CLASSICAL GEOMETRY — LECTURE NOTES

DANNY CALEGARI

1. A CRASH COURSE IN GROUP THEORY

A groupis an algebraic object which formalizes the mathematical notion which ex-
presses the intuitive idea symmetry We start with an abstract definition.

Definition 1.1. A groupis a set and an operatiom : G x G — G calledmultiplication
with the following properties:

(1) m is associative That is, for anya, b, c € G,
m(a’ m(b’ C)) = m(m(a7 b)? C)

and the product can be written unambiguouslyas
(2) There is a unique elemeate G calledthe identitywith the properties that, for
anya € G,
ae = ea = a
(3) For anya € G there is a unique element @ denotecz—! calledthe inverseof a
such that
aal=ata=e

Given an object with some structural qualities, we can study the symmetries of that
object; namely, the set of transformations of the object to itself which preserve the structure
in question. Obviously, symmetries can be composed associatively, since the effect of a
symmetry on the object doesn’t depend on what sequence of symmetries we applied to the
object in the past. Moreover, the transformation which does nothing preserves the structure
of the object. Finally, symmetries are reversible — performing the opposite of a symmetry
is itself a symmetry. Thus, the symmetries of an object (also calledutemorphismsf
an object) are an example of a group.

The power of the abstract idea of a group is that the symmetries can be studied by
themselves, without requiring them to be tied to the object they are transforming. So for
instance, the same group can act by symmetries of many different objects, or on the same
object in many different ways.

Examplel.2 The group with only one elementand multiplicatione x e = e is called
thetrivial group.

Examplel.3. The integerZ with m(a,b) = a + b is a group, with identity.
Examplel.4. The positive real numbei&* with m(a, b) = ab is a group, with identityl .

Examplel.5 The group with two elementsven andodd and “multiplication” given by
the usual rules of addition of even and odd numbers; hete is the identity element.
This group is denoted /27Z.

Examplel.6. The group of integers mod is a group withm(a,b) = a + b mod n and
identity 0. This group is denotedl /nZ and also byC,,, thecyclic group of length.
1
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Definition 1.7. If G andH are groups, one can form tRartesian productdenoted7¢ H .
This is a group whose elements are the elementsoff wherem : (Gx H)x(GxH) —
G x H is defined by

m((g1, h1), (g2, he)) = (ma(91, 92), mu (hi, he))
The identity element igeq, e ).

Examplel.8 Let S be a regular tetrahedron; label opposite pairs of edged, by, C.
Then the group of symmetries which preserves the labels/®. & Z/27Z. It is also
known as the<lein 4—group

In all of the examples abovey(a,b) = m(b,a). A group with this property is called
commutativeor Abelian Not all groups are Abelian!

Examplel.9. Let T be an equilateral triangle with sides B, C' opposite vertices, b, ¢

in anticlockwise order. The symmetriesBfare the reflections in the lines running from

the corners to the midpoints of opposite sides, and the rotations. There are three possible
rotations, through anticlockwise angle /3, 47 /3 which can be thought of asw, w?.
Observe thatv~! = w2. Letr, be a reflection through the line from the vertexo

the midpoint ofA. Thenr, = r;! and similarly forr,,r.. Thenw=lr,w = r. but
rew 'w = 14 SO this group is1ot commutativelt is callec thedihedral groupDs and has

6 elements.

Examplel.1Q If P is an equilaterah—gon, the symmetries are reflections as above and
rotations. This is called thdihedral groupD,, and ha2n elements. The elements are
e,w,w? ... W't =wtandry, e, ..., r, wherer? = e forall i, rir; = w2(i=7) and
w‘lriw =7i—1-

Examplel.11 The symmetries of an “equilaterad—gon” (i.e. the unique infinite—valent
tree) defines a group ., theinfinite dihedral group

Examplel.12 The set of2 x 2 matrices whose entries are real numbers and whose de-
terminants do not vanish is a group, where multiplication is the usual multiplication of
matrices. The set @&ll 2 x 2 matrices imotnaturally a group, since some matrices are not
invertible.

Examplel.13 The group of permutations of the dgt. . . n} is called thesymmetric group

S,.. A permutation breaks the set up into subsets on which it acts by cycling the members.
For example(3,2,4)(5,1) denotes the element 8§ which takesl — 5,2 — 4,3 —

2,4 — 3,5 — 1. The groupS,, hasn! elements. Aranspositionis a permutation which
interchanges exactly two elements. A permutatioevienif it can be written as a product

of an even number of transpositions, ardt otherwise.

Exercise 1.14.Show that the symmetric group is hot commutativeifor 2. IdentifySs
andS, as groups of rigid motions of familiar objects. Show that an even permutation is
not an odd permutation, and vice versa.

Definition 1.15. A subgroupH of G is a subset such thatif € H thenh~! € H, and

if hi,hy € H thenhihy € H. With its inherited multiplication operation fro@, H is

a group. Thaight cosetsof H in G are the equivalence classigs$ of elementsy € G
where the equivalence relation is given fy~ g- if and only if there is arh € H with

g1 = g2h.

Exercise 1.16.If H is finite, the number of elements@fin each equivalence class are
equal to| H|, the number of elements #. Consequently, ifG| is finite,| H| divides|G|.
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Exercise 1.17.Show that the subset of even permutations is a subgroup of the symmetric
group, known as thalternating grouand denotedd,,. Identify A5 as a group of rigid
motions of a familiar object.

Examplel.18 Given a collection of element§y;} C G (not necessarily finite or even
countable), thesubgroup generated by the is the subgroup whose elements are obtained
by multiplying togethefinitely many of theg; and their inverses in some order.

Exercise 1.19.Why are only finite multiplications allowed in defining subgroups? Show
that a group in which infinite multiplication makes sense is a trivial group. This fact is not
as useless as it might seem . . .

Definition 1.20. A group iscyclicif it is generated by a single element. This justifies the
notationC,, for Z/nZ used before.

Definition 1.21. A homomorphisnbetween groups is a map : G; — G2 such that
flg1)f(g2) = f(g1g2) for any gy, g2 in G1. Thekernelof a homomorphism is the sub-
group K C G, defined byK = f~!(e). If K = e then we sayf is injective If every
element ofGs is in the image off, we say it issurjective A homomorphism which is
injective and surjective is called asomorphism

Examplel.22 Every finite groupG is isomorphic to a subgroup &, wheren is the
number of elements iG. For, letb : G — {1,...,n} be a bijection, and identify an
elementy with the permutation which takégh) — b(gh) for all h.

Definition 1.23. An exact sequenagf groups is a (possibly terminating in either direction)
sequence

=Gy — Gy — Gigo — ..
joined by a sequence of homomorphisims: G; — G;.1 such that themageof h; is
equal to thekernelof h;; for each.

Definition 1.24. If a,b € G, thenbab~! is calledthe conjugateof a by b, andaba~'b~1
is calledthe commutatoof a« andb. Abelian groups are characterized by the property that
a conjugate of: is equal toa and every commutator is trivial.

Definition 1.25. A subgroupN C G is normal denotedN « G if foranyn € N and

g € G we havegng—' € N. A kernel of a homomorphism is normal. ConverselyNif

is normal, we can define thguotient groupG /N whose elements are equivalence classes
[g] of elements inG, and two elements, k. are equivalent ifiy = hn for somen € N.
The multiplication is given byn([g], [h]) = [gh] and the fact thalv is normal says this is
well-defined. Thus normal subgroups are exactly kernels of homomorphisms.

Examplel.26 Any subgroup of an abelian group is hormal.

Examplel.27. Z is a normal subgroup dk. The quotient groufR/Z is also calledhe
circle groupS*. Can you see why?

Examplel.28 Let D,, be the dihedral group, and I€t, be the subgroup generated by
ThenC,, is normal, andD,,/C,, = Z/2Z.

Definition 1.29. If G is a group, the subgrou@; generated by the commutatorsaGhis
called thecommutator subgroupf G. Let G5 be the subgroup generated by commutators
of elements of7 with elements of7,. We denote>, = [G, G] andG, = [G, G1]. Define

G; inductively by G, = [G,G;_1]. The elements of7; are the elements which can be
written as products of iterated commutators of lengtlf G; is trivial for somei — that
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is, there is some such that every commutator of lengtin G is trivial — we sayG is
nilpotent
Observe that everg; is normal, and every quotiei/G; is nilpotent.

Definition 1.30. If G is a group, letG° = G, and defineG® = [G~L, G771, If Gl is
trivial for somei, we say that7 is solvable Again, everyG*® is normal and everg /G" is
solvable. Obviously a nilpotent group is solvable.

Definition 1.31. An isomorphism of a grougx to itself is called armutomorphismThe set
of automorphisms of7 is naturally a group, denoted Al@). There is a homomorphism
from p : G — Aut(G) whereg goes to the automorphism consistingooinjugation by
g- Thatis,p(g)(h) = ghg~! for anyh € G. The automorphisms in the image pfare
calledinner automorphismsand are denoted by 10&). They form a normal subgroup of
Aut(G). The quotient group is called the groupafter automorphismand is denote by
Out(G) = Aut(G)/Inn(G).

Definition 1.32. Suppose we have two grougs H and a homomorphismp : G —
Aut(H). Then we can form a new group calléide semi—direct product off and H
denoted> x H whose elements are the element&iok H and multiplication is given by

m((g1, 1), (92, h2)) = (9192, h1p(g1)(h2))
Observe tha# is a normal subgroup d@f x H, and there is an exact sequence
1-H—-GxH-—-G—1

Examplel.33 The dihedral grou,, is equal toZ /27 x C,, where the homomorphism
p: Z/27 — Aut(C,,) takes the generator @/2Z to the automorphisny — w~!, where
w denotes the generator 6f,.

Examplel.34 The groupZ/27Z x R where the nontrivial element /27 acts onR
by x — —uz is isomorphic to the group asometries(i.e. 1-1 and distance preserving
transformations) of the real line. It contaihs,, as a subgroup.

Exercise 1.35.Find an action ofZ/27Z on the groupS* so thatD,, is a subgroup of
7./27 x S* for everyn.

Examplel.36 The group whose elements consist of words in the alphatetd, B sub-
ject to the equivalence relation that when onexdf Aa,bB, Bb appear in a word, they
may be removed, so for example

aBaAbb ~ aBbb ~ ab

A word in which none of these special subwords appears is cadtheted it is clear that

the equivalence classes arelirl correspondence with reduced words. Multiplication is
given by concatenation of words. The identity is the empty ward; a1, B = b~ L. In
general, the inverse of a word is obtained by reversing the order of the letters and changing
the case. This is called tHeee groupFy on two generatorsin this case the letters, b.

It is easy to generalize to tHeee groupF,, on n generators given by words in letters
ay,...,a, and their “inverse letters4,, ..., A,,. One can also denote the lettets by

the “letters”a; *.

Exercise 1.37.Let G be an arbitrary group andj, g . . . g, a finite subset ofs. Show
that there is auniquehomomorphism fronk,, — G sendinga; — g;.
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Examplel.38 If we have an alphabet consisting of lettess. . ., a,, and their inverses,
we can consider a collection of words in these letters. . , r,,,. If R denotes the subgroup
of F,, generated by the; and all their conjugates, theR is a normal subroup of’,, and
we can form the quotierft;,/R. This is denoted by

(a1, yan|r1, .y 7m)
and an equivalent description is that it is the group whose elements are wordsdin the
and their inverses modulo the equivalence relation that two words are equivalent if they
are equivalent in the free group, or if one can be obtained from the other by inserting or
deleting some-; or its inverse as a subword somewhere. theare thegeneratorsand
ther; therelations Groups defined this way are very important in topology. Notice that a
presentatiorof a group in terms of generators and relations is far from unique.

Definition 1.39. A group G is finitely generatedf there is a finite subset aof which
generatess. This is equivalent to the property that there is a surjective homomorphism
from someF,, to G. A groupG is finitely presentedf it can be expressed gsi|R) for
some finite set of generatorsand relationsR.

Exercise 1.40.Let G be any finite group. Show thét is finitely presented.

Exercise 1.41.Let F; be the free group on generatoisy. Leti : F, — Z be the
homomorphism which takes — 1 andy — 1. Show that the kernel dfis not finitely
generated.

Exercise 1.42.(Harder). Leti : Fy, & F> — Z be the homomorphism which restricts on
either factor toi in the previous exercise. Show that the kernéelisffinitely generated but
notfinitely presented.

Definition 1.43. Given groups>, H thefree product ofG and H, denoted> x H, is the
group of words whose letters alternate between elemeiitswoid H, with concatenation as
multiplication, and the obvious proviso that the identity is in eitfiesr H. Itis the unique
group with theuniversal propertyhat there are injective homomorphisias: G — Gx H
andig : H — G * H, and given any other groupand homomorphismg; : G — I and
ju : H — I there is auniguehomomorphisne from G « H to I satisfyingc o i¢ = jg
andc o g = ]H
Exercise 1.44.Show that« defines an associative and commutative product on groups up
to isomorphism, and

F,=ZxZx---x7Z
where we take: copies ofZ in the product above.

Exercise 1.45.Show thatZ/27Z « /27 = D..

Remarkl.46 Actually, one can extendto infinite (even uncountable) products of groups
by the universal property. If one has an arbitraryS#tefree group generated by is the
free product of a collection of copies @f one for each element ¢f.

Exercise 1.47.(Hard). Every subgroup of a free group is free.

Definition 1.48. A topological groupis a group which is also a space (i.e. we understand
what continuous maps of the space are) suchsthatG x G — G andi : G — G, the
multiplication and inverse maps respectively, aomtinuous If G is asmooth manifold
(see appendix for definition) and the mapsand: are smooth maps, theRis called aLie

group.
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Remarkl.49 Actually, the usual definition of Lie group requires tliabe areal analytic
manifoldand that the maps: and be real analytic. A real analytic manifold is like a
smooth manifold, except that the co—ordinate transformations between charts are required
to be real analytic, rather than merely smooth. It turns out thatcempected, locally
connected, locally compa¢see appendix for definition) topological group is actually a

Lie group.

2. MODEL GEOMETRIES IN DIMENSION TWO

2.1. The Euclidean plane.

2.1.1. Euclid’s axioms.
Notation 2.1. The Euclidean plane will be denoted By.

Euclid, who taught at Alexandria in Egypt and lived from about 325 BC to 265 BC,
is thought to have written 13 famous mathematical books calledEments In these
are found the earliest (?) historical example of gxéomatic method Euclid proposed
5 postulates or axioms of geometry, from which all true statements about the Euclidean
plane were supposed to inevitably follow. These axioms were as follows:

(1) A straight line segment can be drawn joining any two points.

