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Preface

It is commonnow in academiccirclesto lamentthe declinein the teachingof
geometryin our schoolsanduniversities,andthe resultinglossof “geometricin-
tuition” amongour studentsOntheotherhand recentdecadesave seerrenaved
links betweergeometryandphysics to thebenefitof bothdisciplines.Oneof the
world’s leadingmathematicianbasarguedthatthe insightsof “pre-calculus’ge-
ometry have a role to play at all levels of mathematicahctivity (Arnol’d [A]).

Thereis no doubtthat a combinationof the axiomaticand the descriptve ap-
proachesassociatedvith algebraand geometryrespectrely canhelp avoid the
worstexcesse®f eitherapproachalone.

Thesenotesare aboutgeometry but by no meansall or even mostof geom-
etry. | amconcerneavith the geometryof incidenceof pointsandlines, overan
arbitraryfield, andunencumberelly metricsor continuity (or evenbetweenness).
The majorthemesarethe projective andaffine spacesandthe polar spacessso-
ciatedwith sesquilineanor quadraticforms on projectve spaces.The treatment
of thesethemesblendsthe descriptve (What do these spaces ook like?) with the
axiomatic(How do | recognize them?) My intentionis to explain anddescribe,
ratherthanto give detailedargumentfor every claim. Someof the theoremqes-
peciallythecharacterisatiotheoremsparelongandintricate.In suchcases| give
a proofin a specialcase(often over the field with two elements)andanoutline
of thegeneraligument.

Theclassicalvorksonthesubjectarethebooksof Dieudonré[L] andArtin [B].
I do not intend to competewith thesebooks. But much has happenedsince
they werewritten (the axiomatisatiorof polar spacesy VeldkampandTits (see
Tits [S]), the classificationof the finite simple groupswith its mary geometric
spin-ofs, Buekenhouts geometriesassociatedvith diagrams,etc.),and| have
includedsomematerialnotfoundin theclassicabooks.

Roughly speaking,the first five chaptersare on projectve spacesthe last
five on polar spaces.In more detail: Chapterl introducesprojective and affine



spacesyntheticallyandderivessomeof their properties Chapter2, on projectve
planesdiscusseshe role of Desagues’andPappus’theoremsn the coordinati-
sationof planes,andgivesexamplesof non-Desaguesianplanes.In Chapter3,
we turn to the coordinatisatiorof higherdimensionalprojective spacesfollow-
ing VeblenandYoung. Chapter4 containsmiscellaneousopics: recognitionof
somesubsetof projective spacesincluding conicsover finite fields of odd char
acteristic(Segre’s theorem);the structureof projectve lines; andgeneratiorand
simplicity of theprojectve specialineargroups.Chaptels outlinesBuekenhouts
approacho geometryia diagramsandillustratesby interpretingtheearlierchar
acterisatiortheoremsn termsof diagrams.

Chaptel6 relategpolaritiesof projective spaceso reflexive sesquilineaforms,
and givesthe classificationof theseforms. Chapter7 definespolar spacesthe
geometriesaassociatedvith suchforms, andgivesa numberof theseproperties;
the Veldkamp—Tts axiomatisatiorandthe variantdue to Buekenhoutand Shult
arealsodiscussedandprovedfor hyperbolicquadricsandfor quadricsover the
2-elemenfield. Chapter8 discusse$wo importantlow-dimensionaphenomena,
theKlein quadricandtriality, proceedingasfar asto definethe polarity defining
the Suzuki—Tits ovoidsandthe generalisedhexagonof type G,. In Chapter9, we
take a detourto look atthe geometryof the Mathieugroups. This illustratesthat
therearegeometricobjectssatisfyingaxiomsvery similar to thosefor projectve
andaffine spacesandalsohaving ahigh degreeof symmetry In thefinal chapter
we definespinorsandusethemto investigatehe geometryof dual polar spaces,
especiallythoseof hyperbolicquadrics.

The notesarebasedon postgraduatéecturesgivenat QueenMary andWest-
field Collegein 1988and1991.1 amgratefulto memberof theaudiencenthese
occasiongor their commentsandespeciallyfor their questionswhich forcedme
to think things throughmore carefully than| might have done. Among mary
pleasure®f preparingthesenotes,l counttwo lecturesby JonatharHall on his
beautiful proof of the characterisatiof quadricsover the 2-elementffield, and
the challengeof producingthe diagramsgiven the constraintsof the typesetting
system!

In theintroductorychapterdo bothtypesof space¢Chapters and6), aswell
aselsavherein the text (especiallyChapterl0), somelinear algebrais assumed.
Often, it is necessaryo do linear algebraover a non-commutatie field; but the
differencedrom the commutatve caseare discussed.A good algebratextbook
(for example,Cohn(1974))will containwhatis necessary

PeterJ. Cameronlondon,1991



Preface to the second edition

Materially, this edition is not very differentfrom the first edition which was
publishedin the QMW Maths Notesseriesin 1991. | have convertedthe files
into IATEX, correctedsomeerrors,andaddedsomenen materialanda few more
referencesthis versiondoesnot represent completebringing up-to-dateof the
original. I intendto publishthesenotesonthe Weh

In themeantimepneimportantrelevantreferencéhasappearedDon Taylor’s
book The Geometry of the Classical Groups [R]. (Unfortunately it hasalready
goneoutof print!) You canalsolook atmy own lecturenoteson ClassicalGroups
(which canbereadin conjunctionwith thesenotesandwhich mightbeintegrated
with themoneday). Othersourceof informationincludethe Handbook of Inci-
dence Geometry [E] and(onthe Web)two seriesof SOCRAES lecturenotesat

http://dwispc8.vub.ac.be/Poten zal/le ctno tes. html
and
http://cage.rug.ac.be/ fdc/int ensiv ecourse2 /fina Lht ml

Pleasenotethat,in Figure2.3,thereareafew linesmissing: dottedlinesutq
andurv anda solid line ubico. (Thereasonfor thisis hintedat in Exercise3 in
Sectionl.2.)

Peter]. Cameronl.ondon,2000
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1

Projective spaces

In this chapteywe describeprojective andaffine spacesynthetically in termsof
vectorspacesandderive someof their geometrigproperties.

1.1 Fieldsand vector spaces

Fieldswill not necessarilype commutatve; in otherwords, the term “field”
will mean®“divisionring” or “skew field”, while theword “commutatve” will be
usedwherenecessaryOften,though,l will say“skew field”, asa reminder (Of
course this refersto the multiplication only; additionwill alwaysbe commuta-
tive.)

Givenafield F, let

| ={neN:(VaeF)n-a=0}={neN:n-1 =0}.

Thenl is anidealin N, hencel = (c) for somenon-ngative integer c calledthe
characteristicof F. The characteristias eitherO or a prime number For each
valueof the characteristicthereis a uniqueprimefield which is a subfieldof any
field of that characteristic:the rational numbersin characteristizero, and the
integersmodulop in prime characteristiq.

Occasionallyl will assumeudimentaryresultsaboutfield extensionsdegree,
andsoon.

Much of the time, we will be concernedwith finite fields. The mainresults
abouttheseareasfollows.

Theorem 1.1 (Wedderburn’s Theorem) A finite fieldis commutative
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Theorem 1.2 (Galois’ Theorem) A finite field has prime powerorder. For any
prime powerq, there is a uniquefinite field of orderg.

The uniquefield of orderq is denotedby GF(q). If q= pd with p prime,
its additive structureis that of a d-dimensionalectorspaceover its prime field
GH(p) (theintegersmodulop). Its multiplicative groupis cyclic (of orderq— 1),
andits automorphisngroupis cyclic (of orderd). If d = 1 (thatis, if qis prime),
thenGF(q) is thering of integersmoda.

An anti-automorphisnof afield is a bijectionc with the properties

(C1+c2)? = cl+c3,
(c1-c)° = c3-cf.

The identity (or, indeed,ary automorphism)s an anti-automorphisnof a com-
mutatve field. Somenon-commutatie fields have anti-automorphismsA well-
known exampleis the field H of quaternionswith a basisover R consistingof
elementsdl, i, j, k satisfying

i2=j°=K=-1, ij=k jk=i, ki=];
theanti-automorphisnis givenby
a+ bi+cj+dk— a—bi—cj—dk.

Others however, do not.
The oppositeof thefield (F,+,-) is thefield (F, +,0), wherethe binary oper
ationo is definedby therule

CioCo=Co-C1.

Thus,ananti-automorphisnof F is justanisomorphisnmbetweerF andits oppo-
siteF°.

For non-commutatie fields, we have to distinguishbetweenleft and right
vectorspaceslin aleft vectorspacejf we write the productof thescalarc andthe
vectorv ascv, thency(cav) = (c1¢2)v holds. In aright vectorspacethis condition
readscs(cpv) = (Cpcy)v. It is morenaturalto write the scalarson theright (thus:
vc), sothatthe conditionis (vcp)cy = v(cpcy)). A right vectorspaceover F is a
left vectorspaceover F°.

Ourvectorspacewill almostalwaysbefinite dimensional.
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For the most part, we will useleft vectorspaces.In this case,it is natural
to representa vector by the row tuple of its coordinateswith respectto some
basis;scalamultiplicationis a specialcaseof matrix multiplication. If thevector
spacehasdimensiomn, thenvectorspaceendomorphismarerepresentetly n x n
matricesactingontheright, in theusualway:

(vA) = 3 VA,

if v=(v1,...,Vn).
Thedual spaceV* of a(left) vectorspaceV is the setof linearmapsfromV
to F, with pointwiseadditionandwith scalarmultiplicationdefinedby

(fc)v =f(cv).

Notethatthis definitionmakesV* aright vectorspace.

1.2 Projective spaces

A projectie spaceof dimensionn over a field F (not necessariljcommuta-
tive!) canbeconstructedn eitherof two ways: by addinga hyperplaneatinfinity
to anaffine spacepr by “projection” of an(n+ 1)-dimensionakpace Both meth-
odshave theirimportanceput the seconds the morenatural.

Thus,letV bean(n+ 1)-dimensionaleft vectorspaceover F. Theprojective
spacePG(n,F) is the geometrywhosepoints, lines, planes,... arethe vector
subspacesfV of dimensiondl, 2,3, ... .

Note thatthe word “geometry”is not definedhere;the propertieswhich are
regardedasgeometricalvill emegeduringthediscussion.

Note alsothe dimensionshift: a d-dimensionalprojectve subspac€or flat)
is a (d + 1)-dimensionalvector subspace.This is donein orderto ensurethat
familiar geometricalpropertieshold. For example,two pointslie on a unique
line; two intersectinglines lie in a uniqueplane;andso on. Moreover, ary d-
dimensionalprojectve subspaces a d-dimensionalprojective spacein its own
right (whenequippedwith the subspaces contains).

To avoid confusion(if possible)] will from now onresenethetermrank(in
symbols rk) for vectorspacedimension sothatunqualified“dimension”will be
geometriadimension.

A hyperplanes a subspac®f codimensioril (thatis, of dimensiononeless
thanthewholespace).If H is a hyperplaneandL aline notcontainedn H, then
HNL isapoint.
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A projectie plane(thatis, PG(2, F)) hasthe propertythatary two linesmeet
in a (unique)point. For, if rk(V) = 3 andU,W C V with rk(U) = rk(W) = 2,
thenU +W =V, andsork(U NW) = 1, thatis, U NW is a point. Fromthis, we
deduce:

Proposition 1.3 (Veblen’s Axiom) If aline intersectstwo sidesof a triangle but
doesnt containtheir intersection thenit intersectsthethird sidealso.

Figurel.1l: Veblens Axiom

For thetriangleis containedn a plane,andthe hypotheseguaranteghatthe
line in questionis spannedy pointsin the plane,andhencealsoliesin theplane.

Veblens axiomis sometimegalledthe Veblen-YoungAxiom or Paschs Ax-
iom. Thelatternameis not strictly accuratePaschwasconcernedvith real pro-
jective spaceandthefactthatif two intersectionsreinsidethetriangle,thethird
is outside;thisis apropertyinvolving ordet goingbeyondtheincidencegeometry
whichis our concernhere.In Section3.1we will seewhy 1.3is referredto asan
“axiom”.

Anothergeneralgeometricpropertyof projectve spacess thefollowing.

Proposition 1.4 (Desaigues’ Theorem) In Figure 1.2,thethreepointsp,q,r are
collinear.

In the casewherethe figure is not containedn a plane,the resultis obvious
geometrically For eachof thethreepointsp, g, r liesin boththeplanesa;b,c; and
axbocy; theseplanesaredistinct,andbothlie in the 3-dimensionaspacespanned
by thethreelinesthrougho, andsotheirintersections aline.
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Figurel.2: Desagues' Theorem

The casewherethe figure is containedin a planecan be deducedrom the
“general”’ caseasfollows. Givena point o anda hyperplaneH ,write aa ~ bb' if
oad,obl arecollineartriplesandthelinesab anda’’ intersecin H (but noneof
thepointsa, &, b, b’ liesin H). Now Desagues’'Theoremis the assertiorthatthe
relation~ is transitve. (For p,q,r arecollinearif andonly if every hyperplane
containingp andg alsocontaing; it is enoughto assumehis for thehyperplanes
not containingthe pointsa, &, etc.) Sosupposeéhatad ~ bb' ~ cc. Thegeomet-
ric agumentof the precedingparagraptshavs thatad ~ cc if the configuration
is notcoplanarsosupposet is. Let od bealine notin this plane with d ¢ H, and
choosead’ suchthatad ~ dd’. Thenbb' ~ dd’, cd ~ dd’, andad ~ cc follow in
turn from thenon-planaDesagues’'Theorem.

(If we areonly givena planeinitially, the crucialfactis thatthe planecanbe
embeddedn a 3-dimensionakpace.)

Remark Thecasewvhere|F|=2is notcoveredby thisagument— canyousee
why? — and,indeed theprojective planeover GF(2) containsno non-deyenerate
Desaguesconfiguration:it only containssesenpoints! NeverthelessDesagues’
Theoremholds,in the sensehatany meaningfuldegeneratiorof it is truein the
projective planeover GF(2). We will not make anexceptionof this case.

It is also possibleto prove Desagues’ Theoremalgebraically by choosing
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coordinategseeExercisel). However, it is importantfor later developmentdo
know thata purelygeometrigproofis possible.

LetV beavectorspaceof rankn+ 1 over F, andV* its dual space.As we
sawv, V* is aright vector spaceover F, and so can be regardedas a left vector
spaceover the oppositefield F°. It hasthe samerankasV if thisis finite. Thus
we have projective space$G(n,F) andPG(n, F°), standingin a dualrelationto
oneanother More precisely we have a bijection betweenthe flats of PG(n, F)
andthoseof PG(n,F°), givenby

U < Ann(U)={feV*:(YuelU) (fu=0)}.
This correspondencpgreseresincidenceandreversesnclusion:

UpCUz; = Ann(Uy) C Ann(Uy),
Ann(U;+Uz) = Ann(Up) NAnNn(Uy),
Ann(U;NUz) = Ann(U) +Ann(Uy).

Moreover, the (geometric)dimensionof Ann(U) isn—1—dim(U).

This givesriseto a duality principle, whereary configurationtheoremin pro-
jective spaceranslatesnto another(over the oppositefield) in which inclusions
arereversedanddimensionsuitablymodified. For example,in theplane thedual
of the statementhattwo pointslie onauniqueline is the statementhattwo lines
meetin auniquepoint.

We turn briefly to affine spaces.The descriptionclosestto that of projectve
spacesunsasfollows. LetV beavectorspaceof rankn overF. Thepoints,lines,
planes,... of theaffinespaceAG(n,F) arethe cosetsf the vectorsubspacesf
rank0, 1, 2,.... (No dimensionshift thistime!) In particular pointsarecosetsof
the zerosubspacen otherwords,singletonsandwe canidentify themwith the
vectorsof V. Sotheaffine spaces “a vectorspacewith no distinguishedrigin”.

The otherdescriptionis: AG(n,F) is obtainedfrom PG(n,F) by deletinga
hyperplandogethewith all the subspaceg contains.

Thetwo descriptionaarematchedup asfollows. Take the vectorspace

V =F™ = {(%0,X1, ., %n) 1 X0, -+, %0 € F}.

Let W be the hyperplanedefinedby the equationxy = 0. The pointsremaining
arerank 1 subspacespannedoy vectorswith xg # 0; eachpoint hasa unique
spanningvectorwith xg = 1. Thenthe correspondencleetweerpointsin thetwo
descriptionss givenby

((1,X1,---,%1)) > (X1,---,%n)-
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(SeeExercise2.)

In AG(n,F), we saythattwo subspaceareparallel if (in thefirst description)
they are cosetsof the samevectorsubspaceor (in the seconddescription)they
have the sameintersectionwith the deletedhyperplane.Parallelismis an equiv-
alencerelation. Now the projectve spacecanberecoveredfrom the affine space
asfollows. To eachparallelclassof d-dimensionalsubspacesf AG(n,F) cor
responds unique(d — 1)-dimensionakubspacef PGn—1,F). Adjoin to the
affine spacethe points (and subspaces)f PG(n— 1,F), andadjointo all mem-
bersof a parallelclassall the pointsin the correspondingubspaceTheresultis
PG(n,F).

The distinguishechyperplands calledthe hyperplaneat infinity or ideal hy-
perplane Thus,anaffine spacecanalsoberegardedas“a projectve spacewith a
distinguishechyperplane”.

The study of projectve geometryis in a sensethe outgronth of the Renais-
sanceheoryof perspectie. If apainter with his eye atthe origin of Euclidean3-
spacewishesto representvhathe seeson a pictureplane theneachline through
theorigin (i.e., eachrank 1 subspace$houldberepresentedy a point of the pic-
tureplane,viz., the pointatwhich it intersectghe pictureplane.Of courseJines
parallelto the pictureplanedo notintersecit, andmustberegardedasmeetingit
in ideal“points atinfinity”. Thus,thephysicalpictureplaneis anaffine plane,and
is extendedo a projectie plane;andthe pointsof the projectve planearein one-
to-onecorrespondenoeith therank 1 subspacesf Euclidear3-spacelt is easily
checledthatlines of the pictureplanecorrespondo rank 2 subspacesrovided
we make the corventionthatthe pointsatinfinity compriseasingleline. Not that
the pictureplanereallyis affine ratherthanEuclideantheordinarydistancesn it
do not correspondo distancesn therealworld.

Exercises

1. Prove Desagues’Theoremin coordinates.

2. Shaw thatthe correspondencéefinedin thetext betweerthe two descrip-
tionsof affine spacds abijectionwhich preseresincidencedimensionandpar
allelism.

3. ThelATEX typesettingsystemprovidesfacilities for drawving diagrams.In
a diagram,the slopeof aline is restrictedto beinginfinity or a rationalnumber
whosenumeratoanddenominatoareeachat most6 in absolutevalue.

(a) Whatis the relation betweenthe slopesof the six lines of a complete
guadranglgall linesjoining four points)? Investigatehow sucha figure canbe
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dravn with the above restrictionon the slopes.
(b) Investigatesimilarly how to drav a Desaguesconfiguration.

1.3 The “Fundamental Theorem of Projective Geometry”

An isomorphismbetweentwo projective spacesds a bijection betweenthe
pointsetsof thespacesvhich mapsary subspaceto asubspacéwhenappliedin
eitherdirection).A collineationof PG(n,F) is anisomorphisnfrom PG(n,F) to
itself. Thetheorenof thetitle of this sectionhastwo consequencedirst, thatiso-
morphicprojective spacedave the samedimensionandthe samecoordinatising
field; secondadeterminatiorof thegroupof all collineations.

We mustassumehatn > 1; for the only propersubspacesf a projectve line
areits points,andsoary bijectionis anisomorphismandthe collineationgroup
is thefull symmetricgroup.(Therearemethoddor assigningadditionalstructure
to a projectve line, for example,using cross-ratio;thesewill be discussedater
on,in Sectior4.5.)

Thegeneal linear groupGL(n+ 1,F) is thegroupof all non-singulatdinear
transformation®fV = F"L; it is isomorphicto the groupof invertible (n+ 1) x
(n+ 1) matricesover F. (In generalthe determinanis not well-defined,sowe
cannotidentify the invertible matriceswith thosehaving non-zerodeterminant.)
Any elementof GL(n+ 1,F) mapssubspacesf V into subspacesf the same
rank,andpreseresinclusion;soit inducesa collineationof PG(n,F). Thegroup
Aut(F) of automorphismsf F hasacoordinate-wis@ctiononV"t!; thesetrans-
formationsalsoinducecollineations. The groupgeneratedy GL(n+ 1,F) and
Aut(F) (whichis actuallytheir semi-directproduct)is denotedoy 'L (n+ 1,F);
its elementsarecalledsemilineartransformationsThe groupsof collineationsof
PG(n,F) inducedby GL(n+1,F) andl'L(n+ 1,F) aredenotedoy PGL(n+ 1,F)
andPrL(n+ 1,F), respectiely.

More generallyasemi-lineatransformatiorfrom onevectorspaceo another
is thecompositionof alineartransformatioranda coordinate-wisdield automor
phismof thetametspace.

Theorem 1.5 (Fundamental Theorem of Projective Geometry) Anyisomorphism
betweerprojectivespace®f dimensiorat least2 is inducedby a semilineartrans-
formationbetweerthe underlyingvectorspacesuniqueup to scalar multiplica-
tion.
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Before outlining the proof, we will seethe two importantcorollariesof this
result. Both follow immediatelyfrom the theorem(in the secondcase by taking
thetwo projective spacedo bethesame).

Corollary 1.6 Isomorphigprojectivespace®fdimensioratleast2 havethesame
dimensiorandare coordinatisedby isomorphicfields. =

Corollary 1.7 (a) For n > 1, the collineation group of PG(n,F) is the group
PrL(n+1,F).

(b) Thekernelof theactionof F'L(n+1,F) onPG(n,F) is thegroupof non-zeo
scalars (acting by left multiplication). =

Remark Thepointof thetheoremandthereasorfor its name,is thatthealge-
braicstructureof theunderlyingvectorspacecanberecoveredfrom theincidence
geometryof the projective space. The proof is a good warm-upfor the coor
dinatisationtheoremd will be discussingsoon. In fact, the proof concentrates
on Corollary 1.7, for easeof exposition. The dimensionof a projective spaceis
two lessthanthe numberof subspacem a maximalchain(underinclusion);and
our argumentshows that the geometrydetermineghe coordinatisingfield up to
iIsomorphism.

Proof We shaw first thattwo semi-lineartransformationsvhichinducethesame
collineationdiffer only by a scalarfactor By following one by the inverseof

the other we seethatit sufficesto shav thata semi-lineartransformatiorwhich

fixesevery pointof PG(n,F) is a scalarmultiplication. Solet v — VoA fix every
point of PG(n,F), whereo € Aut(F) andA € GL(n+ 1,F). Thenevery vector
is mappedo a scalammultiple of itself. Let ey, . .., &, bethe standardasisfor V.

Then(sinceo fixesthe standardasisvectors)we have g A= Ajg fori =0,...,n.

Also,

(e0+...+e)A = Ao&p+...+Anen
= MNep+...+6€), say
SOAg=...=Ap=A.

Now, for ary p€ F, thevector(1,4,0,...,0) ismappedo thevector(A, u°A, 0, ..., 0);
sowe have A\p= W°A. Thus

VCA=VoA =\v
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for any vectorv, asrequired.

Note that the field automorphisno is conjugationby the elementA (thatis,
K° = ApA—1); in otherwords,aninnerautomorphism.

Now we prove that any isomorphismis semilinear The stratgy is similar.
Call an (n+ 2) tuple of pointsspecialif non+ 1 of themarelinearly dependent.
We have:

Thereis alinear mapcarryingary specialtuple to ary other(in the
samespace,or anotherspaceof the samedimensionover the same
field).

(For, givena specialtuple in the first space spanningvectorsfor thefirstn+ 1
pointsform a basisey, .. .,e,, andthe lastpoint is spannedy a vectorwith all
coordinatesion-zerorelative to this basis. Adjusting the basisvectorsby scalar
factors,we may assumehatthe lastpointis spannedy e + ...+ e,. Similarly,
the pointsof a specialtuple in the secondspaceare spannedy the vectorsof a
basisfy,...,fn, andfg+ ...+ fh. The uniquelinear transformationcarryingthe
first basisto the secondalsocarriesthefirst specialtupleto the second.)

Let 6 be ary isomorphism. Thenthereis a linear map ¢ which mimics the
effect of 8 on a special(n+ 2)-tuple. Composing® with the inverseof ¢, we
obtainanautomorphisnof PG(n, F) which fixesthe (n-+ 2)-tuple pointwise.We
have to showv that suchan automorphisms the productof a scalarand a field
automorphism.(Note that, aswe saw above, left andright multiplicationsby A
differ by aninnerautomorphism.)

We assumehatn = 2; thissimplifiestheargumentwhile retainingits essential
features Solet g beacollineationfixing thespansf ey, e1, &, andey+e; +e. We
usehomogeneousoordinateswriting thesevectorsas(1,0,0), (0,1,0), (0,0,1),
and(1,1,1), anddenotethegenerapointby (XY, z).

Thepointsontheline {(xg,0,%2)}, apartfrom (1,0,0), have theform (x,0, 1)
for x € F, andso canbe identified with elementsof F. Now the bijection be-
tweenthis set and the setof points (0,y,1) on the line {(0,x1,%2)}, given by
(x,0,1) — (0,x,1), canbe geometricallydefinedin a way which is invariantun-
der collineationsfixing the four referencepoints (seeFig. 1.3). The figure also
showvsthatthe coordinate®f all pointsin the planearedetermined.

Furthermoretheoperation®f additionandmultiplicationin F canbedefined
geometricallyin the samesensgseeFiguresl.4 and1.6). (The definitionslook
morefamiliarif we take theline {(x1,%2,0)} to beatinfinity, anddraw thefigure
in the affine planewith linesthrough(1,0,0) and(0, 1,0) horizontalandvertical
respectrely. this hasbeendonefor additionin Figurel1.5;thereadershoulddrav
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(0.1,0)
(0,%,3
(1,1,0)
%,%,1)
(0,1, 111)
(00,1) (1,0,1) x0,1) (1,0,0)

Figurel.3: Bijection betweertheaxes

the correspondingliagramfor multiplication.) It follows that arny collineation
fixing ourfour basicpointsinducesanautomorphisnof thefield F, andits actions
onthecoordinatesagree.Thetheorems proved. =

A groupG actingon asetQ is saidto bet-transitiveif, givenary two t-tuples
(ag,...,0¢) and(B,...,Bt) of distinctelementf Q, someelementof G carries
the first tuple to the second. G is sharplyt-transitive if thereis a uniquesuch
element.(If theactionis notfaithful, it is betterto say:two elementf G which
agreeont distinctpointsof Q agreeeverywhere.)

Sinceary two distinctpointsof PG(n, F) arelinearlyindependentye seethat
PrL(n+1,F) (orevenPGL(n+1,F)) is 2-transitive on the pointsof PG(n, F). It
is never 3-transitve (for n > 1); for sometriplesof pointsarecollinearandothers
arenot,andno collineationcanmaponetypeto the other
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(0,1,0)
(1,1,0)
AN
X+Y,y,1)
(0) 0’ 1) (y’ 07 1) (X’ 0) ]'0X+y307 1) (15 0’ 0)

Figurel.4: Addition

| will digresshereto describethe analogoussituationfor PG(1,F), even
thoughthe FTPGdoesnot applyin this case.

Proposition1.8 (a) ThegroupPGL(2,F) is 3-transitiveonthepointsof PG(1, F),
andis sharply3-transitiveif andonly if F is commutative

(b) Thee exist skew fieldsF for which the group PGL(2,F) is 4-transitiveon
PG(L,F).

Proof The first part follows just asin the proof of the FTPG, sinceary three
pointsof PG(1,F) have the propertythat no two arelinearly dependentAgain,
asin thattheorem the stabiliserof the threepointswith coordinateg1,0), (0,1)

and(1,1) is thegroupof innerautomorphismsf F, andsois trivial if andonly if

F is commutatve.
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(V) (X+y,y)

(00) (0 (x0)  (x+y,0)

Figurel.5: Affine addition

Thereexist skew fields F with the propertythat any two elementddifferent
from 0 and1 are conjugatein the multiplicative groupof F. Clearly thesehave
the requiredproperty (This factis dueto P. M. Cohn[15]; it is establishedy
a constructionanalogougo that of Higman, Neumannand Neumann[20] for
groups. Higmanet al. usedtheir constructionto showv that there exist groups
in which all non-identityelementsare conjugate;Cohn’s work shows thatthere
aremultiplicative groupsof skew fieldswith this property Notethatsucha field
hascharacteristi@. For, if not, then1+ 1 # 0, andary automorphisnmustfix
1+1) =

Finally, we considercollineationsof affine spaces.

Parallelismin anaffine spacehasanintrinsic,geometriadefinition. For two d-
flatsareparallelif andonly if they aredisjointandsome(d + 1)-flat containsboth.
It followsthatary collineationof AG(n, F) preseresparallelism.Thehyperplane
atinfinity canbe constructedrom the parallelclassegaswe sav in Sectionl.2);
so ary collineationof AG(n,F) inducesa collineationof this hyperplane and
henceof theembeddind®G(n,F). Hence:

Theorem 1.9 Thecollineationgroupof AG(n, F) is thestabiliserof a hyperplane
in thecollineationgroupof PG(n,F). =

Usingthis, it is possibleto determinghe structureof this groupfor n > 1 (see
Exercise2).

Proposition 1.10 For n > 1, thecollineationgroupof AG(n, F) is the semi-diect
productof the additivegroupof F" andl"'L(n,F).

This groupis denotedby AT'L(n,F). Theadditive groupactsby translation,
andthe semilineargroupin the naturalway.
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(0,1,0)
(1,y,0)
(0
(1,1,0)
XY, X%L)
17 b
Y )y,y,l)
1,1,1
(0,0,1) 1,01 (v,0.0) X0.1) xy0,1) _ (L0,0)

Figurel.6: Multiplication

Exercises

1. Provethe FTPGfor n > 2.
2. Usethe correspondencbetweerthe two definitionsof AG(n,F) givenin
thelastsectionto deducePropositionl.10from Theoreml.9.

1.4 Finite projective spaces

Over the finite field GF(q), the n-dimensionalprojective and affine spaces
andtheir collineationgroupsarefinite, and canbe counted. In this section,we
display someof the relevantformulee. We abbreviate PG(n, GF(q)) to PG(n,q),
andsimilarly for affine spacescollineationgroups etc.

A vector spaceof rank n over GF(q) is isomorphicto GF(q)", and so the
numberof vectorsis g". In consequencéhenumberof vectorsoutsidea subspace
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of rankk is g" — ok.

Proposition 1.11 Thenumberof subspacesf rankk in a vectorspaceof rankn
over GF(q) is

(@"—1)(a"—q)--- (" — g )
(=1 (gk—q)---(gk— g« L)

Remark This numberis calleda Gaussiarcoeficient, andis denotedby [] "
Proof First we countthe numberof choicesof k linearly independentectors.
Theit" vectormaybechoserarbitrarily outsidethe subspacef ranki — 1 spanned
by its predecessor$iencein g — ¢ —1 ways. Thus,the numeratoiis the required
numberof choices.

Now ary k linearly independentectorsspana uniquesubspacef rankk; so
the numberof subspacess found by dividing the numberjust calculatedby the
numberof choicesof a basisfor a spaceof rankk. But the latteris given by the
sameformula,with k replacingn. =

Proposition 1.12 Theorderof GL(n,q) is

@ -1 (" =) (" =g ).

Theorder of F'L(n, q) is the above numbermultiplied by d, whee g = p9 with p
prime; andthe orders of PGL(n,q) andPI'L(n,q) are obtainedby dividing these
numbesby (q—1).

Proof An elementof GL(n,q) is uniquelydeterminecby theimageof the stan-
dardbasiswhichis anarbitrarybasisof GF(q)"; andtheproofof Propositionl.11
shavsthatthenumberof basess thenumberuoted.Theremaindeof thepropo-
sition follows from the remarksin Sectionl.3, since GF(q) hasg— 1 non-zero
scalarsandits automorphisngrouphasorderd. =

Theformulafor the Gaussiarcoeficientmakessensenotjustfor primepower
valuesof g, but for ary value of q differentfrom 1. Thereis a combinatorial
interpretationfor ary integerq > 1 (Exercise3). Moreover, by I'H Opital’s rule,
limg_1(0®—1)/(q° — 1) = a/b; it followsthat

im 1, (&)
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This illustratesjust one of the mary ways in which subspace®f finite vector
spacesesemblesubset®f sets.

It followsimmediatelyfrom Propopsitiori.11thatthenumbersof k-dimensional
flatsin PG(n,q) andAG(n,q) are [’l:[ﬂq andg™ <[] o respectiely.

Projectve and affine spacegprovide importantexamplesof designs,whose
parametersanbe expressedn termsof the Gaussiarcoeficients.

A t-designwith parametes (v,k,A), or t-(v,k,A) design consistsof a setX
of v pointg anda collectionB of k-elementsubsetf X calledblocks with the
propertythatarny t distinctpointsof X arecontainedn exactly A blocks.Designs
werefirst usedby statisticianssuchasR. A. Fisher for experimentaldesign(e.g.
to facilitateanalysisof variance).Theterms“design” and“block”, andtheletter
Vv (theinitial letterof “variety”), reflectthis origin.

Proposition1.13 (a) Thepointsand m-dimensionaflatsin PG(n,q) form a 2-
designwith parametes

(M )

(b) Thepointsandm-dimensionaflats of AG(n, q) form a 2-desigrwith param-

eters
n .m |n=1
(q ) q b |:m_ 1] q) .

If g = 2, thenit is a 3-designwith A = [ 2] "

Proof Thevaluesof vandk areclearin bothcases.

(a) Let V be the underlyingvector spaceof rank n+ 1. We wantto count
the subspacesf rankm-+ 1 containingtwo givenrank 1 subspace®; andP.. If
L = P + P, thenL hasrank2, anda subspaceontainsP; andP; if andonly if it
containsL. Now, by the Third IsomorphismTheoremtherankm+ 1 subspaces
containingL arein 1-1 correspondenceith therankm— 1 subspacesf therank
n—1space//L.

(b) In AG(n,q), to countsubspacesontainingtwo points, we may assume
(by translation)that one of the pointsis the origin. An affine flat containingthe
origin is avectorsubspaceanda subspaceontainsa non-zerovectorif andonly
if it containsthe rank 1 subspacet spans. The resultfollows asbefore. In the
casewhenqg = 2, arankl subspaceontainsonly onenon-zerovectot soary two
distinctnon-zerovectorsspanarank2 subspace. m
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Remark The essenceof the proof is that the quotientof either PG(n,q) or
AG(n,q) by aflat F of dimensiond is PG(n—d — 1, q). (Theflatsof the quotient
spacearepreciselythe flats of the original spacecontainingF.) This assertionis
true over ary field at all, andlies at the basisof an approacho geometrywhich
we will considerin Chapters.

An automorphisnof a designis a permutationof the pointswhich mapsary
blockto ablock.

Proposition 1.14 For 0 < m< n, thedesignof pointsand m-dimensionaflatsin
PG(n,q) or AG(n,q) isPI'L(n+1,q) or ATL(n+1,q) respectivelyexceptin the
affinecasewithg=2andm= 1.

Proof By theresultsof Sectionl.3, it sufficesto shav thatthe entiregeometry
canberecoveredfrom the pointsandm-dimensionaflats. This follows immedi-
atelyfrom two obsenations:

(a)theuniqueline containingwo pointsis theintersectiorof all them-dimensional
flats containingthem;

(b) exceptfor affine spacesover GF(2), a setof pointsis aflat if andonly if it
containgheline throughany two of its points.

Affine space®ver GF(2) areexceptional:lineshave justtwo points,andary two
pointsform aline. However, analogousstatement$old for planes:threepoints
lie in auniqueplane,andwe have

(aa)the planethroughthreepointsis the intersectionof all the flats of dimen-
sionmwhich containthem(for m > 1);

(bb) asetof pointsis aflat if andonly if it containsthe planethroughary three
of its points.

Theproofsareleft asexercises. m

Exercises

1. Provetheassertionga), (b), (aa),(bb) in Propositionl.14.
2. Provethattheprobabilitythatarandomn x n matrix overagivenfinite field
GF(q) is non-singulatendsto alimit c(q) asn — o, where0 < ¢(q) < 1.
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3. Prove thatthe total numberF (n) of subspacesf a vectorspaceof rankn
overagivenfinite field GF(q) satisfiegherecurrence

F(n+1)=2F(n)+(q"—1)F(n—1).

4. Let Sbean“alphabet’of sizeq, with two distinguishecelement and1
(but not necessarilafinite field). A k x n matrix with entriesfrom Sis (asusual)
in reducedechelonformiif

e it hasnozerorows;

e thefirstnon-zeroentryin ary row isal,;

e the“leading1s”in laterrows occurfurtherto theright;
e theotherentriesin the columnof a“leading1” areall O.

Prove thatthenumberof k x n matricesin reducedechelorformis ] o Verify in
detailin thecasen=4,k = 2.
5. Usetheresultof Exercise4 to prove therecurrenceelation

MRSy R R
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Projective planes

Projectve and affine planesare more than just spacesof smallest(non-trivial)
dimension:aswe will seethey aretruly exceptional,andalsothey play a crucial
role in the coordinatisatiorof arbitraryspaces.

2.1 Projective planes

We have seenin Sectionsl.2 and 1.3 that, for ary field F, the geometry
PG(2,F) hasthefollowing properties:

(PP1)Any two pointslie on exactly oneline.
(PP2)Any two linesmeetin exactly onepoint.
(PP3)Thereexist four points,no threeof which arecollineat

I will now usethe term projectiveplanein a moregeneralsensefo referto ary
structureof pointsandlineswhich satisfiesconditions(PP1)-(PP3above.

In a projective plane,let p andL be a point andline which arenot incident.
Theincidencedefinesa bijectionbetweerthe pointson L andthelinesthroughp.
By (PP3),givenary two lines, thereis a point incidentwith neither;so the two
lines containequallymary points. Similarly, eachpointlies on the samenumber
of lines; andthesetwo constantsareequal. The order of the planeis definedto
be onelessthanthis number Theorderof PG(2, F) is equalto the cardinalityof
F. (We saw in the last sectionthata projectve line over GF(q) has [ﬂ q=a+ 1

points;soPG(2,q) is a projective planeof orderq. In theinfinite casethe claim
follows by simplecardinalarithmetic.)

19
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Givenafinite projectve planeof ordern, eachof then+ 1 linesthroughapoint
p containsn furtherpoints,with no duplications andall pointsareaccountedor
in thisway. Sotherearen?+ n+ 1 points,andthe samenumberof lines. The
pointsandlinesform a 2-(n? 4+ n+ 1,n+ 1,1) design. The corverseis alsotrue
(seeExercise2).

Do thereexist projective planesnot of the form PG(2,F)? The easiessuch
examplesareinfinite; | givetwo completelydifferentonesbelow. Finite examples
will appeatater.

