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Abstract. The characterization of systems of differential equations admitting a superposition func-
tion allowing us to write the general solution in terms of any fundamental set of particular solutions
is discussed. These systems are shown to be related with equations on a Lie group and with some
connections in fiber bundles. We develop two methods for dealing with such systems: the generalized
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1. Introduction

Time evolution of many physical systems is described by nonautonomous systems
of differential equations

dxi(t)

dt
= Xi(t, x), i = 1, . . . , n, (1)

for instance, Hamilton equations or Lagrange equations when transformed to the
first-order case by doubling the number of degrees of freedom.

The Theorem of existence and uniqueness of solution for such systems estab-
lishes that the initial conditions x(0) determine the future evolution. It is also
well-known that for the simpler case of a homogeneous linear system the gen-
eral solution can be written as a linear combination of n independent particular
solutions, x(1), . . . , x(n),

x = F(x(1), . . . , x(n), k1, . . . , kn) = k1 x(1) + · · · + kn x(n), (2)

and for each set of initial conditions, the coefficients can be determined. For an
inhomogeneous linear system, the general solution can be written as an affine
function of (n + 1)-independent particular solutions:
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x = F(x(1), . . . , x(n+1), k1, . . . , kn)

= x(1) + k1(x(2) − x(1)) + · · · + kn(x(n+1) − x(1)). (3)

Under a nonlinear change of coordinates, both systems become nonlinear. How-
ever, the fact that the general solution is expressible in terms of a set of particular
solutions is maintained, but the superposition function is no longer linear or affine.

The very existence of such examples of systems of differential equations admit-
ting a superposition function suggests to us an analysis of such systems. We are
lead in this way to the problem of characterizing the systems of differential equa-
tions for which a superposition function, allowing us to express the general solution
in terms of m particular solutions, does exist. The solution of this problem is due
to Lie [1]. Our aim here is to review the theory developed by Lie from a modern
geometric viewpoint and to present different applications both in mathematics and
physics.

The paper is organized as follows: Section 2 present the main Theorem due
to Lie and some simple examples are given in Section 3. In Section 4, after the
introduction of some notation concerning the ingredients of Lie group theory, a
particular case in which the systems are defined in a Lie group G is analyzed, and
we show how to relate them with a particular type of equation in a group. We also
show that Lie systems in homogeneous spaces are naturally associated with these
systems in Lie groups. The theory is illustrated with a pair of examples which
point out the universal character of the equation in the group. Section 5 is devoted
to presenting a generalization to the general case of a method proposed by Wei and
Norman for linear systems and an example of the affine group in one dimension is
used to illustrate the theory. The relation of the problem at hand with the theory of
connections is studied in Section 6: it is shown that Lie systems define horizontal
curves with respect to a connection. The reduction method developed in Section 7
corresponds to considering the action of a group of automorphisms of the principal
bundle on the set of connections, transforming, in this way, the given problem
into a simpler one. Some examples and references to different applications of this
reduction method are also given. The applications of the general theory to different
problems in both Classical and Quantum Mechanics are indicated in Section 8
with an especial emphasis on time evolution of time-dependent Hamiltonian sys-
tems. The example of the time-dependent linear potential model has been explicitly
developed in Section 9 in both the classical and quantum cases.

2. Lie Theorem

The characterization of nonautonomous systems (1) having the property that a
general solution can be written as a function of m independent particular solutions
and some constants determining each specific solution is due to Lie. The statement
of the theorem, which can be found in the book edited and revised by Scheffers [1],
is as follows:
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THEOREM 1. Given a nonautonomous system of n first-order differential equa-
tions like (1), a necessary and sufficient condition for the existence of a function
F : R

n(m+1) → R
n such that the general solution is

x = F(x(1), . . . , x(m); k1, . . . , kn),

with {x(a) | a = 1, . . . , m} being any set of particular solutions of the system and
k1, . . . , kn, n arbitrary constants, is that the system can be written as

dxi

dt
= Z1(t)ξ

1i(x) + · · · + Zr(t)ξ
ri(x), i = 1, . . . , n, (4)

where Z1, . . . , Zr, are r functions depending only on t and ξαi , α = 1, . . . , r, are
functions of x = (x1, . . . , xn), such that the r vector fields in R

n given by

Y (α) ≡
n∑

i=1

ξαi(x1, . . . , xn)
∂

∂xi
, α = 1, . . . , r, (5)

close on a real finite-dimensional Lie algebra, i.e. the vector fields Y (α) are linearly
independent and there exist r3 real numbers, f αβ

γ , such that

[Y (α), Y (β)] =
r∑

γ=1

f αβ
γ Y

(γ ). (6)

The number r satisfies r � mn. For a geometric proof, see [2].
From the geometric viewpoint, the system of first-order differential equations

(1) provides the integral curves of the t-dependent vector field on an n-dimensional
manifold M

X =
n∑

i=1

Xi(x, t)
∂

∂xi
,

in the same way as happens for autonomous systems and true vector fields, and the
t-dependent vector fields satisfying the hypothesis of the theorem are those which
can be written as a t-dependent linear combination of vector fields

X(x, t) =
r∑

α=1

Zα(t) Y
(α)(x),

with vector fields Y (α) closing on a finite-dimensional real Lie algebra. They will
be called Lie (or even Lie–Scheffers) systems. Many of its applications in physics
and mathematics have been developed by Winternitz and coworkers [3–10].
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3. Some Examples

In the Introduction, we have mentioned two types of systems of differential equa-
tions whose general solution can be written as described by Theorem 1: homoge-
neous linear systems like

dxi

dt
=

n∑
j=1

Ai
j (t) x

j , i = 1, . . . , n, (7)

for which m = n and the (linear) superposition function is given by (2), and the
inhomogeneous ones

dxi

dt
=

n∑
j=1

Ai
j (t) x

j + Bi(t), i = 1, . . . , n, (8)

for which m = n + 1 and the (affine) superposition function is (3).
In the first case, the linear system can be considered as the one giving the

integral curves of the t-dependent vector field

X =
n∑

i,j=1

Ai
j (t) x

j ∂

∂xi
, (9)

which is a linear combination with time-dependent coefficients,

X =
n∑

i,j=1

Ai
j (t)Xij , (10)

of the n2 vector fields

Xij = xj
∂

∂xi
, i, j = 1, . . . , n. (11)

Notice that

[Xij ,Xkl] =
[
xj

∂

∂xi
, xl

∂

∂xk

]
= δil xj

∂

∂xk
− δkj xl

∂

∂xi
,

i.e.

[Xij ,Xkl] = δil Xkj − δkj Xil, (12)

which means that the vector fields {Xij }, with i, j = 1, . . . , n, appearing in the case
of a homogeneous system, close on a n2-dimensional Lie algebra isomorphic to the
gl(n,R) algebra. It suffices to compare these commutation relations with those of
the gl(n,R) algebra. The latter is generated by the matrices Eij with elements
(Eij )kl = δik δjl , which satisfy

[Eij , Ekl] = δjk Eil − δil Ekj .
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Therefore, in this homogeneous linear case, r = n2 and m = n, hence the inequal-
ity r � mn is actually an equality.

