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Chapter One
Euclidean Three-Space

1.1 Introduction.

Let us briefly review the way in which we established a correspondence between
the real numbers and the points on a line, and between ordered pairs of real numbers and
the points in a plane. First, the line. We choose a point on a line and call it the origin.
We choose one direction from the origin and call it the positive direction. The opposite
direction, not surprisingly, is called the negative direction. In a picture, we generally

indicate the positive direction with an arrow or a plus sign:

Now we associate with each real number r a point on the line. First choose some
unit of measurement on the line. For r > 0, associate with r the point on the line that is a
distance r units from the origin in the positive direction. For r <0, associate with r the
point on the line that is a distance r units from the origin in the negative direction. The
number O is associated with the origin. A moments reflection should convince you that
this procedure establishes a so-called one-to-one correspondence between the real
numbers and the points on a line. In other words, a real number determines exactly one
point on a line, and, conversely, a point on the line determines exactly one real number.
This line is called a real line.

Next we establish a one-to-one correspondence between ordered pairs of real
numbers and points in a plane. Take a real line, called the first axis, and construct another
real line, called the second axis, perpendicular to it and passing through the origin of the
first axis. Choose this point as the origin for the second axis. Now suppose we have an

ordered pair (x,,X,) of reals. The point in the plane associated with this ordered pair is
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found by constructing a line parallel to the second axis through the point on the first axis

corresponding to the real number x,, and constructing a line parallel to the first axis
through the point on the second axis corresponding to the real number x,. The point at
which these two lines intersect is the point associated with the ordered pair (x;,x,). A

moments reflection here will convince you that there is exactly one point in the plane thus
associated with an ordered pair (a, b), and each point in the plane is the point associated

with some ordered pair (a, b):

Second

(a,b)

a Fll"st

It is traditional to assume the point of view we have taken in this picture, in which
the first axis is horizontal, the second axis is vertical, the positive direction on the first
axis is to the right, and the positive direction on the second axis is up. We thus usually
speak of the horizontal axis and the vertical axis, rather than the first axis and the second
axis. We also frequently abuse the language by speaking of a point (x,,x,) when, of
course, we actually mean the point associated with the ordered pair (x,,X,). The
numbers x, and x, are called the coordinates of the point-x, is the first coordinate and
X, 1S the second coordinate.

Given any collection of ordered pairs( A collection of ordered pairs is called a
relation.), a picture of the collection is obtained by simply looking at the set of points in

the plane corresponding to the pairs in the given collection. Suppose we have an equation
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involving two variables, say x and y. Then this equation defines a collection of ordered

pairs of numbers, namely all (x,y) that satisfy the equation. The corresponding picture
in the plane is called the graph of the equation. For example, consider the equation
y> =x*. Let’s take a look at the graph of this equation. A little algebra (very little,

actually), convinces us that

{0, y)y? =x* 3 ={(x y):y = xYE{(x,y):y =- x*},

and we remember from the sixth grade that each of the sets on the right hand side of this

equation is a parabola:
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What do we do with all this? These constructions are, of course, the bases of
analytic geometry, in which we join the subjects of algebra and geometry, to the benefit of
both. A geometric figure (a subset of the plane ) corresponds to a collection of ordered
pairs of real numbers. Algebraic facts about the collection of ordered pairs of real are

reflected by geometric facts about the subset of the plane, and, conversely, geometric
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facts about the plane subset are reflected by algebraic facts about the collection of pairs of

reals.

Exercises

Draw a picture of the given relation:

1. R={(x,y)0£x£EL and1£y£4}

2. R={(x,y)-4£x£4, and - x? £yE£ x*}

3. R={(x,y)1£y£2}C{(xy):y? x*}

4, S={(x,y):x* +y? =1 and x 3 0}

5. S={(x,y):x* +y? EGC{(x, y):y£ x*}

6. E ={(r.s)Irl=ls}

7. T={(u,v):|uf|v|=1

8. R ={(u,v):|uHVIE L

9. T={(xy):x*=y?*}

10. A={(x, y):x2 £ y?*}
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11. G ={(s, t):max{|s],|t]} =1}

12. B ={(s,t):max{|s||t]} £ 1}

1.2 Coordinates in Three-Space

Now let’s see what’s doing in three dimensions. We shall associate with each
ordered triple of real numbers a point in three space. We continue from where we left off
in the previous section. Start with the plane constructed in the previous section, and
construct a line perpendicular to both the first and second axes, and passing through the
origin. This is the third, axis. Now we must be careful about which direction on this
third axis is chosen as the positive direction; it makes a difference. The positive direction
is chosen to be the direction in which a right-hand threaded bolt would advance if the

positive first axis is rotated to the positive second axis:

Third

Second

First

We now see how to define a one-to-one correspondence between ordered triples

of real numbers (x,,X,, ;) and the points in space. The association is a simple extension

of the way in which we established a correspondence between ordered pair and points in
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a plane. Here’s what we do. Construct a plane perpendicular to the first axis through the

point x,, a plane perpendicular to the second axis through x,, and a plane perpendicular
to the third axis through x,. The point at which these three planes intersect is the point
associated with the ordered triple (x,,X,,X;). Some meditation on this construction

should convince you that this procedure establishes a one-to-one correspondence between

ordered triples of reals and points in space. As in the two dimensional, or plane, case, X,
is called the first coordinate of the point, x, is called the second coordinate of the point,
and X, is called the third coordinate of the point. Again, the point corresponding to
(0,00) is called the origin, and we speak of the point (X, X, ,X;), when we actually mean

the point which corresponds to this ordered triple.

(K,E.F,Z:l

The three axes so defined is called a coordinate system for three space, and the
three numbers x, y, and z , where (x,y,z) is the triple corresponding to the point P, are
called the coordinates of P. The coordinate axes are sometimes given labels-most
commonly, perhaps, the first axis is called the x axis, the second axis is called the y axis,

and the third axis is called the z axis.

1.6



1.3 Some Geometry

Suppose P and Q are two points, and suppose space is endowed with a
coordinate system such that P =(x,y,z)and Q =(u,v,w). How do we find the distance

between P and Q ? This simple enough; look at the picture:

(%, ¥, 2}

f, v,

We can see that d? =h? + (z - w)? and h? = (x- u)® +(y - v)2. Thus we have

d? =(x-u)> +(y- v)2+(z- w)?, or

d=/(x- u)? +(y- V) +(z- w)?.

We saw that in the plane an equation in two variables defines in a natural way a collection
of ordered pairs of numbers. The analogous situation obtains in three-space: an equation
in three variables defines a collection of ordered triples. We thus speak of the collection

of triples (x,y,z) which satisfy the equation

x?+y?+2%2 =1
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The collection of all such points is the graph of the equation. In this example, it is easy
to see that the graph is precisely the set of all points at a distance of 1 from the origin-a
sphere of radius 1 and center at the origin.

The graph of the equation x =0 is simply the set of all points with first
coordinate 0, and this is clearly the plane determined by the second axis and the third axis,
or the y axis and the z axis. When the axes are labeled X, y, and z, this is known as the yz
plane. . Similarly, the plane y =0 is the xz plane, and z =0 is the xy plane. These
special planes are also called the coordinate planes.

More often than not, it is difficult to see exactly what a graph of equation looks
like, and even more difficult for most of us to draw it. Computers can help, but they
usually draw rather poor pictures whose main application is in stimulating your own

imagination sufficiently to allow you to see the graph in your mind’s eye. An example:

This picture was drawn using Maple.
Let’s look at a more complicated example. What does the graph of
X2 +y?-z2 =1
look like? We’ll go after a picture of this one by slicing the graph with the coordinate

planes. First, let’s slice through it with the plane z = 0; then we see
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XZ + y2 - 1,
a circle of radius 1 centered at the origin. Next, let’s slice with the plane y =0. Here we

see x2 - z2 =1, a hyperbola:

We, of course, see the same hyperbola when we slice the graph with the plane

x = 0. What the graph looks like should be fairly clear by now:
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This graph has a name; it is called a hyperboloid.

Exercises

13.

14.

15.

16.

Describe the set of points S ={(x,y,2):x3 0,y 3 0,and z3 0}.

Describe the following sets
a)S ={(x,y,z): z* 0} b)S ={(x,y,z): x ® 5}
QR ={(x,y,2): x>+ y* £1} d)T={(r,s,t): r? +s*> +t> £ 4}

Let G be the graph of the equation x? +4y? +9z° = 36.

a)Sketch the graphs of the curves sliced from G by the coordinate planes x =0,
y=0,and z=0.

b)Sketch G. (This graph is called an ellipsoid.)

Let G be the graph of the equation x? - 3y? +4z? =12.
a)Sketch the graphs of the curves sliced from G by the coordinate planes x =0,
y=0,and z=0.

b)Sketch G. (Does this set look at all familiar to you?.)

1.4 Some More Geometry-Level Sets

The curves that result from slicing the graphs with the coordinate planes are

special cases of what are called level sets of a set. Specifically, if S is a set, the

intersection of S with a plane z =constant is called a level set. In case the level set is a
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curve, it is frequently called a level curve. (The slices by planes x = constant, or y =
constant are also level sets.) A family of level sets can provide a nice stimulant to your
powers of visualization. Everyday examples of the use of level sets to describe a set are
contour maps, in which the contours are, of course, just level curves ; and weather maps,
in which, for instance, the isoclines on a 500mb chart are simply level curves for the
500mb surface. Let’s illustrate with an example.
Let S be the graph of

77-y?r-x? =1

Now we look at the level setz =c:
c?- y?- x> =1,o0r

X2 + y2 =c?- 1.
Notice first that we have the same curve for z= cand z = -c. The graph is symmetric
about the plane z = 0. We shall thus look at just that part of the graph that is above the

Xy plane.

It is clear that these curves are concentric circles of radius w/c2 - 1 centered at the

origin. There are no level sets for |c|<1, and for c = 1 or -1, the level set is a single point,

the origin.
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Next, slice with the planes x = 0 and y = 0 to get a better idea of what this thing

looks like. Forx =0, we see

ZZ _ yZ - 1'
a hyperbola:
2.
2.1 i
-2 -1 i) 1 2
¥
‘|.
_2.

The slice by y = 0, of course, is the same. It is rather easy to visualize this graph. Here is

a Maple drawn picture:
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This also is called a hyperboloid. This is a hyperboloid of two sheets, while the

previously described hyperboloid is a hyperboloid of one sheet.

Exercises

17. Let S ={(X;, Xy, X)X, [HX, [+|X5|= 1 .
a)Sketch the coordinate plane slices of S.

b)Sketch the set S.

18. Let C be the graph of the equation z? = 4(x? + y?).

a)Sketch some level sets z = c.
b)Sketch the slices by the planes x =0 and y = 0.

c)Sketch C. What does the man on the street call this set?

19. Using level sets, coordinate plane slices, and whatever, describe the graph of the

equation z = x*> +y?. (This one has a name also; it is a paraboloid.).
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20. Using level sets, coordinate plane slices, and whatever, describe the graph of the

equation z = x? - y°.
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Chapter Two
Vectors-Algebra and Geometry

2.1 Vectors

A directed line segment in space is a line segment together with a direction. Thus
the directed line segment from the point P to the point Q is different from the directed
line segment from Q to P. We frequently denote the direction of a segment by drawing an
arrow head on it pointing in its direction and thus think of a directed segment as a spear.
We say that two segments have the same direction if they are parallel and their directions

are the same:

L1

L2

Here the segments L1 and L2 have the same direction. We define two directed segments L
and M to be equivalent (L @M ) if they have the same direction and have the same
length. An equivalence class containing a segment L is the set of all directed segments
equivalent with L. Convince yourself every segment in an equivalence class is equivalent
with every other segment in that class, and two different equivalence classes must be
disjoint. These equivalence classes of directed line segments are called vectors. The
members of a vector v are called representatives of v. Given a directed segment u, the
vector which contains u is called the vector determined by u. The length, or magnitude,
of a vector v is defined to be the common length of the representatives of v. It is generally
designated by |v|. The angle between two vectors u and v is simply the angle between the

directions of representatives of u and v.
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Vectors are just the right mathematical objects to describe certain concepts in
physics. Velocity provides a ready example. Saying the car is traveling 50 miles/hour
doesn’t tell the whole story; you must specify in what direction the car is moving. Thus
velocity is a vector-it has both magnitude and direction. Such physical concepts abound:
force, displacement, acceleration, etc. The real numbers (or sometimes, the complex
numbers) are frequently called scalars in order to distinguish them from vectors.

We now introduce an arithmetic, or algebra, of vectors. First, we define what we
mean by the sum of two vectors u and v. Choose a spear u from u and a spear v from v.
Place the tail of v at the nose of u. The vector which contains the directed segment from
the tail of u to the nose of v is defined to be u+v, the sum of u and v. An easy
consequence of elementary geometry is the factthat |u+ v|<|u|+]| v|. Look atthe
picture and convince yourself that the it does not matter which u spear or v spear you

choose, and that u+v=v+u:

il

Convince yourself also that addition is associative: u + (v + w) = (u + v) + w.
Since it does not matter where the parentheses occur, it is traditional to omit them and
write simply u + v + w.

Subtraction is defined as the inverse operation of addition. Thus the difference u-v
of two vectors is defined to be the vector you add to v to get u. In pictures, if uis a
representative of u and v is a representative of v, and we put the tails of u and v together,

the directed segment from the nose of v to the nose of u is a representative of u - v:

2.2



Now, what are we to make of u - u? We define a special vector with 0 length,
called the zero vector and denoted 0. We may think of 0 as the collection of all degenerate
line segments, or points. Note that the zero vector is special in that it has no direction (If
you are going 0 miles/hour, the direction is not important!). To make our algebra of
vectors nice , we make the zero vector behave as it should:

u-u=0and u+0=u
for all vectors u.
Next we define the product of a scalar r (i.e., real number) with a vector u. The

product ru is defined to be the vector with length |r|ju| and direction the same as the

direction of u if r >0, and direction opposite the direction of u if r < 0. Convince

yourself that all the following nice properties of this multiplication hold:

(r+s)u=ru+su,
r(u+v)=ru+rv.
Ou =0, and

u+(-v=u-v.

It is then perfectly safe to write - u to stand for (-1)u.

Our next move is to define a one-to-one correspondence between vectors and
points in space (This will, of course, also establish a one-to-one correspondence between
vectors and ordered triples of real numbers.). The correspondence is quite easy; simply

take a representative of the vector u and place its tail at the origin. The point at which is
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found the nose of this representative is the point associated with u. We handle the vector
with no representatives by associating the origin with the zero vector. The fact that the
point with coordinates (a, b, c) is associated with the vector u in this manner is
shorthandedly indicated by writing u = (a, b, ¢). Strictly speaking this equation makes
no sense; an equivalence class of directed line segments cannot possible be the same as a
triple of real numbers, but this shorthand is usually clear and saves a lot of verbiage (The
numbers a, b, and c are called the coordinates, or components, of u.). Thus we frequently
do not distinguish between points and vectors and indiscriminately speak of a vector
(a,b,c) or of a point u.
Suppose u = (a, b, ¢) and v = (X, y, z). Unleash your vast knowledge of

elementary geometry and convince yourself of the truth of the following statements:

jul = a? +b? +¢?,

u+v=(a+xb+yc+d),

u-v=(a-x,b-y,c-d),and

ru = (ra, rb, rc).

Let i be the vector corresponding to the point (1, 0, 0); let j be the vector
corresponding to (0, 1, 0); and let k be the vector corresponding to (0, 0, 1). Any vector
u can now be expressed as a linear combination of these special so-called coordinate
vectors:

u=(x,y,z)=xi +yj +zk.

Example

Let’s use our new-found knowledge of vectors to find where the medians of a

triangle intersect. Look at the picture:
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We shall find scalars s and t so that

a).

a+t(§b-a):s(a+
Tidying this up gives us
S s t
1-t- -)a=(=- —)b.
1-t-Da=(5- )

This means that we must have

Otherwise, a and b would be nonzero scalar multiples of one another, which would mean

they have the same direction. It follows that

s=t=

wl N

This is, no doubt, the result you remember from Mrs. Turner’s high school geometry

class.

Exercises
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1. Find the vector such that if its tail is at the point (x,,y,,z)its nose will be at the

point (X,,Y,.2,).

2. Find the midpoint of the line segment joining the points (1, 5, 9) and (-3, 2, 3).

3. What is the distance between the points (x,,y,,z) and (X,,y,,z,)?

4. Describe the set of points L ={ti: - ¥ <t<¥}.

5. Letu=(2,3,8). Describe the set of points L ={tu -¥ <t<¥}.

6. Describe the set of points M ={3k +ti: - ¥ <t<¥}.

7. Let u = (238.and v = (1,57). Describe the set of points
M ={v+tu: - ¥ <t <¥}.

8. Describetheset P={ti +sj: - ¥ <t<¥,and - ¥ <s<¥}.

9. Describetheset P ={bk +ti+sj: - ¥ <t<¥,6 and - ¥ <s<¥}.

10. Letu =(2,-4,1) and v = (1,2,3). Describe the set
P={tu+sv. -¥ <t<¥, and - ¥ <s<¥}.

11. Letu =(2,-4,1),v=(1,2,3), and w = (3,6,1). Describe the set
P={w+tu+sv: -¥ <t<¥, and - ¥ <s<¥}.

12. Describe the set C={costi+sintj: 0£t £ 2p}.
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13. Describe the set E ={4costi+3sintj: 0E£t £ 2p}.

14. Describe the set P ={ti +tj: -1 £t £2}.

15. Let T be the triangle with vertices (2, 5, 7), (-1, 2, 4), and (4, -2, -6). Find the point at

which the medians intersect.

2.2 Scalar Product

You were perhaps puzzled when in grammar school you were first told that the
work done by a force is the product of the force and the displacement since both force
and displacement are, of course, vectors. We now introduce this product. It is a scalar
and hence is called the scalar product. This scalar product u» is defined by

u» =|ul|v|cosq ,
where q is the angle between u and v. The scalar product is frequently also called the dot

product. Observe that u>u=[uf, and that u>y =0 if and only if u and v are

perpendicular (or orthogonal ), or one or the other of the two is the zero vector. We
avoid having to use the latter weasel words by defining the zero vector to be
perpendicular to every vector; then we can say u» =0 if and only if u and v are
perpendicular.

Study the following picture to see that if |u] = 1, then u is the length of the
projection of v onto u. (More precisely, the length of the projection of a representative of
v onto a representative of u. Generally, where there is no danger of confusion, we omit

mention of this, just as we speak of the length of vectors, the angle between vectors, etc.)
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It is clear that (au)>(bv) = (ab)uxv. Study the following picture until you believe that

uxv+w)=uxv+uxw forany three vectors u, v, and w.

uf|u]

Now let’s get a recipe for the scalar product of u=(a,b,c)and v =(x,y,2):

ux = (ai +bj +ck) x(xi +yj +zKk)
=axix +ayixj +azi X +bxj X + byj xj +bzj X +cxk ¥ + cyk xj + czk XK
=ax +hy + cz,

sinceix=jxj=kxk=1land ixj=ixXk=)x=0.

We thus see that it is remarkably simple to compute the scalar product of two

vectors when we know their coordinates.

Example
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Again, let’s see how vectors can make geometry easy by using them to find the
angle between a diagonal of a cube and the diagonal of a face of the cube.

Suppose the cube has edge length s. Introduce a coordinate system so that the
faces are parallel to the coordinate planes, one vertex is the origin and the vertex at the
other end of the diagonal from the origin is (s, s, s). The vector determined by this
diagonal is thus d = 9 +g + sk and the vector determined by the diagonal of the face in
the horizontal coordinate planeis f =si+sj. Thus

d xf =[d|| f|cosq =s? + 7,

where q is the angle we seek. This gives us

cosq = 252 28’ _\/5
dIIfl  3s22s2 V3~

220
=Cos™? /:—
a g\3z

Or,

Exercises

16. Find the work done by the force F =6i- 3j+2k in moving an object from the point

(1, 4, -2) to the point (3, 2, 5).

17. Let L be the line passing through the origin and the point (2, 5), and let M be the line
passing through the points (3, -2) and (5, 3). Find the smaller angle between L and M.

18. Find an angle between the lines 3x +2y =1 and x - 2y = 3.
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19. Suppose L is the line passing through (1, 2) having slope -2, and suppose M is the
line tangent to the curve y = x* at the point (1, 1). ). Find the smaller angle between

L and M.

20. Find an angle between the diagonal and an adjoining edge of a cube.

21. Suppose the lengths of the sides of a triangle are a, b, and c; and suppose g is the

angle opposite the side having length c. Prove that

c?=a? +b?- 2abcosg .

(This is, of course, the celebrated Law of Cosines.)

22. Letv=(1, 2,5). . What is the graph of the equation vx(x,y,z) =0?

2.3 Vector Product

Hark back to grammar school physics once again and recall what you were taught
about the velocity of a point at a distance r from the axis of rotation; you were likely told
that the velocity is rw , where w is the rate at which the turntable is rotating-the so-
called angular velocity. We now know that these quantities are actually vectors-w is the
angular velocity, and r is the position vector of the point in question. The grammar school
quantities are the magnitudes of w (the angular speed) and of r. The velocity of the point
is the so-called vector product of these two vectors. The vector product of vectors u and
v is defined by

u” v =ullvllsing | n,
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where q is the angle between u and v and n is a vector of length 1 (such vectors are called
unit vectors) which is orthogonal to both u and v and which points in the direction a right-

hand threaded bolt would advance if u were rotated into the direction of v.

Note first that this is a somewhat more exciting product than you might be used
to:
the order of the factors makes a difference. Thusu” v=-v” u.

Now let’s find a geometric construction of the vector product u” v. Proceed as
follows. Let P be a plane perpendicular to u. Now project v onto this plane, giving us a
vector v* perpendicular to u and having length |v||sing |. Now rotate this vector v* 90
degrees around u in the “positive direction.” (By the positive direction of rotation about
a vector a, we mean the diction that would cause a right-hand threaded bolt to advance in
the direction of a. ) This gives a vector v** having the same length as v* and having the

directionof u” v. Thus u” v qujv**:
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Now, why did we go to all this trouble to construct u” v in this fashion? Simple. It
makes it much easier to see that for any three vectors u, v, and w, we have

u (v+w)=u’  v+u  w.

(Draw a picture!)
We shall see how to compute this vector product u” v for
u=(a,b,c) =ai+bj+ck and v =(x,y,z) = xi+yj+zk.
We have
u” v ={(ai +bj +ck) " (xi+yj+zKk)
zax(i” i)y +ay(i” j)+az(i” k) +
bx(j 1) +by(j" ) +bz(j" k) +
ex(k i) +cy(k” j)+cz(k” k)

This looks like a terrible mess, until we note that

i"i=j j=k k=0,
MSERGMDELY

i k=-(k" j)=i,and
kK i=-("k)=].

Making these substitutions in the above equation for u” v gives us
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u” v=(bz- cy)i+(cx-az)j+(ay- bx)k.

This is not particularly hard to remember, but there is a nice memory device using

determinants:

< T
N O X

Example

Let’s find the velocity of a point on the surface of the Earth relative to a
coordinate system whose origin is fixed at its center-we thus shall consider only motion
due to the Earth’s rotation, and neglect its motion about the sun, etc. For our point on the
Earth, choose Room 254, Skiles Classroom Building at Georgia Tech. The latitude of the
room is about 33.75 degrees (North, of course.), and it is about 3960 miles from the center
of the Earth. As we said, the origin of our coordinate system is the center of the Earth.
We choose the third axis to point through the North Pole; In other words, the coordinate
vector k points through the North Pole. The velocity of our room, is of course, not a
constant, but changes as the Earth rotates. We find the velocity at the instant our room is
in the coordinate plane determined by the vectors i and k.

The Earth makes one complete revolution every 24 hours, and so its angular

: : 2 : . :
velocity w is W:2—Zk » 02618k radians/hour. The position vector r of our room is

r = 3960(cos(3375)i +sin(3375)k) » 32926i + 22001k miles. Our velocity is thus
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[ j k
wr=| 0 0 02618 » 862j miles/hour.
32926 0 22001

Suppose we want to find the area of a parallelogram, the non-parallel sides of

which are representatives of the vectors a and b:

The area Ais clearly A =a||b|sing =|a” b].

Example

Find the are of the parallelogram with a vertex (1,4,-2) and the vertices at the other
ends of the sides adjoining this vertex are (4, 7, 8), and (6, 10, 20). This is easy. This is
just as in the above picture with a=(4- )i+ (7- 4)j+(8- (-2))k=3i+3j+10k and
b=(6-1)i+(@0-4)j+(20- (-2))k =5i +6j+22k . So we have

i j k
a’ b= 3 10[=6i-16j+3k,
6 22
and so,
Area=|a” b|=+/6% +16% +3? =./301.
Exercises
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23. Find a a vector perpendicular to the plane containing the points (1,4,6), (-1,2,-7), and
(-3,6,10).

24. Are the points (0,4,7), (2, 6, 8), and (5, 10, 20) collinear? Explain how you know?

25.Find the torque created by the force f =3i+2j- 3kacting at the point
a=i-2j-7k.