(2) Any straight line segment is contained in a unique straight line.

(3) Givenany straight line segment, a circle can be drawn having the segment as radius
and one endpoint as center.

(4) Allright angles are congruent.

(5) One and only one line can be drawn through a point parallel to a given line.

The termspoint, line, planeare supposed to be primitive concepts, in the sense that they
can't be described in terms of simpler concepts. Since they are not defined, one is not
supposed to use one’s personal notions or intuitions about these objects to prove theorems
about them; one strategy to achieve this end is to replace the terms by other terms (Hilbert’s
suggestion igylass, beer mat, tabjeQueneau’s isvord, sentence, paragraplor even
nonsense terms. The point is not that intuition is worthless (ibty but that by proving
theorems about objects by only using the properties expressed in a list of axioms, the proof
immediately applies to any other objects which satisfy the same list of axioms, including
collections of objects that one might not have originally had in mind. In this way, our
ordinary geometric intuitions of space and movement can be used to reason about objects
far from our immediate experience. One important remark to make is that, by modern
standards, Euclid’s foundations are far from rigorous. For instance, it is implicit in the
statement of the axioms thahgles can be addedut nowhere is it said what properties

this addition satisfies; angles aretnumbers, neither are lengths, but they have properties

in common with them.

2.1.2. A closer look at the fourth postulatélotice that Euclid does not define “congru-
ence”. A working definition is that two figure¥ andY in a spaceZ arecongruentif there

is a transformation of which takesX to Y. But which transformations are allowed? By
including certain kinds of transformations and excluding others, we can drastically affect
the flavor of the geometry in question. If not enough transformations are allowed, distinct
objects are incomparable and one cannot say anything meaningful about them. If too many
transformations are allowed, differences collapse and the supply of distinct objects to in-
vestigate dries up. One way of reformulating the fourth postulate is to say that space is
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homogeneousthat is, the properties of an object do not depend on where it is placed in
space. Most of the spaces we will encounter in the sequel will be homogeneous.

2.1.3. A closer look at the parallel postulatélhe fifth axiom above is also known as the
parallel postulate To decode it, one needs a workable definition of parallel. The “usual”
definition is that two distinct lines are parallel if and only if they do not intersect. So the
postulate says that given a lineand a pointp disjoint from [, there is a unique ling,
throughp such that,, and! are disjoint. Historically, this axiom was seen as unsatisfying,
and much effort was put into attempts to show that it followed inevitably as a consequence
of the other four axioms. Such an attempt was doomed to failure, for the simple reason
that there are interpretations of the “undefined concepts” point, line, plane which satisfy
the first four axioms but which doot satisfy the fifth. If we say that givehandp there

is noline [, throughp which does not interseét we getelliptic geometry If we say that
given! andp there arenfinitely manylines{, throughp which do not intersed, we get
hyperbolic geometryTogether with Euclidean geometry, these geometries will be the main
focus of this course.

2.1.4. Symmetries aE2. What are the “allowable” transformations in Euclidean geome-
try? That is, what are the transformationsifwhich preserve the geometrical properties
which characterize it? These special transformations are calleytmmetriegalso called
automorphismpof E2; they form agroup, which we will denote by AufE?). A symmetry

of E? takes lines to lines, and preserves angles, but a symmefEy dbesnot have to
preserve lengths. A symmetry can either preserve or reverse orientation. Basic symmetries
includetranslations, rotations, reflections, dilationk turns out that all symmetries @&

can be expressed as simple combinations of these.

Exercise 2.2.Let f : E2 — [E? be orientation—reversing. Show that there is a unique line
[ such thatf can be written agy o r wherer is a reflection inl and g is an orientation—
preserving symmetry which fixesn which casey is either a translation parallel té or a
dilation whose center is oh A reflection inl followed by a translation parallel tdis also
called aglide reflection

Denote by Aut (E?) the orientation—preserving symmetries, and by IS¢B?) the
orientation—preserving symmetries which are also distance—preserving.

Exercise 2.3.Suppose : E2 — E? is in Aut" (E?) but not in Isoni (E?). Then there is a
unique pointp fixed byf, and we can writef asr o d whered is a dilation with centep
andr is a rotation with centep.

Exercise 2.4.Supposg € Isom' (IE?). Then eitherf is a rotation or a translation, and it
is a translation exactly when it does not have a fixed point. In either gasan be written
asry o o Wherer; is a reflection in some ling. f is a translation exactly wheh andis
are parallel.

These exercises show that any distance—preserving symmetry can be written as a prod-
uct of at most3 reflections. An interesting feature of these exercises is that they can be
establishedvithout using the parallel postulateSo they describe true facts (where rele-
vant) about elliptic and about hyperbolic geometry. So, for instance, a distance preserving
symmetry of the hyperbolic plane can be written as a proguctr, of reflections in lines
l1, 12, and this transformation has a fixed point if and only if the lihg$, intersect.

Exercise 2.5. Verify that the group obrientation—preservingimilarities of E? which fix
the origin is isomorphic t&*, the group of non—zero complex numbers with multiplication
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as the group operation. Verify too that the group of translation&fs isomorphic taC
with addition as the group operation.

Exercise 2.6.Verify that the group Adt(IE?) of orientation—preserving similarities & is
isomorphic taC* x C whereC* acts onC by multiplication. In this way identify At{E?)
with the group o2 x 2 complex matrices of the form

a B

0 1
and Isont (E?) with the subgroup whergy| = 1.
2.2. The 2—sphere.

2.2.1. Elliptic geometry.
Notation 2.7. The 2—sphere will be denoted (§7.

A very interesting “re—interpretation” of Euclid’s firgtaxioms gives us elliptic geom-
etry. A pointin elliptic geometry consists dfvo antipodal pointsn S2. A line in elliptic
geometry consists ofgreat circlein S?. Theantipodalmapi : S? — S? is the map which
takes any point to its antipodal point. A “line” or “point” with the interpretation above is
invariant (as a set) undérso we may think of the action as all taking place in the “quotient
space”S?/i. An object in this quotient space is just an objecStwhich is invariant as
a set byi. Any two great circles intersect in a pair of antipodal points, which is a single
“point” in S?/i. If we think of S* as a subset dE3, a great circle is the intersection of the
sphere with a plane ii® through the origin. A pair of antipodal points is the intersection
of the sphere with a line ift? through the origin. Thus, the geometryS¥/i is equivalent
to the geometry of planes and lineslii. A plane inE? through the origin is perpen-
dicular to a unique line ifE? through the origin, and vice—versa. This defines a “duality”
between lines and points 87 /4; so for any theorem one proves about lines and points in
elliptic geometry, there is an analogous “dual” theorem with the idea of “line” and “point”
interchanged. Lef denote the transformation which takes points to lines and vice versa.

Circles and angles make sense on a sphere, and one sees that4laxfosts of Euclid
are satisfied in this model.

As distinct from Euclidean geometry where there are symmetries which change lengths,
there is a natural length scale on the sphere. We set the diameter eal to

2.2.2. Spherical trigonometry An example of this duality (and a justification of the choice
of length scale) is given by the following

Lemma 2.8(Spherical law of sines)If T is a spherical triangle with side—lengthg B, C
and opposite angles, 3, v, then
sin(4)  sin(B) _ sin(C)
sin(a)  sin(B)  sin(7y)
Notice that the triangle/(T") has side lengthér — «), (7 — ), (m — 7) and angles
(m — A),(r — B),(m — C). Notice too thatsin(¢) ~ t for small¢, so that ifT" is a
very small triangle, this formula approximates the sine rule for Euclidean spac&? Let

denote the sphere scaled to have diam2#er then the termziiﬁ% in the spherical sine

rule should be replaced with“i:;f(%. In this way we may think oE? as the “limit” as
t — oo of S2.
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Exercise 2.9. Prove the spherical law of sines. Think of the side¥ afs the intersection
of S? with planesr; through the origin inE?, intersecting in lineg; in E2. Then the lengths
A, B, C are the angles between tligand the anglesy, 3, ~ are the angles between the
planesr;.

2.2.3. The area of a spherical trianglelf L is a lune ofS? between the longitude and
the longituden, then the area af is 2a.

Now, letT be an arbitrary spherical triangle. If is bounded by sideg which meet
at verticesy; then we can extend the sidgsto great circles which cut u§? into eight
regions. Each pair of lines bound two lunes, and the six lunes so produced fall into two
sets of three which intersect exactly along the triarfgknd the antipodal triangléT). It
follows that we can calculate the areaSoés follows

4m = aredS”) = ) aredlunes — 4 aredT) = 4(o + 3+ 7) — 4 aredT)

In particular, we have the beautiful formula, which is a special case of the Gauss—Bonnet
theorem:

Theorem 2.10. LetT be a spherical triangle with angles, 5,~v. Then
aredT)=a+0+v—m

Notice that ag" gets very small and the area 0, the sum of the angles @f approach
m. Thus in the limit, we have Euclidean geometry in which the sum of the angles of
a triangle arer. The angle formula for Euclidean triangles is equivalent to the parallel
postulate.

Exercise 2.11.Derive a formula for the area of a spherical polygon withvertices in
terms of the angles.

Exercise 2.12.Using the spherical law of sines and the area formula, calculate the area
of a regular sphericah—gon with sides of length

2.2.4. Kissing numbers — the Newton—-Gregory probldi#ow many balls of radius can

be arranged ifE3 so that they all touch a fixed ball of radit® It is understood that the
balls are non—overlapping, but they may touch each other at a single point; figuratively,
one says that the balls are “kissing” or “osculating” (from the Latin word for kiss), and that
one wants to know thkissing numbem 3—dimensions.

Exercise 2.13.What is the kissing number Ir-dimensions? That is, how many disks of
radius1 can be arranged ift? so that they all touch a fixed disk of radili@

This question first arose in a conversation between Isaac Newton and David Gregory in
1694. Newton thought2 balls was the maximum; Gregory thought 13 might be possible.

It is quite easy to arrang&2 balls which all touch a fixed ball — arrange the centers at
the vertices of a regular icosahedron. If the distance from the center of the icosahedron
to the vertices i€, it turns out the distance between adjacent vertices %5103, so this
configuration can be physically realized (i.e. there is no overlapping). The problem is that
there is some slack in this configuration — the balls roll around, and it is unclear whether
by packing them more tightly there would be room for another ball.

Suppose we have a configuration of non—overlapping splte@stouching the central
sphereS. Letw; be the points oi$ where they all touch. The non—overlapping condition is
exactly equivalent to the condition that no two of theare a distance of less th&napart.

If some of theS; are loose, roll them around on the surface until they come into contact
with otherS;; it's clear that we can roll “looses5; around until everyS; touchesat least
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two otherS;, S. If S; touchesS;,,...,S; thenjoiny; tow; ,...,v; by segments of
great circles ord. This gives a decomposition éfinto spherical polygons, every edge of
which has lengttg.. It's easy to see that no polygon hasr more sides (why?).

Let f,, be the number of faces withsides. Then there a@fg +2f4+ §f5 edges, since
every edge is contained in two faces. Recall Euler’s formula for a polygonal decomposition
of a sphere

faces — edges+ vertices= 2

so the number of vertices &+ 3 f3 + f1 + 2 f

Exercise 2.14.Show that the largest spherical quadrilateral or pentagon with side lengths
% is the regular one. Use your formula for the area of such a polygon and the fact above
to show that the kissing numberig in 3—dimensions. This was first shown in the 19th
century.

Exercise 2.15.Show what we have implicitly assumed: namely that a connected nonempty
graph inS? with embedded edges, and no vertices of valénbas polygonal complemen-
tary regions.

Remark2.16 In 1951 Schutte and van der Waerden ([8]) found an arrangement of 13 unit
spheres which touches a central sphere of radias 1.04556 wherer is a root of the
polynomial

409626 — 18432412 + 24576210 — 1395228 + 40962° — 6082* + 3222 + 1
Thisr is thought to be optimal.

2.2.5. Reflections, rotations, involution$,0(3). By thinking of S? as the unit sphere in
[E3, and by thinking of points and lines §% as the intersection of the sphere with lines and
planes inE? we see that symmetries Bf extend to linear maps d? to itself which fix
the origin. These are expressed3as 3 matrices. The condition that a matrd¥ induce
a symmetry ofS? is exactly that it preserves distancesSn equivalently, it preserves the
angles between lines through the origirEih. Consequently, it takes orthonormal frames
to orthonormal frames. (&ameis another word for &asis)

Any frame can be expressed a8 a 3 matrix F', where the columns give each of the
vectors.F is orthonormal ifF'* F = id. If M preserves orthonormality, théti Mt M F =
id for every orthonormal; in particular,M*M = FF! = id. Observe that each of these
transformations actually induces a symmetréfin particular, we can identify the set of
symmetries ofS? with the set of orthonormal frames &°, which can be identified with
the set of3 x 3 matricesM satisfyingM®M = id. Itis easy to see that such matrices form
agroup, known as therthogonal groupand denoted (3). Thesubgroupof orientation—
preserving matrices (those with determinéptare denoteddO(3) and called thespecial
orthogonal group

Exercise 2.17.Show that every element 6f3) has an eigenvector with eigenvaluer
—1. Deduce that a symmetry $f is either a rotation, a reflection, or a produst » where

r is reflection in some great circleand s is a rotation which fixes that circle. (How is this
like a “glide reflection”?) In particular, every symmetry 8F is a product of at most three
reflections. Compare with the Euclidean case.

2.2.6. Algebraic groups.Once we have “algebraized” the geometryséfoy comparing it
with the group of matrice®(3) we can generalize in unexpected ways. Aelenote the
field of real algebraic numbers. That is, the element& afe the real roots of polynomials
with rational coefficients. I&,b € A andb # 0 thena + b, a — b, ab, a/b are all inA (this
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is the defining property of a field). There is a natural subgrou@ @) denotedD(3, A)
called the3—dimensional orthogonal group ovérwhich consists of th8 x 3 matricesi
with entries inA satisfyingM®M = id. Observe that this, too is a group.pf= (0,0, 1)
we can consider the subsgt(A), the set of points ir? which are translates gf by
elements oD (3, A).

We think of S?(A) as the points in a funny kind of space. Let

SY(A) = S*(A)n{z =0}

and define the set dihesin S?(A) as the translates ¢f' (A) by elements 0D (3, A).

