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AbstractGroup theoretical methods are used to study some properties of the Riccati equation, whichis the only di�erential equation admitting a nonlinear superposition principle. The Wei{Normanmethod is applied for obtaining the associated di�erential equation in the group SL(2;R ). Thesuperposition principle for �rst order di�erential equation systems and Lie-Sche�ers theorem arealso analysed from this group theoretical perspective. Finally, the theory is applied in the solutionof second order di�erential equations like time independent Schr�odinger equation.1 IntroductionNonlinear phenomena are having everyday more and more importance in almost all branchesof science, and in particular in Physics. One of the most important nonlinear di�erentialequation is the Riccati equation (see e.g. [1] and references therein). This di�erentialequation has recently been shown to be related with the factorization method (see e.g.[2, 3,4, 5]). The recent interest of this equation is steadly increasing since Witten's introductionof supersymmetric Quantum Mechanics [6, 7].Two important features of this Riccati type di�erential equation are:i) Even if we cannot �nd the general solution by means of a �nite number of quadraturesover elementary functions of the coe�cients ai(t) de�ning the di�erential equation,dx(t)dt = a0(t) + a1(t) x(t) + a2(t) x2(t); (1.1)once a particular solution x1(t) is known, the change of variable x = x1 + z leads to a newdi�erential equation of the Bernouilli (for n = 2) type:dzdt = (2 a2 x1 + a1)z + a2 z2: (1.2)1



This is a particular instance of (1.1) for which a0 = 0. Notice that under the change ofvariable w = 1=x the Riccati equation (1.1) becomesdw(t)dt + a0(t)w2(t) + a1(t)w(t) + a2(t) = 0: (1.3)In particular, the Bernouilli equation (1.2) can be reduced to a linear one just by intro-ducing the new variable u = 1=z. In this way, if we know a particular solution the generalsolution can be found through two quadratures.ii) When three particular solutions, x1(t); x2(t); x3(t), of the di�erential equation (1.1)are known, the general solution can be written with no quadrature at all:x� x1x� x2 : x3 � x1x3 � x2 = k; (1.4)where k is an arbitrary constant determining each particular solution.In this sense we can say that there exists a nonlinear superposition principle for the Riccatiequation, because the general solution can be expressed as a function x = �(x1; x2; x3; k) ofthree particular solutions and one arbitrary constant k.Our aim is to explain these facts from a group theoretic viewpoint and present some newideas both about the Riccati equation itself and on the nonlinear superposition principle, forwhich the Riccati equation is the simplest case.The organization of this paper is as follows. In Section 2 we review the problem ofreducing a second order linear di�erential equation to a nonlinear �rst order Riccati equation,what means that the original linear superposition principle for the second order equationshould be replaced by a nonlinear superposition principle. We also remark that this factis due to a relation of the Riccati equation with the SL(2;R) group to be explicited later.In Section 3 we explain a method developed by Wei and Norman [8] for determining thesolution of a di�erential equation in a Lie group and we apply the method for the study ofthe Riccati equation, �nding in this way the explicit form of the superposition principle asa consequence of some group theoretical computations. The superposition principle for �rstorder di�erential equation systems and Lie{Sche�ers theorem are studied in Section 4. It isshown that for an important class of such systems the problem of �nding the general solutionis reduced to the simpler problem of �nding one particular solution of another system on aLie group G, and moreover, even without solving directly this new system the solution of theoriginal system can be easily found as soon as we know a fundamental set of solutions of it.Once again the simplest case is Riccati equation and the superposition principle can be foundby determining the �rst integral of a system. Finally in Section 5 we give as an example theapplication of the Wei{Norman method in the solution of second order di�erential equationstaking as a propotype the Schr�odinger equation for the harmonic oscillator.2 The nonlinear superposition principleThere is a well known method of relating a linear second order di�erential equation with aRiccati equation. Actually, given the linear second order di�erential equationd2udt2 + b(t) dudt + c(t) u = 0; (2.1)2



the property of linearity means that the vector �eldX = u @@ugenerates a one{parameter Lie group of point symmetries of the equation (2.1)�t(�) = t; �u(�) = e�u:Changing coordinate u to a new one v = '(u) such that the vector �eld X = u@=@ubecomes a translation generator (Straightening{out Theorem), i.e. X = @=@v, and thereforedetermined by the equation Xv = 1, leads to v = log u, i.e. u = ev, and then,dudt = ev dvdt = u dvdt : (2.2)When written in terms of this new coordinate the equation (2.1) becomesd2vdt2 + b(t) dvdt +  dvdt!2 + c(t) = 0:The unknown function v does not appear in the preceding equation and therefore alowering of the order is obtained when introducing the change of variable x = dvdt , and thenwe will get a Riccati equation dxdt = �c� bx� x2; (2.3)as it was pointed out in [9].Therefore, the linear superposition principle for solutions of (2.1) translates in a nonlinearsuperposition principle for those of this Riccati equation, as it will be shown later.Notice that (2.2) shows that x = 1u dudt : (2.4)The second order di�erential equation (2.1) is equivalent to the set of (2.3) and (2.4).We should also remark that two solutions u1; u2 of (2.1) project on the same solution of(2.3) if and only if there exists a nonzero real number � 2 R such that u2(0) = �u1(0) andu02(0) = �u01(0).From the geometric viewpoint, Riccati equation can be interpreted as the one determiningthe integral curves of a time{dependent vector �eld� = (a0(t) + a1(t)x + a2(t)x2) @@x:Let us remark that this vector �eld can be written as a linear combination with timedependent coe�cients of the vector �eldsL0 = @@x ; L1 = x @@x; L2 = x2 @@x; (2.5)which generate a three dimensional real Lie algebra with de�ning relations[L0; L1] = L0; [L0; L2] = 2L1 [L1; L2] = L2; (2.6)3



