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Abstract

A rigorous geometric proof of the Lie’s Theorem on nonlinear superposition

rules for solutions of non-autonomous ordinary differential equations is given fill-

ing in all the gaps present in the existing literature. The proof is based on an

alternative but equivalent definition of a superposition rule: it is considered as a

foliation with some suitable properties. The problem of uniqueness of the super-

position function is solved, the key point being the codimension of the foliation

constructed from the given Lie algebra of vector fields. Finally, as a more con-

vincing argument supporting the use of this alternative definition of superposition

rule, it is shown that this definition allows an immediate generalization of Lie’s

Theorem for the case of systems of partial differential equations.
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1 Introduction

The integration of systems of differential equations admitting infinitesimal symmetries
was the main concern of Lie in developing what is nowadays called the theory of Lie
algebras and Lie groups. In particular, in a remarkable work [15] he was able to prove
an important theorem connecting Lie algebras and nonlinear superposition rules for
solutions of some non-autonomous systems of nonlinear ordinary differential equations.
These systems can be considered as a generalization of linear systems but the superpo-
sition rule is no longer a linear function. Our aim in this paper is to study once again,
from a geometric viewpoint, the theory of systems of differential equations admitting
a (maybe nonlinear) superposition rule, allowing us to express the general solution of
the system by means of a superposition function in terms of a (fundamental) set of
particular solutions, with the hope of establishing clearly the necessary and sufficient
conditions for a system to admit such a superposition rule. This time, however, we
include also partial differential equations into our considerations.

Even if the hypotheses of Lie’s theorem were not accurately stated from the today
level of rigor, the resulting systems characterized by means of an associated Lie algebra
appear very often in physical problems and in many cases the problem is related with
another one on the corresponding Lie group. This provides us with both methods of
reduction to simpler problems on one side, and another method, introduced by Wei
and Norman which involves some algebraic manipulations based on Lie groups and Lie
algebra theories, on the other.

As far as we know, there is no rigorous proof of the if part in Lie’s theorem and
the attempts known to us to get a rigorous geometric proof share the same pseudo-
argument [2, 17]. In this paper we prove that actually the existence of a superposition
rule for the solutions of a given non-autonomous system implies that it has the explicit
form which is usually accepted. The proof is based on an alternative but equivalent
definition of superposition rule: we consider it as a foliation with some appropriate
properties explicitly formulated later on. An auxiliary lemma is necessary to overcome
the weak point in previous derivations of the theorem [2, 17].

On the other hand, the converse part is not given in its full generality and almost
nothing is said about the uniqueness of the superposition function for these Lie systems.
Only in [10] an example given in [15], for which there are two different superposition
functions, is pointed out. Our approach provides us with an answer to this important
question, the key point being the codimension of the foliation constructed from the
given Lie algebra of vector fields. Moreover, this codimension is very relevant when the
action of the Lie algebra of vector fields on the initial manifold is not transitive.

Finally, as a more convincing argument supporting the use of this alternative defi-
nition of superposition rule, it will be shown that this definition allows an immediate
generalization of Lie’s Theorem for the case of systems of partial differential equations.
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The organization of the paper is as follows. Next section discuss the concept of
superposition function and gives a geometric characterization of such superposition in
terms of a foliation. Section 3 is devoted to a complete proof of the statement of
Lie’s theorem by establishing a lemma which allows us to overcome the weak point of
other previous derivations. The number of solutions in a fundamental set is discussed
in Section 4 and in Section 5 the problem of uniqueness of the superposition rule is
studied. Lie systems on Lie groups and homogeneous spaces are considered in Section 6
as most important examples. Finally, a generalization of the Lie’s Theorem for the case
of systems of first-order partial differential equations is given in Section 7. An outlook
with future applications is given in the last section of the paper.

2 Superposition rules for ordinary differential equa-

tions

By a superposition rule (or a superposition principle) for a given system of ordinary
differential equations

dxi

dt
= Y i(t, x) , i = 1, . . . , n , (1)

one usually understands, after [15], a superposition function Φ : Rn(m+1) → Rn given
by

x = Φ(x(1), . . . , x(m); k1, . . . , kn) , (2)

such that the general solution can be written, at least for sufficiently small t, as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn) , (3)

with {x(a)(t) | a = 1, . . . , m} being a fundamental set of particular solutions of the
system (1) and k = (k1, . . . , kn) being a set of n arbitrary constants associated with
each particular solution.

The standard example is the system of linear differential equations

dxi

dt
=

n∑

j=1

Ai
j(t) x

j , i = 1, . . . , n , (4)

which admits the superposition function, with m = n,

x = Φ(x(1), . . . , x(n); k1, . . . , kn) =
n∑

i=1

ki x(i) .

Of course, we can obtain every solution by superposing x(1)(t), . . . , x(m)(t), for certain
k1, . . . , kn, only if the functions x(1)(t), . . . , x(m)(t), are appropriately independent, i.e.
if they form a fundamental set of solutions. In the above example it means that if the
matrix

X(t) = (xi
(j)(t))

i
j i, j = 1, . . . , n , (5)

is invertible for small t.
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The order in which the particular solutions are chosen is irrelevant and therefore
the superposition function should be such that a permutation of two arguments only
amounts to a change of the parameters k. Note also that it is assumed that the super-
position function Φ does not depend explicitly on the independent variable t, and this
fact has strong consequences (see later the Lie theorem).

From a geometric perspective, systems of differential equations as (4) appear as
those determining the integral curves of a t-dependent vector field in Rn,

Y (t, x) =
n∑

i=1

Y i(t, x)
∂

∂xi
,

the generalization to the case of a n-dimensional manifold being immediate. Note that
then in any point x ∈ N , the t-dependent vector field Y in N , determines not only one
vector but a linear subspace, spanned by the set of vectors {Y (t, x) | t ∈ R}, of the
corresponding tangent space. Actually, under a time re-parametrization the vectors are
rescaled and, when changing the value of t, different vectors are obtained. In this way
it defines a ‘generalized’ distribution for which the dimension of the linear subspace can
change from one point to another. We will see later on that the case we are interested
in is such that the distribution defined by the t-dependent vector field is involutive.