26. Find the area of the triangle whose vertices are (0,0,0), (1,2,3), and (4,7,12).

27. Find the volume of the parallelepiped
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Chapter Three

Vector Functions
3.1 Relations and Functions

We begin with areview of theidea of afunction. Suppose A and B are sets. The
Cartesian product A" Bof these setsisthe collection of all ordered pairs (a,b) such

that al Aandbl B. A relation Rissimply asubset of A" B. The domain of Ris
thesetdomR= {al A:(a,b)T R}. Incase A =B and the domain of Risall of A, we call

Rarelation on A. Ardation Ri A" B suchthat (a,b)T Rand (a,c)T R only if b=

ciscaledafunction. Inother words, if Risafunction, and al dom R, there is exactly
one ordered pair (a,b) T R. The second “coordinate” b is thus uniquely determined by a
Itisusually denoted R(a). If RI A" B isarelation, the inverse of Ristherelation

Rl B” Adefinedby R ={(b,a):(ab)l R .

Example
Let A bethe set of all peoplewho have ever livedandlet ST A" A betherelation
defined by S={(a,b):bisthe mother of a} . The Sisarelationon A, and is, in fact, a

function. Therdation S * isnot afunction, and domS** A.

Thefactthat f1 A” B isafunction with domf = A isfrequently indicated by
writing f: A® B, and we say fisafunction from Ato B. Very often afunction f is
defined by specifying the domain, and giving arecipe for finding f(a). Thus we may
definethe function f from theinterval [0,1] to the real numbersby f(X) =x?. This says

that f isthe collection of all ordered pairs (x,x?) inwhich x 1T [0]].

Exercises
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Let A be the set of all Georgia Tech students, and let B be the set of real numbers.
Definetherdation Wi A" B by W ={(a,b):bistheweight (in pounds) of & . Is

W afunction? I1s W™! afunction? Explain.

Let X beset of all statesof theU. S., and let Y be the set of all U. S. municipalities.
Definetherelation ci X~ Y by c={(X,y):y isthecapital of X} . Explainwhy cis
afunction, and find ¢(Nevada), c(Missouri), and c(Kentucky).

With X, Y asin Exercise 2, let b bethefunction b ={ (X, y):yisthelargest city inx} .
a)What is b(South Carolina)?

b)What isb(California)?

cLet f =cC b, where cisthefunction defined in Exercise2. Find domf.

Suppose f1 X Y and gl X~ Y. If fisafunction, isit necessarily true that

f C g isafunction? Prove your answer.

Suppose f1 X Y and gl X~ Y. If fand g areboth functions, isit necessarily

truethat f E g isafunction? Prove your answer.

Suppose f:X ® Y isafunction andtheinverse f ! isalso afunction.
aWhatis f *(f (x))? Explain.
b)If yT domf - whatis f(f *(y))? Explain.

3.2 Vector Functions

Our interest now will be focused on functions f: X ® Y inwhich Y is a set of

vectors. These are called vector functions, or sometimes, vector-valued functions.
Initially, we shall be solely interested in the special casein which X isa“nice” set of real
numbers, such as an interval. As the drama unfolds, we shall see that such functions
provide just the right tool for describing curvesin space.

Let’'sbegin with asmple example. Let X bethe entirereal line and let the function

f be defined by f (t) =ti +t?j. It should be reasonably clear that if we place the tail of
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f (t) (actualy,. arepresentative of f (t)) at the origin, the nose will lie on the curve

y =x?%. Infact, ast varies over the reals, the nose traces out this curve. Thefunctionf is
caled avector description of the curve. Let'slook at another example. Thistime, let
g(t) =costi +sintj for O£t £ 4p . What isthe curve described by this function? First,

note that for all t, we have |g(t)|=1. The nose of g thus always lies on the circle of radius

one centered at the origin. It s not difficult to seethat, in fact, ast varies from 0 to 2p, the

nose moves around the circle once, and ast varies on from 2p to 4p, the nose traces out the
circleagain.

The real usefulness of vector descriptions is most evident when we consider curves
inspace. Let f (t) = costi +sintj +tk, forall t3 0. Now, what curveisfollowed by the

nose of f(t)? Notice first that if we look down on this curve from someplace up the
positive third axis (In other words, k is pointing directly at us.), we see the circle described

by costi +sintj . Astincreases, we run around this circle and the third component of our
position increases linearly. Convince yourself now that this curve lookslike this:

Thiscurveiscaled ahelix, or more precisely, aright circular helix. The picture was
drawn by Maple. Let’s draw another. How about the curve described by the vector

function g(t) =costi +sintj +sin(2t)k? Thisoneisjust a bit more exciting. Here'sa

computer drawn picture:
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(Thistime we put the axes where they are “ supposed to be.”)

Observe that in giving a vector description, we are in effect specifying the three
coordinates of points on the curves as ordinary real valued functions defined on a subset of
thereals. Assuming the axes arelabeled x, y, and z, the curve described by the vector
function

r(t) = f(©i+g(t)j+h(t)k
is equivaently described by the equations

x = f (t)
y=9(t)
z=h(t)

These are called parametric equations of the curve (The variable t is called the
parameter.).

Exercises

7. Sketch or otherwise describethe curve givenby f (t) =ti +t°k for -1£t £3.

8. Sketch or otherwise describethe curvegivenby f (t) = (2t- i+ (3 +1)j.
[Hint: Find an equation in x andy, the graph of which isthe given curve.]
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9. Sketch or otherwise describe the curve given by ¢(t) = costi +sintj + 7K.

10.  Sketch or otherwise describe the curve given by
c(t) = cos(t?)i +sin(t?)j +7k.

11. Find an eguation in x and y, the graph of which is the curve
g(t) =3costi +4sintj .

12.  a)Find avector equation for the graph of y = x*® +2x* + x+5.
b)Find avector equation for the graph of x = y® +2y? + y +5.

2

13.  Find avector equation for the graph of x3 +y3 =1.

N

14.  a)Sketch or otherwise describe the curve given by the function r(t) = a +tb, where
a=2i- j+* and b=i+3j-5k.
b)Expressr(t) intheform r(t) = f (t)i + g(t) j +h(t)k .

15. Describethecurvegivenby L(t) = (3t+1i +(1- t) | +2tk .

16. Find avector function for the straight line passing through the point (1,4,-2) in the
direction of thevector v=1i- j +2k.

17. @a)Find avector function for the straight line passing through the points (1,2,4) and
(3,1,5).
b)Find a vector function for the line segment joining the points (1,2,4) and (3,1,5).

18. Let L be the line through the points (1,5,-2) and (2,2,4); and let M be the line
through the points (2,4,6) and (-3,1,-2). Find a vector description of the line which

passes through the point (1,1,2) and is perpendicular to both L and M.

3.3 Limits and Continuity
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Recall from grammar school what we mean when we say the limit at t,of areal-
valued, or scalar, function f is L. The definition for vector functions is essentially the

same. Specifically, supposef isavector valued function, t, isareal number, and L isa
vector such that for every real number e> 0, thereisa d > O0such that |f(t)- L|<e

whenever O<|t- t,|<d andtisinthedomain of f. Thisistraditionallywritten

limf (t) =

t®t,

Thevector L iscdledalimit of f at a.

Suppose a(t) isascaar function for which tI(j@rpa (t) = a, and f isavector function

for which !gp f(t)=L. Itisbut amodest exerciseto show that
tI(|®rt?(a (t)f(t))=aL.

To see this, we use the “behold!” method. Let e >0 be given. Choose d,.,d,.,d,, and
d, sothat

| f(t)- LI< for O<|t- t |<d,;

e
1+al)
| f(t) - L|<J§ for O<|t- tol<d,;

e
a(t) - ax ——— for O<Jt- t |<d,; and
a0 - al< g for O<lt- tl<d,

la(t) - a|<\/§ for O<|t- ty|<d,.
Now let d = min{d,,d,,d,,d,} suppose tissuch that O<|t- t,|<d . Then

la(t) f (1) - aL|=la(f(t)- L) +L(a(t)- a) +(a(t) - a)(f (t)- L)
Ela(f (t)- L)HL@(D)- a)l@t)- a)li(f (t)- L)

S T A S
3(1+|al) 3(1+|L|) 3 3 3
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Or, in other words,
!g@r{g(a (t)f(1)=aL,
which iswhat we set out to show.
Now suppose f (t) =x(t)i+y(t)j+z(t)k and L =ai +bj+ck. Then we see
that tI!@rtn f(t)=L if and only if

!!@Tx(t) =a,
!!@T y(t) =b, and
!!@Tz(t) =cC.

It is now easy to show that all the usual nice properties of limits are valid for vector
functions:

lim(f (t) + g(1)) = lim £(t) + lim g(t).
lim(t (t) >g(t)) = (im £ (1)) <limg(t)) .

lim(f ) gt) = (im f ©) " (img(t)).

We are now ready to say what we mean by a vector function’s being continuous at
apoint of itsdomain. Suppose t, isin the domain of the vector function f. Then we say f

is continuous at t, if itistruethat tI(‘l?)rtn f(t)= f(t,). Itiseasy to seethat if

f(t) =x(O)i+y)j+zt)k,
thenf iscontinuous a t, if and only if each of the everyday scalar functions x(t),y(t), and

z(t) iscontinuous at t,. Thisshows there is nothing particularly mysterious or exotic
about continuity of vector functions.

If f is continuous at each point of its domain, then we say simply that f is
continuous,

Exer cises
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19. Isitpossible for afunction f to have morethanonelimitat t =t, ? Prove your
answer.

20.  Suppose misacontinuous real-valued function and f is a continuous vector-valued
function. Is the vector function h defined by h(t) = m(t) f (t) aso continuous?
Explain.

21. Let f and g be continuous at t=t,. Is the function h defined by
h(t) = f(t)” g(t) continuous? Explain. How about the function r(t) = f(t) xg(t) ?

22. Letr(t) =t +t?] +%k. Is r acontinuous function? Explain.

23. Suppose r is a continuous function. Explain how you know that the length
function n(t) =[r(t)| is continuous.
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Chapter Four

Derivatives

4.1 Derivatives

Suppose f is a vector function and t, is a point in the interior of the domain of f
(t, in the interior of a set S of real numbers means there is an interval centered at t, that

is a subset of S.). The derivative is defined just as it is for a plain old everyday real
valued function, except, of course, the derivative is a vector. Specifically, we say that f is

differentiable at t, if there is a vector v such that
li L f(t, +h)- f(t,)]=
tg@r{gﬁ[ (t, +h) - f(t;)]=v.

The vector v is called the derivative of f at t,.

Now, how would we find such a thing? Suppose f(t) =a(t)i+b(t)j+c(t)k.

Then

1 _aa(t, +h) - a(ty)g.  ab(t, +h)- b(ty)o.  ae(t, +h)- c(ty)o
F[f(t0+h)- f)l=¢ n P . ot - =k

It should now be clear that the vector function f is differentiable at t, if and only if each
of the coordinate functions a(t),b(t), and c(t) is. Moreover, the vector derivative v is
v=a'(t)i+b'(t)j +c(t)k.

Now we “know” what the derivative of a vector function is, and we know how to
compute it, but what is it, really? Let’s see. Let f(t) =ti+t%j. Thisis, of course, a

vector function which describes the graph of the function y =x®. Let’s look at the
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derivative offat t,: v=i+3t;j. Convince yourself that the direction of the vector v is
the direction tangent to the graph of y =x?® at the point (t,,t7). Itis not so clear what

we should define to be the tangent to a curve other than a plane curve. Again, vectors
come to our rescue. If fis a vector description of a space curve, the direction of the

derivative f'(t) vector is the tangent direction at the point f (t) -the derivative f'(t) is
said to be tangent to the curve at f(t).

If f(t) specifies the position of a particle at time t, then, of course, the derivative
is the velocity of the particle, and its length | f'(t)| is the speed. Thus the distance the

particle travels from time t = a to time t =b is given by the integral of the speed:
b
d=gf'(t)dt.

If the particle behaves nicely, this distance is precisely the length of the arc of the curve

from f(a) to f(b). Itshould be clear what we mean by “behaves nicely”. . For the

distance traveled by the particle to be the same as the length of its path, there must be no
“backtracking”, or reversing direction. This means we must not allow the velocity to be

zero for any t between a and b.

Example

Consider the function r(t) = costi +sintj. Then the derivative, or velocity, is
r'(t) = - sinti +costj. This vector is indeed tangent to the curve described by r (which
we already know to be a circle of radius 1 centered at the origin.) at r(t). Note that the
scalar product r(t) x'(t) = - sintcost +sintcost =0, and so the tangent vector and the

vector from the center of the circle to the point on the circle are perpendicular-a well-

known fact you learned from Mrs. Turner in 4" grade. Note that the derivative is never
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zero-there is no value of t for which both cost and sint vanish. The length of a piece of the

curve can thus be found by integrating the speed:
2p 2p 2p
p= gri(t)dt= J/sin®t+cos’tdt = ¢yt =2p.
0 0 0

No surprise here.
Exercises

1. a)Find a vector tangent to the curve f (t) =t?% +t3j+(1- t)k atthe point (1, 1, 0).

b)Find a vector equation for the line tangent to this same curve at the point (1, 1, 0).

2. The position of a particle is given by r(t) = cos(t®)i +sin(t®)j .
a)Find the velocity of the particle.
b)Find the speed of the particle.
c)Describe the path of the particle, and find its length.

3. Let L be the line tangent to the curve g(t) =10costi + 10sintj +16tk at the point

10 1—0,4p). Find the point at which L intersects the i-j plane.

NN

4. Let L be the straight line passing through the point (5, 0, 3) in the direction of the
vector a=1i+2j- k, and let M be the straight line passing through the point (0, 0, 6)

in the directionof b=1i - 3j +2k.
a)Are L and M parallel? Explain.
b)Do L and M intersect? Explain.
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5. Let L be the straight line passing through the point (1, 1, 3) in the direction of the
vector a=2i+ j- k,and let M be the straight line passing through the point (0, 1, 5)

in the direction of b = 3i- j +2k. Find the distance between L and M.

6. Find the length of the arc of the curve R(t) = 3costi +3sintj +4tk between the

points (3, 0, 0) and (3, 0, 16p).

7. Find an integral the value of which is the length of the curve y =x? between the

points (-1, 1) and (1, 1).

4.2 Geometry of Space Curves-Curvature

Let R(t) be a vector description of a curve. Then the distance s(t) along the

curve from the point R(t,) to the point R(t) is, as we have seen, simply

s(0) = JRUOIa;

assuming, of course, that R'(t) * 0. The speed is

ds
— =|R'(1)|.
pm [R'(1)]
Now then the vector
= R(t) = R(1) = R'(t)ﬂ:ﬁ
|R'(t)] ds/dt ds ds

is tangent to R and has length one. It is called the unit tangent vector.

Consider next the derivative
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iT><T =T xdl+d—T><T :2Txd—T.
ds ds ds ds

T . T .
But we know that TXT =[T|?=1. Thus T xil—s =0, which means that the vector ?:I_s is

perpendicular, or orthogonal, or normal, to the tangent vector T. The length of this vector

is called the curvature and is usually denoted by the letter k. Thus

The unit vector

is called the principal unit normal vector, and its direction is sometimes called the

principal normal direction.

Example

Consider the circle of radius a and center at the origin: R(t) = acosti +asintj.

Then R'(t) =-asinti +acostj, and %le'(t)F Ja?sin?t+a’cos’t =+/a? =|al=a.

Thus
1_, - ,
T ZER (t) = - sinti +costj .

Let’s not stop now.
dT dT dt _1dT 1

_________ ti - sintj).
ds dtds a dt a( costi - sintj)
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dT| _1 L . .
Thus k :‘E‘ :5’ and N =- (costi +sintj). So the curvature is the reciprocal of the

radius and the principal normal vector points back toward the center of the circle.

Another Example

This time let R=(t+1)i+2tj+t’k. First, R'(t)=i+2j+2tk, and so

§:| R'(t)|= ¥/5+4t? . The unit tangent is then

T=—l (i+2j+2tk).

5 +4t?

It’s a bit of a chore now to find the curvature and the principal normal, so let’s use a
computer algebra system; viz., Maple:
First, let’s enter the unit tangent vector T:
T=t¢ —}—[—]—1’ 2.2¢
sqrt( a4 4 52)
See if we got it right:
T();
[1,2,2¢

J5+4:2

Fine. Now differentiate;

oy s Splfy(GERT(2),2))
sqrt(ﬁ +4 52)

A(V);

5[0,0,2]+4[0,0,2]:5—4[1,2 2¢]¢

2
(54+4:2)

We need to tidy this up:
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evalmi numer{ A(37)

B T om(Al2))

B(t);
[4¢ -8¢ 10]
(5+4:2)2

) . dT . .
This vector is, of course, the normal s We continue and find the curvature k and the

principal normal N.

kappa:=t->simplify(sqrt(dotprod(B(t),B(t))));

kappa(t);
o N5
312
(5+4:2)
_ Ble)
N=t— <(0)
N();

1[4z -8: 1015
10 fs44,2

ds :
So there we have at last the speed TR the unit tangent T, the curvature k., and the

principal normal N.

Exercises

8. Find a line tangent to the curve R(t) = (t*> +t)i+(t+1)j- (t*+5k and passing

through the point (5, -2, 15), or show there is no such line.
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9. Find the unit tangent T, the principal normal N, and the curvature k, for the curves:
a)R(t) =5cos(t)i +5sin(t)j + 2tk
b)R(t) = (2t +3)i +(5- t?) ]

c)R(t) = e'costi +¢' sintj + 6k
10. Find the curvature of the curve y = f(x) at (x,, f (X,)).

11. Find the curvature of R(t) =ti +t*j. At what point on the curve is the curvature the

largest? smallest?

12. Find the curvature of R(t) =ti+t%j. Atwhat point on the curve is the curvature the

largest? smallest?

4.3 Geometry of Space Curves-Torsion

Let R(t) be a vector description of a curve. If T is the unit tangent and N is the

principal unit normal, the unit vector B =T ° N is called the binormal. Note that the

. . : ... dB .
binormal is orthogonal to both T and N. Let’s see about its derivative = with respect
. oo dB _ :
to arclength s. First, note that BxB =|B|"=1, and so B xd— =0, which means that
S
: ... dB . . :
being orthogonal to B, the derivative = is in the plane of T and N. Next, note that B is

perpendicular to the tangent vector T, and so BXT =0. Thus (Z—B XTI =0. So what have
S
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dB . .
we here? The vector = is perpendicular to both B and T, and so must have the

direction of N (or, of course, - N). This means

The scalart is called the torsion.

Example

Let’s find the torsion of the helix R(t) =acosti +asintj + btk . Here we go!

R'(t) = - asinti +acostj +bk . Thus %zl R'(t)|= va? +b? , and we have

1
T = —==1(- asinti +acostj + bk).
’a2+b2
Now then
ar :d_TE:Z_—aZ(costi +sintj).
ds dtds (a“+b?)
Therefore,
k = a and N = - (costi +sintj)
@ +0) v

Let’s don’t stop now:
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i i k
B=T"N :;-asint acost b :;(bsinti- b costj +ak);

,2 2 2 2
a” +b -cost -sint O a’ +b

and

dB dB dt b {4 ainti b
— = ——=———(costi +sintj)) =———=N
ds dt ds (a?+b?) (a? +b?)

The torsion, at last:
b

t =———.
a’+b’
Suppose the curve R(t) is such that the torsion is zero for all values of t. In other

words, Z—ES;O 0. Look at

d _drR B _
IR - R(t) xB] =8+ (R() - R(t)) <= =0.

Thus the scalar product (R(t)- R(t,)) *B is constant. ItisOat t,, and hence it is O for
all values of t. This means that R(t) - R(t,) and B are perpendicular for all t, and so
R(t) - R(t,) liesin a plane perpendicular to B. In other words, the curve described by

R(t) is a plane curve.
Exercises
13. Find the binormal and torsion for the curve R(t) = 4costi +3sintk .

14. Find the binormal and torsion for the curve R(t) = ﬂi + costj +Lnt k.

V2 V2
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15. Find the curvature and torsion for R(t) =ti +t®j +t°k.

1+t . 1-t?

16. Show that the curve R(t) =ti + - j+ k lies in a plane.

17. What is the vector B” T? Howabout N~ T ?

4.4 Motion

Suppose tis time and R(t) is the position vector of a body. Then the curve

described by R(t) is the path, or trajectory, of the body, v(t) = Z—T is the velocity, and

a(t) :3—\: is the acceleration. We know that v(t) = %T, and so the direction of the

velocity is the unit tangent T. Let’s see about the direction of the acceleration:

dv d?s ds dT
a(t):_:_2 +—
dt dt dt dt
2 L2
:d—ZST +§@E9 KN
dt dto

. dT _d . . i
since — = —Kk N . This tells us that the acceleration is always in the plane of the

S
dt dt
2
vectors T and N. The derivative of the speed % is the tangential component of the

.. 2
. SO . .
acceleration, and k g:jl_t% is the normal component of the acceleration.

Example
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Suppose a person who weighs 160 pounds moves around a circle having radius 20
feet at a constant speed of 60 miles/hour. What is the magnitude of the force on this
person at any time?

First, we know the force f is the mass times the acceleration: f (t) = ma(t) . Thus

2 .2
f = md_ZST + mk ?EQ N
dt dt o

also have The speed is a constant 60 miles/hour, or 88 feet/second; in other words,

2
95 _gg and L5 =0. Hence.
at at

.2 .2
| f|=|mk ?‘_39 N|= mk ?9 .
dto dto

The mass m= % =5 slugs, and the curvature k = 2—10 The magnitude of the force is

5>88°
20

thus |f =1936 pounds.

Exercises

18. The position of an object at time tis given by r(t) =ti +(t®- 2) j+2tk. Find the

velocity, the speed, and the tangential and normal components of the acceleration.

19. A force f(t) =t% +(t- 1) j+k newtons is applied to an object of mass 2 kilograms.

At time t = 0, the object is at the origin. Find its position at time t.
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20. A projectile of weight w is fired from the origin with an initial speed v, in the
direction of the vector cosqi+sinqj, and the only force acting on the projectile is
f=-wj.
a)Find a vector description of the trajectory of the projectile.

b)Find an equation the graph of which is the trajectory.
21. A 16 Ib. bowling ball is rolled along a track with a circular vertical loop of radius a

feet. What must the speed of the ball be in order for it not to fall from the track?

What must the speed of an 8 Ib. ball be in order for it not to fall?
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Chapter Five

M or e Dimensions

5.1 The Space R"
We are now prepared to move on to spaces of dimension greater than three. These
spaces are a straightforward generalization of our Euclidean space of three dimensions. Let

n be apositiveinteger. The n-dimensional Euclidean space R" issimply the set of
al ordered n-tuples of real numbers x = (X,,X,,...,X,). Thus R* is simply the rea
numbers, R? isthe plane, and R?® is Euclidean three-space. These ordered n-tuples are
caled points, or vectors. This definition does not contradict our previous definition of a
vector in case n =3 in that we identified each vector with an ordered triple (x,X,,%;) and
spoke of the triple as being a vector.

We now define various arithmetic operationson R" in the obvious way. If we
have vectors X = (X, X,,...,X,) and y = (y,,¥,,...,¥,) in R", thesum X+ y is defined
by

X+Y=(X + Y%+ Yo, Xt Y,),

and multiplication of the vector x by ascalar ais defined by
ax = (ax,, ax, ,...,ax, ) .
Itiseasy to verify that a(x + y) =ax+ay and (a+b)x =ax +bx.
Again we see that these definitions are entirely consistent with what we have done

indimensions 1, 2, and 3-there is nothing to unlearn. Continuing, we define the length,
or norm of avector x in the obvious manner

|X|= \/xf + XS+ AXE

Thescalar product of x andy is
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X XY= XY, + XY, +. XY, = 51 XY, .
It isagain easy to verify the nice properties:
|X|? =xxx3 0,
|ax|=[al|x],
XXy=yx,
XXYy+2z)=xxy+xx,and

(ax)xy = a(xxy).

The geometric language of the three dimensional setting is retained in higher
dimensions; thus we speak of the “length” of an n-tuple of numbers. In fact, we aso speak

of d(x,y) =|x- y| asthedistance between x and y. We can, of course, no longer rely

on our vast knowledge of Euclidean geometry in our reasoning about R" whenn> 3.
Thusfor n£ 3, thefactthat |[x+y| £ |x| + |y] for any vectors x and y wasasimple

consequence of the fact that the sum of the lengths of two sides of atriangleis at least as
big as the length of the third side. Thisinequality remains true in higher dimensions, and,
in fact, is called the triangle inequality, but requires an essentially agebraic proof.
Let'sseeif we can proveit.

Let X = (X, X,,...,X,) and y =(Y;,Y,,...,Y,). Thenif aisascalar, we have

lax + yf = (ax + y)x(ax + y) 3 0.
Thus,
(ax +y)qax +y) = a’xxx +2ax xy +y xy3 0,

Thisisaquadratic function in aand is never negative; it must therefore be true that
Axxy)? - 4(xx)(yxy) £0, or

IX>xylEXIY-

Thislast inequality isthe celebrated Cauchy-Schwarz-Buniakowsky inequality. It
is exactly the ingredient we need to prove the triangle inequality.
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X+ yF = (X+y) (X +Yy) = XXX+2X Xy +yxy.
Applying the C-S-B inequality, we have
|x + yP £1x*+2x || y+[yI* = (IxI+y]) *, or
Ix+yl £ [x] + ]yl.

Corresponding to the coordinate vectors i, j, and k, the coordinate vectors
e.,e,,...,e, aedefinedin R" by

e =(10,00....,0
e, =(0100....,0
e, = (0010,...,0),
e =(0,00.,...,01)

Thus each vector X = (X, X,,...,X,) may bewritten in terms of these coordinate vectors:

n

X=gq xe.

i=1

Exercises

1. Let x and y betwo vectorsin R". Prove that |x +yf =|xf+y)* if and only if

x xy = 0. (Adopting more geometric language from three space, we say that x and y
areperpendicular or orthogonal if xxy =0.)