Example1l: Freeplanes.Startwith any configurationof pointsandlineshaving

the propertythattwo pointslie on at mostoneline (anddually), and satisfying
(PP3). Performthe following construction. At odd-numberedtagesjntroduce
anew line incidentwith eachpair of pointsnot alreadyincidentwith aline. At

even-numberedstages,act dually: add a new point incidentwith eachpair of

lines for which sucha point doesnt yet exist. After countablymary stagesa
projective planeis obtained. For given ary two points, therewill be an earlier
stageatwhichbothareintroducedpy thenext stageauniqueline is incidentwith

both;andno furtherline incidentwith bothis addedsubsequentlyso(PP1)holds.
Dually, (PP2)holds. Finally, (PP3)is true initially andremainsso. If we start
with a configurationviolating Desagues’ Theorem(for example,the Desagues
configurationwith theline pqgr “broken” into separatédines pq, gr, rp), thenthe
resultingplanedoesnt satisfyDesagues'Theoremandsois notaPG(2,F).

Example 2: Moulton planes. Take the ordinaryreal affine plane. Imaginethat
the lower half-planeis a refractingmediumwhich bendslines of positive slope
sothatthe partbelow the axis hastwice the slopeof the partabove, while lines
with negative (or zeroor infinite) slopeareunafected.Thisis anaffine plane,and
hasa uniguecompletionto a projectie plane(seelater). Theresultingprojectve
planefails Desagues’theorem.To seethis, drav a Desaguesconfigurationin the
ordinaryplanein suchaway thatjustoneof its tenpointslies below the axis,and
justoneline throughthis point haspositive slope.

The first examplesof finite planesin which Desagues’ Theoremfails were
constructedy VeblenandWedderlirn [38]. Many othershave beenfoundsince,
but all known exampleshave prime power ordet The Bruck—Ryserfmrheoem|[4]
assertshat,if aprojective planeof ordern exists,wheren =1 or 2 (mod4), then
n mustbethe sumof two squaresThus,for example,thereis no projectie plane
of order6 or 14. This theoremgivesno informationabout10, 12, 15, 18, ... .
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Recently Lam, SwierczandThiel [21] shoved by anextensive computationthat
thereis noprojective planeof orderl0. Theothervaluesmentionedareundecided.

An affine planeis an incidencestructureof points and lines satisfyingthe
following conditions(in which two lines are called parallel if they areequalor
disjoint):

(AP1) Two pointslie onauniqueline.

(AP2) Givenapoint p andline L, thereis a uniqueline which containsp andis
parallelto L.

(AP3) Thereexist threenon-collinearmpoints.

Remark. Axiom (AP2)for therealplaneis anequialentform of Euclid’s“par-
allel postulate™.It is called“Playfair's Axiom”, althoughit wasstatedexplicitly
by Proclus.

Againit holdsthatAG(2, F) is anaffine plane.More generallyif aline andall
its pointsareremoved from a projective plane,theresultis an affine plane.(The
removed pointsandline aresaidto be “at infinity”. Two lines areparallelif and
only if they containthe samepoint atinfinity.

Corversely let an affine planebe given, with point set? andline set L. It
follows from (AP2) thatparallelismis anequvalencerelationon L. Let Q bethe
setof equivalenceclassesFor eachlineL € £, letL™ = LU{Q}, whereQ is the
parallelclasscontainingL. Thenthe structurewith pointset? U Q, andline set
{L*:L e L}uU{Q}, isaprojective plane.ChoosingQ astheline atinfinity, we
recover theoriginal affine plane.

We will have moreto sayaboutaffine planesin Section3.5.

Exercises

1. Shaw thata structurewhich satisfiePP1)and(PP2)but not (PP3)mustbe
of oneof thefollowing types:

(a) Thereis aline incidentwith all points. Any further line is a singleton,
repeatednarbitrarynumberof times.

(b) Thereis aline incidentwith all pointsexceptone. Theremaininglinesall
containtwo points,the omittedpointandoneof the others.

2. Shaw thata 2-(n +n+1,n+1,1) design(with n > 1) is aprojective plane
of ordern.

3. Show that,in afinite affine plane,thereis anintegern > 1 suchthat
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every line hasn points;

every pointliesonn+ 1 lines;

therearen? points;

therearen+ 1 parallelclassesvith n linesin each.

(Thenumbem is the order of the affine plane.)

4. (The FriendshipTheoem) In afinite society ary two individualshave a
uniquecommonfriend. Prove thatthereexists someoneavho is everyoneelses
friend.

[Let X be the setof individuals, £ = {F(X) : x € X}, whereF(x) is the set
of friendsof X. Prove that, in ary counter@ampleto the theorem,(X, L) is a
projectve plane,of ordern, say

Now let A bethereal matrix of ordern® +n+ 1, with (x,y) entry 1 if x andy
arefriends,0 otherwise.Prove that

A?=nl+1J,

wherel is the identity matrix andJ the all-1 matrix. Henceshaow thatthe real
symmetricmatrix A haseigervaluesn+ 1 (with multiplicity 1) and+,/n. Using
the factthat A hastrace0, calculatethe multiplicity of the eigervalue y/n, and
henceshav thatn = 1.]

5. Shaw thatany Desaguesconfigurationin a free projectve planemustlie
within the startingconfiguration.[Hint: Supposeanot, andconsiderthe last point
or line to beadded.]

2.2 Desarguesian and Pappian planes

It is no coincidencethat we distinguishedhe free and Moulton planesfrom
PG(2,F)sin thelastsectionby thefailure of Desagues’Theorem.

Theorem 2.1 A projectiveplaneisisomorphicdo PG(2, F) for somerF if andonly
if it satisfiedDesagues'Theoem.

| do not proposeto give a detailedproof of this importantresult; but some
commentontheproofarein order

Wesaw in Sectionl.3that,in PG(2, F), thefield operationgadditionandmul-
tiplication) canbe definedgeometrically oncea setof four pointswith no three
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collinearhasbeenchosen.By (PP3),sucha setof pointsexistsin ary projectve
plane. Soit is possibleto definetwo binary operationson a setconsistingof a
line with a point removed, andto coordinatisethe planewith this algebraicob-
ject. Now it is obviousthatary field axiomtranslatesnto a certain“configuration
theorem”,so thatthe planeis a PG(2,F) if andonly if all these“configuration
theorems’hold. Whatis notobvious,andquiteremarkableis thatall these*con-
figurationtheorems’follow from Desagues’'Theorem.

Anothermethod moredifficult in principle but mucheasielin detail, exploits
therelationbetweerDesagues’ Theoremandcollineations.

Let p beapointandL aline. A central collineationwith centrep andaxis
L is a collineationfixing every point on L andevery line throughp. It is called
an elationif p is on L, a homolay otherwise. The central collineationswith
centrep andaxisL form a group. The planeis saidto be (p,L)-transitiveif this
group permutedransitvely the setM \ {p,LN M} for ary line M # L on p (or,
equialently, the setof lineson q differentfrom L and pg, whereq # p is a point
of L).

ag

Figure2.1: The Desaguesconfiguration

Theorem 2.2 A projectiveplanesatisfiedDesagues’Theoemif andonly if it is
(p, L)-transitivefor all pointsp andlinesL.
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Proof Let ustake anotherlook at the Desaguesconfiguration(Fig. 2.1). It is
clearthatany centralconfiguratiorwith centreo andaxisL which carriesa; to ap
is completelydeterminecdht every point by noton M. (Theline aja; meetsl ata
fixedpointr andis mappedo b1by; sob, is theintersectiorof ra, andob;.) Now,
if we replaceM with anotherdine M’ througho, we getanotherdeterminatiorof
the action of the collineation. It is easyto seethatthe conditionthat thesetwo
specificationsagrees preciselyDesagues’'Theorem.

The proof shavs a little more. Oncethe actionof the centralcollineationon
onepointof M\ {o,LNM} is known, the collineationis completelydetermined.
So, if Desagues’ Theoremholds,thenthesegroupsof centralcollineationsact
sharplytransitively on therelevantset.

Now the additive and multiplicative structuresof the field turn up asgroups
of elationsandhomologiesrespectrely with fixed centreand axis. We seeim-
mediatelythat thesestructuresare both groups. More of the axiomsare easily
deducedoo. For example,let L be aline, andconsiderall elationswith axis L
(and arbitrary centreon L). This setis a group G. For eachpoint p on L, the
elationswith centrep form a normalsubgroup.Thesenormalsubgroupgartition
the non-identityelementf G, sincea non-identityelationhasat mostonecen-
tre. But agrouphaving sucha partitionis abelian(seeExercise2). Soadditionis
commutatve.

In view of this theorem projective planesover skew fields are called Desar
guesiarnplanes

Thereis muchmoreto be said aboutthe relationshipsamongconfiguration
theoremsgoordinatisationandcentralcollineations.l referto Dembavski’sbook
for someof these.Onesuchrelationis of particularimportance.

Pappus’ Theoemis the assertiorthat, if alternateverticesof a hexagonare
collinear(thatis, thefirst, third andfifth, andalsothe secondfourth andsixth),
then also the three points of intersectionof oppositeedgesare collinear See
Fig.2.2.

Theorem 2.3 A projective plane satisfiesPappus’ Theoem if and only if it is
isomorphicto PG(2, F) for somecommutativdield F.

Proof The proofinvolvestwo steps.First, a purely geometricagumentshavs
that Pappus’Theoremimplies Desagues’. This is shovn in Fig. 2.3. This fig-
ure shows a potentialDesaguesconfiguration,jn which the requiredcollinearity
is shawn by threeapplicationsof Pappus' Theorem.The proof requiresfour new
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Figure2.2: Pappus'Theorem

points,s= ajb;Naxcy,t = biciN0OS u=bicoN0oa, andv = bocoNos Now Pap-
pus’ Theoremappliedto the hexagonosgbicia;, shovsthatq, u,t arecollinear;
appliedto osh cobrap, shavsthatr, u, v arecollinear;andappliedto bituves (us-
ing the two collinearitiesjust established)shaws that p,q,r arecollinear The
derivedcollinearitiesareshavn asdottedlinesin thefigure. (Notethatthefigure
shows only the genericcaseof Desagues’ Theorem:;it is necessaryo take care
of the possibledegeneracieaswell.)

Thesecondstepinvolvestheuseof coordinateso show that,in aDesaguesian
plane,PappusTheorems equivalentto thecommutatvity of multiplication. (See
Exercise3.)

In view of this, projectie planesover commutatve fields are called Pappian
planes

Remark. It followsfrom Theorem2.1and2.3andWedderlrn’s Theoreml.1
that, in afinite projective plane,Desagues’ Theoremimplies Pappus’. No geo-
metric proof of thisimplicationis known.

A similar treatmenbf affine planess possible.

Exercises

1. (a) Shav thata collineationwhich hasa centrehasanaxis,andviceversa
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Figure2.3: PappusmpliesDesagues

(b) Shaw thata collineationcannothave morethanonecentre.

2. ThegroupG hasafamily of propernormalsubgroupsvhich partitionthe
non-identityelementf G. Prove thatG is abelian.

3. In PG(2,F), let the verticesof a hexagonbe (1,0,0), (0,0,1), (0,1,0),
(,a+1,1), (1,1,0) and (B, B(a + 1),1). Shav thatalternateverticeslie on the
lines definedby the columnvectors(0,0,1) " and (a4 1,—-1,0)". Show that
oppositesidesmeetin the points(a,0,—1), (0,Ba, 1) and(1,B(a+1),1). Shav
thatthe seconcandthird of thesdie ontheline (B,—1,Ba) ", whichalsocontains
thefirstif andonly if a3 = Ba.
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2.3 Projectivities

Let M = (X, L) beaprojective plane. Temporarily let (L) bethe setof points
incidentwith L; andlet (x) bethe setof linesincidentwith x. If x is notincident
with L, thereis a naturalbijection between(L) and (x): eachpoint on L lies
on a uniqueline throughx. This bijectionis calleda perspectivity By iterating
perspectiitiesandtheirinversesye getabijection(calledaprojectivity) between
ary two sets(x) or (L). In particular for ary line L, we obtaina setP(L) of
projectiities from (L) to itself (or self-piojectivitiey, andanalogousha setP(x)
for any pointx.

The setsP(L) and P(x) are actually groupsof permutationsof (L) or (x).
(Any self-projectvity is thecompositionof a chainof perspectiities; the product
of two self-projectvities correspond$o the concatenationf the chainswhile the
inversecorrespondso the chainin reverseorder) Moreover, thesepermutation
groupsare naturallyisomorphic:if g is ary projectvity from (L1) to (Lz), say
theng1P(L1)g = P(L2). SothegroupP(L) of self-projectities on aline is an
invariantof the projective plane.lt turnsoutthatthe structureof this groupcarries
informationaboutthe planewhichis closelyrelatedto conceptave have already
seen.

X1 X2 Y2 Y1
Figure2.4: 3-transitvity

Proposition 2.4 ThepermutationgroupP(L) is 3-transitive

Proof It suficesto shav thatthereis a projectvity fixing any two pointsxy, Xz €
L andmappingary furtherpointy; to ary otherpointy,. In generalwe will use
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thenotation®(L; to L, via p)” for thecompositeof the perspectiities (L1) — (p)
and(p) — (L2). Let M; beary otherlinesthroughx; (i = 1,2), u a pointon My,
andz € M (i = 1,2) suchthaty;uz arecollinear(i = 1,2). Thenthe productof
(L to My via z1) and(M1 to L via 2,) is therequiredprojectiity (Fig. 2.4.)

A permutationgroup G is sharplyt-transitiveif, givenary two t-tuplesof
distinctpoints,thereis a uniqueelementof G carryingthefirst to the second(in
order). The mainresultaboutgroupsof projectvitiesis thefollowing theorem:

Figure2.5: Compositionof projectvities

Theorem 2.5 ThegroupP(L) of projectivitieson a projectiveplanell is sharply
3-transitiveif andonlyif I is pappian.

Proof We sketchtheproof. Thecrucialstepis the equivalenceof Pappus'Theo-
remto thefollowing assertion:

Let L1,L»,L3 be non-concurrentines, andx andy two pointssuch
thatthe projectvity

g= (L1 toLyviax)-(L2toLgviay)

fixesL; NL3. Thenthereis a point z suchthat the projectvity g is
equalto (L1 to L3 via 2).
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Thehypothesiss equivalentto theassertiorthatx, y andL; N L3 arecollineat
Now thepointzis determinedandPappus'Theorems equivalentto theassertion
thatit mapsarandompoint p of Ly correctly (Fig. 2.5is just Pappus' Theorem.)

Now this assertiorallows long chainsof projectvitiesto be shortenedsothat
their actioncanbe controlled.

The corversecan be seenanotherway. By Theorem2.3, we know that a
Pappianplaneis isomorphicto PG(2,F) for somecommutatvefield F. Now it is
easilychecledthatary self-projectvity onaline is inducedby alinearfractional
transformation(anelementof PGL(2, F); andthis groupis sharply3-transitie.

In thefinite case therearevery few 3-transitve groupsapartfrom the sym-
metricandalternatinggroups;and,for all known non-Rappianplanesthegroupof
projectvities is indeedsymmetricor alternating(thoughit is not known whether
thisis necessarilygo). Both possibilitiesoccur;so,at presentall thatthis provides
usfor non-Rappianfinite planess a singleBooleaninvariant.

In theinfinite case however, moreinterestingpossibilitiesarise. If the plane
hasordera, thenthe groupof projectvities hasa generatorsandsohasordera;
soit cannever bethe symmetricgroup(which hasorder2®). Barlotti [1] gave an
examplein which the stabiliserof ary six pointsis theidentity, andthe stabiliser
of ary five pointsis afreegroup.Ontheotherhand,Schleiermachd5] shoved
that, if the stabiliserof ary five pointsis trivial, thenthe stabiliserof ary three
pointsis trivial (andthe planeis Pappian).

Furtherdevelopmentsnvolvedeeperelationshipdetweerprojectvities, con-
figurationtheoremsandcentralcollineations;the definition andstudyof projec-
tivitiesin otherincidencestructuresandsoon.






3

Coordinatisation of projective
spaces

In this chapterwe describeaxiomsystemdor projective (andaffine) spacesThe
principalresultsaredueto VeblenandYoung.

3.1 The GK(2) case

In the last section,we sav an axiomatic characterisatiorf the geometries
PG(2,F) (asprojective planessatisfyingDesagues’ Theorem).We turn now to
thecharacterisationf projectve space®f arbitrarydimensiondueto Veblenand
Young. Sincethe pointsandthe subspacesf ary fixed dimensiondeterminethe
geometry we expectan axiomatisationin termsof these.Obviously the caseof
pointsandlineswill bethesimplest.

For thefirst of severaltimesin thesenotes,we will give a detailedandself-
containedargumentfor the caseof GF(2), andtreatthe generakasen ratherless
detail.

Theorem 3.1 LetX beasetof points, L asetof subset®f X calledlines. Assume:

(a) anytwo pointslie ona uniqueline;
(b) aline meetingtwo sidesof a triangle, notat a vertex, meetghethird side;

(c) aline containsexactlythreepoints.

ThenX and L are the setsof pointsandlinesin a (not necessarilyfinite dimen-
sional) projectivespaceover GF(2).

31
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htb y

X+y

X y+z X+(y+2)=(x+y)+z

Figure3.1: Veblens Axiom

Remark We will seelater that, more or less, conditions(a) and (b) charac-
terisearbitrary projective spaces.Condition(c) obviously specifieshatthe field
is GF(2). The phrase‘not necessarilyfinite dimensional”’shouldbe interpreted
asmeaningthat X and L canbe identified with the subspacesf rank 1 and 2
respectrely of avectorspaceover GF(2), not necessarilyf finite rank.

Proof Sincelistheonly non-zeracscalariin GF(2), the pointsof projectve space
canbeidentifiedwith thenon-zerovectors;linesarethentriples of non-zerovec-
torswith sumO. Ourjob is to reconstructhis space.

Let 0 beanelementotin X, andsetV = XU {0}. Now defineanadditionin
V asfollows:

eforallveV,0+v=v+0=vandv+v=0;

e for all x,y € X with x #y, x+y = z, wherez is the third point of the line
containingx andy.

We claim that (V,+) is an abeliangroup. Commutatvity is clear; O is the
identity, and eachelementis its own inverse. Only the associatie law is non-
trivial; andthe only non-trivial casewhenx, y, z aredistinctnon-collinearpoints,
followsimmediatelyfrom Veblens axiom(b) (seeFig. 3.1.1).

Next, we definescalarmultiplication over GF(2), in the only possibleway:
0-v=0,1-v=vforall veV. Theonly non-trivial vectorspaceaxiomis (1+
1)-v=1-v+1-v, andthisfollowsfromv+v=0.

Finally, {0, x,y, z} is arank2 subspacé& andonly if x+y =z

Thereis a differentbut evensimplercharacterisatiom termsof hyperplanes,
whichforeshadws somelaterdevelopments.
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Let £ bearny family of subsetof X. The subsety of X is calleda subspace
if any memberof £ which containgwo pointsof Y is wholly containedwithin Y.
(Thus,the emptyset,thewhole of X, andary singletonaretrivially subspaces.)
The subspace is calleda hyperplandf it intersectevery memberof L (neces-
sarilyin oneor all of its points).

Theorem 3.2 Let L bea collectionof subset®f X. Supposehat
(a) everysetin £ hascardinality 3;
(b) anytwo pointsof X lie in atleastonemembeiof L;
(c) everypointof X lies outsidesomehyperplane

ThenX and L arethe pointandline setsof a projectivegeometryover GF(2), not
necessarilffinite dimensional.

Proof Let# bethesetof hyperplaneskor eachpointx € X, wedefineafunction
px . H — GF(2) by therule

0 ifxeH;
pX(H):{l i x ¢ H.

By condition(c), px is non-zerdor all x € X.

LetP = {px:x € X}. WeclaimthatPU {0} is asubspacef thevectorspace
GF(2)”! of functionsfrom # to GF(2). Takex,y € X, andlet {x,y,z} beary set
in L containingx andy. Thena hyperplanecontainsz if andonly if it contains
bothor neitherof x andy; so p, = px+ py. Theclaimfollows.

Now the mapx — py is 1-1,sinceif px = py thenpyx+ py = 0, contradicting
the precedingparagraph. Clearly this map takes membersof £ to lines. The
theoremis proved.

Remark The factthattwo pointslie in a uniqueline turnsout to be a conse-
guenceof the otherassumptions.

Exercises

1. Supposehatconditions(a) and(c) of Theorem3.1.2hold. Prove thattwo
pointsof X lie in atmostonememberof L.
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2. Let (X, L) satisfyconditions(a) and(c) of Theorem3.1.1. LetY bethe
setof pointsx of X with thefollowing property:for ary two lines{x,ys,y2} and
{X,z1,22} containingx, thelinesy;z; andy»z, intersect.ProvethatY is asubspace
of X.

3. Let X beasetof points,B acollectionof subset®f X calledlines. Assume
thatarny two pointslie in atleastoneline, andthatevery point lies outsidesome
hyperplane.Show that, if the line sizeis not restrictedto be 3, thenwe cannot
concludethat X and ‘B arethe point andline setsof a projective spaceeven if
ary two pointslie on exactly oneline. [Hint: In a projective plane,ary line is
a hyperplane. Selectthreelines L1,L,,L3 forming a triangle. Show thatit is
possibleto deletesomepoints,andto add somelines, sothatL,,L,,L3 remain
hyperplanes.]

4. Let (X, B) satisfythe hypothese®f the previous question. Assumeaddi-
tionally thatary two pointslie onauniqueline, andthatsomehyperplaneas aline
andis finite. Prove thatthereis anumbem suchthatany hyperplaneontaingn+ 1
points,ary pointlies on n+ 1 lines,andthetotal numberof linesis n? + n+ 1.

3.2 An application

I now give abrief applicationto codingtheory. This applicationis a bit spuri-
ous,sinceamoregenerakesultcanbeprovedby adifferentbut equallysimplear
gument;but it demonstrateanimportantlink betweerthesefields. Additionally,
the procedurecan be reversed,to give characterisationsf other combinatorial
designausingtheoremsaboutcodes.

The problemtackledby the theoryof errorcorrectingcodess to senda mes-
sageover a noisy channelin which somedistortionmay occut sothatthe errors
canbe correctedout the pricepaidin lossof speeds nottoo great.Thisis notthe
placeto discusscodingtheoryin detail. We simplify by assuminghata message
transmittedover the channeis a sequencef blocks,eachblock beingann-tuple
of bits (zerosor ones).We alsoassumehatwe canbe confidentthat, duringthe
transmissiorof a singleblock, no morethane bits aretransmittedncorrectly (a
zerochangedo aoneor viceversa). The Hammingdistancebetweertwo blocks
is the numberof coordinatesn which they differ; thatis, the numberof errorsre-
quiredto changeoneinto theother A codeis justasetof “codevords” or blocks
(n-tuplesof bits), containingmorethanonecodevord. It is e-error correctingif
the Hammingdistancebetweentwo codevordsis atleast2e+ 1. (Thereasorfor
thenameis that, by thetriangleinequality anarbitraryword cannotlie atdistance
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e or lessfrom morethanone codevord. By our assumptionthe receved word
lies at distancee or lessfrom the transmittedcodevord; sothis codevord canbe
recovered.)

To maximisethe transmissiomrate, we needasmary codevordsaspossible.
The optimumis obtainedwhen every word lies within distancee of a (unique)
codevord. In otherwords,the closedballs of radiuse centredat the codevords
fill the spaceof all wordswithoutany overlap! A codewith this propertyis called
perfecte-ermor-correcting

Encodinganddecodingaremademucheasieiif thecodeis linear, thatis, it is
aGF(2)-subspacef thevectorspaceGF(2)" of all words.

Theorem 3.3 Alinear perfectl-error-correctingcodehaslength24 — 1 for some
d > 1; thereis a uniquesud codeof anylengthhavingthis form.

Remark TheseuniquecodesarecalledHammingcodes Their relationto pro-
jective spacewill bemadeclearby the proof below.

Proof LetC besuchacode,of lengthn. Obviouslyit contains). We definethe
weightwt(v) of ary word v to be its Hammingdistancefrom 0. The weight of
arny non-zerocodevord is at least3. Now let X be the setof coordinateplaces,
and L thesetof triples of pointsof X which supportcodevords(i.e.,for whicha
codevord haslsin justthosepositions).

We verify the hypothesesf Theorem3.1. Condition(c) is clear

Let x andy be coordinatepositions,and let w be the word with entries1
in positionsx andy and 0 elsavhere. w is not a codavord, so theremustbe a
uniquecodevord c at distancel from w; thenc musthave weight3 andsupport
containingx andy. So(a) holds.

Let {x,y,r},{x,z9},{y,z p} bethe supportof codevordsu,v,w. By linear
ity, u+ v+ w is acodevord, andits supportis {p,q,r}. So(b) holds.

ThusX and £ arethe pointsandlines of a projectve spacePG(d — 1, 2) for
somed > 1; thenumberof pointsis n = 29 — 1. Moreover, it's easyto seethatC
is spannedy its wordsof weight 3 (seeExercisel), soit is uniquelydetermined
by d.

Note, incidentally thatthe automorphisngroupof the Hammingcodeis the
sameasthatof the projectve spaceyiz. PGL(d, 2).
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Exercise

1. Provethataperfectlinearcodeis spannedy its wordsof minimumweight.
(Useinductionontheweight. If w is any non-zerocodavord, thereis acodevord
u whosesupportcontainse+ 1 pointsof the supportof w; thenu +w hassmaller
weightthanw.)

2. Prove thatif aperfecte-errorcorrectingcodeof lengthn exists,then

Y

isapowerof 2. Deducehat,if e= 3,thenn= 7 or 23. (Hint: thecubicpolynomial
in n factorises.)

Remark. Thecasen = 7 is trivial. For n = 23, thereis a uniquecode (up to
isometry),the so-calledbinary Golaycode

3. Verify thefollowing decodingscheméor the HammingcodeHy of length
24 1. Let Mg bethe 29 — 1 x d matrix over GF(2) whoserows are the base
2 representationef theintegers1,2,...,29 — 1. Shaw thatthe null spaceof the
matrix My is preciselyHy. Now letw berecevedwhenacodeavordis transmitted,
andassumehatat mostoneerrorhasoccurred.Prove that

e if WHy = 0, thenw is correct;

e if WHy is thei® row of Hg, thenthei" positionis incorrect.

3.3 Thegeneralcase

The generalcoordinatisatiortheoremis the sameas Theorema3.1, with the
hypothesis‘three points per line” wealenedto “at leastthree points per line”.
Accordingly we considergeometriewith pointsetX andline set £ (whereL is
asetof subset®of X) satisfying:

(LS1)Any line containsat leasttwo points.
(LS2) Two pointslie in auniqueline.

Suchageometryis calledalinear space Recallthata subspacés a setof points
which containsthe (unique)line throughary two of its points. In alinear space,
in additionto thetrivial subspacefthe emptyset,singletonsandX), ary line is
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asubspaceAny subspacegquippedwith thelinesit containsjs alinearspacdn
its own right.
A linearspacds calledthick if it satisfies:

(LS1+)Any line containsat leastthreepoints.
Finally, we will imposeVeblens Axiom:

(V) A line meetingtwo sidesof a triangle,not at a vertex, meetsthe third side
also.

Theorem 3.4 (Veblen—Young Theorem) Let (X, £) be a linear space which is
thick and satisfiesveblens Axiom(V). Thenoneof thefollowing holds:

(@ X=L=0;

(b) X|=1,L=0

© L={X}, X[ =3,

(d) (X, L) isaprojectiveplane;

(e) (X, L) is a projectivespaceover a skew field, not necessarilyof finite dimen-
sion.

Remark It iscommorto restrictto finite-dimensionaprojectvespacedy adding
the additionalhypothesighatany chainof subspacebasfinite length.

Proof (outline) Thekey obsenationprovidesuswith lots of subspaces.

Lemma 3.5 Let (X, L) be a linear spacesatisfyingVeblens axiom. LetY bea
subspacgand p a pointnotin Y; let Z betheunionof thelinesjoining p to points
of Y. ThenZ is a subspacgeandY is a hyperplandan Z.

Proof Letq andr bepointsof Z. Therearesereral casespf which the generic
caseis thatwhereq,r ¢ Y andthelines pgand pr meetY in distinctpointss, t.
By (V), thelinesgr andst meetatapointu of Y. If vis anotherpointof gr, then
by (V) again,theline pvmeetsst atapointof Y; sov € Z.
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We write this subspacas(Y, p).

Now, if L is aline andp apointnotin L, then(L, p) is a projectie plane. (It
is a subspaceén which L is a hyperplaneall that hasto be shavn is that every
line is a hyperplanewhich follows oncewe show that (L, p) containsno proper
subspaceroperlycontainingaline.)

The theoremis clearlytrueif theredo not exist four non-coplanapoints; so
we may supposehatsuchpointsdo exist.

We claim that Desagues’ Theoremholds. To seethis examinethe geometric
proofof Desagues’'Theoremin Sectionl.2;it is obviousfor any non-planarcon-
figuration,andthe planarcasefollows by several applicationsof the non-planar
case Now the sameargumentapplieshere.

It followsfrom Theoren®.1thateveryplanein ourspacecanbecoordinatised
by askew field.

To completethe proof, we have to shav thatthe coordinatisatiorcanbe ex-
tendedconsistentlyto the whole space. For this, first one shavs that the skew
fieldscoordinatisingall planesarethe same:this canbe provedfor planeswithin
a3-dimensionasubspacky meansf centralcollineationsandtheresultextends
by connectedned® all pairsof planes.Theremainderf the agumentinvolves
carefulbook-keeping.

From this, we canfind a classificationof not necessarilythick linear spaces
satisfying Veblens axiom. The sumof a family of linear spacess definedas
follows. The point setis the disjoint union of the point setsof the constituent
spacesLinesareof two types:

(a) all linesof theconstituenspaces;
(b) all pairsof pointsfrom differentconstituents.

It is clearlyalinearspace.

Theorem 3.6 Alinear spacesatisfyingveblens axiomis the sumof linear spaces
of types(b)—(e)in theconclusionof Theoem3.4.

Proof Let (X, L) besuchaspaceDefinearelation~ onX by therulethatx ~y
if eitherx =y, or theline containingx andy is thick (hasat leastthreepoints).
We claim first that ~ is an equivalencerelation. Refleivity and symmetryare
clear;soassumeéhatx ~ y andy ~ z, wherewe mayassumehatx,y andz areall
distinct. If thesepointsarecollinear thenx ~ z, sosupposeot; let x; andz; be
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furtherpointson thelinesxy andyzrespectrely. By (V), theline x;z; containsa
point of xzdifferentfrom x andz, asrequired.

So X is the disjoint union of equivalenceclasses. We shov next that ary
equialenceclassis a subspaceSolet x ~ y. Thenx ~ z for every point z of the
line xy; sothisline is containedn the equialenceclassof x.

Soeachequvalenceclassis anon-emptythick linearspaceandhenceapoint,
line, projectie plane,or projective spaceover a skew field, by Theorem3.4. It is
clearthatthe whole spaces the sumof its components.

A geometrysatisfyingthe conclusionof Theorem3.6is calleda generlised
projectivespace lIts flats areits (linear) subspacegheseare preciselythe sums
of flatsof thecomponentsTheterm“projective space’is sometime®xtendedo
mean‘thick generalisegrojectve space’(i.e.,to includesinglepoints,lineswith
atleastthreepoints,andnot necessarilyDesaguesiarprojectie planes).

3.4 Lattices

Anotherpoint of view is to regardthe flats of a projectve spaceasforming a
lattice. We discusghisin thepresensection.

A lattice is a setL with two binaryoperations/ andA (calledjoin andmee},
andtwo constant® and1, satisfyingthe following axioms:

(L1) v andA areidempotentcommutatve,andassociatie;
(L2) xV (XAy) =xandxA (xVy) = x;
(L3) XxA0=x,XxV1=x.

It follows from theseaxiomsthatx Ay = x holdsif andonly if xVy =y holds.
We write x <y if theseequivalentconditionshold. Then (L, <) is a partially
orderedsetwith greateselementl andleastelementO; xVVy andx Ay arethe
leastupperboundandgreatestower boundof x andy respectrely. Corversely
ary partially orderedsetin which leastupperboundsandgreatestower bounds
of all pairsof elementsxist, andthereis a leastelementanda greatestelement,
givesriseto alattice.

In alattice,anatomis a non-zeroelementa suchthata A x= 0 or a for ary
X; in otherwords,an elementgreaterthanzerobut minimal subjectto this. The
latticeis calledatomicif every elements ajoin of atoms.

A latticeis modularif it satisfies:
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(M) If x <z thenxVv (yAz) = (xVvy)Azforally.

(Notethat,if x < z thenxV (YA z) < (XVYy)Azin ary lattice.)

Theorem 3.7 A latticeis a generlisedprojectivespaceof finite dimensionf and
onlyif it is atomicand modular

Proof Theforwardimplicationis anexercise.Supposé¢hatthelatticel isatomic
andmodular Let X bethesetof atoms.ldentify every elementz of thelatticewith
theset{x € X : x < z}. (Thismapis 1-1; it translatesneetsto intersectionsand
thelattice orderto theinclusionorder)

Let x,y,z be atoms,andsupposehatz < xVvy. Thentrivially xvVz<xVy.
Supposéhatthesetwo elementsareunequal.Theny £ xV z. Sincey is anatom,
YA (XVZz) =0,andsoxV (YA (XVZz)) =x. But(xVy)A(xVz) =xVz contradicting
modularity SoxVv z=xVy. Hence|f wedefinelinesto bejoins of pairsof atoms,
it follows thattwo pointslie in auniqueline.

Now we demonstrat&eblens axiom.Let u,v bepointsonxVy, xV zrespec-
tively, wherexyzis atriangle. Supposehat(yVvz) A (uvv) =0. Thenyvuvv> z,
soyVuVvv>yVz inotherwords,yV (uvv))A(yVz) =yVz Ontheotherhand,
yV ((uvv)A(yVvz) =yvVvO0=y, contradictingmodularity Sothelinesyv zand
uvVvmeet.

By Theorem3.6, the linear subspaceas a generalisedprojectve geometry
Clearly the geometryhasfinite dimension. We leave it as an exerciseto shav
thatevery flat of the geometryis anelementof thelattice.

Exercises

1. Completethe proof of Theorem3.7.
2. Shav thatanatomiclattice satisfyingthe distributive laws is modular and
deducehatit is isomorphicto thelattice of subset®f afinite set.

3.5 Affine spaces

Veblens axiomin alinear spaces equvalentto the assertiorthatthreenon-
collinearpointslie in asubspac&hichis aprojectve plane.Ilt mightbehopedhat
replacing“projective plane” by “affine plane” herewould give an axiomatisation
of affine spacesWe will seethatthisis almosttrue.
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Recallfrom Section2.1the definition of anaffine plane,andthefactthatpar
allelismis anequialencerelationin anaffine plane,wheretwo linesareparallel
if they areequalor disjoint.

Now supposéehat (X, L) is alinearspacesatisfyingthe following condition:

(AS1) Thereis acollection4 of subspacewith thepropertieshateachmember
of 4 is anaffine plane,andthatary threenon-collineampointsarecontained
in auniguememberof 4.

First, afew remarksaboutsuchspaces.

1. All lineshavethesamecardinality For two intersectindineslie in anaffine
plane,andsoareequicardinaland,giventwo disjointlines,thereis aline meeting
both.

2. It would besimplerto say“any threepointsgenerat@anaffine plane”,where
the subspacgenertedby a setis the intersectionof all subspacesontainingit.
This formulationis equivalentif the cardinalityof aline is not 2. (Affine spaces
of ordergreaterthan2 have no non-trivial propersubspaces.But, if lineshave
cardinality2, thenary pair of pointsis aline, andsoary threepointsform a sub-
spacenhichis ageneralisegrojective plane.However, we do wanta formulation
whichincludesthis case.

3. In alinearspacesatisfying(AS1), two linesaresaidto be parallel if either
they areequal,or they aredisjoint and containedn a memberof 4 (andhence
parallelthere).Now Playfair's Axiom holds: givenaline L andpoint p, thereis a
uniqueline parallelto L andcontainingp. Moreover, parallelismis reflexive and
symmetric,but not necessarilyransitve. We will imposethefurthercondition:

(AS2) Parallelismis transitve.

Theorem 3.8 A linear spacesatisfying(AS1)and (AS2)is empty a singlepoint,
a singleline, an affine plane or the configuation of pointsand linesin a (not
necessarilffinite-dimensionalaffine space

Proof Let (X, £) be the linear space. We may assumethatit is not empty a
point, aline, or anaffine plane(i.e., thatthereexist four non-coplanapoints).

Stepl. Defineasolidto betheunionof all thelinesin a parallelclassC which
meeta planell € 4, wherell containsno line of C. Thenary four non-coplanar
pointslie in auniquesolid,andary solidis asubspace.
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Thatasolid is asubspacés shavn by consideringcasespf which thegeneric
onerunsasfollows. Let p, g be pointssuchthatthelinesof C containingp andq
meetl in distinctpointsx andy. Thenx,y, p,q lie in anaffine plane;sotheline
of C througha pointr of pgmeetd1 in apointx of xy.

Now the fact that the solid is determinedby arny four non-coplanarmpoints
follows by shawing thatit hasno non-trivial propersubspacesxceptplanes(if
thecardinalityof aline is not 2) or by counting(otherwise).

In a solid, if a planell containsno parallelto aline L, thenlm meetsL in a
singlepoint. Henceary two planesin a solid aredisjointor meetin aline.

Step2. If two planed1 andl’ containlinesfrom two differentparallelclasses,
theneveryline of N is parallelto aline of M’.

Supposenot, andlet L,M, N belinesof M, concurrentat p, and p’ a point of
M’ suchthatthelinesL’,M’ throughp’ parallelto L andM lie in ', but the line
N’ parallelto N doesnot. The whole configurationlies in a solid; sothe planes
NN’ andn’, with acommonpoint p/, meetin aline K. Now K is coplanamwith N
but not parallelto it, soK NN is apointg. Thenl andMn’ meetin g, andhencein
aline J. ButthenJ is parallelto bothL andM, a contradiction.

We call two suchplanesparallel.

Step3. We build theembeddingprojective spaceHerel will useatypographic
conventionto distinguishthe two relatedspaces:elementsof the spacewe are
building will bewrittenin CAPITALS. The POINTSarethe pointsof X andthe
parallelclasse®f linesof 4. TheLINES arethelinesof £ andtheparallelclasses
of planesin 4. Incidenceis hopefully obvious: asin the old spacetogethemwith
incidencebetweenary line andits parallel class,aswell asbetweena parallel
classC of linesandaparallelclassC of planesf aplanein ¢ containsaline in C.
By Step2, thisis alinearspaceandclearlyevery LINE containsatleastthree
POINTS.We call thenew POINTSandLINES (i.e.,theparallelclasses)ideal”.

