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G-STRUCTURES ON SPHERES

MARTIN ČADEK AND MICHAEL CRABB

Abstract. A generalization of classical theorems on the existence of sections of
real, complex and quaternionic Stiefel manifolds over spheres is proved. We obtain
a complete list of Lie group homomorphisms ρ : G → Gn, where Gn is one of the
groups SO(n), SU(n), Sp(n) and G is one of the groups SO(k), SU(k), Sp(k), which
reduce the structure group Gn in the fibre bundle Gn → Gn+1 → Gn+1/Gn.

1. Introduction

Consider the fibrations

SO(n)→ SO(n+ 1)→ SO(n+ 1)/SO(n) = Sn ,(1.1)

SU(n)→ SU(n+ 1)→ SU(n + 1)/SU(n) = S2n+1 ,(1.2)

Sp(n)→ Sp(n+ 1)→ Sp(n+ 1)/Sp(n) = S4n+3 .(1.3)

To deal with the three cases we shall write Gn = SO(n), SU(n) or Sp(n) and d = 1, 2
or 4 as appropriate. These principal bundles reduce the structure group O(d(n+1)−1)
of the tangent bundle of the sphere Gn+1/Gn = Sd(n+1)−1 to the subgroup Gn.

Let G be a Lie group and ρ : G→ Gn a homomorphism. We say that the structure
group Gn of a principal fibre bundle τ over a CW-complex X can be reduced to (G, ρ)
if the classifying map of this fibration τ : X → BGn can be factored (up to homotopy)
through Bρ : BG→ BGn.

BG

Bρ
��

X τ
//

<<yyyyyyyy

BGn

This paper deals with the problem of determining those groups G and homomor-
phisms ρ to which the structure group Gn in the fibrations above can be reduced.
The problem has been solved in many interesting special cases. Considering stan-
dard inclusions ρ : G = Gk →֒ Gn we get the famous problem on sections of Stiefel
manifolds over spheres resolved in [1], [3], [5] and [23]. The other standard inclusions
SU(k) →֒ SO(n), Sp(k) →֒ SO(n) and Sp(k) →֒ SU(n) are dealt with in [12], [18] and
[19], respectively. In these cases the question was to find a minimal standard subgroup
to which Gn can be reduced.

In [15] Leonard asked an opposite question: find all maximal proper subgroups to
which Gn can be reduced. He solved it in the cases when G is a reducible maximal
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subgroup of Gn. Moreover, he proved that Gn cannot be reduced to any proper
subgroup (G, ρ) if

(1) n is even and Gn = SO(n) or SU(n), unless Gn = SO(6) and G = SU(3);
(2) n 6≡ 11 mod 12 and Gn = Sp(n);
(3) G is a nonsimple irreducible maximal proper subgroup of Gn.

Using similar methods these results were improved in [20]. Nevertheless, the cases
when G is a simple Lie group and ρ : G → Gn is an irreducible representation have
remained unanswered. As a consequence of our main result we will show that if G
is one of the classical Lie groups SO(k), SU(k), Sp(k) such a reduction is impossible
except for the case SU(3) →֒ SO(6) (and the obvious case Gn = G).

The paper is organized as follows. The main results are described in the next section.
Homotopy theoretical results needed in their proofs are contained in Section 3. The
proofs themselves appear in Section 4, based on statements on dimensions of real
representations of classical Lie groups. The computations proving these statements
are carried out in the following section. In an appendix we give precise self-contained
proofs of several more or less known results which we need and which may be of
independent interest; we also discuss possible generalizations of our main results.

2. Main results

To state our main result we recall several definitions and theorems. For any prime
p let νp stand for the p-adic valuation.

The Hurwitz-Radon number a(r) is the power of 2 given by

ν2(a(r)) = #{i | 1 ≤ i ≤ r − 1 and i ≡ 0, 1, 2, 4 mod 8}.

For n + 1 = (2l + 1)2β+4γ with β ∈ {0, 1, 2, 3} put j(n) = 2β + 8γ. A well known
result of Adams ([1]) says that the structure group SO(n) in the fibration (1.1) can
be reduced to the standard subgroup SO(k) if and only if k ≥ n − j(n) + 1. This
condition can be expressed in terms of the Hurwitz-Radon numbers as

n + 1 ≡ 0 mod a(n+ 1− k).

The complex James number b(r) is the positive integer with

νp(b(r)) =

{
max{i+ νp(i) | 1 ≤ i ≤ (r − 1)/(p− 1)} if r ≥ p,

0 if r < p,

for all primes p.
Similarly, the quaternionic James number c(r) is the positive integer determined by

ν2(c(r)) = max{2r − 1, 2i+ ν2(i) | 1 ≤ i ≤ r − 1} ,

νp(c(r)) = νp(b(2r)) for all odd primes p.

In the papers [3], [5], [12], [18], [19] and [23] the problem of when the structure
group Gn in one of the fibrations (1.1) – (1.3) can be reduced to a group G = SU(k)
or Sp(k) via a standard inclusion G →֒ Gn was solved and the results were expressed
in terms of complex and quaternionic James numbers in a way similar to the result
quoted above. The following theorem can be regarded as a generalization of these
results.
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Theorem 2.1. Let Gn be one of the groups SO(n), SU(n) or Sp(n) and let G be one
of the groups SO(k) with k ≥ 4, SU(k) with k ≥ 2 or Sp(k) with k ≥ 2. Suppose that
the dimension of the sphere Gn+1/Gn is at least 8 and that dimG < dimGn. Then the
structure group Gn of the principal fibre bundle

(2.1) Gn → Gn+1 → Gn+1/Gn

can be reduced to G via a homomorphism ρ : G→ Gn if and only if one of the following
cases occurs.

(A) Gn = SO(n), G = SO(k), n = m − 1, m ≡ 0 mod a(m − k) and, up to
conjugation, ρ is the standard inclusion SO(k) →֒ SO(n).

(B) Gn = SO(n), G = SU(k), n = 2m−1, m ≡ 0 mod 2ν2(b(m−k)) and, up to con-
jugation, ρ is the composition of the standard inclusions SU(k) →֒ SO(2k) →֒
SO(n) or the composition SU(4)→ SO(8)× SO(6) →֒ SO(15) where the first
homomorphism is given on the first factor by the standard inclusion and on the
second factor by the double covering SU(4) ∼= Spin(6)→ SO(6).

(C) Gn = SO(n), G = Sp(k), n = 4m− 1, m ≡ 0 mod 2ν2(c(m−k)) and, up to con-
jugation, ρ is the composition of the standard inclusions Sp(k) →֒ SO(4k) →֒
SO(n) or the exterior square Sp(3)→ SO(15).

(D) Gn = SU(n), G = SU(k), n = m − 1, m ≡ 0 mod b(m − k) and, up to
conjugation, ρ is the standard inclusion SU(k) →֒ SU(n).

(E) Gn = SU(n), G = Sp(k), n = 2m− 1, m ≡ 0 mod c(m− k) and, up to con-
jugation, ρ is the composition of the standard inclusions Sp(k) →֒ SU(2k) →֒
SU(n).

(F) Gn = Sp(n), G = Sp(k), n = m − 1, m ≡ 0 mod c(m − k) and, up to
conjugation, ρ is the standard inclusion Sp(k) →֒ Sp(n).

As a consequence of Theorem 2.1 we get a partial answer to Leonard’s question from
[15].

Corollary 2.2. Under the assumptions of Theorem 2.1 there is no irreducible repre-
sentation ρ : G → Gn such that the structure group Gn of the principal fibre bundle
(2.1) can be reduced to (G, ρ).

Remark 2.3. As for G = Spin(k) or an exceptional simple Lie group, using Propo-
sition 3.1 and similar statements for SU(n) and Sp(n) one can easily prove that the
structure group Gn of (2.1) cannot be reduced to G via any homomorphism ρ with
the possible exception of finitely many cases in which a certain dimension condition
(the same as or similar to that in Proposition 3.1) is not satisfied.

Remark 2.4. In [6] and [24] it was shown that every stably parallelizable manifold
of dimension n either is parallelizable or has the same span as Sn. This suggests the
possibility of extending Theorem 2.1 for Gn = SO(n) from the case of the tangent
bundle over Sn to the case of a stably trivial, but non-trivial, n-dimensional vector
bundle over a stably parallelizable n-manifold. We say a little more about this question
in the final section.
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3. Auxiliary results

In this section we will summarize the results which will be needed for the proofs
of Theorem 2.1 and Corollary 2.2 in the next section. In what follows we will not
distinguish between maps and their homotopy classes.