2. Letx andy betwo vectorsin R". Prove
Q|x +yf-|x- yP=4axxy.
b)[x +yF+x - yF = Z|xF+|y*].
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3. Letx andy betwo vectorsin R". Provethat | |X| - |y| |EIXH Y-

4. Let PI R* betheset of dl vectors x = (X, X,,Xs,X,) such that
3X, +5X, - 2X; +X, =15.

Find vectorsn andasuchthat P ={x1 R*nxx- a) =0} .

5. Letn andabevectorsin R", andlet P={xT R™nxx- a) =0.
a)Find an equationin X, X,,..., and x_ such that x = (X,,X,,...,x.) 1 P if and only if
the coordinates of x satisfy the equation.

b)Describe the set P bein casen = 3. Describeit in casen =2.
[ThesetPiscaled ahyperplane through a.]

5.2 Functions

We now consider functions F:R" ® RP . Notethat whenn=p =1, we have the
usual grammar school calculus functions, andwhen n =1 and p = 2 or 3, we have the
vector valued functions of the previous chapter. Note also that except for very special
circumstances, graphs of functions will not play a big rolein our understanding. The set of

points (x, F(x)) residesin R™P since x I R" and F(x)T RP ;thisisdifficult to “see’
unless n+ p£3.
We begin with avery special kind of functions, the so-called linear functions. A

function F:R" ® RP issaidto bealinear function if

NF(x+y)=F(x)+F(y) fordl x,yl R", and
ii)F (ax) = aF (x) for al scdlarsaand x T R" .

Example
Letn=p=1, and defineF by F(x) =3x. Then
F(x+y)=3(x+y)=3+3y=F(x)+ F(y)ad
F (ax) = 3(ax) = a3x =aF (X).
ThisF isalinear function.
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Another Example
Let F:R® R® bedefinedby F(t) =ti +2tj - 7tk = (t,2t,-7t). Then
Ft+s)=(t+9i+2(t+s)j- 7(t +9)k

=[ti +2tj - 7tk] +[si + 25} - 7sK]

=F () +F(s)
Also,

F(at) = ati +2atj - 7atk
=a[ti +2tj - 7tk] = aF (t)

We see yet another linear function.

One More Example

Let F:R®*® R* bedefined by

F((Xl,Xz,Xs)) :(in' X2+3X3’ X1+4X2 - 5X31 - X1+2X2 +X3' X1+X3)-

Itiseasy to verify that F isindeed alinear function.

A translation isafunction T:RP ® RP suchthat T(x) =a+ x, where aisa

fixed vector in R". A function that is the composition of alinear function followed by a
trandation is cadled an affine function. An affine function F thus has the form
F(x) =a+ L(x), where L isalinear function.

Example
Let F:R® R® bedefinedby F(t) =(2+t, 4t- 3 t). Then Fisaffine. Let
a=(240) and L(t) =(t, 4t, t). Clearly F(t) =a+ L(t) .

Exer cises
6. Which of the following functions are linear? Explain your answers.

a)f(x) =-7x b)g(x) =2x- 5
C)F (X, %X,) = (2X, + %, X; - Xy, 3%, 5X, - 2X,, X;)
d) G(X,, Xy, X3) = X X, + X, eF({)=(tt 0 -2t)
A h(x,,%;,%3,%,) = (1, 0, 0) g) f(x) =sinx
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7. a)Describe the graph of alinear function from R to R.
b)Describe the graph of an affine function from R to R.
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Chapter Six

Linear Functions and Matrices

6.1 Matrices

Suppose f:R"® RP be a linear function. Let e,e,,...,e, be the coordinate

vectors for R". Forany x T R", we have X = x,e, +X,&, +...+X.&, . Thus

FOO = T8 +X,6+..+x,6,) = X T(&)+X,T(&)+..+x T (e,).

Meditate on this; it says that a linear function is entirely determined by its values

f(e).f(e,),....f(e,). Specifically, suppose

f(e)=(ay,ay,....a),
f(e,) = (a12’a227""ap2)’

f(en) = (ain’a2n""’apn)'

Then

F(X) = (ayX +a, Xt ta, X, 8y% +8,X, .48, X

onNnree

a,X; +a,X, ..+, X, ).

The numbers g, thus tell us everything about the linear function f. . To avoid labeling

these numbers, we arrange them in a rectangular array, called a matrix:
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@, ay &y,
e
'\a21 a'22 a2r1

D D>
e}
=
ooco\.o\nonc

Q

A ap2

The matrix is said to represent the linear functionf.

For example, suppose f:R? ® R? is given by the receipt
fF(X,X,) = (2% - X,, X +5X%,, 3X, - 2X,).

Then f(e)=f(@10)=(213),and f(e,) = f(01) =(-15,- 2). The matrix representing f

is thus
& -1
é U
e
B8 -2f

Given the matrix of a linear function, we can use the matrix to compute f(x) for
any X. This calculation is systematized by introducing an arithmetic of matrices. First,

we need some jargon. For the matrix

éay a, .. a,l

A:ga?l a, .. a?ng,
é: Y
é U
g Ap An
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)3\

(e e et
QD
=
@D
Q
=
D
o

the matrices [ql,aiz,...,an] are called rows of A, and the matrices

A

M (D
N

(MD: (D> (D
QD
O CNCh

.

columns of A. Thus A has p rows and n columns; the size of Aissaidtobe p" n. A

vector in R"can be displayed as a matrix in the obvious way, either asa 1~ nmatrix, in
which case the matrix is called a row vector, or as a n~ 1 matrix, called a column vector.

Thus the matrix representation of fis simply the matrix whose columns are the column

vectors f(e),f(e),...f(e,).

Example

Suppose f:R®*® R? is defined by

f (X0 X5, X5) = (2% - 3%, + X3, = Xy +2% - 5X;).

So f(e)=f(10,0)=(2-1), f(e,)=f(010)=(-32),and f(e;) = F(001) = (1-5).

The matrix which represents f is thus

62 -3 1u
&1 2 -5

Now the recipe for computing f(x) can be systematized by defining the product of

amatrix A and a column vector x. Suppose Aisa p° n matrixand xisa n” 1 column
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vector. Foreachi=12,...,p, let r. denote the i row of A. We define the product Ax

to be the p” 1column vector given by

@
% %

>

X

1
(D;(D) D D
ooooac

2

If we consider all vectors to be represented by column vectors, then a linear function

f:R"® RP" isgivenby f(x)= Ax, where, of course, A is the matrix representation of

Example
Consider the preceding example:

F(X0 X5 %5) = (2% - 3% + X5, - X +2X% - 5X).

We found the matrix representing f to be

é2 -3 1u
A=é -
gl 2 -5
Then
ex, u
é2 -3 1. é2¢X, - 3X, + X, U
Ax=g Beu=za ot R =10
gl 2 -5 & X, +2X%, - 5X;3
3H
Exercises
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Find the matrix representation of each of the following linear functions:
a) f(%,%,) = (2% - X,, X +4X,, -7TXy, 3X; +5X,).

b) R(t) =4ti - 56 - 2tk .

c) L(x) = 6x.
62 -1
€2 1d

Let g be define by g(x) = Ax, where A = go 33. Find g(3,-9).
&3 5§

Let f:R?>® R? be the function in which f(x) is the vector that results from rotating

the vector x about the origin % in the counterclockwise direction.

a)Explain why f is a linear function.
b)Find the matrix representation for f.

d)Find f(4,-9).

Let f:R*® R? be the function in which f(x) is the vector that results from rotating
the vector x about the origin q in the counterclockwise direction. Find the matrix

representation for f.

. Suppose g:R?* ® R? is a linear function such that g(1,2) = (4,7) and g(-2,1) = (2,2).
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Find the matrix representation of g.

6. Suppose f:R"® RP and g:RP® RY are linear functions. Prove that the

composition go f:R" ® R is a linear function.

7. Suppose f:R"® RP and g:R" ® RP are linear functions. Prove that the function

f +gR"® RP" defined by (f +g)(x) = f (x)+ g(x) isa linear function.

6.2 Matrix Algebra

Let us consider the composition h=go f of two linear functions f:R"® R’
and g:RP ® RY. Suppose A is the matrix of f and B is the matrix of g. Let’s see about

the matrix C of h. We know the columns of C are the vectors g(f(e;)),j =12,...,n,
where, of course, the vectors e, are the coordinate vectors for R" . Now the columns of
A are just the vectors f(e;),j =12,...,n. Thus the vectors g(f(e;)) are simply the
products Bf (g;) . In other words, if we denote the columns of A by k;, i =12,...,n, so
that A =[k,,K,,...,K,], then the columns of C are Bk, BKk,,...,Bk,, or in other words,

C =[Bk,,Bk,....,Bk,].

Example
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él 0 2y
€1 - 4
Let the matrix B of g be given by B:gz . Eand let the matrix A of fbe
é a
g2 -2 1y
¢3 1y
given by A:gl 23. Thus f:R*® R® and ¢:R®® R*(Note that for the
&4 -34

composition h=go f to be defined, it must be true that the number of columns of B be

¢3¢ ¢14
the same as the number of rows of A.). Now, klzglgand K, 2223, and so
& 4 &30
é-95u é-5u
_ é400 _é3au . L
Bk, = 895 ( and Bk, = 895 O The matrix C of the composition is thus
§0 4 g-34
é-5 -5y
C_(3}40 - 350
~é2s 25U
g0 -3f

These results inspire us to define a product of matrices. Thus, if Bisan n” p
matrix, and Aisa p~ g matrix, the product BA of these matrices is defined to be the

n" g matrix whose columns are the column vectors Bk; , where k; is the j™ column of

A. Now we can simply say that the matrix representation of the composition of two

linear functions is the product of the matrices representing the two functions.
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There are several interesting and important things to note regarding matrix
products. First and foremost is the fact that in general BA® AB, even when both
products are defined (The product BA obviously defined only when the number of
columns of B is the same as the number of rows of A.). Next, note that it follows directly
from the fact that ho(f o g)=(ho f)og that for C(BA) = (CB)A. Since it does not
matter where we insert the parentheses in a product of three or more matrices, we usually
omit them entirely.

It should be clear that if fand g are both functions from R" to RP" , then the

matrix representation for the sum f + g R" ® R is simply the matrix

§a11+b11 a‘12 +b12 ain-l_b.lnl;|

é G
A+B_éa21+b21 a22 +b22 a2n+b2nL'J
¢ i
é d
g Thy A, thy, .ooa, +byg
where

ey, a4, a, U

é U

A= éa.Ql 2 Qn

€: U

é d

@ B 7 Apg

is the matrix of f, and
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&, b, - b

u

B = ol bzz : bznl]
6 G

u

gjpl pr bpnl]

is the matrix of g. Meditating on the properties of linear functions should convince you

that for any three matrices (of the appropriate sizes) A, B, and C, it is true that

A(B+C) =AB+AC.

Similarly, for appropriately sized matrices, we have (A+ B)C =AC+BC.

Exercises

8. Find the products:

)& 1e2 y € lau
& gLy & By
él 50
2 1We2 1t =2 3
0 & 1‘95 ; O -3 2 -1€° U
0 HEL 3y €0 2u
&3 40
(:31 0 Ol;lﬁ’an a; a:l.3l;| (f_O 0 Ol;lﬁ’an a; a:l.3l;|
- ué a ué a
9. Find a)go 1 O 8 ayy b) 0 0 Ojfan @y ayy
g) 0 1@@31 a32 a‘33é g) 0 0@@31 a32 a‘33é
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10.

11.

12.

13.

Let A(Q) be the 2 2 matrix for the linear function that rotates the plane g

counterclockwise. Compute the product A(q)A(h), and use the result to give

identities for cos(q +h) and sin(q +h) in terms of cosq, cosh, sing, and sinh.

a)Find the matrix for the linear function that rotates R*® about the coordinate vector j

by % (In the positive direction, according to the usual “right hand rule” for rotation.).

b)Find a vector description for the curve that results from applying the linear

transformation in a) to the curve R(t) = costi +sintj +tk .

Suppose f:R?® R? islinear. Let C be the circle of radius 1 and center at the origin.

Find a vector description for the curve f(C).

Suppose g:R*® R" is linear. Suppose moreover that g(11)=(2,3) and

g(-11) =(4,- 5. Find the matrix of g.
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Chapter Seven

Continuity, Derivatives, and All That

7.1 Limits and Continuity

Let x,1 R"and r>0. The set B(a;r) ={x1 R"™|x- a|<r}is called the open
ball of radius r centered at x,. The closed ball of radius r centered at X, is the set
B(a;r) ={xT R™|x- al£r}. Now suppose DI R". A point al D is called an
interior point of D if there is an open ball B(a;r)1 D. The collection of all interior
points of D is called the interior of D, and is usually denoted intD. A set U is said to be
openifU =intU.

Suppose f:D® RP ,where DI R" and suppose al R" is such that every
open ball centered at a meets the domain D. If y1 RP is such that for every e> 0, there
isad> 0sothat| f(x)- y|<e whenever 0<|x- a|<d , then we say thaty is the limit of

fata. This is written
limf(x) =y,
and y is called the limit of f at a.

Notice that this agrees with our previous definitions in case n =1 and p =1,2, or 3.

The usual properties of limits are relatively easy to establish:

lim(f (x) +9(x)) =lim f(x) +limg(x) , and

le@n;af(x):alxlg;f(x).

Now we are ready to say what we mean by a continuous function f:D® RP",

where D1 R". Again this definition will not contradict our previous lower dimensional
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definitions. Specifically, we say that f is continuous at al D if Ii®m f(x)="f(a). Iffis

continuous at each point of its domain D, we say simply that f is continuous.

Example

Every linear function is continuous. To see this, suppose f:R" ® RP" is linear
and al R". Lete>0. Now let M =max{|f ()}| f(&)l....| f (e, )} and let d :%.

Then for x such that 0<|x- al|<d, we have

[T(x)- T@I=IT (& +X.8,+..+%,&)- f(ae +ae,+. +a,6)l
=(x, - a) fe)+ (% - a,)f (&) +..+(x, - &) f(e)]
Elx - allf (@)FIX; - allf(e)k..+Ix, - allf (&)l

£ (% - alt]% - alt..+x, - a,) M
£n|x- a|M
<e

Thus Ii®m f (x) = f(a) and so fis continuous.

Another Example
I XX, 2 w21
Let f:R*® R be defined by f(x)= f(xvxz)::'—xf vl for x; + X3 O.
t 0, otherwise

Let’s see about éi{g]m f(x). Let x =a(11l). Thenforalla * O, we have

2

f(x)=f(a,a)=

1
az+a? 2
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Now. let x =a(10) =(@,0). It followsthatall a * 0, f(x)=0. What does this tell

us? It tells us that for any d > 0, there are vectors x with 0<|x- (00)|<d such that

f(x) =% and such that f(x)=0. This, of course, means that ngi(rpo) f (x) does not

exist.

7.2 Derivatives
Let f:D® RP,where DI R",and let x, 1 intD. Then fis differentiable at

X0 if there is a linear function L such that
lim—[f +h f L(h)] =0
h' o|| |[ (Xo )' (Xo) - ( )] :

The linear function L is called the derivative of f at x,. Itis usual to identify the linear
function L with its matrix representation and think of the derivative ata p° n matrix.

Note that in case n = p = 1, the matrix L is simply the 1" 1 matrix whose sole entry is the
every day grammar school derivative of f .

Now, how do find the derivative of f? Suppose f has a derivative at x,. First, let

h=te, =(00,...,0,1,0,...,0). Then

1,065 e Xy s )0

©f (X %, X +t,...,x )Y
FOXHR) = (X, X0 X, +E,, %) =€ 20X “)‘J,
¢ G
e u
afo (X0 XX+, %)

and
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oY)
éen, my, mmﬁ ﬁmljtg
Lh= Smu m, Mo & 01— g“zjtu
3 EiTe iy
é e.ua é .0
gy My, my, A% dMity

where X, = (X, X,,...,X,), etc.

Now then,

1
l—hl[f(xo+h)- f(%,) - L(h)]

0, %o X %) - Fi(X, X X)) - Myt
_ 185 (X, X X+, %) = B0, X %) - Myt
=6 : .

gfp(xl,xz,...,x‘. +t,%) - Fo (X X0 %,) - myth

é (X, X5 X 1., X) - fl(xl,xz,...,xn)_

é t M,
) af(X %, X+ X ) - (X%, %) m,
B t "G

éfp(xl,xz,...,xj +t,...,%)- fp(xl,xz,...,,x])_ m U

e t ng

Meditate on this vector. For each component,
lim FOX % 50X 1 X)) = (KXo X))
t

®0 t

_d
= d_sfi(Xl’XZ""’S“”X“)s:X-

J

This derivative has a name. It is called the partial derivative of f, with respect to the j™
variable. There are many different notations for the partial derivatives of a function

9(X;,X,,...,%,). The two most common are:
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g, (X, %5500, %)

T
Eg(xl,xz,---,xn)

The requirement that Ll@ﬁglim[f (%o +h) - f(X,)- L(h)] =0 now translates into

1
m _W’

and, mirabile dictu, we have found the matrix L !

Example

‘R2® R2 he gi _ €3%,8nX, U . _
Let f:R°® R” begivenby f(x.%)=a , >(q- Assume fis differentiable
X + X X530

and let’s find the derivative (more precisely, the matrix of the derivative. This matrix will,

of course, be 2° 2: L = M mlzz. Now
am, m
1 2 U

f (%,%X,) =3x snx,, and
F (% %) = X7 + X%

Compute the partial derivatives:

=a

—= =3sinx,
Xl

i ’

—2 = 3%} +X;

x,
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and

L = 3X, COSX,
1,

1,

—< =2X X

™, X X,

The derivative is thus

L = é3sinx, 3x,C0sX,U
- 2 2 u
g3x1 +X; 2X1X2 u

We now know how to find the derivative of f at x if we know the derivative exists;
but how do we know when there is a derivative? The function f is differentiable at x if the

partial derivatives exist and are continuous. It should be noted that it is not sufficient

just for the partial derivatives to exist.
Exercises

1. Find all partial derivatives of the given functions:

a) f(xy) =x?y? b) f (X ,2) = x*yz+zcos(xy)
X, sin(e*
C) (X, X5, X3) = XX, X5 + X, Dh0q, X, Xar %) = SXZTXA].)

41 3 2
2. Find the derivative of the linear function whose matrix is g E
&2 7 0Oy

3. What is the derivative a linear function whose matrix is A ?
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4. Find the derivative of R(t) = costi +sintj +tk.
5. Find the derivative of f(x,y) =x?y?.
6. Find the derivative of

e xX%+te® u
R o
& log(x, +x3)U

F (%, %, %) =

e X, u
e 2 1]
€ XXzt S u

7.3 The Chain Rule

Recall from elementary one dimensional calculus that if a function is differentiable
at a point, it is also continuous there. The same is true here in the more general setting of
functions f:R" ® RP. Let’s see why this is so. Suppose fis differentiable at a with

derivativeL. Let h=x- a. Then Ii®m f (x) :Ihlg(]) f(a+h). Now,

éf(a+h)- f(@)- L(h)u
g N i

f(a+h)- f(a)=|n| - L(h)

Now look at the limit of this as |[hH® O:

imef@+h) - f@)- Liu_

h® 0 Ih| Y

0
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because f is differentiable at a, and lI1|®n(')| L(h) =L (0) =0 because the linear function L is
continuous. Thus Li@rgl(f (a+h)- f(@)=0,or Ll@ﬂg f(a+h)=f(a), whichmeans fis
continuous at a.

Next, let’s see what the celebrated chain rule looks like in higher dimensions. Let
f:R"® RP and g:R? ® RY. Suppose the derivative of fat a is L and the derivative of
gat f(a) is M. We go on a quest for the derivative of the composition go f:R" ® R
ata. Letr=gof ,andlookat r(a+h)-r(a)=g(f(a+h))- g(f(a)). Next, let

k=f(a+h)- f(a). Then we may write

r@+h)-r(@)- ML(h)=g(f(a+h)- g(f(a)- ML(h)
=9(f (@) +k)- g(f (@))- M(k)+M(Kk) - ML(h).
=9(f(@)+Kk)- g(f (@)- M(k)+M(k- L(h)

Thus,

r@+h)-r(@-ML(h) _ g(f(a)+k)- g(f(a)) - M(k) +M(k- L(h)
|h| h| ||

)

Now we are ready to see what happens as |h® 0. look at the second term first:

immE L0y & @) - F@)- LM
h®0 I h® 0 T p
=M(0) =0

= @a+h)- f(@)- L(WO,
| g

=M (lim
h® 0

since L is the derivative of f at a and M is linear, and hence continuous.

Now we need to see what happens to the term

|
he

im gﬂ(f (@ +k) - 9(f(a) - M(k)o
0 In| o
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This is a bit tricky. Note first that because f is differentiable at a , we know that

[kl _[f(a+h)- f(a)

I Ih|

behaves nicely as |® 0. Next,

i @8 @)+ K)- g(f (@) M(K) Ik

o & T I
i ge;(f(awk)- o(f @)- MO _
K] o|h

since the derivative of g at f(a) is M, and ||_|;: is well-behaved. Finally at last, we have
shown that

Iimaar(a+h) -r(a) - ML(h)c:): 0,

h® 0 |h| 7]

which means the derivative of the composition r = go f is simply the composition, or

matrix product, of the derivatives. What could be more pleasing from an esthetic point of

view!
Example

Let f(t)=(t>1+t% and g(x,,X%,)=(2%,- %,)° and let r=go f . First, we

shall find the derivative of r at t = 2 using the Chain Rule. The derivative of f is
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_é2tu

£ X

and the derivative of g is

M =[82% - %)? -3@2x - x,)?]

Att=2, L= . ond at 9(f(2))=g(4.9), M =[6 -3]. Thus the derivative of the

- gL u’
composition is ML =[6 3]8L g=[-12]=-12.

Now for fun, let’s find an explicit recipe for r and differentiate:
rit) = g(f(t))=g(t?1+t3% =(2t*-1-t3°. Thus r'(t)=32t*- 1- t3)*(4t- 3t?),

and so r'(2) = 3()(8- 12) =- 12 Itis, of course, very comforting to get the same answer

as before.
There are several different notations for the matrix of the derivative of
f:R"® RP at xT R" The most usual is simply f'(x).

Exercises

7. Let g(X,X,,X3) = (%%, %X +1) and  f(X;,X,) = (X% SiNXy, X, +3X,, X, - 2X7).

Find the derivative of go f at (2,-4).

8. Let u(x,y,2) = (x+Yy?,2xy,xsiny,x*y?) and \(r,st,q) = (r +s- q°,(r - t)e®).
a)Which, if either, of the composition functions uov or vou is defined? Explain.
b)Find the derivative of your answer to part a).

9. Let f(xy) =(€*",e*") and g(x,y) = (x- y3,x* +Y).
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a)Find the derivative of f o g at the point (1,-2).
b)Find the derivative of go f at the point (1,-2).
c) Find the derivative of f o f at the point (1,-2).

d) Find the derivative of g0 g at the point (1,-2).

10. Suppose r =t?cost and t = x? - 3y?. Find the partial derivatives % and :11—;

7.4 More Chain Rule Stuff
In the everyday cruel world, we seldom compute the derivative of the
composition of two functions by explicitly multiplying the two derivative matrices.

Suppose, as usual, we have r =go f:R" ® R". The the derivative is, as we now know,

efir, T, fing
é {
X, X, 11X, -
gﬂ# i, ﬂrzH
r'(x)=r'(x1,x2,---,xn)=gﬂy<1 1, ﬂxng-
. (
alr, 1, Ty g
g1x, 1x, T, H

We can thus find the derivative using the Chain Rule only in the very special case in
which the compsite function is real valued. Specifically, suppose g:R’* ® R and
f:R"® RP. Let r=gof. Then r is simply a real-valued function of

X = (X, X,,...,X,) . Let’s use the Chain Rule to find the partial derivatives.
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eff, ff, . WU
eﬂx1 X, TX, o

N z f f frll:|
qx T, b gy v, ﬂypge x T g
it 16 Ihg

8Tx 1% T, §
Thus makes it clear that

Tr _ g ﬂf1+ﬂg ﬂf2+ +ﬂg ﬂfp
ﬂxj ﬂylﬂxj ﬂyzﬂxj ﬂypﬂxi.

Frequently, engineers and other malefactors do not use a different name for the

composition go f, and simply use the name g to denote both the composition
go F(X,XoeoesXy) = O(F (X, X 0eey X ) T (X Xy X )y £U(X, X500, X)) @nd  the
function g given by g(y) = 9(V;,Y,,.--,Y,) . Since y; = f,(X,X,,...,X,), these same
folks also frequently just use y, to denote the function f,. The Chain Rule given above
then looks even nicer:

Tg_Tgfy., 1oy, ﬂg‘ﬂyp

AT TAT R TATE

Example
Suppose g(X,y,2) =x?y+ye* and x=s+t, y=st3 and z=s?>+3t%. Letus

9

find the partial derivatives 1111_r and — Tt . We know that
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Tg_f91x,1g1y, 7912
Is X s TMyTs 9z9s
= 2xy(1) +(x* + €)t* + ye*(29)

= 2xy +(x? + &)t + 2sy¢’

Similarly,

19
t Ix Tt fy 9t Tz 1t
= 2xy(1) + (X* + €)3st” + ye' (6t)

= 2xy +3(x? + €)st? + btye?

