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Preface

This book is about the global character of solutions of the third-order ra-
tional difference equation
a+ By +yTn_1 + 0Tp_2

m = s :0,1,... 1
It A + an + anfl + D$n72 " ( )

with nonnegative parameters «, 3,7, 0, A, B, C, D and with arbitrary nonneg-
ative initial conditions x_o, x_1,xg such that the denominator is always pos-
itive.

We are primarily concerned with the boundedness nature of solutions, the
stability of the equilibrium points, the periodic character of the equation,
and with convergence to periodic solutions including periodic trichotomies.
However, our ultimate goal should be to extend and generalize the results of
rational equations to equations

Tn4+1 = f(xn, ce ,xn_k), n = 0, 1, cee
of the most general pattern.

For Eq.(1) and for each of its 225 special cases, we present the known re-
sults and/or derive some new ones. We also pose a large number of thought-
provoking open problems and conjectures on the boundedness character, the
global stability, and the periodic behavior of solutions of various special cases
of Eq.(1). The open problems are quite challenging and the conjectures
are based on numerous computer observations and analytic investigations.
We believe that research work on these open problems and conjectures is of
paramount importance for the development of the basic theory of the global
behavior of solutions of nonlinear difference equations of order greater than
one.

The large number of open problems and conjectures in rational difference
equations will be a great source of attraction for research investigators in this
dynamic area where, at the beginning of the third millennium, we know so
surprisingly little.

The methods and techniques that we develop to understand the dynamics
of rational difference equations and the theory we obtain will be useful in
analyzing the equations in any mathematical model that involves difference
equations.



Chapter 1 contains some basic definitions and some general results needed
throughout the monograph.

Chapter 2 deals with the special cases of Eq.(1) that have bounded solutions
only and Chapter 3 deals with the remaining cases, where the equations have
unbounded solutions in some range of their parameters.

Chapter 4 is about the seven nonlinear known periodic trichotomies of third-
order rational difference equations.

Chapter 5 presents the known results on each of the 225 special cases of
Eq.(1). This chapter is the reason we wrote this book. The four preceding
chapters present general results needed in order to discuss the character of
each equation and how it relates to the other special cases.

Appendix A at the end of the book presents at a glance the boundedness
character of each of the 225 special cases of Eq.(1) and gives important results
and references related to each special case.

Appendix B contains information on the boundedness character for all
fourth-order rational difference equations. The large number of conjectures
listed in Appendix B on the boundedness character of fourth-order rational
difference equations will help give new directions for future investigations in
this fascinating area.
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Introduction

In this book we are interested in the global character of solutions of the third-
order rational difference equation

a+ BTy +YTn—1 + 0Tn 2
1 =  n=0,1,..., 0.0.1
Tl A+ an + an,]_ + D-rn72 " ( )

where the parameters «, 3,7,9,A, B,C, D are nonnegative real numbers and
the initial conditions x_o, x_1, zo are arbitrary nonnegative real numbers
such that the denominator is always positive.

We are primarily concerned with the boundedness nature of solutions, the
stability of the equilibrium points, the periodic character of the equation, and
with convergence to periodic solutions including periodic trichotomies.

If we allow one or more of the parameters in Eq.(0.0.1) to be zero, then we
can see that Eq.(0.0.1) contains

(2*—1)(2* - 1) =225

special cases, each with positive parameters and positive or nonnegative initial
conditions.

For Eq.(0.0.1) and for each of its 225 special cases, we present the known
results and/or derive some new ones. For most of the equations we also pose
some thought-provoking open problems and conjectures on the boundedness
character, the global stability, and the periodic behavior of their solutions.
The open problems we pose are quite challenging and the conjectures are
thought provoking and based on numerous computer observations and ana-
lytic investigations. We believe that research work on these open problems
and conjectures is of paramount importance for the development of the basic
theory of the global behavior of solutions of nonlinear difference equations.
The large number of interesting open problems and conjectures in rational dif-
ference equations will be a great source of attraction for future investigators
in this dynamic area of research.

Out of the 225 special cases of Eq.(0.0.1), 39 cases are about equations that
are linear or reducible to linear or Riccati difference equations, or equations
reducible to Riccati. See Appendix A.



Another 28 equations were investigated in the Kulenovic/Ladas book [175],
which deals with the second-order rational difference equation

a+ BTy +yTn-1
A+ Bz, +Czxp_q’

Tpg1 = n=01,.... (0.0.2)

There remain 158 equations, each of which is a nonlinear third-order difference
equation crying to be thoroughly investigated.

It is an amazing fact that Eq.(0.0.1) contains a large number of special cases
whose dynamics have not been investigated yet.

According to David Hilbert “The art of doing mathematics consists in find-
ing that special case which contains all the germs of generality” and according
to Paul Halmos “The source of all good mathematics is the special case, the
concrete example.”

We strongly believe that the special cases of Eq.(0.0.1) contain a lot of
the germs of generality of the theory of difference equations of order greater
than one about which, at the beginning of the third millennium, we know so
surprisingly little. We also believe that the mathematics behind the special
cases of Eq.(0.0.1) is beautiful, surprising, and interesting.

The methods and techniques we develop to understand the dynamics of
various special cases of rational difference equations and the theory that we
obtain will also be useful in analyzing the equation in any mathematical model
that involves difference equations.
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Preliminaries

1.0 Introduction

In this chapter we state some definitions and some known results that will be
useful in the subsequent chapters. For details, see [12], [13], [84], [95], [96],
[130], [131], [147], [202], [211], and [213].

The results from Theorem 1.6.7 to the end of this chapter were recently
obtained by the authors while working on various special cases of rational
difference equations and provide useful generalizations and some unifications
in some special cases.

1.1 Definitions of Stability

A difference equation of order (k + 1) is an equation of the form
Tnt1 = F(Tn, Zn-1,...,Tn—), n=0,1,... (1.1.1)

where F'is a function that maps some set I*T1 into I The set I is usually an
interval of real numbers, or a union of intervals, or a discrete set such as the
set of integers Z=1{...,—1,0,1,...}.

A solution of Eq.(1.1.1) is a sequence {x,, }5° _, that satisfies Eq.(1.1.1) for
all n > 0.

A solution of Eq.(1.1.1) that is constant for all n > —F is called an equilib-
rium solution of Eq.(1.1.1). If

Tp =1, forall n>—k
is an equilibrium solution of Eq.(1.1.1), then Z is called an equilibrium point,

or simply an equilibrium of Eq.(1.1.1).

DEFINITION 1.1 (Stability)
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(i) An equilibrium point T of Eq.(1.1.1) is called locally stable if, for every
e > 0, there exists & > 0 such that if {x,}32 _, is a solution of Eq.(1.1.1)
with

|z_k —Z |+ |x1-k — T+ -+ |20 — F| <9,

then
|z, —Z| <k, forall n>0.

(i) An equilibrium point T of Eq.(1.1.1) is called locally asymptotically
stable if, T is locally stable, and if in addition there exists v > 0 such
that if {xn}22 . is a solution of Eq.(1.1.1) with

‘x_k—f‘+|$_k+1—i‘|+"'+|l‘0—i‘|<’}/,
then
lim z, =Z.

n—oo

(iii) An equilibrium point T of FEq.(1.1.1) is called a global attractor if, for
every solution {x,}5° _, of Eq.(1.1.1), we have

lim z, =Z.
n—oo

(iv) An equilibrium point T of Eq.(1.1.1) is called globally asymptotically
stable if T is locally stable, and T is also a global attractor of Eq.(1.1.1).

(v) An equilibrium point T of Eq.(1.1.1) is called unstable if T is not locally
stable.

1.2 Linearized Stability Analysis

Suppose that the function F'is continuously differentiable in some open neigh-
borhood of an equilibrium point Z. Let

OF
;= Z,%,...,%), for i=0,1,....k
denote the partial derivative of F'(ug,u1,...,u;) with respect to u; evaluated

at the equilibrium point Z of Eq.(1.1.1). Then the equation

Yn+1 = QoYn + Q1Yn—1+ -+ QYn—r, n=0,1,... (1.2.1)
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is called the linearized equation of Eq.(1.1.1) about the equilibrium point T,
and the equation

NeAL g — o g A — . =0 (1.2.2)

is called the characteristic equation of Eq.(1.2.1) about T.

The following result, known as the Linearized Stability Theorem, is very
useful in determining the local stability character of the equilibrium point &
of Eq.(1.1.1). See [13], [95], [131], and [202].

Theorem 1.2.1 (The Linearized Stability Theorem)

Assume that the function F is a continuously differentiable function defined
on some open neighborhood of an equilibrium point T. Then the following
statements are true:

1. When all the roots of Eq.(1.2.2) have absolute value less than one, then
the equilibrium point T of Eq.(1.1.1) is locally asymptotically stable.

2. If at least one root of Eq.(1.2.2) has absolute value greater than one,
then the equilibrium point T of Eq.(1.1.1) is unstable.

The equilibrium point Z of Eq.(1.1.1) is called hyperbolic if no root of
Eq.(1.2.2) has absolute value equal to one. If there exists a root of Eq.(1.2.2)
with absolute value equal to one, then the equilibrium Zz is called nonhyper-
bolic.

An equilibrium point Z of Eq.(1.1.1) is called a saddle point if it is hyperbolic
and if there exists a root of Eq.(1.2.2) with absolute value less than one and
another root of Eq.(1.2.2) with absolute value greater than one.

An equilibrium point Z of Eq.(1.1.1) is called a repeller if all roots of
Eq.(1.2.2) have absolute value greater than one.

A solution {x,}>° _, of Eq.(1.1.1) is called periodic with period p if there
exists an integer p > 1 such that

Trgp = Tn, forall n>—k. (1.2.3)

A solution is called periodic with prime period p if p is the smallest positive
integer for which Eq.(1.2.3) holds.

The following three theorems state necessary and sufficient conditions for
all the roots of a real polynomial of degree two, three, or four, respectively, to
have modulus less than one. For every equation of order two, three, or four
that we investigate in this book we have to use one of these three theorems
to determine the local asymptotic stability of the equilibrium points of the
equation.
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Theorem 1.2.2 Assume that a1 and ag are real numbers. Then a necessary
and sufficient condition for all roots of the equation

N4+aA+ag=0
to lie inside the unit disk is
la1] <14 ap < 2.

Theorem 1.2.3 Assume that as, a1, and ag are real numbers. Then a nec-
essary and sufficient condition for all roots of the equation

)\3+a2)\2+a1)\+a0 =0
to lie inside the unit disk is
lag + agl < 1+ aq, lag — 3ap| < 3 — aq, and ag + a1 — apas < 1.

Theorem 1.2.4 Assume that a3, as, a1, and ag are real numbers. Then a
necessary and sufficient condition for all roots of the equation

Mt a4+ a2 +a ) +ap=0
to lie inside the unit disk is
lar + a3 < 1+ ag + az, a1 —az| < 2(1 — agp), as — 3ag < 3,
and
ag + as + ag + a% + agag + aoag < 14 2agas + aias + agaias + ag.

The following result is a sufficient condition for all roots of an equation of
any order to lie inside the unit disk. See [74] or [157, p. 12].

Theorem 1.2.5 Assume that qo,q1,...,q, are real numbers such that
lqo|+lqu|+-+]a| <1

Then all roots of Eq.(1.2.2) lie inside the unit disk.

1.3 Semicycle Analysis

o0
n=

Let Z be an equilibrium point of Eq.(1.1.1), and assume that {z,}
solution of the equation.

_pisa
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A positive semicycle of {x,}2 _, is a “string” of terms {z;, Ti11,...,Tm},
all greater than or equal to Z, with [ > —k and m < co such that
either = —korl>—-kandz;_1 <Z

and
either m = 0o or m < 0o and zy,+1 < Z.

A negative semicycle of {x,}°2 . is a “string” of terms {z;, Ti11,...,Tm},
all less than Z, with [ > —k and m < oo such that
either | = —korl>—-kand z;_1 >

and
either m = oo or m < co and 41 > .

A solution {x,}5° . of Eq.(1.1.1) is called nonoscillatory about Z, or sim-
ply nonoscillatory, if there exists N > —k such that either
T, > T,foralln >N

or
T, < T, for alln > N.

Otherwise, the solution {x,}5° _, is called oscillatory about Z, or simply
oscillatory.

1.4 A Comparison Result

The following comparison result is a very useful tool in establishing bounds
for solutions of nonlinear equations in terms of the solutions of equations with
known behavior, for example, linear or Riccati.

Theorem 1.4.1 Let I be an interval of real numbers, let k be a positive in-
teger, and let
F:I"M -1

be a function increasing in all of its arguments. Assume that {x,}5° _,,
{yn}>2 1, and {z,}2° . are sequences of real numbers such that

Tnt1 < F(Tp, .oy Tpk), n=0,1,...

Ynt1 = FYny- - sUn-k), n=0,1,...
Zna1 > F(zn, oy 2n—k), n=0,1,...
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and
Ty <Yp < 2n, for all —k<n<O0.

Then
Tn <Ynp < 2n, for all n>0. (1.4.1)

PROOF C(learly,

x1 < F(xo, ..., o—k) < F(Yo,-- - y—k) =1
and
yi=Fyo,. .., y-r) < F(zo,...,2-1) < 21 .

Hence,
1 <y1 <21

and (1.4.1) follows by induction. |

1.5 Full Limiting Sequences

The following result about full limiting sequences sometimes is useful in es-
tablishing that all solutions of a given difference equation converge to the
equilibrium of the equation. See [101], [144], [145], and [208].

Theorem 1.5.1 Consider the difference equation

Tpt1 = F(Tp, X1, Tpnk) (1.5.1)
where F € C(JFL,J) for some interval J of real numbers and some non-
negative integer k. Let {x,}2> _, be a solution of Eq.(1.5.1). Set I = liminfx,,
and S = limsup x,, and suppose that I, S € J. Let Ly be a limit point of the

n—oo

solution {2, }5° _,. Then the following statements are true:

1. There exists a solution {L,}>2 __ of Eq.(1.5.1), called a full limiting
sequence of {x,}2 ., such that Lo = Lo, and such that for every N €
{...,—1,0,1,...}, Ly is a limit point of {x,}>2 _,. In particular,

I<Ly<S, for all Ne{.. 6 -101,...}.

2. For every ip € {...,—1,0,1,...}, there exists a subsequence {z,,}32, of
{zn}22 . such that

Ly = lim x4, for every N > .
11— 00
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1.6 Convergence Theorems

The following convergence result will be useful in studying certain rational
equations. See [101] and [103].

Theorem 1.6.1 Let I be an interval of real numbers and let F € C(I**1 1),
Assume that the following three conditions are satisfied:

1. F is increasing in each of its arguments.

2. F(z1,...,241) is strictly increasing in each of the arguments z;, , Ziy, - - -, Ziy s
where 1 <11 <ig <...<i < k+1, and the arguments i1,12,...,1; are
relatively prime.

3. Every point ¢ in I is an equilibrium point of Eq.(1.1.1).
Then every solution of Eq.(1.1.1) has a finite limit.

The following convergence result is due to Hautus and Bolis. See [132] and
Theorem 2.6.2 in [157, p. 53].

Theorem 1.6.2 Let I be an open interval of real numbers, let F € C(I*¥*+11),
and let T € I be an equilibrium point of the Eq.(1.1.1). Assume that F satisfies
the following two conditions:

1. F is increasing in each of its arguments.

2. F satisfies the negative feedback property:
(u—Z)[F(u,u,...,u) —u] <0, for all uel—{z}.

Then the equilibrium point T is a global attractor of all solutions of Eq.(1.1.1).

The next two global attractivity results were motivated by second-order
rational equations and have several applications.

Theorem 1.6.3 [157, p. 27] Assume that the following conditions hold:
(i) f € C[(0,00) x (0,00), (0, 00)].
(ii) f(x,y) is decreasing in x and strictly decreasing in y.

(iii) xf(x,x) is strictly increasing in x.

(iv) The equation
Tnt1 = Tnf(Tn, Tn—1), n=0,1,... (1.6.1)

has a unique positive equilibrium T.
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Then T is a global attractor of all positive solutions of Eq.(1.6.1).

Theorem 1.6.4 [106] Assume that the following conditions hold:
(1) f € C[[0,00) x [0, 00), (0, 0)].
(i) f(x,y) is decreasing in each argument.
(iii) xf(x,y) is increasing in x.
() f(z,y) < fly,z) & z>y.
(v) The equation
Tnt1 = Tp1f(@p_1,2,), n=0,1,...
has a unique positive equilibrium T.
Then T is a global attractor of all positive solutions.

The following global attractivity result from [175] is very useful in estab-
lishing convergence results in many situations.

Theorem 1.6.5  Let [a,b] be a closed and bounded interval of real numbers
and let F € C([a,b]*T1,[a,b]) satisfy the following conditions:

1. The function F(z1,...,2x+1) 18 monotonic in each of its arguments.

2. For each m, M € [a,b] and for each i € {1,...,k+ 1}, we define

Mi(m, M) = {M, if F' is increasing in z;

m, if F is decreasing in z;

and
m;(m, M) = M;(M,m)

and assume that if (m, M) is a solution of the system:
M =F(Mi(m,M),..., Mg11(m, M))
m=F(mi(m,M),...,mpi1(m,M)) (>
then M = m.
Then there exists exactly one equilibrium T of the equation
Tnt1 = F(Tn, Tn1, -, Tn_k), n=0,1,... (1.6.2)

and every solution of Eq.(1.6.2) converges to T.
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The following period-two convergence result of Camouzis and Ladas was
motivated by several period-two convergence results in rational equations.
(See Chapters 4 and 5.) Thanks to this result, several open problems and
conjectures posed in the Kulenovic and Ladas book have now been resolved
and the character of solutions of many rational equations has now been clar-
ified. See Theorems 4.2.2, 4.3.1, 5.74.2, 5.86.1, 5.109.1, 5.145.2.

Theorem 1.6.6 [61] Let I be a set of real numbers and let
F:IxI—I

be a function F(u,v), which decreases in u and increases in v. Then for every
solution {x,}>2 _; of the equation

Tn41 = F(xnaxn—1)7 n = Oa 17- )

the subsequences {xan}5> and {x2nt1}o2 1 of even and odd terms of the
solution do exactly one of the following:

(i) They are both monotonically increasing.
(i) They are both monotonically decreasing.

(i1i) Eventually, one of them is monotonically increasing and the other is
monotonically decreasing.

PROOF
Assume that (i) and (i7) are not true for a solution {x,}>2 ;. Then for
some N,
Ton42 = oy and Tony3 < Ton4 (1.6.3)
or
Tont2 S woy and Tony3 > Tan4i- (1.6.4)

Assume that (1.6.3) holds. The case where (1.6.4) holds is similar and will
be omitted. Then

Tonta = F(xant3, Tany2) = F(Tany1, Tan) = Tan42

and
Ton4s = F(Tanta, Tant3) < F(rant2, Tan41) = Tanys
|

and the result follows by induction.

The results in the remainder of this chapter were recently obtained by the
authors while working on various special cases of rational difference equations
and provide useful generalizations and some unifications in some special cases.
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In order to simplify and unify several convergence results for the difference
equation
T = [(Tneiyye oy Tneip), n=1,2,..., (1.6.5)

where k > 2 and the function f(z1,...,2;) is monotonic in each of its argu-
ments, we introduce some notation and state several hypotheses.

For every pair of numbers (m, M) and for each j € {1,...,k}, we define

M; = M;(m, M) = {M, if f is increasing in z;

m, if f is decreasing in z;
and
mj =mj(m, M) = M;(M,m).
(Hy) : f € C(]0,00)K,[0,00)) and f(z1,...,2zk) is monotonic in each of

its arguments.

(H}) : f € C((0,00)k, (0,00)) and f(z1,...,2x) is monotonic in each of
its arguments.

(Hy) : f € C([0,00)¥,[0,00)) and f(z1,...,2x) is strictly monotonic in
each of its arguments.

(HY) : f € C((0,00)¥,(0,00)) and f(z1,...,2x) is strictly monotonic in
each of its arguments.

(H2) : For each m € [0,00) and M > m, we assume that
f(My,...,Myx)>M (1.6.6)

implies
f(my,...,myg) > m. (1.6.7)

(H5) : For each m € (0,00) and M > m, we assume that

f(My, ..., M) > M (1.6.8)
implies

f(my,...,my) > m. (1.6.9)
(H3) : For each m € [0,00) and M > m, we assume that
either

(£(My, ..., My) — M)(f(my, ..., my) —m) > 0 (1.6.10)

or
f(M1,...,Mg) —M=f(m;,...,mg) —m=0. (1.6.11)
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(Hj) : For each m € (0,00) and M > m, we assume that
either
(f(My,...,My) — M)(f(mq,...,mg) —m) >0 (1.6.12)

or
f(M1,...,Mg) —M=f(m;,...,mg) —m=0. (1.6.13)

We also define the following sets:

S = {is € {i1,...,ix} : f strictly increases in x,_;_ } = {is;,...,1s, }
and
J={ij € {i1,...,ix} : f strictly decreases inx, i} = {ij,,...,ij,}.

Clearly when Hj or HY holds,
S|JJ = {ir, .. i}

(Hy) : The set S consists of even indices only and the set J consists
of odd indices only.

(Hs) : Either the set S contains at least one odd index, or the set J
contains at least one even index.

(Hg) : The greatest common divisor of the indices in the union of
the sets S and J is equal to 1.

The next few theorems can be used to establish global attractivity and
period-two convergence results in many special cases of rational equations
including the following:

420 — 22, #24, 427, #29, #31,

454, 458, 463, 466, #77 — T8,
#83 — 84,  #89, #91, #96 — 97, #101 — 106,
4108 — 110, #112, #118, #123, 4128,

4134 — 136, #146, #1409, #165 — 166, #171 — 172,
#178 — 179, #184, #189 — 191, #196 — 197, #202 — 203,
4205 — 207, #209 — 211, #213, 4217 — 223, #225.

See Chapters 4 and 5.

Theorem 1.6.7 The following statements are true:

(a) Assume that (Hy) and (Hs) hold for the function f(z1,...,2xk) of Eq.(1.6.5).
Then every solution of Eq.(1.6.5) which is bounded from above converges to a
finite limit.

(a') Assume that (HY) and (H) hold for the function f(z1,. .., 2x) of Eq.(1.6.5).
Then every solution of Eq.(1.6.5) which is bounded from above and from below
by positive constants converges to a finite limit.
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PROOF (a) Let {x,} be a bounded solution of Eq.(1.6.5). Set

I =liminfz, and S =limsupx,
n—00 n—oo

and assume, for the sake of contradiction, that
S>1I

Clearly, there exists a sequence of indices {n,,} and positive numbers L_,,
for r € {1,...,k}, such that

S= lim z,, and L_, = lim =z, ;.
m—0o0 m—00

From Eq.(1.6.5) and the monotonic character of f we see that
S=f(L_1,...,L_x) < f(M(I,S),..., Mr(I,S)). (1.6.14)
Similarly, we see that
I> f(mi(1,S),...,mi(I,S)). (1.6.15)
But from (1.6.14) and the Hypothesis (Hz) we see that
fmi(1,8),...,mg(I,5)) — I >0,

which contradicts (1.6.15). The proof is complete in this case.
(a’) The proof in this case is similar to the proof in part (a) and will be
omitted.

Theorem 1.6.8 Assume that for any of the following three equations of order
three:

Tpt1 = f(Tn, Tn-1,Tn—2), n=0,1,... (1.6.16)
Tpy1 = [(Xn,Tp_2), n=0,1,... (1.6.17)

or
Tpt1 = [(Tn-1,Zn-2), n=0,1,... (1.6.18)

the hypotheses (H{') and (H}) are satisfied for the arguments shown in the
equation and, furthermore, assume that the function f is:

strictly increasing in ., or w,_s, or strictly decreasing in x,_1.

Then every solution of this equation bounded from below and from above by
positive constants converges to a finite limit.
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PROOF Let {z,} be a solution bounded from above and from below by
positive constants. Set

I =liminfx, and S = limsup x,.

n—0oo n— oo

Clearly, there exists a sequence of indices {n;} and positive numbers L_;, for
j €{0,1,...}, such that

S = lim xy,41 and L_; = lim x,,_;.
71— 00 71— 00

First we will consider Eq.(1.6.16) and give the proof when the function f(z1, 22, 23)
is strictly increasing in z3. The proof when the function f(z1, 2o, 23) is strictly
decreasing in zo, or when the function f(z1, 22, z3) is strictly increasing in z1,

is similar and will be omitted.

Case 1: The function f(z1, 22, 23) is strictly increasing in each argument.

Actually in this case we can show that the Hypotheses of Theorem 1.6.1
are satisfied from which the result follows. However, we give the details of the
proof for completeness and practice.

From Eq.(1.6.16) and the monotonic character of f we see that
S = f(L07L—17L—2) < f(Sa Sa S)

Similarly, we find

I> f(I,1,1). (1.6.19)
Now assume that

S < f(S,5,9).
Then from (1.6.12)

I < f(I,1,1),

which contradicts (1.6.19). Hence,
S = f(Lo,L_1,L_2) = f(S,5,5) > 0. (1.6.20)
Then from (1.6.20) we find that
Lo=L_1=L_y=S5
otherwise and, because of the strict monotonicity of f in all of its arguments,
S = f(Lo,L-1,L-2) < f(5,5,5),

which is a contradiction.
Clearly, for an arbitrarily small positive number € there exists N sufficiently
large such that
S — €< Typy, Tny—1,Tny—2 < S Fe€
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Also, clearly,
f(S+e,S+e6S+e)=S+e and f(S—e6S5S—¢,S—€)=S5—c¢
because otherwise and in view of (1.6.12) with
m=25 and M =S5+e¢

or with
m=S—¢e¢and M =S5

we would have

f(8,8,8) #8S,
which contradicts (1.6.20). Hence,

S—e=f(S—¢S—€6S—¢€) <Tpyt1 = (@ny, Tny—1,Tny—2)

< f(S+¢S4+¢S+e)=S5+c¢
and by induction for all £ > 1

S—e< Tyyyr <S+e
from which it follows that
klirgo Tny+k = S.
The proof is complete in this case.

Case 2: The function f(z1, 29, 23) is strictly increasing in z3 and is strictly
decreasing in one of the other two arguments.
From Eq.(1.6.16) and the monotonic character of f we see that

S = f(L07L717L72) S f(MhMQu S)7

where
M; = M;(1,S).
Similarly, we find
I Z f(ml,mg,f), (1621)
where
m; = mi(I, S)

Now assume that
S < f(Ml, Mg, S)

Then from (1.6.12)
I< f(mlam27[)7



Preliminaries 17

which contradicts (1.6.21). Hence,
S = f(Lo,L_1,L_o) = f(M;y,M5,5) >0, (1.6.22)
which, in view of (1.6.13), implies that
I=f(my,me,I)>0.

Then from (1.6.22) we find that

Lo=M,, L_.1=My, and L_o=S
otherwise and, because of the strict monotonicity of f in all of its arguments,

S = f(Lo,L-1,L_2) < f(M, M, S),
which is a contradiction. When

M, =S,

the function is strictly increasing in z; and so it must be strictly decreasing
in z9. Hence,
Ms=1=1L_,.

From
M, =8 = f(My,M,S) = f(5,1,8) =Lo= f(L_1,L_3,L_3)

it follows that

L 1=S8
Hence,
I=L =S8
When
M, =1
clearly
my = S
and from
Ml = _f(Sam27I):f(thLfZaLfB)
we obtain
mo = L_2 =S
and so clearly
My=L_1=1

Hence,
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The proof is complete in this case.

Next we will consider Eq.(1.6.17) and we give the proof when the function
f(z1, z3) is strictly increasing in z;. The proof when the function is strictly
decreasing in z3 is similar and will be omitted.

We divide the proof into the following two cases:

Case 3: The function f(z1,23) is strictly increasing in each argument. In
this case the proof is similar to the proof in case 1 and will be omitted.

Case 4: The function f(z1,z3) is strictly increasing in z; and strictly de-
creasing in zs.
From Eq.(1.6.17) and the monotonic character of f we see that

S = f(Lo,L-2) < f(S,1).

Similarly, we find

I> f(I,8S). (1.6.23)
Now assume that

S < f(S,I).
Then from (1.6.12)

I < f(I,9),

which contradicts (1.6.23). Hence,
S = f(Lo,L_2) = f(S,I)>0, (1.6.24)
which, in view of (1.6.13), implies that
I=f(,S)>0.

Then from (1.6.24) we find that

Lo=S and Lo =1
otherwise and because of the strict monotonicity of f,

S = f(Lo, L—2) < f(S,1),

which is a contradiction. Similarly, we find

L 1=8and L_3=1

and
L o=8and L_4=1.

Hence,
I=L_ =S5
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The proof is complete in this case.

Finally, we consider Eq.(1.6.18) and we give the proof when the function
f (22, 23) is strictly decreasing in z5. The proof when the function is strictly
increasing in z3 is similar and will be omitted.

We divide the proof into the following two cases:

Case 5: The function f(z2,23) is strictly decreasing in zy and strictly in-
creasing in zs.
From Eq.(1.6.18) and the monotonic character of f we see that

S=f(L-1,L-2) < f(L,9).

Similarly, we find

I> f(S,I). (1.6.25)
Now assume that

S < f(I,9).
Then from (1.6.12)

I < f(S,1),

which contradicts (1.6.25). Hence
S=f(L_1,L_2)=f(1,5)>0 (1.6.26)
which, in view of (1.6.13), implies that
I=f(S1I) >0.

Then from (1.6.26) we find that

Ly=1and L,=S5
otherwise and, because of the strict monotonicity of f in all of its arguments,

S=f(L-1,L-2) < f(I,9),

which is a contradiction. Similarly, we find

L3=Sand L 4=1

and
L ,=8and L_5=1.

Hence,
I=L_4,=25.

The proof is complete in this case.
Case 6: The function f(z2,23) is strictly decreasing in both arguments.
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From Eq.(1.6.18) and the monotonic character of f we see that
S = f(L—laL—Q) < f(I7I)

Similarly, we find

I> f(S,5). (1.6.27)
Now assume that

S < f(I1,1).
Then from (1.6.12)

I < f(S,9),

which contradicts (1.6.27). Hence,
S = f(L_1,L_s) = f(I,I) >0, (1.6.28)
which, in view of (1.6.13), implies that
I=f(S,S)>0.
Then from (1.6.28) we find that
L y=1and L_o=1
otherwise and because of the strict monotonicity of f,
S=f(L_1,L_9) < f(I,I),
which is a contradiction. Similarly, we find

L.g=Sand L_4=S8

and

L_4 =S5 and L_5 =S
and

L,5 =1 and L,g =1.
Hence,

I=1IL_5=S.

The proof is complete. |

Theorem 1.6.9 Assume that for any of the three equations (1.6.16), (1.6.17),
or (1.6.18) the hypotheses (HY{') and (H}) are satisfied for the arguments
shown in the equation, and, furthermore, assume that the function f is:

strictly decreasing in x,,, for Eqs.(1.6.16) and (1.6.17),
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and
strictly increasing in x,_1 for Eqs.(1.6.16) and (1.6.18),

and
strictly decreasing in x,_o.

Then every solution of this equation bounded from above and from below by
positive constants converges to a (not necessarily prime) period-two solution.

PROOF We will give the proof for Eq.(1.6.16) under the assumption that
the function is strictly decreasing in x, and x,_o and strictly increasing in
Zn_1. The proof for the other two equations is similar and will be omitted.

Let {z,} be a solution bounded from above and from below by positive
constants. Set

I =liminfz, and S =limsupz,.
n— oo n—o00

Clearly, there exists a sequence of indices {n;} and positive numbers {L_j;},
for j € {0, 1,2}, such that

S = lim z,,41 and L_; = lim z,,_;.
71— 00 71— 00

From Eq.(1.6.16) and the monotonic character of f we see that

S = f(Lo,L_1,L_2) < f(1,S,I). (1.6.29)
Similarly, we find
I>f(S1,8). (1.6.30)
Now assume that
S < f(I,S,1).

Then from (1.6.12) we see that
I<f(51,59),
which contradicts (1.6.30). Hence,
S=f(,8,1),
which, in view of (1.6.13), implies that
I=f(S15).
From (1.6.29) we find that

LOZL_QZI and L_1:S
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otherwise and because of the strict monotonicity of f,
S < f(I,8,1),

which is a contradiction. At this point we claim that there exist arbitrarily
small positive numbers, €; and €3, such that

S_Glzf(l+62,5—61,l+62).

Assume, for the sake of contradiction and without loss of generality, that for
all positive numbers €; and e we have

S—e < f(I+e,S—¢€,l+¢).
By letting €; — 0 we obtain
S < fI+e€,8,1+e),
from which it follows that
S<f(I+e,S,I+e)< f(I,S,I)=S
which is a contradiction and so our claim holds.

Let N be sufficiently large and such that
TnysTny—2 <I+e and z,,_1>5— €.
Then
Ton+1l = f( @y, Tny—1sTnn—2) > f(L+€2,5 —€1, I +e3) =5 — €1

and, similarly,
Tpyt2 < I+ €.

Inductively, we find
T2j+14ny > S —¢€ and T2j4ny < I+ e,

from which the result follows. |

Theorem 1.6.10 Assume that for any of the three equations (1.6.16), (1.6.17),
or (1.6.18) the Hypotheses (Hi) and (H3) are satisfied for the arguments
shown in the equation, and, furthermore, assume that the function f is:

strictly decreasing in x,,, for Eqs.(1.6.16) and (1.6.17),
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and
strictly increasing in x,_1 for Eqs.(1.6.16) and (1.6.18),

and
strictly decreasing in x,_o.

Then every solution of this equation bounded from above converges to a (not
necessarily prime) period-two solution.

The results in this section can be extended and generalized to higher order
equations as follows:

Theorem 1.6.11 The following statements are true:
(a) Assume that (H}), (Hs), (Hy), and (Hg) hold. Then every bounded solu-

tion of Eq.(1.6.5) converges to a (not necessarily prime) period-two solution.

(a’) Assume that (HY), (HS), (Hy) and (Hg) hold. Then every solution of
Eq.(1.6.5) bounded from above and from below by positive constants converges
to a (not necessarily prime) period-two solution.

(b) Assume that (HY), (Hs), (Hs), and (Hg) hold. Then every bounded solu-
tion of Eq.(1.6.5) converges to a finite limit.

(') Assume that (HY), (H%), (Hs), and (Hg) hold. Then every solution of
Eq.(1.6.5) bounded from above and from below by positive constants converges
to a finite limit.

PROOF We will prove (a') and (V') together. Let {z,} be a solution
bounded from above and from below by positive constants. Clearly, there
exists a full limiting sequence {L_,}72, such that

Ly=S.
We divide the proof into the following two cases:

Case 1: S,J # () and all the indices ig,,...,is, of the set S are even. The
proof when S = () is similar and will be omitted. The proof when J = 0
follows from Theorem 1.6.1.

In this case when (HY), (HY), (Hy4), and (Hg) hold, all the indices of the
set J are odd and when (HY), (H}), (Hs), and (Hg) hold, there exists at least
one index ji,..., ¢ of the set J that is odd and also at least one index that
is even.

Clearly, from Eq.(1.6.5) and the monotonic character of f we obtain

Lo=S=f(Li,,....,L_i,) < f(Mi(L,8),..., My(,8S)).
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Similarly, we find
I> f(ml(I7S)a s amk(IaS))'

Now assume that
S< f(Ml(IvS)a . 7Mk(IaS))

Then from (1.6.12) we see that
I< f(ml(I, S), . ,mk(l, S)),

which is a contradiction. Hence,

S=f(M(I,S),...,M(I,S)). (1.6.31)
Similarly, we see that
I=f(m(L,S),...,mp(1,9)). (1.6.32)
Hence,
L, =...=L,, =Sand L, =...=L_, =1

otherwise and because of the strict monotonicity of f,
S < f(My(I,S),...,M(I,S)),
which is a contradiction. Similarly,
L g, =...=L_9; =S5

and also for every positive linear combination

T t
T = diis + Y _ i,
=1 p=1

we see that
L_re{l,S}. (1.6.33)

There exists ng large enough such that for each n > ng there exist integers
{¢l,n}f;1a {’(/}P’n};:l such that

T t
n= E (rbl,nisl + E wp,nijp-
=1 p=1

From this and (1.6.33) it follows that for all n > ng

L_, e{l,S}
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From Egs.(1.6.5) and (1.6.31) we obtain
L y=f(Len—iyyersLopni,)=f(ML(I,S),...,My(I,S)) € {I,S}
or
L, =f(Len—iyy-- s Lopn—i,)=f(mi(1,8),...,m(I,S)) € {I,S}.
From this it follows that for each I € {1,...,r}
L_, = L—n—isl for all n > ng
and for each p € {1,...,t}
L_,= L,n,gijp for all n > ng.
Therefore, the sequence {L_,}52,,  is periodic with periods
Gayy e risns 204, 20,

But
gcd{isl,.. .7’L'5r,2ij1,... 52ijt} =2

and so the sequence {L,q}(‘;io is periodic with period two. In fact, it has the
following form,

LS

When (H{), (HS), (Hy), and (Hg) hold, assume without loss of generality
that, for all j > 0,
L,Qj =1 and L72j71 =S.

At this point we claim that there exist arbitrarily small positive numbers, €;
and ey, such that

S—e :f(Ml(I,S)+X17...,Mk+Xk)

and
I+e=f(mi(1,S)+x1,...,mk+ k)

where, for each r € {1,...,k},

XT = €2
when f decreases in x,_;, and

XT = —€1
when f increases in z,_;, and

Ty = —€1
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when f decreases in x,_;, and
Ty = €2

when f increases in x,,—;.. Assume, for the sake of contradiction and without
loss of generality, that for all positive numbers €; and e; we have

S—e < f(Mi(L,9) + Xy,....,Mp(1,S) + Xp).
By letting €; — 0 we obtain
S < f(My(I,8) +Yi,...,Mg(1,S) +Yy)
where, for each r € {1,...,k},
Y, =6
when f decreases in x,_;, and
Y, =0
when f increases in z,,_;.. From this it follows that
S <ML, S)+ Y1, . My +Yy) < f(Mi(I,S),..., M) = S,
which is a contradiction. Similarly, it follows that
I+e=f(mi(1,S)+z1,...,mp+ k)
and so our claim holds.

Let N be sufficiently large such that, for each r € {1,...,k},
Tny—i, < I+ €
when the function f decreases in x,, —,;, and
Tpy—i, > 9 — €
when the function f increases in x,, ;.. Then
Ty = F(@ny—irse s Tny—iy) > F(ML(I,S)+x1,...,Mp(I,S)+2zr)=5S—€

and, similarly,
Tyl < I+ €.

Inductively, we find
T2jtny > S —¢€ and T2j414ny < I+ €9,

from which the result follows.
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When (HY), (Hj), (Hs), and (Hg) hold, there exist two even indices i5, € S
and i;, € J such that

L_;,, =8

isy
and
L, =1.
Jto

Due to the fact that L_; —and L,ijto belong to the period-two solution

{L—¢}3%0, it follows that
I=25.

Case 2: The set I contains at least one index i;, such that

is,, = 2R+ 1.

e

In this case, clearly,
and for each i, € J

and
L_54;, =5, ¢=0,1....
Hence, there exist positive integers ¢ and w such that
L_ort1)0 =S = L_(2¢41)5, = 1.

The proof is complete in this case.
The proofs of (a) and (b) are similar and will be omitted. |






2

FEquations with Bounded Solutions

2.0 Introduction

Consider the third-order rational difference equation

a+ By +yTn—1+ 0Tn_2
A+ Bz, +Cxp_1+ Dzp_s’

Tngp1 = n=0,1,... (2.0.1)

with nonnegative parameters «, 3,7, 9, A, B, C, D and with arbitrary nonneg-
ative initial conditions x_o,x_1, g, such that the denominator is always pos-
itive.

This equation contains 225 special cases of equations with positive parameters.
It was conjectured in [69] that in 135 of these special cases, every solution of
the equation is bounded and, in the remaining 90 cases, the equation has
unbounded solutions in some range of their parameters and for some initial
conditions.

For each of the 225 special cases of Eq.(2.0.1) we assign a number from 1
to 225. See Appendix A for the number assigned to each equation. See also
[192].

In this chapter we present several theorems on the boundedness of every
solution of several equations of the form of Eq.(2.0.1) and in particular we es-
tablish that in all 135 special cases of Eq.(2.0.1), every solution of the equation
is bounded.

In Section 2.1 we present a large number of special cases of Eq.(2.0.1)
where every solution of the equation is easily seen to be bounded. Actually,
this section will account for the boundedness of every solution in 91 special
cases of Eq.(2.0.1). The remaining sections will account for the remaining 44
additional special cases.

In Section 2.2 we present in detail the proof of the boundedness of solutions

29
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of the second-order rational difference equation

o+ By +YTn_1
= =0,1,... 2.0.2
xn+1 A_'_an + an717 n D] ( )

when
C > 0.

This section will account for the boundedness of every solution in eight addi-
tional special cases of Eq.(2.0.1).

When
C =0 and B =0,

Eq.(2.0.2) reduces to a linear equation that has unbounded solutions in some
range of its parameters, unless

p=v=0.

Finally, when
C=0and B>0 (2.0.3)

that is for the equation

0+ By + Ty
A+ Bz, ’

Tpt1 = n=0,1,..., (2.0.4)

we will see in Chapters 3 and 4 that it has unbounded solutions if and only if

7> B+ A

Equivalently, when B > 0, every solution of Eq.(2.0.4) is bounded if and only
if

¥< B+ A

In Section 2.3 we establish the boundedness of 16 additional special cases of
Eq.(2.0.1) by the method of iteration, that is, by observing that when we
write X492 or Tpy3 in terms of x,, x,_1, and z,_9, every solution of the
resulting equation is bounded.

In Section 2.4 we establish that every solution of the (normalized) special case

Tp—2

#58: a1 =0+ , n=0,1,...

n
with
8>0
is bounded. By using similar ideas, we establish in Section 2.5 the bounded-
ness of every solution of the equation

o+ ﬁxn + Tn—2

., n=0,1,... 2.0.5
A1, n (2.0.5)

Tpn+1 =
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with
a+ 3,8+ A€ (0,00). (2.0.6)

This confirms the boundedness of solutions in four additional special cases of
Eq.(2.0.1).
In Section 2.6 we establish that every solution of the (normalized) special

case
Lp—2

#63: Tpp1 =7+ , n=0,1,...

Tn—1
with
v >0

is bounded. By using similar ideas, in Section 2.7 we establish the bounded-
ness of every solution of the equation

o+ ﬂxn + YTn—1 + Tn—2
A—‘r.%'n,l ’

n=0,1,... (2.0.7)

Tn41 =
with
v+ A a+ [+ € (0,00). (2.0.8)

This confirms the boundedness of solutions in 10 additional special cases of
Eq.(2.0.1).

In Section 2.8 we establish that every solution of the equation

a+ B, + Y1
Cl’nfl + Dl’n72 ’

Tpt1 = n=0,1,... (2.0.9)

with
a>0 and (,7,C,D € (0,00). (2.0.10)

is bounded.

Finally, in Section 2.9 we establish that every solution of the equation

o+ ﬂxn + Tn—2

=0,1,... 2.0.11
Cmn—l + Tp—2 o ( )

Tp+1 =
with
a>0 and B,C € (0,00)

is bounded. This confirms the boundedness of solutions of the remaining two
cases of Eq.(2.0.1).
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2.1 Some Straightforward Cases

In this section we present several special cases of Eq.(2.0.1) where every solu-
tion of the equation is easily seen to be bounded. Actually, this section will
account for the boundedness of every solution in 91 special cases of Eq.(2.0.1).

Clearly, in all four trivial linear cases of Eq.(2.0.1), every solution of the
equation is bounded. They are the following special cases:

#1, #6, #11, +16.

See Appendix A.

Next, in all 15 special cases of Eq.(2.0.1) that are either Riccati or of the
Riccati type, every solution of the equation is bounded. They are the following
special cases:

#2, 93, #4, F1T, #18, #19, 23, #30
#37, H#A2, H#HAT, #52, #65, #72, #79.

See Appendix A.

Actually, in each of the above 15 cases, either every solution of the equation
is periodic or the solutions of the equation converge to an equilibrium point.
See Section 5.65 on Riccati equations in Chapter 5.

One can see that in every special case of Eq.(2.0.1) where all of the terms
in the numerator are also contained in the denominator, every solution of the
equation is bounded. By this we mean that if the constant « is present in the
numerator of this special case, so is the constant A in the denominator. If the
coefficient [ of x,, is present in the numerator, so is the coefficient B of x,, in
the denominator, and so on. This idea establishes the boundedness of every
solution in each of the following 52 additional special cases of Eq.(2.0.1):

#26,  #27,  #32,  #34, #39, #40, #86, #93,
#100, #101, #102, 103, #105, 106, #108, 109,
#1111, #112, #114, #115, 116, #133, #134, #135,
4136, #4141, 142, #4145, 147, #150, 151, #153,
#156, F#158, #160, F#163, #164, 189, #190, 191,
#192, #193, #194, #201, #206, #211, #216, H#217,
#4218, #2190, #220, #225.

See Appendix A.
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As an example of the preceding idea, every solution of the equation in the
special case

a + B, +VTn_1

27 Tpi1 = . n=0,1,...
# Tntl A+ Bz, + Cxp_1+ Dx,y_o "
is bounded. Indeed, for n > 0,
a+ ﬁxn + YTp_1 max{a, ﬁv 7}(1 +n + xn—l)

Tntl = A+ Bz, +Cxpq1+ Dxyyo ~ min{A,B,C,D}1+ x, + Tp—1+ Tp_2)

max{a, 3,7}
~ min{A4, B,C, D}’

A minor extension of the above idea establishes the boundedness of every
solution of any rational equation of the form

o+ ,an + VYLn—1 + 6xn72
ntl = , =0,1,... 2.11
Tl Bz, +Cxp_1 + Dxy_s " ( )

with o > 0 under the condition that

when (> 0, then B > 0,
when ~ > 0, then C > 0,

and
when 6 > 0, then D > 0.

The above result for Eq.(2.1.1) establishes the boundedness of every solution
in each of the following 20 special cases of Eq.(2.0.1):

420, #21, #22, #68, #69, #4714, #76,
#81,  #82, #104, #144, #148, #152, # 168,
4175, #182, #204, #4208, #212, #4224

See Appendix A.

In this section we accounted for the boundedness of every solution in 91
special cases of Eq.(2.0.1).

The following theorem unifies all the 91 special cases discussed in this sec-
tion and extends the results to rational equations of any order k. It is amazing
that for k = 3, this theorem presents with detailed proofs the boundedness of
every solution in 91 special cases of Eq.(2.0.1). See [66].
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Theorem 2.1.1 Consider the (k + 1)t -order rational difference equation

o+ Zf:o ﬁixnfi
A + Zfzo Bixn—i 7

Tnpr = =0,1,... (2.1.2)

with nonnegative parameters

«, A7 ﬁOa"wﬁ}ﬁ BOa"-aBk

and with arbitrary nonnegative initial conditions x_yg,...,xo such that the
denominator is always positive. Assume that for every i € {0,1,...,k} for
which the parameter B; in the numerator is positive, the corresponding param-
eter B; in the denominator is also positive. Then every solution of Eq.(2.1.2)
is bounded.

PROOF Let us denote by I and I the following subsets of {0,1,...,k}:
I={ie{0,1,...,k}: 5, >0 and B; > 0}

and
Iy={ie€{0,1,...,k}: 3; =0 and B; > 0}.

Then
Iul, c{o,1,... k}

and Eq.(2.1.2) is equivalent to

- a+ s Bin_i
1= )
s A + g icl BifEn_i + g iclo Bixn_i

n=01,... (2.1.3)

with §;, B; € (0,00) for every ¢ € I and with B; > 0 for every i € I;. Of
course, I or I, or both, may be empty sets.
First we show that when

A>0 or a=0,
every solution of Eq.(2.1.2) is bounded. Indeed, when A4 > 0,

" max;er(a, ;) (1 + Zie] Tp—i) _ max;er(a, G;)
"= Minge (A, By)(1+ 2 yey #ni)  minger(A, By)

and so every solution of Eq.(2.1.2) is bounded.
In the above inequality by max;cr(a, 8;), we mean « if I = () and the
maximum of a and max;c; 3; otherwise. Similarly for the minimum. Also, if

I =0, we define
Z Tp—i — 0.
i€l
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Next assume that o = 0. Then the set I must be nonempty and

. < Eie[ BiTpn—i < (max;er Bi) Zie[ Tp—i _ maxies 3
1 < < — = —
mr Yoicr Bitn—i = (minger Bi) Y,  Tn—i  minger By

and every solution is bounded.
In the remaining part of the proof we assume that
A=0 and a>0.
Now the proof depends on whether I or I is empty.
Case 1: Iy = (). Then, because A =0, I # () and

a+ Ziez Bi%n—i min;er 5;

Tpy1 = for n > 0.
" Yier Bitn—i max;cr By’
So if we set )
_ minges B
max;es B;’
it follows that for n > k,
o max;er B

Tn+1 S N
LZiEI Bi min;er Bz

and every solution of Eq.(2.1.2) is bounded from below and from above. Ac-
tually in this case the equation is permanent.

Case 2: [ =(. Then I # (. In this case the Eq.(2.1.2) reduces to

Tntl =75, n=0,1,... (2.1.4)
Zie]o Bixn—i

with

We will prove that every solution of Eq.(2.1.4) is bounded. To this end, let
{z,} be a solution of Eq.(2.1.4) and assume, without loss of generality, that
the solution is positive for all n > —k. Let L,U be chosen in such a way that

Tk 20 € (L,U)

and o
LU = —/——.
Zielo B;
Then
L a <z = @ e U.

= — < =
U Zielo B; Zielo Bz L Zielo B;
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Hence,
xr1 € (L, U)

and by induction
e (L,U) for n> —k.

Case 3: Both [ and I are nonempty sets. In this case, as in case 2, we will
assume, without loss of generality, that a solution {z,} is positive and show
that there exists an interval (L, U) that contains the entire solution.

To see how the interval is found observe that
T € (L, U)

if and only if
o+ 27,6[ 621’ i

L<
Zze] B il —i + ZzEI B T—q

<U

if and only if

> (LB; - B)a_i+ (LY Biw_j—a) <0

icl =
and
Y (UBi—B)z_i+({U» Bix_j—a)>0
el i€lo
if
L<é<U forall 11
B;
and o
T < Z Bix_; <
i€lp
But
LY Bi<Y Biwi<UY» B
iely icly i€lo

and so it suffices to choose L and U such that

T k..., xo € (L,U),

Bi B; e
L<min(=, —=———),
el B ﬁl ZjGIo Bj
and o
LU = ——.
Zjelo BJ

With the above choice of (L,U), it is now easy to show that

X1 € (L,U)
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and then by induction
xn, € (L,U), for n> —k.

The proof is complete. |

One can see that Theorem 2.1.1 accounts for the boundedness of every
solution in

k
1+ 22 (f) (21— 1) = 4(3F 1 —2k) —1
i=1

special cases of Eq.(2.1.2). See [66].

2.2 The Second-Order Rational Equation

The second-order rational difference equation

o+ By + 7T
el = L n=0,1,... 92.2.1
Tntl A+an+cmn—1 " ( )

was investigated in the book by Kulenovic and Ladas (see [175]). This equa-
tion contains 49 special cases and the boundedness character of most of them
follows from the results in [175]. See also [39]. However, the boundedness
character of the entire equation (2.2.1) including cases not discussed in [175],
like #166, #168, and #201, was presented in [134]. Of the 49 special cases
of Eq.(2.2.1), 35 cases have bounded solutions only and 14 special cases have
unbounded solutions in some range of their parameters.

It is an amazing fact that when
C >0,
every solution of Eq.(2.2.1) is bounded and when
C =0 and B >0,
Eq.(2.2.1) has unbounded solutions if and only if
v > [+ A

Finally, when
C=0and B=0
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Eq.(2.2.1) reduces to a linear equation that has unbounded solutions in some
range of its parameters unless

6 =7= 07
in which case every solution of the equation is bounded.

The main result in this section is the following theorem, which estab-
lishes the boundedness of every solution in eight additional special cases of
Eq.(2.0.1), namely:

H#7,  #24, #43,  #55,
466, #84, #119, #166.

See Appendix A.

The proof of the following theorem is a self-contained proof for all 28 special
cases of Eq.(2.2.1) with C' > 0, and in particular contains the proof of the
boundedness of every solution of each of the above eight special cases.

Theorem 2.2.1 Assume that C > 0. Then every solution of Eq.(2.2.1) is
bounded.

PROOF The proof is divided into the following eight cases:

Case 1:
A>0 and B> 0.

Here for n > 0,

a+ﬁxn+7xn—1 < max{a,ﬁ,’y}(l—i—xn—i—xn_l)
A+ Bz, + Cxp—qy ~ min{A,B,C}1 4z, + xpn_1)

Tn+1 =
_ max{a, 3,7}
- min{4, B,C}
and so every solution is bounded.
Case 2:
A>0 and B=0.

Here for n > 1,

s BTpi1 +7Tn @+ YT, B a+ BT, +yTa_1
ntz T A+ Ca,, T A+Cz,  A+Cx, A+Czp,
a+ vy, B at+yra,_ B,

T A+ Czn T AT Con At Cony | (A% Can)(A+ Canr)
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< max{a,7} B max{a,v} n 572
~ min{A4,C} A min{A4,C} AC

and so every solution is bounded.

Case 3:
A=0 and B> 0.

When « = 0, every solution of Eq.(2.2.1) is bounded because for n > 0,

6$n + YTn—-1 < max{ﬁ, ’Y}

Intl = Bz, + Czyp—y — min{B,C}

On the other hand, when a > 0 we consider the following four subcases:

Subcase 3(i):
A=0, B>0, and g=~=0.

Let {z,} be a positive solution and choose L,U € (0, c0) such that

(07

_z0 € (L,U) and LU = .
x_1,x0 € ( ) an B1C

Then
o o «

B+OWU -~ Bant Con ~(B+O)

and by induction,

L =

=U
L

xn € (L,U), forall n>0.
Subcase 3(ii):
A=0, B>0, and 3,v,C € (0,00).
Here, clearly, for n > 0,

o+ an + YTn—1 ﬂxn + YTn—-1 > min{ﬁ7 7}

Tnt1 = Bz, + Cx,_q Bz, +Czp1 ~ max{B,C}’
Set )
_ min{g,7}
max{B,C}"
Then for n > 2,
0% ﬁxn + YTn—-1

€T =
ntl Bz, +Cxp_1 Bz, +Cx,_1

< o max{3,v}
~ (B+1)L min{B,C}

and so every solution is bounded.

39
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Subcase 3(iii):

A=0, B>0, >0, and v=0.

For simplicity we normalize the equation in the following form

o+ Ty

_— =0,1,....
xn—l—Cﬂcn,l’ n s 4o

Tn4+1 =

Let {z,} be a positive solution and choose positive numbers L, U such that

v 1,70 € (L,U), 0< L <min{l, %}, and LU = % (2.2.2)
Then
L— _ L—
o U= o+ xg _i:aC aCzx_1+ (C a)a:0<0

rog+Cx_qy CL CL(zo+ Cz_1)

and
—CLx_ 1-L
x1—L:(a ClLa1) + 2o )>O.
x9+ Cx_q
That is,
Ty € (LaU)7

and the boundedness of {z,} follows by induction.

Subcase 3(iv):

A=0, B>0, =0, and v > 0.

Here we can normalize the equation in the form

a+Tp—1

—_— =0,1,....
an"‘xn—l, n »

Tp+1 =

Let {x,} be a positive solution and as in the above case choose positive
numbers L and U such that (2.2.2) holds with C replaced by B. Then, as in
the above case, we can show that

xr € (L,U)

and the proof follows by induction.

Subcase 4(i):
A=0, B=0, and v=0.
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Here the equation reduces by a change of variables to the well-known Lyness’s

equation
o+ T,
Tyl = , n=0,1,....
Tp—1

Lyness’s equation is gifted with the invariant

1 1
)(14+ —) = constant, for n > 0.

a+x, +x,-1)(1+
( 1)( Tn—1 Tn

It is now clear from this invariant that no subsequence of {x,} can converge
to oo and so every solution of Lyness’s equation is bounded.

Subcase 4(ii):
A=0, B=0, and 7> 0.

A change of variables reduces the equation in this case to an equation of the

form n
«
Yn+1 = 7y" 5 n:O,l,...
v +yn71

for which the boundedness was established in case 2. The proof is complete.

2.3 Boundedness by Iteration

In this section we will confirm the boundedness of 16 additional special cases
of Eq.(2.0.1), namely:

25, #60, #67, #91, 107, 124, 143, 155,
4159, 173, 188, #200, #203, #207, #215, #223.

See Appendix A.

Theorem 2.3.1 Assume that
B,A,C,D € (0,00) and «,v,0 € [0,00).
Then every solution of the equation

T _a+5xn +YTp_1 + 0Tp_2 n=0.1
n+1 A+an_1 +D$n_2 ) R

1s bounded.
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PROOF The proof is a consequence of the fact that for n > 1 we have

o+ VTn + 6$n—1 ﬁ . a+ ﬁxn + VYTn—1 + 6$n72
A+Czy,+Dxp_1 A+ Czxy+ Dxyq A+ Cxp1 +Dxypg

Tn42 =

Corollary 2.3.1 FEwvery solution of each of the following eight special cases is
bounded:

#107, #143, #155, #159, #203, #207, #215, #223.

See Appendix A.

Theorem 2.3.2 Assume that
a,f €[0,00) and ~,6,C,D € (0,00).
Then every positive solution of the equation

o o+ By +YTp—1 + 0xn—2 ne01
n+1 C.’Enfl—i‘Dwan ) g Ly

18 bounded from above and from below by positive numbers.

PROOF We have

. VYEp—1 + 0Tp_2 S min{vy,d}
ntl = Czp_1+ Dz, — max{C,D}

and so {z,} is bounded from below by the positive number

_ min{y,0}
- max{C, D}’

Furthermore, for n > 1,

o+ ﬂanrl + vz, + 5377171

Tp42 =

Cx,, + Dx,_q
< e VL + 0Tpn_1 B o+ Sy + Y1 + 62n_o
~(C+Dm Cxp+Dxy1 Cxp+ Dr,yq Cxp_1+ Dxps
and so the solution is also bounded from above. |

Corollary 2.3.2 FEvery solution of each of the two special cases, #188 and
#200, is bounded.
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See Appendix A.

Theorem 2.3.3 Assume that
a,0,A€[0,00) and (,5+ A€ (0,00).

Then every solution of

. :a+ﬁxn+5a:n_2 ne0.1
n+1 A+$n,2 5 Ly ...

1s bounded.

PROOF Note that for n > 2,

. _a+Bry2+0x,  a+dz, I} at BLpy1 + 6xpn_1
ks A+z, T A4z, A+ z, A+x,_q
a4, Ié; {a—l—éxnl e o+ Bz, + 0T, o }
A4z, Atax, |Atz, (A+z,_1)(A+z,_0)
B a+ oz, I6] a+0x,_1
A+, A+xz, A+z,_1
ﬁQ l:a+6mn—2 + ﬁxn :|
(A+xn)(A+xn—1) A+xn—2 A+xn—2

from which the boundedness of {z,,} follows. |

Corollary 2.3.3 FEvery solution of each of the following siz special cases is
bounded:

#25, #6060, #67, #91, #124, #175.

See Appendix A.

Theorems 2.3.1, 2.3.2, and 2.3.3 have straightforward extensions to fourth-
order rational difference equations. See [66]. Actually, we can use these
extensions to establish the boundedness of every solution in 104 special cases
of the fourth-order rational difference equation

o+ ﬂxn + VLn—1 + 5$n—2 + €Tp—3

=0,1,.... 2.3.1
A+ Bz, +Czp_1 + Dxp_o+ Exp_3’ " B ( )

Tn+l1 =

When we deal with difference equations of order & > 4 it will be convenient to
switch to a new notation for the special cases. In this notation the k*"-order
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rational difference equation is written, for the sake of the new notation, in the
form

_ BO + Z;C:l ﬁimnfi
By + Zf:1 Bip i

Now for a special case of Eq.(2.3.2), we define

2% if B; > 0 2%+l if B, > 0
v; = . and V; = .
0, if ﬁl =0 07 if B,L =0.

n=0,1,.... (2.3.2)

n

Then the identifying number assigned to a special case of Eq.(2.3.2) is

k

> (i + Vo).

i=1

In this book, we will use the above numbering system for equations of order
> 4. For equations of order < 3, we still use the numbers listed in Appendix
A. See also [66].

In this notation 104 special cases of order 4 of Eq.(2.3.1) are the following:

#518 — 519 4694 — 695 #820 — 823
#530 — 531 #710 — 711 #902 — 903
4534 — 535 #4722 — 723 #914 — 915
#538 — 539 #726 — 727 #918 — 919
#542 — 543 #4730 — 731 #922 — 923
4550 — 551 #£734 — 735 #926 — 927
4566 — 567 #742 — 743 #934 — 935
#646 — 647 #758 — 759 #950 — 951
#658 — 659 #4772 — 775 #964 — 967
#662 — 663 #784 — 791 #976 — 983
4666 — 667 794 — 797 #986 — 991
#670 — 671 #£798 — 799 #998 — 999
#678 — 679 #806 — 807 #1012 — 1015.

See Appendix B.

For higher-order rational difference equations the following result extends
Theorems 2.3.1, 2.3.2, and 2.3.3 and establishes by the method of iteration
the boundedness of every solution of the following rational difference equation

_ Y Bt
A + Zi‘czl Bixnfi 7

n=0,1,... (2.3.3)

n

with nonnegative parameters and arbitrary nonnegative initial conditions such
that the denominator is always positive. See [66].
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Theorem 2.3.4 Let I3 and Ip denote the following sets:

Ig:{jE{l,Q,...,k}iﬂj>O}

and
Ip={je{l,2,...,k}: B; >0}

and assume that either
A>0

or
A=0, IB#Q), and IBCI@.

Furthermore, assume that for every infinite sequence
{em}o_y with ¢, € I3

there exist positive integers N1 and Na such that

N

(Z Cm)EIB.

m=N1
Then every solution of Eq.(2.3.8) is bounded.

Theorem 2.3.4 establishes by the method of iteration the boundedness
of every solution in 126 special cases of Eq.(2.3.3), with k = 4. These are the
six second-order equations:

424, 455, 466, 484, #119, #166,

the 16 third-order equations:

#25, #60, #67, #91, #107, 4124, 4143, #155
#1509, 173, #188, #4200, #203, #207, #215, #223,

and the 104 fourth-order equations listed previously.

Open Problem 2.3.1 Assume that k > 5. How many special cases of Eq.(2.53.3)
are predicted, by Theorem 2.3.4, that have bounded solutions only?

Open Problem 2.3.2 Fork € {3,4}, determine all special cases of Eq.(2.5.3)
with bounded solutions only. In particular, confirm or refute our comjecture
that, when k =4, Fq.(2.3.8) has 542 special cases with bounded solutions only.

Conjecture 2.3.1 For each equation listed in Appendices A and B with a B
next to the equation, prove that local stability of an equilibrium point implies
that the equilibrium point is a global attractor of all positive solutions.
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2.4 Boundedness of the Special Case #58

In this section we establish the boundedness of every solution of the special
case #58 which for convenience we normalize in the form

#58: Tnpr =+ “”;“2

, n=0,1,... (2.4.1)
n
with the parameter 3 positive and with arbitrary positive initial conditions
T—2,T-1,20-
The following theorem is the main result in this section.

Theorem 2.4.1 Ewvery solution of Eq.(2.4.1) is bounded.

PROOF First we make the following useful general observations about
the solutions of Eq.(2.4.1):

Tpt1 > B, for n > 0. (2.4.2)
1
Tpy1 < B+ an,g, for n>1. (2.4.3)
1 Ty
Tni1 < B+ - (ﬁ+ 5)
B Tn—3
1
<B+1+ ﬁxn,& for n > 4. (2.4.4)
Ty, 41 — 00 = Ty, _2 — 0OO. (2.4.5)
Tn;41 — B = Tp, — 0. (2.4.6)

Now assume for the sake of contradiction that Eq.(2.4.1) has an unbounded
solution {z,}. Then there exists a sequence of indices {n;} such that

T, +1 — OO (2.4.7)

and, for every i,
Tng41 > ¢, forall j <n;+1. (2.4.8)



Equations with Bounded Solutions 47

From (2.4.7) and (2.4.5) it follows that
Tp,—2 — 00, Tp,—5 — 00, and Tp,_g — 00. (2.4.9)

Next we claim that the subsequence {z,, 4} is bounded. Otherwise, there
would exist a subsequence of {n;}, which we still denote by {n;}, such that

Tp;—4 — 00, Tp,—7 — 00, and Tp,_19 — 0. (2.4.10)

Note that, for every 1,

:I"’I’Lif'?
Tn,—4 =P+ ——
anj—5

and

x’niflo
xni77 = /8 + N
‘T"’I’Li—S

Hence, in view of (2.4.9) and (2.4.10), we have eventually

Tp;—7 > Tpy—5 and Tp,_10 > Tn,—8 (2.4.11)
and " "
7T 0o and 2T oo (2.4.12)
xn,;—5 I’ni—g

Then, from (2.4.11) and (2.4.4), we see that eventually

1
Tp,q1 <B+1+ ?iﬂniﬂ

5+1+5203P“”w)

Tn,;—8
1 1 I‘n.10>
=B+1+ =+ [ 2.
st g g (e

From (2.4.10), it follows that the right-hand side of the above inequality is
eventually less than x,,, 19, which contradicts (2.4.8) and establishes our claim
that {x,,—4} is bounded. From this and (2.4.9) we have

—4
$7L1—1—ﬂ+ ’fh _)ﬁ

l'nle

Also,
liminfz,,_5 > .
1— 00

Otherwise, a subsequence of {x,,_3} would converge to 8 and then from
(2.4.6), {zn,—4} would be unbounded, which is not true.

Hence, eventually,
Tn, =B+ M3 S 341

n;—1
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and so, for ¢ sufficiently large,

xniJrl ﬁ +

nl 5+1 i—2

which contradicts (2.4.8). The proof is complete. |

a4+ Bx, + xp_o
A+,

2.5 Boundedness of z,,; =

In this section we will confirm the boundedness of four additional special cases
of Eq.(2.0.1), namely:

H77, #4809, 4122, #171.

See Appendix A.

Theorem 2.5.1 Assume that
a+03>0and +A>0. (2.5.1)
Then every solution of Eq.(2.0.5) is bounded.

The proof of the theorem will be established through a series of lemmas.
Throughout this section, unless otherwise stated, we will assume that (2.5.1)
holds and also that

A<

Lemma 2.5.1 Ewvery solution {x,} of Fq.(2.0.5) is eventually bounded from
below by (.

PROOF When =0, the result is trivial. Assume
6> 0.

Also assume, without loss of generality, that the initial conditions x_o,z_1, z¢
are positive and suppose for the sake of contradiction that there exists N
sufficiently large such that

a+ By +TN—2
A+an

<p.

ITN+1 =
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Then

rn_2 < BA.
Similarly,

Tn_5 < BA%,
which inductively leads to a contradiction. |

In the sequel, whenever we refer to a solution {z,} of Eq.(2.0.5), unless oth-
erwise stated, we will assume that, for n > —2,

Ty > f.

Lemma 2.5.2 Every solution {x,} of Eq. (2.0.5) satisfies the following in-
equality, forn >0 and j € {-1,0,...},
Jj+2 1 j+1 1 2ys i
nt1 < s+ + = 2.5.2
T <0 Gy P Gy AT o (25.2)

PROOF  The proof is by induction. Clearly, for n > 0,

a+ Bx, + Tp_o « Tp—2
A+ a5 P a5

and so (2.5.2) holds, when j = —1. Assume that, for n > 0 and j > —1,

Tn+1 =

Jj+2 Jj+1
1 Tp_5-3;

xn+1<a;7(l4+ﬁ)s +ﬂ§(14+5)8+ A+ 5y

Clearly, for n > 0 and j > —1,

o+ BTp_6-3; + Tn-g—3; e Tn—5-3(j+1)
n—5—3j5 — < _—
Tn—5-3) JE— a5 Pt a1s
and the result follows by combining the last two inequalities. |

Lemma 2.5.3 Let {z,} be a solution of Eq.(2.0.5). Assume that {x,,} is a
subsequence of the solution {x,}, which converges to 3. Then the subsequence
{Zn,—1} is unbounded.

PROOF  Suppose for the sake of contradiction that the subsequence
{zn,—1} is bounded. Rearranging Eq.(2.0.5) we have
Azp, + Tny—1(Tn;, —B) =+ Tp,—3, 1 =0,1,... (2.5.3)

and so
AB =a+liminfx,,_3 > a+ 3,
1— 00
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which implies that either
B>0and 0>(A-1)f>«

or
a=p=0.

This is a contradiction and the proof is complete. |

Lemma 2.5.4 Let {x,,+1} be a subsequence of a solution {x,} such that

im zp,41 =00 (2.5.4)

with
max{x, : —2<n<n;+1} <zp41, i =0,1,.... (2.5.5)

Then for j € {0,1,...}, the following hold:

hm Tp;—2-35 = O (256)
i—00
lim sup @p, —4—3; < 00 (2.5.7)
hm Tn;—1-35 = ﬁ (258)
liminfl‘ni_g_zgj > (. (259)
1—00

PROOF From (2.5.2), for i > 0 and j > 0,

Jj+1 J
1 1 Tn,—2-35
1 < — -
it O‘s; (A+ B)° +6§ A10r (Atput

and so, clearly, (2.5.6) is satisfied. To establish (2.5.7), suppose for the sake
of contradiction that, for some j > 0,

Tp;—4-3j — OO.
Then, clearly,
Tp;—7-3j, Tn;—10—3j — OO. (2.5.10)

Also from (2.5.6)
Tp;—5—-3j55 Tn;—8-35 — 0. (2511)

For N sufficiently large, in view of (2.5.10) and (2.5.11), we see that, for
i > N,
Tp—a—3; > B +2 and xp,_5-3; > o — A(B+2).

Now we claim that, for ¢ > N,

Tp;—7-35 > Tpy—5-35- (2512)
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Suppose for the sake of contradiction that there exists ig > N such that

T —5-3j = Tny —7—-35-
Then

a+ Bp, —5-35 + Tn, —7-3j cot (B+1D)xp, —5-3;
A+ mnioff)f?)j B A+ .’L'ni0,5,3j

Ty —4—-35 = <pB+2

which is a contradiction. The proof of (2.5.12) is complete. From (2.5.2), for
1 >0 and j > 0, we have

j+2 Jj+1
1 T, —5-3j

e <0 g TP g A g

From this and (2.5.12) we obtain

J+2 Jj+1
1 Ty —7-35

wni+1<a;m+ﬂ§(A+ﬂ)s + (A—‘rﬂ)j-i-Q

and so, for ¢ > 0 and j > 0,

J+3 j+2
1 1 Tp;—10—3;

Tp+1 < a;m +5§ (A‘i’ﬂ)s + (A+ﬂ)j+2 Tn;—8-3j

Then for N sufficiently large, in view of (2.5.10) and (2.5.11), we see that, for
J =0,

Tny+1 < maX{anflofapv’Cansf?,j},
which contradicts (2.5.5). The proof of (2.5.7) is complete. To establish
(2.5.8), note that, for ¢ > 0 and j > 0,

a+ Brp,_2-3j Tp;—4-35
A+ xy, 235 A+ xy, 235

Tn;—1-35 =

By taking limits in the last equation as ¢ — oo, in view of (2.5.6) and (2.5.7),
we find that, for 7 > 0,

In,,—l—Sj - ﬂ
and so (2.5.8) is established. To establish (2.5.9), suppose for the sake of
contradiction that, for some j > 0,

lim inf Tn;—3-35 = ﬁ
i— 00

11—

From this and Lemma 2.5.3 we have

lim sup @y, —4—3; = 0©
71— 00
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which contradicts (2.5.7). The proof is complete. |

PROOF The proof of the theorem is divided into the following eight cases:
Case 1: § < A — 1. Clearly, for n > 0,

1
T+l < — + B +
By using Theorem 1.4.1 it follows that

. a+ BA
1 n < .
e, < S

Case 2: =A—1 and > 0. Clearly, for n > 0,

Tpt1 < 77— + B+ —Tn_2.

1
ﬁ+1 11

By using Theorem 1.4.1 it follows that
a+B(B+1)
3 .

limsup z,, <

n—oo

Case 3: =0 and A = 1. Without loss of generality assume that the initial

conditions x_o,x_1, o are positive. Let m > 0 be such that
. a  a o«
m < min{zr_s,x_1,x9, —, —, — }.

o T_1 X9

We claim that, for all n > —2,

m <z, < —. (2.5.13)
m
Indeed,
a+m atz_s at+= o«
m = T <x1 = < = —
I+ = 1+ xg 1+m m

and the proof follows by induction.
Case 4: 0 > A—1> 0. Clearly, for n > 0,

1
Tn+1 < — +ﬁ+

By using Theorem 1.4.1 it follows that

. a+ [BA
1 o< .
1:Ln_)sot<1>px <7
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Case 5: 0 >0 and A = 1. Without loss of generality assume that the
initial conditions x_o, x_1,zg are positive. Let m > 0 be such that

m < min{ﬁ,x_g, l‘_l,xo}.
We claim that, for all n > —2,
Ty > M. (2.5.14)

Indeed,
oy —m— a+ (B—m)xg+ (x_2 —m) >0
1+ Zo
and the proof of (2.5.14) follows by induction. In view of (2.5.14) it follows

that, for all n > 0,

1
1+m

T+l < Q + ﬂ + Tn—2.

By using Theorem 1.4.1 it follows that

limsupz, < @A+
< .
n—oo m

Case 6: 6 >1—A>0. Forn >0, in view of Lemma 2.5.1 we have

1
A T 517%—2-

+8+

< O[
Tpt-1 _—
By using Theorem 1.4.1 it follows that

) a+ BB+ A)
< ¥ @ 7
hrrlnsupxn 1

Case 7: 1— A > 8> 0. Suppose for the sake of contradiction that {z,,4+1} is
a subsequence of the solution {z,} such that (2.5.4) and (2.5.5) hold. From
(2.5.6) we have

lim z,,_2 = oo.

71— 00

Without loss of generality, assume that, for i > 0,

o+ 0%

o> —
SRy P

where

B+1-A+/(B+1-A)?+4a
2
is the positive equilibrium of Eq.(2.5.6). Now we claim that, for i > 0,

Tr =

T, < . (2.5.15)
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Otherwise, for some ig, xn,, > 7. Then

a+ Brn,, + Tn, —2 - a+ BT+ zy, -2

xi 1= = —
T Atz Atz

< xnio —2

which contradicts (2.5.5). Hence, (2.5.15) holds. Let 0 < e <1 — A — ( and
let s be sufficiently large such that

s+1 1
— > .
‘“;(Mme)t !

Then for N sufficiently large and ¢ > N, and in view of (2.5.8) and (2.5.9),
we see that, for j > 0,

Tp;—3-35 > B+ ¢ and Tpy—1-35 < 8+ e
Hence,

_ a+ ﬁxni—l + Ln,;—3 @ + LTn,—3 N
A4z, 1 A+pB+e A+p(P+e¢

s+1

1 _
>a2m>$,

t=1

which contradicts (2.5.15).

Case 8: §=1— A > 0. The proof in this case is along the same lines as the
proof in Case 7 and will be omitted.

2.6 Boundedness of the Special Case #63

In this section we establish the boundedness of every solution of the special
case #63, which for convenience we normalize in the form

H#63: Tasr =7+ 22 p=0,1,... (2.6.1)
Tn—1

with the parameter v positive and with arbitrary nonnegative initial condi-
tions z_s,x_1,xg such that the denominator is always positive.
The following theorem is the main result in this section.

Theorem 2.6.1 Every solution of Eq.(2.6.1) is bounded.
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PROOF First we make the following useful general observations about
the solutions of Eq.(2.6.1):

Tpt1 >y, for n > 0. (2.6.2)

1
Tpy1 <Y+ —Tp_o, for n>2. (2.6.3)
vy

1 Tn—5
Tpt1 < ’Y+ ; '}/+

Tp—4
1
<v+1+ ?xn_& for n > 5. (2.6.4)
Tptl — 00 = Tp_g — OO, (2.6.5)
Tptl — Y = Tp_1 — OO (2.6.6)

Now assume for the sake of contradiction that Eq.(2.6.1) has an unbounded
solution {z,}. Then there exists a sequence {n;} such that

ZTp,+1 — 00 (2.6.7)

and, for every 1,
Tp,41 > xj, forall j <n;,+ 1. (2.6.8)

From (2.6.7) and (2.6.5) it follows that
Tp,—2 — 00, Tp,—5 — 00, and Tp,_g — 00. (2.6.9)

Next we claim that the subsequence {z,,_¢} is bounded. Otherwise, there
would exist a subsequence of {n;}, which we still denote by {n;} such that

Tp,—6 — 00, Tp,—9 — 00, and Tp,_12 — 00. (2.6.10)
From
LTn,—9 .
Tp—6 =7+ ——, 1=0,1,...
xni78
and
Tn;—12 .
Tp,—g =7+ ——, ¢=0,1,...
Tp;—11

and (2.6.10), we see that, eventually,

Tp,—9 > Tpn,—8 and Tp,—12 > Tp,—11- (2611)
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Then from (2.6.11) and (2.6.4), we see that, eventually,

1
xn+1<’7+1+7 Tn;—5

1 Ty —
:7+1+2(w+ ‘ 8)
o]

1 1
<v+14 - +’Y 3%n; -8

1 1
<’Y+1+*+7313m—9
Yo

1 1 T —
:7+1++3<7+ 112).
v Tn;—11

From (2.6.9), (2.6.10), and (2.6.11), we can see that the right-hand side of the
above inequality is eventually less than a,,, 12, which contradicts (2.6.8) and
establishes our claim that {z,, ¢} is bounded.

Therefore, from (2.6.9),

Tng =7+ oy

n;—>5

Also,

liminfz,,_4 > 7.

1—00
Otherwise, a subsequence of {z,, 4} would converge to v and then from
(2.6.6), {zn,—6} would be unbounded, which is not true.
Hence, eventually,

Tnm1 =7+ sy

n;—3

and so, for ¢ sufficiently large,

T —'y—i—xnﬁZ T
1 =7+t
e Tpy—1 v+1

n,j72’

which contradicts (2.6.8) and completes the proof of the theorem. |
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&+ fTn + YTno1 + T2
A + Tp—1

2.7 Boundedness of z,,1 =

In this section we will confirm the boundedness of 10 additional special cases
of Eq.(2.0.1), namely:

478, #90, #96, #4127, #131,
4139, 172, #178, #4184, #196.

See Appendix A.

Theorem 2.7.1 Assume that
y+A>0 and a+ B+~ >0. (2.7.1)

Then every solution of Eq.(2.0.7) is bounded.

The proof of the Theorem will be established through a series of lemmas. For
the rest of this section, unless otherwise stated, we will assume that (2.7.1)
holds and that

B+1>A.

Lemma 2.7.1 Every solution {x,} of Fq.(2.0.7) is eventually bounded from
below by .

PROOF  Suppose for the sake of contradiction that there exists IV, suffi-
ciently large, such that

a+BrNn +vrN_1+ TN_2 <
A+azn_ =7

ITN+1 =

Then clearly

. A
min{zry,zy 2} <7 - B+l

Similarly

2.

min{zN, TN-1,TN-2,TN-3,TN-5} < ’Y(m

Sufficient repetition of this argument leads to a contradiction. |
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In the sequel, whenever we refer to a solution of Eq.(2.0.7), unless otherwise
stated, we will assume that

Tp >, n=-—2,—1,...

Lemma 2.7.2 Let {x,,+1} be a subsequence of a solution {x,} such that

im zp,41 =00 (2.7.2)

with
max{zy: —2<n<n;+1} <xp,41, 1 =0,1,.... (2.7.3)

Also assume that

Q + Z::() atxni—t
)

Ty < P+
ni+1 = R‘Fxn,ﬁm

i=0,1..., (2.7.4)

where P, Q, R, m, and {a,.},r € {0,1,...} are nonnegative real numbers.
Then

lim sup &y, —pm < 00. (2.7.5)

17— 00

PROOF  Suppose for the sake of contradiction that {x,,_,} is an un-
bounded sequence. Then for N sufficiently large,

Tnyt1 < max{ggﬁagxr R C—

This contradicts (2.7.3). The proof is complete. |

Lemma 2.7.3 Assume 3 > 0. Let {xn,+1} be a subsequence of a solution
{zn} that satisfies (2.7.2) and (2.7.3). Also assume that

Tp; > Tpy—2, 0=0,1,.... (2.7.6)
Then
. e o Ty
limsupz,,_1 < oo, limsupz,,_s < oo, limsupxz,,_5 < oo, liminf Znizd 5
i—00 i—00 i— 00 100 Tp,—3
(2.7.7)
and
lim z,,_3 =00, lim z,,_4 = occ. (2.7.8)
11— 00 21— 00

PROOF Fori >0,

a+ ﬁxni + Yn;—1 + Tn;—2 ﬁ + 1 «
< Tp, +
A+xp,1 A+~ A+~

Tn;+1 = + v
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and so

lim z,, = oo.
1— 00

Clearly, for ¢ > 0,

+ v+ .
A+xp, 1 A+~ i A+xp,1

Tn;+1 =

From this and (2.7.5) it follows that

limsup zy,,_1 < 0.

1— 00
Furthermore,
— a+ ﬁ‘rni—l + 'Yany—Q + zni—3
i A + xni72
< ! +v+ b + <
— Ty, _ — Ty, _ .
A—i—’}/nlg’YA-F’ynll A+’7
Hence,
lim z,,_3 = oo. (2.7.9)
1— 00
Furthermore, for ¢ > 0,
. P B+1a+ BTy, 1+ YTn,—2+ Tn,—3

From this and (2.7.5) it follows that

lim sup z,,, 2 < 0.

1—00
Also,
xni—3 xm—S 1
Tp,—2 >0 = .
" A + Tn;—4 Tn;—4 4 +1

Tn,—4

From this, the fact that subsequence {,,_2} is bounded, and from (2.7.9) it
follows that
lim zp,,_4 = 00
71— 00
and "
lim inf —2=2
100 ‘T’I’Lif-?)

> 0.
Also, for ¢ > 0,

PR (13 INCEY. TS

ﬁ+ 1 a+ﬁmni74+’7xni75+xni76

HTEE At on s
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From this and (2.7.5) it follows that

limsup z,,_5 < 0.

The proof of (2.7.7) and (2.7.8) is complete. |

The proof of the following identity is straightforward and will be omitted.

