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Preface

One hundred years ago I. Fredholm published in 1903 his famous paper [103] on linear
integral equations. Since then, linear integral operators have become important tools
in many areas, including the theory of Fourier series and Fourier integrals, approxima-
tion theory and summability theory and the theory and practice of solving integral and
differential equations. In the case of integral and differential equations, applications
were soon extended beyond the confines of linear operators. In approximation theory,
however, applications were limited to linear operators because the notion of singu-
larity of an integral operator was closely connected with its linearity. Then, about
twenty years ago, the concept of singularity was extended to cover the case of nonlin-
ear integral operators [152]. Since that time a number of papers have appeared that
are devoted to the investigation of the role played by nonlinear integral operators in
approximation theory and related subjects. For example, the study of certain discrete
operators, the so-called “generalized sampling operators”, provides the basis for sev-
eral applications in signal analysis. From this work a new theory of signal processing
in the nonlinear setting may be developed. This is of considerable interest, not only
from the mathematical point of view, but also for applications in engineering. For
example, the reconstruction of signals by means of nonlinear sampling-type operators
may describe nonlinear models that are suitable for the processing of some class of
signals.

Recently, a number of important contributions by P. L. Butzer and his school have
been made to exponential sampling and Mellin–Fourier approximation theory. As a
consequence, it seems very useful for us to have at our disposal a nonlinear version of
the Mellin convolution operators with associated approximation properties in various
function spaces.

The purpose of this book is to present the fundamental theoretical results along
with a variety of recent applications. We consider nonlinear integral operators, replac-
ing linearity by generalized Lipschitz conditions for kernel functions generating the
operators and satisfying suitable singularity assumptions. Applications in approxima-
tion theory and summability theory require a notion of convergence for sequences or
directed families of such operators. We replace the standard setting of normed linear
spaces by the more general one of modular linear spaces. This extends the field of
applications and enables us to give a unitary approach to various kinds of approxima-
tion problems. For example, classical approximation theorems for linear or nonlinear
integral operators in Lp-spaces, in Orlicz spaces and in other functional spaces can
be derived by a unique method.

The prerequisites needed to study this book consist of the theory of measure and
integral and some fundamental knowledge of functional analysis. With the exception
of the above, the material in the book is selfcontained.
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Chapter 1 is of a preliminary character and contains material concerning kernel
functions generating the operators and an introduction to the theory of modular spaces.
In this chapter we also discuss some special conditions concerning modulars, needed
for our purposes.

A fundamental role in application of integral operators in approximation theory
is played by the notion of modulus of continuity of functions in a modular space,
which is considered in Chapter 2. A convergence theorem for such moduli requires
the notion of absolute continuity of the modular, which is applied through a Lebesgue-
type dominated convergence theorem in the respective modular spaces.

In Chapter 3 we describe applications of nonlinear integral operators to approxi-
mation theory, presenting an embedding theorem, an estimate of the error of modular
approximation and a theorem concerning modular convergence to zero of the error in
the case of a family of operators. The rates of modular approximation in modular Lip-
schitz classes are also estimated. Finally, we present results in the case of a nonlinear
integral operator being split into a linear part and a nonlinear perturbation.

The above considerations are continued in Chapter 4, where Urysohn’s integral
operators with homogeneous kernels are investigated. We give again an estimation of
the error and a result on convergence of the error in the sense of modular convergence.
An application is given to nonlinear weighted Mellin convolution operators.

Chapter 5 contains results concerning conservative nonlinear summability methods
defined by families of nonlinear integral operators.

Prior to Chapter 6 we assume in most of the theorems that the modular which
generates the convergence is monotone. This holds for example in the case of Orlicz
spaces and a number of their generalizations. In Chapter 6 we consider modulars
generating the space of functions of generalized bounded variation, which are not
monotone. We obtain embedding-type inequalities and we also consider the case of
superposition of nonlinear integral operators. Convergence in generalized variation is
also studied, for a special class of nonlinear operators, namely the nonlinear Mellin-
type convolution operators. The problem of convergence for general nonlinear integral
operators is still an open problem.

In Chapter 7 a solution is given to the problem of existence for the domain of a
nonlinear convolution-type integral operator. We also present some results concerning
existence of solutions of the respective nonlinear integral equations through the fixed
point principles of Banach and Schauder.

Chapter 8 is devoted to uniform approximation of continuous functions by means
of nonlinear sampling type operators. The chapter begins with an introduction to the
theory of sampling. We give embedding results, estimation of the error of approx-
imation and a convergence theorem. Moreover, rates of uniform approximation are
considered. An application to regular methods of summability is also given.

In Chapter 9, results of Chapter 8 are extended from uniform approximation to the
case of modular approximation. We consider problems of modular convergence and
modular approximation for nonlinear sampling type operators, with special emphasis
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to the case of generalized Orlicz type modulars. We also give an application to regular
methods of summability.

This book is a result of collaboration between its authors during the years
1993–2002. Such collaboration would not have been possible without grants from
the Consiglio Nazionale delle Ricerche (CNR) in Italy. This support enabled the
second author to spend some time in Perugia each year, and he wishes to express
his gratitude for this generosity. The authors wish to acknowledge the hospitality of
the University of Perugia and would like to express their gratitude to the Faculty of
Mathematics and Computer Science of the A. Mickiewicz University in Poznań for
the grant GN-11/99 supporting the contacts between them over the period from 1998
to 2001.

The authors also wish to thank many colleagues for helpful discussions on the
material presented here. In addition, it gives them special pleasure to express their
gratitude to Professors P. L. Butzer, R. J. Nessel and R. L. Stens of the RWTH Aachen,
who read the text and made valuable suggestions, and to Professor A. M. Arthurs of
the University of York for his careful revision of the language of the text.

Perugia and Poznań, April 2003 Carlo Bardaro
Julian Musielak

Gianluca Vinti
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Chapter 1

Kernel functionals and modular spaces

1.1 Kernel functionals

Let (�,�,µ) be a measure space with a σ -finite, complete measure µ. Let L0(�)

denote the space of all extended real-valued, �-measurable functions on �, finite a.e.
(µ-almost everywhere), with equality µ-a.e. A functional K : �×�×Dom K → R,
where Dom K ⊂ L0(�), will be called a kernel functional, if for every f ∈ Dom K ,
the functional K(s, t, f ) is measurable in the product � × �, and if K(s, t, 0) = 0,
for all s, t ∈ �. The set Dom K is called the domain of the kernel functional K .

Example 1.1. Let K1 : �×�× R → R be such that K1(s, t, u) is measurable as a
function of (s, t) ∈ �×�, for every u ∈ R, and is continuous as a function of u ∈ R

for all (s, t) ∈ �×�. Let us suppose that K1(s, t, 0) = 0 for all s, t ∈ �. Obviously
K1 is a kernel functional in the domain Dom K1, consisting of the set of all constant
functions in L0(�). One may define another kernel functional K by means of K1,
taking K(s, t, f ) = K1(s, t, f (t)) for s, t ∈ �. Obviously Dom K = L0(�).

Example 1.2. Let K2 : �× R → R be such that K2(t, u) is �-measurable in � for
every u ∈ R and is continuous in R for all t ∈ � (i.e. K2 is a Carathéodory function).
Let K2(t, 0) = 0 for all t ∈ �. Moreover let us suppose that there is an operation
+ : � × � → �, which is measurable as a function from the product � × � to
�. Then K(s, t, f ) = K2(t, f (t + s)) is a kernel functional and Dom K contains
all constant functions. It is easily seen that if � = R

N and t + s means the sum of
vectors t and s, µ is the Lebesgue measure in the σ -algebra of Lebesgue measurable
sets in R

N , then Dom K = L0(�).

The functions K1,K2 of the previous examples, with the above assumptions, will
be called kernel functions.

Example 1.3. Let p : �→ R be �-measurable and let K(s, t, f ) = K3(s, t, f ) :=
p(t)f (s) for every f ∈ L0(�). Obviously K is a kernel functional with domain
Dom K = L0(�).

Since from the measurability of a kernel functional K(s, t, f ) in � × � there
follows its �-measurability as a function of the variable t for µ-a.e. s ∈ �, so the
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kernel functional generates an integral operator T by the formula:

(Tf )(s) =
∫
�

K(s, t, f ) dµ(t), (1.1)

in the case the integral at the right-hand side of (1.1) exists for µ-a.e. s ∈ � and is a
�-measurable function of s ∈ �. The set of all such functions f is called the domain
of the operator T and will be denoted by Dom T .

Example 1.4. Let us examine the integral operator T of a kernel K(s, t, f ) =
K2(t, f (t + s)) (Example 1.2) in the special case when (�,+) is a unimodular,
locally compact Hausdorff topological group with Haar measure µ. Then

(Tf )(s) =
∫
�

K2(t, f (t + s)) dµ(t) =
∫
�

K2(t − s, f (t)) dµ(t).

Denoting ǧ(t, u) = g(−t, u) for any g : �× R → R, t ∈ �, u ∈ R, we have

(Tf )(s) =
∫
�

Ǩ2(s − t, f (t)) dµ(t). (1.2)

In case when Ǩ2(t, u) = K(t)u for t ∈ �, u ∈ R and K : �→ R, the integral (1.2)
becomes a convolution: Tf = K ∗ f .

In the general case we call the operator T defined by the formula (1.1) with
K(s, t, f ) = K2(t, f (t + s)) a convolution-type operator. Later we consider such
operators without group structure of (�,+).

Let us still remark that the kernel functional written in the form used in the for-
mula (1.2) is a special case of the kernel functional K(s, t, f ) = K1(s, t, f (t)) from
Example 1.1 if we put K1(s, t, u) = K2(t − s, u) = Ǩ2(s − t, u).

The operator (1.1) in the case of K(s, t, f ) = K1(s, t, f (t)) (Example 1.2) is
known as the Urysohn operator. A special case of this operator, called the Hammer-
stein operator is obtained by takingK1(s, t, u) = K(1)(s, t)K(2)(t, u). Both operators
are studied mainly in connection with the theory of nonlinear integral equations of the
form ∫

�

K1(s, t, f (t)) dµ(t) = f (s)+ g(s)

and ∫
�

K(1)(s, t)K(2)(t, f (t)) dµ(t) = f (s)+ g(s)

with known g and unknown f , called the Urysohn integral equation and Hammer-
stein integral equation, respectively. References to the above operators and integral
equations may be found e.g. in [133], [132], [131], [113], [182], [193], [194], [195].
We shall consider some nonlinear integral equations of the above type in Chapter 7.
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Finally, let us remark that in the case of the kernel functionalK(s, t, f ) = p(t)f (s)

from Example 1.3, the operator given in (1.1) is of the form

(Tf )(s) = f (s)

∫
�

p(t) dµ(t).

Supposing further thatp ∈ L1(�) and writingλ = ∫
�
p(t) dµ(t), we obtain Dom T =

L0(�) and (Tf )(s) = λf (s), for s ∈ �.xP

1.2 Modular spaces and modular convergence

In order to investigate any kind of convergence process for sequences or families of
integral operators of the form (1.1), one has to specify some function spaces which
are subspaces of L0(�) and to provide these subspaces with a suitable notion of
convergence. This can be done by taking normed linear spaces contained algebraically
in L0(�). However, in order to obtain results on a level of generality allowing a wide
spectrum of applications it is more suitable to replace the notions of a norm and a
normed linear space by those of a modular and a modular space. Here, we shall limit
ourselves to definitions in the case of function spaces only. A more general treatment
may be found e.g. in [153].

Let X be a linear space of real-valued functions (extended real-valued, eventually),
defined on a nonempty set �, with equality everywhere (or almost everywhere). A
functional ρ : X → R̃

+
0 = [0,+∞] is called a modular on X, if it satisfies the

following conditions for arbitrary f, g ∈ X:

(1) ρ(f ) = 0 if and only if f = 0,

(2) ρ(−f ) = ρ(f ),

(3) ρ(αf + βg) ≤ ρ(f )+ ρ(g), for α, β ≥ 0, α + β = 1.

The modular ρ is called a convex modular if (3) is replaced by

(3)′ ρ(αf + βg) ≤ αρ(f )+ βρ(g), for α, β ≥ 0, α + β = 1.

It is easily seen that conditions (3) and (3)′ may be extended by induction to any finite
number of terms, i.e. (3) is equivalent to

ρ
( n∑

j=1

αjfj

)
≤

n∑
j=1

ρ(fj ),

for αj ≥ 0,
∑n

j=1 αj ≤ 1 and (3)′ is equivalent to

ρ
( n∑

j=1

αjfj

)
≤

n∑
j=1

αjρ(fj ),
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for αj ≥ 0,
∑n

j=1 αj ≤ 1, for arbitrary f1, f2, . . . , fn ∈ X.
Moreover, for any f ∈ X the function ρ(αf ) of the variable α > 0, is nonde-

creasing.
The modular ρ is called monotone, if f, g ∈ X and |f | ≤ |g| imply ρ(f ) ≤ ρ(g);

if ρ is monotone, and f ∈ X implies |f | ∈ X, then ρ(f ) = ρ(|f |) for every f ∈ X.
Indeed, taking in the above definition g = |f |, we obtain ρ(f ) ≤ ρ(|f |), and taking
f = |g|, we get ρ(|g|) ≤ ρ(g) for any f, g ∈ X.

If ρ is a modular on X, then the modular space Xρ generated by the modular ρ

is defined as
Xρ = {f ∈ X : ρ(λf )→ 0, as λ→ 0+}.

It is easily verified that if ρ is convex, then Xρ is the set of functions f ∈ X for which
ρ(λ0f ) < +∞ for some λ0 > 0. It is clear that Xρ is a linear subspace of the space
X. There holds (see [153])

Theorem 1.1. (a) If ρ is a modular on X, then Xρ is an F-normed linear space with
F-norm ||| · |||ρ defined by

|||f |||ρ = inf

{
u > 0 : ρ

(
f

u

)
≤ u

}
, for f ∈ Xρ.

(b) If ρ is a convex modular on X, then Xρ is a normed linear space with norm
‖ · ‖ρ defined by

‖f ‖ρ = inf

{
u > 0 : ρ

(
f

u

)
≤ 1

}
, for f ∈ Xρ.

(c) If |||f |||ρ < 1, (resp. ‖f ‖ρ < 1), then ρ(f ) ≤ |||f |||ρ , (resp. ρ(f ) ≤ ‖f ‖ρ).
Let us recall that a norm ‖ · ‖ is a nonnegative functional on a real linear space X,

such that ‖f ‖ = 0 if and only if f = 0, ‖f + g‖ ≤ ‖f ‖ + ‖g‖ (triangle inequality)
and ‖cf ‖ = |c|‖f ‖ (homogeneity), for any f, g ∈ X, c ∈ R.

An F-norm ||| · ||| is a nonnegative functional on a real linear space X, such that
|||f ||| = 0 if and only if f = 0, |||f + g||| ≤ |||f ||| + |||g|||, and the conditions
cn → c, |||fn − f ||| → 0, imply |||cnfn − cf ||| → 0 as n→ +∞, for any f, g, fn ∈
X, cn, c ∈ R.

The couple (X, ‖ · ‖) is called a normed linear space, and the couple (X, ||| · |||) is
called an F-normed linear space. A normed linear space is always F-normed but not
conversely.

Proof of Theorem 1.1. We limit ourselves to the case (b), leaving the case (a) to the
reader. If f ∈ Xρ , then ρ(f/n)→ 0, as n→+∞. Hence the set {u > 0 : ρ(f/u) ≤
1} is nonempty; in fact it is a halfline. If ‖f ‖ρ = 0, then this halfline starts at u = 0,
whence ρ(f/u) ≤ 1 for all u > 0. By convexity of ρ, we have for 0 < u ≤ 1,

ρ(f ) = ρ

(
u
f

u

)
≤ uρ(f/u) ≤ u.
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Taking u→ 0+ we get ρ(f ) = 0 and consequently f = 0. In order to get the triangle
inequality, let us take any ε > 0 and let us put u = ‖f ‖ρ + ε, v = ‖g‖ρ + ε, where
f, g ∈ Xρ . Then ρ(f/u) ≤ 1 and ρ(g/u) ≤ 1. By convexity of ρ, we obtain

ρ

(
f + g

u+ v

)
= ρ

(
u

u+ v

f

u
+ v

u+ v

g

v

)
≤ u

u+ v
ρ(f/u)+ v

u+ v
ρ(g/u) ≤ u

u+ v
+ v

u+ v
= 1.

Thus ‖f + g‖ρ ≤ u + v = ‖f ‖ρ + ‖g‖ρ + 2ε. Since ε > 0 is arbitrary, we obtain
the triangle inequality for ‖ · ‖ρ . Finally, we have for f ∈ Xρ and c ∈ R

‖cf ‖ρ = inf

{
u > 0 : ρ

( |c|f
u

)
≤ 1

}
= |c| inf

{
u

|c| > 0 : ρ
(

f

(u/|c|)
)
≤ 1

}
= |c|‖f ‖ρ.

We shall prove (c) in the case of the norm ‖ · ‖ρ . We may suppose that 0 < ‖f ‖ρ < 1.
By convexity of ρ we obtain for any ε > 0 such that ‖f ‖ρ + ε < 1

ρ(f ) = ρ

[
(‖f ‖ρ + ε)

f

‖f ‖ρ + ε

]
≤ (‖f ‖ρ + ε)ρ

[
f

‖f ‖ρ + ε

]
≤ ‖f ‖ρ + ε,

and taking ε → 0+ we obtain ρ(f ) ≤ ‖f ‖ρ .
The proofs in the case of the F-norm ||| · |||ρ are analogous to the above ones. ��

Example 1.5. (a) If (X, ‖·‖) is a normed linear space, then the functional ρ(·) = ‖·‖
is a convex modular in X, as follows from the definition of ρ, immediately. Moreover,
we have

Xρ = {f ∈ X : ‖λf ‖ → 0 as λ→ 0+} = X

and
‖f ‖ρ = inf{u > 0 : ‖f/u‖ ≤ 1} = ‖f ‖,

for every f ∈ X. This shows that the notions of a convex modular and of a modular
space generalize those of a norm and a normed linear space.

(b) Let (�,�,µ) be a measure space with a σ -finite, complete measure µ. Let
ϕ : R+0 → R

+
0 be a nondecreasing (resp. a convex) continuous function with ϕ(0) =

0, ϕ(0) > 0, for u > 0, ϕ(u) → +∞ as u → +∞; such a function will be called a
ϕ-function (resp. a convex ϕ-function). Then it is easily shown that

ρ(f ) = Iϕ(f ) =
∫
�

ϕ(|f (t)|) dµ(t) (1.3)

is a modular (resp. a convex modular) on the space L0(�). We call Iϕ an Orlicz
modular in L0(�). The respective modular space L0

ρ(�) is called an Orlicz space
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and it is denoted by Lϕ(�,�,µ), or briefly by Lϕ(�). If � = N = {1, 2, . . . } and
µ is the counting measure in �, the respective Orlicz space is denoted by (ϕ and it is
called the sequential Orlicz space .

If ϕ(u) = up for u ≥ 0, p ≥ 1, then Lϕ(�) = Lp(�) and the norm ‖ · ‖Iϕ in
L0(�) is equal to

‖f ‖Iϕ = inf

{
u > 0 :

∫
�

∣∣∣∣f (t)

u

∣∣∣∣p dµ(t) ≤ 1

}
=
(∫

�

|f (t)|p dµ(t)

)1/p

= ‖f ‖Lp(�).

(c) Let (�,�,µ) be as in the case (b). Let ϕ : �×R
+
0 → R

+
0 be such that ϕ(·, u)

is �-measurable for each u ≥ 0 and ϕ(t, :) is a ϕ-function (resp. a convex ϕ-function)
for every t ∈ �. Let

ρ(f ) = Iϕ(f ) =
∫
�

ϕ(t, |f (t)|) dµ(t). (1.4)

Then ρ is a modular (resp. a convex modular) in L0(�). The modular space L0
ρ(�)

generated by ρ = Iϕ is called a generalized Orlicz space or a Musielak–Orlicz space
and it is denoted by Lϕ(�,�,µ), or briefly by Lϕ(�). If ϕ(t, u) is independent

of the variable t , the Musielak–Orlicz space is reduced to the Orlicz space. Another
special case is provided by ϕ(t, u) = |u|p(t), where p is �-measurable and p(t) ≥ 1,
for t ∈ �. The respective modular Iϕ is convex and the modular space L0

ρ(�) is equal

to the space Lp(t)(�) of �-measurable functions f , integrable with variable powers
p(t).

(d) The following generalization of the case (c) is obtained, assuming (µn) to be
a sequence of σ -finite measures in �, absolutely continuous with respect to µ. Then,
denoting by an(t), (t ∈ �), the Radon–Nikodym derivatives of µn, we write

ρ(f ) = sup
n

∫
�

an(t)ϕ(t, |f (t)|) dµ(t).

This is again a modular (a convex modular if ϕ is a convex ϕ- function depending
on a parameter) in L0(�). In case of the counting measure µ = µN in the set
N = {1, 2, . . . } of natural numbers, this modular has the form

ρ(x) = sup
n

∞∑
j=1

anjϕj (tj ),

and it generates the modular space Xρ of real sequences x = (tj ) such that ρ(λx)→ 0
as λ→ 0+. Sequences x ∈ Xρ such that

lim
n→+∞

∞∑
j=1

anjϕj (tj ) = 0
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are called strongly (A, ϕ)-summable to 0, where A = (anj ) and ϕ = (ϕj ). The space
T0(A, ϕ) of such sequences forms a subspace of the modular space Xρ . The reader
is encouraged to formulate analogous notions in case of a general measure space in
place of (N, 2N, µN).

(e) Let m be a measure on an interval [a, b[⊂ R, where b may be+∞, defined on
the σ -algebra of all Lebesgue measurable subsets of [a, b[. Let W be a nonempty set
of indices and let (aw(·))w∈W be a family of Lebesgue measurable positive real-valued
functions on [a, b[. Moreover, let / : [a, b[×R

+
0 → R

+
0 be a function satisfying the

following conditions:

1) /(x, u) is a nondecreasing, continuous function of u ≥ 0, for every x ∈ [a, b[,
2) /(x, 0) = 0, /(x, u) > 0 for u > 0, and /(x, u) → +∞ as u → +∞, for

every x ∈ [a, b[,
3) there exists limx→b− /(x, u) = /̃(u) < +∞ for every u ≥ 0,

4) /(x, u) is a Lebesgue measurable function of x in [a, b[ for every u ≥ 0.

Let (�,�,µ) and the space L0(�) be defined as in (b). Then the functional

I/(x, f ) =
∫
�

/(x, |f (t)|) dµ(t)

is an Orlicz modular in L0(�) for every x ∈ [a, b[ (see (b)). We denote by L0
m(�) the

subset of L0(�) consisting of functions f ∈ L0(�) such that I/(·, f χA) is Lebesgue
measurable in [a, b[, for every A ∈ �, where χA is the characteristic function of the
set A. In particular, if /(x, u) is a continuous (or a monotone) function of x ∈ [a, b[
for every u ≥ 0, then L0

m(�) = L0(�). We now define an extended functional A/

on L0
m(�) by means of the formula

A/(f ) = sup
w∈W

∫ b

a

aw(x)I/(x, f ) dm(x), f ∈ L0
m(�). (1.5)

Then A/ is a modular on L0
m(�), and in the case when /(x, u) is a convex function

of u ≥ 0, for all x ∈ [a, b[, A/ is a convex modular. Supposing there is a notion of
convergence in W to an element w0 ∈ W , strong A/-summability of f to 0 may be
defined by means of the condition

lim
w→w0

∫ b

a

aw(x)I/(x, f ) dm(x) = 0,

which gives a connection between the modular A/ and the notion of strong summa-
bility to zero in L0

m(�).
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(f) Let X be the space of all real-valued functions f on a compact interval [a, b] ⊂
R and let ϕ be a ϕ-function (see (b)). The ϕ-variation Vϕ(f, [a, b]) of the function f

in the interval [a, b] is defined by

Vϕ(f, [a, b]) = sup
π

n∑
j=1

ϕ(|f (tj )− f (tj−1)|),

where the supremum runs over all partitions π = {a = x0 < x1 < · · · < xn = b} of
the interval [a, b]. Then

ρ(f ) = |f (a)| + Vϕ(f, [a, b])
is a modular on X. The respective modular space Xρ is called the space of functions
of bounded ϕ-variation in [a, b].

The following statement gives a necessary and sufficient condition for norm con-
vergence of a sequence of functions fn ∈ Xρ in the sense of the norm ‖ · ‖ρ (or the
F-norm ||| · |||ρ):

Theorem 1.2. Let Xρ be the modular space generated by a modularρ and letf ∈ Xρ

and fn ∈ Xρ for n = 1, 2, . . . There holds fn → f in the sense of the norm ‖ · ‖ρ
(F-norm ||| · |||ρ), if and only if ρ(λ(fn − f ))→ 0 as n→+∞, for every λ > 0.

Proof (in the case of ‖·‖ρ). Let ρ be a convex modular in X and let ρ(λ(fn−f ))→ 0
as n → +∞ for every λ > 0. Taking λ = 1/u for a fixed u > 0 we obtain that
there is an index Nu such that ρ((fn − f )/u) ≤ 1, for n > Nu. This means that
‖fn − f ‖ρ ≤ u for n > Nu, i.e. ‖fn − f ‖ρ → 0 as n → +∞. Conversely, let us
suppose that ‖fn − f ‖ρ → 0 as n→ +∞. Hence for every ε > 0 and u > 0, there
exists an index N such that ‖fn− f ‖ρ < εu, for n > N , i.e. ‖(fn− f )/u‖ρ < ε, for
n > N . Supposing ε ≤ 1, we obtain, by Theorem 1.1 (c),

ρ((fn − f )/u) ≤ ‖fn − f ‖ρ < ε,

for n > N . Therefore ρ((fn − f )/u) → 0 as n → +∞ for every u > 0, i.e.
ρ(λ(fn − f ))→ 0 as n→+∞, for every λ > 0.

The proof in the case of ||| · |||ρ is analogous. ��

In connection with Theorem 1.2, one may introduce another kind of convergence
in a modular space. Namely, we say that a sequence of functions fn ∈ Xρ is
ρ-convergent, or modular convergent to a function f ∈ Xρ , if there exists a λ > 0

such that ρ(λ(fn−f ))→ 0, as n→+∞; we denote this convergence by fn
ρ→ f as

n→+∞. Obviously, convergence in the sense of the norm ‖ · ‖ρ (or F-norm ||| · |||ρ)
generated by ρ of a sequence (fn) to f implies its ρ-convergence to f . Both notions
are equivalent e.g. in the case given in Example 1.5 (a) or in the case of Lp-spaces.
However, they are not equivalent in the general case, as the following example of an
Orlicz space shows.
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Example 1.6. Let µ be the Lebesgue measure in the σ -algebra �L of Lebesgue mea-
surable subsets of the interval � = [0, 1]. Denote by Lϕ([0, 1]) the Orlicz space
generated by the convex ϕ-function ϕ(u) = eu − u − 1. Let An =]2−n, 2−n+1] for
n = 1, 2, . . . Put fn(t) = k/2, for t ∈ Ak , k = n, n + 1, . . . , and fn(t) = 0 for
remaining t ∈ [0, 1], where n = 1, 2, . . . Obviously, fn(t) → 0 as n → +∞ for
every t ∈ [0, 1[. Taking ρ(f ) = ∫ 1

0 ϕ(|f (t)|) dt , we have

ρ(fn) =
(√

e

2

)n (
1−

√
e

2

)−1

− n+ 3

2n
→ 0, as n→+∞,

ρ(2fn) =
∞∑
k=n

(e/2)k −
∞∑
k=n

k2−k −
∞∑
k=n

2−k = ∞, for every n.

Hence fn
ρ→ 0, but ‖fn‖ρ �→ 0 as n→+∞.

There appears the problem, under what assumptions on the modular ρ, norm
convergence and modular convergence are equivalent in a modular space Xρ . In
considering this problem we shall limit ourselves to Orlicz spaces Lϕ(�,�,µ) (Ex-
ample 1.5 (b)).

The crucial property needed here is the (42)-condition for theϕ-functionϕ. There
are three versions of this condition: for all u, for large u and for small u; we shall
denote them as (42)a , (42)l and (42)s , respectively. We say that ϕ satisfies (42)a ,
if there exists a constant M > 0 such that the inequality

ϕ(2u) ≤ Mϕ(u) (1.6)

holds for all u ≥ 0. The function ϕ is said to satisfy (42)l , (resp. (42)s), if there are
constants M > 0 and u0 ≥ 0 such that the inequality (1.6) holds for u ≥ u0 (resp.
for 0 ≤ u ≤ u0). It is easily seen that the condition (42)l , (resp (42)s), is equivalent
to the following one (42)

′
l (resp. (42)

′
s): for every u0 > 0 there exists a constant

M(u0) > 0 such that for every u ≥ u0 (resp. for every 0 ≤ u ≤ u0) there holds the
inequality

ϕ(2u) ≤ M(u0)ϕ(u).

We shall prove the following

Theorem 1.3. Let Lϕ(�,�,µ) be an Orlicz space (see Example 1.5 (b)). Then each
of the following conditions is sufficient in order that norm convergence and modular
convergence be equivalent in Lϕ(�,�,µ).

1. ϕ satisfies (42)a ,

2. ϕ satisfies (42)l and µ(�) < +∞,

3. ϕ satisfies (42)s and � = N, µ being the counting measure in N.



10 1 Kernel functionals and modular spaces

Proof. Obviously, norm convergence of (fn) to f is equivalent to the condition
Iϕ(2Nλ(fn − f ))→ 0 as n→ +∞, for some λ > 0 and all N = 1, 2, . . . Suppose

that there holds the condition 1. and that fn

Iϕ−−→ f . Then there exists a λ > 0 such
that Iϕ(λ(fn − f )) → 0 as n → +∞. The condition 1. implies, by easy induction,
that ϕ(2Nu) ≤ MNϕ(u), for all u ≥ 0. Hence

Iϕ(2
Nλ(fn − f )) ≤ MNIϕ(λ(fn − f ))→ 0, as n→+∞.

Consequently, fn → f in the sense of the norm in Lϕ(�,�,µ).

Now let us suppose 2. to be satisfied and fn

Iϕ−−→ f , i.e. Iϕ(λ(fn − f )) → 0 as
n → +∞ for some λ > 0. First, let us remark that the condition (42)l implies, by
an easy induction, the following one: for every u0 > 0 and every natural number N ,
there exists an MN(u0) > 0 such that for every u ≥ u0 there holds the inequality

ϕ(2Nu) ≤ MN(u0)ϕ(u).

Let us denote An(u0) = {t ∈ � : |fn(t) − f (t)| > u0}, for u0 > 0, n = 1, 2, . . . .
Then

Iϕ(2
Nλ(fn − f )) ≤

∫
An(u0)

ϕ(2Nλ|fn(t)− f (t)|) dµ(t)+ ϕ(2Nλu0)µ(�)

≤ MN(u0)

∫
An(u0)

ϕ(λ|fn(t)− f (t)|) dµ(t)+ ϕ(2Nλu0)µ(�)

≤ MN(u0)Iϕ(λ(fn − f ))+ ϕ(2Nλu0)µ(�).

Let us choose an arbitrary ε > 0. We may find u0 > 0 so small that ϕ(2Nλu0)µ(�) <

ε/2. Since Iϕ(λ(fn−f ))→ 0 as n→+∞, so keeping u0 fixed we may find an index
n0 such that MN(u0)Iϕ(λ(fn − f )) < ε/2 for n ≥ n0. Thus, Iϕ(2Nλ(fn − f )) < ε

for n ≥ n0. This shows that fn → f in the sense of the norm in Lϕ(�,�,µ).

The proof that if fn

Iϕ−−→ f as n → +∞ and there holds 3., then fn → f in the
sense of the norm in (ϕ , is obtained in a similar manner applying the fact that every
sequence x ∈ (ϕ is bounded. We leave the details to the reader. ��

1.3 Quasiconvex modulars

We are going to extend the notion of convexity of a modular ρ and of a ϕ-function
ϕ to the more general case of quasiconvexity. Let ρ be a modular on a real linear
function space X. We say that ρ is quasiconvex with a constant M ≥ 1, if for any
natural numbern and for every elementsf1, f2, . . . , fn ∈ X and nonnegative numbers
α1, α2, . . . , αn, satisfying the condition α1 + · · · + αn = 1 there holds the inequality

ρ
( n∑

j=1

αjfj

)
≤ M

n∑
j=1

αjρ(Mfj ).
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Let us remark that if M = 1, this is equivalent to convexity of the modular ρ.

Example 1.7. (a) In case when X = R, i.e. X is the space of all constant functions
on any set �, we have ρ : R → R̃

+
0 , and we may write ϕ in place of ρ. This yields the

following definition: a function ϕ : R → R̃
+
0 is called quasiconvex with a constant

M ≥ 1 (and in the case of M = 1, convex), if the conditions u1, u2, . . . , un ∈ R,
α1, α2, . . . , αn ≥ 0 and α1 + α2 + · · · + αn = 1 imply the inequality

ϕ
( n∑

j=1

αjuj

)
≤ M

n∑
j=1

αjϕ(Muj )

with some fixed M ≥ 1, independent of n.

(b) Let ϕ : R → R
+
0 be any even function such that u2/2 ≤ ϕ(u) ≤ u2 for all

u ∈ R. Let u1, u2, . . . , un ≥ 0, α1, α2, . . . , αn ≥ 0 and α1 + α2 · · · + αn = 1. Then
there holds, by convexity of the function ϕ(u) = u2,

ϕ
( n∑

j=1

αjuj

)
≤
( n∑

j=1

αjuj

)2 ≤
n∑

j=1

αju
2
j

= 3
√

2
n∑

j=1

αj
1

2
(

3
√

2uj )
2 ≤ 3

√
2

n∑
j=1

αjϕ(
3
√

2uj ).

Hence ϕ is quasiconvex with the constant M = 3
√

2. Obviously ϕ does not need to be
convex.

Remark 1.1. In the definition of quasiconvexity, as well as in the definition of con-
vexity, one may replace the equality α1 + α2 + · · · + αn = 1 by the inequality
α1 + α2 + · · · + αn ≤ 1. Indeed, let us suppose ρ to be quasiconvex with a constant
M ≥ 1 and let β1, β2, . . . , βn ≥ 0, β1 + β2 + · · · + βn < 1. Let us put αj = βj for
j = 1, 2, . . . , n andαn+1 = 1−(β1+β2+· · ·+βn), thenα1+α2+· · ·+αn+αn+1 = 1.
Hence for any f1, f2, . . . , fn ∈ X we have

ρ
( n+1∑

j=1

αjfj

)
≤ M

n+1∑
j=1

αjρ(Mfj ),

where fn+1 = 0. Consequently,

ρ
( n∑

j=1

βjfj

)
= ρ
( n+1∑

j=1

αjfj

)

≤ M

n+1∑
j=1

αjρ(Mfj ) = M

n∑
j=1

βjρ(Mfj ).
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Let ρ be a modular on a linear subspace X of the space L0(�). The modular ρ is
called J -quasiconvex (quasiconvex in Jensen’s sense), with a constant M ≥ 1, if for
all �-measurable functions p : � → R

+
0 such that ‖p‖L1(�) =

∫
�
p(t) dµ(t) = 1

and for all functions F : �×�→ R
+
0 such that F(·, :) ∈ L0(�×�) and F(t, :) ∈ X

for every t ∈ �, there holds the following inequality:

ρ

(∫
�

p(t)F (t, :) dµ(t)

)
≤ M

∫
�

p(t)ρ(MF(t, :)) dµ(t),

and both sides of this inequality make sense. If M = 1, we call ρ J -convex (convex
in Jensen’s sense). Similarly as in the discrete case, we may replace the equality
‖p‖L1(�) = 1, by the inequality ‖p‖L1(�) ≤ 1.

Example 1.8. Taking X = R, we obtain a function ϕ in place of ρ (see Exam-
ple 1.7 (a)). This function ϕ is called J-quasiconvex (quasiconvex in Jensen’s sense),
with a constant M ≥ 1, if there holds the inequality

ϕ

(∫
�

p(t)F (t) dµ(t)

)
≤ M

∫
�

p(t)ϕ(MF(t)) dµ(t) (1.7)

for all �-measurable function p : � → R
+
0 such that ‖p‖L1(�) = 1 and all

�-measurable functions F : � → R
+
0 . In case when M = 1 the above inequal-

ity becomes the well-known Jensen’s inequality for convex functions ϕ.

Theorem 1.4. Let (�,�,µ) be a measure space with a nonatomic measure such that
µ(�) > 0 and let X be a linear subspace ofL0(�) containing characteristic functions
of the sets A ∈ � of finite measure µ and such that if f ∈ X then |f | ∈ X. Let ρ be
a monotone, J -quasiconvex modular on X. Then ρ is quasiconvex in X.

Proof. First, let us suppose that µ(�) ≥ 1. Since µ is nonatomic, one may select a
set C ∈ � of measure µ(C) = 1. Taking p(t) = χC(t), the characteristic function of
the set C, we obtain, by quasiconvexity of ρ, the inequality

ρ

(∫
C

F(t, :)dµ(t)

)
≤ M

∫
C

ρ(MF(t, :)) dµ(t) (1.8)

for every nonnegative function F(·, :) ∈ L0(� × �) such that F(t, :) ∈ X for all
t ∈ �. Let α1, α2, . . . , αn ≥ 0, α1 + α2 + · · · + αn = 1. Since µ is atomless, there
exist pairwise disjoint subsets A1, A2, . . . , An ∈ � of the set C such that A1 ∪ A2 ∪
· · · ∪ An = C and µ(Aj ) = αj for j = 1, 2, . . . , n. Let f1, f2, . . . , fn ∈ X and let

F(t, s) = χA1(t)f1(s)+ · · · + χAn(t)fn(s)

for s, t ∈ �. Obviously, F(·, :) ∈ L0(� × �) and since X is a linear space, we
have F(t, :) ∈ X for all t ∈ �. Since f ∈ X implies |f | ∈ X, there also holds
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|F(t, :)| ∈ X for t ∈ �. Hence, applying monotonicity of ρ and the inequality (1.8),
we obtain

ρ
( n∑

j=1

αjfj

)
= ρ
( n∑

j=1

µ(Aj )fj

)
= ρ

(∫
C

F(t, :) dµ(t)

)

≤ ρ

(∫
C

|F(t, :)| dµ(t)

)
≤ M

∫
C

ρ(M|F(t, :)|) dµ(t)

= M

∫
C

n∑
j=1

ρ(M|fj (:)|)χAj
(t) dµ(t) = M

n∑
j=1

αjρ(M|fj |)

= M

n∑
j=1

αjρ(Mfj ).

Thus, ρ is quasiconvex with the constant M .

Now, suppose that 0 < µ(�) < 1. Put ν(A) = µ(A)/µ(�) for A ∈ �, then
ν(�) = 1. Let F : �×�→ R

+
0 be such that F(·, :) ∈ L0(�×�) and F(t, :) ∈ X

for every t ∈ � and let p : �→ R
+
0 , ‖p‖L1(�) = 1. Then we have

ρ

(∫
�

p(t)F (t, :) dν(t)
)
= ρ

(∫
�

p(t)
F (t, :)
µ(�)

dµ(t)

)
≤ M

∫
�

p(t)ρ

(
M

µ(�)
F(t, :)

)
dµ(t)

≤ M ′
∫
�

p(t)ρ(M ′F(t, :)) dν(t),

where M ′ = M/µ(�). Thus, by the first part of the proof, ρ is quasiconvex with the
constant M ′ = M/µ(�). ��

The converse problem, under what condition quasiconvexity of ρ implies its
J-quasiconvexity, will be examined in the case of the modular generating an Orlicz
space (see Example 1.5 (b)), i.e., ρ(f ) is defined by the formula (1.3).

Example 1.9. (a) Let ϕ : R → R
+
0 be a nondecreasing function in R

+ such that ϕ
is quasiconvex with a constant M ≥ 1. Then it is J-quasiconvex (see Example (1.8)),
i.e. there holds the inequality (1.7). We prove it first in the case when both p and F

are simple functions. Then there are constants a1, a2, . . . , an ≥ 0, b1, b2, . . . bn ≥ 0
and pairwise disjoint sets A1, A2, . . . , An ∈ � with A1 ∪ A2 ∪ · · · ∪ An = � such
that p(t) = ∑n

i=1 aiχAi
(t) and F(t) = ∑n

j=1 bjχAj
(t), where aj = 0 if µ(Aj ) =

+∞ and we put then ajµ(Aj ) = 0, by convention. Since ‖p‖L1(�) = 1, we have



14 1 Kernel functionals and modular spaces

∑n
j=1 ajµ(Aj ) = 1. Hence we obtain, by quasiconvexity of ϕ with a constant M ≥ 1,

ϕ
( ∫

�

p(t)F (t) dµ(t)
)
= ϕ
( n∑

j=1

ajµ(Aj )bj

)

≤ M

n∑
j=1

ajµ(Aj )ϕ(Mbj )

= M

∫
�

p(t)ϕ(MF(t)) dµ(t),

i.e. the inequality (1.7). By the remark after the definition of J-quasiconvexity with
M ≥ 1, the same holds if ‖p‖L1(�) ≤ 1. Now, let p and F be arbitrary nonnegative,
�-measurable functions with ‖p‖L1(�) = 1. Then there are two sequences (pn) and
(Fn) of nonnegative simple functions such that pn(t) ↗ p(t) and Fn(t) ↗ F(t)

for every t ∈ �. Obviously, ‖pn‖L1(�) ≤ 1. Applying the inequality (1.7) to the
functions pn and Fn, we get

ϕ

(∫
�

pn(t)Fn(t) dµ(t)

)
≤ M

∫
�

pn(t)ϕ(MFn(t)) dµ(t)

≤ M

∫
�

p(t)ϕ(MF(t)) dµ(t).

Passing to the limit at the left-hand side of the above inequality and applying the Beppo
Levi’s theorem, we easily obtain the inequality (1.7) for arbitrary p and F . Thus ϕ is
J-quasiconvex with the same constant M .

(b) Let ρ be the modular (1.3) generating the Orlicz space (Example 1.5 (b)), where
we suppose that � contains a set C of finite, positive measure. Let us suppose ρ to
be quasiconvex with a constant M ≥ 1. We show that the function ϕ, generating the
modular ρ, is also quasiconvex with the same constant. Indeed, let α1, α2, . . . αn ≥ 0,
α1 + α2 + · · · + αn = 1, and u1, u2, . . . , un ∈ R. Let fj (t) = ujχC(t), then
fj ∈ L0(�), j = 1, 2, . . . , n. By quasiconvexity of ρ, we have

µ(C)ϕ
( n∑

j=1

αjuj

)
=
∫
�

ϕ
( n∑

j=1

αjfj (t)
)
dµ(t) = ρ

( n∑
j=1

αjfj

)

≤ M

n∑
j=1

αjρ(Mfj ) = M

n∑
j=1

αj

∫
�

ϕ(Mfj (t)) dµ(t)

= Mµ(C)

n∑
j=1

αjϕ(Muj )

which proves ϕ to be quasiconvex with constant M .
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Now by Example 1.9 (a) we conclude that ϕ is J-quasiconvex with constant M .
But this implies that the modular ρ is also quasiconvex with constant M , because, by
Fubini’s theorem, we have

ρ

(∫
�

p(t)F (t, :) dµ(t)

)
=
∫
�

ϕ

(∫
�

p(t)F (t, s) dµ(t)

)
dµ(s)

≤
∫
�

M

(∫
�

p(t)ϕ(MF(t, s)) dµ(t)

)
dµ(s)

= M

∫
�

p(t)

(∫
�

ϕ(MF(t, s)) dµ(s)

)
dµ(t)

= M

∫
�

p(t)ρ(MF(t, :)) dµ(t).

