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Preface

Historically, the Fourier transform has been a powerful method for solving linear
partial differential equations. This book presents another approach, which shows that
many equations are inspired from mechanics and that using geometric methods is
the most natural and appropriate treatment. The text is enriched with examples and
chapter exercises, which facilitate our understanding.

An Overview for the Reader The goal of this book is to explore some connec-
tions between differential geometry and partial differential equations: that is, partial
differential equations are linked with a geometric view of classical mechanics in
both its Lagrangian and Hamiltonian formulations on Riemannian manifolds. When
quantitative solutions cannot be obtain explicitly, the equations of motion are solved
qualitatively using conservation laws provided by the geometry of the problem.

Starting with an overview of differential geometry, the book proceeds to a descrip-
tion of topics of current interest such as quantum harmonic oscillators, fundamental
solutions for elliptic and parabolic operators, harmonic maps, conservation theorems,
Lagrangian and Hamiltonian formalism.

This work is a text for a course or seminar directed at graduate and advanced
undergraduate students interested in elliptic and parabolic equations, differential ge-
ometry, calculus of variations, quantum mechanics. It is also an ideal resource for
pure and applied mathematicians and theoretical physicists working in these areas.

Scientific Outline The subject of calculus of variations is an extension of calculus
in which the working space is a manifold. This book deals with an invariant ap-
proach to the Lagrangian and Hamiltonian formalism on Riemannian manifolds with
applications to constructions of the fundamental solutions for parabolic and elliptic
operators.

The construction of some fundamental solutions construction uses the conserva-
tions laws and variational formalisms introduced in the first chapter. Fundamental
solutions for Schrodinger and heat equations involving linear, quadratic, and quartic
potentials are discussed here. Formally, the method works for any potential and repre-
sents an application of the variational formalism to partial differential equations. Until
now, these fundamental solutions were found using methods of Fourier or Laplace
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transforms, Feynman’s path integrals, or complex analysis techniques. The methods
introduced in this text explain why the quartic harmonic oscillator is more difficult
to invert than its linear analog model. This approach brings into play differential
geometry methods into partial differential equations and quantum mechanics.

It is known that, in general, the coordinate space for a dynamical system is a
Riemannian manifold. In order to build a theory of dynamical systems, we need
the appropriate tools. Thus, we use a purely geometrical treatment for problems in
physics or mechanics. Our approach is done in the context of both local coordinates
and invariantly.

The idea is to write down the Euler-Lagrange system of equations for some
Lagrangians (with certain physical interpretations) and to characterize the system
qualitatively, from the conservation laws point of view, using the symmetry of the
coordinate space. Usually these systems cannot be solved explicitly. For simple equa-
tions, one may characterize the solutions by finding the first integrals of motion. In
the general case, the conservation laws are described by free divergence vector fields,
trace free tensor fields, or constant energy functions. The conservation laws in the very
simple dynamical systems are those of energy, momentum, or angular momentum.
We shall treat these notions in the case of Riemannian manifolds. Principles from
classical mechanics such as those of Hamilton, D’ Alembert, and Euler, are studied
with Noether’s theorems and Newton’s equations.

The use of conservation laws for the energy-momentum tensor associated with dif-
ferent Lagrangians provides uniqueness for some linear and nonlinear boundary prob-
lems (Dirichlet and Neumann) on Riemannian manifolds. Conservation properties of
the energy-momentum tensor have interesting applications in geometry, physics, and
partial differential equations.

Several chapters of the book discuss the Hamiltonian formalism and the Hamilton—
Jacobi equation. Geodesics, harmonic maps, and eiconal equations are approached
from this point of view. Another chapter is dedicated to applications for minimal
surfaces, minimal waves, and other physical applications, such as the Helmhotz de-
composition of vector fields.

Two chapters provide applications of the Lagrangian and Hamiltonian formalism
to heat kernels and the fundamental solutions for Laplacians on manifolds. The method
uses the concepts of energy and action to describe the fundamental solutions.

A final chapter is dedicated to mechanical curves treated from the energy point of
view. We study Lagrangians which generate the motions on these curves. The conser-
vation theorems in these cases provide the first integrals of motion with interesting
geometrical interpretations.

Physicists, mathematicians, graduate students in the areas of elliptic and parabolic
differential equations, differential geometry, calculus of variations and quantum me-
chanics, and even well-prepared undergraduates will appreciate this introduction to
the beautiful geometric theory of partial differential equations.

Acknowledgments This work owes much to the generous help of many people.
First, we would like to thank our teachers P. Greiner and E.M. Stein for their teach-
ing, encouragement, and sharing of their mathematical ideas with us. We would like
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to thank R. Beals, S. Ianus, T. Luo, Y.T. Siu, J. Tie and S.T. Yau, for their impor-
tant advice and valuable criticism. Heartful thanks also to R. Smith, K. Klump, and
S. Becker for reading the manuscript carefully for typos. We would also like to thank
the Mathematics Departments at Eastern Michigan University and Georgetown Uni-
versity for providing excellent research environments for us. Finally, we would like
to express our gratitude to Birkhaiiser Boston and the ANHA editors, especially
J.J. Benedetto in making this endeavor possible.
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1

Introductory Chapter

1.1 Manifolds

Roughly speaking, a manifold is essentially a space that is locally similar to the Eu-
clidean space. This resemblance permits differentiation to be defined. On a manifold,
we do not distinguish between two different local coordinate systems. Thus, the con-
cepts considered are just those independent of the coordinates chosen. This makes
more sense if we consider the situation from the physics point of view. In this inter-
pretation, the systems of coordinates are systems of reference. Physics studies objects
like force, matter fields, momenta, and conservation laws, which in the differential
geometry point of view are vector fields, tensor fields, one-forms, and first integrals.
They are objects independent of the system of coordinates and can be defined globally
but may be written locally in a local system of coordinates using local components.
For example, the velocity, which is a vector field, may be written in local coordinates

.0 0
asv = Z v 8—,Where { — } ___is abasis of the local system of coordinates cho-
Xi

dx; Ji=1,n
sen. This means that the components of velocity measured in this system of reference
arev!, ..., v". Changing the system of coordinates will also modify the components

under a certain rule.
A precise definition of the concept of manifold is given in the following. All the
manifolds considered in this book are real, i.e., the local model is the space R”".

Definition 1.1 Let M be a topological space. Then the pair (U, ¢) is called a chart
(coordinate system), if ¢ : U — ¢(U) C R" is a homeomorphism of the open set
U in M onto an open set ¢ (U) of R". The coordinate functions on U are defined
as x) U — R, and ¢(p) = (x"(p), ..., x"(p)), namely x) = u’ o ¢, where
w T R" > R, uj(al, ..., ay) = aj is the jlh projection. n is called the dimension
of the coordinate system.

Definition 1.2 A ropological space M is called Hausdorf{f if for every two distinct
points p1, p2 € M, there are two open sets Uy, Uy C M such that

prelUy, ppelU,, UiNnlU;=0a.
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@, (U ) <I>(UB>

Figure 1.1: The system of coordinates on a manifold overlap smoothly

Definition 1.3 An atlas A of dimension n associated with the topological space M
is a collection of charts {(Uy, ¢o)}a such that

U, cM, U,Uy =M (Uy covers M),

2)if Uy NUg # O, the map

Fop = ooy : ¢p(Us NUp) — po(Us U Up)
is smooth (the systems of coordinates overlap smoothly).

On the topological space M, we may have many atlases. Two atlases A and A" are
called compatible if their union is an atlas on M. The set of compatible atlases with a
given atlas can be organized by inclusion. The maximal element is called the complete
atlas C. It contains all the charts that overlap smoothly with the charts of the given
atlas A.

Definition 1.4 A smooth manifold M is a Hausdorff space endowed with a complete
atlas. The dimension n of the atlas is called the dimension of the manifold.

Examples of manifolds

1) The space R" is a smooth manifold of dimension n defined by only one chart, the
identity map.

2) A curve ¢ : (a,b) — R”" is a one-dimensional manifold, where M = JIm(c)
and the atlas consists of one chart (U, ¢), where U = ¢((a, b)), ¢ : U — (a,b),
¢ = C|_3}n o

3) The sphere S* = {a = (aj,a2,a3) € R? ; |a| = 1} is a smooth manifold of
dimension 2 defined by the atlas A = {U;, ¢; }i:ﬁ U{Vi, ¢; }i:ﬁ
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Ur={a; a1 >0}, ¢1:U1 >R, ¢1(a) = (a2, a3),
Vi=l{a; a1 <0}, ¢1:Vi =R, ¥i(a) = (a2,a3),
Ur=1{a; aa>0}, ¢p:Ur—>R>, ¢o(a)= (a1, a3),
Va={a; aa <0}, vYo:Va—R% ()= (a1,a3),
Us={a; a3>0}, ¢3:Us > R>, ¢3(a) = (a1, ),
Vi={a; a3 <0}, V¥3:V3— R y3(a) = (a1, ).

4) If M, N are smooth manifolds, M x N is a smooth manifold, called the product
manifold. For example, the cylinder S! %[0, 1] and the torus T2 = S! x S! are smooth
manifolds.

5) The cone C = {x% + x% = x%} is not a smooth manifold. This is due to the
singularity it has at the origin, where differentiation cannot be performed. Indeed,
consider a chart (U, ¢) around 0. We may assume that there is a ball B(0, €) centered
at ¢ (0) included in ¢ (U). Then U\{0} has two connected components. Since ¢ is a
homeomorphism from U onto ¢ (U), ¢ (U)\{¢(0)} has two connected components.
Then B(0, €)\¢(0) should have the same. This is a contradiction.

1.2 Tangent vectors

Definition 1.5 A function f : M — R is said to be smooth if for every chart (U, ¢)
on M, the function f o =" : ¢(U) — R is smooth. The set of all smooth functions
on the manifold M will be denoted by F(M).

Definition 1.6 A tangent vector at a point p € M is amap X, : F(M) — R such
that X

i) is R-linear: Xp(af +bg) =aX,(f) +bX,(g), Va,beR, Vf, ge F(M),
ii) satisfies the Leibnitz rule

Xp(fe) =Xp(Ng(p) + f(P)Xp(g), Va,beR, VfgeFM). (1.2.1)

The set of all tangent vectors at p to M is denoted by T, M and is called the tangent
space at p. It is a vector space of dimension n. A basis in this space is given by the

. a
coordinate tangent vectors Fy defined by
Xi ‘p

d A(fog!
0y o8

8x,’ Ip 8ui

(@(p)). (1.2.2)

where ¢ = (x!,..., x") is a system of coordinates around p and u', ..., u” are the
coordinate functions on R”.
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Every vector v € T,M can be written as v = ), vi%‘p- vl = v(x’) are
called the components of v in the system of coordinates (x!, ..., x”*). When changing
coordinates between two systems (xl, ..., x") and ()El, ..., x™"), the change of the

components of the vector is given by
axk
=3y (1.2.3)

where {#¥} are the components in the second system of coordinates.
If the Jacobian from one chart to another is defined as

P ~k
J= (i) - (1.2.4)
ox; /ik=Tn
then det J # 0, because ¢ is a diffeomorphism.
The physical notion of velocity corresponds to the geometrical concept of a vector

field. The following result states that there is a reference system in which n — 1
components of the vector vanish and the n' component is equal to 1.

Definition 1.7 A smooth map X : M — | pem TpM that assigns to each point
p € M avector X, in T, M is called a vector field.

The set of all vector fields on M will be denoted by X' (M). In a local system
.0
of coordinates a vector field is given by X = E X' Py where the components
X;
X' e F(M) are given by X' = X (x"),i = 1,n.

Theorem 1.8. (Rectification theorem) Let V be a nonzero vector field at a point p on

the manifold M. Then there exists a system of coordinates (X', ..., X"*) about p such
that there is j € {1, ..., n} for which
d
V=—. (1.2.5)
axj'
: : 1 n i 9
Proof. Choose an arbitrary system of coordinates (x ', ..., x"). ThenV = Z v Pyt
Xi |p
Since V|, # 0, at least one component is not equal to zero. Assuming that v, # 0,
choose the second system of coordinates (x', ..., ") defined by
. . Vi
¥W=x/—"x, , Vi=1,n—1,
Un
=
Un

Then formula (1.2.3) yields (1.2.5) with j = n. |
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Given a vector field X, consider the system

k
de® _ Xk @), k=T, n. (1.2.6)
dt
The next result shows that the system (1.2.6) can be solved locally around the point
xo = ¢(0),for0 < t < €. The solutionr — ¢(t) is called the integral curve associated
with the vector field X through the point x¢. The local existence and uniqueness of
integral curves are given by the following result.

Theorem 1.9. (Existence and uniqueness) Given xo € M and letting X be a nonzero
vector field on an open set U C M of xo, then there is € > 0 such that the system
(1.2.6) has a unique solution c : [0, €) — U such that c(0) = xo.

Proof. By the rectification theorem, there is a local change of coordinates x = ¢ (x)
such that the system (1.2.6) becomes

dck () .
- =8, k=1,n, (1.2.7)

where ¢ = ¢ (c). The system (1.2.7) has a unique solution through the point xo =
¢ (xo) given by ¢*(t) = X}, k = I,n — [ and " (t) =  + x. Hence this will hold
also for the system (1.2.6) in a neighborhood of xo = ¢_1 (x0). [ |

1.3 The Differential of a Map

Definition 1.10 A map F : M — N between two manifolds M and N is smooth
about p € M if for any charts (U, ) on M about p and (V,{¥) € N about F(p),
the application ¥ o F o ¢~ is smooth from ¢ (U) C R™ to (V) C R™.

Definition 1.11 For every p € M the differential map dF at p is defined by
dr, : TyM — Tr(p)N with

dF)W)(f) =v(foF), YveT,M, VfeF(N). (1.3.8)

Locally, it is given by

d 9FF 9
aF(z— )= "— = . (1.3.9)
xS 0% p Y PG
where F = (F!, ..., F"). The matrix (%)k _is the Jacobian of F with respect to
JJ

the charts (x!, ..., x™) and (yl, ..., y")on M and N respectively.
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Figure 1.2: The differential of a map

The inverse function theorem on smooth manifolds is stated in the following. For a
proof see [43].

Theorem 1.12. Let F : M — N be a smooth map. Then the following conditions are
equivalent:

1)dF, : TyM — Trp)N is an isomorphism,

2) F is a local diffeomorphism in a neighborhood of p;

3) There are two charts (xl, .., x™) and (yl, ...,y on M and N respectively,
such that the associated Jacobian is non-degenerate.

1.4 The Lie bracket

An important operation on vector fields is the Lie bracket [ , ] : X(M) x X(M) —
X (M) defined by

[V,W]=VW —WV. (1.4.10)
In local coordinates,
T 0WE . Vi N 9
v.wi=Y" (—Vf _ —WJ)—. (1.4.11)
ii=1 ij 8)Cj 8)6[

The Lie bracket has the following properties:
1) R-bilinearity:

[aV +bW, U]l =alV,U]+ b[W, U], Va,b € R,

2) skew-symmetry:
(U, V]l=—-[V,U],

3) Jacobi identity:

(U, [V, Wl + [V, [W,Ull+ [W, [U, V]] =0,
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DIV, gWl= felV.Wl+ f(VOW —g(WHV ., Vf geF(M).

If the Lie bracket of two vector fields is zero, [U, V] = 0, we say that the vector fields
commute. If we start from a point p and go a parameter distance v along the integral
curves of V followed by a parameter distance u along the integral curves of U, then
we arrive at the same point as if the order of the vector fields is swapped.

U

Figure 1.3: Integral curves for commuting vector fields

Example 1.4.1 Consider on R3 the vector fields X = 0y, —2x20y;, Y = 0y, +2x10x,
and Z = 0x,;. Then [X, Y] = —40;, [X, Z] =Y, Z] = 0. X and Y do not commute.
Z commutes with both X and Y .

1.5 One-forms

Let T[’,"M denote the dual space of T, M which is called the cotangent space of M at
p. The elements of T;M are called covectors. A one-form w on the manifold M is a
function that assigns to each point p € M a covector w, € T, M.

An example of a one-form is the differential of a function f € F (M), which is
defined as (df), : TyM — R,

df)pw)y =v(f), YveT,M. (1.5.12)

In local coordinates, df = ) _; %dx", where {dx'} is the basis in the T;‘M which
is dual to the basis {E)ix,-} of T, M. In general, a one-form in local coordinates can be
written as

n
=) o dx (1.5.13)
i=1

where ' = a)(%). The set of all one-forms on the manifold M will be denoted by
X*(M).If ¢ : M — N is a smooth function and w € X*(N), then the pull-back of
the one-form w is the one-form ¢*(w) € X*(M) defined by
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P *w(V)=w(de V), YV e X(N). (1.5.14)

For more about differential forms see [12].

1.6 Tensors

Atensoroftype (r, s) at p € M isamulti-linear function 7" : (T;M)’x(TpM)S — R.
A tensor field T of type (r, s) is a smooth map, which assigns to each point p € M
an (r, s)-tensor 7, on M at the point p. In local coordinates,

0 0
i1in..0s J Jr - _
T = TN2 dx Q. - Qdx'r® . R - ® T (1.6.15)
T acts on r one-forms and s vector fields
T(wi,...,0r, X1,..., Xs) = 771‘ /'Y dxj (Xy1)...dxj (X, ) (0)1) 8xi —(wy)
_ Jlll ]leh Xfrwlll---wés-

We say the tensor 7 is s covariant and r contravariant.
If 7 is a tensor field of type (r, s) on N, then the pull-back ¢*7 of T is a tensor
field on M of the same type, defined by

@ X1,..., Xr, 01, ..., 05) =T (dp X1,...,do Xr, p w1, ..., d"ws),
(1.6.16)
where X; € X(M), w; € X*(M).
A tensor 7 may be Lie differentiated with respect to a vector field X € X'(M),

1
LX7Tp = th_r)% ;(7;7 - ((pt)*,ﬁwt(p))v (1617)
where ¢, is the one-parameter group of diffeomorphisms defined by the integral curves
of the vector field X. That is ¢;(p) = c(¢), with c(¢) as the unique integral curve of

X satisfying ¢(0) = p. The name one-parameter group comes from the fact that
P1 O Qs = Prys = @s 0 @y, With 1], |s], |1 + 5| < €.

On coordinates components we have

Tab.‘.d 59X
ab..d _ " ef8 i ib...d
(LXT)ef,,,g = Tox X' — Tef,..g ox;
Tah daxl

—(all upper indices) + ;5 5 + (all lower indices).
Xe

The (1, 0)-tensor fields are in fact vector fields. The (0, 1) tensor fields are one-forms.
In this case the Lie derivative is
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LxY =[X,Y],
Lx(df) = d(Xf), Vf e F(M).

Other properties of the Lie derivative are:

Lax+by = alx +bLy, Va,beR,X,Y € X(M),
Lxf=X(f), VfeFWM),
Lixy)=[Lx,Lyl, VX,Y € X(M),

d(LXa)) — Ly(dw), Yo p-form.

If T is an (s, r)-tensor, then LxT is also an (s, r)-tensor. A vector field is called a
Killing vector field if Lyg = 0, where g is the Riemannian metric tensor (see next
section).

A tensor of type (0, 2) is called symmetric if

Tap = Tpa, (1618)
and it is called antisymmetric if

Tup = —Tha. (1.6.19)

1.7 Riemannian Manifolds

There are manifolds on which we may want to measure distances, angles, and lengths
of vectors and curves. From the math point of view they represent generalizations of
the surfaces of more than two dimensions. From the mechanics point of view, they
constitute the models for the coordinate spaces of dynamical systems. Their tangent
bundle represents the phase space. The metric they are endowed with allows measuring
the energy and constructing Lagrangians on the phase space and Hamiltonians on the
cotangent bundle. This way, Riemannian Geometry becomes an elegant frame and
proper environment for doing Classical Mechanics.

Definition 1.13 A Riemannian metric g on a smooth manifold M is a symmetric,
positive definite (0, 2)-tensor field.

This means thatVp € M, g, : T,M x T, M — Ris a positive definite scalar product.
In local coordinates . ‘
g=gijdx' ®dx’. (1.7.20)

Definition 1.14 A Riemannian manifold is a smooth manifold M endowed with a
Riemannian metric g.

Let E" = (R", (, )) denote the n-dimensional Euclidean space. For a proof of the
next theorem see [4].
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Theorem 1.15 (Whitney). If M is a differentiable manifold of dimension n, then there
is a diffeomorphism ¢ : M — E>"*1 such that ¢ (M) is closed in E**+1.

The existence of a Riemannian metric is given in the next result.
Theorem 1.16. If M is a smooth manifold, then there is at least one Riemannian

metric on M.

Proof. Denote by ( , ) the Euclidean scalar product on R?**! and consider the
immersion ¢ : M — E?**! given by the Whitney theorem. Choose

g(X,Y) = (¢ X, $.Y), VX,Y € X(M), (1.7.21)

Then (M, g) is a Riemannian manifold. [ ]

There is a one-to-one, onto correspondence between the one-forms and the vector
fields on a Riemannian manifold M. If V is a vector field, then one may associate
with it a one-form w such that

wU) =gV, U), YU € X(M). (1.7.22)

If in local coordinates @ = w'dx; and V = V/ %, then
J

of = 8jk Vi,

1.8 Linear Connections

The linear connection is an extension of the directional derivative from the Euclidean
case.

Definition 1.17 A linear connection V on a smooth manifold M is a map V :
X (M) x X(M) — X (M) with the following properties:

1) VxY is F(M)-linear in X,

2) VxY is R-linear in Y,

3) it satisfies the Leibnitz rule: Vx(fY) = (Xf)Y + fVxY , Vf e FM).

VxY is a new vector field which, roughly speaking, is the vector rate change of Y in
the direction of X.

Example 1.8.1 On R" a linear connection is

n
vy V =ZU(V1)E,-, (1.8.23)
j=1

where E; = (0,...,0,1,0,...,0) is the j'" basis vector on R" and V = Zj VIE;.
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Definition 1.18 Ler V be a linear connection. The torsion is defined as
T:XM)x X(M) > X(M),
T(X,Y)=VxY —-VyX —[X,Y]. (1.8.24)
The curvature of the linear connection is given by
R:XM)x X(M) x X(M) — X(M),
R(X,Y,Z)=VxVyZ —VyVxZ — Vixy|Z. (1.8.25)

If S is a tensor field of type (0, r), we may differentiate it along a vector field V with
respect to the linear connection V as

n
(VyS(Xq,...,X,) = VS(Xl,...,X,)—ZS(Xl,...,Vin,...,X,).

(1.8.26)

If g is the Riemannian metric tensor, the linear connection V is called a metric
connection if

Vyg=0, VVeXM). (1.8.27)

This means that
VegX,Y)=g(VyX,Y)+g(X,VyY), VV X, Y e XM). (1.8.28)

The amazing fact is that there is only one metric connection that has zero torsion. This
constitutes the cornerstone of the geometry of Riemannian manifolds. The following
theorem can be considered as a definition for the Levi-Civita connection and can be
found for instance in [35].

Theorem 1.19. On a Riemannian manifold there is a unique torsion-free, metric con-
nection V. Furthermore, V is given by the Koszul formula

26(Vy X, U)=VgX,U)+XgWU,V)-Ug(V,X)
-V, [X, UD +¢X,[U, V] + g, [V, X]).

One can show that in local coordinates

VyY = Zx( e +Zr’< WJ)M (1.8.29)

where X = Z X i— Y= Z Yt — k and Fk are the Christoffel symbols defined

by

1 3g im 8gim 3gi‘
rk — 2§ gkm (_f _ _f) 1.8.30
il =2 ;g ox; | x;  tm (1.8.30)

where (gk™) is the inverse matrix of (g; )
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Definition 1.20 A vector field Y is said to be parallel transported along the curve
c(@®) if

Ve Y = 0. (1.8.31)

In local coordinates
¢ rk YJ) —0.
Z é( >( -+ Z ™

The chain rule yields

so that one obtains that Y is parallel transported along the curve c(¢) if and only if

dy* ok
+
d[ lJI )
ij

Yi(t) = 0. (1.8.32)

Together with the initial condition Y (0) = v, by Picard’s theorem, equation (1.8.32)
has locally a unique solution.

Sometimes we shall use the following shorter notation for the linear connection
of a vector field with respect to one of the coordinate vector fields:

L=V X). (1.8.33)
dxk
. . . 0
If f is a function, we write f.; = 3_ f. In general we shall write ; k for Vaa
k

derivative.

Definition 1.21 Let RxyZ = R(X, Y, Z) denote the curvature tensor and {E1, . . .,
E,} be an orthonormal system about p. The 2-covariant symmetric tensor defined by

Ric(X,Y) = Trace(V N RXVY)

n
= Zg(RYE_,-X» Ej),

j=1

is called the Ricci tensor.

1.9 The Volume element

On Riemannian manifolds we can measure not only lengths but also volumes. The
volume form is an n-form defined locally by

dv=1/gldx" A Adx", (1.9.34)
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where |g| = det (g;;)i,j. As an (n, 0)-tensor, dv may be Lie differentiated along the
vector field X. As an n-form, Ly dv will be proportional to dv,

Lydv= fdv. (1.9.35)

The function f depends on the expansion of X, and it is called the divergence of the
vector field X,
f=divX. (1.9.36)

If M is a compact manifold, the volume of M is defined as

vol(M) = / dv. (1.9.37)
M

Let(M, g) be a Riemannian manifold and ¢« : M — R” be an isometric immersion,
i.e., dt is one-to-one and g is the pull-back of the flat metric (, ) on R" through ¢. Let
X € X(M) be a vector field and v be the normal vector field to M, i.e., v, € TyM
and (vp, vp) = 1,Vp € M. Then the divergence theorem takes place,

/didev:/ (X, v)do, (1.9.38)
M oM

where d M is the boundary of M and do is the area element on d M.
For more about Calculus on manifolds the reader may consult [43]. For more
differential geometry one may see [10], [11], [44].

1.10 Exercises

1. On a domain of a system of coordinates (xi, ..., x,),if V = > vfax,. and W =
> W0y ;» then show that

N ) .
owr . avi_ .\ 9

wv.owr= Y (—w - fVJ)_.

i,j=1

2. Show that for any three vector fields U, V, W € X(M) we have

U, [V, W+ [V, [W, U]l +[W,[U, V]] =0.

3. Let (x1,...,x,) be a system of coordinates at the point p on the Riemannian
manifold (M, g). Consider a new system of coordinates (xi, el x,/z) defined by

X = xj = x5(p) + Ty, (Fa = Xa(p)) (x5 = x5(p)).-

a) Show that in the system of coordinates (x|, ..., x;) the Christoffel symbols

r =0.

j
av'|p



14 1 Introductory Chapter

b) Using g,/4.» = 0 show that in the system of coordinates (x], ..., x,) we have
8ga’b’ —0.
8.XL-/ |P
4. Given a point p on the Riemannian manifold (M, g), show that there is a system
of coordinates at p in which

g,'.,'lp = 5,']' and Va 0

i CXip =

5. Prove or disprove:
Given an open set U in a differentiable manifold M of dimension n, and X1, ..., X,
vector fields on U such that [X;, X;] = O, then there is a system of coordinates

d

(X1, ..., x,) onU such that X j = —.
’ ax]'

6. Identify R* with the quaternions space

{g = xo +ix1 + jx2 + kx3; x0, X1, X2, x3 € R},

and let S* = {g € R; |¢| = 1}, where |g|> = x? + x? + x? + xZ. Letr : S° — §?
q q q 0 1 2 3

be an application defined by 7(g) = gig~".

a) Show that
w(g) = i(x(% + x12 — x% — x32) + j(2xpx3 + 2x1x2) + k(2x1x3 — 2x0X2)

and that 7 (¢q) € S%.

b) Show that 7 is a submersion, i.e., it is differentiable and the differential dr
is onto at each point p € S,

¢) Find a nonzero global vector field X on S3 and calculate d7 (X).

7. Given a smooth curve c(s) on a differentiable manifold, let X = ¢(s) be its tangent
vector field. Show that X can be extended to a vector field on an open neighborhood
of the curve c(s).

8. Let y(s) be a curve on the Riemannian manifold (M, g) with the Levi-Civita
connection V. Denote V = yp(s) the tangent vector field. The derivative along y (s)
is defined as

D
—7Z =V,;V,
as

for any vector field Z along y (s). Show that for any Z, Z1, Z, € X' (M) we have:

.. D D D
1)) —(@Z1+bZy))=a—Z7Z1+b—2,, a,bel,
as as as



1.10 Exercises 15

dh

i) —(hZ) —z+ha Z.  heF®),

i) —¢(Z1. Z») (Dz Z)+ (Z Dz)

iii) — , =g(—2, ,—Z3).
8sg 1, £2 8 s 1, £2 8\ 41 o5 2

D
9. Let ¢(s) be a curve on the Riemannian manifold (M, g). The Fermi derivative il
s

is a derivative along c(s) defined by

Dr D D D
TFyx—Zx_ g(X V)V+g(x, V)=V
as as as as

where V = ¢(s) and X is any vector field along c¢(s). Show that
D

i ~Ly =o.
as

D
ii) E_Zf c(s) is a geodesic.
as as

Dp D
iii) Let X, Y be two vector fields along c(s) such that a—X = a—FY = 0. Then

g(X, Y) is constant along c(s).

10. Given a curve y : (=8, 8) — M on the Riemannian manifold (M, g), show that
there is a system of coordinates (Fermi coordinates) at  (0) in which I';,, = 0 along
the curve y.

11. A surface (2, g) is called locally conformal to R? if there is a local system of

coordinates in which
et o
8ij = 0 e

a) Show that any surface is locally conformal to R?.

with 4 a smooth function.

b) Is this still true for higher dimensions?

12. Consider Stokes’ theorem:
If M is a compact oriented k-dimensional manifold with boundary and w is a

k — 1 form on M, then
/dw:/ w
M oM

where 0 M denotes the boundary of M.

Let w = adx + Bdy. Show that Stokes’ theorem becomes Green’s theorem:
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Let M C R? be a compact 2-dimensional manifold with boundary. Suppose that
o, B : M — R are differentiable. Then

/ otdx+,3dy—// —— dxdy
oM

13. Let M be a surface and let v(x) be the unit outward normal at x € M. Define the

area element
do(v,w) = (v X w, v(x)), Yv,we Ty M,

where ( , ) denotes the inner product on R3.
a) Show that do (v, w) = |v x w]|.

b) Show that
v

do(v,w) =det | w
)

¢) Prove thatdo = v'dy Adz+v2dz Adx +v3dx Ady, where v = (v!, V%, V7).
d) Show that

vldo =dy ndz, vido =dz ANdx, Vido =dx ANdy.
14.Let X = (X 1 x2 x 3) be a vector field on the surface M in R3 and consider the
one-form w = X'dy A dz + X?dz A dx + X3dx A dy.
a) Show that dw = div X dv.
b) Show that w = (X, v)do.

c¢) Using Stokes’ theorem show that

fdidev:/ (X,v)do.
M M
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Laplace Operators on Riemannian Manifolds

2.1 Gradient vector field; Divergence and Laplacian

Definition 2.1 Let (M, g) be a Riemannian manifold and f € F (M) be a smooth
function. The gradient of f, denoted by V f, is a vector field on M metrically equiv-
alentto df:

g(Vf, X)=df(X), VX € X(M). (2.1.1)
Remark 2.2 We note the right-hand side of (2.1.1) can also be written as
df (X) = X(f).

Remark 2.3 Sometimes, to avoid confusion with the Levi-Civita connection, the gra-
dient will be denoted by grad f.

In local coordinates the gradient is

n
.0
Vf= V) —.
f=2_0h o
j=l1
Using
n af
dfz _d'xla
: Xi
i=l
the equation (2.1.1) yields
i yi af i
gij(VF/ X' = WX VX € X(M). (2.1.2)

J
The components of the gradient are

i

(V) =g" e (2.1.3)
X
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and then 8f
Vf=g" —— 2.1.4)
Bxi ax]'
with summation over the repeated index.
Example 2.1.1 On R" the gradient of a function f is
n
V=) Ei(f)E. (2.1.5)
i=1
l-rh
—_—
with E; = ©O,..., 1 ,...,0).

In physics, a force vector field is called conservative if it is the gradient of a certain
potential energy . This definition can be extended for any vector field on manifolds
as follows.

Definition 2.4 Let X € X (M) be a vector field on M. We say that X is provided by a
potential ® if there is a differentiable function ® € F(M) such that X = V.

In local coordinates
X/ = gij -~ 2.1.6)
8Xj

Definition 2.5 Let X € X (M) be a vector field on M. The divergence of X at the
point p € M is defined as

diviX), = gp(VE X, Ep), 2.1.7)
i=1

where E1, ..., E, is an orthonormal basis in T, M and V denotes the Levi-Civita
connection on M with respect to g.

1
Example 2.1.2 Consider the Newtonian potential ®(x) = —, x € R"\{0}. The

|x]
force vector field is F = —V(%) and
divF = —A<%) —0 onR™\{0). (2.1.8)
The equation (2.1.7) can be written also as
div X =Trace(Y — g(VyX,Y)). (2.1.9)

Using the expression in local coordinates
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"o n X! .
div(x) =Y X, =Z(¥+ZI}’7X’) (2.1.10)
i=1 i=1 ! j

we note that div X depends not only on X', but also on the Christoffel symbols

A BT PO dg;
i tz( gﬂ+ﬁ_ﬁ>, (2.1.11)

7k Eg 0Xy 0x; 0x;
The following lemma shows that div X depends only on X and g = det(g;;).

Lemma 2.6 In local coordinates we have:

19 :
G (/X7 (2.1.12)
J

div X =

with summation over j = 1,...,n.

Proof. Using the definition of " ; « and the symmetry of g;;,

Fi~in — lgis (% d8is _ &)X’ — lgis% X/
J 2 ox; 0x; 0x; 27 Bx;
Then equation (2.1.10) yields
BXi 1 . Bgis :
divX =—+-g"—==X/. 2.1.13
A= 28 oy @1.13)

1 . 0g;
We compute first the expression Eg”%. Let ¢ = det (gij) = (811, 8125 -+ &ij»
Xj
..., nn ) denote the determinant.

Then 3 9 8
o8 _ 98 O8is (2.1.14)
ax]' 3gi5 8Xj
g . .
As is the minor of g;g,
8is
: 10
gt =228 (2.1.15)
8 8is
where (g'*) is the inverse matrix of (gij)- Then (2.1.14) and (2.1.15) yield
— = —. 2.1.16
ox, 88 ax; ( )

Substitute in (2.1.13) and obtain
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divX = —+——Xx/
= — (— 4+ o xJ
ﬂ(GXj@ 2\/§axj' ) \/_8](\/_
|

The definition of the divergence of a vector field given above matches the definition
given in the introductory chapter. The equivalence of both definitions is given in the
following result.

Proposition 2.7 If X € X (M), then
Lydv = (divx) dv. 2.1.17)

Proof. T = dv = ,/gdx| A --- A dx, is an (n, 0)- tensor field on M. The Lie
derivative Ly of T = T1o. ,dxi A --- A dx, is also an (n, 0)- tensor or an n-form

LxT = (LxT)12. ndxi N ... Ndxy.

‘We shall show that
(LxT)12..n = (divX)/g. (2.1.18)

Indeed, using the formula which gives the components of the Lie derivative of a tensor,
we have

T ,
(LxT)ip.p = —2=t X
Bxi
1 x2
prizen X0 23X g, 9XT
axjy 0xj, 0xj,
AsTi. j,.n =38p.j, 1. .p.n, We get
0T12.n i ax! ax"
(LXT)IZ...n = —X +T12 n( 4.+ )
ax; 0x; 0xy
0T12..n X! f axi
= Xl T — o
ax; Tl 0x; ax; X'+ ‘/_
9 i 13 i .
= 3—<~/§X ) = ——(J?X )JE: divX /g.
Xi 8 9x;

Hence,
LxT =divX.\/gdxi A- - ANdx, = divX dv.
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Remark 2.8 Inthe relation Lxdv = divX dv, the left side is a derivative of a square
root of a determinant while the right side is the trace of a derivative (connection). In
Linear Algebra this relation is known as

d d
— A =T —A
7 det A(r) race 7 (1),

where A(t) is a matrix, which depends on the parameter t.

Remark 2.9 If X is a free-divergence vector field, then the volume element is pre-
served along the integral curves of X,

dvip = ¢ dvig,(p).-
Then a free-divergence vector field provides a conservation law.
Lemma 2.10 Let f € F(M) and X € X(M). Then
div(fX)=fdivX+g(Vf X). (2.1.19)

Proof. Using Lemma 2.6, we get

1 af
div (fX) = fa (ff fa ]+f78—(«/_
= gX/ + fdivX _gkj(Vf)k X/ + fdivX
J

=g(Vf X)+ fdivX.

]
Using Proposition 2.7 yields:
Corollary 2.11 If f € F(M) and X € X (M), then
Lixdv= fLxdv+ X(f)dv. (2.1.20)

Remark 2.12 The Lie derivative is not F(M)-linear, i.e., Lyx # fLx for any
f e F(M).

Definition 2.13 Let M be a Riemannian manifold and f € F(M). Define the Lapla-
cian of f as
A f=—div(Vf), (2.1.21)

where V stands here for the gradient.
Proposition 2.14 For any ¢, f, p € F(M), we have:

div( fV$) = —f A + g(V f, V). (2.1.22)

Proof. The equation (2.1.22) comes from (2.1.19) with the substitution X = V¢.
[ |
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2.2 Applications

Harmonic functions on compact manifolds
The compact manifold M considered in this section will have an empty boundary
oM =ga.

Theorem 2.15. ( Hopf’s lemma) Let M be a connected, compact Riemannian mani-
fold and f € F (M) such that
Af=>0.

Then f is constant.
Proof. First, we shall show that
Af =0 on M.

This is obtained by integrating and applying the divergence theorem

05/ Afdv:—/ div(Vf)dv =0,

M M

where we used d M = 0. Substituting f = ¢ in (2.1.22), we get
div(fVf)=—fAf +g(Vf. V[).

Integrating and using the divergence theorem again, the

0=/div(fo)=—/ fAf +/ IVFI?.
M M M

As the first term on the right-hand side is zero, it follows that

f IVFI> =0,
M

IVfl=0 on M.

Hence, f is constant on M. [ |

which implies

2.2.0.1 Pluri-harmonic functions

Definition 2.16 Let k € N. A function f € F(M) is called k-pluri-harmonic if
Akf = 0on M, where A* = A(Ak_l) and A° = A.

Proposition 2.17 A k-pluri-harmonic function on a compact manifold is constant.

Proof. There is a k € N such that AKf = 0 on M. Then A(A*! f) = 0. Using
Hopf’s lemma, we get A*~! f = constant. Now we have either A(AK=2f) > 0 or
A(AF=2 f) < 0. Using Hopf’s lemma again we obtain

Ak_zf = constant.

Inductively, after k — 2 steps, we end up with f constant. |
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2.2.0.2 Uniqueness for solution of the Cauchy problem for the heat operator

If A : C2(M) — CO(M) is the Laplace operator on the manifold M, then the heat
operator P : C2(M) x CH(R,) — CO(M) x CO(R;) is defined by P = 9, + A.

Theorem 2.18. Let M be a Riemannian, compact manifold, u € C2(R+ x M), F €
CO(M) x CO(R,), ¢ € C2(M) and consider the Cauchy problem

oru + Au = F(x,1t), (t,x) e Ry x M,
U= = ¢ on M.
If u is a solution, then u is unique.
We first state an intermediate result.

Lemma 2.19 Let w be a solution for 0;w + Aw = 0. Then the potential energy

f w2(t,x) dv
M

is decreasing in time (dissipative process).

Proof. We have
wohw=—w Aw. (2.2.23)

Using formula (2.1.22) with w = f = ¢, then (2.2.23) yields
1 2 _ g: _ 2
28tw =div(wVw) — |Vw|~.

Using the divergence theorem

1
—8,/ w2=/ div(w Vw) —/ Vw|? <0.
2 Ju M M

D — e —

=0
Hence, f M wz(t, x)dv is a decreasing function of ¢. [ |

Proof. (of Theorem 2.18) Let u1, us be two solutions for Cauchy’s problem. Denote
w = u1 — uy. We shall prove that

ohw=—-Aw, (t,x)eRyxM,

wi=o =0 on M

has the unique solution w = 0. Indeed, letting P(r) = f M w?(z, x) dv and using
Lemma 2.19 we get

0<P@)<PO =0, Vit >0.

Hence, P(t) = 0and w = 0. |
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2.3 The Hessian and applications

If we let o
fi= FrlE f=2g"fi, (2.3.24)
J
the gradient becomes
;0
Vf=f! P (2.3.25)
1
and then 5
—Af =div (f! o) = £l (2.3.26)
1

Taking the covariant derivative with respect to d/9x; in
g gjx =6,
we obtain gi,j ; = 0. Then formula (2.3.26) yields
—Af =@ fi)i=8" fiu

Using the formula for the covariant differentiation

9 k S r 9f
fii 0x; fi jifk dxJ ox! Tt dxp
we obtain
—Af = g' 0> f —rk of (2.3.27)
axJ 9xt I dxy ) o

Formula (2.3.27) can be written globally using the Hessian H/ for a function
feFM).

Definition 2.20 The Hessian of the function f is a symmetric, 2-covariant tensor
field on M given by
H' . X(M) x X(M) - F(M),

HI (X, Y) = Hij; X'yl (2.3.28)
with
2
! - f k of
1.2.7 H, = —< __ 1k L.
( ) o 9xJ 9x! Tt 9xy

Formula (2.3.27) can be written using the Hessian H !,

Af = —TraceH! = —gi Hi§ . (2.3.29)
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Definition 2.21 Define the second fundamental form of f € F(M) as
Vdf(X.Y) = Vx(df) (¥) = X(Y(£)) = (Vx¥) (/) (2330)
where V stands for the Levi-Civita connection.
As V is a symmetric connection ,
Vdf(X,Y)—-Vdf(Y,X)=[X,Y]f+(VyX—-VxY)f=0

so that Vdf is a symmetric 2-covariant tensor field. In fact, the second fundamental
form is the Hessian.

Proposition 2.22 The following relations take place:

(i) H! = vdf,

(ii) H/(X,Y)=g(Vx(grad f), Y).
Proof. (i) It suffices to check the relation only on the basis.
3 32 d - d 9
Vf< —)=—f e M H:’:Hf(—,—).
ax; " ox;j 9x; 0x; Y Bxk & dx;  0x;
(i7) Using that V is a metric connection we obtain

g (Vx(grad f),Y)=Xg(grad f, Y)—g(grad f. VxY)
=X(Y(f)) = (VxY) (f) = H/ (X, 7).

Thus, we can write

Af = —Trace Vdf. (2.3.31)
Remark 2.23 Formula (2.3.30) comes from the definition of the derivation. Indeed,
if o € T*M is a one-form, the derivation Vx : T*M — T*M, is defined as
(Vxo)Y =X oY) — o(VxY), VX, Y € X(M). (2.3.32)
In our case w = df and as df (Y) = Y(f), we can derive (2.3.30) from (2.3.32).

Another useful formula for the Laplacian can be obtained if in the formula

1
div X = 7 8_(le)
we substitute X = grad f,
1 ij of
- 2.3.33
Af = NET («/_ ( )

As an application we have
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Lemma 2.24 For f, ¢ € F(M), we have

A(fo)=fAp+¢Af =28 (Vp, V). (2.3.34)
Proof. Applying (2.3.33)

1 9 i 0(f9)
A(fo) = i ax,- —(Vgg" —ax,- )
IRVERTY Xj \/_ dx;
_ _ _f_¢ _ 3¢ ﬁ
=/ae dx;j dx; +o A ijax,'
=fAp+dAf—2g(V[ Vo).
[
Making f = ¢ yields the following result.
Corollary 2.25 Let ¢ € F(M). Then
AP =2¢Ap —2|V|>. (2.3.35)

Proposition 2.26 Let M be a connected, compact Riemannian manifold and let ¢ €
F (M) such that
dAp =k |Vp|> (2.3.36)

where k is a real constant. Then ¢ is a constant function.

Proof. Suppose first that k = 1. Then ¢A¢p = |Vo|>. Applying (2.3.35) we find
A(¢?) = 0. By Hopf’s lemma we get ¢ constant. Suppose now that k # 1. Substi-
tuting f = ¢, formula (2.1.22) yields

div(p Vo) = —¢ A + |V|?.
Using (2.3.36) we conclude
div(p V) = (1 —k) [Vo|*.

For k < 1, by the divergence theorem we find

0=/ div(¢v¢)=(1—k)/|v¢|220,
M M

which implies |V¢| = 0, i.e., ¢ constant. The case k > 1 is similar. |

We can arrive at the same result using the following lemma:

Lemma 2.27 Forany f € F(M) and o € R we have

Af® :—ozf"‘_2(—fAf+(a—1)|Vf|2). (2.3.37)
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Proof.

—Af* = div(V(f*) = div(af* ' V)
= —af* ' Af + (VL V)
= —af VAf +all@— DIV VL)
= —af " IAf tal@— DOV

=af* (= fAf +@=DIVSP).
[ |

Corollary 2.28 Let f € F(M) be a nonzero function and @ € R. Then f% is

harmonic if and only if
fAf = (a—DIVS (2.3.38)

Choosing « = k + 1, we obtain (2.3.36). Then f**! is harmonic on the compact M
and then f is constant, by Hopf’s lemma.

The p-Laplacian
The p-Laplacian of a function f € F (M) is

A, = —div(|V f*P7DV ),

where p € N. The case p = 1 corresponds to the usual Laplacian.

Lemma 2.29 If p, ¢ € F(M), then
div(pV(¢2)) — 2¢div(pVe) +2p |Vo|2. (2.3.39)
Proof. Proposition 2.14 yields
div(p V(@) = —pAd? + g(Vp, Ve?)
= —p(2020 —23(V$, V) ) + 8(Vp. 26V 9)
=26( = PAG + (V. V9)) + 20 8(V$, V)
=2¢div(pVp) +2p|Ve|*.
| |

Proposition 2.30 If A, ¢ = 0 on a compact, connected Riemannian manifold M,
then f is constant.

Proof. Choose p = |V¢|*?~D in Lemma 2.29 and integrate

o:/ —div(|v¢|2<l’*”) dv =2/ ¢Ap¢dv+2/ IVé[2? dv < 0,
M M M

then V¢p = 0 on M and hence ¢ = 0. |
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2.3.0.3 An application to the heat equation with convection on compact
manifolds

Let M be a connected, compact Riemannian manifold without boundary. We define
the heat equation with convection as

%P+ Ap =k |Vo|?

where k > 0 is a real positive constant. The function ¢ (x, ¢) denotes the temperature
at the point x at time ¢. The goal of this section is to prove the following result.

Theorem 2.31. Let M be a manifold as above andk > 0. If ¢ : [0, T) x M — R is
a smooth solution for

do+Ap=k|Vg|?,
dji=0 =0,

then ¢ =0,

We need the following result:

Lemma 2.32 In the above hypothesis, if ¢ is a solution such that ¢ < % , then
¢ =0.
Proof. Multiplying by ¢, we get
Php+d Ap=ko [VP|*. (2.3.40)

Using the fact that ¢ A¢ = |Vo| 2 div(¢ V@), the relation (2.3.40) becomes
la¢>2+|v¢|2—d' Vo) = ko |V|?
S0 iv(@Ve) = ke [VgI’.
Integrating
1 .
. at/ ¢ — / div($Ve) = f (kp— 1) |VoI* <0.
M M M
As the second term on the left-hand side vanishes, it follows that
P(t) = f &> (1, x) dv
M

is decreasingint. As 0 < F(¢) < F(0) =0, we get ¢ = 0. [ ]
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Proof. (of Theorem 2.31).
As ¢ ;=0 = 0 and M is compact, there is € > 0 such that

o(t,x) < Vt <€, Vx e M.

1
0
Using Lemma 2.32, we obtain
p(t,x) =0, (t,x) €[0,€) x M.
Let €* be the maximal € with the above property,
€ =suple; ¢(r,x) =0,VY(,x) €[0,¢) x M}.

If €* = T, the proof is finished.

Suppose €* < T. By continuity, ¢|;—e+ = 0. Applying the above argument, we
can find € > 0 such that ¢(f,x) = 0, Vx € M and Vt € [0,€* + €¢') which
contradicts the definition of €*. [ |

2.4 Exercises

1. Let M be a Riemannian manifold and p € M be a point. Consider an orthonor-
mal basis {Ey, ..., E,;} in T, M. Let y; be the geodesic that verifies y;(0) = p and
y;(0) = E; and is parametrized by the arc length.

a) Show that for any function f € F(M) we have
n

d*(f oy
(), =3 LYW q)

ds?
i=1

b) Show that in the case when M is the Euclidean space we obtain the usual
Laplacian.

2. A nonconstant harmonic function defined on an open set of a Riemannian manifold
does not have interior maximum points.

3. The motion of an ideal fluid is described by the continuity equation
dp
— +div(pV) = f,
” +div(pV) = f
where V (x, t) is the velocity vector field, p(x, t) is the density function, and f(x, )

is the source intensity function. Solve the continuity equation in the case of a homo-
geneous density function p = p(¢) with the initial condition p(0) = pg.
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4. Let A be the Laplace operator on R? and let ¢ be a solution of

Ap+ f(pH¢ =0, (2.4.41)

where f : R — R is a smooth function.
a) Show that for any v € R2, the function Yy (x) = ¢(x 4+ v) is a solution of

(2.4.41).
b) Show that for any s € R, the function ps(x) = ¢ (R(x)) is a solution of

(2.4.41), where
R, = < cos s sms)
—sins coss

is the rotation of angle s.