For the case of the inhomogeneous system (8), the time-dependent vector field
is

X =
n∑

i=1

(
n∑

j=1

Ai
j (t) x

j + Bi(t)

)
∂

∂xi
, (13)

which is a linear combination with t-dependent coefficients,

X =
n∑

i,j=1

Ai
j (t)Xij +

n∑
i=1

Bi(t)Xi, (14)

of the n2 vector fields (11) and the n vector fields

Xi = ∂

∂xi
, i = 1, . . . , n. (15)

Now, these last vector fields commute among themselves

[Xi,Xk] = 0, ∀ i, k = 1, . . . , n,

and

[Xij ,Xk] = −δkj Xi, ∀ i, j, k = 1, . . . , n.

Therefore, the Lie algebra generated by the vector fields {Xij ,Xk | i, j, k =
1, . . . , n} is isomorphic to the (n2 +n)-dimensional Lie algebra of the affine group.
In this case, r = n2 + n and m = n + 1 and the equality r = mn also follows.

Another remarkable example, with many applications in physics, is that of the
Riccati equation, which corresponds to n = 1 [5, 11, 12]:

dx(t)

dt
= c2(t) x

2(t) + c1(t) x(t) + c0(t). (16)

In this case r = 3 and

ξ 1(x) = 1, ξ 2(x) = x, ξ 3(x) = x2,

while

Z1(t) = c0(t), Z2(t) = c1(t), Z3(t) = c2(t).

Equation (16) determines the integral curves of the t-dependent vector field

X(x, t) = c2(t) Y
(3) + c1(t) Y

(2) + c0(t) Y
(1),

where the vector fields Y (1), Y (2), and Y (3) in the decomposition are given by

Y (1) = ∂

∂x
, Y (2) = x

∂

∂x
, Y (3) = x2 ∂

∂x
. (17)
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It is quite easy to check that they close on the following three-dimensional real Lie
algebra,

[Y (1), Y (2)] = Y (1), [Y (1), Y (3)] = 2Y (2), [Y (2), Y (3)] = Y (3), (18)

i.e. the sl(2,R) algebra.
It can be shown that, for the Riccati equation, m = 3 and, hence, as r = 3 the

equality r = mn holds. The superposition function comes from the relation

x − x1

x − x2
: x3 − x1

x3 − x2
= k, (19)

or, in other words [11],

x = x1(x3 − x2) + k x2(x1 − x3)

(x3 − x2) + k (x1 − x3)
. (20)

In particular, the solutions x1, x2 and x3 are obtained for k = 0, ∞, and 1, respec-
tively.

We show next an example of nonlinear superposition formula for a specific Lie
system, in order to illustrate how complicated the explicit expressions can become.
For the sake of brevity, we give only the result.

Consider the differential equation system

dx(t)

dt
= b1(t) + b2(t) x + b3(t) (x

2 − y2),

dy(t)

dt
= b2(t) y + 2b3(t) xy, (21)

which determines the integral curves of the t-dependent vector field

X(x, t) = b1(t) Y
(1) + b2(t) Y

(2) + b3(t) Y
(3),

where now Y (1), Y (2), and Y (3) are given by

Y (1) = ∂

∂x
, Y (2) = x

∂

∂x
+ y

∂

∂y
,

Y (3) = (x2 − y2)
∂

∂x
+ 2xy

∂

∂y
. (22)

These vector fields satisfy the commutation relations (18), hence the previous sys-
tem is a Lie system with associated Lie algebra sl(2,R), and with r = 3, n = 2.
The number of particular solutions needed is m = 3. In fact, suppose we know a
set of particular solutions x(i) = {xi, yi}, i = 1, 2, 3 of the system (21). Then the
general solution can be written as

x = F1(x(1), x(2), x(3), k1, k2) = Nx

D
,

y = F2(x(1), x(2), x(3), k1, k2) = Ny

D
, (23)
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where

Nx = x1{(x2 − x3)
2 + (y2 − y3)

2} +
+ k1{x2

2 x3 + (x3 − x2)x
2
1 + (y1 − y2)

2x3 −
− x2(x

2
3 + (y1 − y3)

2) − x1((x2 − x3)
2 + (y2 − y3)

2)} +
+ k2{x2

3 (y2 − y1) + x2
2 (y1 − y3) +

+ (y3 − y2)(x
2
1 + (y1 − y2)(y1 − y3))} +

+ (k2
1 + k2

2)x2{(x1 − x3)
2 + (y1 − y3)

2},

Ny = y1{(x2 − x3)
2 + (y2 − y3)

2} +
+ k1{x2

2 (y3 − y1) − x2
3 (y1 + y2) + 2x2(x3y1 − x1y3) +

+ 2x1x3y2 − (x2
1 + (y1 + y2)(y1 − y3))(y2 − y3)} +

+ k2{x2
1 (x2 − x3) + x2

2 x3 + x3(y
2
2 − y2

1) −
− x2(x

2
3 + y2

3 − y2
1 ) + x1(x

2
3 − x2

2 + y2
3 − y2

2 )} +
+ (k2

1 + k2
2)y2{(x1 − x3)

2 + (y1 − y3)
2},

D = (x2 − x3)
2 + (y2 − y3)

2 −
− 2k1{(x1 − x3)(x2 − x3) + (y1 − y3)(y2 − y3)} +
+ 2k2{x3(y2 − y1) + x2(y1 − y3) + x1(y3 − y2)} +
+ (k2

1 + k2
2){(x1 − x3)

2 + (y1 − y3)
2},

and k1, k2 are two arbitrary real constants determining each particular solution. For
example, the particular solutions {x1, y1}, {x2, y2} and {x3, y3} can be obtained
by taking k1 = k2 = 0, the limit k1 → ∞ (or k2 → ∞), and k1 = 1, k2 = 0,
respectively.

In particular, if we look for solutions of the system (21) with y = 0, we re-
cover, essentially, the Riccati equation (16); likewise, the superposition formula
(23) reduces to (20) in such a particular case.

For a more complete information about the explicit construction and use of
superposition formulas, see, e.g., [2–11] and references therein.

4. Lie–Scheffers Systems on Lie Groups

The most important example, which will be shown to give rise to many other related
systems, occurs when M is a Lie group G and we consider vector fields Xα in G

that are either left-invariant or right-invariant as corresponding either to the Lie
algebra g of G or to the opposite algebra [13, 14].

Let us choose a basis {a1, . . . , ar } for the tangent space TeG at the neutral ele-
ment e ∈ G, and denote {ϑ1, . . . , ϑr} the corresponding dual basis of T ∗

e G. In the
following, XR

α denotes the right-invariant vector field in G such that XR
α (e) = aα ,
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i.e. XR
α (g) = Rg∗e(aα), and in an analogous way, XL

α will denote the left-invariant
vector field XL

α (g) = Lg∗e(aα). Similarly, θRα and θLα are the right- and left-invariant
1-forms in G determined by ϑα , i.e.