1.4 Subbounded modulars

For further considerations we need the notion of subboundedness of a modular η in a
linear subspace X of L0(�), where � is provided with an operation+ : �×�→ �.
We will assume that X is invariant with respect to the operation +, i.e. if f ∈ X then
f (t + ·) ∈ X for every t ∈ �. Such a modular η is called subbounded (with respect
to the operation +), if there exist a constant C ≥ 1 and a function ( : � → R

+
0 ,

( ∈ L∞(�), such that for every function f ∈ X and for every t ∈ � there holds the
inequality

η[f (t + ·)] ≤ η(Cf )+ ((t),

and its left-hand side is �-measurable. If the last inequality holds with the function
((t) = 0, for t ∈ � and f ∈ X, η is called strongly subbounded.

Example 1.10. (a) Let X be an invariant subspace of L0(�). If η is invariant with
respect to the operation +, i.e. η[f (t + ·)] = η(f ), for all f ∈ X and t ∈ �, then
obviously, η is strongly subbounded. This holds in the case of an Orlicz space Lϕ(�)

(Example 1.5 (b)), if (�,+) is a unimodular, locally compact Hausdorff topological
group, with Haar measure µ.

(b) Let (�,+) be the same as in (a) and letρ be the modular η as in Example 1.5 (b),
i.e.

η(f ) =
∫
�

ϕ(t, |f (t)|) dµ(t).

Let us suppose that ϕ satisfies the inequality

ϕ(s − t, u) ≤ ϕ(s, Cu)+ h(s, t), (1.9)
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for all s, t ∈ �, u ≥ 0, with some constant C ≥ 1, independent of s, t, u and
0 ≤ h(·, t) ∈ L1(�), for t ∈ �, ess supt‖h(·, t)‖L1(�) < +∞. Then

η[f (t + ·)] =
∫
�

ϕ(s, |f (t + s)|) dµ(s)

=
∫
�

ϕ(s − t, |f (t)|) dµ(s)

≤
∫
�

ϕ(s, C|f (s)|) dµ(s)+
∫
�

h(s, t) dµ(s)

= η(Cf )+ ((t),

with ((·) = ∫
�
h(s, ·) dµ(s) ∈ L∞(�). Thus η is subbounded.

In many problems we shall need a connection between two modulars ρ, η on
L0(�), and a function ψ : � × R

+
0 → R

+
0 satisfying the following conditions:

ψ(·, u) is �-measurable for all u ≥ 0, ψ(t, :) is continuous and nondecreasing for
every t ∈ �, ψ(t, 0) = 0, ψ(t, u) > 0 for u > 0, ψ(t, u) → +∞ as u → +∞, for
all t ∈ �.

We say that {ρ,ψ, η} is a properly directed triple if there is a set �0 ⊂ �, �0 ∈ �

such thatµ(�\�0) = 0 and for everyλwith 0 < λ < 1 there exists aCλ, 0 < Cλ < 1,
satisfying the inequality

ρ[Cλψ(t, |F(·)|)] ≤ η(λF(·)),
for all t ∈ �0 and F ∈ L0(�). Let us remark that one may choose Cλ in such a
manner that Cλ ↘ 0 as λ ↘ 0. Moreover, the above condition immediately implies
the following inequality:

ρ[Cλψ(t, |Ft(·)|)] ≤ η(λFt (·))
for every t ∈ �0 and for any family (Ft (·))t∈�0 of functions Ft ∈ L0(�).

Example 1.11. Let ρ be an Orlicz modular on L0(�), i.e.

ρ(f ) =
∫
�

ϕ(|f (t)|) dµ(t),

where ϕ is a convex ϕ-function. Let ψ be the inverse to ϕ and 0 < λ < 1. Then ψ is
concave and there holds

ρ[λψ(|F(·)|)] =
∫
�

ϕ[λψ(|F(s)|)] dµ(s)

≤
∫
�

ϕ[ψ(λ|F(s)|)] dµ(s)

=
∫
�

λ|F(s)| dµ(s) = η(λF),

if we take η(F ) = ‖F‖L1(�). This means that {ρ,ψ, η} is a properly directed triple
with Cλ = λ.
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Chapter 2

Absolutely continuous modulars and moduli
of continuity

2.1 Absolutely finite and absolutely continuous modulars

In this chapter we start with formulating a modular version of the Lebesgue dominated
convergence theorem. This requires further properties of modulars. Let us recall that
a modular ρ on X ⊂ L0(�) is called monotone, if f, g ∈ X and |f | ≤ |g| imply
ρ(f ) ≤ ρ(g) (see Section 1.2). We say that a modular ρ is finite, if χA ∈ Xρ for
every A ∈ � such that µ(A) < +∞. A modular ρ on X is said to be absolutely finite,
if it is finite and if for every ε > 0 and every λ0 > 0 there exists a δ > 0 such that
every set B ∈ � with µ(B) < δ satisfies the inequality ρ(λ0χB) < ε.

Example 2.1. (a) Let ρ be the modular Iϕ generating the Orlicz space L0
ρ(�) =

Lϕ(�) (Example 1.5 (b)). Obviously, ρ is monotone and absolutely finite in Lϕ(�).

(b) Let ρ be the modular Iϕ generating a generalized Orlicz space L0
ρ(�) = Lϕ(�)

(Example 1.5 (c)). It is easily observed that ρ is always monotone, ρ is finite if and
only if ϕ(·, u) is locally integrable for small u (i.e. for every A ∈ � with µ(A) < +∞
there is a u > 0 such that

∫
A
ϕ(t, u) dµ(t) < +∞), and ρ is absolutely finite if and

only if ϕ(·, u) is locally integrable (i.e. for every A ∈ � with µ(A) < +∞ there
holds

∫
A
ϕ(t, u) dµ(t) for all u > 0).

(c) Let X be the space of all real-valued functions on the interval [0, 1] ⊂ R

and let V 1
0 (f ) be the classical (Jordan) variation of a function f ∈ X on [0, 1]. Let

ρ(f ) = |f (0)| + V 1
0 (f ) (Example (1.5)(f), with ϕ(u) = |u|). Take f (t) = sin(πt)

and g(t) = 1, for t ∈ [0, 1]. Then 0 ≤ f (t) ≤ g(t) for t ∈ [0, 1], but ρ(f ) = 2 and
ρ(g) = 1, whence ρ(f ) > ρ(g). Thus ρ is not monotone.

Let A1, A2, . . . , be a sequence of pairwise disjoint, closed subintervals of the
interval [0, 1] and let A = A1 ∪ A2 ∪ · · · , and µ- the Lebesgue measure on [0, 1].
Then µ(A) < +∞, but χA �∈ Xρ , because V 1

0 (χA) = +∞. Thus ρ is not finite.
However, if we take as µ the counting measure, then µ(A) < +∞ if and only if
A ∈ [0, 1] is a finite set and so the modular ρ becomes finite.

In the following we shall need some additional assumptions on the linear subspace
X ⊂ L0(�). We say that X is a correct subspace of L0(�), if

(a) A ∈ � and µ(A) < +∞ imply χA ∈ X,
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(b) f ∈ X and A ∈ � imply f χA ∈ X.

Obviously, X = L0(�) is a correct subspace of itself. Moreover, if X is a correct
subspace of L0(�) and f ∈ X, then |f | ∈ X. Indeed, let f ∈ X and let A = {t ∈ � :
f (t) ≥ 0}, B = �\A. Then A,B ∈ �, and so f+ = f χA ∈ X and f− = f χB ∈ X.
Hence |f | = f+ + f− ∈ X.

Let X be a linear correct subspace ofL0(�). We say thatρ is absolutely continuous
(a.c.), if there exists an α > 0 such that every function f ∈ X with ρ(f ) < +∞
satisfies the following two conditions:

(a) for every ε > 0 there exists a set A ∈ � with µ(A) < +∞ such that
ρ(αf χ�\A) < ε,

(b) for every ε > 0 there exists δ > 0 such that, for every set B ∈ � with µ(B) < δ,
there holds ρ(αf χB) < ε.

If µ(�) < +∞ then the condition (a) is obviously satisfied.

Example 2.2. (a) Let ρ be the modular Iϕ in L0(�) generating the generalized Orlicz
space (Example 1.5 (c)). The condition ρ(f ) < +∞ means that the function F(t) =
ϕ(t, |f (t)|) is integrable on �. Then the absolute continuity of the modular ρ with
α = 1 follows from the well-known properties of the integral.

(b) This example is an exercise in technical problems concerning absolute conti-
nuity and may be omitted.

We shall examine the modular A/ (Example 1.5 (e), formula (1.5)), keeping the
notations of Example 1.5 (e). We suppose additionally, that

∫ b
a
aw(x) dm(x) ≤ 1,

for w ∈ W and that if 0 ≤ g(x) ↗ s ∈ R̃+ as x → b−, being g : [a, b] → R
+
0

a nondecreasing function, then
∫ b
a
aw(x)g(x) dm(x) → s for w → w0. As regards

/ : [a, b[×R
+
0 → R

+
0 satisfying the conditions 1)–4) of Example 1.5 (e), we also

need some additional assumptions. We suppose that there is a c ∈ [a, b[ such that
/ is of monotone type in [c, b[, i.e. there exist two disjoint sets R1, R2 ⊂ R

+
0 with

R1 ∪ R2 = R
+
0 , such that

1o. /(x, u) is a nonincreasing function of x ∈ [c, b[, for every u ∈ R1,

2o. /(x, u) is a nondecreasing function of x ∈ [c, b[, for every u ∈ R2.

Finally, we suppose the following condition (H) to be satisfied:

(H) For every f ∈ L0
m(�) such that A/(f ) < +∞ and for every x ∈ [a, c] there

is a neighbourhood Ux of x in [a, c[ such that the function

Hx(·) = sup
y∈Ux

/(y, |f (·)|)

is µ-integrable over � for x ∈ [a, c].
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Let us mention that taking in the condition (H), Ux = [a, c] for all x ∈ [a, c] one
obtains a condition, equivalent to (H). Condition (H) is satisfied for example if we
suppose that there are constants M > 0 and u0 > 0 such that for all y, z ∈ [a, c] and
u ≥ u0, there holds the inequality /(y, u) ≤ M/(z, u). The reader is encouraged to
go through the details.

Under the above conditions, A/ is absolutely continuous (a.c.) with respect to
the measure µ. Indeed, let f ∈ L0

m(�) be such that A/ < +∞ and let us take an
arbitrary set P ∈ �. Obviously, we have

A/(f χP ) ≤ F1(f χP )+ F2(f χP ),

where

F1(f ) = sup
w∈W

∫ c

a

aw(x)I(x, f ) dm(x), F2(f ) = sup
w∈W

∫ b

c

aw(x)I(x, f ) dm(x).

In order to prove A/ to be a.c. it is sufficient to show both F1 and F2 to be a.c..
First, we prove F1 to be a.c. Applying the condition (H) we observe that the function
H(t) = supy∈[a,c]/(y, |f (t)|) for t ∈ � is µ-integrable on �. Hence there are a set
S1 ∈ � such that µ(S1) < +∞ and a number δ1 > 0 such that∫

�\S1

H(t) dµ(t) < ε/2,
∫
S

H(t) dµ(t) < ε/2, if S ∈ �, µ(S) < δ1.

Consequently, we have for arbitrary y ∈ [a, c]∫
�\S1

/(y, |f (t)|) dµ(t) < ε/2,∫
S

/(y, |f (t)|) dµ(t) < ε/2, if S ∈ �, µ(S) < δ1.

This implies

I/(y, f χ�\S1) =
∫
�\S1

/(y, |f (t)|) dµ(t) < ε/2,

I/(y, f χS) =
∫
S

/(y, |f (t)|) dµ(t) < ε/2, if S ∈ �, µ(S) < δ1.

Thus, we have for any w ∈ W ,∫ c

a

aw(x)I/(x, f χ�\S1) dm(x) <
ε

2

∫ c

a

aw(x) dm(x) ≤ ε/2,

where µ(S1) < +∞, and similarly∫ c

a

aw(x)I/(x, f χS) dm(x) < ε/2,
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if S ∈ � and µ(S) < δ1. Hence it follows that

F1(f χ�\S1) < ε/2, F1(f χS) < ε/2, if S ∈ �, µ(S) < δ1,

where S1 ∈ �,µ(S1) < +∞. Thus, F1 is a.c..
In order to prove that F2 is a.c., let us write for any f ∈ L0

m(�) such that A/(f ) <

+∞, A = {t ∈ � : |f (t)| ∈ R1}, B = {t ∈ R2 : |f (t)| ∈ R2}, where R1 and R2 are
sets from the definition of the function / of monotone type. Let P ∈ � be fixed and let
t ∈ A. We have /(x, |f (t)|)↘ as c ≤ x ↗ b−, and so /(x, |f (t)|) ≤ /(c, |f (t)|)
for c ≤ x < b, t ∈ A. Hence

I/(x, f χAχP ) ≤ I/(c, f χAχP ) ≤ I/(c, f ) < +∞,

for c ≤ x < b; the condition I/ < +∞ follows, applying the condition (H) to y = c.
Therefore there exist a set S2 ∈ � with µ(S2) < +∞ and a number δ2 > 0 such that

I/(x, f χ�\S2χA) ≤ I/(c, f χ�\S2χA) < ε/4

and
I/(x, f χSχA) ≤ I/(c, f χSχA) < ε/4 if S ∈ �, µ(S) < δ2,

for every x ∈ [c, b[. Thus

F2(f χ�\S2χA) < ε/4

F2(f χSχA) < ε/4 if S ∈ �, µ(S) < δ2.
(2.1)

Next, we have for every P ∈ �, (see Example 1.5 (e))

/(x, |f (t)|χP (t)χB(t))↗ /̃(|f (t)|χP (t)χB(t))

as c ≤ x ↗ b−, for all t ∈ �, and so

I/(x, f χP χB)↗ I/̃(f χP χB)

as c ≤ x ↗ b−, where

I/̃(f ) =
∫
�

/̃(|f (t)|) dµ(t),

for all f ∈ L0(�). By the assumption on aw(x) applied to the function g(x) =
I/(x, f χPχB)χ[c,b[(x), we obtain∫ b

c

aw(x)I/(x, f χPχB) dm(x)→ I/̃(f χP χB), as w → w0.

On the other hand, we have∫ b

c

aw(x)I/(x, f χPχB) dm(x) ≤
∫ b

c

aw(x)I/̃(f χP χB) dm(x) ≤ I/̃(f χP χB).
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Hence

I/̃(f χP χB) = lim
w→w0

∫ b

c

aw(x)I/(x, f χPχB) dm(x)

= sup
w∈W

∫ b

c

aw(x)I/(x, f χP χB) dm(x)

= F2(f χP χB).

Taking P = � we obtain

I/̃(f χB) = F2(f χB) ≤ A/(f ) < +∞.

Thus, there are a set S3 ∈ � with µ(S3) < +∞ and a number δ3 > 0 such that

I/̃(f χ�\S3χB) < ε/4, I/̃(f χSχB) < ε/4, if S ∈ �, µ(S) < δ3.

Consequently,

F2(f χ�\S3χB) < ε/4

F2(f χSχB) < ε/4, if S ∈ �, µ(S) < δ3.
(2.2)

But we have for any set P ∈ � and x ∈ [c, b[,
I/(x, f χP ) = I/(x, f χPχA)+ I/(x, f χPχB),

whence
F2(f χP ) ≤ F2(f χP χA)+ F2(f χP χB).

Consequently, by (2.1) and (2.2) we have, taking S4 = S2 ∪ S3, and δ4 = min{δ2, δ3},
F2(f χ�\S4) < ε/2, F2(f χS) < ε/2,

with S4 ∈ �, µ(S4) < +∞, and S ∈ �, µ(S) < δ4.
This shows that F2 is a.c. We finally proved that A/ is absolutely continuous. ��

Remark 2.1. (a) Let us suppose that � is a locally compact and σ -compact Hausdorff
topological group, equipped with its Haar measureµ. Then in the definition of absolute
continuity of a monotone modular ρ on L0(�) we can replace the set A in (a) with a
compact A. Indeed, let ρ be monotone and absolutely continuous. In particular for
every ε > 0 and f ∈ L0(�) with ρ(f ) < +∞ there is a set A ∈ �, A ⊂ �, such that
µ(A) < +∞ andρ(αf χ�\A) < ε/2. Since� is σ - compact, we haveG =⋃∞k=1 Wn,
where Wn are compact (in the case this sum is finite, then � is compact itself and so
we can take A = �). Taking Vn = ⋃n

k=1 Wk , we obtain again � = ⋃∞n=1 Vn, where
Vn are compact, and Vn−1 ⊂ Vn for n = 2, 3, . . . . Hence

A =
∞⋃
n=1

A ∩ Vn,
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and (A∩Vn) is an increasing sequence of sets of finite measure in �. By a well-known
theorem, we have

+∞ > µ(A) = lim
n→+∞µ(A ∩ Vn),

and so we obtain

µ(A \ Vn) = µ(A \ (A ∩ Vn)) = µ(A)− µ(A ∩ Vn)→ 0

as n → +∞. We now apply condition (b) of absolute continuity of ρ with ε/2 in
place of ε. Let δ be a number corresponding to ε/2, and let N ∈ N be so large that
for every n > N , µ(A \ Vn) ≤ δ. Thus for n > N

ρ(αf χA\Vn) < ε/2.

But since � \ Vn ⊂ (� \A) ∪ (A \ Vn), we have χ�\Vn ≤ χ�\A + χA\Vn . Hence for
n > N

ρ
(α

2
f χ�\Vn

)
≤ ρ
(α

2
f χ�\A + α

2
f χA\Vn

)
≤ ρ(αf χ�\A)+ ρ(αf χA\Vn)

< ε/2+ ε/2 = ε,

and so the assertion follows.

(b) Let us still remark that additionally assuming the family of functions /(x, u)

to be equicontinuous in [a, b[ at u = 0 we may show the modular A/ to be absolutely
finite. Indeed, for every ε > 0 there is a δ > 0 such that, for any u ∈ [0, δ[ and
x ∈ [a, b[, we have /(x, u) < ε. Now, let A ∈ � and µ(A) < +∞. Then
I/(x, λχA) = µ(A)/(x, λ), for every λ > 0. Hence

A/(λχA) = µ(A) sup
w∈W

∫ b

a

aw(x)/(x, λ) dm(x) ≤ εµ(A).

Consequently, A/ is finite. The same inequality with ε = 1, λ = λ0, A = B shows
that A/ is absolutely finite.

Now, we are able to formulate the following modular version of the Lebesgue
dominated convergence theorem.

Theorem 2.1. Let ρ be a monotone, finite and absolutely continuous modular on a
linear, correct subspace X of L0(�). Let (fn) be a sequence of functions fn ∈ X
such that fn(t) → 0 as n → +∞ µ-a.e. in �. Moreover, let us suppose there exists
a function g ∈ Xρ such that ρ(3g) < +∞ and |fn(t)| ≤ g(t) µ-a.e. in �, for
n = 1, 2, . . . Then ρ(fn)→ 0 as n→+∞.
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Proof. Let ε > 0 be arbitrary and let α > 0, A ∈ � and δ > 0 be chosen as in the
definition of absolute continuity, with f replaced by 3g and ε replaced by ε/3. By
Egoroff’s theorem, there exists a set Aε ∈ �,Aε ⊂ A, such that µ(Aε) < δ and
fn(t)→ 0 as n→+∞, uniformly on A \ Aε. Since

|fn(t)| = 1

3
[3|fn(t)|χ�\A(t)+ 3|fn(t)|χA\Aε (t)+ 3|fn(t)|χAε(t)],

for t ∈ �, applying monotonicity of ρ we obtain

ρ(αfn) ≤ ρ(3αfnχ�\A)+ ρ(3αfnχA\Aε )+ ρ(3αfnχAε )

≤ ρ(3αgχ�\A)+ ρ(3αfnχA\Aε )+ ρ(3αgχAε).

By the choice of Aε and δ we obtain

ρ(3αgχ�\A) < ε/3 and ρ(3αgχAε) < ε/3.

Hence

ρ(αfn) ≤ 2

3
ε + ρ(3αfnχA\Aε ),

for n = 1, 2, . . . In view of the finiteness of ρ, we have χA ∈ Xρ . Hence there exists
a λε > 0 such that ρ(λαχA) < ε/3 for 0 < λ ≤ λε. Since fn(t) → 0 as n → +∞,
uniformly in A \Aε, there exists an index n0 such that 3α|fn(t)| < λε, for t ∈ A \Aε

and n ≥ n0. Hence, by monotonicity of ρ,

ρ(3αfnχA\Aε ) ≤ ρ(λεχA\Aε ) ≤ ρ(λεχA) < ε/3,

for n ≥ n0. Consequently,

ρ(αfn) ≤ 2

3
ε + ρ(3αfnχA\Aε ) < ε,

for n ≥ n0. This proves that ρ(αfn)→ 0 as n→+∞. ��

2.2 Moduli of continuity

One of the important tools in approximation theory and in other applications of math-
ematical analysis is the notion of modulus of continuity. We shall define it in the
case of modular spaces Xη generated by a modular η in a linear correct subspace
X ⊂ L0(�). Here, we assume � to be equipped with an operation + : �×�→ �.
For the sake of simplicity we shall suppose throughout this section that the operation+
is commutative. There is no problem to extend this to the case of a non- commutative
operation and then the notions defined below, have their right-hand side and left-hand
side versions (the reader may consult e.g. [117]).

In the following we shall need the notion of a filter U of subsets of �. We recall
this notion: a family U �= ∅, of nonempty subsets of � is called a filter in � if it
satisfies the following two conditions:
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1. If U1, U2 ∈ U, then U1 ∩ U2 ∈ U.

2. If U1 ∈ U, U2 ⊂ �, and U1 ⊂ U2 then U2 ∈ U.

Let us mention two important filters. In the first one, � = N is the set of positive
integers and the filter U of its subsets consists of complements of finite subsets of
N (including the empty set). Convergence of a sequence an → a, (an, a ∈ R), as
n→+∞ can be expressed saying that for every ε > 0 there exists a set Uε ∈ U such
that |an − a| < ε for all n ∈ Uε. In the second one, � = T will mean a topological
space and U is the family of all neighbourhoods of a fixed element t0 ∈ T. Again, a
function f : �→ R is convergent to a ∈ R, if and only if for every ε > 0 there exists
a set Uε ∈ U such that |f (t)− a| < ε for all t ∈ Uε.

The notion of convergence may be generalized to a general filter U of subsets of �
and obviously, we may restrict ourselves to convergence to zero. Namely, a function
f : �→ R is U-convergent to zero if for every ε > 0 there is a set Uε ∈ U such that

|f (t)| < ε for all t ∈ Uε. We shall denote it writing f (t)
U−−→ 0. One may define a

basis of a filter as a family U0 ⊂ U such that for every set U ∈ U there exists a set
V ∈ U0 such that V ⊂ U . Obviously, f : � → R is U-convergent to zero, if and
only if for every ε > 0 there exists a set Uε ∈ U0 such that |f (t)| < ε, for all t ∈ Uε.
In the first of our previous examples of � = N as U0 we may take the countable
family of sets Un = {n, n+ 1, n+ 2, . . . }, for n = 1, 2, . . . In the second example of
� = T, supposing T be a metric space and t0 ∈ T to be fixed, we may take as a basis
U0, the countable family of balls with centre at t0 and radii rn = 1/n, n = 1, 2, . . .

Applying the notion of a filter we shall specify a connection between the operation
+ in �, the σ -algebra � and the measure µ in the measure space (�,�,µ). Let us
denote for arbitrary A ∈ � and t ∈ �,

At = {s ∈ � : t + s ∈ A, s �∈ A, or t + s �∈ A, s ∈ A}.
Let U be a filter in �. We say that {�,U, �,µ} is a correctly filtered system with
respect to X, if

1. the filter U contains a basis U0 ⊂ �,

2. if A ∈ � and µ(A) < +∞, then At ∈ � for every t ∈ � and µ(At)
U−−→ 0,

3. X is invariant with respect to the operation +.

Example 2.3. Let (�,+) be an abelian locally compact Hausdorff topological group.
For U we take the filter of neighbourhoods of the neutral element of � and µ will
denote the Haar measure on (�,+). Denoting by A4B the symmetric difference of
sets A and B, we have At = A4(A − t) for each A ⊂ � and t ∈ �. It is well-

known that if A ∈ � then At ∈ � for each t ∈ � and µ(At)
U−−→ 0 (see e.g. [117]).

Moreover, if f is �-measurable and a ∈ R, t ∈ �, we have

{s ∈ � : f (t + s) > a} = {σ − t ∈ � : f (σ) > a} = {σ ∈ � : f (σ) > a} − t ∈ �,
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whence f (t + ·) is also �-measurable. Thus, the system {�,U, �,µ} is correctly
filtered.

Let U be a filter on � with basis U0 ∈ � and let X be an invariant, correct linear
subspace of L0(�). Let η be a modular on X. The η-modulus of continuity is defined
as the map

ωη : X×U→ R̃
+
0 ,

where
ωη(f,U) = sup

t∈U
η(f (t + ·)− f (·)),

for all f ∈ X and U ∈ U. The elementary properties of a modulus of continuity are
summarized in the following

Theorem 2.2. If η is a monotone modular on X, then

(a) ωη(f, V ) ≤ ωη(f,U), for f ∈ X, U,V ∈ U, V ⊂ U ,

(b) ωη(|f |, U) ≤ ωη(f,U), for f ∈ X, U ∈ U,

(c) ωη(af,U) ≤ ωη(bf,U), for f ∈ X, U ∈ U, 0 ≤ a ≤ b,

(d) ωη(
∑n

j=1 fj , U) ≤∑n
j=1 ωη(nfj , U), for f1, f2, . . . fn ∈ X, U ∈ U.

Proof. Properties (a), (c), (d) are obvious. Applying the fact that X is a correct
subspace of L0(�) so that f ∈ X implies |f | ∈ X, and the monotonicity of η, we
obtain

η(|f (t + ·)| − |f (·)|) ≤ η(|f (t + ·)− f (·)|) = η(f (t + ·)− f (·)),
which implies (b). ��

We now solve the problem, under what assumptions the η-modulus of continuity
of a function f ∈ X tends to zero in the sense of the filter U. First, we consider the
case when the function f is a simple function, vanishing outside a set of finite measure
µ. If X is a correct linear subspace of L0(�) then all such functions belong to X.

Theorem 2.3. Let (�,U, �,µ) be a correctly filtered system and let X be an invari-
ant, correct linear subspace of L0(�). Let η be a monotone, absolutely finite modular
on X. Then for any simple function f on �, vanishing outside a set of finite measure

µ and for every λ > 0 there holds the relation ωη(λf,U)
U−−→ 0.

Proof. Let f = χA be the characteristic function of a set A ∈ � of measure µ(A) <

+∞. It is easily verified that

|χA(t + s)− χA(s)| = χAt (s),
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for every s, t ∈ �. Since µ(A) < +∞ and (�,U, �,µ) is correctly filtered, so

At ∈ �, for t ∈ � and µ(At)
U−−→ 0. Thus, there exists a U0 ∈ U such that

µ(At) < +∞ for t ∈ U0. Since η is finite, we have χA ∈ Xη and χAt ∈ Xη for
t ∈ U0. Since Xη is linear, we thus have λ0χAt ∈ Xη, for t ∈ U0 and every λ0 > 0.
Let ε > 0 be arbitrary. Since η is absolutely finite, there exists a δ > 0 (depending on

ε and λ0), such that if B ∈ � and µ(B) < δ, then η(λ0χB) < ε. Since µ(At)
U−−→ 0,

there is a set U ∈ U, U ⊂ U0 such that µ(At) < δ for all t ∈ U . Consequently,
η(λ0χAt ) < ε for all t ∈ U . Thus, supt∈U η(λ0χAt ) = ωη(λ0χA,U) ≤ ε. This

shows that ωη(λ0χA,U)
U−−→ 0.

Now, let f = ∑n
j=1 cjχAj

, where Aj ∈ �,µ(Aj ) < +∞ for j = 1, 2, . . . , n
and A1, A2, . . . , An are pairwise disjoint. Since χAj

∈ Xη, for j = 1, 2, . . . , n,
so f ∈ Xη. Let λ > 0 be arbitrary and let λ0 = nλmaxj |cj |. Applying Theo-
rem 2.2 (d) and (c), we obtain the inequality

ωη(λf,U) ≤
n∑

j=1

ωη(λ0χAj
, U).

From the first part of the proof we conclude that ωη(λ0χAj
, U)

U−−→ 0, for j =
1, 2, . . . , n. Consequently, ωη(λf,U)

U−−→ 0. ��

In Section 1.4 we introduced the notion of a subbounded modular and a strongly
subbounded modular with respect to the operation +. Applying the filter U we dis-
tinguish now a notion between the two above ones. Namely a modular η in a linear
subspace X of L0(�) will be called bounded (with respect to the operation + and a
filter U in �), if there are a constant C ≥ 1 and a function ( : � → R

+
0 satisfying

the conditions ( ∈ L∞(�), ((t)
U−−→ 0, such that for every function f ∈ X and every

t ∈ � there holds the inequality

η(f (t + ·)) ≤ η(Cf )+ ((t).

Obviously, a strongly subbounded modular η is always bounded, and a bounded mod-
ular η is always subbounded.

Example 2.4. Let the system {�,U, �,µ} be defined as in Example 2.3 and let the
function ϕ be as in Example 1.5 (c). Moreover, let ϕ satisfy the inequality (1.9) in
Example 1.10 (b), for s, t ∈ �, u ≥ 0, where C ≥ 1 is a constant and 0 ≤ h(·, t) ∈
L1(�),

∫
�
h(s, t) dµ(s)→ 0 as t → θ , where θ is the neutral element of the group �.

Following the estimates in Example 1.10 (b) one may check easily that the modular
η(f ) = ∫

�
ϕ(t, |f (t)|) dµ(t) is bounded with respect to the operation+ and the filter

U of neighbourhoods of θ in �.

Now we may generalize Theorem 2.3 to the whole space X.
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Theorem 2.4. Let {�,U, �,µ} be a correctly filtered system and let X be an in-
variant, correct linear subspace of L0(�). Let η be a monotone, absolutely finite,
absolutely continuous and bounded modular on X. Then for every function f ∈ Xη

there exists a number λ > 0 such that

ωη(λf,U)
U−−→ 0.

Proof. Let us first remark that it is sufficient to prove the theorem for functions f ≥ 0.
Indeed, suppose the theorem to be true for functions f ∈ Xη, f ≥ 0 and let f ∈ Xη,
be arbitrary. Denoting by f+, f− the positive part and the negative part of f , we have
f+ = (1/2)(|f | + f ), f− = (1/2)(|f | − f ). Since X is a correct subspace, the
assumption f ∈ X implies |f | ∈ X, and since η is monotone, so η(f ) = η(|f |),
and from f ∈ Xη, we conclude that |f | ∈ Xη. Since Xη is linear, this implies
f+, f− ∈ Xη. Thus, by Theorem 2.2 (d) we obtain

ωη

(
1

2
λf,U

)
= ωη

(
1

2
λ(f+ − f−), U

)
≤ ωη(λf+, U)+ ωη(λf−, U)

U−−→ 0,

since f+, f− ≥ 0. Hence we may restrict the proof to functions f ≥ 0.

Let f ∈ Xη, f ≥ 0. There exists a sequence (gn) of nonnegative simple functions
such that gn(t) ↗ f (t) as n ↗ +∞, µ-a.e. in �. Since the measure µ is σ -finite,
we may define gn in such a manner that each gn vanishes outside a set An ∈ � of
finite measure µ. Since the modular η is finite, we have gn ∈ Xη, for n = 1, 2, . . . .
Hence also fn = f − gn ∈ Xη, for n = 1, 2, . . . . Moreover, 0 ≤ fn(t) ↘ 0 as
n ↗ +∞ and fn(t) ≤ f (t) for all t ∈ �. Since f ∈ Xη, there exists a number
λ0 > 0 such that η(3λ0f ) < +∞. Applying Theorem 2.1 with g(t) = λ0f (t),
we obtain η(λ0fn) → 0 as n → +∞. Additionally, we may take λ0 so small that
η(λ0f ) < +∞. Selecting eventually a subsequence from (gn) we may suppose that

η(λ0(f − gn)) <
1

n
, n = 1, 2, . . . (2.3)

Let C ≥ 1 and ( ∈ L∞(�), ((t)
U−−→ 0, be as in the definition of a bounded

modular. Since η(λ0(f − gn)) < +∞, for n = 1, 2, . . . , we may apply the definition
of boundedness of η to the function (λ0/C)(f − gn) in place of f , obtaining the
inequality

η

(
λ0

C
(f (t + ·)− gn(t + ·))

)
≤ η(λ0(f − gn))+ ((t), for t ∈ �.
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This implies

η

(
λ0

3C
(f (t + ·)− f (·))

)
≤ η

(
λ0

C
(f (t + ·)− gn(t + ·))

)
+ η

(
λ0

C
(gn(t + ·)− gn(·))

)
+ η

(
λ0

C
(gn − f )

)
≤ 2

n
+ ((t)+ ωη(λ0gn, U),

for arbitrary U ∈ U, t ∈ U, n = 1, 2, . . . . Let us take an arbitrary ε > 0 and let
us fix an index n in such a manner that 2/n ≤ ε/3. By Theorem 2.3, there exists a
U1 ∈ U such that for every V ∈ U, V ⊂ U1 there holds ωη(λ0gn, V ) < ε/3. Since

((t)
U−−→ 0, there is a U2 ∈ U such that ((t) < ε/3 for t ∈ U2. Consequently, taking

t ∈ U1 ∩ U2 ∈ U, we obtain

η

(
λ0

3C
(f (t + ·)− f (·))

)
≤ ε.

Thus, ωη((λ0/3C)f, V ) ≤ ε, for V ∈ U, V ⊂ U1 ∩ U2. This shows that

ωη((λ0/3C)f,U)
U−−→ 0. ��

Example 2.5. (a) Let � = R
+
0 be provided with the operation of usual addition+ and

let µ be the Lebesgue measure in the σ -algebra of all Lebesgue measurable subsets
on R

+
0 . Let ϕ be the function from Example 1.5 (c) and let

η(f ) = Iϕ(f ) =
∫ +∞

0
ϕ(t, |f (t)|) dt.

Let U be a filter in R
+
0 with basis U0 consisting of all intervals of the form Uδ = [0, δ[

with δ > 0. Obviously, {R+0 ,U, �,µ} is a correctly filtered system. The space
L0

η(R
+
0 ) is equal to the generalized Orlicz spaceLϕ(R+0 ), and if we restrict the modulus

ωη to the basis U0, denoting ωϕ(f, δ) = ωη(f,Uδ), we obtain, by Theorem 2.4 that
for every f ∈ Lϕ(R+0 ), there exists a number λ > 0 such that

ωϕ(λf, δ) = sup
0<t<δ

∫ +∞
0

ϕ(s, λ|f (t + s)− f (s)|) ds → 0, as δ → 0+.

(b) Let � =]0, 1] provided with the operation of usual multiplication · and let µ
be the measure defined by dµ(t) = dt/t , where dt is the Lebesgue measure in the
σ -algebra of all Lebesgue measurable subsets on ]0, 1]. Let ϕ(t, u) be the function
from Example 1.5 (c), defined for (t, u) ∈]0, 1] × R, and eventually extended by
1-periodicity with respect to the first variable, to the whole R

+. Let

η(f ) = Iϕ(f ) =
∫ 1

0
ϕ(t, |f (t)|) dt

t
.
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Let U be a filter in ]0, 1] with basis U0 consisting of all intervals of the form Uδ =
]1 − δ, 1], for δ ∈]0, 1/2[. Then L0

η(�) is the space of all measurable functions
f : �→ R, such that there is λ > 0 for which∫ 1

0
ϕ(t, λ|f (t)|) dt

t
< +∞.

As before, it is easily seen that {]0, 1],U, �,µ} is a correctly filtered system, and
putting again ωϕ(f, δ) = ωη(f,Uδ), we obtain

ωϕ(λf, δ) = sup
1−δ<t<1

∫ 1

0
ϕ(s, λ|f (ts)− f (s)|) ds → 0, as δ → 0+.

(c) Let � = N0 = {0, 1, 2, . . . } be the semigroup of nonnegative integers, en-
dowed with the usual operation of addition + and with the counting measure µ on
the σ -algebra of all subsets of �. As before, we take into consideration the filter U
consisting of the complements of all finite subsets of � with basis U0 given by the
sets {n, n + 1, n + 2, . . . }, n = 1, 2, . . . . Then again {N,U, �,µ} is a correctly
filtered system. Let η be any modular defined on the space (0(�), consisting of all the
sequences (tj ) of real numbers, satisfying all the assumptions of Theorem 2.4. Then
for a sequence f = (tj )j∈N0 , in the corresponding modular space, denoted by (0

η, there
holds

ωη(λf,U) = sup
j≥n

η(λ(t·+j − t·))
U−−→ 0.

2.3 Bibliographical notes

The notions of a monotone modular and a finite modular were introduced in [155], as a
generalization of classical Köthe norms ( see [139]). The concepts of absolutely finite
and absolutely continuous modular were defined in [20] (see also [155]). The notion
of a correct subspace X of L0(�) may also be found in [20]. Spaces connected with
strong summability were first considered in [148] (general matrix methods) and [165]
(first arithmetic means), and then the investigations were continued by A. Waszak
[203]. For Example 2.2 (b), see [18]. Theorem 2.1 plays a key role in applications of
modular spaces and was proved in [155].

In order to define a modulus of continuity generated by means of a modular η, we
need an operation + from � × � to �. We do not need to suppose (�,+) to be a
group. However, we need some continuity property of + which leads to the notion
of a correctly filtered system {�,U, �,µ}, where U is a filter of subsets of � with
a basis U0 of �-measurable subsets. This notion was introduced in [20] and further
applied in [22]. The connection between this notion and the special case of a locally
compact topological group structure is explained by Example 2.3.

The notion of a modulus of continuity of a function in various function spaces,
especially in Banach function spaces, belongs to fundamental tools in the theory of
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approximation (see e.g. [67]). It was transferred to the more general case of modular
spaces in [155], where its basic properties were also investigated. The proof of Theo-
rem 2.4, a fundamental property stating that the η-modulus of a function in a modular
space L0

η(�) tends to zero in the sense of the η-convergence was finally proved in
[20]. It requires a notion of a bounded modular η introduced in [155] and then applied
in [19] and in other papers, where it was termed as τ -bounded modular.



Chapter 3

Approximation by convolution type operators

3.1 Embedding theorems and the error of modular
approximation

In this chapter we shall deal with convolution-type operators of the form

(Tf )(s) =
∫
�

K(t, f (t + s)) dµ(t), (3.1)

defined by Example 1.2. Here, (�,�,µ) will be a measure space with a σ -finite,
complete measure,+ is a commutative operation from�×� to�. We will assume that
this operation is a measurable function from�×� to�. The functionK : �×R → R

is a Carathéodory kernel function, i.e. it is �-measurable in � for every u ∈ R, and it
is continuous in R for every t ∈ �, with K(t, 0) = 0. Let L0(�) be the space of all
extended real-valued, �-measurable and finite µ-a.e. functions f . It is well-known
that if f ∈ L0(�), then K(t, f (t + s)) is a �-measurable function of t ∈ �, for
every s ∈ �. As in 1.1, the domain Dom T of the operator T defined by (3.1) is
defined as the set of all functions f ∈ L0(�) for which the integral (3.1) exists for
a.e. s ∈ � and (Tf )(s) is a �-measurable function of s ∈ �. A special case of the
kernel function K is obtained when we suppose K(t, u) to be a linear function of u, i.e.
K(t, u) = K̃(t)u, where K̃ : � → R is �-measurable on �. The convolution-type
operator (3.1) takes on the form

(Tf )(s) =
∫
�

K̃(t)f (t + s) dµ(t).

Operators of this form are used in approximation theory since the beginnings of this
theory.

Example 3.1. (a) Letf ∈ L1
2π , i.e. f is a 2π -periodic, real valued function, Lebesgue

integrable in the interval [−π, π ]. Let Sn be the n-th partial sum of the Fourier series
of the function f , then

Sn(s) =
∫ π

−π

Dn(t)f (t + s) dt,

for n ∈ N, where

Dn(u) = 1

2π

sin[(2n+ 1)(u/2)]
sin(u/2)

, for 0 < |u| ≤ π
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are the Dirichlet kernel functions.

(b) Let (σn) be the sequence of arithmetic means of the sequence (Sn) from (a),
then

σn(s) = 1

n+ 1

n∑
k=0

Sk(s) =
∫ π

−π

Kn(t)f (t + s) ds

for n ∈ N, where

Kn(u) = 1

2π(n+ 1)

(
sin[(n+ 1)u/2]

sin(u/2)

)2

for 0 ≤ |u| ≤ π

are the Fejér kernel functions.

(c) Let f ∈ L1
2π and let

Ar (s) = 1

2
a0 +

∞∑
n=1

rn(an cos ns + bn sin ns),

where (an), (bn) are the sequences of Fourier coefficients of the function f . Since the
sequences (an) and (bn) are bounded, the series Ar (s) is uniformly convergent for
s ∈ [−π, π ], if r ∈ [0, 1[ is fixed. Moreover, we have

Ar (s) =
∫ π

−π

Ar(t)f (t + s) ds

for r ∈ [0, 1[, where

Ar(t) = 1

2π

1− r2

1− 2r cos t + r2 for |t | ≤ π

are the Abel–Poisson kernel functions.

One of the fundamental questions in the theory of Fourier series is, under what
conditions the above defined sequences of operators (Sn), (σn) and (Ar ) tend to f as
n→+∞ in the first two cases and as r → 1− in the third one. This also depends on
the kind of convergence we require: almost everywhere, pointwise, uniform (i.e. in
the space C2π of 2π -periodic, continuous functions), in L1

2π , etc.
In case of operators (3.1), the linear operators are replaced by nonlinear ones. In

order to apply operators (3.1) in approximation theory, we first have to find a tool,
which would replace linearity of a kernel function. This will be a generalized Lipschitz
condition. Let L : � → R

+
0 = [0,+∞[ be �-measurable, 0 �= L ∈ L1(�), and let

us put ‖L‖1 =
∫
�
L(t) dµ(t), p(t) = L(t)/‖L‖1, for t ∈ �; obviously, ‖p‖1 = 1.