5.LetQ2=(0,1) x (0,1) and ¢ : @ — R, given by

1+x? forx; =1,

(1. x2) = 0 for x, =0,
LR I for x; = 0,
0 for x; = 1.

Show that the boundary value problem
du — 3%u = —1,
upQ =@
does not have solutions in the space

{u:Q— Rou e C(Q), du, d2u € C((0, 1) x (0, 11)}.

6. Consider the n-dimensional unit sphere endowed with the Riemannian metric in-
duced by the inclusion ¢ : §* — R™*!. Show that for any function f € F(R"T!) we

have 5
n n a a
(A% 5) =A% (g - 2

= n—
IS ar? s or s

n U a .
where AR"! , AS" and 3 are the Laplace operators on R"*! and S, and the radial
r

derivative, respectively.

7. Let S" be the unit sphere endowed with the usual Riemannian structure from R 1,
Denote by Hy the vector space of the harmonic polynomials of degree k > 0 defined
on R* 1. Let Hy = { fisn; f € Hi)
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a) Show that
A f=k(n+k—1)f  forall fe H,
and hence k(n + k — 1) is an eigenvalue of the Laplaceian AY.
b) ﬁk is the eigenspace corresponding to the eigenvalue Ay = k(n +k — 1).

c) The set {k(n + k — 1); k € N} is the set of eigenvalues (the spectrum) of AY
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Lagrangian Formalism on Riemannian Manifolds

3.1 A simple example
It is natural to study a Physics problem using the following steps:

o First, find a suitable Lagrangian, which in the simplest case is the difference between
the kinetic and the potential energy involved in the phenomenon.

e Write down the Euler-Lagrange equations, the Hamilton equations, and the
Hamilton—Jacobi equation.

e Choose one of the above equations which can be studied from the point of view of
existence, uniqueness, and regularity of solutions. Since the equation comes from a
real physical problem, all of these conditions should be satisfied. This is a step which
sometimes is skipped by physicists but is challenging for the mathematicians.

o If for the above equations an exact solution cannot be found, try numerical methods.

To demonstrate this, we shall consider a simple example from Classical Mechan-
ics. Suppose that a body is launched obliquely in space. Neglecting the friction forces,
the Lagrangian is the difference between kinetic and potential energy

mv2

L=———mgy,
) 8y

where v is the speed, given by v = /X2 + 2, m is the body mass, which can be
assumed to equal 1, and g is the gravitational acceleration.

Euler-Lagrange equations for the Lagrangian L = L(x, y, X, y) are
doL JL doL JL
dr 9% dx’ dtdy 9y’

For the above Lagrangian, we have
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This is a uniform motion along the x-axis
X = Uy t + X,

and an accelerated motion along the y-axis

1
y = —zgtz—i- vo t + Xxo.

The first Euler—Lagrange equation is the Laplace equation and the latter is the Poisson
equation, both in dimension 1.

It is not always easy to solve the Euler-Lagrange equations. The next section
provides a more complicated example.

3.2 The pendulum equation

In this section we shall discuss the case of a simple pendulum. This is a dynamical
system which can be described by the parameter 6, which is the angle between the
string and the vertical direction. Denote by m the mass of the pendulum weight, by ¢
the length of the pendulum string, and by g the gravitational acceleration.

Figure 3.1: The pendulum.

The Lagrangian is given by the difference between the kinetic energy and the potential
energy
L=K-U.

The kinetic energy is given by

= o (B =
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where s = £0 is the arc length, v is the tangential speed, and ¢ is the time parameter.
The potential energy is
U =mgh =mgl(l —cosh),

where £ is the height. The Lagrangian becomes

. 1 .
L(6,0) = m£<§£92 + gcos@) —mgt.

Using that
d /oL 2 oL .
—(—.) —me®, & = _negsine,
dt \ 90 a0
the Euler-Lagrange equation is
6 = —k siné, (3.2.1)

where k = g/£ > 01is a constant. Equation (3.2.1) is called the pendulum equation.
We shall show that the total energy £ = K + U of the pendulum is conserved.

1 .
E=K+U= Emzzez +mgl(1 — cosh)
1.
= m@(zwz — gcos 9) + mlg. 3.2.2)

Differentiating with respect to time yields

dE -
== me26(F + % sin6) =0,
where we used the pendulum equation (3.2.1).
In the following we shall integrate the pendulum equation (3.2.1) subject to the
initial conditions

0(0) = %, 6(0) =0, (3.2.3)

which corresponds to a free falling of the pendulum from a direction parallel to the
horizontal axis. The equation (3.2.2) can be written as

E —mét 1 .
2T —16? —gcosf.
mL 2

Separating 6, we get
6% = 2k cos O + C, (3.2.4)

where

2

From (3.2.3)
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. T
C = 6(0)* — 2k cos 5= 0.

Hence the equation (3.2.4) yields

do
I = —+/2Kk cos b,

where the negative sign means that the angle 8 = 6(¢) decreases from 7 /2 to 0.
Separating and integrating between 6y = 7 /2 and 0(¢) yields

/,jj) \/f:ﬁ = V21 (3.2.5)
With the substitution & = arccos u on the left-hand side, (3.2.5) becomes
cosé(t) du
: \/ﬁ =+2kt. (3.2.6)
We need the following:
Lemma 3.1

du

z du Vz+1
- =2 s
/1 Vu(l —u?) /ﬁ VW —-1)Q2 —u?)

()

)y

< du z+1 1
M S 1y,
-/l Vu(l —u?) ! ( )

2 V2
L du 1
(iii) /O \/ﬁ = ﬁK(ﬁ) ~ 2.62,
where K is a complete elliptic integral.
Proof. (i) Consider the functions
¢ du Vet du
=) s s mmves

From the Fundamental Theorem of Calculus,

1
P @) =v'(2) = ——,
u(l —u?)

and hence

¢(2) = ¥ (2) + Co.
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As ¢ (1) = ¥ (1) = 0, it follows that Co = 0. Hence, ¢ (z) = ¥ (2).

(ii) From Lawden [23], equation (3.2.11) we have

2 K12
_ldnfl(f,a_b), b<x<a.
a a

/“ du
r V@ —ud)? —p?)  a

Substitute a = «/5, b=1and x = +/z+ 1 and we get

V2 du 1y fz+1 1
[ = Lo (JEEL L,
VF Ve —1) V2 2 2

Swapping the limits of integration and using (i), we arrive at formula (ii).
(ii7) From Lawden [23], equation (3.8.1) we have

/2 do
K(k) = / S —
0 /1—k2sin26

Then

/2
K(1/32) 2/
0

do /2 de
—:ﬁ/ __ 49
,/1—lsin29 0 2—sin%0

— f/ _I= 0059 /
1+cos2 /(1 _t2)(1+,2

= 12 1 du
0 Vull —u2)
ie. (iii). n

Using Lemma 3.1 the equation (3.2.6) can be written as

U du cos gy
— K(1/vV2) -kt = dn_1<,/COSQT+1, 1/&)
= dn(K(1/v2) — k1) = cosg
&= 0(t) = 2arccos (dn(K (1/v/2) — V& 1)). (3.2.7)
From Lawden [23], equation (2.2.19) we have
dn(u 4+ K) = k'ndu = k' /dn u.

As dn is an even function, equation (3.2.7) yields
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1
V2dn(Jx 1)

The dynamical system discussed above is one dimensional. However, it was not
easy to integrate the Euler—Lagrange equation, even in the particular case C = 0. The
solution required the use of elliptic functions. In other cases, even elliptic functions
are not enough to solve the Euler-Lagrange equation. We may say that for some
equations, it is not possible to obtain explicit formulas. This is also the case for an
Euler—Lagrange equation on manifolds, where we encounter more than one parame-
ter. In this case, the best we can do is to perform a qualitative analysis of the solutions.
This will consist of finding first integrals of motion, currents, and free divergence ten-
sors. An important part of the next chapters will be dedicated to conservation laws on
Riemannian manifolds.

6(t) = 2 arccos (3.2.8)

Using Lagrangians on Riemannian manifolds, we shall be able to get the above
equations in a more general case. Some solutions of these two equations are already
known. For instance, on compact manifolds the Laplace equation has only constant
solutions.

3.3 Euler-Lagrange equations on Riemannian manifolds

Unlike in Quantum Mechanics, where there exists the Heisenberg principle of un-
certainty, in Classical Mechanics the moving particle is completely described by its
position x and its speed v. The position x belongs to a space called the coordinate
space which is, in general, a Riemannian manifold with the metric defined by the
kinetic energy. The space of the positions and velocities (x, v) is called phase space,
and it is identified with the tangent bundle 7'M of the coordinate space M. The pair
(x, v) is called the state of the particle.

For instance, in the previous example of a body launched in space, we have
x = (x,y)and (x,V) = (x, y, %, y) € TM ~R*.

The coordinates and velocities depend on the time ¢. The trajectory in the coordi-
nate space is a curve parameterized by ¢, which is a solution of the Euler—Lagrange
equation

d oL oL

dt 9x 9%’
This holds for particles that depend on only one parameter, time. But there are a lot
of phenomena that depend on several parameters. Furthermore, these new parameters
can change in time and can be related to each other, so that we can speak about a
parameter space. This is a manifold endowed with a Lorentzian metric (+, ..., +, —),
where (—) corresponds to the time coordinate. This is also the basic idea of sigma-
models or chiral fields introduced first by M. Gell-Mann and M. Levi in 1960 for
describing pion-nucleon physics in a low energy approximation, see [30]. We shall
discuss this idea later in the context of harmonic map theory, see chapter 4.
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Let (M, g) be a Riemannian manifold and ¢ € F(M). Denote by ¢, ; the deriva-

0 0
tive of ¢ in 337 direction, where {— . } is a basis of T, M,
J

Xgp 9% gp
9
o= 2 _v, (3.3.9)
’ ax] Bx.]'

where V is the Levi-Civita connection on M.

Consideramap V¥ : M — N, where M and N are Riemannian manifolds. The first
is the space of parameters and the second the space of coordinates. If (x1, ..., x;;) are
local coordinates around p € M, and (y1, ..., y,) are coordinates around W (p) € N,
we define the vector field W, ; € X'(¥(M)) by

0

‘Il;i :\IJ*(E
i

vl 9
)=/, o (3.3.10)

In the particular case when M = RR;, we obtain the tangent vector field along W,
. d
V() = W, (E) (3.3.11)

Definition 3.2 A Lagrangian is a function L : TN — R, where N is the coordinate
space. The Lagrangian L associated with V : M — N is a scalar function of ¥ and
W . ;. The expression of the Lagrangian may contain the metrics g;j and h;j of M and
N, respectively.

Definition 3.3 Let D C M be a bounded, closed set. A variation of ¥ in D is a
one-parameter family of functions V (s, x), where s € (—e¢, €) and x € M such that

@) V(0, x) = W(x);
(ii) Y(s,x) =W¥(x), Vxe M\D.
Denote

; AW (s, x) R
(224) (S\I’(x) = T ‘SZO, 1= 1,n.

Definition 3.4 The integral
[ — / Ldv, (3.3.12)
D

is called stationary under the above variation if

dl

el = 3.3.13
ds | s=0 ( )
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‘We denote the volume element

dvg = /Igldx"...dx™, (3.3.14)

where |g| = |det gij| .

Theorem 3.5. The integral (3.3.12) is stationary under any variation of V iff the
following Euler—Lagrange equations are satisfied

m

oL oL —
Z —) = Vi=1,n. (3.3.15)
k=1 8(\11;]() ik v
Proof. Applying the chain rule
4 oL .
= — SV ) | dv,.

du|u o Z/[a\w o) ’6)} %

As § (¥ e = (Swh) - ¢, the second term in the right hand side can be expressed as

Z/ < 3(\11‘ i];8_<a(i€6));esxyi> dv,.

0
ax,’

L .
Xezz a. SWi,
A,

and by the divergence theorem
/ X ,dv=0,
p

Let

X =Xx°

where

as X vanishes on 9D.

Thus,

dI oL oL .
el 2/[——(—) ]S\Iﬂdvzo,
ds |s=0 ow? B\I/fe e

for all variations of W, which means that (3.3.15) is satisfied. Indeed, if we take the
variation W (s, x) = exp(s Vy(x)), where Vy(x) € Tyx)N, we have ¥ (0, x) = W(x)

and W (s, x)
S, X

WV =—-" = Vy@u),

as | s=0 v

for any arbitrary V. |
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3.4 Laplace’s Equation Af =0

The Laplace equation describes stationary processes in physics such as the displace-
ment of a membrane or soap film with a prescribed contour, the gravitational potential
in the absence of mass, the steady-state flow of heat in the absence of sources of heat,
the velocity potential for some fluids, the electrostatic potential in the absence of
charge, and many other static processes.

Let (M, g) be acompact Riemannian manifold and f € F(M). Define the kinetic
energy of f as

E(f)=/ lIVfl2 dv, (3.4.16)
w2

where |V f|? = g(Vf, Vf),and V f = grad f.As M iscompact,0 < E(M) < oo.
The Lagrangian is

1
L=3 IV f]2. (3.4.17)
Theorem 3.6. The Euler—Lagrange equation for the Lagrangian (3.4.17) is
Af =0. (3.4.18)

Proof. In local coordinates,

1 ..9f of 1 .

2.3.4 L=—-gl———=—-¢g"f. f. ;.
( ) 2g 9x; axj 2g f,zf,]
As L does not depend on f, the right side of (3.3.15) is zero. For the expression on
the left side, we have

(2.3.5) O gk =V pE.
of. k o/
Hence, (3.3.15) becomes (Vf)k;  =0ordiv(Vf)=0,ie,(3.4.18). [ |

In the case when M has a nonzero boundary, Hopf’s lemma becomes the unique-
ness theorem for the Dirichlet problem.

Theorem 3.7. Let M be a connected, compact manifold and [ € F(M) such that
Af =0, on M,
fiam = 0.
Then f = 0.
Proof. Integrate the expression
div (f V) =~fAf +IVSI
and use the divergence theorem

/ div X dv = (X, N)do,
M oM

with X = fV . n
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3.5 A geometrical interpretation for a A operator

Let M be a manifold of dimension m and f : M — R”" an immersion, i.e., df is
one-to-one. Consider M as a Riemannian manifold with the induced metric by the
immersion f,

gij = 7)),
where §;; is the canonical metric on R”. Such an immersion is called isometric. Let
V be the Levi-Civita connection on R”,

n
Vx¥ =) X(¥)e. (3.5.19)
i=l1

where Y = Yie;, X = X'e;, and e; = (1,0,...,0),...,e, =(0,...,0,1).
If V is the Levi-Civita connection on M, the second fundamental form of the
immersion f is the two-covariant, symmetric tensor field on M

h(X,Y)=VyxY — VyxY, VX,Y € X(M). (3.5.20)
The equation (3.5.20) is called Gauss’s formula, and we have
h(X,Y) = nor (VxY),
VxY =tan (VxY),
where nor (tan) represents the normal (tangential) component with respect to M.

Definition 3.8 The mean curvature vector field of the submanifold M of R" is
1
H = —Traceg h. (3.5.21)
m

Thus, H, is always normal to Ty M.

In the particular case when M is a hypersurface (n = m + 1), the vector fields H
and N (the unit normal field) are proportional,

H=aN. (3.5.22)

The function « € F (M) is called the scalar mean curvature.
The geometry contained in the A operator is illustrated in the following result.

Lemma 3.9 Let f : M — R” be an isometric immersion. Then
Af =—mH. (3.5.23)

Proof. As
(Vdf)(X,Y) = h(X,Y),

we obtain
Af = —Tracey,(Vdf) = —mH.
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Corollary 3.10 Under the above hypothesis, Af is a vector field normal to M.

Corollary 3.11 Under the above hypothesis, M is a minimal submanifold (i.e., H =
0) iff f is harmonic.

Corollary 3.12 There are no compact minimal submanifolds in R".

Proof. 1f M is a minimal submanifold, there is an isometric immersion f : M — R"
such that Af' = 0, for i = 1, n. Applying Hopf’s lemma, we find that f (M) is
reduced to a point. This is a contradiction. [ ]

3.6 Poisson’s equation

There are many situations when physical problems are described by a Poisson equa-
tion. A few examples are: the equilibrium displacement of a membrane under exterior
forces, the gravitational potential in the presence of mass, the electrostatic potential
in the presence of distributed charge, the steady-state temperature in the presence of
sinks or sources of heat, and the velocity potential for an incompressible, irrotational,
homogeneous fluid in the presence of distributed sources or sinks.

Let f,p € F(M), where (M, g) is a Riemannian manifold, and consider the
Lagrangian

1
L=> V£ = pf. (3.6.24)
The Euler-Lagrange equation is obtained from relation (3.3.15) with the right-hand
side ﬁ = —p. Then equation (3.3.15) becomes Poisson’s equation
Af =p. (3.6.25)

Proposition 3.13 Let k € R. The equation on the sphere S",
Af =k
has solutions f € F(S™) iff k = 0. In this case, solutions are constants.

Proof. Apply Hopf’s lemma. [ |

One of the physical applications of equation (3.6.25) is in gravitation. The function
p denotes matter density and f denotes gravitational potential. Since the gravitational
force is defined as F = —V f, the equation (3.6.25) can be written

div F = p. (3.6.26)

In an empty space, p = 0 and F is a divergence-free vector field, which means that
the volume element is preserved along the integral curves of F.
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3.7 Geodesics

Let I € R be an interval and (M, g) be a Riemannian manifold. Consider the curve
¢ : I — (M, g) and take the Lagrangian

L(¢,$) = |¢| g,,|¢¢>¢>f (3.7.27)

as the kinetic energy along the curve ¢(t). Denote the tangent field along the curve

¢(1) by

. d
= ¢ (—). 3.7.28
¢ = ¢x( 7 z) ( )
Theorem 3.14. The extremizers of the integral
1.2
J@) = [ = |¢], ar (3.7.29)
128
are solutions for the equation
¢! +Tl ,0'¢° =0, 1=Tn (3.7.30)

Proof. We shall show that the above equation is the Euler-Lagrange equation for the
Lagrangian (3.7.29). Indeed, computing both sides of the equation

d /0L oL
di\agk) T 9gk 3.7.31
dt<3¢k) Ak ( )
we conclude
L 1 9gi; L
9p* 2 Ixk gy
L .
S 9gk = Sikwo o).
So that
d /oL d
E(W) dt (glkw;(;) ¢(I)>
k
il W0+ ity 0.
Equation (3.7.31) becomes
.o o a k 8g
A A ax“qw
1 gk 3gk : 3g

3gzk O8ks agm
"gik+ S| —+—— $=0. 3.7.32
= glk+2[8xs+8x[ e ]¢>¢> (3.7:32)
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Multiply by g and sum over k to yield

w1 ogik | 0gik 3gis) 2

1 kil i i4s
_ _or o 27 =0

¢+ <8xs+8x,~ ox )20
— q‘b.l + rzl'S|¢(,) ¢'5i<l.5s =0.

The equation (3.7.30) is written in local coordinates. A global expression for this
equation is given in the following result.

Proposition 3.15 Ler ¢(1) be given by (3.7.28). Then the following relation takes
place: . .. o« e .
Vb = (6" + T} ¢'¢7)d;. (3.7.33)

Proof. Using the properties of the linear connection, we write
Vi = Viry, &7 0j = ¢ Vi ($70))
= ¢4, 0+ T} 9.
Using o o
¢ = 0d”) 6",
we obtain equation (3.7.33). |

The expression Vd')q'ﬁ is interpreted as acceleration along the curve ¢ (¢). Then the

1 .
Euler-Lagrange equation for the Lagrangian L = 3 1§ is

Vd-)(ﬁ =0 (zero acceleration). (3.7.34)

The curves that satisfy (3.7.34) are called geodesics on the Riemannian manifold
(M, g).

Remark 3.16 The equation (3.7.34) is Newton’s equation on the manifold (M, g)
when the force is zero. Later, we shall consider the equation Vip = F, where F is
the force vector field.

3.8 The natural Lagrangian on manifolds

Letgp : I € R — (M,g) be a curve on a Riemannian manifold M. Define the
natural Lagrangian associated with the curve ¢ and the potential U : M — R as the
difference between the kinetic energy K and the potential energy U. We consider a
unit mass particle moving along the curve ¢ situated at the moment ¢ at the point
¢ (1), with the speed ¢ (7). Then,

A R
L(¢,9) = 5 8@, ¢) —U(®). (3.8.35)
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3.8.0.4 Momentum and Work
Define two one-forms wg, wg € T*M associated with ¢ as
wy (V) = g((i), V) momentum in the V —direction, (3.8.36)

wy (V) = g(V(l;(ﬁ, V) work in theV —direction, (3.8.37)

where V € X (M) and V is the Levi-Civita connection. Using that V is a metric
connection

P8 V)=g(Vih, V) +2(,VV),

we obtain a formula which gives the work in terms of momentum
wg (V) = dap(V) —wg (V4V), VYV eX(M). (3.8.38)

Proposition 3.17 Let ¢ (t) be a geodesic. Then
D) wg(V) =0, VV € X(M) (the work is zero);

2) The momentum wgy (@) in the ¢-direction is preserved along the geodesic.

Proof. 1) Use the equations (3.7.34) and (3.8.37).
2) Using 1), formula (3.8.38) becomes

b ws(V) = w(V4V), (3.8.39)
and taking V = ¢ and using (3.7.34), we get
¢ wy(h) = wy(V¢) = 0.
Hence, wy (¢) is constant along the geodesic. |

Remark 3.18 i) A curve is a geodesic if and only if the work is zero.
ii) As wy(V) is a function on M, we can write

Vq; wy(V) = ¢w¢(v)s
and then (3.8.38) becomes
wy(V) = Vju(V) — wg(V, V),

which shows that the work wy measures the non-commutativity between w and \Z2
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3.8.0.5 Force and Newton’s Equation

Definition 3.19 Consider the potential function U € F(M). The vector field F de-
fined as
F=-VU (3.8.40)

is called the force vector field.

Theorem 3.20. The curve ¢ is an extremizer for the integral

/Q L(¢, ¢)dt, (3.8.41)
1

with L given by (3.8.35), iff ¢ verifies Newton’s equation
Vi =—-VU. (3.8.42)

Proof. As the Lagrangian is L = K — U, Euler-Lagrange equations are obtained by
subtracting the equations

d ;9K\ 0K
E(W)_W:o and (3.8.43)

d /U U o

S(9ZN_ 2 Vk =T, 3.8.44

dt(8¢k) 3¢k n ( )

where K = % g(cﬁ, é).

As we know from Theorem 3.14, equation (3.8.43) is given by (3.7.32), while

(3.8.44) becomes
oU
——=0.
0Xx

Multiplying by g%, summing over k, and adding the last two equations, we find

; "y U
l 1 igs _
O F Tis i 90" = —8u 50 (3.8.45)

which is the Euler—Lagrange equation for L.

Using that
(V) =o' +Ti ¢ 9",
and
oy =g 22
X
we obtain

(Vy$) =—(VU), VI=Tn

which is (3.8.42) on components. [ ]
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The above theorem enables us to write the work as
we(V) =g(=VU, V) =g(F,V), (3.8.46)

namely, the work is the scalar product between the force and direction vector. This
is the definition for work known from Classical Mechanics.
Using the definition of the gradient,

we(V)=—-dUV), VYV eXM).
Written as a one-form, the work is
wy = —dU. (3.8.47)

This can be taken as another definition for the work, involving the potential U, where
¢ is an extremizer.

Theorem 3.21. ( Momentum conservation theorem) Let ¢ be an extremizer for the
integral (3.8.41), and V be a Killing vector field on M such that

we (V) =0.
Then: 1) wy(V) is constant along ¢,
2) w¢(V¢; V) =0.

Proof. 1) Let (h*); be the 1-parameter group of diffeomorphisms associated with
the Killing vector field V. As (h*), are local isometries, each #° will preserve the
Lagrangian, i.e., ] )

L($.¢) = L(1*(§), hi(9)). (3.8.48)
Indeed, as &3 is an isometry,

g(e, ) = g(hi (), hi(9)),

so that the kinetic energy is preserved. As wy(V) =0, we get dU (V) =0, i.e., U is
constant along the integral curves of V, and

Ux) =U(K(x)), Vs. (3.8.49)

Hence, we get the equation (3.8.48). Applying Noether’s Theorem (see chapter 5,
Theorem 5.13), a first integral of motion is the momentum

wp(V) = g(g, V),

which will be constant along ¢.
2) From 1), we have ¢ wg(V) = 0 and using (3.8.38) we get the result. [ |

Exercise 3.22 In local coordinates, wy = w; dx’, where

wj = gik (¢* +T5,¢%"). (3.8.50)
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Proposition 3.23 Let ¢ be an extremizer for the integral (3.8.41). Then || is constant
along ¢ iff U is constant along ¢.

Proof. 1t follows from
Vi g(¢, ) =28(Vy, ) =2wy(d) = —29(U).
|

Corollary 3.24 [If U is constant on M, we get the well-known result that the vector
tangent to a geodesic has a constant length.

The Total Energy

Even when there are no Killing vectors on M, we can always find another first integral
of motion, called total energy:

1 . .
E(9) = 3 8@(). 1)) + U (). (3:851)

E is the sum of the kinetic and the potential energy, while the Lagrangian is the
difference between them.

Theorem 3.25. E is constant along the extremizers of integral (3.8.41).

Proof. A direct computation shows

d
CEG) = 5 [38100)18 05 O +U6o)]
1 Bglj

U .
¢ o'+ gijd’ ¢>’+ é°. (3.8.52)

b
As ¢ is an extremizer, from (3.8.48)

iU

.~ 8k (@* + 1k ¢ '$7). (3.8.53)
Xs

Substituting (3.8.53) in (3.8.52), we get

i _lag_u i Cwiai k T
th(¢>(t))—2 oxL PP +gijd ¢ = gks (97 + 10797 )P
lag,-j

= 3 G ' — Tl 9

_ 1 8gl] ks 1 agis agh 8glj> i
T2 8xk¢¢¢ 2(ax,- dx;i  Ox ¢'¢'¢’
=0,

so that E(¢) is a first integral. |
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3.9 A geometrical interpretation for the potential U

Let ¢ : M — R”" be an isometric immersion of a Riemannian manifold M of
dimension m = n — 1. If « is the mean scalar curvature of M, from Lemma 3.9 we
have

A¢p = —maN, (3.9.54)

where A is written in the metric of M. If « = 0, ¢ is a harmonic map and it is a
critical point for the Dirichlet integral

1 5 1 ¢ (|2
/M§|v¢| dv:/ME Z‘w ‘ dv, (3.9.55)
k=1

where M is considered bounded with nonzero boundary. If @ # 0, we consider the
Dirichlet integral perturbed by some potential U : R" — R, such that the immersion
¢ becomes a critical point for

@ = [ (5 1VoP ~U@) dv (3.9.56)
3 . 9.

As ¢ is a critical point for Iy (¢), then
A¢p =—-VU.
Comparing with (3.9.54) we get the following result.

Proposition 3.26 Let ¢ : M — R” be an isometric immersion of the hypersurface
M. Then ¢ is a critical point for Iy (@) iff the following two conditions are satisfied:
1) the force F = —VU is normal to ¢ (M),

1
2) | = — |F].
n—1
Thus, from the geometrical point of view, force signifies mean curvature. No force

situation corresponds to « = 0, i.e., M is a minimal hypersurface.
We can now address the following natural problem:

Given a hypersurface in R", find a natural Lagrangian for which the hypersurface
immersion is a critical point.
Let  : R” — R be a function that defines M locally as M = {x € R3; y(x) =

\%
0}. As the normal is N = _‘ﬂ where V{y = (01, ..., d,v%), we get

V|
n=DVY . (3.9.57)
[V
or 1 3.
;U = u ,
[V

which provides the potential U up to an additive constant.
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Example 3.9.1 Let ¢ : S*~' — R, where ¢ is the natural inclusion of the unit
sphere. Choose ¥ (x) = |x|> — 1 and get Viy = 2x, a = 1. Then (3.9.57) becomes

. (n — Dx;
Y

]

;U

so that we can write
Ux)=m-1lx|,

1
up to a multiplicative constant. The Lagrangian is L = > [V (x) |2 —(n—=D|px)|.

The following well-known result in geometry is approached here using equipo-
tential surfaces.

Proposition 3.27 Let ¢ : [0, 1] — R3 be a unit speed curve. Then there exists a
surface ¥ C R3 that contains ¢ ([0, 11), and ¢ : [0, 11 = X is a geodesic.

Proof. Let p = ¢(0), g = ¢(1). It is obvious from the physical point of view that
there exists a force which perturbs the straight segment [p, ¢] into ¢ ([0, 1]). Let U
be the potential for this force. Then ¢ will minimize

D
f lol" = U@). (3.9.58)
0

As ¢ is a unit speed curve, using Proposition 3.23 we get U | 4 constant. Letk = U | 4.
Consider the equipotential surface

T={xelR; Ukx) =k},

which contains ¢ ([0, 1]). The Euler-Lagrange equation associated with (3.9.58) pro-
vides

) =-vU (s)).

As VU is normal to ¥, it follows that ¢ is normal to ¥, which means that ¢ is a
geodesic on X. "]

Example 3.9.2 Let ¢(t) = (cost,sint,0) be a circle. Using the above method,
we shall find a surface that contains the circle as a geodesic. The Euler—Lagrange
equation is

¢ = (—cost,—sint,0) = (=01 Uy, =02 Ujp, =93 Uy )
so that we can choose U (x) = %()cl2 + x22) and Uy = % Then

T = U_l(%) ={xi +x3 =1}

1
is a cylinder. If we choose U (x) = E(xf + x% + x%), we find that X is a sphere.
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3.10 Exercises

1. Let ¢ : M — R™ be an isometric immersion of the compact manifold M and
let ¢;(x) = f(t)p(x) be a smooth conformal variation of the immersion ¢, with
fi(—€,€) = (0,00), f(0) = 1. Let g = ¢*(8) and g(¢) = ¢; (6) be the induced
Riemannian metrics on M by ¢ and ¢y, respectively. Show the following:

a) gab(1) = (1) gab

b) g (t) = f2(t)g®

8gab(t)
c)
at =0

=2f'(0)gap

d) Agne = 2D A
e) Mgy = (1) Ag
f) Show that ¢; = f ()¢ is a solution for (9, — Ag())e = 0 if and only if f (1)
verifies
F'@ =10,
fO) =1,
where 1 ; is an eigenvalue of A (Laplacian in the g-metric).

g) Show that

1
0 (x) = \/]?WQ/(X),

with Ag; = 4;¢;.
h) The manifold ¢; (M) blows up in finite time:

lim | ;(x) |= o0,

1/ 5

where 0 < A1 is the smallest eigenvalue of the Laplacian on (M, g).

2. Let (M, g) be a compact manifold and ¢ : (M, g) — R™ be an isometric immer-
sion. Let (¢;);¢[0,¢) be a smooth variation of ¢ such that
(0 + Ag)gr (x) =0, (3.10.59)
@1 (X))i=0 = @(x),
where Ay is the Laplace operator with respect to the metric g.

a)Let(¢;);>1 beasetofeigenfunctionsof Ag,i.e., Agp; = Ajp;, A € (0, +00),
J = 1. Show that there are constants c; € R such that ¢ can be written in the unique
representation
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= ZC./¢./~

izl
b) Consider the smooth variation
@i(x) =Y _cj(g;j(x) (3.10.60)
Jj=1

with ¢;(0) = c;. Show that (3.10.60) is a solution of problem (3.10.59) if and only if
the functions c; (¢) satisfy the initial value problem

C;»(l) +Ajc;(t) =0,
Cj(()) =Cj,

where A ; is the j-th eigenvalue of A,.

¢) Show that any smooth variation (¢); of ¢ which is a solution of the problem
(3.10.59) can be represented as

o) =) yjeMgi(x),  yjeR

j=1
d) If ¢; is a solution of the problem (3.10.59), then

lim ¢;(x) = Ogm,  Vx € M,
11— 00

i.e., the manifold ¢; (M) shrinks to a point as ¢t — oo.

3. Let (M, g) be a Riemannian manifold and pop € M be a point. For any v € Tp,M
with |v| = 1, let ¢, denote the maximal geodesic defined by ¢, (0) = po, ¢,(0) = v
and parametrized by arc length. If p = ¢, (), then let (, vy, va, ..., v,) be the coor-
dinates of p, called the polar coordinates at pg.

a) Show that the length element with respect to polar coordinates can be written

as
n—1

ds? = dr? + Z Gij(r, v)dvidv;.
i,j=1
b) Show that the Laplacian in polar coordinates is given by

Az_%a%( ) Zfan,( Gija%)‘

¢) Show that if f € F(M) is a function such that f(p) depends only on the
Riemannian distance between p and pg, then



54 3 Lagrangian Formalism on Riemannian Manifolds
1 /G df

d*f
d*?r /G or dr’

Af =
4. Let (M, g) be a Riemannian manifold. Consider the Lagrangian

1
L(x,¢,V¢) = 5|V¢|2p(x),

where ¢ : M — R and p : M — (0, 00) is a density function.

a) Show that the Euler-Lagrange equation is
div(p(x)V¢) = 0.

b) Show that the Euler—Lagrange equation can be written as A¢ = F (¢, p), with

Vo,V
F<¢,p)=<"”fp).

c)Let M = Rand p = 1+ x2. Solve the Euler—Lagrange equation in this case.
Find the solution ¢ (x) which satisfies ¢ (0) = 1, ¢(0) = 1.

5.Lety : (M, g) — R and consider the Lagrangian

_ 1 2 2
L(p, Vo) = EIWI ST,

a) Write the Euler-Lagrange equation as Agp = F (¢, Vo) and find the function
F.

b) Solve the Euler—Lagrange equation in the case M = R.

6. Let (M, g) be a Riemannian manifold and p € M be a point. Let v; € T, M such
that g(v;, v;) = §;;. Show that there is an open neighborhood ¢/ of p and the vector
fields V; on U such that V;(p) = v;,i =1,...,nand g(V;, V;) = §;; on Y. (Hint:
Use the parallel transport with respect to the geodesics starting at p).
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Harmonic Maps from a Lagrangian Viewpoint

4.1 Introduction to harmonic maps

Harmonic maps are mappings between Riemannian or pseudo-Riemannian manifolds
which extremize a certain action, namely a natural energy integral that generalizes
the classical Dirichlet’s integral [ |V¢|?> dv. Harmonic maps are generalizations of
geodesics and harmonic functions as well.

In fact, harmonic maps come from theoretical physics, where they are known
under the name of nonlinear sigma models or chiral fields. Nonlinear sigma mod-
els were introduced by Gell-Mann and Levi [30]. Their aim was to describe pion-
nucleon physics in a low energy approximation, using Lagrangian theory for some
self-interacting scalar fields. These fields can be assembled into a single map ¥ from
the n-dimensional Minkowski space (R", n), where n;; = diag (—1,1,...,1),into
some real finite dimensional vector space E with a positive definite scalar product *“."
and with the Lagrangian given by

1
L(W) = E"aﬂ d W . BgW — V(D). 4.1.1)

Here V : E — R, is a smooth function called potential and describes the self-
interactions of the system.

In the low energy approximation, the Lagrangian L is modified by requiring the
original fields to be constrained to the set of the minima M of the potential V

M= V_1<{c}>, (4.1.2)

where c = min V.

Under certain conditions M is supposed to be a connected submanifold of E, so
that the scalar product . : E x E — R induces a Riemannian metric g on M. The
Lagrangian becomes

1 S
L) =3 1% 9, W' dp W/ g, (4.1.3)

which will be the Lagrangian for the harmonic maps and will be considered later.
In geometry the notion was introduced by J. Eells and J.H. Sampson, see [13].
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4.1.1 The energy density
Definition 4.1 Let (M, g) and (N, h) be two Riemannian manifoldsand f : (M, g) —
(N, h) be a differentiable map. Define the energy density of f as

1
e(f) = 5 Tracey (f*h), (4.1.4)
where f* is the pull-back of f and Trace is taken in the g-metric.

Proposition 4.2 In local coordinates we have
1 ..
e(flx = 3 g" (x)f;aif;ﬂjhaﬁmx)' “.1.5)

Proof. As we have N

Traceg(f*h) = g (f*h)ij,
and

(F*hij = (F*1)@;, 0)) = h(df @), df @)))

= h(f50k £ 00 = £ £

we get (4.1.5). [ ]

Remark 4.3 If (M, g) is the Minkowski space (R", ), e( f) is exactly the Lagrangian
(4.1.3).

Another way of writing the energy density e(f) is the following.

Proposition 4.4 If {e,...,e,} C TxM is an orthonormal basis, then
1 — 5
e(f)x =5 Y _ldfe(e ;. (4.1.6)
i=1

where we denote each X € X (N) by
IXln = vh(X, X),
the magnitude of X in h-metric.
Proof. Because of the orthornormality,
gij(x) = g7 (x) = 8j.
and (4.1.5) becomes

1
ee=5 D Sif ihap - @.1.7)
i,a,p
On the other side we have

1 1 1
3 2o ldfeen =5 Y R b £108) = S F% Y hap.
i i

which is exactly (4.1.7). |
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Remark 4.5 1) Sometimes e(f) is called the Hilbert—Schmidt norm of f and is de-
noted by ||df ||*.
2) The above norm depends on both metrics of M and N, on f, and the first covariant
derivative of f.

4.1.2 Harmonic maps using Lagrangian formalism

Definition 4.6 Let (M, g) be a compact manifold and f : (M, g) — (N, h) be a
smooth map. Define the energy of f by

E(f) = /M e(f) dvg, (4.1.8)

where dve = /|gldx1, ..., dx,.

Definition 4.7 Amap [ : (M, g) — (N, h) is called harmonic if it is an extremizer
for the energy functional

f— Ef). 4.1.9)

If M is not compact, define the harmonic map f as an extremizer for the energy
Emr (f) relative to every compact subdomain M’ of M, where

Ev(f) = / e(f) dv,.
M/

The following theorem provides an equation in local coordinates for harmonic maps.

Theorem 4.8. f : (M, g) — (N, h) is a harmonic map iff

—A(f) + g% VT P =0, Vi=Tn. (4.1.10)
Proof. f is a harmonic map iff the Euler-Lagrange equations provided by Theorem
3.5 hold
<3e(f)> a(f) vy =T
7 = , y =1,n.
o )y de())
We have
de(f) a (1 ap pi g
= (L gy )
af);c 8f);( 2g f,af,ﬂ 7]
1 o, . af!
= Egaﬂ hij <_;‘ filﬁ + f;la —f)
8f;k 8f;k

1 i 1 . .
= Egkﬂhyjf;jﬁ + zgkahyif;la = 8kﬁhyjf;j,5-

Therefore,
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Be . k,B j
B(f;yk)_g th\.ff;ﬂ’
Define the Euler-operator by
36(f)> de(f) —
T = — , =1,n. 4.1.11
)y (Wk T (@.1.11)
We have the following computation:
1 oh; 8f’
kp J _ B J ij
T(f)y—(g h]fﬁ)k g f fﬁay afV

' . 3h .
= g%hyify +gkﬁ_w fht!

+gkﬁhyjf;]‘3k aﬁf fjﬁ 3yl)f

As g = 0, if we define
(N =t(f)y b,

we obtain
‘L’(f)l _ gkﬁhyz VJ fP fj
: 1
— kB i aﬂ yi J l]
g gk — 2 f f v
As _ _
A =% flg
we get

. . .7 0h.,; ,
i_ i afyyi Yi P ] _ J 2
() = —auh + et (T o f,gay)
= —A(fH + g VT F

and the Euler-Lagrange equation is equivalent to

(f) =0, i=1,n.

In the particular case when M = (a, b) C R, equation (4.1.10) becomes the familiar
equation of a geodesic in local coordinates

Fit F;jfpfj =0, i=1,n. (4.1.12)

We had shown before that the above equation can be written globally as
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Vf-f =0. (4.1.13)

Such a global characterization also takes place for harmonic maps. This will be shown
in the following.

Let f : (M, g) — (N, h) beamapand V¥, V¥ be the Levi-Civita connections
on (M, g), and (N, h), respectively. Define the second fundamental form of f as the
2-covariant symmetric tensor field

(Vdf)(X,Y) = V({,jf(x) df(Y) —df (V¥Y), VX, Y e X(M). (4.1.14)
Proposition 4.9 In local coordinates we have
(Vdf); = Hf + NS, £, fﬁ (4.1.15)

Proof. A computation shows

ad

(Vi =V s df (5 ,> ar(vi 5o)
d
—VN P__d MFP
/’ld‘i,f 3y, f( Vox,

9t 9 9
=f prl + 7 _Mrip.f.s_
”8y Ay Ay, TP 9xg

o off; o d
p Nps % _Mpp
=i ’l’a aylf’E)y fpaxs
, . d
= (ffij =ML, 1 ersp>3_
Vs
f* [ P Ny J
H; —
< * f f lp) dys
|
Definition 4.10 The tension field of the map f : (M, g) — (N, h) is defined by
T(f) = Tracey,(Vdf). (4.1.16)
This can be written locally as
T(f)" =g (Vdf)}; = — A" + gV, 2 fF.
Therefore, the Euler-Lagrange equations (4.1.10) can be written globally as
Tracey,(Vdf) =0, 4.1.17)

or
T(f) = 0. (4.1.18)
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Remark 4.11 i) t(f) is not a vector field on N (as a section of TN — N). Itis a
section in f~Y(TN) — M.

ii) Another way for finding Euler-Lagrange equations is to prove the first variation
formula

ey
7 \z:O_ /Mh(t(f),V)dvg, 4.1.19)
where d
V, = fr(x)
dt  |=0

is the deformation vector field and (f;)ie(—e,e) is a variation for f.

Example 4.1.1 Let M = S' and ¢ : M — N. Then the energy is

1 .
E(P) = 5/ |¢()|” ds
s!
and the Euler-Lagrange operator is
T(9) = Viiped9 (@),

(where ¢ is the tangent to the circle S').

Since ]
(@) = Vi ydd (&) — d§V7 ¢,

and 1

vSé =0,

Cc
the Euler-Lagrange equation becomes
Vi d®(©) =0,

which means that ¢ (S 1y is a closed geodesic in N.

Example 4.1.2 ¢ : R — N is a harmonic map if and only if ¢ is a geodesic on N.
This example is related to Classical Mechanics, where N is the coordinate space and
¢ is the trajectory of a dynamical system with the Lagrangian

1.
L=l
Example 4.1.3 ¢ : M — R" is a harmonic map iff
A¢p/ =0, Vj=T1,n.
In general, this takes place if the manifold R" is replaced with a flat one (F;'k =0).

Example 4.1.4 Let ¢ : M — N be a geodesic map, namely the second fundamental
form is zero. Then ¢ is a harmonic map.
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4.2 D’Alembert principle on Riemannian manifolds

In Classical Mechanics, there is a principle stated by D’ Alembert which is equivalent
to the Lagrangian variational principle. We shall illustrate this principle briefly below.

Suppose that M is a surface in R? and a material point is required to move on the
surface M. If U denotes the potential, Newton’s equation should give the equation of
motion mx + VU = 0.If U = 0, which means that exterior forces are neglected, then
mX = 0, with the solution x(¢) = At + B. However, a line cannot be contained by
an arbitrary surface M. That means there is another force that requires the material
point to lie on the surface M. This is the reaction force denoted by R and is given by

R =mi+ VU. (4.2.20)

The D’Alembert principle states that the reaction force R is normal to the surface M,
iLe.,

(mi +VU,£) =0, VéeTM. 4.2.21)

Now we shall extend D’ Alembert’s principle on Riemannian manifolds, replacing
RR3 by an arbitrary Riemannian manifold P. The surface M and the space R of the
t-variable are replaced by two other Riemannian spaces N and M, respectively.

The following result is an extension of Theorem 3.20 for harmonic maps.

Theorem 4.12. Let ¢ : M — N and U € F(N) be the potential. Then ¢ is an
extremizer for the integral

/;t4[6(¢) —U(p)]ldv (4.2.22)

if and only if
7(¢) = —VU. (4.2.23)

Proof. The proof is the same as in the case of Theorem 3.20. Using the computations
made in the proof of Theorem 4.9, the tension field 7(¢) is obtained on the left-hand
side. |

The equation (4.2.23) shows that the external force F = —VU is equal to the
tension field of the map ¢.

Theorem 4.13. Let M, N, P be Riemannian manifolds and ¢ : M — N, and  :
N — P, with  immersion. Let U € F(N) be a potential, and ® = o ¢. The
following are equivalent:

() T(¢) =—-VU,

(i1) T(®) +dy(VU) is normal to ¥ (N).
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To prove the above theorem we need the following:

Lemma 4.14
Vd(yr o) =dyy Vdep + Vdy(do, do). 4.2.24)

Proof.
VA 0 p)(X.Y) = Vs xd(W 0 )Y —d(y o 9)VYY
= Vi aox) AV APY) — dy dop VY =V, 1y dy(dgY)

—dy Vi x dp(Y) +dy Vi x dp(Y) —dyr de V'Y
= dy Vdg + Vdy (dpX, dpY).

Proof. (of Theorem 4.13) Take Trace in both sides of the relation (4.2.24) and use the
definition of the torsion field to obtain

(o) = dis (r(¢)> + Trace Vdy (d¢, de). (4.2.25)
As t(¢p) = —VU, the relation (4.2.25) becomes
T(®) +dy(VU) = Trace Vdyr(do, do).

Since Trace Vdy (dp,dp) = nor <1:(CI>)>, we get 7(®) + dy (VU) normal to
Y (N).

The reverse can be proved using the same equivalences and the fact that dy is
one-to-one. |

Corollary 4.15 If M, N, P, ¢, ¥ and ® are as above, then the following are equiv-
alent:

(i) ¢ is a harmonic map,

(ii) T(®) is normal to ¥ (N).

Remark 4.16 Theorem 4.13 states the equivalence between the Euler—Lagrange
equation (i) and D’Alembert principle given in (ii). In this case the reaction force is

R =1(®)+dy(VU).
Corollary 4.17 ¢ is an extremizer for the integral (4.2.22) if and only if

T(®) +dy(VU) is normal on Y (N).

Application 4.18 Let ® : M"~% — R" be an isometric immersion. Then there exists
S C R", a hypersurface such that M C S and M is minimal in S.
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Indeed, as @ is an isometric immersion, the energy density of & is constant,
|V®|? = k. In section 3.9, we constructed a potential U such that & is a critical point
for

/ VO[> — U(D).
M

Take S = U~ !({k}). Then M C S and VU is normal to S. As A® = —VU, we get
A® normal to S. Applying D’ Alembert’s principle, we find that M is minimal in S.

Application 4.19 (Harmonic maps into S") Let i : S" — R"*! be the inclusion,
and ¢ : M — S" be a map, and ® = i o ¢. Applying D’Alembert’s principle, ¢ is
harmonic if and only if A® is normal to S". Therefore, there exists a proportionality
function A € F(M) such that A® = AD. As |D(x))? =1, we get

0= %A 1) = %A %:(cbf(x))2

% Z[zcbf'(x) ADI (x) 2 ‘vqﬂm
= (CD,]Ad)) —2e(P) = A —2e(D).

So ¢ is harmonic if and only if

AD =2e(D) D.

Application 4.20 Let ¢ : [0, 1] — S C R3 be a curve on a surface S. Then ¢ is a
geodesic if and only if ¢(t) is normal to the surface S.

Indeed, ¢ is harmonic if and only if it is geodesic. Using t(c¢) = ¢ and D’ Alembert’s
principle we get ¢ normal to the surface S.
In general, c is a geodesic perturbed by a potential U, where U € F(S), if and
only if
E(S ) + VUc(s)

is normal to the surface S, see Figure 4.1.

' c(s)

Figure 4.1: A curve c(s) with ¢(s) normal to the surface S.
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For more details on harmonic maps the reader may consult [14], [15], [16]. For
a study of harmonic maps between spheres see [38]. For other advanced topics see
(361, [39], [40].

4.3 Exercises

1. (Takahashi) Let F : (M, g) — R™ be an isometric immersion of a compact
manifold M of dimension n, with 1 <n <m — 1. If AF = AF with A > 0, then
show that

2 Fo) < 5710, ),

b) F is a harmonic map from (M, g) to S~ (O, 4)

2. (Ferandez and Lucas) If ¢ : M — R3 is an isometric immersion of the surface
M into the Euclidean space, and AH = AH, where H denotes the mean curvature
vector field, then show that

a) M is minimal,

b) ¢(M) is an open set in the sphere S?(r) or the cylinder S' x R.

3. Let e denote the energy density function of the map ¢ : (M, g) — (N, h) and let
X € X (M) be a vector field. Show that

1
Lxe={(d$.V(d¢- X)) — Z(Lxs. ¢*h).

4. Let e denote the energy density function of the map ¢ : (M, g) — (N, h). Let
X € X(M) and denote v, = +/det gdxy A - - - A dx, the volume element on (M, g).
Show that

1
Lx(e-vg) = (d¢, V(d$ - X))vg + Z{Lxg. Sp)vg.

where Sy = ¢ - ¢ — ¢*h and Ly denotes the Lie derivative with respect to X.

5. Define the stress-energy tensor of ¢ : (M, g) — (N, h) by
Sg=e-g—¢*h.
a) Show that div Sy = —(t(¢), d¢), where (div Sp); = gfkvaxj Ski.

b) Show that if the map ¢ is harmonic, then div Sy = 0.

¢) Find a counterexample when div Sy = 0 and ¢ is not harmonic.
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6. Let ¢ : R™ — (N, h) be a harmonic map of finite energy. Show that if m > 3, ¢
is constant.

7.Let¢ : (M, g) — (N, h)be amapping between Riemannian manifolds. ¢ is called
a totally geodesic map if Vd¢ = 0.

a) Show that ¢ is totally geodesic map if and only if ¢ maps geodesics of M
linearly into geodesics of N.

b) Prove that any totally geodesic map is harmonic.

