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Motions of plane curves in Klein geometry is studied. It is shown that the KdV, Harry–Dym,
Sawada–Kotera, Burgers, the defocusing mKdV hierarchies and the Kaup–Kupershmidt
equation naturally arise from motions of plane curves in affine, centro-affine and similarity
geometries. These local and nonlocal dynamics conserve global geometric quantities of curves
such as perimeter and enclosed area.

1 Introduction

The connection between motion of space or plane curves and integrable equations has drawn
wide interest in the past and many results have been obtained. The pioneering work is due to
Hasimoto where he showed in [1] that the nonlinear Schrödinger equation describes the motion
of an isolated non-stretching thin vortex filament. Lamb [2] used the Hasimoto transformation
to connect other motions of curves to the mKdV and sine-Gordon equations. Lakshmanan [3]
related the Heisenberg spin model to the motion of space curves in the Euclidean space. Langer
and Perline [4] obtained the Schrödinger heirarchy from motions of the non-stretching thin
vortex filament. Motions of curves in S2 and S3 were considered by Doliwa and Santini [5].
Nakayama [6, 7] investigated motions of curves in Minkowski space and obtained the Regge–
Lund equation, a couple of systems of the KdV equations and their hyperbolic type. In contrast
to the motions of curves in space, only two types of integrable equations have been shown to
be associated to motions of plane curves. In fact, Goldstein and Petrich [8] discovered that the
dynamics of a non-stretching string on the plane produces the recursion operator of the mKdV
hierarchy. Nakayama, Segur and Wadati [9] obtained the sine-Gordon equation by considering
a nonlocal motion. They also pointed out that the Serret–Frenet equations for curves in E2

and E3 are equivalent to the AKNS-ZS spectral problem without spectral parameter [10, 11]. It
is commonly believed that the KdV equation does not occur in the motion of plane curves.

The purpose of this paper is to study motions of plane curves in Klein geometries. These
geometries are characterized by their associated Lie algebras of vector fields in E2. We shall
see that the KdV, Harry–Dym and Sawada–Kotera hierarchies and the Kaup–Kupershmidt
equation naturally arise from the motions of plane curves in affine, centro-affine and similarity
geometries. The outline of this paper is as follows. In Section 2, we give a brief discussion on the
Klein geometry. In Sections 3, 4, and 5, we discuss motion laws of plane curves respectively in
affine, centro-affine and similarity geometries. Section 7 is concluding remarks about this work.

2 Klein geometry

In this section, we give an extremely brief account of the Klein geometry. Our basic reference
is [12].
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Let G be a Lie transformation group acts locally and effectively on the plane. Its Lie algebra g

can be identified with a subalgebra of the Lie algebra of all smooth vector fields in E2 under
the usual Poisson bracket. According to the Erlanger Programme, every G or g determines
a Klein geometry for plane curves via its invariants. To describe the invariants, let us assume
a curve γ and its image γ′ under a typical element g in G are represented locally as graphs
(x, u(x)) and (y, v(y)) over some intervals I and J respectively. A differential invariant of g

is a n-th smooth function Φ defined on the n-jet space X × U (n) for some n ≥ 1 satisfying
Φ

(
x, u(x), . . . , u(n)(x)

)
= Φ

(
y, v(y), . . . , v(n)(y)

)
for all g ∈ G. An invariant one-form, or, more

precisely, a horizontal contact-invariant form, is a one-form defined in the n-jet space X ×U (n),
locally in the form dσ = P

(
x, u(x), . . . , u(n)(x)

)
dx, satisfying∫

I
P

(
x, u(x), . . . , u(n)(x)

)
dx =

∫
J

P
(
y, v(y), . . . , v(n)(y)

)
dy,

for all g in G. Let

v = ξ(x, u)
∂

∂x
+ φ(x, u)

∂

∂u

be an arbitrary vector field in g. We denote its n-th prolongation vector field on X × U (n) by
pr(n)v. The infinitesimal criterion for the invariance of Φ and dσ are given respectively by

pr(n)v(Φ) = 0,

and

pr(n)v(P ) + Pdivξ = 0,

where div ξ = ξx + ξuux. A basic result is

Theorem 1 ([12]). For any Lie transformation group acting locally and effectively on the
plane, there exist an invariant one-form dσ = Pdx and a differential invariant Φ, both of lowest
order such that every differential invariant can be written as a function of Φ and its derivatives
DΦ, D2Φ, . . ., where

D =
1
P

d

dx
.

