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Preface

Historically, the Fourier transform has been a powerful method for solving linear
partial differential equations. This book presents another approach, which shows that
many equations are inspired from mechanics and that using geometric methods is
the most natural and appropriate treatment. The text is enriched with examples and
chapter exercises, which facilitate our understanding.

An Overview for the Reader The goal of this book is to explore some connec-
tions between differential geometry and partial differential equations: that is, partial
differential equations are linked with a geometric view of classical mechanics in
both its Lagrangian and Hamiltonian formulations on Riemannian manifolds. When
quantitative solutions cannot be obtain explicitly, the equations of motion are solved
qualitatively using conservation laws provided by the geometry of the problem.

Starting with an overview of differential geometry, the book proceeds to a descrip-
tion of topics of current interest such as quantum harmonic oscillators, fundamental
solutions for elliptic and parabolic operators, harmonic maps, conservation theorems,
Lagrangian and Hamiltonian formalism.

This work is a text for a course or seminar directed at graduate and advanced
undergraduate students interested in elliptic and parabolic equations, differential ge-
ometry, calculus of variations, quantum mechanics. It is also an ideal resource for
pure and applied mathematicians and theoretical physicists working in these areas.

Scientific Outline The subject of calculus of variations is an extension of calculus
in which the working space is a manifold. This book deals with an invariant ap-
proach to the Lagrangian and Hamiltonian formalism on Riemannian manifolds with
applications to constructions of the fundamental solutions for parabolic and elliptic
operators.

The construction of some fundamental solutions construction uses the conserva-
tions laws and variational formalisms introduced in the first chapter. Fundamental
solutions for Schrödinger and heat equations involving linear, quadratic, and quartic
potentials are discussed here. Formally, the method works for any potential and repre-
sents an application of the variational formalism to partial differential equations. Until
now, these fundamental solutions were found using methods of Fourier or Laplace
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transforms, Feynman’s path integrals, or complex analysis techniques. The methods
introduced in this text explain why the quartic harmonic oscillator is more difficult
to invert than its linear analog model. This approach brings into play differential
geometry methods into partial differential equations and quantum mechanics.

It is known that, in general, the coordinate space for a dynamical system is a
Riemannian manifold. In order to build a theory of dynamical systems, we need
the appropriate tools. Thus, we use a purely geometrical treatment for problems in
physics or mechanics. Our approach is done in the context of both local coordinates
and invariantly.

The idea is to write down the Euler–Lagrange system of equations for some
Lagrangians (with certain physical interpretations) and to characterize the system
qualitatively, from the conservation laws point of view, using the symmetry of the
coordinate space. Usually these systems cannot be solved explicitly. For simple equa-
tions, one may characterize the solutions by finding the first integrals of motion. In
the general case, the conservation laws are described by free divergence vector fields,
trace free tensor fields, or constant energy functions. The conservation laws in the very
simple dynamical systems are those of energy, momentum, or angular momentum.
We shall treat these notions in the case of Riemannian manifolds. Principles from
classical mechanics such as those of Hamilton, D’Alembert, and Euler, are studied
with Noether’s theorems and Newton’s equations.

The use of conservation laws for the energy-momentum tensor associated with dif-
ferent Lagrangians provides uniqueness for some linear and nonlinear boundary prob-
lems (Dirichlet and Neumann) on Riemannian manifolds. Conservation properties of
the energy-momentum tensor have interesting applications in geometry, physics, and
partial differential equations.

Several chapters of the book discuss the Hamiltonian formalism and the Hamilton–
Jacobi equation. Geodesics, harmonic maps, and eiconal equations are approached
from this point of view. Another chapter is dedicated to applications for minimal
surfaces, minimal waves, and other physical applications, such as the Helmhotz de-
composition of vector fields.

Two chapters provide applications of the Lagrangian and Hamiltonian formalism
to heat kernels and the fundamental solutions for Laplacians on manifolds.The method
uses the concepts of energy and action to describe the fundamental solutions.

A final chapter is dedicated to mechanical curves treated from the energy point of
view. We study Lagrangians which generate the motions on these curves. The conser-
vation theorems in these cases provide the first integrals of motion with interesting
geometrical interpretations.

Physicists, mathematicians, graduate students in the areas of elliptic and parabolic
differential equations, differential geometry, calculus of variations and quantum me-
chanics, and even well-prepared undergraduates will appreciate this introduction to
the beautiful geometric theory of partial differential equations.
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Introductory Chapter

1.1 Manifolds

Roughly speaking, a manifold is essentially a space that is locally similar to the Eu-
clidean space. This resemblance permits differentiation to be defined. On a manifold,
we do not distinguish between two different local coordinate systems. Thus, the con-
cepts considered are just those independent of the coordinates chosen. This makes
more sense if we consider the situation from the physics point of view. In this inter-
pretation, the systems of coordinates are systems of reference. Physics studies objects
like force, matter fields, momenta, and conservation laws, which in the differential
geometry point of view are vector fields, tensor fields, one-forms, and first integrals.
They are objects independent of the system of coordinates and can be defined globally
but may be written locally in a local system of coordinates using local components.
For example, the velocity, which is a vector field, may be written in local coordinates

as v =
∑

vi ∂

∂xi

,where
{ ∂

∂xi

}
i=1,n

is a basis of the local system of coordinates cho-

sen. This means that the components of velocity measured in this system of reference
are v1, . . . , vn. Changing the system of coordinates will also modify the components
under a certain rule.

A precise definition of the concept of manifold is given in the following. All the
manifolds considered in this book are real, i.e., the local model is the space Rn.

Definition 1.1 Let M be a topological space. Then the pair (U, φ) is called a chart
(coordinate system), if φ : U → φ(U) ⊂ Rn is a homeomorphism of the open set
U in M onto an open set φ(U) of Rn. The coordinate functions on U are defined
as xj : U → Rn, and φ(p) = (x1(p), . . . , xn(p)), namely xj = uj ◦ φ, where
uj : Rn → R, uj (a1, . . . , an) = aj is the j th projection. n is called the dimension
of the coordinate system.

Definition 1.2 A topological space M is called Hausdorff if for every two distinct
points p1, p2 ∈ M , there are two open sets U1, U2 ⊂ M such that

p1 ∈ U1, p2 ∈ U2 , U1 ∩ U2 = ∅.
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n
R

U U

Φα ( U )
βU(Φ )

α β

Φ
Φ

α β

Fα β

Figure 1.1: The system of coordinates on a manifold overlap smoothly

Definition 1.3 An atlas A of dimension n associated with the topological space M

is a collection of charts {(Uα, φα)}α such that
1) Uα ⊂ M ,

⋃
α Uα = M (Uα covers M),

2) if Uα ∩ Uβ �= ∅, the map

Fαβ = φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∪ Uβ)

is smooth (the systems of coordinates overlap smoothly).

On the topological space M , we may have many atlases. Two atlases A and A′ are
called compatible if their union is an atlas on M . The set of compatible atlases with a
given atlas can be organized by inclusion. The maximal element is called the complete
atlas C. It contains all the charts that overlap smoothly with the charts of the given
atlas A.

Definition 1.4 A smooth manifold M is a Hausdorff space endowed with a complete
atlas. The dimension n of the atlas is called the dimension of the manifold.

Examples of manifolds
1) The space Rn is a smooth manifold of dimension n defined by only one chart, the
identity map.
2) A curve c : (a, b) → Rn is a one-dimensional manifold, where M = 	m(c)

and the atlas consists of one chart (U, φ), where U = c
(
(a, b)

)
, φ : U → (a, b),

φ = c−1
|	m c.

3) The sphere S2 = {a = (a1, a2, a3) ∈ R3 ; |a| = 1} is a smooth manifold of
dimension 2 defined by the atlas A = {Ui, φi}i=1,3 ∪ {Vi, ψi}i=1,3
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U1 = {a ; a1 > 0} , φ1 : U1 → R2 , φ1(a) = (a2, a3),

V1 = {a ; a1 < 0}, ψ1 : V1 → R2, ψ1(a) = (a2, a3),

U2 = {a ; a2 > 0} , φ2 : U2 → R2 , φ2(a) = (a1, a3),

V2 = {a ; a2 < 0}, ψ2 : V2 → R2, ψ2(a) = (a1, a3),

U3 = {a ; a3 > 0} , φ3 : U3 → R2 , φ3(a) = (a1, a2),

V3 = {a ; a3 < 0}, ψ3 : V3 → R2, ψ3(a) = (a1, a2).

4) If M , N are smooth manifolds, M × N is a smooth manifold, called the product
manifold. For example, the cylinder S1×[0, 1] and the torus T2 = S1×S1 are smooth
manifolds.
5) The cone C = {x2

1 + x2
2 = x2

3 } is not a smooth manifold. This is due to the
singularity it has at the origin, where differentiation cannot be performed. Indeed,
consider a chart (U, φ) around 0. We may assume that there is a ball B(0, ε) centered
at φ(0) included in φ(U). Then U\{0} has two connected components. Since φ is a
homeomorphism from U onto φ(U), φ(U)\{φ(0)} has two connected components.
Then B(0, ε)\φ(0) should have the same. This is a contradiction.

1.2 Tangent vectors

Definition 1.5 A function f : M → R is said to be smooth if for every chart (U, φ)

on M , the function f ◦ φ−1 : φ(U)→ R is smooth. The set of all smooth functions
on the manifold M will be denoted by F(M).

Definition 1.6 A tangent vector at a point p ∈ M is a map Xp : F(M)→ R such
that Xp

i) is R-linear: Xp(af + bg) = aXp(f )+ bXp(g) , ∀a, b ∈ R, ∀f, g ∈ F(M),
ii) satisfies the Leibnitz rule

Xp(fg) = Xp(f )g(p)+ f (p)Xp(g) , ∀a, b ∈ R, ∀f, g ∈ F(M). (1.2.1)

The set of all tangent vectors at p to M is denoted by TpM and is called the tangent
space at p. It is a vector space of dimension n. A basis in this space is given by the

coordinate tangent vectors
∂

∂xi |p
defined by

∂

∂xi |p
(f ) = ∂(f ◦ φ−1)

∂ui
(φ(p)), (1.2.2)

where φ = (x1, . . . , xn) is a system of coordinates around p and u1, . . . , un are the
coordinate functions on Rn.
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Every vector v ∈ TpM can be written as v = ∑
i vi ∂

∂xi |p. vi = v(xi) are

called the components of v in the system of coordinates (x1, . . . , xn). When changing
coordinates between two systems (x1, . . . , xn) and (x̄1, . . . , x̄n), the change of the
components of the vector is given by

v̄k =
n∑

i=1

∂x̄k

∂xi

vi (1.2.3)

where {v̄k} are the components in the second system of coordinates.
If the Jacobian from one chart to another is defined as

J =
(∂x̄k

∂xi

)
i,k=1,n

(1.2.4)

then det J �= 0, because φ is a diffeomorphism.

The physical notion of velocity corresponds to the geometrical concept of a vector
field. The following result states that there is a reference system in which n − 1
components of the vector vanish and the nth component is equal to 1.

Definition 1.7 A smooth map X : M → ⋃
p∈M TpM that assigns to each point

p ∈ M a vector Xp in TpM is called a vector field.

The set of all vector fields on M will be denoted by X (M). In a local system

of coordinates a vector field is given by X =
∑

Xi ∂

∂xi

, where the components

Xi ∈ F(M) are given by Xi = X(xi), i = 1, n.

Theorem 1.8. (Rectification theorem) Let V be a nonzero vector field at a point p on
the manifold M . Then there exists a system of coordinates (x̄1, . . . , x̄n) about p such
that there is j ∈ {1, . . . , n} for which

V = ∂

∂x̄j

. (1.2.5)

Proof. Choose an arbitrary system of coordinates (x1, . . . , xn).ThenV =
∑

vi ∂

∂xi |p
.

Since V|p �= 0, at least one component is not equal to zero. Assuming that vn �= 0,
choose the second system of coordinates (x̄1, . . . , x̄n) defined by

x̄j = xj − vj

vn

xn , ∀j = 1, n− 1,

x̄n = xn

vn

.

Then formula (1.2.3) yields (1.2.5) with j = n.
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Given a vector field X, consider the system

dck(t)

dt
= Xk(c(t)), k = 1, n. (1.2.6)

The next result shows that the system (1.2.6) can be solved locally around the point
x0 = c(0), for 0 < t < ε. The solution t → c(t) is called the integral curve associated
with the vector field X through the point x0. The local existence and uniqueness of
integral curves are given by the following result.

Theorem 1.9. (Existence and uniqueness) Given x0 ∈ M and letting X be a nonzero
vector field on an open set U ⊂ M of x0, then there is ε > 0 such that the system
(1.2.6) has a unique solution c : [0, ε)→ U such that c(0) = x0.

Proof. By the rectification theorem, there is a local change of coordinates x̄ = φ(x)

such that the system (1.2.6) becomes

dck(t)

dt
= δkn, k = 1, n, (1.2.7)

where c = φ(c). The system (1.2.7) has a unique solution through the point x0 =
φ(x0) given by ck(t) = xk

0, k = 1, n− 1 and cn(t) = t + xn
0. Hence this will hold

also for the system (1.2.6) in a neighborhood of x0 = φ−1(x0).

1.3 The Differential of a Map

Definition 1.10 A map F : M → N between two manifolds M and N is smooth
about p ∈ M if for any charts (U, ψ) on M about p and (V , ψ) ∈ N about F(p),
the application ψ ◦ F ◦ φ−1 is smooth from φ(U) ⊂ Rm to ψ(V ) ⊂ Rn.

Definition 1.11 For every p ∈ M the differential map dF at p is defined by
dFp : TpM → TF(p)N with

(dFp)(v)(f ) = v(f ◦ F) , ∀v ∈ TpM , ∀f ∈ F(N). (1.3.8)

Locally, it is given by

dFp

( ∂

∂xj |p

)
=

n∑
k=1

∂F k

∂xj |p
∂

∂yk |F(p)

, (1.3.9)

where F = (F 1, . . . , F n). The matrix
(

∂F k

∂xj

)
k,j

is the Jacobian of F with respect to

the charts (x1, . . . , xm) and (y1, . . . , yn) on M and N respectively.
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M

v
p

T  Mp

dFp

F

dFp (v)

N

R
TF(p) N

Figure 1.2: The differential of a map

The inverse function theorem on smooth manifolds is stated in the following. For a
proof see [43].

Theorem 1.12. Let F : M → N be a smooth map. Then the following conditions are
equivalent:
1) dFp : TpM → TF(p)N is an isomorphism;
2) F is a local diffeomorphism in a neighborhood of p;
3) There are two charts (x1, . . . , xm) and (y1, . . . , yn) on M and N respectively,
such that the associated Jacobian is non-degenerate.

1.4 The Lie bracket

An important operation on vector fields is the Lie bracket [ , ] : X (M)× X (M)→
X (M) defined by

[V, W ] = V W −WV. (1.4.10)

In local coordinates,

[V, W ] =
n∑

i,j=1

(∂Wi

∂xj

V j − ∂V i

∂xj

Wj
) ∂

∂xi

. (1.4.11)

The Lie bracket has the following properties:
1) R-bilinearity:

[aV + bW, U ] = a[V, U ] + b[W, U ], ∀a, b ∈ R,

2) skew-symmetry:
[U, V ] = −[V, U ],

3) Jacobi identity:

[U, [V, W ]] + [V, [W, U ]] + [W, [U, V ]] = 0,
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4) [f V, gW ] = fg[V, W ] + f (Vg)W − g(Wf )V , ∀f, g ∈ F(M).

If the Lie bracket of two vector fields is zero, [U, V ] = 0, we say that the vector fields
commute. If we start from a point p and go a parameter distance v along the integral
curves of V followed by a parameter distance u along the integral curves of U , then
we arrive at the same point as if the order of the vector fields is swapped.

U

U

U

UV

V
V

Vv

v

u

u

Figure 1.3: Integral curves for commuting vector fields

Example 1.4.1 Consider on R3 the vector fields X = ∂x1−2x2∂x3 , Y = ∂x2+2x1∂x3

and Z = ∂x3 . Then [X, Y ] = −4∂t , [X, Z] = [Y, Z] = 0. X and Y do not commute.
Z commutes with both X and Y .

1.5 One-forms

Let T ∗p M denote the dual space of TpM which is called the cotangent space of M at
p. The elements of T ∗p M are called covectors. A one-form ω on the manifold M is a
function that assigns to each point p ∈ M a covector ωp ∈ T ∗p M .

An example of a one-form is the differential of a function f ∈ F(M), which is
defined as (df )p : TpM → R,

(df )p(v) = v(f ) , ∀v ∈ TpM. (1.5.12)

In local coordinates, df = ∑
i

∂f
∂xi

dxi , where {dxi} is the basis in the T ∗p M which

is dual to the basis { ∂
∂xi
} of TpM . In general, a one-form in local coordinates can be

written as

ω =
n∑

i=1

ωi dxi, (1.5.13)

where ωi = ω( ∂
∂xi

). The set of all one-forms on the manifold M will be denoted by
X ∗(M). If φ : M → N is a smooth function and ω ∈ X ∗(N), then the pull-back of
the one-form ω is the one-form φ∗(ω) ∈ X ∗(M) defined by
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φ∗ω(V ) = ω(dφ V ) , ∀V ∈ X (N). (1.5.14)

For more about differential forms see [12].

1.6 Tensors

A tensor of type (r, s) at p ∈ M is a multi-linear function T : (T ∗p M)r×(TpM)s → R.
A tensor field T of type (r, s) is a smooth map, which assigns to each point p ∈ M

an (r, s)-tensor Tp on M at the point p. In local coordinates,

T = T i1i2...is
j1j2...jr

dxj1 ⊗ · · · ⊗ dxjr ⊗ ∂

∂xi1

⊗ · · · ⊗ ∂

∂xis

. (1.6.15)

T acts on r one-forms and s vector fields

T (ω1, . . . , ωr , X1, . . . , Xs) = T i1..is
j1..jr

dxj1(X1)...dxjr (Xr)
∂

∂xi1

(ω1)...
∂

∂xis

(ωs)

= T i1...is
j1...jr

X
j1
1 ...X

jr
r ω

i1
1 ...ωis

s .

We say the tensor T is s covariant and r contravariant.
If T is a tensor field of type (r, s) on N , then the pull-back φ∗T of T is a tensor

field on M of the same type, defined by

(φ∗T )(X1, . . . , Xr, ω1, . . . , ωs) = T (dφ X1, . . . , dφ Xr, φ
∗ω1, . . . , φ

∗ωs),

(1.6.16)
where Xi ∈ X (M), ωi ∈ X ∗(M).

A tensor T may be Lie differentiated with respect to a vector field X ∈ X (M),

LXT|p = lim
t→0

1

t
(Tp − (ϕt )

∗T|ϕt (p)), (1.6.17)

where ϕt is the one-parameter group of diffeomorphisms defined by the integral curves
of the vector field X. That is ϕt (p) = c(t), with c(t) as the unique integral curve of
X satisfying c(0) = p. The name one-parameter group comes from the fact that
ϕt ◦ ϕs = ϕt+s = ϕs ◦ ϕt , with |t |, |s|, |t + s| < ε.

On coordinates components we have

(LXT )ab...d
ef ...g =

∂T ab...d
ef ...g

∂xi

Xi − T ib...d
ef ...g

∂Xa

∂xi

−(all upper indices)+ T ab...d
if ...g

∂Xi

∂xe

+ (all lower indices).

The (1, 0)-tensor fields are in fact vector fields. The (0, 1) tensor fields are one-forms.
In this case the Lie derivative is
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LXY = [X, Y ],
LX(df ) = d(Xf ), ∀f ∈ F(M).

Other properties of the Lie derivative are:

LaX+bY = aLX + bLY , ∀a, b ∈ R, X, Y ∈ X (M),

LXf = X(f ), ∀f ∈ F(M),

L[X,Y ] = [LX, LY ], ∀X, Y ∈ X (M),

d
(
LXω

)
= LX(dω), ∀ω p-form.

If T is an (s, r)-tensor, then LXT is also an (s, r)-tensor. A vector field is called a
Killing vector field if LXg = 0, where g is the Riemannian metric tensor (see next
section).
A tensor of type (0, 2) is called symmetric if

Tab = Tba, (1.6.18)

and it is called antisymmetric if

Tab = −Tba. (1.6.19)

1.7 Riemannian Manifolds

There are manifolds on which we may want to measure distances, angles, and lengths
of vectors and curves. From the math point of view they represent generalizations of
the surfaces of more than two dimensions. From the mechanics point of view, they
constitute the models for the coordinate spaces of dynamical systems. Their tangent
bundle represents the phase space. The metric they are endowed with allows measuring
the energy and constructing Lagrangians on the phase space and Hamiltonians on the
cotangent bundle. This way, Riemannian Geometry becomes an elegant frame and
proper environment for doing Classical Mechanics.

Definition 1.13 A Riemannian metric g on a smooth manifold M is a symmetric,
positive definite (0, 2)-tensor field.

This means that ∀p ∈ M , gp : TpM×TpM → R is a positive definite scalar product.
In local coordinates

g = gij dxi ⊗ dxj . (1.7.20)

Definition 1.14 A Riemannian manifold is a smooth manifold M endowed with a
Riemannian metric g.

Let En = (Rn, 〈 , 〉) denote the n-dimensional Euclidean space. For a proof of the
next theorem see [4].
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Theorem 1.15 (Whitney). If M is a differentiable manifold of dimension n, then there
is a diffeomorphism φ : M → E2n+1 such that φ(M) is closed in E2n+1.

The existence of a Riemannian metric is given in the next result.

Theorem 1.16. If M is a smooth manifold, then there is at least one Riemannian
metric on M .

Proof. Denote by 〈 , 〉 the Euclidean scalar product on R2n+1, and consider the
immersion φ : M → E2n+1 given by the Whitney theorem. Choose

g(X, Y ) = 〈φ∗X, φ∗Y 〉 , ∀X, Y ∈ X (M), (1.7.21)

Then (M, g) is a Riemannian manifold.

There is a one-to-one, onto correspondence between the one-forms and the vector
fields on a Riemannian manifold M . If V is a vector field, then one may associate
with it a one-form ω such that

ω(U) = g(V, U), ∀U ∈ X (M). (1.7.22)

If in local coordinates ω = ωidxi and V = V j ∂
∂xj

, then

ωk = gjkV
j .

1.8 Linear Connections

The linear connection is an extension of the directional derivative from the Euclidean
case.

Definition 1.17 A linear connection ∇ on a smooth manifold M is a map ∇ :
X (M)× X (M)→ X (M) with the following properties:
1) ∇XY is F(M)-linear in X,
2) ∇XY is R-linear in Y ,
3) it satisfies the Leibnitz rule: ∇X(f Y ) = (Xf )Y + f ∇XY , ∀f ∈ F(M).

∇XY is a new vector field which, roughly speaking, is the vector rate change of Y in
the direction of X.

Example 1.8.1 On Rn a linear connection is

∇UV =
n∑

j=1

U(V j )Ej , (1.8.23)

where Ej = (0, . . . , 0, 1, 0, . . . , 0) is the j th basis vector on Rn and V =∑
j V jEj .



1.8 Linear Connections 11

Definition 1.18 Let ∇ be a linear connection. The torsion is defined as

T : X (M)× X (M)→ X (M),

T (X, Y ) = ∇XY − ∇Y X − [X, Y ]. (1.8.24)

The curvature of the linear connection is given by

R : X (M)× X (M)× X (M)→ X (M),

R(X, Y, Z) = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z. (1.8.25)

If S is a tensor field of type (0, r), we may differentiate it along a vector field V with
respect to the linear connection ∇ as

(∇V S)(X1, . . . , Xr) = V S(X1, . . . , Xr)−
n∑

i=1

S(X1, . . . ,∇V Xi, . . . , Xr).

(1.8.26)
If g is the Riemannian metric tensor, the linear connection ∇ is called a metric
connection if

∇V g = 0 , ∀V ∈ X (M). (1.8.27)

This means that

V g(X, Y ) = g(∇V X, Y )+ g(X,∇V Y ) , ∀V, X, Y ∈ X (M). (1.8.28)

The amazing fact is that there is only one metric connection that has zero torsion. This
constitutes the cornerstone of the geometry of Riemannian manifolds. The following
theorem can be considered as a definition for the Levi-Civita connection and can be
found for instance in [35].

Theorem 1.19. On a Riemannian manifold there is a unique torsion-free, metric con-
nection ∇. Furthermore, ∇ is given by the Koszul formula

2g(∇V X, U) = V g(X, U)+X g(U, V )− U g(V, X)

−g(V, [X, U ])+ g(X, [U, V ])+ g(U, [V, X]).
One can show that in local coordinates

∇XY =
∑
i,k

Xi
(∂Y k

∂xi

+
∑
j


k
ijW

j
) ∂

∂xk

, (1.8.29)

where X =
n∑

i=1

Xi ∂

∂xi

, Y =
n∑

k=1

Y k ∂

∂xk

and 
k
ij are the Christoffel symbols defined

by


k
ij =

1

2

∑
m

gkm
(∂gjm

∂xi

+ ∂gim

∂xj

− ∂gij

∂xm

)
(1.8.30)

where (gkm) is the inverse matrix of (gij ).
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Definition 1.20 A vector field Y is said to be parallel transported along the curve
c(t) if

∇ċ(t)Y = 0. (1.8.31)

In local coordinates ∑
i

ċi (t)
(∂Y k

∂xi
+
∑
j


k
ij Y

j
) ∂

∂xk

= 0.

The chain rule yields
dY k

dt
= ∂Y k

∂xi |c(t)
ċi (t),

so that one obtains that Y is parallel transported along the curve c(t) if and only if

dY k

dt
+
∑
i,j


k
ij|c(t) Y j ċi (t) = 0. (1.8.32)

Together with the initial condition Y (0) = v, by Picard’s theorem, equation (1.8.32)
has locally a unique solution.

Sometimes we shall use the following shorter notation for the linear connection
of a vector field with respect to one of the coordinate vector fields:

X
j

; k = (∇ ∂
∂xk

X)j . (1.8.33)

If f is a function, we write f;k = ∂

∂xk

f . In general we shall write ; k for ∇ ∂
∂xk

derivative.

Definition 1.21 Let RXY Z = R(X, Y, Z) denote the curvature tensor and {E1, . . . ,

En} be an orthonormal system about p. The 2-covariant symmetric tensor defined by

Ric(X, Y ) = T race
(
V → RXV Y

)
=

n∑
j=1

g(RYEj
X, Ej ),

is called the Ricci tensor.

1.9 The Volume element

On Riemannian manifolds we can measure not only lengths but also volumes. The
volume form is an n-form defined locally by

dv = √|g| dx1 ∧ · · · ∧ dxn, (1.9.34)
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where |g| = det (gij )i,j . As an (n, 0)-tensor, dv may be Lie differentiated along the
vector field X. As an n-form, LX dv will be proportional to dv,

LX dv = f dv. (1.9.35)

The function f depends on the expansion of X, and it is called the divergence of the
vector field X,

f = div X. (1.9.36)

If M is a compact manifold, the volume of M is defined as

vol(M) =
∫

M

dv. (1.9.37)

Let(M, g) be a Riemannian manifold and ι : M → Rn be an isometric immersion,
i.e., dι is one-to-one and g is the pull-back of the flat metric 〈 , 〉 on Rn through ι. Let
X ∈ X (M) be a vector field and ν be the normal vector field to M , i.e., νp ∈ TpM

and 〈νp, νp〉 = 1, ∀p ∈ M . Then the divergence theorem takes place,∫
M

divX dv =
∫

∂M

〈X, ν〉 dσ, (1.9.38)

where ∂M is the boundary of M and dσ is the area element on ∂M .
For more about Calculus on manifolds the reader may consult [43]. For more

differential geometry one may see [10], [11], [44].

1.10 Exercises

1. On a domain of a system of coordinates (x1, . . . , xn), if V = ∑
V i∂xi

and W =∑
Wj∂xj

, then show that

[V, W ] =
n∑

i,j=1

(
∂Wi

∂xj

V j − ∂V i

∂xj

V j

)
∂

∂xi

.

2. Show that for any three vector fields U, V, W ∈ X (M) we have

[U, [V, W ]] + [V, [W, U ]] + [W, [U, V ]] = 0.

3. Let (x1, . . . , xn) be a system of coordinates at the point p on the Riemannian
manifold (M, g). Consider a new system of coordinates (x′1, . . . , x′n) defined by

x′j = xj − xj (p)+ 

j
ab |p(xa − xa(p))(xb − xb(p)).

a) Show that in the system of coordinates (x′1, . . . , x′n) the Christoffel symbols



j

a′b′ |p = 0.
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b) Using ga′b′;c′ = 0 show that in the system of coordinates (x′1, . . . , x′n) we have
∂ga′b′

∂xc′ |p
= 0.

4. Given a point p on the Riemannian manifold (M, g), show that there is a system
of coordinates at p in which

gij |p = δij and ∇∂xi
∂xj |p = 0.

5. Prove or disprove:
Given an open set U in a differentiable manifold M of dimension n, and X1, . . . , Xn

vector fields on U such that [Xi, Xj ] = 0, then there is a system of coordinates

(x1, . . . , xn) on U such that Xj = ∂

∂xj

.

6. Identify R4 with the quaternions space

{q = x0 + ix1 + jx2 + kx3; x0, x1, x2, x3 ∈ R},
and let S3 = {q ∈ R; |q| = 1}, where |q|2 = x2

0 + x2
1 + x2

2 + x2
3 . Let π : S3 → S2

be an application defined by π(q) = qiq−1.

a) Show that

π(q) = i(x2
0 + x2

1 − x2
2 − x2

3 )+ j (2x0x3 + 2x1x2)+ k(2x1x3 − 2x0x2)

and that π(q) ∈ S2.

b) Show that π is a submersion, i.e., it is differentiable and the differential dπp

is onto at each point p ∈ S3.

c) Find a nonzero global vector field X on S3 and calculate dπ(X).

7. Given a smooth curve c(s) on a differentiable manifold, let X = ċ(s) be its tangent
vector field. Show that X can be extended to a vector field on an open neighborhood
of the curve c(s).

8. Let γ (s) be a curve on the Riemannian manifold (M, g) with the Levi-Civita
connection ∇. Denote V = γ̇ (s) the tangent vector field. The derivative along γ (s)

is defined as
D

∂s
Z = ∇ZV,

for any vector field Z along γ (s). Show that for any Z, Z1, Z2 ∈ X (M) we have:

i)
D

∂s
(aZ1 + bZ2) = a

D

∂s
Z1 + b

D

∂s
Z2, a, b ∈ R,
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ii)
D

∂s
(hZ) = dh

ds
Z + h

D

∂s
Z, h ∈ F(R),

iii)
D

∂s
g(Z1, Z2) = g

(D

∂s
Z1, Z2

)
+ g

(
Z1,

D

∂s
Z2

)
.

9. Let c(s) be a curve on the Riemannian manifold (M, g). The Fermi derivative
DF

∂s
is a derivative along c(s) defined by

DF

∂s
X = D

∂s
X − g

(
X,

D

∂s
V
)
V + g(X, V )

D

∂s
V,

where V = ċ(s) and X is any vector field along c(s). Show that

i)
DF

∂s
V = 0.

ii)
DF

∂s
= D

∂s
if c(s) is a geodesic.

iii) Let X, Y be two vector fields along c(s) such that
DF

∂s
X = DF

∂s
Y = 0. Then

g(X, Y ) is constant along c(s).

10. Given a curve γ : (−δ, δ)→ M on the Riemannian manifold (M, g), show that
there is a system of coordinates (Fermi coordinates) at γ (0) in which 
a

bc = 0 along
the curve γ .

11. A surface (�, g) is called locally conformal to R2 if there is a local system of
coordinates in which

gij =
(

eh 0
0 eh

)
with h a smooth function.

a) Show that any surface is locally conformal to R2.

b) Is this still true for higher dimensions?

12. Consider Stokes’ theorem:
If M is a compact oriented k-dimensional manifold with boundary and ω is a

k − 1 form on M , then ∫
M

dω =
∫

∂M

ω,

where ∂M denotes the boundary of M .

Let ω = αdx + βdy. Show that Stokes’ theorem becomes Green’s theorem:
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Let M ⊂ R2 be a compact 2-dimensional manifold with boundary. Suppose that
α, β : M → R are differentiable. Then∫

∂M

αdx + βdy =
∫∫

M

(∂β

∂x
− ∂α

∂y

)
dxdy.

13. Let M be a surface and let ν(x) be the unit outward normal at x ∈ M . Define the
area element

dσ(v, w) = 〈v × w, ν(x)〉, ∀v, w ∈ TxM,

where 〈 , 〉 denotes the inner product on R3.

a) Show that dσ(v, w) = |v × w|.
b) Show that

dσ(v, w) = det

⎛⎝v

w

ν

⎞⎠ .

c) Prove that dσ = ν1dy∧dz+ν2dz∧dx+ν3dx∧dy, where ν = (ν1, ν2, ν3).

d) Show that

ν1dσ = dy ∧ dz, ν2dσ = dz ∧ dx, ν3dσ = dx ∧ dy.

14. Let X = (X1, X2, X3) be a vector field on the surface M in R3 and consider the
one-form ω = X1dy ∧ dz+X2dz ∧ dx +X3dx ∧ dy.

a) Show that dω = div X dv.

b) Show that ω = 〈X, ν〉dσ .

c) Using Stokes’ theorem show that∫
M

divX dv =
∫

∂M

〈X, ν〉 dσ.
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Laplace Operators on Riemannian Manifolds

2.1 Gradient vector field; Divergence and Laplacian

Definition 2.1 Let (M, g) be a Riemannian manifold and f ∈ F(M) be a smooth
function. The gradient of f , denoted by ∇f , is a vector field on M metrically equiv-
alent to df :

g(∇f, X ) = df (X), ∀X ∈ X (M). (2.1.1)

Remark 2.2 We note the right-hand side of (2.1.1) can also be written as

df (X) = X(f ).

Remark 2.3 Sometimes, to avoid confusion with the Levi-Civita connection, the gra-
dient will be denoted by grad f .

In local coordinates the gradient is

∇f =
n∑

j=1

(∇f )j
∂

∂xj

.

Using

df =
n∑

i=1

∂f

∂xi

dxi,

the equation (2.1.1) yields

gij (∇f )jXi = ∂f

∂xj

Xi, ∀X ∈ X (M). (2.1.2)

The components of the gradient are

(∇f )j = gij ∂f

∂xi

, (2.1.3)
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and then

∇f = gij ∂f

∂xi

∂

∂xj

(2.1.4)

with summation over the repeated index.

Example 2.1.1 On Rn the gradient of a function f is

∇f =
n∑

i=1

Ei(f ) Ei, (2.1.5)

with Ei = (0, . . . ,

ith︷︸︸︷
1 , . . . , 0).

In physics, a force vector field is called conservative if it is the gradient of a certain
potential energy . This definition can be extended for any vector field on manifolds
as follows.

Definition 2.4 Let X ∈ X (M) be a vector field on M. We say that X is provided by a
potential � if there is a differentiable function � ∈ F(M) such that X = ∇�.

In local coordinates

Xj = gij ∂�

∂xj

. (2.1.6)

Definition 2.5 Let X ∈ X (M) be a vector field on M. The divergence of X at the
point p ∈ M is defined as

div(X)p =
n∑

i=1

gp(∇Ei
X , Ei), (2.1.7)

where E1, . . . , En is an orthonormal basis in TpM and ∇ denotes the Levi-Civita
connection on M with respect to g.

Example 2.1.2 Consider the Newtonian potential �(x) = 1

|x| , x ∈ Rn\{0}. The

force vector field is F = −∇
( 1

|x|
)

and

div F = −�
( 1

|x|
)
= 0 on Rn\{0}. (2.1.8)

The equation (2.1.7) can be written also as

div X = T race(Y → g(∇Y X, Y ) ). (2.1.9)

Using the expression in local coordinates
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div (X) =
n∑

i=1

Xi
; i =

n∑
i=1

(∂Xi

∂xi

+
∑
j


i
ijX

j
)

(2.1.10)

we note that div X depends not only on Xi , but also on the Christoffel symbols


i
jk =

1

2
gil

(∂gjl

∂xk

+ ∂gkl

∂xj

− ∂gjk

∂xl

)
. (2.1.11)

The following lemma shows that div X depends only on X and g = det (gij ).

Lemma 2.6 In local coordinates we have:

div X = 1√
g

∂

∂xj

(
√

gXj ) (2.1.12)

with summation over j = 1, . . . , n.

Proof. Using the definition of 
i
jk and the symmetry of gij ,


i
jiX

j = 1

2
gis (

∂gjs

∂xi

+ ∂gis

∂xj

− ∂gji

∂xs

)Xj = 1

2
gis ∂gis

∂xj

Xj .

Then equation (2.1.10) yields

div X = ∂Xi

∂xi

+ 1

2
gis ∂gis

∂xj

Xj . (2.1.13)

We compute first the expression
1

2
gis ∂gis

∂xj

. Let g = det (gij ) = g(g11, g12, ..., gij ,

..., gnn ) denote the determinant.
Then

∂g

∂xj

= ∂g

∂gis

∂gis

∂xj

. (2.1.14)

As
∂g

∂gis

is the minor of gis ,

gis = 1

g

∂g

gis

, (2.1.15)

where (gis) is the inverse matrix of (gij ). Then (2.1.14) and (2.1.15) yield

∂g

∂xj

= g gis ∂gis

∂xj

. (2.1.16)

Substitute in (2.1.13) and obtain
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div X = ∂Xj

∂xj

+ 1

2g

∂g

∂xj

Xj

= 1√
g

(
∂Xj

∂xj

√
g + 1

2
√

g

∂g

∂xj

Xj ) = 1√
g

∂

∂xj

(
√

g Xj ).

The definition of the divergence of a vector field given above matches the definition
given in the introductory chapter. The equivalence of both definitions is given in the
following result.

Proposition 2.7 If X ∈ X (M), then

LXdv =
(
divX

)
dv. (2.1.17)

Proof. T = dv = √gdx1 ∧ · · · ∧ dxn is an (n, 0)- tensor field on M . The Lie
derivative LX of T = T12...ndx1 ∧ · · · ∧ dxn is also an (n, 0)- tensor or an n-form

LXT = (LXT )12...n dx1 ∧ ... ∧ dxn.

We shall show that
(LXT )12...n = (divX)

√
g. (2.1.18)

Indeed, using the formula which gives the components of the Lie derivative of a tensor,
we have

(LXT )12...n = ∂T12...n

∂xi

Xi

+T j12...n ∂X1

∂xj1

+ T 2j2...n
∂X2

∂xj2

+ · · · + T 12...jn
∂Xn

∂xjn

.

As T1...jp...n = δp,jpT1...p...n, we get

(LXT )12...n = ∂T12...n

∂xi

Xi + T12...n

(∂X1

∂x1
+ · · · + ∂Xn

∂xn

)
= ∂T12...n

∂xi

Xi + T12...n

∂Xi

∂xi

=
√

g

∂xi

Xi +√g
∂Xi

∂xi

= ∂

∂xi

(√
g Xi

)
= 1√

g

∂

∂xi

(√
gXi

)√
g = divX

√
g.

Hence,
LXT = divX

√
g dx1 ∧ · · · ∧ dxn = divX dv.
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Remark 2.8 In the relation LXdv = divX dv, the left side is a derivative of a square
root of a determinant while the right side is the trace of a derivative (connection). In
Linear Algebra this relation is known as

d

dt
det A(t) = T race

d

dt
A(t),

where A(t) is a matrix, which depends on the parameter t .

Remark 2.9 If X is a free-divergence vector field, then the volume element is pre-
served along the integral curves of X,

dv|p = ϕ∗t dv|ϕt (p).

Then a free-divergence vector field provides a conservation law.

Lemma 2.10 Let f ∈ F(M) and X ∈ X (M). Then

div (f X) = f div X + g(∇f, X). (2.1.19)

Proof. Using Lemma 2.6, we get

div (f X) = 1√
g

∂

∂xj

(
√

g f Xj ) = 1√
g

∂f

∂xj

√
gXj + f

1√
g

∂

∂xj

(
√

g Xj )

= ∂f

∂xj

Xj + f div X = gkj (∇f )k Xj + f div X

= g(∇f, X)+ f div X.

Using Proposition 2.7 yields:

Corollary 2.11 If f ∈ F(M) and X ∈ X (M), then

Lf X dv = f LX dv +X(f ) dv. (2.1.20)

Remark 2.12 The Lie derivative is not F(M)-linear, i.e., Lf X �= f LX for any
f ∈ F(M).

Definition 2.13 Let M be a Riemannian manifold and f ∈ F(M). Define the Lapla-
cian of f as

� f = −div (∇f ), (2.1.21)

where ∇ stands here for the gradient.

Proposition 2.14 For any φ, f, ρ ∈ F(M), we have:

div( f∇φ) = −f �φ + g(∇f, ∇φ). (2.1.22)

Proof. The equation (2.1.22) comes from (2.1.19) with the substitution X = ∇φ.
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2.2 Applications

Harmonic functions on compact manifolds

The compact manifold M considered in this section will have an empty boundary
∂M = ∅.

Theorem 2.15. ( Hopf’s lemma) Let M be a connected, compact Riemannian mani-
fold and f ∈ F(M) such that

� f ≥ 0.

Then f is constant.

Proof. First, we shall show that

�f = 0 on M.

This is obtained by integrating and applying the divergence theorem

0 ≤
∫

M

�f dv = −
∫

M

div(∇f ) dv = 0,

where we used ∂M = 0. Substituting f = φ in (2.1.22), we get

div(f ∇f ) = −f �f + g(∇f,∇f ).

Integrating and using the divergence theorem again, the

0 =
∫

M

div(f∇f ) = −
∫

M

f �f +
∫

M

|∇f |2 .

As the first term on the right-hand side is zero, it follows that∫
M

|∇f |2 = 0,

which implies
|∇f | = 0 on M.

Hence, f is constant on M .

2.2.0.1 Pluri-harmonic functions

Definition 2.16 Let k ∈ N. A function f ∈ F(M) is called k-pluri-harmonic if
�kf = 0 on M , where �k = �(�k−1) and �0 = �.

Proposition 2.17 A k-pluri-harmonic function on a compact manifold is constant.

Proof. There is a k ∈ N such that �kf = 0 on M . Then �(�k−1f ) = 0. Using
Hopf’s lemma, we get �k−1f = constant. Now we have either �(�k−2f ) ≥ 0 or
�(�k−2f ) ≤ 0. Using Hopf’s lemma again we obtain

�k−2f = constant.

Inductively, after k − 2 steps, we end up with f constant.
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2.2.0.2 Uniqueness for solution of the Cauchy problem for the heat operator

If � : C2(M) → C0(M) is the Laplace operator on the manifold M , then the heat
operator P : C2(M)× C1(Rt )→ C0(M)× C0(Rt ) is defined by P = ∂t +�.

Theorem 2.18. Let M be a Riemannian, compact manifold, u ∈ C2(R+ ×M), F ∈
C0(M)× C0(Rt ), φ ∈ C2(M) and consider the Cauchy problem

∂tu+�u = F(x, t), (t, x) ∈ R+ ×M,

u|t=0 = φ on M.

If u is a solution, then u is unique.

We first state an intermediate result.

Lemma 2.19 Let w be a solution for ∂tw +�w = 0. Then the potential energy∫
M

w2(t, x) dv

is decreasing in time (dissipative process).

Proof. We have
w ∂tw = −w �w. (2.2.23)

Using formula (2.1.22) with w = f = φ, then (2.2.23) yields

1

2
∂tw

2 = div (w∇w)− |∇w|2 .

Using the divergence theorem

1

2
∂t

∫
M

w2 =
∫

M

div(w∇w)︸ ︷︷ ︸
=0

−
∫

M

|∇w|2 ≤ 0.

Hence,
∫
M

w2(t, x) dv is a decreasing function of t .

Proof. (of Theorem 2.18) Let u1, u2 be two solutions for Cauchy’s problem. Denote
w = u1 − u2. We shall prove that

∂tw = −�w , (t, x) ∈ R+ ×M,

w |t=0 = 0 on M

has the unique solution w = 0. Indeed, letting P(t) = ∫
M

w2(t, x) dv and using
Lemma 2.19 we get

0 ≤ P(t) ≤ P(0) = 0, ∀ t ≥ 0.

Hence, P(t) = 0 and w = 0.
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2.3 The Hessian and applications

If we let

fj = ∂f

∂xj

, f i = gij fj , (2.3.24)

the gradient becomes

∇f = f i ∂

∂xi

(2.3.25)

and then

−�f = div (f i ∂

∂xi

) = f i
; i . (2.3.26)

Taking the covariant derivative with respect to ∂/∂xi in

gij gjk = δi
k,

we obtain g
ij

; i = 0. Then formula (2.3.26) yields

−�f = (gij fj ) ; i = gij fj ; i .

Using the formula for the covariant differentiation

fj ; i = ∂

∂xi

fj − 
k
jifk = ∂2f

∂xj ∂xi
− 
k

ji

∂f

∂xk

,

we obtain

−�f = gij

(
∂2f

∂xj ∂xi
− 
k

ji

∂f

∂xk

)
. (2.3.27)

Formula (2.3.27) can be written globally using the Hessian Hf for a function
f ∈ F(M).

Definition 2.20 The Hessian of the function f is a symmetric, 2-covariant tensor
field on M given by

Hf : X (M)× X (M)→ F(M),

Hf (X, Y ) = H
f
ij XiY j (2.3.28)

with

(1.2.7) H
f
ij =

∂2f

∂xj ∂xi
− 
k

ji

∂f

∂xk

.

Formula (2.3.27) can be written using the Hessian Hf ,

�f = −T raceHf = −gijH
f
ij . (2.3.29)
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Definition 2.21 Define the second fundamental form of f ∈ F(M) as

∇df (X, Y ) = ∇X(df ) (Y ) = X
(
Y (f )

)− (∇XY
)
(f ) (2.3.30)

where ∇ stands for the Levi-Civita connection.

As ∇ is a symmetric connection ,

∇df (X, Y )− ∇df (Y, X) = [X, Y ] f + (∇Y X − ∇XY ) f = 0

so that ∇df is a symmetric 2-covariant tensor field. In fact, the second fundamental
form is the Hessian.

Proposition 2.22 The following relations take place:

(i) Hf = ∇df,

(ii) Hf (X, Y ) = g
(∇X(grad f ), Y

)
.

Proof. (i) It suffices to check the relation only on the basis.

∇df
( ∂

∂xi

,
∂

∂xj

)
= ∂2f

∂xi ∂xj

− 
k
ij

∂f

∂xk

= H
f
ij = Hf

( ∂

∂xi

,
∂

∂xj

)
.

(ii) Using that ∇ is a metric connection we obtain

g
(∇X(grad f ), Y

) = X g ( grad f, Y )− g (grad f, ∇XY )

= X
(
Y (f )

)− (∇XY) (f ) = Hf (X, Y ).

Thus, we can write

�f = −T race ∇df. (2.3.31)

Remark 2.23 Formula (2.3.30) comes from the definition of the derivation. Indeed,
if ω ∈ T ∗M is a one-form, the derivation ∇X : T ∗M → T ∗M, is defined as

(∇Xω) Y = X ω(Y )− ω(∇XY), ∀X, Y ∈ X (M). (2.3.32)

In our case ω = df and as df (Y ) = Y (f ), we can derive (2.3.30) from (2.3.32).

Another useful formula for the Laplacian can be obtained if in the formula

div X = 1√
g

∂

∂xj

(
√

gXj )

we substitute X = grad f ,

�f = − 1√
g

∂

∂xj

(
√

g gij ∂f

∂xi

). (2.3.33)

As an application we have



26 2 Laplace Operators on Riemannian Manifolds

Lemma 2.24 For f, φ ∈ F(M), we have

� (f φ) = f �φ + φ �f − 2 g (∇φ,∇f ). (2.3.34)

Proof. Applying (2.3.33)

� (f φ) = − 1√
g

∂

∂xj

(√
g gij ∂(f φ)

∂xi

)
= − 1√

g

∂

∂xj

(
√

g gij f
∂φ

∂xj

)− 1√
g

∂

∂xj

(
√

g gij φ
∂f

∂xi

)

= f �φ − gij ∂f

∂xj

∂φ

∂xi

+ φ �f − gij ∂φ

∂xj

∂f

∂xi

= f �φ + φ �f − 2 g (∇f, ∇φ ).

Making f = φ yields the following result.

Corollary 2.25 Let φ ∈ F(M). Then

�(φ2) = 2 φ �φ − 2 |∇φ| 2 . (2.3.35)

Proposition 2.26 Let M be a connected, compact Riemannian manifold and let φ ∈
F(M) such that

φ �φ = k |∇φ| 2 (2.3.36)

where k is a real constant. Then φ is a constant function.

Proof. Suppose first that k = 1. Then φ�φ = |∇φ|2 . Applying (2.3.35) we find
�(φ2) = 0. By Hopf’s lemma we get φ2 constant. Suppose now that k �= 1. Substi-
tuting f = φ, formula (2.1.22) yields

div (φ ∇φ) = −φ �φ + |∇φ| 2 .

Using (2.3.36) we conclude

div (φ ∇φ) = (1− k) |∇φ| 2 .

For k < 1, by the divergence theorem we find

0 =
∫

M

div (φ ∇φ) = (1− k)

∫
M

|∇φ| 2 ≥ 0,

which implies |∇φ| = 0, i.e., φ constant. The case k > 1 is similar.

We can arrive at the same result using the following lemma:

Lemma 2.27 For any f ∈ F(M) and α ∈ R we have

�f α = −αf α−2
(
− f �f + (α − 1)|∇f |2

)
. (2.3.37)
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Proof.

−�f α = div(∇(f α)) = div(αf α−1 ∇f )

= −αf α−1 �f + α〈∇f α−1,∇f 〉
= −αf α−1 �f + α〈(α − 1)f α−2 ∇f,∇f 〉
= −αf α−1�f + α(α − 1)f α−2 |∇f |2
= αf α−2

(
− f �f + (α − 1)|∇f |2

)
.

Corollary 2.28 Let f ∈ F(M) be a nonzero function and α ∈ R. Then f α is
harmonic if and only if

f �f = (α − 1)|∇f |2. (2.3.38)

Choosing α = k + 1, we obtain (2.3.36). Then f k+1 is harmonic on the compact M

and then f is constant, by Hopf’s lemma.

The p-Laplacian
The p-Laplacian of a function f ∈ F(M) is

�p = −div(|∇f |2(p−1)∇f ),

where p ∈ N. The case p = 1 corresponds to the usual Laplacian.

Lemma 2.29 If ρ, φ ∈ F(M), then

div
(
ρ∇(φ2)

)
= 2φ div(ρ∇φ)+ 2ρ |∇φ|2. (2.3.39)

Proof. Proposition 2.14 yields

div
(
ρ ∇(φ2)

)
= −ρ�φ2 + g(∇ρ,∇φ2)

= −ρ
(

2φ�φ − 2g(∇φ,∇φ)
)
+ g(∇ρ, 2φ∇φ)

= 2φ
(
− ρ�φ + g(∇ρ,∇φ)

)
+ 2ρ g(∇φ,∇φ)

= 2φ div(ρ∇ρ)+ 2ρ|∇φ|2.

Proposition 2.30 If �p φ = 0 on a compact, connected Riemannian manifold M ,
then f is constant.

Proof. Choose ρ = |∇φ|2(p−1) in Lemma 2.29 and integrate

0 =
∫

M

−div
(
|∇φ|2(p−1)

)
dv = 2

∫
M

φ �pφ dv + 2
∫

M

|∇φ|2p dv ≤ 0,

then ∇φ = 0 on M and hence φ = 0.
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2.3.0.3 An application to the heat equation with convection on compact
manifolds

Let M be a connected, compact Riemannian manifold without boundary. We define
the heat equation with convection as

∂tφ +�φ = k |∇φ| 2

where k ≥ 0 is a real positive constant. The function φ(x, t) denotes the temperature
at the point x at time t . The goal of this section is to prove the following result.

Theorem 2.31. Let M be a manifold as above and k > 0. If φ : [ 0, T )×M → R is
a smooth solution for

∂t φ +�φ = k |∇φ| 2 ,

φ|t=0 = 0,

then φ ≡ 0,

We need the following result:

Lemma 2.32 In the above hypothesis, if φ is a solution such that φ ≤ 1

k
, then

φ ≡ 0.

Proof. Multiplying by φ, we get

φ ∂tφ + φ �φ = k φ |∇φ| 2 . (2.3.40)

Using the fact that φ �φ = |∇φ| 2 − div( φ ∇φ), the relation (2.3.40) becomes

1

2
∂tφ

2 + |∇φ|2 − div(φ∇φ) = kφ |∇φ|2 .

Integrating

1

2
∂t

∫
M

φ2 −
∫

M

div(φ∇φ) =
∫

M

(kφ − 1) |∇φ|2 ≤ 0.

As the second term on the left-hand side vanishes, it follows that

P(t) =
∫

M

φ2(t, x) dv

is decreasing in t. As 0 ≤ F(t) ≤ F(0) = 0, we get φ ≡ 0.
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Proof. (of Theorem 2.31).
As φ |t=0 = 0 and M is compact, there is ε > 0 such that

φ(t, x) ≤ 1

k
, ∀t < ε, ∀x ∈ M.

Using Lemma 2.32, we obtain

φ(t, x) = 0, (t, x) ∈ [0, ε)×M.

Let ε∗ be the maximal ε with the above property,

ε∗ = sup{ε ; φ(t, x) = 0,∀(t, x) ∈ [0, ε)×M}.
If ε∗ = T , the proof is finished.

Suppose ε∗ < T. By continuity, φ | t=ε∗ = 0. Applying the above argument, we
can find ε′ > 0 such that φ(t, x) = 0, ∀x ∈ M and ∀t ∈ [0, ε∗ + ε′ ) which
contradicts the definition of ε∗.

2.4 Exercises

1. Let M be a Riemannian manifold and p ∈ M be a point. Consider an orthonor-
mal basis {E1, . . . , En} in TpM . Let γi be the geodesic that verifies γi(0) = p and
γ̇i (0) = Ei and is parametrized by the arc length.

a) Show that for any function f ∈ F(M) we have

(�f )p = −
n∑

i=1

d2(f ◦ γi)

ds2 (0).

b) Show that in the case when M is the Euclidean space we obtain the usual
Laplacian.

2. A nonconstant harmonic function defined on an open set of a Riemannian manifold
does not have interior maximum points.

3. The motion of an ideal fluid is described by the continuity equation

∂ρ

∂t
+ div(ρV ) = f,

where V (x, t) is the velocity vector field, ρ(x, t) is the density function, and f (x, t)

is the source intensity function. Solve the continuity equation in the case of a homo-
geneous density function ρ = ρ(t) with the initial condition ρ(0) = ρ0.
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4. Let � be the Laplace operator on R2 and let φ be a solution of

�φ + f (φ2)φ = 0, (2.4.41)

where f : R→ R is a smooth function.

a) Show that for any v ∈ R2, the function ψv(x) = φ(x + v) is a solution of
(2.4.41).

b) Show that for any s ∈ R, the function ρs(x) = φ(Rs(x)) is a solution of
(2.4.41), where

Rs =
(

cos s sin s

− sin s cos s

)
is the rotation of angle s.

5. Let � = (0, 1)× (0, 1) and ϕ : �→ R, given by

ϕ(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+ x2

1 for x2 = 1,

0 for x2 = 0,

0 for x1 = 0,

0 for x1 = 1.

Show that the boundary value problem

∂tu− ∂2
xu = −1,

u|∂� = ϕ

does not have solutions in the space

{u : �→ R; u ∈ C(�), ∂tu, ∂2
xu ∈ C

(
(0, 1)× (0, 1])}.

6. Consider the n-dimensional unit sphere endowed with the Riemannian metric in-
duced by the inclusion ι : Sn → Rn+1. Show that for any function f ∈ F(Rn+1) we
have (

�Rn+1
f
)
|Sn
= �Sn

(f|Sn)− ∂2f

∂r2 |Sn
− n

∂f

∂r |Sn
,

where �Rn+1
, �Sn

and
∂

∂r
are the Laplace operators on Rn+1 and Sn, and the radial

derivative, respectively.

7. Let Sn be the unit sphere endowed with the usual Riemannian structure from Rn+1.
Denote by Hk the vector space of the harmonic polynomials of degree k ≥ 0 defined
on Rn+1. Let H̃k = {f|Sn; f ∈ Hk}.



2.4 Exercises 31

a) Show that

�Sn

f = k(n+ k − 1)f, for all f ∈ H̃k,

and hence k(n+ k − 1) is an eigenvalue of the Laplaceian �Sn
.

b) H̃k is the eigenspace corresponding to the eigenvalue λk = k(n+ k − 1).

c) The set {k(n+ k− 1); k ∈ N} is the set of eigenvalues (the spectrum) of �Sn
.
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Lagrangian Formalism on Riemannian Manifolds

3.1 A simple example

It is natural to study a Physics problem using the following steps:

• First, find a suitable Lagrangian, which in the simplest case is the difference between
the kinetic and the potential energy involved in the phenomenon.
• Write down the Euler–Lagrange equations, the Hamilton equations, and the
Hamilton–Jacobi equation.
• Choose one of the above equations which can be studied from the point of view of
existence, uniqueness, and regularity of solutions. Since the equation comes from a
real physical problem, all of these conditions should be satisfied. This is a step which
sometimes is skipped by physicists but is challenging for the mathematicians.
• If for the above equations an exact solution cannot be found, try numerical methods.