and therefore isomorphic to sl(2;R). In fact, it is an easy matter to check that the (local)one{parameter transformation Lie groups of R generated by L0, L1 and L2 arex 7! x + �; x 7! e�x; x 7! x1� x�;i.e., they are fundamental vector �elds corresponding to the action of SL(2;R) on the realline R extended with a point at the in�nity, �R , given by�(A; x) = �x+ �
x + � ; A =  � �
 � ! ; if x 6= � �
 ;and �(A;1) = �
 ; �(A;� �
 ) =1:3 The Wei{Norman methodLet us consider a di�erential equation systemdxi(t)dt = X i(x; t); i = 1; : : : ; n; (3.1)which can be seen as the di�erential equation system whose solutions are the integral curvesof the time{dependent vector �eld X = X i(x; t) @@xi : (3.2)The theorem for existence and uniqueness of solutions of the preceding di�erential equa-tion tells us that, for small enough t, there exists a map �t applying the initial conditionx(0) = (xi(0)) into the corresponding value xi(t). Correspondingly, functions f de�ned in aneigborhood of x(0) transform as[U(t)f ](x) = f ���1t (x)� ; (3.3)and taking derivatives with respect to t we obtain"dU(t)dt f# (x) = ddt �(f � ��1t )(x)� = dxidt @f@xi (��1t (x))= X(f) ���1t (x)� = [U(t)(Xf)](x): (3.4)This relation is valid for any di�erentiable function f , and thereforedU(t)dt = U(t)X:We recall [8] that given such a di�erential equation for operators for X being a linearcombination of vector �elds in Rn, X = mXk=1 ak(t)Lk;4



namely, dU(t)dt = mXk=1 ak(t)U(t)Lk; (3.5)where the Lk span a �nite dimensional real Lie algebra, it is possible to write the generalsolution in the form U(t) = mYi=1 exp(gi(t)Li); (3.6)where the functions gi(t) are given by the solution of the system obtained from the relationmXi=1 ai(t)Li = mXi=1 _gi(t) 24 mYj=i+1 exp(�gj(t)adLj)35Li; (3.7)and the initial condition gi(0) = 0; i = 1; � � � ; m.This method proposed by Wei{Norman (see also [10]) can be used in the case of the Ric-cati equation and the generalization for other di�erential equation system involving severaldegrees of freedom is immediate. In fact, given the di�erential equation (1.1) there will be anevolution operator U(t) which takes values in SL(2;R) and satis�es the di�erential equationdU(t)dt = U(t)[a0(t)L0 + a1(t)L1 + a2(t)L2]; (3.8)together with the initial condition U(0) = I, and where the vector �elds Lk, for k = 0; 1; 2,are fundamental vector �elds associated to the left action of SL(2;R) on the extended realline �R that are explicitly given in (2.5) and generate a Lie algebra isomorphic to sl(2;R).According to the Wei{Norman method [8], there will be functions u0(t); u1(t); u2(t) suchthat u0(0) = u1(0) = u2(0) = 0 andU(t) = exp(u1L1) exp(u2L2) exp(u0L0): (3.9)Then, when using (3.7), we obtaina0(t)L0 + a1(t)L1 + a2(t)L2 = _u1(t) exp(�u0(t)adL0) exp(�u2(t)adL2)L1+ _u2(t) exp(�u0(t)adL0)L2 + _u0(t)L0= _u1(L1 � u0L0 + u2L2 � 2u0u2L1 + u20u2L0)+ _u2(L2 � 2u0L1 + u20L0) + _u0L0;and therefore the system of di�erential equations for the functions uia0(t) = �u0 _u1 + u20u2 _u1 + u20 _u2 + _u0a1(t) = _u1 � 2u0u2 _u1 � 2u0 _u2a2(t) = u2 _u1 + _u2; (3.10)that can be written in normal form,_u0(t) = a0(t) + a1(t)u0(t) + a2(t)u20(t)_u1(t) = a1(t) + 2a2(t)u0(t)_u2(t) = a2(t)� a1(t)u2(t)� 2a2(t)u0(t)u2(t): (3.11)5



We remark that the �rst equation for u0 is nothing but the original Riccati equationand therefore it seems that there is no advantage at all. However when looking in the othertwo equations, we see that provided that the appropriate solution for the �rst equation,the one determined by u0(0) = 0 has been found, the solution for the second one is almostimmediate and when introducing these values in the third equation this one becomes a �rstorder di�erential equation and the solution reduces to a quadrature. In this sense we havereduced the problem of �nding the general solution of (1.1) to the one of �nding the particularsolution such that u0(0) = 0. This is quite similar to the property i) we mentioned in theIntroduction.Once the solution of (3.11) determined by u0(0) = u1(0) = u2(0) = 0 has been found,the general solution of the di�erential equation will be writtenx(t) = (U(t)x)(0) = [exp(u1L1) exp(u2L2) exp(u0L0)x]jt=0; (3.12)and therefore x(t) = eu1x01� u2eu1x0 + u0; (3.13)where x0 = x(0).Let us now �x three independent initial conditions. A possible set is the one given byx1(0)!1, x2(0) = 0 y x3(0) = 1, (actually any other three di�erent initial conditions willbe transformed to this one under an appropriate transformation of the group SL(2;R)).Having in mind the form (3.13) of the general solution, we see that the above mentionedinitial conditions determine the particular solutionsx1(t) = � 1u2(t) + u0(t)x2(t) = u0(t)x3(t) = eu1(t)1� u2(t)eu1(t) + u0(t); (3.14)and then the functions u0; u1; u2 are determined asu0(t) = x2(t) (3.15)u1(t) = log "(x3(t)� x2(t))(x2(t)� x1(t))(x3(t)� x1(t)) # (3.16)u2(t) = � 1x2(t)� x1(t) ; (3.17)and therefore, when putting these values in (3.13), we �nd that for the general solutionx(t) = x0x1(t)(x3(t)� x2(t)) + x2(t)(x1(t)� x3(t))x0(x3(t)� x2(t)) + (x1(t)� x3(t)) ; (3.18)which is the well known superposition principle for Riccati equation (1.1) which can also bewritten as (x� x2)(x3 � x1)(x� x1)(x3 � x2) = x0: (3.19)6