Lemma 2.7.4 Every solution {x,} of Fq.(2.0.7) satisfies:

ﬁxn—S(A + xn—S)(A + xn—4)
Hi:() [A(A + .Tn,;),,t) +a+ ﬁxn727t + VYXn—3—t + xn747t]

Tnt+1 =

o+ YTn—-1 + Tn—2 ﬁ(Oé + 5‘%7171 + ’7$n72)
A+ x5 (A+$n_1)(A+$n_2) '

(2.7.10)

Lemma 2.7.5 Assume 3 > 0. Let {x,,+1} be a subsequence of a solution
{zn} that satisfies (2.7.2), (2.7.3), and (2.7.6). Then the following are true,
with e > 0 and v > 0:

A(A+p,—a) ta+ BTp,—3+7Tn,—a + Tn,—5 > (B+€)(A+2,,-3) (2.7.11)

and

A(A+ xp,—3) + o+ B2n,—2 +YTn,—3 + Tn;—a > A+ Tp,_a. (2.7.12)

PROOF The proof is a consequence of (2.7.7) and (2.7.8). |

Lemma 2.7.6 Assume 3 > 0. Let {x,, 41} be a subsequence of a solution
{zn} such that (2.7.2) and (2.7.8) hold. Also assume that

Tpyon > Tn,, i=0,1,... . (2.7.13)
Then
. . . Tn;—2 . Tn;—3
limsup z,,_1, limsupz,,, limsup , limsup —/—— < oo (2.7.14)
1—00 1—00 i—oo Lp;—3 i—oo Lp;—2
and
lim x,,_o = lim x,,_3 = oco. (2.7.15)

11— 00 11— 00
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PROOF For ¢ > 0 and M sufficiently large,

o+ YLy, 1 (ﬂ"—l)x"i—Q <M+
A+zn_1 Atz At n 1

LTn,;+1 <

From this and (2.7.5) it follows that

(6 + l)xm_Q .

limsup z,,_1 < 0.
17— 00
Also,
a B+1 .
Tp,41 < ST A +v+ 7+Ax"i72’ 1 =0,1,....
Hence,
lim zp,,_2 = oc.
1— 00
Furthermore,
Tn;—2 .
1> p— 1=0,1,...
Tn,—1 ﬁA—i-xm,g i
and so
lim x,,_3 = oo.
71— 00
For ¢ > 0,
« ﬁ"‘l a+ﬁxn,-—3+7xn'—4+xn-—5
T4l < —— + 7+ - : —.
N I R A+ 4

From this and (2.7.5) it follows that

lim sup z,,, —4 < oo0.
1—00
In view of (2.7.19),
Ty —
ni2 b >m>0
Tn;—3 A + Tn,—4
and so .
lim sup —4=2 < .
i—oo Lp;—2
Also,
« ﬁxnifl YZn;—3

o + .
" A+ Tpy—2 A+ Tn,;—2 A+ LTp,;—2

Thus, in view of (2.7.16), (2.7.17), and (2.7.20), we have

lim sup z,,, < oo.

i—00

The proof of (2.7.14) and (2.7.15) is complete. |
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(2.7.16)

(2.7.17)

(2.7.18)

(2.7.19)

(2.7.20)

(2.7.21)
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Lemma 2.7.7 Assume 3 > 0. Let {x,,+1} be a subsequence of a solution
{xn} such that (2.7.2), (2.7.3), and (2.7.13) hold. Then, for s =0,1,..., the
following hold:

n;—4s—2 . Tn;—4s—3
hmsupacnl,4S 1, hmsupxm 4s) hmsupi7 limsup ——— <
1—00 1—00 i—oo Ln;—4s5—3 i—oco LTnp;—4s—2
(2.7.22)
and
lim @, _45—2 = hm L T, —45-3 = OO. (2.7.23)

1—00

PROOF  The proof will be by induction. When s = 0, (2.7.22) and
(2.7.23) follow from (2.7.14) and (2.7.15). Assume that, for s = j, (2.7.22)
and (2.7.23) hold. In view of (2.7.22) and (2.7.23), there exists M > 0, such
that, for ¢ > 0,

Tp;—4j—1 Tp;—4j—2 Tn;—45-3
xni74j717 xni74j; 9 5 < M. (2.7.24)
Tn;—4j—2 Tn;—4j—-3 Tn;—45-2

From Eq’s.(2.0.7) and (2.7.24), it is easy to see that, for i > 0,

J
Tn;—3 1 @n,_45-3
and
Tn;—45-3 <Mxn7 45—2,
where
a+ M o A
T Ary 7w

Combining the last two inequalities we find

x 1<Lii M o+ Bxn,—aj—3 + VTn,—aj—a + Tn,—aj— 5
ni+ — /Bt ﬂ]+1 A+$nl_4] ]

From this and (2.7.5) it follows that

lim sup .y, 454 = Hmsup ,,, _4¢;41) < 0. (2.7.26)

From (2.7.25) we have, for i > 0,

1 BTy, —aj—a4 + Tn,—aj—6
s+ 1<LZﬁt ﬁﬁl( ++ e

and so, clearly,
lim @, _4j_¢ = 00. (2.7.27)

11— 00
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From (2.7.25) we have, for i > 0,

1 a+Bxn,—aj—a+VTn,—4j—5 + Tn,—4j—6

Tnii1 < LS —4— L i=0,1,... .
n;+1 ; /Bt 5]+1 A+ T, —4j—5
From this and (2.7.5) it follows that
limsup &p, 455 = imsup x,,, _4(j11)—1 < 0. (2.7.28)

i—00 i—00

Finally, note that the following hold:

Tn,—45-7 .
Tn;—dj—4 > 14—1—;11077 1=0,1,
ni74j76
and
BT, 456 .
Tn;—4j—5 > 7], 1=0,1,....
A+ Tpy—45—7

From these inequalities, in view of (2.7.26), (2.7.27), and (2.7.28) we have

. Tp;—4(j+1)— . Tn;—4(j+1)—2
thU.p w’ hmsupw < 00

i—oo  Ln;—4(j+1)—2 i—oo  Ln;—4(j+1)—3
and
lim Tn,; —4(j4+1)-3 —

71— 00

The proof of (2.7.22) and (2.7.23) is complete. |

Lemma 2.7.8 Assume = 0. Then every solution {x,} of Eq.(2.0.7) satis-
fies the following inequality for j > —2:

Jj+3 j+2 Ty g _a;
i1 < no88 2.7.29
Has 0‘; (A+7)® WZ A+7 VS (27:29)

PROOF Clearly, for n >0

a4+ YTp—1+ Tp_2 @ +r Tp—2
A+ x, 1 A+ A+~

From this it follows that (2.7.29) holds when j = —2. Assume that for j > —2

Tn+1 =

Jj+2 J+1 z
n—5—3j .
mn+1<az 72 A""Y A+7)j+2’ n=0,1,....
Furthermore,
QA+ VYTp—7-3; + Tn—8—3j « Tn—5-3(j+1)
Tp—5-3; = < +v+ n=20,1,....
n—5—3j A+xn—7—3_j A+’y Y A+’Y ) )

The result follows by combining the last two inequalities. |
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Lemma 2.7.9 Assume §=0. Let {x,} be a solution of Eq.(2.0.7). Assume
that {xy,, } is a subsequence of {xy} that converges to . Then the subsequence
{Zn,—2} is unbounded.

PROOF Rearranging Eq.(2.0.7) we have

AZp, 11+ Tpy—1 (T, 41 —Y) =@+ Tp,—0, 1=0,1,... . (2.7.30)

Suppose for the sake of contradiction that the subsequence {x.,,, 1} is bounded.
Then from (2.7.30) we find that

Ay =a+liminfx,,_2 > a+7y
and so either
v>0and 0>vA—-1)>a

or
a=vy=0.

This is a contradiction and the proof is complete. |

Lemma 2.7.10 Assume § = 0. Let {zn,+1} be a subsequence of a solution
{zn} that satisfies (2.7.2) and (2.7.3). Then, for j > 0, the following hold:

lim ,,_2_3; =0 (2.7.31)
hm Tn;—3-35 =7 (2732)
1— 00
liminf @, _4_3; > (2.7.33)
and
lim sup @, —¢—3; < oo. (2.7.34)

PROOF From (2.7.29) for i > 0

AES] o v
n;—2—3j .
T <y ——— + + S 5=0,1,...
SO Ty Ty AT

and so, clearly, (2.7.31) is satisfied. To establish (2.7.34), suppose for the sake
of contradiction that for some j > 0

lim 2z, _g_3; = 0.

Then, clearly, from (2.7.29)

hrn Tn;—6-35 — hm Tn;—9-35 = hm Tn;—12—35 = OO. (2735)
— 00 — 00 i—00
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Also from (2.7.31)

hm Tn;—5-3j = hm T;—8-3j = hm 0 Tp—11-3j = OO (2.7.36)

Without loss of generality, in view of (2.7.35) and (2.7.36), assume that
Tp,—6-35 >V +2, Tp,_g3;>a—Aly+2), i=0,1,.... (2.7.37)
We now claim that, for ¢ > 0,
Tpy—9-3j > Tp,—8-3;- (2.7.38)
Suppose that there exists ig > 0 such that
T, —8-3j = Tn; —9—3;-
From this and (2.7.37) we see that

O+ Vniy—8-3) + Tniy—9-35 _ @ F (v + Dxp, —s-3;
A+ T, —8—3j o A+ T, —8—3j

Tn, —6-3j = <7+2

which contradicts (2.7.37). The proof of (2.7.38) is complete. From (2.7.29)
for:>0

Jj+3 Jj+2 r
n;—8—3j
ni+1 < =
Tni+1 az (A+7)° ’VZ A+7 A_|_fy)g+3

From this and (2.7.38) we have

J+3 J+2

1 Tn;—9—3;5
ot <03 G Y T
and so for ¢ > 0
j+4 Jj+3 x 1937
. < N2 o) . (2.7.39
Tnit1 az (A+~ VZ A+7 A+7)J+3xni71173j ( )

From this and (2.7.5) it follows that

lim sup &, —11-3; < 0.

This is a contradiction. The proof of (2.7.34) is complete. For 4,5 > 0

a VTn;—5-3; Tn;—6—3;5
+ .
A+xy, 535 A+an,_5-3; A+Tn,_5-3;

xni7373]‘ =
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By taking limits in the last equation as i — oo, in view of (2.7.34) and (2.7.36),
we find that for j € {0,1,...}

hm Tn;—3-35 = -
1— 00
Finally, from (2.7.34) and Lemma 2.7.9 we have for j € {0,1,...}

liminf @y, _4—3; > 7.

11— 00

The proof is complete. |

PROOF  We divide the proof of Theorem 2.7.1 into the following nine
cases:

Case 1: 4+ 1 < A. Clearly, forn >0

a+ Pxy +YTp_1+Tn_2 « B+1
Tpy1 = "A szil LA 1 +v+ — max{,, Tn_2}.

By using Theorem 1.4.1 it follows that

i < @ +~vA
1m sup x —_—.
=T A

Case 2: f+1=A, v>0, and a > 0. Without loss of generality, assume
that the initial conditions z_s, z_1, xg are positive. Let m > 0 be such that

m < min{vy,z_2,2_1,Zp}.

We claim that
Ty >m, for n=-2-1,0,... . (2.7.40)

Indeed,

a+Bxg—m)+(y—m)z_1+z_2—m
B+1+z_y

and the proof of (2.7.40) follows by induction. Then

>0

1y —m =

o+ Bl'n + YTn—1 + Tpn—2
/6 + ]- + Tn—1

Tn+1 =

B+1
< +9+
Gri+m T By1+m
By using Theorem 1.4.1 we find that

max{r,,Tn_2}, n=01,....

1
limsup x,, < at(B+ —l—m).
n—oo m
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Case 3: f+1=A, v>0, and a=0. Let M > 0 be such that
M > max{vy,z_2,2_1,20}.

We claim that
Tp <M, n=-2,—-1,0,.... (2.7.41)

Indeed,
Blag—M)+(y—M)z_14+2_9—M
B+1+2x_4

and the proof follows by induction.

<0

$1—M:

Case 4: f+1=A, a>0, and v = 0. Without loss of generality, assume

that the initial conditions z_s, z_1, xo are positive. Let m > 0 be such that
. a o o«
m < min{z_os,x_1, 29, —, —, — }.
Tr_9 XT_1 X9

We claim that

m<a, < n=-2-1,0,.... (2.7.42)
m
Indeed,
_a+pm+m - _atfBrgtas _ atfur+5 a
B+1+2 ~TN T g1, B+1+m  m

and the proof follows by induction.

Case 5: f+1=A, v=0, and a = 0. Clearly, for n >0
Tpt1 < max{T,,Tn_2}

and so
Tpy1 <max{x_s,z_1,20}, n=0,1,... .

Case 6: 3+1> A and (> 0. Suppose for the sake of contradiction that
{&n,+1} is a subsequence of a solution {z,} such that (2.7.2) and (2.7.3) hold.
We consider two subcases:

Subcase 6(i): z,, > Tn,_2, for i € {0,1,...}. In view of (2.7.7) and (2.7.8),
there exist L, M > 0 such that

Tp;—2, Tny—1 < M

and
a+Yn,—1 + Tn—2  Bla+ Py, —1 +YTn,—2)

< L.
A+xni71 (A+xni*1)(A+xni*2)
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From (2.7.10), (2.7.11), (2.7.12), and the last inequality we have
Tn,;+1 <L+ ani—(ﬁ

B+e
Then, for ¢ sufficiently large,

Tn;+1 < Tp;—3,
which contradicts (2.7.3).

Subcase 6(i:): In this case we assume that there exists a subsequence of
{n;}, which for the sake of simplicity we still denote by {n;} such that for
i€{0,1,...}

Tp,—2 > Tp,.

Clearly, for s > 0

T _ « /anifélsfl ’yl'ni74572
n;—4s —
A+ Tn;—4s—2 A+ Ln;—4s—2 A+ Tn;—4s5—2
Tp;—4s—3 1
- (2.7.43)
Tn;—4s—2 T 102 + 1
and
xni74572 (07 6 ’Yan',—4s—4

= + +
Tn;—4s—3 xni74573(14 + xni74sf4) A+ Tn;—4s—4 xni74573(14 + -Tni74sf4)
Tn;—4s—5
mni74573(A + $ni,4574)

From (2.7.22) it follows that for s € {0,1,...} the subsequences {z,,_4s}
are bounded. Let [_45 be accumulation points of the bounded subsequences
{Zn;—4s}. By taking limits in (2.7.43) and (2.7.44) as ¢ — oo, in view of
(2.7.22) and (2.7.23) we find

(2.7.44)

l_45—a

B

l—4s =7+

For s sufficiently large,
S

1
Y Z E > .
t=0
Then

S

1 l—4s
AN

10:’}/4-;::’)/ > |y,

B

t=0

which is a contradiction.
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Case 7: v>1—A >0 and g =0. Clearly, for n > 0,

o+ VYLn—1 + Tp—2 « 1
= <
ot A+ avy 0T

By using Theorem 1.4.1 it follows that

A
limsupa, < S04

Case 8: 1 — A >~ >0 and B = 0. Suppose for the sake of contradiction
that {zn,+1} is a subsequence of a solution {x,} such that (2.7.2) and (2.7.3)
hold. From (2.7.31) we have

lim z,,_2 = oc.
1— 00

Without loss of generality, assume that, for i > 0,

a—+ T
g > T 2.7.45
R ( )
where
s 1A+ /(1 +1-A)? +4da
B 2
is the positive equilibrium of Eq.(2.0.7). We now claim that
T,y < . (2.7.46)
Otherwise, for some i,
znio—l Z T.
Then
a+YTp, —1+ Tpn,; — a+ YT+ Ty, —
T 41 = Y, —1 =2 Y 0—2 < Ty 2,

A—|—xni0_1 - A+i‘

which contradicts (2.7.3). The proof of (2.7.46) is complete. Let 0 < € <
1 — A — v and let s be sufficiently large such that

s+1

1 _
O‘Z(A+7+€)t+1 >T.

t=1

Then for N sufficiently large and ¢ > N, in view of (2.7.32) and (2.7.33), we
have, for 0 < j <'s,

Tp;—4-35 >V + € Tn,—3-35 <7 +E€
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Hence,
Q+ YTy, -3 + Tpn;—4 « Tp,—4
o = ; ; i i S
mt Atz 5 Atyte Afvy+te
Jj+1

1
> —_— >
a;(z‘l+v+6)s“ v

which contradicts (2.7.46).

Case 9: y=1—A >0 and § = 0. The proof in this case is similar to the
proof in Case 8 and will be omitted.

a4+ Bx, + x,_1
Tp-1+ Dxn—2

2.8 Boundedness of z,,; =

In this section we establish the boundedness of every solution of the equation
in the title with

a>0 and G,D € (0,00).

This will confirm the boundedness of the following two special cases of Eq.(2.0.1),
namely:

#88 and #170.

See Appendix A.
We present the proof for the case
a=0.

The case where « is positive is similar and will be omitted.
So for the remainder of this section we deal with the equation

6xn + Tn-1
g = En Tl 2.8.1
ot Tn-1 +Dmn72 " ( )

with positive parameters 8 and D and with arbitrary positive initial conditions
T2, -1, Zo-

The main result in this section is the following.

Theorem 2.8.1 Ewvery solution of Eq.(2.8.1) is bounded.
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PROOF First we make the following useful observations:

Tp—1 i ﬁxnfl + Tp—2 1

U . S n=1,2,...
Pntl Tp_1+ Dmn—Q Tp—1+ Dxn—Q Tp—2 + DIn_g !
(2.8.2)
Tn-1
- wn= 2.8.3
Tn—1 + Dxn—Q o ( )
min(ﬂ, 1) < ﬂIn—l + Tp_2o < max(ﬂ, 1) (2 8 4)

max(D,1) = xp-1 + Dxy—o — min(D, 1)
Tptl — 00 = Tp—o+ Dxy_3—0=12,_2—0 and z,_3 — 0 (2.8.5)
Tpy1 — 0= 2o+ Dxyy_3 — 00. (2.8.6)

Now assume for the sake of contradiction that Eq.(2.8.1) has a positive
unbounded solution {x,}. Then there exists a subsequence {z,,} such that

ZTp;+1 — 00 (2.8.7)
and for every 1,
Tp,41 > xj, forall j <n;+ 1. (2.8.8)
Then
ZTp,—2 — 0 and z,,_3 — 0 (2.8.9)
and
ZTn;—5 + Dxp,—¢ — 00 and x,,_¢ + Dxy,—7 — o0. (2.8.10)
Next we claim that
liminfx,, 1 > 0. (2.8.11)

Otherwise, there exists a subsequence of {n;}, which for economy of notation
we still denote by {n;}, such that

Tp;—1 — 0.

Then
Tp,—a + Dxp, 5 — 00.

Also from (2.8.2), there exists a positive constant M such that

Tn._5+ Dx —6
=14M. .=
Tn;—3 BTn;—4 + Tny—5

I‘n1+1§1+M

D'rn'—6
<1+M(A14+

and eventually
Tni+1 < Tp;—65

which contradicts (2.8.8) and establishes our claim that (2.8.11) holds.
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We have -
Tn;—1 = ﬂxni—2+xm—3 _ ﬂ(x )+1
T p s+ Digs 14 D- <’”Z::‘;>
and _—
I O St v
‘ Tp,—3+ Dy, _y rx:zAFl)~(;Z:§)

and so the following statements are true:

If the sequence { } is bounded, then

Tni=3y 5 g

lim inf(
11— 00 Ty, —4

and if the sequence { it } is unbounded, then
T,

lim inf(=%=2) > 0.
1—00 :Enifll

Hence, there exists p > 0 such that, eventually,

either z,, o > pxn,,—a
or Tn,—3 > WTn,—4.

Then from (2.8.2) and for some positive constant K,

max(5,1) . 1

1 <148
It S0 (DY) s+ Do

ni—6 + Dxp,
:1+K.M

<1+ K-
Tn,;—4 ﬁxni—S + Tn;—6

Dx,, _
<1+ K(14 =T ),
5xn71—5 + Tn;—6

Therefore, eventually,
Tn;+1 < Ly —7

which contradicts (2.8.8) and completes the proof. |

o+ ﬁxn + Tn—2
an—l + Tp—2

In this section we establish the boundedness of every solution of the following
two special cases of Eq.(2.0.1), namely:

#94 and #176.

2.9 Boundedness of 7,1 =
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See [152] and Appendix A.
We present the proof for the case

a=0.

The case where « is positive is similar and will be omitted. So for the remain-
der of this section we deal with the equation

BTp + T2

—_— =0,1,... 2.9.1
C’xn,1+xn,2’ n P ( )

LTn+1 =

with positive parameters § and C' and with positive initial conditions x_g,
r_1, ZQ-
The main result in this section is the following.

Theorem 2.9.1 Every solution of Eq.(2.9.1) is bounded from above and from
below by positive constants.
PROOF Note that for n > 0,

. ﬁxn—i-l + Tp—1 ﬁxn + Tn—2
Cmn + Tn—1 anfl + Tp—2

an—i—Q + Tp+1 = c

BTnTy_1+C?2% | + 1y o(Crpy + 200 1) - min (3,C?,1)
C?zpxp_1 +C22_ | + 24 o(Cry + 24—1)  max(C?,C,1)

Then for n > 0,

=K

Brpis+Tpye1 B
x =—" < — -xp43+ L
ntd Cl’n+2 + In+1 K nt3

Now using the above two estimates we see that for n > 0,

ﬂmn+4 + Lpn42

Tnts =
" an-{-?) + Tn42

B max (25,1
<7$n+3+5+$n+2<5 K>

C$n+3 + Tpngo - K min(C, 1)

and so all solutions of Eq.(2.9.1) are eventually bounded from above by the
positive constant U.

From
. L S
el O(En+5+xn+4 - (C+1)U n+6, P
and ,
BTnt7 + Tnts 8- ©+U * %n+6 + Tpas

anJrG + Tn45 o an+6 + Tn45
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. 32
min (7 1)
C+nu >
> —— -+ =17L =0,1,...
max (C, 1) » =01,
we see that that all solutions of Eq.(2.9.1) are eventually bounded from below

by the positive constant L. The proof is complete. |



3

Ezistence of Unbounded Solutions

3.0 Introduction

Consider the third-order rational difference equation

a+ B, + YTp—1 + 0%p—2
A+ Bz, +Cxp_1 + Dx,_o’

Tpt1 = n=0,1,.. (3.0.1)

with nonnegative parameters «, 3,7, 0, A, B, C, D and with arbitrary nonneg-
ative initial conditions x_o,x_1, g, such that the denominator is always pos-
itive.

This equation contains 225 special cases of equations with positive parame-
ters. It was conjectured in [69] that in 135 of these special cases, every solution
of the equation is bounded and, in the remaining 90 cases, the equation has
unbounded solutions in some range of their parameters and for some initial
conditions.

In this chapter we present several theorems on the existence of unbounded
solutions of some equations of the form of Eq.(3.0.1) and in particular we
establish that in 85 special cases of Eq.(3.0.1) there exist unbounded solutions
in some range of their parameters. The only five special cases of Eq.(3.0.1)
where it has been conjectured that they have unbounded solutions but we are
unable yet to confirm it are the following:

428, 444, #56, 470, #120.

See Appendix A. These five special cases can be summarized in the following
conjecture.

Conjecture 3.0.1 Show that for each of the following five third-order ratio-
nal difference equations, which are written in normalized form, there exist
unbounded solutions in some region of ilts parameters and for some initial
conditions:

(6]
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Tn
2 S - T
# Tn+1 an71+xn72’ n sy Ly
B4d: gy, = 2T n=0,1,...
Tn—2

156 : gy = Din Iy

Tp—2

o+ T,
70 gy = ——0 I 0,1,
# ot anfl + Tn—2 "
24190 3y = ST A T gy

Tp—2

The existence of unbounded solutions is obvious in each of the following 14
special cases of Eq.(3.0.1), which are linear but nontrivial:

#5,  #9, #13,  #41, #45,  #49, #53,
H57, #61, #117, 121, #125, 129, #137,

and in each of the following five special cases, which can be transformed to
linear equations:

#8, #10, #12, #14, #15.

See Appendix A.

The proof of the existence of unbounded solutions in the special cases #51,
#59, and #123 is quite lengthy and, to economize in space, we refer the reader
to the original source [47] for #51 and [150] for #59 and #123.

In the remaining six sections of this chapter we will establish the existence
of unbounded solutions in 63 additional special cases of Eq.(3.0.1).

In Section 3.1 we will establish the existence of unbounded solutions of the

equation

a+ Bxy, +yTp_1 + 62p_2
A+z, ’

Tpt1 = n=0,1,... (3.0.2)

with
v,a+ 40+ A€ (0,00). (3.0.3)

This confirms the existence of unbounded solution in 15 additional special
cases of Eq.(3.0.1).
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In Section 3.2 we will establish the existence of unbounded solutions of the

equation
n n— 6 n—
tngy = 252 Z:Z 12+ In=2 o —0,1,. (3.0.4)

with
v,a+3+d+ A€ (0,00) and 6 =A=0 onlyif 8=0. (3.0.5)

This confirms the existence of unbounded solution in 13 additional special
cases of Eq.(3.0.1).

In Section 3.3 we will establish the existence of unbounded solutions of the

equation
o+ ﬁxn +YTn—1+ 51‘71—2
el = . n=0,1,... 3.0.6
Tt A+an + XTp_2 " ( )

with
v, B € (0,00). (3.0.7)

This confirms the existence of unbounded solution in 16 additional special
cases of Eq.(3.0.1).

In Section 3.4 we will establish the existence of unbounded solutions of the

equation
o+ ﬁxn + VLn—1 + 61‘7172
nt1 = , =0,1,... 3.0.8
Tt A"’an + Tp_1 " ( )

with
0, B € (0,00). (3.0.9)

This confirms the existence of unbounded solution in 14 additional special
cases of Eq.(3.0.1).

In Section 3.5 we will establish the existence of unbounded solutions of the

equation

Tn—2
gl = , =0,1,... 3.0.10
Tnt1 A+ Bz, +Cx,_q " ( )

with
B+ C € (0,00). (3.0.11)

This confirms the existence of unbounded solution in four additional special
cases of Eq.(3.0.1).

Finally in Section 3.6 we will establish the existence of unbounded solutions
of the special case
#50: xp4q = m, n=20,1,....

Tn
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a+ Brn, + YTp_1 + 0,2

3.1 Unbounded Solutions of z,,,1 =
A+ x,

The first theorem in this section confirms the existence of unbounded solutions
in 15 additional special cases of Eq.(3.0.1), namely:

429, 46, #54, #62, #71, #83, #95, #118
4126, #130, 138, #4165, 177, #183, #£195.

See Appendix A.

We will assume that (3.0.3) holds and we will establish that there exist
solutions of Eq.(3.0.2) that are unbounded in some range of its parameters
and for some initial conditions. Actually, we exhibit a huge set of initial
conditions through which the subsequences of even and odd terms of the
solutions converge, one of them to oo and the other to

By +0A
v=6

Furthermore, our proof here extends and unifies all previously known results
on the existence of unbounded solutions for all special cases of Eq.(3.0.2).
More precisely, we establish the following result.
Theorem 3.1.1 Assume that (3.0.3) holds and
v>B+0+ A
Let k be any number such that
O<k<y—-p—-06—-A

Then every solution of Eq.(3.0.2) with initial conditions x_o, T_1, xog Such
that

—A
Z_o9,20 € (0,7 —A) and z_1 > %
18 unbounded and, more precisely,
By +0A

lim z9p41 =00 and lim z9, =
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PROOF Observe that
a+ Bxg+yr_1 +6x_2—a: o+ PBro+(y—A—x0) w1 + 0T

P11 = A+£C0 -1 A+170
and so
xr1 > T_q.
Also,
+ By + ywo + dx_
22— (B4 6+ k) < 2FO0 ;xo L (B+ 3+ k)
1
_adywo 40 (21 — 1) — kxy
= -
—A)—a- —A
catrly—A)-a-vty=-4
Z1
Therefore,
and, furthermore,
a+ Brg + yr1 + dxg Y
I3 = xZq.
A+ 2o B+0+A+Ek
It follows by induction that for n > 0,
Top < ﬁ + 1) +k
and
Tont1 > ;an—l
B+5+A+k
and so, in particular,
lim 29,41 = 00. (3.1.1)
Let S and I denote the following limits:
S =limsupzs, and I =liminf zs,
Note that from Eq.(3.0.2),
. _a+ Bra, + YTan_1 + 0Tan_2 Ton—1
I+l = A+ o, 714 + ZTon

and so for n > 0,
Ton—1 < A + Tan

Ton+1 Y

Let € > 0 be given. Then, clearly, in view of (3.1.1), there exists N > 0 such

that
o+ Broni1 + YTon

A+ Tont

< fB+e for n>N.
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By using the preceding two inequalities, it follows from Eq.(3.0.2) that for
n>N,
A + BTont1 + YT2n + 0T2n—1

A + T2n+1

Toan+4+2 =

<<ﬂ+e>+§<A+x2n>

< 0A ) 0
ﬁ"’i""e + —Zon.
Y Y

By using Theorem 1.4.1 and by taking limit superiors we find

< By + 0A + e

S < ~—3
and so, clearly,
g < Brtod
=S
When
B=A=0,

we see that S = 0, that is, lim, .. 2, = 0 and the proof is complete. Next
assume that

B8+ A>0.

Clearly, there exists a sequence of indices {n;} and a number Ly € [I, S] such
that

im xon,4+2 =1 and lim w9,, = Lo.
— 00 11— 00

K2

From Eq.(3.0.2) we have

Topy1  « 1 B2y, 1 Y 0Zon—2 1
Tan—1 A + ZTon Top-—1 A + ZTon Ton-1 A + Zon A + Ton Top-—1

and
Tonta a 1 Bront1 1 vy 0Top—1 1
Ton A+ 2onq1 ®an A4 Toptr T2n A+ o1 A+ Tongr Ton

By replacing n by n; in the above two identities and then by taking limits as

1 — oo, we find
lim <$2ni+l> _ Y
1—00 \ T2, 1 A + Lo

I 6 A+L
5+ + Lo

and

Lo Lo Lo 0l
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Therefore,
)
I:ﬁJr;(/H—Lo)SLo (3.1.2)
and so sA
Loz 04
v—0
Hence,
By + A
L = — .].«
0 o S (3.1.3)

and so, from (3.1.2) and (3.1.3),

1) 0A
I=ﬂ+*(A+Lo)=m;.

¥ y—0
The proof is complete. |

The following generalization of Theorem 3.1.1 establishes the existence of
unbounded solutions in the following 39 special cases of Eq.(3.0.1):

429,  #31, #33, #46, #48, #b54, #62
464, #T1, 473, #75, 483,  H#87, #05
497, #99, 110, #118, #126, #128, #130
#138, #146, #154, #162, #165, #169, #177
4179, #4181, 183, #4187, 195, #197, 199
#4202, #4210, #214, #4222

and in the following 44 special cases of fourth-order rational difference equa-
tions:

49280-287, #344-351, #400-403, #408-415, #464-479.

See Appendices A and B.

Theorem 3.1.2 Assume that

61 >0 and ZBQJ' >0
j=0

and that either
By >0 (3.1.4)

or
Bas > 0= Bas >0, for all s<m. (3.1.5)
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Then the rational equation

o+ Z'];:O ﬂixn—i
A+ 3" Boitn_o;

Tpa1 = n=0,1,... (3.1.6)

has unbounded solutions in some range of the parameters and for some initial
conditions.

PROOF Assume that £ = 2t is an even number. The proof when k is odd
is similar and will be omitted. Set

S={s<m: Pas > 0}.

We will establish that there exist unbounded solutions in the range of pa-
rameters where

p1>A+UY By
§=0
with .
o 50 Z¢:1 ﬁQi

when (3.1.4) holds and

¢
[ — MaXies Bai L > imma1 Pai
minjeg Ba; Bag

, for some s € 5,

when (3.1.5) holds and provided that S # (). Note that when ¢ < m,

Z P2i =0

i=t+1
and so in this case
g B, U m.aXiesﬁzi'
BO minges ng
When S = (), we set
U=0.
Choose a positive number € such that
B1>A+(U+e)) By (3.1.7)
§=0

and let {z,} be any solution with the initial conditions chosen as follows:

t
o+ Zizl Bri—1T2—2;
EBO ’

Tl >T_3>"">T1-2q9 > (318)



Existence of Unbounded Solutions 83
when (3.1.4) holds, and

t
a+ . Paic1Ta—a;
6323 ’

To1>T_3>"">T1-2q9 > (319)

when (3.1.5) holds, and
Tog, gy, 2o < U + ¢, (3.1.10)

where
q = max(2m, 2t).
We claim that {x,} is an unbounded solution of Eq.(3.1.6). To this end,
we first establish that for all n > 0,

o+ D" Boitn—2

Tont1 > ™ + Top— 3.1.11
2n+1 A>T By n—1 ( )
and
Topto < U +e. (3112)
Indeed,
o+ Zf:o Biw—i o+ Z?io B2:i%—2; 1
xr1 >

= o e T —+ X _
A+ o Borai — A+ Bojra; A+ (U+e) Z;n:o By; '
and, in view of (3.1.7),

a4+ 30" Bait—o;
A+ 370 Baj

xr1 >

Also, when (3.1.4) holds,

_ Bor1 S Boiti i a+ 3t Bois1zo o
A+ By A+ Bojwi_a; A+ Bojmi_g;

€2

In view of (3.1.8),

Bo > :t-fl Boi - T1
< = =1 - =U
T2 = BO B().’El ¢ €

and the proofs of (3.1.11) and (3.1.12) follow by induction. When (3.1.5)
holds and S # @ for all i € {m +1,...,t} and for all j € {0,...,m}, we have

1-— 2] Z 1—2¢ and T1-2j Z r1-92;.
Therefore, there exists s € S such that

T1_2s = T1-2;.
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In view of (3.1.9)
a+ 3 Pri1ma g
A+ 300 Bojwi-a;

and so , .
Y im0 PeiTia a+Y i Pric1x2_2;
A+ g Bojwig; A+ 300 Bajai—aj

T2

t
maxies 02i | Dimmi1 D2 T1-2s

- +e=U +e
minjes Baj Basx1_26
When (3.1.5) holds and S = 0, in view of (3.1.9),
t
oy = a+ g P12 ce—U+e

A Byt
and the proofs of (3.1.11) and (3.1.12) follow by induction. Next assume that
lim x9p41 = L1 < o0.

Clearly, there exist nonnegative numbers
L_ot...,. Lo <U+e¢
such that
m t t
Li(A+> ByL s))=a+» PBul oi+L1 Yy Bai1
§j=0 i=0 i=1
Hence,
m t m
Li(A+(U+6) Y Baj)>a+ Y BaL i+ Li(A+(U+e) > Byy),
j=0 i=0 j=0
which is a contradiction. The proof is complete. |

Open Problem 3.1.1 Assume that
v>0B+0+A
and let k be a number such that
O<k<y-—-p—-06-A

Let T denote the positive equilibrium point. Determine the character of solu-
tions of Eq.(3.0.2) with

—A
X_9,x0 €[y —A,Z] and z_1 € [1:, a—i_ryg:)] )
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a+ Bn + 7201 + 0702
A + Tp_2

3.2 Unbounded Solutions of z,,,; =

In this section we will confirm the existence of unbounded solutions in 13
additional special cases of Eq.(3.0.1), namely:

31, #48, #64, 473, 485, #97, H128,
#132, #140, 167, 179, #185, #197.

See Appendix A.

We will assume that (3.0.5) holds, and we will establish that there exist
solutions of Eq.(3.0.4) that are unbounded in some range of its parameters
and for some initial conditions. Actually, we exhibit a huge set of initial
conditions through which the subsequences of even and odd terms of the
solutions converge, one of them to co and the other to

5- A+ JE- AP T 5
2 |

More precisely, we establish the following result.

Theorem 3.2.1 Assume that (5.0.5) holds and that
¥>B+46+ A

Then Eq.(3.0.4) has unbounded solutions. In fact there exist initial conditions
T_o,T_1,Tq Such that

d—A+ /(6 —A)2+4
lim z9p41 =00 and lm zg,40 = i (2 s 57. (3.2.1)

PROOF We consider the following cases:

Case 1:
A>0.

Let {x,} be a solution of Eq.(3.0.4) with initial conditions z_o, x_1, x¢ sat-
isfying
e+ (B+d+e)y—Aly—A)
y—A
+(1—A)? B++6a+(B+6)(y—A)

x_1 > max{ 2 ) } (3.2.3)
€ €

<x_9,x9 <7y — A, (3.2.2)
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where
_B_5_A _B_5_
0<e<minfQ=F=0=4) Aby=5-0-4), (3.2.4)
v+1 v+2
We claim that
a+ Bxoy + 0xon
Ton+1 A j_ l‘gn_; 2 + o1, n=0,1,... (325)
and
c+Brotov=Ab=A) A =01, . (3.2.6)

y—A

In view of (3.2.2),

o+ Bxg+ dx_o YI_q o o+ Bxg + dx_o

s a. (327
A+, A+, Ao, Torre (327

T =

We claim
(B4+0+e)r1 < (y—Az_;. (3.2.8)

Indeed, in view of (3.2.2),
(B+0+e)x — (y— A)x_1
_aff+04€)+B(B4 0+ €

A + Xr_9
+Y(B+d+e)r1+0(B+d+e)z_2—(A+zs)(y— Az
A+x_o
LB+ o+e+(B+0)(B+i+e)(y—A4) —er

A+x_o '

In view of (3.2.3)

a(B+d+e)+(B+)(B+I+e)(v—A) —exy

< 0.
A+x_o

In addition, in view of (3.2.3), (3.2.7), and (3.2.8),

a+ Bz +ywo +0x_1 — A(y — A) — (v — A)z 4
A + Xr_q

T —y+ A=

A2 _
<CH—(7 ) €961<0.
A+I_1

Furthermore, in view of (3.2.2), (3.2.3), and (3.2.4),

e+ (B+d+e)y—Aly—A)
To — ’}/—A
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_ oy —A)+ B8y — Az + (v — A)zo
(A+a_1)(y—4)
+o(y—A)x_1 —Ale+ (B+ 0 +€)y — A(y — A)]
(A+z_1)(v—A4)

e+ (B+ 0+ — Aly — Aoy
A+ a_1)(y— A)

87

[Ay=B-6—-A)—e(l+)]z_1 —[e+(B+d+ )y — Ay — 4]

~ (A+z 1)y A)

ex_1— e+ (B+d+¢€)y—A(y— A)]
(A+z_1)(y—A)
(Y= AP —[e+(B+d+e)y—Aly - A)]
= (A+a2_1)(y—A4) -0

The proofs of (3.2.5) and (3.2.6) follow inductively.

Let
I =liminfxy,, S =Ilimsupxsy,, and L = lim xo,41.
In view of (3.2.5) and (3.2.6),
0<I, S<y—-A, 0<y—A<L<c.

At this point we will show that

We consider the following cases:

Subcase 1:
a+B+d>0 and I >0.

From this and in combination with (3.2.5) and (3.2.6) it follows that

0)1
x2n+l>w+x2n7h n=0,1,....

Hence,
L= lim z9,41 = o0.
n—oo

The proof of (3.2.10) is complete in this case.

Subcase 2:
a+B+d6>0 and I=0.

(3.2.9)

(3.2.10)
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Suppose for the sake of contradiction that
L < 0.
There exists a sequence of indices {n;} such that
lim 2z9,,42 =0.
i—00
Furthermore, from Eq.(3.0.4) we have

o+ BTony1 + 0%an—1
T > =0,1,....
etz = A + Toan—1 ’ ’

By replacing n by n; in the above identity and then by taking limits, as ¢ — oo,
we find
0> ¢ +(B+ 5)L7
- A+ L
which implies that
L=0.

This contradicts (3.2.9). The proof of (3.2.10) is complete in this case.

Subcase 3:
a=0=06=0.

Suppose for the sake of contradiction that
L < oc.
By taking limits in Eq.(3.0.4), as n — oo, and in view of (3.2.9) we have
y—A<L= nh—>Holo Tont+1 = nh_}rr;o Topto =77 — A,
which is a contradiction. The proof of (3.2.10) is complete.

Next we will establish (3.2.1) in this case (A > 0). Let e > 0. There exists
N = N(e) such that for alln > N

Y T2n+1 g
< <ed —t—n)
A+ 292  Ton—1 A+ zon o
n 6 n—
(5—6<OH—W2 + 0% Leste.
A+ zon_1
Then for n > N
By By

d—e+ < Topya <0 +e+ Pe+

— — 2 n=0,1,... (32.11
A+ zop_o A+ zon_ ( )
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and in view of (3.2.11) we find

By
< _ 2.
S_5+e+ﬁe+A+I (3.2.12)
and 5
Y
I1>6— i 2.
>4 6+A+S (3.2.13)

Letting ¢ — 0, in (3.2.12) and (3.2.13), we get
A§4+0S — AT < ST — By < A6+ 61 — AS
from which it follows that
(0+A)S < (0+ A,

which implies
I1=25.

Hence, by taking limits in (3.0.4), as n — oo, the proof of (3.2.1) follows. The
proof is complete in this case.

Case 2:
A=0 and 6§ > 0.

In this case the change of variables
Yn = Ty — 0
reduces Eq.(3.0.4) into the equation

a+ B+ 50 + BYn + VYn—1 n
5+yn—2 ’

Ynt1 = =0,1,.... (3.2.14)

Since ¢ > 0 we may apply the results of Case 1 to Eq.(3.2.14) and so the
result follows. The proof is complete in this case.

Case 3:
A=45=0.
In this case, in view of (3.0.5), it follows that
p=0
and so Eq.(3.0.4) becomes
gy = Il g (3.2.15)
Tp—2

We choose initial conditions z_9,x_1, g such that

a—+92
O0<x_9,2g <7y, T_1> i .
Y
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From this it follows that

«
r1 > —+x_1 and xo <7
Y
and by induction
«a
Tony1 > 5 +Zop—1 and Tap42 <7y, n=0,1,....

Therefore,

lim Toan+1 = OO.
n— o0

Moreover, from Eq.(3.2.15) we have

Tongn = —— o L2 01, (3.2.16)

Ton—1 Ton—1

By taking limits in (3.2.16), as n — oo, it follows that
lim Ton4+2 = 0.

The proof is complete. |

a+ B, + yr,_1 + 0x,_o
A+ Bz, + Tp_o

In this section we will confirm the existence of unbounded solutions in 16
additional special cases of Eq.(3.0.1), namely:

3.3 Unbounded Solutions of z,,,; =

#33,  #75,  #87, #99, #110, #146, 154, #162
4169, #181, 187, 199, #202, #210, #214, H#222.

See Appendix A.

We will assume that (3.0.7) holds and we will establish that there exist
solutions of Eq.(3.0.6) that are unbounded in some range of its parameters
and for some initial conditions.

More precisely, we establish the following result.

Theorem 3.3.1 Assume that (5.0.7) holds and that
v>pB+5+ A
Then Eq.(3.0.6) has unbounded solutions.
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PROOF We will consider two cases.

Case 1:
8> dB.

Let {z,} be a solution of Eq.(3.0.6) with initial conditions satisfying

B+4 y—A a(B+1)— A(B+6+k)+y(y—A) + B+
Byl ~ T < gy and kB

<T_1,
(3.3.1)

0<k=v—08-A-9, L=max{a,p,0}, and M =min{A, B,1}.

We will show that for n > 0,

a+ﬁz2n+5$2n—2 ﬂ_"(s V_A
w1 and T2 T2y (332
$2n+1>A+Bx2n+x2n72+$2l 1 an 332n€(B+1 B—i—l) ( )
We have \ By 46 I
@ T Tp—2
< — =0,1,....
A+ By, +an0 M "0
Also,

_a+Brg+0r_o ~
_A+B£C0+.’E,2 A+B(E0+IE,2

T T—1,

from which it follows that

a+ Brg+ dx_o
> _
1 A—|—B$0+$_2+x !
and
. <O¢+ﬂﬂfo+5$—2 ﬁ—i—k‘x
! A+B£L’o+l',2 /6 -
Also,

_W—A_a—i—ﬁxl—&-vmo—&-éx,l _5+§+k
B+1 A+ Bzi+z_ B+1

_a(B+1)-AB++k)+y(B+1)xg+ (Br1 — (B+Kk)x_1) + Bé(x_1 — x1) — Bk,
(B+1)(A+ Bz +x_1)
a(B+1)— A(B+ 0+ k) +(y — A) + BE5E2=2 — By
(B4+1)(A+ Bry +2z_1)
_ a(B+1)— A(B+6+k)+~(y— A) + BL — Bkay “o
(B+1)(A+ Bxy +2_1)

T2

<

Furthermore,

_B+d _a+Britymotdr,  [fH0
B+1 A+ Bxi+z_, B+1

T2
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a(B+1) = AB+6) + (B + Do + (3= 6B) (w1 — v_1)
(B + 1)(A + Bxi + I_l)

- a(B+1)—AB+6)+v(B+1)+(8—0B)(x1 —x_1)
The proof of (3.3.2) follows by induction.

> 0.

Let

I =liminf x9,42 and L = lim xg,41.
n—oo n—oo

We will show that
L = oo. (3.3.3)

We consider the following two subcases:

Subcase 1:
B+6>0 or a>0.

Then from (3.3.2) we have

a+ (B+0)(I —e) _
Ton+t1 > A+ﬂ+5 + Top-—1, ’I’L—O,l,...,

where € is a positive number. From this it follows that

L= lim Toan+4+1 = OO.
n— oo

The proof of (3.3.3) is complete in this case.

Subcase 2:
a=pF=6=0.

In this case Eq.(3.0.6) becomes

VYLn—1

T = , n=0,1,....
T A Bz, + 2,2
In particular we have
x
Tont2 = T2n n=20,1,....

A+ Bxopi1 + Tap-1’

By taking limits in the last equation as n — oo we find

lim Ton+2 = 0.
n—oo

We choose a positive number m and a positive integer IV such that

vy—A

0 -
SMS AT BY1
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and
Top <m, n=NN-+1,....
Hence,
Loy — _
Tont1 = 22n-1 Yan—1 > (1+m)x2n_1, n = N, N—i—l, R

>
A+ Bxo, + Xon—2 A+ (B+ 1)m
From this it follows that
L = lim 29,41 = o0.
The proof of (3.3.3) is complete.

Case 2:
0B > f.

Let {x,} be a solution of Eq.(3.0.6) with initial conditions such that,

vy—A a(B+1)—AB+0+Ek)+v(y—A)

0 _ _ 3.4
<x 27$0<B+1, k(B—i—l) <Tr_1, (33 )
where 0 < k=7vy—[—A—0.
We will show that for n > 0,
o+ Brop + 0x2n—2 Y-
n n— d " . 3.3.5
Tant1 > A+ Bxo, + Top_2 to2m-1 an T2nt2 < B+1 ( )

Indeed,

- _a+Bro+x_2 ¥
17A+B.”L‘0+£U,2 A+ Bxg+x_9

T_1,

from which it follows that

o+ Brg+ dx_o
x> —
A+B.T0—|—I_2

Let s=60B — (3> 0. Then

_7—A_a+ﬂx1+’yxo+5:c_1 _ B+o+k
B+1 A+ Bri+z_, B+1

)

_aB+1)—AB+o+k)+y(B+1)xg—s(x —x_1) — k(1 + B)z_,

< a(B+1)—AB+d+k)+~v(y—A) —k(l1+ B)xz_y
(B + 1)(A + Bz + l‘_1)

The proof of (3.3.5) follows inductively.

< 0.
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Let
I =liminf xo,4o and L; = lim xo,41.
n—oo n—oo

In view of (3.3.5) it follows that
Li>0. (3.3.6)

We will show that
Li = 0. (3.3.7)

We consider the following three subcases:

Subcase 1:
a+B+d6d>0 and I; > 0.

Then from (3.3.5) we have

0)(I —
I2n+1>a+(ﬁ+ )( €)+x2n—17 n:O,l,...,

where € is a positive number. From this it follows that

Ll = lim Toan4+1 = 0.
n—oo

The proof of (3.3.7) is complete in this case.

Subcase 2:
a+B+6>0 and I; =0.

Suppose for the sake of contradiction that
L < 0.
We choose a subsequence {2y, +2} of {Zan4+2} such that
lim 2z9,,42 =0.
i—00
Furthermore, from Eq.(3.0.6) we obtain

a+ Brony1 + 0%an—1
Ton+2 Z 9
A+ Bxopi1 + Ton—1

n=201,....

By replacing n by n; in the preceding identity and then by taking limits, as
i — oo, we find
05 OFB+OL
— A+ (B+1)L
which implies that
Ly =0.
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This contradicts (3.3.6). The proof of (3.3.7) is complete in this case.

Subcase 3:

a=pF=0=0.
In this case Eq.(3.0.6) becomes
YTn—-1
m = 5 = O, 1, e
It A+ Bxy, + Tp_2 "
In particular, we have
Tont2 = T2n n=20,1,....

A+ Bxopi1 + Tap-1’

By taking limits in the last equation as n — oo we find

lim Ton+2 = 0.

n—oo

We now choose positive numbers m and N such that

0<me<-2—4
m< —
A+B+1
and
Top, <m, for n=NN+1,....
Hence,
Tont1 = J¥2n—1 T¥2n—1 > (14+m)xon—1, n=N,N+1,... .

A + B.’ﬂgn + Ton_o A + (B + 1)m
From this it follows that

Ll = lim Toan4+1 = OO.
n— o0

The proof is complete. |

o+ Bxn, + YTp_1 + 0xp_2
A+ Bx,, + Cx,_y

In this section we will confirm the existence of unbounded solutions in 14
additional special cases of Eq.(3.0.1), namely:

3.4 Unbounded Solutions of z,,,1 =

#80, #92, #0908, H#149, #1567, #161, #174
4180, 186, #1908, #205, #2090, #213, #221.
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See Appendix A.

In this section we will assume that

5>A+7B+% (3.4.1)

and establish that there exist solutions of Eq.(3.0.8) that are unbounded.

More precisely, we establish the following result:

Theorem 3.4.1 Assume that (3.0.9) and (3.4.1) hold. Then Eq.(3.0.8) has
unbounded solutions.

PROOF Choose positive numbers m and € such that
16} m
m€(0,5 A—~B B and €€ 0’1—|—73 .
Set

1
K==
€

[a+ﬂ<6+g>+5(e+’y)]

L:é [a+7(e+'y)+6(e+ ﬁ)}

and
B
Let {x,} be a solution of Eq.(3.0.8) with initial conditions chosen as follows:

x_o >max{K,L}, x_; € <0,6+ g) , and xg € (0,e+ 7).

Then we claim that

lim x3,41 =00, lim z3,40=—=, and lim 23,43 =1.
n— 00 B n—oo

n—0o0
Indeed,
. a+ Bro+yr_1+0v_2 o a+ Bz +yr_y 0x_o
1:

A+ Bxo+ x4 A+yB+ 2 4 c(1+B) A+~vB+ 4 +¢(1+B)
o+ _ 1)
S Bro + vy L _ s,
0 A+~vB+ & +m
o+ By + a0 + 673 ) a+7(e+7)+6(e+%)+ﬁx1
To =

A+ Bxq + o Bz

a+7(e+’y)+5(e+%>—|—ﬂL
BL

<

SV SN

:€+

)
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and

a+ Py +yw1 + 00 a+6<e+%)+5(e+7)+7x1
A+ Bxoy + 21 x1

Tr3 =

a+ﬂ<e+ %) +0(e+7) +7K
K
It follows by induction that for n > 0,

<

=€+7.

o+ ﬂxSn + YL3n—1 0
T3n+1 > + 3
0 A+yB+ 5 +m

T3n—2,

B
T3pn—92 < €+ —,

B
and
T3p+3 < €+ 7.
Therefore,
lim 3,41 = oo,
n—oo
a T3n T3n—1
_ T3n+1 + ﬂ + fyan#»l + 6z3n+1 6
T3n+2 = A Z3 — 5 as n — 00,
+ B + —Han B
T3n+1 T3n+1
and
T3n n
13:+1 + ﬁzzn:i + '7 + 5I§j+1
T3n43 = A Tania — 77 a n—0o0
+ B=2nE2 ]
T3n+1 T3n+1
and the proof is complete. |

Theorem 3.4.1 extends in a natural way to the (k+1)5t-order rational equation

a+ Zfzo BiTn—i
A+ Ei:ol Bz,

Tpy1 = , n=0,1,... (3.4.2)

with
ﬂk»B()vBla"';kal € (0,00) (343)

This result establishes the existence of unbounded solutions in the following
32 special cases of Eq.(3.4.2), with k = 4:

HE424 — 431, #440 — 447, #488 — 495, #504 — 511 .

See Appendix B.
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Theorem 3.4.2 Assume that (5.4.3) holds and that

k—1 ﬁ
> A—|— Bz k—1—1
ﬁk ,LZ:;( kalfz

Then Eq.(3.4.2) has unbounded solutions.

PROOF Let € > 0 be chosen such that

ﬂk>A+ZB 5’; 11 L o). (3.4.4)

Let {z,} be any solution of Eq.(3.4.2) with initial conditions satisfying the
following conditions:

a+ 30 BB +e)

Top > B ’ (3.4.5)
ﬁoA-i-ﬁOEz 1 ' Bi(5=+ o)
oy > o Br—i , (3.4.6)
k=2 5/ Br_2-s ﬁk 1
a0 BB +6) + BBt + o)
B 7 3.4~7
T_p > eBr_1 ’ ( )
ABr—1 + Br—1 Ei‘:c? (ng B T
o> eBi : , (3.4.8)
Bo Bo
E_€<xk+1<Bo+e (3.4.9)
and
Bre—1 Pr-1
—e<xp < + €. 3.4.10
By_1 0 By ( )
Then we claim that
P (3.4.11)
and
Bz oa kg1 (3.4.12)

T(k+1)n+i — >
(e+1) B;_»
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To this end we first show that for all n >0

k-1 1
a+ i Bi(GEt — o) By

k—1 Br—1-i + k—1 Br—1—i
A+> 0 Bilg=="+¢ A+3, (Bilg——"+¢)

Z(k+1)n+1 > “T(k41)(n—1)+1

(3.4.13)
and
Bi—2 Bi—2 .
_ P < — =1,2,---k+1. 4.14
Bi_2 €< x(k—‘,—l)n—‘ﬂ < Bi_2 + €, 1 ) Ly + (3 )
Indeed,
a+ Zf 0 Bir—;
T =
A+ Zz 0 B L—i
k—1 —1—i
a+zzo@<§iir€> O
A ,3k 1-i A Br—1-i ok > Tk
+Z Bi(g== +€) +Ez 0 (Bk17+€)
From the last inequahty and (3.4.5), (3.4.6), (3.4.7), and (3.4.8), we have
Bo Bo
By e< o < By +e€
and
Br—1 Br+1
B, 6<xk+1<B+1+6

and so (3.4.13) and (3.4.14) follow by induction. Clearly, (3.4.12) follows from
(3.4.14). Also, (3.4.11) follows from (3.4.13) as long as

Bk—l—z
o+ i >0
; ﬁ Bk—l—z
On the other hand, when
51@ 1—1
a+ i =
Zﬁ Bk: 1—3
if
x(k-}-l)n-‘rl —-Ue€ (Oa OO),
then

BrU
A+Zk lBBkll

" Br_1-i

)

which contradicts (3.4.4). The proof is complete.
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Tp—2
A+ Bx, +Cx,_4

3.5 Unbounded Solutions of z,,; =

Theorem 3.5.1 Assume that
A, B,C€[0,00) and A+ B,A+C,B+C > 0.

Then the rational equation

x = Tn-2 n=0,1
n+1 A+an +Cl‘n_1’ g Ly oo

has unbounded solutions.

PROOF For the proof see Theorem 4.4.1 in Section 4.4. |

3.6 Unbounded Solutions in the Special Case #50
Theorem 3.6.1 Assume that

O<a<l.

Then the rational equation

= 22 01, (3.6.1)

n

has unbounded solutions.
Note that the following identities hold:

aZnys — (@ — 1)Tpi1 — Tpoo

Tniqa — Tp—1 = - , n=20, ].7 e (362)
n+3
—(a = 1D)@ns1 — T
T — Tpgy = 0t (z+ x)x”“ Tl —0,1,....  (3.6.3)
n+2

Lemma 3.6.1 Assume that 0 < a < 1 and let {x,}>2_, be any solution of
Eq.(3.6.1) for which there exists N > 3 such that

TN > Ty, for n>—2. (3.6.4)

Then
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PROOF From (3.6.4) with n = N + 5, (3.6.3) implies that
aryys+ (1 —a)zy < zy_o. (3.6.5)

Furthermore, in view of (3.6.4), we have xny > znyy3 and so (3.6.5) implies
that
TN+3 S IN—-2. (366)

In view of (3.6.2), we have

e -1 —
TN+3 — TN-2 = IN2 TINCS (@ = D@+ xN). (3.6.7)
TN42 TN+2

From (3.6.4), we have xny > zny2. Therefore, in view of (3.6.6), (3.6.7)
implies that
TN+2 § IN-3- (368)

In addition, from (3.6.4), we have

IN 2 ZN-5, (3.6.9)
and so . L
a+x a+Tn_
Tngs = N> N5 — ano. (3.6.10)
TN+2 TN-3

From (3.6.6) and (3.6.10), we have x5 = y_2, and so (3.6.4) and (3.6.5)
imply that
TN =TN-2.

In addition,
arN4+3 + (1 — Oz):ZZN = arn43 + (1 — Oé)IEN_Q =TN_2,

from which it follows with the use of (3.6.3) that x5 = xx. It is also true
that
ary + (1 —a)zy_2 =N > TN_5, (3.6.11)

from which it follows with the use of (3.6.2) that znx41 > zny_4. Using
Eq.(3.6.1) we get

a+ TN+1 > a+TN-—4

x = =ITN-_1. 3.6.12
S TN43 TN-2 N ( )
In view of (3.6.2) we have
4 — IN_ —1 _
IN{4 —TN-1 = INy3 T IN-2 (0 = Diens xNH). (3.6.13)

TN+3 TN+3
Since Ty 43 = Tn_2, (3.6.12) and (3.6.13) imply that

TN+3 S TN41- (3614)
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From Eq.(3.6.1) with the use of (3.6.14) we get
TN < TN_1,
from which it follows, with the use of (3.6.4), that
TN = TN_1.
Therefore, xy4+3 = 2§ = Tn—1 = n—2. Using Eq.(3.6.1) we have
T, =&, for n > —2.
The proof is complete. |

Theorem 3.6.2 Assume 0 < o < 1. Then every solution of Eq.(3.6.1) is
either unbounded or converges to the equilibrium of Eq.(3.6.1).

PROOF  Let {z,}72_5 be a solution of Eq.(3.6.1) bounded from above
and from below. Set

S =limsupz, and [ =liminfx,.

n— oo n—00
There exists subsequences {Tn,+1}52,, & = —2,—1,..., such that
lim @, 440 =104 =95 > lim z,, 41 = li. (3.6.15)
11— 00 11— 00

In addition the sequence {i;}32 _, satisfies Eq.(3.6.1). In view of (3.6.15) and
Lemma 3.6.1, we have
lpy =%, for k> -2,

and so

S =z
In addition, there exist subsequences: {zn, x}i2;, k& = —3,-2,..., of the
solution {z,}52 _, so that

lim 2z, =ly=1<1I; = ilinoloxnj_,_k <z

21— 00

In addition, {I;}}2 _5 is a solution of Eq.(3.6.1) and so

Oé+I_3 > a+[0

I —
0 I_4 - x

which implies
o+ Io
Iy

z>

%

z.

Hence, Iy = Z. The proof is complete. |
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Lemma 3.6.2 Assume that 0 < a < 1 and let {x,}52_5 be a nontrivial
oscillatory solution of Fq.(3.6.1) bounded from above and from below. Then
there exists —2 < N < 2 such that

TN =sup{zp ol _,. (3.6.16)

PROOF If N > 3, in view of Lemma 3.6.1 we get a contradiction. On
the other hand assume that

S =sup{zn}or_,

and
S >uwx,, for n>-2.

Since {z,}52 _, oscillates about Z, we have S > Z. Furthermore, there exists
a subsequence {x,,}5°; of {,}72 _, so that

lim z,, =95 > 7,
11— 00

which, in view of Theorem 3.6.2, is a contradiction. |

The proof of Theorem 3.6.1:

PROOF  Assume that 0 < o < 1 and let {z,}52_, be any nontrivial
oscillatory solution of Eq.(3.6.1) such that

sup x,, # x;, for i € {—2,-1,0,1,2}. (3.6.17)

We will show that {z,}52 _, is an unbounded solution of Eq.(3.6.1). Assume
for the sake of contradiction that the solution {z,}> _, is bounded from
above and below. This contradicts Lemma 3.6.2 and completes the proof.






4

Periodic Trichotomaies

4.0 Introduction

In this chapter we present all known periodic trichotomies of the third-order
rational difference equation

a+ /gmn + VYLn—1 + 5$n72
ntl = , n=0,1,... 4.0.1
Tnt1 A+ Bz, +Cxp_1+ Dxyy_o " ( )

with nonnegative parameters «, 3,7, 9, A, B, C, D and with arbitrary nonneg-
ative initial conditions x_o,x_1, g, such that the denominator is always pos-
itive.

In Section 4.1 we present necessary and sufficient conditions for the exis-
tence of prime period-two solutions of Eq.(4.0.1). See also Section 5.9.

In Section 4.2 we present the period-two trichotomies known for the rational
equations

a+ Bxy + YTn—1

Tn+l = e , n=0,1,..., (4.0.2)
@+ YTp—1 + 0Tp_o
n = s = ,].,..., 4.0.
Ty R n=0 (4.0.3)
and
Tnpt = ot Won1 —0.1,.... (4.0.4)

A+ Bz, +Tp_o’

Note that in addition to these three nonlinear period-two trichotomies, Eq.(4.0.1)
contains a trivial period-two trichotomy for the linear equation

Tp41 = %xn_l, n=0,1,....

In Section 4.3 we present a unified version of the three known nonlinear period-
two trichotomies of Eq.(4.0.1).
In Section 4.4 we present the period-three trichotomy known for the rational
equation
Tp—2

=0,1,.... 4.0.5
A+ Bz, +Czp_y’ " T ( )

Tn41 =

105
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In Section 4.5 we present the period-four trichotomy for the rational equa-
tion
o+ ﬁxn + Tn_2

Tn—1

Tpt1 = n=0,1,.... (4.0.6)

In Section 4.6 we present the period-five trichotomy for the rational equation

g = T2 g (4.0.7)

Tn

In Section 4.7 we present the period-six trichotomy that has been conjec-
tured for the rational equation

o+ Ty

" n=0,1,.... 4.0.8
C(En71 +:L'n72’ n ) ) ( )

Tn+1 =
We offer the following conjecture for Eq.(4.0.1):
Conjecture 4.0.1 No other periodic trichotomies are possible for any non-

linear special case of Eq.(4.0.1) without restricting the region of parameters
of the special case.

Open Problem 4.0.1 For the (k + 1)%*-order rational difference equation

o+ Zfzo BiTn—i
A + Zf:() Bixnfi 7

Tnt+1 = ’I’LZO,I,...

find all possible nonlinear periodic trichotomies that are not reduced to one of
the seven known nonlinear trichotomies of Fq.(4.0.1).

4.1 Existence of Prime Period-Two Solutions

In this section we present necessary and sufficient conditions for the existence
of prime period-two solutions of the rational equation

a+ ﬁxn + VYLn—1 + 6$n72

n = 5 :071,... 4.1.1
ot A + an + an—l + Dxn—? " ( )

with nonnegative parameters «, 3, v, 0, A, B, C, D, and with arbitrary non-
negative initial conditions x_s, x_1, 2o such that the denominator is always
positive.
Let
c O, 0,0, (4.1.2)
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be a prime period-two solution of Eq.(4.1.1). Then

= a+ B+ vy + oy w47a+5¢+7¢+5¢
A+ By +Ch+ Dy A+ B¢+ Ci+ Do
and so
Ap+ (B+D)pp +Cd* = a+ (B+6)Y +v¢
and

AYp + (B+D)pp + Cp* = a+ (B+ 6) ¢ + 7.

By subtracting the above two inequalities and then by dividing the result by
¢ — 1 we obtain that

Clo+19)=vy—B—6—A (4.1.3)

is a necessary condition for Eq.(4.1.1) to have a prime period-two solution.
It is easy to see now that when

C=0,
the condition

y=08+0+A

is necessary and sufficient for Eq.(4.1.1) to have a prime period-two solution.
Actually, in this case, when B + D > 0, there is a “hyperbola” of prime
period-two solutions of Eq.(4.1.1) of the form (4.1.2) given by

(B+D)pyp = a+ (B+9)(¢+ )

with
¢,9 €[0,00) and ¢ # 1.

This observation is the key point behind the three known nonlinear period-two
trichotomies of Eq.(4.1.1) with C' = 0. Note that when

B=C=D=0,

for a prime period-two solution to exist, it is necessary that
a=p=0=0.

In this case the equation reduces to the linear equation

Tp+1 = %mn—h n= Oala"'a
which is the only linear period-two trichotomy contained in Eq.(4.0.1).
On the other hand, when
C >0,
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it follows from (4.1.3) that
v>pB+6+A,

and, in particular, v > 0 is a necessary condition for Eq.(4.1.1) to have a
prime period-two solution. With the parameters C' and ~ positive, Eq.(4.1.1)
can be written in the normalized form

o+ ﬂxn +ZTn—1+ 5‘rn72

1 = . n=0,1,.... 41.4
Int A+an+xn71 +D-rn72 " ( )

When

o = ﬁ = 6 = O’
Eq.(4.1.4) is reduced to the equation

Tn—1
A+ Bz, +2p_1+ Dxy_o’ "

Tni1 = =0,1, (4.1.5)

which is investigated in Section 5.135. The following statements are easily
established for Eq.(4.1.5):

1. Eq.(4.1.5) has a unique prime period-two solution if and only if

0<A<1and B+D=0or 0<A<1 and 0<B+D#1. (41.6)

2. Eq.(4.1.5) has infinitely many prime period-two solutions if and only if
0<A<1and B+D=1. (4.1.7)

3. Assume that (4.1.6) holds. Then the unique prime period-two solution
of Eq.(4.1.5) is
01— A0, 1—A, ... (4.1.8)
(a) When 0 < A < 1 and B+ D = 0, the unique prime period-two
solution (4.1.8) of Eq.(4.1.5) is unstable.
(b) When
0<A<1and B+D >1,

the period-two solution (4.1.8) of Eq.(4.1.5) is locally asymptoti-
cally stable and is unstable when

0<B+D<1.

4. Assume that (4.1.7) holds. Then the prime period-two solutions of
Eq.(4.1.5) are given by (4.1.2) with

A

G+ =1-A, 6.0€000), and 6"
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On the other hand, one can see that when
C>0 and a+(5+4+d>0,
Eq.(4.1.1) has a prime period-two solution (4.1.2) if and only if

B+i+A<1

and
da<(1-pB-6—-A)(B+D)(1-B—-6—A)—(14+38+30—A4)].

Furthermore, when the above inequalities do hold, then Eq.(4.1.1) has the
unique prime period-two solution (4.1.2) and the values ¢ and v are the two
positive and distinct roots of the quadratic equation

at+(B+0)(1—-8—-0—A)

2_(1-p8-6—-A
t*—(1-8-96 )+ BiD_1

=0. (4.1.9)

Open Problem 4.1.1 From the discussion in this section one can see that
the only special cases of Eq.(4.0.1) with a unique prime period-two solution
are the following 49 equations:

#3530, # 32, #34, #T4,  #T6, #86,  #88
#98,  #100, #109, #111, #112, #135, #1)5
#1477, #£148, #153, #155, #156, #161, #163
#164, #168, #170, #1580, #182, #186, #188
#190, #192, #194, #198, #200, #201, #203
#2004, #209, #211, #212, #213, #8215, #216
#217, #219, #8220, #2021, #0223, #2824, #225.

For the local asymptotic stability of the following 12 special cases:

#30,  #32,  #34, #T4h,  #T6,  #86,
#100, #109, #111, #112, #135, #145,

see [119], [140], and [175].
Determine the local asymptotic stability of the prime period-two solution of
each of the remaining 37 equations.

Open Problem 4.1.2 For the (k + 1)%t-order rational difference equation

a+ Zfzo Bi%n—i
A + Zf:() Bixnfi 7

Tn+1 = :0,1,...

determine all special cases with a unique prime period-two solution and in each
case determine the local asymptotic stability of the prime period-two solution.
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4.2 Period-Two Trichotomies of Eq.(4.0.1)

In this section we present the statements of the three known nonlinear period-
two trichotomies of third-order rational equations and present the proof of
the first period-two trichotomy in a spirit that can be easily generalized to
the other two period-two trichotomies. In the next section we unify the three
trichotomies into a single statement and present the proof of the unified result.

The following nonlinear, period-two trichotomy result for Eq.(4.0.2)
was first observed and established in [16] for the special case #54. See also
[108], [112], [175].

Theorem 4.2.1 [175] The following period-two trichotomy result is true for
Eq.(4.0.2).
(a) Assume that

v < B+ A

Then every solution of Eq.(4.0.2) has a finite limit.

(b) Assume that
v=0+A.

Then every solution of Eq.(4.0.2) converges to a (not necessarily prime) period-
two solution of Eq.(4.0.2).

(c) Assume that
7> B+ A

Then Eq.(4.0.2) has unbounded solutions for some initial conditions.

Before we present the proof of Theorem 4.2.1 we make some observations
and establish a lemma. Our aim is to present the proof in a spirit useful
for extensions and generalizations to other known trichotomies for rational
equations. We define the function

_a+fu+qv
f(u? U) - A + U
and observe that for v > 0, f(u,v) is strictly increasing in v. Also
8i B ﬁA’;a — v
u (At u)?

and so the monotonic character of f(u,v) in the variable u depends on whether
—«

the solutions are bounded from below or from above by %
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Also note that when
514 — S 07

f(u,v) is strictly decreasing in u and strictly increasing in v and Theorem
1.6.6 applies.

The following lemma determines the monotonic character of the function
f(u,v) on the ~-line.

Lemma 4.2.1 The following statements are true eventually for every positive
solution {x,} of Eq.(4.0.2) and for n sufficiently large:

) y>A = oz, > 29

(W) 0<y<A and pA-a>0 = zngﬁf“%o‘.

PROOF (i) Otherwise, there exists an IV, as large as we please, such that

BA -«
TN+1 < .
i v
That is,
a+fay +ytn1 A«
A+ -y
which implies
A— A—
S s

and so

This, by a similar argument, implies that

2
xN73 g (A) ' (IBA - a) ’
Y Y

which eventually leads to a contradiction.
(#t) Otherwise, there exists an N, as large as we please, such that

A—«
ZL’N+1>ﬂ .
Y

That is,
a+ Bry +yrN_1 o BA -«
A+zy v

)
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which implies

A— A—
a+(55 O‘)xN+fny_1>A<ﬂ O‘). (4.2.1)
Y Y
But from Eq.(4.0.2),
a+Br, v max(a,3) v
< - L < NPT e .
Tt = AT S A,y Tt

Therefore, by the comparison principle, there exists U > 0 such that
r, < U, forall n>0.

Then from (4.2.1) we see that

A K
IN-—1 > — MO - —,
Yy
where A N
M()—ﬁ @ and K:max(a,a—i—ﬂ—ﬁ —OZ>
v Y
Set
K
Mpyy1=— My ——, n=0,1,.... (4.2.2)
Y
Then, clearly,
A K

which eventually leads to a contradiction because {x,} is bounded and the
solution of Eq.(4.2.2) with initial condition M; is unbounded. |

We are now ready to present the proof of Theorem 4.2.1.

PROOF  The result is clearly true when v = 0 and so in the sequel we
assume that v > 0. The proof of part (a) will be divided into four cases.
Please note that the proof of part (b) of the Theorem is included in Case 1:

Case 1:
A<~y<pB+A (4.2.3)

or
7<A and fA—a <0. (4.2.4)

It follows from our discussion preceding Lemma 4.2.1 and from Lemma 4.2.1
that, in this case, the function f(u,v) is strictly decreasing in w and strictly
increasing in v. The proof will be complete in this case if we also show that
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every solution of the equation is also bounded. To this end we first claim that
every solution {x,} is eventually bounded from below by v — A. That is,

xn >y — A, eventually. (4.2.5)

This is clearly true when (4.2.4) holds. Now assume that (4.2.3) holds and
suppose for the sake of contradiction that there exists IV, as large as we please,
such that
TN <y — A
Then
a+ Bry +yrN-1
A+ xn

— A,
which implies
at+(B+A—-y)ry +yrna+ < A(y— A)

and so 4
Ty-1 < ;(’Y*A)~

Similarly, we find that

N3 < (1;1)2 (v—A4),

which eventually leads to a contradiction.
Hence, (4.2.5) is true and so there exist N sufficiently large and positive
numbers L and U such that

a+ OL
7—A<L§$N71,$N§U:7.
L—(y-4)
Now one can see that
< a+ pU +~L < angs = a+ Py +yTN_1 < a+ BL+~U U
A+U A+zy A+ L
and by induction
xn € [L,U], forall n > N.
Case 2:
v=A, a>0, and fA—a > 0. (4.2.6)

To establish the result in this case, it suffices to show that every solution is
bounded and that the function f(z,,x,—1) is strictly decreasing in z,. To
this end, we first claim that, eventually,

BA — «

Ty > )
Y
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which will imply that f(z,,2,—1) decreases in x,. Suppose for the sake of
contradiction that there exists IV, as large as we please, such that

-«
TNyl < by .
Y

Then, clearly,
a+ ey +yTN-1 < By —«
Y+ aN Y

)

which implies that
o
a"‘;xN‘f"Yfol <By-—a

2 _

7 N\ (Br—a
min(xy_1,Tn_2,Tn—_3) < ( ) ( ) )

and so

Similarly,

7 +a g

which eventually leads to a contradiction.
Finally, note that in this case,

and so {z,} is bounded. The proof is complete in this case.

Case 3:
v=A, a=0, and fA—«a > 0. (4.2.7)
Here Eq.(4.0.2) reduces to
BTpn +YTn—1
Gy = Lon Tl 01, 4.2.8
e 4.2
Note that for n > 0,
__ 7 _
Tpy1 — B = poprapy (Tp—1— )
and
Tngt = Tt = —"— (B Tn 1)
n+1 n—1 v + T, n— .
Hence,

Tn—1 an<6 or ﬁ<xn71 anv

from which it follows that
lim z, = 3.

n—oo
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The proof is complete in this case.

Case 4:
v< A and fA—a > 0. (4.2.9)
In this case
a+Br, v max(a, 3) v
<y Lo < Ly
Tl S T S Ay Tt

and so the solution is bounded. Also, by Lemma 4.2.1(iz) the function f(x,, z,—1)
is strictly increasing in x,, and x,_; and the result follows by Theorem 1.6.7.

Now we present the proof of part (¢) on the existence of unbounded
solutions when
7> 0B+ A

To this end, let k£ be a number such that
O<k<y—p-—A

Then we claim that every solution of Eq.(4.0.2) with initial conditions z_1,

To such that

- A
zo € (0,y—A) and z_; > atrty=4)

is unbounded and, more precisely,

lim z9,41 =00 and lim zq, = f.
n—oo n—oo

Observe that

a+ Brg+yr_1 a+Pro+(y—A—x0)x_1
r—r1=————"-—T_1 =

A+ xg A+ xg

and so
X1 > T_q.

Also,
< @ + Bz +yxo

xg—(ﬁ—f—k) o

(B+k)

_ atyzo—kr - a+y(y—A) —a—vy(—A) 0
T T .

Therefore,
To < B+k.
Furthermore,
a+ Bxy + vy ~ .
A+ o B+A+k "

Tr3 —
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It follows by induction that for n > 1,

Loy < ﬁ'+‘k
and
Y
Ton+1 > mfzn—l
and so, in particular,
lim xgp41 = 00. (4.2.10)

We also know from Lemma 4.2.1 that the function

a+ By +yTn-1
A+ z,

f(xnaxn—l) =

is strictly increasing in z,,_1 and strictly decreasing in x, and so by Theorem
1.6.6 the limit of the subsequence {x2,} exists and is a finite number. It now
follows that

a+ Brany1 + YTon

Ton+42 =
mt A+ zont
at+yZan +6
=2l 83 as n— oo
A
+1
T2n+41

The proof is complete. |
Theorem 4.2.1 states that Eq.(4.0.2) has unbounded solutions when

7> B+ A (4.2.11)
Clearly, when (4.2.11) holds, by the stable manifold theorem, the equation
has also bounded solutions because the equilibrium of the equation is a saddle
point. We will now show that when (4.2.11) holds, every positive and bounded
solution of Eq.(4.0.2) converges to the positive equilibrium.
Theorem 4.2.2 Assume that

v > B+ A

Then every positive and bounded solution of Eq.(4.0.2) converges to the posi-
tive equilibrium

B+v—A+/(B+7-A)?+4a
5 :

r =
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PROOF  Let {z,} be a positive and bounded solution of Eq.(4.0.2). We
claim that, eventually,

zn> DA (4.2.12)
y

Otherwise, for some N sufficiently large,

a+ Bry +yrn_1 < BA -«

ITN4+1 =

A+axNn -y
which implies that
ABA—«
IN—1 < — )
Y
which implies
A LPBA—«
ona < (SRS

which eventually leads to a contradiction. Therefore, (4.2.12) is true and so

the function
a+ fu+yv

A+u
decreases in u and increases in v. Now by Theorem 1.6.6 it follows that the
subsequences of the even and the odd terms converge to finite limits. Set

F(u,v) =

Lp = lim z9, and Lo = lim x9,41.
n—oo n—oo
By taking limits in Eq.(4.0.2) we find

a+ BLo +7vLEg a+ BLg +~vLo
———— and Lp=——-—"——.

Le = A+ Lo A+ Lg

Hence,
ALg+ LoLg =a+BLo +7vLg
ALo+ LgLo =a+ BLg+ Lo

and by subtracting we find
(y=8-4)(Lo - Lg) =0.
In view of our assumption this is true if and only if
Lo =Lg.

It remains to show that

Otherwise,
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that is
ZTop \ 0 and xon41 \ 0.

However, this is impossible because, for n sufficiently large,

a+ fra, + (v — A —2,)T2n—1

0
A+x2n ~

02> 2opy1 — Top—1 =

and so the proof is complete.

The following period-two trichotomy result for Eq.(4.0.3) was established
in [70]. For the proof see Theorem 4.3.1.

Theorem 4.2.3 Assume that
vy+d+A>0.

Then Eq.(4.0.3) has the following period-two trichotomy:
(a) Assume that
v< I+ A

Then every solution of Eq.(4.0.3) has a finite limit.

(b) Assume that
y=0+A.

Then every solution of Eq.(4.0.3) converges to a (not necessarily prime) period-
two solution of Eq.(4.0.3).

(c) Assume that
v>d+ A

Then Eq.(4.0.3) has unbounded solutions for some initial conditions.

The trichotomy results for Eqgs.(4.0.2) and (4.0.3) were unified and extended
in the higher order equation
o+ VYLn—(2041) +0Tn—2m

1 = . n=01,... 4.2.13
v + A+xn—2m " ( )

with nonnegative parameters and with arbitrary nonnegative initial condi-
tions. See [129].
Let p be defined as follows:

2m + 1, if y=0=A4A=0
p=1<l+1, if a=d=0and A>0
ged(l+1,2m + 1), otherwise.
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Then the following trichotomy result is true for Eq.(4.2.13). A detailed proof
is given in [124] and so it will be omitted here.

Theorem 4.2.4

1. Assume that
v<d+ A

Then every solution of Eq.(4.2.13) converges to a finite limit.

2. Assume that
vy=0+A.

Then every solution of Eq.(4.2.18) converges to a (not necessarily prime)
period-2p solution.

3. Assume that
v>0+ A

Then Eq.(4.2.18) has unbounded solutions for some initial conditions.

Finally the following period-two trichotomy result was established in [72].
For the proof see Theorem 4.3.1.

Theorem 4.2.5 Assume that
v+A+B>0.

Then Eq.(4.0.4) has the following period-two trichotomy:
(a) Assume that
v < A

Then every solution of Eq.(4.0.4) has a finite limit.
(b) Assume that
v = A.
Then every solution of Eq.(4.0.4) converges to a (not necessarily prime) period-
two solution of FEq.(4.0.4).
(c) Assume that
v > A

Then Eq.(4.0.4) has unbounded solutions for some initial conditions.

Conjecture 4.2.1 Show that the only possible nonlinear period-two trichotomies
that Eq.(4.0.1) may have are those three presented in this section.



120 Dynamics of Third-Order Rational Difference Equations

a+ BTy + Vo1 + 0Tn_o
A+ Bz, + Dx,_»

4.3 Period-Two Trichotomy of z,, .| =

Consider the third-order rational difference equation

a+ Bxy, +YTp-1+ 0Tp—2
ol = . n=0,1,... 4.3.1
Tntl A+ Bx,, + Dz, _o " ( )

with nonnegative parameters «, 3, v, 6, A, B, D and with arbitrary non-
negative initial conditions x_o,x_1, ¢ such that the denominator is always
positive.

The following result unifies Theorems 4.2.1, 4.2.2, and 4.2.3.

Theorem 4.3.1 Assume that
B+y+d+A+B >0, B(0+D)=6pB+B)=0, and B+D > 0. (4.3.2)

Then Eq.(4.3.1) has the following period-two trichotomy:
(a) Assume that
y<B+d+ A

Then every solution of Eq.(4.3.1) has a finite limit.
(b) Assume that
y=p+0+A
Then every solution of Eq.(4.5.1) converges to a (not necessarily prime) period-
two solution of Eq.(4.3.1).
(c) Assume that
v>pB+6+ A

Then Eq.(4.3.1) has unbounded solutions for some initial conditions.

PROOF We will give the proofs of statements (a) and (b). For the proof
of statement (c), see the proofs of Theorems 3.1.1, 3.2.1, and 3.3.1. The result
is clearly true when v = 0 and so we assume that v > 0. We divide the proof
into four cases as follows:

Case 1:
A<y<pB+di+A4 (4.3.3)

or
v< A, BA—Ba<0, and 0A— Da <0. (4.3.4)
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In this case we will show that the function

a+ Bajn + VYTn—1 + 63,‘”,2
A+ Bz, + Dx,_o

f(xnv Tn—1, wn72) =

is eventually either strictly decreasing in x,,, or strictly decreasing in x,,_o,
or strictly decreasing in both arguments z,, and x,_1. Note that the above
function is strictly decreasing in z,, if and only if

Byz,_1 > A — Ba (4.3.5)
and also strictly decreasing in x,_ if and only if
Dvxp_q > 0A — Da. (4.3.6)

This is obvious when (4.3.4) holds and so it remains to show that (4.3.3)
implies (4.3.5) or (4.3.6). Suppose for the sake of contradiction that for some
N, sufficiently large,

Bya + ByBxy + By*xn_1 + Bydxn_o

<BA-B
A+ Bxy + Dxy_o =8 @

Byxnii =

and

Do+ Dyfay + Dy*an—1 + Dydzy o

< 0A — Da.
A+ Bxzy +Dxy_o - @

Dyrnyr =
Then, clearly,
Bya+(BB(y—A)+B*a)xny+By*xn _1+(Bé(y—A)+BDa)xy_o < A(BA—Ba)
and
Dya+(0B(y—A)+DBa)xy+Dy ey _1+(DS(y—A)+D?*a)zn_o < A(A—Da),
from which it follows that either
A
Byxn_1 < . (BA — Ba)

or

A
Dyxn_1 < — - (0A — Da).
Y
Similarly, it follows that either
Al
Byazy_3 < (;) - (BA — Ba)

or

b

Dray—s < (5)? (04~ Da)
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which eventually leads to a contradiction.

Next we will prove that there exist positive numbers L and U such that the
solution {z,} lies eventually in the interval [L,U]. First we prove that the
solution is eventually bounded from below by the positive constant g;‘g. This
is obvious when (4.3.4) holds. Now assume that (4.3.3) holds and suppose for

the sake of contradiction that there exists N large enough such that

a+ By +yry_1+ drN_2 < v—A

N T A Ban+ Days B+ D
Then, clearly,
BB+ 8D — B(y— A) 0B+ 0D — D(y — A) v—A
_ _9 < A .
B+ D INFYTN-1+F B1D TN-2 < B1D
Also,
B+0+A—y BH+0+A—7y v—A
B — 44D gy o< A
ot ByD NN B+D N2=%"BiD

from which it follows that

<A -4
INSL=TBTD
Similarly,
A y—A
. < ()2
s = (2 5p

which eventually leads to a contradiction. Hence there exist N sufficiently
large and positive numbers L,U with

v - a+(B+9)L
L d U=
“B+Dp ™ (B+D)L— (7 —A)
such that
TN_2,TN-1,ZN € [L,U].
Then
a+ (8+6)U +~L a+ Bry +yrn_1 +dTN_2
L< <INy =
A+(B+D)U A+ Bxy +Dxy_o

a+@+®L+ﬂj_U
A+(B+D)L

and the result follows by induction. When

A<y<f+d+ A,
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or

y< A, BA—Ba<0, and 0A— Da <0,
or
vy=A, BA—Ba<0, 0A—Da<0, and 8+ >0,
the function
o+ ﬁxn +YTn—1+ 6-'1;11—2
A+ Bz, + Dx,_o

f(-rnv Tn—1, -Tn72) =

satisfies the hypotheses of Theorem 1.6.7 and so every solution of Eq.(4.3.1)
converges to a finite limit in this case.

When
Y=0+0+4,
the function
o+ Bxy +yTp_1 + 6xp_2
A+ Bz, + Dx,_o

f(xwu Tn—1, xn—Z) =

satisfies the hypotheses of Theorem 1.6.9, or the hypotheses of Theorem 1.6.10,
or the hypotheses of Theorem 1.6.6, and so every solution converges to a (not
necessarily prime) period-two solution in this case.