θRα (g) = (Rg−1)∗e(ϑα), θLα (g) = (Lg−1)∗e(ϑα).

If we consider the right-invariant Lie–Scheffers system on G

X(g, t) = −
r∑

α=1

bα(t)X
R
α (g), (24)

its integral curves will be determined by the system of differential equations

ġ(t) = −
r∑

α=1

bα(t)X
R
α (g(t)). (25)

Applying (Rg(t)−1)∗g(t) to both sides of this equation we obtain the equivalent equa-
tion

(Rg(t)−1)∗g(t)(ġ(t)) = −
r∑

α=1

bα(t)aα, (26)

which we will write as well, with a slight abuse of notation, as

(ġ g−1)(t) = −
r∑

α=1

bα(t)aα, (27)

although (26) reduces to (27) only when G is a matrix group. This equation is right-
invariant, and so, out of a solution ḡ(t) of (26) with initial condition ḡ(0) = e, the
solution with initial conditions g(0) = g0 is given by ḡ(t)g0. This means that for
the Lie–Scheffers system (24) on the Lie group G, m = 1.

Of course, given a homomorphism of Lie groups F : G → G′, the right-
invariant Lie–Scheffers system on G (24) produces a right-invariant Lie–Scheffers
system on G′,

X(g′, t) = −
r∑

α=1

bα(t) (F∗X)Rα (g
′),

where (F∗X)Rα is the right-invariant vector field on G′ which is F -related with the
vector field XR

α .
Let us consider a left action of a Lie group G, with Lie algebra g, on a manifold

M, +: G × M → M, and denote +g: M → G and +p: G → G, where g ∈ G,
p ∈ M, the maps defined by +g(p) = +p(g) = +(g, p). The fundamental vector
field Xa associated to the element a of g is given by

(Xaf )(p) = d

dt
f (+(exp(−ta), p))

∣∣∣
t=0

, f ∈ C∞(M),
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where the minus sign has been introduced for X: g → X(M) to be a Lie alge-
bra homomorphism, i.e. a R-linear map such that X[a,b] = [Xa,Xb]. Note that
Xa(p) = +p∗e(−a). These vector fields are always complete. As an example, let
us consider the left action action of G on itself by left translations, +(g, g′) = g g′.
The fundamental vector fields Xa are right invariant because

(Xa)(g) = +g∗e(−a) = Rg∗e(−a) = −(XR
a )(g),

where XR
a is the right-invariant vector field in G determined by its value at the

neutral element (XR
a )(e) = a.

Given two actions +1 and +2 of a Lie group G on two differentiable manifolds
M1 and M2, a map F : M1 → M2 is said to be equivariant if F ◦ +1g = +2g ◦ F .
The remarkable property is that when G is connected, the map F : M1 → M2 is
equivariant if and only if, for each a ∈ TeG, the corresponding fundamental vector
fields in M1 and M2 are F -related [2, 13, 14].

Now, let H be a closed subgroup of G and consider the homogeneous space
M = G/H . Then, G acts on M by λ(g′, gH) = (g′g)H . Moreover, G can be
seen as a principal bundle (G, τ,G/H) over G/H , where τ denotes the canonical
projection. The important point is (see, e.g., [13]) that the map τ : G → G/H is
equivariant, with respect to the left action of G on itself by left translations and the
action λ on G/H and, consequently, the fundamental vector fields corresponding
to the two actions are τ -related. Therefore, the right-invariant vector fields XR

α are
τ -projectable and the τ -related vector fields in M are the fundamental vector fields
−Xα = −Xaα corresponding to the natural left action of G on M, τ∗gXR

α (g) =
−Xα(gH). In this way we will have an associated Lie–Scheffers system on M:

X(x, t) =
r∑

α=1

bα(t)Xα(x), (28)

where x = gH , whose integral curve will be determined by

ẋ =
r∑

α=1

bα(t)Xα(x). (29)

Thus, the solution of (28) starting from x0 will be x(t) = +(g(t), x0), with g(t)

being the solution of (26) with g(0) = e. This is the main point: the knowledge of
one particular solution of (26) allows us to obtain the general solution of (28).

The converse property is true in the following sense: Given a Lie–Scheffers
system in a manifold M defined by complete vector fields and with associated
Lie algebra g, we can see these as fundamental vector fields relative to an action
given by integrating the vector fields. Then, the restriction to an orbit will provide a
homogeneous space of the above type. The choice of a point x0 in the homogeneous
space allows us to identify the homogeneous space M with G/H , where H is the
stability group of x0. Different choices for x0 will lead to conjugate subgroups [13].
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For instance, the vector fields appearing in (17) close on a Lie algebra but the
third one is not complete on R. We can however consider the one-point compact-
ification of R, R = R ∪ {∞}, and then the flows of vector fields in (17) are,
respectively,

x �→ x + ε, x �→ eεx, x �→ x

1 − x ε
,

and therefore they can be considered as the fundamental vector fields correspond-
ing to the action of SL(2,R) on the completed real line R, given by [12]

+(A, x) = α x + β

γ x + δ
, if x �= − δ

γ
,

+(A,∞) = α

γ
, + (A,−δ/γ ) = ∞,

when A =
(
α β

γ δ

)
∈ SL(2,R). (30)

The stability group of ∞ is the subgroup of matrices with γ = 0, which is
isomorphic to the affine group A1 in one-dimensional space, while the stability
group of 0 is made up by the matrices with β = 0, a group isomorphic to A1.
Indeed(

δ 0
−γ α

)
=
(

0 1
−1 0

)(
α γ

0 δ

)(
0 −1
1 0

)
.

The remarkable fact is that Equation (26) has a universal character. There will
be many Lie–Scheffers systems associated with such an equation. It is enough to
consider homogeneous spaces and the corresponding fundamental vector fields. In
this way we will get a set of different systems corresponding to the same equation
on the Lie group G. In particular, we can consider an action of G on a linear
space given by a linear representation, and then the associated Lie systems are
linear systems. Hence, we obtain a kind of linearization of the original problem
[5]. Therefore, the theory can be useful in the study of both classical and quantum
problems.

As an example we can consider both the Riccati equation

ẋ = b0(t) + 2 b1(t) x + b2(t) x
2,

and the linear system of first-order differential equations

d

dt

(
x

y

)
=
(

b1(t) b0(t)

−b2(t) −b1(t)

)(
x

y

)
.

They are two different Lie systems for G = SL(2,R) corresponding to the same
equation

ġg−1 = −b0(t)M0 − 2 b1(t)M1 − b2(t)M2,
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with the matrices

M0 =
(

0 1
0 0

)
, M1 = 1

2

(
1 0
0 −1

)
, M2 =

(
0 0

−1 0

)
,

being a basis of sl(2,R). They satisfy the commutation relations

[M0,M1] = −M0, [M0,M2] = −2M1, [M1,M2] = −M2.