The factorization (3.9) for the evolution operator is not the only possible one, but thereare other �ve alternative factorizations. We next present the results for all possible reorder-ings:II) When we consider the factorizationU(t) = exp(g0L0) exp(g1L1) exp(g2L2);the associated system turns out to be_g0 = a0e�g1_g1 = a1 � 2a0g2_g2 = a2 � a1g2 + a0g22; (3.20)with g0(0) = g1(0) = g2(0) = 0, and then the solution isx(t) = eg1(x0 + g0)1� g2eg1(x0 + g0) ; (3.21)the three particular solutions x1; x2; x3 being expressed asx1(t) = � 1g2x2(t) = g0eg11� g0g2eg1x3(t) = eg1(1 + g0)1� g2eg1(1 + g0) ; (3.22)with the inverse relation g0 = x2(x1 � x3)x1(x3 � x2)g1 = log " x21(x3 � x2)(x1 � x2)(x1 � x3)#g2 = � 1x1 : (3.23)We should remark that the third equation in (3.20) is a new Riccati equation and thatonce the solution for this new Riccati equation is found, we substitute its value in the secondone and integrate without any di�culty, and when this value for g1 is put in the �rst equationwe can integrate it. Therefore the new result we have found here is the following: if oneknows a solution of a related Riccati equation, given by the third one in (3.20) equation,satisfying g2(0) = 0, the general solution of (1.1) can be found in a straightforward way.III) The third possibility corresponds to the factorizationU(t) = exp(h2L2) exp(h1L1) exp(h0L0); (3.24)the associated system being _h0 = a0 + a1h0 + a2h20 (3.25)_h1 = a1 + 2a2h0 (3.26)_h2 = a2eh1; (3.27)7



and the general solution is then x(t) = eh1x01� h2x0 + h0: (3.28)The three particular solutions x1; x2; x3 will be written asx1(t) = �eh1h2 + h0x2(t) = h0x3(t) = eh11� h2 + h0; (3.29)the inverse relations being h0 = x2h1 = log "(x3 � x2)(x2 � x1)(x3 � x1) #h2 = x2 � x3x1 � x3 : (3.30)Notice that in this approach the �rst equation in (3.27) is the original equation (1.1).IV) The fourth reordering leads to the factorizationU(t) = exp(f1L1) exp(f0L0) exp(f2L2); (3.31)associated system _f0 = a0 + a1f0 � 2a0f0f2_f1 = a1 � 2a0f2_f2 = a2 � a1f2 + a0f 22 ; (3.32)and general solution x(t) = ef1x0 + f01� f2(ef1x0 + f0) : (3.33)The three particular solutions are nowx1(t) = � 1f2x2(t) = f01� f2f0x3(t) = ef1 + f01� f2(ef1 + f0) ; (3.34)and the inverse relation f0 = x1x2x1 � x2f1 = log " x21(x3 � x2)(x1 � x2)(x1 � x3)#8



f2 = � 1x1 : (3.35)We remark that now the third di�erential equation for f2 in (3.32) is the same as inthe case II) and it provides a new method of �nding the general solution of (1.1) once theparticular solution satisfying f2(0) = 0 of the associated Riccati equation is found.V) The �fth possibility isU(t) = exp(v0L0) exp(v2L2) exp(v1L1); (3.36)with associated system _v0 = a0e�v1_v1 = a1 � 2a0v2e�v1_v2 = a2ev1 � a0v22e�v1 ; (3.37)and solution x(t) = ev1(x0 + v0)1� v2(x0 + v0); (3.38)the expressions for the three particular solutions x1; x2; x3 arex1(t) = �ev1v2x2(t) = ev1v01� v2v0x3(t) = ev1(1 + v0)1� v2(1 + v0) ; (3.39)with the inverse relation v0 = (x3 � x1)x2(x2 � x3)x1v1 = log " x21(x2 � x3)(x2 � x1)(x1 � x3)#v2 = � (x2 � x3)x1(x2 � x1)(x3 � x1) : (3.40)VI) The last possibility is the factorizationU(t) = exp(w2L2) exp(w0L0) exp(w1L1); (3.41)and then the associated system is_w0 = a0e�w1 � a2w20ew1_w1 = a1 + 2a2w0ew1_w2 = a2ew1; (3.42)the general solution x(t) = ew1x01� w2x0 + w0ew1; (3.43)9