Let M be the class of all functions ψ : �×R
+
0 → R

+
0 which satisfy the assumptions

given in 1.5, i.e. ψ(·, u) is �-measurable for every u ≥ 0, ψ(t, :) is continuous and
nondecreasing, for every t ∈ �, ψ(t, 0) = 0, ψ(t, u) > 0, for u > 0, ψ(t, u)→+∞
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as u→+∞, for all t ∈ �. We say that the kernel function is (L,ψ)-Lipschitz, briefly
K ∈ (L,ψ)-Lip, if for all t ∈ �, u, v ∈ R, there holds the following inequality

|K(t, u)−K(t, v)| ≤ L(t)ψ(t, |u− v|). (3.2)

Moreover, we say that K is (L,ψ)0-Lipschitz, briefly K ∈ (L,ψ)0-Lip, if for all
t ∈ �, u ∈ R there holds the inequality

|K(t, u)| ≤ L(t)ψ(t, |u|). (3.3)

Since K(t, 0) = 0, if K is (L,ψ)-Lipschitz, it is also (L,ψ)0-Lipschitz.
In case of a linear kernel K(t, u) = K̃(t)u, an important role in approximation

theory play the assumptions of singularity of the function K̃ . For example, one of the
fundamental tools in approximating 2π -periodic functions f , integrable in the interval
[−π, π ], by means of the sequence (σn) of first arithmetic means of partial sums of its
Fourier series (Example 3.1 (b)), is the singularity of these kernel functions, defined
by the conditions ∫ −δ

−π

K̃n(t) dt → 0, and
∫ π

δ

K̃n(t) dt → 0,

as n→+∞, for any δ ∈]0, π [ and∫ π

−π

K̃n(t) dt = 1, for n = 1, 2, . . .

It is obvious that, in analogy to the linear case, also in the general case of convolution-
type operators one will need some singularity assumptions on the kernel functions in
order to obtain results in approximation theory.

Finally, one should decide about the notion of convergence used for the approxi-
mation of f by means of Tf . We shall apply here modular convergence in the space
L0

ρ(�), generated by a modular ρ, i.e. we are going to estimate the error of approx-
imation ρ(α(Tf − f )). Due to Example 1.5 (a), this includes approximation in the
sense of a norm in a normed linear subspace of the space L0(�). However, first we
shall investigate the problem of continuity of the operator T from a modular space L0

η

generated by a modular η to a modular space L0
ρ(�) generated by a modular ρ.

We prove the following

Theorem 3.1. Let ρ be a monotone, quasiconvex with a constant M ≥ 1 modular on
L0(�) and let η be a modular on L0(�), subbounded with respect to the operation
+ with constant C ≥ 1 and function ( ∈ L∞(�). Let K be an (L,ψ)0-Lipschitz
Carathéodory kernel function such that {ρ,ψ, η} is a properly directed triple and let
the operator T be defined by (3.1). Finally, let U ∈ �, 0 < λ < 1 and 0 < α <

Cλ(M‖L‖1)
−1 be arbitrary. Then for every f ∈ L0

η(�) ∩ Dom T there holds the
inequality

ρ(αTf ) ≤ Mη(Cλf )+M‖(‖∞
∫
�\U

p(t) dµ(t)+M ess supt∈U((t).
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Consequently, T : L0
η(�) ∩ Dom T → L0

ρ(�).

Proof. Since K ∈ (L,ψ)0-Lip, we have

|Tf (s)| ≤
∫
�

p(t)‖L‖1ψ(t, |f (t + s)|) dµ(t).

Applying monotonicity and quasiconvexity of ρ and the assumption that {ρ,ψ, η} is a
properly directed triple, we obtain for 0 < λ < 1 and α > 0 such that M‖L‖1α ≤ Cλ

the inequalities

ρ(αTf ) ≤ ρ

(
α

∫
�

p(t)‖L‖1ψ(t, |f (t + ·)|) dµ(t)

)
≤ M

∫
�

p(t)ρ[M‖L‖1αψ(t, |f (t + ·)|] dµ(t)

≤ M

∫
�

p(t)η(λ|f (t + ·)|) dµ(t).

Since η is subbounded, we have η(λ|f (t+·)|) ≤ η(Cλf )+((t), where ‖(‖∞ < +∞.
Hence

ρ(αTf ) ≤ M

∫
�

p(t)η(Cλf ) dµ(t)+M

∫
�

p(t)((t) dµ(t)

≤ Mη(Cλf )+M

∫
�\U

p(t)((t) dµ(t)+M

∫
U

p(t)((t) dµ(t)

≤ Mη(Cλf )+M‖(‖∞
∫
�\U

p(t) dµ(t)+Mess supt∈U((t)

for arbitrary U ∈ �. ��

Now, as an immediate consequence, we may state the following

Corollary 3.1. Let ρ be a monotone, quasiconvex with a constant M ≥ 1 modular
on L0(�) and let η be a modular on L0(�), strongly subbounded with respect to
the operation + with constant C ≥ 1. Let K be an (L,ψ)0-Lipschitz Carathéodory
kernel function such that {ρ,ψ, η} is a properly directed triple and let the operator T

be defined by (3.1). Let 0 < λ < 1 and 0 < α < Cλ(M‖L‖1)
−1 be arbitrary. Then

for every f ∈ L0
η(�) ∩ Dom T there holds the inequality

ρ(αTf ) ≤ Mη(Cλf )

and consequently the operator T is continuous at 0 in the sense of modular conver-
gence.
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The last part of Corollary 3.1 means that if fn ∈ L0
η(�)∩Dom T for n = 1, 2, . . . ,

then fn
η→ 0 implies Tfn

ρ→ 0.

The next theorem will give an estimation of the error of modular approximation
ρ(α(Tf − f )).

Theorem 3.2. Let ρ be a monotone, J-quasiconvex with a constant M ≥ 1 modular
on L0(�) and let η be a modular on L0(�), subbounded with respect to the operation
+ with a constant C ≥ 1 and a function ( ∈ L∞(�). Let K be an (L,ψ)-Lipschitz
Carathéodory kernel function such that {ρ,ψ, η} is a properly directed triple and let
the operator T be defined by (3.1). Finally, let U ∈ �, 0 < λ < 1 and 0 < α <

Cλ(2M‖L‖1)
−1 be arbitrary. Then for every f ∈ L0

η(�) ∩ Dom T there holds the
inequality

ρ[α(Tf − f )] ≤ Mωη(λf,U)+M[2η(2Cλf )

+ ‖(‖∞]
∫
�\U

p(t) dµ(t)+ R,
(3.4)

where

R = ρ

(
2α

∣∣∣∣∫
�

K(t, f (·)) dµ(t)− f (·)
∣∣∣∣) . (3.5)

Proof. Since

Tf (s)−f (s) =
∫
�

[K(t, f (t+s))−K(t, f (s))] dµ(t)+
∫
�

K(t, f (s)) dµ(t)−f (s)

so, by the (L,ψ)-Lipschitz condition, we obtain

|Tf (s)− f (s)| ≤
∫
�

p(t)‖L‖1ψ(t, |f (t + s)− f (s)|) dµ(t)

+
∣∣∣∣∫

�

K(t, f (s)) dµ(t)− f (s)

∣∣∣∣
for s ∈ �. Since ρ is a monotone modular, we get

ρ[α(Tf − f )] ≤ ρ

[
2α
∫
�

p(t)‖L‖1ψ(t, |f (t + ·)− f (·)|) dµ(t)

]
+ ρ

[
2α

∣∣∣∣∫
�

K(t, f (·)) dµ(t)− f (·)
∣∣∣∣] .

Denoting by J1 the first term at the right-hand side of the last inequality, we have

ρ[α(Tf − f )] ≤ J1 + R. (3.6)
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By quasiconvexity of ρ, we obtain

J1 ≤ M

∫
�

p(t)ρ[2αM‖L‖1ψ(t, |f (t + ·)− f (·)|)] dµ(t).

Since {ρ,ψ, η} is a properly directed triple, so choosing, for a given λ ∈]0, 1[, a
number α such that 0 < 2αM‖L‖1 ≤ Cλ we obtain, for an arbitrary U ∈ �, the
inequality

J1 ≤ M

∫
U

p(t)η[λ(f (t + ·)− f (·))] dµ(t)

+M

∫
�\U

p(t)[η(2λf (t + ·))+ η(2λf (·))] dµ(t).

Since η[λ(f (t + ·)− f (·))] ≤ ωη(λf,U) for t ∈ U , we obtain

J1 ≤ Mωη(λf,U)+M

∫
�\U

p(t)[η(2λf (t + ·))+ η(2λf (·))] dµ(t).

By subboundedness of η we thus get

J1 ≤ Mωη(λf,U)+M

∫
�\U

p(t)[η(2λCf )+ ‖(‖∞ + η(2λf )] dµ(t)

≤ Mωη(λf,U)+M[2η(2λCf )+ ‖(‖∞]
∫
�\U

p(t) dµ(t).

The last inequality together with the inequality (3.6) implies (3.4). ��

We have now to estimate the remainder term R in (3.4), given by (3.5). We put

r(0) = sup
u�=0

∣∣∣∣1u
∫
�

K(t, u) dµ(t)− 1

∣∣∣∣ ,
r(k) = sup

1/k≤|u|≤k

∣∣∣∣1u
∫
�

K(t, u) dµ(t)− 1

∣∣∣∣ ,
for k = 1, 2, . . . Moreover, we denote for any function f ∈ L0(�)

Ak = {t ∈ � : |f (t)| > k}, Bk = {t ∈ � : |f (t)| < 1/k}, Ck = � \ (Ak ∪ Bk)

for k = 1, 2, . . . . There holds the following

Lemma 3.1. Let ρ be a monotone, J-quasiconvex with a constant M ≥ 1 modular on
L0(�) and let η be an arbitrary modular on L0(�). Let K be an (L,ψ)0-Lipschitz
Carathéodory kernel function such that {ρ,ψ, η} is a properly directed triple and
let the operator T be defined by (3.1). Finally, let 0 < λ < 1 and α be such that
0 < 16αM‖L‖1 ≤ Cλ. Then for an arbitrary set S ∈ � and function f ∈ L0

ρ+η(�)

there holds
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(a) R ≤ ρ(2αr(0)f ),

(b) for k = 1, 2, . . . ,

R ≤ M[η(λf χ�\S)+ η(λf χS∩Ak
)+ η(λf χS∩Bk

)]
+ [ρ(16αfχ�\S)+ ρ(16αfχS∩Ak

)+ ρ(16αfχS∩Bk
)]

+ ρ(8αr(k)f ),

where R is given by (3.5).

Proof. (a) immediately follows from the inequality R ≤ r(0)|f (s)|. In order to
prove (b), we apply the obvious inequality ρ(

∑n
j=1 fj ) ≤ ∑n

j=1 ρ(nfj ) with n = 4,
obtaining

R ≤ ρ

[
8α

∣∣∣∣∫
�

K(t, f (·)χ�\S(·)) dµ(t)− f (·)χ�\S(·)
∣∣∣∣]

+ ρ

[
8α

∣∣∣∣∫
�

K(t, f (·)χS∩Ak
(·)) dµ(t)− f (·)χS∩Ak

(·)
∣∣∣∣]

+ ρ

[
8α

∣∣∣∣∫
�

K(t, f (·)χS∩Bk
(·)) dµ(t)− f (·)χS∩Bk

(·)
∣∣∣∣]

+ ρ

[
8α

∣∣∣∣∫
�

K(t, f (·)χS∩Ck
(·)) dµ(t)− f (·)χS∩Ck

(·)
∣∣∣∣] .

Let P ∈ � be arbitrary. Applying the assumptions that K is (L,ψ)0-Lipschitz, ρ is
monotone, J-quasiconvex and the triple {ρ,ψ, η} is properly directed, we obtain

ρ

[
8α

∣∣∣∣∫
�

K(t, f (·)χP (·)) dµ(t)− f (·)χP (·)
∣∣∣∣]

≤ ρ

[
16α
∫
�

|K(t, f (·)χP (·))| dµ(t)

]
+ ρ(16αfχP )

≤ ρ

[∫
�

p(t)16α‖L‖1ψ(t, |f (·)|χP (·)) dµ(t)

]
+ ρ(16αfχP )

≤ M

∫
�

p(t)ρ[16αM‖L‖1ψ(t, |f (·)|χP (·)) dµ(t)+ ρ(16αfχP )

≤ Mη(λf χP )+ ρ(16αfχP ).

Applying the last inequality for P = �\S, P = S∩Ak , P = S∩Bk and the definition
of r(k), we obtain the inequality (b). ��

3.2 Convergence theorems

Theorem 3.2 and Lemma 3.1 will be the basis for an approximation theorem. We
shall approximate functions from a modular space L0

ρ+η(�) by means of families of
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integral operators Tw of the form

(Twf )(s) =
∫
�

Kw(t, f (t + s)) dµ(t), (3.7)

where Kw are kernel functions and w ∈ W . Here, W will be an infinite set of indices.
For the sake of simplicity we shall limit ourselves to the case when W is an infinite
subset of the interval [a,w0[, where a ∈ R and w0 ∈ R, w0 > a, or w0 = +∞, and
w0 is a point of accumulation of the set W . Convergence aw

w→ a0, where aw, a0 ∈ R,
w ∈ W , will mean that for every ε > 0 there exists a left neighbourhood Uε of w0,
equal to an interval ]w0− δ,w0[when w0 < +∞ and equal to a halfline [w1,+∞[ in
the case when w0 = +∞, such that |aw − a0| < ε for all w ∈ Uε ∩W . In case when
W = [a,w0[ and w0 < +∞ we get a0 = limw→w−0

aw, taking w0 = +∞ we obtain
a0 = limw→+∞ aw and taking W = IN = the set of positive integers, w0 = +∞, we
have a0 = limn→+∞ an. Let us remark that a necessary and sufficient condition in
order that aw

w→ a0 is that for any sequence (wn) such that wn ∈ W for n = 1, 2, . . .
and wn → w−0 as n → +∞ there holds awn → a0 as n → +∞. We may limit
ourselves here to increasing sequences (wn). At the end let us still remark that most
considerations below remain valid in the more general case when W is an abstract set
and convergence is meant in the sense of a filter of subsets of W . For some purposes
it is also needed that the convergence in the sense of the filter be countably generated.

A family of Carathéodory kernel functions K = (Kw)w∈W , is called a Carathéo-
dory kernel. Let L = (Lw)w∈W be a family of nonnegative functions Lw ∈ L1(�)

for w ∈ W . We say that the kernel K = (Kw)w∈W is (L, ψ)-Lipschitz, briefly
K ∈ (L, ψ)-Lip, if Kw ∈ (Lw,ψ)-Lip for w ∈ W and D = supw∈W ‖Lw‖1 < +∞.

Let U be a filter of subsets of � with a basis U0 ⊂ � (see (2.2)). We write

r(0)w = sup
u�=0

∣∣∣∣1u
∫
�

Kw(t, u) dµ(t)− 1

∣∣∣∣ ,
r(k)w = sup

1/k≤|u|≤k

∣∣∣∣1u
∫
�

Kw(t, u) dµ(t)− 1

∣∣∣∣
for w ∈ W and k = 1, 2, . . . We say that the kernel K is singular, if∫

�\U
pw(t) dµ(t)

w→ 0 for every U ∈ U0, (3.8)

Fk = supw∈W r
(k)
w < +∞ and r

(k)
w

w→ 0 for k = 1, 2, . . . If there hold (3.8),

F0 = supw∈W r
(0)
w < +∞ and r

(0)
w

w→ 0, then the kernel K is called strongly singular.
Obviously, a strongly singular kernel is singular.

Example 3.2. Let K = (Kw)w∈W consist of linear kernels, i.e. Kw(t, u) = K̃w(t)u.
Then

1

u

∫
�

Kw(t, u) dµ(t) = 1

u

∫
�

K̃w(t)u dµ(t) =
∫
�

K̃(t) dµ(t)
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for u �= 0 and w ∈ W . Thus, for an arbitrary k = 0, 1, 2, . . . the condition r
(k)
w

w→ 0
means that ∫

�

K̃w(t) dµ(t)
w→ 1.

This shows that in our case conditions (3.8) and r
(k)
w

w→ 0 are analogous to those
mentioned for Fejér kernel functions Kn in Section 3.1.

Let T = (Tw)w∈W be the family of operators defined by (3.7). The domain of
T is defined as Dom T = ⋂w∈W Dom Tw. We shall prove now the main theorem
concerning approximation of functions f ∈ L0

ρ+η(�) ∩ Dom T by operators of the
form (3.7).

Theorem 3.3. Let {�,U, �,µ} be a correctly filtered system and let+ : �×�→ �

be a commutative operation in �. Let ρ be a monotone, J-quasiconvex with a constant
M ≥ 1 modular on L0(�) and let η be a monotone, bounded with respect to the
operation +, absolutely finite and absolutely continuous modular on L0(�). Let K

be a singular Carathéodory (L, ψ)-Lipschitz kernel such that {ρ,ψ, η} is a properly
directed triple and let us suppose that one of the following two conditions holds:

(1) K is strongly singular,

(2) ρ is finite and absolutely continuous.

Then for every f ∈ L0
ρ+η(�) ∩ Dom T there exists an α > 0 such that

ρ[α(Twf − f )] w→ 0.

Proof. Let U ∈�, 0 <λ< 1 and 0 < α < Cλ(2MD)−1, where D = supw∈W ‖Lw‖1.
Let us write

Rw = ρ

[
2α

∣∣∣∣∫
�

Kw(t, f (·)) dµ(t)− f (·)
∣∣∣∣] for w ∈ W.

By Theorem 3.2, we have

ρ[α(Twf − f )] ≤ Mωη(λf,U)+M[2η(2λCf )

+ ‖(‖∞]
∫
�\U

pw(t) dµ(t)+ Rw

for w ∈ W . Let ε be an arbitrary positive number. Since η is a monotone, bounded,
absolutely finite and absolutely continuous modular on L0(�), {�,U, �,µ} is a

correctly filtered system andf ∈ L0
η(�), by Theorem 2.4 there holdsωη(λf,U)

U−−→ 0
for sufficiently smallλ > 0, and we may assume thatλ < 1. Moreover, we may choose
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λ so small that η(2λCf ) < +∞, because f ∈ L0
η(�). Let us fix a set U ∈ U0 such

that Mωη(λf,U) < ε/4. By (3.8), we have∫
�\U

pw(t) dµ(t)
w→ 0,

hence there exists a w1 ∈ W such that

M[2η(2λCf )+ ‖(‖∞]
∫
�\U

pw(t) dµ(t) < ε/4

for w ∈ [w1, w0[. Consequently, we obtain

ρ[α(Twf − f )] < ε

2
+ Rw (3.9)

for sufficiently small λ > 0 and α > 0 and w ∈ [w1, w0[. What remains is to show
that Rw

w→ 0.
First, we prove this under the assumption (1). By Lemma 3.1 (a), there holds

Rw ≤ ρ(2αr(0)w f ) for w ∈ W . By the assumption of strong singularity of K, there
holds r

(0)
w

w→ 0. Since f ∈ L0
ρ(�), we have ρ(δf ) → 0 as δ → 0+, whence there

is a δ0 > 0 such that if 0 < δ ≤ δ0, then ρ(δf ) < ε/2. Now, we take a w2 ∈ W ,
w2 > w1, such that 2αr(0)w ≤ δ0 for w ∈ [w2, w0[. Then Rw ≤ ρ(2αr(0)w f ) < ε/2
for w ∈ [w2, w0[, w ∈ W . Consequently, Rw

w→ 0 and ρ[α(Twf − f )] < ε for
w ∈ [w2, w0[, w ∈ W . Thus ρ[α(Twf − f )] w→ 0.

The situation in the case of the assumption (2) is a little more complicated. Again,
by (3.9) we have to show that Rw

w→ 0, applying the estimation (b) from Lemma
3.1 with Rw in place of R. Let S ∈ � be an arbitrary subset of finite measure of �.
Since A1 ⊃ A2 ⊃ · · · , we have S ∩ A1 ⊃ S ∩ A2 ⊃ . . . and µ(S ∩ A1) < +∞.
Hence limk→+∞ µ(S ∩ Ak) = µ(S ∩⋂∞k=1 Ak). But by f ∈ L0(�), there is a set
�0 ⊂ �, �0 ∈ � of measure µ(�0) = 0 such that |f (t)| < +∞ for t ∈ � \ �0.
From the inclusion

⋂∞
k=1(S ∩ Ak) ⊂ �0 we deduce that limk→+∞ µ(S ∩ Ak) = 0.

Now, applying absolute continuity of both η and ρ we may choose a set S of finite
measure and constants λ > 0 and α > 0 so small that

Mη(λf χ�\S)+ ρ(16αfχ�\S) < ε/12. (3.10)

Keeping S fixed, we may find an index k0 such that

Mη(λf χS∩Ak
)+ ρ(16αfχS∩Ak

) < ε/12 (3.11)

for all k ≥ k0. We also have

Mη(λf χS∩Bk
)+ ρ(16αfχS∩Bk

) ≤ Mη

(
λ

k
χS

)
+ ρ

(
16α

k
χS

)
.
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Sinceη andρ are finite, the right-hand side of the last inequality tends to 0 as k →+∞.
Hence one may fix an index k ≥ k0 such that

η

(
λ

k
χS

)
< ε/24 and ρ

(
16α

k
χS

)
< ε/24.

Consequently, we have for this fixed index k the inequality

Mη(λf χS∩Bk
)+ ρ(16αfχS∩Bk

) < ε/12.

Inserting the last estimation and (3.10) and (3.11) in the inequality (b) from Lemma
3.1, we obtain the inequality

Rw ≤ ε

4
+ ρ(8αr(k)w f ) (3.12)

for w ∈ W and for the above fixed index k. Repeating the argument used in the case
(1) to the second term of the above inequality we easily obtain the relation

ρ(8αr(k)w f )
w→ 0.

Hence there exists a w3 ∈ W , w3 > w2, w3 ∈ [w2, w0[ such that

ρ(8αr(k)w f ) <
ε

4

for w ∈ [w3, w0[, w ∈ W . By the inequality (3.12), we have Rw < ε/2 for such w.
Thus, applying the inequalities (3.9) and (3.12), we obtain

ρ(α(Twf − f )) < ε

for w ∈ [w3, w0[, w ∈ W . Consequently

ρ(α(Twf − f ))
w→ 0. ��

3.3 Examples

The second part of the assumption of singularity of a kernel K, stating that r(k)w
w→ 0,

may be interpreted as a statement that Kw(t, u) behaves nearly as u for w sufficiently
near to w0. Following this way of argument one could try to conclude that if Kw

satisfy a generalized Lipschitz condition with a function ψ(t, u), then ψ as a function
of u should also behave nearly as u, i.e. the generalized Lipschitz condition is nearly
a usual Lipschitz condition with power 1. The next example shows that this kind of
argumentation is wrong.



3.3 Examples 43

Example 3.3. LetW = N = the set of positive integers, w0 = +∞, and let (�,�,µ)

be a measure space and let U be a filter of subsets of �, with a basis U0 ⊂ �. Let
0 < Ln ∈ L1(�) for n = 1, 2, . . . be such that ‖Ln‖1 → 1 and

∫
�\U Ln(t) dµ(t)→

0 as n → +∞ for every U ∈ U0 (for example, as Ln we may take the Fejér kernel
functions, with � = [−π, π ] endowed with the Lebesgue measure). Let L = (Ln)

∞
n=1

and let Hn : R+0 → R
+
0 be defined by

Hn(u) =
{

1

n

(
u− k

n

)}1/2

+ k

n
for u ∈

[
k

n
,
k + 1

n

[
, k = 0, 1, 2, . . .

and let us extend Hn(u) to the whole R on putting Hn(u) = −Hn(−u) for u < 0,
where n = 1, 2, . . . Let Kn(t, u) = Ln(t)Hn(u) for t ∈ �, u ∈ R, n = 1, 2, . . . .
It is easily seen that K = (Kn)

∞
n=1 is an (L, ψ)- Lipschitz Carathéodory kernel with

ψ(t, u) = √
u for t ∈ �, u ≥ 0, but does not satisfy a Lipschitz condition with

ψ(t, u) = u. Moreover,
∫
�
Kn(t, u) dµ(t) converges as n→+∞ to u uniformly on

every interval [a, b[⊂ R
+, where 0 < a < b ∈ R̃. Hence one may deduce easily that

K is singular.

Example 3.4. In a similar manner as in Example 3.3 one can also define a strongly
singular kernel. For example we modify the definition of Hn(u) from Example 3.3
near the point u = 0 in such a way that∣∣∣∣Hn(u)

u
− 1

∣∣∣∣ ≤ 1

n
for 0 < u ≤ 1

n
.

Now we conclude the section with further examples.

Example 3.5. Let � = [0, 1] ⊂ R with Lebesgue measure and let us interpret the
operation + as usual multiplication. Let wr : [0, 1] → R

+
0 for r ∈ R

+ =]0,+∞[,
with r0 = +∞. Let us suppose that∫ 1

0
wr(t) dt = 1 for every r ∈ R

+,∫ 1−δ

0
wr(t) dt → 0 as r →+∞

for every δ ∈]0, 1/2[. We take (see Example 2.5 (b)) U0 = {[1− δ, 1] : δ ∈]0, 1/2[}
as a basis of a filter U. Operators Tr defined by

(Trf )(s) =
∫ 1

0
wr(t)f (ts) dt, r ∈ R

+

are called average operators or moment operators.
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Example 3.6. Let � = [0,+∞[= R
+
0 be equipped with the operation of usual ad-

dition + and let � be the σ -algebra of all Lebesgue measurable subsets of � and let
g : � → R

+
0 be a locally integrable function. We put µ(A) = ∫

A
g(t) dt for an

arbitrary set A ∈ �. Obviously, µ is a σ -finite measure on �. Let U be the filter of
all right-neighbourhoods of zero in �. A basis U0 of U consisting of �-measurable
sets may be defined e.g. by U0 = {[0, 1/n) : n = 1, 2, . . . }. Then (�,U, �,µ)

is a correctly filtered system, and a family of convolution-type operators (Tw)w∈W is
defined by

(Twf )(s) =
∫ +∞

0
Kw(t, f (t + s)) dµ(t).

Example 3.7. Let � = N0 = {0, 1, 2, . . . }, � = 2� and let µ be the counting
measure on N0. Now, the function f is a sequence (ti)

∞
i=0. Let ρ(f ) =∑∞

i=0 |ti | for
any f and let η be a modular on �. As U we can take the family of complements
of finite (or empty) sets (see Example 2.5 (c)). For w ∈ W we may define operators
Twf = ((Twf )j )

∞
j=0, of the form

(Twf )j =
∞∑
i=0

Kw,i(ti+j ),

with Kw,i : R → R. Singularity of the kernel K defined by the kernel functions
Kw : N0 × R → R means that

sup
1/k≤|u|≤k

∣∣∣1
u

∞∑
i=0

Kw,i(u)− 1
∣∣∣ w→ 0,

for k = 1, 2, . . . , and pw,i
w→ 0 for every i = 0, 1, 2 . . . , where

pw,i = Lw,i

[ ∞∑
i=1

Lw,i

]−1

are the normalized functions Lw given in the Lipschitz condition of Kw.

3.4 Rates of modular approximation in modular
Lipschitz classes

Let {�,�,µ} be a (Hausdorff topological) measure space with a σ -finite, complete
measure, + : � × � → � is a commutative operation with unity θ . Let U be the
filter of neighbourhoods of θ . As before we will suppose that U contains a base U0
of measurable subsets of �.

Let ρ, η be two modulars on L0(�) and let L0
ρ(�), L0

η(�) be the modular spaces
generated by ρ and η, respectively.
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Let T be the class of measurable functions τ : �→ R
+
0 such that τ(t) > 0, t ∈ �,

t �= θ . For a given τ ∈ T , we define the subspace Lipτ (ρ) of L0
ρ by

Lipτ (ρ)={f ∈ L0
ρ(�) : there is α > 0 with ρ[α|f (·+t)−f (·)|] = O(τ (t)), t → θ},

where, for any two functions f, g ∈ L0(�), f (t) = O(g(t)), t → θ , means that there
is a constant B > 0 and U ∈ U0 such that |f (t)| ≤ B|g(t)| for t ∈ U .

Analogously we define the class Lipτ (η). We call these classes modular Lipschitz
classes.

Example 3.8. Let ρ(f ) = ‖f ‖p, the Lp-norm of a function f ∈ Lp(�), p ≥ 1.
Then we have

Lipτ (ρ) = {f ∈ L0
ρ(�) : ‖f (· + t)− f (·)‖p = O(τ (t)), t → θ}.

In particular if � = R with Lebesgue measure and τ(t) = tα , with α > 0, we obtain
the classical Zygmund classes for Lp-spaces.

We will obtain some results about the rates of modular approximation of a family
of nonlinear integral operators, whose kernels satisfy an (L,ψ)- Lipschitz condition.

Let ψ ∈ M be a given function (see Section 3.1) and let W ⊂ R be a set of indices,
as in Section 3.2, and {Kw}w∈W a (L, ψ)-Lipschitz Carathéodory kernel. Let N be
the class of all functions ξ : W → R

+ such that ξ(w)→ 0 as w → w−0 .
For a given ξ ∈ N, we will say that (Kw)w∈W is strongly ξ -singular if

(i) for every U ∈ U0, we have∫
�\U

pw(t) dµ(t) = O(ξ(w)), w → w−0 ,

(ii) F0 = supw∈W r
(0)
w < +∞, and r

(0)
w = O(ξ(w)), w → w−0 .

For the given kernel (Kw)w∈W we denote by T = (Tw)w∈W the family of integral
operators

(Twf )(s) =
∫
�

Kw(t, f (s + t)) dµ(t), s ∈ �,

for f ∈ Dom T.
We have the following

Theorem 3.4. Let τ ∈ T and ξ ∈ N be fixed. Let ρ be a monotone, quasiconvex and
J -quasiconvex with a constant M ≥ 1 modular on L0(�), and η be a monotone and
subbounded modular on L0(�), such that the triple {ρ,ψ, η} is properly directed.
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Let {Kw} be a ξ -strongly singular, (L, ψ)-Lipschitz Carathéodory kernel and f ∈
Lipτ (η) ∩ L0

ρ . Let us suppose that there is U ∈ U0 such that∫
U

pw(t)τ (t) dµ(t) = O(ξ(w)), w → w−0 . (3.13)

Then for sufficiently small a > 0,

ρ[a(Twf − f )] = O(ξ(w)), w → w−0 .

Proof. For f ∈ Lipτ (η) let α > 0, U ∈ U0, and R ≥ 0, be such that

η[α|f (t + ·)− f (·)|] ≤ Rτ(t),

for every t ∈ U . Let R′ ≥ 0 be such that

r(0)w ≤ R′ξ(w),

for w ∈ W , sufficiently near w0. Let λ > 0 be such that η(2λCf ) < +∞, where C

is the constant from the subboundedness of η, and λ < α. Let a > 0 be such that
2aDM ≤ Cλ, where D = supw∈W ‖Lw‖1, M is the constant of the J-quasiconvexity
of ρ and Cλ is the constant of the definition of properly directed triple, and such that
ρ[2aMR′f ] < +∞. We have

ρ[a(Twf − f )] ≤ ρ

[
2a
∫
�

|Kw(t, f (t + ·))−Kw(t, f (·))| dµ(t)

]
+ ρ

[
2a

∣∣∣∣∫
�

Kw(t, f (·)) dµ(t)− f (·)
∣∣∣∣] = J1 + J2.

We now evaluate J1. From the J-quasiconvexity of ρ, the choice of a > 0 and the
assumption on the triple {ρ,ψ, η}, we have

J1 ≤ M

∫
�

pw(t)η[λ|f (t + ·)− f (·)|] dµ(t)

= M

{∫
U

+
∫
�\U

}
pw(t)η[λ|f (t + ·)− f (·)|] dµ(t) = J 1

1 + J 2
1 .

If we choose U in such a way that (3.13) holds, and taking into account that λ < α,
we have

J 1
1 ≤ MR

∫
U

pw(t)τ (t) dµ(t) = O(ξ(w)), w → w−0 ,

and from the subboundedness of η, we obtain

J 2
1 ≤ M{‖(‖∞ + 2η[2λCf ]}

∫
�\U

pw(t) dµ(t) = O(ξ(w)), w → w−0 .
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Next, we consider J2. For every w, sufficiently near w0, we have

J2 ≤ ρ[2aR′ξ(w)f ].
Now, since ξ(w)

w→ 0, we have that ξ(w) < 1 for w ∈ W , sufficiently near w0. Thus,
by quasiconvexity of ρ, we finally deduce

J2 ≤ Mξ(w)ρ[2aMR′f ] = O(ξ(w)), w → w−0 .

The assertion is now proved. ��

Example 3.9. Let � = R with Lebesgue measure. We recall that given a function
L : R → R, L ∈ L1(R), the α-absolute moment of L is defined by the integral

να =
∫

R

|t |α|L(t)| dt,

if it is finite. The assumption (3.13) is linked to the existence of moments. Indeed,
let W = [1,+∞[, and w0 = +∞ and let us suppose that the functions (pw)w are of
type

pw(t) = wL(wt),

for every w ∈ W , where L : R → R
+
0 is a fixed Lebesgue integrable function, with

‖L‖1 = 1. Let us take τ(t) = |t |α , and ξ(w) = w−α , for α > 0. Then if να < +∞,
(3.13) holds. Indeed, for U =] − δ, δ[ we have

wα

∫
U

wL(wt)|t |α dt =
∫ δw

−δw

L(z)|z|α dz ≤ να < +∞,

that is the assertion.

3.5 Nonlinear perturbations of linear integral operators

In this section we apply the methods developed in this chapter to approximation
properties of a family of nonlinear operators given by the sum of a linear integral
operator and a nonlinear perturbation, generated by a Carathéodory kernel function
(the perturbating kernel).

Let {�,U, �,µ} be a correctly filtered system, with respect to a commutative
operation +, and let U0 be a basis of the filter U with U0 ⊂ �.

We will consider integral operators of the form

(Tf )(s) = (K̃ ∗ f )(s)+ (Pf )(s), (3.14)

where

(K̃ ∗ f )(s) =
∫
�

K̃(t)f (s + t) dµ(t)
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and

(Pf )(s) =
∫
�

k(t, f (t + s)) dµ(t)

for f ∈ L0(�) belonging to some modular function spaces. We suppose that K̃ :
� → R, belongs to L1(�), and ‖K̃‖1 > 0, and moreover k : � × R → R is
a Carathéodory kernel function (see Section 1.1). We will call K̃ the linear kernel
function and k the perturbating kernel function. We will assume a (L,ψ)0-Lipschitz
condition on k, where ψ : � × R

+
0 → R

+
0 belongs to the class M (see Section 3.1),

and L : � → R
+
0 is a function in L1(�), with ‖L‖1 > 0. As before, we will put

p(t) = L(t)/‖L‖1.
We begin with the following embedding theorem.

Theorem 3.5. Let ρ, η be two J-quasiconvex with the same constant M ≥ 1 modulars
on L0(�), subbounded with constants C′, C′′ and functions (, (′ respectively. Let the
perturbating kernel function k be (L,ψ)0-Lipschitz with L ∈ L1(�). Suppose that
{ρ,ψ, η} is a properly directed triple, and the operator T be defined by (3.14). Let
0 < λ < 1 and let 0 < α ≤ (1/2)min(λ/(M‖K̃‖1), Cλ/(M‖L‖1)). Then for every
function f ∈ L0

ρ+η(�) ∩ Dom T there holds the inequality

ρ(αTf ) ≤ M[ρ(λC′f )+ η(λC′′f )+ ‖(‖∞ + ‖(′‖∞].

Proof. Since ρ is monotone, J-quasiconvex with constant M ≥ 1, and subbounded,
and α > 0 is such that 2αM‖K̃‖1 ≤ λ with 0 < λ < 1, we obtain

ρ(2α(K̃ ∗ f )) ≤ M

‖K̃‖1

∫
�

K̃(t)ρ(λ|f (t + ·)|) dµ(t)

≤ M[ρ(λC′f )+ ‖(‖∞].
Since k is (L,ψ)0-Lipschitz, the triple {ρ,ψ, η} is properly directed, and α is taken
such that 2αM‖L‖1 ≤ Cλ, we get, again by J-quasiconvexity of ρ with constant
M ≥ 1 and by subboundedness of η,

ρ(2α(Pf )) ≤ M

‖L‖1

∫
�

L(t)η(λf (t + ·)) dµ(t)

≤ M[η(λC′′f )+ ‖(′‖∞].
We get finally

ρ(αTf ) ≤ ρ(2α((K̃ ∗ f ))+ ρ(2α(Pf ))

≤ M[ρ(λC′f )+ η(λC′′f )+ ‖(‖∞ + ‖(′‖∞]. ��

As a corollary we may conclude immediately
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Corollary 3.2. Under the assumptions of Theorem 3.5, T maps L0
ρ+η(�) ∩ Dom T

into L0
ρ(�). If moreover ρ and η are strongly subbounded, if fn ∈ L0

ρ+η(�)∩Dom T

and fn
ρ+η−−→ 0, then Tfn

ρ→ 0.

Next we will estimate the error of modular approximation of f by Tf (compare
with Theorem 3.2).

Theorem 3.6. Let ρ be a monotone modular on L0(�), J-quasiconvex with constant
M ≥ 1, subbounded with constant C′ and function ( and let η be a subbounded
modular on L0(�) with constant C′′ and function (′. Let the linear kernel function
K̃ be non-negative and let the perturbating kernel function k be (L,ψ)0-Lipschitz.
Moreover, let {ρ,ψ, η} be a properly directed triple. Let 0 < λ < 1, 2αM‖L‖1 ≤ Cλ,
U ∈ U0 and f ∈ L0

ρ+η(�) ∩ Dom T . Then there holds the inequality

ρ(α(Tf − f )) ≤ Mωρ(4αM‖K̃‖1f,U)+ 2M[ρ(8αC′M‖K̃‖1f )

+ 1

2
‖(‖∞]

∫
�\U

K̃(t)

‖K̃‖1
dµ(t)+M[η(λC′′f )+ ‖(′χU‖∞

+ ‖(′‖∞
∫
�\U

p(t) dµ(t)] + ρ[4α(‖K̃‖1 − 1)f ].
(3.15)

Proof. For every α we have

ρ(α(Tf − f )) ≤ ρ[2α(K̃ ∗ f − f )] + ρ[2α(Pf )]. (3.16)

Applying the identity

(K̃ ∗ f − f )(s) =
∫
�

K̃(t)(f (t + s)− f (s)) dµ(t)+ (‖K̃‖1 − 1)f (s),

by monotonicity of ρ we obtain

ρ[2α(K̃ ∗ f − f )] ≤ J1 + J2, (3.17)

where

J1 = ρ(4α
∫
�

K̃(t)(f (t + ·)− f (·)) dµ(t)), J2 = ρ(4α(‖K̃‖1 − 1)f ). (3.18)

Now following essentially the same methods used in Theorems 3.2 and 3.5, we have,
by J-quasiconvexity with constant M ≥ 1 and subboundedness of ρ (the details are
left to the reader)

J1 ≤ Mωρ(4αM‖K̃‖1f,U)

+ 2M[ρ(8αC′M‖K̃‖1f )+ 1

2
‖(‖∞]

∫
�\U

K̃(t)

‖K̃‖1
dµ(t).

(3.19)
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Moreover, since ρ is monotone and J-quasiconvex, the perturbating kernel is (L,ψ)0-
Lipschitz, {ρ,ψ, η} is a properly directed triple and η is subbounded, we obtain for
U ∈ U0, 0 < λ < 1 and 0 < 2αM‖L‖1 ≤ Cλ

ρ(2α(Pf )) ≤ M[η(λC′′f )+
∫
U

p(t)(′(t) dµ(t)+
∫
�\U

p(t)(′(t) dµ(t)]

≤ M

[
η(λC′′f )+ ‖(′χU‖∞ + ‖(′‖∞

∫
�\U

p(t) dµ(t)

]
.

Taking together the last inequality and inequalities (3.16), (3.17), (3.18) and (3.19)
we obtain (3.15). ��

Finally, we take a family T = (Tw)w∈W of operators Tw of the form (3.14), where
W is a subset of R, as in Section 3.2, and let w0 a point of accumulation of W . Thus
we have

(Twf )(s) = (K̃w ∗ f )(s)+ (Pwf )(s)

for µ- a.e. s ∈ � (the exceptional set of measure zero is supposed independent of the
index w). The family of functions K̃w : �→ R

+
0 , K̃ = (K̃w)w∈W , is called a linear

kernel, and the family K = (kw)w∈W is called a perturbating kernel. The domain
Dom T of T is defined in Section 3.2, i.e. Dom T = ⋂w∈W Dom Tw. The definition
of an (L, ψ)0-Lipschitz kernel K for a family of non-negative functions Lw ∈ L1(�)

is that introduced in Section 3.2.
We say that the linear kernel K̃ is singular if the following two conditions hold:

(1) for every U ∈ U0 we have

1

‖K̃w‖1

∫
�\U

K̃w(t) dµ(t)
w→ 0,

(b) the set {‖K̃‖1 : w ∈ W } is bounded and

‖K̃w‖1
w→ 1.

For the perturbating kernel K we do not need the singularity, but we simply assume
that the family {‖Lw‖1 : w ∈ W } is bounded and for any U ∈ U0 we have

1

‖Lw‖1

∫
�\U

Lw(t) dµ(t)
w→ 0. (3.20)

Now we formulate a theorem concerning ρ-convergence Twf
w→ f .

Theorem 3.7. Let ρ be a J-quasiconvex with a constant M ≥ 1, monotone, absolutely
finite, absolutely continuous, bounded modular onL0(�). Letη be a bounded modular
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onL0(�). Let K̃ = (K̃w)w∈W be a singular linear kernel, whereKw(t) ≥ 0 for t ∈ �,
and let K = (kw)w∈W be an (L, ψ)0-Lipschitz perturbating kernel such that (3.20) is
satisfied. Let {ρ,ψ, η} be a properly directed triple and let f ∈ L0

ρ+η(�) ∩ Dom T.
Then there exists a λ > 0 such that

ρ[λ(Twf − f )] w→ 0.

Proof. The proof may be worked with the same arguments used in Theorem 3.3, using
now the inequality of Theorem 3.6. The details are left to the reader. ��

3.6 Bibliographical notes

Example 3.1 shows the background of the idea of convolution-type nonlinear integral
operator, namely some concrete linear integral operators used in classical approxima-
tion by trigonometric polynomials (see e.g. [67], compare also [157]). In the general
case, linearity of the kernel function K(t, u) with respect to the variable u ∈ R is
replaced by an (L,ψ)-Lipschitz condition with respect to u, expressed by the in-
equality (3.2); this condition plays a key role in results presented in this book. In case
we are not interested in approximation, but in embedding-type inequalities only, the
(L,ψ)-Lipschitz condition may be replaced by the weaker (L,ψ)0-Lipschitz condi-
tion, defined by means of the inequality (3.3). In earlier results (see [154], [155])
the (L,ψ)-Lipschitz condition was taken in a strong form, namely with the function
ψ(u) = |u|, i.e. a usual Lipschitz condition. This was replaced by an arbitrary
increasing, concave function ψ with ψ(0) = 0 (see [156]). Further progress was
obtained in [17], where ψ is supposed to be of the form ψ(t, u), as in the inequalities
(3.2) and (3.3) (see also [158]). A study of functions in metric spaces may be found
in [172].