First observe that if, » are any two points it5? (A ) thought of as vectors i&? then the
length of their vector cross—product isn If ¢, are two points inS?(A) then together
with 0 they lie on a planer(g, ). Then the triple

y gxr gxXr

4,9 X 57— 0o

llg > 7l llg x 7|l

is an orthonormal frame with co—ordinatesin If we think of this triple as an element of

O(3, A) then the image of!(A) containsg andr. Thus there is a “line” in5?(A) through
q andr. (Herex denotes the usual cross product of vectors.)

Exercise 2.18.Show that the se$?(A) is exactly the set of points & c E3 with co—
ordinates inA.

Exercise 2.19.Explore the extent to which Euclid’s axioms hold or fail to hold $8(A)
or S%(A)/i. What if one replaces with another field, likeQ?

Let O(2,A) be the subgroup aD(3, A) which fixes the vectop = (0,0, 1). Then if
M € O(2,A) andN € O(3,A), N(p) = NM(p). So we can identify5?(A) with the
quotient space(3,A)/0(2, A), which is the set of equivalence clas$dg whereN €
O(3,A) and[N] ~ [N']ifand only ifthere isa\l € O(2,A) with N = N’M. In general,
if F' denotes an arbitrary field, we can think of the gré)(3, F') as the set a3 x 3 matrices
with entries inF such thatM*M = id. This containg)(2, F') naturally as the subgroup
which fixes the vectof0, 0, 1), and we can study the quotient sp&eg, F')/O(2, F') as a
geometrical space in its own right. Notice tlia¢3, F') acts by symmetries on this space,
by M - [N] — [M N]. The quotient space is callechamogeneous space®f3, F').

Exercise 2.20.Let F' be the field of integers modulo multiplesDf What is the group
O(3, F')? How many points are in the spac¥3, F)/O(2, F)?

In general, if we have a group of matrices defined by some algebraic condition, for
instancedet(M) = 1 or MM =id or M*JM = J for J = _OI é etc. then we can
consider the group of matrices satisfying the condition with coefficients in some field. This
is called aralgebraic group Many properties of certain algebraic groups are independent
of the coefficient field. An algebraic group over a finite field is a finite group; such finite

groups are very important, and form the building blocks of “most” of finite group theory.

2.2.7. Quaternions and the grou$®. Recall that thequaternionsare elements of thé—
dimensional real vector space spannedlby j, & with multiplication which is linear in
each factor, and on the basis elements is given by

ij =k, jk=1iki=ji®=j5=k=-1
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This multiplication is associative. Thermof a quaternion, denoted by

lay + azi + asj + ask| = (af + a3 + a3 + af)"/?
is equal to the length of the corresponding vedtor, as, as, a4) in R*. Norms are mul-
tiplicative. That is,||a8| = |l«||||8||. The non-zero quaternions formgaoup under
multiplication; the unit quaternions, which correspond exactly the to the unit length vec-
tors inR*, are a subgroup which is denot8tl Let 7 be the set of quaternions of the form
1+ ai + bj + ck. Thenr is a copy ofR3, and is theangent spacéo the spher&? of unit
norm quaternions dt. The grouS acts onr by

a-z=a ‘za

for z € 7. Since it preserves lengths, the image is isomorphic to a subgroi@ ¢f, R),
which can be thought of as the group of orthogonal transformations dh fact, this
homomorphism isurjective Moreover, the kernel is exactly the centerS3f which is
+1. That is, we have the isomorphisti/ + 1 22 SO(3,R).

Exercise 2.21.Write down the formula for an explicit homomorphism, in terms of standard
quaternionic co—ordinates fd* and matrix co—ordinates fa§O(3, R).

In general, the conjugation action of a Lie group on its tangent space at the identity is
called theadjoint actionof the group. Since the group of linear transformations of this
vector space is a matrix group, this gives a homomorphism of the Lie group to a matrix

group.
2.3. The hyperbolic plane.

2.3.1. The problem of models.

Notation 2.22. The hyperbolic plane will be denoted By?.

The sphere is relatively easy to understand and visualize because there is a very nice
model of it in Euclidean space: the unit spheréfih Symmetries of the sphere extend
to symmetries of the ambient space, and distances and angles in the sphere are what one
expects from the ambient embedding. No such model exists of the hyperbolic plane. Bits of
the hyperbolic plane can be isometrically (i.e. in a distance—preserving way) embedded, but
not in such a way that the natural symmetries of the plane can be realized as symmetries of
the embedding. However, if we are willing to look at embeddings which distort distances,
there are some very nice models of the hyperbolic plane which one can play with and get
a good feel for.

2.3.2. The Poincaé Model: Suppose we imagine the world as being circumscribed by the
unit circle in the plane. In order to prevent people from falling off the edge, we make
the edges very cold. As everyone knows, objects shrink when they get cold, so people
wandering around on the disk would get smaller and smaller as they approached the edge,
so that its apparent distance (to them) would get larger and larger and they could never
reach it. Technically, the “length elements” at the pdinty) are

2dx 2dy
(1—a?—y?)" (1 -a2—y?)

or in polar co—ordinates, the “length elements” at the paifitare

2dr 2rdo
(=) =)
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This is called théPoincae metricon the unit disk, and the disk with this metric is called
the Poincate model of the hyperbolic plané/ith this choice of metric, the length of a

radial line from the origin to the poirt-, 0) is
" ( 1 —+7r1 )
= log
1-— 1
0

/” 2dr o 1+7r
o (1—r2)  Bl1s

If v is any other path from the origin {@, 0) whose Euclidean length isthen its length
in the hyperbolic metric is

hyperbolic length ofy = /l 2dt
» ’ 0 (1-2((®)
wherer(v(t)) is the distance from the point(¢) to the origin. Obviously] > r; and
r(y(t)) < t with equality if and only ify is a Euclidean straight line. This implies that the
shortest curvén the hyperbolic metrifrom the origin to a point in the disk is the Euclidean
straight line.
Notice that for a poinp at Euclidean distancefrom the boundary circle, the ratio of
the hyperbolic to the Euclidean metric is
2 1

1—(1—€2 ¢

for sufficiently smalle.

Exercise 2.23.(Hard). LetE be a simply—connected (i.e. without holes) domaiiR
bounded by a smooth curwe Define a “metric” on E' as follows. Letf be a smooth,
nowhere zero function oR which is equal todist(lTw for all p sufficiently close tg. Let

the length elements afi be given by(dx f, dy f) where(dx, dy) are the usual Euclidean
length elements. Show that there is a continuéu$,map¢ : £ — D which distorts the
lengths of curves by a bounded amount. That is, there is a conktant0 such that for

any curvex in E,

lengthy, (6(0) < lengthy () < Klengthy, (¢(a))

Definition 2.24. The circledD is called thecircle at infinityof D, and is denoted’ . A
pointin S. is called arideal point

Now think of the unit diskD as the set of complex numbers of notinl. Let «, 3 be
two complex numbers withy|? — | 32| = 1. The set of matrices of the form
[ B
M= [ : Oj
form a group, called thspecial unitary groupSU(1,1). This is exactly the group of
complex linear transformations @7 which preserves the functian(z, w) = |z|> — |w|?
and have determinamt These are the matricég of determinant satisfyinthJM =J

1 0
whereJ = [0 _1].

Exercise 2.25.DefinelU (1, 1) to be the group o2 x 2 complex matriced/ with MM =

J with J as above, and no condition on the determinant. Find the most general form of a
matrix inU(1,1). Show that these are exactly the matrices whose column vectors are an
orthonormal basis for the “norm” defined hy.
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Now, there is a natural action 6fU(1,1) on D by

[a ﬁ} az+ 3
RN

B « Bz 4+ &
Observe that two matrices which differ byl act onD in the same way. So the action
descends to the quotient groi/(1,1)/ + 1 which is denoted by SU(1,1) for the
projective special unitary group

Observe that this transformation preserves the boundary circle. Furthermore it takes
lines and circles to lines and circles, and preserves angles of intersection between them; in
particular, it permutes segments of lines and circles perpendicuidpto

Exercise 2.26.Show that there is a transformation IASU(1, 1) taking any point in the
interior of D to any other point.

Exercise 2.27.Show that the subgroup étSU (1, 1) fixing any point is isomorphic to a
circle. Deduce that we can identif with the coset spac®SU(1,1)/S'; i.e. Dis a
homogeneous space fBSU(1, 1).

Exercise 2.28.Show that the action aPSU(1, 1) preserves the Poincarmetric in D?.
Deduce that the shortest hyperbolic path between any two points is through an arc of a
circle orthogonal todD or, if the points are on the same diameter, by a segment of this
diameter.

2.3.3. The upper half-space modeThe upper half—spacedenotedH, is the set of points
z,y € R? with y > 0. Suppose now that the real line is chilled, so that distances in
this model are scaled in proportion to the distance to the boundary. That(is,jhco—
ordinates the “length elements” of the metric are

dr dy
Yy

Observe that translations parallel to theaxis preserve the metric, and are therefore isome-
tries. Also, dilations centered at points on theaxis preserve the metric too. The length
of a vertical line segment frorfx:, y1) to (z, y2) is

Y2 g
/ W o v2
n Y Y1

A similar argument to before shows that this is the shortest path between these two points.
The group of x 2 matrices with real coefficients and determinaig called thespecial

linear group and denotedsL(2,R) or SL(2) if the coefficients are understood. These

matrices act on the upper half—plane, thought of as a domdin liry

a f az+ 3
-z —

v o0 vz 40
Again, two matrices which differ by a constant multiple actliin the same way, so the
action descends to the quotient grasip(2,R)/ + 1 which is denoted byPSL(2, R) for
the projective special linear group

As before, these transformations take lines and circles to lines and circles, and preserve

the real line.

Exercise 2.29.Show that the action dPSL(2, R) preserves the metric dfi. Deduce that

the shortest hyperbolic path between any two points in the upper half—space is through an
arc of a circle orthogonal taR or, if the points are on the same vertical line, through a
segment of this line.




CLASSICAL GEOMETRY — LECTURE NOTES 15

Exercise 2.30.Find a transformation fromD to H which takes the Poincérmetric on
the disk to the hyperbolic metric dfi. Deduce that these models describe “the same”
geometry. Find an explicit isomorphishSL(2,R) = PSU(1,1).

2.3.4. The hyperboloid modelln R? let H denote the sheet of the hyperbolaiti+ 4> —
z? = —1 with z positive. LetO(2,1) denote the set of x 3 matrices with real entries
which preserve the function(z,y, 2) = 22 + y? — 22, andSO(2, 1) the subgroup with
determinant. Equivalently,O(2, 1) is the group of real matrice® such thatV/tJM = J
where

ThenSO(2,1) preserves the sheéf.

Definition 2.31. A vector v in R? is timelikeif v*Jv < 0, spacelikeif v*Jv > 0 and
lightlike if v*.Jv = 0. TheLorentz lengttof a vector is(v*.Jv)'/?, denoted|v||, and can
be positive, zero, or imaginary. Thienelike anglebetween two timelike vectors w is

¢
n(v,w) = cosh™* <M>

[[o]] ]l

Compare this with the usual angle between two vectoR’in

vhw
v(v,w) = cos ' | ———
| (nvn wn)

where in this equatioft- | denotes the usual length of a vector. Notice #Has exactly the

set of vectors of Lorentz length just asS? is the set of vectors of usual lengtthis has

led some people to comment that the hyperbolic plane should be thought of as a “sphere of
imaginary radius”). Since distances between poin&iare defined as the angle between

the vectors, it makes sense to define distancés as the timelike angle between vectors.

For two vectore, w € H the formula above simplifies to

n(v,w) = cosh™ (=o' Jw)
Exercise 2.32.Let K be the group of matrices of the form
[ cos(a) sin(a) 0
—sin(a) cos(a) 0
| 0 0 1
and A the group of matrices of the form
[cosh(y) 0 sinh(y)
0 1 0
|sinh(y) 0 cosh(y)

Show that every element 80(2, 1) can be expressed dsaks for somek,, k; € K and
a € A;thatis, we can writeSO(2,1) = K AK. How unique is such an expression?

Notice the group above is precisely the stabilizer of the poift0,1) € H. Thus we
can identify H with the homogeneous spafé(2,1)/K.

Exercise 2.33.Let K’ be the subgroup oPSL(2,R) consisting of matrices of the form
cos(a)  sin(a)

. and A’ the subgroup of matrices of the for 3 91 . Find an
—sin(a) cos(a) s
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isomorphism fromSO(2,1) to PSL(2,R) taking K to K’ and A to A’. (Careful! The
isomorphismK — K’ might not be the one you first think of . . .)

Remark2.34 The isomorphism&SU(1,1) = PSL(2,R) = SO(2,1) are known as
exceptional isomorphismand one should not assume that the matter is so simple in higher
dimensions. Such exceptional isomorphisms are rare and are a very powerful tool, since
difficult problems about one of the groups can become simpler when translated into a
problem about another of the groups.

After identifying PSL(2,R) with SO(2,1) we can identify their homogeneous spaces
PSL(2,R)/K’ and SO(2,1)/K. This identification ofH with H shows thatH is an
equivalent model of the hyperbolic plane. The straight line#/iare the intersection of
planes inR? through the origin with”. In many ways, the hyperboloid model of the
hyperbolic plane is the closest to the modeSéfas the unit sphere iR3.

Exercise 2.35.Show that the identification df with H preserves metrics.

Two vectorsv, w € R3 areLorentz orthogonaif v!Jw = 0. It is easy to see that if is
timelike, any orthogonal vectap is spacelike. Ifv € H andw is a tangent vector té&/ at
v, thenv!.Jw = 0, since the derivativel v + tw|| should be equal to at¢ = 0 (by the
definition of a tangent vector). For two spacelike vectgrs which span a spacelike vector
space, the value q% < 1, son(v,w) is an imaginary number. Thepacelike angle
betweerv andw is defined to be-in(v, w). Itis a fact that the hyperbolic angle between
two tangent vectors at a point if is exactly equal to their spacelike angle. The “proof”
of this fact is just that the symmetries of the spdfereserve this spacelike angle, and
the total spacelike angle of a circle2s. Since these two properties uniquely characterize
hyperbolic angles, the two notions of angle agree.

The fact that hyperbolic lengths and angles can be expressed so easily in terms of
trigonometric functions and linear algebra makes the hyperboloid model the model of
choice for doing hyperbolic trigopnometry.