As another illustrative example, we can consider the nonrelativistic dynamics of
a spin 1/2 particle, when only the spinorial part is considered [14]. The dynamics
of such a particle in a time-dependent magnetic field is described by the so-called
Schrödinger–Pauli equation:

ih̄
d|ψ〉

dt
= H |ψ〉 = −µB · S|ψ〉,

with µ proportional to the Bohr magneton, B = (B1, B2, B3) the t-dependent
magnetic field, and Si = (h̄/2) σi . More explicitly,

d

dt

(
ψ1

ψ2

)
= µ

2

(
iB3 iB1 + B2

iB1 − B2 −iB3

)(
ψ1

ψ2

)
. (31)

The matrices −iσ 1, −iσ 2 and −iσ 3 generate the real Lie algebra of traceless
skew-Hermitian 2×2 matrices, the Lie algebra of the group SU(2,C) and therefore
of SO(3,R).

As a consequence of the theory that we have developed in this section, in order
to find the general solution of the evolution equation (31), it suffices to determine
the curve R(t) in SO(3,R) starting from the identity map, R(0) = I and such that

Ṙ R−1 = B3M3 + B2M2 + B1M1,

where

M1 =
 0 0 0

0 0 −1
0 1 0

 , M2 =
 0 0 1

0 0 0
−1 0 0

 , M3 =
 0 −1 0

1 0 0
0 0 0

 .

Such a curve gives us the general solution for the dynamics

|ψ(t)〉 = R̄(t)|ψ(0)〉,
where R̄ is an element in SU(2,C) corresponding to R.

5. The Wei–Norman Method

In order to directly solve Equation (26), we can use a method which is a generaliza-
tion of the one proposed by Wei and Norman [15, 16] for finding the time evolution
operator for a linear systems of type dU(t)/dt = H(t)U(t), with U(0) = I , see
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also [11]. However, as will be mentioned in a later section, alternative methods
exist for solving (26) by reducing the problem to a simpler one.

Both procedures are based on the following property ([13]): If g(t), g1(t) and
g2(t) are differentiable curves in G such that g(t) = g1(t)g2(t), ∀t ∈ R, then,

Rg(t)−1 ∗g(t)(ġ(t))
= Rg1(t)

−1 ∗g1(t)
(ġ1(t)) + Ad(g1(t))

{
Rg2(t)

−1 ∗g2(t)
(ġ2(t))

}
. (32)

The generalization of this property to several factors is as follows. Let now g(t)

be a curve in G which is given by the product of other l curves

g(t) = g1(t)g2(t) · · · gl(t) =
l∏

i=1

gi(t).

Then, denoting

hs(t) =
l∏

i=s+1

gi(t), for s ∈ {1, . . . , l − 1},

and applying (32) to g(t) = g1(t) h1(t), we have

Rg(t)−1 ∗g(t)(ġ(t)) = Rg1(t)
−1 ∗g1(t)

(ġ1(t)) + Ad(g1(t))
{
Rh1(t)

−1 ∗h1(t)
(ḣ1(t))

}
.

Simply iterating, and using Ad(gg′) = Ad(g)Ad(g′) for all g, g′ ∈ G, we obtain

Rg(t)−1 ∗g(t)(ġ(t))
= Rg1(t)

−1 ∗g1(t)
(ġ1(t)) + Ad(g1(t))

{
Rg2(t)

−1 ∗g2(t)
(ġ2(t))

}+ · · ·

+ Ad

(
l−1∏
i=1

gi(t)

) {
Rgl(t)−1 ∗gl(t)(ġl(t))

}
=

l∑
i=1

Ad

(∏
j<i

gj (t)

) {
Rgi(t)−1 ∗gi(t)(ġi (t))

}
=

l∑
i=1

(∏
j<i

Ad(gj (t))

){
Rgi(t)−1 ∗gi(t)(ġi(t))

}
, (33)

where it has been taken g0(t) = e for all t .
The generalized Wei–Norman method consists on writing the solution g(t) of

(26) in terms of its second kind canonical coordinates w.r.t. a basis {a1, . . . , ar} of
the Lie algebra g, for each value of t , i.e.

g(t) =
r∏

α=1

exp(−vα(t)aα) = exp(−v1(t)a1) · · · exp(−vr(t)ar),
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and transforming the differential equation (26) into a differential equation system
for the vα(t), with initial conditions vα(0) = 0 for all α = 1, . . . , r. The minus
signs in the exponentials have been introduced for computational convenience.
Then, we use the result (33), taking

l = r = dimG and gα(t) = exp(−vα(t)aα) for all α.

Now, since Rgα(t)−1 ∗gα(t)(ġα(t)) = −v̇α(t)aα , we see that (33) reduces to

Rg(t)−1 ∗g(t)(ġ(t)) = −
r∑

α=1

v̇α

(∏
β<α

Ad(exp(−vβ(t)aβ))

)
aα

= −
r∑

α=1

v̇α

(∏
β<α

exp(−vβ(t)ad(aβ))

)
aα,

where it has been used the identity Ad(exp(a)) = exp(ad(a)), for all a ∈ g. Substi-
tuting in Equation (26), we obtain the fundamental expression of the Wei–Norman
method

r∑
α=1

v̇α

(∏
β<α

exp(−vβ(t)ad(aβ))

)
aα =

r∑
α=1

bα(t)aα, (34)

with vα(0) = 0, α = 1, . . . , r. The resulting differential equation system for the
functions vα(t) is integrable by quadratures if the Lie algebra is solvable [15, 16]
and, in particular, for nilpotent Lie algebras.

As a simple but illustrative example, we can consider the affine group in one
dimension, A1, i.e. the set of transformations of the real line

x̄ = α1 x + α0, (35)

with α1 �= 0 and α0 being real numbers. The group composition law is

(α′
0, α

′
1) ∗ (α0, α1) = (α′

0 + α′
1 α0, α

′
1 α1).

Denoting by (x0, x1) the coordinate system in A1 given by

x0(α0, α1) = α0, x1(α0, α1) = α1,

we see that a basis of right-invariant vector fields in A1 is given by

XR
0 = ∂

∂x0
, XR

1 = x0
∂

∂x0
+ x1

∂

∂x1
,

while the corresponding basis of left-invariant vector fields is given by

XL
0 = x1

∂

∂x0
, XL

1 = x1
∂

∂x1
.
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Therefore, the defining relations are [a0, a1] = −a0. Then,

ad(a0)a0 = 0, ad(a0)a1 = −a0,

and if g = exp(−u0a0) exp(−u1a1), Equation (34) in this case becomes

u̇0 a0 + u̇1(a1 + u0 a0) = b0 a0 + b1 a1,

so we obtain the system

u̇0 = b0 − b1 u0, u̇1 = b1, (36)

with the initial conditions u0(0) = u1(0) = 0. Note that the first equation is noth-
ing but an inhomogeneous linear equation. The explicit solution can be obtained
through two quadratures:

u0(t) = e− ∫ t
0 dt ′ b1(t

′)
∫ t

0
dt ′ b0(t

′) e
∫ t ′

0 dt ′′ b1(t
′′), u1(t) =

∫ t

0
dt ′ b1(t

′),

In a similar way, if we consider instead g = exp(−v1a1) exp(−v0a0), and we
take into account that

ad(a1)a0 = a0, ad(a1)a1 = 0,

then we will find

v̇1 a1 + v̇0 exp(−v1ad(a1))a0 = v̇1 a1 + v̇0 e−v1 a0 = b0 a0 + b1 a1,

yielding the system

v̇0 = b0 ev1, v̇1 = b1, (37)

also with the initial conditions v0(0) = v1(0) = 0. The system (37), with such
initial conditions, can be easily integrated by two quadratures:

v0(t) =
∫ t

0
dt ′ b0(t

′) e
∫ t ′

0 dt ′′ b1(t
′′), v1(t) =

∫ t

0
dt ′ b1(t

′).