Theorem 3.1 concerning some embedding-type inequality was first given in [19] as
Proposition 1. Theorem 3.2 and Lemma 3.1 are theorems on modular approximation
of f by means of Tf , where Tf is given by the convolution-type operator (3.1) and
give estimates of the error of approximation. The first version of these results was
obtained already in [155], with estimation of the remainder term R as in Lemma
3.1 (a). The estimation of R of the form as in Lemma 3.1 (b) was obtained first in [19].
Theorem 3.2 was extended to the case of vector-valued functions in [23].

Families of linear integral operators of the form (3.7) were first investigated in
[150] in the case when W = N = the set of positive integers. These investigations
were generalized in [151] to the case whenW is an arbitrary filtered set of indices. This
degree of generality was also maintained in [152] by considering the approximation
by families of nonlinear integral operators, and in subsequent papers, as [155], [19]
and [22]. Since in applications it suffices to consider the special kind of the set W with
its natural convergence, presented in 3.2, we limit ourselves in this book to the case
when W is an infinite subset of an interval [a,w0[⊂ R, w0 being an accumulation
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point of W , w0 finite or +∞. There is no problem with generalization of theorems
presented here to the case of an abstract filtered set W of indices.

The aim of Section 3.2 is to obtain sufficient conditions in order that the right-hand
side of the inequality (3.4), i.e. the error of modular approximation of f by means
of Twf with K replaced by Kw, converges to zero as w → w0. Analogously as in
the case of approximation by linear integral operators, this requires the notions of
singularity or strong singularity of the kernel K = (Kw)w∈W ( a family of kernel
functions), as defined just before Example 3.2. A singular kernel K was defined and
applied in [19] and a strongly singular kernel in [155]. The fundamental Theorem 3.3
was given in [19] as Theorem 2. Examples 3.3–3.4, which show that the assumption of
singularity or strong singularity are not contradictory with (L,ψ)-Lipschitz condition
with a function ψ such that u−1ψ(t, u)→+∞ as u→ 0+, may be found in [22].

The notion of rates of convergence of approximation was developed by P. L. Butzer
in various classical papers (see the monograph [67]), with respect to various kinds of
convergence (pointwise, uniform or in Lp-norm). A fundamental tool for this theory
is given by Lipschitz classes of functions. For pointwise or uniform convergence they
are based on the classical Hölder condition of functions, while in Lp-spaces they are
defined by means the Zygmund conditions.

The theory of the degree of approximation for linear integral operators, takes its
origin from the study of the rapidity of convergence of Fourier series, (see the classical
papers by Hardy and Littlewood [115], Bernstein [45]) and in the determination of
the saturation classes in the theory of approximation (see e.g. [51], [56]). For a wide
bibliography on this subject see [67]. More recent contributions in this direction were
given in [47], [180], [181], [9], for uniform or pointwise approximation. Finally, it is
important to mention here a series of papers by P. L. Butzer and his school on the use
of the Banach–Steinhaus principle in the study of the rate of approximation for linear
operators (see e.g. [54], [89], [90]).

Based on the definition of the classical Zygmund class of Lp-functions, the notion
of modular Lipschitz class Lipτ (ρ) was introduced in [38], (see Section 3.4), and a
result for linear integral operators of convolution type was given.

For families of nonlinear operators first results in this direction were given again
in [38] in the case when the function f belongs to modular Lipschitz classes. The
results in Section 3.4 were given in [38].

In Section 3.5 we consider the case when the nonlinear integral operator T is a sum
of a linear operator defined by means of a linear kernel function K̃ and a nonlinear
operator generated by a perturbating kernel function k. Theorems 3.5, 3.6 and 3.7 are
analogous of Theorem 3.1, 3.2, and 3.3, respectively (see [162]).



Chapter 4

Urysohn integral operators with homogeneous
kernel functions. Applications to nonlinear

Mellin-type convolution operators

4.1 General concepts of homogeneity
and Lipschitz conditions

Throughout this chapter, � will be a locally compact (and σ -compact) topological
group G, provided with its (regular) Haar measure, denoted by µ. Here, for the sake
of simplicity, we suppose G abelian. Let θ be the neutral element of G and U a
base of measurable neighbourhoods of θ ∈ G. Let X = L0(G), the space of all the
measurable functions f : G→ R̃, finite a.e. in G.

Let ρ be a monotone modular on L0(G), and let L0
ρ(G) be the corresponding

modular space.
Let ζ : G→ R

+ and L : G×G→ R
+
0 be measurable functions.

We say that L is ζ -subhomogeneous if there is a constant R ≥ 1 such that

ζ(t)L(s + v, t + v) ≤ Rζ(t + v)L(s, t),

for every s, t, v ∈ G.
We denote by Lζ the class of all the ζ -subhomogeneous functions L.
If L is ζ -subhomogeneous with R = 1, it is easy to see that we have now

ζ(t)L(s + v, t + v) = ζ(t + v)L(s, t),

for every s, t, v ∈ G. In this case we say that L is ζ -homogeneous and we will denote
by L̃ζ the class of all ζ -homogeneous functions L.

Example 4.1. (a) Let G = (R+, ·) be the multiplicative group of positive real num-
bers. If L : R

+ × R
+ → R

+
0 is homogeneous of degree α ∈ R, with respect to

(s, t) ∈ R
+×R

+, then L is ζ -homogeneous with ζ(t) = tα, t ∈ R
+. In particular we

can take the modified moment kernels defined, for any positive integers n = 1, 2, . . . ,
by

Kn(s, t) = (n+ 1)
tn+1

sβ+n+1 χ]0,s[(t),

for a fixed β ∈ R. This function is homogeneous of degree−β. For β = 0, we obtain
the classical moment operators.
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(b) Let G = (R,+) be the additive line group. If L(s, t) = H(s − t), with
H measurable, then L is homogeneous of degree 0, and this implies that L is ζ -
homogeneous with ζ(t) = 1, for every t ∈ G.

(c) Let G = (RN+ , •), where R
N+ = (]0,+∞[)N and for x = (x1, . . . , xN),

y = (y1, . . . , yN) ∈ R
N+ , we define x•y = (x1y1, . . . , xNyN). Thus G is a locally

compact topological abelian group, with neutral element θ = 1 = (1, . . . , 1), and for
x = (x1, . . . , xN) the inverse of x is given by x−1 = (x−1

1 , . . . , x−1
N ).

Putting for every x ∈ R
N+ , x = (x1, . . . , xN), 〈x〉 = ∏N

k=1 xk , the Haar measure
µ on G is given (up to multiplicative factors), by

dµ(x) = dx

〈x〉 ,

where dx is the usual Lebesgue measure.
Let α = (α1, . . . , αN) be a fixed multi-index. Denoting xα = (x

α1
1 , . . . x

αN

N ), for
x = (x1, . . . , xN), we say that a measurable function L : G×G→ R is homogeneous
of degree α if

L(xv, yv) = 〈vα〉L(x, y),

for everyx, y, v ∈ R
N+ . Then putting ζ(v) = 〈vα〉, we obtain a class of ζ -homogeneous

functions. A simple example is given by the “box” functions of type

L(x, y) = L1(x1, y1)L2(x2, y2) . . . LN(xN, yN),

for x, y ∈ R
N+ , where Lj is αj -homogeneous with respect (xj , yj ), j = 1, . . . , N .

(d) For G = (R+, ·) let ξ : G → R
+ be a measurable function. Let H :

G × G → R
+
0 be a measurable function homogeneous of degree α ∈ R. Then the

kernel K(s, t) = ξ(t)H(s, t) is ζ -homogeneous with respect to ζ(t) = tαξ(t).

(e) Let G = (Z,+) be the additive group of integers, and let F : R+ × R
+ → R

be a measurable function which is homogeneous of degree α ∈ R. For a fixed positive
constant T > 0, let us define the function L : G×G→ R given by

L(m, n) = F(em/T , en/T ), m, n ∈ Z.

Then it is easy to show thatL is homogeneous with respect to the function ζ : Z → R
+

defined by ζ(k) = exp(kα/T ), k ∈ Z.

Let K : G×G×R → R be a measurable function. We will say that K is (L, 1)-
Lipschitz if there is a non-negative measurable function L : G×G→ R

+
0 such that

|K(s, t, u)−K(s, t, v)| ≤ L(s, t)|u− v|,
for every (s, t) ∈ G×G and u, v ∈ R.

Let now M ′ be the class of all the functions ψ : G × R
+
0 → R

+
0 such that the

following assumptions hold (compare with Sections 1.4, 3.1):
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(1) ψ(t, ·) is a continuous, nondecreasing function, for every t ∈ G,

(2) ψ(t, 0) = 0, ψ(t, u) > 0, for u > 0 and for every t ∈ G,

(3) ψ is τ -bounded, i.e., there are two constants E1, E2 ≥ 1 and a measurable
function F : G×G→ R

+
0 such that

ψ(s + z, u) ≤ E1ψ(z,E2u)+ F(s, z),

for every u ∈ R
+
0 , s, z ∈ G.

Note that if ψ(t, u) = ψ(u), i.e. ψ is independent of the parameter t ∈ G, then
(3) is obviously satisfied with E1 = E2 = 1 and F ≡ 0.

According to the definition given in Section 3.1, we say that K is (L,ψ)-Lipschitz
if there is a non- negative measurable function L : G×G→ R

+
0 such that

|K(s, t, u)−K(s, t, v)| ≤ L(s, t)ψ(t, |u− v|),

for every (s, t) ∈ G×G and u, v ∈ R.

We will denote by K1
ζ the class of all the measurable functions

K : G×G× R → R

such that

(i) K(s, t, 0) = 0,

(ii) K is an (L, 1)-Lipschitz function, where L satisfies the following assumptions:

(a) L ∈ Lζ ,

(b) the functions L(θ, ·) and ((·) ≡ (ζ(·))−1L(θ, ·) belong to L1(G) and
0 < ‖(‖1.

Analogously we define the class K
ψ
ζ , for a fixed ψ ∈ M ′. In this case the function

K satisfies an (L,ψ)-Lipschitz condition, with L satisfying (a) and (b). We simply
denote by Kζ one of the classes K1

ζ , K
ψ
ζ . When the function L is ζ -homogeneous

(i.e., R = 1), we will write K ∈ K̃1
ζ , K̃

ψ
ζ .
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For K ∈Kζ , and the corresponding L ∈ Lζ , we will use the following notations:

AL = ‖(‖1 =
∫
G

((z) dµ(z) =
∫
G

(ζ(z))−1L(θ, z) dµ(z)

A′L = ‖L(θ, ·)‖1 =
∫
G

L(θ, z) dµ(z), ÃL = max{AL,A
′
L}

AL(U) =
∫
G\U

((z) dµ(z) =
∫
G\U

(ζ(z))−1L(θ, z) dµ(z)

A′L(U) =
∫
G\U

L(θ, z) dµ(z)

rm(s) = sup
1/m≤|u|≤m

∣∣∣1
u

∫
G

K(s, t, u) dµ(t)− 1
∣∣∣, m = 1, 2, . . .

r0(s) = sup
m∈N

rm(s) = sup
u�=0

∣∣∣1
u

∫
G

K(s, t, u) dµ(t)− 1
∣∣∣

for any U ∈ U.
Note that rm(s) ≤ r0(s), for every m ∈ N, and therefore r0(s) < +∞ implies

rm(s) < +∞.

Let now K ∈Kζ be fixed. We define the integral operator (of Urysohn type)

(Tf )(s) =
∫
G

K(s, t, f (t)) dµ(t), s ∈ G, (4.1)

for f ∈ Dom T , i.e. for every f ∈ L0(G) for which (Tf )(s) is well defined and
measurable as a Haar integral for almost all s ∈ G.

4.2 Some estimates for T

Let ρ be a monotone modular on L0(G), and let L0
ρ(G) be the corresponding modular

space.
We begin with the following embedding theorem in the case when the kernel

function of T belongs to the class K1
ζ .

Theorem 4.1. Let ρ be a monotone, J -quasiconvex with a constant M ≥ 1, and
subbounded modular on L0(G). Let K ∈K1

ζ and let

Sρ,L =:
∫
G

((z)hρ(z) dµ(z) < +∞, (4.2)

where hρ is the function from the subboundedness assumption on ρ. Then for every
f ∈ Dom T , such that ζf ∈ L0

ρ(G), we have for λ > 0,

ρ(λTf ) ≤ Mρ(λMCRALζf )+MA−1
L Sρ,L, (4.3)
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where C is the constant from the subboundedness assumption of ρ.

Proof. From the assumptions on K and putting g = ζf , we have

|(Tf )(s)| ≤
∫
G

L(s, t)|f (t)| dµ(t)

≤ R

∫
G

ζ(s + z)(ζ(z))−1L(θ, z)|f (s + z)| dµ(z)

= R

∫
G

((z)|g(s + z)| dµ(z).

Then, by the assumptions on the modular ρ, for any λ > 0 we have

ρ[λTf ] ≤ ρ[λRAL

∫
G

((z)|g(· + z)|A−1
L dµ(z)]

≤ A−1
L M

∫
G

((z)ρ[λRMALCg] dµ(z)+ A−1
L M

∫
G

((z)hρ(z) dµ(z)

= Mρ[λRMALCg] + MSρ,L

AL

,

and so the assertion follows. ��

Remark 4.1. If ρ is quasiconvex with the same constant M ≥ 1 (or if µ is atomless),
Theorem 4.1 implies that Tf ∈ L0

ρ(G) whenever g = ζf ∈ L0
ρ(G). The following is

a simple example, in the linear case, which shows that we cannot replace in general
the assumption g ∈ L0

ρ(G) by f ∈ L0
ρ(G).

Example 4.2. Let G = (R+, ·) be the multiplicative group of positive real numbers,
and let ρ(f ) = ‖f ‖L1(G). Thus we can take M = C = R = 1, hρ = 0. For every
β > 1 and α ∈]0, 1[, we put K(s, t, u) = K1(s, t)u, where

K1(s, t) =
(
t

s

)β 1

tα
χ]0,s[(t),

for (s, t) ∈ G ×G, and u ∈ R. This kernel is homogeneous of degree −α, and it is
easy to show that

AL =
∫ +∞

0
zαK1(1, z)z

−1 dz < +∞.

Now let us take the function f (t) = tα , if 0 < t < 1, f (t) = 0, if t > 1. Then
f ∈ L1(G), while g(t) = ζ(t)f (t) = t−αf (t) is not integrable in G and also
Tf �∈ L1(G).

It is easy to show that when ζ ∈ L∞(G), then Tf ∈ Lρ(G) whenever f ∈ Lρ(G).
This happens, for example, for homogeneous functions L of degree zero of type
L(s, t) = H(s − t), s, t ∈ G.
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Now we will state a second inequality for the operator T , when K ∈K
ψ
ζ , ψ ∈ M ′.

For this purpose, let ρ, η be two modulars and let ψ ∈ M ′. We recall that the triple
{ρ,ψ, η} is properly directed, if for every λ ∈]0, 1[ there is a constant Cλ ∈]0, 1[
satisfying the inequality

ρ[Cλψ(t, |gt (·)|)] ≤ η[λgt (·)],

for every family {gt }t∈G ⊂ L0(G), (see Section 1.4).
Finally, we will say that a function g : G × G → R

+
0 satisfies property (∗) if

g(·, z) ρ→ 0 as z→ θ in the sense of the topology in G, and there is a constant λ′ > 0
such that ρ[λ′g(·, z)] ≤ E3, for every z ∈ G.

We are ready to prove the following

Theorem 4.2. Let ρ and η be monotone modulars on L0(G) such that ρ is J -quasi-
convex with a constant M ≥ 1, and η is subbounded. Let K ∈K

ψ
ζ , with ζ ∈ L∞(G),

and let us suppose that the triple {ρ,ψ, η} is properly directed. Assume that

Sη,L =:
∫
G

((z)hη(z) dµ(z) < +∞, (4.4)

where hη is the function from the subboundedness assumption on η. Let the function
F from the definition of the class M ′ satisfy condition (∗). Let f ∈ L0

η(G) ∩ Dom T

and let λ ∈]0, 1[ be such that η[λCE2f ] < +∞. Then there is a > 0, depending on
λ, such that for every ε > 0, there is Uε ∈ U such that

ρ(aTf ) ≤ Mη(λCE2f )+MA−1
L Sη,L + E3MA−1

L AL(Uε)+ ε, (4.5)

where the constants are previously introduced.

Proof. We can assume ‖ζ‖∞ ≤ 1. Moreover, let λ′ > 0 be a constant such that (∗) is
satisfied for F . With similar reasonings used in Theorem 4.1, we have

|(Tf )(s)| ≤ R

∫
G

((z)ζ(s + z)ψ(s + z, |f (s + z)|) dµ(z)

≤ R

∫
G

((z)E1ψ(z,E2|f (s + z)|) dµ(z)+ R

∫
G

((z)F (s, z) dµ(z),

and so for a > 0 such that 2ALMaRE1 ≤ Cλ, and 2ALMaR ≤ λ′ we have

ρ[aTf ] ≤ M

AL

∫
G

((z)ρ[2ALMaRE1ψ(z,E2|f (· + z)|)] dµ(z)

+ M

AL

∫
G

((z)ρ[2ALMaRF(·, z)] dµ(z) = J1 + J2.
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Now, as the triple {ρ,ψ, η} is properly directed, taking into account of the choice of
a and of the subboundedness of η, we have

J1 ≤ M

AL

∫
G

((z)η(λE2f (· + z)) dµ(z)

≤ M

AL

∫
G

((z)η[λCE2f ] dµ(z)+ M

AL

Sη,L

= Mη[λCE2f ] +MA−1
L Sη,L.

Now we estimate J2. Let ε > 0 be fixed. Then there exists U = Uε ∈ U such that

ρ[λ′F(·, z)] ≤ ε

M
,

for every z ∈ Uε. Hence, since 2ALMaR < λ′, we have

J2 ≤ M

AL

{∫
U

+
∫
G\U

}
((z)ρ[λ′F(·, z)] dµ(z)

≤ ε + E3MA−1
L AL(U)

which implies the assertion. ��

Remark 4.2. As before we remark that if ρ is also quasiconvex with the same constant
M ≥ 1, (or if µ is atomless), under the assumptions of Theorem 4.2, we deduce
Tf ∈ L0

ρ(G) whenever f ∈ L0
η(G). Note that the above inequality is simpler in the

case the function ψ is independent of the parameter t ∈ G, i.e., ψ(t, u) = ψ(u) for
every t ∈ G,u ∈ R

+
0 . Indeed, in this case the Lipschitz condition on K is simpler and,

consequently, the assumption on the triple {ρ,ψ, η} is also simpler, and we can take
F = 0, in property (3) of ψ . In this case, clearly, property (∗) is obviously satisfied
for the function F .

4.3 Estimates of ρ[Tf − f ]: case K ∈ K1
ζ

In this section we will obtain estimates of the error of approximation of f by means of
its transform Tf , under the integral operator T , defined by (4.1), in the case K ∈K1

ζ .
To this end we need some further assumptions on the weight ζ , which defines the
subhomogeneity assumption.

We will denote by N the class of all measurable functions ζ : G→ R
+ such that

the following assumptions hold.

(N.1) There are constants C′,D′ ≥ 1 such that

(ζ(z))−1ζ(z+ s) ≤ C′ζ(s)+D′,

for every s, z ∈ G.
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(N.2) For every compact set V ⊂ G there results

|ζ(s)− ζ(z+ s)| = o(1), z→ θ,

uniformly with respect to s ∈ V .

Example 4.3. (a) If G = (R+, ·) we have ζα ∈ N , where ζα(t) = tα, α ∈ R. More
generally, every continuous submultiplicative function ζ on R

+ clearly satisfies (N.1),
(N.2) with C′ = D′ = 1.

(b) Taking again into consideration the group G of (a), any continuous function
ζ : G → R

+
0 belongs to the class N , if it satisfies a global 4′-condition, i.e., there

exists c > 0 such that the following inequality holds

ζ(ts) ≤ cζ(t)ζ(s)

for every s, t ∈ G.

As in Section 3.1, for the given measurable function f ∈ L0(G), we will denote
by Am,Bm,Cm, m = 1, 2, . . . , the following subsets of G:

Am = {s ∈ G : |f (s)| > m},
Bm = {s ∈ G : |f (s)| < 1/m},
Cm = G \ (Am ∪ Bm).

Moreover for a subbounded modular ρ we put hρ,0 = ‖hρ‖∞.

We begin with the following theorem.

Theorem 4.3. Let ζ ∈ N be fixed and let K ∈ K1
ζ . Let ρ be a monotone, J -quasi-

convex and subbounded modular on L0(G). Let f ∈ L0
ρ(G) ∩ Dom T , for which

g = ζf ∈ L0
ρ(G), and r0f ∈ L0

ρ(G). Then for any λ > 0, for any U ∈ U, compact
V ⊂ G, and m = 0, 1, . . . , the following inequality holds:

ρ[λ(Tf − f )] ≤ M

AL

ωρ[5λMRALg,U ]

+ M

AL

AL(U){2ρ[10λMRALCg] + hρ,0}

+ ρ
[
10λRf

∫
U

((z)τV (z) dµ(z)
]
+ 2ρ[40λRC′ÃLχG\V g]

+ ρ[40λRD′ÃLχG\V f ] + ρ[5λAL(U)g]
+ ρ[10λRC′A′L(U)g] + ρ[10λRD′A′L(U)f ] +Rm
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where the constants are previously introduced and

R0 = ρ[5λr0(·)f (·)]
Rm = Mρ[40λMCRALζf χG\V ] +Mρ[40λMCRALζf χV∩Am ]

+Mρ[40λMCRALζf χV∩Bm ] + ρ[40λf (·)χG\V ] + ρ[40λf (·)χV∩Am ]
+ ρ[40λf (·)χV∩Bm ] + ρ[20λrm(·)f (·)] + 3MA−1

L Sρ,L,

for m = 1, 2, . . .

Proof. We can suppose, without loss of generality, that the second member of the
previous inequality is finite. We first estimate the difference Tf − f . We have

|(Tf )(s)− f (s)| ≤
∫
G

|K(s, t, f (t))−K(s, t, f (s))| dµ(t)

+
∣∣∣∣∫

G

K(s, t, f (s)) dµ(t)− f (s)

∣∣∣∣
= I1 + I2.

We apply the Lipschitz condition on the kernel K and obtain

I1 ≤
∫
G

L(s, t)|f (t)− f (s)| dµ(t)

≤ R

∫
G

((z)ζ(z+ s)|f (z+ s)− f (s)| dµ(z).

Let U be a fixed (measurable) neighbourhood of θ . Then

I1 ≤ R

∫
G

((z)|g(z+ s)− g(s)| dµ(z)

+ R|f (s)|
∫
U

((z)|ζ(s)− ζ(z+ s)| dµ(z)

+ R|g(s)|
∫
G\U

((z) dµ(z)+ R|f (s)|
∫
G\U

((z)ζ(z+ s) dµ(z)

= I 1
1 + I 2

1 + I 3
1 + I 4

1 .

Let λ > 0. By the properties of the modular ρ, we have

ρ[λ(Tf − f )] ≤
4∑

j=1

ρ[5λIj
1 ] + ρ[5λI2].
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Step 1. Estimation of ρ[5λI 1
1 ].

ρ[5λI 1
1 ] ≤

M

AL

∫
G

((z)ρ[5λMRAL|g(z+ ·)− g(·)|] dµ(z)

≤ M

AL

∫
U

((z)ρ[5λMRAL|g(z+ ·)− g(·)|] dµ(z)

+ M

AL

∫
G\U

((z)ρ[10λMRAL|g(z+ ·)|] dµ(z)

+ M

AL

∫
G\U

((z)ρ[10λMRALg] dµ(z)

= J1 + J2 + J3.

We have

J1 ≤ M

AL

ωρ[5λMRALg,U ],

while, by subboundedness of ρ,

J2 ≤ M

AL

∫
G\U

((z){ρ[10λMRALCg] + hρ,0} dµ(z)

= {ρ[10λMRALCg] + hρ,0} M
AL

∫
G\U

((z) dµ(z)

and finally

J3 = ρ[10λMRALg] M
AL

∫
G\U

((z) dµ(z).

To summarize, taking into account that C ≥ 1, we obtain the estimate of ρ[5λI 1
1 ],

ρ[5λI 1
1 ] ≤

M

AL

ωρ[5λMRALg,U ]

+ M

AL

{2ρ[10λMRALCg] + hρ,0}
∫
G\U

((z) dµ(z).

(4.6)

Step 2. Estimation of ρ[5λI 2
1 ]. Let V be a fixed compact subset of G. Putting

τV (z) = sup
s∈V

|ζ(s + z)− ζ(s)|, z ∈ U,
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we may write

ρ[5λI 2
1 ] = ρ[5λ|f (·)|R

∫
U

((z)|ζ(·)− ζ(· + z)| dµ(z)]

≤ ρ[10λRχV (·)|f (·)|
∫
U

((z)|ζ(·)− ζ(· + z)| dµ(z)]

+ ρ[10λRχG\V (·)|f (·)|
∫
U

((z)|ζ(·)− ζ(· + z)| dµ(z)]

≤ ρ[10λR|f (·)|
∫
U

((z)τV (z) dµ(z)] + ρ[20λRALχG\V (·)|g(·)|]

+ ρ[20λRχG\V |f (·)|
∫
U

((z)ζ(· + z) dµ(z)].

From assumption (N.1), the last term of the above inequality is dominated by

ρ[40λRC′A′LχG\V (·)|g(·)|] + ρ[40λRD′A′LχG\V (·)|f (·)|].
Thus ρ[5λI 2

1 ] is estimated by

ρ[5λI 2
1 ] ≤ ρ[10λR|f (·)|

∫
U

((z)τV (z) dµ(z)] + ρ[20λRALχG\V (·)|g(·)|]
+ ρ[40λRC′A′LχG\V (·)|g(·)|] + ρ[40λRD′A′LχG\V (·)|f (·)|],

and taking into account that C′ ≥ 1, and the definition of ÃL, we finally have

ρ[5λI 2
1 ] ≤ ρ[10λR|f (·)|

∫
U

((z)τV (z) dµ(z)]
+ 2ρ[40λRC′ÃLχG\V (·)|g(·)|] + ρ[40λRD′ÃLχG\V (·)|f (·)|].

(4.7)

Step 3. Estimation of ρ[5λIj
1 ], j = 3, 4. We have by definition

ρ[5λI 3
1 ] ≤ ρ[5λAL(U)|g(·)|], (4.8)

while for ρ[5λI 4
1 ] we have

ρ[5λI 4
1 ] ≤ ρ[10λRC′A′L(U)g] + ρ[10λRD′A′L(U)f ]. (4.9)

Step 4. Estimation of ρ[5λI2]. For m = 0, by definition, we easily have

I2 ≤ r0(s)|f (s)|, s ∈ G,

and so

ρ[5λI2] ≤ ρ[5λr0(·)f (·)], (4.10)
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and the assertion follows from (4.6), (4.7), (4.8), (4.9) and (4.10) for m = 0.
Let us take now m = 1, 2, . . . . Then

ρ[5λI2] = ρ

[
5λ

∣∣∣∣∫
G

K(·, t, f (·)) dµ(t)− f (·)
∣∣∣∣]

≤ ρ

[
20λ

∣∣∣∣∫
G

K(·, t, f (·)χG\V (·)) dµ(t)− f (·)χG\V (·)
∣∣∣∣]

+ ρ

[
20λ

∣∣∣∣∫
G

K(·, t, f (·)χV∩Am(·)) dµ(t)− f (·)χV∩Am(·)
∣∣∣∣]

+ ρ

[
20λ

∣∣∣∣∫
G

K(·, t, f (·)χV∩Bm(·)) dµ(t)− f (·)χV∩Bm(·)
∣∣∣∣]

+ ρ

[
20λ

∣∣∣∣∫
G

K(·, t, f (·)χV∩Cm(·)) dµ(t)− f (·)χV∩Cm(·)
∣∣∣∣] .

For every measurable subset P ⊂ G, from Theorem 4.1 we have

ρ

[
20λ

∣∣∣∣∫
G

K(·, t, f (·)χP (·)) dµ(t)− f (·)χP (·)
∣∣∣∣]

≤ ρ[40λ
∫
G

|K(·, t, f (·)χP (·))| dµ(t)] + ρ[40λf (·)χP (·)]

≤ Mρ[40λMCRALζf χP ] + M

AL

Sρ,L + ρ[40λf χP ].

Thus writing the above inequality for P = G \ V , P = V ∩ Am and P = V ∩ Bm,
by the definition of rm(s), we obtain the required expression for Rm and the assertion
follows for m = 1, 2, . . . . ��

Remark 4.3. Note that for the validity of the inequality of Theorem 4.3 in the case
m = 1, 2, . . . , we can assume rmf ∈ L0

ρ(G), for every m, instead of r0f ∈ L0
ρ(G)

(the proof is left to the reader).

4.4 Estimates of ρ[Tf − f ]: case K ∈ K
ψ
ζ

Here we will obtain an estimation of the modular distance between Tf and f for the
kernel functions K ∈ K

ψ
ζ . In this case we have to assume that ζ is an essentially

bounded function. This restriction seems to be very strong but, as an example, any
convolution Mellin operator has a kernel which is homogeneous of degree zero, i.e.,
ζ(t) = 1, for every t ∈ G. Moreover for compact groups we can take for ζ any
continuous function defined on G.

If ζ ∈ L∞(G), then we do not need ζ ∈ N .
Let ρ, η be two modulars and let ψ ∈ M ′. Using the previous notations, we state

the following
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Theorem 4.4. Let ζ ∈ L∞(G) be fixed and let K ∈K
ψ
ζ . Let the function F from the

definition of the class M ′ satisfy (∗). Let ρ, η be two finite, monotone and absolutely
continuous modulars on L0(G), and let us suppose that ρ is J -quasiconvex, with a
constant M ≥ 1, and η is subbounded. Assume that the triple {ρ,ψ, η} is properly
directed. Letf ∈ L0

η+ρ(G)∩Dom T such that rmf ∈ L0
ρ(G), for everym = 1, 2, . . . ,

and let λ ∈]0, 1[ be such that η(2λCE2f ) < +∞. Then there is a constant ν > 0,
depending only on f and λ, such that for every ε > 0 there are U = Uε ∈ U and
m ∈ N such that, for every fixed compact subset V ⊂ G, the following inequality
holds:

ρ[ν(Tf − f )] ≤ Mωη[λE2f,U ]
+ M

AL

{2η[2λCE2f ] + hη,0}AL(U)+ ME3

AL

AL(U)

+ 7ε + 3MA−1
L Sη,L + 3E3AL(Uε)+Mη[λCE2f χG\V ]

+ ρ[16νf χG\V ] + ρ[8νrm(·)f (·)],
where C is the constant from the subboundedness of η and hη,0 = ‖hη‖∞, hη being
the corresponding function.

Proof. Arguing as in the proof of Theorem 4.3, we can write

|(Tf )(s)− f (s)| ≤
∫
G

L(s, t)ψ(t, |f (t)− f (s)|) dµ(t)

+
∣∣∣∣∫

G

K(s, t, f (s)) dµ(t)− f (s)

∣∣∣∣
= I1 + I2.

We first estimate I1. Assuming that ‖ζ‖∞ ≤ 1, one has

I1 ≤ R

∫
G

((z)ψ(s + z, |f (s + z)− f (s)|) dµ(z)

≤ RE1

∫
G

((z)ψ(z,E2|f (s + z)− f (s)|) dµ(z)

+ R

∫
G

((z)F (s, z) dµ(z)

= I 1
1 + I 2

1 .

Let λ > 0 be such that η(2λCE2f ) < +∞, and let λ′ be the constant from property
(∗). Let ν > 0 such that 16νRALME1 ≤ Cλ and 4νRALMν ≤ λ′. From the
properties of the modular ρ we have

ρ[ν(Tf − f )] ≤ ρ[2νI1] + ρ[2νI2]
≤ ρ[4νI 1

1 ] + ρ[4νI 2
1 ] + ρ[2νI2]

= J1 + J2 + J3,
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and therefore

J1 ≤ M

AL

∫
G

((z)ρ[4νRALME1ψ(z,E2|f (· + z)− f (·)|)] dµ(z)

≤ M

AL

∫
G

((z)η[λE2|f (· + z)− f (·)|] dµ(z).

Let ε > 0 and let U = Uε ∈ U be such that ρ[λ′F(·, z)] < ε/M , for every z ∈ Uε,
and ρ[λ′F(·, z)] ≤ E3, for every z ∈ G. Then we have

J1 ≤ Mωη[λE2f,U ]
+ M

AL

{η(2λCE2f )+ hη,0}AL(U)+ M

AL

η(2λE2f )AL(U),

and thus taking into account that C ≥ 1,

J1 ≤ Mωη[λE2f,U ] + M

AL

{2η[2λCE2f ] + hη,0}AL(U).

Next, we estimate J2. We have

J2 = ρ[4Rν

∫
G

((z)F (·, z) dµ(z)]

≤ M

AL

∫
G

((z)ρ[4RMALνF(·, z)] dµ(z)

= M

AL

{∫
U

+
∫
G\U

}
((z)ρ[4RMALνF(·, z)] dµ(z)

≤ ε + ME3

AL

AL(U).

To evaluate J3 = ρ[2νI2], let V be a compact subset of G. As in Theorem 4.3, we
have

J3 ≤ ρ

[
8ν

∣∣∣∣∫
G

K(·, t, f (·)χG\V (·)) dµ(t)− f (·)χG\V (·)
∣∣∣∣]

+ ρ

[
8ν

∣∣∣∣∫
G

K(·, t, f (·)χV∩Am(·)) dµ(t)− f (·)χV∩Am(·)
∣∣∣∣]

+ ρ

[
8ν

∣∣∣∣∫
G

K(·, t, f (·)χV∩Bm(·)) dµ(t)− f (·)χV∩Bm(·)
∣∣∣∣]

+ ρ

[
8ν

∣∣∣∣∫
G

K(·, t, f (·)χV∩Cm(·)) dµ(t)− f (·)χV∩Cm(·)
∣∣∣∣] .

So by using Theorem 4.2 in place of Theorem 4.1, arguing as in Theorem 4.3 and
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taking into account that 16νRALME1 < Cλ, we obtain

J3 ≤ M{η(λCE2f χV∩Am)+ η(λCE2f χV∩Bm)} + η[λCE2f χG\V ] + 3MA−1
L Sη,L

+ 3E3AL(Uε)+ ρ[16νf χG\V ] + ρ[16νf χV∩Am ] + ρ[16νf χV∩Bm ]
+ 3ε + ρ[8νrmf ].

Since f ∈ L0
ρ+η(G) and |f (s)| < +∞, a.e. in G, by finiteness of η and ρ, and

following the same reasonings as for Theorem 3.3, for the fixed ε, there exists an
integer m such that

η[λCE2f χV∩Am
] < ε/2M, η[(1/m)CE2λχV ] ≤ ε/2M,

ρ[16νf χV∩Am
] < ε, ρ[(1/m)16νχV ] < ε.

So we have

Mη[λCE2f χV∩Am
] +Mη[λCE2f χV∩Bm

] + ρ[16νf χV∩Am
] + ρ[16νf χV∩Bm ]

≤ ε/2+Mη[(1/m)λCE2χV ] + ρ[16νf χV∩Am
] + ρ[(1/m)16νχV ]

< 3ε.

Thus finally we obtain

J3 ≤ 6ε + 3MA−1
L Sη,L + 3E3AL(Uε)+Mη[λCE2f χG\V ]

+ ρ[16νf χG\V ] + ρ[8νrm(·)f (·)],
and thus the assertion follows. ��

Remark 4.4. Note that, as in Theorem 4.2, the inequality stated in Theorem 4.4,
becomes simpler if the function ψ is independent of the parameter t ∈ G. If we drop
the assumption of absolute continuity and finiteness of the modulars ρ and η, we can
obtain the following less sharp inequality

ρ[ν(Tf − f )] ≤ Mωη[λE2f,U ]

+ M

AL

{2η[2λCE2f ] + hη,0}AL(U)

+ ρ[2νr0(·)f (·)] + ME3

AL

AL(U)+ ε,

by involving the function r0(s) instead of rm(s) and assuming r0f ∈ L0
ρ(G).

Moreover, it is clear that the inequality given in Theorem 4.4 is also satisfied if we
replace the term ρ[8νrm(·)f (·)] by ρ[8νr0(·)f (·)].
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4.5 Convergence theorems

In the following, we will use the Remark 2.1 (a) about the absolute continuity of a
monotone modular.

Here we apply the results of the previous sections to the approximation of a function
in a modular space by means of nets of nonlinear integral operators of the form (4.1).
For the sake of simplicity, for a set of indices, let W ⊂ R

+ be chosen as in Section 3.2,
i.e. W = [a,w0[ with w0 ∈ R̃

+
0 , endowed with its natural order and the notions of

convergence specified in Section 3.2.
Let {ζw}w∈W be a family of functions in N such that C′,D′ in (N.1) are absolute

constants for any w ∈ W sufficiently near to w0, i.e., there exists w ∈ W such that
C′,D′ are independent of w ∈]w,w0[ and in (N.2) the uniformity is also taken with
respect to w ∈ W,w ∈]w,w0[ i.e., the family {ζw}w∈W,w>w is uniformly equicontin-
uous on every compact subset V ⊂ G. Moreover we will assume that the functions
ζw are uniformly bounded by a measurable, locally bounded (i.e. bounded on every
compact subset V ⊂ G) function ζ : G→ R

+, for w ∈]w,w0[.
Let K = (Kw)w∈W , Kw ∈ Kζw be a family of kernel functions and for the

corresponding family of functions Lw ∈ Lζw , we will put ( = (w, ALw = Aw,
ALw(U) = Aw(U), A′Lw

(U) = A′w(U), A′Lw
= A′w, ÃLw = Ãw, Sη,L = Sw,η,

Sρ,L = Sw,ρ and rm(s) = rm,w(s), for every s ∈ G,w ∈ W . If the family {Kw}
satisfies the above conditions, then we will write {Kw}w∈W ∈K{ζw}.

Thus we have a family of nonlinear operators T = {Tw}, defined by

(Twf )(s) =
∫
G

Kw(s, t, f (t)) dµ(t), s ∈ G,

for any f ∈ Dom T =⋂w∈W Dom Tw.
In order to state the modular convergence theorems, we introduce a concept of

singularity for the family of kernel functions {Kw}w∈W , in a similar manner as in
Section 3.2. We will say that the family {Kw}w∈W , with Kw ∈ Kζw , is a singular
kernel if the following assumptions hold:

(j) there exist a1 > 0, a2 ≥ 1 such that a1 ≤ ‖(w‖1 ≤ a2 and Ãw ≤ a2, for every
w ∈ W ,

(jj) for every U ∈ U, we have A′w(U)+ Aw(U)→ 0, as w → w−0 ,

(jjj) for every m = 1, 2, . . . , there is a positive measurable function pm : G→ R
+
0

such that for w ∈ W , sufficiently near to w0, rm,w(s) ≤ pm(s) for every s ∈ G,
and

lim
w→w−0

rm,w(s) = 0,

a.e. for s ∈ G, for every m = 1, 2, . . .
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Finally the family {Kw}w∈W is called strongly singular if in (jjj) we have

lim
w→w−0

r0,w(s) = 0,

and there is a measurable function p : G → R
+
0 such that r0,w(s) ≤ p(s), for every

w ∈ W , sufficiently near to w0.
It is clear that strong singularity implies singularity. The above concepts are

equivalent to those introduced in Section 3.2 for kernels of type

K(s, t, u) = K1(t − s, u).

We begin with the case of singular kernel {Kw} ∈K1{ζw} (see Section 4.1).

Theorem 4.5. Let {Kw}w∈W ∈ K1{ζw} be a singular kernel. Let ρ be a monotone,
absolutely finite, absolutely continuous, J -quasiconvex with a constant M ≥ 1 and
strongly subbounded modular on L0(G). Let f ∈ L0

ρ(G) ∩ Dom T be such that

g = ζf ∈ L0
ρ(G) and pmf ∈ L0

ρ(G), for every m = 1, 2, . . . . If Sw,ρ → 0, as

w → w−0 then there exists λ > 0 such that

lim
w→w−0

ρ[λ(Twf − f )] = 0. (4.11)

Proof. Without loss of generality we can assume that there is a measurable function
p : G → R

+
0 such that pm ≤ p, for every m ∈ N, and g′ = pf ∈ L0

ρ(G). We will
use the notations of the previous section. Putting ζwf = gw, we have |gw| ≤ |g|,
for w ∈ W , sufficiently near to w0 and so we can replace g by gw in the inequality
of Theorem 4.3, written with Tw. Let f ∈ L0

ρ(G) such that g, g′ ∈ L0
ρ(G). There is

a > 0 such that ρ(Maf ) + ρ(Mag) < +∞ and ρ(ag′) < +∞. Let 0 < α < 1 be
the constant from absolute continuity of ρ. Choose λ > 0 such that 40λRνa2 ≤ aα,
where ν = max{C,C′,D′}, 5λMRa2 < a and 20λ < a. Let ε > 0 be fixed and we
can suppose ε < 1. Thus for a suitable compact V = Vε, we have

2ρ[40λRνa2χG\V g] + ρ[40λRνa2χG\V f ] < 3ε.

Note that from the assumption f ∈ Lρ(G), it follows that

lim
m→+∞µ(V ∩ Am) = 0.

Thus, since the modular ρ is finite and absolutely continuous, by using the local
boundedness of the function ζ , there is m such that

Mρ[40λMνa2f χV∩Am
] +Mρ[40λMνa2gχV∩Am

] < ε

and
ρ[40λMνa2(1/m)χV ] + ρ[40λMνa2(1/m)ζχV ] < ε.
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So we have

Mρ[40λMCRa2gχG\V ] +Mρ[40λMCRa2gχV∩Am
]

+Mρ[40λMCRa2gχV∩Bm
] + ρ[40λf (·)χG\V ]

+ ρ[40λf (·)χV∩Am
] + ρ[40λf (·)χV∩Bm

]
< Hε,

for a suitable constant H > 0. Let w = wε be such that {ζw}w∈]w,w0[ is uniformly
equicontinuous on Vε. By Theorem 2.4, we can choose the constant a, independent
of ε, such that

M

a1
ωρ(ag,Uε) < ε

for a suitable Uε ∈ U. Thus, since 5λMRa2 ≤ a, we have

M

a1
ωρ[5λMRa2g,Uε] < ε.

