the curved-spacetime metric

gij -rlij+hij,

with r1i j the flat-spacetime metric, then the geodesic equation is

aja'+gI ijkUiak=0.

Here ai,j Qj is a way of writing a derivative along the curve without intro-
ducing new notation. As so often happens, there is an apparent depen-
dence on the values of ai off the curve, but no real dependence. Here
is the affine connection of the Schwarzschild metric. If we write this

or 1,juJ+01 IF jkQjak+(,P`jk-&"jk)(T (k=0

then it collapses into the form

aI;jcj+AijkUjck=0, (64.1)

where the semicolon is a flat-spacetime covariant derivative (curvilinear
coordinates, perhaps), and Ai jk is the tensor given to first order in h by

A`jk- 771m(hmj;k+hmk; j-hkj;m)' (64.2)

Note that each term in equations 64.1 an 64.2 is a tensor by itself. Equa-
tion 64.1 looks like a force law. The corresponding equation in electro-
dynamics is
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X` ;j X + (elm)F'XJ = 0, (64.3)

using X' for 4-velocity, and reserving a' for null vectors.

Light deflection by a point-mass

The weak-field approximation to equation 62.1 is

h = (2m/r) (dt2+dr2).

Let us work in rectangular components, where the unperturbed photon
orbit is just

uH(t,x,y,z)=(u, u,b,0).

The deflection will be bound by integrating the y component of the force
along the unperturbed orbit.

We need three components of the force

Aytt=my/r3, Aytx=0,

Ayxx = 2my/r3 -3 MX2 y1r'

The Aytt term is the analog of the Coulomb force in electrodynamics. The
Ayxt and Ayxx are velocity-dependent forces analogous to magnetism and
a double magnetism. Note the two velocity terms in equation 64.1 com-
pared to the single one in equation 64.3.

The deflection angle is thus

00 (
e - f

3mb - 3mx2b dx = 4m
- J -. r3 r5 b

.If you fill in the details, you will see that the advantage of this calcula-
tion method is in being able to work in rectangular components. In the
next section we will apply this result to cosmology.

65. Gravitational lenses

The gravitational deflection of light calculated in the last section and
well-verified by observations is an important astrophysical effect. For
these applications it is necessary to properly take into account both the
curved spacetime of the universe and the Hubble expansion. Naive at-
tempts to ignore these run afoul of aberration, which is important be-
cause it is a first-order effect. Details of cosmological models can be
found in Burke (1980). The development here uses the Hamiltonian-optics
formalism of Section 52.
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q

d

ray

axis

Figure 65.1. A single ray described as a Hamiltonian system, propagating a distance d.
The slope p remains constant, and the coordinate q increases linearly.

Minkowski spacetime

First we study flat spacetime. Using the small-angles approximation, we
have a given ray described by two transverse coordinates and two conju-
gate momenta, the small angles. For simplicity we look only at rays in a
plane. This leads to a two-dimensional phase space that we can sketch,
and think about easily. Because of symmetry, the full problem is just the
direct sum of these plane problems.

Propagation through a distance d is represented by the symplectic
transformation

(q,p)-(q+pd,p).

The situation in space is shown in Figure 65.1, and in phase space in
Figure 65.2. The gravitational lens will be thin in this approximation,
and so the lens is represented by the symplectic transformation

(q, p) - (q,p-4m/q).

We have here a theorem from Newtonian gravity. A ring of matter de-
flects light passing outside the ring as if its mass were all concentrated at
the center. Light passing through the ring is not deflected at all. We can
use potential theory to prove this. The deflection E of a point-mass can
be derived from a potential

1E=-=Vq
r

and satisfies

VE=0.
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P

Figure 65.2. In phase space we can view the behavior of all rays at once.
The transformation of phase space is a shear along the q axis.

Now the analog of Gauss's law holds, and from it the preceding results.
Be careful. The result holds for cylindrical shells, not spherical shells.