To demonstrate this, we shall consider a simple example from Classical Mechan-
ics. Suppose that a body is launched obliquely in space. Neglecting the friction forces,
the Lagrangian is the difference between kinetic and potential energy

L = m v2

2
−mgy,

where v is the speed, given by v = √
ẋ2 + ẏ2, m is the body mass, which can be

assumed to equal 1, and g is the gravitational acceleration.

Euler–Lagrange equations for the Lagrangian L = L(x, y, ẋ, ẏ) are

d

dt

∂L

∂ẋ
= ∂L

∂x
,

d

dt

∂L

∂ẏ
= ∂L

∂y
.

For the above Lagrangian, we have

ẍ = 0, ÿ = −g.
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This is a uniform motion along the x-axis

x = vx t + x0,

and an accelerated motion along the y-axis

y = −1

2
gt2 + v0 t + x0.

The first Euler–Lagrange equation is the Laplace equation and the latter is the Poisson
equation, both in dimension 1.

It is not always easy to solve the Euler–Lagrange equations. The next section
provides a more complicated example.

3.2 The pendulum equation

In this section we shall discuss the case of a simple pendulum. This is a dynamical
system which can be described by the parameter θ , which is the angle between the
string and the vertical direction. Denote by m the mass of the pendulum weight, by �

the length of the pendulum string, and by g the gravitational acceleration.

h
s

m

θ

Figure 3.1: The pendulum.

The Lagrangian is given by the difference between the kinetic energy and the potential
energy

L = K − U.

The kinetic energy is given by

K = 1

2
mv2 = 1

2
m
(ds

dt

)2 = 1

2
m�2

(dθ

dt

)2
,
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where s = �θ is the arc length, v is the tangential speed, and t is the time parameter.

The potential energy is

U = mgh = mg�(1− cos θ),

where h is the height. The Lagrangian becomes

L(θ, θ̇) = m�
(1

2
�θ̇2 + g cos θ

)
−mg�.

Using that
d

dt

(∂L

∂θ̇

)
= m�2θ̈ ,

∂L

∂θ
= −m�g sin θ,

the Euler–Lagrange equation is

θ̈ = −κ sin θ, (3.2.1)

where κ = g/� > 0 is a constant. Equation (3.2.1) is called the pendulum equation.
We shall show that the total energy E = K + U of the pendulum is conserved.

E = K + U = 1

2
m�2θ̇2 +mg�(1− cos θ)

= m�
(1

2
�θ̇2 − g cos θ

)
+m�g. (3.2.2)

Differentiating with respect to time yields

dE

dt
= m�2θ̇ (θ̈ + g

�
sin θ) = 0,

where we used the pendulum equation (3.2.1).
In the following we shall integrate the pendulum equation (3.2.1) subject to the

initial conditions
θ(0) = π

2
, θ̇ (0) = 0, (3.2.3)

which corresponds to a free falling of the pendulum from a direction parallel to the
horizontal axis. The equation (3.2.2) can be written as

E −m�g

mL
= 1

2
�θ̇2 − g cos θ.

Separating θ̇ , we get
θ̇2 = 2κ cos θ + C, (3.2.4)

where

C = 2

m�2 (E −m�g).

From (3.2.3)
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C = θ̇ (0)2 − 2κ cos
π

2
= 0.

Hence the equation (3.2.4) yields

dθ

dt
= −√2κ cos θ,

where the negative sign means that the angle θ = θ(t) decreases from π/2 to 0.
Separating and integrating between θ0 = π/2 and θ(t) yields∫ θ(t)

π/2

dθ√
cos θ

= −√2κ t. (3.2.5)

With the substitution θ = arccos u on the left-hand side, (3.2.5) becomes∫ cos θ(t)

0

du√
u(1− u2)

= √2κ t. (3.2.6)

We need the following:

Lemma 3.1

(i)

∫ z

1

du√
u(1− u2)

= 2
∫ √z+1

√
2

du√
(u2 − 1)(2− u2)

,

(ii)

∫ z

1

du√
u(1− u2)

= −√2 dn−1
(√z+ 1

2
,

1√
2

)
,

(iii)

∫ 1

0

du√
u(1− u2)

= √2K(
1√
2
) ≈ 2.62,

where K is a complete elliptic integral.

Proof. (i) Consider the functions

φ =
∫ z

1

du√
u(1− u2)

, ψ = 2
∫ √z+1

√
2

du√
(u2 − 1)(2− u2)

.

From the Fundamental Theorem of Calculus,

φ′(z) = ψ ′(z) = 1√
u(1− u2)

,

and hence
φ(z) = ψ(z)+ C0.
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As φ(1) = ψ(1) = 0, it follows that C0 = 0. Hence, φ(z) = ψ(z).

(ii) From Lawden [23], equation (3.2.11) we have∫ a

x

du√
(a2 − u2)(u2 − b2)

= 1

a
dn−1

(x

a
,

√
a2 − b2

a

)
, b ≤ x ≤ a.

Substitute a = √2, b = 1 and x = √z+ 1 and we get∫ √2

√
z+1

du√
(2− u2)(u2 − 1)

= 1√
2

dn−1
(√z+ 1

2
,

1√
2

)
.

Swapping the limits of integration and using (i), we arrive at formula (ii).
(iii) From Lawden [23], equation (3.8.1) we have

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

.

Then

K(1/
√

2) =
∫ π/2

0

dθ√
1− 1

2 sin2 θ

= √2
∫ π/2

0

dθ√
2− sin2 θ

= √2
∫ π/2

0

dθ√
1+ cos2 θ

=t=cos θ
√

2
∫ 1

0

dt√
(1− t2)(1+ t2)

= u=t2 1√
2

∫ 1

0

du√
u(1− u2)

,

i.e. (iii).

Using Lemma 3.1 the equation (3.2.6) can be written as∫ 1

0

du√
u(1− u2)

+
∫ cos θ

1

du√
u(1− u2)

= √2κ t

⇐⇒ K(1/
√

2)−√κ t = dn−1
(√cos θ + 1

2
, 1/
√

2
)

⇐⇒ dn(K(1/
√

2)−√κ t) = cos
θ

2
⇐⇒ θ(t) = 2 arccos

(
dn(K(1/

√
2)−√κ t)

)
. (3.2.7)

From Lawden [23], equation (2.2.19) we have

dn(u+K) = k′nd u = k′/dn u.

As dn is an even function, equation (3.2.7) yields
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θ(t) = 2 arccos
1√

2 dn(
√

κ t)
. (3.2.8)

The dynamical system discussed above is one dimensional. However, it was not
easy to integrate the Euler–Lagrange equation, even in the particular case C = 0. The
solution required the use of elliptic functions. In other cases, even elliptic functions
are not enough to solve the Euler–Lagrange equation. We may say that for some
equations, it is not possible to obtain explicit formulas. This is also the case for an
Euler–Lagrange equation on manifolds, where we encounter more than one parame-
ter. In this case, the best we can do is to perform a qualitative analysis of the solutions.
This will consist of finding first integrals of motion, currents, and free divergence ten-
sors. An important part of the next chapters will be dedicated to conservation laws on
Riemannian manifolds.

Using Lagrangians on Riemannian manifolds, we shall be able to get the above
equations in a more general case. Some solutions of these two equations are already
known. For instance, on compact manifolds the Laplace equation has only constant
solutions.

3.3 Euler–Lagrange equations on Riemannian manifolds

Unlike in Quantum Mechanics, where there exists the Heisenberg principle of un-
certainty, in Classical Mechanics the moving particle is completely described by its
position x and its speed v. The position x belongs to a space called the coordinate
space which is, in general, a Riemannian manifold with the metric defined by the
kinetic energy. The space of the positions and velocities (x, v) is called phase space,
and it is identified with the tangent bundle T M of the coordinate space M . The pair
(x, v) is called the state of the particle.

For instance, in the previous example of a body launched in space, we have
x = (x, y) and (x, v) = (x, y, ẋ, ẏ) ∈ T M � R4.

The coordinates and velocities depend on the time t . The trajectory in the coordi-
nate space is a curve parameterized by t , which is a solution of the Euler–Lagrange
equation

d

dt

∂L

∂x
= ∂L

∂ ẋ
.

This holds for particles that depend on only one parameter, time. But there are a lot
of phenomena that depend on several parameters. Furthermore, these new parameters
can change in time and can be related to each other, so that we can speak about a
parameter space. This is a manifold endowed with a Lorentzian metric (+, ...,+,−),
where (−) corresponds to the time coordinate. This is also the basic idea of sigma-
models or chiral fields introduced first by M. Gell-Mann and M. Levi in 1960 for
describing pion-nucleon physics in a low energy approximation, see [30]. We shall
discuss this idea later in the context of harmonic map theory, see chapter 4.
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Let (M, g) be a Riemannian manifold and φ ∈ F(M). Denote by φ ; j the deriva-

tive of φ in ∂
∂xj

direction, where { ∂

∂x1 |p
, ...,

∂

∂xm |p
} is a basis of TpM ,

φ ; j = ∂φ

∂xj

= ∇ ∂
∂xj

φ, (3.3.9)

where ∇ is the Levi-Civita connection on M .

Consider a map � : M → N , where M and N are Riemannian manifolds. The first
is the space of parameters and the second the space of coordinates. If (x1, ..., xm) are
local coordinates around p ∈ M , and (y1, ..., yn) are coordinates around �(p) ∈ N ,
we define the vector field � ; i ∈ X

(
�(M)

)
by

� ; i = �∗
( ∂

∂xi

) = �
j

; i
∂

∂yj

. (3.3.10)

In the particular case when M = Rt , we obtain the tangent vector field along �,

�̇(t) = �∗
( d

dt

)
. (3.3.11)

Definition 3.2 A Lagrangian is a function L : T N → R, where N is the coordinate
space. The Lagrangian L associated with � : M → N is a scalar function of � and
� ; i . The expression of the Lagrangian may contain the metrics gij and hij of M and
N , respectively.

Definition 3.3 Let D ⊂ M be a bounded, closed set. A variation of � in D is a
one-parameter family of functions �(s, x), where s ∈ (−ε, ε) and x ∈ M such that

(i) �(0, x) = �(x);

(ii) �(s, x) = �(x), ∀x ∈ M\D.

Denote

(2.2.4) δ�i
(x) =

∂�i(s, x)

∂s | s=0
, i = 1, n.

Definition 3.4 The integral

I =
∫
D

L dvg (3.3.12)

is called stationary under the above variation if

dI

ds | s=0
= 0. (3.3.13)
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We denote the volume element

dvg =
√|g| dx1...dxm, (3.3.14)

where |g| = ∣∣det gij

∣∣ .
Theorem 3.5. The integral (3.3.12) is stationary under any variation of � iff the
following Euler–Lagrange equations are satisfied

m∑
k=1

(
∂L

∂(�i
; k)

)
; k
= ∂L

∂�i
, ∀i = 1, n. (3.3.15)

Proof. Applying the chain rule

dI

du | u=0
=
∑

i

∫
D

[
∂L

∂�i
δ�i + ∂L

∂(�i
; e)

δ(�i
; e)

]
dvg.

As δ (�i) ; e = (δ�i) ; e, the second term in the right hand side can be expressed as∑
i

∫
D

([ ∂L

∂(�i
; e)

δ�i
]
; e −

( ∂L

∂(�i
; e)

)
; e δ�i

)
dvg.

Let

X = Xe ∂

∂xe

,

where

Xe =
∑

i

∂L

∂(�i
; e)

δ�i,

and by the divergence theorem ∫
D

Xe
; e dv = 0,

as X vanishes on ∂D.

Thus,
dI

ds |s=0
=
∫
D

[ ∂L

∂�i
− ( ∂L

∂�i
;e

)
; e
]
δ�i dv = 0,

for all variations of �, which means that (3.3.15) is satisfied. Indeed, if we take the
variation �(s, x) = exp(s V�(x)), where V�(x) ∈ T�(x)N , we have �(0, x) = �(x)

and

δ� = ∂�(s, x)

∂s | s=0
= V�(x),

for any arbitrary V .
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3.4 Laplace’s Equation �f = 0

The Laplace equation describes stationary processes in physics such as the displace-
ment of a membrane or soap film with a prescribed contour, the gravitational potential
in the absence of mass, the steady-state flow of heat in the absence of sources of heat,
the velocity potential for some fluids, the electrostatic potential in the absence of
charge, and many other static processes.

Let (M, g) be a compact Riemannian manifold and f ∈ F(M). Define the kinetic
energy of f as

E(f ) =
∫

M

1

2
|∇f |2 dv, (3.4.16)

where |∇f |2 = g(∇f,∇f ), and∇f = grad f . As M is compact, 0 < E(M) <∞.
The Lagrangian is

L = 1

2
|∇f |2 . (3.4.17)

Theorem 3.6. The Euler–Lagrange equation for the Lagrangian (3.4.17) is

�f = 0. (3.4.18)

Proof. In local coordinates,

(2.3.4) L = 1

2
gij ∂f

∂xi

∂f

∂xj

= 1

2
gij f ; i f ; j .

As L does not depend on f , the right side of (3.3.15) is zero. For the expression on
the left side, we have

(2.3.5)
∂L

∂f; k
= gkj f; j = (∇f )k.

Hence, (3.3.15) becomes (∇f )k; k = 0 or div (∇f ) = 0, i.e., (3.4.18).

In the case when M has a nonzero boundary, Hopf’s lemma becomes the unique-
ness theorem for the Dirichlet problem.

Theorem 3.7. Let M be a connected, compact manifold and f ∈ F(M) such that

�f = 0, on M,

f| ∂M = 0.

Then f ≡ 0.

Proof. Integrate the expression

div (f ∇f ) = −f �f + |∇f |2
and use the divergence theorem∫

M

div X dv =
∫

∂M

(X, N) dσ,

with X = f∇f .
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3.5 A geometrical interpretation for a � operator

Let M be a manifold of dimension m and f : M → Rn an immersion, i.e., df is
one-to-one. Consider M as a Riemannian manifold with the induced metric by the
immersion f ,

gij = f ∗(δij ),

where δij is the canonical metric on Rn. Such an immersion is called isometric. Let
∇̃ be the Levi-Civita connection on Rn,

∇̃XY =
n∑

i=1

X(Y i) ei, (3.5.19)

where Y = Y iei, X = Xiei, and e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).
If ∇ is the Levi-Civita connection on M , the second fundamental form of the

immersion f is the two-covariant, symmetric tensor field on M

h(X, Y ) = ∇̃XY − ∇XY, ∀X, Y ∈ X (M). (3.5.20)

The equation (3.5.20) is called Gauss’s formula, and we have

h(X, Y ) = nor (∇̃XY),

∇XY = tan (∇̃XY),

where nor (tan) represents the normal (tangential) component with respect to M .

Definition 3.8 The mean curvature vector field of the submanifold M of Rn is

H = 1

m
T raceg h. (3.5.21)

Thus, Hx is always normal to TxM .

In the particular case when M is a hypersurface (n = m+ 1), the vector fields H

and N (the unit normal field) are proportional,

H = α N. (3.5.22)

The function α ∈ F(M) is called the scalar mean curvature.
The geometry contained in the � operator is illustrated in the following result.

Lemma 3.9 Let f : M → Rn be an isometric immersion. Then

�f = −m H. (3.5.23)

Proof. As
(∇df )(X, Y ) = h(X, Y ),

we obtain
�f = −T raceg(∇df ) = −m H.
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Corollary 3.10 Under the above hypothesis, �f is a vector field normal to M .

Corollary 3.11 Under the above hypothesis, M is a minimal submanifold ( i.e., H =
0) iff f is harmonic.

Corollary 3.12 There are no compact minimal submanifolds in Rn.

Proof. If M is a minimal submanifold, there is an isometric immersion f : M → Rn

such that �f i = 0, for i = 1, n. Applying Hopf’s lemma, we find that f (M) is
reduced to a point. This is a contradiction.

3.6 Poisson’s equation

There are many situations when physical problems are described by a Poisson equa-
tion. A few examples are: the equilibrium displacement of a membrane under exterior
forces, the gravitational potential in the presence of mass, the electrostatic potential
in the presence of distributed charge, the steady-state temperature in the presence of
sinks or sources of heat, and the velocity potential for an incompressible, irrotational,
homogeneous fluid in the presence of distributed sources or sinks.

Let f, ρ ∈ F(M), where (M, g) is a Riemannian manifold, and consider the
Lagrangian

L = 1

2
|∇f |2 − ρf. (3.6.24)

The Euler–Lagrange equation is obtained from relation (3.3.15) with the right-hand

side
∂L

∂f
= −ρ. Then equation (3.3.15) becomes Poisson’s equation

�f = ρ. (3.6.25)

Proposition 3.13 Let k ∈ R. The equation on the sphere Sn,

�f = k

has solutions f ∈ F(Sn) iff k = 0. In this case, solutions are constants.

Proof. Apply Hopf’s lemma.

One of the physical applications of equation (3.6.25) is in gravitation. The function
ρ denotes matter density and f denotes gravitational potential. Since the gravitational
force is defined as F = −∇f , the equation (3.6.25) can be written

div F = ρ. (3.6.26)

In an empty space, ρ = 0 and F is a divergence-free vector field, which means that
the volume element is preserved along the integral curves of F .
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3.7 Geodesics

Let I ⊆ R be an interval and (M, g) be a Riemannian manifold. Consider the curve
φ : I → (M, g) and take the Lagrangian

L(φ, φ̇) = 1

2
|φ̇|2g =

1

2
gij |φ φ̇i φ̇j (3.7.27)

as the kinetic energy along the curve φ(t). Denote the tangent field along the curve
φ(t) by

φ̇ = φ∗(
d

dt
). (3.7.28)

Theorem 3.14. The extremizers of the integral

J (φ) =
∫

I

1

2

∣∣φ̇∣∣2
g

dt (3.7.29)

are solutions for the equation

φ̈ l + 
l
is |φ φ̇i φ̇s = 0, l = 1, n. (3.7.30)

Proof. We shall show that the above equation is the Euler–Lagrange equation for the
Lagrangian (3.7.29). Indeed, computing both sides of the equation

d

dt

( ∂L

∂φ̇ k

)
= ∂L

∂φ k
, (3.7.31)

we conclude

∂L

∂φ k
= 1

2

∂gij

∂xk |φ(t)

φ̇i (t)φ̇j (t)

⇐⇒ ∂L

∂φ̇ k
= gik |φ(t)

φ̇(t).

So that

d

dt

( ∂L

∂φ̇ k

)
= d

dt

(
gik |φ(t)

φ̇(t)
)

= ∂gik

∂xs

φ̇s(t)φ̇ i(t)+ gik φ(t)
φ̈i (t).

Equation (3.7.31) becomes

φ̈ i gik + ∂gik

∂xs

φ̇s φ̇i = 1

2

∂gij

∂xk

φ̇i φ̇j

⇐⇒ φ̈ i gik + 1

2

[∂gik

∂xs

φ̇s φ̇i + ∂gki

∂xs

φ̇i φ̇s − ∂gij

∂xk

φ̇i φ̇j
]
= 0

⇐⇒ φ̈ i gik + 1

2

[∂gik

∂xs

+ ∂gks

∂xi

− ∂gis

∂xk

]
φ̇i φ̇s = 0. (3.7.32)
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Multiply by gkl and sum over k to yield

φ̈l + 1

2
gkl

(∂gik

∂xs

+ ∂gik

∂xi

− ∂gis

∂xk

)
φ̇i φ̇s = 0

⇐⇒ φ̈l + 
l
is |φ(t)

φ̇i φ̇s = 0.

The equation (3.7.30) is written in local coordinates. A global expression for this
equation is given in the following result.

Proposition 3.15 Let φ̇(t) be given by (3.7.28). Then the following relation takes
place:

∇φ̇ φ̇ = ( φ̈ s + 
s
ij φ̇i φ̇j )∂s . (3.7.33)

Proof. Using the properties of the linear connection, we write

∇φ̇ φ̇ = ∇φ̇k∂k
φ̇j ∂j = φ̇k ∇∂k

(φ̇j ∂j )

= φ̇k( φ̇
j

; k ∂j + φ̇j 
s
kj ∂s).

Using
φ̈j = (∂kφ̇

j ) φ̇k,

we obtain equation (3.7.33).

The expression ∇φ̇ φ̇ is interpreted as acceleration along the curve φ(t). Then the

Euler–Lagrange equation for the Lagrangian L = 1

2
|φ̇|2 is

∇φ̇ φ̇ = 0 (zero acceleration). (3.7.34)

The curves that satisfy (3.7.34) are called geodesics on the Riemannian manifold
(M, g).

Remark 3.16 The equation (3.7.34) is Newton’s equation on the manifold (M, g)

when the force is zero. Later, we shall consider the equation ∇φ̇ φ̇ = F , where F is
the force vector field.

3.8 The natural Lagrangian on manifolds

Let φ : I ⊆ R → (M, g) be a curve on a Riemannian manifold M . Define the
natural Lagrangian associated with the curve φ and the potential U : M → R as the
difference between the kinetic energy K and the potential energy U . We consider a
unit mass particle moving along the curve φ situated at the moment t at the point
φ(t), with the speed φ̇(t). Then,

L(φ, φ̇) = 1

2
g(φ̇, φ̇)− U(φ). (3.8.35)
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3.8.0.4 Momentum and Work

Define two one-forms ωφ, wφ ∈ T ∗M associated with φ as

ωφ (V ) = g(φ̇, V ) momentum in the V − direction, (3.8.36)

wφ (V ) = g(∇φ̇ φ̇, V ) work in the V − direction, (3.8.37)

where V ∈ X (M) and ∇ is the Levi-Civita connection. Using that ∇ is a metric
connection

φ̇ g(φ̇, V ) = g(∇φ̇ φ̇, V )+ g(φ̇,∇φ̇V ),

we obtain a formula which gives the work in terms of momentum

wφ (V ) = φ̇ ωφ(V )− ωφ (∇φ̇V ) , ∀ V ∈ X (M). (3.8.38)

Proposition 3.17 Let φ(t) be a geodesic. Then

1) wφ(V ) = 0, ∀V ∈ X (M) (the work is zero);

2) The momentum ωφ(φ̇) in the φ̇-direction is preserved along the geodesic.

Proof. 1) Use the equations (3.7.34) and (3.8.37).

2) Using 1), formula (3.8.38) becomes

φ̇ ωφ(V ) = ωφ(∇φ̇V ), (3.8.39)

and taking V = φ̇ and using (3.7.34), we get

φ̇ ωφ(φ̇) = ωφ(∇φ̇ φ̇) = 0.

Hence, ωφ(φ̇) is constant along the geodesic.

Remark 3.18 i) A curve is a geodesic if and only if the work is zero.
ii) As ωφ(V ) is a function on M , we can write

∇φ̇ ωφ(V ) = φ̇ ωφ(V ),

and then (3.8.38) becomes

ωφ(V ) = ∇φ̇ωφ(V )− ωφ(∇φ̇V ),

which shows that the work wφ measures the non-commutativity between ω and ∇φ̇ .
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3.8.0.5 Force and Newton’s Equation

Definition 3.19 Consider the potential function U ∈ F(M). The vector field F de-
fined as

F = −∇U (3.8.40)

is called the force vector field.

Theorem 3.20. The curve φ is an extremizer for the integral∫ t2

t1

L(φ, φ̇) dt, (3.8.41)

with L given by (3.8.35), iff φ verifies Newton’s equation

∇φ̇ φ̇ = −∇U. (3.8.42)

Proof. As the Lagrangian is L = K −U , Euler–Lagrange equations are obtained by
subtracting the equations

d

dt

( ∂K

∂φ̇k

)
− ∂K

∂φk
= 0 and (3.8.43)

d

dt

( ∂U

∂φ̇k

)
− ∂U

∂φk
= 0, ∀k = 1, n (3.8.44)

where K = 1

2
g(φ̇, φ̇).

As we know from Theorem 3.14, equation (3.8.43) is given by (3.7.32), while
(3.8.44) becomes

− ∂U

∂xk

= 0.

Multiplying by gkl , summing over k, and adding the last two equations, we find

φ̈ l + 
l
is |φ(t)

φ̇i φ̇s = −gkl

∂U

∂xk

, (3.8.45)

which is the Euler–Lagrange equation for L.
Using that

(∇φ̇ φ̇ )l = φ̈ l + 
l
is φ̇

i φ̇s ,

and

(∇U)l = glk ∂U

∂xk

,

we obtain
(∇φ̇ φ̇ )l = −(∇U)l, ∀l = 1, n

which is (3.8.42) on components.
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The above theorem enables us to write the work as

wφ(V ) = g(−∇U, V ) = g(F, V ), (3.8.46)

namely, the work is the scalar product between the force and direction vector. This
is the definition for work known from Classical Mechanics.

Using the definition of the gradient,

wφ(V ) = −dU(V ), ∀ V ∈ X (M).

Written as a one-form, the work is

wφ = −dU. (3.8.47)

This can be taken as another definition for the work, involving the potential U , where
φ is an extremizer.

Theorem 3.21. ( Momentum conservation theorem) Let φ be an extremizer for the
integral (3.8.41), and V be a Killing vector field on M such that

wφ(V ) = 0.

Then: 1) ωφ(V ) is constant along φ,

2) wφ(∇φ̇V ) = 0.

Proof. 1) Let (hs)s be the 1-parameter group of diffeomorphisms associated with
the Killing vector field V . As (hs)s are local isometries, each hs will preserve the
Lagrangian, i.e.,

L(φ, φ̇) = L(hs(φ), hs∗(φ̇) ). (3.8.48)

Indeed, as hs∗ is an isometry,

g(φ̇, φ̇) = g(hs∗(φ̇), hs∗(φ̇) ),

so that the kinetic energy is preserved. As wφ(V ) = 0, we get dU(V ) = 0, i.e., U is
constant along the integral curves of V , and

U(x) = U( hs(x) ), ∀s. (3.8.49)

Hence, we get the equation (3.8.48). Applying Noether’s Theorem (see chapter 5,
Theorem 5.13), a first integral of motion is the momentum

ωφ(V ) = g(φ̇, V ),

which will be constant along φ.
2) From 1), we have φ̇ ωφ(V ) = 0 and using (3.8.38) we get the result.

Exercise 3.22 In local coordinates, wφ = wj dxj , where

wj = gik (φ̈ k + 
k
abφ̇

aφ̇ b ). (3.8.50)
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Proposition 3.23 Let φ be an extremizer for the integral (3.8.41). Then |φ̇| is constant
along φ iff U is constant along φ.

Proof. It follows from

∇φ̇ g(φ̇, φ̇) = 2 g(∇φ̇ φ̇, φ̇) = 2 wφ(φ̇) = −2 φ̇(U).

Corollary 3.24 If U is constant on M , we get the well-known result that the vector
tangent to a geodesic has a constant length.

The Total Energy

Even when there are no Killing vectors on M , we can always find another first integral
of motion, called total energy:

E(φ) = 1

2
g(φ̇(t), φ̇(t) )+ U

(
φ(t)

)
. (3.8.51)

E is the sum of the kinetic and the potential energy, while the Lagrangian is the
difference between them.

Theorem 3.25. E is constant along the extremizers of integral (3.8.41).

Proof. A direct computation shows

d

dt
E(φ(t) ) = d

dt

[1

2
gij (φ(t) )φ̇i(t)φ̇j (t)+ U(φ(t) )

]
= 1

2

∂gij

∂xk

φ̇kφ̇i φ̇j + gij φ̈
i φ̇ j + ∂U

∂xs

φ̇ s . (3.8.52)

As φ is an extremizer, from (3.8.48)

∂U

∂xs

= −gks (φ̈ k + 
k
ij φ̇i φ̇j ). (3.8.53)

Substituting (3.8.53) in (3.8.52), we get

d

dt
E(φ(t) ) = 1

2

∂gij

∂xk

φ̇kφ̇i φ̇j + gij φ̈
i φ̇j − gks (φ̈ k + 
k

ij φ̇i φ̇j )φ̇s

= 1

2

∂gij

∂xk

φ̇kφ̇i φ̇j − gks

k
ij φ̇i φ̇j φ̇s

= 1

2

∂gij

∂xk

φ̇kφ̇i φ̇j − 1

2

(∂gis

∂xj

+ ∂gjs

∂xi

− ∂gij

∂xs

)
φ̇i φ̇j φ̇s

= 0,

so that E(φ) is a first integral.
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3.9 A geometrical interpretation for the potential U

Let φ : M → Rn be an isometric immersion of a Riemannian manifold M of
dimension m = n − 1. If α is the mean scalar curvature of M , from Lemma 3.9 we
have

�φ = −mαN, (3.9.54)

where � is written in the metric of M . If α = 0, φ is a harmonic map and it is a
critical point for the Dirichlet integral∫

M

1

2
|∇φ|2 dv =

∫
M

1

2

n∑
k=1

∣∣∣∇φk
∣∣∣2 dv, (3.9.55)

where M is considered bounded with nonzero boundary. If α �= 0, we consider the
Dirichlet integral perturbed by some potential U : Rn → R, such that the immersion
φ becomes a critical point for

IU (φ) =
∫

M

(1

2
|∇φ|2 − U(φ)

)
dv. (3.9.56)

As φ is a critical point for IU (φ), then

�φ = −∇U.

Comparing with (3.9.54) we get the following result.

Proposition 3.26 Let φ : M → Rn be an isometric immersion of the hypersurface
M . Then φ is a critical point for IU (φ) iff the following two conditions are satisfied:
1) the force F = −∇U is normal to φ(M),

2) |α| = 1

n− 1
|F | .

Thus, from the geometrical point of view, force signifies mean curvature. No force
situation corresponds to α = 0, i.e., M is a minimal hypersurface.

We can now address the following natural problem:

Given a hypersurface in Rn, find a natural Lagrangian for which the hypersurface
immersion is a critical point.

Let ψ : Rn → R be a function that defines M locally as M = {x ∈ R3;ψ(x) =
0}. As the normal is N = ∇ψ

|∇ψ | , where ∇ψ = (∂1ψ, . . . , ∂nψ), we get

(n− 1)∇ψ

|∇ψ | α = ∇U, (3.9.57)

or

∂jU = (n− 1)∂jψ

|∇ψ | α,

which provides the potential U up to an additive constant.
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Example 3.9.1 Let φ : Sn−1 → Rn, where φ is the natural inclusion of the unit
sphere. Choose ψ(x) = |x|2 − 1 and get ∇ψ = 2x, α = 1. Then (3.9.57) becomes

∂jU = (n− 1)xj

|x| ,

so that we can write
U(x) = (n− 1) |x| ,

up to a multiplicative constant. The Lagrangian is L = 1

2
|∇φ(x)|2 − (n− 1)|φ(x)|.

The following well-known result in geometry is approached here using equipo-
tential surfaces.

Proposition 3.27 Let φ : [0, 1] → R3 be a unit speed curve. Then there exists a
surface � ⊂ R3 that contains φ([0, 1]), and φ : [0, 1] → � is a geodesic.

Proof. Let p = φ(0), q = φ(1). It is obvious from the physical point of view that
there exists a force which perturbs the straight segment [p, q] into φ([0, 1]). Let U

be the potential for this force. Then φ will minimize∫ 1

0

1

2
|φ̇|2 − U(φ). (3.9.58)

As φ is a unit speed curve, using Proposition 3.23 we get U |φ constant. Let k = U |φ .
Consider the equipotential surface

� = {x ∈ R3 ; U(x) = k},
which contains φ([0, 1]). The Euler–Lagrange equation associated with (3.9.58) pro-
vides

φ̈(t) = −∇U
(
φ(t)

)
.

As ∇U is normal to �, it follows that φ̈ is normal to �, which means that φ is a
geodesic on �.

Example 3.9.2 Let φ(t) = (cos t, sin t, 0) be a circle. Using the above method,
we shall find a surface that contains the circle as a geodesic. The Euler–Lagrange
equation is

φ̈ = (− cos t,− sin t, 0) = (−∂1 U|φ,−∂2 U|φ,−∂3 U|φ )

so that we can choose U(x) = 1
2 (x2

1 + x2
2 ) and U|φ = 1

2 . Then

� = U−1(1

2

) = {x2
1 + x2

2 = 1}

is a cylinder. If we choose U(x) = 1

2
(x2

1 + x2
2 + x2

3 ), we find that � is a sphere.



52 3 Lagrangian Formalism on Riemannian Manifolds

3.10 Exercises

1. Let ϕ : M → Rm be an isometric immersion of the compact manifold M and
let ϕt (x) = f (t)ϕ(x) be a smooth conformal variation of the immersion ϕ, with
f : (−ε, ε) → (0,∞), f (0) = 1. Let g = ϕ∗(δ) and g(t) = ϕ∗t (δ) be the induced
Riemannian metrics on M by ϕ and ϕt , respectively. Show the following:

a) gab(t) = f 2(t)gab

b) gab(t) = f−2(t)gab

c)
∂gab(t)

∂t |t=0
= 2f ′(0)gab

d) �g(t)ϕ = f 2(t)�ϕ

e) �g(t)ϕt = f 3(t)�ϕ

f) Show that ϕt = f (t)ϕ is a solution for
(
∂t −�g(t)

)
ϕt = 0 if and only if f (t)

verifies

f ′(t) = λjf
3(t),

f (0) = 1,

where λj is an eigenvalue of � (Laplacian in the g-metric).

g) Show that

ϕt (x) = 1√
1− 2λj t

ϕj (x),

with �ϕj = λjϕj .

h) The manifold ϕt (M) blows up in finite time:

lim
t↗ 1

2λ1

| ϕt (x) |= ∞,

where 0 < λ1 is the smallest eigenvalue of the Laplacian on (M, g).

2. Let (M, g) be a compact manifold and ϕ : (M, g)→ Rm be an isometric immer-
sion. Let (ϕt )t∈[0,ε) be a smooth variation of ϕ such that

(∂t +�g)ϕt (x) = 0, (3.10.59)

ϕt (x)|t=0 = ϕ(x),

where �g is the Laplace operator with respect to the metric g.

a) Let (φj )j≥1 be a set of eigenfunctions of �g , i.e., �gφj = λjφj , λj ∈ (0,+∞),
j ≥ 1. Show that there are constants cj ∈ R such that ϕ can be written in the unique
representation



3.10 Exercises 53

ϕ =
∑
j≥1

cjφj .

b) Consider the smooth variation

ϕt (x) =
∑
j≥1

cj (t)φj (x) (3.10.60)

with cj (0) = cj . Show that (3.10.60) is a solution of problem (3.10.59) if and only if
the functions cj (t) satisfy the initial value problem

c′j (t)+ λj cj (t) = 0,

cj (0) = cj ,

where λj is the j-th eigenvalue of �g .

c) Show that any smooth variation (ϕ)t of ϕ which is a solution of the problem
(3.10.59) can be represented as

ϕt (x) =
∑
j≥1

γj e
−λj tφj (x), γj ∈ R.

d) If ϕt is a solution of the problem (3.10.59), then

lim
t→∞ϕt (x) = 0Rm, ∀x ∈ M,

i.e., the manifold ϕt (M) shrinks to a point as t →∞.

3. Let (M, g) be a Riemannian manifold and p0 ∈ M be a point. For any v ∈ Tp0M

with |v| = 1, let cv denote the maximal geodesic defined by cv(0) = p0, ċv(0) = v

and parametrized by arc length. If p = cv(r), then let (r, v1, v2, . . . , vn) be the coor-
dinates of p, called the polar coordinates at p0.

a) Show that the length element with respect to polar coordinates can be written
as

ds2 = dr2 +
n−1∑
i,j=1

Gij (r, v)dvidvj .

b) Show that the Laplacian in polar coordinates is given by

� = − 1√
G

∂

∂r

(√
G

∂

∂r

)
−

n−1∑
i,j=0

1√
G

∂

∂vi

(√
GGij ∂

∂vj

)
.

c) Show that if f ∈ F(M) is a function such that f (p) depends only on the
Riemannian distance between p and p0, then
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�f = − d2f

d2r2 −
1√
G

∂
√

G

∂r

df

dr
.

4. Let (M, g) be a Riemannian manifold. Consider the Lagrangian

L(x, φ,∇φ) = 1

2
|∇φ|2ρ(x),

where φ : M → R and ρ : M → (0,∞) is a density function.

a) Show that the Euler–Lagrange equation is

div(ρ(x)∇φ) = 0.

b) Show that the Euler–Lagrange equation can be written as �φ = F(φ, ρ), with

F(φ, ρ) = 〈∇φ,∇ρ〉
ρ

.

c) Let M = R and ρ = 1+ x2. Solve the Euler–Lagrange equation in this case.
Find the solution φ(x) which satisfies φ(0) = 1, φ̇(0) = 1.

5. Let ϕ : (M, g)→ R and consider the Lagrangian

L(ϕ,∇ϕ) = 1

2
|∇ϕ|2 · ϕ2.

a) Write the Euler–Lagrange equation as �ϕ = F(ϕ,∇ϕ) and find the function
F .

b) Solve the Euler–Lagrange equation in the case M = R.

6. Let (M, g) be a Riemannian manifold and p ∈ M be a point. Let vi ∈ TpM such
that g(vi, vj ) = δij . Show that there is an open neighborhood U of p and the vector
fields Vi on U such that Vi(p) = vi , i = 1, . . . , n and g(Vi, Vj ) = δij on U . (Hint:
Use the parallel transport with respect to the geodesics starting at p).
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Harmonic Maps from a Lagrangian Viewpoint

4.1 Introduction to harmonic maps

Harmonic maps are mappings between Riemannian or pseudo-Riemannian manifolds
which extremize a certain action, namely a natural energy integral that generalizes
the classical Dirichlet’s integral

∫ |∇φ|2 dv. Harmonic maps are generalizations of
geodesics and harmonic functions as well.

In fact, harmonic maps come from theoretical physics, where they are known
under the name of nonlinear sigma models or chiral fields. Nonlinear sigma mod-
els were introduced by Gell-Mann and Levi [30]. Their aim was to describe pion-
nucleon physics in a low energy approximation, using Lagrangian theory for some
self-interacting scalar fields. These fields can be assembled into a single map � from
the n-dimensional Minkowski space (Rn, η), where ηij = diag (−1, 1, . . . , 1), into
some real finite dimensional vector space E with a positive definite scalar product “ � "
and with the Lagrangian given by

L(�) = 1

2
ηαβ ∂α� � ∂β� − V (�). (4.1.1)

Here V : E → R+ is a smooth function called potential and describes the self-
interactions of the system.

In the low energy approximation, the Lagrangian L is modified by requiring the
original fields to be constrained to the set of the minima M of the potential V

M = V −1
(
{c}

)
, (4.1.2)

where c = min V .
Under certain conditions M is supposed to be a connected submanifold of E, so

that the scalar product � : E × E → R induces a Riemannian metric g on M . The
Lagrangian becomes

L(�) = 1

2
ηαβ ∂α�i∂β�j gij , (4.1.3)

which will be the Lagrangian for the harmonic maps and will be considered later.
In geometry the notion was introduced by J. Eells and J.H. Sampson, see [13].
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4.1.1 The energy density

Definition 4.1 Let (M, g)and (N, h)be two Riemannian manifolds andf : (M, g)→
(N, h) be a differentiable map. Define the energy density of f as

e(f ) = 1

2
T raceg (f ∗h), (4.1.4)

where f ∗ is the pull-back of f and Trace is taken in the g-metric.

Proposition 4.2 In local coordinates we have

e(f )x = 1

2
gij (x)f α

; if
β

; j hαβ | f (x)
. (4.1.5)

Proof. As we have
T raceg(f

∗h) = gij (f ∗h)ij ,

and

(f ∗h)ij = (f ∗h)(∂i, ∂j ) = h
(
df (∂i), df (∂j )

)
= h(f k

; i∂k, f
l
; j ∂l) = f k

; i f l
; j hkl,

we get (4.1.5).

Remark 4.3 If (M, g) is the Minkowski space (Rn, η), e(f ) is exactly the Lagrangian
(4.1.3).

Another way of writing the energy density e(f ) is the following.

Proposition 4.4 If {e1, . . . , en} ⊂ TxM is an orthonormal basis, then

e(f )x = 1

2

m∑
i=1

|dfx(ei) |2h , (4.1.6)

where we denote each X ∈ X (N) by

|X|h =
√

h(X, X),

the magnitude of X in h-metric.

Proof. Because of the orthornormality,

gij (x) = gij (x) = δij ,

and (4.1.5) becomes

e(f )x = 1

2

∑
i,α,β

f α
; if

β

; ihαβ | f (x)
. (4.1.7)

On the other side we have
1

2

∑
i

|dfx(ei) |2h =
1

2

∑
i

h(f α
; i ∂α, f

β

; i∂β ) = 1

2
f α
; i f

β

; i hαβ,

which is exactly (4.1.7).
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Remark 4.5 1) Sometimes e(f ) is called the Hilbert–Schmidt norm of f and is de-
noted by ‖df ‖2.

2) The above norm depends on both metrics of M and N , on f , and the first covariant
derivative of f .

4.1.2 Harmonic maps using Lagrangian formalism

Definition 4.6 Let (M, g) be a compact manifold and f : (M, g) → (N, h) be a
smooth map. Define the energy of f by

E(f ) =
∫

M

e(f ) dvg, (4.1.8)

where dvg = √|g| dx1, . . . , dxn.

Definition 4.7 A map f : (M, g)→ (N, h) is called harmonic if it is an extremizer
for the energy functional

f → E(f ). (4.1.9)

If M is not compact, define the harmonic map f as an extremizer for the energy
EM ′ (f ) relative to every compact subdomain M ′ of M , where

EM ′(f ) =
∫

M ′
e(f ) dvg.

The following theorem provides an equation in local coordinates for harmonic maps.

Theorem 4.8. f : (M, g)→ (N, h) is a harmonic map iff

−�(f i)+ gαβ N
i
pj f

p

;αf
j

;β = 0, ∀i = 1, n. (4.1.10)

Proof. f is a harmonic map iff the Euler-Lagrange equations provided by Theorem
3.5 hold (

∂e(f )

∂f
γ

;k

)
;k
= ∂(f )

∂e(f )γ
, ∀γ = 1, n.

We have

∂e(f )

∂f
γ

;k
= ∂

∂f
γ

;k

(1

2
gαβ f i

;αf
j

;β hij

)

= 1

2
gαβ hij

(
∂f i
;α

∂f
γ

;k
f

j

;β + f i
;α

∂f
j

;β
∂f

γ

;k

)
= 1

2
gkβhγjf

j

;β +
1

2
gkαhγ if

i
;α = gkβhγjf

j

;β.

Therefore,
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∂e

∂(f
γ

; k)
= gkβhγj | f f

j

;β.

Define the Euler-operator by

τ(f )γ =
(

∂e(f )

∂f
γ

; k

)
; k
− ∂e(f )

∂f γ
, γ = 1, n. (4.1.11)

We have the following computation:

τ(f )γ = (gkβhγjf
j

;β) ; k − 1

2
gαβf i

;αf
j

;β
∂hij

∂yr

∂f r

∂f γ

= g
kβ

; khγjf
j

;β + gkβ ∂hγj

∂yp

f
p

; kf
j

;β

+gkβhγjf
j

;βk
− 1

2
gαβf i

;αf
j

;β
∂hij

∂yγ
.

As g
kβ

; k = 0, if we define

τ(f )i = τ(f )γ hγ i,

we obtain

τ(f )i = gkβhγ i ∂hγj

∂yp

f
p

; kf
j

;β

= gkβf i
;βk −

1

2
gαβhγ if i

;αf
j

;β
∂hij

∂yγ

.

As
−�(f i) = gkβ f i

;βk,

we get

τ(f )i = −�(f i)+ gαβhγ i
(∂hγj

∂yp

f
p

;αf
j

;β −
1

2
f i
;αf

j

;β
∂hij

∂yγ

)
= −�(f i)+ gαβ N
i

pjf
p

;αf
j

;β,

and the Euler-Lagrange equation is equivalent to

τ(f )i = 0, i = 1, n.

In the particular case when M = (a, b) ⊂ R, equation (4.1.10) becomes the familiar
equation of a geodesic in local coordinates

f̈ i + 
i
pj ḟ

pḟ j = 0, i = 1, n. (4.1.12)

We had shown before that the above equation can be written globally as
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∇ḟ ḟ = 0. (4.1.13)

Such a global characterization also takes place for harmonic maps. This will be shown
in the following.

Let f : (M, g)→ (N, h) be a map and ∇M , ∇N be the Levi-Civita connections
on (M, g), and (N, h), respectively. Define the second fundamental form of f as the
2-covariant symmetric tensor field

(∇df )(X, Y ) = ∇N
df (X) df (Y )− df (∇M

X Y), ∀X, Y ∈ X (M). (4.1.14)

Proposition 4.9 In local coordinates we have

(∇df )sij = H
f s

ij + N
s
αβf α

; if
β

; j . (4.1.15)

Proof. A computation shows

(∇df )ij = ∇N

df ( ∂
∂xi

)
df

( ∂

∂xj

)
− df

(
∇M

∂
∂xi

∂

∂xj

)
= ∇N

f l
; i

∂
∂yl

f
p

; j
∂

∂yp

− df

(
M


p
ij

∂

∂xp

)
= f l

; i
(

f
p

; j
N
s

lp

∂

∂ys

+ ∂f
p

; j
∂yl

∂

∂yp

)
− M


p
ijf

s
;p

∂

∂xs

= f l
; if

p

; j
N
s

lp

∂

∂ys

+ ∂f
p

; j
∂yl

f l
; i

∂

∂yp

− M

p
ijf

s
;p

∂

∂xs

=
(

f s
; ij − M


p
ijf

s
;p + f l

; if
p

; j
N
s

lp

)
∂

∂ys

=
(

H
f s

ij + f l
; if

p

; j
N
s

lp

)
∂

∂ys

.

Definition 4.10 The tension field of the map f : (M, g)→ (N, h) is defined by

τ(f ) = T raceg(∇df ). (4.1.16)

This can be written locally as

τ(f )s = gij (∇df )sij = −�(f s)+ gij N
s
αβf α

; if
β

; j .

Therefore, the Euler-Lagrange equations (4.1.10) can be written globally as

T raceg(∇df ) = 0, (4.1.17)

or
τ(f ) = 0. (4.1.18)
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Remark 4.11 i) τ(f ) is not a vector field on N (as a section of T N → N ). It is a
section in f−1(T N)→ M .
ii) Another way for finding Euler-Lagrange equations is to prove the first variation
formula

dE(ft )

dt | t=0
= −

∫
M

h(τ(f ), V ) dvg, (4.1.19)

where

Vx = dft (x)

dt | t=0

is the deformation vector field and (ft )t∈(−ε,ε) is a variation for f .

Example 4.1.1 Let M = S1 and φ : M → N. Then the energy is

E(φ) = 1

2

∫
S1

∣∣φ̇(s)
∣∣2 ds

and the Euler-Lagrange operator is

τ(φ) = ∇N
dφ(ċ)dφ(ċ),

(where ċ is the tangent to the circle S1).

Since
τ(φ) = ∇N

dφ(ċ)dφ(ċ)− dφ∇S1

ċ ċ,

and
∇S1

ċ ċ = 0,

the Euler-Lagrange equation becomes

∇N
dφ(ċ)dφ(ċ) = 0,

which means that φ(S1) is a closed geodesic in N .

Example 4.1.2 φ : R→ N is a harmonic map if and only if φ is a geodesic on N .
This example is related to Classical Mechanics, where N is the coordinate space and
φ is the trajectory of a dynamical system with the Lagrangian

L = 1

2

∣∣φ̇(t)
∣∣2 .

Example 4.1.3 φ : M → Rn is a harmonic map iff

�φj = 0, ∀j = 1, n.

In general, this takes place if the manifold Rn is replaced with a flat one (
i
jk = 0).

Example 4.1.4 Let φ : M → N be a geodesic map, namely the second fundamental
form is zero. Then φ is a harmonic map.
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4.2 D’Alembert principle on Riemannian manifolds

In Classical Mechanics, there is a principle stated by D’Alembert which is equivalent
to the Lagrangian variational principle. We shall illustrate this principle briefly below.

Suppose that M is a surface in R3 and a material point is required to move on the
surface M. If U denotes the potential, Newton’s equation should give the equation of
motion mẍ+∇U = 0. If U = 0, which means that exterior forces are neglected, then
mẍ = 0, with the solution x(t) = At + B. However, a line cannot be contained by
an arbitrary surface M. That means there is another force that requires the material
point to lie on the surface M. This is the reaction force denoted by R and is given by

R = mẍ + ∇U. (4.2.20)

The D’Alembert principle states that the reaction force R is normal to the surface M ,
i.e.,

〈mẍ + ∇U, ξ〉 = 0, ∀ξ ∈ T M. (4.2.21)

Now we shall extend D’Alembert’s principle on Riemannian manifolds, replacing
R3 by an arbitrary Riemannian manifold P . The surface M and the space R of the
t-variable are replaced by two other Riemannian spaces N and M , respectively.

The following result is an extension of Theorem 3.20 for harmonic maps.

Theorem 4.12. Let φ : M → N and U ∈ F(N) be the potential. Then φ is an
extremizer for the integral ∫

M

[e(φ)− U(φ)] dv (4.2.22)

if and only if
τ(φ) = −∇U. (4.2.23)

Proof. The proof is the same as in the case of Theorem 3.20. Using the computations
made in the proof of Theorem 4.9, the tension field τ(φ) is obtained on the left-hand
side.

The equation (4.2.23) shows that the external force F = −∇U is equal to the
tension field of the map φ.

Theorem 4.13. Let M, N, P be Riemannian manifolds and φ : M → N , and ψ :
N → P , with ψ immersion. Let U ∈ F(N) be a potential, and � = ψ ◦ φ. The
following are equivalent:

(i) τ (φ) = −∇U,

(ii) τ (�)+ dψ(∇U) is normal to ψ(N).
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To prove the above theorem we need the following:

Lemma 4.14
∇d(ψ ◦ φ) = dψ ∇dφ + ∇dψ(dφ, dφ). (4.2.24)

Proof.

∇d(ψ ◦ φ)(X, Y ) = ∇P
d(ψ◦φ)Xd(ψ ◦ φ)Y − d(ψ ◦ φ)∇M

X Y

= ∇P
dψ(dφX) dψ(dφY )− dψ dφ ∇M

X Y = ∇P
dψ(dφX) dψ(dφ Y )

−dψ ∇N
dφ X dφ(Y )+ dψ ∇N

dφ X dφ(Y )− dψ dφ ∇M
X Y

= dψ ∇dφ + ∇dψ(dφX, dφY ).

Proof. (of Theorem 4.13) Take Trace in both sides of the relation (4.2.24) and use the
definition of the torsion field to obtain

τ(ψ ◦ φ) = dψ
(
τ(φ)

)
+ T race∇dψ(dφ, dφ). (4.2.25)

As τ(φ) = −∇U , the relation (4.2.25) becomes

τ(�)+ dψ(∇U) = T race∇dψ(dφ, dφ).

Since T race∇dψ(dφ, dφ) = nor
(
τ(�)

)
, we get τ(�) + dψ(∇U) normal to

ψ(N).
The reverse can be proved using the same equivalences and the fact that dψ is

one-to-one.

Corollary 4.15 If M , N , P , φ, ψ and � are as above, then the following are equiv-
alent:

(i) φ is a harmonic map,

(ii) τ (�) is normal to ψ(N).

Remark 4.16 Theorem 4.13 states the equivalence between the Euler–Lagrange
equation (i) and D’Alembert principle given in (ii). In this case the reaction force is

R = τ(�)+ dψ(∇U).

Corollary 4.17 φ is an extremizer for the integral (4.2.22) if and only if

τ(�)+ dψ(∇U) is normal on ψ(N).

Application 4.18 Let � : Mn−2 → Rn be an isometric immersion. Then there exists
S ⊂ Rn, a hypersurface such that M ⊂ S and M is minimal in S.
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Indeed, as � is an isometric immersion, the energy density of � is constant,
|∇�|2 = k. In section 3.9, we constructed a potential U such that � is a critical point
for ∫

M

|∇�|2 − U(�).

Take S = U−1({k}). Then M ⊂ S and ∇U is normal to S. As �� = −∇U , we get
�� normal to S. Applying D’Alembert’s principle, we find that M is minimal in S.

Application 4.19 (Harmonic maps into Sn) Let i : Sn → Rn+1 be the inclusion,
and φ : M → Sn be a map, and � = i ◦ φ. Applying D’Alembert’s principle, φ is
harmonic if and only if �� is normal to Sn. Therefore, there exists a proportionality
function A ∈ F(M) such that �� = A�. As |�(x)|2 = 1, we get

0 = 1

2
� |�(x)|2 = 1

2
�

∑
j

(
�j(x)

)2

= 1

2

∑
j

[
2�j(x) ��j (x)− 2

∣∣∣∇�j
∣∣∣2]

= 〈�, A�〉 − 2e(�) = A− 2e(�).

So φ is harmonic if and only if

�� = 2e(�) �.

Application 4.20 Let c : [0, 1] → S ⊂ R3 be a curve on a surface S. Then c is a
geodesic if and only if c̈(t) is normal to the surface S.

Indeed, c is harmonic if and only if it is geodesic. Using τ(c) = c̈ and D’Alembert’s
principle we get c̈ normal to the surface S.

In general, c is a geodesic perturbed by a potential U , where U ∈ F(S), if and
only if

c̈(s)+ ∇Uc(s)

is normal to the surface S, see Figure 4.1.

c(s)

c(s)

Figure 4.1: A curve c(s) with c̈(s) normal to the surface S.
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For more details on harmonic maps the reader may consult [14], [15], [16]. For
a study of harmonic maps between spheres see [38]. For other advanced topics see
[36], [39], [40].

4.3 Exercises

1. (Takahashi) Let F : (M, g) → Rm be an isometric immersion of a compact
manifold M of dimension n, with 1 ≤ n ≤ m − 1. If �F = λF with λ > 0, then
show that

a) F(M) ⊂ Sn−1
(

0,
√

n
λ

)
,

b) F is a harmonic map from (M, g) to Sn−1
(

0,
√

n
λ

)
.

2. (Ferandez and Lucas) If ϕ : M → R3 is an isometric immersion of the surface
M into the Euclidean space, and �H = λH , where H denotes the mean curvature
vector field, then show that

a) M is minimal,

b) ϕ(M) is an open set in the sphere S2(r) or the cylinder S1 × R.

3. Let e denote the energy density function of the map φ : (M, g)→ (N, h) and let
X ∈ X (M) be a vector field. Show that

LXe = 〈dφ,∇(dφ ·X)〉 − 1

2
〈LXg, φ∗h〉.

4. Let e denote the energy density function of the map φ : (M, g) → (N, h). Let
X ∈ X (M) and denote vg = √det g dx1 ∧ · · · ∧ dxn the volume element on (M, g).
Show that

LX(e · vg) = 〈dφ,∇(dφ ·X)〉vg + 1

2
〈LXg, Sφ〉vg,

where Sφ = e · g − φ∗h and LX denotes the Lie derivative with respect to X.

5. Define the stress-energy tensor of φ : (M, g)→ (N, h) by

Sφ = e · g − φ∗h.

a) Show that div Sφ = −〈τ(φ), dφ〉, where (div Sφ)i = gjk∇∂xj
Ski .

b) Show that if the map φ is harmonic, then div Sφ = 0.

c) Find a counterexample when div Sφ = 0 and φ is not harmonic.
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6. Let ϕ : Rm → (N, h) be a harmonic map of finite energy. Show that if m ≥ 3, ϕ

is constant.

7. Let φ : (M, g)→ (N, h) be a mapping between Riemannian manifolds. φ is called
a totally geodesic map if ∇dφ = 0.

a) Show that φ is totally geodesic map if and only if φ maps geodesics of M

linearly into geodesics of N .

b) Prove that any totally geodesic map is harmonic.

c) Find a counterexample of a harmonic map that is not totally geodesic.

8. The mean curvature of an immersion ϕ : (M, g) → (N, h) is the trace of the
second fundamental form divided by m = dim(M).

a) Show that a totally geodesic immersion has zero curvature.

b) Let ϕ : (M, g)→ Sn be an isometric immersion of constant mean curvature of
M into the Euclidean sphere. Let ι : Sn → Rn+1 be the canonical imbedding. Then
ι ◦ ϕ has constant mean curvature.



5

Conservation Theorems

5.1 Noether’s Theorem

In Classical Mechanics, most of the conservation laws such as the conservation of
momentum, angular momentum, etc, are particular cases of a single theorem due to
E. Noether:

To every one-parameter group of diffeomorphisms of the coordinate space of a
Lagrangian system which preserves the Lagrangian, corresponds a first integral of
the Euler-Lagrange equation of motion.

In our work, the space of parameters is multidimensional. Therefore, we need to deal
with objects that are more general than a first integral. A natural generalization of the
first integral is the notion of current.

Definition 5.1 A current is a free-divergence vector field which depends on the solu-
tion of the Euler–Lagrange equation.