Case 2:
v< A and fA— Ba>0 (4.3.7)
or
v< A and 04 — Da > 0. (4.3.8)
In this case
a+ Bz, + 0, o ~y max(a, 3, 9) 5

anrl — " Tp—-1

é - Tpn-1> .
A+ Bz, +Dx,_o A min(4,B,D) A

and, by applying Theorem 1.4.1, we see that the solution is bounded from
above.

We will give the proof in the case when (4.3.7) holds. The proof when
(4.3.8) holds is similar and will be omitted. First note that

BA—Ba>0=406=D=0

and so the function

a+ Bxn, +YTp—1+ 0Tp_2 o+ BTy + VTrn—1
A+ Bz, + Dxp_o A+ Bz,

f(xru Tn—1, xnf2) =

strictly increases in all variables. It suffices to show that, eventually,

2, < ﬂA—Ba.
B~y
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Suppose for the sake of contradiction that there exists N sufficiently large

such that
a+ Py +vrN_1 S BA - Ba

TN T A Bay B~y

= M.

Then, clearly,

BA — Ba BA — Ba

a+ (6 By

ey +yTrn_1 > A-

Note that

_ BA- Ba BA — Ba

a+ (6
v

Jen < max(a, o+ (8 — W)=K

where U is an upper bound for the solution {z,}. Then

A BA—Ba K A K
xN_1>—~u——:—-MO——=M1.
v By Yo ¥

Similarly,

A K
TN_3> = M — — = Mo,
v ¥

which eventually leads to a contradiction. Hence, the function

a+ Brn +YTn_1 + 0Tp_2
A+ Bz, + Dx,_o

f(xnv Tn—1, xn—Q) -

satisfies the hypotheses of Theorem 1.6.7 and so every solution converges to
a finite limit in this case.

Case 3:
vy=A, a>0, and BA— Ba >0 (4.3.9)

or
vy=A4, a>0, and dA— Da > 0. (4.3.10)

We will give the proof when (4.3.9) holds. The proof when (4.3.10) holds is
similar and will be omitted. First note that

BA—Ba>0=0=D=0.
Hence, the function

a+ 6xn + VYLn—1 + 5377172 _ o+ ﬂmn + VYLn—1
A+ Bz, + Dz,,_» B v+ Bxy,

f(mna Tn—1, $n72) =

increases in x,,—1. We will show in this case that the solution {z,,} is bounded
from above and from below by positive constants and that f is eventually
decreasing in x,,.
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First we will show that the solution is eventually bounded from below by
the positive constant g ABiYB 2. Suppose for the sake of contradiction that there
exists N sufficiently large such that

a+ Bry +yrN_1 < BA — Ba
v+ Bzn - By

TN+1 =

Then, clearly,
BA — Ba

Ba
o+ —IN + YTN S )
Y By

from which it follows that

72 BA — Ba

min(xN,xN_1) < 72 T Ba B’y
Similarly,

y? )Z.HA—Ba
72 + Ba By

min(zy_1,TN—2,EN-3,N—-4) < (

which eventually leads to a contradiction. Hence, the function f increases in
Zn_1 and decreases in z,,. Also in this case,

max(a, ) v

a+ By, Y +
win(1.B) 55 5.

v+ B, y4B. 2470

Tpt1 < L1 < 5A—Ba Tn—1

By

and by applying Theorem 1.4.1, we see that the solution is bounded from
above and so the function f(z,,z,—1,%,—2) satisfies the hypotheses of The-
orem 1.6.7. Hence, every solution converges to a finite limit in this case.

Case 4:
vy=A, a=0, and fA— Ba >0 (4.3.11)

or
vy=A4, a=0, and d4A - Da > 0. (4.3.12)

We will give the proof in the case when (4.3.11) holds. The proof when (4.3.12)
holds is similar and will be omitted. Note that

BA—Ba>0=0=D=0.
In this case Eq.(4.3.1) takes the normalized form

Bn + yTn—1
T+

Tni1 = (4.3.13)

Let {z,} be a positive solution of Eq.(4.3.13). Clearly, for all n > 0

_'Y(xnfl_ﬁ)
Tn1 = F = v+ T
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and
Tn (/6 - xnfl)

Tn41l — Tp—1 —
7+

from which it follows that
ZTon — ¢ and Topt1 — Y.

Then, clearly,
Bty _ By+zx
=— and z = ——
Ttz vty

)

from which it follows that
r=y=0.

The proof is complete.

What is it that makes Eq.(4.3.1) possess a period-two trichotomy?

Could the period-two trichotomy of Eq.(4.3.1) be predicted from
the linearized equation of Eq.(4.3.1) and its dominant characteristic
root?

Open Problem 4.3.1 Assume that (4.3.2) holds and that
vy=0+d+ A

Determine the set of all initial conditions x_o, x_1, xg such that the solution
{zn} of Eq.(4.53.1) converges to an equilibrium point of Eq.(4.3.1).

Open Problem 4.3.2 Assume that (4.3.2) holds and that
vy=0B8+d+A.

Let
N 1/ I (4.3.14)

be a prime period-two solution of Eq.(4.3.1). Determine the set of all initial
conditions _a, x_1, xg such that the solution {x,} of Eq.(4.53.1) converges
to the prime period-two solution (4.3.14).

Open Problem 4.3.3 Assume that (4.3.2) holds and that
y=04+d+A.

Let x_o, ®_1, xo be given. Determine the period-two solution (4.3.14) to
which the solution {x,} of Eq.(4.53.1) converges.
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Open Problem 4.3.4 Assume that (4.3.2) holds and that
v>[B+0+ A

Show that every positive and bounded solution of Eq.(4.3.1) converges to the
positive equilibrium.

5$n—2
A+ Bx, + Cx,_4

The only nonlinear period-three trichotomy result known for Eq.(4.0.1) is the
following:

4.4 Period-Three Trichotomy of z,,; =

Theorem 4.4.1 Assume that
A, B,C €[0,00) and B+ C > 0.

Then the solutions of the equation

Tp—2
n = y :O,].,... 4.4.1
Tntl A+B$n +an—1 " ( )

have the following period-three trichotomy behavior.
(a) When
A>1,

every solution of Eq.(4.4.1) converges to zero.
(b) When
A=1,

every solution of Eq.(4.4.1) converges to a period-three solution of the form
...,0,0,0,0,0,0,...

with ¢ > 0.
(c) When
0<A<,

Eq.(4.4.1) has unbounded solutions for some initial conditions.

PROOF (a) The proof is a consequence of the inequality,

1
Tn+1 < an—Q; for n > 0
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and the fact that Eq.(4.4.1) has no prime period-three solutions when A > 1.
(b) The proof is a consequence of the inequality

Tpy1 < Tpo, for n >0
and the fact that Eq.(4.4.1) has prime period-three solutions

-~7¢7¢»w7~--

ifandonlyif A=1,¢>0,and v =w = 0.
(¢) When A € (0,1), an unbounded solution of Eq.(4.4.1) is

1 1
1 — — e -
0707 ’0707A’07O7 A27

When A =0, B> 0, and C > 0, Eq.(4.4.1) can be written in the normalized

form .
n—2
il = ——, =0,1,.... 4.4.2
Tntl Bz, +x,_1 " ( )

The solution of Eq.(4.4.2) with
r 0=0, x_1=2>0, and zg=y >0

is explicitly given by (see [60])

T3n+1 = 0
_ (Bn)™
T3n+2 = po Fuga forn=0,1,...,
Frq2
y

L3n+3 = (Bw)Fn+1

with the exponents F),, being the Fibonacci numbers with Fy = F} = 1, and
for certain values of z and y is unbounded.
Finally, when A= B =0or A=C =0, Eq.(4.4.1) reduces to
Tp—2 Tp—2

or Tpyi = , n=0,1,....
Tn Tn—1

Tn41 =

Both equations are reducible to linear third-order difference eﬂuations, that
have a lot of unbounded solutions. The proof is complete.

The following extension of Theorem 4.4.1 was presented in [146] for the
rational equation

Tn—k
A+ Zi:ol Bizp—;

Tpy1 = ,n=0,1,... (4.4.3)

with nonnegative parameters and with arbitrary nonnegative initial conditions
such that the denominator is always positive.
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Theorem 4.4.2 Assume k > 2. Then the following period-three trichotomy
result holds for Eq.(4.4.3):

(a) When
A>1,

every solution of Eq.(4.4.3) converges to zero.

(b) When
A=1,
every solution of Eq.(4.4.1) converges to a period-(k+1) solution of the
form
..,0,0,...,0,0,0,...,0,...,
with ¢ > 0.
(c) When

0<A<,
Eq.(4.4.3) has unbounded solutions.

PROOF The proof is similar to the proof of Theorem 4.4.1 and is omitted.

What is it that makes Eq.(4.4.3) possess a period-three trichotomy?

Could the period-three trichotomy of Eq.(4.4.3) be predicted from
the linearized equation of Eq.(4.4.3) and its dominant characteristic
root?

a+ B, +0x,_o
anfl

The only period-four trichotomy result known for Eq.(4.0.1) is the following
conjecture. See [59] and [150].

4.5 Period-Four Trichotomy of x, .| =

Conjecture 4.5.1 Assume that
a, B € [0,00).

Then the following period-four trichotomy result is true for the rational equa-
tion
g = 2T T g (4.5.1)
Tp—1
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(a) Every solution of Eq.(4.5.1) converges to its positive equilibrium if and
only if
6> 1.

(b) Every solution of Eq.(4.5.1) converges to a (not necessarily prime) period-
four solution of Eq.(4.5.1) if and only if

8=1
(c) Eq.(4.5.1) has unbounded solutions if and only if
8 <1

Part (a) of this conjecture has not been confirmed yet. Part (b) was confirmed
in [59] and is based on the identity:

1
Tn4+3 — Tp—1 = fz(l‘n+2 - $n72>7 n=0,1,....
n+

Another proof of part (b) and a generalization of it is given in the following
theorem. See [222].

Theorem 4.5.1 Assume that
a€[0,00) and k€ {1,2,...}.
Then every solution of the equation

oA+ Ty + Tp—k
Tpy1=———, n=0,1,...
Tp—k+1

converges to a periodic solution of period 2k.

PROOF The proof is a consequence of the identity

Ty — Tpn—2k
T+l — Tn—2k+1 = Tt for n > 0.
n—k+

Finally, part (c) of this conjecture was confirmed in [150].
What is it that makes Eq.(4.5.1) possess a period-four trichotomy?

Could the period-four trichotomy of Eq.(4.5.1) be predicted from
the linearized equation of Eq.(4.5.1) and its dominant characteristic
root?
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o+ 0x,_o
Bz,

The only period-five trichotomy result known for Eq.(4.0.1) is the following.
See [54], [59], and [151].

4.6 Period-Five Trichotomy of z,.; =

Theorem 4.6.1 Assume o > 0. Then the following statements are true for
the difference equation

ppr = 2201, (4.6.1)

n

(a) Assume that
a > 1.

Then every solution of the Eq.(4.6.1) converges to its positive equilib-
rium point.

(b) Assume that
a=1.

Then every solution of Eq.(4.6.1) converges to a (not necessarily prime)
period-five solution of Eq.(4.6.1).

(c) Assume that
a <1

Then Eq.(4.6.1) has unbounded solutions.

Part (a) was established in [151]. See also [54]. Part (b) of the trichotomy
was established in [59]. The proof is based on the identity

1

Tn+3

Tn+4 — Tp—1 = (l‘n+3—$n_2), n:O,l,... .

For the complete proof of part (¢) see Theorem 3.6.1 in Section 3.6.
What is it that makes Eq.(4.6.1) possess a period-five trichotomy?

Could the period-five trichotomy of Eq.(4.6.1) be predicted from
the linearized equation of Eq.(4.6.1) and its dominant characteristic
root?
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o+ Py

4.7  Period-Six Trichotomy of z,,; = ———
Cl‘n—l + Tn—2

The only period-six trichotomy result known for Eq.(4.0.1) is the following.
See [59].

Conjecture 4.7.1 Assume that
a,C €10,00).

Then the following period-six trichotomy result is true for the rational equation

o+ Ty

—_— =0,1,.... 4.7.1
an—1+xn—2’ n » ( )

Tp4+1 =

(a) Every solution of Eq.(4.7.1) converges to its positive equilibrium if and
only if
aC? > 1.

(b) Every solution of Eq.(4.7.1) converges to a (not necessarily prime) period-
six solution of Eq.(4.7.1) if and only if

aC? = 1.

(¢) Eq.(4.7.1) has unbounded solutions if and only if

aC? < 1.

No part of this trichotomy has been confirmed yet.
What is it that makes Eq.(4.7.1) possess a period-six trichotomy?

Could the period-six trichotomy of Eq.(4.7.1) be predicted from
the linearized equation of Eq.(4.7.1) and its dominant characteristic
root?



5)

Known Results for Each
of the 225 Special Cases

5.0 Introduction

This chapter is the heart of this book. In this chapter we present the known
results on each of the 225 special cases of the third-order rational difference
equation

a+ 6xn + YTn-1 + 5377172

= L n=0,1,... 5.0.1
T A By, + Cay1 + Dy (5.0.1)

with nonnegative parameters «, 3,7, 9, A, B, C, D and with arbitrary nonneg-
ative initial conditions x_o,x_1, xo, such that the denominator is always pos-
itive.
In several special cases we also present some new results and pose some
open problems and conjectures on the character of their solutions.
Whenever we can, we extend the results to the general (k + 1)%*-order
rational difference equation

o+ Z']LC:O 5ixn7i
A + Zfzo Bvxn—v 7

Tpg1 = n=20,1,.... (5.0.2)

The ultimate goal for the reader is to generalize each case in this chapter
to the most general functional equation

Tpt1 = f(@nye ooy Tnk), n=0,1,....

A few of the 225 special cases we present in this chapter are trivial, linear,
or reducible to linear. We only include them here for the sake of completeness
and continuity of presentation.

Most nontrivial cases are written in normalized form by using a change of
variables of the form x, = Ay,. This allows for two of the parameters in the
equation to be assumed to be equal to 1. Of course in some equations there
is some restriction, concerning which pair of parameters we assume equal to
1. For example, in Section 5.26 we cannot assume that both B and C can be
taken equal to one.

133
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5.1 Equation #1: z,,, = %

The equation in this special case is trivial.

Q
Bz,

In this special case every nontrivial solution of the equation is periodic with
period two.

It is interesting to note that periodicity may destroy the boundedness of
solutions of the equation

5.2 Equation #2: z,,, =

Tnp1 = xg n=01,... (5.2.1)

n

as the following example shows.

Example 5.2.1 (see [62] Let

f n=2k
a = {0 k=0
ay, if n=2k+1

with ag, a1 € (0,00). Then every solution of the equation,

Tpi1 = 2 n=0,1,... (5.2.2)

is unbounded if and only if

(67 7é aq.

Indeed, one can see, by induction, that every solution of Eq.(5.2.2) is, for
n > 0, given by

o
Ton42 = (7)71—&-1 * Lo
@
and o o
0 0
Tonys = (—)" T —.
a7 To

That is, in Eq.(5.2.1) periodicity may destroy the boundedness of its
solutions.
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Do you see a pattern in the periodic character of the equations

Tpe1=—, n=0,1,...

Tpy1 = ————, n=0,1,...7
xn...mnfk

Do you see a pattern in the periodic convergence character of the equations

1 n 1
Tp+l = ——
T Tn—2

, n=0,1,...

1 1
Tn+1 = + s n:O,l,...
TnTp—1 Tn—-3Tn—4a

1 1
Tn41 = % , n:0,1,7

+
2(k+1
Hi:o Tn—i Hj(=k+2) Tn—j
What is going on? See [4], [32], [91], and [94].
Open Problem 5.2.1 Let k be a nonnegative integer and let {a,} be a non-
negative periodic sequence with prime period p > 2. Obtain necessary and
sufficient conditions on p and
QQ, ..., 0p_1
such that every positive solution of the equation

fo7% 1

Tpiyl = —% , n=0,1,... (5.2.3)

+
4 2(k+1)
[Ticozn—i Hj:k+2 Tn—j

converges to a periodic solution with period (k + 2).

Open Problem 5.2.2 Let k be a nonnegative integer and let {ay,} be a con-
vergent sequence with

lim o, =a > 0.
n—oo

Investigate the global character of solutions of Eq.(5.2.3).
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(67

5.3 Equation #3: z,.1 = c
Tn—1

In this special case every nontrivial solution of the equation is periodic with
period four. Clearly, periodicity may destroy the boundedness of solutions of
the equation in the title. See [62].

«

5.4 Equation #4: z,,;, = —
Dxn—2

In this special case every nontrivial solution of the equation is periodic with
period six. Clearly, periodicity may destroy the boundedness of solutions of
the equation in the title. See [62].

5.5 Equation #5: z,,1 = g:vn

The equation in this special case is linear.

5.6 Equation #6: z,., = %

The equation in this special case is trivial.
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Bn
an—l

5.7 Equation #7: z,,, =

The equation in this special case can be written in the normalized form

L

Tyl = , n=0,1,...

Tp—1

with arbitrary positive initial conditions. Every nontrivial solution of this
equation is periodic with period six. If

r_1=¢ and xo =1,
the solution of the equation is the six-cycle:

v 11 ¢

¢ PP

What is it that makes every solution of a difference equation peri-
odic with the same period?

b9,

Open Problem 5.7.1 Assume f € C1(]0,00),[0,00)) and let k be a given
integer greater than one. Find necessary and sufficient conditions on f and k
so that every positive solution of the difference equation

xn_‘_l:‘i(in), n=0,1,...
n—1

18 pertodic with period k.

For some work on this problem, see [1], [11], and [204].
It is interesting to note that periodicity may destroy the boundedness of
solutions of the equation

Ban

Tp+1 =
X

. n=0,1,... (5.7.1)

n—1

as the following example shows.
Example 5.7.1 (see [62]) Let

6n—{1’ if n=06k+i with ie{0,1,2,3,4}7k:0’1’m

B, ifn=06k+5
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with 8 > 0. Then every solution of the equation

o = V01, (5.7.2)
Tp—1
with initial conditions
1 =Ty —= 1 (573)
is unbounded, if and only if
B#1.

Indeed, one can see, by induction, that the solution of the IVP (5.7.2) and
(5.7.3), for n > 0, is given by

Tents = 1
Tén+6 — 5”“
Tonir = B
Tentg = 1

L6n+10 = W

Therefore, in Eq.(5.7.1), periodicity may destroy the boundedness of
its solutions. For some results on the asymptotic behavior of the nonau-
tonomous Eq.(5.7.2), see [10].

Open Problem 5.7.2 Let {3,} be a positive periodic sequence with prime
period p > 2. Obtain necessary and sufficient conditions on p and

ﬂOv ) /gpfl
such that every solution of Eq.(5.7.2) is bounded.

Remark 5.7.1 It is interesting to note that every solution of the equation

g = DBk g
Tn—1 xn—(2k+1)
is periodic with period (6 + 4k). The case k =0 is Fq.(5.7.1).
Ezxtend and generalize the open problem 5.7.2 using this equation.

By
Dxn—2

5.8 Equation #8: =z, =

The change of variables, x,, = e¥~, transforms Eq.(#8) to a linear equation.
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5.9 Equation #9: z,,, = %xn,l

The equation in this special case is linear. This equation has a period-two
trichotomy depending on whether

y< A vy=A, or v> A.

See Chapter 4 for the three nonlinear period-two trichotomies of Eq.(4.0.1).
This equation has infinitely many prime period-two solutions if and only if

v=A

and no prime period-two solutions otherwise.
The only other second-order rational difference equations with infinitely
many prime period-two solutions are, in normalized form, given by

a+ By +yTn_y

Tpil = n=20,1,...
A+z, ’ .
and
T = n—t n=20,1
1= =
n A+ x, +2Tp_1’ Y

See Chapter 4 and Eq.(#109) in Section 5.109.
On the other hand, the only second-order rational difference equations with
a “unique” prime period-two solution

U, N/ R

are, in normalized form, given by

o+ ﬁxn + Tp—1
A+ Bz, + Tyt

Tn+1 = n:O,l,...

with
a+8 >0, f+A<1, B>1, and 4da < (1-—A)[B(1-8-A)—(1+30-A)]

and
Tn—1

A+ Bz, +Tp1’ "

=0,1,...

Tn+1 =

with
Ae€l0,1), B#1, and A+ B > 0.
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Open Problem 5.9.1 (a) Determine all special cases of Eq.(5.0.2) with in-
finitely many prime period-two solutions and investigate their global behavior.
(b) Determine all special cases of Eq.(5.0.2) with a “unique” prime period-
two solution and investigate the local asymptotic stability of the period-two
solution.

YTn—1
Bz,

5.10 Equation #10: =z, =

The change of variables, x,, = e¥~, transforms Eq.(#10) to a linear equation.

5.11 Equation #11: =z, = =

Q=

The equation in this special case is trivial.

VYTn—1
Dmn72

5.12 Equation #12: z,., =

The change of variables, x,, = e¥~, transforms Eq.(#12) to a linear equation.

5.13 Equation #13: z,. = %l’nQ

The equation in this special case is linear.



Known Results for Fach of the 225 Special Cases 141

5$n—2

5.14 Equation #14: =z, =
Bz,

The change of variables, x,, = e¥~, transforms Eq.(#14) to a linear equation.

6$n72

anfl

5.15 Equation #15: z,,1 =

The change of variables, z, = e¥~, transforms Eq.(#15) to a linear equation.

o
5.16 Equation #16: z,,1 = D

The equation in this special case is trivial.

«

5.17 Equation #17: z,41 = A5 o
mn

The following 11 special cases of Eq.(5.0.1)

H#17,  #18,  #19, #20, #21, #22,
#101, #102, #103, #104, #133

are special cases of the more general (k + 1)%-order difference equation

1
% »
A+ o Bivn—i

Tpp1 = =0,1,... (5.17.1)
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with nonnegative parameters and with arbitrary nonnegative initial conditions
T_fk, .-, g such that the denominator is always positive.

Equation (5.17.1) was investigated in [91], [101], [103], [124], [157], and
[208]. The following result establishes that when

A>0,

the equilibrium of Eq.(5.17.1) is globally asymptotically stable.

Theorem 5.17.1 Assume that
A>0.

Then the equilibrium T of Eq.(5.17.1) is globally asymptotically stable.

PROOF The characteristic equation of the linearized equation of Eq.(5.17.1)
about its equilibrium Z is

k

k+1 T )\ —
i=0 1 =0

It is now a consequence of Theorem 1.2.5 that all roots of Eq.(5.17.2) lie inside
the unit disk and so z is locally asymptotically stable. It remains to show
that Z is a global attractor, that is, every solution of Eq.(5.17.1) converges to
Z. To this end, first note that for n > 1,

anZ

and so also 1

> — 5

A+ % 2 i—o Bi
Hence, every solution of Eq.(5.17.1) is bounded from above and from below
by positive numbers. Clearly, the function

Tn

1

satisfies the Hypotheses of Theorem 1.6.7 (a’) from which the result follows.
The proof is complete.

f(zoy-- oy 2k)

The next result establishes the character of solutions of Eq.(5.17.1) when
A=0.

In this case it is convenient to rewrite Eq.(5.17.1) in the form

. n=0,1,..., (5.17.3)
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where
B; >0, for i=1,...,k
and
116{172,}

It is an amazing fact that the character of solutions of Eq.(5.17.3) does not
depend on the size of the coefficients Bi, ..., By but only on the parity of the
delays lq,...,l; as the following theorem shows.

Theorem 5.17.2 Let di and do be the greatest common divisors of the two
sets of positive integers:

{l17127"'7lk}
and
{lz—f—lj 11,] € {1,...,]6}},

respectively. Then the following statements are true:

(a) The equilibrium T of Eq.(5.17.8) is globally asymptotically stable if and
only if
dy = ds.

(b) When
dl 7/: an

every solution of Eq.(5.17.3) converges to a (not necessarily prime)
period-(2 - dy) solution.

PROOF The proof is a consequence of Theorem 1.6.1. For the details see
[124] or [101] and [103].

Open Problem 5.17.1 (see [62]) Let {B,} be a periodic sequence of non-
negative real numbers with prime period k > 2 and let | be a positive integer.
Obtain necessary and sufficient conditions on k, I, and By, ..., Bx_1 such
that every positive solution of the difference equation

1

Tpy1 = ————, n=0,1,...
n-+ ann“‘xn—l’ )Ly

is bounded. Fxtend and generalize.

Open Problem 5.17.2 Let {B,} be a convergent sequence of positive real
numbers and let | be a positive integer. Investigate the character of solutions
of the difference equation

1

- n=0,1,....
ann"_xnfl

Tn41 =

FEzxtend and generalize.
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«

5.18 Equation #18: =z, = Troe .
Tpn-1

It is a consequence of Theorem 5.17.1 that the equilibrium of this equation is
globally asymptotically stable.

«

5.19 Equation #19: z,4; = A Dr s
Tp—2

It is a consequence of Theorem 5.17.1 that the equilibrium of this equation is
globally asymptotically stable.

. (07
5.20 Equatlon #20 D Tp+1 = m

It is a consequence of Theorem 5.17.2 that the equilibrium of this equation is
globally asymptotically stable.

Open Problem 5.20.1 Let {B,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Obtain necessary and sufficient conditions

on k and By, ..., Bp_1 such that every positive solution of the difference
equation
1
x =—— n=0,1,...
n+1 ann+xn_1 P

18 bounded. Faxtend and generalize.
Open Problem 5.20.2 Let {B,} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

1
Tpp1 = —— n=0,1,... .
i ann+zn—1

Eaxtend and generalize.
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Open Problem 5.20.3 Assume that B is a given real number. Determine
the “good” set G of the equation

L (5.20.1)
T = .20.
i an + Tn-1
that is, the set of initial conditions
T_1,T0 €N

such that the equation (5.20.1) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.20.1) for all initial conditions in the “good”
set G.

o
5.21 Equati 21 1= ——"—
quation # Tna1 Br. t Dr s

This equation was investigated in [91] and is a special case of a more general
equation investigated in Section 5.17. It follows from Theorem 5.17.2 that
every solution of this equation converges to a period-two solution.

Open Problem 5.21.1 Assume that

B>0
and that
00, 0,9, (5.21.1)
s a giwen prime period-two solution of the equation
! 0,1 (5.21.2)
Tpp1] = ———, n=0,1,.... 21.
+ Bz, +xn—2

Determine, explicitly in terms of B, ¢, and 1, the set of all nonnegative

ingtial conditions x_o, x_1, xo such that the solution {x,}52 _, converges to
(5.21.1).

Open Problem 5.21.2 Assume that
B>0

and that x_o, x_1, and xo are given positive numbers. Determine, explicitly
in terms of B, x_o, x_1, and xq, the values ¢ and i of the period-two solution
(5.21.1) to which the solution {x,}°2 o of Eq.(5.21.2) converges.
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Open Problem 5.21.3 Let k and | be given monnegative integers. Deter-
mine the set of all initial conditions for which the solutions of the equation

1 1
n

Tn—k Tn—1

Tptl = , n=0,1,...

converge to \/i

Conjecture 5.21.1 Show that the solution of the IVP
1

T s T
T _o=x_1=x9=1
converges to a prime period-two solution of the form (5.21.1).
Open Problem 5.21.4 Assume that B is a given real number. Determine
the “good” set G of the equation
1

Tpy1 = Br. t 1, n=20,1,..., (5.21.3)

that is, the set of all initial conditions
T_9,T_1,T9 €ER

such that the equation (5.21.3) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.21.3) for all initial conditions in the “good”
set G.

«

5.22 Equation #22: =z, = C D
Tn—-1 Ln—2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.2 that the equilibrium of the
equation is globally asymptotically stable.

Open Problem 5.22.1 Let {C,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Obtain necessary and sufficient conditions
on k and Cy, ..., Cx_1 such that every positive solution of the difference
equation )

—_—— =0,1,...
Cnxnfl +xn727 " o

Tn41 =

1s bounded. Fxtend and generalize.
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Open Problem 5.22.2 Let {C,,} be a convergent sequence of positive real

numbers. Investigate the character of solutions of the difference equation
- 0,1
Tp+1 = , n=0,1,....
nr Cnxn—l + Tn—2

Extend and generalize.

Open Problem 5.22.3 Assume that C is a given real number. Determine
the “good” set G of the equation

1

_— 5.22.1
anfl + Tn_2 ’ ( )

Tn+1 =

that is, the set of initial conditions
T_2,T_1,%p € R

such that the equation (5.22.1) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.22.1) for all initial conditions in the “good”
set G.

fn

5.23 Equation #23: z,4; = 1+ Bo.
Ln

This equation or, more precisely, the difference equation

rKz,

L e A T 5.23.1
K+(r—Da, '~ 00 ( )

Tn+1 =
arises in application to population dynamics and it is known as the Bev-
erton -Holt equation. See [83]. The parameter K is positive and is called
the “carrying capacity” of the population and the parameter r is greater
than 1 and is called the “inherent growth rate” of the population. As we
will see in this section all solutions of Eq.(5.23.1), with z¢ > 0, approach the
positive equilibrium K as n — oco. Actually, this equation is a special case of
the so-called Riccati difference equation

a+ Bz,
A+ Bx,,’
For the character of solutions of the Riccati equation with real parameters

and real initial conditions see Section 5.65. The equation in the title can be
written in the normalized form

Tn+1 = :O,l,....

Tn

=01, 23.2
Atz "=O0L (5.23.2)

Tnt41 =
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with A > 0 and ¢ > 0. Clearly,

1
Tpy1 < an’ for n>0
and so when
A>1,

every solution of Eq.(5.23.2) converges monotonically to the zero equilibrium
of the equation.
On the other hand, when
A<,

we claim that every positive solution converges to the positive equilibrium
r=1-—A.

This result follows from Remark 5.65.1 (on the general Riccati equation) and
the observation that if

lim z, =0,
n—oo

then, eventually,

In > In
Tn = = = Tn,
T At T A+1-A

which is a contradiction.
Another way to establish the character of solutions of Eq.(5.23.2) is to use
a stairstep diagram or the following simple result.

Theorem 5.23.1 Let I be a set of real numbers and let
F:I1—1
be an increasing function. Then every solution of the difference equation
Tnt1 = Fxy), n=0,1,...

is increasing if and only if
T1 2 To

and is decreasing if and only if

r1 < xp.

PROOF  The proof is a simple consequence of the monotonicity of the
function F.
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We now present two general global asymptotic stability results that apply
to several special cases of the (k + 1)*t-order rational difference equation

k
Trpl = o+ Zi:O ﬂzxn—z n— 0’ 1’ o (5233)

A + E?:O Bixn—i ,

with A > 0, the remaining parameters nonnegative, with

k k
D B and > B; € (0,00),
=0 =0

and with arbitrary nonnegative initial conditions such that the denominator
is always positive. For some general results on Eq.(5.23.3), see also [157].

The characteristic equation of the linearized equation of Eq.(5.23.3) about
an equilibrium point Z is

k
1 .
Mty = NT(Biz—g)AF i =0. (5.23.4)
A+ Zf:o B; z‘zzg
Zero is an equilibrium point of Eq.(5.23.3) if and only if
a=0 and A>0. (5.23.5)

As we will see later, when (5.23.5) holds, the zero equilibrium of Eq.(5.23.3)
is globally asymptotically stable when

k
A>>"8 (5.23.6)
i=0
and unstable when i
A< Zﬁl
i=0
Eq.(5.23.3) has a positive equilibrium point if and only if
either
a>0 (5.23.7)
or
k
a=0and A< B (5.23.8)
i=0

When (5.23.7) holds, the equation has the unique equilibrium point

B—A+ \/([233— A)? + 40437 (5.23.9)

T =
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where for simplicity we use the notation,

k k
B:Z@- and B:ZBl-.
=0 =0

When (5.23.8) holds, Eq.(5.23.3) has the unique positive equilibrium point

B—A
—

Tr =
Note that

k

1 1

_— T — 3 < . T . 23.
T ;ZO |B;T — Bi] < - (BZ + 3) (5.23.10)

Therefore, by Theorem 1.2.5 and (5.23.10), the equilibrium of Eq.(5.23.3) is
locally asymptotically stable when (5.23.6) holds.

Note that the condition (5.23.6) is at best a sufficient condition for the
positive equilibrium of Eq.(5.23.3) to be locally asymptotically stable. In
every special case of Eq.(5.23.3) we should strive to determine the
“entire” region of the local asymptotic stability of the positive equi-
librium, when such equilibrium exists.

Open Problem 5.23.1 Assume that
k>4.

Obtain the region of the local asymptotic stability of the positive equilibrium
of Eq.(5.23.3) (when a positive equilibrium exists) explicitly, in terms of the
parameters of the equation.

For the values of k € {1,2,3}, see Theorems 1.2.2, 1.2.3, and 1.2.4 in
Chapter 1. The open problem 5.23.1 is asking for easily verifiable conditions
in the spirit of Theorems 1.2.2, 1.2.3, and 1.2.4.

Theorem 5.23.2 Assume that
k
B=) <A
i=0
Then the following statements are true:
(1) If
a=0,

the zero equilibrium of Eq.(5.25.3) is globally asymptotically stable.
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(i) 1If

a >0,

the positive equilibrium of Eq.(5.25.3) is globally asymptotically stable.

PROOF As we saw in the discussion preceding the Theorem, the equilib-
rium is locally asymptotically stable when « > 0. Furthermore, we have

k
o 1
Tnt1 < a1 + 1 ;ﬁixn—iy

which, together with Theorem 1.4.1, implies that the solution converges to
zero in case (i) and also that the solution is bounded from above in case (i).
Now in case (i7) let

S =limsupz, and [ = liminfzx,.

n— o0 n—00

Then, clearly,

a+ 3S a+ BI
< 1> —
<Ay ™12 4By

from which it follows that

a+ (8- A < BSI<a+ (8- A)S.

Hence,
S=1
and the proof is complete. |
In the very special case when
k
A:ZB¢>O and a >0,
i=0

the global character of solutions of Eq.(5.23.3) is completely described by the
following result in [224]. In this case it is preferable to write the difference
equation in the form

k
o, = 2T an:lﬁ”"*“  n=12.... (5.23.11)
A+>m Biznj,

Also, by making a change of variables, if necessary, we may and do assume that
the greatest common divisor of all “delays” in the numerator and denominator
is 1, that is,

ng{il, cen ,ik,jl, ces 7jm} =1.
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Theorem 5.23.3 Assume that
k
a,B1,...,Pk,B1,..., By € (0,00) and A:Zﬁi.
i=1
Then when the “delays” in the numerator
i1,...,1 are all even

and the “delays” in the denominator

J1s--+5Jm are all odd,

every solution of Eq.(5.23.11) converges to a period-two solution. In every
other case of delays, every solution of Eq.(5.23.11) has a finite limit.

PROOF  The proof is a straightforward application of Theorem 1.6.11
(a’) and (b') and the fact that all solutions of Eq.(5.23.11) are bounded from

above and from below by positive constants.

Theorem 5.23.4 Assume that
k
a=0and =) B =A (5.23.12)
i=0
and that one of the following three conditions is satisfied:

(a)

B:B; >0 for some i €{0,...,k}. (5.23.13)

(0)
Bo > 0. (5.23.14)

(©)
By >0 and Eq.(5.25.3) has no period-two solutions. (5.23.15)

Then the zero equilibrium of Eq.(5.23.3) is globally asymptotically stable.

PROOF Observe that

< i
Tnyl > Orgiagxkz Tpn—iq
From this it follows that the zero equilibrium is locally stable and also that
every solution of the equation is bounded.
Let {z,}2 _, be a positive solution of Eq.(5.23.3). It remains to show
that when (5.23.12) holds and one of the three conditions (5.23.13), (5.23.14),
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or (5.23.15) is satisfied, then the zero equilibrium of Eq.(5.23.3) is a global
attractor of all solutions. Set

S =limsupx, and [ = liminfz,.

Then 55 s8I
S < d71r>——
=68+ BI ™ = 531BS
from which it follows that
SI=0.

Now, clearly, there exists a sequence of indices {n;} and positive numbers
{L_,}F_, such that
S = lim xp,4+1
11— 00

and
L_, = lim z,,_,, for r=0,... k.
1— 00

Then from Eq.(5.23.3) we find
k
_ 2oz Bil—i
A+ Zf:o BiL_;

When (5.23.13) is satisfied, it follows from (5.23.16) that

(5.23.16)

Li=S=1
for the 7 that (5.23.13) is satisfied. Otherwise,
L_;<Sor L_;>1I
for the ¢ that (5.23.13) is satisfied and so
SI <0,

which is a contradiction.
When (5.23.14) is satisfied, it follows from (5.23.16) that

L_;=5 for all i=0,...,k

and
L_; =1 for all i€{0,...,k}, for which B; > 0.

Otherwise, there exists ig € {0,...,k} such that
L*Z’g <S8 or L*io > 1

and so
SI <0,
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which is a contradiction.
When (5.23.15) is satisfied, it follows from (5.23.16) that for all m >0

L,Qm =1 and L1,2m =85.
Otherwise, there exists mg > 0 such that
L—Zmo >1 or Li_oy < S

and so
ST <0,

which is a contradiction. Hence,

L 0S 1S,
is a period-two solution of Eq.(5.23.3), which is a contradiction. The proof is
complete. |

Remark 5.23.1 When

a=0, B=A, and B >0,

the zero equilibrium is not always globally asymptotically stable. When
the equation has periodic solutions, it is not. When k = 2, the cases
where only the zero equilibrium exists and the equation has periodic so-
lutions are the following:

#29, #35 #36, #109, #110, #113.

In the special cases #29, #109, and #110 every solution of the equa-
tion converges to a (not necessarily prime) period-two solution, and in
cases #35, #36, and #113 every solution converges to a (not necessar-
ily prime) period-three solution. Furthermore, the zero equilibrium in
all these spectal cases is only stable but not asymptotically stable.

Open Problem 5.23.2 Assume that

k
a=0 and A:Zﬁi>0~

=0

Obtain necessary and sufficient conditions in terms of k, the delays in the
equation, and B, By, ..., Bk, Bx so that the zero equilibrium of Eq.(5.23.3)
1s globally asymptotically stable.
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Conjecture 5.23.1 Assume that

k
a=0 and A:Zﬂi>0

=0

and that Fq.(5.23.3) has no periodic solutions with prime period p > 2. Show
that the zero equilibrium of Eq.(5.23.8) is globally asymptotically stable.

: By
5.24 Equat 24: wpy = ——
quation # Tpl A0,

This equation, called Pielou’s equation, was investigated in [186]. See also
[154] and [157]. The more general equation

CLNt

Nppp = — 20
t+1 1+bNt—k’

where k is a nonnegative integer was proposed by Pielou in her books ([209,
p. 22] and [210, p. 79]) as a discrete analogue of the delay logistic equation

N({t—r7)

N'(t)=rN(t)[1 — 7 ]-

Eq.(#24) can be written in the normalized form

ﬂx'rb
1 = 0,1, 5.24.1
Tntl = P ( )

with positive parameter 3 and with arbitrary nonegative initial conditions
Tr—1, ZQ-

Zero is always an equilibrium point of Eq.(5.24.1). The characteristic equa-
tion of the linearized equation of Eq.(5.24.1) about the zero equilibrium is

A2 — BA=0. (5.24.2)

By Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.24.1)
is globally asymptotically stable when

B<1. (5.24.3)
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From (5.24.2) and Theorem 1.2.2 it follows that the zero equilibrium is un-
stable when

B>1. (5.24.4)

Furthermore, when (5.24.4) holds, Eq.(5.24.1) has also the unique positive
equilibrium point
z=0-1

The characteristic equation of the linearized equation of Eq.(5.24.1) about the
positive equilibrium, z = — 1, is

V—A+é%i:&

From this and Theorem 1.2.2 it follows that £ = §—1 is locally asymptotically
stable when (5.24.4) holds.

In [186] it was shown that when (5.24.4) holds, every positive solution of
Eq.(5.24.1) converges to the positive equilibrium, z = 8 — 1.

5.24.1 The Autonomous Pielou’s Equation

The main result in this section is the following new proof for the Pielou’s equa-
tion 5.24.1, which in the next section will be adapted to the nonautonomous
case.

Theorem 5.24.1 Assume that
8> 1.
Then every positive solution of Eq.(5.24.1) converges to the positive equilib-
Tium
z=p0-1.
PROOF  Let {z,} be a positive solution of Eq.(5.24.1). Then for n > 1,

ﬂxn—l . ﬂ
1 + Tp—1 1 + Tn—2

(5.24.5)

Tn+1 =

and so the solution is bounded from above by 32. Next, we claim that the
solution is also bounded from below by a positive constant. Otherwise, there
exists a sequence of indices {n;} such that

Tn+1 — 0, and xp, 41 < x; forall j <mn;+ 1. (5.24.6)
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Then from (5.24.1), the subsequences {z,,} and {z,,_1} converge to zero.
Hence, eventually,
xm—l < ﬂ - 17
which implies that, eventually,
This contradicts (5.24.6) and establishes our claim that the solution is bounded
from below by a positive constant.
Set

S =limsupz, and I = liminfzx,.

n— oo n—00

Then it follows from (5.24.5) that
pS__b and [ > pL 5

T14+S51+1 “1+114S
which imply that
1+ 81 +1)=p5% (5.24.7)
Clearly, there exists a sequence of indices {n;} and positive numbers {L_;}?_,
such that
Tni+1 — S
and for ¢t € {0, 1,2}
Tn;—t — L_t.
Thus, from (5.24.5) and (5.24.7) we see that
B2L_4 1+S5)1+1)

o= Q+L_)(1+Ls) (A+L_)(1+L_o) L <S

and so
L_l =5 and L_2 =1

Furthermore, from (5.24.1) and (5.24.7),
_ BL_4 _ BS _ S(1+9) <3
1+L.s 141 16} -

and so S = 8 — 1 =TI and the proof is complete.
In addition to the proof given above, observe that the function

5222

Ly

f(z2,23) =

satisfies the Hypotheses of Theorem 1.6.9. Hence, every solution of Eq.(5.24.5)
and consequently, every solution of Eq.(5.24.1) both converge to a (not nec-
essarily prime) period-two solution. From this and the fact that Eq.(5.24.1)
has no prime period-two solutions the result follows. The proof is complete.
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5.24.2 Periodically Forced Pielou’s Equation

In this section we investigate the global character of solutions of the periodi-
cally forced Pielou’s equation
Brn

il = . n=0,1,... 5.24.8
Intl 1+xn—1 " ( )

and prove that when the sequence {,} is periodic with prime period k, with
positive values, and

k—1
[15>1 (5.24.9)
1=0

every positive solution converges to a periodic solution with prime period k.

Difference equations with periodic coeflicients have been studied by several
authors especially in connection with mathematical models in biology. See
[62], [183], [75], [82], [83], [99], [100], [153], and [157].

In Section 5.24.1 we presented a new, simple, and elegant proof that, when
(5.24.4) holds, every positive solution of Eq.(5.24.1) converges to the positive
equilibrium (8 — 1). It is an amazing fact that the idea of our proof also
extends to the periodically forced Eq.(5.24.8). This enables us in this section
to establish that when the coefficient {3,} is periodic with period k, with
positive values, that is:

fo. it n=kj
if n=kj+1
go= 00 IR 0
Ork—1, fn=kj+k—-1

with
Gi € (0,00), i=0,...,k—1,

and when (5.24.9) holds, every positive solution of Eq.(5.24.8) converges to a
periodic solution with period k.

The special case where the sequence {3,} is periodic with period two was
recently investigated in [183]. The method of that proof is different from our
proof and does not seem to extend to higher periods.

The following theorem extends to the periodic case the result of the au-
tonomous case when

k—1
[Is <1 (5.24.10)
i=0

Its proof is simple and will be omitted.

Theorem 5.24.2 Assume that (5.24.10) holds. Then every nonnegative so-
lution of Eq.(5.24.8) converges to zero.
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It is easy to see that, as in the autonomous case, every positive solution of
the periodically forced equation (5.24.8) is bounded from above and, further-
more, when (5.24.9) holds, every positive solution is also bounded from below
by a positive constant.

Our goal now is to show that, when {3, } is a positive periodic sequence with
prime period k and (5.24.9) holds, then every positive solution of Eq.(5.24.8)
converges to a periodic solution with prime period k. To this end, let {y,} be
an arbitrary, but fixed for the remaining part of this section, positive solution
of Eq.(5.24.8).

For a fixed k € {1,2,...} and for every integer i, we define the sequences
{S:}, {I;} as follows:

S; = limsup ygn+s and I; = liminf ypm, 4.
n—oo

n—oo

Clearly, for all integer values of j,
Sj+k = Sj and Ij+k = Ij.

To make the proof very clear, we will first give the details for & = 2. The
key idea now is to establish the following identities, which extend the Identity
(5.24.7) of the autonomous case:

(14 S+ 1) = (1+8o)(1+ 1) = B (5.24.11)

Lemma 5.24.1 (5.24.11) holds.

PROOF Clearly, forn > 1,

BoB1yan—1
1+ yon—1)(1 + yon—2)’

Yon+1 = (

from which it follows that
(1+51)(1+Io) < Bofr < (1+ 1) (1+ So).

Also, from

B1Boy2n
1 + y2n)(1 + y2n—1)

Yon+2 = (

we obtain
(1+So)(1+11) < B1fo < (1 + Io)(1 + S1),

from which (5.24.11) follows. 1l
Theorem 5.24.3 Assume that {3, } is a positive periodic sequence with prime

period two and that (5.24.9) holds. Then {y,} converges to a prime period-two
solution.
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PROOF  Clearly, there exist two sequences of indices, {n;} and {n;}, and
positive numbers, {U_;}3_, and {L_;}}_,, such that

Sl = hm Yon,;+1 and Il = hm y2nj+1
1—00 j—o00
and for each t € {0,1,2,3},
U_¢y = lim yo,—¢ and Ly = lim yop; 4.
i—00 j—o0
Then,

BoB1U_1
1+U_1)(1+U_y)

S1 =
from which it follows that

U_1=51 and U_5 = I
because otherwise

BoB1S1
(1+51)(1+ I’

which contradicts (5.24.11). Similarly,

S <

U_3=25].
Also,
Ue — S5 _ BoB1lo g
T 141, (A+In)a+S) °
and so
0151 = In(1 + Ip).
Similarly,
B1Ih = So(1+ Sp).
Therefore,

[0 = SO and Il = Sl.

Hence, the two subsequences {ya,} and {y2,,+1} converge to finite limits. Set
lp = lim yo, and [y = lim you41.
n—oo n—oo
By taking limits in Eq.(5.24.8) we obtain

_ Bolo
141

Bl

l —
! 141

and [

and so, clearly, {y,} converges to the prime period-two solution of Eq.(5.24.8)

codos b,
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The proof is complete. |
We now turn to the case where the period k is an arbitrary even number

equal to 2p. The key idea here is to observe that the following identities,
which extend the Identities in (5.24.11), hold for the solution {y, }:

p—1 p—1 2p—1
H(]. + 821)(1 + IQ¢+1) = H(]. + IQZ)(]. + SQH_l) = H B;. (52412)
=0 =0 =0

Theorem 5.24.4 Assume that {3, } is a positive periodic sequence with prime
period k = 2p and that (5.24.9) holds. Then {y,} converges to a prime period-
2p solution.

PROOF Clearly, there exist 2p sequences of indices,

{n1it{nait, - {ngp-1.4}

and
{nl’j}7 {n?nj}’ SR {n2pfl,j}7

and 2p sequences of positive numbers,
(U1, =320 AUs,—e 329y {U2p—1,~t }22_2ps

{Ll,ft}?im {LB,ft}?ifza RS {L2p71»7t}?2272p7
such that for r € {1,...,2p— 1} and ¢, € {1—r,...}

Sy = zliglo Y(2p)-nyi+r> I, = zlirgo Y@p)ny j+rs

Ur,ftr = zliglo Y2p)n,i—tr and Lr,ft = ,hm Yep)n,j—t,
j*»OO

Then
s, = BoB2p-1U1,-1
(14+U1,-1)1+U1,—2)
Sy = B261U3 1

(1 + Ug’l)(l + Ug’o)

62p72ﬁ2p73U2p71,2p73
(14 Uszp-1,2p-3)(1 + Uzp-1,9p-4)’

Sprl =
from which it follows that
Ur,—1=S2%-1, Ur,_a =1, »

Us1 =51, Uspg=1I
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U2p71,2p73 = SZp*?n U2p71,2p74 = -[2;074

because otherwise

p—1 2p—1
H(l + S9i—1)(1+ Iz) < H Bi,
i=0 i=0

which contradicts (5.24.12). Similarly,
Uy,—3=Sp-3, U_4=1I,_4

Us,—1 = Sop—1, Us—a=1I5p o

Uap—1,2p—5 = Sop—5, Usp—1,2p—6 = Iop—¢
and, inductively,
Ut —(2j-1) = S12p—(25-1) and Un—aj) = Szp-(2j) J=1,2,...
One can see, by iterating Eq.(5.24.8), that

_ BoB2ap—1-+-B2U1,_(2p—2)

Si —
[12 1+ U )

)

from which it follows that

BiSi = —— 12, E
Hf:o (1 + S2i+1) f:1 (1 + I2i)
and so
B1S1 = I(1 + Ip).
Similarly,
B1ly = S2(1+ Sp)
and so

S():Io, 51:.[1, and SQZIQ

and, inductively,
Si=1;, i=0,1,...,2p—1.

Hence, the 2p subsequences {y(2p).n4s} for i € {0,...,2p — 1} converge to
finite limits. Set

li = lim yop)mts, foreach i€ {0,...,2p—1}.
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By taking limits in Eq.(5.24.8) we obtain

i1l :
li:f—&—lili_; for each ¢ € {0,...,2p—1}

and so, clearly, {y,} converges to the prime period-2p solution
culos o lopm,
The proof is complete. |

We now turn to the odd case k = 2p + 1. The key idea of the proof now is
to establish the following identities:

Bi—1Bi—25i—2 Bi—1Bi—2li—a
d I, = , 5.24.13
A+ S o)1+l 1+ 1i—2)(1+ Si_3) ( )

Si =
which are satisfied by the sequences {S;} and {I;}.

Lemma 5.24.2 (5.24.13) holds.

PROOF We have
ﬁOﬁpr(2p+1)~n71
I+ yept+1)n—1) 1 + Yepti)n—2) ’

Yep+1)nt+l1 = (

from which it follows that

S, < BoB2p—152p and I, > BoB2plap
(1+ S2p) (1 + I2p—1) (14 Izp) (1 + S2p-1)
or, equivalently,
S 148 FoBapSap <O LESmo1 g0

L 14Ty ~ L4y + 1Ty 1) ~ Ty 14Ty
Similarly, we get

S 1+8 _ B180S0 < S0 1+ 5y (5.24.15)

I, 141y~ L(I+10)1+1y) ~ Iy 1+ I

So 14521 < BopBop—1S2p—1 < Sp—1 1+ SQp—Q. (5.24.16)
In 1411 = Io(1+Ipp_1)(1 4+ Iop—2) = Iop—1 1+ 13y
To complete the proof of (5.24.13), we need to establish that all the above
inequalities reduce to equalities. To this end, it follows from (5.24.14) and
(5.24.15) that

51 S 1+SO<S2P'SO.].+SQp71 (5.24.17)

I 12.1+107]2p I 14T 1
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Similarly,
Sp Sy 145 S0 S 145 (5.24.18)
L I3 1+0L ~Ip T, 1+1
So Su 145 Sy Sop 142 (5.24.19)
Io I 14Ty ~ Top1 Inp 1+ Ip s
Hence,

So i _ 14 59, < Sop—1 ‘%. 1+ 552 N Sop_3 . Sop—2 1 + Sop_a
Io Iy 1+ = Iy I 1+1Ipp o0 7 Inpg Ippo 141y 4

Sl SQ 1+So<% So'l+52p—1

<. < =.=. < .20
L I, 141y~ I Ip 141y
< S2P*2 . Sprl . 1+ Sgpfg
B IQP—2 IQp—l 1 + IQP—3

B2 5 145 S S 148y
I, Is 141 Iy I 1+ Iy,

from which it follows that

So 1+ S9p-1 BapBap—1S2p—1 _ Sapa 1A Sop—2

Io 1+t Io(l+Iop_1)(L4Iop2)  Iop1 141Izp o

and so we establish equality in (5.24.16). The remaining cases are established

in a similar fashion. |

Theorem 5.24.5 Assume that {5,} is a positive periodic sequence of prime
period k = (2p + 1) and that (5.24.9) holds. Then {y,} converges to a prime
period-(2p + 1) solution.

PROOF  Clearly, there exist subsequences {y(2p+1).n,+1} and {¥2p+1)-n,—t } 20
and positive numbers {U_;}£2, such that

S = Zlirgo Ypt+1)mni+1 and U_; = Zlirgo Y(ep+1)mi—t» for t€{0,1,...}.
Hence,

BoBopU_1
(14+U_1)1+U_p)’

Sy =
from which it follows that
U_1 =05 and U_y =I5,
because otherwise

BoBapSap
(14 S2p) (14 I2p—1)’

S <
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which contradicts (5.24.13). Similarly,

U_3 = SQP_Q and U_4 = Igp_g.

Also,
Uy = BopBop-1U-a BapBap—11ap—1 _
A+U)A+U_3) (A+Tp 1)+ Sy )
Hence,
Bolo
S =
LTS,

or, equivalently,
Boly = 51(1 + Szp).

Similarly,
BoSo = 11 (1 + Ip)

and so
IO = 507 Il = Sl, and Igp = Sgp.

Inductively, it follows that
IZ:& 122,3,,2}?—1

Hence, the 2p + 1 subsequences {y(2p+1).n+i} for i € {0,...,2p} converge to
finite limits. Set

li = lim ypi1)myis for each i€ {0,...,2p}.

By taking limits in Eq.(5.24.8) we obtain

_ Bicilia

L=
1+1;_o

for each i € {0,...,2p}.

and so, clearly, {y,} converges to the prime period-(2p + 1) solution
o loy e,

The proof is complete. |

Open Problem 5.24.1 Assume that {8,} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of the equation

Bnn

, n=0,1,....
1+xn71 "

Tnt+1 =
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Open Problem 5.24.2 Assume that § is a given real number. Determine
the “good” set G of the equation

Bn
Tn+41 142, . ( )
that is, the set of initial conditions
r_1,x9 €N

such that the equation (5.24.20) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.24.20) for all initial conditions in the “good”
set G.

By

5.25 Equation #25: z,4; = T Drs
Tp—2

This equation was investigated in [155] and [157]. See also Theorem 2.3.3,
where we established that every solution of the equation in this special case
is bounded. Eq.(#25) can be written in the normalized form

Bn

= n=0,1,... 5.25.1
1—"—:1:,”72’ n Y ) ( )

Tp41 =
with positive parameter 3 and with arbitrary nonnegative initial conditions
T_2, T_1, TQ-

Zero is always an equilibrium point of Eq.(5.25.1). From Theorems 5.23.2
and 5.23.4 it follows that the zero equilibrium of Eq.(5.25.1) is globally asymp-
totically stable when

g<1 (5.25.2)

and unstable when
8>1. (5.25.3)

Furthermore, when Eq.(5.25.3) holds, Eq.(5.25.1) has also the unique positive
equilibrium point

z=0-1
The characteristic equation of the linearized equation of Eq.(5.25.1) about the
positive equilibrium, z = — 1, is

p—1

PR LT
6

=0.
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From this and Theorem 1.2.3 it follows that £ = §—1 is locally asymptotically
stable when
3+V5

1<p< 5 (5.25.4)
and unstable when
3+5
8> )
2
When
g3+ V5

2 )
Z is a nonhyperbolic equilibrium. In fact, in this case the three roots of the
corresponding characteristic equation are:

_1-v6 VB —iiI0-2v5 1+V6+iv10-2V5
- ’ , =

nd /\3 .

)\1_ ) >\2 4

2

Conjecture 5.25.1 Assume that (5.25.4) holds. Show that every positive
solution of Eq.(5.25.1) converges to the positive equilibrium, T = 3 — 1.

Conjecture 5.25.2 Assume that

=

3+

6>2.

Show that Eq.(5.25.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Open Problem 5.25.1 Assume that {8,} is a periodic sequence of positive
real numbers with prime period k > 2. Investigate the global character of
solutions of the equation

BnTn

L n=0,1,... . 5.25.5
1+xn727 n ) ) ( )

Tn41 =

Open Problem 5.25.2 Assume that {8,} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of Eq.(5.25.5).

Open Problem 5.25.3 Assume that 8 is a given real number. Determine
the “good” set G of the equation

Py

— 5.25.6
TE— (5.25.6)

Tp+1 =

that is, the set of initial conditions
T_o,w_ 1,29 €N

such that the equation (5.25.6) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.25.6) for all initial conditions in the “good”
set G.
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By

5.26 Equati 26: Tpi1=———
quation # Tnal Br. t Cr,

Eq.(#26) can be written in the normalized form

Ln

_ =0,1,... 5.26.1
Bz, +xn_1’ " B ( )

Tn+1 =

with positive parameter B and with arbitrary positive initial conditions x_1,
Zo-

Eq.(5.26.1) has the unique equilibrium point

1

The characteristic equation of the linearized equation of Eq.(5.26.1) about the
equilibrium z is
— ;)\ + ; —
B+1" B+1
It follows by Theorem 1.2.2 that T is locally asymptotically stable, as long as
B> 0.
The change of variables

A2 0.

1
In = )
B+ yn
transforms Eq.(5.26.1) into the difference equation
B+ yn
il = — I 0.1, 5.26.2

This equation, which is a special case of #66, was investigated in [158]. See
also [157, p. 73] where it is shown that the equilibrium g = 1 of Eq.(5.26.2)
is globally asymptotically stable.

Here we give a new proof based on Theorem 1.6.7 that every solution of
Eq.(5.26.2) converges to a finite limit.

Theorem 5.26.1 FEuvery solution of Eq.(5.26.2) converges to a finite limit.

PROOF Let {y,} be a solution of Eq.(5.26.2). We will show that {y,} is
bounded from above and from below by positive constants. Clearly, for n > 1,
B
tp __ B L, L
B+ yn—1 B4+yn-1 B+yn-o B
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from which it follows that {y,} is bounded from above. In view of (5.26.3),
we find that, for n > 3,

1
ynJrlZ 1+ 1
B+1++ "B+1+4

and so {y,} is also bounded from below.

We rewrite (5.26.2) in the following form:

B 1
B4y =B+ T L, n=1,2,.... 5.26.4
Yt B+ Yn—1 B+ Yn—2 ( )
The change of variables
1
Wy =
B+ yn
transforms Eq.(5.26.4) into the difference equation
L 1,2
Wyt = , m=1,2,....
i B+ Bwn—l + Wp—2
Clearly, the function
1
23) = —— 5.26.5
f(z2, 23) B Bt ( )

satisfies the Hypotheses of Theorem 1.6.7(a’) from which the result follows.
The proof is complete.

Note that the conclusion of Theorem 5.26.1 also follows by employing Theorem
5.17.1 to (5.26.5).

Open Problem 5.26.1 Let {a,} be a periodic sequence with nonnegative
values with period k. Investigate the global character of solutions of the equa-
tion

Qy + Ty
Op + Tp—1 ’

Tntl = n=0,1,.... (5.26.6)

Open Problem 5.26.2 Assume that {c,} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of Eq.(5.26.6).

Open Problem 5.26.3 Let o be a real number. Investigate the “good” set
G of the equation
o+ T,

S — 5.26.7
pr— ( )

Tn+1 =
with real initial conditions. That is, find all x_1, xo € R such that the equation
(5.26.7) is well defined for all n > 0. Investigate the character of solutions of
Eq.(5.26.7) for all x_1,29 € G.
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. Ban
5.27 Equat 27 Tpy1= —"7
quation # Tnal Bz, + Dr s

Eq.(#27) can be written in the normalized form

Ln

— n=01,... 5.27.1
B:Z;'/,,LJ’»:Z:TL_Q? n ) ) ( )

Tn+1 =
with positive parameter B and with arbitrary positive initial conditions x_o,
Z_1, Tg. The change of variables

!
"~ B+y,

T

transforms Eq.(5.27.1) into the difference equation

B +yx

I p=0,1,... . 5.27.2
B+yn72 " ( )

Yn+1 =

By Theorem 2.3.3 it follows that every solution of Eq.(5.27.2) is bounded from
above and clearly is also bounded from below by positive constants.
Eq.(5.27.2) has the unique equilibrium

g=1.

The characteristic equation of the linearized equation of Eq.(5.27.2) about the
equilibrium 7 is
1 1
B+1 B+1
From this and Theorem 1.2.3 it follows that the equilibrium § of Eq.(5.27.2)
is locally asymptotically stable when

A3 A2+ 0.

B>-1+V2 (5.27.3)

and unstable when
B< -1+V2.

Here we present a new proof about the global stability of the equilibrium g
of Eq.(5.27.2) when
B>1.

Theorem 5.27.1 Assume that
B>1.

Then the equilibrium § of Eq.(5.27.2) is globally asymptotically stable.
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PROOF Clearly, the equilibrium 3 of Eq.(5.27.2) is locally asymptotically
stable. It suffices to show that the equilibrium of Eq.(5.27.2) is a global
attractor of all solutions. When

B>1,
the function B4
21
f(Zl,Zg) - B+Zg
satisfies the Hypotheses of Theorem 1.6.7 from which the result follows.
Also, when
B =1,
the function -
21
flz1,23) = 17 2

satisfies the Hypotheses of Theorem 1.6.8 from which the result follows. |

Open Problem 5.27.1 Let {c,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Investigate the global character of solutions
of the equation

Oy + Ty,

T p=0,1,... . (5.27.4)
Qp + Tp—2

Tn+1 =

Open Problem 5.27.2 Assume that {c,} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of Eq.(5.27.4).

Open Problem 5.27.3 Let o be a real number. Investigate the “good” set

G of the equation
o+ T,

—n 5.27.5
pT— ( )

Tnt+1 =

with real initial conditions. That is, find all x_o, x_1, xg € R such that the
equation (5.27.5) is well defined for all n > 0. Investigate the character of
solutions of Eq.(5.27.5) for all x_s, x_1, x9 € G.

Conjecture 5.27.1 Assume that
—1+V2<B<1.
Show that the equilibrium § of Eq.(5.27.2) is globally asymptotically stable.
Conjecture 5.27.2 Assume that
B<-1+V2

Show that Eq.(5.27.2) has solutions that do not converge to the equilibrium
point y or to a periodic solution.
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Py

5.28 Equation #28: x,.1 = Cr + Dy

Eq.(#28) can be written in the normalized form

Tn

n=0,1,... (5.28.1)

B B —
anfl + Tn—2 ’

with positive parameter C' and with arbitrary positive initial conditions x_s, z_1, Zg.

The only equilibrium of Eq.(5.28.1) is

_ 1
T=——-.
C+1
The characteristic equation of the linearized equation of Eq.(5.28.1) about the
equilibrium Zz is
C 1
Mot A —— =
Toerit o

From this and Theorem 1.2.3 it follows that the positive equilibrium Z is
unstable for all positive values of the parameter C.

0.

Conjecture 5.28.1 Show that for all positive values of the parameter C,
Eq.(5.28.1) possesses unbounded solutions.

Conjecture 5.28.2 Show that every bounded solution of Fq.(5.28.1) con-
verges to the equilibrium .

Open Problem 5.28.1 Investigate the behavior of bounded solutions of Eq.(5.28.1).

Open Problem 5.28.2 Let {C,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Investigate the global character of solutions

of

Tn

—_—— =0,1,....
Cnmnfl +xn72’ " o

Tn+1 =

Open Problem 5.28.3 Assume that C is a given real number. Determine
the “good” set G of the equation

Ln

S 5.28.2
C:Cn—l + XTp_2 ( )

Tnt+1 =
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that is, the set of initial conditions
T_2,T_1,%p € R

such that the equation (5.28.2) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.28.2) for all initial conditions in the “good”
set G.

TYXn—-1

5.29 Equation #29: z,4; = Yo
xn

Eq.(#29) can be written in the normalized form

Tn—1
A+z,’

Tpy1 = n=20,1,... (5.29.1)
with positive parameter A and with arbitrary nonnegative initial conditions
T—1, ZQ-

Eq.(5.29.1) possesses a period-two trichotomy depending on whether

A>1, A=1, or A<]1.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.
The existence of solutions of Eq.(5.29.1) that converge to zero when

A=1

and other similar results have been established, among other places, in [133],
[143], [146], [148], [149], [226], [227], and [233].
When
A<,

it follows from Theorem 4.2.2 that every positive and bounded solution of
Eq.(5.29.1) converges to the positive equilibrium, z = 1 — A.

The following amazing result gives a set of initial conditions through which
the solutions of Eq.(5.29.1), when A = 1, converge to a prime period-two
solution.

Theorem 5.29.1 Let {x,}52 _; be a solution of

Tp—1
n - s = U, 1, . .29.2
Tn4l = 70 . n=20 (5.29.2)
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such that for some N > 0,
TN 2 TN_1-

Then

Ton+N—1 | 0 and x9N — to a positive limit.

PROOF Note that if
TN =TN-1

then
TN TN an (1+zn)
IN—FQ = 1 = N1 =
+ TN+1 1+1+93N 1+ 2xn
and
TN-1 TN
IN41 =

1+xn - 14+zn ’
from which it follows that
IN+2 > TN+1-

So without loss of generality we may assume that
TN > TN_1-

Now observe that for any n sufficiently large,

TN ~ ININ+1
l+aoy 14y

TN —INt2 = IN —

TN-1—TN+1 _ TN—1— TN+1
TNl + 1 Ton+N+1 +1

Similarly,
IN+1 — TN43 ITN+1 — TN+3

IN+2 — TN+4 =
Tny3z+ 1 ToptN+1 +1

TN4+2n—1 — TN+42n+1

IN42n — TN+2n+2 =
TNiont1 +1

and by summing up we find:

TN—-1 — T2n+N+1

IN — Tan+N+2 <
Topt+N41 + 1

and so
T2n4+N+1 — TN-1
Ton+N+2 > TN + .
ToptN41 +1
Also,
TN —TN+42

IN+1 — TN+3 =
Tny2+1

(5.29.3)
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TN+2 — TN+4 TN+4+2 — TN+4
TN4qa+ 1 TNt + 1

IN43 —TN+5 =

T2n4+N — T2n4+N+2 T2n4+N — L2n+N+2

L2n4+N+1 — L2n+N+3 =
TontN42 1 TN+2+1

and by summing up we find:

TN — T2n+N+2
TN+1 — T2+ N+3 > — 7 —

TN+ 1
and so
Tan+N+2 — TN
Top+N+3 < TN+1 + ﬁ (5.29.4)
+
Now we claim that -~
l1+zny42 < .
TN+1

This follows easily after we express all terms in terms of z and xny_1 and
use the assumption that xy > zy_1.
Now assume for the sake of contradiction that

Ton+N+1 — T € (0, OO)

Then, clearly,
ZTonyn+2 | 0.

and (5.29.4) yields:

TN
O<r<zyi1———<0
N1 ’

which is a contradiction. Hence,
TontN+1 0
and so from (5.29.3) we see that

lingo TontN42 = TNy —an—1 > 0.

The proof is complete. |
The following amazing result is a corollary of Theorem 5.29.1.

Corollary 5.29.1 A positive solution {x,}>2 _, of Fq.(5.29.2) converges to
zero if and only if
Tp_1 > Ty, forall n>0.
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Open Problem 5.29.1 Obtain “easily verifiable” conditions which deter-
mine the set of all positive initial conditions for which the solutions of Eq.(5.29.1)
do ezactly one of the following:

(i) converge to a prime period-two solution, when A =1
(i4) converge to the positive equilibrium T, when A <1

(7) are unbounded, when A <1

YTn—1

5.30 Equation #30 P Tpr1 = m

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

YTn—1

5.31 Equation #31: xz,41 = A+ Do
Tp—2

This equation was investigated in [17] and [70]. Eq.(#31) possesses a period-
two trichotomy depending on whether

vy<A ~y=A, or v>A
This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.
Open Problem 5.31.1 Assume that A is a given real number. Determine
the “good” set G of the equation

Tn—-1

U 5.31.1
yE— ( )

Tn+1 =

that is, the set of initial conditions
T_o,x_1,T9 € R

such that the equation (5.31.1) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.31.1) for all initial conditions in the “good”
set G.
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Conjecture 5.31.1 Assume that
A<

Show that every positive and bounded solution of the equation

LTp—1

Tntl = m, n=0,1,...
converges to 1 — A.
|
: VYTn—1
5.32 Equation #32: =z = —
q # n+1 an T Cl’n,1

Eq.(#32) can be written in the normalized form

Tp—1

— n=0,1,... 5.32.1
B,’En—|—1}n_1’ n b ( )

Tp+1 =

with positive parameter B and with arbitrary nonnegative initial conditions
x_1, o such that the denominator is always positive.

From Theorem 1.6.6 it follows that for all positive values of B,
every solution of Eq.(5.32.1) converges to a (not necessarily prime)
period-two solution.

The only equilibrium of Eq.(5.32.1) is

a1
B+1
In addition, Eq.(5.32.1) has period-two solutions. When
B #1,
Eq.(5.32.1) has the unique prime period-two solution
..,0,1,0,1,... (5.32.2)

and when
B=1

Eq.(5.32.1) has infinitely many prime period-two solutions of the form

o, l—xxl—x,. ..
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with 1
€10,1] and z # 7

When
B <1,

every positive solution of Eq.(5.32.1) converges to the positive equilibrium z.

This is because the change of variables, x, = y%, transforms Eq.(5.32.1) to

the equation

Yn + Byn—l
Yn

for which we know from Theorem 4.2.1 that every positive solution converges

to the positive equilibrium.

Yn+1 = n=20,1,...,

When
B=1,

every positive solution of Eq.(5.32.1) converges to a (not necessarily prime)
period-two solution. This is because the change of variables, z,, = yi, trans-
forms Eq.(5.32.1) to the equation

Yn + Yn—1
Un

Yn+1 = n=20,1,...,

for which we know from Theorem 4.2.1 that every positive solution converges
to a (not necessarily prime) period-two solution.

If a solution {z,} of Eq.(5.32.1) is not positive, then for all n > 1, we have
To, =0 and x9,_1 =1 or 9, =1 and x9,_1 =0
and so it is eventually equal with the period-two solution (5.32.2).

Open Problem 5.32.1 Let {B,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Determine the global character of solutions
of the difference equation

Tn—1

—l  n=0,1,....
ann"_xnfl

Tn+l =
Eaxtend and generalize.

Open Problem 5.32.2 Let {B,} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

Ln—1
Tpy1=——2"1  p=0,1,....
-ann'i_xnfl7 o

Extend and generalize.
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Open Problem 5.32.3 Assume that B is a given real number. Determine
the “good” set G of the equation
Tn—1

—_— 5.32.3
Bo o ( )

Tn+1l =

that is, the set of all initial conditions
r_1,To € R

such that the equation (5.32.3) is well defined for all n > 0. Determine the
character of solutions of Fq.(5.32.3) for all initial conditions in the “good”
set G.

. Ylp—1
5.33 E t 33: Ty =—"-—7-——
quation # Tna1 Br. t Di,

Eq.(#33) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.3.1.

Conjecture 5.33.1 Show that every bounded solution of the rational equation

ol
converges to 3.

Open Problem 5.33.1 Determine the set of all initial conditions x_s, r_1,

xg so that every bounded solution of the rational equation
VYLn—1
x =—— n=0,1,...
n+1 T+ Tro

converges to 3. Eaxtend and generalize.

YTn-1

5.34 Equati 3wy =
quation # Tna1 Cr 1 Dis

Eq.(#34) can be written in the normalized form

Tp—1
Gpig = —n=L =01, 5.34.1
i Tp—1+ Dxp_a ( )
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with positive parameter D and with arbitrary nonnegative initial conditions
ZT_o, T_1, o such that the denominator is always positive.

The only equilibrium of Eq.(5.34.1) is

o
D+1

T =
In addition, Eq.(5.34.1) has period-two solutions. When
D #1,
Eq.(5.34.1) has the unique prime period-two solution
..,0,1,0,1,... (5.34.2)

and when

D=1,
Eq.(5.34.1) has infinitely many prime period-two solutions of the form

o l—zxl—x,...

with 1
x €[0,1] and a:;éi.

When
D <1,

every positive solution of Eq.(5.34.1) converges to the positive equilibrium z.

This is because the change of variables, x,, = y%’ transforms Eq.(5.34.1) to

the equation

Yn—2 + Dynfl
Yn—2 ’

for which we know from Theorem 4.3.1 that every positive solution converges

to the positive equilibrium.

Yn4+1 = n:O,l,...,

When
D=1,

every positive solution of Eq.(5.34.1) converges to a (not necessarily prime)
period-two solution. This is because the change of variables, x,, = yi trans-

forms Eq.(5.34.1) to the equation !

for which we know from Theorem 4.3.1 that every positive solution converges
to a (not necessarily prime) period-two solution.
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If a solution {z,} of Eq.(5.34.1) is not positive, then for all n > 1, we have
To, =0 and x9,—1 =1 or x9, =1 and x9,-1 =0

and so it is eventually equal with the period-two solution (5.34.2).

Conjecture 5.34.1 Assume that
D > 1.

Show that every positive solution of Eq.(5.34.1) converges to a (not necessarily
prime) period-two solution.

Open Problem 5.34.1 Let {D,,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Determine the global character of solutions
of the difference equation

Tn—1

Tl p=0,1,....
xnfl'i_anan

Tn+1 =

Extend and generalize.

Open Problem 5.34.2 Let {D,} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

Tn—1

Tl p=0,1,... .
xnfl'i_anan

Tn41 =

Extend and generalize.

Open Problem 5.34.3 Assume that D is a given real number. Determine
the “good” set G of the equation

Tn—1

_— 5.34.3
Tp—1+ Dxn72 ’ ( )

Tp+1 =

that is, the set of initial conditions
T_o,x_ 1,20 €ER
such that the equation (5.34.3) is well defined for all n > 0. Determine the

character of solutions of Fq.(5.34.3) for all initial conditions in the “good”
set G.
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51’71—2

5.35 Equation #35: z,4; = o
xn

Eq.(#35) possesses a period-three trichotomy depending on whether
6<A d=A, or 6> A

This result is a special case of a more general period-three trichotomy result
presented in Theorem 4.4.1.

Open Problem 5.35.1 (a) Determine all positive initial conditions x_o,
x_1, and xo through which the solutions of the equation

Tn—2
A+z,’

Tpi1 = n=0,1,... (5.35.1)

converge to zero.

(b) Determine all positive initial conditions x_o, x_1, and xo through which
the solutions of Eq.(5.35.1) converge to the prime period-three solution

...,0,0,1,0,0,1,... .

(c) Determine the limit of solutions of Fq.(5.35.1) with initial conditions
T_o=x_1=x9=1.
An unbounded solution of Eq.(5.35.1) when A < 1 is

1 1
0,0

0,0,1,0,0,2, 07

Conjecture 5.35.1 Assume A < 1. Show that Eq.(5.35.1) has positive un-
bounded solutions and that every positive and bounded solution converges to
1-—A.

55En—2

5.36 Equati 36: Tp=—"F7—"
quation # Tna1 A0,

Eq.(#36) possesses a period-three trichotomy depending on whether
<A, d=A, or §> A
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This result is a special case of a more general period-three trichotomy result
presented in Theorem 4.4.1.

Open Problem 5.36.1 Assume that A < 1. Determine the set of all initial
conditions x_o, T_1, Tg So that every positive and bounded solution of the
rational equation

Tp—2
n = —, = O7 1, .
ot A + Tn-1
converges to 1 — A. Extend and generalize.
——
ox —9
5.37 Equation #37: z,44 = ———

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5In—2

5.38 Equati 38: Ty ==
quation # Tnal Br. t Cr,

Eq.(#38) has unbounded solutions. This equation is part of a period-three
trichotomy presented in Theorem 4.4.1.

Open Problem 5.38.1 Assume that B is a given real number. Determine
the “good” set G of the equation

Tpn—2

T a— 5.38.1
FEr— ( )

Tn4+1 =

that is, the set of initial conditions
r_9,T_1,T0 € xr

such that the equation (5.38.1) is well defined for all n > 0. Determine the
character of solutions of FEq.(5.38.1) for all initial conditions in the “good”
set G.
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51;71—2

5.39 Equati 39: rp=—-—7-"—"—
quation # Tnal Br. t Dr

This equation was investigated in [60]. Eq.(#39) can be written in the nor-
malized form P
e

Tpag = —2=2  p—0.1,... 5.39.1

el Bx, +xp—2 ( )

with positive parameter B and with arbitrary nonnegative initial conditions

T_9, x_1, o such that the denominator is always positive.

The only equilibrium of Eq.(5.39.1) is

_ 1
T=——".
B+1
The characteristic equation of the linearized equation of Eq.(5.39.1) about the
equilibrium Z is
B B

A2 — =0.

B+1 B+1

From this and Theorem 1.2.3 it follows that the positive equilibrium Z of

Eq.(5.39.1) is locally asymptotically stable when

23+

B<1+V2 (5.39.2)
and unstable when

B>1+2.
When

B=1+2,

Z is a nonhyperbolic equilibrium. In fact, the eigenvalues of the corresponding
characteristic equation are:

Alzg, /\2:—£+ £ and Agz—ifig.

Note that Ao and A3 are eighth roots of unity .
In addition, Eq.(5.39.1) has period-three solutions. When

B <1,
Eq.(5.39.1) has the unique prime period-three solution

.,0,1,1-B,0,1,1 - B,... . (5.39.3)
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In Theorem 5.136.1 we will establish that when
B <1,

every positive solution of Eq.(5.39.1) converges to its equilibrium point Z. See
also [60].

When
B =1,

every positive solution of Eq.(5.39.1) converges to its equilibrium point Z.
This is because the change of variables, x,, = yi, transforms Eq.(5.39.1) to

the equation
Yn—2

n

yn+1:1+ , n=0,1,...,

for which we know from Theorem 5.58.2 that every positive solution converges
to the positive equilibrium.

If a solution of Eq.(5.39.1) is not positive it must be of the form

T3n—2 =0 and x3,-1,73, >0, n=0,1,..., (5394)
or
Z3n—1 =0 and z3, 2,73, >0, n=0,1,..., (5.39.5)
or
3, =0 and 3, 2,23,_1 >0, n=0,1,... . (5.39.6)
Assume that (5.39.4) holds. Then, for n > 1,
T3 L= T3n—4 -1
"7 Bagn_o + T3n—4
and
T3n—3 T3n—3

€Xe = = .
T Bagn1 +an-3 B+ a3
Hence, for B <1 and n > 1,

T3n—2=0, 23,1 =1, and 23, - 1-B
and, for B>1andn > 1,

T3n—2=0, 73,1 =1, and x3, — 0.

When (5.39.5) or (5.39.6) holds, the results are similar.

Remark 5.39.1 Note that, when B > 1, every nonpositive solution of Eq.(5.39.1)
converges to the three-cycle

...,0,1,0,0,1,0...,
which is not a solution of Eq.(5.39.1).
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Conjecture 5.39.1 Assume that (5.39.2) holds. Show that every positive
solution of Eq.(5.39.1) converges to its equilibrium point .

Conjecture 5.39.2 Assume that
B > 123.

Show that every positive solution of Eq.(5.39.1) converges to a periodic solu-
tion of period 19.

Conjecture 5.39.3 Show that Eq.(5.89.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

6mn—2
Cl’n_l + D.Tn_Q

5.40 Equation #40: =z, =

This equation was investigated in [60]. Eq.(#40) can be written in the nor-
malized form .
n—2
Tpi1 = ——""2  p=0,1,... 5.40.1
i an,—l + Tn—2 ( )
with positive parameter C' and with arbitrary nonnegative initial conditions
T_9, x_1, o such that the denominator is always positive.

The only equilibrium of Eq.(5.40.1) is

1
C+1

Tr =

The characteristic equation of the linearized equation of Eq.(5.40.1) about the
equilibrium Z is
C C
Mg —— - —— =
terit e
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.40.1)
is locally asymptotically stable when

1+5

C< 3

(5.40.2)

and unstable when
1+5

c > 5
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When
1+5
5
Z is a nonhyperbolic equilibrium. In fact, the eigenvalues of the corresponding
characteristic equation are:

_l+Vh o 1-Vh-ivI+2vE
- T 5 - 4 ’

C:

1-V5+iV10+2V6

nd /\3 .

A1 A2

2 4
In addition, Eq.(5.40.1) has period-three solutions. When
C <1,
Eq.(5.40.1) has the unique prime period-three solution
L0,1-C,1,0,1—C,1,... . (5.40.3)

In Theorem 5.136.1 we will establish that when
C<1,

every positive solution of Eq.(5.40.1) converges to its equilibrium point Z. See
also [60].

When
=1

every positive solution of Eq.(5.40.1) converges to its equilibrium point Z.
This is because the change of variables, x,, = yi, transforms Eq.(5.40.1) to
the equation

i1 =1+ 2222 n=0,1,...,

n—1

for which we know from Theorem 5.63.2 that every positive solution converges
to the positive equilibrium.

If a solution of Eq.(5.40.1) is not positive it must be of the form

T3n—2 =0 and x3,_1,73, >0, n=0,1,..., (5.40.4)
or

T3n—1 =0 and x3,_92,73, >0, n=0,1,..., (5.40.5)
or

T3, = 0 and T3n_2,T3n—1 >0, n=0,1,.... (5406)

Assume that (5.40.6) holds. Then, for n > 0,

T3n—1

St S
CxSn + T3n—1

T3n42 =
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and
T3n+1 _ T3n+1

Cxani2 + Tant1 C+ z3n41

Hence, for C < 1 and n > 0,

T3n+4 =

Typq2 =1, @343 =0, and zgp4qg = 1—-C
and, for C' > 1 and n > 0,
T3nt+2 = 1, Zgn+s =0, and z3,44 — 0.
When (5.40.4) or (5.40.5) holds, the results are similar.
Remark 5.40.1 Note that, when C' > 1, every nonpositive solution of Eq.(5.40.1)
converges to the three-cycle
..,1,0,0,1,0,0...,

which is not a solution of Eq.(5.40.1).

Conjecture 5.40.1 Assume that (5.40.2) holds. Show that every positive
solution of Eq.(5.40.1) converges to its equilibrium point T.

Conjecture 5.40.2 Assume that

C > 8.

Show that every positive solution of Fq.(5.40.1) converges to a periodic solu-
tion of period 13.

Conjecture 5.40.3 Show that Eq.(5.40.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

o+ Bz,

5.41 Equation #41: =z, = 1

The equation in this special case is linear.
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o+ Py

5.42 Equation #42: =z, =
Bz,

This is a Riccati equation. By Remark 5.65.1 every solution of this equation
converges to its equilibrium point. For the character of solutions of Riccati
equations with real parameters and real initial conditions see Section 5.65.

Open Problem 5.42.1 Let 3 be a given complex number. Determine the
“good” set G of the equation

1
Tp+1 = ﬁ + .’L'77 (5421)

n

that is, the set of initial conditions g in the complex plane such that Eq.(5.42.1)
is well defined for alln > 0. Determine the character of solutions of Eq.(5.42.1)
for all initial conditions xg € G. Eztend and generalize.

5.43 Equation #43: z,41 = Lﬁfﬂn
Oxn—l

This is the well-known Lyness’s equation, which has been investigated by
many authors. See [20], [21], [22], [116], [124], [157], [158], [174], [189], [193],
[198], [199], [215], [216], and [237].

Eq.(#43) can be written in the normalized form

o+ Ty,

. n=0,1,.. (5.43.1)

Tn+1 =
Tp—1

with positive parameter o and with arbitrary positive initial conditions z_1,
xo-

The only equilibrium of Eq.(5.43.1) is

14+ vV1+4a
—

The linearized equation of Eq.(5.43.1) about Z is

:f:

2
4 Ya1 =0, n=0,1,...
yn"rl 1 + my y 1
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with characteristic equation

2
N A+1=0.
1+ V144«

The characteristic roots are

_1+iyV1+4a+2VI+da
a 1+V1+4a

For every a > 0, it holds

1—iV1+4da+2V1 + 4a

A
! 1+v1+4a

and Ay =

A = [Ae| =1

and so Z is a nonhyperbolic equilibrium point.