and the expressions for x1; x2; x3,x1(t) = �ew1w2 + w0ew1x2(t) = w0ew1x3(t) = ew11� w2 + w0ew1 ; (3.44)with inverse relation w0 = (x3 � x1)x2(x2 � x1)(x3 � x2)w1 = log "(x2 � x1)(x3 � x2)(x3 � x1) #w2 = (x3 � x2)(x3 � x1) : (3.45)Finally, we remark that in these two last approaches there is no uncoupled di�erentialequation of the Riccati type whose solution allows us to �nd the solution of the two otherremaining equations in the system, and therefore the general solution of the original Riccatiequation, anymore. However, if in the third equation in (3.37) we de�ne �(t) = _v1 we willget the Riccati equation _� = 12�2 + q(t)�+ p(t) (3.46)with q(t) = _a2a0 ; p(t) = _a1 � 2a0a2 � a1a0 _a2 + a212 : (3.47)In a similar way, in the sixth case, taking derivatives in the second equation in (3.42)and after some manipulations, the equation for ' = _w1 becomes a Riccati equation_' = s(t) + r(t)'+ 12'2 (3.48)where r(t) = _a2a2 ; s(t) = _a1 � a1a2 _a2 + 2a0a2 � 12a21: (3.49)Let us summarize the results we have got. We have reduced the problem of �nding thegeneral solution of the Riccati equation to the one of determining a curve in SL(2;R) whichis de�ned through its second class canonical coordinates, and this leads to a di�erentialequation system. Once the curve in SL(2;R) is known we are able to �nd the generalsolution of the Riccati equation. However, even if we are not able to �nd the solution of thecorresponding di�erential equation system for the second class coordinates in the group, weknow the form (3.12) of the general solution of the original Riccati equation. Even more,given a set of (three in the Riccati case) fundamental particular solutions we can determinethe function giving us the superposition principle (3.18).We have seen that the general solution of Riccati equation is given byx(t) = x0x1(x3 � x2) + x2(x1 � x3)x0(x3 � x2) + (x1 � x3) ; (3.50)10



where x0 is a constant depending on the initial conditions. We aim now to show how itis possible to reconstruct the original di�erential equation once the superposition formula isgiven. In the case of Riccati equation the superposition formula (3.50) is equivalent tox0 = a� c xd x� band it is easy to check that taking derivatives in the preceding relation we �nd( _a� _cx� c _x)(d x� b)� (a� c x)( _d x+ d _x� _b) = 0from where we �nd the following expression for _x_x = ( _cd� c _d)(bc� ad)x2 + (� _ad+ a _d+ _bc� b _c)(bc� ad) x + (_ab� a_b)(bc� ad) ;that is a Riccati equation.On the other side, if we assume that there is a superposition formula for Riccati equationand we try to determine the function � giving that formula, x = �(x1; x2; x3; k), we will have_x = _� = @�@x1 _x1 + @�@x2 _x2 + @�@x3 _x3 = a0 + a1�+ a2�2from where the following system of partial di�erential equations is found@�@x1 + @�@x2 + @�@x3 = 1x1 @�@x1 + x2 @�@x2 + x3 @�@x3 = �x21 @�@x1 + x22 @�@x2 + x23 @�@x3 = �2: (3.51)Now a long computation leads to the following expression for �:x(t) = kx1(x3 � x2) + x2(x1 � x3)k(x3 � x2) + (x1 � x3) : (3.52)
4 The superposition principle for �rst order di�eren-tial equation systems and Lie-Sche�ers theoremWe are now interested in studying the existence of a superposition principle for �rst orderdi�erential equation systems generalizing the one obtained for the Riccati equation. Moreexplicitly, given a system dxidt = X i(x; t); i = 1; : : : ; n; (4.1)we ask whether there exists a set fx(1); : : : ; x(m)g of fundamental solutions and a function� : Rn(m+1) ! Rn such that the general solution of (4.1) can be expressed asx = �(x(1); : : : ; x(m); a1; : : : ; an);11



where a1; : : : ; an are constants related with the initial conditions.Before studying the general case, we remark that we know that, at least in the case wherethe system is the autonomous linear systemdxdt = Ax; x 2 Rn;with A being a constant matrix, it de�nes a 
ow �t which can be considered as a curve onthe general linear group GL(R ; n) given by �t(x) = eAtx. The 
ow satis�esd�tdt = �t � Aand it can be determined from a fundamental set of solutions, i.e., when the n � n matrixX whose columns are the vectors de�ning the solutions fx1(t); : : : ; xn(t)g,X(t) = (x1(t); : : : ; xn(t));is an invertible matrix, then the equationX(t) = etAX(0)shows that the evolution operator etA is determined as etA = X(t)X(0)�1, i.e., the funda-mental system of solutions allows us to �nd the 
ow of our �rst order di�erential equationsystem. In other words, we have a possitive answer to our previous question with m = nand � being the linear map �(x(1); : : : ; x(n); a1; : : : ; an) = a1 x(1) + � � �+ an x(n).From here it is clear that with any linear di�erential equation system on Rn we canassociate an equation on GL(n;R) by setting_g = gA;or g�1dgdt = A:The matrix A is an element of gl(n;R).Moreover, this way of �nding the resolvent can also be used for time{dependent systemsdxdt = A(t)x:In this case if we have a fundamental set of solutions, denoted by X(t) = (x1(t); : : : ; xn(t)),from X(t) = R(t; 0)X(0)we get R(t; 0) = X(t)X(0)�1.We could equally well associate a time{dependent equation on GL(n;R) by settingg�1dgdt = ai(t)Ai;with Ai being elements of the natural basis of gl(n;R).12