In order to look for superposition rules we need a more geometric picture. Let us
first observe that, as a consequence of the Implicit Function Theorem, the function
Φ(x(1), . . . , x(m); · ) : Rn → Rn can be, at least locally around generic points, inverted,
so we can write

k = Ψ(x(0), . . . , x(m)) (6)

for a certain function Ψ : Rn(m+1) → Rn. Hereafter in order to handle a short notation
we start writing x(0) instead of x. The foliation defined by the function Ψ is now
invariant under permutations of the (m+ 1) variables.

With some abuse of terminology we will also call the function Ψ a superposition
function. The relation between Φ and Ψ is given by:

k = Ψ(Φ(x(1), . . . , x(m); k1, . . . , kn), x(1), . . . , x(m)) . (7)

For instance, for the system (4) we have

Ψ(x(0)(t), . . . , x(n)(t)) = X−1(t)x(0)(t),

where X(t) is the matrix given in (5). This example indicates the obvious fact that,
in general, the superposition function Ψ is defined on an open dense subset of Rn(m+1)

rather than the whole Rn(m+1).
The fundamental property of the superposition function Ψ is that as

k = Ψ(x(0)(t), x(1)(t), . . . , x(m)(t)) , (8)

the function Ψ(x(0), . . . , x(m)) is constant on any (m+1)-tuple of solutions of the system
(1). This property is true for any choice of (m + 1) solutions and this means that the
foliation is invariant under the permutation of the (m + 1) arguments of the function
Ψ.
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After differentiation of relation (8) with respect to t, as the functions xi(t) are
solutions of (1), we get

DΨ(Y (t, x(0)), . . . , Y (t, x(m))) = 0 , (9)

i.e.
n∑

i=1

m∑

a=0

∂Ψ

∂xi
(a)

Y i(t, x(a)) = 0 ,

and therefore the ‘diagonal prolongations’ Ỹ (t, x(0), . . . , x(m)) of the t-dependent vector
field Y (t, x), given by

Ỹ (t, x(0), . . . , x(m)) =

m∑

a=0

Ya(t, x(a)) , t ∈ R ,

where

Ya(t, x(a)) =

n∑

i=1

Y i(t, x(a))
∂

∂xi
(a)

(10)

are t-dependent vector fields on Rn × · · · × Rn ((m + 1) factors) which are tangent to
the level sets of Ψ as displayed by (9).

The level sets of Ψ corresponding to regular values define a n-codimensional foliation
F on an open dense subset U ⊂ Rn × · · · × Rn ((m + 1) factors) and the family

{Ỹ (t), t ∈ R} of vector fields in Rn(m+1) consists of vector fields tangent to the leaves
of this foliation.

This foliation has another important property. Since on the level set Fk correspond-
ing to k = (k1, . . . , kn) ∈ Rn and given (x(1), . . . , x(m)) ∈ Rnm, there is a unique point
(x(0), x(1), . . . , x(m)) ∈ Fk, namely, (Φ(x(1), . . . , x(m); k), x(1), . . . , x(m)) ∈ Fk (cf. (7)),
then the projection onto the last m factors

pr : (x(0), x(1), . . . , x(m)) ∈ Rn(m+1) 7→ (x(1), . . . , x(m)) ∈ Rnm

induces diffeomorphisms on the leaves Fk of F .
This can also be viewed as the fact that the foliation F corresponds to a connection

∆ in the bundle pr : Rn × · · · × Rn = Rn(m+1) → Rn × · · · × Rn = Rnm with trivial
curvature. The restriction of the projection pr to a leaf gives a one-to-one map. In
this way there is a linear map among vector fields in Rnm and (horizontal) vector fields
tangent to a leaf.

Note that the knowledge of this connection (foliation) gives us the superposition
principle without referring to the function Ψ (which we can change by composing
it, for instance, with a diffeomorphism of Rn): if we fix the point x(0)(0), i.e. we
choose a k = (k1, . . . , kn), and m solutions x(1)(t), . . . , x(m)(t), then x(0)(t) is the unique
point in Rn such that (x(0)(t), x(1)(t), . . . , x(m)(t)) belongs to the same leaf of F as
(x(0)(0), x(1)(0), . . . , x(m)(0)). Thus, it is only F that really matters when the superpo-
sition rule is concerned.

On the other hand, if we have a connection ∇ in the bundle pr : Rn(m+1) → Rnm

with a trivial curvature, i.e. we have a horizontal distribution ∇ in TRn(m+1) that is
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involutive, which therefore can be integrated to give a foliation in Rn(m+1) such that
the vector fields Ỹ (t) belong to ∇ (equivalently, are tangent to F , i.e. are horizontal),
then the procedure described above determines a superposition rule for the system (1).

Indeed, let k ∈ Rn enumerate smoothly the leaves Fk of F (e.g. by a choice of a small
cross-section of F), then Φ(x(1)(t), . . . , x(m)(t); k) defined as the unique point x(0)(t) ∈
Rn such that (x(0)(t), x(1)(t), . . . , x(m)(t)) ∈ Fk, is a superposition rule for the system
(1) of ordinary differential equations. To see this, let us observe that the inverse is
Ψ(x(0)(t), x(1)(t), . . . , x(m)(t)) = k, which is equivalent to (x(0)(t), x(1)(t), . . . , x(m)(t)) ∈
Fk. If we fix k and take solutions x(1)(t), . . . , x(m)(t) of (1), then x(0)(t) defined by
the condition Ψ(x(0)(t), x(1)(t), . . . , x(m)(t)) = k satisfies (1). Indeed, let x′(0)(t) be the

solution of (1) with initial value x′(0)(0) = x(0)(0). Since the t-dependent vector fields

Ỹ (t) are tangent to F , the curve (x′(0)(t), x(1)(t), . . . , x(m)(t)) lies entirely on a leaf of
F , so on Fk. But the point of one leaf is entirely determined by its projection pr, so
x′(0)(t) = x(0)(t) and x(0)(t) is a solution. Thus we have proved the following geometric
characterization of superposition rules:

Proposition 1 Giving a superposition rule (2) for a system of differential equations
(1) is equivalent to giving a zero curvature connection in the bundle pr : R(m+1)n → Rnm

for which the diagonal prolongations Ỹ (t) of the t-dependent vector fields Y (t), t ∈ R,
defining the system (1) are horizontal.