Proposition 3.1. Let τ be a principal SO(n)-bundle over the suspension ΣX of a
pointed finite complex X. Suppose that the structure group SO(n) of τ can be reduced
to (G, ρ), where ρ : G→ SO(n) is a homomorphism from a Lie group G of dimension
less than n−j, 1 ≤ j < n. Then the structure group of τ can be reduced to the standard
subgroup SO(n− j) of SO(n).

Proof. We denote the classifying map X → SO(n) of a principal fibre bundle τ by
the same letter. Suppose that SO(n) structure can be reduced to (G, ρ). Since the
standard inclusion ι : SO(n− j)→ SO(n) is an (n− j − 1)-equivalence and dimG ≤
n − j − 1, the map ρ : G → SO(n) can be factored as a composition of a map
η : G→ SO(n− j) and ι. Then τ can be factored through the standard inclusion ι as
shown by the following diagram.

SO(n− j)

ι

||

X

22

//

τ ##FF
FF

FF
FF

F G

η

88qqqqqqqqqqqq

ρ

��
SO(n)

�

Lemma 3.2. Let 1 ≤ k < n and let n ≥ 9 be odd. Consider a homomorphism
ρ : Gk → O(n). Suppose that there is a map ρ′′ : BG∞ → BO such that ρ′′◦ιk ≃ ιn◦Bρ.
A choice of homotopy induces a diagram of fibrations:

G∞/Gk
ρ′ //

��

O/O(n)

��
BGk

Bρ //

ιk
��

BO(n)

ιn

��
BG∞

ρ′′ // BO

Let ξ ∈ πn(BGk) be a homotopy class such that τ = Bρ ◦ ξ ∈ πn(BO(n)) classifies
the fibration (1.1). Then there is an element ξ′ ∈ πn(BGk) such that Bρ ◦ ξ′ = τ and
ιk ◦ ξ

′ = 0.

Proof. We deal separately with the three cases (a) Gk = SO(k), (b) Gk = SU(k), (c)
Gk = Sp(k).
Case (a). We consider the only non-trivial case: n ≡ 1 mod 8. Let α denote the
generator of πn(BO) = Z/2. Then πn(BO(n)) = Z/2 ⊕ Z/2 is generated by τ and a
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class β such that
ιnβ = α, ιnτ = 0

in πn(BO).
We deal first with the case that k ≥ 6. Suppose that ξ ∈ πn(BSO(k)) satisfies

Bρ ◦ ξ = τ and ιkξ = α.

According to [11] (see also the Appendix, Proposition 6.2) α ∈ πn(BO) can be
factored as a composition ι6η where η ∈ πn(BSO(6)) and ι6 : BSO(6) → BO is the
standard inclusion. This gives the diagram

Sn

η

��

ζ

((

α

$$II
II

II
II

II

BO BSO(k)
ιkoo

BSO(6)

ι6

OO

ι

88rrrrrrrrrr

in which ι : BSO(6)→ BSO(k) is the standard inclusion and ζ = ιη.
If we show that Bρ ◦ ζ = 0 ∈ πn(BO(n)), then ξ′ = ξ + ζ will satisfy the required

conditions, since

Bρ ◦ ξ′ = Bρ ◦ (ξ + ζ) = Bρ ◦ ξ +Bρ ◦ ζ = τ + 0 = τ,

ιkξ
′ = ιk(ξ + ζ) = α + α = 0.

Write Bρ ◦ ζ = bβ + cτ with b, c ∈ Z/2. Then

bα = ιn(bβ + cτ + τ) = ιnBρ(ζ + ξ) = ρ′′ιk(ζ + ξ) = ρ′′(α + α) = 0,

which implies that b = 0. Suppose that Bρ ◦ ζ = τ . Then τ = (Bρ) ◦ ι ◦ η in the
diagram:

Sn

η

��

τ

((

ζ

$$IIIIIIIII

BSO(k)
Bρ

// BO(n)

BSO(6)

ι

OO

Consequently, the structure group O(n) of τ can be reduced to SO(6). Since

dimSO(6) = 15 < n− j(n), for n ≡ 1 mod 8, n ≥ 17,

it follows from Proposition 3.1 that n = 9. However, the only possible homomorphism
SO(6) → O(9) is (up to conjugation) the standard inclusion. In this case ρ′′ = id,
which leads to the contradiction:

α = ρ′′ι6η = ρ′′ιkιη = ιn(Bρ)ιη = ιnτ = 0.

Finally, if k < 6, then according to [11], (ιk)∗ : πn(BO(k)) → πn(BO) always
vanishes and we may take ξ′ = ξ.
Case (b). In the complex case the assertion is trivial, because πn(BSU) = 0.
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Case (c). The only non-trivial case occurs for n ≡ 5 mod 8. In the Appendix,
Proposition 6.4 we show that the generator of π8k+4(Sp) = Z/2 lifts to an element in
π8k+4(Sp(1)). Using this fact the proof proceeds as in (a). �

In the proof of Theorem 2.1 we will need some properties of stunted projective and
quasiprojective spaces. We will describe them for the real, complex and quaternionic
cases together. Denote by F one of the fields R, C and H and put d = 1, 2 or 4,
respectively, for its real dimension. G(Fn) will stand for the group O(n), U(n) or
Sp(n) according to the chosen field F. Let us recall that Gn denotes one of the groups
SO(n), SU(n) or Sp(n) and that

Gn/Gk = G(Fn)/G(Fk) for 1 ≤ k ≤ n.

Pn will stand for the projective space P (Rn), P (Cn) or P (Hn) and Qn for the corre-
sponding quasiprojective space Q(Rn), Q(Cn) or Q(Hn). This space is a Thom space
P ζ
n where ζ is a certain real vector bundle over Pn of dimension d − 1. Denote the

Hopf bundle over Pr by H and write F for trivial real vector bundle with fibre F. The
real tangent bundle to Pr has the property

τ(Pr)⊕ ζ ⊕R = rH∗

where H∗ = HomF(H,F) is the dual vector bundle to H . Let t(r) denote the order of

the bundle H − F in J̃(Pr), that is, t(r) is the least integer ≥ 1 such that the sphere
bundle of t(r)H is stably fibre homotopy trivial. Classical computations in [1], [3], [5]
and [23] showed that t(r) = a(r), b(r) and c(r) in the real, complex and quaternionic
cases, respectively.

Considering the reflection maps

φ : Q∞/Qk → G(F∞)/G(Fk)

and writing ai, bi, ci for generators of H̃i(Q(R∞); Z/2) = (Z/2)ai, H̃2i+1(Q(C∞); Z)

= Zbi, H̃4i+3(Q(H∞); Z) = Zci, respectively, we have inclusions (for unreduced homol-
ogy)

φ∗ : H∗(Q(R∞)/Q(Rk); Z/2) = Z/2⊕
∞⊕

i=k

Z/2 ai −→ H∗(O/O(k); Z/2) =

Z/2[a0, a1, a2, . . . ]/(a0 = 1, a1 = 0, · · · , ak−1 = 0, a2
k = 0, · · · , a2

i = 0, · · · )

where H∗(O/O(k); Z/2) is a module over

H∗(O; Z/2) = Z/2[a0, a1, a2, . . . ]/(a
2
0 = 1, a2

1 = 0, · · · ),

and for F = C or H

φ∗ : H∗(Q(F∞)/Q(Fk); Z) = Z⊕

∞⊕

i=k

Z ei −→ H∗(G(F∞)/G(Fk); Z) =

Z[e0, e1, e2, . . . ]/(e0 = 0, · · · , ek−1 = 0, e2k = 0, · · · , e2i = 0, · · · )

where ei stands for bi or ci, respectively, and H∗(G(F∞)/G(Fk); Z) is a module over

H∗(G(F∞); Z) = Z[e0, e1, . . . ]/(e
2
0 = 0, · · · ).
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Since SO = O/O(1) and SU = U/U(1), the formulas above describe also the
homology of SO and SU .

Proposition 3.3. Let n be odd and k ≥ 1. Consider a map f : G∞/Gk → O/O(n)
which fits into a commutative diagram

G∞

��

f̃ // O

��
G∞/Gk

f // O/O(n)

in which f̃ is an H-map. Suppose that

(3.1) f∗ : πn(G∞/Gk)→ πn(O/O(n)) = Z/2

is onto. Then n + 1 is divisible by d, say n = dm− 1, and ν2(m) ≥ ν2(t(m− k)).
The same is true if we replace G∞ and Gk by G(F∞) and G(Fk).

Proof. The homomorphism

f∗ : Hn(G∞/Gk; Z/2)→ Hn(O/O(n); Z/2) = (Z/2)an

maps decomposable elements to 0, since f∗ lifts to a ring homomorphism. So it follows
at once that n = dm−1 and that there is an element x ∈ πn(G∞/Gk) whose Hurewicz
image is equal to am−1, bm−1 or cm−1 modulo 2 and products. Hence the projection

G∞/Gk → G∞/Gm−1

maps x to a generator of the group πn(G∞/Gm−1)(2), which is Z/2 in the orthogonal
case, Z(2) in the unitary and symplectic cases. (The lower index (2) means localization
at the prime 2.)