Moreover, every invariant one-form is of the form Idσ where I is a differential invariant.

Here “order” refers to the highest number of derivatives involved in the local expression for P
and Φ.

Definition 1. Invariant one-forms and differential invariant of lowest order of the Lie group are
respectively called the group arclength and the group curvature.

Example 1. We look at the Euclidean geometry which is the Klein geometry associated to the
Lie algebra by {∂x, ∂u, x∂u − u∂x}. It is readily verified that one can choose its group arclength
to be

ds =
√

1 + u2
xdx

and group curvature to be

κ =
(
1 + u2

x

)− 3
2 uxx.
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Example 2. Consider the affine geometry which is associated to SA(2) by {∂x, ∂u, x∂x −
u∂u, x∂u, u∂x}. Its group arclength and group curvature are

dρ = κ
1
3 ds, µ = κ

4
3 +

1
3

(
κ− 5

3 κs

)
s
. (1)

One may consult [13] for a discussion on affine geometry.
In the following we shall consider motions of plane curves in affine, centro-affine and similarity

geometries. For any parametrized curve γ, we define its group tangent and group normal to be
T = γσ and N = γσσ respectively, where σ is the group arc-length. A group invariant motion is
of the form

∂γ

∂t
= fN + gT, (2)

where f and g are functions of the group curvature. With a given motion law, the equation for
its curvature can be obtained in the following four steps. First, we determine the Serret–Frenet
formulas for each geometry. It is of the form(

T
N

)
σ

=
(

A B
C D

) (
T
N

)
. (3)

In some occasions this system is the AKNS system without spectral parameter. Second, we
compute the first variation for the group perimeter

L =
∮

γ
dσ,

for a closed curve driven under (2) to obtain

dL

dt
=

∮
γ
Fdσ, (4)

where F depends on f and g in (2). By choosing f and g such that F vanishes pointwisely
we ensure that [∂/∂t, ∂/∂σ] = 0, i.e. ∂/∂t and ∂/∂σ commute. Third, we compute the time
evolution of T and N to get(

T
N

)
t

=
(

A′ B′

C ′ D′

) (
T
N

)
. (5)

Finally, the compatibility condition between (3) and (5)(
T
N

)
tσ

=
(

T
N

)
σt

gives the general equation for the curvature. By choosing f and g suitably we obtain integrable
equations. This procedure has been used in [8, 9] to obtain the mKdV and sine-Gordon equations
in the Euclidean geometry. Similarly, some other mKdV equations are obtained by Doliwa–
Santini [5] in the “restricted conformal” SO(3)-geometry.

3 Motion of curves in affine geometry

This is the classical geometry invariant under the unimodular transformations(
x′

u′

)
= A

(
x
u

)
+ B,
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where A ∈ SL(2, R), B ∈ R
2. The affine arc-length dρ and curvature µ are given in terms of

the Euclidean arc-length and curvature by (1), where and hereafter κ and ds always denote the
Euclidean curvature and arclength.

The affine Serret–Frenet formulas are given by(
T
N

)
ρ

=
(

0 1
−µ 0

) (
T
N

)
. (6)

The affine tangent and normal are related to the Euclidean tangent t and normal n via

t = k
1
3 T, n =

1
3
k− 5

3 ksT + k− 1
3 N.

We relate the motion (2) with the motion in Euclidean geometry

γt = f̃n + g̃t, (7)

where

f̃ = k
1
3 f, g̃ = k− 1

3 g − 1
3
k− 5

3 ksf.

By a direct computation

f̃ss =
1
3

(
k− 2

3 ks

)
s
f + k− 1

3 ksfρ + kfρρ,

g̃s − kf̃ = gρ − 1
3
k− 4

3 ks(g + fρ) − µf.

Substituting these equations into the evolution equations for s and k [8, 9], we have

st = s

[
gρ − 1

3
k− 4

3 ks(g + fρ) − µf

]
,

kt = k
[
fρρ + k− 4

3 ks(fρ + g) + µf
]
.

Hence, the first variation of the affine perimeter satisfies

dL

dt
=

∮
γ

(
kt

3k
+

st

s

)
dρ,

=
∮ (

1
3
fρρ − 2

3
µf + gρ

)
dρ.