When we consider the previous action (35) on the real line, we get as funda-
mental vector fields

X0 = − ∂

∂x
and X1 = −x

∂

∂x
,

thus the Lie system in R which corresponds to ġ g−1 = −b0 a0 − b1 a1 is ẋ =
−b0 − b1 x. Our theory gives us the formula for the explicit general solution of
such an inhomogeneous linear differential equation, by making use of

x(t) = +(g(t), x0) = +(exp(−u0(t)a0),+(exp(−u1(t)a1), x0))

= e−u1(t)x0 − u0(t),
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namely

x(t) = e− ∫ t
0 dt ′ b1(t

′)
{
x0 −

∫ t

0
dt ′ b0(t

′) e
∫ t ′

0 dt ′′ b1(t
′′)
}
. (38)

Likewise, the same solution can be obtained from the second factorization:

x(t) = +(exp(−v1(t)a1),+(exp(−v0(t)a0), x0)) = e−v1(t)(x0 − v0(t)), (39)

which clearly gives the same result.

6. Connections and Lie Systems

If G is a connected Lie group, the set of curves

γ : R → G, t �→ g(t)

is also a group when the following composition law is considered: γ2 ∗ γ1: t �→
g2(t) g1(t).

Given a curve γ in G, g(t), such that g(0) = e, then ḡ(t) = g(t) g0 is another
curve in G starting from g0 (it is said to be right translated of γ by g0) and similarly
¯̄g(t) = g0 g(t) is also a curve in G starting from g0 (called left-translated from γ

by g0).
Now, given the curve γ , we have a vector field along γ given by the tangent

vector ġ(t), and then, translating these tangent vectors to the neutral element by
Rg−1(t)∗g(t), we obtain a curve in TeG like in (27). The curve ḡ(t) = g(t) g0, right-
translated by g0 of γ , gives rise to the same equation.

But we can consider Equation (27) as an equation for the curve g(t) in G

determined by the curve a(t) = −∑r
α=1 bα(t) aα in TeG. This equation is right-

invariant in the sense that if g(t) is a solution such that g(0) = e, then, for each
g0 ∈ G, ḡ(t) = g(t) g0 is a new solution, now such that ḡ(0) = g0.

We remark that if G is a Lie group, π2: P = G × R → R defines a principal
G-bundle. The right action of G on P is given by

A((g′, t), g) = Ag((g
′, t)) = (g′ g, t),

i.e. Ag = Rg × idR.
Giving a connection in P is equivalent to giving a curve in G, for instance,

one such that g(0) = e. It is also well known that each global section provides
a different trivialization of the principal bundle P . The given curve furnishes a
section for π2, σ (t) = (g(t), t), and a family of sections right-translated from such
a section,

{σ ′(t) = A(σ(t), g0) | g0 ∈ G}.
The tangent vectors to such a family of sections span the horizontal spaces in

each point. More specifically, horizontal and vertical spaces in a point of P are
given by

VP(g0,t ) = 〈(XR
α (g0), 0)〉,
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HP(g0,t ) = 〈(Rg0∗e(ġ(t) g
−1(t)), 1)〉.

Note that

Ag−1(t)∗g(t)(ġ(t), 1) = (Rg−1(t)∗g(t)ġ(t), 1) = (ġ(t) g−1(t), 1).

The choice of the connection given by γ amounts to choose a basis of the
tangent space at the point (g0, t) as follows, {XR

α (g0), ∂/∂t + Rg0∗e(ġ(t) g−1(t))},
while the dual basis is made up by {θRα (g0) − τα(t) dt, dt} where the coefficients
τα(t) are determined by

Rg0∗e(ġ(t) g
−1(t)) =

∑
β

τβ(t)X
R
β (g0),

i.e.

τα(t) = 〈θRα (g0), Rg0∗e(ġ(t) g
−1(t))〉.

Therefore, the vertical projector associated to the connection is

v(g0,t ) =
∑
β

XR
β (g0) ⊗ (θRβ (g0) − τβ(t) dt)

= idTg0G
− (

Rg0∗e(ġ(t) g
−1(t))

)
dt.

It is also well known that when a left action +: G × M → M of G on M is
considered, there exists an associated bundle E with base R and typical fiber M.
The total space of such bundle is the set of orbits of the right action of G on P ×M,

(u, x)g = (A(u, g),+(g−1, x)),

being the projection πE[u, x] = π2(u), where [u, x] denotes the equivalence class
of (u, x) ∈ P ×M and u is of the form (g′, t). A connection in the principal bundle
translates into a connection in the associated bundle E, and so the horizontal curves
will then be [γ̃ (t), x], where γ̃ (t) is a horizontal curve in P . More explicitly, as the
curves γ̃ are of the form γ̃ (t) = (g(t)g0, t), we find that the horizontal curves in
the associated bundle are

[(g(t)g0, t), x0] = [A((e, t), g(t)g0), x0] = [(e, t),+(g(t)g0, x0)]
and, consequently,

[(g(t)g0, t), x0] = [(e, t),+(g(t),+(g0, x0))].
Since the principal bundle is trivial, E is equivalent to a product. When + is

transitive, E = M × R, where [(e, t), x] corresponds to (x, t) and with this iden-
tification, the horizontal curve here considered corresponds to the integral curve
starting from the point +(g0, x0) of the associated Lie system in M with respect to
the action of G on M given by +.
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Of course the simplest case is when a linear representation of G on the vector
space V is considered, the associated bundle being then a vector bundle and the
corresponding Lie system being a linear system. This means that a system as in (7)
can be seen as defining the horizontal curves corresponding to a connection in an
associated vector bundle. The fact that linear systems, as Schrödinger equations,
could be thought of as defining horizontal curves of a connection were consid-
ered several years ago [17] and it has been suggested recently by looking at the
transformation properties of the equation under certain gauge changes [18].

7. The Reduction Method

Given an equation on a Lie group,

ġ(t) g(t)−1 = a(t) = −
r∑

α=1

bα(t) aα ∈ TeG, (40)

with g(0) = e ∈ G, it may happen that the only nonvanishing coefficients are
those corresponding to a subalgebra h of g. Then the equation reduces to a simpler
equation on a subgroup, involving less coordinate functions in the Wei–Norman
method.