2.3.5. The Klein (projective) modelLet D, be the disk consisting of points &3 with
2?2 +9?% < 1andz = 1. Then we can projed¥ to D; along rays ifR? which pass through
the origin.

Exercise 2.36.Verify that this stereographic projection is-1 and onto.

This projection takes the straight lines #h to (Euclidean) straight lines ifv,. This
gives us a new model of the hyperbolic plane as the unit disk, whose points are usual
points, and whose lines are exactly the segments of Euclidean lines which intBisect
One should be wary that Euclidean angles in this model do not accurately depict the true
hyperbolic angles. In this model, two linég [, are perpendicular under the following
circumstances:
e If [, passes through the origify, is perpendicular té, if any only if it is perpen-
dicular in the Euclidean sense.
e Otherwise, letn;, mo be the two tangent lines t8D; which pass through the
endpoints of;. Thenl; andl; are perpendicular if and only i, m, m intersect
in a point.

Exercise 2.37.Verify thatl; is perpendicular td, if and only ifls is perpendicular td;.

It is easy to verify in this model that all Euclid’s axioms but the fifth are satisfied.
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The relationship between the Klein model and the Poimcaodel is as follows: we
can map the Poincardisk to the northern hemisphere of the unit sphere by stereographic
projection. This preserves angles and takes lines and circles to lines and circles. In this
model, the straight lines are exactly the arcs of circles perpendicular to the equator. Then
the Klein model and this (curvy) Poinéamodel are related by placing thinking of the
Klein disk as the flat Euclidean disk spanning the equator, and magpirtg the upper
hemisphere by projecting points along lines parallel tozthaxis. This takes lines i,
to the intersection of the upper hemisphere with vertical planes. These intersections are
the circular arcs which are perpendicular to the equator, so this map takes straight lines to
straight lines as it should.

Exercise 2.38.Write down the metric inD; for the Klein model. Using this formula,
calculate the hyperbolic distance between the center and a point at radinsD; .

Exercise 2.39. Show thatPappus’ theorens true in the hyperbolic plane; this theorem
says that ifaq, a2, a3 and by, bo, by are points in two lined; andl,, then the six line
segments joining the; to theb; for ¢ # j intersect in three points which are collinear.

2.3.6. Hyperbolic trigonometry.Hyperbolic and spherical geometry are two sides of the
same coin. For many theorems in spherical geometry, there is an analogous theorem in
hyperbolic geometry. For instance, we have the

Lemma 2.40(Hyperbolic law of sines) If T"is a hyperbolic triangle with sides of length
A, B, C opposite angles, 3, v then
sinh(4) sinh(B)  sinh(C)

sin(a)  sin(B)  sin(y)
Exercise 2.41.Prove the hyperbolic law of sines by using the hyperboloid model and
trying to imitate the vector proof of the spherical law of sines.

2.3.7. The area of a hyperbolic triangleThe parallels between spherical and hyperbolic
geometry are carried further by the theorem for the area of a hyperbolic triangle. We relax
slightly the notion of a triangle: we allow some or all of the vertices of our triangle to be
ideal points. If all three vertices are ideal, we say that we havidead triangle Notice

that since every hyperbolic straight line is perpendiculastg the angle of a triangle at

an ideal point ig.

Theorem 2.42. LetT be a hyperbolic triangle with angles, 5, . Then
areaT)=n—a—p—7

Proof: Inthe upper half-space model, [Etbe the triangle with one ideal point &
and two ordinary points dtos(a), sin(a)) and(cos(w — 3), sin(w — 3)) in Euclidean co—
ordinates, wherey, 5 are both< 7 /2. Such a triangle has anglés«, 3. The hyperbolic

areais
cos(a) 00 1
/ / —dy |dx
r=cos(m—/3) y=1-z2 Y

cos(a) 1
N
z=cos(m—p3) -2
71( ) cos(a) ﬂ
= —Cos T =T —x—
cos(m—p03)
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In particular, a triangle with one or two ideal points satisfies the formula. Now, for an
arbitrary trianglel” with anglesa, 5,y we can dissect an ideal triangles with all andles

into T" and three triangles, each of which has two ideal points, and whose third angle is one
ofr—a,m — 3,7 —~. Thatis,

aredl) =m —(r—(m—a)) - (= (= p)) —(r—(r—7)) =7 —a—-F -7y
0

2.3.8. Projective geometryThe groupPSL(2,R) acts in a natural way on another space
called theprojective line denotedRP'. This is the space whose points are the lines through
the origin inR2. Equivalently, this is is the quotient of the spdké — 0 by the equiva-
lence relation thatz,y) ~ (Az, \y) for any A € R*. The unit circle mapg-1 to RP*,

so one sees th&P' is itself a circle. The natural action d?SL(2,R) on RP* is the
projectivizationof the natural action of L(2, R) onR2. That is,

5 o B[]
v 8yl T v+ 0y

We can write an equivalence clags y) unambiguously as//y, where we writeco
wheny = 0; in this way, we can naturally identifRP! with R U co. One sees that
in this formulation, this is exactly the action 6fSL(2,R) on the ideal boundary df*
in the upper half-space model. Thattise geometry oRP' is hyperbolic geometry at
infinity. Observe that for any two triples of poinds, as, as andby, bs, bz in RP! which
are circularly ordered, there iswniqueelement of PSL(2,R) taking a; to b;. For a
four—tupleof pointsay, as, as, a, let v be the transformation taking,, as, az t0 0, 1, co.
Then~(a4) is an invariant of the—tuple, called theross—ratioof the four points, denoted
[a1, a2, as, as]. Explicitly,

(al - as)(a2 - Cl4)

(a1 —az)(az — aq)

The subgroup oPSL(2,R) which fixes a point ifR U oo is isomorphic to the group of
orientation preserving similarities a&&, which we could denote by Ati{RR). This group
is isomorphic tdR* x R. whereR* acts onR by multiplication. We can think oRP! as
the homogeneous spag&SL(2,R)/RT x R.

Projective geometry is the geometrypdrspectivelmagine that we have a transparent
glass pane, and we are trying to capture a landscape by setting up the pane and painting
the scenery on the pane as it appears to us. We could move the pane to the right or left;
this would translate the scene left or right respectively. We could move the pane closer or
further away; this would shrink or magnify the image. Or we could rotate the pane and
ourselves so that the sun doesn’t get in our eyes. The horizon in our picRiPé isnd the
transformations we can perform on the image is precisely the projective G682, R).

[a13a27a37a4] =

2.3.9. Elliptic, parabolic, hyperbolic isometriesThere are three different kinds of trans-
formations inPSL(2,R) which can be distinguished by their action 8k .

Definition 2.43. A non-trivial elementy € PSL(2,R) is elliptic, parabolicor hyperbolic

if it has respectively), 1 or 2 fixed points inS.,. These cases can be distinguished by the
property thattr(y)| is <,= or > 2, wheretr denotes the trace of a matrix representative
of ~.

An elliptic transformation has a unique fixed pointliff and acts as a rotation about
that point. A hyperbolic transformation fixes the geodesic running between its two ideal
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fixed points and acts as a translation along this geodesic. Furthermore, the pdiits in
moved the shortest distance by the transformation are exactly the points on this geodesic.
A parabolic transformation has no analogue in Euclidean or Spherical geometry. It
has no fixed point, but moves points an arbitrarily short amount. In some sense, it is
like a “rotation about an ideal point”. Two elliptic elements are conjugate iff they rotate
about their respective fixed points by the same amount. This angle of rotation is equal
to cos~(|tr(vy)/2]). Two hyperbolic elements are conjugate iff they translate along their
geodesic by the same amount. This translation length is equakto ' (|tr(y)/2|). If
a,b are any two parabolic elements then eitaeandb are conjugate ot ~! andb are
conjugate.

Exercise 2.44.Prove the claims made in the previous paragraph.

Exercise 2.45.Recall the subgroup&” and A’ defined in the prequel. LéY denote the
1

0 1|’
expressed akan for somek € K’', a € A’ andn € N. How unique is this expression?
This is an example of what is known as #iel N or lwasawa decomposition

group of matrices of the for Show that every element &SL(2,R) can be

Exercise 2.46.Consider the groupsL(n,R) of n x n matrices with real entries and
determinantl. Let K be the subgrousO(n,R) of real n x n matricesM satisfying
M!M = id. Let A be the subgroup of diagonal matrices. L¥tbe the subgroup of
matrices withl’s on the diagonal an@’s below the diagonal. Show is abelian andV is
nilpotent. Further,KK is compact(see appendix), thought of as a topological subspace of
the spacd&”2 of n x n matrices. Show that there isl& AN decomposition fo6 L(n, R).

2.3.10. Horocircular geometry.In the Poincag disk model, the Euclidean circles in

which are tangent t& are special; they are calldtbrocirclesand one can think of

them ascircles of infinite radius If the point of tangency is taken to lae in the upper
half-space model, these circles correspond to the horizontal lines in the upper half—plane.
Observe that a parabolic element fixes the family of horocircles tangent to its fixed ideal
point, and acts on each of them by translation.

3. TESSELLATIONS
3.1. The topology of surfaces.

3.1.1. Gluing polygons.Certain computer games get around the constraint of a finite
screen by means of a trick: when a spaceship comes to the left side of the screen, it
disappears and “reappears” on the right side of the screen. Likewise, an asteroid which
disappears beyond the top of the screen might reappear menacingly from the bottom. The
screen can be represented by a square whose sidiealled in pairs the left and right

sides get one label, the top and bottom sides get another label. These labels are instructions
for obtaining an idealized topological space from the flat screen: the left and right sides
can be glued together to make a cylinder, then the top and bottom sides can be glued to-
gether to make a torus (the surface of a donut). Actually, we have to be somewhat careful:
there areawoways to glue two sides together; an unambiguous instruction must specify the
orientation of each edge.

If we have a collection of polygonB; to be glued together along pairs of edges, we can
imagine a grap’ whose vertices are the polygons, and whose edges are the pairs of edges
in the collection. We can glue in any order. If we first glue along the edges corresponding
to amaximal treein T', the result of this first round of gluing will produce a connected
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polygon. Thus, without loss of generality, it suffices to consider gluings of the sides of a
single polygon.

Definition 3.1. A surfaceis a2—dimensional manifold. That is, a Hausdorff topological
space with a countable basis, such that every point has a heighborhood homeomorphic to
the open unit disk iR? (see appendix for definitions). piecewise—linear surfacis a
surface obtained from a countable collection of polygons by glueing together the edges in
pairs, in such a way that only finitely many edges are incident to any vertex.

Exercise 3.2.Why is the finiteness condition imposed on vertices?
The following theorem was proved by T. Rado in 1924 (see [6]):

Theorem 3.3. Any surface is homeomorphic to a piecewise—linear surface. Any compact
surface is homeomorphic to a piecewise—linear surface made from only finitely many poly-
gons.

Definition 3.4. A surface isorientedif there is an unambiguous choice of “top” and “bot-
tom” side of each polygon which is compatible with the glueing. i.e. an orientable surface
is “two—sided”.

3.1.2. The fundamental groupThe definition of the fundamental group of a surface
requires a choice of basepoinin X. Letp € X be such a point.

Definition 3.5. DefineQ; (X, p) to be the space of continuous mapsS* — ¥ sending
0 € S'top € X (here we think ofS* as7/0 ~ 1). Two such maps;, c, are called
homotopidf there is a mag’ : S* x I — X such that

(1) C(-,0) = c1(:).

(2) C(-,1) = e2(4).
Exercise 3.6. Show that the relation of being homotopic is aquivalence relatiommn
Ql(zvp)

In fact, Q; (X, p) has the natural structure of a topological space; with respect to this
topological structure, the equivalence classes determined by the homotopy relation are the
path—connected components.

The importance of the relation of homotopy equivalence is that the equivalence classes
form agroup:

Definition 3.7. The fundamental groupf X with basepointp, denotedr (%, p), has as
elements the equivalence classes

m1(2,p) = Q1 (%, p) /homotopy equivalence
with the group operation defined by
[e1] - [e2] = [e1 % ]
wherec; * c; denotes the mag!' — X defined by
<
e {00 s

where the identity is given by the equivalence classf the constant map: S' — p, and
inverse is defined bjt] =1 = [i(c)], wherei(c) is the map defined b(c)(t) = c(1 — ).
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Exercise 3.8.Check thafc][c]~! = [e] with the definitions given above, so that(3, p)
really is a group.

For X apiecewise—linear surfaogith basepoini a vertex ofy, defineO; () to be the
space of polygonal loops from v to v contained in the edges &f. Such a loop consists
of a sequence of oriented edges

Y =€1,€62,...,€n

wheree; starts at ande,, ends there, and; ends where; ; starts. Letr(e) denote the
same edge with the opposite orientation. For a polygonal pattnot necessarily starting
and ending at) lety~! denote the path obtained by reversing the order and the orientation
of the edges iny.

One can perform arlementary moven a polygonal loopy, which is one of the fol-
lowing two operations:

o If there is a vertexw which is the endpoint of some, anda is any polygonal
path beginning atv, we can insert or deletgy—! betweere; ande; ;. That is,

—1
€1,€2,---,€i,7,7 ,€i41,---,6En €1,€2,...,€n

e If vis aloop which is the boundary of a polygonal region, and starts and ends at a
vertexw which is the endpoint of somg, then we can insert or deletebetween
e; ande; 1. Thatis,

€1,€2,.--,€,7,€i41,-..,€En < €1,€2,...,€En

Definition 3.9. Define thecombinatorial fundamental groupf >, denoted; (X, v), to be
the group whose elements are the equivalence classes

01(%, v)/elementary moves

With the group operation defined HBy|[5] = [a5], where the identity is given by the
“empty” polygonal loop0 starting and ending at, and with inverse given by(y) = v~ 1.

Exercise 3.10.Check that the above makes sense, andgh@t, v) is a group.

Now suppose thal is obtained by glueing up the sides of a single polygbim pairs.
Suppose further that after the result of this glueing, all the vertices of this polygon are

identified to a single vertex. Letey,...,e, be the edges and
+1 _+1 +1
=€, €, -6

the oriented boundary dP. Then there is a natural isomorphism

Pl(zv’U) = <611"'76n|"/>

that is,p; can be thought of as the grogpnerated byhe edgeg; subject to theelation
defined byy. Notice that each of the; appears twice iry, possibly with distinct signs. If
3l is orientable, each; appears with opposite signs.