Now recall that there are stable maps

θ : G∞/Gk → Q∞/Qk

splitting the reflection maps φ : Q∞/Qk → G∞/Gk. (See, for example, [7] for the
construction of θ and [14] for a description of φ.) These maps are compatible with the
projections G∞/Gk → G∞/Gl and Q∞/Qk → Q∞/Ql for k ≤ l.

We shall use the letter ω for stable homotopy: the symbols ω̃i and ω̃i will stand for
reduced stable homotopy and cohomotopy groups, respectively.

Thus θ(x) gives a class in ω̃n(Q∞/Qk) that maps to an odd multiple of the generator
of ω̃n(Q∞/Qm−1) = Z/2, Z or Z, in the three cases.

The remainder of the proof is an essentially classical computation using the stable
Adams operation ψ3 in 2-local real K-theory, KO. One may either proceed directly
(as we shall show below for the orthogonal case) or dualize as follows.

By connectivity, the map ω̃n(Qm/Qk) → ω̃n(Q∞/Qk) is surjective. So there is an
element y ∈ ω̃n(Qm/Qk)(2) that maps to a generator of ω̃n(Qm/Qm−1)(2) = Z(2).

Now Qm/Qk is the Thom space of the bundle kH∗ ⊕ ζ over Pm−k = P (Fm−k). Its
stable dual is, according to [4], the Thom space of the virtual bundle R −mH∗ over
the same space Pm−k. It follows that the restriction map

ω̃0(P
m(F−H∗)
m−k )(2) → ω̃0(P

m(F−H∗)
m−(m−1))(2) = ω̃0(S0)(2) = Z(2)
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is surjective. The Hurewicz image of y in K-theory gives under duality a class in

K̃O0(P
m(F−H∗)
m−k )(2)

that is fixed by ψ3 and restricts to a generator of K̃O0(S0)(2) = Z(2).
Alternatively, this shows that the vector bundle mH∗ over Pm−k is stably fibre

homotopy trivial at the prime 2 (see [4], the proof of Proposition 2.8 and [18], the proof
of Theorem 2.2) and leads to the equivalent condition that m(F−H∗) ∈ KO0(Pm−k)(2)

lies in the image of ψ3 − 1. (See, for example, [10], Theorem 5.1 modified to KO.)
The proof is completed by calculations of the Adams operation ψ3. For the unitary

and symplectic cases we refer to [3] and [23]. For the orthogonal case we outline a
proof below, which is perhaps more direct than the classical calculation. �

We write kO for connective real K-theory.

Proposition 3.4. Let n be odd and 1 ≤ k ≤ n. Suppose that there is an element

y ∈ k̃On(P (R∞)/P (Rk))(2) which is fixed by the Adams operation ψ3 and maps to the

generator of k̃On(P (R∞)/P (Rn))(2) = Z/2. Then

n+ 1 ≡ 0 mod a(n + 1− k)

or, equivalently, k ≥ n− j(n) + 1.

Proof. We deal first with the case that n+ 1 is divisible by 8. Using connectivity and
duality we may make the identifications

K̃O0(P (Rn−k+2)(n+1)R−(n+2)H) = K̃On(P (Rn+2)/P (Rk))

= k̃On(P (Rn+2)/P (Rk)) = k̃On(P (R∞)/P (Rk)).

The first group is isomorphic, by Bott periodicity, to K̃O0(P (Rn−k+2)−H). Standard

computations of theK-groups of real projective spaces give that k̃On(P (R∞)/P (Rk))(2)

is cyclic of order 2a(n + 1− k) and that ψ3 acts as multiplication by 3(n+1)/2.
A generator is fixed by ψ3 if and only if

3(n+1)/2 − 1 ≡ 0 mod 2a(n+ 1− k).

Since ν2(3
(n+1)/2 − 1) = ν2(n + 1) + 1, the result follows in this case.

The case n + 1 ≡ 4 mod 8 is similar. We have k̃On(P (R∞)/P (Rn−4))(2) = Z/16

and ψ3 acts as 3(n+1)/2. So k > n− 4.

Finally, for n + 1 ≡ 2 mod 4, we have k̃On(P (R∞)/P (Rn−2))(2) = Z/2 and the

projection map to k̃On(P (R∞)/P (Rn))(2) = Z/2 is zero. So k > n− 2.
(It is traditional to use mod 2 homology and Steenrod operations for the last two

steps, but kO-theory provides a uniform proof.) �

Let K = C or H. Suppose that the field F = C or H is a vector space over K. Put
again t(r) = b(r) for F = C and t(r) = c(r) if F = H. Let n be odd for K = C and
n ≡ 3 mod 4 for K = H. The following statement may be established by the same
method as Proposition 3.3.
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Proposition 3.5. Consider a map f : G(F∞)/G(Fk)→ G(K∞)/G(Kn) which lifts to

an H-map f̃ : G(F∞)→ G(K∞). If

f∗ : πn(G(F∞)/G(Fk))→ πn(G(K∞)/G(Kn)) ∼= Z,

is onto, then n = m dimK F− 1 and m ≡ 0 mod t(m− k).

Remark 3.6. If f in the statement of Proposition 3.3 is the standard inclusion then the
condition on n = dm−1 is not only necessary but also sufficient for f∗ : πn(G∞/Gk)→
πn(O/O(n)) to be onto. This can be shown by reversing the proof, since the conditions
on n and k ensure that we are in stable range. The same applies to Proposition 3.5.

4. Proofs

Let λi stand for the representation given by the i-th exterior power and let ¯ denote
complex conjugation.

Proof of Theorem 2.1. According to [15] the structure group Gn in (2.1) cannot be
reduced to any proper subgroup for even n ≥ 8. For odd n ≥ 9 we will examine
different Gn and G separately.

A. Let k ≤ n. Consider a homomorphism ρ : SO(k) → SO(n) which reduces the
structure group SO(n) of the fibre bundle (1.1). First, suppose that the class of the
representation ρ in RO(SO(k)) is a polynomial in exterior powers.

Lemma 4.1. Let ρ : G = SO(k) → O(n) be a homomorphism which extends to a
homomorphism O(k) → O(n). Then there is a map ρ′′ : BSO → BO such that
ρ′′ ◦ ιk ≃ ιn ◦Bρ, where ιk : BSO(k)→ BSO and ιn : BO(n)→ BO are the standard
inclusions.

Proof. The real representation ring RO(O(k)) is generated by the exterior powers λi

of the basic representation. Given ρ there is a polynomial p in exterior powers such
that

p(λ1, λ2, . . . , λk)(ξ − k) = ρ(ξ)− n

for any vector bundle ξ of dimension k. This polynomial defines ρ′′. To show the
existence of such a polynomial it is enough to consider the special case ρ = λi, for
which we may take p to be equal to

∑i−1
j=0

(
k
j

)
λi−j. �

The situation is described by the commutative diagram (of fibres)

SO/SO(k)
ρ′ //

��

O/O(n)

��
BSO(k)

Bρ //

ιk

��

BO(n)

ιn

��
BSO

ρ′′ // BO

Suppose that the classifying map τ : Sn → BO(n) for the fibration (1.1) can be
written as a composition τ = Bρ ◦ ξ with ξ : Sn → BSO(k). According to Lemma
3.2 we can suppose that ιk ◦ ξ is zero in πn(BSO). Hence both τ and ξ can be lifted
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to a non-trivial element t ∈ πn(O/O(n)) ∼= Z/2 and x ∈ πn(SO/SO(k)), respectively,
such that t = ρ′ ◦ x. Hence the map ρ′ satisfies the assumptions of Proposition 3.3.
Consequently, n+ 1 ≡ 0 mod a(n + 1− k), which is equivalent to

k ≥ n+ 1− j(n).

Since n ≥ 9, the inequality above yields k ≥ 8.
The homomorphism ρ is a sum of irreducible representations. If it were different from

the standard inclusion, then, by the Weyl Dimension Formula (see (i) of Proposition
5.1 and Remark 5.2 in the next section) and the inequality above, its dimension would
be at least

min{dim 2λ1, dimλ2} = 2k ≥ 2(n− j(n) + 1) > n, for all n ≥ 9,

which is a contradiction.
Now suppose that the class of ρ : SO(k)→ SO(n) in RO(SO(k)) is not a polynomial

in exterior powers. In this case we can use the following lemma. Its proof is based on
the Weyl Dimension Formula and is postponed to the next section.