Step4. Weverify Veblens Axiom. Any threepointswhicharenotall “ideal” lie
in anaffine planewith its pointsatinfinity adjoined,.e.,aprojectve plane.Solet
pgr beatriangleof “ideal” POINTS,s andt POINTSon pgand pr respectiely,
ando apointof X. Let P,Q,R,S T bethelinesthrougho in the parallelclasses
p,q,r,s,t respectrely. Thenthesefive lineslie in a solid, sothe planesQR and
ST (having the pointo in common)meetin aline u. The parallelclassU of uis
therequiredPOINT onqr and<t.
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By Theorem3.4, the extendedgeometryis a projective space.The pointsat
infinity obviously form a hyperplaneandsotheoriginal pointsandlinesform an
affine space.

We spelltheresultoutin the casewherelineshave cardinality2, but referring
only to parallelism notto theplanes.

Corollary 3.9 Supposé¢hat the 2-elemensubset®of a setX are partitionedinto
“par allel classes”so that ead classpartitions X. Supposdhat, for any four
pointsp,q,r,s€ X, if pq|| rs,thenpr || gs. Thenthe pointsand parallelismare
thoseof an affine spaceover GF(2).

Here,we have usedthe notation|| to mean“belongto the sameparallelclass
as”. Theresultfollowsimmediatelyfrom thetheorempn defining.4 to betheset
of 4-elemensubsetsvhich arethe unionof two parallel2-subsets.

Exercises

1. Give adirectproofof the Corollary, in the spirit of Section3.1.

3.6 Transitivity of parallelism

A remarkabletheoremof Buekenhout[6] shaws that it is not necessaryo
assumeaxiom (AS2) (the transitvity of parallelism)in Theorem3.8, provided
thatthe cardinalityof aline is atleast4. Examplesdueto Hall [19] shav thatthe
conditionreally is neededf lineshave cardinality 3.

Theorem 3.10 Let (X, £) bea linear spacesatisfying(AS1),in which someline
containsat leastfour points. Thenparallelismis transitive(thatis, (AS2)holds),
andso(X, L) is anaffinespace

To discusghe countergampleswith 2 or 3 pointsonaline, someterminology
is helpful. A Steinertriple systemis a collection of 3-subset®f a set,any two
pointslying in a unique subsetof the collection. In otherwords, it is a linear
spacewith all lines of cardinality 3, or (in the terminologyof Sectionl.4) a 2-
(v, 3,1) designfor some(possiblyinfinite) v. A Steinerquadruplesystenis a set
of 4-subset®f a set,arny threepointsin a uniquesubsein the collection(thatis,
a3-(v,4,1) design.)
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A linear spacesatisfying (AS1), with two pointsper line, is equivalentto a
Steinerquadruplesystem: the distinguished4-setsare the affine planes. There
areSteinerquadruplesystemsaplenty;mostarenot affine spaceover GF(2) (for
example,because¢he numberof pointsis not a power of 2). Hereis anexample.
LetA={1,2,3,4,5,6}. Let X bethesetof all partitionsof A into two setsof size
3 (sothat|X| = 10). Definetwo typesof 4-subset®f X:

(a) for all a,b € A, thesetof partitionsfor which a, b lie in thesamepatrt;

(b) for all partitionsof A into three2-setsA;, Ag, Az, thesetof all partitionsinto
two 3-setseachof whichis atrans\ersalto thethreesetsA.

Thisis a Steinerquadruplesystenwith 10 points.
In the caseof threepointsperline, we have thefollowing result,for whichwe
referto Bruck[D] andHall [18, 19]:

Theorem3.11 (a) In afinite Steinertriple systensatisfying(AS1) thenumber
of pointsis a powerof 3.

(b) For everyd > 4, theris a Steinertriple systemwith 3¢ pointswhich is not
isomorphicto AG(d, 3).

Exercises

1. Prove that the numberof pointsin a Steinertriple systemis eitherQ or
congruento 1 or 3 (mod 6), while the numberof pointsin a Steinerquadruple
systemis 0, 1, or congruento 2 or 4 (mod®6).

(It is known that theseconditionsare sufficient for the existenceof Steiner
triple andquadruplesystems.)

2. Let (X, L) beaSteinertriple systensatisfying(AS1). For eachpointx € X,
let Tx be the permutationof X which fixesx andinterchangey andz wheneer
{X,y,z} is atriple. Prove that

(a) tx isanautomorphism,;
(b) 2=1;

(c) for x £y, (Tx1y)3 = 1.



A4

Varioustopics

This chaptercollectssometopics,ary of which could be expandednto anentire
chapter(or even a book!): spreadsandtranslationplanes;subsetf projectve
spacesprojectie lines; andthe simplicity of PSL(n, F).

4.1 Spreadsand trandation planes

Let V be a vectorspaceover F, having evenrank 2n. A spread § is a setof
subspacesf V of rankn, having the propertythatany non-zerovectorof V lies
in auniquememberof S. A trivial exampleoccurswhenn = 1 and.S consistsof
all therank 1 subspaces.

The importanceof spreadscomesfrom the following result, whoseproof is
straightforvard.

Proposition 4.1 Let$ beaspreadinV, and L thesetof all cosetsof membes of
S. Then(V, L) is an affine plane Theprojectiveplaneobtainedby addinga line
atinfinity Le is (p,Le)-transitivefor all p € Lo. =

For finite planestheconverseof thelaststatemenis alsotrue. An affine plane
with thepropertythatthe projective completionis ( p, L. )-transitvefor all p € Lo
is calledatranslationplane

Example. LetK beanextensionfield of F with degreen. TakeV to bearank
2 vectorspaceover K, and S the setof rank 1 K-subspaces.Then, of course,
the resultingaffine planeis AG(2,K). Now forgetthe K-structure andregardV

45
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asan F- vectorspace.Sucha spreads called Desaguesian becauset canbe
recognisedy thefactthatthe affine planeis Desaguesian.

Projectively, a spreadis a setof (n— 1)-dimensionafflatsin PG(2n— 1,F),
which partitionsthe pointsof F. We will examinefurtherthe casen = 1, which
will beconsideredigainin section4.5. Assume that F iscommutative.

Lemma4.2 Giventhreepairwiseskew linesin PG(3,F), there is a uniquecom-
montransvesal throughanypointon oneof thelines.

Proof LetLj, Ly, L3 bethelines,andp € L;. The quotientspaceby p is a pro-
jectiveplanePG(2,F), andlny = (p,L2) andl, = (p, L3) aredistinctlinesin this
plane;they meetin a uniquepoint, which correspondso a line M containingp
andlying in My andl», hencemeetingL, andL3. =

Now let R bethesetof commontrans\ersalgo thethreepairwiseskew lines.
Thelinesin R arepairwiseskew, by 4.2.

Lemma 4.3 A commortransvesal to threelinesof R is a transvesal to all of
them. m

For the proof, seeExercise2, or Section8.4.

Let ® be the setof all commontrans\ersalsto ®’. The set® is calleda
regulus and R’ (which is also a regulus)is the oppositeregulus Thus, three
pairwiseskew lineslie in auniqueregulus.

A spreads regular if it containgheregulusthroughary threeof its lines.

Theorem 4.4 A spreadis Desaguesianf andonlyif it isregular. =

(Theproof of theforwardimplicationis givenin Exercise2.)

If we take a regular spread,andreplacethe linesin aregulusin this spread
by thosein the oppositeregulus,the resultis still a spreadjfor aregulusandits
oppositecover the samesetof points. This processs referredto asderivation It
givesriseto non-Desaguesiartranslationplanes:

Proposition 4.5 If |F| > 2, thena derivationof a regular spreadis notregular.
Proof Choosdwo reguli Ry, R with auniqueline in common.If wereplace®;

by its opposite thenthe regulus R, containsthreelines of the spreadbut is not
containedn thespread. =
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It is possibleto pushthis muchfurther. For example,ary setof pairwisedis-
joint reguli canbereplacedoy their opposites! will notdiscusghis ary further.

The conceptof a spreadof linesin PG(3,F) canbe dualised. (For the rest
of the section,F is notassumeadommutatve.) A setS of pairwiseskew linesis
calledacospeadif every planecontainsa (unique)line of S; in otherwords,if §
correspondso aspreadn thedualspacePG(2,F°). Call S abispreadif it is both
aspreadanda cospread.

If F is finite, thenevery spreads abispread(For thereareequallymary, viz.
(q+1)(g?+ 1), pointsandplanes;andasetof n pairwiseskew linesaccountgor
(g+ 1)n pointsandthesamenumberof planes.)Moreover, aDesaguesiarspread
is abispreadandary derivationof abispreads abispreadsincetheconcepbf a
regulusis self-dual). Thereademaybewonderingif thereareary spreadsvhich
arenot bispreadsThatthey exist in profusionis a consequencef the next result
(take P = 0), andgivesuslots of strangetranslationplanes.

Theorem 4.6 LetF beaninfinite field. Let P, Q be setsof pointsand planesin
PG(3,F), with thepropertythat |?| + |Q) < |[F|. Thenthereis a sets of pairwise
skew lines, satisfying

(a) thepoint p liesonaline of § if andonlyif p & P;

(b) the planell containsa line of § if andonlyif I ¢ Q.

Proof We usethefactthatPG(2, F) is nottheunionof fewerthan|F| pointsand
lines. For, if Sis ary setof fewer than|F| pointsandlines,andL is aline notin
S thenL is notcoveredby its intersectiongvith membersof S,

Theproofis asimpletransfiniteinduction. (Notethatwe areusingthe Axiom
of Choicehere;but, in ary case,the proofis valid over ary field which canbe
well-orderedjn particular over ary countabléfield.) For readersunfamiliar with
settheory assumehatF is countable deletethe word “transfinite”, andignore
commentsaboutlimit ordinalsin thefollowing agument.

Leta betheinitial ordinalof cardinality|F |. Well-orderthepointsof PG(3, F)
notin  andthe planesnotin Q in asinglesequencef ordertypea, say (Xg :
B < a). Construciasequencésg : B < a) by transfiniterecursion asfollows.

SetSp = 0.

Supposeéhatf is asuccessoordinal,sayp = y+ 1. SupposéhatXg is a point
(the othercaseis dual). If S, containsa line incidentwith X, thensetSg = .
Supposenot. Considerthe projective planePG(3,F)/Xg. By ourinitial remark,
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this planeis notcoveredby fewer thana linesof theform (L, Xg) /X (for L € §)
or M /Xg (for M € Q with Xg € M) andpoints(p, Xg)/Xg (for p € P). Sowe can
choosea point lying outsidethe unionof thesepointsandlines, thatis, aline Lg
containingXg sothatLgNL =0 (for L € S), Lg ¢ N (for M € Q), andp ¢ L (for
p € P). Setsg = SyU{Lg}-

If Bisalimit ordinal,set

y<B
Thensy is therequiredsetof lines. =

Exercises

1. Shaw that, if threepairwiseskew linesin PG(3,F) aregiven, thenit is
possibleto choosecoordinatesothatthelineshave equations

Xy =X =0;
X3=X4=0;
X3 = X1, X4 = X2.

Find thecommontrans\ersalso thesethreelines.

2. Now let F becommutatve. Shav thatthecommontrans\ersaldo ary three
of thelinesfoundin thelastquestioraretheoriginal threelinesandthelineswith
equations

X1 = X300, X2 = Xqd

fora e F,a#0,1.

Deducethatthe Desaguesiarspreaddefinedby a quadraticextensionof F is
regular.

3. ProvethatLemma4.3is valid in PG(3,F) if andonly if F is commutatve.

4. UseTheoremd.6to shaw that,if F is aninfinite field, thenthereis aspread
of linesin AG(3, F) which containsoneline from eachparallelclass.

4.2 Some subsets of projective spaces

For mostof theseconcdhalf of thesdecturenotes we will beconsideringsub-
setsof projectve spacesvhich consistof the points (andgeneralsubspacesyn
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which certainformsvanishidentically. In this section, will describesomemore
basicsubsetof projective spacesandhow to recognisehemby their intersec-
tionswith lines. Thefirst exampleis afactwe have alreadymet.

Proposition 4.7 (a) A setSof pointsin a projectivespaceis a subspacef and
onlyif, for anyline L, S containsno point, onepoint, or all pointsof L.

(b) A setSof pointsin a projectivespaceis a hyperplangf andonly if, for any
line L, Scontainsoneor all pointsofL. =

The main theoremof this sectionis a generalisatiorof Proposition4.7(a).
Whatif we malke the conditionsymmetric thatis, askthatS containsnone,one,
all but one,or all pointsof ary line L? Theresultis easiesto statein the finite
case:

Theorem 4.8 Let Sbea setof pointsof X = PG(n,F) sud that, for anyline L,
Scontainsnone oneg all but one or all pointsof S Supposehat |F| > 2. Then
thereis a chain

D=XpCX1C...CXn=X
of subspace®sf X, sud that either S= Uizo(x2i+1\x2i)’ or S= UiZO(XZH_z\
Xoit1).

Thehypothesighat |F| > 2 is necessaryover thefield GF2), aline hasjust
threepoints, sothe four possibilitieslisted in the hypothesisover all subsetof
aline. Thismeanghatarny subsebf the projectve spacesatisfieghe hypothesis!
(NeverthelessseeTheorem4.10below.)

Note that the hypothesison S is “self-complementary”,and the conclusion
mustreflectthis. It is morenaturalto talk abouta colouringof the pointswith two
colourssuchthateachcolourclasssatisfieghe hypothesiof thetheorem.In this
languagetheresultcanbe statedasfollows.

Theorem 4.9 Letthe pointsof a (possiblyinfinite) projectivespaceX over F be
coloured with two colours ¢; and ¢z, sud that every colour classcontainsnone
one all but one or all pointsof anyline. Supposehat |F| > 2. Thentheris a
chain C of subspacesf X, anda functionf : C — {cy,C,}, sothat

@uc=X;

(b) for Y € C, there exist pointsof Y lying in no smallersubspacen ¢, andall
sud pointshavecolour f(Y).

The proof proceedsn a numberof stages.
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Step 1 Theresultis truefor aprojectve plane(Exercisel).

Now we definefour relations<, <2, <, || on X, asfollows:

e p <3 qif pistheonly point of its colouron the line pg; (this relationor
its cornverseholds betweenp andq if andonly if p andq have different
colours);

e p <2 qif thereexistsg with p <1 r andr <1 g (this holdsonly if p andq
have the samecolour);

e p<qif p<iqorp<zq;

e p||gif neitherp < g nor q < p (this holdsonly if p andqg have the same
colour).

Step 2 Theredo notexist pointsp, q with p <2 gandq <2 p.
For, if so,then(with p; = p, g1 = q) therearepointsp,, g suchthat

P1<1P2<101<102 <2 Pp1.

Let ¢; bethe colourof p; andq;, i = 1,2. By Stepl, the colouringof the plane
p1p2q: is determinedandevery point of this planeoff theline pyp2. In partic-
ular, if X3 € p101, X1 # P1, 1, thenevery point of x; p, exceptp, hascolourc;.
Similarly, every pointof x1q, exceptdg, hascolourc;; andthenevery pointof x1xo
exceptxe hascolourcy, wherexs € p2Q2, X2 # P2, 2.

But, by thesameargument,every point of x;X» exceptx; hascolourcy, giving
acontradiction.

Step 3 < isapartialorder

Theantisymmetryfollows by definitionfor <; andby Step2 for <2; we must
prove transitiity. Sosupposdhatp < q < r, andconsidercasesif p<i1q<1r,
then p <2 r by definition. If p<i1g<ar orp<z2q<sr, thenp andr have
differentcoloursandsoarecomparableandr <1 p contradictsStep2. Finally, if
p<20<2r,thenp<is<iqforsomes; thens<ir, sothatp<ar.

Step4 If p<q|rorp|llg<r,thenp<r;andif p||qg||r, thenp]|r.

Supposehatp < q||r. If p<1 g, thenp andr have differentcoloursandsoare
comparableandr <1 pwouldimply r < g by Step3, sop <1 r. Thenext cases
similar. Thelastassertionis a simpleconsequencef the othertwo.
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Step 5 If p<q,thenp < r for all pointsr of pgexceptp; andthe pointsof pq
otherthanp arepairwiseincomparable.
This holdsby assumptionf p <; g, andby theproofof Step2if p <2 Q.

Now let S(p) = {q: p£ g}, andT(p) = {q: q < p}.

Step 6 S(p) andT (p) aresubspacesyith p € S(p) \ T(p). Moreover, T(p) is
the unionof the spacesS(q) for g < p, andis spannedy the pointsof S(p) with
colourdifferentfrom thatof p; andwe have

pllqimpliesS(p) = S(q);
q< pimpliesS(q) C T(p).

All of thisfollows by straightforvard agumentfrom the precedingsteps.

Now the proof of the Theoremfollows: we setC = {S(p) : p € X}, andlet
f(S(p)) be the colour of p. The conclusionsof the Theoremfollow from the
assertiongn Step6. =

Remark. Theonly placein the abore amumentwherethe hypothesisF| > 2
wasusedwasin Stepl. Now PG(2, 2) hassevenpoints;so, up to complementa-
tion, asubsebf PG(2,2) is empty a point, aline with apointremoved,aline, or
atriangle.Only thelastcasefails to satisfythe conclusionof the Theorem.Sowe
have thefollowing result:

Theorem 4.10 Theconclusionf Theoems4.8and4.9 remaintrue in the case
F = GF(2) providedthat we add the extra hypothesighat no colour classinter-
sectsa planein a triangle (or, in 4.8, that no planemeetsSin a triangle or the
complemendfone). m

Exercise

1. ProvethatTheorend.8holdsin ary projectie planeof ordergreatetthan2
(notnecessarilypesaguesian).

4.3 Segre’s Theorem

For projectve geometriever finite fields, it is very naturalto askfor char
acterisation®f interestingsetsof pointsby hypothesesntheirintersectionsvith
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lines. Very muchfiner discriminationsare possiblewith finite thanwith infinite
cardinalnumbersfor example all infinite subset®f acountablyinfinite setwhose
complementarealsoinfinite arealike.

It is not my intentionto surey evena small partof this vastliterature. But |
will describeoneof the earliestandmostcelebratedesultsof this kind. | begin
with somegeneralitiesaboutalgebraiccurves. Assumethat F is a commutative
field.

If apolynomialf in x1,...,X,+1 IS homa@eneousthatis, a sumof termsall of
thesamedegree thenf(v) = 0implies f(av) = Ofor all a € F. So,it f vanishes
atanon-zerovector thenit vanishesttherank1 subspacéthepointof PG(n,F))
it spans.Thealgebraic variety definedby f is the setof pointsspannedy zeros
of f. We areconcernedhereonly with the casen = 2, in which case(assuming
that f doesnotvanishidentically)this setis calledanalgebraic curve

Now considerthe casewhere f hasdegree2, andF = GF(q), whereq is an
oddprimepower. Thecurweit definesmaybeasinglepoint,oraline, ortwolines;
but, if noneof theseoccurs thenit is equivalent(underthe groupPGL(3,q)) to
the curve definedby the equationx? + x2 + x5 = 0 (seeExercisel). Any curve
equialentto this oneis calleda conic (or irr educibleconic).

It canbe showvn (seeExercise2) that a conic hasq+ 1 points, no three of
which arecollinear The corverseassertions the contentof Segre’s Theorem:

Theorem 4.11 (Segre’'s Theorem) For q odd, a setof q+ 1 pointsin PG(2,q),
with no threecollinear, is a conic.

Proof Let O beanoval. We begin with somecombinatorialanalysiswhich ap-
pliesin ary planeof oddorder;thenwe introducecoordinates.

Step 1 Any pointnoton O lieson 0 or 2 tangents.

Proof Let pbeapointnoton O. Since|O| = q+ 1is even,andanevennumber
of pointslie on secantshroughp, anevennumbermustlie ontangentsalso. Let
X; bethenumberof pointsoutsideO whichlie oni tangentsNow we have

zxi = q27
Yixi = (q+1)q,
Sii-1x = (a+1)q.

(Theseareall obtainedby doublecounting. Thefirst holdsbecausehereareg?
pointsoutsideO; the secondbecauseghereareq+ 1 tangentgoneat eachpoint
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of 0), eachcontainingg pointsnot on O; andthethird becausery two tangents
intersectata uniquepointoutsideO.)

Fromtheseequationswe seethat ¥ i(i — 2)x; = 0. Butthetermi = 1in the
sumvanishegary pointlies on anevennumberof tangents)thetermsi = 0 and
i = 2 clearlyvanish,andi(i — 2) > 0for ary othervalueofi. Sox; = 0for all i # 0
or 2, proving theassertion.

Remark Pointsnoton O arecalledexterior pointsor interior pointsaccording
asthey lie on 2 or 0 tangentsby analogywith therealcase.But theanalogygoes
no further. In thereal caseevery line throughaninterior pointis a secantthisis
falsefor finite planes.

Step 2 Theproductof all the non-zercelementof GF(q) is equalto —1.

Proof Thesolutionsof the quadratio = 1 arex = 1 andx = —1; thesearethe
only elementsequalto their multiplicative inverses.So, in the productof all the
non-zeroelementseverythingexceptl and—1 pairsoff with its inverse leaving
thesetwo elementsinpaired.

For the next two stepsnotethatwe canchoosehe coordinatesystemsothat
thesidesof agiventrianglehave equationx= 0,y = 0 andz= 0 (andtheopposite
verticesare[1,0,0], [0,1,0], and[0, 0, 1] respectiely). We'll call thisthetriangle
of refelence

Step 3 Supposehatconcurrentinesthroughthe verticesof thetriangleof ref-
erencemeetthe oppositesidesin the points[0,1,a], [b,0,1], and[1,c,0]. Then
abc=1.

Proof Theequation®f theconcurrentinesarez= ay, x = bzandy = cxrespec-
tively; thepointof concurreng mustsatisfyall threeequationswhenceabc= 1.)

Remark Thisresultis equivalentto the classicalTheoremof Menelaus.

Step 4 Let theverticesof thetriangle of referencebe chosernto bethreepoints
of O, andlet thetangentsatthesepointshave equationz = ay, X = bzandy = cx
respectrely. Thenabc= —1.
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Proof Thereareq— 2 furtherpointsof O, sayp;,..., pg—2. Considerthe point
[1,0,0]. It liesonthetangentz = ay, meetingthe oppositesidein [0, 1, a]; two se-
cantswhicharesidesof thetriangle;andqg— 2 furthersecantsthroughps, . . ., pg—2.
Let thesecanthroughp; meettheoppositesidein [0, 1, &]. Thenaﬂ?:_fai =-1,
by Step2. If b;, ¢ aresimilarly defined we have alsob |‘|?:_12 b = c|‘|i0':_12 c=—1.

Thus
q-2

abcrl(ai bici) = —1.

But, by Step3, ajbici=1fori=1,...,9— 2; soabc= —1.

Step 5 Givenary threepoints p,q,r of O, thereis a conic C passingthrough
p,q,r andhaving the sametangentst thesepointsasdoesO.

Proof Choosingcoordinatessin Step4, theconicwith equation
yz— czx+ caxy= 0

canbe checled to have the requiredproperty (For example,[1,0,0] lies on this
conic;and,puttingz = ay, we obtainay? = 0, so[1, 0, 0] is theuniquepoint of the
coniconthisline.)

Step 6 Now we arefinishedif we canshow thatthe conic C of Step5 passes
throughanarbitraryfurtherpoint s of O.

Proof Let ¢’ and(C” betheconicspassinghroughp,q,sandp,r,srespectiely
andhaving the correcttangentghere.Let theconicsC, ¢’ andC” have equations
f =0, f'"=0, f’ = 0 respectiely. (Theseequationsare determinedup to a
constantfactor) Let Lp,Lq,Ls,Ls bethetangentsto O at p,q,r,s respectrely.
Sinceall threeconicsaretangentto L, at p, we canchoosethe normalisationso
thatf, f’, f" agreddenticallyon L.

Now considertherestrictionsof f’ and f” to Ls. Both arequadratidunctions
having a doublezeroat s, and the valuesat the point LsN Lp coincide; so the
two functionsagreeidentically on Ls. Similarly, f and f’ agreeon Lq, and f
and f” agreeonL,. Butthenf, f’ and f” all agreeat the pointLqNL,. Sothe
quadraticfunctionsf’ and f” agreeon L, Ls, andLq N L, which forcesthemto
beequal.Sothethreeconicscoincide, andour claimis proved(andwith it Segre’s
Theorem). =
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Theargumentn thelastpartof theproofcanbegeneralisedo give thefollow-
ing result(of whichit formsthecasen=q+ 1, m= 2, with L4,..., Ly thetangents
to theoval, and{ pi1, pi2} thepoint of tangeng of L; takenwith multiplicity 2).

Proposition 4.12 LetLy,...,L, belinesin PG(2,q), no three concurent. Let

pi1, - .., Pim bepointsof L;, not necessarilydistinct, but lying on noneof the other
Li». Supposehat, for anythreeof thelines,there is an algebraic curveof degree
m whoseintersectionswith thoselinesare preciselythe specifiegooints(counted
with theappropriatemultiplicity). Thenthereis a curveof degreem, meetingeac

line in justthespecifiecpoints. =

Propositiond.12 hasbeengeneralised32] to arbitrarysetsof lines (without
theassumptiorthatno threeareconcurrent).

Proposition 4.13 LetL;,...,L, belinesin PG(2,q). Let pj1, ..., pim be pointsof
L;, notnecessarilyistinct,but lying onnoneof theotherL;;. Supposé¢hat,for any
threeof thelineswhich formatriangle, andfor thesetof all linespassinghrough
any point of the plane (wheneer there are at leastthreesud lines), there is an
algebraic curveof degreem whosentersectionswith thoselinesare preciselythe
specifiedpoints(countedwith the appropriate multiplicity). Thenthereis a curve
of degreem, meetingead line in justthe specifiegoints. =

Theanaloguef Seggre’s Theorermover GF(q) with evengqis false.In thiscase,
thetangentdo anoval Sall passthrougha singlepointn, the nucleusof the oval
(Exercise4); and,for ary p € S, thesetSu{n} \ { p} isalsoanoval. But, if q> 4,
thenat mostone of theseovals canbe a conic (seeExercise5: theseovals have
g commonpoints). For sufficiently large q (viz., q > 64), andalsofor q = 16,
thereareotherovals,notarisingfrom this construction We referto [3] or [14] for
up-to-datanformationon ovalsin planesof evenorder

We saw thatthereareovalsin infinite projectve planeswhich arenot conics.
However, thereis a remarkablecharacterisationf conicsdueto Buekenhout. A
hexagonis saidto be Pascalianif thethreepointsof intersectiorof oppositesides
arecollinear In thisterminology Pappus'Theoremassertshata hexagonwhose
verticeslie alternatelyon two lines is Pascalian. Sincea pair of lines forms a
“degenerateonic”, thistheoremis generalisedby Pascals Theorem:

Theorem 4.14 (Pascal’s Theorem) In a Pappianprojectiveplang a hexagonin-
scribedin a conicis Pascalian. =
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We know from Theorem?2.3 thata projective planesatisfyingPappus’Theo-
remis isomorphico PG(2, F) for acommutatvefield F. Thetheorenmof Bueken-
houtcompleteghis circle of ideas.Its proofis group-theoreticusinga character
isationof PGL(2, F) assharply3-transitve groupdueto Tits.

Theorem 4.15 (Buekenhout’s Theorem) Let Sbean oval in a projectiveplane
. Supposehat everyhexagonwith verticesin Sis Pascalian.Thenl1 is isomor
phicto PG(2,F) for somecommutativdield F, andSisaconicin . =

Exercises

1. (a) By completingthe square prove thatary homogeneoupolynomialof
degree?2 in n variables,over a commutatve field F with characteristidifferent
from 2, is equialent(by non-singulatineartransformation}o the polynomial

ApE + ... 40X,

(b) Prove thatmultiplicationof ary a; in theabove form by asquaren F gives
anequvalentform.

(c) Now let F = GF(q) andn = 3; let n beafixednonsquarén F. Shav that
the curvesdefinedby x2, x2 — x2 andx? — nx3 arerespectiely a line, two lines,
andapoint. Shav thatthereexistsa suchthatn = 1+ a2. Observingthat

(x+ay)?+ (ax—y)? =n(C +y?),

prove thatthe formsx + x3 + X3 andx? + nx3 + nx3 areequialent. Deducethe
classificatiorof curvesof degree2 over GF(q) givenin thetext.

2. Countthe numberof secantghroughan exterior point and throughan
interior point of an oval in a projectve planeof odd orderq. Also, countthe
numberof pointsof eachtype.

3. Prove thata curve of degree2 overarny commutatvefield is empty a point,
aline, apair of lines,or anoval. Prove alsothata curve of degree2 over a finite
field is non-empty

4. Prove that,if gis even,thenthetangentdo anoval in a projective plane
of orderq areconcurrent.Deducethatthereis a setof q+ 2 pointswith no three
collinear having notangentgi.e., meetingeveryline in 0 or 2 points).(Remaring
ary oneof thesepointsthengivesanoval.)
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Remark. A setof n+ 2 pointsin aplaneof ordern, nothreecollineat is called
ahypeoval.

5. Prove that,in ary infinite projective plane,for ary integerk > 1, thereis a
setof pointsmeetingevery line in exactly k points.

6. Prove thatfive pointsof PG(2, F), with no threecollinear arecontainedn
aunigueconic. (Take four of the pointsto be the standardset(1,0,0), (0,1,0),
(0,0,1) and(1,1,1); thefifth is (1,a,B), wherea and aredistinct from one
anotherandfrom 0 and1.)

4.4 Ovoidsand inversive planes

Ovoids are 3-dimensionaknaloguef ovals. They have addedimportance
becaus®f their connectionwith inversive planeswhich areone-pointextensions
of affine planes. (The traditional exampleis the relation betweenthe Riemann
sphereandthe“extendedcomplex plane”.)

Fieldsin this sectionarecommutatve.

An ovoidin PG(3,F) is asetO of pointswith the properties

(O1) nothreepointsof O arecollinear;
(02) thetangentgo O througha pointof O form aplanepencil.

(If asetof pointssatisfiegO1), aline is calleda secant tangentor passantf it
meetsthesetin 2, 1 or O pointsrespectrely. The planecontainingthe tangentgo
anovoid atapointx is calledthetangentplaneatx.)

The classicalexamplesof ovoids arethe elliptic quadrics Let ax? + Bx+y
be anirreduciblequadraticover the field F. The elliptic quadricconsistsof the
pointsof PG(3,F) whosecoordinategx, Xo, X3, X4) satisfy

X1X2 + 0X3 + BxaXg + %2 = O.

The proofthatthesepointsdo form anovoid is left asanexercise.
Over finite fields, ovoids arerare. Barlotti and Panellashaved the following
analoguenf Segre’stheoremon ovals:

Theorem 4.16 Any ovoid in PG(3,q), for g an odd prime power is an elliptic
quadric. m



58 4. Varioustopics

For evenq, justonefurtherfamily is known, the Suzuki—ifts ovoids whichwe
will constructn Section8.4.

An inversiveplaneis, assaidabove, a one-pointextensionof an affine plane.
Thatis, it isapair (X, C), whereX is asetof points,and acollectionof subsets
of X calledcircles satisfying

(11) any threepointslie in auniquecircle;

(12) if x,y arepointsandC acircle with x € C andy ¢ C, thenthereis a unique
circleC’ satisfyingy € C' andCNC’ = {x};

(13) thereexist four non-concirculapoints.

It is readily checledthat, for x € X, the pointsdifferentfrom x andcirclescon-
taining x form an affine plane. The order of the inversive planeis the (common)
orderof its derivedalffine planes.

Proposition 4.17 Thepointsand non-trivial plane sectionsof an ovoid form an
inversiveplane

Proof A planesectionof theovoid O is non-trivial if it containsmorethanone
point. Any threepoints of O are non-collineay and so define a unique plane
section. Given x, the pointsof O differentfrom x andthe circles containingx
correspondo thelinesthroughx notin thetangenplaneT, andthe planegshrough
x differentfrom Ty; thesearethe pointsof the quotientspacenotincidentwith the
line Tyx/x andthelinesdifferentfrom Ty /X, whichform anaffine plane. =

An inversie planearisingfrom anovoid in this way is calledegglike. Dem-
bowski proved:

Theorem 4.18 Anyinversiveplaneof evenorderis egglike (andsoits orderis a
powerof2). m

Thisis notknown to hold for oddorder but no counter@amplesareknown.

Thereare configurationtheoremgthe bundletheoemandMiquel’'s theoem
respectrely) which characterisegglike inversive planesand“classical”inversive
planes(comingfrom theelliptic quadric)respectrely.

Higherdimensionabbjectscanalsobedefined.A setO of pointsof PG(n, F)
is anovoid if

(O1) nothreepointsof O arecollinear;
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(02’) thetangentgo O througha point x of O areall the lines throughx in a
hyperplanef PG(n,F).

Proposition 4.19 If F is finiteandn > 4, thenPG(n, F) containsno ovoid. =

However, therecanexist suchovoidsoverinfinite fields (Exercise3).

Exercises

1. Prove Propositiord.19.[Hint: it sufficesto proveit for n=4.]

2. Prove that, for g odd, a setof pointsin PG(3,q) which satisfies(O1) has
cardinalityat mostg? + 1, with equalityif andonly if it is anovoid.

(Thisis truefor g even,q > 2 also,thoughtheproofis muchharder Forq= 2,
the complemenbf a hyperplanes a setof 8 pointsin PG(3, 2) satisfying(01).)

3. Shaw thatthe setof pointsof PG(n, R) whosecoordinatesatisfy

XX +X54...+X2=0

is anovoid.

4.5 Projectivelines

A projective line over a field F hasno non-trivial structureasan incidence
geometry FromtheKleinian point of view, though,it doeshave geometricstruc-
ture, derived from the fact that the groupPGL(2,F) operateonit. As we sav
earlier the actionof this groupis 3-transitve (sharplysoif F is commutatve),
andcanevenbe 4-transitve for specialskew fields of characteristi@. However,
we assumen this sectionthatthefield is commutatve.

It is corventionatlto labelthepointsof theprojectieline over F with elements
of F U{}, asfollows: the point {(1,a)) is labelledby a, andthe point {(0,1))
by . (If weregardpointsof PG(2,F) aslinesin the affine planeAG(2,F), then
thelabelof a pointis the slopeof the correspondindine.)

SincePGL(2,F) is sharply3-transitive, distinguishingthreepointsmustgive
uniquedescriptiongo all the others. This is corvenientlydoneby meansof the
crossratio, thefunctionfrom 4-tuplesof distinctpointsto F \ {0,1}, definedby

(X1 —X3) (X4 — X2)
(X1—Xa) (X3 —X2)

f(X1,%2,X3,X4) =
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In calculatingcrossratio, we usethe samecorventionsfor dealingwith « as

whenelementof PGL(2,F) arerepresentedy linearfractionaltransformations;
for example,co — o = o, andaeo /Beo = o /B. Slightly differing formsof thecross

ratio areoftenused;the onegivenherehasthe propertythat f («,0,1,a) = a.

Proposition 4.20 Thegroupof permutation®f PG(1,F) preservinghecrossra-
tio is PGL(2,F).

Proof Calculationestablisheshatlinear fractionaltransformationsio presere
crossratio. Also, the crossratio asa functionof its fourth argumentwith thefirst
threefixed,is one-to-oneso a permutationvhich preserescrossratio andfixes
threepointsis theidentity. Theresultfollows from thesetwo assertions. m

The crossratio of four pointsis unalteredif the agumentsare permutedin
two cyclesof length2: for example, f (X3, X4, X1, X2) = f (X1, X2,X3,X4). Theseper
mutationstogetherwith theidentity, form a normalsubgroupof index six in the
symmetricgroupSs. Thus,in generalsix differentvaluesareobtainedoy permut-
ingtheargumentslf a is oneof thesevaluestheothersarel—a, 1/a, (a—1)/a,
1/(1—a),anda/(a —1). Therearetwo specialkcasesvherethenumberof values
is smaller thatis, wheretwo of thesix coincide. Therelevantsetsare{—1, 2, %},
and{—w, —w’}, wherew is a primitive cuberoot of unity. A quadrupleof points
is calledharmonicif its crossratiosbelongto thefirst set,equianharmonidf they
belongto the second.Thefirst type occursover ary field of characteristidiffer-
entfrom 2, while the secondoccursonly if F containsprimitive cuberootsof 1.
(But notethat, if F hascharacteristi@, thenthe two typeseffectively coincide:
-1=2= % andthe crossratio of a harmonicquadrupleis invariantunderall
permutation®f its arguments!)

In theargumentsdelow, weregarda“quadruple”asbeinganequialenceclass
of orderedquadrupleqall having the samecross-ratio).So, for example,a har
monicquadruplgin characteristidifferentfrom 3) is a4-setwith adistinguished
partitioninto two 2-sets.

Proposition 4.21 Supposehatthe characteristicof F is notequalto 2. Thenthe

groupof permutationsvhich preservehesetof harmonicquadrupless PI'L (2, F).

Proof Again, ary elementof PI'L(2,F) preseresthe setof harmonicquadru-
ples. To seethe corverse notethat PGL(2,F) containsa uniqueconjugag class
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of involutions having two fixed points, and that, if x1,X, are fixed points and
(x3,X4) a 2-gycle of suchaninvolution, then{xy, X2, X3, X4} is harmonic(andthe
disthinguishedartitionis {{x1,x2}, {x3, x4} }). Thus,theseinvolutionscanbere-
constructedrom the setof harmonicquadruplesSoary permutatiorpreserving
the harmonicquadruplesiormaliseghe group G generatedy theseinvolutions.
We seebelaw thatG is PSL(2, F) if F containssquareootsof —1, or containghis

groupasa subgroupf index 2 otherwise. The normalisernf G is thusPI'L(2,F),

asrequired. =m

(PSL(n,F) is thegroupinducedontheprojective spaceby theinvertiblelinear
transformationsvith determinant.)

We look further at the claim aboutG in the above proof. A transvections a
linear transformatiorg with all eigervaluesequalto 1, for which ker(g— 1) has
codimensiori. In our presentaseary 2 x 2 upperunitriangulamatrix different
from the identity is a trans\ection. The collineationof projectve spaceinduced
by atrans\ectionis calledanelation An elationis characterisethy the factthat
its fixed pointsform a hyperplaneknown asthe axis of the elation. Dually, an
elationfixesevery line througha point, calledthe cente of the elation,which is
incidentwith the axis. In the presentasen = 2, the centreandaxis of anelation
coincide.

Proposition 4.22 Theelationsin PGL(2,F) geneate PSL(2,F).