¢) Find a counterexample of a harmonic map that is not totally geodesic.
8. The mean curvature of an immersion ¢ : (M, g) — (N, h) is the trace of the
second fundamental form divided by m = dim(M).

a) Show that a totally geodesic immersion has zero curvature.

b)Lety : (M, g) — S" be an isometric immersion of constant mean curvature of
M into the Euclidean sphere. Let ¢ : " — R™*! be the canonical imbedding. Then
¢ o @ has constant mean curvature.
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Conservation Theorems

5.1 Noether’s Theorem

In Classical Mechanics, most of the conservation laws such as the conservation of
momentum, angular momentum, etc, are particular cases of a single theorem due to
E. Noether:

To every one-parameter group of diffeomorphisms of the coordinate space of a
Lagrangian system which preserves the Lagrangian, corresponds a first integral of
the Euler-Lagrange equation of motion.

In our work, the space of parameters is multidimensional. Therefore, we need to deal
with objects that are more general than a first integral. A natural generalization of the
first integral is the notion of current.

Definition 5.1 A current is a free-divergence vector field which depends on the solu-
tion of the Euler—Lagrange equation.

In particular, when the space of parameters is one-dimensional (just the time
parameter), a current becomes a usual first integral, i.e., a function constant along the
solutions of the Euler—Lagrange system.

Theorem 5.2. Let¢ : (M, g) — (N, h) be a harmonic map between two Riemannian
manifolds and (hy)s a one-parameter group of diffeomeorphisms on M that preserves
energy density

e(¢p o hg) = e(p), Vs € R. (5.1.1D)

Let V be the vector field induced by (hy)s. Then the vector field
: d
X = (96" hppvie?) ) — 5.1.2
(g o’ ihppV (9 ))axk (5.12)

is a current.
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Proof. As ¢ is a harmonic map, then t(¢) = 0. The Euler-Lagrange equations can

be written as

de de —

(—p> = —, Vp=1,n. (5.1.3)
0@’ /) . oer

Let ® : R x M — N be defined by & (s, x) = ¢(hs(x)
chain rule yields

.As e(p) = e(¢ o hy), the

SN—"

_0e(®)  de(P) 9DP | de(d) I(PF)

0 = 5.14
as odP  ds 8((19‘;)‘,() as ( )
Applying the commutativity of the partial derivatives,
a(P%) Blok
K= (5.1.5)
as as /.,
and substituting the relation (5.1.3) in (5.1.4), we obtain
de(d) odP  de(d) (DY
0= 7 + = (5.1.6)
(@) /) as IPI) \ s/,
de(d) 9DP
= ] - 5.1.7)
(D) as *
Taking s = 0,
] adr ad
0=< <) 997 ) =< @) V(d)”)) = x*, (5.1.8)
8(¢;k) ds | 5=0 -k 3((15;]() ik '
where de(d)
e
xt=—22 VgD,
a(¢h)
and the induced vector field by (h;); is defined by
d h
V(f)=M ) VfeFM). (5.1.9)
ds | s=0
As computation shows that
de(d) 4 .8
=gY¢  hpg, (5.1.10)
a(gh) e
Equation (5.1.8) yields
Xk = gkf¢f‘jhp,3 V(gPh). (5.1.11)
|

In the case when the right-hand side manifold N is the real line R, we obtain the
following:
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Corollary 5.3 Let ¢ : (M, g) — R be a harmonic function. The vector field on M,
X =V(p) Vo, (5.1.12)

is a current. This provides a conservation along the normal direction to the equipo-
tential surfaces of ¢.

Proof. 1f we substitute hp; = 1 in relation (5.1.2), we obtain Xk = (V¢)k V(o).
Furthermore, V¢ is normal to the surfaces {¢ = constant}. [ ]

Corollary 5.4 Let ¢ : (M, g) — R be a harmonic function. Then

g(v¢, V(V(¢))> —0. (5.1.13)

Proof. Applying Lemma 2.10 yields
div(V(qb) v¢) - —V(¢)A¢+g<V¢,V(V(¢))>. (5.1.14)
Using A = 0 and Corollary 5.3, we get the desired result. N

Remark 5.5 Corollary 5.4 says that the vector field V(V(¢)) is tangent to the con-
stant level surfaces of ¢ (equipotential surfaces).

When the space of parameters M is the real line R (just time parameter), Theorem
5.2 will provide the conservation of energy along the geodesic ¢ : R — N.

Corollary 5.6 h(, ¢) is preserved along the geodesic ¢ : R — N.

Proof. In one dimension the div becomes the derivationin ¢ and V (¢) = ¢. [ ]

Other conservation laws can be obtained if the one-parameter group of diffeo-
morphisms, which preserves the Lagrangian, is considered on the target manifold.

Theorem 5.7. Let (M, G) be a Riemannian manifold and (hs)s a one-parameter
group of diffeomorphisms on M that preserves the energy density for the geodesic
¢:R— M,ie., elhsop) =e(p), Vs € R. Then

g(¢p(t), V| () = constant , ¥t € R, (5.1.15)

where (i)(t) is the tangent vector to the curve ¢(t) and V is the vector field induced
by (hs)s on M.

Proof. Take @ : R x R — M given by ®(t,s) = hs(¢(1)). As (hg), preserves the
energy density, we have

0 de(®)  de(d) dDY  de(P) DY
as odY s adY 0ds
_d Be('CD) DY Be('CD) i(iqﬂ/)
dt 9oy 0s odY 0ds \0t
_ i(E)e(‘(D) @)
dt\ 9o 0s




70 5 Conservation Theorems
Recall that @ | s—conss. : R — M is harmonic and apply the Euler-Lagrange equation

) de(d®)  de(d)
ar adr  9dr

Taking the value at s = 0 and applying the formula

de(e)

— ho
8d7y = gya?

yields

_d o (s 0 @) N d
0—E<gw¢ (——* |S=o) )—dtg(qb,vqs).

Remark 5.8 The above theorem states that the momentum in the V -direction is con-
stant.

Using the Euler—Lagrange equation in general form and the same idea of proof,
one can get the following theorem.

Theorem 5.9. Let f : (M,G) — (N, h) be a harmonic map and (&)s a one-
parameter group of diffeomorphisms on N such that e({&; 0 f) = e(f), Vs eR.

tt d o /)
yr o= S0 5.1.16
Lf ds | s=0 ( )
be the vector field generated by & along f. Then the vector field on N,
: a
Y= (g4 12 V), 5.1.17
8 f,J vBY|f P ( )

is a currenton N, i.e., divY = 0.

5.2 The role of Killing vector fields

The theorems proved in Section 5.1 are general. In this chapter, we deal with some
particular 1-parameter groups of diffeomorphisms generated by special vector fields
called Killing vector fields.

Definition 5.10 A vector field X on a Riemannian manifold (M, g) is a Killing vector

field if
Lxg =0, (5.2.18)

where Ly is the Lie derivation in the X direction.
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Relation (5.2.18) says that the metric is preserved along the integral lines of X,
hy(gij) = &ij Vs € R, (5.2.19)

where (hy); is the 1-parameter group of diffeomorphisms generated by the vector
field X.

Proposition 5.11 Let f : (M, g) — (N, h) be amap, V be a Killing vector field on
N, and (&5)s the one-parameter group of diffeomorphisms definite by V. Then

e(f)=e@so0f), Vs (5.2.20)
Proof. As 'V is Killing, £f(h) = h, Vs. Then
f(r-gm) =0

— f*(h) = fFE ()
> f*(h) = (& o /)" (h).

Taking the Trace in metric g and using formula (4.1.4) we get

Tracey f*(h) = Traceg (§ o f)*(h)
< e(f)=eof), Vs.

Using Proposition 5.11, Theorem 5.9 becomes:

Theorem 5.12. Let ¢ : (M, g) — (N, h) be a harmonic map between two Rieman-
nian manifolds and V- € X (N) be a Killing vector field. The vector field

ki 7B 9
Y = <g ]f;jhylgvyf)a (5.2.21)

is a current on N.
Theorem 5.7 becomes:

Theorem 5.13. Let ¢ : R — (M, g) be a geodesic and V be a Killing vector field on
M. Then )
g@(@), Vg = constant , Vt € R, (5.2.22)

which means the momentum in the direction of a Killing vector field along a geodesic
is preserved.
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Figure 5.1: Geodesics and Killing vector fields in the plane; see example 5.2.1.

Example 5.2.1 In the Euclidean plane, the Killing vector fields correspond to trans-
lations and rotations and the geodesics are lines. We find that at intersection points
between a fixed line and variable circles centered at the origin, the scalar product
between their tangent vectors is constant (is not dependent on the circle).

Example 5.2.2 On a surface of revolution, we have the Killing vector field of rotation.
Let 0| ¢(1) be the angle between a fixed geodesic ¢ (t) and the latitude circles at the
point ¢ (t). Since the length of the tangent to the circle is the radius r of the circle, using
the above theorem we conclude that (q'b(t), View) = |<i>| r cos 8| ¢ is constant, or
equivalently, r cos 0 = constant. Ifthe inclination angle a of a geodesic with respect
to its meridian is defined by « = 1w /2 — B, we arrive at the result known as Clairaut’s
theorem (see [31]).

Theorem 5.14. Let ¢ (t) be a geodesic on a smooth surface of revolution S. Then at
any point P of ¢ (t) the radius r(P) of the circle of latitude at P multiplied by the
sine of the inclination angle o (P) of ¢ (t) with respect to the meridian through P is
a constant, i.e. r sin @ =constant.

Another necessary condition for preserving energy density is given by the follow-
ing:

Proposition 5.15 Let f : (M, g) — (N, h) be an immersion. Let g be the induced
metric on M by f, i.e. g = f*(h). If V is a Killing vector field on (M, g), then

e(fo&)=e(f), VseR, (5.2.23)
where (&;)s is the one-parameter group generated by V.
Proof. As V is Killing on (M, g), we have
£@) =8 =
NN OENNOR
(f 0&)*(h) = f*(h).
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Taking the Trace in metric g yields

Traceg(f o &)*(h) = Traceg f*(h),
< e(fok) =e(f), VseR.

=
B

.

Figure 5.2: Geodesics on a cone and on a cylinder and Clairaut’s theorem.

Using Theorem 5.2 and Proposition 5.15, we get the following:

Proposition 5.16 Under the hypothesis of Proposition 5.15, if f is a harmonic im-
mersion, then the vector field with the components

x* = g"jff,hpﬂv(f”) = (VP hppV (£) (5.2.24)
is a current.

Proposition 5.17 Let f : (M, g) — (N, h) be an isometric harmonic immersion and
let V be a Killing vector field on M. Then & : M — M is a harmonic diffeomorphism
for every s.

Proof. Applying Trace in metric g in the relation of Lemma 4.14, we get

t(f o&s) =df (&) + Trace Vdf(dés, dés).

From Proposition 5.15 the Lagrangian e(f) is preserved by &;. Hence, the Euler—
Lagrange equation will be the same

t(foé) =1(f), Vs
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Since f is harmonic, t(f) = 0 and so t(f o &) = 0. As the normal component
nor (f o &) =df t(&), then

df t(&) =0.

As df is one-to-one ( f immersion), we get 7 (&) = O for every s, i.e., & is harmonic.
[ ]

5.3 The Energy-Momentum tensor

The energy-momentum tensor comes from Physics where it describes the matter
fields equations. It depends on the field, their covariant derivatives, and the metric.
The energy-momentum tensor mainly describes two things:

(i) The principle that all fields have energy. That, the energy-momentum vanishes
on an open set U if and only if all the matter fields vanish on U. From the Physics
point of view one should not distinguish between two different matter fields that have
the same energy-momentum tensor.

(ii) The total flux over a closed surface of the K-component of the energy-
momentum tensor is zero, where K is a Killing vector field.

The last property provides conservation of angular momentum by means of rota-
tion vector fields for the Euclidian flat space (see [21]). Knowledge of the energy-
momentum tensor was used in the Brans-Dicke theory for determination of the con-
formal factor of the metric (see [21]).

The energy-momentum tensor was successfully used in the general theory of rel-
ativity to describe gravitational effects. In this case it equals a certain free-divergence
tensor which depends only on the metric of the space. There is a standard procedure
to obtain the energy-momentum tensor from the associated Lagrangian of a matter
field.

Returning to PDEs, we note that in the particular case when the Lagrangian
depends only on a scalar field and its first derivative, we may associate the Euler—
Lagrange system of equations, which is the equation for the first variation of the
action. A classical minimum action principle states that the scalar field satisfies the
Euler-Lagrange equation. In general, this equation is a second order partial differential
equation.

On the other hand, the scalar field is characterized by its energy-momentum ten-
sor. The conservation properties of the energy-momentum tensor may help to obtain
information about the solutions of the Euler—Lagrange equations. Used together with
the boundary conditions, this is a useful tool to prove uniqueness for linear homo-
geneous boundary value problems. It is important to obtain such results when the
background metric is Riemannian and the Euler—Lagrange equations are elliptic.

This section deals with a geometric approach for some linear partial differential
equations derived as Euler-Lagrange equations from certain Lagrangians. One may
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associate the energy-momentum tensor with these Lagrangians, which satisfies some
conservation properties. The goal of this section is to exploit the conservation prop-
erties of the energy-momentum tensor and to obtain information about the solutions
of the Euler-Lagrange equation. For an approach of harmonic maps between semi-
Riemannian manifolds from the conservation property point of view, see [33]. An
extension of the variational methods to subRiemannian is done in [34].

5.3.1 Definition of Energy-Momentum

A physical field is given by its Lagrangian and its dynamic is described by the Euler—
Lagrange equations, called the field equations. An important problem is to determine
the flow energy along a given direction for a given physical field. This description
uses a 2-covariant symmetric tensor field T;;, called the energy-momentum tensor.
The energy flow in the X-direction is given by the expression

T(X,X)=T;X X (5.3.25)
Let L be a Lagrangian which depends on the field ¢, on its first derivatives ¢.;, and

on the metric g;; of the Riemannian manifold M. Consider the integral

I :/ Ldv, (5.3.26)
D

where D C M is a compact domain. Consider the variations of the metric g;; (s, x)
given by g;; (0, x) = g;;(x), with the variation field

9gij (s, x)

3gij(x) = 85 so’

Definition 5.18 The energy-momentum tensor Tj; is defined by

dl
— :/ T §gap dv.
ds;=0 Jp

Lemma 5.19 On the Riemannian manifold with volume element dv we have

a(d 1
(dv) _ —g“bdv,
08ab 2

(@)

1
(i) §(dv) = 5g“” 8gap dv.

If the Lagrangian L depends only on ¢, ¢.; and the metric gup, then

oL
agab |s=0

(iii) SL 88ab-
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Proof.
o(d a 1 0
i) @v) _ 9 gaxt . ax"y = —— 8 gt g
9gap  0Zab 2./8 98ab
As dg/dgap is the minor of g,p, then
ab _ l ag or dg — ab‘
) 88
8 98ab 98ab
It follows that
o(d 1
(@v) = ——ggax'. . .ax"
08ab 2\/§
1 1
=g fgdx'. . dx" = =g dv.
2 2
od adv 9 1
(ii) S(dvy = 24 04V 98ab " oabse . dy
0s |s=0 0gap O0S |s=0 2
by (i).
(iii)
(SL — 8L(¢7 d);i? gab)
as |s=0
_ 0L 3¢  OL 0¢,; = 0L 9gap
dp s d¢p.; ds  0gap S |s=0
=0 =0
oL
= 8g(lb’
08ab |s=0
where we used the fact that the variation in s does not affect the function ¢ and its
derivatives ¢.;. |

Theorem 5.20. (Existence of energy-momentum tensor)
Let L be a Lagrangian which depends on ¢, ¢.;, and the metric gqp. Then the energy-

momentum tensor is given by
aL 1
— + _gabL. (5.3.27)
0gar 2

Proof. Using the above lemma we have

Tab

51 = / SLdv+ L 5(dv)
D

oL 1w
= | [o—bgapdv+ 5 Lg™bgap ]
p LOgup 2

aL 1
:/ [ +—Lgab] 8gap dv.
D agab 2

—Tab
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5.3.2 Einstein tensor

Let (M, g) be a Riemannian manifold and let 7 be a symmetric 2-covariant tensor
field on M.

Definition 5.21 The divergence of the tensor field T is a vector field denoted by div T
givenbydivT = (div T)' y; with the components

(divT) =T/ = v, T/,
5 xj
The tensor T is divergence-free if T. lj/ =0.
Example 5.3.1 The metric tensor g is divergence-free. The identity gli = 0is called

the Ricci identity and it is equivalent with the fact that the Levi-Civita connection is
a metric connection.

Definition 5.22 Let Ric denote the Ricci tensor and R the scalar curvature. The
symmetric tensor

1
T = Ric— 2 Rgij (5.3.28)

1
is called the Einstein tensor. On components we have T;; = Rjj — = Rgij.
J JT 8

The following results will be useful in the study of the Einstein tensor divergence.
The next lemma can also be found in [35].

Lemma 5.23 Let R be the Ricci scalar curvature. Then
VR = 2div Ric. (5.3.29)
Proof. The second Bianchi identity in local coordinates can be expressed as
Riptr + Rjpog + Rjppy =0
Swapping r and k with the change of sign yields
Ripr.r + Rjppg = Rjpry = 0.
Contracting on i and r yields

D Rkt + 2 R = D R =0,
r r r

which becomes
> Rl + TRk = Rja = 0.
p

Contract multiplying by g/*,
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> e Ry, + 8 Rji — 7 Rjy = 0
r,j.k
k
DR+ DR =Ry
: k
221% = R,.
r

Multiplying by g/ yields
28" R}, = &' Ry,
jr J
2R = (VR)’,
2div Ric = VR.

The following result is an analog of Lemma 2.10 for tensor fields.

Lemma 5.24 Let f € F(M) be a function and S be a symmetric 2-covariant tensor.
Then

div(fS) = f(divS) + gp(V )FS™.
Proof. A computation involving derivation yields
div(fS) = (fS); = f;87 + 5]
= £.;8" + f(divS)
= f.;8/* Sl + f(divS)
= (VHKSE+ f(divS)
= (VAHKSP g, + f(divS)

Theorem 5.25. The Einstein tensor is divergence free.
Proof. Making f = R and S = g in Lemma 5.24 yields
div(Rg)" = R(divg)' + gpk(VR) g™
=0+ (VR)*8] = (VR)',
where we used the fact that the metric tensor g is divergence free. Lemma 5.23 yields

div(Rg) = VR =2divRic
— div(2Ric — Rg) =0,

which yields div T = div(Ric — $Rg) = 0. [

Remark 5.26 The above theorem will be proved in a more general framework in a
next section of this chapter.
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5.3.3 Field equations

The field equations for Einstein’s gravitational potential

The goal of this section is to show that the Einstein tensor can be derived as an energy-
momentum tensor for a certain action integral. We shall apply it to the surface and
curve theory. From the definition of the energy-momentum tensor we have:

I=/Ldv
D

is stationary under the variations of the metric which leaves ¢ unchanged iff T;; = 0.

Proposition 5.27 The integral

The tensorial equation
T;;=0 (5.3.30)

is called a field equation. If the Lagrangian depends on ¢, ¢.;, and the metric gup,
then the equation (5.3.30) can be written as

aL 1

— Lgab
08ab 2
or, after multiplying by g,p,
ny_ aL
2 - gdb 8gab k)

where n =dim(M).

We shall consider some examples where the Lagrangian depends only on the
Riemannian metric and its derivatives and there is no function ¢.

The following two lemmas will be useful in the future. See also [21].

Lemma 5.28 If M is a compact, orientable, without boundary Riemannian manifold,
then

/ g8 Rap dv = 0.
M

Proof. We shall write the integrand as the divergence of a vector field. The divergence
theorem will lead to the desired relation. A computation in tensors yields

g8 Ry = gab[(SF‘ib);c B (SF‘C’C)J’]

= (gsrg,) - (s'rs)
i b
- (o).~ (et

- <gab5r;b - g“CSFZd)C = VS =divV,

with V¢ = g?81¢, — g?°sT4,. ]
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Lemma 5.29 We have gqp, 5g°° = —g®®8 g

Proof. Apply 68 to g% gup, = 1. |

Proposition 5.30 Consider the Lagrangian equal to the scalar curvature, i.e., L =
R = g" R;j, on a compact, orientable Riemannian manifold M, without boundary.
Then

1(g) =/ Rdv (5.3.31)
M

is stationary under variations of the metric iff g;;j obeys the field equations

1
Rij - ERgij =0. (5332)

1
Proof. We shall show that the energy-momentum tensor is 7;; = R;j — ERgi - We
have

81(g)=5/ Rdv:/ 8(Rdv)
M M

:f 8Rdv+/ R 8(dv)
M M

1
:/ S(Rabg“b)dv—i—/ R=g" 8gap, dv
M M 2

1
= / <gab8Rab + Rabagab + ERgab‘Sgab) dv
M

1
_ / g% § Ry dv +/ (Rabag“b + —Rg“b(Sgab) dv
M M 2
-0

1
- / (Rab(Sg“b - -Rga,,ag“”) dv (5.3.33)
" 2

1
:/ (Rab - ERgab)Sgab dv :/ Tangab dv,
M M

where in order to get (5.3.33) we have used Lemmas 5.28 and 5.29. |

The equation (5.3.32) is called the Einstein equation and the integral I (g) given
by (5.3.31) is called Einstein’s gravitational potential.

Solving the Einstein equation. We distinguish two cases depending on the dimension
of the manifold: n = 2 and n # 2.

The case n # 2: The Einstein equation

1
R,’j = ERgij (5.3.34)



5.3 The Energy-Momentum tensor 81

yields
RE = g™ R;; — Lokpe, = Lrst
i= ij = 2g 8ij = ;o)

T S |
In particular, R; = ER(S; = ER. Then summing over j yields

S
R =R, =—R§ = ER,
P 270 T g
and hence (g - 1)R — 0.Asn # 2 it follows that R = 0. Using (5.3.34) yields
ij =
The case n = 2: This is a special case which leads to the following well-known
theorem:

Theorem 5.31. (Gauss—Bonnet theorem )
Let M be a compact surface in R> and K the Gaussian curvature. Then

/ K do (5.3.35)
M

does not depend on the Riemannian metric considered on M.
Proof. In the 2-dimensional case, K = R/2, and
1

Rij = 5 Rgij = Kgij-

Using Proposition 5.30 we prove
L. 1 .
8l :/ T,'j5gl'/ do :/ (Rij - —Rg,’j)(sglj do = 0.
M M 2

Let RM(M) denote the space of Riemannian metrics on M. [ is a functional on
RM (M) such that 61, = 0, for any metric g. Hence / is constant on R M (M) and
does not depend on g. |

In fact / K do is atopological invariant equal to 27 x (M), where x (M) denotes

the Euler—Poincare characteristic of M, which is a positive integer. Lagrangians that
provide integral invariants are called null Lagrangians, see [31]. The following propo-
sition deals with integral invariants.

Proposition 5.32 Let f be a smooth function that depends on the metric tensor g,p.

Then the integral
/ S (gap) dv
M

is an integral invariant (not changing with variations of the metric) iff f satisfies the

equation
of I .
+-87f=0.
08ab 2
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of 1,
gt
|

Proof. We use the fact that the energy-momentum tensor is T = 5 3
8ab
and it is zero for any metric gup.

The field equations for the volume functional
Let (M, g) be a compact, orientable Riemannian manifold. Consider the volume

functional
V(g) :/ dv =/ Vigldxy A+ Adxy.
M M

A variation with respect to g yields

1
sV(g) = /Ma(dw: /M ig“”agab

= / T“b8gab dv.
M

1
Hence the energy-momentum in this case is T = 3 g, and hence T is divergence free
and the field equations are g;; = 0.

The energy-momentum for the Newtonian potential
We shall compute the energy-momentum in the case of Newtonian potential in di-
mensions n = 2, 3.

Case n=2: Consider the Newtonian potential in two dimensions ¢ (x) = In |x],
where x = (x1, x2). As A¢(x) = 0, Vx # 0, then ¢(x) is an extremizer for the
Dirichlet functional

1
/ — |Vo|* dxidxs, if0 ¢ D. (5.3.36)
p2

The energy-momentum tensor is

w_ L 1y 58 (VR (V)] 1 1 s
T =—+-¢g"L = + 87 £ Vel
gab 2 agab 2 2

1 1
5[(V¢>“<V¢>” + Eg“b IVol?].
Then

1 1
Tij = giagjp T = E(gmg“kfb;kgjhgb’% + Egij|v¢|2)
1 1 5
= 3 (#utss + 5801v00%).
In our case, the metric on R? is the standard one, so that
1 1 )
Top = §[¢;a¢;b + ESab IVoI*], a,be{l,2}. (5.3.37)

The energy-momentum tensor corresponding to ¢ = In |x]| is
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2
X1 1 x1x2

. ol RP T2

ab - 2|X|2 2 E)
X1X2 X 41
x| x|? 2

which can be written in polar coordinates as

1 24 1
Tab:_(cos¢ +2s1n¢cos¢>

2r2 \sing cos ¢ sinp? + %
_ I (cos2¢ sin2¢ n 1 /10
T 4¢2 \sin2¢ —cos2¢ 272\01)/"°

Case n=3: Consider the Newtonian potential in three dimensions ¢ (x) = ﬁ’

X
where x = (x1, x2, x3). As A¢(x) = 0, Vx # 0, then ¢(x) is an extremizer for
the Dirichlet functional. The energy-momentum tensor has the components given by

(5.3.37). A computation provides

2
1

X + 1 xix X1X3
T 4 4
et 2 g x|
2
T = LSRN N 1
22| It 2 x|
2
X3X1 X3X2 X3 + 1
T4 T4 T4
x| et gt 2

5.3.4 Divergence of the energy-momentum tensor

We have already shown that the Einstein tensor has divergence zero. The goal of this
section is to prove that, in general, an energy-momentum tensor is divergence free.
This result will be used later in the proof of the conservation theorems. We shall use
L for the Lagrangian and £ for the Lie derivative.

Lemma 5.33 If Lx denotes the Lie derivative with respect to vector field X, then
EXgab = Xa;b + Xb;a- (5.3.38)

Proof. Applying the formula for the Lie derivative in local coordinates, we get

08ab ;i X« axh
‘CXgab = Ixi X'+ gab W + 8ap W
98ab

. . P
=d X +8ab<xf‘a - X’F?;) +8aﬁ(X;b - Xlrib)



84 5 Conservation Theorems

xi <3gah
oxi

= X' gabri + 8ab X%, + ga,nggh.

- gabrﬁz - gaﬂrfb) + gabx?z + gaﬂxﬁ,

Using gup.; = 0 we obtain the desired result.

|
Lemma 5.34 If
/ T Lxgardv =0, VX € X(M), (5.3.39)
Q
then T;“bb =0.
Proof. Using Lemma 5.33 and the divergence theorem yields
0= / T Lxgapdv =2 f T Xg:pdv
Q Q
) / (T“bXa) dv—2 / T X, dv
Q b Q
=-2 / T3 X, dv
o
for every field X, so that T;%” =0. [ ]

Theorem 5.35. If L is a Lagrangian on M, which depends on ¢, qbkl and g;j, where
¢ satisfies the Euler—Lagrange equations, then the energy-momentum tensor T;; as-

sociated with the Lagrangian L is divergence free, i.e., T_l; =0.

Proof. Consider f : M — M, a diffeomorphism such that f(2) = € and fiy\q is
the identity. As the integral is not affected by a coordinate transformation,

A}Ldv:/f(g)Ldv:/gf*(Ldv),

/ Ldv — f*(Ldv) = 0.
Q

and then

Using the definition of the Lie derivative,

/ Lx(Ldv) =0,
Q

where X is the vector field associated with the diffeomorphism f. The chain rule
yields



5.3 The Energy-Momentum tensor 85

oL oL
_ _ ab k k
o—z:x/QLdv—/QT ,cxgabdv+/g[a¢k Lx¢ +8¢ﬁﬁx¢;l]dv
aL aL
_ ab (2= k
_/QT £xgabdv+/9[a¢k (Bq);"l.);i]EXd) dv
+ /Q <_a¢f§- Lxo )ﬂ_dv. (5.3.40)

The second integral vanishes because of the Euler—Lagrange equations. The last in-
tegral vanishes due to the divergence theorem. Then equation (5.3.40) yields

/ T“bﬁxgab dv=0.
Q

By Lemma 5.34 we obtain that T%” is divergence free. |

Remark 5.36 The fact that T;; is divergence free is a consequence of the Euler-

Lagrange equations. If ¢ is not an extremizer for [ L dv, then T,'j{ = 0 is not neces-
sarily true.

5.3.5 Conservation Theorems

This section presents two conservation theorems. The first uses a global unit Killing
vector field. The second theorem doesn’t need a Killing vector field but has only a
local behavior.

The second conservation theorem has a nice intuitive interpretation. If the mani-

1
fold is a disk D in the plane and the Lagrangian is L = 5 |V¢|2, ¢ will be a harmonic

potential. The physical model is a drum where ¢ is interpreted as the elastic potential
and T;; is the strength tensor in the drum. As the drum is strengthened in all directions
(no compression), the tensor 7;; is positive definite, i.e., T (X, X) > 0, for all direc-
tions X. When the strength on the boundary of the drum is zero, then the strength
is vanishing everywhere in the drum. This resembles the min-max theorem for the
Laplacian.

Lemma 5.37 If K is a Killing vector field, then the vector F whose components are
F% = T Ky, is divergence free.

Proof.
divF = F% =T F, + T K.,

Both terms on the right-hand side are zero. The first vanishes because 7% is free
divergence and the second because of the symmetry of 7%° and the property of K,

1
TUKpy = E(T“be;a + Tb”Ku;b)

1 1
= 5T (Kpa + Kpra) = 5T L gap =0.
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Theorem 5.38. Let U be a compact, orientable region of a Riemannian manifold M,
which can be written as a direct productU = [a, b] X V, where dim V = dim M — 1.
Consider that the tangent vector field to the one-dimensional fibres [a, b] x {u},u € V
is a unitary Killing vector field K normal to {t} x V, Vt € [a, D). If Tjj |5y = 0 and
T(K,K)>0,thenT(K,K)=0.

Proof. K is the unit normal vector to the surfaces H(z) = {t} x V, see Figure 5.3.
Letl(t) = U,,St H()NU = [a,t] x V.Let F* = T*’ K}, Fubini’s and divergence
theorem yield

05/ T(K, K)dv:/ TK,K, dv
U(r) U(r)

t t
= / </ FK, do) dr’ = / (f F*° daa> dt’
a H(t") a H(t")
t t
:/ </ F”daa)dt/zf (/ didev)dt’:O,
a U@’ a \JU{")

as F is divergence free and F vanishes on 9l (1')\H(¢). Therefore,

/ T(K,K)dv =0, andhence, T(K,K)=0.
U()

Figure 5.3: The space d = [a, b] x V.

Definition 5.39 T;; is called positive definite if T(X, X) > 0, VX. T;; is called
non-degenerate if T (X, X) 20, VX #0.

Corollary 5.40 Assume that the energy-momentum tensor T;; in the hypothesis of
Theorem 5.38 is positive and non-degenerate on U. Then T;j = 0 on U.
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In order to prove the second conservation theorem we need:

Lemma 5.41 IfU is an orientable compact region of a Riemannian manifold, and
T denotes the energy-momentum tensor, then for any vector field X,

/ T“"Xadaa=/ T%X . dv.
ou U

Proof. By the divergence theorem

/ T“”Xadob=/ (T%X,).,, dv
ou U ’

=f (4P Xa+T“bXa;b)dv=/ T%X,.p dv.
U <~ U
=0

Lemma 5.42 (Gronwall) Let f and g be continuous and nonnegative functions on
la, b), and let C > 0. Suppose that

f(x)§C+/xf(u)g(u)du, a<x<b.

Then x
f(x) < Cela 8t du,

In particular, when C = 0, then f = 0.
Proof: See, for instance, Hartman [20].

Lemma 5.43 Let T’ be a positive definite, non-degenerate energy-momentum ten-
sor defined on U, such that T\SZZ = 0. Then for any vector field X, there is a constant
M > 0 such that

T%X .y < MTUX, X,

Proof. The functions f; = T“bXa;b and f, = T X, X}, are continuous on I/ and
vanish on dl/. The functions | f1| and f> are bounded and nonnegative on /. The zeros
of f> are among the zeros of | fi|. Hence, there is a continuous positive function g
such that | fi| < g - f>. Take M = max g. [ ]

Theorem 5.44. (Conservation theorem ) Let M be an orientable Riemannian man-
ifold and T;; a positive definite, non-degenerate energy-momentum tensor. Then
Vx € M, there is a compact neighborhood U of x such that

if Tijou =0, then T;j =0onlU.
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Proof. Consider all the unit speed geodesics ¢, starting at the point x and define the
surfaces
H() ={c(@);ve M}, O=<r=<7t <1,

where 11 := inf{t; c,(¢) isconjugateto x = c¢,(0), Vv € Ty M}. Define U(t) =
U H(t"). Let X be the geodesic vector field along the above geodesic flow. X is

0<t'<t

the normal vector field to 4 (¢). Denote
f(t):f T(X,X)dv =>0.
U()

Applying Fubini’s theorem and Lemma 5.41 yields
t
f@) = / TXXpdv = / / (T*XXpdo)dt’
U@ 0 JH()

t t
=f (f T“”Xada,,) dﬂ:/ (f T“bXa;bdv) dr'.
0 H(t') 0 U

By Lemma 5.43, there is a constant M > 0 such that
T%X,, <MT(X,X) on U,

and hence (5.3.41) yields

f@) < M/tf(t/)dt/.
0

By Lemma 5.42, we obtain f(t) = 0 and since X # 0, it follows that 7;; = 0 on U/.
[ ]

Remark 5.45 [f the manifold M has negative curvature, the above local property
becomes a global one.

From the physical point of view, the vanishing of 7;; in a region ¢/ means the
absence of the matter field in that region. The last theorem states that if there is
no matter field on the boundary, then there is no matter field in the interior. This
can be interpreted saying that the matter field cannot have a compact support, being
surrounded by a vacuum (see [21]).

5.3.6 Applications of the conservation theorems

We shall consider in this section a few Lagrangians which depend on the scalar field,
its first derivative, and the Riemannian metric. The scalar field satisfies the Euler—
Lagrange equation. The conservation properties of the energy-momentum tensor can
help to obtain information about the solutions of the Euler—Lagrange equations.
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In the following theorems, ¢/ denotes
¢ a small enough, connected neighborhood of the given point x € M,

e any connected neighborhood of the given point x € M, provided M has neg-

ative curvature,
¢ any connected neighborhood of the given point x € R".

1. Laplace equation. Consider the Lagrangian L = % V|2, where ¢ : (M, g) — R
satisfies the Euler—Lagrange equation A¢ = 0. The energy-momentum tensor

1 1
Tap = 5[¢;a¢;b +3 IVol*]

is positive definite because

1 1
Tup X X" = 5[X“¢;axb¢;b + Egabxaxb IVo[*]

1 1
= 5[x@?+ 5 IveP’] = 0.

Theorem 5.46. The boundary problem

Ap =00nU,
0
—¢=00n8U,
8x,~

has the solution ¢ = constant.

Proof. Applying the conservation theorem, we get 7(X, X) = 0 and hence ¢ =
constant. |

2. Nonlinear Poisson equation. For the Lagrangian

L=-|V + —o-P,
2| d 2p¢

with p € N, the Euler-Lagrange equation is
Ap = —22p*P~ L,

The energy-momentum tensor

1 1 , A%,
ab = F|P;aP:b T 5 8ab —
T, 2[¢ 9.0+ 5 8a(IV9] +p¢">]

is positive definite and non-degenerate. Using the conservation theorem, we get the
following:
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Theorem 5.47. The boundary problem
Ap = =22 lon U,
¢ =00naU,

—¢ =0onadU,
0x;

has the solution ¢ = 0.

3. Harmonic maps. The Lagrangian for a harmonic map ¢ : (M, g) — (N, h) is the
energy density

e(¢) = “”¢ $lhij = (V¢ ) (Vo) gaphiy.
The energy-momentum tensor is given by

Tab — ae(d)) ab (¢)

d8ab
1 ina i\b 1 ab
—(V¢ ) (V¢?!) hij + 58 e(®)

l 1
= 58g" Q0 hij + S8 e(9)

1 1
= 38"8"("h), + 58" e(@)
1

%7 \ab lab
2(¢ h) +38 e(d).

Hence the energy-momentum tensor can be expressed invariantly as

1
T = §(¢*h +ge(9).

For every vector field X we have
T(X,X)= |¢*X|h + 5 |X|2 e(¢) = 0.

The conservation theorem yields:

Theorem 5.48. Let ¢ : M — N be a harmonic map such that ¢.x = 0 on 0U. Then
¢ is constant on U.

Proof. From the conservation theorem, 7' (X, X) = 0, then e(¢) = 0 and hence ¢ is
constant on 4. |

In the following we shall provide more applications of the conservation theorems
for some special cases of harmonic maps.
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Lemma 549 Let ¢ : (M,g) — (N, h) be a map, with M connected manifold.
Then ¢ is constant iff the associated energy-momentum tensor T is trace free, i.e.,
g"Ti;j =0.

Proof. We shall prove only the non-obvious implication. Let m =dim M.
l *
Trace, T = ETraceg (¢ h+ ge(¢))

1 1 ..
= ETraceg (¢*h) + Eg”gije(qb)

m

B 1 _om+2
= e(p) + gme($) = ——e(@).

Let p € M and {ey, ez, ..., ey} C TpM be an orthonormal basis. Then
m+2 m+2 — 5
0=Trace, T = Te(gb) =1 ]; [P (e},

and hence ¢.(¢;) = 0, forany p € M andi = 1,...,m. As M is connected, ¢ is
constant. | |

Corollary 5.50 If the energy-momentum T = 0, then ¢ is constant.

Conformal maps.

Definition 5.51 A map ¢ : (M, g) — (N, h) is called (weakly) conformal if there is
a function p € F(M), p > 0 such that $*h = p - g. If the function p is constant, the
map ¢ is called homothetic.

The following result can be found also in [16].

Theorem 5.52. Let ¢ : (M, g) — (N, h) be a harmonic conformal map. Then ¢ is
homothetic.

Proof. Taking trace yields

1 1
e(¢p) = ETracegd)*h = ETraceg(,og)

Loiig. =",
28 8ij 2P

The energy-momentum tensor becomes

T — 1 h _ 1 m
= §(¢> + ge(9)) = E(pg +g3p)

As ¢ is harmonic, the tensor T is divergence free le/ = 0. Then
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0=(%%§=Pﬂw+ﬁ?£§=(vﬂa
jary

Hence Vp = 0 on M. As M is a connected manifold, it follows that p is constant and
hence ¢ is homothetic. |

Isometric immersions. Let¢ : (M, g) — (N, h) be an isometric immersion. Then
g = ¢*h and hence

1 I m
e(p) = ETracegqb*h = Eg”gij =5

The energy-momentum tensor becomes

P 3o ) =40+ D

The conservation theorem is satisfied

1 my jj
d’T:—O —)V:Q
iv > + > g’]

Geodesic curves. Consider dimM = 1. Then ¢ : (M, g) — (N, h) is a curve.
The energy density in this case is

1 . 1.... 1.
e(®) = S\ 91 hij = 56/ hij = S11j.
We also have g = g11 = 1 and
¢*h = (¢*h)11 = ¢’;il¢’;jlhij
= ¢'¢’hij = 1915
The energy-momentum becomes
Lo 1oy 3.,
T =5 (191 + 51912) = 1913 (5.3.41)

If ¢ is a geodesic, then ||5 is constant and the conservation theorem div 7 = 0 is
obviously satisfied. Letc : (0, +00) — N be a geodesic. If Ty 0y = 0, then Ty () = 0,
for any ¢t > 0. This is a consequence of (5.3.41).

Totally geodesic maps.

Definition 5.53 A map ¢ : (M, g) — (N, h) is called totally geodesic if its second
fundamental form is zero, i.e., Vdp = 0, where Vd¢ is the symmetric 2-covariant
tensor field defined by

Vdo(X,Y) =Vx(deo)(Y) = Vxdp(Y) — (VXY)(qb), VX,Y € X(M).

The following three results can be found in [16].
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Lemma 5.54 Let ¢ : (M,g) — (N, h) be a totally geodesic map. Then for any
X € X(M) we have Vx(¢p*h) = 0.

Proof. Letp e Mand X, Y, Z € T,M.Extend Y and Z around p such that VxY =
0 = VxZ at p. Then at p we have
(Vx¢*h)(Y. Z) = Vx¢*h(Y, Z) — ¢*h(VxY, Z) — ¢*h(Y,Vx Z)
——— ——

=0 =0
= Vx¢*h(Y, Z) = Vxh(d¢(Y), dp(2))

= h(Vxdo(Y),d¢(2)) + h(dp(Y), Vxd¢(2))
= h(Vxd¢(Y) — (VxY) ¢,dd(2)) + h(dd(Y), Vxdp(Z) — (VxZ) $)
~——— ———

=0 =0
=h(Vd¢(X,Y),d¢(Z)) + h(dp(Y), Vde(X,Z)) = 0.
=0 =0

Proposition 5.55 Let ¢ : (M, g) — (N, h) be a totally geodesic map, with M a
connected manifold. Then the energy density e(¢) is a constant function.

1 ..
Proof. Differentiating covariantly in the expression e(¢) = Eg” (h*¢)ij yields

1 1,
@)k = 583 (1" ®)ij + 58 (1" @)ijx = 0.

The first term in the right side is zero because g is a metric connection and the second
term vanishes because of Lemma 5.54 written in local coordinates. |

Theorem 5.56. Let ¢ : (M,g) — (N, h) be a totally geodesic map, with M a
connected manifold. Then the energy-momentum tensor is divergence free.

Proof. Lemma 5.54 and Proposition 5.55 yield

ij_ Lo i ij Ui ij
T =5(@"m" +e@)g”).; = S (@"W)7 +e(@)g) =0,

4. p-harmonic functions

Definition 5.57 Let (M, g) be a Riemannian manifold and ¢ : M — R be a differ-
entiable function. For each p > 0, define the p-energy of ¢ with respect to a compact
set U C M by

_ 1 2\? _i 2
E,,(¢,U)_/U(§|V¢|) dv = 2pfu|v¢| P dy.

The extremizers for the energy E, are called p-harmonic functions on (M, g).
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The associated Euler—Lagrange equation is
div (|Ve)?P~D ve¢) =0. (5.3.42)
This can be checked by taking the Lagrangian
L= VO = (gt )
2 2

and differentiating

oL __»p 201 ok — (1om20—2 gk P
dox 20D VY (Vo) = (VP2 V) .

oL v | )
(8¢.k>_k = 2pp—1 <|V¢)|2P 2V¢);k: %dlv (|v¢|217 2 VQS),

and applying the Euler-Lagrange equation
( oL ) oL
8¢;k .k 3¢

Remark 5.58 For p # 1, equation (5.3.42) is nonlinear. The left side is called p-
Laplacian.

we get the equation (5.3.42).

Proposition 5.59 The energy-momentum tensor for E,(¢) is given by
Ty = 2 19RO (400, + o IV gi). (5.3.43)
J P A gV 2p J
Proof. Lete(¢) = 5 |V¢|*. Then

SE, (@) = /U 5(e(@)"V/B) dx = /U [5(9)")VE +e@)” 5/ dx.

Using
3(e@)") = pe@)’! se(@) = P€(¢)p_1%¢;i¢;j58i'i :
and | )
§(J/g) = >8ii Vg 388",
yields

SE,(9)

1 .
/ <§€(¢)p_l @i, + §€(¢)pgij)\/§ 8g" dx
U

1 y
g/ e(d))p*l(sﬁ;i(ﬁ;j + —e(¢)gij) ég" dv.
U p
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Replacing e(¢), we get the desired result. [ |

As
_ P 2(p—1) 2, | 2 1yv|2
rX, X)= o IVol"P~D (X ()" + 2 IVol* 1XI7),

T;; is positive definite and non-degenerate. The conservation theorem yields:

Theorem 5.60. If p > 0, the following boundary problem for the p-Laplacian

div([V|>*P~ D V) = 00n U,

0
—¢ =0ondU,
ax,-

has only constant solutions.

5. A nonlinear elliptic equation. For ¢ : M — R consider the Lagrangian

1Vg|?
T2 gk

where k € N. One can verify that the Euler—Lagrange equation is
¢ Ap = k|Vo|*. (5.3.44)

Consider the equation (10.6.40) on the domain U/, subject to the boundary condition
0
¥ (5.3.45)
0x; |au
We have the following result.

Proposition 5.61 The equation (5.3.44) with the boundary condition (5.3.45) has
only constant solutions.

Proof. The energy-momentum tensor is
oL 1

+ _gahL
0gab 2

_1 1 a b 1 ab 2
_Eﬁ((w) (Vo) +5g Vol )

Tab —

The tension in the X-direction is positive
11 1
_ ab _ 2 2 2
T X) = TXaXp = 5 o3 (X@) + 51X Vo) = 0.
Using the conservation theorem, we get 7 (X, X) = 0. Hence, |V¢| = 0 and then ¢
is constant on 4. n

For further readings about conservation laws and applications to physics, see [24],
[42], [45]. For ordinary differential equations see [2] and [21].
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5.4 Exercises

1. Consider the Lagrangian on R? given by L(x, y, %, y) = %()&2 + y2).

(i) Show that L is invariant by translations and rotations.

(i) Derive conservation laws associated with each vector field in (7). They are first
integrals of motion for the geodesics defined by L.

2. Consider the Lagrangian L(x, y, X, y) = %()&2 + y2) — A(xy — yi).
(i) Show that L is invariant by rotations.
(ii) Derive a first integral of motion associated with the above invariance.

3. Consider the Lagrangian that describes the dynamics on the Poincaré upper half-
1
plane L(x, y, %, §) = — (&% + 37).
2y

(i) Show that L is invariant with respect to translations along the x-axis.
(i) Derive the correspondent conservation law.

4. Prove the Gronwall lemma.

. . 1|Ve
5. Consider the Lagrangian L = - ——-
2 ¢

with £k € N on M. Show that the Euler—

Lagrange equation is ¢A¢ = k|V¢|%. Solve it in the case when M is a compact
manifold, without boundary and k > 2.

6. Prove the second Bianchi identity in local coordinates
i i i —
Rjrr + Rjpg + Rjppy = 0.

7.Let (M, g) be a connected Riemannian manifold. If there is a function f € F(M)
such that Ric = f - g, then the function f is constant on M.
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Hamiltonian Formalism

This chapter deals with Hamiltonian formalism on differentiable manifolds. This is
a different way to look at variational problems, using a Hamiltonian function instead
of a Lagrangian. Both theories (Hamiltonian and Lagrangian) are equivalent, but in
some practical problems it is easier to use one or the other. The equations for the
harmonic maps, geodesics, and other applications are provided.

6.1 Momenta vector fields. Hamiltonian

Let (M, g), (N, h) be two Riemannian manifolds of dimension m and n. Consider a
Lagrangian L(¢, q)],‘/.) associated withamap ¢ : M — N.

Definition 6.1 Define a momenta matrix as
pj=—> where j=1,n, k=1,m. (6.1.1)
J
Gl

Proposition 6.2 Under a change of coordinates, momenta behave as

o, 0x"
P =pf R (6.1.2)
wherex = (x!...x™), ¥ = (&'...%™) are two local coordinate systems on M. Then
0 —
pi=rjsg J=Thn (6.1.3)

can be considered as vector fields on M.
Proof. Denote ¢ = ¢ o x, where x (x) = X. Applying the chain rule yields

gl =00 _aslox _  oxd
T 9xk T 9xd 9xk Jgxk:



98 6 Hamiltonian Formalism

The Lagrangian becomes

- ; 0x*
L(¢. ¢ ) = L9, ¢;SW)(;C),
and hence the momenta behave as

oL oL 0x?’ _; 0x°

S

Mgl T gl v T Mok
|
The vector fields py, ..., p, are called momenta vector fields. Using momenta vector
fields, the Euler—Lagrange equations
oL oL —
< : ) I N 6.1.4)
ot/ k09
can be written as
. oL —
div pj = W, Vi=1,n. (6.1.5)
Suppose that L is convex in ¢’ «- Define the Hamiltonian
H: XM)x---xXWM)x FM,N)— F(M)
using the Legendre transform
H(p,®) =) pi¢'; — L@, ¢, (6.1.6)
J.k
where ¢>] ¢ satisfies the equation
oL
Gl

Example 6.1.1 In the particular case when M = R, N = R*, ¢ : R - R",
o= (9, ..., "), the momenta are

I 6.1.8
Pk = Pi = w (6.1.8)
and the Hamiltonian is ] )
H(p.$) = ped* — L(¢. 9). (6.1.9)
where ¢ verifies
oL
p=

=9
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Example 6.1.2 When ¢ : M — R, the momenta are

oL

—_—, 6.1.10
3¢;j ( )

j J
pl = P =
and the Hamiltonian is

H(p.¢) =) plo.j—L®, ¢.)) 6.1.11)
J

where ¢, satisfy (6.1.10).

6.2 Hamilton’s system of equations

Consider amap ¢ : M — N. Computing d H for H(p, ¢) in local coordinates in
two ways, we shall identify the coefficients of similar forms in these expressions.