Furthermore we can suppose that Uε is chosen in such a way that

τVε (z) ≡ sup
w∈W ,w>w

sup
s∈Vε

|ζw(s + z)− ζw(s)| < aε

10λRa2
,

for every z ∈ Uε. Thus for any w ∈ W , w > w, we have

ρ[10λRf
∫
Uε

(w(z)τVε (z) dµ(z)] ≤ ρ[aεf ] ≤ Mερ[aMf ].

Now, for every w ∈ W , w > w, we deduce

ρ[λ(Twf − f )] ≤ (H + 1)ε +Mερ[aMf ]
+ M

a1
Aw(Uε){2ρ[10λMRa2Cg] + hρ,0}

+ ρ[5λAw(Uε)g] + ρ[10λRC′A′w(Uε)g]
+ ρ[10λRD′A′w(Uε)f ]
+ ρ[20λrm,w(·)f (·)] + 3

M

a1
Sw,ρ.

(4.12)

Next, for the fixed ε > 0, we have

lim
w→w−0

{Aw(Uε)+ A′w(Uε)} = 0,

and so since f, g ∈ L0
ρ(G), we obtain

ρ[5λAw(Uε)g] + ρ[10λRC′A′w(Uε)g] + ρ[10λRD′A′w(Uε)f ] → 0, w → w−0 .
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Finally, since rm,w(s) → 0 a.e. and in view of the inequalities rm,w(s) ≤ p(s) and
20λ < a, we can apply Theorem 2.1, obtaining

ρ[20λrm,wf ] → 0, w → w−0

and so the assertion follows from (4.12) and from the assumption Sw,ρ → 0, letting
w → w−0 . ��

Remark 4.5. We remark that in the case of a strongly singular kernel, the proof of
the previous theorem is easier, because we only have to estimate the term R0 in
the inequality of Theorem 4.3. This estimation is immediate taking into account of
pf ∈ L0

ρ(G), and Theorem 2.1.

Analogously we can obtain a modular convergence theorem when Kw ∈ K
ψ
ζw

,
with ψ ∈ M ′, and {ζw}w∈W is uniformly bounded by a constant. As in Theorem 4.4
we can assume, without loss of generality, that the constant is equal to 1. This happens
for example for convolution integral operators on R

N+ in which we have ζw(t) = 1,
for every t ∈ R

N+ , w ∈ W . As in Section 4.4, in this case we do not need ζw ∈ N .
Under this assumption on {ζw}, we have the following result.

Theorem 4.6. Let {Kw}w∈W ∈K
ψ
{ζw} be a singular kernel. Let ρ, η be two monotone,

absolutely continuous modulars on L0(G), and let us suppose that ρ is finite and
J -quasiconvex, and η is absolutely finite and subbounded. Assume that the triple
{ρ,ψ, η} is properly directed, and let the function F from the definition of the class
M ′ satisfy (∗). If Sw,η → 0, as w → w−0 then for any f ∈ L0

η+ρ(G) ∩ Dom T there
is λ > 0 such that

lim
w→w−0

ρ[λ(Twf − f )] = 0.

Proof. The proof follows by similar arguments, by applying Theorem 4.4, Theo-
rems 2.1, 2.4 and the singularity assumption. Details are left to the reader. ��

Remark 4.6. Note that in the case of strongly singular kernels the proof of Theo-
rem 4.6 is easier, because the inequality of Theorem 4.4 is simpler.

4.6 Order of approximation in modular Lipschitz classes

As in Section 3.4, we now study the degree of modular approximation in modular
Lipschitz classes, where the family {Kw} satisfies a strong singularity assumption.

Let T be the class of all functions τ : G → R
+
0 , continuous at θ , with τ(t) �= 0

for t �= θ .
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Here we recall the definition of modular Lipschitz classes, generated by a modular.
Let ρ be a modular on L0(G). For a fixed τ ∈ T , we define the class

Lipτ (ρ) = {f ∈ L0
ρ(G) : ∃α > 0 with ρ[α|f (t + ·)− f (·)|] = O(τ (t)), t → θ}.

Let N be the class introduced in Section 3.4, i.e. the class of all functions ξ : W →
R
+, such that ξ(w)→ 0 as w → w−0 .

For a given ξ ∈ N, we introduce the concept of ξ -singularity for a family of kernel
functions {Kw}w∈W ∈K{ζw} in a similar manner as in Section 3.4.

We will say that {Kw}w∈W is a strongly ξ -singular kernel if the following assump-
tions hold:

(ξ .1) for any w ∈ W , (1+ (ζ(·))−1)Lw(θ, ·) = Lw(θ, ·)+ (w(·) ∈ L1(G),

(ξ .2) there exist two constants a1, a2 such that a1 ≤ Aw = ‖(w‖1 ≤ a2, for any
w ∈ W and Ãw ≤ a2,

(ξ .3) for any neighbourhood U of θ

A′w(U)+ Aw(U) = O(ξ(w)), w → w−0 ,

(ξ .4) for every w ∈ W

r0,w(s) = O(ξ(w)), w → w−0 ,

uniformly with respect to s ∈ G.

For a kernel {Kw}w ∈ K1{ζw} or K
ψ
{ζw}, ψ ∈ M, we will consider the family of

integral operators T defined by

(Twf )(s) =
∫
G

Kw(s, t, f (t))) dµ(t) (4.13)

for f ∈ Dom T.
In this section we will give two approximation theorems for {Tw} in modular

Lipschitz class Lipτ (ρ), for a given τ ∈ T .
At first we will state an approximation theorem in the case {Kw} ∈K1{ζw}. To this

end we will assume that the family of “weights” {ζw}w∈W ⊂ N satisfies the following
assumptions:

(N′.1) there are (absolute) constants C′,D′ ≥ 1 such that

(ζw(z))−1ζw(z+ s) ≤ C′ζw(s)+D′,

for every s, z ∈ G,w ∈ W ,
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(N′.2) the family {ζw}w∈W is uniformly equicontinuous on G, in the sense that,

|ζw(s)− ζw(z+ s)| = O(τ (z)), z→ θ,

uniformly with respect to s ∈ G and w ∈ W ,

(N′.3) there is a non-negative measurable function ζ : G → R
+
0 such that ζw ≤ ζ ,

for every w ∈ W .

Example 4.4. Let G = (R+, ·). Let {αw} be a net of real numbers such that 0 < a ≤
αw ≤ b, for two fixed constants a, b. We can take the following family of functions
{ζw},

ζw(t) =
{
tαw , 0 < t < 1,

1, t ≥ 1.

Then {ζw} satisfies the conditions (N′.1)–(N′.3)

As before, for f ∈ L0
ρ(G), we will put g(t) = ζ(t)f (t), t ∈ G.

We begin with the following theorem.

Theorem 4.7. Let ρ be a quasiconvex and J-quasiconvex with a constant M ≥ 1,
monotone and subbounded modular on L0(G) with constant C and function hρ . Let
τ ∈ T , ξ ∈ Nbe fixed. Let {ζ }w∈W be a family of measurable functions with properties
(N′.1)–(N′.3). Suppose that {Kw}w∈W ∈ K1{ζw} is a strongly ξ -singular kernel. Let
us assume further that there is U ∈ U such that∫

U

(w(z)τ (z) dµ(z) = O(ξ(w)), w → w−0 . (4.14)

If f ∈ L0
ρ(G) ∩ Dom T is such that g ∈ Lipτ (ρ), then there is a λ > 0 such that

ρ[λ(Twf − f )] = O(ξ(w)), w → w−0 .

Proof. From the properties of ζ and since g = ζf ∈ Lipτ (ρ), there are α > 0 and
U ∈ U such that

ρ[α(g(z+ ·)− g(·))] ≤ Bτ(z),

|ζw(z+ s)− ζw(s)| ≤ Bτ(z),

for any z ∈ U , s ∈ G, and w ∈ W . We can assume that U also satisfies (4.14). Let
λ > 0, be so small that 5λMRA ≤ α, ρ[10CMRa2λg] < +∞, ρ[λMf ] < +∞ and
ρ[λM(|f | + |g|)] < +∞.
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We first estimate |Twf − f |. We have

|Twf (s)− f (s)| ≤
∣∣∣∣∫

G

Kw(s, t, f (t)) dt −
∫
G

Kw(s, t, f (s)) dt

∣∣∣∣
+
∣∣∣∣∫

G

Kw(s, t, f (s)) dt − f (s)

∣∣∣∣
≤
∫
G

Lw(θ, z)(ζw(z))−1ζw(z+ s)R|f (z+ s)− f (s)| dz

+
∣∣∣∣∫

G

Kw(s, t, f (s)) dt − f (s)

∣∣∣∣
≤
∫
G

Lw(θ, z)(ζw(z))−1R|g(z+ s)− g(s)| dz

+
∫
G

Lw(θ, z)(ζw(z))−1R|f (s)||ζw(s)− ζw(z+ s)| dz

+
∣∣∣∣∫

G

Kw(s, t, f (s)) dt − f (s)

∣∣∣∣
≤
∫
G

Lw(θ, z)(ζw(z))−1R|g(z+ s)− g(s)| dz

+
∫
U

Lw(θ, z)(ζw(z))−1R|f (s)||ζw(s)− ζw(z+ s)| dz

+ R|g(s)|
∫
G\U

Lw(θ, z)(ζw(z))−1 dz

+ R|f (s)|
∫
G\U

Lw(θ, z)ζ(z+ s)(ζw(z))−1 dz

+
∣∣∣∣∫

G

Kw(s, t, f (s)) dt − f (s)

∣∣∣∣ .
Now, by the quasiconvexity and monotonicity of the modular ρ and by (4.14), for the
above fixed λ, we obtain

ρ[λ(Twf − f )] ≤ M

a1

∫
G

Lw(θ, z)(ζw(z))−1ρ[5λMRa2|g(z+ ·)− g(·)|] dz

+ ρ

[
5Rλ|f (·)|

∫
U

Lw(θ, z)(ζw(z))−1|ζw(·)− ζw(z+ ·)| dz
]

+ ρ

[
5Rλ|g(·)|

∫
G\U

Lw(θ, z)(ζw(z))−1 dz

]
+

+ ρ

[
5RλC′D′(|g(·)| + |f (·)|)

∫
G\U

Lw(θ, z) dz

]
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+ ρ

[
5λ

∣∣∣∣∫
G

Kw(·, t, f (·)) dt − f (·)
∣∣∣∣]

= I1 + I2 + I3 + I4 + I5.

To estimate I1, we have

I1 = M

a1

{∫
U

+
∫
G\U

}
Lw(θ, z)(ζw(z))−1ρ[5RλMa2|g(z+ ·)− g(·)|] dz

= I 1
1 + I 2

1 .

By assumption (4.14) and since g ∈ Lipτ (ρ) and 5RλMa2 ≤ α, we have

I 1
1 ≤

M

a1

∫
U

Lw(θ, z)(ζw(z))−1τ(z) dz = O(ξ(w)), w → w−0 .

Next by τ -boundedness of ρ, we have

I 2
1 ≤

M

a1

∫
G\U

Lw(θ, z)(ζw(z))−1ρ[10λMRa2|g(z+ ·)|] dz

+ M

a1

∫
G\U

Lw(θ, z)(ζw(z))−1ρ[10λMRa2g] dz

≤ M

a1

{
2ρ[10CMRa2λg] + hρ,0

} ∫
G\U

Lw(θ, z)(ζw(z))−1 dz

= O(ξ(w)), w → w−0 .

Now we estimate I2. By the assumptions on {ζw} we obtain

I2 = ρ

[
5Rλ|f (·)|

∫
U

Lw(θ, z)(ζw(z))−1|ζw(·)− ζw(z+ ·)| dz
]

≤ ρ

[
5λBRf

∫
U

Lw(θ, z)(ζw(z))−1τ(z) dz

]
.

Hence, by assumption (4.14), there are w ∈ W and B ′ such that for every w ∈ W ,
w ≥ w, ∫

U

Lw(θ, z)(ζw(z))−1τ(z) dz ≤ B ′ξ(w).

We can assume B = B ′. Thus we obtain the estimate

I2 ≤ ρ[5λB2Rξ(w)f ].
Finally since ξ(w) → 0 as w → w−0 , we can choose w ∈ W in such a way that
5B2Rξ(w) < 1, for any w ∈ W , w > w, and so, from quasiconvexity of ρ, we have

I2 ≤ 5B2RMξ(w)ρ[λMf ] = O(ξ(w)), w → w−0 .
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By using the strong ξ -singularity, with similar reasonings, we easily obtain the esti-
mation

I3 = ρ

[
5Rλ|g(·)|

∫
G\U

Lw(θ, z)(ζw(z))−1 dz

]
= O(ξ(w)), w → w−0 .

For I4 we have

I4 = ρ

[
5RλC′D′(|g(·)| + |f (·)|)

∫
G\U

Lw(θ, z) dz

]
≤ ρ[5RλC′D′Pξ(w)(|f | + |g|)],

for a suitable constant P > 0. Thus, as in the estimations of I2 and I3, we get

I4 = O(ξ(w)), w → w−0 .

In order to estimate the term

I5 = ρ

[
5λ

∣∣∣∣∫
G

Kw(·, t, f (·)) dt − f (·)
∣∣∣∣] ,

we remark that by the ξ -singularity, we have∣∣∣∣∫
G

Kw(s, t, f (s)) dt − f (s)

∣∣∣∣ ≤ rw(s)|f (s)|,

and since r0,w(s) = O(ξ(w)), uniformly with respect to s ∈ G, we easily deduce

I5 = O(ξ(w)), w → w−0 .

Thus, taking into account of the previous estimates, we finally obtain

ρ[λ(Twf − f )] = O(ξ(w)), w → w−0 ,

and so the assertion follows. ��

Now we state an analogous approximation theorem for the family of operators
T = {Tw}w∈W , when the kernel {Kw}w belongs to the class K

ψ
{ζw}, where ζw : G→

R
+ is a family of essentially bounded functions on G. In this case we do not need the

assumptions (N′.1)–(N′.2), while we will suppose that (N′.3) is still satisfied with an
essentially bounded function ζ .

We have the following

Theorem 4.8. Let ψ ∈ M ′, and let ρ, η be two modulars on L0(G) such that ρ

is quasiconvex and monotone and η is strongly τ -bounded and monotone. Let us
suppose that the triple {ρ,ψ, η} is properly directed. Let τ ∈ T , ξ ∈ N be fixed
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and let ζw : G→ R
+ be a family of essentially bounded functions satisfying (N′.3).

Suppose that {Kw}w∈W ∈K
ψ
{ζw} is a strongly ξ -singular kernel. Let us assume further

that there is U ∈ U such that∫
U

(w(z)τ (z) dµ(z) = O(ξ(w)), w → w−0 , (4.15)

and that the function F from the definition of the class M ′ satisfies condition (∗) of
Section 4.2 and there is λ′ > 0 such that ρ[λ′F(·, z)] = O(τ (z)), as z → θ . If
f ∈ L0

ρ+η(G) ∩ Dom T, is such that f ∈ Lipτ (η), then there is ν > 0 such that

ρ[ν(Twf − f )] = O(ξ(w)), w → w−0 .

Proof. Without loss of generality, we can assume that ‖ζw‖∞ ≤ 1, for every w ∈ W .
By assumptions, there are α > 0, B,B ′ > 0 and U ∈ U such that

η[α(f (z+ ·)− f (·))] ≤ Bτ(z),

ρ[λ′F(·, z)] ≤ B ′τ(z)

for any z ∈ U . Let λ ∈]0, 1[ be fixed in such a way that η(2λE2f ) < +∞ and
λE2 < α. Let ν > 0 such that 3ν < λ, 3MRE1νa2 < Cλ, and 3MRa2 < λ′, where
Cλ is the constant corresponding to λ in the definition of properly directed triple. As
in Theorem 4.7, we have

|Twf (s)− f (s)| ≤
∫
G

(w(z))Rψ(z+ s, |f (z+ s)− f (s)|) dµ(z)

+
∣∣∣∣∫

G

Kw(s, t, f (s)) dµ(t)− f (s)

∣∣∣∣
≤
∫
G

(w(z)RE1ψ(z,E2|f (z+ s)− f (s)|) dµ(z)

+ R

∫
G

(w(z)F (s, z) dµ(z)

+
∣∣∣∣∫

G

Kw(s, t, f (s)) dµ(t)− f (s)

∣∣∣∣ .
So, applying the modular ρ and the property of the triple {ρ, η, ψ}, we have

ρ[ν(Twf − f )] ≤ M

a1

∫
G

(w(z)η[λ|f (z+ ·)− f (·)|)] dµ(z)

+ M

a1

∫
G

(w(z)ρ[λ′F(·, z)] dµ(z)

+ ρ

[
3ν

∣∣∣∣∫
G

Kw(·, t, f (·)) dµ(t)− f (·)
∣∣∣∣]

= J1 + J2 + J3.
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Now J1 and J3 can be estimated as in Theorem 4.7, while for J2 we have

J2 ≤ M

a1

{
B ′
∫
U

(w(z)τ (z) dµ(z)+ E3

∫
G\U

(w(z) dµ(z)

}
= O(ξ(w)), w → w−0 .

Hence the assertion follows. ��

In the following section we apply the theory developed to a particular case: the
nonlinear Mellin-type operators.

4.7 Application to nonlinear weighted Mellin
convolution operators

Here we consider G = (R+, ·), equipped with the Haar measure dµ(t) = 1/t .
We will consider a neighbourhood base of the neutral element 1, defined by Uδ =

]1−δ, 1+δ[, for δ ∈]0, 1[ and we will putUc
δ = R

+\Uδ . LetW ⊂ R
+ be any half-line

of type [a,+∞[, considered with its natural order. Let {Hw}w∈W , Hw : R
+ → R

+
0

be measurable functions, and {Fw}w∈W , Fw : R → R be equi-lipschitzian functions
(and we will assume, for the sake of simplicity, that the absolute Lipschitz constant
is equal to 1) such that Fw(0) = 0, for every w ∈ W . Let {αw}w∈W be a net of real
numbers such that αw → 0, as w → +∞, and we can assume that α ≤ αw ≤ β,
for w ∈ W , where α, β ∈ R, α ≤ 0 ≤ β. Then the family of functions {ζw}, with
ζw(t) = tαw , is uniformly equicontinuous on every compact set V ⊂ R

+ and satisfies
(N′.1) uniformly with respect to w ∈ W .

The functions Lw : R+ × R
+ → R

+
0 , defined by

Lw(s, t) = tαwHw(ts−1)

are homogeneous of degree αw, i.e. ζw(t) = tαw . In this particular case, we have

(w(z) = z−αwLw(1, z) = Hw(z), z ∈ R
+

Aw = ‖(w‖1 = ‖Hw‖1,

A′w = ‖(·)αwHw(·)‖1,

Aw(δ) =
∫
Uc

δ

Hw(z)
dz

z
,

A′w(δ) =
∫
Uc

δ

zαwHw(z)
dz

z
.

For the sake of simplicity we limit ourselves to strongly singular kernels. We will
define

Mw(s, t, u) = tαwHw(ts−1)Fw(u),

for s, t ∈ R
+, u ∈ R. Then Mw is a (Lw, 1)-Lipschitz function, and we will assume

{Mw} ∈K1{ζw}, to be a strongly singular kernel, and we will put r0,w(s) = rw(s).
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In particular we have

rw(s) = sup
u�=0

∣∣∣∣sαw
Fw(u)

u

∫ +∞
0

zαwHw(z)
dz

z
− 1

∣∣∣∣ .
Now we consider some conditions in order that (jjj) of Section 4.5 is satisfied. Let us
suppose that (j), (jj) of Section 4.5 hold. Then in particular A′w ≤ a2, for sufficiently
large w ∈ W . Moreover we have

sup
w∈W

sup
u�=0

∣∣∣Fw(u)

u

∣∣∣ ≤ 1.

Then we can take p(t) = 1+ a2 supw∈W sαw , and

lim
w→+∞ sup

u�=0

∣∣∣∣Fw(u)

u
A′wsαw − 1

∣∣∣∣ = 0,

for almost all s ∈ R
+. For example, this happens when Fw(u)→ u, uniformly on R

and A′w → 1, as w →+∞.
For the given kernel {Mw} we define the family M of integral operators via

(Mwf )(s) =
∫ +∞

0
tαwHw(ts−1)Fw(f (t))

dt

t
, s ∈ R

+. (4.16)

For any w ∈ W , we call the family M a nonlinear Mellin convolution operator with
weight tαw or nonlinear Mellin convolution operator of order αw.

Taking αw = 0, for every w ∈ W , we obtain the family M of nonlinear Mellin
convolution operators, defined by

(Mwf )(s) =
∫ +∞

0
Hw(ts−1)Fw(f (t))

dt

t
,

for s ∈ R
+. The functions Lw(s, t) = Hw(ts−1), w ∈ W , are homogeneous of degree

0, i.e., ζw(t) = 1 for every w ∈ W, t ∈ R
+.

Example 4.5. For every n ∈ N, let us consider the function

(n+ 1)
tn+1+αn

sn+1 χ]0,s[(t), s, t ∈ R
+,

where {αn} is a sequence of real numbers such that αn → 0. Then the corresponding
family of operators M, given by

(Mnf )(s) = (n+ 1)
∫ s

0

tn+1+αn

sn+1 Fn(f (t))
dt

t
,

is called the nonlinear weighted moment operator with weights tαn , and taking αn ≡ 0
for any n, we obtain the nonlinear moment operators.
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Thus the previous theory can be applied to the families M = {M}w, M = {M}w,w ∈
W , in modular function spaces, in which the modular satisfies the conditions of Sec-
tion 4.5. In particular, just as an example, we can consider the Orlicz space L

ϕ
µ(R

+),
for a fixed ϕ-function ϕ ∈ /, (see Example 1.5 (b)), in which the modular functional
takes now the form

Iϕ(f ) =
∫

R+
ϕ(|f (t)|)t−1 dt,

for f ∈ L0(R+). We assume that the generating function ϕ : R
+
0 → R

+
0 is J-quasi-

convex, with a constant M ≥ 1. For completeness we report the assumptions on ϕ.

(ϕ.1) ϕ is continuous and nondecreasing,

(ϕ.2) ϕ(0) = 0, ϕ(u) > 0, for u > 0, and limu→+∞ ϕ(u) = +∞,

(ϕ.3) there is M ≥ 1, such that, for any g ∈ L1
µ(R

+) with ‖g‖1 = 1 and g ≥ 0,

ϕ

(∫ +∞
0

|f (t)|g(t)t−1 dt

)
≤ M

∫ +∞
0

ϕ(M|f (t)|)g(t)t−1 dt,

for any f ∈ L0(R+).

If ϕ satisfies (ϕ.i), i = 1, 2, 3, we will write ϕ ∈ /. We will denote by L
ϕ
µ(R

+) the
Orlicz space generated by ϕ, with respect to the Haar measure dµ(t) = dt/t , i.e.,

Lϕ
µ(R

+) = {f ∈ L0(R+) : Iϕ(λf ) < +∞ for some λ > 0}.

As a consequence of Theorem 4.1, under the previous assumptions on the functions
Hw,Fw, we have L

ϕ
µ(R

+) ⊂ Dom M, for any w ∈ W (the reader is encouraged to
find the proof). We have the following corollary.

Corollary 4.1. Let ϕ ∈ / and let us assume that the functions Mw satisfy the above
conditions of singularity. Let f ∈ L

ϕ
µ(R

+) be such that pf ∈ L
ϕ
µ(R

+) and ζf ∈
L

ϕ
µ(R

+), where ζ = supw∈W sαw . Then there is λ > 0 such that

lim
w→+∞ Iϕ[λ(Mwf − f )] = 0.

In the same manner we can obtain a version of Theorem 4.6, for the family M

of operators Mw, where the functions Fw satisfy a (Lw,ψ)-Lipschitz condition, in
the case of Orlicz spaces generated by two ϕ-functions ϕ1, ϕ2 such that the triple
{Iϕ1 , ψ, Iϕ2} is properly directed. In [34] there are given some conditions on ϕ1, ϕ2
in order that the above triple is properly directed. In this instance, it is clear that the
function ψ is taken independent of t ∈ G.
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Remark 4.7. Let us consider now the linear case, i.e. Fw(u) = u, for every w ∈ W .
In [15] there are given some results about modular convergence of these operators,
when the homogeneity of the kernel is taken with respect to the same function ζ ,
for every w ∈ W . But in this case we obtain Mwf → ζf in modular sense and in
general we cannot replace ζf with f . Indeed if for exampleαw = α, for everyw ∈ W ,
condition (jjj) of the singularity assumption is satisfied only if α = 0, i.e., ζ(t) = 1,
for every t ∈ R

+. However taking a net of “weights” of type ζw(t) = tαw , such that
αw → 0, we can improve the result given in [15], obtaining an approximation theorem
for f .

4.8 Bibliographical notes

The study of linear integral operators with homogeneous kernel (of degree α) takes
its origin in the theory of inequalities. The classical Hardy, Hardy–Littlewood and
Schur inequalities involve some special linear integral operator acting on Lp-spaces.
Extensions of these inequalities are obtained by several authors. We quote here Flett
[100], E. R. Love [136], [137], F. Feher [97], P. L. Butzer and F. Feher [58], C. Bardaro
and G. Vinti [29], I. Mantellini and G. Vinti [142]. Operators with homogeneous
kernels are also considered in connection with fractional calculus by A. Erdélyi in
[96], H. Kober [128], K. B. Oldham and J. Spanier [169]. Also, the moment kernel
may be considered as a function with degree of homogeneity zero if we consider a Haar
measure, and of degree −1 if we consider the Lebesgue measure on R

+. Results on
moment type operators, in connection with approximation theory, fractional calculus
and calculus of variations, are given by many authors. We quote the contribution of C.
Vinti [198], who obtained, for a general class of linear operators, some convergence
results with respect to some integral functional of Calculus ofVariations. These results
were again taken into consideration by F. Degani Cattelani [84], [85], for convergence
in perimeter, and by C. Fiocchi [98] for convergence in area. Moment-type operators
in approximation theory in Lp-spaces were also considered by F. Barbieri [8] and
C. Bardaro [9]. In connection with fractional calculus, we recall here the contribution
of Zanelli [212] and C. Fiocchi [99], in which an application of the moment operator
theory to Hausdorff dimension of some fractal set is studied.

The general definition of homogeneity given in Section 4.1 takes its origin in
the paper [31], in which some estimates of linear integral operators with general as-
sumptions of homogeneity are considered with respect to some variational functional.
Inequalities for such operators are also given in Musielak–Orlicz spaces in [32].

Approximation theorems in function spaces by means of general linear integral
operators of type ∫

G

Kw(s, t)f (t) dµ(t),

with ζ -homogeneous kernel {Kw}, were given firstly in [35], in Musielak–Orlicz
spaces, and then in [15] for general modular spaces.
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The results given in this chapter for nonlinear operators were obtained in [43].
For Orlicz spaces some convergence results, for nonlinear integral operators with
homogeneous kernels (in the sense given in Section 4.1), were given in [37]. Here, as an
application, a nonlinear version of Mellin convolution integral operator is introduced.
The definition of these operators is also further generalized by introducing a weight
function (given essentially by the function ζ from the homogeneity assumption).

Classical Mellin (linear) convolution operators came from the theory of the Mellin
transform, extensively studied by P. L. Butzer and S. Jansche [61], [62], [64], [65], in
which the foundations of Mellin approximation theory are given.

The Urysohn-type operators considered here are related to convolution operators
by means of the homogeneity assumption on the kernel, in the sense that these assump-
tions represent a generalization of convolution. By considering a suitable definition of
singularity and by stating a density theorem in modular topology, in [13], [14], C. Bar-
daro and I. Mantellini obtained convergence theorems in Orlicz or Musielak–Orlicz
spaces for families of general Urysohn-type operators, without any homogeneity as-
sumption.

Finally we wish to point out that the assumption of homogeneity given here is a
useful tool in studying approximation theory by means of operators with homogeneous
kernels in abstract topological groups. The definition proposed here is different from
that used in abstract harmonic analysis (in homogeneous group, see e.g. Folland–Stein
[102]).



Chapter 5

Summability methods by convolution-type
operators

5.1 An estimate of ρ[α(T1f − T2g)]
In Chapter 3 we were concerned with the problem of approximation of a function f ∈
L0

ρ+η(�)∩Dom T by means of a family T = (Tw)w∈W of convolution-type operators
in the sense of ρ-convergence in a space L0

ρ(�) (Theorem 3.3). Here, we shall
apply the same operators to summability problem of a family (fw)w∈W of functions,
i.e. to the investigation of the problem of convergence of the transformed sequence
(Twfw)w∈W . The main problem is: under what conditions, a convergent family
(fw)w∈W is transformed in a convergent family (Twfw)w∈W . Here, convergence is
meant in the sense of the respective modulars.

In this chapter we will deal with a measure space (�,�,µ) with a σ -finite and
complete measureµ, where� is equipped with a commutative operation+ : �×�→
�.

First of all, we need a fundamental inequality similar to the inequality (3.4) in
Chapter 3.

Let K1 : �→ R and K2 : �→ R be two Carathéodory kernel functions and let
0 < L1 ∈ L1(�), 0 < L2 ∈ L1(�); let ψ : �× R

+
0 → R

+
0 , be a function belonging

to the class M (see Section 3.1), defining the Lipschitz condition. We consider the
respective convolution-type operators

(T1f )(s) =
∫
�

K1(t, f (t + s)) dµ(t), (T2g)(s) =
∫
�

K2(t, g(t + s)) dµ(t)

for f ∈ Dom T1 and g ∈ Dom T2. Let us write p1(t) = L1(t)/‖L1‖1, p2(t) =
L2(t)/‖L2‖1 for t ∈ � and let us put L1,2 = max(‖L1‖)1, ‖L2‖1).

Theorem 5.1. Let ρ be a monotone, J -quasiconvex with a constant M ≥ 1 modular
on L0(�) and let η be a modular on L0(�), subbounded with respect to the operation
+ with a constant C ≥ 1 and a function ( ∈ L∞(�). Let K1 be an (L1, ψ)-Lipschitz
Carathéodory kernel function and let K2 be an (L2, ψ)-Lipschitz Carathéodory
kernel function such that {ρ,ψ, η} is a properly directed triple. Finally, let U ∈ �,
0 < λ < 1 and 0 < α < Cλ/(6MLi), i = 1, 2, be arbitrary. Then for every
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f, g ∈ L0
η(�) ∩ Dom T1 ∩ Dom T2 there holds the inequality

ρ[α(T1f − T2g)] ≤ ρ

[
6α

∣∣∣∣∫
U

(K1(t, f (t + ·))−K2(t, f (t + ·))) dµ(t)

∣∣∣∣]
+M[η(λCf )

+ ‖(‖∞]
(∫

�\U
p1(t) dµ(t)+

∫
�\U

p2(t) dµ(t)

)
+M[η(λC(f − g))+ ‖(χU‖∞]
+M[η(2λCf )+ η(2λCg)+ 2‖(‖∞]

∫
�\U

p2(t) dµ(t).

(5.1)

Proof. Since

|(T1f )(s)− (T2g)(s)| ≤
∣∣∣∣∫

�

(K1(t, f (t + s))−K2(t, f (t + s))) dµ(t)

∣∣∣∣
+
∣∣∣∣∫

�

(K2(t, f (t + s))−K2(t, g(t + s))) dµ(t)

∣∣∣∣ ,
so by monotonicity of ρ, we have for arbitrary α > 0

ρ[α(T1f − T2g)] ≤ ρ

[
2α

∣∣∣∣∫
�

(K1(t, f (t + ·))−K2(t, f (t + ·))) dµ(t)

∣∣∣∣]
+ ρ

[
2α

∣∣∣∣∫
�

(K2(t, f (t + ·))−K2(t, g(t + ·))) dµ(t)

∣∣∣∣] .
Denoting the two terms on the right-hand side of the last inequality by I and II ,
respectively, we have

ρ[α(T1f − T2g)] ≤ I + II.

We shall estimate I and II separately. Since ρ is a modular, we have

ρ(f1 + f2 + f3) ≤ ρ(3f1)+ ρ(3f2)+ ρ(3f3)

for f1, f2, f3 ∈ L0(�). Hence by monotonicity of ρ we obtain for every U ∈ �

I ≤ ρ

[
6α

∣∣∣∣∫
U

(K1(t, f (t + ·))−K2(t, f (t + ·))) dµ(t)

∣∣∣∣]
+ ρ

[
6α
∫
�\U

|K1(t, f (t + ·))|dµ(t)

]
+ ρ

[
6α
∫
�\U

|K2(t, f (t + ·))| dµ(t)

]
.

Denoting the three terms on the right-hand side of the last inequality by I ′, I I ′ and
III ′, respectively, we have

I ≤ I ′ + II ′ + III ′.
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We shall estimate II ′. Since K1 is an (L1, ψ)-Lipschitz kernel function, by
J-quasiconvexity with constant M ≥ 1 of ρ, we obtain

II ′ ≤ M

∫
�\U

p1(t)ρ[6αM‖L1‖1ψ(t, |f (t + ·)|)] dµ(t).

Applying the assumption that {ρ,ψ, η} is a properly directed triple with any λ ∈]0, 1[
and the respective Cλ ∈]0, 1[ we obtain for 0 < 6αM‖L1‖1 ≤ Cλ

II ′ ≤ M

∫
�\U

p1(t)η[λ|f (t + ·)|] dµ(t).

Since η is subbounded with constant C ≥ 1 and function ( ∈ L∞(�), we get

II ′ ≤ M[η(λCf )+ ‖(‖∞]
∫
�\U

p1(t) dµ(t).

Similarly, we get for 0 < 6αM‖L2‖1 ≤ Cλ the inequality

III ′ ≤ M[η(λCf )+ ‖(‖∞]
∫
�\U

p2(t) dµ(t).

Consequently, we obtain the estimation

I ≤ ρ

[
6α

∣∣∣∣∫
U

(K1(t, f (t + ·))−K2(t, f (t + ·))) dµ(t)

∣∣∣∣]
+M[η(λCf )+ ‖(‖∞]

(∫
�\U

p1(t) dµ(t)+
∫
�\U

p2(t) dµ(t)

)
.

Now, we are going to estimate II . Since ρ is monotone and J-quasiconvex with
constant M ≥ 1, and K2 is (L2, ψ)-Lipschitz, we obtain

II ≤ ρ

[
2α
∫
�

|K2(t, f (t + ·))−K2(t, g(t + ·))| dµ(t)

]
≤ M

∫
�

p2(t)ρ[2αM‖L2‖1ψ(t, |f (t + ·)− g(t + ·)|)] dµ(t).

Since {ρ,ψ, η} is a properly directed triple, so taking for a given λ ∈]0, 1[ the number
α > 0 so small that 0 < 2αM‖L2‖1 ≤ Cλ, we obtain

II ≤ M

∫
�

p2(t)η[λ(f (t + ·)− g(t + ·))] dµ(t).

Let us put

ν(A) =
∫
A

p2(t)η[λ(f (t + ·)− g(t + ·))] dµ(t)
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for arbitrary A ∈ �. Then we have for arbitrary U ∈ �

II ≤ Mν(U)+Mν(� \ U).

Since η is subbounded, we obtain

ν(U) ≤ η[λC(f − g)] + ‖(χU‖∞
and

ν(� \ U) ≤
∫
�\U

p2(t)η(2λf (t + ·)) dµ(t)+
∫
�\U

p2(t)η(2λg(t + ·)) dµ(t)

≤ [η(2λCf )+ η(2λCg)+ 2‖(‖∞]
∫
�\U

p2(t) dµ(t).

Then

II ≤ M[η(λC(f − g))+ ‖(χU‖∞]
+M[η(2λCf )+ η(2λCg)+ 2‖(‖∞]

∫
�\U

p2(t) dµ(t).

Estimations of I and II give together the inequality (5.1). ��

5.2 Conservative summability methods

Let W be an infinite set of indices defined as in Section 3.2, i.e., W ⊂ [a,w0[, where
a ∈ R and w0 ∈ R, w0 > a, or w0 = +∞ and w0 is a point of accumulation of W .
Convergence with respect to W is defined as left-hand side convergence w → w−0 ,
w ∈ W . In Section 1.2 we defined ρ-convergence, i.e., modular convergence with
respect to a modular ρ on X for a sequence (fn) of functions fn ∈ Xρ by the condition
ρ(λ(fn−f ))→ 0 as n→+∞ for some λ > 0. This definition may be transferred to
the case of convergence

w→, immediately. We say that a family (fw)w∈W of functions
fn ∈ Xρ is ρ-convergent to a function f ∈ Xρ , if there exists a λ > 0 (depending

on the family (fw)w∈W ) such that ρ(λ(fw − f ))
w→ 0. In the same manner one

may define ‖ · ‖ρ-norm convergence of (fw)w∈W to f by means of the condition

‖fw − f ‖ρ w→ 0. Similarly as in the case of Theorem 1.2 it is easily proved that

‖fw − f ‖ρ w→ 0 if and only if there holds ρ(λ(fw − f ))
w→ 0, for every λ > 0.

Obviously the same holds if we replace the norm ‖ ·‖ρ generated by a convex modular
ρ, by the F -norm ||| · |||ρ generated by a general modular ρ. Besides ρ-convergence
and ‖ · ‖ρ-norm (or ||| · |||ρ − F -norm) convergence, one may also introduce the
ρ-Cauchy condition and the ‖ · ‖ρ-Cauchy condition (or ||| · |||ρ-Cauchy condition) for
families (fw)w∈W . We say that the family (fw)w∈W with fw ∈ Xρ for all w ∈ W

is ρ-Cauchy or satisfies the ρ-Cauchy condition, if there exists a λ > 0 such that for
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every ε > 0 there is a left- neighbourhood Uε of w0 such that ρ(λ(fw − fv)) < ε for
every w, v ∈ Uε ∩W . We say that the family (fw)w∈W with fw ∈ Xρ for all w ∈ W

is ‖ · ‖ρ-Cauchy (resp. ||| · |||ρ-Cauchy), or satisfies the ‖ · ‖ρ-Cauchy condition with
respect to the norm ‖ · ‖ρ (resp. F -norm ||| · |||ρ), if for every ε > 0 there is a left-
neighbourhood Uε of w0 such that ‖fw − fv‖ρ < ε (resp. |||fw − fv|||ρ < ε) for
every v,w ∈ Uε ∩W . It is easily observed (compare with the proof of Theorem 1.2)
that (fw)w∈W is ‖ · ‖ρ-Cauchy (resp. ||| · |||ρ-Cauchy) if and only if for every λ > 0
and ε > 0 there exists a left-neighbourhood Uε of w0 such that ρ(λ(fw − fv)) < ε

for all v,w ∈ Uε ∩W .

We may treat a family T = (Tw)w∈W of convolution type operators (3.7) as a
method of summability saying that a family (fw)w∈W of functions fw ∈ Dom T

is (T, ρ)-summable to a function f ∈ L0
ρ(�), if Twfw

w→ f in the sense of the

ρ-convergence, i.e. ρ(λ(Twfw−f ))
w→ 0 for sufficiently smallλ > 0. A summability

method generated by the family T of operators will also be called the T-method. We
shall say that the T-method of summability is conservative from L0

η(�) to L0
ρ(�), or T

is (η, ρ)-conservative, if for every family (fw)w∈W such that fw ∈ L0
η(�)∩Dom T for

w ∈ W , η-convergent to a functionf ∈ L0
η(�), there exists a functiong ∈ L0

ρ(�) such
that the family (Twfw)w∈W is ρ-convergent to g. If we have always g = f , we call the
T-method to be regular or permanent from L0

η(�) to L0
ρ(�). We say that a T-method

is Cauchy conservative from L0
η(�) to L0

ρ(�), or is (η, ρ)-Cauchy conservative, if for
every family (fw)w∈W such that fw ∈ L0

η(�)∩Dom T for w ∈ W which is η-Cauchy,
there holds Twfw ∈ L0

ρ(�) for w ∈ W and the family (Twfw)w∈W is ρ-Cauchy.
Instead of the pair of modulars (η, ρ) one may take norms (or F-norms) generated
by these modulars, which leads to the notions of (‖ · ‖η, ‖ · ‖ρ)-conservativeness and
(‖ · ‖η, ‖ · ‖ρ)-Cauchy conservativeness (or (||| · |||η, ||| · |||ρ)− conservativeness and
(||| · |||η, ||| · |||ρ)-Cauchy conservativeness) of a T-method.

It is obvious that an (η, ρ)-conservative T-method is (η, ρ)-Cauchy conservative,
as well as that a (‖ · ‖η, ‖ · ‖ρ)-conservative T-method is (‖ · ‖η, ‖ · ‖ρ)-Cauchy
conservative and a (||| · |||η, ||| · |||ρ)-conservative T-method is (||| · |||η, ||| · |||ρ)-Cauchy
conservative. In order to obtain a converse result we need the space L0

ρ(�) to be ρ-
complete or ‖·‖ρ-complete (|||·|||ρ-complete). We have to define what ρ-completeness
of L0

ρ(�) means. A sequence (fn) of functions fn ∈ Xρ , n = 1, 2, . . . , is called
(ρ, λ)-Cauchy with a constant λ > 0, if for every ε > 0 there is an index N such that
ρ(λ(fn − fm)) < ε for all m, n > N . The modular space Xρ is called ρ-complete,
if for every λ1 > 0 there exists a number λ2 > 0 such that every sequence (fn),
fn ∈ Xρ for n = 1, 2, . . . , which is (ρ, λ1)-Cauchy with λ1, is ρ-convergent with λ2
to an f ∈ Xρ , i.e. ρ(λ2(fn − f ))→ 0 as n→+∞. There holds the following

Theorem 5.2. (a) If the modular space L0
ρ(�) is ρ-complete, then every ρ-Cauchy

family (fw)w∈W is ρ-convergent to a function f ∈ L0
ρ(�).

(b) If the modular space L0
ρ(�) is ‖ · ‖ρ-complete (resp. ||| · |||ρ-complete), then
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every ‖ · ‖ρ-Cauchy (resp. ||| · |||ρ-Cauchy) family (fw)w∈W is ‖ · ‖ρ-convergent (resp.
||| · |||ρ-convergent) to a function f ∈ L0

ρ(�).

Proof. We limit ourselves to the proof of (a). Let (fw)w∈W be ρ-Cauchy, i.e. there
exists a numberλ1 > 0 such that for every ε > 0 there is a left-neighbourhoodUε ofw0
with the property that ρ(λ1(fw−f )) < ε for all w ∈ Uε∩W . Let (wn) be a sequence
of elements of W such that wn → w−0 as n→ +∞. Then ρ(λ1(fwn − fwm)) < ε if
m, n are so large that wn,wm ∈ Uε. Hence the sequence (fwn) is (ρ, λ1)-Cauchy with
the constant λ1. Since L0

ρ(�) is ρ-complete, it follows that there exists an f ∈ L0
ρ(�)

and a number λ2 > 0 such that ρ(λ2(fwn − f )) → 0 as n → +∞. Let us observe
that the function f is independent of the sequence (wn). Indeed should f and g be
two limit functions relative to sequences (wn) and (vn), then

ρ

(
1

3
λ2(f − g)

)
≤ ρ(λ2(f − fwn))+ ρ(λ2(fwn − fvn))+ ρ(λ2(fvn − g)).