In particular, when the space of parameters is one-dimensional (just the time
parameter), a current becomes a usual first integral, i.e., a function constant along the
solutions of the Euler–Lagrange system.

Theorem 5.2. Let φ : (M, g)→ (N, h) be a harmonic map between two Riemannian
manifolds and (hs)s a one-parameter group of diffeomeorphisms on M that preserves
energy density

e(φ ◦ hs) = e(φ), ∀s ∈ R. (5.1.1)

Let V be the vector field induced by (hs)s . Then the vector field

X =
(

gkjφ
β

; j hpβV (φp)

)
∂

∂xk

(5.1.2)

is a current.
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Proof. As φ is a harmonic map, then τ(φ) = 0. The Euler–Lagrange equations can
be written as (

∂e

∂(φ
p

; k)

)
; k
= ∂e

∂φp
, ∀p = 1, n. (5.1.3)

Let � : R×M → N be defined by �(s, x) = φ
(
hs(x)

)
. As e(φ) = e(φ ◦ hs), the

chain rule yields

0 = ∂e(�)

∂s
= ∂e(�)

∂�p

∂�p

∂s
+ ∂e(�)

∂(�α
;k)

∂(�α
;k)

∂s
. (5.1.4)

Applying the commutativity of the partial derivatives,

∂(�α
;k)

∂s
=
(

∂�α

∂s

)
;k

(5.1.5)

and substituting the relation (5.1.3) in (5.1.4), we obtain

0 =
(

∂e(�)

∂(�
p

;k)

)
;k

∂�p

∂s
+ ∂e(�)

∂(�α
;k)

(
∂�α

∂s

)
;k

(5.1.6)

=
(

∂e(�)

∂(�
p

;k)
∂�p

∂s

)
;k

. (5.1.7)

Taking s = 0,

0 =
(

∂e(φ)

∂(φ
p

;k)
∂�p

∂s | s=0

)
;k
=
(

∂e(φ)

∂(φ
p

;k)
V (φp)

)
;k
= Xk

; k (5.1.8)

where

Xk = ∂e(φ)

∂(φ
p

;k)
V (φp),

and the induced vector field by (hs)s is defined by

V (f ) = d(f ◦ hs)

ds | s=0
, ∀f ∈ F(M). (5.1.9)

As computation shows that

∂e(φ)

∂(φ
p

;k)
= gkjφ

β

;j hpβ, (5.1.10)

Equation (5.1.8) yields
Xk = gkjφ

β

;j hpβ V (φp). (5.1.11)

In the case when the right-hand side manifold N is the real line R, we obtain the
following:
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Corollary 5.3 Let φ : (M, g)→ R be a harmonic function. The vector field on M,

X = V (φ)∇φ, (5.1.12)

is a current. This provides a conservation along the normal direction to the equipo-
tential surfaces of φ.

Proof. If we substitute hpk = 1 in relation (5.1.2), we obtain Xk = (∇φ)k V (φ).
Furthermore, ∇φ is normal to the surfaces {φ = constant}.
Corollary 5.4 Let φ : (M, g)→ R be a harmonic function. Then

g
(
∇φ,∇(V (φ))

)
= 0. (5.1.13)

Proof. Applying Lemma 2.10 yields

div
(
V (φ)∇φ

)
= −V (φ)�φ + g

(
∇φ,∇(V (φ))

)
. (5.1.14)

Using �φ = 0 and Corollary 5.3, we get the desired result.

Remark 5.5 Corollary 5.4 says that the vector field ∇(V (φ)
)

is tangent to the con-
stant level surfaces of φ (equipotential surfaces).

When the space of parameters M is the real line R (just time parameter), Theorem
5.2 will provide the conservation of energy along the geodesic φ : R→ N .

Corollary 5.6 h(φ̇, φ̇) is preserved along the geodesic φ : R→ N .

Proof. In one dimension the div becomes the derivation in t and V (φ) = φ̇.

Other conservation laws can be obtained if the one-parameter group of diffeo-
morphisms, which preserves the Lagrangian, is considered on the target manifold.

Theorem 5.7. Let (M, G) be a Riemannian manifold and (hs)s a one-parameter
group of diffeomorphisms on M that preserves the energy density for the geodesic
φ : R→ M , i.e., e(hs ◦ φ) = e(φ), ∀s ∈ R. Then

g(φ̇(t), V | φ(t)) = constant , ∀t ∈ R, (5.1.15)

where φ̇(t) is the tangent vector to the curve φ(t) and V is the vector field induced
by (hs)s on M .

Proof. Take � : R × R → M given by �(t, s) = hs(φ(t)). As (hs)s preserves the
energy density, we have

0 = ∂e(�)

∂s
= ∂e(�)

∂�γ

∂�γ

∂s
+ ∂e(�)

∂�̇γ

∂�̇γ

∂s

= d

dt

∂e(�)

∂�̇γ

∂�γ

∂s
+ ∂e(�)

∂�̇γ

∂

∂s

( ∂

∂t
�γ

)
= d

dt

(∂e(�)

∂�̇γ

∂�γ

∂s

)
.
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Recall that � | s=const. : R→ M is harmonic and apply the Euler–Lagrange equation

∂

∂t

∂e(�)

∂�̇γ
= ∂e(�)

∂�γ
.

Taking the value at s = 0 and applying the formula

∂e(φ)

∂φ̇γ
= gγαφ̇α

yields

0 = d

dt

(
gγαφ̇α

(∂(hs ◦ φ)

∂s | s=0

)γ
)
= d

dt
g(φ̇, V | φ).

Remark 5.8 The above theorem states that the momentum in the V -direction is con-
stant.

Using the Euler–Lagrange equation in general form and the same idea of proof,
one can get the following theorem.

Theorem 5.9. Let f : (M, G) → (N, h) be a harmonic map and (ξs)s a one-
parameter group of diffeomorphisms on N such that e(ξs ◦ f ) = e(f ), ∀s ∈ R.
Let

V
γ

| f :=
d(ξs ◦ f )γ

ds | s=0
(5.1.16)

be the vector field generated by ξs along f . Then the vector field on N ,

Y =
(
gkj f

β

; j hγβ V
γ

| f
) ∂

∂yk

, (5.1.17)

is a current on N, i.e., div Y = 0.

5.2 The role of Killing vector fields

The theorems proved in Section 5.1 are general. In this chapter, we deal with some
particular 1-parameter groups of diffeomorphisms generated by special vector fields
called Killing vector fields.

Definition 5.10 A vector field X on a Riemannian manifold (M, g) is a Killing vector
field if

LXg = 0, (5.2.18)

where LX is the Lie derivation in the X direction.
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Relation (5.2.18) says that the metric is preserved along the integral lines of X,

h∗s (gij ) = gij , ∀s ∈ R, (5.2.19)

where (hs)s is the 1-parameter group of diffeomorphisms generated by the vector
field X.

Proposition 5.11 Let f : (M, g)→ (N, h) be a map, V be a Killing vector field on
N , and (ξs)s the one-parameter group of diffeomorphisms definite by V . Then

e(f ) = e(ξs ◦ f ), ∀s. (5.2.20)

Proof. As V is Killing, ξ∗s (h) = h, ∀s. Then

f ∗
(
h− ξ∗s (h)

)
= 0

⇐⇒ f ∗(h) = f ∗ ξ∗s (h)

⇐⇒ f ∗(h) = (ξs ◦ f )∗(h).

Taking the T race in metric g and using formula (4.1.4) we get

T raceg f ∗(h) = T raceg (ξs ◦ f )∗(h)

⇐⇒ e(f ) = e(ξs ◦ f ), ∀s.

Using Proposition 5.11, Theorem 5.9 becomes:

Theorem 5.12. Let φ : (M, g)→ (N, h) be a harmonic map between two Rieman-
nian manifolds and V ∈ X (N) be a Killing vector field. The vector field

Y =
(

gkjf
β

; j hγβV
γ

| f
)

∂

∂yk

(5.2.21)

is a current on N .

Theorem 5.7 becomes:

Theorem 5.13. Let φ : R→ (M, g) be a geodesic and V be a Killing vector field on
M . Then

g(φ̇(t), V | φ(t)) = constant , ∀t ∈ R, (5.2.22)

which means the momentum in the direction of a Killing vector field along a geodesic
is preserved.
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Figure 5.1: Geodesics and Killing vector fields in the plane; see example 5.2.1.

Example 5.2.1 In the Euclidean plane, the Killing vector fields correspond to trans-
lations and rotations and the geodesics are lines. We find that at intersection points
between a fixed line and variable circles centered at the origin, the scalar product
between their tangent vectors is constant (is not dependent on the circle).

Example 5.2.2 On a surface of revolution, we have the Killing vector field of rotation.
Let θ | φ(t) be the angle between a fixed geodesic φ(t) and the latitude circles at the
point φ(t). Since the length of the tangent to the circle is the radius r of the circle, using
the above theorem we conclude that 〈φ̇(t), V | φ(t)〉 = |φ̇| r cos θ | φ(t) is constant, or
equivalently, r cos θ = constant . If the inclination angle α of a geodesic with respect
to its meridian is defined by α = π/2−β, we arrive at the result known as Clairaut’s
theorem (see [31]).

Theorem 5.14. Let φ(t) be a geodesic on a smooth surface of revolution S. Then at
any point P of φ(t) the radius r(P ) of the circle of latitude at P multiplied by the
sine of the inclination angle α(P ) of φ(t) with respect to the meridian through P is
a constant, i.e. r sin α =constant.

Another necessary condition for preserving energy density is given by the follow-
ing:

Proposition 5.15 Let f : (M, g)→ (N, h) be an immersion. Let g̃ be the induced
metric on M by f , i.e. g̃ = f ∗(h). If V is a Killing vector field on (M, g̃), then

e(f ◦ ξs) = e(f ), ∀ s ∈ R, (5.2.23)

where (ξs)s is the one-parameter group generated by V .

Proof. As V is Killing on (M, g̃), we have

ξ∗s (g̃) = g̃,⇐⇒
ξ∗s ◦ f ∗(h) = f ∗(h)⇐⇒

(f ◦ ξs)
∗(h) = f ∗(h).
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Taking the T race in metric g yields

T raceg(f ◦ ξs)
∗(h) = T raceg f ∗(h),

⇐⇒ e(f ◦ ξs) = e(f ), ∀s ∈ R.

Figure 5.2: Geodesics on a cone and on a cylinder and Clairaut’s theorem.

Using Theorem 5.2 and Proposition 5.15, we get the following:

Proposition 5.16 Under the hypothesis of Proposition 5.15, if f is a harmonic im-
mersion, then the vector field with the components

Xk = gkjf
β

; j hpβV (f p) = (∇f β)k hpβV (f p) (5.2.24)

is a current.

Proposition 5.17 Let f : (M, g)→ (N, h) be an isometric harmonic immersion and
let V be a Killing vector field on M . Then ξs : M → M is a harmonic diffeomorphism
for every s.

Proof. Applying T race in metric g in the relation of Lemma 4.14, we get

τ(f ◦ ξs) = df τ(ξs)+ T race∇df (dξs, dξs).

From Proposition 5.15 the Lagrangian e(f ) is preserved by ξs . Hence, the Euler–
Lagrange equation will be the same

τ(f ◦ ξs) = τ(f ), ∀s.
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Since f is harmonic, τ(f ) = 0 and so τ(f ◦ ξs) = 0. As the normal component
nor τ(f ◦ ξs) = df τ(ξs), then

df τ(ξs) = 0.

As df is one-to-one (f immersion), we get τ(ξs) = 0 for every s, i.e., ξs is harmonic.

5.3 The Energy-Momentum tensor

The energy-momentum tensor comes from Physics where it describes the matter
fields equations. It depends on the field, their covariant derivatives, and the metric.
The energy-momentum tensor mainly describes two things:

(i) The principle that all fields have energy. That, the energy-momentum vanishes
on an open set U if and only if all the matter fields vanish on U . From the Physics
point of view one should not distinguish between two different matter fields that have
the same energy-momentum tensor.

(ii) The total flux over a closed surface of the K-component of the energy-
momentum tensor is zero, where K is a Killing vector field.

The last property provides conservation of angular momentum by means of rota-
tion vector fields for the Euclidian flat space (see [21]). Knowledge of the energy-
momentum tensor was used in the Brans-Dicke theory for determination of the con-
formal factor of the metric (see [21]).

The energy-momentum tensor was successfully used in the general theory of rel-
ativity to describe gravitational effects. In this case it equals a certain free-divergence
tensor which depends only on the metric of the space. There is a standard procedure
to obtain the energy-momentum tensor from the associated Lagrangian of a matter
field.

Returning to PDEs, we note that in the particular case when the Lagrangian
depends only on a scalar field and its first derivative, we may associate the Euler–
Lagrange system of equations, which is the equation for the first variation of the
action. A classical minimum action principle states that the scalar field satisfies the
Euler–Lagrange equation. In general, this equation is a second order partial differential
equation.

On the other hand, the scalar field is characterized by its energy-momentum ten-
sor. The conservation properties of the energy-momentum tensor may help to obtain
information about the solutions of the Euler–Lagrange equations. Used together with
the boundary conditions, this is a useful tool to prove uniqueness for linear homo-
geneous boundary value problems. It is important to obtain such results when the
background metric is Riemannian and the Euler–Lagrange equations are elliptic.

This section deals with a geometric approach for some linear partial differential
equations derived as Euler–Lagrange equations from certain Lagrangians. One may
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associate the energy-momentum tensor with these Lagrangians, which satisfies some
conservation properties. The goal of this section is to exploit the conservation prop-
erties of the energy-momentum tensor and to obtain information about the solutions
of the Euler–Lagrange equation. For an approach of harmonic maps between semi-
Riemannian manifolds from the conservation property point of view, see [33]. An
extension of the variational methods to subRiemannian is done in [34].

5.3.1 Definition of Energy-Momentum

A physical field is given by its Lagrangian and its dynamic is described by the Euler–
Lagrange equations, called the field equations. An important problem is to determine
the flow energy along a given direction for a given physical field. This description
uses a 2-covariant symmetric tensor field Tij , called the energy-momentum tensor.
The energy flow in the X-direction is given by the expression

T (X, X) = TijX
iXj . (5.3.25)

Let L be a Lagrangian which depends on the field φ, on its first derivatives φ;k , and
on the metric gij of the Riemannian manifold M . Consider the integral

I =
∫
D

L dv, (5.3.26)

where D ⊂M is a compact domain. Consider the variations of the metric gij (s, x)

given by gij (0, x) = gij (x), with the variation field

δgij (x) = ∂gij (s, x)

∂s |s=0
.

Definition 5.18 The energy-momentum tensor Tij is defined by

dI

ds |s=0
=
∫
D

T ab δgab dv.

Lemma 5.19 On the Riemannian manifold with volume element dv we have

(i)
∂(dv)

∂gab

= 1

2
gabdv,

(ii) δ(dv) = 1

2
gab δgab dv.

If the Lagrangian L depends only on φ, φ;i and the metric gab, then

(iii) δL = ∂L

∂gab |s=0
δgab.
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Proof.

(i)
∂(dv)

∂gab

= ∂

∂gab

(
√

g dx1 . . . dxn) = 1

2
√

g

∂g

∂gab

dx1 . . . dxn.

As ∂g/∂gab is the minor of gab, then

gab = 1

g

∂g

∂gab

, or
∂g

∂gab

= g gab.

It follows that
∂(dv)

∂gab

= 1

2
√

g
g gab dx1 . . . dxn

= 1

2
gab√g dx1 . . . dxn = 1

2
gab dv.

(ii) δ(dv) = ∂ dv

∂s |s=0
= ∂ dv

∂gab

∂gab

∂s |s=0
= 1

2
gabδgab dv

by (i).
(iii)

δL = ∂L(φ, φ;i , gab)

∂s |s=0

= ∂L

∂φ

∂φ

∂s︸︷︷︸
=0

+ ∂L

∂φ;i
∂φ;i
∂s︸︷︷︸
=0

+ ∂L

∂gab

∂gab

∂s |s=0

= ∂L

∂gab |s=0
δgab,

where we used the fact that the variation in s does not affect the function φ and its
derivatives φ;i .

Theorem 5.20. (Existence of energy-momentum tensor)
Let L be a Lagrangian which depends on φ, φ;i , and the metric gab. Then the energy-
momentum tensor is given by

T ab = ∂L

∂gab

+ 1

2
gabL. (5.3.27)

Proof. Using the above lemma we have

δI =
∫

D

δL dv + L δ(dv)

=
∫

D

[ ∂L

∂gab

δgab dv + 1

2
Lgabδgab dv

]
=
∫

D

[ ∂L

∂gab

+ 1

2
Lgab

]
︸ ︷︷ ︸

=T ab

δgab dv.
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5.3.2 Einstein tensor

Let (M, g) be a Riemannian manifold and let T be a symmetric 2-covariant tensor
field on M .

Definition 5.21 The divergence of the tensor field T is a vector field denoted by div T

given by div T = (
div T

)i
∂xi

with the components(
div T

)i = T
ji

;j = ∇∂xj
T ji .

The tensor T is divergence-free if T
ij

;j = 0.

Example 5.3.1 The metric tensor g is divergence-free. The identity g
ij

;j = 0 is called
the Ricci identity and it is equivalent with the fact that the Levi-Civita connection is
a metric connection.

Definition 5.22 Let Ric denote the Ricci tensor and R the scalar curvature. The
symmetric tensor

T = Ric − 1

2
Rgij (5.3.28)

is called the Einstein tensor. On components we have Tij = Rij − 1

2
Rgij .

The following results will be useful in the study of the Einstein tensor divergence.
The next lemma can also be found in [35].

Lemma 5.23 Let R be the Ricci scalar curvature. Then

∇R = 2div Ric. (5.3.29)

Proof. The second Bianchi identity in local coordinates can be expressed as

Ri
jkl;r + Ri

jlr;k + Ri
jrk;l = 0.

Swapping r and k with the change of sign yields

Ri
jkl;r + Ri

jlr;k − Ri
jkr;l = 0.

Contracting on i and r yields∑
r

Rr
jkl;r +

∑
r

Rr
jlr;k −

∑
r

Rr
jkr;l = 0,

which becomes ∑
r

Rr
jkl;r ++Rjl;k − Rjk;l = 0.

Contract multiplying by gjk ,
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r,j,k

gjkRr
jkl;r + gjkRjl;k − gjkRjk;l = 0

∑
r

Rr
l;r +

∑
k

Rk
l;k = R;l

2
∑

r

Rr
l;r = R;l .

Multiplying by glj yields

2gljRr
l;r = gljR;l ,

2R
jr

;r =
(∇R

)j
,

2div Ric = ∇R.

The following result is an analog of Lemma 2.10 for tensor fields.

Lemma 5.24 Let f ∈ F(M) be a function and S be a symmetric 2-covariant tensor.
Then

div
(
f S

)i = f (divS)i + gpk(∇f )kSip.

Proof. A computation involving derivation yields

div(f S)i = (f S)
ji

;j = f;j Sji + f S
ji

;j
= f;j Sji + f (divS)i

= f;j gjkSi
k + f (divS)i

= (∇f )kSi
k + f (divS)i

= (∇f )kSipgkp + f (divS)i .

Theorem 5.25. The Einstein tensor is divergence free.

Proof. Making f = R and S = g in Lemma 5.24 yields

div(Rg)i = R(div g)i + gpk(∇R)kgip

= 0+ (∇R)kδi
k = (∇R)i,

where we used the fact that the metric tensor g is divergence free. Lemma 5.23 yields

div(Rg) = ∇R = 2 div Ric

=⇒ div(2Ric − Rg) = 0,

which yields div T = div(Ric − 1
2Rg) = 0.

Remark 5.26 The above theorem will be proved in a more general framework in a
next section of this chapter.
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5.3.3 Field equations

The field equations for Einstein’s gravitational potential
The goal of this section is to show that the Einstein tensor can be derived as an energy-
momentum tensor for a certain action integral. We shall apply it to the surface and
curve theory. From the definition of the energy-momentum tensor we have:

Proposition 5.27 The integral

I =
∫
D

L dv

is stationary under the variations of the metric which leaves φ unchanged iff Tij = 0.

The tensorial equation
Tij = 0 (5.3.30)

is called a field equation. If the Lagrangian depends on φ, φ;i , and the metric gab,
then the equation (5.3.30) can be written as

∂L

∂gab

= −1

2
Lgab

or, after multiplying by gab,

n

2
L = −gab

∂L

∂gab

,

where n =dim(M).
We shall consider some examples where the Lagrangian depends only on the

Riemannian metric and its derivatives and there is no function φ.
The following two lemmas will be useful in the future. See also [21].

Lemma 5.28 If M is a compact, orientable, without boundary Riemannian manifold,
then ∫

M

gabδRab dv = 0.

Proof. We shall write the integrand as the divergence of a vector field. The divergence
theorem will lead to the desired relation. A computation in tensors yields

gabδRab = gab
[(

δ
c
ab

)
;c −

(
δ
c

ac

)
;b

]
=
(
gabδ
c

ab

)
;c −

(
gab
c

ac

)
;b

=
(
gabδ
c

ab

)
;c −

(
gacδ
d

ad

)
;c

=
(
gabδ
c

ab − gacδ
d
ad

)
;c = V c

;c = div V,

with V c = gabδ
c
ab − gacδ
d

ad .
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Lemma 5.29 We have gab δgab = −gabδgab.

Proof. Apply δ to gabgab = 1.

Proposition 5.30 Consider the Lagrangian equal to the scalar curvature, i.e., L =
R = gijRij , on a compact, orientable Riemannian manifold M , without boundary.
Then

I (g) =
∫

M

R dv (5.3.31)

is stationary under variations of the metric iff gij obeys the field equations

Rij − 1

2
Rgij = 0. (5.3.32)

Proof. We shall show that the energy-momentum tensor is Tij = Rij − 1

2
Rgij . We

have

δI (g) = δ

∫
M

R dv =
∫

M

δ
(
R dv

)
=
∫

M

δR dv +
∫

M

R δ(dv)

=
∫

M

δ
(
Rabg

ab
)

dv +
∫

M

R
1

2
gab δgab dv

=
∫

M

(
gabδRab + Rabδg

ab + 1

2
Rgabδgab

)
dv

=
∫

M

gab δRab dv︸ ︷︷ ︸
=0

+
∫

M

(
Rabδg

ab + 1

2
Rgabδgab

)
dv

=
∫

M

(
Rabδg

ab − 1

2
Rgabδg

ab
)

dv (5.3.33)

=
∫

M

(
Rab − 1

2
Rgab

)
δgab dv =

∫
M

Tabδg
ab dv,

where in order to get (5.3.33) we have used Lemmas 5.28 and 5.29.

The equation (5.3.32) is called the Einstein equation and the integral I (g) given
by (5.3.31) is called Einstein’s gravitational potential.

Solving the Einstein equation. We distinguish two cases depending on the dimension
of the manifold: n = 2 and n �= 2.

The case n �= 2: The Einstein equation

Rij = 1

2
Rgij (5.3.34)
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yields

Rk
j = gikRij = 1

2
gikRgij = 1

2
Rδk

j .

In particular, R
j
j =

1

2
Rδ

j
j =

1

2
R. Then summing over j yields

R = R
j
j =

1

2
Rδ

j
j =

n

2
R,

and hence
(n

2
− 1

)
R = 0. As n �= 2 it follows that R = 0. Using (5.3.34) yields

Rij = 0.

The case n = 2: This is a special case which leads to the following well-known
theorem:

Theorem 5.31. (Gauss–Bonnet theorem )
Let M be a compact surface in R3 and K the Gaussian curvature. Then∫

M

K dσ (5.3.35)

does not depend on the Riemannian metric considered on M .

Proof. In the 2-dimensional case, K = R/2, and

Rij = 1

2
Rgij = Kgij .

Using Proposition 5.30 we prove

δI =
∫

M

Tij δg
ij dσ =

∫
M

(
Rij − 1

2
Rgij

)
δgij dσ = 0.

Let RM(M) denote the space of Riemannian metrics on M . I is a functional on
RM(M) such that δI|g = 0, for any metric g. Hence I is constant on RM(M) and
does not depend on g.

In fact
∫

K dσ is a topological invariant equal to 2πχ(M), where χ(M) denotes

the Euler–Poincare characteristic of M , which is a positive integer. Lagrangians that
provide integral invariants are called null Lagrangians, see [31]. The following propo-
sition deals with integral invariants.

Proposition 5.32 Let f be a smooth function that depends on the metric tensor gab.
Then the integral ∫

M

f (gab) dv

is an integral invariant (not changing with variations of the metric) iff f satisfies the
equation

∂f

∂gab

+ 1

2
gabf = 0.
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Proof. We use the fact that the energy-momentum tensor is T ab = ∂f

∂gab

+ 1

2
gabf

and it is zero for any metric gab.

The field equations for the volume functional
Let (M, g) be a compact, orientable Riemannian manifold. Consider the volume
functional

V (g) =
∫

M

dv =
∫

M

√|g|dx1 ∧ · · · ∧ dxn.

A variation with respect to g yields

δV (g) =
∫

M

δ(dv) =
∫

M

1

2
gabδgab

=
∫

M

T abδgab dv.

Hence the energy-momentum in this case is T = 1

2
g, and hence T is divergence free

and the field equations are gij = 0.

The energy-momentum for the Newtonian potential
We shall compute the energy-momentum in the case of Newtonian potential in di-
mensions n = 2, 3.

Case n=2: Consider the Newtonian potential in two dimensions φ(x) = ln |x|,
where x = (x1, x2). As �φ(x) = 0, ∀x �= 0, then φ(x) is an extremizer for the
Dirichlet functional ∫

D
1

2
|∇φ|2 dx1dx2, if 0 /∈ D. (5.3.36)

The energy-momentum tensor is

T ab = ∂L

gab

+ 1

2
gabL = ∂

[ 1
2gab(∇φ)a(∇φ)b

]
∂gab

+ 1

2
gab 1

2
|∇φ|2

= 1

2

[
(∇φ)a(∇φ)b + 1

2
gab |∇φ|2].

Then

Tij = giagjbT
ab = 1

2

(
giag

akφ;kgjbg
brφ;r + 1

2
gij |∇φ|2

)
= 1

2

(
φ;iφ;j + 1

2
gij |∇φ|2

)
.

In our case, the metric on R2 is the standard one, so that

Tab = 1

2

[
φ;aφ;b + 1

2
δab |∇φ|2], a, b ∈ {1, 2}. (5.3.37)

The energy-momentum tensor corresponding to φ = ln |x| is
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Tab = 1

2|x|2

⎛⎜⎜⎜⎜⎝
x2

1
|x|2 +

1
2

x1x2
|x|2

x1x2
|x|2

x2
2
|x|2 +

1
2

⎞⎟⎟⎟⎟⎠ ,

which can be written in polar coordinates as

Tab = 1

2r2

(
cos φ2 + 1

2 sin φ cos φ

sin φ cos φ sin φ2 + 1
2

)
= 1

4r2

(
cos 2φ sin 2φ

sin 2φ − cos 2φ

)
+ 1

2r2

(
1 0
0 1

)
.

Case n=3: Consider the Newtonian potential in three dimensions φ(x) = 1

|x| ,
where x = (x1, x2, x3). As �φ(x) = 0, ∀x �= 0, then φ(x) is an extremizer for
the Dirichlet functional. The energy-momentum tensor has the components given by
(5.3.37). A computation provides

Tab = 1

2|x|2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1
|x|4 +

1
2

x1x2
|x|4

x1x3
|x|4

x2x1
|x|4

x2
2
|x|4 +

1
2

x2x3
|x|4

x3x1
|x|4

x3x2
|x|4

x2
3
|x|4 +

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5.3.4 Divergence of the energy-momentum tensor

We have already shown that the Einstein tensor has divergence zero. The goal of this
section is to prove that, in general, an energy-momentum tensor is divergence free.
This result will be used later in the proof of the conservation theorems. We shall use
L for the Lagrangian and L for the Lie derivative.

Lemma 5.33 If LX denotes the Lie derivative with respect to vector field X, then

LXgab = Xa;b +Xb;a. (5.3.38)

Proof. Applying the formula for the Lie derivative in local coordinates, we get

LXgab = ∂gab

∂xi
Xi + gαb

∂Xα

∂xa
+ gaβ

∂Xβ

∂xb

= ∂gab

∂xi
Xi + gαb

(
Xα
;a −Xi
α

ia

)
+ gaβ

(
X

β

;b −Xi

β
ib

)
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= Xi
(∂gab

∂xi
− gαb


α
ia − gaβ


β
ib

)
+ gαbX

α
;a + gaβX

β

;b

= Xigab;i + gαbX
α
;a + gaβX

β

;b.

Using gab;i = 0 we obtain the desired result.

Lemma 5.34 If ∫
�

T ab LXgab dv = 0, ∀X ∈ X (M), (5.3.39)

then T ab
; b = 0.

Proof. Using Lemma 5.33 and the divergence theorem yields

0 =
∫

�

T ab LXgab dv = 2
∫

�

T ab Xa;b dv

= 2
∫

�

(
T abXa

)
;b dv − 2

∫
�

T ab
;b Xa dv

= −2
∫

�

T ab
;b Xa dv

for every field X, so that T ab
;b = 0.

Theorem 5.35. If L is a Lagrangian on M , which depends on φk , φk
;i , and gij , where

φ satisfies the Euler–Lagrange equations, then the energy-momentum tensor Tij as-

sociated with the Lagrangian L is divergence free, i.e., T
ij

;j = 0.

Proof. Consider f : M → M , a diffeomorphism such that f (�) = � and f|M\� is
the identity. As the integral is not affected by a coordinate transformation,∫

�

L dv =
∫

f (�)

L dv =
∫

�

f ∗
(
Ldv

)
,

and then ∫
�

Ldv − f ∗(Ldv) = 0.

Using the definition of the Lie derivative,∫
�

LX(Ldv) = 0,

where X is the vector field associated with the diffeomorphism f . The chain rule
yields
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0 = LX

∫
�

L dv =
∫

�

T abLXgab dv +
∫

�

[ ∂L

∂φk
LXφk + ∂L

∂φk
;i

LXφk
;i
]
dv

=
∫

�

T abLXgab dv +
∫

�

[ ∂L

∂φk
−
( ∂L

∂φk
;i

)
;i

]
LXφk dv

+
∫

�

( ∂L

∂φk
;i

LXφk
)
;i dv. (5.3.40)

The second integral vanishes because of the Euler–Lagrange equations. The last in-
tegral vanishes due to the divergence theorem. Then equation (5.3.40) yields∫

�

T abLXgab dv = 0.

By Lemma 5.34 we obtain that T ab is divergence free.

Remark 5.36 The fact that Tij is divergence free is a consequence of the Euler-

Lagrange equations. If φ is not an extremizer for
∫

L dv, then T
ij

;j = 0 is not neces-
sarily true.

5.3.5 Conservation Theorems

This section presents two conservation theorems. The first uses a global unit Killing
vector field. The second theorem doesn’t need a Killing vector field but has only a
local behavior.

The second conservation theorem has a nice intuitive interpretation. If the mani-

fold is a disk D in the plane and the Lagrangian is L = 1

2
|∇φ|2, φ will be a harmonic

potential. The physical model is a drum where φ is interpreted as the elastic potential
and Tij is the strength tensor in the drum. As the drum is strengthened in all directions
(no compression), the tensor Tij is positive definite, i.e., T (X, X) ≥ 0, for all direc-
tions X. When the strength on the boundary of the drum is zero, then the strength
is vanishing everywhere in the drum. This resembles the min-max theorem for the
Laplacian.

Lemma 5.37 If K is a Killing vector field, then the vector F whose components are
Fa = T abKb is divergence free.

Proof.
div F = Fa

;a = T ab
;a Fb + T abKb;a.

Both terms on the right-hand side are zero. The first vanishes because T ab is free
divergence and the second because of the symmetry of T ab and the property of K ,

T abKb;a = 1

2

(
T abKb;a + T baKa;b

)
= 1

2
T ab

(
Kb;a +Kb;a

) = 1

2
T ab LK gab = 0.
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Theorem 5.38. Let U be a compact, orientable region of a Riemannian manifold M ,
which can be written as a direct product U = [a, b]×V , where dim V = dim M−1.
Consider that the tangent vector field to the one-dimensional fibres [a, b]×{u}, u ∈ V

is a unitary Killing vector field K normal to {t} × V, ∀t ∈ [a, b]. If Tij |∂U = 0 and
T (K, K) ≥ 0, then T (K, K) = 0.

Proof. K is the unit normal vector to the surfaces H(t) = {t} × V , see Figure 5.3.
Let U(t) =⋃

t ′≤t H(t)∩U = [a, t]×V . Let Fa = T abKb, Fubini’s and divergence
theorem yield

0 ≤
∫
U(t)

T (K, K) dv =
∫
U(t)

T abKbKa dv

=
∫ t

a

(∫
H(t ′)

F aKa dσ

)
dt ′ =

∫ t

a

(∫
H(t ′)

F a dσa

)
dt ′

=
∫ t

a

(∫
∂U(t ′)

F a dσa

)
dt ′ =

∫ t

a

(∫
U(t ′)

div F dv

)
dt ′ = 0,

as F is divergence free and F vanishes on ∂U(t ′)\H(t ′). Therefore,∫
U(t)

T (K, K) dv = 0, and hence, T (K, K) = 0.

K

Figure 5.3: The space U = [a, b] × V .

Definition 5.39 Tij is called positive definite if T (X, X) ≥ 0, ∀X. Tij is called
non-degenerate if T (X, X) �= 0, ∀X �= 0.

Corollary 5.40 Assume that the energy-momentum tensor Tij in the hypothesis of
Theorem 5.38 is positive and non-degenerate on U . Then Tij = 0 on U .
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In order to prove the second conservation theorem we need:

Lemma 5.41 If U is an orientable compact region of a Riemannian manifold, and
T ab denotes the energy-momentum tensor, then for any vector field X,∫

∂U
T abXa dσa =

∫
U

T abXa;b dv.

Proof. By the divergence theorem∫
∂U

T abXa dσb =
∫

U

(
T abXa

)
;b dv

=
∫

U

(
T ab
;b︸︷︷︸
=0

Xa + T abXa;b
)
dv =

∫
U

T abXa;b dv.

Lemma 5.42 (Gronwall) Let f and g be continuous and nonnegative functions on
[a, b], and let C ≥ 0. Suppose that

f (x) ≤ C +
∫ x

a

f (u)g(u) du, a ≤ x ≤ b.

Then
f (x) ≤ Ce

∫ x
a g(u) du.

In particular, when C = 0, then f = 0.

Proof: See, for instance, Hartman [20].

Lemma 5.43 Let T ab be a positive definite, non-degenerate energy-momentum ten-
sor defined on U , such that T ab

|∂U = 0. Then for any vector field X, there is a constant
M > 0 such that

T abXa;b ≤ M T abXaXb.

Proof. The functions f1 = T abXa;b and f2 = T abXaXb are continuous on U and
vanish on ∂U . The functions |f1| and f2 are bounded and nonnegative on U . The zeros
of f2 are among the zeros of |f1|. Hence, there is a continuous positive function g

such that |f1| ≤ g · f2. Take M = max g.

Theorem 5.44. (Conservation theorem ) Let M be an orientable Riemannian man-
ifold and Tij a positive definite, non-degenerate energy-momentum tensor. Then
∀x ∈ M , there is a compact neighborhood U of x such that

if Tij |∂U = 0, then Tij = 0 on U .
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Proof. Consider all the unit speed geodesics cv starting at the point x and define the
surfaces

H(t) = {cv(t); v ∈ TxM}, 0 ≤ t ≤ τ < τ1,

where τ1 := inf{t; cv(t) is conjugate to x = cv(0),∀v ∈ TxM}. Define U(t) =⋃
0≤t ′≤t

H(t ′). Let X be the geodesic vector field along the above geodesic flow. X is

the normal vector field to H(t). Denote

f (t) =
∫
U(t)

T (X, X) dv ≥ 0.

Applying Fubini’s theorem and Lemma 5.41 yields

f (t) =
∫
U(t)

T abXaXb dv =
∫ t

0

∫
H(t ′)

(
T abXaXb dσ

)
dt ′

=
∫ t

0

( ∫
H(t ′)

T abXa dσb

)
dt ′ =

∫ t

0

( ∫
U(t ′)

T abXa;b dv
)

dt ′.

By Lemma 5.43, there is a constant M > 0 such that

T abXa;b ≤ M T (X, X) on U,

and hence (5.3.41) yields

f (t) ≤ M

∫ t

0
f (t ′) dt ′.

By Lemma 5.42, we obtain f (t) = 0 and since X �= 0, it follows that Tij = 0 on U .

Remark 5.45 If the manifold M has negative curvature, the above local property
becomes a global one.

From the physical point of view, the vanishing of Tij in a region U means the
absence of the matter field in that region. The last theorem states that if there is
no matter field on the boundary, then there is no matter field in the interior. This
can be interpreted saying that the matter field cannot have a compact support, being
surrounded by a vacuum (see [21]).

5.3.6 Applications of the conservation theorems

We shall consider in this section a few Lagrangians which depend on the scalar field,
its first derivative, and the Riemannian metric. The scalar field satisfies the Euler–
Lagrange equation. The conservation properties of the energy-momentum tensor can
help to obtain information about the solutions of the Euler–Lagrange equations.
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In the following theorems, U denotes
• a small enough, connected neighborhood of the given point x ∈ M ,

• any connected neighborhood of the given point x ∈ M , provided M has neg-

ative curvature,
• any connected neighborhood of the given point x ∈ Rn.

1. Laplace equation. Consider the Lagrangian L = 1
2 |∇φ|2, where φ : (M, g)→ R

satisfies the Euler–Lagrange equation �φ = 0. The energy-momentum tensor

Tab = 1

2

[
φ;aφ;b + 1

2
|∇φ|2]

is positive definite because

TabX
aXb = 1

2

[
Xaφ;aXbφ;b + 1

2
gabX

aXb |∇φ|2]
= 1

2

[
X(φ)2 + 1

2
|∇φ|2] ≥ 0.

Theorem 5.46. The boundary problem

�φ = 0 on U,
∂φ

∂xi

= 0 on ∂U ,

has the solution φ = constant .

Proof. Applying the conservation theorem, we get T (X, X) = 0 and hence φ =
constant.

2. Nonlinear Poisson equation. For the Lagrangian

L = 1

2
|∇φ|2 + λ2

2p
φ2p,

with p ∈ N, the Euler–Lagrange equation is

�φ = −λ2φ2p−1.

The energy-momentum tensor

Tab = 1

2

[
φ;aφ;b + 1

2
gab(|∇φ|2 + λ2

p
φ2p)

]
is positive definite and non-degenerate. Using the conservation theorem, we get the
following:
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Theorem 5.47. The boundary problem

�φ = −λ2φ2p−1on U,

φ = 0 on ∂U,

∂

∂xi

φ = 0 on ∂U,

has the solution φ = 0.

3. Harmonic maps. The Lagrangian for a harmonic map φ : (M, g)→ (N, h) is the
energy density

e(φ) = 1

2
gabφi

;aφ
j

;bhij = 1

2
(∇φi)a (∇φj )bgabhij .

The energy-momentum tensor is given by

T ab = ∂e(φ)

∂gab

+ 1

2
gabe(φ)

= 1

2
(∇φi)a(∇φj )bhij + 1

2
gabe(φ)

= 1

2
gkagrbφi

;kφ
j

;rhij + 1

2
gabe(φ)

= 1

2
gkagrb

(
φ∗h

)
kr
+ 1

2
gabe(φ)

= 1

2

(
φ∗h

)ab + 1

2
gabe(φ).

Hence the energy-momentum tensor can be expressed invariantly as

T = 1

2
(φ∗h+ g e(φ)).

For every vector field X we have

T (X, X) = 1

2
|φ∗X|2h +

1

2
|X|2g e(φ) ≥ 0.

The conservation theorem yields:

Theorem 5.48. Let φ : M → N be a harmonic map such that φ;k = 0 on ∂U . Then
φ is constant on U .

Proof. From the conservation theorem, T (X, X) = 0, then e(φ) = 0 and hence φ is
constant on U .

In the following we shall provide more applications of the conservation theorems
for some special cases of harmonic maps.
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Lemma 5.49 Let φ : (M, g) → (N, h) be a map, with M connected manifold.
Then φ is constant iff the associated energy-momentum tensor T is trace free, i.e.,
gijTij = 0.

Proof. We shall prove only the non-obvious implication. Let m =dim M .

T raceg T = 1

2
T raceg

(
φ∗h+ ge(φ)

)
= 1

2
T raceg

(
φ∗h

)+ 1

2
gij gij e(φ)

= e(φ)+ 1

2
me(φ) = m+ 2

2
e(φ).

Let p ∈ M and {e1, e2, . . . , em} ⊂ TpM be an orthonormal basis. Then

0 = T raceg T = m+ 2

2
e(φ) = m+ 2

4

m∑
k=1

|φ∗(ei)|2h,

and hence φ∗(ei) = 0, for any p ∈ M and i = 1, . . . , m. As M is connected, φ is
constant.

Corollary 5.50 If the energy-momentum T = 0, then φ is constant.

Conformal maps.

Definition 5.51 A map φ : (M, g)→ (N, h) is called (weakly) conformal if there is
a function ρ ∈ F(M), ρ ≥ 0 such that φ∗h = ρ · g. If the function ρ is constant, the
map φ is called homothetic.

The following result can be found also in [16].

Theorem 5.52. Let φ : (M, g) → (N, h) be a harmonic conformal map. Then φ is
homothetic.

Proof. Taking trace yields

e(φ) = 1

2
T racegφ

∗h = 1

2
T raceg(ρg)

= ρ

2
gij gij = m

2
ρ.

The energy-momentum tensor becomes

T = 1

2

(
φ∗h+ ge(φ)

) = 1

2

(
ρg + g

m

2
ρ
)

= 1

2

(
1+ m

2

)
ρg.

As φ is harmonic, the tensor T is divergence free T
ij

;j = 0. Then
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0 = (
ρg

)ij
;j = ρjg

ij + ρ g
ij

;j︸︷︷︸
=0

= (∇ρ
)i

.

Hence ∇ρ = 0 on M . As M is a connected manifold, it follows that ρ is constant and
hence φ is homothetic.

Isometric immersions. Let φ : (M, g)→ (N, h) be an isometric immersion. Then
g = φ∗h and hence

e(φ) = 1

2
T racegφ

∗h = 1

2
gij gij = m

2
.

The energy-momentum tensor becomes

T = 1

2

(
g + g

m

2

)
= 1

2

(
1+ m

2

)
g.

The conservation theorem is satisfied

div T = 1

2

(
1+ m

2

)
g

ij

;j = 0.

Geodesic curves. Consider dimM = 1. Then φ : (M, g) → (N, h) is a curve.
The energy density in this case is

e(φ) = 1

2
φi
;1φ

j

;1hij = 1

2
φ̇i φ̇j hij = 1

2
|φ̇|2h.

We also have g = g11 = 1 and

φ∗h = (
φ∗h

)
11 = φi

;1φ
j

;1hij

= φ̇i φ̇j hij = |φ̇|2h.
The energy-momentum becomes

T = 1

2

(
|φ̇|2h +

1

2
|φ̇|2h

)
= 3

4
|φ̇|2h. (5.3.41)

If φ is a geodesic, then |φ̇|h is constant and the conservation theorem div T = 0 is
obviously satisfied. Let c : (0,+∞)→ N be a geodesic. If Tφ(0) = 0, then Tφ(t) = 0,
for any t ≥ 0. This is a consequence of (5.3.41).

Totally geodesic maps.

Definition 5.53 A map φ : (M, g)→ (N, h) is called totally geodesic if its second
fundamental form is zero, i.e., ∇dφ = 0, where ∇dφ is the symmetric 2-covariant
tensor field defined by

∇dφ(X, Y ) = ∇X(dφ)(Y ) = ∇Xdφ(Y )− (∇XY
)
(φ), ∀X, Y ∈ X (M).

The following three results can be found in [16].
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Lemma 5.54 Let φ : (M, g) → (N, h) be a totally geodesic map. Then for any
X ∈ X (M) we have ∇X(φ∗h) = 0.

Proof. Let p ∈ M and X, Y, Z ∈ TpM . Extend Y and Z around p such that ∇XY =
0 = ∇XZ at p. Then at p we have(∇Xφ∗h

)
(Y, Z) = ∇Xφ∗h(Y, Z)− φ∗h(∇XY︸︷︷︸

=0

, Z)− φ∗h(Y,∇XZ︸ ︷︷ ︸
=0

)

= ∇Xφ∗h(Y, Z) = ∇Xh(dφ(Y ), dφ(Z))

= h
(∇Xdφ(Y ), dφ(Z)

)+ h
(
dφ(Y ),∇Xdφ(Z)

)
= h

(∇Xdφ(Y )− (∇XY)︸ ︷︷ ︸
=0

φ, dφ(Z)
)+ h

(
dφ(Y ),∇Xdφ(Z)− (∇XZ)︸ ︷︷ ︸

=0

φ
)

= h
(∇dφ(X, Y )︸ ︷︷ ︸

=0

, dφ(Z)
)+ h

(
dφ(Y ),∇dφ(X,Z)︸ ︷︷ ︸

=0

) = 0.

Proposition 5.55 Let φ : (M, g) → (N, h) be a totally geodesic map, with M a
connected manifold. Then the energy density e(φ) is a constant function.

Proof. Differentiating covariantly in the expression e(φ) = 1

2
gij (h∗φ)ij yields

e(φ);k = 1

2
g

ij

;k(h
∗φ)ij + 1

2
gij (h∗φ)ij ;k = 0.

The first term in the right side is zero because g is a metric connection and the second
term vanishes because of Lemma 5.54 written in local coordinates.

Theorem 5.56. Let φ : (M, g) → (N, h) be a totally geodesic map, with M a
connected manifold. Then the energy-momentum tensor is divergence free.

Proof. Lemma 5.54 and Proposition 5.55 yield

T
ij

;j =
1

2

(
(φ∗h)ij + e(φ)gij

)
;j =

1

2

(
(φ∗h)

ij

;j + e(φ)g
ij

;j
) = 0.

4. p-harmonic functions

Definition 5.57 Let (M, g) be a Riemannian manifold and φ : M → R be a differ-
entiable function. For each p > 0, define the p-energy of φ with respect to a compact
set U ⊂ M by

Ep(φ, U) =
∫

U

(1

2
|∇φ|2

)p

dv = 1

2p

∫
U

|∇φ|2p dv.

The extremizers for the energy Ep are called p-harmonic functions on (M, g).
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The associated Euler–Lagrange equation is

div ( |∇φ|2(p−1) ∇φ ) = 0. (5.3.42)

This can be checked by taking the Lagrangian

L = 1

2p
|∇φ|2p = 1

2p
(gijφ ;iφ ;j )p

and differentiating

∂L

∂φ;k
= p

2(p−1)
|∇φ|2(p−1) (∇φ)k = (|∇φ|2p−2 ∇φ)k

p

2p−1 ,(
∂L

∂φ;k

)
;k
= p

2p−1

(
|∇φ|2p−2 ∇φ

)k

;k=
p

2p−1 div (|∇φ|2p−2 ∇φ),

and applying the Euler–Lagrange equation(
∂L

∂φ;k

)
;k
= ∂L

∂φ

we get the equation (5.3.42).

Remark 5.58 For p �= 1, equation (5.3.42) is nonlinear. The left side is called p-
Laplacian.

Proposition 5.59 The energy-momentum tensor for Ep(φ) is given by

Tij = p

2p
|∇φ|2(p−1) (φ;iφ;j + 1

2p
|∇φ|2 gij ). (5.3.43)

Proof. Let e(φ) = 1
2 |∇φ|2 . Then

δEp(φ) =
∫

U

δ(e(φ)p
√

g) dx =
∫

U

[
δ(e

(
φ)p

)√
g + e(φ)p δ(

√
g)
]
dx.

Using

δ
(
e(φ)p

) = p e(φ)p−1 δe(φ) = pe(φ)p−1 1

2
φ;iφ;j δgij ,

and

δ(
√

g) = 1

2
gij
√

g δgij ,

yields

δEp(φ) =
∫

U

(
p

2
e(φ)p−1 φ;iφ;j + 1

2
e(φ)pgij

)√
g δgij dx

= p

2

∫
U

e(φ)p−1(φ;iφ;j + 1

p
e(φ)gij ) δgij dv.
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Replacing e(φ), we get the desired result.

As

T (X, X) = p

2p
|∇φ|2(p−1)

(
X(φ)2 + 1

2p
|∇φ|2 |X|2),

Tij is positive definite and non-degenerate. The conservation theorem yields:

Theorem 5.60. If p > 0, the following boundary problem for the p-Laplacian

div (|∇φ|2(p−1) ∇φ) = 0 on U,

∂φ

∂xi

= 0 on ∂U,

has only constant solutions.

5. A nonlinear elliptic equation. For φ : M → R+ consider the Lagrangian

L = 1

2

|∇φ|2
φ2k

where k ∈ N. One can verify that the Euler–Lagrange equation is

φ �φ = k|∇φ|2. (5.3.44)

Consider the equation (10.6.40) on the domain U , subject to the boundary condition

∂φ

∂xi |∂U
= 0. (5.3.45)

We have the following result.

Proposition 5.61 The equation (5.3.44) with the boundary condition (5.3.45) has
only constant solutions.

Proof. The energy-momentum tensor is

T ab = ∂L

∂gab

+ 1

2
gabL

= 1

2

1

φ2k

(
(∇φ)a(∇φ)b + 1

2
gab|∇φ|2

)
.

The tension in the X-direction is positive

T (X, X) = T abXaXb = 1

2

1

φ2k

(
X(φ)2 + 1

2
|X|2 |∇φ|2

)
≥ 0.

Using the conservation theorem, we get T (X, X) = 0. Hence, |∇φ| = 0 and then φ

is constant on U .

For further readings about conservation laws and applications to physics, see [24],
[42], [45]. For ordinary differential equations see [2] and [21].
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5.4 Exercises

1. Consider the Lagrangian on R2 given by L(x, y, ẋ, ẏ) = 1
2 (ẋ2 + ẏ2).

(i) Show that L is invariant by translations and rotations.
(ii) Derive conservation laws associated with each vector field in (i). They are first
integrals of motion for the geodesics defined by L.

2. Consider the Lagrangian L(x, y, ẋ, ẏ) = 1
2 (ẋ2 + ẏ2)− λ(xẏ − yẋ).

(i) Show that L is invariant by rotations.
(ii) Derive a first integral of motion associated with the above invariance.

3. Consider the Lagrangian that describes the dynamics on the Poincaré upper half-

plane L(x, y, ẋ, ẏ) = 1

2y2 (ẋ2 + ẏ2).

(i) Show that L is invariant with respect to translations along the x-axis.
(ii) Derive the correspondent conservation law.

4. Prove the Gronwall lemma.

5. Consider the Lagrangian L = 1

2

|∇φ|2
φ2k

with k ∈ N on M . Show that the Euler–

Lagrange equation is φ�φ = k|∇φ|2. Solve it in the case when M is a compact
manifold, without boundary and k ≥ 2.

6. Prove the second Bianchi identity in local coordinates

Ri
jkl;r + Ri

jlr;k + Ri
jrk;l = 0.

7. Let (M, g) be a connected Riemannian manifold. If there is a function f ∈ F(M)

such that Ric = f · g, then the function f is constant on M .



6

Hamiltonian Formalism

This chapter deals with Hamiltonian formalism on differentiable manifolds. This is
a different way to look at variational problems, using a Hamiltonian function instead
of a Lagrangian. Both theories (Hamiltonian and Lagrangian) are equivalent, but in
some practical problems it is easier to use one or the other. The equations for the
harmonic maps, geodesics, and other applications are provided.

6.1 Momenta vector fields. Hamiltonian

Let (M, g), (N, h) be two Riemannian manifolds of dimension m and n. Consider a
Lagrangian L(φ, φk

;j ) associated with a map φ : M → N .

Definition 6.1 Define a momenta matrix as

pk
j =

∂L

∂φ
j

;k
, where j = 1, n, k = 1, m. (6.1.1)

Proposition 6.2 Under a change of coordinates, momenta behave as

ps
l = p̄k

l

∂xs

∂x̄k
, (6.1.2)

where x = (x1 . . . xm), x̄ = (x̄1 . . . x̄m) are two local coordinate systems on M . Then

pj = pk
j

∂

∂xk
, j = 1, n (6.1.3)

can be considered as vector fields on M .

Proof. Denote φ = φ̄ ◦ χ , where χ(x) = x̄. Applying the chain rule yields

φ̄l
;k =

∂φl

∂x̄k
= ∂φl

∂xj

∂xj

∂x̄k
= φl

;j
∂xj

∂x̄k
.
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The Lagrangian becomes

L(φ̄, φ̄l
;k)(x̄) = L(φ, φl

;s
∂xs

∂x̄k
)(x),

and hence the momenta behave as

ps
l =

∂L

∂φl
;s
= ∂L

∂φ̄l
;k

∂xs

∂x̄k
= p̄k

l

∂xs

∂x̄k
.

The vector fields p1, . . . , pn are called momenta vector fields. Using momenta vector
fields, the Euler–Lagrange equations(

∂L

∂φ
j

;k

)
; k
= ∂L

∂φj
, j = 1, n (6.1.4)

can be written as

div pj = ∂L

∂φj
, ∀j = 1, n. (6.1.5)

Suppose that L is convex in φi
;k . Define the Hamiltonian

H : X (M)× · · · × X (M)× F(M, N)→ F(M)

using the Legendre transform

H(p, φ) =
∑
j,k

p
j
kφk
;j − L(φ, φi

;k), (6.1.6)

where φ
j

;k satisfies the equation

pk
j =

∂L

∂φ
j

;k
. (6.1.7)

Example 6.1.1 In the particular case when M = R, N = Rn, φ : R → Rn,
φ = (φ1, . . . , φn), the momenta are

pk = p1
k =

∂L

∂φ̇k
(6.1.8)

and the Hamiltonian is
H(p, φ) = pkφ̇

k − L(φ, φ̇), (6.1.9)

where φ̇ verifies

p = ∂L

∂φ̇
.
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Example 6.1.2 When φ : M → R, the momenta are

pj = p
j
1 =

∂L

∂φ ;j
, (6.1.10)

and the Hamiltonian is

H(p, φ) =
∑
j

pjφ ;j − L(φ, φ ;j ), (6.1.11)

where φ ;j satisfy (6.1.10).

6.2 Hamilton’s system of equations

Consider a map φ : M → N . Computing dH for H(p, φ) in local coordinates in
two ways, we shall identify the coefficients of similar forms in these expressions.
Differentiating

dH = ∂H

∂pi
j

dpi
j +

∂H

∂φp
dφp. (6.2.12)

Differentiating the expression of the Hamiltonian given in (6.1.6) yields

dH = dp
j
k φk
;j + p

j
k dφk

;j −
∂L

∂φp
dφp − ∂L

∂φk
;j

dφk
;j . (6.2.13)

Applying the definition of the momentum (6.1.1), equation (6.2.13) becomes

dH = φk
;j dp

j
k −

∂L

∂φp
dφp. (6.2.14)

Identifying the coefficients of similar form in (6.2.12) and (6.2.14) yields

φk
;j =

∂H

∂p
j
k

and − ∂L

∂φk
= ∂H

∂φk
. (6.2.15)

Applying (6.1.5), we get the system of equations⎧⎪⎪⎨⎪⎪⎩
φk
;j = ∂H

∂p
j
k

,

div pk = − ∂H

∂φk .

(6.2.16)

When M = Rn and N = R, the system (6.2.16) becomes{
∇φ = ∇pH,

div p = −∇φH.
(6.2.17)

When M = R and N = Rn, the system (6.2.16) can be written as
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⎧⎪⎨⎪⎩
ṗk = − ∂H

∂φk ,

φ̇j = ∂H
∂pj

,

(6.2.18)

which is usually called Hamilton’s system of equations.

Remark 6.3 If H does not depend on φ, the second equation in (6.2.16) provides a
conservation law of momentum

div pk = 0, (6.2.19)

which says that pk is a momentum current.

Example 6.2.1 For φ : M → R, consider the Lagrangian

L(φ,∇φ) = 1

2
|∇φ|2 = 1

2
gklφ ;kφ ;l . (6.2.20)

The associated Hamiltonian is

H(p, φ) = pjφ ;j − 1

2
gklφ;kφ;l ,

where

pj = ∂L

∂φ ;j
= gkjφ ;k and φ;k = gkrp

r . (6.2.21)

Hence,

H(p, φ) = gkjφ;kφ;j − 1

2
gkjφ;kφ;j = 1

2
gkjφ;kφ;j

= 1

2
gkjgksp

sgjrp
r = 1

2
gsrp

spr = 1

2
|p|2,

where

p = ps ∂

∂xs
.