Differentiating
dH_B_Hd i 3_Hd p 6.2.12
= ipj+ap¢' (6.2.12)
ap] ¢

Differentiating the expression of the Hamiltonian given in (6.1.6) yields

i i oL oL
dH = dp]i ¢kj +P1ﬁ d‘i)];{j — —d¢pP — ——

dot ;. (6.2.13)
9p? 995

Applying the definition of the momentum (6.1.1), equation (6.2.13) becomes

i 0L
— Ak J_ T 4P
dH _qb;jdpk 8¢Pd¢ . (6.2.14)
Identifying the coefficients of similar form in (6.2.12) and (6.2.14) yields

oH oL oH
ko of and — — = —. (6.2.15)

3J ap]{ 3¢k a¢k

Applying (6.1.5), we get the system of equations

ot =8
ap;
- (6.2.16)
div px = _875]"
When M = R"” and N = R, the system (6.2.16) becomes
V¢ =V, H
_¢ P (6.2.17)
div p=—VyH.

When M =R and N = R", the system (6.2.16) can be written as
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—:): &
Pk = 8¢k’
.o 8H

J = 944
@ =

which is usually called Hamilton’s system of equations.

(6.2.18)

Remark 6.3 If H does not depend on ¢, the second equation in (6.2.16) provides a
conservation law of momentum

div py =0,

which says that py is a momentum current.

Example 6.2.1 For ¢ : M — R, consider the Lagrangian

1 1
L@, V) =3 Vol = Egkl¢;k¢;l-

The associated Hamiltonian is

where

Hence,

where

Hence,

. 1
H(p,¢)=pi¢.; — 58"1¢;k¢;z,

aL

= =g, and ¢, = "
vy gk bk = &kr P

i

. 1 .. 1 .
H(p,¢) = g"¢.ud.j — Egkj¢;k¢; j= Egkj¢;k¢; ;
1

. 1
= - k] So. r = - Spr = - 2
58 8ksP 8jrP = 8PP 2Ipl ,

d
xS’

pP=pr

1 1,
H(p,¢) = Eg(p, p) = 3 Ipl~.

6.3 Harmonic functions

(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)

Now we shall find the harmonic functions equation using Hamiltonian formalism.
Consider the Hamiltonian (6.2.22). As H does not depend on ¢, div p = 0. Using
(6.2.18), we have

. j i kj j
divp=pl=@00,; = g, dx+"bx
—~—
=0

(6.3.23)
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Since

2
¢ ., 09

bkj = —— —Tji—,
T xkoxd ki gxr

(0% 0¢
ki —= —r7. =0
g (E)xkaxl ki Bx’) ’

A¢ = 0.

equation (6.3.23) yields

which is

6.4 Geodesics

Consider the interval / C Rand let ¢ : I — (M, g) be a smooth curve. Let the
Hamiltonian be

H(p.¢) = g I pip;. (6.4.24)
oH oH
=
i ap ap
and only if Vip = 0, where V stands for the Levi-Civita connection on (M, g).

Theorem 6.4. ¢ is a solution for the Hamiltonian system ¢ =

Proof. We have

_ 0H 1040
Pk = "ok = T gk PP (6.4.25)
. oH 9 (1 .
k k
A P P (2g"”p’p1) =en

therefore

= ¢ gik. (6.4.26)
We shall compute dg%/ /dx* which appears in (6.4.25). Using gil’gps = Sé, we get

9g'” ip 98
o — _gir Z5P%
oxk Eps =78 oxk
Multiplying by g*/ and summing over s,
gl _ —gi” sj 0gps
axk oxk

Differentiating in (6.4.26) yields

(6.4.27)

i glk

pk—¢gtk+¢ ¢

R —gkb ¢ (6.4.28)
aox’
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Substitute (6.4.26), (6.4.27), (6.4.28) in (6.4.25) and obtain

. agkb N 1 Bg
gy + ——2 PP = ~g'P g% ’”¢ gicd?gja
ax’ 2
. gkb og
— ¢l + ¢>”¢ = g Pgicg’ gjd ’”¢ ¢!
. 17 9gkb - 08k _1 ag d
<=¢bgkb+2[ ,j¢¢> Ckwd.

On the right-hand side let ¢ = b, d = r, and we get

5 dgkr gy
P +2[ 8kh  O8kr gb}d)%’:o

ax’ axb dxk

& ¢"gip + Tk’ = 0.
Multiplying by g% and using I, = M Ty yields

¢+ T8, 9" " =0, (6.4.29)

which can be written invariantly as V(i)‘i) = 0, where Vy, 0,; =T};9;. |

Hence, one may avoid the Christoffel symbols, defining the geodesics using the
Hamiltonian formalism.

Definition 6.5 A geodesic is the projection on M space of a solution of the Hamilto-

nian system
oH ) oH

op’ p ox’
with the Hamiltonian |
H(x,p) = Elplz.

Geodesic lift

. . . oH 0H
Let¢ : [0, 1] — (M, g) be a Riemannian geodesic. Define VH = (

) and
dx’ dp

denote by J the matrix J € Mo, (R) such that J? = —1I,.

Definition 6.6 z : [0, 1] — M x T*M is a geodesic lift of ¢ if there is a function
p [0, 1] = T*M such that z(s) = (¢(s), p(s)) is a solution for the Hamiltonian
system z(s) = J VH(z(s)).

Proposition 6.7 If ¢ is a Riemannian geodesic on (M, g), there is a unique geodesic
lift z(s) = (¢(s), p(s)) with p = (p1, ..., pn) and

Pr(s) =D gkr(@(5)) ¢ ().

r=1
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I Y 0H " .
Proof. From the Hamiltonian equation ¢* = P we get pr = ) _ &kr @', see
Dk
formula (6.4.26). [ ]

. 1 . .
Proposition 6.8 Consider the natural Lagrangian L(¢p, ¢) = Eg(qﬁ, @) — U(p).

Then the associated Hamiltonian is

1 ..
H(p,¢) = Eg” pipj +U(@). (6.4.30)

aL .. . .
Proof. As py = Fyre @' gik, then ¢F = p, g™ and gxd"¢* = g™ p, pr. The

Legendre transform yields

1k rk 1 rk
H(p,®) = pr¢" — L = prprg'" — S Pkpr8 +U(¢)

1 rk
= 3 PkPr8 +U(9).

Corollary 6.9 The Hamiltonian (6.4.30) is constant along the solutions of Hamilton’s
system.

Proof. Using Hamilton’s equations

dH 0H . N 3H(/.)k
dr o PR gk
oH oH o0H 0H
) o
Opk gk Ak dpi
[]
6.5 Harmonic maps
Consider the Hamiltonian
H(p.$) = + p) pl g i (6.5.31)
P _zpﬁppgjl |p? D

where ¢ : (M, g) — (N, h) is a map between two Riemannian manifolds. From the

Hamiltonian equation
. oH .
¢l = — =p/ g h'',

and hence '
i =g iy ¢y (6.5.32)
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The second Hamiltonian equation provides

, OH 1, ot
div px = _W =73 P pj gis W (6.5.33)
Now we shall compute div py in another way using (6.5.32),
div py = p., = (8 hyj ¢{ﬂ)_a
= goff, hij ¢]“3 +gaﬂ hij .o ¢{ﬂ + gozﬁ hij ¢];.ﬂoz
ohyi . .
=g —ayf ¢’y g+ i A
Hence,
) . dhyi .
div py = hjx Ap' + g*f W] ¢, b4 (6.5.34)
As )
ohJ! _ iy . 0hgp
dyk ayk’
using (6.5.32), the right-hand side of (6.5.33) becomes
—Egm hip 9", 8 hip ¢, 8is(—1) K™ h" ok
1 ; oh
— Egm gsa gis hjb hlﬁ A hnl ¢}?a ¢f;3a 5 rr]t{n
1. oh
= Egm gm 8is Obm aﬁn ¢l?a¢€}a W”]in
1 ohyp
= ¢ o, ¢,fa Wf (6.5.35)
So (6.5.33) becomes
) 1 b B Ohpg
div pe = 5 8% 9%, 9", R (6.5.36)
From relations (6.5.34) and (6.5.35) we obtain
. ohy; i 1 oh
. Jj op J s J _ — jaa b B bB
hij AP + g y’ ¢;a¢;f3_2g 0 ?a ayk
| ohy; i oh
. Jj - of J s J _ jaa 4b B b |
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0

his J K aﬁa
ay] ¢;O{¢;ﬂ_g

Ohy: hie
“ ; 3yjks ‘/J)j,ﬂ ¢ga:| =0,

ay’

1 ;
& hij Ap+3 |:g AN

|
= hyj A¢’/ + 3 g“’g

ohy; ohy oh ;, ;
J 5 ka ¢j‘ﬁ ¢§a =0,
ays ay’ ay P
= hij AP+ P T ¢, 9%, =0.
Multiplying by ¥, we get
A"+ g T ¢ 5% =0, r=T1,n, (6.5.37)
which is the equation for the harmonic maps ¢ : (M, g) — (N, h).

Remark 6.10 In Chapter 4 we arrived at equation (6.5.37) using Lagrangian formal-
ism with the Lagrangian L = e(¢) = 1/2 g/ % ¢§j hag 4, called density energy.

The Hamiltonian (6.5.31) is related to the energy density by
1 ..
H(p.#) = Pl 6" — 5 87 6% 8 hap . (6.5.38)
where ¢}./k is given from the momenta expression

ok = de
Y a¢)”k

Substituting (6.5.39) in (6.5.38), yields

=g hyj ¢’ (6.5.39)

. 1 ..
H(p, @) = g% hy; 'y ¢ — 5 87 ¢, 8" ha

(R 1
— _ ol g? Y Y
=58 ¢;,~</>;jhaﬁ—2pﬁ¢;j. (6.5.40)

From (6.5.39), we obtain

¢ = pl, g WP (6.5.41)

Substitute (6.5.41) in (6.5.40) and get

1 .
H(p, @) =3 Py Py gt ™",

i.e., the Hamiltonian (6.5.31).
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6.6 Poincaré half-plane

Consider H? = {(x, y)|y > 0} c R? endowed with the Riemannian metric g =
dx? + dy?

o
are interested in finding the geodesics on H? using Hamiltonian and Lagrangian
formalism. The Lagrangian is

(H?, g) is called the real hyperbolic plane or Poincaré half-plane. We

.. I . .
L(x,y, %, y) = z—yz(x2 +37), (6.6.42)
with the associated Hamiltonian

1
H(p1, p2,x,y) = §y2<p% + p3). (6.6.43)

As the Hamiltonian does not depend on the variable x, one of Hamilton’s equations

yields

0oH
D1 = e 0 = p1 = k (constant). (6.6.44)
x

On the other hand, the momentum p; is given by

AL
oy

As the Hamiltonian does not depend explicitly on the parameter ¢, a consequence of
Hamilton’s equations and the chain rule is

af 0= H 1C2( tant)
—_— = = — constant).
dt 2

Casek #0
Substituting in formula (6.6.43) yields

W)
y2(1<2 + y—4) =C?, (6.6.46)
y
which is an equation in the variable y. The equation can be written as

i = yZ(C2 —~ kzyz), (6.6.47)

which becomes y = £y,/C? — k?y2. Separating

dy

WE By

= +dt,

and integrating
dy
/ ——— = +|C|t + b,

iy
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where o = k/C. Using Exercise 4, we get

1 +/T—a2)?
_IH‘M‘::HCV_[)_
y

Using Exercise 3, we find
—sech™ ! (ay) — In|a| = £|C|t — b,
which yields
1
y(t)+ = —sech(£|C|t — b — In |a]). (6.6.48)
o

We can drop the =+ sign because € R can be considered taking all positive and
negative values. Hence

y() = ésech(lclt —a, (6.6.49)

where a = b + In |a|. We have lim,_, +o, y(#) = 0, which means that the geodesics
never reach the line {y = 0}.
To find the x-component, we use p; = k and write
0L X
=%~ y2'

This yields x = ky>. Integrating, we find

x(t)—k/ 2ty dt = ﬁ/L
I T a2 ) coshX(Cli—a)

Using Exercise 5 yields
1
x(t) = —tanh(|C|t —a) + K. (6.6.50)
o

The formulas (6.6.50) and (6.6.49) describe a semicircle with y > 0 centered at (K, 0)
with radius r = 1/a:

1

_ k)2 _ 2_i< 2 _ >
(x(®) — K)*+ (y(r) = 0) = tanh”(|C ||t a)+—cosh2(|C|t—a) ==

Casek =0

Inthis case, p; = Oandthen X = 0. Hence, x () = x(0) is constant. Equation (6.6.46)
becomes y2 = C2y? with solution y(¢) = y(0)e*!C". These solutions correspond to
lines perpendicular to the x-axis.
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The distance

In this section we shall find the distance d = d((xo, yo), (x, y)) computed with
respect to the metric on the Poincaré plane.
Substituting ¢ = 0 in the formulas

1 1
x(t) = —tanh(Ct —a) + K, y(t) = —sech(Ct — a), C >0, (6.6.51)
o o
yields
1 1
yo = —sech(—a) = —sech(a),
o o

1 1
xo = —tanh(—a) + K = ——tanh(a) + K
o o

sech(a)

o
= —sinh(a) yo + K.

= — sinh(a) + K

. .1 (K —x0
xo — K = —ypsinh(a) = a = sinh .
Yo

Let (x, y) = (x(t), y(r)). Substituting t = 7 in (6.6.51) yields
1
x = —tanh(Ct —a) + K,
o
1
y = —sech(Ct — a).
o

The product Ct can be evaluated as follows. It is known that the energy along a
2

d d
geodesic joining the points (xg, yo) and (x, y) is givenby E = 37 Then vV2E = —.

T T
Using that C = 2E = H we find that

Cr=d.
Hence the above formulas become
X = étanh(d —a)+ K =sinh(d —a)y + K,
y = lsech(d —a).
o

From the first formula we obtain
x —
y

K . .1 ({x—K
= sinh(d — a) = sinh ——)=d—-a
y

and hence
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- K K — — K
d = a + sinh™! (x_) = sinh~! <—x0> + sinh ™! <x_)
y Yo y
K — xo K —xg 2 x—K x—K\?
=1In + /14 +In{——+,/1+
Yo Yo y y
K —x0 + /¥ + (K = x0)2 x— K+ + (x — K)?
(T |
y

Yo

K —xo+r x—K+r K—xg+r x—K+r
=In{——)+In[{— ) =In . ,
Yo y Yo y

where r is the radius. Hence

A'M-NB
d=In{——
AA’- BB’

) = ln(tanm/ﬁtanN/BE’),

see Figure 6.1.

AXo5Yo )

N(-1,0) . .
Axe,0)  O(K,0) B (x,0)

M(r,0)

Figure 6.1: The points A(xg, yg), A'(xg, 0), B(x, y) and B(x, y).
A formula for the distance d depending only on the coordinates of the boundary points
can be obtained if we use

1
R R

1 —x0)* +y> =55

K = ,
2 X — Xp

see Exercise 8. For more applications of the Hamiltonian formalism the reader may
consult [3].

6.7 Exercises

X —X

1. Let sinhx = % be the hyperbolic sine function.

(i) Show that the inverse function is given by sinh™! y =In|y +/y% + 1|, for any
yeR.
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1 1+ 1 2
(i7) Show that the solution of the equation — m =yisx =1In ‘u‘ Find
sinh x y
a formula for the inverse function of csch x.
. . . ef e
2. Consider the hyperbolic cos function cosh x = —

(i) Show that the inverse function is given by cosh™! y=In|y+,/y2—1]|.

1+\/1—y2‘
—

(i1) Show that the solution of the equation =yisx =1In ’

cosh x
Find a formula for the inverse function of sech x.

3. Using Exercise 2, show that

| )1+\/1—a2y2‘
n|——~= | =
y

sech™! (ay) +In |af.

4. Show

/ dy _ ln‘l—i-\/l—azyz‘
y

1 —a2y?
following the steps:

1 d
(7) making the substitution u = —, show that the integral is equal to — / > - >

y u-—a
(ii) Usethefactthat/ =Inu +Vu? —a?|.

Vu? —a?
5. Show that / —— = tanh u, where tanh # = sinh x/ cosh x.
cosh” u

6. Consider the sphere S? endowed with the Riemannian metric g11 = 1-x2

g2 =12 gl2 = g2l — _yy

1 1

(i) Show that the Hamiltonian is H = E(p% + p%) - E(xpl + yp2)*
1 1

(ii) Show that the Lagrangian is L = 5()'62 +3%) + E(xfc +y3)%.

(iii) Show that the geodesics are great circles.

7. (Poincaré Disk.) Consider B = {(x, y) € R?; x> + y> < 1} endowed with the
. . : 4

Riemannian metric g;; = -2 8ij.

(i) Write the Lagrangian and the Hamiltonian in polar coordinates.

(i7) Find the geodesics of (B, g;;).

8. Let A(xo, yo) and B(x, y) be two points in the upper half-plane.
(i) The equation of the perpendicular bisector of the segment AB is
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(x —x0)% + > — 3}

X — Xg 1
x p—
y=> 2 Y=Y

y=-

(i7) Using that the intersection point between the above segment bisector and the
x-axis is the center of the circle (K, 0), find K.

9. Let X = X1(x, y)dx + Xa(x, y)dy be a vector field on the Poincaré half-plane.
Show that

I
divX = 9. X, + y23V<—2X2).
"y

10. Consider the relativistic Hamiltonian for a free particle of mass my,
H(p.q) = (pi + p3 + p3 + m)'/*.
a) Write the Hamiltonian system.

b) Find the associate Lagrangian.

c¢) Give a characterization of the solutions of the Hamiltonian system.



7

Hamilton—Jacobi Theory

7.1 Hamilton-Jacobi equation in the case of natural Lagrangian

Consider a curve ¢ : (#1,2) — (M, g) on a Riemannian manifold. Denote by
U : M — R the potential and let L be the natural Lagrangian

. 1 .
L(#,$) = F1$0; = U@®). (7.1.1)
The extremizers of the integral
%] .
1= / L(¢, @) dt (7.1.2)
1
satisfy the Euler—Lagrange equation
Vih =—VUp. (7.1.3)
The total energy is
1.
H =160l + U @), (7.1.4)

i.e., the sum of the kinetic and the potential energy.

Lemma 7.1 Let S : R x M — R be a function. Then

aS .
asio = (5, +8(V8.9)dr

Proof. A computation shows

3 35S 9 3s
ds = S-di + Z = di + (Z x’)d[,

so that
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s s .
dSp=— —¢" ) dt.
i <8t|¢+2,:3ﬂ¢)

As the gradient is given by

.38 0
VS = gl]—A—A,
ax! axJ
we have 35 o
N i w98 . S
g(VS,9) = gl](vs)l ¢ = 8ij8 laxk¢j = 8xj¢/'
Hence,
dSis = 05 +g(VS, ) )dt
[ |
The integrals
t 4]
1=/ Ldt and J=/ (Ldt —dS)
1 1
reach the extremum for the same curve ¢ : (¢, ) — (M, g), because
J=1-S8(,¢2))+ S, ¢(11)).
Lemma 7.2 The integrand of the integral J is equal to
1. as 1
—p—VS2—(—=+=|VSP+U).
316 - Vs <8t+2| 24 )
Proof. The integrand of J is L — dS/dt. Using Lemma 7.1, we obtain
ds N ;
L-22—p- (— Vs, )
7 o1 +8(VS, ¢)
— g -v - gws. )
2 ar S
1.5 . 1 , 1 , 08
= —|p|? — g(VS, —|VS)2 - Z|VSPP— ——-U
S101: = 8(VS.$) + S IVSP — J|vSP - =
1. s 1
= —v52—<— S Vs U).
S16 = VSl — (5 + 5191+
|
Therefore, the integrals I and
nry,. 2 A )
J = —lp-VS" = —+=|VS U)|dt 7.1.5
/,1[2’(/’ | (at+2| |+>] (7.1.5)

reach the extremum for the same curve ¢ : (¢1,1) — M, where S is an arbitrary
function § : R x M — R.

To simplify (7.1.5), we can choose S such that



7.1 Hamilton—Jacobi equation in the case of natural Lagrangian 115

§+1|VS|2+U =0. (7.1.6)
or 2
Then the integral J becomes
%) ] . 5
Jz/t §|¢—VS|gdt. (7.1.7)
1

Hence, J is minimal if and only if
q's =VS, (7.1.8)

where S is a solution of (7.1.6).

Definition 7.3 The equation (7.1.6) is called a Hamilton—Jacobi equation. It can be

also written as
8S+H(8S )=0
N, —X)=U,
at dax

or

3
— TH(VS) =0, (7.1.9)

where H denotes the Hamiltonian.

Theorem 7.4. Along the solution ¢ (t) of the Euler—Lagrange equation, we have

¢(1) = VpS(t, ¢ (1)), (7.1.10)

where S is a solution of the Hamilton—Jacobi equation (7.1.6). Conversely, any
curve which satisfies (7.1.10) is a solution of Euler—Lagrange equations, up to a
reparametrization.

Singularities of the action S
Let X be the vector field generated by a flow of solutions of Euler—Lagrange equations,

ie., )
Xp) = o).
Applying the divergence and using Theorem 7.4,

divX =divVS = AS,

where A denotes the Laplacian.

As long as the flow of solutions X does not have conjugate points, div X doesn’t
have singularities. Using that A is a hypoelliptic operator (preserves the singular
support of functions), it follows that the action S does not have singularities.

Proposition 7.5 The action S is singular at the conjugate points of the solutions flow.
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The case of geodesics

In this case, U = 0 and the Hamilton—Jacobi equation becomes

S

+Livsp=o
or 2 -

and )
¢ =VS.

We shall look for solutions with separate variables
S, x) =a(t) + bx).

Then (7.1.11) becomes
1
a'(t) + 3 IVb)I* =0.

There is a constant £ > 0 such that
1
—d'(t) = 5 |Vb(x)|*> = E.

In fact, E is the energy because

E=LivbwP =t va+np =1 vsp 1|<i>|2
= - X = - a = - = - .
2 2 2 2

It follows that
a(t) = —Et +a(0)

and {
—|Vb|> = E.
2

Let )
(x) = —=(b(x) — b(x0)).
B 57 )
Then B satisfies the eiconal equation (see section 7.3)

VB =1,

B(xo) =0,
so that B(x) = d(xp, x), see Theorem 7.15. Thus,

b (x) = b (x0) + V2E d(x0, x).

Hence,

S(t,x) = —Et + V2E d(xo, x) + a(0) + b (xo)
< S(t,x) = —Et + v2E d(x0, x) + S(0, xo).

(7.1.11)
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Remark 7.6 We have
.S, x)
lim =

—00 t

Remark 7.7 For general conditions ty, xo, we get
S(t, x) = S(ty, x0) — (t — 19) E + vV2E d(xp, x)

and thus,
S(tg, x) — S(tog, x0) = V2E d(xg,x) — (t — 19)E.

7.2 The action function on Riemannian manifolds

Consider a Riemannian manifold M and let ¢ : (#p,#;) — M be a smooth map.
Suppose the Lagrangian is nonnegative, L(¢, ¢) > 0.

Definition 7.8 The action function with the initial condition

S(t0, ¢(10)) = So (7.2.12)
is defined as
1
S, (1)) = So ~|—/ L(¢(s), ¢(s)) ds, (7.2.13)

fo

where ¢ is a solution of the Euler—Lagrange equation which connects ¢ (ty) and ¢ (t).

The relation between the action and the Hamilton—Jacobi equation is given in the
following:

Theorem 7.9. The action defined by (7.2.13) verifies the Hamilton—Jacobi equation

aS aS
= + H(%, ¢)=0 (7.2.14)

with the initial condition S(ty, ¢ (ty)) = So, where H is the Hamiltonian associated
with the Lagrangian L.

Proof. Applying the chain rule

ds _ s @S, 98 08
dr ot agr Y ar ' lag

Using the definition of S yields

as dS S . . as .
3 =4 g ) =LO0.0) — (5. (7.2.15)

Using the Legendre transform,
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aS as . .
H(—,9) =(—,0) — L(¢@@1), ¢()). 7.2.16
(aq5 ®) (a¢ ®) (@), p(1)) ( )
Adding equations (7.2.15) and (7.2.16), we obtain the Hamilton—Jacobi equation
(7.2.14). [ |

As a nonlinear equation, the Hamilton—Jacobi equation (7.2.14) with the initial
condition (7.2.12) may have more than one solution. Such a situation is described by
the following example.

1
Consider the Lagrangian L(x, x) = 5)&2 with the Euler-Lagrange equation X = 0

1
and the solution x = x(¢) = ct + xo. The associated Hamiltonian is H (p, x) = > pz.

The function f (¢, x) = /2x — t is a solution for the Hamilton—Jacobi equation
of 1,9f\2
242 (ZLY =0
ot + 2 (ax)

with the initial condition f(0, 0) = 0, where xo = x(0) = 0.

A different solution is given by the action S(z, x),

' 5 s
S(t, x(1)) = S(0, 0)+/0 %x(s)zds _ %Czt _ %(ci) _ X(zt,)

=0
Now we can address the following natural question:

What condition should a solution of the Hamilton—Jacobi equation satisfy in order to
be the action?
We start by observing that the momentum in the above problem is

oL .
= —=Xx=c.
P= %
On the other hand,
0S 0 (xz) X
_—= | — = — =C
0x dx \ 2t t
Hence,
_ a5
T ax’

for any solution of the Euler-Lagrange equation which passes through the origin. The
following theorem will show that this is a sufficient condition for a solution of the
Hamilton—Jacobi equation to be the action.

Theorem 7.10. Let S = S(t, ¢) be a solution for the Hamilton—Jacobi equation

as aS
. H PR =05
o T (Bd) ®)

S(to, ¢ (t0)) = So,
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such that
_ oS (7.2.17)
p - a¢5 (V%
where the momentum p = 9L /3. Then S is given by
t
S, o) = So +/ L(¢(s)p(s))ds, (7.2.18)
0]

where L is the Lagrangian associated with the Hamiltonian H and ¢ is a solution of
the Euler—Lagrange equation

d oL oL —
—— = —, Vk=1,n
dt dgk 0k

for small enough |t — to|.

Proof. Consider a solution ¢ for the Euler—Lagrange equation that connects ¢ ()
and ¢ (t1), with small enough |#; — f79|. Fix ¢ € [19, t1]. We may assume ¢ = #;. Let

15} .
1(p) = / L(g(1), ¢(1)) dt,
to

f ds
() =/ - Dya.

dt
We have
1(¢) = J (@) + S(11, ¢(11)) — S(to, P (t0)). (7.2.19)
The chain rule yields
ds aS§ as .
7 + (%v é),

while the Legendre transform is
L. §) = (p.§) — H(p.$)

where p = dL/d¢. Substituting in the integral J (¢), we get

g ; aS as .
@) = /t (7 9) = Hp ) = 50 = (50 ) i

:/tﬂ((p_%’é)_({;_f_i_H(%,(p)))dt:O,

0

0S
because p = % and S satisfies the Hamilton—Jacobi equation. Hence, (7.2.19)
becomes

I(¢) = S(n, ¢(t1)) — S(10, ¢ (10)).
Replacing #1 by an arbitrary 0 < t < 71, we get the action (7.2.18). [ |
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We now examine if the momentum condition is also necessary. Differentiating with
respect to ¢ in
11 .
S(¢p) — So(9) = / L(¢, p)ds,
fo

and using Euler-Lagrange equations, we get

AN oL nd /9L
ap 03¢ n 00 n ds\d¢g

11 d
=/ d—pdS=P(11)—P(lo).
1 )

0

N
Hence, with the additional hypotheses p(tp) = 0 and 8_¢0 = 0, the momentum

condition is necessary.

7.2.0.1 Hamilton—Jacobi for conservative systems

In the case when the Hamiltonian H does not depend explicitly on time #, using
Hamilton’s equations:

dH _9H  9H 9H _9H
ai  op P T 96 ar T ar

)

so that H (p, ¢) is constant along the solutions of Hamilton’s system and equal to the
constant of energy E. Therefore, the Hamilton—Jacobi system becomes

8S+E—0
ot o

S(to, ¢ (t0)) = So

with the solution
S, ¢(t)) = So — Et.

The energy E depends on the end points ¢ (0) and ¢ (¢) as well as on ¢.

7.2.1 Action for an arbitrary Lagrangian
The main result of this section is the following theorem.

Theorem 7.11. Let L = L(x, X, t) be a Lagrangian function. There is a function
S = S(x, t) such that along the solutions of the Euler—Lagrange system of equations

we have
Ldt=dS.
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Proof. Let x = x(t) be a solution for the Euler-Lagrange system

d oL aL
—_—— = 7.2.20
dt 0xy 0Xy ( )
Let 3L
Pk = (7.2.21)
Xy
be the k-th momentum. Expanding in (7.2.20) yields
a ad 0 oL
PN A LS AL R (7.2.22)

dx, 9%, ar 1 Oxy

k

As the Lagrangian L = L(x, X, t) does not depend on X, the coefficient of X, in
(7.2.22) vanishes
Ik
X,
Substituting (7.2.21) in (7.2.23) yields

—0. (7.2.23)

92L
95X, 09Xk

and hence L is a linear function of velocities L = Lo(x, t) + Z arxr. Using (7.2.21)
r

oL
yields a, = — = p,. Then
0x

r

L=Lo(x.1)+ Y prir. (7.2.24)
r

oL
The Euler—Lagrange system T Pk can be expanded as
Xk
dLo apr . dpk . | Opk
e Xk: P Zr: o, "t o

where in the left side we used (7.2.24) and in the right side we used px = pi(x, t).
Identifying the coefficients yields
Opr _ dpk  Opk _ Lo
dxr  0x, a  dxg

(7.2.25)
which shows the one-form

Ldt =Lodt+)_ prdx,

is exact. This means there is a function S = S(x, ¢) such that L dt = d§ along the
solutions. | |
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Corollary 7.12 Let S be the function given by Theorem 7.11. Then

/T Ldt =S5(t) — S5(0).

0

The function S is the action associated with the Lagrangian L.
7.2.2 Examples
Example 7.2.1 A unit mass particle in a uniform circular motion
Consider the Lagrangian
.. L. i . .
L(x,y, % 3) = 2 (& +3%) + (3 = yd). (7.2.26)

In polar coordinates,
X =rcos¢, y =rsing.

The Lagrangian becomes
. L . . .
LG 7, @) = 52 +r’¢%) + 179, (7.2.27)

The Euler—Lagrange system

daL 9L d L _OL
dr 9r — or’  dtad ¢

yields
. 2 . d 5. )
F=r¢°+2r¢, E(r ¢+r7)=0. (7.2.28)
The second equation gives a first integral 7>(¢ + 1) = C(constant). Considering the
initial condition r(0) = 0, we get C = 0 and ¢ = —1. Hence, the first equation of
(7.2.28) becomes # = —r. The solution corresponding to the boundary conditions
r(0) =0, r(t) =R
is
Rsint
r(t) = — , t [0, 7] (7.2.29)
sint

The Lagrangian along the solution is

) . 1 R? R%sin?¢ R?
L(r(t),r(t),qb(t)):Esi2 >— = 5

i = — cos 2¢.
n“rt sin” T 2sin“ T

And the action starting at the origin at the moment #y = 0 is
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S(t, x(7), y(7))

/0 LG (), (1), $(1)) d

1 R2 T
=553 / cos2tdt = R*cot T
sin“ t Jo

%(x2(t) + y2(t)) cot T.

Thus S behaves like a Euclidean distance from the origin. The action starting outside
of the origin is treated in Chapter 12.

Proposition 7.13 The action

S(t _Llargy
,x,y)—z(x + y“)cott

is a solution for the Hamilton—Jacobi equation

g " %[(%2 * (%)2] + %(%y - %x) + %(x2 +y%) =0,

5(0,(0,0)) =0.
Proof. The Hamiltonian associated with the above Lagrangian is

H=pxi+py—1L

where
oL 1 . 1
P1=g=3€—§y, x=p1~|-§y,
oL 1 . 1
P2=a—y=y—§xa Y=P2+§x'

Performing the computation, we obtain

1 1 1
H(p, x, ) = 5(p1+ p2) + 5(p1y = pax) + §<x2 +y9).
| |

Example 7.2.2 A unit mass particle under the influence of an inverse quadratic po-
tential

Consider the Lagrangian

L f) = 2@ i)+ 1 L (7.2.30)

X, X) =] +x -, 2.
21 2 2 x12 + x%

which describes the trajectory of a particle in the x-plane under the influence of the

potential
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U(x) LK (7.2.31)

X)=—=—%5 2.
2x?

where k is a constant. The Lagrangian is rotational invariant, therefore, polar coordi-

nates (r, ¢) are more suitable:

2

sy Lo a0 1K
L(V,r,¢)=§(r +ro¢ )+§r—2 (7.2.32)

In order to find the action, we shall use the Hamiltonian formalism. The momenta are

L | oL .

= — = = = 7.2.33
pr=r=rop ” g ( )
and hence the Hamiltonian is
. . 1y, P 1 k2
H(p.r)=pii+prp— L= E(pl +r—2)—§r—2. (7.2.34)

As pr = 88—;1 = 0, the momentum p; is a constant of motion (called areal velocity).
Another constant of motion is the total energy
d_H
dt
From equations (7.2.32), (7.2.33) and (7.2.34) we find that along a solution,

=0 == H isconstant along solutions.

k> K% .
L=H+—5=H+ —¢,
r P2
and hence the action is
T k2
S(t) = S(O)—i—/ L = S(O)+Hr+p—(¢(t)—¢(0)). (7.2.35)
0 2

The constants H and p, should be written in terms of the boundary conditions
R=r(), ro=r0), @=¢(@), ¢ =¢Q).
In general, this cannot be done explicitly. From (7.2.33) and (7.2.34),

2 2
ps—k
rz

E=7"+

where E =2H. Leta = p% — k? and write

VI2E —«

r

F=4 (7.2.36)

There are three cases to investigate:
i)a =0: Thenr(t) = +JVEt + rg, and ro < R yields
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R —rg
r(t) = t+ro.
Integrating the Hamilton’s equation
_0H  pp k
sz o2

yields

$(0) — & _k/’L_L@_;)_L(L_i)
R WEt+r)? VE\ro  JVEt+r VE R/

Using the expression for E,

® — gy = kt (1 1)_kr (7.2.37)
O_R—r() o R _r()R' o
- Et _ (R-r)’ , , :
Substituting Ht = R — and (7.2.37) in equation (7.2.35) yields
T
(R—ro)? | k’t
S(t)=80) + ————+ —. (7.2.38)
2t roR
ii) @ > 0: Integrating (7.2.36), where we consider a positive sign, yields
0 rdr
—_— =,
n ~VErr—a

VEr2(t) —a = /Erd —a + Et,
(1) = (a + (Bt + | Erg = a)?). (7.2.39)

. . . . oH P2 .
Integrating the Hamilton’s equation ¢ = — = — yields
D2 r

t Et—i—,/Erz—a ,/Erz—oz
/ ds =2 (t an~ 0 —tan™! ;)
o r2(s) e - Ja Ja

fii) @ < 0: Consider @ = —a?. The function r(7) is still given by the equation (7.2.39),

but ¢ is given by
tods P, Et—}—‘/ErO—i—az—a ,/Er§+a2+a
b0 —do=p | 5 —=21n] |
0 ‘/Er +a2—a ,/Et+Er§+a2+a

r2(s) 2a
In the case o # 0, the constants E and p, cannot be written explicitly as a function of
the boundary conditions, as we did in the case « = 0. Finding an explicit formula for
the action function is equivalent with solving the nonlinear Hamilton—Jacobi equation

2
e () A -5

o) — o= p2
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Example 7.2.3 Kepler’s problem

Consider the Lagrangian

1
L= z(fc% + %3 + (7.2.40)

M
[2., 2
X7+ x5
which describes the motion of a unit mass particle under the influence of gravitational

potential (inverse proportional to distance). The Euler-Lagrange equation is X =

— Wx. In polar coordinates (r, ¢), the Euler—Lagrange equations are
X

M

. %)
F—re° = 3

d 2 _
E(r ¢) =0,

which yields r2¢ =constant. This is the second of Kepler’s laws, which says that
areal velocity is constant. The Hamiltonian is

p%)_M
-

1
H 3T = _< 2 Y
(pird) = 5 (P} + 3
and it is preserved along the solutions. As py = %
oL .
other hand, p; = 3 = ¢r?, and hence the momentum P2 is the areal velocity. Let

oL
E =2H, and using p; = o = 7, we obtain
r

dr_ | g _ P2, 2M (7.2.41)
dr r2 ro o

As the areal velocity is constant,

= 0, py is constant. On the

d¢  p>
== 7.2.42
dt r2 ( )

Divide equations (7.2.41) and (7.2.42), separate the variables and integrate to yield,
r L10)

r(t) d
/ =P / de.
1o r,/Er2+2Mr—p§ b0

The substitution u = 1/r yields

1/r(t) d
—/ - = p2(d (1) — o).
1/ro \/E+2Mu—p%u2
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With A = E/p% and B = M/p% we have

/1/r(t) du 5
- = = P2 (1) — ¢0).
1/ro ~A+2Bu—u? 2
Using A + 2Bu — u?> = A+ B?> — (u — B)?, we get

1/r(1)

u — B 2
arccos (— = p5(¢p(t) — ¢o).
VA+ By, g
This can be written as
1

r(t) = (7.2.43)

B + /A + B2 cos (p3(¢(t) — ¢o) + C)

with
1

C = arccos (L)
VA+BZ)

which is an equation for a conic in polar coordinates.

7.3 The Eiconal Equation on Riemannian Manifolds

Let ¢ (s) be a solution for the Euler-Lagrange system with Lagrangian L(x, x), which
joins the points xo = ¢(0) and x = ¢(r) on the Riemannian manifold (M, g). In

this section, the action S(t) = S(xo, x, T) will be considered as the integral of the
Lagrangian along the solution

S(r) = /0 L(p(s), d(s)) ds. (7.3.44)

1
Example 7.3.1 Consider the Lagrangian L = E(xf + )'622) on R? with Euler—
Lagrange equations ¥; = 0, i = 1, 2. The solutions are lines

xi(s) = kis + x:(0) = (x; —xl-(on% +xi(0), i=T,2.

The action becomes

S(7)

T ) 1 T xi —x;(0)\2
/0 L(x(s),x(s)) = 5/0 Z(f)

I Y —xi(0)?  d?*(x(0),x)
2" 72 B 2t '
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The above formula relates the action and the Euclidian distance. One of the goals
of this section is to show that a similar relation holds on Riemannian manifolds.
However, in general, the Euler-Lagrange equations cannot be solved explicitly, so
we need to find the action working around the solutions.

Consider the Lagrangian

1 o
L(x,)'c) = Egijxlx] (7345)
on the Riemannian manifold (M, g). It is known that the Euler-Lagrange system is
$s) + T, 0 ()87 () =0, k=T, (7.3.46)

which are the geodesic equations. The action S(t) corresponding to the initial point
xo and the final point x is

AT 17 .
S(f)=f 5 8ij9 ()97 () ds = 5/ 6 (s)]” ds,
0 0

where ¢ (s) is a solution of (7.3.46) with the boundary conditions ¢ (0) = x¢ , ¢(7) =
x.
The system (7.3.46) can be written globally as ng(s)d)(s) = 0, where V denotes

the Levi-Civita connection. The fact that |¢(s)|? is constant along the geodesic is a
consequence of the metric property of the Levi-Civita connection,

B(s) g(B(5), B(5)) =28(Vyd(s5), $(s)) = 0.

It follows that the Holder inequality

[)T (s)| ds < (fo |¢'>(s)|2ds)% (fo)é (7.3.47)

can be replaced by the identity

T T 1
/ 16(s)| ds = (/ |¢'s(s)|2ds)2 3. (7.3.48)
0 0

If ¢ (s) is the geodesic joining the points x(¢ and x, the Riemannian distance between
them is

d(xg,x) = f | (s)|ds. (7.3.49)
0
Hence,

T d2 ,
/ 1 (s) |2 ds = M’
0 T

and the action is
S(t) = ——. (7.3.50)

In the following we shall denote the gradient vector field of a function f € F(M) by
Vf =gl f. 0
f=g"fi ax;
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Definition 7.14 The equation |V f |§ = 1 is called the eiconal equation on the Rie-
mannian manifold (M, g).

The next result shows that the Riemannian distance solves the eiconal equation.

Theorem 7.15. f(x) = d(xo, x) is a solution for the eiconal equation |Vf|§ =1
with the initial condition f(xg) = 0.

Proof. The Hamiltonian associated with the Lagrangian (7.3.45) is

1 1 .
H(p, x) = SIplg = sgp’v".

Substitute the action (7.3.50) in the Hamilton—Jacobi equation

s 1 5
= 4+ 2 |VS2P=0 7.3.51
ot + 2 VS ( )

and obtain

! d*( )+1 ! V(ldz) ’ 0
- X - — — =
272 272 2
1 2
=@+ ‘V(dz(x)) ‘ —0
= [2dVd(x) |> = 4d*(x)
= [VdW)|* =1, (7.3.52)
where d(x) = d(xp, x). [ ]

Corollary 7.16 The function ®(x) = d*(xg, x) satisfies the equation
Vo> =4
with the initial condition ® (xg) = 0.

Proof. Tt follows from the equation (7.3.52). [ ]

The above theorem proves the existence of solutions for the eiconal equation.
Unfortunately, the uniqueness does not hold in general. A counterexample is provided
below.

The eiconal equation on R? takes the form

(%)2 . (%)2 _ 1 (7.3.53)

For any constant A € R, the function

f.(x,y) = (x —xp)cosk + (y — yp) sin A (7.3.54)

is a solution of (7.3.53) satisfying the initial condition
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Sa(xo, yo) = 0.

The same eiconal equation and initial condition is verified also by the Euclidian
distance

d(x,y) = \/(x —x0)% + (y — y0)%. (7.3.55)
Remark 7.17 The solutions given by (7.3.54) and (7.3.55) are related by

filx,y) =d(x,y) - cos(A —6),

1 Y=

where 6 = tan .
X — X0

7.4 Applications of Eiconal equation
7.4.1 Fundamental solution for the Laplace-Beltrami operator

Consider the Laplacian on R”, n > 3,
n 2
0
A== —.
2
=1 oxj;
From Lemma 2.27,
A" = —af* (= fAf + @=DIVSP).
Substituting f(x) = d(x) and using the eiconal equation yields

A(d?) = ad"‘_2< —dAd+ (o — 1)). (7.4.56)

From Corollary 2.25,
Ad? = 2dAd —2|Vd|>. (7.4.57)

Using Ad? = —2n and |Vd|? = 1, (7.4.57) yields
dAd =1 —n.
Substituting in (7.4.56),
AdY) = —ad®*(n — 2+ a).

Hence, choosing @ =2 — n,

A(dn_;z(x)) —0,  VxeR"\{0).
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7.4.2 Fundamental Singularity for the Laplacian

Consider the Laplacian

Z ( o i)
—~ 9x j xy % 9x,

on a Riemannian manifold (M, g). Given a fixed point y € M, we cannot calculate
in general a fundamental solution for A, but we can find a fundamental singularity

G(y, x):
AG(y,x) = R(y,x), fory #x,

with |
R(y,x) = O(W)

For x and y nearby points, the distance is given by
d*(y,x) = D(y, %) + O(x — yI)
with D(y, x) = Z gik(¥)(xj — ¥;)(xx — y). In order to compute AD(y, x), sub-

stitute u = x — y and get D(y,u) = Zgjk(y)ujuk. The Laplacian becomes

ik
A= —(P+ L) with the principal part P = Zg”‘ PWE: and the linear part
L= Z gfkr‘r ——. One may show that L D(y, u) = O(|ul), while a computation
shows PD(y, u) = ZZnggjk = 2n. Hence,
Ad(y, x)2 = =2n+ O(ly — x|). (7.4.58)

Using the eiconal equation, (7.4.57) yields
dAd =1—-n+ O(ly — x]).
Substituting in (7.4.56),
Ad* =ad**(n—1+a—1+ 0(y — x)).

Choosing « =2 —n,as d(y,x) = O(|y — x|), we get

1 1
Magmors) = (=)
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7.4.3 Laplacian momenta on a compact manifold

Consider a compact Riemannian manifold (M, g), without boundary. Let xo € M be
a fixed point. Define the Laplacian momenta with respect to xo by

Wi (xo) = / dk(xo, x) Ad(xp, x)+/Igldx1 A -+ ANdx,, k€N,
M

where d(xp, x) is the Riemannian distance starting from x.

By the divergence theorem, o = 0. Integrating in formula (7.4.57) and applying
the eiconal equation for d, we have 1 = vol(M). The first two momenta do not
depend on the point xg.

Proposition 7.18 For any xo € M,
0 < up(xp) < kD"Yvol(M), k> 1, (7.4.59)
where D = dia(M).

Proof. Integrate in equation (7.4.56) and apply the divergence theorem
U1 = (a — 1)/ d“? > 0.
M

Using d < D yields (7.4.59). [ |

7.4.4 Minimizing geodesics

The goal of this section is to show that locally, geodesics are length minimizing.
This will be done using the eiconal equation and the action defined in the previous
sections. We shall use that the geodesics are the projections on M space of solutions

1
of Hamilton’s system of equations with Hamiltonian H (p, x) = - | p|2 By the length

of acurve ¢ : [0,1] > M we mean £(c) = / l¢(s)|ds = / Vv g(c(s), ¢(s)ds.

We shall show that locally, among all the curves that join any two given points, the
geodesic is the shortest curve.

For this, it is useful to use a special frame in which the formulas involved look
simpler.

Lemma 7.19 (Existence of a local orthonormal frame of vector fields)
For a given point p € M, there is a neighborhood U of p and n vector fields
X1, ..., X, onlU such that

&x(Xi, Xj) = 8ij, Vx el
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Proof. Consider an orthonormal frame {E1, ..., E,} C T,M,ie., gp(E;, E;) = §;j.
Let y, be the geodesic such that y,,(0) = p and y,(0) = v, withy, : [0, s;] — M such
that there are no conjugate points between y (0) and y (s1). Denote U = {y,(s); s €
[0,51],v € T,M}. The parallel transport of Ej along all geodesics y,, v € T,M
yields a local vector field Xy on U with Xy (p) = Ex, Vk = 1, n. As the parallel
transport preserves the lengths and the angles, we get g, (X;, X;) = §;;, Vx € U.

|
Proposition 7.20 If{X1, ..., X, } is a local orthonormal frame of vector fields, then
the gradient of a function f is given by
n
V=Y Xi(f) Xk (7.4.60)
k=1
Proof. Using the definition of the gradient,
(Vf, Xi) = Xi(f).
Then,
n n n
V=Y (VN Xk =D (VS X)X = ) Xe(f) X
k=1 k=1 k=1
|
The Hamiltonian in a local orthonormal frame can be written as
1 n
_ 2 2
H(p,x) =5 ;p(xk) : (7.4.61)

If p=4df,
1 & 1 & 1
H(df,x) = 5 Y df (X® =5 3 Xi(f)* = IV fP
k=1 k=1

For f = §, where S is the action along a geodesic c(s) parametrized by arc length,
we have

1 s 1., 1

HdS,x) ==|VS|” = =|¢| .

2 2 2

We may rewrite this as the fact that the action S satisfies the eiconal equation

IVS|? = (X185)% + (X25)% = 1. (7.4.62)

Lemma 7.21 Given a point p € M, there is a neighborhood U of p, such that for
any vector v tangent at U,
ldS ()| < [v]. (7.4.63)
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Proof. Using an orthonormal frame of vector fields in a neighborhood of p,

dS(v) = dS(Z VF X)) = Z VkdS(Xy) = Z VF X1 (S). (7.4.64)

Cauchy’s inequality yields

dS )| < \/kaﬂ\/z Xi(8)? = o] - [VS| = v, (7.4.65)

where we used (7.4.62). [ |

Theorem 7.22. Given two points p and q that are close enough, the geodesic is the
shortest curve connecting p and q.

Proof. Let c be a geodesic joining p and g. We shall assume that ¢ is parametrized
by arc length, i.e., ¢ : [0, L] — M, where L = £(c) is the length of c¢. Consider an
arbitrary curve y with the same endpoints as ¢ and parametrized by the same interval

[0, L]. Then
/dS: / ds. (7.4.66)
c Y

L
0

L
/dS = / dS((s))ds = / (VS, &) ds = |¢PL = L = £(c),
c 0

The left side is

where we used VS = ¢. Using Lemma 7.21, the right side becomes

L L
/dS:/ dS(y(s))ds 5/ lylds = £(y).
14 0 0

Hence ¢(c) < £(y). The identity holds when Cauchy’s inequality becomes the iden-
tity, i.e., when y and ¢ = VS are proportional. This means that the curves ¢ and y
coincide up to a reparametrization. ]

7.5 Exercises

1. Consider X1, ..., X, aframe of orthonormal vector fields on the manifold (M, g).
Define D : X x X — X by DyW = > Vg(W, X;) Xy Show:
k

(i) D is a metric linear connection.
(ii) D is a symmetric connection iff [X;, X ;] =0,Vi, j =1, n.

2. Define the divergence with respect to connection D by divZ = Traceg(V —
DyZ) =Y, §(Xk, Dx, Z). Show that:

(i) divZ = Y, Xx(Z*%), where Z = Y, Z¥X;.
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(i1) For any smooth function f on M, we have divV f = Z X,% f.
k

3.Define D : X x X - X by

1
DyW = Ve(W. X)Xk + 5D g(W., Xg(V. X)Xk, Xj1.
k k,j

(i) Show that D is a linear connection.

(ii) Prove that D has free torsion: Dy W — Dy V = [V, W].
(iii) Is D a metric connection?

(iv) Compute the divergence with respect to D.