The point we want to remark is that if the evolution preserves some structure, thenA(t) = ��1t � d�tdtlies in certain subalgebra of gl(R ; n). The 
ow now de�nes a one{parameter family of trans-formations, and conversely, given a one{parameter family of transformations it will determinea vector �eld in Rn, the corresponding fundamental vector �eld.The critical fact is that the general solution is determined by a linear operator from aset of fundamental solutions, and this is a linear superposition principle. It is very naturalto ask what happens when the vector �eld is nonlinear. The answer is that, at least in somecases, to be explicited shortly, there is a kind of non{linear superposition principle, as it wasproved by Lie ([11]). This nonlinear superposition principle is simply a generalization of theprevious construction to those cases where the action of the group is not linear and Rn isreplaced for a manifold M .In the general case of the system (4.1), the Theorem for existence and uniqueness ofsolutions of such systems tells us that there will be, for each small enough t, a local dif-feomorphism of Rn which establishes the correspondence among the initial values and thecorresponding ones for the explicit value of the parameter t. In other words, the evolution isdescribed by a curve gt in the group of di�eomorphisms of Rn. We have seen that when weconsider a linear autonomous system this curve lies in the group GL(n;R) and is just theexponential of the matrix A giving the system, g(t) = exp tA. In the linear time{dependentcase, we also have a curve gt in GL(n;R) but it is not the exponential anymore: the onlything we can say is that A(t) = ��1t � d�tdttakes values in the Lie algebra gl(n;R). Actually, the solution is obtained by the Dyson,time{ordered, exponential.The point is that for other types of vector �elds the curve described by gt belongs toother Lie subgroups of the group of di�eomorphisms and these are just the cases for whichthe idea of the nonlinear superposition principle is generalizable.The result established by Lie and Sche�ers [11] is that the general evolution de�ned by(4.1) can be expressed in terms of m fundamental solutions if there are r vector �eds Y1, . . . ,Yr, such that the vector �eld X, X = X i(x; t) @@xican be expressed as a linear combinationX = a1(t)Y1 + � � �+ ar(t)Yr (4.2)and furthermore the vector �elds Y� = �i�(x) @@xiclose a �nite dimensional real (or complex) Lie algebra, with dimension r, i.e., there exist r3real numbers c�� 
 such that [Y�; Y�] = c�� 
 Y
: (4.3)Moreover, in this case mn � r. When �i�(x) = ai�jxj + bi�, with ai�j and bi� arbitraryconstants, the system is linear. 13



Let us consider an e�ective action of a Lie group G of dimensi�on r on n-dimensionaldi�erentiable manifold M , � : G �M ! M , and �g : M ! M and �x : G ! M denotethe maps �g(x) = �x(g) = �(g; x), for g 2 G; x 2 M . Choosing an initial point x(0), everycurve g : I ! G in the group determine a curve in the manifold M byx(t) = �(g(t); x(0)) = �g(t)(x(0)) = �x(0)(g(t));and taking derivatives with respect to t we see that the tangent vectors to the curves g(t)and x(t), respectively, are related by_x(t) = �x(0)�g(t) _g(t):Let us remark that _g(t) 2 Tg(t)G and _x(t) 2 Tx(t)M .We can express _x(t) in terms of x(t): we recall that if x2 = �g(x1), then�x2 = �x1 �Rg;where Rg denotes right translation in the Lie group G, because for any g0 2 G,�x2(g0) = �(g0; x2) = �(g0;�(g; x1)) = �(g0g; x1) = (�x1 �Rg)(g0):Now, using the chain rule for computing the di�erentials we �nd that�x2� = �x1� �Rg�;and then, �x1� = �x2� �Rg�1�:We can use this relation for g = g(t) and x1 = x(0) and then we �nd the followingexpression for _x(t): _x(t) = �x(t)�e(Rg�1(t)�g(t) _g(t)):Since Rg�1(t) is the right translation leading g(t) to the neutral element e 2 G and_g(t) 2 Tg(t)G, then Rg�1(t)�g(t) _g(t) 2 TeG and we know that TeGmay be identi�ed with the Liealgebra of G, g. Moreover, for linear Lie groups, i.e., subgroups of GL(n;R), right translationreduces to right multiplication by the corresponding matrix, and hence Rg�1(t)�g(t) _g(t) is justthe product _g(t) g�1(t).Let fe�gr�=1 be a basis of the corresponding Lie algebra g with de�ning relations[e�; e�] = c�� 
e
 ;and denote X� the corresponding fundamental vector �elds de�ned by(X�f)(m) = ddt [f(exp(�te�)m)]jt=0 ;for any di�erentiable function f . We recall that in this case[X�; X�] = c�� 
 X
:Now, if the time{dependent vector �eld de�ning the system (4.1) is of the formX(t) = a�(t)X�14