In the special case where
a=1,

the characteristic roots of the corresponding characteristic equation are fifth
roots of unity. In this special case Eq.(5.43.1) becomes

1+,

Tp—1

Tnt+1 =

 n=0,1,... . (5.43.2)
Eq.(5.43.2) was discovered by Lyness in 1942 while working on a Number
Theory problem. It is a fascinating fact that every solution of Eq.(5.43.2)

is periodic with period five. In fact the solution of Eq.(5.43.2) with initial
conditions x_1, zq is the five-cycle

1429 14+42_14+20 14214
ZL—1,Z0, ) ’ yL—1,T0y -+ -
Tr_1 ToT_1 i)

Eq.(5.43.1) possesses the invariant

)1+ i) =(a+z_1+z0)(1+ i)(l + i).
Tp—1 T r—1 Zo

I,=(a+zp_1+z,) 1+

From this it follows that every solution of Eq.(5.43.1) is bounded from above
and from below by positive constants.

In [116] it was shown that no nontrivial solution of Eq.(5.43.1) has a limit.

Furthermore, in [193] it was shown using KAM theory that the positive
equilibrium Z of Eq.(5.43.1) is stable but not asymptotically stable. The
same result was also established in [174] by using a Lyapunov function.
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Conjecture 5.43.1 Assume that

a# 1.

Show that Eq.(5.43.1) has solutions that do not converge to a periodic solution
of prime period p > 2.

It is interesting to note that periodicity may destroy the boundedness of
solutions of Lyness’s equation as the following example shows.

Example 5.43.1 (see [62]) Let

k=0,1,...

W L i n=5k+i with i €{0,1,2,3}
" la, ifn=5k—+4

with « € (0,00). Then the solution of the difference equation

PP e S T (5.43.3)
Tp—1
with initial conditions
r_1 =Ty —= 1 (5434)
is unbounded, if and only
a# 1.

Indeed, one can see, by induction, that the solution of the IVP (5.43.3) and
(5.43.4), for n > 0, is given by

a+1

Tsn+1 — ( 9 )n + 1
2
Tsntz =2 (aifl)n +1
Tsnt3 = 2 ( )n
a—+1

Tsnta = 1

a+1
Tynis = ( 5 )n+1

Thus, in Eq.(5.43.1), periodicity may destroy the boundedness of its
solutions.

Open Problem 5.43.1 Assume that {a,} is a nonnegative periodic sequence
with prime period p > 2.

(a) Obtain necessary and sufficient conditions on p such that every positive
solution of Eq.(5.43.8) is bounded.

(b) Obtain conditions on p and o, ..., ap_1 such that Eq.(5.43.3) has un-
bounded solutions in some region of the parameters and for some initial
conditions.
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Open Problem 5.43.2 Assume that {an} is a positive periodic sequence
with prime period two. Determine the global asymptotic character and the
periodic nature of solutions of Eq.(5.43.3). Extend and generalize.

. o+ px
5.44 Equation #44: z,,1 = &
D Tp—2
Eq.(#44) can be written in normalized form

o+ Ty

- , n=0,1,... (5.44.1)
Tp—2

with positive parameter o and with arbitrary positive initial conditions z_s,
T—1, To-

The only equilibrium of Eq.(5.44.1) is

1+ V144
— s

The linearized equation of Eq.(5.44.1) about Z is

xr =

2
gl — ——————UYp + Yn2=0, n=0,1,...
IV e

with characteristic equation
2
14++vV1+4a

From this and Theorem 1.2.3 it follows that the equilibrium Z is unstable.

A3 — A +1=0.

Open Problem 5.44.1 (i) Prove that for all positive values of the param-
eter o, Eq.(5.44.1) possesses unbounded solutions.

(ii) Investigate the global behavior of bounded solutions of Eq.(5.44.1).

a+ VTn—1

5.45 Equation #45: z,.; = )

The equation in this special case is linear.



Known Results for Fach of the 225 Special Cases 193

O+ YTp—1

5.46 Equation #46: z,,1 =
Bz,

Eq.(#46) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.2.1. See also Section 3.1. Eq.(#46) can
be written in the normalized form

PP B (5.46.1)

Tn

with positive parameter o and with arbitrary positive initial conditions x_1,
zg. By Theorem 4.3.1 this equation has unbounded solutions and by Theorem
4.2.2 every bounded solution converges to the equilibrium. Also, Theorem
1.6.6 applies and describes the monotonic character of solutions of Eq.(5.46.1).

Open Problem 5.46.1 Obtain easily “verifiable” conditions that determine
the set of all positive initial conditions for which the solutions of Eq.(5.46.1)
do ezactly one of the following:

(i) converge to the equilibrium

(i7) are unbounded

Open Problem 5.46.2 Let k € (0,1). Then by Theorem 3.1.1 every solu-
tion of Eq.(5.46.1) with

a—+1

xo € (0,1) and x_1 > B

is such that

lim x9,41 =00 and lim zy, =0.
n—oo n—oo

Investigate the global character of solutions of Eq.(5.46.1) with xo € [1,Z] and
r_1 € [:E, O‘TH} where T denotes the equilibrium of Eq.(5.46.1).

Open Problem 5.46.3 Could the global character of solutions of Eq.(5.46.1)
be predicted from the characteristic roots of the linearized equation

1
ANLA-—Z=0

x

about the positive equilibrium T ¢ Extend and generalize.
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Open Problem 5.46.4 Assume that « is a given real number. Determine
the “good” set G of the equation

o+ Tp_
gy = St (5.46.2)
T,
that is, the set of initial conditions
r_1,T0 € R

such that the equation (5.46.2) is well-defined for all n > 0. Determine the
character of solutions of Fq.(5.46.2) for all initial conditions in the “good”
set G.

a -+ YTn—1

5.47 Equation #47: 1z, = o
Tp—1

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5.48 Equation #48: =z, = ot Yont
D«rn—Q

Eq.(#48) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.3.1.

Conjecture 5.48.1 Show that every bounded solution of Eq.(#48) converges
to the equilibrium.

Open Problem 5.48.1 Assume that « is a given real number. Determine
the “good” set G of the equation

gy = LIt (5.48.1)

Tn—2
that is, the set of initial conditions

T_9,x_1,29 €N
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such that the equation (5.48.1) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.48.1) for all initial conditions in the “good”
set G.

o+ 0T,_o

5.49 Equation #49: =z, = "

The equation in this special case is linear.

S
5.50 Equation #50: z,., = %
T,

This equation was investigated in [54], [59], and [151]. Eq.(#50) can be writ-
ten in the normalized form
mpr = T2 (5.50.1)
Ln
with positive parameter o and with arbitrary positive initial conditions, x_o,
-1, ZQ-

Eq.(5.50.1) possesses a period-five trichotomy. For details see Section 4.6.

Open Problem 5.50.1 Let {z,,} be the solution of the equation

1 _
Tmpr = T2 g (5.50.2)
Tn
with initial conditions
XT_o9=oT_1 =Ty = 1.

Determine the period-five solution of Eq.(5.50.2) to which {x,} converges.
Open Problem 5.50.2 Let {¢,}° _, be a given five-cycle of Fq.(5.50.2).

Determine the set of all initial conditions x_o, x_1, xo such that the solution
{xn} _5 of Eq.(5.50.2) converges to {¢dn}5e _,.

Open Problem 5.50.3 Determine the set of all initial conditions x_s, T_1,
xo for which the solutions of Eq.(5.50.1), with o < 1, are bounded.



196 Dynamics of Third-Order Rational Difference Equations

. a+ 0T,
5.51 Equation #51: z,,1 = — 2
an—l
Eq.(#51) can be written in the normalized form
gy = T2 g (5.51.1)
Tp—1

with positive parameter o and with arbitrary positive initial conditions, z_o,
x_1, To. It was shown in [47] that Eq.(5.51.1) has unbounded solutions.

Open Problem 5.51.1 Determine the set of all initial conditions x_s, T_1,
xo for which the solutions of Eq.(5.51.1) are bounded.

Conjecture 5.51.1 Show that the solution of the equation

1+$n—2
Tppr = —2=2 n=0,1,...
Tp—1
with
1',2:{,6,1:.%'0:1

1s unbounded.

0Ty
5.52 Equation #52: z,4; = o 0Tn—2
Dxn—2

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

Open Problem 5.52.1 Assume that « is a given real number. Determine
the “good” set G of the equation
Tpgy = S Inm2 (5.52.1)

Tp—2

that is, the set of initial conditions
T 9, 1,9 €N

such that the equation (5.52.1) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.52.1) for all initial conditions in the “good”
set G.
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5.53 Equation #53: 1z, = w

The equation in this special case is linear.

5.54 Equation #54: z,.; = w
Ln

This equation can be written in the normalized form

Ty
Tng1 =0+ 2L n=0,1,... (5.54.1)
In
with positive parameter § and with arbitrary positive initial conditions z_1,
Zo-

Eq.(5.54.1) was investigated in [16] where it was shown that it possesses a
period-two trichotomy depending on whether

<1, =1, or f>1.

This was the very first period-two trichotomy result discovered for
rational equations.

This result is a special case of a period-two trichotomy result presented in
Theorem 4.2.1.

When

ﬂ < 17

it follows from Theorem 4.2.2 that every bounded solution of Eq.(5.54.1) con-
verges to the equilibrium, z = 6 + 1.

For some work on the forbidden set of Eq.(5.54.1), see [53] and [55].

Open Problem 5.54.1 Assume that 8 € (0,1) and let k € (0,1 — 3). Then
by Theorem 3.1.1 every solution of Fq.(5.54.1) with

1
20 € (0,1) and z_1 > z

is such that
lim 29,41 =00 and lim zy, = .
n—oo n—oo

Investigate the global character of solutions of Eq.(5.54.1) with

1
xo €[1,1+ 0] and z_; € [1—|—ﬁ,k].
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. Ty + VT
5.55 Equation #55: z,,, = Pn +7Tna
CQ:n—l
Eq.(#55) can be written in the normalized form
Tnp1 =7+ -2 n=0,1,... (5.55.1)
Tp—1

with positive parameter v and with positive initial conditions x_1, xg.
The change of variables

Tp = Yn +7,
transforms Eq.(5.55.1) into the difference equation
Y+ Yn
=1TI n=01,.... 5.55.2
Yn+1 Y+ Yt ( )

This equation, which is a special case of #66, was investigated in [158]. In
Theorem 5.26.1 we established that the equilibrium of Eq.(5.55.2), § = 1, is
globally asymptotically stable. For another proof of the global asymptotic
stability of the equilibrium of Eq.(5.55.2), see [157, p. 73].

Open Problem 5.55.1 Assume that v is a given real number. Determine
the “good” set G of the equation

X
Tpi1 =7+ ——, (5.55.3)
Tn—1

that is, the set of initial conditions
r_1,x9 €N

such that the equation (5.55.3) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.55.3) for all initial conditions in the “good”
set G. FExtend and generalize.

5.56 Equation #56: z,4 = BTn + V¥n1
Dxn—2

This equation is a special case of a more general equation that will be inves-
tigated in Section 5.120.

Conjecture 5.56.1 Show that Eq.(#56) has bounded solutions that do not
converge to the equilibrium point or to a periodic solution.
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Open Problem 5.56.1 Determine the “good” set G of the equation

Tpyy = Tt (5.56.1)

Tn—2
that is, the set of initial conditions
T_9,T_1,T9 €ER

such that the equation (5.56.1) is well defined for all n > 0. Determine the
character of solutions of Fq.(5.56.1) for all initial conditions in the “good”
set G. Extend and generalize.

Open Problem 5.56.2 Let {5,} be a nonnegative periodic sequence with
prime period k > 2. Determine the global character of solutions of the differ-
ence equation
Ty + Ty
Tnt1 27/6” n ¥ o 17 n=0,1,....
Tp—2

Eaxtend and generalize.

an + 6xn—2

5.57 Equation #57: z,.1 = 1

The equation in this special case is linear.

ﬁxn + 53771—2

5.58 Equation #58: x,.1 =
Bz,

This equation was investigated in [49] and [87]. See also Section 2.4 where we
established that every solution of the equation is bounded. This equation can
be written in the normalized form

Tp—2
3
Tn

Tng1r =B+ n=01,... (5.58.1)

with positive parameter § and with arbitrary positive initial conditions x_o,
T—_1, Lg.
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The only equilibrium of Eq.(5.58.1) is
z=0+1

The characteristic equation of the linearized equation of Eq.(5.58.1) about the
equilibrium Z is

1 1
— XN —=0
B+1 g+1
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.58.2)
is locally asymptotically stable when

PR (5.58.2)

B>—-1+2 (5.58.3)
and unstable when

B<—1+V2 (5.58.4)
When

6 = -1 + \/57

two of the characteristic roots of Eq.(5.58.2) are eighth roots of unity and the
third root lies within the interval (0, 1).
For equation (5.58.1) and for any equation of the form

Tnt1 = [(Xn,Tp—2), n=0,1,... (5.58.5)

with a unique equilibrium point Z and with the function f(u,v) decreasing in
the first argument v and increasing in the second argument v, the following
result holds.

Lemma 5.58.1 Assume Eq.(5.58.5) has a unique equilibrium point T and
that f(u,v) decreases inu and increases inv. Then for any solution {x,}22 _,
of Eq.(5.58.5) one of the following three statements is true:

(i) ©p, >Z, for n>-2.
(i) xn < T, for n>-2
(i1i) There exists an N > —2 such that

either
Ty >, for =2<n <N

or
Ty < T, for =2<n<N

and for n > N the solution is strictly oscillatory about T with semi-
cycles of length one or two. Furthermore, after the first semicycle, every
semicycle of length two is followed by a semicycle of length one.
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PROOF  Assume that neither (i) nor (i7) holds. Then there exists some
N > —2 such that
either

Tp>Z, for —2<n <N and zny41 < T (5.58.6)

or
Tn < Z, for —2<n<N and zy41 > Z. (5.58.7)

We will assume that (5.58.6) holds. The case where (5.58.7) holds is similar
and will be omitted. Now it suffices to show that if

TNy2 < T,
then
IN43 > T.
Indeed, this is true because
rNi3 = f(Tny2,78) > f(2,7) =T, (5.58.8)

To show that a semicycle of length two is followed by a semicycle of length
one, assume that for some N > 0,

TN > T, xny1 < T and zyyo < T.
The other case is similar and will be omitted. Then by (5.58.6),
TN4+3 > T

and
TNt = f@ngs, 2ng) < f(Z,2) =7

and the proof is complete. |

The following additional properties can be established for the solutions of
Eq.(5.58.1). See [87].

Lemma 5.58.2 (a) No solution of Eq.(5.58.1) has semicycles that are all
eventually of length one.

(b) After the second semicycle, the mazimum term in a positive semi-cycle
of length two is always less than or equal to the last term in the previous
positive semi-cycle.

(c) After the second semicycle, the minimum term in a negative semi-cycle
of length two is always greater than or equal to the last term in the
previous negative semicycle.
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PROOF  Assume without loss of generality that there exists some N > 0

such that
Ton_1 < B +1<xy,, for n> N.
Then
Ton42 = 6 + > 6 +1
2n+1
and so

Ton—1 > Tont1 2> B

Therefore, the subsequence of the odd terms decreases to a positive limit.
Also,

Ton
Topys =P+ —— 2 B+ 1
2n+2
and so
B+ 1< 22, < Topyo. (5.58.9)

Therefore, the subsequence of the even terms is strictly increasing and

- B+,
Toan+1

Tont2 = B+

which contradicts (5.58.9).
(b) Assume that for some N > 0,

rny2>2B+1 and x4 > B+ 1.

Then, clearly,
N1 < fB+1<zxNn_2

because a semicycle of length two must be preceded by a semicycle of length
one. Also,

TN-2
B+1<zyp =08+
TN
and so
TN S TN_2.
Furthermore,
TN+l = ﬂ 1 <an-—2

and the proof is complete.
(¢) The proof is similar to the proof in (b) and will be omitted. |

The following theorem establishes the existence of nonoscillatory solutions
of Eq.(5.58.1). See [226].

Theorem 5.58.1 Fq.(5.58.1) has infinitely many nonoscillatory solutions,
which decrease to the equilibrium, T = 6+ 1.
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PROOF For all n > 0, we define
Ap ={(x_2,2_1,70) € (3,00)*: B+1< w11 <2 <zp_1 <Tp_o}
We claim that for all n > 0
0# A C A
It suffices to show that

Tn41 S Tn S Tn—1 S Tp—2

when
Tnt2 < Tptl < Tp < Tpo1.
Indeed,
Tpo1 = (Tng2 — B)Tng1 < (Tng1 — B)Tn = Tn_2.
Also,

A, #£0

because, for all n > 0,
(B+1,8+1,8+1) € A,.

Set "
F(I,y,Z) = (yaz76+ ;)

with z,y,2z € [6 + 1,00). Clearly, the function F' is continuous and one to
one. We claim that
An - F(An+]_)

Let (y—2,y-1,%0) € F(Ap41). Then

(Y—2,y-1,%) = F(x_2,2_1,20) = (x_1, %0, 1)
and

(n+1)(

F(n)(y—27y—1ay0) = (yn—Qayn—layn) =F $—2,$—1,$0) = ($71—1,$n,$n+1)

and
FO (y_ oy 1,90) = (Yn—1, Yn» Ynt1)
- F(n+2)(x7271'717x0) = (xn;anrlaanrQ) .

Hence,
ﬁ + 1 S Yn+1 S Yn S Yn—1 S Yn—2,

which implies that (y_2,y—1,%0) € An-
On the other hand, assume that (z_o,z_1,x0) € A,,. Set

Yy—2 = (zo — f)o_1, y—1 =22, and yo=2_1.
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Then

Y—2
(x_2,2_1,20) = (Y—1,¥0, 8 + %) =F(y—2,9Y-1,%0) = (¥=1, %0, Y1)-

Then

(Yr1,Yns Ynt1) = FOD (y o,y 1,50) = F™ (29,2 1,20) = (Tn_2, Tn_1,Tn)
and

(n+2) ( (n+1) (

(ynayn+1;yn+2) =F y*?ay*hyO) =F QC,Q,.T,l,ZL'()) = (xnflaxnaanrl) .

Hence,
ﬂ+1§yn+2§yn+l gyngynfl .

From this it follows that (y_2,y-1,y0) € Ant1. Also (z_2,2_1,20) = F(y_2,y-1,%0) €
F(A,4+1). The proof of our claim is complete. Since F is invertible it also
holds

Api1 = F*I(An), for all n > 0.

Set -
Q=) An
n=0

Then

oo

Q=] F"(A).
n=0
Note that Ag is a nonempty, closed, connected, and unbounded subset of

R3. Also, A; is a nonempty and closed subset of R? and since F~1(4g) = A,
it follows that A; is connected and unbounded. Inductively, it follows that
each one of the F(-™)(A4y) = A,’s is a nonempty, closed, connected, and
unbounded subset of R3. Furthermore, the family {4,,}° , satisfies the finite
intersection property because

() Ax = An #0.
k=0

Then, clearly, () is a nonempty, closed, connected, and unbounded subset of
R3. By choosing the initial conditions x_o,2_1, 7 in €, the solution {z,}
that is generated satisfies for all n > 0,

6+1§xn+1§$n

and so converges to 8 + 1. The proof is complete. |

Next we would like to show that when

p>1,
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and {z,}52 _, is a solution of Eq.(5.58.1), there exists an interval [L, U], with
0 < L < U, which contains the entire solution {z,} except possibly the first
three terms z_5, x_1, £g. We want to exhibit the details of how the interval
[L,U] is found. Clearly,

Ty, >0, for n>1.

Now choose positive numbers L and U such that
x1,x9,x3 € [L,U].
We also want,
Note that I U
x1
Z<p,= < -,
ﬁ+U_.%‘4 6+I376+L
We need to choose L, U such that
L U
Is it possible? The answer is yes. Just choose

L:ﬁ+§ and L e (6,0+1).

Indeed, in this case

and L U 1 L
L= — < < - = _— )
5+U T4 ﬂ-i— 5+L 57[/ 3
By using induction it follows that the interval [L, U] contains the entire solu-
tion {x,} except possibly the fisrt three terms z_o, z_1, 9. By employing
Theorem 1.6.5 and the earlier local stability result of the equilibrium Z, one
can easily see that when

p>1,

the equilibrium, & = § + 1, of Eq.(5.58.1) is globally asymptotically stable.
See [87].

We can extend this global stability result to 5 = 1 as the following theorem
shows.

Theorem 5.58.2 Assume that
8 >1

Then the equilibrium, T = B+ 1, of Eq.(5.58.1) is globally asymptotically
stable.
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PROOF The function
3

z
f(zlyz?)) :ﬂ+ -
21
satisfies the Hypotheses of Theorem 1.6.7, when 5 > 1, and the Hypotheses
of Theorem 1.6.8, when 8 = 1, and so the result follows.

Conjecture 5.58.1 Assume that
“14+V2<pB<1.
Show that every solution of Eq.(5.58.1) converges to the equilibrium T.

Conjecture 5.58.2 Show that Eq.(5.58.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

Conjecture 5.58.3 Assume that
1

ﬁ<ﬁg'

Show that every solution of Eq.(5.58.1) converges to a (not necessarily prime)
periodic solution of period 19.

Conjecture 5.58.4 Assume that B > 0 and that m is a positive integer.
Show that every solution of the equation

Tnpr = B+ 272201, (5.58.10)

n

18 bounded.

Open Problem 5.58.1 Assume that 3 > 0 and that m andl are nonnegative
integers. Investigate the global stability of solution of the equation

Tn—2m

Tpy1 =P+ , n=0,1,....

Tp—21
Open Problem 5.58.2 Assume that {3,} is a positive periodic sequence

with prime period k > 2. Investigate the character of solutions of the dif-

ference equation

Tn—2
xn+1:ﬁn+ 7. n=01,....

n

Open Problem 5.58.3 Assume that 3 is a real number.

(a) Determine the set G of all initial conditions (x_a,2_1,79) € R such
that

Tp+1 = ﬁ +
is well defined for all n > 0.

Tn—2
Tn

(b) Determine the character of solutions of the equation (5.58.1) for all
(x_9,2_1,20) € G.
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51'71 + 51771—2
Oxn—l

This equation is part of a more general equation for which we conjecture that
has a period-four trichotomy. See Section 5.123.

5.59 Equation #59: =z, =

Open Problem 5.59.1 Assume that 8 is a given real number. Determine
the “good” set G of the equation

Tpy1 = M’ (5.59.1)
Tn—1

that is, the set of initial conditions
T_2,T_1,%p € R

such that the equation (5.59.1) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.59.1) for all initial conditions in the “good”
set G.

Conjecture 5.59.1 Assume that

6> 1.
Show that every solution of Eq.(5.59.1) converges to the equilibrium.
Conjecture 5.59.2 Assume that

0 < 1.

Show that every bounded solution of Eq.(5.59.1) converges to the equilibrium.

I
. Ty + 0y
5.60 Equation #60: z,,, = Bn + 0z
Dxnf2
Eq.(#60) can be written in the normalized form
Tl =06+ — n=0,1,... (5.60.1)
Tpn—2

with positive parameter ¢ and with positive initial conditions x_o, x_1, xg.
The change of variables
Ty = Yn +0
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transforms Eq.(5.60.1) into the difference equation

0+ Yn

— 2 n=0,1,.... 5.60.2
5+yn—2 ( )

Yn+1 =
For this equation, which is a special case of #67, see Section 5.67.

Open Problem 5.60.1 Assume that § is a given real number. Determine
the “good” set G of the equation

Tnpr =0+ 2 (5.60.3)
Tp—2

that is, the set of initial conditions
T_o,x_ 1,79 €N

such that the equation (5.60.3) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.60.3) for all initial conditions in the “good”
set G. Extend and generalize.

Conjecture 5.60.1 Assume that
§>—1+2.
Show that every solution of Eq.(5.60.1) has a finite limit.

Conjecture 5.60.2 Assume that
§<—1+V2.

Show that Eq.(5.60.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

Open Problem 5.60.2 Let {d,,} be a periodic sequence of nonnegative real
numbers with prime period k > 2. Determine the global character of solutions
of the difference equation

Tn
$n+1:§n+l‘7, n:0,17... .
n—2

Ezxtend and generalize.

YTp_1 + 0Tp_o
A

5.61 Equation #61: z,,1 =

The equation in this special case is linear.
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YTn—1 + 5$n—2
Bz,

This equation was investigated in [76]. See also [67]. Eq.(#62) can be written
in the normalized form

5.62 Equation #62: z,,1 =

gy = P F T2 g (5.62.1)
Tp
with positive parameter v and with arbitrary positive initial conditions z_o,
T—1, Lo-
It follows from the work in [76] (see also Theorem 3.1.1), that when

v > 1,

Eq.(5.62.1) possesses unbounded solutions. It was also shown in [76] that
when

v=1
the subsequences
{zantnzo and {zani1}nZ o
of every solution are eventually monotonic and one of them may be un-

bounded.
The only equilibrium of Eq.(5.62.1) is

T=v+1
The characteristic equation of the linearized equation of Eq.(5.62.1) about the
equilibrium Z is
1
oy
v+1 y+1

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.62.1)
is locally asymptotically stable when

V3-1

A a2 — 0. (5.62.2)

5 <7< 1 (5.62.3)
and unstable when
< V3-1
vy B) .
When
VA1
= T

one solution of Eq.(5.62.2) lies within the interval (—1,0) and the other two
solutions are 12th roots of unity.
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Conjecture 5.62.1 Assume that
v > 1.

Show that every bounded solution of Eq.(5.62.1) converges to the equilibrium
.

Open Problem 5.62.1 Assume that
v > 1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) converge to the equilibrium .

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) are unbounded.

Open Problem 5.62.2 Assume that

v=1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) converge to the equilibrium T.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) converge to a prime period-two solution.

(¢) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) are unbounded.

Conjecture 5.62.2 Assume that (5.62.3) holds. Show that the equilibrium
T of Eq.(5.62.1) is globally asymptotically stable.

Conjecture 5.62.3 Assume that
V3—1
7

Show that Eq.(5.62.1) has bounded solutions that do not converge to the equi-
librium point T or to a periodic solution.

v <

o1+ 0x,_
5.63 Equation #63: =z, = YEnt F OFn—2
an—l

This equation was investigated in [49]. See also Section 2.6 where we estab-
lished that every solution of the equation is bounded. This equation can be
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written in the normalized form

Ty
Tng1 =7+ 22 n=0,1,... (5.63.1)
Tp—1
with positive parameter v and with arbitrary positive initial conditions x_o,
-1, ZQ-
The only equilibrium of Eq.(5.63.1) is

T=v+1.

The characteristic equation of the linearized equation of Eq.(5.63.1) about the
equilibrium 7 is
P 1 A — 1 =
v+1 v+1
From this and Theorem 1.2.3 it follows that the equilibrium Z is locally asymp-
totically stable when

0. (5.63.2)

> _1%‘/5 (5.63.3)
and unstable when
< 71%\/5 (5.63.4)
For equation (5.63.1) and for any equation of the form
Tpt1 = f(Tn-1,Zn-2), n=0,1,... (5.63.5)

with a unique equilibrium point Z and with the function f(u,v) decreasing in
the first argument v and increasing in the second argument v, the following
result holds.

Lemma 5.63.1 Assume FEq.(5.63.5) has a unique equilibrium point T and
that f(u,v) decreases inu and increases inv. Then for any solution {x,}22 _,
of Eq.(5.63.5) one of the following three statements is true:

(i) xn > 2, for n>-2.
(i) z, <z, for n>-2.
(i1i) There exists an N > —2 such that

either
Ty >, for =2<n<N

or
Ty < T, for =2<n <N

and where for n > N, the solution is strictly oscillatory about T with
semicycles of length one or two. Furthermore, no solution of Eq.(5.63.5)
has semicycles that are all eventually of length one.
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PROOF  Assume that neither (i) nor (i7) holds. Then there exists some
N > —2 such that
either

Tn>T, for —2<n<N and zy11 <7 (5.63.6)

or
Tn < Z, for —2<n <N and zy41 > Z. (5.63.7)

We will assume that (5.63.6) holds. The case where (5.63.7) holds is similar
and will be omitted. Now it suffices to show that if

TN+2 < X,
then
TN+3 > .
Indeed, this is true because
43 = flanyr,an) > f(2,2) = 2. (5.63.8)

To show that no solution of Eq.(5.63.5) has semicycles that are all eventually
of length one, assume that for some N > 0,

TN >Z, TN4+1 < T and Ty4o > .
The other case is similar and will be omitted. Then

rny3 = f(ong,on) > f(2,2) =T
and the proof is complete. |

The following additional properties can be established for the solutions of
Eq.(5.63.1).

Lemma 5.63.2 (a) When the mazimum in a positive semicycle of length
two 1is in the first term, then the megative semicycle that follows has
length one, and when the mazimum in a positive semicycle of length
two is in the second term, then the negative semicycle that follows has
length two.

(b) When the minimum in a negative semicycle of length two is in the first
term, then the positive semicycle that follows has length one, and when
the minimum in a negative semicycle of length two is in the second term,
then the positive semicycle that follows has length two.

PROOF (a) Assume that for some N > 0,

TN_2 > TN_1 =7+ 1
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The other case is similar and will be omitted. Clearly,

Ty <vy+1
because a semicycle can have at most two terms. Also

TN—-2 >4 1.
TN-1

TNy+1 =7+

and the proof is complete.
(b) The proof is similar to the proof in (a) and will be omitted. |

The following theorem establishes the existence of nonoscillatory solutions
of Eq.(5.63.1).

Theorem 5.63.1 Eq.(5.63.1) has infinitely many nonoscillatory solutions
that decrease to equilibrium & = v + 1.

PROOF For all n > 0, we define
Ay ={(z_0,2_1,20) €R®*: y+1<ap41 <2 <Tppo1 < Tp_o}
We claim that for all n > 0
0# A C An.
It suffices to show that

Tn4+1 S Tn S Tn—1 S Tp—2

when
Tnt2 < Tpyl S Tp < Tpoa.
Indeed,
Tpno1 = (Tng2 — V)0 < (Tng1 — V)Tp1 = Tp_a.
Also,

Ap #0
because, for all n > 0,

Set "
F(zayVZ) = (y7Z37+ ;)

with z,y, 2z € [y+1,00). Clearly, the function F' is continuous and one to one.
We claim that
An == F(An+1)
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Let (y-2,Y-1,%0) € F'(Ant1). Then
(Y—2,Y-1,90) = F(x—2,7_1,70) = (21, T0, T1),
and
F™ (Y-2,9-1,%0) = (Yn—2,Yn—1,Yn) = F(n+1)($—2’$—17$0) = (Tn—1,Tn, Tnt1),
and
F(nﬂ)(y—z,y—l,yo) = (Yn—1,Yn, Yn+1) = Ft?) (x-2,2-1,%0) = (Tn, Tn+1, Tnt2)-

Hence,
Yy + 1 S Yn+1 S Yn S Yn—1 S Yn—2,

which implies that (y_2,y—1,%0) € 4p.
On the other hand, assume that (z_o,z_1,20) € A4,,. Set

Yy—2 = (vo —7)x_2, Yy-1 =2_2, and yo =x_;.

Then

Y—2
(x_2,x_1,20) = (Y—1,Y0,7 + yf) =F(y-2,y-1,%) = (Y-1,%0, Y1),

and
(Yn—1,Yn Ynt1) = FO(y_o,y_1,90) = FU (2 0,21, 20) = (Tn—2,Tn—1,Zn),
and
(Yns Ynt1, Ynt2) = F("”)(y—z,y—uyo) = F(n+1)($—2ax—17$0) = (Tn—1, T, Tnt1)-
Hence,
’Y+ 1 S Yn+2 S Yn+1 S Yn S Yn—1-
From this it follows that (y_2,¥—1,%0) € Ant1. Also
(T—2,7-1,70) = F(y-2,y-1,%0) € F(Ant1).
The proof of our claim is complete. Since F' is invertible it also holds
Api1 = F71(A,), forall n>0.
Set -
Q=) An
n=0
Then -
0= ﬂ FE™(Ag).

n=0
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Note that Ag is a nonempty, closed, connected, and unbounded subset of R3.
Also, A; is a nonempty and closed subset of R? and since F~1(Ag) = Ay,
it follows that A; is connected and unbounded. Inductively, it follows that
each one of the F(=™)(Ay) = A,’s is a non-empty, closed, connected, and
unbounded subset of R3. Furthermore, the family {4,,}°° , satisfies the finite
intersection property because

[ Ar= A0 #0.

k=0

Then, clearly, €2 is a non-empty, closed, connected, and unbounded subset of
R3. By choosing the initial conditions z_s,z_1, 20 in €, the solution {zn}
that is generated satisfies for all n > 0,

y+1<zpp1 <oy
and so converges to v + 1. The proof is complete. |
Next we would like to show that when
v>1

and {z,}52 _,, is a solution of Eq.(5.63.1) there exists an interval [L, U], with
0 < L < U, which contains the entire solution {z,} except possibly the first
three terms z_o, x_1, 9. We want to show the details of how the interval
[L,U] is found. Clearly,

Ty >y, for n>1.

Now choose positive numbers L and U such that
X1,T2,T3 € [L7 U} .

We also want
Note that

I cao, Y
—_— Tra = —_— _—
T STTIT S0

We need to choose L, U such that
L U
LS’Y-FE and’y—l—ESU.

Is it possible? The answer is yes. Just choose

L
L:’y+ﬁ and L € (y,v+1).
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Indeed, in this case

L
U=—"—"—
L—~
and
L_+L< <+U_+1 _ L
IR 7 LN P

By using induction it follows that the interval [L, U] contains the entire solu-
tion {x,} except possibly the fisrt three terms z_o, _1, x¢. By employing
Theorem 1.6.5 and the earlier local stability result of the equilibrium z, one
can easily see that when

v > 1,

the equilibrium, z = v + 1, of Eq.(5.63.1) is globally asymptotically stable.
We can extend this global stability result to v = 1 as the following theorem
shows.

Theorem 5.63.2 Assume that
v=>1

Then the equilibrium, T = v+ 1, of Eq.(5.65.1) is globally asymptotically
stable.

PROOF The function

z
flz2,23) =7+ =
22

satisfies the Hypotheses of Theorem 1.6.7, when v > 1, and the Hypotheses
of Theorem 1.6.8, when v = 1, and so the result follows.

Conjecture 5.63.1 Assume that

-1 5
%[<7<1.

Show that every solution of Eq.(5.63.1) converges to the equilibrium T.

Conjecture 5.63.2 Assume that
< 1
T<3

Show that every solution of Eq.(5.63.1) converges to a (not necessarily prime)
periodic solution of period 183.
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Conjecture 5.63.3 Show that Eq.(5.63.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

Conjecture 5.63.4 Assume that v > 0 and that m is a positive integer.
Show that every solution of the equation
Tpn—2m

Tpy1 =7+ —, n=0,1,... (5.63.9)

n—1

is bounded.

Open Problem 5.63.1 Assume thaty > 0 and that m andl are nonnegative
integers. Investigate the global stability of solutions of the equation
Tn—2m

Tpnt1 =7+ ——, n=0,1,....
Tp—21—1

Open Problem 5.63.2 Assume that {v,} is a positive periodic sequence
with prime period k > 2. Investigate the character of solutions of the dif-

ference equation

Tn—2
Tntl =Vn+ —, n=0,1,....

n—1
Open Problem 5.63.3 Assume that v is a real number.

(a) Determine the set G of all initial conditions (x_2,2_1,20) € R such

that the equation

Tn—2
Tng1 =7+
Tn—1

s well defined for all n > 0.

(b) Determine the character of solutions of the equation (5.65.1) for all
(x_a, x_1, x09) €G.

YTn—1 + 55En—2
Dxn—Q

Eq.(#64) possesses a period-two trichotomy depending on whether

5.64 Equation #64: z,,1 =

y<d, y=90, v>6.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.
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Open Problem 5.64.1 Assume that § is a real number.

(a) Determine the “good” set G of all initial conditions (v_o,7_1,20) € N3

such that the equation
Tn—1

Tn—2

is well defined for all n > 0.

(b) Determine the character of solutions of the equation (5.64.1) for all
(r_2,2_1,70) € G.

Open Problem 5.64.2 Assume that 6 € (0,1) and let k € (0,1 —9). Inves-
tigate the global character of solutions of

T =06+ =L n=0,1,... (5.64.2)
Tpn—2

with )
x_9,xg €[1,146] and x_; € [1 + 4, k} .
Conjecture 5.64.1 Assume that
o<1

Show that every bounded solution of Eq.(5.64.2) converges to the equilibrium.

a+ Bz,

5.65 Equation #65: z,4; = 1+ Br.
Ln

The equation in the title is the well-known Riccati difference equation.
It is one of the very few nonlinear difference equations that can be solved
explicitly. See any book on difference equations about it, for example, [12],
[95], [147], or [175].

In this section we will present the character of solutions of the equation

a+ Pz,

il = TP 01, 5.65.1
Tt A+ Bz, " ( )

not only for the positive values of the parameters and for nonnegative initial
conditions, as we do in every other section, but also for any real values of the
parameters a, 3, A, B and for any real initial condition xg. We wish we could
do this for every equation in this book. Unfortunately, it is a problem of great
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difficulty to determine the set of initial conditions for which a solution of the
equation is well defined for all n > 0. For Eq.(5.65.1) this was done in [126].
To avoid degeneracies we will assume that

B#0 and aB—-(0A#0.
The following result for equation (5.65.1) has a straightforward proof.

Theorem 5.65.1 Every solution of Eq.(5.65.1) is periodic with period two if
and only if

B+A=0. (5.65.2)
When (5.65.2) holds, Eq.(5.65.1) becomes
o — Az,
Tp+1 = m, n = 0, 1, N (5653)
and every solution of Eq.(5.65.3) with
—A
mE g
is the two-cycle
a — Axg o — Axg

1’0,A+Bx0,$o,A+Bx0,... .

In the remaining part of this section we will assume, without further men-
tion, that
B#0, aB—A#0, and f+A#0.

Then the change of variables

B+ A A

T 5 W g n=20,1,... (5.65.4)
transforms Eq.(5.65.1) to the equation
R
Wpi1=1——, n=0,1,..., (5.65.5)
wy,
where 54 B
-«
R="——. 5.65.6
B+ AP 5050

It is an amazing fact that when Eq.(5.65.1) has no period-two solutions, the
change of variables (5.65.4) reduces it to Eq.(5.65.5), which depends on a
single parameter. The parameter R, which is called the Riccati number, of
Eq.(5.65.1) is the nonzero number given by (5.65.6).

Now the change of variables

wn:%, n=01,... (5.65.7)
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with

yo=1 and y =wp (5.65.8)

transforms Eq.(5.65.5) to the second-order linear difference equation
Yn+2 — Yn+1 + Ryn =0, n=0,1,... . (5.65.9)
Eq.(5.65.9) can be solved explicitly, in terms of the characteristic roots

1++v1—-4R 1—-+v1—-4R
- % and Ay = ————. (5.65.10)
Then by using (5.65.7) we obtain the solution of Eq.(5.65.5) provided that wy

is chosen in such a way that

A1

yn 0 forall n=0,1,... .

The set of points wqy for which y, = 0 for some value of n is called the
forbidden set F of Eq.(5.65.5).

There are very few rational equations for which we know something about
the forbidden set of the equation. See, for example, [53] and [55].

In view of (5.65.10), the character of solutions of Eq.(5.65.5) and its forbid-
den set F' depend on whether

1 1

1
R<Z’R: or R> -.

4’ 4
The character of solutions of Eq.(5.65.1) and its forbidden set F' are easily
inferred by means of the change of variables (5.65.4).

Case 1: R < 1. Then the general solution of Eq.(5.65.9) is
Yn = LA F 2Ny, n=0,1,...
and in view of the initial conditions (5.65.8)

_wl_)\l and ¢ _)\1—100
TN = Ny S VI Ve

Cc1

Thus, the forbidden set of Eq.(5.65.5) is the set of wg such that

wy] — A\ A1 — wp
= AR .
s VI Ve S W W

5=0, for n=1,2,...

that is, the set
AT A2 — A AY

F =
{ AL — A2

tn=1,2,...}.

When
wo ¢ F‘7
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w, = (w1 — M)A — (wo — A)AF T
(w1 — AT — (wo — Ap)AG 7

n=0,1,....

Hence,
’wn:)\g if ’wo:)\g

and

lim w, = A1 if wg # Ao.
n—oo

Case 2: R = 1. Then the general solution of Eq.(5.65.9) is
1 1
Yn = 01(5)" + CQn(§)", n=0,1,...
and in view of (5.65.8)

cp =1 and ¢y =2wy—1.

Thus, the forbidden set of Eq.(5.65.5) is the set of wg such that
1 1
Yn = (5)" + (2w — l)n(i)” =0, for n=1,2,...

that is

~1
i n=12..

F:{ 2n : =D

3.

When
wO¢F7
w 1+ (2we —1)(n+1)
" 242(2we —)n

n=0,1,....
Hence, in this case

i 1
Jim o = 3

Case 3: R > i. Here the characteristic roots of Eq.(5.65.10) are complex

conjugate. Choose ¢ € (0, 7) such that

& 1 d siné VAR -1
cos ¢ = and sing = ———.
2V R 2VR

Then
Yn = R%[c1 cos(ng) + casin(ng)], n=0,1,...

and by using (5.65.8) we find

2’11}0—].
VAR—1

ci1=1 and ¢ =



222 Dynamics of Third-Order Rational Difference Equations

Note the forbidden set in this case is the set of all initial conditions wq such
that
211)0 —1

COS(?’Z(b) + \/ﬁ

-sin(ng) =0 for n=1,2,...
that is, the set of points

1_‘/4R*100t(n¢).nf12 )
5 tn=1,2,...}.

P
When
wo ¢ }77

_ VR VAR — 1cos(n+ 1)¢ + (2we — 1) sin(n + 1)¢

= VAR — 1cos(ng) + (2we — 1) sin(ne) '

We can rewrite this solution in a way that is easier to investigate the long-term
behavior. Set

n=0,1,....

r=v/(AR-1)+ (2w —1)2

and let 6 € (5F, %) be such that

cosf = ﬂ and sinf = M.
r r

Then

B cos(np+¢ —0) _cos(n¢ — ) cos ¢ —sin(n¢ — ) sin ¢
wn = VER. sin(ng —0) VR cos(ng — 0)
= VR - [cos ¢ — sin ¢ tan(ng — 0)]

= % - 74};7 ! - tan(ng — 0).

From this it follows that if ¢ is a rational multiple of 7, that is,
_ 7. T
0=" me(0.3)

where ¢ and p are positive constants, then every solution of Eq.(5.65.5) with

1—+v4R — 1cot(nim)
wo # P~ for n=1,2,....,p—1
2

is periodic with period p.

When ¢ is not a rational multiple of 7, then no solution of Eq.(5.65.5)
is periodic and for any wg ¢ F, the set of limit points of the solution of
Eq.(5.65.5) is dense in the real line. See [45].
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Remark 5.65.1 When the parameters «, 3, A, and B of a Riccati equation

are nonnegative, the Riccati number of the equation is less than or equal to

i and so every solution of a Riccati equation with nonnegative parameters

converges to an equilibrium of the equation.

Who introduced the name of this equation? What is the rela-
tionship of this equation to the Riccati differential equation?

Open Problem 5.65.1 Assume that

{an}, {Bn}s {An}, {Bn}

are periodic sequences of real numbers. Determine the forbidden set F of
the Riccati equation

an + BnTn
An + By, ’

and the character of solutions of Eq.(5.65.11) with xo ¢ F.

Tni1 = n=0,1,... (5.65.11)

The above problem with period-two sequences was investigated in [120].

o+ Pz,
Tpp] = —————
+1 A + CIn,1

The most substantial work on this equation was presented in [158]. See also
[157] and [175]. Eq.(#66) can be written in the normalized form

5.66 Equation #G66 :

o+ T,
= =0,1,... 5.66.1
Tn+1 A+ xn—17 n ( )
with positive parameters a, A and with arbitrary nonnegative initial condi-
tions x_1, xg.
Eq.(5.66.1) has the unique equilibrium

1-A+/(1-A4)?+ 4«
5 .

xr =

The characteristic equation of the linearized equation of Eq.(5.66.1) about the
equilibrium 7 is
— L)\ + i —
A+z"  A+z
From this and Theorem 1.2.2 it follows that the equilibrium z of Eq.(5.66.1)
is locally asymptotically stable for all positive values of the parameters.
The following conjecture, known for more than 15 years (see [157], [175]
and [189]) has not been confirmed yet.

A2 0.
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Conjecture 5.66.1 Assume that
a, A € (0,00).
Show that every positive solution of Eq.(5.66.1) has a finite limit.

In other words, the equilibrium Z of Eq.(5.66.1) is globally asymptotically
stable. To the best of our knowledge, any claims in the literature made prior
to July 2007 that this conjecture has been confirmed are not correct.
For
a < A,

the Conjecture is true and the proof is a straightforward consequence of The-
orem 1.6.3.
For
A>1,

the conjecture is true and the proof follows by Theorems 5.23.2 and 5.23.3.
Finally, for
a=A

the conjecture is true and the proof follows from Theorem 5.26.1.
There are several publications in the literature where the Conjecture has
also been confirmed is some subregions of parameters with

a>A and A<L (5.66.2)

See [104], [157], [175], and the references cited therein. What is needed at
this time is to confirm the conjecture in the “entire” region (5.66.2). This will
confirm Conjecture 5.66.1. In this direction we offer the following conjecture
which is more than what is needed to confirm Conjecture 5.66.1 in the entire
region (5.66.2).

Conjecture 5.66.2 Assume that the following conditions hold:
(i) f € C[(0,00) x (0,00), (0, 00)].
(i) f(z,y) is decreasing in x and strictly decreasing in y.

(iii) xf(x,x) is strictly decreasing in x.

(iv) The equation
Tpt1 = Tnf(Tn, Tn-1), n=0,1,... (5.66.3)

has a unique positive equilibrium &, which is locally asymptotically stable.
Then T is a global attractor of all positive solutions of Eq.(5.66.3).

The following special case of Conjecture 5.66.2 would also confirm Conjecture
5.66.1.
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Conjecture 5.66.3 Confirm Conjecture 5.66.2 in the special case of the ra-
tional difference equation

a+ Brn +yTn-1
A+ Bz, + Czxp_y’

T4l = n=0,1,...
with nonnegative parameters and nonnegative initial conditions, that is, for

the function
1 a+Bx+yy

E.A—l-Bx—i-Cy

under the assumptions of Conjecture 5.66.2.

fz,y) =

a+ Bx,
A + D‘Tn,Q

Eq.(#67) can be written in the normalized form

5.67 Equation #67: x,., =

o+ T,
= =0,1,... 5.67.1
$n+1 A + xn_27 n ( )
with positive parameters «, A and with arbitrary nonnegative initial condi-
tions x_s, x_1, g.
Eq.(5.67.1) has the unique equilibrium

1-A+4/(1-A4)2+ 4
5 .

f:

The characteristic equation of the linearized equation of Eq.(5.67.1) about the
equilibrium Z is

1 ., =

- =0.
A+2 + A+2

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.67.1)

is locally asymptotically stable when either

)\3

A> % (5.67.2)
o 1 1 A%(—A?2+34-1)
3 < A< 3 and o < A—1) (5.67.3)
and unstable when
! <A< E and a > A +34-1) (5.67.4)

3 2 (24— 1)2
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or

1
0<A< 3 (5.67.5)

By Theorems 5.23.2 and 5.23.3 it follows that the equilibrium Z of Eq.(5.67.1)
is globally asymptotically stable when

A>1

Conjecture 5.67.1 Assume that either

<A<l

| =

or that (5.67.3) holds. Show that the equilibrium T of Eq.(5.67.1) is globally
asymptotically stable.

Conjecture 5.67.2 Show that Eq.(5.67.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

o+ P,
Bx, + Cx,_4
This equation was investigated in [175]. See also Theorem 2.1.1 where we

established that every solution of the equation is bounded. Eq.(#68) can be
written in the normalized form

5.68 Equation #68: z,,1 =

o+ T,
n = 5 = 71,... . .]_
Tpt1 Fra— n=>0 (5.68.1)

with positive parameters a, B and with arbitrary positive initial conditions
-1, ZQ-
The only equilibrium of Eq.(5.68.1) is

14+ /1+4a(B+1)

T= 2(B+1)

The characteristic equation of the linearized equation of Eq.(5.68.1) about the
equilibrium Zz is

Bz —1 1
z(1+4 B) T1yB T
From this and Theorem 1.2.2 it follows that the equilibrium Z of Eq.(5.68.1)
is locally asymptotically stable for all positive values of the parameters.

A+ 0. (5.68.2)
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When
a8
- 4B2 )
as we will see in Theorem 5.141.1, every solution of Eq.(5.68.1) converges to
the equilibrium Z. For another proof of that result see [175].

Conjecture 5.68.1 Show that for all positive values of the parameters the
equilibrium T of Eq.(5.68.1) is globally asymptotically stable.

a+ Bx,
Bl’n + D$n_2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#69) can be written in the normalized form

5.69 Equation #69: =z, =

o+ T,

— " n=0,1,... 5.69.1
xn + Dxn_27 n ) ) ( )

Tn+1 =

with positive parameters «, D and with arbitrary positive initial conditions
T-2, L-1, L0-
The only equilibrium of Eq.(5.69.1) is

1+/1+4a(D+1)
2(D+1)

S]]

The characteristic equation of the linearized equation of Eq.(5.69.1) about the
equilibrium Zz is

z—1 A2y D
z(1+ D) 1+D
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.69.1)
is locally asymptotically stable when

PR 0. (5.69.2)

0<D<14++V2 (5.69.3)

or
D(D? - 2D —1)

(3D +1)2

D>14++V2 and a > (5.69.4)

and unstable when

D(D? —2D — 1)
(3D +1)2

D>1++v2 and a<
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When

as we will see in Theorem 5.141.2, every solution of Eq.(5.69.1) converges to
the equilibrium Zz.

Conjecture 5.69.1 Assume that

D(D? -2D —1) D-1
D>1 and —_
an BD+ 17 <a< 1

Show that the equilibrium T of Eq.(5.69.1) is globally asymptotically stable.

Conjecture 5.69.2 Assume that

D(D? —2D — 1)
(3D +1)?

D>1 and a <

Show that Fq.(5.69.1) has solutions that do mot converge to the equilibrium
point T or to a periodic solution.

o+ Bz,
Cl‘n—l + Dmn—Q

This is an equation of paramount importance that has not been investigated
vet. Eq.(#70) can be written in the normalized form

5.70 Equation #70: z,,1 =

a+xy,
x =——— n=0,1,... 5.70.1
s Cxp_1+ xp_2 ( )
with positive parameters «, C' and with arbitrary positive initial conditions
T2, T_1, Xo-
In Section 4.7 we conjectured that Eq.(5.70.1) possesses a period-six tri-
chotomy depending on whether

aC?>1, aC?=1, or aC?’<1.

The characteristic equation of the linearized equation of Eq.(5.70.1) about its
unique equilibrium point Z,

L 1+V/1+4a(C+1)

2(C +1)
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is
1 C 1

22 A =
(C+1)z +C+1 +C+1

From this and Theorem 1.2.3 it follows that the equilibrium z of Eq.(5.70.1)
is locally asymptotically stable when

A2 — 0. (5.70.2)

aC? > 1
and unstable when

aC? < 1.
When

aC? =1,

the three characteristic roots of Eq.(5.70.2) are

1 1—iV3 143
N = LTIVB L, = LY

)\:7 =
T oy 2 2

Please note that the dominant characteristic roots are sixth roots of unity. Is
this typical of periodic convergence?

Conjecture 5.70.1 Show that the solution of the equation

1+,
g = 01, (5.70.3)
Tn—1 +xn—2

with initial conditions
I‘_QZI_lz.IQ:Q

converges to a prime period-siz solution of Eq.(5.70.3).

Q +’7In—1
A+ Bz,

This equation was investigated in [108]. Eq.(#71) possesses a period-two
trichotomy depending on whether

5.71 Equation #71: z,, =

y<A v=A, or v> A

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.
When
v > A,

it follows from Theorem 4.2.2 that every bounded solution of Eq.(#71) con-
verges to the equilibrium.
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Open Problem 5.71.1 Can the character of solutions of the rational equa-
tion
o+ VTn—1

., n=0,1,...
A4z, "

Tp+1 =

be predicted from the characteristic roots of the linearized equation about the
equilibrium point? Extend and generalize.

. YTy

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5.72 Equation #72:

a -+ VYLn-1

5.73 Equation #73: z,.; = A+ Dr .
Tp—2

This equation was investigated in [17] and [70]. Eq.(#73) possesses a period-
two trichotomy depending on whether
vy<A ~v=A, or v>A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Conjecture 5.73.1 Assume that
v > A.

Show that every bounded solution of Eq.(#73) converges to the equilibrium.

Open Problem 5.73.1 Can the character of solutions of the rational equa-
tion
o+ VYLn—1

. n=0,1,...
A+xn—2 "

P e

be predicted from the characteristic roots of the linearized equation about the
equilibrium point? Extend and generalize.
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o+ YT
Bx, +Cx,_

This equation was investigated in [162]. See also [175]. Eq.(#74) can be
written in the normalized form

5.74 Equation #74: z,,1 =

Oé+l'n_1
] = ——————— n=0,1,... 5.74.1
Tn+1 B, + 2, 1 n ( )

with positive parameters o, B and with arbitrary positive initial conditions
r_1, ZQ-
The only equilibrium of Eq.(5.74.1) is

1++/1+4a(B+1)

2(B+1)

8l

The characteristic equation of the linearized equation of Eq.(5.74.1) about the
equilibrium Z is
B z-—1
A A =
1B T Bz
From this and Theorem 1.2.2 it follows that the equilibrium Z of Eq.(5.74.1)
is locally asymptotically stable when

0. (5.74.2)

B-1
a> (5.74.3)
4
and unstable when
B-1
a< . (5.74.4)
4
When (5.74.4) holds, and only then, Eq.(5.74.1) has the unique period-two
solution
1—\/1—% 1+\/1—%
— = = (5.74.5)
which is locally asymptotically stable. See [175].
When
B-1
o>

as we will see in Theorem 5.141.2, every solution of Eq.(5.74.1) converges to
the equilibrium z. For another proof of that result see [162] and [175].

When (5.74.4) holds as we will see in Theorem 5.145.1 every solution of
Eq.(5.74.1) converges to a (not necessarily prime) period-two solution.
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Open Problem 5.74.1 Assume that (5.74.4) holds. Determine the set of all
initial conditions x_1, xo for which every solution of Eq.(5.74.1) converges to
the prime period-two solution (5.74.5).

Open Problem 5.74.2 Assume that (5.74.4) holds. Determine the set of all
initial conditions x_1, xq for which every solution of Eq.(5.74.1) converges to
the equilibrium T.

o+ VYLn—1

5.75  Equation #T75: Tny1 = po—rp ——

Eq.(#75) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.3.1.

Conjecture 5.75.1 Show that every bounded solution of Eq.(#75) converges
to the equilibrium of the equation.

Open Problem 5.75.1 Determine the set of all initial conditions of Eq.(#75)
through which the solutions are unbounded.

O+ YTp_1
Ol‘n—l + Dxn—2

5.76 Equation #76: z,,1 =

This equation was investigated in [102] where the special cases #74 and #76
were extended and unified. See also Theorem 2.1.1 where we established that
every solution of this equation is bounded. Eq.(#76) can be written in the
normalized form

Q+ Tp—1

STl =01, .. 5.76.1
Tn-1 +Dxn—2 " ( )

Tn41 =

with positive parameters a, D and with arbitrary positive initial conditions
-2, L-1, To-
The only equilibrium of Eq.(5.76.1) is

141+ 4a(D +1)

2(D+1)

xr =




Known Results for Fach of the 225 Special Cases 233

The characteristic equation of the linearized equation of Eq.(5.76.1) about the
equilibrium z is
z-—1 D
AP A =
Tiarp) T1eD
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.76.1)
is locally asymptotically stable when

0. (5.76.2)

D <1+4a (5.76.3)

and unstable when
D >1+4a. (5.76.4)

When (5.76.4) holds, Eq.(5.76.1) possesses the unique prime period-two
solution
1= 1- 2% 1+,/1- 42
cey 5 , 5 yene

which was shown in [102] to be locally asymptotically stable.

)

When
D <1+ 4a,

as we will see in Theorem 5.141.2, every solution of Eq.(5.76.1) converges to
the equilibrium z. For another proof of that result see [102].

Conjecture 5.76.1 Assume that (5.76.4) holds. Show that every solution of
Eq.(5.76.1) converges to a (not necessarily prime) period-two solution.

o+ 0,9
A+ Bz,

This equation was investigated in [49]. See also Theorem 2.5.1 where we
established that every solution of the equation is bounded. Eq.(#77) can be
written in the normalized form

5.77 Equation #77: x,.1 =

a+Tp_2

=0,1,... 5.77.1
Atz, 7 ( )

Tn41 =
with positive parameters «, A and with arbitrary nonnegative initial condi-

tions x_s, x_1, g.
The only equilibrium of Eq.(5.77.1) is

1-A+/(1-A4)?+ 4
5 .

xr =
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The characteristic equation of the linearized equation of Eq.(5.77.1) about the
equilibrium z is

z \2 1 _
z+ A z+ A
From this and Theorem 1.2.3 it follows that the equilibrium z of Eq.(5.77.1)
is locally asymptotically stable when

A3+

0. (5.77.2)

A>1 (5.77.3)

or
_ VEAZ — 443
A<1 and a> 2o AT 25A 44 (5.77.4)

and unstable when

2—-A+VbA2 —4A3
5 .

By Theorems (5.23.2) and (5.23.3) it follows that when
A>1,

A<l and a<

the equilibrium Z of Eq.(5.77.1) is globally asymptotically stable.

Conjecture 5.77.1 Show that every solution of Eq.(5.77.1) converges to the
positive equilibrium T when

2—- A+ bA? — 443

A<1 and a> 5

Conjecture 5.77.2 Assume that
2— A+ 5A2 - 443
5 .

Show that Fq.(5.77.1) has solutions that do mot converge to the equilibrium
point T or to a periodic solution.

A<l and a<

o+ 0,9

5.78 Equation #78: x,41 = At Cn .
Tn—1

This equation was investigated in [49]. See also Theorem 2.7.1 where we
established that every solution of the equation is bounded. This equation can
be written in the normalized form

a+Tnp_2
e = X2 0 78.1
Tl R n=20 (5.78.1)
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with positive parameters «, A and with arbitrary nonnegative initial condi-
tions, r_o, x_1, To.
The only equilibrium of Eq.(5.78.1) is

1-A+/(1-A4)?+ 4«
5 .

The characteristic equation of the linearized equation of Eq.(5.78.1) about the
equilibrium Z is

T =

z \ 1
T+A° T+A
From this and Theorem 1.2.3 it follows that the equilibrium Z is locally asymp-
totically stable when

A2+

0. (5.78.2)

A>1 (5.78.3)

o (A—12(A+1)

A<1 and o> Ve

(5.78.4)
and unstable when
(A-1)2(A+1)
A? '
By Theorems (5.23.2) and (5.23.3) it follows that when
A>1,

A<l and a<

the equilibrium z of Eq.(5.78.1) is globally asymptotically stable.

Conjecture 5.78.1 Show that every solution of Eq.(5.78.1) converges to the
positive equilibrium T when

(A-1)%(A+1)

A<1 and o> yE .

Conjecture 5.78.2 Assume that
(A—1)%2(A+1)
A2 '
Show that Eq.(5.78.1) has solutions that do not converge to the equilibrium
point T or to a periodic solution.

A<l and a <

o+ 0T,_2

5.79 Equation #79: x,41 = A+ Do s
Tp—2

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.
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o+ 0Ty_o
Bz, +Cz,_4

Eq.(#80) can be written in the normalized form

5.80 Equation #80: =z, =

Q+ Tp_2

—_— =0,1,... 5.80.1
B-/En"i'xn—l, n s Ly ( )

o e

with positive parameters o, B and with arbitrary positive initial conditions
r_92, T_1, XQ-

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions for all positive values of the parameters « and B.

Eq.(5.80.1) has the unique equilibrium

1+ /1+4a(B+1)

2(B+1)

Tr =

The characteristic equation of the linearized equation of Eq.(5.80.1) about the
equilibrium Z is

B 1 1
A2+

A3 A\ — —
BT B+1" (B+1)z

0. (5.80.2)

From this and Theorem 1.2.3 it follows that the equilibrium z of Eq.(5.80.1)
is locally asymptotically stable when

aB>1 (5.80.3)

and unstable when
aB < 1. (5.80.4)

For the equilibrium z of Eq.(5.80.1),
Local Asymptotic Stabilty = Global Asymptotic Stabilty.

More specifically, when the condition (5.80.3) is satisfied, the equilibrium z
of Eq.(5.80.1) is locally asymptotically stable but not globally asymptotically
stable. The reason is that for all positive values of the parameters «, B there
exist initial conditions x_o, x_1, xo for which the solution of Eq.(5.80.1) is
unbounded. See Theorem 3.4.1.

In addition to unbounded solutions, what other type’s of solutions
exist? Can there exist any periodic solutions? Can there exist any
bounded solutions that are not periodic and do not converge to the
equilibrium Z or to a periodic solution?
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It is interesting to note that when
B =1,

unbounded solutions of Eq.(5.80.1) co-exist with periodic solutions. For ex-
ample, when

a#1,

the sequence
.11 a,...

is a prime period-three solution of the equation

Open Problem 5.80.1 Determine all possible periodic solutions of Fq.(5.80.1).

Conjecture 5.80.1 Assume that (5.80.8) holds. Show that every bounded
solution of Eq.(5.80.1) converges either to the equilibrium T or to a periodic
solution.

When (5.80.4) holds, numerical investigations indicate the existence of so-
lutions of Eq.(5.80.1), which are bounded, not periodic, do not converge to
the equilibrium Z, and do not converge to a periodic solution. For this type
of solution we pose the following conjecture.

Conjecture 5.80.2 Assume that (5.80.4) holds. Show that Eq.(5.80.1) has
bounded solutions that do mnot converge to the equilibrium point T or to a
periodic solution.

o+ 0T,_o

5.81 Equati 8l: zpy1=——"—""-"
quation # Tna1 Br. 1 Dro s

This equation was investigated in [90]. See also Section 2.1 where we estab-
lished that every solution of the equation is bounded. This equation can be
written in the normalized form

Q+ Tp_2

= T2 01, 811
Tpt1 T a— n=20 (5.81.1)

with positive parameters o, B and with arbitrary positive initial conditions,
T2, L1, Zo-
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The only equilibrium of Eq.(5.81.1) is

1+ /1+4a(B+1)

2(B+1)

xr =

The characteristic equation of the linearized equation of Eq.(5.81.1) about the
equilibrium z is

B z—1
A? =0
B+1 + (B+ 1)z
From this and Theorem 1.2.3 it follows that the equilibrium z of Eq.(5.81.2)
is locally asymptotically stable when

PLES (5.81.2)

B<1++2 (5.81.3)
or

2+ 6B +2B% + B3 — (1+2B)V4 + 8B + 5B2

B>1 2 and a >
+V2 and o B2(9+ 6B + B2)

(5.81.4)
and unstable when

2+ 6B +2B2+ B3 — (1+2B)V4+ 8B + 5B2

B>1 2 and
+V2 and a < B2(9 + 6B + B?)

(5.81.5)
In the next theorem we establish that when o > B (resp. « < B), every
solution of Eq.(5.81.1) eventually enters the invariant interval [1, ] (resp.
[%,1]). See [90].

Theorem 5.81.1 Assume that
a # B.
Then the following statements are true:

o

B

o

(a) The interval [min(%,1), max(§,1)] is invariant for every solution {x,}

of Eq.(5.81.1).

(b) Every solution {x,} eventually enters the invariant interval [min(%, 1), max(F,1)].

PROOF We will give the proof when o« > B. The proof when o < B is
similar and will be omitted.
(a) Let {x,} be a solution of Eq.(5.81.1) with initial conditions z_o,2_1,x¢

such that
«

T_2,T_1,T0 € [1, E} .
Then

a+T_o a+1 a

b — <
B%—‘r% Bxog+x_o ~ B-1+1 B
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and by induction it follows that for all n > 1,

!
1<z, < —.

S Tp S B
(b) Let {z,,} be a solution of Eq.(5.81.1). Observe that the following hold for

n>1and o > B:
a — Bz,

Tnpr = L= (5.81.6)
and " e »
ab\Tn—1 — a—B)z,_
= (Bzn, :' ;n72)(3xn71 + x:fsg)
aB?
g (By + 2n—2)(BTp_1 + Tn_3) (@n-1—=1), (5.81.7)
and
Tpa1 — & _ QB% + (B — a)Tn—2
B Bz, + x,_o
aB? o
= (Btp + xp_2)(Bn_1+ Tn_3) (Tn-1 = E)’ (5.81.8)
and

B:L‘nfS(xnfl - %) + (xnfl - 1)(xn73xn72 + anfliran)
Bla+zn—3) + Tpn_o(B2n_1 + Tn_3)

Tn+1l — Tp—1 = —

(5.81.9)
Suppose that for some N sufficiently large

TN > % or oy < 1. (5.81.10)

We will prove that the solution {x,} eventually enters the invariant interval
[1, 3] when 2 > £. The proof when x < 1 is similar and will be omitted.
From (5.81.6), we see that

TN+ < 1. (5.81.11)
Also,
a+xTN—_1 a+TN-1

= 1
N2 Brxnyi+ov—1 B-l4+zn_

and so from (5.81.7), we obtain for all k£ > 1,

TN42k > 1. (5.81.12)

Furthermore, we claim that for some k > 1,

«
TN42k < E (58113)
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Suppose for the sake of contradiction that for all k& > 1,

> «
IN+2k = 75+
+ B

From (5.81.6) we obtain that for k > 1,
a
TNyok+1 <1< B < TNiok-
From this and (5.81.9) it follows
a
TN42k+3 < TNkl <1< B <zyiox < Tniokye, K=1,2,...

and so the two subsequences {zn42r}52; and {Tntor+1}52; both converge
to finite limits. Let

lim IN+2k = Y, lim TN42k+1 = L.
k—oo k—oo

Clearly,
0<z<l< % <. (5.81.14)
By taking limits on both sides of
TN42k+3 = O T IN42k
T Baungorss + ook
as k — oo we find
a+y d a+x
r=-——— an = —
B+y YT Bt

from which it follows that # = y. This contradicts (5.81.14) and proves
(5.81.13). Assume without loss of generality that (5.81.13) holds for k = 1.
From this and (5.81.12) we have that

«
1<yt < —=.

B
From this, in view of (5.81.7) and (5.81.8), we obtain that for all k¥ > 1,
1< onpon < %. (5.81.15)

From (5.81.6) and (5.81.15), we find that for all £ > 1,

1< Tnponsr < %. (5.81.16)

The proof is complete. |
In the next theorem we prove that the equilibrium z of Eq.(5.81.1) is glob-

ally asymptotically stable in some region of the parameters. For another proof
see [90].
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Theorem 5.81.2 Assume that
B <da+1. (5.81.17)

Then the equilibrium T of Eq.(5.81.1) is globally asymptotically stable.

PROOF Note that

B-1 - 2+ 6B +2B? + B3 — (1+2B)V4 + 8B + 5B2
4 B2(9+ 6B + B2) ‘

From this and in view of (5.81.17), (5.81.3), and (5.81.4), it follows that the
equilibrium Z of Eq.(5.81.1) is locally asymptotically stable. It suffices to
show that the equilibrium is a global attractor of all solutions of Eq.(5.81.1).
Let {z,} be a solution of Eq.(5.81.1). When

a # B,

by employing, Theorem 1.6.5 and in view of Theorem 5.81.1, the result follows.

On the other hand, assume
a=B.

From (5.81.9), we obtain that for all n > 1,
(Tpt1 — Tn—1)(zn—1 — 1) <0.
From this it follows that for all n > 0,
1 <woni1 <wop—1 OF o1 < Topgpr <1

and
1 <zop <Zop2 Or Tap_2 <2, < 1.
Hence, the subsequences of the even and odd terms both converge to finite lim-

its. From this and the fact that Eq.(5.81.1) has no prime period-two solutions
the result follows. The proof is complete.

Conjecture 5.81.1 Assume that (5.81.8) or (5.81.4) holds. Show that every
solution of Eq.(5.81.1) converges to the equilibrium T.

Conjecture 5.81.2 Show that Eq.(5.81.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.
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o+ 0Ty,_o
Cl'n_l + DZEn_Q

For some work on this equation see [125]. Eq.(#82) can be written in the
normalized form

5.82 Equation #82: =z, =

a+ T2

—_— =0,1,... 5.82.1
C,’En,1+$n,2’ » 4 ( )

Tpn4+1 =

with positive parameters a,C' and with arbitrary positive initial conditions
T2, T_1, Xo-
Eq.(5.82.1) has the unique equilibrium

1+ /1+4a(l+0)

2(1+C)

T =

The characteristic equation of the linearized equation about the equilibrium
z is
C z—1
A? A =0
o T ayor
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.82.1)
is locally asymptotically stable when

1+5
2

C<

(5.82.2)

or

1++5 >2+4O+CQ—\/4+160+2102+9C3

C > and « oz

(5.82.3)

and unstable when

1+5
2

2+4C + C? — V4 +16C + 21C? + 9C3
C? '
The following theorem is a new result about the global attractivity of the
equilibrium Z of Eq.(5.82.1).
The following identities, which will be useful in the proof of the theorem
that follows, hold for all n > 0:

C > and o <

o — an—Q

= 5.82.4
Cmn—l + xp_2 ( )

Tn4+1 — 1

and

(a0 = Capg)tp-a+ Tp_o(xn_a+ Crn_3)(1 —x,_3)
O(a + xn—4) + $7L—2(Oxn—3 + x7n—4)

Tn+1l — Tp—-3 =

(5.82.5)
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Theorem 5.82.1 Assume that
C <1+ 4a. (5.82.6)

Then the equilibrium T of Eq.(5.82.1) is globally asymptotically stable.

PROOF Note that

C—1 2+4C+C?— Vit16C +21C% +9C3
i c? '

From this and in view of (5.82.2), (5.82.3), and (5.82.6), the equilibrium
of Eq.(5.82.1) is locally asymptotically stable. It suffices to show that the
equilibrium is a global attractor of all solutions of Eq.(5.82.1). We consider
the following two cases:

Case 1:

a<C
and
Case 2:

a>C.

We will give the proof in Case 1. The proof in Case 2 is similar and will be
omitted. First we will establish that the interval [&, 1] is invariant. Let {,}
be a solution of Eq.(5.82.1) with initial conditions z_o, z_1, x¢ such that

[0
T_9,T_1,%p € [571] .

Then
a<a—|—%< a+x_o - a+1 1
— Tr1 = =
C C+& "' Caytz, CZ+1
and by induction the result follows.
Next we will show that for j € {0,1,2,3},
{Z4n+;} eventually enters the invariant interval [%, 1] . (5.82.7)

We will show that the subsequence {x4,4+1} eventually enters the invariant
interval [&,1]. The proof that the other three subsequences eventually enter
the invariant interval [&, 1] is similar and will be omitted. Suppose for the
sake of contradiction that there exists N sufficiently large such that

«
Tan+1 < 6 O TyN+4+1 > 1.
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We will give the proof in the case when x4n11 < &. The proof in the other
case is similar and will be omitted. Then
o+ TaN a+ TaN

T4N+3 = =
T Caangr +aan T O +aan

and from this it follows that

QO + T4N+2 QO + ToN+2
T = < 1. 5.82.8
NS Cranys + @ant2  C -1+ Zanyz ( )
To this end we claim that for some k& > 1,
«
TAN 4144k > 5 (5829)

Otherwise, for all k£ > 0,
o
TaN+1+4k < ok

From (5.82.5) it follows that the subsequence {z4y,4+1} increases. By taking
limits in (5.82.5) we get a contradiction.

Assume without loss of generality that (5.82.9) holds for & = 1. From this
and from (5.82.8), we see that

a < <1
— <z .
ol AN+5
From (5.82.4), we obtain that
Tan+7 < 1.
In addition,
«
TAN+7 > bl

because otherwise

O+ T4N+4 <@
=
Crants +Tanta ~ C

TAN+7 =

implying that
Tan+s > 1,

which is a contradiction. Similarly, we obtain
2 < <1
— <z

C 4AN+9
and by induction, we find that for all k£ > 1,

«
° < TaNy1vae < 1,
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which proves (5.82.7).

The function

. o+ 23
f(22723) = C2 + 23

clearly is strictly decreasing in z2 and eventualli strictly increasing in z3. By
employing Theorem 1.6.5 the result follows.

Conjecture 5.82.1 Assume that (5.82.2) or (5.82.3) holds. Show that every
solution of Eq.(5.82.1) converges to the equilibrium T.

Conjecture 5.82.2 Show that Eq.(5.82.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

an + Y Tn—1
A+ Bx,

This equation was investigated in [179]. See also [175]. Eq.(#83) possesses a
period-two trichotomy depending on whether

5.83 Equation #83: z,,1 =

Y<B+A y=p+A or v>[+A

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.
When
7> B+ A,

it follows from Theorem 4.2.2 that every positive and bounded solution of
Eq.(#83) converges to the positive equilibrium, z = %.
Zero is always an equilibrium of the equation

Bxn + YTn-1

=0,1,... 83.1
Are, 0 "=0L (5.83.1)

Tp+1 =

and when
B+ > A,

Eq.(5.83.1) has, in addition to zero, the unique positive equilibrium
T=p03+~v— A

By Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.84.1)
is globally asymptotically stable when

B+ <A
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When
A-B<y<A+p,

the positive equilibrium Z is locally asymptotically stable and by the period-
two trichotomy Theorem 4.2.1 it is a global attractor of all positive solutions.

Open Problem 5.83.1 Obtain “easily verifiable” conditions which deter-
mine the set of all positive initial conditions for which the solutions of Eq.(5.83.1)
do exactly one of the following:

(i) converge to a prime period-two solution, when v = 3+ A
(ii) converge to the positive equilibrium, when v > 8+ A

(#it) are unbounded, when v > [+ A.

o Pt YT
This equation was investigated in [180]. See also [175]. See also Theorem

2.1.1 where we established that every solution of the equation is bounded.
Eq.(#84) can be written in the normalized form

5.84 Equation #84 :

ﬁxn + Tno1
x =—— n=01,... 5.84.1
n+1 A+$n_1 D) ( )
with positive parameters 3, A and with arbitrary nonnegative initial condi-
tions x_1, xg.

Zero is always an equilibrium point of Eq.(5.84.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.84.1) is globally asymptot-
ically stable when

A>pB+1 (5.84.2)

and unstable when
A<p+1 (5.84.3)

Furthermore, when Eq.(5.84.3) holds, Eq.(5.84.1) has also the unique positive
equilibrium point

z=p+1-A.

The characteristic equation of the linearized equation of Eq.(5.84.1) about the
positive equilibrium Z is
B

2 p-A_
N— A G O (5.84.4)
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From this and Theorem 1.2.2 it follows that the positive equilibrium Z of
Eq.(5.84.1) is locally asymptotically stable for all positive values of the pa-
rameters, as long as A < 8+ 1.

In the next theorem we prove that the positive equilibrium z of Eq.(5.84.1)
is a global attractor of all positive solutions provided that 5+ 1 > A. For
another proof of this result see [175].

Theorem 5.84.1 Assume that (5.84.3) holds. Then the positive equilibrium
T of Eq.(5.84.1) is a global attractor of all positive solutions.

PROOF Let {z,} be a positive solution of Eq.(5.84.1). From Theorem
2.1.1 we know that {z,} is bounded from above by a positive constant. We
claim that {z,} is also bounded from below by a positive constant. Otherwise,
there exists a sequence of indices {n;} such that

Tn;41 — 0, and xp,41 < z; forall j <mn;+ 1. (5.84.5)

Then from (5.84.1), the subsequences {z,,} and {z,,_1} converge to zero.
Hence, eventually,
Tngs Tn—1 < 6"‘ 1- A>

which implies that eventually,

A+, 1 A+ (B+1-A4A)

Tng+1 = = min(zp,, Tn,—1)-

This contradicts (5.84.5) and establishes our claim that the solution is bounded
from below by a positive constant. We divide the proof into the following three
cases.

Case 1:
A-1< B <A

We claim that the solution {z,} is eventually bounded from above by the

positive constant %. Otherwise, for some N sufficiently large

- _ Brytana S A
N A+zna — 0

from which it follows that
TN > (*)2

Similarly, we find that
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which eventually leads to a contradiction and proves our claim that the solu-
tion {z,} is eventually bounded from above by the positive constant %. The

function 3
_ PTp+Tn
f(xnvxn—l) — A + Ty

is eventually strictly increasing in x,, and x,,_1. The result follows by Theorem
1.6.7.

Case 2:
8> A.

We claim that the solution {z,} is eventually bounded from below by the

positive constant %. Otherwise, for some N sufficiently large

Brn +xN_1 A

= - < —
TN A+zny — B
from which it follows that 4
Similarly, we find that
Ag
TN—1 < (ﬁ) )

which eventually leads to a contradiction and proves our claim that the so-

lution {z,} is eventually bounded from below by the positive constant %.
Hence, for n sufficiently large,
1 Bxr, — A
x —1=—
n+1 A T Zn 1

and so the solution {,} is eventually bounded from below by 1. Using the
change of variables

T, —1
Yn = ﬁ )
Eq.(5.84.1) reduces to the equation
ﬂgA + Un 0.1
Ynt1 = i, n=0,1,....
" Agl + Yn—1

The proof in this case is a straightforward consequence of Theorem 1.6.3.

Case 3:

For all n > 0,
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and
T, —1

T — Xy = —Tp_1—.
n+1 n n—1 /B+l’n_1
From this it follows that for n > 0,
Tp < Tpy1 <1 or 1 <apyq <oy,

from which the result follows. The proof is complete. |

Open Problem 5.84.1 Let {3,} and {A,} be periodic sequences of nonneg-
ative real numbers with prime period k > 2. Determine the global character
of solutions of the difference equation

ann +Tn-1

=0,1,....
An+xn717n Pt )

Tp+1 =
Ezxtend and generalize.

Open Problem 5.84.2 Let {8,} and {A,} be convergent sequences of pos-
itive real numbers. Investigate the character of solutions of the difference
equation
xn—H:M n=0,1,....
An + xn71 ) 9 )

Extend and generalize.

Open Problem 5.84.3 Assume that 3 and A are given real numbers. De-
termine the “good” set G of the equation

ﬂxn + Tn-1

.84.
Ato, (5.84.6)

Tn41 =

that is, the set of initial conditions
T_2,T_1,%p € R

such that the equation (5.84.6) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.84.6) for all initial conditions in the “good”
set G.

x o ﬁxn + VYTn—-1

Eq.(#85) can be written in the normalized form

5.85 Equation #85 :

Tn + VYTn—1

=0,1,... 5.85.1
A+I’n_2 y 1 P ( )

Tnt+1 =
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with positive parameters v, A and with arbitrary nonnegative initial condi-
tions x_s, x_1, xg.

The boundedness character of this equation was established in Theorem
3.2.1 where it was shown that when

7> A+1,

the equation has unbounded solutions. See also [49].

Zero is always an equilibrium point of Eq.(5.85.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.85.1) is globally asymptot-
ically stable when

A>y+1 (5.85.2)

and unstable when
A<y+1. (5.85.3)

Furthermore, when Eq.(5.85.3) holds, Eq.(5.85.1) has also the unique positive
equilibrium point
T=v+1-A

The characteristic equation of the linearized equation of Eq.(5.85.1) about the
positive equilibrium Z is

1 ¥ v+1—-A
A3 — 2_ A =0. 5.85.4
v+1 y+1 * y+1 ( )

From this and Theorem 1.2.3 it follows that the positive equilibrium Z of
Eq.(5.85.1) is locally asymptotically stable when

V242 —3A+1-A<y<A+1 (5.85.5)

and unstable when

v < V2AZ -3A+1- A

Conjecture 5.85.1 Show that every positive solution of Eq.(5.85.1) con-
verges to the positive equilibrium T when

V2AZ —3A+1-A<y<A+1.

Conjecture 5.85.2 Assume that
v>A+1.

Show that every positive and bounded solution of Eq.(5.85.1) converges to the
positive equilibrium .
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Conjecture 5.85.3 Assume that
y=A+1.

Show that every solution of Eq.(5.85.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.85.4 Assume that

v < V242 -3A+1- A

Show that Eq.(5.85.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

. ﬁxn + YTn-1
5.86 E t 86: Ty = —F7i
quation # Tnal Br. 1 Cr

This equation was investigated in [175], [181], [184], and [205]. Eq.(#86) can
be written in the normalized form

ﬁxn + Tn—1

= =0,1,... 5.86.1
Bz, +x,1 " ( )

Tn+1 =
with positive parameters 3, B and with arbitrary positive initial conditions
T_1, Tg.- We also assume that 3 # B because otherwise the equation eventu-

ally becomes trivial.
The only equilibrium of Eq.(5.86.1) is

s+l
B+1

xr =

The characteristic equation of the linearized equation of Eq.(5.86.1) about the
equilibrium Z is
2 p—B p—B

A (R § - ) KR I 1Oy R

From this and Theorem 1.2.2 it follows that the equilibrium Z of Eq.(5.86.1)
is locally asymptotically stable when

B8>B (5.86.2)

or
B<B and B<38+8B+1 (5.86.3)
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and unstable when
< B and B>36+3B+1. (5.86.4)

When (5.86.4) holds, and only then, Eq.(5.86.1) possesses the unique prime
period-two solution

l_ﬁ_\/(1_62 45(1 ﬁ—f—\/ 15)
’ (5.86.5)

which is locally asymptotically stable. For the proof of this, see [175].
In the next theorem we present the global character of solutions of Eq.(5.86.1).
See [181], [184], and [205].

Theorem 5.86.1 The following statements are true:
(a) The equilibrium T of Eq.(5.86.1) is globally asymptotically stable when
(5.86.2) or (5.86.3) holds.

(b) Every solution of Eq.(5.86.1) converges to the equilibrium T of Eq.(5.86.1)
when
B<B and B=338+B+1. (5.86.6)

(¢c) Every solution of Eq.(5.86.1) converges to a (not necessarily prime) period-
two solution when (5.86.4) holds.

PROOF  Let {z,} be a solution of Eq.(5.86.1) and assume that (5.86.2)
holds. For all n > 0,
an + Tp-1 6 /Ban + an,1 ﬁ

l<zppy1=—"r—"—==. """ <
ol Bzyp + %1 B BBz, + Brn_1 B

which implies that the interval [1, B} is invariant for the solution {z,}. Fur-
thermore, the solution {z,} satisfies the following equation:
Bn_1+Tn_
ﬁ' Bx 711+rn 22 + T

T +x
B gacnfll—i-acn : + ZTn—1

Tnt+1 =

521'77, 1+Bx721 1+ﬁxn 2+xn 1Tn—2
/Ban 1+an 1+B5€n 2+ Tp_1Tn_ 2'

F(.’L‘n 1, Lp— 2) (5867)

Clearly,

Feo(, 5., 2.

and

P _ (B = B)BBx;_y +2BB(B = B)tn—12n—2 + (B = fap_, <0
e (ﬂan—l + Bl'%fl + BIn—Q + xn—lxn—2)2 ’
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and ) )
noe (/Ban—l + Bl'%fl + an—Q + xn—lxn—2)2

<0,

and for each m, M € [1, %], the system

_ B%*m+ Bm? + fm +m? and 1 — B2M + BM? + 3M + M?
"~ Bm + Bm2? + Bm +m? " BBM + BM? + BM + M?

has the unique solution (m,M) = (Z,Z). By employing Theorem 1.6.5 the
result follows.
On the other hand, assume that

3 < B.

Clearly, the function

ﬁxn + Tn—1

an + Tn—1
is strictly decreasing in x, and strictly increasing in z,_;. By employing
Theorem 1.6.6, we find that the solution {z,} converges to a (not necessarily
prime) period-two solution. Due to the fact that Eq.(5.86.1) possesses a prime
period-two solution only when (5.86.4) holds, (a), (b), and (c) follow. The

proof is complete. |

Open Problem 5.86.1 Assume that 8 and B are given real numbers. De-
termine the “good” set of the equation

By + Tp_1
= Lon o Tmes 5.86.8
Tn+41 Bz, + 2,1 » ( )
that is, the set of initial conditions
T_1,T0 €N

such that the equation (5.86.8) is well defined for all n > 0. Determine the
character of solutions of Eq.(5.86.8) for all initial conditions in the “good”
set G.