Proof The elationsfixing a specifiedpoint, togetherwith the identity, form a
groupwhich actssharplytransitively on the remainingpoints. Hencethe group
generatedy theelationsis 2-transitive. If a = —1—1/p andy = a/B, then

(0 2)(a 1) )G -3 %)

sothetwo-pointstabiliserin the groupgeneratedy all the elationscontainsthat
in PSL(2,F). But elationshave determinantl, andsothe groupthey generatés
asubgroupf PSL(2,F). Sowe haveequality =

Now, if two distinctinvolutionshave a commonfixed point, thentheir prod-
uctis a elation. Sinceall elationsare conjugate all canbe realisedin this way.
ThusthegroupG in the proof of Propositiord4.21 containsall elations,andhence
containsPSL(2,F).
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We concludewith a differentway of giving structureto the projectie line.
SupposehatE is a subfieldof F. Then{e«} UE is a subsebf the projectieline
{0} UF having the structure(in ary of the sensepreviously defined)of projec-
tive line over E. We call ary imageof this setunderan elementof PGL(2,F) a
circle. Thenary threepointslie in auniquecircle. The pointsandcirclesform an
incidencestructurewhichis anextensionof the point-linestructureof affine space
AG(n,E), wheren is the degreeof F over E. (For considerthe blockscontaining
o, Onremoing the point o, we canregardF asan E-vectorspaceof rankn; E
itself is anaffine line, andthe elementof PGL(2, F) fixing « areaffine transfor
mations;so, for ary circle C containingeo, C\ {0} is anaffine line. Sincethree
pointslie in auniquecircle, every affine line arisesin thisway.)

Sometimesaswe will see thisgeometrycanberepresentedsthe pointsand
planesectionsof a quadricover E. the mostfamiliar exampleis the Riemann
spherewhichis the projectie line over C, andcanbeidentifiedwith a spheren
real 3-spacesothatthe“circles” areplanesections.

4.6 Generation and simplicity

In this section,we extendto arbitrary rank the statementhat PSL(n,F) is
generatedy elations,andshaow that this groupis simple, exceptin two special
cases.

As before F is acommutatvefield.

Theorem 4.23 For anyn > 2, thegroupPSL(n,F) is geneatedby all elations.

Proof We useinductionon n, the casen = 2 having beensettledby Proposi-
tion 4.22. Theinductionis basednthefactthat,if W is a subspacef the axisof
anelationg, theng inducesanelationonthe quotientprojective spacemoduloW.
Giveng € PSL(n,F), with g # 1, we have to expressg asa productof elations.
We may supposehat g fixesa point x. (For, if xg=y # x, andh is ary elation
mappingx to y, thengh~1 fixesx, andgh~! is a productof elationsif andonly if
gis.

By induction,we maymultiply g by a productof elations(whoseaxescontain
X) to obtain an elementfixing every line throughx; so we may assumethat g
itself doesso. Consideringa matrix representingy, andusingthe factthatg e
PSL(n,F), we seethatg is anelation. =

Theorem 4.24 Supposehat eithern > 3, or n=2 and|F| > 3. Thenanynon-
trivial normalsubgoupof PGL(n,F) containsPSL(n,F).



4.6. Geneationandsimplicity 63

Proof We begin with an obseration — if N is a normal subgroupof G, and
g€ N, g1 € G, then[g,01] € N, where[g,01] = g*lgflgg— 1 is the commutator
of g andg; — andalemma:

Lemma 4.25 Underthe hypothesesf Theoem4.24,if g € PGL(n,F) mapsthe
point p; of PG(n— 1,F) to the point py, thenthere existsg; € PGL(n,F) which
fixesp1 and p2 anddoesnt commutewith g.

Proof Casel: pog = p3 # p2. We canchoosey; to fix p; and p, andmove ps.
(If p1, p2, p3 arenotcollineas thisis clear If they arecollinear usethe factthat
PGL(2,F) is 3-transitve onthe projectie line, which hasmorethanthreepoints.

Case2: pog = p1. Theng fixestheline p1p2, andwe canchoosecoordinates
onthisline sothatp; = o, p, = 0. Now g actsasx+— a/x for somea € F. Letg;
inducex — Bx onthis line; then[g, g1] inducesx — B?x. Sochoose3 # 0,1, —1,
aswemaysincelF| > 3. =

SoletN beanon-trivial subgroupf PGL(n, F). Supposehatg € N mapsthe
hyperplaneH; to H, # Hi. By thedualform of the Lemma,thereexistsg; fixing
H; andH; andnot commutingwith g; then[g, g1 fixesH,. Sowe may assume
thatg € N fixesa hyperplaneH.

Next, supposethat g doesnt fix H pointwise. The group of elationswith
axis H is isomorphicto the additive group of a vector spacewhoseassociated
projectvespacas H; sothereis atrans\ectiong; with axisH notcommutingwith
g. Then[g, g:1] fixesH pointwise.Sowe mayassumehatg fixesH pointwise.

If gis notanelation,thenit is ahomolay (inducedby a diagonalisabldinear
map with two eigervalues,one having multiplicity n— 1; equivalently; its fixed
pointsform a hyperplaneandoneadditionalpoint). Now if g; is anelationwith
axisH, then|g,gi1] is anon-identityelation.

We concludethatN containsanelation.But thenN containsall elations(since
they areconjugate)whenceN containsPSL(n,F). =

For smalln andsmallfinite fieldsF = GF(q), thegroupPSL(n,q) = PSL(n,F)
is familiarin otherguises.For n = 2, recallthatit is sharply3-transitve of degree
g+ 1. Hencewe have PSL(2,2) = S5, PSL(2,3) = A4, andPSL(2,4) = A (the
alternatinggroupsof degrees4 and5 — theformeris not simple,the latteris the
uniquesimplegroupof order60). Lessobviously, PSL(2,5) = As, sinceit is also
simpleof order60. FurthermorePSL(2, 7) = PSL(3, 2) (theuniquesimplegroup
of order168),PSL(2,9) = Ag, andPSL(4,2) = Ag (for reasonsve will seelater).
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Therehasbeena lot of work, muchof it with a very geometricflavour, con-
cerninggroupsgeneratedby subsetsf thesetof elations.For example McLaugh-
lin [22, 23] foundall irreduciblegroupsgeneratedby “full elationsubgroupsTall
elationswith given centreand axis). This resultwas put in a wider contet by
CameromandHall [11]. (In particular they extendedthe resultto spacesf infi-
nite dimension.)Note thatan importantingredientin the agumentsof Cameron
andHall is Theorem4.9: underslight additionalhypotheseghe setof all elation
centressatisfiesthe conditionson a colour classin that theorem. The result of
Theorenmd.9,togethemwith theirreducibility of thegroup,thenimpliesthatevery
pointis anelationcentre.

Exercises

1. (a) Prove thatthe non-n@ative integer m is the numberof fixed pointsof
anelementof PGL(n,q) if andonly if, whenwritten in the baseq, its digits are
non-decreasingndhave sumnot exceedingn.

(b) (Harder)Prove thatthe non-ngative integerm is the numberof fixed
points of an elementof PI'L(n,F) if andonly if thereexistsr suchthatq is a
power of r and,whenmis writtenin the baser, its digits arenon-decreasingnd
have sumat mostn.

2. Prove thata simple group of order60 possesseBve Sylow 2-subgroups,
whichit permutedy conjugationdeducehatsucha groupis isomorphicto As.

3. Modify theproofof Theoreny.6.2to shav that,underthesamenhypotheses,
PSL(n,F) is simple. [It is only necessaryo shav that the variousg;s canbe
choserto lie in PSL(n,F). Theonly casewherethisfailsis Case2 of theLemma
whenn=2,F = GF(5).]

4. (a) Let I be a projective planeof order4 containinga hypero/al X (six
points,no threecollinear). Prove thattherearenaturalbijectionsbetweenhe set
of lines meetingX in two pointsandthe setof 2-subset®f X; andbetweenthe
setof pointsoutsideX andthe setof partitionsof X into three2-subsetsFind a
similar descriptionof a setbijective with the setof lines disjoint from X. Hence
show that[T is unique(up to isomorphism).

(b) Let N be a projectie planeof order4. Prove that any four points, no
threecollinear arecontainedn a hyperosal. Henceshow thatthereis a unique
projective planeof order4 (up to isomorphism).

(SeeCameronand Van Lint [F] for more on the underlying combinatorial
principle.)
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Buekenhout geometries

FrancisBuekenhoutintroducedan approachto geometrywhich hasthe adwan-
tagesof beingboth general,andlocal (a geometryis studiedvia its residuesof
small rank). In this chaptey we introduceBuekenhouts geometriesandillus-
tratewith projectve spacesndrelatedobjects.Furtherexampleswill occurlater
(polarspaces).

5.1 Buekenhout geometries

Sofar, nothinghasbeensaidin generabboutwhata“geometry”is. Projectve
andaffine geometriehave beendefinedascollectionsof subspacedyut eventhe
structurecarriedby thesetof subspacewasleft abit vague(exceptin Section3.4,
wherewe usedthe inclusion partial orderto characterisegeneralisedrojectve
spacesaslattices). In this section,l will follow anapproachdueto Buekenhout
(inspiredby the earlywork of Tits on buildings).

Before giving the formal definition, let us remarkthat the subspacesr flats
of a projectve geometryare of varioustypes(i.e., of variousdimensions)may
or maynotbeincident(two subspaceareincidentif onecontainsheother);and
arepartially orderedby inclusion. To allow for duality, we do notwantto take the
partial orderasbasic;and,aswe will see thebetweenneseelationderivedfrom
it canbe deducedrom the type andincidencerelations. So we regardtype and
incidenceasbasic.

A geometry or Buelenhoutgeometry then, hasthe following ingredients:a
setX of varieties a symmetricincidencerelation| on X, afinite setA of types
andatypemapt : X — A. We requirethefollowing axiom:

65
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(B1) Two varietiesof the sametype areincidentif andonly if they areequal.

In otherwords,a geometryis a multipartitegraph,wherewe have namedor the
multipartiteblocks(“types”) of the graph.We mostly usefamiliar geometridan-
guagefor incidence put sometimesgraph-theoretitermslik e diameterandgirth
will beuseful. But onegraph-theoreticoncepts vital; a geometryis connected
if thegraphof varietiesandincidences connected.

Therankof ageometryis the numberof types.

A flag is a setof pairwiseincidentvarieties. It follows from (B1) that the
membersof a flag have differenttypes. A geometrysatisfiesthe transvesality
conditionif thefollowing strengtheningf (B1) holds:

(B2) (a) Everyflagis containedn a maximalflag.
(b) Every maximalflag containsonevariety of eachtype.

All geometriederewill satisfytrans\ersality
Let F beaflagin ageometryG. TheresidueGg = R(F) of F is definedas
follows: thesetof varietiesis

Xg ={xe X\F :xlyforallye F};

the setof typesis Ar = A\ 1(F); andincidenceandthe type maparetherestric-
tions of thosein G. It satisfies(B1) (resp. (B2)) if G does. Thetypeof aflag
or residueis its imageunderthe type map,andthe cotypeis the complemenbf
thetypein A; sothetype of Gr is the cotypeof F. Therankandcorankarethe
cardinalitiesof thetype andcotype.

A trans\ersalgeometryis calledthick (resp.firm thin) if everyflag of corank
1is containedn atleastthree(resp.atleasttwo, exactly two) maximalflags.

A propertyholdsresiduallyin ageometnyif it holdsin everyresidueof rankat
least2. (Residue®f rankl aresetswithoutstructure.)in particular all geometries
of interestareresiduallyconnectedin effect, we assumeesidualconnectedness
asanaxiom:

(B3) All residueof rankatleast2 areconnected.

Thenext resultillustratesthis concept.

Proposition 5.1 Let G bea residuallyconnectedransvesal geometryandlet x
andy bevarietiesof X, andi and j distincttypes.Thenthereis a pathfromx toy
in which all varietiesexceptpossiblyx andy havetypei or j.
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Proof Theproofis by inductionontherank. For rank2, residualconnectedness
is just connectednesandtheresultholdsby definition. Soassumehe resultfor
all geometrieof smallerrankthanG.

We shaw first that a two-steppathwhosemiddle vertex is not of typei or |
canbereplacedby a pathof the typerequired. Solet xzybe a pathof length 2.
Thenx andy lie in the residueof z, sothe assertiorfollows from the inductive
hypothesis.

Now this constructionreducesoy onethe numberof interior verticesnot of
typei or j onapathwith specifiedendpoints.Repeatingt asoftenasnecessary
givestheresult. =

The heartof Buekenhouts ideais that “local” conditionson (or axiomati-
sationsof) a geometryarereally conditionsaboutresiduesof smallrank. This
motivatesthefollowing definition of adiagram.

Let A be a finite set. Assumethat, for ary distincti, j € A, a classg;j of
geometrieof rank 2 is given, whosetwo typesof varietiesare called “points”
and“blocks”. Supposehatthe geometriesn Gji arethe dualsof thosein Gij.
ThesetA equippedwith thesecollectionsof geometriess calledadiagram 1t is
representegictorially by takinga “node” for eachelementof A, with an“edge”
betweeneachpair of nodesthe edgefromi to j beingadornedor labelledwith
somesymbolfor theclassgij. We will seeexampledater.

A geometryG belonggo thediagram(A, (Gij i, j € 4)) if Aisthesetof types
of G and,for all distincti, j € A, andall residuesGg in G with rank2 andtype
{i, i}, Gr is isomorphicto amemberof G;; (wherewe take pointsandblocksin
Gr to bevarietiesof typesi and j respectiely).

In orderto illustratethis idea, we needto definesomeclasseof rank 2 ge-
ometriesto usein diagrams.Someof thesewe have met already;but the most
importantis the mosttrivial: A digonis arank2 geometry(having at leasttwo
pointsandatleasttwo blocks)in which any pointandblock areincident;in other
words, a completebipartite graphcontaininga cycle. By aluseof notation,the
“labelled edge”usedto representligonsis the absencef anedge! This is done
in partbecausenostof therank 2 residuesof our geometriesvill bedigons,and
this corventionleadsto unclutteredpictorial representationsf diagrams.

A patrtial linear spaces arank2 geometryin which two pointslie on atmost
oneline (anddually, two linesmeetin at mostonepoint). It is representethy an

edgewith thelabelll, thus:
.

Oo——oO.
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We alreadymetthe conceptdinear spaceandgenerlisedprojectiveplane they
are partial linear spacesn which the first, resp. both, occurrence®f “at most”
arereplacedby “exactly”. They arerepresentethy edgeswith label L andwith-
out ary label, respectiely. (Corveniently the labelsfor the self-dualconcepts
of “partial linear space”and “generalisedprojective plane” coincide with their
mirror-images,while the label for “linear space”doesnot.) Note thata projec-
tive planeis athick generalisegbrojective plane. Anotherspecialisatiorof linear
spacesa “circle” or “completegraph”,hasall linesof cardinality2; it is denoted
by anedgewith labelc.
Now we cangive anexample:

Proposition 5.2 A projectivegeometryof dimensiom hasthediagram

Proof Trans\ersalityandresidualconnectvity arestraightforvardto check.We
verify therank2 residuesTake thetypesto bethedimension®,1,...,n—1, and
let F beaflagof cotype{i, j}, wherei < j.

Casel: j=i+1.ThenF hastheform
Up<Ui<...<Uji1<Ujjo < ... <Up_1.
Its residueconsistf all subspacesf dimension ori+ 1 betweerd; 1 andU;o;
thisis clearlythe projective planebasedn therank 3 vectorspaceJ; 2 /U;_1.
Case2: j>i+1. NowtheflagF lookslike
Up<...<Uia<Upa<...<Uj 1 <Ujp1<...<Up g,

Its residueconsistsof all subspace$ying eitherbetweenU; 1 andU; 1, or be-
tweenU;_; andUj, 1. Any subspace of thefirst typeis incidentwith ary sub-
spaceY of thesecondsinceX < Uj1; <Uj_1 <Y. Sotheresidueis adigon. =

In diagramsi,it is cornvenientto label the nodeswith the correspondingele-
mentsof A. For example,in the caseof a projectve geometryof dimensiom, we
take thelabelsto bethedimension®f varietiesrepresentetdy the nodesthus:

0
o

or
N
)7
N
T
[
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I will usethe corventionthatlabelsare placedabove the nodeswherepossible.
This resenesthe spacebelov thenodesfor anothemuse,asfollows.

A trans\ersalgeometryis saidto have orders, or parametes, if therearenum-
berss (for i € A) with the propertythatary flag of cotypei is containedn exactly
s + 1 maximalflags. If so,thesenumberss arethe orders(or parameters)Now,
if G is ageometrywith orders,thenG is thick/firm/thin respectiely if andonly
if all ordersare> 1/> 1/= 1 respectirely. We will write the ordersbeneaththe
nodeswhereappropriate Note thata projective planeof ordern (asdefinedear
lier) hasordersn, n (in the presenterminology).Thus,thegeometryPG(n, g) has
diagram

0 1 2 n—2 n—-1
q q q q q

We concludethis sectionwith somegeneraresultsaboutBuekenhoutgeome-
tries. Theseresultsdepencdbn our corventionthata non-edgesymbolisesa digon.

Proposition 5.3 Let the diagram A be the disjoint union of A; and A,, with no
edgesbetweerthesesets. Thena variety with typein A; andonewith typein Az
areincident.

Proof We useinductionon therank. For rank 2, A is the diagramof a digon,
andtheresultis true by definition. Soassumehat|A| > 2, and(without loss of
generality)that|Aq| > 1.

Let X; be the setof varietieswith typein 4, for i = 1,2. By the inductive
hypothesisijf x,y € X; with xly, thenR(x) N X2 = R(y) N Xz. (ConsideringR(x),
we seethat every variety in R(x) N X; is incidentwith y, so the left-handsetis
containedin the right-handset. Reversingthe roles of x andy establisheshe
result.) Now by connectednes$(x) N Xz is independenbf x € X;. (Note that
Propositions.1is beingusedhere.)But this setmustbe Xy, sinceevery varietyin
Xz isincidentwith somevarietyin X;. m

A diagramis linear if the “non-digon” edgesform a simple path, asin the
diagramfor projective spacesn Propositions.3above.

Supposehatoneparticulartypein ageometnyis selectedandvarietiesof that
typearecalledpoints. Thenthe shadow or point-shadowof a variety x is the set
Sh(x) of varietiesincidentwith x. Sometimesve write Shy(x), where0Q is thetype
of a point. In ageometrywith alineardiagram,the corventionis that pointsare
varietiesof the left-mosttype.
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Corollary 5.4 In alinear diagram,if xly, andthetypeofy is further to theright
thanthat of x, thenSh(x) C Sh(y).

Proof R(x) hasdisconnectediagram,with pointsandthetypeof y in different
componentsso, by Proposition5.2, every pointin R(x) is incidentwithy. m

Exercises

1. (a) Constructageometrywhichis connectedut not residuallyconnected.
(b) Shaw that,if G hasary of thefollowing propertiesthensodoesary residue
of G of rankatleast2: residuallyconnectedtrans\ersal thick, firm, thin.
2. Shaw thatary generalisegbrojectve geometrybelongsto thediagram

3. (a) A chamberof atrans\ersalgeometryG is amaximalflag. Let F bethe
setof chamberof the geometryG. Form a graphwith vertex set & by joining
two chamberswvhich coincidein all but onevariety G is saidto be chamber
connectedf this graphis connectedProve thata residuallyconnectedjeometry
is chamberconnectedanda chambeiconnectedjeometryis connected.

(b) Considerthe 3-dimensionahffine spaceAG(3,F) over thefield F. Take
threetypesof varieties: points (type 0), lines (type 1), and parallel classesof
planes(type 2). Incidencebetweenpoints and lines is asusual; a line L and
a parallel classC of planesareincidentif L lies in someplaneof C; andary
varietyof typeO is incidentwith ary varietyof type2. Show thatthis geometryis
chambeiconnectedut notresiduallyconnected.

(c) LetV beasix-dimensionaVectorspaceoverafield F, with abasis{e;, e, e3, f1, fo, f3}.
Let G betheadditive groupof V, andlet Hy, H2, H3 bethe additive groupsof the
threesubspacesey, es, f1), (€3,€1, f2), and (ey, &, f3). Form the cosetgeome-
try G(G, (H1,Hz2,H3)): its vaarietiesof typei arethe cosetsof H; in G, andtwo
varietiesareincidentif andonly if the correspondingosetshase non-emptyin-
tersectionShawv thatthis geometryis connectedut not chamberconnected.

5.2 Some special diagrams

In this section,we first considergeometrieswith linear diagramin which all
strokesarelinear spacesthenwe specialisesomeor all of theselinear spaceso
projectve or affine planes.We will seethatthe axiomatisation®f projectve and
affine spacesanbeexpressedery simply in this formalism.
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Theorem 5.5 Let G bea geometrywith diagram

o L1 L 2 n2Lna

Letvarietiesof type0 and 1 be pointsandlines.
(a) Thepointsandshadowf linesforma linear spaceL.

(b) Theshadowof anyvarietyis a subspacef L.
(c) Shy(x) C Shy(y) if andonlyif x is incidentwith y.

(d) If xis avarietyand p a pointnotincidentwith x, thenthereis a uniquevariety
y incidentwith x and p sud thatt(y) = 1(x) + 1.

Proof (a) We shaw thattwo pointslie on at leastoneline by inductionon the
rank. Thereis a path betweenary two points using only points and lines, by
Proposition5.2; soit sufficesto shav thatarny suchpathof lengthgreaterthan?2
canbeshortened SoassumeplLIqIMIr, wherep,q,r arepointsandL, M lines.
By the induction hypothesisthe POINTsL andM of R(q) lie in aLINE 1, a
planeof G incidentwith L andM. By Corollary5.4, p andq areincidentwith I1.
Sincell is alinearspacethereis aline throughp andq. (Thecornventionof using
capitalsfor varietiesin R(q) is usedhere.)

Now supposehattwo linesL andM containthetwo points p andqg. Consid-
eringR(p), wefind aplanell incidentwith L andM andhencewith p andg. But
MisalinearspacesolL = M.

(b) Let y be ary variety, and p,q € Shy(y). Sincepointsandlinesincident
with y form alinearspaceby (a), thereis aline incidentwith p,qandy. Thismust
be the uniqueline incidentwith p andq; and,by Corollary 5.4, all its pointsare
incidentwith y andsoarein Shy(y).

(c) Thereverseimplicationis Corollary5.4. SosupposehatShy(x) C Shy(y).
Take p € Shy(x). Then,in R(p), we have Shy(x) C Shi(y) (sincetheseshadavs
arelinear subspaces)andso xly by induction. (The basecaseof the induction,
wherex is aline, is coveredby (b).)

(d) This is clearif x is a point. Otherwise,chooseq € Shy(x), and apply
inductionin R(q) (replacingp by theline pg). =

Theorem 5.6 A geometrywith diagram

is a genemlisedprojectivespace(of finite dimension).
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Proof By Theoremb.5(d),apotentialVeblenconfigurationliesin aplane;since
planesareprojective, Veblens axiom holds. It remainsto show thatevery linear
subspacés theshadev of somevariety;this follows easilyby induction. =

Theorem 5.7 A geometrywith diagram

consistf the points,linesand planesof a (possiblyinfinite-dimensionalener
alisedprojectivespace

Proof Veblensaxiomis verifiedasin Theoremb.6. It is clearthatevery point,
line or planecorrespondso avariety =

Remark. Considegeometriesvith thediagram

By the agumentfor Theorem5.7, we have all the points,lines andplanes,and
somehigherdimensionalarieties,of a generalisegrojectve space.Examples
ariseby takingall the flats of dimensionmat mostr — 1, wherer is the rank. How-
ever, thereareotherexamples.A simplecasewith r = 4, canbe constructedas
follows.

Let P be a projectve spaceof countabledimensionover a finite field F.
Enumeratdhe 3-dimensionabnd4-dimensionakubspaces lists Tp, T1,... and
Fo,F1,.... Now constructa set ¥ of 4-dimensionakubspaces stagesasfol-
lows. At the n stageif T, is alreadycontainedn a memberof ¥, do nothing.
Otherwise,of the infinitely mary subspace$; which containT,, only finitely
mary areexcludedbecausehey containary T, with m < n; let F; betheonewith
smallestindex which is not excluded,andadjoinit to F. At the conclusionary
3-dimensionakubspacés containedn a uniqguememberof F. Thenthe points,
lines, planesandsubspacem ¥ form ageometrywith thediagram

L L

o o,

wherethe first L denoteghe pointsandlinesin 3-dimensionabrojectie space
overF.
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Now we turn to affine spaceswheresimilar resultshold. The label Af ona
stroke will denotethe classof affine planes.

Theorem 5.8 A geometrywith diagram
Af

is an affine spaceof finite dimension.

Proof It is alinear spacewhoseplanesare affine (thatis, satisfyingcondition
(AS1) of Section11l). We mustshawv that parallelismis transitve. So suppose
thatL;||Lo||Ls, but L1 f|Ls. Thenall threelineslie in a subspacef dimension

3; soit is enoughto deducea contradictionin the caseof geometrief rank 3.

Notethat, for a geometrywith diagramoio—o, two planeswhich have a

commonpointmustmeetin aline.

Let M1 bethe planethroughL; andL,, andll, the planethroughp andLs,
wherep is apointof L;. Thenll; andll, bothcontainp, sothey meetin aline
M # L1. ThenM is notparallelto L,, someetst in apointq, Butthenll, contains
L3 andq, hencel,, andsois equalto 14, acontradiction.

Thefactthatall linearsubspaceareshadavs of varietiesis provedasin The-
orem5.6. =

Theorem 5.9 A geometrywith diagram
Af L

oO—oO0—O

in which someline has more than three points, consistsof the points, lines and
planesof a (possiblyinfinite-dimensionalaffine space

Theproofis asfor Theorenb.7,usingBuekenhouts Theorem3.10. m

Exercises
1. Considerageometryof rankn with diagram
L

o——o—o0 - 0—0,

in which all lines have the saméefinite cardinalityk, andall the projective planes
have the saméfinite orderq.
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(a) If n > 4, prove thatthe geometryis eitherprojectve (Q = k— 1) or affine
(@=Kk).

(b) If n= 3, provethatq=k— 1,k k? or k(k?+ 1).
(Thisresultis dueto DoyenandHubaut[16]).

2. Constructaninfinite “free-like” geometrywith diagram

Cc
oO——oO—O,

(Ensurethat three points lie in a unigue plane, while two planesmeetin two
points.)
3. (a) Show that an inversive planebelongsto the diagramo—coio.

Whatarethevarieties?
(b) Shav how to constructa geometrywith diagram

(o Af

<« 0—o0—90

(n nodes)rom anovoid in PG(n,F) (seeSectior4.4).
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Polar spaces

Now we begin onour secondnajortheme polarspacesThischaptercorresponds
to thefirst half of Chapterl, andgivesthe algebraicdescriptionof polarspaces.
The algebraicbackgroundequiredis more elaboratgvectorspaceswith forms,
ratherthanjust vectorspaces)accountingor theincreasedength. Thefirst sec-
tion, on polaritiesof projectve spacesprovidesmotivationfor theintroductionof
the (Hermitianandquadraticforms.

6.1 Dualities and polarities

Recallthat the dual V* of a finite-dimensionalleft) vector spaceV over a
skew field F canbe regardedasa left vectorspaceof the samedimensionover
the oppositefield F°, andthereis thusan inclusion-reversingbijection between
the projectve space$G(n,F) andPG(n,F°). If it happenshatF andF° areiso-
morphic,thenthereexists a duality of PG(n, F), aninclusion-reversingbijection
of PG(n,F).

Corversely if PG(n,F) admitsa duality (for n > 1), thenF is isomorphicto
F°, asfollows from the FTPG(seeSectionl.3). We will examinethis conclusion
andmalke it moredetailed.

Solet theadualityof PG(n,F), n > 1. Composingtwith thenaturalisomor
phismfrom PG(n,F) to PG(n,F°), we obtainaninclusion-preservingijection
from PG(n,F) to PG(n,F°). Accordingto theFTPG,0 is inducedby asemilinear
transformatiorl fromV = F™1 to its dualspacev/*, associatedvith anisomok
phismo : F — F°, which canbe regardedasbeingan anti-automorphisnof F:

75
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thatis,

(Vi+Vv2)T = viT 4 VoT,
(av)T = a°vT.

Defineafunctionb:V xV — F by therule
b(v,w) = (v)(WT),

thatis, theresultof applyingtheelemenwT of V* tov. Thenb is asesquilinear
form: it is linearasa function of the first amgument,andsemilinearasa function
of thesecond— this meanghat

b(v,w1 +wz) = b(v,w1) 4+ b(v,w>)

and
b(v,aw) = a®b(v,w).

(Theprefix “sesqui-"means‘one-and-a-half) If we needto emphasis¢heanti-
automorphisnwo, we saythatb is o-sesquilinearlf o is theidentity, thentheform
is bilinear.

Theform b is alsonon-dgeneite, in the sensdhat

(VWweV)(bv,w)=0 = v=0

and
(WeV)(bv,w)=0 = w=0.

(The secondconditionassertdhat T is one-to-onesothatif w # 0 thenwT is
a non-zerofunctional. The first assertghat T is onto: only the zerovectoris
annihilatedoy every functionalin thedualspace.)

So,we have:

Theorem 6.1 Anyduality of PG(n,F), for n > 1, isinducedby a non-dgenerate
o-sesquilineaformontheunderlyingvectorspacewhele o is ananti-automorphism
of F. m

Corversely ary non-deyeneratesesquilineaform onV inducesa duality. We
canshort-circuitthe passagé¢o thedualspaceandwrite the duality as

U UL ={veV:b(v,w)=0foralweU}.
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Obviously, aduality appliedtwice is a collineation. The mostimportanttypes
of dualitiesare thosewhosesquareis the identity. A polarity of PG(n,F)is a
duality | whichsatisfiedJ++ = U for all flatsU of PG(n,F).

It is abit difficult to motivatethe detailedstudyof polaritiesat this stage;but
it will turn outthatthey give riseto a classof geometriegthe polar spacesyvith
propertiessimilar to thoseof projective spaces.To putit somavhatvaguely we
are trying to add someextra structureto a projective space;if a duality is not
a polarity, thenits squareis a non-identity collineation,and someof the extra
structurearisesfrom this collineation. Only in the caseof a polarity is the extra
structureprimiti ve”.

A sesquilineaform b is reflexiveif b(v,w) = 0 impliesb(w,v) = 0.

Proposition 6.2 Adualityis a polarity if andonlyif thesesquilineaformdefining
it is reflexive

Proof bisreflexiveif andonly if
ve (W= we (v)t

Hencejf bisreflexive,thenU C U for all subspacels . But by non-dejeneray,
dimU+ = dimV —dimU+ = dimU; andsoU = U1+ for all U. Conversely
given a polarity L, if w € (v)*, thenv € (v)~+ C (w)* (sinceinclusionsare
reversed). m

We now turn to the classificationof reflexive forms. For corvenience from
now on F will alwaysbe assumedo be commutatve. (Note that, if the anti-
automorphisno is anautomorphismandin particularif o is theidentity, thenF
is automaticallycommutatve.)

The form b is saidto be o-Hermitianif b(w,v) = b(v,w)° for all v,w € V.
Thisimpliesthat,for ary v, b(v, V) liesin thefixedfield of o. If o is theidentity,
suchaform (whichis bilinear)is calledsymmetric

A bilinearform b is calledalternatingif b(v,v) = Ofor all v e V. Thisimplies
thatb(w,v) = —b(v,w) for all v,w € V. (Expandb(v +w,v+w) = 0, andnote
thattwo of the four termsare zero.) Hence,if the characteristids 2, thenary
alternatingform is symmetric(but not corversely);but, in characteristidifferent
from 2, only thezeroform is both symmetricandalternating.

Clearly, analternatingor Hermitianform is reflexive. Corversely we have the
following:
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Theorem 6.3 A non-dgeneate reflexive o-sesquilinearform is either alternat-
ing, or a scalar multiple of a o-Hermitian form. In the latter case if o is the
identity, thenthe scalarcanbetakento be 1.

I will notgive the completeproof of this theorem.The next resultshavs that
02 = 1, andthenthe proof of the theoremis givenin the caseof a bilinear form
(thatis, wheno = 1).

Proposition 6.4 If b is a non-zeo reflexive o-sesquilinearform, then o is the
identity.

Proof Notefirst thataform is o-sesquilineaif andonly if it is additive in each
variableandsatisfies

b(av,w) = ab(v,w), b(v, Bw) = b(v,w)°.

Stepl If bisalternatingtheno = 1. For we canchoosev andw with b(v,w) =
—b(w,Vv) = 1. Thenfor ary a € F, we have

a = ab(v,w)
= b(av,w)
= —b(w,av)

—b(w,v)a®
a‘.

(Note that this stepdoesnot requirenon-deyenerag, merelythatb is not identi-
cally zero.)

Sowe canassumehatthereexistsv with b(v,Vv) # 0. Multiplying b by anon-
zeroscalar(this doesnot affect the hypotheses)ve mayassumehatb(v,v) = 1.

Step2 Assumefor acontradictiorthata? # 1. For ary vectorw, if b(w, V) # 0,
thenwe canreplacew by its productwith anon-zercscalarto assumés(w,v) = 1.
Thenb(w —v,v) =0, andsob(v,w —v) = 0, whenceb(v,w) = 1. We claimthat
b(w,w) = 1.
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Proof Supposeahata = b(w,w) # 1. Notefirst thatb(w — av,v) = 0, and
sob(w,w —av) = 0, whencea = a°. Take ary elementA € F with A # 1, and
chooseu € F suchthatp® = (1—A)~%(a — ). Sincea # 1, we have u # 1; and

WO — A =a —A.
Thisimplies, first, thatA = (a — p°) (1 — p°)~1, andsecondhat
b(w—Av,w—pv) =a—A—p+Ap° =0.
Henceb(w — pv,w — Av) = 0, andwe obtain
a—pu—A°+uA° =0.
Applying o to this equatiomandusingthefactthata® = a, we obtain
a—p° — A% +)\02u° =0,

whence ,
A = (@—0)(1-p) Tt =

But A wasan arbitrary elementdifferentfrom 1. Sinceclearly 1° = 1, we have
02 = 1, contraryto assumption.

Step3 LetW =v!. ThenV = (v) ®W, andrk(W) > 1. For ary x € W, we

have b(v,v) = b(v+x,v) = 1, andso by Step2, we have b(v + x,v+ X) = 1.

Thusb(x,x) = —2. Puttingx = 0, we seethatF musthave characteristi@, and
thatb|W is alternating But thenStepl shavsthatb|W is identicallyzero,whence
W is containedn theradicalof b, contraryto theassumeaon-deyeneray.

Proof of Theorem 6.3 We have
b(u,v)b(u,w) —b(u,w)b(u,v) =0
by commutatvity; thatis, usingbilinearity,
b(u,b(u,v)w —b(u,w)v) = 0.

By reflexivity,
b(b(u,v)w —b(u,w)v,u) =0,
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whencebilinearity againgives
b(u,v)b(w,u) = b(u,w)b(v,u). (6.1)

Call avectoru goodif b(u,v) = b(v,u) # 0 for somev. By (6.1),if u is good,
thenb(u,w) = b(w, u) for all w. Also, if uis goodandb(u,Vv) # 0, thenv is good.
But, given ary two non-zerovectorsus, Uz, thereexists v with b(u;,v) # 0 for
i =1,2. (For thereexist v1, vz with b(uj,v;) # 0 for i = 1,2, by non-dgyeneray;
andatleastoneof vq, Vo, V1 + Vo hastherequiredproperty) So,if somevectoris
good,thenevery non-zerovectoris good,andb is symmetric.

But, puttingu = w in (6.1) gives

b(u,u)(b(u,v) —b(v,u)) =0

for all u,v. So,if u is notgood,thenb(u,u) = 0; and,if no vectoris good,thenb
is alternating. =

In the next few sectionswe developthis themefurther.

Exercises

1. Let b beasesquilineaform onV. Definetheleft andright radicalsof b to
bethesubsets
{veV: (VweV)b(v,w)=0}

and
{veV:(VweV)b(w,v)=0}

respectrely. Prove thattheleft andright radicalsaresubspacesf the samerank
(if V hasfinite rank).

(Note: If theleft andright radicalsareequalthis subspaces calledtheradical
of b. Thisholdsif b is reflexive.)

2. Give anexampleof a bilinearform on aninfinite-rankvectorspacewvhose
left radicalis zeroandwhoseright radicalis non-zero.

3. Let o be a (non-identity)automorphisnof F of order2. Let E be the
subfieldFix(o).

(a) ProvethatF is of degree2 overE, i.e.,arank2 E-vectorspace.

[Seeary textbook on Galoistheory Alternately amgueasfollows: Take A €
F\E. ThenA is quadraticover E, so E(A) hasdegree2 over E. Now E(A)
containsanelementw suchthatw® = —w (if the characteristidgs not 2) or wo =
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w+ 1 (if the characteristigs 2). Now, giventwo suchelementstheir quotientor
differencerespectiely is fixedby o, soliesin E.]
(b) Prove that

{AeF:M°=1}={g/e’ ;e € F}.

[Theleft-handsetclearlycontaingheright. For thereverseinclusion,separate
into casesaccordingasthe characteristiés 2 or not.

If the characteristids not 2, thenwe cantake F = E(w), wherew? =a € E
andw® = —w. If A =1, thentake € = 1; otherwise,if A = a+ bw, take € =
ba + (a—1)w.

If thecharacteristiés 2, shov thatwe cantake F = E(w), wherew? 4+ w+a =
0,a € E, andw® = w+ 1. Again,if A = 1, sete = 1, else,if A = a+ bw, take
e=(a+1)+bw]

4. Usetheresultof Exercise3 to completetheproofof Theoren®.3in general.

[If b(u,u) =0 for all u, theform b is alternatingandbilinear. If not, suppose
thatb(u,u) # 0 andlet b(u,u)® = Ab(u,u). Choosinge asin Exercise2 andre-
normalisingb, shov thatwe mayassumehatA = 1, and(with this choice)thatb
is Hermitian.]

6.2 Hermitian and quadratic forms

We now changegroundslightly from the last section. On the one hand,we
restrictthingsby excludingsomebilinearformsfrom thediscussionpntheother
we introducequadraticforms. Thelossandgainexactly balancef the character
istic is not 2; but, in characteristi€, we make anetgain.

Let o beanautomorphisnof thecommutatvefield F, of orderdividing 2. Let
Fix(o) = {A € F : A° = A} bethefixedfield of o, andTr(o) ={A+A°: A € F}
thetraceof . Sincea? is theidentity, it is clearthatFix(a) D Tr(o). Moreover,
if o istheidentity, thenFix(o) = F, and

0 if F hascharacteristi@
Tr = K !
(0) { F otherwise.

Let b be a o-Hermitianform. We obsenred in the last sectionthat b(v,v) €
Fix(o) for all v € V. We call the form b trace-valuedf b(v,v) € Tr(o) for all
veV.

Proposition 6.5 We haveTr(o) = Fix(o) unlessthe characteristicof F is 2 and
o is theidentity.
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Proof E = Fix(0) is afield,andK = Tr(0) is anE-vectorspacecontainedn E
(Exercisel). So,if K # E, thenK = 0, ando is themapx +— —x. But, sincec is
afield automorphismthisimpliesthatthe characteristiés 2 ando is theidentity.

Thus, in characteristic2, symmetricbilinear forms which are not alternat-
ing arenot trace-walued;but this is the only obstruction.We introducequadratic
formsto repairthis damageBut, of courseguadratidormscanbedefinedin ary
characteristic.However, we note at this point that Proposition6.5 dependsn a
crucial way on the commutatvity of F; this leavesopenthe possibility of addi-
tional typesof polar spaceglefinedby so-calledpseudoquaditic forms These
will bediscussedbriefly in Section7.6.