we associate with it the following di�erential equation on the Lie group itselfg�1(t)dgdt = a�(t)e�:In this way the given system is replaced by a higher dimensional system of �rst orderlinear equations. Or in other words, we have replaced the original system of di�erentialequations with a new system on the group G, but the important point is that it is enoughto �nd a particular solution, the one starting from the neutral element, for obtaining thegeneral solution of the system(4.1): the solution starting from x0 is given by �(g(t); x0).Moreover, even if we do not know the solution g(t) of the new system, it is possible to�nd it from the knowledge of a convenient set of particular solutions of (4.1) such that (4.2)with the additional condition (4.3). More explicitly, given a curve x1(t) that is a particularsolution of the given system, there are, in principle, di�erent possible choices for the curveg(t) such that x1(t) = �(g(t); x1(0)), because the stability group of the point x1(0) may benontrivial. If we choose a di�erent particular solution, x2(t), then the ambiguity reduces tothe group intersection of the isotopy groups of x1(0) and x2(0). We can, if necessary iteratethe procedure until we arrive to a set of m particular solutions x1; : : : ; xm allowing us thedetermination of the curve g(t). Of course as we have r unknown functions, the second classcanonical coordinates, and we have mn conditions, it should be mn � r.More explicitly, a set of x1; : : : ; xm of solutions is said to be a fundamental system ofsolutions, if x1(t) = �(g(t); x1(0)): : : = : : : : : :xm(t) = �(g(t); xm(0)) (4.4)is a minimal set allowing us to solve for g(t) via the implicit function Theorem. If this canbe done we get g(t) = F (x1(t); : : : ; xm(t); x1(0); : : : ; xm(0));and then any other solution can be written asx(t)� �(F (x1(t); : : : ; xm(t); x1(0); : : : ; xm(0)); x(0)) = 0:Therefore the left hand side of this relation de�nes a constant of the motion.Starting with the action � : G �M ! M we should �nd the minimal integer numberm such that the isotopy group of the action of G on the product Mm = M � � � � � M(m times), extended from � by �m(g; x1; : : : ; xm) = (�(g; x1); : : : ;�(g; xm)), reduces to theneutral element for a point such that any two coordinates are di�erent.We recall that the fundamental vector �eld corresponding to an element of g generatinga one-parameter Lie subgroup contained in the isotopy group of a point, vanishes in such apoint, and conversely. Therefore, when expressed in terms of fundamental vector �elds thatmeans that the extensions to Mm of the fundamental vector �elds X� do not vanish in a apoint whose coordinates are di�erent. The general solution then is found by adding a newcomponent and looking for constants of motion.
15



The procedure is next illustrated with an example for the simplest case n = 1. Accordingto Lie's Theorem we should look for a �nite dimensional real Lie algebra of di�erentialoperators X� = f�(x) @@x :It can be shown that the only �nite dimensional Lie algebra that can be found fromvector �elds in one real variable are sl(2;R) and its subalgebras. The uniquely de�ned (upto a change of variables) realization of sl(2;R) is given byX0 = x @@x; X� = @@x ; X+ = x2 @@x:These vector �elds close the sl(2;R) Lie algebra[X0; X�] = �X�; [X0; X+] = X+; [X�; X+] = 2X0:Therefore, it su�ces to consider the case in which the time{dependent vector �eld Xde�ning the equation can be written as a linear combination X = a1X0+a2X++a0X� witha0 = a0(t), a1 = a1(t) and a2 = a2(t) real functions. For simplicity we will consider the casewhen a1, a2 and a3 are real numbers and then we obtain the di�erential equationdxdt = X(x; t) = a0 + a1x + a2x2;which is nothing but the well known Riccati equation.First we note that the determinant������� 1 x1 x211 x2 x221 x3 x23 ������� = (x1 � x2)(x2 � x3)(x3 � x1)is generically di�erent from zero, while the system a + bx1 + cx21 = 0; a + bx2 + cx22 = 0always has a solution. Consequently, m = 3 in this case.Now, for obtaining the general solution we should de�ne the vector �eldsV0 = x @@x + x1 @@x1 + x2 @@x2 + x3 @@x3 ;V� = @@x + @@x1 + @@x2 + @@x3 ;V+ = x2 @@x + x21 @@x1 + x22 @@x2 + x23 @@x3 (4.5)and look for a solution of the systemV0f = V+f = V�f = 0:This system of partial di�erential equations is integrable, because the vector �elds V0,V+ and V� close a Lie algebra, and therefore they de�ne an integrable distribution.The last equation V�f = 0 tell us that the function f depends only on the di�erencesu1 = x� x1, u2 = x1 � x2 and u3 = x2 � x3, because the characteristic system isdx1 = dx11 = dx21 = dx31 ;16



and it has as �rst integrals the di�erences u1 = x� x1, u2 = x1� x2 and u3 = x2� x3. Now,if f(x; x1; x2; x3) = '(u1; u2; u3), the condition V0f = 0 is writtenu1 @'@u1 + u2 @'@u2 + u3 @'@u3 = 0;i.e., the function ' should be homogeneous of degree zero, and therefore it only can dependon the quotients v1 = u1=u2 and v2 = u3=u2, '(u1; u2; u3) = �(v1; v2). Finally, the conditionV+f = 0 can be written in these coordinates, after a long computation, asv1(v1 + 1) @�@v1 � v2(v2 + 1) @�@v2 = 0:The corresponding characteristic system isdv1v1(v1 + 1) = � dv2v2(v2 + 1)and taking into account that Z d��(� + 1) = log �� + 1 ;we obtain that the constant of motion f should be a function of� = v1v1 + 1 v2v2 + 1 ;and therefore (x� x1)(x2 � x3)(x� x2)(x1 � x3) = cprovides the non{linear evolution principle giving x(t) as a function of three independentsolutions x = (x1 � x3)x2c+ x1(x3 � x2)(x1 � x3)c+ (x3 � x2) :Let us remark that for n = 1 there is only one nonlinear di�erential equation familysatisfying Lie{Sche�ers theorem: the Riccati equation. Of course, proper subalgebras ofsl(2;R) lead to the linear inhomogeneous equation when a2 = 0 or to a linear homogeneousequation when a0 = a2 = 0. However, for n = 2 in addition to SL(3;R), O(3; 1) and O(2; 2),we can realize families of Lie algebras with arbitrary large Abelian ideals.5 Application in the solution of second order di�eren-tial equationsAlgebraic methods have very often been used in the search for eigenvalues of operators andthe corresponding eigenvector. The particular case of the harmonic oscillator is the prototypeand it is based on creation and annihilation operators, and therefore it is related with theHeisenberg group. The possiblity of relating linear second order di�erential equations with aRiccati equation, as indicated above, and the related group SL(2;R) has not been exploitedtill now, as far as we know. 17