ﬁxn + VYLn—1
Bz, + Dx,,_»

Eq.(#87) can be written in the normalized form

5.87 Equation #87: x,.1 =

Tn + VYTn—-1

Tn+1 =
Ty + Dy’

n=0,1,... (5.87.1)
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with positive parameters v, D and with arbitrary positive initial conditions
T—2, T_1, XQ-
For some work on this equation see [49]. See also Section 3.3 where we
established that when
v>1,

the equation has unbounded solutions.
Eq.(5.87.1) has the unique equilibrium point

y+1
D+1°

xr =

The characteristic equation of the linearized equation of Eq.(5.87.1) about the
equilibrium z is
3 y-D 2 v D

+ — A+ =0.
(y+1)(D+1) y+17  D+1

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.87.1)
is locally asymptotically stable when

D?-2D -1

et 1 5.87.2
DPrsDt2 S (5.87.2)

and unstable when
D?—-2D—1

—_ 1.
T<Dryspy2 U7
When
v=1
Eq.(5.87.1) has infinitely many prime period-two solutions of the form
x x
T D )1 D+ a1

with
1

2
TH’OO) and x # ——

S .
€ D1

Conjecture 5.87.1 Assume that (5.87.2) holds. Show that every solution of
Eq.(5.87.1) converges to the equilibrium .

Conjecture 5.87.2 Assume that

v=1.

Show that every solution of Eq.(5.87.1) converges to a (not necessarily prime)
period-two solution.
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Conjecture 5.87.3 Assume that

_D*-2D-1
TSDrisDy2

Show that Eq.(5.87.1) has bounded solutions that do not converge to the equi-
librium point T or to a periodic solution.

Open Problem 5.87.1 Assume that
v > 1.

(#) Determine the set of all initial conditions through which solutions of Eq.(5.87.1)
are unbounded.

(it) Determine the set of all initial conditions through which solutions of
Eq.(5.87.1) converge to the equilibrium Z.

Conjecture 5.87.4 Assume that
v > 1.

Show that every bounded solution of Eq.(5.87.1) converges to the equilibrium
.

Bn + yn
anfl + D$n72
This equation was investigated in [14]. See also Theorem 2.8.1 where we have

shown that every solution of Eq.(5.88.1) is bounded. Eq.(#88) can be written
in the normalized form

5.88 Equation #88: z,.; =

6xn + Tn-1
x =— n=0,1,... 5.88.1
i Tn—1+ Dmn—2 o ( )
with positive parameters 3, D and with arbitrary positive initial conditions
T_2, T_1, TQ-
The only equilibrium of Eq.(5.88.1) is

A+l
D+1

xr =

The characteristic equation of the linearized equation of Eq.(5.88.1) about the
equilibrium Z is
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3 3-D D
i1 TGy D1

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.88.1)
is locally asymptotically stable when

A3 A2+ 0.

D-1 D?+4+3D+1
D<1or D>1 and 7<H<L

D3 s (5.88.2)

and unstable when

D?+3D+1

D—
D>1 and < e

D+3°

r 3>

Conjecture 5.88.1 When (5.88.2) holds, every solution of Eq.(5.88.1) con-
verges to the equilibrium T.

Conjecture 5.88.2 Assume that

D?+3D+1

D>1 and ¢ > D2

Show that Eq.(5.88.1) has solutions that do not converge to the equilibrium
point T or to a periodic solution.

Open Problem 5.88.1 Investigate the global character of solutions of Eq.(5.88.1)
when

D-1
= 0.
F=D33”
When
D-1
D>1 d e .88.
> 1 an /8<D+37 (5.88.3)

Eq.(5.88.1) possesses a unique period-two solution of the form

ey LY, T Yy

where z,y are the two positive solutions of the equation

(D=2 +(B-1)(D-1)t+p(1-p)=0.

Conjecture 5.88.3 Show that when (5.88.3) holds the unique prime period-
two solution of Eq.(5.88.1) is locally asymptotically stable.
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ﬁxn + 6In—2

5.89 Equation #89: z,4; = 175
wn

This equation was investigated in [49]. See also Section 2.5 where we es-
tablished that every solution of the equation is bounded. Eq.(#89) can be
written in the normalized form
/an + 6377172
x =—= n=0,1,... 5.89.1
n+1 1+$7L D) ( )
with positive parameters (3, J and with arbitrary nonnegative initial conditions
T_2, T_-1, TQ-

Zero is always an equilibrium point of Eq.(5.89.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.89.1) is globally asymptot-
ically stable when

B+6<1 (5.89.2)

and unstable when
B+6>1. (5.89.3)

Furthermore, when Eq.(5.89.3) holds, Eq.(5.89.1) has also the unique positive
equilibrium point
z=0+0—-1.

The characteristic equation of the linearized equation of Eq.(5.89.1) about the
positive equilibrium, 2=+ 4§ — 1, is

b1, 0

Mt — N2 =
+5+5 B+4d

0.

From this and Theorem 1.2.3 it follows that £ = 8+ § — 1 is locally asymp-

totically stable when
B>1/202—6-6 (5.89.4)
B <202 -5-4.
B=1/26—6—0,

one of the characteristic roots is real within the interval (0,1) and the other
two characteristic roots are complex conjugates with magnitude equal to one.

and unstable when

When

In Section 2.5 we proved that every solution of Eq.(5.89.1) is bounded from
above. Here we will also show that when (5.89.3) holds, every positive solution
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of Eq.(5.89.1) is also bounded from below by a positive constant. Assume
for the sake of contradiction that there exists a positive solution {z,} of
Eq.(5.89.1), which contains a subsequence {x,,+1} such that

Tn+1 — 0 and xp, 11 <z, j<n;+1 (5.89.5)

Clearly,
Zp, — 0 and z,,_2 — 0.

Hence, there exists ig such that
Ty, <PB+0-—1
Then

B, +0Tn,,
L= i T T2 5
z ig+1 1+$n10 > (/6)+ ) /8+(5

min(Tn, , Tn,, ,)

= min(armo s Ty _a ).

This contradicts (5.89.5) and the proof is complete.

The next three theorems are new results about the global attractivity of
the positive equilibrium z of Eq.(5.89.1).

Theorem 5.89.1 Assume that
0=1.

Then every positive solution of Eq.(5.89.1) converges to 3.

PROOF For all n >0,

Tn—2 —ﬂ
Tn+41 - 8= 71LT
n
and
ﬁ_mn72

Tntl — Tp—2 = Tp, ° 1+$
n

From this it follows that, for all n > 0,

B < z3p41 < Tgp—2

or
T3n—2 < T3ng1 < B
and so the sequence {x3,4+1} converges to a finite limit. Similarly, it follows

that the sequences {z3n42} and {x3,3} converge to finite limits. Due to the
fact that when § = 1, Eq.(5.89.1) has no prime period-three solutions, the

result follows. The proof is complete.
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Theorem 5.89.2 Assume that
>1—-06>0.

Then every positive solution of Eq.(5.89.1) converges to the positive equilib-
riumT =03+ —1.

PROOF We claim that eventually

Tp, < fB< % - . (5.89.6)

Assume for the sake of contradiction that for some N > 0

Brn + dxn—
TN41 = T}\[z = p.
From this it follows that .
TN-2 2 3 B
and, similarly,
1
TN_5 > (g)zﬁ

Inductively, we find
1
TN41-3k > (g)k@
which is a contradiction and proves (5.89.6). Clearly, the function

_ ﬁmn + 5.’1)»”,2
f(-r'ruxan) - 1 n T

is strictly increasing in x, and x,,_o. By employing Theorem 1.6.7 the result
follows. The proof is complete.

Theorem 5.89.3 Assume that
8>6—1>0.

Then every positive solution of Eq.(5.89.1) converges to the positive equilib-
rium T =03+ 6 — 1.

PROOF We claim that eventually

Tp > 0> % - . (5.89.7)
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Assume for the sake of contradiction that for some N > 0

Bxn +0xn_o

< .
1+zn =h

TN+1 =

From this it follows that
B

SR

TN—2 <
and, similarly,
1
TN-5 < (5)2 B

Inductively, we find

1
TNy1-3k < (g)k B,

which is a contradiction and proves (5.89.7). Clearly, the function

_ Bxp +0Tp_2
,f(xnvxn—Q) - 1 T,

is strictly decreasing in x, and strictly increasing in x,_2. When
6>6—-1>0

by employing Theorem 1.6.7 the result follows. When
B=0—-1>0,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.

Conjecture 5.89.1 Assume that

V202 —6-6<pf<d—1.

Show that every positive solution {x,} of Eq.(5.89.1) converges to the positive
equilibrium T = 3+ 0 — 1.

Conjecture 5.89.2 Assume that

B < V262 —4§-04.

Show that Eq.(5.89.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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T ﬁxn + (SCCan
1= (7 A~
i A + CiL‘n,1
This equation was investigated in [49] . See also Section 2.7 where we es-

tablished that every solution of the equation is bounded. Eq.(#90) can be
written in the normalized form

5.90 Equation #90 :

ﬁxn + 6mn—2
g = e L2 0,1, 5.90.1
Tn+1 1+, . n ( )

with positive parameters (3, and with arbitrary nonnegative initial conditions
T_2, T_-1, TQ-

Zero is always an equilibrium point of Eq.(5.90.1). By Theorems 5.23.2 and
5.23.4, the zero equilibrium of Eq.(5.90.1) is globally asymptotically stable
when

B+6<1 (5.90.2)

and unstable when
6+6>1. (5.90.3)

Furthermore, when Eq.(5.90.3) holds, Eq.(5.90.1) has also the unique positive
equilibrium point

T=0+0—-1.

The characteristic equation of the linearized equation of Eq.(5.90.1) about the
positive equilibrium, z =6+ 4§ — 1, is
B o B+0-1 )

Py A _
31" T Bxs R

A3 0.

From this and Theorem 1.2.3 it follows that £ = 8+ § — 1 is locally asymp-

totically stable when
52 -6

.90.4
8> 1 (5.90.4)
and unstable when
< 52—
d+1°
Conjecture 5.90.1 Assume that
52 -4
f>5

Show that every positive solution {x,} of Eq.(5.90.1) converges to the positive
equilibrium T = 3+ 0 — 1.
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Conjecture 5.90.2 Assume that

52 -6

ﬂ<6+1'

Show that Eq.(5.90.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

. By + 0xn_n
1= 7 =~
nr A+ Dx,_»
The boundedness character of this equation was investigated in [49]. See also

Theorem 2.3.3 where we established that every solution of the equation is
bounded. Eq.(#91) can be written in the normalized form

5.91 Equation #91 :

Tyl = %, n=01,... (5.91.1)
with positive parameters 3, A and with arbitrary nonnegative initial condi-
tions x_s, T_1, xg.

Zero is always an equilibrium of Eq.(5.91.1). By Theorems 5.23.2 and 5.23.4
it follows that when
A>p+1

the zero equilibrium of Eq.(5.91.1) is globally asymptotically stable.
When
A< pB+1,

Eq.(5.91.1) has the positive equilibrium
T=0p+1-A.
The characteristic equation of the linearized equation of Eq.(5.91.1) about the
positive equilibrium, T =8+ 1— A, is
B BA
B+1 B+1

From this and Theorem 1.2.3 it follows that £ = 8 + 1 — A is locally asymp-
totically stable when

A3 A2+ 0.

B<1++V2 and A<f+1 (5.91.2)

or when

ﬁ>1+v§am1wy_vm§+8ﬂ+4<@4<ﬁ+l (5.91.3)
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and unstable when

f>1++v2 and A<3ﬂ_ '5ﬁ2+8ﬁ+4.
2

The next theorem is a new result about the global attractivity of the positive
equilibrium of Eq.(5.91.1).

Theorem 5.91.1 Assume that
b—-1<A<pB+1.

Then every positive solution of Eq.(5.91.1) converges to the positive equilib-
TiuUm T.

PROOF Let {z,} be a positive solution of Eq.(5.91.1). We consider the
following three cases:

Case 1:

b—-—1<A<p.
We claim that, eventually,
Otherwise, there exists IV sufficiently large such that

. _ BTN + TN—2 < A
N A+ay_o ~— 0

From this it follows that

Ao
an < ( ﬂ)
and, similarly,
enr < (5
3
which eventually leads to a contradiction. Clearly, the function
fowzn =

is strictly increasing in z,, and eventually strictly decreasing in x,_o. When
b—1<A<p,
by employing Theorem 1.6.7 the result follows. When
A=p06-1,
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the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.

Case 2:
B<A<B+1.
We claim that, eventually,
Ty < —=.
5
Otherwise, there exists N sufficiently large such that

- _ Bxn + N2 S A
NS 2

From this it follows that
ey > (5)?
R
and, similarly,
enr > (5
N-1 ﬁ )
which eventually leads to a contradiction. Clearly, the function

ﬁxn + Tp—2
TpyTn—2) = —F
f( 2) A + Tn—2

is strictly increasing in x, and eventually strictly increasing in z,_o. By
employing Theorem 1.6.7 the result follows.

Case 3:
6= A.
For all n > 0,
Ty, — 1 1—x,
T —1=p-— and = — Ty =Ty ———.
n+1 ﬁ ﬂ i Lo n+1 n n—2 ﬁ n Lo
Then, clearly, for all n > 0,
1< Tn41 <y or T, < $n+1;§ 1
from which the result follows. The proof is complete. |

From Theorem 5.91.1 and in view of (5.91.2) and (5.91.3) it follows that when
A-1<p<1,

the positive equilibrium Z of Eq.(5.91.1) and with positive initial conditions
is globally asymptotically stable.
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Conjecture 5.91.1 Assume that 8 € (1,00) and that

36—«/562+8ﬁ+4<A<ﬁ_1.

2

Show that every positive solution of Eq.(5.91.1) converges to the positive equi-
librium .

Conjecture 5.91.2 Assume that

A< 36 —+/b0%2+86+4

2

Show that Eq.(5.91.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

——
By + 0Tp_o
5.92 Equation #92: =z, = ——F——
q # n+1 an T Cl'n,1
Eq.(#92) can be written in the normalized form
gy = D02 g (5.92.1)
n+1—$n+cxn_17 =0, L,... .92,

with positive parameters §,C and with arbitrary positive initial conditions
T—2, T_1, XQ-

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the Eq.(5.92.1) has
unbounded solutions when

0>C.

From this and Theorem 5.221.1 it follows that every solution of Eq.(5.92.1) is
bounded if and only if
0 <C.

Eq.(5.92.1) has the unique equilibrium

146
1+C°

T =

The characteristic equation of the linearized equation of Eq.(5.92.1) about the
equilibrium Z is
0—-C 9 C 0

A3 A A — —
Taroaro)” T1rct 140

0. (5.92.2)



266 Dynamics of Third-Order Rational Difference Equations

From this and Theorem 1.2.3 it follows that the equilibrium z of Eq.(5.92.1)
is locally asymptotically stable when

- C+2+vVC?2+8C+8

) .92.
21+ C) (5.92.3)
and unstable when
2 2
5o CH2+VCT+8C+8 (5.92.4)

2(1+C)
It is interesting to note that for the equilibrium z of Eq.(5.92.1),
Local Asymptotic Stabilty = Global Attractivity.

Indeed, for all positive values of C' for which

- C+2+VC?2+8C+8
21+ C)

C

and for all values of ¢ such that

_ C+2+VC?+8C+38
2(1+0) ’

C<é

the equilibrium Z of Eq.(5.92.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such
initial conditions the equilibrium of the equation is not a global attractor.

Conjecture 5.92.1 Assume that
§<C.
Show that for the equilibrium T of Eq.(5.92.1),

Local Asymptotic Stabilty —> Global Attractivity.

Open Problem 5.92.1 Assume that
0> C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.92.1) converge to the equilibrium Z.

(ii) Determine the set of all initial conditions for which the solutions of
FEq.(5.92.1) are unbounded.

(#it) Determine all possible periodic solutions of Eq.(5.92.1).

Conjecture 5.92.2 Assume that (5.92.4) holds. Show that Eq.(5.92.1) has
bounded solutions that do mot converge to the equilibrium point T or to a
periodic solution.
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ﬁzn + 5$n—2

5.93 Equati 93: xp1=—"""7-—-—7-
quation # Tnal Br. t Dr s

Eq.(#93) can be written in the normalized form

ﬁxn + Tn_2

—_— =0,1,... 5.93.1
an+mn727 n P} ( )

Tp+1 =

with positive parameters 3, B and with arbitrary positive initial conditions
x_g, x_1, To. For some work on this equation see [141].
The only equilibrium of Eq.(5.93.1) is

. B+1
- B+1’
The characteristic equation of the linearized equation of Eq.(5.93.1) about the
equilibrium Z is
3 p—B p—B

Y-Gioean) Teinean "

From this and Theorem 1.2.3 it follows that the equilibrium z of Eq.(5.93.1)
is locally asymptotically stable when

“14+V2<B<1+V2, (5.93.2)
or
BV2+B+1
B<—-14V2 and f< —————, 5.93.3
54 5B -1 ( )
or
BV2-B-1
B>1++v2 and > ——— — 5.93.4
b V24+B+1 ( )
and unstable when
BV2+B+1
B<-1++v2and > — 1~ T~ 5.93.5
&4 J5_B_1 ( )
or
BvV2-B-1
B>1+4+v2 and B< ————~, 5.93.6
g V2+B+1 ( )

The next theorem is a new result about the global stability of the equilib-
rium Z of Eq.(5.93.1).
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Theorem 5.93.1 Assume that

B-1
1< B B<1 < 1< B 5.93.7
<pB<B, or <B<1, OTB+3_[3< < ( )
o 3B +1
B<p<1, or 1<B<g, orB<1<1_+B <pB. (5.93.8)

Then the equilibrium T of Eq.(5.93.1) is globally asymptotically stable.

PROOF When (5.93.7) or (5.93.8) holds, in view of (5.93.2), (5.93.3), and
(5.93.4) the equilibrium Z of Eq.(5.93.1) is locally asymptotically stable. It
suffices to show that the equilibrium Z is a global attractor of all solutions of
Eq.(5.93.1).

Let {x,} be a solution of Eq.(5.93.1). For all n > 0,
B

min(E, 1) <zpt1 =

BEn + Tnz

g
< —,1
Bz, + Tp_o rnax(B, )

and so the interval [min(%, 1), max(%, 1)] is invariant for the solution {z,}.
When (5.93.7) holds, the function

_ an + Tp—2
f(xn7xnf2) - an + Lo

is strictly decreasing in z,, and strictly increasing in x,,_o, and for each m, M €
[%7 1], the system

_ pm+M
 Bm+ M

_ BM+m

dm=-"™""
and m = g

has the unique solution (m, M) = (z,Z). By employing Theorem 1.6.4 the
result follows.
When (5.93.8) holds, the function

an + Tp—2
Tpy Tp—2) =
A 2) Bx, +xp—2

is strictly increasing in x,, and strictly decreasing in x,,_s, and for each m, M €
1, %]7 the system

_ BM+m
~ BM +m

_ pm+ M

M A N
Bm+ M

and m

has the unique solution (m,M) = (Z,Z). By employing Theorem 1.6.4 the
result follows. The proof is complete.
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Conjecture 5.93.1 Show that for the equilibrium T of Eq.(5.95.1),
Local Asymptotic Stabilty —> Global Attractivity.

Conjecture 5.93.2 Show that Eq.(5.93.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

ﬁxn + 6$n—2
CIn_l + D[En_g

Eq.(#94) can be written in the normalized form

5.94 Equation #94: =z, =

ﬁxn + Tp—2

=2 o —0.1,... 5.94.1
Czn—l + xp_2 " ( )

Tp+1 =
with positive parameters 3,C and with arbitrary positive initial conditions
T2, T_1, XQ-

The boundedness character of this equation was investigated in [152] where
they established that every solution is bounded from above and from below
by positive constants. See also Theorem 2.9.1 in Section 2.9.

Eq.(5.94.1) has the unique equilibrium point

- B+1
S C+ 1
The characteristic equation of the linearized equation of Eq.(5.94.1) about the
equilibrium, z = g—ﬂ, is
C -C
A3 by + A+ b =0

CB+1 C+17 T (B+1D(C+1)

From this and Theorem 1.2.3 it follows that * = g—ill is locally asymptotically
stable when

B<1and C< 1+56 gﬁtgém, (5.94.2)
or
1<B8<14+V2, (5.94.3)
or
B>1+v2 and C > 1+56 _Q(éfgm (5.94.4)
and unstable when
1+58+(1+03)V/5+48

6<1 and C > )
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or

1+56—-01+08)Vb5+45

B>1++v2 and C < 50— 5)

Conjecture 5.94.1 Assume that (5.94.2), (5.94.3), or (5.94.4) holds. Show
that every solution of Eq.(5.94.1) converges to the equilibrium T.

Conjecture 5.94.2 Show that Eq.(5.94.1) has solutions that do not converge
to the equilibrium point T or to a periodic solution.

. VTn—1 + 53377,—2
5.95 E t 95: Xpi1 =
quation # Tna1 A+ B,

Eq.(#95) can be written in the normalized form

YTn—1 + Tn—2

=0,1,... 5.95.1
T ne o (5.95.1)

Tn+1 =
with positive parameters v, A and with arbitrary nonnegative initial condi-
tions x_5, x_1, Tg.

The boundedness character of this equation was established in Theorem
3.1.1 where it was shown that when

> A+1,

the equation has unbounded solutions. The periodic character of this equation
will be investigated in Theorem 5.195.2 where it will be shown that when

"Y:A+1a

every solution of the equation converges to a (not necessarily prime) period-
two solution.

Zero is always an equilibrium point of Eq.(5.95.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.95.1) is globally asymptot-
ically stable when

A>y41 (5.95.2)

and unstable when
A<y+1. (5.95.3)

Furthermore, when Eq.(5.95.3) holds, Eq.(5.95.1) has also the unique positive
equilibrium point
T=v+1-A
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The characteristic equation of the linearized equation of Eq.(5.95.1) about the

positive equilibrium Z is

y+1-A, ~ . 1
v+1 v+1 v+1

From this and Theorem 1.2.3 it follows that the positive equilibrium Z of
Eq.(5.95.1) is locally asymptotically stable when

V3—2A-1

A2+

0. (5.95.4)

> <y<A+1 (5.95.5)
and unstable when
3—-24-1
—
Open Problem 5.95.1 Assume that
v>A+1.

(a) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) converge to the positive equilibrium .

(b) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) are unbounded.

Open Problem 5.95.2 Assume that
y=A+1.

(a) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) converge to the positive equilibrium T.

(b) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) converge to a prime period-two solution.

Conjecture 5.95.1 Assume that (5.95.5) holds. Show that every positive
solution of Eq.(5.95.1) converges to the positive equilibrium T.

Conjecture 5.95.2 Assume that

V3—24A-1
<#.

Show that Eq.(5.95.1) has bounded solutions that do not converge to an equi-
librium point T or to a periodic solution.

Conjecture 5.95.3 Assume that
v>1+A.

Show that every positive and bounded solution of Eq.(5.95.1) converges to the
positive equilibrium .
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. VEp—1 + 0Tp_2
5.96 Equation #96: =z, =
q 7 +1 At Cro

This equation was investigated in [49]. See also Section 2.7 where we es-
tablished that every solution of the equation is bounded. Eq.(#96) can be
written in the normalized form

YTn—1 Tp—2
n = — Y, == 0,1,... 5.96.1
Tn41 Tr1 n ( )

with positive parameters v, A and with arbitrary nonnegative initial condi-
tions x_s, T_1, xg.

Zero is always an equilibrium point of Eq.(5.96.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.96.1) is globally asymptot-
ically stable when

A>~y+1 (5.96.2)

and unstable when
A<~y+1. (5.96.3)

Furthermore, when Eq.(5.96.3) holds, Eq.(5.96.1) has also the unique positive
equilibrium point
T=v+1-A

The characteristic equation of the linearized equation of Eq.(5.96.1) about the
positive equilibrium, z =~v+4+1— A, is
1-A 1

M-

— =0.
v+1 v+1

From this and Theorem 1.2.3 it follows that £ = v+ 1 — A is locally asymp-
totically stable when

1—~— 2
A>=—1—7 (5.96.4)
v+1
and unstable when )
1—~—
A T77
v+1
In Section 2.7 we proved that every solution of Eq.(5.96.1) is bounded from
above. Here we will also show that when (5.96.3) holds, every positive solution
of Eq.(5.96.1) is also bounded from below by a positive constant. Assume
for the sake of contradiction that there exists a positive solution {x,} of
Eq.(5.96.1), which contains a subsequence {x,,+1} such that

Tns41 — 0 and xp, 41 <z, j<mn;+ 1 (5.96.5)
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Clearly,
Zp, — 0 and z,,_2 — 0.

Hence, there exists g such that
Tn,, <yv+1-A.
Then

min(xmrl ) xni0—2)
v+1

T o ryx”io—l + l‘ni072
n; -
ig+1 A + xni071

> (y+1)

= min(xmof1 ’ mnio—"’)'

This contradicts (5.96.5) and the proof is complete.

The next three theorems are new results about the global attractivity of
the positive equilibrium Z of Eq.(5.96.1).

Theorem 5.96.1 Assume that
A=1.

Then every positive solution of Eq.(5.96.1) converges to 7.

PROOF Let {z,} be a positive solution of Eq.(5.96.1). For all n > 0,

T N = Tpn—2 — 7
n+1 — -
1+ Tn—1
and
o Tp—2 —7%
Tn4l —Tp—2 = Tp—1" I—FT
n—1

From this it follows that, for all n > 0,

Y < T3n41 S T3p—2 OF T3p—2 < T3pt1 < 7,

and so the sequence {x3,,1} converges to a finite limit. Similarly, it follows
that the sequences {z3n42} and {x3,3} converge to finite limits. Due to the
fact that Eq.(5.96.1) has no prime period-three solutions, the result follows.
The proof is complete.

Theorem 5.96.2 Assume that
v>A—-1>0.

Then every positive solution of Eq.(5.96.1) converges to the positive equilib-
riumx =v+1— A.
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PROOF We claim that, eventually,
Ty < 7. (5.96.6)
Otherwise, there exists N sufficiently large such that

YEN-1+TN_2
IN41 = ——F

A+zy_
From this it follows that
N2> Ay
and, similarly,
o5 > Ay

Inductively, we find
TNt1-3k > AFy,

which is a contradiction so our claim is established. Clearly, the function

_ YTn—1 + Tp_2
f(mn—h 1‘n—2) = Atz

is strictly increasing in x,_; and x,_5. By employing Theorem 1.6.7 the
result follows. The proof is complete.

Theorem 5.96.3 Assume that
y>1—-—A>0.

Then every positive solution of Eq.(5.96.1) converges to the positive equilib-
riumx=v+1— A.

PROOF We claim that, eventually,
Ty > 7. (5.96.7)
Otherwise, there exists N sufficiently large such that

YEN-1+ TN-2

IN4+1 =
* A+zn_

From this it follows that
N2 <Ay

and, similarly,
Tn_5 < A% ~.

Inductively, we find
TNf1-3n < AP,
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which is a contradiction and proves (5.96.7). Clearly, the function

_ YTn—-1 + Tn—2
f(mn717xnf2) = 7A+ Tt

is strictly decreasing in x,,_; and strictly increasing in x,_5. When
v>1—A>0,

by employing Theorem 1.6.7, the result follows. When
vy=1—-A>0,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.

Conjecture 5.96.1 Assume that

1—y—72

1 <A<
~

Show that every positive solution of Eq.(5.96.1) converges to the positive equi-
librium £ = 6+ 6 — 1.

Conjecture 5.96.2 Assume that

1—y—72

A<
y+1

Show that Eq.(5.96.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

VTp—1 + 0Tp_2
A + Dl'n_Q

This equation was investigated in [67] and [122]. Eq.(#97) possesses a period-
two trichotomy depending on whether

5.97 Equation #97: z,, =

Yy<d+A ~=56+A, or yv>5+ A

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.
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Open Problem 5.97.1 Assume
vy=0+A.

Determine the set of all positive initial conditions for which every positive
solution of the equation

VYLn—1 +6:L'n72
ntl1=———, =0,1,... 97.1
Tt y n=0 (5.97.1)

converges to the positive equilibrium 26.
Open Problem 5.97.2 Assume
v >0+ A

Determine the set of all positive initial conditions for which every positive
solution of Eq.(5.97.1) converges to the positive equilibrium.

Conjecture 5.97.1 Assume
v>4d+ A

Show that every positive and bounded solution of Eq.(5.97.1) converges to the
positive equilibrium.

. YTn—1 + 51'77,72
5.98 Equation #98: x,.1 = Br. 1 Cr

Eq.(#98) can be written in the normalized form

Tp—1 +5xn—2
] = L TR =0, 1, 5.98.1
Tn+1 Bz, + 2, 1 n ( )

with positive parameters §, B and with arbitrary positive initial conditions
T_2, T_1, Xo-

The boundedness character of Eq.(5.98.1) was investigated in [69]. See also
Theorem 3.4.1 where we established the existence of unbounded solutions of

Eq.(5.98.1) when
0> B.

From this and Theorem 5.221.1 it follows that every solution of Eq.(5.98.1)
is bounded if and only if
0 < B.
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Eq.(5.98.1) has the unique equilibrium

_ 6+1
r=——".
B+1

The characteristic equation of the linearized equation of Eq.(5.98.1) about the

equilibrium, z = %_11, is

B . §—B 6
B+1 +1)(B+1)" §+1

A2+ 0.

From this and Theorem 1.2.3 it follows that the equilibrium Z = L is locally

B+1
asymptotically stable when

B-1 1+2B+ 5+ 16B + 12B2
—— <0<
B+3 2(B+1)

(5.98.2)

and unstable when

B-1 5>1+ZB+\/5+168+12B2

5
“B+s ¥ 2B +1)

(5.98.3)

When
_ 1+2B+ 5+ 168 + 1282

2(B+1) ’

two characteristic roots are complex conjugate with magnitude equal to one
and the third characteristic root lies in the interval (0, 1). In particular, when

o

B=§=1+2,

two of the characteristic roots are eighth roots of unity and the third charac-
teristic root lies in the interval (0,1).
It is interesting to note that for the equilibrium z of Eq.(5.98.1),

Local Asymptotic Stabilty # Global Asymptotic Stabilty.

Indeed, for all positive values of B for which

< 1+2B++V5+16B+12B2

B 2(B+1) ’

and for all values of ¢ such that

< 1+2B++5+16B + 12B2

B<é
< 2(B+1) ’

the equilibrium Z of Eq.(5.98.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such
initial conditions the equilibrium of the equation is not a global attractor.
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When
_B-1
 B+3

two of the characteristic roots lie in the interval (0,1) and the other root is
equal to —1.
The sequence

"’d)’ w’ ¢)¢)"" (5.98.4)

where ¢ and 1) are the two positive roots of the equation
(B-1)t?+(B-1)(—1)t+6(1-06)=0
is a unique prime period-two solution of Eq.(5.98.1) if and only if

B-1

0 < . 5.98.5
B+3 ( )

Conjecture 5.98.1 Assume that

B-1

0 0<B
SBts°S

or

d<B<1.

Show that for the equilibrium T of Eq.(5.98.1),

Local Asymptotic Stabilty —> Global Attractivity.

Conjecture 5.98.2 Assume that (5.98.5) is satisfied. Show that the unique
prime period-two solution (5.98.4) of Eq.(5.98.1) is locally asymptotically sta-
ble.

Conjecture 5.98.3 Assume that (5.98.5) is satisfied. Show that every solu-
tion of Eq.(5.98.1) converges to a (not necessarily prime) period-two solution.

Conjecture 5.98.4 Assume that

B-1

> 0.
B+3

Show that every solution of Eq.(5.98.1) converges to the equilibrium .

Open Problem 5.98.1 Assume that
0 > B.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.98.1) converge to the equilibrium T.
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(i4) Determine the set of all initial conditions for which the solutions of
FEq.(5.98.1) are unbounded.

(#i1) Determine all possible periodic solutions of Eq.(5.98.1).

Conjecture 5.98.5 Assume that
- 1+2B+ V54 16B + 12B?
2(B+1) ’

Show that Eq.(5.98.1) has bounded solutions that do not converge to the equi-
librium point & or to a periodic solution.

)

YTn—1 + 51'71,72
BiL‘n + Dl’n,Q

5.99 Equation #99: z,., =

For some work on this equation see [56]. Eq.(#99) can be written in the
normalized form
YTn—-1 + Tn—2
= ol T2y 0,1, 5.99.1
T B+ ang ( )
with positive parameters v, B and with arbitrary positive initial conditions
T2, T-1, Q-
By Theorem 3.3.1 it follows that Eq.(5.99.1) has unbounded solutions when

v > 1.

Eq.(5.99.1) has the unique equilibrium point

atl
B+1

The characteristic equation of the linearized equation of Eq.(5.99.1) about the

equilibrium, Z = %, is

Tr =

AP+ -
B+1 v+1 (v+1)(B+1)

=0.

From this and Theorem 1.2.3 it follows that z = %rll is locally asymptotically
stable when
0<B<V2+1 and 0<y<1 (5.99.2)

or

(14 B)V12B2+16B+5—2B% - 9B —3
2(2B? +5B +1)

B>V2+1 and <y <L

(5.99.3)
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When
(1+B)\/12B2—|—1GB+5—2B2 —9B -3
2(2B2+5B+1) ’

one of the characteristic roots is real within the interval (0,1) and the other
two characteristic roots are eighth roots of unity. When

B=1+V2 and =1,

B=1++2 and v =

two of the characteristic roots are real within the interval (—1,1) and the
other root is equal to —1.

Open Problem 5.99.1 Determine whether the difference equation
Trpr = Tn—1 "‘1’71727 n— 0,17.”
Tpn + Tp—2

has any unbounded solutions.

Conjecture 5.99.1 Assume that
B<1+V2.

Then the following results hold:

(a) When
0<y<l,
every solution of Eq.(5.99.1) converges to its equilibrium point T.
(b) When
v=1
every bounded solution of Fq.(5.99.1) converges to a (not necessarily

prime) period-two solution.

Conjecture 5.99.2 Assume that (5.99.2) or (5.99.3) holds. Show that every
solution of Eq.(5.99.1) converges to its equilibrium point .

Conjecture 5.99.3 Assume that

v=1.
Show that every bounded solution of Eq.(5.99.1) converges to a (not necessarily
prime) period-two solution.

Conjecture 5.99.4 Show that Eq.(5.99.1) has bounded solutions that do not
converge to the equilibrium point T or to a periodic solution.

Conjecture 5.99.5 Assume that
v > 1.

Show that every bounded solution of Eq.(5.99.1) converges to the positive equi-
lebrium.
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YTn—1 + 53371,72
anfl + Dxnf2

This equation was investigated in [140]. See also [141]. Eq.(#100) can be
written in the normalized form

5.100 Equation #100: =z, =

VYTn—1 + Tp—2
il = Tl T2 0,1, 5.100.1
Tt Crp_1+ xpn_2 " ( )

with positive parameters v and C and with arbitrary positive initial conditions
ZT—2, T_1, Zo-
Eq.(5.100.1) has the unique equilibrium point

7= v+1
S C+1
The characteristic equation of the linearized equation about the equilibrium,
_ 41 .
Tr = 874-17 1S
C - -C
L A W — —0.

(v+1)(C+1) (v+1)(C+1)

From this and Theorem 1.2.3 it follows that 7 = 25 is locally asymptotically

1
stable when I
C<1and v< T j—C , (5.100.2)
or
1 5
1<C< +2f, (5.100.3)
or
1++5 5.1 C— Y5tl
C > +2\[ and v > f2 . \/513 (5.100.4)
C+ Y52
and unstable when o
3 1
C<1 and v> T —+C (5.100.5)
or
1+5 1 O Y5
C > +2f and v < \/52 . ¢§+3. (5.100.6)
C + Y53
When
30 +1
’Y - 1 _ C 9

two of the characteristic roots are complex conjugate with magnitude less
than one and the other characteristic root is equal to —1.
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When (5.100.5) holds, and only then, the sequence

"a¢7¢7¢aw,“'

is a unique prime period-two solution of Eq.(5.100.1), where ¢ and 1 are the
two positive roots of the quadratic equation

CC-Dw?+(y-1)1-C)w+1—-~=0.

In this case none of the characteristic roots is equal to —1, while in the case

where
_3C+1

S 1-C
one of the characteristic roots is equal to —1 but the equation does not have
prime period-two solutions. For some stability results and the local stability
of the unique prime period-two solution of Eq.(5.100.1), see [140] and [141].

Conjecture 5.100.1 Assume that

3C +1
<1 d~v<
< ana v < =
or
1<O<1+\/5,
-~ 2
or 7B
1+5 5—1 C— Y3+l
C > V5 and’yz\f . 2
2 2 C+\/g2+3

Show that every solution of Eq.(5.100.1) converges to its equilibrium point T.

Conjecture 5.100.2 Assume that

3C+1

1-C°

Show that every solution of Eq.(5.100.1) converges to a (not necessarily prime)
period-two solution.

C<1 and v>

Open Problem 5.100.1 Show that Eq.(5.100.1) has solutions that do not
converge to the equilibrium point & or to a periodic solution.

a
A+ Bz, + Cx,_q

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

5.101 Equation #101: =z, =
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Open Problem 5.101.1 Investigate the global character of solutions of the

equation
1

An =+ Bnl'n + ZTp—1 ’
with periodic coefficients {A,} and {B}.

Tny1 = n=0,1,... (5.101.1)

Open Problem 5.101.2 Investigate the global character of solutions of Fq.(5.101.1)
with convergent coefficients {A,} and {B,}.

o
A+ Bx, + Dx,_»

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

5.102 Equation #102: =z, =

Open Problem 5.102.1 [nvestigate the global character of solutions of the
equation

1
An + ann + xn727
with periodic coefficients {A,} and {B,}.

n=0,1,... (5.102.1)

Tn41 =

Open Problem 5.102.2 Investigate the global character of solutions of Fq.(5.102.1)
with convergent coefficients {A,} and {By,}.

o
A+ Cxy_1+ Dxyys

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

5.103 Equation #103: z,41 =

Open Problem 5.103.1 Inwvestigate the global character of solutions of the
equation

1
An + Cnxnfl + Tn—2 ’

n=0,1,... (5.103.1)

Tn4+1 =

with periodic coefficients {A,} and {C,}.
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Open Problem 5.103.2 Investigate the global character of solutions of Eq.(5.105.1)
with convergent coefficients {A,} and {C,}.

o
Bx, +Cx,_1 + Dz, _2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.2 that the equilibrium of this
equation is globally asymptotically stable.

5.104 Equation #104: xz,4; =

Open Problem 5.104.1 Investigate the global character of solutions of the
equation

1
ann + Cnxnfl + $n72’

Tnp1 = n=0,1,... (5.104.1)

with periodic coefficients {By} and {C)}.

Open Problem 5.104.2 Investigate the global character of solutions of Fq.(5.104.1)
with convergent coefficients {By} and {Cy}.

By
A+ Bx, +Czx,_
Eq.(#105) can be written in the normalized form

/an
14+ Bz, +xn_1’

5.105 Equation #105: =z, =

Tpt1 = n=20,1,... (5.105.1)

with positive parameters 3, B and with arbitrary nonnegative initial condi-
tions x_1, xg. Zero is always an equilibrium point of Eq.(5.105.1). By Theo-
rems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.105.1) is
globally asymptotically stable when

p<1 (5.105.2)

and unstable when
6> 1. (5.105.3)
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Furthermore when (5.105.3) holds, Eq.(5.105.1) has also the unique positive
equilibrium point
8—1

B+1
The characteristic equation of the linearized equation of Eq.(5.105.1) about
the positive equilibrium, = %, is
B -1
pB+1)  B(B+1)

xr =

From this and Theorem 1.2.2 it follows that, £ = 8

3;4_117 is locally asymptoti-
cally stable when

6>1

and unstable when
6 <1

It is a straightforward consequence of Theorem 1.6.3 that when
B >1,

every positive solution of Eq.(5.105.1) converges to the positive equilibrium
z.

Open Problem 5.105.1 Investigate the global character of solutions of the
equation
By

Tyt = , n=0,1,... 5.105.4
i 1+ Brrn +xn1 ( )

with periodic coefficients {3,} and {B,}.

Open Problem 5.105.2 Investigate the global character of solutions of Fq.(5.105.4)
with convergent coefficients {B,} and {By,}.

By
A+ Bx, + Dx,_o
Eq.(#106) can be written in the normalized form

By
S L ——— 5.106.1
T Bag tan s ( )

5.106 Equation #106: =z, =

with positive parameters 3, B and with arbitrary nonnegative initial condi-
tions x_3, x_1, Tg.
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Zero is always an equilibrium point of Eq.(5.106.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.106.1) is globally asymp-
totically stable when

p<1 (5.106.2)

and unstable when
6> 1. (5.106.3)

When (5.106.3) holds, Eq.(5.106.1) has also the unique positive equilibrium
point
6—-1

The characteristic equation of the linearized equation of Eq.(5.106.1) about
the positive equilibrium Z is

B -1
BB ., B-1

A3 —
B(B+1) B(B+1)

From this and Theorem 1.2.3 it follows that  is locally asymptotically stable
when

B>+v2-1and g>1 (5.106.4)

or

3—B++5+6B—3B2—4B3

B 2—1 and 1 .106.
<2 and 1< < 5128 BY) (5.106.5)
and unstable when
3—B 5+ 68 —3B2 —4B3
B<+v2-1 and 3> V5 : (5.106.6)

2(1 - 2B — B?)

The following theorem about the global behavior of solutions of Eq.(5.106.1)
was established in [157].

Theorem 5.106.1 [157] Assume that
0<B<1l and 1<p<2.

Then every positive solution of Eq.(5.106.1) converges to its positive equilib-
rium point T.

The following theorem is a new result about the global character of solutions
of Eq.(5.106.1).
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Theorem 5.106.2 Assume that
8>1 and B>1.

Then every positive solution of Eq.(5.106.1) converges to its positive equilib-
rium point T.

PROOF  Let {z,} be a positive solution of Eq.(5.106.1). Then, clearly,

Ban

T =
T + Bx,, + Tp_o

< %, for n > 1. (5.106.7)

Next, we claim that the solution {z,} is also bounded from below by a positive
constant. Otherwise, there exists a sequence of indices {n;} such that

Lni+1 = 0

and
Tp;41 < xj, forall j <mn;+ 1 (5.106.8)
Then, clearly, from (5.106.1),
Ty, — 0

and also

Tp;—2 — 0.
Hence, eventually,

6—1

T,y Ty —2 <
niytn;—2 B+1

which implies that, eventually,

Tp,a1 = =XTp,.
T Y Bag, 4 a2 14+(B—1) M

This contradicts (5.106.8) and establishes our claim that the solution {z,} is
also bounded from below. Clearly, the function

_ Ban
f(l’n,.’L'n,Q) - 1 n an Tz, o

is strictly increasing in x,, and strictly decreasing in x,,_s. When
G>1 and B> 1,

the result follows by employing Theorem 1.6.7. When
8>1 and B =1,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.
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Conjecture 5.106.1 Assume that (5.106.4) or (5.106.5) holds. Show that
every positive solution of Eq.(5.106.1) converges to the positive equilibrium .

Conjecture 5.106.2 Show that Eq.(5.106.1) has solutions which do not con-
verge to an equilibrium point or to a periodic solution.

Open Problem 5.106.1 Investigate the global character of the equation

By
1+ Brrp +xn_2 ’

Tpt1 = n=0,1,... (5.106.9)

with periodic coefficients {8,} and {B,}.

Open Problem 5.106.2 Investigate the global character of solutions of Eq.(5.106.9)
with convergent coefficients {8y} and {By}.

Eq.(#106) is a special case of the more general (k + 1)*t-order rational
difference equation
n 0,1 (5.106.10)
Tn+1 = ,y n=U,1,..., . .
A + Zf:o Bixn_i

with nonnegative parameters and with arbitrary nonnegative initial conditions
T_k, ..., Tg such that the denominator is always positive. For some work
on this equation see [157]. For k = 0 this is a special case of the Riccati
difference equation, which in mathematical biology is also known as the
Holt-Beverton model. For k£ = 1 and By = 0, this is Pielou’s equation,
which is the discrete analog of the delay logistic equation

N(t—7)

N'(t) =rN(t)[1 — 2

], t>0. (5.106.11)

Actually in her books [196,197], Pielou proposed the equation

oLy,
ntl = ——, =0,1,... .106.12
Tl — n=0 (5.106.12)

as the discrete analogue of the delay logistic equation (5.106.11). One arrives
at Eq.(5.106.11) from the logistic differential equation

N'(t)=rN({t)1—-—7=], t>0 (5.106.13)

by assuming that there is a delay 7 in the response of the growth rate per in-
dividual to density changes. Pielou arrived at her model (5.106.12) as follows:
The solution of Eq.(5.106.13) is

P

N(t) = 1+ (NP_l)e_Tt
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and Pielou observed that N (t) satisfies the first-order difference equation

aN (t)

Ni+1) =100 m

(5.106.14)

with
e"—1

a=¢e >1 and = > 0.

Now from (5.106.14), Pielou arrived at her model (5.106.12) by assuming, as
in the continuous case, that there should be a delay k in the response of the
growth rate per individual to density changes.
When
A=0 or A>1,

Eq.(5.106.10) has a unique equilibrium point. When
A=0,

the unique equilibrium is

and when

zero is the only equilibrium. When
0< A<,

Eq.(5.106.10) has two equilibrium points, namely, the zero equilibrium and
the positive equilibrium
1-A
- .
Ei:O B;
The characteristic equation of the linearized equation about the zero equi-
librium point, that exists, provided that A > 0, is

T =

1
ARHL ZA’“ =0. (5.106.15)

The characteristic equation of the linearized equation about the positive
equilibrium point which exists provided that 0 < A < 1, is

AB B;
Ak _ AP0 + Zz 1 ik ZB M=t =, (5.106.16)
Yo Bi Zl o Bi it

From (5.106.15) it follows that the zero equilibrium point is locally asymptot-
ically stable when
A>1
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and unstable when
0<A<I1.

Furthermore, it follows from Eq.(5.106.10) that
<lon fornz0
Tn1 S i, for >

and so when
A>1,

the zero equilibrium point of Eq.(5.106.10) is globally asymptotically stable.

By using Theorems 1.2.2, 1.2.3, and 1.2.4 we can determine the region of
local asymptotic stability of the positive equilibrium of Eq.(5.106.10) for the
values of

ke {1,2,3}.

Unfortunately, we do not know the local asymptotic stability of Eq.(5.106.10)
for
k>4.

Open Problem 5.106.3 Determine the region of parameters of Eq.(5.106.16)
where all roots of the equation lie inside the unit disk.

Theorem 5.106.3 Assume that

k
0<A<1 and ZBigBO.
=1

Then every positive solution of Eq.(5.106.10) converges to its positive equilib-
rium point.

PROOF  Let {z,}° _, be any positive solution of Eq.(5.106.10). Then

T

x <—"  forn>1
n+l > A+B05En, =

and by using (the comparison result) Theorem 1.4.1, we find

. 1-A
limsupx,4+1 < .
n— 00 BO

Let € > 0 and assume without loss of generality that, for n > 0,

- 1—-A+e
Ty < —————.
By
We claim that
lim inf x,, > 0. (5.106.17)

n—oo
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Assume for the sake of contradiction that (5.106.17) is not true. Then there
exists a sequence of indices {n;} such that

lim 7,41 =0 and @, 41 <@y, for t <ny;+1. (5.106.18)
j—oo

At this point we will give two different proofs of (5.106.17). The reason we
present the two different proofs is that the first proof is valid only when

k
0<A<1 and ZBi<BO

i=1

but it extends our theorem to a more general equation. (See Theorem 5.106.4).
The second proof is valid when

k
0<A<1 and ZBigBO

i=1
as needed, but we cannot use it to prove Theorem 5.106.4.

First Proof: Clearly,
lim ZTn; =0

‘]HOO

and
k

A
Z B te + Boxnj > Z Bixnj_i + B()J?nj >1- A,
=1

from which it follows that

k k
A) By —> i1 Bi _ 621’:1 Bi

Box,, > (1 —
0%n; > ( By By
and .
By—>._ B
By liminf 2,,, > (1 — A)% >0
Jj—o00 BO
and this contradiction establishes (5.106.17).
Second Proof: Clearly,
TnjyenosTny—k — 0.
Hence, eventually,
1—
,Inj,...,l’nj_k < —k
1=0 Bi
which implies that, eventually,
T, Tp,
xnj+1 = k = Tn;-
A+ Biwn,—i A + Zl —o Bissi—5- B

i=0
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This contradicts (5.106.18) and establishes (5.106.17).
Clearly, the function

Ty,
A + Zf:o BZIEW_Z

is strictly increasing in x, and strictly decreasing in all other arguments.
When

f(@n, .  p_g) =

k
0<A<1and » B;<B,,
i=1
the result follows by employing Theorem 1.6.7. When
k
0<A<1and » B;=B,,
i=1

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.

One can easily see that Theorem 5.106.3 has the following straightforward
generalization.

Theorem 5.106.4 Assume that for somel € {1,2,...,k}

k
0<A<1 and Y B;<B.
i=0,i#l
Then every positive solution of the equation
Tp—1

A + Bl.’I}nfl + Zf:o,i;él Biwnfi )

Tyl = n=20,1,...

converges to its positive equilibrium point
1-A

—

Zi:O B;

By
A+ Cx, 1+ Dx, o
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#107) can be written in the normalized form

Brn
1+ Omn—l + wn—Q’

5.107 Equation #107: x,4; =

Tpt1 = n=20,1,... (5.107.1)
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with positive parameters 3, C' and with arbitrary nonnegative initial condi-
tions x_s, x_1, xo. Zero is always an equilibrium point of Eq.(5.107.1). By
Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.107.1)
is globally asymptotically stable when

p<1 (5.107.2)
and unstable when
6> 1. (5.107.3)
When (5.107.3) holds, Eq.(5.107.1) has also the unique positive equilibrium
point
g8t
S C+1

The characteristic equation of the linearized equation of Eq.(5.107.1) about

.. crel —_ pB-1 .
the positive equilibrium, z = &7, is

C(B—1) g—1
S e SY

A =A% 4 =0.

From this and Theorem 1.2.3 it follows that z = 2=+ is locally asymptotically

CF1
stable when
1<p<3 +2‘/5 (5.107.4)
or
B> 3+2\/5 and ¢ > 2T (ﬁﬂ— DV (5.107.5)
and unstable when
8> 3 +2\/5 and C < W (5.107.6)
When
= 3+2\/5 and O = —ﬁ+(5ﬁ— 1)\/3,

two of the characteristic roots are 10th roots of unity and the third one is
inside the interval (—1,0).

The following theorem about the global stability of solutions of Eq.(5.107.1)
was established in [157].

Theorem 5.107.1 [157] Assume that
1<pg<2

Then every positive solution of Eq.(5.107.1) converges to its positive equilib-
rium point T.
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Conjecture 5.107.1 Assume that (5.107.4) or (5.107.5) holds. Show that
every positive solution of Eq.(5.107.1) converges to its positive equilibrium
point T.

Conjecture 5.107.2 Assume that

3+2\/5 and C < —_ﬁ—’_ (ﬂﬁ_ 1)\/5

Show that Eq.(5.107.1) has solutions that do not converge to an equilibrium
or to a periodic solution.

8>

Open Problem 5.107.1 Investigate the global character of solutions of the
equation
Bnn

1+ Cnxnfl + $n727
with periodic coefficients {B,} and {Cp} .

n=0,1,... (5.107.7)

Tn41 =

Open Problem 5.107.2 Investigate the global character of solutions of Fq.(5.107.7)
with convergent coefficients {6, } and {C,}.

By
Bx, +Cx,_1 + Dz, _2
Eq.(#108) can be written in the normalized form

5.108 Equation #108: z,,1 =

Ty,
Pyl = n=0,1,... 5.108.1
+ In + Cl‘n—l + Dx’rL—Q ( )

with positive parameters C, D and with arbitrary positive initial conditions
T2, T—1, TQ-

Eq.(5.108.1) has the unique equilibrium point
1
C+D+1°

T =

The characteristic equation of the linearized equation of Eq.(5.108.1) about
the equilibrium, z = ﬁ, is
3 C+D C D

sy LA ware g, Tl i vy > Bkl

From this and Theorem 1.2.3 it follows that z = ﬁ is locally asymptot-
ically stable when
C>D?*-2D-1 (5.108.2)
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and unstable when
C < D?-2D —1. (5.108.3)

It is noteworthy that when

D=1++2 and C=0,
two of the characteristic roots are eighth roots of unity and the other root is
inside the interval (—1,0).

The following theorem, which is a new result about the global character of
solutions of Eq.(5.108.1), is an immediate application of Theorem 5.106.3.

Theorem 5.108.1 Assume that
C+D<1.

Then every solution of Eq.(5.108.1) converges to its equilibrium point T.

Conjecture 5.108.1 Assume that (5.108.2) holds. Show that every solution
of Eq.(5.108.1) converges to its equilibrium point.

Conjecture 5.108.2 Assume that
C <D?-2D—1.

Show that Eq.(5.108.1) has solutions that do not converge to the equilibrium
point T or to a periodic solution.

Open Problem 5.108.1 Investigate the global character of solutions of Fq.(5.108.1)
with periodic coefficients.

YTn—1
A+ Bx, +Cx,_4

For some work on this equation see [175]. Here we present a detailed account

on the character of its solutions and confirm Conjectures 7.5.1 and 7.5.2 in

[175]. Actually Conjecture 7.5.1 was confirmed by Hristo Voulov in his talk at

the annual AMS meeting in Santiago in 2002 by using Theorem 1.6.4. Here

we present a very simple and direct proof based on Theorem 1.6.6.
Eq.(#109) can be written in the normalized form

5.109 Equation #109: x,.; =

Tn—1

A+ Bz, +Tpno1’

n=0,1,.... (5.109.1)

Tn+1 =



296 Dynamics of Third-Order Rational Difference Equations

We will allow the parameter A to be nonnegative so that Eq.(5.109.1) also
includes the special case #32. The parameter B is assumed positive; other-
wise, this is a Riccati-type difference equation. The initial conditions x_1, x¢
of Eq.(5.109.1) are arbitrary nonnegative real numbers such that the denom-
inator is always positive.
When
A=0 or A>1,

Eq.(5.109.1) has a unique equilibrium point.
When
A =0,

the unique equilibrium of Eq.(5.109.1) is

_ 1
r= —
1+ B
and when
A>1,
zero is the only equilibrium.
When
0< A<,

Eq.(5.109.1) has two equilibrium points, namely, the zero equilibrium and the
unique positive equilibrium point

. 1-A
r= —:.
1+ B

The characteristic equation of the linearized equation of Eq.(5.109.1) about
the zero equilibrium point, which exists as long as A > 0, is

M — 10 (5.109.2)

The characteristic equation of the linearized equation of Eq.(5.109.1) about
the positive equilibrium z = %’ which exists as long as 0 < A < 1, is

B(1 - A) A+B
1+B 1+B

A+ (5.109.3)
From (5.109.2) and Theorem 1.2.2 it follows that the zero equilibrium is locally
asymptotically stable when

A>1

and unstable when
0<A<I.



Known Results for Fach of the 225 Special Cases 297

1-A

Also, it follows from Theorem 1.2.2 that the positive equilibrium z = 178 18

locally asymptotically stable when
0<A<1 and B<1

and unstable when
0<A<1 and B>1.

In addition to its equilibrium points, Eq.(5.109.1) has period-two solutions.
If

"’¢7w7¢7/(/}""
is a prime period-two solution of Eq.(5.109.1) then, clearly,
¢ Y
= AvBite ™ VT AT BTy

It follows that prime period-two solutions exist if and only if
0<A<

Furthermore, when
B #1,

the only prime period-two solution of Eq.(5.109.1) is
01— A0,1—A,... (5.109.4)

and when
B=1

)

all prime period-two solutions are

"7¢7w7¢7w7"'
with
g+ =1-A
¢75¢ and ¢7’(/)E [071_A]

To investigate the local asymptotic stability of the unique period-two solution
(5.109.4) when B # 1, we set

Up = Lp—1 and v, = x,.
Then
Up
A+ Bv, +u,
That is, Eq.(5.109.1) is equivalent to the map

u
T(uv) = (v,— o ).
o) = (o)

Upt1 =V and v,41 =
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Then
T2 )
() =T (0 g s ) = () gtuo)
with u
f(u’v):A—l—B’U—l—u
and v
g(u,v) =

A+ Bf(u,v)v+v’

Observe that the period-two solution (5.109.4) is a fixed point of the second
iterate T2 of the map T. The Jacobian determinant of 72 at the period-two
solution of (5.109.4) is

1
0 ATB(1-A) 0

D=1 )t

A+B(I-A)

It follows that both eigenvalues of T? are inside the unit disk, and so the
period-two solution (5.109.4) is locally asymptotically stable when

0<A<1 and B>1

and unstable when
0<A<1 and B<1.

Next we establish the following result, which confirms Conjectures 7.5.1 and
7.5.2 in [175].

Theorem 5.109.1 (a) Assume that

A>1.
Then the zero equilibrium of Eq.(5.109.1) is globally asymptotically sta-
ble.
(b) Assume

0<A<.

Then every solution of Eq.(5.109.1) converges to a (not necessarily prime)
period-two solution.

(¢) Assume
0<A<1 and B<1.

Then every positive solution of Eq.(5.109.1) converges to its positive
equilibrium point T. Actually, if we only allow positive initial conditions,
the positive equilibrium is globally asymptotically stable.
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PROOF (a) This is a consequence of the inequality

Tn+1 S —Tnp-1

A
and the fact that there are no period-two solutions when A > 1.

(b) This is a consequence of Theorem 1.6.6 and the fact that every solution
of Eq.(5.109.1) is bounded.

(c) Let {x,}52_; be a positive solution of Eq.(5.109.1). Then in this case
(as Voulov pointed out) Theorem 1.6.4 applies, from which the result follows.
The result also follows from Theorem 5.106.4. We will also present a third
proof based on the “simple” Theorem 1.6.6. By this result and the fact that
every solution of Eq.(5.109.1) is bounded from above, it follows that the sub-
sequences {xa,} and {x2,11} of the solution converge monotonically to finite
limits Ly and Lo. From Eq.(5.109.1)

Tan
. n
A+ Bxopy1 + Ton

Ton42 = = 0, 1, ‘e (51095)

and
Tan—1

, n
A+ By + Tan—1

Ton+1 = = 0, 1, e (51096)
Note that if both limits Lgr and Lo are positive, then by taking limits in
(5.109.5) and (5.109.6), as n — oo, and by simplifying we find

BLo+Lg=1-A
Lo+ BLg=1-A.

Hence,

1-A

1+ B’

which is exactly what we want to establish. To complete the proof it suffices
to show that none of the limits Lg or Lo could be zero. Assume for the sake
of contradiction that

LO:LE:

Lo =0.
Then either Lg = 0 or Lg > 0. In particular, when
Lg >0

from (5.109.5) we see that
Lp=1-A.

Let ¢ > 0 be such that

B < (1— A)(1 - B).
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Then for n sufficiently large
Ton <Lgp+e<1—A+e
and

Ton—1 > T2n—1
A+Bl‘2n+1}2n_1 - A+B(1—A+€)+l‘2n—1'

Toan4+1 =
Therefore, by (the comparison result) Theorem 1.4.1,

Tont1 = Yontl,

where

Y2n—1
i1 = L n=1,2,... 5.109.7
Vil = AT B — A+ €) + yan s ( )

with
y1 > 0.

But (5.109.7) is a Riccati equation with positive initial condition and so the
lim,, o Yon+1 18 the positive equilibrium of Eq.(5.109.7), which is

7= (1—A)1-B) - Be.

Then
0= lim z9p,41 >y >0
n—oo
and this contradiction completes the proof of the theorem. |

Open Problem 5.109.1 Investigate the global character of solutions of Eq.(5.109.1)
with periodic coefficients.

Eq.(#109) is a special case of the more general (k + 1)%*-order rational
difference equation

Tp—1

A + Zf:o Bi-Tn—i

Tpg1 = , n=0,1,... (5.109.8)

with nonnegative parameters and with arbitrary nonnegative initial conditions
T_fk, - .-, Lo such that the denominator is always positive.
When
A=0 or A>1,

Eq.(5.109.8) has a unique equilibrium point.
When
A =0,

the unique equilibrium is
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and when
A>1,

zero is the only equilibrium. When
0< A<,

Eq.(5.109.8) has two equilibrium points, namely, the zero equilibrium and the
unique positive equilibrium point
1-A
-
Zi:O B;

The characteristic equation of the linearized equation of Eq.(5.109.8) about
the zero equilibrium point, which exists provided that A > 0, is

T =

1
AL Z k=1 — (5.109.9)
A
The characteristic equation of the linearized equation of Eq.(5.109.8) about
the positive equilibrium z = 1,9;‘43_, which exists provided that 0 < A < 1,
i=0 1t

is

k k
Zi:o B; Ei:o B; Zi:o i §=2
(5.109.10)

From (5.109.9) it follows that the zero equilibrium is locally asymptotically
stable when

k k
B

A>1

and unstable when
0< A<l

In addition to its equilibrium points, Eq.(5.109.8) has period-two solutions.
If

M ¢) w) ¢7 w? A
is a period-two solution of Eq.(5.109.8) then, clearly,
_ ¢ _ Y
¢= g T ¥ = S T )
A+ Baiv10+ >, B2t A+ Boig1 + >, Boaio
where . Lo
T=- and S=-—=, ifkis even

2 2
and r 1

S=T=="—" ifkisodd.
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It follows that prime period-two solutions exist if and only if
0<A<I

Furthermore, when

T S
> By # Y Bai,
=0 i=0

1-A 1-A

0, — 0, — o
Zi:O B2i Zi:O B2i
is the only period-two solution of Eq.(5.109.8) and when

T s
E By = E Bait1,
i=0 i=0

all prime period-two solutions are

(5.109.11)

--7¢7¢7¢7'¢)7~--
with 1_ 4
¢+¢:;
Zf:oB%
1-A
d ¢,v € |0, —/——
¢#vY and ¢,0 l S

We are now ready to establish the following global asymptotic stability
result.

Theorem 5.109.2 (a) Assume that

A>1.
Then the zero equilibrium of Eq.(5.109.8) is globally asymptotically sta-
ble.
(b) Assume
k
0<A<1land Y Bi<B.
i=0,i#1

Then every positive solution of Eq.(5.109.8) converges to its positive
equilibrium point.

PROOF (a) This is a consequence of the inequality

Tn+1 S —Tnp-1

A

and the fact that there are no period-two solutions when A > 1.
(b) The result follows from Theorem 5.106.4.
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YTn—1

5.110 Equati 110 21 =
quation # Tpa1 A+ Be, + Dros

Eq.(#110) possesses a period-two trichotomy depending on whether
vy<A ~v=A4, or v>A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Open Problem 5.110.1 Investigate the global character of solutions of Eq.(#110)
with periodic coefficients.

Open Problem 5.110.2 Investigate the global character of solutions of the
equation

’Ynxn—l n
An + ann + xn727

Tn41 = 20,17...

with convergent coefficients {vn}, {An}, and {B,}. Extend and generalize.
Conjecture 5.110.1 Assume that
v > A.

Show that every positive and bounded solution of Eq.(#110) converges to the
positive equilibrium.

Ylp—1
A+ Cx,_ 1+ Dxys

Eq.(#111) can be written in the normalized form

5.111 Equation #111: x,.; =

Tn—1
A + ZTp-1+ Dxn—Q’

Tpgr = n=01,.... (5.111.1)

We will allow the parameter A to be nonnegative so that Eq.(5.111.1) will
also include the special case #34. The parameter D is positive and the initial
conditions x_o, x_1, Ty are arbitrary nonnegative real numbers such that the
denominator is always positive. When

0<A<1and D<1,
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this equation is also a special case of a more general equation whose positive
equilibrium is a global attractor of all positive solutions of the equation. See
Theorem 5.106.4.

As in the special case of Eq.(#109), when

A=0 or A>1,

Eq.(5.111.1) has a unique equilibrium point.

When
A=0,
the unique equilibrium is
_ 1
“T1YD
and when
A>1

zero is the only equilibrium. When
0< A<,

Eq.(5.111.1) has two equilibrium points, namely, the zero equilibrium and the
unique positive equilibrium point

1-A

1+D’

xr =

The characteristic equation of the linearized equation of Eq.(5.111.1) about
the zero equilibrium point, which exists as long as A > 0, is

1
A?fZA:o. (5.111.2)

The characteristic equation of the linearized equation of Eq.(5.111.1) about
the positive equilibrium & = ID;_S, which exists as long as 0 < A < 1, is

D+A._ D(1-A)

A -
1+ T 11D

= 0. (5.111.3)

From (5.111.2) and Theorem 1.2.3 it follows that the zero equilibrium is locally
asymptotically stable when

A>1
and unstable when
0<A<.
Also, it follows from Theorem 1.2.3 that the positive equilibrium z = % is

locally asymptotically stable when

0<A<1 and D<1
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and unstable when
0<A<1 and D >1.

In addition to its equilibrium points, Eq.(5.111.1) has period-two solutions.
If

M) ¢7 w? ¢7 ,(/)7 A
is a period-two solution of Eq.(5.111.1) then, clearly,
¢ (U
= — d = -
sy A Y ) V3

It follows that prime period-two solutions exist if and only if
0<A<.

Furthermore, when
D #1

the only prime period-two solution of Eq.(5.111.1) is
01— A 01— A,... (5.111.4)

and one can see that it is LAS when D > 1.
On the other hand, when

D=1,
all prime period-two solutions are
"a¢7¢7¢7w7"'
with
p+y=1—A

¢#¢ and ¢, €[0,1- AL

We are now ready to present the following global asymptotic stability result.

Theorem 5.111.1 (a) Assume that
A>1.

Then the zero equilibrium of Eq.(5.111.1) is globally asymptotically sta-
ble.

(b) Assume
0<A<1and D<1.

Then every positive solution of Eq.(5.111.1) converges to its positive
equilibrium point. Actually, if we only allow positive initial conditions,
the positive equilibrium is globally asymptotically stable.
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PROOF (a) This is a consequence of the inequality

1

Tyl < an—l

and the fact that there are no period-two solutions when A > 1.
(b) The proof follows from Theorem 5.106.4.

Conjecture 5.111.1 Assume that
A<1 and D >1.

Show that every solution {x,} of Eq.(5.111.1) converges to a (not necessarily
prime) period-two solution.

Open Problem 5.111.1 [nvestigate the global character of solutions of
Eq.(5.111.1) with periodic coefficients.

Open Problem 5.111.2 Inwvestigate the global character of solutions of the

equation
TnTn—1

An + Cnxnfl + ZTn—2 ’

Tn+1 = n:O,l,...

with convergent coefficients {vn}, {An}, and {Cy}. Extend and generalize.

YTn—1
Bz, + Czxp_1 + Dxp_s

Eq.(#112) can be written in the normalized form

5.112 Equation #112: z,,, =

Tn—1
, n
Bwn + ZTp—1+ Dxn72

Tpy1 = =0,1,... (5.112.1)

with positive parameters B, D and with arbitrary nonnegative initial condi-

tions x_s, £_1, xg such that the denominator is always positive.
Eq.(5.112.1) has the unique equilibrium point

1
B+D+1°

xr =

The characteristic equation of the linearized equation of Eq.(5.112.1) about
the equilibrium, z = ﬁ, is
B 9 B+ D D

A? — =
tBiD+1" BiD+1" T BiD+1

0. (5.112.2)
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From this and Theorem 1.2.3 it follows that the equilibrium & = is

locally asymptotically stable when

1
B+D+1

B+D<1

and unstable when
B+ D >1.

In addition to its equilibrium point, the sequence

"7¢717¢7¢717¢5"'

is a period-two solution of Eq.(5.112.1) for all positive values of the parameters
B and D with
¢ €10,1].

Furthermore, when

B+D#1,
the only prime period-two solution of Eq.(5.112.1) is

...,0,1,0,1,... (5.112.3)

and one can see that it is LAS when B + D > 1.
We are now ready to establish the following result.

Theorem 5.112.1 Assume that
B+ D <1.

Then every solution of Eq.(5.112.1) converges to its equilibrium point T.

PROOF The proof follows from Theorem 5.106.4. |

Conjecture 5.112.1 Assume that
B+D2>1.

Show that every solution of Eq.(5.112.1) converges to a (not necessarily prime)
period-two solution.

Open Problem 5.112.1 Investigate the global character of solutions of
Eq.(5.112.1) with periodic coefficients.

Open Problem 5.112.2 Investigate the global character of solutions of the

equation
TnTn—1

Bpxn + Cprp1 +Tn_2 ’
with convergent coefficients {yn}, {Bn}, and {Cy,}. Extend and generalize.

T+l = n=20,1,...
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6$n—2
A+ Bz, + Czx, 1

This equation was investigated in [60] and [146]. See also Section 4.4 where we
established that this equation possesses a period-three trichotomy depending
on whether

5.113 Equation #113: z,,, =

<A, d=A, or §>A.

Open Problem 5.113.1 Determine the set of all initial conditions
T_o,x_1,%9 € (0,00)
for which the solutions of the equation

2xn—2

_ =0,1,... 5.113.1
14+ xn, + 21’ " B ( )

Tn+1 =

are bounded.

5$n—2
A+ Bz, + Dz, _»
For the global character of solutions of Eq.(#114) see Section 5.136.

5.114 Equation #114: z,,, =

Open Problem 5.114.1 Determine the set of all initial conditions
T_9,T_1,79 € (0,00)

such that the solutions of the equation

Lpn—2

2 n=0,1,... 5.114.1
1+xn+xn72) n ) ) ( )

Tn+1 =
converge to zero.

Conjecture 5.114.1 Show that for the positive equilibrium T of Eq.(#114)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.114.2 Show that Fq.(5.114.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.
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53371—2
A + CIn_l + DZEn_Q
For the global character of solutions of Eq.(#115) see Section 5.136.

5.115 Equation #115: =z, =

Open Problem 5.115.1 Determine the set of all initial conditions
T_9,T_1,To € (07 OO)

for which the solutions of the equation
LTpn—2
1+ Tn—1+ Tpn-2 ’

Tny1 = n=01,... (5.115.1)

converge to zero.

Conjecture 5.115.1 Show that for the positive equilibrium T of Eq.(#115)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.115.2 Show that Eq.(5.115.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.

5$n72
Bx, +Cx,_1+ Dz, _o
For the global character of solutions of Eq.(#116) see Section 5.136.

5.116 Equation #116: =z, =

Open Problem 5.116.1 Determine the set of all initial conditions
X_9,x_1,%9 € (0,00)

for which the solutions of the equation
Tp—2
Tn+ Tp—1+ Tn—2 ’

Tpp1 = n=0,1,... (5.116.1)

1
converge to 3.

Conjecture 5.116.1 Show that for the equilibrium T of Eq.(#114),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.116.2 Show that Eq.(5.116.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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o+ fxn + T

5.117 Equation #117: =z, = 1

The equation in this special case is linear.

o+ ﬁ T + YTn—1
Bz,
Eq.(#118) possesses a period-two trichotomy depending on whether
y<pB, y=p8, or yv>p.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.
When

5.118 Equation #118: z,,1 =

v > B,
it follows from Theorem 4.2.2 that every bounded solution of Eq.(#118) con-
verges to the equilibrium.

Open Problem 5.118.1 Investigate the global character of solutions of Eq.(#118)
with periodic coefficients.

Open Problem 5.118.2 [nvestigate the global character of solutions of the

equation

(079 + ﬂnxn + TnTn—1
T ’

with convergent coefficients {a}, {Bn}, and {vn}. Extend and generalize.

T+l = n=20,1,...

o+ ﬁxn + VYLn—1
Cwn—l
The change of variables, z,, = y, + &, transforms Eq.(#119) to Eq.(#66).

5.119 Equation #119: =z, =

Conjecture 5.119.1 Show that every solution of the equation
o+ ﬁxn +Tpa
Tn—1 ’

Tni1 = n=0,1,... (5.119.1)

has a finite limit.



Known Results for Fach of the 225 Special Cases 311

o+ B Ty + VLn—1
Dxn—2
For some work on this equation see [157]. In this section we allow the param-

eter v to be nonnegative and so the results presented here are also true for
the special case #56. Eq.(#120) can be written in the normalized form,

5.120 Equation #120: =z, =

Tnp1 = R R (5.120.1)

Tp—2

with positive parameter § and with arbitrary positive initial conditions z_o,
T—1, ZQ-
Eq.(5.120.1) has the unique equilibrium

B+1+/(B+1)2+4a
5 :

Tr =

The characteristic equation of the linearized equation of Eq.(5.120.1) about
the equilibrium Z is

@)ﬁ — i/\ +1=0. (5.120.2)
T X

A2 —

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.120.1)
is unstable when

B#1.
When

g =1,
that is, for the equation

gy = S I T I 01, (5.120.3)

Tp—2

the equilibrium Z is nonhyperbolic, with one characteristic root equal to -1
and the other two complex conjugates given by:

2+ VITatiy/4VTTa+3(1+a)
2(1+V1+a)

both with magnitude equal to one. Eq.(5.120.3), which is called Todd’s
equation, possesses the following invariant (see [122], [157], or [175]):

)1+ ! )(l—i-i) = constant. (5.120.4)

(a+Tp_o+an_1+z,)(1+
Tp—2 Tn—1 In
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Todd’s equation can be extended to the more general (k + 1)**-order rational
equation

O+ Ty + -+ Ty (g
Tt = D =01, .., (5.120.5)
Tn—k
which possesses the invariant
1
(a4 @pp+ - +a)(1+ )+ (1+ —) = constant. (5.120.6)
Tn—k Tn

From this it follows that every solution of Eq.(5.120.5) is bounded from above
and below by positive constants when

a > 0.

When a = 0 it also follows from (5.120.6) that the solution is bounded from
above. We now claim that the solution is also bounded from below. Otherwise,
there exists a solution {z,} of Eq.(5.120.5) such that

Tn+1 — 0 and w41 <z; for j<n;+1.

Then, clearly,

Ty, — 0
and
Tp;—k — 0.
Also, from
Ty, + 0+ Tn;—(k—1)
Tni+1 = < Tp,
xnifk

it follows that
T, (L= T, 1)+ + T~ (k1) <0,
which is a contradiction.
In the special case of Eq.(5.120.3) where

a=p0=1,
that is, for the equation
1 _
gy = I I gy (5.120.7)
Tp—2

the three characteristic roots are eighth roots of unity. In this case one can
also see that every solution of Eq.(5.120.7) is periodic with period eight. See
[122], [157], or [175].

Conjecture 5.120.1 Assume that

a#l or [f#1.

Show that Eq.(5.120.1) has bounded solutions that do not converge to the
equilibrium point T or to a periodic solution.
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o+ Bx, +0x,_

5.121 Equation #121: =z, = 1

The equation in this special case is linear.

o+ Bx, +0x, o
Bz,

The change of variables, x, = v, + %, transforms Eq.(#122) to Eq.(#77).
See Section 5.77.

5.122 Equation #122: z,,, =

Conjecture 5.122.1 Show that for the equilibrium T of Eq.(#122),

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.122.2 Show that Eq.(#122) has solutions that do not converge
to the equilibrium point or to a periodic solution.

o+ Bx, +0x,_
anfl

In this section we allow the parameter a to be nonnegative and so this equation
also includes the special case #59.

We have conjectured in Section 4.5 that Eq.(#123) possesses a period-four
trichotomy depending on whether

5.123 Equation #123: z,4; =

§<fB, =04, or §>p.

See [59] and [150]. The only part of this conjecture that has not been estab-
lished yet is when 6 > .

Conjecture 5.123.1 Assume that

a>0 and g > 1.
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Show that the equilibrium of the equation

_ a+/6xn+xn72
Tpyl = .1?7’ n:0,1,...
n—1

1s globally asymptotically stable.

a+ Bxr, +0x,_o
Dmn—Q

The change of variables, z,, = y, + %7 transforms Eq.(#124) to Eq.(#67).
See Section 5.67.

5.124 Equation #124: z,,, =

Conjecture 5.124.1 Show that for the equilibrium T of Eq.(#124),

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.124.2 Show that Eq.(#124) has solutions which do not con-
verge to the equilibrium point or to a periodic solution.

a+ YT, 1+ 0T, o

5.125 Equation #125: z,.1 = P

The equation in this special case is linear.

QO+ YTpo1+ 0T, o
Bz,

This equation was investigated in [46]. Eq.(#126) can be written in the
normalized form

5.126 Equation #126: =z, =

YT+ T
Tny1 = = anl =2 p=0,1,... (5.126.1)
n

with positive parameters «, v and with arbitrary positive initial conditions
T2, T—1, TQ-
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It follows from Theorem 3.1.1 that when
v>1,

Eq.(5.126.1) possesses unbounded solutions. It was also shown in [46], that
when
a=vy=1 (5.126.2)

and by choosing initial conditions x_o, x_1, and zy such that
2o <z_5<1 and z_; € (0,00),

then
lim x9, € [0,1] and lim 23,41 = oco.

n—oo

Furthermore, it follows from the work in [46] that when (5.126.2) holds, every
bounded solution of Eq.(5.126.1) converges to a (not necessarily prime) period-
two solution. This result is also true for

vy=1 and a > 0.

The proof is an immediate consequence of the following identity:

1

Tn+1

Tpyo — Ty = (xp — xp—2), n=0,1,....

It was shown by R. Nigmatulin (personal communication with G. Ladas) that
when
v>1

every unbounded solution {z,}52 _, of Eq.(5.126.1) is such that the subse-
quences of the even and odd terms converge one of them to zero and the other
to oo.

It was also shown (by R. Nigmatulin) that when

a=7vy=1,
and by choosing initial conditions z_o, x_1, and z such that
X9 =T _1=2xg—= 1,

then
Top = 1 and Toptl = 2n+1 — oo.

The only equilibrium of Eq.(5.126.1) is

Y+ 14+ (y+1)?+4a
5 .

Tr =
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The characteristic equation of the linearized equation of Eq.(5.126.1) about
the equilibrium z is
1
PUINID R ) (5.126.3)
T T

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.126.1)
is locally asymptotically stable when

a>1and y<1 (5.126.4)

or
-1+ v3+ 2«

a<l and (1-a) 0t 1)

<vy<l1 (5.126.5)

and unstable when

—1++v3+2a

a<l and vy< (1—a) 3o+ 1)

Conjecture 5.126.1 Assume that (5.126.4) or (5.126.5) holds. Show that
the equilibrium of (5.126.1) is globally asymptotically stable.

Open Problem 5.126.1 Show that Eq.(5.126.1) has bounded solutions that
do not converge to the equilibrium point T or to a periodic solution.

Conjecture 5.126.2 Assume that
v > 1.

Show that every bounded solution of Fq.(5.126.1) converges to the equilibrium
z.

Open Problem 5.126.2 Assume that
v > 1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) converge to the equilibrium T.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) are unbounded.

Open Problem 5.126.3 Assume that

v =1

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) converge to the equilibrium T.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) converge to a prime period-two solution.

(¢) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) are unbounded.
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o+ VYTpn—1 + 5$n—2
Oxn—l

The change of variables, x, = y, + &, transforms Eq.(#127) to Eq.(#78).
See Section 5.78.

5.127 Equation #127: =z, =

Conjecture 5.127.1 Show that for the equilibrium T of Eq.(#127),

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.127.2 Show that Eq.(#127) has solutions that do not converge
to the equilibrium point or to a periodic solution.

Q+ YTpo1+ 01, o
Dxn—Q

Eq.(#128) possesses a period-two trichotomy depending on whether

5.128 Equation #128: =z, =

v<4§, =9, or v>06.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Conjecture 5.128.1 Assume that
v >4
Show that every bounded solution of Eq.(#128) converges to the equilibrium.

Open Problem 5.128.1 Investigate the global character of solutions of Eq.(#128)
with periodic coefficients.

BTy + YTp—1 + 0Tp_2
A

5.129 Equation #129: z,,, =

The equation in this special case is linear.
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n n— 6 n—
5.130 Equation #130: x,.; = B +75L’B 1+ 0Tp_2
xn

The change of variables, ©, = vy, + %, transforms Eq.(#130) to Eq.(#95).
See Section 5.95.

Conjecture 5.130.1 Assume that
v > [ 4+6.
Show that every bounded solution of Eq.(#130) converges to the equilibrium.
Conjecture 5.130.2 Assume that
y<B+6.
Show that for the equilibrium Z of Eq.(#130),
Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.130.3 Assume that

y=p+0.

Show that every solution of Eq.(#130) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.130.4 Assume that
vy<B+6.

Show that Eq.(#130) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.

By + YTp—1 + 0Tp_2
Cl‘n—l

The change of variables, z, = y, + &, transforms Eq.(#131) to Eq.(#172).
See Section 5.172.

5.131 Equation #131: =z, =

Conjecture 5.131.1 Show that for the equilibrium T of Eq.(#131),
Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.131.2 Show that Eq.(#131) has solutions that do not converge
to the equilibrium point or to a periodic solution.
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6'7711 + VTn—1 + 5'Tn72
Dxan

5.132 Equation #132: z,,, =

Eq.(#132) can be written in the normalized form

S By +yTn_1 + :vnfz, n=01,... (5.132.1)

Tn—2

with positive parameters 3,~ and with arbitrary positive initial conditions
r_92,T_1, XQ-

The boundedness character of this equation was investigated in [49]. See
also Theorem 3.2.1 where we established that the equation has unbounded
solutions when

v> B+ 1

Conjecture 5.132.1 Assume that
v> B+ 1
Show that every bounded solution of Eq.(5.132.1) converges to the equilibrium.
Conjecture 5.132.2 Assume that
v< B+ 1
Show that for the equilibrium T of Eq.(5.132.1),

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.132.3 Assume that

vy=p0+1

Show that every solution of Eq.(5.132.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.132.4 Assume that
v<pB+1

Show that Eq.(5.132.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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«

5.133 Equation #133: z,,1 = A+ Bz, +Cz. 1 + Da
n n—1 n—2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

By
A + BQZn + anfl + D.CCn,Q

5.134 Equation #134: z,,1 =

This equation is a special case of a more general equation that we investigated
in Section 5.106.

Conjecture 5.134.1 Show that for the positive equilibrium T of Eq.(#134)
and with positive initial conditions,

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.134.2 Show that Eq.(#134) has solutions that do not converge
to an equilibrium point or to a periodic solution.

YTn-1
A+ Bx,+Cx,_1+ Dx,_o

5.135 Equation #135: z,,1 =

This equation is a special case of a more general equation that we investigated
in Section 5.109.

Conjecture 5.135.1 Show that for the positive equilibrium T of Eq.(#135)
and with positive initial conditions,

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.135.2 Show that Eq.(#135) has solutions that do not converge
to an equilibrium point or to a periodic solution.
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51}71—2
A+ Bx, +Cx,_1+ Dx,_o

This equation was investigated in [60]. The equation

5.136 Equation #136: =z, =

Tn—2
A+ Bxy +Cxpq 4+ Tpeso’

Tngr = n=01,... (5.136.1)

with nonnegative parameters A, B, C such that
A+B+C>0

and with arbitrary nonnegative initial conditions x_s, x_1, xo such that
the denominator is always positive contains the special case #37, which is
a Riccati-type equation and the following six cases:

#39, #40, #114, #115, #116, #136.

When A > 1, zero is the only equilibrium point of Eq.(5.136.1) and, clearly,
zero in this case is globally asymptotically stable.

When A € (0,1), Eq.(5.136.1) has two equilibrium points, namely, the zero
equilibrium point, which is unstable, and the positive equilibrium point

1—A
B+C+1°

When A =0,z = m is the only equilibrium of Eq.(5.136.1). The positive

equilibrium point Z of Eq.(5.136.1) is locally asymptotically stable when

T =

<2—A+\/A2+8 1-2B+/56+4A+4B(1 - A)
a. .

Ae€[0,1), B nd C <

2
(5.136.2)

Conjecture 5.136.1 Assume that (5.136.2) holds. Show that the positive
equilibrium of Eq.(5.136.1) is a global attractor of all positive solutions.

Conjecture 5.136.2 Show that Fq.(5.136.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.

The following global result was established in [60].
Theorem 5.136.1 Assume that
A,B+Ce€0,1).

Then every positive solution of Eq.(5.136.1) converges to the positive equilib-
rium X.
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PROOF The proof follows from Theorem 5.106.4. |
By using the identity

a® +b% + 3 — 3abe = %(a—&—b—i—c) [(a=b)*+(b—0c)?+(c—a)?]

one can show that Eq.(5.136.1) has positive prime period-three solutions if
and only if

0<A<1and B=C=1. (5.136.3)
All other possible prime period-three solutions of Eq.(5.136.1) are of the form
...,0,0,6,0,0,6, ... (5.136.4)
with ¢ € (0,00) or of the form
0 0,0,0,0,6,1, ... (5.136.5)
with ¢, € (0, 0).