4. Show that for every xo € M, the series Y ux(xo) is convergent, where M is a
Riemannian manifold with dia(M) < 1.

5. Do the momenta i depend on the choice of xo?

6. Prove or disprove: Two manifolds of the same dimension with the same momenta
are isometric.

7. Find the action in the case of the Kepler problem defined by the Lagrangian

M
1/xlz-i—x%

L., .
L= z(xlz—l—x%)—i—

where M > 0 is a constant.
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Minimal Hypersurfaces

8.1 The Curl tensor

In Classical Mechanics the dynamics of a flow are described by its rotation and
expansion. The rotation component is given by the curl vector, while the expansion
is described by the divergence function. The classical formulas involving rotation
and expansion in the case of a function ¢ € F (R?) and a vector field V € X (R3) are

curl(grad ) =0 and div(curl V) =0. 8.1.1)

The first of the above formulas shows that gradient vector fields do not have rotation
and the latter says that the curl vector field is incompressible (zero expansion). On
Riemannian manifolds the cur! of a vector field is not a vector field, but a tensor.

Definition 8.1 The curl of a vector field X on a Riemannian manifold (M, g) is
defined as a 2-covariant antisymmetric tensor A with the components A;;j given by

Aij =X,‘;j—Xj;,'. (8.1.2)
Using the definition of the covariant derivative one may show that (see Exercise 1)

aX; 09X
Al-jza—’——f. (8.1.3)

X j 0x i
The next proposition shows that the first formula of (8.1.1) takes place on manifolds.

Proposition 8.2 If X € X (M) is a vector field,

X =grad¢ < curl X =0.

.0 a
Proof. Let X = grad ¢. Then X* = gk % orX; = % Equation (8.1.3) yields
J 1

0X; 09X, 0% 9%

(curl X)jj=——— = —
0x; 0x; 0x;0x; 0x;0x;
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. . 0 Xk 0X;
Reciprocally, consider a vector field X such that curl(X) = 0. Then T
Xj Xk
Hence the one-form w = ) Xy dxy is exact. This means there is a function f, defined
of . .
locally, such that ® = df = ) %dxk. Therefore X; = ™ or X/ =3 ghi %,
ie, X =grad f. [ ]

The following result is an analog of the second formula of (8.1.1).

Proposition 8.3 We have:

Trace curl X =0, VX e X(M).

Proof. _
Trace curl X = gij(Xi;j - Xj.i) = X]] — Xfi =0.
|
The following result deals with a Bianchi type identity.
Proposition 8.4 The cyclic covariant derivative of A = curl X is zero,
Aijik + Ajki + Agij = 0. (8.1.4)
Proof. Use the definition of the curl and cancel the terms in pairs. [ |

The following proposition provides a global, invariant written formula for curl.
The Riemannian metric is denoted by ( ), and its associated Levi-Civita connection
by V.

Proposition 8.5 If A = curl X, we have
AU, V)= (VyX,U)—(VyX,V) YU,V e X(M). (8.1.5)
Proof. Forevery U,V € X(M),
AU, V) = AUV = (Xij — X;:)U' VI = (Vy, X)U' VI — (V. X),;U'V/

= (Vy, X, U)V/ — (Vy, X, U)U' = (Vyig, X, U) = (Vyig, X, V)
= (VyX,U) — (VyX, V).

Lemma 8.6 Let A = curl X, where X € X(M). Then we have
AU, V)=V(X,U)-UX,V)+(X,[U,V]). (8.1.6)
Proof. Since V is a metric connection
VX, U)=(VyX,U) + (X, VyU),

UX,V)=(VyX,V)+ (X, VyV).
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Using the symmetry of V, subtracting we obtain
VX, U)-U(X, V) =AU, V)+ (X, [V,U]),

which is equivalent to (8.1.6). |

The following result makes the relation between the curl, Levi-Civita connection,
and the Lie derivative.

Theorem 8.7. If A = curl X and V is the Levi-Civita connection on (M, g),
AWU,V)=2(VyX,U)— (Lxg)(U, V). (8.1.7)

Proof. From the Koszul formula for Levi-Civita connection, we have

UAVy X, U) =V(X,U)+ XU, V)-U(V, X)—(V,[X, U)X, [U, VI)+(U, [V, X]).

Lemma 8.6 yields

2(Vy X, U) =AU, V)+ XU, V)—(V,[X,U]) + (U, [V, X])
=AU, V)+X(U,V)—(V,LxU) - (U, LxV).

Using
(Lxge)(U, V) =X({U,V) = (LxU,V) = (U, LxV)

yields
2(VyX,U) =AU, V)+ (Lxg)(U,V).

Corollary 8.8 If X is a Killing vector field (i.e., Lxg = 0), then
(curl X)(U, V) =2(Vy X, U).
Corollary 8.9 If X is a vector field provided by a gradient (i.e., X = grad ¢), then
(Lxg)(U, V) =2(Vy X, U).

Definition 8.10 Let f € F (M) be a function. Define the torsion of f by Ty : X x
X —- X,
Tr(U,V)=V(HU-UHV. (8.1.8)

As Ty is F(M)-linear in each argument, it follows that T’ is a 2-covariant tensor.
Proposition 8.11 The torsion has the following properties:

) Tr(U,V)=—-Tp(V,U).

(ii) Trace Ty =0.

@iii) T = fTh+hTy, Y f, heFM).
(iv) Tr(U,V)=0,YU,V = f is constant.
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Proof.
@) Tr(U,V)=—(UH)V = V(HHU) =TV, U).
(ii) Trace Ty = g/ T;(3;,9;) = g ((3: £)d; — (3, £)9;)
=grad f —grad f = 0.
@ii) Tep(U, V) =V(fMU -U(fh)V

— FVWU 4+ hV (U — FUMV = hU(f)V
- f(V(h)U _ U(h)v) +h(V(f)U — U(f)v)
= fTW(U. V) +hTs(U, V).

(iv) Taking U and V linear independent vector fields, yields V(f) = U(f) = 0, for
any vector fields U and V. Hence f is constant. ]

The following result shows that curl is not F(M)-linear in X. However it is still
a tensor, because it is F(M)-linear in the arguments of U and V, when considering
curl(X)(U, V).

Proposition 8.12 Let f € F(M) and X € X(M). Then
curl(fX) = feurl(X) + (Ty, X). (8.1.9)
Proof. Denote A = curl(X) and Ay = curl(fX). Applying Lemma 8.6 yields

AU, V)=V(fX,U)-U{(fX,V)+{(fX, U, V]
=VINX.U)+ VX, U) - fUX, V)= U V) + f(X U, V])
= F(VIX.U) = U V) + (X LU, VD)) + VDX, U) = UGD(X, V)
=fAWU, V) +H (X, V(HU -UHV)=fAWU,V)+ (X, T U, V)).
|
Proposition 8.13 For any vector field X on a Riemannian manifold (M, g),
Trace(Lxg) =2div X. (8.1.10)
Proof. Taking the trace in Theorem 8.7,
Trace A =2 Trace(V — (Vy X, V)) — Trace(Lxg).

Proposition 8.3 yields Trace A = 0. Using the definition of the divergence as a trace,
we obtain (8.1.10). |

8.2 Application to minimal hypersurfaces

Let H C M be a hypersurface given locally by (/’)_1{0} = {x € M|¢(x) = 0}. Denote
the gradient vector field by X = V¢. The unit normal vector is
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_ X _ Ve
X Vel

1
Denote f = m Then N = f X, and for any vector field V tangent to H,

VyN =Vy(fX)= fVvX +V(f)X,
where V is the Levi-Civita connection on (M, g). Therefore, for any U € X (H),
(VvN, U) = f(Vy X, U) + V()X U).

As X = V¢ is normal to H, then (X, U) = 0. Hence

(VyN,U) = f(VyX,U), YU,V eX(H).
Corollary 8.9 yields

(Lxg)(U,V)=2|X|I(VyN,U), VYU,V eXH). (8.2.11)

Recall the Weingarten map, which is a tensor § € 7! (#) defined as

(S(V),U)=—(VyN,U), VYU,V eXH). (8.2.12)
Then (8.2.11) yields

—2(X[(S(V),U) = (Lxg)(U, V). (8.2.13)

Definition 8.14 If {ey, ..., e;—1} C TpH is an orthonormal frame, the mean scalar
curvature of H at point p is given by:

n—1

1 1
ap = 1 ;(S(ei), ej) = p— TraceS. (8.2.14)
=
Using (8.2.13) we get
, 8.2.15
ap = 2(n — 1) ||X|| Z( x8)(ei, e;) ( )

In order to find a formula for the right-hand side of (8.2.15), we shall complete
n—1

Z (Lxg)(ej,eij)uptoTrace Lxg onthe manifold (M, g). In order to perform that,
i=1

we need the following result.
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Lemma8.15 IfN = fX and f = | X|| ", then

(Lxg)(N, N) = —2 5. (82.16)

f
Proof. Using Lx(fX) = [X, fX]= X(f)X, we have

(Lxg)(N,N) = X(N,N) —2(LxN,N) = —2(LxN, N)
—2ULx(fX), fX) = =2X(H)X, fX)

X(f)
= 2f X(HIXI? = —2=——.
f
|
Theorem 8.16. The following relation takes place:
=— div Njp.
ap p— iv N
Proof. Let{eq, ..., e,—1} C TpH be an orthonormal basis. Choose e, = N,,. Then
{e1,...,en—1, ey} is an orthonormal basis in T, M. Then at point p,
n n—1
Trace(Lxg) = Y (Lxg)(ei,ei) =Y (Lxg)(ei i)+ (Lxg)(N, N).
i=1 i=1
Using Lemma 8.15 and Proposition 8.13, we have
2divX = =2(n — Da, | X]| = 21X X (f).
This can be written also as
—(fdivX +X(f)) = (n— Day.
As the left side is equal to —div(fX) = —div N, we get
divN
a, = — .
P n—1
[ |

Proposition 8.17 Let (M, g) be a Riemannian manifold and H C M be a hypersur-
face with the unit normal vector field N. The following statements are equivalent:
1) H is a minimal hypersurface of M,

2) div Nygy = 0.

In the following we provide a few examples.
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Example 8.2.1 Consider M = R" and H = {x, = 0}. The normal vector field is
N=e,=(0,...,0,1)anddiv N = 0. Hence H is a minimal hypersurface in R3.

Example 8.2.2 Let S"~! be the n — 1-dimensional sphere in R". The unit vector field

n
X; n—1
Ny = —’axl. is normal to S" ' and has div N = ——. (See Exercise 5.) Hence
Z,.ZI x| x|

the mean scalar curvature of "~ is |a| = "=} = 1.

Saddle Catenoid Helicoid
Figure 8.1: Examples of surfaces.

Example 8.2.3 Consider the saddle surface H = ¢ {0}, ¢ (x, y, z) = xy — z. The
unit normal vector field is

VoI N2+ 32+ 1 a2+ 32+ 1 a2+ 241
Then
0 0 0 -1
divN=——2 4% = + 2
0x /x2+y2+1 ay\/x2+y2+1 az\/x2+y2+1
—2xy -2z

RO R o D (R S Dk
Hence the mean scalar curvature is

Z
T Ur

Example 8.2.4 Consider the catenoid parametrized by x = coshu cosf, y =
coshu sinf, z = u, for0 < u < sinh’l(l) and 0 < 0 < 2m. The coordinate
tangent vector fields are

X1 = (sinhu cos 0, sinhu sinf, 1), X, = (—coshu sind, coshu cos, 0).

The unit normal vector field is

. X1 X Xp _ (coshu cos 8, coshu sinf, — sinh u cosh u)
X1 x Xa| cosh? u '
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Using x = coshu cosf, y = coshu sin6, z = u, x4+ y2 = cosh? u, sinh u coshu =

coshuy/1 4 cosh? u = /(x2 + y2)(1 + x2 + y2), we obtain

x, v, = (2 + y2) (1 + x2 +37)
x2+y

N =

A computation shows that div N = 0 (See Exercise 6). Hence the catenoid is a
minimal surface in R3.

Example 8.2.5 Consider the helicoid parametrized by x = vcos¢, y = vsing, z =
¢, for|v| < 1and0 < ¢ < 2m. Using the tangent vector fields X1 = (cos ¢, sin ¢, 0),
X7 = (—vsing, vcos @, 1) we construct the unit normal

_ X1 xXo  (sing,—cos¢,v) (y, —x, x2 4+ y?)
X1 x X3 V1402 VI +22 402 +)2)

By computation divN = 0, see Exercise 7. Hence the helicoid is a minimal surface

in R3.

Proposition 8.18 Consider the surface given as a Monge patch (x,y) — (x,y,
f(x, y)). The surface is minimal in R3 if and only if f satisfies the equation

1

5(8§f+8§f)\/ O )2+ @y 2+ 1= (3 )27 f+(Dy £)>0] f+205 f 0y fDxy f.
(8.2.17)

Proof. The surface is given by ¢~ 1(0), for ¢ (x, y, z) = f(x, y) — z. We have V¢ =

(0 f, 9y f, —1) and |Vg| = \/(8xf)2 + (E)yf)2 + 1. The surface is minimal if and
only if div N = 0, where

divN=div< divVe + ¢>( (8.2.18)

1
|V¢|V¢) |V¢| |V¢|>

A computation shows

1 -2
ax(W) |V¢|2( f 8f+8f axyf)

1y -2 )
ay(W) = pr (0 BT+ ).

Therefore

Vo(ig7) = 07 (fgr) + 070 (15g7) ()

|V¢|2((a P02 f + @y 1) 02 f +20,f -3y f - vaf)

Substituting in (8.2.18) and using divVe = 07 f + 95 f, we get (8.2.17). [}
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m
Corollary 8.19 Consider the function f(x,y) = Zakxkymfk with ay,, ag # 0.
k=0
Then the surface (x,y) — (x,y, f(x,y)) is minimal in R> if and only if m = 1. In
this case f(x,y) = apgy + axx and corresponds to a plane.

Proof. We shall investigate the order of magnitude of both sides of equation (8.2.17).
Using a,f = O(x|"™"). ayf = O(y"™"). a7f = O(x"), 8f =
O(Iy["™?) we get

JO?+ @)+ 1= 0(x, [y,

and the left side of (8.2.17) is O (|x|?" 73, |y|*" 7).
Using
@)% 0 f = 0P 0(x"™2) = 0(x "™,
@y )7 05 f = 0y Dyo(y"?) = 0y
the right side is O (Jx|>"~*, |y|>"~*). For m = 1 the left and the right sides have the
same order of magnitude. Using Exercise 8, one obtains that the surface is a plane.
|

8.3 Helmholtz decomposition

This section is an application of the formulas regarding curl and div. We shall show
that a vector field X on a compact Riemannian manifold can be uniquely decomposed
as a sum of two vectors Y and Z, where Y is the rotation component and Z the
expansion component.

Theorem 8.20. If X is a vector field on a compact Riemannian manifold (M, g), there
are two vector fields Y, Z on M such that

X=Y+72Z,
withdivY = 0 and curl Z = 0. Moreover, the decomposition is unique.
Proof. Existence: Denote w = div X and let ¢ be the solution of the elliptic equation
A¢p =w on (M, g).
Take Z = Vo and Y = X — V¢. Then curl Z = curlV¢ = 0 and divY =
w—A¢p =0.
Uniqueness: Consider two decompositions:

X=Y1+Z1=Y2+ Z;.
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As curl Z; = 0, it follows that there are two functions ¢; such that Z; = V¢,
i = 1, 2. Subtracting, we get

Y2 =Y = V(g1 — ¢).
Denoting U = Y, — Y| and ¢ = ¢ — ¢», we obtain
divU =divVe.

AsdivU =divY, —divY; = 0, we get A¢ = 0. By Hopf’s lemma we have ¢ =
constant, or ¢; — ¢ =constant. Taking the gradient yields Z; — Z> = 0. Then we
have also Y1 = Y, and the decomposition is unique. [ ]

We note that div X = div Z and curl X = curl Y. This can be interpreted as a
decomposition in two vector fields Y, Z, where Y contains the rotation and Z contains
the expansion.

Example 8.3.1 Let X = (x| — x2)0x, + (X1 4 Xx2)0x,. Then the Helmholtz decompo-
sitionis X =Y + Z, with Z = x10x, + x20x, and Y = —x20x, + x10yx,.

8.3.0.1 The non-compact case

If the manifold is not compact, the Helmholtz decomposition is not unique. Let
ai(x1), arx(xp), b1 (x1), bo(x2) be smooth functions. Consider the vector field

X = (az(m)/bl(m)dm)axl + (bl(m)/az(m)dm)a)cz-

Then div X = azb; — biap = 0. Let ¢ be a harmonic function on R2, for instance
¢ (x1,x2) = oxy + Bxo + yx1x2 + 6,
with «, 8, y, § € R arbitrary constants. Then
Z=V¢ = (a+yx2)dy + B+ yx1)o,

is divergence free and ¥ = X — Z is curl free.

8.4 Exercises

1. Show that for any vector field X € X' (M) we have

0X; 0X;
Xig = X5 = g " om
J i

2. Show that for any vector field X on a Riemannian manifold M,

2X;.j = (Lxg)ij + (curl X)i;.
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3. A vector field X is called geodesic if Vx X = 0. Show that if X is a Killing vector
field provided by a potential, then X is geodesic. (Hint: Use (VxX)q = X“X 4.5 and
Exercise 1.)

4. (i) Show that

(Lxgij = Xiyj + Xjii.
(ii) Taking the trace on both sides, show Trace (Lxg) = 2div X.
(ii1) Show that any Killing vector field has zero divergence.

n

5. Consider the unit vector field N (x) = E |x—i|8xl. on R"\{0}. Show that
by
i=1

n—1

divN(x) = ]
X

6.Let N = fV be avector field, with f = 1/(x>+ y?) and consider the vector fields
V =y, —/&2+y)(1 +x2 4 y2).

(i) Show fdivV =2f.

(i1) Show V (f) = =2 f.

(iii) Use the formula div(fV) = fdivV 4+ V(f) to show that divN = 0.

7. Consider f = ((1 +x2+ yz)(x2 + yz))fl/2 and the vector field on R3 given by
X = ydy — xdy + (x + y?)d,. Show the following:

i) divX =0.

(i) X(f) = 0.

(i) Using div(f X) = fdivX + X (f) prove that div(fX) = 0.

8. Show that the function f(x,y) = apy + ajxy + axx is a solution for equation
(8.2.17) if and only if a; = 0.

9. Show that:
(i) Ellipsoids, paraboloids and hyperboloids are not minimal surfaces in R.

N
(ii) Consider f(x, y) = Z a; jxi y/. The function f (x, y) is a solution for the equa-
i,j=0
tion (8.2.17) if and only if N = 1.
(iii) The only minimal surfaces given as (x, y) — (x, y, f(x, y)) are planes.

10. Let (M, g) be a hypersurface in E"™! = (R"*1), §;; and let S denote the Wein-
garten map. Show that

Ric(X,Y) = g(SX,Y) - TraceS — g(SX, SY), VX,Y € X(M).
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Radially Symmetric Spaces

9.1 Existence and uniqueness of geodesics

Consider the Hamiltonian on the Riemannian manifold (M, g),

Lo 1
H(x, p) = Elplg=§g'pipj, 9.1.1)
oH oH . . . . .
and let VH = (8—, 8_) With this notation, the Hamilton system can be written
X p

as only one equation
y=JVH(y) 9.1.2)
where y = (x, p) and J?> = —I,,. Using the Hamiltonian equation p = % (see

Chapter 6), the initial condition becomes

yo = (x0, po) = (x0, V),

where x is the initial point and v is the initial velocity.
Denote f(y) = JVH(y). The existence and uniqueness problem for geodesics
with initial condition yyp = (x¢, v) becomes:

Under what conditions does the Cauchy problem

y=f©), y0) =y, 9.1.3)

have solutions, and when is the solution unique?

There are a few theorems that handle this problem. They are based on the regularity of
the function f. In the present case this is reduced to the smoothness of the Riemannian
metric (g;;).

Existence of geodesics

In the following “| |" denotes any norm on R". The following result is a particular
case of Peano’s existence theorem and the proof can be found in Hartman [20]:

||v
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Theorem 9.1. Denote B(yg, b) = [yo — b, yo + b] C R™. Assume the function f(y)
is continuous on B(yo, b) with the bound | f (y)| < M. Then there is at least a solution
y = y(t) for the system (9.1.3) on [ty, to + b/ M].

19g/

oH
When f(y) = JV H (y) the function f is continuous if and only if 2 a—p,-pj
X X

is continuous. This means that the metric g’/ is differentiable with continuous deriva-
tives (i.e., continuous Christoffel symbols). We arrive at the following result:

Proposition 9.2 Consider xo € M such that g/ € C'(B(xo, b)). Given v € Ty, M,
there'is a > 0 and at least one geodesic ¢ : [to, to + a]l — (M, g) with ¢ (ty) = xo
and ¢(ty) = v.

Example 9.1.1 (Hartman) Consider the Riemannian metric

1+y*30
(&ij) = <0 |+ y4/3

. 08ii . .
on R2. The functions % are continuous, i = 1,2. Then there are at least three

geodesics emanating at xo = (0, 0) with the same initial velocity v = (1, 0).

By the above theorem we have at least a geodesic. We shall find three distinct
geodesics. The Lagrangian and the Hamiltonian are

1 o
L= + 3G+ 57,

H— 1 1 2
= Ew(m + p2).
. oH
As H does not depend on x, p; = s = 0 = p;1 = k constant. On the other
X
oL
hand pp = — = (1 + y4/ 3 y and using the fact that H is preserved along the

ay
solutions (0 H /dt = 0), we write H = %Cz. This yields

k2 +0+ y4/3)2 02 Cz(l + y4/3).

Solving for y,

dy  JCH1+y*B3) — k2
=4
dt 14 y4/3

The equilibrium solution verifies C%y*3 = k? — C?. Choosing C = k = 1, we get
y(t) = 0. From one of the Hamilton’s equations

9.1.4)

oH _ P1 _
apr 1+ 43

We obtain the geodesic ¢ () = (¢, 0) with ¢ (0) = (0, 0) and ¢ =(1,0).
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To find more geodesics we apply the separation in the equation (9.1.4) with C =
k=1,
d 2/3
@4y
dt 1+ y43
Integrating
/y72/3dy +/y2/3dy ==+r+Cy.

Using y(0) = 0, the constant of integration vanishes
1/3 5/3 5
Sy’/7 +y =:t§t. 9.1.5)

This gives two distinct solutions for the equation (9.1.4) written implicitly. We can
find ¥(0) by implicit differentiation

vy 4y = 41

and hence 23
) +y</°(0)
3O) = =

1+ y43(0)

The x-component is given by

PR 1
- ]+y4/3 - 1_;’_y4/3'

Then the initial velocity is X (0) = 1. Hence we have obtained three geodesics which
start at xo = (0, 0) with the initial velocity v = (1, 0):

(1) = (1,0),
V(1) = (x£(0), y£ (1)),

where

! ds
x+(1) =/ a3,
0 14y, (s)

and yy are the solutions of the equation (9.1.5). As the function y — 5y!/3 4 /3
is symmetric about the origin, the solutions y_(¢) and y, (¢) will be symmetric too.
Hence the geodesics {_ and v start tangent to the x-axis and point towards opposite
semiplanes.

Uniqueness

The following result is known in the theory of ordinary differential equations as the
Picard-Lindeleof theorem. It holds in more restrictive conditions than the ones stated
below (see Hartman [20], chapter ii). It is a useful tool in investigating the uniqueness
of solutions.
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Theorem 9.3. Denote B(yg, b) = [yo — b, yo + b] C R™. Assume the function f(y)
is C! (B(yo, b)) with the bound | f (y)| < M. Then the system (9.1.3) has a unique
solution y = y(t) on [ty, to + b/ M].

9ol ark
The function f(y) = JVH(y) is C' iff 8 is C!, or — is continuous, i.e., the
8xr Bx,
0
. . 1 I} . .
Riemannian tensor R; ; = py ij - —F k+Z Flr ik~ Fi’k) is continuous.

Then Theorem 9.3 yields the followmg result:

Proposition 9.4 Consider xo € M such that g'/ has a continuous Riemannian tensor
R;.k in a neighborhood B(xq, b) of xo. Given v € TyyM, there is a > 0 and only one

geodesic ¢ : [ty, to +a]l —> (M, g) with ¢ (ty) = xo and q'ﬁ(to) =.

Example 9.1.2 Consider the Riemannian metric

1+y?30
(gij) = <0 |+ 23

on R2. There are at least two geodesics starting at (0, 0) with initial velocity (1, 0).

8 ..
This example is very similar to Example 9.1.1, but the functions 8t are not con-
tinuous at y = 0. In this case we should be able to find explicit formulas for the

1
Eryzﬂ(p% + p3) and the Lagrangian

geodesics. Using the Hamiltonian H =
1 2/3y (22 .2 . ..
L = —(1 4 y7°)(x* 4+ y°) we see in a similar way that p; = k, constant and

p2 = (1 4+ y?/3)y. The conservation of energy yields
K24 (14 y29)%5% = C2 (1 + %),

which becomes for C =k =1,

dy '3
pri S 9.1.6)

The equilibrium solution is y = 0. The corresponding x-component is x(¢) = ¢. The
first geodesic is ¢ (t) = (t, 0). Separating and integrating in (9.1.6) yields

3
Sy 4 Syt = 4y 9.1.7
Yy O-1.7)
Implicit differentiation yields
. +y'7(0)
)= ——>——=0

Denoting u = y%/3 in (9.1.7) and choosing the positive sign for ¢,
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242 4 _0
u u—-t=
3

4 \1/2
with the positive solution u = (1 + §t> — 1. Hence

4 112 3/2
yo = ((1+350"=1)" (9.1.8)
Th tis % (1) ! d hence %(0) = 1. Int
€ xX-component 1S x = = an ence x = 1. Inte-
b L+ 230 1+ 4012
grating
td 3 4102
x(1) =/ — = —((1 + —z) - 1). (9.1.9)

The second geodesic which starts at (0, 0) with the initial velocity (1, 0) is ¥ (¢) =
(x(t), y(t)), with x(¢) and y(¢) given by relations (9.1.9) and (9.1.8).

9.2 Geodesic spheres

If in Picard-Lindele6f Theorem 9.3 we denote a = b/ M, then a depends on the initial
condition Yyy.

Lemma 9.5 One may choose a = b/M as a continuous function of yy.

Proof. We shall show Ve > 0,35 = §¢ > 0 such that

Iyo — Yol <8 = la(yo) — a(yp)| < €.

Consider an interior tangent sphere B(y(,, b') C B(yo, b). Then the distance between

the centers is the difference of radii |yo — yy| = |b — b’|. Let M’ be an upper bound

for | f| on B(y;, b'). Aswehave M > sup |f(y)| = sup |[f(y)|, we may
y€B(y0,b) yeB(y;.b)

choose M’ = M. Take § = e M and consider |yp — yy| < 8. Then

b/
M

b =D 1yo =yl - 5 €M
T M M M~ M

, b
la0) = a0l = |77 -

Proposition 9.6 Consider in Proposition 9.4 only velocities |v| = 1. Then one may
choose a > 0, uniformly with respect to v.

Proof. Choose yp = (xg, v) in Lemma 9.5 with x( fixed. Hence yy belongs to the
compact set yg € {(xg, v); v € TyyM, |v| = 1}. On this set the continuous function
a(yo) will reach a minimum ag > 0, which depends only on x( and it is independent
of v. [ ]
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We shall denote the minimum given by the above proposition by a(xg) = ag. For
any 0 < ¢ < a(xp) consider all the geodesics emanating at the point xp with unit
initial speed. If the geodesic is parametrized by arc length, the velocity will be unitary
along the geodesic.

Definition 9.7 The geodesic sphere centered at xo with radius t is defined by
S(xo, 1) = {y@); y : [0, a(xg)) = M, y(0) = xq, y unit speed geodesic},
with 0 <t < a(xp).

As the geodesics are locally length minimizing curves, the Riemannian distance is
measured along the geodesics and it is equal to the arc length parameter ¢,

d(xo, y (1)) = length(y) = 1.
Hence the geodesic sphere can be written as
S(xp, 1) = {x € M; d(xp, x) = t}.
Consider the vector field, locally about xg, given by
Xy =v@), t € [0, a(xp)).
X is called a geodesic vector field.
Proposition 9.8 If X is a geodesic vector field, curl X = 0.

Proof. 1If X is geodesic vector field, it is provided by a gradient X, = VS(x), where S
is the action associated with the geodesics. By Proposition 8.2, curl X = curl VS =
0. ]

x=c(t)

S(x,.0)

Figure 9.1: The geodesic sphere S(xg, ).

Lemma 9.9 (Gauss ) Any geodesic emanating from a point xo meets the geodesic
sphere S(xo, t) perpendicularly.
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d(xq, x)?
Proof. Using the formula for action S(x, t) = %, a computation shows
. d(xo, y (1))
7(0) = Xy = VS 0).1) = =2V o, v (1),

Assuming arc length parametrization, d(xo, y (t)) = t. Hence
Xy = Vd(xo, y(1)).

LetS(xg, 1) =d -1 (¢), where d denotes the distance. This yields an X, ;) unit normal
vector field to the geodesic sphere. [ ]

The following result contains a formula for the mean scalar curvature of geodesic
spheres.

Proposition 9.10 Let x € S(xg, t) be a point on the geodesic sphere of radius t. Then
the mean scalar curvature

_ Ad(xo, %)
T on-—1

o (x) (9.2.10)

|x|=t

Proof. From Gauss’s lemma, the geodesic flow is perpendicular to the geodesic
sphere. If it is parametrized by arc length, it is unitary. Hence the unit normal vector
field is Ny = X, = Vd(x¢, x) and using Theorem 8.16 yields

divN _ div Vd(xg, x) . Ad(xq, x)

o = =
n—1 n—1 n—1

Definition 9.11 Let ¥ be a compact hypersurface in R"™. Then the total mean scalar
curvature of X is

otT=/ a(x)doy. (9.2.11)
)

Consider the compact manifold M = f(S"), where f : " — R"*! is an isometric
immersion. The manifolds M and S" have the same intrinsic structure but different
second fundamental forms with respect to R”*!. Denote by A and S the North and
the South poles of S*. Let xg = f(N), x; = f(S) be the images of the poles through
the isometry f. Consider geodesic spheres S(xg, ) on M centered at xo of radius
t € [0, 2rr]. The divergence and Fubini’s theorem yield

2
0:/ a(x) dvuy =/ (/ a(x) dox> dt.
M 0 S(x0,7)

Proposition 9.12 There is t € (0, 21) such that the total scalar mean curvature of
S(xo, t) vanishes, ar = 0.

We arrive at:
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Definition 9.13 A Riemannian manifold (M, g) is called radially symmetric if for
any xo € M, the geodesic sphere S(xq, t) centered at xy with radius t has constant
scalar mean curvature.

For a radially symmetric Riemannian manifold the scalar mean curvature of the
geodesic sphere S(x, ) depends only on the radius 7, which is the distance from the
center xp.

From Gauss’s Lemma 9.9, the unit normal vector field to the geodesic sphere
S(xp, t) is the vector field

N(x) = c(1),
where ¢ : [0, t] — M is the unit speed geodesic which joins xo = ¢(0) and x = ¢(¢),
t < a(xp). For any x € S(xg, t), we may choose the geodesic for which x = c(¢).
A computation provides the following sequence of identities for the scalar mean
curvature of the geodesic sphere:

a(x) div N (x)

n—1

1
Cdiv i)

= — ! divVS(c(t))
n—1

;AS(C(I)),
n—1

where S(c(t)) denotes the action between xg and c(¢). Hence we arrived at the fol-
lowing result.

Proposition 9.14 Let (M, g) be a Riemannian manifold. The following are equiva-
lent:

1) (M, g) is a radially symmetric space,

2) div ¢(t) depends only on t,

3) AS(c(t)) depends only on t.

Example 9.2.1 The Euclidean space (R", é;;) is radially symmetric. In this case the
geodesics are lines through x given by

s s
c(s) = (xé + ;xl,...,x(’} + ;x"),

with c¢(t) = x. The velocity vector is

. 1 1 n 1
c(s)—?(x R 1 )—?x.

Because the geodesic is unit speed, t = |x|. For any 0 < s < t, we have
. . 1 . " i 8 n
divc(t) = —div x'— = -,
t ox! t

i=

i.e., depends on t only.
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Lemma 9.15 Let S be the action between xo and x within time t. Let d = d(xg, x)
denote the Riemannian distance. Then

1
AS = —(dAd ~1).

Proof.
d? 1
AS = A(E) = A

= %(ZdAd —2|Vd|?)

= ;(d Ad — 1),
where we used the eiconal equation |Vd|> = 1. [ ]

42

Example 9.2.2 On the circle S' the Laplacian is Agi = I3 and the distance is
d = s, where s denotes the arc length. Then Agi(d) = 0, and hence Lemma 9.15
yields Agi(S) = —%, i.e., it depends only on t. Hence S' is a radially symmetric
space.

The volume function about a point x

Let (M, g) be a Riemannian manifold with the volume element dv = ,/|g;;| dx1 A
-+« Adxy. If L denotes the Lie derivative, we have shown in Proposition 2.7 that for
any vector field X € X (M), we have Lxdv = —(divX) dv. If X is the vector field
along a geodesic flow defined by the geodesics emanating at the point xo, i.e.,

Xeny =¢(t) = cx (%)

with ¢(0) = xg, then

Ledv = —(divé)dv
= (n— Da(c(t))
= AS(c(1)),

with « the scalar mean curvature of the geodesic sphere centered at xg.

Inspired by the above formula, we shall define the following volume function
associated with a geodesic flow on (M, g) emanating from a point xg.

Definition 9.16 A function v(t) is called a volume function along a geodesic flow
parametrized by t if it verifies the initial value problem
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dv(t) lAS( (@)
= = X0, X, T)v(T),
dt 2 0

lim "?v(z) = 1
t—0

where c¢(0) = xo and c(t) = x, with c(s) geodesic. S(xo, x, T) stands for the classical
d? (xo, x)
2t

Example 9.2.3 The volume function on R" about any point x.

action between xg and x within time 7, i.e., S(xg, x, T) =

n
From Example 9.2.1 we have AS = —div ¢ = ——. The volume function about any
T

point xo satisfies the equation
dv n

— = ——0.
dt 2t
Separating and integrating between v(tg) = vo and v = v(t), yields

v dv n (Tdt v T0\"/2
—=—= —<:>1n—=ln(—) ,
V0 v 2 70 T ) T

1
and hence v(t) = votg/zn—/z. The boundary condition limy\ o /2v(t) = 1 yields
T
1
U(T) = W

The volume function will play an important role in finding heat kernels on radially
symmetric spaces. In this case, there is a function A(7r) = %AS (x0, x, T) and the

volume function will be oy
v(t) = v(ro)effo @) "

We shall construct the heat kernel on radially symmetric spaces. The method yields
exact solutions.

9.3 A radially non-symmetric space

We shall show that the sphere S? with the induced metric from R3 is not a radially
symmetric space. Consider the spherical coordinates defined on S? without the North
and South poles

h(p, ¥) = (cospcos, singcosyr, siny), 0 <¢ <2m, —% <Y < %
The tangent vector fields

0p = — sin¢ cos Y 9y, + cos ¢ cos Y dy,,
dy = —cos@siny dy, — sin Y cos Y Oy, + COS Y Oy,

define the coefficients of a Riemannian metric
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8o9 = (09, 0p) = cOS” U, gy = gyg = (39, dy) =0, gyy = {3y, dy) =1,
with the inverse metric

1
¢ _
§ cos2 1y’ §

D= Vb =0, gV =1,

=8
Hence the Laplace-Beltrami operator on S? is

Ag = — 95 — 3 +tan ¥ dy. 9.3.12)

cos2 yr
Let M(cos ¢ cos ¥/, sin ¢ cos ¥, sin {) be a point on the sphere, see Figure 9.2. We
shall compute the Riemannian distance d = d(M, A) between the points M and
A(1, 0, 0). At the point A we also have ¢ = ¥ = 0. The distance d is the arc length
between M and A of a great circle. As the sphere has unit radius, then d = 6, where
0= m(ATO\A), see Figure 9.2.

N(0,0.1)

“NA(1,0,0)

S0.0-1)

Figure 9.2: The sphere S? and the point M (cos ¢ cos ¥, sin ¢ cos i, sin ).

—_— — .
From cos6 = (OM, OA) = cos ¢ cos y we obtain
d(M, A) = 6 = arccos(cos ¢ cos ¥r).

In the following we shall compute Ad. In order to do this we need to compute the
following derivatives:
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cos ¢ sin 5 cos ¢ cos Y sin? ¢
Iyt = ’ 90 = 2 2 J3/2°
V1 —cos2¢ cos (1 — cos? ¢ cos? yr)3/
52— cos ¢ cos Y sin® ¥
7 (1 —cos2¢ cos?y)3/2
Then
1 cos ¢ cos ¥ sin® ¥
AO = —
cos2 (1 — cos? ¢ cos2 yr)3/2
cos ¢ cos ¥ sin® ¢
(1 — cos? ¢ cos? yr)3/2
siny cos¢ siny (1 — cos? ¢ cos? yr)
cos Y (1 — cos2 ¢ cos2 )3/2
ia2
(1 - cos’ ¢ cos? 1//)3/2A9 = —cos ¢ cos w(sin2 ¢+ % cos? ¢ cos w)
cos
= —Cos ¢ cos w(sin2 ¢+ sin? v cos? ¢>
= —cos ¢ cos w<1 — cos? ¢+ sin’ v cos? ¢)
= —cos¢ COS¢<1 — coszqﬁ (1 — sin? W))
= —Cos ¢ cos 1p<1 — cos? ¢ cos? W)
AD = — cos ¢ cos __ cosf
V1 —cos? ¢ cos V1 —cos?6
0
= —Cf)s = —cot6.
sin 0

We have arrived at the following result.

Proposition 9.17 Consider the sphere S* with the induced Riemannian metric from
R3. Let A be a point on the sphere S*. Let d denote the distance on S* measured from
the point A. Then

Ad +cotd =0.

Now Lemma 9.15 yields
1 1
AS = ;(dAd -1 = —;(dcot d+1),

which does not depend only on time 7. Hence S? is not a radially symmetric space.

9.4 The Heisenberg group

9.4.1 The left invariant metric

The 3-dimensional Heisenberg group H; may be realized as R® = Ri x R; endowed
with the group law
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(x,0)op (x', 1) = (x + x', t + 1/ + 2x2x] — 2x1x5%). (9.4.13)

The vector fields
X| =0y +2x20;, Xo=0x, —2x10;, T =0 (9.4.14)

are left invariant with respect to the group law (9.4.13) and generate the Lie algebra
of Hj. The elliptic operator

1
Acas = E(X% + X3 +177)

is called a Casimir operator. We shall construct a left invariant Riemannian metric /1
on Hj in which the vector fields (9.4.14) are orthonormal. For more about Lie groups
theory, see [1].

Proposition 9.18 Consider the Riemannian space (R, h), where the metric coeffi-
cients are given by
1+ 4x§ —4x1xy —2x2
hij = | —4xix2 1 +4x? 2x; |. (9.4.15)
—2x7 2x1 1

Then /’l(X,‘, Xj) = 3,']', h(Xj, T) = O, i,j = 1, 2, 3.
Proof. 1t is a direct verification.

h(X1,T) = h3XIT? + hn3X3T? + h33 X3 T3
= (—2x2) +0+2x; =0,
h(X2, T) = hi3XAT? + hys X3T2 + h33 X3 T3
=0+ 2x; + (—2x1) =0,
h(X1, X2) = h1a X1 X3 + hi3X1 X3 + ho X3 X3 + has X3 X3
= —4dx1x2 + (=2x2)(=2x1) + 2x1) (2x2) + (2x2)(—2x1) = 0.

The Lagrangian is defined as the kinetic energy associated with the Riemannian metric
h,

3
. 1
L(x,t,x,t) = 3 Z /’l,‘j)%,')'cj'.
ij=1

Proposition 9.19 The Lagrangian is given by
L(x,t,%,1) = 5(xf + %3 4 12) + 2(x1hy — x2%1)(F + x1%2 — x2%1).  (9.4.16)

Proof. A straightforward computation yields
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D hipkiij = (1+4x3)i] + (1 +4x])i3 + 12 — 8xyx815 — dxpyf + 4o

= (k] + 13 + %) + 4[(x2k1)? + (x142)? — 22081 X1 d2 — XoX1F + X1 5]
= (i + 43 +12) + 4(x15 — xoky + 1) (x1d2 — x281).
In polar coordinates x| = r cos ¢, x, = r sin ¢ the Lagrangian becomes
1 . . .. .
L= z(r'2 + 12+ %) + 2120 + 17 $)
1 . . o .
= E(r‘z + 2% + %) + 2ir g + 2r4 92

9.4.1.1 The Euler-Lagrange system

The momenta are

oL . .
92—.=f+22,

at e

aL 2- -2 4‘
=—=r¢+22r° +4r'¢,
n ” ® ¢
oL .

= —=T.
P=oF

As the Lagrangian L does not depend on ¢ and ¢, the Euler—Lagrange equations yield
# = constant, n = constant.
The momentum 7 can be written in terms of 6 as
n=r2($ +2f +4r’p)s = r’(d + 26).

aL
The Euler-Lagrange equation p = 3 becomes
r

P =r¢? + dirg + 8r3¢?
=r? +4rd(i + 2r’¢)

= rqu + 4rdo
=r¢(d +40).
Hence the Euler—Lagrange system is
i =r($ +40),
r’(@+20) =n,
i+2rkp =06 (9.4.17)
0 = constant,

n = constant.
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It suffices to study only the geodesics from the origin, because of the Heisenberg
translation. In this case r(0) = 0 and hence n = 0. It follows that ¢ = —26 and the
system (9.4.17) becomes

Foo=—407r,
h =20,
<.1> Y ) (9.4.18)
t =60-2r¢g=0(1+4r"),
6@ = constant
with the boundary conditions
r(0) =0, ¢(0) = ¢o, 1(0) =19 =0, (9.4.19)
r(ty=r, ¢()=092, t(r) =t. (9.4.20)

We shall show in the following that the system (9.4.18) has solutions if and only if
some compatibility of the above boundary conditions holds. The solutions are

sin(20s) .
sin(207)

@ (s) = —26s + ¢o. (9.4.22)
The boundary condition ¢ (7) = & yields

r(s) = (9.4.21)

0= i(d)o — @). (9.4.23)
2T

Integrating in (9.4.21) yields

N

t(s) = Q/S(l +4r2(u))du = 9<s +4/ r2>
B 0

9( LA f in2(20u) d )
= S —_— Sin u u
sin2(2607) Jo

e[s + L(1(299 1 sin(40s)>]
26 sin%(207) \2 4
— 05 + L(29s _ lsin(49s)). (9.4.24)
sin2(2671) 2

The boundary condition #(t) = t yields

r’ (
sin?(26071)
20t

sin%(267)

t =61 + 207 — sin(267) cos(291:)>

— 07 + r2( - cot(zer)). (9.4.25)
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60 -
50
40

30

20

10

0 5 10 15 20
X

Figure 9.3: The graph of p(x).
Let

— —cotx, (9.4.26)
sin” x

The graph of u for x > 0 is sketched in Figure 9.3. It suffices to study only the case

6 > 0. The case & < 0 can be obtained from the previous one changing t — —¢ and

¢ — —¢. This follows from the relation § = 7 + 2r2¢. Then (9.4.25) becomes

nx) =

t =0t +r’un07). (9.4.27)

In order to understand the exact number of geodesics, which join the origin with
any given point, we need the following lemma, see Beals, Gaveau and Greiner [37].

Lemma 9.20 p is a monotone increasing diffeomorphism of the interval (—m, 1)
onto R. On each interval (mm, (m + )m), m = 1,2, ..., u has a unique critical
point xp,. On this interval |1 decreases strictly from 400 to L(x,) and then increases
strictly from u(x,,) to +00. Moreover

mwm) + 11 < uxpyr), m=1,2,..., (9.4.28)
0<(m+l)n—x L (9.4.29)
2 " mr o

Proof. As p is an odd function, it suffices to show that it is a monotone increasing
diffeomorphism of the interval (0, ) onto (0, +00). We note that sinx — x cosx
vanishes at x = 0 and it is increasing in (0, 7). Then

sinx —xcosx {: 1/3, x =0,

3 > 1/3, x € (0, ).

! "(x)
— X) =
2” sin” x

The first identity holds as an application of the 1’Hospital rule:
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. sinx —xcosx . COSX —COSX + xsinx
lim — = lim —
x—0 sin” x x—0 3sin“ x
1 . X 1
=-1 =-

- lim — = —-.
3 x—>0sinx 3
The second inequality holds because

2x —3cosxsinx

lM”(X)
2 sin* x

_x+2xcos

The numerator vanishes at x = 0, and its derivative is
4sinx(sinx —xcosx) >0, x € (0, m).

Therefore u is a diffeomorphism of the interval (0, ) onto (0, 00). In the interval
(mm, (m+ 1)) p approaches +oo at the endpoints. In order to find the critical points,

we set .
1 ') sinx —xcosx 1 —xcotx 0
2 sin® x sin® x

Hence the critical point x,, is the solution of the equation x = tan x on the interval
(mm, (m + 1)7). Note that

x+m
M(x+n)=_2——cot(x+n)
sin“(x + )
X b+ ) + T
= ——— —cot(x+m
sin? (x +m) sin? x
b4
ZM(x)+ .
sin” x

so the successive minimum values increase by more than 7. From Figure 9.4 we have

1
maw < xpy < mm + % = (m+ . (9.4.30)
Using x,,, = tan x,, yields
1 1
cotxy, = — < —. (9.4.31)
Xm — mm

Let f(x) =cotx.As f/(x) = —— 12 < —1, there is a £ between x and y such that
sin” x

fO = f) = EE-y) <—&-y.
Hence x —y < f(y) — f(x). Choosing x = mm + 7, y = x,;, and using

T cos(mm + %)
fm + E) "~ sin(mm + ) B

’

and (9.4.31) yields
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1
O<(m+ =)mr —x,, <cotxy,, < —.
2 mim

2 74/§ 8/10 12
21 X
47

Figure 9.4: Critical points of u are solutions of tanx = x.

The number of geodesics that join the origin with an arbitrary given point is given
in the following theorems.

Theorem 9.21. (i) Given a point P(x,t), r = |x| # 0, t > 0, there are finitely many
geodesics between the origin and P. Let 0 < £ < --- < ¢y be the solutions of

1
t— 6= r2u(2). (9.4.32)

Then, with 6,, = ;—m, the geodesic equations are
T

sin(26,,s)
Im(s) = ———r,
sin(26,,7)
Om(s) = =205 + ¢o,
2

1
1y (5) = Ops + (29mr -5 sin(46ms)>, m=1,2 ... N.

sin(26,,7)
(ii) The compatibility condition for the boundary conditions is
n=¢o—P, m=12,...,N. (9.4.33)

Given the point P (x,t), let ® = arctan(|x|) be the final argument. Then the initial
arguments of the geodesics joining the origin and P are

dom=0im—®, m=12..., N. (9.4.34)
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Proof. (i) It is obvious that equation (9.4.32) has finitely many solutions, see Figure
9.3. For each solution of (9.4.27), substitute 6 in the equations (9.4.21), (9.4.22) and
(9.4.24).

(ii) It follows from (i) and condition (9.4.23). See Figure 9.5. [ |

Figure 9.5: The projections of the geodesics on an x-plane start with different arguments.

Remark 9.22 A similar theorem works for the case t < 0.

It is well known that locally, there is only one geodesic joining the origin and the
point P. The size and the shape of the neighborhood is given by the following result.

Theorem 9.23. Given a point P (x, t), with |t| < (% + |x|2)rr and |x| # O, there is a
unique geodesic joining the origin and the point P.

Proof. We shall discuss the following cases: 0 < t < (% + |x|2)rr, t = 0 and
— (% + |x|2)71 < t < 0. The third case can be treated in a similar way as the first case.
Case ) <t < (% + |X|2)7T.

We shall show that equation (9.4.32) has only one solution ¢ > 0. Consider the

1
function ¢(¢) = W(t - 5{). We shall show that the solutions of the equation
X

©(¢) = n(¢) are only in the interval (0, ). It suffices to show that

(&) < u(t), for 7 <¢. (9.4.35)

Let x1 € (, 27) be the first critical point of ©. Using Lemma 9.20, the monotonicity
of u and convexity of p yields

1

1
) <) = —{t—sm) <7 < plx) =minu@),
IX| 2 T<t
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which yields (9.4.35). Then there are no solutions on (7, +00). As ¢ is decreasing
and p is increasing on (0, 1), there is only one solution for the equation ¢(¢) = u(¢),
see Figure 9.6

Case t = 0. 1

Ift =0, then —=¢ = |x|(¢) yields only the solution ¢ = 0. Then 8 = Zi = 0.
T

Theorem 9.21 yields ¢g = @, 1(s) = 0. r(s) satisfies ¥ = 0, with solution r(s)|x|s.

There is a unique solution, which is a straight line from the origin to P, in the x-plane.
|

Figure 9.6: The case when ¢ ({) = w(¢) has a unique solution.

Corollary 9.24 Given a point P (X, 0), x| # 0, there is a unique geodesic between
the origin and P. The geodesic is given by the equations r(s) = |X|s, ¢(s) = P, and
t(s) =0, i.e., it is a straight segment in the x-plane.

In Theorems 9.21 and 9.23 we assumed |x| # 0. In the following we shall cover
the case when |x| = 0.

Theorem 9.25. Given a point P (0, t) on the t-axis, there is a unique geodesic between
the origin and the point P.

Proof. If|x] =r = 0, from (9.4.21) we getr(s) = 0. Using (9.4.24) yields ¢ (s) = Os,
with & = t/7. The geodesic is along the 7-axis. [ |
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D

n(=+r])

- n(2l+r2)

Figure 9.7: There is a unique geodesic in the strip |t| < n(% + r2) between O and (x, t).
Remark 9.26 Theorem 9.23 works also in the case |x| = 0.