In this section we will explore the use of Wei{Norman method based on the SL(2;R)group for studying the spectral problem of the second order di�erential operator determinedfor the Hamiltonian of the Harmonic oscillatorH = P 22M + k2X2; (5.1)where k is a constant.We will use the following notation:! = qk=M; (5.2)� = qM!=�h; (5.3)� = �x; (5.4)� = 2E=�h!; (5.5)and then the Hamiltonian can be writtenH = �h!2 "� d2d�2 + �2# : (5.6)The eigenvectors  (�) of the preceding Hamiltonian operator corresponding to the eigen-values ��h!2 are the normalizable solutions of the di�erencial equation�d2 d�2 + �2 = � : (5.7)We proved in Section 2 that if  is a solution of (5.7), then the function z = 1 d d� will bea solution of the following Riccati equationdzd� = �z2 + ��2 � �� : (5.8)As it was stated in Section 3, such equation admits a nonlinear superposition principlebased on the SL(2;R) group, and therefore the general solution can be found by means ofan appropriate factorizationz(�) = exp(g2L2) exp(g1L1) exp(g0L0)(z)j�=0: (5.9)The functions g0; g1; g2, are to be determined from the �rst order di�erential equationsystem _g0 = �2 � �� g20_g1 = �2g0 (5.10)_g2 = �eg1 ;together with the initial conditions g0(0) = g1(0) = g2(0) = 0.Let us �rst remak that the Riccati equationdzd� + z2 � �2 + � = 0;18



under the change of variables given byz = 2�v � �; y = �2; (5.11)becomes a new Riccati equation,dvdy + v2 + v  12y � 1!� 1� �4y = 0; (5.12)On the other side, the Riccati equation associated, according to the method described inSection 2, with the linear second order con
uent hypergeometric di�erential equationyW 00 + (b� y)W 0 � aW = 0; (5.13)where a and b are constants andW 0 andW 00 are the �rst and second derivative, respectively,of the function W (y), is dvdy + v2 + v  by � 1!� ay = 0: (5.14)with v = W 0W :A simple comparison between (5.12) and (5.14) shows that both coincide whena = 1� �4 b = 12 : (5.15)It is well known that the general solution of (5.13) is given byW (y) = AM  1� �4 ; 12 ; y!+By 12M  3� �4 ; 32 ; y!with A and B arbitrary constants, and M(a; b; y) is such that for large values of the variabley, M(a; b; y) = �(b)�(b� a)ei��ay�ag(a; a� b + 1;�y) (5.16)+ �(b)�(a)eyya�bg(1� a; b� a; y); (5.17)where � = 1 if ��=2 < Arg y < 3�=2 and � = �1 when �3�=2 < Arg y � ��=2 and gdenotes the functiong(a; b; y) = 1Xn=0 a(a+ 1) � � � (a+ n� 1)b(b + 1) � � � (b+ n� 1)n! yn (5.18)Therefore, the function W (y) behaves for large values of y as ey = e�2 unless that� 14 � �4! = 1 and B = 0 (5.19)� 34 � �4! = 1 and A = 0; (5.20)19



Now, we recall that Gamma function is such that �(0) = �1 and takes �nite valueswhen �z is not a positive integer number, while �(�m) = 1 for 0 < m 2 Z. Thereforeif we want to have a solution of (5.13) with values a and b satisfying (5.15) being squareintegrable, it is necessary that14 � �4 = �m; and then � = 2n+ 1 with n = 2m = 2; 4; 6; � � � (5.21)34 � �4 = �m; and then � = 2n+ 1 with n = 2m+ 1 = 3; 5; 7; � � � ; (5.22)or, 14 � �4 = 0 and then � = 2n + 1 with n = 0 (5.23)34 � �4 = 0 and then � = 2n+ 1 with n = 1: (5.24)Consequently, a necessary condition for (5.13) with values a and b satisfying (5.15) to besquare integrable is � = 2n + 1;where n = 0; 1; 2; 3; : : : .Therefore, we will restrict ourselves to the case � = 2n+1. We will show that the solutionfor g0 can be obtained by induction on the index n.We �rst consider the case in which n is an even number. The �rst equation reduces forn = 0 to _g0 = �2 � 1� g20; (5.25)and then it is an easy matter to check that the solution we are looking for is g0 = ��.In the case n = 2 the equation becomes_g0 = �2 � 5� g20; (5.26)and again it is easy to check that then the solution isg0 = 8�4�2 � 2 � �: (5.27)In a similar way, when studying the cases n = 4; 6; : : : we will see that for an even numbern the solution satisfying g0(0) = 0 is given byg0 = H 0n(�)Hn(�) � �; (5.28)with Hn being the Hermite polynomial of order n and H 0n means the derivative of Hn withrespect to �. In fact, using several properties of Hermite polynomials, we see thatH 00nHn � (H 0n)2H2n � 1 = �2 � ��  H 0nHn � �!2 ; (5.29)H 00nHn � (H 0n)2 �H2n = ��2 � ��H2n � (H 0n �Hn�)2 ; (5.30)20