Note that we can also consider arbitrary manifolds N instead of Rn. The superposition
functions are then given by maps Φ : Nm+1 → N or by appropriate foliations in Nm+1,
i.e. zero curvature connections in the bundle pr : Nm+1 → Nm.

Remark 1 Frankly speaking, the connection is defined only generically, usually over
an open-dense subset. But this is a general problem with superpositions, which hold
only ‘generically’. In the sequel all objects and constructions will be ‘generic’ in this
sense.

Example 1 Consider the (generalized) foliation F of codimension one generated by
the vector field x ∂/∂x+y ∂/∂y on R2 −{(0, 0)}. It defines a zero curvature connection
for the bundle pr : R×(R−{0}) → R−{0}, pr(x, y) = y ∈ R. The leaves of F are of the
form (etx, ety), t ∈ R, y 6= 0. In particular, the function Ψ(x, y) = x/y is constant on
the leaves. The diagonal prolongation of the t-dependent vector fields a(t) x ∂/∂x are of
the form a(t) (x ∂/∂x + y ∂/∂y) and are tangent to F . This gives us the superposition
rule for the linear differential equation ẋ = a(t) x as follows: If x(1)(t) is a solution, then
(x(0)(t), x(1)(t)) belongs to one leaf, e.g with x/y = k, if and only if x(0)(t) = k x(1)(t).
This is the standard superposition rule for this equation:

Φ(x(1)(t); k) = k x(1)(t) .

Remark 2 It is clear from the above proposition that when the diagonal prolongations
Ỹ (t) generate a foliation of dimension smaller than the dimension of F , we can change
F (i.e. we can change the connection ∇) respecting the required properties. This means
that the corresponding system (1) admits many different superposition rules even if we
regard compositions of Φ with diffeomorphisms of Rn as equivalence relations.
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3 Lie theorem for ODE’s systems admitting super-

position rules

In this section we shall give a proof of the classical Lie’s theorem on ODE’s admitting
a superposition rule (cf. [15, 2, 3, 4]).

First of all, in this proof we shall fill in all gaps which appear in the known lit-
erature. Second, we shall use the alternative characterization of superposition rules
given in Proposition 1 and last, but not least, the proof, as it will be presented, can be
immediately extended to the case of partial differential equations.

Remark first that all considerations will be ‘generic’ and local. Let us recall that a
foliation F of an open dense subset of Ñ = Nm+1 = N×· · ·×N ((m+1) factors) defines
a superposition rule for the system of differential equations (1), if and only if F is of

codimension n, the projection pr : Ñ → N × · · · ×N = Nm (only m factors) onto the
last m arguments maps leaves of F diffeomorphically and, furthermore, the generalized
foliation F0 generated by the family {Ỹ (t) | t ∈ R} of diagonal prolongations of Y (t) is
contained in F .

We shall work only with the regular part of F0. Such regular part is spanned by
{Ỹ (t) | t ∈ R}, i.e. in any case, it is spanned by diagonal prolongations of some

vector fields on N as [Ỹ (t), Ỹ (t′)] = ˜[Y (t), Y (t′)], etc. Let X̃1, . . . , X̃r be diagonal
prolongations spanning locally the regular part of F0 of dimension r, and therefore
pr∗(X̃1), . . . , pr∗(X̃r) are assumed to be linearly independent at a generic point. We
clearly have r ≤ mn.

Since X̃1, . . . , X̃r span an r-dimensional foliation, then

[X̃α, X̃β] =

r∑

γ=1

cαβ
γ X̃γ ,

for some r3 functions cαβ
γ defined on Ñ . Note also that [X̃α, X̃β] are diagonal prolon-

gations as brackets of diagonal prolongations and the projections pr∗(X̃1), . . . , pr∗(X̃r),
are assumed to be functionally independent. Then we shall use the following lemma.

Lemma 1 Let X̃α =

m∑

a=0

Xα(a), for α = 1, . . . r, and with r ≤ mn, be diagonal pro-

longations to Ñ of vector fields Xα on N , and such that at each point p of Nm the

vectors that are the projections of their values, pr∗(X̃α)(p) =
m∑

a=1

Xα(a)(p), are linearly

independent. Then,
r∑

α=1

bα X̃α, with bα ∈ C∞(Ñ), is again a diagonal prolongation if

and only if the coefficients bα are constant.

Proof.- Let us write in local coordinates

Xα =

n∑

i=1

Ai
α(x)

∂

∂xi
,
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which implies that

X̃α =
n∑

i=1

m∑

a=0

Ai
α(x(a))

∂

∂xi
(a)

.

Then,

r∑

α=1

bα(x(0), . . . , x(m))X̃α =

r∑

α=1

n∑

i=1

m∑

a=0

bα(x(0), . . . , x(m))A
i
α(x(a))

∂

∂xi
(a)

,

which is a diagonal prolongation if and only if there are functions Bi
a(x), for a =

0, . . . , m, and i = 1, . . . , n, such that for each pair of indexes i and a,

r∑

α=1

bα(x(0), . . . , x(m))A
i
α(x(a)) = Bi

a(x(a)) , a = 0, . . . , m i = 1, . . . , n.