Gravitational lenses

Rather than treat just the point-mass, let us discuss an extended, trans-
parent object. In the center the cylindrical mass increases like r2 and the
deflection increases like r. Beyond the mass the deflection drops off like
1/r. The central part acts like an ordinary lens of focal length

f= (4'rp) -',

where p, is the cylindrical density.

Examples: The focal length of the Sun is given by

00
O pdr,Pc=2

J0

where p is the ordinary density. For the Sun we have, roughly,

p,=20gcm-3 R.

and this leads to a focal length

f=25AU=1.3x104s.

This applies only to things like neutrinos and gravitational waves
that pass right through the Sun.
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Figure 65.3. Phase-space picture of the one-parameter family of rays emitted
by a point-source.

P

s
q

Figure 65.4 (left). The rays after they have propagated to the vicinity of the deflector.
Figure 65.5 (right). The rays just after they have passed the deflector.

The propagation of light from a point source at q = 0 past an ex-
tended deflector is sketched in Figures 65.3 to 65.6. Note that be-
yond the conjugate focus there are three images, three ps for a
given observer's position q.

Cosmological spacetimes

I give here a quick review of the relevant formulas. The spacetime de-
scribing a homogeneous isotropic universe filled with matter having zero
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1 image 1 3 images 1 image

Figure 65.6. The rays after they have propagated beyond the focal length of the
central region. Observers not too far off the axis see three images.

pressure is

9v
=R2(_q)[-dq2+dX2+S2(X)(de2+sin2edo2)]

where the function S(X) can be either sin X, X, or sinh X. If it is sin x, the
spacetime looks like 1R X S3, and these are called closed spacetimes. The
spatial volume is finite, although the spacetime is unbounded in space.
For X or sinh X, the spacetime looks like time crossed into either Euclidean
space or a pseudosphere. The coordinates (X, 0, 0) are comoving with the
matter. The timelike coordinate -1 is called arc time. During an arc-time
interval 0-q, a light signal travels 0-q radians around the universe.

The function R(-q) is given by

a(1-cosh),
R('n) = a -q 2/4,

2a(cosh -1-1)

for the three functions of X. Here a is a scale factor for the entire space-
time. The parameter R converts proper lengths measured in light-seconds
into arc length on S3.

The redshift of light emitted at arc time -1 and received at -1o is

(l+z) =R(-qo)/R(-1)
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b

s

1 Q
a

Figure 65.7. A long, skinny spherical triangle.

A measure of the local expansion rate of the universe is given by the
Hubble constant

Ho = 2 sin -1o/[a(1-cos
q0)2]

.

Numerically, a Hubble constant

50 km./sec Mpc = (6.18 x 1017 sec)

agrees with observations, although some argue for a value twice as large.
The use of arc distance X and arc time n allows us to discuss the prop-

erties of cosmological models using intrinsic non-Euclidean geometry
rather than coordinate-intensive analytic geometry. For example, the
closed models live for an arc time of 7r. A photon gets to travel halfway
around the universe during the lifetime of the universe.

Cosmological light propagation

What change in the propagator must be made to take into account curved
expanding spacetime? Both curvature and expansion are important, the
latter because of aberration. This is most easily studied in comoving co-
ordinates. The orbits of light rays are just geodesics in either the 3-sphere
or the 3-pseudosphere. In both arc length provides a natural dimension-
less measure of distance, one unchanged by the expansion of the universe.

This calculation is a nice problem in spherical and pseudospherical
trigonometry. We need the laws for long, thin triangles. On the sphere we
have

b=,6 sin a, 6 =0cosa,

for the angles and lengths sketched in Figure 65.7. On the pseudosphere
these become just sinh and cosh.