Example3.11 Let T' denote the surface obtained by glueing opposite sides of a square
by translation. Thus the edges of the square can be labelled (in the circular ordering) by
a,b,a”!,b~! and a presentation for the group is

b1 (T7 U) = <CL, b| [Cl, b]>
It is not too hard to see that this is isomorphic to the gréup Z.
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3.1.3. Homotopy theory.The following definition generalizes the notation of homotopy
equivalence of mapS! — X

Definition 3.12. Two continuous map$;, f> : X — Y arehomotopicif there is a map
F: X x1I— Y satisfyingF(-,0) = fiandF(-,1) = fo. If M C X andN C Y with

filM = fo]M and f;(M) C N, thenfi, fo arehomotopic relative ta\/ if a map F' can
be chosen as above wiffi(m, -) constant for everyn € M.

The set of homotopy classes of maps frafrto Y is usually denotedX, Y]. If these
space have basepointsy the set of maps taking to y modulo the equivalence relation
of homotopy relative ta: is denoted X, Y],.

We can define a very important category whose objects are topological spaces and
whose morphisms afeomotopy equivalence classes of continuous ma#psefinement
of this category is the category whose objects are topological spaces with basepoints, and
whose morphisms agomotopy equivalence classes of continuous maps relative to base
points

Definition 3.13. Thefundamental groupr; (X, ) of an arbitrary topological space with a
basepoint: as the group whose elements are homotopy classes of (fagy — (X, ),
where multiplication is defined bly][c2] = [c1 * c2]. In the notation above, the elements
of 71 (X, x) correspond to elements (!, X],.

Lemma 3.14. Let f : X — Y be a continuous map takingto y. Thenf induces a
natural homomorphisnf, : 71 (X, z) — 1 (Y, y).

Definition 3.15. A path—connected space is simply—connected m (X, x) is the trivial
group.

Observe that a path—connected space is simply—connected if and only if every loop in
X can be shrunk to a point.

3.1.4. Simplicial approximation.The following is known as theimplicial approximation
theorem

Theorem 3.16. Let K, L be two simplicial complexes. Then any continuous rfiap
K — L is homotopic to asimplicial mapf’ : K’ — L whereK” is obtained fromk by
subdividing simplices. Furthermore,dt C K is a simplicial subset, and : C — L is
simplicial, then we can requir¢’ to agree withf restricted toC.

Exercise 3.17.Using this theorem, show that by choosing= v, every continuous map

c: S — ¥ taking the base point to is homotopic through basepoint—preserving maps to

a simplicial loopy C X which begins and ends at Moreover, two such simplicial loops

are homotopic if and only if they differ by a sequence of elementary moves. Thus there is a
natural isomorphismir; (X, p) & p1 (3, v).

This is actually a very powerful observation: the grey:, p) is a priori very difficult
to compute, but manifestly doesn’t depend on a piecewise linear structiie @m the
other handp; (X, v) is easy to compute (or at least find a presentation for), bugipisori
hard to see that this group, up to isomorphism, doesn’t depend on the piecewise linear
structure.

Exercise 3.18.Supposey is a simplicial complex. Lei? denote the union of the sim-
plices of K of dimension at mo&. Use the simplicial approximation theorem to show that
for any vertexv of K, 71 (K, v) = w1 (K?, ).
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3.1.5. Covering spaces.

Definition 3.19. A spaceY is acovering spacéor X if thereisamapf : Y — X (called
acovering projectiophwith the property that every point € X has an open neighborhood
x € U such thatf~*(U) is a disjoint union of open sefs; C Y, and f maps eacl;
homeomorphically td/. Theuniversal covenf a spaceX (if one exists) is a simply—
connected spac¥ which is a covering space of .

An open neighborhood of a pointz of the kind provided in the definition is said to
beevenly coveredly its preimageg —! (U). If X is locally connected, we can assume that
the open neighborhoods which are evenly covered are connected.

For a path] C X we can find, for each point € I an open neighborhootf,, of
p which is evenly covered. SincEis compact(see appendix) only finitely many open
neighborhoods are needed to covercall theseUs, ...,U,. If we let V; denote some
component off = (U; ) which maps homeomorphically {3,. Then there is a unique map
g : INU; — Vi such thatfg = id. Moreover, there is a unique choiceldgf from amongst
the components of ~(Us) such thay can be extended tg: I N (U; UU,) — Vi U Vs
with fg = id. Continuing inductively, we see that the choicel@f V4,...,V,, are all
uniquely determined by the original choitg.

Exercise 3.20.Modify the above argument to show that for every mapl — X any
everyp € f~1g(0) there is a uniqudift g : I — Y such thatj(0) = pand fg = g.

Exercise 3.21.Supposey;, g2 : I — X with ¢;(0) = g2(0) and g1 (1) = g¢2(1) are
homotopicthrough homotopies which keep the endpoints fited. Letg; be some lift of
g1. Show that the lifzz of g2 with ¢1(0) = g2(0) also satisfieg; (1) = g2(1), and these
two lifts are also homotopic rel. endpoints. (Hint: I6t: I x I — X be a homotopy
betweeng; and g,. Try to “lift"” G to a mapé : I x I — X satisfying appropriate
conditions.)

Let p € X be a basepoint, and I¢t € f~!(p). Then the projectiorf : ¥ — X
induces a homomorphisify : 71 (Y, p) — m1 (X, p). Let K C 71 (X, p) denote the image
of f.. Then aloop : S' — X with [a] € K can be lifted to a loo@ : S — Y, by
the argument of the previous exercise. Conversely, if two laggsrepresent the same
element ofK’, then their lifts represent the same elementdf’, p). Thus we may identify
71 (Y, p) with the subgroupk.

Exercise 3.22.Show that for a spac& and a mapg : Z — X there is alift of g to
g:Z — Y with fg =gifandonly ifg.(m(2)) C K.

Definition 3.23. A space issemi—locally simply—connectéidevery pointp has a neigh-
borhoodU so that every loop iV can be shrunk to a point in a possibly larger open
neighborhood’.

Informally, a space is semi—locally simply—connected if sufficiently small loops in the
space are homotopically inessential.

Theorem 3.24.Let X be connected, locally connected and semi—locally simply—connected.
For any subgroupG C (X, z) there is a covering spac& of X and a pointy €
£~ (x) such thatf. (1 (X, y)) = G.

Sketch of proof: Let (X) be the space of paths: I — X which start atz. We
induce an equivalence relation 6X{X') where we say two pathg, vy, are equivalent if
[v;1 % v1] € G. SetXg = Q(X)/ ~. SinceX is semi-locally simply connected, for
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sufficiently small paths; , y» between points;, 2o € X the loopy, ! 7, is contractible.
So any two paths which differ only by substituting in one for~, in the other will be
equivalent in2(X ), and this says that the equivalence class€3(df) are parameterized
locally by points inX; that is, X is a covered space df. It can be verified thaK is
simply connected, and that it satisfies the conditions of the theorem. O

Exercise 3.25.Fill in the gaps in the sketch of the proof above.

Exercise 3.26.Show that the universal cover of a spakeit if exists, is unique, by using
the lifting property.

3.1.6. Discrete groups.

Definition 3.27. LetI" be a group of symmetries of a spa¥ewhich is one ofS™, E", H"
for somen. T is properly discontinuousf, for each closed and bounded subsebf X,
the set ofy € T such thaty(K) N K # ( is finite. T actsfreelyif no v € T has a fixed
point; that is, ify(p) = p for anyp, theny = id.

For a pointp € X, the subgroup of" which fixesp is called thestabilizerof p, and is
typically denoted by'(p). If I acts properly discontinuously, thélip) is finite for anyp.

Definition 3.28. A subgroupI’ of a Lie groupG is discreteif K N T is finite for any
compact subset’ C G.

Exercise 3.29.Show that ifG is a Lie group of symmetries of a spa&eas above, then a
subgroupl” is discrete iff it acts properly discontinuously 6h

Supposd” acts onX freely and properly discontinuously. We can define a quotient
spaceM = X/T" where two pointse,y € X are identified exactly when there is some
~ € I such thaty(z) = y.

Theorem 3.30. If T acts onX freely and properly discontinuously, whek¢ is one of
S, E™, H" for somen, then the projectionY — X/T"is a covering space, and is the
universal cover of{/T".

Proof:  Pick a pointr € X and letU be a neighborhood af which intersects only
finitely many translates(U). Then there is a smalléf C U which is disjoint from all its
translates. Then under the quotient map, each trangl&tgis mapped homeomorphically
to its image. ThusX is a covering space oX/T", and since it is simply—connected, it is
the universal cover. O

3.1.7. Fundamental domaing.et I" act onX properly discontinuously, wher& is one
of the space§S™, E", H".

Definition 3.31. A fundamental domaifor the action of" is a polygonP C X such that
for all p in the interior of P, a(p) N P = () unlessa = id, and such that the faces Bfare
paired by the action df.

The translates of a fundamental domain are disjoint except along their boundaries.
Moreover, these translates cover allX6f Thus they give a tessellation &f, whose sym-
metry group contain§ as a subgroup. For “generic” fundamental domains, there are no
“accidental” symmetries, and the group of symmetries of the tessellation is eXadtty
general, fundamental domains candeeoratedvith some extra marking which destroys
any additional extra symmetries of a fundamental domain.
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Definition 3.32. Choose a poinp € X. TheDirichlet domain ofl" centered ap, is the
set
D = {q € X suchthatl(p,q) < d(p,a(q)) forall a € T'}

In dimensiorg, 3, in the cases we are interestedinhwill be a locally finite polygon in
X whose faces are paired by the actiod'pbut in generalD might not be a polygon.
A Dirichlet domain is a fundamental domain fBr

3.2. Lattices in E2.

3.2.1. Discrete groups in Isofit?). Perhaps the most important theorem about discrete
subgroups of Isoifi£™) is Bieberbach'’s theorem, that such a group has a free abelian sub-
group of finite index. In dimension two, this can be refined as follows:

Theorem 3.33. Let T act properly discontinuously oB? by isometries. Thel has a
subgroupl'* of index at mos® which is orientation—preserving. Moreovér;™ is one of
the following:

e I'* is a subgroup of stalp) for somep. In this casel't = Z/nZ consists of

powers of a single rotation.
e 't is a semi—direct product

't =7Z/nZ x Z

where theZ factor is generated by a translation, anmdis 1 or 2. In the second
case, the conjugation action takes— —zx.
e I't is a semi—direct product

It =7Z/nZ x (Z® 7)
where theZ @ Z factor is generated by a pair of linearly indpendent translations,
andn = 1,2,3,40r6. If n = 4, theZ®Z is conjugate to the group of translations
of the formz — z+mn+mi for integersn, m. If n = 3 or 6, theZ & Z is conjugate
to the group of translations of the form— z + n + m““;%‘/g for integersn, m.

Proof:  First, there is a homomorphism
o : 1som(E?) — 7Z/27

whereo(a) is 0 or 1 depending on whether or natis orientation preserving. The in-
tersection ofl"’ with the kernel ofo is I'", and it has index at mog Next, there is a
homomorphism

a: lsom"(E?) — S*
given by the action of isometries on equivalence classes of parallel lines, where the image
is the angles of rotation. There is an induced homomorphism

a:TT — 8t

The kernelK of a in '™ consists of a group of translations, and is therefore abelian.
Suppos® = a(«) for somea € I't, andf nonzero. Them is a rotation, and therefore

fixes somep. Sincel'* is properly discontinuous, eith&" C stal{p) in which casa'+

is cyclic and consists of the powers of a fixed rotation, or there is a (non—unique) closest

imageq # p of p under somej. Sinceq = 3(p), no translate op is closer tog thanp. If

0] < 2%, then

0<d(g,alq) = 251n<g)d(p, q) < d(p,q)
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which is a contradiction. Since the same must also be true for each powethaf order
of a is < 6. If the order is5, then0 < d(a(q), Ba™1571(p)) < d(p,q), which is a
contradiction. Hence the imag€l' ") is Z/nZ wheren = 1,2,3,4 or 6. In any case, the
image is cyclic, and is therefore generated by a sin¢ie wherex is a rotation, sd™* is
a semi—direct product.

The kernelK of a in '™ is a properly discontinuous group of translations. Klfis
nontrivial and the elements &f are linearly dependent, they are all powers of the element
« of shortest translation length. The imagd ™) must preserve the translation f in
particular, this image must be trivial @r/27Z.

If K is nontrivial and the elements &€ are linearly independent, they are generated
by two elements of shortest translation length. The image™) must preserve the set of
nonzero elements of shortest length, so if this image/iZ the groupK is generated by
two perpendicular vectors of equal length. If the imag&/8Z or Z/6Z, K is generated
by two vectors at angl%—f of equal length. O

The two special lattices (i.e. groups of translations generated by two linearly indepen-
dent elements) appearing in theorem 3.33 are often callestjtiereandhexagonalattices
respectively.

3.2.2. Integral quadratic forms.A good reference for the material in this and the next
section is [2].

Definition 3.34. A quadratic formis a homogeneous polyonomial of degé some
variables. That is, a function of variables, . . ., z,, such that

Oz, dnan) = [[ A2 f (@, )
=1

A quadratic form idntegralif its coefficients as a polynomial are integers.

We will be concerned in the sequel with integral quadratic forms of two variables, such
as3z? 4 2zy — Ty? or —z2 — 3zy.
Notice for every quadratic fornfi(-, -) there corresponds uniquely a symmetric matrix

My suchthatf(z,y) = [z y] My [ﬂ In particular, if f (z, y) = az? + bxy + cy? then

|

Definition 3.35. We say that a quadratic forfh(x, y) representsan integem if there is
some assignment of integer values n. to x, y for which

a
2

Q N

f(ni,n2) =n

Given an integral quadratic form, it is a natural question to ask what interger values
it represents. Observe that there are some elementary transformations on quadratic forms
which do not change the set of values represented. If we substitutec -y ory — y+=x
we get a new quadratic form. Since this substitutiomi®rtible, the new quadratic form
obtained represents exactly the same set of values as the original. For instance,

22 4 9% —— 22 + 2zy + 297

This substitution defines an equivalence relation on quadratic forms.
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The most general form of substitution allowed is a transformation of the form
T —pr+qy, y —re+sy
For integers, ¢, r, s. Again, since this substitution must be invertible, we should have
ps —qr = +1. That is, the matrixff ﬂ is in £SL(2,Z). Since these forms are

homogeneous of degrée the substitutiont — —z, y — —y does nothing. One can
easily check that every other substitution has a nontrivial effect on some quadratic form.
In particular, we have the following theorem:

Theorem 3.36. Integral quadratic forms up to equivalence are parameterized by equiva-

o N

lence classes of matrices of the fo{r%

3 } for integersa, b, c modulo the conjugation
action of PSL(2,7Z).