In particular, the r functions bα(x(0), . . . , x(m)) solve the following subsystem of linear
equations in the unknown uα, for α = 1, . . . , r:

r∑

α=1

uαA
i
α(x(a)) = Bi

a(x(a)) , with i = 1, . . . , n , a = 1, . . . , m . (11)

But the rank of the matrix (Ai
α(x(a)))

i,a
α is r ≤ mn as the projections pr∗(X̃1), . . . , pr∗(X̃r)

are assumed to be linearly independent. Thus the solutions u1, . . . , ur of (11) are unique
and are completely determined by the matrix Ai

α(x(a))
i,a
α and the vector Bi

a(x(a))
i,a, with

a = 1, . . . , m, so they do not depend on x(0). But since the diagonal prolongations are

invariant with respect to the symmetry group Sm+1 acting on Ñ = Nm+1 in an ob-
vious way, the functions bα(x(0), . . . , x(m)) do not depend also on the other variables
x(1), . . . , x(m).

Remark 3 Let us note that the assumption on the projections is crucial for the above
lemma and actually without such assumption the result of this fundamental lemma is
simply wrong as the following example shows. Consider the following two vector fields
in R2 which are prolongations of vector fields in R:

X̃1 =
∂

∂x
+

∂

∂y
, X̃2 = x

∂

∂x
+ y

∂

∂y
,

and the functions
b1(x, y) = x y , b2(x, y) = −(x+ y)

for which

b1(x, y)X̃1(x, y) + b2(x, y) X̃2(x, y) = −

(
x2 ∂

∂x
+ y2 ∂

∂y

)

is also a prolongation. However the coefficients b1 and b2 are not constant. This is the
standard gap in the proofs of Lie’s theorem we found in the literature. One usually
claims that a functional combination of diagonal prolongations is a diagonal prolon-
gation only if the coefficients are constant without assuming that the corresponding
projections are linearly independent.
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Now, we can now prove the above mentioned Lie theorem using the previous results.

Theorem 1 The system (1) on a differentiable manifold N admits a superposition rule
if and only if the t-dependent vector field Y (t, x) can be locally written in the form

Y (t, x) =

r∑

α=1

bα(t)Xα(x)

where the t-dependent vector fields Xα, α = 1, . . . , r, close on a finite-dimensional real
Lie algebra, i.e. there exist r3 real numbers cαβ

γ such that

[Xα, Xβ] =

r∑

γ=1

cαβ
γ Xγ , ∀α, β = 1, . . . , r .

Proof.- Suppose that the system admits a superposition rule and let F be the folia-
tion corresponding to the superposition function. We know already that the generators
{X̃α | α = 1, . . . , r} of the regular part of F0 ⊂ F close on a Lie algebra

[X̃α, X̃β] =
r∑

γ=1

cαβ
γX̃γ, (12)

where the coefficients cαβ
γ are constant, so also

[Xα, Xβ] =

r∑

γ=1

cαβ
γ Xγ .

Since every Ỹ (t) is tangent to F0 there are functions bαt (x(0), . . . , x(m)) such that

Ỹ (t) =
r∑

α=1

bαt X̃α .

But Ỹ (t) is a diagonal prolongation, so, using the fundamental lemma once more, we
get that the bαt = bα(t) are independent on x(0), . . . , x(m). Hence

Ỹ (t) =
r∑

α=1

bα(t) X̃α (13)

and also

Y (t) =

r∑

α=1

bα(t)Xα . (14)

To prove the converse property, assume that the t-dependent vector field Y (t, x) can

be written as in (13) and define Ỹ (t) by (14). We can additionally assume that the
vector fields Xα are linearly independent over R. Thus they define an r-dimensional
Lie algebra with structure constants cαβ

γ (and the corresponding simply connected Lie
group if the vector fields are complete).
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Since only non-trivial functional dependence of X1, . . . , Xr is possible, there is a
number m ≤ r such that their diagonal prolongations to Nm = N × · · · ×N (m times)
are generically linearly independent at each point. The distribution spanned by the
diagonal prolongations X̃1, . . . , X̃r to Ñ = Nm+1 is clearly involutive, so it defines an
r-dimensional foliation F0 of Ñ . Moreover, the leaves of this foliation project onto the
product of the last m factors diffeomorphically and they are at least n-codimensional.
Now, it is obvious that we can extend this foliation to an n-codimensional foliation
F with the latter property, and this foliation, according to proposition 1, defines a
superposition rule. Here, of course, extending of a foliation means that the leaves of
the smaller are submanifolds of the leaves of the extension.

Remark 4 There is another way to look at the superposition the way we proposed.
We can consider two projections: the first one, pr : Ñ = Nn(m+1) → Nnm is on the last
m factors and the second one, pr1 : Ñ → N the projection on the first factor. These
projections are clearly transversal and the first one is a fibration if the foliation F is
conserved, i.e. every curve in Nm has a unique lifting in a fixed leaf of F . Then, the
superposition associated with this lift is just pr1 of the lift of particular solutions.

Remark 5 We hope that it is clear to the reader that in our picture of superposition
rules there is no real need to take all the manifolds N equal in the product where the
superposition foliation lives. We can consider as well Ñ = N0 × · · ·Nm with analogous
projection and fibration property. This means that we can get a solution of a system
on N0 out of solutions of some systems on Na, a = 1, . . . , m. This is a geometric picture
for the Darboux (Bäcklund) transformations. We will, however, discuss this problem
in a separate paper.