The geometry of a paraxial ray is surprisingly involved (Figure 65.8).
Remember that the geometry is not Euclidean. The dotted construction
line in the figure takes some thought. There are right angles only where
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Figure 65.8. The cosmological analog of Figure 65.1, defining the state variables for
the ray. Be careful, there are right angles only where indicated. S and C stand for

trigonometric or hyperbolic functions.

explicitly indicated. Tracing through everything leads to the transforma-
tions

(q, p)'-(gcosa+p sin a, -q sin a+pcos a)
and

(q,p)-(gcosh a+psinha, gsinha+pcosh a).

The transformations of phase space are no longer shears (Galilean trans-
formations), but are now either rotations or Lorentz transformations.
Both q and p now have the dimensions of angle.

Examples: In a closed cosmological model the light from a point
source focuses again after an arc distance of 7r without the need for
any intervening lens.

In a closed cosmological model, an observer at an arc time 7r/2
wants to place a gravitational lens to focus light from a distance
z =10 on himself. Where should he place a lens to use the least
mass? What mass density is needed?

The arc distance to z = 10 comes out to be X =1.14 radians. To be
most effective the lens should be placed halfway in arc distance, at
an arc time of 1.0 radian, a redshift of z = 1.18.

To find the mass of the deflector, note that it must be the shear in
phase space

(q,p)'--' (q,p-3.85q).
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In our dimensionless phase space, we have a mass density pc leading
to a shear

(q, p)'-' (q, p - 4irpcgR) ,

where R is the scale factor of the universe at the epoch of deflec-
tion. Thus we must have

pc=2.3x103Mo
H0 -

pc 50 km sec - Mpc

Since Ho is so poorly known, current practice is to keep explicit the
way that the answer depends on it.

66. Moving frames

If you actually tryto compute curvature tensors from the definition in
equation 56.6, you will find it a lot of work. As with most calculations in
differential geometry, trickery is rewarded. Relativists do not spend most
of their time grinding out Riemann tensors. Just as the energy Lagrang-
ian for geodesics allows us to compute the affine connection easily, there
is an efficient means for computing curvature tensors, called the method
of moving frames. The basic idea is an old one that is extremely versatile
and useful in many geometric calculations. Cartan systematically ex-
ploited this idea, and the name repere mobile is his.

Simply put, the idea of moving frames is to represent geometric objects
not in a basis that is derived from the coordinates, but in one that is tied
to some of the intrinsic geometric features of the problem. To compute
Riemann curvature tensors, we pick a set of basis vectors in which the
Riemannian metric is simply represented. In a problem with fluid flow,
we might want to align one basis vector along the flow. In a radiation
problem, we can simplify things by picking a basis of null vectors aligned
with the propagation of the radiation.

Two further ideas are needed to make these moving frames into an effi-
cient computational tool. The first is to use an explicit notation for vec-
tors and tensors rather than lists of components. This is the source of the
efficiency of the energy-Lagrangian method for connections. We waste
no time computing components that vanish. The second idea, more in-
genious, is to solve certain crucial equations by guesswork. For space-
times of reasonable simplicity, this is often quite easy, and only for rea-
sonably simple spacetimes will you be able to use the curvature tensor for
anything.
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The moving frame

In an n-dimensional manifold we pick n smooth vector fields to be used
as a basis. You should not expect to cover the entire manifold with one
such set, of course. Write these basis vector fields El, where the index i
labels different vector fields, not the components of a single vector field.
These vectors can be represented in a coordinate basis in the usual fashion

E1=Eli
a

aj
where the numbers Eli are the coordinate components. Note the aesthetic
placement of the indices here. We will rarely ever need the coordinate
components of these frame vectors; so we will not bother to invent a spe-
cial notation to distinguish frame indices from coordinate-component in-
dices. We will deal here with a frame adapted to a given Riemannian
metric. We will pick our frame of basis vectors so that the metric inner
products of the frame vectors

rlij - 9(E1, Ej),

are constant. For most spacetime uses, the vectors will be chosen so that
the matrix -11 j will be diagonal, with three plus ones and a minus one.