LetV beavectorspaceoverF. A quadmticformonV isafunctionf :V — F
satisfying

o f(AV)=A2f(v)forallAeF,veV;
e f(v+w)= f(v)+ f(w)+b(v,w), wherebis bilinear

Now, if the characteristiof F is not 2, thenb is a symmetricbilinear form.
Eachof f andb determineshe other by

b(v,w) = f(v+w) — f(v) — f(w)

and
f(v) = 3b(v,v),

the latter equationcoming from the substitutionv = w in the seconddefining
condition.Sonothingnew is obtained.

Ontheotherhand,if thecharacteristiof F is 2, thenbis analternatingoilinear
form, and f cannotberecoveredfrom b. Indeed,mary differentquadraticforms
correspondo the samebilinear form. (Note that the quadraticform doesgive
extra structureto the vectorspace;we’ll seethatthis structureis geometrically
similarto thatprovided by analternatingor Hermitianform.)

We saythatthebilinearform is obtainedby polarisationof f.

Now let b bea symmetricbilinearform over afield of characteristi@, which
is notalternating.Set f (v) = b(v,v). Thenwe have

f(Av) = A2f(v)

and
F(v+w) = f(v)+ f(w),



6.2. Hermitianandquadratic forms 83

sinceb(v,w) +b(w,Vv) = 0. Thusf is “almost” asemilineaform; themap\  A?

is ahomomorphisnof thefield F with kernelO, but it mayfail to beanautomor

phism. But in ary casethekernelof f is asubspacefV, andtherestrictionof

b to this subspaceés an alternatingbilinear form. So again,in the spirit of the
vaguecommenimotivatingthe studyof polaritiesin thelastsection the structure
provided by the form b is not “primitive”. For this reasonwe do not consider
symmetricbilinear formsin characteristi@ at all. However, asindicatedabove,

we will considemuadratidormsin characteristi@.

Now, in characteristidifferentfrom 2, we cantake eitherquadraticforms or
symmetricbilinearforms,sincethestructurakcontents thesame For consisteny,
we will take quadratidormsin this casetoo. This leavesuswith three“types” of
formsto study: alternatingbilinear forms; o-Hermitianforms whereag is notthe
identity; andquadratidforms.

We have to definethe analogueof non-deyenerag for quadraticforms. Of
course,we could requirethat the bilinear form obtainedby polarisationis non-
degenerate;but this is too restrictve. We say that a quadraticform f is non-
singularif

(f(v)=0& (VWweV)b(v,w)=0) = v=0

whereb is theassociatedbilinearform; thatis, if theform f is non-zeroon every
non-zerovectorof theradical.

If thecharacteristics not2, thennon-singularityis equivalentto non-dgyenerag
of the bilinearform.

Now supposeéhatthe characteristigs 2, andlet W betheradical. Thenb is
identicallyzeroonW; sotherestrictionof f to W satisfies

flv+w) = f(v)+f(w),
f(W) = A2f(v).

Asabove, f isverynearlysemilinear Thefield F is calledperfectf everyelement
is asquare.In this case,f is indeedsemilineay andits kernelis a hyperplaneof
W. We conclude:

Theorem 6.6 Let f bea non-singularquadratic form, which polarisesto b, over
afieldF.

(a) If thecharacteristicof F is not 2, thenb is non-dgeneate

(b) If F is a perfectfield of characteristic2, thenthe radical of b hasrank at
most1l.
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Exercises

1. Let o be an automorphisnof a commutatve field F suchthat o? is the
identity.

(a) Prove thatFix (o) is asubfieldof F.

(b) Prove that Tr(0o) is closedunderaddition, and under multiplication by
elementf Fix(0).

2. Let b beanalternatingbilinearform on a vectorspaceV over afield F of
characteristi@. Let (v : i € |) beabasisfor V, andq ary functionfrom | to F.
Shaw thatthereis a uniquequadraticform with the propertiesthat f (vi) = q(i)
for everyi € 1, andf polarisego b.

3. (a) Constructanimperfectfield of characteristi@.

(b) Constructa non-singulaquadraticform with the propertythatthe radical
of theassociatedilinearform hasrankgreaterthan1.

4. Show thatfinite fields of characteristi@ areperfect.(Hint: the multiplica-
tive groupis cyclic of oddorder)

6.3 Classificationof forms

As explainedin the last section,we now considera vectorspaceV of finite
rank equippedwith aform of oneof thefollowing types:a non-deyeneratalter
natingbilinearform b; a non-dgeneratas-Hermitianform b, whereo is not the
identity; or a non-singulaquadraticform f. In thethird casewe let b bethe bi-
linearform obtainedby polarisingf; thenb is alternatingor symmetricaccording
asthecharacteristids or is not 2, but b maybe degenerateln theothertwo cases,
we definea function f : V — F definedby f(v) = b(v,v) — this is identically
zeroif bis alternating.SeeExercisel for the Hermitiancase.

We saythatV is anisotiopicif f(v)# 0for all v# 0. Also, V is ahyperbolic
line if it is spannedy vectorsv andw with f(v) = f(w) = 0 andb(v,w) = 1.
(Thevectorsv andw arelinearlyindependentsoV hasrank?2; so,projectiely, it
isa“line”.)

Theorem 6.7 A spacecarrying a form of oneof theabovetypesis thedirectsum
of a numberr of hyperboliclinesandan anisotiopic spacelJ. Thenumberr and
theisomorphisntypeofU are invariantsof V.

Proof If V is anisotropic,thenthereis nothingto prove. (V cannotcontaina
hyperbolicline.) SosupposéhatV containsavectorv # 0 with f(v) = 0.
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We claim that thereis a vectorw with b(v,w) # 0. In the alternatingand
Hermitiancasesthis follows immediatelyfrom the non-degyenerag of the form.
In thequadraticcasejf no suchvectorexists,thenv is in theradicalof b; butv is
asingularvector contradictingthe non-singularityof f.

Multiplying w by a non-zeroconstantwe mayassumehatb(v,w) = 1.

Now, for ary valueof A, we have b(v,w — Av) = 1. We wish to choose\ so
that f (w —Av) = 0; thenv andw will spanahyperbolicline. Now we distinguish
caseslf bis alternatingthenary valueof A works. If b is Hermitian,we have

f(w—Av) = f(w)—Ab(v,w)—A%b(w,Vv)+ANf(V)
= f(w)—(A+A%);

and, sinceb is trace-alued,thereexists A with Tr(A) = f(w). Finally, if f is
guadraticwe have

f(w—Av) = f(w)—Ab(w,V)+A%f(V)

sowe choose\ = f(w).

Now letW; bethehyperbolicline (v,w—Av), andletV; = W', whereorthog-
onality is definedwith respecto theform b. It is easilychecledthatV = Vi ®W;,
and the restrictionof the form to V; is still non-deyenerateor non-singular as
appropriate Now the existenceof the decompositiorfollows by induction.

I will omit the proofof uniqueness. =

Thenumberr of hyperboliclinesis calledthe polar rankor Wtt index of V. |
do not know of acommonlyacceptedermfor U; | will call it thegermofV, for
reasonsvhichwill becomeclearshortly.

To completethe classificationof forms over a givenfield, it is necessaryo
determineall the anisotropicspaces.In general,this is not possible;for exam-
ple, the studyof positive definitequadraticforms over therationalnumberdeads
quickly into deepnumbertheoreticwaters. | will considerthe casesof the real
andcomplex numbersandfinite fields.

First,though,thealternatingcaseis trivial:

Proposition 6.8 Theonlyanisotiopicspacecarryinganalternatingbilinear form
isthezelo space m
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In combinationwith Theorem6.7, this shows that a spacecarrying a non-
degeneratalternatingpilinearform is adirectsumof hyperboliclines.

Overtherealnumbers Sylvesters theoremassertghatarny quadraticformin
n variabless equivalentto theform

2 2|2 2
X[+ X =X — - — Xy

for somer, s with r +s < n. If theform is non-singularthenr +s=n. If bothr
ands arenon-zero thereis a non-zerosingularvector(with 1 in positionsl and
r+1, 0 elsavhere).Sowe have:

Proposition 6.9 If V is a real vectorspaceof rank n, thenan anisotopic form
onV is eitherpositivedefiniteor negativedefinite;there is a uniqueform of each
typeupto invertiblelinear transformationpnethe ngyativeof theother m

The realshave no non-identity automorphismsso Hermitian forms do not
arise.

Overthecomple numbersthefollowing factsareeasilyshowvn:

(a) Thereis a unique non-singularquadraticform (up to equvalence)in n
variablesfor any n. A spacecarryingsucha form is anisotropicif andonly if
n<l1.

(b) If o denotescomplex conjugation the situationfor o-Hermitianformsis
the sameasfor quadraticforms over the reals: anisotropicforms are positive or
negative definite,andthereis a uniqueform of eachtype, onethe negative of the
other

For finite fields,the positionis asfollows.

Theorem 6.10 (a) Ananisotopicquadratic formin nvariablesover GF(q) exists
if andonlyif n < 2. Theris a unigqueformfor ead n exceptwhenn=1andqis
odd,in which casethere are two forms,onea non-squae multiple of the other

(b) Let q = r2 and let o be the field automorphism — af. Thenthere is
an anisotiopic o-Hermitianformin n variablesif andonlyif n < 1. Theformis
uniquein ead case

Proof (a)Consideffirstthecasewvherethecharacteristiés not2. Themultiplica-
tive groupof GF(q) is cyclic of evenorderg— 1; sothe squaregorm a subgroup
of index 2, andif ) is afixednon-squarethenevery non-squardastheform na?
for somea. It follows easilythatany quadratidorm in onevariableis equivalent
to eitherx? or nx2.
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Next, considemon-singulaformsin two variables By completingthesquare,
suchaform is equivalentto oneof x2 +y2, X2+ ny2, nx2 + ny2.

Supposedirst thatqg= 1 (mod4). Then—1 is a squaresay —1 = 2. (In
the multiplicative group, —1 hasorder 2, solies in the subgroupof even order
1(q— 1) consistingof squares.Thusx? +y? = (x+ By) (x— By), andthefirstand
third formsarenot anisotropic.Moreover, ary form in 3 or morevariableswhen
corvertedto diagonalform, containsone of thesetwo, andsois not anisotropic
either

Now considerthe othercase,g= —1 (mod4). Then—1 is a non-square
(sincethe groupof squareshasodd order),sothe secondform is (x+Yy)(X—Y),
andis not anisotropic.Moreover, the setof squaress not closedunderaddition
(elseit would bea subgroupof the additive group,but %(q + 1) doesnt divide g);
sothereexist two squaresvhosesumis a non-squareMultiplying by a suitable
squarethereexist B,y with p2+y2 = —1. Then

—(+y?) = (Bx+W)2+ (yx— By)?,

andthe first andthird forms areequivalent. Moreover, a form in threevariables
is certainly not anisotropicunlessit is equivalentto x? + y? + 72, andthis form

vanishestthevector(,y, 1); hencethereis no anisotropidorm in threeor more
variables.

ThecharacteristiQ caseis anexercise(seeExercise3).

(b) Now consideHermitianforms. If ¢ is anautomorphisnof GF(q) of order
2,thenqis asquaresayq = r?, anda® = . We needthefactthatevery element
of Fix(0) = GF(r) hastheform aa® (seeExercisel of Section6.2).

In onevariable,we have f(x) = ux>¥¥ for somenon-zerop € Fix(o); writing
u= aa“ andreplacingx by ax, we canassumehatp = 1.

In two variableswe cansimilarly take the form to be xx° +yy°. Now —1 €
Fix(0), so—1 = AA%; thentheform vanishesat (1,A). It follows thatthereis no
anisotropicdorm in ary largernumberof variableseither m

Exercises

1. Letb beao-Hermitianform onavectorspaceV overF, whereo is notthe
identity. Setf(v) = b(v,v). Let E = Fix(o), andlet V' beV regardedasan E-
vectorspaceby restrictingscalars.Prove that f is a quadraticform onV’, which
polarisesto the bilinearform Tr(b) definedby Tr(b)(v,w) = b(v,w) + b(v,w)°.
Shaw furtherthatTr(b) is non-degyeneratéf andonly if bis.
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2. Prove thatthereis, up to equivalence a uniquenon-degeneratalternating
bilinearform on a vectorspaceof countablyinfinite dimension(a direct sumof
countablymary isotropiclines).

3. Let F beafinite field of characteristi@.

(a) Prove thatevery elementof F hasa uniquesquareoot.

(b) By consideringthe bilinear form obtainedby polarisation,prove that a
non-singularform in 2 or 3 variablesover F is equivalentto axZ + xy-+ By? or
ax?+xy+ By? +yz° respectiely. Provethatformsof thefirst shapgwith o, B # 0)
areall equivalent,while thoseof the secondshapecannotbe anisotropic.

6.4 Classicalpolar spaces

Polarspaceslescribehegeometryof vectorspacesarryingareflexive sesquilin-
earform or aquadraticform in muchthe sameway asprojectve spaceslescribe
the geometryof vectorspacesWe now embarkon the studyof thesegeometries;
thethreeprecedingsectionscontainthe prerequisitealgebra.

First, someterminology The polar spacesassociatedavith the threetypesof
forms (alternatingbilinear, Hermitian,andquadratic)arereferredto by the same
namesasthe groupsassociatedvith them: symplecti¢ unitary, and orthogonal
respectrely. Of whatdo thesespacegonsist?

LetV beavectorspacecarryinga form of oneof ourthreetypes.Recallthat
aswell asasesquilineaform b in two variableswe have aform f in onevariable
— either f is definedby f(v) = b(v,v), or b is obtainedby polarising f — and
we make useof bothforms. A subspacefVV onwhich b vanishesdenticallyis
calledatotally isotropic subspacéor t.i. subspacg while asubspacenwhich f
vanishesdenticallyis calleda totally singularsubspacéor t.s.subspacg Every
t.s.subspacest.i., butthecorverseis false.In thecaseof alternatingorms,every
subspacés t.s.! | frequentlyusethe expressiort.i. or t.s. subspacgto meanat.i.
subspacéin the symplecticor unitary case)or at.s. subspac€in the orthogonal
case).

Theclassicalpolar spaceg(or simply the polar spacé associateavith avector
spacecarryingaform is the geometrywhoseflatsarethet.i. or t.s. subspaceg@n
theabore sense)(Concerningheterminology:theterm“polar space’is normally
resenedfor ageometrysatisfyingthe axiomsof Tits, whichwe will meetshortly.
But every classicalpolar spaceis a polar space so the terminologyhereshould
causeno confusion.)Notethat, if the form is anisotropicthenthe only member
of thepolarspaceas thezerosubspaceThepolar rankof aclassicapolarspacas
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thelargestvectorspaceankof any t.i. ort.s.subspacei is zeroif andonly if the
form is anisotropic.Wherethereis no confusion polarrankwill be calledsimply
rank (Wewill soonseethatthereis no conflictwith ourearlierdefinitionof polar
rankasthenumberof hyperboliclinesin thedecompositiorof thespace.We use
thetermspoint, line, planeg etc.,justasfor projectve spaces.

We now proceedo derive somepropertiesof polarspaceslet G beaclassical
polarspaceof polarrankr.

First, we identify the two definitionsof polarspacerank. We usethe expres-
sion for V asthe direct sumof r hyperboliclines and an anisotropicsubspace
givenby Theorem6.7. Any t.i. or t.s. subspaceneetseachhyperbolicline in at
mosta point, and meetsthe anisotropicgermin the zerospace;soits rankis at
mostr. But thespanof r t.i. or t.s. points,onechoserfrom eachhyperbolicline,
isat.i. ort.s.subspacef rankr.

(P1) Any flat, togethemwith theflatsit contains,s a projective spaceof dimen-
sionatmostr — 1.

Thisis clearsincea subspacef at.i. or t.s. subspacés itself t.i. or t.s. The next
propertyis alsocleat

(P2) Theintersectiorof ary family of flatsis aflat.

(P3)If U isaflatof dimensiorr — 1 andp apointnotin U, thentheunionof the
linesjoining p to pointsof U is aflatW of dimensiornr — 1; andU NW is a
hyperplanen bothU andWw.

Proof Letp= (w). Thefunctionv — b(v,w) onthevectorspacdJ is linear;let
K beits kernel,a hyperplanen U. Thentheline (of the projectie space)oining
ptoapointq€ U ist.i. ort.s.if andonlyif g € K; andtheunionof all sucht.i. or
t.s.linesis at.i. ort.s.spacaV = (K, v), suchthatWnU = K, asrequired.

(P4) Thereexist two disjointflats of dimensionr — 1.

Proof Usethehyperbolic-anisotropidecompositioragain.If L1,...,L, arethe
hyperboliclines, andv;,w; arethe distinguishedspanningvectorsin L;, thenthe
requiredflatsare(vi,...,vy) and(wi,...,w;).

Next, we specialiseto the caser = 2. (A polar spaceof rank 1 is just an
unstructuredollectionof points.) A polarspaceof rank 2 consistsof pointsand
lines,andhasthefollowing properties(Thefirst two areimmediateconsequences
of (P2)and(P3)respectiely.)
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(Q1) Two pointslie onatmostoneline.

(Q2) If L is aline, and p a point not on L, thenthereis a unique point of L
collinearwith p.

(Q3) No pointis collinearwith all others.

For, by (P4),thereexist disjoint lines; and,givenary point p, at leastone of
theselines doesnot containp, and p fails to be collinearwith somepoint of this
line.

A geometrysatisfying(Q1), (Q2) and(Q3) is calleda genemlisedquadman-
gle. Suchgeometriegplay muchthe samerdle in the theory of polar spacesas
projective planesdo in the theory of projectve spaces.We will returnto them
later.

Notethat(Q1) holdsin a polarspaceof arbitraryrank.

Anotherpropertyof polar spaceswhich is proved by almostthe sameargu-
mentas(P3),is thefollowing extensionof (Q2):

(BS) If L is aline, and p a point noton L, thenp is collinearwith oneor all
pointsof L.

In a polarspaceG, for ary setS of points,we let S- denotethe setof points
which are perpendiculato (thatis, collinearwith) every point of S. It follows
from (BS) that,for ary setS, thesetS* is a (linear) subspacef G (thatis, if two
pointsof St arecollineat thentheline joining themlieswholly in St). Moreover,
for any point x, x- is a hyperplaneof G (thatis, a subspacavhich meetsevery
line).

Polarspacesave goodinductive properties Let G be a classicalpolarspace.
Therearetwo naturalwaysof producinga “smaller” polarspacerom G:

(a) Take a point x of G, andconsiderthe quotientspacex* /x, the spacewhose
points,lines,... arethelines,planes, .. of G containingx.

(b) Take two non-perpendiculgpointsx andy, andconsider{x,y}*.

In eachcase,the spaceconstructeds a classicalpolar space having the same
germas G but with polar rank one lessthanthat of G. (Note that, in (b), the
spanof x andy in the vectorspaces a hyperbolicline.) Therearemoregeneral
versions.For example,if Sis aflat of dimensiond — 1, thenS*/Sis apolarspace
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of rankr — d with the samegermasG. We will seebelov andin thenext section
how this inductive procesanbe usedto obtaininformationaboutpolarspaces.

We investigatgust onetypein moredetail, the so-calledhyperbolicquadric
or hyperbolicorthogonal space the orthogonalspacewhich is a direct sum of
hyperboliclines (thatis, having germ0). The quadraticform definingthis space
canbetakento bexixo +X3Xqg + ... + Xor—1Xor .

Theorem 6.11 The maximalflats of a hyperbolicquadric fall into two classes,
with thepropertiesghattheintersectionof two maximalflatshasevencodimension
in eadh if andonlyif they belongto the sameclass.

Proof First,notethattheresultholdswhenr = 1, sincethenthequadratidormis
X1X2 andtherearejusttwo singularpoints,{(1,0)) and{(0,1)). By theinductive
principle, it follows that ary flat of dimensionr — 2 is containedin exactly two
maximalflats.

Wetakethe (r — 1)-flatsand(r — 2)-flatsastheverticesandedgeof agraphr,
thatis, wejoin two (r — 1)-flatsif theirintersectioris an(r — 2)-flat. Thetheorem
will follow if we shaw thatT" is connectedand bipartite, and that the distance
betweentwo verticesof I is the codimensionof their intersection. Clearly the
codimensiorof the intersectionincreasesy at mostonewith every stepin the
graph,soit is at mostequalto thedistance We prove equalityby induction.

LetU bea (r — 1)-flat andK a (r — 2)-flat. We claim thatthe two (r — 1)-
spacedV;, W, containingK have differentdistancedrom U. Factoringout the
t.s. subspacé&J NK andusinginduction,we may assumeahatU NK = 0. Then
U NK+ is apoint p, which liesin onebut notthe otherof Wy, Ws; sayp € Wy. By
induction,the distancefrom U toW; isr — 1; sothedistancefrom U to W5 is at
mostr, henceequalto r by theremarkin the precedingparagraph.

This establisheshe claim aboutthe distance.Thefactthatl™ is bipartitealso
follows, sincein any non-bipartitegraphthereexists an edgeboth of whosever
ticeshavethesameadistancdrom somethird vertex, andtheargumentgivenshavs
thatthisdoesnt happenn ™. =

In particular the rank 2 hyperbolicquadricconsistsof two families of lines
formingagrid, asshovnin Fig. 6.1. Thisis theso-calledruled quadric”,familiar
from modelssuchaswastepapebaslets.

Exercises

1. Prove (BS).
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Figure6.1: A grid

2. Provethe assertionsbove aboutx /x and{x,y}*.

3. Show that Theorem6.11 canbe proved usingonly propertiegP1)—(P4)of
polarspacedogethemwith thefactthatan(r — 1)-flat liesin exactly two maximal
flats.

6.5 Finite polar spaces

Theclassificatiorof finite classicapolarspacesvasachiezedby Theorenb.7.
We subdvide thesespacesdnto six families accordingto their germ, viz., one
symplectic,two unitary, and three orthogonal. (Forms which differ only by a
scalarfactorobviously definethe samepolar space.) The following table gives
someinformation aboutthem. In the table, r denotesthe polar spacerank, n
the vectorspacerank. The significanceof the parameteg will emege shortly.
This number dependingonly on the germ, carriesnumericalinformation about
all spacesn thefamily. Notethat,in the unitary case the orderof thefinite field
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mustbeasquare.
Type n
Symplectic| 2r
Unitary 2r

Unitary | 2r+1
Orthogonal| 2r
Orthogonal| 2r +1
Orthogonal| 2r +2

| |
= O l_\I\JIHI\)'HO ™

Table6.1: Finite classicalpolarspaces

Theorem 6.12 Thenumberof pointsin a finite polar spaceof rank1 is g*+¢ + 1,
whee € is givenin Table6.1.

Proof LetV be a vectorspacecarryinga form of rank 1 over GF(q). ThenV
is the orthogonaldirect sumof a hyperbolicline L andananisotropicgermU of
dimensiork (say).Let ng bethe numberof points.

Supposehatk > 0. If pis apointof thepolarspacethenp liesonthehyper
planep™; ary otherhyperplanecontainingp is non-dgieneratavith polarrank 1
andhaving germof dimensionk — 1. Considera parallelclassof hyperplanesn
the affine spacewhosehyperplaneat infinity is p*. Eachsuchhyperplanecon-
tainsng_1 — 1 points,andthe hyperplanetinfinity containgustone,viz., p. So
we have

nk—1=q(hk-1—1),
from whichit followsthatn, = 1+ (np — 1)q". Soit is enoughto prove theresult
for thecasek = 0, thatis, for a hyperbolicline.

In thesymplecticcase gachof theq+ 1 projective pointsonaline is isotropic.

Considerthe unitary case We cantake the form to be

b((X1,Y1), (X2,¥2)) = X1Y2 + Y1%2,

wherex = x% = X', r2 = g. So the isotropic points satisfy xy + yx = 0, thatis,
Tr(xy) = 0. How mary pairs(x,y) satisfythis? If y =0, thenx is arbitrary If
y # 0, thenafixedmultiple of x is in thekernelof thetracemap,a setof sizeq'/2
(sinceTr is GF(q/?)-linear). Sothereare

q+(q-1)g¥2 =1+ (q—1)(g?+1)
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vectorsj.e., /2 + 1 projective points.
Finally, considerthe orthogonalcase.The quadraticform is equivalentto xy;,
andhastwo singularpoints,((1,0)) and{(1,0)). =

Theorem 6.13 In afinite polar spaceof rankr, thereare (" — 1)(q"*¢+1)/(q—
1) points,of which g ~1+¢ are not perpendicularto a givenpoint.

Proof We let F(r) be the numberof points,and G(r) the numbernot perpen-
dicularto a givenpoint. (We do not assumehat G(r) is constantthis constang

follows from the inductionthat provesthe theorem.) We usethe two inductive

principlesdescribedat theendof thelastsection.

Stepl G(r) = ?G(r — 1).

Take apointx, andcountpairs(y, z), wherey € x*, z¢ x*+, andz € y*+. Choos-
ing zfirst, thereareG(r) choicesthen(x, z) is ahyperbolicline, andy is a pointin
(x,2)*, sothereareF (r — 1) choicedfor y. Ontheotherhand,choosingy first, the
linesthroughy arethe pointsof therankr — 1 polarspacex* /x, andsothereare
F (r — 1) of them,with g pointsdifferentfrom x oneach giving gF(r — 1) choices
for y, then(x,y) and(y,z) arenon-perpendiculainesin y*, i.e., pointsof y* /y,
sothereareG(r — 1) choicesfor (y,z), andsoqG(r — 1) choicesfor y. thus

G(r)-F(r—1)=qF(r—1)-qG(r - 1),

from which theresultfollows.
SinceG(1) = g**¢, it follows immediatelythatG(r) = g? ~1+¢, asrequired.

Step2 F(r)=1+qgF(r—1)+G(r).

For this, simply obsene (asabove) that pointsperpendiculato x lie on lines
of x+/x.

Now it is justamatterof calculationthatthefunction (g — 1)(q "¢ +1)/(q—
1) satisfiesthe recurrenceof Step2 andcorrectlyreduceso g'*¢ + 1 whenr =
1 =

Theorem 6.14 Thenumberof maximalflatsin a finite polar spaceof rankr is
r

_D(l+ qi—&—S).
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Proof LetH(r) bethis number Countpairs(x,U), whereU is a maximalflat
andx € U. We find that

F(r)-H(r=1)=H(r)-(d' -1)/(a-1),

Sso
H(r)=Q+q)H(r-1).

Now theresultisimmediate. =

It shouldnow beclearthatany reasonableountingquestionaboultfinite polar
spacesanbeansweredn termsof q,r, €.






7

Axioms for polar spaces

The axiomatisatiorof polar spacesvasbegun by Veldkamp,completedby Tits,
andsimplified by Buekenhout,Shult, Hanssensand others. In this chaptey the
analoguenf Chapter3, theseresultsarediscussedandproofsgivenin somecases
asillustrations. We begin with a discussionof generalisedjuadranglesyhich
play a similar role hereto that of projectve planesin the theory of projectve
spaces.

7.1 Generalisedquadrangles

We saw thedefinitionof ageneralisedjuadranglen Section6.4: it is arank?2
geometrysatisfyingthe conditions

(Q1)two pointslie on atmostoneline;

(Q2)if thepoint pis notontheline L, thenp is collinearwith exactly onepoint
of L;

(Q3) no pointis collinearwith all others.

For later use,we represengeneralisedjuadrangledy a diagramwith a double
arc,thus:
O———0,

The axioms(Q1)—(Q3)areself-dual;so the dual of a generalisedjuadrangle
is alsoa generalisedjuadrangle.

Two simpleclasse®f examplesareprovidedby thecompletebipartite graphs
whosepointsfall into two disjointsets(with atleasttwo pointsin eachandwhose

97
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lines consistof all pairsof pointscontainingonefrom eachset),andtheir duals,
the grids, someof which we metin Section6.4. Any generalisedjuadranglen
which lines have just two pointsis a completebipartitegraph,anddually (Exer-
cise2). We notethatary line containsat leasttwo points,anddually: if L were
asingletonline {p}, thenevery otherpoint would be collinearwith p (by (Q2)),
contradicting(Q3).
Apart from completebipartite graphsand grids, all generalisedjuadrangles

have orders:

Theorem 7.1 Let G be a generlisedquadanglein which there is a line with at
leastthreepointsanda pointon at leastthreelines. Thenthenumberof pointson
aline, andthe numberof linesthrougha point, are constants.

Proof Firstobserethat,if linesL; andL, aredisjoint, thenthey have the same
cardinality;for collinearity setsup a bijectionbetweernhe pointson L1 andthose
onLo.

Now supposehatL; andL; intersect. Let p be a point on neitherof these
lines. Thenoneline throughp meetsL;, and one meetsL,, sothereis aline
L3 disjoint from both L; andL,. It follows thatL; and L, both have the same
cardinalityasLs.

Theotherassertions proveddually. =

This proof works in boththefinite andtheinfinite case.If G is finite, we let
sandt betheordersof G; thatis, ary line hass+ 1 pointsandary pointlies on
t+ 1 lines,sothatthediagramis

C—=0.
S t

For the classicalpolar spacesver GF(q), we have s= q andt = g**¢, where
€isgivenin Table6.5.1.

Fromnow on, “generalisedquadrangle’vill be abbreviatedto GQ.

Thenext resultsummarisesomepropertieof finite GQs.

Theorem 7.2 LetG bea finite GQ with orders s, t.
(a) Ghas(s+1)(st+ 1) pointsand(t+1)(st+ 1) lines.
(b) s+t dividesst(s+1)(t+1);

(c)if s> 1, thent < s%;
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(d)ift > 1, thens < t2.

Proof (a)is provedby elementarycounting likethatin Section6.5. (b) is shavn
by an amgumentinvolving eigervaluesof matrices,in the spirit of the proof of
the FriendshipTheoremoutlinedin Exercise2.2.4. (c) is proved by elementary
counting(seeExercise3), and(d) isdualto (c). =

In particular if s= 2, thent < 4; andthe caset = 3 is excludedby (b) above.
Sot = 1,2 or 4. Thesethreevaluesarerealisedby the threeorthogonalrank 2
polarspace®ver GF(2). We will seeasaspecialcaseof alaterresult,thatthese
arethe only GQswith s= 2. However, this resultis sufficiently interestingto be
worth anothemproofwhich generalise# in adifferentdirection.

Theorem 7.3 Let G bea GQ with orders s= 2 andt. Thent = 1,2 or 4; and
thereis a uniqguegeometryfor eat valueoft.

Notethegeneralisationt is notassumedo befinite!

Proof Take a pointandcall it «; let {L; : i € |} bethe setof lines containing
. Numberthe pointsotherthane onL; as pjp and pj1. Now, for ary point q
not collinearwith p, thereis a function fq : | — {0,1} definedby the rule that
theuniquepointof L; collinearwith g is pj¢,i). We usethefunction fq asalabel
for g. Let X bethe setof pointsnot collinearwith . We considerthe possible
relationshipsf pointsin X. Write q ~ r if gandr arecollineat

1. If q,r € X satisfyq ~ r, then fq and f; agreein just oneposition,viz., the
uniqueindex i for whichtheline L; througheo meetstheline gr.

2. If g,r arenot collinearbut somepoint of X is collinearwith both,then fq
and f, agreein all but two positions;for all but two valuesarechangedwice, the
remainingtwo beingchangedustonce.

3. Otherwise,fq = f;; for all thecommonneighbourof g andr areadjacent
to .

Notetoothat,for ary i € | andq € X, thereis a pointr ~ g for which fq and
fr agreeonlyin i, viz., thelastpoint of theline throughg meetingL;.

Now suppos€aswe may)that || > 2, andchoosedistincti, j,k € I. Given
q € X, chooser,s,t € X suchthat fq and f, agreeonly in i, f and fs only in j,
and fs and f; only onk. Thenclearly fq and f; agreein preciselythethreepoints
I, j,K, sincethesevaluesarechangedwice andall othersthreetimes.By the case
analysisjt followsthat|l| = 3 or ||| — 2= 3, asrequired.

The uniguenesslsofollows from this analysis,with a little morework: we
know enoughaboutthe structureof X that the entire geometrycan be recon-
structed. m
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Problem. Canthereexista GQ with sfinite (s> 1) andt infinite?

The proof above shaws thatthereis no suchGQ with s= 2. It is alsoknown
thatthereis no GQwith s= 3 or s= 4 andt infinite, thoughthe proofsaremuch
harder (This is dueto Kantor and Brouwerfor s = 3, and Cherlinfor s= 4.)
Beyond this, nothingis known, thoughCherlin’s agumentcouldin principle be
extendedo largervaluesof s.

The GQswith s= 2 andt = 1, 2 have simpledescriptionsFor s= 1 we have
the 3 x 3 grid. Fort = 2, take the pointsto be all the 2-elementsubsetf a set
of cardinality 6, andthe linesto be all partitionsof the 6-setinto threedisjoint
2-subsets.The GQ with order(2,4) is a little harderto describe. The implicit
constructiorin Theorem?.3is oneof thesimplest— thefunctionsfy areall those
which take thevalue1l anevennumberof times,eachsuchfunctionrepresenting
auniquepoint. This GQalsoarisesn classicaklgebraiaggeometryasthe Schifli
configurationof 27 linesin a generalcubic surface,lying threeat a time in 45
planes.

In the classicalpolar spacesthe orderss andt are both powersof the same
prime. Thereareexampleswherethisis notthe case— seeExerciseb.

Exercises

1. Provethatthedualof aGQis aGQ.

2. Prove thata GQ with two pointson ary line is acompletebipartitegraph.

3. Let G be afinite GQ with orderss,t, wheres > 1. Let p; and p2 be non-
adjacenfpoints,andlet x, be the numberof points p; adjacento neitherp; nor
p2 for which thereareexactly n commonneighbourof p1, p2 andps. Shav that

Sxn = St — st —S+t,
> = st+1)(t-1),
dn(n=1x, = (t+tt-1).

Henceprove thatt < s?, with equalityif andonly if ary three pairwise non-
collinearpointshave exactly s+ 1 commonneighbours.

4. In this exercise,we usethe terminologyof codingtheory (asin Section
3.2). ConsidetthespaceV of wordsof length6 with evenweight. Thisis avector
spaceof rank5 over GF(2). The“standardinnerproduct’onV is abilinearform
which is alternating(by the evenweightcondition);its radicalV* is spannedy
the uniqueword of weight6. Thus,V /V< is a vectorspaceof rank 4 carryinga
non-dgeneratalternatingbilinear form. The 15 non-zerovectorsof this space
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are cosetsof V+ containinga word of weight 2 and the complementarywvord
of weight4, and so canbe identified with the 2-subset®f a 6-set. Extendthis
identificationto anisomorphisnbetweerthe combinatoriablescriptionof the GQ
with orders(2, 2) andtherank2 symplecticpolarspaceover GF(2).

5. Let g beaneven prime power, andlet C bea hyperoal in N = PG(2,Q),
a setof g+ 2 pointsmeetingevery line in 0 or 2 points(seeSection4.3). Now
take IN to bethe hyperplanetinfinity of AG(3,q). Let G bethe geometrywhose
pointsareall thepointsof AG(3,q), andwhoselinesareall thelinesof AG(3,q)
which meetll in apointof C. Prove thatG is aGQwith orders(q— 1,q+1).

6. Constructfree” GQs.

7.2 Diagramsfor polar spaces

The inductive propertiesof polar spacesare exactly whatis neededo shov
thatthey arediagramgeometries.

Proposition 7.4 A classicalpolar spaceof rankn belongsto thediagram

oO—O— ¢+« O—mmO——0O

with n nodes.

Proof GivenavarietyU of rankd, thevarietiescontainedn it form a projectve
spaceof dimensiond — 1, while the varietiescontainingit arethoseof the polar
spaceJ /U of rankn— d; moreover, ary variety containedn U is incidentwith
ary varietycontainingU. Sincearank?2 polarspaces a generalisedjuadrangle,
it follows by induction that residuesof varietiesare correctly describedby the
diagram. m

This diagramis commonlyreferredto asC,.

By analogywith Section5.2, it might be thoughtthatarny geometrywith di-
agramC, for n > 3 is a classicalpolar space. This is falsefor several reasons,
which we will seeat variouspoints. But first, hereis oneexampleof a geometry
with diagramCs whichis nothinglik e apolarspacegventhoughit is highly sym-
metrical. This geometrywasdiscoveredby Arnold Neumaiey andis referredto
asNeumaiers geometryor the A7-geometry

Let X beasetof sevenpoints. Thestructureof aprojectve planePG(2, 2) can
beimposedon X in 30 differentways— this numberis the index of PGL(3,2)
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in the symmetricgroupS;. SincePGL(3,2) containsno odd permutationsit is
containedn thealternatinggroupA7 with index 15, andsothe 30 planesfall into
two orbits of length 15 underA;. Now we take the points, lines, and planesof
the geometryto be respectiely the elementsof X, the 3-elementsubsetf X,
andoneorbit of A7 on PG(2,2)s. Incidencebetweerpointsandlines,or between
linesandplanesjs definedoy membershipandevery pointis incidentwith every
plane.

It is clearthat the residueof a planeis a projectve plane PG(2,2), while
the residueof a line is a digon. Considerthe residueof a point x. The lines
incidentwith x canbeidentifiedwith the 2-elementsubsetof the 6-elementset
Y = X\ {x}. Given a plane, its threelines containingx partition'Y into three
2-sets. It is easyto checkthat, given sucha triple of lines, thereare just two
waysto draw the remainingfour linesto completeP&2,2), andthat thesetwo
arerelatedby anodd permutatiorof X. Soour choserorbit of planeshasexactly
onememberinducingthe given partitionof Y, andthe planesincidentwith x can
be identifiedwith all the partitionsof Y into three2-sets.As we sawv in Section
7.1,thisincidencestructures a generalisedjuadranglevith order2, 2.

We concludethatthe geometryhasthediagram

2 2 2

This example shaws that, evenin a geometrywith sucha simple diagram,
a variety is not necessarilydeterminedby its point-shadw (all planeshave the
samepoint-shadw!); the intersectionof point-shadws of varietiesneednot be

the point-shadw of a variety, andthe pointsand lines neednot form a partial

linearspace Sothe specialpropertiesof lineardiagramswith all stroleso—E—o

do notextend.However, classicalbolarspaceslo have thesenice properties.

A Cz-geometryin which every pointandevery planeareincidentis calledflat.
Neumaiers geometryis the only known finite exampleof suchageometry Some
infinite exampleswere constructedy SarahRees;we now describehese.First,
are-interpretatiorof Neumaiers geometry

Considettherank6 vectorspaceV of all binarywordsof length7 having even
weight. OnV, we candefinea quadratidorm by therule

f(v) =2wt(v) (mod2).
Thebilinearform obtainedby polarisingf is justthe usualdot product,since

WE(V +w) = wt(v) +wt(w) — 2v.w .
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It followsthat f is non-singulartheonly vectororthogonatoV is theall-1 word,
whichis notin V. Now the pointsof X, which index the coordinatesarein one-
one correspondencwith the seven words of weight 6, which are non-singular
vectors. The lines correspondo the vectorsof weight4, which compriseall the
singularvectors.