2

Observe that what is really going on here is that we are evaluating the quadrati¢ form
on the integral lattic&. & Z. The groupSL(2,Z) acts by automorphisms of this lattice,
and therefore permutes the set of values attained by the form

There is nothing special about the integral lattice here; it is obviousSth&, Z) acts
by automorphisms adiny lattice L. In particular, if L = (e1,e2) thenM = {3 g] €
SL(2,Z) acts on elements of this lattice by

M -rey + ses — (ar + fs)e; + (yr + ds)es
3.2.3. Moduli of tori, continued fractions anéSL(2,Z).

Definition 3.37. Letr be a real number. Aontinued fraction expansiarf r is an expres-
sion ofr as a limit of a (possibly terminating) sequence

1

g oo

1
ni,n1 + m—,m + 1+

1 my my +

1
1
ng n2+m—’2

where each of the;, m; is a positive integer.

A continued fraction expansion ofcan be obtained inductively by Euclid’s algorithm.
First, n, is the biggest integex r. So0 < r —ny; < 1. If r —n; = 0 we are done.
Otherwise,r’ = T_lnl > 1 and we can define:; as the biggest integet +'. So0 <
r’ —my < 1. continuing inductively, we produce a series of integersmi, no, ma, . ..
which is thecontinued fraction expansion of If r is rational, this procedure terminates at

a finite stage. The usual notation for the continued fraction expansion of a real nuimber
1 1 1 1

mi+ na+ mo+ nz+

The following theorem is quite easy to verify:

r=mni+

Theorem 3.38.If ny, my,... is a continued fraction expansion of then the successive
approximations
1

1
my + -

n2

PRI

1
ny,N1+ —,n1 +
mi

denotedr, ro, 3, ... satisfy
Ir —ri| <|r—p/q|
for any integergp, ¢), whereq < the denominator of; ;.
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Thus, the continued fraction approximationsradire the best rational approximations
to r for a given bound on the denominator.

Let T' be a flat torus. Then the isometry groupfis transitive (this is not too hard
to show). Pick a poinp, and cutl’ up along the two shortest simple closed curves which
start and end ai. This produces a Euclidean parallelogrémAfter rescalindl’, we can
assume that the shortest side has lergtie placeP in E? so that this short side is the
segment from) to 1, and the other side runs froérto =z where In{z) > 0. By hypothesis,
2| > 1. Moreover, if|Re(z)| > 1 we can replace by z + 1 or z — 1 with smaller norm,
contradicting the choice of curves used for the decompositionDLi¢ the region in the
upper half-plane bounded by the two vertical linegfe= 3, Rg(z) = —1 and the circle
|z| = 1.

The groupP S L(2,Z) acts naturally ol as a subgroup dPSL(2,R). The action there
is properly discontinuous. The action BSL(2, Z) permutes the sides @. The element

0 ﬂ pairs the two vertical sides, and the elem gotl (1) preserves the bottom side,
interchanging the left and right pieces of it. In particul@rjs a fundamental domain for
PSL(2,7). The quotient is topologically a disk, but with two “cone points” of ordend

3 respectively, which correspond to the poitfl'&indH;—'\/§ respectively, whose stabilizers
areZ/27 andZ/3Z respectively.
This quotient is an example of ambifold.

Definition 3.39. An n—dimensionabrbifold is a space which is locally modelled @i
modulo some finite group.

A 2—dimensional orbifold looks like a surface except at a collection of isolated points
p; where it looks like the quotient of a disk by the actionZfn;Z, a group of rotations
centered ap;. The pointp; is acone point sometimes also called ambifold point The
finite group is part of the data of the orbifold. One can think of the orbifold combinatorially
as a surface (in the usual sense) with a finite number of distinguished points, each of which
has an integer attached to it. Geometrically, this point looks like a “cone” made from a
wedge of angl@r /n;.

We can define anrbifold fundamental groupr$(-) for a surface orbifold. Thinking
of our orbifold ¥ as X/T" for the moment wher&' acts properly discontinuously but not
freely, the orbifold fundamental group &f should be exactly’. This means that a small
loop around an orbifold point; should have orden; in 77(X). Note that we are being
casual about basepoints here, so we are only thinking of these groups up to isomorphism.

In any case, the orbifold>/ PSL(2,Z) should have orbifold fundamental group iso-
morphic toPSL(2,Z). There is an element of ordercorresponding to the loop around
the order2 point; a representative of this elementi$ L(2,7Z) is _01 (1)} There is an
element of ordeB corresponding to the loop around the or@epoint; a representative
of this element inPSL(2,Z) is _11 é . Note that these elements have ordeand 3
respectively inPSL(2,Z), even though the corresponding matrices have or¢iensd 6
respectively inSL(2,Z).

Every loop in the disk can be shrunk to a point; it follows that every loop in the orbifold
H?/PSL(2,Z) can be shrunk down to a collection of small loops around the two cone
points in some order. That is, the grol$ L(2, Z) is generated by these two elements.
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Theorem 3.40. A presentation fol?SL(2,Z) is given by
PSL(2,7) = (a, Bla?, B%) = Z/27 7./ 37
where representatives afand 3 are the two matrices given above.

Proof: By the discussion above, all that needs to be established is that there are no
other relations that do not follow from the relation$ = id and33 = id. That is, there
is a homomorphismd : G — PSL(2,7) sendinga, § to the two matrices given; all we
need to check is that the kernel of this homomorphism consists of the identity element.

A general element of! = («, 3|a?, %) is a producta® 312 3% . . a3 where
each of theu;, b; are integers. We reduce themod?2 and theb; mod 3; after rewriting of
this kind, we are left with a product of the form above where ewery: 1 and every; is 1
or2. We write L = o8 andR = 3%, so that every nontrivial element 6f is of the form
w, fE w, wa, fEwa wherew is a word in the letterg§ andR. Furthermore, we have the
relation(aBa3?)3

We show that no wordb in the lettersL and R is trivial in the groupPSL(2,Z). A
similar argument works for elements Gfof the other forms.

Now, ¢(L) = E ﬂ and¢(R) = B ﬂ in PSL(2,7). Suppose that

w = Lm1 Rnl Lmang L"Lk- Rnk

where all then;, n; are nonzero, say. Then we can calculate

_|p T
otw)= 2 7]
where
p 1 1 1 1 1
q  mitni+motnot T my
T 1 1 1 1 1 1

s mi+ ni+ me+ nat+ mp+ ng
where the notation is for a continued fraction expansion. Thatis, the alternating coefficients
m;, n; give the continued fraction expansionsgoandg. In particular,g(w) # Id unless
w is the empty word, and is an isomorphism. O

Notice actually that this method of proof does considerably more. We have shown that
every element obtained by a productpafsitivemultiples of L and R is non—trivial. It is
not true that theyroup generated by, and R is free, sincelL R~! has ordes. In fact, L
and R together generate the entire groB L (2, Z). But the group generated by and
R? is free, since a fundamental domain for its action is the domdinounded by the lines

Re(z) =1, Re(z) = -1
and the semicircles
|z —1/2|=1/2, |24+ 1/2| =1/2

Let " denote this subgroup d?SL(2,Z). The domainD’ is a regular ideal hyperbolic
quadrilateral; the quotierif? /T is therefore topologically a punctured torus. By the argu-
ment of the previous section, a presentation is

m1 (punctured torus= («, G| )
Thatis,I' = Z x Z.
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Another description of” is the following: there is an obvious homomorphigin:
PSL(2,Z) — PSL(2,Z/27Z) given by reducing the entries mal The image group
has ordei6 and the surjection is onto, so the kernel is a subgroup of iscdeince the
fundamental domai®’ can be made frorfi copies ofD, it follows that the index of” in
PSL(2,7) is 6. Moreover,I' is certainly contained in the kernel gf It follows thatT" is
exactly equal to this kernel.

I is sometimes also denoted bYy2) (for “reduction mod2”) and is of considerable
interest to number theorists, who like to refer to it asghacipal congruence subgroup of
level2.

Notice that the domaiD’ is obtained from two ideal triangles. The union of all the
translates ofD’ by I'(2) gives a tessellation dfl? by regular ideal quadrilaterals; a sub-
division of D’ into two ideal triangles gives a subdivision BF into ideal triangles. If
we choose the subdivision along the line(Re= 0, the ideal triangulatio” of H? so
obtained admits reflection symmetry along every edge. THskeleton of the dual cell-
decomposition to this ideal triangulation is tidfinite 3—valent tree There is a natural ac-
tion of PSL(2,Z) on this tree, where the elements of orderre the stabilizers of vertices
and the elements of ord@rare the stabilizers of edges. This descriptionPsfL (2, Z)
as a group of automorphisms of a tree gives another way to see that it is isomorphic to
7)27 % 7] 37.

For a rational poinip/q we can consider the straight lideperpendicular to the real
axis given by Ré&z) = p/q. As this linel moves fromoo to p/q it crosses through many
different triangles off’, and therefore determines a waadin the lettersR, L and their
inverses. By induction, it is easy to show that the weris of the form

w=L"R"“L™R" [Tk R"

where
P 1 1 1 1 1

q  mitni+motnot+ T my
An irrational pointr determines an infinite word
w=L"R"ML™R" ..

where

1 1 1 1
m1+ TL1+ TIL2+ Tl2+ o
is an infinite continued fraction expansionsof

Notice that this wordy is eventually periodi@xactly whenr is of the forma + /b for
rational numbersa, b.

r =

3.3. Finite subgroups of SO(3) and S3.

3.3.1. The “fair dice”. A dieis a convex3—dimensional polyhedron. We can ask under
what conditions a die ifair — that is, the probability that the die will land on a given
side is1/n wheren is the number of sides. This is a very hard problem to treat in full
generality, since it is very hard to calculate these probabilities for a generic polyhedron.
But there are certain circumstances under which it is easy to show that these probabilities
are all equal; if for any two facef, f» of a dieD there is a symmetry ab to itself taking

/1 to f5 then the die is manifestly fair. The grodpof all symmetries ofD is a subgroup

of the group of permutations of the vertices. Any symmetnpoéxtends to an isometry

of E3, in particular it is an affine map. It follows that if the verticeslofare at the vectors
v1,ve,. .., v, then the images of these vertices under a symmetaye the same set of
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vectors in permuted order. Thus the symmetry fixes the center of gravily a$ a vector
this is Z:Tlv

Translating this center of gravity to the originli¥, we see tha is a finite subgroup
of O(3). That is,G is a properly discontinuous group of isometrieSéf

3.3.2. Spherical orbifolds.Of course, any properly discontinuous grapf isometries

of S? has a subgroup' ™ of index at most two which consists of orientation—preserving
elements. Every orientation—preserving isometrgdhas a fixed point, s+ does not
act freely unless it is trivial. In any case, the quotisftl'* will be aspherical orbifold>:.
This orbifold is topologially a surface with finitely many cone poipts. . ., p,,, of orders
ni,...,N,. The Gauss—Bonnet formula gives

aredX) = / k=27 <X(Z) - Z i 1)
= = Tl
Since the area is positive; must be topologically a sphere, since that is the only surface
with positive Euler characteristic. Eaé‘h— termis atleast /2, so it follows that there can
be at mos8 cone points. Notice too that ¥t has two cone points, small loops around them
are isotopic, and therefore should represent the same element of the orbifold fundamental
group; in particular, they should have the same order. Similarlgannot have a single
cone point, since a nontrivial element of the orbifold fundamental group could be shrunk
to a point.
We therefore have the following theorem:

Theorem 3.41. LetT be a properly discontinuous group of isometrieSéf ThenI" has
a subgroupl™™ of index at mos2 which is orientation—preserving. The following are the
possibilities forl'*:

e 't fixes a pair of antipodal pointsI'"™ = Z/nZ and is generated by a single
rotation.

e I'" is generated by two rotations , r, of order2 whose axes are at an angle of
27’7 to each other. The group™ = (rq,r2) is the dihedral groupD,,.

e The quotients? /T is a sphere witl8 cone points of order§2, 3, 3), (2, 3,4) or
(2,3,5). I't in these cases is the group of orientation—preserving symmetries of
the regular tetrahedron, octahedron, and dodecahedron respectively. As a group,
't is isomorphic tody, S4, A5 respectively.

An orbifold © whose underlying surface is a sphere with three cone ppints, ps
is called atriangle orbifold For the sake of generality, we can think of a puncture as a
“cone point of orderc”, so thatH?/PSL(2,Z) is the triangle orbifold with cone points
of order(2, 3, o0). The triangle orbifold with cone points of ordér, ¢, ) will be denoted

A(p,gq,7).
A presentation for the triangle orbifold with cone poiitsg, r) is

7 (A(p,q,7)) = (e, Bla?, B9, (aB)")
Lemma 3.42. For r = 3,4, 5 there is an isomorphism
7 (A(2,3,7)) — PSL(2,Z/r7)

where in each case, the image of the small loap8 around the cone points of order 3
correspond to the equivalence classes of matrices

0 1 11
AR
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Proof:  There are certainly homomorphisms frarf(A(2, 3, r)) ontoPSL(2,Z/rZ)
determined by the maps in question, since the relatiohs= id and 3> = id hold in

PSL(2,Z/n7Z) for anyn, andas = B (1) which has order in PSL(2,Z/rZ).

To see that these maps are injective, observe that the orders of the groups 304, 5
are both equal t@2, 24 and60 respectively, so the maps are isomorphisms. O

Forr > 5, the groupr?(A(2,3,)) is infinite, and therefore cannot be isomorphic to
PSL(2,Z/rZ). But forr = oo we have seen

T9(A(2,3,00)) = PSL(2,Z)

The homomorphisnPSL(2,7Z) — PSL(2,Z/rZ) for 3 < r < 5 is induced by the map
from A(2,3,00) to A(2,3,r) which is the identity away from the special points, sends
the order2, 3 points to ordee, 3 points respectively, and “sends the puncture” to the cone
point of orderr.