4 Determination of the number m of solutions of a

fundamental set

Our proof of the Lie’s Theorem contains an information about the number m of solutions
involved in the superposition rule. For a Lie system defined by a t-dependent vector
field of the form

Y (t, x) =
r∑

α=1

bα(t)Xα(x) ,

with generic bα(t) the number m turned out to be the minimal k such that the diagonal
prolongations of X1, . . . , Xr to Nk are linearly independent at (generically) each point:
the only real numbers solution of the linear system

r∑

α=1

cαXα(x(a)) = 0 , a = 1, . . . , k

at a generic point (x(1), . . . , x(k)) is the trivial solution cα = 0, α = 1, . . . , m, for k = m
and there are nontrivial solutions for k < m.
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For instance, for the Riccati equation

ẋ = b0(t) + b1(t) x+ b2(t)x
2 ,

in which the vector fields generating the foliation F0 are prolongations of the vector
fields

X0 =
∂

∂x
, X1 = x

∂

∂x
, X2 = x2 ∂

∂x
, (15)

representing an sl(2,R)-action, we see that the system

c0 + c1x1 + c2x
2
1 = 0 , c0 + c1x2 + c2x

2
2 = 0

has a nontrivial solution but the one given by

c0 + c1x1 + c2x
2
1 = 0 , c0 + c1x2 + c2x

2
2 = 0 , c0 + c1x3 + c2x

2
3 = 0 ,

does not admit non-trivial solutions because the determinant of the coefficients is in-
vertible when the three points x1, x2 and x3 are different. This implies that m = 3 in
the superposition rule for the Riccati equation.

5 Nonuniqueness of the superposition rule

In some cases the foliation F0 spanned by the prolongations of t-dependent vector fields
defining the dynamics is already n-codimensional and we get a unique (minimal) su-
perposition rule (e.g. Riccati equation). In the cases with codimF0 > n, we have some
ambiguity in choosing the superposition rule as we can extend F0 to an n-codimensional
foliation in different ways.

Example 2 Consider the action of the Abelian group R acting onN = R2 by horizontal
translations., i.e. X1 = ∂/∂x. This action on R2 is free and we have m = 1, so

Ñ = R2 × R2 and F0 is spanned by ∂/∂x(0) + ∂/∂x(1), where the coordinates in Ñ are
denoted (x(0), y(0), x(1), y(1)). We can extend such foliation to a 2-dimensional foliation F

of Ñ with the required property with respect to the projection pr(x(0), y(0), x(1), y(1)) =
(x(1), y(1)) in different ways. For instance, we can take F to be given by the level sets
of the mapping

F (x(0), y(0), x(1), y(1)) = (x(0) − x(1), f(y(0), y(1)))

with f being an arbitrary function such that ∂f/∂y(0) 6= 0. Then, every solution
(x(1)(t), y(1)(t) = y(1)(0)) of the system of differential equations

ẋ = a(t) , ẏ = 0 ,

gives a new solution (x(0)(t), y(0)(t) = y(0)(0)) associated with the level set of (k1, k2) by

(x(0)(t) = x(1)(t) + k1, y(0)(t) = y(0)(0)) .
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where y(0)(0) is the unique point in R satisfying

f(y(0)(0), y(1)(0)) = k2 .

In the case f(y(0), y(1)) = y(0) − y(1) we recover the ‘standard’ superposition rule:

Φ(x(1), y(1); k1, k2) = (x(1) + k1, y(1) + k2) .

Example 3 A very simple example is given by the separable first-order differential
equation

ẋ = a(t) f(x) ,

with a and f being arbitrary smooth functions, and where f is assumed to be of a
constant sign (otherwise we can restrict ourselves to a neighbourhood of a point in
which f does not vanish). In this case N = R and we can consider the vector field in R

X(x) = f(x)
∂

∂x
.

As the function f does not vanish, we have m = 1 and the diagonal prolongation

X̃(x(0), x(1)) = f(x(0))
∂

∂x(0)

+ f(x(1))
∂

∂x(1)

generates a one-dimensional foliation in R2 whose leaves are the level sets of a function
Ψ(x(0), x(1)) such that

f(x(0))
∂Ψ

∂x(0)

+ f(x(1))
∂Ψ

∂x(1)

= 0 ,

which gives rise to the following characteristic system

dx(0)

f(x(0))
=

dx(1)

f(x(1))
.

Therefore, if the function φ(y) is defined by

φ(y) =

∫ y

0

dζ

f(ζ)
,

then we find that the leaves are characterized by a constant k in such a way that

φ(x(0)) − φ(x(1)) = k .

The function φ is a monotone function, because φ′(x) = f(x) and f(x) has constant
sign. Therefore, there exists an inverse function which allows to write the superposition
rule as

x = φ−1
(
k + φ(x(1))

)
.

For instance, if f(x) = 1/x2, we find that φ(x) = −1/x = φ−1(x), an we obtain the
following superposition rule.

x =
x(1)

1 − k x(1)
.
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Example 4 It has been pointed out in [11] the following example of the original Lie’s
work: 




dx

dt
= a12(t) y + b1(t)

dy

dt
= −a12(t) x+ b2(t)

In principle, it is a particular example of an inhomogeneous linear system and we expect
to have an affine superposition rule involving three different solutions:

x = Φ1(x(1), x(2), x(3)) = x(1) + k1(x(2) − x(1)) + k2(x(3) − x(1)) .

However, we can obtain a superposition rule which is not linear but involves only two
solutions. It is due to the fact that here is not the affine group in two dimensions which
is play the relevant rôle, but the Euclidean group. The foliation corresponding to this
Lie system is generated by the prolongations of the vector fields

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂x
− x

∂

∂y
.

First of all, m is different from 1, because there exist nontrivial coefficients λ1, λ2 and λ3

such that λ1X1(x(1)) +λ2X2(x(1)) +λ3X3(x(1)) = 0, at a given point x(1), for instance,
λ1 = −y(1), λ1 = x(1), λ3 = 1. However, the only coefficients λ1, λ2 and λ3 such that

λ1X1(x(1))+λ2X2(x(1))+λ3X3(x(1)) = 0 , λ1X1(x(2))+λ2X2(x(2))+λ3X3(x(2)) = 0 ,

with x(1) 6= x(2) are λ1 = λ2 = λ3 = 0 and therefore m = 2.