Lemma 4.2. Let k ≥ 5. If the class of a representation ρ : SO(k) → SO(m) in
RO(SO(k)) is not a polynomial in exterior powers, then for all n ≥ m

dimSO(k) < n− j(n).

According to this lemma and Proposition 3.1 the reduction of SO(n) in (1.1) to
(SO(k), ρ) is impossible.

B1. Let n ≥ 9 be odd, k ≥ 2.

Lemma 4.3. Let ρ : G = SU(k) → O(n) be a homomorphism whose class in

R(SU(k)) (after complexification) is of the form q(λ1, . . . , λ[k/2], λ1, . . . , λ[k/2]) where q
is a polynomial such that

(4.1) q(x1, . . . , x[k/2], y1, . . . , y[k/2]) = q(y1, . . . , y[k/2], x1, . . . , x[k/2]).

Then there is a map ρ′′ : BSU → BO such that ρ′′◦ιk ≃ ιn◦Bρ, where ιk : BSU(k)→
BU and ιn : BO(n)→ BO are the standard inclusions.

Proof. If the complexification of ρ : SU(k) → U(n) has the form described above,
then an extension BSU → BU can be constructed as in the proof of Lemma 4.1
using a polynomial p of the same form. This extension can be factored through the
complexification BSO → BSU . The reason is that any complex vector bundle of the
form η ⊕ η is the complexification of the realification of η and any complex vector
bundle of the form η ⊗ η is the complexification of the real Lie algebra bundle of
skew-adjoint endomorphisms of η. �

Consider a representation ρ : SU(k) → O(n) which reduces the structure group
SO(n) of (1.1).
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Suppose first that ρ is of the type described in Lemma 4.3 so that we have a com-
mutative diagram:

SU/SU(k)
ρ′ //

��

O/O(n)

��
BSU(k)

Bρ //

ιk

��

BO(n)

ιn

��
BSU

ρ′′ // BO.

The classifying map τ : Sn → BO(n) for the fibration (1.1) can be written as a
composition τ = ρ ◦ ξ with ξ : Sn → BSU(k). By Lemma 3.2 τ and ξ can be lifted
to t ∈ πn(O/O(n)) and x′ ∈ πn(SU/SU(k)), respectively, such that t = ρ′ ◦ x′ and t is
the generator of πn(O/O(n)). So the map ρ′ satisfies the assumptions of Proposition
3.3. Consequently, n = 2m−1 and m ≡ 0 mod 2ν2(b(m−k)). For the maximal integer k
satisfying this condition put j2(n) = n+ 1− 2k. Now the divisibility condition above
is equivalent to the inequality

2k ≥ n+ 1− j2(n).

It is clear, by comparing the real and complex lifting problems, that j2(n) ≤ j(n).
Since n ≥ 9, the inequality above yields k ≥ 4.

Suppose that k ≥ 5. If ρ, which is a sum of irreducible representations, were
different from the standard inclusion, then, by the Weyl Dimension Formula (see (ii)
of Proposition 5.1 and Remark 5.2) and the inequality above, its dimension would be
at least 20 and greater than or equal to

min{2 dimC(λ1 + λ1), dimC(λ2 + λ2)} = min{4k, k2 − k} = 4k ≥ 2(n− j(n) + 1) > n.

This means that ρ has to be the standard inclusion in this case.
Now consider the case: k = 4. In the same way we get

8 = 2 · 4 ≥ n− j2(n) + 1.

Consequently, n = 9, 11 or 15 in this case. This allows only two possibilities for ρ:
λ1 + λ1 and λ1 · λ1 − 1 of dimension 8 and 15, respectively.

The latter homomorphism can be factored via a double covering as

SU(4) ∼= Spin(6)→ SO(6)
λ2

−−→ SO(15).

However, the reduction of SO(15) to SO(6) was excluded in A.
Hence ρ is a standard inclusion corresponding to λ1 + λ1.

B2. Consider a homomorphism ρ : SU(k)→ O(n) whose class in R(SU(k)) is not of
the form described by (4.1). In the next section we prove

Lemma 4.4. Let k ≥ 2. If the class of an irreducible representation SU(k)→ O(m)
in R(SU(k)) is not a polynomial in exterior powers of the form (4.1), then for all
n ≥ m

dimSU(k) < n− j(n)
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with the just two exceptions: the double covering SU(4) ∼= Spin(6) → SO(6) which
after complexification gives λ2 : SU(4) → SU(6), and the representation SU(8) →
SO(70) which after complexification gives λ4 : SU(8)→ SU(70).

According to Proposition 3.1 this lemma excludes reductions to (SU(k), ρ) apart
from two possible exceptional cases: that after complexification one of the irreducible
summands of ρ is λ2 : SU(4)→ U(6) and n ≤ 23 (for n ≥ 25 we can use Proposition
3.1) or λ4 : SU(8) → U(70) with n = 71 (for n ≥ 73 we can again use Proposition
3.1).

The representation ρ of SU(4) containing λ2 as a summand has to contain as a sum-

mand also λ1 +λ1, otherwise it could be factored through SO(6), which is impossible.
So the representation ρ of SU(4) has to be of the form

(4.2) SU(4)→ SO(8)× SO(6)→ SO(14)× SO(n− 14) →֒ O(n)

where the first homomorphism is given by the standard inclusion and the double
covering and the second one contains the standard inclusion SO(8)×SO(6) →֒ SO(14)
as the first component. However, according to Theorem 2.A in [15] the structure group
SO(n) cannot be reduced to SO(14) × SO(n − 14) for 17 ≤ n ≤ 23. (This can be
seen by observing that a reduction to the product would imply reduction to one of the
factors. Compare the proof of Lemma 4.5.)

Lemma 4.5. The structure group SO(15) of the principal fibre bundle (1.1) can be
reduced to SU(4) both through the standard inclusion and through the homomorphism
of the form (4.2).

Proof. By [12] or by B1 and Remark 3.6 the structure group SO(15) of (2.1) can
be reduced to SU(4) using the standard inclusion. Since the tangent bundle to S15

is determined by the non-trivial element in π14

(
SO(15)

)
∼= Z/2, there is a map γ :

S14 → SU(4) such that the composition with SU(4) →֒ SO(15) is non-trivial. The
composition of γ with any homomorphism

SU(4)→ SO(6) →֒ SO(15)

is trivial since the inclusion SO(6) →֒ SO(15) induces the trivial homomorphism

π14

(
SO(6)

)
→ π14

(
SO(15)

)

by A.
Hence the composition

S14 γ
−−→ SU(4) →֒ SO(8)× SO(6)→ SO(14) →֒ SO(15)

is homotopic to the product (in SO(15)) of two maps S14 → SO(15), one of which
is non-trivial and the other trivial. That is why this composition is non-trivial. So
γ : S14 → SU(4) determines the reduction through the homomorphism (4.2). �

Lemma 4.6. Let n = 71. Then the structure group SO(71) in (1.1) cannot be reduced
to SU(8) via the homomorphism induced by λ4 : SU(8)→ SU(70).

Proof. Suppose that a reduction does exist. Then the classifying map for (1.1) admits
a factorization

S70 f
−→ SU(8)

ρ
−→ SO(70) →֒ SO(71).
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Denote by η the real vector bundle over ΣSU(8) which is classified by ρ. Then the
tangent bundle to S71 is isomorphic to f ∗(η)⊕R. To prove that the factorization above
is impossible it is sufficient to show that the Stiefel-Whitney class w64(η) = 0. Since
dim ΣSU(8) = 64, in this case the vector bundle η would have 7 linearly independent
vector fields, and, consequently, there would be 8 linearly independent vector fields on
S71, which is a contradiction.

Now η is the pullback, via the classifying map ΣSU(8)→ BSU(8), of a bundle η̃ over
BSU(8). The cohomology ring H∗(BSU(8); Z/2) = Z/2[c2, c3, . . . , c8] is polynomial
on the mod 2 reductions of the Chern classes of the universal bundle. As the dimension
of the generators is bounded by 16, w64(η̃) is a product of lower dimensional classes.
Since the products in H∗(ΣSU(8); Z) are trivial, it follows that w64(η) = 0. �

C. Consider a representation ρ : Sp(k) → O(n) which reduces the structure group
SO(n) of (1.1).

Lemma 4.7. Let ρ : G = Sp(k) → O(n) be a homomorphism. Then there is a map
ρ′′ : BSp→ BO such that ρ′′ ◦ ιk ≃ ι ◦Bρ.