On the other hand, we know that Equation (40) can be seen as a connection in a
principal bundle, and it is also well known that the group of automorphisms of the
principal bundle acts on the set of connections. The automorphims of the bundle
we are considering are given by curves g′(t) in the group G, and so the group of
curves in G defines an action on the set of connections and therefore on the Lie
systems on the group. We can take advantage of such an action for transforming a
given Lie system in another simpler one.

Now, let us choose a curve g′(t) in the group G, corresponding to a given
automorphism, and define the curve g(t) by g(t) = g′(t)g(t), where g(t) is the
previous solution of (26). The new curve in G, g(t), determines a new connection
and therefore a new Lie system.

Indeed, from (32),

Rg(t)−1∗g(t)(ġ(t)) = Rg′−1(t)∗g′(t)(ġ
′(t)) −

r∑
α=1

bα(t)Ad(g′(t))aα, (41)

which is an equation similar to (26) but with different right-hand side. Therefore,
the aim is to choose the curve g′(t) appropriately, i.e. in such a way that the new
equation be simpler. For instance, we can choose a subgroup H and look for a
choice of g′(t) such that the right-hand side of (41) lies in TeH and, hence, g(t) ∈
H for all t .

Now, suppose we consider a transitive action +: G × M → M of G on a
homogeneous space M, which can be identified with the set G/H of left-cosets,
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by choosing a fixed point x0: H is then the stability subgroup of x0. The horizontal
curves starting from the point x0 associated to both connections are related by

x(t) = +(g(t), x0) = +(g′(t)g(t), x0)

= +(g′(t),+(g(t), x0)) = +(g′(t), x(t)).

Therefore, the action of the group of curves in G on the set of connections
translates to the homogeneous space and gives an action on the corresponding set of
associated Lie systems. More explicitly, if we consider the automorphism defined
by g′(t), the Lie system (29) transforms into a new one (see [13])

˙̄x =
r∑

α=1

b̄α(t)Xα(x̄), (42)

in which

b̄ = Ad(g′(t))b(t) + ġ′ g′−1.

The important result proved in [13] is that the knowledge of a particular solution
of the associated Lie system to (26) in G/H allows us to reduce the problem to one
in the subgroup H . For any choice of the curve g′(t) we can consider a curve x′(t)
defined in the homogeneous space G/H by g′(t) as follows:

x′(t) = τ(g′ −1(t)g(t)) = g′ −1(t)H.

Then, if g′(t) is chosen such that the curve x′(t) is a solution of the associated
system, then the automorphism defined by g′(t) transforms the original problem
into one in the subgroup H :

THEOREM 2. Every integral curve of the time-dependent vector field on the
group G, given by the right-hand side of (25), can be written in the form g(t) =
g1(t) h(t), where g1(t) is a curve projecting onto a solution x1(t) of an equation
of type (29) for the natural left action of G on the homogeneous space G/H , and
h(t) is a solution of a type (26) equation but for the subgroup H , given explicitly
by

(ḣ h−1)(t) = −Ad(g−1
1 (t))

(
r∑

α=1

bα(t)aα + (ġ1 g
−1
1 )(t)

)
∈ TeH.

As an example, we can consider once again the affine group in one dimension,
A1, of the preceding section. We can choose first the Lie subgroup H0 = {(a0, 1) |
a0 ∈ R} and consider the corresponding one-dimensional homogeneous space
A1/H0. Its points can be characterized by y = x1, with x1 �= 0. In this coordinate
system for A1/H0 the fundamental vector fields are X0 = 0 and X1 = y∂/∂y. The
Lie system associated to ġ g−1 = −b0 a0 − b1 a1 is ẏ = b1y and, according to the
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result of the preceding theorem, once we know a solution of this last homogeneous
linear equation, we can carry out the reduction procedure. More explicitly, when
we know a solution of ẏ = b1y, the change of variable x = y ζ will simplify the
equation ẋ = b0 + b1 x to one on the subgroup H0, ζ̇ = b0 y

−1.
If we consider instead the Lie subgroup H1 = {(0, a1) | a1 ∈ R − {0}}, then the

elements of the one-dimensional homogeneous space A1/H1 can be characterized
by z = x0. The expression of the fundamental vector fields in this coordinate
system are X0 = ∂/∂z and X1 = z∂/∂z. Then, as soon as we know a solution
of ż = b1z + b0, namely a particular solution of the inhomogeneous equation, we
can reduce the problem of finding the general solution of ẋ = b0 + b1 x to solving
an equation on H1, which is a homogeneous linear equation. This procedure corre-
sponds to the change of variables x = z + ζ , which leads to the reduced equation
ζ̇ = b1 ζ .

Therefore the two methods usually found in textbooks for solving the inho-
mogeneous linear differential equation appear here as particular cases of a more
general methodology for reduction of differential equation systems to simpler ones.

In this way, the last method can be generalized when one considers an inhomo-
geneous linear system, whose associated group is the corresponding affine group.
Given a particular solution, the problem is reduced to another one on its stabilizer,
i.e. the group GL(n,R) or, in other words, to a homogeneous linear system.

As another example, we consider the Riccati equation, which has been shown to
be an example of Lie system, corresponding to the left action (30) of SL(2,R) on
the (compactified) real line R by homographies, see, e.g., [5, 12]. The action of the
group of automorphisms of the principal bundle translates to the space R into an
action of the group of curves in SL(2,R) on the set of Riccati equations. This action
was used in [12] for studying the integrability properties of the Riccati equation.
The stabilizer of the point at the infinity is the affine group in one dimension A1.
Therefore, if we know a particular solution, x1, of the Riccati equation, the problem
reduces to one on A1, i.e. an inhomogeneous linear equation, by means of the
well-known change of variable x = x1 + z. Had we chosen the origin 0 ∈ R as
the initial point, the stabilizer (isomorphic to A1) would be generated by dilations
and cotranslations. This corresponds to a new reduction of the Riccati equation by
means of the change of variable

x′ = x

− x
x1

+ 1
= x x1

x1 − x
,

which transforms ẋ = c0(t) + c1(t) x + c2(t) x
2 into

ẋ′ = dx′

dt
=
(

2 c0(t)

x1
+ c1(t)

)
x′ + c0(t),

with associated group A1. For more details, see [12] and [13].
Now, suppose we know not only one but two different particular solutions, x(1)

and x(2), of a Lie system in a homogeneous space. They will be determined by the
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choice of initial conditions which provide different presentations of the homoge-
neous space as G/H1 and G/H2, respectively, where Hi is the stability subgroup
of x(i)(0). Using the result of Theorem 2, with g1(t) being a lifting to G of both
curves x(1)(t) and x(2)(t), we will get an equation like the one in the theorem but
where the right-hand side will be in the intersection TeH1 ∩ TeH2, and therefore
the Lie system is reduced to one on the subgroup H1 ∩ H2. The example of the
Riccati equation was explicitly considered in [12], where it was also shown that
the knowledge of a third solution reduces the problem to a trivial equation ẋ = 0,
and therefore giving rise in this way to the superposition function (20).