Since (fw)w∈W is ρ-Cauchy, the right-hand side of the last inequality tends to 0 as
n → +∞. Thus f = g. Since the sequence (wn) was arbitrary, we conclude that
ρ(λ2(fw − f ))

w→ 0. ��

The following corollary may immediately be deduced from Theorem 5.2.

Corollary 5.1. (a) If L0
ρ(�) is ρ-complete, then any (η, ρ)-Cauchy conservative

T-method is (η, ρ)-conservative.

(b) If L0
ρ(�) is ‖·‖ρ-complete (or |||·|||ρ-complete), then any (‖·‖η, ‖·‖ρ)-Cauchy

conservative ((||| · |||η, ||| · |||ρ)-Cauchy conservative) T-method is (‖ · ‖η, ‖ · ‖ρ)-con-
servative ((||| · |||η, ||| · |||ρ)-conservative).

In various circumstances it is advisable to consider a weaker notion than that of
(η, ρ)-conservativeness of a T-method of summability, considering not all families
(fw)w∈W , but only uniformly bounded families. We say that a family (fw)w∈W
of functions fw ∈ L0

η(�) for w ∈ W is uniformly bounded, if fw ∈ L∞(�) for
w ∈ W and supw∈W ‖fw‖∞ < +∞. A T-method will be called a boundedly (η, ρ)-
conservative method (resp. boundedly (η, ρ)-Cauchy conservative method), if for
every uniformly bounded family (fw)w∈W , fw ∈ L0

η(�) ∩ T for w ∈ W , which
is η-convergent to a function f ∈ L0

η(�) (resp. which is η-Cauchy) there holds
Twfw ∈ L0

ρ(�) for w ∈ W and the family (Twfw)w∈W is ρ-convergent to some
g ∈ L0

ρ(�) (resp. is ρ-Cauchy). Analogously, one may define that the T-method is
boundedly (‖·‖η, ‖·‖ρ)- conservative or boundedly (‖·‖η, ‖·‖ρ)-Cauchy conservative;
the same may be done in the case of the F-norms ||| · |||η and ||| · |||ρ .

In order to formulate a theorem on (η, ρ)-conservativeness and bounded (η, ρ)-
conservativeness of a T-method of summability we shall need still some special proper-
ties of the kernel K = (Kw)w∈W . We say that the Carathéodory kernel K = (Kw)w∈W
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consists of near kernel functions, if for every δ > 0 there exist a wδ ∈ W , U0 ⊂ U0
such that for every U ∈ U0, U ⊂ U0 and all v,w ∈ [wδ,w0[∩W , u ∈ L0(�) there
holds the inequality∣∣∣∣∫

U

[Kw(t, u(t))−Kv(t, u(t))] dµ(t)

∣∣∣∣ < δ. (5.2)

We say that the Carathéodory kernel K = (Kw)w∈W consists of almost near kernel
functions, if for every δ > 0 and γ > 0, γ < +∞, there exist a wδ,γ ∈ W and
U0 ∈ U0, such that for every U ∈ U0, U ⊂ U0 and all v,w ∈ [wδ,γ , w0[∩W ,
|u(t)| ≤ γ for µ-a.e. t ∈ � there holds the inequality (5.2). Obviously, if a kernel K

consists of near kernel functions, then it consists of almost near kernel functions.

Theorem 5.3. Let {�,U, �,µ} be a correctly filtered system with respect to the
operation +. Let ρ be a monotone, J-quasiconvex modular on L0(�) such that
χ� ∈ L0

ρ(�). Let η be a modular on L0(�), bounded with respect to the operation

+ with a constant C ≥ 1 and a function ( ∈ L∞(�) such that ((t)
U−−→ 0. Let

K = (Kw)w∈W be an (L, ψ)-Lipschitz Carathéodory kernel, where ψ ∈ M, L =
(Lw)w∈W , S = supw∈W ‖Lw‖1 < +∞ and pw(t) = Lw(t)/‖Lw‖1 for t ∈ � satisfy
the condition ∫

�\U
pw(t) dµ(t)

w→ 0 for every U ∈ U0. (5.3)

Suppose that {ρ,ψ, η} is a properly directed triple. Let T = (Tw)w∈W , where Tw are
defined by (3.7). Then

(a) if K consists of near kernel functions, then the T-method is (η, ρ)-Cauchy
conservative;

(b) if K consists of almost near kernel functions, then the T-method is boundedly
(η, ρ)-Cauchy conservative.

Proof. Let (fw)w∈W be η-Cauchy and let C ≥ 1 and λ > 0 be arbitrary. We have for
arbitrary w,w1 ∈ W the inequality

η(2λCfw) = η[2λC(fw − fw1)+ 2λCfw1 ]
≤ η(4λC(fw − fw1))+ η(4λCfw1).

As (fw)w∈W is η-Cauchy, there exist λ0 > 0 and w2 ∈ W with η(4λ0C(fw−fw1)) <

1/2 for w,w1 ∈ [w2, w0[∩W . Since fw1 ∈ L0
η(�), we may choose λ0 so small that

η(4λ0Cfw1) < 1/2. Hence we have

η(2λCfw) < 1 (5.4)
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for 0 < λ ≤ λ0 and w ∈ [w2, w0[∩W . Now, we apply inequality (5.1), replacing
T1, T2,K1,K2, p1, p2, f, g by Tw, Tv,Kw,Kv, pw, pv, fw, fv , respectively. Apply-
ing (5.4), we obtain for 0 < λ ≤ λ0 and w, v ∈ [w2, w0[∩W the inequality

ρ[α(Twfw − Tvfv)]
≤ ρ

[
6α

∣∣∣∣∫
U

(Kw(t, fw(t + ·))−Kv(t, fw(t + ·))) dµ(t)

∣∣∣∣]
+M(1+ ‖(‖∞)

(∫
�\U

pw(t) dµ(t)+
∫
�\U

pv(t) dµ(t)

)
+M[η(Cλ(fw − fv))+ ‖(χU‖∞]
+ 2M(1+ ‖(‖∞)

∫
�\U

pv(t) dµ(t)

(5.5)

for every U ∈ U0.
Putγ = supw∈W ‖fw‖∞; obviously, γ < +∞ if and only if (fw)w∈W is uniformly

bounded. Let us take an arbitrary ε > 0. Since χ� ∈ L0
ρ(�), there exists a δ > 0

such that
ρ(6αδχ�) < ε/7.

By assumptions (a) and (b) there exist w3 ∈ W , w3 ≥ w2 and U0 ∈ U0 such that for
arbitrary U ∈ U0, U ⊂ U0, v,w ∈ [w3, w0[∩W and u ∈ L0(�) such that |u(t)| ≤ γ

µ-a.e. t ∈ �, there holds the inequality (5.2). Here, γ = +∞ in the case (a) and
γ < +∞, γ fixed, in the case (b). Thus we have∣∣∣∣∫

U

(Kw(t, fw(t + s))−Kv(t, fw(t + s))) dµ(t)

∣∣∣∣ < δ

for U ∈ U0, U ⊂ U0, v,w ∈ [w3, w0[∩W and all s ∈ �. Hence we obtain, by
monotonocity of ρ, the inequality

ρ

[
6α

∣∣∣∣∫
U

(Kw(t, fw(t + ·))−Kv(t, fw(t + ·))) dµ(t)

∣∣∣∣] ≤ ρ(6αδχ�) < ε/7

for U ∈ U0, U ⊂ U0, v,w ∈ [w3, w0[∩W . Since ((t)
U−−→ 0, we may suppose

U ∈ U0 be so small that
‖(χU‖∞ <

ε

7M
.

We fix a set U satisfying the above inequalities. Since∫
�\U

pw(t) dµ(t)
w→ 0,

there exists a w4 ∈ W , w4 ≥ w3 such that

M(1+ ‖(‖∞)

∫
�\U

pw(t) dµ(t) <
ε

7
, M(1+ ‖(‖∞)

∫
�\U

pv(t) dµ(t) <
ε

7
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for w ∈ [w4, w0[∩W . Thus, the inequality (5.5) leads to an estimation

ρ[α(Twfw − Tvfv)] ≤ 6

7
ε +Mη(Cλ(fw − fv))

for v,w ∈ [w4, w0[∩W . Since (fw)w∈W is η-Cauchy, there is a w5 ∈ W , w5 ≥ w4
such that Mη(Cλ(fw − fv)) < ε/7 for v,w ∈ [w5, w0[∩W . Thus,

ρ[α(Twfw − Tvfv)] < ε

for v,w ∈ [w5, w0[∩W . Consequently, the family (Twfw)w∈W is ρ-Cauchy. ��

Let us remark that version (a) of Theorem 5.3 is less interesting in the case when
the kernel functions are linear (Example 3.1), i.e., Kw(t, u) = K̃(t)u. In this case
inequality (5.2) becomes∣∣∣∣∫

U

(K̃w(t)− K̃v(t))u(t) dµ(t)

∣∣∣∣ < δ.

Taking u(t) = u ∈ R, an arbitrary constant function, this is true only if∫
U
K̃w(t) dµ(t) = ∫

U
K̃v(t) dµ(t) for a U ∈ U0 and w, v ∈ W , w, v sufficiently

near w0.

5.3 Regularity of methods with respect to different
modulars

Now we shall indicate a possibility to investigate the (η, ρ)-regularity of a T-method
directly, without applications of the Cauchy condition. The (η, ρ)-regularity of a T-
method means that if (fw)w∈W with fw ∈ L0

η(�) ∩ Dom T is η-convergent to an
f ∈ L0

η(�), then (Twfw)w∈W is ρ-convergent to f . This could be obtained applying
the inequality

ρ[α(Twfw − f )] ≤ ρ[2α(Twfw − fw)] + ρ[2α(fw − f )],
if we only know that η-convergence fw

w→ f implies ρ-convergence fw
w→ f ; the

first term on the right-hand side of the last inequality could be estimated by means of
an inequality of the form (3.4).

In order to solve the problem, whenη-convergencefw
w→ f impliesρ-convergence

fw
w→ f we introduce the following relation. Let η and ρ be two modulars on L0(�).

We shall say that ρ is weaker than η, if there are positive constants α, β, γ and c such
that for every f ∈ L0(�) there holds the inequality

ρ(αf ) ≤ βη(γf )+ c.

Moreover we will say that ρ is strictly weaker than η, if the previous relation holds
with c = 0.
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Example 5.1. Let us take

ρ(f ) =
∫
�

ϕ(|f (t)|) dµ(t) and η(f ) =
∫
�

ψ(|f (t)|) dµ(t),

where ϕ,ψ are ϕ-functions and µ(�) < +∞ (Example 1.5 (b)). Let us suppose that
there exist positive constants a, b, a0, b0 and u0 such that

ϕ(au) ≤ bψ(a0u)+ b0

for every u ≥ u0. Let f ∈ L0(�) and let A = {t ∈ � : |f (t)| ≥ u0}, B = � \ A.
Then we have

ρ(af ) ≤
∫
A

ϕ(a|f (t)|) dµ(t)+
∫
B

ϕ(au0) dµ(t)

≤
∫
A

bψ(a0|f (t)|) dµ(t)+
∫
A

b0 dµ(t)+ ϕ(au0)µ(B)

≤ bη(a0f )+ (b0 + ϕ(au0))µ(�).

This means that ρ is weaker than η. If b0 = 0 and u0 = 0 the modular ρ is clearly
strictly weaker than η. In case when ϕ(u) = up and ψ(u) = uq for u ≥ 0 the above
condition for ϕ and ψ means that 0 < p ≤ q < +∞.

Theorem 5.4. Let ρ and η be modulars on L0(�) such that ρ is quasiconvex and
weaker than η. Then L0

η(�) ⊂ L0
ρ(�). Moreover if ρ is strictly weaker than η, the

embedding is continuous both in the sense of modular convergence and in the sense
of norm convergence in the spaces L0

η(�) and L0
ρ(�).

Proof. Let f ∈ L0(�) and λ0 > 0 be such that η(λ0f ) < +∞. Let λ > 0 be such
that λγ < λ0. Since ρ is weaker than η, we have

ρ(αλf ) ≤ βη(γ λf )+ c ≤ βη(λ0f )+ c < +∞.

Since ρ is quasiconvex, with a constant M ≥ 1, we finally deduce that f ∈ L0
ρ(�).

Now let us assume that ρ is strictly weaker that η, i.e. c = 0. Let gn ∈ L0
η(�)

for n = 1, 2, . . . be a sequence such that gn → 0 in the sense of η-convergence. Let
λ > 0 be such that

lim
n→+∞ η(γ λgn) = 0.

Since ρ is strictly weaker than η we have

ρ(αλgn) ≤ βη(γ λgn),

and so the sequence gn → 0 in the sense of ρ-convergence.
The proof in the case of norm convergence follows the same lines. ��

Arguing as in the proof of Theorem 5.4 one immediately obtains the following
result.
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Theorem 5.5. Let ρ and η be modulars on L0(�) such that ρ is quasiconvex and
strictly weaker than η. Let (fw)w∈W be a family of functions fw ∈ L0

η(�), w ∈ W .

(a) If fw
w→ f in the sense of η-convergence, then fw

w→ f in the sense of ρ-
convergence, too.

(b) If fw
w→ f in the sense of ‖ · ‖η-convergence (or ||| · |||η-convergence), then

fw
w→ f in the sense of ‖ · ‖ρ-convergence (or ||| · |||ρ-convergence).

We may now prove the following theorem on regularity of a T-method.

Theorem 5.6. Let {�,U, �,µ} be a correctly filtered system with respect to the
operation +. Let ρ be a monotone, J-quasiconvex with constant M ≥ 1 modular on
L0(�) and let η be an absolutely finite, absolutely continuous and bounded modular
on L0(�) such that ρ is strictly weaker than η. Let K = (Kw)w∈W be an (L, ψ)-
Lipschitz, strongly singular Carathéodory kernel such that {ρ,ψ, η} is a properly
directed triple. Then the T-method defined by the family T = (Tw)w∈W of operators
given by (3.7) is (η, ρ)-regular.

Proof. By Theorem 3.2, inequality (3.4) and Lemma 3.1 (a) we have

ρ[α(Twfw − fw)] ≤ Mωη(λfw,U)+M[2η(2λCfw)

+ ‖(‖∞]
∫
�\U

pw(t) dµ(t)+ ρ(2αr(0)w fw), w ∈ W,
(5.6)

for U ∈ �, 0 < λ < 1, 0 < α < Cλ(2MS)−1 and fw ∈ L0
η(�) ∩ Dom T, where

S = supw∈W ‖Lw‖1 < +∞. First, we estimate ωη(λfw,U). By the boundedness of
η, we have for t ∈ U and w ∈ W

η[λ(fw(t + ·)− fw(·))] ≤ η[3λ(fw(t + ·)− f (t + ·))]
+ η[3λ(f (t + ·)− f (·))] + η[3λ(f (·)− fw(·))]

≤ η[3λC(fw − f )] + ((t)+ η[3λ(f (t + ·)− f (·))]
+ η[3λ(fw − f )]

≤ 2η[3λC(fw − f )] + ‖(χU‖∞ + ωη(3λf,U),

for w ∈ W . Hence

ωη(λfw,U) ≤ 2η[3λC(fw − f )] + ‖(χU‖∞ + ωη(3λf,U).

Inserting the above inequality in (5.6), we obtain the inequality

ρ[α(Twfw − fw)] ≤ 2Mη[3λC(fw − f )] +M‖(χU‖∞
+Mωη(3λf,U)+M[2η(2λCfw)

+ ‖(‖∞]
∫
�\U

pw(t) dµ(t)+ ρ(2αr(0)w fw).

(5.7)



94 5 Summability methods by convolution-type operators

Let ε > 0 be given. Since η is bounded, we have ‖(χU‖∞ U−−→ 0. Moreover, by

Theorem 2.4, we have ωη(2λf,U)
U−−→ 0 for sufficiently small λ > 0. Hence there

exist a set U ∈ U0 and λ1 ∈]0, 1[ such that

M‖(χU‖∞ < ε/6 and Mωη(3λf,U) < ε/6

for 0 < λ ≤ λ1. Since fw
w→ f in the sense of η-convergence, there exist w1 ∈ W

and 0 < λ2 ≤ λ1 such that

2Mη[3λC(fw − f )] < ε/6

for w ∈ [w1, w0[∩W and 0 < λ ≤ λ2. Moreover, arguing as in the proof of
Theorem 5.3 we may easily show that taking λ2 sufficiently small and w1 sufficiently
near to w0 we have

η(2λCfw) < 1

for λ ∈]0, λ2[ and w ∈ [w1, w0[∩W . Hence, from (5.7) we obtain the inequality

ρ[α(Twfw − fw)] ≤ ε

2
+M(2+ ‖(‖∞)

∫
�\U

pw(t) dµ(t)+ ρ(2αr(0)w fw) (5.8)

for w ∈ [w1, w0[∩W , where U ∈ U0 is the set we have fixed above, 0 < λ < λ2
and 0 < α < Cλ(2MS)−1. Since K is singular, we may take a w2 ∈ W such that
w2 ∈ [w1, w0[ and

M[2+ ‖(‖∞]
∫
�\U

pw(t) dµ(t) < ε/6

for w ∈ [w2, w0[∩W , where U is the above fixed set in U0. Hence, by (5.8), we
obtain

ρ[α(Twfw − fw)] ≤ 2

3
ε + ρ(2αr(0)w fw)

for α > 0 as above, say 0 < α ≤ α0 and w ∈ [w2, w0[∩W . Thus, if 0 < α ≤ α0 and
w2 ≤ w < w0, w ∈ W , we have

ρ[α(Twfw − fw)] ≤ 2

3
ε + ρ[4αr(0)w (fw − f )] + ρ(4αr(0)w f ). (5.9)

Sinceρ is quasiconvex and strictly weaker than η so, by Theorem 5.4, L0
η(�) ⊂ L0

ρ(�)

and this embedding is continuous in the sense of modular convergence. Consequently,
sincefw ∈ L0

η(�) forw ∈ W , f ∈ L0
η(�) andfw

w→ f in the sense of η-convergence,

we obtain f ∈ L0
ρ(�) and fw

w→ f in the sense of ρ-convergence. Thus, there exist
β > 0 and w3 ∈ W with w3 ≥ w2, such that ρ(βf ) < ε/6 and ρ[β(fw − f )] < ε/6
for w ∈ [w3, w0[∩W . Since K is strongly singular, there holds r(0)w

w→ 0. Hence there
is a w4 ∈ W , w4 ≥ w3 such that 4α0r

(0)
w < β for w ∈ [w4, w0[∩W . Consequently,

ρ(4α0r
(0)
w f ) < ε/6 and ρ[4α0r

(0)
w (fw − f )] < ε/6
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for w ∈ [w4, w0[∩W . Hence we obtain, applying the inequality (5.9),

ρ[α(Twfw − f )] < ε

for 0 < α ≤ α0, w ∈ [w4, w0[∩W . Thus, choosing for example γ < α, we may
write

ρ[γ
2
(Twfw − f )] ≤ ρ[γ (Twfw − fw)] + ρ[γ (fw − f )]

and thus Twfw
w→ f in the sense of ρ-convergence ��

Let us still remark that similarly as in Theorem 3.3, the assumption of strong
singularity of the kernel K may be replaced by a weaker one of singularity; however,
the modular ρ must be finite and absolutely continuous. We are not going into details
of the formulation of the theorem in this case. Let us also remark that Theorems 5.3
and 5.6 are not referred to summability methods T = (Tw)w∈W with Tw = T for
w ∈ W , since in this case the condition (5.3) is never satisfied.

Example 5.2. Let us take � = Z the set of all integers, � the σ -algebra of all subsets
of Z, µ the counting measure on Z. Then we have for f (j) = aj , j ∈ Z,∫

�

f (t) dµ(t) =
∑
j∈Z

aj .

Let W = N the set of all positive integers, w0 = +∞. We take a linear kernel
K = (Kn)

∞
n=1, i.e. Kn(j, u) = a

(n)
j u for j ∈ Z, n ∈ N. Then obviously |Kn(j, u)−

Kn(j, v)| ≤ |a(n)
j ||u − v| for u, v ∈ R, j ∈ Z, n ∈ N. This means that the kernel K

is (L, ψ)-Lipschitz with L = (Ln)
∞
n=1, where Ln(j) = |a(n)

j |, and with ψ(j, u) = u

for u ≥ 0. We have ‖Ln‖1 = ∑j∈Z
|a(n)

j |, whence the condition Ln ∈ L1(�) for

n ∈ N means that the series
∑

j∈Z
a
(n)
j are absolutely convergent for n ∈ N and the

condition S = supn∈N ‖Ln‖1 < +∞means that supn

∑
j∈Z

|a(n)
j | < +∞. Moreover,

we have pn(j) = ‖Ln‖−1
1 Ln(j) for j ∈ Z, n ∈ N. Now, let U be the family of sets

U ⊂ Z such that Z \ U is finite or empty. Taking Uk = {j ∈ Z : |j | > k} for
k = 1, 2, . . . we see that U0 = {U1, U2, U3, . . . } is a basis of the filter U. We are
going to interpret what singularity and strong singularity of the kernel K means. We
have for U = Uk ∈ U0∫

�\U
pw(t) dµ(t) =

k∑
j=−k

|a(n)
j |

‖Ln‖1
for n ∈ N,

and so the condition (5.3) is equivalent to

lim
n→+∞

k∑
j=−k

|a(n)
j |

‖Ln‖1
= 0
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for k = 1, 2, . . . , and this is equivalent to the condition

lim
n→+∞

|a(n)
j |

‖Ln‖1
= 0, for every j ∈ Z. (5.10)

Moreover, we have for l = 1, 2, . . .

r(l)n = sup
l−1≤|u|≤l

∣∣∣1
u

∑
j∈Z

a
(n)
j u− 1

∣∣∣ = ∣∣∣∑
j∈Z

a
(n)
j − 1

∣∣∣ = r(0)n

for n = 1, 2, . . . . Hence singularity of K is equivalent to strong singularity of K and
it is given by the conditions (5.10) and

lim
n→+∞

∑
j∈Z

a
(n)
j = 1. (5.11)

Let us still examine the assumption that the kernel K = (Kn)
∞
n=1 consists of almost

near kernel functions. Let δ > 0 and γ > 0 be given and U ⊂ Uk; then the inequality
(5.2) is equivalent to ∣∣∣∑

j∈U
(a

(n)
j − a

(m)
j )

∣∣∣ < δ

γ
.

Thus, the assumption on K to consist of almost near kernel functions means that for
every ε > 0 there exist N ∈ N and k ∈ N such that for every set U ⊂ Z with |j | ≥ k

for all j ∈ U and for any m, n > N there holds the inequality∣∣∣∑
j∈U

a
(n)
j −

∑
j∈U

a
(m)
j

∣∣∣ < ε.

5.4 Bibliographical notes

Problems of summability by means of families (Tw)w∈W of convolution-type nonlinear
integral operators were started in [159], and continued by B. Tomasz [190], [191].
Theorem 5.1 with the estimation (5.1) was proved as Theorem 6 in [147], Theorem 5.3
as Theorem 8 in [147]. The contents of Section 5.3 have not been published.



Chapter 6

Nonlinear integral operators in the space BVϕ

6.1 Preliminaries

In this chapter we will discuss some properties concerning nonlinear integral operators
of convolution type applied to functions belonging to the space of functions with
bounded ϕ-variation (see Example 1.5(f)) on an interval I ⊂ R.

For the sake of simplicity we will consider the (unbounded) interval I =]0,+∞[,
endowed with its Lebesgue measure. As in Example 1.5 (f), we denote by X the
space of all real valued functions defined on I . However, we always assume that the
functions in X are measurable. We recall here the definition of the ϕ-variation of f .
Let ϕ be a ϕ-function (see Example 1.5 (b)). We define

Vϕ(f ) ≡ Vϕ(f, I ) = sup
S

n∑
j=1

ϕ(|f (sj )− f (sj−1)|), (6.1)

where the supremum runs over all finite increasing sequences {s1, . . . , sn}, with sj ∈ I ,
j = 1, . . . , n.

Recall that the functional f &−→ V (f ) is not a modular functional on X, because
Vϕ(f ) = 0 only implies f = constant. However, as remarked in Example 1.5(f), it is
easy to show that the functional ρ : X→ R

+
0 defined by

ρ(f ) = |f (a)| + Vϕ(f ), (6.2)

for every f ∈ X and a fixed a ∈ I , is a modular functional. The corresponding
modular space Xρ is the space of functions with bounded ϕ-variation in I and it is
usually denoted by BVϕ(I).

Alternatively, it is possible to define the above modular space, by observing that
two functions f, g such that f − g = constant, have the same ϕ-variation. Thus,
introducing in X the following equivalence relation

f ∼ g iff f − g = constant,

the functional Vϕ(f ) is a modular on the quotient space X/ ∼. Using this approach,
we identify functions which differ by an additive constant.

Let us remark firstly that functions f ∈ BVϕ(I) are bounded and the limit
limt→0+ f (t) exists and it is finite. We will prove the second assertion (bounded-
ness being trivial).
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Obviously, if the limit exists, then it is finite, otherwise the function f could not be
bounded. Now, putting L = limt→0+f (t), l = limt→0+f (t), if the assertion is false,
then τ = L− l > 0. Then there are two decreasing sequences {ti}i∈N and {sj }j∈N in
I , with ti → 0 and sj → 0, such that f (sj )→ L and f (ti)→ l. We can choose the
points ti and sj in such a way that ti−1 < sj < ti . In this way for sufficiently large i, j

we have, for any λ > 0, ϕ(λ|f (sj ) − f (ti)|) > ϕ(λ(τ/2)). Taking a finite sequence
of numbers {ξ1, . . . ξN } where {ξν} are alternatively of type ti and sj for sufficiently
large indices i, j , we obtain

N−1∑
ν=1

ϕ(λ|f (ξν)− f (ξν+1)|) > (N − 1)ϕ(λ(τ/2)),

and so f �∈ BVϕ(I).
As a consequence, we can define the modular functional (6.2) using the formula

ρ(f ) = |f (0+)| + Vϕ(f ).

6.2 Some estimates in BVϕ

One of the main problems concerning the modular space BVϕ(I) is that the generating
modular (6.2), (or the functional (6.1)), is not monotone. Moreover it is neither finite
nor absolutely continuous. Thus the study of the properties of nonlinear integral
operators in this setting is quite difficult, and a large part of the theory developed in
the previous chapters, leads actually to various open problems.

In this section we will obtain some inequality related to the functional (6.1). As
consequences we will obtain some embedding theorems.

At first we introduce the class of operators. Let K̃ : I × I × X → R be the
functional defined by

K̃(s, t, f ) = K(t, f (st)),

for any s, t ∈ I and f ∈ X, where the function K : I × R → R is a measurable
function satisfying a (L,ψ)-Lipschitz condition of type

|K(t, u)−K(t, v)| ≤ L(t)ψ(t, |u− v|),
for every t ∈ R

+, u, v ∈ R, whereL ∈ L1(R+) and the functionψ belongs to the class
M (see Section 3.1). We will assume always that ψ is a concave function with respect
to the second variable. Note that we do not need the assumption that K̃(s, t, 0) = 0.
We will denote the class of such functions K by K . We define our operator by means
of the formula

(Tf )(s) =
∫

R+
K(t, f (st)) dt, (6.3)
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where f ∈ Dom T , the set of all functions f ∈ X such that Tf is well defined and
|(Tf )(s)| < +∞, for every s ∈ R

+. In order to obtain some inequalities, that lead to
embeddings theorems, we introduce an assumption similar to those used in Section 1.4.
Given a ϕ-function ϕ : R+0 → R

+
0 , we will assume the following condition.

There are a ϕ-function γ : R+0 → R
+
0 and a measurable function v : R+ → R

+
0 such

that

ϕ(ψ(t, u)) ≤ v(t)γ (u), for every u ∈ R
+
0 , t ∈ R

+, ψ ∈ M. (6.4)

Note that this assumption does not imply that the modulars generated by the variations
Vϕ, Vγ and the function ψ determine a properly directed triple (see Section 1.4).

The following estimation relates the spaces BVϕ(I) and BVγ (I); namely we
establish that T maps Dom T ∩ BVγ (I) into BVϕ(I).

Theorem 6.1. Let K ∈ K , ϕ a convex ϕ-function, ψ ∈ M and let γ be a ϕ-function
satisfying condition (6.4). Let moreover a be a constant with 0 < a ≤ 1/AL, where

0 < AL :=
∫

R+
L(t) dt < +∞, Av

L =
∫

R+
L(t)v(t) dt < +∞.

Then, if f ∈ Dom T , there results

Vϕ[a(Tf )] ≤ A−1
L Av

LVγ [aALf ].

Proof. We may suppose Vγ [aALf ] < +∞. Let D = {si}i=0,1,...N be an increasing
finite sequence in I . Fixed arbitrarily an index i ∈ {1, 2, . . . N}, we obtain, from the
Lipschitz condition of K ,

|(Tf )(si)− (Tf )(si−1)| ≤
∫

R+
|K(t, f (si t))−K(t, f (si−1t))| dt

≤
∫

R+
L(t)ψ(t, |f (si t)− f (si−1t)|) dt.

Now, by monotonicity of ϕ, Jensen’s inequality and concavity of ψ(t, ·), we obtain:

N∑
i=1

ϕ(a|(Tf )(si)− (Tf )(si−1)|)

≤
N∑
i=1

ϕ(a

∫
R+

L(t)ψ(t, |f (si t)− f (si−1t)|) dt)

≤ 1

AL

∫
R+

L(t)

N∑
i=1

ϕ(aALψ(t, |f (si t)− f (si−1t)|)) dt ≤
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≤ 1

AL

∫
R+

L(t)

N∑
i=1

ϕ(ψ(t, aAL|f (si t)− f (si−1t)|)) dt

≤ 1

AL

∫
R+

L(t)v(t)

N∑
i=1

γ (aAL|f (si t)− f (si−1t)|) dt

≤ 1

AL

∫
R+

L(t)v(t)Vγ [aALf ] dt = A−1
L Av

LVγ [aALf ];
the assertion follows by the arbitrariness of the set D. ��

Remark 6.1. Let now consider the particular case when ψ(t, u) = u, for every t ∈
R
+ and u ∈ R

+
0 ; then the Lipschitz condition takes now the form

|K(t, u)−K(t, v)| ≤ L(t)|u− v|
for every t ∈ R

+, u, v ∈ R, being L : R
+ → R

+
0 a summable function. This is the

so-called “strongly-Lipschitz” condition. In this case condition (6.4) is satisfied as
an equality with γ (u) = ϕ(u) and v(t) = 1 for every t ∈ R

+. Hence, AL = Av
L and

so Theorem 6.1 gives the estimate: Vϕ[a(Tf )] ≤ Vϕ[aALf ] where a is a positive
constant. So in this case Theorem 6.1 states that T maps Dom T ∩ BVϕ(R

+) in
BVϕ(R

+). The same estimate is obtained in the particular case of a linear operator of
the form

(Mf )(s) =
∫

R+
K(t)f (st) dt

when 0 < AL :=
∫

R+ K(t) dt < +∞. If AL ≡ 1, as it happens for moment type
kernels, i.e. Kλ(t) = λtλ−1χ]0,1[(t), t ∈ R

+, λ > 1, and a = 1, then Theorem 6.1
gives

Vϕ[Mλf ] ≤ Vϕ[f ] (6.5)

where (Mλf )(s) = ∫
R+ Kλ(t)f (st) dt .

Inequality (6.5) is the so-called ϕ-variation-non augmenting (diminishing) prop-
erty for Mλf .

6.3 A superposition theorem in BVϕ

In fractional calculus some generalized concepts of variation are used. In particular,
by using some classical linear integral operators, like Riemann–Liouville fractional
integrals, as example, a concept of fractional variation was introduced in [212]. It is
defined simply by taking the variation of the transformed function under the integral
transform considered. Thus, for example, denoting by Pαf the Riemann–Liouville
integral of f of order α ∈]0, 1[, defined by

(Pαf )(s) = 1

F(1− α)

∫ s

0

f (t)

(s − t)α
dt, s ∈ R

+, f ∈ L1
loc(R

+),
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the α-variation of f in I is defined by

V α(f ) = V α(f, I ) = V (Pαf ).

The Riemann–Liouville fractional integral is a linear integral operator with kernel

H(s, t) = 1

F(1− α)

1

(s − t)α
χ]0,s[(t),

and the domain of this operator is L1
loc(R

+) (see [145]).
It is remarkable that this concept is used in order to describe some geometric

properties (e.g. Hausdorff dimension) of some fractal sets (see e.g. [99]). For this
concept of variation, some “variation diminishing” properties for integral operators
were given (see e.g. [212]).

We can obtain a general approach to this problem, by introducing a concept of
(U, ϕ)-variation, where U is a general nonlinear integral operator. So given U we can
define

V U
ϕ (f ) = Vϕ(Uf ),

for any f belonging to suitable subspaces of X.
Thus it seems to be very natural to study some “variation diminishing” properties

for these concepts of variation. This involves some estimate concerning the superpo-
sition of integral operators. Here we give some contribution to this problem.

We consider the following nonlinear integral operators

(Uf )(s) =
∫

R+
H(t, f (st)) dt, f ∈ Dom U

and

(Tf )(s) =
∫

R+
K(t, f (st)) dt, f ∈ Dom T ,

being H,K : R
+ × R → R measurable functions with H,K ∈ K , where H is

(M, θ )-Lipschitz, i.e. there exist θ ∈ M, (concave with respect to the second variable),
and a measurable function M : R+ → R

+
0 such that

|H(t, u)−H(t, v)| ≤ M(t)θ(t, |u− v|),
for every t ∈ R

+, u, v ∈ R. Moreover we assume Tf ∈ Dom U . In order to establish
an estimate for the composition of the nonlinear integral operators, we will need of
the following condition (T).

Let ϕ be a convex ϕ-function, ψ, θ ∈ M; there exist σ , λ : R
+
0 → R

+
0 , where σ is a

convexϕ-function andλ is aϕ-function, and measurable functions v1, v2 : R+ → R
+
0 ,

such that the following relations are satisfied

ϕ(θ(t, u)) ≤ v1(t)σ (u), σ (ψ(t, u)) ≤ v2(t)λ(u), u ∈ R
+
0 , t ∈ R

+. (T)
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Example 6.1. A class of functions satisfying the conditions (T) is given for example
by taking ϕ(u) = eu

α − 1, α ≥ 1 and θ ∈ M of type θ(t, u) = θ(u). So we put
σ(u) = ϕ(θ(u)) = eθ

α(u) − 1, vi = 1, i = 1, 2 for every t ∈ R
+, and there results

that ϕ is a convex ϕ-function and σ(u) may be a convex (or not convex) ϕ-function,
(this depends on the form of the function θ and on the exponent α).

Now we are ready to state a sufficient condition under which the operator (U ) T )

maps Dom T ∩ BVλ(R
+) in BVϕ(R

+).

Theorem 6.2. Let H,K ∈ K , with H (M, θ )-Lipschitz, θ ∈ M. Let ϕ be a convex
ϕ-function, ψ ∈ M and let σ and λ be the functions of the condition (T). Furthermore
let us suppose

i) 0 < AL :=
∫

R+
L(t) dt < +∞, Av2

L :=
∫

R+
L(t)v2(t) dt < +∞,

ii) 0 < AM :=
∫

R+
M(t) dt < +∞, Av1

M :=
∫

R+
M(t)v1(t) dt < +∞,

and let a be a constant with 0 < a ≤ min
{ 1
ALAM

, 1
AM

}
. Then, if f ∈ Dom T , there

results

Vϕ[a(U ) T )f ] ≤ A
v1
M

AM

Vσ [aAM(Tf )] ≤ A
v1
MA

v2
L

AMAL

Vλ[aAMALf ].

Proof. We may suppose Vλ[aAMALf ] < +∞; let D = {si}i=0,1,...,N be a finite
increasing sequence in R

+. Fixed arbitrarily an index i ∈ {1, 2, . . . , N}, we have

|(U ) T )f (si)− (U ) T )f (si−1)| ≤
∫

R+
|H(t, (Tf )(si t))−H(t, (Tf )(si−1t))| dt

≤
∫

R+
M(t)θ(t, |(Tf )(si t)− (Tf )(si−1t)|)dt.

Now, by monotonicity of ϕ, Jensen’s inequality, concavity of θ(t, ·) and condition (T),
we may write

N∑
i=1

ϕ(a|(U ) T )f (si)− (U ) T )f (si−1)|)

≤
N∑
i=1

ϕ(a

∫
R+

M(t)θ(t, |(Tf )(si t)− (Tf )(si−1t)|)dt)

≤ 1

AM

∫
R+

M(t)

N∑
i=1

ϕ(aAMθ(t, |(Tf )(si t)− (Tf )(si−1t)|)) dt ≤
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≤ 1

AM

∫
R+

M(t)

N∑
i=1

ϕ(θ(t, aAM |(Tf )(si t)− (Tf )(si−1t)|)) dt

≤ 1

AM

∫
R+

M(t)v1(t)

N∑
i=1

σ(aAM |(Tf )(si t)− (Tf )(si−1t)|) dt

≤ 1

AM

∫
R+

M(t)v1(t)Vσ [aAM(Tf )] dt = A
v1
M

AM

Vσ [aAM(Tf )].
Applying Theorem 6.1, there results

A
v1
M

AM

Vσ [aAM(Tf )] ≤ A
v1
M

AM

A
v2
L

AL

Vλ[aAMALf ],
and the assertion follows by the arbitrariness of the sequence D. ��

Remark 6.2. In the particular case when θ(t, u) = ψ(t, u) = u, for u ∈ R
+, then in

condition (T) we may take σ(u) = λ(u) = ϕ(u) and vi(t) = 1, i = 1, 2 and hence
we obtain

Vϕ[a(U ) T )f ] ≤ Vϕ[aAM(Tf )] ≤ Vϕ[aAMALf ].
The same result is clearly obtained when both U and T are linear operators; in this
case AM := ∫

R+ H(t) dt and AL :=
∫

R+ K(t) dt . In particular when U is the linear
operator of Riemann–Liouville we obtain an inequality concerning an estimate of Tf
in terms of the fractional variation of a function f ∈ L1

loc(R
+) ∩ Dom T .

Analogously, the number Vϕ[(U )T )f ]may be interpreted as the (U, ϕ)-variation
of Tf . In this respect, Theorem 6.2 gives an embedding result for T , with respect to
the U -Musielak–Orlicz variation.

6.4 Dependence on a parameter: the space B̃V ϕ

In this section we extend the results given in Sections 6.2 and 6.3 to a more general
situation when the ϕ-function generating the Musielak–Orlicz variation depends on a
parameter. As before we will consider I = R

+ as base measure space, provided with
its Lebesgue measure. Let ϕ : R

+ × R
+
0 → R

+
0 be a function such that ϕ(t, ·) is a

ϕ-function, for every t ∈ R
+, and ϕ(·, u) is Lebesgue measurable for every u ∈ R

+
0 .

For the sake of simplicity we denote by / the class of all these functions and when
ϕ(t, ·) is also convex, for every t ∈ R

+, we write ϕ ∈ /̃.
We give now the generalized concept of variation. Let D = {ti}i=0,1,...,N ⊂ R

+ a
finite increasing sequence and let si ∈ [ti−1, ti] for i = 1, 2, . . . , N . Then, for every
f ∈ X, we define the generalized Musielak–Orlicz ϕ-variation of f in R

+ by means
of the following formula:

Ṽϕ(f ) ≡ Ṽϕ[f, I ] = sup
D

N∑
i=1

ϕ(si, |f (ti)− f (ti−1)|)
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where the supremum is taken over all the finite sequences D = {ti}i=0,1,...,N ⊂ R
+

and the intermediate points {si}i=1,...,N .
As for the Musielak–Orlicz variation, the functional Ṽϕ is not a modular functional,

but we can define a modular by putting

ρ̃(f ) = |f (a)| + Ṽϕ(f ),

where a is a fixed point in I . Finally we denote by B̃Vϕ(I ) the corresponding modular
space, called the space of functions with bounded generalized Musielak–Orlicz ϕ-
variation in I .

Now, in order to obtain estimates in this setting, we need of the following growth
condition on the function ϕ, called s-boundedness condition which represents a suit-
able modification of the boundedness condition for ϕ-functions depending on a pa-
rameter (see formula (1.9), Example 1.10), which takes into account of the variation
functional.

A function ϕ ∈ / will be said s-bounded in I = R
+, if there exist measurable

functions h : R
+ → R

+
0 and l : R

+ × R
+ → R and positive constants N1, N2 such

that, for every finite, increasing sequence {s0, s1, . . . , sN } ⊂ R
+, there results

ϕ(t, u) ≤ N1h(z)ϕ(tz,N2u)+ |4(l(·, z); [si−1, si])|
for every t ∈ [si−1, si] ⊂ R

+, i = 1, 2, . . . , N, z ∈ R
+, u ∈ R

+
0 and where

4(l(·, z); [si−1, si]) = l(si , z)− l(si−1, z).

If ϕ(t, u) is a convex function with respect to u ∈ R
+
0 , for every t ∈ R

+, we will write
ϕ ∈ /̃ and in the s-boundedness condition we may take N1 = 1.

Example 6.2. Here we give a nontrivial class of functions ϕ ∈ /, which satisfies
the s-boundedness property. Take ϕ(t, u) = tασ (u), α ∈ R, t ∈ R

+, where σ is a
ϕ-function of u. Then if α = 0, ϕ(t, u) = σ(u), clearly satisfies the above condition
for N1, N2 ≥ 1, h ≥ 1 and for arbitrary functions l or for suitable N1, N2, h and l.
If α �= 0, it is sufficient to choose l(t, z) = kβ(z), for some constant k ∈ R

+
0 and

β : R
+ → R

+
0 , (i.e. l is a constant function with respect to t ∈ R

+). In this case
the s-boundedness condition is satisfied with 4(l(·, z); [a, b]) ≡ 0, for any interval
[a, b] ⊂ R

+, h(z) = z−α , for each t, z ∈ R
+, and u ∈ R

+
0 and N1 = N2 = 1.

We will use the following notation: given a function l : R
+ × R

+ → R, we
will denote by Vl(z) = V [l(·, z)] the variation of l(t, z) with respect to t ∈ R

+, for
every fixed z ∈ R

+. Let K ∈ K and T be the corresponding integral operator of
Section 6.2.

In order to establish an estimate for Tf we will use the following extension of the
condition (6.4).
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Let ϕ : R+ × R
+
0 → R

+
0 , ϕ ∈ /̃, ψ : R

+
0 → R

+
0 , ψ ∈ M; there exist measurable

functions γ : R+ × R
+
0 → R

+
0 , γ ∈ /, and v : R+ → R

+
0 such that

ϕ(s, ψ(t, u)) ≤ v(t)γ (s, u) (6.6)

for every t, s ∈ R
+, u ∈ R

+
0 .

We give some examples.