One can see that Eq.(5.136.1) has prime period-three solutions of the form
(5.136.4) if and only if

A€ (0,1) or A=0 and B,C € (0,00). (5.136.6)

Furthermore, when (5.136.6) holds, Eq.(5.136.1) has a unique prime period-
three solution of the form (5.136.4) with ¢ =1 — A.

Also, Eq.(5.136.1) has prime period-three solutions of the form (5.136.5) if
and only if

0<A<1land B=C=1, (5.136.7)

or
0<A<1 and B,C € (1,0), (5.136.8)

or
0<A<1and B,Ce[0,1). (5.136.9)

Furthermore, when (5.136.7) holds, the values of ¢,1¢ in (5.136.5) are all
positive numbers ¢ and v such that

o+ =1-4

and Eq.(5.136.1) has infinitely many period-three solutions.
When (5.136.8) or (5.136.9) holds, the values of ¢, in (5.136.5) are

1-4)1-0)
1-BC

(1-4)(1-DB)

0= 1-BC

and ¢ = (5.136.10)



Known Results for Fach of the 225 Special Cases 323
and Eq.(5.136.1) has a unique prime period-three solution in this case.
When (5.136.3) holds, the positive prime period-three solutions of Eq.(5.136.1)
L0 w, . (5.136.11)

are given by
P+ +w=1-A
with

-A1-A1-A4
s e D) ad o) # (AR,

In view of the above we see that when A € [0,1), all prime period-three
solutions of the equation

Lp—2
A"‘(En"_wnfl +$n72’

n=0,1,... (5.136.12)

Tn+1 =

are of the form (5.136.11), where ¢, ¥, w are all solutions of the equation
o+ +w=1—A
with

6.0.0 €01 and (6,0.0) 7 (
The following result shows that when

0< A<,

1-A1-A1-A4
3 73 7 3 '

every solution of Eq.(5.136.12) converges to a (not necessarily prime) period-
three solution.

Theorem 5.136.2 Assume that A € [0,1). Then every solution of Eq.(5.136.12)
converges to a (not necessarily prime) period-three solution.

PROOF Note that

Tpn—2
Tpi1—Tp_o = 1-A—-xz,—Tp_1—Tp_o),n=0,1,....
n+ n A+xn+£€n_1+$n_2( n n n )7 ]

Set
Jp=1—-A—2, —Xp_1— Tp_a.
Then for n > 0,
Tn—2 _ A+xn +xp_1
A+$n+$n,1 + ZTn—2 A+xn+xn—1+1’n—2

Jn+1 = 1_A_xn_xn—1_ In.

Hence, the signum of J,, is constant, from which the result follows because
every solution of Eq.(5.136.12) is bounded.
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Open Problem 5.136.1 Determine the set of all positive initial conditions
through which the solutions of Eq.(5.136.12) converge to a prime period-three
solution.

Open Problem 5.136.2 Assume that (5.136.6) is satisfied. Determine the
global character of Eq.(5.136.1), and in particular, determine the basin of
attraction of the period-three solution

..,0,0,1—A,....

Open Problem 5.136.3 Assume that (5.136.8) or (5.136.9) is satisfied. De-
termine, in each case, the global character of solutions of Eq.(5.136.1), and
in particular, determine the basin of attraction of each of the period-three
solutions

...,0,0,1—A,...
1-4A1-0C) 1-4A)1-B)
7 1-BC ' 1-BC
It is not difficult to see that when (5.136.6) holds, the basin of attraction of
the period-three solution

0,... .

..,0,0,1— A, ...

includes all solutions of Eq.(5.136.1) with two of the three initial conditions
T_o9,T_1,xo equal to zero and the third positive.

When (5.136.8) or (5.136.9) holds, every solution of Eq.(5.136.1) with one
of the three initial conditions z_s,z_1,x9 equal to zero and the other two
positive converges to a period-three solution.

Conjecture 5.136.3 Assume that
0<A<1 and B,C € (1,00).

Then every positive solution of Eq.(5.136.1) converges to a period-three solu-
tion of Fq.(5.1586.1).

Open Problem 5.136.4 Investigate the behavior of solutions of Eq.(#136)
when

either B#1 or C # 1.

Open Problem 5.136.5 Assume that k is a positive integer and A, By, ..., By €
[0,00). Determine the global stability of the periodic solutions of the difference

equation
Tn—k

A+ Boxp + ...+ Brxp_i’

Tn+1 = n:O,l,....

Conjecture 5.136.4 Show that Eq.(5.136.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.
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a+ B, + YTp_1 + 02,2

5.137 Equation #137: =z, = 1

The equation in this special case is linear.

o+ ﬁmn + VYLn—1 + 61’71—2
Bz,

This equation is a special case of a more general equation that we investigate
in Section 5.195.

5.138 Equation #138: =z, =

Conjecture 5.138.1 Assume that
v>B+6.
Show that every bounded solution of Eq.(#138) converges to the equilibrium.
Conjecture 5.138.2 Assume that
v < B+6.
Show that for the equilibrium T of Eq.(#138),
Local Asymptotic Stability = Global Asymptotic Stability.
Conjecture 5.138.3 Assume that
v <B+6.

Show that Eq.(#138) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.

a+ Bx, + YTp_1 + 022
Czn—l

The change of variables, z, = y, + &, transforms Eq.(#139) to Eq.(#172).
See Section 5.172.

5.139 Equation #139: =z, =
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Conjecture 5.139.1 Show that for the equilibrium T of Eq.(#139),

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.139.2 Show that Eq.(#139) has solutions that do not converge
to the equilibrium point or to a periodic solution.

a+ B, + YTp_1 + 0xp_2
DIn—Q

The change of variables, z,, = vy, + %7 transforms Eq.(#140) to Eq.(#167).
See Section 5.167.

5.140 Equation #140: =z, =

Conjecture 5.140.1 Assume that
v > p+6.
Show that every bounded solution of Eq.(#140) converges to the equilibrium.
Conjecture 5.140.2 Assume that
v < pB+6.
Show that for the equilibrium T of Eq.(#140),

Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.140.3 Assume that

y=p+0.

Show that every solution of Eq.(#140) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.140.4 Assume that
y<B+6.

Show that Eq.(#140) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.
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a+ Bx,
A+ Bx, +Cx,_4

This equation was investigated in [176]. See also [175]. Eq.(#141) can be
written in the normalized form

5.141 Equation #141: x,.; =

o+ T,
A+ Bxy + Tp_1’

Tpp1 = n=0,1,... (5.141.1)

with positive parameters o and B and with arbitrary nonnegative initial con-
ditions x_1, xg. Throughout this section we allow the parameter A to be
nonnegative so that we also include the special case #68.

Eq.(5.141.1) has the unique equilibrium

1-A++/(1—-A)22+4a(1+ B)
2(B+1)

Tr =

The characteristic equation of the linearized equation of Eq.(5.141.1) about
the equilibrium Z is

) Bz —1 z

+A+Q+BWA+A+U+BWZO

From this and Theorem 1.2.2 it follows that the equilibrium Z of Eq.(5.141.1)
is locally asymptotically stable for all the values of the parameters «, A, B.
From Theorems 5.23.2 and 5.23.3 it follows that when

A>1,

the equilibrium z of Eq.(5.141.1) is globally asymptotically stable. In this
section we will show that in a subregion of

0<A<1

every solution of Eq.(5.141.1) converges to the equilibrium z.

The following identity will be useful in the sequel.

(A — A%xp_5 — A22_3) + 2 (A4 24—3)(1 — Bzy_3)
(A+ Bxn)(A+ Brp_o+ xp_3) +a+ xp_o

Tn4l — Tpn-3 =

Tp—o(aB — (AB+ 1)xp—3) + 2pxn—2oB(1 — Bxy_3)
(A+ Bxn)(A+ Brp_o+ xp_3) +a+ 2p_o

. (5.141.2)
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Clearly,

T > 1 and a < = + 1
"= B B B?

implies that
QA — A%z, 53— Ax?_5 <0,

and
(A + (En_g)(]. — BlL’n_g) < 0,
and
aB — (AB+ 1)x,—3 < 0.
Also,
< l d > é + i
Tn-3 < p and a> 5+ o

implies that
aA — A%z, 5 — Axi_3 >0,

and
(A+zy-3)(1 = Bxp_3) >0,
and
aB — (AB 4+ 1)x,_3 > 0.
Set

a+x
f('rnaxn—l) = i

A+ Bz, 4 Tn_1

Theorem 5.141.1 Let {x,} be any solution of Eq.(5.141.1). Then the fol-
lowing statements are true:

(i) When

(1-B)(1—- A)? A 1

<a< S+ = (5.141.3)

0<A<1 and 15 3T 3

then the solution {x,} eventually enters the interval [aB — A, %] and the
function f(xn,x,—1) is eventually strictly increasing in x, and strictly de-
creasing in ,—1. Furthermore, the solution {x,} converges to the equilibrium

z.
(i) When
0<A<land a>a4+ L (5.141.4)
- B B¥ o
the solution {x,} eventually enters the interval [, aB — A] and the function
f(xn, xn_1) is eventually strictly decreasing in x, and x,_1. Furthermore,
the solution {x,} converges to the equilibrium Z.
(i1i) When
0<A<1 and Oz:éJri
- B B?%’
then the solution {x,} converges to the equilibrium Z.

(5.141.5)
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PROOF Let {z,} be a solution of Eq.(5.141.1) with nonnegative initial
conditions. We claim that
in(aB — A ! ) (aB—A ! )
min(aB — A, =), max —A =
7B ) «@ ’B
is an attracting interval for the solution {z,} of Eq.(5.141.1).

We will prove that when (5.141.3) or (5.141.4) holds, all four subsequences

of the solution {x,,}, of the form {z4n4;}3_0, lie eventually within the interval

[min(aB — A, %), max(aB — A, ;)} .
We will give the proof when (5.141.3) holds. The proof when (5.141.4) holds
is similar and will be omitted. Furthermore, we will give the proof for the
subsequence {x4,+1}. The proof for all the other subsequences is similar and
will be omitted.
Suppose for the sake of contradiction that there exists IV sufficiently large
such that

Tynt1 < aB — A or xyny1 > 5

We will give the proof in the case where z4n11 < @B — A. The proof in the
other case is similar and will be omitted. Then from

TaN+1 < aB—- A

it follows that

o+ TaN42 a+ Tyn42 1
=—=>aB - A.
A+ Bxynio + Tant1 A+ Bxyny2o+aB—-A B

TAN+3 =

From this it follows that

a+ TaNt4 O+ TAN+4

AN A Baania + Tanss A+ Biania taB - A B (5.141.6)
We claim that for some k > 1,
TyN+ak+1 > aB — A. (5.141.7)
Otherwise, for all k£ > 1,
TaNtak+1 < aB — A.
Then, clearly, for all k£ > 1,
O+ TaN4k+2 QO+ TaN k2 1

TAN +4k+3 = > = =.
Ak A+ Brynyakt2 + Tanyak+1 A+ Bruniapio+aB—-A B
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From (5.141.2) it follows that the subsequence {z4yyar+1} decreases. By
taking limits in (5.141.2) we get a contradiction that proves (5.141.7). Assume
without loss of generality that (5.141.7) holds for k¥ = 1. From this and
(5.141.6) we see that

1
aB - A< TAN+5 < E
Then
. _ o+ TanN+6 < O+ TaN+6 < 1
N T A Brante+ Tante A+ Branie+aB—A B
and
Q+ T4N+6 a+ ToN+6 o}
TAN+7 = >aB—-A
AN A+ Brynye +Tangs A+ Branie + % A+ %

and the result follows by induction.
When (5.141.3) holds, and due to the fact that the solution {z,} eventually
enters the interval [aB — A, £], we see that the function

a—+x,
A+an+xn—1

f(xnvmnfl) =

is eventually strictly increasing in x, and strictly decreasing in z,_1. Fur-
thermore, for each m, M € [aB — A, %], in view of (5.141.3), the system

_ a+ M a+m
T A+ BM+m T A+Bm+ M

has the unique solution (m, M) = (%, Z). Hence, the result follows by Theorem
1.6.5.

When (5.141.4) holds, and due to the fact that the solution {z,} eventually
enters the interval [4,aB — A], we see that the function

a+ Ty,
A+ Bz, + Tn_1

f(xnzxn—l) -

is strictly decreasing in z,, and eventually strictly decreasing in x,_;. Fur-
thermore, for each m, M € [%, aB — A], the system
a+m a+ M

M= ——— - @ @ @@
AT Bt Om M M= TGy oM

has the unique solution (m, M) = (Z, Z). Hence, the result follows by Theorem
1.6.5.

Finally, assume that (5.141.5) holds. Then, clearly, for all n > 0,

11 F— Tn_1

Tl B B A+ Bx, +x,_1
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from which it follows that each one of the four subsequences {x4n+j}, j €
{0,1,2,3} is either above %, or below é, or identically equal to %. In view
of (5.141.2) all four subsequences converge monotonically to finite limits. In

addition, from (5.141.2) we see that for all n > 3,

1
Tp+1 = Tp—a if and only if z,_3 = 5
Hence, all four subsequences converge to 5 . The proof is complete. |

The following theorem extends the result of Theorem 5.141.1 to the more
general rational equation
a+Tpom

n+l = , =0,1,... 5.141.8
ot A+ Mzxy_pm+ Lrg " ( )

with I,m € {0,1,...}, with positive parameters «, M, L, and with arbitrary
nonnegative initial conditions.
The proof, as in the case of Theorem 5.141.1, is based on the identity:

Tn+1 — Tn-21—-1
(@A — A2 911 — ALZ% 5 )+ Tp-m(A+ Lap_o—1)(1 — Mxp_o1)
(A + Mxnfm)(A + Ml'n,l,m,1 + an72171) + Lo+ L(Enflfmfl

xnflfmfl(aM (AM+L)xn 20— 1)+xn mTn—l—m— 1M(1_Mxn 20— 1)

<A+anfm>(A+Mxn l—m— 1+an 20— 1)+La+an l—m—1
(5.141.9)

+

Theorem 5.141.2 Let {x,} be any solution of Eq.(5.141.8). Then the fol-
lowing statements are true:
(i) When

(L=M1-AP _ A,
4M?2 M M2

the solution {x,} eventually enters the interval [O‘%—A, ﬁ] and the function

f(@n—m, Tn—i) is eventually strictly increasing in x,—,, and strictly decreasing
in xn_;. Furthermore, the solution {x,} converges to the equilibrium.
(i) When

0<A<1 and (5.141.10)

A L
0<A<1 and a> i + ek (5.141.11)
the solution {x,} eventually enters the interval [M7 aML A] and the function

f(@n—m,Tn_1) is eventually strictly decreasing in Tp_m and x,_;. Further-
more, the solution {x,} converges to the equilibrium.
(i1i) When

A L

0<A<1 and a= i + ek (5.141.12)

the solution {x,} converges to the equilibrium.
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PROOF The proof is similar to the proof of Theorem 5.141.1 and will be
omitted.

Conjecture 5.141.1 Assume that
a, A, B € (0,00).
Show that every solution of Eq.(5.141.1) has a finite limit.

In other words, the equilibrium Z of Eq.(5.141.1) is globally asymptotically
stable. To the best of our knowledge any claims in the literature, made prior
to July 2007, that the conjecture has been confirmed are not correct. For
some partial results see [175] and [176].

a+ fx,
A + BQ?n + Da:n,g

5.142 Equation #142: z,4; =

Eq.(#142) can be written in the normalized form

o+ T,
A+xz, +Dxy_o

Tngr = ., n=01,... (5.142.1)

with positive parameters v and D and with arbitrary nonnegative initial con-
ditions x_o, x_1, ©g. Throughout this section we will allow the parameter A
to be nonnegative so that we also include the special case #69.

Eq.(5.142.1) has the unique equilibrium

1-A++/(1—A)?2+4a(l1+ D)
2(1+ D)

T = .
The characteristic equation of the linearized equation of Eq.(5.142.1) about
the equilibrium Z is

-1 ) Dz

A? =
+A+(1+D)§; +A+(1+D)50

0.

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.142.1)
is locally asymptotically stable when

A>1, (5.142.2)

or
AA(A+1)

<A<l d D< ———+
0<A<1 an <(2A—1)2’

(5.142.3)
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or
JA(A+ 1) )
and unstable when
JAA+1)

0<A<1, D> and a < o,

2A—1)2°

where

. 24—-D+5AD —4A?D — 2D? + D3 — 4AD? + 4A%D?

“ 2(9D2 + 6D + 1)

—(1+ A+2D + AD — D?> + 2AD?)\/D\4A2D — 4AD + D — 4A% — 4A
2(9D? +6D +1) '
By Theorems 5.23.2 and 5.23.3 it follows that when

A>1,

the equilibrium of Eq.(5.142.1) is globally asymptotically stable.
From Theorem 5.141.2 it follows that when

(D-1)(1-4) _

0<A<1 and 1 < q,

(5.142.5)
every solution of Eq.(5.142.1) converges to the equilibrium Z.

Conjecture 5.142.1 Assume that

(D —1)(1— A)?

*
a <oa<
4

Show that every solution of Eq.(5.142.1) converges to the equilibrium Z.

Conjecture 5.142.2 Show that Fq.(5.142.1) has solutions that do not con-
verge to the equilibrium point T or to a periodic solution.

a+ Bz,
A + Cl’nfl + D$n,2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#143) can be written in the normalized form

5.143 Equation #143: z,,1 =

o+ T,
ntl = , =0,1,... 5.143.1
Tnt1 A + an—l + Tn—2 " ( )
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with positive parameters a, A, C and with arbitrary nonnegative initial con-
ditions z_s, z_1, g.
Eq.(5.143.1) has the unique equilibrium

1-A+/(1—-A4)2+4a(1+0)
2(1+C) '

xr =

The characteristic equation of the linearized equation of Eq.(5.143.1) about
the equilibrium Z is

- PR ¢ A+ r
A+(1+0C)z A+ (C+1)z A+ (1+40)

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.143.1)
is locally asymptotically stable when

(A2 + A+2a)C? + 2(A% + )0 + 3A — 1 + 2AC

A+

- =0.
z

H(AC+1)?+ A-1]/(1 — A)2 +4a(C+1) >0 (5.143.2)

and unstable when

(A + A +2a)C? + 2(A* + @)C + 3A — 1 + 2AC

+HACH+1)2+A-1]/1-A)2+4a(C+1)<0
By Theorems 5.23.2 and 5.23.3 it follows that when
A>1,
the equilibrium z of Eq.(5.143.1) is globally asymptotically stable.

Conjecture 5.143.1 Assume that (5.143.2) holds. Show that the equilibrium
T of Eq.(5.143.1) is globally asymptotically stable.

Conjecture 5.143.2 Show that Fq.(5.143.1) has solutions that do not con-
verge to the equilibrium point & or to a periodic solution.

a+ Bx,
Bx, +Cx,_1+ Dz, _o

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#144) can be written in the normalized form

5.144 Equation #144: x,.; =

a—+x,
Tpg1 = ., n=0,1,... 5.144.1
+ Tn +Cxp1 + Dxyo ( )
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with positive parameters o, C, D and with arbitrary positive initial conditions
T_2, T_1, TQ-
Eq.(5.144.1) has the unique equilibrium

1++/1+4a(l+C+ D)
2(1+C+ D) ‘

T =

The characteristic equation of the linearized equation of Eq.(5.144.1) about
the equilibrium Z is

-1, C D

A —0.
1+CiDi " 1+C+D "1+C+D

3+

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.144.1)
is locally asymptotically stable when

—-1-D++v-3D2+6D+1

D<1, C<
2

(5.144.2)

and
D(C + C? +2CD +2D?)

(C+C*—D+CD+ D)

a> (5.144.3)

Conjecture 5.144.1 Assume that (5.144.2) and (5.144.3) hold. Show that
every solution of Fq.(5.144.1) converges to the equilibrium .

Conjecture 5.144.2 Show that Fq.(5.144.1) has solutions that do not con-
verge to the equilibrium point T or to a periodic solution.

O+ YTp_1
A+ Bz, + Czx,_

This equation was investigated in [175]. Eq.(#145) can be written in the
normalized form

5.145 Equation #145: z,,1 =

Q+ Tp—1

, n=0,1,... 5.145.1
A+ Bxy, 4+ 21 ( )

Tn+1 =

with positive parameters a and B and with arbitrary nonnegative initial con-
ditions x_1, xg. Throughout this section we allow the parameter A to be
nonnegative so that we also include the special case #74.

Eq.(5.145.1) has the unique equilibrium

1-A++/(1—A)?2+4a(l+ B)
2(1+ B)

T =
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The characteristic equation of the linearized equation of Eq.(5.145.1) about
the equilibrium z is

SR LR Rk S
A+(1+B)z"  A+(1+B)z

From this and Theorem 1.2.2 it follows that the equilibrium Z of Eq.(5.145.1)
is locally asymptotically stable when

S 1-A
>
which is equivalent to
A>1, (5.145.2)
or
0<A<1and B<1, (5.145.3)
or B 02
—1)(1 =
0<A<1, B>1, and a> % (5.145.4)
and unstable when
B —1)(1— A)?
0<A<1, B>1, and a< % (5.145.5)
By Theorems 5.23.2 and 5.23.3 it follows that when
A>1,
the equilibrium z of Eq.(5.145.1) is globally asymptotically stable.
By Theorem 5.141.2 it follows that when
B—1)(1- A)?
0<A<1 and a> %, (5.145.6)

every solution of Eq.(5.145.1) converges to the equilibrium Zz.
When (5.145.5) holds, Eq.(5.145.1) has the unique prime period-two solu-
tion
1-A—\/1-A2— 3% 1-A+,/1-A)2 - 2=
e 5 , 3 ooy

(5.145.7)

which is locally asymptotically stable. See [175].
The following theorem is a new result about the global behavior of solutions
of Eq.(5.145.1) when (5.145.5) holds.

Theorem 5.145.1 Assume that (5.145.5) holds. Then every solution of Eq.(5.145.1)

converges to a (not necessarily prime) period-two solution.
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PROOF  Let {x,} be a solution of Eq.(5.145.1). Due to the fact that

B-DU=A° gy,

it follows from (5.145.5) that
a< B+ A

From this and Theorem 5.141.2 (4) it follows that the function

Q+ Tp—1
A+ Bz, + Tn_1

f(xnzxnfl) =

increases in z,,_1 and decreases in x,,. By Theorem 1.6.6 it follows that the
subsequences of the even and odd terms are eventually monotonic and because
the solution is bounded these subsequences converge to finite limits. The proof
is complete.

Open Problem 5.145.1 Assume that (5.145.5) holds.
(i) Determine the set of all initial conditions x_1, xo for which every solution
of Eq.(5.145.1) converges to the equilibrium Z.

(#4) Determine the set of all initial conditions x_1, xg for which every solution
of Eq.(5.145.1) converges to (5.145.7).

o+ YTp_1

5.146 Equation #146: =z, = A1+ Be +D
Tn Tp—2

This equation was investigated in [72]. When
v+ A+ B >0,
Eq.(#146) possesses a period-two trichotomy depending on whether
vy< A ~y=A, or v>A

The precise result that allows for the parameters «, A, and B to be nonneg-
ative was presented in Theorem 4.3.1.
What is it that makes Eq.(#146) possess a period-two trichotomy?

Could the period-two trichotomy of Eq.(#146) be predicted from
the linearized equation of Eq.(#146) and its dominant characteristic
root?
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Open Problem 5.146.1 Investigate the global character of solutions of the
equation

apn + TnTn—1
1+ ann + Tp—2 '

with periodic coefficients {an}, {yn}, and {B,}.

Tpgp1 = n=0,1,... (5.146.1)

Open Problem 5.146.2 Investigate the global character of solutions of Eq.(5.146.1)
with convergent coefficients {an}, {yn}, and {B,}.

Conjecture 5.146.1 Assume that
v > A

Show that every bounded solution of Eq.(#146) converges to the equilibrium.

o+ YTn-1
A+ Cx, 1+ Dx, o

5.147 Equation #147: x,.; =

Eq.(#147) can be written in the normalized form

a+Tp1 n
A + -1+ D$n727

Tpgp1 = =0,1,... (5.147.1)

with positive parameters o and D and with arbitrary nonnegative initial con-
ditions x_o, x_1, x¢g. Throughout this section we allow the parameter A to
be nonnegative so that we also include the special case #76.

Eq.(5.147.1) has the unique equilibrium

1-A+/(1—-A)2+4a(D +1)
2(D + 1)

Tr =

The characteristic equation of the linearized equation of Eq.(5.147.1) about
the equilibrium Z is

z—1 Dz

AP A
+A+(D+1)§; +A+(D+1)55

=0. (5.147.2)

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.147.1)
is locally asymptotically stable when
4o
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and unstable when

4o
<A<l d D>1+——. 1474
0<A<1 an > +(1—A)2 (5.147.4)

By Theorems 5.23.2 and 5.23.3 it follows that when
A>1,

the equilibrium T of Eq.(5.147.1) is globally asymptotically stable.
From Theorem 5.141.2 it follows that when

4o

(5.147.5)

every solution of Eq.(5.147.1) converges to the equilibrium Zz.
When (5.147.4) holds, Eq.(5.147.1) has the unique period-two solution

1—A—J(1-A2—F% 1-A+,/1-A4)2- 3%

) 9 ) 9 geve .

(5.147.6)

Conjecture 5.147.1 Show that the period-two cycle (5.147.6) is locally asymp-
totically stable.

Conjecture 5.147.2 Assume that (5.147.4) holds. Show that every solution
of Eq.(5.147.1) converges to a (not necessarily prime) period-two solution.

Open Problem 5.147.1 Assume that (5.147.4) holds.
(i) Determine the set of all initial conditions x_o, T_1, xo for which every
solution of Eq.(5.147.1) converges to the equilibrium Z.

(#4) Determine the set of all initial conditions x_o, x_1, xg for which every
solution of Eq.(5.147.1) converges to (5.147.6).

o+ YTn-1
Bx, +Cx,_1 + Dz, _2
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#148) can be written in the normalized form

5.148 Equation #148: z,.1 =

Q+ Tp_1
il = , n=0,1,... 5.148.1
ol an +ZTp-1+ Dxn—Q " ( )
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with positive parameters a, B, D and with arbitrary positive initial conditions
T_2, T_1, TQ-
Eq.(5.148.1) has the unique equilibrium

14++/1+4a(l+B+D)
2(1+B+D) '

Tr =

The characteristic equation of the linearized equation of Eq.(5.148.1) about
the equilibrium Z is

B i1 D
2 ‘T A+

A — 0.
1+B1D" " (1+B+Dz '1+B+D

A2+

From this and Theorem 1.2.3 it follows that the equilibrium Z is locally asymp-
totically stable when

B+D-1 D*+D+1
- D>1 B>—"_—— "~
a > 1 , > 1, and > D1
or when
D<1
and
B+D—1< <(3B+1)D2+(4BQ+5B+1)D+B3+2BQ+6
4 “ (D2+D(1-B) + B+ 1)2 '
When
B+D-1
o< %, (5.148.2)

and only then, Eq.(5.148.1) has a unique prime period-two solution of the
form

S T Y T Y e
where x, y are the positive solutions of the quadratic equation

(%

2 _ _—
t t+B+D—1 0

Conjecture 5.148.1 Assume that (5.148.2) holds. Show that the unique
prime period-two solution of Eq.(5.148.1) is locally asymptotically stable.

Conjecture 5.148.2 Show that every solution of Eq.(5.148.1) converges to
a (not necessarily prime) period-two solution.
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o+ 0T,_o
A+ Bx, + Cx,_4
Eq.(#149) can be written in the normalized form

5.149 Equation #149: =z, =

a+ Tp_2
a1 = ., n=01,... 5.149.1
Tt A+B$n+xn—1 " ( )

with positive parameters o, A, B and with arbitrary nonnegative initial con-
ditions z_5, z_1, xg.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

A<l (5.149.2)

Actually, as we will see later, (5.149.2) is a necessary and sufficient condition
for Eq.(5.149.1) to have unbounded solutions.
Eq.(5.149.1) has the unique equilibrium

1-A+/(1-A4)2+4a(B+1)
2(B+1)

T =

The characteristic equation of the linearized equation of Eq.(5.149.1) about
the equilibrium Zz is

Bz ) T 1

3 —_— =
A +A+(B+1)i°/\ +A+(B+1);E)\ A+ (B+1)z

0. (5.149.3)

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.149.1)
is locally asymptotically stable when

A>1,

or ( )2( )

1-—A)“(1+A
0<A<1 and aZT7 (5.149.4)

or
1-AP(1+A 29— A— A5+ da—44
0< A<, and0<oz<()A$)7 and B> 25+4a 4A
(6%

(5.149.5)
and unstable when
(1—-A)2(1+ A)

2—A—AV5+4a—4A
E ; < .

(5.149.6)

0<A<l O<ax< and B
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By Theorems 5.23.2 and 5.23.3 it follows that when

A>1

)

the equilibrium Z of Eq.(5.149.1) is globally asymptotically stable.
For the equilibrium z of Eq.(5.149.1),

Local Asymptotic Stabilty # Global Asymptotic Stabilty.

More specifically, when the condition (5.149.5) is satisfied, the equilibrium of
Eq.(5.149.1) is locally asymptotically stable but not globally asymptotically
stable. The reason is that when the condition (5.149.5) is satisfied, there
exist initial conditions z_s, x_1, 2 for which the solution of Eq.(5.149.1) is
unbounded. See Theorem 3.4.1.

In addition to unbounded solutions, what other type’s of solutions
exist? Can there exist any periodic solutions? Can there exist any
bounded solutions that are not periodic and do not converge to the
equilibrium point Z or to a periodic solution?

Note that when

0<A<1 and B=1,

unbounded solutions of Eq.(5.149.1) coexist with periodic solutions. For ex-
ample, when

A#1-a,

the sequence
e

m,...

is a prime period-three solution of the equation

L 1— AT A,

Q-+ Tp_2

—_—Teme2 o =0,1,... .
A+$n+zn—1

Tn+1 =

Conjecture 5.149.1 Show that Eq.(5.149.1) has bounded solutions that do
not converge to the equilibrium point & or to a periodic solution.

Open Problem 5.149.1 [nvestigate the global character of solutions of the
equation
Qp + Tn—2
ntl = , n=0,1,... 5.149.7
ot An + ann +Tn—1 " ( )

with periodic coefficients {a,}, {An}, and {B,}.

Open Problem 5.149.2 TInvestigate the global character of solutions of Eq.(5.149.7)
with convergent coefficients {ay}, {An}, and {B,}.
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o+ 0x,_o
A+ Bz, + Dz, _»

Eq.(#150) can be written in the normalized form

5.150 Equation #150: =z, =

Q+ Tp_2
ntl = , n=0,1,... 5.150.1
Tl = Bz, + 2,2 " ( )

with positive parameters «, A, B and with arbitrary nonnegative initial con-
ditions z_o, x_1, xo.
Eq.(5.150.1) has the unique equilibrium

1-A+ /(1 —-A)?2+4a(1 + B)
2(1+ B) '

i‘ =
The characteristic equation of the linearized equation of Eq.(5.150.1) about
the equilibrium Z is

Bz 2 -1 7
A+ (1+B)z A+(1+B)z

3+ 0.

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.150.1)
is locally asymptotically stable when

A>1, (5.150.2)
or
0<A<1and 0<B<1, (5.150.3)
or
s —VsZ2 — 4t
0<A<l1, B>1 d —_— 5.150.4
<A<, >1, an a>2BQ(B+3)2’ ( )
where
s=4(1+ A)(A+3B+1)— B*(AB — 2B +4A% —9A — 4)
and
t=B*B+3)*(A-1)*A+1)(B*+AB—-2B—-A-1)
and unstable when
s — /s —4t
A<l B>1 d _— .150.
0<A<1l, B>1 an a<QBQ(B+3)2 (5.150.5)

By Theorems 5.23.2 and 5.23.3 it follows that when

A>1

)
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the equilibrium Z of Eq.(5.150.1) is globally asymptotically stable.
From Theorem 5.141.2 it follows that when

B—1)(1— A)?
0<A<1 and az%, (5.150.6)

every solution of Eq.(5.150.1) converges to the equilibrium Zz.

Open Problem 5.150.1 Assume that

s— Vs —4t (B—-1)(1—A)?
A<l B>1 d —————= B
0< A<, >1, an 232(B+3)2<a< 1

Show that every solution of Eq.(5.150.1) converges to the equilibrium T.

Conjecture 5.150.1 Show that Eq.(5.150.1) has solutions that do not con-
verge to the equilibrium point & or to a periodic solution.

o+ 0T,_o
A+ Cx,_1+ Dx,_s

Eq.(#151) can be written in the normalized form

5.151 Equation #151: z,4, =

Q+ Tp_2
A+ Capy + Tp_s’

Tni1 = n=0,1,... (5.151.1)

with positive parameters «, A, C' and with arbitrary nonnegative initial con-
ditions z_s, z_1, xq.
By Theorems 5.23.2 and 5.23.3 it follows that when

A>1,

the equilibrium of Eq.(5.151.1) is globally asymptotically stable.

Also, when

(C—1)(1— A)?
4 bl

by Theorem 5.141.2, every solution of Eq.(5.151.1) converges to the equilib-

rium Z.

0<A<1and a> (5.151.2)

Conjecture 5.151.1 Show that for the equilibrium T of Eq.(5.151.1),

Local Asymptotic Stability = Global Asymptotic Stability.
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Conjecture 5.151.2 Assume that

(C - 1)(1— 4

0<A<1 and a< 1

Show that Eq.(5.151.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

o+ 0,9
Bx,+ Cx,_1+ Dz, _o

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#152) can be written in the normalized form

5.152 Equation #152: =z, =

Q+ Tp_2

. n=0,1,... 5.152.1
an + C-rn—l + Tp—2 ( )

Tn41 =

with positive parameters a, B, C' and with arbitrary positive initial conditions
T_2, T_-1, TQ-

Conjecture 5.152.1 Show that for the equilibrium T of Eq.(5.152.1),
Local Asymptotic Stability = Global Asymptotic Stability.

Conjecture 5.152.2 Show that Eq.(5.152.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

6xn + VYLn—1
A+ Bz, + Czx, 4

Eq.(#153) can be written in the normalized form

5.153 Equation #153: =z, =

6xn + Tn—1
n = y = ,1,... .153.1
Tnt1 = iy a— n=>0 (5.153.1)

with positive parameters 5, A, B and with arbitrary nonnegative initial con-
ditions z_1, xg.
Zero is always an equilibrium of Eq.(5.153.1). By Theorems 5.23.2 and
5.23.4 it follows that when
A>pB+1,
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the zero equilibrium of Eq.(5.153.1) is globally asymptotically stable. When
A< B+1, (5.153.2)

the zero equilibrium is unstable.

When (5.153.2) holds, Eq.(5.153.1) has the unique positive equilibrium
point
1+5-A

1+B

T =

The characteristic equation of the linearized equation of Eq.(5.153.1) about
the positive equilibrium Z is

, B-AB-3 B-A-B
Mt Groeey) T arpern

From this and Theorem 1.2.2 it follows that the positive equilibrium z of
Eq.(5.153.1), which exists provided that (5.153.2) is satisfied, is locally asymp-
totically stable when

(B-1)(1-A4)
and unstable when
(B-1)(1-A4)

When (5.153.2) and (5.153.3) both hold, it has been recently established (see
[135]) that every positive solution of Eq.(5.153.1) converges to the positive
equilibrium.

When (5.153.4) holds, and only then, Eq.(5.153.1) has the unique prime
period-two solution

1-p-A-\Ja-p-ap - B0AA
c 2 )

1-f—A+,/(1- - A2 - P04
5 e

(5.153.5)

Conjecture 5.153.1 Show that the period-two cycle (5.153.5) is locally asymp-
totically stable.

Conjecture 5.153.2 Assume that (5.153.2) and (5.153.4) holds. Show that
every solution of Eq.(5.153.1) converges to a (not necessarily prime) period-
two solution.
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ﬁxn + YLn—-1
A+ Bz, + Dz, _»

The boundedness character of this equation was investigated in [49]. Eq.(#154)
can be written in the normalized form

5.154 Equation #154: =z, =

Ty + YTn—1 n
A+xp+ Dxpy_s’

Tnp1 = =0,1,... (5.154.1)

with positive parameters v, A, D and with arbitrary nonnegative initial con-
ditions z_s, T_1, g.
By Theorem 3.3.1 it follows that Eq.(5.154.1) has unbounded solutions when

v>1+A.
By Theorems 5.23.2 and 5.23.4 it follows that when
A>1+47,

the zero equilibrium of Eq.(5.154.1) is globally asymptotically stable.
When
A<1+n7,

Eq.(5.154.1) has the unique positive equilibrium point

144 -A
r=——.
1+D

Conjecture 5.154.1 Assume that
v>14+ A.

Show that every positive and bounded solution of Eq.(5.154.1) converges to
the positive equilibrium .

Conjecture 5.154.2 Assume that
A-1<y<1+A

Show that for the positive equilibrium T of Eq.(5.154.1) and with positive
initial conditions,

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.154.3 Assume that
vy=1+A.

Show that every solution of Eq.(5.154.1) converges to a (not necessarily prime)
period-two solution.
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Conjecture 5.154.4 Assume that
A-1<y<1+A

Show that Eq.(5.154.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

B + YTn-1
A+ Cx,_ 1+ Dx, o
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#155) can be written in the normalized form

5.155 Equation #155: z,4; =

ﬁmn + Tn—1
A +Tp-1+ -D‘Tn—Q7

Tnir = n=0,1,... (5.155.1)

with positive parameters 3, A, D and with arbitrary nonnegative initial con-
ditions z_s, z_1, g.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>1+3,

the zero equilibrium of Eq.(5.155.1) is globally asymptotically stable.
When
A<1+4p,

Eq.(5.155.1) has the unique positive equilibrium point

1+6-A

TTTIYD

Conjecture 5.155.1 Show that for the positive equilibrium T of Eq.(#155)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.155.2 Assume that
A<14p.

Show that Eq.(5.155.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.155.3 It follows from the work in Section 4.2 that Fq.(5.155.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.155.1) is locally asymptotically stable.
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By + YTp_1
Bx, +Cx,_1 + Dz, _2

Eq.(#156) can be written in the normalized form

5.156 Equation #156: z,,1 =

Ty + VLn—1
ngl = , n=0,1,... 5.156.1
Int1 Ty +Cxp_1+ Dxy_o " ( )

with positive parameters v, C, D and with arbitrary positive initial conditions
T2, T—1, TQ-

Open Problem 5.156.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.156.1).

Conjecture 5.156.1 Show that for the equilibrium T of Eq.(5.156.1),
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.156.2 It follows from the work in Section 4.2 that Eq.(5.156.1)

has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.156.1) is locally asymptotically stable.

Conjecture 5.156.3 Show that Eq.(5.156.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

ﬁxn + 5-1'7172
A+ Bz, + Cx,_q
Eq.(#157) can be written in the normalized form

5.157 Equation #157: x,.; =

ﬂxn + Tn—2
A+ an + Tn—1

Tppy = (5.157.1)

with positive parameters 3, B and with arbitrary nonnegative initial condi-
tions _o, x_1, g. We will assume that the parameter A is nonnegative so
that this section also includes the study of the special case #92.

The boundedness character of this equation was investigated in [69]. See
also Theorem 3.4.1 where we established that the equation has unbounded
solutions when

B < B(1-A). (5.157.2)
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By Theorem 5.221.1 it follows that every solution of Eq.(5.157.1) is bounded
if and only if

6>B(1-A).
Eq.(5.157.1) has one or two equilibrium points. When
B+1<A,
zero is the unique equilibrium of Eq.(5.157.1).
When
A =0,
Eq.(5.157.1) has the unique positive equilibrium
- B+1
- B+1’
When

B+1>A and A >0,

Eq.(5.157.1) has two equilibrium points, namely, the zero equilibrium and the
positive equilibrium Zz.

It follows from Theorems 5.23.2 and 5.23.4 that the zero equilibrium is
globally asymptotically stable when

A>B+1.

The characteristic equation of the linearized equation of Eq.(5.157.1) about
the positive equilibrium z is
Bz - j3 5 z 1

3 J— pr—
Nt Ay B ) TArBrs A+ (Bi)w

0. (5.157.3)

From this and Theorem 1.2.3 it follows that the positive equilibrium Z of
Eq.(5.157.1), which exists as long as A < ( + 1, is locally asymptotically
stable when

1<A<pB+1 (5.157.4)

or

1-A-2B+./(1+A)2+4B(2+ (2— A)B)

0<A<1and 8> —
<A<1 and 8> 5B

= 3"
(5.157.5)

For the positive equilibrium Z of Eq.(5.157.1),
Local Asymptotic Stability # Global Attractivity.
Indeed, for all values of 3, A, and B for which
V5—1 V-1 B*+B-1
B) and 1 > A > ﬁ
(5.157.6)

1>A>0, 1>B> <B<

or

1
2
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we have
8*<pB<B(1-A)

and so the positive equilibrium of Eq.(5.157.1) is locally asymptotically sta-
ble and, in the same region, by Theorem 3.4.1, the equation has unbounded
solutions. Hence, the positive equilibrium of the equation cannot be a global
attractor in the entire region of its local asymptotic stability.

Open Problem 5.157.1 Assume that (5.157.6) holds.

(a) Determine the set of all positive initial conditions x_o, T_1, xo through
which the solutions of Eq.(5.157.1) converge to the positive equilibrium point
z.

(b) Determine the set of all positive initial conditions x_o,x_1,2q through
which the solutions of Fq.(5.157.1) are unbounded.

When

5—1 B?+B-1 1

\f2 andA<B_;7_30r0<B<§ and 0 < A <1,
(5.157.7)

1
- <B<
2
it follows that
6*>p>B(1-A).
In this case numerical investigations indicate chaotic behavior of solutions of

Eq.(5.157.1).

Conjecture 5.157.1 Show that Eq.(5.157.1) has bounded solutions that do
not converge to an equilibrium point or to a periodic solution.

Lemma 5.157.1 Assume that A =1. Let {z,} be a solution of Fq.(5.157.1)
for which there exists N > 0 such that

0< TN-1,TN—-2, TN < % (51578)

Then

x < =.
N+1 B

PROOF In view of Eq.(5.157.1), we get

Bxy +TN_2 %(5 +1)
1+Bxy+xny_1 1+

€T = = é
N+1 g

The proof is complete. |
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Lemma 5.157.2 Assume that A =1. Let {x,} be a solution of Eq.(5.157.1)
such that

TN+1 > % (51579)
Then 5
N1 < g (5.157.10)

PROOF  Suppose for the sake of contradiction that

TN-1 2> %
Then in view of Eq.(5.157.1), we get
TN_g > %(lJr %) and wy_4 > %
which implies that
TN_5 > %(1 + %)2 and zy_7 > %
Inductively, we get
B Bk
Cake > —(1+ S k=0,1,. ..
xN3k2>B(+B) ) 077 )
which is a contradiction and the proof is complete. |

Theorem 5.157.1 Assume that A > 1. Let {x,} be a solution of Eq.(5.157.1).
Then there exists N > 0 such that for alln > N,

B
W< 2 157.11
T < 3 (5.157.11)

PROOF We will consider two cases. First assume that
A=1.

In view of Lemma 5.157.1 it suffices to show that there exists N > 0 such
that (5.157.8) holds. For the sake of contradiction and in view of (5.157.9)
and (5.157.10) assume that there exists N > 0 such that for all n > 0

B
0 < Z3p4 N, T3ntN+1 < B < T3pntN-1-
From Eq.(5.157.1) we get
Bx3ntN+1 + TantN—1
1+ Ba3ntN+1 + T3ngN

T3n+N+2 = < T3(n—1)+N+2
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and so the subsequence {x3, N2} converges. Set

S = limsup z,,.

Then, clearly,

S= lim z3,4Ny2 >
n—oo

SVSN

In addition, there exists a sequence of indices {n;} and positive numbers
{lt}?:(),t#Q such that
lt = hm T3n;+N+t-
11— 00

Then, clearly,

_ BS + 1y . Ols + 14
l3_1+BS+ll>O and l4_1+B13+12>0
and i+ S l
S =1 Bly + Bl B

14 Bltls Blatl B
which is a contradiction and the proof of (5.157.11) is complete when A = 1.

When
A>1,

assume for the sake of contradiction that there exists IV sufficiently large such

that
Brn +xN_2 B
_ I 5.157.12
NS A B tana B’ ( )

from which it follows that

Er = Prvstans By
-2 A4+ Bry_3+TN_4 B
and 5
TN_5 > A2§

Inductively, we have that

TN_3k—2 > Ak+1%, k=0,1,...,

which is a contradiction and so the proof of (5.157.11) is complete. |

Lemma 5.157.3 Assume that 1 < A < S+1. Let {z,} be a positive solution
of Eq.(5.157.1). Then
S =limsupx, > 0. (5.157.13)

n—oo
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PROOF  Assume for the sake of contradiction that S = 0. Choose two
positive numbers € and m such that

A+ (B+1)e
O<m=———-"<1. 5.157.14
B+1 ( )

There exists N sufficiently large such that

Bry + TN _2
A+ Bxy +xn-1

ITN4+1 = <e¢,

which implies
min{zy_o2, 2Ny} < em

and
: 2
mln{x]\],g), TN-3, .”L'Nfl} < em

and eventually leads to a contradiction. The proof is complete. |
Theorem 5.157.2 Assume that
1<B<oand 1<A<f(+1. (5.157.15)

Then every positive solution of Eq.(5.157.1) converges to the positive equilib-
rium T of Eq.(5.157.1).

PROOF From Theorem 5.157.1 we know that the solution {x,,} of Eq.(5.157.1)
is bounded from above by the positive constant %. Let

S =limsupz, < ©
and
I =liminfz, > 0.

n—oo

Then, clearly,

g< B+DS
- A+ BS
and due to the fact that S > 0,
B+1-A
< —-.
§s B

Assume for the sake of contradiction that S = %. There exists a sequence
of indices {n;} and positive numbers {I;}?_, such that

S = lim x,,+1 and l; = lim x,,_+.
1— 00 1— 00
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Then
g Blo + 12
A+Blg+1_;’
which implies l[o =1_o =S and [_; = 0. From
o= 5 = Bl_y+1_3 _ l_3 < S
A+Bl_ 1+l A+S~ A+S

it follows that

S<1-A<0,
which is a contradiction and so

1-A
P iuriy (5.157.16)
B
There exist € > 0, m > 0, and N > 0 with
0<m<min{zy_2,2Ny-1,ZN],
1-A
S+e<mm¢ﬁi?—ﬂﬂ+lfAmeL for B> 1,
and
Tp,<S+e<fB+1—A—Bm, for n>N—2.
Then, clearly,
_ Bany+ N2 (B+1)m _
IN+1 = m

A+Bzy+ay_1  A+Bm+p3+1—A—Bm
and, inductively, we obtain
T, >m, for n>N—2
from which it follows that I > 0. Then, clearly,

(B+1)S (B+1)I
< 7 > 7
S<a1Bs+1 ™12 Brrs

from which it follows
BS+I<pB8+1-A<BI+S

and
(B-1)(S-1I)<0.

We divide the proof into the following two cases:
Case 1:
B>1.

In this case I = S.
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Case 2:
B=1.
Clearly,
_ Plotls _ (B+1)S
A+lo+1ly — A+ S5+1
and so

S<pB+1-A-1
Assume for the sake of contradiction that
S=64+1—A—1 and S > 1I.
Then, clearly,
lop=1l_2=5 and [, =1.

In addition,
Bli+1-3 (B+1)S

l:S:
0 A+l 14193 A+S+I

from which it follows that
S<pB+1-—A-1,
a contradiction, and so
S<pB4+1—A—-1or S=1.

Assume that S < 8+ 1— A — I. There exists a sequence of indices {n;} and
positive numbers {m;}?_, such that

I'=lim x,, 11 and my = lim @, .
— 00

j—o0 J
Then, clearly,
= Bmo + m_o > B+ I
A—f—mo—&—m,l_A—i—I—i—S

and so S > 6+ 1— A — I which is a contradiction. Hence, S = I. The proof
is complete.

Conjecture 5.157.2 Assume that
1<A<fB4+1 and 0< B < 1.

Show that every positive solution of Fq.(5.157.1) converges to the positive
equilibrium of Eq.(5.157.1).

Theorem 5.157.3 Assume that
8>B(1-A), 1>A>0, and B> 1. (5.157.17)

Then (1-A, %) is an invariant interval for all positive solutions of Eq.(5.157.1).
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PROOF  Assume that {z,} is a solution of Eq.(5.157.1) with initial con-
ditions z_s,x_1, xg such that

p
1-A< T_2,T_1,To < E
Then

ﬂ - BI_QfAﬂfﬂl‘_l 6(1—A—$_1)

= = < <0.
B B(A+Bxzo+x_1) B(A+Bxg+zx_1)

xry —

In addition,

ﬂ$0+$_2 [ﬁ*(17A)B]I’0+l’_27(17A)(A+I’_1)
—(1-A)=——F7—""——(1-4) =

i ( ) A+ Bxg+2_1 ( ) A+ Bxg+x_1
_=AB-0-AHB+1-A-5] (1-HB-DE-1-4HB

A+BIO+I_1 A—FBSE()—F.T_l ’
Inductively, the result follows. The proof is complete. |
Theorem 5.157.4 Assume that

8>B(1-A), 1>A>0, and B> 1. (5.157.18)

Then every solution of Eq.(5.157.1) with initial conditions in the invariant
interval (1 — A, %) converges to the positive equilibrium T of Fq.(5.157.1).

PROOF We will divide the proof into the following two cases:
Case 1:
B=1.

Let

S =limsupx, and I = liminfxz,.

n—oo n—oo

Then in view of Eq.(5.157.1) we get

(B+DS

5= A+S+T

which implies that
S<p+1-A-1.

Assume for the sake of contradiction that
S=0+1—A—1 and S > 1I.
There exists a sequence of indices {n;} and positive numbers {l;};_, such that

S = lim xp,4+1 and l; = lim z,, 4.

11— 00 1— 00
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Then
_ Plotl o

A+l +1,

from which it follows that
lo :l_g =5 and l_1 =1.

From
Bly+1_3 BI+1_3 (B+1)S

lp=S =
0 A+l 1+l 0 A+T+S “1+8S+1

we obtain

S<pf+1-—A-1,

a contradiction, and so
S<pB+1—Aor S=1.
Assume for the sake of contradiction that
S<p+1-A.

There exists a sequence of indices {n;} and positive numbers {m;}3_, such
that

im Ty, .

— 00

1= hm Tnj+1 and my =
Jj—00 J

Then, clearly,
7— Bmo +m_2 > (B+1I
A+mo+m_y — A+I+S

and so
S>B+1—-—A—-1,

which is a contradiction. Hence, S = I.
Case 2:
B >1.

In this case the result follows from Theorem 1.6.5 applied in the invariant
interval (1 — A, %) The only Hypothesis of Theorem 1.6.5 that needs to be
verified is whether the system

— _(BtHM
{ M = 3 Brrm

(B+1)m
— A+Bm+M

has a unique solution. This is clear because B > 1. The proof is complete.

Open Problem 5.157.2 Assume that (5.157.18) holds. Show that every
positive solution of Eq.(5.157.1) converges to the positive equilibrium point
Z.
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When B = 1, using an appropriate change of variables Eq.(#157) becomes

Tn + 5$n72

2 =0,1,... 5.157.19
A+$n+xn717 n ) Y ( )

Tp+1 =

with positive parameters § > 0, A > 0, and with arbitrary nonnegative initial
conditions x_o ,x_1, xo such that the denominator is always positive.

Theorem 5.157.5 Fq.(5.157.19) possesses a unique prime period-three so-
lution of the form

"7p7q7r7p7q7r7"'

if and only if
0>A+1.

Furthermore, p, q, v are the three positive solutions of the cubic equation
— L2+ 2(L* 4+ L+1)2® — (LP4+3L* + 3L +2)x+ L(L*+L+1) = 0, (5.157.20)

where L = 6 — A — 1. In fact, if p is one of the solutions of (5.157.20), the
other two solutions are

q:(ngf; T:(;fAfw

5.157.21
1+p+A-¢ p+A=0 ( )

PROOF Let
T2=p, T1=¢, To=T

where p, q,r are not all equal. Then the triple p, ¢,r is a prime period-three
solution of Eq.(5.157.19) if and only if they satisfy the system of equations

r+0p=Ap+rp+qp
p+6q=Aq+qp+qr (5.157.22)
g+ doér=Ar+qr+rp

and A+p+q,A+p+r >0, A+ q+r>0. Using the change of variables

P=p—-90+A Q=q—0+A, R=r—956+A

we have
R—P=R(P-Q)
R-Q=Q(P-R) (5.157.23)
P-Q=P(Q-R).
In view of (5.157.23), we find
oo L p_ P+l
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Substituting P=p—30+ A, Q=q—6+ Aand R=r —J + A, we see that

1 T:(s_A_erA—(%Ll

1= AT Ay Tt Ao

Finally, in view of (5.157.22), we get

f(p)
pP+A-90)p+A—-0+1)

 —Lp*+2(L2+ L+ 1)p* — (L*+3L* +3L+2)p+ L(L* + L+ 1)
B (P+A=-8)p+A-5+1)
It holds that (p+ A—0)(p+A—3d+1) = 0if and only if p = g = r. Therefore,

f(p) = 0. Similarly, f(q) = f(r) = 0. Also, Eq.(5.157.20) has three distinct
positive solutions if and only if

=0.

0> A+1.

The proof is complete. |

ﬁxn + 5:1771—2
A+ Bz, + Dx,_»
Eq.(#158) can be written in the normalized form

5.158 Equation #158: =z, =

Tn + 5wn—2
n
A+ 2y, + Dxp_s’

=0,1,... (5.158.1)

Tpn+1 =

with positive parameters §, A, D and with arbitrary nonnegative initial con-
ditions z_o, x_1, xg.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>1+59,

the zero equilibrium of Eq.(5.158.1) is globally asymptotically stable.
When

A <146,
Eq.(5.158.1) has the unique positive equilibrium point

1+6—-A4

YT ED
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Conjecture 5.158.1 Show that for the positive equilibrium T of Eq.(5.158.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.158.2 Assume that

A<1+6.

Show that Eq.(5.158.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

ﬁxn + 5$n—2
A + an—l + DIn_Q
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#159) can be written in the normalized form
6xn + Tn—2

ntl = , n=0,1,... 5.159.1
ot A+ anfl + Tp—2 " ( )

5.159 Equation #159: =z, =

with positive parameters 3, A, C'" and with arbitrary nonnegative initial con-
ditions z_s, z_1, xg.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>1+p,

the zero equilibrium of Eq.(5.159.1) is globally asymptotically stable.
When
A <145,

Eq.(5.159.1) has the unique positive equilibrium point
1+8-A
1+C

Conjecture 5.159.1 Show that for the positive equilibrium Z of Eq.(5.159.1)
and with positive initial conditions,

xr =

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.159.2 Assume that

A<14+p.

Show that Eq.(5.159.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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an + 5mn—2
Bx,+Cx,_1+ Dz, _o
Eq.(#160) can be written in the normalized form

5.160 Equation #160: =z, =

By + Tp_2
Bz, +Cxpq + Tpes’

Tny1 = n=0,1,... (5.160.1)

with positive parameters ¢, C'; D and with arbitrary positive initial conditions
T_2, T_-1, TQ-

Open Problem 5.160.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.160.1).

Conjecture 5.160.1 Show that for the equilibrium T of Eq.(5.160.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.160.2 Show that Eq.(5.160.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

YTn—1 + (5%}172
A+ Bx, +Cx,_4

Eq.(#161) can be written in the normalized form

5.161 Equation #161: =z, =

Tp—1+ 5377172
A+ Bz, +Tp_1’

Tpy1 = n=20,1,... (5.161.1)
with positive parameters 0, A, B and with arbitrary nonnegative initial con-
ditions z_o, x_1, xg.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

0> A+ B.

By Theorem 5.221.1 it follows that every solution of Eq.(5.161.1) is bounded
if

0 <A+ B.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>6+1,
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the zero equilibrium of Eq.(5.161.1) is globally asymptotically stable.
When
A<d+1,

Eq.(5.161.1) has the unique positive equilibrium point
14— A
1+B
The characteristic equation of the linearized equation of Eq.(5.161.1) about
the positive equilibrium Z is
3 Bl+1-4) , 0—A-B b
(B+1)(6+1) +1)(B+1)" §+1

From this and Theorem 1.2.3 it follows that the positive equilibrium Z of
Eq.(5.161.1) is locally asymptotically stable when

(B-1)(1-4)
B+3
_ 1+ A+2B+AB+\/2B+AB+ A+ 1)2+4(B+1)(1+ A+2B)
2(B+1) '
It is now easy to see that for the positive equilibrium z of Eq.(5.161.1),

Tr =

0.

<6

Local Asymptotic Stabilty # Global Attractivity.

Indeed, for all positive values of A, B for which

_ 1+A+2B+AB+\/2B+AB+A+1)2+4(B+1)(1+ A+2B)

A+B
+ 3B+ 1)

and for all values of ¢ such that
A+B<d

1+ A+2B+AB++\/(2B+AB+A+1)2+4(B+1)(1+ A+2B)
< 2B +1) ’
the positive equilibrium z of Eq.(5.161.1) is locally asymptotically stable and,
in the same region, by Theorem 3.4.1, the equation has unbounded solutions.
Hence, the positive equilibrium of the equation cannot be a global attractor
in the entire region of its local asymptotic stability.

Conjecture 5.161.1 Assume that
A-1<dé< A+ B.

Show that for the positive equilibrium T of Eq.(5.161.1) and with positive
initial conditions,

Local Asymptotic Stabilty — Global Attractivity.
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Conjecture 5.161.2 It follows from the work in Section 4.2 that Eq.(5.161.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.161.1) is locally asymptotically stable.

Conjecture 5.161.3 Show that Eq.(5.161.1) has bounded solutions that do
not converge to an equilibrium point or to a periodic solution.

Y Ln—1 + 61771—2
A+ Bz, + Dz, _»
Eq.(#162) can be written in the normalized form

5.162 Equation #162: z,,, =

VYTn—1 + Tn—2
A+ Bz, + Tp_o’

Tngr = n=01,... (5.162.1)

with positive parameters v, A, B and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>1+7,

the zero equilibrium of Eq.(5.162.1) is globally asymptotically stable.
When
A<1+n7,

Eq.(5.162.1) has the unique positive equilibrium point

144 -A
= ——"7—
1+ B

Conjecture 5.162.1 Assume that
v>1+A.

Show that every positive and bounded solution of Eq.(5.162.1) converges to
the positive equilibrium.

Conjecture 5.162.2 Assume that
v< 14+ A.

Show that for the positive equilibrium T of Eq.(5.162.1) and with positive
initial conditions,

Local Asymptotic Stability = Global Attractivity.
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Conjecture 5.162.3 Assume that
y=1+A.

Show that every bounded solution of Eq.(5.162.1) converges to a (not neces-
sarily prime) period-two solution.

Conjecture 5.162.4 Assume that
A-1<y<1+4+ A

Show that Eq.(5.162.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

YTn—1 + 61771—2
A —I— CZL‘n_l —I— DZEn_Q
Eq.(#163) can be written in the normalized form

5.163 Equation #163: =z, =

Tp-1+ 5-7;71—2
A +Tp-1+ DIn—Q ’

Tni1 = n=0,1,... (5.163.1)

with positive parameters §, A, D and with arbitrary nonnegative initial con-
ditions z_o, x_1, xo.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>1+45,

the zero equilibrium of Eq.(5.163.1) is globally asymptotically stable.
When
A<1+46,

Eq.(5.163.1) has the unique positive equilibrium point

1+0—-A
1+D

T =
Conjecture 5.163.1 Show that for the positive equilibrium T of Eq.(5.163.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.163.2 Assume that
A<1+0.

Show that Eq.(5.163.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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Conjecture 5.163.3 It follows from the work in Section 4.2 that Eq.(5.163.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.163.1) is locally asymptotically stable.

VTn—1 + 51:71—2
Bx,+Cx,_1+ Dz, _o
Eq.(#164) can be written in the normalized form

5.164 Equation #164: =z, =

Tp—1+ 0xp_o n
B‘rn + ZTp-1+ Dxn72 ,

Tnp1 = =0,1,... (5.164.1)

with positive parameters §, B, D and with arbitrary positive initial conditions
T_2, T_1, TQ-

Open Problem 5.164.1 [nvestigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.164.1).

Conjecture 5.164.1 Show that for the equilibrium T of Eq.(5.164.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.164.2 Show that Fq.(5.164.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.164.3 It follows from the work in Section 4.2 that Eq.(5.164.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.164.1) is locally asymptotically stable.

o+ B + Y
A+ Bz,

5.165 Equation #165: =z, =

This equation was investigated in [16], [108], [112], and [179]. Eq.(#165)
possesses a period-two trichotomy depending on whether

Y<B+A y=B+A o y>F+A

The precise result that allows the parameters «, 3, and A to be nonnegative
was presented in Theorem 4.2.1.
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When
7> B+ A,
it follows from Theorem 4.2.2 that every positive and bounded solution of

Eq.(#165) converges to the positive equilibrium.

Open Problem 5.165.1 Investigate the global character of solutions of Eq.(#165)
with periodic coefficients.

o+ ﬁxn + YTn—-1
A + Oxn—l

This equation was investigated in [175]. Eq.(#166) can be written in the
normalized form

5.166 Equation #166: x,.; =

o+ ﬁxn + Tp—1

=0,1,... 5.166.1
A+In—1 " T ( )

Tp+1 =
with positive parameters «, 3, A and with arbitrary nonnegative initial con-
ditions z_1, xg.

Eq.(5.166.1) has the unique equilibrium

B+1-A+/(B+1-A)?+4a
. .

T =

The characteristic equation of the linearized equation of Eq.(5.166.1) about
the equilibrium Z is
B z-1
N )

A+z "z
From this and Theorem 1.2.2 it follows that the equilibrium Z of Eq.(5.166.1)
is locally asymptotically stable for all values of the parameters.

By Theorems 5.23.2 and 5.23.4 it follows that when

=0.

A>pB+1,

the equilibrium z of Eq.(5.166.1) is globally asymptotically stable.
The following theorem about the global attractivity of the equilibrium z
Eq.(5.166.1) is a new result. See also [175].

Theorem 5.166.1 Assume that
a<A+BRA+1)+2(A+1)2 (5.166.2)

Then the equilibrium of Fq.(5.166.1) is globally asymptotically stable.
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PROOF It suffices to show that the equilibrium Z of Eq.(5.166.1) is a
global attractor of all solutions. Let {z,} be a solution of Eq.(5.166.1). We
divide the proof into the following four cases:

Case 1:
A<a<A+BRA+T)+2(A+1)2

By using the change of variables z,, = By, + 1, Eq.(5.166.1) takes the form

at+pB—A

t Yn
52
Yni1 = G——— n=0,1,.... (5.166.3)
" AZ;H +yn71

The equation in this case is a special case of Eq.(#66). For the proof in this
case see [157], Theorem 3.4.1(f), p. 73.

The following identity will be useful in the sequel:

A—a
o1 —1 =B 0, (5.166.4)
A + Tn-1

Case 2:
a<A<f+a.

Clearly, from (5.166.4), we obtain that either

T, <1, forall n>0 (5.166.5)
or, eventually,
A—
Zp > 1> ﬂa. (5.166.6)
When (5.166.5) holds, from (5.166.4), we see that, for all n > 1,
< A—a«
Tn .
B

Clearly, the function

o+ ﬁxn + Tn-1

f(xnvxnfl) = A T 20

is strictly increasing in x, and x,,_;. By employing Theorem 1.6.7 the result
follows.

When (5.166.6) holds, by using the change of variables, z, = By, + 1,
Eq.(5.166.1) reduces to Eq.(5.166.3), which is included in Eq.(#66). For the
proof in this case see [157], Corollary 3.4.1(e), p. 73.

Case 3:
A>pB+a.
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Clearly, from (5.166.4), we obtain that either
r, > 1, forall n>0 (5.166.7)

or, eventually,
A—a

B
When (5.166.7) holds, from (5.166.4), we see that, for all n > 1,

T, <1< (5.166.8)

A—«
5

Ty >

Clearly, the function

o+ ﬂzn + Tnp—1

f(mnaxn—l) = A+ Tt

is strictly increasing in z, and strictly decreasing in z,_1. By employing
Theorem 1.6.7 the result follows.

When (5.166.8) holds, clearly the function

o+ 6‘7371 + Tn—1

f(xruxnfl) = A T 20

is strictly increasing in x, and x,—;. By employing Theorem 1.6.7 the result
follows.

Case 4:
a<A=0+a.

Observe that, for all n > 0,

n— 1- n
Inﬂ_wn_(aw (L —an)

a+ 0+ T,

From this and from (5.166.4), we obtain that, for all n > 0,
Tn < Tpt1 <1 or 1< zpy <y,
from which the result follows. The proof is complete. |
Open Problem 5.166.1 Assume that
a>A+BRA+1)+2(A+1)°

Show that the equilibrium T of Eq.(5.166.1) is globally asymptotically stable.
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a+ By, + YTn-1
A —f- Dl’n_g

Eq.(#167) can be written in the normalized form

5.167 Equation #167: x,,1 =

a+ Ty +YTn_1
] = ————— " n=0,1,... .167.1
Tpt1 - n=2>0 (5.167.1)

with positive parameters «, v, A and with arbitrary nonnegative initial condi-
tions x_s, x_1, g.
By Theorems 5.23.2 and 5.23.3 it follows that when
A>y+1,

the equilibrium of Eq.(5.167.1) is globally asymptotically stable.
Conjecture 5.167.1 Assume that

v>1+A.

Show that every bounded solution of Eq.(5.167.1) converges to the equilibrium.

Conjecture 5.167.2 Assume that
vy=1+A.

Show that every solution of Eq.(5.167.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.167.3 Assume that
v<1+A.
Show that for the equilibrium T of Eq.(5.167.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.167.4 Assume that
A-1<y<1+A

Show that Eq.(5.167.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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a+ Br, +Yrn1
Bx, + Cx,_

Eq.(#168) can be written in the normalized form

5.168 Equation #168: =z, =

a—+ Ty +7Tp-1

=0,1,... 5.168.1
$n+01'n71 n Pl ( )

Tn+1 =

with positive parameters a, v, C' and with arbitrary positive initial conditions
r_1, ZQ-

Open Problem 5.168.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.168.1).

Conjecture 5.168.1 Show that for the equilibrium T of Eq.(5.168.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.168.2 It follows from the work in Section 4.2 that Eq.(5.168.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.168.1) is locally asymptotically stable.

Conjecture 5.168.3 Show that every solution of Eq.(5.168.1) converges to
a (not necessarily prime) period-two solution.

o+ 51;71 + YTn-1
Bz, + Dz,,_o

5.169 Equation #169: =z, =

Eq.(#169) can be written in the normalized form

a+ T, + YLn—1

=0,1,... 5.169.1
{L‘n-‘ern,Q n )+ ( )

Tn+1 =

with positive parameters a,y, D and with arbitrary positive initial conditions
T2, T_1, XQ-

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v > 1.
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Conjecture 5.169.1 Assume that

v > 1.
Show that every bounded solution of Eq.(5.169.1) converges to the equilibrium.
Conjecture 5.169.2 Assume that

v <1
Show that for the equilibrium T of Eq.(5.169.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.169.3 Assume that

v=1.

Show that every solution of Eq.(5.169.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.169.4 Assume that

v <1

Show that Eq.(5.169.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

a+ ﬁ Tp + VYTn-1
Cwn—l + Dxn—Q
The boundedness character of solutions of this equation was investigated in

[49]. See also Theorem 2.8.1 where we established that every solution of the
equation is bounded. Eq.(#170) can be written in the normalized form

5.170 Equation #170: =z, =

o+ ﬁxn + Tp—1
g = 2T Tl 01, 5.170.1
Tt Tp—1+ Dxp_o " ( )

with positive parameters «, 3, D and with arbitrary positive initial conditions
T2, T_1, Zo-

Open Problem 5.170.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.170.1).
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Conjecture 5.170.1 Show that for the equilibrium T of Eq.(5.170.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.170.2 Show that Eq.(5.170.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.170.3 It follows from the work in Section 4.2 that Eq.(5.170.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.170.1) is locally asymptotically stable.

o+ Bx, +0x, o
A+ Bz,

The boundedness character of this equation was investigated in [49]. See also
Theorem 2.5.1 where we established that every solution of the equation is
bounded. Eq.(#171) can be written in the normalized form

o +ﬁxn + Tn—2
A+,

5.171 Equation #171: x,.; =

Tni1 = ., n=0,1,... (5.171.1)

with positive parameters «, 3, A and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.
The only equilibrium of Eq.(5.171.1) is

B+1-A+/(B+1-A4)2+4a
. .

r =

The characteristic equation of the linearized equation of Eq.(5.171.1) about
the equilibrium Z is
-8, 1

A+z"  A+z
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.171.1)
is locally asymptotically stable when

A+

p>1-A, (5.171.2)

or
V2-A-1<p<1- A, (5.171.3)

or

2+2BA-33—A—(A+1)y/b—4(A+0)

B<V2—A—-1 and a> 5

(5.171.4)
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and unstable when

B<VZ-A-1and a< 2+2ﬂA—3ﬂ—A—gA+1)¢m.

Theorem 5.171.1 Assume that
B+1< A

Then every solution of Eq.(5.171.1) converges to the equilibrium Z.

PROOF Let

S =limsupx, and I =liminfz,.
n— o0 n—oo

We divide the proof into the following two cases:

Case 1:
8+1< A
Then, clearly,
S<a+w+US
- A+1T
and
I>a+W+DI
- A4S

From these two inequalities it follows that
a+(B+1-AI<SI<a+(f+1-A)S.

From this it follows that S = I.

Case 2:

6+1=A.
Then

g <t (B+1)S

T B+1+1
and

>a+w+UI

- B+1+S

From these two inequalities it follows that
a<SI<a«a

and so
SI = a.
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Let {zn,+1}, {zn,;}, {Tn,—2}, be three subsequences of the solution {z,} such
that

lim @y, 41 =8

1— 00

and
Jim o =lo. Jim o2 = L
Then
g_ @ + Blo+1_2
B+1+1o
We will show that
lp=S=1.

Suppose for the sake of contradiction

10758 or lo#]

Then, clearly,
SR ChaLy
B+1+1

From this it follows that
ST < a,

which is a contradiction. The proof is complete. |
Theorem 5.171.2 Assume that
>1—A>0.

Then every solution of Eq.(5.171.1) converges to the equilibrium Z.

PROOF We will make use of the fact we proved in Lemma 2.5.1 of Section
2.5 that every solution of Eq.(5.171.1) is bounded from below by 5.

Let
S =limsupz, and I = liminfz,.

n—oo n—oo

We divide the proof into the following two cases:

Case 1:
6>1-—A.
Then, clearly,
g +08I+S
- A+1
and
a+BS+1

- A+ S
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From these two inequalities it follows that
a+pBS+(1-A)I<SI<a+pl+(1-A)S.

From this it follows that

(B+1-A)(S-1)<0

and so S = 1.
Case 2:
f=1—A>0.
Then
g < a+plI+S
- 1-0+41
and
S a+pBS+1
T 1-84S5"

From these two inequalities it follows that
a+pBl+8S<SI<a+pS+pI1.
It also holds that
I>p,

otherwise,

a+ 8% +pS =4S,
which is not true. Hence,

o+ Bl and [ = OH_ﬁS.

I-p S—p3

There exists a sequence of indices {n;} and positive numbers {/;+1};__, such
that

S:

im Ty, 41— = by
— 00

2

with
1 =2-S.
Then
Iy — o+ ﬂlo + l_g
! 1-06+1

From this it follows that

l():_[ and l,QZS
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because otherwise
a+ 61

S<T 5

which is a contradiction. Similarly,
l_l =5 and l_g =1

and
l_g =71 and l_4 =GS.

Hence,
I=1_9=25.

The proof is complete. |

Conjecture 5.171.1 Assume that (5.171.2) or (5.171.3) or (5.171.4) holds.
Show that every solution of Eq.(5.171.1) converges to the equilibrium Z.

Conjecture 5.171.2 Show that Eq.(5.171.1) has solutions that do not con-
verge to the equilibrium point & or to a periodic solution.

o+ Bx, +0x, o
A + an—l
The boundedness character of this equation was investigated in [49]. See also

Theorem 2.7.1 where we established that every solution of the equation is
bounded. Eq.(#172) can be written in the normalized form

5.172 Equation #172: =z, =

n 5 n—
xn+1:a+fi; f 2 n=0,1,... (5.172.1)

with positive parameters «, 3, 6 and with arbitrary nonnegative initial con-
ditions z_5, x_1, xg.
Eq.(5.172.1) has the unique equilibrium

B+0-14+/(B+5-1)%+4da
5 .

xr =

The characteristic equation of the linearized equation of Eq.(5.172.1) about
the equilibrium Z is
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From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.172.1)
is locally asymptotically stable when

B>6-1 (5.172.2)

or

B<d—1and a> (1+ 66— (B3+6+ 66 —52) (5.172.3)

and unstable when

B<d—1 and o< (1+35—62)(8+6+ 66— 02).

Theorem 5.172.1 Assume that
0<pB<1-4.

Then every solution of Eq.(5.172.1) converges to the equilibrium Z.

PROOF Let
S =limsupz, and I =limsup x,.
Clearly,
g at(B+9)S
- 1+1
and
<ot B+ 6)1.
- 1485

Combining the two inequalities, we find that
a+(B+d-DI<SI<a+(f+0-1)S. (5.172.4)

We divide the proof into the following two cases:

Case 1:
0<pB<1=0.
From (5.172.4) it follows that
S =1
Case 2:
0<p=1-4.

From (5.172.4) it follows that

«
S—Y.
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There exists a sequence of indices {n;} and positive numbers {I_;}?_, such
that

im xp,4+1 =9 and Iy = lim z,,_4.
— 00

Then
a+ Blo+ (1 =)o
S = .
1+14
From this it follows that
lo=1_9=S5
and
=1
otherwise,
@
St
a
which is a contradiction. Similarly,
l1=13=5
and
l_o=1.

Hence, S = I. The proof is complete. |

Conjecture 5.172.1 Assume that (5.172.2) or (5.172.3) holds. Show that
every solution of Fq.(5.172.1) converges to the equilibrium T.

Conjecture 5.172.2 Show that Eq.(5.172.1) has solutions that do not con-
verge to the equilibrium point T or to a periodic solution.

o+ Bx, +0x,_
A + DZL’n_Q
The boundedness character of solutions of this equation was investigated in

[49]. See also Theorem 2.3.3 where we established that every solution of the
equation is bounded. Eq.(#173) can be written in the normalized form

5.173 Equation #173: =z, =

o+ ﬁxn + Tp—2

n=0,1,... 5.173.1
A+xn—2 ( )

Tp+1 =

with positive parameters «, 3, A and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.



380 Dynamics of Third-Order Rational Difference Equations

By Theorems 5.23.2 and 5.23.4 it follows that when
B+1<A,
the equilibrium of Eq.(5.173.1) is globally asymptotically stable.
Conjecture 5.173.1 Show that for the equilibrium T of Eq.(5.173.1),
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.173.2 Assume that
B+1> A

Show that Eq.(5.173.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

o+ ﬁmn + 6*%71—2
Bx, +Cx,_
Eq.(#174) can be written in the normalized form

5.174 Equation #174: =z, =

a+ Ty +0Tn_2
Tpal = PRSIG Fa n=0,1,... (5.174.1)
with positive parameters «, §, C and with arbitrary positive initial conditions
T2, LT_1, LQ-
The boundedness character of solutions of this equation was investigated
n [69]. See also Theorems 3.4.1 where we established that Eq.(5.174.1) has
unbounded solutions when
60>C.

From Theorem 5.221.1 it follows that every solution of Eq.(5.174.1) is bounded
when
o< C.

Eq.(5.174.1) has the unique equilibrium

146+ /(0 +1)2+4a(l+C)
21+ 0) '

T =

The characteristic equation of the linearized equation of Eq.(5.174.1) about
the equilibrium Zz is

i-1 , C 5

A A
tiyct T aro

)\3
+ 1+0C)z

=0. 174.2
= =0 (5.174.2)
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From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.174.1)
is locally asymptotically stable when

< C+2+VC?+8C+8

0<4 174,
< 21+ 0) (5.174.3)
or
C+2+vVC?2+8C+8
5> 2110 (5.174.4)
and
_as 2 2 _ i
. 36 — 206 4 26% + 2062 — V/6/—4 — 4C + 56 + 4CH (5.174.5)
2(C +1)
and unstable when
CH+2++vVC24+8C+8
5 5.174.6
” 2(1+ O) ( )
and
—35—2 202 + 20462 — —4—4 4
e 36 — 206 + 26% + 2C6% — 6/ C +56+ 05‘ (5.174.7)

2(C+1)
It is interesting to note that for the equilibrium z of Eq.(5.174.1),
Local Asymptotic Stabilty # Global Asymptotic Stabilty.

Indeed, for all positive values of C' for which

- C+2++VC?2+8C+8
2(1+C)

C

and for all values of ¢ such that

- C+2++V/C?+8C+8
21+ 0C) ’

C<é

the equilibrium Z of Eq.(5.174.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such initial
conditions the equilibrium Z of the equation is not a global attractor.

Conjecture 5.174.1 Assume that
0<C.
Show that for the equilibrium T of Eq.(5.174.1),

Local Asymptotic Stabilty — Global Attractivity.
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Open Problem 5.174.1 Assume that
60>C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.174.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.174.1) are unbounded.

(#it) Determine all possible periodic solutions of Eq.(5.174.1).

Conjecture 5.174.2 Show that Eq.(5.174.1) has bounded solutions that do
not converge to the equilibrium point T or to a periodic solution.

(0% + ﬁxn + 5$n—2

5175 Bquation #175: Ty = —p— 5 —

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#175) can be written in the normalized form

o+ /an + Tn—2
ntl = —/——————, =0,1,... 175.1
Tnal Br. 1oy n=20 (5.175.1)

with positive parameters «, 3, B and with arbitrary positive initial conditions
T_2, T_1, TQ-

Open Problem 5.175.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.175.1).

Conjecture 5.175.1 Show that for the equilibrium T of Eq.(5.175.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.175.2 Show that Eq.(5.175.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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(0% + ﬁxn + 651;71—2
OZL’n_l + Dl’n_g
Eq.(#176) can be written in the normalized form

5.176 Equation #176: z,,1 =

by = SO s gy (5.176.1)
C’mn—l + Tn—2
with positive parameters «, 3, C' and with arbitrary positive initial conditions
T2, T_1, XQ-
The boundedness character of this equation was investigated in [152] where
it was established that every solution is bounded from above and from below
by positive constants. See also Theorem 2.9.1 in Section 2.9.

Open Problem 5.176.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.176.1).

Conjecture 5.176.1 Show that for the equilibrium T of Eq.(5.176.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.176.2 Show that Eq.(5.176.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

a+ YT, 1+ 0T, o
A+ Bz,

This equation is a special case of a more general equation that is investigated
in Section 5.195.

5.177 Equation #177: xz,41 =

Conjecture 5.177.1 Assume that

v>0+ A
Show that every bounded solution of Eq.(#177) converges to the equilibrium.
Conjecture 5.177.2 Assume that

y=0+A.

Show that every solution of Eq.(#177) converges to a (not necessarily prime)
period-two solution.
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Conjecture 5.177.3 Assume that
v< I+ A
Show that for the equilibrium T of Eq.(#177),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.177.4 Assume that
y<do+ A

Show that Eq.(#177) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.

O+ YTp_1 + 0T, o
A + an—l
The boundedness character of solutions of this equation was investigated in

[49]. See also Theorem 2.7.1 where we established that every solution of the
equation is bounded. Eq.(#178) can be written in the normalized form

5.178 Equation #178: =z, =

o+ VLn—1 + 5$n72
1+ Tn—1 ’

Tpy1 = n=0,1,... (5.178.1)
with positive parameters «, 7, d and with arbitrary nonnegative initial condi-
tions x_2, x_1, Tg.

Eq.(5.178.1) has the unique equilibrium point

YH+I-1+/(y+5-1)2+4da
. .

r =

The characteristic equation of the linearized equation of Eq.(5.178.1) about
the equilibrium Zz is

T—" 6
— A =0.
1+ 1+2
From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.178.1)
is locally asymptotically stable when

A3+

| (5.178.2)
or

(1+7—082)(y+~2+6+75 —62)

<d—1 and o>
! (T+7)?

(5.178.3)
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and unstable when

(14+~y—=02)(y+12+06+~6 —62)
(14 7)? '

By Theorems 5.23.2 and 5.23.4 it follows that when

vy<d—1 and a<

v+ <1,

the equilibrium of Eq.(5.178.1) is globally asymptotically stable. This global
stability condition is improved by the next theorem. Also, the next two the-
orems, which we present here for the first time, establish the global stability
of the equilibrium Z of Eq.(5.178.1) when (5.178.2) holds.

Theorem 5.178.1 Assume that
6 <1.

Then every solution of Eq.(5.178.1) converges to the equilibrium Z.

PROOF Let

S =limsupz, and [ =liminfx,.

n— oo n—0o0

We divide the proof into the following two cases:

Case 1:
6 < 1.

We will show that, eventually,
1
Tp <y < 5 (5.178.4)

Assume for the sake of contradiction that there exists N such that

a+yrn_1+dTNn_2
1+zya

ITN+1 =

From this it follows that 1
TN—2 > 3 Y >
and, similarly,
Lo
aN-s > (5)7 7>
Inductively, we find that

1
TN+1-3k > (5)k7
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which is a contradiction and so (5.178.4) holds. With the use of (5.178.4), we
find that the function

o+ VYTn—1 + 6xn72
1+ Tn—1

f(l'nflv xn72) =

is strictly increasing in x,_1 and x,_o. Then, clearly,

a+(y+9)S a+(y+0)1
< — /- dIrI>—7r
Ss—rg  wdlz—7—
from which it follows that
S<z<I
Case 2:
0=1

Observe that
a+ (7 - xn72)xn71

1 + Tn—1

Tp+l — Tp—1—

and
QO+ Tp_g—7

$n+1—7: 1+x R
n—

Therefore, either
Tn >,

eventually, in which case from

a+~I+ S a+yS+1
< 2T ETe e i
Ss— 7 wd Iz2—7=%

it follows that
S=1,

or there exists a subsequence, of the form {x3, } or {z3,4+1} or {3,42}, which
is less that v and increasing. Assume without loss of generality that

T3 < T3ntz < 7.

From this it follows that {z3,} converges to a positive finite limit /y:
Z3n — lo € (0, 00).

From

o+ YT3n+1 + T3n
1+ z3n41

T3n+3 =

it follows that
T3n41 — l; € (0,00)
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Similarly,
Zant+2 — L2 € (0, 00).

When 6 = 1, Eq.(5.178.1) does not have prime period-three solutions and so
lo=0h=10=1

The proof is complete. |

Theorem 5.178.2 Assume that
y>6—-1>0.

Then every solution of Eq.(5.178.1) converges to the equilibrium Z.

PROOF We will make use of the fact we proved, in Lemma 2.7.1 of Section
2.7, that every solution of Eq.(5.178.1) is bounded from below by .

Let
S =limsupz,, I =Iliminfz,.
Then, clearly,
g < a+vI+46S
- 1+1
and S+dI
> a+yS+
- 1485

From these two inequalities it follows that
a+yS+ 0 -DI<SI<a+~I+(§—-1)S.

We divide the proof in the following two cases:

Case 1:
y>6—1

In this case, clearly,
(Y+1-8)(S—1) <0

and so S =1.
Case 2:
y=46—-1>0.

In this case
Sl =a+~vyS+~9I1
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There exists a sequence of indices {n;} and positive numbers {I_;}?_, such
that

S = lim x,,4+1 and [_; = lim x,,
From
P +yl+ (v + 1)l
b 1+,
we have
l_l =1 and Z_Q = 5.
Similarly,
l_3=Sand I_4,=1
and
l_4=5 and I_5 =1.
Therefore,

S=1=1_4.
The proof is complete. |

Conjecture 5.178.1 Assume that (5.178.3) holds. Show that every solution
of Eq.(5.178.1) converges to the equilibrium .