and taking into account that H 0n = 2nHn�1 and the corresponding relation for the derivativesH 00n = 4n(n� 1)Hn�2, we will get4n(n� 1)Hn�2Hn �H2n = ��H2n + 2�HnH 0n; (5.31)4n(n� 1)Hn�2 �Hn = ��Hn + 2�H 0n: (5.32)Now, the recurrence relation Hn = 2�Hn�1 � 2(n� 1)Hn�2, leads to2(n� 1)Hn�2 (2n + 1� �) = 2�Hn�1 (2n+ 1� �) ; (5.33)and the right hand side vanishes because of � = 2n+ 1.In summary, we have checked that for any even number n the solution such that g0(0) = 0is given by g0 = H 0nHn � �: (5.34)When introducing this value for g0 in the second equation (5.11) for g1 we obtain thenew equation _g1 = �2g0 = �2 H 0nHn � �! ; (5.35)which can be easily integratedg1 = �2 Z  H 0nHn � �! d� = �2 logHn + �2 + C1 = � log �H2n + e�2�+ C1; (5.36)and as g1(0) = 0, C1 takes the value C1 = log (H2n(0)) = log k1. From the relation Hn =2�Hn�1� 2(n� 1)Hn�2 we see that Hn(0) = �2(n� 1)Hn�2(0) and iterating this reasoningwe obtain the chain of relationsHn�2(0) = �2(n� 3)Hn�4(0) (5.37)Hn�4(0) = �2(n� 5)Hn�6(0) (5.38)� � � = � � � � � � (5.39)H2(0) = �2(n� n+ 1)H0(0) = �2 � 1 (5.40)and therefore, Hn(0) = (�2(n� 1)) (�2(n� 3)) (�2(n� 5)) � � � (�2:1)= (�2)n=2 (n� 3) (n� 5) � � � 1; (5.41)and then, k1 = H2n(0) = h2n=2(n� 1)(n� 3)(n� 5) � � �1i2= "2n=2n(n� 1)(n� 2)(n� 3) � � �1n(n� 2)(n� 4) � � �2 #2= 24 n!n2 �n2 � 1� �n2 � 2� � � � 1352 = 24 n!�n2�! ; 352 : (5.42)21



So, the function g1 is given by the expressiong1 = � log hk1H2ne��2i : (5.43)Finally, the function g2 is to be determined from the di�erential equation_g2 = � 1k1H2ne��2 ; (5.44)whose solution is g2 = � Z 1k1H2ne��2 d� + k2 (5.45)where k2 is to be chosen such that g2(0) = 0, i.e.,k2 = "Z 1k1H2ne��2 #(�=0) : (5.46)Putting together all previous results we get for the general solution z(�) the followingexpression: z(�) = [eg1z](�=0)1� [g2z](�=0) + g0= � 1k1H2ne��2 z�(�=0)1 + ��R 1k1H2ne��2 d� � k2� z�(�=0) + H 0nHn � �= 2664 1k1H2ne��2 z1 + �R 1k1H2ne��2 d� � k2� z3775(�=0) + H 0nHn � �: (5.47)We recall that the wave function  was given by = eR z(�)d�; (5.48)and from Z z(�)d� = logHn � �22 ; (5.49)we obtain  = elogHn� �22 = Hne� �22 : (5.50)Notice that when  has a well de�ned parity, the quotient z = 1 d d� is an odd functionand then the limit when � ! 0 of z should be zero. However, when  is a continuous oddfunction, then lim�!0  = 0 and then the quotient 1 d d� cannot be �nite. This was the reasonfor leaving aside the case � = 2n+ 1 for an odd number n. In this last case it is convenient�rst to introduce the change of variable z = 1=v, and then the equation (5.8) becomesdvd� = 1� ��2 � �� v2; (5.51)22



and the corresponding system of di�erential equations_g0 = 1� (�2 � �) g20_g1 = �2 (�2 � �) g0 (5.52)_g2 = � (�2 � �) eg1 :with initial conditions g0(0) = g1(0) = g2(0) = 0.It is now easy to check that the solution for g0 isg0 = HnH 0n � �Hn ; (5.53)that g1 is given by g1 = �2 + log " k1H 0n � �Hn#2 (5.54)and that g2 is g2 = � Z (�2 � �) k1(H 0n � �Hn)2 e��2 d� + k2; (5.55)where k1 = 2n!�n�12 �! ; (5.56)k2 = "Z (�2 � �) k1(H 0n � �Hn)2 e��2 d�#(�=0) (5.57)Then, under the change z = 1=v the general solutionv(�) = (eg1v)(�=0)1� (g2v)(�=0) + g0; (5.58)becomes after some computations the expresion given by (5.47).6 ConclusionsThe analysis developed in this paper of the reduction process leading to the Riccati equationstarting from a second order linear di�erential equation just by a simple application of thegeneral Lie theory of symmetry of di�erential equations, now a well established subject(see e.eg. [12]), allows us a better understanding of the so called factorization method,which is a method that have been used for �nding new solvable potentials once one of suchproblem is known and that motivated the study of supersymmetric quantum mechanics.The Riccati equation was chosen here as the simplest example of �rst order di�erentialequation systems admitting a nonlinear superposition principle and the deep reasons for theexistence of such principle have been clari�ed in this paper. We hope that this will allowa geometric interpretation of the converse part of Lie-Sche�ers theorem. This nonlinearsuperposition principle is very important and has played a very important role becauseit provides an explicit expression for the solution of nonlinear equations admitting suchsuperposition principle. For a review see e.g. the review lecture given by Winternitz [13].We have also developed many examples of the use of Wei{Norman method of computation ofthe solution of di�erential equations in a Lie group and we have applied it as an academicalexample for reobtaining the eigenvalues and eigenvectors of the harmonic oscillator problem.23
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