Example 6.3. A class of functions satisfying condition (6.6) is given by ϕ(s, u) =
b(s)uα with α ≥ 1, being b : R

+ → R
+
0 a measurable function. Now, if we take

ψ(t, u) = g(t)r(u) with g : R
+ → R

+
0 measurable and r : R

+
0 → R

+
0 , r ∈ M,

then there results ϕ ∈ /̃, ψ ∈ M, and ϕ(s, ψ(t, u)) = b(s)gα(t)rα(u) = v(t)γ (s, u),
where v(t) = gα(t) and γ (s, u) = b(s)rα(u) ∈ /.

Now we are ready to establish that the operator T maps Dom T ∩ B̃Vγ (R
+) into

B̃Vϕ(R
+).

Theorem 6.3. Let K ∈K , ϕ ∈ /̃ and let γ ∈ / be a function satisfying the s-bound-
edness condition, with constantsN1, N2 and functions e : R+ → R

+
0 , d : R+×R

+ →
R. Moreover we suppose that γ satisfies condition (6.6) and Vd(t) < +∞ a.e.
t ∈ R

+. Let a be a constant with 0 < a ≤ 1
AL

and suppose that

i) 0 < AL :=
∫

R+
L(t) dt < +∞,

ii) Ce
L :=

∫
R+

L(t)e(t)v(t) dt < +∞,

iii) D
Vd

L :=
∫

R+
L(t)v(t)Vd(t) dt < +∞.

Then, if f ∈ Dom T , there results

Ṽϕ[a(Tf )] ≤ N1
Ce

L

AL

Ṽγ [aALN2f ] + D
Vd

L

AL

. (6.7)

Proof. We may suppose Ṽγ [aALN2f ] < +∞. Let D = {si}i=0,1,...,N be a finite
increasing sequence in R

+ and let ξi ∈ [si−1, si] for i = 1, 2, . . . , N . For fixed but
arbitrary i ∈ {1, 2, . . . , N} we have that

|(Tf )(si)− (Tf )(si−1)| ≤
∫

R+
L(t)ψ(t, |f (si t)− f (si−1t)|) dt.
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Hence, by monotonicity of ϕ(t, u) with respect to u ∈ R
+
0 , Jensen’s inequality, con-

cavity of ψ(t, ·), condition (6.6) and s-boundedness of γ , we may write

N∑
i=1

ϕ(ξi, a|(Tf )(si)− (Tf )(si−1)|)

≤
N∑
i=1

ϕ(ξi, a

∫
R+

L(t)ψ(t, |f (si t)− f (si−1t)|) dt)

≤ 1

AL

∫
R+

L(t)

N∑
i=1

ϕ(ξi, aALψ(t, |f (si t)− f (si−1t)|)) dt (+)

≤ 1

AL

∫
R+

L(t)v(t)

N∑
i=1

γ (ξi, aAL|f (si t)− f (si−1t)|) dt

≤ 1

AL

∫
R+

L(t)v(t)

N∑
i=1

[N1e(t)γ (tξi, aALN2|f (si t)− f (si−1t)|)] dt

+ 1

AL

∫
R+

L(t)v(t)

N∑
i=1

|4(d(·, t); [si−1, si])| dt

≤ N1
1

AL

∫
R+

L(t)e(t)v(t)Ṽγ [aALN2f ] dt + 1

AL

∫
R+

L(t)v(t)Vd(t) dt

= N1
Ce

L

AL

Ṽγ [aALN2f ] + D
Vd

L

AL

.

Hence the assertion follows by the arbitrariness of D and {ξi}. ��

Remark 6.3. a) Theorem 6.3 represents an extension of Theorem 6.1. Indeed if we
put ϕ(t, u) = ϕ(u) and γ (t, u) = γ (u) i.e. ϕ and γ do not depend on the parameter
t ∈ R

+, then the s-boundedness condition for the function γ is satisfied in particular
with e(t) ≡ 1, N1 = N2 = 1 and4(d(·, t); [a, b]) ≡ 0 for any interval [a, b] ⊂ I , and
condition (6.6) becomes condition (6.4). Hence Ce

L ≡ Av
L,D

Vd

L ≡ 0 and inequality
(6.7) becomes the assertion of Theorem 6.1.

b) In case when the kernel K satisfies a strongly-Lipschitz condition, we obtain

Ṽϕ[a(Tf )] ≤ Ch
L

AL

Ṽϕ[aALN2f ] + D
Vl

L

AL

being Ch
L :=

∫
R+ L(t)h(t) dt , DVl

L := ∫
R+ L(t)Vl(t) dt , with 0 < Ch

L,D
Vl

L < +∞,
and h : R+ → R

+
0 and l : R

+ × R
+ → R are the functions of the s-boundedness of

ϕ ∈ /̃. In this case we have that T maps Dom T ∩ B̃Vϕ(R
+) in B̃Vϕ(R

+).
c) We remark here that the s-boundedness condition may be replaced by the fol-

lowing slighter one.
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There exist measurable functions h : R
+ → R

+
0 and F : R

+ → R
+
0 and positive

constants N1, N2 such that, for every finite increasing sequence {si}i=0,1,...,N ⊂ R
+,

there results
N∑
i=1

ϕ(ξi, ui) ≤ N1h(t)

N∑
i=1

ϕ(ξi t, N2ui)+ F(t) (++)

for every N ∈ N, for every ξi ∈ [si−1, si], i = 1, . . . , N and for every ui, i =
1, 2, . . . , N, ui ∈ R

+
0 .

This condition can be obtained by the previous one, on putting t = ξi , u = ui , for
every fixed i = 1, 2, . . . , N and passing to the sum with i running from 1 to N ; here
F(t) = Vl(t). With this condition, (6.7) of Theorem 6.3 holds with D

Vd

L = DG
L :=∫

R+ L(t)G(t) dt , where G(t) = Vd(t). Condition (++) is exactly what we need in
order to obtain the above estimate. But the original s-boundedness condition is more
readable and, as we remarked before, it is similar to the form of the boundedness
condition used in the theory of Musielak–Orlicz spaces.

6.5 A superposition theorem in B̃V ϕ

In this section we will study inequalities for the composition of two nonlinear integral
operators, with the same reasonings as in Section 6.3.

In order to do this, we have to modify assumption (T) of Section 6.3, due to the
fact that we deal now with functions ϕ, σ, λ depending on a parameter. So, we will
assume the following condition.

Let ϕ ∈ /̃, ψ, θ ∈ M; there exist measurable functions σ, λ : R+ × R
+
0 → R

+
0 with

σ ∈ /̃ and λ ∈ /, and (measurable) v1, v2 : R
+ → R

+
0 , such that the following

conditions are satisfied

ϕ(s, θ(t, u)) ≤ v1(t)σ (s, u), σ (s, ψ(t, u)) ≤ v2(t)λ(s, u) (TT)

for every s, t ∈ R
+, u ∈ R

+
0 .

Examples of functions satisfying (TT) are similar to those given in Section 6.3 for
the condition (T), taking into account that here the functions ϕ, σ and λ depend on the
parameter t ∈ R

+.
Now we are ready to establish that, given two nonlinear integral operators U and

T , as defined in Section 6.3, (U ) T ) maps DomT ∩ B̃Vλ(R
+) in B̃Vϕ(R

+). Namely
we can formulate the following

Theorem 6.4. Let H,K ∈ K , with H (M, θ )-Lipschitz and let ϕ ∈ /̃, ψ, θ ∈ M; let
moreover σ ∈ /̃ and λ ∈ / be two s-bounded functions satisfying condition (TT).
We denote by m : R

+ → R
+
0 , p : R

+ × R
+ → R and Q ∈ R

+ respectively the
functions and the constant of the s-boundedness of σ ∈ /̃, while by n : R

+ → R
+
0 ,
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q : R
+ × R

+ → R and P1, P2 ∈ R
+ respectively the functions and the constants of

the s-boundedness of λ ∈ /. Let moreover Vp(t) and Vq(t) < +∞, a.e. t ∈ R
+ and

let AL with 0 < AL < +∞ and AM with 0 < AM < +∞ be the constants as in
Theorem 6.2. Moreover we suppose

i) Cm
M :=

∫
R+

M(t)m(t)v2(t) dt < +∞,

ii) D
Vp

M :=
∫

R+
M(t)v2(t)Vp(t) dt < +∞,

iii) Cn
L :=

∫
R+

L(t)n(t)v1(t) dt < +∞,

iv) D
Vq

L :=
∫

R+
L(t)v1(t)Vq(t) dt < +∞,

and let a be such that 0 < a < min
{ 1
AM

, 1
ALAMQ

}
. Then if f ∈ Dom T , there results

Ṽϕ[a(U ) T )f ] ≤ Cm
M

AM

Ṽσ [aAMQ(Tf )] + D
Vp

M

AM

≤ Cm
M

AM

P1
Cn

L

AL

Ṽλ[aP2QAMALf ] + Cm
M

AM

D
Vq

L

AL

+ D
Vp

M

AM

.

(6.8)

Proof. The proof runs on similar lines as in Theorem 6.2; the details are left to the
reader. ��

Remark 6.4. a) Following similar reasoning as in Remark 6.2, we may obtain, as
a particular case, an estimate with a strongly-Lipschitz condition and hence also an
estimate for the composition of two linear integral operators.

b) Theorem 6.4 is an extension of Theorem 6.2 in Section 6.3: indeed if we
take ϕ(t, u) = ϕ(u), σ (t, u) = σ(u) and λ(t, u) = λ(u), then the s-boundedness
conditions for the functions σ and λ are satisfied with m(t) = n(t) = 1, Q = P1 =
P2 = 1 and 4(p(·, t); [a, b]) = 4(q(·, t); [a, b]) ≡ 0 for any interval [a, b] ⊂ I and
condition (TT) becomes condition (T).

6.6 The problem of convergence in ϕ-variation

In Chapters 3 and 4 we discussed modular approximation theorems to f , for families
of nonlinear integral operators {Tw} of convolution type, or with kernel satisfying some
homogeneity assumptions, where f belongs to modular function spaces, in which the
generating modular functional satisfies some suitable assumptions, like monotonicity,
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finiteness, absolute continuity, etc. These assumptions play an important role in the
convergence properties of the modulus of continuity (see Sec. 2.2). As we remarked
before, the modular ρ generating the space BVϕ(I) or B̃V ϕ(I ), does not satisfy any
of the above assumptions. This makes the problem of modular convergence of Twf

towards f , in the space BVϕ(I) or B̃V ϕ(I ) very difficult. We limit ourselves to
consider the space BVϕ(I).

A family of functions fw : I → R, fw ∈ BVϕ(I), is said to be convergent in
ϕ-variation to f ∈ BVϕ , for w → w0, w ∈ R, w0 ∈ R̃, if there is a constant λ > 0
such that

lim
w→w0

Vϕ[λ(fw − f )] = 0.

In the following, for the sake of simplicity, we will assume that w runs over the positive
real axis ]0,+∞[ and w0 = +∞.

In this frame a suitable modulus of continuity is defined by

ω(f, δ) = sup
|h|<δ

Vϕ(τhf − f ),

where (τhf )(s) = f (s + h), is the translation operator, in the case when the interval
I = [a, b], and the involved functions are extended by periodicity b−a outside [a, b].
When I is the group of positive real numbers, it is more convenient to use the dilation
operator (Ehf )(s) = f (hs), and the modulus of continuity takes now the form

ω(f, δ) = sup
|h−1|<δ

Vϕ(Ehf − f ).

In both cases, it is well known that ω(f, δ)→ 0, as δ → 0, if and only if the function
f satisfies a special continuity assumption, called ϕ-absolute continuity, (see [163]
for the translation operator, [30], [177] for the dilation operator). So, unlike the theory
of modular function spaces described in Section 2.2, the convergence property of the
modulus of continuity ω doest not hold for every function f ∈ BVϕ(I).

We quote here the definition of ϕ-absolute continuity. Let us suppose first that
I = [a, b]. In this case we say that f : I → R is ϕ-absolutely continuous in I , if
there is λ > 0 such that the following condition holds: for every ε > 0 there is δ > 0
such that

N∑
i=1

ϕ[λ|f (βi)− f (αi)|] < ε,

for all finite sets of non-overlapping intervals [αi, βi] ⊂ [a, b], i = 1, 2, . . . , N such
that

N∑
i=1

ϕ(βi − αi) < δ.

We denote the space of all ϕ-absolutely continuous functions with ACϕ(I). If I is
an open, or unbounded interval, for example, I = R

+, we will say that f is locally
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ϕ-absolutely continuous in I if f ∈ ACϕ(J ), for every compact interval J ⊂ I , with
an absolute constant λ > 0 (see Section 6.7 below).

It is well known thatACϕ(I) is a subspace ofBVϕ(I), when I is a bounded interval
(see [163]).

The above considerations, suggest that a modular convergence theorem of type

Vϕ[λ(Twf − f )] → 0, w →+∞, (6.9)

is possible only when f belongs to suitable subspaces of BVϕ(I). In particular, if
f ∈ ACϕ(I), or locally, it is natural to think that the above convergence is true. This
is really true for some class of linear integral operators. Let us mention two results in
this direction.

For families of linear integral operators of convolution type, {Tw}, in which the
kernel satisfies a classical singularity assumption, (6.9) holds for every function f ∈
ACϕ(I), where I = [a, b], and the involved functions are extended by periodicity
b − a outside I . Here the ϕ-function satisfies some further suitable assumption, (see
e.g. [163], [188]).

A recent general result like (6.9), was given in [177], in which I = R
+, and

the dilation operator Eh is used. Here, {Tw} is a family of linear integral operators,
whose (singular) kernel satisfies a general homogeneity condition (as in Section 4.1,
in the case of R = 1), with respect to a weight function ζ : I → R

+
0 . In fact, the

operators here studied are the linear counterparts of those considered in Chapter 4.1.
The modular approximation theorem established in [177], gives a convergence result
similar to (6.9) for every f ∈ X such that an appropriate auxiliary function, linked
to f , is locally absolutely continuous in I . Namely, putting g(t) = tζ(t)f (t), there
results

Vϕ[λ(Twf − g)] → 0, w →+∞
whenever g is locally absolutely continuous in I .

Another important result given in [177] concerns with the rate of modular approx-
imation in suitable subspaces of BVϕ(I) which represent the “variational” analogy of
the modular Lipschitz classes (see Chapter 3).

We report here the definition of this class. Let F be the class of all measurable
functions γ : I → R

+
0 such that γ (1) = 0, and γ (s) �= 0 for s �= 1. For a fixed

γ ∈ F, we define the class:

Lipγ (Vϕ) = {f ∈ BVϕ(I) : ∃ν > 0 : Vϕ[ν(Esf − f )] = O(γ (s)), as s → 1},
where, as usual, for any two functions f, g ∈ X, f (s) = O(g(s)) as s → 1 means that
there are constants C > 0, δ > 0 such that |f (s)| ≤ C|g(s)|, for s ∈ [1− δ, 1+ δ].

In this respect, the result in [177] states that, under suitable assumptions, similar
to those used in Chapter 4, if f ∈ X is such that g(t) = tζ(t)f (t) ∈ Lipγ (Vϕ), then
for sufficiently small λ > 0 we have:

Vϕ[λ(Twf − g)] = O(ξ(w−1)), as w →+∞.
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This is the “state of the art” for what concerns the convergence in the spaceBVϕ(I).
For families of nonlinear integral operators a convergence theorem was recently

proved in [25], in the particular case when the kernel functions Kw are of type
Kw(t, u) = Lw(t)Hw(u), for every t ∈ R

+, and u ∈ R, and by using a suitable
notion of singularity for the family of kernel functions Kw. We will discuss these
results in the next section. For more general nonlinear integral operators there are not
known convergence theorems in BVϕ(I).

Finally we remark that in the case of the space B̃V ϕ(I ), also the linear case is an
open problem.

6.7 A convergence theorem in BVϕ for Mellin-type
nonlinear integral operators

In this section, without restrictions, we will consider the closed interval R
+
0 =

[0,+∞[, and we will denote again by X the space of all Lebesgue measurable func-
tions f : R+0 → R.

Moreover we will consider here the class /′ of ϕ-functions, ϕ : R+0 → R
+
0 , such

that

i) ϕ is a convex function on R
+
0 ,

ii) u−1ϕ(u)→ 0 as u→ 0+.

We begin with some further definitions.
We will say that a family of functions {fw}w>0 ⊂ X is of equiboundedϕ-variation,

if it is of bounded ϕ-variation, uniformly with respect to w > 0.
Now we recall the following result about ϕ-variation, which we will use in the

following (for a proof see [163]):

j) if f1, f2, . . . , fn ∈ X, then

Vϕ

[ n∑
i=1

fi

]
≤ 1

n

n∑
i=1

Vϕ[nfi].

Let ϕ, η ∈ /′ be fixed. We will say that a function f : R+0 → R is locally (ϕ, η)-
absolutely continuous if there is a λ > 0 such that the following property holds: for
every ε > 0 and for every bounded interval J ⊂ R

+
0 there is δ > 0 such that for

any finite collection of non-overlapping intervals [ai, bi] ⊂ J , i = 1, 2, . . . , N , with∑N
i=1 ϕ(bi − ai) < δ there results

N∑
i=1

η(λ|f (bi)− f (ai)| < ε. (6.10)
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If η = ϕ in the above property, we will say that f is locally ϕ-absolutely continuous
(see [163], [153], [177]), and we will denote by AC

ϕ
loc(R

+
0 ) the class of all these

functions.

We will say that a family of functions {fw}w>0 is locally equi (ϕ, η)-absolutely
continuous if there is λ > 0 such that for every ε > 0 and every bounded interval
J ⊂ R

+
0 , we can choose a δ > 0 for which the local (ϕ, η)-absolute continuity of fw

holds uniformly with respect w > 0. For η = ϕ we will say that {fw}w>0 is locally
equi ϕ-absolutely continuous.

Let now K be the class of all the functions K : R+0 × R → R of the form

K(t, u) = L(t)H(u), t ∈ R
+
0 , u ∈ R,

where L ∈ L1(R+0 ), L ≥ 0 and H : R → R is a function satisfying a Lipschitz
condition of type

|H(u)−H(v)| ≤ ψ(|u− v|), u, v ∈ R, (6.11)

where ψ : R+0 → R
+
0 is a function with the following properties:

(1) ψ(0) = 0, ψ(u) > 0 for u > 0,

(2) ψ is continuous and nondecreasing.

We will denote again by M the class of all functions ψ satisfying the above conditions.
Let K = {Kw}w>0 be a set of functions from K , Kw(t, u) = Lw(t)Hw(u),

w > 0, t ∈ R
+
0 , u ∈ R. We will say that K is singular in BVϕ(R

+
0 ), if the following

assumptions hold:

(K.1) there exists A > 0, such that 0 < ‖Lw‖1 = Aw ≤ A for every w > 0,
(K.2) for every δ ∈]0, 1[, we have

lim
w→+∞

∫
|1−t |>δ

Lw(t) dt = 0,

(K.3) putting Gw(u) = Hw(u)− u, for every u ∈ R, w > 0, there exists λ > 0 such
that

Vϕ[λGw, J ] → 0, as w →+∞,

for every bounded interval J ⊂ I .

Example 6.4. For every n ∈ N, let

Kn(t, u) = Ln(t)Hn(u), t ∈ R
+
0 , u ∈ R,

where

Hn(u) =
{
n log(1+ u/n), 0 ≤ u < 1

nu log(1+ 1/n), u ≥ 1,
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where we extend in odd-way the definition of Hn for u < 0; moreover {Ln}n∈N is a
classical kernel with the mass concentrated at 1, i.e.∫ +∞

0
Ln(t) dt = 1, for every n ∈ N,

with the property (K.2). It is easy to show that

|Hn(u)−Hn(v)| ≤ |u− v|, for every u, v ∈ R, and n ∈ N

and, for every u ≥ 0, we have

|Gn(u)| = |Hn(u)− u| =
{
u− n log(1+ u/n), 0 ≤ u < 1

u[1− n log(1+ 1/n)], u ≥ 1.

Then |Gn(u)| is increasing on R
+
0 . If ϕ : R

+
0 → R

+
0 is a convex function, using

Proposition 1.03 in [163], we have, for every interval J = [0,M],
Vϕ[Gn, J ] = ϕ(|Gn(M)−Gn(0)|)→ 0, as n→+∞.

Analogously, by the definition of Hn for u < 0, we have Vϕ[Gn, [−M, 0]] → 0, as
n→+∞.

Before we formulate the following lemmas, we recall the definition of convergence
in ϕ-variation (see Section 6.6).

We recall that a sequence (fw)w∈R+ ∈ BVϕ is convergent in ϕ-variation to f ∈
BVϕ if there exists a λ > 0 such that Vϕ[λ(fw − f )] → 0 as w →+∞.

Moreover we will use the following relation between the functions ϕ,ψ and η,
where ϕ and η are two ϕ-functions, with η not necessarily convex, and ψ ∈ M.

We say that the triple {ϕ, η, ψ} is properly directed, if the following condition
holds (for similar assumptions see [143]; compare with the definition of Section 1.4):
for every λ > 0, there exists a constant Cλ such that

ϕ(Cλψ(u)) ≤ η(λu), for every u ≥ 0. (6.12)

Now we start formulating the following lemma.

Lemma 6.1. Let f : R
+
0 → R be a locally (ϕ, η)-absolutely continuous function.

Let {Hw}w>0 be a class of functions satisfying (6.11) for a fixed ψ ∈ M and for every
w > 0 and let us assume that the triple {ϕ, η, ψ} is properly directed. Then the family
{Hw ) f }w>0 is locally equi ϕ-absolutely continuous.

Proof. Let λ > 0 be a constant for which the definition of (ϕ, η)-absolute continuity
of f holds and let 0 < µ ≤ Cλ, being Cλ the constant in (6.12). Since f is locally
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(ϕ, η)-absolutely continuous, for a fixed interval J ⊂ R
+
0 and ε > 0 there is a δ > 0

such that (6.10) holds for any finite collection of intervals Ii = [ai, bi], i = 1, 2, . . . N ,
with
∑N

i=1 ϕ(bi − ai) < δ. For such a family {Ii}, we have

N∑
i=1

ϕ(µ|(Hw ) f )(bi)− (Hw ) f )(ai)|)

≤
N∑
i=1

ϕ(Cλψ(|f (bi)− f (ai)|))

≤
N∑
i=1

η(λ|f (bi)− f (ai)|) < ε.

��

Lemma 6.2. Let f be a locally ϕ-absolutely continuous function such that f ∈
BVϕ(R

+
0 ). Let {Hw}w>0 be a family of functions Hw : R → R such that (K.3)

holds. Then there is λ > 0 such that the following property holds: for every ε > 0
and every bounded interval [0, b] ⊂ R

+
0 , there exist w > 0 and a step function

ν : R+0 → R such that

Vϕ(λ(Hw ) f − ν), [0, b]) < ε

uniformly with respect to w ≥ w.

Proof. Let [0, b] ⊂ R
+
0 be a fixed bounded interval. From Lemma 1 in [177] (see

also Theorem 2.21 of [163]), there is a λ > 0 such that, for a fixed ε > 0 there is
a partition D = {τ0 = 0, τ1, . . . , τn = b} of the interval [0, b], such that the step
function ν : R+0 → R, defined by

ν(t) =
{
f (τi−1), τi−1 ≤ t < τi, i = 1, . . . m

f (b), t ≥ b

satisfies

Vϕ(2λ(f − ν), [0, b]) < ε/2.

Let D = {t0, t1, . . . , tn} be an arbitrary partition of [0, b]with t0 < t1 < · · · < tn. We
have

n∑
i=1

ϕ(λ|Hw(f (ti))− ν(ti)− {Hw(f (ti−1))− ν(ti−1)}|)

≤ 1

2

n∑
i=1

ϕ(2λ|Hw(f (ti))− f (ti)− {Hw(f (ti−1))− f (ti−1)}|)

+ 1

2

n∑
i=1

ϕ(2λ|f (ti)− ν(ti)− {f (ti−1)− ν(ti−1)}|) = I1 + I2.
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Since f ∈ BVϕ(R
+
0 ), f is bounded, i.e. there is a constant M > 0 such that |f (t)| ≤

M . Putting J = [−M,M], we have

I1 ≤ 1

2
Vϕ(2λGw, J ).

Thus using (K.3) we can take λ > 0 such that I1 ≤ ε/2 for sufficiently large w > 0.
The assertion follows being I2 ≤ 1

2Vϕ(2λ(f − ν), [0, b]) < ε/2. ��

Lemma 6.3. Let f ∈ BVη(R
+
0 ) and {Hw} be a family of functions Hw : R → R

satisfying (6.11). Let us suppose that the triple {ϕ, η, ψ} is properly directed. Then
the family {Hw ) f } is of equibounded ϕ-variation on every interval I ∗ ⊂ R

+
0 .

Proof. Let D = {t0, t1, . . . tn} ⊂ I ∗ be fixed and let λ > 0. For 0 < µ ≤ Cλ, Cλ

being the constant in (6.12), we have

n∑
i=1

ϕ(µ|(Hw ) f )(ti)− (Hw ) f )(ti−1)|) ≤
n∑

i=1

ϕ(Cλψ(|f (ti)− f (ti−1|)).

Now, by (6.12) we have

n∑
i=1

ϕ(µ|(Hw ) f )(ti)− (Hw ) f )(ti−1)|) ≤
n∑

i=1

η(λ|f (ti)− f (ti−1|) ≤ Vη(λf, I
∗),

and so the assertion follows. ��

For any z ∈ R
+, we will put

τzf (s) = f (sz),

for every f : R+0 → R and s ∈ R
+
0 . Using the above lemmas, we show the following

theorem

Theorem 6.5. Let ϕ, η be fixed, and let f : R
+
0 → R be a locally ϕ-absolutely

continuous function, such that f ∈ BVϕ+η(R
+
0 ). Let {Hw} be a family of functions

Hw : R → R satisfying (K.3) and (6.11) for a fixed ψ ∈ M. Let us assume that
the triple {ϕ, η, ψ} is properly directed. Then for every λ > 0 there exist a constant
µ > 0 and w > 0 such that

lim
z→1

Vϕ[µ(τz(Hw ) f )− (Hw ) f ))] = 0

uniformly with respect to w ≥ w.
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Proof. Let gw = Hw ) f , for w > 0. Since f ∈ BVη(R
+
0 ), from Lemma 1 of [177],

given ε > 0 there is c > 0 and λ0 > 0 such that Vη(λf, [c,+∞[) < ε, for every
0 < λ ≤ λ0. From Lemma 6.3, there exists a constant µ > 0 so small that

Vϕ(4µgw, [c,+∞[) ≤ Vη(λf, [c,+∞[) < ε

uniformly with respect to w > 0. Let us choose constants d, b with d > b > c

and let ν be the step function on [0, d] given in Lemma 6.2. Let now z be such that
c/b < z < min{d/b, b/c}. By convexity of ϕ, and property j), for every z sufficiently
near to 1, we have now, for sufficiently small µ > 0,

Vϕ[µ(τzgw − gw)]
≤ 1

2
{Vϕ[2µ(τzgw − gw), [0, b]] + Vϕ[2µ(τzgw − gw), [b,+∞[]}

≤ 1

2
Vϕ[2µ(τzgw − gw), [0, b])

+ 1

4
{Vϕ(4µτzgw, [b,+∞[)+ Vϕ(4µgw, [b,+∞[)}

≤ 1

2
Vϕ[2µ(τzgw − gw), [0, b]] + 1

2
Vη(λf [c,+∞[)

≤ 1

2
Vϕ[2µ(τzgw − gw), [0, b]] + ε.

The first inequality comes from a classical property of ϕ-variation (see [163], Propo-
sition 1.17).

Now we consider the interval I ∗ = [0, b]. We have, for sufficiently small µ > 0,

Vϕ[2µ(τzgw − gw), I ∗]
≤ 1

3
{Vϕ[6µτz(gw − ν), I ∗] + Vϕ[6µ(ν − gw), I ∗] + Vϕ[6µ(τzν − ν), I ∗]}

≤ 1

3
{2Vϕ[6µ(gw − ν), [0, d]] + Vϕ[6µ(τzν − ν), [0, d]]}

= I1 + I2.

From Lemma 6.2, I1 ≤ ε/2, while as in Theorem 1 in [30], we have I2 ≤ ε/2. Thus
the assertion follows. ��

Let K = {Kw(t, u)}w>0 be a singular kernel in BVϕ(R
+
0 ), where, as before,

K(t, u) = Lw(t)Hw(u) for t ∈ R
+
0 , u ∈ R.

We will study approximation properties of the family of nonlinear integral opera-
tors T = {Tw} defined by

(Twf )(s) =
∫ +∞

0
Kw(t, f (st)) dt =

∫ +∞
0

Lw(t)Hw(f (st)) dt, s ∈ R
+
0 ,
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where f ∈ Dom T is the class of all measurable functions f : R+0 → R such that Twf

is well defined as a Lebesgue integral for every s ∈ R
+
0 . Let us remark here that if the

function f is such that (Hw ) f ) ∈ L1(R+0 ), or if f ∈ L∞(R+0 ), then f ∈ Dom T.
So in particular, if f is of bounded ϕ-variation, where ϕ is an arbitrary ϕ-function,
f ∈ Dom T.

Let now ϕ ∈ /′ and η be two ϕ-functions, with ϕ convex and η not necessarily
convex, such that the triple {ϕ, η, ψ} is properly directed. Then, by Theorem 6.1, if
f ∈ BVη(R

+
0 ), then Twf is of bounded ϕ-variation for every w > 0 (see also [143]).

We have the following

Theorem 6.6. Let f ∈ AC
ϕ
loc(R

+
0 ) ∩ BVϕ+η(R

+
0 ) and let us assume that the triple

{ϕ, η, ψ} is properly directed. Let K = {Kw} ⊂ K be a singular family of kernel
functions in BVϕ(R

+
0 ). Then there exists a constant µ > 0 such that

lim
w→+∞Vϕ[µ(Twf − f )] = 0.

Proof. First of all we remark that Twf −f ∈ BVϕ(R
+
0 ). We can assume that Aw = 1,

for every w > 0, where Aw are the constants given in (K.1). Let λ > 0 be such that
Vη(λf ) < +∞, and let µ > 0 so small that 4µ ≤ Cλ and

lim
z→1

Vϕ[2µ(τz(Hw ) f )− (Hw ) f ))] = 0,

uniformly with respect to sufficiently large w > 0 (Theorem 6.5).
Let D = {s0, s1, . . . , sN } ⊂ R

+
0 be a finite increasing sequence and let µ be

sufficiently small. We have

N∑
i=1

ϕ[µ|(Twf )(si)− (Twf )(si−1)− f (si)+ f (si−1)|]

=
N∑
i=1

ϕ
[
µ

∣∣∣ ∫ +∞
0

Lw(t)[Hw(f (si t))−Hw(f (si))

+Hw(f (si))− f (si)−Hw(f (si−1t))

+Hw(f (si−1))−Hw(f (si−1)+ f (si−1)] dt
∣∣∣]

≤ 1

2

N∑
i=1

∫ +∞
0

Lw(t)ϕ[2µ|(Hw(f (si t))−Hw(f (si)))

− (Hw(f (si−1t))−Hw(f (si−1)))|] dt

+ 1

2

N∑
i=1

∫ +∞
0

Lw(t)ϕ[2µ|(Hw(f (si))− f (si))

− (Hw(f (si−1))− f (si−1))|] dt
= I1 + I2.
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Now given δ ∈]0, 1[, we write

I1 ≤ 1

2

N∑
i=1

{∫
|1−t |<δ

+
∫
|1−t |>δ

}
Lw(t)ϕ[2µ|(Hw(f (si t))−Hw(f (si)))

− (Hw(f (si−1t))−Hw(f (si−1)))|] dt
= I 1

1 + I 2
1 .

Next,

I 1
1 ≤

1

2

∫ 1+δ

1−δ

Lw(t)Vϕ(2µ[τt (Hw ) f )− (Hw ) f )]) dt

and so, for sufficiently small δ ∈]0, 1[ we have I 1
1 ≤ ε, uniformly with respect to

w > 0.
Now, by property j),

I 2
1 ≤

1

4

∫
|1−t |>δ

Lw(t)Vϕ(4µ(Hw ) f )) dt ≤ 1

4
Vη(λf )

∫
|1−t |>δ

Lw(t) dt,

and so, from (K.2), I 2
1 → 0, as w →+∞.

Finally, we estimate I2. We have

I2 ≤ 1

2

∫ +∞
0

Lw(t)Vϕ(2µGw) dt = 1

2
Vϕ(2µGw).

But since f is bounded, there is a constant M > 0, such that |f (t)| ≤ M for every
t ∈ R

+
0 . Putting J = [−M,M], we apply the singularity assumption (K.3) and we

obtain I2 → 0 as w →+∞.
The proof is now complete. ��

6.8 Bibliographical notes

The classical concept of (Jordan) variation of a function f : [a, b] → R was firstly
generalized in 1924 by N. Wiener [208], who introduced the notion of quadratic
variation of f . This work was followed by a series of papers of L. C. Young [209],
[210] and E. R. Love and L. C.Young [138], and by E. R. Love [135], where generalized
variation with power of order p ≥ 1, the respective generalized absolute continuity
and application to Riemann–Stieltjes integral and to Fourier series are given. The
definition of ϕ-variation given here, was introduced by L. C. Young [210] and further
developed by J. Musielak and W. Orlicz [163], in the case when ϕ is not dependent on
the parameter. In the same paper also the concept of absolute continuity with respect
to ϕ is introduced and its important connections with the convergence of the modulus
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of continuity are studied. Other contribution to the theory of ϕ-variation were given
by H. Herda [116], R. Lésniewicz and W. Orlicz [134] and J. Musielak [149], in which
spaces of sequences of finite ϕ-variation are considered.

The results given in Sections 6.2, 6.3 were proved by I. Mantellini and G. Vinti in
[143]. The linear case was considered in [31] for general linear operators with homo-
geneous kernel of degree α, and for superposition of two linear integral operators, in
which the homogeneity assumptions are given in a generalized sense(ζ -homogeneity).
In [31] some applications to fractional calculus are also given, in particular embedding
theorems are obtained for linear operators with homogeneous kernel, with respect to
the fractional ϕ-variation, introduced there by using the Riemann–Liouville integral
of f . In the classical case (ϕ(u) = u), the fractional variation was studied by several
authors, in connection with “shape-preserving” properties of linear operators (see e.g.,
[212], [99]). Multidimensional versions of these results are available for linear inte-
gral operators in [31]. Here a concept of Vitali ϕ-variation is introduced in a natural
way.

In a series of papers (see [105]–[110]), S. Gnilka investigated the properties of
the generalized variation, in which the function ϕ depends on a parameter. Also a
generalized concept of absolute continuity was introduced and studied.

G.Vinti [201] introduced a multidimensional version of the generalizedϕ-variation,
when ϕ depends on a parameter, following the approach of the Vitali variation and
here the notion of s-boundedness for ϕ-functions depending on a parameter is also in-
troduced. In this setting, some estimate of linear operators with homogeneous kernel
are obtained, and some application to fractional calculus is studied.

Results about convergence of linear integral operators with respect to ϕ-variation
were given firstly in [163] for sequences of linear integral operators of convolution
type and then this result was extended by J. Szelmeczka [188] for filtered families of
such operators. In [30], by using the dilation operator Eh, this result was extended to
moment type operators, acting on functions defined on R

+. There, the “multiplicative”
version of the modulus of continuity is given, using the dilation operator Eh and its
connections with ϕ-absolute continuity are studied.

The moment kernel satisfies a homogeneity condition with degree −1 (if we con-
sider Lebesgue measure). Based on this remark, S. Sciamannini and G. Vinti [177]
gave some convergence theorems in ϕ-variation, for a general class of linear operators
with ζ -homogeneous kernels. Moreover, by introducing the corresponding Lipschitz
classes, the rate of convergence is also studied. Recently, in [178] a convergence result
for more general nonlinear integral operators of Volterra type has been considered.

The convergence results of Section 6.7 are given in [25].
A related problem is a “weak” form of the convergence in ϕ-variation for a family

of integral operators, namely a relation of type

Vϕ[Twf ] → Vϕ[f ], (6.13)

for f ∈ BVϕ(I) or f ∈ B̃V ϕ(I ).
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This problem takes its origin from classical problems of Calculus of Variations,
through the work of L. Tonelli [192], T. Radó [173], L. Cesari [82], [83], E. Baiada
[5], E. Baiada and G. Cardamone [6], E. Baiada and C. Vinti [7], C. Vinti [196], [197],
[198], [199].

In particular in [197],[198] the Tonelli–Cesari variation is considered in the mul-
tidimensional case, and results like (6.13) are obtained, for various classes of linear
integral operators (also non-convolution). Applications to convergence in perimeter,
area and length are also given there. The true definition of perimeter, introduced by
E. De Giorgi in 1954 (see [86], [87]), is essentially given by a convergence in (dis-
tributional) variation, similar to (6.13). Distributional versions of the results given in
[173], [197], [199], were obtained by C. Goffman and J. Serrin [111], M. Boni [48],
[49], E. Michener [146], C. Bardaro and D. Candeloro [11], [12], C. Bardaro [10],
C. Bardaro and G. Vinti [28], [33]. In these papers a concept of F -variation is used,
in the multidimensional case, where F is a sublinear functional. Applications to the
Serrin integral of Calculus of Variations are also given. For similar results, in the
setting of Weierstrass Integrals, see also [80], [81].

The general problem of “weak” convergence in ϕ-variation is still open.



Chapter 7

Application to nonlinear integral equations

7.1 An embedding theorem

Let (�,�,µ) be a measure space with a σ -finite, complete measure, endowed with a
commutative operation + from �×� to �.

We are going to investigate nonlinear integral equations generated by the convo-
lution-type operator (3.1), i.e. equations of the form∫

�

K(t, f (t + s)) dµ(t) = f (s)+ g(s) (7.1)

for µ-almost all s ∈ �, where g ∈ L0(�) is given and f ∈ L0(�) is the unknown
function. In order that the left-hand side of this equation makes sense, we suppose that
the space L0(�) is invariant and K is a Carathéodory kernel function. Under these as-
sumptions, we haveK(·, f (·+s)) ∈ L0(�) for every s ∈ � (see Section 3.1). In order
to be able to apply the Fubini–Tonelli theorem, we should know that K(t, f (t + s))

is a measurable function on � × �. Let �0 be the smallest σ -algebra of subsets
C ⊂ �×� such that A×B ∈ �0 whenever A,B ∈ �, and let �π be any σ -algebra
of subsets of � × � such that �0 ⊂ �π . We denote by µ0 the product measure
on �0, i.e. µ0(A × B) = µ(A)µ(B) for A,B ∈ �, and we denote by µπ any
extension of the measure µ0 from �0 to �π . We denote by Kπ the class of all
Carathédory functions K : �× R → R such that the function K̃ : �×� → R de-
fined by K̃(s, t) = K(t, f (t + s)) is �π -measurable for every f ∈ L0(�). Functions
K ∈Kπ will be called �π -regular Carathéodory functions.

Example 7.1. Let µ be the Lebesgue measure on the σ -algebra � of all Lebesgue
measurable subsets of � = R and let µ2 be the Lebesgue measure on the σ -algebra �2

of all Lebesgue measurable subsets of R
2. Let+ be a commutative operation on R such

that the space L0(R) is invariant. We shall write σ(s, t) = s+t , and we suppose that σ
is (�2, �)-measurable, i.e., if A ∈ � then σ−1(A) ∈ �2. Moreover, we suppose that
µ2 is σ -absolutely continuous (σ -a.c.) with respect to µ, i.e., if A ∈ � and µ(A) = 0,
then µ2(σ−1(A)) = 0. Let K : �× R → R be a Carathéodory kernel function. We
shall show that K is �2-regular, i.e., the function K̃(s, t) = K(t, f (t + s)) is �2-
measurable for every f ∈ L0(�). First, we shall prove it in the case when f has a
bounded support, i.e., f (t) = 0 outside a compact interval [a, b] ⊂ R. By Fréchet’s
theorem, there exists a sequence (fn) of continuous functions on [a, b] such that
fn(t)→ f (t) µ-a.e. in [a, b]. Denoting by A the set of t ∈ � for which the sequence
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(fn(t)) does not converge to f (t), we have µ(A) = 0. Hence µ2(σ−1(A)) = 0, by
the σ -absolute continuity of µ2 with respect to µ. If (s, t) ∈ σ−1(A), i.e., σ(s, t) ∈ A,
then fn(σ (s, t)) → f (σ(s, t)) as n → +∞, whence fn(σ (s, t)) → f (σ(s, t)) as
n → +∞ µ2-a.e. in R

2. If we know that K(t, fn((σ (s, t))) are �2-measurable
then also K(t, f ((σ (s, t))) is �2-measurable, since the measure µ2 is complete. So,
we may limit ourselves to the case of continuous functions f . Let f : R → R be
continuous on R. Let (σi) be a sequence of simple integrable functions with respect to
(R2, �2, µ2), convergent to the function σ(s, t) = s+t for all (s, t) ∈ R

2. This means
that there exist pairwise disjoint setsA(i)

1 , A
(i)
2 , . . . , A

(i)
ki
∈ �2 of finite measureµ2 and

constants c
(i)
1 , c

(i)
2 , . . . , c

(i)
ki
∈ R such that σi(s, t) = ∑ki

j=1 c
(i)
j χ

A
(i)
j

(s, t) converges

to σ(s, t) for all s, t ∈ R. By continuity of f and K(t, ·), and from the condition
K(t, 0) = 0, we obtain

K(t, f (σ (s, t))) = lim
i→+∞K(t, f (σi(s + t))) = lim

i→+∞

ki∑
j=1

K(t, f (c
(i)
j ))χ

A
(i)
j

(s, t).

But the function at the right-hand side of the above equality is �2-measurable. Thus
K(t, f (σ (s, t))) is �2-measurable. Now we omit the assumption that f has bounded
support. Let f ∈ L0(R) be arbitrary. We put fn(t) = f (t) for t ∈ [−n, n] and
fn(t) = 0 otherwise. Then fn(t) → f (t) as n → +∞ for t ∈ R. By continuity of
K(t, ·), we have K(t, fn(σ (s, t)))→ K(t, f (σ (s, t))) as n→ +∞ for all s, t ∈ R.
As we have already proved, K(t, fn(σ (s, t))) are �2-measurable for n = 1, 2, . . . ,
since fn ∈ L0(R). Thus, K(t, f (σ (s, t))) is �2-measurable for every f ∈ L0(R).
Consequently, K is a �2-regular Carathéodory function. ��

Let us still remark that the usual addition + in R is �2-measurable and µ2 is
σ -a.c., since we have then σ−1(A) = {(s, t) ∈ R

2 : s + t ∈ A} for any A ⊂ R.
It is obvious that if K is a �π -regular Carathéodory function, then its absolute

value |K| defined by |K|(t, u) = |K(t, u)| is also a �π -regular Carathéodory kernel.
Thus, the integral ∫

�×�

|K(t, f (t + s))| dµπ(s, t)

exists for every f ∈ L0(�). By the Fubini–Tonelli theorem, the integral∫
�

|K(t, f (t + s))| dµ(t)

exists for µ-almost all s ∈ � and is a �-measurable function of the variable s

in �. Obviously, this integral may be infinite. We are going to formulate a the-
orem showing that for functions f from some modular spaces L0

ρ(�), we have∫
�
|K(t, f (t + s))| dµ(t) < +∞ µ-a.e. on �, and that L0

ρ(�) ⊂ Dom T (see Sec-
tion 1.1).
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Theorem 7.1. Let the following assumptions be satisfied.