9.4.2 The classical action

Inastrip like in Theorem 9.23 the geodesic is unique. Let 6 denote the unique solution.
The Lagrangian along the geodesic is

L= %(r'2 +r29? +i%) + 2% + DHr*d
= %(fz + 77+ i) +200 — e

1 o , .
= z(r'2 + 2@ + %) +20r°¢ — 2r4¢?

1, 1,5, 1 : , ,
5r‘2 + §r2¢2 +50 - 2r2¢)* +20r°¢ — 2r'§?

1-2 12 2 12
SR04 2402 4 29
M

1 1
= Er‘2 + 592(1 +4r%)

Ly Lo
= =r —0t.
2 "2

The classical action is obtained by integrating the Lagrangian along the geodesic

S(t) = S( ) /TLd /1(1'2—1—195)11
) =SKX,y,7) = s = —r — s
o , ' Ta

1 (7., 1
= —/ F(s)ds + 20(1(t) — 1(0)). (9.4.36)
2 Jo 2
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Integrating the first term yields

T . ) 4921‘2 T 5 291.2 20t 5
F(s) ds = ——5— cos“(20s)ds = —— cos“ vdv
0 sin“(2071) Jo sin“(2071) Jo

20r? [9 +1 in(46 )]
= — T — Sin T
sin?(2071) 4
or?
= ——— (207 +sin(207) cos(20t
sin2(29t)< (267) cos( ))
20t
= 0r?| ——— + cot(207) | = Or* L (207), 9.4.37
[5gas +ootem] =ermeen (9.437)
where N
f(x) = —— +cotx (9.4.38)
Sin~ x

Proposition 9.27 The classical action starting at the origin is

x,t,7)=0°x|"(= + ———
2 sin?(2071)
s 2
=0t — 59 T + 0|x|° cot(2071).
Proof. Using t(0) = 0, substituting (9.4.37) in equation (9.4.36) yields
1 5. 1
Sx,t, 7)) = Eer w20t) + Eét

1, 1 s
= SO H(207) + Ee(er +r2u(267))

18r2~(29 ) + Ly2 + Lor? (267)

- T - T - T

2T H 2 2T H
P, 1,

= 5<9r [£(2607) + n(207)] + 59 T

, 2601 1,

rr———+

sin?(20t) 2
5 /1 2r?
=0 I'(— + 2—)
2 sin“(2071)

For the second identity, using u(x) = fi(x) + 2 cot(x) , we have

1 5 1
S(x.t,7) = S0 (M(zer) + 200t(29r)> + 50t

1 1
= E91@(29:) + 0r? cot(207) + S0t
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1 1
= S0(t—07) + or? cot(207) + S0t

19t 192 + 6r? t(29)+10t
= — — = T " CO T —
2 2 2

15 2
=0t — 59 T + 0r- cot(207).

Replacing r by |x| we obtain the desired formulas. [ |

9.4.3 The complex action

The space (R?, h) with & given by (9.4.15) is not a radially symmetric space. The
reason is the fact that the momentum 6 = 6(x, t, ), which appears in the classical
action given by Proposition 9.27, is a solution of the equation t = 67 + |x|?11(207),
and hence depends on the boundary conditions t and x in a complicated manner.
Therefore we do not expect AcqsS(X, t, T) to be a function that depends just on .
However, we can fix the situation. In the next chapter, when computing the heat
kernels, we need an action function, which satisfies the Hamilton—Jacobi equation. We
define the complex action for our problem to be the function obtained by substituting

6 = —i inthe classical action. Let S¢ denote the complex action. Using the properties
sin(—ix) = —i sinh(x) and cos(—ix) = i cosh(x) yields
1
Sc=—it+ 57+ (x} 4 x3) coth(27). (9.4.39)

Proposition 9.28 The complex action (9.4.39) satisfies the Hamilton—Jacobi equa-
tion

% + %(Xl&C)z + %(Xz&c)z + %(T&c)2 =0. (9.4.40)

Proof. A computation provides
0:S¢c = —i,

0y, Sc = 2x1 coth(27),
Oy, Sc = 2x2 coth(27).

(X1S¢)” + (X25¢)” + (TSc)’
(35, Sc +2%28,5¢)” + (01, Sc — 2x19S¢)” + (8 Sc)”
= (2x coth(27) — 2ix)” + (2x%2 coth(27) + 2ix;)” + (—i)?
= 4x% coth2(2r) — 4x§ — 8ixx; coth(271)
+4x3 coth?(27) — 4x7 + 8ixx) coth(27) — 1
= 4|x|% coth®(27) — 4|x|> — 1. (9.4.41)

2H(VSe) =
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On the other hand
asc 1 5 9
= = —[coth(2
. 2+|x| ar[co 21)]
1 2|x|?

e el N 9.4.42
2 sinh%(27) ( )

Adding (9.4.41) and (9.4.42) yields

dSc 1 2|x? 1 5 s )
— + H(VS =———+—<4X coth”(27) — 4|x —1)
T V80 =3~ aan2ey T2\ (27) = 4lx]
2Ix)? 2 2
= 4 2x| (coth 27) — 1)
sinh“(27)
2|x|?
= A =0
sinh“(27) sinh“(27)
[ |
Now, we can easily check that Ac,sSc depends only on .
Proposition 9.29 We have AcqsSc = 2 coth(27).
Proof. Obviously T%Sc = 0. We have
X2Sc = X1(2x coth(27) — 2x3) = 2coth(27).
Similarly, X3S¢ = 2 coth(27), and hence
[ [ 1 >
AcasSc = EXIS(C + EXZS@ + ET Sc = 2coth(27).
|
9.4.4 The volume function at the origin
The volume function equation
dv(t)
dt + (ACasS(C)v(T) =0
becomes do(@)
20— 2coth@r)v(1).
dt
Separating
d
@ —2 coth(21),
v
and integrating
In |v(t)| = —In|sinh(27)| 4+ Cp.
Hence )
=— 9.4.43
v = Gihan (0-4.43)

is the solution with lim;_.g tv(r) = 1. Formula (9.4.43) will be useful when we
compute the heat kernel for the Casimir operator in Chapter 10.
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9.5 Exercises

1. Denote by y, the geodesic emanating at the point xo with initial velocity v. Show

Yo(At) = yiu (D),

for any A such that ¢, At € [0, a(xp)).

2. The mean curvature vector field to the geodesic sphere S(xg, ¢) is given by

_ Ad(xp, x)

H, = Vd(xo, x)

n— Ix|=t

3.If VxX =0, then curl X = 0.

4. Given a point xg € M, there is a compact neighborhood U of xg and a > 0 such
that Vx € U and Vv € TyyM, |v| = 1, there is only one geodesic y : [0,a) - M
with (0) = x and y (0) = v.

5. Compute the exponential map on the Heisenberg group with respect to the metric 4.

6.Letx € R"and A =Y /_ 8%. Show the following:

. n—1
() Alx]| = ———.
x|

(ii) AS = — E, and use Lemma 9.15 to deduce that R” with the standard metric is a

radially symmetric space.
(iii) A%()x]) = 0, for x # 0.

7. Show that there are no compact Riemannian manifolds M, without boundary, such
that
dAd =k, k#1.

Hint:
0= —/ div(de)dv=/ A(d?) dv
M M

= 2/ dAd dv—2 | |Vd?* dv
M“\/-’ M ——

= =1

= 2kvol (M) — 2vol (M) = 2(k — 1)vol (M),

which is a contradiction.
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Fundamental Solutions for Heat Operators with
Potentials

10.1 The heat operator on Riemannian manifolds

Let (M, g) be a Riemannian manifold and let C L2(M) be the space of functions
f :(0,00) x M — R, which are continuous on [0, c0) x M, C L_differentiable in
the first variable, and C2-differentiable in the second variable. Let the Laplacian be
A = —divV.

a
Definition 10.1 The operator P = % + A defined on the space C*(M) is called
the heat operator on (M, g).

In order to invert the heat operator, one needs to study the fundamental solution.

d
Definition 10.2 A fundamental solution K for the heat operator P = 3 +Ayisa
function K : M x M x (0, 0c0) — R with the following properties:

i)K e C(M x M x (0,00)), C2 inthe 15 variable, and Clin the 2" variable,
i) (8 +8))K (v =0, Vi>0,
iii) IimK(x, -,1) =8¢, Yxe M,

N0

where 8y is the Dirac distribution centered at x and the limit iii) is considered in the
distribution sense, i.e.,

lim/ Kx,y,H)px)dv(x) =¢(y), V¢ € Co(M), Vx € M,
™NO Jpm

where Co(M) denotes the set of smooth functions with compact support, and dv(x) =

VIgij)ldxy A+ Adxy.
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10.1.1 The case of compact manifolds

Let (M, g) be a compact Riemannian manifold. We define the inner product

(re),= [ feav. vrgeFan.

Let || fll;2 = (f, f)(l)/2. The space L?(M) is obtained from F(M) = {f : M —
R; f € C*} by completeness with respect to the norm || - || ;2.

The real numbers A for which there is a nonzero smooth function f such that

Af = Af are called eigenvalues. f is an eigenfunction of A. Let V; (M, g) = {f :
M — R; Af = Lf} be the vectorial space of the eigenfunctions together with the
zero function. The number m; = dim V) (M, g) is called the multiplicity of A.
In the following we shall find the fundamental solution of P in the case of a compact
manifold. The spectral theory of the Laplace operator is a consequence of the Riesz—
Schauder theory. Hence the following spectral theorem holds for the Laplace operator
on Riemannian manifolds:

Theorem 10.3. (i) The eigenvalues are nonnegative and form a countable infinite set

O=A <A <A <Az <---,

1
with .y — +00, as k — 400 and the series Z — converges.
k>1 "k
(ii) Each eigenvalue Ly has finite multiplicity my. The eigenspaces Vi, (M, g) and
Vi, (M, g), k # j are orthogonal with respect to the inner product (, )o.
(iii) From the system of eigenfunctions, using the Gram—Schmidt procedure, one may
obtain a complete orthonormal system {fyj;k € N, j = 1,..., my} of eigenfunc-

tions, such that
oo my

h= Zzakjfk,-, Vh e L*(M),

k=0 j=I
with axj = (h, fij)o. In particular, the Parseval identity holds

oo myg

IRlIG =D "(h. fi)3-

k=0 j=1

The following result provides a formula for the fundamental solution on a compact
Riemannian manifold.

Proposition 10.4 Let {f;;i € N} be a complete orthonormal system of eigenfunc-
tions for the Laplace operator on the compact Riemannian manifold (M, g), such
that

A <Al =A=A3=---.

Then the fundamental solution is given by
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o0

K(x,y.t)=Y e M fi(x) i) (10.1.1)

i=0
Proof. Since the system {f;;i € N} is an orthonormal basis of the Hilbert space
L%(M), we assume the existence of a fundamental solution for fixed x and . Thus,

K(x, )= px,0f

i=0
where

pi(x, 1) = /M K(x,y,t)fi(y)dv(y).

Differentiating with respect to ¢ yields

2 [ e ) = G )
—— = G y.0fiydv(y)=(——.f
ot y or oo DALy ar !
= _<AyK7 .fl) = _(Ks Ayﬁ) = _)\i<K9 .fl) = _)\‘ipl"
8 .
Hence Wi —\ipi, where p;(x, 1) = ¢j(x)e . The function ¢; satisfies

lim i 5,1) = Pi%/M K.y, 1) fi () dv(y)

_ /M 5:(0) £ () du(y) = i (x).

On the other side
i . 1) = ¢ ,
tl\‘ln pi(x, 1) = ci(x)

and hence c¢; (x) = f;(x). Therefore equation (10.1.1) is proved. [ ]

The above proof assumes the existence of a fundamental solution for the heat oper-
o

ator. This result is proved in [28]. The series Z pi (x, 1) fi (y) is pointwise convergent

i=0
on (0, 0c0) x M x M andits sumis K (x, y, t). For the proof the reader may consult [28].

One may be interested in solving the initial value problem for the heat operator:
Given a continuous function g € CY(M), find a function fecC L2(My such that

LB ~
i) (§+A)f—0,
ii) Zli\r‘r(l)f(x, t)=g(x), Yx e M.

Proposition 10.5 The solution for the above i) — ii) initial value problem is given
by the formula

f(x,t)=/MK(x,y,t)g(y)dv(y), (10.1.2)
where K is given by (10.1.1).
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Proof. A straightforward computation provides

9 9 as _
S fen= /M ge—“ﬁ(xmw)g(y)dv(y)

= [ X he e )80 du).
Mo
Acfe 1) = A, /M S M £ 00 fi (18 () du(y)
i=0
= [ S a0 0E0) due)
Mo

= [ S ne M W g0 du).
M=o

Hence 5
(—+A)f=0.
0

We still need to show that
l'm , 1) = x).
II\O f (x ) g( )

Using definition 10.2 iii) yields
li =1 K = lim K
tim £ (x.1) = lim fM (x. v, () du () szi% (x. y. () dv(y)

_ /M 5:(1)g(y) dv(y) = (85, 8) = g(x).

10.2 Heat kernel on radially symmetric spaces

We have seen that R” with the standard metric is a radially symmetric space, i.e., the
scalar mean curvature of the geodesic sphere depends only on its radius. It is known
that the fundamental solution in this case is given by

ey

K(x,y,0) = (4n)y™%e 5, t>0. (10.2.3)

This is a product between the volume function v(¢) = +~"/2 and an exponential with

the exponent
2
— 1
bl L
4t 2
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where S is the classical action between the points x and y within time ¢.
The goal of this section is to prove a similar formula for radially symmetric spaces.
We shall use the following result.

Lemma 10.6 For any smooth function ¢ on a Riemannian manifold (M, g) we have

Ae? = e (Ap — |V ). (10.2.4)
Proof. First we shall show that

Ve? = eV (10.2.5)
This comes from the definition of the gradient. For any vector field X,
g(Ve? . X) = X(e?) =Y X'0,e¥ = e’ X(p)

=e’g(Vp, X) = g(e“ Vo, X),

and hence (10.2.5). Using the formula
div(fX)= fdivX+g(Vf,X), VX e€XM)

we have

—Ae? =div(Ve?) =div(e’ Vo)
= e?(divVp) + g(Ve¥, Vo)
= —e’Ap +eg(Vp, Vo)
= —¢’(Ap — |Vol?).
]

Let d = d(xp, x) be the Riemannian distance between the points xo and x € M. Let

f= %aﬂ(xo,x). (10.2.6)

It was proved in section 7.3 (see Corollary 7.16) that |de|2 = 4d>. Hence the
function f satisfies the eiconal equation

IV f? =2f. (10.2.7)

The classical action starting at xq is

d*(x0.x) f
S =Sk, x,t)= ———2 =<,
(x0, x, 1) > ;
Then
e 1 , 2f 28
VS| = v(-) = \vfP=2L -2 9,
VS =[V(3)" =3IV = -5 ==
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d*(xo, x) .
where E = % is the energy.

Inspired by the formula (10.2.3), we shall look for a fundamental solution of the
form
K (xq,x,1) = V(£)ekS, (10.2.8)

where k € R is a constant, V (¢) is a differentiable function, and S is the above action.

0
Differentiating and using the Hamilton—Jacobi equation ES = —FE, we have

9 9
—K =V'()eS + kv ()e*S —
- (e + V(1) s
- ekS(V’(t) - kEV(t)).
Lemma 10.6 yields
A(V(t)eks) - ekSV(t)<kAS — k2|VS|2)

— ekSV(t)<kAS - 2k2E>.

Hence
d kS\ _ kS V() kS 2
(. + A)(V(t)e ) —e V(t)( Vo kE) te V(t)(kAS — 2% E)
V(1)
kS
= Vil —= +kAS—kEQRk+1)).
V(o + QK+ 1)
1 . . V@) .
Choose k = —3 and let V (¢) satisfy the equation 70 +kAS =0, ie.,
1
V() = EAS V(). (10.2.9)

As the manifold (M, g) is radially symmetric, AS is a function of ¢ only, i.e., there

1 -1
is a function h(t) = EAS =2 ao(t), where a(t) = a(c(t)) is the mean scalar
curvature of the geodesic sphere centered at xo with radius . The solution is given by

V() = V(ig)elo "W,

Theorem 10.7. Let (M, g) be a radially symmetric space about the point xo € M.
Then the fundamental solution for the heat operator is given by

dz(xo.x)

K(xo,x,1) = CV()e 25 = CV()e~ o

where V (t) is the solution of (10.2.9) with the condition 11\1}(1) t"/zV(l) = 1and
13

o0
1/C = 2"/ e w(xo, y)dy,
0

with w defined by (10.2.10).
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Proof. We still need to prove iii) of Definition 10.2, i.e., for any ¢ compact supported
function,

tli\rr(l) N K (xo, x, )¢ (x) dv(x) = ¢ (x0).

d(xo, x)

Substitute y = and let x € d~'(24/ty) = S(xo, 24/1), a geodesic sphere
centered at xo. As ¢ is compact supported, let D = supp(¢). Thenlet§ = mag d(xg, x)
xXe

and y € [0, 8/(2ﬁ)]. Let w(xg, y) be defined by
volS(xg, 24/1y) ~ VD) w(x0, y), as ¢\, 0. (10.2.10)
dz(xo,x)

}i\IAI(l) MK(xo,x,t)¢(x)dv(x)=C}%V(I)A4€_ i ¢ (x)dv(x)

5/2/D) )
= Clim V(t)/ / eV p(x)doy dy
™NO 0 S(x0,2/7)

=ClimV(
A “/0
8/(2V/1)

= Clim V()¢ (x;) / e VD)o (xo, y)dy
t\O0 0

s/evn
e ¢ (x)volS(xo, 2v/1y) dy

= Clim 2”t”/2V(t)¢(x,)/ e w(x0. y) dy
t\O 0
= ¢ (xg) = 6x(),

where we have applied Fubini’s theorem and the mean value theorem for integrals to
obtain x; € S(xg, 24/1y). [ ]

We shall extend this formula to spaces which are not radially symmetric but can be
reduced to them. In those cases we shall compute the volume function V (¢) explicitly.

10.3 Heat kernel for the Casimir operator

We have defined the Casimir operator in Chapter 9 as an elliptic operator given by a
sum of squares of vector fields

1
Acas = §<X% + X% + T2>,

where X1, X, and T are given by (9.4.14) and are left invariant vector fields with
respect to the Heisenberg group law (9.4.13).

Theorem 10.8. There is a constant ¢ such that the fundamental solution for the op-
erator 0y — Acgs IS
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K(y, o, Xx,t, r) = K(O, 0, (v, a)*l og (x,1), ‘L'), (10.3.11)

where “ oy " stands for the Heisenberg group law, and

1 A
2¢ _z(—1t+§|x| coth(27))
sinh(27)°

)

K(0,0,x,t,7) =

and x = (x1,x2), y = (¥1, y2)-

Proof. The complex action from the origin and the volume function at the origin had
been computed in Chapter 9, see equations (9.4.39) and (9.4.43). Theorem 10.7 yields
a fundamental solution at the origin

K(0,0,x,1,7) = v(t)e—%SC

I
2¢ —=(—it+ —|x[? coth(2r))

= .2 2

sinh(27)

We have that K (0,0, x, 7, 7) is the kernel relative to the origin. It follows from the
left invariance of A, that the full heat kernel is obtained by left translations. The
Heisenberg convolution provides formula (10.3.11). See Exercise 5. |

10.4 Heat kernel for operators with potential

In the next few sections we shall compute the action and volume functions explicitly
and provide closed form solutions for heat operators with potential. The first few
sections will deal with the heat kernel of a Hermite operator.

10.4.1 The kernel of 3; — 92 + b%x?

We start with the operator
d2
- - a2x2,
dx
where a € R is anonnegative real parameter. We associate the Hamiltonian function
as half of the principal symbol

1
H(, x) = 5(52 —a*x?). (10.4.12)
The Hamiltonian system is

)'C=H§=§',

£ = —H, =a’x.
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As we are interested in finding the geodesic between the points xg, x € R, x(s) will
satisfy the boundary problem

¥ =a’x

x(0) = x0, x(t) = x.
The conservation of energy law is
1
E)'cz(s) — —a xz(s)

where E is the energy constant. This can be used to obtain an ODE for the solution

x(s),

Y. e e SN . d
— = asx ——— = das.
ds /2E + a2x2

Integrating between s = 0 and s = ¢, with x(0) = x¢ and x(¢) = x, yields

/‘x du , /” dv ,
—_—_— ﬁ —_— = a .
xo V2E + a?u? w V142
. ax axo . .
with v = —— and vp = ——. Integrating yields
V2E ~2E 8 &Y

sinh™! (v) — sinh™! (vg) = at
< sinh~ ! (v) = sinh~"(vg) + at
<= v = sinh (sinh71 (vo) + at)
<= v = vgcosh(at) + cosh(sinh_l(vo)) sinh(at)
<= v = vgcosh(at) +,/1 + v(z) sinh(at)

ax ax?

0
F «/_ cosh(at) +4/1+ ¥

&= ax = axocosh(at) + ,/2E + a2x} sinh(at)
a(x — xg cosh(at)) \/2154-7
sinh(at)

Solving for E yields

sinh(at)

az(x — X0 cosh(at))2 2 9

2F = —
sinh(at)? %0

a2 <x2 — 2xxg cosh(ar) + x2 cosh(ar)? — x2 sinh(at)z)
sinh(at)?
a? <x2 + xé — 2xx0 cosh(at))

sinh(at)?
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Proposition 10.9 The energy along a geodesic derived from the Hamiltonian (10.4.12)
between the points xo and x is

a2<x2 + xé — 2xx0 cosh(at))

E= :
2 sinh(at)?

(10.4.13)

Making xo = 0, we obtain the following result.
Corollary 10.10 The energy along a geodesic derived from the Hamiltonian (10.4.12)
Jjoining the origin and x is given by

a’x?

F=————.
2 sinh(at)?

We note that if we take the limit @ — 0 in (10.4.13), we obtain the Euclidian energy

(10.4.14)

a2 (x2 + xg — 2xx9 cosh(at))

lim £ = lim —
a—0 a—0 sinh(at)? 212

_ (x —x0)?
22

The action

Let S = S(xo, x, t) be the action with initial point xo and final point x, within time .
The action satisfies the Hamilton—Jacobi equation

&S+ H(VS) =0.

‘We note that

1 1 1
H= 5(52 —a’x?) = 5562 - Eazx2 =E,

and hence 9;S = —E. Using (10.4.13) yields

98 012<)c2 + xg — 2xX0 cosh(at))

or 2 sinh(at)?
= g(x2 + xg)i coth(at) — axxo3 ;
2 Jat dt sinh(at)
— %[%(xz + x3) coth(ar) — Siiﬁf;)].
Hence we have arrived at the action
S(xp, x,t) = g[(x2 + x(%) coth(at) — .2xx0 ]
2 sinh(at)

a 1 5 )
~ 2 sinh(ar) [(x + xg) cosh(ar) — ZXXO]- (10.4.15)
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‘We also note that

which is the Euclidian action.

Lemma 10.11 We have
D) (8:9)? = a’x? + 2E,

2)  9%S = acoth(ar).
Proof. 1) Differentiating in (10.4.15) yields

a
IS = s (x cosh(at) — xo), (10.4.16)

a? <x2 cosh? (at) + xg — 2xx9 cosh(at))

3 8)? =
(:5) sinh?(ar)
a? (x2 + x2 sinh?(at) + xg — 2xX0 cosh(at))
- sinh?(ar)
2(x? + x5 —2 h(at
— 22y a“(x* + xO. xxo cosh(at))
sinh?(ar)
= a’x* 4+ 2E.
2) Differentiating in (10.4.16) yields
25 = a cosh(at) = a coth(at)
77 sinh(at) N ’
|
We shall look for a fundamental solution of the type
K (x0, x, 1) = V (£)e*S00x0, (10.4.17)

where V (¢) will satisfy a volume function equation and k is a real constant. Lemma
10.11 provides

WK = V' 1) + V()keSo, S
= ekS<V/(t) — kV(t)E),

9 = ke*Sh, S,
92eFS = k2eF5(9,8)% + kekSa2s
= ke*S[k(d:g)* + 925 ]
= ke*S [k(a2x2 +2E)+a coth(at)].
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We shall find the heat kernel using a multiplier method. Let
P =3 — 3>+ aa’x?, (10.4.18)

where « is a real multiplier, which will be determined such that P K (xg, x, t) = O for
any ¢t > 0.

PK (xo, x, 1) = ekS(V/(t) - kEV(t))
kekS (k(a2x2 +2E)+a coth(at)) V)

+aa’x ekSV(t)

— &Sy )[ VIO B k225 4 2E) — kacoth(ar) + aa2x2]

V()
=MV )[ “//((t)) KE — k*a*x® — 2K*E + aa’x* — ka coth(at)]
kSV(t)[ (( )) “KEQk + 1) + (¢ — kK)ax? — ka coth(at)].

1
In order to eliminate the middle two terms in the brackets, we choose k = —5 and

1
o= T Letbh = % > (. Then the operator (10.4.18) becomes

P =09 —03>+b*x? (10.4.19)
and Vv
(1)

PK(xg,x,t) = K(xg, x, t)( Vi)

+b coth(th))

We shall choose V (¢) such that
V(1)
V()

= —bcoth(2bt), t > 0.

Integrating yields
C
/sinh(2b1)

Using the action (10.4.15), the fundamental solution formula (10.4.17) becomes

V() = —% In (sinh(2bt)) — V() =

21 [(x* + x§) cosh(2bt) — 2xx0]
T e BT —2xx
KGo.x.1) = ——C o 4 sinh(2br) 0 0
+/sinh(2bt)
1 2bt
T AL h(2bt) — 2
¢ Wt T s1nh(2bt)[(x + %) cosh(2br) ol

= " /2b: \| sinh(2br)
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We shall find the constant C by investigating the limit case » — 0, when the operator

2bt

(10.4.19) becomes the usual one-dimensional heat operator d; — 83. As ——— —
sinh(2bt)

1, the above fundamental solution becomes

1 2
K(x0,x,1) ~ e X" p 5,
~/2bt
By comparison with the fundamental solution for the usual heat operator, which is
! e%(xfm)z,
VAamt

[ b
we find C = ol We arrive at the following result.
g

Theorem 10.12. Let b > 0. The fundamental solution for the operator P = 0; — 8)% +
b*x?% is

K(xo, x, 1)
L 2DL 102 4 22) cosh(2br) — 2xxo)
—— ————[(x* 4+ x{) cos —2xx
_ ! 2bt "4 sinh(2b1) 0 %o
Va4t \ sinh(2bt) ’
The computations are similar in the case when b = —if. Using cosh(ift) = cos(8t)

and sinh(2iBt) = i sin(28t), we obtain a dual theorem.

Theorem 10.13. Let B > 0. The fundamental solution for the operator P = 0; —
32 — B2x2 is

K (xg,x,1)
1 2t
1 2Bt " 47 sin(281)

= — _—

Jarmr | sin(2p1)

[(x* + x3) cos(2B1) — 2xx0]
, t>0

10.4.2 The kernel of 3; — ) 97, % a?|x|?
Consider the operator

Ap—a?lx|* = 0f 4+ +0; —a*(xf+--+x7), a>0.
The associated Hamiltonian is

1 1
H= @+ +E) - Ja’ad 0+ x),

with the Hamiltonian system
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Xj = Hs, =&
5] xj—azx], j=1,...,n.
The geodesic x(s) starting at xg = (x?, cee x,?) and having the final point x =
(x1, ..., x,) satisfies the equations
55] = azxj,
xj(0) = x9,

xj®)=xj, j=1...n

As in the one-dimensional case, we have the law of conservation of energy
-2 2
xj(s) —a x (s) =2E;, j=1,

where E; is the energy constant for the j-th component. The total energy, which is
the Hamiltonian, is given by

H = Z( x — —a xz) = E; +---+ E, = E(constant).

Proposition 10.9 yields

a2[x]2. + (x?)Z —2x ,-xj? cosh(at)]

i= 2 sinh2(ar)

9

and hence

)

e E— Z g, = CIP P - 24z, xo) cosh(an)]
o 2 sinh”(at)

where |x|? = Z?:lsz. and (x, xo) = Z] LX) ?

The action

a
The action between x( and x in time ¢ satisfies the equation ES =—For
d o _ @Ik’ + %ol — 2(x, xo) cosh(an)]
ar 2 sinh?(at)
L2 el + xol) coth(an) — S0
= X xo|“) coth(at) —
ot 0 sinh(az) |’

Hence we shall choose

_ a
" 2 sinh(at)

|:(|x|2 4 |xol?) cosh(at) — 2(x, xo)i|. (10.4.20)



10.4 Heat kernel for operators with potential 189

Let

a 1 2 042 0
S; = Em|:()cj + (xj) ) cosh(at) — 2x; x| (10.4.21)

Then S = Sy +---+ S, and 8ij = aijj. Then Lemma 10.11 yields

3 04,97 =3 0, 5)% = Y (@®xF +2E))
j=1 j=1

j=1
= a*|x|* +2E,

n n
Y 9, =) 058 =nacoth(ar),
j=1 j=1
‘We shall look for a kernel of the form
K (xg, x, 1) = V(t)ekS00-50, k e R. (10.4.22)

A computation similar to the one-dimensional case yields

%K _ ekS<V’(t) - kEV(t)),

and
2 kS kS 2 2
02 = e k[k(aij) +o2, S]

and hence
A,ekS = keks[k(a2|x|2 Y 2E) +na coth(at)].

In order to find the kernel for the heat operator we employ the multiplier method
again. We shall consider the parabolic operator

Py =0 — Ay +aa’|xf,
where « is a multiplier subject to being found later. Then
PK = eks[v’(t) - kEV(t)]

_kekS [k(a2|X|2 +2E)+na COth(at)]V(t)

taa®|x|?V(1)ekS

kS [ 40) 2,212
—e V(t)[— “KE(1 +2k) + (a — K> x| —knacoth(at)]
40
V'(t) na
kS
=Vt [— — coth(at ]
e ) V(t)+2co (at)
1 1 a e
where we choose k = ) and o = T Letbh = 5 > 0 and choose V (¢) satisfying
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V'(t
@ = —nbcoth(2bt), t > 0.
V()
L C .
Integrating yields V(1) = —————. Hence the fundamental solution for the
sinh”/2(2br)

operator P, = d; — A, + b2 |x|? expressed in the form (10.4.22) is

2b

- M<(|X|2 + |x0|2)cosh(2bt) —2(x, xo))
e

c
K(xg,x,t) = —————

(X0 2.0 = T 2y
bt

1
, L2
c @b0"2 3% Sinh(2bo)

((|x|2 + x0/?) cosh(2br) — 2(x, xo))
= 2b1)"? sinh2(2b1) '

When b — 0 we should obtain the kernel of the heat operator 9; — A,,, which is

; e_ilx — %ol t > 0.
(dmt)n/2 ’
By comparison, we obtain the value
bn/2
~ e

Theorem 10.14. Let b > 0 and A, = Z?:l Bﬁj. The fundamental solution for the
operator P, = 0; — A, + b2|x|2 is

K (xo, x, 1)
P =22+ Ixof?) cosh(2br) — 2(x. x0)]
nf2 ————[(|x X cos —2{x,x
__ 1 ( _2bt ) . 41 sinh(2b1) 0 0
(47t)"/? \sinh(2bt)
fort > 0.
In a similar way as in the one-dimensional case, choosing b = —if}, yields the

following result.

Theorem 10.15. Let 8 > 0 and A, = Z'}Zl 83j. The fundamental solution for the
operator P = 3, — A, — p?|x|? is

K (x0,x,1)

| 281 2 B[ + [0l cos@Br) — 20, %o)]
( ) e 41 sin(2p1)

= @nty? \sin(B1)

fort > 0.
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10.4.3 Fourier transform method

The Hermite operator has been studied by mathematicians and physicists for a few
generations (see e.g., [5], [18]). The Fourier transform method used in this section
follows the idea of Chang and Tie, see [8]. In the following we derive the fundamental
solution and the heat kernel of the Hermite operator

a_a+Z<A22 2)

in R", i.e., we are looking for a distribution K (X, y) such that

2
o+ Z (xz 2 _ —2) Ky (X,y) = 8(x —y). (10.4.23)

J

We first compute the fundamental solution with singularity at the origin when

n
ag A=1{=> Qkj+rj: k=(ki.....ky) € (Zy)"
j=1

We also construct the relative fundamental solution for the operator Hy, while g € A,
ie.,
I = KoyHuy + Joy-

Here Jy, is a projection operator. Since the operator H, is not left invariant under the
Euclidean group action, we have to compute the fundamental solution with singularity
at any point y. Another reason for dividing these into two cases is to use a different
method to sum up the infinite series involved.

10.4.3.1 Fundamental solution with singularity at the origin

In this section, we shall find K, (x) = K(x, 0), i.e., the fundamental solution with
singularity at the origin first. Taking the Fourier transform

f&=FHe = /R ™S f(x)dx
to the Hermite operator and applying the formulae

b
7:<8—f> =i&;F(f)E) and Fxj f(x) = l—(f(f))(f)
Xj 0§

then when y = 0, equation (10.4.23) becomes

(@ + & ijasz)K «(§) =
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First note that the Hermite function v (x) is defined by its usual generating function
formula:

00
Z Vi (x) l‘k — eth—ﬂ—%xz.

P k!

Here ¥ (x) is the eigenfunction of (x2 — %) with eigenvalue 2k + 1, i.e.,
2 d
x5 — —= | Y (x) = 2k + D) yi(x). (10.4.24)
Besides the generating function formula, v (x) has another representation
1y2 d ¢ —x2 —1x2 +
Yr(x) = e T (e )=Hr(x)e 2, keZ", (10.4.25)
x

where Hy(x) is the Hermite polynomial of degree k. The system {1 (x)};2, is com-
plete in L2(R) and satisfies the orthogonal condition

*° 1 L=k,
<wa>=/ Ve ve()dx =2/Tklse  with S =
S 0 £#k.
(10.4.26)
32
Going back to the differential operator éjz - )\3 8_52’ we introduce the new variable
J

then

N

Equation (10.4.24) yields

9 2
s — —5 | vy = @k + D).
ans F
This implies

§
( +& - ]ag)l”k(\/——j [ +k(2k+1)]1ﬂk(

§j
Nl

(10.4.27)

Ej . . . o 2 2 82 . . o
e., Yr(—=) is the eigenfunction of — +§; — 15— with eigenvalue —+
Aj no g H n
Aj(2k 4 1). Next, for k = (ky, ..., k,) we define the n-tuple Hermite function

W) = [ [ v, &i/v/%0)
j=1
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and let
o
Ko®) =) cWk(6),  where [k|=ki+ - +ky.

k|=0

n 2
0 ~
Then we apply the operator | o + |£]* — Z k? @ to Ky (&) and obtain:

o+ &1 ZA] gz Ko(®) = ch a+ZA Qkj + 1) | Wi (®).

[k|=0

We will use the orthogonality property (10.4.26) to find ck.

Dok | a2k + 1) | Wk(©) = 1
k|=0 j=1

implies
n
a+ Y 2k +1) | < Wi, W =<1, W > .
j=1

Here < Wk, Wy, > is the usual inner product in L?(R). Since

n
< Wy, Wk >=l_[,/kjﬂ2kjkj!, < 1,W¥k41 >=0 and
j=1

<2k )
<Lwx>=]]v207
we have cox 41 = 0 fork € (Z)" and
< 1, ‘*I"Zk >
Ck = -
[ot + Zj:l Aj(dki + 1)] < Wy, Woy >
(Zk )

! 1_[7‘:1 2M;m

[a + 21}21 Aj(4kj + 1)] H?:I \/)»j'_ﬂ22k1 (ij)!
2% 1

- [a+2?=1 Aj(4k; + D] ' 1—[;%:1 sz_fka'

oo o0

SE

n_ Yo ( ji—j)

~ 2
Ko=) cnW= Y 0 [ —=
=0 o [ 2 G Ak + DI 2%k
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From the above discussion, it is easy to see that H,, is not invertible when
n
aeA= { — Z(zk, +Drj; k=(k1,.... k) € (Z+)”}-
j=1

We call A the exceptional set of H,. Next we apply

1 o -
=/ e Mds  for  A=a+ Y Ak +1)
0

A .
J=1
and obtain
0 oo N 'WZk(
kl=0"0 j=1
00 n
:/ 23 e~ Z WZZI; , (1)) e HKikjs gmas g
0 . 2 /k !
j=1 kj:O
00 n
=/ 21 [ [eti¥g;(nj, )e™*ds
0 i
. 2% (M) _ap s . .
with g;(n;,s) = Z 1/;2k :/‘ 4kj%jS To sum up with respect to kjing;j(nj,s),

k;j=0
we apply the relationship between the Hermite function and Laguerre polynomial
(see p. 252 in [47]):

X
yu = e T DAL ) 1'//zzzll(k.) =T DAL P ),
Therefore,
S 2 (=3)
8j(x.s) = Z (=DNeTT Ly P (e (10.4.28)
oo
x Z L) (e iy (10.4.29)

The Laguerre polynomials are defined by the generating formula (see e.g., [6]):

iL(ﬂ)(w)zk = ! exp { we } .
i (1 —z)p+t z—1

Now we may apply the generating formula of the Laguerre polynomials to sum up
the series (10.4.28) and find g; (x, s).
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2
( ) e—% x26—4)»js }
i(x,s) = ex
8 1+ e—“ﬂ)% P e s 1
1 x2 2 4xjs
=—expy — || - ————
(1 + e=4%)z 172 [ 1+e‘4"f'3“
1 x2 1— €—4Ajs }
= —eXpy}——=— " ———( -
(1+ e%x(,«ﬁ P 2 14e s
Hence,
o) n —Ajs e 4xjs
~ n et é;' 1—- )
Ky (§) = / 22 — | ex E — e “ds.
) 0 Jljl (temb [7F T2y L+

We may rewrite the above formula in terms of hyperbolic functions

o] n 2
Ka(é)zf ]_[cosh(zxjs)]—% exp _Zlgl tanh(2255) | e~
0 . ‘
Jj=1 j=1
(10.4.30)
Let

n | 2
GE,s)=e™™ 1_[ [cosh(2Xs)]" 2 exp { — Z |€j| tanh (24 s)

TV (10.4.31)
j=1 j=1 M

be the integrand of the above integral. We can prove directly that

n
32 -
at Do \& - Hgg ) | K@) =1
j=1 %]
by showing that the function G (&, s) satisfies the heat equation

—+ a+2<s - ,ag> GE.)=0 and lim G(&.s) = 1.

(10.4.32)
Then the fundamental theorem of calculus yields

2 o~
a+z<s — fag) Ka(g)=/0 a—}—Z(E — Jag> G(&, 5)ds

. / o G

N 0 as
The fact that G(§, s) satisfies the heat equation (10.4.32) can be proved directly by
simple differentiation. Since

)ds = G(0) = 1.
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96 =(— E’ tanh(2k )G,

AE;

392G 52 tanh (2% ;5)
8_512 = |:—é(tanh(2)»js))2 — Tf G

one has

n

o 8
;(ﬂ+§ - ,85 )G(é 5)

—GEnY % — £2(tanh(24j5))” + 1 tanh(2hj5) + s}]

=G, s) Z % + SJZ(I — (tanh(ZAjs))2) + A tanh(ZAjs)]
N P

= G(é:as)z " + m + Ajtanh(2X;s) | .
i— J

Next the product rule of differentiation yields

aa—f =—aG(E,s) —G(E,s) Zlkj(cosh(2kjs))_] sinh(24s)
]:
2 "
_ SioL_ =M
GE.s) ]2_; 2;  (cosh(2A;5))?2
- j . .

=—-G(&,s) |a+ ]Zl ((cosh(ijs))z + A tanh(ZA]s)>

=—Z( +£7 a2 562 >G(§ 5).

Therefore

n

G , 32
§+]§< +&7— jas )G(E,s):O.

n
32
This shows G (&, s) is the heat kernel of the Hermite operator o + Z (é,z — A; 8_52)
j=1 J
with G (&, 0) = 1. Finally, let us compute the fundamental solution K (x) by taking
the inverse Fourier transform with respect to §.
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Ky (x)
— ix-E P
= @y /R,,e K (§)dg
n_ g2
(zn)n/ / H[cosh(ZA )™ zexp X;—Jtanh(m 5 b ey

! *r e —itanh(zxvs)
@m)*Jo ) j1 -0

00 | t.mh(ZA s) 52
First, we need to compute / eifie % "Idg;. Using the formula

—00

o) 2
. _w” _a,2
/ e dw = V2mae” 2F

—00
. Aj .
witha = —————, we obtain
tanh (24 ;)
. tdnh(ZA s) Asx2
/oo erjEj ( 7 )Ezd%‘- _ 27 A e_sz'\f”.
oo / tanh(22s)
This implies that
7
1 [’} n A n )\‘ X
Ky(x) = —"/ 1_[ —j Z 7T\ sy
@2m)2 Jo i sinh(2A ) o 2tanh(2k s)

We summarize the computation and formulate as a theorem:

n
Theorem 10.16. For o ¢ A ={ =Y 3;Qk; + 1, k= (k1,.... k) € Z4)"},
j=1
the fundamental solution K (X) of the Hermite operator Hy K (X) = §(X) is

1

1 ol Aj “ hjxy o
— S i B
2m)} /0 ]1:[1 sinh@iys) | ©F ; 2tnhigs) (¢ 7

(10.4.33)

Ky(x) =

The associated heat kernel is given by

n

1 A n )»sz-
p _ J _ Ty
s (X) (2]_[)% jli[l sinh(225) exp ]z—:l 2tanh(2As)

i.e.,, Ps(x) satisﬁes the heat equation

2
<x2 2_ 2) Py(x) =0 with lim / Py(x) f (x)dx = f(0).
s—0 Jrn

]
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10.4.3.2 Isotropic case: A; = A for all j

We now consider the special case of A; = A forall j = 1, --- , n. Then the funda-
mental solution reduces to

A2 [ n A|x|?
Ka(x)=<§) /0 e [sinh(2As)] "2 exp § — > coth(2As) ¢ ds

by introducing a new variable u = coth(21s). We have

—as u—1 & . -2
e = 1 , du = —2X\(sinh(2As))” “ds and
u

(sinh(245)) ™! = V/(coth(2As))2 — 1 = vVu2 — 1.
Hence,

AN 14 Bk
K@) = (5-) 57 [ =D E@ DI e, (10434
1

Introducing the new integral variable u = 2v + 1, we reduce equation (10.4.32) to
the form:
2-1 00
Ko = e 8 [Tt g i ey,
42 0

Then the integral can be reduced to the Whittaker function. Let

1 n 1+ o d n 1 n o
—X—=—=-— — an ——==-=1-—,
H=X=57% 45, HTX=57% 4.
n 1 o . .
then we have . = 175 and x = o and can write the above as the Whittaker

function W, ,, (A |x|2). We omit the detail and just give the final formula:

ATTID(E 4 2

Ky(x) = .
¢ o n 1()L|X|2)
A2 2

(10.4.35)

4

We can write K, (x) as a modified Bessel function when « = 0 by applying the
following integral formula (see p. 250 in [47]):

T o nremar = -2 (2) ook
1 (" =17 e Mdx AV MK, 1),

where K, (z) is the modified Bessel function :
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o0
Ky (2) =/ e 20N cosh(vr)dt.
0

Therefore, with u = %|X|2, y = %, we have
n 1 A 2
C(2\ai—z2 Ku_ (§|X| )
Ko(x) = (5) s (10.4.36)
T Ix|2~
In the case of 7 — % =m+ % < n = 4(m + 1), we have the explicit formula for

the modified Bessel function

14
Ky ) = f—zzgf’(“ o,

Hence when n = 4(m + 1), we can find a closed form of K (x):

K _ F'm+1) Ak m (m + £)! pm—t
00%) = 3G 2(:) m — 0! PO+

The formal argument is therefore complete. We now need to justify the integral
(10.4.28) and calculations in (10.4.31). In view of the hyperbolic cosine term in
(10.4.30), we know that

n
G, 5)| <2%exp | =D A&

for s > 0. Therefore, the integral (10.4.28) converges rapidly. It also justifies the
interchange of integrals in (10.4.31).

10.4.3.3 Partial inverse and projection to the kernel

We now consider the behavior of H, near a singular value «, i.e.,, « € A. Since we
emphasize the dependence on the value of o, we see H,, and K, as functions of o and
denote K, = K («) and H, = H (e). From (10.4.27) it follows that K (&) = H ()~}
has a simple pole at each point of A. Let g € A. We can expand K () at ap,

J
Ko = 0 (e ) -+ K@) + O — ao).

For « sufficiently near «g, o # o, H(o)K () = K () H(«) = 1, this implies

= J (@) H (@) + K(x0)H (@) + O(Ja — ).
o — o

n 2
]
. _ 2.2
Since H(a) = a + ngl (ijj — _8x]2.> H () + (@ — ap), we have
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I = lim M-’-J(ao)-’-[f(ao)l‘](ao).

a—op o — o

Interchanging K («) and H («) in the above, we have

H J
[ = lim OO0 G 1 H @)K @),
a—a o — Qo
This yields
H(ag)J () = J (o) H (ag) =0
and

I = K (o) H (o) + J (o).
Apply H (ap) to the above and we have
H(ao) = H(0) K (o) H (0).

Therefore, [H () K (at9)]* = H (o) K (exg) and [J (ag)]* = J(ao) This yields that
H (0g) K (20p) and J («tp) are complementary projections on L2. The operator K (o)
and J («p) can be computed from the integrals

K (@) = —f K@ 4o and J(ao)zﬁfrl{(a)da.

o —ap

Here I' represents a sufficiently small circle about .

n
The first singular value is o9 = —Z Ajwithk; =0forj=1,2,---,n We will
j=1
calculate J («p) and K («) explicitly. The residues of K, at this pole are

52

o (J(ap)) =22exp{—= Z =
J

24
j=1

Here o (J (ap)) is the symbol of the projection J («p). The kernel is the inverse Fourier
transform of the symbol

J(— Zx )_2n ]‘[{\/Z —AIX?]

Rae) = /0 ¢~ Go(E, 5)ds.

-~
K, can be written as

where

n n 2
Go&.5) = [ ] leosh@r;)] 2 exp { =Y thanh(ZA )

j=1 j=1
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Integration by parts gives

n

~ 1 © d
K =——|1 e — Ail Go&,s)ds | . (10.4.37
o (&) E Sy +/0 e | 5o+ 24 | Got&, 9)ds | ( )

J=1

n
This implies that K (o) has apole at @« = — Z Aj. Thus K (ag) is the term of order
j=1

zero in the expansion of (10.4.37) at o« = — Z Aj:
j=1

E(ao)z—/() sa[ N I)‘/GO(S s)]ds

Taking the inverse Fourier transform, one can find the corresponding kernels. The
computation is almost identical to those of the computation of K, (x), so we omit the
details here and list the final formula only:

n 2)»]‘3‘
1_[ \/> ds H sinh 22 ;5

K (o)

1 n
X exp —3 Z)ijjz- coth(24;s) ds.
j=1
10.4.3.4 Fundamental solution with singularity at an arbitrary point y
Let us start with the operator Hy, i.e., « = 0. We want to derive the following kernel
K (x,y) which satisfies

(—A+ sz DK (x,y) =8(x—y),

and is the case of @« = 0 in (10.4.23). Taking the Fourier transform with respect to
the x-variable, we have

(€1> — Zx, aEZ)K(g y) = A 5(x— y)e-*Edx = oIV,

As before we let

e ¢]

. ) " £
K¢, y) = E ck(Y)Wk(§) with Wk (§) = | |wk,~(—).
j=1 VA

|k|=0
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Then
(&1 —ZA 352”“5 V=Y ) | Y Ckj+ D | Wk(®).
k|=0 j=1
Hence, we need to solve Z Z(2kj + DA | k() Wk(§) = e ¢ o find ck(y).
k|=0 | j=1

The orthogonality of the Hermite function yields

SOk + DAy | ) < Wi(®), Wk(®) >=< e E We(§) > .
=1

‘We first have to find

i L . £
e Vi (6)dE = / e VS (—= >dg
/H;" /l:[l —00 \/ /

n 00 )
=[1v% f eTVAy 1)
j=1 o
Applying the formula

f e VY (€)dE = V21 (=) P (y) (10.4.38)

n
and < Wi (§), Wi (§) >= 77 [ | /A;29k;!, one has

j=1

Y ki + D [aynr? | [TVA29kt | = @2 [ T8 Vavn, /ry)).
j=1 j=1

j=1
It follows that

n

]sz]k‘ll’k(\/_)’j

23

ck(y) =

Hence we have

o]

A 2% n (—i)kj é]
K¢,y = E | | =, ( /)&'Y‘)Wk,v(—).
Ik|=0 [27:1(2/9- + l)xj] i 24kj! PR
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Taking the inverse Fourier transform, we obtain

K(x,y)

_ ix-§
- o /R YR e

o0

! 28 e L.
J:

o [Z”._l(zk» + DA

* ixj&; s
X/_ooe o

Applying the identity (10.4.37) again, we have

e¢]

1 M3
Kx,y) =
(27" kX—:o [Z'Ll(ZkJ + I)Aj]

0 2T A e

2kik ;!
j=1

]

1 1
2. ]l_[zkk,wk S (A7),

7 [Z, Lk + DA

Here we have used the identity Y (—x) = (— Dy (x). Now we apply the formula
n

1 oo
— = / e Mds with A = Z(ij + 1)A; again and obtain
A Jo j=1

1 ] oo N - —2kjhjs—Ajs
K&y =— > Hm,—wkja/k_jy,»)m,(/x_jx,-)ds

' k=0 \"0 =1 2k]kj!
oo e_
%/ H‘/_e_kj > zkk, ka 2y agx)) | ds.
kj=0

We next sum up the infinite series on the right hand side by applying the formula:

i Hk<x)Hk(y) r

(-2’
1 —4z2

= —4z2)—5exp{y2
k=

where Hj (x) is the Hermite polynomial (see page 280 in [17]). Denote

0012)k

glx, y,5) = Z &

()Y (y)
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x2
where Y (x) = e~ 2 Hi(x). Then we have

g(x.y,s)
00 1 =25\ I 252
) _4g 1 (y —xe ™)
- 2; ) @) =e T T - ™) zexp{yQ——l_e_4s }
2 2 2 —2s —4s 2
g1 X y y-—2e “xy+e Px
— 1_ 4s 2 o z
(I=e ) 2exp) =5+ 5 e }
2 2 2
— (1 _e—4S)—% exp (1_6—45‘)—1 _(x +y) (x +y) —4§‘+2 —23‘
2 2
2 2 —4s —2s
_ _4g 1 by v\ l+e 2e
==t ten |- (T D) I e
2 2
451 x“+y
=(1—e )2 — th(2 _—
( e ) Zexp coth(2s) + 1nh(2s)}

It follows that
K(x,y)
oo ﬁ JAjehis

ex p{——k (x +yl)coth(2)» s)—i-#'yj}ds
0 (- e~44i%)3

nh(21;s)

1

1 oo | 1 )\j
(2n)? /0 ,1:[1 sinh(24 ;5)

n )\j(sz, + y]z.) cosh(2Ajs) — 24 jx;y;

- ds.
exp /X_; 2sinh(27,5) ’

The heat kernel is

1 - Aj
Py(x,y) = /
s(X.¥) 3 lj[l sinh(2As)

(2m)2
(10.4.39)

2 2
Aj(xj + yj)COSh(z)\.jS) — 2)\.]')(]'))]'

X EXPY T ]X_; 2sinh(215)

Using the formula cosh(2s) = 1 42 sinh? s and sinh(2s) = 2 sinh s cosh s, we can
rewrite the heat kernel as
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Ps(x,y)

_ 1 S S,
(271)% il sinh(2A )

(2 2

tanh(h;
2sinh(225) 2 anh( ’S)}

j=1
We summarize the computation with the following theorem.
Theorem 10.17. The kernel

Ps(x,y)

_ 1 li[ Iy
Q)2 P sinh (2 js)

2 2
X ex _Zn: )‘f(xj_yj)z Ajg £ 5)
P 25inh(24;5) 2

tanh(Ajs):|

j=1

satisfies the associated heat equation

0P .20 .
T A—;xjx,- Pi(x,y) =0 and  lim Py(x,y) =5(x —y),

with the initial condition
tim_ [ P(xy)f )y = S0
S—)O+ Rn
Now we may use a similar method as before to obtain the following corollary.
Corollary 10.18 Fora ¢ A = {— Z?:] AjQRkj+1), k= (ki,....ky) € (Z)"},
n

the Hermite operator Hy = a — A + Z )Lixlz. has the fundamental solution
j=1

o0
K, (x, y):/0 e ¥ Py(x,y)ds

where Pg(X,y) is defined in Theorem 10.17

10.5 Heat kernel on radially symmetric spaces with potential

We shall investigate the fundamental solution for the operator
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P=0+A-U(),

where A = —divV and U : M — R is a potential function defined on the radially
symmetric space (M, g). The associated Hamiltonian is half of the principal symbol
of —A +U(x),

1 1
H(p, ) = S1plg + 5U ).