Conjecture 5.178.2 Show that Eq.(5.178.1) has solutions that do not con-
verge to the equilibrium point & or to a pertodic solution.

o+ YLn-1 + 527”_2

5.179 Equation #179: =z, = A+ D
Tn—2

This equation was investigated in [17], [70], [128], and [206]. Eq.(#179) pos-
sesses a period-two trichotomy depending on whether

y<d+A ~A=56+A, or v>§+ A

The precise result that allows the parameters «, J, and A to be nonnegative
was presented in Theorem 4.3.1.

Conjecture 5.179.1 Assume that
v>0+ A
Show that every bounded solution of Eq.(#179) converges to the equilibrium.

Open Problem 5.179.1 Investigate the global character of solutions of
Eq.(#179) with periodic coefficients.
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o+ VYTpn—1 + 5$n—2
Bz, + Cx,_4

Eq.(#180) can be written in the normalized form

5.180 Equation #180: z,,1 =

a+Tp-1+ 5zn—2
gl = ., n=0,1,... 5.180.1
T+l Bz, + 2,1 " ( )

with positive parameters «, §, B and with arbitrary positive initial conditions
T2, T_1, LQ-

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that Eq.(5.180.1) has
unbounded solutions when

0> B.

From Theorem 5.221.1 it follows that every solution of Eq.(5.180.1) is bounded
if
0 < B.
Eq.(5.180.1) has the unique equilibrium

1+6++/(0+1)2+4a(l+ B)
2(1+ B)

r =

The characteristic equation of the linearized equation of Eq.(5.180.1) about
the equilibrium Z is
B z—1 0
2y T _ =0
1+B (1+B)z (1+B)z

AP+ (5.180.2)

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.180.1)
is locally asymptotically stable when

< 14+2B++5+ 168 + 1282

1) .180.
0< 211 B) (5.180.3)
or
14+ 2B+ +/5+16B + 12B2
5 .180.4
= 21+ B) (5.180.4)
and
. 14+ 3B+ 2B2 - B§ —2B25 + 2B5§2 + 2B252
(@]
2(B? + B3)
—(142B)V1+ 2B + B2 —2B6 — 2B25 + 4B)? + 5B242 (5.180.5)
2(B? + B?) o

and unstable when
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- 14+2B++V5+16B + 12B2

§ 511 B) (5.180.6)
and
- 1+ 3B +2B? — B§ — 2B?§ + 2B§? + 2B?§2
“ 2(B2 + B9)
—(1+2B)V1+ 2B+ B2 —2B6 — 2B26 + 4B62 + 58242
2B 1 B . (5.180.7)

It is interesting to note that for the equilibrium z of Eq.(5.180.1),
Local Asymptotic Stabilty = Global Asymptotic Stabilty.

Indeed, for all positive values of B for which

< 14+2B++5+16B + 1282

B 2(1+ B)

and for all values of ¢ such that

_ 1+2B+ 5+ 16B + 12B2
2(1+ B) ’

B<é

the equilibrium Z of Eq.(5.180.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such initial
conditions the equilibrium Z of the equation is not a global attractor.

Conjecture 5.180.1 Assume that
0 < B.
Show that for the equilibrium T of Eq.(5.180.1),
Local Asymptotic Stabilty —> Global Attractivity.
Open Problem 5.180.1 Assume that
0> B.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.180.1) converge to the equilibrium T.

(ii) Determine the set of all initial conditions for which the solutions of

Eq.(5.180.1) are unbounded.

(#it) Determine all possible periodic solutions of Eq.(5.180.1).
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Conjecture 5.180.2 Show that Eq.(5.180.1) has bounded solutions that do
not converge to the equilibrium point T or to a periodic solution.

Conjecture 5.180.3 It follows from the work in Section 4.2 that Eq.(5.180.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.180.1) is locally asymptotically stable.

o+ YTp—1 + (5.17,1_2
Bl‘n + DZEn_Q

5.181 Equation #181: x,.; =

This equation can be written in the normalized form

Q+YTp—1 + Tp_2
ntl = , n=0,1,... 5.181.1
Tntl an + Tn—2 " ( )

with positive parameters «, v, B and with arbitrary positive initial conditions
T—2, T_1, XQ-

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v > 1.

Conjecture 5.181.1 Assume that

v > 1.
Show that every bounded solution of Eq.(5.181.1) converges to the equilibrium.
Conjecture 5.181.2 Assume that

v=1.

Show that every bounded solution of Eq.(5.181.1) converges to a (not neces-
sarily prime) period-two solution.

Conjecture 5.181.3 Assume that
v <1
Show that for the equilibrium T of Eq.(5.181.1),

Local Asymptotic Stability = Global Attractivity.
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Conjecture 5.181.4 Assume that
v <1

Show that Eq.(5.181.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

a+ YT, 1+ 0T, o
C:Unfl + Dxn72
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#182) can be written in the normalized form

5.182 Equation #182: x,.; =

o+ YLn—1 + Tp_2
= =0,1,... 5.182.1
Tn+1 an71 + T , N P ( )

with positive parameters «, v, C and with arbitrary positive initial conditions
T_2, T_1, Zo-

Open Problem 5.182.1 Inwvestigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.182.1).

Conjecture 5.182.1 Show that for the equilibrium T of Eq.(5.182.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.182.2 Show that Eq.(5.182.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.182.3 It follows from the work in Section 4.2 that Eq.(5.182.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.182.1) is locally asymptotically stable.

ﬁmn + VLn—-1 + 551371—2
A+ Bz,

This equation is a special case of a more general equation that is investigated
in Section 5.195.

5.183 Equation #183: =z, =
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Conjecture 5.183.1 Assume that
y>0+40+ A

Show that every positive and bounded solution of Eq.(#183) converges to the
positive equilibrium.

Conjecture 5.183.2 Assume that

y<B+0+ A

Show that for the positive equilibrium T of Eq.(#183) and with positive initial
conditions,

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.183.3 Assume that

vy<B+I+A

Show that Eq.(#183) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

. ﬁxn + VLn—-1 + 5$n—2
5.184 E t 184: x,1 =
quation # Tl A1 o,

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.7.1 where we established that every solution of the
equation is bounded. Eq.(#184) can be written in the normalized form

n n— 0 n—
tpin = OF tﬁ; +1 =2 =0,1,... (5.184.1)

with positive parameters 3,6, A and with arbitrary nonnegative initial condi-
tions x_o, x_1, Tg.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>B+05+1,

the zero equilibrium of Eq.(5.184.1) is globally asymptotically stable.
When
A<pB+d+1,

Eq.(5.184.1) has the unique positive equilibrium point

T=B+0+1— A
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Conjecture 5.184.1 Assume that
A<B+d+1

Show that Eq.(5.184.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.184.2 Show that for the positive equilibrium Z of Eq.(5.184.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

By + VTp—1 + 0Tp_2
A + D(L’n_g

5.185 Equation #185: =z, =

Eq.(#185) can be written in the normalized form

By + yTp_1 + Tn_2
n = y =0, 1, e .185.1
Foii e n=0 (5.185.1)

with positive parameters 3,7y, A and with arbitrary nonnegative initial condi-
tions x_s, T_1, xg.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.2.1 where we established that the equation has
unbounded solutions when

v>08+1+ A
By Theorems 5.23.2 and 5.23.4 it follows that when
A>pB+v+1,

the zero equilibrium of Eq.(5.185.1) is globally asymptotically stable.
When
A<pB+v+1,

Eq.(5.185.1) has the unique positive equilibrium point
r=0F+v+1-A
Conjecture 5.185.1 Assume that
>[4+ 1+ A

Show that every bounded and positive solution of Fq.(5.185.1) converges to
the positive equilibrium .
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Conjecture 5.185.2 Show that for the positive equilibrium T of Eq.(5.185.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.185.3 Assume that
v=08+1+A.

Show that every solution of Eq.(5.185.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.185.4 Assume that
A-fF-1<~y<pB+1+ A

Show that Eq.(5.185.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

. BTn +YTp1+ 0T 2
5.186 Equat 186 : x,11 =
quation # Tni1 B 1 Cro,

Eq.(#186) can be written in the normalized form

Tn + VYLn—-1 + 5$n72
g1 = ., n=0,1,... 5.186.1
Intl Tn + an—l " ( )

with positive parameters 7, J, C' and with arbitrary positive initial conditions
T2, T_1, XQ-

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that Eq.(5.186.1) has
unbounded solutions when

~y
6> — .
>C+C

By Theorem 5.221.1 it follows that every solution of Eq.(5.186.1) is bounded
when

v
o< =+C.
C +
Eq.(5.186.1) has the unique equilibrium

1+~y+4
1+C

T =
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The characteristic equation of the linearized equation of Eq.(5.186.1) about
the equilibrium z is

y+6-—-C 2 C+Co—vy B 6 B
(1+~v40)(140) (1+C)A+~v+86)" 1+y+6

PREE 0. (5.186.2)

From this and Theorem 1.2.3 it follows that the equilibrium Z of Eq.(5.186.1)
is locally asymptotically stable when

2427+ C+~C

R ()

+1/8 4207 + 1292 + C2 + 8C + 247C + 1672C + 67C?2 + 572C?2

2G5 C) (5.186.3)

and unstable when
2+42y+C+1C

21+ C)

/8 + 207 + 1292 + C2 4 8C + 247C + 1672C + 67yC?2 + 572C?2
2(1+0C) )

(5.186.4)
It is interesting to note that for the equilibrium Z of Eq.(5.186.1),

Local Asymptotic Stabilty # Global Asymptotic Stabilty.

Indeed, for all positive values of v, C for which

24 2v+C+~1C
2(1+C)

v+ C <

+4/8 + 207 + 1292 + C2 4 8C + 247C + 1672C + 67C? + 572C2
2(140)

and for all values of ¢ such that

2+2y+C+~C

5
y+C <6< 201 0)

+4/8 + 207 + 1292 + C2 4 8C + 247C + 1672C + 67yC? + 572C?2
2(14+0) ’

the equilibrium z of Eq.(5.186.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such initial
conditions the equilibrium of the equation is not a global attractor.
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Conjecture 5.186.1 Assume that

d< S +C.

Ql=

Show that for the equilibrium T of Eq.(5.186.1),

Local Asymptotic Stabilty — Global Attractivity.
Open Problem 5.186.1 Assume that

v
0> —=+C.
>C+

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.186.1) converge to the equilibrium Z.

(ii) Determine the set of all initial conditions for which the solutions of

FEq.(5.186.1) are unbounded.

(#91) Determine all possible periodic solutions of Eq.(5.186.1).

Conjecture 5.186.2 Show that Eq.(5.186.1) has bounded solutions that do
not converge to the equilibrium point & or to a periodic solution.

Conjecture 5.186.3 It follows from the work in Section 4.2 that Eq.(5.186.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.186.1) is locally asymptotically stable.

ﬂwn + YTn—1 + 5-1'n72
an + D[L'n,Q

5.187 Equation #187: x,.; =

Eq.(#187) can be written in the normalized form

Ty + VLn—1 + 5mn—2
]l = . n=0,1,... 5.187.1
Tt Ty + Dxp_o " ( )

with positive parameters v, d, D and with arbitrary positive initial conditions
T—2, T_1, XQ-

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v >144.

Open Problem 5.187.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.187.1).
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Conjecture 5.187.1 Assume that

v>1+4.
Show that every bounded solution of Eq.(5.187.1) converges to the equilibrium.
Conjecture 5.187.2 Assume that

v <1404
Show that for the equilibrium T of Eq.(5.187.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.187.3 Assume that

vy=1+54.

Show that every solution of Eq.(5.187.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.187.4 Assume that
v <144

Show that Eq.(5.187.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

. Bn + YTp-1+ 0Tpn—2
5.188 Equation #188: x,,1 =
d # et an—l + Dxn—Z

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.2 where we established that every solution of this
equation is bounded. Eq.(#188) can be written in the normalized form

ﬁxn +Zp-1+ 61‘71—2
]l = . n=0,1,... 5.188.1
Tnl Tp—1+ Dxp_o " ( )

with positive parameters 3, d, D and with arbitrary positive initial conditions
T2, L1, Zo-

Open Problem 5.188.1 [nvestigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.188.1).
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Conjecture 5.188.1 Show that for the equilibrium T of Eq.(5.188.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.188.2 Show that Eq.(5.188.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.188.3 It follows from the work in Section 4.2 that Eq.(5.188.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.188.1) is locally asymptotically stable.

o+ P,

5.189 Equation #189: =z, = A+ Br. 1 Cx + Dz
n n—1 n—2

Eq.(#189) can be written in the normalized form

o+ x,
n
A4z, +Cxpyq + Dxys’

Tppy = =0,1,... (5.189.1)

with positive parameters «, A,C, D and with arbitrary nonnegative initial
conditions x_o, x_1, Xg.
By Theorems 5.23.2 and 5.23.3 it follows that when
A>1,

the equilibrium of Eq.(5.189.1) is globally asymptotically stable.

Conjecture 5.189.1 Show that for the equilibrium T of Eq.(5.189.1),

Local Asymptotic Stabilty — Global Attractivity.

Conjecture 5.189.2 Assume that
A<,

Show that Eq.(5.189.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.
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O+ YTp_q

5.190 Equation #190: =z, = A+ Bz, +Cz. 1 + Dz
n n—1 n—2

Eq.(#190) can be written in the normalized form

Q+ Tp_1
Tptl1 = , n=0,1,... 5.190.1
+ A+ Bz, +xn_1+ Dxyo ( )

with positive parameters a, A, B, D and with arbitrary nonnegative initial
conditions z_o, x_1, xg.
By Theorems 5.23.2 and 5.23.3 it follows that when

A>1,
the equilibrium of Eq.(5.190.1) is globally asymptotically stable.
Conjecture 5.190.1 Show that for the equilibrium T of Eq.(5.190.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.190.2 It follows from the work in Section 4.2 that Eq.(5.190.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.190.1) is locally asymptotically stable.

Conjecture 5.190.3 Assume that
A<l

Show that Eq.(5.190.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

o+ 0Ty_2
A+ Bx, + Cxp_1 + Dx,_s
Eq.(#191) can be written in the normalized form

5.191 Equation #191: =z, =

a+Tp_2
n
A+ Bx, +Cxp_1 +2Tp_a’

Tppy = =0,1,... (5.191.1)

with positive parameters o, A, B,C and with arbitrary nonnegative initial
conditions x_o, x_1, xg.



Known Results for Fach of the 225 Special Cases 401
By Theorems 5.23.2 and 5.23.3 it follows that when

A>1,
the equilibrium of Eq.(5.191.1) is globally asymptotically stable.
Conjecture 5.191.1 Show that for the equilibrium T of Eq.(5.191.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.191.2 Assume that

A<

Show that Eq.(5.191.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

BTy + YTp_1
A + an + Cl’n,l + D.]?n,Q

5.192 Equation #192: z,., =

Eq.(#192) can be written in the normalized form

Tn + VYTn—1 n
A4z, +Cxp_q1 + Dxys’

Tppy = =0,1,... (5.192.1)

with positive parameters v, A,C, D and with arbitrary nonnegative initial
conditions z_s, x_1, x¢.
By Theorems 5.23.2 and 5.23.4 it follows that when

AZ>y+1,

the zero equilibrium of Eq.(5.192.1) is globally asymptotically stable.
When
A<y+1,

Eq.(5.192.1) has the unique positive equilibrium point

1+~v—A
1+C+D’

T =

Conjecture 5.192.1 Show that for the positive equilibrium T of Eq.(5.192.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.
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Conjecture 5.192.2 Assume that
A<vy+1.

Show that Eq.(5.192.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.192.3 It follows from the work in Section 4.2 that Eq.(5.192.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.192.1) is locally asymptotically stable.

ﬂxn + 5xn—2
A + Bl’n + Cl‘n_l + Dl’n_z
Eq.(#193) can be written in the normalized form

5.193 Equation #193: =z, =

Tn + 5wn72
n+l = , =0,1,... 5.193.1
T A 2, 4 Cap g + Dz o ( )

with positive parameters d, A, C, D and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>0+1,

the zero equilibrium of Eq.(5.193.1) is globally asymptotically stable.
When
A<di+1,

Eq.(5.193.1) has the unique positive equilibrium point

1+6—A
1+C+ D’

T =
Conjecture 5.193.1 Show that for the positive equilibrium T of Eq.(5.193.1)
and with positive initial conditions,
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.193.2 Assume that
A<d+1.

Show that Eq.(5.193.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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’Yxn—l + 5-/1/‘71—2
A+ Bx, +Cx,_1+ Dx,_o
Eq.(#194) can be written in the normalized form

5.194 Equation #194: z,,, =

Tp—1+ (sxan
A+ Bz, +x,-1+ Dx,o’

Tpp1 = n=0,1,... (5.194.1)

with positive parameters §, A, B, D and with arbitrary nonnegative initial con-
ditions z_s, T_1, g.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>0+1,

the zero equilibrium of Eq.(5.194.1) is globally asymptotically stable.
When
A<do+1,

Eq.(5.194.1) has the unique positive equilibrium point

1+0-A

T 1+B+D’

Conjecture 5.194.1 Show that for the positive equilibrium Z of Eq.(5.194.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.194.2 Assume that
A<d+1.

Show that Eq.(5.194.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.194.3 It follows from the work in Section 4.2 that Eq.(5.194.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.194.1) is locally asymptotically stable.

a+ Bxr, + YTp_1+ 0x,_2
A+ Bx,

5.195 Equation #195: z,,1 =

In this section we allow the parameters «, 3, v, §, A to be nonnegative and so
the results we present here are also true in several special cases of Eq.(5.0.1).
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Eq.(#195) can be written in the normalized form

a+ ﬁxn + YLn—1 + 6$n72

=0,1,... 5.195.1
At n ( )

Tn+1 =

with nonnegative parameters «, 3,7, d, A and with arbitrary nonnegative ini-
tial conditions x_o, x_1, xg.

The boundedness character of this equation was investigated in [67]. See
also Theorem 3.1.1 where we established that the equation has unbounded
solutions when

v>pB+5+ A

Eq.(5.195.1) has one or two equilibrium points, namely, the zero equilibrium
and/or the positive equilibrium

B+ —-A+/(B+r+d—A4)?+4da
5 :

xr =

The characteristic equation of the linearized equation of Eq.(5.195.1) about
the zero equilibrium, as long as it exists, is
By J
NN - A — — =0 5.195.2
A A A ( )
The characteristic equation of the linearized equation of Eq.(5.195.1) about
the positive equilibrium Z, as long as it exists, is

TP 0 0 (5.195.3)

A3 -
ta1z) T A+z Atz

By Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.195.1)
is globally asymptotically stable when

a=0and f+v+4+0 < A

When
a=0and B+7+ > A,

Eq.(5.195.1) has the unique positive equilibrium
T=03+v+0- A

The following theorem about the global stability of the positive equilibrium
of Eq.(5.195.1) was established in [68].

Theorem 5.195.1 Assume that

6=A and 0 <y <g.
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Then the positive equilibrium
=0+
of the equation

n n— A n—
Zmps = 2% +7z+1$+ T2 01, (5.195.4)

1s globally asymptotically stable.

PROOF  From Eq.(5.195.3) and Theorem 1.2.3 the local stability of the
positive equilibrium of Eq.(5.195.4) follows. It remains to show that Z is a
global attractor of all positive solutions of Eq.(5.195.4).

When
7 =0,
the proof follows from Theorem 5.89.1.

Assume that
0<y<p

and let {z,} be a solution of Eq.(5.195.4). We claim that, eventually,
Ty > 0.

Suppose for the sake of contradiction that there exists N, sufficiently large,

such that
Bxn +yrNn_1+ ArNn_2

IN+1 = A+t an <B.
Then, clearly,
. BA
_ o< —
min{zy_1,xn_2} < A
Similarly,
. BA?
MIN{EN-3, TN—4, TN—5| < ——.
{*N_3,N_4,TN_5} A7

Sufficient repetition of this argument leads to a contradiction and proves our
claim that, eventually,

T, > 0.

From this it follows that for some N > 0, sufficiently large, there exists a
positive number

Le(3,08+7)

such that I
v
L _ _ U= ——.
<IN-2,TN-1,TN < L—3
We claim that
xn € [L,U], for n > N —2.
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Indeed,
U + (y+A)L Bryn +yrN_1+xN_2 PL+(y+AU
L = = =
Aro ST 1+an STA+L v

and the proof follows by induction. Set

S =limsupz,41 and I =liminfz, 1.
Then, clearly,

BI+ (v+ A)S BS+ (v + Al
< - I<—\
Sy sy
From this it follows that
BS +~I < SI <BI++S. (5.195.5)

We divide the proof into the following two cases:

Case 1:
0<y<p.

By Eq.(5.195.5) we find that

(v=8)(S—1)<0.

Hence, S = 1.
Case 2:
0<vy=0.
By (5.195.5) it follows that
1
gL
I-p

There exists a sequence of indices {n;} and positive numbers {L_;}?_, such
that
S = lim xp,4+1 and L_; = lim x,,_¢.
71— 00 71— 00

By taking limits in Eq.(5.195.4) we find that

o [)’Lo + ’}/L_l + AL_2

S A+ Ly

From this it follows that
LO =1 and L_1 = L_2 = S,

otherwise,
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which is a contradiction. Similarly,
L_1 =S and L_Q = L_3 =1

Hence,
I=L_,=25.

The proof is complete. |
Conjecture 5.195.1 Show that the special case of Eq.(5.195.1) given by

Tny1 = ﬂx7L+’le:;1 ‘|‘I‘n—27 n— 0’17.” (51956)

with B,y € (0,00) has a period-two trichotomy character. More precisely,
show that the following three statements are true:

(a) Every solution of Eq.(5.195.6) has a finite limit if and only if

v < B+2.

(b) Ewvery solution of Eq.(5.195.6) converges to a (not necessarily prime)
period-two solution if and only if

vy=0+2.
(¢) Eq.(5.195.6) has unbounded solutions if and only if
v > 6+ 2.
By Theorems 5.23.2 and 5.23.3 it follows that when
a>0and f+v+0< A,
the positive equilibrium of Eq.(5.195.1) is globally asymptotically stable.

Conjecture 5.195.2 Show that for the positive equilibrium Z of Eq.(5.195.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.195.3 Assume that
a>0and A—-fF—-0<y<pf+5+A

Show that Eq.(5.195.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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For the remainder of this section we assume that

y=p6+0+A4A

and
8+ A>0. (5.195.7)

In [67] it was established that every solution of Eq.(5.195.1) converges to a
(not necessarily prime) period-two solution. The restriction (5.195.7) cannot
be relaxed in this period-two convergence result. In fact, when 8 = A = 0 the
resulting equation

ot 8
gy = ST T O g (5.195.8)

xn

with
a>0and 6 >0

has unbounded solutions. See [46] and [76]. In particular, every solution of
Eq.(5.195.8) with
T_9 = X0 S 1)
is such that
ZTop = xg, for n >0
and

) «
Top41 = —Tapn—1+ [0+ — ) — 00, as n — oo.
Zo Zo

Theorem 5.195.2 Assume that
y=0+0+A and B+ A>0.

Then every solution of Eq.(5.195.1) converges to a (not necessarily prime)
period-two solution.

The proof of Theorem 5.195.2 is very long and in order to simplify it we first
establish several lemmas describing the character of solutions of Eq.(5.195.1).
We begin by stating several identities that follow from Eq.(5.195.1) and will
be used throughout this section. They are all valid for n > 0.

a+ fra, + (B+0+A)xan_1 + 0T2,—2
A + Ton

Ton+1 = (51959)

_ « 48 Tan Tan—1 Toan—2
A-i—l‘gn A+ xo, A+ xo, A+£L'2n'

a+ fropp1 + (B+ 0+ A)xop + 02251
A+ zopt1

+(B+0+A)

Toan+2 =
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« Ton41 T2n Ton—1
= + 8 +(B+o+A +6 .
A+ zont1 A+ zont1 ( ) A+ zont1 A+ 2941

B+ A 5
($n+1 - mnfl)

Tpto — Tn (X — Tp—2). (5.195.10)

- _Pra o
A+In+1 A‘i’xn-i-l
B+ A )
Topts — Top = ————— (Tont1 — Ton—1) + —————— (Tan — Ton_2) .
on+2 — T2 A+x2n+1( I+l — Tan—1) A+$2n+1( 2 on—2)
(5.195.11)
B+ A )
Topas — Topel = ———————— (Topto — Tan) + ———— (Topt1 — Tan—1) -
2n+3 — T2n+1 A+x2n+2(2+2 on) A+$2n+2(2+1 2n—1)
(5.195.12)
a+ Baon + (B+ 0 — 2on) Ton—1 + 0x2n—2
Ton41 — T2n—1 A+ 2o, ( )
n 5_ n n 6 n—
Tonys — won = 2T LTt £ (B0~ anga) Ton + 0Tanz1 5105 1
A+ zopt
Tony1 a1 g Ten 1 +5+5+A s Tan=2 1
Ton—1 A+x2n Ton—1 A+x2n Toan—1 A+$2n A+$2n xQn—1.
(5.195.15)
Tont2 « e Topp1 1 B+O+A 5 Tan—1 1
Ton A+ 2ont1 Tan = A+ Tonp1 Tan A+ Toni1r A+ Tongr Ton
(5.195.16)

Among the above equations, the identity described by (5.195.10) is at the
heart of the period-two convergence of solutions of Eq.(5.195.1). Its proof is
a consequence of Eq.(5.195.1) as follows. Note that

Tpt1Tn =+ Pxy + (B+0+A)xp1 + 02y — ATy

and so,
a+Brpi1+ (B+0+ Az, + dxp_1
Tn+2 — Tp = — T
A +xn+l
o+ P+ (B0, 0z, —a—Pa, — (B+0+A) 1 — 0Ty_2 + ATy
A + xn-{-l
_ B+A)xpi1 — (B+A)Tp1 +6(Tn — Tp—2)
A +xn+1
B+ A 0
At ran (@nr1 = 2n-1) + A+ zpi1 (@n = Zn-2).

From (5.195.10), and more precisely from its equivalent versions (5.195.11)
and (5.195.12), it is now clear that the following result is true about the
subsequences of the even terms {xs,},- ; and the odd terms {za,41}he
of every solution {z,},- _, of Eq.(5.195.1).
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Lemma 5.195.1 The two subsequences {xa,} and {xan+1} of every solution
of Eq.(5.195.1) are either both eventually monotonically increasing, or they
are both eventually monotonically decreasing, or one of them is monotonically
increasing and the other is monotonically decreasing.

In the sequel we will denote the limits of the subsequences of the even and
odd terms of a solution of Eq.(5.195.1) by Lo and L1, respectively. That is,

Ly= lim z9, and L; = lim xoy41.
n—oo

n—oo

Each of these limits may only have one of the following three values:
0, oo, or a positive real number.
Now let us look for all period-two solutions
c Gy Y, .
of Eq.(5.195.1). From Eq.(5.195.1) we have

a+ B+ (B+6+A) o+

¢= A+

and so

P =a+(B+0)(¢+7),
which implies that

Pl —(B+0)=a+(B+0)¢

and

Pl —(B+0)] =a+(6+96)0¢.

When ¢ # 1 we have a prime period-two solution, while when ¢ = v we see
that ¢ is the equilibrium Z of Eq.(5.195.1). Note also that in all cases

z, ¢, ¥, € (B+6,00),

provided that a4+ 3+ > 0. For the sake of completeness and unification, our
proof here of the period-two convergence of Eq.(5.195.1) includes all previous
special cases of Eq.(5.195.1). When

a=F=5=0, (5.195.17)
Eq.(5.195.1) reduces to
Az, _
x"+1::14%—xi’ for n=0,1,... (5.195.18)
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with A > 0, from which it is clear that
Tpt+1 < Tp—1-

Therefore, in this case, every solution of Eq.(5.195.18) converges to a (not
necessarily prime) period-two solution of the form

0,0, .. (5.195.19)

with ¢ > 0. This completes the proof of the Theorem when (5.195.17) holds.
When 6 = 0, that is, for the equation

a+ Py + (B+A) zny

il = —0,1,... 195.2
Tnal At n=>0 (5.195.20)
it follows from (5.195.10) that
+A
Tp+2 — Tp = 145_’_7;%“ (Jjn_;,_l — Jjn_l) y for n 2 0. (519521)

From (5.195.21) we see that for every solution of Eq.(5.195.20) exactly one of
the following statements is true for all n > O:

Tn+1 < Tp-—1

Tn+1 = Tp-—1
Tn+1 > Tp—1-

Clearly, all bounded solutions of Eq.(5.195.20) converge to a period-two solu-
tion. As in [175, p. 40], assume for the sake of contradiction that there is an
unbounded solution, that is, a solution such that:

lim x5, = 00
n—oo
while {z2,,+1} is increasing. The case where

lim xg,41 = 00
n—oo

and {xq,} is increasing is similar and will be omitted. Choose N > 0 such

that
g+ A . 6+ A <1
A+ zonyr A+ xon )
Define
__p+r4  Bs+4 and o= (rany — )
P A+zont1 A+ zon N N2
Then

B+A  p+A
A+ zont1 A4 a9,

<p, for n> N.
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Hence, from (5.195.21) we find that
_p+4
A+ zont1

_ B+A B+4
A+zon1 A+ zan

TL2N+42 — T2N = ($2N+1 - 332N—1)

(1‘21\1 - 332N—2) =0p

and
T2N4+4 — T2N42 = M(932N 3 — I2N 1)
* 2T A+ wangs - *
g+ A g+ A

(Tant2 — Tan) < 0p°.

T A+ zanss A+ Tongo
It follows by induction that for p=1,2,...

+1
ToN42(ut1) — TaNt2u < op”

and so by summing up

2
op
Toant2(ut1) < Tan+2 + T, for p=1,2,....

This contradicts the assumption that the subsequence of the even terms con-
verges to oo, and completes the proof of the Theorem when § = 0. Therefore,
in the sequel we will assume that

0> 0.

Returning to the period-two solutions of Eq.(5.195.1) the following result is
now clear.

Lemma 5.195.2 All prime period-two solutions

"7¢7w7"'
of Eq.(5.195.1) are given by

(B+0)+a

O B9

with
¢# and ¢, € (B+6,00).

Clearly, when both Ly and L; are positive numbers, the sequence
ey Loy Ly, ...
is a period-two solution of Eq.(5.195.1) and as we showed before

LoLy =a+ (B+6) (L1 + La).
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In particular,
Lo, Ly € (B4 0,00).
When Ly = Ly, then the solution converges to the equilibrium Z of Eq.(5.195.1)
and when Ly # Lp the solution converges to a prime period-two solution of
Eq.(5.195.1). Note that Eq.(5.195.1) has a huge set of prime period-two solu-
tions, as described by Lemma 5.195.2.
The following Lemma shows that neither Ly nor L; can be zero.

Lemma 5.195.3 Neither of the subsequences {xa,} and {xan4+1} may con-
verge to zero.

PROOF Assume for the sake of contradiction that
Lo=0.

The case where L, = 0 is similar and will be omitted. Now note that when
Ly = 0, A must be positive. Otherwise, A = 0,6 > 0, and so clearly
Tpto > B> 0.

There are three possibilities for Li: L; may be zero, oo, or a positive
number. We will show that each of them leads to a contradiction.

If L; = 0, then both subsequences are eventually decreasing to zero and
(5.195.13), with n sufficiently large, implies that

a+ Bz, + (840 — Ton) Ton—1 + 0x2n—2

0> >0,
- A+ 29,
which is impossible.
If Ly € (0,00), by taking limits in (5.195.9) we see that
0+ AL
lea-i-(ﬁ—i— +A) L, L,
A
which is also impossible.
Finally, if L1 = oo, by taking limits in (5.195.15) we find
lim ($2n+1) _ B+6+A
n—oo \ Ton—1 A
and from (5.195.16) we obtain
1>($2n+2>26 1 RS
Ton A Tan+1 Ton
2 T2n—1 + (127Ltl) 2
which leads to a contradiction, as n — oco. The proof is complete. |

It follows from Lemma 5.195.3 that Ly and L; are positive numbers or co.
The next results establish that neither Ly nor L; may be below

B +6.
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Lemma 5.195.4
Lo, Ly € [ﬁ—F(S,OO]

PROOF Assume for the sake of contradiction that
Lo < B+6.

The proof when L; < 34 ¢ is similar and will be omitted. There are two
possibilities for Ly: L; may be positive or L; = co. We will show that each
of them leads to a contradiction.
If Ly € (0,00) then
Lo, Ly, ...

is a period-two solution of Eq.(5.195.1) and so, by Lemma 5.195.2, Ly > 5+,
which is a contradiction. On the other hand, if L; = oo, then from (5.195.15)

<$2n+1) :/3+5+A

lim
Ton—1 A+ Ly

n—oo

and so from (5.195.16),

. Top42 8 1 1
l1=Ilm ([ — | =—+4+0—F—— -
n%oo( Top, ) Ly 0+ ﬁXfJLFA Lo’
that is,
— B+,
which is also a contradiction. |

Lemma 5.195.5 (i) If Ly € (0,00) and Ly = oo, then Lo =+ 4.
(i) If Lo = 00 and Ly € (0,00), then Ly = 3+ 6.

PROOF We will prove (). The proof of (i) is similar and will be omitted.
From (5.195.15) we obtain

hm x2n+1 _ ﬂ + 6"‘ A
N A+ Ly

n—00 \ T2n—1

and so from (5.195.16),
g 0 A+ Lo

+
Lo Lo B+o+A

Hence,
Lo=0+36

and the proof is complete. |
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Lemma 5.195.6 It is not possible that both Ly and Ly are equal to co.

PROOF  Otherwise, from (5.195.15)

1< lim (”“"*1) —0,

n—00 \ Top-1
which is impossible. |

Lemma 5.195.7 Every solution of Eq.(5.195.1) is eventually bounded from
below by (8 + 9).

PROOF  Assume for the sake of contradiction that there exists a solution

of Eq.(5.195.1) not bounded from below by (3+ ). Then in view of the
previous lemmas the only thing that the solution can do is that one of the
subsequences {x2,} and {zas,+1} eventually increases to (8 + ) while the
other eventually increases to co. We will assume that

lim x9, =+ 3J and lim x9,+1 = 00
n—oo n—oo

with both subsequences being eventually increasing. The case where the even
and odd subsequences are interchanged is similar and will be omitted.
Let € € (0,8 4+ ¢) be given and sufficiently small, and let N > 0 be such
that
B+d—€e<z9, <P+, for n>N.

Then for any Ny > N and sufficiently large we have
TaNgt+2 < B+,
which implies that

a+ Brany+1 + (B+ 60+ A) xan, + 0zan,—1
A+ zong+1

Tong 42 = <B+6. (5.195.22)

Define

(ﬁ+5+A)(5+5—6)+a—(ﬁ+5)A.

RO = 5

Then (5.195.22) implies that

a+ Brong+1 + (B+ 5+ A)xan, + 0xan,—1 < (B+ ) A+ (8 + ) zan,+1

and so 54544 (6464
+0+ —(B+
TaNg+1 > L2Ng—1 T+ 5 TN, + a 5
0+ A - 0) A
>$2N0_1+%(5+5—6)+%.
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Hence,
T2No+1 > TaNy,—1 + Ro

and by using Eq.(5.195.1),

a+ Bxon, + (B+ 5+ A) xony—1 + 0Tan,—2
A+ Tan,

> zan,—1 + Ro.

Therefore,
a+PBron,+(B+ 0 + A) xan,—1+0zan,—2 > ATony—1+Tan, Tang—1+Ro (A + zan,)
and so

(B+0 — wan,) xany—1 > Ro (A + x2n,) — a — Bran, — 0TaN, 2,

that is,

Ry (A + x2n,) — a — Bxan, — 0Tan,—2

T2No—1 >
’ B+ 6 —zan,

Hence,
(B4 0) xang—1 — TanyTany,—1 > Ro (A + zan,) — @ — Bran, — 0Zan,—2
or, equivalently,
(B+6) rang—1 — @ — Brany—1 — (B+ 0+ A) vany—2 — d22n,—3 + ATan,
> Ro(A+zan,) — o — Bran, — 02N, —2-

Thus,

R 1
TaNy—1 > T2N,—3 T+ 70 (A+zon,) + 5 (B+ A) (zang—2 — Tan,)

R
> 1‘2N073+TO(A+5+5—6)

and so from Eq.(5.195.1) we see that

~ 5B+ A (B+9)

a+ Bron,—2+ (B+5+ A)zan,—3 + 0Tan,—4
A+ zon,—2

B +A) B+
> TaNny-3t 50 (A+ﬁ+6—6)_w.
Therefore,

R (A+zony—2) — o — BTany—2 — 0ZaN,—a
B+0—xan,—2

TaNy—3 >

)
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where

B+o+A—e (B+A)(B+9)
1 0
It follows by induction that for k > 0,

Ry

Ry (A4 zan,—2k) — @ — BTang—2k — 0TaN,—2(k+1)
B+ 6 — zan,—2k

L2Ng—(2k+1) =

with
B+o+A—e (B+A4)(B+9)
Ry = 5 Ry — 5
Clearly, for Ny and k sufficiently larﬁe7 this leads to a contradiction and the

proof of the lemma is complete.

We are now ready to present the proof of Theorem 5.195.2.

PROOF
Clearly, every bounded solution of Eq.((5.195.1) converges to a (not nec-
essarily prime) period-two solution. So assume for the sake of contradiction
that Eq.(5.195.1) has an unbounded solution. We will assume that
lim 29,41 =00 and lim z9, = B+ 4,
n—oo n—oo
with the subsequence of even terms of the solution being eventually decreasing
and the subsequence of odd terms being eventually increasing. The case where
the behavior of the even and odd subsequences is reversed is similar and will
be omitted.
Then from (5.195.10) we obtain

Ton4+3 — Tan+1 < (Ton41 — Tan—1)

A+ Zonso
é
< B+0+A (T2ng1 — Ton—1), for n>0.
Therefore,
é
Toptrl — Toan—1 < m (IEl — ‘T—l)
and by summing up we find
Toant1 — 21 < Fr A

This contradicts the hypothesis that

lim Ton+4+1 = X0
n—oo

and completes the proof of the theorem. |
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Conjecture 5.195.4 Assume that
v>pB+6+ A

Show that every positive and bounded solution of FEq.(5.195.1) converges to
the positive equilibrium.

a+ By, + YTp_1 + 0xp_2
A + an_l

5.196 Equation #196: x,.; =

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.7.1 where we established that every solution of the
equation is bounded. Eq.(#196) can be written in the normalized form

a+ ﬁxn + YTn—1 + Tn—2

n=0,1,... 5.196.1
y ( )

Tn+1 =

with positive parameters «, 3, v, A and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.
By Theorems 5.23.2 and 5.23.3 it follows that when
B+y+1<A,

the equilibrium of Eq.(5.196.1) is globally asymptotically stable.

Conjecture 5.196.1 Show that for the equilibrium T of Eq.(5.196.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.196.2 Assume that
B+vy+1>A

Show that Eq.(5.196.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.
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a+ Bn + yTn-1 + 02n_

5.197 Equation #197: =z, = A+ D
Tp—2

Eq.(#197) can be written in the normalized form

a+ Bxy +7Tp-1+ Tn—2
nal = , n=0,1,... 5.197.1
Tn+1 A+ 2, , n ( )

with positive parameters «, 3, v, A and with arbitrary nonnegative initial con-
ditions z_o, x_1, xo.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.2.1 where we established that the equation has
unbounded solutions when

v>B+1+ A
By Theorems 5.23.2 and 5.23.3 it follows that when
B+v+1< A,
the equilibrium of Eq.(5.197.1) is globally asymptotically stable.
Conjecture 5.197.1 Assume that
v>p[B+1+ A
Show that every bounded solution of Eq.(5.197.1) converges to the equilibrium.
Conjecture 5.197.2 Assume that
vy<B+1+ A
Show that for the equilibrium T of Eq.(5.197.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.197.3 Assume that
y=p+1+A.

Show that every solution of Eq.(5.197.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.197.4 Assume that
A-pf-1<y<f+1+4+A

Show that Eq.(5.197.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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a+ Br, +YTn1 + 0T,
Bx, + Cx,_

5.198 Equation #198: z,,1 =

Eq.(#198) can be written in the normalized form

o+ Ty +YTp—1 + 0Tp_2
= =0,1,... 5.198.1
Tn+1 T, +C.’L'n71 , N P ( )

with positive parameters «a,~,d,C and with arbitrary positive initial condi-
tions x_s, x_1, g.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has

unbounded solutions when

o
5>C+C.

By Theorem 5.221.1 it follows that every solution of Eq.(#198) is bounded if

v
o< C+ =.
< —|—C

Conjecture 5.198.1 Assume that

i
0<d6<CH+ —=.
<0< +C

Show that for the equilibrium of Eq.(5.198.1),

Local Asymptotic Stabilty — Global Attractivity.
Open Problem 5.198.1 Assume that

v
0>CH+ —.
> +C

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.198.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of
FEq.(5.198.1) are unbounded.

(#91) Determine all possible periodic solutions of Eq.(5.198.1).

Conjecture 5.198.2 It follows from the work in Section 4.2 that Fq.(5.198.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.198.1) is locally asymptotically stable.

Conjecture 5.198.3 Show that Eq.(5.198.1) has bounded solutions that do
not converge to the equilibrium point or to a periodic solution.
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@+ Bxy + Y1 + 0Tp—2
Bx, + Dx,,_o

Eq.(#199) can be written in the normalized form

5.199 Equation #199: z,,, =

a+ Ty +YTp_1 + 0Tp_2
ntl = , =0,1,... 5.199.1
Tnt Tn + Dmn72 " ( )

with positive parameters «,7,d, D and with arbitrary positive initial condi-
tions x_9, T_1, Tg.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v>144.

Open Problem 5.199.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.199.1).

Conjecture 5.199.1 Assume that
v>144.
Show that every bounded solution of Eq.(5.199.1) converges to the equilibrium.
Conjecture 5.199.2 Assume that
v<1404.
Show that for the equilibrium T of Eq.(5.199.1),
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.199.3 Assume that
v=1+454.

Show that every solution of Eq.(5.199.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.199.4 Assume that
v <1404.

Show that Eq.(5.199.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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a+ Bn + yTn-1 + 02n_
an—l +D Tp—2
The boundedness character of this equation was investigated in [69]. See also

Theorem 2.3.2 where we established that every solution of this equation is
bounded. Eq.(#200) can be written in the normalized form

5.200 Equation #200: =z, =

o+ an + Tp—1 + 5xn72
ntl = , n=0,1,... 5.200.1
et Tp—1+ Dxn—Q " ( )

with positive parameters «, 8,4, D and with arbitrary positive initial condi-
tions x_o, x_1, Tg.

Open Problem 5.200.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.200.1).

Conjecture 5.200.1 Show that for the equilibrium T of Eq.(5.200.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.200.2 Show that Eq.(5.200.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.200.3 It follows from the work in Section 4.2 that Eq.(5.200.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.200.1) is locally asymptotically stable.

a+ By + YTn_1
A+ Bz, + Cx,_q

5.201 Equation #201: =z, =

Eq.(#201) can be written in the normalized form

a+ﬂxn+xn,1
il = , =0,1,... .201.1
Tnal T — n=>0 (5.201.1)

with positive parameters «, v, A, C' and with arbitrary nonnegative initial con-
ditions z_o, x_1, xo.

Conjecture 5.201.1 Show that for the equilibrium T of Eq.(5.201.1),

Local Asymptotic Stabilty = Global Attractivity.
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Conjecture 5.201.2 It follows from the work in Section 4.2 that Eq.(5.201.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.201.1) is locally asymptotically stable.

For the remainder of this section we allow the parameters of the equation in
the title to be nonnegative and the initial conditions to be arbitrary nonnega-
tive real numbers such that the denominator is always positive. We summarize
some of the highlights of the 49 special cases contained in the second-order
rational difference equation

o+ By + Y1

=0,1,.... 5.201.2
A + an + an—l o ( )

Tp+1 =

Of the 49 special cases of Eq.(5.201.2), three cases are trivial:
#1, #6, and #11,

six are linear:

45, #9, #41, #45, #53, and #117,

four cases are reducible to linear:
#2, #3, #7, and #10,
four are Riccati equations:
#17, #23, #42, and #65,
and four special cases are reducible to Riccati equations:
#18, #30, #47, and #72.

Therefore there remain only 28 special cases of second-order rational equations
to be investigated. The character of solutions of these equations is summarized
in the Table. As we see in the Table, in seven special cases it is known that
every solution converges to an equilibrium:

#20, #24, #26, #55, #84, 101, and #105.
In seven special cases there is a period-two trichotomy:
#29, #46, #54, #71, #83, F#118, and #165.

In five special cases, every solution is bounded and in each case there exist
infinitely many prime period-two solutions, or there exists a unique prime
period-two solution. In all of these five cases it is known that every solution
converges to a (not necessarily prime) period-two solution:

432, 474, #86, #109, and #145.
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One of the 28 cases is the well-known Lyness’s Equation: #43.
In five special cases we conjecture that every solution converges to the
equilibrium:

466, #68, #119, #141, and #166.

In three special cases we conjecture that the equilibrium is locally asymp-
totically stable in some region of the parameters and in the complement of the
closure of this region there exists a unique prime period-two solution. These
equations are:

#153, #168, and #201.

For each of these three equations we conjecture that the prime period-two
solution is locally asymptotically stable and that every solution converges to
a (not necessarily prime) period-two solution.
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Summary of the Behavior of the 28 Nontrivial Second-Order

Rational Difference Equations

. _ _Bzn
#24 L Tp41 = T4z, 1 ESC
Pielou’s Equation
#29 1 xp 1 = F55 P,-Tricho
#32 CTp41 = % ESCPQ
#43 CTp41 = 73}15??
Lyness’s Equation
H46 : 1y = % Part of a
P,-Tricho
#54: xpa = B+ I;—;l First
P,-Tricho
#55:xpp =7+ f—fl ESCz
#66 @z = ST Conjecture:
ESCz
#6811 = % Conjecture:

ESCz

425
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HT1 Ty = aﬁ;;l P,-Tricho
+zn—
#74 L Tp41 = #xn; ESCP2
#83 w1 = % P,-Tricho
H#H84: wpyq = —ﬁif;iil ESC
H#86 : wpp1 = ptiest ESCP,
: _ 1 -
. _ Bxn
#109 Tp41 = % ESCP2
#1181 @y = SHIn 0 P,-Tricho
#119: 2,11 = %ﬁyx"‘l Conjecture:
ESCz
#1412 zpqq = % Conjecture:
ESCz
#145 Tp41 = % ESCP2
#1531 Tp1 = % Conjecture:

ESCP,
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H#165 : @, = SHtam1 )Py Tricho

#166 : 41 = %ﬁ?*l Conjecture:
ESCz
#168 : w1y 1 = % Conjecture:
ESCP,
#201: wpqq = % Conjecture:

ESCP;

Conjecture 5.201.3 Assume that
v, A,B €[0,00) and a, A+ B,y + A € (0,00).

Show that the positive equilibrium of each of the following two equations,

o+ T, 0.1
T = , n=0,1,...
T A Bz, +x,-1
and
7a+xn+’y$n—l o
Tpy1 = ——, n=0,1,...,

A + Tp—1
18 globally asymptotically stable.

The two equations in Conjecture 5.201.3 include the five special cases:

466, #68, #119, #141, and #166.

We believe that any claims in the literature, made prior to the
submission date of this manuscript, that the conjecture has been

confirmed for any of these five special cases are not correct.

Conjecture 5.201.4 Assume that
a,A€0,00) and a+ A, 3, B € (0,00).
(i) Show that the unique two-cycle of the difference equation

@ + ﬁxn + Tn—1

Tnp1 = n=01..., (5.201.3)

A+ Bz, +Tp_1’
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which exists when
b+A<1

and

da<(1-B—-A)[BA-0-A) - (14+35-4)],

1s locally asymptotically stable.

(#4) Show that when
B+A>1

or
ta>(1-B—A)[BO—F—4)—(1+35— 4)],

the equilibrium of Eq.(5.201.3) is locally stable and a global attractor of every

positive solution.

(#i1) Show that every solution of Eq.(5.201.3) converges to a (not necessarily

prime) period-two solution.

The equation in Conjecture 5.201.4 includes the three special cases:

#153, #168, and #201.

a+ ﬁxn + YTn-1
A+ Bz, + Dx,_»

5.202 Equation #202: =z, =

Eq.(#202) can be written in the normalized form

a+z, + VYLn—1
A+, +Dz,_s’

Tpy1 = n=0,1,... (5.202.1)
with positive parameters a, v, A, D and with arbitrary nonnegative initial con-
ditions z_s, x_1, xq.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v>1+A.

By Theorems 5.23.2 and 5.23.3 it follows that when
v+ 1< A,

the equilibrium of Eq.(5.202.1) is globally asymptotically stable.
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Conjecture 5.202.1 Assume that
v>14+ A.
Show that every bounded solution of Eq.(5.202.1) converges to the equilibrium.
Conjecture 5.202.2 Assume that
v<14+ A
Show that for the equilibrium T of Eq.(5.202.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.202.3 Assume that
vy=1+A.

Show that every solution of Eq.(5.202.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.202.4 Assume that
A-1<y<1+4+ A

Show that Eq.(5.202.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

o+ ﬁxn + YTn—1
A + Cl’nfl + Dl‘n,Q

5.203 Equation #203: =z, =

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#203) can be written in the normalized form

a+ BTy + xp1

= =0,1,... 5.203.1
Tn+1 A+$n71+D$n727 n P ( )

with positive parameters «, 3, A, D and with arbitrary nonnegative initial
conditions x_o, x_1, xg.
By Theorems 5.23.2 and 5.23.3 it follows that when

p+1<A

the equilibrium of Eq.(5.203.1) is globally asymptotically stable.
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Conjecture 5.203.1 It follows from the work in Section 4.2 that Eq.(5.203.1)

has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.203.1) is locally asymptotically stable.

Conjecture 5.203.2 Show that for the equilibrium T of Eq.(5.203.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.203.3 Assume that
6+1> A

Show that Eq.(5.203.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

o+ Bx, + yTn_1
Bx, +Cx,_1 + Dz, _»
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.1.1 where we established that every solution of this
equation is bounded. Eq.(#204) can be written in the normalized form

5.204 Equation #204: z,,1 =

« + T + YTn—1
Tn + Cmn—l + Dl’n—Q’

Tni1 = n=01,... (5.204.1)

with positive parameters «,y, C, D and with arbitrary positive initial condi-
tions x_s, x_1, g.

Open Problem 5.204.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.204.1).

Conjecture 5.204.1 Show that for the equilibrium T of Eq.(5.204.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.204.2 It follows from the work in Section 4.2 that Fq.(5.204.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.204.1) is locally asymptotically stable.

Conjecture 5.204.3 Show that Eq.(5.204.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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« + 6xn + 5$n—2

5.205 Equation #205: =z, = A1+ Be +C
Tn Tn-1

Eq.(#205) can be written in the normalized form

a+tz 0Ty
Tni1 = Aix::tcxz_i’ n=01,... (5.205.1)
with positive parameters «, 0, A, C' and with arbitrary nonnegative initial con-
ditions z_o, x_1, xg.
The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

0> A+C.

By Theorem 5.221.1 it follows that every solution of Eq.(5.205.1) is bounded
when
I<A+C.

By Theorems 5.23.2 and 5.23.3 it follows that when
0+1<A,
the equilibrium of Eq.(5.205.1) is globally asymptotically stable.

Conjecture 5.205.1 Assume that
0<A+C.
Show that for the equilibrium T of Eq.(5.205.1),
Local Asymptotic Stabilty —> Global Attractivity.

Open Problem 5.205.1 Assume that
0>A+C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.205.1) converge to the equilibrium.

(i1) Determine the set of all initial conditions for which the solutions of
Eq.(5.205.1) are unbounded.

(#it) Determine all possible periodic solutions of Eq.(5.205.1).

Conjecture 5.205.2 Assume that
0+1>A.

Show that Eq.(5.205.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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« + ﬁxn + 5In—2

5.206 Equation #206: =z, = A1+ Be =D
Tn Ln—2

Eq.(#206) can be written in the normalized form

o+ Ty +0Tn_2
ntl = , n=0,1,... 5.206.1
Tt A+ x, + Dx,y_o " ( )

with positive parameters «, §, A, D and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.
By Theorems 5.23.2 and 5.23.3 it follows that when
0+1< A,
the equilibrium of Eq.(5.206.1) is globally asymptotically stable.
Conjecture 5.206.1 Show that for the equilibrium T of Eq.(5.206.1),

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.206.2 Assume that
0+1> A

Show that Eq.(5.206.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

a+ B, +0x, o

5.207 Equation #207: xz,.1 = 1:C D
Tn—1 Tn—2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#207) can be written in the normalized form

o+ ﬁxn + Tp—2
ntl = , =0,1,... 5.207.1
Tt A+ Crp_1+ xpn_2 " ( )

with positive parameters «a, 3, A, C and with arbitrary nonnegative initial con-
ditions z_s, x_1, xg.
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By Theorems 5.23.2 and 5.23.3 it follows that when
B+1<A

the equilibrium of Eq.(5.207.1) is globally asymptotically stable.

Conjecture 5.207.1 Show that for the equilibrium T of Eq.(5.207.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.207.2 Assume that
B+1> A

Show that Eq.(5.207.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

o+ B, +0x, o
Bx, +Cx,_1+ Dz, _o

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of this
equation is bounded. Eq.(#208) can be written in the normalized form

5.208 Equation #208: x,.; =

o+ T, +0Tn_2
gl = , n=0,1,... 5.208.1
Intl Ty + an—l + Dxn—Q " ( )

with positive parameters «,d,C, D and with arbitrary positive initial condi-
tions x_o, x_1, g.

Open Problem 5.208.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.208.1).

Conjecture 5.208.1 Show that for the equilibrium T of Eq.(5.208.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.208.2 Show that Eq.(5.208.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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a+ YT, 1+ 0T, o

5.209 Equation #209: =z, = A+ Be 1 C
Tn Tp—1

Eq.(#209) can be written in the normalized form

O+ Tyo1 + 0Tp_2
il = . n=0,1,... 5.209.1
Tnt A+ Bx,, + Tn_1 " ( )

with positive parameters «, d, A, B and with arbitrary nonnegative initial con-
ditions z_o, x_1, xo.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

0>A+B.

By Theorem 5.221.1 it follows that every solution of Eq.(5.209.1) is bounded
when
I<A+B.

By Theorems 5.23.2 and 5.23.3 it follows that when
d+1<A,
the equilibrium of Eq.(5.209.1) is globally asymptotically stable.
Conjecture 5.209.1 Assume that
0 <A+ B.
Show that for the equilibrium T of Eq.(5.209.1),

Local Asymptotic Stabilty — Global Attractivity.

Open Problem 5.209.1 Assume that
0> A+ B.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.209.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of

Eq.(5.209.1) are unbounded.

(#i7) Determine all possible periodic solutions of Eq.(5.209.1).
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Conjecture 5.209.2 It follows from the work in Section 4.2 that Eq.(5.209.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.209.1) is locally asymptotically stable.

Conjecture 5.209.3 Assume that
0+1> A.

Show that Eq.(5.209.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

a+ YTn—1 + 5$n—2
A+ Bx, + Dx,_»

5.210 Equation #210: =z, =

Eq.(#210) can be written in the normalized form

O+ VTp—1+ Tn_2
A+ Bz, +xph_o

Tpgp1 = n=0,1,... (5.210.1)

with positive parameters «, v, A, B and with arbitrary nonnegative initial con-
ditions z_s, z_1, xg.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v>1+A.

By Theorems 5.23.2 and 5.23.3 it follows that when
Y+ 1< A,
the equilibrium of Eq.(5.210.1) is globally asymptotically stable.
Conjecture 5.210.1 Assume that
v>14+ A.
Show that every bounded solution of Eq.(5.210.1) converges to the equilibrium.
Conjecture 5.210.2 Assume that
v<14+A.
Show that for the equilibrium T of Eq.(5.210.1),

Local Asymptotic Stability = Global Attractivity.
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Conjecture 5.210.3 Assume that
vy=1+A.

Show that every solution of Eq.(5.210.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.210.4 Assume that
A-1<y<1+4+ A

Show that Eq.(5.210.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

a+ YT, 1+ 0T, o
A + C.’L’nfl + Dﬁn,Q

5.211 Equation #211: =z, =

Eq.(#211) can be written in the normalized form

o+ Ty + 0Tp_2
A+ 2,1+ Dxp_o’

Tpp1 = n=0,1,... (5.211.1)

with positive parameters «, d, A, D and with arbitrary nonnegative initial con-
ditions z_s, z_1, g.
By Theorems 5.23.2 and 5.23.3 it follows that when

d+1<A,

the equilibrium of Eq.(5.211.1) is globally asymptotically stable.

Conjecture 5.211.1 It follows from the work in Section 4.2 that Eq.(5.211.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.211.1) is locally asymptotically stable.

Conjecture 5.211.2 Show that for the equilibrium T of Eq.(5.211.1),
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.211.3 Assume that
0+1> A

Show that Eq.(5.211.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.
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a+ YTn—1 + 53371—2
Bx,+Cx,_1+ Dz, _o
The boundedness character of solutions of this equation was investigated in

[69]. See also Theorem 2.1.1 where we established that every solution of this
equation is bounded. Eq.(#212) can be written in the normalized form

5.212 Equation #212: z,,, =

a4+ Tp_1 + 0Ty
an + Tp-1+ DIn—Q ’

Tnt1 = n=0,1,... (5.212.1)

with positive parameters «, §, B, D and with arbitrary nonnegative initial con-
ditions x_s, x_1, xg such that the denominator is always positive.

Open Problem 5.212.1 [nvestigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.212.1).

Conjecture 5.212.1 Show that for the equilibrium T of Eq.(5.212.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.212.2 It follows from the work in Section 4.2 that Fq.(5.212.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.212.1) is locally asymptotically stable.

Conjecture 5.212.3 Show that Eq.(5.212.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

. ﬁxn + YTn—1 + 5$n—2
5.213 E t 213 xpiq =
quation # Tnat A1 Bz, Crs

Eq.(#213) can be written in the normalized form

Ty + YTp—1 + 62p_2
= =0,1,... 5.213.1
Tn+1 A+$n+cxn71 , N [ ( )

with positive parameters v, d, A, C' and with arbitrary nonnegative initial con-
ditions z_s, z_1, xg.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

~y
A —-.
6> +C+C
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By Theorem 5.221.1 it follows that every solution of Eq.(5.213.1) is bounded
when
~y
d<A+C+ =,
+C+ 5

By Theorems 5.23.2 and 5.23.3 it follows that when
A>1+~+54,

the zero equilibrium of Eq.(5.213.1) is globally asymptotically stable.
When
A<1l4+vy+4,

Eq.(5.213.1) has the unique positive equilibrium point

i_1+7+5—A

- 1+C
Conjecture 5.213.1 Assume that

0<5<A+C+ L.

- C

Show that for the positive equilibrium T of Eq.(5.213.1) and with positive
initial conditions,

Local Asymptotic Stabilty — Global Attractivity.

Open Problem 5.213.1 Assume that

.
§>A+C+ L.
>A+C+ 5

(i) Determine the set of all positive initial conditions for which the solutions
of Eq.(5.213.1) converge to the positive equilibrium T.

(ii) Determine the set of all positive initial conditions for which the solutions
of Eq.(5.213.1) are unbounded.

(#i7) Determine all possible periodic solutions of Eq.(5.213.1).

Conjecture 5.213.2 It follows from the work in Section 4.2 that Eq.(5.213.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.213.1) is locally asymptotically stable.

Conjecture 5.213.3 Show that Eq.(5.215.1) has bounded solutions that do
not converge to an equilibrium point or to a periodic solution.
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ﬂxn + Ylp—1 + 5ZL’n—2
A+ Bx, + Dx,_»

Eq.(#214) can be written in the normalized form

5.214 Equation #214: z,,, =

Tp + VTp—1 + 0Tp_2
= =0,1,... 5.214.1
Tn41 A+l'n+D1'n_2 , n 9 Ly ( )

with positive parameters 7, §, A, D and with arbitrary nonnegative initial con-
ditions z_o, x_1, xg.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v>140+ A
By Theorems 5.23.2 and 5.23.3 it follows that when
A>1+~+6,

the zero equilibrium of Eq.(5.214.1) is globally asymptotically stable.
When

A<l+~v+0,

Eq.(5.214.1) has the unique positive equilibrium point

1+~v+6—-A4
1+D

T =
Conjecture 5.214.1 Assume that
v>1404+ A

Show that every positive and bounded solution of Eq.(5.214.1) converges to
the positive equilibrium .

Conjecture 5.214.2 Assume that
vy<1l+d+A

Show that for the positive equilibrium T of Eq.(5.214.1) and with positive
initial conditions,

Local Asymptotic Stability = Global Attractivity.
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Conjecture 5.214.3 Assume that
vy=14+0+A.

Show that every solution of Eq.(5.214.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.214.4 Assume that
A-1-6<y<1+0+A

Show that Eq.(5.214.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

6xn + YTn—1 + 5$n—2
A + CQ?n_l + DIn_Q

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of this
equation is bounded. Eq.(#215) can be written in the normalized form

5.215 Equation #215: =z, =

ﬁxn + Tp—1+ 5]}71—2
il = ., n=0,1,... 5.215.1
T+l A + T+ Dx'n,—Q " ( )

with positive parameters 3,6,A,D and with arbitrary nonnegative initial con-
ditions z_s, z_1, g.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>1+p+9,

the zero equilibrium of Eq.(5.215.1) is globally asymptotically stable.
When

A<1+p5+49,

Eq.(5.215.1) has the unique positive equilibrium point

E_1+ﬂ+5—A
B 1+D

Conjecture 5.215.1 It follows from the work in Section 4.2 that Fq.(5.215.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.215.1) is locally asymptotically stable.
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Conjecture 5.215.2 Show that for the positive equilibrium T of Eq.(5.215.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.215.3 Assume that
A<1l4+p5+0.

Show that Eq.(5.215.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

BTy +YTp_1 + 0Tn_2
Bx,+ Cx,_1+ Dz, _o

5.216 Equation #216: z,,, =

Eq.(#216) can be written in the normalized form

T + YTp—1 + 0Tp_2
T + anfl + Dmn727

Tn41 =

n=0,1,... (5.216.1)

with positive parameters 7, d,C, D and with arbitrary positive initial condi-
tions x_s, x_1, g.

Open Problem 5.216.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.216.1).

Conjecture 5.216.1 Show that for the equilibrium T of Eq.(5.216.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.216.2 It follows from the work in Section 4.2 that Eq.(5.216.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.216.1) is locally asymptotically stable.

Conjecture 5.216.3 Show that Eq.(5.216.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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a + B, + YT

5.217 Equation #217: z,.1 = A+ Br + Oz + Dz
n n—1 n—2

Eq.(#217) can be written in the normalized form

a+ xy + YLn—1
A+z,+Cxpq + Dzxps’

Tppy = n=0,1,... (5.217.1)

with positive parameters «, v, A, C, D and with arbitrary nonnegative initial
conditions z_s, x_1, xg.
By Theorems 5.23.2 and 5.23.3 it follows that when
v+ 1< A,
the equilibrium of Eq.(5.217.1)is globally asymptotically stable.

Conjecture 5.217.1 It follows from the work in Section 4.2 that Eq.(5.217.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.217.1) is locally asymptotically stable.

Conjecture 5.217.2 Show that for the equilibrium T of Eq.(5.217.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.217.3 Assume that
y+1> A

Show that Eq.(5.217.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

a+ Bx, +0x, o
A+ Bx,+Cx,_1+ Dx,_o

5.218 Equation #218: z,,1 =

Eq.(#218) can be written in the normalized form

O+ Ty +0Tp 2
A+z,+Cxp1 + Dxys’

Tnp1 = n=0,1,... (5.218.1)
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with positive parameters «,d, A,C, D and with arbitrary nonnegative initial
conditions x_s, T_1, Xp.
By Theorems 5.23.2 and 5.23.3 it follows that when
0+1< A,
the equilibrium of Eq.(5.218.1) is globally asymptotically stable.
Conjecture 5.218.1 Show that for the equilibrium T of Eq.(5.218.1),
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.218.2 Assume that

6+1> A.

Show that Eq.(5.218.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

a4+ YT, 1+ 0T, o

5.219 Equation #219: z,,, = At Br 1+ Cr + Dr
n n—1 n—2

Eq.(#219) can be written in the normalized form

O+ VTp—1+ Tp_2
A+ Bz, +Cxp_1 +2p_a’

Tnp1 = n=0,1,... (5.219.1)

with positive parameters «, vy, A, B, C' and with arbitrary nonnegative initial
conditions x_o, x_1, xg.
By Theorems 5.23.2 and 5.23.3 it follows that when

T+1<A,
the equilibrium of Eq.(5.219.1) is globally asymptotically stable.
Conjecture 5.219.1 It follows from the work in Section 4.2 that Eq.(5.219.1)
has a unique prime period-two solution. Show that this period-two solution of

Eq.(5.219.1) is locally asymptotically stable.

Conjecture 5.219.2 Show that for the equilibrium T of Eq.(5.219.1),

Local Asymptotic Stability = Global Attractivity.
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Conjecture 5.219.3 Assume that
y+1> A

Show that Eq.(5.219.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

By +YTn1 + 0Ty o
A+ Bx, +Cx,_1+ Dx,_o

5.220 Equation #220: =z, =

Eq.(#220) can be written in the normalized form

Ty + VYLn—1 + 6$n72
Ty = Cn=0,1,... 5.220.1
i A4 2, +Crpq+ Drypo ( )

with positive parameters ~,d, A, C; D and with arbitrary nonnegative initial
conditions x_o, x_1, xg.
By Theorems 5.23.2 and 5.23.4 it follows that when

A>14+v+4,

the zero equilibrium of Eq.(5.220.1) is globally asymptotically stable.
When
A<l4+v+9,

Eq.(5.220.1) has the unique positive equilibrium point

l+y+0—-A
1+C+D

T =

Conjecture 5.220.1 It follows from the work in Section 4.2 that Eq.(5.220.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.220.1) is locally asymptotically stable.

Conjecture 5.220.2 Show that for the positive equilibrium Z of Eq.(5.220.1)
and with positive initial conditions,

Local Asymptotic Stability = Global Attractivity.
Conjecture 5.220.3 Assume that

A<1l4+~vy+0.

Show that Eq.(5.220.1) has solutions that do not converge to an equilibrium
point T or to a periodic solution.
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a+ Bn + yTn-1 + 02n_

5.221 Equation #221: =z, = A+ Br 1 C
Tn Tn-1

In this section we investigate the global behavior of solutions of the equation

o+ 63771 +VTn—1+ 51’77,72
nt+l1 = , n=0,1,... 5.221.1
it A+ Bxy, + Cxyg " ( )

with nonnegative parameters «, 3, ~, A, with positive parameters 6, B, C', and
with arbitrary nonnegative initial conditions x_o, x_1, xg.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

Y p
0>A+B=+C=.
> A+ C + B
By Theorems 5.23.2 and 5.23.3 it follows that when
B+y+0d<A, (5.221.2)

the equilibrium of Eq.(5.221.1) is globally asymptotically stable.
The following theorem is a new result about the boundedness of solutions
of Eq.(5.221.1).

Theorem 5.221.1 FEvery solution of Eq.(5.221.1) is bounded if

(4)
B

v
A+BLycl 221.
d< A+ C+CB’ (5 3)
or
(i7)
5= A+ BL 0l anda=py—o0 (5.221.4)
C B7 )
or
(i44)
0=A, B=~v=0, and a>0. (5.221.5)

PROOF  Assume for the sake of contradiction that Eq.(5.221.1) has an
unbounded solution {z, }. Then there exists a subsequence {z,,} such that
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and, for every i,
Tp,41 > xj, forall j <n;+ 1. (5.221.7)
From
o+ ﬁxm +Y%p;—1 + 5xni72
A+ Bl‘m + ani—l

Ln;i+1 =

it follows that
Tp;—2 — 00 (5.221.8)

and the sequences
{Zn,; },{xn,—1} are bounded.

Similarly, it follows that

{Zn,—3},{Tn,—4} are bounded.

Clearly,
_ a—"_ﬂxnifl +’Y$ni72 +5mni73 N l
i A+ Bxy,—1+Cxp,—2 C
and
a+ frn,—2+YTn,—3+0Tp,—a
Tn,—1 = — —.
! A+B£L’ni,2+C£Cni,3 B

(7) Let € be a positive number such that
(B+C)e<—5+A+BLyc?,
C B
From (5.221.7) and (5.221.8) it follows that, eventually,
v B

Ty, > ——¢€ and x,,_1 > — — €.
% C n;—1 B

Therefore, eventually,
Tn;+1 < Tpy—25

which contradicts (5.221.7) and completes the proof of ().
(#4) Assume that either
a=0F=0and v>0 (5.221.9)

or
a=v=0 and 8> 0. (5.221.10)

We will give the proof when (5.221.9) holds. The proof when (5.221.10) holds
is similar and will be omitted.
In this case we have that, eventually,

Ty, >

i 6'
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In view of (5.221.7), we have

and so
foni —1 1

A+ By, + Cty, 1~ A—BZ - C’

which is a contradiction.
(#i¢) When

Tp;—2 <

a>0 and f=v=0,

the equation reduces to the special case #149 for which we established in
Section 5.149 that, when A > §, every solution converges to the equilibrium
and so is bounded.

The following theorem is a new result about the global attractivity of the
equilibrium of Eq.(5.221.1).

Theorem 5.221.2 Assume that
B_2
B C
Then the equilibrium T of Eq.(5.221.1) is a global attractor of all solutions of
Eq.(5.221.1) if and only if

(5.221.11)

g

g
< — —. . .
d<A+BL+C5 (5.221.12)

PROOF Eq.(5.221.1) can be written in the normalized form

a+ Bx, + 241+ 0Tp_2
n+l = , n=0,1,.... 221.1
Tpal T n=20 (5 3)

It suffices to show that the equilibrium of Eq.(5.221.13) is a global attractor
of all solutions when
<A+ B+1.

We divide the proof into the following three cases:

Case 1:
0> A—a.

We claim that there exists IV, sufficiently large, such that
Ty, > 1, for n > N.
Otherwise, for some N > 0,

. _Oz+B$N+$N,1+§LL'N,2<1
N1 A+ Bry +xNn_1 -
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This implies that

and, similarly,

TN—5 < ( g )27

which eventually leads to a contradiction. Hence, our claim is true and by
using the change of variables

Yn = Tp — 1
Eq.(5.221.13) becomes

06—A+6+5yn_2
A+ B+ 1+ By, +Yn_1

Yn41 =

Now the result follows from our work in Section 5.149 where we established
that every solution of the equation above converges to the equilibrium when
A+B+1>6.

Case 2:
0=A—a.

Observe that
(A—a)(zp—o—1)

Tnt1 = 1= A+ Bx,, + Tn_1
and so
A—«
|Zn1 — 1] < A |Zn—2 — 1,
from which the result follows.
Case 3:
0 < A—a.

Here we claim that there exists N, sufficiently large, such that

A—«
<
)

Tn , for n> N.

Suppose for the sake of contradiction that for some N > 0,

a+ Brxy+xy_1+dzN_2 S A—-«
A+ Bxy +xN_1 5

TN+1 =

From this it follows that
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and, similarly,
A A-—«a
TN-5 > (3)2 T

which eventually leads to a contradiction. Therefore, our claim is true. Set

S =limsupz, and I = liminfz,.
n—00 n— 00

Then, clearly,

a+(B+5+1)S a+ (B+s+1)I
< I>
S A+ B+ns M ETa By

from which it follows that,
S=1==

and the proof is complete. |

Conjecture 5.221.1 It follows from the work in Section 4.2 that Fq.(5.221.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.221.1) is locally asymptotically stable.

Conjecture 5.221.2 Show that for the equilibrium T of Eq.(5.221.1),

Local Asymptotic Stability = Global Attractivity.

Conjecture 5.221.3 Show that Eq.(5.221.1) has bounded solutions that do
not converge to the equilibrium point T or to a periodic solution.

a+ B, + YTp_1+ 02,2
A+ Bx, + Dx,_»

5.222 Equation #222: z,,1 =

Eq.(#222) can be written in the normalized form

a4+ Ty +YTp_1 + 0Ty _2
= =0,1,... 5.222.1
Tn+1 A+£L'n +D(En72 , N P ( )

with positive parameters «,~,d, A, D and with arbitrary nonnegative initial
conditions z_s, x_1, xg.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

v>140+ A
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By Theorems 5.23.2 and 5.23.3 it follows that when
y+I+1< A,
the equilibrium of Eq.(5.222.1) is globally asymptotically stable.
Conjecture 5.222.1 Assume that
vy>1+0+ A
Show that every bounded solution of Eq.(5.222.1) converges to the equilibrium.
Conjecture 5.222.2 Assume that
vy<14+0+ A
Show that for the equilibrium T of Eq.(5.222.1),
Local Asymptotic Stability = Global Attractivity.
Conjecture 5.222.3 Assume that
y=1+6+A.

Show that every solution of Eq.(5.222.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.222.4 Assume that
A-0—-1<y<14+d0+ A

Show that Eq.(5.222.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

a+ B, + YTp_1 + 0xp_2
A+ Cxp_y1+ Dx,y_s

5.223 Equation #223: =z, =

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#223) can be written in the normalized form

o+ ﬂxn + Zp—1 + 6xn—2

nt+1 = , n=0,1,... 5.223.1
ot A+xp_1+4+ Dxy_o " ( )
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with positive parameters «, 3,6, A, D and with arbitrary nonnegative initial
conditions x_s, T_1, Xp.
By Theorems 5.23.2 and 5.23.3 it follows that when

B+6+1<A,
the equilibrium of Eq.(5.223.1) is globally asymptotically stable.

Conjecture 5.223.1 It follows from the work in Section 4.2 that Eq.(5.223.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.223.1) is locally asymptotically stable.

Conjecture 5.223.2 Show that for the equilibrium T of Eq.(5.223.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.223.3 Assume that
B+0+1> A

Show that Eq.(5.223.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

o+ [y + Yn1 + 0Zn—2
Bx,+ Cx,_1+ Dzx,_o
Eq.(#224) can be written in the normalized form

5.224 Equation #224: x,,1 =

o+ T, + VYTn—1 + 5$n72
ntl = , n=0,1,... 5.224.1
Int Ty + an—l + Dxn—Q " ( )

with positive parameters «,y,d, C, D and with arbitrary positive initial con-
ditions z_s, z_1, g.

Open Problem 5.224.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.224.1).

Conjecture 5.224.1 It follows from the work in Section 4.2 that Eq.(5.224.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.224.1) is locally asymptotically stable.

Conjecture 5.224.2 Show that for the equilibrium T of Eq.(5.224.1),
Local Asymptotic Stability = Global Attractivity.

Conjecture 5.224.3 Show that Eq.(5.224.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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o+ By + Yn_1 + 075

5.225 Equation #225: x,,1 = A+ Br. +Cz. 1+ Dx
n n—1 n—2

The equation

o+ Br, +yrn—1 + 0T 2
A+ Bx,+Cxp_q1+ Dxy_s’

Tt n=01,.... (5.225.1)

and all its 225 special cases were the subject of investigation in this book. For
related work see Sections 4.2 and 5.23. Throughout this section we allow the
parameters of Eq.(5.225.1) to be nonnegative and the initial conditions to be
arbitrary nonnegative real numbers such that the denominator is always pos-
itive. We summarize some of the highlights of the 225 special cases contained
in Eq.(5.225.1).

Of the 225 special cases of Eq.(5.225.1), 39 special cases are trivial, lin-
ear, reducible to linear, Riccati equations, or reducible to Riccati equations.
Another 28 special cases were the subject of investigation in the Kulenovic
and Ladas book [175], which deals with the second-order rational difference
equation

o+ By + YTn—1

il = . n=0,1,.... 5.225.2
Tt A+ Bz, + Cxp_1 " ( )

See the Table in Section 5.201.
Therefore, there remain

225 — (39 4 28) = 158

special cases each of which is nonlinear third-order difference equation crying
to be investigated. See Appendix A at the end of the book, which presents at
a glance the boundedness character of each special case and gives some useful
references and some highlights on the character of their solutions.
Concerning the boundedness character of solutions of the 225 special cases
of Eq.(5.225.1), we have made the following remarkable conjecture. See [69].

Conjecture 5.225.1 Show that in 135 special cases of Eq.(5.225.1), every
solution of the equation is bounded and that in the remaining 90 special cases,
the equation has unbounded solutions in some range of the parameters and for
some initial conditions.

As this book goes to print, we are proud to say that there remain only five
special cases, out of a total number of 225, whose boundedness has not been
established yet. In 135 special cases of Eq.(5.225.1) we have shown that every
solution of the equation is bounded and in 85 cases we have shown that the
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equation has unbounded solutions in some range of the parameters and for
some initial conditions.

For five special cases we have conjectured that they have unbounded solu-
tions in some range of their parameters and for some initial conditions but we
are not yet able to confirm it. They are the following:

428, #44, #56, 470, #£120.

See Conjecture 3.0.1.
It is interesting to note that the very first rational equation shown to have
unbounded solutions is

#54 : Tp+1 = ﬁ +

Tp—1
Tn

, n=0,1,....

See [16]. As you can see from Appendix B we have made substantial progress
in determining the boundedness character of a large number of rational dif-
ference equations. See also the results in Chapters 2 and 3. The following
conjecture shows the importance of boundedness of solutions in rational
difference equations.

Conjecture 5.225.2 In each of the 135 special cases of Fq.(5.225.1), where
every solution of the equation is bounded and with positive initial conditions,
show that for the positive equilibrium

Local Asymptotic Stability = Global Asymptotic Stability.
The very first rational equation discovered for which
Local Asymptotic Stability A Global Asymptotic Stability

is
By + 6xp—_2
157 : ntl = , n=0,1,....
#* Tt A+ Bz, +Cxp_1 "

See [48]. Actually, this surprising property is true only in the following 14
special cases of third-order rational difference equations:

480, #92, #98, #149, #157, #161, #174,
#180, #186, #198, #205, #2090, #213, #221.

Open Problem 5.225.1 Determine all special cases in the rational differ-
ence equation

_a+ Zle Bi%n—i
A -+ Zle Bixn—i ’

=0,1,... (5.225.3)

n

with k > 4, where

Local Asymptotic Stability & Global Asymptotic Stability.
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For the general rational equation (5.225.3) we offer the following powerful
conjecture that, roughly speaking, states that

Local Asymptotic Stability and Boundedness = Global Attracticity.

Conjecture 5.225.3 In a region S of the parameters of Eq.(5.225.3), assume
that every positive solution of the equation is bounded and that Eq.(5.225.3)
has an equilibrium point T that is Locally Asymptotically Stable. Then T
is a Global Attractor of all positive solutions of Eq.(5.225.3).

How do we establish that every solution of a rational difference
equation is bounded?

How do we establish that a rational equation has unbounded so-
lutions in some range of its parameters and for some initial condi-
tions?

Theorems 2.1.1 and 2.3.4 from Chapter 2 provide the answer to the first
question in a lot of special cases of Eq.(5.225.3). But how about the remain-
ing cases? Is there a recognizable pattern that predicts the boundedness
character of a rational difference equation?

The following Table presents at a glance the number of special cases con-
tained in Eq.(5.225.3) for each value of the order k of the equation, the number
of cases where ESB, the number of cases where FUS, and the number of cases
established by Theorem 2.1.1 and Theorem 2.3.4.

Total Established | Established
Order| Cases |ESB|3US| by Thm 2.1.1 |by Thm 2.3.4
k=1 9 7 2 7 0
k=2 49 35 | 14 27 6
k=3 225 135 | 90 91 22
k=4 961 542 | 419 291 126
ko2t —1)2 2 ? |[4.3F—2.2F 1 ?

Open Problem 5.225.2 Determine the numbers in the blocks above where

the three question marks appear in the Table.

Conjecture 5.225.4 The numbers under the columns ESB and 3US in the
above Table are still conjectures for the values of k € {3,4}. Confirm these

conjectures.

See [14], [49], [66], and [69].
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In contrast to second-order rational difference equations, a large number
of third-order rational equations exhibit chaotic behavior in some range
of the parameters. In this range, there is sensitive dependence on initial
conditions, and there exist dense orbits. They are the following 124 special
cases:

425, 427, #39 — 40, #56, #58,

#60, #62 — 63, H#67, #609, HT7 — T8,
480 — 82,  #85, 487 — 96, #98 — 100, #106 — 108,
4114 — 116, 120, #122, #124, #126 — 127,
4130 — 132, #134 — 136, 4138 — 140, #142 — 144, #149 — 152,
4154 — 164, #167, #169 — 178, #180 — 200, #202 — 225.

See Appendix A.

Among the 158 special cases mentioned before, there remain only 34 special
cases of third-order rational equations without chaos, and they are as follows:
In five third-order special cases of Eq.(5.225.1), ESCz:

422, #102, 4103, #104, #133.

In one third-order special case ESCP5:

#21.

In 16 third-order special cases we have shown that there is a Py-Tricho:

#31, #33, #35, #36, #38, #48,
#50, #64, #73, #75, #97, #110,
#113, #128, #146, #179.

In six third-order special cases we have conjectured that we have a Pp-Tricho:

428, #44, #51, 459, 470, #123.

Finally, in six third-order special cases we conjecture that ESCP,:
#34, #76, #111, #112, #147, #148.

The character of solutions of these 34 special cases is summarized in the
Table at the end of the section.

As we saw in Section 4.2, Eq.(5.225.1) contains 49 special cases, each of
which has a unique prime period-two solution in some range of the parameters.
In one of these special cases,

Tn—1

#30: Tnp = m s

=0,1,...,
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the unique prime period-two solution of the equation
L0 1—A L

which exists when
A€ (0,1),

is not locally asymptotically stable.
For the remaining 48 special cases we offer the following conjecture:

Conjecture 5.225.5 Show that the unique prime period-two solution of Eq.(5.225.1),
which exists, if and only if,

b+0+A<1
and
da<(1-B-=6—-A)[(B+D)(1-p—-06—-A)—(1+38+35—A4)],
1s locally asymptotically stable provided that
a+pB+6+B+D>0.

See also Open Problems 4.1.1 and 4.1.2.



Known Results for Fach of the 225 Special Cases

Summary of the Behavior of Nontrivial Third-Order
Rational Equations without Chaotic Behavior

#21 P Tp41 m ESCP2
#22 C 41 m ESCz
#28 L Tn41 m Part of a
Pg-Tricho
Conjecture
#31:xp11 Aff;;l_Q P,-Tricho
#33: Tpi ﬁ P,-Tricho
#34: wp0 W Conjecture:
ESCP,
#35: Tpa1 Xj_;i P;-Tricho
#36 : py1 Aizil P;-Tricho
#38: wpa1 ﬁ P;-Tricho
#44 1 xp ‘;“:—f; Part of a
Pg-Tricho
Conjecture
#H48 : w11 % Part of a
PQ-’I‘I‘iChO
#50 : Tyi1 %j* P;-Tricho

457
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#51 w0 = D‘ZL:‘I’Z Part of a
P4-Tricho
Conjecture
#59:xp01 = % Conjecture:
P4-Tricho
#64 1,01 =0+ i"—:; P,-Tricho
#70: x4 = % Conjecture:
Pg-Tricho
HT3: X = %Z: P,-Tricho
HT5: Ty = % Part of a
PQ-’I‘I‘iChO
HT6:Tpi1 = xnﬁfig;;_z Conjecture:
ESCP,
HIT 2 @y yyg = Togiion=2 P,-Tricho
. _ 1 7
. — 1 7
. — 1 7
#110 Tp41 = W PQ-’I‘I‘iChO
H#UL : Tpi1 = s Conjecture:
ESCP,
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459

#112 L Tp41 = m Conjecture:
ESCP;
#113 P lp41 = % Pg-TI‘iChO
#123 : w01 % Conjecture:
P4-Trich0
#1281 3,y = SHITm o2 P,-Tricho
: _ 1 _
#133: Tnt1 = A7Er 0w 1 Tan 5 |[EOCT
#1462 2y = qrpett— P,-Tricho
H14T : wpy g = % Conjecture:
ESCP,
H148 1z 1 = m Conjecture:
ESCP;
H1T9 ¢ @y yq = S u=tifozs P,-Tricho
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Table on the Global Character of the 225 Special Cases
o+ Bxy, + YTp_1 + 0T, o

A + Bl‘n + C[L'n_l + DZL‘n_Q

A boldfaced B indicates that every solution of the equation in this special

case is bounded and a boldfaced U indicates that the equation in this special

case has unbounded solutions in some range of its parameters and for some
initial conditions.

of Tp+1 =

A boldfaced B* next to an equation indicates that we only conjecture that
every solution of the equation is bounded and a boldfaced U* indicates that
we only conjecture that the equation has unbounded solutions in some range
of its parameters and for some initial conditions. Next to each case, we have
also provided some relevant references and results on its global character.