3.3.3. Reflection groups, Coxeter diagrami$.P is a polyhedron inX one ofS™, E™, H™
whose dihedral angles between top dimensional faces are all of therformfor integers
m;, the groupGp generated by reflections in these facesrohcts properly discontin-
uously onX with fundamental domai®. Gp has a subgroup of indeX consisting of
orientation preserving elements, which has as fundamental domain a cdpyiod its
mirror imageP’. This follows from a theorem calleloinca€’s polyhedron theoremA
precise statement and discussion are found in [7].

If X = S”, we can think ofS®* ¢ R"*! as the unit sphere, and reflections through
hyperplanes ii$" correspond to reflections in hyperplanes through the origR"in?. If
m;, m; are two of these hyperplanes, and the corresponding reflections are depeted
then the compositiom;, r; is a rotation through an ang®;;, whered,; is the angle
between the planes; andr;, and the rotation is in the plane spanned by the two perpen-
diculars torm;, ;. A presentation for the grou@ generated by reflections in the sides of
Pis

Gp = (r1,ro, ..., 1| ()%, (r2)%, ..., (1n)?, (r1m2)™2, .. (rami) ™, 000

where the angle between andr; is 7/m;;.

The subgroup}, of orientation—preserving elements @f- is generated by the el-
ements of the form;r;, which is to say,G}, consists of products of even numbers of
reflections.

Definition 3.43. A Coxeter group is an abstract group defined by a group presentation
of the form(r;|(r;r;)*#) where

the indices vary over some index det

the exponenk;; = k;; is either a positive integer av for each pait, j

k;; = 1 for eachi

k;; > 1 for eachi # j

If k;; = oo for somei, j then the corresponding relation is meaningless and may be deleted
from the presentation.

Definition 3.44. The Coxeter graphof the Coxeter groug- is a labelled grapi® with
vertices corresponding to the index $eind edges(:, j) : k;; > 2) labelled byk;;.

For simplicity, edges witlt;; = 3 are usually left unlabelled.
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Theorem 3.45. Finite Coxeter groups can be realized as properly discontinuous spherical
reflection groups.

Notice that fundamental groups of triangle orbifolds are inZlembgroups of reflection
groups whose Coxeter graphs have three vertices.

3.3.4. "Bad” orbifolds. If X is a spherical orbifold with two cone points of orgek > 1
wherep # ¢, the orbifold Euler characteristic af is 2 — ”le - %1 > 0, so the universal
cover of ¥ should beS?. But we have seen that this is impossible; the loop around the
point of orderp is freely homotopic to the loop of ordet so a presentation for?(X) is
(a]aP, a?, P~ 7). This group isZ/dZ whered is the greatest common divisor pfandg;
but everyZ/dZ subgroup ofSO(3, R) has as quotient the spherical orbifold with two cone
points of ordew.

ThusX is not obtained from a smooth surface by the action of a properly discontinuous
group. An orbifold with no manifold cover is calledbad orbifold A spherical orbifold
with two cone points of unequal order is a bad orbifold; similarly, a spherical orbifold with
one cone point is a bad orbifold.

It turns out that any orbifold whose underlying surface is not the sphere, but a surface of
higher genus, is a good orbifold, and is obtained as a quati¢htfor X one ofS?, E2, H?
andI" a properly discontinuous group of isometries.

3.4. Discrete subgroups ofPSL(2,R).

3.4.1. Glueing hyperbolic polygonsGluing up hyperbolic polygons to make a closed hy-
perbolic surface is not essentially different from glueing up spherical or flat polygons. If
Y, denotes the unique (up to homeomorphism) closed orientable surface ofggeniis
then we can decompos$g, (nonuniquely) intgoairs of pants

Definition 3.46. A pair of pantsis the topological surface obtained from a disk by remov-
ing two subdisks — that is, a disk with two holes.

A pair of pants can also be thought of as a sphere minus three subdisks. The Euler
characteristic of a pair of pants-sl. Since the Euler characteristic of its boundary,ia
surface obtained from glueing pairs of pants has Euler characteristio. SoX, can be
decomposed (in many different ways) it — 2 pairs of pants.

Exercise 3.47.Show that the number of decompositionsgfinto pairs of pants, up to
combinatorial equivalence, is equal to the number of graphs @jth- 2 vertices with3
edges at every vertex. Such graphs are catteclent graphs Show that the number of
such graphs is positive fgr > 1, and enumerate such graphs fgr< 5 (you might need
to write a computer program . .)

For « a closed loop irX,, a choice of hyperbolic metric oB, determines a unique
shortest loopy, — a geodesic — which is homotopic ta For, if p € o anda denotes
an arc inH?, the universal cover oE,, whose endpoints project f@ and such that
projects toa under the covering map, then there is a unique isometey PSL(2,R)
corresponding to an elementof(%,) taking one end of to the other. Ifa, denotes the
invariant axis ofy, thena, /v = a4 a geodesic irL,,.

Exercise 3.48.If « is an essential simple closed curvedip — that is, it is embedded and
does not bound a disk, ther, is also simple. Furthermore, i, 3 are disjoint essential
simple closed curves, their geodesic representatives, are disjoint.
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By the exercise, a combinatorial decompositioiigfinto pairs of pants determines, for
a hyperbolic metric ort,, a (combinatorially equivalent) decomposition of that surface
into hyperbolic pairs of pants with geodesic boundary. Call such an obgaidesic pair
of pants

Let P be a geodesic pair of pants with boundary cirale®, ~, andé an embedded
arc joining two distinct boundary components. Then we can let) be the surface,
topologically a torus with two disks removed, obtained from two copid3 with opposite
orientations glued along the pairs of circles corresponding & Then the two copies of
0 make up a closed Iooﬁ) which has a unique geodesic representaf'g/e: Q. There
is an orientation—reversing mapfrom @ to itself which fixesa U 5. By uniqueness,
Sg is invariant underi, and therefore it intersects the boundary curves in right angles.
We obtain an ard, in P perpendicular tax and 5. There are two other ares, A\, in
P perpendicular tav,y and3,~v. These decomposE into two right angled hyperbolic
hexagonsH,, H,. The alternate sides dff; and H, are equal, and therefore they are
isometric, by an orientation—reversing isometry.

Exercise 3.49.Prove the claim made in the previous paragraph. Thatis, show that a right—
angled hyperbolic hexagon is determined up to isometry by the lengths of three nonadja-
cent sides. Conversely show that for any three nurpberr > 0 there is a right-angled
hexagon with three nonadjacent sides with those lengths.

In short we have proved the following fact:

Lemma 3.50. LetX, be a surface of genus A combinatorial decomposition into pairs of
pants and a hyperbolic metric dn, determine a decomposition Bf, into 2g — 2 geodesic

pairs of pants. The geometry of these pairs of pants is determined uniquely by the lengths
of the closed geodesics along whith was decomposed.

It remains to understand how the pairs of pants can be put back together ta give
For Py, P, a pair of geodesic pairs of pants with boundary components- 0P, and
as C OP, with the same length, for any two points € a; andps € as there is a
unique way to glueP; to P, by identifying a1, as so thatpy,po, match up. There is
a 1-parameter family of glueings, parameterized by the amount of “twisting” of these
geodesics. In particular, the geometry>f is determined uniquely by théy — 3 lengths
of the geodesics along which it is decomposed, together3yith 3 twist parameters.

Thus we have a correspondence:

(metric onX,,, pair of pants decompositign— (R*)3973 x (R/Z)393

Here the pair of pants decomposition is thought ob@kered in the sense that thiy — 3
curves are given specific labels, which correspond t@the 3 co—ordinates on the right.

Although this is a nice characterization, the information contained in a pair of pants
decomposition is both too little and too much — too little because we have not resolved
the Z—ambiguity in the twist parameters, and too much because it does not answer the
guestion of what the space of hyperbolic structures on a surface is parameterized by. We
address these issues now.

Definition 3.51. Fix a base surfacE of genusg > 1. The space ofnarked hyperbolic
structures ork, denoted\IH(X) is the space of equivalence classes of pgir&’) where

Y is a hyperbolic surface anfl : ¥ — ¥’ is a homeomorphism, and two such pairs
(f1,%1) and(f2, X2) are equivalent if there is an isometry ¥ — X5 such thatf; o i is
homotopic tof,; as a map fronk to 3.
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Exercise 3.52.Show that the relation defined in the definition of marked hyperbolic struc-
ture is really an equivalence relation. That is, show it is symmetric, reflexive and transitive.

Theorem 3.53. For ¥ a surface of genusg, there is al—1 correspondence
MH(Z) > (RT)373 x R39S

The correspondence is defined as follows: there is a pair of pants decomposition along es-
sential simple closed curves, . .., asy—3 for X, and a collection of loopg:, . .., 3343
transverse to they; such that if(f,>’) is an element ilMH(X), the corresponding co—
ordinates are given by

(length((f(a1))g), - - -, length((f(asg—3)) ), WISK(f (a1))g), - -, tWISK(f (a3g-3))))

where the twist parameters are normalized so that twistrresponds, for fixed lengths of
(f(a;))g, to the uniqgue marked surface for which the lengt3,06 minimized.

This requires some explanation. The image of a fixed pair of pants decomposition of
3 under f determines one iX’, and therefore the lengths of the decomposed geodesics
are well-defined and the twist parameters are well-defined Znod_et Py, P, be two
geometric pairs of pants glued along boundaries to make a spherd disks removed
Q. If «; is the common loop iWP; N OP,, theng; is a dual curve which cut§ into
two other pairs of pant®;, P, such thatP; has one boundary component in common with
each ofP;, P, and similarly forP;. Then twistinge; through2z replacess; with a new
curvet,, (5;), the curve obtained by Behn twist aroundy;. Briefly: 8; decomposes into
two arcso, e alonga;, anda; decomposes into two args v alongg;. Thent,, (5;) is the
simple closed curve homotopicde uxexv, wherx denotes concatenation of arcs. Imagine
0; as arubber band on the surfageWhen the two side®; , P, are twisted independently
alongq;, the rubber band becomes twisted up, and whReand P; return to their original
configuration, the rubber band detects how many full rotations the two sides went through.
Itis true, though we don'’t prove it here, that there is a unique rotation for which the length
of the geodesic representative@fis minimized. For a reference, see [1]. Thus for fixed
sets of lengths of the geodesic representatives of albthave have well-defined twist
parameters which detect the amount of twisting relative to this minimal twist. This shows
the map to parameter space is well-defined. Conversely, such a collection of parameters
defines a collection of geodesic pairs of pants and instructions for glueing them together to
give a marked hyperbolic structure &h Thus the two sets are the same and the theorem
is proved.

Definition 3.54. Let ¥ be a closed surface. Thmapping class groupf ¥, denoted
MC(X), is defined to be the quotient group

MC(X) = HomedX) /Homeg (%)

where Homeg(X2) denotes the normal subgroup of self-homeomorphismswhich are
homotopic to the identity.

Exercise 3.55.Show Homeg(Y) is a normal subgroup of Homén).
Notice that Home(>”) acts onMH(X) by
v (f,5) = (o f,X)
Moreover, ifyy € Homeg(X), then
U(f, %) ~ (f, %)
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with respect to the equivalence relation defined on representatives. That {&)ME€ts

on MH(X). Moreover, the quotient space is exactly the space of equivalence classes
of elements iINVH(X) where(fi,31) ~ (f2,32) if and only if there is an isometry

i : X1 — Y. Thatis, two marked hyperbolic structures have the same orbits under
MC(X) if and only if the underlying hyperbolic structures (forgetting the marking) are
equivalent. In particular, there is a corresponding action of Rin (R*)3973 x R39-3

and therefore a correspondence

hyperbolic structures oR «— {(RT)3973 x R?*~31 /MC(X)

The action of M@X) onR9~5 is properly discontinuous, but it is not free. Thus the space
of hyperbolic structures oh is best thought of as an orbifold. This quotient space is also
known asmoduli space

Exercise 3.56.Verify the claims made above. In particular, show that the action of )C
on MH(X) is well-defined, independently of the choice of representative of an element in
MH(Z).

The spaceVH(X) is also known as th@eichnilller spaceof 3, and denoted Tei¢x).

Definition 3.57. Let X be a closed surface.
Let Homed (%) denote the subgroup &f consisting oforientation—preservingiome-
omorphisms. Then define

MC™(X) = Homed" (X)/Homeg (%)
Notice that in this definition we use implicitly the fact that foclasedsurface, the sub-
group of self-homeomorphisms homotopic to the identity are all orientation—preserving.

This is not true for surfaces with boundary without some extra constraints on the boundary
behaviour of these homeomorphisms.

Exercise 3.58.Let ¥ be the unit disk. Find a sel~-homeomorphism homotopic to the
identity which is orientation—reversing. Do the same witlan annulus. What about i
is a punctured surface of gengs> 2?

3.5. Dehn twists and Lickorish’s theorem.

Definition 3.59. An oriented (polyhedral) simple closed curgén a surfaceX and an
annulus neighborhoad of ¢ parameterized a8' x I define a homeomorphistp: ¥ — X

by

(0,t) — (0 — 2tm,t) for(6,t)e A

This homeomorphism is known asCehn twistaboute. As an element of MC), it
depends only on the isotopy classcof
Note thatt.] ! = [t.] wherec’ denotes: with the opposite orientation.

_ {x — T for z outsideA

Exercise 3.60.1f h : ¥ — ¥ is a homeomorphisny a simple closed loop i, and
h(p) = ¢, then
t, =h"'t,h
The following theorem is proved in [4], and is often referred to asltiekorish twist
theorem

Theorem 3.61(Lickorish). If ¥, denotes the oriented surface of gemuishen the group
MC™*(%,) is generated by Dehn twists iy — 1 (explicitly described) simple closed
curves. In particular, this group is finitely generated.
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Sketch of proof: The method of proof proceeds as follows: ddte a simple closed
curve in3, and letA be a collection of simple closed curvesiin Then either intersects
each elementy of A not at all, exactly once, or exactly twice with opposite orientations,
or there exists a loog which intersectsy fewer times tharc, and each element oA
at most as many times as such that, (c) has fewer intersections with and the same
number or fewer intersections with each other elemem.oProceeding inductively, we
see that ifC' is a maximal collection of disjoint essential simple closed curves:amsl
a homeomorphism of, then there are a sequence of Dehn twists,,... such that
tntn—1...t19(C) intersects” in one of finitely many possibilities. After twisting some
more in elements af, we can assume the image@fis one of finitely many possibilities,
which can be explicitly identified. In short; can be written as a product of Dehn twists.