19 1%, 191y, 1992

These notational shortcuts are fine and everyone uses them; you should, however,
be aware that it is a practice sometimes fraught with peril. Suppose, for instance, you

have g(X,y,2) =x? +y? +z%,and x=t+2z, y=t®>+2z,and z=1t3 Now itis not at all

clear what is meant by the symbol % Meditate on this.

Exercises

11. Suppose g(x,y) = f(x- y,y- s). Find ﬂ_?(+

T

==

L
y

12. Suppose the temperature T at the point (X,y,2z) in space is given by the function
T(X,Y,2) = x? + xyz- zy*. Find the derivative with respect to t of a particle moving

along the curve described by r(t) = costi +sintj + 3k .
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13. Suppose the temperature T at the point (X,y,2z) in space is given by the function

T(x,y,2) = x*+y*+2z?. A particle moves along the curve described by

r(t) = sinpti + cosptj + (t? - 2t + 2)k . Find the coldest point on the trajectory.

14. Let r(x,y) = f (X)g(y), and suppose x =t and y=t. Use the Chain Rule to find
dr
dt
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Chapter Eight

f:R"® R

8.1 Introduction

We shall now turn our attention to the very important special case of functions that
are real, or scalar, valued. These are sometimes called scalar fields. In the very, but
important, special subcase in which the dimension of the domain space is 2, we can
actually look at the graph of a function. Specifically, suppose f:R"® R. The
collection S={(X,,%X,,%;) T R®:f(x,,%,) = X;} is called the graph of f. If f is a
reasonably nice function, then S is what we call a surface. We shall see more of this later.

Let us now return to the general case of a function f:R" ® R. The derivative of f is just

a row vector f'(x):ﬁ'\‘"f i i 3 It is frequently called the gradient of f
alx, 1x, ix,0

and denoted grad f or Nf .

8.2 The Directional Derivative
In the applications of scalar fields it is of interest to talk of the rate of change of the

function in a specified direction. Suppose, for instance, the function T(x,y, 2) gives the
temperature at points (X,y,2z) in space, and we might want to know the rate at which the
temperature changes as we move in a specified direction. Let f:R"® R, let al R",
and let uT R" be a vector such that |u|=1. Then the directional derivative of f at a in

the direction of the vector u is defined to be

d
D, f(a) = af(a+tu)|tzo.
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Now that we are experts on the Chain Rule, we know at once how to compute such a

thing. It is simply
d -
D,f(a) :E f(a+tu)|,_, = Nf xu.

Example

The surface of a mountain is the graph of f(x,y) =700- x* - 5y*. In other words, at
the point (x, y), the height is f (x, y). The positive y-axis points North, and, of course,
then the positive x-axis points East. You are on the mountain side above the point (2, 4)
and begin to walk Southeast. What is the slope of the path at the starting point? Are you
going uphill or downhill? (Which!?).

The answers to these questions call for the directional derivative. We know we are at

the point a=(24), but we need a unit vector u in the direction we are walking. This is,

of course, just u= iz(],- 1). Next we compute the gradient Nf (x,y) =[-2x,- 10y]. At

7

the point a this becomes Nf(2,4)=[-2-40], and at last we have

fou_-2+40_38
N7

uphill. Can you tell in which direction the path will be level?

This gives us the slope of the path; it is positive so we are going

Another Example

The temperature in space is given by T(x,y,2) = X’y + yz®. From the point (1,1,1), in
which direction does the temperature increase most rapidly?

We clearly need the direction in which the directional derivative is largest. The

directional derivative is simply NT xu =JN T|cosq , where q is the angle between NT and

u. Anyone can see that this will be largest when q = 0. Thus T in creases most rapidly in
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the direction of the gradient of T. Here that direction is [2xy,x* + z°,3yZ’]. At (1,1,1),
this becomes [2, 2, 3].

Exercises

1. Find the derivative of f(X Yy,2) = xlogz+2xy at (1, 2, 1) in the direction of the
vector [1, 2 ,2].

2. Find the derivative of f(x,y,2) = xcosy+3z>- xz at (1, p, 1) in the direction of the

vector [3, -2 ,2].

3. Find the directions in which g(x,y) = Xy +e”siny increases and decreases most

rapidly from the point (1, 0).

4. The surface of a hill is the graph of the equation z=1000+ x?- x*- y?. You stand

on the hill above the point (5,3) and pour out a glass of water. In which direct will it

begin to run? Explain.

5. The position of a particle at time tis given by r(t) =3t?- sint)i +tj- costk , and
the position of another particle is R(t) =t? +(t®+t)j +sintk. Attime t= p, what

is the rate of change of the distance between the two particles? Are they getting

closer to one another, or are they getting farther apart? (Which!) Explain.

8.3 Surface Normals
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Let f:R®*® R be a function and let ¢ be some constant. Recall that the set
S={(x,y,2) T R®:f(x,y,2) =c} iscalled a level set, or level surface, of the function f.
Suppose r(t) =x(t)i +y(t)j+z(t)k describes a curve in R?® that lies on the surface S.
This means, of course, that f(r(t)) = f (x(t),y(t),z(t)) =c. Now look at the derivative

with respect to t of this equation:
d f(r(t) =Nf x'(t) =0
dt '

In other words, the gradient of f and the tangent to the curve are perpendicular. Note there
was nothing special about our choice of r(t); it is any curve on the surface. The gradient

Nf is thus perpendicular, or normal to the surface f(x,y,2) =c.

Example

Suppose we want to find an equation of the plane tangent to the surface
X? +3y?+ 272 =12

at the point (1, -1, 2). For an equation of a plane, we need a point a on the plane and a
vector N normal to the plane. Then the equation we seek is simply N x(x- a) =0,
where x =(X,Y,2) . In the case at hand, we have a point on the plane: a = (1, -1, 2).
Let’s find a normal vector N. We have just learned that the gradient of

f(x Y,2) = x* +3y? +27° does the job.

Nf (x,y,2) =[2x6y,47],
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and so N =Nf(1-12)=[2,-68]. The tangent plane is thus given by the equation

N X(x - &) = 0, which in this case is

2(x-1)-6(y+1+8(z- 2) =0.

You should note that the discussion here didn’t depend on the dimension of the
domain. Thusif f:R?® R, then the set {(x,y)1 R?:f(x,y) =¢c} is a level curve of f,

and the gradient of f is normal to such a curve.

Combining these results with what we know about the directional derivative, we see
that at a point the value of a function increases most rapidly in a direction normal to the
level set passing through that point. On a contour map of a portion of the Earth’s

surface, for example, the steepest path is in the direction normal to the contour lines.

Exercises

6. Find an equation for the plane tangent to the surface z= x* + 2y? at the point (1,1,3).

7. Find an equation for the plane tangent to the surface z=log(x*+ y*) at the point

(10,0).

8. Find an equation for the plane tangent to the surface cosp x - x’y+e* +yz=4 at

the point (0,1,2).

9. Find an equation of the straight line tangent to the curve of intersection of the surfaces

x3+3x%y? +y® +4xy- z2 =0 and x? + y? +z° =11at the point (1, 1, 3).
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8.4 Maxima and Minima

Let f:R"® R. A point a in the domain off is called a local minimum if there is an
open ball B(a;r) centered at a such that f(x)- f(a) 3 0 forall x I B(a;r). Iffisanice
function, then this means the directional derivative D, f (a) 2 O for all unit vectors u. In
other words, Nf (a)xu3 0. Then it must be true that both Nf(a)xu3 0 and
- Nf (@) xu =Nf(a) % u)3 0. This can be so for every u only of Nf (a) =0. Thus f has
a local minimum at a point at which it has a derivative only if the derivative is zero there.

You should guess the definition of a local maximum and see why it must be true that

the gradient is zero at such a point. Thus if a is a local minimum or a local maximum of f,

and if f has a derivative at a, then the derivative Nf (a) =0. You should be aware of the

fact that here, just as in Mrs. Turner’s elementary calculus class, the converse is not

necessarily true. We may have Nf (a) =0 without a being either a local minimum or a

local maximum.

Example

Let us find all local maxima and local minima of the function

f(X,y) =x®+xy+y?+3x- 3y+4.

Meditate on just how should proceed. This function clearly has a derivative everywhere,
so at any local maximum or minimum, this derivative, or gradient, must be zero. So let’s

begin by finding all points at which Nf (&) =0. In other words, we want (x, y) at which

E:Oandﬂzo:

1 x Ty
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£=2x+y+3=0

I x

E:x+2y- 3=0
fy

We are thus faced with the border-line trivial problem of solving the system of equations

2X+y=-3
X+2y=3

There is just one solution: (x,y) = (-3, 3). Now let us reflect on what we have here.

What we have actually found is all the points that cannot possibly be local minima or
maxima. These are all points except (-3, 3).. All we know right now is that this point is
the only possible candidate. Let’s find out what we have by the hammer and tongs

method of examining the quantity f(- 3+x, 3+y)- f(- 33):

f(- 3+x,3+y)- f(- 33)=f(- 3+X, 3+y)- (- 5)
=(- 3437+ (- 34X(3+Y) +(3+Y) +3- 3+ - 3(3+) +9

L2 2
3y

=x2xy+y? =&+ X0 42
VY S5 T

It is therefore clear that f (- 3+x, 3+y)- f(- 33)23 0, which means that (-3, 3) is a local

minimum.
Exercises

In each of the following, find all local maxima and minima:
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10. f(x,y) =x*+3xy+3y*- 6x+3y- 6
11. f(Xxy) = x> +Xy+3x+2y+5

12. f(x,y) =2Xxy- 5x? - 2y?+4x - 4
13. f(x,y) = x% +2xy

14. f(xy) =y- X

8.5 Least Squares

We shall next look at some very simple, yet important, applications in which the
location of a minimum value of a function is sought.

Suppose we have a set of n points in the plane, say (X, ¥;),(X,, ¥ )1 (X,, Y,) &
and we seek the straight line that "best" fits this collection of points. We first decide
what we mean by "best". Let's say we mean the line that minimizes the sum of the
squares of the vertical distances from the points to the line. We can describe all
nonvertical lines in the world by means of two variables, traditionally called m and b.

Thus every such line has the form y =mx+b. Our quest is thus for the values of m and

b at which the function
f(mb) =§ (mx +b- y,)?
i=1
has its minimum value. Knowing these values will give us our line.
We simply apply our vast and growing knowledge of calculus and find where the

gradient of fis O:
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N =G 7 =©
Now,
1" _ 35
—=a2x(mx +b- y.)—Zmax +ba><-a>sy.] and
m i=1 i=1 i=1 i=l
1" _3
m-a 2(mx +b-y) = 2[ma>s+nb ay.]
i=1 i=1 i=1

We are thus faced with solving the 2 x 2 linear system

”é. Xi2 +bé. X :é. XY

i=1 i=1 i=1
n n
o _ [o]

ma x; + bn= a vy
i=1 i=1

Meditate sufficiently to convince yourself that there is always exactly one
solution to this system, and continue meditating sufficiently to convince yourself that
there must be an honest-to-goodness minimum of the original function at this solution.

Let's have a go at an example. Suppose we have the following table of values:

B~ w| BN | O
N
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5 4
7 7
8 9
9 12
10 18
12 21
15 29

The linear system for m and b is

718m+ 76b =1156.5
76m+12b =115.5

Solving this system gives us m = 25 and b =- % In other words, the line that best
142 568

fits the data in the “sense of least squares” is
255 993
Y="5X" T4
142 568

Here’s a picture of this line together with the data points:
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Looks pretty good!

Exercises

15. Here is a table of Kchel numbers versus year of composition for the compositions of
W. A. Mozart. Find the "least squares" straight line approximation to this table and
use it to estimate the year in which Mozart's Sinfonia Concertante in E-flat major was

composed.

Kdéchel Year
Number composed

1 1761
75 1771
155 1772
219 1775
271 1777
351 1780
425 1783
503 1786
575 1789
626 1791

[This problem is taken from Calculus and Analytic Geometry (8th Edition), by
Thomas & Finney.]
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16. Find some data somewhere (The Statistical Abstract of the United States is a good
source of interesting data.), find the least squares linear approximation to the data, and

say something intelligent about your results.

8.6 More Maxima and Minima
In real life, one is most likely interested in finding the places at which the largest

and smallest values of a function f:D® R occur, rather than in simply finding local

maxima and minima. (Here D is a subset of R".). To begin, let's think a moment about
how we can tell if there is a maximum or minimum value of fon D. First, we suppose
that f is continuous—otherwise, anything can happen! Next, what properties of D will
insure the existence of a biggest and smallest value of f ? The answer is fairly simple.
Certainly D must be a closed subset of R"; consider, for example the function
f:(01) ® R givensimply by f(X) = x, which has neither a maximum nor a minimum on
D =(01) . Having the domain be closed, however, is not sufficient to guarantee the
existence of a maximum and minimum. Consider, for example f:R® R again with
f:(01) ® R givenby f(x) =x. The domain R is certainly closed, but f has neither a
maximum nor a minimum. We need also to have the domain be bounded. It turns out that
for continuous f, if the domain D is both closed and bounded, then there must necessarily
be a maximum and a minimum value for fon D. Let's think a moment about what the
candidates for such points are. If the biggest or smallest value of f occurs in the interior of
D, then surely the point at which it occurs is a local maximum (or minimum). If f has a
gradient there, then the gradient must be 0. The points at which the largest or smallest
values occur must therefore be either i)points in the interior of D at which the gradient of f
vanishes, ii)points in the interior at which the gradient of f does not exist, or iii)points in
D but not in the interior of D (that is, points on the boundary of D).

Hark back to Mrs. Turner's third grade calculus class. How did you find the

maximum value of a function f whose domain D is a closed interval [a,b]] R? Recall
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found all points in the interior (that is, in the open interval (a,b)) at which the derivative
vanishes. You then simply evaluated f at these points, evaluated f at any points in (a,b)
at which there is no derivative, evaluated f at the two end points of the interval (in this
one dimensional case, the boundary of D is particularly simple.), and then picked out the
biggest and smallest numbers you computed. The situation in higher dimensions is a bit
more complicated, mostly because the boundary of even a nice domain D is not a nice

finite set as in the case of an interval, but is an infinite set. Let's look at an example.

Example

A flat circular plate has the shape of the region {(x,y)T RZ:x*+y?£15 . The
temperature at the point (x,y)on the plate is given by T(x,y) =x*+2y*- x. Our
assignment is to find the hottest and coldest points on the plate. According to our
previous discussion, candidates for the hottest and coldest points are all points inside the
circular boundary at which the gradient of T is 0 and all points on the boundary. (Note
that T has a gradient at all points inside the circle.) First, let's find where among all points

(x,y) such that x? +y? <1, the ones at which NT = (2x- 14y) =0. This is easy; it
should be clear there is just one such point: (%,0). Now for the more difficult part,

finding the candidates on the boundary. Note that the boundary may be described by the
vector equation
r(t)=costi+sintj ,where O£t £ 2p.
The temperature on this set is then given by
T(t)=T(r(t)), O£t £2p

[Here we are abusing the notation, as we have done before, by using the same name for
the function T(x,y)and the composition T(r(t)).] We are now faced with the one
dimensional problem of finding the maximum and minimum values of a nice differentiable
function of one variable on a closed interval. First, we know the endpoints of the interval

are candidates: t =0, and t = 2p . We have at this point added one more point to our list
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of candidates: r(0) =r(2p) =(10). Now for candidates inside the interval, we seek
. .. dT .
places at which the derivative rra = 0. From the Chain Rule, we know

dT = NT(r(t)) x'(t) = (2cost - 14 sint) ¥- sint,cost) =2costsint +sint .

. T
The equation Z—t = 0 now becomes

2costsint +sint =0, or
sint(2cost +1) =0

Thus sint =0, or 2cost +1=0. We have, in other words, y=0, or x=- % When
y =0, then x=1or x=-1; and when x:-% then yzg or y:-£ Thus our
new candidates are (1,0), (- 10), (-l % nd (- % - £) These together with the one

1 N I
we have already found, (E’O) , make up our entire list of possibilities for the hottest and

coldest points on the plate. All we need do now is to compute the temperature at each of

these points:

T(}'O):l-i':-l_
2 4 2 4
T(10)=1- 1=0
T(-lD):1+1:2
3, 1 3 1 9
3 r)‘T(""%:z*Ta:z

: T | .
Finally, we have our answer. The coldest point is (5’0)’ and the hottest points are

%)and(f-f)

I\>I|—\
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Exercises

17. Find the maximum and minimum value of f(x,y) =x? - xy+Yy? +4 on the closed
area in the first quadrant bounded by the triangle formed by the lines x=0, y=4,

and y = X.

18. Find the maximum and minimum values of f(x,y) = (4y- y?)cosx on the closed

area bounded by the rectangle 1£ y£ 3, - % £ X £%.

8.7 Even More Maxima and Minima

It should be clear now that the really troublesome part of finding maxima and
minima is in dealing with the constrained problem; that is, the problem of finding the
maxima and minima of a given function on a set of lower dimension than the domain of the
function. In the problems of the previous section, we were fortunate in that it was easy
to find parametric representations of the these sets; in general, this, of course, could be
quite difficult. Let's see what we might do about this difficulty.

Suppose we are faced with the problem of finding the maximum or minimum value
of the function f:D® R, where D={(x y)T R%g(x,y)=0}, where g is a nice

function. (In other words, D is a level curve of g .) Suppose r(t) is a vector description

of the curve D. Now then, we are seeking a maximum or minimum of the function

: - dF :

F() = f(r(t)). At a maximum or minimum, we must have EZO' (Here g is

sufficiently nice to insure that g(x,y) =0 is a closed curve, and so there are no endpoints
. aF . :

to worry about.) The Chain Rule tells us that r =Nf x'=0. Thus at a maximum or

minimum, the gradient of f must be perpendicular to the tangentto g(x,y) =0. But if

Nf is perpendicular to the tangent to the level curve g(x,y) = 0, then it must have the
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same direction as the normal to this curve. This is just what we need to know, for the

gradient of g is normal to this curve. Thus at a maximum or minimum, Nf and Ng must
"line up". Thus Nf =1 Ng, and there is no need actually to know a vector representation
rfor g(x,y)=0.
Let's see this idea in action. Suppose we wish to find the largest and smallest
values of f(x,y) =x?+y? onthecurve x*- 2x+y* - 4y =0.
Here, we may take g(x,y)=x?- 2x+y?-4y. Then KNf =2xi+2yj, and
Ng = (2x- 2)i +(2y- 4)j, and our equation Nf =1 Ng becomes
2x=1 (2x- 2)
2y =1 (2y- 4
We obtain a third equation from the requirement that the point (x,y)be on the curve
g(x,y) = 0. In other words, we need to find all solutions to the system of equations
2x=1 (2x- 2)

2y =1 (2y- 4)
x> -2x+y - 4y=0

The first two equations become

x(I -1 =I
y(l - D=2
Thus x = I | i and yzlz—ll. (What about the possibility that | - 1=07?). The last
2 2
equation then becomes | - - 2, 4 = - 8 =0;or,
¢ - 1 -1 @ -p° I -1
12-21 (I -1 =0,
12-21 =0
We have two solutions: | =0and | =2. What do you make of the solution | =0?

These values of | give us two candidates for places at which extrema occur: x =0 and

y=0;and x=2 and y=4. Now then f(00)=0,and f(24)=4+16=20. There
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we have them—the minimum value is 0 and it occurs at (0,0); and the maximum value is
20, and it occurs at (2,4).

This method for finding "constrained” extrema is generally called the method of

Lagrange Multipliers. (The variable | is called a Lagrange multiplier.)

Exercises

19. Use the method of Lagrange multipliers to find the largest and smallest values of

f(x,y) =4x+3y onthecircle x* +y* =1.

20. Find the points on the ellipse x? +2y? =1 at which f(Xx,y) = xy has its extreme

values.

21. Find the points on the curve x? +xy + y? =1 that are nearest to and farthest from the

origin.
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Chapter Nine
The Taylor Polynomial

9.1 Introduction

Let f beafunction and let F be a collection of "nice" functions. The approximation
problem issimply to find afunction g1 F that is"close" to the given function f . There are
two issues immediately. How is the collection F selected, and what do we mean by
"close"? The answers depend on the problem at hand. Presumably we want to do
something to f that is difficult or impossible (This might be something as simple as finding
f (x) for somex.). The collection F would thus consist of functionsto which it iseasy to
do that which we wishto doto f . Our measure of how close one function is to another
would try to reflect the closeness of the results of our operations. Now, what are we
talking about here. Suppose, for example, we wish to find f(x). Our collection F of
functions should include functions that are easy to evaluate at x , and two function would
be"close" simply if there values are close. We might, for instance, want to evaluate sinx
for al xis some interval 1. The collection F could be a collection of second degree
polynomials. The approximation problem is then to find elements of F that make the
"distance” max{|sinx- p(x)|:x1 1} assmall as possible. Similarly, we might want to find
the integral of some function f over aninterval | . Here we would want F to consist of
functions easily integrated and measure the distance between functions by the difference of
their integrals over | . In the previous chapter, we found the "best" straight line
approximation to a set of data points. In that case, the collection F consisted of all
nonvertical straight lines, and we measured the distance between functions by the sum of
the squares of their differences on a specified set of points {x,Xx,,...,X,} . You can
imagine many other examples.

9.2 The Taylor Polynomial
We look first at asimple but useful problem: Given anicefunction f:DI R® R , a

point ain theinterior of the domain D , and an integer n , find a polynomial p of degree
£n such that
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p(a) = f(a)
p'(a)=f'(a)
p"(a) =f"(a)

P (@) = (a)

We solve the problem by the Behold Method. Simply verify that
" " (n)
p(x) = f(a)+ f'(a)(x- a)+%(x- a)? +%(x- a)3+...+f—l(a)(x- a)"
! L n!

doesthejob! Itisalsofairly easy to see that this polynomial isthe only polynomia of
degree £n that doesthe job. Supposeq isaso apolynomial with degreeg £n such that

p(a) = f(a)
p'(a)=f'(a)
p"(a) =f"(a)

p”(a) = f " (a)
and consider the function r = p- gq. Notethat r isalso apolynomial of degree £n. But
r@=r'(@=r"(a) =..=r(a) =0.

Or, in other words, r has a zero of order n + 1, and the only way this can happen is if
r(x)° 0 forall x. Thatis, p(x)° q(x) identicaly.

Example
Let f(x)=sinx andlet a=0. Let'sfind the Taylor polynomial for afew different

valuesof n. For n=1, we havesimply p,(x)=f(a)+ f'(a)(x- a)=sin0+cos0(x) = x.
Note that for n = 2, we have p,(x)=sin0+ cos0(x) - sin0(x*) =x, also. Let'stake alook

X3

at the next Taylor polynomial. Here p,(x) =x - e Let's draw some pictures; we'll ook

at thegraph of p, andf . We shall use Maple.
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[

-2

What we see is that the Taylor polynomial looks like a pretty good approximation as long

aswe don't get too far away froma= 0. Let us continue. Convince yourself that p, = p;,

x3  x° .
and X) =X - — + —. Another picture:
Ps(X) =" 120 p

[

i
==

£

[
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Exer cises

1. Findthe Taylor polynomial of degreenfor f(x)=e* ata=_0.

2. Find the Taylor polynomial of degreenfor f(x)=x® ata= 1.
3. Findthe Taylor polynomial of degree 3for f(x)=logx ata= 1.

4. Find the Taylor polynomial of degreenfor f(x)=sinx ata= 0.

5. Find the Taylor polynomial of degree 3for f(x)=+/x ata=4.

9.3 Error
Let's see how close the Taylor polynomial isto thefunctionf . To do this, suppose pis
the Taylor polynomia of degree £n for thefunctionf ata, and consider the function

a0 =@ - p0)- LD (109 pw).

(x- a)
(Weassume x* a.) Notethat g(a) =g(x)=0. Now, from the Mean Value Theorem (or

Rolle's Theorem, or whatever.) we know that g'(x,) =0 for some x, between aand x .

(n+D(@-a)"
(X _ a) n+l
from the Mean Vaue Theorem that the derivative of g' is zero at some x, between a and

But noteasothat g'(a)=f'(a)- p'(a) - (f(x)- p(x))=0. Itthusfollows

(n+In(@- a)"*
(X- a.)n+1

the celebrated Mean Value Theorem, we concludethat g'**(x,) =0 for some x, between a

x,. Also, g'(a)=f"(@)- p'(a)- (f(x)- p(x))=0. Once again, from

and x,. Continuing in this fashion, we are finally able to conclude that g™ (x)=0 for

some x . Let's see what this looks like.

g(n+1) (t) =f (n+1) (t) _ p(n+1) (t) _ %(f (X) - p(X))
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and so g™?(x) = 0 becomes

(n+1)!

10720 - o s (109 PO) =0.

(x-

(Remember, p isapolynomial of degree £n, and so p™? (t)° 0. From this we obtain an
expression for the difference between f and the Taylor polynomial g :

f (n+1) (X)

( 1)| ( )n+1 .

f(x)- p(x)=

Example

Remember when in 7" grade physics class, Mr. Crews replaced the sine of a"small"
angleq by q itself ? He assured us that for small anglesthiswasjust fine. Well, what was
going on here? Let's see if our new-found knowledge of Taylor polynomials will help.
Observethat p(q) =q issimply the Taylor polynomial of degree £2 for f(g)=sinq at
a=0. Using the result just derived, we have that
- si6nx q°.