Hence,

H(p, φ) = 1

2
g(p, p) = 1

2
|p|2 . (6.2.22)

6.3 Harmonic functions

Now we shall find the harmonic functions equation using Hamiltonian formalism.
Consider the Hamiltonian (6.2.22). As H does not depend on φ, div p = 0. Using
(6.2.18), we have

div p = p
j

;j = (gkjφ;k);j = g
kj

;j︸︷︷︸
=0

φ;k + gkjφ;kj . (6.3.23)
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Since

φ;kj = ∂2φ

∂xk∂xj
− 
r

kj

∂φ

∂xr
,

equation (6.3.23) yields

gkj

(
∂2φ

∂xk∂xj
− 
r

kj

∂φ

∂xr

)
= 0,

which is
�φ = 0.

6.4 Geodesics

Consider the interval I ⊂ R and let φ : I → (M, g) be a smooth curve. Let the
Hamiltonian be

H(p, φ) = 1

2
g

ij
|φpipj . (6.4.24)

Theorem 6.4. φ is a solution for the Hamiltonian system φ̇ = ∂H

∂p
, ṗ = −∂H

∂p
if

and only if ∇φ̇ φ̇ = 0, where ∇ stands for the Levi-Civita connection on (M, g).

Proof. We have

ṗk = − ∂H

∂φk
= −1

2

∂gij

∂xk
pipj , (6.4.25)

φ̇k = ∂H

∂pk

= ∂

∂pk

(
1

2
g

ij
|φpipj

)
= gikpi,

therefore

pk = φ̇igik. (6.4.26)

We shall compute ∂gij /∂xk which appears in (6.4.25). Using gipgps = δi
s , we get

∂gip

∂xk
gps = −gip ∂gps

∂xk
.

Multiplying by gsj and summing over s,

∂gij

∂xk
= −gipgsj ∂gps

∂xk
. (6.4.27)

Differentiating in (6.4.26) yields

ṗk = φ̈igik + φ̇i ∂gik

∂xs

φ̇s

= φ̈bgkb + φ̇b ∂gkb

∂xr
φ̇r . (6.4.28)
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Substitute (6.4.26), (6.4.27), (6.4.28) in (6.4.25) and obtain

φ̈bgkb + ∂gkb

∂xr
φ̇bφ̇r = 1

2
gipgsj ∂gps

∂xk
φ̇cgicφ̇

dgjd

⇐⇒ φ̈bgkb + ∂gkb

∂xr
φ̇bφ̇r = 1

2
gipgicg

sj gjd

∂gps

∂xk
φ̇cφ̇d

⇐⇒ φ̈bgkb + 1

2

[
∂gkb

∂xr
φ̇bφ̇r + ∂gkr

∂xb
φ̇r φ̇b

]
= 1

2

∂gcd

∂xk
φ̇cφ̇d .

On the right-hand side let c = b, d = r , and we get

φ̈bgkb + 1

2

[
∂gkb

∂xr
+ ∂gkr

∂xb
− ∂grb

∂xk

]
φ̇bφ̇r = 0

⇐⇒ φ̈bgkb + 
rbkφ̇
bφ̇r = 0.

Multiplying by gks and using 
s
rb = gks
rbk yields

φ̈s + 
s
rb φ̇b φ̇r = 0, (6.4.29)

which can be written invariantly as ∇φ̇ φ̇ = 0, where ∇∂xk
∂xj
= 
s

kj ∂j .

Hence, one may avoid the Christoffel symbols, defining the geodesics using the
Hamiltonian formalism.

Definition 6.5 A geodesic is the projection on M space of a solution of the Hamilto-
nian system

ẋ = ∂H

∂p
, ṗ = −∂H

∂x
,

with the Hamiltonian

H(x, p) = 1

2
|p|2.

Geodesic lift

Let φ : [0, 1] → (M, g) be a Riemannian geodesic. Define ∇H =
(∂H

∂x
,
∂H

∂p

)
and

denote by J the matrix J ∈M2n(R) such that J 2 = −I2n.

Definition 6.6 z : [0, 1] → M × T ∗M is a geodesic lift of φ if there is a function
p : [0, 1] → T ∗M such that z(s) = (φ(s), p(s)) is a solution for the Hamiltonian
system ż(s) = J ∇H(z(s)).

Proposition 6.7 If φ is a Riemannian geodesic on (M, g), there is a unique geodesic
lift z(s) = (φ(s), p(s)) with p = (p1, . . . , pn) and

pk(s) =
n∑

r=1

gkr(φ(s)) φ̇r (s).
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Proof. From the Hamiltonian equation φ̇k = ∂H

∂pk

, we get pk = ∑n
r=1 gkr φ̇r , see

formula (6.4.26).

Proposition 6.8 Consider the natural Lagrangian L(φ, φ̇) = 1

2
g(φ̇, φ̇) − U(φ).

Then the associated Hamiltonian is

H(p, φ) = 1

2
gijpipj + U(φ). (6.4.30)

Proof. As pk = ∂L

∂φ̇k
= φ̇igik , then φ̇k = prg

rk and grkφ̇
r φ̇k = grkprpk . The

Legendre transform yields

H(p, φ) = pkφ̇
k − L = pkprg

rk − 1

2
pkprg

rk + U(φ)

= 1

2
pkprg

rk + U(φ).

Corollary 6.9 The Hamiltonian (6.4.30) is constant along the solutions of Hamilton’s
system.

Proof. Using Hamilton’s equations

dH

dt
= ∂H

∂pk

ṗk + ∂H

∂φk
φ̇k

= ∂H

∂pk

(
− ∂H

∂φk

)
+ ∂H

∂φk

∂H

∂pk

= 0.

6.5 Harmonic maps

Consider the Hamiltonian

H(p, φ) = 1

2
p

j
β pl

ρ gjl h
βρ
|φ, (6.5.31)

where φ : (M, g)→ (N, h) is a map between two Riemannian manifolds. From the
Hamiltonian equation

φ
j

;i =
∂H

∂pi
j

= pk
l gik hjl,

and hence
pα

k = gαβ hkj φ
j

;β. (6.5.32)
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The second Hamiltonian equation provides

div pk = − ∂H

∂φk
= −1

2
pi

j ps
l gis

∂hjl

∂yk
. (6.5.33)

Now we shall compute div pk in another way using (6.5.32),

div pk = pα
k ;α =

(
gαβ hkj φ

j

;β
)
;α

= g
αβ

;α hkj φ
j

;β + gαβ hkj ;α φ
j

;β + gαβ hkj φ
j

;βα

= gαβ ∂hkj

∂ys
φs
;α φ

j

;β + hkj �φj .

Hence,

div pk = hjk �φj + gαβ ∂hkj

∂ys
φs
;αφ

j

;β. (6.5.34)

As
∂hjl

∂yk
= −hpl hsj

∂hsp

∂yk
,

using (6.5.32), the right-hand side of (6.5.33) becomes

−1

2
gia hjb φb

;a gsα hlβ φ
β

;α gis(−1) hmj hnl ∂hmn

∂yk

= 1

2
gia gsα gis hjb hlβ hmj hnl φb

;a φ
β

;α
∂hmn

∂yk

= 1

2
gia gsα gis δbm δβn φb

;aφ
β

;α
∂hmn

∂yk

= 1

2
gαa φb

;a φ
β

;α
∂hbβ

∂yk
. (6.5.35)

So (6.5.33) becomes

div pk = 1

2
gαa φb

;a φ
β

;α
∂hbβ

∂yk
. (6.5.36)

From relations (6.5.34) and (6.5.35) we obtain

hkj �φj + gαβ ∂hkj

∂ys
φs
;α φ

j

;β =
1

2
gαa φb

;a φ
β

;α
∂hbβ

∂yk

⇐⇒ hkj �φj + 1

2

[
2gαβ ∂hkj

∂ys
φs
;α φ

j

;β − gαa φb
;a φ

β

;α
∂hbβ

∂yk

]
= 0
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⇐⇒ hkj �φj+1

2

[
gαβ ∂hkj

∂ys
φs
;α φ

j

;β+gαβ ∂hks

∂yj
φ

j

;α φs
;β−gαβ ∂hjs

∂yk
φ

j

;β φs
;α
]
= 0,

⇐⇒ hkj �φj + 1

2
gαβ

[
∂hkj

∂ys
+ ∂hks

∂yj
− ∂hjs

∂yk

]
φ

j

;β φs
;α = 0,

⇐⇒ hkj �φj + gαβ 
jsk φ
j

;β φs
;α = 0.

Multiplying by hkr , we get

�φr + gαβ 
r
js φ

j

;β φs
;α = 0, r = 1, n, (6.5.37)

which is the equation for the harmonic maps φ : (M, g)→ (N, h).

Remark 6.10 In Chapter 4 we arrived at equation (6.5.37) using Lagrangian formal-
ism with the Lagrangian L = e(φ) = 1/2 gij φα

;i φ
β

;j hαβ |φ , called density energy.

The Hamiltonian (6.5.31) is related to the energy density by

H(p, φ) = pk
γ φ

γ

;k −
1

2
gij φα

;i φ
β

;j hαβ |φ , (6.5.38)

where φ
γ

;k is given from the momenta expression

pk
γ =

∂e

∂φ
γ

;k
= gkβ hγj φ

j

;β. (6.5.39)

Substituting (6.5.39) in (6.5.38), yields

H(p, φ) = gkβ hγj φ
j

;β φ
γ

;k −
1

2
gij φα

;i φ
β

;j hαβ

= 1

2
gij φα

;i φ
β

;j hαβ = 1

2
p

j
β φ

β

;j . (6.5.40)

From (6.5.39), we obtain
φ

β

;j = pl
ρ glj hρβ. (6.5.41)

Substitute (6.5.41) in (6.5.40) and get

H(p, φ) = 1

2
p

j
β pl

ρ gjl hρβ,

i.e., the Hamiltonian (6.5.31).
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6.6 Poincaré half-plane

Consider H2 = {(x, y)|y > 0} ⊂ R2 endowed with the Riemannian metric g =
dx2 + dy2

y2 . (H2, g) is called the real hyperbolic plane or Poincaré half-plane. We

are interested in finding the geodesics on H2 using Hamiltonian and Lagrangian
formalism. The Lagrangian is

L(x, y, ẋ, ẏ) = 1

2y2 (ẋ2 + ẏ2), (6.6.42)

with the associated Hamiltonian

H(p1, p2, x, y) = 1

2
y2(p2

1 + p2
2). (6.6.43)

As the Hamiltonian does not depend on the variable x, one of Hamilton’s equations
yields

ṗ1 = −∂H

∂x
= 0 =⇒ p1 = k (constant). (6.6.44)

On the other hand, the momentum p2 is given by

p2 = ∂L

∂ẏ
= ẏ

y2 . (6.6.45)

As the Hamiltonian does not depend explicitly on the parameter t , a consequence of
Hamilton’s equations and the chain rule is

dH

dt
= 0 =⇒ H = 1

2
C2 (constant).

Case k �= 0
Substituting in formula (6.6.43) yields

y2
(
k2 + ẏ2

y4

)
= C2, (6.6.46)

which is an equation in the variable y. The equation can be written as

ẏ2 = y2
(
C2 − k2y2

)
, (6.6.47)

which becomes ẏ = ±y

√
C2 − k2y2. Separating

dy

y
√

C2 − k2y2
= ±dt,

and integrating ∫
dy

y
√

1− α2y2
= ±|C|t + b,
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where α = k/C. Using Exercise 4, we get

− ln
∣∣∣1+√

1− α2y2

y

∣∣∣ = ±|C|t − b.

Using Exercise 3, we find

−sech−1(αy)− ln |α| = ±|C|t − b,

which yields

y(t)± = 1

α
sech(±|C|t − b − ln |α|). (6.6.48)

We can drop the ± sign because t ∈ R can be considered taking all positive and
negative values. Hence

y(t) = 1

α
sech(|C|t − a), (6.6.49)

where a = b + ln |α|. We have limt→±∞ y(t) = 0, which means that the geodesics
never reach the line {y = 0}.

To find the x-component, we use p1 = k and write

p1 = ∂L

∂ẋ
= ẋ

y2 .

This yields ẋ = ky2. Integrating, we find

x(t) = k

∫
y2(t) dt = k

α2

∫
dt

cosh2(|C|t − a)
.

Using Exercise 5 yields

x(t) = 1

α
tanh(|C|t − a)+K. (6.6.50)

The formulas (6.6.50) and (6.6.49) describe a semicircle with y > 0 centered at (K, 0)

with radius r = 1/α:

(x(t)−K)2 + (y(t)− 0)2 = 1

α2

(
tanh2(|C|t − a)+ 1

cosh2(|C|t − a)

)
= 1

α2 .

Case k = 0
In this case, p1 = 0 and then ẋ = 0. Hence, x(t) = x(0) is constant. Equation (6.6.46)
becomes ẏ2 = C2y2 with solution y(t) = y(0)e±|C|t . These solutions correspond to
lines perpendicular to the x-axis.
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The distance

In this section we shall find the distance d = d
(
(x0, y0), (x, y)

)
computed with

respect to the metric on the Poincaré plane.
Substituting t = 0 in the formulas

x(t) = 1

α
tanh(Ct − a)+K, y(t) = 1

α
sech(Ct − a), C > 0, (6.6.51)

yields

y0 = 1

α
sech(−a) = 1

α
sech(a),

x0 = 1

α
tanh(−a)+K = − 1

α
tanh(a)+K

= − sinh(a)
sech(a)

α
+K

= − sinh(a) y0 +K.

x0 −K = −y0 sinh(a) =⇒ a = sinh−1
(

K − x0

y0

)
.

Let (x, y) = (x(τ ), y(τ )). Substituting t = τ in (6.6.51) yields

x = 1

α
tanh(Cτ − a)+K,

y = 1

α
sech(Cτ − a).

The product Cτ can be evaluated as follows. It is known that the energy along a

geodesic joining the points (x0, y0) and (x, y) is given by E = d2

2τ 2 . Then
√

2E = d

τ
.

Using that C = √2E = H we find that

Cτ = d.

Hence the above formulas become

x = 1

α
tanh(d − a)+K = sinh(d − a)y +K,

y = 1

α
sech(d − a).

From the first formula we obtain

x −K

y
= sinh(d − a) =⇒ sinh−1

(
x −K

y

)
= d − a

and hence
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d = a + sinh−1
(

x −K

y

)
= sinh−1

(
K − x0

y0

)
+ sinh−1

(
x −K

y

)

= ln

(
K − x0

y0
+
√

1+
(

K − x0

y0

)2)
+ ln

(
x −K

y
+
√

1+
(

x −K

y

)2)

= ln

(K − x0 +
√

y2
0 + (K − x0)2

y0

)
+ ln

(
x −K +√

y2 + (x −K)2

y

)
= ln

(
K − x0 + r

y0

)
+ ln

(
x −K + r

y

)
= ln

(
K − x0 + r

y0
· x −K + r

y

)
,

where r is the radius. Hence

d = ln

(
A′M ·NB ′

AA′ · BB ′

)
= ln

(
tan Â′AM · tan N̂BB ′

)
,

see Figure 6.1.

B(x,y)

A(x  ,y  )

M(r,0)N(−r,0)

oo

(x  ,0)A o O(K,0) B (x,0)

Figure 6.1: The points A(x0, y0), A′(x0, 0), B(x, y) and B(x, y).

A formula for the distance d depending only on the coordinates of the boundary points
can be obtained if we use

r2 = 1

α2 = y2
0 + (K − x0)

2,

K = 1

2

(x − x0)
2 + y2 − y2

0

x − x0
,

see Exercise 8. For more applications of the Hamiltonian formalism the reader may
consult [3].

6.7 Exercises

1. Let sinh x = ex − e−x

2
be the hyperbolic sine function.

(i) Show that the inverse function is given by sinh−1 y = ln |y +
√

y2 + 1|, for any
y ∈ R.
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(ii) Show that the solution of the equation
1

sinh x
= y is x = ln

∣∣∣1+√
1+ y2

y

∣∣∣. Find

a formula for the inverse function of csch x.

2. Consider the hyperbolic cos function cosh x = ex + e−x

2
.

(i) Show that the inverse function is given by cosh−1 y = ln |y +
√

y2 − 1|.
(ii) Show that the solution of the equation

1

cosh x
= y is x = ln

∣∣∣1+√
1− y2

y

∣∣∣.
Find a formula for the inverse function of sech x.

3. Using Exercise 2, show that

ln
∣∣∣1+√

1− α2y2

y

∣∣∣ = sech−1(αy)+ ln |α|.

4. Show ∫
dy

y
√

1− α2y2
= − ln

∣∣∣1+√
1− α2y2

y

∣∣∣
following the steps:

(i) making the substitution u = 1

y
, show that the integral is equal to−

∫
du√

u2 − α2
.

(ii) Use the fact that
∫

du√
u2 − α2

= ln |u+
√

u2 − α2|.

5. Show that
∫

1

cosh2 u
= tanh u, where tanh u = sinh x/ cosh x.

6. Consider the sphere S2 endowed with the Riemannian metric g11 = 1 − x2,
g22 = 1− y2, g12 = g21 = −xy.

(i) Show that the Hamiltonian is H = 1

2
(p2

1 + p2
2)− 1

2
(xp1 + yp2)

2.

(ii) Show that the Lagrangian is L = 1

2
(ẋ2 + ẏ2)+ 1

2
(xẋ + yẏ)2.

(iii) Show that the geodesics are great circles.

7. (Poincaré Disk.) Consider B = {(x, y) ∈ R2; x2 + y2 < 1} endowed with the

Riemannian metric gij = 4

(1− x2 − y2)2 δij .

(i) Write the Lagrangian and the Hamiltonian in polar coordinates.
(ii) Find the geodesics of (B, gij ).

8. Let A(x0, y0) and B(x, y) be two points in the upper half-plane.
(i) The equation of the perpendicular bisector of the segment AB is
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y = −x − x0

y − y0
x + 1

2

(x − x0)
2 + y2 − y2

0

y − y0
.

(ii) Using that the intersection point between the above segment bisector and the
x-axis is the center of the circle (K, 0), find K .

9. Let X = X1(x, y)∂x + X2(x, y)∂y be a vector field on the Poincaré half-plane.
Show that

divX = ∂xX1 + y2∂y

( 1

y2 X2

)
.

10. Consider the relativistic Hamiltonian for a free particle of mass m0,

H(p, q) = (p2
1 + p2

2 + p2
3 +m2

0)
1/2.

a) Write the Hamiltonian system.

b) Find the associate Lagrangian.

c) Give a characterization of the solutions of the Hamiltonian system.



7

Hamilton–Jacobi Theory

7.1 Hamilton–Jacobi equation in the case of natural Lagrangian

Consider a curve φ : (t1, t2) → (M, g) on a Riemannian manifold. Denote by
U : M → R the potential and let L be the natural Lagrangian

L(φ, φ̇) = 1

2
|φ̇(t)|2g − U(φ(t)). (7.1.1)

The extremizers of the integral

I =
∫ t2

t1

L(φ, φ̇) dt (7.1.2)

satisfy the Euler–Lagrange equation

∇φ̇ φ̇ = −∇U|φ. (7.1.3)

The total energy is

H = 1

2
|φ̇(t)|2g + U(φ(t)), (7.1.4)

i.e., the sum of the kinetic and the potential energy.

Lemma 7.1 Let S : R×M → R be a function. Then

dS|φ =
(∂S

∂t |φ
+ g(∇S, φ̇)

)
dt.

Proof. A computation shows

dS = ∂S

∂t
dt +

∑
r

∂S

∂xr
dxr = ∂S

∂t
dt +

(∑
r

∂S

∂xr
ẋr
)
dt,

so that
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dS|φ =
(

∂S

∂t |φ
+
∑

r

∂S

∂xr
φ̇r

)
dt.

As the gradient is given by

∇S = gij ∂S

∂xi

∂

∂xj
,

we have

g(∇S, φ̇) = gij (∇S)i φ̇j = gij g
ki ∂S

∂xk
φ̇j = ∂S

∂xj
φ̇j .

Hence,

dS|φ =
(

∂S

∂t |φ
+ g(∇S, φ̇)

)
dt.

The integrals

I =
∫ t2

t1

L dt and J =
∫ t2

t1

(L dt − dS)

reach the extremum for the same curve φ : (t1, t2)→ (M, g), because

J = I − S(t2, φ(t2))+ S(t1, φ(t1)).

Lemma 7.2 The integrand of the integral J is equal to

1

2
|φ̇ − ∇S|2g −

(
∂S

∂t
+ 1

2
|∇S|2 + U

)
.

Proof. The integrand of J is L− dS/dt . Using Lemma 7.1, we obtain

L− dS

dt
= L−

(∂S

∂t
+ g(∇S, φ̇)

)
= 1

2
|φ̇|2g − U − ∂S

∂t
− g(∇S, φ̇)

= 1

2
|φ̇|2g − g(∇S, φ̇)+ 1

2
|∇S|2 − 1

2
|∇S|2 − ∂S

∂t
− U

= 1

2
|φ̇ − ∇S|2g −

(∂S

∂t
+ 1

2
|∇S|2 + U

)
.

Therefore, the integrals I and

J =
∫ t2

t1

[
1

2

∣∣φ̇ − ∇S
∣∣2 − (

∂S

∂t
+ 1

2
|∇S|2 + U

)]
dt (7.1.5)

reach the extremum for the same curve φ : (t1, t2) → M , where S is an arbitrary
function S : R×M → R.

To simplify (7.1.5), we can choose S such that
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∂S

∂t
+ 1

2
|∇S|2 + U = 0. (7.1.6)

Then the integral J becomes

J =
∫ t2

t1

1

2
|φ̇ − ∇S|2g dt. (7.1.7)

Hence, J is minimal if and only if

φ̇ = ∇S, (7.1.8)

where S is a solution of (7.1.6).

Definition 7.3 The equation (7.1.6) is called a Hamilton–Jacobi equation. It can be
also written as

∂S

∂t
+H(

∂S

∂x
, x) = 0,

or

∂S

∂t
+H(∇S) = 0, (7.1.9)

where H denotes the Hamiltonian.

Theorem 7.4. Along the solution φ(t) of the Euler–Lagrange equation, we have

φ̇(t) = ∇φS(t, φ(t)), (7.1.10)

where S is a solution of the Hamilton–Jacobi equation (7.1.6). Conversely, any
curve which satisfies (7.1.10) is a solution of Euler–Lagrange equations, up to a
reparametrization.

Singularities of the action S

Let X be the vector field generated by a flow of solutions of Euler–Lagrange equations,

i.e.,
Xφ(t) = φ̇(t).

Applying the divergence and using Theorem 7.4,

div X = div∇S = �S,

where � denotes the Laplacian.

As long as the flow of solutions X does not have conjugate points, div X doesn’t
have singularities. Using that � is a hypoelliptic operator (preserves the singular
support of functions), it follows that the action S does not have singularities.

Proposition 7.5 The action S is singular at the conjugate points of the solutions flow.
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The case of geodesics

In this case, U = 0 and the Hamilton–Jacobi equation becomes

∂S

∂t
+ 1

2
|∇S|2 = 0 (7.1.11)

and
φ̇ = ∇S.

We shall look for solutions with separate variables

S(t, x) = a(t)+ b(x).

Then (7.1.11) becomes

a′(t)+ 1

2
|∇b(x)|2 = 0.

There is a constant E > 0 such that

−a′(t) = 1

2
|∇b(x)|2 = E.

In fact, E is the energy because

E = 1

2
|∇b (x)|2 = 1

2
|∇(a + b)|2 = 1

2
|∇S|2 = 1

2
|φ̇|2.

It follows that
a(t) = −Et + a(0)

and
1

2
|∇b|2 = E.

Let

β(x) = 1√
2E

(
b(x)− b(x0)

)
.

Then β satisfies the eiconal equation (see section 7.3)

|∇β|2 = 1,

β(x0) = 0,

so that β(x) = d(x0, x), see Theorem 7.15. Thus,

b (x) = b (x0)+
√

2E d(x0, x).

Hence,

S(t, x) = −Et +√2E d(x0, x)+ a(0)+ b (x0)

⇐⇒ S(t, x) = −Et +√2E d(x0, x)+ S(0, x0).
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Remark 7.6 We have

lim
t→∞

S(t, x)

t
= −E.

Remark 7.7 For general conditions t0, x0, we get

S(t, x) = S(t0, x0)− (t − t0) E +√2E d(x0, x)

and thus,
S(t0, x)− S(t0, x0) =

√
2E d(x0, x)− (t − t0)E.

7.2 The action function on Riemannian manifolds

Consider a Riemannian manifold M and let φ : (t0, t1) → M be a smooth map.
Suppose the Lagrangian is nonnegative, L(φ, φ̇) ≥ 0.

Definition 7.8 The action function with the initial condition

S(t0, φ(t0)) = S0 (7.2.12)

is defined as

S(t, φ(t)) = S0 +
∫ t

t0

L(φ(s), φ̇(s)) ds, (7.2.13)

where φ is a solution of the Euler–Lagrange equation which connects φ(t0) and φ(t).

The relation between the action and the Hamilton–Jacobi equation is given in the
following:

Theorem 7.9. The action defined by (7.2.13) verifies the Hamilton–Jacobi equation

∂S

∂t
+H(

∂S

∂φ
, φ) = 0 (7.2.14)

with the initial condition S(t0, φ(t0)) = S0, where H is the Hamiltonian associated
with the Lagrangian L.

Proof. Applying the chain rule

dS

dt
= ∂S

∂t
+ ∂S

∂φk

φ̇k = ∂S

∂t
+ 〈∂S

∂φ
, φ̇〉.

Using the definition of S yields

∂S

∂t
= dS

dt
− 〈∂S

∂φ
, φ̇〉 = L(φ(t), φ̇(t))− 〈∂S

∂φ
, φ̇〉. (7.2.15)

Using the Legendre transform,
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H(
∂S

∂φ
, φ) = 〈∂S

∂φ
, φ̇〉 − L(φ(t), φ̇(t)). (7.2.16)

Adding equations (7.2.15) and (7.2.16), we obtain the Hamilton–Jacobi equation
(7.2.14).

As a nonlinear equation, the Hamilton–Jacobi equation (7.2.14) with the initial
condition (7.2.12) may have more than one solution. Such a situation is described by
the following example.

Consider the Lagrangian L(x, ẋ) = 1

2
ẋ2 with the Euler–Lagrange equation ẍ = 0

and the solution x = x(t) = ct+x0. The associated Hamiltonian is H(p, x) = 1

2
p2.

The function f (t, x) = √2x − t is a solution for the Hamilton–Jacobi equation

∂f

∂t
+ 1

2

(∂f

∂x

)2 = 0

with the initial condition f (0, 0) = 0, where x0 = x(0) = 0.
A different solution is given by the action S(t, x),

S(t, x(t)) = S(0, 0)︸ ︷︷ ︸
=0

+
∫ t

0

1

2
ẋ(s)2 ds = 1

2
c2t = 1

2

(ct)2

t
= x(t)2

2t
.

Now we can address the following natural question:

What condition should a solution of the Hamilton–Jacobi equation satisfy in order to
be the action?

We start by observing that the momentum in the above problem is

p = ∂L

∂ẋ
= ẋ = c.

On the other hand,
∂S

∂x
= ∂

∂x

(x2

2t

)
= x

t
= c.

Hence,

p = ∂S

∂x
,

for any solution of the Euler–Lagrange equation which passes through the origin. The
following theorem will show that this is a sufficient condition for a solution of the
Hamilton–Jacobi equation to be the action.

Theorem 7.10. Let S = S(t, φ) be a solution for the Hamilton–Jacobi equation

∂S

∂t
+H(

∂S

∂φ
, φ) = 0,

S(t0, φ(t0)) = S0,
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such that

p = ∂S

∂φ
, (7.2.17)

where the momentum p = ∂L/∂φ̇. Then S is given by

S(t, φ(t)) = S0 +
∫ t

t0

L(φ(s)φ̇(s))ds, (7.2.18)

where L is the Lagrangian associated with the Hamiltonian H and φ is a solution of
the Euler–Lagrange equation

d

dt

∂L

∂φ̇k
= ∂L

∂φk
, ∀k = 1, n

for small enough |t − t0|.
Proof. Consider a solution φ for the Euler–Lagrange equation that connects φ(t0)

and φ(t1), with small enough |t1 − t0|. Fix t ∈ [t0, t1]. We may assume t = t1. Let

I (φ) =
∫ t1

t0

L(φ(t), φ̇(t)) dt,

J (φ) =
∫ t1

t0

(
L− dS

dt

)
dt.

We have
I (φ) = J (φ)+ S(t1, φ(t1))− S(t0, φ(t0)). (7.2.19)

The chain rule yields
dS

dt
= ∂S

∂t
+ 〈∂S

∂φ
, φ̇〉,

while the Legendre transform is

L(φ, φ̇) = 〈p, φ̇〉 −H(p, φ)

where p = ∂L/∂φ. Substituting in the integral J (φ), we get

J (φ) =
∫ t1

t0

(
〈p, φ̇〉 −H(p, φ)− ∂S

∂t
− 〈∂S

∂φ
, φ̇〉

)
dt

=
∫ t1

t0

(
〈p − ∂S

∂φ
, φ̇〉 −

(∂S

∂t
+H

(∂S

∂φ
, φ

)))
dt = 0,

because p = ∂S

∂φ
and S satisfies the Hamilton–Jacobi equation. Hence, (7.2.19)

becomes
I (φ) = S(t1, φ(t1))− S(t0, φ(t0)).

Replacing t1 by an arbitrary 0 ≤ t ≤ t1, we get the action (7.2.18).
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We now examine if the momentum condition is also necessary. Differentiating with
respect to φ in

S(φ)− S0(φ) =
∫ t1

t0

L(φ, φ̇) ds,

and using Euler–Lagrange equations, we get

∂S

∂φ
− ∂S0

∂φ
=
∫ t1

t0

∂L

∂φ
ds =

∫ t1

t0

d

ds

(∂L

∂φ̇

)
ds

=
∫ t1

t0

dp

ds
ds = p(t1)− p(t0).

Hence, with the additional hypotheses p(t0) = 0 and
∂S0

∂φ
= 0, the momentum

condition is necessary.

7.2.0.1 Hamilton–Jacobi for conservative systems

In the case when the Hamiltonian H does not depend explicitly on time t , using
Hamilton’s equations:

dH

dt
= ∂H

∂p
ṗ + ∂H

∂φ
φ̇ + ∂H

∂t
= ∂H

∂t
= 0,

so that H(p, φ) is constant along the solutions of Hamilton’s system and equal to the
constant of energy E. Therefore, the Hamilton–Jacobi system becomes

∂S

∂t
+ E = 0,

S(t0, φ(t0)) = S0

with the solution
S(t, φ(t)) = S0 − Et.

The energy E depends on the end points φ(0) and φ(t) as well as on t .

7.2.1 Action for an arbitrary Lagrangian

The main result of this section is the following theorem.

Theorem 7.11. Let L = L(x, ẋ, t) be a Lagrangian function. There is a function
S = S(x, t) such that along the solutions of the Euler–Lagrange system of equations
we have

L dt = dS.
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Proof. Let x = x(t) be a solution for the Euler–Lagrange system

d

dt

∂L

∂ẋk

= ∂L

∂xk

. (7.2.20)

Let

pk = ∂L

∂ẋk

(7.2.21)

be the k-th momentum. Expanding in (7.2.20) yields∑
k

[∂pk

∂xr

ẋr + ∂pk

∂ẋr

ẍr + ∂pk

∂t

] = ∂L

∂xk

. (7.2.22)

As the Lagrangian L = L(x, ẋ, t) does not depend on ẍ, the coefficient of ẍr in
(7.2.22) vanishes

∂pk

∂ẋr

= 0. (7.2.23)

Substituting (7.2.21) in (7.2.23) yields

∂2L

∂ẋr∂ẋk

= 0,

and hence L is a linear function of velocities L = L0(x, t)+
∑

r

ar ẋr . Using (7.2.21)

yields ar = ∂L

∂ẋr

= pr . Then

L = L0(x, t)+
∑

r

pr ẋr . (7.2.24)

The Euler–Lagrange system
∂L

∂xk

= ṗk can be expanded as

∂L0

∂xk

+
∑

k

∂pr

∂xk

ẋr =
∑

r

∂pk

∂xr

ẋr + ∂pk

∂t
,

where in the left side we used (7.2.24) and in the right side we used pk = pk(x, t).
Identifying the coefficients yields

∂pr

∂xk

= ∂pk

∂xr

,
∂pk

∂t
= ∂L0

∂xk

, (7.2.25)

which shows the one-form

L dt = L0 dt +
∑

r

pr dxr

is exact. This means there is a function S = S(x, t) such that L dt = dS along the
solutions.
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Corollary 7.12 Let S be the function given by Theorem 7.11. Then∫ τ

0
L dt = S(τ)− S(0).

The function S is the action associated with the Lagrangian L.

7.2.2 Examples

Example 7.2.1 A unit mass particle in a uniform circular motion

Consider the Lagrangian

L(x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2)+ (xẏ − yẋ). (7.2.26)

In polar coordinates,
x = r cos φ, y = r sin φ.

The Lagrangian becomes

L(r, ṙ, φ̇) = 1

2
(ṙ2 + r2φ̇2)+ r2φ̇. (7.2.27)

The Euler–Lagrange system

d

dt

∂L

∂ṙ
= ∂L

∂r
,

d

dt

∂L

∂φ̇
= ∂L

∂φ

yields

r̈ = rφ̇2 + 2rφ̇,
d

dt
(r2φ̇ + r2) = 0. (7.2.28)

The second equation gives a first integral r2(φ̇ + 1) = C(constant). Considering the
initial condition r(0) = 0, we get C = 0 and φ̇ = −1. Hence, the first equation of
(7.2.28) becomes r̈ = −r . The solution corresponding to the boundary conditions

r(0) = 0 , r(τ ) = R

is

r(t) = R sin t

sin τ
, t ∈ [0, τ ]. (7.2.29)

The Lagrangian along the solution is

L(r(t), ṙ(t), φ̇(t)) = 1

2

R2

sin2 τ
− R2 sin2 t

sin2 τ
= R2

2 sin2 τ
cos 2t.

And the action starting at the origin at the moment t0 = 0 is
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S(τ, x(τ ), y(τ )) =
∫ τ

0
L(r(t), ṙ(t), φ̇(t)) dt

= 1

2

R2

sin2 τ

∫ τ

0
cos 2t dt = R2 cot τ

= 1

2

(
x2(τ )+ y2(τ )

)
cot τ.

Thus S behaves like a Euclidean distance from the origin. The action starting outside
of the origin is treated in Chapter 12.

Proposition 7.13 The action

S(τ, x, y) = 1

2
(x2 + y2) cot τ

is a solution for the Hamilton–Jacobi equation

∂S

∂τ
+ 1

2

[(∂S

∂x

)2 +
(∂S

∂y

)2]+ 1

2

(∂S

∂x
y − ∂S

∂y
x
)
+ 1

8
(x2 + y2) = 0,

S(0, (0, 0)) = 0.

Proof. The Hamiltonian associated with the above Lagrangian is

H = p1ẋ + p2ẏ − L

where

p1 = ∂L

∂ẋ
= ẋ − 1

2
y, ẋ = p1 + 1

2
y,

p2 = ∂L

∂ẏ
= ẏ − 1

2
x, ẏ = p2 + 1

2
x.

Performing the computation, we obtain

H(p, x, y) = 1

2
(p1 + p2)+ 1

2
(p1y − p2x)+ 1

8
(x2 + y2).

Example 7.2.2 A unit mass particle under the influence of an inverse quadratic po-
tential

Consider the Lagrangian

L(x, ẋ) = 1

2
(ẋ2

1 + ẋ2
2 )+ 1

2

k2

x2
1 + x2

2

, (7.2.30)

which describes the trajectory of a particle in the x-plane under the influence of the
potential
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U(x) = −1

2

k2

|x|2 (7.2.31)

where k is a constant. The Lagrangian is rotational invariant, therefore, polar coordi-
nates (r, φ) are more suitable:

L(r, ṙ, φ̇) = 1

2
(ṙ2 + r2φ̇2)+ 1

2

k2

r2 . (7.2.32)

In order to find the action, we shall use the Hamiltonian formalism. The momenta are

p1 = ∂L

∂ṙ
= ṙ , p2 = ∂L

∂φ̇
= r2φ̇ (7.2.33)

and hence the Hamiltonian is

H(p, r) = p1ṙ + p2φ̇ − L = 1

2

(
p2

1 +
p2

2

r2

)
− 1

2

k2

r2 . (7.2.34)

As ṗ2 = ∂H

∂φ
= 0, the momentum p2 is a constant of motion (called areal velocity).

Another constant of motion is the total energy

dH

dt
= 0 =⇒ H is constant along solutions.

From equations (7.2.32), (7.2.33) and (7.2.34) we find that along a solution,

L = H + k2

r2 = H + k2

p2
φ̇,

and hence the action is

S(τ) = S(0)+
∫ τ

0
L = S(0)+Hτ + k2

p2
(φ(τ)− φ(0)). (7.2.35)

The constants H and p2 should be written in terms of the boundary conditions

R = r(τ ), r0 = r(0), � = φ(τ), φ0 = φ(0).

In general, this cannot be done explicitly. From (7.2.33) and (7.2.34),

E = ṙ2 + p2
2 − k2

r2 ,

where E = 2H . Let α = p2
2 − k2 and write

ṙ = ±
√

r2E − α

r
. (7.2.36)

There are three cases to investigate:
i) α = 0: Then r(t) = ±√Et + r0, and r0 < R yields
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r(t) = R − r0

τ
t + r0.

Integrating the Hamilton’s equation

φ̇ = ∂H

∂p2
= p2

r2 =
k

r2 ,

yields

φ(τ)− φ0 = k

∫ τ

0

dt

(
√

Et + r0)2
= k√

E

( 1

r0
− 1√

Eτ + r0

)
= k√

E

( 1

r0
− 1

R

)
.

Using the expression for E,

�− φ0 = kτ

R − r0

( 1

r0
− 1

R

)
= kτ

r0R
. (7.2.37)

Substituting Hτ = Eτ

2
= (R − r0)

2

τ
and (7.2.37) in equation (7.2.35) yields

S(τ) = S(0)+ (R − r0)
2

2τ
+ k2τ

r0R
. (7.2.38)

ii) α > 0: Integrating (7.2.36), where we consider a positive sign, yields∫ r(t)

r0

r dr√
Er2 − α

= t,

√
Er2(t)− α =

√
Er2

0 − α + Et,

r2(t) = 1

E

(
α + (

Et +
√

Er2
0 − α

)2
)
. (7.2.39)

Integrating the Hamilton’s equation φ̇ = ∂H

p2
= p2

r2 yields

φ(t)− φ0 = p2

∫ t

0

ds

r2(s)
= p2√

α

(
tan−1

Et +
√

Er2
0 − α

√
α

− tan−1

√
Er2

0 − α
√

α

)
.

iii) α < 0: Consider α = −a2. The function r(t) is still given by the equation (7.2.39),
but φ is given by

φ(t)−φ0 = p2

∫ t

0

ds

r2(s)
= p2

2a
ln
∣∣∣Et +

√
Er2

0 + a2 − a√
Er2

0 + a2 − a

·
√

Er2
0 + a2 + a√

Et + Er2
0 + a2 + a

∣∣∣.
In the case α �= 0, the constants E and p2 cannot be written explicitly as a function of
the boundary conditions, as we did in the case α = 0. Finding an explicit formula for
the action function is equivalent with solving the nonlinear Hamilton–Jacobi equation

2
∂S

∂τ
+
(∂S

∂r

)2 + 1

r2

(∂S

∂φ

)2 = k2

r2 .
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Example 7.2.3 Kepler’s problem

Consider the Lagrangian

L = 1

2
(ẋ2

1 + ẋ2
2 )+ M√

x2
1 + x2

2

, (7.2.40)

which describes the motion of a unit mass particle under the influence of gravitational
potential (inverse proportional to distance). The Euler–Lagrange equation is ẍ =
− M

|x|3 x. In polar coordinates (r, φ), the Euler–Lagrange equations are

r̈ − rφ̇2 = −M

r2 ,

d

dt
(r2φ̇) = 0,

which yields r2φ̇ =constant. This is the second of Kepler’s laws, which says that
areal velocity is constant. The Hamiltonian is

H(p; r, φ) = 1

2

(
p2

1 +
p2

2

r2

)
− M

r

and it is preserved along the solutions. As ṗ2 = ∂H

∂φ
= 0, p2 is constant. On the

other hand, p2 = ∂L

∂φ̇
= φ̇r2, and hence the momentum p2 is the areal velocity. Let

E = 2H , and using p1 = ∂L

∂ṙ
= ṙ , we obtain

dr

dt
= ±

√
E − p2

2

r2 +
2M

r
. (7.2.41)

As the areal velocity is constant,

dφ

dt
= p2

r2 . (7.2.42)

Divide equations (7.2.41) and (7.2.42), separate the variables and integrate to yield,∫ r(t)

r0

dr

r

√
Er2 + 2Mr − p2

2

= p2

∫ φ(t)

φ0

dφ.

The substitution u = 1/r yields

−
∫ 1/r(t)

1/r0

du√
E + 2Mu− p2

2u2
= p2(φ(t)− φ0).
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With A = E/p2
2 and B = M/p2

2 we have

−
∫ 1/r(t)

1/r0

du√
A+ 2Bu− u2

= p2
2(φ(t)− φ0).

Using A+ 2Bu− u2 = A+ B2 − (u− B)2, we get

arccos
( u− B√

A+ B2

)∣∣∣∣1/r(t)

1/r0

= p2
2(φ(t)− φ0).

This can be written as

r(t) = 1

B +√A+ B2 cos
(
p2

2(φ(t)− φ0)+ C
) , (7.2.43)

with

C = arccos

( 1
r0
− B√

A+ B2

)
,

which is an equation for a conic in polar coordinates.

7.3 The Eiconal Equation on Riemannian Manifolds

Let φ(s) be a solution for the Euler–Lagrange system with Lagrangian L(x, ẋ), which
joins the points x0 = φ(0) and x = φ(τ) on the Riemannian manifold (M, g). In
this section, the action S(τ) = S(x0, x, τ ) will be considered as the integral of the
Lagrangian along the solution

S(τ) =
∫ τ

0
L(φ(s), φ̇(s)) ds. (7.3.44)

Example 7.3.1 Consider the Lagrangian L = 1

2
(ẋ2

1 + ẋ2
2 ) on R2 with Euler–

Lagrange equations ẍi = 0, i = 1, 2. The solutions are lines

xi(s) = kis + xi(0) = (xi − xi(0) )
s

τ
+ xi(0), i = 1, 2.

The action becomes

S(τ) =
∫ τ

0
L(x(s), ẋ(s) ) = 1

2

∫ τ

0

∑
i

(xi − xi(0)

τ

)2

= 1

2
τ

∑
(xi − xi(0) )2

τ 2 = d2(x(0), x)

2τ
.
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The above formula relates the action and the Euclidian distance. One of the goals
of this section is to show that a similar relation holds on Riemannian manifolds.
However, in general, the Euler–Lagrange equations cannot be solved explicitly, so
we need to find the action working around the solutions.

Consider the Lagrangian

L(x, ẋ) = 1

2
gij ẋ

i ẋj (7.3.45)

on the Riemannian manifold (M, g). It is known that the Euler-Lagrange system is

φ̈k(s)+ 
k
ijφ(s)

φ̇i (s)φ̇j (s) = 0, k = 1, n, (7.3.46)

which are the geodesic equations. The action S(τ) corresponding to the initial point
x0 and the final point x is

S(τ) =
∫ τ

0

1

2
gij φ̇

i(s)φ̇j (s) ds = 1

2

∫ τ

0
|φ̇(s)|2 ds,

where φ(s) is a solution of (7.3.46) with the boundary conditions φ(0) = x0 , φ(τ ) =
x.

The system (7.3.46) can be written globally as ∇φ̇(s)φ̇(s) = 0, where ∇ denotes

the Levi-Civita connection. The fact that |φ̇(s)|2 is constant along the geodesic is a
consequence of the metric property of the Levi-Civita connection,

φ̇(s) g
(
φ̇(s), φ̇(s)

) = 2 g(∇φ̇(s)φ̇(s), φ̇(s)) = 0.

It follows that the Holder inequality∫ τ

0
|φ̇(s)| ds ≤

(∫ τ

0
|φ̇(s)|2 ds

) 1
2
(∫ τ

0

) 1
2

(7.3.47)

can be replaced by the identity∫ τ

0
|φ̇(s)| ds =

(∫ τ

0
|φ̇(s)|2 ds

) 1
2
τ

1
2 . (7.3.48)

If φ(s) is the geodesic joining the points x0 and x, the Riemannian distance between
them is

d( x0, x ) =
∫ τ

0
|φ̇(s)| ds. (7.3.49)

Hence, ∫ τ

0
|ẋ(s)|2 ds = d2(x0, x)

τ
,

and the action is

S(τ) = d2(x0, x)

2τ
. (7.3.50)

In the following we shall denote the gradient vector field of a function f ∈ F(M) by
∇f = gij f;i ∂

∂xj
.
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Definition 7.14 The equation |∇f |2g = 1 is called the eiconal equation on the Rie-
mannian manifold (M, g).

The next result shows that the Riemannian distance solves the eiconal equation.

Theorem 7.15. f (x) = d(x0, x) is a solution for the eiconal equation |∇f |2g = 1
with the initial condition f (x0) = 0.

Proof. The Hamiltonian associated with the Lagrangian (7.3.45) is

H(p, x) = 1

2
|p|2g =

1

2
gjkp

jpk.

Substitute the action (7.3.50) in the Hamilton–Jacobi equation

∂S

∂τ
+ 1

2
|∇S|2 = 0 (7.3.51)

and obtain

− 1

2τ 2 d2(x)+ 1

2

1

τ 2

∣∣∣∣∇(
1

2
d2)

∣∣∣∣2 = 0

⇐⇒ −d2(x)+ 1

4

∣∣∣∇(d2(x))

∣∣∣2 = 0

⇐⇒ |2d∇d(x) |2 = 4 d2(x)

⇐⇒ |∇d(x)|2 = 1, (7.3.52)

where d(x) = d(x0, x).

Corollary 7.16 The function �(x) = d2(x0, x) satisfies the equation

|∇�|2 = 4 �

with the initial condition �(x0) = 0.

Proof. It follows from the equation (7.3.52).

The above theorem proves the existence of solutions for the eiconal equation.
Unfortunately, the uniqueness does not hold in general. A counterexample is provided
below.

The eiconal equation on R2 takes the form(∂f

∂x

)2 +
(∂f

∂y

)2 = 1. (7.3.53)

For any constant λ ∈ R, the function

fλ(x, y) = (x − x0) cos λ+ (y − y0) sin λ (7.3.54)

is a solution of (7.3.53) satisfying the initial condition
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fλ(x0, y0) = 0.

The same eiconal equation and initial condition is verified also by the Euclidian
distance

d(x, y) =
√

(x − x0)2 + (y − y0)2. (7.3.55)

Remark 7.17 The solutions given by (7.3.54) and (7.3.55) are related by

fλ(x, y) = d(x, y) · cos(λ− θ),

where θ = tan−1 y − y0

x − x0
.

7.4 Applications of Eiconal equation

7.4.1 Fundamental solution for the Laplace–Beltrami operator

Consider the Laplacian on Rn, n ≥ 3,

� = −
n∑

k=1

∂2

∂x2
k

.

From Lemma 2.27,

�f α = −αf α−2
(
− f �f + (α − 1)|∇f |2

)
.

Substituting f (x) = d(x) and using the eiconal equation yields

�(dα) = αdα−2
(
− d �d + (α − 1)

)
. (7.4.56)

From Corollary 2.25,
�d2 = 2d�d − 2|∇d|2. (7.4.57)

Using �d2 = −2n and |∇d|2 = 1, (7.4.57) yields

d�d = 1− n.

Substituting in (7.4.56),

�(dα) = −αdα−2(n− 2+ α).

Hence, choosing α = 2− n,

�
( 1

dn−2(x)

)
= 0, ∀x ∈ Rn\{0}.
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7.4.2 Fundamental Singularity for the Laplacian

Consider the Laplacian

� = −
n∑

j,k=1

gjk
( ∂2

∂xj ∂xk

− 
r
jk

∂

∂xr

)
on a Riemannian manifold (M, g). Given a fixed point y ∈ M , we cannot calculate
in general a fundamental solution for �, but we can find a fundamental singularity
G(y, x):

�G(y, x) = R(y, x), for y �= x,

with

R(y, x) = O
( 1

|y − x|n−1

)
.

For x and y nearby points, the distance is given by

d2(y, x) = D(y, x)+O(|x − y|3)

with D(y, x) =
∑
j,k

gjk(y)(xj − yj )(xk − yk). In order to compute �D(y, x), sub-

stitute u = x − y and get D(y, u) =
∑
j,k

gjk(y)ujuk . The Laplacian becomes

� = −(P + L) with the principal part P =
∑

gik ∂2

∂uj ∂uk
and the linear part

L =
∑

gjk
r
jk

∂

∂ur
. One may show that LD(y, u) = O(|u|), while a computation

shows PD(y, u) = 2
∑

gjkgjk = 2n. Hence,

�d(y, x)2 = −2n+O(|y − x|). (7.4.58)

Using the eiconal equation, (7.4.57) yields

d�d = 1− n+O(|y − x|).
Substituting in (7.4.56),

�dα = αdα−2(n− 1+ α − 1+O(|y − x|)).
Choosing α = 2− n, as d(y, x) = O(|y − x|), we get

�
( 1

d(y, x)n−2

)
= O

( 1

|x − y|n−1

)
.
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7.4.3 Laplacian momenta on a compact manifold

Consider a compact Riemannian manifold (M, g), without boundary. Let x0 ∈ M be
a fixed point. Define the Laplacian momenta with respect to x0 by

µk(x0) =
∫

M

dk(x0, x) �d(x0, x)
√|g|dx1 ∧ · · · ∧ dxn, k ∈ N,

where d(x0, x) is the Riemannian distance starting from x0.

By the divergence theorem, µ0 = 0. Integrating in formula (7.4.57) and applying
the eiconal equation for d, we have µ1 = vol(M). The first two momenta do not
depend on the point x0.

Proposition 7.18 For any x0 ∈ M ,

0 < µk(x0) ≤ kDk−1vol(M), k ≥ 1, (7.4.59)

where D = dia(M).

Proof. Integrate in equation (7.4.56) and apply the divergence theorem

µα−1 = (α − 1)

∫
M

dα−2 > 0.

Using d ≤ D yields (7.4.59).

7.4.4 Minimizing geodesics

The goal of this section is to show that locally, geodesics are length minimizing.
This will be done using the eiconal equation and the action defined in the previous
sections. We shall use that the geodesics are the projections on M space of solutions

of Hamilton’s system of equations with Hamiltonian H(p, x) = 1

2
|p|2. By the length

of a curve c : [0, 1] → M we mean �(c) =
∫ 1

0
|ċ(s)| ds =

∫ 1

0

√
g(ċ(s), ċ(s) ds.

We shall show that locally, among all the curves that join any two given points, the
geodesic is the shortest curve.

For this, it is useful to use a special frame in which the formulas involved look
simpler.

Lemma 7.19 (Existence of a local orthonormal frame of vector fields)
For a given point p ∈ M , there is a neighborhood U of p and n vector fields
X1, . . . , Xn on U such that

gx(Xi, Xj ) = δij , ∀x ∈ U .
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Proof. Consider an orthonormal frame {E1, . . . , En} ⊂ TpM , i.e., gp(Ei, Ej ) = δij .
Let γv be the geodesic such that γv(0) = p and γ̇v(0) = v, with γv : [0, s1] → M such
that there are no conjugate points between γ (0) and γ (s1). Denote U = {γv(s); s ∈
[0, s1], v ∈ TpM}. The parallel transport of Ek along all geodesics γv , v ∈ TpM

yields a local vector field Xk on U with Xk(p) = Ek , ∀k = 1, n. As the parallel
transport preserves the lengths and the angles, we get gx(Xi, Xj ) = δij ,∀x ∈ U .

Proposition 7.20 If {X1, . . . , Xn} is a local orthonormal frame of vector fields, then
the gradient of a function f is given by

∇f =
n∑

k=1

Xk(f ) Xk. (7.4.60)

Proof. Using the definition of the gradient,

〈∇f, Xk〉 = Xk(f ).

Then,

∇f =
n∑

k=1

(∇f )k Xk =
n∑

k=1

〈∇f, Xk〉Xk =
n∑

k=1

Xk(f ) Xk.

The Hamiltonian in a local orthonormal frame can be written as

H(p, x) = 1

2

n∑
k=1

p(Xk)
2. (7.4.61)

If p = df ,

H(df, x) = 1

2

n∑
k=1

df (Xk)
2 = 1

2

n∑
k=1

Xk(f )2 = 1

2
|∇f |2.

For f = S, where S is the action along a geodesic c(s) parametrized by arc length,
we have

H(dS, x) = 1

2
|∇S|2 = 1

2
|ċ|2 = 1

2
.

We may rewrite this as the fact that the action S satisfies the eiconal equation

|∇S|2 = (X1S)2 + (X2S)2 = 1. (7.4.62)

Lemma 7.21 Given a point p ∈ M , there is a neighborhood U of p, such that for
any vector v tangent at U ,

|dS(v)| ≤ |v|. (7.4.63)
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Proof. Using an orthonormal frame of vector fields in a neighborhood of p,

dS(v) = dS(
∑

vkXk) =
∑

vkdS(Xk) =
∑

vkXk(S). (7.4.64)

Cauchy’s inequality yields

|dS(v)| ≤
√∑

(vk)2

√∑
Xk(S)2 = |v| · |∇S| = |v|, (7.4.65)

where we used (7.4.62).

Theorem 7.22. Given two points p and q that are close enough, the geodesic is the
shortest curve connecting p and q.

Proof. Let c be a geodesic joining p and q. We shall assume that c is parametrized
by arc length, i.e., c : [0, L] → M , where L = �(c) is the length of c. Consider an
arbitrary curve γ with the same endpoints as c and parametrized by the same interval
[0, L]. Then ∫

c

dS =
∫

γ

dS. (7.4.66)

The left side is∫
c

dS =
∫ L

0
dS(ċ(s)) ds =

∫ L

0
〈∇S, ċ〉 ds = |ċ|2L = L = �(c),

where we used ∇S = ċ. Using Lemma 7.21, the right side becomes∫
γ

dS =
∫ L

0
dS(γ̇ (s)) ds ≤

∫ L

0
|γ̇ | ds = �(γ ).

Hence �(c) ≤ �(γ ). The identity holds when Cauchy’s inequality becomes the iden-
tity, i.e., when γ̇ and ċ = ∇S are proportional. This means that the curves c and γ

coincide up to a reparametrization.

7.5 Exercises

1. Consider X1, . . . , Xn a frame of orthonormal vector fields on the manifold (M, g).
Define D : X × X → X by DV W =

∑
k

Vg(W, Xk)Xk . Show:

(i) D is a metric linear connection.
(ii) D is a symmetric connection iff [Xi, Xj ] = 0, ∀i, j = 1, n.

2. Define the divergence with respect to connection D by divZ = Traceg(V →
DV Z) =∑

k g(Xk, DXk
Z). Show that:

(i) divZ =∑
k Xk(Z

k), where Z =∑
k ZkXk .
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(ii) For any smooth function f on M , we have div∇f =
∑

k

X2
kf .

3. Define D : X × X → X by

DV W =
∑

k

Vg(W, Xk)Xk + 1

2

∑
k,j

g(W, Xk)g(V, Xj )[Xk, Xj ].

(i) Show that D is a linear connection.
(ii) Prove that D has free torsion: DV W −DWV = [V, W ].
(iii) Is D a metric connection?
(iv) Compute the divergence with respect to D.

4. Show that for every x0 ∈ M , the series
∑

µk(x0) is convergent, where M is a
Riemannian manifold with dia(M) < 1.

5. Do the momenta µk depend on the choice of x0?

6. Prove or disprove: Two manifolds of the same dimension with the same momenta
are isometric.

7. Find the action in the case of the Kepler problem defined by the Lagrangian

L = 1

2
(ẋ2

1 + ẋ2
2 )+ M√

x2
1 + x2

2

,

where M > 0 is a constant.



8

Minimal Hypersurfaces

8.1 The Curl tensor

In Classical Mechanics the dynamics of a flow are described by its rotation and
expansion. The rotation component is given by the curl vector, while the expansion
is described by the divergence function. The classical formulas involving rotation
and expansion in the case of a function φ ∈ F(R3) and a vector field V ∈ X (R3) are

curl(grad φ) = 0 and div(curl V ) = 0. (8.1.1)

The first of the above formulas shows that gradient vector fields do not have rotation
and the latter says that the curl vector field is incompressible (zero expansion). On
Riemannian manifolds the curl of a vector field is not a vector field, but a tensor.

Definition 8.1 The curl of a vector field X on a Riemannian manifold (M, g) is
defined as a 2-covariant antisymmetric tensor A with the components Aij given by

Aij = Xi;j −Xj ;i . (8.1.2)

Using the definition of the covariant derivative one may show that (see Exercise 1)

Aij = ∂Xi

∂xj

− ∂Xj

∂xi

. (8.1.3)

The next proposition shows that the first formula of (8.1.1) takes place on manifolds.

Proposition 8.2 If X ∈ X (M) is a vector field,

X = grad φ ⇐⇒ curl X = 0.