As H does not depend explicitly on the time parameter 7, then H = E, where E is
the constant of the total energy along the solutions of the Hamiltonian system. The
action § will satisfy the Hamilton—Jacobi equation

d
—S=—-H(VS
o7 (V)

Lose - Lo
= ——= —=U(x
2 2

= —E.

‘We also note the useful relation
IVS|> =2E — U(x).

For the zero potential U (x) = 0 the action § = d?(xp, x) /(2t). For general potentials
U (x) the action S is not easy to compute. This shall be seen in the next section. The
action S is a function of the endpoints x¢, x and time ¢.

In this section we shall perform a formal computation for the heat kernel. As
before, we shall look for a fundamental solution of the form

K =Ko, x,1) = V(©®)eS, t>0.
By straightforward computation
oK =S (Vi) +kV s

= ekSV(t)<% - kE),

AK = V(t)eks<kAS — k2|VS|2>
— V(t)eks<kAS —KXQE — U(x)))
- V(t)eks<kAS _2KPE + k2U(x)).

Following the idea from the previous sections, we shall consider the following operator

with multiplier A,
P, =0+ A+ 1U(x).

‘We shall find A and k such that

Py (K (xg,x,1)) =0, t>0.
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A straightforward computation provides

P(V(1)ekS) = ekSV(t)[% — kE]
—i—ekSV(t)(kAS _2KPE + k2U(x))
+AU@)ESV (@)
= ekSV(t)(% +kAS —kEQk+ 1)+ (k> + k)U(x)).

1 1
We choose k = —3 A= ~1 and let V (¢) satisfy the volume equation

Vi) 1
v = —3As.

This shows that P; (V (1)e¥S) = 0, fort > 0. The volume function V (¢) is determined
up to a multiplicative constant C. The condition

lim V() / e ISE0ED G (x) du(x) = plx0), Ve € CF(M)
IAN] M
fixes the constant C.

We would expect to have the following result for the fundamental solution:

Theorem 10.19. Let (M, g) be a radially symmetric space. The fundamental solution
for the operator

1
P=8t+A—ZU(x)
is given by
1

K (x0, x, 1) = V(1)e™ 250050,
where V (t) is the above volume function and S is the action associated with the

1 1
Hamiltonian H(p, x) = zlplé + zU(x).
The above theorem provides a general formula for the heat kernel. For each potential
U (x) one needs to find the action S and the volume function V. As will be shown in
the next section, this cannot be done explicitly for all potentials. However, for some

potentials U (like the quartic one) there are more than one energy, which makes the
problem more difficult.

10.6 The case of the quartic potential

The case of quartic potential is much different than the case of the quadratic potential.
The kernel of the operator



208 10 Fundamental Solutions for Heat Operators with Potentials
2 1 4 4
P=20—0;—-ax",
4
with a > 0, is expected to be of the form

1
K (xo, x,1) = V(1)e™ 250050,

where S is the action between xo and x in time ¢, associated with the Hamiltonian
H(E,x) = %52 + %a4x4. The volume function V (¢) depends on S, which depends
on the energy E,

0,8 =—E.

If for given xp, x and ¢ we are able to find the energy E, then the problem is solved.
The Hamiltonian system is

‘x‘: = H%‘ = g’
é‘ =—H, = —2a4x3,

and hence x (s) satisfies the boundary value problem

X = —2a*x3,
x(0) = xo, (10.6.40)
x(t) = x.

The conservation of energy yields

1 1
—x2 4 gt = E,

2 2
with E the constant of energy. Writing
X = +V2E — a*x4,

separating and integrating between xo = x(0) and x = x(¢), yields

/X du _ 1
xo ~2E — a*u? T

With the substitution v = au/(2E)'/* the above integral becomes
v dv
woy vV 1-— U4

where wo = axo/(2E)"/* and w = ax/(2E)'/*. The integral can be written in terms
of the elliptic function cn, see [23],

= +a(RE)*1¢, (10.6.41)

voodv L dv /1 dv

wo V1 —v? wo &1 —v4 w V11—t

= L[cn_l(wo L)—cn_l(w L)]
2 V2 V2
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Hence (10.6.41) yields

cn_l(wo) — cn_l(w) = 4234q EV4.

(10.6.42)

Letu = cn_l(wo) and v = cn_l(w). Then snu = /1 — w%, snv=+v1—w?,

1 1
dn?u = k' + k2en’u = S0+ en’u) = S0+ w?),

1
and in a similar way dn’v = 5(1 + w?). We have used k = k' = +/2/2. Applying

cn, which is an even function, to (10.6.42) yields

cnu cnv + snu snv dnu dnv

3/4 1/4 .\ _ _ _
cn(27a EV7t) = en(u — v) = TR —

wow + /1 — w} 1—w2\L5 1+w%%\/1+w2

1— 31— wd)(1 —w?)

Qwow + \/(1 — wd)(1 — wh)
2 — (1 —wd)(l —w?)

2axy \/ QE — a*xHQE — a*x*)
+

_ J2E 2E
5_ (W2E — azxg)(\/ﬁ —a?*x?)
2E

242 /2Exox + \/ QE — a*x})QE — a*x*)

4E — (W2E — a’x3)(V2E — a®x?)

Let

2a°V2Exox + | QE — a*x) QE — atx¥)
4E — (V2E — a%x3)(V2E — a%x?)

cDx(),x (E) =

Lemma 10.20 We have:

4
a .
(@) Oy x(E) <1, VE= Tmln(IXOI, x1),
(i) lim @, (E) = 1.
E—o0

(10.6.43)

Proof. (i) The inequality between the geometric and arithmetic means yields
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2a>V2Exox + \/(2E —a*x)2E —a*x*) < 2a>V2Exox + 2E — ?(xg +xh.
In order to show @, ,(E) < 1 it suffices to show that
ZaZﬁxox +2E — %(xg +x4) <A4FE — (\/ﬁ — azxg)(«/ﬁ — a2x2)
<— 2a2«/ﬁxox +2FE — %(xg +x4) <2E + a4x§x2 + azx/ﬁ(xg +x2)
— 4\/ﬁx0x — az(xg + x4) < 2a2xgx2 + 2@(@% + xz),
which is equivalent to

0< az(xé + 2x§x2 + x4) + 2/ 2E(x(% — 2x0x + xz)
—0< az(xg +x2)2 + 2V2E(x — x0)2,

which is always true.
(ii) We have

4

X0X x4 X
o - 1)

lglimm Dy x(E) = lim 5 5 =

T )

Theorem 10.21. (i) Given xo, x, t and a > 0, there is an infinite sequence of energies
O<E<Ey<---<E;<-- <400
parametrized by the solutions 0 = E'/* of the equation

Dy (0%) = cn(2*adn), (10.6.44)

K\4
(ii) E, ~2(—Z t) . asn —> 00
a

L(1/4?°

where K = K (ﬁ/z) = ~ 1.854. Hence the asymptotics of the energy

depend only on t and do not depend on the end points xo and x.

Proof. (i) As from the above lemma ¢>x0,x(94) 1 and cn(23/4aft) oscillates

2k _ 21K th tion (10.6.44) will
23/4at = ai . eequa 10n .0. W1

have infinitely countable solutions 6, = E ,ll/ 4, see Figure 10.1.

between —1 and 1 with the period T =
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Figure 10.1: The energies E,,n =1,2,3...

(i7) For 6 large, the solutions of the equation (10.6.44) are approximated by the

solutions of the equation cn(23/4a9t) = 1, which are 0 = m=1,2,3....

1/4 2mK ntK4 nk\4
Hence (E2p) /" ~ >3/, O E, ~ Xy <%> .

In the case of a quartic potential there are infinitely many solutions with the end points
xo and x joined in time ¢. Their energies form an increasing unbounded sequence E,,.
The solution x, (s) of the Hamiltonian system associated with the energy E,, is given
implicitly by

m
23/4at’

2422 Eyx0x, (5) + \/ QE, — a*x})QE, — a*xi(s))
4E, — (V2E, — a’x3)(J2E, — a?x2(s))

This is quite different behavior than the quadratic potential case, where there is only
one energy and one solution between two given points. This behavior makes the

cn(23/4aE,i/4s) =

quartic potential heat operator P = 9; — 83 - Za4x4 difficult to invert.

The fundamental solution

Given any two points xo and x and a time ¢ > 0, there is a sequence of energies
E, = E,(xo, x,t) provided by Theorem 10.21. For each energy we associate an
action S, = S, (xo, x, t), which satisfies the Hamilton—Jacobi equation
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0:Sn = —En(x0, x, 1).

Using Theorem 10.21 (ii), the asymptotics of S,, do not depend on the end points
Sy ~ %(ﬂ)ALL, as n — o0o.
3\2a/ 13
For each action S;, we associate a volume function V,,. If 83 S, does not depend on x,
then V,, = V,,(¢) is a solution for the equation V, (1) + %(ASn)Vn (t) = 0. Butif BfS,,

depends on both x and ¢, then V,, = V, (¢, x) will satisfy a more general equation,
which will be introduced in the next section. Formally, the fundamental solution will

be of the form :

o0
—=5
K(xo.x.1) = Y CyVult.x)e 2 " (10.6.45)
n=l1

The constants C,, should be chosen such that

1
o __Sn
chhmvnmfe 27 p(x) dx = p(x0),
v AN R

for any compact supported function ¢.

10.7 The kernel of the operator §; — 32 — U (x)

In the case of the quadratic potential U (x) = ax? there is a unique solution joining
two given points xo and x and in this case the action is unique. This is no longer true
in the case of the quartic potential when U (x) = a’x*. In this case the fundamental

solution is a sum over all paths joining the end points xp and x in time 7. A similar

non-uniqueness behavior is expected for potentials U (x) = a’x™, m > 4.

We shall study the case of a general potential function U (x). Consider the operator
L= Bf + U (x) with the principal symbol as a Hamiltonian

1 1
H(, x) = 552 +5U (). (10.7.46)
Hamilton’s equations are
X=He=§&,
b 1 /7 . 3 1 Vi
E=—-H, = _EU (x), andhence ¥ =& = _EU (x).
Given two points x( and x, we are interested in solving the system

¥=-—1U'(x),
x(0) = xo, (10.7.47)
x(t) = x.
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Since the Hamiltonian (10.7.46) does not depend explicitly on the variable ¢, it will
be preserved along the solutions of (10.7.47), and

)'62

1
H="+ U@ =E (10.7.48)

where £ = E(xo, x,t) is the constant of energy. Hence x(s) verifies the integral
equation
x(s) dw

— =y,
w  V2E—Uw)

where the positive (negative) sign is taken in the right-hand side if x > xo(x < xp).
The energy E = E(x, x, t) satisfies the equation

/X dw _ 4y
w V2E —Uw) ’

with the same sign convention. The action § verifies 9;:S = —FE (xg, x, t). As along
the solutions & = Sy, then x = £ yields X = S, and hence (10.7.48) becomes

(8¢)> =2E — U(x). (10.7.49)

We shall look for a fundamental solution of the type K = V (¢, x)ekS. A computation
provides

/

9K = K(V7 - kE),
3K = VietS + vekSks,
- K(% + ka),
32K = VyekS + ViekSkS, + kK, Sy + kK Sy
= VixekS + kVeekSs, + ka<VxekS + kKSx> kK Syx
= VxS 4 2kV, eSS, + k2K (S0)? 4+ kK Sy
- K(V‘f‘ + Zk%SX FERAS)? + kax>.

Let P =0, — 85 + AU (x), where A is a real multiplier. We shall find A and k such
that PK = 0. We have

/

PK = K(% —kE),

v v,
_K( x + 2%, —|—k2(Sx)2+kax)

%
FKAMU(x)
v/ v, v
- K(V —kE — ‘jx _ 2ka7x —K2(S,)% — kSys + xU(x))
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B K<v’ — Vix — 2kS, Vy

—kSyy —KE +AUx) — k2 (S,)> )
Vv —

=2E-U(x)

V' — Viy — 2kS, V.
=K( il AR —kax—kE(2k+1)+(A+k2)U(x))
N’ N—

Vv
=0 =0
=0,
1 1 . .
where we choose k = ) and A = I Let V (t, x) satisfy the generalized volume
equation
1
V= Vix + Se Vi = _ES” v, (10.7.50)

where V/ = 9,V and V, = 9, V. Using that x = Sy, we have
d .
EV(t,x) =0, V+x0,V=0,V+S:0,V,
and the equation (10.7.50) becomes
d 1
EV(t,x) = Vex(t,x) — ESXXV(t,x). (10.7.51)

Inthe case when S depends on ¢ only, it makes sense to look for a function V = V (),
1
which satisfies V' = ESxxV.

Summing up the corresponding products for all the solutions that join xg and x
we arrive at the following formula for the fundamental solution.

Theorem 10.22. Let x,,(s) be all solutions of the boundary value problem (10.7.47).
Let Sy, be the action and V,, be the generalized volume function associated with the
solution x, (s) satisfying (10.7.51). Then the kernel of the operator

, 1
P=d -0~ Uk

is given by the formula
N s
K(xo,x,1) =Y CuVut,x)e 2", 1 >0,

n=1

where the relation

}%A;CnVn(t,x)e_és"(xo’x’tw)(x)dv(x) =¢(x0), V¢ € CCR) (10.7.52)

fixes the constant Cy,.
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For any potential U (x) we need to find the action S and the volume function V. This
cannot be done explicitly all the time. It can be done explicitly for quadratic potentials
of the form U (x) = ax? + bx + ¢, but it cannot be done for polynomial potentials
of degree greater than 3. Formally, in the latter case the kernel is a sum over all the
paths joining the points x and xg.

10.7.1 The linear potential

Consider U (x) = —ax. In this case the solution x(s) between xg and x is unique.
The associated energy E = E(xo, x, t) is defined by the integral

fx dw +t < V2E + V2E +axo + 21
—_— = ax = ax —t,
o V2E +aw L)
2 2 2
a(x —xg) = aItz + at\/2E + axg < (a(x — Xx0) — %t2> = a2t2(2E + axgp),
2 \2
(a(x — Xx0) — aTt2> (x — xp)>
0)
2E +axo = s & 2E +axp = -
—g(x — xp) + a—zt2
2 T 6
(x—x0)% a a\2 ,
E=—"2 24— (—) 2.
212 gm0y
The action S satisfies
S =—E
(x — x0)2 a (a)z 5
=4+ —(x— — (=) 7,
2w TR TG
with the solution 5 )
(x — xp) b° 5
S=—7—+b t— —t7,
5 + b(x + x0) B

where b = %. As Syy = o the volume function satisfies (10.7.51), which becomes

1 C
V' = —V and hence V(t) =

2t N
Theorem 10.23. Let b € R. The kernel of the operator P = 9; — 8)% + bx is given by
—x0)? b b?
_M — _(x +x0)t + —t3
K(x,xg,1) = e 4t 2 12 , t>0.
Vart

Proof. Applying Theorem 10.22, the kernel will be K = Ve 1S, Making b — 0,
the operator P tends to the usual heat equation. Comparing this with its fundamental

solution yields C = ——. [ |
Y A
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10.8 Propagators for Schrodinger’s equation in the
one-dimensional case

A quantum particle situated in a potential U (x) is characterized by a wave function,
which satisfies Schrodinger’s equation

1
ihd, U + 5#83\1/ =U@x)V, (10.8.53)

where 1 > 0 is the Planck constant. Given the initial value of the wave function
Wy (x) = W(x, fg), the solution of (10.8.53) at any instance of time ¢ > fg is given by

W(x, 1) =/K(x,r;xo,ro>wo(xo)dxo,

where K (x,t; xo, to) is the fundamental solution of the Schrodinger’s operator
1
L =iho, + EhZaf — U(x). In Quantum Mechanics K (x, t; xg, fo) is also referred

to as a propagator. The previous section is very useful to provide propagators for
different expressions of the potential function U (x). There are only a few cases when
we can compute explicit formulas for the propagators. These kernels are computed
in Quantum Mechanics using path integrals formalism, see [41]. Here we use the
geometric method provided by the previous sections.

10.8.1 Free quantum particle

In this case the potential energy U (x) = 0. The propagator in this case is obtained
from the heat kernel. It is known that the heat operator 9; — 83 has the fundamental

1 2
. 1~ & —xo0) . .
solution K (x, xo, t) = me 4t . Consider the substitution
t=iht X ih (10.8.54)
=1 s = — X. 0.
V2

Then the heat equation becomes a Schrodinger operator
1
& — 82 = ihd + 5hza,%,

and the fundamental solution becomes a propagator

1 2
——(x — x0)
K(x,x0,t) = e 4t
Tt
rie o )2
j —(X—X
= l—th 0
4t
= K(x, xq, t, 0).

Making a time translation 0 — tq yields the following result.
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Theorem 10.24. The propagator for a one-dimensional free quantum particle is given

by
ih ( 2
ih At _ gy X~ X0
K(x, X, t, tg) = [ ——— ¢2(t —t0) . t>t.
(x, X0, t, to) It —to >ty
10.8.2 Quantum particle in a linear potential
The substitution (10.8.54) yields
1 (b2
& — 92+ bx = ihd¢ + Ehza,% - ;l/—x

1
= ihdy + EhZa,f — ax,

where

. ibV2
a =10 = .

h
Using Theorem 10.23, the same substitution yields

2

(x—x0)% b b
- — = t+ —t
Kroxo) = ——e 4 PR
At
3
— ik ) Y t (%)Zit_
_ ik Spx—x0)” 2 T U 5) e
4t
. 2 3
ih , « o t
_ /%gzt(x %0)° oy XXt S o
TT
h lh(x X )2 ‘ [a(x + x )t+a2t3]
e _t a
TT

Replacing t by t — 1 yields the formula for the propagator for a quantum mechanical
particle in the presence of a homogeneous force due to a linear potential U (x) = ax.

Theorem 10.25. The propagator for the Schrodinger operator
1
ihd + 5/1283 — ax
is given by

K(x, xo, t, to)
ih

; 2
[ gy ® 0 lak et o)+ - )]
47 (t—to) ’

with t > tg.
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10.8.3 Linear harmonic quantum oscillator

1
This is the case of a quantum particle in a quadratic potential U (x) = E(xzxz, aeR.

Let a and b be such that

The substitution (10.8.54) yields the Schrodinger operator

1 _
& — 82 4+ b*x* = ihdy + —hza,% + b2—2x2

2q2 b2 2
zh8t+2h8 2.5%
. Lao o,

=lh3t+§h 8X—7X.

With substitution (10.8.54), the fundamental solution given by Theorem 10.12 be-
comes

K (x0, x, 1)
L_ 2P0 (2 4 x2) cosh(2br) — 2xxo]
— cos -
_ 1 bt arsinh@pny 0 o
sinh(2bt)
o 4 I , )
/ —i/2at s sm(at) —2[—§(X + Xg) cos(at) + xxo |
sinh(— 1«/_at)

—ix

1
B \/17\/7— hsT(at)[ - E(Xz + X(z)) cos(at) + XX()]
sin(at)
XX,
\/7 f (x2 + x3) cot(at) — sin(aot)]_
sm(at

Replacing t by t — t( yields the formula for the propagator for a quantum harmonic
oscillator.

Theorem 10.26. The propagator for the Schrodinger’s operator with quadratic po-
tential

, 1 1
ihdy + 5hza,% - Eazxz

is given by

i i_a [l(x2 + X2) cot(at) — L]
K xo. b tg) = | o |9 w125 T sin(a(t — t0)) .
4t sin(a(t — ty))

with t > tg.
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10.9 Propagators for Schrodinger’s equation in the n-dimensional
case

Letx = (x1, ..., X,). The n-dimensional Schrédinger equation with potential energy
U(x)is
1
ihdW + 5112(8,(1 o Oy )W = U)W (10.9.55)

Let Wo(x) = W (X, tp) be the initial value of the wave function. Then the solution of
(10.9.55) is

W(x,t) = / K (x, x0, t, to) Wo (X0) dXo, t > to,

where K (X, X, t, to) is the propagator. The potential U (x) = 0 yields the propagator
for an n-dimensional free particle

B\ = xol
K(x,xp,t, ty) = <ﬁ> e2(t—to) .
Tt —1

1
The potential U (x) = 2a 21x? 2ozz(x% +-+ x,%) yields the propagator for an

n-dimensional linear harmonic oscillator

, np ferle o 2 (%, xo)
ih ol )] 2 [ (P + o ottt = o]

K (x,xp,t, tp) = [m . m

where T =t — tg > 0, and (x, Xg) = X1Xo1 + - - - + X, X0p-
The following result deals with the potential energy

U(x) = (Mx, x) Z(x/ X5,

where
a; 0 . 0
M = 0 [0%) 0
0 0 ... ay

is a real matrix.

Theorem 10.27. The propagator for the Schrodinger operator
. 15 I 2
—

is
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K (x, X0, t, to)

n

I 2,2 2%y, ]
2 (x2 ) cotlor:T) — I3
(i n/zﬁ o 172 2h;[a/(xj +y7) cot(e;T) Sin(@, T)
“\ar) HGnem) © ’
j=1
wherey =xoand T =t —tg > 0.

2
—Aj, j =1, ..., n. With substitution (10.8.54) we have

Proof. Letaj = ;

1
ihd + —thx -3 Zﬁ z

ihdg + h AX——Za] X7,

which is the operator (10.9.56). The fundamental solution of the operator 9, — Ay +
Z )%x]z is given by Theorem 10.17. Using (10.8.54) the fundamental solution given
by formula (10.4.39) becomes

K(x,y,t,0)

Iy 2x;y;
P ij [(xf. + y]2<) coth(2x 1) — 4]

_ - l—[ 2At . = sinh(2A ;1)
n ] .
4mt) izl | sinh(22 ;1) |
haj 2xjy;
~1/2 —52 [(x +yj)COth(hajt)_W:|

hoj
= - e J
(4rt)n/? jli[l | sinh(ha;1) |

AN 1/2
:<4n> lj[|:sm(oz]t)] ¢

Replacing t by T =t — t( yields the desired relation. [ |

i 2, 2 2X;y; ]
- — (x> Y cot(ait) + ——92T
2h Z_: [ (xj +yj) cotle;) + sin(ajt)

10.10 The operator P = §; — 32 — U (x)dy
We shall study the fundamental solution function for the operator
P =30 —0>—U(x)d,,

where U (x) is a potential function. We shall study different potentials U (linear,
quadratic, square root, exponential). A last section will deal with the physical signi-
ficance of this operator.



10.10 The operator P = 9; — 8)% — U(x)0y
10.10.1 The linear potential
Consider the operator
d? d

L:W—i—ZaxE, aelR

with the associated Hamiltonian function
1
H(E, x) = 2 (67 + 2ax).

The Hamiltonian system yields

)'c:Hg:S—I—ax:&':é—ax,
=—Hy=—a¢f =—a(x —ax) = —ax + a’x,
and hence ]
5c'=§'+a)'c=—a5c+a2x+afc=a2x.

Then x (s) satisfies the boundary problem

2

X =a‘x,
x(0) = xo,
x(t) = x.

221

The above boundary problem has a unique solution. The associated energy is the same

as in Proposition 10.9

az(x2 + xé — 2xx0 cosh(at))

E = 3 sinh(ar)? (10.10.57)
The corresponding action is the same as (10.4.15)
S(xg, x,t) = 2 - [(x2 + xg) cosh(at) — 2xxo].
2 sinh(at)
From the conservation of energy
H(V,S)=E,
we obtain
(8:8)% 4 2ax 8, S = 2E = 2ax(d,S) = 2E — (8,5)°. (10.10.58)

We shall look again for a fundamental solution of the type

K =K(xp,x,t) = V(t)eks(x(%xgt)’
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with k constant. A straightforward computation yields

!

14
0K = K(5; —kE)o,K = kK0S,
2K = k9, K 0,S +kKd>S
= k*K (8,5)* + kK>S
- K(kz(axS)2 + kafs).
Consider the operator
P =0 — 0> —20axdy,
where « is a multiplier determined by the relation P K = 0. A computation provides

/

PK = K(V7 - kE) - K(kz(axS)z + kéﬁS) — 20akxK 8, S

/
K(7 — kE — k*(8,8)% — kd?S — ZaakxaxS)

!/

K(V —kE — k*(8,S)* — k325 — ak(2E — (8XS)2))
4 2 2

= K( 5 —KE(+20) = kOIS + k@ = ) (3:9)? ),

where we have used relation (10.10.58). Choosing « = k = —1/2 yields

PK =K V/+182S
- v 2 )

Using 838 = a coth(at), we let V satisfy

Vi(t) a .
V) + 5 coth(at) =0,

with the solution

V) = CeR

C
J/sinh(ar)’

Hence the operator P = 9, — 8)% + axdy has the kernel

K (x0.x.1) = V(t)e?$

I at 2 2
—— cosh(at) — 2 )
__C " 4sinhar) ((x +xg) cosh(ar) = 2xxo .
J/sinh(at)
When a — 0, the operator becomes the usual heat operator 0, — 33, with the funda-

1 2 . . a
e~ 2(=%0)" By comparison we obtain C = [ —.
4t T

mental solution
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Theorem 10.28. Let a € R. The fundamental solution for the operator P = 9; —
82 + axd, is

K (x0,x,1)
L_ a1 |02 1 22) coshar) — 2xx0]
—_— X X, a — ZXX
! at e 4t sinh(at) 0 0 t>0.
= Jani sinh(at) ’

The computations are similar in the case when a isreplaced by —ia. Using cosh(iat) =
cos(at) and sinh(iat) = i sin(at), we obtain a dual theorem.

Theorem 10.29. Let a € R. The fundamental solution for the operator P = 9; —
32 +iaxdy is

1

4¢ s1n(at) [+ xo) costan = 2xxol
e

, t>0.

at

\/_ sin(at)

K(xp,x,1) =

10.10.2 The quadratic potential

The operator considered in this sectionis P = 9; — L, with L = 8)% +2ia%x?d,. This
corresponds to a quartic harmonic oscillator in Quantum Mechanics. The Hamiltonian
associated with the operator L is

HE x) = %sz ©iate%.

From the Hamiltonian system we have

X=H5=E+ia2x=>5=5c—ia2x2,

£ =—H, = —2ia2x$ = —2ia’x(x — ia*x?)
= —2ia’xx — 2a*x?

¥ =&+ 2ia°xx
= —2ia’xx — 2a*x> + 2ia*xx

—2a*x3.

Then x (s) will satisfy the boundary value problem (10.6.40)

= —2a*x3
x(0) = xo,
x(t) = x.

This problem has infinitely many solutions x,(s), even for |x — xo| small. They
correspond to an increasing unbounded sequence of energies (E,), given by the
Theorem 10.21. The actions S, cannot be found explicitly. This explains the difficulty
of the problem. We shall find the kernel in the case of a general potential U (x) in the
next section.
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10.10.3 The kernel of 9; — 32 — U (x)d,
Consider the operator L = 8)% + U (x)0, with the associated Hamiltonian
H(E x) = 262 + 2U (08
,X) == —U(x)E.
2 2
The Hamiltonian system yields
. 1 o1
X = H; =§+§U(x):>§=x—§U(x),
. 1
§=—H = U@,
f = f 4 U0 = —2U 0 + U )i
= “Ux)x=—-=-Ux =U'(x)x
2 2 2
= 1U’( ) (% 1U( ) + 1U’( )X
=3 x)(x 5 X 5 X)X
1 1d
= —U U/ = ——U2 .
yl ()U (x) 3 (x)

dx

We are interested in the solutions of the boundary value problem

1d
X= gd—Uz(x),
X
x(0) = xo, (10.10.59)
x(t) = x.
The conservation law is | |
zxz — gUz(x) =E, (10.10.60)

where E is the constant of energy along the solution x (s) which joins the end points
xo and x. The solution x(s) can be obtained by integration

w

x(s) d
/ vy
w0 J2E + JU(w)

where the energy £ = E(xo, x) satisfies the equation

/X dw
_— =1
% J2F + JU(w)

The equation (10.10.61) has always at least a solution £ > 0. It might have even
infinitely many solutions E,,. There is an action associated with each energy E such
that

(10.10.61)

H(V.S) = E = (S¢)> + U(x)Sx = 2E,

and
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;S =—E,

where VS = S, = 09,S. For each solution x(s) we shall consider the product
K = V(t, x)e*S. Let A € R be a multiplier and consider the operator

Py= 0, — 32 — AU (x)d,.

A straightforward computation yields

v’ Vix Vy 2 2
Pr(K) = K7 —KE ) = K( % +2k7Sc + K2(S0) + kS

—2U(x)K E+k5)
(x) (V x

% 1% 1% 1%
— K(V —kE — ";x - ZkVXSx — K2(Sy)? — kSyx — w(x)vx - AkU(x)Sx>

1
= K(V(V’ — Vi — 2kV, Sy — kU(x)VX) —kE —k*(Sy)? — kSyy — AkU(x)Sx>

1
= K(V(V/ - Vxx - 2kaSX - )“U(X)Vx)

—kE — kK*(2E — SyU(x)) — kSyx — AkU(x)Sx)

1
_ K(—(V/  Vey — 2kV, Sy — AU(x)VX) — kSyx — KE (1 + 2k)
Vv S———
=0
+k(k—A) U(x)Sx>
———
=0
=0,

1 . . .
where we choose A = k = —3 andlet V (¢, x) satisfy the generalized volume function
equation

1 1
V' — Vix +[Sc + EU(x)]VX + ESXXV =0. (10.10.62)

A well-known result of Classical Mechanics states that £ = S, along the solutions
of the Hamiltonian system. The first equation of the Hamiltonian system yields x =
&+ %U x) = S, + %U (x), and hence the generalized volume function equation
becomes

1
V = Vix + % Vi + 35V =0. (10.10.63)

Using
d
EV(t,x(t)) =0,V +x0V =V +xV,

yields the following form for equation (10.10.62),
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d 5 1
EV(I,x(z‘)) -0, V(t,x) = —ESXXV(t,x). (10.10.64)

In the case when S, depends only on 7, it makes sense to look for a function V which
does not depend on x. Equation (10.10.64) in this case becomes

V/(t) = —%Sxx V(t).

This happens just in a few particular cases.

Theorem 10.30. Let x,,(s) be all solutions of the boundary value problem (10.10.59).
Let Sy, be the action and V,, be the generalized volume function associated with the
solution x, (s). Then the kernel of the operator

1
P=203 -0+ FU@)d

is given by the formula
1S ( 1)
— A X0, X,
K(xo.x.) =Y CyVult.x)e 27"
n

where V, (¢, x) satisfies (10.10.64) and the constants C, satisfy an analogue of equa-
tion (10.7.52).

There are only a few cases when the boundary value problem (10.10.59) can be
solved and we are able to find explicit formulas for the action S. The linear potential
is one of them. In the next section we shall present other particular cases, which have
unique solutions.

10.10.4 The square root potential

Let U(x) = 2+/2x. Then the equation (10.10.61) becomes

/ v L

x VE+w ’

If x > xo we choose the + sign and if x < x¢ we shall choose the — sign in the right
hand side. The sign does not affect the solution E. Integrating yields

X

1
=+V2i == VE+x—VE+xg=+—,
%0 V2

2VE 4+ w

VE+x=VE+xo+—— — E+4x ( E+x+ t)z
V2 V2
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2
t t
<— E+x=E+x0£2VE+x0—=+ —
V22
= e 2V E + !
X—Xx0— = = X0——=
2 J2

12\2
2
- (x—xo—i) = 2t°(E + xq)

122
(-n-5)
E = GYS) — X0
_ (x—x0)% 2 x-—xp
L 8 2 0
_ (x —x0)% 2 x+x0
222 8 2

Theorem 10.31. Given x # xq, there is a unique solution of the boundary value
problem (10.10.59) with the potential U(x) = 2+/2x. The solution is a parabola

given by
2
% —i—«/zs\/E 4+ x0 +x0 ifx > xop,
x(s) = (10.10.65)
2
% - «/zs\/E +x0+x0 ifx < xo,
2 2
— t
where the energy E = % 5~ X+ %o is the same for both cases.

Proof. We solve the following integral for x(s),

) dw K
— =4tV = i)+ E=2t—+xo+ E.
. T (s) 7 0

Taking the square we obtain (10.10.65).
In the following we shall find the action S, which satisfies the Hamilton—Jacobi

equation
(x — )co)2 2 x4+ X0
! 212 8 2
(x — )co)2 X+ xg 3
= S(x,xq,1) = t— —.
(x. %0, 1) % T2 24

1
An obvious computation shows that Sy, = — does not depend on x. Then the volume

function V depends only on ¢ and satisfies
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1
V() = —2—IV(t),

which can be easily integrated to obtain

c
WUZE'

Theorem 10.32. The kernel of the operator
P =0 —0>++2x0,

is given by

3

1 _ 2
__((x X0) +x+xot__>
e 2 2t 2 247 (10.10.66)

1
K (x,xo,1) =
N2t
Proof. From Theorem 10.31 there is a unique solution x(s) and hence the sum in the
Theorem 10.30 yields a fundamental solution K = V(t)e_%s . Equation (10.7.52)

1
ields C = —. [ |
Y V21

10.10.5 The constant potential case U (x) = a, witha € R

In this case the boundary value problem (10.10.59) becomes

X =0,
x(0) = xo
x(t) = x.

The solution is unique and it is given by
N
x(s):(x—xo);+xo, 0<s<t.

The energy given by (10.10.60) is

1 1
E— —32__12
273 (x)
(x—x0)* 1,
= —— — —qa”.
212
The action S satisfies

1 (x—x0)? 1
9SS = _E:__M__al
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1
It is easy to show that S,, = o Hence the volume function V (¢) will satisfy the

1 C
equation V'(¢) = —z—tV(t) with the solution V(¢) = —, ¢ > 0. There is only one
t
term in the sum provided by Theorem 10.30. The kernel will be

1 —x0)? 1
K(r,x0.0) = Ve 2 R T
X, Xp,1) = t)e = —¢e .
0 «/;

1
Making a — 0, we get C = ——= by comparison with the kernel of the usual heat

Van

equation. Making b = % yields the following theorem.

Theorem 10.33. Let b € R.
(i) The kernel of the operator

P =20 — 0>+ b,
is

K(x,x0,1) =

(ii) The kernel of the operator

is

K(x,xp,1) =

10.10.6 The exponential potential
In this section we shall deal with the kernel of
P =8 — 3+ v2e%,.

The potential in this case is U (x) = 2v/2¢*/? and the integral (10.10.61) becomes

/x W _ 15 1>0 (10.10.67)
| == , > 0. 10.

We choose a positive (negative) sign in the right-hand side if x > xo (x < xp).

Integrating yields
2_tanh™! J1+ "
VE E

X
= +/2¢

X0
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<= tanh™ 1‘/ — tanh™ 1,/1—1— —:Ft,/ .
) _ 1
Usmgtanh ln
X0
1+,/1+— 1+,/ +<
/*e \/ﬁz*
1 R
* E
X0
1+ 1—|—— l—i——
_ FV2Et
=e .
,/1+— 1~|—,/1~|——

1+z 14242z

ylelds

2Et

Using =z = - , the above relation becomes
X X X0
2+ & +2/1+ & - VIE!
_e . e e*o -
E 24+ 5+ 201+ 5

- 2E+ e +2VEVE +e* V2E
2E + % + 2J/EE + €%
Let A = ~/2E. Then A satisfies the equation

1
A2 4" + V24 =22+ e
£X0x . 2 :e:F)‘t_
exO—}—«/_)\,/ k2+ex°

F)
Let f(A) be the left-hand side of the above relation. We have

—=e€

f(0) =00 =1,
>1 ifxg>x,

<1 ifxg<ux.

Case xo > x : The equation becomes f (1) = ¢ . The linear approximations around
A =0are

M =1 +t,\+O(A2),

f(k)—1+~/_( )A—I—O(Az)

x/2 eX0/2
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1
Forany 0 <t < ﬁ(x—/z — T/Z) there is an € > 0 such that
e e
f) > e, for0 < A < e.
We also have
f) < 0% <M, forn> 20 "% _ .

X0 — X

), see Figure 10.2.

Hence there is a solution A € (e,

A

Figure 10.2: The functions f () and e* in the case xg > x.

Case xg < x :Theequation becomes f(A) = e ™ . The linear approximations around
A =0are

e M =1—1tA4+002,
1 1 )
f(k)zl—«/i( >A+O(A ).

n T an
A similar analysis yields that ¢ can be chosen small enough such that the graph of
the function f (1) is below the graph of e~/ for small positive values of A. For large
values of A the exponential has an asymptote at y = 0, while f (1) has an asymptote
at y = ¢~ < 1. Hence there is a solution A = +/2E (xg, x, t) only for small values
of t > 0. See Figure 10.3.
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A

Figure 10.3: The functions f (1) and e* in the case xg < x.

A fundamental solution is provided by Theorem 10.30. In this case there is only
one term in the sum 1
K=V, x)e_fs,

with 9,S = —F = —%AZ. The function V (z, x) satisfies
1
HV — Vir + VA2 +2e¥V, + ES”V =0,

where we used that ¥ = V2E + 2¢* = \/m. The function A = A(xg, x, 1)
depends on x and 7. This makes the above equation almost impossible to solve.
10.10.7 Physical interpretation
One way to look at the equation

Uy — UX)Uy = €Uyy (10.10.68)
is to think of it as the parabolic regularization of the transport equation

ur — Ux)uy, =0. (10.10.69)

For equation (10.10.69), one can define the characteristic x = x(¢) by d);lgt) =
—U(x(1). Then equation (10.10.69) is 2.1 _ g

Another way to look at it is to consider the viscous conservation laws
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w + f(W)x = €Wyy. (10.10.70)

The corresponding hyperbolic conservation law is
wr + f(w)y =0, (10.10.71)

where f(w) is called a flux function. In many physical situations w is a vector. For
example, the famous Euler’s equation of compressible fluids. In Euler’s equation the
vector w = (p, v, E). Here p is the density, v is the velocity, and E is the total energy
(kinetic energy and internal energy). In this case, equation (10.10.71) denotes the
conservation of mass, momentum, and energy. In equation (10.10.71), some impor-
tant physical effects such as viscosity and heat-conductivity are ignored, because in
general they are small. The more physically realistic equation is (10.10.70), which
takes account of those physical effects.

One may consider the linearized form of an equation around a specific solution.
For example, let W be a specific solution of (10.10.70). Let u be the small perturbation,
i.e.,u = w — W. So u satisfies the equation

U + (f(w) - f(W))x = €Uyxy. (10.10.72)

Write f(w) — f(W) = f/(W)u + Q(u, W). Then Q(u, W) is a high order term of
u. So equation (10.10.720 can be written as

ur + (f Wiu)y = eury — Qs (10.10.73)
The corresponding linearized equation is
ur + (f W)y = €ty (10.10.74)

In order to understand the behavior of solutions of (10.10.73), it is very important to
understand the Green function of linearized equation (10.10.74).

When W is a travelling wave solution of (10.10.70) of the form W(X_TSI), there is
an extensive study of the Green function of (10.10.74). See the references [27], [26],
[25], [46], [48], [7], [32], [9].

In the particular case when € = 1, and the flux is f(w) = —U(x)w(x, t), the
equation (10.10.71) becomes

w; — (UX)w) | = Wy (10.10.75)

If one sets

X
u(x,t) = / w(y, t)dy,
—0o0
then integrating the equation (10.10.75) yields
uy — Ux)uy = tyy,

ie., Pu=0,with P =8 — 32 — U(x)d,.
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10.11 Exercises

1. Prove (ii) of Theorem 10.3 (see [29], p. 50).

2. Show that the fundamental solution for the heat equation on R" has the following
properties:

(@) K(x,y, 1) =K(y,x,1) =0,

(i) Jgu K(x,y,0)dy =1,

(i) [gn K(x,2,0K(z,y,8)dz = K(x,y,1+5),

(iv) li\IAI(l)/ K(x,y,)¢(y)dy = ¢(x), for any ¢ compact supported smooth func-
t R~

tion.
3.Usinge? =), ‘fl—’; and a formula for A¢", prove formula (10.2.4).

4. (i) Let (E;) j>1 be the energies provided by Theorem 10.21. Given xo = x(0) and
x = x(t), show that the solution x(s) of the Hamiltonian system is given implicitly
by

20> /TE;x0x(s) +/ QE;j — a*x) QE;j — atx(s))
4E; — ((2E; — a’x3)(/2E; — a®x%(s))

(i1) Assume xop = 0 and find an explicit formula for x(s) in terms of the energies
(Ej)j=1-

cn(23/4aE}/4S) =

5. Let K be given as in Theorem 10.8. Show that
(l) lim K('axatv 7:)28()6,[)’
™0

i) Bm K (- (r.0)" op (6.0, 7) = 8(x — )31 - 5)-

6.Let M be acompact Riemannian manifold andlet¢ : (M, g) — R be anisometric
immersion. If there are p, ¢ > 1 integers such that

q
¢=¢0+Z¢j,

Jj=p

with Agp; = Ajpj, and A; € R is the j-th eigenvalue, then (M, g) is called a
submanifold of R of finite type.

a) Show that ¢y is the center of mass of (M, g), i.e.,

1
= dv.
#0= Sol(m) /M“’ !
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b) Show that/ pjordv =0for j #k.
M
¢) If M is a 1-dimensional submanifold of R? (a curve), then show that M is a

piece of a line or arc of a circle.

d) If M is a closed plane curve in R?, then its type is finite if and only if M is a
circle.

e) Show that the Euclidean sphere S" (r) is a submanifold on R"*! of finite type.
Show that if j is the inclusion, then Aj = % j. What is the type?
r

7. (Getzler) Let A € M,,«,,(R) be a positive definite matrix. Show that the heat kernel
of the harmonic oscillator —A + (Ax, x) is

1
— ((Bx.x) + (By. ) ~2(Cx. 7))
_ el
K(x,y,t,0) @ni)i? detC e ,
with
24/ At 2/ At
B=—"—, C=——, t > 0.
tanh 2+/At sinh 2/ At

8. (Hormander) Let Q € M, (R) be a skew symmetric matrix and denotei = «/—1.
Using the technique presented in this chapter show that the heat kernel of the operator

n n
2
L==3" (-0, -i) )
j=1 k=1
is
1 (1B~ y).x— ) + din(2x. )
- X—y),x—y it{Qx,y
=— 4¢
K(x,y,t,0) aniy 2 det A e ,
where
2|Qt 2|2t
=———— B=——"17—-— |[Q:=v-Q2
sinh 2| 2|t tanh 2|Q|¢ <2
(see Hormander [22], p. 158).



11

Fundamental Solutions for Elliptic Operators

11.1 Fundamental solutions for Laplace operators

In this chapter we shall find a formula for the fundamental solution of the Laplace
operator on radially symmetric spaces. We recall the formulas for the action and
energy along a geodesic which joins the points x¢ and x within time t. The action is

d(xg, x)*
given by § = % and satisfies the Hamilton—Jacobi equation
T

0S
— + H(VS) =0,
ot

where the Hamiltonian H(VS) = E is constant along the geodesic and equal to the

energy. Hence

39S d(xo, x)?
dr 212

E 1
We note that the quotient =7 is independent of the end points xp and x.
T

11.2 The transport operator

Definition 11.1 The transport operator is defined as T : F(R x M) — F(R x M),
a
T=—+VS, (11.2.1)
ot
where V stands for the gradient and S is the action along a geodesic c : [0, t] > M
with endpoints xo = c(0), x = c(1).
This means that if f € F(R x M), then

d
o

The following result shows that 7 is the derivation with respect to the parameter 7.

E)
+VS(f) = % +g(VS, V).
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Theorem 11.2. Let v : R x M — R be a smooth function. Then
T d ( ( )) (11.2.2)
v=—u(7,c(7)). 2.
dr
Proof. The chain rule yields

d . .
Ev(r,c(r)) =—+_—¢ (1)

dv k i
= — +8i(Vv)" ¢ (1)
ot

a
- a_: +g(Vo, é(D).
Using the relation ¢ = VS yields
g(Vv, c'(r)) = g(Vv, VS) = VS(©v),

by the definition of the gradient. Hence

d _dv VS(0) = T
Ev(r, c(r)) = + () =T(®).

11.3 Properties of the transport operator

Proposition 11.3 The operator T acts as a derivation

(@) Twu+v)=T(wu)+ T(),
(i) Twv)=uTw@W) +vTWw), Yu,ve FR x M).

Proof. As T is the sum of two derivations,

T (uv) %(u v) +VSuv)

d 0
u—v+v—u+uVSw) +vVSu)
ot ot

=uTv+vTu.

The following proposition deals with the eigenfunctions of the transport operator.
Let S be the action function.



11.3 Properties of the transport operator

Proposition 11.4 We have
1
@ TS =-S5,
T

i) T<]> 11
ii —)=—-,
S TS
(iii) In general, for any n € Z we have T S" = Dgn.
T

Proof. (i) Using the Hamilton—Jacobi equation,

TS

05 +g(VS,VS) = 05 +|VS)?
P AN T ot

S 1 _ o, 1 _ o, 1

= — 4+ —|VS —|VS|© = =|VS

ar+2| |+2| I 2| |
-0

1 d(xo,x)> S

= (P =E = dxo, )" _ S

2 272 T

1
@ii) Applying T tol1 = S 3 and using that T acts as a derivation yields

O:T(Sé)ZST(é)—f-éTS
1 11 1 1
=s7(5) +575=57(5) +

Hence
ST(l)— 1=>T<1>— 11
s/t s/ s

(ii1) Using (i), (ii) and the definition of 7', we have

n
TS" = 835 +g(VS,vs")

T

N
=nS"! <¥ +g(VS, vs)) =nS"'T(S)

239

Remark 11.5 The set (Si" ) ) are eigenfunctions for the operator T with the cor-
n>

. . +n
responding eigenvalues (—) .
T /n>1
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11.4 The homogeneous transport equation

Consider the homogeneous equation 7v = 0. We shall look for a solution as a linear
combination of powers of S,

1
V= Zan(t)S" + an(f)g
n>1 n>1

Using the properties of T yields

Tv =Y lay(t)TS" + S"a)(t) + by ()T (S™") + b}, (x)S "]

n>1

= Y lan() 28" + 5"} (0) + by(D)( = )5 + b, (1))
n=1 T T

1
= Y lan(®) = +a (18" + Y (B (0) = Zhu(D)] 5

n>1 n>1

In order to have Tv = 0, it suffices to choose the coefficients a,(t), b, () such that
the following ODEs are satisfied:

, n
an(T) = ——au(7),
T

, n
b, (t) = = by(1).
T
Integrating yields the solutions

ap(t) = Cnf_nv
bu(z) = Cpt",

with C,, 6,/1 € R constants. Hence

v(T,x) = Z[C,,t_"S" + aﬂnS—"]

n>1
S\n ~ /T\N
-2[aG) +a(5)]
— T S
=Y [ChE" + C,E™"],
n>1

where E is the energy along the geodesics between xo and x within time 7. Hence
v = f(E), where f is a function, which has a Laurent series expansion at £ = 0.
As a consequence, we have the following result.