Now, we don't know what x is, but we do know that |sinx} £ 1; thus

sinq-q =

3
: q
sing - q|l€ —,
Ising - q 5

and we have a precise estimate of the error incurred by substituting g for sinq. Suppose,

for example, that g =10°; then what? Well, q = £2p f8 . Then the error we get when

360

weuse X instead of sin- isegtimated by
18 18

snt - P £1§’i° £0.008862.
18 18 6¢189

Now we know exactly what "pretty close" means. For 10 degrees, | guess that's "not too
bad."

Exer cises
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. @Find the Taylor polynomial of degree £2 for f(x)=¢e* aa=0.

b)Use the result of part a) to find an approximation for /e .
c)Find as small an upper bound as you can for the difference between your

approximation found in part b) and fe.

. Use the Taylor polynomia found in Exercise 3 to approximate log@1) and find an
upper bound for the magnitude of the difference between your approximation and
logQl) .

3
. For what values of x can you replace sinxby x - % with an error of magnitude no

greater than 3" 10*?

. Calculate ewith an error of lessthan 10° .
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Chapter Ten
Sequences, Series, and All That

10.1 Introduction
Suppose we want to compute an approximation of the number e by using the Taylor

polynomial p, for f(x)=e* ata=0. Thispolynomial iseasily seen to be

2 3 Xn

X
X)=1+ X +—+ —+. . +—.
P, (X) >t -

We could now use p, (1) as an approximation to e . We know from the previous chapter
that the error is given by

e ne
e- pn(l):ml L

where 0<x <1. Assume we know that e <3, and we have the estimate

3

Ofe- p,(DE TR

Meditate on this error estimate. It tells us that we can make this error as small aswe like by
choosing n sufficiently large. This is expressed formally by saying that the limit of

p, (1 asn becomesinfiniteise. Thisistheideawe shall study in this chapter.

10.2 Sequences

A sequence of real numbersissimply afunction from a subset of the nonnegative
integersinto thereals. If thedomainis infinite, we say the sequence is an infinite
sequence. (Guess what a finite sequenceis.) We shall be concerned only with infinite
sequences, and so the modifier will usually be omitted. We shall also aimost aways
consider sequences in which the domain is either the entire set of nonnegative or positive
integers.

There are several notational conventions involved in writing and talking about
sequences. If f:Z, ® R, itiscustomary to denote f(n) by f_, andthe sequence itself

by (f,). (Here z, denotesthe positiveintegers.) Thus, for example, ?_g isthe sequence
n
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f defined by f(n) =—1. The function values f, are cdled terms of the sequence.
n

Frequently one sees a sequence described by writing something like
149,...,n%,... .
Thisis simply another way of describing the sequence (n?).
Let (a,) be a sequence and suppose thereisanumber L such that for any e >0,

thereisaninteger N such that |a, - L|<e foralln>N. Then L issaidtobealimit of the

sequence, and (a,) issaidtoconverge to L . Thisisusually written Ii®rQ a,=L.Now,
n

what does thisreally mean? It says smply that as n gets big, the terms of the sequence get
closetoL . | hopeitisclear that Oisalimit of the sequence ;g From the discussion

in the Introduction to this chapter, it should be reasonably clear that alimit of the sequence

§[+%+E+...+i2 ise.

6 n'g
The graph of a sequence is pretty dreary compared with the graph of afunction
whose domain is an interval of reals, but nevertheless, alook at some pictures can help

understand some of these definitions. Suppose the sequence (a,) convergestolL . Look at

the graph of (a,):

i+s L - _-_-__ __ T _ _ _ _|- - _-____ _

iy

Thefact that L isalimit of the sequence means that for any e >0, thereisan N so that to the

right of N , al the spots are in the strip of width 2e centered at L.

Exercises
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1. Provethat asequence can have at most one limit (We may thus speak of the limit of
asequence.).

2. Givean example of a sequence that does not have alimit. Explain.

3.  Supposethe sequence (a,) = a,,a,,a,,... convergestoL. Explain how you know

that the sequence (a,,s) = a,a4,a,,... also convergesto L.

4. Find thelimit of the sequence geniz% , or explain why it does not converge.

asn® +2n- 70

5. Findthelimit of the sequence ¢ . +, or explain why it does not converge.
e n 2

3 2 "
, I an?® - 0 : :
6. Findthelimit of the sequence ¢— n2+7n+2+,orexplamwhyltdoeﬁnot
e3n”+n° - n+10g

converge.

7. Findthelimit of the sequence gto&%, or explain why it does not converge.

n

10.3 Series

Suppose (a,) isasequence. Thesequence (a, + a,+...+a,) iscalledaseries. Itisa
. o . : & 0
little neater to write if we use the usual summation notation: ¢q a,+. We have seen an

€x=0

example of such athing previoudly; viz.,
§+—1+1+ +—192&8 —1
SRy ga: -,

n ¥
Itisusual to replace Ig@ngé‘ a, by § a . Thus, onewould, for example, write
¥ k=0 k=0
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¥
One aso frequently seesthe limit é a, writtenas a, +a, +...+a, +.... And one more word
k=0

¥
of warning. Some poor misguided souls also use é_ a, tostand simply for the series
k=0

-
8%" akg. Itisusually clear whether the series or the limit of the seriesis meant, but it is
€=0

nevertheless an offensive practice that should be ruthlessly and brutally suppressed.

Example

. @ 10 5
Let's consider the series ¢5 i+:gi+£+i+...+i9. Let
o 2 4 2"a

Sn=1+i+i+i+ +i.Then
2 4 8 2"
ESH=E+_1+1+ +1+_1
2 2 4 8 2" 2™t
Thus
S 1. 1
2 Tl g

This makesit quite easy to see that rl(i)rg%zl, or rliﬁ)TS” =2. Inother words,

: ) 0 .
Observe that for series Saé a,~ to converge, it must be true that Ij@rg a,=0. Tosee
€y=0 "

¥ n n-1
this, suppose L=g a,,and observethat a. =§ a, - § a, . Thus,

k=0 k=0 k=0
: . &S ®t o6_ . ¢ .
e =lingd & dac=nd a - na a
=L- L=0.
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N s
. : 0 I
In other words, if '!@T a,! 0, thenthe series Eeé a, ~does not have alimit.
: €x=0

Another Example
Consider the series Saé 19

. First, note that IimE =0. Thuswe do not know that
ek:1 kg n® ¥ k

the series does not converge; that is, we still don't know anything. Look at the following
picture:

0.9F §

0.8F §

0.7

0.6

0.5

0.4F §

0.3f §

0.2

|

0.1

iy

1
The curveisthe graph of y= 1 . Observe that the area under the "stairs" is simply
X

Qo
x|l

=~
1l

1

n
Now convince yourself that é 1 islarger than the area under the curve y= 1 from x =1
k=1 X

tox = n+1. In other words,

d 1 a1l
-> —dx=log(n+1.
ar’Q 3 9h+D

k=1
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We know that log(n+1) can be made as large as we wish by choosing n sufficiently large.

Thus é_ 1 can be made as large as we wish by choosing n sufficiently large. From thisit
k=1

-

follows that the series g&a %2 does not have alimit. (This series hasaname. Itiscalled
Ek=1 Kg

theharmonic series. )

The method we used to show that the harmonic series does not converge can be used
on many other series. We simply consider a picture like the one above. Suppose we have a

series Saé akg such that a, >0 for al k . Suppose f is adecreasing function such that
=1 9

R
f(k)=a, foralk. Thenif thelimit FIg@rr; Of (X)dx does not exist, the series is divergent.
1

Exercises

8. Findthelimit of the series S%l 3%2 , or explain why it does not converge.
€03 O

9. Findthelimitoftheserieﬁgaé_ > 2,orexplainwhyitdoesnotconverge.
e

ovNn+ 32

10. Find avalue of n that will insure that 1+% +%+...+E >10°.
n

éé q2k+1

11. Let 0£q£1. Provethat sing=Q (- )" .
k=0 (2k + 1!

. d qt . .
[Hint: p,,.@)=Q (- D" m isthe Taylor polynomial of degree < 2n+1 for
k=0 .

thefunction f(q)=sinqg ata=10.]
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12. Supposewe haveaseri%gaé akg such that a, >0 for al k , and supposefisa
€x=1

decreasing function such that f (k) =a, for al k. Show that if the [imit

R
lim Of (x)dx exists, then the seriesis convergent.
R® ¥ 1

13. a) Find al p for which the series ga.é 19 converges.

k=1 kP g

b) Find all p for which the seriesin a) diverges.

10.4 More Series

Consider a series 8%1 akgin which a, 30 forall k. Thisis called a positive
€0 O

series. Let 8?;1 bkgbe another positive series. Supposethat b, £a, forallk > N , where
€k=0

N issimply some integer. Now suppose further that we know that ?a akg converges.

€x=0
This tells us all about the series 8?;1 bkg. Specifically, it tells us that this series also
€0 @

converges. Let's see why that is. First note the obvious: Saé bkgconverg& if and only if
€x=0

an O n n . .
ca b+ converges. Next, observethat for all n, wehave d b £Q a, , fromwhich it
=N @ k=N k=N

follows at oncethat lim a b, exists.
¥ k=N

Example
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. "
: 0 :
What about the convergence of the series gaa = ;L +7? Observe first that
€ N +3n° +n+4g

. & 10
— <—13. Then observe that the series ¢g i3+converges because
n“+3n“+n+4 n e=1N"@

R . ee-1 10_1 o 1 0
lim @ —dx= ||m8_+_+=_.Thus A 5—— + CONnverges.
RO¥ & x3 3R? 39 3 € N°+3n° +n+4g

' 0 ' 0 -, .
8 a2 and ] b, Yare positive series, and b, £a, for all
=0 9 €k=0

Suppose that, as before,

k>N, where N is some number. Thistime, suppose we know that 8%1 bkgis divergent.
€x=0

Then it should not be too hard for you to convince yourself that 8?;1 akg must be
€0 9

divergent, also.

Exer cises

Which of the following series are convergent and which are divergent? Explain your
answers.

14. 88—~ 2
€0 28 tKg
1> ?é‘ozklug
16. %ﬁzﬁg
17. %iéoﬁ“i
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10.5 Even More Series
We look at one more very nice way to help us determine if a positive series has a

N
- . . 0
limit. Consider a series ga.é a,~, and suppose a, >0 for all k. Next suppose the
€k=0
0.
sequence Bt 2 is convergent, and let
ay 2

. a
r=lim—=<2% .
k® ¥ ay

The number r tells us amost everything about the convergence of the series g&a akg. Let's
=0 9

see about it.

First, supposethat r < 1. Thenthe number r =r + 1Tr is positive and less than 1.

- a .
For all sufficiently large k, we know that = £r . In other words, thereis an N so that
ay

a.,, £a,r foral k3 N. Thus

a., Earfa r?fa, ,r £ . £ar <V,

Look now at the series

&g 0
ca aNrk'N+=(aN(1+r +r2+r “'N)).
=N 1]

This one converges because the Geometric series ga.é rkgconverges (Recall that

€k=0
. . - .o 0
0<r <1). It now follows from the previous section that our original series ¢q a,+ hasa
=0 9

limit.
_ . . .o 0
A similar argument should convince you that if r > 1, then the series ¢cq a,+ does
€0 @
not have alimit.

The "method" of the previous section is usually called the Comparison Test, while
that of this section isusually called the Ratio Test.
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Exer cises

Which of the following series are convergent and which are divergent? Explain your
answers.

&y 1040
18. _ =
3(20 k! g

n 2k+16
19. &2
€0 O O

n 2k+16
I
€0 100 o

21 B ¢
@ Tk s

ay 3“(k* +k+1)0
22. ¢ ¥+
=1 S 2

10.6 A Final Remark
The "tests" for convergence of series that we have seen so far all depended on the
series having positive terms. We need to say aword about the situations in which thisis
not necessarily the case. First, if the terms of a series ga.é akg aternatein sign, and if itis
€0 @

truethet |a, ,,| £ |a.| for al k, then ig@ng a, =0 issufficient to insure convergence of the

series. Thisis not too hard to see—meditate on it for awhile.

The second result is a bit harder to see, and we'll just put out the result as the word,
& 0
ca la, = converges,
€x=0

asking that you accept it on faith. It says simply that if the series

then so also does the series 8%’1 akg. Thus, faced with an arbitrary series %’_ akg, we
ek:0 a ek=0
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5! 0 . .
a la=. If we find this one to be
€k=0

may unleash out arsenal of tests on the series Sa’

convergent, then the original seriesis also convergent. If, of course, this series turns out
not to be convergent, then we still do not know about the original series.
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Chapter Eleven

Taylor Series

11.1 Power Series

Now that we are knowledgeable about series, we can return to the problem of
investigating the approximation of functions by Taylor polynomials of higher and higher
degree. We begin with the idea of a so-called power series. A power series is a series of

the form
Eﬁ? } o)
ég_ock(x a) 5

A power series is thus a sequence of special polynomials: each term is obtained from
the previous one by adding a constant multiple of the next higher power of (x- a).
Clearly the question of convergence will depend on x , as will the limit where there is one.

The k™ term of the series is ¢, (x- a)“so the Ratio Test calculation looks like

Ck+1(X _ a)k+1

C (x- a)f

Cens
Ck

=|x- 4 lim

r(x)=1lim
() k® ¥

k® ¥

Recall that our series converges for r(x) <1 and diverges for r(x) >1. Thus this

series converges absolutely for all values of x if the number !l@T}Ck—” =0. Otherwise, we
C

have absolute convergence for |x- a| < Iim}i and  divergence for
G

k® ¥
| x-a] > lim S .
KO¥|Cyan

and the interval | x- ak R is called the interval of convergence. There are thus exactly

The number R= Iki®rQ —~ | is called the radius of convergence,

G

n .
three possibilities for the convergence of our power series g&a C (x- a) kg:
k=0

(i) The series converges for no value of x except x =a; or

111



(i) The series converges for all values of x ; or
(i) There is a positive number R so that the series converges for | x- akK R and

diverges for | x- a| > R.

Note that the Ratio Test tells us nothing about the convergence or divergence of the

series at the two points where | x- aF R.

Example

O Then R= lim
@

k® ¥

k.

G

Consider the series ee.a k! x = lim = lim—— =0.

=0

Thus this series converges only when x = 0.

Another Example

c 3K
k. - | im
Gen|  Ke¥ 3

K
@="
w

Now look at the series éeé F(x - 1%, Here R= lim
eco @ k® ¥

3
Wik
I
Wik

. 1 : 1
Thus, this one converges for | x- 1|< 3 and diverges for | x- 1> 3

Exercises

Find the interval of convergence for each of the following power series:

1 @On + kO
égo(x 2 2

& L 8
2. éka;ok(x l)g
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11.2 Limit of a Power Series

If the interval of convergence of the power series gaa:‘ c (x- a) kg is | x- ak R, then,
k=0

of course, the limit of the series defines a function f :
¥
f(x) = ac(x-a)*,for | x- ak R.
k=0
It is known that this function has a derivative, and this derivative is the limit of the
derivative of the series. Moreover, the differentiated series has the same interval of

convergence as that of the series defining f. Thus for all x in the interval of convergence,

we have
¥
(%) = a kg (x- a)*.
k=1

We can now apply this result to the power series for the derivative and conclude that

f has all derivatives, and they are given by

f®(x) = 5 k(k-1)...(k- p+Dc(x- a)".

k=p

Example
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1 ¥
We know that h a x* for | x|<1. It follows that

k=0

¥
a 1X)2 At =1+ 2x + 3+ 4K +.
- k=1

for | x|<1.

It is, miraculously enough, also true that the limit of a power series can be integrated,
and the integral of the limit is the limit of the integral. Once again, the interval of
convergence of the integrated series remains the same as that of the original series:

o C
f(H)dt = q ——(x - a)**".
0() k+1( )

k=0

Example

We may simply integrate the Geometric series to get

°¥ k+1
log(1- x)=-Qa

k=0

, for-1<x<1l,or0<1- x<2.
It is also valid to perform all the usual arithmetic operations on power series. Thus if
¥ ¥
f(X) = ¢x“and g(x) = & d X for | x|<r, then
k=0 k=0
f(X)£9(x) = a (c,xd )x for | x|<r.

Also,

¥
f(X)gx) =aA eaécdk, kx for | x|<r.

Iv0|0

The essence of the story is that power series behave as if they were “infinite degree”

polynomials—the limits of power series are just about the nicest functions in the world.
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Exercises

n .
6. What is the limit of the series eaé XZkZ? What is its interval of convergence?
=0

7. What is the limit of the series éeaé_ 2(- 1)kkx2"'l;? What is its interval of convergence?
k=1

8. Find a power series that converges to tan™* x on some nontrivial interval.

¥
9. Suppose f(X) = a ¢ (x- a)*. Whatis f® (a)?

k=0

11.3 Taylor Series

Our major interest in finding a power series that converges to a given function. The
obvious candidate for such a series is simply the sequence of Taylor polynomials of
increasing degree. Thus if fis a given function, and a is a point in the interior of the

domain of f, the Taylor Series for f at a is the series

1) 0
gié;o w (x-a) .

The Taylor Series is thus an “infinite degree” Taylor Polynomial>

In general, the Taylor series for a function may not converge on any nontrivial interval
to f, but, mercifully, for many sufficiently nice functions it does. In such cases, we are
provided with the nice answer to the question proposed back in Chapter Nine: Can we
approximate the function f as well as we like by a Taylor Polynomial for sufficiently large

degree?
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Example
2k+1 ..

The Taylor series for f(X) = sinx at x= a is simpl f’s&n -1"—0. An eas
y (X) ply ek6:10( ) 2K+ D)2 y

calculation shows us that the radius of convergence is infinite, or in other words, this
power series converges for all x. But is the limit sin x ? That’s easy to decide. From

Section 9.3, we know that

. on v 2k+1 | X Fn+3
snx- a (-1 )
k=0 2k +1)!| (2n+3)!

and we know that

] |X Fn+3
lim— =
¥ (2n+ 3)!

no mater what x is. Thus we have
. g 1 ‘ 2k+1
sinx = -
SO( ) (2k +1)!

, forallx.

Exercises

10. Find the Taylor Series at a = 0 for f(x) = €. Find the interval of convergence and

show that the series converges to f on this interval.

11. Find the Taylor Series at a = 0 for f (xX) = cosx. Find the interval of convergence and

show that the series converges to f on this interval.

12. Find the derivative of the cosine function by differentiating the Taylor Series you

found in Problem #11.

13. Find the Taylor Series at a =1 for f (x) = logx. Find the interval of convergence and

show that the series converges to f on this interval.
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14. Let the function f be defined by
0, forx=0
_1/ x2

_l
f(X)_% * forxt O

e

Find the Taylor Series at a = 0 for f. Find the interval of convergence and the limit of

the series.
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Chapter Twelve
Integration

12.1 Introduction

We now turn our attention to the idea of an integral in dimensions higher than one.
Consider a real-valued function f:D® R, where the domain D is a nice closed subset of
Euclidean n-space R" . We shall begin by seeing what we mean by the integral of f over
the set D; then later we shall see just what such an abstract thing might be good for in real
life. Mrs. Turner taught us all about the case n =1. As it was in extending the definition
of a derivative to higher dimensions, our definition of the integral in higher dimensions will
include the definition for dimension 1 we learned in grammar school—as always, there
will be nothing to unlearn. Let us again hark back to our youth and review what we know
about the integral of f:D® R incase D is a nice connected piece of the real line R.
First, in this context, the only nice closed pieces of R are the closed intervals; we thus
have D is a set [a,b] , where b > a. Recall that we defined a partition P of the interval to
be simply a finite subset {x,,x,,...,x,} of [a,b] with a=x, <x, <x, <...<X, =b.
The mesh of a partition is max{| X, - x,_,|:i =1,2...,n}. We then defined a Riemann sum
S(P) for this partition to be a sum

S(P)=§ f(x)Dx,,

i=l

where Dx; =X, - X, is simply the length of the subinterval [x,_,,x ] and x is any point
in this subinterval. (Thus there is not just one Riemann sum for a partition P; the sum
obviously also depends on the choices of the points x . This is not reflected in the

notation.)
Now, if there is a number L such that we can make all Riemann sums as close as we

like to L by choosing the mesh of the partition sufficiently small, then fis said to be
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integrable over the interval, and the number L is called the integral of f over [a, b]. This

b
number L is almost always denoted Qf (x)dx. More formally, we say that L is the

a

integral of f over [a,b] if for every e >0, there isa d so that |S(P)- L|<e for every
partition P having mesh < d. You no doubt remember from your first encounter with this
integral that it initially seemed like an impossible thing to compute in any reasonable
situation, but then some version of the Fundamental Theorem of Calculus came to the

rescue.

12.2 Two Dimensions

Let us begin our study of higher dimensional integrals with the two dimensional
case. As we have seen so often in the past, in extending calculus ideas to higher
dimensions, most of the excitement occurs in taking the step from one dimension to two
dimensions—seldom is the step from 97 to 98 dimensions very interesting. We shall thus

begin by looking at the integral of f:D® R for the case in which D is a nice closed

subset of the plane. Complications appear at once. On the real line, nice closed sets are

simply closed intervals; in the plane, nice closed sets are considerably more interesting:
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A moment's reflection convinces us that the domain D can, even in just two dimensions,
be considerably more complicated than it is in one dimension. First, capture D inside a
rectangle with sides parallel to the coordinate axes; and then divide this rectangle into

subrectangles by partitioning each of its sides:

4 I~ \I
\ /

Now, label the subrectangles that meet D, say with subscripts i =12,...,n. The largest
area of all such rectangles is called the mesh of the subdivision. In each such rectangle,

choose a point (x,y;) inD. A Riemann sum S now looks like

S=Q f(x/,y DA ,

i=1

where DA, is the area of the rectangle from which (x,y;) is chosen. Now if there is a

number L such that we can get as close to L as we like by choosing the mesh of the
subdivision sufficiently small, then f is said to be integrable over D, and the number L is

the integral of f over D. The number L is usually written with two snake signs:

f (x, y)dA .
D

Such integrals over two dimensional domains are frequently referred to as double

integrals.
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| hope the definition of the integral in case D is a nice subset of R*® is evident. We
capture D inside a box, and subdivide the box into boxes, etc. , etc. There will be more of
the higher dimensional stuff later.

Let's look a bit at some geometry. For the purpose of drawing a reasonable picture,

let us suppose that f(x,y) 2 0 everywhere on D.

Each term f(x,y;)DA is the volume of a box with base the rectangle A and height
f(x,y;). The top of the box thus meets the surface z = f (x,y). The Riemann sum is
thus the total volume of all such boxes. Convince yourself that as the size of the bases of

the boxes goes to 0, the boxes "fill up™ the solid bounded below by the x-y plane, above

by the surface z = f (x,y), and on the sides by the cylinder determined by the region D.

The integral f (x, y)dA is thus equal to the volume of this solid. If f(x,y) £0, then,
D

of course, we get the negative of the volume bounded below by the surface z = f (x,y),
above by the x-y plane, etc.

Suppose a and b are constants, and D = E E F, where E and F are nice domains
whose interiors do not meet. The following important properties of the double integral

should be evident:
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agaf (x,y) +bg(x,y)ldA =af (x,y)dA +bcgp(x,y)dA, and
D D D

@f (x, y)dA = @f (x,y)dA + @f (x,y)dA.

D E E

Now, how on Earth do we ever find an integral (g (x, y)dA ? Let's see. Again, we
D

shall look at a picture, and again we shall draw our picture as if f(x,y) 2 0. It should be

clear what happens if this is not the case.
We assume our domain D has a special form; specifically, we suppose it to be

bounded above by the curve y =h(x), below by y =g(x), on the left by x =a, and on

the rightby x =b:

f/;_\/,—f y=htx)
\\H/\/\#yzgfx)

x=k

X=t

It is convenient for us to think of the integral qpf (x, y)dA as the volume of the blob
D

bounded below by D in the x-y plane and above by the surface z = f (x,y). Think of

finding this volume by dividing the blob into slices parallel to the y-axis and adding up the

volumes of the slices. To approximate the volumes of these slices, we use slabs:
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" - y=h(x)

N P g y=g(x)

=a X =E:'

We partition the x interval [a, b]: a=x, <X, <..<X,, <X, =b. Ineach subinterval
[x._,,x] choose a point x . Our approximating slab has as its base the rectangle of

"width" Dx; =X, - x,, and height h(x") - g(x;) ; the roof is z= f (x;,y). The volume

of the slab is the cross section area times the thickness, or [(‘3((:)) f(x;,y)dy]Dx;.

The sum of the volumes of the approximating slabs is thus

- TCS I
s=alq,., f(x.y)dyDx.

i=1

The double integral we seek is just the "limit" of these as we take thinner and thinner

slabs; or finer and finer partitions of the interval [a, b]. But Lo! The above sums are
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Riemann sums for the ordinary one dimensional integral of the function

F(x) = é:jf (x,y)dy, and so the double integral is given by

b
@f (x, y)dA = oF (x)dx
D a

b h(x)

=d Of (x,y)dyldx

a g(x

The double integral is thus equal to an integral of an integral, usually called an iterated

integral. It is traditional to omit the brackets and write the iterated integral simply as

b h(x)

0O Of (x, y)dydx.

a g(x)
Example
Let's find the double integral (‘[‘jx2 +y2]dA, where D is the area enclosed by the
D

lines y =x, x=0,and x +y =2. The first item of business here is to draw a picture of

D (We always need a picture of the domain of integration.):
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It should be clear from the picture that in the language of our discussion, g(x) = x,

h(x)=2- x, a=0,and b =1. Soslice parallel to the y axis:

(0.2)

The lower end of the slice is at y = x and the upper end isat y =2 - x. The "volume" is

thus
2-x 3|y=2-x _ y)\3 3 _ v)3
(‘jx2+y2]dy=x2y+y? =x2(2-x)+(2 ) -X3-%=2X2+(2 ) -Z3X3,

y=x

and we have such a slice for all x from x =0to x =1. Thus

N\ \] (2 X) 7 3
XZ+y?)dA = q2x% + 2 —=1 - —x3*]dx
@+l d 3%
_2x® (2- %) 7x“|1
12 12,

Sle w
wl s

Exercises

1. Find (D<2dA where D is the domain bounded by the curves y =4 - x* and y =3x.
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. Find (‘!‘sz- y)dA, where D is the area in the first quadrant enclosed by the

D

coordinate axes and the line 2x+y =4.