Proof. Let X = grad φ. Then Xk = gkj ∂φ

∂xj

or Xi = ∂φ

∂xi

. Equation (8.1.3) yields

(curl X)ij = ∂Xi

∂xj

− ∂Xj

∂xi

= ∂2φ

∂xj ∂xi

− ∂2φ

∂xi∂xj

= 0.
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Reciprocally, consider a vector field X such that curl(X) = 0. Then
∂Xk

∂xj

= ∂Xj

∂xk

.

Hence the one-form ω =∑
Xk dxk is exact. This means there is a function f , defined

locally, such that ω = df = ∑ ∂f
∂xk

dxk . Therefore Xk = ∂f

∂xk

or Xj = ∑
gkj ∂f

∂xk
,

i.e., X = grad f .

The following result is an analog of the second formula of (8.1.1).

Proposition 8.3 We have:

T race curl X = 0, ∀X ∈ X (M).

Proof.
T race curl X = gij (Xi;j −Xj ;i ) = X

j

;j −Xi
;i = 0.

The following result deals with a Bianchi type identity.

Proposition 8.4 The cyclic covariant derivative of A = curl X is zero,

Aij ;k + Ajk;i + Aki;j = 0. (8.1.4)

Proof. Use the definition of the curl and cancel the terms in pairs.

The following proposition provides a global, invariant written formula for curl.
The Riemannian metric is denoted by 〈 〉, and its associated Levi-Civita connection
by ∇.

Proposition 8.5 If A = curl X, we have

A(U, V ) = 〈∇V X, U〉 − 〈∇UX, V 〉 ∀U, V ∈ X (M). (8.1.5)

Proof. For every U, V ∈ X (M),

A(U, V ) = AijU
iV j = (Xi;j −Xj ;i )UiV j = (∇∂j

X)iU
iV j − (∇∂i

X)jU
iV j

= 〈∇∂j
X, U〉V j − 〈∇∂i

X, U〉Ui = 〈∇V j ∂j
X, U〉 − 〈∇Ui∂i

X, V 〉
= 〈∇V X, U〉 − 〈∇UX, V 〉.

Lemma 8.6 Let A = curl X, where X ∈ X (M). Then we have

A(U, V ) = V 〈X, U〉 − U〈X, V 〉 + 〈X, [U, V ]〉. (8.1.6)

Proof. Since ∇ is a metric connection

V 〈X, U〉 = 〈∇V X, U〉 + 〈X,∇V U〉,
U〈X, V 〉 = 〈∇UX, V 〉 + 〈X,∇UV 〉.
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Using the symmetry of ∇, subtracting we obtain

V 〈X, U〉 − U〈X, V 〉 = A(U, V )+ 〈X, [V, U ]〉,
which is equivalent to (8.1.6).

The following result makes the relation between the curl, Levi-Civita connection,
and the Lie derivative.

Theorem 8.7. If A = curl X and ∇ is the Levi-Civita connection on (M, g),

A(U, V ) = 2〈∇V X, U〉 − (LXg)(U, V ). (8.1.7)

Proof. From the Koszul formula for Levi-Civita connection, we have

2〈∇V X, U〉 = V 〈X, U〉+X〈U, V 〉−U〈V, X〉−〈V, [X, U ]〉+〈X, [U, V ]〉+〈U, [V, X]〉.
Lemma 8.6 yields

2〈∇V X, U〉 = A(U, V )+X〈U, V 〉 − 〈V, [X, U ]〉 + 〈U, [V, X]〉
= A(U, V )+X〈U, V 〉 − 〈V, LXU〉 − 〈U, LXV 〉.

Using
(LXg)(U, V ) = X〈U, V 〉 − 〈LXU, V 〉 − 〈U, LXV 〉

yields
2〈∇V X, U〉 = A(U, V )+ (LXg)(U, V ).

Corollary 8.8 If X is a Killing vector field (i.e., LXg = 0), then

(curl X)(U, V ) = 2〈∇V X, U〉.
Corollary 8.9 If X is a vector field provided by a gradient (i.e., X = grad φ), then

(LXg)(U, V ) = 2〈∇V X, U〉.
Definition 8.10 Let f ∈ F(M) be a function. Define the torsion of f by Tf : X ×
X → X ,

Tf (U, V ) = V (f )U − U(f )V . (8.1.8)

As Tf is F(M)-linear in each argument, it follows that Tf is a 2-covariant tensor.

Proposition 8.11 The torsion has the following properties:

(i) Tf (U, V ) = −Tf (V, U).

(ii) T race Tf = 0.

(iii) Tf h = f Th + hTf , ∀ f, h ∈ F(M).

(iv) Tf (U, V ) = 0,∀U, V =⇒ f is constant.
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Proof.

(i) Tf (U, V ) = −(U(f )V − V (f )U
) = Tf (V, U).

(ii) T race Tf = gijTf (∂i, ∂j ) = gij
(
(∂if )∂j − (∂jf )∂i

)
= grad f − grad f = 0.

(iii) Tf h(U, V ) = V (f h)U − U(f h)V

= f V (h)U + hV (f )U − f U(h)V − hU(f )V

= f
(
V (h)U − U(h)V

)
+ h

(
V (f )U − U(f )V

)
= f Th(U, V )+ hTf (U, V ).

(iv) Taking U and V linear independent vector fields, yields V (f ) = U(f ) = 0, for
any vector fields U and V . Hence f is constant.

The following result shows that curl is not F(M)-linear in X. However it is still
a tensor, because it is F(M)-linear in the arguments of U and V , when considering
curl(X)(U, V ).

Proposition 8.12 Let f ∈ F(M) and X ∈ X (M). Then

curl(f X) = f curl(X)+ 〈Tf , X〉. (8.1.9)

Proof. Denote A = curl(X) and Af = curl(f X). Applying Lemma 8.6 yields

Af (U, V ) = V 〈f X, U〉 − U〈f X, V 〉 + 〈f X, [U, V ]〉
= V (f )〈X, U〉 + f V 〈X, U〉 − f U〈X, V 〉 − U(f )〈X, V 〉 + f 〈X, [U, V ]〉
= f

(
V 〈X, U〉 − U〈X, V 〉 + 〈X, [U, V ]〉

)
+ V (f )〈X, U〉 − U(f )〈X, V 〉

= f A(U, V )+ 〈X, V (f )U − U(f )V 〉 = f A(U, V )+ 〈X, Tf (U, V )〉.

Proposition 8.13 For any vector field X on a Riemannian manifold (M, g),

T race (LXg) = 2 div X. (8.1.10)

Proof. Taking the trace in Theorem 8.7,

T race A = 2 T race
(
V → 〈∇V X, V 〉)− T race(LXg).

Proposition 8.3 yields T race A = 0. Using the definition of the divergence as a trace,
we obtain (8.1.10).

8.2 Application to minimal hypersurfaces

Let H ⊂ M be a hypersurface given locally by φ−1{0} = {x ∈ M|φ(x) = 0}. Denote
the gradient vector field by X = ∇φ. The unit normal vector is
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N = X

‖X‖ =
∇φ

‖∇φ‖ .

Denote f = 1

‖X‖ . Then N = f X, and for any vector field V tangent to H,

∇V N = ∇V (f X) = f∇V X + V (f )X,

where ∇ is the Levi-Civita connection on (M, g). Therefore, for any U ∈ X (H),

〈∇V N, U〉 = f 〈∇V X, U〉 + V (f )〈X, U〉.
As X = ∇φ is normal to H, then 〈X, U〉 = 0. Hence

〈∇V N, U〉 = f 〈∇V X, U〉, ∀U, V ∈ X (H).

Corollary 8.9 yields

(LXg)(U, V ) = 2‖X‖ 〈∇V N, U〉, ∀U, V ∈ X (H). (8.2.11)

Recall the Weingarten map, which is a tensor S ∈ T 1,1(H) defined as

〈S(V ), U〉 = −〈∇V N, U〉, ∀U, V ∈ X (H). (8.2.12)

Then (8.2.11) yields

−2 ‖X‖ 〈S(V ), U〉 = (LXg)(U, V ). (8.2.13)

Definition 8.14 If {e1, . . . , en−1} ⊂ TpH is an orthonormal frame, the mean scalar
curvature of H at point p is given by:

αp = 1

n− 1

n−1∑
i=1

〈S(ei), ei〉 = 1

n− 1
T race S. (8.2.14)

Using (8.2.13) we get

αp = −1

2(n− 1)

1

‖X‖p
n−1∑
i=1

(LXg)(ei, ei). (8.2.15)

In order to find a formula for the right-hand side of (8.2.15), we shall complete
n−1∑
i=1

(LXg)(ei, ei) up to T race LXg on the manifold (M, g). In order to perform that,

we need the following result.
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Lemma 8.15 If N = f X and f = ‖X‖−1, then

(LXg)(N, N) = −2
X(f )

f
. (8.2.16)

Proof. Using LX(f X) = [X, f X] = X(f )X, we have

(LXg)(N, N) = X〈N, N〉 − 2〈LXN, N〉 = −2〈LXN, N〉
= −2〈LX(f X), f X〉 = −2〈X(f )X, f X〉
= −2f X(f )‖X‖2 = −2

X(f )

f
.

Theorem 8.16. The following relation takes place:

αp = − 1

n− 1
div N|p.

Proof. Let {e1, . . . , en−1} ⊂ TpH be an orthonormal basis. Choose en = Np. Then
{e1, . . . , en−1, en} is an orthonormal basis in TpM . Then at point p,

T race (LXg) =
n∑

i=1

(LXg)(ei, ei) =
n−1∑
i=1

(LXg)(ei, ei)+ (LXg)(N, N).

Using Lemma 8.15 and Proposition 8.13, we have

2 div X = −2(n− 1)αp‖X‖ − 2‖X‖X(f ).

This can be written also as

−(f div X +X(f )
) = (n− 1)αp.

As the left side is equal to −div(f X) = −div N , we get

αp = −div N

n− 1
.

Proposition 8.17 Let (M, g) be a Riemannian manifold and H ⊂ M be a hypersur-
face with the unit normal vector field N . The following statements are equivalent:
1) H is a minimal hypersurface of M ,

2) div N|H = 0.

In the following we provide a few examples.
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Example 8.2.1 Consider M = Rn and H = {xn = 0}. The normal vector field is
N = en = (0, . . . , 0, 1) and div N = 0. Hence H is a minimal hypersurface in R3.

Example 8.2.2 Let Sn−1 be the n−1-dimensional sphere in Rn. The unit vector field

Nx =
n∑

i=1

xi

|x|∂xi
is normal to Sn−1 and has div N = n− 1

|x| . (See Exercise 5.) Hence

the mean scalar curvature of Sn−1 is |α| = n−1
n−1 = 1.

Saddle Catenoid Helicoid
Figure 8.1: Examples of surfaces.

Example 8.2.3 Consider the saddle surface H = φ−1{0}, φ(x, y, z) = xy − z. The
unit normal vector field is

N = ∇φ

|∇φ| =
( y√

x2 + y2 + 1
,

x√
x2 + y2 + 1

,
−1√

x2 + y2 + 1

)
.

Then

div N = ∂

∂x

y√
x2 + y2 + 1

+ ∂

∂y

x√
x2 + y2 + 1

+ ∂

∂z

−1√
x2 + y2 + 1

= −2xy

(1+ x2 + y2)3/2 =
−2z

(1+ x2 + y2)3/2 .

Hence the mean scalar curvature is

α = z

(1+ x2 + y2)3/2 .

Example 8.2.4 Consider the catenoid parametrized by x = cosh u cos θ , y =
cosh u sin θ , z = u, for 0 < u < sinh−1(1) and 0 < θ < 2π . The coordinate
tangent vector fields are

X1 = (sinh u cos θ, sinh u sin θ, 1), X2 = (− cosh u sin θ, cosh u cos θ, 0).

The unit normal vector field is

N = X1 ×X2

|X1 ×X2| = −
(cosh u cos θ, cosh u sin θ,− sinh u cosh u)

cosh2 u
.
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Using x = cosh u cos θ , y = cosh u sin θ , z = u, x2+ y2 = cosh2 u, sinh u cosh u =
cosh u

√
1+ cosh2 u = √

(x2 + y2)(1+ x2 + y2), we obtain

N = (x, y,−√(x2 + y2)(1+ x2 + y2)

x2 + y2 .

A computation shows that div N = 0 (See Exercise 6). Hence the catenoid is a
minimal surface in R3.

Example 8.2.5 Consider the helicoid parametrized by x = v cos φ, y = v sin φ, z =
φ, for |v| < 1 and 0 < φ < 2π . Using the tangent vector fields X1 = (cos φ, sin φ, 0),
X2 = (−v sin φ, v cos φ, 1) we construct the unit normal

N = X1 ×X2

|X1 ×X2| =
(sin φ,− cos φ, v)√

1+ v2
= (y,−x, x2 + y2)√

(1+ x2 + y2)(x2 + y2)
.

By computation divN = 0, see Exercise 7. Hence the helicoid is a minimal surface
in R3.

Proposition 8.18 Consider the surface given as a Monge patch (x, y) → (x, y,

f (x, y)). The surface is minimal in R3 if and only if f satisfies the equation

1

2

(
∂2
xf+∂2

yf
)√

(∂xf )2 + (∂yf )2 + 1 = (∂xf )2·∂2
xf+(∂yf )2·∂2

yf+2∂xf ·∂yf ·∂xyf.

(8.2.17)

Proof. The surface is given by φ−1(0), for φ(x, y, z) = f (x, y)− z. We have ∇φ =
(∂xf, ∂yf,−1) and |∇φ| =

√
(∂xf )2 + (∂yf )2 + 1. The surface is minimal if and

only if div N = 0, where

div N = div
( 1

|∇φ|∇φ
)
= 1

|∇φ|div∇φ + ∇φ
( 1

|∇φ|
)
. (8.2.18)

A computation shows

∂x

( 1

|∇φ|
)
= −2

|∇φ|2
(
∂xf · ∂2

xf + ∂yf · ∂xyf
)
,

∂y

( 1

|∇φ|
)
= −2

|∇φ|2
(
∂yf · ∂2

yf + ∂xf · ∂xyf
)
.

Therefore

∇φ
( 1

|∇φ|
)
= ∂xf · ∂x

( 1

|∇φ|
)
+ ∂yf · ∂y

( 1

|∇φ|
)
− ∂z

( 1

|∇φ|
)

= −2

|∇φ|2
(
(∂xf )2 · ∂2

xf + (∂yf )2 · ∂2
yf + 2∂xf · ∂yf · ∂xyf

)
.

Substituting in (8.2.18) and using div∇φ = ∂2
xf + ∂2

yf , we get (8.2.17).
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Corollary 8.19 Consider the function f (x, y) =
m∑

k=0

akx
kym−k with am, a0 �= 0.

Then the surface (x, y)→ (x, y, f (x, y)) is minimal in R3 if and only if m = 1. In
this case f (x, y) = a0y + a2x and corresponds to a plane.

Proof. We shall investigate the order of magnitude of both sides of equation (8.2.17).
Using ∂xf = O(|x|m−1), ∂yf = O(|y|m−1), ∂2

xf = O(|x|m−2), ∂2
yf =

O(|y|m−2) we get √
(∂xf )2 + (∂y)2 + 1 = O(|x|m−1, |y|m−1),

and the left side of (8.2.17) is O(|x|2m−3, |y|2m−3).
Using

(∂xf )2 · ∂2
xf = O(|x|2(m−1))O(|x|m−2)) = O(|x|3m−4),

(∂yf )2 · ∂2
yf = O(|y|2(m−1))O(|y|m−2)) = O(|y|3m−4)

the right side is O(|x|3m−4, |y|3m−4). For m = 1 the left and the right sides have the
same order of magnitude. Using Exercise 8, one obtains that the surface is a plane.

8.3 Helmholtz decomposition

This section is an application of the formulas regarding curl and div. We shall show
that a vector field X on a compact Riemannian manifold can be uniquely decomposed
as a sum of two vectors Y and Z, where Y is the rotation component and Z the
expansion component.

Theorem 8.20. If X is a vector field on a compact Riemannian manifold (M, g), there
are two vector fields Y, Z on M such that

X = Y + Z,

with div Y = 0 and curl Z = 0. Moreover, the decomposition is unique.

Proof. Existence: Denote ω = div X and let φ be the solution of the elliptic equation

�φ = ω on (M, g).

Take Z = ∇φ and Y = X − ∇φ. Then curl Z = curl ∇φ = 0 and div Y =
ω −�φ = 0.
Uniqueness: Consider two decompositions:

X = Y1 + Z1 = Y2 + Z2.
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As curl Zi = 0, it follows that there are two functions φi such that Zi = ∇φi ,
i = 1, 2. Subtracting, we get

Y2 − Y1 = ∇(φ1 − φ2).

Denoting U = Y2 − Y1 and φ = φ1 − φ2, we obtain

div U = div∇φ.

As div U = div Y2 − div Y1 = 0, we get �φ = 0. By Hopf’s lemma we have φ =
constant, or φ1 − φ2 =constant. Taking the gradient yields Z1 − Z2 = 0. Then we
have also Y1 = Y2 and the decomposition is unique.

We note that div X = div Z and curl X = curl Y . This can be interpreted as a
decomposition in two vector fields Y , Z, where Y contains the rotation and Z contains
the expansion.

Example 8.3.1 Let X = (x1− x2)∂x1 + (x1+ x2)∂x2 . Then the Helmholtz decompo-
sition is X = Y + Z, with Z = x1∂x1 + x2∂x2 and Y = −x2∂x1 + x1∂x2 .

8.3.0.1 The non-compact case

If the manifold is not compact, the Helmholtz decomposition is not unique. Let
a1(x1), a2(x2), b1(x1), b2(x2) be smooth functions. Consider the vector field

X =
(
a2(x2)

∫
b1(x1) dx1

)
∂x1 +

(
b1(x1)

∫
a2(x2) dx2

)
∂x2.

Then div X = a2b1 − b1a2 = 0. Let φ be a harmonic function on R2, for instance

φ(x1, x2) = αx1 + βx2 + γ x1x2 + δ,

with α, β, γ, δ ∈ R arbitrary constants. Then

Z = ∇φ = (α + γ x2)∂x1 + (β + γ x1)∂x2

is divergence free and Y = X − Z is curl free.

8.4 Exercises

1. Show that for any vector field X ∈ X (M) we have

Xi;j −Xj ;i = ∂Xi

∂xj

− ∂Xj

∂xi

.

2. Show that for any vector field X on a Riemannian manifold M ,

2Xi;j = (LXg)ij + (curl X)ij .
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3. A vector field X is called geodesic if ∇XX = 0. Show that if X is a Killing vector
field provided by a potential, then X is geodesic. (Hint: Use (∇XX)a = XaXa;b and
Exercise 1.)

4. (i) Show that
(LXg)ij = Xi;j +Xj ;i .

(ii) Taking the trace on both sides, show T race (LXg) = 2 div X.
(iii) Show that any Killing vector field has zero divergence.

5. Consider the unit vector field N(x) =
n∑

i=1

xi

|x|∂xi
on Rn\{0}. Show that

div N(x) = n− 1

|x| .

6. Let N = f V be a vector field, with f = 1/(x2+y2) and consider the vector fields
V = (x, y,−√(x2 + y2)(1+ x2 + y2)).
(i) Show f divV = 2f.

(ii) Show V (f ) = −2f.

(iii) Use the formula div(f V ) = f divV + V (f ) to show that divN = 0.

7. Consider f = (
(1+ x2 + y2)(x2 + y2)

)−1/2 and the vector field on R3 given by
X = y∂x − x∂y + (x2 + y2)∂z. Show the following:
(i) divX = 0.
(ii) X(f ) = 0.

(iii) Using div(f X) = f divX +X(f ) prove that div(f X) = 0.

8. Show that the function f (x, y) = a0y + a1xy + a2x is a solution for equation
(8.2.17) if and only if a1 = 0.

9. Show that:
(i) Ellipsoids, paraboloids and hyperboloids are not minimal surfaces in R3.

(ii) Consider f (x, y) =
N∑

i,j=0

aij x
iyj . The function f (x, y) is a solution for the equa-

tion (8.2.17) if and only if N = 1.
(iii) The only minimal surfaces given as (x, y)→ (x, y, f (x, y)) are planes.

10. Let (M, g) be a hypersurface in En+1 = (Rn+1), δij and let S denote the Wein-
garten map. Show that

Ric(X, Y ) = g(SX, Y ) · T race S − g(SX, SY ), ∀X, Y ∈ X (M).
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Radially Symmetric Spaces

9.1 Existence and uniqueness of geodesics

Consider the Hamiltonian on the Riemannian manifold (M, g),

H(x, p) = 1

2
|p|2g =

1

2
gijpipj , (9.1.1)

and let ∇H =
(∂H

∂x
,
∂H

∂p

)
. With this notation, the Hamilton system can be written

as only one equation
ẏ = J∇H(y) (9.1.2)

where y = (x, p) and J 2 = −I2n. Using the Hamiltonian equation p = ẋ (see
Chapter 6), the initial condition becomes

y0 = (x0, p0) = (x0, v),

where x0 is the initial point and v is the initial velocity.
Denote f (y) = J∇H(y). The existence and uniqueness problem for geodesics

with initial condition y0 = (x0, v) becomes:

Under what conditions does the Cauchy problem

ẏ = f (y), y(0) = y0, (9.1.3)

have solutions, and when is the solution unique?

There are a few theorems that handle this problem. They are based on the regularity of
the function f . In the present case this is reduced to the smoothness of the Riemannian
metric (gij ).

Existence of geodesics

In the following “| |" denotes any norm on Rm. The following result is a particular
case of Peano’s existence theorem and the proof can be found in Hartman [20]:
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Theorem 9.1. Denote B(y0, b) = [y0 − b, y0 + b] ⊂ Rm. Assume the function f (y)

is continuous on B(y0, b) with the bound |f (y)| ≤ M . Then there is at least a solution
y = y(t) for the system (9.1.3) on [t0, t0 + b/M].

When f (y) = J∇H(y) the function f is continuous if and only if
∂H

∂x
= 1

2

∂gij

∂x
pipj

is continuous. This means that the metric gij is differentiable with continuous deriva-
tives (i.e., continuous Christoffel symbols). We arrive at the following result:

Proposition 9.2 Consider x0 ∈ M such that gij ∈ C1(B(x0, b)). Given v ∈ Tx0M ,
there is a > 0 and at least one geodesic φ : [t0, t0 + a] → (M, g) with φ(t0) = x0
and φ̇(t0) = v.

Example 9.1.1 (Hartman) Consider the Riemannian metric

(gij ) =
(

1+ y4/3 0
0 1+ y4/3

)

on R2. The functions
∂gii

∂y
are continuous, i = 1, 2. Then there are at least three

geodesics emanating at x0 = (0, 0) with the same initial velocity v = (1, 0).

By the above theorem we have at least a geodesic. We shall find three distinct
geodesics. The Lagrangian and the Hamiltonian are

L = 1

2
(1+ y4/3)(ẋ2 + ẏ2),

H = 1

2

1

1+ y4/3 (p2
1 + p2).

As H does not depend on x, ṗ1 = −∂H

∂x
= 0 =⇒ p1 = k constant. On the other

hand p2 = ∂L

∂ẏ
= (1 + y4/3)ẏ and using the fact that H is preserved along the

solutions (∂H/dt = 0), we write H = 1
2C2. This yields

k2 + (1+ y4/3)2ẏ2 = C2(1+ y4/3).

Solving for ẏ,
dy

dt
= ±

√
C2(1+ y4/3)− k2

1+ y4/3 . (9.1.4)

The equilibrium solution verifies C2y4/3 = k2 − C2. Choosing C = k = 1, we get
y(t) = 0. From one of the Hamilton’s equations

ẋ = ∂H

∂p1
= p1

1+ y4/3 = k = 1.

We obtain the geodesic φ(t) = (t, 0) with φ(0) = (0, 0) and φ̇ = (1, 0).
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To find more geodesics we apply the separation in the equation (9.1.4) with C =
k = 1,

dy

dt
= ± y2/3

1+ y4/3 .

Integrating ∫
y−2/3 dy +

∫
y2/3 dy = ±t + C1.

Using y(0) = 0, the constant of integration vanishes

5y1/3 + y5/3 = ±5

3
t. (9.1.5)

This gives two distinct solutions for the equation (9.1.4) written implicitly. We can
find ẏ(0) by implicit differentiation

y−2/3ẏ + y2/3ẏ = ±1

and hence

ẏ(0) = ±y2/3(0)

1+ y4/3(0)
= 0.

The x-component is given by

ẋ = p1

1+ y4/3 =
1

1+ y4/3 .

Then the initial velocity is ẋ(0) = 1. Hence we have obtained three geodesics which
start at x0 = (0, 0) with the initial velocity v = (1, 0):

φ(t) = (t, 0),

ψ±(t) = (
x±(t), y±(t)

)
,

where

x±(t) =
∫ t

0

ds

1+ y
4/3
± (s)

,

and y± are the solutions of the equation (9.1.5). As the function y → 5y1/3 + y5/3

is symmetric about the origin, the solutions y−(t) and y+(t) will be symmetric too.
Hence the geodesics ψ− and ψ+ start tangent to the x-axis and point towards opposite
semiplanes.

Uniqueness

The following result is known in the theory of ordinary differential equations as the
Picard–Lindeleöf theorem. It holds in more restrictive conditions than the ones stated
below (see Hartman [20], chapter ii). It is a useful tool in investigating the uniqueness
of solutions.
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Theorem 9.3. Denote B(y0, b) = [y0 − b, y0 + b] ⊂ Rm. Assume the function f (y)

is C1
(
B(y0, b)

)
with the bound |f (y)| ≤ M . Then the system (9.1.3) has a unique

solution y = y(t) on [t0, t0 + b/M].

The function f (y) = J∇H(y) is C1 iff
∂gij

∂xr

is C1, or
∂
k

ij

∂xr

is continuous, i.e., the

Riemannian tensor Rl
ijk =

∂

∂xi

l

jk−
∂

∂xj

l

ik+
m∑

r=1

(

l

ir

r
jk−
l

jr

r
ik

)
is continuous.

Then Theorem 9.3 yields the following result:

Proposition 9.4 Consider x0 ∈ M such that gij has a continuous Riemannian tensor
Ri

jk in a neighborhood B(x0, b) of x0. Given v ∈ Tx0M , there is a > 0 and only one

geodesic φ : [t0, t0 + a] → (M, g) with φ(t0) = x0 and φ̇(t0) = v.

Example 9.1.2 Consider the Riemannian metric

(gij ) =
(

1+ y2/3 0
0 1+ y2/3

)
on R2. There are at least two geodesics starting at (0, 0) with initial velocity (1, 0).

This example is very similar to Example 9.1.1, but the functions
∂gii

∂y
are not con-

tinuous at y = 0. In this case we should be able to find explicit formulas for the

geodesics. Using the Hamiltonian H = 1

2

1

1+ y2/3 (p2
1 + p2

2) and the Lagrangian

L = 1

2
(1 + y2/3)(ẋ2 + ẏ2) we see in a similar way that p1 = k, constant and

p2 = (1+ y2/3)ẏ. The conservation of energy yields

k2 + (1+ y2/3)2ẏ2 = C2(1+ y2/3),

which becomes for C = k = 1,

dy

dt
= ± y1/3

1+ y2/3 . (9.1.6)

The equilibrium solution is y = 0. The corresponding x-component is x(t) = t . The
first geodesic is φ(t) = (t, 0). Separating and integrating in (9.1.6) yields

3

2
y2/3 + 3

4
y4/3 = ±t. (9.1.7)

Implicit differentiation yields

ẏ(0) = ±y1/3(0)

1+ y2/3(0)
= 0.

Denoting u = y2/3 in (9.1.7) and choosing the positive sign for t ,
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u2 + 2u− 4

3
t = 0

with the positive solution u =
(

1+ 4

3
t
)1/2 − 1. Hence

y(t) =
((

1+ 4

3
t
)1/2 − 1

)3/2
. (9.1.8)

The x-component is ẋ(t) = 1

1+ y2/3(t)
= 1

(1+ 4
3 t)1/2

and hence ẋ(0) = 1. Inte-

grating

x(t) =
∫ t

0

ds(
1+ 4

3 s
)1/2 =

3

2

((
1+ 4

3
t
)1/2 − 1

)
. (9.1.9)

The second geodesic which starts at (0, 0) with the initial velocity (1, 0) is ψ(t) =(
x(t), y(t)

)
, with x(t) and y(t) given by relations (9.1.9) and (9.1.8).

9.2 Geodesic spheres

If in Picard–Lindeleóf Theorem 9.3 we denote a = b/M , then a depends on the initial
condition y0.

Lemma 9.5 One may choose a = b/M as a continuous function of y0.

Proof. We shall show ∀ε > 0, ∃δ = δε > 0 such that

|y0 − y′0| < δ =⇒ |a(y0)− a(y′0)| < ε.

Consider an interior tangent sphere B(y′0, b′) ⊂ B(y0, b). Then the distance between
the centers is the difference of radii |y0 − y′0| = |b − b′|. Let M ′ be an upper bound
for |f | on B(y′0, b′). As we have M ≥ sup

y∈B(y0,b)

|f (y)| ≥ sup
y∈B(y′0,b′)

|f (y)|, we may

choose M ′ = M . Take δ = εM and consider |y0 − y′0| < δ. Then

|a(y0)− a(y′0)| =
∣∣∣ b

M
− b′

M ′
∣∣∣ = |b − b′|

M
= |y0 − y′0|

M
<

δ

M
= εM

M
= ε.

Proposition 9.6 Consider in Proposition 9.4 only velocities |v| = 1. Then one may
choose a > 0, uniformly with respect to v.

Proof. Choose y0 = (x0, v) in Lemma 9.5 with x0 fixed. Hence y0 belongs to the
compact set y0 ∈ {(x0, v); v ∈ Tx0M, |v| = 1}. On this set the continuous function
a(y0) will reach a minimum a0 > 0, which depends only on x0 and it is independent
of v.
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We shall denote the minimum given by the above proposition by a(x0) = a0. For
any 0 < t < a(x0) consider all the geodesics emanating at the point x0 with unit
initial speed. If the geodesic is parametrized by arc length, the velocity will be unitary
along the geodesic.

Definition 9.7 The geodesic sphere centered at x0 with radius t is defined by

S(x0, t) = {γ (t); γ : [0, a(x0))→ M, γ (0) = x0, γ unit speed geodesic},
with 0 < t < a(x0).

As the geodesics are locally length minimizing curves, the Riemannian distance is
measured along the geodesics and it is equal to the arc length parameter t ,

d(x0, γ (t)) = length(γ ) = t.

Hence the geodesic sphere can be written as

S(x0, t) = {x ∈ M; d(x0, x) = t}.
Consider the vector field, locally about x0, given by

Xγ(t) = γ̇ (t), t ∈ [0, a(x0)).

X is called a geodesic vector field.

Proposition 9.8 If X is a geodesic vector field, curl X = 0.

Proof. If X is geodesic vector field, it is provided by a gradient Xx = ∇S(x), where S

is the action associated with the geodesics. By Proposition 8.2, curl X = curl ∇S =
0.

x=c(t)

o

S(x  ,t)o

x  =c(0)

Figure 9.1: The geodesic sphere S(x0, t).

Lemma 9.9 (Gauss ) Any geodesic emanating from a point x0 meets the geodesic
sphere S(x0, t) perpendicularly.
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Proof. Using the formula for action S(x, t) = d(x0, x)2

2t
, a computation shows

γ̇ (t) = Xγ(t) = ∇S(γ (t), t) = d(x0, γ (t))

t
∇d(x0, γ (t)).

Assuming arc length parametrization, d(x0, γ (t)) = t . Hence

Xγ(t) = ∇d(x0, γ (t)).

Let S(x0, t) = d−1(t), where d denotes the distance. This yields an Xγ(t) unit normal
vector field to the geodesic sphere.

The following result contains a formula for the mean scalar curvature of geodesic
spheres.

Proposition 9.10 Let x ∈ S(x0, t) be a point on the geodesic sphere of radius t . Then
the mean scalar curvature

α(x) = �d(x0, x)

n− 1

∣∣∣∣
|x|=t

. (9.2.10)

Proof. From Gauss’s lemma, the geodesic flow is perpendicular to the geodesic
sphere. If it is parametrized by arc length, it is unitary. Hence the unit normal vector
field is Nx = Xx = ∇d(x0, x) and using Theorem 8.16 yields

α = −div N

n− 1
= −div∇d(x0, x)

n− 1
= �d(x0, x)

n− 1
.

Definition 9.11 Let � be a compact hypersurface in Rn. Then the total mean scalar
curvature of � is

αT =
∫

�

α(x) dσx. (9.2.11)

Consider the compact manifold M = f (Sn), where f : Sn → Rn+1 is an isometric
immersion. The manifolds M and Sn have the same intrinsic structure but different
second fundamental forms with respect to Rn+1. Denote by N and S the North and
the South poles of Sn. Let x0 = f (N ), x1 = f (S) be the images of the poles through
the isometry f . Consider geodesic spheres S(x0, t) on M centered at x0 of radius
t ∈ [0, 2π ]. The divergence and Fubini’s theorem yield

0 =
∫

M

α(x) dvx =
∫ 2π

0

(∫
S(x0,τ )

α(x) dσx

)
dt.

We arrive at:

Proposition 9.12 There is t ∈ (0, 2π) such that the total scalar mean curvature of
S(x0, t) vanishes, αT = 0.
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Definition 9.13 A Riemannian manifold (M, g) is called radially symmetric if for
any x0 ∈ M , the geodesic sphere S(x0, t) centered at x0 with radius t has constant
scalar mean curvature.

For a radially symmetric Riemannian manifold the scalar mean curvature of the
geodesic sphere S(x0, t) depends only on the radius t , which is the distance from the
center x0.

From Gauss’s Lemma 9.9, the unit normal vector field to the geodesic sphere
S(x0, t) is the vector field

N(x) = ċ(t),

where c : [0, t] → M is the unit speed geodesic which joins x0 = c(0) and x = c(t),
t < a(x0). For any x ∈ S(x0, t), we may choose the geodesic for which x = c(t).
A computation provides the following sequence of identities for the scalar mean
curvature of the geodesic sphere:

α(x) = − 1

n− 1
div N(x)

= − 1

n− 1
div ċ(t)

= − 1

n− 1
div∇S(c(t))

= 1

n− 1
�S(c(t)),

where S(c(t)) denotes the action between x0 and c(t). Hence we arrived at the fol-
lowing result.

Proposition 9.14 Let (M, g) be a Riemannian manifold. The following are equiva-
lent:
1) (M, g) is a radially symmetric space,

2) div ċ(t) depends only on t ,

3) �S(c(t)) depends only on t .

Example 9.2.1 The Euclidean space (Rn, δij ) is radially symmetric. In this case the
geodesics are lines through x0 given by

c(s) =
(
x1

0 +
s

t
x1, . . . , xn

0 +
s

t
xn
)
,

with c(t) = x. The velocity vector is

ċ(s) = 1

t
(x1, . . . , xn) = 1

t
x.

Because the geodesic is unit speed, t = |x|. For any 0 < s ≤ t , we have

div ċ(t) = 1

t
div

n∑
i=1

xi ∂

∂xi
= n

t
,

i.e., depends on t only.
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Lemma 9.15 Let S be the action between x0 and x within time t . Let d = d(x0, x)

denote the Riemannian distance. Then

�S = 1

t
(d�d − 1).

Proof.

�S = �
(d2

2t

)
= 1

2t
�d2

= 1

2t
(2d�d − 2|∇d|2)

= 1

t
(d�d − 1),

where we used the eiconal equation |∇d|2 = 1.

Example 9.2.2 On the circle S1 the Laplacian is �S1 = − d2

ds2 and the distance is

d = s, where s denotes the arc length. Then �S1(d) = 0, and hence Lemma 9.15

yields �S1(S) = −1

t
, i.e., it depends only on t . Hence S1 is a radially symmetric

space.

The volume function about a point x0

Let (M, g) be a Riemannian manifold with the volume element dv = √|gij | dx1 ∧
· · · ∧ dxn. If L denotes the Lie derivative, we have shown in Proposition 2.7 that for
any vector field X ∈ X (M), we have LXdv = −(divX) dv. If X is the vector field
along a geodesic flow defined by the geodesics emanating at the point x0, i.e.,

Xc(t) = ċ(t) = c∗
( d

ds

)
,

with c(0) = x0, then

Lċ dv = −(div ċ) dv

= (n− 1)α(c(t))

= �S(c(t)),

with α the scalar mean curvature of the geodesic sphere centered at x0.
Inspired by the above formula, we shall define the following volume function

associated with a geodesic flow on (M, g) emanating from a point x0.

Definition 9.16 A function v(τ) is called a volume function along a geodesic flow
parametrized by τ if it verifies the initial value problem
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dv(τ)

dτ
= 1

2
�S(x0, x, τ )v(τ ),

lim
τ→0

τn/2v(τ) = 1

where c(0) = x0 and c(τ ) = x, with c(s) geodesic. S(x0, x, τ ) stands for the classical

action between x0 and x within time τ , i.e., S(x0, x, τ ) = d2(x0, x)

2τ
.

Example 9.2.3 The volume function on Rn about any point x0.

From Example 9.2.1 we have �S = −div ċ = −n

τ
. The volume function about any

point x0 satisfies the equation
dv

dτ
= − n

2τ
v.

Separating and integrating between v(τ0) = v0 and v = v(τ), yields∫ v

v0

dv

v
= −n

2

∫ τ

τ0

dτ

τ
⇐⇒ ln

v

v0
= ln

(τ0

τ

)n/2
,

and hence v(τ) = v0τ
n/2
0

1

τn/2 . The boundary condition limτ↘0 τn/2v(τ) = 1 yields

v(τ) = 1

τn/2 .

The volume function will play an important role in finding heat kernels on radially
symmetric spaces. In this case, there is a function h(τ) = 1

2�S(x0, x, τ ) and the
volume function will be

v(τ) = v(τ0)e

∫ τ
τ0

h(u) du
.

We shall construct the heat kernel on radially symmetric spaces. The method yields
exact solutions.

9.3 A radially non-symmetric space

We shall show that the sphere S2 with the induced metric from R3 is not a radially
symmetric space. Consider the spherical coordinates defined on S2 without the North
and South poles

h(φ, ψ) = (cos φ cos ψ, sin φ cos ψ, sin ψ), 0 ≤ φ ≤ 2π,−π

2
< ψ <

π

2
.

The tangent vector fields

∂φ = − sin φ cos ψ ∂x1 + cos φ cos ψ ∂x2 ,

∂ψ = − cos φ sin ψ ∂x1 − sin ψ cos ψ ∂x2 + cos ψ ∂x3

define the coefficients of a Riemannian metric
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gφφ = 〈∂φ, ∂φ〉 = cos2 ψ, gφψ = gψφ = 〈∂φ, ∂ψ 〉 = 0, gψψ = 〈∂ψ, ∂ψ 〉 = 1,

with the inverse metric

gφφ = 1

cos2 ψ
, gφψ = gψφ = 0, gψψ = 1.

Hence the Laplace–Beltrami operator on S2 is

�S2 = − 1

cos2 ψ
∂2
φ − ∂2

ψ + tan ψ ∂ψ. (9.3.12)

Let M(cos φ cos ψ, sin φ cos ψ, sin ψ) be a point on the sphere, see Figure 9.2. We
shall compute the Riemannian distance d = d(M, A) between the points M and
A(1, 0, 0). At the point A we also have φ = ψ = 0. The distance d is the arc length
between M and A of a great circle. As the sphere has unit radius, then d = θ , where
θ = m ̂(MOA), see Figure 9.2.

O

M

A(1,0,0)

ψ

θ

φ

S(0,0,−1)

N(0,0,1)

Figure 9.2: The sphere S
2 and the point M(cos φ cos ψ, sin φ cos ψ, sin ψ).

From cos θ = 〈−−→OM,
−→
OA〉 = cos φ cos ψ we obtain

d(M, A) = θ = arccos(cos φ cos ψ).

In the following we shall compute �d . In order to do this we need to compute the
following derivatives:
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∂ψθ = cos φ sin ψ√
1− cos2 φ cos2 ψ

, ∂2
ψθ = cos φ cos ψ sin2 φ

(1− cos2 φ cos2 ψ)3/2 ,

∂2
φ =

cos φ cos ψ sin2 ψ

(1− cos2 φ cos2 ψ)3/2 .

Then

�θ = − 1

cos2 ψ

cos φ cos ψ sin2 ψ

(1− cos2 φ cos2 ψ)3/2

− cos φ cos ψ sin2 φ

(1− cos2 φ cos2 ψ)3/2

+ sin ψ

cos ψ

cos φ sin ψ (1− cos2 φ cos2 ψ)

(1− cos2 φ cos2 ψ)3/2 ⇐⇒

(1− cos2 φ cos2 ψ)3/2�θ = − cos φ cos ψ
(

sin2 φ + sin2 ψ

cos ψ
cos2 φ cos ψ

)
= − cos φ cos ψ

(
sin2 φ + sin2 ψ cos2 φ

)
= − cos φ cos ψ

(
1− cos2 φ + sin2 ψ cos2 φ

)
= − cos φ cos ψ

(
1− cos2 φ (1− sin2 ψ)

)
= − cos φ cos ψ

(
1− cos2 φ cos2 ψ

)
⇐⇒ �θ = − cos φ cos ψ√

1− cos2 φ cos2 ψ
= − cos θ√

1− cos2 θ

= −cos θ

sin θ
= − cot θ.

We have arrived at the following result.

Proposition 9.17 Consider the sphere S2 with the induced Riemannian metric from
R3. Let A be a point on the sphere S2. Let d denote the distance on S2 measured from
the point A. Then

�d + cot d = 0.

Now Lemma 9.15 yields

�S = 1

t
(d�d − 1) = −1

t
(d cot d + 1),

which does not depend only on time t . Hence S2 is not a radially symmetric space.

9.4 The Heisenberg group

9.4.1 The left invariant metric

The 3-dimensional Heisenberg group H1 may be realized as R3 = R2
x ×Rt endowed

with the group law
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(x, t) ◦H (x′, t ′) = (x + x′, t + t ′ + 2x2x
′
1 − 2x1x

′
2). (9.4.13)

The vector fields

X1 = ∂x1 + 2x2∂t , X2 = ∂x2 − 2x1∂t , T = ∂t (9.4.14)

are left invariant with respect to the group law (9.4.13) and generate the Lie algebra
of H1. The elliptic operator

�Cas := 1

2

(
X2

1 +X2
2 + T 2)

is called a Casimir operator. We shall construct a left invariant Riemannian metric h

on H1 in which the vector fields (9.4.14) are orthonormal. For more about Lie groups
theory, see [1].

Proposition 9.18 Consider the Riemannian space (R3, h), where the metric coeffi-
cients are given by

hij =
⎛⎝1+ 4x2

2 −4x1x2 −2x2

−4x1x2 1+ 4x2
1 2x1

−2x2 2x1 1

⎞⎠ . (9.4.15)

Then h(Xi, Xj ) = δij , h(Xj , T ) = 0, i, j = 1, 2, 3.

Proof. It is a direct verification.

h(X1, T ) = h13X
1
1T

3 + h23X
2
1T 3 + h33X

3
1T

3

= (−2x2)+ 0+ 2x2 = 0,

h(X2, T ) = h13X
1
2T

3 + h23X
2
2T 3 + h33X

3
2T

3

= 0+ 2x1 + (−2x1) = 0,

h(X1, X2) = h12X
1
1X

2
2 + h13X

1
1X

3
2 + h32X

3
1X

2
2 + h33X

3
1X

3
2

= −4x1x2 + (−2x2)(−2x1)+ (2x1)(2x2)+ (2x2)(−2x1) = 0.

The Lagrangian is defined as the kinetic energy associated with the Riemannian metric
h,

L(x, t, ẋ, ṫ ) = 1

2

3∑
i,j=1

hij ẋi ẋj .

Proposition 9.19 The Lagrangian is given by

L(x, t, ẋ, ṫ ) = 1

2
(ẋ2

1 + ẋ2
2 + ṫ2)+ 2(x1ẋ2 − x2ẋ1)(ṫ + x1ẋ2 − x2ẋ1). (9.4.16)

Proof. A straightforward computation yields
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hij ẋi ẋj = (1+ 4x2

2 )ẋ2
1 + (1+ 4x2

1 )ẋ2
2 + ṫ2 − 8x1x2ẋ1ẋ2 − 4x2ẋ1 ṫ + 4x1ẋ2 ṫ

= (ẋ2
1 + ẋ2

2 + ṫ2)+ 4[(x2ẋ1)
2 + (x1ẋ2)

2 − 2x2ẋ1x1ẋ2 − x2ẋ1 ṫ + x1ẋ2 ṫ]
= (ẋ2

1 + ẋ2
2 + ṫ2)+ 4(x1ẋ2 − x2ẋ1 + ṫ )(x1ẋ2 − x2ẋ1).

In polar coordinates x1 = r cos φ, x2 = r sin φ the Lagrangian becomes

L = 1

2
(ṙ2 + r2φ̇2 + ṫ2)+ 2r2φ̇(ṫ + r2φ̇)

= 1

2
(ṙ2 + r2φ̇2 + ṫ2)+ 2ṫ r2φ̇ + 2r4φ̇2.

9.4.1.1 The Euler–Lagrange system

The momenta are

θ = ∂L

∂ṫ
= ṫ + 2r2φ̇,

η = ∂L

∂φ̇
= r2φ̇ + 2ṫ r2 + 4r4φ̇,

ρ = ∂L

∂ṙ
= ṙ .

As the Lagrangian L does not depend on t and φ, the Euler–Lagrange equations yield

θ = constant, η = constant.

The momentum η can be written in terms of θ as

η = r2(φ̇ + 2ṫ + 4r2φ̇)s = r2(φ̇ + 2θ).

The Euler–Lagrange equation ρ̇ = ∂L

∂r
becomes

r̈ = rφ̇2 + 4ṫ rφ̇ + 8r3φ̇2

= rφ̇2 + 4rφ̇(ṫ + 2r2φ̇)

= rφ̇2 + 4rφ̇θ

= rφ̇(φ̇ + 4θ).

Hence the Euler–Lagrange system is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r̈ = rφ̇(φ̇ + 4θ),

r2(φ̇ + 2θ) = η,

ṫ + 2r2φ̇ = θ

θ = constant,

η = constant.

(9.4.17)
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It suffices to study only the geodesics from the origin, because of the Heisenberg
translation. In this case r(0) = 0 and hence η = 0. It follows that φ̇ = −2θ and the
system (9.4.17) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩

r̈ = −4θ2r,

φ̇ = −2θ,

ṫ = θ − 2r2φ̇ = θ(1+ 4r2),

θ = constant

(9.4.18)

with the boundary conditions

r(0) = 0, φ(0) = φ0, t (0) = t0 = 0, (9.4.19)

r(τ ) = r, φ(τ ) = �, t(τ ) = t. (9.4.20)

We shall show in the following that the system (9.4.18) has solutions if and only if
some compatibility of the above boundary conditions holds. The solutions are

r(s) = sin(2θs)

sin(2θτ)
r, (9.4.21)

φ(s) = −2θs + φ0. (9.4.22)

The boundary condition φ(τ) = � yields

θ = 1

2τ
(φ0 −�). (9.4.23)

Integrating in (9.4.21) yields

t (s) = θ

∫ s

0
(1+ 4r2(u)) du = θ

(
s + 4

∫ s

0
r2
)

= θ
(
s + 4r2

sin2(2θτ)

∫ s

0
sin2(2θu) du

)
= θ

[
s + 4r2

2θ sin2(2θτ)

(1

2
(2θs)− 1

4
sin(4θs)

)]
= θs + r2

sin2(2θτ)

(
2θs − 1

2
sin(4θs)

)
. (9.4.24)

The boundary condition t (τ ) = t yields

t = θτ + r2

sin2(2θτ)

(
2θτ − sin(2θτ) cos(2θτ)

)
= θτ + r2

( 2θτ

sin2(2θτ)
− cot(2θτ)

)
. (9.4.25)
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Figure 9.3: The graph of µ(x).

Let
µ(x) = x

sin2 x
− cot x. (9.4.26)

The graph of µ for x > 0 is sketched in Figure 9.3. It suffices to study only the case
θ > 0. The case θ < 0 can be obtained from the previous one changing t →−t and
φ→−φ. This follows from the relation θ = ṫ + 2r2φ̇. Then (9.4.25) becomes

t = θτ + r2µ(2θτ). (9.4.27)

In order to understand the exact number of geodesics, which join the origin with
any given point, we need the following lemma, see Beals, Gaveau and Greiner [37].

Lemma 9.20 µ is a monotone increasing diffeomorphism of the interval (−π, π)

onto R. On each interval (mπ, (m + 1)π), m = 1, 2, . . . , µ has a unique critical
point xm. On this interval µ decreases strictly from+∞ to µ(xm) and then increases
strictly from µ(xm) to +∞. Moreover

µ(xm)+ π < µ(xm+1), m = 1, 2, . . . , (9.4.28)

0 <
(
m+ 1

2

)
π − xm <

1

mπ
. (9.4.29)

Proof. As µ is an odd function, it suffices to show that it is a monotone increasing
diffeomorphism of the interval (0, π) onto (0,+∞). We note that sin x − x cos x

vanishes at x = 0 and it is increasing in (0, π). Then

1

2
µ′(x) = sin x − x cos x

sin3 x
=
{= 1/3, x = 0,

> 1/3, x ∈ (0, π).

The first identity holds as an application of the l’Hospital rule:
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lim
x→0

sin x − x cos x

sin3 x
= lim

x→0

cos x − cos x + x sin x

3 sin2 x

= 1

3
lim
x→0

x

sin x
= 1

3
.

The second inequality holds because

1

2
µ′′(x) = x + 2x cos2 x − 3 cos x sin x

sin4 x
> 0.

The numerator vanishes at x = 0, and its derivative is

4 sin x(sin x − x cos x) > 0, x ∈ (0, π).

Therefore µ is a diffeomorphism of the interval (0, π) onto (0,∞). In the interval
(mπ, (m+1)π) µ approaches+∞ at the endpoints. In order to find the critical points,
we set

1

2
µ′(x) = sin x − x cos x

sin3 x
= 1− x cot x

sin4 x
= 0.

Hence the critical point xm is the solution of the equation x = tan x on the interval
(mπ, (m+ 1)π). Note that

µ(x + π) = x + π

sin2(x + π)
− cot(x + π)

= x

sin2(x + π)
− cot(x + π)+ π

sin2 x

= µ(x)+ π

sin2 x
,

so the successive minimum values increase by more than π . From Figure 9.4 we have

mπ < xm < mπ + π

2
= (m+ 1

2
)π. (9.4.30)

Using xm = tan xm yields

cot xm = 1

xm

<
1

mπ
. (9.4.31)

Let f (x) = cot x. As f ′(x) = − 1
sin2 x

< −1, there is a ξ between x and y such that

f (x)− f (y) = f ′(ξ)(x − y) < −(x − y).

Hence x − y < f (y)− f (x). Choosing x = mπ + π
2 , y = xm and using

f (mπ + π

2
) = cos(mπ + π

2 )

sin(mπ + π
2 )
= 0,

and (9.4.31) yields
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0 < (m+ 1

2
)π − xm < cot xm <

1

mπ
.
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Figure 9.4: Critical points of µ are solutions of tan x = x.

The number of geodesics that join the origin with an arbitrary given point is given
in the following theorems.

Theorem 9.21. (i) Given a point P(x, t), r = |x| �= 0, t > 0, there are finitely many
geodesics between the origin and P . Let 0 < ζ1 < · · · < ζN be the solutions of

t − 1

2
ζ = r2µ(ζ ). (9.4.32)

Then, with θm = ζm

2τ
, the geodesic equations are

rm(s) = sin(2θms)

sin(2θmτ)
r,

φm(s) = −2θms + φ0,

tm(s) = θms + r2

sin2(2θmτ)

(
2θmτ − 1

2
sin(4θms)

)
, m = 1, 2, . . . N.

(ii) The compatibility condition for the boundary conditions is

ζm = φ0 −�, m = 1, 2, . . . , N. (9.4.33)

Given the point P(x, t), let � = arctan(|x|) be the final argument. Then the initial
arguments of the geodesics joining the origin and P are

φ0,m = ζm −�, m = 1, 2, . . . , N. (9.4.34)
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Proof. (i) It is obvious that equation (9.4.32) has finitely many solutions, see Figure
9.3. For each solution of (9.4.27), substitute θ in the equations (9.4.21), (9.4.22) and
(9.4.24).
(ii) It follows from (i) and condition (9.4.23). See Figure 9.5.

0 x

x

φ

φ

Φ

0,2

0,3

1

2

φ 0,1

Figure 9.5: The projections of the geodesics on an x-plane start with different arguments.

Remark 9.22 A similar theorem works for the case t < 0.

It is well known that locally, there is only one geodesic joining the origin and the
point P . The size and the shape of the neighborhood is given by the following result.

Theorem 9.23. Given a point P(x, t), with |t| < ( 1
2 + |x|2

)
π and |x| �= 0, there is a

unique geodesic joining the origin and the point P .

Proof. We shall discuss the following cases: 0 < t <
( 1

2 + |x|2
)
π , t = 0 and

−( 1
2 +|x|2

)
π < t < 0. The third case can be treated in a similar way as the first case.

Case 0 < t <
( 1

2 + |x|2
)
π .

We shall show that equation (9.4.32) has only one solution ζ > 0. Consider the

function ϕ(ζ ) = 1

|x|2 (t − 1

2
ζ ). We shall show that the solutions of the equation

ϕ(ζ ) = µ(ζ ) are only in the interval (0, π). It suffices to show that

ϕ(ζ ) < µ(ζ ), for π < ζ. (9.4.35)

Let x1 ∈ (π, 2π) be the first critical point of µ. Using Lemma 9.20, the monotonicity
of µ and convexity of µ yields

ϕ(ζ ) < ϕ(π) = 1

|x|2 (t − 1

2
π) < π < µ(x1) = min

π<ζ
µ(ζ ),
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which yields (9.4.35). Then there are no solutions on (π,+∞). As ϕ is decreasing
and µ is increasing on (0, π), there is only one solution for the equation ϕ(ζ ) = µ(ζ ),
see Figure 9.6

Case t = 0.

If t = 0, then −1

2
ζ = |x|µ(ζ ) yields only the solution ζ = 0. Then θ = ζ

2τ
= 0.

Theorem 9.21 yields φ0 = �, t (s) = 0. r(s) satisfies r̈ = 0, with solution r(s)|x|s.
There is a unique solution, which is a straight line from the origin to P , in the x-plane.

t

π

x 1 22 π 3πxπ

µ (ζ)

ζ

Figure 9.6: The case when φ(ζ ) = µ(ζ ) has a unique solution.

Corollary 9.24 Given a point P(x, 0), |x| �= 0, there is a unique geodesic between
the origin and P . The geodesic is given by the equations r(s) = |x|s, φ(s) = �, and
t (s) = 0, i.e., it is a straight segment in the x-plane.

In Theorems 9.21 and 9.23 we assumed |x| �= 0. In the following we shall cover
the case when |x| = 0.

Theorem 9.25. Given a point P(0, t) on the t-axis, there is a unique geodesic between
the origin and the point P .

Proof. If |x| = r = 0, from (9.4.21) we get r(s) = 0. Using (9.4.24) yields t (s) = θs,
with θ = t/τ . The geodesic is along the t-axis.
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Figure 9.7: There is a unique geodesic in the strip |t| < π( 1
2 + r2) between O and (x, t).

Remark 9.26 Theorem 9.23 works also in the case |x| = 0.

9.4.2 The classical action

In a strip like in Theorem 9.23 the geodesic is unique. Let θ denote the unique solution.
The Lagrangian along the geodesic is

L = 1

2
(ṙ2 + r2φ̇2 + ṫ2)+ 2(r2φ̇ + ṫ )r2φ̇

= 1

2
(ṙ2 + r2φ̇2 + ṫ2)+ 2(θ − r2φ̇)r2φ̇

= 1

2
(ṙ2 + r2φ̇2 + ṫ2)+ 2θr2φ̇ − 2r4φ̇2

= 1

2
ṙ2 + 1

2
r2φ̇2 + 1

2
(θ − 2r2φ̇)2 + 2θr2φ̇ − 2r4φ̇2

= 1

2
ṙ2 + 1

2
r2 4θ2 + 1

2
θ2

= 1

2
ṙ2 + 1

2
θ2(1+ 4r2)

= 1

2
ṙ2 + 1

2
θ ṫ .

The classical action is obtained by integrating the Lagrangian along the geodesic

S(τ) = S(x, y, τ ) =
∫ τ

0
L ds =

∫ τ

0

(1

2
ṙ2 + 1

2
θ ṫ
)

ds

= 1

2

∫ τ

0
ṙ2(s) ds + 1

2
θ
(
t (τ )− t (0)

)
. (9.4.36)
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Integrating the first term yields

∫ τ

0
ṙ(s)2 ds = 4θ2r2

sin2(2θτ)

∫ τ

0
cos2(2θs) ds = 2θr2

sin2(2θτ)

∫ 2θτ

0
cos2 v dv

= 2θr2

sin2(2θτ)

[
θτ + 1

4
sin(4θτ)

]
= θr2

sin2(2θτ)

(
2θτ + sin(2θτ) cos(2θτ)

)
= θr2

[ 2θτ

sin2(2θτ)
+ cot(2θτ)

]
= θr2µ̃(2θτ), (9.4.37)

where
µ̃(x) = x

sin2 x
+ cot x (9.4.38)

Proposition 9.27 The classical action starting at the origin is

S(x, t, τ ) = θ2|x|2
(1

2
+ 2|x|2

sin2(2θτ)

)
= θ t − 1

2
θ2τ + θ |x|2 cot(2θτ).