In practice it is easier to pick a basis of 1-form fields such that

where each w1 is a smooth 1-form field, dual to the Els

wl - Ej = 6j.

Any 1-form field can be written in terms of such a basis

a=alw`,

and the frame components a, can be found from

Suitable w 1 are easily picked. They are not unique.

Example: The spacetime metric tensor

g:= -dt2+R2(t) [dX2+sin2 X(d02+sin2 e d02)]

can be written

9 _ -dt2+ (R dX)2+ (R sin X dO)2+ (R sin X sin 0 do )2
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and an obvious choice of a frame is

wt=dt, WX=RdX,

we=RsinXdO, w"=R sinXsin0do.

This spacetime is called Robertson-Walker spacetime. We continue
with it in what follows.

The w` themselves must be represented in terms of a coordinate basis,
which after all has some advantages. Here dwi does not necessarily vanish.

Affine connection

The torsion-free affine connection associated with the metric g can be
represented by the coefficients Ekij in the expansion

VEi Ej = F klj Ek.

The bar is added here to prevent confusion with the coordinate-based co-
efficients. The F are not symmetric even when there is no torsion. To use
an explicit notation (first trick), we introduce instead the 1-forms

_ FJkwk. (66.1)

Our index placement will follow the usual convention of one-up-one-down
in summations. The metric enters via the use of the rij to raise and lower
indices:

k
wij='likCO j

The 1-forms wig are called connection 1-forms. Remember that they are
1-forms even though they have two indices. These indices are just numer-
ical labels. Raising and lowering the indices requires some sign changes;
so we do not use the boldface missing-index convention here. The con-
nection 1-forms satisfy

wig+wp =0,

and

dwi+wu wJ=0.

(66.2)

(66.3)

In a moment we will derive these equations. The second clever trick will
be to find the wig not from equation 66.1, but by guessing solutions to
equation 66.3.

Example: The connection 1-forms for the Robertson-Walker space-
time are
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wxt=R'dX=(R'/R)cx,

wet = (R'/R)we,

w,5t = (R'/R)w0

wox = cos X de,

WOX = cos X sin 0 do,

wq5e = cos B do.

405

The wij contain all the information about the affine connection. It is easy
to show that we have

DAB = +VA(wJ.B)]Ej,

and so a knowledge of the connection 1-forms is equivalent to a knowl-
edge of the connection.

Proofs

To show that the w, j are skew, we start from the constancy of the -ql j,

VE,fljj=0,

and write this

DE, 9(Ei, Ej) = 0;

since the connection is derived from this metric,

(VE,Ei, Ej) + g(Ei, VE,Ej) = 0.

Now, just chase around the definitions to find

rljk_F kli
+rlik-Fklj = 0

and contract with wl to arrive at equation 66.2.
To derive equation 66.3, we start from the identity

and evaluate it on our frame

Since we have

=rlil,

which are constants, the first two terms drop out. For zero torsion
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and so

Now we calculate

IX. Gravitation

[Ek, E1 0E, El - VE1 Ek

_ (Fmkl - _F m1k)Em'

dcoi-(Ek,EI)= --1im(Fmkl-_F m1k). (66.4)

-Wi jWJ (Ep El) _ -(Wij -Ek) (COI 'El) + (Wij -El) (WJ.Ek),

and this collapses to the right-hand side of equation 66.4, proving the
result.

We can solve systematically for the Fijk coefficients by expanding the
dcoi in our basis

dcoi = CIIjkI W
JWk'

and then a computation just like that leading from equation 58.1 to equa-
tion 58.2 gives us

i 1

qp = 2 7
it(C1

pq + Cpg1- Cql p) ,

with

Cijk=rlilC jk-

Finally, we need to show that the solution of equation 66.3 is unique;
otherwise it will not be correct merely to guess a solution. Since the equa-
tions are linear in the connection 1-forms, we look at the equations for
the difference between two solutions

aijCOJ=0 aij+aji=0
and show that this difference must vanish. Expanding in our basis we have

aij=aijkCk

and our two equations tell us that

aijk=aikj

and

aijk = -ajik (66.5)

If we perform a full braid on the indices as diagrammed in Figure 66.1,
then we will have returned the indices to their original locations. But we
will have used the symmetry operation in equation 66.5 three times, and
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Figure 66.1. The pattern for permuting the indices on the a;jk.

this changes the sign. Thus the aijk must vanish, and so our solution must
be unique.