. Use double integration to find the area of the region enclosed by the curves x - y =2

and y =-x2.
. Find the volume of the solid cut from the first octant by the surface z =4- x*- y.

. Sketch the domain of integration and evaluate the iterated integral:

11

OOy’ e”dydx .
0 x

. Sketch the domain of integration and evaluate the iterated integral:

log8logx

O (¢ "dydx.

1 0

. Find the volume of the wedge cut from the first octant by the cylinder z=12 - 3y?

and the plane x +y =2.

. Suppose you have a double integral gHf (x, y)dA in which the domain D is bounded
D

on the left by the curve x = g(y), on the right by x =h(y), below by y=a, and
above by y =b.
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{

b
\ I

Give an iterated integral for the double integral in which the first integration is with

respect to x , and explain what's going on.

. Give a double integral for the area of the region bounded by x = y2 and x =2y - y?,

and evaluate the integral.
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Chapter Thirteen

More Integration

13.1 Some Applications
Think now for a moment back to elementary school physics. Suppose we have a
system of point masses and forces acting on the masses. Specifically, suppose that for

each1=12,...,n we have a point mass m_whose position in space at time t is given by

the vector r, .. Assume moreover that there is a force f, acting on this mass. Thus

according to Sir Isaac Newton, we have

where M = § m, . Reflect for a moment on this equation. If we define R by
i=1

n

R :i:nl— , then the equation becomes F =M T Thus the sum of the external
[o}
am

i=1
forces on the system of masses is the total mass times the acceleration of the mystical
point R. This point R is called the center of mass of the system.
In case the total mass is continuously distributed in space, the "sum" in the

equation for R becomes an integral. Let's look at what this means in two dimensions.
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Suppose we have a plate and the mass density of the plate at (x,y) is given by r (x,y) .

To find the center of mass of the plate, we approximate its location by chopping it into a

bunch of small pieces and treating each of these pieces as a point mass.

N\ P

Now choose a point r = xi +y; j in each rectangle. The mass of this rectangle will be
approximately r (x;,y, )DA,, where DA, is the area of the rectangle. The equation for the

center of mass of this system of rectangles is then

én.miri én.r(xﬂyl)rDA
R =zt — 4
é.mi ér(x|’y)DA
1
=3 iear(X.,y.)x DAd+ear(X.,y)y.DAng
ar(X.,y)DA' &= 4@

The three sums in the previous line are Riemann sums for two dimensional integrals!
Thus as we take smaller and smaller rectangles, etc., we obtain for R, the location of the

center of mass
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SO S £

X (X, y)dAu + r (x,y)dAy
@ V)dAT oD ; emy

oo

i
In other words, the coordinates (X,y) of the center of mass of P are given by

ean<r (X, y)dAu eo:)vr (X, y)dAu

g=2 dy=E% :
v Uand y v

where M = qgy (x,y)dA is the total mass of the plate.
P

Example
Let's find the center of mass of a plate having the shape of the plane region

enclosed by the triangle

(0.2

(@)

(tho)
and having constant density (In this case, we say the mass is uniformly distributed over

the region. Suppose r (x,y) = k. First,

a b(l- x/a) a 2
GD“ (x,y)dA =k Oxdydx = koxb(l x/a)dx = k?b and then
0 0
ab(l-x/a) 2 a abz

(Dyr(x y)dA = ko Oydydx—idl x/a)?dx =k
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Also, M = qpkdA =k qgylA = ka?b. Thus,
T T

a
X=—,and § =
3 y

w| T

Meditate on the fact that the location of the center of mass does not depend on
the value of the constant k. Note that in general, if the density is constant, then the
constant slips out through the integral signs and cancels top and bottom in the recipe for
the coordinates (X,y¥). This is what most of our intuitions tell us, | believe. It is,
nevertheless, comforting to see this fact come out in the mathematical wash. In this case
of constant density, the center of mass thus depends only on the geometry of the plate; it
is thus a geometric property of the region. It is called the centroid of the region. One
must never confuse the two concepts; intimately related though they be, they are
different. The center of mass is something a physical body has, while the centroid is an

abstract mathematical something.

Exercises

1. Find the center of mass of a plate of density r (x,y) =y +1 having the shape of the

area bounded by the line y =1 and the parabola y = x>.

2. Find the center of mass of the smaller of the two regions cut from the elliptical region

x? +4y? =12 by the parabola x = 4y? if the density r (x,y) =5x.

3. Find the centroid of the semicircular region {(x,y) T R%:x* +y2 £ a2, andy 3 0}.
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4. Find the centroid of the region bounded by the horizontal axis and one arch of the sine

curve. (That is, the region between x =0and x =p bounded above by y =sin x and

below by y =0.)

5. Find the centroid of the region bounded by the curves y* =2x , x+y =4, and

y=0.

0 4 Ix
Y

2
6. Theareaof aregion Ais ¢ (dydx + Qylydx . Draw a picture of the region.
00

0x%-4

7. Let f:D® R be afunction defined on a nice subset D1 R?. The average value A

1
of fon D is definedtobe A= ————¢f (x,y)dA.
area of D ED (x.)

a)Find the average depth of a bowl having the shape of the bottom half of the sphere

X2 +y?+2° =1,

b)Find the average depth of a bowl having the shape of the part of the

paraboloidz = x? +y?- 1 below the x-y plane.

8. Let D be the region inside the circle x* + (y- a)” = a° that lies below the line y = a.
a)Find the centroid of D.

b)Find the point on the semicircular boundar of D that is closest to the centroid.
13.2 Polar Coordinates

Now we shall see what happens when we express a double integral as an iterated

integral in some coordinate system other than the usual rectangular, or Cartesian,
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coordinate system. We shall see more of this later; right now, let's look at what happens

in polar coordinates.

Suppose we have the integral qpf (x, y)dA. In polar coordinates, we know that
D

we must substitute

X =rcosq, and

y =rsing.
There is, however, more to it than this. When we divided the plane into regions formed
by the curves x = constant and y = constant, we got rectangles, etc., etc. Now we
divide the plane into regions formed by the curves r = constant and ¢ = constant,

where r and q are the usual polar coordinates. This results in funny shaped regions:

Now, a typical region looks like
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p BN T

Af

The area of this region is thus something like DA » rDrDq , and our iterated integral looks

like

@f (x, y)dA = gpf (rcosq,rsing)rdrdg
D

together with the appropriate limits of integration. (We may, of course, integrate first
with respect to g and then with respect to r if this is convenient.) We desperately need

to see an example.
Example

Let's find the centroid of the region enclosed by the curve whose equation in polar

coordinates is r =1+ cosq. Here is a picture drawn by Maple:

11

2] 1 L]

-0
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The centroid (X, ¥)is given by

CL)dA CLydA

X =2 ,and y=2 :
GyA Ci¥A
D D

First. let's find the integral qg)dA. Now, when we hold q fixed and integrate first with

D
respect to r, the lower limit is independent of g and is always r =0, while the upper
limit depends, of course on q and is r =1+cosq. We have a slice for each value of g

from q =0 to q =2p, and so our iterated integral looks like

2pl+cosq 2p 1+ cosq
Q)XdA = O (ycosq rdrdg = ¢y ¢y *cosq drdq.
D 0 O 0 0

It is downbhill all the way now:

2p1+cosq 12D
) O F?cosq drdg = =1+ cosq)® cosq dq
0 0 30
1%
=3 Jcosq +3cos’ q +3cos’q +cos*qdq
0
1., 3% 1%
=Z[0+= (Y1+cos2q)dq +0+ = Y1+ cos2q)*dq]
3 2., 4
p,.1% . p,p _15 _5
=p+=+—(p0s 20dg=pt+ <+ —=—=—
p612?: qqp612 12 4p

Now for the other integrals.

2p 1+cosq
It should be clear that (gydA= ¢y ¢y*sing drdg =0. Finally,
D

0 0
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2pl+cosq 12p
y¥A= O ¢ydrdg == ¢y1+cosq)’dg
D 0 0 2 0
2p

=p +% o1 +cos2q)dq
0

3
=pr5=5P
We are, at last, done.
>
x:g—p=g, and y =0
Ep

Exercises

9. Find the area of the region enclosed by the curve with polar equation r =sin2q.

10. Evaluate the integral qgy(x +y)dA, where D is the region in the first quadrant inside
D
the circle x? +y2 = a? and below the line y = x+/3.

11. Find the centroid of the region in the first quadrant inside the circle r = a and between

therays =0 and g=a,where 0f£a £ % What is the limiting position of the

centroidasa ® 0°?

12. Evaluate (‘fyX2+V2dA, where R is the semicircular region bounded above by
R

y=4/1- x2 and below by the x axis.
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13. Find the area enclosed by one leaf of the rose r = c0s3] .
14. Find the area of the region inside r =1+ cosg and outside r =1.

13. 3 Three Dimensions

We move along to integrals in three dimensions. The idea is quite simple.
Suppose we have a function f:D® R, where D is a nice subset of R*®. Capture D
inside a big box (i.e., a rectangular parallelepiped). Now subdivide this box by partitioning
each of its sides. The volume of the largest such box is called the mesh of the subdivision.
In each box that meets D, choose a point (X, y;,z;) in D. A Riemann sum S now looks
like

S=8& 10¢.y,.2)DV,

=1

where DV, is the volume of the box from which (x,y;,z;) was chosen. (The
summation is over all boxes that meet D.) If there is a number L such that |S- L| can be

made arbitrarily small by choosing a subdivision of sufficiently small mesh, then we say
that fis integrable over D, and the number L is called the integral of f over D. This

integral is usually written with three snake signs:

N\ \

apf (x,y,2)dv .
D

Let's see how to evaluate such a thing by considering iterated integrals. Here's
what we do. First, project D onto a coordinate plane. (We choose the x-y plane as an

example.)
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g%

G

Let A be the region in the x-y plane onto which D projects. Assume that a vertical line
through a point (x,y) T A enters D through the surface z = g(x,y) and exits through the
surface z = h(x,y). In other words, the blob D is the solid above the region A between
the surfaces z=g(x,y) and z=h(x,y). Now we simply integrate the integral

h(x,y)

Of (x,y,2)dz over the region A:
9(x.y)
28(%Y) o
anf (x,y,2)adv = d‘% Of (x,y,z)dzzdA.
D A €g(xy) (4]
Example

Let's find the integral cggyx +2y + z)dV , where D is the tetrahedron with vertices
D

(0,0,0), (1,0,0), (0,2,0), and (0,0,1).

13.11



(0L 2)

| (oL2, 0

(4,00

When we project D onto the x-y plane, the bottom of D is the surface z =0 and the top

of Dis x +% +z=1,0rz=1-x- % The projection is simply the triangle

F
(th2)
A
Ty
éx—y/Z o)
Our iterated integral is thus simply g ((x+2y +z)dzzdA. We now write the double
A€ o a

integral over A as an iterated integral, and we have

¢ X-y/2

5
auix +2y+z2)dvV = Q(x +2y +z)dzdA
D A€ o 12

12(1-x)1-x-y/2
Y

=0 0 (QXx+2y+z)dzdydx.
0 0 0
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Again, it is traditional to omit the parentheses in the iterated integral. All we need do now
is integrate three times. Let's use Maple for the calculations, but look at the intermediate

steps, rather than just use one statement. Here we go.

1-x-y/l2
For the first integration, we want ~ (yx + 2y +z)dz:
0

int(x+2*y+z,z=0..(1-x-y/2));

1 37 1
gxi-2ay+3y-grieg
Thus,
1-x-y/2
1 3 7 1
A (X+2y+2)dz=- ZX2 - 2xy+=y- —y? +=,
9 (x+2y+72) 5 ytsy-g¥ *3
and our next integral is
20 ey w01, 37,1
O O (I+2y+z)dzdy= Q (-=x"-2xy+-y- -y +-)dy.
o 0 2 2" 8 2
Maple again:

iNt(-(x"2)/2-2*x*y+(3/2)*y-(7/8)*y"2+1/2,y=0..2*(1-X));

—4x—%x3+3x2+%
Thus,
2(1-x)
3 7 1 2 5
A (-=X%-2xy+=y- =y? +2)dy =-4x- =x*+3x* + =,
?( > y 2y 8y 2)y 3 3
and finally,

int(-4*x-(2/3)*x"3+3*x"2+(5/3),x=0..1);
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At last!

12(1- x)1-x-y/i2
(%) 1

00 Qx+2y+z)dzdydx ==.
0 o0 0 2

We make a few obvious observations. First, if S is a solid, the volume V of the

solid is simply V = ggylV . If the mass density of a blob having the shape of S is
S

N\ \

r(x,y,z), then the mass M of the blob is M =gy (x,y,z)dV, and the location
S

(X,¥,z) of the center of mass is given by

an<r (xy,z)dv
X =2

M

anyr (x,y,2)adv
y=-=

M

amyr (x,y,z)dv
7==2

M
Exercises
15. Find the volume of the tetrahedron having vertices (0,0,0), (a,0,0),(0,b,0), and (0,0,c).

16. Find the centroid of the tetrahedron in the previous exercise.

17. Evaluate (ggyxy +z*)dV , where S is the set S ={(x,y,z)0 £z £1- |- |y]}.
S
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18.

19.

20.

21.

Find the volume of the region in the first octant bounded by the coordinate planes

and the surface z=4- x*- y.

Write six different iterated integrals for the volume of the tetrahedron cut from the

first octant by the plane 12x +4y +3z =12.

A solid is bounded below by the surface z = 4y?, above by the surface z =4, and on

the ends by the surfaces x =1 and x =- 1. Find the centroid.

Find the volume of the region common to the interiors of the cylinders x* +y* =1

and x2 +z%2=1.
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Chapter Fourteen

One Dimension Again

14.1 Scalar Line Integrals

Now we again consider the idea of the integral in one dimension. When we were
introduced to the integral back in elementary school, we considered only functions defined
on nice subsets of the real line. The notion of an integral of a function f:D® R in
which D is a nice one dimensional set, but is not a subset of the reals is our next object of
study. To get some idea of why one might care about such a thing, consider the simple
problem of finding the mass of a piece of wire having the shape of an arc of a space curve
C and having a given density r (r). How might we approach such a problem? Simple
enough!  We subdivide, or partition, the curve with a finite set of points, say
{r,,r,,...,r.} . Onthe subarc joining r_, to r. , we choose a point, say r, and evaluate
the function r (r”) . Now we multiply this times the length of the line segment joining the
points r._, and r. for an approximation to the mass of this arc of our curve. Then sum

these to obtain an approximation for the total mass:

n

S=Ar) - rdl.

i=1

Then we all believe that the "limit" of these sums as we choose finer and finer partitions
of the curve should be the actual, honest-to-goodness mass of the wire.

Let's abstract the essence of the discussion. Suppose f:C ® R is a function
whose domain C is a curve (in R? or R®, or wherever). We subdivide the curve as in the

preceding discussion and choose a point r” on the subarc joining r_, to r. . The sum
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S=4 - 1yl
i=1

again is called a Riemann sum. If there is a number L such that all Riemann sums are

arbitrarily close to L for sufficiently fine partitions, then we say fis integrable on C, and

the number L is called the integral of f on C and is denoted Gf (r)dr. This integral is
C

also frequently referred to as a line integral.

¥

This is wonderful, but how do find such an integral? It is remarkably simple and

easy. Suppose we have a vector description of the curve C; say r(t),fora£t£b. We
partition the curve by partitioning the interval [a,b]: If {a =t,,t,,...,t, =Db}is a partition
of the interval, then the points {r(t,),r(t,)....,r(t,)} partition the curve C. We obtain
the point r” on the subarc joining r(t,_,) to r(t,) by choosing t T [t,_,,t;] and letting

r’ =r(t’). Our Riemann sum now looks like

n

S=d frE)Ir) - r(t.)l

i=1
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. : . Dt.
Next, multiply the terms on the right by one, but one disguised as EI where, of course,

Dt =t - t,_,. Thenwe see

S=§ 1(r(t)

i=1

_|dr
dt|’

"limiting" value of the Riemann sums is

r(ti) B r(ti-l) Dt
Dt

We know that g(r@n and so it is not hard to convince oneself that the

r(t)- r(t.,)
D,

f (r(t)

dr(t)}d

We have thus turned the problem into one we know how to solve—a plain old everyday

elementary calculus integral. Hence,

of (r)dr = of( (t)

dr(t)}d

Example
Suppose we have a wire in the shape of a quarter circle of radius 2, and the

density of the wire is given by r (x,y) =y. What is the mass of the wire? Well, we

know the mass is simply the integral (ydr , where C is the quarter circle:
C
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A vector description of the curve is r(t) = 2costi +2sintj, for O£t E%. Thus we have

‘%‘ =} 2sinti + 2costj|= 2, and the integral becomes simply

p/4

(‘)ydr = (‘)4sint dt =4.
C 0

Let's see what happens if we use a different vector description of the curve, say

r(t):ti+1/4-t2jfor0£t£2.Wehave d—r‘:i-;j: 2 . Hence
dt 4-t? 4-t2
(‘)ydr—z‘ 4- 1 o 2 9dt-82dt—4
c 0 ev4-t*o 0 .

We get, as we must, the same answer.

Exercises

1. Evaluate the integral (Yx- y +z+2)dr, where C is the curve r(t) =ti +(1- t)j +k,
C

OEt£1.
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2. Evaluate the integral c‘)\/xz + yzdr , Where C is the curve r(t) = 4costi +4sintj + 3k ,
C

-2pEtED.
3. Find the centroid of a semicircle of radius a.

4. Find the mass of a wire having the shape of the curve r(t) = (t?- 1)j +2tk, O£t £1

if the density is r (t) = ;t :

5. Find the center of mass of a wire having the shape of the curve

zﬁtw .

2
rt) =t + — J+t—k,0£t£2,
3 2

1
if the density is r (t) = —.
if the density is r (t) T

6. What is (‘jir ?

o]

14.2 Vector Line Integrals
Now we are introduce something perhaps a little different from what we have seen
to now—integrals with vector valued integrands. Specifically, suppose C is a space curve

and f:C ® R?isa function from C into the Euclidean space R*. We are going to define

an integral Qf (r)>dr. Why should we care about such a thing? Again, let's think about a
C

physical model. You learned in fifth grade physics that the work done by a force F acting
through a distance d is simply the product Fd. The force F and the displacement d are, of

course, really vectors, and we saw earlier in life that the "product™ of the two is actually
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the scalar, or dot, product of the two vectors. Now, in general, neither of these quantities
will be constant, and we will have a variable force F(r) acting along a curve C in space.
How do we compute the work done in this situation? Let's see. Once more, we partition

the curve by choosing a sequence of points {r,,r,,...,r.} on the curve, with r, being the
initial point and r, being the final point. Now, of course, there is an orientation, or

direction, specified on the curve. One may think of specifying an orientation by simply
putting an arrow on the curve—it thus makes sense to speak of the initial point and the

terminal point of the curve. Exactly as in the scalar integrand case, we choose a point r’
on the subarc joining r,_, to r. , and evaluate F(r"). Now then, the work done in going

from r_, to . is approximately the scalar product F(r")Xr, - r_,). Add all these up for

an approximation to the total work done:

S=AFE)Ar -1,

i=1

The course should be obvious now; we take finer and finer partitions, and the limiting

value of the sums is the integral

oF (r)xdr.

This integral too is called a line integral. To prevent confusion, we sometimes
speak of scalar line integrals and vector line integrals. How to find such a vector integral

should be clear from the discussion of scalar line integrals. We let r(t),a£t£ b, be a
vector description of C. (Here r(a)is the initial point and r(b)is the terminal point.)

The discussion proceeds almost exactly as it did in the previous section and we get

14.6



OF (r)>dr = ¢F (r(t)) xz_z dt .

Example

Find (‘j(xy+zz)i +(X+2)j+2yXK]>dr, where C is the straight line from the
C

origin to the point (1,2,3). The line C has a vector description r(t) =ti +2tj + 3tk . Thus,

dr
—=i+2j+3k,andso
it ’

1
Jxy +z%)i + (x+ 2)j +2yzK]>xdr = J(2t* +9t?)i + (t + &) j + 12t%k] (i + 2 + 3k)dt
C 0

1 1

= Y 2t* +8t +36t%)dt = ¢Y38t? +8t)dt
0 0

:3—8t3 + 4t 2 l = i).
3 o 3

Nothing to it.
Another Example

Now let's integrate the same function from (0,0,0) t0 (1,2,3), but this time along
the path P in the picture:
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(1,2,
£y
b
P
1.20
{1,000 s (1.2.0)

Here the path P is the union of the three nice curves, B, B, and B, so our integral is the

sum of three integrals:

O (XY, x)>dr = & (X, y, X) xdr + ¢ (X, y, X) xdr + &~ (X, y, X) xdr,

P R R
where

F(X,Y,2) = (xy+2z?)i+(x+2)j+2yk.

A vector description of P, issimply r(t) =ti, OEt£1. Thus

1 1
OF (x,y,2) xdr = ¢F (,00) % dt = ¢fj % dt =0.
R 0 0

For B,,wehave r(t)=i+tj, O£t £ 2. This gives us

2 2 2
(‘)C(x,y,z)>dr = d:(Lt,O)Xj dt = dti +j)xjdt = (\jjt =2.
P, 0 0 0
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Finally, for B,, thereis r(t)=i+2j+tk, O£t £ 3; and so

OF (x,y,2) xdr = :)c (12,t) %k dt = z‘j(z+t2)i +(L+1) ] +4tk] X dt

P, 0 0

3
= (ytdt =18,
0

At last, we have then (- (x,y,2)>dr =0+2+18 = 20.
P

Exercises

7. Evaluate gjxyi + xZ?j]>dr , where C is the arc of the curve y = x? from (0,0) to (1,1).
C

8. Evaluate (ycosxi- yj)>dr where C the part of the curve y=sinx from (0,0) to

C

(p.0).

9. Evaluate the line integral of F(X,y,2) = xy4 +(xy+ yz)j +z?k from (0,0,0) to

(-1,1,2) along the line segment joining these two points.

10. Evaluate the line integral of F(X,y,2) =(x- 2)i+(y-2)j- (x+y)k along the
polygonal path from (0,0,0) to (1,0,0) to (1,1,0) to (1,1,1).

11. Integrate F(x,y) = (- yi +xj) one time around the circle x* +y* = a” in the

X2+y2

counterclockwise direction.
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14.3 Path Independence

Suppose we evaluate the vector line integral ¢J- (r) xdr , where C is a curve from
C

the point p to the point g. Let r(t), a£t £ b, be a vector description of C. Then, of

course, we have r(a) = p and r(b) = q. As we have already seen,
b dr
OF (r)>dr = i (r (1)) ><a dt.
C a

Now let us make the very special assumption that there exists a real-valued (or scalar)

function g:R®* ® R such that the derivative, or gradient, of g is the integrand F :
Ng=F.

Next let's use the Chain Rule to compute the derivative of the composition

h(t) =g(r(t)):

-~ dr dr
h'(t) =N =F )
(t) = Ng e = F(r(t) -

This is, mirabile dictu, precisely the integrand in our line integral:

g (r)xdr = (‘j:(r(t))xj—:dt = g'(dt = h(b) - h(a) = g(p)- 9(a).

This is a very exciting result and calls for some meditation. Note that the curve C
has completely disappeared from the answer. The value of the integral depends only on
the values of the function g at the endpoints; the path from p to g does not affect the
answer. The line integral is path independent. The result is esthetically pleasing and is
clearly the lineal descendant of the fundamental theorem of calculus we learned so many

years ago.
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A moment's reflection on the examples we have seen should convince us that a lot
of integrals are not path independent, thus many very nice functions F (or vector fields)
are not the gradient of any function. A function F that is the gradient of a function g is
said to be conservative and the function g is said to be a potential function for F.

Let's suppose the domain D of the function F:D® R? is open and connected
(Thus any two points in D may be joined by a nice path.) We have just seen that if there
exists a function g:D® R such that F = Ng, then the integral of F between any two
points of D does not depend on the path between the two points. It turns out, as we
shall see, that the converse of this is true. Specifically, if every integral of F in D is path
independent, then there is a function g such that F = Ng. Let's see why this is so.

Choose a point p =(X,,¥,,2)] D. Now define g(s)=g(x,y,2) to be the
integral from p to s along any curve joining these points. We are assuming path
independence of the integral, so it matters not what curve we choose. Okay, now we

compute the partial derivative T9 . The domain D is open and hence includes an open

1x
ball centered at s=(x,y,2) I D. Choose a point g=(x,,Y,2) in such an open ball, and

let L be the straight line segment from sto q. Then, of course, L liesin D. Now let's
integrate F from p to s by going along any curve C from p to g and then along L from g to

S:

9(s) = 9(x,y,2) = ¢F (r) xdr + ¢ (r) >dr .

The first integral on the right does not depend on x, and so % OF (r)>dr =0. Thus
C

=

g

I
X qx

=— (F (r)>dr.