The function Ψ defining the superposition rule satisfies X̃1Ψ = X̃2Ψ = X̃3Ψ = 0
with

X̃1 =
∂

∂x
+

∂

∂x1
+

∂

∂x2
, X̃2 =

∂

∂y
+

∂

∂y1
+

∂

∂y2
,

and

X̃3 = y
∂

∂x
− x

∂

∂y
+ y1

∂

∂x1
− x1

∂

∂y1
+ y2

∂

∂x2
− x2

∂

∂y2
.

The two first conditions imply that Ψ must be of the form

Ψ(x0, y0, x1, y1, x2, y2) = ψ(x0 − x1, x0 − x2, y0 − y1, y0 − y2) ,

what suggests the change of variables

u1 = x0 − x1, u2 = x0 − x2, u3 = x0, v1 = y0 − y1, v2 = y0 − y2, v3 = y0 ,

and then the third condition X̃3Ψ = 0 is written

v1
∂

∂u1
+ v2

∂

∂u2
− u1

∂

∂v1
− u2

∂

∂v2
,

for which the characteristic system is

du1

v1
=
du2

v2
=

dv1

−u1
=

dv2

−u2

from where we find the first integrals

u2
1 + v2

1 = (x0 − x1)
2 + (y0 − y1)

2 = C1 , u2
2 + v2

2 = (x0 − x2)
2 + (y0 − y2)

2 = C2

which determine the superposition foliation and provide us with a superposition rule
for the given system involving only two particular solutions (i.e. with m = 2).
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6 Lie systems in Lie groups and homogeneous spaces

Let us consider now the particular case m = 1, i.e. when a single solution is enough
to obtain any other solution. Let us assume additionally that F = F0, i.e. that the
superposition rule is unique as a foliation. This means that r = n and the vector fields
X1, . . . , Xn generically span ßTN . Assume for simplicity that they span ßTN globally
and are complete vector fields. Since these vector fields close on an n-dimensional Lie
algebra g, we conclude that there is a transitive action on N of the simple-connected n-
dimensional Lie group G associated with g, so that N = G/H with a discrete subgroup
H of G and the foliation F = F0 is generated by the fundamental vector fields of the
G-action. If H is trivial and we consider the standard action of G on itself by left
translations Lg, the vector fields Xi are just right-invariant vector fields on G. As a
superposition function corresponding to F = F0 we can choose the group multiplication
Φ : G × G → G, Φ(g(1), k) = g(1)k. In this case Ψ(g(0), g(1)) = g−1

(1) g(0) is left invariant

Ψ(g′g(0), g
′g(1)) = Ψ(g(0), g(1)).

Conversely, given a Lie system defined by a t-dependent vector field of the form

Y (t, g) =

r∑

α=1

bα(t)XR

α(g) ,

where XR

α is a basis of right-invariant vector fields, then the projectability condition is
satisfied and there is a uniquely defined superposition rule. Note however that if the
vector fields XR

α generate a smaller Lie subalgebra, the superposition rule is not unique.
Let {a1, . . . , an} be a basis in TeG. This linear space can be identified with the

Lie algebra g of G, the set of left invariant vector fields on G: for each a ∈ TeG let
XL

a denote the corresponding left-invariant vector field in G, given by XL

a(g) = Lg∗ea.
Similarly, XR

a denotes the right-invariant vector field in G given by XR

a(g) = Rg∗ea. A
curve in TeG,

a(t) =
n∑

α=1

bα(t) aα ,

gives rise to a t-dependent vector field on G

XR(t, g) = XR

a(t)(g) =

n∑

α=1

bα(t)XR

α(g) , (16)

where in the right hand side XR

α is a shorthand notation for XR

aα

. The associated system
of differential equations determining the integral curves of such a t-dependent vector
field reads

ġ(t) =

n∑

α=1

bα(t)XR

α(g(t)) , (17)

and applying Rg−1(x)∗g(x) to both sides of (17) we find the equation

Rg−1(t)∗g(t)ġ(t) =

n∑

α=1

bα(t)aα = a(t) , (18)
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that with some abuse of notation we will write

(ġ g−1)(t) = a(t) . (19)

The solution of this equation starting from the neutral element can be solved by making
use of a generalization of the method developed by Wei and Norman [18, 19] (see e.g.
[5] and [3]) for solving an analogous linear problem. A simpler situation is when a(t)
takes values not in the full Lie algebra g = TeG but in a subalgebra.

Now, let H be an arbitrary closed subgroup of G and consider the homogeneous
space N = G/H . Then, G can be seen as a principal bundle τ : G→ G/H . Moreover,
it is also known that the right-invariant vector fields XR

α are τ -projectable and the τ -
related vector fields in N are the fundamental vector fields −Xα = −Xaα

corresponding
to the natural left action of G on N , τ∗gX

R

α(g) = −Xα(gH). In this way we can associate
with the Lie system on the group X given by (16) a Lie system on N :

X̄(t, x) = −

n∑

α=1

bα(t)Xα(x) . (20)

Therefore, the integral curve of (20) starting from x0 are given by x(t) = Φ(g(t), x0),
with g(t) being the solution of (18) with g(0) = e.

Let us note that even if the original t-dependent vector field on N is projectable to
N0 by means of a submersion π : N → N0, the superposition rule cannot be projected in
general and the number m of solutions appearing in the superposition rule changes. For
instance, in the case of Riccati equation a fundamental set is made of three solutions,
while for the linear realization of SL(2,R) on R2 only two solutions are needed, and for
SL(2,R) acting on itself only one solution is sufficient.