Proof. Using t (0) = 0, substituting (9.4.37) in equation (9.4.36) yields

S(x, t, τ ) = 1

2
θr2µ̃(2θτ)+ 1

2
θ t

= 1

2
θr2µ̃(2θτ)+ 1

2
θ
(
θτ + r2µ(2θτ)

)

= 1

2
θr2µ̃(2θτ)+ 1

2
θ2τ + 1

2
θr2µ(2θτ)

= 1

2
θr2[µ̃(2θτ)+ µ(2θτ)

]+ 1

2
θ2τ

= θr2 2θτ

sin2(2θτ)
+ 1

2
θ2τ

= θ2r
(1

2
+ 2r2

sin2(2θτ)

)
.

For the second identity, using µ(x) = µ̃(x)+ 2 cot(x) , we have

S(x, t, τ ) = 1

2
θr2

(
µ(2θτ)+ 2 cot(2θτ)

)
+ 1

2
θ t

= 1

2
θr2µ(2θτ)+ θr2 cot(2θτ)+ 1

2
θ t
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= 1

2
θ(t − θτ)+ θr2 cot(2θτ)+ 1

2
θ t

= 1

2
θ t − 1

2
θ2τ + θr2 cot(2θτ)+ 1

2
θ t

= θ t − 1

2
θ2τ + θr2 cot(2θτ).

Replacing r by |x| we obtain the desired formulas.

9.4.3 The complex action

The space (R3, h) with h given by (9.4.15) is not a radially symmetric space. The
reason is the fact that the momentum θ = θ(x, t, τ ), which appears in the classical
action given by Proposition 9.27, is a solution of the equation t = θτ + |x|2µ(2θτ),
and hence depends on the boundary conditions t and x in a complicated manner.
Therefore we do not expect �CasS(x, t, τ ) to be a function that depends just on τ .

However, we can fix the situation. In the next chapter, when computing the heat
kernels, we need an action function, which satisfies the Hamilton–Jacobi equation. We
define the complex action for our problem to be the function obtained by substituting
θ = −i in the classical action. Let SC denote the complex action. Using the properties
sin(−ix) = −i sinh(x) and cos(−ix) = i cosh(x) yields

SC = −it + 1

2
τ + (x2

1 + x2
2) coth(2τ). (9.4.39)

Proposition 9.28 The complex action (9.4.39) satisfies the Hamilton–Jacobi equa-
tion

∂SC

∂τ
+ 1

2

(
X1SC

)2 + 1

2

(
X2SC

)2 + 1

2

(
T SC

)2 = 0. (9.4.40)

Proof. A computation provides

∂tSC = −i,

∂x1SC = 2x1 coth(2τ),

∂x2SC = 2x2 coth(2τ).

2H(∇SC) := (
X1SC

)2 + (
X2SC

)2 + (
T SC

)2

= (
∂x1SC + 2x2∂tSC

)2 + (
∂x2SC − 2x1∂tSC

)2 + (
∂tSC

)2

= (
2x1 coth(2τ)− 2ix2

)2 + (
2x2 coth(2τ)+ 2ix1

)2 + (−i)2

= 4x2
1 coth2(2τ)− 4x2

2 − 8ix1x2 coth(2τ)

+4x2
2 coth2(2τ)− 4x2

1 + 8ix1x2 coth(2τ)− 1

= 4|x|2 coth2(2τ)− 4|x|2 − 1. (9.4.41)
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On the other hand
∂SC

∂τ
= 1

2
+ |x|2 ∂

∂τ

[
coth(2τ)

]
= 1

2
− 2|x|2

sinh2(2τ)
. (9.4.42)

Adding (9.4.41) and (9.4.42) yields

∂SC

∂τ
+H(∇SC) = 1

2
− 2|x|2

sinh2(2τ)
+ 1

2

(
4|x|2 coth2(2τ)− 4|x|2 − 1

)
= − 2|x|2

sinh2(2τ)
+ 2|x|2

(
coth2(2τ)− 1

)
= − 2|x|2

sinh2(2τ)
+ 2|x|2 1

sinh2(2τ)
= 0.

Now, we can easily check that �CasSC depends only on τ .

Proposition 9.29 We have �CasSC = 2 coth(2τ).

Proof. Obviously T 2SC = 0. We have

X2
1SC = X1

(
2x1 coth(2τ)− 2x2

) = 2 coth(2τ).

Similarly, X2
2SC = 2 coth(2τ), and hence

�CasSC = 1

2
X2

1SC + 1

2
X2

2SC + 1

2
T 2SC = 2 coth(2τ).

9.4.4 The volume function at the origin

The volume function equation

dv(τ)

dτ
+ (

�CasSC

)
v(τ) = 0

becomes
dv(τ)

dτ
= −2 coth(2τ)v(τ ).

Separating
dv

v
= −2 coth(2τ),

and integrating
ln |v(τ)| = − ln | sinh(2τ)| + C0.

Hence

v(τ) = 2

sinh(2τ)
(9.4.43)

is the solution with limτ→0 τv(τ ) = 1. Formula (9.4.43) will be useful when we
compute the heat kernel for the Casimir operator in Chapter 10.
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9.5 Exercises

1. Denote by γv the geodesic emanating at the point x0 with initial velocity v. Show

γv(λt) = γλv(t),

for any λ such that t, λt ∈ [0, a(x0)).

2. The mean curvature vector field to the geodesic sphere S(x0, t) is given by

Hx = �d(x0, x)

n− 1
∇d(x0, x)

∣∣∣∣
|x|=t

.

3. If ∇XX = 0, then curl X = 0.

4. Given a point x0 ∈ M , there is a compact neighborhood U of x0 and a > 0 such
that ∀ x ∈ U and ∀ v ∈ Tx0M , |v| = 1, there is only one geodesic γ : [0, a) → M

with γ (0) = x and γ̇ (0) = v.

5. Compute the exponential map on the Heisenberg group with respect to the metric h.

6. Let x ∈ Rn and � =∑n
i=1 ∂2

xi
. Show the following:

(i) �|x| = −n− 1

|x| .

(ii) �S = −n

t
, and use Lemma 9.15 to deduce that Rn with the standard metric is a

radially symmetric space.

(iii) �2(|x|) = 0, for x �= 0.

7. Show that there are no compact Riemannian manifolds M , without boundary, such
that

d�d = k, k �= 1.

Hint:

0 = −
∫
M

div(∇d2) dv =
∫
M

�(d2) dv

= 2
∫
M

d�d︸︷︷︸
=k

dv − 2
∫
M
|∇d|2︸ ︷︷ ︸
=1

dv

= 2kvol(M)− 2vol(M) = 2(k − 1)vol(M),

which is a contradiction.
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Fundamental Solutions for Heat Operators with
Potentials

10.1 The heat operator on Riemannian manifolds

Let (M, g) be a Riemannian manifold and let C1,2(M) be the space of functions
f : (0,∞) ×M → R, which are continuous on [0,∞) ×M , C1-differentiable in
the first variable, and C2-differentiable in the second variable. Let the Laplacian be
� = −div∇.

Definition 10.1 The operator P = ∂

∂t
+ � defined on the space C1,2(M) is called

the heat operator on (M, g).

In order to invert the heat operator, one needs to study the fundamental solution.

Definition 10.2 A fundamental solution K for the heat operator P = ∂

∂t
+�y is a

function K : M ×M × (0,∞)→ R with the following properties:

i) K ∈ C(M ×M × (0,∞)), C2 in the 1st variable, and C1in the 2ndvariable,

ii)
(

∂
∂t
+�y

)
K( . , y, t) = 0, ∀t > 0,

iii) lim
t↘0

K(x, · , t) = δx, ∀x ∈ M,

where δx is the Dirac distribution centered at x and the limit iii) is considered in the
distribution sense, i.e.,

lim
t↘0

∫
M

K(x, y, t)φ(x) dv(x) = φ(y), ∀φ ∈ C0(M), ∀x ∈ M,

where C0(M) denotes the set of smooth functions with compact support, and dv(x) =√|gij (x)|dx1 ∧ · · · ∧ dxn.
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10.1.1 The case of compact manifolds

Let (M, g) be a compact Riemannian manifold. We define the inner product(
f, g

)
0
=
∫

M

fg dv, ∀f, g ∈ F(M).

Let ‖f ‖L2 =
(
f, f

)1/2

0
. The space L2(M) is obtained from F(M) = {f : M →

R; f ∈ C∞} by completeness with respect to the norm ‖ · ‖L2 .
The real numbers λ for which there is a nonzero smooth function f such that

�f = λf are called eigenvalues. f is an eigenfunction of λ. Let Vλ(M, g) = {f :
M → R;�f = λf } be the vectorial space of the eigenfunctions together with the
zero function. The number mλ = dim Vλ(M, g) is called the multiplicity of λ.
In the following we shall find the fundamental solution of P in the case of a compact
manifold. The spectral theory of the Laplace operator is a consequence of the Riesz–
Schauder theory. Hence the following spectral theorem holds for the Laplace operator
on Riemannian manifolds:

Theorem 10.3. (i) The eigenvalues are nonnegative and form a countable infinite set

0 = λ0 < λ1 < λ2 < λ3 < · · · ,

with λk →+∞, as k→+∞ and the series
∑
k≥1

1

λ2
k

converges.

(ii) Each eigenvalue λk has finite multiplicity mk . The eigenspaces Vλk
(M, g) and

Vλj
(M, g), k �= j are orthogonal with respect to the inner product ( , )0.

(iii) From the system of eigenfunctions, using the Gram–Schmidt procedure, one may
obtain a complete orthonormal system {fkj ; k ∈ N, j = 1, . . . , mk} of eigenfunc-
tions, such that

h =
∞∑

k=0

mk∑
j=1

akjfkj , ∀h ∈ L2(M),

with akj = (h, fkj )0. In particular, the Parseval identity holds

‖h‖2
0 =

∞∑
k=0

mk∑
j=1

(h, fkj )
2
0.

The following result provides a formula for the fundamental solution on a compact
Riemannian manifold.

Proposition 10.4 Let {fi; i ∈ N} be a complete orthonormal system of eigenfunc-
tions for the Laplace operator on the compact Riemannian manifold (M, g), such
that

λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · .
Then the fundamental solution is given by
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K(x, y, t) =
∞∑
i=0

e−λi tfi(x)fi(y). (10.1.1)

Proof. Since the system {fi; i ∈ N} is an orthonormal basis of the Hilbert space
L2(M), we assume the existence of a fundamental solution for fixed x and t . Thus,

K(x, ·, t) =
∞∑
i=0

ρi(x, t)fi,

where

ρi(x, t) =
∫

M

K(x, y, t)fi(y) dv(y).

Differentiating with respect to t yields

∂ρi

∂t
=
∫

M

∂K

∂t
(x, y, t)fi(y) dv(y) = 〈∂K

∂t
, fi〉

= −〈�yK, fi〉 = −〈K, �yfi〉 = −λi〈K, fi〉 = −λiρi .

Hence
∂ρi

∂t
= −λiρi , where ρi(x, t) = ci(x)e−λi t . The function ci satisfies

lim
t↘0

ρi(x, t) = lim
t↘0

∫
M

K(x, y, t)fi(y) dv(y)

=
∫

M

δx(y)fi(y) dv(y) = fi(x).

On the other side
lim
t↘0

ρi(x, t) = ci(x),

and hence ci(x) = fi(x). Therefore equation (10.1.1) is proved.

The above proof assumes the existence of a fundamental solution for the heat oper-

ator. This result is proved in [28]. The series
∞∑
i=0

ρi(x, t)fi(y) is pointwise convergent

on (0,∞)×M×M and its sum is K(x, y, t). For the proof the reader may consult [28].

One may be interested in solving the initial value problem for the heat operator:
Given a continuous function g ∈ C0(M), find a function f ∈ C1,2(M) such that

i) (
∂

∂t
+�)f = 0,

ii) lim
t↘0

f (x, t) = g(x), ∀x ∈ M .

Proposition 10.5 The solution for the above i) − ii) initial value problem is given
by the formula

f (x, t) =
∫

M

K(x, y, t)g(y) dv(y), (10.1.2)

where K is given by (10.1.1).
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Proof. A straightforward computation provides

∂

∂t
f (x, t) = ∂

∂t

∫
M

∞∑
i=0

e−λi tfi(x)fi(y)g(y) dv(y)

= −
∫

M

∞∑
i=0

λie
−λi tfi(x)fi(y)g(y) dv(y).

�xf (x, t) = �x

∫
M

∞∑
i=0

e−λi tfi(x)fi(y)g(y) dv(y)

=
∫

M

∞∑
i=0

e−λi t�xfi(x)fi(y)g(y) dv(y)

=
∫

M

∞∑
i=0

λie
−λi tfi(x)fi(y)g(y) dv(y).

Hence

(
∂

∂t

+�)f = 0.

We still need to show that
lim
t↘0

f (x, t) = g(x).

Using definition 10.2 iii) yields

lim
t↘0

f (x, t) = lim
t↘0

∫
M

K(x, y, t)g(y) dv(y) =
∫

M

lim
t↘0

K(x, y, t)g(y) dv(y)

=
∫

M

δx(y)g(y) dv(y) = 〈δx, g〉 = g(x).

10.2 Heat kernel on radially symmetric spaces

We have seen that Rn with the standard metric is a radially symmetric space, i.e., the
scalar mean curvature of the geodesic sphere depends only on its radius. It is known
that the fundamental solution in this case is given by

K(x, y, t) = (4πt)−n/2e−
|x−y|2

4t , t > 0. (10.2.3)

This is a product between the volume function v(t) = t−n/2 and an exponential with
the exponent

−|x − y|2
4t

= −1

2
S,
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where S is the classical action between the points x and y within time t .
The goal of this section is to prove a similar formula for radially symmetric spaces.

We shall use the following result.

Lemma 10.6 For any smooth function ϕ on a Riemannian manifold (M, g) we have

�eϕ = eϕ(�ϕ − |∇ϕ|2). (10.2.4)

Proof. First we shall show that

∇eϕ = eϕ∇ϕ. (10.2.5)

This comes from the definition of the gradient. For any vector field X,

g(∇eϕ, X) = X(eϕ) =
∑

Xi∂xi
eϕ = eϕX(ϕ)

= eϕg(∇ϕ, X) = g(eϕ∇ϕ, X),

and hence (10.2.5). Using the formula

div(f X) = f div X + g(∇f, X), ∀X ∈ X (M)

we have

−�eϕ = div(∇eϕ) = div(eϕ∇ϕ)

= eϕ(div∇ϕ)+ g(∇eϕ,∇ϕ)

= −eϕ�ϕ + eϕg(∇ϕ,∇ϕ)

= −eϕ(�ϕ − |∇ϕ|2).

Let d = d(x0, x) be the Riemannian distance between the points x0 and x ∈ M . Let

f = 1

2
d2(x0, x). (10.2.6)

It was proved in section 7.3 (see Corollary 7.16) that |∇d2|2 = 4d2. Hence the
function f satisfies the eiconal equation

|∇f |2 = 2f. (10.2.7)

The classical action starting at x0 is

S = S(x0, x, t) = d2(x0, x)

2t
= f

t
.

Then

|∇S|2 = ∣∣∇(f

t

)∣∣2 = 1

t2 |∇f |2 = 2f

t2 =
2S

t
= 2E,
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where E = d2(x0, x)

2t2 is the energy.

Inspired by the formula (10.2.3), we shall look for a fundamental solution of the
form

K(x0, x, t) = V (t)ekS, (10.2.8)

where k ∈ R is a constant, V (t) is a differentiable function, and S is the above action.

Differentiating and using the Hamilton–Jacobi equation
∂

∂t
S = −E, we have

∂

∂t
K = V ′(t)ekS + kV (t)ekS ∂

∂t
S

= ekS
(
V ′(t)− kEV (t)

)
.

Lemma 10.6 yields

�
(
V (t)ekS

)
= ekSV (t)

(
k�S − k2|∇S|2

)
= ekSV (t)

(
k�S − 2k2E

)
.

Hence

(
∂

∂t
+�)

(
V (t)ekS

)
= ekSV (t)

(V ′(t)
V (t)

− kE
)
+ ekSV (t)

(
k�S − 2k2E

)
= ekSV (t)

(V ′(t)
V (t)

+ k�S − kE(2k + 1)
)
.

Choose k = −1

2
and let V (t) satisfy the equation

V ′(t)
V (t)

+ k�S = 0, i.e.,

V ′(t) = 1

2
�S V (t). (10.2.9)

As the manifold (M, g) is radially symmetric, �S is a function of t only, i.e., there

is a function h(t) = 1

2
�S = n− 1

2
α(t), where α(t) = α(c(t)) is the mean scalar

curvature of the geodesic sphere centered at x0 with radius t . The solution is given by

V (t) = V (t0)e

∫ t
t0

h(u) du
.

Theorem 10.7. Let (M, g) be a radially symmetric space about the point x0 ∈ M .
Then the fundamental solution for the heat operator is given by

K(x0, x, t) = CV (t)e−
1
2 S = CV (t)e−

d2(x0,x)

4t ,

where V (t) is the solution of (10.2.9) with the condition lim
t↘0

tn/2V (t) = 1 and

1/C = 2n

∫ ∞
0

e−y2
ω(x0, y) dy,

with ω defined by (10.2.10).
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Proof. We still need to prove iii) of Definition 10.2, i.e., for any φ compact supported
function,

lim
t↘0

∫
M

K(x0, x, t)φ(x) dv(x) = φ(x0).

Substitute y = d(x0, x)

2
√

t
and let x ∈ d−1(2

√
ty) = S(x0, 2

√
ty), a geodesic sphere

centered at x0.As φ is compact supported, let D = supp(φ). Then let δ = max
x∈D

d(x0, x)

and y ∈ [0, δ/(2
√

t)]. Let ω(x0, y) be defined by

volS(x0, 2
√

ty) ∼ (2
√

t)nω(x0, y), as t ↘ 0. (10.2.10)

lim
t↘0

∫
M

K(x0, x, t)φ(x) dv(x) = C lim
t↘0

V (t)

∫
M

e−
d2(x0,x)

4t φ(x) dv(x)

= C lim
t↘0

V (t)

∫ δ/(2
√

t)

0

∫
S(x0,2

√
ty)

e−y2
φ(x) dσx dy

= C lim
t↘0

V (t)

∫ δ/(2
√

t)

0
e−y2

φ(xt )volS(x0, 2
√

ty) dy

= C lim
t↘0

V (t)φ(xt )

∫ δ/(2
√

t)

0
e−y2

(2
√

t)nω(x0, y) dy

= C lim
t↘0

2ntn/2V (t)φ(xt )

∫ ∞
0

e−y2
ω(x0, y) dy

= φ(x0) = δx(φ),

where we have applied Fubini’s theorem and the mean value theorem for integrals to
obtain xt ∈ S(x0, 2

√
ty).

We shall extend this formula to spaces which are not radially symmetric but can be
reduced to them. In those cases we shall compute the volume function V (t) explicitly.

10.3 Heat kernel for the Casimir operator

We have defined the Casimir operator in Chapter 9 as an elliptic operator given by a
sum of squares of vector fields

�Cas = 1

2

(
X2

1 +X2
2 + T 2

)
,

where X1, X2 and T are given by (9.4.14) and are left invariant vector fields with
respect to the Heisenberg group law (9.4.13).

Theorem 10.8. There is a constant c such that the fundamental solution for the op-
erator ∂τ −�Cas is
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K
(
y, σ, x, t, τ

) = K
(
0, 0, (y, σ )−1 ◦H (x, t), τ

)
, (10.3.11)

where “ ◦H " stands for the Heisenberg group law, and

K
(
0, 0, x, t, τ

) = 2c
sinh(2τ)

e
−1

2

(− it + τ

2
|x|2 coth(2τ)

)
,

and x = (x1, x2), y = (y1, y2).

Proof. The complex action from the origin and the volume function at the origin had
been computed in Chapter 9, see equations (9.4.39) and (9.4.43). Theorem 10.7 yields
a fundamental solution at the origin

K
(
0, 0, x, t, τ

) = v(τ)e−
1
2 SC

= 2c
sinh(2τ)

e
−1

2

(− it + τ

2
|x|2 coth(2τ)

)
.

We have that K
(
0, 0, x, t, τ

)
is the kernel relative to the origin. It follows from the

left invariance of �Cas that the full heat kernel is obtained by left translations. The
Heisenberg convolution provides formula (10.3.11). See Exercise 5.

10.4 Heat kernel for operators with potential

In the next few sections we shall compute the action and volume functions explicitly
and provide closed form solutions for heat operators with potential. The first few
sections will deal with the heat kernel of a Hermite operator.

10.4.1 The kernel of ∂t − ∂2
x ± b2x2

We start with the operator

L = d2

dx2 − a2x2,

where a ∈ R+ is a nonnegative real parameter. We associate the Hamiltonian function
as half of the principal symbol

H(ξ, x) = 1

2
(ξ2 − a2x2). (10.4.12)

The Hamiltonian system is {
ẋ = Hξ = ξ,

ξ̇ = −Hx = a2x.
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As we are interested in finding the geodesic between the points x0, x ∈ R, x(s) will
satisfy the boundary problem{

ẍ = a2x,

x(0) = x0, x(t) = x.

The conservation of energy law is

1

2
ẋ2(s)− 1

2
a2x2(s) = E,

where E is the energy constant. This can be used to obtain an ODE for the solution
x(s),

dx

ds
=
√

2E + a2x2 =⇒ dx√
2E + a2x2

= ds.

Integrating between s = 0 and s = t , with x(0) = x0 and x(t) = x, yields∫ x

x0

du√
2E + a2u2

= t ⇐⇒
∫ v

v0

dv√
1+ v2

= at,

with v = ax√
2E

and v0 = ax0√
2E

. Integrating yields

sinh−1(v)− sinh−1(v0) = at

⇐⇒ sinh−1(v) = sinh−1(v0)+ at

⇐⇒ v = sinh
(

sinh−1(v0)+ at
)

⇐⇒ v = v0 cosh(at)+ cosh(sinh−1(v0)) sinh(at)

⇐⇒ v = v0 cosh(at)+
√

1+ v2
0 sinh(at)

⇐⇒ ax√
2E
= ax0√

2E
cosh(at)+

√
1+ a2x2

0

2E
sinh(at)

⇐⇒ ax = ax0 cosh(at)+
√

2E + a2x2
0 sinh(at)

⇐⇒ a(x − x0 cosh(at))

sinh(at)
=
√

2E + a2x2
0 .

Solving for E yields

2E = a2(x − x0 cosh(at))2

sinh(at)2 − a2x2
0

=
a2
(
x2 − 2xx0 cosh(at)+ x2

0 cosh(at)2 − x2
0 sinh(at)2

)
sinh(at)2

=
a2
(
x2 + x2

0 − 2xx0 cosh(at)
)

sinh(at)2 .
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Proposition 10.9 The energy along a geodesic derived from the Hamiltonian (10.4.12)
between the points x0 and x is

E =
a2
(
x2 + x2

0 − 2xx0 cosh(at)
)

2 sinh(at)2 . (10.4.13)

Making x0 = 0, we obtain the following result.

Corollary 10.10 The energy along a geodesic derived from the Hamiltonian (10.4.12)
joining the origin and x is given by

E = a2x2

2 sinh(at)2 . (10.4.14)

We note that if we take the limit a→ 0 in (10.4.13), we obtain the Euclidian energy

lim
a→0

E = lim
a→0

a2t2

sinh(at)2

(
x2 + x2

0 − 2xx0 cosh(at)
)

2t2

= (x − x0)
2

2t2 .

The action

Let S = S(x0, x, t) be the action with initial point x0 and final point x, within time t .
The action satisfies the Hamilton–Jacobi equation

∂tS +H(∇S) = 0.

We note that

H = 1

2
(ξ2 − a2x2) = 1

2
ẋ2 − 1

2
a2x2 = E,

and hence ∂tS = −E. Using (10.4.13) yields

∂S

∂t
= −

a2
(
x2 + x2

0 − 2xx0 cosh(at)
)

2 sinh(at)2

= a

2
(x2 + x2

0 )
∂

∂t
coth(at)− axx0

∂

∂t

1

sinh(at)

= ∂

∂t

[a

2
(x2 + x2

0 ) coth(at)− axx0

sinh(at)

]
.

Hence we have arrived at the action

S(x0, x, t) = a

2

[
(x2 + x2

0 ) coth(at)− 2xx0

sinh(at)

]
= a

2

1

sinh(at)

[
(x2 + x2

0 ) cosh(at)− 2xx0

]
. (10.4.15)
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We also note that

lim
a→0

S = (x − x0)
2

2t
,

which is the Euclidian action.

Lemma 10.11 We have
1) (∂xS)2 = a2x2 + 2E,

2) ∂2
xS = a coth(at).

Proof. 1) Differentiating in (10.4.15) yields

∂xS = a

sinh(at)

(
x cosh(at)− x0

)
, (10.4.16)

(∂xS)2 =
a2
(
x2 cosh2(at)+ x2

0 − 2xx0 cosh(at)
)

sinh2(at)

=
a2
(
x2 + x2 sinh2(at)+ x2

0 − 2xx0 cosh(at)
)

sinh2(at)

= a2x2 + a2(x2 + x2
0 − 2xx0 cosh(at))

sinh2(at)

= a2x2 + 2E.

2) Differentiating in (10.4.16) yields

∂2
xS = a

sinh(at)
cosh(at) = a coth(at).

We shall look for a fundamental solution of the type

K(x0, x, t) = V (t)ekS(x0,x,t), (10.4.17)

where V (t) will satisfy a volume function equation and k is a real constant. Lemma
10.11 provides

∂tK = V ′(t)ekS + V (t)kekS∂tS

= ekS
(
V ′(t)− kV (t)E

)
,

∂xe
kS = kekS∂xS,

∂2
x ekS = k2ekS(∂xS)2 + kekS∂2

xS

= kekS
[
k(∂xg)2 + ∂2

xS
]

= kekS
[
k(a2x2 + 2E)+ a coth(at)

]
.
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We shall find the heat kernel using a multiplier method. Let

P = ∂t − ∂2
x + αa2x2, (10.4.18)

where α is a real multiplier, which will be determined such that PK(x0, x, t) = 0 for
any t > 0.

PK(x0, x, t) = ekS
(
V ′(t)− kEV (t)

)
−kekS

(
k(a2x2 + 2E)+ a coth(at)

)
V (t)

+αa2x2ekSV (t)

= ekSV (t)
[V ′(t)

V (t)
− kE − k2(a2x2 + 2E)− ka coth(at)+ αa2x2

]
= ekSV (t)

[V ′(t)
V (t)

− kE − k2a2x2 − 2k2E + αa2x2 − ka coth(at)
]

= ekSV (t)
[V ′(t)

V (t)
− kE(2k + 1)+ (α − k2)a2x2 − ka coth(at)

]
.

In order to eliminate the middle two terms in the brackets, we choose k = −1

2
and

α = 1

4
. Let b = a

2
> 0. Then the operator (10.4.18) becomes

P = ∂t − ∂2
x + b2x2 (10.4.19)

and

PK(x0, x, t) = K(x0, x, t)
(V ′(t)

V (t)
+ b coth(2bt)

)
.

We shall choose V (t) such that

V ′(t)
V (t)

= −b coth(2bt), t > 0.

Integrating yields

ln V (t) = −1

2
ln
(

sinh(2bt)
)
=⇒ V (t) = C√

sinh(2bt)
.

Using the action (10.4.15), the fundamental solution formula (10.4.17) becomes

K(x0, x, t) = C√
sinh(2bt)

e
−2b

4

1

sinh(2bt)
[(x2 + x2

0 ) cosh(2bt)− 2xx0]

= C√
2bt

√
2bt

sinh(2bt)
e
− 1

4t
· 2bt

sinh(2bt)
[(x2 + x2

0 ) cosh(2bt)− 2xx0]
.
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We shall find the constant C by investigating the limit case b→ 0, when the operator

(10.4.19) becomes the usual one-dimensional heat operator ∂t − ∂2
x . As

2bt

sinh(2bt)
→

1, the above fundamental solution becomes

K(x0, x, t) ∼ C√
2bt

e
1
4t

(x−x0)
2
, b→ 0.

By comparison with the fundamental solution for the usual heat operator, which is

1√
4πt

e
1
4t

(x−x0)
2
,

we find C =
√

b

2π
. We arrive at the following result.

Theorem 10.12. Let b ≥ 0. The fundamental solution for the operator P = ∂t−∂2
x +

b2x2 is

K(x0, x, t)

= 1√
4πt

√
2bt

sinh(2bt)
e
− 1

4t

2bt

sinh(2bt)
[(x2 + x2

0 ) cosh(2bt)− 2xx0]
, t > 0.

The computations are similar in the case when b = −iβ. Using cosh(iβt) = cos(βt)

and sinh(2iβt) = i sin(2βt), we obtain a dual theorem.

Theorem 10.13. Let β ≥ 0. The fundamental solution for the operator P = ∂t −
∂2
x − β2x2 is

K(x0, x, t)

= 1√
4πt

√
2βt

sin(2βt)
e
− 1

4t

2βt

sin(2βt)
[(x2 + x2

0 ) cos(2βt)− 2xx0]
, t > 0.

10.4.2 The kernel of ∂t − ∑
∂2
xi

± a2|x|2

Consider the operator

�n − a2|x|2 = ∂2
x1
+ · · · + ∂2

xn
− a2(x2

1 + · · · + x2
n), a ≥ 0.

The associated Hamiltonian is

H = 1

2
(ξ2

1 + · · · + ξ2
n )− 1

2
a2(x2

1 + · · · + x2
n),

with the Hamiltonian system
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ẋj = Hξj

= ξj ,

ξ̇j = −Hxj
= a2xj , j = 1, . . . , n.

The geodesic x(s) starting at x0 = (x0
1 , . . . , x0

n) and having the final point x =
(x1, . . . , xn) satisfies the equations⎧⎪⎨⎪⎩

ẍj = a2xj ,

xj (0) = x0
j ,

xj (t) = xj , j = 1 . . . n.

As in the one-dimensional case, we have the law of conservation of energy

ẋ2
j (s)− a2x2

j (s) = 2Ej , j = 1, . . . , n

where Ej is the energy constant for the j -th component. The total energy, which is
the Hamiltonian, is given by

H =
n∑

j=1

(
1

2
ẋ2
j −

1

2
a2x2

j ) = E1 + · · · + En = E(constant).

Proposition 10.9 yields

Ej =
a2[x2

j + (x0
j )2 − 2xjx

0
j cosh(at)]

2 sinh2(at)
,

and hence

H = E =
n∑

j=1

Ej = a2[|x|2 + |x0|2 − 2〈x, x0〉 cosh(at)]
2 sinh2(at)

,

where |x|2 =∑n
j=1 x2

j and 〈x, x0〉 =∑n
j=1 xjx

0
j .

The action

The action between x0 and x in time t satisfies the equation
∂

∂t
S = −E or

∂

∂t
S = −a2[|x|2 + |x0|2 − 2〈x, x0〉 cosh(at)]

2 sinh2(at)

= ∂

∂t

[
a

2
(|x|2 + |x0|2) coth(at)− a〈x, x0〉

sinh(at)

]
.

Hence we shall choose

S = a

2

1

sinh(at)

[
(|x|2 + |x0|2) cosh(at)− 2〈x, x0〉

]
. (10.4.20)
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Let

Sj = a

2

1

sinh(at)

[
(x2

j + (x0
j )2) cosh(at)− 2xj x0

j

]
. (10.4.21)

Then S = S1 + · · · + Sn and ∂xj
S = ∂xj

Sj . Then Lemma 10.11 yields

n∑
j=1

(∂xj
S)2 =

n∑
j=1

(∂xj
Sj )

2 =
n∑

j=1

(a2x2
j + 2Ej)

= a2|x|2 + 2E,

n∑
j=1

∂2
xj

S =
n∑

j=1

∂2
xj

Sj = na coth(at).

We shall look for a kernel of the form

K(x0, x, t) = V (t)ekS(x0,x,t), k ∈ R. (10.4.22)

A computation similar to the one-dimensional case yields

∂

∂t
K = ekS

(
V ′(t)− kEV (t)

)
,

and
∂2
xj

ekS = ekSk
[
k(∂xj

S)2 + ∂2
xj

S
]

and hence
�ne

kS = kekS
[
k(a2|x|2 + 2E)+ n a coth(at)

]
.

In order to find the kernel for the heat operator we employ the multiplier method
again. We shall consider the parabolic operator

Pn = ∂t −�n + αa2|x|2,
where α is a multiplier subject to being found later. Then

PnK = ekS
[
V ′(t)− kEV (t)

]
−kekS

[
k(a2|x|2 + 2E)+ n a coth(at)

]
V (t)

+αa2|x|2V (t)ekS

= ekSV (t)
[V ′(t)

V (t)
− kE(1+ 2k)+ (α − k2)a2|x|2 − k n a coth(at)

]
= ekSV (t)

[V ′(t)
V (t)

+ na

2
coth(at)

]
,

where we choose k = −1

2
and α = 1

4
. Let b = a

2
≥ 0 and choose V (t) satisfying
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V ′(t)
V (t)

= −nb coth(2bt), t > 0.

Integrating yields V (t) = C

sinhn/2(2bt)
. Hence the fundamental solution for the

operator Pn = ∂t −�n + b2|x|2 expressed in the form (10.4.22) is

K(x0, x, t) = C

sinhn/2(2bt)
e
−2b

4

1

sinh(2bt)

(
(|x|2 + |x0|2) cosh(2bt)− 2〈x, x0〉

)

= C

(2bt)n/2

(2bt)n/2

sinhn/2(2bt)
e
− 1

4t

2bt

sinh(2bt)

(
(|x|2 + |x0|2) cosh(2bt)− 2〈x, x0〉

)
.

When b→ 0 we should obtain the kernel of the heat operator ∂t −�n, which is

1

(4πt)n/2 e
− 1

4t
|x − x0|2

, t > 0.

By comparison, we obtain the value

C = bn/2

(2π)n/2 .

Theorem 10.14. Let b ≥ 0 and �n = ∑n
j=1 ∂2

xj
. The fundamental solution for the

operator Pn = ∂t −�n + b2|x|2 is

K(x0, x, t)

= 1

(4πt)n/2

( 2bt

sinh(2bt)

)n/2

e
− 1

4t

2bt

sinh(2bt)
[(|x|2 + |x0|2) cosh(2bt)− 2〈x, x0〉]

for t > 0.

In a similar way as in the one-dimensional case, choosing b = −iβ, yields the
following result.

Theorem 10.15. Let β ≥ 0 and �n = ∑n
j=1 ∂2

xj
. The fundamental solution for the

operator P = ∂t −�n − β2|x|2 is

K(x0, x, t)

= 1

(4πt)n/2

( 2βt

sin(2βt)

)n/2

e
− 1

4t

2βt

sin(2βt)
[(|x|2 + |x0|2) cos(2βt)− 2〈x, x0〉]

for t > 0.
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10.4.3 Fourier transform method

The Hermite operator has been studied by mathematicians and physicists for a few
generations (see e.g., [5], [18]). The Fourier transform method used in this section
follows the idea of Chang and Tie, see [8]. In the following we derive the fundamental
solution and the heat kernel of the Hermite operator

Hα = α +
n∑

j=1

(
λ2

j x
2
j −

∂2

∂x2
j

)

in Rn, i.e., we are looking for a distribution Kα(x, y) such that⎡⎣α +
n∑

j=1

(
λ2

j x
2
j −

∂2

∂x2
j

)⎤⎦Kα(x, y) = δ(x − y). (10.4.23)

We first compute the fundamental solution with singularity at the origin when

α /∈ � =
⎧⎨⎩−

n∑
j=1

(2kj + 1)λj ; k = (k1, . . . , kn) ∈ (Z+)n

⎫⎬⎭ .

We also construct the relative fundamental solution for the operator Hα0 while α0 ∈ �,
i.e.,

I = Kα0Hα0 + Jα0 .

Here Jα0 is a projection operator. Since the operator Hα is not left invariant under the
Euclidean group action, we have to compute the fundamental solution with singularity
at any point y. Another reason for dividing these into two cases is to use a different
method to sum up the infinite series involved.

10.4.3.1 Fundamental solution with singularity at the origin

In this section, we shall find Kα(x) = K(x, 0), i.e., the fundamental solution with
singularity at the origin first. Taking the Fourier transform

f̂ (ξ) = F(f )(ξ) =
∫

Rn

e−ix·ξ f (x)dx

to the Hermite operator and applying the formulae

F
(

∂f

∂xj

)
= iξjF(f )(ξ) and F(xjf (x)) = i

∂

∂ξj

(F(f ))(ξ),

then when y = 0, equation (10.4.23) becomes

(α + |ξ |2 −
n∑

j=1

λ2
j

∂2

∂ξ2
j

)K̂α(ξ) = 1.
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First note that the Hermite function ψk(x) is defined by its usual generating function
formula: ∞∑

k=0

ψk(x)

k! tk = e2tx−t2− 1
2 x2

.

Here ψk(x) is the eigenfunction of (x2 − d2

dx2 ) with eigenvalue 2k + 1, i.e.,(
x2 − d2

dx2

)
ψk(x) = (2k + 1)ψk(x). (10.4.24)

Besides the generating function formula, ψk(x) has another representation

ψk(x) = e
1
2 x2

(
− d

dx

)k

(e−x2
) = Hk(x)e−

1
2 x2

, k ∈ Z+, (10.4.25)

where Hk(x) is the Hermite polynomial of degree k. The system {ψk(x)}∞k=0 is com-
plete in L2(R) and satisfies the orthogonal condition

< ψk, ψ� >=
∫ ∞
−∞

ψk(x)ψ�(x)dx = 2k
√

πk!δk� with δk� =
{

1 � = k,

0 � �= k.

(10.4.26)

Going back to the differential operator ξ2
j − λ2

j

∂2

∂ξ2
j

, we introduce the new variable

ηj = ξj√
λj

, then

ξ2
j − λ2

j

∂2

∂ξ2
j

= λj

(
η2

j −
∂2

∂η2
j

)
.

Equation (10.4.24) yields(
η2

j −
∂2

∂η2
j

)
ψk(ηj ) = (2k + 1)ψk(ηj ).

This implies(
α

n
+ ξ2

j − λ2
j

∂2

∂ξ2
j

)
ψk(

ξj√
λj

) =
[α

n
+ λj (2k + 1)

]
ψk(

ξj√
λj

), (10.4.27)

i.e., ψk(
ξj√
λj

) is the eigenfunction of
α

n
+ ξ2

j − λ2
j

∂2

∂ξ2
j

with eigenvalue
α

n
+

λj (2k + 1). Next, for k = (k1, . . . , kn) we define the n-tuple Hermite function

�k(ξ) =
n∏

j=1

ψkj
(ξj /

√
λj )
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and let

K̂α(ξ) =
∞∑
|k|=0

ck�k(ξ), where |k| = k1 + · · · + kn.

Then we apply the operator

⎛⎝α + |ξ |2 −
n∑

j=1

λ2
j

∂2

∂ξ2
j

⎞⎠ to K̂α(ξ) and obtain:

⎛⎝α + |ξ |2 −
n∑

j=1

λ2
j

∂2

∂ξ2
j

⎞⎠ K̂α(ξ) =
∞∑
|k|=0

ck

⎡⎣α +
n∑

j=1

λj (2kj + 1)

⎤⎦�k(ξ).

We will use the orthogonality property (10.4.26) to find ck.

∞∑
|k|=0

ck

⎡⎣α +
n∑

j=1

λj (2kj + 1)

⎤⎦�k(ξ) = 1

implies ⎡⎣α +
n∑

j=1

λj (2kj + 1)

⎤⎦ ck < �k, �k >=< 1, �k > .

Here < �k, �m > is the usual inner product in L2(R). Since

< �k, �k >=
n∏

j=1

√
λjπ2kj kj !, < 1, �2k+1 >= 0 and

< 1, �2k >=
n∏

j=1

√
2λjπ

(2kj )!
kj !

we have c2k+1 = 0 for k ∈ (Z+)n and

c2k = < 1, �2k >[
α +∑n

j=1 λj (4kj + 1)
]

< �2k, �2k >

= 1[
α +∑n

j=1 λj (4kj + 1)
] · ∏n

j=1

√
2λjπ

(2kj )!
kj !∏n

j=1

√
λjπ22kj (2kj )!

= 2
n
2

[α +∑n
j=1 λj (4kj + 1)] ·

1∏n
j=1 22kj kj !

.

Hence

K̂α(ξ) =
∞∑
|k|=0

c2k�2k =
∞∑
|k|=0

2
n
2

[α +∑n
j=1 λj (4kj + 1)]

n∏
j=1

ψ2kj
(

ξj√
λj

)

22kj kj !
.
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From the above discussion, it is easy to see that Hα is not invertible when

α ∈ � =
{
−

n∑
j=1

(2kj + 1)λj ; k = (k1, . . . , kn) ∈ (Z+)n
}
.

We call � the exceptional set of Hα . Next we apply

1

A
=
∫ ∞

0
e−Asds for A = α +

n∑
j=1

λj (4kj + 1)

and obtain

K̂α(ξ) = 2
n
2

∞∑
|k|=0

∫ ∞
0

n∏
j=1

ψ2kj
(

ξj√
λj

)

22kj kj !
e−(4kj+1)λj se−αsds

=
∫ ∞

0
2

n
2

n∏
j=1

e−λj s
∞∑

kj=0

ψ2kj
(ηj )

22kj kj !
e−4kj λj se−αsds

=
∫ ∞

0
2

n
2

n∏
j=1

e−λj sgj (ηj , s)e
−αsds

with gj (ηj , s) =
∞∑

kj=0

ψ2kj
(ηj )

22kj kj !
e−4kj λj s . To sum up with respect to kj in gj (ηj , s),

we apply the relationship between the Hermite function and Laguerre polynomial
(see p. 252 in [47]):

ψ2k(x) = e−
x2
2 (−1)k22kk!L(− 1

2 )

k (x2) ⇔ ψ2k(x)

22kk! = e−
x2
2 (−1)kL

(− 1
2 )

kj
(x2).

Therefore,

gj (x, s) =
∞∑

kj=0

(−1)kj e−
x2
2 L

(− 1
2 )

kj
(x2)e−4kj λj s (10.4.28)

= e−
x2
2

∞∑
kj=0

L
(− 1

2 )

kj
(x2)(−e−4λj s)kj . (10.4.29)

The Laguerre polynomials are defined by the generating formula (see e.g., [6]):

∞∑
k=0

L
(β)
k (w)zk = 1

(1− z)β+1 exp

{
wz

z− 1

}
.

Now we may apply the generating formula of the Laguerre polynomials to sum up
the series (10.4.28) and find gj (x, s).
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gj (x, s) = e− x2
2

(1+ e−4λj s)
1
2

exp

{
x2e−4λj s

e−4λj s + 1

}
= 1

(1+ e−4λj s)
1
2

exp

{
−x2

2

[
1− 2e−4λj s

1+ e−4λj s

]}
= 1

(1+ e−4λj s)
1
2

exp

{
−x2

2
· 1− e−4λj s

1+ e−4λj s

}
.

Hence,

K̂α(ξ) =
∫ ∞

0
2

n
2

⎡⎣ n∏
j=1

e−λj s

(1+ e−4λj s)
1
2

⎤⎦ exp

⎧⎨⎩−
n∑

j=1

|ξj |2
2λj

· 1− e−4λj s

1+ e−4λj s

⎫⎬⎭ e−αsds.

We may rewrite the above formula in terms of hyperbolic functions

K̂α(ξ) =
∫ ∞

0

⎧⎨⎩
n∏

j=1

cosh(2λj s)]− 1
2

⎫⎬⎭ exp

⎧⎨⎩−
n∑

j=1

|ξj |2
2λj

tanh(2λj s)

⎫⎬⎭ e−αsds.

(10.4.30)
Let

G(ξ, s) = e−αs
n∏

j=1

[cosh(2λj s)]− 1
2 exp

⎧⎨⎩−
n∑

j=1

|ξj |2
2λj

tanh(2λj s)

⎫⎬⎭ (10.4.31)

be the integrand of the above integral. We can prove directly that⎡⎣α +
n∑

j=1

(
ξ2
j − λ2

j

∂2

∂ξ2
j

)⎤⎦ K̂α(ξ) = 1

by showing that the function G(ξ, s) satisfies the heat equation

∂G

∂s
+
⎡⎣α +

n∑
j=1

(
ξ2
j − λ2

j

∂2

∂ξ2
j

)⎤⎦G(ξ, s) = 0 and lim
s→0+

G(ξ, s) = 1.

(10.4.32)
Then the fundamental theorem of calculus yields⎡⎣α +

n∑
j=1

(
ξ2
j − λ2

j

∂2

∂ξ2
j

)⎤⎦ K̂α(ξ) =
∫ ∞

0

⎡⎣α +
n∑

j=1

(
ξ2
j − λ2

j

∂2

∂ξ2
j

)⎤⎦G(ξ, s)ds

=
∫ ∞

0

(
−∂G

∂s

)
ds = G(0) = 1.

The fact that G(ξ, s) satisfies the heat equation (10.4.32) can be proved directly by
simple differentiation. Since
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∂G

∂ξj

= (− ξj

λj

tanh(2λj s))G,

∂2G

∂ξ2
j

=
[

ξ2
j

λ2
j

(tanh(2λj s))
2 − tanh(2λj s)

λj

]
G

one has

n∑
j=1

(
α

n
+ ξ2

j − λ2
j

∂2

∂ξ2
j

)
G(ξ, s)

= G(ξ, s)

n∑
j=1

[α

n
− ξ2

j (tanh(2λj s))
2 + λj tanh(2λj s)+ ξ2

j

]

= G(ξ, s)

n∑
j=1

[α

n
+ ξ2

j (1− (tanh(2λj s))
2)+ λj tanh(2λj s)

]

= G(ξ, s)

n∑
j=1

[
α

n
+ ξ2

j

(cosh(2λj s))2 + λj tanh(2λj s)

]
.

Next the product rule of differentiation yields

∂G

∂s
= −αG(ξ, s)−G(ξ, s)

n∑
j=1

λj (cosh(2λj s))
−1 sinh(2λj s)

−G(ξ, s)

n∑
j=1

ξ2
j

2λj

· 2λj

(cosh(2λj s))2

= −G(ξ, s)

⎡⎣α +
n∑

j=1

(
ξ2
j

(cosh(2λj s))2 + λj tanh(2λj s)

)⎤⎦
= −

n∑
j=1

(
α

n
+ ξ2

j − λ2
j

∂2

∂ξ2
j

)
G(ξ, s).

Therefore
∂G

∂s
+

n∑
j=1

(
α

n
+ ξ2

j − λ2
j

∂2

∂ξ2
j

)
G(ξ, s) = 0.

This shows G(ξ, s) is the heat kernel of the Hermite operator α +
n∑

j=1

(
ξ2
j − λ2

j

∂2

∂ξ2
j

)
with G(ξ, 0) = 1. Finally, let us compute the fundamental solution Kα(x) by taking
the inverse Fourier transform with respect to ξ .
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Kα(x)

= 1

(2π)n

∫
Rn

eix·ξ K̂(ξ)dξ

= 1

(2π)n

∫
Rn

eix·ξ
⎧⎨⎩
∫ ∞

0

n∏
j=1

[cosh(2λj s)]− 1
2 exp

⎧⎨⎩−
n∑

j=1

ξ2
j

2λj

tanh(2λj s)

⎫⎬⎭ e−αsds

⎫⎬⎭ dξ

= 1

(2π)n

∫ ∞
0

n∏
j=1

[cosh(2λj s)]− 1
2

⎧⎨⎩
n∏

j=1

∫ ∞
−∞

eixj ξj e
− ξ2

j
2λj

tanh(2λj s)
dξj

⎫⎬⎭ e−αsds.

First, we need to compute
∫ ∞
−∞

eixj ξj e
− tanh(2λj s)

2λj
ξ2
j dξj . Using the formula∫ ∞

−∞
eixw−w2

2a dw = √2πae−
a
2 x2

with a = λj

tanh(2λj s)
, we obtain

∫ ∞
−∞

e
ixj ξj−

(
tanh(2λj s)

2λj

)
ξ2
j
dξj =

√
2πλj

tanh(2λj s)
e
− λj x2

j
2 tanh(2λj s) .

This implies that

Kα(x) = 1

(2π)
n
2

∫ ∞
0

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

exp

⎧⎨⎩−
n∑

j=1

λjx
2
j

2 tanh(2λj s)

⎫⎬⎭ e−αsds.

We summarize the computation and formulate as a theorem:

Theorem 10.16. For α /∈ � =
{
−

n∑
j=1

λj (2kj + 1), k = (k1, . . . , kn) ∈ (Z+)n
}

,

the fundamental solution Kα(x) of the Hermite operator HαKα(x) = δ(x) is

Kα(x) = 1

(2π)
n
2

∫ ∞
0

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

exp

⎧⎨⎩−
n∑

j=1

λjx
2
j

2 tanh(2λj s)

⎫⎬⎭ e−αsds.

(10.4.33)
The associated heat kernel is given by

Ps(x) = 1

(2π)
n
2

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

exp

⎧⎨⎩−
n∑

j=1

λjx
2
j

2 tanh(2λj s)

⎫⎬⎭
i.e., Ps(x) satisfies the heat equation

∂Ps

∂s
+αPs+

n∑
j=1

(
λ2

j x
2
j −

∂2

∂x2
j

)
Ps(x) = 0 with lim

s→0

∫
Rn

Ps(x)f (x)dx = f (0).
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10.4.3.2 Isotropic case: λj = λ for all j

We now consider the special case of λj = λ for all j = 1, · · · , n. Then the funda-
mental solution reduces to

Kα(x) =
(

λ

2π

) n
2
∫ ∞

0
e−αs [sinh(2λs)]−

n
2 exp

{
−λ|x|2

2
coth(2λs)

}
ds

by introducing a new variable u = coth(2λs). We have

e−αs =
(

u− 1

u+ 1

) α
4λ

, du = −2λ(sinh(2λs))−2ds and

(sinh(2λs))−1 =
√

(coth(2λs))2 − 1 =
√

u2 − 1.

Hence,

Kα(x) =
(

λ

2π

) n
2 · 1

2λ

∫ ∞
1

(u− 1)
n
4−1+ α

4λ (u+ 1)
n
4−1− α

4λ e−
λ
2 |x|2udu. (10.4.34)

Introducing the new integral variable u = 2v + 1, we reduce equation (10.4.32) to
the form:

Kα(x) = λ
n
2−1

4π
n
2

e−
λ
2 |x|2

∫ ∞
0

v
n
4−1+ α

4λ (v + 1)
n
4−1− α

4λ e−λ|x|2vdv.

Then the integral can be reduced to the Whittaker function. Let

µ− χ − 1

2
= n

4
− 1+ α

4λ
and µ+ χ − 1

2
= n

4
− 1− α

4λ
,

then we have µ = n

4
− 1

2
and χ = − α

4λ
and can write the above as the Whittaker

function Wχ,µ(λ|x|2). We omit the detail and just give the final formula:

Kα(x) = λ
n
4−1
(n

4 + α
4λ

)

4π
n
2 |x| n2 W− α

4λ
, n

2− 1
2
(λ|x|2) . (10.4.35)

We can write Kα(x) as a modified Bessel function when α = 0 by applying the
following integral formula (see p. 250 in [47]):∫ ∞

1
(x2 − 1)γ−1e−µxdx = 1√

π

(
2

µ

)γ− 1
2


(γ )Kγ− 1
2
(µ),

where Kν(z) is the modified Bessel function :
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Kν(z) =
∫ ∞

0
e−z cosh t cosh(νt)dt.

Therefore, with µ = λ
2 |x|2, γ = n

4 , we have

K0(x) = 

(

n
4

)
λ

n
4− 1

2

π
n+1

2

·
K n

4− 1
2
( λ

2 |x|2)
|x| n2−1

. (10.4.36)

In the case of n
4 − 1

2 = m + 1
2 ⇔ n = 4(m + 1), we have the explicit formula for

the modified Bessel function

Km+ 1
2
(z) =

√
π

2z
e−z

m∑
�=0

(m+ �)!
�!(m− �)! (2z)−�.

Hence when n = 4(m+ 1), we can find a closed form of K0(x):

K0(x) = 
(m+ 1)

π2(m+1)
e−

λ
2 |x|2

m∑
�=0

(m+ �)!
�!(m− �)!

λm−�

|x|2(m+�)+2
.

The formal argument is therefore complete. We now need to justify the integral
(10.4.28) and calculations in (10.4.31). In view of the hyperbolic cosine term in
(10.4.30), we know that

|G(ξ, s)| ≤ 2
n
2 exp

⎛⎝− n∑
j=1

λj ξ
2s

⎞⎠
for s ≥ 0. Therefore, the integral (10.4.28) converges rapidly. It also justifies the
interchange of integrals in (10.4.31).

10.4.3.3 Partial inverse and projection to the kernel

We now consider the behavior of Hα near a singular value α, i.e., α ∈ �. Since we
emphasize the dependence on the value of α, we see Hα and Kα as functions of α and
denote Kα = K(α) and Hα = H(α). From (10.4.27) it follows that K(α) = H(α)−1

has a simple pole at each point of �. Let α0 ∈ �. We can expand K(α) at α0,

K(α) = J (α0)

α − α0
+K(α0)+O(|α − α0|).

For α sufficiently near α0, α �= α0, H(α)K(α) = K(α)H(α) = I , this implies

I = J (α0)H(α)

α − α0
+K(α0)H(α)+O(|α − α0|).

Since H(α) = α +
n∑

j=1

(
λ2

j x
2
j −

∂2

∂x2
j

)
H(α0)+ (α − α0), we have
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I = lim
α→α0

J (α0)H(α0)

α − α0
+ J (α0)+K(α0)H(α0).

Interchanging K(α) and H(α) in the above, we have

I = lim
α→α0

H(α0)J (α0)

α − α0
+ J (α0)+H(α0)K(α0).

This yields
H(α0)J (α0) = J (α0)H(α0) = 0

and
I = K(α0)H(α0)+ J (α0).

Apply H(α0) to the above and we have

H(α0) = H(α0)K(α0)H(α0).

Therefore, [H(α0)K(α0)]2 = H(α0)K(α0) and [J (α0)]2 = J (α0). This yields that
H(α0)K(α0) and J (α0) are complementary projections on L2. The operator K(α0)

and J (α0) can be computed from the integrals

K(α0) = 1

2πi

∫



K(α)

α − α0
dα and J (α0) = 1

2πi

∫



K(α)dα.

Here 
 represents a sufficiently small circle about α0.

The first singular value is α0 = −
n∑

j=1

λj with kj = 0 for j = 1, 2, · · · , n. We will

calculate J (α0) and K(α0) explicitly. The residues of K̂α at this pole are

σ (J (α0)) = 2
n
2 exp

⎧⎨⎩−1

2

n∑
j=1

ξ2
j

λj

⎫⎬⎭ .

Here σ (J (α0)) is the symbol of the projection J (α0). The kernel is the inverse Fourier
transform of the symbol

J (−
n∑

j=1

λj ) = 1

2n

n∏
j=1

[√
λj

π
e
− λj

2 x2
j

]
.

K̂α can be written as

K̂α(ξ) =
∫ ∞

0
e−αsG0(ξ, s)ds,

where

G0(ξ, s) =
n∏

j=1

[cosh(2λj s)]− 1
2 exp

⎧⎨⎩−
n∑

j=1

ξ2
j

2λj

tanh(2λj s)

⎫⎬⎭ .
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Integration by parts gives

K̂α(ξ) = 1

α +∑n
j=1 λj

⎡⎣1+
∫ ∞

0
e−αs

⎛⎝ ∂

∂s
+

n∑
j=1

λj

⎞⎠G0(ξ, s)ds

⎤⎦ . (10.4.37)

This implies that K̂(α) has a pole at α = −
n∑

j=1

λj . Thus K̂(α0) is the term of order

zero in the expansion of (10.4.37) at α = −
n∑

j=1

λj :

K̂(α0) = −
∫ ∞

0
s

∂

∂s

[
e
s
∑n

j=1 λj G0(ξ, s)
]
ds.

Taking the inverse Fourier transform, one can find the corresponding kernels. The
computation is almost identical to those of the computation of Kα(x), so we omit the
details here and list the final formula only:

K(α0)

= −
⎛⎝ n∏

j=1

√
λj

2π

⎞⎠∫ ∞
0

s
d

ds

⎡⎢⎣
⎛⎝ n∏

j=1

e2λj s

sinh 2λj s

⎞⎠
1
2

× exp

⎧⎨⎩−1

2

n∑
j=1

λjx
2
j coth(2λj s)

⎫⎬⎭
⎤⎦ ds.