Curvature

In a similar fashion we represent the curvature tensor by a set of 2-forms
11k, such that

9(Ei, R(A, B) Ej) = SZij (A, B). (66.6)

The operator R(.,-). was defined in equation 56.4. These curvature
2-forms are easily computed from the connection 1-forms

SZij = dwij -I- coil co . (66.7)

These curvature 2-forms determine the frame components of the curva-
ture tensor

QiJ=RiJIk1I WkAw1

(ordered summation), and so they incorporate the efficiencies of an ex-
plicit notation. It is a routine (but page-length) calculation to show that
the 2-forms defined by equation 66.7 satisfy equation 66.6.

The scheme in which we pick an orthonormal frame coi, guess solutions
for the connection 1-forms, and then use equation 66.7 to compute the
curvature is usually the most efficient way to calculate curvature tensors.
Also, working in terms of frame components is useful in many other
problems, since they have the correct physical dimensions and sizes.





a,
.

C
D

,

F
+

.

ix.

Bibliography

Abraham, Ralph, and Jerrold E. Marsden (1978). Foundations of Mechanics,
2nd ed. San Mateo, Calif.: Benjamin/Cummings.

Akhiezer, Naum I. (1962). The Calculus of Variations. New York: Blaisdell.
Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. New

York: Springer.
Bilby, B. A., R. Bullough, and E. Smith (1965). Proc. Roy. Soc. London

A231, 263-73.
Bott, Raoul, and Loring W. Tu (1982). Differential Forms in Algebraic

Topology. New York: Springer.
Burke, William L. (1970). Phys. Rev. A2, 1501-5.
Burke, William L. (1980). Spacetime, Geometry, Cosmology. Mill Valley,

Calif.: University Science Books.
Choquet-Bruhat, Yvonne, Cecile DeWitt-Morette, and Margaret Dillard-Bleick

(1982). Analysis, Manifolds and Physics. Amsterdam: North-Holland.
Courant, R., and D. Hilbert (1953). Methods of Mathematical Physics, Vol. I.

New York: Interscience.
Courant, R., and D. Hilbert (1962). Methods of Mathematical Physics, Vol. II.

New York: Interscience.
de Rham, G. (1960). Varietes difl'erentiables. Paris: Hermann.
Faulkner, John, and Brian P. Flannery (1978), Astrophys. J. 220, 1125-32.
Gelfand, I. M., and S. V. Fomin (1963). Calculus of Variations. Englewood

Cliffs, N.J.: Prentice-Hall.
Guillemin, Victor, and Alan Pollack (1974). Differential Topology. Englewood

Cliffs, N.J.: Prentice-Hall.
Goldstein, Herbert (1959). Classical Mechanics. Reading, Mass.: Addison-

Wesley.
Grossman, N. (1974). J. Geophys. Res. 79, 689-94.
Harrison, B. K., and F. B. Estabrook (1971). J. Math. Phys. 12, 653-66.
Hermann, Robert (1968). Differential Geometry and the Calculus of Variations.

New York: Academic Press.
Hermann, Robert (1973). Geometry, Physics, and Systems. New York: Marcel

Dekker.

409



f3
;

vi
a

bb
d

C
O

D

410 Bibliography

Hilbert, D., and S. Cohn-Vossen (1952). Geometry and the Imagination.
New York: Chelsea.

Hirsch, Morris W., and Stephen Smale (1974). Differential Equations,
Dynamical Systems, and Linear Algebra. New York: Academic Press.