L
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We clearly need to find ¢ (r) >xdr. This is easy. Suppose
L

F(r) = f,(Ni+f,(r) ]+ fy(nNk.

A vector description of L issimply r(t) =ti +yj+ &, x, £t £ X. Thus ﬂ =i, and our

line integral becomes simply ¢ (r) xdr = (f ,(t,y,2)dt. We are almost done, for note
L

X

that now
al O (r)>dr = il E‘)fl(t, y,2)dt = f, (% Y,2).
X, x,
Hence
T9_,
I x
g _ g _
It should be clear to one and all how to show that Ty f, and [l f,, thus

giving us the desired result: F = Ng .

Exercises

12. Prove that 11]1—3 = f,,wheregand f, are as in the preceding discussion.

13. Prove that if F:D® R?, where D is open and connected, and every OF (r)>dr is

C

path independent, then gy~ (r) >dr = O for every closed path in D.( A closed path, or
P
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curve, is one with no endpoints.) [Physicists and others like to use a snake sign with a

little circle superimposed on it g) to indicate that the path of integration is closed.]

14. Prove that if F:D® R?, where D is open and connected, and o) (r)>dr =0 for
P

every closed path in D, then every ¢J~(r)>dr is path independent .

C

15. a)Find a potential function g for the function F(r) = yz + xZ + xyk .

b)Evaluate the line integral ¢~ (r) >dr , where C is the curve
Cc

r(t) = (e' sint)i +t%*j +cos’tk, O£t £1.

16. a)Find a potential function g for the function F(r) = e¥"?*(i + xj + 2xk).
b)Find another potential function for F in part a).

b)Evaluate the line integral ¢~ (r) >dr, where C is the curve
Cc

r(t) = tcos2t?i +4tj +e*k, O£t £/p .

17. Evaluate gj(e* siny +3y)i +(e*cosy + 2x - 2y)j]>xdr where E is the ellipse
E

4x? +y? = 4 oriented clockwise.

[Really good hint: Find the gradient of g(x,y,z) =€*siny+ 2xy- y2]
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Chapter Fifiteen

Surfaces Revisited

15.1 Vector Description of Surfaces
We look now at the very special case of functions D ® R*, where D1 R?isa

nice subset of the plane. We suppose r is a nice function. As the point (s,t) T D moves
around in D, if we place the tail of the vector r(s,t)at the origin, the nose of this vector
will trace out a surface in three-space. Look, for example at the function D ® R?,
where r(s,t) =si+tj+ (s> +t?)k, and D ={(s,t)T RZ-1£s,t£1}. It shouldn't be
difficult to convince yourself that if the tail of r(s,t) is at the origin, then the nose will be
on the paraboloid z = x? +y?, and for all (s,t)T D, we get the part of the paraboloid
above the square -1£ x,y £1. It is sometimes helpful to think of the function r as

providing a map from the region D to the surface.

=t

The vector function ris called a vector description of the surface. This is, of course,

exactly the two dimensional analogue of the vector description of a curve.
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For a curve, ris a function from a nice piece of the real line into three space; and for a
surface, r is a function from a nice piece of the plane into three space.

Let's look at another example. Here, let

r(s,t) =coss sinti+sins sintj +costk,

for OEt£p and O£ s £ 2p. What have we here? First, notice that

[r(s,t)|”> = (coss sint)® +(sins sint)? + (cost)?
=sin?t (cos’s +sin?s) +cos’ t

=sin®t +cos’t =1

Thus the nose of ris always on the sphere of radius one and centered at the origin.

Notice next, that the variable, or parameter, s is the longitude of r(s,t); and the variable t
is the latitude of r(s,t). (More precisely, tis co-latitude.) A moment's reflection on this

will convince you that as ris a description of the entire sphere. We have a map of the

sphere on the rectangle

L
-2
=
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Observe that the entire lower edge of the rectangle (the line from (0,0)to (2p,0)) is

mapped by r onto the North Pole, while the upper edge is mapped onto the South Pole.

Let r(s,t), (s,t)T D be avector description of a surfaceS, and let p =r(5,{) be

a pointon S. Now, c(s) =r(s,f) is a curve on the surface that passes through he point p.

ro ... . . .
1 (5,1) is tangent to this curve at the point p. We see in the same

Thus the vector E =—
ds 9s

r .
way that the vector %(S,f) is tangent to the curve r(5,t) at p.
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At the point p =r(5,f) on the surface S, the vectors % and % are thus tangent to S.

r, qr .
Hence the vector ﬂ— ﬂ— isnormal to S.
s It

Example

Let's find a vector normal to the surface given by the vector description

r(s,t) =si+tj+(s? +t?)k ata point. We need to find the partial derivatives 1% and

1.

Is’

1 i +2sk, and ﬂ:j+2tk.
S fit

The normal N is

=

k
N = 2 =-2si - 2tj+K.

S

P O .

i
r,%:l
0

=

2t

Meditate on the geometry here and convince yourself that this result is at least

reasonable.

Exercises

1. Give a vector description for the surface z = .,/x +2y?, X,y 3 0.
2. Give a vector description for the ellipsoid 4x* +y? + 8z =16.

3. Give a vector description for the cylinder x> +y* =1.
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10.

Describe the surface given by r(s,t) = scosti +ssintj +sk, 0O£Et£2p, -1£s£1.
Describe the surface given by r(s,t) = scosti +ssintj +s’k, 0Et£2p, 1£s£2.

Give a vector description for the sphere having radius 3 and centered at the point

(1,2,3).

Find an equation (l.e., a vector description) of the line normal to the sphere

a a a
x? +y? +z2% =a? atthe point (—=,—,- —).
NERNERING

Find a scalar equation (l.e., of the form f(x,y,z) =0) of the plane tangent to the

. .a a a
sphere x? +y? +z? =a? at the point (—=,—,- —).

3B B

Find all points on the surface r(s,t) = (s*+t?)i +(s+3t) j - stk at which the tangent

plane is parallel to the plane 5x - 6y +2z =7, or show there are no such points.

Find an equation of the plane that contains the point (1,-2,3) and is parallel to the

plane tangent to the surface r(s,t) = (s+t)i +s”j- 2t’k at the point (1, 4,-18).

15.2 Integration

Suppose we have a nice surface S and a function f:S® R defined on the surface.

We want to define an integral of fon S as the limit of some sort of Riemann sum in the

way in which we have already defined various integrals. Here we have a slight problem in

that we really are not sure at this point exactly what we might mean by the area of a
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small piece of surface. We assume the surface is sufficiently smooth to allow us to
approximate the area of a small piece of it by a small planar region, and then add up these
approximations to get a Riemann sum, etc., etc. Let's be specific.

We subdivide S into a number of small pieces S,,S,,...,S, each having area DA,
select points r” =(x.",y",z")1 S,, and form the Riemann sum
0

R=a f(r)DA.

=1

Then, of course, we take finer and finer subdivisions, and if the corresponding Riemann

sums have a limit, this limit is the thing we call the integral of fon S: ¢)f (r)dS.
S

Now, how do find such a thing. We need a vector description of S , say
rrD® r(D)=S. The surface S is subdivided by subdividing the region DI R? into

rectangles in the usual way:
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The images of the vertical lines, s = constant, form a family of "parallel™ curves on the
surface, and the images of the horizontal lines t = constant, also form a family of such

curves:

Let's look closely at one of the subdivisions:

pist Lst)

rist)

rist

plsttAt)
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We paste a parallelogram tangent to the surface at the point r(s,t.) as shown. The

lengths of the sides of this parallelogram are and

E—(s., t)Ds,

—(s,, t.)Dt, ‘ The area

is then 8 (sI ,t.)Ds %‘ﬂ (sI DY 3 and we use the approximation

DA»

= HORIL-UCS ,)Q‘DsDt
in the Riemann sums:

R= én f(r(s 'ti))g?}_;(si 7ti)%, g}I_rt-(si ,ti)%DS Dt

i=1

These are just the Riemann sums for the usual old time double integral of the function

F(s,t)=§ f(r(si,ti»‘gé%(si,ti)g' a[—:(si,ti)g‘

over the plane region D. Thus,

ax _ as fir L
(;Df (nds = EDf(r(s, t))‘E (s,1) ﬁ(s, t)|dA

Example

Let's use our new-found knowledge to find the area of a sphere of radius a .

Observe that the area of a surface S is simply the integral ¢gyiS. In the previous section,
S

we found a vector description of the sphere:
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r(s,t) =acoss sinti +asins sint j+acostk,

O£t£p and O£ s £ 2p . Compute the partial derivatives:

=

r
S

=-asins sinti +acoss sintj, and

=

Ir . ] . )
—t:acoss costi+asins cost j- asintk

Then

i j k
r, fr . . .
ﬂ— 1111—t:a2-sms sint cosssint 0

fis . .
coss cost  sinscost -Sin

=a’[- coss sin’ ti- sins sin’ tj - sintcostk]
Next we need to find the length of this vector:

fir, 9ir

TS Tt =a’[cos’ s sin* t+sin®s sin*t +sin® tcos’ t]*
s

=a?[sin® t +sin? t cos? t]¥? = a?[sin®t(sin?t + cos? t)]*?

=a’[sint|

Hence,

dA = cgp’lsin t|dA

D

N\ N ﬂr, T[r
Area:(ﬁiS:d— —_—
s oils Tt
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p2p
N\

=a’Qysint|dsdt
00
p
=2p a’yintdt =4pa’
0

Another Example

Let's find the centroid of a hemispherical shell H of radius a. Choose our

coordinate system so that the shell is the surface x? +y? +z2 =a?, z3 0. The centroid

(R,y,2)is given by

s @vds yds
X‘ = H\\ y = H\\ and z = li\
ars s an's
H H H

First, note from the symmetry of the shell that x =y =0. Second, it should be clear

from the precious example that (gylS =2p a?. This leaves us with just integral to
H

evaluate:

(ydS . Most of the work was done in the example before this one. This hemisphere has
H

the same vector description as the sphere, except for the fact that the domain of r is the

rectangle O£ s £ 2p, 0£t£%. Thus
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p/22p
dS = a’ cost|— = —|dsdt
G2 00 s 1
p/22p p/2
=a® )cyost sintdsdt =2pa’ yost sintdt
0 0 0

. p/2
=pa® sm2t|0 =pa?

3

pa

And so we have 7 = >
2pa

a :
= TR Is this the result you expected?

Yet One More Example
Our new definition of a surface integral certainly includes the old one for plane

surfaces. Look at the "surface™ described by the vector function
r(q,r)=rcosqi+rsinqj,

with r defined on some subset D of the g - r plane. For what we hope will be obvious

reasons, we are using the letters g and r instead of s and t. Now consider an integral
af (x,y)ds
S

over the surface S described by r. We know this integral to be given by

N\ N\ - ﬂrr ﬂr
f (X, y)dS = anf (rcosg,rsing )l— = —IdA.
(SD (x,y) cDD (rcosq q)‘.ﬂq ﬂr}d

Let's find the partial derivatives:
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ir . )
— =-rsingi +rcosqj, and
19 q q)

qir .
—r:cosq|+smqj.
Thus,
i j k
E’ﬂ:-rsinq rcosq O[=-rk,
g Ir )
cosq sing O
and we have ﬂ H =r. Hence,
g 9r

a@f (x,y)dS = g@f (rcosq, rsing )‘% ’ %)dA = @f (rcosq ,rsing)rdA .
S D

D
This should look familiar!

Exercises

11. Find the area of that part of the surface z = x? + y? that lies between the planes z = 1

andz = 2.
12. Find the centroid of the surface given in Problem 11.

13. Find the area of that part of the Earth that lies North of latitude 45°. (Assume the

surface of the Earth is a sphere.)

14. A spherical shell of radius a is centered at the origin. Find the centroid of that part of

it which is in the first octant.
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15.

16.

17.

18.

a)Find the centroid of the solid right circular cone having base radius a and altitude h.

b)Find the centroid of the lateral surface of the cone in part a).

Find the area of the ellipse cut from the plane z = 2x by the cylinder x* +y* =1,

Evaluate qgx+Yy+2)dS, where S is the surface of the cube cut from the first octant
S

by the planesx=a,y=a,andz=a.

Evaluate c‘ﬁ(,’yzﬂ dS, where S is the surface cut from the paraboloid
S

y?> +4z =16 by the planes x=0,x=1,and z = 0.
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Chapter Sixteen
Integrating Vector Functions

16.1 Introduction
Suppose water (or some other incompressible fluid ) flows at a constant velocity v
in space (through a pipe, for instance), and we wish to know the rate at which the water

flows across a rectangular surface S that is normal to the stream lines:

T ¥YY¥¥YyY

What is the rate at which the fluid flows through S? Let M (t) denote the total volume of
fluid that has passed through the surface at time t. The amount of fluid that flows through

during the time between tand t +Dt is simply

M(t+Dt)- M(t)= |vjaDx ,
. . dM
where a is the area of S. Thus, the rate of flow through S is e =|v|a.

The result is slightly more complicated when various exciting changes are made.
Clearly there is nothing special about the surface's being a rectangle. But suppose that S

is placed at an angle to the stream lines instead of being placed normal to the them. Then

dMm . )
we have — = vxn a, where n is a unit normal to the surface S.
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Observe that matters which unit normal to the plane surface we choose. If we
choose the other normal (- n ), then our rate will be the negative of this one. We must
thus specify an orientation of the surface. We are computing the rate of flow from one

side of the surface to the other, and so we have to specify the "sides", so to speak.

16.2 Flux

Now, let's look at the general situation. The surface is not restricted to being a
plane surface, and the velocity of the flow is not restricted to being constant in space; it
may vary with position as well as time. Specifically, suppose S is a surface, together
with an orientation—that is, some means of specifying two "sides"—and suppose F(r)
is a function F:R® ® R*® , which is the velocity of the incompressible fluid. How do we
find the rate of flow through the surface S from one side to the other?

First, let's come to grips with the problem of specifying an orientation for S. We
say that an orientation for S is a continuous function n:S ® R?® such that n(r) is normal
to Sand |[n(r)|=1 forall ri S. A surface together with an orientation is called an
oriented surface. At first blush this looks simple enough, and the unsophisticated might
guess that every surface has an orientation (or may be oriented, as we sometimes say).
But this is not so! There are many surfaces for which an orientation does not exist. You
may recall from grammar school a simple example of such a surface, the so-called Mdbius

band, or strip. Here is my feeble attempt to draw one:
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Now we see about finding the rate of flow through the oriented surface S. The
strategy should be old-hat by now. We subdivide S and look at "small” parallelograms

tangent to the surface:

As we have done so often, we suppose the subdivisions are small and approximate the
rate of flow, or flux, through the subdivision by the rate of flow through the tangent
parallelogram.
DS, =F (1) <1DA ,
and then add them to obtain yet another type of Riemann sum R = é F(r")>DA . If
i=1
these sums have a limiting value as the size of the subdivisions go to zero, this is what we

call the integral of F over the oriented surface S:
ay(r)>ds.
S

It should be clear now what we do to evaluate such an integral. As usual, we
consider a vector description of the surface S: rD® ST R®, where D1 R?. We
subdivide S by subdividing the region D into rectangles formed by lines s = constant and

t= constant, and looking at the curves r(s,f)and r(5,t) on the surface, exactly as we did

in integrating a scalar function over a surface S. Most conveniently now, the vector
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r
product ﬂ— 1111— gives us not only a vector such that

1s
approximating parallelogram, but also one which is normal to the surface. There is the

slight problem of the orientation of S. Thus % ’ % may not point in the direction of

—‘DsDt is the area of the

the specified orientation, in which case, of course, we simply replace % i % by its

negative, % ’ % (We may think of just reversing the roles of s andt.) We have in the

Riemann sums,

o war, 1ro
R= F(ri) __Dlul
arliers T

and, as before, we obtain

‘Hro

(‘ﬁ:(r)>d8 a‘j:(r(st))>3ﬂ ﬂtraA

The concept we have developed here is purely mathematical and is done
independent of any physical interpretation, such as our fluid flow interpretation. What
we have is just an integral of a vector function F (or field) over an oriented surface S.
This is generally called the flux of F over S. There are many physical interpretations of
this concept; you have perhaps seen some of them in elementary school physics. There is

electric flux, the flux of an electric field; magnetic flux; gravitational flux, etc., etc.

Example

Let S be the sphere of radius a oriented so that the normal points "out" of the

sphere, and let F(r)—| 7 r, where c is a constant. Let's find ¢ (r)>dS . Use the

S

vector description of S we used in the first Example of the previous section:
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r(s,t) =acosssinti +asinssintj +acostk,

0Es£2p, 0Et£p. We have already found that

r,gr i o
“llTT_s ﬂ—zaz sint[- cosssinti - sinssintj - costk].

Modest meditation should convince you that this normal points into the sphere, and is
thus the negative of the one we need for the specified orientation of S.

Next, the integrand is given by

c C o
F(r)=—r = ?a[cosssmtl +sinssintj + costk],

Lk

and our integral becomes

p 2p
N\ N\ C H - - - - - - - - - -
@ (r)xds = Ooa—z[cosssmtl +sinssintj + costk] a* sint[cosssin ti + sin ssintj + costk ]dsdt

S 00

p 2p
= cOCpintlcos’ ssin’ t +sin? ssin® t +cos’ t Hsdt
00

p2p p
=cQCpint dsdt =2pccyintdt = 4p c.
00 0

Note that the radius a of the sphere has disappeared—the value of the integral is

independent of the radius of the sphere.

Exercises
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. Find ¢gjzi +x*k]>dS , where S is that part of the surface z = x* +y? that lies above
S

the square {(x,y)-1£ x£1, and - 1E y £1}, oriented so that the normal points

upward.

. Find the flux of F(x,y,z) = xi +zj out of the tetrahedron bounded by the coordinate

planes and the plane x +2y+3z=6.

. C
. Find the flux of F(r) = Wr out of the surface of the cube -a £ x,y,z £ a, where ¢
and a are positive constants.

. Find the flux of the function F(Xx,y,z) = 4xi+4yj+ 2k outward through the surface

cut from the bottom of the paraboloid z = x? + y? by the plane z =1.

. Find the flux of the function F(x,y,z) =z% + Xj - 3zk upward throught the surface

cut from the cylinder z = 4- y? by the planes x =0, x =1, andz =0.

Let S be the surface defined by
y=logx,lEx£e, 0O£z£1,

and let n be the orientation of S such that n(r)xj >0 forall r T S. Find the flux

aJ2vyi + k]>dS .
S
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Chapter Seventeen

Gauss and Green

17.1 Gauss's Theorem
Let B be the box, or rectangular parallelepiped, given by
B={(Xy,2:% EXEX, Y, EYEY,, 2, EZEZ};

and let S be the surface of B with the orientation that points out of B. Let F:B ® R® be
anice function, or field. For reasons that will become apparent as the drama unfolds, let's

compute the flux

GiF (r)>dS.

We shall do this by computing the surface integral over each of the six sides of B
and adding the results. Let S, be the side in the plane x = x;; let S, be the side in the

plane x=x, ; let S; be the side in the plane y=1y,; let S, be the side in the plane

y =Yy, andlet S and S, bethe obviousthings. We begin by computing the integral
ay (r)>dS.
S

A vector description of S, is quite easy to come by; it is, of course, smply
r(st) =xi+g+tk,
where y, £s£y, and z, £t £ z. (Obvioudy, sissmplyy,andtisz.) Then

Trofr_
s 1Tt
It is clear thisis the specified orientation. If F(r) = p(x,y,2)i +d(X,y,2) ] +r(x,y,2)k,

k=i.

then

14
@ (1)>dS = o (x,,8t) % dtds
S Yo%

14

= QOP(x,, S t) dtds

Yo%
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A vector description for the opposite side, X = X,, iSjust
r(sit) =x,i +g +tk,

and we have

@ (r)dS= ygci)c(xo,s,t) (- i) dtds
S Yo%

4

= Q0 P(X,,s,t) dtds

Yo%
The sum of these two is then

Y14
Q) () >dS+qgy (r)>dS = Ogp(X,,s:t) - p(X,,s,1)] dtds.
S S, Yoo
Observe that
T
P(x,St) - p(X,St) = Xco)ﬂ—s(x,s,t)dx.

Substitution of thisinto the previous equation gives us

14 X%
GOF (1) XS + G (1) >dS = @@C‘,TT—p(x, s,t)dxdltds
X

So Si YoZ %o

= LoV
5 X

and we have turned the sum of the two surface integralsinto aplain ol volume integral .

It should be clear how we also obtain

N\ N\ \\\ﬂq
r)>ds + r)>ds = dv, and
g)c() O Qwy

S, B

N\ N\ \\\ﬂr
r)>ds + r)>ds = dv.
g)c() g)c() w, ,

B
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The flux over the entire surface Sis thus the sum of these:

c‘[‘j:(r) xS = @ﬂ—“‘ﬂ Pav + e qdv + @ﬂ—dﬂ Tav

(38)
_@p Mg frd
= ang, v

s enx Ty ‘Hz

We have now found the surface integral, or flux, in terms of an ordinary volume integral.
Now, suppose we have an "arbitrary” solid region B bounded by a surface S,
together with a function F(r) = p(x,y,2)i +q(X,y,2)j +r(x,y,2)k defined on B. Trap
B in a box and subdivide the box into parallelepipeds. Consider those parallelepipeds
{B:i =12,...,n} that meet B. The surface that bounds B will be called S, and oriented

so that the normal points out. The union P. =E{B}of al the B is thus an

approximation to the original solid B.
Apply the equation (38) to each of these and sum the equations:

méﬂp Ta9, fira

a @rm-s=a V.
'S

i Biex ﬂy ﬂz

The sum on the right hand side is just the integral over P, :

O ~ \\\eﬂp ﬂq ﬂru
r)>dS = +—+—pV
aigDC() B, &x Ty fz

Take a closer look at the sum of the surface integrals on the left hand side of this

equation. Suppose parallelepipeds B; and B, are adjacent, and call the common side T :
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In the sum of surface integrals, the integral over the common side T appears twice, once
from the integral over S;, the surface of B, and once from the integral over S, the
surface of B,. These integrals, will, however, have opposite signs because the
orientation of T has one direction as a part of the surface of B, and the opposite direction
as a part of the surface of B, . These two terms thus sum to zero and cancel each other.

In the sum of al the surface integrals, we are therefore left with only the integrals over
sides that are not adjacent to another box. A moments reflection, and you see that what is

left is precisely the integral over the boundary S of P, with the outward pointing

orientation. Mirabile dictu, thisis precisaly the equation (36):

ﬁ(r)mS:W“‘ﬂp+M+ﬂ“v

S, P, el X ﬂy 'ﬂZu

Now, as everyone can see coming, we look at the limit of this equation as we take smaller

and smaller subdivisons. Then P, ® B and S, ® S, giving us precisely the same result

for the arbitrary region B:

- «&p . Tg 9ru
r)>dsS = -2+ V
@ (195 = gy, * ) "8
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Thisisreally a big deal—such a big deal that it has its own name. Thisis called Gauss's
Theorem, or the Divergence Theorem

The integrand in the volume integral also has a name; it is called the divergence of
the function F. It isusually designated either div F , or NX= . Thus

With this new definition, Gauss' s Theorem looks like

QY (r) >dS = N = (r) dv
S
Example

Let'sfind the divergence of F(r) = < . First we need to see F in the form

F(xy,2) = p(x,y,2)i +a(x,y,2) ] +r(x,y,2)k

That's easy:

Cc . .
TS i

and so

_ X

(X2+y2+22)3/2’

cy
(X2+y2+22)3/2’

. cz
(X2+y2+22)3/2 '

A bit of elementary school calculus (remember Mrs. Turner!), and we have
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1 x> +y*+7° - 3x°

Cc )
X (XZ +y2+22)5/2

= =

q X2 +y2 + 72 - 3y?
¢ 52

Ty (C+y +2)
Tr

x> +y>+27°- 37
52 °

c
Nz (X2 +y? +7%)

Hence, N> = 0 everywhere (except, of course, for r = 0, where F is not defined.).
Gauss's Theorem now tells us that the integral of F over any closed surface that
does not enclose r = 0 must be zero. This might be the ho-hum of the week save for the
fact that the function F is a common one. It isthe gravitationa field of a point mass fixed
at the origin, or the electric intensity field for a point charge fixed at the origin, or any field
in which the magnitude is inversely proportional to the distance from the origin and which

points in the direction of the origin.
Exercises

1. Find the outward flux of the function F =(y- X)i +(z- y)j+(y- X)k across the

boundary of the cube bounded by the planes x =+4, y=%4,and z= 4.

2. Find Vi +xyj - zZ]>dS, where S is the boundary of the solid inside the cylinder
S

x> +y* £1 between z=0and z= x> + y?, with the outward pointing orientation.

3. Find ggjlog(x’ +y?)i +§2—Ztan-ligj +2/X% + y?k] dS , where Sis the boundary of
S X X

thesolid {(X,y,2)1EX*+y* £2, - 1£2£ 2.
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4, Let B a region in R®, and lee f:B® R be a function such that

LIS L

=0 in B (Such afunction f is said to be harmonic in B.). Let S
2 2 2
ix fiys 1z

be the boundary of B. Show that ¢jNf xdS = 0.
S

17.2 Green's Theorem

Let R be the rectangular region in the plane bounded by the rectangle with vertices
(%01 Yo)s (X1, ¥o), (X, Y1), @nd (Xp,Y;) -
(%0, Y1) (X, ¥1)

(X1 Yo) (%5 Yo)

Suppose F:R® R? is a vector function given by F(X,y) = p(x,y)i +q(x,y)j. Now,
let's compute the vector line integral of F around the rectangular boundary C in the
counterclockwise direction. We shall compute the integra in four parts: the integrals
along each of the straight line segments making up the boundary.