10.4.3.4 Fundamental solution with singularity at an arbitrary point y

Let us start with the operator H0, i.e., α = 0. We want to derive the following kernel
K(x, y) which satisfies

(−�+
n∑

j=1

λ2
j x

2
j )K(x, y) = δ(x − y),

and is the case of α = 0 in (10.4.23). Taking the Fourier transform with respect to
the x-variable, we have

(|ξ |2 −
n∑

j=1

λ2
j

∂2

∂ξ2
j

)K̂(ξ, y) =
∫

Rn

δ(x − y)e−ix·ξ dx = e−iy·ξ .

As before we let

K̂(ξ, y) =
∞∑
|k|=0

ck(y)�k(ξ) with �k(ξ) =
n∏

j=1

ψkj
(

ξj√
λj

).
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Then

(|ξ |2 −
n∑

j=1

λ2
j

∂2

∂ξ2
j

)K̂(ξ, y) =
∞∑
|k|=0

ck(y)

⎡⎣ n∑
j=1

(2kj + 1)λj

⎤⎦�k(ξ).

Hence, we need to solve
∞∑
|k|=0

⎡⎣ n∑
j=1

(2kj + 1)λj

⎤⎦ ck(y)�k(ξ) = e−iy·ξ to find ck(y).

The orthogonality of the Hermite function yields⎡⎣ n∑
j=1

(2kj + 1)λj

⎤⎦ ck(y) < �k(ξ), �k(ξ) >=< e−iy·ξ , �k(ξ) > .

We first have to find

∫
Rn

e−iy·ξ�k(ξ)dξ =
n∏

j=1

∫ ∞
−∞

e−iyj ξj ψkj
(

ξj√
λj

)dξj

=
n∏

j=1

√
λj

∫ ∞
−∞

e−i
√

λj yj ηj ψkj
(ηj )dηj .

Applying the formula ∫ ∞
−∞

e−iyξψ�(ξ)dξ = √2π(−i)�ψ�(y) (10.4.38)

and < �k(ξ), �k(ξ) >= π
n
2

n∏
j=1

√
λj 2kj kj !, one has

⎡⎣ n∑
j=1

(2kj + 1)λj

⎤⎦ ck(y)π
n
2

⎛⎝ n∏
j=1

√
λj 2kj kj !

⎞⎠ = (2π)
n
2

n∏
j=1

(−i)kj
√

λjψkj
(
√

λjyj ).

It follows that

ck(y) = 2
n
2[∑n

j=1(2kj + 1)λj

] n∏
j=1

(−i)kj

2kj kj !
ψkj

(
√

λjyj ).

Hence we have

K̂(ξ, y) =
∞∑
|k|=0

2
n
2[∑n

j=1(2kj + 1)λj

] n∏
j=1

(−i)kj

2kj kj !
ψkj

(
√

λjyj )ψkj
(

ξj√
λj

).
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Taking the inverse Fourier transform, we obtain

K(x, y)

= 1

(2π)n

∫
Rn

eix·ξ K̂(ξ, y)dξ

= 1

(2π)n

∞∑
|k|=0

2
n
2[∑n

j=1(2kj + 1)λj

] n∏
j=1

(−i)kj

2kj kj !
ψkj

(
√

λjyj )

×
∫ ∞
−∞

eixj ·ξj ψkj
(

ξj√
λj

)dξj .

Applying the identity (10.4.37) again, we have

K(x, y) = 1

(2π)n

∞∑
|k|=0

2nπ
n
2[∑n

j=1(2kj + 1)λj

]
×

n∏
j=1

(−i)kj ikj
√

λj

2kj kj !
ψkj

(
√

λjyj )ψkj
(
√

λjxj )

= 1

π
n
2

∞∑
|k|=0

1[∑n
j=1(2kj + 1)λj

] n∏
j=1

√
λj

2kj kj !
ψkj

(
√

λjyj )ψkj
(
√

λjxj ).

Here we have used the identity ψk(−x) = (−1)kψk(x). Now we apply the formula
1

A
=
∫ ∞

0
e−Asds with A =

n∑
j=1

(2kj + 1)λj again and obtain

K(x, y) = 1

π
n
2

∞∑
|k|=0

⎛⎝∫ ∞
0

n∏
j=1

√
λj e
−2kj λj s−λj s

2kj kj !
ψkj

(
√

λjyj )ψkj
(
√

λjxj )ds

⎞⎠
= 1

π
n
2

∫ ∞
0

n∏
j=1

√
λj e
−λj s

⎛⎝ ∞∑
kj=0

e−2kj λj s

2kj kj !
ψkj

(
√

λjyj )ψkj
(
√

λjxj )

⎞⎠ ds.

We next sum up the infinite series on the right hand side by applying the formula:

∞∑
k=0

Hk(x)Hk(y)

k! zk = (1− 4z2)−
1
2 exp

{
y2 − (y − 2zx)2

1− 4z2

}
where Hk(x) is the Hermite polynomial (see page 280 in [17]). Denote

g(x, y, s) =
∞∑

k=0

( 1
2e−2s

)k
k! ψk(x)ψk(y)
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where ψk(x) = e− x2
2 Hk(x). Then we have

g(x, y, s)

=
∞∑

k=0

( 1
2e−2s

)k
k! ψk(x)ψk(y) = e−

x2
2 − y2

2 (1− e−4s)−
1
2 exp

{
y2 − (y − xe−2s)2

1− e−4s

}

= (1− e−4s)−
1
2 exp

{
−x2

2
+ y2

2
− y2 − 2e−2sxy + e−4sx2

1− e−4s

}
= (1− e−4s)−

1
2 exp

{
(1− e−4s)−1

[
− (x2 + y2)

2
− (x2 + y2)

2
e−4s + 2e−2sxy

]}
= (1− e−4s)−

1
2 exp

{
−
(

x2

2
+ y2

2

)
1+ e−4s

1− e−4s
+ 2e−2s

1− e−4s
xy

}
= (1− e−4s)−

1
2 exp

{
−x2 + y2

2
coth(2s)+ xy

sinh(2s)

}
.

It follows that

K(x, y)

= 1

π
n
2

∫ ∞
0

n∏
j=1

√
λj e
−λj s

(1− e−4λj s)
1
2

exp

{
−1

2
λj (x

2
j + y2

j ) coth(2λj s)+ λjxjyj

sinh(2λj s)

}
ds

= 1

(2π)
n
2

∫ ∞
0

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

× exp

⎧⎨⎩−
n∑

j=1

λj (x
2
j + y2

j ) cosh(2λj s)− 2λjxjyj

2 sinh(2λj s)

⎫⎬⎭ ds.

The heat kernel is

Ps(x, y) = 1

(2π)
n
2

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

× exp

⎧⎨⎩−
n∑

j=1

λj (x
2
j + y2

j ) cosh(2λj s)− 2λjxjyj

2 sinh(2λj s)

⎫⎬⎭ .

(10.4.39)

Using the formula cosh(2s) = 1 + 2 sinh2 s and sinh(2s) = 2 sinh s cosh s, we can
rewrite the heat kernel as
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Ps(x, y)

= 1

(2π)
n
2

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

× exp

⎧⎨⎩−
n∑

j=1

[
λj (xj − yj )

2

2 sinh(2λj s)
+ λj (x

2
j + y2

j )

2
tanh(λj s)

]⎫⎬⎭ .

We summarize the computation with the following theorem.

Theorem 10.17. The kernel

Ps(x, y)

= 1

(2π)
n
2

⎡⎣ n∏
j=1

λj

sinh(2λj s)

⎤⎦
1
2

× exp

⎧⎨⎩−
n∑

j=1

[
λj (xj − yj )

2

2 sinh(2λj s)
+ λj (x

2
j + y2

j )

2
tanh(λj s)

]⎫⎬⎭
satisfies the associated heat equation

∂Ps

∂s
−
⎡⎣�−

n∑
j=1

λ2
j x

2
j

⎤⎦Ps(x, y) = 0 and lim
s→0+

Ps(x, y) = δ(x − y),

with the initial condition

lim
s→0+

∫
Rn

Ps(x, y)f (y)dy = f (x).

Now we may use a similar method as before to obtain the following corollary.

Corollary 10.18 For α /∈ � = {−∑n
j=1 λj (2kj + 1), k = (k1, . . . , kn) ∈ (Z+)n},

the Hermite operator Hα = α −�+
n∑

j=1

λ2
j x

2
j has the fundamental solution

Kα(x, y) =
∫ ∞

0
e−αsPs(x, y)ds

where Ps(x, y) is defined in Theorem 10.17

10.5 Heat kernel on radially symmetric spaces with potential

We shall investigate the fundamental solution for the operator
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P = ∂t +�− U(x),

where � = −div∇ and U : M → R is a potential function defined on the radially
symmetric space (M, g). The associated Hamiltonian is half of the principal symbol
of −�+ U(x),

H(p, x) = 1

2
|p|2g +

1

2
U(x).

As H does not depend explicitly on the time parameter t , then H = E, where E is
the constant of the total energy along the solutions of the Hamiltonian system. The
action S will satisfy the Hamilton–Jacobi equation

∂

∂t
S = −H(∇S)

= −1

2
|∇S|2 − 1

2
U(x)

= −E.

We also note the useful relation

|∇S|2 = 2E − U(x).

For the zero potential U(x) = 0 the action S = d2(x0, x)/(2t). For general potentials
U(x) the action S is not easy to compute. This shall be seen in the next section. The
action S is a function of the endpoints x0, x and time t .

In this section we shall perform a formal computation for the heat kernel. As
before, we shall look for a fundamental solution of the form

K = K(x0, x, t) = V (t)ekS, t > 0.

By straightforward computation

∂tK = ekS
(
V ′(t)+ kV (t)∂tS

)
= ekSV (t)

(V ′(t)
V (t)

− kE
)
,

�K = V (t)ekS
(
k�S − k2|∇S|2

)
= V (t)ekS

(
k�S − k2(2E − U(x))

)
= V (t)ekS

(
k�S − 2k2E + k2U(x)

)
.

Following the idea from the previous sections, we shall consider the following operator
with multiplier λ,

Pλ = ∂t +�+ λU(x).

We shall find λ and k such that

Pλ(K(x0, x, t)) = 0, t > 0.
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A straightforward computation provides

Pλ(V (t)ekS) = ekSV (t)
[V ′(t)

V (t)
− kE

]
+ekSV (t)

(
k�S − 2k2E + k2U(x)

)
+λ U(x)ekSV (t)

= ekSV (t)

(
V ′(t)
V (t)

+ k�S − kE(2k + 1)+ (k2 + λ)U(x)

)
.

We choose k = −1

2
, λ = −1

4
and let V (t) satisfy the volume equation

V ′(t)
V (t)

= −1

2
�S.

This shows that Pλ(V (t)ekS) = 0, for t > 0. The volume function V (t) is determined
up to a multiplicative constant C. The condition

lim
t↘0

V (t)

∫
M

e−
1
2 S(x0,x,t)φ(x) dv(x) = φ(x0), ∀φ ∈ C∞0 (M)

fixes the constant C.

We would expect to have the following result for the fundamental solution:

Theorem 10.19. Let (M, g) be a radially symmetric space. The fundamental solution
for the operator

P = ∂t +�− 1

4
U(x)

is given by

K(x0, x, t) = V (t)e−
1
2 S(x0,x,t),

where V (t) is the above volume function and S is the action associated with the

Hamiltonian H(p, x) = 1

2
|p|2g +

1

2
U(x).

The above theorem provides a general formula for the heat kernel. For each potential
U(x) one needs to find the action S and the volume function V . As will be shown in
the next section, this cannot be done explicitly for all potentials. However, for some
potentials U (like the quartic one) there are more than one energy, which makes the
problem more difficult.

10.6 The case of the quartic potential

The case of quartic potential is much different than the case of the quadratic potential.
The kernel of the operator
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P = ∂t − ∂2
x −

1

4
a4x4,

with a ≥ 0, is expected to be of the form

K(x0, x, t) = V (t)e−
1
2 S(x0,x,t),

where S is the action between x0 and x in time t , associated with the Hamiltonian
H(ξ, x) = 1

2ξ2 + 1
2a4x4. The volume function V (t) depends on S, which depends

on the energy E,
∂tS = −E.

If for given x0, x and t we are able to find the energy E, then the problem is solved.
The Hamiltonian system is {

ẋ = Hξ = ξ,

ξ̇ = −Hx = −2a4x3,

and hence x(s) satisfies the boundary value problem⎧⎪⎨⎪⎩
ẍ = −2a4x3,

x(0) = x0,

x(t) = x.

(10.6.40)

The conservation of energy yields

1

2
ẋ2 + 1

2
a4x4 = E,

with E the constant of energy. Writing

ẋ = ±
√

2E − a4x4,

separating and integrating between x0 = x(0) and x = x(t), yields∫ x

x0

du√
2E − a4u4

= ±t.

With the substitution v = au/(2E)1/4 the above integral becomes∫ w

w0

dv√
1− v4

= ±a(2E)1/4 t, (10.6.41)

where w0 = ax0/(2E)1/4 and w = ax/(2E)1/4. The integral can be written in terms
of the elliptic function cn, see [23],∫ w

w0

dv√
1− v4

=
∫ 1

w0

dv√
1− v4

−
∫ 1

w

dv√
1− v4

= 1√
2

[
cn−1(w0,

1√
2
)− cn−1(w,

1√
2
)
]
.
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Hence (10.6.41) yields

cn−1(w0)− cn−1(w) = ±23/4a E1/4t. (10.6.42)

Let u = cn−1(w0) and v = cn−1(w). Then sn u =
√

1− w2
0, sn v =

√
1− w2,

dn2 u = k′2 + k2cn2 u = 1

2
(1+ cn2u) = 1

2
(1+ w2

0),

and in a similar way dn2 v = 1

2
(1 + w2). We have used k = k′ = √2/2. Applying

cn, which is an even function, to (10.6.42) yields

cn(23/4a E1/4t) = cn(u− v) = cnu cnv + snu snv dnu dnv

1− k2sn2u sn2v

=
w0w +

√
1− w2

0

√
1− w2 1√

2

√
1+ w2

0
1√
2

√
1+ w2

1− 1
2 (1− w2

0)(1− w2)

=
2w0w +

√
(1− w2

0)(1− w4)

2− (1− w2
0)(1− w2)

=
2a2xx0√

2E
+

√
(2E − a4x4

0)(2E − a4x4)

2E

2− (
√

2E − a2x2
0 )(
√

2E − a2x2)

2E

=
2a2
√

2Ex0x +
√

(2E − a4x4
0)(2E − a4x4)

4E − (
√

2E − a2x2
0 )(
√

2E − a2x2)
.

Let

�x0,x(E) =
2a2
√

2Ex0x +
√

(2E − a4x4
0)(2E − a4x4)

4E − (
√

2E − a2x2
0 )(
√

2E − a2x2)
. (10.6.43)

Lemma 10.20 We have:

(i) �x0,x(E) < 1, ∀E ≥ a4

2
min(|x0|, |x|),

(ii) lim
E→∞�x0,x(E) = 1.

Proof. (i) The inequality between the geometric and arithmetic means yields
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2a2
√

2Ex0x +
√

(2E − a4x4
0)(2E − a4x4) ≤ 2a2

√
2Ex0x + 2E − a4

2
(x4

0 + x4).

In order to show �x0,x(E) < 1 it suffices to show that

2a2
√

2Ex0x + 2E − a4

2
(x4

0 + x4) ≤ 4E − (
√

2E − a2x2
0 )(
√

2E − a2x2)

⇐⇒ 2a2
√

2Ex0x + 2E − a4

2
(x4

0 + x4) ≤ 2E + a4x2
0x2 + a2

√
2E(x2

0 + x2)

⇐⇒ 4
√

2Ex0x − a2(x4
0 + x4) ≤ 2a2x2

0x2 + 2
√

2E(x2
0 + x2),

which is equivalent to

0 ≤ a2(x4
0 + 2x2

0x2 + x4)+ 2
√

2E(x2
0 − 2x0x + x2)

⇐⇒ 0 ≤ a2(x2
0 + x2)2 + 2

√
2E(x − x0)

2,

which is always true.
(ii) We have

lim
E→∞�x0,x(E) = lim

E→∞

2x0x√
2E
+
√(

1− x4
0

2E

)(
1− x4

2E

)
2−

(
1− x2

0√
2E

)(
1− x2

√
2E

) = 1.

Theorem 10.21. (i) Given x0, x, t and a ≥ 0, there is an infinite sequence of energies

0 < E1 < E2 < · · · < En < · · · < +∞
parametrized by the solutions θ = E1/4 of the equation

�x0,x(θ
4) = cn(23/4aθt), (10.6.44)

(ii) En ∼ 2
(nK

2at

)4
, as n→∞

where K = K(
√

2/2) = 
(1/4)2

4
√

π
≈ 1.854. Hence the asymptotics of the energy

depend only on t and do not depend on the end points x0 and x.

Proof. (i) As from the above lemma �x0,x(θ
4) ↗ 1 and cn(23/4aθt) oscillates

between−1 and 1 with the period T = 2K

23/4at
= 21/4K

at
, the equation (10.6.44) will

have infinitely countable solutions θn = E
1/4
n , see Figure 10.1.
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0

1

30
E

Figure 10.1: The energies En, n = 1, 2, 3 . . .

(ii) For θ large, the solutions of the equation (10.6.44) are approximated by the

solutions of the equation cn(23/4aθt) = 1, which are θ = 2mK

23/4at
, m = 1, 2, 3 . . . .

Hence (E2m)1/4 ∼ 2mK

23/4at
or En ∼ n4K4

23a4t4 = 2
(nK

2at

)4
.

In the case of a quartic potential there are infinitely many solutions with the end points
x0 and x joined in time t . Their energies form an increasing unbounded sequence En.
The solution xn(s) of the Hamiltonian system associated with the energy En is given
implicitly by

cn(23/4aE
1/4
n s) =

2a2√2Enx0xn(s)+
√

(2En − a4x4
0)(2En − a4x4

n(s))

4En − (
√

2En − a2x2
0 )(
√

2En − a2x2
n(s))

.

This is quite different behavior than the quadratic potential case, where there is only
one energy and one solution between two given points. This behavior makes the

quartic potential heat operator P = ∂t − ∂2
x −

1

4
a4x4 difficult to invert.

The fundamental solution

Given any two points x0 and x and a time t > 0, there is a sequence of energies
En = En(x0, x, t) provided by Theorem 10.21. For each energy we associate an
action Sn = Sn(x0, x, t), which satisfies the Hamilton–Jacobi equation
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∂tSn = −En(x0, x, t).

Using Theorem 10.21 (ii), the asymptotics of Sn do not depend on the end points

Sn ∼ 2

3

(nK

2a

)4 1

t3 , as n→∞.

For each action Sn we associate a volume function Vn. If ∂2
xSn does not depend on x,

then Vn = Vn(t) is a solution for the equation V ′n(t)+
1

2
(�Sn)Vn(t) = 0. But if ∂2

xSn

depends on both x and t , then Vn = Vn(t, x) will satisfy a more general equation,
which will be introduced in the next section. Formally, the fundamental solution will
be of the form

K(x0, x, t) =
∞∑

n=1

CnVn(t, x)e
−1

2
Sn

. (10.6.45)

The constants Cn should be chosen such that

∞∑
n=1

Cn lim
t↘0

Vn(t)

∫
R

e
−1

2
Sn

φ(x) dx = φ(x0),

for any compact supported function φ.

10.7 The kernel of the operator ∂t − ∂2
x − U(x)

In the case of the quadratic potential U(x) = a2x2 there is a unique solution joining
two given points x0 and x and in this case the action is unique. This is no longer true
in the case of the quartic potential when U(x) = a2x4. In this case the fundamental
solution is a sum over all paths joining the end points x0 and x in time t . A similar
non-uniqueness behavior is expected for potentials U(x) = a2xm, m ≥ 4.

We shall study the case of a general potential function U(x). Consider the operator
L = ∂2

x + U(x) with the principal symbol as a Hamiltonian

H(ξ, x) = 1

2
ξ2 + 1

2
U(x). (10.7.46)

Hamilton’s equations are

ẋ = Hξ = ξ,

ξ̇ = −Hx = −1

2
U ′(x), and hence ẍ = ξ̇ = −1

2
U ′(x).

Given two points x0 and x, we are interested in solving the system⎧⎪⎨⎪⎩
ẍ = − 1

2U ′(x),

x(0) = x0,

x(t) = x.

(10.7.47)
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Since the Hamiltonian (10.7.46) does not depend explicitly on the variable t , it will
be preserved along the solutions of (10.7.47), and

H = ẋ2

2
+ 1

2
U(x) = E, (10.7.48)

where E = E(x0, x, t) is the constant of energy. Hence x(s) verifies the integral
equation ∫ x(s)

x0

dw√
2E − U(w)

= ±s,

where the positive (negative) sign is taken in the right-hand side if x > x0(x < x0).
The energy E = E(x0, x, t) satisfies the equation∫ x

x0

dw√
2E − U(w)

= ±t,

with the same sign convention. The action S verifies ∂tS = −E(x0, x, t). As along
the solutions ξ = Sx , then ẋ = ξ yields ẋ = Sx and hence (10.7.48) becomes

(Sx)
2 = 2E − U(x). (10.7.49)

We shall look for a fundamental solution of the type K = V (t, x)ekS . A computation
provides

∂tK = K
(V ′

V
− kE

)
,

∂xK = Vxe
kS + V ekSkSx

= K
(Vx

V
+ kSx

)
,

∂2
xK = Vxxe

kS + Vxe
kSkSx + kKxSx + kKSxx

= Vxxe
kS + kVxe

kSSx + kSx

(
Vxe

kS + kKSx

)
+ kKSxx

= Vxxe
kS + 2kVxe

kSSx + k2K(Sx)
2 + kKSxx

= K
(Vxx

V
+ 2k

Vx

V
Sx + k2(Sx)

2 + kSxx

)
.

Let P = ∂t − ∂2
x + λU(x), where λ is a real multiplier. We shall find λ and k such

that PK = 0. We have

PK = K
(V ′

V
− kE

)
,

−K
(Vxx

V
+ 2k

Vx

V
Sx + k2(Sx)

2 + kSxx

)
+KλU(x)

= K
(V ′

V
− kE − Vxx

V
− 2kSx

Vx

V
− k2(Sx)

2 − kSxx + λU(x)
)
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= K
(V ′ − Vxx − 2kSxVx

V
− kSxx − kE + λU(x)− k2 · (Sx)

2︸ ︷︷ ︸
=2E−U(x)

)

= K
(V ′ − Vxx − 2kSxVx

V
− kSxx − kE (2k + 1)︸ ︷︷ ︸

=0

+ (λ+ k2)︸ ︷︷ ︸
=0

U(x)
)

= 0,

where we choose k = −1

2
and λ = −1

4
. Let V (t, x) satisfy the generalized volume

equation

V ′ − Vxx + SxVx = −1

2
SxxV, (10.7.50)

where V ′ = ∂tV and Vx = ∂xV . Using that ẋ = Sx , we have

d

dt
V (t, x) = ∂tV + ẋ∂xV = ∂tV + Sx∂xV,

and the equation (10.7.50) becomes

d

dt
V (t, x) = Vxx(t, x)− 1

2
SxxV (t, x). (10.7.51)

In the case when Sxx depends on t only, it makes sense to look for a function V = V (t),

which satisfies V ′ = 1

2
SxxV .

Summing up the corresponding products for all the solutions that join x0 and x

we arrive at the following formula for the fundamental solution.

Theorem 10.22. Let xn(s) be all solutions of the boundary value problem (10.7.47).
Let Sn be the action and Vn be the generalized volume function associated with the
solution xn(s) satisfying (10.7.51). Then the kernel of the operator

P = ∂t − ∂2
x −

1

4
U(x)

is given by the formula

K(x0, x, t) =
∞∑

n=1

CnVn(t, x)e
−1

2
Sn

, t > 0,

where the relation

lim
t↘0

∫
R

∑
n

CnVn(t, x)e−
1
2 Sn(x0,x,t)φ(x) dv(x) = φ(x0), ∀φ ∈ C∞0 (R) (10.7.52)

fixes the constant Cn.
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For any potential U(x) we need to find the action S and the volume function V . This
cannot be done explicitly all the time. It can be done explicitly for quadratic potentials
of the form U(x) = ax2 + bx + c, but it cannot be done for polynomial potentials
of degree greater than 3. Formally, in the latter case the kernel is a sum over all the
paths joining the points x and x0.

10.7.1 The linear potential

Consider U(x) = −ax. In this case the solution x(s) between x0 and x is unique.
The associated energy E = E(x0, x, t) is defined by the integral∫ x

x0

dw√
2E + aw

= ±t ⇐⇒ √2E + ax = √
2E + ax0 ± a

2
t,

a(x − x0) = a2

4
t2 ± at

√
2E + ax0 ⇐⇒

(
a(x − x0)− a2

4
t2
)2 = a2t2(2E + ax0),

2E + ax0 =
(
a(x − x0)− a2

4 t2
)2

a2t2 ⇐⇒ 2E + ax0 = (x − x0)
2

t2

−a

2
(x − x0)+ a2

16
t2,

E = (x − x0)
2

2t2 − a

4
(x − x0)+

(a

4

)2
t2.

The action S satisfies

∂tS = −E

= − (x − x0)
2

2t2 + a

4
(x − x0)−

(a

4

)2
t2,

with the solution

S = (x − x0)
2

2t
+ b(x + x0)t − b2

12
t3,

where b = a

4
. As Sxx = 1

t
, the volume function satisfies (10.7.51), which becomes

V ′ = 1

2t
V and hence V (t) = C√

t
.

Theorem 10.23. Let b ∈ R. The kernel of the operator P = ∂t − ∂2
x + bx is given by

K(x, x0, t) = 1√
4πt

e
− (x − x0)

2

4t
− b

2
(x + x0)t + b2

12
t3

, t > 0.

Proof. Applying Theorem 10.22, the kernel will be K = V e−
1
2 S . Making b → 0,

the operator P tends to the usual heat equation. Comparing this with its fundamental

solution yields C = 1√
4π

.
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10.8 Propagators for Schrödinger’s equation in the
one-dimensional case

A quantum particle situated in a potential U(x) is characterized by a wave function,
which satisfies Schrödinger’s equation

ih∂t� + 1

2
h2∂2

x� = U(x)�, (10.8.53)

where h > 0 is the Planck constant. Given the initial value of the wave function
�0(x) = �(x, t0), the solution of (10.8.53) at any instance of time t > t0 is given by

�(x, t) =
∫

K(x, t; x0, t0)�0(x0) dx0,

where K(x, t; x0, t0) is the fundamental solution of the Schrödinger’s operator

L = ih∂t + 1

2
h2∂2

x − U(x). In Quantum Mechanics K(x, t; x0, t0) is also referred

to as a propagator. The previous section is very useful to provide propagators for
different expressions of the potential function U(x). There are only a few cases when
we can compute explicit formulas for the propagators. These kernels are computed
in Quantum Mechanics using path integrals formalism, see [41]. Here we use the
geometric method provided by the previous sections.

10.8.1 Free quantum particle

In this case the potential energy U(x) = 0. The propagator in this case is obtained
from the heat kernel. It is known that the heat operator ∂t − ∂2

x has the fundamental

solution K(x, x0, t) = 1√
4πt

e
− 1

4t
(x − x0)

2

. Consider the substitution

t = iht, x = ih√
2

x. (10.8.54)

Then the heat equation becomes a Schrödinger operator

∂t − ∂2
x = ih∂t + 1

2
h2∂2

x ,

and the fundamental solution becomes a propagator

K(x, x0, t) = 1√
4πt

e
− 1

4t
(x − x0)

2

=
√

ih

4π t
e

ih

2t
(x − x0)

2

= K(x, x0, t, 0).

Making a time translation 0→ t0 yields the following result.
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Theorem 10.24. The propagator for a one-dimensional free quantum particle is given
by

K(x, x0, t, t0) =
√

ih

4π(t − t0)
e

ih

2(t − t0)
(x − x0)

2

, t > t0.

10.8.2 Quantum particle in a linear potential

The substitution (10.8.54) yields

∂t − ∂2
x + bx = ih∂t + 1

2
h2∂2

x −
ib
√

2

h
x

= ih∂t + 1

2
h2∂2

x − ax,

where

a = iα = ib
√

2

h
.

Using Theorem 10.23, the same substitution yields

K(x, x0, t) = 1√
4πt

e
− (x − x0)

2

4t
− b

2
(x + x0)t + b2

12
t3

=
√

ih

4π t
e

ih

2t
(x − x0)

2

e
− α

2i
(x + x0)

t
ih
+
( αh√

2

)2 1

12

t3

(ih)3

=
√

ih

4π t
e

ih

2t
(x − x0)

2

e

α

2h
(x + x0)t + α2

24

t3

(−i)h

=
√

ih

4π t
e

ih

2t
(x − x0)

2

e
− i

2h
[a(x + x0)t + a2

12
t3]

.

Replacing t by t− t0 yields the formula for the propagator for a quantum mechanical
particle in the presence of a homogeneous force due to a linear potential U(x) = ax.

Theorem 10.25. The propagator for the Schrödinger operator

ih∂t + 1

2
h2∂2

x − ax

is given by

K(x, x0, t, t0)

=
√

ih

4π(t − t0)
e

ih

2(t − t0)
(x − x0)

2 − i

2h
[a(x + x0)(t − t0)+ a2

12
(t − t0)

3]
,

with t > t0.
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10.8.3 Linear harmonic quantum oscillator

This is the case of a quantum particle in a quadratic potential U(x) = 1

2
α2x2, α ∈ R.

Let a and b be such that
1

2
α2 = a2 = 2

b2

h2 .

The substitution (10.8.54) yields the Schrödinger operator

∂t − ∂2
x + b2x2 = ih∂t + 1

2
h2∂2

x + b2−2

h2 x2

= ih∂t + 1

2
h2∂2

x − 2
b2

h2 x2

= ih∂t + 1

2
h2∂2

x −
α2

2
x2.

With substitution (10.8.54), the fundamental solution given by Theorem 10.12 be-
comes

K(x0, x, t)

= 1√
4πt

√
2bt

sinh(2bt)
e
− 1

4t

2bt

sinh(2bt)
[(x2 + x2

0 ) cosh(2bt)− 2xx0]

=
√

ih

4π t

√
−i
√

2at

sinh(−i
√

2at)
e
− ih

4

α

sin(αt)
4

h2

[− 1

2
(x2 + x2

0) cos(αt)+ xx0
]

=
√

ih

4π t

√
αt

sin(αt)
e

−iα

h sin(αt)

[− 1

2
(x2 + x2

0) cos(αt)+ xx0
]

=
√

ih

4π t

√
αt

sin(αt)
e

iα

h

[1

2
(x2 + x2

0) cot(αt)− xx0

sin(αt)

]
.

Replacing t by t − t0 yields the formula for the propagator for a quantum harmonic
oscillator.

Theorem 10.26. The propagator for the Schrödinger’s operator with quadratic po-
tential

ih∂t + 1

2
h2∂2

x −
1

2
α2x2

is given by

K(x, x0, t, t0) =
√

ih

4π t

√
αt

sin(α(t − t0))
e

iα

h

[1

2
(x2 + x2

0) cot(αt)− xx0

sin(α(t − t0))

]
,

with t > t0.
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10.9 Propagators for Schrödinger’s equation in the n-dimensional
case

Let x = (x1, . . . , xn). The n-dimensional Schrödinger equation with potential energy
U(x) is

ih∂t� + 1

2
h2(∂x1 + · · · + ∂xn

)
� = U(x)�. (10.9.55)

Let �0(x) = �(x, t0) be the initial value of the wave function. Then the solution of
(10.9.55) is

�(x, t) =
∫

K(x, x0, t, t0)�0(x0) dx0, t > t0,

where K(x, x0, t, t0) is the propagator. The potential U(x) = 0 yields the propagator
for an n-dimensional free particle

K(x, x0, t, t0) =
(

ih

4π(t − t0)

)n/2

e

ih

2(t − t0)
|x − x0|2

.

The potential U(x) = 1

2
α2|x|2 = 1

2
α2(x2

1 + · · · + x2
n) yields the propagator for an

n-dimensional linear harmonic oscillator

K(x, x0, t, t0) =
[

ih

4πT
· αT

sin
(
αT

)]n/2

e

iα

h

[1

2

(
|x|2 + |x0|2

)
cot(αT)− 〈x, x0〉

sin(αT)

]
,

where T = t − t0 > 0, and 〈x, x0〉 = x1x01 + · · · + xnx0n.
The following result deals with the potential energy

U(x) = 〈Mx, x〉 =
n∑

j=1

α2
j x

2
j ,

where

M =

⎛⎜⎜⎝
α1 0 . . . 0
0 α2 . . . 0

. . . . . . . . . . . .

0 0 . . . αn

⎞⎟⎟⎠
is a real matrix.

Theorem 10.27. The propagator for the Schrödinger operator

ih∂t + 1

2
h2∂x − 1

2

n∑
j=1

α2
j x2

j (10.9.56)

is
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K(x, x0, t, t0)

=
(

ih

4π

)n/2 n∏
j=1

(
αj

sin(αj T)

)1/2

e

i

2h

n∑
j=1

[
αj (x2

j + y2
j ) cot(αj T)− 2xj yj

sin(αj T)

]
,

where y = x0 and T = t − t0 > 0.

Proof. Let αj = 2

h
λj , j = 1, ..., n. With substitution (10.8.54) we have

∂x −�x +
∑

λ2
j x

2
j = ih∂t + 1

2
h2�x − 2

h2

∑
λ2

j x2
j

= ih∂t + 1

2
h2�x − 1

2

∑
α2

j x2
j ,

which is the operator (10.9.56). The fundamental solution of the operator ∂x −�x +∑
λ2

j x
2
j is given by Theorem 10.17. Using (10.8.54) the fundamental solution given

by formula (10.4.39) becomes

K(x, y, t, 0)

= 1

(4πt)n/2

n∏
j=1

[
2λj t

sinh(2λj t)

]1/2

e

−1

2

n∑
j=1

λj

[
(x2

j + y2
j ) coth(2λj t)− 2xjyj

sinh(2λj t)

]

= 1

(4πt)n/2

n∏
j=1

[
hαj t

sinh(hαj t)

]1/2

e

−1

2

n∑
j=1

hαj

2

[
(x2

j + y2
j ) coth(hαj t)− 2xjyj

sinh(hαj t)

]

=
(

ih

4π

)n/2 n∏
j=1

[
αj

sin(αj t)

]1/2

e

− i

2h

n∑
j=1

αj

[
− (x2

j + y2
j ) cot(αj t)+ 2xj yj

sin(αj t)

]
.

Replacing t by T = t − t0 yields the desired relation.

10.10 The operator P = ∂t − ∂2
x − U(x)∂x

We shall study the fundamental solution function for the operator

P = ∂t − ∂2
x − U(x)∂x,

where U(x) is a potential function. We shall study different potentials U (linear,
quadratic, square root, exponential). A last section will deal with the physical signi-
ficance of this operator.
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10.10.1 The linear potential

Consider the operator

L = d2

dx2 + 2ax
d

dx
, a ∈ R

with the associated Hamiltonian function

H(ξ, x) = 1

2
(ξ2 + 2axξ).

The Hamiltonian system yields

ẋ = Hξ = ξ + ax =⇒ ξ = ξ̇ − ax,

ξ̇ = −Hx = −aξ = −a(ẋ − ax) = −aẋ + a2x,

and hence
ẍ = ξ̇ + aẋ = −aẋ + a2x + aẋ = a2x.

Then x(s) satisfies the boundary problem⎧⎪⎨⎪⎩
ẍ = a2x,

x(0) = x0,

x(t) = x.

The above boundary problem has a unique solution. The associated energy is the same
as in Proposition 10.9

E =
a2
(
x2 + x2

0 − 2xx0 cosh(at)
)

2 sinh(at)2 . (10.10.57)

The corresponding action is the same as (10.4.15)

S(x0, x, t) = a

2

1

sinh(at)

[
(x2 + x2

0 ) cosh(at)− 2xx0

]
.

From the conservation of energy

H(∇xS) = E,

we obtain

(∂xS)2 + 2ax ∂xS = 2E =⇒ 2ax(∂xS) = 2E − (∂xS)2. (10.10.58)

We shall look again for a fundamental solution of the type

K = K(x0, x, t) = V (t)ekS(x0,x,t),
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with k constant. A straightforward computation yields

∂tK = K
(V ′

V
− kE

)
∂xK = kK∂xS,

∂2
xK = k ∂xK ∂xS + kK∂2

xS

= k2K(∂xS)2 + kK∂2
xS

= K
(
k2(∂xS)2 + k∂2

xS
)
.

Consider the operator
P = ∂t − ∂2

x − 2αax∂x,

where α is a multiplier determined by the relation PK = 0. A computation provides

PK = K
(V ′

V
− kE

)
−K

(
k2(∂xS)2 + k∂2

xS
)
− 2αakxK∂xS

= K

(
V ′

V
− kE − k2(∂xS)2 − k∂2

xS − 2αakx∂xS

)
= K

(
V ′

V
− kE − k2(∂xS)2 − k∂2

xS − αk(2E − (∂xS)2)

)
= K

(
V ′

V
− kE(1+ 2α)− k∂2

xS + k(α − k)(∂xS)2
)

,

where we have used relation (10.10.58). Choosing α = k = −1/2 yields

PK = K

(
V ′

V
+ 1

2
∂2
xS

)
.

Using ∂2
xS = a coth(at), we let V satisfy

V ′(t)
V (t)

+ a

2
coth(at) = 0,

with the solution

V (t) = C√
sinh(at)

, C ∈ R.

Hence the operator P = ∂t − ∂2
x + ax∂x has the kernel

K(x0, x, t) = V (t)e
1
2 S

= C√
sinh(at)

e
− 1

4t

at

sinh(at)

(
(x2 + x2

0 ) cosh(at)− 2xx0

)
.

When a→ 0, the operator becomes the usual heat operator ∂t − ∂2
x , with the funda-

mental solution
1√
4πt

e−
1
4 (x−x0)

2
. By comparison we obtain C =

√
a

π
.
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Theorem 10.28. Let a ∈ R. The fundamental solution for the operator P = ∂t −
∂2
x + ax∂x is

K(x0, x, t)

= 1√
4πt

√
at

sinh(at)
e
− 1

4t

at

sinh(at)
[(x2 + x2

0 ) cosh(at)− 2xx0]
, t > 0.

The computations are similar in the case whena is replaced by−ia. Using cosh(iat) =
cos(at) and sinh(iat) = i sin(at), we obtain a dual theorem.

Theorem 10.29. Let a ∈ R. The fundamental solution for the operator P = ∂t −
∂2
x + iax∂x is

K(x0, x, t) = 1√
4πt

√
at

sin(at)
e
− 1

4t

at

sin(at)
[(x2 + x2

0 ) cos(at)− 2xx0]
, t > 0.

10.10.2 The quadratic potential

The operator considered in this section is P = ∂t −L, with L = ∂2
x +2ia2x2∂x . This

corresponds to a quartic harmonic oscillator in Quantum Mechanics. The Hamiltonian
associated with the operator L is

H(ξ, x) = 1

2
ξ2 + ia2x2ξ.

From the Hamiltonian system we have

ẋ = Hξ = ξ + ia2x =⇒ ξ = ẋ − ia2x2,

ξ̇ = −Hx = −2ia2xξ = −2ia2x(ẋ − ia2x2)

= −2ia2xẋ − 2a4x3,

ẍ = ξ̇ + 2ia2xẋ

= −2ia2xẋ − 2a4x3 + 2ia2xẋ

= −2a4x3.

Then x(s) will satisfy the boundary value problem (10.6.40)⎧⎪⎨⎪⎩
ẍ = −2a4x3,

x(0) = x0,

x(t) = x.

This problem has infinitely many solutions xn(s), even for |x − x0| small. They
correspond to an increasing unbounded sequence of energies (En)n given by the
Theorem 10.21. The actions Sn cannot be found explicitly. This explains the difficulty
of the problem. We shall find the kernel in the case of a general potential U(x) in the
next section.
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10.10.3 The kernel of ∂t − ∂2
x − U(x)∂x

Consider the operator L = ∂2
x + U(x)∂x with the associated Hamiltonian

H(ξ, x) = 1

2
ξ2 + 1

2
U(x)ξ.

The Hamiltonian system yields

ẋ = Hξ = ξ + 1

2
U(x) =⇒ ξ = ẋ − 1

2
U(x),

ξ̇ = −Hx = −1

2
U ′(x)ξ,

ẍ = ξ̇ + 1

2
U ′(x)ẋ = −1

2
U ′(x)ξ + 1

2
U ′(x)ẋ

= −1

2
U ′(x)(ẋ − 1

2
U(x))+ 1

2
U ′(x)ẋ

= 1

4
U(x)U ′(x) = 1

8

d

dx
U2(x).

We are interested in the solutions of the boundary value problem⎧⎪⎪⎨⎪⎪⎩
ẍ = 1

8

d

dx
U2(x),

x(0) = x0,

x(t) = x.

(10.10.59)

The conservation law is
1

2
ẋ2 − 1

8
U2(x) = E, (10.10.60)

where E is the constant of energy along the solution x(s) which joins the end points
x0 and x. The solution x(s) can be obtained by integration∫ x(s)

x0

dw√
2E + 1

4U2(w)

= ±s,

where the energy E = E(x0, x) satisfies the equation∫ x

x0

dw√
2E + 1

4U2(w)

= ±t. (10.10.61)

The equation (10.10.61) has always at least a solution E > 0. It might have even
infinitely many solutions En. There is an action associated with each energy E such
that

H(∇xS) = E =⇒ (Sx)
2 + U(x)Sx = 2E,

and
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∂tS = −E,

where ∇xS = Sx = ∂xS. For each solution x(s) we shall consider the product
K = V (t, x)ekS . Let λ ∈ R be a multiplier and consider the operator

Pλ = ∂t − ∂2
x − λU(x)∂x.

A straightforward computation yields

Pλ(K) = K

(
V ′

V
− kE

)
−K

(
Vxx

V
+ 2k

Vx

V
Sx + k2(Sx)

2 + kSxx

)
−λU(x)K

(
Vx

V
+ kSx

)
= K

(
V ′

V
− kE − Vxx

V
− 2k

Vx

V
Sx − k2(Sx)

2 − kSxx − λU(x)
Vx

V
− λkU(x)Sx

)
= K

(
1

V

(
V ′ − Vxx − 2kVxSx − λU(x)Vx

)
− kE − k2(Sx)

2 − kSxx − λkU(x)Sx

)
= K

(
1

V

(
V ′ − Vxx − 2kVxSx − λU(x)Vx

)
−kE − k2(2E − SxU(x))− kSxx − λkU(x)Sx

)
= K

(
1

V

(
V ′ − Vxx − 2kVxSx − λU(x)Vx

)
− kSxx − kE (1+ 2k)︸ ︷︷ ︸

=0

+k (k − λ)︸ ︷︷ ︸
=0

U(x)Sx

)
= 0,

where we choose λ = k = −1

2
and let V (t, x) satisfy the generalized volume function

equation

V ′ − Vxx + [Sx + 1

2
U(x)]Vx + 1

2
SxxV = 0. (10.10.62)

A well-known result of Classical Mechanics states that ξ = Sx along the solutions
of the Hamiltonian system. The first equation of the Hamiltonian system yields ẋ =
ξ + 1

2U(x) = Sx + 1
2U(x), and hence the generalized volume function equation

becomes

V ′ − Vxx + ẋ Vx + 1

2
SxxV = 0. (10.10.63)

Using
d

dt
V (t, x(t)) = ∂tV + ẋ∂xV = V ′ + ẋVx

yields the following form for equation (10.10.62),
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d

dt
V (t, x(t))− ∂2

xV (t, x) = −1

2
SxxV (t, x). (10.10.64)

In the case when Sxx depends only on t , it makes sense to look for a function V which
does not depend on x. Equation (10.10.64) in this case becomes

V ′(t) = −1

2
SxxV (t).

This happens just in a few particular cases.

Theorem 10.30. Let xn(s) be all solutions of the boundary value problem (10.10.59).
Let Sn be the action and Vn be the generalized volume function associated with the
solution xn(s). Then the kernel of the operator

P = ∂t − ∂2
x +

1

2
U(x)∂x

is given by the formula

K(x0, x, t) =
∑
n

CnVn(t, x)e
−1

2
Sn(x0, x, t)

where Vn(t, x) satisfies (10.10.64) and the constants Cn satisfy an analogue of equa-
tion (10.7.52).

There are only a few cases when the boundary value problem (10.10.59) can be
solved and we are able to find explicit formulas for the action S. The linear potential
is one of them. In the next section we shall present other particular cases, which have
unique solutions.

10.10.4 The square root potential

Let U(x) = 2
√

2x. Then the equation (10.10.61) becomes∫ x

x0

dw√
E + w

= ±√2t.

If x > x0 we choose the + sign and if x < x0 we shall choose the − sign in the right
hand side. The sign does not affect the solution E. Integrating yields

2
√

E + w

∣∣∣∣x
x0

= ±√2t ⇐⇒√E + x −√
E + x0 = ± t√

2
,

√
E + x = √

E + x0 ± t√
2
=⇒ E + x =

(√
E + x0 ± t√

2

)2
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⇐⇒ E + x = E + x0 ± 2
√

E + x0
t√
2
+ t2

2

⇐⇒ x − x0 − t2

2
= ±2

√
E + x0

t√
2

=⇒
(
x − x0 − t2

2

)2 = 2t2(E + x0)

⇐⇒ E =
(
x − x0 − t2

2

)2

2t2 − x0

= (x − x0)
2

2t2 + t2

8
− x − x0

2
− x0

= (x − x0)
2

2t2 + t2

8
− x + x0

2
.

Theorem 10.31. Given x �= x0, there is a unique solution of the boundary value
problem (10.10.59) with the potential U(x) = 2

√
2x. The solution is a parabola

given by

x(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s2

2
+√2s

√
E + x0 + x0 if x > x0,

s2

2
−√2s

√
E + x0 + x0 if x < x0,

(10.10.65)

where the energy E = (x − x0)
2

2t2 + t2

8
− x + x0

2
is the same for both cases.

Proof. We solve the following integral for x(s),∫ x(s)

x0

dw√
E + w

= ±√2s =⇒ √
x(s)+ E = ± s√

2
+√

x0 + E.

Taking the square we obtain (10.10.65).

In the following we shall find the action S, which satisfies the Hamilton–Jacobi
equation

∂tS = −E = (x − x0)
2

2t2 + t2

8
− x + x0

2

=⇒ S(x, x0, t) = (x − x0)
2

2t
+ x + x0

2
t − t3

24
.

An obvious computation shows that Sxx = 1

t
does not depend on x. Then the volume

function V depends only on t and satisfies
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V ′(t) = − 1

2t
V (t),

which can be easily integrated to obtain

V (t) = C√
t
.

Theorem 10.32. The kernel of the operator

P = ∂t − ∂2
x +
√

2x ∂x

is given by

K(x, x0, t) = 1√
2πt

e
−1

2

( (x − x0)
2

2t
+ x + x0

2
t − t3

24

)
. (10.10.66)

Proof. From Theorem 10.31 there is a unique solution x(s) and hence the sum in the

Theorem 10.30 yields a fundamental solution K = V (t)e− 1
2 S . Equation (10.7.52)

yields C = 1√
2π

.

10.10.5 The constant potential case U(x) = a, with a ∈ R

In this case the boundary value problem (10.10.59) becomes⎧⎪⎨⎪⎩
ẍ = 0,

x(0) = x0

x(t) = x.

The solution is unique and it is given by

x(s) = (x − x0)
s

t
+ x0, 0 ≤ s ≤ t.

The energy given by (10.10.60) is

E = 1

2
ẋ2 − 1

8
U2(x)

= (x − x0)
2

2t2 − 1

8
a2.

The action S satisfies

∂tS = −E = − 1

t2

(x − x0)
2

2
− 1

8
a2

=⇒ S = (x − x0)
2

2t
− 1

8
a2t.
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It is easy to show that Sxx = 1

t
. Hence the volume function V (t) will satisfy the

equation V ′(t) = − 1

2t
V (t) with the solution V (t) = C√

t
, t > 0. There is only one

term in the sum provided by Theorem 10.30. The kernel will be

K(x, x0, t) = V (t)e
−1

2
S = C√

t
e
− (x − x0)

2

4t
+ 1

16
a2t

.

Making a −→ 0, we get C = 1√
4π

by comparison with the kernel of the usual heat

equation. Making b = a

2
yields the following theorem.

Theorem 10.33. Let b ∈ R.
(i) The kernel of the operator

P = ∂t − ∂2
x + b∂x

is

K(x, x0, t) = 1√
4πt

e
− (x − x0)

2

4t
+ b2

4
t
, t > 0.

(ii) The kernel of the operator

P = ∂t − ∂2
x + ib∂x

is

K(x, x0, t) = 1√
4πt

e
− (x − x0)

2

4t
− b2

4
t
, t > 0.

10.10.6 The exponential potential

In this section we shall deal with the kernel of

P = ∂t − ∂2
x +
√

2ex/2∂t .

The potential in this case is U(x) = 2
√

2ex/2 and the integral (10.10.61) becomes∫ x

x0

dw√
E + ew

= ±√2t, t ≥ 0. (10.10.67)

We choose a positive (negative) sign in the right-hand side if x > x0 (x < x0).
Integrating yields

− 2√
E

tanh−1

√
1+ ew

E

∣∣∣∣x
x0

= ±√2t
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⇐⇒ tanh−1

√
1+ ex

E
− tanh−1

√
1+ ex0

E
= ∓t

√
E

2
.

Using tanh−1 z = 1

2
ln

1+ z

1− z
yields

ln
1+

√
1+ ex

E

1−
√

1+ ex

E

− ln
1+

√
1+ ex0

E

1−
√

1+ ex0

E

= ∓√2E t

⇐⇒
1+

√
1+ ex

E

1−
√

1+ ex

E

·
1−

√
1+ ex0

E

1+
√

1+ ex0

E

= e∓
√

2E t .

Using
1+√z

1−√z
= 1+ z+ 2

√
z

1− z
, the above relation becomes

2+ ex

E
+ 2

√
1+ ex

E

−ex

E

· −ex0

E

2+ ex0

E
+ 2

√
1+ ex0

E

= e∓
√

2E t

⇐⇒ ex0−x · 2E + ex + 2
√

E
√

E + ex

2E + ex0 + 2
√

E
√

E + ex0
= e∓

√
2E t .

Let λ = √2E. Then λ satisfies the equation

ex0−x ·
λ2 + ex +√2λ

√
1

2
λ2 + ex

λ2 + ex0 +√2λ

√
1

2
λ2 + ex0︸ ︷︷ ︸

f (λ)

= e∓λ t .

Let f (λ) be the left-hand side of the above relation. We have

f (0) = ex0−xex−x0 = 1,

lim
λ→∞ f (λ) = ex0−x

{
> 1 if x0 > x,

< 1 if x0 < x.

Case x0 > x : The equation becomes f (λ) = eλt . The linear approximations around
λ = 0 are

eλt = 1+ tλ+O(λ2),

f (λ) = 1+√2
( 1

ex/2 −
1

ex0/2

)
λ+O(λ2).
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For any 0 < t <
√

2
( 1

ex/2 −
1

ex0/2

)
there is an ε > 0 such that

f (λ) > eλt , for 0 < λ < ε.

We also have
f (λ) < ex0−x < eλt , for λ >

x0 − x

t
> 0.

Hence there is a solution λ ∈
(
ε,

x0 − x

t

)
, see Figure 10.2.

λ
λ

f(λ)

λt

1

x

e
o x

e

Figure 10.2: The functions f (λ) and eλt in the case x0 > x.

Case x0 < x :The equation becomes f (λ) = e−λt . The linear approximations around
λ = 0 are

e−λt = 1− tλ+O(λ2),

f (λ) = 1−√2
( 1

ex0/2 −
1

ex/2

)
λ+O(λ2).

A similar analysis yields that t can be chosen small enough such that the graph of
the function f (λ) is below the graph of e−λt for small positive values of λ. For large
values of λ the exponential has an asymptote at y = 0, while f (λ) has an asymptote
at y = ex0−x < 1. Hence there is a solution λ = √2E(x0, x, t) only for small values
of t > 0. See Figure 10.3.
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λ

1

eλ t

f(λ)

xxo
e

λ

Figure 10.3: The functions f (λ) and eλt in the case x0 < x.

A fundamental solution is provided by Theorem 10.30. In this case there is only
one term in the sum

K = V (t, x)e−
1
2 S,

with ∂tS = −E = − 1
2λ2. The function V (t, x) satisfies

∂tV − Vxx +
√

λ2 + 2exVx + 1

2
SxxV = 0,

where we used that ẋ = √2E + 2ex =
√

λ2 + 2ex . The function λ = λ(x0, x, t)

depends on x and t . This makes the above equation almost impossible to solve.

10.10.7 Physical interpretation

One way to look at the equation

ut − U(x)ux = εuxx (10.10.68)

is to think of it as the parabolic regularization of the transport equation

ut − U(x)ux = 0. (10.10.69)

For equation (10.10.69), one can define the characteristic x = x(t) by dx(t)
dt

=
−U(x(t). Then equation (10.10.69) is d(u(x(t), t)

dt
= 0.

Another way to look at it is to consider the viscous conservation laws
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wt + f (w)x = εwxx. (10.10.70)

The corresponding hyperbolic conservation law is

wt + f (w)x = 0, (10.10.71)

where f (w) is called a flux function. In many physical situations w is a vector. For
example, the famous Euler’s equation of compressible fluids. In Euler’s equation the
vector w = (ρ, v, E). Here ρ is the density, v is the velocity, and E is the total energy
(kinetic energy and internal energy). In this case, equation (10.10.71) denotes the
conservation of mass, momentum, and energy. In equation (10.10.71), some impor-
tant physical effects such as viscosity and heat-conductivity are ignored, because in
general they are small. The more physically realistic equation is (10.10.70), which
takes account of those physical effects.

One may consider the linearized form of an equation around a specific solution.
For example, let W be a specific solution of (10.10.70). Let u be the small perturbation,
i.e., u = w −W . So u satisfies the equation

ut + (f (w)− f (W))x = εuxx. (10.10.72)

Write f (w)− f (W) = f ′(W)u+Q(u, W). Then Q(u, W) is a high order term of
u. So equation (10.10.720 can be written as

ut + (f ′(W)u)x = εuxx −Qx. (10.10.73)

The corresponding linearized equation is

ut + (f ′(W)u)x = εuxx. (10.10.74)

In order to understand the behavior of solutions of (10.10.73), it is very important to
understand the Green function of linearized equation (10.10.74).

When W is a travelling wave solution of (10.10.70) of the form W(x − st
ε ), there is

an extensive study of the Green function of (10.10.74). See the references [27], [26],
[25], [46], [48], [7], [32], [9].

In the particular case when ε = 1, and the flux is f (w) = −U(x)w(x, t), the
equation (10.10.71) becomes

wt −
(
U(x)w

)
x
= wxx. (10.10.75)

If one sets

u(x, t) =
∫ x

−∞
w(y, t) dy,

then integrating the equation (10.10.75) yields

ut − U(x)ux = uxx,

i.e., Pu = 0, with P = ∂t − ∂2
x − U(x)∂x .
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10.11 Exercises

1. Prove (ii) of Theorem 10.3 (see [29], p. 50).

2. Show that the fundamental solution for the heat equation on Rn has the following
properties:
(i) K(x, y, t) = K(y, x, t) ≥ 0,

(ii)
∫
Rn K(x, y, t) dy = 1,

(iii)
∫
Rn K(x, z, t)K(z, y, s) dz = K(x, y, t + s),

(iv) lim
t↘0

∫
Rn

K(x, y, t)φ(y) dy = φ(x), for any φ compact supported smooth func-

tion.

3. Using eϕ =∑
n

ϕn

n! and a formula for �ϕn, prove formula (10.2.4).

4. (i) Let (Ej )j≥1 be the energies provided by Theorem 10.21. Given x0 = x(0) and
x = x(t), show that the solution x(s) of the Hamiltonian system is given implicitly
by

cn(23/4aE
1/4
j s) =

2a2
√

2Ejx0x(s)+
√

(2Ej − a4x4
0)(2Ej − a4x4(s))

4Ej − (
√

2Ej − a2x2
0 )(

√
2Ej − a2x2(s))

.

(ii) Assume x0 = 0 and find an explicit formula for x(s) in terms of the energies
(Ej )j≥1.

5. Let K be given as in Theorem 10.8. Show that
(i) lim

τ↘0
K( · , x, t, τ ) = δ(x,t),

(ii) lim
τ↘0

K( · , (y, σ )−1 ◦H (x, t), τ ) = δ(x − y)δ(t − σ).