In addition to B, B*, U, and U* we will also use the following abbreviations:
iff stands for “if and only if.”

ESB stands for “every solution of the equation is bounded.”

JUS stands for “there exist unbounded solutions.”

LAS stands for “locally asymptotically stable” or “local asymptotic
stability.”

GAS stands for “globally asymptotically stable” or ”global asymp-
totic stability.”

GA stands for “global attractivity” or “global attractor.”
In this book by the abbreviation GA we mean that every positive
solution of the equation has a finite limit.

ESCz stands for “every solution of the equation converges to the
unique equilibrium point of the equation.”
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ESC stands for “every solution of the equation converges to the
zero equilibrium or to the positive equilibrium of the equation.”

EPSCz stands for “every positive solution of the equation con-
verges to the positive equilibrium point of the equation.”

EBSCzZ stands for “every positive and bounded solution of the
equation converges to the positive equilibrium point of the equa-
tion.”

3! Py-solution stands for “the equation has a unique prime period-
two cycle.”

ESP; stands for “every solution of the equation is periodic with
(not necessarily prime) period k.”

ESCP;, stands for “every solution of the equation converges to a
(not necessarily prime) period-£ solution.”

EBSCP,, stands for “every bounded solution of the equation con-
verges to a (not necessarily prime) period-k solution.”

Has P;-Tricho stands for “the equation has period-k trichotomy.”
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1 Tptl = Q B Thm 2.1.1.
This equation is trivial.

2 Tpa1 = = B Thm 2.1.1.
+ P
ESP,.
Periodicity destroys boundedness.

3 Tp1 = r:_l B Thm 2.1.1.
ESP,.
Periodicity destroys boundedness.

4 Tpy == B Thm 2.1.1.
+ Tn—2
ESPg.
Periodicity destroys boundedness.

5 Tpy1 = Pz, U This is a linear equation.

6 Tpy1 = B Thm 2.1.1.
This equation is trivial.

T Tpyr = B Thm 2.2.1.

Tn—1
ESPg.
Periodicity destroys boundedness.
8  Tpt1 = x:‘g U Reducible to linear equation.

9 xp41 =7x,—1 U This is the only linear equation with P;-Tricho.

10 2,41 =2t U Reducible to linear equation and part of a Py-Tricho.

Tn
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11 Tpg1 =7 Thm 2.1.1.
This equation is trivial.
12 Tpt1 = 2::; Reducible to linear equation and part of a P-Tricho.
13 Tpy1 = 0%p_2 This is the only linear equation with P3-Tricho.

14 Tt = x;—f Reducible to linear equation and part of a P5-Tricho.
See #50.
15 Tyl = % Reducible to linear equation.
16 Tpy1 =0 Thm 2.1.1.
This equation is trivial.
17 Zpp1 = oo Thm 2.1.1.
This is a Riccati equation ; ESCz.
18 Tpi1 = g7 Thm 2.1.1.
This is a Riccati-type equation ; ESCz.
19 ! Thm 2.1.1.

Tn+l = ¥z, 5

This is a Riccati-type equation ; ESCz.

20

_ 1
Int1l = Banton

Thm 2.1.1.

ESCz by Thm 5.17.2.
Periodicity destroys boundedness.
See [208], [103], and [175, p. 55].
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ESCP; by Thm 5.17.2.
See [91] and [103].
ESCz by Thm 5.17.2.
See [103] and [208].
23 Tpp1 = 1'%'; B Thm 2.1.1.
This is the Beverton-Holt Equation ; ESC.
See [83].
24 @1 =2~ B Thm 221 or Thm 2.34.

Pielou’s Equation ; ESC.
See [63], [157], [175], [182], and [186].

25 api1 =1~ B Thm2.3.3or Thm 2.34.

Conjecture: 1 < 3 < % = EPSCz.
Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.

See [157].
ESCz.
See [175, p. 58].

Conjecture: —1 + V2 < B< 1= ESCz.
Conjecture: There exist solutions that
do not converge to an equilibrium

or to a periodic solution.
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28 Tn41 =

T

Cxp_1+Tn—2

This equation has not

been investigated yet.
This equation is part of
a Pg-Tricho Conjecture ; See #70.

29

_x
Intl = A4z,

Thm 3.1.1.

Has P5-Tricho.

When A =1, a positive solution
converges to zero iff

Tp_1 > xn, for all n > 0.

See [110], [112], [133], [143], [146],

[148], [149], [175], [226], [227], and [233].

30

Tn—1

Tntl = Atz

Thm 2.1.1.

This is a Riccati-type equation.
3! Ps-solution and it is not LAS ; ESCPs.

31

Tn—1

Tnt1 = Atz _o

Thm 3.2.1.

Has P>-Tricho.

Conjecture: EBSCz when A < 1.
See [17] and [70].

32

Tn—1

Intl = Ba 4z, o

Thm 2.1.1.

3! Py-solution when B # 1

and it is LAS when B > 1.

There exist infinitely many period-two
solutions when B = 1.

ESCP; by Theorem 1.6.6.

See [175, p. 60].

33

Tp—1

Tn+1 = Bxp+Tn_2

Thm 3.3.1.

This equation is part of
a Py-Tricho ; See #146.
Conjecture: EBSCrz.
See [72].
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34

Tntl = 2" Dan o

Tn—1

Thm 2.1.1.

3! Ps-solution when D # 1 and

it is LAS when D > 1.

There exist infinitely many period-two
solutions when D = 1.

Conjecture: ESCPs.

35 Tpy1 = Xi;i Thm 3.5.1.
Has P3-Tricho.
Conjecture: EBSCZ when A < 1.
See [60] and [146].
36 Tpyl = Ai*;:il Thm 3.5.1.
Has P3-Tricho.
Conjecture: EBSCz when A < 1.
See [60] and [146].
37 Tyl = Ai*;f_z Thm 2.1.1.
This is a Riccati-type equation.
ESCP;.
38 g = % Thm 3.5.1.
Part of a P3-Tricho.
See [60] and [146].

3! P3-solution when B < 1.

Conjecture: B <1+ V2 = EPSCZz.
Conjecture: ESCP9 when B > 123.
Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.
See [60].
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3! P3-solution when C' < 1.
Conjecture: C' < 155 = EPSCxz.
Conjecture: ESCP;5 when C > 8.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [60].

41 Tpt1 = @+ Py, U This is a linear equation.

42 Tnp1 =P+ B Thm 2.1.1.
This is a Riccati Equation ; ESCz.

43 R ‘;:’C; B Thm 2.2.1.
Lyness’s Equation.
No nontrivial solution has a limit.
It possesses the invariant:
(a+zp+xn—1)1+ i)(l + xnl_l) = const.,
for all n > 0.
Periodicity destroys boundedness.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [20], [21], [22], [62], [116], [124], [157),
[158], [174], [175, p. 70], [189], [193], [198],
[199], [215], [216], [193], and [237].

44 Tptl = ‘i:—“:; U* This equation has not been
investigated yet.
This equation is part of
a Pg-Tricho Conjecture ; See #70.

45 xpy1 =a+7yx,—1 U This equation is linear.




Appendiz A

469

46

a+Tp_1
L

Tp+1 =

Thm 3.1.1.

This equation is part of
a Po-Tricho ; See #165.
See [110] and [175].

47

«
Tn—1

Tp+1 = '7+

Thm 2.1.1.
This is a Riccati-type equation ; ESCz.

48

at+Ty_1

Tn1 = Tr_2

Thm 3.2.1.

This equation is part of
a Po-Tricho ; See #146.
Conjecture: EBSCz.
See [72].

49

Tntl = @+ 0Tp—2

This equation is linear.

50

_ atxn_2
anrl - z:

Thm 3.6.1.
Has P;-Tricho.
See [54], [59], and [151].

o1

atTp_2
Tn—1

Tn+1 =

This equation is part of

a P4-Tricho Conjecture.
See [47].

92

[e3
Tn—2

Tn41 =0+

Thm 2.1.1.
This is a Riccati-type equation ; ESCz.

93

Tng1 = BTn + YTn_1

U

This is a linear equation.
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54

Tp+1 = B + Fnol

Tn

Thm 3.1.1 ; Has P5-Tricho.

The very first Py-Tricho.

EBSCz when 5 <1 by Theorem 4.2.2.
See [16] and [175, p. 70].

95

Tn41 =

v+ g

Tn—1

Thm 2.2.1 or Thm 2.3.4.

ESCrz.
See [175, p. 70].

56

Tn+1 =

Brnt+zTn_1

Tn—2

IJ*

This equation has not been

investigated yet for 5 # 1.

For =1, ESB.

For § =1, it possesses the invariant:
(n +2p-1)(1+ ;-)(1 + ;7=) = const.,
for all n > 0.

Conjecture: JUS iff § # 1.
Conjecture: There exist bounded
solutions that do not converge

to the equilibrium or

to a periodic solution.

57 Tp+1 = ﬁxn +0Tp_2

U

This is a linear equation.

58

Tn41 =

Tn—2
64+- Tn

Thm 2.4.1.

Conjecture: —1 + V2 < 08 <1 = ESCz.
Conjecture: ESCP;9 when § < ﬁ
Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.

Periodicity destroys boundedness.

See [49], [65], and [87].

99

anrl -

Brn+xn_2

Tn—1

ESCP, when g =1 ; 3US when £ < 1.
Conjecture: Has P4-Tricho.
Conjecture: EBSCz when 3 < 1.

See [59], [150], and [222].
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60 Tpt1 = 0 + 22— B Thm 2.3.3 or Thm 2.3.4.

Tn—2
Conjecture: § > —1 + V2 = ESCz.
Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.
See [69].

61 xpy1 =7vTp—1+dx,—2 U This equation is linear.

62 @y =1=tt=2 U Thm 3.1.1.
JUS when v > 1.

Conjecture: ’1%‘/5 <~ < 1= ESCz.
Conjecture: EBSCZz when v > 1.
EBSCP; when v = 1.

Conjecture: There exist bounded
solutions that do not converge

to the equilibrium or

to a periodic solution.

See [67] and [76].

63 Tpyy =7+ =2 B Thm 2.6.1.

Tn—1
Conjecture: %‘/5 <v<1= ESCz.
Conjecture: ESCP3 when v < %.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [49] and [65].

64 Tpy1 =0+ % U Thm 3.2.1.
Has P5>-Tricho.
Conjecture: EBSCz when § < 1.
See [70].
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atxn,

65 Int+l = Ui,

Thm 2.1.1.

This is the Riccati Equation with
s . . BA—aB 1

Riccati number: Bz <1

ESCZ ; See [45], [120], [124],
[126], and [175, p. 17].

66 Ln+1

_ _atzy
Atxy,

Thm 2.2.1 or Thm 2.3.4.
Conjecture: ESCzx.

Any claims prior to July 2007
that this conjecture

has been confirmed are not correct.
See [104], [157], [158], and [175].

67 Tn+1

a+x,
A+xn,_o

Thm 2.3.3 or Thm 2.3.4.

Conjecture: For the equilibrium z,
LAS = GA.

Conjecture: There exist solutions that
do not converge to an equilibrium

or to a periodic solution.

See [157].

68 Tn41 =

atxy

Bzn+Tn—1

Thm 2.1.1.

Conjecture: ESCzx.

Any claims prior to July 2007

that this conjecture

has been confirmed are not correct.

See [175, p. 82].

69 Tnt+1 =

atzy,

Tn+Dxy,_o

Thm 2.1.1.

Conjecture: For the equilibrium z
LAS = GA.

Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.
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70 Zp4 = 22 U* Conjecture: Has Pg-Tricho.

Cxp_1+Tn—2
This equation has not
been investigated yet.
See [59].

71 @y = S U Thm 3.1.1.

A+x,
Has P,-Tricho.
EBSCz when A <1 by Thm 4.2.2.
See [110] or [175, p. 89].
72 Ty = j;_t% B Thm 2.1.1.

This is a Riccati-type equation ; ESCz.

73 apg = et U Thm 3.2.1.
Has P>-Tricho.
Conjecture: EBSCZ when A < 1.
See [17] and [72].

T4 app == B Thm2l1.l
3! Py-solution when B > 1 + 4«
and it is LAS.
ESCP,.
See [15], [102], and [175, p. 92].

5 ap = == U Thm 331

This equation is part of
a Ps-Tricho ; See #146.
Conjecture: EBSCzx.
See [72].
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76 w41 = — B Thm2.1.1.
For the equilibrium z,
D <1+4a = GAS.
3! Ps-solution when D > 1 + 4«
and it is LAS.
Conjecture: ESCPs.
See [102], which extends
and unifies #74 and #76.
T map =42 B Thm 251
Conjecture: For the equilibrium Zz,
LAS = GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
Periodicity destroys boundedness.
See [49] and [65].
8 app =52 B Thm27.1
Conjecture: For the equilibrium Zz,
LAS = GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
Periodicity destroys boundedness.
See [49] and [65].
79 app=502=2 B Thm21.l
This is a Riccati-type equation ; ESCz.
80 @np1 =g U Thm3.4.1.

JUS for all positive values

of the parameters.

For the equilibrium z,

LAS # GA.

Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or

to a periodic solution.

See [61] and [69].
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81

Int1 = Brp+Tn—2

a+Tp—2

Thm 2.1.1.

Conjecture: For the equilibrium 7z,
LAS = GA.

Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.

See [90].

82 Tnt+1 =

at+Tp—2

Cxp_14+Tn_2

B

Thm 2.1.1.

Conjecture: For the equilibrium z,
LAS = GA.

Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.

See [125].

83

Tn41 =

TntyTn_1

A+x,

Thm 3.1.1.

EBSCZz when v > 1+ A
by Thm 4.2.2.

Has P>-Tricho.

See [175] and [179].

84

Tn+1

Brptrn_1

A+xp_1

Thm 2.2.1 or Thm 2.3.4.

ESC.
See [175, p. 109] and [180].

85

Tn+4+1

Tnt+yTn_1

A+xp_2

Thm 3.2.1.

Conjecture: EBSCZz when v > 1+ A.
Conjecture: For the positive
equilibrium z, LAS = GA

when v < 1+ A.

Conjecture: ESCP; when v =1+ A.
Conjecture: There exist bounded
solutions that do not converge

to an equilibrium or

to a periodic solution.

See [49] and [69].
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86

Tp+1 =

Bantan_1
Bxp+xn_1

B

Thm 2.1.1.

J! Ps-solution and it is LAS.
ESCP».

See [15], [175, p. 113], [183], and [205].

87

anrl

Tnt+YTn—1
Tn+Dxn_2

Thm 3.3.1.

Conjecture: EBSCx when ~ > 1.
Conjecture: For the equilibrium z,
LAS = GA when v < 1.
Conjecture: ESCP; when v = 1.
Conjecture: There exist bounded
solutions that do not converge

to the equilibrium or

to a periodic solution.

88 Tnt+1 =

Brn+Tn_1

Tp—1+Dxp_2

Thm 2.8.1.

3! Ps-solution

and we conjecture that it is LAS.
Conjecture: For the equilibrium =z,
LAS = GA.

Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.

See [49] and [119].

89

xn+1 -

Brntdxn_2
14z,

Thm 2.5.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions that
do not converge to an equilibrium

or to a periodic solution.

90

Tn+1 =

Brn+dxTn_2
1+zn—1

Thm 2.7.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions that
do not converge to an equilibrium

or to a periodic solution.
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91 Tp+1 =

Brntan—z
A4z 2

Thm 2.3.3 or Thm 2.3.4.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions that
do not converge to an equilibrium

or to a periodic solution.

See [69].

92 I

Tn+0Tn_2
Tn+Cxn_1

Thm 3.4.1.

For the equilibrium 7z, LAS # GA.
ESB iff § < C.

Conjecture: For the equilibrium z

in the region where ESB, LAS = GA.
Conjecture: There exist bounded
solutions that do not

converge to the equilibrium or

to a periodic solution.
See [61] and [69].

93 Tn+1 =

Brn+xn_2
Bxp+z,_2

Thm 2.1.1.

Conjecture: For the equilibrium z,
LAS = GA.

Conjecture: There exist solutions that
do not converge to the equilibrium

or to a periodic solution.

94 Tnt+1 =

Brn+xn_2

Crp_1+Tn_2

Thm 2.9.1

Conjecture: For the equilibrium 7z,
LAS = GA.

Conjecture: There exist solutions that
do not converge to an equilibrium

or to a periodic solution.
See [152].
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95 Ln41

YTn—1+Tn—2

A+xy,

U

Thm 3.1.1.

Conjecture: EBSCz when v > 1+ A.
Conjecture: For the positive
equilibrium z, LAS = GAS

when v <1+ A.

ESCP; when v =1+ A.
Conjecture: There exist bounded
solutions that do not converge
to an equilibrium or

to a periodic solution.

See [67].

96 Ln41

YEp—1+Tn—2

Atz

B

Thm 2.7.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions
that do not converge

to an equilibrium or

to a periodic solution.
See [49].

97 Tn4+1

YEn—1+Tn—2

A4z _2

U

Thm 3.2.1.

Has P5-Tricho.

Conjecture: EBSCZ when v > 1+ A.
See [70] and [128].

98 Tn+1

Ty—14+0Tpn_2

Bxn+T, 1

Thm 3.4.1.

For the equilibrium z, LAS A GA.
ESB iff § < B.

Conjecture: For the equilibrium z
in the region where ESB, LAS = GA.
3! Ps-solution and we conjecture
that it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

See [61].
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9  mpp =Tttt U Thm 331
Conjecture: EBSCz when v > 1.
Conjecture: For the equilibrium z,
LAS = GA when v < 1.
Conjecture: EBSCP; when v = 1.
Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or
to a periodic solution.
See [56].

100 @y = %ﬁj Thm 2.1.1.
Conjecture: For the equilibrium z,
LAS = GA.
3! Py-solution and it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [140] and [141].

101 @41 = e Thm 2.1.1.
ESCz.
See [175, p. 71] and [208].

102 T = 5 mr s Thm 2.1.1.
ESCz.
See [208].
ESCz.
See [208].
ESCz.

See [103] and [208].
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105

— Bxy
Tntl = T¥Ben -+,

B

Thm 2.1.1.

ESC by Thms 5.23.2, 5.23.4,
and 1.6.3.

106

_ Bxy
Tn+1l = T¥ B, +an 2

B

Thm 2.1.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions
that do not converge

to an equilibrium or

to a periodic solution.

107

— Bzn
Intl = T30z, 1tan—2

B

Thm 2.3.1 or Thm 2.3.4.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions
that do not converge

to an equilibrium or

to a periodic solution.

See [157].

108 Zpiq =

Tn
Tn+CTpn_1+DTp_2

B

Thm 2.1.1.

Conjecture: For the equilibrium z,
LAS = GA.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

109

Tn—1

Tnt+l = A Bz, tan_1

B

Thm 2.1.1.

d! Ps-solution

when 0 < A<1and B#1
and it is LAS

when 0 < A< 1 and B > 1.
There exist infinitely many
period-two solutions when
0<A<1land B=1.
ESCP; by Thm 1.6.6.

See [61] and [175, p. 133].




Appendiz A 481

Has P>-Tricho.
Conjecture: EBSCZ when A < 1.
See [72].

J! P,-solution

when 0 < A<land D #1
and it is LAS

when 0 < A< 1and D > 1.
There exist infinitely many
period-two solutions

when 0 < A< 1and D =1.
Conjecture: ESCPs.

3! Ps-solution when B+ D # 1
and it is LAS when B+ D > 1.
Conjecture: ESCPs.

Has Ps-Tricho.
See [60] and [146].

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions
that do not converge

to an equilibrium or

to a periodic solution.
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Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.

Conjecture: For the equilibrium z,
LAS = GA.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

117 xp41 =14 Bzy +yTp-1

This is a linear equation.

118 @y = St Thm 3.1.1.
' Has P,-Tricho.
See [175, p. 137].
119 apyy = St Thm 2.2.1 or Thm 2.3.4.

Conjecture: ESCz.

Can be transformed to #66 with a > A,
which remains a conjecture.

See [175, p. 137].
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120 @pyy = St U* ESPs when a == 1.
Todd’s Equation.
Conjecture: JUS
iff 3 #£ 1.

When 3 =1, it possesses

the invariant:

(a+ Z?:o Tn—i) H?:o(l + ﬁ)
=const., for all n > 0.
Conjecture: There exist
solutions that do not

converge to the equilibrium or
to a periodic solution.

121 xpy1 =14 Bz, +6x,—2 U This equation is linear.

122 @pqq = 2HEt0tns B Thm 2.5.1.
Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist
solutions that do not

converge to the equilibrium or
to a periodic solution.

123 Tntl = o+BTn+Tn-2 U Conjecture: Has P4-Tricho.

" Conjecture: ESCZ when § > 1.
See [59], [150], and [222].

124 gy =t B Thm 2.3.3 or Thm 2.3.4.
Conjecture: For the equilibrium
z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium or
to a periodic solution.
See [69].
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125

Tpy1 =1+ YTp_1 + 0Ty 2

U

This equation is linear.

126

At YTn_1+Tn_2
Tn

Tp+1 =

Thm 3.1.1.

3US when v > 1.

Conjecture: EBSCz when v > 1.
EBSCP; when v = 1.
Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist
solutions that do not

converge to the equilibrium or
to a periodic solution.

See [46] and [67].

127

A+Tn_1+0Tn_2
Tn—1

Tn41 =

Thm 2.7.1.

Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist
solutions that do not

converge to the equilibrium or
to a periodic solution.

See [49].

128

— aFYTn_1tTn-_2
xn+1 - Trn—2

Thm 3.2.1.

Has P5>-Tricho.
Conjecture: EBSCz when v > 1.
See [70].

129

Tnt1 = BTy +VTp—1 + 0Tn—2

U

This equation is linear.
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140, —
130 Tyl = In'f‘ﬁ’xnx;"r Tn—2

Thm 3.1.1.

Conjecture: EBSCz when
y>149.

Conjecture: For the equilibrium
z, LAS = GA

when v <1+49.
Conjecture: ESCP; when
vy=1+9.

Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.

See [67].

n n— 5 n—
131 Tny1 = W

Thm 2.7.1.

Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist solutions
which do not converge

to the equilibrium or

to a periodic solution.

See [49].

_ BratyTa_1+Tn-_2
132 Tn+1 = — z..

Thm 3.2.1.

Conjecture: EBSCz when
y>14p4.

Conjecture: For the equilibrium
z, LAS = GA

when v <14 3.
Conjecture: ESCP,
when v =1+ 3.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium

or to a periodic solution.
See [49].

1

133 @pr = A+Bz,+Cxp_1+Tn_2

Thm 2.1.1.

ESCz.
See [208].
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134

_ Ty
Tn+l = A Bz, +Czp_1t0n_2

Thm 2.1.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

135 Tn-1

Tntl = A+Brn+Cxp_14+Tn_2

Thm 2.1.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
3! Psy-solution

and it is LAS.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

_ Tn—2
136 Tn+l = A¥ Bz, +Cxp_1+0n_2

Thm 2.1.1.

Conjecture: For the positive
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

137 axpy1 =14 Pz, +yTp_1 + 022

This equation is linear.

138 xn+1 — a"rzn“!"}’x‘gn—l +0xpn—2

Thm 3.1.1.

Conjecture: EBSCz
when v > 1+ 4.
Conjecture: For the equilibrium
z, LAS = GA

when v < 1+ 4.

ESCP; when v =1 +6.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium

or to a periodic solution.
See [67].
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139 Tpy1 = a+BTn+Tn_1+0Tn_2

Tp—1

Thm 2.7.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

See [49].

140 Tyl = A+ BT +YTn—1+Tn_2

Tn—2

U

Thm 3.2.1.

Conjecture: EBSCZz when v > 1+ (.
Conjecture: For the

equilibrium z, LAS = GA

when v <1+ 4.

Conjecture: ESCP, when v =1+ (.
Conjecture: There exist

bounded solutions

that do not converge

to the equilibrium

or to a periodic solution.

See [49].

141

T _ a+Ty
n+1l = AY Bz, +2, 1

Thm 2.1.1.

Conjecture: ESCzx.

Any claims prior to July 2007
that this conjecture

has been confirmed

are not correct.

See [15] and [175, p. 141].

142

T _ atTy
ntl = Atz + Dz, >

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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143 2,41 = MC;%&EJ B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium

or to a periodic solution.
See [69].

144 w1 = —F2t o B Thm 2.1.1.

Tn+Cxp_1+Dxy_2
Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

145 2pi ==t~ B Thm21.1.
3! Psy-solution
and it is LAS.
ESCPs.
See [15] and [175, p. 149].

146 2y = 7522 — U Thm3.3.1.
Has P5-Tricho.
Conjecture: EBSCz when A < 1.
See [49] and [72].

47 zpg = gl — B Thm 2,11,
Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: 3! Ps-solution
and we conjecture that
it is LAS.
Conjecture: ESCPs.
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148 2,41 = Ottn_t

Bxp+zn_1+Dxn_2

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: 3! Ps-solution
and we conjecture that

it is LAS.

Conjecture: ESCP,.

_ ATy —2
149 Tnt+l = AT Bz, tan_1

Thm 3.4.1.

ESB iff A > 1.

For the

equilibrium z,

LAS 4 GA.

ESCz iff A > 1.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [61] and [69].

_ at+Tpn—2
150 Tnt+1 = A+Bxp+T, 2

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

151 CREATES

Tnt+1 = A+Cxp_1+Tn_2

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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152 @pyq =

atxn—2

Bzp+Cxn_1+Tn—2

B

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

153 @pyq =

Brn+xTn_1

A+Bxp+Tn_1

Thm 2.1.1.

3! Psy-solution

and we conjecture that
it is LAS.

Conjecture: ESCP5.
See [175, p. 158].

154 Tn+1 =

Tn+YTn—1

A+xp+Dxy_o

Thm 3.3.1.

Conjecture: For the positive
equilibrium 7z,

LAS = GA

when A -1 <y <1+ A
Conjecture: EBSCz
when v > 1+ A.
Conjecture: ESCP,
when v =1+ A.
Conjecture: There exist
bounded solutions

that do not converge

to an equilibrium or

to a periodic solution.
See [49].

155 2piq =

Brn+xTn_1

A+xy_1+Dxy_o

B

Thm 2.3.1 or Thm 2.3.4.

Conjecture: For the positive
equilibrium 7z,

LAS = GA.

3! Psy-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [69].
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156 R Tn+YTn—1

Tn+Cxp_1+Dxy_2

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
J! P5-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

157 Brn+Tn_2

Tntl = A+Bxp+xn_1

Thm 3.4.1.

For the

positive equilibrium z,
LAS # GA.

ESB iff A+ £ > 1.
Conjecture: For the
positive equilibrium Zz
in the region where ESB,
LAS = GA.
Conjecture: There exist
bounded solutions

that do not converge

to an equilibrium or

to a periodic solution.
See [48] and [61].

158 Tn+0Tn_2

Intl = A4z, ¥ Dan 2

Thm 2.1.1.

Conjecture: For the
positive equilibrium z,
LAS = GA.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
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159

T _ Brn+Tn_2
n+1l = AYCa,_1tan_2

B Thm 2.3.1 or Thm 2.3.4.

Conjecture: For the
positive equilibrium Zz,
LAS = GA.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [69].

160 Tn41 =

BTn+Tn_2

Brn+Cxyp_14+Tn_2

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

161

T _ Tp_a1t+dmn_o
n+1l = Ay Br, ton,_;

Thm 3.4.1.

For the

positive equilibrium z, LAS % GA.
ESB iff § < A+ B.
Conjecture: For the
positive equilibrium z

in the region where ESB,
LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist
bounded solutions

that do not converge

to an equilibrium or

to a periodic solution.
See [61] and [69].
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162

Tn+l = A7 Bz, tan_s

YTp—1+Tn—2

U

Thm 3.3.1.

Conjecture: EBSCz when v > 1+ A.
Conjecture: For the

positive equilibrium z,

LAS = GA

when v <1+ A.

Conjecture: EBSCP,; when v =1+ A.
Conjecture: There exist

bounded solutions

that do not converge

to an equilibrium or

to a periodic solution.

163

Tntl = Atxn_1+Dxp_o

Tn—1+0Tn_2

B

Thm 2.1.1.

Conjecture: For the
positive equilibrium z,
LAS = GA.

3! Py-solution and

we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

164 Tn+1 =

Tn—14+0Tn_2

Bxp+xn, 1+Dxy 2

B

Thm 2.1.1.

Conjecture: For the
equilibrium z, LAS = GA.
3! Py-solution and

we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

165

Tp+1 =

At Tn+yTn_1

A+x,

U

Thm 3.1.1.

Has P,-Tricho.

EBSCz when v > 1+ A
by Theorem 4.2.2.

See [112] and [175, p. 167].
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166 241 =

a+BTy+Tpn_1

A+xpn_1

B

Thm 2.2.1 or Thm 2.3.4.

Conjecture: ESCzx.
See [69], [134], and [175, p. 172].

167 Tn41 =

at+BTy+Tpn_1

A+xpn_2

Thm 3.2.1.

Conjecture: EBSCz when + A < 1.
Conjecture: For the

equilibrium z, LAS = GA

when G+ A > 1.

Conjecture: ESCP; when 0+ A = 1.
Conjecture: There exist

bounded solutions that

do not converge

to the equilibrium or

to a periodic solution.

168 Tn+1 =

a+Typ+YTn—1

Tp+Cxpn_1

Thm 2.1.1.

Conjecture: For the
equilibrium z,

LAS = GA.

J! Ps-solution

and we conjecture that
it is LAS.

Conjecture: ESCP,.
See [175, p. 175].

169 Tn+1 =

a+Tp+YTn—1

Tn+Dxy_2

U

Thm 3.3.1.

Conjecture: EBSCz when v > 1.
Conjecture: For the
equilibrium z,

LAS = GA

when v < 1.

Conjecture: ESCP; when v = 1.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium

or to a periodic solution.

See [49] and [70].
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170

Tn41 =

a+BTn+Tn_1
Tn_1+Dxyn_2

B Thm 2.8.1.

Conjecture: For the
equilibrium z, LAS = GA.
3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [49].

171

Tn+1 =

a+BTn+Tn_2
A+x,

Thm 2.5.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

172 Tn41 =

a+Brn+0Tn_2

1+zn—1

Thm 2.7.1.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

173

Tn41 =

a+BTy+Ty—2
A+xpn_2

Thm 2.3.3 or Thm 2.3.4.

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].
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174 2y = S8tz Thm 3.4.1.

Tp+Cxy_1
For the
equilibrium z, LAS AGA.
Conjecture: ESB iff § < C.
Conjecture: For the
equilibrium z
in the region where ESB,
LAS = GA.
Conjecture: There exist
bounded solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].

175 @pqq = S0t B Thm 2.1.1.
Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

176 wpqy = 002 B Thm 2.9.1

Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [152].
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177 wpgq = 5222 U Thm 3.1.1.
Conjecture: EBSCz when v > 1+ A.
Conjecture: For the
equilibrium Zz,
LAS = GA
when v < 1+ A.
Conjecture: ESCP,
when v =1+ A.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [67].

178 wpqq = Sttt B Thip 2.7.1.
Conjecture: For the
equilibrium z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

179 @y = “He=tife=2 . U Thm 3.2.1.
Has P,-Tricho.
Conjecture: EBSCz
when v > 1+ A.
See [70].
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180 Zpy1 =

at+Tn_14+6Tn_2
Bxp+Tn-1

U

Thm 3.4.1.

Conjecture: ESB iff § < B.
For the equilibrium

z, LAS A GA.

Conjecture: For the equilibrium
Z in the region where ESB,
LAS = GA.

d! P, solution

and we conjecture that

it is LAS.

Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.

See [61] and [69].

181 Tpiq =

At+YTn—1+Tn—2

Bxp+z,_2

U

Thm 3.3.1.

Conjecture: EBSCz

when v > 1.

Conjecture: For the equilibrium
z, LAS = GA

when v < 1.

Conjecture: EBSCP, when v = 1.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.

See [49].

182 Tn41 =

atYTn_1+Tn—2

Cxp_1+Tn—2

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not

converge to the equilibrium

or to a periodic solution.
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183 Tpi1 = Tn+YTn—1+0Tn_2

A+x,

U Thm 3.1.1.

Conjecture: EBSCz
when v > 1+6 + A.
Conjecture: For the positive
equilibrium z,

LAS = GA

when vy <1+6+ A.
ESCP; when v =1+6 + A.
Conjecture: There exist
bounded solutions

that do not converge

to an equilibrium or

to a periodic solution.

See [67].

184 zpqq = Brn+Tn—1+06Tn_2

A+xn_1

Thm 2.7.1.

Conjecture: For the positive
equilibrium z,

LAS = GA.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

185 Tpy1 = Brn+yTn_1+Tn_2

Adxn o

Thm 3.2.1.

Conjecture: EBSCz
when v > 1+ (§+ A.
Conjecture: For the positive
equilibrium Zz,

LAS = GA

when v <14+ 3+ A.
Conjecture: ESCP,
when v =143+ A.
Conjecture: There exist
bounded solutions

that do not converge

to an equilibrium or

to a periodic solution.
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186 @p41 =

Tn+YTn—1+0Tn_2

Tn+Cxp_1

U Thm 3.4.1.

For the equilibrium

z, LAS # GA.
Conjecture: ESB iff
i< FH+C.

Conjecture: For the
equilibrium z

in the region where ESB,
LAS = GA.

3! Ps-solution

and we conjecture that
it is LAS.

Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.
See [69].

187 Tn41 =

Tn+YTn—1+0Tn_2

Tn+Dxy_2

U

Thm 3.3.1.

Conjecture: EBSCx
when v > 1+494.
Conjecture: For the equilibrium
z, LAS = GA

when v < 1+494.
Conjecture: ESCP,
when v =1+46.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.
See [49].
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188 @y = Zptian#0ies: B Thm 2.3.2 or Thm 2.3.4.
Conjecture: For the equilibrium
z, LAS = GA.

d! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].

189 zp41 = A+zn+co.;ti7{+Dz,,,_2 B Thm 2.1.1.
Conjecture: For the equilibrium
z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

_ at+Tpn—1
190 Zn1 = g5 et tps— B Thm2.1.1

Conjecture: For the equilibrium
z, LAS = GA.

3! Py-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not

converge to the equilibrium

or to a periodic solution.

191 21 = rpee—=— B Thm2lL
Conjecture: For the equilibrium
z, LAS = GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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Tn+YTn—1

192 Tn41 =

A+xn+Cxpn_1+Dxp_2

B Thm 2.1.1.

Conjecture: For the positive
equilibrium z,

LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

n+0T,—
193 i1 = Int0tn 2

A+zn,+Cxp_1+Dxyp_o

Thm 2.1.1.

Conjecture: For the positive
equilibrium z,

LAS = GA.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

194 Z,"+1 — Tp—1+0Tn_2

A+Brptan—1+Dxn—2

Thm 2.1.1.

Conjecture: For the positive
equilibrium z,

LAS = GA.

3! Py-solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
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n n— 5 n—
195 Tpy1 = a+px +Zj—a:n1+ T2

Thm 3.1.1.

ESCP; when vy =(0+06 + A.
Conjecture: EBSCz
when v > §+J + A.
Conjecture: For the equilibrium
z, LAS = GA
when v < 4§ + A.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.

See [67].

a+Prn+YTn_1+Tn_2
Atxy,_q

196 Tn41 =

Thm 2.7.1.

Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist
solutions that do not

converge to the equilibrium

or to a periodic solution.

a+BTn+ YTy —1+Tpn—2
Aty o

197 Tn41 =

Thm 3.2.1.

Conjecture: EBSCz
when v > 14+ 3+ A.
Conjecture: For the equilibrium
z, LAS = GA
when v <14+ 3+ A.
Conjecture: ESCP,
when vy =1+ 3+ A.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.
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198 241 =

A+ +YTn—1+0Tn_2

Tn+Cxp_1

U

Thm 3.4.1.

Conjecture: ESB

iff 0 <C+ 2.

Conjecture: For the equilibrium
z, LAS # GA.

However in the region where ESB,
LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.

See [69].

199 Tn4+1 =

AT +YTn—1+0Tn_2

Tn+Dxy o

U

Thm 3.3.1.

Conjecture: EBSCz
when v > 1+ 6.
Conjecture: For the equilibrium
z, LAS = GA

when v < 1+ 6.
Conjecture: ESCP,
when v =1+49.
Conjecture: There exist
bounded solutions

that do not converge

to the equilibrium or

to a periodic solution.
See [49].

200 2pi1 =

a+BTy+Tp—1+0Tpn_2

Tpn_1+Dxp_2

B

Thm 2.3.2.

Conjecture: For the equilibrium
z, LAS = GA.

d! P, solution

and we conjecture that

it is LAS.

Conjecture: There exist
solutions that do not

converge to the equilibrium

or to a periodic solution.

See [69)].
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201 @y = GHEHL B Thm 211
Conjecture: For the equilibrium
z, LAS = GA.
d! P5 solution iff
8+ A<1and
4o
<(1=B-A)[BO-B—A)—(1+33— A
and we conjecture that
it is LAS.
Conjecture: T is GAS
when either
B+A>1
or
dav
>(1-8-A)[B1-8-A) —(1+38-A).
Conjecture: ESCP,.
202 2p41 = o=t U Thm 3.3.1.
Conjecture: EBSCZ when v > 1+ A.
Conjecture: For the equilibrium z,
LAS = GA when v <1+ A.
Conjecture: ESCP,
when v =1+ A.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].
203 wpi1 = goiltetisl B Thm 2.3.1 or Thm 2.3.4.

Conjecture: For the equilibrium
z, LAS = GA.

3! P,-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

See [69].
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204 Tn4+1 =

A+Tp+YTn—1

Zn+Cn_1+Dzp_2

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

3! Psy-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

205 Tn41 =

atTn+0Tn_2

Atz +Cxyp_1

Thm 3.4.1.

Conjecture: ESB iff § < A+ C.
Conjecture: For the equilibrium

z, LAS # GA.

However in the region where ESB,
LAS = GA.

Conjecture: There exist bounded
solutions that do not

converge to the equilibrium

or to a periodic solution.
See [49].

206 Tpi1 =

4T +0T,_2

A+zp+Dxy 2

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

207 Tn41 =

a+BTn+Tn_2

A+Cxp_1+xpn_o

B

Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.
See [69].
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208 i1 =

A+Tpn+0Tn_2

Tn+Cxp_1+Dxy_2

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

209 Tpp1 =

a+Tp_1+0Tn_2

A+Bxp+Tn—1

U

Thm 3.4.1.

Conjecture: ESB iff

0 <A+ B.

Conjecture: For the equilibrium
z, LAS # GA.

However in the region where ESB,
LAS = GA.

3! Psy-solution

and we conjecture that

it is LAS.

Conjecture: There exist bounded
solutions that do not

converge to the equilibrium

or to a periodic solution.

See [49].

210 @pqq =

A+YLp—1+Tn—2

A+Bxp+an_2

U

Thm 3.3.1.

Conjecture: EBSCZ when v > 1+ A.
Conjecture: For the equilibrium

z, LAS = GA

when v <1+ A.

Conjecture: ESCP, when v =1+ A.
Conjecture: There exist bounded
solutions that do not

converge to the equilibrium

or to a periodic solution.

See [49].
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211 Zpypq =

a+Tn_14+0Tn_2

Aty _14+Dxy_2

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

d! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

212 Tpqq =

+Tn_1+0Tn_2

Bzrp+Tn_1+Dxp_2

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

J! P,-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

213 Tpqq =

Tn+YTn_1+0Tn_2
Atz +Cxp_1

U

Thm 3.4.1.

Conjecture: ESB iff
<A+ L +C.

Conjecture: For the positive
equilibrium Zz,

LAS # GA.

However in the region where ESB,
LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist bounded
solutions that do not

converge to an equilibrium

or to a periodic solution.

See [69].
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214 @4 =

Tn+YTn—1+0Tn_2

Atxp+Dxy o

Thm 3.3.1.

Conjecture: EBSCz

when v > 14+ + A.
Conjecture: For the positive
equilibrium z,

LAS = GA

when v <146+ A.
Conjecture: ESCP,

when v =1+ 4§ + A.
Conjecture: There exist bounded
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [49].

215 T =

Brn+xn_1+0n_2
Atxy_1+Dxy_2

B

Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the positive
equilibrium z, LAS = GA.

3! Psy-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to an equilibrium or

to a periodic solution.
See [69].

216 Tpq1 =

Tn+YTn—1+0Tpn—_2

Tn+Crp_1+Dxp_2

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

d! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.
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217 Tpiq =

A+ T +YTn—1

A+xp,+Cxp_1+Dxyp_o

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

J! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

218 Tpiq =

A+Ty 40Ty 2

A+zn,+Cxp_1+Dxyp_o

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

219 Tn41 =

A+ YT —1+Tn—2

A+Bxp+Cxpn_1+xn_2

B

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

220 Tp4q =

Tn+VTn—1+0Tn—2

Atzp+Cxp_1+Dxp_2

B

Thm 2.1.1.

Conjecture: For the positive
equilibrium z, LAS = GA.

3! Py-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to an equilibrium or

to a periodic solution.
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221 @y = SO 00 J Thm 3.4.1.
Conjecture: ESB iff
§<A+BL+C5.
Conjecture: For the equilibrium
z, LAS A GA.
However in the region where ESB,
LAS = GA.
3! P, solution
and we conjecture that
it is LAS.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium

or to a periodic solution.
See [61] and [69].

222wy = SHpETa 2y Thin 331
Conjecture: EBSCx
when v > 1+6 + A.
ESB iff y <1+4+4§+ A.
Conjecture: For the equilibrium
z, LAS = GA
when v < 144§+ A.
Conjecture: ESCP,
when vy =1+ + A.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.

ntTn—1+0Tn_
223w,y = TPt Ot B Thin 2.3.1 or Thm 2.3.4.

Conjecture: For the equilibrium
z, LAS = GA.

3! Py-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

See [69].
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_ at T+ yTa_1+0Tn_2
24 w1 = Tpn+Cop_1+Dxp_2

B Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

3! Ps-solution

and we conjecture that

it is LAS.

Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.

a+BTn+Tn_1+0Tn_2

225 Tnt+1 = A+Bxn+an_1+Dxy_2

Thm 2.1.1.

Conjecture: For the equilibrium
z, LAS = GA.

3! Py solution iff
B+06+A<1and

4o < (B+D)(1—p3—8— A)?
—(1-8-6—-A)(1+38+356—A)
and we conjecture that it is LAS.
Conjecture: There exist solutions
that do not converge

to the equilibrium or

to a periodic solution.




Appendix B

Table of the Boundedness Character of the 736 Special
Cases of Order Four of

o+ Bx, + YTp_1 + 0xp,_o + €x,_3
Tyl = ,m=0,1,....
A+ Bz, +Cxp_1+ Dx,y_o + Ex,_3

The above equation contains (2°—1)x (2°—1) = 961 special cases, of which 225
are of order less than or equal to three (see Appendix A) and the remaining
736 are of order four and they are presented in this appendix.

For the definition of the number assigned to a special case see Section 2.3.

A boldfaced B indicates that every solution of the equation in this special
case is bounded and a boldfaced U indicates that the equation in this special
case has unbounded solutions in some range of its parameters and for some
initial conditions.

A boldfaced B* next to an equation indicates that we only conjecture that
every solution of the equation is bounded and a boldfaced U* indicates that
we only conjecture that the equation has unbounded solutions in some range
of its parameters and for some initial conditions.
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258 Tpyy = 52 U Linear
259 e U  Linear
262 pyr = Pntins U Linear
263 xp4q = s U Linear
264 Tpyl = EZ,"TZS U  Reducible to linear
265 Tpyr = 5Tn=2 U  Thm 4.24
266 Tnp1 = 2t U  Thm 424
267 Tni1 = g U  Thm4.24
268 Ty = 2nteinzs U  Thm4.24
260 wpq = 2P4En=s U Thm 4.24
270 R U Thm4.2.4
211wy = I U Thm 4.2.4
274 Tpy1 = W U Linear
275 Tyl = w U Linear
278 Tpi1 = w U  Linear
279 @y = BT EITaoi s Lipear
280 Tpi1 = % U  Thm 3.1.2. See also [58].
281 wnyy = ST U Thm 3.1.2. See also [58].
282 Trgl = %# U  Thm 3.1.2. See also [58].
283 wpyq = GtSest U Thm 3.1.2. See also [58].
284 @y = DLeBTioiiciics U Thm 3.1.2. See also [58].
285 wpqq = SHatIatins 7 Thm 3.1.2. See also [58].
286 Tpy1 = % U Thm 3.1.2. See also [58].
87 wyqq = TR En=t U Thm 3.1.2. See also [58].
288 Tnt1 = Gpm U  Reducible to linear
289 Tpy1 = ag;iﬁf U  Reducible to case #46
290 Tpy1 = #ﬂ:ﬂ U  Reducible to case #29
291 Tpy1 = j:éigm U  Reducible to case #71
292 Ty = Dipttnass U*
203 mpgq = 2t
294 Ty = Zppteinss U*
295 gy = et U*
.
297 Tni1 = porg U*
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298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
322
323
326
327
328
329
330
331
332
333
334
335
338
339
342

T — €ETn—3
n+1 A+Bz,+Cxy_1
_ a+€exr,—3
Tnt1 = A+Bzx,+Cxyp_1
_ Brptern_3
Tn+l = By, +Cxn_1
T _ atBratern—_3
n+l = "By, tCzn_1
_ Brantern-—s
Tnt1 = A+Bzx,+Cxyp_1
_ atpTnteTn_3
In+l = A Bz, +Can 1
_ YTn—11+€Tn_3
Tn+l = Con_1
_ atyTn_1t€xn_3
Tn+1 = Cr_1
_ YTn—11+€Tn_3
Tn+l = AT Cz,_,
T — FYTn_1teTn_3
ntl = T A+ Crn
_ BrntyTn_1+€Tn_3
Tn+1 = Con_1
_ atBratvra_1+€Tn_3
Tnt+1 = Cxp1
T _ BTt YTn_1+€Tn_3
ntl ™ A+Cap,_y
T _ atBrat+yTn_1+€Tn_3
n+l — A+Cxp_1
_ YTn—1t€Tn_3
Tnt+l = Bu, 1 C0z,_;
— At YTp_1+€Tpn_3
Tn+l = ~Ba,+Cxn_1
T _ YTn—1t€Tn_3
n+l = AYBr,+Cxn_1
_ atYZp—1t€xn-3
Tnt1 = A+Bz,+Cxp_1
T _ PratyTa_1+exn_3
n+l = Bxp+Cxp_1
T _ atBratyrn_1+ern_3
nt+l — B2n,+C3p 1
z — BTntytn-_1tern-_s
n+l = TAYBz,+Cx,_1
_ atBratyrn_1+€rn_3
Tntl = T A4 Br,+Crn
_ STp_2teTn_3
R e
_ at0Tn_ot€exn_3
Tntl = — a4
_ Pratdrn_otern_3
Tp+1 = A
_ atBrnt+oTn_2+teTn_3
Tn+1 = A
_ 0Tp _2tern_3
Tn+1 = Bz,
a0z, _otex,_3
Tp+1 = Bz,
_ dxp_o+ern_3
T+l = A+Bzx,
_ atd0Tn_ot€xrn_3
Tnt1 = A+Bzx,
_ BratoTn_otern_3
Tn+1 = Bz,
_ atBrat+oTy_2+teTn_3
Tn+1 = Bz,
_ Bxptdrn_otern_3
Ln+1 = A+Bzx,
_ atBratdrn_o+tern_3
I+l = A+Bzx,
_ YTn—1+0Tn_otexn_3
‘rnJrl - 54
_ aFYTn_140Tp_2+€Tn_3
xn—&-l - 1%
T _ BratyTa_140Tn_2+tern_3
n+1l — A

%

*

%

*

%

*

*

%

cggcgccaocaoccocaogagaogcaccgggogccaococcaaaawca

%

c CcCc
* ¥ ¥

U
U
U

Reducible to case #54
Reducible to case #118
Reducible to case #83
Reducible to case #165

Linear
Linear
Linear
Linear

Linear
Linear
Linear
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ot frntyn_1+0Tn_2+€tn—3 1]  [ipear
343 Tn+l = A
 YTn—1+0Tn_2t€xn_3 U Thm 3.1.2
344 Tnyl = Bxy,
_ otyzn_140Tn_otern_3 U Thm 3.1.2
345 Tp+1 = Bxy,
_ Yzp_1+0w, _otern_3 U Thm 3.1.2
346 Tp+1 = A+Bzx,
Aty —14+6Zn _2+€Tn_3 U Thm 3.1.2
347 Tpy1 = A+ Bz,
BTn+YTn-1+0Tn_2+€Tn_3 U Thm 3.1.2
348 Tnt+l = Bz,
AFBTrn+VTn—14+0Tn_2+€Tn_3 U Thm 3.1.2
349 Tn4+1 = Bz,
Bxn+yTn—1+06Tn_otern_3 U Thm 3.1.2
350 Tpp1 = A+ Bz,
at+BTp+YTn—14+0Tn_2+€Tn_3 U Thm 3.1.2
351 xn-&-l = A+B$n
_ 0xn_o+te€Tn_3 u*
352 Tntl = = cozny
_ atdér,_o2tex,_3 u*
353 Tntl =~ Czoy
_ dxp_o2+texn_3 U*
354 Tntl = “ATCz,_1
_ atdz,_oter,_3 U*
355 Tntl = = AtCwn,_.
_ Bxpt+dz,_otex,_3 u*
356 Tn+l = = Cany
a+Bx,+0T, _2+€x,_3 U*
357 Tn+1 = Crpn_y
_ PBxpntoéx,_otern_3 u*
358 Tntl = = A1Czn_1
a+Prn+0Tn_o+€exn_3 U*
359 Tp41 = A+ Cxn_1 See [65]
_ dxp_otexn_3 U ee
360 In+l = By, +Cop_1 165
_ atdx,_oter,_3 U See
361 Tn+l = T Bz, 1Cxn_1 65]
_ 0Tn_o2texTn_3 U See
362 Tn+l = A Bz, +Can_1
_ o6z, _otemn s U  See [65]
363 Tn+l = AfBu,+Con_1 65]
_ Bxntoéx,_otern_3 U See
364 Tntl = " B, +Czp_y
_ at+BTatiTn_2teTn_3 U  See [65]
365 Tn+1 = Bxp,+Cxp_q
_ Bantomn_stern_s U  See [65]
366 Tntl = AT BantCxno1
_ a+PBrnt+dzn_ostern_s U See [65]
367 Tn+l = = Af{Bz,+Cz, 1
_ YTn_1+0Tn_o2+e€Tn_3 U*
368 Tn41 = - Cxp_1
a+YTp_14+0Lp_o2+€x,_3 u*
369 Tn+l = = Cxp_1
_ YZp_1+0Tp_2+€Tn_3 U*
370 Tp4+1 = A+Capn_1
A+YTy—1+0Tp_2+€Tn_3 U*
371 Tn+1l = A+C§3?n71 N
Bontytn 1 +0Tn_stetn_s ]k
372 Tn+1 = = Czn_él n
a+BTn+YTn_1+6Tn _2t+€Tn_3 u*
373 Tn41 = C:1:7571 4
BTn+Y¥Tn—14+0Tn_2+€Tn_3 U*
374 xpp == A+Cx%71 N
BTy +YTn—1+0Tn_2+€Tn—_3 U*
375 @p = AT Cwn See [65]
_ YZp_1+0Tp_2+€Tn_3 U ee
376 Tp+1 = Bxp+Cxp_1 [65]
_ otyTn_1+0Tn_o2tern_3 U See
377 Tn+l = Bg;%-‘rc.'linfl See [65]
_ YTp—1+0Tp_2+€Tn_3 U ee
378 In+l = A7 Bz, +Czn_1
_ atYTn_1+0Tn_2t€Tn_3 U See [65]
379 Tnt1 = A+ Brpn+Can_1
= BontiTn i t0Tnatens g Gee [65]
380 Tp+1 = Bxp,+Cxp_1
_ atfratyen_14drn_2tetn_s yj See [65]
381 Tn+1 = Bxn+Cxp_1
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382wy = Zetlteititaateias 7 See [65]
383 wpqq = CHnAIa 2 tehuss {7 See [65]
384 Tpy1 = DQ;’:;‘Q'Z U  Reducible to linear
385 Tpp1 = Spon=t U  Thm4.24
386 Tnp1 = ot U  Thm 4.24
387 Tni1 = Trpa=t U  Thm 4.24
388 Ty = 2Epteinzs U  See [65)]
389 Ty = Tt U  See [65]
390 g1 = Zptin=s U  See [65)]
391 Ty = St U  Sce [65)]
392 Tn+l = By Do U  Thm 3.1.2. See also [236].
393 Tnil = Forpi— U  Thm 3.1.2. See also [236]
394 Tpt1 = % U  Thm 3.1.2. See also [236].
395 Tnil = AT tEe— U Thm 3.1.2. See also [236].
396 Tpg1 = portin=s U See [65]
397 Ty = SpPEatcins U  See [65]
398 Tpp1 = gogtias U See [65)]
399 Ty = Aopratens U  See [65]
400 Tpyy = Tngins U Thm 3.1.2
401 Tpyq = STt Tnss U  Thm 3.1.2
402 Ty = Lgepttess U  Thm 3.1.2
403 Tpyy = St tnzs U Thm 3.1.2
404 Ty = Dt inotbetns U*
405 Tni1 = a+59€n+D'Y;cs:21+eﬂcnfs U*
406 Ty = DEntiiac bt U*
L e I O
408 Tpt1 = %gg;‘; U  Thm 3.1.2. See also [58].
409 Ty = Seeptctass U  Thm 3.1.2. See also [58].
410 Tpi1 = ﬁ%m U  Thm 3.1.2. See also [58].
411 Tnp1 = SPgEesd U  Thm 3.1.2. See also [58].
412 Ty = Dot betns U Thm 3.1.2. See also [58].
413 gy = SHEE s 7 Thm 3.1.2. See also [58].
414 R U Thm 3.1.2. See also [58].
415 mpgg = STt s 7 Thim 3.1.2. See also [58].
416 Tns1 = gt — U Thm 4.4.2
417 Tl = gt — U*
418 Tpt1 = W U Thm4.4.2
420 Tnp1 = gontass U*
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a+PBT,+€ex, 3 *
21 wn=¢p o tpes U
Brntern_3 *
422 T = ares i ipe s B
a+BT,+€ex,_3 *
423 a1 = 3o, ipe, B
. €Tn_3 U Thm 342
424 Tn+l = By, $Cxp_1+Dan_s
. Q+€x,_3 U Thm 3.4.2
425 Tn+l = By ¥Cwn_1+Dzn s
. €Ty 3 U Thm 3.4.2
426 xp41 = A+Bzp,+Cxp_14+Dxp_2
. a+ex, 3 U Thm 3.4.2
42T Tnt1 = AFBe,TCon D703
B Bxntetn—3 U Thm 3.4.2
428 $n+1 ~ Bxn+Cxp_1+Dxy_o 4 9
a+BTn+ETn_o Thm 3.4.
429 Tn+1 = Bz, +Caxp_1+Dan_a U
o BTn+ern_s U Thm 3.4.2
430 Tni1 = A5pr. s Cr. i D
_ a+Brp+€xn—3 U Thm 3.4.2
431 xp41 = A+ Bzn+Ctn_1+Dtn_2 See [65]
_ YTp_1+€Tn_3 ee
432 Tn+l = Cpp_1+Dan_s U [ 5]
_ atyT,_1+€xn_3 See 6
433 = m g U [65}
— _YEZn_ateln-g See
434 Tnt1 = W U [
_ ot YTn—1+6Tn_3 See [65
435 Tn+l = A1Cz, 1+ Dwra U [65]
B +vTn_1+€Tn_3 *
436 Tn+1 = ~Czn _1+Dzn_a B
atBrn+ YTy 1 +€Tn 3 *
437 Tp+1 = Cxp_1+Dx,_o B
BLp+ YT _14€Tn_3 *
438 @i = Gicy,Tips, . B
A+BTn+YTn_1+€Tn_3 B*
439 Ty = e D
- YTy —1+€ETH—_3 U Thm 3.4.2
440 Tn+1 = Bx,+Cxp_1+Dxy_o
_ _aty@a-itezn-g3 U Thm 3.4.2
441 Tn4+1 = Bxp+Cxp_1+Dxyp_o
_ YTn—1FE€Tn_3 U Thm 3.4.2
442 1 = A+Bzp,+Cxn_1+Dzn_2
. A+ YTr—1tETn_3 U Thm 342
443 Tni1 = AFBratCen 1+ Den s
_ Bratymn_itern_s U Thm 3.4.2
444 Tn+1 = Bxy,+Cxp_1+Dxp_2
— 0BTVt eTns ] Thy 3.4.9
445 T4 = B, +Cxp_1+Dx, >
_ _ BratyTn_i1tern_s U Thm 3.4.2
446 Tnt1 = A3 Br,1Crn 1+ Do s
— atfrntytnitetns {7 Thm 3.4.2
447 Tp+1 = A+4+Bz,+Cxp_1+Dx,y_o 4.9 4
_ 0Tp_2+€Tn_3 Thm /N
448 Ty = “EnpEhncs U \
a+0T, _otex,_3 Thm 4.2.
449 Tntl = = Dzpo U
_ Sxn_otern_3 Thm 4.2.4
450 Tnt+l = ~A¥ Dz, 5 U 4
a+02y, _o+€ex, 3 Thm 4.2.
451 Tntl = = A4 D> U
BTn+0Tn_2+eTn_3 See [65
452 Tntl = = Du,_o v 165]
a+Brn+3Tn_2tern_3 See [65
453 Tn+1 = Dx,_o U [ ]
_ BrpatdTn_otern_3 See [65
454 Tntl = = AiDan_s U [63]
a+fxn+0Tn_2+€xn_3 See [65
455  mpy1 = A+ Dz, u [ ]
_ 0Tp_otexn_3 See [65
456 Tl = FEApe U 165}
_ a+0xy—2+€Tn_3 See 65
457 Tn+l = T Bz, Dzn_s U [65]
_ Szp_2teTn_s See [65
458 Ta1 = Aifeespes U 163]
a+0Tpn _2+€xn_3 See [65
459 Tn+l = AT Bz, +Dan_» U 165]
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460 gy = Dintotnoatein g U See [65]
461 Tpi1 = O‘erg‘;ﬁg;izm"’?’ U  See [65]
462 Ty = Dlptitn_ztcin=y U  See [65]
463 wpqq = LIt s 7 See [65)]
464 wpqg = LastHtesatcino U  Thm 3.1.2
465 mpyq = HTastieoatios 7 Thm 3.1.2
466 wpqq = LinstHioabcin U  Thm3.1.2
467 wpyq = HEaspesatiss 7 Thim 3.1.2
468 wpyy = PetiTegtOTuateinss {7 Thm 3.1.2
469 w4 = CHEnINEe 02ty {7 Thm 3.1.2
470 @pyq = Botiinatdinstcinss {7 Thim 3.1.2
ATL @y = St H00nst s {7 Thim 3.1.2
472 Tpt1 = ’Yz"‘l;:ffg;’:e:"‘s U Thm 3.1.2. See also [58].
473 wpy = a+wr§;jfg;;i”"’3 U  Thm 3.1.2. See also [58].
O e T U Thm 3.1.2. See also [58].
475 Tpg1 = a+ﬂ’2’1‘§:fi’5;:€:”"3 U Thm 3.1.2. See also [58].
476 Tpq1 = ﬁm“”“g‘{;jigﬁjjer"’g U  Thm 3.1.2. See also [58].
ATT @y = SOt tna 00nat s {7 Thm 3.1.2. See also [58].
478 Tpy1 = M"‘jﬁg;:jﬁ”i‘::m"” U Thm 3.1.2. See also [58].
479 Tpiq = a+ﬁz";1%‘;jigiffjex"’3 U  Thm 3.1.2. See also [58].
480 Tnp1 = gpen=iidn=s U See [65]
481 g1 = SFonozteinzg U  See [65]
482 Tpy1 = % U  See [65]
483 Tpp1 = foorarterns U See [65]
184 gy = B B*
185 mpgq = L taatdiis g
86w = Gpeipes B
BT wan = ST B
488 Tnp1 = poptteins U Thm 3.4.2
489 Tppy = potilo-atetas U  Thm 3.4.2
490 @i = gt U Thm 342
91 T = g ger i U Thin 342
492 Ty = fontiin-atern=s U  Thm 3.4.2
T
194 @y = gl tieettus 7 Thm 3.4.2
495 mpqg = Lo iestens 7 Thm 3.4.2
496 wppg = Liagltonoatcing U See [65]
497 wpy = a+v%‘;ji‘fg;izz"’3 U See [65]
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Dynamic
s of Third-O )
498 rder Rational Diffe
Tpyp1 = Lon=itden_otea rence Equations
499 T o a+A+Cz"—1+DI n—3 U
it = S Foin See [65]
500 @1 = o TG dDe, U 8
501 _a C$7171+Dn72+5$n73 € [65]
Tp+1 = +’8zn+’yzn_1+5£"*2 B*
502 T T +Czn_1+D$"—2+exn_3 B
i = Emtamisan e
503 = _« A+Cap1+D In=3
n+l — +BITIL4+"/$n—1+5x wnij B*
50 FCr_ n=2Fen—
4 Tpi1l = Vzw,—l—f-éx;j—QD_‘fg;—z & B*
505 an“rCajn_ n—3
Tn+1 = a+7mn71+§zi+Df"—2 U Thm 3
506 Tt fxzwrgzgnﬂﬁj;%fa U Th 4.2
n+1 — n—1 e n—2
507 ﬁjan+c§nj€gmz U m 3.4.2
w1 = TEE b e Thn 3.4.2
508 x g Bt O 1t - -
n+1l — n+"/£17n,1+§mn72+ibn_2 U Thm 34
509 Bxp,+Cxyp_ €Ln—3 4.2
Tyl = a+pBx,+yT w—1+Dxp_o U Th
510 Bxyl+£;1+5w’L*2+€xnf3 m 3.4.2
Tnt1 = Bra it o e U Thm 34
511 @y a+2;rBf"+an 1+2D::mn_3 U 4.2
n = n < n—
513 A+Bw71£61+6‘r"72+5m173 Thm 3.4.2
x o x&L71+Dz,,L72 U Th
515 . ntl = ooy B m 3.4.2
516 ntl = ATFrn s B Thm 2.1.1
517 Tt = T B T2
T  atBa .
518 e % U* Reducible to linear
Tn+1 = _ Bxn
519 . AtEz,_3 B T
521 o Ll . hm 2.3.4
_ n—3
523 . ntl = By 7Ee, s B Thm 2.3.4
524 ;1 AFBe, +Ew B Thm 2.1.1
_ n—3
525 ntl = BorBe s B Thm 2.1.1
x _ n—3
T T 211
527 o ATBa, 1T 5 hm 2.1.1
— n—3
528 nil = qrpelte— B Thm 2.1.1
599 Tpy1l = Z“i::; n—3 B Thm 2.1.1
530 Tngr = T Reducible to # 7
Tn+1 YTt B Reduci
531 A+Ea:”7 B uClble tO # 43
Tny1 = 0¢+'Y$n,13 Thm 2.3.4
532 . ﬁéﬂffcn_s B Th .3.4 or reducible to #24
n = PEInTYTn-1
533 +1 AL m 2.3.4 or reducibl
Tp4+1 = atBT, Y Tn_1 U* e to # 66
534 E:E”,—S n—1 U*
Tp+1 = M
535 " a+%+Emn_3 B
536 ;“ = i B Thm 2.3.4
_ n—3
537 ntl = Froihes Thim 2.3.4
T B*
Tnyl = e
238 Bay +E
fEn.‘.l — ﬂ U*
539 . B A+Bont+Eins B
540 ntl = AfBr,tEen s 5 Thm 2.3.4
_ Sradyma Thm 2.3.4
B*

x
n+1 =
Btp+Etn_3
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W na - B
BI2 g = ottt B Thm 234
BA3 g = el B Thm 234
545 Tnt1 = g B Thm 2.1.1
AT @1 = e spr— B Thm211
548 Tnp1 = gr—omm— U*

549 Tt = or U*

550 @1 = g te—— B Thm 234
551 @1 = qremtovs— B Thm 234
553 Ini1 = graortom— B Thm 211
555 Tni1 = rmrooe—<pr— B Thm 211
556 Tni1 = prooetE— B Thm 211
557 ni1 = prooeop— B Thm 211
558 Tni1 = st —<p— B Thm 211
559 Tni1 = armr oo ps— B Thm21.1
560 Tnt1 = gl — B Thm 2.1.1
561 Tt = g — B Thm2.1.1
562 Tpt1 = W B Thm 2.1.1
563 @1 = o tesl— B Thm 211
564 wnp =gt U
565w =g Ee BY

566 wni1 = gret sl B Thm 2.34
567 @1 = qogo -l B Thm 2.3.4
568 Tpi1 = grrete—— B Thm211
569 Tni1 = praerTer— B Thm21.1
570 Zpy1 = A+an+gz"n‘_ll+Ezn_3 B Thm 2.1.1
571 pi1 = miprgeetp— B Thm 211
572 Tpyr = ottt B Thm 211
573 Tpyr = goorpe il B Thm 2,11
574 g1 = gl —— B Thm 2,11
575 1 = qrpbetiot— B Thm 2.1.1
576 Tpy1 = EZ::ZS U  Reducible to linear
577 Tppy = o=z U*

578 Tni1 = ot U*

579 Tng1 = SpEes2 B See [14]
580 Ty = DEptiin2 U*

581 R U*

2 =gl e

583 Ty = 002 B*
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584 Tpt1l = #ﬁfm U*
585 Tng1 = gotiin=z Sk
586 Tu1 = aypripes U
587 Tnt1 = #ﬁqﬁn_s B*
588 Tni1 = prtotn=z B*
589 wnn = gt B
B0 wnyr = gttt B
Il T = gpete=t B*
592 Tpyy = Lonttiinsz U*
T R T e v
594 Tp4+1 = % u*
BI5  mppg = HLatitase o x
BIG  wppy = SLetiasitotec: gk
BIT  mpyy = HOTntpEasititae gk
BIS  wpy = Zintpaoitiiec: ok
599wy = im0t U
600 Ty = Jprmiiote: U*
601 Tpt1 = %ﬁ;—m U
602 wngy = gtiie B
603 @ = APpeiteer B
604 Tpil = W B*
605 wppy = S g
606 w1 = Ppiee B
T
608 Tnil = gromt— U*
609  Tapi=grthe— U
610 @pi1 = grerem— U*
611 @pp1 = qromtge—  U*
612 map = g U
613 Tpyl = % u*
614 mpyy = omtiine U
615 pyp1 = ogointita=e U
616 wp41 = an-s-ciiiz-kE:cnfs u*
617 L+l = an+g:ifjl2Exn_s U*
618 41 = A+B;p";1‘rj$§}zjfl+E$n*3 u*
619 zp41 = A+an+0;c7::2+Exn,3 u*
620 L+l = anfé;—:fgfiﬁ;rn—s U*
621 wnp = ootz U
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622 xp41 = A+Bxfi%'—;iainlezn_3 U*
623 Tp41 = A+szfz(;;tiﬂii}iz‘wn73 u*
624 Tpt1 = % U*
625wy = et U
627 mpp1 = qagestigeet UX
628 wppn = Feepeer U
629 wpqy = LT 0Tk
630 Tny1 = % U*
631 wpen = it tanes U
632 Tn+1 = ng,jfg’;iifini:n,3 U*
633 Tn41 = Bjj:g;;i?—i%;?—a u*
634 zp41 = A+BZ:1_C'1;L5_zln+_Ezn—s u*
635 wpy1 = A+§I,7f&;ﬁii?§§nfa U
636 Tni1 = gyl UY
637 wns1 = et U
638 Tp41 = Af;;jzgzzljimg;jfa u*
639 - a+BTy+YTn_1+0Tn_2 U*

~ A+Bxn+Cxp_1+Ex,_3
(o]

641 Tait = Pt B  Thm 2.1.1
643 Tup1=prpm— B Thm 211
644 Tyl = #ﬂjﬂmn_s U™
645 Tpt+1 = #%, u*
646 @y = gpropr— B Thm 234
647  Zpi1 = #ﬁjﬂx_s B Thm 2.3.4
649 Tn+1 = an+Drnoig+Emn—3 B Thm 2.1.1
651 Tni1 = A3pmgpenatFe s B Thm 211
692 Tpy1 = an+DI€z—n2+EInf3 B Thm2.1.1
653 Tn4+1 = Bg;n+Daz-:€ZlEmn—3 B Thm 2.1.1
654 Tt = pra®—p— B Thm 2.1l
655 @ni1 = oot B Thm2.1.1
656 w1 = g — B*
657 Tnt1 = % B*
658 g1 = ptt—— B Thm 234
659  Tni1=qrpoitg— B Thm 234
660 Tnp1 = potitast u*
661  wup =gy ey U
662 w41 = a2l B Thm 2.34
663 w41 = qoppetitet B Thm 234
664  Tpi1 = propitt—— B*




524 Dynamics of Third-Order Rational Difference Equations

665 Tntl = BT Dg TR B*

666 ot = rpaet B Thm 234
667 Tnil = TTBr P B Thm 2.3.4
668 = i B

669 map = miin tEes B

670  Zpa1 = grpa et B Thm 2.34
671 Zpy1 = g tiiat B Thm 234
673 Tpy1 = Cmn_1+Dx(j;_2+Ezn_3 B Thm 2.1.1
675 Tpy1 = A+Cmn71+D“zn72+Ezn73 B Thm 2.1.1
676 Tnt+1 = Cwn,1+Dﬁa:in,2+Ez",3 u*

677 @i = gghr, s U*

678 w1 = arer—Tpe—7Es— B Thm234
679 Tnt1 = ArCE TP TR B Thm 2.3.4
681  Tpi1= e 95— B Thm211
683 Tut1 = o P B Thm211
684  Tny1= prrm—as—Er— B Thm211
685  Tni1= prrEmr i B Thm21.1
686 Tnt1 = o5 m— B Thm21.1
687 Tni1 = qrpr oo —p— B Thm21.1
688 Tntl = Go—Fho—TEo S B Thm21.1
689 Tnt1l = Tr—r o B Thm2.1.1
690  Tni1= o ame—p— B Thm21l
691 T = g bt — B Thm21.1
692 @i =g ibe e U

693w = tpn i, B

694  pp1 = o laitest B Thm 2.3.4
695  Tpp1 = o tlpptiea B Thm 2.3.4
696  Tpy1=groer 5l ——-—— B Thm211
697 T = prrEaprm— B Thm2l1
698 Tpi1 = armr o ips ot B Thm2.1.1
699 2nq1 = A+an+c:,:(i?inD_xln_2+Emn_3 B Thm 2.1.1
00 Ty = grooldtyiel B Thm 211
01 Zpy1 = groo bttt B Thm 2.1.1
02 o1 = g ettt B Thm 211
03 o1 = g et el B Thm 2.1.1
704 Tni1 = pnt B Thm 2.1.1
705 Tpi1 = prototnt B Thm 2.1.1
706 Tnil = Tt B Thm 2.1.1
707 Tni1 = rperoiasz B Thm 2.1.1
708 Tpi1 = pontiin=r B*
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ottty 3

709 Int+l = Dy, ot Ean_s

710 Tnt1 = Tpeet—

711 Tnil = gt

712 Tn+l = an+Diji;iEx,l—3
713 Tpt+1 = anJr%J;ifzerEwn—s
714 Tpt+1 = A+an+%€:;—22+E%*3
715 Tp+1 = A+an,j-z(smn::;;2+Ern,—3
716 Tnil = gropoint
717 Tptl = Blj:[ﬁ)iz—ffj-rgjn%
718 Tp+1 = A+Bxfi%tffj§fExn,—3
719 Tntl = A+szf%nxti2175xn73
720 Tn+1 = %

721 Ty = iesiiitess

722 Tni1 = qiptiat

723 Tpil = mii:—%

724 Tny1 = %
725 Ty = TN a b0
726 Tn = it
727 Tpil = alﬂfﬁﬁfﬁ%ﬁﬁ"f
728 Tn+l = ijj%j,iiinb:;n—s
729 Tnp1 = patiptiotesr
730 Tpyl = A+B;:—T-B;ff;;gxn—3
731 T+l = A+§;r:$7b;lti?§;n73
133wy = G
734 Tn+l = Afggjlénw;itifg‘;j—s
735 LTn+1 = Aa: BB;C::]’_'Y)ZZ::-:-?;JES
736 Tn+l = cm_ﬁgq;:fﬁlﬂzn_s
737 Tntl = CI,L,lfgi:i;iEwwz
738 Tyl = A+an,1+ggl;;f,z+Ewn73
739 Tny1 = A+Czﬂ,_1+bq;n;:22+Er7z—s
740 Tpyl = Cmn,ffbiifﬁfzsxnfa
741 Tp41 = anixjfg;:fjli?wnfg
742 Tny1 = A+Cmﬂffigiﬁi;2—i-Ezn—3
A3 wagr = ot
744 Tpyr = an+cwn,71ingnfﬁE%fS
745 Tn1 = an+Czn,_1+a[7)"56;2_2+E90n,—3
746 xp41 = A+an+0xg;€}75mn72+Ern—3
747 T = AJ’_Ba;nJ,-CJ;n,]+751627172+E11n73

wwwwwwwwwwwwg

s Jiive i ov Il e ol ov il ve R~ I ov Bl v M w o I o v Bl v
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Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1

Thm 2.3.4
Thm 2.3.4

Thm 2.3.4
Thm 2.3.4

Thm 2.3.4
Thm 2.3.4

Thm 2.3.4
Thm 2.3.4
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1

Thm 2.3.4
Thm 2.3.4
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
Thm 2.1.1
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48 w1 = gaodpet B Thm2.1.1
49 Bpa = gtttz B Thm 2.1.1
750 Tni1 = oot B Thm21.1
Tl Tpp = g e dtie=t B Thm 2.1.1
752 Tyl = grpitins B  Thm 2.1.1
753 Tntl = gr B s B Thm 211
B e = et B Thm211
55 Tl = e teg o2 B Thm 211
56w =Tt B
BT ann = g gt B
B nen = et B Thm23d
SO anp = afeh o e, B Thmn234
60 i1 = grolettet B Thm 211
61 Tpa1 = gttt B Thm 2.1.1
62 Tn1 = ettt B Thm 211
763 xny1 = A+anigZ:i;i—FDé;:__jJrEmn_g B Thm 2.1.1
T64 @y = g e e B Thm 2.1.1
65 wai = g e, B Thm211
66 Tpy = g etz B Thm 2.1.1
T67 Tpp1 = qrperooa a0 B Thm 2.1.1
768 Tnt1 = g B Thm 2.1.1
769 Tnp1 = Spon=t B  Thm 2.1.1
770 Tni1 = o=t B Thm 2.1.1
771 Tni1 = Trpe=t B Thm 2.1.1
772 Ty = Dpteinzs B Thm 234
773 Ty = Hntcins B Thm 2.3.4
774 g1 = Zppteinss B  Thm 2.3.4
775 Ty = HEntcins B Thm 234
776 Tni1 = gt — B Thm 2.1.1
77 Tt = Fogp B Thm 2.1.1
778 Tn+l = A7Be TBo s B Thm2.1.1
779 Tntl = Trpe i B Thm2.1.1
780 Tny1 = porternss B Thm 2.1.1
781 Ty = Pt cins B Thm 2.1.1
782 Tpp1 = ot tiazs B Thm2.1.1
783 Tpg1 = fointetns B Thm2.1.1
784 Tpyy = Pnglienzs B Thm 2.3.4 or reducible to #55
785 Tyl = Wﬁ;;—irw B Thm 2.3.4 or reducible to #119
786 Tppq = LEp=1tOn=g B Thm 2.3.4 or reducible to # 84

A+FEx,_3
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2+ En_1¥eln_3 B  Thm 2.3.4 or reducible to # 166
BT Tt = T hEe, .
_ BxatyTn_1+€rn_3 B Thm 2.3.4
_ atBrptyrn_1+exn_3 B Thm 2.3.4
780 mni1 = )
_ BratYTn_1t€Tn_3 B Thm 2.3.4
790 Tpn+1 = T AfEz,_s3
A+PTn+VTn_1+€xn_3 B Thm 2.3.4
Ol appr = A+Eon-s *
YTp—1+€Tn_3
792 Tntl = BBy B*
A+ YTy —1+€Tn_3
™ 1= ThpTEe,, DB
= En_1teln_s B Thm 2.34
794 In+l = A¥Br,+Ean_s
Qbytn_1teln_3 B Thm 2.34
795 In+1 = AYBa,+Ewn s
_ BrptyTa_1t+eTn_3 B Thm 2.3.4
M6 T =g TEL
a+BTn+YTn_1+€Tn_3 B Thm 2.3.4
797 Tn4+1 = Bzo+Ex, 3
_ Brn+yTn_1+€Tn_3 B Thm 234
798 Tn+tl = AT Bz, +Ezn_s
_ atBrptyrn_1+exn_3 B Thm 2.3.4
799 Tni1 = —ABr 1 Ban s
= n-3 B Thm 2.1.1
800 Intl = Tz, 1 +Exn 3
= __ofcn_s B  Thm 2.1.1
801 In+l = Cgp 1 +Es, s
[ B Thm 2.1.1
802 In+tl = ATCa, 1+ Ean s T 911
o oten-s m 2.1.
803 In+l = A Cun_1+Ezn_s B
Brntern_3 B*
804 Tn+l = Cryp 1+FEx,_3
a+BTn+ern_3 *
805 Tnn = TE., B
= Bentetns B Thy 234
806 In+l = A Cun_1+Ezn_s
— _offentezn-s B Thy 234
807 In+l = A¥Cu, 1+Ezn_3
Tn—3 B Thm 2.1.1
808 Tn+1 = Bz, +Cxn_1+Bzn_s
atetn_s B  Thm 2.1.1
809 zpi1 = Bz, +Cxp_1+Exn_3
Pn-3 B Thm 2.1.1
810 @n41 = A+Bz,+Cxp_1+Exn_3
ot eln—3 B Thm 2.1.1
811 wpq1 = A+Bz,+Cxp_1+ExTpn_3
= - Bentens B  Thm 2.1.1
812 wpq1 = Brnt+Ctpn 1+ Ezn_3
= __ofPentemn_s B Thm 2.1.1
813 Tn+1 = Bu, +Caxn_1+Ezn_s
Btntezn-_3 B  Thm 2.1.1
814 ny1 = A+Bz,+Cxp_1+ETpn_3
atBzntesn—s B  Thm 2.1.1
815 Tni1 = A3Be, v0s, 1t BT s
= JEnoiteln_s B Thm 2.1.1
816 Tntl = Crpn_1+FEx,_3
= & Tno1teng B  Thm 2.1.1
817 Intl = “Cg, 1+ Ezn s
= J&n-1tein-s B Thm 2.1.1
818 In+l = AXCun 1+Ezn_s
= o) Eno1¥eTn_g B Thm 2.1.1
819 In+l = A1Cw, 1+ Ean s
_ Bratyrn_1t+e€xn_3 B Thm 2.3.4
820 Tnt1 = TGn, TEe, s
atBrattaitetn-s B Thyy 2.3.4
821 Tnt+1 = Crp_1+Exy,_3
_ Bratyrn_1tern_3 B Thm 2.3.4
822 Tny1 = LCa, 4 Bens
a+Br,+YTn_1+€x,_3 B Thm 2.3.4
823 Tn+1 = “Acm, 7 Eans
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827 Tni1 = qypigier=t— B Thm2.1.1
828 Tni :a%xjg;%x:jéi B  Thm2.1.1
829 Tntl = %ﬂfn"icin_yliff"—s B Thm 2.1.1
830  Tpt1 = aipe ot B B Thm21.1
831wy = Aopeafitesiien=s B Thm 211
832 Ty = Sozzteinzs B See [14]
833 Ty = SHpo2tcinzg B See [14]
834 Ty = Spztteinzy B Sce [14] and [50]
835 Ty = SHOmoateins B See [14]
836 Ty = Dintin=2teinog B*

A A B*

838 Ty = Zontiecatctnoy B*

R I e

840 Ty = Jgpozteinzy B*

842 Tn41 = W B

843 Tn+1 = A1 B, rEars B*

844 Ty = ZontOnoatcinzy B*

R e e

BI6  wa = Spfpmegres B

ST wap = e BY

R T e e O

849 gy = SHTastPasateiis gk

850 mpgq = Mmslfdertanans Uk

851 @y = HIapgesatetans o yk

852 mpyq = SRt Hiiacateis Uk

853 Tni1 = a+[3xn+'yan,z1:-_6;cn72+exn,3 U*

854 Tng1 = ﬁzn+71124—i£iii;2+exn_3 U*

855wy = CHLatIt Ot atehnos (7%

856 Ty = LnsitOeatetnos B*

857 ey = CEHn e g

858 wngn = g B
859wy = SHpmpiioes B

800 gy = D satanss B

861 wyyy = SEOAY a1 sty Bk

862 wngq = Ppmigoetees B

ot BT+ YT —1+0T s 2Ty _3 *
863 Tn+1 = Af Bz, +En_s B

_ Oxp_2texn_3 *
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904 Tpt1 = Bwn+D§cﬂi,n:23-i-Ewn73 B Thm 2.1.1
905 Tnil = Frpea e — B  Thm2.1.1
906 Tni1 = B Thm21.1
907 Tnil = AT B  Thm2.1.1
908 Tni1 = g optins B Thm 2.1.1
909 Tnj1 = gootpintiins B Thm 2.1.1
910 Tpy1 = gt B Thm 2.1.1
91 Tpp1 = gty B Thm 2.1.1
912 Tpy1 = % B*

914 Tpy1 = ﬁ[i—m B Thm 2.34
915 Tyl = popenciions B Thm 2.3.4
916 Tng = PR B*

L e B S

918 g1 = Snrin-ttcin s B Thm 2.3.4
919 Ty = LNt bt B Thm 2.34
920 Tan1 = g ibe e B

921 ewn1 = B b B B

922 Tpi1 = D B Thm 234
923 Tnil = ATt B  Thm 234
20 o= pipe s B

925 @i =G i0r i, B

926 w1 = glgpiiiaoitetais B Thm 2.34
e R B Thm 2.34
928 Tpy1 = Crn,_1+1;ﬂ;ti3z+Ezn_3 B Thm2.1.1
929 Toi1 = g fé;;imn,g B Thm2.1.1
930 41 = oAt —m— B Thm 211
931 Tup1 = arer—ape s — B Thm211
932 Tnt+1 = CmvlfffB:ZiZwanfs B*

B3 wnn = o ion e B

934 @1 = o optet B Thm 234
935 Tnt1 = A+Ca:(r:jr1ﬁjfg;izj;jrgl?wn73 B Thm 2.3.4
936  Tpi1 = o rer o ibe oiEe; B Thm21.1
937 Tni1 = B +Cmn(_’:£’g}j_2 —+— B  Thm211
938 Tni1 = rpr oo b p-— B Thm 211
939 Zni1 = o5 m— B Thm211
940 Tpy1 = grooteet B Thm 211
91 Tpyy = et fdet B Thm 211
942 @pi1 = gt es B Thm 2.1.1
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982 wpgy = Daidteoititaattis B Thy 234
983 @y = CHEIen 1 Btaatins B Thip 2.3.4
984w = EEntE B

985w =i tmest BY

986 g1 = gl n=atnog B Thm 234
987 R e B Thm 2.3.4
988 wpgq = Dpfitetiiaatins B Thy 234
989 @y = SR E0a 2t us B Thip 2.3.4
990wy = ZptatetHieosietnzs B Thip 2.3.4
991wy = IR HOEaa s B Thiy 234
992 Tnp1 = gr—noteing B Thm 2.1.1
993 Tnp1 = groiotazatelns B Thm 2.1.1
994 @y = oottt B Thm 211
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96wy = oSt BY
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998 w1 = groetiasztihas B Thm 2.3.4
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1001 @ppy = groaootaabiiozs B Thm 2.1.1
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