We impose∮
µfdρ = 0, (8)

and

g = −1
3
fρ +

2
3
∂−1

ρ (µf). (9)

On the other hand, we have(
T
N

)
t

=
(

gρ − µf fρ + g
H1 H2

) (
T
N

)
, (10)
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where H1 = gρρ−2µfρ−µρf −µg and H2 = fρρ +2gρ−µf . Under (8) and (9), [∂/∂ρ, ∂/∂t] = 0,
and so the compatibility condition between (6) and (10) implies

µt =
1
3

(
D4

ρ + 5µD2
ρ + 4µρDρ + µρρ + 4µ2 + 2µρ∂

−1
ρ µ

)
f, (11)

after using (9).
If we take f = −3µρ in (11), we get the Sawada–Kotera equation [14, 15]

µt + µ5 + 5µµ3 + 5µ1µ2 + 5µ2µ1 = 0. (12)

If we take f = −3(µ3 + 2µµ1), we obtain a seventh-order Sawada–Kotera equation

µt + µ7 + 7µµ5 + 14µ1µ4 + 21µ2µ3 + 14µ2µ3 + 42µµ1µ2 + 7µ3
1 +

28
3

µ3µ1 + aµ1 = 0.

In general, we take f = −3
(
D2

ρ + µ + µρ∂
−1
ρ

)
u, u = Ωn−1(µ)µρ, where

Ω(µ) =
(
D3

ρ + 2µDρ + 2Dρµ
) (

D3
ρ + D2

ρµ∂−1
ρ + ∂−1

ρ µD2
ρ +

1
2

(
µ2∂−1

ρ + ∂−1
ρ µ2

))
,

is the recursion operator of the Sawada–Kotera equation [16]. By a direct computation, the
following identity holds(

D4
ρ + 5µD2

ρ + 4µρDρ + µρρ + 4µ2 + 2µρ∂
−1
ρ µ

) (
D2

ρ + µ + µρ∂
−1
ρ

)
=

(
D3

ρ + 2µDρ + 2Dρµ
) (

D3
ρ + D2

ρµ∂−1
ρ + ∂−1

ρ µD2
ρ +

1
2

(
µ2∂−1

ρ + ∂−1
ρ µ2

))
.

Using this identity we see that µ satisfies the Sawada–Kotera hierarchy

µt = −Ωn(µ)µρ. (13)

4 Motion of plane curves in centro-affine geometry

The geometrical quantities in centro-affine geometry are invariant under the transformations(
x′

u′

)
= A

(
x
u

)
,

where A ∈ SL(2, R). Let γ(p) = (γ1(p), γ2(p)) be a parametrized curve in E2. We define its
centro-affine arclength ds̃ as

ds̃ = (γ1γ
′
2 − γ′

1γ2)dp = hds,

where h = −γ · n is the support function of γ [17]. The centro-affine curvature φ is given by

φ = κh−3.

The centro-affine tangent and normal vectors are given by T = γs̃ and N = γs̃s̃ respectively.
They are related to the Euclidean tangent and normal by

T = h−1t, N = κh−2n − h−3hst.

Notice that this frame is centro-affine invariant in the sense that T′ = AT and N′ = AN. Using
the Serret–Frenet formulas in E2

ts = κn, ns = −κt,
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and the following identities

κ−1h2
(
h−3κs − 3h−4κhs

)
=

φs̃

φ
,

hss = κ−1κshs + κ − κ2h,

we obtain the centro-affine Serret–Frenet formulas

Ts̃ = N, Ns̃ =
φs̃

φ
N − φT. (14)

Now we first compute the first variation of the centro-affine perimeter L =
∮

ds̃. To this
purpose, we express (2) in the form (7), where now

f̃ = κh−2f, g̃ = h−1g − h−3hsf.

By the formulas in E2 [8, 9]

st = s
(
g̃s − κf̃

)
, κt = f̃ss + κsg̃ + κ2f̃ ,

and

ht = −f̃ +
(
f̃s + κg̃

)
γ · t,

we have

Lt =
∮ (

h−1ht + s−1st

)
ds̃,

=
∮

(gs̃ − 2φf) ds̃.