Israel, R. B. (1979). Convexity in the Theory of Lattice Gases. Princeton,
N.J.: Princeton Univ. Press.

Jackson, J. D. (1962). Classical Electrodynamics. New York: Wiley.
Loomis, L. H., and S. Sternberg (1968). Advanced Calculus. Reading, Mass.:

Addison-Wesley.
Martin, R., and R. Reeves (1977). The 99 Critical Shots in Pool. New York:

Quadrangle Books.
Misner, Charles W., Kip S. Thorne, and John Archibald Wheeler (1973).

Gravitation. San Francisco: Freeman.
Nelson, Edward (1967). TensorAnalysis. Princeton, N.J.: Princeton Univ. Press
Newman, William M., and Robert F. Sproull (1973). Principles of Interactive

Computer Graphics. New York: McGraw-Hill.
Panofsky, Wolfgang K. H., and Melba Phillips (1955). Classical Electricity

and Magnetism. Reading, Mass.: Addison-Wesley.
Pars, L. A. (1962). An Introduction to the Calculus of Variations. New York:

Wiley.
Pars, L. A. (1965). A Treatise on Analytical Dynamics. New York: Wiley.
Penrose, R. (1968). In Cecile M. DeWitt and John A. Wheeler, Batelle

Rencontres. New York: Benjamin.
Robertson, H. P., and T. Noonan (1968). Relativity and Cosmology.

Philadelphia: Saunders.
Saletan, E. J., and A. H. Cromer (1971). Theoretical Mechanics. New York:

Wiley.
Santilli, Ruggero Maria (1978). Foundations of Theoretical Mechanics, Vol. I.

New York: Springer.
Schouten, J. A. (1951). Tensor Analysis for Physicists. Oxford, Eng.:

Clarendon Press, Oxford.
Schouten, J. A. (1954). Ricci-Calculus. New York: Springer.
Slebdozinski, Wladyslaw (1970). Exterior Forms and Their Applications.

Warsaw: Polish Scientific Publishers.
Sommerfeld, A. (1952). Mechanics. New York: Academic Press.
Soper, Davison Eugene (1976). Classical Field Theory. New York:

Wiley-Interscience.
Spivak, M. (1965). Calculus on Manifolds. New York: Benjamin.
Sternberg, S. (1964). Lectures on Differential Geometry. Englewood Cliffs,

N.J.: Prentice-Hall.
Synge, J. L., and A. Schild (1949). Tensor Calculus. New York: Dover.
Warner, Frank W. (1971). Foundations of Differentiable Manifolds and Lie

Groups. Glenview, Ill.: Scott, Foresman.
Weinberg, S. (1972). Gravitation and Cosmology. New York: Wiley.
Weyl, H. (1922). Space-Time-Matter. New York: Dover.
Whittaker, E. T. (1959). Analytical Dynamics of Particles' and Rigid Bodies.

Cambridge: Cambridge University Press.



'C
1

I'D

4'"
M

'-

N
ip

1
1
0

,fl ,fl
,fl ,fl

Index

aberration, 45
action, 240, 324

Lie group, 116
adiabatic demagnetization, 114
adjoint, 200
athne space, 8, 11, 13
affine structure of spacetime, 39
alternating product, 31, 154
angle operator, 153
anholonomic constraints in Lagrangian

mechanics, 312
atlas, 55

defective, 57
automorphism, 81

balance law, electrodynamics, 287
base space, 85
basis,

dual, 29
cotangent space, 66
tangent space, 65

billiard balls, 310
bivector, 32

simple, 36
twisted, 187

block index, 177
bound charge, 294
boundary, orientation, 199
brightness, 334
bundle, contact, 102

calculus of variations, 225
canonical 1-form, 89
Cartan form, 265
Cartan identity, 158
Cartesian product, 6
Cauchy characteristic, 261
chain rule, 24
chains, 205