We saw in Section6.4 that the planeson the quadricfall into two families,
suchthattwo planesof the samefamily meetin a subspacef evencodimension
(necessarilya point), while planesof differentfamiliesmeetin a subspacef odd
codimensior(theemptysetor aline). Now a planeon the quadriccontainsseven
non-zerosingularvectors(of weight4), any two of which areorthogonalandso
meetin anevennumberof points,necessaril2. Thecomplementsf these4-sets
form seven 3-sets,arny two meetingin one point, so forming a projectve plane
PG(2,2). It is readily checled thatthe two classef planescorrespondxactly
to the two orbits of A; we describedearlier So the points, lines and planesof
Neumaiers geometrycan be identified with a specialsetof seven non-singular
points, the singularpoints, and one family of planeson the quadric. Incidence
betweerthe non-singulaandthe singularpointsis definedby orthogonality

Now we reversethe procedure. We start with a hyperbolic quadricQ in
PG(5,F), thatis, a quadricof rank 3 with germzero. A setS of non-singular
pointsis called an exterior setif it hasthe propertythat, given ary line L of
Q, auniquepoint of Sis orthogonatto L. Now considerthe geometryG whose
POINTS,LINES andPLANESarethepointsof S, thepointsof Q, andonefamily
of planeson Q; incidencebetweerPOINTSandLINES is definedby orthogonal-
ity, thatbetweenLINES andPLANES s incidencein the polar spaceandevery
POINT is incidentwith every PLANE.

Suchageometrybelonggo thediagramCs. For theresidueof aPLANE I is
a projectwve plane,naturallythe dual of I'l. (The correspondencketweerpoints
of Sandlinesof M is bijective; for, givenx € S, x* cannotcontainll, sinceapolar
spacen PG(4,q) cannothave rank 3, andsoit meetd1 in aline.) Theresidueof
aPOINT x is thepolarspacex’, whichaswe've seens rank2, andsoa GQ. And
of coursethe POINTSandPLANES ncidentwith aLINE form adigon.

Thasshavedthatno furtherfinite examplescanbe constructedn this way:

Theorem 7.5 Thee is no exterior setfor the hyperbolicquadricin PG(5,q) for
q> 2.

However, Rees(who first describedhis constructionpbsenedthatthereare
infinite examples.Considerthe casewhereF = R; let theform be x;xo + X3X4 +
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xsXs. Now the spaceof rank 3 spanneddy (1,1,0,0,0,0), (0,0,1,1,0,0) and
(0,0,0,0,1,1) is positive definite,andsois disjoint from the quadric;the points
spannedy vectorsin this spacdorm anexterior set.

Now we turnto hyperbolicquadricsin general As we sav in Section6.4,the
maximalt.s. subspaceen sucha quadricQ of rankn canbe partitionedinto two
families,sothataflat of dimensiomn — 2 lies in a uniquememberof eachfamily.
We constructa new geometryby letting theseflats be varietiesof differenttypes.
Now thereis no needto retaintheflatsof dimensiom — 2, sincesuchaflat is the
intersectiorof thetwo maximalflats containingit.

Theorem 7.6 LetQ bea hyperbolicquadricof rankn > 3. LetG bethegeometry
whoseflats are the t.s. subspace®f dimensiondifferent from n — 2, whee the
two families of flats of dimensionn — 1 are assigneddifferent types. Incidence
betweerflats, at leastone of which hasdimensionlessthann— 1, is as usual;

while (n— 1)-flatsof differenttypesare incidentif they intersectin an (n— 2)-flat.

Thenthe geometryhasdiagram

Proof We needonly checkthe residueof a flat of dimensionn — 3: the rest
follows by induction,asin Proposition7.4. Sucha flat cannotbe theintersection
of two (n— 1)-flats of differenttypes;so ary two suchflats of differenttypes
containingit areincident. =

(n nodes).

This diagramis denotedby D,,. Theresultholdsalsofor n = 2, providedthat
weinterpretD, astwo unconnectedodes— thequadrichastwo familiesof lines,
eachline of onefamily meetingeachline of the other

Exercises

1. Prove thattheline joining two pointsof an exterior setto the quadricQ is
disjointfrom Q.

2. Prove that an exterior setto a quadricin PG(5,q) musthave P+q+1
points.

3. Show thatthe planeconstructedn Rees’exampleis anexterior set.
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7.3 Tits and Buekenhout—Shult

We now begin working towardsthe axiomatisatiorof polarspacesThis major
resultof Tits (building onearlierwork of Veldkamp)will notbeprovedcompletely
here, but the next four sectionsshouldgive someimpressionof how the proof
works.

Tits’ theoremcharacterisea classof spacesvhich almostcoincideswith the
classicalpolar spacesof rank at least3. Thereare a few additionalexamples
of rank 3, someof which will be describedater | will usethe term abstact
polar spacefor a geometrysatisfyingthe axioms. In fact, Tits’ axiomsdescribe
all subspacesf arbitrary dimension;an alternatve axiom system proposedby
BuekenhoutandShult,involvesonly pointsandlines(in the spirit of the Veblen—
Young axiomsfor projectve spaces).In this section,l shov the equivalenceof
theseaxiomsystems.

Temporarily then,anabstract polar spaceof typeT is a geometrysatisfying
the conditions(P1)—(P4)of Section6.4, repeatederefor corvenience.

(P1) Any flat, togethemwith theflatsit contains,s a projectve spaceof dimen-
sionatmostr — 1.

(P2) Theintersectiorof ary family of flatsis aflat.

(P3)If U isaflat of dimensiorr — 1 andp apointnotin U, thentheunionof the
linesjoining p to pointsof U is aflat W of dimensiorr — 1; andU NW is a
hyperplanen bothU andW.

(P4) Thereexist two disjointflats of dimensionr — 1.

An abstract polar spaceof type BSis a geometryof pointsandlines satisfying
thefollowing conditions.In theseaxioms,a subspacés a setS of pointswith the
propertythatif aline L containstwo pointsof S, thenL C S; asingularsubspace
is asubspaceary two of whosepointsarecollinear

(BS1)Any line containsat leastthreepoints.
(BS2)No pointis collinearwith all others.
(BS3) Any chainof singularsubspacess of finite length.

(BS4)If thepoint pis notontheline L, thenp is collinearwith oneor all points
of L.
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(Notethat(BS4)is our earlier(BS), andis the key conditionhere.)

Theorem 7.7 (a) Thepointsandlinesof an abstract polar spaceof typeT form
an abstract polar spaceof typeBS.

(b) Thesingularsubspacesfanabstractpolar spaceoftypeBSformanabstract
polar spaceof typeT.

Proof (a)lt is aneasydeductionfrom (P1)—(P4)thatarny subspacés contained
in a subspacef dimensionn— 1. For let U be a subspaceandW a subspace
of dimensionn — 1 for which U "W hasdimensionaslarge aspossible;if p €
U \W, then(P3) givesa subspacef dimensionn — 1 containingp andU NW,
contradictingmaximality:.

Now, if L isaline andp a pointnotonL, letW bea subspac®f dimension
n— 1 containingL. If p€ W, thenp is collinearwith every pointof L; otherwise,
theneighbourof pin W form ahyperplanemeetingL in oneor all of its points.

Thus,(BS4)holds. Theotherconditionsareclear

(b) Now let G beanabstracipolarspaceof type BS. Call two pointsadjacent
if they are collinear; this givesthe point seta graphstructure. Every maximal
cliquein the graphis a subspaceFor let Sbe a maximalclique,andp,q € S, let
L bealine containingp andg. Any pointof S\ L is collinearwith p andqg, andso
with every pointof L; thusSUL is aclique,andby maximality, L C S.

If p¢& S(whereSis amaximalclique),thenthesetof neighbourf pin Sisa
hyperplaneEvery pointq € Slies outsidesucha hyperplanefor, by (BS2),there
is a point p notadjacento g. As we saw in Section3.1,if everyline hassize 3,
thenthisimpliesthatSis a projective spacejut this deductioncannotbe madein
generalHowever, in the presensituation,BuekenhoutandShultareableto shav
thatSis indeedaprojectve space (In particular thisimpliesthattwo pointslie on
atmostoneline. For theunionof two linesthroughtwo commonpointsis aclique
by (BS4),andsowould be containedn a maximalclique. However, Buekenhout
and Shulthave to showv thattwo pointslie on at mostoneline beforethey know
thatthe subspaceareprojective spacesthe proofis surprisinglytricky.)

Any singularsubspacéesin somemaximalclique,andsois itself aprojectve
space.Thus(P1)holds;andtheremainingaxiomscannow beverified. =

We will now simplify theterminologyby usingtheterm“abstractpolarspace”
equallyfor eithertype.

Theinductionprincipleswe usedin classicalpolarspacesvork in almostthe
sameway in abstracpolarspaces.
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Proposition 7.8 LetU bea (d — 1)-dimensionalsubspaceof an abstract polar
spaceof rankn. Thenthe subspacesontainingU form an abstract polar space
ofrankn—d. m

Exercise

1. Shaw directly that,in anabstracpolarspaceof type BS having threepoints
on ary line, ary two pointslie on at mostoneline, and singularsubspacesare
projective.

7.4 Recognisinghyperbolic quadrics

There are two specialcaseswherethe proof of the characterisatiorof po-
lar spacess substantiallyeasier namely hyperbolicquadricsand quadricsover
GF(2); they will betreatedn this sectionandthe next.

In the caseof a hyperbolicquadric,we bypassthe needto reconstructthe
quadricby simply shaving thatthereis a uniqueexampleof eachrank over ary
field. First, we obsene thatthe partition of the maximalsubspacemto two types
follows directly from the axioms;propertiesof the actualmodelarenot required.
We begin with agenerakesulton abstracipolarspaces.

An abstracpolarspaceG canberegardedasa point-line geometryaswe've
seen.Sometimedt is usefulto considema“dual” situation,definingageometryG*
whosePOINTsarethe maximalsubspacesf G andwhoseLINEs arethe next-
to-maximalsubspacesncidencebeingreversednclusion. We call this geometry
a dual polar space In a dual polar spacewe definethe distancebetweentwo
POINTsto bethe numberof LINEs on a shortespathjoining them.

Proposition 7.9 LetG* beadual polar space
(a) Thedistancebetweertwo POINTSsis the codimensiorof their intersection.

(b) Givena POINT p anda LINE L, thereis a uniquePOINT of L neasestto p.

Proof Let U1, U be maximalsubspacesBy the inductive principle (Proposi-
tion 7.8), we may assumehatU; NUz = 0. (It is clearthatany pathfrom Uz to
U,, in which not all termscontainU; NU,, musthave lengthstrictly greaterthan
the codimensiorof U; NUy; so,oncetheresultis provedin the quotient,no such
pathcanbeminimal.)
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Now eachpoint of Uq is collinear (in G) with a hyperplanen U,, andvice
versg so,givenary hyperplaneH in Uy, thereis a uniquepoint of U; adjacento
H, andhencegby (P3))auniquemaximalsubspaceontainingH andmeetingU;.
Theresultfollows.

(b) Let U be a maximal subspaceandW a subspacef rank one lessthan
maximal. As before we mayassumehatU NW = 0. Now thereis a uniquepoint
p € U collinearwith all pointsof W. Then(W, p) is theuniuePOINT ontheLINE
W nearestothe POINTU. =

Proposition 7.10 Let G be an abstract polar spaceof rankn, in which any (n—
2)-dimensionalsubspacés containedin exactly two maximalsubspaces.Then
the maximalsubspacegall into two families, the intersectionof two subspaces
havingevencodimensionn ead if andonly if the subspacebelongto the same
family.

Proof The associatedlual polar spaceis a graph. By Proposition7.9(b), the
graphis bipartite,sinceif anoddcircuit exists,thenthereis oneof minimallength,
andbothverticeson ary edgearethenequidistanfrom the oppositevertex in the
cycle. m

Now, in ary abstracipolarspaceof rankn > 4, in which linescontainat least
threepoints,any maximalsubspacés isomorphicto PG(n— 1, F) for someskew
field F. Now aneasyconnectednessgumentshaws thatthe samefield F coor
dinatisesevery maximalsubspace.

Theorem7.11 LetG beanabstractpolar spaceof rankn > 4, in which ead next-
to-maximalksubspacés containedn exactlytwo maximalsubspacesAssumehat
somemaximalsubspaces isomorphicto PG(n— 1,F). ThenF is commutative
andG is isomorphicto the hyperbolicquadricof rankn over F.

Proof It isenougho shav thatF iscommutatveandthatn andF uniquelydeter
minethe geometrysincethe hyperbolicquadricclearly hastherequiredproperty

Ratherthanprove F commutatve, | will shav merelythatit is isomorphic
to its opposite. It sufficesto shav this whenn = 4. Take two maximal sub-
spacesneetingin a planell, anda point p € . By the FTPG, both maximal
subspaceareisomorphicto PG(3,F). Now considertheresidueof p. Thisis a
projective spacejn which thereis a planeisomorphicto PG(2,F°), anda point
residueisomorphicto PG(2,F). HenceF = F°. ThestrongerstatementhatF is
commutatve is shavn by Tits. He obseresthatthe quotientof p hasa polarity
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interchanginga point anda planeincidentwith it, andfixing every line incident
with both; andthis canonly happenin a projectve 3-spaceover a commutatve
field.

Let U1 andU, be disjoint maximalsubspacesNote thatthey have the same
typeif nis even,oppositetypesif nis odd. Let p beary pointin neithersubspace.
Thenfor i = 1,2, thereis auniguemaximalsubspac®\ containingp andmeeting
U; in a hyperplane.ThenW hasthe oppositetype to U;, soW; andW, have the
sametype if n is even, oppositetypesif n is odd. Thus, their intersectionhas
codimensiorcongruento n mod2. Sincep € Wy "W, theintersections atleast
aline. But their distancan the dual polarspaces atleastn — 2, sinceU; andU
have distancen; soWy "W, is aline L. ClearlyL meetsbhothU; andU».

Eachpoint of U; is adjacentto a hyperplaneof U,, andvice versg so Uz
andU, arenaturallyduals. Now thelinesjoining pointsof U; andU, areeasily
describedandit is nothardto shav thatthewhole geometryis determined. m

7.5 Recognisingquadrics over GF(2)

In this section,we determinethe abstractpolar spaceswith threepointson
every line. Sincewe are giveninformationonly aboutpointsandlines, the BS
approachss the naturalone. The resultherewasfirst found by Shult (assuming
a constantnumberof lines per point) and Seidel(in general),andwasa crucial
precursorof the Buekenhout—ShulfTheorem(Theorem7.7). Shult and Seidel
provedthetheorenby inductionontherank: arank?2 polarspaces ageneralised
guadrangleandthe classificationin this caseis Theorem7.3. The elegantdirect
argumentgivenhereis dueto JonatharHall.

Let G be anabstractpolar spacewith threepointsperline. We have already
seenhatthefactsthattwo pointslie onatmostoneline, andthatmaximalsingular
subspaceareprojective spacesareprovedmoreeasilyunderthis hypothesighan
in general But hereis adirectproof of thefirst assertionSupposeahatthe points
aandb lie ontwo lines{a, b,x} and{a,b,y}. Thenyis collinearwith aandb, and
soalsowith x; sothereis aline {x,y,z} for somez, andbotha andb arejoined
to z. Any further pointis joinedto both or neitherx andy, andsois joinedto z,
contradicting(BS2).

Definea graphl’ whoseverticesarethe points,two verticesbeingadjacentf
they arecollinear Thegraphhasthefollowing property:

(T) everyedge{x,y} liesin atriangle{x,y, z} with the propertythatary further
pointis joinedto oneor all of {x,y, z}.
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This is calledthe triangle property. Shultand Seidelphrasedheir resultasthe
determinatiorof finite graphswith thetriangleproperty (Theargumentustgiven
showsthat,in a graphwith thetrianglepropertyin which no vertex is adjacento
all others thereis a uniquetrianglewith the propertyspecifiedby (T) containing
ary edge. Thus,the graphandthe polar spacedetermineeachother) The proof
givenbelow is not the original agumentof Shultand Seidel,which usedinduc-
tion, but is a directagumentdueto JonatharHall (having the addedfeaturethat
it worksequallywell for infinite-dimensionakpaces).

Theorem 7.12 An abstract polar spacein which ead line containsthreepoints
is a quadricover GF(2).

Proof As notedabove, we mayassumensteadthatwe have agraphl” with the
triangleproperty(T), having at leastoneedge,andhaving no vertex adjacento

all others.Let X bethevertex setof thegraphl', andlet F = GF(2). We begin

with the vectorspaceV of all functionsfrom X to F which arezeroeverywhere
excepton afinite set,with pointwiseoperations(If X is finite, thenV is justthe
spaceFX of all functionsfrom X to F.) LetX € V bethecharacteristiéunctionof

thesingletonset{x}. Thefunctions, for x € X, form abasisfor V. We definea
bilinearform b onV by setting

~ o~ O if x=yorxisjoinedtoy,
b(x,y)_{l otherwise,

andextendinglinearly, anda quadraticform f by setting f(f() =0forall xe X
andextendingtoV by therule

f(v+w) = f(v)+ f(w)+b(v,w).

Notethatbothb and f arewell-defined.
Let R betheradicalof f; thatis, Ris thesubspace

{veV:f(v)=0, bv,w)=0forallweV},

andsetV =V/R. Thenb and f inducebilinearandquadratidormshb, f onV: for
example,we have f(v+R) = f(v) (andthis is well-defined thatis, independent
of thechoiceof cosetrepresentatie). Now letx =X+ Re V.

We claimthattheembedding+— X hastherequiredpropertiesjn otherwords,
it is one-to-oneits imageis thequadricdefinedby f; andtwo verticesareadjacent
if andonly if the correspondingointsof the quadricareorthogonal We proceed
in aseriesof steps.
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Stepl Let{x,y,z} beaspecialtriangle, asin thestatemenofthetriangle prop-
erty (T). Thenx+y+2z=0.
It is requiredto shaw thatr = X+ y+ 2 € R. We have

b(r, V) = b(%,¥) + b(y, V) +b(2,9) = 0

for all v € X, by thetriangleproperty;and

A~

fir)y=f®+ () +f(@+bxy) +b(9,2)+bz%) =0

by definition.

Step2 Themapx+— Xis one-to-oneon X.

Supposéghatx=y. Thenr =X+y€ R HenceB(f(, y) = 0, andsox is joined
toy. Let z be the third vertex of the specialtriangle containingx andy. Then
2= X+Yy € Rby Stepl, andso z s joinedto all otherpointsof X, contraryto
assumption.

Step3 Anyquadrangleis containedn a 3 x 3 grid.

Let {x,y,z w} beaquadrangle Lettingx+y = x+Y, etc.,we seethatx+y
is not joined to z or w, and henceis joined to z+ w. Similarly, y+ z is joined
to w+ x; andthethird pointin the specialtrianglethrougheachof thesepairsis
X+Yy+ z+w, completingthegrid. (SeeFig. 7.1.)

Step4 ForanyveV, writev= Y X, wheex € X, andthenumberm= |l |
of summandss minimal (for thegivenv). Then

(@m<3;

(b) the pointsx; are pairwisenon-adjacent.
Thisis thecrucialstep,andneeddour sub-stages.
Substep4.1 Assertion(b) is true.

If x; ~ Xj, we couldreplacex; + X; by thethird pointx, of thespecialriangle,
andobtaina shorterexpression.
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w Z+W z
WX Xrytzrw y+z
X X+y y

Figure7.1: A grid

Substep4.2 If L isaline onxz, andy a point of L which is adjacentto x,
theny ~ x; forall i € 1.

If not, let L = {x1,Y,z}, andsupposehatx; ~ z. Thenx; is joinedto thethird
pointw of theline xpy. Let u bethethird pointonxw. Thenz+ p1 +u+X = X,
andwe canreplacex; + X2 + X; by theshorterexpressiorz+ u.

Substep4.3 Thek aretwo pointsy, zjoinedto all x;.

Eachline throughx; containsa point with this property by Substept.2. It is
easilyseenthatif x; lies on a uniqueline, thenone of the pointson this line is
adjacento all others,contraryto assumption.

Substep4.4 m<3.
Supposenot. Consideringthe quadranglegxi, Y, x2,z} and {xs,Y, x4, 2}, we
find (by Step3) pointsa andb with
Xi+Y+Xo+Z=a  Xa+Yy+Xa+z=Dh.

But thenx; + Xz + X3 + Xa = a+ b, ashorterexpression.

Step5 If veV,v#0,andf(v) =0, thenv=xfor somex € X.
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If notthen,by Step4, eitherv = Xx+vy, orv= x+y+ z wherepointsx,y (and
2) are(pairwise)non-adjacentln thesecondcase,

f(v) = f(X)+ f(y)+ f(2 +b(XY) +b(y,2) +b(ZX) =0+0+0+1+14+1=1.

Theothercasais similar but easier

Step6 x~yifandonlyif b(x,y) = 0.
Thisis trueby definition. =

7.6 Thegeneralcase

A weakform of the generalclassificationof polar spaceshy Veldkampand
Tits, canbe statedasfollows.

Theorem 7.13 A polar spaceof typeT havingfiniterankn > 4 is eitherclassical,
or definedby a pseudoquadatic form on a vectorspaceover a division ring of
characteristic2. =

I will notattemptto outline the proof of this theorem put merelymake some
remarksjncludinga“definition” of a pseudoquadratiorm.

Let V be a vector spaceover a skew field F of characteristi2, andc an
anti-automorphisnof F satisfyingo? = 1. Let Kg be the additive subgroup
{x+x°} of F, andK* = K/Kp. A function f : V — K* is called a pseudo-
quadratic form relative to o if thereis a o-sesquilineaform g suchthat f(v) =
g(v,v) modKo. Equivalently f polarisesto a o-Hermitian form f satisfying
(W e V)(3c e F)(f(v,v) = c+c), thatis, a trace-aluedform. The function
f definesa polar space,consistingof the subspacesf V on which f vanishes
(modKp). If Kg is equalto the fixedfield of o, thenthe samepolar spaceis de-
fined by the Hermitianform g; sowe may assumehatthis is not the casein the
secondconclusionof Theorem?7.13. For furtherdiscussionseeTits [S].

Tits’ resultis actuallybetterthanindicated:all polarspace®f rankn > 3 are
classified. Therearetwo typesof polar spacef rank 3 which are not covered
by Theorem7.13. The first exists over any hon-commutatie field, andwill be
describedn thefirst sectionof Chapte8. Theotheris remarkablen consistingof
theonly polarspacesvhoseplanesarenon-DesaguesianThistypeis constructed
by Tits from the algebraicgroupsof type Eg, and againl refer to Tits for the
constructionwhich requiresdetailedknowledgeof thesealgebraicgroups. The
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planesactuallysatisfyawealeningof Desagues’'theorermknown asthe Moufang
condition andcanbe “coordinatised’by certainalternativedivisionrings which
generalisg¢he Cayley numbes or octonions

Of coursethedeterminatiorof polarspace®f rank2 (GQs)is ahopelessask!
Neverthelessijt is possibleto formulatethe Moufang condition for generalised
guadranglesandall GQssatisfyingthe Moufangconditionhave beendetermined
(by FongandSeitzin thefinite case,Tits andWeissin general.)This effectively
completeghe analogywith coordinatisatiotheoremdor projective spaces.

The othergeometricachiezementof Tits in the 1974lecturenotesis the ana-
logueof the Fundamental' heoremof Projectve Geometry:

Theorem 7.14 Anyisomorphisnbetweerclassicalpolar spacesf rank at least
2, which are not of symplecticor orthogonaltypein characteristic2, is induced
by a semilineartransformatiorof theunderlyingvectorspaces. m

The reasonfor the exceptionwill be seenin Section8.4. As in Sectionl.3,
thisresultshavsthattheautomorphisngroupsof classicapolarspacegonsistof
semilineartransformationgnoduloscalars.Thesegroups,with someexceptions
of smallrank, have “large” simplesubgroupsjust ashappenedor the automor
phismgroupsof projective spacesn Section4.6. Thesegroupsarethe classical
groups andare namedafter their polar spaces:symplecti¢ orthogonal and uni-
tary groups. For details,seethe classicaccounts:Dickson[K], Dieudonre [L],
andArtin [B], or for morerecentaccountslaylor [R], Cameror{10]. In thesym-
plecticor unitarycasetheclassicagroupconsistof all thelineartransformations
of determinantl preservingthe form definingthe geometry moduloscalars.In
the orthogonalcase,it is sometimesecessaryo passto a subgroupof index 2.
(For example,if the polar spaceis a hyperbolicquadricin characteristi@, take
thesubgrougixing thetwo familiesof maximalt.s. subspaces.)
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The Klein quadric and triality

Low-dimensionalhyperbolic quadricspossessa remarkablyrich structure;the
Klein quadricin 5-spaceencodesa projectie 3-spaceandthetriality quadricin
7-spacepossessaanunexpectedhreefoldsymmetry Thecontentof this chapter
canbe predictedrom the diagramsf thesegeometriessinceDs is isomorphicto
Az, andD4 hasanautomorphisnof order3.

8.1 The Pfaffian

The determinanbf a skew-symmetricmatrix is a square.This canbe seenin
smallcasedy directcalculation:
0 a2\ _ 2
det(_a12 0) = afy,
0 a2 a3 a4
—a;2 O a3 A 2
det = (a12834— aiza24+ ag4a23)”.
—a;3 —ags O  am (212834 — Q13324+ A14323)
-4 —a4 —az O
Theorem8.1 (a) Thedeterminantof a skew-symmetrianatrix of odd sizeis
zeo.

(b) Theeis auniquepolynomialPf(A) in theindeterminatesyj for 1 <i< j <
2n, havingthe properties

(i) if Ais askew-symmetri@n x 2n matrixwith (i, j) entrya;j for 1 <i <
j <2n,then
det(A) = Pf(A)?;

115
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(i) Pf(A) containsthetermajsaza- - - aon—1 2n With coeficient+-1.

Proof We beagin by observingthat, if A is a skew-symmetricmatrix, thenthe
form B definedby
B(x,y) = xAy"

is an alternatingbilinearform. Moreover, B is non-dgjeneratef andonly if Ais
non-singularfor xAy" = 0 for all y if andonly if xA= 0. We know thatthereis
no non-degeneratelternatingbilinear form on a spaceof odd dimension;so (a)
is proved.

We know alsothat, if A is singular thendet(A) = 0, whereasif A is non-
singular thenthereexistsaninvertible matrix P suchthat

o 0 1 0 1
N L))

sothatdet{A) = det(P)~2. Thus,det(A) is asquaren eithercase.

Now regarda;j asbeingindeterminatesverthefield F; thatis, letK = F (& :
1 <i < j < 2n) bethefield of fractionsof the polynomialring in n(2n— 1) vari-
ablesover F. If A is the skew-symmetricmatrix with entriesaj; for 1 <i <
j < 2n, thenaswe have seen,def(A) is a squarein K. It is actuallythe square
of a polynomial. (For the polynomialring is a uniquefactorisationdomain; if
detA) = (f/g)?, where f andg are polynomialswith no commonfactor then
det(A)g? = f2, andso f2 dividesdet(A); thisimpliesthatg is aunit.) Now det(A)
containsaterm

3%2354' o a%n—l 2n

correspondingo the permutation

(12)(34)---(2n—12n),

and so by choiceof signin the squareroot we may assumethat (ii)(b) holds.
Clearlythe polynomialPf(A) is uniquelydetermined.

Theresultfor arbitraryskew-symmetricmatricesis now obtainedby speciali-
sation(thatis, substitutingvaluesfrom F for theindeterminates;j). =

Exercises

1. A one-factorontheset{1,2,...,2n} isapartitionF of thissetinto n subsets
of size2. We representach2-sefi, j} by the orderedpair (i, j) withi < j. The
crossingnumbery(F) of theone-fictorF is the numberof pairs{(i, j), (k,1)} of
setsin F for whichi <k < j <.
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(a) Let #, bethesetof one-factorsontheset{1,2,...,2n}. Whatis | #,|?

(b) Let A= (&) beaskew-symmetricmatrix of order2n. Prove that

PR = T (1P T ai.

Fefn (i,))eF

2. Show that, if A is a skew-symmetricmatrix andP ary invertible matrix,
then
Pf(PAP") = det(P) - Pf(A).
Hint: We have de PAPT) = det P)?det{A), andtakingthe squareroot shovs that
Pf(PAPT) = det(P) Pf(A); it is enoughto justify the positive sign. Shaw thatit
sufficesto considerthe ‘standard’skew-symmetricmatrix

({5 (5 2)

In thiscaseshaw thatthe (2n—1,2n) entryin PAPT containgheterm pzn_1 2n_1P2zn 2n,
sothatPf(PAP") containghediagonalentryof det P) with sign+1.

3. Shaw thatary linear transformatiorof a vectorspacefixing a symplectic
form (anon-dgeneratalternatingbilinearform) hasdeterminant.

8.2 TheKlein correspondence

We begin by describingan abstractpolar spacewhich appearsot to be of
classicalype. Let F be askew field, andconsiderthe geometryG definedfrom
PG(3,F) asfollows:

e thePOINTsof G arethelinesof PG(3,F);
e theLINEs of G aretheplanepencils(incidentpoint-planepairs);
e thePLANEsof G areof two types:the points,andthe planes.

A POINT andLINE areincidentif the line belongsto the planepencil (i.e., is
incidentwith both the point andthe plane). A LINE and PLANE areincident
if the point or planeis one of the elementsof the incident pair; andincidence
betweera POINT anda PLANE is theusualincidencein PG(3,F).

If aPLANE is aplanell, thenthe POINTsandLINEs of this PLANE corre-
spondto thelinesandpointsof IM; sotheresidueof the planeis isomorphicto the
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dualof I, namely PG(2,F°). Ontheotherhand,if a PLANE is a point p, then
the POINTsandLINEs of this PLANE arethelinesandplanesthroughp, soits
residues theresidueof pin PG(3,F), namelyPG(2,F). Thus(PS1)holds.(Note
that,if F is notisomorphico its oppositethenthe spacecontainsnon-isomorphic
planes somethingvhich cannothappenn aclassicalbpolarspace.)

Axiom (PS2)is clear Consider(PS3). Supposdahatthe PLANE in question
is aplanerll, andthe POINT notincidentwith it is aline L. ThenLNT1 is apoint
p; thesetof POINTsof I collinearwith L is the planepencildefinedby p andl
(which is a LINE), andthe union of the LINES joining themto L consistsof all
linesthroughp (whichis aPLANE), asrequired.The othercaseis dual.

Finally, if the point p andplanell are non-incident,thenthe PLANES they
definearedisjoint, proving (PS4).

Notethatary LINE is incidentwith justtwo PLANES,oneof eachtype;so, if
the polar spaces classicaljt mustbea hyperbolicquadricin PG(5,F). We now
show that, if F is commutatve, it is indeedthis quadricin disguise! (For non-
commutatve fields, this is one of the exceptionalrank 3 polar spacesnentioned
in Section7.6.)

The skew-symmetricmatricesof order4 over F form a vectorspaceof rank
6, with X12,...,X34 ascoordinatesThe Pfaffian is a quadraticform on this vector
space,which vanishespreciselyon the singularmatrices. So, projectiely, the
singulamatricesorm aquadricQ in PG5, F), theso-calleKlein quadric. From
the form of the Pfaffian, we seethatthis quadricis hyperbolic— but in factthis
will becomecleargeometrically

Any skew-symmetricmatrix hasevenrank. In our case,a non-zerosingular
skew-symmetricmatrix A hasrank 2, andso canbewrittenin theform

A=X(v,w):=viw—w'v

for somevectorsv,w. Replacingthesetwo vectorsby linear combinationsav +
Bw andyv + dw multiplies A by afactorad — By (whichis justthe determinanbf
thetransformation) Sowe have amapfrom theline of PG(3, F) spannedby v and
w to the point of the Klein quadricspannedy X(v,w). This mapis a bijection:
we have seerthatit is onto,andthe matrix determinegheline asits row space.

This bijection hasthe propertiespredictedby our abstracttreatment. Most
important,

two pointsof the Klein quadricare perpendiculaif andonly if the
correspondindinesintersect.
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To prove this, note that two points are perpendiculaif andonly if the line
joining themliesin Q. Now, if two linesintersectwe cantake themto be (u, v)
and(u,w); andwe have

a(u'v—vTu)+Bu'w—w"u)=u' (av+pw) — (av+pw) u,

sotheline joining the correspondingointsliesin the quadric.Corversely if two
lines are skew, thenthey are (v1,v2) and(vs,va), where{vi,...,v4} is a basis;
thenthe matrix

Vi V2 —VaVi+VEva—V]V3

hasrank4, andis a pointontheline noton Q.

Hencethe planeson the quadriccorrespondo maximalfamiliesof pairwise
intersectinglines, of which therearetwo types: all lines througha fixed point;
andall linesin afixedplane.Moreover, theamgumentin the precedingoaragraph
shownsthatlineson Q doindeedcorrespondo planepencilsof linesin PG(3,F).
This completegheidentification.

Exercise

1. This exercisegivesthe promisedidentificationof PSL(4,2) with the alter
natinggroupAs.

LetV bethevectorspaceof rank6 over GF(2) consistingof the binarywords
of length8 having evenweightmodulothe subspacé& consistingof the all-zero
andall-1 words. Shaow thatthe function

f(v+2Z)=3wt(v) (mod2)

is well-definedandis a quadraticform of rank 3 on V, whosezerosform the
Klein quadricQ. Show thatthesymmetricgroupSg interchangeghetwo families
of planeson Q, the subgrougfixing the two familiesbeingthe alternatinggroup
As.
Usethe Klein correspondencen show that Ag is embeddedas a subgroup
of PGL(4,2) = PSL(4,2). By calculatingthe ordersof thesegroups,shav that
equalityholds.

Remark TheisomorphisnbetweerPSL(4,2) andAg canbeusedo giveasolu-
tion to Kirkman’s schoolgirl problem This problemasksfor ascheduldor fifteen
schoolgirlsto walk in five groupsof threeevery dayfor sevendays,subjectto the
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requirementhatary two girls walk togetherin a group exactly onceduring the
week.

The 7 x 5 groupsof girls arethusthe blocksof a 2-(15,3,1) design.We will
take this designto consistof thepointsandlinesof PG(3,2). The problemis then
to find a ‘parallelism’ or ‘resolution’, a partition of the linesinto seven ‘parallel
classeseachconsistingof five pairwisedisjointlines.

One way to find a parallel classis to considerthe underlyingvector space
V(4,2) as a vector spaceof rank 2 over GK4). The five ‘points’ or rank 1
subspacesver GF(4) becomefive pairwisedisjoint lines whenwe restrictthe
scalarsto GF(2). Scalarmultiplication by a primitive elementof GF(4) is an
automorphisnof order 3, fixing all five lines, and commutingwith a subgroup
SL(2,4) = As. Moreover, if two suchautomorphismof order3 have a com-
monfixedline, thenthey generate {2, 3}-group,sincethe stabiliserof aline in
GL(4,2) isa{2,3}-group.

Now, in Ag, anelementof order3 commutingwith a subgroupgsomorphicto
As is necessarilya 3-cycle. Two 3-cyclesgeneratea {2, 3}-groupif andonly if
their supportantersectn 0 or 2 points. Sowe requirea setof seven 3-subset®f
{1,...,8}, ary two of which meetin onepoint. Thelinesof PG(2,2) (omitting
onepoint) have this property

8.3 Somedualities

We have interpretedpointsof the Klein quadricin PG(3,F). Whataboutthe
pointsoff thequadric?

Theorem 8.2 Theris a bijectionfromthesetof pointsp outsidetheKlein quadric
Q to symplecticstructureson PG(3, F), with the propertythat a point of Q per

pendicularto p translatesunderthe Klein correspondencéo a totally isotropic
line for the symplectiggeometry

Proof A pointp ¢ Q is representedby a skew-symmetricmatrix A which has
non-zeroPfaffian (and henceis invertible), up to a scalarmultiple. The matrix
definesa symplecticform b, by therule

b(v,w) =VvAw .

We mustshaow thataline is t.i. with respecto this form if andonly if the corre-
spondingpointof Q is perpendiculato p.
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Let A beanon-singulaskew-symmetric4 x 4 matrix overafield F. By direct
calculation,we show thatthe following assertionsreequvalent,for any vectors
v,w € F4:

(@) X(v,w) =v'w—w'v is orthogonako A, with respecto the bilinearform
obtainedby polarisingthe quadratidorm Q(X) = Pf(X);

(b) v andw areorthogonalwith respecto the symplecticform with matrix AT,
thatis, vATw™ = 0.

HerethematricesA andA' aregivenby

0 a2 a1z Ay 0 ags —a4 A3
A | T2 0 a3z A At | —as4 0 a4 —a3
—a13 —apz 0 azs |’ apg —as O a2
—a14 —ap —ag O —a3 a3 -—apz O

Notethat,if A is thematrix of the standardsymplecticform, thensois A'. In
generalthe maptaking the point outsidethe quadricspannedy A to the sym-
plecticform with matrix AT is the oneassertedn thetheorem. m

Let G1 bethe symplecticGQ over F, and G, the orthogonalGQ associated
with the quadricv N Q, whereQ is the Klein quadricand(v) ¢ Q. (Notethat
arny non-singularquadraticform of rank 2 in 5 variablesis equvalentto ax%-i—
X1X2 + X3X4 for somea # 0; so ary two suchforms are equialentup to scalar
multiple, anddefinethe sameGQ.) We have defineda mapfrom pointsof G to
linesof G1. Givenary point p of Gi, thelinesof Gy containingp form a plane
pencilin PG(3,F), andsotranslatento aline of G,. Thuswe have shown:

Theorem 8.3 For anyfield F, thesymplectidGQin PG(3, F) andtheorthogonal
GQin PG(4,F) aredual. =

Now let F be a field which hasa Galois extensionK of degree2 ando the
Galoisautomorphisnof K over F. With theextensionK /F we canassociatéwo
GQs:

G1: theunitaryGQin PG(3,K), definedby the Hermitianform

X1y5 +X2y§ +Xayq +xay3;

Gy: theorthogonalGQ in PG(5,F) definedby the quadraticform

X1X2 + XaXa + 00E + BXsXs + Y&,
whereax? + Bx+ v is anirreduciblequadraticover F which splitsin K.
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Theorem 8.4 Thetwo GQs G; and G} definedaboveare dual.

Proof Thisis provedby “twisting theKlein correspondence’ln outline,we take
theKlein correspondencever K, andchangecoordinateson the quadricso that
restrictionof scalarsto F givesthe geometryG;, ratherthanthe Klein quadric
over F; thenshow thatthe correspondingetof linesin PG(3,K) arethosewhich
aretotally isotropicwith respecto aHermitianform. =

Exercises

1. Prove the assertioraboutA andA' in the proof of Theorem8.2.

Let Q beahyperbolicquadricof rankn. If vis anon-singulavector thenthe
quadricvt N Q = S hasthe property

¢ S meetsavery maximalsubspac& of Q in ahyperplaneof E.

We call a set$ satisfyingthis conditionspecial The point of the next threeex-
erciseds to investigatewhetherspecialsetsare necessarilyguadricsof the form
vinQ.