In the particular case of a Lie system ġ g−1 = a in a Lie group G, it was recently
shown [4] that the knowledge of a particular solution of the corresponding system in a
homogeneous space for G reduces the problem to one on the isotopy group of a point in
the homogeneous space. So, if x(t) is the particular solution of the associated Lie system
in a homogeneous space starting from x0, then we can choose a curve ḡ(t) such that
Φ(ḡ(t), x0) = x(t) and there should exist a curve h(t) ∈ Gx0

such that g(t) = ḡ(t) h(t).
Such curve h(t) is a solution of the Lie equation in Gx0

, ḣ h−1 = Ad ḡ−1(a + ˙̄gḡ−1).
Therefore, finding a solution of such equation in the subgroup Gx0

, we can recover the
solution g(t) of the Lie system in G as g(t) = ḡ(t) h(t). Using a new solution starting
from a new point, the problem is further reduced and therefore with a number of known
solutions we can directly write the general solution.

Another relevant case is when there exists an equivariant map F : N1 → N2 between
two homogeneous spaces of a Lie group G. In this case the corresponding fundamental
fields are F -related and then the image under F of an integral curve of a Lie system in
M1 is an integral curve of the corresponding system in M2. A very simple example is
the following: the function F : R2 − {(0, 0)} → R = R ∪ {∞} given by

F (x1, x2) =

{ x1

x2
if x2 6= 0

∞ if x2 = 0
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is equivariant with respect to the linear action of the Lie group SL(2,R) on R2−{(0, 0)},
and its action on the completed real line R, given by

Φ(A, x) =
αx+ β

γ x+ δ
, if x 6= −

δ

γ
,

Φ(A,∞) =
α

γ
, Φ(A,−δ/γ) = ∞,

when A is the matrix given by

A =

(
α β
γ δ

)
∈ SL(2,R) . (21)

Consequently, given an integral curve of the system of differential equations




ẋ1 =
1

2
b2 x1 + b1 x2 ,

ẋ2 = −b3 x1 −
1

2
b2 x2 ,

the curve x(t) = x1(t)/x2(t) is an integral curve of the Riccati equation

ẋ = b1 + b2 x+ b3 x
2 .

This is precisely the method by which Riccati arrived to this last equation.

7 Partial superposition rules

Finding new solutions from know ones is a very usual method in the theory of both
ordinary and partial differential equations and this procedure has many applications in
physics. In order to deal in a geometric way with this problem we introduce next a
concept generalizing those of nonlinear superposition introduced so far and the one in
[12] as well as that of connecting function used in [13] (see also [14] for some examples).

A partial superposition rule of rank s of m solutions for the system of ordinary
differential equations (1) is given by a function Φ : Rn m+s → Rn,

x = Φ(x(1), . . . , x(m); k1, . . . , ks) , (22)

such that if {x(a)(t) | a = 1, . . . , m} is a set of m particular solutions of the system (1),
then, at least for sufficiently small t,

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , ks) , (23)

is also a solution of the system (1), where k = (k1, . . . , ks) is a set of s arbitrary
constants.

Note that this new concept reduces to the previously considered superposition rule
for s = n and coincides with a s-parameter family of connecting functions in the sense
of [13].
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Given such a partial superposition function, there is a non-uniquely defined function
Ψ : Rn(m+1) → Rn such that

Ψi(x(0), x(1), . . . , x(m)) =

{
ki if i ≤ s
0 if i > s

The last (n−s) equations are restrictions defining a submanifold M of codimension
(n−s) of Rn(m+1), i.e. of dimension mn+s, and the other equations define a foliation of
codimension s in M . Now, following the same procedure as in Section 2 we will arrive
to a distribution in Rn(m+1) spanned by the t-dependent vector fields Ya defined by
(10) which provide us with a distribution in M , because they are tangent to M , whose
integral leaves are nm-dimensional and each leaf is fixed by the choice of s constants
k1, . . . , ks.

Moreover, the restriction pr|M of pr on the submanifold M defines a subbundle of

pr : Rn(m+1) → Rn m and establishes diffeomorphisms among the different leaves and
allows us to identify among them the leaves of the foliation defined by the prolongation
of the given non-autonomous system.

Conversely, if M is a submanifold of Rn(m+1) of codimension (n− s) which defines a
subbundle of pr : Rn(m+1) → Rn m such that the distribution defined in Rn(m+1) by the
prolongation of vector fields is also a distribution in M , i.e. such vectors are tangent
to M , and the restriction pr|M provides us with diffeomorphisms among the different
leaves allowing us to identify among them the leaves of the foliation defined by the
prolongation of the given non-autonomous system. Such diffeomorphisms can be used
to define a superposition rule of m solutions involving s constants,

If for instance we consider the linear system

dx1

dt
= a11(t) x

1 + a12(t) x
2 (24)

dx2

dt
= a21(t) x

1 + a22(t) x
2 (25)

then it admits a superposition function of rank one and involving one particular solution,
F (x(1); k) = k x(1), which determines the three-dimensional subbundle M of pr : R4 →
R2 defined by the restriction to the subset given by the relation

x1 x2
(1) − x2 x1

(1) = 0 ,

which is endowed with a foliation: each leaf is characterized by a real number k and is
defined on the set of points (x1, x2, x1

(1), x
2
(1)) such that x1 x2

(1) − x2 x1
(1) = 0.

However we have also a superposition function of rank one but involving two con-
stants:

F (x(1), x(2); k) = x(1) + k x(2) ,

The subbundle now will be defined by

x1
(2)(x

2 − x2
(1)) − x2

(2)(x
1 − x1

(1)) = 0 .
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8 Superposition rules for PDE’s

Consider now the system of first-order PDE’s of the form:

∂xi

∂ta
= Y i

a (t, x) , x ∈ Rn, t = (t1, . . . , ts) ∈ Rs , (26)

whose solutions are maps x(t) : Rs → Rn.
A particular case of (26) when s = 1 is (1). The main difference of (26) with respect

to (1) is that for s > 1 we have no, in general, existence of a solution with a given initial
value x(0) ∈ Rn. For a better understanding of this problem, let us put (26) in a more
general and geometric framework.

For a manifold N of dimension n consider the trivial fibre bundle

P s
N = Rs ×N → Rs .