8. Some Applications in Classical and Quantum Mechanics

Nonautonomous linear systems and Riccati equations are examples of Lie systems
that appear very often in physics. For instance, linear systems appear in the time
evolution of time-dependent harmonic oscillators and the latter is a condition for
the super-potential W in the factorization of a typical quantum Hamiltonian H =
−d2/dx2 +V (x) as H −ε = (−d/dx+W)(d/dx+W), where ε is a constant (see,
e.g., [19–21]), and it plays a relevant rôle in the search for the so-called Shape
invariant potentials (see [14, 20, 22–24]). As we have pointed out in preceding
sections, the Riccati equation may appear each time that the group SL(2,R) plays a
rôle, and because of the isomorphism of the Lie algebras of SL(2,R) and the linear
symplectic group in two dimensions, it will be useful in the linear approximation
of symplectic transformations and the theory of aberrations in optics [25].

However, the Riccati equation is particularly important because it appears as
a consequence of Lie reduction theory when taking into account that dilations
are symmetries of linear second-order differential equations [11]. Actually, the
homogeneous linear second-order differential equation

d2z

dx2
+ b(x)

dz

dx
+ c(x)z = 0, (43)

admits as an infinitesimal symmetry the vector field X = z ∂/∂z generating dila-
tions in the variable z, which is defined for z �= 0. According to Lie theory, we
should change the coordinate z to a new one, u = ϕ(z), such that X = ∂/∂u. This
change is determined by the equation Xu = 1, which leads to u = log |z|, i.e.
|z| = eu. In both cases of regions with z > 0 or z < 0, we have

dz

dx
= z

du

dx
and

d2z

dx2
= z

(
du

dx

)2

+ z
d2u

dx2
,

so Equation (43) becomes

d2u

dx2
+ b(x)

du

dx
+
(

du

dx

)2

+ c(x) = 0,
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and the order can be lowered by introducing the new variable w = du/dx. We
arrive to the following Riccati equation for w:

dw

dx
= −w2 − b(x)w − c(x). (44)

Notice that w = z−1dz/dx, and that this relation together with (44) is equivalent
to the original second-order equation. In the particular case of the one-dimensional
time-independent Schrödinger equation

−d2φ

dx2
+ (V (x) − ε)φ = 0,

the reduced Riccati equation for W = φ−1dφ/dx is

W ′ = −W 2 + (V (x) − ε), (45)

which is the equation that W must satisfy in the previously mentioned factorization
of H = −d2/dx2 + V (x).

Equations of type (45) are particular cases of Riccati equations. We have shown
in a preceding section that it is possible to act with the group of curves in SL(2,R)

on the set of Riccati equations. That means that a given Riccati equation can be
transformed into other related equations (for more explicit details, see [12]). There-
fore, when using curves in SL(2,R) preserving the form of a given equation like
(45), we are transforming the spectral problem for a given Hamiltonian into that of
another one. This method is carefully explained in [26], where explicit examples
of the usefulness of the theory are given.

In the typical problem of classical mechanics, we are dealing with Hamiltonian
vector fields in a symplectic manifold (M,J), and then we should consider the
case in which the vector fields arising in the expression of the t-dependent vector
field describing a Lie system, are Hamiltonian vector fields closing on a real finite-
dimensional Lie algebra. These vector fields correspond to a symplectic action of
the group G on the symplectic manifold (M,J). The Hamiltonian functions of
such vector fields, defined by i(Xα)J = −dhα , however, do not close on the same
Lie algebra when the Poisson bracket is considered, but we can only say that

d
({hα, hβ} − h[Xα,Xβ ]

) = 0,

and therefore they span a Lie algebra extension of the original one.
The situation in quantum mechanics is quite similar. It is well known that the

separable complex Hilbert space of states H can be seen as a real manifold ad-
mitting a global chart [27]. The Abelian translation group allows us to identify
the tangent space TφH at any point φ ∈ H with H itself, the isomorphism being
obtained by associating with ψ ∈ H the vector ψ̇ ∈ TφH given by

ψ̇f (φ) :=
(

d

dt
f (φ + tψ)

)
|t=0

,
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for any f ∈ C∞(H).
The symplectic 2-form J is given by

Jφ(ψ̇, ψ̇ ′) = 2 Im〈ψ |ψ ′〉,
with 〈·|·〉 denoting the Hilbert inner product on H .

Through the identification of H with TφH a continuous vector field is just a
continuous map A: H → H ; therefore a linear operator A on H is a special kind
of vector field.

Given a smooth function a: H → R, its differential daφ at φ ∈ H is an element
of the (real) dual H ′ given by

〈daφ , ψ〉 :=
(

d

dt
a(φ + tψ)

)
|t=0

.

Now, as it was pointed out in [27] the skew-Hermitian linear operators in H
define Hamiltonian vector fields, the Hamiltonian function of −i A for a self-
adjoint operator A being a(φ) = 1

2 〈φ,Aφ〉. The Schrödinger equation plays the
rôle of Hamilton equations because it determines the integral curves of the vector
field −i H .

Now, Lie system theory applies to the case in which a t-dependent Hamiltonian
can be written as a linear combination with t-dependent coefficients of Hamilto-
nians Hi closing on, under the commutator bracket, a real finite-dimensional Lie
algebra. The remarkable point, however, is that this Lie algebra does not necessarily
coincide with the corresponding classical one, but it is a Lie algebra extension. An
example will be given in next section.

9. An Example: Classical and Quantum Time-Dependent Linear Potential

The linear potential model, with many applications in physics, has recently been
studied by Guedes [28]. We can use this problem in order to illustrate the possi-
ble applications of the theory by means of a simple example. Let us consider the
classical system described by a classical Hamiltonian

Hc = p2

2m
+ f (t) x,

and the corresponding quantum Hamiltonian

Hq = P 2

2m
+ f (t)X,

describing, for instance when f (t) = q E0 + q E cosωt , the motion of a par-
ticle of electric charge q and mass m driven by a monochromatic electric field.
E0 is the strength of the constant confining electric field and E that of the time-
dependent electric field that drives the system with a frequency ω/2π . Instead of
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using the Lewis and Riesenfeld invariant method [29] as was done in [28], we will
simultaneously study the classical and the quantum problem by reduction of both
problems to similar equations and using the Wei–Norman method to solve such an
equation. As it will be shown, the only difference is that the Lie algebra arising in
the quantum problem is not the same as in the classical one, but a central extension.

The classical Hamilton equations of motion are

ẋ = p

m
, ṗ = −f (t), (46)

and therefore the motion is given by

x(t) = x0 + p0 t

m
− 1

m

∫ t

0
dt ′

∫ t ′

0
f (t ′′) dt ′′, (47)

p(t) = p0 −
∫ t

0
f (t ′) dt ′. (48)

The t-dependent vector field describing the time evolution is

X = p

m

∂

∂x
− f (t)

∂

∂p
.