2. Considerthe casen = 2. Let the rank 4 vector spacebe the spaceof all
2 x 2 matricesover F, andlet thequadratidorm bethedeterminant.

(a) Show thatthemap
(X) = (Ker(X),Im(X))

inducesa bijectionbetweerthepoint setof thequadricQ andP x P, where
P is theprojectveline overF.

(b) If Aiis anon-singulamatrix, show that
At = {(X) e Q:KerX)-A=Im(X)},
which correspondsinderthis bijectionto theset{(p, p-A) : p € P}.

(c) Show that,if Ttis any permutatiorof P, then{(p,T(p)) : p € P} is aspecial
set;andall specialsetshave this form.

(d) Deducethatevery specialsetis a quadricif andonly if |F| < 3.
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3. Considerthe casen = 3. Take Q. to betheKlein quadric. Showv thatthe
Klein correspondencmapsthe specialsetS to a setS of linesof PG(3,F) with
the propertythat the setof lines of Sthroughany point of p, or the setof lines
of Sin ary planerl, is a planepencil. Shav thatthe correspondence +— I of
PG(3,F), wherethe setof lines of S containingp andthe setcontainedn I are
equal,is a symlecticpolarity with Sasits setof absolutdines. DeducethatSis
the setof linesof asymplecticGQin PG(3,F), andhencethat.s is aquadric.

4. Prove by inductionon n that,for n > 3, ary specialsetis a quadric. (See
CamerorandKantor[12] for acrib.)

8.4 Dualities of symplecticquadrangles

A field of characteristi@ is saidto be perfectif every elementis a square.
A finite field of characteristi@ is perfect,sincethe multiplicative grouphasodd
ordet

If F hascharacteristi@, thenthe mapx — x? is ahomomorphismsince

(x+y)? = X+y’,
(xy)? = X,

andis one-to-oneHencekF is perfectif andonly if this mapis anautomorphism.

Theorem 8.5 LetF bea perfectfield of characteristic2. Thenthereis anisomor
phismbetweerthe symplecticpolar spaceof rank n over F, and the orthogonal
polar spaceof rankn definedby a quadratic formin 2n+ 1 variables.

Proof LetV beavectorspaceof rank2n+ 1 carryinga non-singulamuadratic
form f of rankn. By polarising f, we getan alternatingbilinear form b, which
cannotbe non-dgenerateits radicalR = V= is of rank 1, andtherestrictionof f
toit isthegermof f.

Let Wp be a totally singularsubspaceof V. ThenW = Wy + R is a totally
isotropic subspacef the non-dgieneratesymplecticspaceV /R. Sowe have an
incidence-preservingnjection 8 : Wp — (Wp + R) /R from the orthogonalpolar
spaceto the symplectic.We have to show that6 is onto.

SoletW/Rbet.i. ThismeanghatW itselfis t.i. for theform b; butRC W, so
W is nott.s.for f. However, onW, we have

f(Wl—I—Wz) = f(Wl)—l—f(Wz),
flaw) = a?f(w),
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sof issemilinearonW. Thus,thekernelof f is ahyperplan&\p of W. Thespace
Wp is t.s.,andWp + R =W, soWp mapsontoW/Runderf. =

Now considethecasen = 2. We have anisomorphisnbetweerthesymplectic
andorthogonalguadrangles)y Theorem8.5,anda duality, by Theorem8.3. So:

Theorem 8.6 Thesymplectigenerlisedquadrngleover a perfectfield of char-
acteristic2 is self-dual. =

Whenis therea polarity?

Theorem 8.7 LetF bea perfectfield of characteristic2. ThenthesymplecticGQ
over F hasa polarity if andonlyif F hasanautomorphisno satisfying

0% =2,
wheee 2 denoteghe automorphisnx — x2.

Proof For this, we cannotavoid usingcoordinatesM/e take the vectorspaceF#
with the standardsymplecticform

b((X1,X2,%3,%4), (Y1,¥2,Y3,Ya)) = X1Y2 + X2Y1 + X3Ya + XaY3.

(Remembethatthe characteristigs 2.) TheKlein correspondenceakestheline
spannedy (X1, X2, X3, X4) and(y1,Y2, Y3, ya) to thepointwith coordinates;j, 1 <
i < j <4,wherez; = Xyj+ X;y; this pointlies on the quadricwith equation

212734+ 213204+ 214723 = 0,

and (if theline is t.i.) alsoon the hyperplanez;» + z34 = 0. If we factorout
the subspacespannedy the pointwith z;o = 734 = 1, zj = 0 otherwiseanduse
coordinatesz 3, Z»4, 214, 223), We obtaina point of the symplecticspacethe map
0 from linesto pointsis the duality previously defined.

To computetheimageof apoint p = (a1, a2, as, a4) undertheduality, take two
t.i. linesthroughthis point andcalculatetheirimages.If a; anday arenon-zero,
we canusethelinesjoining p to the points(ay, az,0,0) and(0, a4, a1,0); theim-
agesare(ajag, apau, ajau, aag) and(a%, aﬁ, 0,a1a2 +azas). Now theimageof the
line joining thesepointsis foundto bethepoint (a2, a3, a3, a2). Thesameformula
is foundin all cases S0d? is the collineationinducedby thefield automorphism
X — X2, or 2 aswe have calledit.
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Supposehat thereis a field automorphisno with 62 = 2, andlet 8 = o~ 1;
then(80)? is theidentity, S0 38 is a polarity.

Corversely supposehatthereis apolarity. By Theorem7.14,ary collineation
g is inducedby the productof alineartransformatioranda uniquelydefinedfield
automorphisnB(g). Now ary duality hasthe form &g for somecollineationg;
and

6((39)%) = 26(g)*
So,if &g is a polarity, then28(g)? = 1, whenceo = 6(g) ! satisfiess? =2. =

In the casewhereF is afinite field GF(2™), the automorphisngroupof F is
cyclic of orderm, generatedby 2; andsothereis asolutionof 2 = 2 if andonly if
mis odd. We concludethatthe symplecticquadranglever GF(2™) hasa polarity
if andonly if mis odd.

We now examinethe setof absolutepointsandlines(i.e., thoseincidentwith
theirimage).A spreadis asetSof linessuchthatevery pointliesonauniqueline
of S. Dually, anovoidin a GQ is a setO of pointswith the propertythatary line
containsa uniquepoint of O. Notethatthis is quite differentfrom the definition
of anovoid in PG(3,F) givenin Section4.4; but thereis a connectionaswe will
see.

Proposition 8.8 Thesetof absolutepointsof a polarity of a GQ is an ovoid, and
the setof absolutdinesis a spread.

Proof Let d bea polarity. No two absolutepointsarecollinear For, if x andy
areabsolutepointslying ontheline L, thenx,y andLd would form atriangle.
Supposdhattheline L containsno absolutepoint. ThenL is notabsoluteso
Ld & L. Thus,thereis auniqueline M containingLd andmeetingL. ThenMd € L,
soMd is notabsolute But L meetsM, soLd andM¥d arecollinear;hencelLd, Md
andLNM form atriangle.
Thesecondstatemenis dual. =

Theorem 8.9 The set of absolutepoints of a polarity of a symplecticGQ in
PG(3,F) isanovoidin PG(3,F).

Proof Let o bethe polarity of the GQ G, and L the polarity of the projective
spacedefiningthe GQ. By the last result, the set O of absolutepointsof o is
anovoid in G. This meansthatthet.i. linesaretangentdo O, andthet.i. lines
througha point of O form a planepencil. Sowe have to prove thatarny otherline
of the projective spacameetsO in 0 or 2 points.
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Let X beahyperbolicline, p apointof XN O, andp® = L. ThenL meetsthe
hyperbolicline L+ in apointq. Let g° = M. Sinceq € L, we have p € M; soM
alsomeetsX+, in apointr. LetN =r°. Theng & N, soN meetsX. Also, N meets
O in apoints. Theline s° containssandN° =r. Sosis ontwo lines meeting
X+, whencese X. So,if [XNO| >1,then|XN 0| > 2.

Now let p’ be anothermpoint of XN O, anddefinel’ andd asbefore. Let K
betheline pq. Thenp € K, so p° = L containsx = K°. Also, K meetsL’, so
x is collinearwith p’. But the only point of L collinearwith p’ is q. Sox = q,
independenof p’. This meanshatthereis only onepoint p’ # p in XN O, and
this sethascardinality2. m

Remark Over finite fields, any ovoid in a symplecticGQ is an ovoid in the
ambientprojective 3-space.This is falsefor infinite fields. (SeeExercises2 and
3)

Hence,if F is a perfectfield of characteristic2 in which 2 = 2 for some
automorphisno, thenPG(3,F) possessesymplecticovoidsandspreadsThese
giveriseto inversie planesandto translatiorplanes asdescribedn Sectionst.1
and4.4. For finite fields F, thesearethe only known ovoids otherthanelliptic
quadrics.

Exercises

1. Supposehatthe pointsandlinesof a GQ areall the pointsandsomeof the
linesof PG(3,F). Prove thatthelinesthroughary pointform a planepencil,and
deducehatthe GQ is symplectic.

2. Prove thatan ovoid O in a symplecticGQ over the finite field GF(q) is
anovoid in PG(3,q). [Hint: asin Theorem8.3.5,it sufficesto prove that ary
hyperbolicline meetsO in 0 or 2 points. Now, if X is a hyperbolicline with
XN O #0, thenX' N O = 0, soat mosthalf of the g?(g2 + 1) hyperboliclines
meetO. Takeary N = 20?(q?+ 1) hyperbolicinesincludingall thosemeetingO,
andlet n; of thechoserlinesmeetO in i points.Provethaty nj =N, Y inj = 2N,
Si(i—1)n=2N]

3. Prove that, for ary infinite field F, thereis an ovoid of the symplectic
quadranglever F whichis notanovoid of theembeddingrojective space.
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8.5 Reguliand spreads

We metin Sectiond.1theconcept®f aregulusin PG(3, F) (thesetof common
trans\ersalsto threepairwiseskew lines), a spread(a setof pairwiseskew lines
coveringall the points),abispreada spreadcontainingaline of eachplane),and
a regular spread(a spreadcontainingthe regulusthroughary threeof its lines).
We now translatetheseconceptdo the Klein quadric.

Theorem 8.10 UndertheKlein correspondence

(a) a reguluscorrespondgo a conic, the intersectionif Q with a non-singular
planel, andthe oppositeregulusto theintersectionof Q with M-+;

(b) a bispread correspondgo an ovoid, a set of pairwise non-perpendicular
pointsmeetingeveryplaneon Q;

(c) aregular spreadcorrespondso theovoid Q "W+, wheeW is a line disjoint
fromQ.

Proof (a) Takethreepairwiseskew lines. They translatento threepairwisenon-
perpendiculapointsof Q, which spana non-singulamplanell (sothatQ NI is
aconicC). Now M+ is alsoa non-singulaplane,and Q N M+ is aconicC/, con-
sistingof all pointsperpendiculato the threegiven points. Translatingback,C’
correspondso the setof commontrans\ersalgo thethreegivenlines. This setis
aregulus,andis oppositeto theregulusspannedy thegivenlines(corresponding
to C).

(b) This is straightforvard translation.Note, incidentally thata spread(or a
cospreadgorrespondso whatmightbecalleda“semi-ovoid”, wereit notthatthis
termis usedfor a differentconcept:thatis, a setof pairwisenon-perpendicular
pointsmeetingevery planein onefamily on Q.

(c) A regularspreads “generated’by arny four linesnotcontainedn aregulus,
in the sensehatit is obtainedby repeatedlyadjoiningall the linesin a regulus
throughthreeof its lines. On Q, thefour givenlinestranslatanto four points,and
the operationof generatioreavesus within the 3-spacehey span. This 3-space
hasthe form W+ for someline W; andno point of Q can be perpendiculato
every point of sucha 3-space. =

Notethata line disjoint from Q is anisotropic;suchlinesexist if andonly if
thereis anirreduciblequadraticover F, thatis, F is not quadraticallyclosed.(We
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saw earlierthe constructiorof regularspreadsif K is aquadraticextensionof F,
take therank 1 subspacesf arank 2 vectorspaceover K, andrestrictscalarso
F.)

Thusa bispreads regularif andonly if the correspondingvoid is contained
in a 3-spacesectionof Q. A bispreadwhoseovoid lies in a 4-spacesectionof
Q is calledsymplecti¢ sinceits lines aretotally isotropic with respectto some
symplecticform (by the resultsof Section8.3). An openproblemis to find a
simplestructuraltestfor symplecticbispreadgresemblinghe characterisationf
regularspreadsn termsof reguli).

We alsosaw in Section4.1 that spreadsf linesin projective spacegive rise
to translationplanes;andregular spreadgjive Desaguesian(or Pappian)planes.
Anotheropenproblemis to characteris¢he translationplanesarisingfrom sym-
plecticspreadr bispreads.

8.6 Triality

Now we increaseherankby 1, andlet Q beahyperbolicquadricin PG(7,F),
definedby aquadratidorm of rank4. Themaximalt.s.subspacebBave dimension
3, andarecalledsolids asusual,they fall into two families M; and M>, sothat
two solidsin the samefamily meetin a line or aredisjoint, while two solidsin
differentfamiliesmeetin a planeor a point. Any t.s. planeliesin a uniquesolid
of eachtype. Let P and L bethesetsof pointsandlines.

Considerthegeometrydefinedasfollows.

o ThePOINTsaretheelementof M.

e TheLINEs aretheelementf L.

e ThePLANEsareincidentpairs(p,M), pe P, M € M.
e TheSOLIDsaretheelementf P U Mo.

Incidenceis definedasfollows. BetweenPOINTs,LINEs andSOLIDs, it is as
in the quadric,with the additionalrule that the POINT M1 and SOLID M, are
incidentif they intersectn aplane.The PLANE (p, M) is incidentwith all those
varietiesincidentwith both p andM.

Proposition 8.11 Thegeometnjustdescribeds anabstractpolar spacan which
anyPLANE s incidentwith justtwo SOLIDs.
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Proof We considertheaxiomsin turn.

(P1): Consideyfor example,the SOLID M € M>. The POINTsincidentwith
M arebijective with the planesof M; the LINEs arethelinesof M; the PLANES
arepairs(p,M) with p € M, andsoarebijective with thepointsof M. Incidenceis
definedsoasto make thesubspacesontainedn M a projective spacasomorphic
to thedualof M.

For the SOLID p € P, the agumentis a little more delicate. The geometry
pt/pis ahyperbolicquadricin PG5, F), thatis, theKlein quadric;the POINTS,
LINEs andPLANEs incidentwith p arebijective with onefamily of planesthe
lines, and the other family of planeson the quadric; and hence(by the Klein
correspondencayith the points,linesandplanesof PG(3,F).

Theothercasesareeasier

(P2)is trivial, (P3)routine,and(P4)is proved by observingthatif p € P and
M € M, arenotincident,thenno POINT canbeincidentwith both.

Finally, the SOLIDs containingthe PLANE (p,M) arepandM only. =

Sothenew geometrywe constructeds itself ahyperbolicquadricin PG(7,F),
andhenceisomorphicto the original one. This implies the existenceof a mapt
which carries”L toitselfand? — M; — M> — P. This mapis calledatriality of
thequadric,by analogywith dualitiesof projective spaces.

It is moredifficult to describerialities in coordinatesAn algebraicapproach
mustwait until Chapterl0.

Exercise

1. Prove the Buekenhout-Shulpropertyfor the geometryconstructedn this
section. Thatis, let M € M1, L € £, andsupposehatL is notincidentwith M;
prove thateitherall membersf 94 containingL meetM in a plane,or just one
does,dependingon whetherL is disjointfrom M or not.

8.7 An example

In this sectionwe applytriality to thesolutionof acombinatorialproblemfirst
posedandsettledby Breachand Street[2]. Our approachollows Cameronand
Prager[13].

Considerthe setof planesof AG(3,2). They form a3-(8,4,1) design thatis,
acollectionof fourteend-subsetsf an8-set,any threepointscontainedn exactly
oneof them. Thereare (§) = 70 4-subsetsltogethercanthey bepartitionedinto
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five copiesof AG(3,2)? Theansweis “no”, ashasbeenknown sincethetime of
Cayley. (In fact,therecannotbe morethantwo disjoint copiesof AG(3,2) onan
8-set;a constructionwill begivenin the next chapter) Breachand Streetasled:
whatif we take a 9-set? This has (?1) = 126 4-subsetsand canconcevably be
partitionedinto nine copiesof AG(3,2), eachomitting onepoint. They proved:

Theorem 8.12 Thee are exactly two non-isomorphicwaysto partition the 4-
subsetof a 9-setinto nine copiesof AG(3,2). Both admit 2-transitivegroups.

Proof Firstwe constructhetwo examples.

1. Rggardthe9-setastheprojectiveline over GK(8). If ary pointis designated
asthe point at infinity, the remainingpointsform an affine line over GF(8), and
hence(by restrictingscalarsyanaffine 3-spaceover GF(2). We take the fourteen
planesof this affine 3-spaceasone of our designs,and performthe samecon-
structionfor eachpoint to obtainthe desiredpartition. This partitionis invariant
underthe groupPl'L(2,8), of order9-8-7-3 = 1512. The automorphisngroup
is the stabiliserof the objectin the symmetricgroup; sothe numberof partitions
isomorphicto this oneis theindex of this groupin S, whichis 9!/1512= 240.

2. Alternatively, thenine pointscarrythe structureof affine planeover GF(3).
Identifying one point as the origin, the structureis a rank 2 vector spaceover
GHK(3). Puta symplecticform b on the vectorspace. Now thereare six 4-sets
which aresymmetricdifferenceof two linesthroughthe origin, andeight4-sets
of the form {v}uU{w : b(v,w) = 1} for non-zerov. It is readily checled that
thesefourteensetsform a 3-design. Performthis constructionwith eachpoint
designatedas the origin to obtain a partition. This one s invariantunderthe
groupASL(2,3) generatedy the translationsand Sp(2, 3) = SL(2,3), of order
9-8-3=216,andthereare9! /216= 1680partitionsisomorphicto this one.

Now we shaw thatthereareno others.We usethe terminologyof codingthe-
ory. Note thatthe fourteenwordsof weight4 supportingplanesof AG(3, 2), to-
getherwith theall-0 andall-1 words,form the extendedHammingcodeof length
8 (the codewe metin Section3.2, extendedby anoverall parity check);it is the
only doubly-evenself-dualcodeof length8 (thatis, the only codeC = Ct with
all weightsdivisible by 4).

Let V be the vector spaceof all words of length9 and even weight. The
function f(v) = %wt(v) (mod2) is a quadraticform on V, which polarisesto
the usualdot product. Thus maximalt.s. subspacesor f arejust doubly even
self-dualcodes,and their existenceshows that f hasrank 4 andsois the split
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form definingthetriality quadric.(ThequadricQ consistof thewordsof weight
4 and8.)

Supposewne have a partition of the 4-setsinto nine affine spaces.An easy
countingargumentshaws thatevery pointis excludedby just oneof the designs.
Soif we associatevith eachdesignthe word of weight 8 whosesupportis its
point set,we obtaina solid on the quadric,andindeeda spreador partition of the
quadricinto solids.

All thesesolidsbelongto thesamefamily, sincethey arepairwisedisjoint. So
we canapply thetriality mapandobtaina setof nine pointswhich are pairwise
non-collineaythatis, anovoid. Corversely ary ovoid givesa spread.In fact,an
ovoid givesa spreadof solidsof eachfamily, by applyingtriality andits inverse.
Sothetotal numberof spreadss twice the numberof ovoids.

The nine words of weight 8 form an ovoid. Any ovoid is equialentto this
one. (Considerthe Grammatrix of inner productsof the vectorsof anovoid; this
musthave zeroson the diagonalandoneselsavhere.) The stabiliserof this ovoid
is the symmetricgroup S. So the numberof ovoids is the index of & in the
orthogonalgroup,which turnsoutto be 960. Thus,thetotal numberof spreadss
1920= 240+ 1680,andwe havethemall! =

8.8 Generalisedpolygons

Projectve andpolarspacesreimportantmembersf alargerclassof geome-
tries calledbuildings. Much of theimportanceof thesederivesfrom the factthat
they arethe“natural” geometriesor arbitrarygroupsof Lie type,justasprojective
spacesarefor lineargroupsandpolarspacedor classicalgroups. The groupsof
Lie typeinclude,in particular all the non-abeliarfinite simplegroupsexceptfor
the alternatinggroupsandthe twenty-sixsporadicgroups.| do not intendto dis-
cusshuildingshere— for this, seethelecturenotesof Tits [S] or therecentbooks
by Brown [C] andRonan[P] — but will considerthe rank 2 buildings, or gener
alisedpolygonsasthey arecommonlyknown. Theseincludethe 2-dimensional
projectve and polar spaceqthat is, projectve planesand generalisedjuadran-
gles).

Recallthat a rank 2 geometryhastwo typesof varieties,with a symmetric
incidencerelation;it canbethoughtof asabipartitegraph.We usegraph-theoretic
terminologyin thefollowing definition. A rank2 geometryis agenerlisedn-gon
(wheren > 2) if

(GP1)it is connectedvith diametem andgirth 2n;
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(GP2)for ary varietyx, thereis avarietyy at distancen from x.

It is left to the readerto checkthat, for n = 2,3, 4, this definition coincides
with that of a digon, generalisedrojective planeor generalisedjuadranglee-
spectvely.

Let G be a generalisedh-gon. The flag geometryof G hasasPOINTsthe
varietiesof G (of both types),and as LINEs the flags of G, with the obvious
incidencebetweenPOINTsandLINEs. It is easilychecledto be a generalised
2n-gonin which every line hastwo points;andary generalise@n-gonwith two
pointsperline is the flag geometryof a generalisedh-gon. In future, we usually
assumethat our polygonsare thick, thatis, have at leastthreevarietiesof one
type incidentwith eachvariety of the othertype. It is alsoeasyto show thata
thick generalisegolygonhasorders, thatis, the numberof pointsperline and
the numberof lines per point are both constant;and,if n is odd, thenthesetwo
constantareequal. [Hint: in general,if varietiesx andy have distancen, then
eachvarietyincidentwith x hasdistancen — 2 from auniquevarietyincidentwith
y, andviceversa]

We let s+ 1 andt + 1 denotethe numbersof pointsperline or linesperpoint,
respectrely, with the provisothateitheror bothmaybeinfinite. (If botharefinite,
thenthegeometryis finite.) Thegeometryisthickif andonlyif s,t > 1. Themajor
theoremaboutfinite generalisegolygonsis the Feit-Higmantheorem (Feit and
Higman[17]:

Theorem 8.13 A thick genemlisedn-goncanexistonlyforn=2,3,4,60r8. m

In the courseof the proof, FeitandHigmanderive additionalinformation:
e if n=6,thenst isasquare;
e if n=8,then24 is asquare.

Subsequentiffurther numericalrestrictionshave beendiscovered;for exam-
ple:

e if n=40rn=8,thent < £ ands< t?
e if n=6,thent < s® ands< t3.

In contrastto the situationfor n = 3 andn = 4, the only known finite thick
generalised-gonsand 8-gonsarisefrom groupsof Lie type. Thereare6-gons
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with s=t = g andwith s= g, t = ¢° for ary prime power g; and 8-gonswith
s=q,t = ¢, whereq is anoddpower of 2. In thenext sectionwe discussaclass
of 6-gonsincludingthefirst-mentionedinite examples.

Thereis no hopeof classifyinginfinite generalisecdh-gons,which exist for all
n (Exercise?). However, assumingasymmetrycondition,the Moufangcondition
which generaliseshe existenceof centralcollineationsin projectve planes,and
is also equivalentto a generalisatiorof Desagues’theorem,Tits [35, 36] and
Weiss[39] derivedthe sameconclusionasFeit andHigman,namely thatn = 2,
3,4,60r8.

As for quadranglesthe questionof the existenceof thick generalisedh-gons
(for n > 3) with s finite andt infinite is completelyopen. Of course,n mustbe
evenin suchageometry!

Exercises

1. Prove theassertionglaimedto be“easy”in thetext.
2. Construcinfinite “free” generalised-gonsfor any n > 3.

8.9 Somegeneralisedhexagons

In this sectionwe usetriality to constructageneralisedhexagoncalledGy(F)
over ary field F. The constructionis dueto Tits. The namearisesfrom the fact
thattheautomorphisngroupsof thesehexagonsarethe Chevalley groupsof type
Gg, asconstructedy Chevalley from thesimpleLie algebraG, overthecomple
numbers.

We beggin with the triality quadricQ. Let v be a non-singularvector Then
vt N Q is arank3 quadric.lts maximalt.s. subspaceareplanesandeachliesin
auniquesolid of eachfamily on Q. Corversely asolidon Q meetsv in aplane.
Thus, fixing v, thereis arebijectionsbetweernthe two familiesof solidsandthe
setof planeson Q’ = Q Nv+. Onthis set,we have the structureof thedual polar
spaceinducedby the quadricQ’; in otherwords,the POINTsarethe planeson
this quadric,the LINES arethe lines, andincidenceis reversedinclusion. Call
this geometryg.

Applying triality, we obtain a representatiorof G usingall the points and
someof thelinesof Q.

Now we take a non-singularvector which may aswell be the sameasthe
vectorv alreadyused. (Sincewe have appliedtriality, thereis no connection.)
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Thegeometry# consistof thosepointsandlinesof G whichlie in vt. Thus,it
consistf all the points,andsomeof thelines, of thequadricQ’.

Theorem 8.14 # is a genemlisedhexagon.

Proof First we obsene somepropertiesof the geometryG, whosepoints and
linescorrespondo planesandlinesonthequadricQ’. Thedistancebetweertwo
pointsis equalto the codimensiorof their intersection If two planesof Q/ meet
non-trivially, thenthe correspondingsolidsof Q (in the samefamily) meetin a
line, andso (applyingtriality) the pointsareperpendicularHence:

(a) Pointsof G lie atdistancel or 2 if andonly if they areperpendicular

Let X, y,z w befour pointsof G forming a 4-cycle. Thesepointsarepairwise
perpendiculatby (a)),andsothey spanat.s.solid S. We prove:

(b) Thegeometryinducedon Sby G is asymplecticGQ.
Keepin mind thefollowing transformations:

solidS

— point p (by triality)

— quadricQ in p*/p (residueof p)
— PG(3,F) (Klein correspondence).

Now pointsof Sbecomesolidsof onefamily containingp, thenplanesof one
family in Q, thenpointsin PG(3, F); sowe canidentify thetwo endsof this chain.

Linesof G in Sbecomdinesthroughp perpendiculato v, thenpointsof Q
perpendiculato (v) = (v, p)/p, thent.i. lines of a symplecticGQ, by the corre-
spondencelescribedn Section8.3. Thus(b) is proved.

A propertyof G establishedn Proposition7.9is:

(c) If xisapointandL aline, thenthereis a uniquepoint of L nearesto x.
We now turn our attentionto 4/, andobsenre first:
(d) Distancesn H arethesameasin G.

For clearlydistancesn # areatleastasgreatasthosein G, andtwo pointsof #
atdistancel (i.e., collinear)in G arecollinearin #.

Supposéhatx,y € # lie atdistance2 in G. They arejoined by morethan
one path of length 2 there,hencelie in a solid S carryinga symplecticGQ, as
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in (b). The pointsof # in Sarethoseof SNv+, a planeon which the induced
substructurés a planepencilof linesof #/. Hencex andy lie atdistance2 in 4.
Finally, letx,y € H lie atdistance3in G. Takealine L of A throughy; there
is apointz of G (andhenceof #) on L atdistance2 from x (by (c)). Sox andy
lie atdistance3 in #.
In particular property(c) holdsalsoin #.

(e) For ary pointx of #, thelinesof # throughx form a planepencil.

For, by (a), theunionof thesdinesliesin at.s.subspacehjencethey arecoplanar;
therearenotriangles(by (c)), sothis planecontaingwo pointsatdistance2; now
theargumentfor (d) applies.

Finally:

(f) H is ageneralisedhexagon.

We know it hasdiameter3, and(GP2)is clearlytrue. A circuit of lengthlessthan
6 would be containedn at.s. subspaceleadingto a contradictionasin (d) and
(e). (In fact,by (c), it is enoughto excludequadrangles.) m

CamerorandKantor[12] giveamoreelementarygonstructiorof thishexagon.
Their constructionwhile producingthe embeddingn Q’, depend®nly on prop-
ertiesof thegroupPSL(3, F). However, theproofthatit worksuseshothcounting
argumentsand algumentsaboutfinite groups;it is not obvious that it works in
general althoughtheresultremainsrue.

If F is aperfectfield of characteristi@ then,by TheorenB.5,Q’ isisomorphic
to the symplecticpolar spaceof rank 3; so # is embeddedsall the pointsand
someof thelinesof PG(5,F).

Two furtherresultswill bementionedvithoutproof. First,if thefield F hasan
automorphisnof order3, thenthe constructionof # canbe “twisted”, muchas
canbedoneto theKlein correspondenci® obtainthe duality betweerorthogonal
and unitary quadranglegmentionedin Section8.3), to produceanothergener
alisedhexagon,calledD4(F). In thefinite case,D4(g) hasparameters = @2,
t=q.

Secondthereis a constructiorsimilar to thatof Section8.4. The generalised
hexagonGy(F) is self-dualif F is a perfectfield of characteristic3, andis self-
polarif F hasanautomorphisno satisfyingo? = 3. In thiscasethesetof absolute
pointsof the polarity is an ovoid, a setof pairwisenon-collinearpointsmeeting
every line of 4, andthe groupof collineationscommutingwith the polarity has
asa normalsubgroupthe Reegroup 3, (F), acting2-transitiely on the pointsof
theovoid.
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Exercise

1. Shaw thatthe hexagon# hastwo disjoint planesE andF, eachof which
consistof pairwisenon-collinear(but perpendicularpoints. Shav thateachpoint
of E is collinear(in #/) to the pointsof aline of F, anddually, sothatE andF
are naturally dual. Shov that the points of E U F, andthe lines of # joining
their points,form a non-thickgeneralisedexagonwhich is the flag geometryof
PG(2,F). (Thisis the startingpoint in the constructionof Cameronand Kantor
referredto in thetext.)
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The geometry of the Mathieu groups

Thetopic of this chapteris somethingof a diversion,but is includedfor two rea-
sons:first, its intrinsicinterest;andsecondpecaus¢hegeometrieslescribedere
satisfyaxiomsnottoo differentfrom thosewe have seenfor projectve, affine and
polarspacesandsothey indicatethe naturalboundarie®f thetheory

9.1 TheGolay code

The basicconceptsof codingtheorywereintroducedin Section3.2, where
we alsosav thata non-trivial perfect3-errorcorrectingcodemusthave length23
(seeExercise3.2.2). Sucha codeC maybeassumedo containthe zeroword (by
translation)andsoary otherword hasweightatleast7; and

223
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We extendC to a codeC of length24 by addinganoverall parity ched; that
is, we puta0in the 24" coordinateof awordwhoseweight(in C) is even,anda 1
in aword whoseweightis odd. Theresultingcodehasall wordsof evenweight,
and henceall distancesetweenwords even; sinceaddinga coordinatecannot
decreas¢hedistancebetweenwords,theresultingcodehasminimumdistanceB.
In this sectionwe outlinea proof of thefollowing result.

212

Theorem 9.1 Thee is a uniquecodewith length 24, minimumdistance8, and
containing2!? codevordsoneof which is zeio (upto coorinatepermutations). m

This codeis known asthe (extendedbinary) Golay code. It is a linear code
(thelinearity doesnot have to beassumed).

137
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Remark Therearemary construction®f this code;for anaccountof someof
theseseeCameromandVanLint [F]. As ageneralprinciple,agoodconstruction
of anobjectleadsto a proof of its uniquenesgby shaving thatit mustbe con-
structedthis way), thenceto a calculationof its automorphisngroup (sincethe
objectis uniquelybuilt arounda startingconfiguration,andso ary isomorphism
betweensuchstartingconfigurationsxtendsuniquelyto anautomorphism)and
giveson the way a subgroupof the automorphisngroup(consistingof the auto-
morphismgroup of the startingconfiguration). This point will not be laboured
below, but the interestedeademay lik e to examinethis andotherconstructions
from this point of view. The particularconstructiongiven herehasbeenchosen
for two reasonsfirst, asanapplicationof the Klein correspondenceindsecond,
sinceit makescertainpropertiesof the automorphisngroupmoreaccessible.

Proof First, we review the isomorphismbetweenPSL(4,2) and Ag outlinedin
Exercise8.1.1. Let U be the binary vector spaceconsistingof words of even
weightandlength8, Z the subspaceonsistingof the all-zeroandall-onewords,
andV =U/Z. The function mappinga word of U to 0 or 1 accordingasits
weightis congruento 0 or 2 mod4 inducesaquadratidorm f onV, whosezeros
form the Klein quadricQ; let W be the vectorspaceof rank 4 whoselines are
bijective with the pointsof Q. Notethatthe pointsof Q correspondo partitions
of N={1,...,8} into two subset®f size4.

LetQ = NUW. Thissetwill index thecoordinate®f thecodeC we construct.
A wordsof C will bespecifiedby its support,asubsebf N anda subsebf W. In
particular ,N,W andN UW will bewords;sowe cancomplementhe subsebf
N or the subsebf W definingaword andobtainanothemword.

Thefirst non-trivial classof wordsis obtainedoy combiningthe emptysubset
of N (or thewholeof N) with ary hyperplanegn W (or its coset).

A complementarypair of 4-subsetof N corresponddo a point of Q, and
henceto aline L in W. Each4-subsebf N, togethemwith any cosetof the corre-
spondingL, is a codevord. Furtherwordsareobtainedby replacingthe cosetof
L by its symmetricdifferencewith a cosetof a hyperplanenot containingL (such
acosetmeetsl in two vectors).

A 2-subsetof N, or the complementarys-subsetrepresentsa non-singular
point, which translatesnto a symplecticform b on W. The quadricassociated
with any quadraticform which polarisesto b, togetherwith the 2-subsetof N,
definesa codevord.
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This givesusartotal of

44+ 4-15+ (i) (4+4-7)+ <8) 16-4=2"

2
codeavords.Moreover, afairly smallamountof casecheckingshavsthatthecode
is linear. Its minimumweightis visibly 8.

We now outlinetheproofthatthereis auniquecodeC of length24, cardinality
212 andminimumweight8, containing0. Countingargumentsshaw thatsucha
codecontains759wordsof weight 8, 2576 of weight12, 759 of weight 16, and
the all-1 word 1 of weight24. Now, if the codeis translatedoy any codevord,
the hypothesesitill hold, and so the conclusionaboutweightsdoestoo. Thus,
the distancedetweenpairsof codevordsare0, 8, 12,16, and24. It follows that
all inner productsarezero,soC c C*; it thenfollows from the cardinality that
C =C*, andin particularC is alinearcode.

Let N be an octad,andW its complement. Restrictionof codevordsto N
givesa homomorphisn® from C to a codeof length8 in which all wordshave
evenweight. It is readilychecledthateveryword of evenweightactuallyoccurs.
Sothekernelof 68 hasrank 5. This kernelis a codeof length16 andminimum
weight8. Thereis a uniquecodewith theseproperties:it consistf theall-zero
andall-onewords,togethemwith the characteristidunctionsof hyperplane®f a
rank4 vectorspace (Thisis thefirst-order Reed—Mulleicodeof length16.) Thus
we have identifiedW with a vectorspaceandfoundthefirst non-trivial classof
wordsin the earlierconstruction.

Now, to bebrief: if BisanoctadmeetingN in four points,thenBNW is aline;
if [IBNN|=2,thenBNW is a quadric;andall the otherdetailscanbe checled,
givensufficient perseerence. m

Theautomorphisngroupof theextendedGolaycodeis the54-transitve Math-
ieu groupMo4. Thisis oneof only two finite 5-transitve groupsotherthansym-
metric and alternatinggroups;it is one of the first of the 26 “sporadic” simple
groupsto be found; andits geometryis the startingpoint for the constructionof
mary othersporadiogroups(the Conway andFischergroupsandthe“Monster”).
ThegroupMa4 will beconsideredurtherin Section9.4.

9.2 TheWitt system

Let X bethe setof coordinatepositionsof the Golay codeG. Now arny word
canbeidentifieduniquelywith the subsebf X consistingof the positionswhere
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it hasentriesequalto 1 (its suppor). Let B be the setof supportsof the 759
codeavordsof weight8. An elementf 3B is calledanoctad the supportof aword
of weight12in G is calledadodecad

Fromthelinearity of G, we seethatthe symmetricdifferenceof two octadsis
thesupportof aword of G, necessarilyanoctad,a dodecadpr the complemenof
anoctad;theintersectionof the two octadshascardinality4, 2 or O respectiely.
Threepairwisedisjoint octadsform a trio. (In our constructionof the extended
Golaycodein thelastsection thethree“blocks” of eightcoordinategorm atrio.)

Proposition 9.2 (X, B) is a’5-(24,8,1) designor Steinersystem.

Proof As we have just seen,it is impossiblefor two octadsto have morethan
four pointsin common sofive pointslie in at mostoneoctad.Sincethereare759
octads,the averagenumbercontainingfive pointsis 759- (g) / (254) = 1; sofive
pointslie in exactly one octad. However, the propositionfollows more directly
from the propertiesof the codeG.

Take ary five coordinatesanddeleteoneof them. Theremainingcoordinates
supporta word v of weight4. But the Golay codeobtainedby deletinga coor
dinatefrom G is perfect3-errorcorrecting,and so containsa uniqueword c at
distance3 or lessfrom v. It musthold thatc hasweight7 andits supportcontains
thatof v (andc is the uniquesuchword). Re-introducinghe deletedcoordinate
(which actsasa parity checkfor the Golay code),we obtaina uniqueoctadcon-
tainingthegiven5-set. =

This designis known asthe Witt systemWitt constructedt from its automor
phismgroup,the MathieugroupM,4, thoughnowdaysthe proceduras normally
reversed.

Now chooseary three coordinates,and call them coq, 00y, o3, Let X' =
X\ {001,005, 003}, andlet B’ be the setof octadscontainingthe chosenpoints,
with thesepointsremoved. Then (X', B') is a 2-(21,5, 1) design,thatis, a pro-
jective planeof order4. Sincethereis a uniqueprojectve planeof order4 (see
Exercise4.3.6),it is isomorphicto PG(2,4).

Proposition 9.3 Thegeometrywhosevarietiesareall subset®f X of cardinalities
1, 2, 3 and4, andall octads,with incidencedefinedby inclusion,belongsto the
diagram

C C C
o o 0.
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Theremainingoctadscanbeidentifiedwith geometricconfigurationsn PG(2,4).
We outline this, omitting detailedverification. In fact, the procedurecanbe re-
versedandtheWitt systenconstructedrom objectsn PG(2,4). Seel iineturg [N]
for thedetailsof this construction.

1. An octadcontainingtwo of the threepointsc; correspondso a setof six
pointsof PG(2,4) meetingary line in 0 or 2 points,in otherwords,a hyperosal.
All 168 hyperovals occurin this way. If we call two hyperoals “equivalent” if
their intersectionhaseven cardinality we obtaina partition into threeclasseof
size56, correspondingo thethreepossiblepairsof pointseo;; sothis partitioncan
be definedinternally.