Proof. In R(Sp(k)) any virtual representation is self-conjugate and corresponds to a
polynomial in exterior powers: λi is real if i is even and quaternionic if i is odd. Real
virtual representations in RO(Sp(k)) are given by those polynomials in R(Sp(k)) which
have even coefficients at monomials (λ1)j1, (λ2)j2, . . . , (λk)jk with j1 + j2 + · · ·+ jk ≡ 1
mod 2. The proof can be completed as in the proof of Lemma 4.3. �

The classifying map τ : Sn → BO(n) for the fibration (1.1) can be written as a
composition τ = ρ ◦ ξ with ξ : Sn → BSp(k). According to Lemma 3.2 this map can
be chosen in such a way that ιk ◦ξ = 0 ∈ πn(BSp). Hence both τ and ξ can be lifted to
t ∈ πn(O/O(n)) and x′ ∈ πn(Sp/Sp(k)), respectively, such that t = ρ′ ◦ x′ and t is the
generator of πn(O/O(n)). So the map ρ′ satisfies the assumptions of Proposition 3.3.
Consequently, n = 4m− 1 and m ≡ 0 mod 2ν2(c(m−k)). For maximal k satisfying this
condition put j4(n) = n + 1 − 4k. Now the divisibility condition above is equivalent
to the inequality

4k ≥ n+ 1− j4(n).

Again it is clear that j4(n) ≤ j2(n). Since n ≥ 9, the inequality above yields k ≥ 3.
Consider k ≥ 4. If ρ were not the standard inclusion, then by the Weyl Dimension

Formula (see (iii) of Proposition 5.1 and Remark 5.2) its dimension would be at least

min{2 dimC 2(λ1), dimC(λ2 − 1)} = min{8k, (2k + 1)(k − 1)} ≥ 27.

For n ≥ 27 the inequality above yields

(2k + 1)(k − 1) > 2(k − 1)2 ≥
(n− j4(n)− 3)2

8
≥ n

and
8k ≥ 2(n− j4(n) + 1) > n.

This means that ρ has to be the standard inclusion if k ≥ 4.
For k = 3 the inequality implies that n ≤ 15. We have two irreducible represen-

tations of Sp(3) of dimension ≤ 15: the standard inclusion and the one given by the
polynomial λ2 − 1 in R(Sp(3)) of dimension 14.
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Lemma 4.8. Let n = 15. The structure group SO(15) in (1.1) can be reduced to Sp(3)

via the homomorphism ρ induced by Sp(3)
λ2

−−→ SO(15).

Proof. Since Sp/Sp(3) is 14-connected, SO(15) can be reduced to Sp(3) via ρ if and
only if

ρ′∗ : H̃15(Sp/Sp(3); Z/2)→ H̃15(O/O(15); Z/2)

is onto. We shall show that the composition

(4.3) H̃15(Q(H4); Z/2)→ H̃15(Sp(4); Z/2)→ H̃15(O; Z/2)

→ H̃15(O/O(15); Z/2) = Z/2

induced by the reflection map φ : Q(H4) → Sp(4) and ρ′′ : BSp(4) →֒ BSp → BO is
non-zero. On BSp(4), ρ′′ is given on a 4-dimensional H-vector bundle ξ as the virtual
bundle λ2ξ − ξ ⊗C H + C

3 (with its real structure).

The composition (4.3) is given by a cohomology class w ∈ H̃15(Q(H4); Z/2). To
compute the class it is convenient to lift from Q(H4), which is the Thom space of the
3-dimensional Lie algebra bundle ζ over the quaternionic projective space P (H4), to
the sphere bundle S(R⊕ ζ). The map

S(R⊕ ζ)→ P (H4)ζ = Q(H4)→ Sp(4)

determines a 4-dimensional H-vector bundle ξ over S1×S(R⊕ ζ). The class w lifts to

w16(ρ
′′(ξ)) ∈ H16(S1 × S(R⊕ ζ); Z/2).

Now we can write H∗(S1; Z/2) = Z/2[t]/(t2), H∗(P (H4); Z/2) = Z/2[x]/(x4), where
x = w4(H) is the mod 2 Euler class of the quaternionic Hopf bundle H , and H∗(S(R⊕
ζ); Z/2) = Z/2[x, y]/(x4, y2), where y is the 3-dimensional class corresponding to the
Thom class of ζ . The vector bundle ξ, constructed using the reflection map, is a direct
sum η ⊕ H⊥, where H⊥ is the orthogonal complement of H in the trivial bundle H4

over P (H4) and η is the quaternionic line bundle obtained by twisting H . It follows
that

ρ′′(ξ) = λ2η + η ⊗C H
⊥ + λ2H⊥ − η ⊗C H−H⊥ ⊗C H + C

3.

Using the triviality of the bundles λ2η and H ⊕H⊥, one obtains

ρ′′(ξ) = (η −H)⊗C H
3 + (H − η)⊗C H + C

15.

It is understood here that each complex bundle which we have written down has a
real structure. We have to compute the Stiefel-Whitney class w16 of the virtual real
vector bundle so defined. This will be done by calculating the total Stiefel-Whitney
classes of the various constituents: η ⊗H, H ⊗H, H ⊗H and η ⊗H .

To compute the Stiefel-Whitney classes involving η it is enough to consider the
restrictions to the subspaces S(R⊕ ζ), where η coincides with H , and S1 × S3, where
S3 is the fibre of S(R ⊕ ζ) at a point in P (H4). The second restriction gives us the
generator of π3(Sp(1)) = π4(BSp(1)), which determines a 4-dimensional real vector
bundle over S4 with non-zero Stiefel-Whitney class. (One can, for example, think of
this vector bundle as the Hopf bundle over S4 = P (H2).)

One finds that:

w(η ⊗H) = 1 + x+ ty, w(H ⊗H) = 1 + x, w(H ⊗H) = 1, w(η ⊗H) = 1 + ty.
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Hence w(ρ′′(ξ)) = (1 + x+ ty)3(1 + x)−3(1 + ty)−1 = 1 + (x+ x2 + x3)ty. This verifies
that w16 = x3ty is non-zero, as claimed. �

D, E, F. Now suppose Gn = SU(n) or Sp(n). Put m = n + 1 and d = 2 or 4 in the
complex or quaternionic case, respectively. Consider the diagram

Gn
//

��

SO(dm− d) // SO(dm− 1)

��
Gn+1

//

��

SO(dm)

��

Sdm−1
= // Sdm−1

If Gn in (2.1) can be reduced to G via ρ : G→ Gn, then SO(dm− 1) in (1.1) can be
reduced to G via

(4.4) G
ρ
−→ Gn →֒ SO(dm− 1).

According to the previous steps this composition has to be a standard inclusion or the
composition SU(4) → SO(8) × SO(6) →֒ SO(15) described in B1 or λ2 : Sp(3) →
SO(15) from Lemma 4.8. However, the last two homomorphisms cannot be factored
through SU(7) or Sp(4). The inclusion (4.4) has to satisfy the inequality

k ≥ dm− j(dm− 1) for G = SO(k),

2k ≥ dm− j2(dm− 1) for G = SU(k),

4k ≥ dm− j4(dm− 1) for G = Sp(k),

which implies that the cases G = SO(k) with Gn = SU(n) or Sp(n) and G = SU(k)
with Gn = Sp(n) cannot occur, since k > n. In the remaining cases ρ is forced to be
a standard inclusion, again for dimensional reasons. Then Proposition 3.5 gives the
divisibility conditions in (D), (E) and (F) of Theorem 2.1. and Remark 3.6 says that
these conditions are sufficient for the existence of reductions. �

5. The Weyl Dimension Formula

The estimates of dimension of real irreducible representations used in the previous
section are based on the Weyl Dimension Formula. Here we show how it is used. In
particular, we deduce Lemmas 4.2 and 4.4 from the following propositions:

Proposition 5.1. Let ρ : Gk → SO(m) be an irreducible, non-trivial, non-standard
real representation.

(i) Gk = SO(k), k ≥ 7. Then m ≥ k(k − 1)/2.
(ii) Gk = SU(k), k ≥ 5. Then m ≥ k(k − 1).
(iii) Gk = Sp(k), k ≥ 3. Then m ≥ k(2k − 1)− 1.

Remark 5.2. The bounds on m are achieved by (i) λ2, (ii) the underlying real rep-
resentation of λ2, (iii) the real representation λ2 modulo the one-dimensional trivial
summand given by the defining symplectic form.
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Proposition 5.3. Let ρ : Gk → SO(m) be a real representation.

(i) Gk = SO(k). If [ρ] ∈ RO(Gk) is not a polynomial in the exterior powers λj, j ≥ 1,

then k ≡ 0 mod 4 and m ≥ 1
2

(
k/2
k/4

)
(= dimλ

k/2
+ ).

(ii) Gk = SU(k). If [ρ] ∈ RO(Gk) is not of the type described in Lemma 4.3 then k is
even and m ≥

(
k
k/2

)
(the dimension of λk/2 with its real structure).