6. Let M be a compact Riemannian manifold and let ϕ : (M, g)→ Rm be an isometric
immersion. If there are p, q ≥ 1 integers such that

ϕ = φ0 +
q∑

j=p

ϕj ,

with �ϕj = λjϕj , and λj ∈ R is the j -th eigenvalue, then (M, g) is called a
submanifold of Rm of finite type.

a) Show that ϕ0 is the center of mass of (M, g), i.e.,

ϕ0 = 1

vol(M)

∫
M

ϕ dv.
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b) Show that
∫

M

ϕjϕk dv = 0 for j �= k.

c) If M is a 1-dimensional submanifold of R2 (a curve), then show that M is a
piece of a line or arc of a circle.

d) If M is a closed plane curve in R2, then its type is finite if and only if M is a
circle.

e) Show that the Euclidean sphere Sn(r) is a submanifold on Rn+1 of finite type.

Show that if j is the inclusion, then �j = n

r2 j . What is the type?

7. (Getzler) Let A ∈Mn×n(R) be a positive definite matrix. Show that the heat kernel
of the harmonic oscillator −�+ 〈Ax, x〉 is

K(x, y, t, 0) = 1

(4πt)n/2

√
det C e

−1

4

(
〈Bx, x〉 + 〈By, y〉 − 2〈Cx, y〉

)
,

with

B = 2
√

At

tanh 2
√

At
, C = 2

√
At

sinh 2
√

At
, t > 0.

8. (Hörmander) Let � ∈ Mn×m(R) be a skew symmetric matrix and denote i = √−1.
Using the technique presented in this chapter show that the heat kernel of the operator

L = −
n∑

j=1

(
− ∂xj

− i

n∑
k=1

�jkx
k
)2

is

K(x, y, t, 0) = 1

(4πt)n/2

√
det A e

− 1

4t

(
〈B(x − y), x − y〉 + 4it〈�x, y〉

)
,

where

A = 2|�|t
sinh 2|�|t , B = 2|�|t

tanh 2|�|t , |�| :=
√
−�2.

(see Hörmander [22], p. 158).
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Fundamental Solutions for Elliptic Operators

11.1 Fundamental solutions for Laplace operators

In this chapter we shall find a formula for the fundamental solution of the Laplace
operator on radially symmetric spaces. We recall the formulas for the action and
energy along a geodesic which joins the points x0 and x within time τ . The action is

given by S = d(x0, x)2

2τ
and satisfies the Hamilton–Jacobi equation

∂S

∂τ
+H(∇S) = 0,

where the Hamiltonian H(∇S) = E is constant along the geodesic and equal to the
energy. Hence

E = −∂S

∂τ
= d(x0, x)2

2τ 2 .

We note that the quotient
E

S
= 1

τ
is independent of the end points x0 and x.

11.2 The transport operator

Definition 11.1 The transport operator is defined as T : F(R×M)→ F(R×M),

T = ∂

∂τ
+ ∇S, (11.2.1)

where ∇ stands for the gradient and S is the action along a geodesic c : [0, τ ] → M

with endpoints x0 = c(0), x = c(τ ).

This means that if f ∈ F(R×M), then

Tf = ∂f

∂τ
+ ∇S(f ) = ∂f

∂τ
+ g

(∇S,∇f
)
.

The following result shows that T is the derivation with respect to the parameter τ .
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Theorem 11.2. Let v : R×M → R be a smooth function. Then

T v = d

dτ
v
(
τ, c(τ )

)
. (11.2.2)

Proof. The chain rule yields

d

dτ
v
(
τ, c(τ )

) = ∂v

∂τ
+ ∂v

∂xi

ċi (τ )

= ∂v

∂τ
+ gki gkj ∂v

∂xj

ċi(τ )

= ∂v

∂τ
+ gki(∇v)k ċi(τ )

= ∂v

∂τ
+ g

(∇v, ċ(τ )
)
.

Using the relation ċ = ∇S yields

g
(∇v, ċ(τ )

) = g
(∇v,∇S

) = ∇S(v),

by the definition of the gradient. Hence

d

dτ
v
(
τ, c(τ )

) = ∂v

∂τ
+ ∇S(v) = T (v).

11.3 Properties of the transport operator

Proposition 11.3 The operator T acts as a derivation

(i) T (u+ v) = T (u)+ T (v),
(ii) T (u v) = u T (v)+ v T (u), ∀ u, v ∈ F(R×M).

Proof. As T is the sum of two derivations,

T (u v) = ∂

∂τ
(u v)+ ∇S(u v)

= u
∂

∂τ
v + v

∂

∂τ
u+ u∇S(v)+ v∇S(u)

= u T v + v T u.

The following proposition deals with the eigenfunctions of the transport operator.
Let S be the action function.
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Proposition 11.4 We have

(i) T S = 1

τ
S,

(ii) T
( 1

S

)
= −1

τ

1

S
,

(iii) In general, for any n ∈ Z we have T Sn = n

τ
Sn.

Proof. (i) Using the Hamilton–Jacobi equation,

T S = ∂S

∂τ
+ g

(∇S,∇S
) = ∂S

∂τ
+ |∇S|2

= ∂S

∂τ
+ 1

2
|∇S|2︸ ︷︷ ︸

=0

+1

2
|∇S|2 = 1

2
|∇S|2

= 1

2
|ċ|2 = E = d(x0, x)2

2τ 2 = S

τ
.

(ii) Applying T to 1 = S
1

S
and using that T acts as a derivation yields

0 = T
(
S

1

S

)
= S T

( 1

S

)
+ 1

S
T S

= S T
( 1

S

)
+ 1

S

1

τ
S = S T

( 1

S

)
+ 1

τ
.

Hence

S T
( 1

S

)
= −1

τ
=⇒ T

( 1

S

)
= −1

τ

1

S
.

(iii) Using (i), (ii) and the definition of T , we have

T Sn = ∂Sn

∂τ
+ g

(∇S,∇Sn
)

= nSn−1
(

∂S

∂τ
+ g

(∇S,∇S
)) = nSn−1T (S)

= nSn−1 S

τ
= n

τ
Sn.

Remark 11.5 The set
(
S±n

)
n≥1

are eigenfunctions for the operator T with the cor-

responding eigenvalues
(±n

τ

)
n≥1

.
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11.4 The homogeneous transport equation

Consider the homogeneous equation T v = 0. We shall look for a solution as a linear
combination of powers of S,

v =
∑
n≥1

an(τ )Sn +
∑
n≥1

bn(τ )
1

Sn
.

Using the properties of T yields

T v =
∑
n≥1

[an(τ )T Sn + Sna′n(τ )+ bn(τ )T (S−n)+ b′n(τ )S−n]

=
∑
n≥1

[an(τ )
n

τ
Sn + Sna′n(τ )+ bn(τ )

(−n

τ

)
S−n + b′n(τ )S−n]

=
∑
n≥1

[an(τ )
n

τ
+ a′n(τ )]Sn +

∑
n≥1

[b′n(τ )− n

τ
bn(τ )] 1

Sn
.

In order to have T v = 0, it suffices to choose the coefficients an(τ ), bn(τ ) such that
the following ODEs are satisfied:

a′n(τ ) = −n

τ
an(τ ),

b′n(τ ) = n

τ
bn(τ ).

Integrating yields the solutions

an(τ ) = Cnτ
−n,

bn(τ ) = C̃nτ
n,

with Cn, C̃n ∈ R constants. Hence

v(τ, x) =
∑
n≥1

[Cnτ
−nSn + C̃nτ

nS−n]

=
∑
n≥1

[
Cn

(S

τ

)n + C̃n

( τ

S

)n]
=
∑
n≥1

[CnE
n + C̃nE

−n],

where E is the energy along the geodesics between x0 and x within time τ . Hence
v = f (E), where f is a function, which has a Laurent series expansion at E = 0.
As a consequence, we have the following result.

Proposition 11.6 (i) T is E-homogeneous, i.e.,
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T (Ew) = ET (w), ∀w ∈ F(M).

(ii) In general, T is f (E)-homogeneous where f is a function which has Laurent
expansion around zero.

Proof. (i) As T is a derivation,

T (Ew) = ET (w)+ wT (E) = ET (w).

Replacing E by f (E) yields (ii).

11.5 The non-homogeneous transport equation

Consider the non-homogeneous equation T v = h, where h has an expansion of the
form

h(τ, x) =
∑
n≥1

[αn(τ)Sn + βn(τ)
1

Sn
].

Looking for a solution of the form

v =
∑
n≥1

an(τ )Sn +
∑
n≥1

bn(τ )
1

Sn

yields

∑
n≥1

[an(τ )
n

τ
+ a′n(τ )]Sn +

∑
n≥1

[b′n(τ )− n

τ
bn(τ )] 1

Sn
=
∑
n≥1

[αn(τ)Sn + βn(τ)
1

Sn
].

It suffices to choose the coefficients an(τ ) and bn(τ ) such that the following linear
ODEs are satisfied:

a′n(τ )+ n

τ
an(τ ) = αn(τ),

b′n(τ )− n

τ
bn(τ ) = βn(τ).

The integrand factors of the above equations are µ(τ) = τ±n. Integrating, we obtain
the solutions

an(τ ) = τ−n

∫
τnαn(τ ) dτ,

bn(τ ) = τn

∫
τ−nβn(τ ) dτ.

Substituting back in the expression of v yields
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v =
∑
n≥1

an(τ )Sn +
∑
n≥1

bn(τ )
1

Sn

=
∑
n≥1

Snτ−n

∫
τnαn(τ ) dτ +

∑
n≥1

1

Sn
τn

∫
τ−nβn(τ ) dτ

=
∑
n≥1

En

∫
τnαn(τ ) dτ +

∑
n≥1

1

En

∫
τ−nβn(τ ) dτ.

In the case when αn(τ) = βn(τ) = 0 the integrals in the above formula are replaced
by constants Cn and C̃n.

11.6 Fundamental solution

The following lemmas will be useful in our study. They hold true on any Riemannian
space (M, g).

Lemma 11.7 Let S be the action. Then for any α ∈ R, we have

�Sα = αSα−1�S + 2α
∂

∂τ

(
Sα−1

)
. (11.6.3)

Proof. Lemma 2.27 yields

�Sα = −αSα−2
(
− S�S + (α − 1)|∇S|2

)
= αSα−1�S − α(α − 1)Sα−2|∇S|2. (11.6.4)

From the Hamilton–Jacobi equation we have

−1

2
|∇S|2 = ∂S

∂τ
. (11.6.5)

Multiplying (11.6.5) by 2α(α − 1)Sα−2 yields

α(α − 1)Sα−2|∇S|2 = 2α(α − 1)Sα−2 ∂S

∂τ

= 2α
∂

∂τ

(
Sα−1

)
.

Substituting in (11.6.4) yields (11.6.3).

Lemma 11.8 Let S be the action. Then for any α ∈ R and v ∈ F(R×M), we have

�(vSα) = Sα�v − 2αSα−1
(
T v − 1

2

(
�S

)
v
)
− 2α

∂

∂τ

(
vSα−1

)
, (11.6.6)

where T is the transport operator.
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Proof. Lemma 2.24 yields

�(vu) = u�v + v�u− 2g
(∇v,∇u

)
.

Substituting u = Sα , and using Lemma 11.7 yields

�(vSα) = Sα�v + v�Sα − 2g
(∇v,∇Sα

)
= Sα�v + αSα−1v�S + 2αv

∂

∂τ

(
Sα−1

)
− 2g

(∇v, αSα−1∇S
)

= Sα�v + αSα−1v�S + 2α
∂

∂τ
(vSα−1)

−2αSα−1 ∂v

∂τ
− 2αSα−1g

(∇v,∇S
)

= Sα�v + 2αSα−1
[1

2
(�S)v − ∂v

∂τ
− g(∇v,∇S)

]
+ 2α

∂

∂τ

(
vSα−1)

= Sα�v + 2αSα−1
[1

2
(�S)v − T v

]
+ 2α

∂

∂τ

(
vSα−1)

= Sα�v − 2αSα−1
[
T v − 1

2
(�S)v

]
+ 2α

∂

∂τ

(
vSα−1).

In the following we shall assume that the space (M, g) is radially symmetric, i.e.,
h(τ) = �S(τ) depends only on the parameter τ . Consider the function

F = Ew

Sq
,

where S and E denote the action and the energy, while w is a function with properties
specified later. The following computations take place for x �= x0. Applying Lemma
11.8 with v = Ew and α = q yields

�F = 1

Sq
�(Ew)+ 2q

Sq+1

[
T (Ew)− 1

2
(�S)(Ew)

]
+ 2q

∂

∂τ

( Ew

Sq+1

)
= 1

Sq
�(Ew)+ 2qE

Sq+1

[
T (w)− 1

2
(�S)(w)

]
+ 2q

∂

∂τ

( Ew

Sq+1

)
,

where we used that T is E-homogeneous. Assuming that any geodesic is infinitely
extendible, we may integrate in τ between −∞ and +∞,∫ ∞
−∞

�F dτ =
∫ ∞
−∞

1

Sq
�(Ew)+ 2qE

Sq+1 [T w−h(τ)w]+2q
Ew

Sq+1

∣∣∣∣τ=+∞
τ=−∞

. (11.6.7)

Comparing with the fundamental singularity computed in section 7.4.2, we shall

choose q such that
1

Sq
∼ 1

dn−2 . Since S = d2

2τ 2 , it follows that 2q = n − 2, i.e.,

q = n

2
− 1.
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We shall assume that the function w satisfies the following three conditions:

(i) �(Ew) = 0;

(ii) T w = h(τ)w;

(iii)
Ew

Sn/2 vanishes at τ = ±∞.

Then

K(x0, x) =
∫ ∞
−∞

Ew

S
n
2−1

dτ

is a fundamental solution, because

�K(x0, x) =
∫ ∞
−∞

�
( Ew

S
n
2−1

)
dτ =

∫ ∞
−∞

�F dτ = 0, for x �= x0.

In the following we shall find a function w = w(τ, x) satisfying properties (i)−(iii).

We start solving equation (ii) and employ an expansion for w in Laurent series
in the argument S,

w =
∑
n≥0

[
αn(τ)Sn + βn(τ)

1

Sn

]
.

Using the properties of the transport operator T yields

T w =
∑
n≥0

[
α′n(τ )Sn + αn(τ)T (Sn)+ β ′n(τ )

1

Sn
+ βn(τ)T

( 1

Sn

)]
=
∑
n≥0

[
α′n(τ )Sn + n

τ
αn(τ)Sn + β ′n(τ )

1

Sn
− n

τ
β(τ)

1

Sn

]
=
∑
n≥0

[
α′n(τ )+ n

τ
αn(τ)

]
Sn +

∑
n≥0

[
β ′n(τ )− n

τ
βn(τ)

] 1

Sn
.

Comparing with

h(τ)w =
∑
n≥0

h(τ)αn(τ )Sn +
∑
n≥0

h(τ)βn(τ )
1

Sn

yields

α′n(τ )−
(
h(τ)− n

τ

)
αn(τ) = 0,

β ′n(τ )−
(
h(τ)+ n

τ

)
βn(τ) = 0,

which are linear ODEs with the integrand factors µ = τ±ne−
∫

h(τ) dτ . Integrating,
we obtain the solutions
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αn(τ) = C1,n

τ n
e
∫

h(τ) dτ ,

βn(τ ) = C2,nτ
n e

∫
h(τ) dτ ,

with C1,n, C2,n ∈ R constants. Hence

w =
∑
n≥0

[
αn(τ)Sn + βn(τ)

1

Sn

]
= e

∫
h(τ) dτ

∑
n≥0

[
C1,n

Sn

τn
+ C2,n

τ n

Sn

]
= e

∫
h(τ) dτ

∑
n≥0

[
C1,nE

n + C2,n

1

En

]
,

where we used S = τE. The function v(τ) = e
∫

h(τ) dτ was introduced and studied
in Chapter 9, where it was called volume function. Then w is the product between the

volume function and a Laurent series in E = d2(x0, x)

2τ 2 . This solves the equation (ii).

We need to choose the constants C1,n and C2,n in the expression of w such that (i)

holds. We have

Ew = v(τ)
∑
n≥0

[
C1,nE

n+1 + C2,n

1

En−1

]
.

We make Ew dependent on only τ by choosing

C1,n = 0, n ≥ 0, C2,1 �= 0, C2,n = 0, for n �= 1.

Hence Ew = C2,1v(τ) = C2,1e
∫

h(τ) dτ is a volume function and hence (i) holds.

We still have to check condition (iii). We have

Ew

Sn/2 =
C2,1 e

∫ τ
0 h(u) du(

d2

2τ

)n/2

= C2,1(2τ)n/2 e
∫ τ

0 h(u) du

dn
.

Hence, we need to employ the following condition on the volume function,

lim
τ→±∞ τn/2e

∫ τ
0 h(u) du = 0. (11.6.8)

In the case h(τ) = �S < −k2 < 0 the condition (11.6.8) holds. Geometrically, the
condition h(τ) < 0 corresponds to converging geodesics on the manifold (M, g). We
have arrived at the following result.
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Theorem 11.9. Let (M, g) be a radially symmetric space and S = d2(x0, x)

2τ
be the

action and v(τ) = Ce
∫

�S dτ be the volume function. If (11.6.8) is satisfied, then the
fundamental solution is

K(x0, x) =
∫ +∞
−∞

v(τ)

Sn/2 dτ. (11.6.9)

Corollary 11.10 Let (M, g) be a radially symmetric space with curvature greater
than a positive constant. Then the fundamental solution is given by (11.6.9)

Proof. On a Riemannian space with positive curvature the geodesics have negative
convergence h(τ) < −k2 < 0 and hence (11.6.8) holds.

11.7 The parametrix

The idea of looking for a parametrix as an expansion of powers of the action S goes
back to Hadamard (see [19]). We shall construct a sequence of functions v1, v2, . . .

depending on τ such that

K =
∫ +∞
−∞

(
v1

S
+ v2

S2 +
v3

S3 + · · ·
)

dτ (11.7.10)

is a fundamental solution for the Laplacian � on the Riemannian manifold (M, g). In
this section, the space (M, g) is not assumed radially symmetric, i.e., �S is allowed
to be a function of both S and τ . Let

F = v1

S
+ v2

S2 +
v3

S3 + · · ·

and then
�F = �

(v1

S

)
+�

( v2

S2

)
+�

( v3

S3

)
+ · · ·

Lemma 11.8 yields

�
(v1

S

)
= 1

S
�v1 + 2

S2

(
T v1 − 1

2
(�S)v1

)
+ ∂

∂τ

(2v1

S2

)
,

�
( v2

S2

)
= 1

S2 �v2 + 2 · 2
S3

(
T v2 − 1

2
(�S)v2

)
+ ∂

∂τ

(
2

2v2

S3

)
,

�
( v3

S3

)
= 1

S3 �v3 + 2 · 3
S4

(
T v3 − 1

2
(�S)v3

)
+ ∂

∂τ

(
2

3v3

S4

)
,

�
( v4

S4

)
= 1

S4 �v4 + 2 · 4
S5

(
T v4 − 1

2
(�S)v4

)
+ ∂

∂τ

(
2

4v4

S5

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore
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�F = 1

S
�v1 + 1

S2

[
�v2 + 2T v1 − (�S)v1

]
+ 1

S3

[
�v3 + 2 · 2T v2 − 2(�S)v2

]
+ 1

S4

[
�v4 + 2 · 3T v3 − 3(�S)v3

]
+ . . .

+ ∂

∂τ

(
2v1

S2 + 2
2v2

S3 + 2
3v3

S4 + 2
4v4

S5
+ . . .

)
.

Assume that 2
kvk

Sk+1 vanishes at τ = ±∞. Integrating yields

∫ +∞
−∞

�F dτ =
∫ +∞
−∞

[
1

S
�v1 + 1

S2

[
�v2 + 2T v1 − (�S)v1

]
+ 1

S3

[
�v3 + 2 · 2T v2 − 2(�S)v2

]
+ 1

S4

[
�v4 + 2 · 3T v3 − 3(�S)v3

]
+ . . .

]
dτ

= 0,

providing v1, v2, v3, . . . satisfies the set of equations

(�)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�v1 = 0,

−�v2 = 2T v1 − (�S)v1,

−�v3 = 2
(
2T v2 − (�S)v2

)
,

−�v4 = 3
(
2T v3 − (�S)v3

)
,

. . . . . . . . . . . . . . . . . . . . . . . .

−�vk+1 = k
(
2T vk − (�S)vk

)
,

. . . . . . . . . . . . . . . . . . . . . . . .

Theorem 11.11. Let v1, v2, v3, . . . be functions satisfying the system of equations

(�) such that
vk

Sk+1 vanishes at τ = ±∞, for all k ≥ 1. Then the fundamental

solution has the expansion

K(x0, x) =
∫ +∞
−∞

(v1

S
+ v2

S2 +
v3

S3 + · · ·
)

dτ, ∀x �= x0, (11.7.11)

with the action S = d2(x0, x)/(2τ).

Proof. A formal interchange of � and
∫ +∞
−∞ yields

�K(x0, x) = �

∫ +∞
−∞

F dτ =
∫ +∞
−∞

�F dτ = 0,

by the choice of vk’s.
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11.8 Solving the system (�)

We shall solve the system (�) in the case when (M, g) is a compact manifold without
boundary i.e., ∂M = Ø. In order to do this we shall use Hopf’s lemma and the
following result.

Lemma 11.12 Let S be the action and T be the transport operator. For any n ≥ 0
we have

T Sn = n

2
Sn−1|∇S|2. (11.8.12)

Proof. The definition of the transport operator and the Hamilton–Jacobi equation
yields

T Sn = ∂

∂τ
Sn + g

(
∇Sn,∇S

)
= nSn−1 ∂S

∂τ
+ nSn−1g

(
∇S,∇S

)
= nSn−1

(
∂S

∂τ
+ |∇S|2

)
= nSn−1

(
∂S

∂τ
+ 1

2
|∇S|2︸ ︷︷ ︸

=0

+1

2
|∇S|2

)

= n

2
Sn−1|∇S|2.

Applying Hopf’s lemma, the first equation of (�) yields v1 = c1, constant. Then the
second equation of (�) becomes

−�v2 = −�(c1S)⇐⇒ −�(v2 − c1S) = 0.

Hopf’s lemma yields v2 = c1S + c2, with c2 constant. From Lemma 11.12,

T v2 = c1T S + T c2︸︷︷︸
=0

= c1
1

2
|∇S|2

and hence the third equation of (�) becomes

−�v3 = 2
(
c1|∇S|2 − (�S)(c1S + c2)

)
= c1

(
2|∇S|2 − 2S�S

)
−�S(2c2)

= −c1�S2 − 2c2�S

= −�(c1S
2 + 2c2S).

Hence
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−�(v3 − c1S
2 − 2c2S) = 0 =⇒ v3 = c1S

2 + 2c2S + c3,

where c3 is a constant. Using Lemma 11.12 yields

T v3 = c1T S2 + 2c2T S + T c3

= c1S|∇S|2 + c2|∇S|2.
The right side of the fourth equation of (�) becomes

3
(

2T v3 − (�S)v3

)
= 3

(
2c1S|∇S|2 + 2c2|∇S|2 − (�S)(c1S

2 + 2c2S + c3)
)

= −c1(3S2�S − 3 · 2S|�S|2)− 3c2(2S�S − 2|∇S|2)− 3c3�S

= −c1�S3 − 3c2�S2 − 3c3�S

= −�
(
c1S

3 + 3c2S
2 + 3c3S

)
.

Then the fourth equation of (�) becomes

−�v4 = −�(c1S
3 + 3c2S

2 + 3c3S)

and Hopf’s lemma yields

v4 = c1S
3 + 3c2S

2 + 3c3S + c4,

where c4 is a constant. Lemma 11.12 yields

T v4 = c1T S3 + 3c2T S2 + 3c3T S + T c4

= c1
3

2
S2|∇S|2 + 3c2

2

2
S|∇S|2 + 3c3

1

2
|∇S|2.

Therefore

2T v4 = 3c1S
2|∇S|2 + 6c2S|∇S|2 + 3c3|∇S|2. (11.8.13)

We also have

(�S)v4 = c1S
3�S + 3c2S

2�S + 3c3S�S + c4�S. (11.8.14)

Subtracting (11.8.13) and (11.8.14) yields

2T v4 − (�S)v4 = c1(−S3�S + 3S2|∇S|2)
+3c2(−S2�S + 2|∇S|2)
+3c3(−S�S + |∇S|2)− c4�S

= −1

4
c1�S4 − c2�S3 − 3c3

2
�S2 − c4�S.

The fifth equation of (�) becomes

−�v5 = −�(c1S
4 + 4c2S

3 + 6c3S
2 + 4c4S)

with the solution

v5 = c1S
4 + 4c2S

3 + 6c3S
2 + 4c4S + c5, c5 ∈ R.

Inductively, we obtain the following result.
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Proposition 11.13 There is a sequence of constants c1, c2, c3, . . . such that for any
n ≥ 1 we have

v1 = c1,

vn+1 =
n∑

k=0

(k

n

)
ck+1S

n−k. (11.8.15)

11.9 Exercises

1. Let u : M → R be a smooth function preserved along a geodesic flow with respect
to the Riemannian metric g. Show that
(i) g(∇u,∇S) = 0;
(ii) T u = 0;
(iii) Eu and u/E satisfy the equation T u = 0.

2. Let S be the action and E be the energy.
(i) If T is the transport operator, show that T S = E.
(ii) Show that T nS = 0, for n ≥ 2, where T 1 = T and T n+1 = T (T n).

3. Consider the equation T v = d2(x0, x).

(i) Show that vp = τ

3
d2(x0, x) is a particular solution.

(ii) Find the general solution of the above equation.

4. Consider the equation T v = 1

d2(x0, x)
.

(i) Show that vp = − τ

d2(x0, x)
is a particular solution.

(ii) Find the general solution.

5. Consider the radially symmetric space (Rn, δij ).
(i) Find the function h(τ) and the volume function v(τ) in this case.
(ii) Is the condition (11.6.8) satisfied?
(iii) Can formula (11.6.9) be used to find a fundamental solution of the Laplacian on
Rn? Why?

6. Let S be the action and T be the transport operator. Show that T S2 = |∇S|2.

7. What formula (11.7.11) becomes when vn are given by the formula (11.8.15)?
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Mechanical Curves

In this chapter we shall describe mechanical curves from the Lagrangian and Hamil-
tonian point of view. In this way, many geometric properties of these curves will be
derived from the variational formalism.

A mechanical curve is a curve described by a particle on which acts an exterior
force. For instance the circle, cycloid, hypocycloid, astroid, etc are models of particle
trajectories under some exterior forces. A particle on which acts a central force of
constant magnitude describes a circle. A point on a circle which rolls on a line,
without slipping, describes a cycloid. A point on a circle tangent interior to another
circle, which rotates without slipping in the interior of the large circle, describes a
hypocycloid.

12.1 The areal velocity

Suppose an object moves in the plane from the point A to point B along a continuous
arc ÂB. Let A be the area swept by the vectorial radius

−→
OX with X ∈ ÂB. We

shall consider positive the orientation given by the clock-wise rotation of
−→
OX. An

elementary calculus formula in polar coordinates yields

A = 1

2

∫ φ

0
r2 dφ, (12.1.1)

where r = r(φ) is the length of the vectorial radius and the argument angle φ =
∠AOX.

Written in differential form, we have dA = 1

2
r2 dφ. Let t be the time parameter.

Then
dA
dt
= 1

2
r2 dφ

dt
= 1

2
r2φ̇. (12.1.2)

The derivative dA/dt is called areal velocity.
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B

A

φ
φ

0

1

Figure 12.1: The area swept by the vectorial radius between two points.

12.1.0.1 Areal velocity as an angular momentum

Using polar coordinates x = r cos φ, y = r sin φ, the areal velocity becomes

dA
dt
= 1

2
r2φ̇ = 1

2

(
r cos φ r cos φ φ̇ − r sin φ (−r cos φ) φ̇

)
= 1

2
(xẏ − yẋ).

The expression xẏ − yẋ = 〈(x, y), (ẋ,−ẏ)〉 is called angular momentum.
If xẏ − yẋ is constant, the particle moves such that equal areas are described in

equal amounts of time i.e., the vectorial radius sweeps out equal areas in equal time.
This happens for instance, in the case of a particle in uniform motion on a circle or
in the case of a planet in the revolution motion around the sun (Kepler’s second law).

12.2 The circular motion

Consider a particle in the (x, y)-plane which is described by the Lagrangian

L(x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2)+ (xẏ − yẋ) (12.2.3)

i.e., the particle moves on a trajectory which is an extremizer for the action

S =
∫

L(x, y, ẋ, ẏ). (12.2.4)

The Lagrangian L is the sum of the kinetic energy and the angular momentum.

Theorem 12.1. The Euler–Lagrange system associated with the Lagrangian (12.2.3)

is {
ẍ − 2ẏ = 0,

ÿ + 2ẋ = 0.
(12.2.5)
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The solutions of the system (12.2.5) with the boundary conditions

x(0) = x0, x(τ ) = x, y(0) = y0, y(τ ) = y, (12.2.6)

with 0 < τ < π , are

x(s) = ±C sin s sin(s + α0)+ x0,

y(s) = ±C sin s cos(s + α0)+ y0,

with C =
√

E
2 and the energy E given by

E = (x − x0)
2 + (y− y0)

2

2 sin2 τ
. (12.2.7)

Proof. Using

∂L

∂ẋ
= ẋ − y,

d

dt

∂L

∂ẋ
= ẍ − ẏ,

∂L

∂x
= ẏ,

∂L

∂ẏ
= ẏ + x,

d

dt

∂L

∂ẏ
= ÿ + ẋ,

∂L

∂ẏ
= −ẋ,

it is easy to see that the Euler–Lagrange system becomes (12.2.5).

Multiplying the first equation of (12.2.5) by ẋ and the second by ẏ and adding
yields ẋẍ + ẏÿ = 0, therefore

d

dt
(ẋ2 + ẏ2) = 0 =⇒ ẋ2 + ẏ2 = C2 (12.2.8)

where C is a constant along the trajectory. Let E = 1

2
(ẋ2 + ẏ2) denote the first

integral of energy. Using (12.2.8) there is a smooth function α = α(s) such that

ẋ(s) = ±C sin α(s) =⇒ ẍ(s) = ±C cos α(s) α̇(s),

ẏ(s) = ±C cos α(s) =⇒ ÿ(s) = ∓C sin α(s) α̇(s).

Substituting back in the system (12.2.5) yields

± cos2 α(s) α̇(s) = ±2 cos2 α(s),

∓ sin2 α(s) α̇(s) = ∓2 sin2 α(s).

Subtracting we get
α̇(s) = 2 =⇒ α(s) = 2s + α0, (12.2.9)

with α0 constant. Hence
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ẋ(s) = ±C sin(2s + α0) =⇒ x(s) = ±C

∫ s

0
sin(2u+ α0) du+ x0

= ±C
1

2
(− cos w)

∣∣∣2s+α0

α0
+ x0 = ±C

2

(
cos α0 − cos(2s + α0)

)
+ x0

= ±C sin s sin(s + α0)+ x0,

where we used

cos α0 − cos(2s + α0) = −2 sin
α0 + 2s + α0

2
sin

α0 − 2s − α0

2
= 2 sin(s + α0) sin s.

Substituting α(s) in the formula for ẏ(s) yields

ẏ(s) = ±C cos α(s) = ±C cos(2s + α0)

=⇒ y(s) = ±C

∫ s

0
cos(2u+ α0) du+ y0

= ±1

2
C sin w

∣∣∣2s+α0

α0
+ y0

= ±1

2
C
(

sin(2s + α0)− sin α0

)
+ y0

= ±C sin s cos(s + α0)+ y0,

where we used

sin(2s + α0)− sin α0 = 2 sin
2s + α0 − α0

2
cos

2s + α0 + α0

2
= 2 sin s cos(s + α0).

Hence we have arrived at

x(s) = ±C sin s sin(s + α0)+ x0, (12.2.10)

y(s) = ±C sin s cos(s + α0)+ y0, (12.2.11)

where α0 is a constant. We shall show that energy E = C2/2 does not depend on α0.
Making s = τ in (12.2.10), (12.2.11) yields

x = ±C sin τ sin(τ + α0)+ x0, (12.2.12)

y = ±C sin τ cos(τ + α0)+ y0, (12.2.13)

hence it follows that (x − x0

sin τ

)2 = C2 sin2(τ + α0), (12.2.14)(y− y0

sin τ

)2 = C2 cos2(τ + α0). (12.2.15)
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Adding yields

2E = C2 = (x − x0)
2 + (y− y0)

2

sin2 τ
,

which is (12.2.7).

Remark 12.2 Let d =
√

(x − x0)2 + (y− y0)2 denote the Euclidean distance be-

tween (x0, y0) and (x, y). We note the fact that the energy E = d2

2 sin2 τ
is not

Euclidean. Replacing sin2 τ by τ 2 we obtain the Euclidean energy.
Let δ be the Riemannian distance in which the solutions of the Euler–Lagrange equa-

tions become geodesics. Then E = δ2

2τ 2 . Then δ2 =
( τ

sin τ

)2
d2, and hence d and δ

are homothetic.

The action

The action S = S(x0, y0, x, y, τ ) satisfies the Hamilton–Jacobi equation

∂S

∂τ
= −E = − d2

2 sin2 τ
= d2

2

∂

∂τ
(cot τ)

=⇒ 0 = ∂

∂τ

(
S − d2

2
cot τ

)
=⇒ S = S0 + d2

2
cot τ. (12.2.16)

Proposition 12.3 The Hamiltonian associated with the Lagrangian (12.2.3) is

H(x, y, p1, p2) = 1

2

(
p1 + y

)2 + 1

2

(
p2 − x

)2
. (12.2.17)

Proof. The Hamiltonian system for the Hamiltonian (12.2.17) yields

ẋ = Hp1 = p1 + y =⇒ p1 = ẋ − y,

ẏ = Hp2 = p2 − x =⇒ p2 = ẏ + x.

Using the Legendre transform we have

L = p1ẋ + p2ẏ −H

= (ẋ − y)ẋ + (ẏ + x)ẏ − 1

2

(
p1 + y

)2 − 1

2

(
p2 − x

)2

= (ẋ − y)ẋ + (ẏ + x)ẏ − 1

2
ẋ2 − 1

2
ẏ2

= 1

2
(ẋ2 + ẏ2)+ xẏ − yẋ.

We note that the Hamiltonian (12.2.17) is the principal symbol of the operator
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P = 1

2

(
∂x + y

)2 + 1

2

(
∂y − x

)2

= 1

2
(∂2

x + ∂2
y )+ y∂x − x∂y + 1

2
(x2 + y2),

which describes the circular motion.

12.3 The astroid

The trajectory of a point P on the unit circle which rolls without slipping in the interior
of a circle of radius 4 is a hypocycloid with four cuspidal points. This curve is called
astroid. The equation of the astroid is

x2/3 + y2/3 = 1. (12.3.18)

O

C

Figure 12.2: The astroid.

If P starts at the cuspidal point (4, 0) and s denotes the angle argument of the center
C, we have

x(s) = cos3 s, y(s) = sin3 s, (12.3.19)

which are equivalent with

x(s) = 3 cos s + cos 3s, y(s) = 3 sin s − sin 3s. (12.3.20)

A simple computation shows that (12.3.20) is the solution of the system{
ẍ − 2ẏ + 3x = 0,

ÿ + 2ẋ + 3y = 0,
(12.3.21)
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with initial conditions

x(0) = 4, ẋ(0) = ẏ(0) = y(0) = 0. (12.3.22)

Standard ODE techniques show that the solution (12.3.20) is unique.

Proposition 12.4 The system (12.3.21) is the Euler–Lagrange system associated with
the Lagrangian

L(x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2)+ xẏ − ẋy − 3

2
(x2 + y2). (12.3.23)

Proof. We have

∂L

∂ẋ
= ẋ − y,

d

dt

∂L

∂ẋ
= ẍ − ẏ,

∂L

∂x
= ẏ − 3x,

∂L

∂ẏ
= ẏ + x,

d

dt

∂L

∂ẏ
= ÿ + ẋ,

∂L

∂y
= −ẋ − 3y.

Then
d

dt

∂L

∂ẋ
= ∂L

∂x
,

d

dt

∂L

∂ẏ
= ∂L

∂y

yields the system (12.3.21).

12.3.0.2 Noether’s Theorem

The Lagrangian (12.3.23) is invariant under rotations centered at the origin. The vector
field associated with this rotation at the point (x, y) is (−y, x). Noether’s theorem
yields a first integral of motion given by

I = 〈
(∂L

∂ẋ
,
∂L

∂ẏ

)
, (−y, x) 〉 = (ẋ − y)(−y)+ (ẏ + x)x

= −ẋy + y2 + ẏx + x2 = x2 + y2 + xẏ − ẋy

= r2 + 2
dA
ds

,

where x = r cos φ, y = r sin φ. We have arrived at the following result.

Proposition 12.5 For any solution of the system (12.3.21) there is a constant C such
that

(i) r2 + 2
dA
ds
= C,

(ii) φ(s) = C

∫ s

0

du

r2(u)
− s

along the solution.
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Proof. (i) It clearly follows from the fact that the first integral is constant along the
solutions.
(ii) We have

C = r2 + xẏ − ẋy

= r2 + r2φ̇

= r2(1+ φ̇)

=⇒ dφ

ds
= C

r2 − 1.

Integrating yields the desired result.

We can get the same result if we write the Euler–Lagrange system in polar coor-
dinates. See Exercise 2.

As the astroid is a solution of the system (12.3.21), the above proposition applies
to it. In this case the constant C is obtained by taking the value at s = 0,

C = x2(0)+ y2(0)+ x(0)ẏ(0)− ẋ(0)y(0)

= 16.

Proposition 12.6 The Hamiltonian associated with the Lagrangian (12.3.23) is

H(p1, p2, x, y) = 1

2
[(p1 + y)2 + (p2 − x)2] + 3

2
(x2 + y2). (12.3.24)

Proof. The momenta are p1 = ∂L

∂ẋ
= ẋ − y, p2 = ∂L

∂ẏ
= ẏ + x, and then

ẋ = p1 + y, ẏ = p2 − x. (12.3.25)

Using (12.3.25), the Legendre transform yields

H(p1, p2, x, y) = p1ẋ + p2ẏ − 1

2
(ẋ2 + ẏ2)− xẏ + ẋy + 3

2
(x2 + y2)

= p1(p1 + y)+ p2(p2 − x)− 1

2

(
(p1 + y)2 + (p2 − x)2

)
−x(p2 − x)+ (p1 + y)y + 3

2
(x2 + y2)

= 1

2
(p2

1 + p2
2)+ p1y − p2x + 2(x2 + y2)

= 1

2

[
(p1 + y)2 + (p2 − x)2

]
+ 3

2
(x2 + y2).
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12.3.0.3 The first integral of energy

As
∂H

∂t
= 0 and

∂H

∂t
= dH

dt
,

it follows that H is preserved along the trajectory. The value of H along the trajectory
is called the total energy. In x, y, ẋ, ẏ coordinates the energy takes the form

E = 1

2
(ẋ2 + ẏ2)+ 3

2
(x2 + y2). (12.3.26)

Note that E does not depend on the angular momentum as the Lagrangian does. It
depends only on the magnitude of the velocity and the distance to the origin.

12.3.0.4 Physical interpretation

The speed of a particle described by a solution of the Euler–Lagrange system is

v =
√

ẋ2 + ẏ2.

If r = √
x2 + y2 denotes the distance from the origin to the point (x, y), formula

(12.3.26) yields
v2 = 2E − 3r2.

In the case of the astroid with the initial conditions (12.3.26) we have E = 24. Thus
v = √

3(16− r2) with r ∈ [0, 4]. The speed on the astroid is zero iff r = 4, which
occurs only at the cuspidal points.

12.4 The cycloid

Consider a particle described by a Lagrangian, which is the sum of the kinetic, angular
momentum and potential energy in the x-direction

L(x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2)+ 1

2
(xẏ − ẋy)+ x. (12.4.27)

The Euler–Lagrange system of equations associated with the Lagrangian (12.4.27) is{
ẍ − ẏ = 1,

ÿ + ẋ = 0.
(12.4.28)

If we consider the initial conditions

x(0) = 0, ẋ(0) = 0, y(0) = 0, ẏ(0) = 0
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the solution will be the cycloid

x(y) = 1− cos t, y(t) = sin t − t. (12.4.29)

From the mechanical point of view, the cycloid is the trajectory of a point fixed on a
circle which rolls without slipping on the real axis.

12.4.0.5 Solving the Euler–Lagrange system (12.4.28)

Set

u =
(

x

y

)
, v = u̇ =

(
ẋ

ẏ

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
,

J =
(

0 1
−1 0

)
, J −1 = −J , J e1 = −e2, J e2 = e1.

The system (12.4.28) can be written as

v̇ − J v = e1. (12.4.30)

Multiplying by eJ s yields

d

ds
(e−J sv) = e−J se1.

Integrating we obtain

e−J sv = −J −1e−J se1 + C0 = e−J sJ e1 + C0

= −e−J se2 + C0.

Multiplying by eJ s yields

u̇(s) = eJ sC0 − e2

=⇒ u(s) = J −1eJ sC0 − e2s + C1

= −J eJ sC0 − e2s + C1. (12.4.31)

The integration constants C0 and C1 depend on the boundary conditions: u(0) =
u0, u(τ ) = u1, where τ > 0. Let A = eJ τ . Making s = 0 and s = τ in the relation
(12.4.31), yields

u0 = −J C0 + C1,

u1 = −J AC0 − e2τ + C1.

Subtracting, we eliminate C1,

u0 − u1 = −J C0 + J AC0 + e2τ

= −J (I − A)C0 + e2τ

=⇒ C0 = (I − A)−1[J (u0 − u1)− e1τ ]. (12.4.32)
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The elimination of C0 gives us

u1 − Au0 = (I − A)C1 − e2τ

=⇒ C1 = (I − A)−1[u1 − Au0 + e2τ ]. (12.4.33)

Substituting (12.4.32) and (12.4.33) back in (12.4.31) yields

u(s) = −J eJ sC0 − e2s + C1

= −J eJ s(I − A)−1[J (u0 − u1)− e1τ ] − e2s

+(I − A)−1[u1 − Au0 + e2τ ]
= (I − A)−1[−J eJ sJ (u0 − u1)+ J eJ se1τ + u1 − Au0 + e2τ ] − e2τ

= (I − A)−1[eJ s(u0 − u1)− eJ se2τ + u1 − Au0 + e2τ ] − e2s

= (I − A)−1[(eJ s − A)u0 + (I − eJ s)(u1 + e2τ)] − e2s. (12.4.34)

Proposition 12.7 The solution of the Euler–Lagrange system (12.4.28) with the
boundary conditions

x(0) = x0, x(τ ) = x1, y(0) = y0, y(τ ) = y1

is (
x

y

)
= 1

2
(I − cot

τ

2
J )

[
(eJ s − eJ τ )

(
x0
y0

)
+ (I − eJ s)

(
x1

y1 + τ

)]
,

where

eJ s =
(

cos s sin s

− sin s cos s

)
, J =

(
0 1
−1 0

)
are rotations of angle s and π/2, respectively.

Proof. It follows from formula (12.4.34) and Exercise 3.

Proposition 12.8 The Hamiltonian associated with the Lagrangian (12.4.27) is

H(p1, p2, x, y) = 1

2
(p2

1 + p2
2)+ 1

2
(p1y − xp2)+ 1

8
(x2 + y2)+ x. (12.4.35)

Proof. Using

p1 = ∂L

∂ẋ
= ẋ − 1

2
y, ẋ = p1 + 1

2
y,

p2 = ∂L

∂ẏ
= ẏ − 1

2
x, ẏ = p2 − 1

2
x,

the Legendre transform yields the Hamiltonian



262 12 Mechanical Curves

H = p1ẋ + p2ẏ − L

= p1(p1 + 1

2
y)+ p2(p2 − 1

2
x)− 1

2

[
(p1 + 1

2
y)2 + (p2 − 1

2
x)2

]
−1

2

[
x(p2 − 1

2
x)− y(p1 + 1

2
y)
]
+ x

= p2
1 +

1

2
p1y + p2

2 −
1

2
p2x − 1

2

[
p2

1 + p1y + 1

4
y2 + p2

2 − p2x + 1

4
x2
]

−1

2
(xp2 − 1

2
x2 − p1y − 1

2
y2)+ x

= (p2
1 + p2

2)− 1

2
(p2

1 + p2
2)+ 1

2
p1y − 1

2
p2x + 1

2
p2x − 1

2
p1y

−1

2
(
1

4
y2 + 1

4
x2)− 1

2
xp2 + 1

4
x2 + 1

2
p1y + 1

4
y2 + x

= 1

2
(p2

1 + p2
2)+ 1

2
(p1y − xp2)+ 1

8
(x2 + y2)+ x.

12.4.0.6 The total energy

As the Hamiltonian does not depend explicitly on the parameter s, H will be constant
along the solutions of the Euler–Lagrange equations. Let E be the constant value of
H along the solution. Using x, y, ẋ, ẏ coordinates yields

E = 1

2

[
(ẋ − 1

2
y)2 + (ẏ + 1

2
x)2

]
+ 1

2

[
(ẋ − 1

2
y)y − x(ẏ + 1

2
x)
]
+ 1

8
(x2 + y2)+ x

= 1

2
(ẋ2 + ẏ2 − ẋy + ẏx + 1

4
x2 + 1

4
y2)+ 1

2
(ẋy − 1

2
y2 − xẏ − 1

2
x2)

+1

8
(x2 + y2)+ x = 1

2
(ẋ2 + ẏ2)+ x.

In particular, as the cycloid is a solution of the Euler–Lagrange equations, it has the
energy

E = 1

2
(ẋ2 + ẏ2)+ x. (12.4.36)

Using the initial data for the cycloid x(0) = 0, ẋ(0) = ẏ(0) = 0, it follows that
E = 0. Hence 1

2 (ẋ2 + ẏ2) = −x along the cycloid, or

v = √
2|x| (12.4.37)

where v is the speed.

12.4.0.7 Galileo’s law

A unit mass particle in a gravitational potential with acceleration g = 1, situated at a
level h above the ground, has the potential energy U = h. When the particle is free
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falling, from the conservation of energy, the initial potential energy is equal to the final
kinetic energy i.e., h = 1

2v2. The formula for the speed v = √2h is called Galileo’s
law. Comparing with (12.4.37) yields an important characteristic of the motion on a
cycloid:

Two punctiform, unit-mass bodies are released in free gravitational fall, from the
same height h, the first on a cycloid and the second vertically. Then at each level the
speeds are the same and they will reach the ground with the same speed, v = √2h.

O

x

y

v= 2h 2hv=

h

Figure 12.3: The speed at the same level x = h is the same for both
unit-mass bodies in free gravitational falling.

12.5 Curves that minimize a potential

Given two points A and B, we are interested in finding a curve in the (x, y)-plane,
that joins A and B, and minimizes a given potential U(y) along the trajectory. This
means the particle moves such as to minimize the action∫

U(y) ds, (12.5.38)

where ds = √
dx2 + dy2 is the arc element along the curve. Using ds = √

1+ y′2dx,
the action becomes

∫
L(y, y′) dy , with the Lagrangian

L(y, y′) = U(y)

√
1+ y′2. (12.5.39)

The extremizers of the above action will satisfy the Euler–Lagrange equation, which
are provided in the next result.
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Theorem 12.9. Let U(y) > 0 be a differentiable potential function for y > 0. The
Euler–Lagrange equation for the Lagrangian (12.5.39) is

y′′ = U ′(y)

U(y)
(1+ y′2). (12.5.40)

The solution y = y(x) satisfies the integral equation∫ y(x)

y0

dw√
k2U2(w)− 1

= x − x0, (12.5.41)

where y(x0) = y0 and k is a constant. The solutions of the equation (12.5.41) are the
Riemannian geodesics with respect to the metric dσ 2 = U(y)(dx2 + dy2).

Proof. We have

∂L

∂y′
= U(y)y′√

1+ y′2
,

∂L

∂y
= U ′(y)

√
1+ y′2,

d

dt

( ∂L

∂y′
)
=
( U(y)y′√

1+ y′2
)′ = 1

1+ y′2
[(

U(y)y′
)′√

1+ y′2 − U(y)y′(
√

1+ y′2)′
]
.

Then the Euler–Lagrange equation
d

dt

∂L

∂y′
= ∂

∂y
becomes

(
U(y)y′

)′
(1+ y′2)− U(y)y′2y′′ = U ′(y)(1+ y′2)2

⇐⇒ (1+ y′2)
(
U ′(y)y′2 + U(y)y′′ − U ′(y)− U ′(y)y′2

)
= U(y)y′2y′′

⇐⇒ U(y)y′′ = U ′(y)(1+ y′2)

⇐⇒ y′′ = U ′(y)

U(y)
(1+ y′2).

In order to solve the equation, let y′ = p. Then y′′ = dp

dt
= dp

dy
y′ = dp

dy
p.

The equation becomes
dp

dy
p = U ′(y)

U(y)
(1 + p2). Separating the variables yields

p

1+ p2 dp = U ′(y)

U(y)
dy. Integrating, we obtain

1

2
ln(1+ p2) = ln U(y)+ C

⇐⇒
√

1+ p2 = k U(y)

⇐⇒ p2 = k2U2(y)− 1

⇐⇒ y′ = ±
√

k2U2(y)− 1

⇐⇒ dy√
k2U2(y)− 1

= ±dx.
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Integrating yields (12.5.41).

In the following we shall consider a few cases in which the integration can be
performed explicitly.

12.5.0.8 The gravitational potential

In particular, if U(y) = y , the Euler–Lagrange equation is

yy′′ = 1+ y′2 (12.5.42)

with the solution y(x) satisfying∫
dy√

k2y2 − 1
= x + C ⇐⇒ 1

k

∫
dy√

y2 − (1/k)2
= x + C,

cosh−1(ky) = kx + C ⇐⇒ ky(x) = cosh(kx + C),

y(x) = 1

k
cosh(kx + C). (12.5.43)

This is called the catenary curve. The catenary is the shape of the curve that joins two
given points and has minimum gravitational potential energy.

12.5.0.9 Minimal surfaces

If we consider the potential U(y) = 2πy, the action to be minimized is

2π

∫
y

√
1+ y′2 dx. (12.5.44)

This is the area of the surface generated by revolving the curve y = y(x) about
the x-axis. The action (12.5.44) is minimized by the catenary curve. The revolution
surface generated by the catenary is a minimal surface called a catenoid, See chapter
8, Figure 8.1.

The minimum surface property has an interesting physical significance. If two thin
circular rings, initially in contact, are placed in a soap film surface, then the surface
has the minimum area property, and it has the shape of a catenoid.

12.5.0.10 The brachistochrone curve

Another important case of physical interest is when the potential is U(y) = 1√
y

. The

equation becomes
1+ y′2 + 2yy′′ = 0.

Multiplying by y′ yields an exact equation
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d

dx

(
y + yy′2

)
= 0.

There is a constant C �= 0 such that y(1+ y′2) = C. Solving for y′ yields

y′ = ±
√

C

y
− 1. (12.5.45)

Introduce a new variable θ by the relation

y = C sin2 θ. (12.5.46)

Then (12.5.45) becomes
2C sin θ dθ

dx
= ± 1

sin θ
.

Separating yields
2C sin2 θ dθ = ±dx. (12.5.47)

Substituting t = 2θ , formula (12.5.47) can be written as

C sin2
( t

2

)
dt = ±dx

⇐⇒ C

2
(1− cos t) dt = ±dx.

Integrating yields

x(t) = ±C

2
(t − sin t)+ x0.

From (12.5.46) we obtain

y = C sin2 θ = C sin2
( t

2

)
= C

2
(1− cos t).

Hence, if C �= 0, the solution is a cycloid which starts at the point (x0, 0),

x(t) = ±C

2
(t − sin t)+ x0, y(t) = C

2
(1− cos t).

It is known that along the cycloid the speed is given by Galileo’s law v = √2y. Thus
the action ∫

1√
y

ds = √2
∫

ds

v

gives the time for a free falling particle necessary to move from one point to another
under gravitational influence. This time-minimizing curve was discovered in 1696 by
John Bernoulli, who called the curve a brahistocrone curve.
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12.5.0.11 Coloumb potential

The potential U(y) = 1

y
provides an important case related to hyperbolic geometry.

The curves will extremize the action∫
U(y) ds =

∫
1

y
ds =

∫ √
dx2 + dy2

y
(12.5.48)

=
∫ √

1+ y′2
y

dx =
∫

dσ, (12.5.49)

y>0

Figure 12.4: The geodesics in Poincaré’s upper half-plane.

where

dσ 2 = dx2 + dy2

y2 (12.5.50)

is the Riemannian metric of Poincaré’s upper half-plane, see Chapter 6. The solutions
of the Euler–Lagrange system will be geodesics in the above metric, and hence they
will be arcs of circle and lines perpendicular on the {y = 0} line.

U=0 U= 1
y

yy

Figure 12.5: The uncharged thread in potential U = 0 and the
charged thread in the potential U = 1/y.
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12.5.0.12 Physical interpretation

Suppose a horizontal rod is crossed by an electrical current at a very high voltage.
Around the rod there is a Coulomb potential U(y) = 1/y, where y is the distance
to the rod. Suppose now that a thread with mobile ends is attached to the rod. When
the thread gets charged, repelling electrical forces act between the thread and the rod.
The equilibrium shape of the thread will be an arc of a circle normal to the rod, i.e.,
a geodesic in the Poincaré space.

12.5.1 Hamiltonian approach

The problem may be approached also from the Hamiltonian point of view.

Proposition 12.10 Let U(y) > 0. The Hamiltonian associated with the Lagrangian

L(q, q̇) = U(q)

√
1+ q̇2 is

H(q, p) = −
√

U(q)2 − p2. (12.5.51)

Proof. The momentum is p = ∂L

∂q̇
= U(q)

q̇√
1+ q̇2

. Solving for q̇ yields

q̇2 = p2

U(q)2 − p2 =⇒
√

1+ q̇2 = U(q)√
U(q)2 − p2

.

The Hamiltonian is

H = pq̇ − L(q, q̇) = U(q)
q̇2√

1+ q̇2
− U(q)

√
1+ q̇2

= U(q)
( q̇2√

1+ q̇2
− 1+ q̇2√

1+ q̇2

)
= −U(q)√

1+ q̇2

= −U(q)
√

U(q)2 − p2

U(q)
= −

√
U(q)2 − p2.

12.5.2 Hamiltonian system

The Hamilton system of equations becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̇ = ∂H

∂p
= p√

U(q)2 − p2
,

ṗ = −∂H
∂q
= U(q) U ′(q)√

U(q)2 − p2
.

(12.5.52)
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Dividing the equations yields

q̇

ṗ
= p

U(q)U ′(q)
or pṗ = U(q) u′(q) q̇,

which may be written as

d

dt

(1

2
p2(t)

) = d

dt

(1

2
U2(q(t)

)
.

Therefore U(q)2 − p2 is a first integral of motion. Hence the Hamiltonian H =
−√U(q)2 − p2 will be constant along the solutions and the Hamiltonian system
(12.5.52) becomes ⎧⎨⎩q̇ = − p

H
,

ṗ = −U(q) U ′(q)
H

.

(12.5.53)

Differentiating the first equation and using the second one yields a second order
equation in q,

q̈ = − ṗ

H
= U(q)U ′(q)

H 2 = − 1

2H 2

d

dq

(− U(q)2).
Let V (q) = −U2(q) denote the potential energy. Then q verifies

q̈ = −1

2H 2

dV (q)

dq
, (12.5.54)

which is a pendulum equation with potential energy V (q), with the energy constant
H . For instance, in the case of U(q) = 1√

q
, it follows that the cycloid may be inter-

preted as a pendulum in a Coulomb potential V (q) = − 1
q .

12.6 Exercises

1. Prove that the system of equations{
ẍ − 2ẏ = 0,

ÿ + 2ẋ = 0,

with the initial conditions

x(0) = 0, y(0) = 1, ẋ(0) = 2, ẏ(0) = 0

has the solution
(
x(t), y(t)

) = (
sin 2t, cos 2t

)
, which is a circle.



270 12 Mechanical Curves

2. Show that in polar coordinates x = r cos φ, y = r sin φ, we have

(i) xẏ − ẋy = r2φ̇.

(ii) ẋ2 + ẏ2 = ṙ2 + r2φ̇2.

(iii) The Lagrangian (12.3.23) becomes

L(r, ṙ, φ̇) = 1

2
ṙ2 + r2

(1

2
φ̇2 + φ̇ − 3

2

)
.

(iv) Write the Euler–Lagrange equations and show there is constant C such that
r2(1+ φ̇) = C.

3. Let J =
(

0 1
−1 0

)
.

(i) Show that eJ s =
(

cos s sin s

− sin s cos s

)
and

(
eJ s

)n = (
cos(ns) sin(ns)

− sin(ns) cos(ns)

)
.

(ii) Show that

(I − eJ τ )−1 = 1

2

(
1 − cot τ

2
cot τ

2 1

)
= 1

2
(I − cot

τ

2
J ).

Hint: Use the formula

(
a b

c d

)−1
= 1

ad − bc

(
d −b

−c a

)
.

4. Consider the metric dσ 2 = U(y)(dx2+dy2) on R2. Find a formula for the Laplace
operator in this metric.
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