Now, for each such twist,, we can replace. by tdttd(c)tcjl where eachl, t4(c) in-
tersectC more simply thare. In this way, eacht,. can be expanded as a product of Dehn
twists in curves which intersect very simply. After twisting inC, it follows that these
involve only finitely many possibilities, which can be explicitly enumerated. OJ

Remark3.62 Casson has shown that the number of twist generators required is at most
2g + 2. Furthermore, it is known that MOQX) is generated by onlg elements (which are
not Dehn twists).

4. APPENDIX— WHAT IS GEOMETRY?

Geometry is a beast that can be approached from many angles. Four of the most impor-
tant concepts that arise from our different primitive intuitions of geometrysgnemetry,
measurement, analysis, and continuity/e briefly discuss these four faces of geometry,
and mention some fundamental concepts in each. Don’t worry if these concepts seem very
technical or abstract — think of this section as an abstraction of the concrete notions found
in the main body of the text.

4.1. Klein's “Erlanger Programm”. At an address at Friedrich—Alexander—Universitaet

in Erlangen Germany on December 17 1872, Felix Klein proposed a program to unify
the study of geometry by the use of algebraic methods, more specifically, by the use of
group theory In particular, the geometrical properties of a space can be understood and
explored by a study of theymmetrie®f that space. These symmetries can be organized
into a natural algebraic object — a group. Conversely, this group can often be given a
natural geometric structure, and investigated in its turn as a geometric space! The interplay
between geometry and algebra leads to an enrichment of both structures.

4.1.1. Category theory.

Example4.1l This is not really an example, but ratheteamplatefor the examples we
will meet that fit into Klein’s program. We are given a spadogether with some sort of
structure. Astructure—preserving mafpom X to itself is called anorphism The map from
X toitself which does nothing is a distinguished morphismjdeatity morphismdenoted
1x. A morphismf is invertible if there is another morphisri—! such thatf o f~! =
f~Yo f = 1x. The invertible morphisms are also calladtomorphisms The set of
automorphisms of is a group called Ayt ), with 1 x as the identity, and composition
as multiplication. Observe that a structure on a space catefieedby the admissible
morphisms. This is a simple example of what is known aategory in particular, it is a
category with one objecX.
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Definition 4.2. More generally, acategorycan be thought of as a collection objects
(denoted?) and a collection ofmorphismsor admissible maps between objects (denoted
M). Every morphismmn has asourceobjects(m) and atargetobjectt(m), which might
be the same object. For every objectthere is a special morphism called tigentity
morphism
1,:0—0

which acts like the usual identity: i.e.

1,m = m for anym with t(m) = «

ml, = m for anym with s(m) =
The composition of two morphisms is another morphism, and this composition is associa-
tive; composition can be expressed as a functiotm x M — M. That is,c satisfies

c(m,c(n,r)) = c(c(m,n),r) foranym,n,r € M

Sometimes a category is written aS-duple(O, M, s, t, ¢), but in practice it is frequently
sufficient to specify the objects and the morphisms.

A category is something like elassin an object—oriented programming language like
C++; one defines at the same time tiegta types(the objects in the category) and the
admissible functiong/hich operate on them (the morphisms).

Example4.3. The category whose objects are all sets and whose morphisms are all func-
tions between sets is a category calg¥T. If X is an object inSET (i.e. a set) then
Aut(X) is the group of permutations df.

Example4.4. The category whose objects are all groups and whose morphisms are all
homomorphisms between groups is caleROUP.

A very readable introduction to category theory, with numerous exercises, are the notes
by John Stallings [9].

4.2. Metric geometry. One of our basic intuitions in geometry is thatdi$tance In fact

the word geometry literally means “measuring the earth”. Metric geometry is the study of
the concept of distance, and its various generalizations and abstractions. A beautiful (but
quite advanced) reference for this subject is [3].

4.2.1. Metric spaces.
Definition 4.5. A metric spaceX, d is a setX together with a function
d: X x X —RJ

whereR{ denotes the non—negative real numbers, with the following properties:
(1) dissymmetric That is,

d(z,y) = d(y, )
(2) disnondegenerat@ the sense that
d(z,y) =0iff z =y
(3) d satisfies thériangle inequality That is,
d(z,y) +d(y,z) > d(x, 2)
for all triplesz, y, z € X.
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Example4.6. The real lineR is a metric space with

d(z,y) = v —y|
Example4.7. The plandR? is a metric space with

d((x1, 1), (22, 92)) = (21 — 22)* + (Y1 — 12)°
Example4.8. The plandR? is a metric space with

d((z1, 1), (22,92)) = |z1 — 22| + |y1 — ¥2
This metric is known as thilanhattan metricCan you see why?

Definition 4.9. An isometryof a metric spaceX is al-1 and onto transformation of

to itself which preserves distances between points. The ssbwfetriesof a spaceX is a
group IsoniX'), where multiplication in the group is composition of symmetries, argl
the trivial symmetry which fixes every in X. This is an example of a group of the form
Aut(X) where the relevant structure dn is that of thecategory of metric spacésIET
whose objects are metric spaces and whose morphisms are isometries.

Definition 4.10. Isometries are frequently too restrictive for many circumstances; a typical
metric space of study might admit no non-trivial isometries at all. We can enrich the
structure by allowing as morphisms those maps which, though they don't litpreligrve
distances between points, at least don’t increase distances between points by too much.
Such a map is calledlapschitzmap, and metric spaces with these as morphisms define a
categoryLIP which is in many ways a much more interesting object tNéR'T.

Amapf: X — Y between metric spaceshdipschitzif there is aK > 1 so that

oy (@), £ () < dx(z,) < Ky ((2), 7))

One may think of this as a map which only distorts distances up to a bounded factor.
A bilipschitz map is1-1, since metrics are nondegenerate. An invertible Lipschitz map
with Lipschitz inverse is bilipschitz, so that the automorphisms in the catdgbyare
bilipschitz. Moreover, the composition of two bilipshitz maps is bilipschitz.

Exercise 4.11. (1) Show that the set of bilipschitz self-maps is a groupXoe= R
with the Euclidean metric.
(2) (Harder) Show that the set of bilipschitz self-maps is a groupXfo= R? with
the Euclidean metric, and also with the Manhattan metric.
(3) Show that the bilipschitz self-maps®t with the Euclidean or the Manhattan
metric are the same

4.3. Differential geometry. Differential geometry is the abstraction of calculus and anal-
ysis onn—dimensional Euclidean space to generalized geometric spaces called “smooth
Riemannian manifolds”. These are spaces which look like Euclidean space on a small
scale, but on larger scales they are deformed or “curved”. Einstein’s theory of general
relativity says that our own universe is a certain kind of curved space, where the curva-
ture is proportional to the strength of the gravitational force; on the human scale it looks
Euclidean, but near massive objects like neutron stars, the “curvature” of the space is evi-
denced by the bending of light rays. The concept of curvature is a very important connec-
tion between geometry and topology.

Since calculus and analysis are basicédlyal, one can do calculus on such spaces,
since on smaller and smaller scales they look more and mor&filso that limits, deriva-
tives, differentiability etc. all make sense, and the tools of multivariable calculus can be
transplanted to this setting.
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The morphisms which preserve the structure used to do differential geometry are the
smooth mapgeneralizations of differentiable functions.

4.3.1. Smooth ManifoldsA manifoldis a space which, on a small scale, resembles Eu-
clidean space of some dimension. The dimension is usually assumed to be constant over
the space, and is called tdanension of the manifold

A circle or a line is an example of B-dimensional manifold. A sphere or the surface
of a donut is an example of &-dimensional manifold. Our universe, or the space outside
a knot or link are examples 8f-dimensional manifolds.

Definition 4.12. A smooth manifolds a manifold on which one can do Calculus. One
covers the space with a collection of little snapshots called “charts” which are meant to
be all the different possible choices of local parameters for the space. Technically one has
a collection of charts, which are subsétsof the manifold)/, and a collection of ways

of parameterizing these charts as subsets of Euclidean space; that isp,mdps— V;

which are continuous and have continuous inverses, wiijdeesome open region in some

R™. These maps should be compatible, in the sense that if two diiaig overlap, the

mapp = gbj(z)i—l between the appropriate subsetdRsf (wherep is defined) should be
smooth (i.e. it should have continuous partial derivatives of all orders), and it should be
locally invertible that is, the matrix of partial derivatives

Op(z1)  Op(x2) 9p(xn)

oxq Oxq e Oxq
Op(z1)  Op(x2) 9p(@n)

dp p— 8302 8$2 e 8;172
Op(xz1)  Op(z2) Op(zn)

oz, Ox ., T Ox .y,

should be invertible at every point.

This definition seems bulky but it is actually quite elegant. When doing multivariable
calculus, we are used to switching back and forth between local co—ordinates which might
only be defined on certain subsetsRsf.

Example4.13 In the planeR2, we might switch between, y Cartesian co—ordinates and
r, 6 polar co—ordinates. Note théis not really a “co—ordinate” on the whole B, since
its value is only well-defined up to multiples 2f, and at the origin there is no sensible
value for it. These co—ordinates are actually maps from subsets of the mdkifeddthe
“standard” Euclidean space, which in this case also happensIi3 b&he first chari/;
can be taken to be all &2, and the functionp; is just the identityp, : (x,y) — (z,y).
The second functiom, is not defined on all oR?, and might be given in the chait, =
{z,y > 1} for instance, by

o2 (x,y) — (\/xQ + 2, arctan E)
Y

Definingp = ¢267 ' = ¢- as above, check thdp is invertible everywhere in the overlap
of the two charts.

The charts on a smooth manifold are just the collection of all the possible local co—
ordinates for subsets of the manifold; this collection of charts is calletlaa

Example4.14 The space®™ are smooth manifolds for any.

Example4.15 An open subset of a smooth manifold is itself a smooth manifold, by re-
striction of charts and functions.
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In differential geometry, the allowable morphisms are typicallysim®oth mapsA map
f:M™ — N™issmoothif for chartsU; C M,U; C N, the compositio; ofoqﬁi_l isa
smooth map from the appropriate subseR8f to the appropriate subset®&f'. Thatis, the
co—ordinate maps have continuous partial derivatives of all orderscatbgory of smooth
manifolds denotedDIFF has as objects smooth manifolds, and as morphisms smooth
maps. An invertible smooth map is calledifeomorphismthe group of diffeomorphisms
of a smooth manifold is typically a huge, unmanageable object, but certain features of it
can be studied.

4.4. Topology. Basic notions of incidence or connectivity are part of our fundamental
geometric intution. Concepts such as “inside” and “outside”, or “bounded” and “un-
bounded” are topological. Topology can be thought of as the study ofjuhétative
properties of a space that are left unchanged under continuous deformations of the space;
that is, deformations which may bend or stretch the space but do not cut or tear it. An
allowable morphism between topological spaces is just a continuous map; invertible mor-
phisms are callelomeomorphisms

4.4.1. Continuous mapsTopologists frequently discuss spaces far more abstract than man-
ifolds. The concept of continuity in this general context relies on the definition of the
following structure on a space.

Definition 4.16. A topologyon a setX is a collection of subsets of
Uc{lcXxi}
with the following properties:

e The empty set an&” are both iri/.
e If Uy,...,U, are afinite collection of elementsinthenn,;U; is in{.
e If V C U is an arbitrary collection of elementsafy thenUy <,V is in 4.

Thus, a topology is a system of subséfswhich includes the empty set anxi, and is
closed under finite intersections and arbitrary unions. The sétaie called th®pensets

in X. Their complements are called thiwsedsets. From the definition, finite unions and
arbitrary intersections of closed sets are closed.

Remark4.17. It suffices, when defining a topology, to give a set of subsets of the space
which are supposed to be open, and then let the open sets be the smallest collection of
subsets, including the given sets, which satisfy the axioms of a topology. We call the given
colletion of sets @asisfor the topology. Most of the spaces we will encounter have a
countablebasis.

Definition 4.18. Given a sefY” C X, theclosureof Y is the intersection of the closed
subsets ofX containingY. Given a setY’, theinterior of Y is the complement of the
closure of the complement &f. It is the union of all the open sets X contained iny".

Example4.19 LetY C X be a subset. Theubspacéopology onY is the topology whose
open sets are the intersectidiis) Y whereU is open inX.

We will not discuss topological spaces in general in the sequel and stick only to some
very concrete examples.

Let’s suppose we have two spacEsandY where we understand what the open sets
are. For instance, iR the open sets are the unions of intervals of the Kind), where
we don't include the endpoints. In this context we can define abstractly what is meant by a
continuous map.
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Definition 4.20. A map fromX to Y is continuousf the inverse of any open set is open.

Example4.21 Let ~ be an equivalence relation oXi, and letr : X — X/ ~ be the
quotient map to the space of equivalence classes.qiib&enttopology onX/ ~ is the
topology whose open sets are thdéeC X/ ~ such thatr—!(U) is open inX. Thus,
X/ ~ has as many open sets as it is allowed subject to the condition teabntinuous.

Definition 4.22. A homeomorphism fronX to Y is a continuous map which is invertible
and has a continuous inverse.

The category of topological manifolds is denofE@P and has as objects topological
manifolds and as morphisms all continuous maps.

The group of homeomorphisms of a space are typically even larger and harder to under-
stand than groups of diffeomorphisms. The advantage of working with arbitrary continuous
maps is that many natural maps and constructions are on the face of them continuous rather
than smooth, and one can accomplish more by allowing oneself greater flexibility.

We list some frequently encountered topological concepts:

Definition 4.23. A neighborhoodf a pointp € X is any open sa/ € X containingp.

Definition 4.24. A topological space islausdorffif for any two distinct pointp, ¢ € X
there are neighborhoods pfand ofg which are disjoint.

Definition 4.25. A manifold is defined much as a smooth manifold, with chaftsand
functions¢; : U; — R™ for some (typically fixed):, but now we don’t require that the
transition functionabjgb;1 be smooth, merely homeomorphisms. Formally, a manifold is

a Hausdorff topological space with a countable basis, such that every point has a neighbor-
hood homeomorphic to an open subseRdffor some (usually fixedj.

Definition 4.26. A spaceX is connectedf there are no proper nonempty subséts X
which are bottclosedandopen A space idocally connectedf for any pointp and any
open seD C X there is anothel/ C O such thatU is connected, as a subspaceXaf

Definition 4.27. A subsetX C Y (perhaps all oft") is compactif it is closed, and for
every collectiorl/ of open sets ift” whose union contain’, there is dinite subcollection
whose union contain¥ . A spaceX islocally compactf everyp € X has a neighborhood
whose closure is compact.
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