As parallel to the affine case, we require f to satisfy∮
φfds̃ = 0, (15)

and choose

g = 2∂−1
s̃ (φf), (16)

so that [ ∂
∂t ,

∂
∂s̃ ] = 0. By (14) and (7) we obtain the time evolution for tangent and normal

vectors:(
T
N

)
t

=
(

A C
B D

) (
T
N

)
, (17)

where

A = gs̃ − φf, B = fs̃ + g +
φs̃

φ
f, C = As̃ − φB, D = Bs̃ + A +

φs̃

φ
B.

The compatibility condition between (14) and (17) gives the equation for the curvature

φt = φfs̃s̃ + 2φs̃fs̃ + (φs̃s̃ + 4φ2)f + 2φs̃∂
−1
s̃ (φf), (18)

after using (16), where we always assume (15) holds. We now consider several cases:
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Case 1. f = u/φ. In this case, (18) becomes

φt =
(
D2

s̃ + 4φ + 2φs̃∂
−1
s̃

)
u.

Setting u = −Ωn−1
1 φs̃. We get the KdV hierarchy

φt = −Ωn
1φs̃, n ≥ 1,

where Ω1 = D2
s̃ + 4φ + 2φs̃∂

−1
s̃ is the recursion operator of the KdV equation

φt + φs̃s̃s̃ + 6φφs̃ = 0. (19)

Setting u = −φ−3/2φs̃∂
−1
s̃ (φq) + 2φ1/2q, ψ = φ−1/2, ψ satisfies

ψt = − [
ψ

(
ψD2

s̃ − ψs̃Ds̃ + ψs̃s̃ + ψ2ψs̃s̃s̃∂
−1
s̃ ψ−2

)
+ 4

]
q. (20)

Taking q = 0 in (20), we get the Harry Dym equation

ψt + ψ3ψs̃s̃s̃ = 0.

Setting q = Ωn−1
2

(
ψ3ψs̃s̃s̃

)
, we get the Harry Dym hierarchy

ψt = −Ωn
2

(
ψ3ψs̃s̃s̃

)
,

where

Ω2 = ψ2D2
s̃ − ψψs̃Ds̃ + ψψs̃s̃ + ψ3ψs̃s̃s̃∂

−1
s̃ ψ−2 + 4,

is a recursion operator of the Harry Dym equation [18].

Case 2. f = us̃s̃s̃/φ + us̃. In this case, (18) becomes

φt =
[
D5

s̃ + 5φD3
s̃ + 4φs̃D

2
s̃ +

(
φs̃s̃ + 4φ2

)
Ds̃ + 2φs̃∂

−1
s̃ φDs̃

]
u.

Taking u = −φ, we get the Sawada–Kotera equation (12). Next, we take u = −∂−1
s̃

(
D2

s̃ + φ +
φs̃∂

−1
s̃

)
q, q = Ωn−1(φ)φs̃, where Ω(φ) is the recursion operator of the Sawada–Kotera equation,

we obtain the Sawada–Kotera hierarchy (13).

Case 3. f = −(φs̃s̃s̃/φ + 16φs̃). The resulting equation is the Kaup–Kupershmidt equation
[19, 20]

φt + φ5 + 20φφ3 + 50φ1φ2 + 80φ2φ1 = 0.

Case 4. f = φ−4φs̃. We have

φt =
1
2

(
φ−2

)
s̃s̃s̃

+ 3
(
φ−1

)
s̃
,

which is an integrable equation [21].

It is easy to see that in these four cases the motions also conserve the enclosed area of the
curves. Notice that the area does not change under centro-affine action and so it makes sense
in the centro-affine geometry. A fuller discussion on the integrable equations can be found in
Chou–Qu [22].
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5 Motions of curves in similarity geometry

The similarity algebra is obtained by adding the dilatation to E2. The Sim(2) arc-length is given
by dθ, where θ is the angle between the tangent and the x-axis. The curvature in similarity
geometry is related to the Euclidean curvature by the Cole–Hopf transformation

χ = (ln k)θ = k−2ks.

Using T = k−1t and N = k−1n− k−3kst, the Serret–Frenet formulas in similarity geometry are
given by

Tθ = N, Nθ = −2χN − (
χθ + χ2 + 1

)
T. (21)

We express the motion (2) in the form (7), where now f̃ = k−1f and g̃ = k−1(g−χf). The first
variation of the similarity perimeter is given by

dL

dt
=

∮
(kts + kst)dp =

∮ [
f̃ss + (χg)s

]
ds.