2. An octadcontainingone point «; correspondgo a setof seven points
of PG(2,4) meetingevery line in 1 or 3 points, thatis, a Baer subplangwhen
equippedwith thelinesmeetingit in threepoints). Again, all 360 Baersubplanes
occur andthe partitioncanbeintrinsically defined.

3. An octadcontainingnoneof thepointseo; is asetof eightpointsof PG(2, 4)
whichis thesymmetriadifferenceof two lines. Every symmetricdifferenceof two
linesoccurs(thereare210suchsets).

Sinceoctadsanddodecadslsointersectevenly, we canextendthis analysis
to dodecads.Considera dodecadcontainingeq, > andcos. It containsnine
pointsof PG(2,4), meetingevery line in 1 or 3 points. Thesenine pointsform
a unital, the setof absolutepointsof a unitary polarity (or the setof zerosof a
non-dgyenerateHermitianform). Their intersectionof size 3 with linesform a
2-(9,3,1) design,a Steinertriple systemwhich is isomorphicto AG(2, 3), and
is alsofamousasthe Hessianconfigurtion of inflection pointsof a non-singular
cubic. (Sincethe field automorphisnof GF(4) is a — a2, the Hermitianform
XoX] +X1Xg +X2%5 is acubicform, andits zerosform acubiccurve; in thisspecial
casegvery pointis aninflection.)

Exercises

1. Verify the connectiondbetweernctadsanddodecadsndconfigurationsn
PG(2,4) claimedin thetext.

2. Let B beanoctad,andY = X\ B. Considerthe geometryG whosepoints
arethoseof Y; whoselinesareall pairsof points;whoseplanesareall setsB’\ B,
whereB' is an octadmeetingB in four points; andwhosesolids are the octads
disjointfrom B. provethat G is theaffine geometryAG(4, 2).
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9.3 Sextets

A tetrad is a setof four points of the Witt system. Any tetradis contained
in five octadswhich partitionthe remainingtwenty pointsinto five tetrads.Now
the symmetricdifferenceof two octadsintersectingn atetradis anoctad;sothe
unionof ary two of oursix tetradds anoctad.A setof six pairwisedisjointtetrads
with this propertyis calledaidxsetet

Proposition 9.4 Let G bethegeometrywhosePOINTS LINESand PLANESare
the octads, trios and sextetsrespectivelywith incidencedefinedas follows: a
LINE is incidentwith any POINT It contains;a PLANEis incidentwith a POINT
which is the unionof two of its tetrads;anda PLANE s incidentwith a LINE if it
is incidentwith eac POINT of the LINE. ThenG belongsto the diagram

L

o——O—O
bl

whele —L o is thelinear spaceconsistingof pointsandlinesof PG(3,2).

Proof Calculateresidues.Take first a PLANE or sextet. It containssix tetrads;
theunion of ary two of themis a POINT, andary partitioninto threesetsof two
isaLINE. Thisis arepresentationf theuniqueGQwith s=t = 2 thatwe sav in
Section7.1.

Now considerthe residueof a POINT or octad. We saw in Exercise9.2.2
thatthe complemenbf anoctadcarriesan affine spaceAG(4, 2); LINEs incident
with the POINT correspondo parallelclassesf planesin the affine space and
PLANEsi ncidentwith it to parallelclasse®f LINEs. Projectvising anddualis-
ing, we seethe pointsandlinesof PG(3, 2).

Finally, any POINT and PLANE incidentwith acommonLINE areincident
with oneanother =

The geometrydoesnot containobjectswhich would correspondo the planes
of PG(3,2) in the residueof a point. The diagramis sometimegdravn with a
“ghostnode”correspondingo thesenon-eistentvarieties.

Exercise

1. In the geometryG of Proposition9.4, definethe distancebetweentwo
pointsto bethe numberof lineson a shortespathjoining them. Prove that,if x is
apointandL aline, thenthereis auniquepointof L at minimumdistancerom x.
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9.4 Thelarge Mathieu groups

Justasevery goodconstructiorof the Golay codeor the Witt systemcontains
the seedsf a uniquenesproof (aswe obsenedin Section9.1), so every good
uniquenesproofcontaingheseed®f anamgumentestablishingariousproperties
of its automorphisnmgroup(in particular its order andsomelarge subgroupthe
particularsubgroupdependingntheconstructiorused).l will outlinethisfor the
constructiorof Section9.1.

Theorem 9.5 Theautomorphisngroup of the Golay code or of the Wtt system,
is a 5-transitivesimplegroupof order 24-23-22-21-20- 48.

Remark This groupis of coursethe MathieugroupMa4. Part of the reasorfor
theconstructiorwe gave (notthe simplestavailable!) is thatit makesourjob now
easier

Proof Firstnotethatthedesignandthecodehavethesameautomorphisngroup;
for thecodeis spannedy thedesign,andthedesignis the setof wordsof weight
8 in thecode.

Theuniquenesgroof shavs thatthe automorphisngroupis transitve on oc-
tads. For, giventwo copiesof the Golay code,andan octadin each,thereis an
isomorphismbetweerthe two codesmappingthe chosernoctadin thefirst to that
in the second.Also, the stabiliserof anoctadpreseresthe affine spacestructure
on its complementand (from the construction)nducesAGL(4,2) onit. (It in-
ducesAg on the octad,the kernelof this actionbeingthe translationgroupof the
affine space.)This givesthe orderof thegroup.

Giventwo 5-tuplesof distinctpoints,eachlies in a uniqueoctad. Thereis an
automorphisntarryingthefirst octadto the secondthen,sinceAg is 5-transitve,
we canfix the secondoctadand map the 5-tuple to the correctplace. The 5-
transitvity follows.

We alsohave a subgroupH = AGL(4,2) of our unknovn groupG, andit is
easilyseenthatH is maximal. SupposéhatN is a non-trivial normalsubgroupof
G. ThenHN = G, andH NN isanormalsubgroumf H, necessarilyheidentity or
thetranslationgroup.(If HNN = H thenN = G.) This givestwo possibilitiesfor
theorderof N, namely759and759- 16. But N, anormalsubgroupf a5-transitve
group,is atleast4-transitve,by anold theorenmof Jordanso24-23-22- 21divides
IN|, acontradiction We concludethatG is simple. =
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The stabiliserof threepointsis a group of collineationsof PG(2,4), neces-
sarily PSL(3,4) (by consideringorder). The ovals and Baersubplanegachfalll
into threeorbits for PSL(3,4), theseorbits beingthe classesisedin Linelurg’s
construction.The set-wisestabiliserof threepointsis PI'L(3,4). Looked at an-
otherway, LiUnelurg’s constructionand uniquenesgroof givesus the subgroup
PrL(3,4) of M.

9.5 Thesmall Mathieu groups

To concludethis chaptey | describebriefly the geometryassociatedvith the
MathieugroupMi2.

Therearetwo quitedifferentapproachesOnelocateghe geometrywithin the
Golaycode.ThegroupMi, canbe definedasthe stabiliserof a dodecadn May;
it actssharply5-transitively onthis dodecadandon the complementarglodecad,
but thetwo permutatiorrepresentationarenot equivalent. Thedodecad carries
adesignwhich canbeseenasfollows. It intersectsany octadin anevennumbey
at most6, of points; andary five pointsof D lie in a uniqueoctad, meetingD
in 6 points. Sothe intersectionf size 6 of octadswith D are the blocksof a
5-(12,6,1) designor Steinersystem.

Alternatively, thereare “characteristic3” objectswith propertiesresembling
the binary Golay code. Thereis a ternary Golay code a setof ternarywords of
length12 (thatis, entriesin GF(3)) forming a subspacef GF(3)? of rank 6, and
having minimumweight6; thesupportof weight6 of codevordsform theblocks
of thedesign.Alternatively, thereis asetof 12 pointsin PG(5, 3) onwhich M2 is
induced asfollows. Thereis aHadamad matrixH of sizel2x 12 (amatrix with
entries+1 satisfyingHH " = 121), uniqueup to row and column permutations
andsignchangespver GF(3), it hasrank6, andits rows spantherequiredpoints.
Now the designis obtainedasfollows. The point setis identifiedwith the setof
rows. Any two columnsagreein six rows anddisagredn the othersix, defining
two setsof size6 which areblocksof thedesign;andall 2- (122) = 132blocksare
obtainedn thisway.

Someconnectiorbetweercharacteristic and3 canbe seenfrom the obser
vationwe madein Section9.2,thata unitalin PG(2,4) is isomorphicto the affine
planeAG(2,3). It turnsout that the threetimes extensionsof thesetwo planes
areassociateavith codesin characteristic and3 respectiely, andthatoneex-
tensioncontainsthe other However, the large Witt systemis not embeddablén
PG(5,4), sotheanalogyis not perfect.
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Exercise

1. Let G=AG(2,3), andX thesetof linesof G (sothat|X| = 12). Consider
thesubset®f X of thefollowing types:

e all unionsof two parallelclasses;

e thelinesof two classexontaininga point p, andthoseof the othertwo not
containingp;

e aparallelclass,with thelines of the otherscontaininga fixed point p; and
thecomplement®sf these.

Shaow thatthese6 + 54+ 2- 36 = 132 setsof size 6 form a 5-(12,6,1) design.
Assumingthe uniquenessf this design prove thatAGL(2,3) C M1».
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Exterior powersand Clifford
algebras

In this chaptervariousalgebraicconstructiongexterior productsandClifford al-
gebrasyareusedio embedsomegeometrieselatedto projective andpolarspaces
(subspacendspinorgeometries)nto projective spacesin the processye learn
moreaboutthe geometrieshemseles.

10.1 Tensor and exterior products

Throughouthis chapterF isacommutatvefield (exceptfor abrief discussion
of why this assumptions necessary).

The tensorproductV ® W of two F-vectorspaces/ andW is the free-est
bilinear productof V andW: thatis, if (ascustomary)we write the productof
vectorsv € V andw € W asv ® w, thenwe have

(Vi+V2) QW =Vi QW+ V2QW, (av)@w=0a(vew),
VR (W1+W2) =VRWi1+VRWs, VR (aw) = a(vew).

Formally, we let X bethe F-vectorspacewith basisconsistingof all the ordered
pairs(v,w) (v € V,w € W), andY thesubspacepannedy all expression®f the
form (vq 4 v2,w) — (v1,w) — (v2,w) andthreesimilar expressionsthenV @ W =
X/Y, with v®@w theimageof (v,w) underthe canonicalprojection. Sometimes,
to emphasizehefield, we write V @ W.

This constructionwill only work asintendedoveracommutatve field. For

aB(veaw)=a(Bveaw) =pvaaw=p(veaw) = Ba(vlw),

147
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soif vew # 0 thena = Ba.
There are two representationsorvenientfor calculation. If V hasa basis
{V1,...,vn} andW abasis{wsi,...,wn}, thenV @ W hasabasis

{view;:1<i<n1<j<m}

If V andW areidentifiedwith F" and F™ respectiely, thenV @ W canbe
identifiedwith the spaceof n x m matricesover F, wherev® w is mappedo the
matrixv ' w.

In particulay rk(V @ W) =rk(V) - rk(W).

SupposehatV andW are F-algebragthatis, have an associatie multipli-
cationwhich is compatiblewith the vectorspacestructure). ThenV @ W is an
algebrawith therule

(Vi®@wi) - (V2®@Wa) = (V1-V2) ® (W1-W2).

Of course we canform thetensorproductof a spacewith itself; andwe can
form iteratedtensormproductsof morethantwo spacesLet ®"V denotethek-fold
tensorpower of V. Now thetensoralgebra of V is definedto be

00

T(V) = P®'V),

k=0

with multiplicationgivenby therule
(V1I®...®Vn) - (Vnt1®...®Vmin) =V1®...®@Vmyin

on homogeneouglements,and extendedlinearly. It is the free-estassociatre
algebrageneratedy V.

The exterior squake of avectorspaceV is thefree-esthilinearsquareof V in
which the squareof ary elementof V is zero. In otherwords, it is the quotientof
®?2V by thesubspacegeneratedy all vectorsy@v for v e V. Wewrite it asA?V,
orV AV, anddenoteheproductof v andw by v Aw. Notethatw Av = —vAw. If
{v1,...,vn} is abasisfor V, thenabasisfor V AV consistsof all vectorsvy Avj,
forl<i<j<n;so

rk(V AV) = (2) = in(n—1).

More generally we candefinethe k" exterior power AKXV asa k-fold multi-
linear product,in which any productof vectorsvanishesf two factorsareequal.
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Its basisconsistsof all expressionssj, A... Avj,, with 1 <i; < ... <ix <n; and
its dimensionis (})). Notethat AV = 0if k > n=rk(V).
Theexterior algebra of V is

n

AV) =P AY),

k=0

with multiplicationdefinedasfor thetensoralgebra.ts rankis 33 _ (i) = 2".

If 8 is alineartransformationonV, then8 inducesin a naturalway linear
transformationg§d*6 on ®*V, and AX6 on AXV, for all k. If rk(V) = n, thenwe
haverk(A"V) = 1,andsoA"6 is ascalar In fact, \" 0 = det(8). (Thisfactis the
basisof anabstractmatrix-free,definition of the determinant.)

Exercises

1. LetF beaskew field,V aright F-vectorspaceandW a left vectorspace.
Show thatit is possibleto defineV @ W asanabeliangroupsothat

(VI+V2) QW =VI®@W+V2QW, V& (W1+W2)=VRW1+VRW>2

and
(vo)@w=vQg (aw).

2. In theidentificationof F" ® F™ with the spaceof n x m matrices,shav
thatthe rank of a matrix is equalto the minimumr for which the corresponding
tensorcanbe expressedn the form {_,; vi @ wi. Shaw that,in sucha minimal
expressionys, ..., Vv, arelinearlyindependentasarews, ..., w;.

3. (a) If K is anextensionfield of F, andn a positive integer, prove that

Mn(F) ®F K = Mn(K),

whereM,(F) is thering of n x n matricesoverF.

(b) ProvethatCe®r C = Ca C.

4. Definethe symmetricsquae SV of a vectorspaceV, the free-estilinear
squareofV in whichv-w = w-v. Findabasisfor it, andcalculatets dimension.
More generally definethe k" symmetrigpowerSV, andcalculateits dimension;
anddefinethe symmetricalgebra S(V). If dim(V) = n, show thatthe symmetric
algebraonV is isomorphicto the polynomialring in n variablesover the base
field.

5. Provethat,if 6 is alinearmaponV, whererk(V) = n, then \" 6 = det(6).
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10.2 Thegeometry of exterior powers

LetV beanF-vectorspaceof rankn, andk apositiveintegerlessthann. There
area coupleof waysof defininga geometryon the setZy, = (V) of subspaces
of V of rankk (equivalently the (k— 1)-dimensionakubspacesf PG((;) — 1,F),
which | now describe.

The first approachproducesa point-line geometry For eachpair U1,U, of
subspacesf V with U C Uy, rk(U1) = k—1,rk(U2) =k+ 1, aline

L(Ul,Uz) = {W e2x:UiCcWCcC Uz}.

Now two pointslie in at mostoneline. For, if Wi,W, aredistinct subspacesf
rankk andWy, W, € L(U1,U>), thenU; C Wy N, and(Wj,Ws) C Uy; soequality
must hold in both places. Note that two subspacesare collinearif andonly if
their intersectionhascodimensionl in each. We call this geometrya subspace
geometry

In thecasek = 2, the pointsof thesubspacgeometryarethelinesof PG(n—
1,F), andits lines arethe planepencils. In particular for k = 2, n =4, it is the
Klein quadric.

The subspacgeometryhasthe following importantproperty:

Proposition 10.1 If three pointsare pairwise collinear, thenthey are contained
in a projectiveplane In particular, a pointnotona line L is collinear with none
oneor all pointsof L.

Proof Clearlythe secondassertiorfollows from thefirst. In orderto prove the
first assertionnotethattherearetwo kinds of projectve planesin the geometry
consistingof all pointsW (i.e., subspacesf rank k) satisfyingU; C W C Uy,
whereeitherrk(U;) = k— 1, rk(Uz) = k+ 2, or rk(U1) = k— 2, rk(Uz) = k+ 1.

So let Wi, W,, W5 be pairwisecollinearpoints. If rk(WinWoNWs) = k—1,
thenthe threepoints are containedin a planeof the first type; so supposenot.
Thenwe have rk(Wp "W NW5) = k— 2; and, by factoringout this intersection,
we may assumethat k = 2. In the projectve space Wi, W,, W5 are now three
pairwiseintersectindines,andsoarecoplanar Thusrk(W;,Wo,Ws) = k+ 1, and
ourthreepointslie in aplaneof thesecondype. =

A point-linegeometrysatisfyingthe secondconclusionof Proposition10.1is
calledagammaspace Gammaspacesreanaturalgeneralisatiof polarspaces
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(in theBuekenhout—Shulsense)andthis propertyhasbeenusedn severalrecent
characterisationssomeof which aresurveyedby Shult[29]).

The subspacgeometriehave naturalembeddingsn projective spacegjiven
by exterior powers, generalisinghe Klein quadric. Let X = /\"V; we consider
the projective spacePG(N — 1,F) basedon X, whereN = (}). This projective
spacecontainssomedistinguishedpoints, thosespannedoy the vectorsof the
formviA ... AV, forvy, ..., vk € V. We call thesepure products

Theorem 10.2 (a)viA...Avg=0if andonlyif vy,...,vk are linearly depen-
dent.

(b) Thesetof pointsof PG(N — 1, F ) spannedynon-zeo pure productstogether
with the lines meetingthis setin more thantwo points,is isomorphicto the
subspacgeometryzy (V).

Proof (a)If vy,...,vk arelinearly independentthenthey form part of a basis,
andtheir productis one of the basisvectorsof X, hencenon-zero. Corversely
if thesevectorsaredependentthenoneof themcanbe expressedn termsof the
others,andtheproductis zero(usinglinearity andthefactthata productwith two
equaltermsis zero).

(b) It follows from our remarksaboutdeterminantghat, if vq,...,vx arere-
placedby anotherk-tuplewith thesamespanthenvi A... Avk is multiplied by a
scalarfactor andthepointof PG(N — 1, F) it spandgs unalteredIf W; # W, then
we can(asusualin linearalgebra)choosea basisfor V containingbasedor both
W, andWs; the correspondingure productsaredistinct basisvectorsof X, and
sospandistinctpoints. The correspondencis one-to-one.

SupposehatW, andWs, arecollinearin thesubspacgeometrythenthey have
bases{vi,...,Vk_1,w1} and{vy,...,vk_1,w2}. Thenthe pointsspannedy the
vectors

VIA...AVK 1A (GW1+ BWz)

formalinein PG(N — 1, F) andrepresenall the pointsof theline in thesubspace
geometryjoining Wy andW\s.

Corversely supposehatvi A... Avg andwi A... Awy aretwo pureproducts.
By factoringout theintersectiorof the correspondingubspacesye mayassume
thatvy, ..., wy arelinearly independentlf k > 1, thenno othervectorin thespan
of thesetwo pure productsis a pureproduct. If k = 1, thenthe threepointsare
coplanar =
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The othernaturalgeometryon the setZy (V) is just the truncationof the pro-
jective geometryto ranksk — 1,k andk + 1; in otherwords, its varietiesarethe
subspacesfV of thesethreeranks,andincidences inclusion. Thisgeometryhas
no immediateconnectionwith exterior algebra;but it (or the more generalform
basednary generalisegrojectve geometryhasabeautifulcharacterisatiodue
to Spragug1981).

Theorem 10.3 (a) Thegeometryjustdescribechasdiagram
L* L

o—O—©
7

whee L* denoteghe classof dual linear spaces.

(b) Corversely anygeometrywith thisdiagram,in which chainsof subspaceare
finite, consistsof the varietiesof ranksk — 1,k andk + 1 of a genealised
projectivespaceof finite dimension two varietiesincidentif onecontains
theother

Proof Theresidueof avarietyof rankk — 1 is the quotientprojective spaceand
theresidueof a variety of rankk+ 1 is thedualof PGk, F). This establisheshe
diagram.

I will notgivetheproofof Spraguestheoremtheproofis by induction(hence
the needto assumdinite rank). Spragueshaows thatit is possibleto recognise

in the geometryobjectscorrespondingo varietiesof rank k — 2, theseobjects

togethemwith theleft andcentrenodes‘ormingthediagramoLo—Lo again,

but with thedimensionof theresidueof avarietybelongingto therightmostnode
reducedby 1. After finitely mary stepswe reachthe points,lines andplanesof
the projective spacewhichis recognisedy theVeblen—bungaxioms. m

Exercise

1. Show thatthe dual of the generalisechexagonG,(F) constructedn Sec-
tion 8.8 is embeddedn the subspacgeometryof lines of PG(6,F). [Hint: the
linesof the hexagonthrougha point x areall thosecontainingx in a planeW(x).]

10.3 Near polygons

In this sectionwe considercertainspecialpoint-line geometries.Thesege-
ometrieswill always be connectedandthe distancebetweentwo pointsis the
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smallestnumberof linesin a pathjoining them. A near polygonis a geometry
with thefollowing property:

(NP) Givenary point p andline L, thereis a uniquepoint of L nearesto p.

If anearpolygonhasdiametem, it is calleda near2n-gon
We begin with someelementarypropertiesof nearpolygons.

Proposition 10.4 In a nearpolygon,
(a) two pointslie onat mostoneline;

(b) theshortestircuit hasevenlength.

Proof (a)SupposehatlinesL;, L, containpointsps, p2. Letq € Ly. Thenqis at
distancel from thetwo pointsp1, p2 of Lo, andsois at distanced from a unique
point of Ly; thatis, q € L,. SoL1 C Ly; and,interchanginghesetwo lines, we
find thatL; = Lo.

If acircuit hasodd length2m+ 1, thena point lies at distancem from two
pointsof theoppositdine; soit liesatdistancen— 1 from somepoint of thisline,
andacircuit of length2mis formed. =

Any generalisegolygonis a nearpolygon; andary “non-degenerate’near
4-gonis ageneralisedjuadrangldseeExercisel).

Somedeeperstructuralpropertiesaregivenin the next two theoremswhich
werefound by ShultandYanushkd30].

Theorem 10.5 Supposehat x1xoX3X4 is a circuit of length4 in a near polygon,
at leastoneof whosesidescontainsmore thantwo points. Thenthere is a unique
subspaceontainingthesefour pointswhich is a genealisedquadrangle =

A subspacef thetype givenby this theoremis calleda quad

Corollary 10.6 Supposehata nearpolygonhastheproperties
(a) anyline containsmore thantwo points;

(b) anytwo pointsat distance2 are containedn a circuit of length4.



154 10. Exterior powess andClifford algebras

Thenthe points,linesandquadsform a geometrybelongingto the diagram

L

o———o0o—0,

We now assumehatthe hypothese®f this Corollary apply. Let p be a point
andQ aquad.We saythatthe pair (p, Q) is classicalif

(a) thereis a uniguepointx of Q nearesp;
(b) fory € Q, d(y, p) = d(x, p) + 1 if andonly if y is collinearwith x.

(Thepointxis the“gatewvay” to Q from p.) An ovoidin ageneralisedjuadrangle
is a setO of (pairwise non-collinear)points with the propertythat ary further

pointof thequadrangles collinearwith auniquepointof O. The point-quadpair

(p, Q) is ovoidal if thesetof pointsof Q nearesto p is anovoid of Q.

Theorem 10.7 In a nearpolygonwith at leastthreepointson a line, any point-
quadpair is eitherclassicalor ovoidal. =

A proofin thefinite caseis outlinedin Exercise2.

We now give an example,the sextet geometryof Section9.3 (which, aswe
alreadyknow, hasthe correctdiagram). Recall that the POINTSs, LINEs, and
“QUADSs” (aswe will now re-namethem) of the geometryare the octads,trios
andsextetsof the Witt system.We checkthatthis is a nearpolygon,andexamine
the point-quadpairs.

Two octadsgntersecin 0, 2 or 4 points. If they aredisjoint, they arecontained
in atrio (i.e., collinear). If they intersectin four points,they definea sextet, and
sosomeoctadis disjointfrom both; sotheir distances 2. If they intersecin two
points,their distances 3. Supposehat{B;, B, B3} is atrio andB anoctadnotin
thistrio. EitherB is disjoint from (i.e., collinearwith) a uniqueoctadin thetrio,
or its intersectionsvith themhave cardinalities4, 2, 2. In thelattercaseijt lies at
distance2 from onePOINT of the LINE, anddistance3 from the othertwo.

Now let B beaPOINT (anoctad),andSaQUAD (asextet). Theintersections
of B with the tetradsof S have the propertythatary two of themsumto 0, 2, 4
or 8; sothey areall congruentmod 2. If theintersectiondhave even parity, they
are4,4,0,0,0,0 (thePOINT liesin the QUAD) or 2,2,2,2,0,0 (B is disjointfrom
auniqueoctadincidentwith S andthe pair is classical).If they have odd parity,
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they are3,1,1,1, 1, 1; thenB hasdistance2 from the five octadscontainingthe
first tetrad,and distance3 from the others. Note thatin the GQ of order(2,2),
representedsthe pairsfrom a 6-set,the five pairscontainingan elementof the
6-setform anovoid. So (B, S) is ovoidalin this case.

10.3.1 Exercises

1. (a) A nearpolygonwith linesof size2 is a bipartitegraph.

(b) A near4-gon,in which no pointis joinedto all others,is a generalised
quadrangle.

2. Let Q beafinite GQwith orders,t, wheres > 1.

(a) Supposehatthe point setof Q is partitionedinto threesubsetA, B,C
suchthatfor ary line L, thevaluesof |[LNA|, |[LNB| and|LNC| areeitherl,s,0,
or0,1,s. ProvethatA is asingleton,andB the setof pointscollinearwith A.

(b) Supposehatthe point setof Q is partitionedinto two subsetsA andB
suchthatary line containsa uniquepointof A. Prove thatA is anovoid.

(c) Henceprove (10.3.4)in thefinite case.

10.4 Dual polar spaces

We now look atpolarspacesthe otherway up”. Thatis, givenanabstracpo-
lar spaceof polarrankn, we considethegeometrywhosePOINTsandLINEs are
thesubspacesf dimensiom — 1 andn — 2 respectiely, incidencebeingreversed
inclusion.(This geometrywasintroducedn Section7.4.)

Proposition 10.8 A dual polar spaceof rankn is a near2n-gon.
Proof Thisisimplicit in whatwe provedin Proposition7.9. =

Any dual polar spacehasgirth 4, and ary circuit of length4 is contained
in a uniquequad. Moreover, the point-quadpairs are all classical. Both these
assertiongare easily checled in the polar spaceby factoringout the intersection
of the subspacem question.

The converseof thisresultwasprovedby Camerorn9]. It is statedchereusing
the notationandideas(and simplifications)of Shultand Yanushkadescribedn
thelastsection.

Theorem 10.9 Let G bea near2n-gon.Supposéehat
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(a) any4-circuit is containedn a quad;
(b) any point-quadpair is classical,
(c) chainsof subspacearefinite.

Theng is a dual polar spaceof rankn.

Proof Theideasbehindtheproofwill besketched.

Given a point p, the residueof p (thatis, the geometryof lines and quads
containingp) is alinearspacepy hypothesiga). Using(b), it is possibleto shav
that this linear spacesatisfiesthe Veblen—Young axioms,and so is a projectve
space?(p) (possiblyinfinite-dimensional).We may assumehat this geometry
hasdimensiongreaterthan2 (otherwisethe next few stepsarevacuous).

Now, givenpointsp andg, let X(p,q) bethesetof linesthroughp (i.e., points
of P(p)) which belongto geodesicdrom p to g (thatis, which containpointsr
with d(q,r) = d(p,q) — 1). Thissetis asubspacef P(p). Let X beary subspace
of P(p), andlet

Y(p,X)={q: X(p,q) C X}.

It canbeshavnthat)’(p, X) isasubspacefthegeometrycontainingall geodesics
betweerary two of its points,andthat,if p’ is any pointof 9"(p, X), thenthereis
asubspac&’ of P(p') suchthaty (p',X") = 9 (p, X).

For thefinal step,it is shavn thatthe subspaceg’(p, X), orderedby reverse
inclusion,satisfytheaxioms(P1)—(P4)of Tits. =

Remark In thecasewhenary line hasmorethantwo points,condition(a) is a
consequencef (10.3.2),and(10.3.4)shans that(b) is equivalentto theassertion
thatno point-quadpairsareovoidal.

10.5 Clifford algebrasand spinors

Spinorsprovide projectve embeddingof somegeometriegelatedto dual
polar spacesmuchasexterior powersdo for subspacgeometries But they are
somevhatelusive,andwe have to constructhemvia Clifford algebras.

LetV beavectorspaceoveracommutatvefield F, and f aquadratidorm on
V; let b bethebilinearform obtainedby polarising f. The Clifford algebra C(f)
of f (or of the pair (V, f)) is the free-estalgebrageneratedy V subjectto the
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conditionthatv? = f(v)- 1 for all v € V. In otherwords, it is the quotientof the
tensoralgebraT (V) by theidealgeneratedby all elements/? — f(v)-1forveV.
Notethatvw +wv = b(v,w) - 1 for v,w € V.
The Clifford algebrais a generalisatiorof the exterior algebra,to which it
reducesf f isidenticallyzero.And it hasthe samedimension:

Proposition 10.10 Let{vy,...,vn} beabasisfor V. ThenC(f) hasa basiscon-
sistingof all vectos vj, ---v;,, for 0 <i; < ... <ix < n; andsork(C(f)) = 2".

Proof Any productof basisvectorscanberearrangednto non-decreasingrder
moduloproductsof smallernumbersof basisvectors,using

wWv = vw — b(v,w) - 1.

A productwith two termsequalcanhave its lengthreduced.Now the resultfol-
lows by multilinearity. =

In animportantspecialcasewe candescribethe structureof C( f).
Theorem 10.11 Let f bea split quadmatic form of rankn over F (equivalento
X1X2 + X3X4 + . . . + Xon—1Xon.

ThenC(f) = Mx(F), thealgebra of 2" x 2" matricesover F.

Proof It sufficesto find alinearmap® : V — Man(F) satisfying
(@) 6(V) generated/n(F) (asalgebrawith 1);
(b) B(v)%2 = f(v)l forallve V.

For if so,thenMan(F) is ahomomorphidmageof C(f); comparingdimensions,
they areequal.

We useinductionon n. For n = 0, the resultis trivial. Supposehat it is
true for n, with amap®. LetV =V L (x,y), where f (Ax + py) = A, Define
0:V = My (F) by
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= (g o) =(7 o)

extendedinearly.
To shaw generationet (55) € Moni1(F) be given. We may assumenduc-

tively thatA, B,C, D arelinearcombinationsf productsof 8(v), with v e V. The

samecombinationf productsof 8(v) havetheformsA = (Sg), etc. Now

Cc D

To establishitherelations we notethat

B(V+AX+py) = (eﬁ\() _Sév)> )

andthe squareof theright-handsideis (f (v) +Ap) (i), asrequired. m

(A B) — RB()B(y) + BB(x) + B(y)C + Bly) BB(x).

More generallytheamgumentshowvs thefollowing.
Theorem 10.12 If thequadmatic form f hasrankn andgerm fp, then
C(f) & C(fo) XE Mzn(F).
|

In particular C(x(z) + X1X2 + ... + Xon—1Xon) is the directsumof two copiesof
Man(F); and,if o isanon-squaren F, then

C(GX(Z) + X1X2 4 . .. + Xon—1X2n) = Man(K),

whereK = F(y/a).

Looked at more abstractly Theorem10.12 saysthat the Clifford algebraof
thesplit form of rankn is isomorphicto thealgebraof endomorphismsf avector
spaceS of rank 2". This spaceis the spinor space andits elementsare called
spinors. Notethattheconnectiorbetweerthespinorspaceandtheoriginal vector
spaces somavhatabstractandtenuous!lt is the spinorspacewhich carriesthe
geometricabktructuresve now investigate.

Exercise

1. ProvethattheClifford algebraf therealquadratidorms —x? and—x? — y?

respectrely areisomorphicto the complex numbersandthe quaternionsWhatis
the Clifford algebraof —x? — y? — 22?
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10.6 Thegeometry of spinors

In orderto connectspinorsto thegeometryof thequadratidorm, wefirst need
to recognisdhe pointsof a vectorspacewithin its algebraof endomorphisms.

letV beavectorspaceA the algebraof lineartransformation®f V. ThenA
isasimplealgebralf U is ary subspacefV, then

I(U)={acA:vaeU forallveV}

is aleft idealin A. Everyleft idealis of thisform (seeExercisel). Sothe projec-
tive spacebasednV isisomorphicto thelattice of left idealsof A. In particular
theminimalleft idealscorrespondo the pointsof the projectve space Moreover,
if U hasrank 1, thenl(U) hasrankn, andA (acting by left multiplication) in-
ducesthe algebraof lineartransformation®f U. In this way, the vectorspaceis
“internalised”in thealgebra.

Now let V carry a split quadraticform of rank n. If U is a totally singular
subspacef rankn, thenthe elementsf U generatea subalgebrasomorphicto
theexterior algebraof U. Let U denotethe productof the vectorsin a basisof U.
NotethatU is unchangedapartfrom a scalarfactor if a differentbasisis used.
ThenvuU = 0 wheneverv € V, u € U, andu # 0; sotheleft ideal generatedy
U hasdimensiorn2 (with abasisof theform {v;; .. .viklj }, where{vy,...,vp}is
a basisof a complemenfor U, and1 <i; <...<ix<n. Thus,U generates
minimal left idealof C(f). By the precedingparagraphthis ideal correspondso
apointof the projectve spacePG(2" — 1, F) basedbn the spinorspaces.

Summarisingwe have a mapfrom the maximaltotally singularsubspacesef
the hyperbolicquadricto a subsetof the pointsof projective spinorspace.The
elementsn theimageof this maparecalledpure spinors.

We now statesomepropertiesof purespinorswithout proof.

Proposition 10.13 (a) Theee is a decompositiorof the spinor spaceS into two
subspacest, S, ead of rank2"1. Anypure spinoris containedin one
of thesesubspaces.

(b) Anyline of spinor spacewhich containsmore thantwo pure spinors hasthe
form

A

{{U) :U ist.s.withrankn, U hastypee, U D W},

wheeW isat.s.subspace®frankn—2,ande=+1. =
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In (a),thesubspaceS™ andS~ arecalledhalf-spinorspaces

In (b), thetypeof amaximalt.s.subspacés thatdescribedn Section7.4. The
maximalt.s. subspacesontainingW form a dual polarspaceof rank2, whichin
this caseis simply a completebipartite graph,the partsof the bipartition being
the two typesof maximal subspace Any two subspacesf the sametype have
intersectiorwith evencodimensioratmost2, andhencentersectpreciselyin W.

The dual polar spaceassociatedvith the split quadraticform hastwo points
perline, andsoin generalis a bipartite graph. The two partsof the bipartition
canbe identified with the pure spinorsin the two half-spinorspaces.The lines
describedn (b) within eachhalf-spinorspaceform a geometry a so-calledhalf-
spinorgeometry two purespinorsarecollinearin thisgeometnyif andonly if they
lie at distance2 in the dual polar space.In general,distancesn the half-spinor
geometryarethosein the dualpolarspacehalved!

Proposition 10.14 If p is a pointand L a line in a half-spinor geometry then
eitherthereis a uniquepointof L nealestp, or all pointsof L are equidistanfrom

P.

Proof Recallthattheline L of the half-spinorgeometryis “half” of acomplete
bipartitegraphQ, which is a quadin the dual polar space.If thegatavayto Q is
onlL, it is thepointof L nearesto p; if it is onthe otherside,thenall pointsof L
areequidistanfromp. m

Thecases = 3,4 give usyetanothemway of looking attheKlein quadricand
triality.

Example n= 3. The half-spinorspacehasrank4. The diameterof the half-
spinorgeometryis 1, andsoit is a linear space;necessarilyPG(3,F): thatis,
every spinorin the half-spinorspaceis pure. Pointsof this spacecorrespondo
onefamily of maximalsubspacesntheKlein quadric.

Example n=4. Now the half-spinorspacesave rank 8, the sameasV. The
half-spinorspacehasdiamete2, and(by PropositioriL0.14)satisfieshe Buekenhout—
Shultaxiom. But we do notneedto usethefull classificatiorof polarspacesere,
sincethegeometryis alreadyembeddeih PG(7,F)! We concludethateachhalf-
spinorspaces isomorphicto the original hyperbolicquadric.

We concludeby embeddinga couple more dual polar spacesn projectve
spaces.
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Proposition 10.15 Let f be a quadratic form of rankn— 1 on a vectorspaceof
rank 2n — 1. Thenthe dual polar spaceof F is embeddeds all the pointsand
someof the lines of the half-spinorspaceassociatedvith a split quadmtic form
of rankn.

Proof We canregardthegivenspaceasof theform v, wherev is anon-singular
vectorin aspacecarryingasplit quadratidorm of rankn. Now eacht.s.subspace
of rankn— 1 for thegivenform is containedn auniquet.s.spaceof rankn of each
typefor thesplit form; sowe have aninjectionfrom the givendual polar spaceo
a half-spinorspace.The mapis onto: for if U is t.s. of rankn, thenU Nct has
rankn— 1. A line of thedualpolarspaceconsist=f all the subspacesontaining
afixedt.s. subspacef rankn— 2, andsotranslatesnto aline of the half-spinor
spaceasrequired. m

Proposition 10.16 Let K be a quadmtic extensionof F, with Galois automor
phismo. LetV bea vectorspaceof rank 2n over K, carrying a non-dgeneate
o-Hermitian form b of rankn. Thenthe dual polar spaceassociatedwvith b is
embeddablé a half-spinorgeometryoverF.

Proof LetH(v)=b(v,v). ThenH(v) € F for all v € V; andH is a quadratic
form onthe spacéVg obtainedby restrictingscalargo F. (NotethatVg hasrank
4n over F.) Now arny maximalt.i. subspacdor b is a maximalt.s. subspacdor
H of rank 2n; soH is a split form, andwe have an injection from pointsof the
dualunitary spaceo purespinors.Moreover, theintersectiorof ary two of these
maximalt.s.subspacebasevenF-codimensionn each;sothey all havethesame
type,andour mapgoesto pointsof a half-spinorgeometry

A line of thedualpolarspaces definedby at.i. subspacef rankn— 1 (over
K), which is t.s. of rank 2n — 2 over F; soit mapsto a line of the half-spinor
geometryasrequired. m

In the casen = 3, we have the duality betweenthe unitary and non-splitor-
thogonalspacesliscussedn Section8.3.

Exercise

1. (a) Prove thatthe setof endomorphismef V with rangecontainedin a
subspace) is aleft ideal.
(b) Prove that,if T hasrangeU, thenarny endomorphisnwhoserangeis
containedn U is aleft multipleof T.
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(c) Deducethat every left ideal of the endomorphisnring of V is of the
form describedn (a).
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