A connection Ȳ in this bundle is a horizontal distribution in TP s
N . i.e. an s-dimensional

distribution transversal to the fibres. It is determined by horizontal lifts of the coordi-
nate vector fields ∂/∂ta in Rs which read

Ȳa =
∂

∂ta
+ Ya(t, x)

with

Ya(t, x) = Y i
a (t, x)

∂

∂xi
.

Thus, the solutions of (26) can be identified with integral submanifolds of the distribu-
tion Ȳ ,

(t, Y (t)) , t ∈ Rs .

It is now clear that there is an (obviously unique) solution of (26) for every initial data
if and only if the distribution Ȳ is integrable, i.e. the connection has a trivial curvature.
This means that

[Ȳa, Ȳb] =
r∑

c=1

fab
c Ȳc

for some functions fab
c in P s

N . But the commutators [Ȳa, Ȳb] are clearly vertical while
Ȳc are linearly independent horizontal vector fields, so fab

c = 0 which yields the in-
tegrability condition in the form of the system of equations [Ȳa, Ȳb] = 0, i.e., in local
coordinates,

∂Y i
b

∂ta
(t, x) −

∂Y i
a

∂tb
(t, x) +

n∑

j=1

(
Y j

a (t, x)
∂Y i

b

∂xj
(t, x) − Y j

b (t, x)
∂Y i

a

∂xj
(t, x)

)
= 0 . (27)

Let us assume now that we work with a system of first-order PDE’s of the form (26) and
satisfying the integrability conditions (27). Then we are sure that, for a given initial
value, there is a unique solution of (26). Now, we can think about superposition rules
for such solutions. It is, however, completely obvious that the concepts of superposition
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rules we have developed can be applied with no real changes to our case of PDE’s. In
the formula (2) we should now think that t is not a real parameter but t ∈ Rs. The
only difference when passing to the foliation induced by the superposition function Ψ
is that we differentiate (6) not with respect to the simple parameter t but with respect
to all ta. Therefore, the proposition 1 takes the form:

Proposition 2 Giving a superposition rule for the system (26) satisfying the integrabil-
ity condition (27) is equivalent with giving a connection in the bundle pr : N (m+1) → Nm

with a zero curvature and for which the diagonal prolongations Ỹa(t) of all the vector
fields Ya(t), t ∈ Rs, a = 1, . . . , s, are horizontal.

Also the proof of Lie theorem remains unchanged. Therefore we get the following analog
of the Lie theorem for PDE’s:

Theorem 2 The system (26) of PDE’s defined on a manifold N and satisfying the
integrability condition (27) admits a superposition rule if and only if the vector fields
Ya(t, x) on N depending on the parameter t ∈ Rs, can be written locally in the form

Ya(t, x) =
r∑

α=1

uα
a (t)Xα(x) , a = 1, . . . s , (28)

where the vector fields Xα close on a finite-dimensional real Lie algebra, i.e. there exist
r3 real constants cαβ

γ such that

[Xα, Xβ] =

r∑

γ=1

cαβ
γ Xγ .

Let us observe that the integrability condition for Ya(t, x) of the form (28) can be
written as

r∑

α,β,γ=1

[
(uγ

b )
′(t) − (uγ

a)
′(t) + uα

a (t)uβ
b (t)cγαβ

]
Xγ = 0.

Example 5 Consider the following system of partial differential equations on R2 asso-
ciated with the sl(2,R)-action on R represented by vector fields (15):

ux = a(x, y)u2 + b(x, y)u+ c(x, y) ,

uy = d(x, y)u2 + e(x, y)u+ f(x, y) .

This equation can be written in the form of a ‘total differential equation’

(a(x, y)u2 + b(x, y)u+ c(x, y))dx+ (d(x, y)u2 + e(x, y)u+ f(x, y))dy = du .

The integrability condition just says that the one-form

ω = (a(x, y)u2 + b(x, y)u+ c(x, y))dx+ (d(x, y)u2 + e(x, y)u+ f(x, y))dy

is closed for arbitrary function u = u(x, y). If this is the case, then there is a unique
solution with the initial condition u(x0, y0) = u0 and there is a superposition rule giving
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a general solution as a function of three independent solutions exactly as in the case of
Riccati equation:

(u− u(1))(u(2) − u(3))

(u− u(2))(u(1) − u(3))
= k ,

or

u =
(u(1) − u(3))u(2)k + u(1)(u(3) − u(2))

(u(1) − u(3))k + (u(3) − u(2))
.

9 Concluding remarks

In this paper we have identified and solved a gap present in previous proofs of the
necessary and sufficient conditions for the existence of a superposition rule for ordinary
differential equations. In doing this we provided the superposition rule with a much
better geometrical interpretation which allows us to exhibit many interesting properties.
For instance, it is now clear by inspection that the vector field as given in the Theorem
1 may be multiplied by a function of time, i.e. we may perform a re-parametrization in
time, and still get an equation admitting a superposition principle. In this way we find
that if the superposition rule holds true for a vector field field, it is also true for all re-
parametrized vector fields. In particular, it would allow us to write a superposition rule
also for vector fields which may be reduced to autonomous ones via re-parametrization.
The new geometrical interpretation also paves the way to a proper treatment of the
superposition rule for partial differential equations. We hope to be able to extend the
treatment to field theory and perhaps be able to get interacting field theories out of free
ones very much as it happens for ordinary differential equations. Indeed it is known that
Riccati equation obtains from a linear system. In previous papers it has been shown how
to cast completely integrable systems in a generalized version of Lie-Scheffers systems,
as most completely integrable systems do arise as reduction of simple systems we hope
to be able to show in general that systems which allow for a superposition rule may be
derived from ‘simple ones’, both for ordinary and partial differential equations.
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[8] Cariñena J.F. and Ramos A., A new geometric approach to Lie systems and
physical applications, Acta Appl. Math. 70 (2002) 43–69.
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