We start by recalling necessary prerequisities from the representation theory of Lie
groups. Let G be a simple Lie group. Denote by ω1, ω2, . . . , ωl its fundamental weights.
Then any complex irreducible representation is determined by its dominant weight

ω = m1ω1 +m2ω2 + · · ·+mlωl, mi ∈ N.

The complex vector space on which it acts will be denoted by V (ω) = V (m1, m2,

. . . , ml). Put δ =
∑l

i=1 ωi. The Weyl Dimension Formula gives the complex dimension
of V (ω)

dimC V (ω) =
∏

β>0

〈β, ω + δ〉

〈β, δ〉
,

where β goes through all the positive roots. Treating separately all the types of
classical simple Lie groups we always get that if m′

i ≥ mi for all i, then

(5.1) dimC V (m′
1, m

′
2, . . . , m

′
l) ≥ dimC V (m1, m2, . . . , ml).

We will need to compute dimensions of real irreducible representations. According
to Cartan’s Theorem ([13], page 366) there are two kinds of real irreducible representa-
tions: those the complexification of which is irreducible, and those the complexification
of which is a sum of an irreducible complex representation with its complex conjugate
representation. So the dimensions of real irreducible representations can be computed
from the knowledge of dimensions of complex irreducible representations.

Proof of (i) of Propositions 5.1 and 5.3. First, consider representations of Spin(k) or
SO(k) with k = 2l+1 ≥ 7. Denote by εi± εj , ±εi, 1 ≤ i, j ≤ l, i 6= j, the roots of the
corresponding Lie algebra so(2l + 1). Its positive roots are εi ± εj for 1 ≤ i < j ≤ l,
and εi for 1 ≤ i ≤ l. The fundamental weights are

ω1 = ε1, ω2 = ε1 + ε2, . . . , ωl−1 = ε1 + · · ·+ εl−1, ωl =
1

2
(ε1 + · · ·+ εl).

A complex representation with dominant weight ω =
∑l

i=1miωi acting on V (ω) is
the complexification of a real representation ρ : SO(2l + 1) → SO(m) if and only if
ml is even. Such a representation in RO(SO(2l+ 1)) is described by a polynomial in
exterior powers. (ωj corresponds to λj for 1 ≤ j ≤ l − 1 and 2ωl corresponds to λl.)

Put ω + δ =
∑l

i=1 giεi. Then the Weyl Dimension Formula reads as

dimC V (ω) =
∏

1≤i<j≤l

(gi − gj)(gi + gj)

(j − i)(2l + 1− i− j)

∏

1≤i≤l

2gi
2l − 2i+ 1

.
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From this formula we can see immediately that the inequality (5.1) holds. We compute
the dimensions of several irreducible representations:

dimC V (ωj) =

(
2l + 1

j

)
, 1 ≤ j ≤ l − 1,

dimC V (2ωl) =

(
2l + 1

l

)
, dimC V (2ω1) = (2l + 3)l.

Let ρ be a real irreducible representation SO(2l+1)→ SO(m) with a dominant weight
ω different from ω1. For l ≥ 3, using the inequality (5.1), we get that its dimension
m = dimC V (ω) is at least

min{dimC V (2ω1), dimC V (ω2), . . . , dimC V (ωl−1), dimC V (2ωl)} = (2l + 1)l.

Now consider representations of Spin(k) or SO(k) with k = 2l ≥ 8. For l ≥ 4 the
roots of the corresponding Lie algebra so(2l) are εi ± εj , ±εi, 1 ≤ i, j ≤ l, i 6= j. The
positive roots are εi ± εj for 1 ≤ i < j ≤ l, and εi for 1 ≤ i ≤ l. The fundamental
weights are

ω1 = ε1, ω2 = ε1 + ε2, . . . , ωl−2 = ε1 + · · ·+ εl−2,

ωl−1 =
1

2
(ε1 + · · ·+ εl−1 − εl),

ωl =
1

2
(ε1 + · · ·+ εl−1 + εl).

A complex representation with dominant weight ω =
∑l

i=1miωi acting on V (ω) is a
representation of SO(2l) if and only if ml−1 +ml is even.

If l is even, V (ω) is always the complexification of an irreducible representation
ρ : SO(2l)→ SO(m). In this case RO(SO(2l)) is generated by λj , 1 ≤ j ≤ l − 1, λl+,
λl−, where λl− + λl+ = λl. Here ωj is the dominant weight of the complexification of
λj for 1 ≤ j ≤ l − 2, ωl−1 + ωl is the dominant weight of the complexification of λl−1,
and 2ωl−1, 2ωl are the dominant weights of complexifications of λl−, λl+, respectively.

If l is odd, RO(SO(2l)) is a polynomial ring in exterior powers. ωj corresponds to
the complexification of λj for 1 ≤ j ≤ l − 2 and ωl−1 + ωl corresponds to the com-
plexification of λl−1, while the complexification of λl is the sum of complex irreducible
representations with dominant weights 2ωl−1 and 2ωl.

Let ω =
∑l

i=1miωi be the dominant weight of a complex representation acting on

V (ω). Put ω + δ =
∑l

i=1 giεi. The Weyl Dimension Formula now gives

dimC V (ω) =
∏

1≤i<j≤l

(gi − gj)(gi + gj)

(j − i)(2l − i− j)
.

From the formula one readily verifies the inequality (5.1) and computes the dimensions:
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dimC V (ωj) =

(
2l

j

)
, 1 ≤ j ≤ l − 2,

dimC V (ωl−1 + ωl) =

(
2l

l − 1

)
,

dimC V (2ωl−1) = dimC V (2ωl) =
1

2

(
2l

l

)
,

dimC V (2ω1) = (2l − 1)(l + 1).

Let ρ be a real irreducible representation SO(2l) → SO(m) the complexification of
which has a dominant weight ω different from ω1. Then according to (5.1) for l ≥ 4
its dimension is either dimC V (ω) or 2 dimC V (ω) and greater than or equal to

min{dimC V (2ω1), dimC V (ω2), . . . , dimC V (ωl−1 + ωl), dimC V (2ωl−1)} = l(2l − 1).

If the class of an irreducible representation ρ : SO(k)→ SO(m) is not a polynomial
in exterior powers in RO(SO(k)), then k = 2l ≡ 0 mod 4 and the complexification

of ρ has a dominant weight ω =
∑l

i=1miωi with ml−1 ≥ 2 or ml ≥ 2. By (5.1) its
dimension is at least

dimC V (2ωl−1) = dimC V (2ωl) =
1

2

(
2l

l

)
.

�

For l ≥ 4 and n ≥ 1
2

(
2l
l

)
we get

dimSO(2l) = l(2l − 1) < n− j(n),

which proves Lemma 4.2.

Proof of (ii) of Propositions 5.1 and 5.3. Consider SU(k) with k ≥ 2. In standard
notation εi− εj, 1 ≤ i, j ≤ k, i 6= j, are the roots of the Lie algebra su(k). Its positive
roots are εi − εj for 1 ≤ i < j ≤ k, and the fundamental weights are

ω1 = ε1, ω2 = ε1 + ε2, . . . , ωk−1 = ε1 + ε2 + · · ·+ εk−1.

Let ω =
∑k−1

i=1 miωi be the dominant weight of a complex irreducible representation
which acts on a complex vector space V (ω). The only complex irreducible representa-
tions which are complexifications of real irreducible representations are those satisfying

mi = mk−i, for 1 ≤ i ≤ k − 1,

with the exception of the case that k ≡ 2 mod 4 and mk/2 is odd. See [22], Theorem
E, page 140. The remaining complex irreducible representations V (ω) determine real
irreducible representations ρ with dimR ρ = 2 dimC V (ω).

The complex exterior power λi has dominant weight ωi and its conjugate represen-
tation is λk−i. Hence the representations described in R(SU(k)) by polynomials (4.1)
are complexifications of real ones.
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Put ω + δ =
∑k−1

i=1 giεi. In this case the Weyl Dimension Formula reads as

dimC V (ω) =
∏

1≤i<j≤k−1

(gi − gj)

(j − i)

∏

1≤i≤k−1

gi
k − i

.

Again we can check that the inequality (5.1) holds. Specific dimensions are:

dimC V (ωj) =

(
k

j

)
, 1 ≤ j ≤ k − 1,

dimC V (2ω1) =
1

2
k(k + 1)

dimC V (ω1 + ωk−1) = k2 − 1,

dimC V (ω2 + ωk−2) =
1

4
k2(k + 1), k ≥ 5.

For k ≥ 5 consider a real irreducible representation of SU(k) which is determined by
a complex irreducible representation with a dominant weight ω different from ω1. Its
real dimension is at least

min{2 dimC V (2ω1), 2 dimC V (ω2), dimC V (ω1 + ωk−1), dimC V (ω2 + ωk−2)} = k2 − k.