Hence dL/dt always vanishes for any closed curve. However, it still makes sense to set

g = −fθ + 2χf + a, a = const, (22)

so that [∂/∂θ, ∂/∂t] = 0 for any f and g related by (22). The evolution of the similarity tangent
and normal are given respectively by

Tt = −k−2ktt + k−1tt = −k−1(Lf + aχ)t + ak−1n = −LfT + aN,

Nt = k−1(n − χt)t − k−2kt(n − χt)
= −(Lf + 2aχ)(N + χT) − [(Lf + aχ)θ − χ(LF + aχ) + a]T

= −(Lf + 2aχ)N − [(Lf + aχ)θ + a(χ2 + 1)]T.

Hence(
T
N

)
t

=
( −Lf a

Q P

) (
T
N

)
, (23)

where Q = −(Lf +aχ)θ−a(χ2 +1), P = −(Lf +2aχ) and L = (∂θ−χ)2 +1 is a linear operator.
The compatibility condition between (21) and (23) yields the following equation for the

Sim(2)-curvature χ after using (22),

χt =
[
D3

θ − 2χD2
θ −

(
3χθ − χ2 − 1

)
Dθ − (χθθ − 2χχθ)

]
f + aχθ, (24)

where f is an arbitrary function.
The simplest choice is f = −1. Then (24) becomes the Burgers equation

χt = χθθ − 2χχθ + aχθ.

The next choice is f = χ, which yields the third order Burgers equation

χt = χθθθ − 3χχθθ − 3χ2
θ + 3χ2χθ + (a + 1)χθ.

In general, setting f = ∂−1
θ u, the equation becomes

χt =
[(

Dθ − χ − χθ∂
−1
θ

)2 + 1
]
u + aχθ.
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Setting u = Ωn−2
3 χθ, we obtain the Burgers hierarchy

χt =
(
Ωn

3 + Ωn−2
3 + a

)
χθ,

where Ω3 = Dθ − χ− χθ∂
−1
θ is the recursion operator of the Burgers equation. These equations

can be linearized by the Cole–Hopf transformation χ = (ln η)θ, where η is the reciprocal of the
Euclidean curvature η = 1/k. Indeed, the hierarchy is transformed to

ηt = Dn
θ η + Dn−2

θ η + aη.

It is noted that the motion conserves enclosed area of the curve only when n is odd.

6 Concluding remarks

We have shown that many well-known integrable equations including KdV, Sawada–Kotera,
Harry Dym, Burgers hierarchies and Kaup–Kupershmidt equation naturally arise from motions
of plane curves in affine, centro-affine and similarity geometries. The mKdV equation in the
Euclidean space E2, the KdV equation in the centro-affine geometry and the Sawada–Kotera
equation in the affine geometry, are all obtained by choosing the normal velocity to be the
derivative of the curvature with respect to the arclength. A further analysis shows that the
N -soliton of the mKdV and the Sawada–Kotera equation gives N -loop curves respectively in
Euclidean and affine geometries and the N -soliton of the KdV equation gives N − 1-loop curve
in centro-affine geometry [22]. Similar properties also hold for space curves [23]. These analogies
suggest that the KdV equation and Sawada–Kotera equation are respectively the centro-affine
version and affine version of the mKdV equation.

The vector fields of Lie algebras acting on the plane have been completely classified [12].
Recently we have investigated motions of curves in these geometries and found many associated
integrable hierarchies. The reader is referred to as [24] for all details.

Finally we point out that the equivalence between integrable equations for the curvature and
invariant motion leads to some new integrable equations. For example, in the Euclidean case,
suppose the mKdV flow can be expressed as the graph of (x, u(x, t)) of some function u over
x-axix, one finds that u satisfies the well-known WKI equation [25]

ut =

[
uxx

(1 + u2
x)

3
2

]
x

, (25)

which can be solved by the inverse scattering method. Similarly in the affine geometry, Sawada–
Kotera flow can be expressed by the following integrable equation

ut = −
[
u
− 5

3
xx uxxxx − 5

3
u
− 8

3
xx u2

xxx

]
x

. (26)

The WKI equation (25) and equation (26) have many similarities, such as they are derived in
the same manner, can be solved by the inverse scattering method and have N -loop solitons.
A detail analysis to (26) is presented in [24].
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