Proposition 11.6 (i) T is E-homogeneous, i.e.,
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T(Ew) = ET(w), Yw € F(M).

(ii) In general, T is f(E)-homogeneous where f is a function which has Laurent
expansion around zero.

Proof. (i) As T is aderivation,
T(Ew) = ET(w) + wT(E) = ET (w).

Replacing E by f(FE) yields (ii). |

11.5 The non-homogeneous transport equation

Consider the non-homogeneous equation 7v = h, where /& has an expansion of the
form

1
h(z,x) =) lan()S" + (1) o .

n>1

Looking for a solution of the form

v = Zan(r)S" + an(t)ﬁ

n>1 n>1

yields

1 1
Yo lan (= + a1+ Y[ = S5 = Y lan(DS" +AuD) )

n>1 n>1 n>1

It suffices to choose the coefficients a,(t) and b, (t) such that the following linear
ODE:s are satisfied:

al(7) + ganm = a, (1),

b, (1) — gbn(r) = Bu(D).

The integrand factors of the above equations are u(7) = N, Integrating, we obtain
the solutions

ap(t) =1t7" / "o, (1) dT,

bp(r) = Tn/T_nﬁn(T) dr.

Substituting back in the expression of v yields
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v=Y a,(1)s" + an(f)s—ln

n>1 n>1

= ZS"r_”/t”a,,(r)dt+Z%r"/r_”ﬂn(r)dr

n>1 n>1

= ZE” / "o, (T) dT + Z % / "By (1) d.

n>1 n>1

In the case when o, () = B,(7) = O the integrals in the above formula are replaced
by constants C,, and C,,.

11.6 Fundamental solution

The following lemmas will be useful in our study. They hold true on any Riemannian
space (M, g).

Lemma 11.7 Let S be the action. Then for any o € R, we have
AS® =aS“_1AS+2a%(S°‘_1>. (11.6.3)
Proof. Lemma 2.27 yields
ASY = —oeS“_z( — SAS + (@ — 1)|v5|2)
=aS* 'AS — a(a — 1)S* 2| VS|%. (11.6.4)

From the Hamilton—Jacobi equation we have

1 BN
——|VS)F = —. 11.6.5
2| | = ( )

Multiplying (11.6.5) by 2a (o — 1)S*2 yields

as
ale — DS 2|VS)? = 2a(a — 1)50‘*28—
T
)
= 20(—(5“_1).
ot
Substituting in (11.6.4) yields (11.6.3). [ ]

Lemma 11.8 Let S be the action. Then for any o € Rand v € F(R x M), we have
1 a
oy _ QU _ o—1 _ - _ - o—1
ASY) = S¥Av —2a S (Tv 2(AS)U) 2aar (vS ), (11.6.6)

where T is the transport operator.



11.6 Fundamental solution 243
Proof. Lemma 2.24 yields
A(vu) = ulAv+ vAu — 2g(Vv, Vu).
Substituting © = S, and using Lemma 11.7 yields
A(WSY) = SYAv +vASY — 2g(Vv, VS“)
= S*Av +aS“ vAS + 2avai(s"‘*1) —2¢(Vv, a8*'VS)
= S“Av+aS* 'vAS + 2a— (vS“ h
—2a5%"! g—z - 2asa*‘g(w, vs)

= SAv + ZaS"‘_l[ (AS)v — z_v - g(Vv, VS)] + 2aai( seh)

= SYAv + 2054} [—(AS)U - Tv] + Za%(vSo‘_l)

— YAy — 2aS°‘*1[ v — —(AS)U] n zaai( se-1).

|

In the following we shall assume that the space (M, g) is radially symmetric, i.e.,
h(t) = AS(t) depends only on the parameter t. Consider the function

Ew

3

’

where S and E denote the action and the energy, while w is a function with properties
specified later. The following computations take place for x 7# xo. Applying Lemma
11.8 with v = Ew and o = ¢q yields

AF:iA( w) + —2

[T(E ) — —(AS)(Ew)] +2qaa (Sifl)

At [rem - S + 20 (),

where we used that 7 is E-homogeneous. Assuming that any geodesic is infinitely
extendible, we may integrate in T between —oo and 400,

Sq+1

= LA(Ew) +

T=+00
. (11.6.7)

T=—00

/ AFdrt =/ §A(E )+S I [Tw h(t)w]l+29g—/—

—00

Ew

Sq+1

Comparing with the fundamental singularity computed in section 7.4.2, we shall
2

1 1 d
choose g such that — ~ ——. Since § = —, it follows that 2¢ = n — 2, i.e.,
Y dn—2 212

_n 1
g=5-1
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We shall assume that the function w satisfies the following three conditions:
@) A(Ew) =0;
(i) Tw=h(t)w;
(m) vanlshes at T = £o0.

> Ew
K(xo,x): ﬂ_—ldr

—00 52

Then

is a fundamental solution, because

o0

AK(xg,x) = /

—00

Ew ©
A<F>d1’=/ AFd‘L’:O’ for x#xO_

2 —00

In the following we shall find a function w = w(z, x) satisfying properties (i) — (iii).

We start solving equation (ii) and employ an expansion for w in Laurent series
in the argument S,

w=Y @+ ;]

n>0

Using the properties of the transport operator 7' yields

I
Tw=Y" [an(f)sn (DT (S") + B (r) 4 ﬁn(t)T(Sn)]

n>0

= Z [O‘/ (r)§" + 2 (1)S" + /3’(r)i — ﬁﬂ(ﬂi]
n T " nilen ¢ sn

n>0
_Zpun-mﬂﬂ+zvﬁ)‘mﬂ$
>0 n>0

Comparing with
1
h(mw = ) h(D)an(t)S" + ) h(T)pu(v) -
T)w g oy, (T ; T)Bn(t 5

yields
(1) = (h() = = Jan(®) =0,
Br(®) = (h(r) + 2 ) pu(r) = 0.

which are linear ODEs with the integrand factors pu = = [h@dr, Integrating,

we obtain the solutions
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C
ay(7) = %efh(r)dr’

Bu(T) = Cy 1" el HO4T,

with Cy ,,, C2,» € R constants. Hence

w = ; [cn@" + o),

S .L.n
= efh(r)dt Z I:Clyn'[_" + Czyng:l
n>0

1
= efh(l’)d‘[ Z I:Cl,nEn + Cz’"ﬁ]’

n>0

where we used S = tE. The function v(t) = e/ M dT yag introduced and studied
in Chapter 9, where it was called volume function. Then w is the product between the
d?(xg, x . .
volume function and a Laurent series in £ = %. This solves the equation (i7).
T
We need to choose the constants Cy , and C , in the expression of w such that (i)
holds. We have

1
Ew=1v(®)Y [cl,nE’”rl + Cz,nﬁ].
n>0
We make Ew dependent on only 7 by choosing
Cin=0,n>0, C1#0, Cy,=0, forn#1.

Hence Ew = Cy1v(1) = Cg,lefh(f)dr is a volume function and hence (i) holds.

We still have to check condition (iii). We have

Ew Co gf()T h(u) du

sn/2 = 2 n/2
(%)

C2,1(2‘[)n/2 efor h(u)du
dr ’

Hence, we need to employ the following condition on the volume function,

lim "/2elo hwdu — ¢ (11.6.8)

T—>+00

In the case h(t) = AS < —k? < 0 the condition (11.6.8) holds. Geometrically, the
condition 4 (t) < 0 corresponds to converging geodesics on the manifold (M, g). We
have arrived at the following result.
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d*(xo,
Theorem 11.9. Let (M, g) be a radially symmetric space and S = % be the
T

action and v(t) = C e/ AS4T e the volume function. If (11.6.8) is satisfied, then the
fundamental solution is

+00 v(T)

K (x0,x) = e drt. (11.6.9)
—00

Corollary 11.10 Let (M, g) be a radially symmetric space with curvature greater

than a positive constant. Then the fundamental solution is given by (11.6.9)

Proof. On a Riemannian space with positive curvature the geodesics have negative
convergence h(t) < —k?% < 0 and hence (11.6.8) holds. |

11.7 The parametrix

The idea of looking for a parametrix as an expansion of powers of the action S goes
back to Hadamard (see [19]). We shall construct a sequence of functions vy, v, ...
depending on 7 such that

T v v ns
/OO<S+S2+S3+ >r ( )

is a fundamental solution for the Laplacian A on the Riemannian manifold (M, g). In
this section, the space (M, g) is not assumed radially symmetric, i.e., AS is allowed
to be a function of both S and 7. Let

vy vy 13

F=—4—2+2
stetys

sr=a(§)+a(3) valF) s

and then

Lemma 11.8 yields

A(ﬂ) = Lau+ 3(”1 — %(AS)m) 40

S S 52 E(%)
A(%) _ %sz n %2(”2 — %(AS)m) + %(2%)
A(8) = Gav 22 (1o Jasis) + (229,
A(%) - %Aw + 25'—54(Tv4 - %(Asm) + %(243%4)

Therefore
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1 1
AF = <hvi+ ﬁ[sz +2Tv; — (AS)vl]

1
+§[Av3 £2.2Tv, — 2(AS)v2]

1
+F[Av4 +2.3Tvs — 3(AS)U3] ¥

T a (2v +22v2 +231)3 +24v4 T
ot \ S? 53 s s )

k
Assume that 2sk—ljfl vanishes at 7 = F00. Integrating yields

+00 +00 1 1
/ AFdr:/ [EAUI+§|:AU2+2TU1—(AS)U1]

—0o0 —00

1
+§|:AU3 +2.2Tv, — 2(AS)v2]

+%[Av4 +2-3Tv3 = 3(AS)u3 |+ ..]df
=0,
providing vy, va, v3, ... satisfies the set of equations
—Av = 0,
—Auvy = 2Tv; — (AS)vy,

—Avz = 2(2Tvy — (AS)nmy),
() {-Avs = 3(2Tv; — (AS)v3),

247

Theorem 11.11. Let vy, va, v3, ... be functions satisfying the system of equations

(X) such that S:il

solution has the expansion

vanishes at T = =00, for all k > 1. Then the fundamental

+oo U1 1%) v3
Kon= [ <E+§+§+~-~)dr, Vx 5 X0, (11.7.11)
with the action S = d*(xo, x)/(27).
Proof. A formal interchange of A and j;o yields

+o0 +o0
AK(xo,x)zA/ Fdr:/ AFdr =0,

—0o0 —00

by the choice of vi’s.
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11.8 Solving the system (X)

We shall solve the system (X) in the case when (M, g) is a compact manifold without
boundary i.e., IM = @. In order to do this we shall use Hopf’s lemma and the
following result.

Lemma 11.12 Let S be the action and T be the transport operator. For any n > 0
we have
n n -1 2
TS" = ES VS|~ (11.8.12)

Proof. The definition of the transport operator and the Hamilton—Jacobi equation
yields

TS"

9
Loy g(VS", vs)
at
3
— s 122 nS"_1g<VS, VS)
at

s
= ns”‘<— + |VS|2>

0T
s 1 1
=nS"" =+ = |VS>P+=|VS)?
" (8T+2| P45 1VS]
Ny —]
=0
- %S"‘1|VS|2.

Applying Hopf’s lemma, the first equation of (¥) yields v; = ¢y, constant. Then the
second equation of (X) becomes

—Avy = —A(c1S) &= —A(v2 —15) =0.
Hopf’s lemma yields vo = ¢1S + ¢2, with ¢ constant. From Lemma 11.12,
1
Tvy=c1TS+ Tcy = ¢ =|VS)?

— 2
=0
and hence the third equation of (¥) becomes

—Avy =2(1|VSP = (AS)(erS + )
= c1(2|VS|2 _ ZSAS> — ASQc2)

= —c1AS? —2c,AS
= —A(18% 4+ 2¢35).

Hence
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—A(vz — 15 = 2¢28) = 0 = v3 = 1 5% + 2¢2S + ¢3,
where c3 is a constant. Using Lemma 11.12 yields
Tvs =c1TS*+20:TS + Tes
=c1S|VS]> + 2| VS|2.

The right side of the fourth equation of (X) becomes

3(2TU3 _ (Asm) = 3<2c1S|VS|2 20|V — (AS)(c152 4 2¢28 + c3))

—c1(3S?AS —3-25|AS|?) — 3¢2(2SAS — 2|VS|?) — 3c3AS
—c1AS® =3¢ AS? —3c3AS
= —A(clS3 + 302S2 + 3C3S).

Then the fourth equation of (¥) becomes
—Avy = —A(c1 8 + 36257 + 3¢35)
and Hopf’s lemma yields
vs = c15% + 3¢5 + 3¢38 + cu,
where c4 is a constant. Lemma 11.12 yields
Tvy =1 TS® +3c2TS? +363TS + Tey
= §S2|VS|2 + 3C2§S|VS|2 + 3C3%|v5|2.
Therefore
2T vy = 3¢1S?|VS|? + 662S|VS)? + 3¢5 VS|
We also have
(AS)vy = c1SPAS + 328 AS + 3c3SAS + c4AS.
Subtracting (11.8.13) and (11.8.14) yields

2Tvs — (AS)vs = c1(—S>AS + 3S52|VS]?)
+3c2(—S*AS +2|VS[H)
+3c3(=SAS + |VS]?) — c4AS
3c3

1
= —chAS“ —AS® — TA52 — c4AS.

The fifth equation of (X) becomes
—Avs = —A(c1S* +4c2 8 + 6¢38% + 4cyS)
with the solution
vs = c18* +4¢28° + 6¢38 +4cyS +¢s,  cs eR.

Inductively, we obtain the following result.

(11.8.13)

(11.8.14)
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Proposition 11.13 There is a sequence of constants cy, c2, 3, . .. such that for any
n > 1 we have
V1 = C1,
"k
Ungl = sk, 11.8.15
n+1 kX_(:) (n)ck+l ( )

11.9 Exercises

1.Letu : M — R be a smooth function preserved along a geodesic flow with respect
to the Riemannian metric g. Show that

@) g(Vu,VS) =0;

(ii) Tu=0;

(iii) Eu and u/E satisfy the equation Tu = 0.

2. Let S be the action and E be the energy.
(@) If T is the transport operator, show that 7S = E.
(ii) Show that T"S = 0, forn > 2, where 7! = T and T+ = T(T").

3. Consider the equation Tv = dz(xo, X).
(i) Show that v, = %dz (xp, x) is a particular solution.

(ii) Find the general solution of the above equation.

4. Consider the equation Tv = ——.
d?(xg, x)

(i) Show that v, = — is a particular solution.

d?(xo, x)
(ii) Find the general solution.

5. Consider the radially symmetric space (R", §;).

(i) Find the function i (7) and the volume function v(t) in this case.

(ii) Is the condition (11.6.8) satisfied?

(iii) Can formula (11.6.9) be used to find a fundamental solution of the Laplacian on
R"? Why?

6. Let S be the action and T be the transport operator. Show that 7'S 2= Vs

7. What formula (11.7.11) becomes when v,, are given by the formula (11.8.15)?
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Mechanical Curves

In this chapter we shall describe mechanical curves from the Lagrangian and Hamil-
tonian point of view. In this way, many geometric properties of these curves will be
derived from the variational formalism.

A mechanical curve is a curve described by a particle on which acts an exterior
force. For instance the circle, cycloid, hypocycloid, astroid, etc are models of particle
trajectories under some exterior forces. A particle on which acts a central force of
constant magnitude describes a circle. A point on a circle which rolls on a line,
without slipping, describes a cycloid. A point on a circle tangent interior to another
circle, which rotates without slipping in the interior of the large circle, describes a
hypocycloid.

12.1 The areal velocity

Suppose an object moves in the plane from the point A to point B along a continuous
o —_ —_
arc AB. Let A be the area swept by the vectorial radius OX with X € AB. We

—
shall consider positive the orientation given by the clock-wise rotation of OX. An
elementary calculus formula in polar coordinates yields

1 r¢
A:—/ r?de, (12.1.1)
2 Jo

where r = r(¢) is the length of the vectorial radius and the argument angle ¢ =
ZAOX. |

Written in differential form, we have d A = §r2 d¢. Let t be the time parameter.
Then

d 1 ,dp 1 ,,
dA _1,d0 1., (12.12)
dt 2 dt 2

The derivative d. A/dt is called areal velocity.



252 12 Mechanical Curves

A

)

D%

Figure 12.1: The area swept by the vectorial radius between two points.

12.1.0.1 Areal velocity as an angular momentum

Using polar coordinates x = r cos¢, y = r sin ¢, the areal velocity becomes

%;l = %rzq'S = %(rcos¢rcos¢q'5 —rsinqb(—rcosd))(z'ﬁ)
1

The expression xy — yx = ((x, y), (x, —y)) is called angular momentum.

If xy — yx is constant, the particle moves such that equal areas are described in
equal amounts of time i.e., the vectorial radius sweeps out equal areas in equal time.
This happens for instance, in the case of a particle in uniform motion on a circle or
in the case of a planet in the revolution motion around the sun (Kepler’s second law).

12.2 The circular motion
Consider a particle in the (x, y)-plane which is described by the Lagrangian
L(x,y,%,3) = %(;&2 +37) + @y — yh) (12.2.3)
i.e., the particle moves on a trajectory which is an extremizer for the action
S= / L(x,y,x,y). (12.2.4)

The Lagrangian L is the sum of the kinetic energy and the angular momentum.

Theorem 12.1. The Euler—Lagrange system associated with the Lagrangian (12.2.3)

IA)
e
¥=2 =0 (12.2.5)
y+2x = 0.
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The solutions of the system (12.2.5) with the boundary conditions
x(0)=x, x(@=x, yO) =y, y@=y, (12.2.6)
with0 <t <, are

x(s) = £Csins sin(s + ag) + Xo,
y(s) = £Csins cos(s + ag) + Yo,

with C =,/ % and the energy E given by

_ x—x0*+ (¥ —yo)?

E Y (12.2.7)
Proof. Using
oL doL ., . oL .
P FAk Rt G
oL . doL .. . L
a—}.}zy%—x, Ea—y:y+x, a—y,z—,

it is easy to see that the Euler—Lagrange system becomes (12.2.5).

Multiplying the first equation of (12.2.5) by x and the second by y and adding
yields XX + yy = 0, therefore

d
E(xz +3) =0= >+ y> = C? (12.2.8)

1
where C is a constant along the trajectory. Let £ = z()éz + )'}2) denote the first
integral of energy. Using (12.2.8) there is a smooth function o« = «(s) such that

X(s) = £Csina(s) = x(s) = £C cosa(s) a(s),
y(s) = £Ccosa(s) = y(s) = FC sina(s) a(s).

Substituting back in the system (12.2.5) yields

+cos? a(s) a(s) = £2 cos a(s),

Fsin® a(s) &(s) = F2sin® als).

Subtracting we get
a(s) =2 = a(s) = 2s + o, (12.2.9)

with «q constant. Hence
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s
X(s) = £Csin(2s + ap) = x(s) = :I:C/ sin(2u + o) du + Xq
0

2s+aq

1 C
= :ECE(— cos w) +x0 = :I:E<cosoz0 —cos(2s + ao)) + X

oo

= +C sins sin(s 4+ ag) + Xo,
where we used
ag+25s+ag . ap— 25 —ap
sin
2 2
= 2sin(s + ag) sin s.

cosag — cos(2s + ag) = —2sin

Substituting «(s) in the formula for y(s) yields

y(s) = £C cosa(s) = +=C cos(2s + )
s

= y(s) = £C / cos(Qu + ap) du + yo
0

25+

1
= :I:EC sinw + Yo

a0

1
= :I:EC(sin(Zs + o) — sin ao) + Yo
= £C sin s cos(s + ag) + Yo,

where we used
2s +ap — o 25 + ap + ap
cos
2 2
= 25sin s cos(s + ap).

sin(2s 4+ ag) — sinag = 2 sin

Hence we have arrived at
x(s) = £Csins sin(s + o) + Xo, (12.2.10)

y(s) = £C sins cos(s + o) + Yo, (12.2.11)

where « is a constant. We shall show that energy E = C 2 /2 does not depend on «.
Making s = 7 in (12.2.10), (12.2.11) yields

x = £Csin t sin(t + «g) + Xo, (12.2.12)
y = £C sint cos(t + ag) + Yo, (12.2.13)
hence it follows that
( : ) = C%sin®(r + ), (12.2.14)
sint
— 2
(y , yo) = €% cos (7 + ay). (12.2.15)
sint
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Adding yields
(x —x0)* + (y — yo)*
sin? t ’

which is (12.2.7). n

2E =C* =

Remark 12.2 Let d = \/ (x — X0)2 + (y — yo)? denote the Euclidean distance be-
d2
is not

tween (Xo, Yo) and (X,y). We note the fact that the energy E = Tl
sin“ t

Euclidean. Replacing sin t by 2 we obtain the Euclidean energy.
Let § be the Riemannian distance in which the solutions of the Euler—Lagrange equa-

82 2
tions become geodesics. Then E = 307 Then §* = (L) dz, and hence d and §
T

) sint
are homothetic.

The action

The action S = S(Xo, Yo, X, ¥, ) satisfies the Hamilton—Jacobi equation

BN d? d* 3
— =—F=—— = ——(cot 1)
ot 2sin?t 2 ot
9 d? d?
=>O=—(S——cotr>=>S=S0+—cotr. (12.2.16)
ot 2 2

Proposition 12.3 The Hamiltonian associated with the Lagrangian (12.2.3) is

1 1
Hx,yoprp) = 5(p1+ )"+ 5 (p2 = )" (12.2.17)

Proof. The Hamiltonian system for the Hamiltonian (12.2.17) yields

X=Hp =p1+y=p=x-y,
y=Hp,=pr—x= p2=y+x.

Using the Legendre transform we have
L=pix+py—H

1 1
=@—yﬁ+%Y+ﬂy——@r+ﬁ2—§@z—ﬂ2

2
. L. oL, 1.,
=@E =i+ G +0y -5 -5y

1 ) .0 . .
=0T F V) Fxy —yx

We note that the Hamiltonian (12.2.17) is the principal symbol of the operator
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1 » 1
P = 5(3x +y) + 5(3y —x)

2
L o 0 1 5 2
=§(8x+3y)+y8x—x8y+§(x + y9),

which describes the circular motion.

12.3 The astroid

The trajectory of a point P on the unit circle which rolls without slipping in the interior
of a circle of radius 4 is a hypocycloid with four cuspidal points. This curve is called
astroid. The equation of the astroid is

X234y =1, (12.3.18)

Figure 12.2: The astroid.

If P starts at the cuspidal point (4, 0) and s denotes the angle argument of the center
C, we have
x(s) = cos’ s, y(s) =sin’s, (12.3.19)

which are equivalent with
x(s) = 3coss + cos 3s, y(s) = 3sins — sin 3s. (12.3.20)

A simple computation shows that (12.3.20) is the solution of the system

e _
:x y+3x=0, (12.3.21)

V+2x 43y =0,
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with initial conditions
x(0) =4, x(0)=y0) =y0) =0. (12.3.22)
Standard ODE techniques show that the solution (12.3.20) is unique.

Proposition 12.4 The system (12.3.21) is the Euler—Lagrange system associated with
the Lagrangian

R U .. 3
L(x,y, %, ) = 5(x2 + 3 +xy—xy— E(x2 + ). (12.3.23)
Proof. We have
L doL . . OL . 3
ox Y @wiax YT TV T
8L__+ d8L___+_ oL . 3
oy TN @iy YT Gy TN
Then
ddL 9L ddL _dL
dt 9x  9x’ drdy  dy
yields the system (12.3.21). [ |

12.3.0.2 Noether’s Theorem

The Lagrangian (12.3.23) is invariant under rotations centered at the origin. The vector
field associated with this rotation at the point (x, y) is (—y, x). Noether’s theorem
yields a first integral of motion given by

P= (P2 5) () = G- ) + G
= 0% 9y )" Vs = =y y
= —xy+y? +yx+x2=x2+y* 4 xy— iy
dA
2
= 227
r ds

where x = r cos ¢, y = r sin ¢. We have arrived at the following result.

Proposition 12.5 For any solution of the system (12.3.21) there is a constant C such

that

. ,dA

(@) r +2E_C’

(i) s =c [ d
o r(u)

along the solution.
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Proof. (i) It clearly follows from the fact that the first integral is constant along the
solutions.

(ii) We have
c=r’+ Xy —Xy
=242
=r’(1+9)
dp C
— = -1
ds r?
Integrating yields the desired result. |

We can get the same result if we write the Euler—Lagrange system in polar coor-
dinates. See Exercise 2.

As the astroid is a solution of the system (12.3.21), the above proposition applies
to it. In this case the constant C is obtained by taking the value at s = 0,

C = x*(0) 4 y*(0) + x(0)$(0) — %(0)y(0)
= 16.

Proposition 12.6 The Hamiltonian associated with the Lagrangian (12.3.23) is

1 3
H(p1, p2, %, ) = 5[(p1 + M2+ (p2 — 0+ E(x2 +y2). (12.3.24)
oL . oL .
Proof. The momenta are p; = ST TATY p=ao =Y + x, and then
X y
X=pi+y, y=p2—x (12.3.25)

Using (12.3.25), the Legendre transform yields

. . 1 .2 .2 . . 3 2 2
H(p1,pz,x,y)=p1x+pzy—§(x +y)—xy+xy+§(x +y9)

1
p1(p1+y) + p2(p2 —x) — E((Pl + )%+ (p2 — x)z)

3
—x(p2 =)+ (p1 + )y + E(x2 +y%)

1
5(1?12 + D)+ p1y — pax + 22 + %)

1 3
5[(1?1 + )%+ (p2 — x)z] + E(x2 + 7).
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12.3.0.3 The first integral of energy

As

oH 0H dH
=0 and — =

o o dr’
it follows that H is preserved along the trajectory. The value of H along the trajectory
is called the total energy. In x, y, x, y coordinates the energy takes the form

1 3
E=§Ug+y%+§Og+y%. (12.3.26)

Note that E does not depend on the angular momentum as the Lagrangian does. It
depends only on the magnitude of the velocity and the distance to the origin.

12.3.0.4 Physical interpretation

The speed of a particle described by a solution of the Euler-Lagrange system is

v=,/x2 + y2.

If r = /x2 + y? denotes the distance from the origin to the point (x, y), formula
(12.3.26) yields
v? =2E - 3r2.

In the case of the astroid with the initial conditions (12.3.26) we have E = 24. Thus
v = +/3(16 — r2) with r € [0, 4]. The speed on the astroid is zero iff » = 4, which
occurs only at the cuspidal points.

12.4 The cycloid

Consider a particle described by a Lagrangian, which is the sum of the kinetic, angular
momentum and potential energy in the x-direction

1 1
L(x,y, &, 3) = (& + 3 + S (0§ — £y) +x. (12.4.27)
The Euler—Lagrange system of equations associated with the Lagrangian (12.4.27) is

i—y=1,

G4k =0 (12.4.28)

If we consider the initial conditions

x(0)=0, x0)=0, y©0) =0, y0)=0
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the solution will be the cycloid
x(y) =1 —cost, y(t) =sint —t. (12.4.29)

From the mechanical point of view, the cycloid is the trajectory of a point fixed on a
circle which rolls without slipping on the real axis.

12.4.0.5 Solving the Euler-Lagrange system (12.4.28)

=) vsm() o) o)

Set

The system (12.4.28) can be written as

vV—Jv =ey. (12.4.30)
Multiplying by e7* yields

(e T5v) = e Te.

ds
Integrating we obtain
eIy = —j_le_JSel + Co = e_jsjel + Co
= —e‘jsez + Cp.
Multiplying by e”* yields
u(s) = eJSC() — e
— u(s) = T T Cy—ers + C)

=—JeJ5Cy — exs + Cy. (12.4.31)

The integration constants Cy and C; depend on the boundary conditions: u(0) =

ug, u(t) =uy, wheret > 0. Let A = eI, Making s = 0 and s = 7 in the relation
(12.4.31), yields

u =—-JCp+Cy,
u =—-JACy— et +Cy.

Subtracting, we eliminate Cy,

u —u; =—JCo+ TJAC) + et
—JU —A)Cy+ertT
— Co=(I — A [T —uy) — ezl (12.4.32)
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The elimination of Cy gives us

u —Aug={ — A)Ci —ert
= C; = — A" [u; — Aug + e>7]. (12.4.33)

Substituting (12.4.32) and (12.4.33) back in (12.4.31) yields

u(s) = —jejSCo —es +C
=-Je7U = A7 [T (o —uy) —e7] —exs
+(I — A)"'[uy — Aug + e7]
= (I — A)*l[—je‘ﬁj(uo —up) + JeTSeit +u; — Aug + e27] — exT
== A) ey —uy) — el ert +u; — Aug + e27] — €25
= -4 = Aug+ T —e7*)(u; +e27)] — e25. (12.4.34)

Proposition 12.7 The solution of the Euler-Lagrange system (12.4.28) with the
boundary conditions

x(0) =x0, x(@)=x1, yO)=y. Y@ =n

is

x_l_ r TIs _ Tty [ X0 _js(xl >i|
(y)—2(1 COtZJ)[(e e )<y0)+(1 e )y1+r ,

where .
oT5 — coss sins ’ 7= 01
—sins coss —10

are rotations of angle s and 1 /2, respectively.

Proof. Tt follows from formula (12.4.34) and Exercise 3. [ |
Proposition 12.8 The Hamiltonian associated with the Lagrangian (12.4.27) is
1 2 2 1 1 2 2
H(p1, p2,x,y) = E(pl + p3) + E(Ply —xp2) + g(x +y)+x. (12.4.35)

Proof. Using

_AL_ ]

p1 = % =X 2)” X =pi 2)’,
oL . 1 . 1

= —_— = ——_x, = ——x’
p2 3y y 3 y=Dn )

the Legendre transform yields the Hamiltonian
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H=pix+py—1L

= pi( +1)+ ( 1) 1[( +1)2+( 1)2]
= pP1(pP1 2)’ pP2(p2 2x ) P1 2)’ D2 2x

1 1 1
[x(p2 - 50 =i+ 5”] +x

2
=p2+1p1y+p2—lpzx—l[p2+p1y+ly2+p2—pzx+lx2]
172 22 2L 4 2 4
L L L)+
S@pr = 5x% = pry— oy +x

(Pt +p3) — l(P% +p3) + lPly - lsz + lPzX - lPly
2 2 2 2 2

DL N IS IS (P
2'4) Tt T g Ty A

1 2 2 1 1 2 2
= 5(171 +py) + E(Ply_xPZ) + g(x +y9) +x.

12.4.0.6 The total energy

As the Hamiltonian does not depend explicitly on the parameter s, H will be constant
along the solutions of the Fuler—Lagrange equations. Let E be the constant value of
H along the solution. Using x, y, x, y coordinates yields

E

[ = 507 4 G 5074 5[ - 2y 5G4 50|+ L)+
7] A R A ) R R M I D
1 1, 1 1 1 1
=5(552+)"2—5Cy+)'1x+Zx2+Zy2)+§(Xy—§y2—xj;—zxz)

! 1

g0+ = S 457 +x

In particular, as the cycloid is a solution of the Euler-Lagrange equations, it has the
energy

_ oo o
E = 2(x +y9) + x. (12.4.36)

Using the initial data for the cycloid x(0) = 0, x(0) = y(0) = 0, it follows that
E = 0. Hence %()&2 + y2) = —x along the cycloid, or

v = 2/x] (12.4.37)

where v is the speed.

12.4.0.7 Galileo’s law

A unit mass particle in a gravitational potential with acceleration g = 1, situated at a
level h above the ground, has the potential energy U = h. When the particle is free
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falling, from the conservation of energy, the initial potential energy is equal to the final
kinetic energy i.e., h = %vZ. The formula for the speed v = +/2/ is called Galileo’s
law. Comparing with (12.4.37) yields an important characteristic of the motion on a
cycloid:

Two punctiform, unit-mass bodies are released in free gravitational fall, from the
same height £, the first on a cycloid and the second vertically. Then at each level the
speeds are the same and they will reach the ground with the same speed, v = +/2h.

v=\/2h V= \/E

oNe!
<

Figure 12.3: The speed at the same level x = & is the same for both
unit-mass bodies in free gravitational falling.

12.5 Curves that minimize a potential

Given two points A and B, we are interested in finding a curve in the (x, y)-plane,
that joins A and B, and minimizes a given potential U (y) along the trajectory. This
means the particle moves such as to minimize the action

/ U(y)ds, (12.5.38)

where ds = /dx? + dy? is the arc element along the curve. Using ds = /1 + y"2dx,
the action becomes | L(y, y') dy , with the Lagrangian

L(y,y)=U)/1+y2 (12.5.39)

The extremizers of the above action will satisfy the Euler—Lagrange equation, which
are provided in the next result.
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Theorem 12.9. Let U(y) > 0 be a differentiable potential function for y > 0. The
Euler—Lagrange equation for the Lagrangian (12.5.39) is

7 U )

2 12.5.40
= U0 )( + y). ( )

The solution y = y(x) satisfies the integral equation
y(x) dw
v o VKUZ(w) -1

where y(xo) = yo and k is a constant. The solutions of the equation (12.5.41) are the
Riemannian geodesics with respect to the metric do® = U (y)(dx* + dy?).

Proof. We have

= x — Xo, (12.5.41)

L UG oL,
= — =U'y1+y2,
' J14y? dy
d /9L Uy)y \/ 1 !
) = ( ) == (Vo) V1+y2 = vy T+
dt V14y? I+y
do
Then the Euler—Lagrange equation — — = — becomes
dtdy’  dy

(V) A +yD U = UG+

= A+ )V + UMY = U'0) = U'0y?) = Uy

S UGY =U A +yP
" _ U’ (y)

=y = =1 +)y?).
U®y)

d d d
In order to solve the equation, let y/ = p. Then y” = @ _ _py, = _pp

dt dy dy

d U’
The equation becomes d_p p = U((y)) + pz). Separating the variables yields
y y

p Uy
1+ 7~ Uy

dy. Integrating, we obtain

1
51n(1+p2) =mnU(y)+C

14+ p2=kU(y)
— p* =kU*(y) -1

=y = +,/k2U%(y) - 1

d
Y = *dx.

— =
VERU2(y) — 1
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Integrating yields (12.5.41). [ |

In the following we shall consider a few cases in which the integration can be
performed explicitly.

12.5.0.8 The gravitational potential

In particular, if U(y) = y , the Euler-Lagrange equation is

vy =1+y"? (12.5.42)
with the solution y(x) satisfying
d
/ — 2 x4 Ces - / =x+C,
Vi1 Vi —(1/k>2

cosh™!(ky) = kx + C <= ky(x) = cosh(kx + C),
1
() = 4 cosh(kx +0). (12.5.43)

This is called the catenary curve. The catenary is the shape of the curve that joins two
given points and has minimum gravitational potential energy.

12.5.0.9 Minimal surfaces

If we consider the potential U (y) = 27y, the action to be minimized is

2 / yy/ 1+ y?2dx. (12.5.44)

This is the area of the surface generated by revolving the curve y = y(x) about
the x-axis. The action (12.5.44) is minimized by the catenary curve. The revolution
surface generated by the catenary is a minimal surface called a catenoid, See chapter
8, Figure 8.1.

The minimum surface property has an interesting physical significance. If two thin
circular rings, initially in contact, are placed in a soap film surface, then the surface
has the minimum area property, and it has the shape of a catenoid.

12.5.0.10 The brachistochrone curve

Another important case of physical interest is when the potential is U (y) = 7 The
Yy

equation becomes
1+y?+2yy" =0.

Multiplying by y’ yields an exact equation
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Lo o

There is a constant C # 0 such that y(1 + y/z) = C. Solving for y’ yields

lc
Y=+ [Z 1. (12.5.45)
y

Introduce a new variable 6 by the relation
y = Csin?#. (12.5.46)

Then (12.5.45) becomes

2CSin9d9_i 1
dx T T ging’

Separating yields
2C sin? 6 df = +dx. (12.5.47)

Substituting ¢t = 26, formula (12.5.47) can be written as
o (1
Csin (5) dt = +dx
C
<— 5(1 —cost)dt = *xdx.

Integrating yields
Cc
x(t) = iE(Z —sint) + xp.

From (12.5.46) we obtain

. 2 . 2 t C

y = Csin“ 6 = Csin (—) = —(1 —cost).
2 2
Hence, if C # 0, the solution is a cycloid which starts at the point (xg, 0),
C C
x(t)::I:E(t—sint)+x0, y(t) = E(l—cost).

It is known that along the cycloid the speed is given by Galileo’s law v = /2y. Thus

the action . J
/ —ds = \/5/ @
VY v

gives the time for a free falling particle necessary to move from one point to another
under gravitational influence. This time-minimizing curve was discovered in 1696 by
John Bernoulli, who called the curve a brahistocrone curve.
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12.5.0.11 Coloumb potential

1
The potential U(y) = — provides an important case related to hyperbolic geometry.

The curves will extremize the action

2 2
/U(y)ds :/lds :f—vdx;rdy (12.5.48)
y
2
_ / VIHYE / do, (12.5.49)
y

y>0

Figure 12.4: The geodesics in Poincaré’s upper half-plane.

where

dx? +dy?
= —y 5
is the Riemannian metric of Poincaré’s upper half-plane, see Chapter 6. The solutions
of the Euler-Lagrange system will be geodesics in the above metric, and hence they
will be arcs of circle and lines perpendicular on the {y = 0} line.

do? (12.5.50)

U=0 U= L

Figure 12.5: The uncharged thread in potential U = 0 and the
charged thread in the potential U = 1/y.
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12.5.0.12 Physical interpretation

Suppose a horizontal rod is crossed by an electrical current at a very high voltage.
Around the rod there is a Coulomb potential U(y) = 1/y, where y is the distance
to the rod. Suppose now that a thread with mobile ends is attached to the rod. When
the thread gets charged, repelling electrical forces act between the thread and the rod.
The equilibrium shape of the thread will be an arc of a circle normal to the rod, i.e.,
a geodesic in the Poincaré space.

12.5.1 Hamiltonian approach

The problem may be approached also from the Hamiltonian point of view.

Proposition 12.10 Ler U (y) > 0. The Hamiltonian associated with the Lagrangian
L(g.¢) = U(g@)J1+¢*is

H(q. p) = —/U(q)?* — p>. (12.5.51)

JdL
Proof. The momentumis p = — = U(q) Solving for g yields

q
9q J1+4¢%

2 / U(Q)

1 U(q)2 T JU(@@)? = p?

The Hamiltonian is

22

H=pé—M%éﬁﬂK®7%ﬁﬁ—Um)l+¥
.2 .2
q I+gq -U(q)
:U —_ =
(w(¢v+¥ \/1+q2> Vi+g?

_ U@ VU@?—p* _ _Jua@r— -

Ulq)
|
12.5.2 Hamiltonian system
The Hamilton system of equations becomes
—O0H _ P
o Ju@?-p?
(12.5.52)

__3H _ U@ U9

P=7% = Jugr -2
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Dividing the equations yields

q p . b
_—__ — = U .
S T@QU@ or pp () u'(q) q

which may be written as

2l m =Lk
TGP ®) = (5U%@0).

Therefore U(g)*> — p? is a first integral of motion. Hence the Hamiltonian H =
—/U(q)? — p? will be constant along the solutions and the Hamiltonian system
(12.5.52) becomes

= P

9="g

12.5.53
__U@Uw ( )
L

p
Differentiating the first equation and using the second one yields a second order
equation in ¢,

p_UQU 1 4
H H? 2H? dg

(- U@?).

Let V(q) = —U?(q) denote the potential energy. Then ¢ verifies

—1dvV
e (q), (12.5.54)
2H? dg

which is a pendulum equation with potential energy V (q), with the energy constant

H. For instance, in the case of U(q) = ﬁ, it follows that the cycloid may be inter-

preted as a pendulum in a Coulomb potential V (g) = —%.

12.6 Exercises
1. Prove that the system of equations

i-2y=0,
§+ 2% =0,

with the initial conditions
x(0) =0, y(0) =1, x(0) =2, y(0)=0

has the solution (x (1), y(t)) = (sin 2t, cos 2t), which is a circle.
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2. Show that in polar coordinates x = r cos¢, y = r sin ¢, we have
@) x)')—)'cy:rZ(]').
(ii) 2432 =i+ gt
(iii) The Lagrangian (12.3.23) becomes
. 1 1. . 3
L(r 7 _ 12 2(_ 2 __)‘
(ri @) = 57+ 7367+ - 3

(iv) Write the Euler-Lagrange equations and show there is constant C such that
r2(14+¢) =C.

3.Let J = <_(1) (1)>

(i) Show that ¢/* = COSS SIS ) o hd (eJS)" - CC.’S(”S) sin(7s) .
—sins coss —sin(ns) cos(ns)
(ii) Show that

1 1 —cot% 1 T
_pJdny-l 2) — (] — _
I —e’") _z(cot% 1 >_2(1 cotzj).

-1
Hint: Use the formula (i 2) = ﬁ <_dc _ab>'

4. Consider the metric do> = U (y)(dx*+dy?*) on R%. Find a formula for the Laplace
operator in this metric.
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conformal, 91

conic, 127

connected, 22, 26-28, 41
connection, 18

conservation laws, 1, 38, 233
conservation of energy, 69, 208
conservation theorem, 87
conservative, 18

constant potential, 228
convection, 28

coordinate space, 38

covariant derivative, 24, 137, 138
covector, 7

critical point, 50

curl, 154

curl tensor, 137

current, 67

cycloid, 260, 266

cylinder, 73

D’ Alembert, 61, 63

decomposition, 145

deformation vector field, 60

derivation, 237, 241

diffeomorphism, 4, 84

differential map, 5

Dirac distribution, 175

Dirichlet functional, 82

Dirichlet integral, 50, 57

Dirichlet problem, 41

divergence, 17, 18, 20, 21, 23, 26, 77, 83

divergence free, 86

divergence theorem, 22, 40, 41, 79, 84, 86,
132

divergence-free, 43
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dynamical system, 34, 38

eiconal equation, 116, 127
eigenfunction, 176, 199, 238
Einstein equation, 80
Einstein tensor, 77, 83
elastic potential, 85
electrostatic potential, 41
elliptic functions, 38, 208
endpoints, 134
energy, 208
energy density, 56, 63, 67
energy flow, 75
energy functional, 57
energy-momentum, 74, 83
equipotential surfaces, 51, 69
Euclidean space, 156
Euclidian action, 185
Euclidian distance, 128
Euler’s equation, 233
Euler-Lagrange equations, 33, 38, 40, 41,
43-45,47,51, 84,113
Euler-Lagrange system, 127
Euler—Poincaré characteristic, 81
Euler-Lagrange equations, 57
expansion, 137, 145
exponential potential, 229
exterior forces, 61

field equations, 79

first integral, 48, 67

flux function, 233

force vector, 45, 47

Fourier transform, 201

free quantum particle, 217

free-divergence, 21, 67

Fubini, 86, 88, 155, 181

fundamental singularity, 131

fundamental solution, 131, 185, 190, 198,
216, 218, 232, 237, 242

Galileo’s law, 266

Gauss, 154

Gauss’s formula, 42

Gauss’s lemma, 155, 156
Gauss—Bonnet theorem, 81
generalized volume function, 214, 225
generating formula, 194

geodesic, 46, 49, 63

geodesic flow, 155

geodesic lift, 102

geodesic map, 60

geodesic sphere, 153, 156
geodesic vector field, 154
geodesics, 101

Getzler, 235

gradient, 17

Gram—Schmidt procedure, 176
gravitation, 43

gravitational acceleration, 33
gravitational potential, 43
Gronwall lemma, 87, 96
group law, 160

Hormander, 235

Hadamard, 246

Hamilton’s equations, 33

Hamilton’s system, 99, 120, 132
Hamilton—Jacobi equation, 33, 113, 117,

125, 180, 184, 206, 211, 227, 237, 242,

248
Hamiltonian, 97, 106, 118, 129, 149, 150,

187,223
Hamiltonian formalism, 102, 124
Hamiltonian system, 102, 182, 208
harmonic functions, 22, 100
harmonic map, 50, 57, 90, 103
harmonic quantum oscillator, 218
Hartman, 149
Hausdorft, 1, 2
heat equation, 28, 197
heat kernel, 158, 178, 197, 216
heat operator, 23, 175, 180, 187, 190, 211
heat-conductivity, 233
Heisenberg group, 160
Heisenberg principle, 38
Heisenberg translation, 163
helicoid, 144
Helmholtz decomposition, 145
Hermite function, 192, 202
Hermite operator, 191
Hermite polynomial, 192
Hessian, 24
Hilbert space, 177
Hilbert—Schmidt norm, 57
homeomorphism, 1
homogeneous transport equation, 240
homothetic, 91
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Hopf’s lemma, 22, 27, 41, 43, 146, 248 mean curvature vector field, 42
hyperbolic cosine, 199 mean scalar curvature, 50, 141, 143, 155,
hyperbolic functions, 195 180
hypersurface, 42, 50, 62 mean value theorem, 181
hypoelliptic operator, 115 minimal hypersurface, 50, 140, 142
minimal submanifold, 43
immersion, 61 minimal surface, 144
implicit differentiation, 151 Minkowski, 55
incompressible, 43, 137 modified Bessel function, 198
inner product, 176 momenta, 132
integral curves, 21, 48 momenta matrix, 97
inverse Fourier transform, 196, 203 momentum, 46, 106
isometric immersion, 42, 50, 63 momentum conservation, 48
isometry, 48 Monge patch, 144
multiplier method, 186
Jacobi, 6
Jacobian, 4 natural Lagrangian, 45, 50, 113

Newton’s equation, 45, 47
Newtonian potential, 18, 82
Kepler’s problem, 126 Noether’s theorem, 48, 67
Kepler’s second law, 252 non-commutativity, 46
kernel. 224 non-degenerate, 86

Killin é 9 nonlinear equation, 118

Killing vector, 48, 49, 70, 85, 139
kinetic energy, 33, 34, 44, 45, 161
Koszul formula, 11, 139

k-pluri-harmonic, 22

one-parameter group, 8, 72
one-to-one, 74

operators with potential, 182
orthogonal condition, 192
orthonormal basis, 56, 142
orthonormal frame, 132

Lagrangian, 33, 39, 41, 44, 47, 150
Laguerre polynomials, 194
Laplace equation, 41

Laplace operator, 23, 237 p-harmonic functions, 93
Laplace—Beltrami operator, 130, 159 p-Laplacian, 27, 95
Laplacian, 17, 21, 25, 27, 131, 175, 246 parabola, 227
latitude circles, 72 parabolic operator, 189
Laurent series, 240, 245 parabolic regularization, 232
Legendre transform, 103, 117 parallel transport, 133
Leibnitz, 10 parametrix, 246
Levi-Civita connection, 11, 17, 18, 25, 39, Parseval identity, 176

42,46, 59,77, 101, 128, 138, 141 particle, 38, 45, 122
Lie, 13 pendulum, 34, 269
Lie algebra, 161 pendulum equation, 35
Lie bracket, 6 Picard-Lindeledf theorem, 151
Lie derivative, 20, 21, 83, 139, 157 pluri-harmonic, 22
linear approximations, 231 Poincaré half-plane, 106
linear connection, 10 Poincaré upper half-plane, 96
linear potential, 215, 217, 226 Poisson equation, 43
linearized equation, 233 polar coordinates, 83

positive curvature, 246
maximal, 29 positive definite, 86
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potential energy, 18, 33, 35, 45, 113, 216
principal symbol, 182, 206

propagator, 216, 219

pull-back, 56

quadratic potential, 218, 223
Quantum Mechanics, 38, 216, 223
quantum particle, 216

quartic potential, 207, 211, 212

radially symmetric space, 156, 180, 205, 246
reaction force, 61

rectification theorem, 4

reparametrization, 134

Ricci identity, 77

Riemannian, 17, 21-23

Riemannian distance, 128, 132, 159
Riemannian geodesic, 102, 103

Riemannian Geometry, 9

Riemannian manifold, 13, 27, 176
Riemannian metric, 9, 81, 106, 150, 152, 158
Riesz—Schauder, 176

rotation, 137, 145

saddle surface, 143

scalar mean curvature, 42, 157
scalar product, 9

Schrodinger operator, 216
second fundamental form, 25, 59, 155
small perturbation, 233

soap film, 41

spectral theory, 176

square root potential, 226
standard metric, 178
stationary processes, 41
steady-state, 41, 43
submanifold, 42, 55

surface of revolution, 72
symmetric connection, 25
symmetric tensor, 25, 42, 59

tangent field, 44

tangent vector fields, 158
tangent vectors, 3

tension field, 59

tensor, 8, 20

tensor field, 11, 24, 25
topological invariant, 81
topological space, 1, 2
torsion, 11, 139

torsion field, 62

total energy, 35, 113, 124, 259
Trace, 62, 140

trajectory, 60

transport equation, 232, 241
transport operator, 237

unit normal vector, 155
unit vector field, 143

variation, 39

variational principle, 61

vector field, 4

vector space, 176

viscosity, 233

volume element, 12, 43

volume function, 157, 178, 181, 212, 227
volume functional, 82

Weingarten map, 141, 147
Whitney, 10

Whittaker function, 198
work, 46, 48
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