If the class of an irreducible representation ρ : SU(k) → SO(m) (after complexi-
fication) is not a polynomial in exterior powers in R(SU(k)) of the form (4.1), then

k = 2l ≡ 0 mod 4 and the complexification of ρ has a dominant weight ω =
∑k−1

i=1 miωi
with ml ≥ 1. According to (5.1) its dimension is at least

dimC V (ωl) =

(
2l

l

)
.

�

For l ≥ 6 and n ≥
(
2l
l

)
we get

dimSU(2l) = 4l2 − 1 < n− j(n).

For k = 4, the dimension of SU(4) is 15 and the only representation of the above form
which does not satisfy the required inequality has the dominant weight ω2. For k = 8,
the dimension of SU(8) is 63 and the only representation of the above form which
does not satisfy the required inequality has the dominant weight ω4. This completes
the proof of Lemma 4.4.

Proof of (iii) of Proposition 5.1. Consider Sp(k) with k ≥ 2. Denote by εi−εj , ±(εi+
εj) for 1 ≤ i, j ≤ k, i 6= j, and ±2εi for 1 ≤ i ≤ k the roots of the Lie algebra sp(k).
Its positive roots are εi ± εj for 1 ≤ i < j ≤ k and 2εi. The fundamental weights are

ω1 = ε1, ω2 = ε1 + ε2, . . . , ωk = ε1 + ε2 + · · ·+ εk.
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Let ω =
∑k

i=1miωi be the dominant weight of a complex irreducible representation
which acts on a complex vector space V (ω). The only complex irreducible represen-
tations which are complexifications of real representations are those for which

k−1

2∑

i=0

m2i+1

is even. (See [22], Theorem E, page 140.) The other complex irreducible representa-
tions V (ω) determine real irreducible representations of real dimension 2 dimC V (ω).
R(Sp(k)) is a polynomial ring in exterior powers which are self-conjugate. A complex

representation is real if and only if it is represented by a polynomial with coefficients
as specified in the proof of Lemma 4.7.

Put ω + δ =
∑k

i=1 giεi. In this case the Weyl Dimension Formula gives

dimC V (ω) =
∏

1≤i<j≤k

(gi − gj)(gi + gj)

(j − i)(2k + 2− i− j)

∏

1≤i≤k

gi
k − i+ 1

.

Since the inequality (5.1) again holds, it is sufficient to compute only the dimensions:

dimC V (ωj) =

(
2k + 1

j

)
2k − 2j + 2

2k − j + 2
, 1 ≤ j ≤ k,

dimC V (2ω1) = (2k + 1)k.

For k ≥ 3 consider a real irreducible representation ρ which is determined by a complex
irreducible representation with a dominant weight ω different from ω1. Its dimension
is at least

min{dimC V (ω2), 2 dimC V (ω3), dimC V (2ω1)} = 2k2 − k − 1.

�

6. Appendix

In this appendix we give a self-contained proof of the result of Davis and Mahowald
([11]) that the generator of π8k(SO) = Z/2, for k ≥ 1, lifts to π8k(SO(6)) and of
a similar result that the generator of π8k+4(Sp) = Z/2 lifts to π8k+4(Sp(1)). These
results are used in the proof of Lemma 3.2. At the very end we develop Remark 2.4
on possible generalizations of Theorem 2.1.

Let us write Cn for the cofibre of the map z 7→ zn: S1 → S1 (where S1 is the space
of complex numbers of modulus 1). Thus we have a cofibre sequence:

S1 n
−→ S1 −→ Cn −→ S2 n

−→ S2 → · · ·

For pointed finite complexes X and Y , we write ω0{X; Y } for the group of stable
maps X → Y and ωi{X; Y }, with cohomological indexing, for ω0{X; Si ∧ Y }. In
K-theory we write in the same way KO0{X; Y } for [X; Y ∧KO], where X and Y

are the suspension spectra of X and Y , and KO is the real K-theory spectrum, and
KOi{X; Y } = KO0{X; Si ∧ Y }. There is a Hurewicz map (or d-invariant)

ωi{X; Y } → KOi{X; Y }.
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The groups ωi{X; Y } and KOi{X; Y } can be identified with ω̃i(X ∧ D(Y )), and

K̃Oi(X ∧D(Y )), respectively, where D(Y ) is the stable dual of Y .
We shall also need the cohomology theory J∗ defined to be the fibre of the stable

Adams operation ψ3 − 1 as a self-map of the the real KO-theory spectrum localized
at 2. It is thus related to KO-theory by a long exact sequence:

· · · → KO∗−1
(2)

ψ3−1
−→ KO∗−1

(2) → J∗ → KO∗
(2)

ψ3−1
−→ KO∗

(2) → · · ·

For any space X and integer k, the smash product with the identity on X gives a
map

∧ 1X : Z ∼= KO−8k(∗)→ KO−8k{X; X} .

The image of one of the generators will be called a Bott element. Suppose that the
rational homology of X is zero. We call a stable map A ∈ ω−8k{X; X} an Adams map
if its Hurewicz image in KO−8k{X; X} is a Bott element. (See [8] and [9].)

The proof of the result of Davis and Mahowald is based on the existence of an
unstable Adams map on C8.

Proposition 6.1. There is an unstable Adams map

A : Σ15C8 → Σ7C8.

More precisely, the Hurewicz map

[Σ15C8; Σ7C8]→ KO−8{C8; C8} = Z/8⊕ Z/2

is surjective.

Proof. We start from the standard fact that π14(S
7) = (Z/120)ξ, where ξ stabilizes

to 2σ ∈ ω7(∗) = (Z/240)σ. From the diagram of exact sequences of the defining
cofibration of C8:

8 // [S15; S7]

��

// [Σ13C8; S
7]

��

// Z/120 = [S14; S7]
8 //

��
8 // ω8 //

��

ω̃−6(C8)

��

// Z/240 = ω7
8 //

hJ

��
8 // J8

//

��

J̃−6(C8)

��

// Z/16 = J7
8 //

��
8 // Z(2) = (KO8)(2)

// Z/8 = K̃O−6(C8)(2)
// 0 = (KO7)(2)

8 //

we can see that there is an element a ∈ [Σ13C8; S
7] lifting an odd multiple of ξ

and mapping to the generator of Z/8 = K̃O−6(C8). The reason is that the map

J̃−6(C8) → K̃O−6(C8) is onto (since the Adams operator ψ3 acts as multiplication

by 34 on (KO8)(2), and so ψ3 − 1 as 80 on K̃O−6(C8)(2)) and that the Hurewicz
homomorphism hJ : ω7 → J7 is also onto, which follows from the computation of the
J-homomorphism and the e-invariant in [2], Theorem 1.6, and the relation between
the e-invariant and hJ (see [10], Section 1).
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The Moore space Cn is essentially self-dual. For we have a cofibration sequence:

D(S1) = S−1 n
←− D(S1) = S−1 ←− D(Cn)←− D(S2) = S−2 n

←− D(S2) = S−2,

which allows us to identify the stable dual D(Cn) with Σ−3Cn. The stable duality is
specified by two structure maps

S3 → Cn ∧ Cn → S3.

We choose an unstable representative

d : S15 → C8 ∧ S
12 ∧ C8

of the first structure map.
We shall also need the standard stable equivalence:

C8 ∧ C8
∼= Σ1C8 ∨ Σ2C8.

This comes from the basic cofibration sequence by smashing with C8:

S1 ∧ C8
8
−→ S1 ∧ C8 −→ C8 ∧ C8 −→ S2 ∧ C8

8
−→ S2 ∧ C8,

because 8 = 0 ∈ ω0{C8; C8}. We choose an unstable representative:

p : Σ12C8 ∧ C8 → Σ13C8

of the projection onto the first factor.
Now we can define the Adams map A (modulo slight adjustment which will be

described later) as the composition:

C8 ∧ S
15 1∧d
−−→ C8 ∧ S

12 ∧ C8 ∧ C8
p∧1
−−→ S13 ∧ C8 ∧ C8

a∧1
−−→ S7 ∧ C8.