characteristics, 98
chart, 53
Clebsch form, 176
clock, 39
cohomology, 202
components, tensor, 30
conductor, 293

fluid, 126
moving, 298

conformal structure of spacetime, 39
conformal symmetry, 170
connection, 349

crystal, 358
geodesic Lagrangian for calculation, 376
geodesy, 356
Lie group, 356
metric, 355, 367
symmetric, 366

connection 1-forms, 352, 404
conservation laws, 219

calculus of variations, 233, 239, 244
curved spacetime, 382
exterior differential systems, 264

conservative systems, 306
constraints, 233, 234
contact bundle, 99
contact element, 103
contact structure, 103
contact symmetry, 144
contact transformations, 136
contraction, 30

angle operator for, 153
convexity, 111
coordinate transformations, 81
coordinates, spacetime, 37
cosmology, 398
cotangent bundle, 84

natural structure of, 88
covariance, 11, 44
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covariant derivatives, 365, 366
covectors, 18, 27

free, 19
Curie law, 113
curl, 157
curvature,

connection, 359
moving frames, 407

curvature tensor, 364
cycles, 205

deformations of integrals, 201
degenerate metrics, 164
densities, 149, 183
de Rham operator, 168, 200
derivation operator, 67
determinants, xii, 180
differential, 22
differential calculus, 21

second differential, 24
differential forms, 147}272
diffusion, 207, 211
dihedral, 46
dispersion relation, 339
distribution, 134
divergence, 158

metric induced, 369
vector field, 328

divergence theorem, 200
Doppler shift, 44
dragging, 125
dual space, 19
dynamical system, 94

singular, 96

elastic beam, 317, 342
elastic string, 317
electrodynamics as exterior differential

system, 250
energy momentum tensor for scalar field,

269
enthalpy, 140
equation of state, 111
equivalence class, 8
equivalence relation, 7
etendue, 336
Euler-Lagrange equations, 244
event, 37
extension, 148
exterior calculus, 153
exterior derivative, 156
exterior differential system, 248
exterior product, 31, 154
extrema, 25

fiber bundle, 85
field theory, 85, 314

Index

flow, of vector field, 95
fluid flow, isentropic, 252
force, electrostatic, 285
force, as 1-form, 271
free charge in conductor, 299
free particles, 38

as exterior differential system, 266
Frobenius Theorem, 71, 134
frozen magnetic flux, 301
function

composition of, 6
generalized, 20
inverse, 6
partial evaluation, 6

fundamental equation, 109

Gaussian coordinates, 360
Gaussian optics, 336
generalized force, 308
geodesic deviation, 377-381
geodesics, 374

as Hamiltonian system, 377
geodesy, 356
Gibbs-Duhem relation, 111
gravitational lens, 395
Green's Theorem, 200
group velocity, 342

Hamiltonian dynamical system, 96, 144,
320

genesis, 327
Hamiltonian optics, 333
Hamilton's equations, 322
Hamilton's principle, 225, 307, 315, 324
heat capacity, 247
heat equation, 207, 248, 264

isovectors for, 258, 259
similarity solutions, 261
symmetries, 210

Henon map, 81
Hessian, 75
Hodge star operator, 159

twisted, 193
holonomy, 132

in thermodynamics, 245
homogeneous coordinates, 8
horizontal contact elements, 349
hypersurface element, 101

ideal, 6
contact structure represented by, 105
differential, 213
partial differential equation represented

by, 213
ideal gas, 111
index notation, 6, 7, 31, 176
initial value problem, electrodynamic, 277
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integrability conditions, 135, 278
integrable vector fields, 134
integral curve, 94
integral invariants, 323, 329
integral submanifold, 134

for partial differential equation, 215
integration, 194

informal definition, 79
isometry, 141, 169
isovectors, 258

Jacobi identity, 70
jet bundle, 107
junction conditions, in electrodynamics,

279

Killing vector, 142, 368
Killing's equation, 143
kinetic theory, 223
Kronecker deltas, 177