This vector field can be written as a linear combination

X = 1

m
X1 − f (t)X2,

with

X1 = p
∂

∂x
, X2 = ∂

∂p
,

being two vector fields closing a three-dimensional Lie algebra with X3 = ∂/∂x,
isomorphic to the Heisenberg algebra, namely,

[X1, X2] = −X3, [X1, X3] = 0, [X2, X3] = 0. (49)

The flow of these vector fields is given, respectively, by

φ1(t, (x0, p0)) = (x0 + p0 t, p0),

φ2(t, (x0, p0)) = (x0, p0 + t),

φ3(t, (x0, p0)) = (x0 + t, p0).

In other words, this corresponds to the action of the Lie group of upper triangu-
lar 3 × 3 matrices on R

2, x̄

p̄

1

 =
 1 a1 a3

0 1 a2

0 0 1

 x

p

1

 .
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It is to be remarked that the three vector fields X1, X2 and X3 are Hamiltonian
vector fields with respect to the usual symplectic structure, J = dx ∧ dp, the
corresponding Hamiltonian functions hi such that i(Xi)J = −dhi being

h1 = −p2

2
, h2 = x, h3 = −p,

therefore

{h1, h2} = −h3, {h1, h3} = 0, {h2, h3} = −1, (50)

which close on a four-dimensional Lie algebra with h4 = 1, that is, a central
extension of that given by (49). Let {a1, a2, a3} be a basis of the Lie algebra with
nonvanishing defining relations [a1, a2] = −a3. Then, the corresponding equation
in the group (27) becomes in this case

ġ g−1 = − 1

m
a1 + f (t) a2.

Now, choosing the factorization

g = exp(−u3 a3) exp(−u2 a2) exp(−u1 a1)

and using the Wei–Norman formula (34) we will arrive to the system of differential
equations

u̇1 = 1

m
, u̇2 = −f (t), u̇3 − u̇1 u2 = 0,

together with the initial conditions

u1(0) = u2(0) = u3(0) = 0,

with solution

u1 = t

m
, u2 = −

∫ t

0
f (t ′) dt ′, u3 = − 1

m

∫ t

0
dt ′
∫ t ′

0
f (t ′′) dt ′′.

Therefore the motion will be given by x

p

1

 =
 1 t

m
− 1

m

∫ t

0 dt ′
∫ t ′

0 f (t ′′) dt ′′

0 1 − ∫ t

0 f (t
′) dt ′

0 0 1

 x0

p0

1

 ,

which reproduces (48). So, obviously we will recover the constant of motion given
in [28], I1 = p(t) + ∫ t

0 f (t
′) dt ′, together with the other one

I2 = x(t) − 1

m

(
p(t) +

∫ t

0
f (t ′) dt ′

)
t + 1

m

∫ t

0
dt ′
∫ t ′

0
f (t ′′) dt ′′.
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As far as the quantum problem is concerned, also studied in a very recent paper
[30], notice that the quantum Hamiltonian Hq may be written as a sum

Hq = 1

m
H1 − f (t)H2,

with

H1 = P 2

2
, H2 = −X,

and −i H1 and −i H2 close on a four-dimensional Lie algebra with −i H3 =
−i P , and −iH4 = i I , isomorphic to that of (50), which is an extension of the
Heisenberg Lie algebra (49),

[−i H1,−i H2] = −i H3, [−i H1,−i H3] = 0,

[−i H2,−i H3] = −i H4.

The Schrödinger equation given by the Hamiltonian Hq is like that of a Lie
system. Note that this Hamiltonian is time–dependent and that such systems are
seldom studied, because it is generally difficult to find the time evolution of such
systems. However, this system is a Lie system and therefore we can find the time-
evolution operator by applying the reduction of the problem to an equation on the
Lie group and using the Wei–Norman method.

Let {a1, a2, a3, a4} be a basis of the Lie algebra with nonvanishing defining re-
lations [a1, a2] = a3 and [a2, a3] = a4. Equation (27) in the group to be considered
is now

ġ g−1 = − 1

m
a1 + f (t) a2.

Using the factorization

g = exp(−u4 a4) exp(−u3 a3) exp(−u2 a2) exp(−u1 a1)

the Wei–Norman method provides the following equations:

u̇1 = 1

m
, u̇2 = −f (t),

u̇3 + u2 u̇1 = 0, u̇4 + u3 u̇2 − 1

2
u2

2 u̇1 = 0,

and written in normal form

u̇1 = 1

m
, u̇2 = −f (t),

u̇3 = − 1

m
u2, u̇4 = f (t) u3 + 1

2m
u2

2,
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together with the initial conditions u1(0) = u2(0) = u3(0) = u4(0) = 0, whose
solution is

u1(t) = t

m
, u2(t) = −

∫ t

0
f (t ′) dt ′,

u3(t) = 1

m

∫ t

0
dt ′
∫ t ′

0
f (t ′′) dt ′′,

and
u4(t) = 1

m

∫ t

0
dt ′f (t ′)

∫ t ′

0
dt ′′

∫ t ′′

0
f (t ′′′) dt ′′′ + 1

2m

∫ t

0
dt ′
(∫ t ′

0
dt ′′f (t ′′)

)2

.

These functions provide the explicit form of the time-evolution operator:

U(t, 0) = exp(−iu4(t)) exp(iu3(t)P ) exp(−iu2(t)X) exp(iu1(t)P
2/2).

Notwithstanding, in order to find the expression of the wave-function in a simple
way, it is advantageous to use the factorization

g = exp(−v4 a4) exp(−v2 a2) exp(−v3 a3) exp(−v1 a1).

In such a case, the Wei–Norman method gives the system

v̇1 = 1

m
, v̇2 = −f (t),

v̇3 = − 1

m
v2, v̇4 = − 1

2m
v2

2,

jointly with the initial conditions v1(0) = v2(0) = v3(0) = v4(0) = 0. The solution
is

v1(t) = t

m
, v2(t) = −

∫ t

0
dt ′ f (t ′), (51)

v3(t) = 1

m

∫ t

0
dt ′
∫ t ′

0
dt ′′f (t ′′), (52)

v4(t) = − 1

2m

∫ t

0
dt ′
(∫ t ′

0
dt ′′f (t ′′)

)2

. (53)

Then, applying the evolution operator onto the initial wave-function ψ(p, 0), which
is assumed to be written in momentum representation, we have

ψ(p, t)

= U(t, 0)ψ(p, 0)

= exp(−iv4(t)) exp(−iv2(t)X) exp(iv3(t)P ) exp(iv1(t)P
2/2)ψ(p, 0)

= exp(−iv4(t)) exp(−iv2(t)X)ei(v3(t)p+v1(t)p
2/2)ψ(p, 0)

= exp(−iv4(t))e
i(v3(t)(p+v2(t))+v1(t)(p+v2(t))

2/2)ψ(p + v2(t), 0),

where the functions vi(t) are given by (51), (52) and (53), respectively.
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