CS

=

)

Thus,
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c‘j:>dr:c‘j:>dr+c‘j:>dr+c‘j:>dr+c‘j:>dr.
c C Cs o

C,

We shall work out the evaluation of one of these in some painful detail; it should then be
rather obvious how to do the others. Start with a vector description of C:

rit) =ti+y,j, X, Et£x,.

Then, of course, % =i, and our line integral becomes
O >dr = g p(t, yo)i +a(t,y,) j1x dt = gp(t, y,)dt .
G Xo Xo

In asimilar fashion, we get

g >dr = o p(t,y,)dt.
C

3‘0/»3‘

Thus,
g >dr + g >dr = G [p(t Y1) - p(t o)t
G Cs %o

X1 1
= 0 P (¢, g)cs
%o Yo
o 10,

@ gy

In essentially the same manner, we find that

\ hY \\ﬂq
xdr + xdr = dA.
Ccf ag @

C, R

17.8



Thus
c‘j:>dr:c‘j:>dr+d:>dr+d:>dr+d:>dr
C Cl Cz C4

_ .é1q_ Tpu
R 61X 'HYULPA

We have turned a one dimensional vector integral into a double integral, similar to
the way in which in the previous section we turned a two dimensional vector integral into
atriple integral.

Now suppose we have a reasonable region R bounded by a reasonable curve C

with a counterclockwise orientation:

Now cover this region with rectangles, and apply the above recipe to each rectangle, and
add all the equations, etc., etc., just as we did with the parallelepipeds in deriving Gauss's

Theorem. When the dust settles, we have the same result:

d?g
o
d d

c‘j:>dr: 0

C

x

R

y

o
(D

Thisis caled Green's Theorem. You should note that the same equation is valid even if

the region R is bounded by more than one closed curve.
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Here the boundary C consists of three curves with the orientation indicated by the arrows
in the fine picture—meditate on the covering by approximating rectangles and you will see
why the orientation of the "inside" curvesis clockwise. The line integral on the left sideis

simply the sum of the integrals over the pieces of the boundary curve.

Example

Let's evaluate the line integral  (§5yi +3(x+1) j]>dr, where C is the circle of
C

radius 2 centered at the origin, oriented counterclockwise. First, note that

M: ,andH: .
x Ty
Thus,
- : L€1g Tpu
Syl +3(x+1) j>dr = @a— - ¢
9 %ﬂx 'ﬂyu"*OIA
:-ZC‘ﬁjA:-Sp
R
Exercises

5. Bvauate (j(sinx+ 3y?)i+(2x- € v ) j]>dr, where C is the boundary of the half-disc
C

x?+y? £9, y3 0 oriented counterclockwise.
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1£r£2, 0£q £p, oriented clockwise. (These are the usua polar coordinates.)

6. Evauate c‘%(tan'l—)i +log(x? + y?)j,»dr , where C is the boundary of the region
X
C

7. Evduate the line integra c‘jyexzi +x%¥j]xdr, where C is the curve given by

C

r(t) =sinti +sin2tj, O£t £ 2p by using Green's Theorem.

17.3 A Pleasing Application
Here we shall use Green’s Theorem to find the area of aregion R bound by a
polygon P with vertices (X, ¥;),(X,, ¥,),--.,(X,, Y, ). How do we do this? We simply
apply Greens' Theorem to the function
F(xy) = p(x y)i +a(x y)j =X
Then Green’s Theorem tells us that
B g A= T
which becomes

GEFA = o4 e .
P

R
We thus find the area by evaluating the line integral on the right side. Thisis easy. We
simply integrate over each line segment of the polygon and add up the integrals.
Let’'sintegrate along the line segment L from (X,,VY,) t0 (X.1) Yis) - A VeEcCtor
description of this segment is
r(t) =@- t)(XJ + Y, J) +t(Xqi + V) s OELE£1.

Thus r'(t) = (Xuy = X )i + (Vir - Yi)i» and we have
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O 7 = QUL X, +tx ] (t)ek
Lk

1
= (Yisr - Yk)d(l' )X, + X, 0t

- (Yk+1 - yk)(xk+l + Xk)
2

n-1 ) i
Thus, Area= (jyA=Q (Yieer = Vi )2(Xk+1 %), W yn)Z(X1 X))
R k=1

Meditate on this result. It is redly a very smple formula for the area enclosed by a

polygon.

Example. We shall find the area of the quadrilateral with vertices (0O, 0), (2, 4), (1, 7),
and (-1, 9):

-1 05 0 05 S 15 2

Area= [(4- 0)(2+0)+(7- H@+D +(9- T)-1+1)+ (8- O)(-1+0)] =4

Exercises
8. Find the area enclosed by the octagon with vertices (0, 0), (1, 0), (2, 3), (0, 5), (-2, 2),
(-1, -1), (-2, -2), (-1, -3).

9. By means of aclever choice of the function F(Xx,y), use Green's Theorem and derive a

recipe for the integral qpxdA, where R is the region enclosed by the polygon with
R

vertices (X, Y1), (X5, ¥2)se- s (X, Vi )-
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10. By means of aclever choice of the function F(X,y), use Green’s Theorem and derive

arecipe for the integra cgydA, where R is the region enclosed by the polygon with
@
R

vertices (X, ¥;),(Xz, Y2)s -1 (Xy, Yi)-

11. Find the centroid of the region enclosed by the triangle with vertices (1, 1), (2, 8), and
(5,5).
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Chapter Eighteen

Stokes

18.1 Stokes's Theorem
Let F:D® R? beanicevector function. If
F(X,Y,2) = p(X,y,2)i +d(X,y,2) ] +r(x,y,2k,
the curl of F isdefined by
or_ 190  oflp_ 1ro. aq_ fpo,

curlF = : % : k.
Ty fzo €1z 1x8 &1x Tys
Here also the so-caled del operator N —i jl+kl provides a nice
ix “Ty 19z
memory device:

i ] k
curlF =N~ F Sn. .
ix fy 1z
p 9 r

This definition allows us to look at Green's Theorem from a new perspective by

observing that in case F (X,y) = p(x,y)i +q(X,y) | , Green's Theorem becomes

(©) ¢F »dr = gpurlF xS,
C R

where we are thinking of the region R as an oriented surface with its orientation pointing
in the direction of k.

We want to look at this formula in case the region R is not necessarily in the i-j
plane, in which case, the word "clockwise" doesn't help in deciding on the orientation of

the boundary C. Once again, we orient things according to our familiar "right-hand" rule.
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Here's the way it goes. Suppose now S is any surface bounded by a finite number of
digoint curves C,,C,,...C,. Wesay smply that C =C, E C,E...EC, isthe boundary of
S Now choose an orientation for the surface S Look at one of these normal vectors
“close" to acurve C; and imagine alittle circle around the base of the normal oriented so
that the normal vector points in the right-hand direction with respect to the direction of
the circle. Then the orientation, or direction, of C; that is consistent with the given

orientation of the surface Sis the one that "lines up" with the direction on this little circle.
Look at this picture:

(%

S AN

The surface and its boundary in this case are said the be consistently oriented.

Now we do what we have done so many timesin the past. Look at a surface Sin
three space bounded by C. (Here neither S nor C are assumed to lie in a plane)
Approximate the surface by a bunch of plane regions tangent to S, apply the equation (©)
to each of these approximating plane regions, and then sum these equations. The sum of
the surface integralsis just the surface integral over the union of the approximating pieces,
and the sum of the line integrals is just the line integral around the boundary of the union
of the pieces—as in the plane case, the line integrals over the boundaries of adjacent
regions cancel. Then, of course, we think of looking at the limit as we take more and more

approximating regions, etc., and we obtain the equation

OF »dr = gppurlF xdS,
C S
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where Sand C are oriented consistently. Thisresult is the celebrated Stokes's Theorem.

Example

Let's use Stokes's Theorem to evaluate the line integral

dg- yii+xj- 2’k]>dr,
C

where C is the intersection of the cylinder x* +y” =1 and the plane x+y+z=1

oriented in the clockwise direction when viewed from above (i.e., looking in the direction

of -k.). The curve C bounds the part of the plane x+y+z=1 that lies above the set of

(x,y) suchthat x* +y? £1. A vector description is thus given by
r(st) = scosti + ssintj + (1- scost - ssint)j, 0Es£1, 0O£t£2p.
Hence,
i j k

=| cost sint - (cost +sint)
-ssint scost s(sint - cost)

T A
s It

=d+g+sk

| hope this result is no surprise. Notice that this is the opposite of the orientation

consistent with that specified for the curve C, and so we must use

‘ﬂr,ﬂz_ .
0 1s s(i + ] +k)

in our surface integral. The surfaceintegral qpyurl F >dS looks like
S
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¢ r.fro
CIP“ urlF >xdS = cx;:“ urlF xc— —=dsdt .
S 00 it Yso

We must find curl F:

[ j k
- 1 T 1 2,2
culF =N"F=|— — —|=3(x"+y“)k.
X z
_ﬂyS 1;[(3y _T[ZS
Hence,
2p1 .
A\ N\ r s ﬂ rO
urlF >xdS = urlF xg— " —=dsdt
@ Rt S T P
2p1 3 3
= OR(S*)(-9)dsdt =-2p > =- p
00 4 2
Exercises

1. Let She the surface S=S ES,, where S, ={(x,y,2):x*+y>=1 0£z£1, and
S, ={(x,y,2:X* +y*+(z- )? =1, z3 . Letthefunction F be given by

F(x,y,2) = (X*°Z*+Y)i+(xy+2)j + (5x\/E +yHk .
Compute the flux integral

@‘jQ'F>dS,
S

where S has the orientation pointing away from the z- axis.
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. Let S be the hemispherex® + y? + z> =1, z£ 0 with the orientation pointing toward

the origin.
a)Describe the boundary of S and its orientation that is consistent with the orientation
of S.

b)Evaluate the flux (N~ F>dS , where F(x,y, 2) = 2yi +Xj + zk
S

. Let S and S, betwo surfaces with a common boundary C. Draw a picture indicating

the orientations these surfaces must have to insure that

@\ FxdS=gN" F xS .
S S

. Let Sbe asurface with boundary C . Suppose they are consistently oriented. Suppose

aisaconstant vector. Prove that

g@’ r)xdr =2qp>ds.
C S

[Remember, r = xi +yj + zK.]

. Suppose S is a surface with boundary C and F is a vector function such that N* Fis

tangent to S at each point of S. Prove that (§->dr = 0.
C

. Let r :B® R*® be avector description of the surface S with boundary C. Let F be a

vector function such that
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W pe_L_griro
fr. qriefs Mteg

s 1t

Show that = areaof S.

c‘j:xdc
C

7. Suppose the vector function F on a domain D is conservative. Provethat N F =0

everywherein D.

-y . X . 2 2
8. Let F(x,y,2) = + , +v21 Q0.
(X Y,2) x2+y2' X2+y21 X“+y

a)Compute N~ F.

b)Prove that F is not conservative. [Hint: Evaluate the line integral ¢§->dr , where C
C

isthecircle x* + y* =1, z=0, with the usual counterclockwise orientation.]

18.2 Path Independence Revisited

Problem 7 at the end of the previous section perhaps raised our hopes that an easy
test for a function F to be conservative in a domain D is smply to seeif N” F=0. If o,
these hopes were quickly dashed by Problem 8. In this section, we shall see just what we
can do aong thisline. The concept introduced next provides the key to understanding and
enlightenment.

Anopen subset D of R® iscalled simply connected if every smple closed curve
in D isthe boundary of some surface contained entirely in D. Thus for instance the region
D={(XVy,2):xX°+y*+2° <1}

issimply connected, while the region
R={(x,y,2):x*+y*>1]

IS not.
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Now it easy to see that if F has as domain a smply connected region D, then
N° F =0 everywhere in D implies that F is indeed conservative. We show that F is
conservative by showing that the integral of F around any closed curve is 0. Thisis easy
todo. Let Cbeany closed curvein D. Then D is simply connected, so thereisasurface S

the boundary of whichisC. Now unleash Stokes' s Theorem:
g xar =C‘Q‘j§|’ FxdS=0.
C S

How about that!

Exercises

9. Explain how you know that F(x,y,2) = — y —i+— X ~j, x> 0. is conservative.
X2+y? x4y

10. Find a potentia function for the vector function F given in Problem 9.
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Chapter Nineteen

Some Physics

19.1 Fluid M echanics
Suppose V(X, Y, z,t) isthevelocity a r =(X,Y,z) = xi +yj + zk of afluid flowing
smoothly through a region in space, and suppose r (X, Y, z,t) isthe density at r at timet. If

Sisan oriented surface, it is not hard to convince yourself that the flux integral
Qy v >ar
S
is the rate at which mass flows through the surface S. Now, if Sis a closed surface, then

the mass in the region B bounded by Sis, of course

AN\

Q:UdV.
B

Therate at which this massis changing is smply

ﬂ AN\ \\\ﬂr
— a4V = qp_-dVv -
it = fit

B

Thisis the same as the rate at which massis flowing across Sinto B: - ¢y v>dr , where S
S

is given the outward pointing orientation. Thus,

dDdV = - gy vodr |
B ﬂt S

We now apply Gauss's Theorem and get

G dV = - gy vadr = gy KX v)av.
B ﬂt S B

Thus,

AN\ r | 0

Q.- *NXrv)dv.
s et @

Meditate on this result. The region B is any region, and so it must be true that the

integrand itself is everywhere O:
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1%—2+N><(rv)=0.

This is one of the fundamental equations of fluid dynamics. It is caled the equation of
continuity.
In case the fluid is incompressible, the continuity equation becomes quite simple.

Incompressible means simply that the density r is constant. Thus .ET_rt =0 and so we have

1%_2+Nx(rv):|§|x(rv):r|§|xv:0, or

N> =0.
Exercise
1. Consder a one dimensona flow in which the velocity of the fluid is given by

v = f(x), where f(x)>0. Suppose further that the density r of the fluid does not vary
with timet. Show that

r(x)=%,

where k is a constant.

19.2 Electrostatics
Suppose there is a point charge q fixed at the point s. Then the eectric field
E,(r) dueto qisgiven by
r-s
r-o

It is easy to verify, as we have done in a previous chapter, that this field, or function, is

E,(r) =ka

conservative, with a potential function

_kq
Ir-s]

Pq(r):

so that E, =NPq. Physicists do not like to be bothered with the minus signin F,, so they

define the electric potential V,to be - P, . Thus,
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kq
|r-s|

V()=

and
E,(r) =-NV,(r).

We have already seen that the flux out of a closed surface Sis
0 if Sdoesnot enclosetheorigin
@E xS = | ) . .g
S 14pkg if Sdoesenclosetheorigin
Some meditation will convince you there is nothing special here about the origin; that is, if

the point chargeisat s, then

« i O if Sdoesnotencloses
@, 9S=| -
14pkg if Sdoesencloses

Next, suppose there are a finite number of point charges g, ats;,q, as,,...,and

g, ats,. Suppose E; isthe electric intengity due to ¢;. Then it should be clear that the

electric field due to these chargesis smply the sum

I’-SJ—

E(r)= E = ka q——>3 i |3 :

j—l

Also,

-—1I S i
E(r) =-NV(r).
Findly,
GF *dS = 4pk3 g
s

where the sum is over those charges enclosed by S.
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Things become more exciting if instead of point charges, we have a charge
distribution in space with charge density r . To find the electric field E(r)produced by
this distribution of charge in space, we need to integrate:

=) = @i (s) |)

But this appears to be a serious breach of decorum. We are integrating over everything,
and a s=r we have the dreaded O in the denominator. Thus what we see above is an
improper integral—that is, it is actually a limit of integrals. Specifically, we integrate not
over everything but over everything outside a spherical solid region of radius a centered at
r. We then look at the limit as a® 0of this integral. With the integra for the electric
field, this limit exists, and so there is no problem with O on the bottom of the integrand. In

the same way, we are safe in writing for the potential

sy T (9)

Everything works nicely so that we aso have
E(r) =-NV(r).
If Risasolid region bounded by a closed surface S, then we can also integrate to get
(= >dS = 4pk (py (S)av.
s R

The divergence of E is the troublesome item in extending matters to distributed

charge. If we smply try to calculate the divergence by dlvc‘ﬁguff dVv = quyliv(stuff)av,
U

then things go wrong because the improper integral of the divergence does not exist.
Gauss saves the day. Let R be any region and let S be the closed surface bounding R.
Then

QF *dS= N € dV .
S R
But from equation (*) we have

GBF *dS = 4pk Gy (9aV = G E aV .
S R R

Thisgivesus

194



Quyekr dv = N *E dV , or
R R
QRN >E - pkr Jav .
R
But Risany region, and so it must be true that
N xE = 4pkr
fordlr.
Finally, remembering that E =- NV , we get
N>E =-NxNV) = 4pkr ;
N2V = -4pkr , or
2 2 2
TV + TV + TV
™ Iy 12
Thisisthe celebrated Poisson’ s Equation, ajustly famous partia differential equation, the

= - dpkr .

study of which is beyond the scope of this course.
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Taylor’s Theorem

1. Introduction. Suppose f is a one-variable function that has n+ 1 derivatives on an interva

about the point x = a. Then recall from Ms. Turner’s class the single variable version of Taylor's

Theorem tells us that there is exactly one polynomia p of degree < n such that p(a) = f(a),

p'(a) = f'(a), p'(a) = f'(a),...,p™(a) = f™(a). This polynomid is given by

f/l(a)
2!

We also know the difference between f(x) and p(x):

p(X) = f(@) + f (@) (x— &) + (x—a)2+...+fr(]—n|)(x—a)”

(n+1)
100~ PO) = o (-,

where & is somewhere between a and x.
The polynomial p is caled the Taylor Polynomial of degree< nfor f a a.

Before we worry about what the Taylor polynomia might be in higher dimensions, we need to be
sure we understand what is a polynomia in more than one dimension. In two dimensions, a
polynomia p(x,y) of degree < nisafunction of the form

i+j=n

p(x,y) = Zaijxiyj.

ij=0

Thus a polynomia of degree < 2 (perhaps more commonly known as a quadratic) looks like
p(X, y) = Qpp + A10X + Ap1Y + +a11Xy + a20x2 + a()zyz.

| hope it easy to guess what one means by a polynomial in three variables, (x,y,2), or indeed, in
any number of variables.

Now, how might we extend the idea of the Taylor polynomia of degree < n for a function f a a
point a ? Simple enough. It’s a polynomia p(x) of degree < n so that

ai1+...+iqf(a) _ ai1+...+iqp(a)
OXOXZ...oxg  OXEOXZ...oxg

foralliy,ip,...,igsuchthatis+iz+... +ig < n.

This looks pretty ferocious in general, so let’s see what it says for just two variables. In this case,
we have a =(a, b) and the Taylor polynomial p(x,y) at a becomes the polynomia such that



foradli+j <n.

Example

o"f(a) _ o"ip(a)
o'xoly o'xoly '

Let f(x,y) = cos(x+Yy), and let p(x,y) = 1—— —xy—y—zz. Let's verify that p is the Taylor
polynomia of degree< 2 for f at (0,0). He we go.

Now it's easy to see that

Exercises

f(0,0) = 1, and p(0,0) =

gf —gn(x+Yy), and ap =-—X-Y,
%f/ = —dn(x+Yy), and 65 =-—X-Y,
gg = —cos(x+Y), and v p -1,

gyg = —cos(x+Y), and g—yp =-1,
a?(afy = —cos(x+Y), and gj@@ =-1.

f(0,0) = 0 = p(0,0);
of _og_9p .
o (0.0 =0=—=-(00);

of _ 0 ap )
£ 0,00 =0= = (0, 0);
0%t _ 1 6 p
g (0,00 =-1= (O 0);

a—25(0,0) — 1= ﬂ(o,O); and

axay axay 09 = axay P00,

1. Verify that the polynomid in the Example is aso the Taylor polynomia for f at (0,0) of degree

<3

2. Let f(x,y) = sn(x+ y).Which Which of the following is the Taylor polynomid of degree < 2 for

fat (0,0)? Explain.
Q) p(x,y) = 1+x* +y?

b) p(x,y) = xy



C) p(Xy) = X% +xy +2y d) p(x,y) = x+y

2. Derivatives. Prior to finding a general recipe for the Taylor polynomial, we need look at finding
higher order derivatives of certain composite functions. Let f be a real-valued function defined on a
subset of RY. Suppose that in a neighborhood of the point X, the function f has a lot of continuous
partial derivatives. Define the function g by

g(t) = f(a+th),

where a = (a1,@z,...,8q) and h = (hy,hy,...,hg). We know from the chain rule that g'(t) is
given by

g'(t) = Vf(a+th) « h

_ of of of .
B (8X1’ Ox2 ' OXq ) (hy,ho,...,hg)

— [ h,=0— 0 0
- (hl X, +h; gt +hq o )f

In keeping with our general practice of restricting ourselves to dimensions one, two, or three, let’'s
look first at the case g = 2. Asusual, we'll writex =(x,y) and h = (h,k). The expression for g'(t)
now looks like:

(atth)

') — [ hO_ 4 kO
g(t)—(hax+kay)f

(x+th)

We are now in business, for we have a nice recipe for higher order derivativesof g :

g™ (1) = (hi +ki) f

OX oy (x+th)
For example,
’ o 1.0 Y
g'(t) (ha—+ka—y) f
_ 2 0 0 2 0
_(h82+2hk8x8 +k82>f
_ 2o f 0%t 2 0%
=Moo TRy TR e
Example

Suppose f(x,y) = x?y3 +y? . Let’s find the second derivative of the function

gt) = f(1+3t,-2+1)



First,

1" i 0

9o = ( ox )
q.0%f 82f 0f

"ax2 "y T oy

Now, & = 2¢% and & = 3x%y2+2y, and s0 <L = 2%, £ = 6y? and

Thus,

azf

= 6X2y + 2.

g'(t) = 18(-2+1)3 +36(-2+1)% + 6(1 + 3t)2(-2+1) + 2

Exercises
3. Let f(x,y) = xe¥. Find the derivative of g(t) = f(1+1t,3 — 4t).

4. Find the second derivative of the function g defined in Problem 3.
5. Let F(u,v) = uv + v2. Find the second derivative of R(2) = F(z, 32).
6. Find g"'(t), where g is the function defined in the Example.

3. The Taylor polynomial. To find the Taylor polynomial for a function f of several variables at a
point a, we shall smply apply the one-dimensional resultsto the function

g(t) = f(a+th).

Thus,

(m) 0 (n+1) n
g(t)—Zg Lin L i

where £ isanumber between 0 and t. Next, substitutet = 1 into the above:

(m) (*+1)
g(D) = f(a) = Zg U %n+§!)

We know the value of g from Section 2:

n

f(a+h)=Z% (hla?( +h28L;(2+ +hqa )f(a)
m=



—+

n+1
0 0 _0_
(n+1l (hl o + hy % +...+hq g ) f(c)

The point ¢ lies somewhere on the line segment joining a and a + h.
The polynomial
n

p(h) =p(h1,h2,...,hq)=2 (hla?( +ha=S— + . +hqa )f(a)

m=0 8X2

isthe Taylor polynomid of degree < nfor f at a; the last term is traditionally called the error term
or sometimes, the remainder term. Actudly, if welet h = x — a, then q(x) =p(x — a) isthething
we called the Taylor polynomid in the first section.

Thisis pretty fierce looking. Let’ s look at the two variable case:

n

m
f(ay +h,as + K) = (h 0 4 k2 ) f(ay,az)
; OX oy

n+1
+ at (h& kg ) e

where (c1,C2) isonthelinejoining (a1,a2) and (a1 + h,az + k).
Example

Let f(x,y) = snxsny. Forn = 2and a = (0,0), Taylor' s polynomia becomes

_ of of h? o%f 5 f k2 0%
p(h,k) = f(0,0) + h o (0,0) +k oy (0,0) + 2 o (0,0) + hk (0 0)+ y2 (0,0
We have
& = cosxsiny; 4 = sinxcosy; <L = -sinxsiny; £L = cosxcosy, 2722 — —sinxsiny.

Thus,
p(h,k) = hk.

Let’s get an estimate for how well this approximates sinxsiny near (0, 0). We know that
ginxsiny vl = | & (2 +y2 ) Hew
37 ox ay

where (&, ) is one the segment joining (x,y) and the origin. Now,



3
0 0 _ 3.0 2, 0f 203 3. 0%
(Xax +yay) P=Xoe Yoy " o7 Vo

Next, let's suppose that [x| < c and |y| < c for some constant c. Noting that al the partial
derivatives in the above expression are smply products of sine and cosines, we can estimate

3
0 4y O 3
(Xax +y6y) f| < 8c?,
and s, at last,
lsinxsiny — xy| < 8TC3 = %c3
Exercises

7. Findthe Taylor polynomia of degree< 1 for f(x,y) = ¥ a (0,0).

8. Findthe Taylor polynomia of degree< 2 for f(x,y) = ¥ a (0,0).

9. Findthe Taylor polynomia of degree< 3 for f(x,y) = €9 at (0,0).

10. Find the Taylor polynomia of degree < 1 for f(x,y) = e*cosy at (0, 0).

11. Use Taylor’s Theorem to find a quadratic approximation of e* cosy at the origin.

12. Estimate the error in the approximation found in Problem 11 if [x| < 0.1 and Jy| < 0.1.