We have to check that its Hurewicz image in KO-theory is a Bott element. We have

KO−8{C8; C8} = K̃O−5(C8 ∧ C8) = K̃O−6(C8)⊕ K̃O
−7(C8),

ω−8{C8; C8} = ω̃−5(C8 ∧ C8) = ω̃−6(C8)⊕ ω̃
−7(C8)

by duality and the stable splitting. From the cofibration exact sequence:

8
−→ KO9 = Z/2→ K̃O−7(C8)→ KO8 = Z

8
−→ KO8 = Z→ K̃O−6(C8)→ KO7 = 0

we see that KO−8{C8; C8} = Z/8⊕Z/2. Indeed, the same calculation determines the
stable homotopy: ω0{C8; C8} = Z/8⊕ Z/2 generated by the identity map of order 8
and an element of order 2 given by the composition:

h : ΣC8 → S3 η
−→ S2 → ΣC8

of the maps in the cofibration sequence and the Hopf element η. The smash products
of these maps with a Bott class v ∈ KO8 give generators of KO−8{C8;C8}.

The calculation will be made by considering the commutative diagram

[S13 ∧ C8, S
7] //

��

ω̃−6(C8)
hKO //

i1
��

K̃O−6(C8)

i1
��

[S15 ∧ C8, S
7 ∧ C8] // ω−8{C8; C8}

hKO // KO−8{C8; C8}
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in which the first vertical map is given by the smash with identity on C8 composed with
(p∧ 1)∗ and (1∧ d)∗, i1 is the inclusion of the first summand and hKO is the Hurewicz
homomorphism. The element a ∈ [S13 ∧ C8; S

7] maps to A ∈ [S15 ∧ C8; S
7 ∧ C8]

and simultaneously to a generator of K̃O−6(C8) = Z/8 as shown above. This implies
that the Hurewicz image of A is equal to v · (m + nh), where m is an odd integer,
n ∈ Z/2, and v ∈ KO8 is a Bott class. We can certainly multiply A by an odd integer
to arrange that m = 1. We can also modify A by the element Σ6h if necessary to
achieve n = 0, because h2 = 0 (stably). These adjustments produce the required
unstable Adams map on C8. We have noted in passing that vh lies in the image of the
Hurewicz homomorphism, and this completes the proof. �

Now consider the diagram:

8 // K̃O−1(S9) = Z/2 // K̃O−1(Σ7C8)
// K̃O−1(S8) = Z/2

8 //

2 // K̃O−1(S9) = Z/2 //

4 =0

OO

K̃O−1(Σ7C2)
//

OO

K̃O−1(S8) = Z/2
2 //

1

OO

The generator y ∈ π8(O) = K̃O−1(S8) = Z/2 has a lift, x say, a generator of

K̃O−1(Σ7C8) coming from a generator of K̃O−1(Σ7C2) ∼= Z/4. This class x gives
a map Σ7C8 → O. We shall show that it lifts to an element x̃ ∈ [Σ7C8;SO(6)].

Recall from obstruction theory that, if X is a pointed finite complex with dimX <
2n− 1, the obstruction to lifting a class x ∈ [X;O] to [X;O(n)] is precisely the image
of θ(x) in ω0{X;P∞

n } (where P∞
n = P (R∞)/P (Rn) and θ is the stable splitting used

in Section 3). Since dim Σ7C8 = 9 < 2 · 6− 1, it suffices to show that the obstruction
vanishes in ω0{Σ7C8;P

∞
6 }. We look at the diagram in stable homotopy corresponding

to the KO-theory diagram above:

8 // ω̃9(P
∞
6 ) = Z/12 // ω0{Σ7C8; P

∞
6 }

// ω̃8(P
∞
6 ) = 0

8 //

2 // ω̃9(P
∞
6 ) = Z/12 //

4

OO

ω0{Σ7C2; P
∞
6 }

//

OO

ω̃8(P
∞
6 ) = 0

2 //

1

OO

(The calculations of the stable homotopy groups ω̃9(P
∞
6 ) = π9(O/O(6)) and ω̃8(P

∞
6 )

= π8(O/O(6)) can be found in [21].) From the diagram, the map ω0{Σ7C2; P
∞
6 } →

ω0{Σ7C8; P
∞
6 } is zero, and so the obstruction to lifting x to SO(6) is zero.
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We can now use iterates of the Adams map A to lift the images of x under Bott
periodicity to SO(6) as (Ak−1)∗(x̃):

[Σ7C8, SO(6)]
A∗

//

��

[Σ15C8, SO(6)]
(Σ8A)∗

//

��

· · ·

K̃O−1(Σ7C8)
v
∼=

//

��

K̃O−1(Σ15C8)
v
∼=

//

��

· · ·

K̃O−1(S8)
v
∼=

// K̃O−1(S16)
v
∼=

// · · ·

(where v is the Bott periodicity class). Each vertical composition

[Σ8k−1C8, SO(6)]→ K̃O−1(Σ8k−1C8)→ K̃O−1(S8k) = Z/2

is surjective (since the first one is) and factors through

[Σ8k−1C8, SO(6)]→ [S8k, SO(6)]→ K̃O−1(S8k) = Z/2.

We have thus established:

Proposition 6.2 (Davis, Mahowald). For k ≥ 1, the generator of π8k(O) = K̃O−1(S8k) =
Z/2 lifts to an element (with order a divisor of 8) in π8k(SO(6)).

Corollary 6.3. The generator of π8k+1(O) = K̃O−1(S8k+1) = Z/2 lifts to an element
of order 2 in π8k+1(SO(6)).

Proof. A lift is obtained by composing with the Hopf element S8k+1 → S8k, which has
order 2. �

Proposition 6.4. The generator of π8k+4(Sp) = K̃Sp−1(S8k+4) = Z/2 lifts to an
element in π8k+4(Sp(1)) for k ≥ 1.

Proof. According to [16] and [17], p. 261, the homomorphism

π12(Sp(1)) = Z/2⊕ Z/2→ π12(Sp) = Z/2

induced by the standard inclusion is an epimorphism.
By the Bockstein sequence any element of π12

(
Sp(1)

)
can be factored through Σ11C8.

Hence the composition in the first column of the following diagram is surjective:

[Σ11C8, Sp(1)]

��

(Σ4A)∗
// [Σ19C8, Sp(1)]

��

(Σ12A)∗
// · · ·

K̃Sp−1(Σ11C8)

��

v
∼=

// K̃Sp−1(Σ19C8)

��

v
∼=

// · · ·

K̃Sp−1(S12)
v
∼=

// K̃Sp1(S20)
v
∼=

// · · ·
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Since A induces a Bott isomorphism in KO-theory, it induces an isomorphism in
KSp-theory as well. Consequently, all vertical compositions

[
Σ8k+3C8, Sp(1)

]
→

[
Σ8k+3C8, Sp

]
→

[
S8k+4, Sp

]

are surjective and factor through
[
Σ8k+3C8, Sp(1)

]
→

[
S8k+4, Sp(1)

]
→

[
S8k+4, Sp

]
.

�

Remark 6.5. Let M be a connected, stably parallelizable, closed manifold of odd
dimension n ≥ 9. There is, up to isomorphism, exactly one stably trivial, but not
trivial, n-dimensional vector bundle τ over M . It may be described as the pullback
of the tangent bundle of Sn by a map f : M → Sn of degree one (collapsing the
complement of an open disc).

In [24] Thomas showed that the structure group of τ can be reduced to SO(k) by
the standard inclusion SO(k) →֒ SO(n) if and only if m ≡ 0 mod a(m − k), where
n = m−1 as in Theorem 2.1(A). (The special case in which τ is the tangent bundle of
M was considered in [6].) One might ask whether Theorem 2.1 admits a generalization
to such a bundle τ over M .

Consider a homomorphism ρ : Gk → O(n) for which there is a map ρ′′ : BG∞ → BO
such that ρ′′ ◦ ιk ≃ ιn ◦Bρ:

BGk
Bρ //

ιk

��

BO(n)

ιn

��
BG∞

ρ′′ // BO

and suppose that τ : M → BO(n) can be factored through Bρ by a map ξ : M → BGk

such that τ = Bρ◦ ξ. Now if, as in Lemma 3.2, there is a map ξ′ such that Bρ◦ ξ′ = τ
and ιk◦ξ

′ : M → BG∞ is trivial, then we may argue as in the proof of (A), (B) and (C)

of Theorem 2.1. Since ξ′ can be lifted to ξ̂ : M → G∞/Gk and a stable parallelization
of M gives a stable splitting h : Sn → M of the map f : M → Sn, we may take
x = ζ̂ ◦ h ∈ ω̃n(G∞/Gk) satisfying the assumptions of Proposition 3.3. Consequently,
ρ : Gk → G∞ is described by (A), (B) and (C) of Theorem 2.1.

In the case that ρ : SO(k)→ O(n) is the standard inclusion we may take ρ′′ to be
identity, ξ = ξ′ satisfies the required condition and we reprove the result of [24].

There are other special cases where the existence of ξ′ is guaranteed: for example if
Gk = SU(k) and the map Ko(M) → KOo(M) is injective, as happens when M is a
product of spheres of the form S4i1 × · · · × S4il × S2j−1.
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