Lagrange multiplier, 25, 27
in calculus of variations, 241

Lagrange's equations, 311
Lagrangian, 225
Lagrangian field theory, 314
Lagrangian submanifold, 326
Laplace-de Rham operator, 168, 200
Laplace's equation, 166

regular integral submanifolds for, 254
Legendre transformation, 136, 138
Lie algebra, 117
Lie bracket, 68
Lie derivative, 121, 158
Lie group, 115
Lie transport, 125
lift, 88, 92, 354
light deflection, gravitational, 393
light propagation, cosmological, 400
light second, 273
light signals, 39
line element, 99
linear operator, notation for, 6
linear space, 12
linear transformations, covariance under,

12
Liouville's Theorem, 323
Lorentz gauge condition, 284
Lorentz group action, 117
Lorentz metric, signature, 36
Lorentz transformation, 41

magnetization, 296
manifold, 51, 52

implicit argument for, 83
map, 5

calculus of, 77

Index

Maxwell relations, 245
Maxwell's equations, 273, 275

conservation law for, 224
exterior differential system for, 250

metric tensor, 75
moving frames, 402

normal forms for tensors, 173
null cone, 119

Ohm's law, 293
1-form, 27, 61
operator, bilinear, 27
ordered summation convention, 177
orientation, 8, 150, 184

of a boundary, 199
orthogonal matrices, as a manifold, 84

parallel transport, 348, 354
parameter, special affine, 374
parking a car, 132
particles, conservation of, 219
partition of unity, 58, 105
perfect lens, impossibility of, 338
permutation symbol, 156, 180
Poincare's Lemma, 202
point charge, 285
Poisson's equation, 278
polarizable materials, 294
potentials, 202

electrodynamic, 283
for exterior differential system, 267

Poynting-Heaviside Theorem, 291
projective plane, 8, 53
pseudopotentials, 268
pseudosphere, 49, 56
pseudospherical geometry, 49
pullback, 79

of twisted forms, 192
pushforward, 78

reference frame, 40
regular integral submanifold, 254
Reynold's number, magnetic, 301
Riemann tensor, 364

symmetries, 368
rotating disc, 76
runaway charges, 289

scalars, 30
section, of a bundle, 86
sharp operator, 160
shock waves, 253
similarity solutions, 258, 261
slow manifold, 97
smoothing, in electrodynamics, 297
special relativity, 37

metric structure, 43
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sphere, n-dimensional, 55
star operator, 159
statistical mechanics, 106
Steiner's surface, 82
stereographic projection, 55, 119
Stokes' Theorem, 199
stress, on conductor, 288
submanifold, 82, 102
summation convention, 6
surjective map, 83
symmetries, 141

calculus of variations, 233, 239, 244
mechanical systems, 310
similarity solutions, 258

symplectic geometry, 325

tangency, of maps, 59
tangent bundle, 90

natural structure of, 91
tangent map, 93
tangent space, 52 ::

tangent vector, 8, 11, 60
telegraph equation, 212
tensor, 30

algebra, 27
odd kind, 183
symmetric, 73

tensor product, 28, 30
thermodynamics, 108, 245

Index

tides, 379
time, 43
topology, and cohomology, 205
torsion, 361
traffic flow, 223
transformation, infinitesimal, 96
transformation group, 116
translation, in Lie group, 116
transverse orientation, 184
trivial bundle, 87
twisted differential forms, 151, 183

integration of, 197
twisted vector, 13
2-form, geometric representation of, 32

uniqueness, electrodynamic, 292
units, electrodynamic, 273

variational principles for exterior systems,
264

vector, 16, 17
vector field, 93
velocity addition, 140

wave diagram, 341
wave equation, 167

as exterior differential system, 249
wave packets, 338
wedge product, 31, 154
worldline, 37
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