(a) ρ is a J -quasiconvex modular on L0(�), subbounded with respect to the oper-
ation +,

(b) K is a �π -regular, (L,ψ)0-Lipschitz Carathéodory kernel function, where
L : � → R

+
0 is a �-measurable function such that 0 �= L ∈ L1(�), and

ψ : � × R
+
0 → R

+
0 satisfies the conditions: ψ(·, u) is �-measurable for all

u ≥ 0, ψ(t, :) is continuous, concave and nondecreasing for every t ∈ �,
ψ(t, 0) = 0, ψ(t, u) > 0 for u > 0, ψ(t, u) → +∞ as u → +∞ for all
t ∈ �,

(c) L(·)ψ(·, 1) ∈ L1(�), and∫
�

L(t)ψ(t, 1)|f (t)| dµ(t) < +∞

for every f ∈ L0
ρ(�).

Then L0
ρ(�) ⊂ Dom T .

Proof. First we show that if f ∈ L0
ρ(�) then

∫
�
|K(t, f (t + s))| dµ(t) < +∞ for

s ∈ �. Since ψ is concave, we have for u ≥ 1

uψ(t, 1) = uψ

(
t,

1

u
u

)
≥ u

1

u
ψ(t, u)

for every t ∈ �. For a fixed s ∈ � we put As = {t ∈ � : |f (t+s)| ≥ 1}, Bs = �\As .
By the (L,ψ)0-Lipschitz condition, we obtain

|K(t, f (t + s))| ≤ L(t)ψ(t, |f (t + s)|)
= L(t)ψ(t, |f (t + s)|)χBs (t)+ L(t)ψ(t, |f (t + s)|)χAs (t)

≤ L(t)ψ(t, 1)χBs (t)+ L(t)ψ(t, 1)|f (t + s)|χAs (t).

Since K is �π -regular, the function |K(t, f (t + s))| is �π -measurable in � × �.
Hence it follows∫

�

|K(t, f (t + s))| dµ(t)

≤
∫
Bs

L(t)ψ(t, 1) dµ(t)+
∫
As

L(t)ψ(t, 1)|f (t + s)| dµ(t)

≤
∫
�

L(t)ψ(t, 1) dµ(t)+
∫
�

L(t)ψ(t, 1)|f (t + s)| dµ(t).

Since L(·)ψ(·, 1) ∈ L1(�), the first of the integrals on the right-hand side of the above
inequality is finite. In order to prove that the integral

∫
�
|K(t, f (t+s))| dµ(t) < +∞
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it is sufficient to show that the second integral on the right-hand side of this inequality is
finite, too. However, since ρ is subbounded with respect to+, we have the inequality
ρ(λf (· + s)) ≤ ρ(Cλf ) + h(t) with some C ≥ 1, 0 ≤ h ∈ L∞(�) and every
f ∈ L0

ρ(�), s ∈ �, λ > 0. Hence if 0 < λ ≤ 1, we have

ρ(λ2f (· + s)) ≤ λMρ(λMf (· + s)) ≤ λMρ(CλMf )+ λM‖h‖∞,

where M ≥ 1 is the constant in the definition of J-quasiconvexity of ρ. Since the
right-hand side of this inequality tends to 0 as λ → 0+ for every f ∈ L0

ρ(�), so
ρ(λ2f (· + s)) → 0 as λ → 0+. Hence f (· + s) ∈ L0

ρ(�) for every s ∈ �. By
assumption (c), we have∫

�

L(t)ψ(t, 1)|f (t + s)| dµ(t) < +∞

for every s ∈ �. Thus, we proved that∫
�

|K(t, f (t + s))| dµ(t) < +∞

µ-a.e. on �. In order to prove �-measurability of (Tf )(s) = ∫
�
K(t, f (t+s)) dµ(t),

let us remark that if K is a �π -regular, (L,ψ)0-Lipschitz Carathéodory kernel func-
tion, then both the positive part K+ and negative part K− of K are also (L,ψ)0-
Lipschitz, �π -regular Carathéodory kernel functions. Denoting

(T+f )(s) =
∫
�

K+(t, f (t + s)) dµ(t), (T−f )(s) =
∫
�

K−(t, f (t + s)) dµ(t)

we observe, applying the first part of the proof to T+ and T− in place of T , that the
integrals ∫

�

K+(t, f (t + s)) dµ(t),

∫
�

K−(t, f (t + s)) dµ(t) (7.2)

are finite for almost all s ∈ �. Applying the Tonelli theorem to the functions
K+(t, f (t + s)) and K−(t, f (t + s)) on the product � × �, we see that both in-
tegrals (7.2) are �-measurable functions of s ∈ �. Thus,

(Tf )(s) =
∫
�

K+(t, f (t + s)) dµ(t)−
∫
�

K−(t, f (t + s)) dµ(t)

is a �-measurable function on �. Consequently, L0
ρ(�) ⊂ Dom T . ��

Example 7.2. Let us suppose that ϕ : R
+
0 → R

+
0 is an N -function, i.e. it is convex,

ϕ(0) = 0, ϕ(u) > 0 for u > 0 and

lim
u→0+

ϕ(u)

u
= 0 and lim

u→+∞
ϕ(u)

u
= +∞.
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The function ϕ∗ : R+0 → R
+
0 , defined by the formula

ϕ∗(u) = sup
v>0

(uv − ϕ(v)),

called conjugate to ϕ in the sense of Young, is also an N -function (see e.g. [153]). Let
us denote

ρ(f ) =
∫
�

ϕ(|f (t)|) dµ(t), ρ∗(f ) =
∫
�

ϕ∗(|f (t)|) dµ(t)

for f ∈ L0(�), (see Example 1.5 (b)). The modular spaces Lϕ(�) = L0
ρ(�) and

Lϕ∗(�) = L0
ρ∗ are Orlicz spaces generated by the above modulars. From the definition

of the function ϕ∗ we obtain the Young inequality

uv ≤ ϕ(u)+ ϕ∗(v),

for u, v ≥ 0, immediately. In particular, we have for every λ > 0,

λ2L(t)ψ(t, 1)|f (t)| ≤ ϕ(λ|f (t)|)+ ϕ∗(λL(t)ψ(t, 1)).

Hence ∫
�

L(t)ψ(t, 1)|f (t)| dµ(t) ≤ 1

λ2

∫
�

ϕ(λ|f (t)|) dµ(t)

+ 1

λ2

∫
�

ϕ∗(λL(t)ψ(t, 1)) dµ(t)

= 1

λ2 ρ(λf )+ 1

λ2 ρ
∗(λL(·)ψ(·, 1)).

Since f ∈ L0
ρ(�), we have ρ(λf ) < +∞ for sufficiently small λ > 0. Now,

let us suppose that L(·)ψ(·, 1) ∈ L0
ρ∗(�), then also ρ∗(λL(·)ψ(·, 1)) < +∞ for

sufficiently smallλ > 0. This shows that
∫
�
L(t)ψ(t, 1)|f (t)| dµ(t) < +∞ for every

f ∈ L0
ρ(�), i.e. the assumption (c) in Theorem 7.1 is satisfied, if only L(·)ψ(·, 1) ∈

L0
ρ∗(�) = Lϕ∗(�). In this manner we proved the following corollary to Theorem 7.1.

Corollary 7.1. Let ϕ and ϕ∗ be a pair of N-functions, conjugate in the sense of Young.
LetK be a�π -regular, (L,ψ)0-Lipschitz Carathéodory kernel function with functions
L and ψ satisfying the assumption (b) of Theorem 7.1. Moreover, let L(·)ψ(·, 1) ∈
Lϕ∗(�) and let

(Tf )(s) =
∫
�

K(t, f (t + s)) dµ(t).

Then Lϕ(�) ⊂ Dom T .

Let us remark that under the conditions of Theorem 7.1 or of Corollary 7.1, we
have obviously L0

ρ(�)∩Dom T = L0
ρ(�). This means that in this case the condition

f ∈ L0
η(�) ∩ Dom T , resp. f ∈ L0

ρ+η(�) ∩ Dom T, in Theorems 3.2 and 3.3 may
be replaced by f ∈ L0

η(�) resp. f ∈ L0
ρ+η(�).
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7.2 Existence and uniqueness results via Banach’s fixed
point principle

In the next theorem we show that, under suitable assumptions, the convolution-type
operator T is a contraction.

Theorem 7.2. Let ρ be a monotone, J -quasiconvex modular on an invariant space
L0

ρ(�), strongly subbounded with respect to the operation + in �. Let K be a
Carathéodory kernel function satisfying the Lipschitz condition

|K(t, u)−K(t, v)| ≤ L(t)|u− v| for u, v ∈ R, t ∈ �,

where L : �→ R
+
0 , 0 �= L ∈ L1(�). Then

(a) T : L0
ρ(�) ∩ Dom T → L0

ρ(�).

(b) ρ(λ(Tf − T g)) ≤ Mρ[λCM‖L‖1(f − g)] for f, g ∈ L0
ρ(�) ∩ Dom T , and

any λ > 0, where M and C are the constants from the definitions of J-quasi-
convexity and strong subboundedness of ρ, respectively.

Moreover, if we suppose ρ to be convex and J-convex, then

(c) ‖Tf − T g‖ρ ≤ C‖L‖1‖f − g‖ρ for f, g ∈ L0
ρ(�) ∩ Dom T .

Proof. (a) Applying the monotonicity of ρ, the Lipschitz condition with v = 0,
J-quasiconvexity of ρ with a constant M ≥ 1 and strong subboundedness of ρ with a
constant C ≥ 1, successively, we obtain for arbitrary f ∈ L0

ρ(�)∩Dom T and λ > 0

ρ(λTf ) ≤ ρ

(
λ

∫
�

L(t)|f (t + ·)| dµ(t)

)
= ρ

(∫
�

p(t)λ‖L‖1|f (t + ·)| dµ(t)

)
≤ M

∫
�

p(t)ρ[λM‖L‖1|f (t + ·)|] dµ(t)

≤ M

∫
�

p(t)ρ(λCM‖L‖1f ) dµ(t) = Mρ(λCM‖L‖1f ),

where p(t) = L(t)/‖L‖1 for t ∈ �. Since f ∈ L0
ρ(�), we have ρ(λCM‖L‖1f )→

0 as λ → 0+. By the above inequality, there holds ρ(λTf ) → 0 as λ → 0+.
Consequently, Tf ∈ L0

ρ(�).
(b) We apply the monotonicity of ρ, the Lipschitz condition, J-quasiconvexity

and strong subboundedness of ρ, successively, obtaining for f, g ∈ L0
ρ(�) ∩ Dom T
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and λ > 0

ρ(λ(Tf − T g)) ≤ ρ

(
λ

∫
�

L(t)|f (t + ·)− g(t + ·)| dµ(t)

)
≤ M

∫
�

p(t)ρ[λM‖L‖1|f (t + ·)− g(t + ·)|] dµ(t)

≤ M

∫
�

p(t)ρ[λCM‖L‖1(f − g)] dµ(t)

= Mρ[λCM‖L‖1(f − g)].

(c) From the inequality in (b) with M = 1 we obtain, taking λ = 1/u for arbitrary
u > 0 and supposing f, g ∈ L0

ρ(�) ∩ Dom T , the inequality

ρ

(
Tf − T g

u

)
≤ ρ

(
C‖L‖1(f − g)

u

)
.

Hence

{u > 0 : ρ
(
C‖L‖1(f − g)

u

)
≤ 1} ⊂ {u > 0 : ρ

(
Tf − T g

u

)
≤ 1}.

Consequently

‖Tf − T g‖ρ = inf{u > 0 : ρ
(
Tf − T g

u

)
≤ 1}

≤ inf{u > 0 : ρ
(
C‖L‖1(f − g)

u

)
≤ 1}

= C‖L‖1‖f − g‖ρ. ��

Now, applying the Banach’s fixed point principle, we are able to prove the follow-
ing theorem.

Theorem 7.3. Let the following assumptions be satisfied:

(a) ρ is a monotone, convex, J -convex modular on an invariant space L0(�),
strongly subbounded with respect to the operation + in � with a constant
C ≥ 1,

(b) The modular space L0
ρ(�) is complete with respect to the norm ‖ · ‖ρ ,

(c) L : �→ R
+
0 satisfies the condition 0 �= L ∈ L1(�)and

∫
�
L(t)|f (t)| dµ(t) <

+∞ for every f ∈ L0
ρ(�),
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(d) K is a �π -regular Carathéodory kernel function satisfying the Lipschitz con-
dition |K(t, u) − K(t, v)| ≤ L(t)|u − v| for u, v ∈ R and t ∈ �, where
C‖L‖1 < 1.

Then, for every g ∈ L0
ρ(�), the integral equation∫

�

K(t, f (t + s)) dµ(t) = f (s)+ g(s), µ-a.e. on �, (7.3)

has a unique solution f ∈ L0
ρ(�).

Proof. Let us observe that from the assumptions (a)–(d) it follows that there are
satisfied the assumptions of both Theorems 7.1 and 7.2, with ψ(t, u) = |u| for all
t ∈ � and u ≥ 0. By Theorem 7.1, there holds L0

ρ(�) ⊂ Dom T . Hence, by
Theorem 7.2 (a), T : L0

ρ(�) → L0
ρ(�). If we put T1f = Tf − g, for g ∈ L0

ρ(�)

then also T1 : L0
ρ(�) → L0

ρ(�). Moreover, we have T1f1 − T1f2 = Tf1 − Tf2 for
f1, f2 ∈ L0

ρ(�). Hence, by Theorem 7.2 (c), we have

‖T1f1 − T1f2‖ρ = ‖Tf1 − Tf2‖ρ ≤ C‖L‖1‖f1 − f2‖ρ
for f1, f2 ∈ L0

ρ(�), and since C‖L‖1 < 1, T1 is a contraction in L0
ρ(�). Since L0

ρ(�)

is complete, we may apply Banach’s fixed point principle. Thus, there exists a unique
f ∈ L0

ρ(�) such that T1f = f , i.e., Tf = f + g, which means that the equation
(7.3) admits f as a unique solution. ��

Example 7.3. Let the modulars ρ and ρ∗ be defined as in Example 7.2, where ϕ and
ϕ∗ are N -functions, conjugate in the sense of Young. Then ρ satisfies all assumptions
of Theorem 7.3 with constant C = 1. Moreover, the Orlicz space L0

ρ(�) = Lϕ(�)

is complete. Let us suppose that K is a �π -regular Carathéodory kernel function
satisfying the Lipschitz condition |K(t, u) − K(t, v)| ≤ L(t)|u − v| for u, v ∈ R,
t ∈ � with a function L : � → R

+
0 such that 0 �= L ∈ L1(�) ∩ Lϕ∗(�) and

‖L‖1 < 1. Then, by Example 7.2, we have
∫
�
L(t)|f (t)| dµ(t) < +∞ for every

f ∈ Lϕ(�), and so there are satisfied all the assumptions of Theorem 7.3. Thus the
equation (7.1) has a unique solution f ∈ Lϕ(�).

Let us still remark that the condition ‖L‖1 < 1 may be omitted, if we consider in
place of (7.1) the integral equation

λ

∫
�

K(t, f (t + s)) dµ(t) = f (s)+ g(s),

where 0 < λ < 1/‖L‖1, replacing the kernel function K by means of the kernel
function λK . Finally, let us remark that if 0 < µ(�) < +∞, then Lϕ∗(�) ⊂ L1(�),
and so the assumption 0 �= L ∈ Lϕ∗(�)∩L1(�)may be replaced by 0 �= L ∈ Lϕ∗(�).
Indeed, if 0 < µ(�) < +∞, we obtain for every α > 0

ϕ∗
(

1

µ(�)

∫
�

α|f (t)| dµ(t)

)
≤ 1

µ(�)

∫
�

ϕ∗(α|f (t)|) dµ(t),
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by convexity of ϕ∗. If f ∈ Lϕ∗(�), then the right-hand side of the above inequality
is finite for sufficiently small α > 0. Hence

∫
�
|f (t)| dµ(t) < +∞, i.e. f ∈ L1(�).

7.3 Existence results via Schauder’s fixed point principle

We shall now investigate the possibility of an application of the following Schauder
fixed point principle to the integral equation (7.1).

Theorem 7.4 (Schauder fixed point principle). Let X be a Banach space with norm
‖ · ‖ and let V0 be a nonempty, compact, convex subset of X. Let T : V0 → V0 be a
continuous map of V0 into itself. Then there exists a point x0 ∈ V0 such that T x0 = x0.

For the proof, see e.g. [95].

Applying this theorem, we prove the following

Corollary 7.2. Let X be a Banach space with norm ‖ · ‖ and let V be a nonempty,
closed, convex subset of X. Let T : V → V be a continuous map of V into itself
such that the image T V of V is conditionally compact in X. Then there exists a point
x0 ∈ V such that T x0 = x0.

Proof. Since the closure T V of the set T V is compact, so, by Mazur’s theorem (see

[95]) its closed convex hull conv(T V ) is also compact. Since T : V → V , we have

T V ⊂ V and so T V ⊂ V = V , becauseV is closed and hence conv(T V ) ⊂ convV =
V . Let us write V0 = conv(T V ), then V0 is a nonempty, compact, convex subset of
X. The inclusion above shows that V0 ⊂ V . Moreover, T V ⊂ V0. Hence T V0 ⊂ V0,
and so T maps V0 into itself. Since T is continuous in V , it is also continuous in V0.

Thus applying Theorem 7.4, we obtain that there exists an x0 ∈ V0 such that
T x0 = x0. ��

We shall apply this corollary in the case whenX = L0
ρ(�) orX = E0

ρ(�), where ρ

is a convex modular in L0(�) and Eρ(�) is the set of finite elements of L0
ρ(�), i.e., of

functions f ∈ L0(�) such that ρ(λf ) < +∞ for all λ > 0. We haveE0
ρ(�) ⊂ L0

ρ(�)

and we equip both these spaces with the norm ‖ · ‖ρ , generated by the modular ρ. It
is easily seen that if the space L0

ρ(�) is complete with respect to the norm ‖ · ‖ρ , then
E0

ρ(�) is complete with respect to the same norm, too. Indeed, let (fn) be a Cauchy
sequence in E0

ρ(�). Then it is also a Cauchy sequence in L0
ρ(�), and so there is an

f ∈ L0
ρ(�) such that ‖fn−f ‖ρ → 0 as n→+∞. We have to show that f ∈ E0

ρ(�).
By Theorem 1.2, we have ρ(λ(fn − f )) → 0 as n → +∞ for every λ > 0. There
holds

ρ(λf ) ≤ 1

2
ρ(2λ(f − fn))+ 1

2
ρ(2λfn)
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for n = 1, 2, . . . and for every λ > 0. From the above inequality it follows that for any
λ > 0 there exists an index n such that ρ(2λ(fn − f )) < +∞. Since fn ∈ E0

ρ(�),
so ρ(2λfn) < +∞ for every λ > 0. Hence ρ(λf ) < +∞ for every λ > 0. Thus,
f ∈ E0

ρ(�).
We shall prove the following

Theorem 7.5. Let ρ be a monotone, convex, J-convex modular on L0
ρ(�), strongly

subbounded with a constant C ≥ 1 with respect to the operation + in �. Let K be
an (L,ψ)0-Lipschitz Carathéodory kernel function satisfying the assumptions (b) and
(c) from Theorem 7.1. Moreover, let us suppose the triple {ρ,ψ, ρ} to be properly
directed with Cλ satisfying the condition λ−1Cλ ≥ a > 0 for any λ > 0. We denote
by X any of two spaces L0

ρ(�), E0
ρ(�) and we put Vρ = {f ∈ X : ‖f ‖ρ ≤ 1}.

Let (Tf )(s) = ∫
�
K(t, f (t + s)) dµ(t) and T1f = Tf − g, where g ∈ X and

‖g‖ρ = θ < 1. Finally, let ‖L‖1 ≤ aC−1(1− θ). Then T1 maps Vρ into itself.

Proof. First, let us remark that by Theorem 7.1, X ⊂ L0
ρ(�) ⊂ Dom T . Applying the

monotonicity of ρ, the (L,ψ)0-Lipschitz condition and J-convexity of ρ, we obtain
for arbitrary α > 0

ρ(αTf ) ≤ ρ

(
α

∫
�

|K(t, f (t + ·))| dµ(t)

)
≤ ρ

(∫
�

p(t)α‖L‖1ψ(t, |f (t + ·)|) dµ(t)

)
≤
∫
�

p(t)ρ[α‖L‖1ψ(t, |f (t + ·)|)] dµ(t).

By the assumption that {ρ,ψ, ρ} is properly directed for all λ > 0, taking α‖L‖1 ≤
Cλ, we obtain

ρ[α‖L‖1ψ(t, |f (t + ·)|)] ≤ ρ(λ|f (t + ·)|).
Hence, by the strong subboundedness of ρ with a constant C ≥ 1, we obtain

ρ(αTf ) ≤
∫
�

p(t)ρ(λ|f (t + ·)|) dµ(t)

≤
∫
�

p(t)ρ(λCf ) dµ(t) = ρ(λCf ).

Taking α = Cλ/‖L‖1, we thus obtain

ρ

(
Cλ

‖L‖1
Tf

)
≤ ρ(λCf )

for λ > 0. But λ−1Cλ ≥ a for λ > 0, so from the last inequality we obtain

ρ

(
a

‖L‖1
λTf

)
≤ ρ(λCf )
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for λ > 0. If we put λ = 1/u, we get

ρ

(
aTf

u‖L‖1

)
≤ ρ(u−1Cf )

for u > 0. Hence we obtain, similarly as in the proof of Theorem 7.2 (c), the inequality

‖Tf ‖ρ ≤ C

a
‖L‖1‖f ‖ρ. (7.4)

Since ‖L‖1 ≤ aC−1(1− θ), we get

‖Tf ‖ρ ≤ (1− θ)‖f ‖ρ,
if f ∈ X. Now, supposing f ∈ Vρ , we have ‖f ‖ρ ≤ 1 and so

‖T1f ‖ρ ≤ (1− θ)+ θ = 1.

This shows that T1 : Vρ → Vρ . ��

Let us remark that if the (L,ψ)0-Lipschitz condition holds with the function
ψ(u) = u, then the triple {ρ,ψ, ρ} is properly directed with Cλ = λ, and the condition
λ−1Cλ ≥ a > 0 is satisfied with a = 1.

From Corollary 7.2 and Theorem 7.5 we immediately obtain the following state-
ment.

Theorem 7.6. Let the assumptions of Theorem 7.5 be satisfied, and let the space
L0

ρ(�) be complete with respect to the norm ‖ · ‖ρ . Let us suppose further that the
operator

Tf (s) =
∫
�

K(t, f (t + s)) dµ(t)

is continuous on the ball Vρ and the image T Vρ is conditionally compact in X, then
the integral equation (7.1) has a solution f ∈ Vρ .

Remark 7.1. Let us assume that (�,+) is a locally compact and σ -compact group,
endowed with its Haar measure µ on the σ -algebra of its Borel subsets. Since the
modular ρ is monotone, the normed space L0

ρ(�) is a preideal space . In this case there
are known conditions for continuity of T and conditional compactness of T Vρ(X),
also in the more general case of an Urysohn operator T (see [193], Theorem 2.1).

In case of a general modular ρ on L0
ρ(�) we do not know any necessary and

sufficient conditions in order that a set A ⊂ X be conditionally compact in X, where
X = L0

ρ(�) or X = E0
ρ(�). We shall quote the results in the case of a modular ρ de-

fined by (1.4) from Example 1.5 (c). Proofs may be found e.g. in [153], Theorem 9.12.
Let � ⊂ R

n be a Lebesgue measurable set and let dµ = dt be the Lebesgue
measure in the σ -algebra � of all Lebesgue measurable subsets of �. Let / be the
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class of all functions ϕ : � × R
+
0 → R

+
0 which are measurable with respect to the

first variable for every value of the second variable, and are convex ϕ-functions of
the second variable with respect to every t ∈ �. The modular ρ will be defined by
formula (1.4), i.e., ρ(f ) = ∫

�
ϕ(t, |f (t)|) dt for every Lebesgue measurable function

f on � (see Example 1.5 (c)). We say that ϕ ∈ / is locally integrable in �, if for
every set A ∈ � of finite measure and every u ≥ 0 there holds

∫
A
ϕ(t, u) dt < +∞

(see Example 2.1 (b)). We say that ϕ ∈ / satisfies the condition (∞), if there exists
a sequence (fk) of measurable, nonnegative functions, such that

∫
A
fk(t) dt < +∞

for every set A ∈ � of finite measure and k = 1, 2, . . . , and such that for every u ≥ 0
the inequality

u ≤ 1

k
ϕ(t, u)+ fk(t)

holds for almost all t ∈ �. It is easily seen that if ϕ ∈ / satisfies (∞), then for
every set A ∈ � of finite measure and every measurable function f on � such
that f χA ∈ Lϕ(�) there holds f χA ∈ L1(�). Moreover, we define the integral
means (Steklov functions) fr of a locally integrable function f on � as follows. Let
f̃ (s) = f (s) for s ∈ �, f̃ (s) = 0 for s ∈ R

n \ � and let Br(t) be the closed ball in
R

n with centre at the point t ∈ � and with radius r > 0; by mr we denote the volume
of Br(t). The integral means fr of f are defined by the formula

fr(t) = 1

mr

∫
Br(t)

f̃ (s) ds

for t ∈ � and r > 0.
Let Eϕ(�) denote the space of all finite elements f ∈ Lϕ(�), i.e. all functions

f ∈ Lϕ(�) such that ρ(λf ) < +∞ for every λ > 0. Both spaces Lϕ(�) and Eϕ(�)

are Banach spaces with respect to the norm ‖ · ‖ρ , generated by ρ. There holds the
following theorem ([153], Theorem 9.12).

Theorem 7.7. Let a functionϕ ∈ /be locally integrable and let it satisfy the condition
(∞). Let A ⊂ E0

ρ(�).

1. Suppose the following conditions hold:

(a) there exists an M > 0 such that ‖f ‖ρ ≤ M for all f ∈ A ,

(b) for every ε > 0 there exists a compact set A ⊂ � such that for every
f ∈ A there holds the inequality ‖f χ�\A‖ρ < ε,

(c) for every ε > 0 and every compact set A ⊂ � there exists a number
r0 > 0 such that for every f ∈ A and every r satisfying the inequalities
0 < r < r0, there holds the inequality ‖(f − fr)χA‖ρ < ε.

Then A is conditionally compact in Eϕ(�).

2. Let us additionally assume that ϕ satisfies the following condition: there exist
numbers δ > 0, C ≥ 1, a set A ∈ �, A ⊂ � of measure zero and a function
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h : �×�→ R
+
0 integrable with respect to the second variable and satisfying

the condition sup|s|≤δ

∫
�
h(s, t) dt < +∞, such that for every u ≥ 0, |s| ≤ δ

and t ∈ � ∩ (�+ s) \ A there holds the inequality

ϕ(t − s, u) ≤ ϕ(t, Cu)+ h(s, t).

Then if A ⊂ Eϕ(�) is conditionally compact, then the conditions (a), (b) and
(c) are satisfied.

Remark 7.2. Concerning the condition in 2., compare with Example 1.10 (b). This
condition is trivially satisfied if the function ϕ(t, u) is independent of the variable t .

7.4 Bibliographical notes

The problem of the domain Dom T of the operator T was investigated in [161], [147]
and [23], where one can find versions of Theorems 7.2 and 7.3. Theorems 7.5 and
7.6 were given in [24]. Theorem 7.7 is due to A. Kamińska [123] and to A. Kamińska
and R. Płuciennik [124]. As regards Remark 7.1, a detailed exposition may be found
in [195], (see also [211] and [193]). For a classical theory of nonlinear integral
equations see e.g. [132], while a recent exposition can be found in [113]. Recent
results about complete continuity of Urysohn integral operators and applications to
integral equations can be found in [193], [194], [195]. Other extensions of the theory of
integral equations can be found in [2], in which multivalued operators are considered,
and in [4].



Chapter 8

Uniform approximation by sampling type
operators. Applications in signal analysis

In this chapter we will consider the problem of approximating a function f , belonging
to a certain functional space, by means of a general family of nonlinear integral
operators. The main idea is that of building up this family in such a way that it can
reproduce, in particular cases, several classical families of nonlinear integral operators
of approximation theory. To this end, as in Chapter 4, we will consider functions acting
from a Hausdorff locally compact topological group to R. But one of the main interests
of this chapter is the fact that among the families of operators we will deal with, there
are the so-called generalized sampling operators in their nonlinear form. The family
of linear generalized sampling operators or sampling series has been introduced and
studied by P. L. Butzer and his school in Aachen. The study of its nonlinear form
with respect to approximation and to rates of convergence gives applications in signal
processing.

8.1 Classical results

In the last century, Whittaker, Kotel’nikov and Shannon formulated the famous WKS-
sampling theorem, which says that given a function f ∈ L2(R)∩C0(R) (being C0(R)

the space of all continuous functions on R),which has the support of its Fourier trans-
form f̂ contained in an interval [−πw, πw], for w > 0, it is possible to reconstruct f
on the whole real time-axis from the sequences f

(
k
w

)
of its sampled values, by means

of the interpolation series (see Figure 8.1)

f (t) =
+∞∑

k=−∞
f

(
k

w

)
sinc[π(wt − k)], t ∈ R. (8.1)

Here sinc(t) = sin t/t for t �= 0 and sinc(0) = 1. Such interpolation takes into
account the behaviour of the function f only at its sampled values f

(
k
w

)
computed

just at the “nodes” k
w

, for k ∈ Z, uniformly spaced on the whole real axis. The
interpolation (8.1) is “free” in the sense that the sequence

{
f
(
k
w

)}
k∈Z

, which belongs
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to l2, can be an arbitrary sequence {ck}k∈Z ∈ l2. Moreover, the Parseval identity holds,

1

w

+∞∑
k=−∞

∣∣∣∣f( k

w

)∣∣∣∣2 = ∫
R

|f (t)|2 dt.

1

1 1

1

2

2

2 3

3

4 5 6

t

y

_ _

_

0

Figure 8.1. Interpolation by sampling

Now taking into account that, in the language of signal theory, a function f be-
longing to L2(R) is regarded as a signal which has finite energy and that the support of
its Fourier transform denotes the spectrum of f , the WKS-sampling theorem can be
formulated in the language of transmission information theory as follows (see [46]).

Let f be a signal of finite energy on R with bounded frequency spectrum contained
in [−πw, πw], which means that this signal does not contain frequencies higher than
w
2 cycles for second. Moreover, let the signal have a certain communication channel.
In order to recover this signal at the output of this communication channel it is sufficient
to transmit over this channel only the values f

(
k
w

)
of the signal at the nodes k

w
.

Here 4t = 1
w

denotes the time “interval” between samples, πw
2π = w

2 denotes

the bandwith of f which is measured in cycles per unit time, while R = 1
4t

denotes
the sampling rate measured in samples per unit time. H. Nyquist has marked out
the meaning of the “interval” (number) 1

w
for telegraphy and C. Shannon called this

“interval” the Nyquist interval corresponding to the frequency [−πw, πw]. Then
R = w is called the Nyquist rate which represents the theoretical minimum sampling
rate in order to reconstruct the signal completely.



136 8 Uniform approximation by sampling type operators

Of course it is also possible to sample signals having a sampling rate bigger than
R, which means the use of a thinner sequence of sample values, and this is the case of
so-called oversampling. In practice, oversampling occurs very often since a “fudge
factor” must be introduced due to the fact that sampling and interpolation cannot
exactly match the theoretical one; this is the case of the so called round-off error or
quantization error. Moreover, another error in time occurs when the samples cannot
be taken just at the instants k

w
; this error is the so-called time jitter error. A concrete

example of an oversampling phenomenon is the compact disk player; indeed, taking
into account that the highest audible frequency is approximately 18.000 cycles per
second (Hertz), depending on the listener, according to the previous theory an audio
signal must be sampled at least 36.000 times per second in order that the signal be
reconstructed completely; but the actual rate on compact disk players is usually 44.000
samples per second.

Sometimes it also happens that one does not have at own disposal a reasonable
number of samples in order to reconstruct the signal completely. This happens when
the distance between the nodes is greater than the Nyquist “interval” and we have
the so-called undersampling. In this case the aliasing phenomenon appears and the
spectral replics of the sampled signal are not disjoint.

Just to point out the importance of the WKS-sampling theorem in the applica-
tions, we remark that besides communication theory, there are several applications to
medicine through the use of image processing; only as an example, magnetic resonance
imaging (MRI) can be considered .

But in practice, the interpolation formula (8.1) has some disadvantages. First of
all, according to (8.1), in order to reconstruct the signal completely, the number of
sample values should be infinite, which in practice does not occur. Furthermore, if
we fix an instant t0 as the present time, then formula (8.1) means that one should
know the samples of the signal not only in the past of the instant t0, but also in the
future, that is for k

w
> t0. Still more, in the WKS-sampling theorem, the signal should

be band-limited, which is a rather restrictive assumption; indeed if f ∈ L2(R) is a
band-limited function, by Paley–Wiener theorem, this implies that f is the restriction
to the real axis of an entire function of exponential type πw, which means that the
function is extremely smooth; moreover, such a function cannot be simultaneously
duration limited, and in practice most of the signals have the last property.

In order to avoid the above disadvantages, P. L. Butzer and his school replaced the
sinc function in formula (8.1) by a function ϕ which is continuous with compact sup-
port contained in a real interval, obtaining an approximate sampling formula. Clearly,
by using such a function ϕ one only needs to know a finite number of sample values
and, if the interval containing the support belongs to R

+, then the sample values can
be taken only from the past, which means one is dealing with prediction of the signal.
Moreover, in this case the signal should not be necessarily band-limited. Of course,
one cannot expect to obtain an interpolation formula like the above one in (8.1), but
we will need approximation results in order to reconstruct the signal f .
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Namely, we consider a family of discrete operators, called generalized sampling
operators of the form

(Sϕ
wf )(t) =

+∞∑
k=−∞

f

(
k

w

)
ϕ(wt − k), t ∈ R, k ∈ Z, w > 0, (8.2)

and we will establish pointwise and uniform convergence of Sϕ
wf toward f , as w →

+∞, together with some results concerning the rate of approximation of (Sϕ
wf − f ).

In the following we will denote by C(R) the space of all uniformly continuous
and bounded functions f : R → R, endowed with the norm ‖f ‖∞ = supt∈R |f (t)|,
and by C(r)(R) the space of all functions f ∈ C(R) such that there exists the r-th
derivative, r ∈ N, and f (r) ∈ C(R). Finally, we will denote by Cc(R) and by
C

(r)
c (R), r ∈ N, the subspaces of C(R) and of C(r)(R) consisting of functions with

compact support.
Now, for ϕ ∈ Cc(R) and f ∈ C(R), we consider the series (8.2).
Since ϕ has compact support, for every fixed w the series (8.2) consists of only a

finite number of non-zero terms, i.e., of those k ∈ Z for which wt − k belongs to the
support of ϕ. Moreover, it is easy to observe that Sϕ

w : C(R) → C(R), and that the
following estimate can be established

‖Sϕ
w‖∞ ≤ m0(ϕ)‖f ‖∞,

where m0(ϕ) = supu∈R

∑+∞
k=−∞ |ϕ(u− k)| < +∞.

The following theorem holds.

Theorem 8.1. Let ϕ ∈ Cc(R) be such that

+∞∑
k=−∞

ϕ(u− k) = 1, u ∈ R. (8.3)

If f : R → R is a continuous function at t0 ∈ R, then

lim
w→+∞(Sϕ

wf )(t0) = f (t0). (8.4)

Moreover, if f ∈ C(R), then

lim
w→+∞‖S

ϕ
wf − f ‖∞ = 0. (8.5)

Proof. First we prove (8.4). Given ε > 0, by the continuity of f at t0, there exists
δ > 0 such that

|f (t0)− f (k/w)| < ε
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for |t0 − k/w| ≤ δ. Now, if w > 0, by (8.3) we may write

|f (t0)− (Sϕ
wf )(t0)| =

∣∣∣ +∞∑
k=−∞

f (t0)ϕ(wt0 − k)−
+∞∑

k=−∞
f (k/w)ϕ(wt0 − k)

∣∣∣
≤

+∞∑
k=−∞

|f (t0)− f (k/w)||ϕ(wt0 − k)|

=
(∑

(1)

+
∑
(2)

)
|f (t0)− f (k/w)||ϕ(wt0 − k)|

= I1 + I2,

where
∑

(1) is the sum over those k ∈ Z for which |wt0− k| ≤ δw, while
∑

(2) is that
over those k ∈ Z such that |wt0 − k| > δw.

Now I1 < ε
∑+∞

k=−∞ |ϕ(wt0 − k)| ≤ ε m0(ϕ). Moreover, for δ > 0 we may
choose w > 0 so large that the support of ϕ is contained in [−δw, δw]. Therefore
I2 = 0, and (8.4) follows.

The uniform convergence is proved analogously because, by uniform continuity
of f we can choose δ independent of t ∈ R. ��

The following corollary shows that taking the function ϕ with compact support in
R
+, (8.4) gives a prediction of the signal f .

Corollary 8.1. Suppose that the assumptions of Theorem 8.1 are satisfied. Then if
the function ϕ has compact support in R

+, then at every point t0 of continuity of f ,
we have

lim
w→+∞(Sϕ

wf )(t0) = lim
w→+∞

∑
(k/w)<t0

f (k/w)ϕ(wt0 − k) = f (t0). (8.6)

Proof. The proof is an easy consequence of the fact that ϕ(wt0 − k) = 0 if k/w ≥ t0.
Hence

(Sϕ
wf )(t0) =

∑
k/w<t0

f (k/w)ϕ(wt0 − k),

and the assertion follows by Theorem 8.1. ��

Remark 8.1. (a) We point out that (8.6) gives the prediction of the signal at an instant
t0 by the knowledge of only a finite number of sample values chosen from the past
of t0.

(b) It is important to observe that condition (8.3) is not only sufficient in order to
obtain the convergence result (8.4); indeed, putting f (t) = 1, it is easy to see that it
becomes necessary too.
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(c) Results concerning the approximation of functions having jump discontinuities,
by sampling sums can be found in [71]; there it is proved that at points of discontinuity,
pointwise approximation is not possible in general.

According to the above Remark 8.1 (b), it is important to have conditions on the
function ϕ such that (8.3) holds; indeed, in general, it is not easy to decide whether a
function ϕ ∈ Cc(R) satisfies (8.3) or not. In order to do this, the following theorem
will be helpful.

Theorem 8.2. If ϕ ∈ Cc(R), then condition (8.3) is equivalent to:

√
2πϕ̂(2πk) =

{
1, if k = 0

0, if k ∈ Z \ {0}. (8.7)

The interested reader can find a proof in [79]; it is a consequence of Poisson’s
summation formula (see [67])

1√
2π

+∞∑
k=−∞

ϕ(u− k) ∼=
+∞∑

k=−∞
ϕ̂(2πk)ei2πku,

where ∼= means that the second series is the Fourier series of the 1-periodic function
on the left.

By means of the above Theorem 8.2, it is possible to furnish examples of functions
ϕ ∈ Cc(R) satisfying (8.7), and hence equivalently (8.3).

Example 8.1. For n ∈ N, we define the central B-spline of order n by

Mn(t) = 1

(n− 1)!
n∑

j=0

(−1)j
(

n

j

)(n
2
+ t − j

)n−1

+
,

where, xr+ =
{
xr , x ≥ 0

0, x < 0
for x ∈ R, r ∈ N.

For n = 2, we obtain the roof-function (see Figure 8.2),

M2(t) =
{

1− |t |, |t | ≤ 1

0, |t | > 1
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Figure 8.2. The B-spline M2

while for n = 3 we get (see Figure 8.3),

M3(t) =


1
2

(|t | + 3
2

)2 − 3
2

(|t | + 1
2

)2
, |t | ≤ 1

2

1
2

(−|t | + 3
2

)2
, 1

2 < |t | ≤ 3
2

0, |t | > 3
2 .

2 21 1

0.5

_ _
t

0

Figure 8.3. The B-spline M3
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For n ≥ 3 it is convenient to use the following recursive formula (see e.g. [176])

Mn(t) = ((n/2)+ t)Mn−1(t + 1/2)+ ((n/2)− t)Mn−1(t − 1/2)

n− 1
.

Moreover, for the Fourier transform we have

√
2πM̂n(λ) =

[
sin(λ/2)

λ/2

]n
, λ ∈ R, n ∈ N, (8.8)

and hence in particular (8.8) gives

M̂n(2πk) = 0, k ∈ Z \ {0}, M̂n(0) = 1√
2π

.

Now in order to study the rate of approximation in (8.5), it is necessary to assume
some further conditions besides (8.3). To this aim, for r ∈ N ∪ {0} and ϕ ∈ Cc(R),
we put

mr(ϕ) = sup
u∈R

+∞∑
k=−∞

|u− k|r |ϕ(u− k)|.

Now the following theorem on the order of approximation can be formulated.

Theorem 8.3. Let ϕ ∈ Cc(R) and suppose that for some r ∈ N \ {1}, there holds

+∞∑
k=−∞

(u− k)jϕ(u− k) =
{

1, j = 0,

0, j = 1, 2, . . . , r − 1
(8.9)

for every u ∈ R. Then

‖f − Sϕ
wf ‖∞ ≤ mr(ϕ)

r! ‖f (r)‖∞w−r , (8.10)

for f ∈ C(r)(R) and w > 0.

Proof. Applying to the function f the Taylor expansion formula in the integral form
with order r , we may write

f (u) =
r−1∑
h=0

f (h)(t)

h! (u− t)h + 1

(r − 1)!
∫ u

t

f (r)(y)(u− y)r−1 dy.
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Hence

(Sϕ
wf )(t)− f (t)

=
+∞∑

k=−∞
f (k/w)ϕ(wt − k)− f (t)

=
+∞∑

k=−∞

r−1∑
h=0

f (h)(t)

h! ((k/w)− t)hϕ(wt − k)

+
+∞∑

k=−∞

1

(r − 1)!
{∫ k/w

t

f (r)(y)((k/w)− y)r−1 dy

}
ϕ(wt − k)− f (t)

for every t ∈ R. Taking into account (8.9), we have

(Sϕ
wf )(t)− f (t)

=
r−1∑
h=1

(−1)h

wh

f (h)(t)

h!
+∞∑

k=−∞
(wt − k)hϕ(wt − k)

+
+∞∑

k=−∞

1

(r − 1)!
{∫ k/w

t

f (r)(y)((k/w)− y)r−1 dy

}
ϕ(wt − k)

=
+∞∑

k=−∞

1

(r − 1)!
{∫ k/w

t

f (r)(y)((k/w)− y)r−1 dy

}
ϕ(wt − k).

Estimating now the above integral via∣∣∣∣∫ k/w

t

f (r)(y)((k/w)− y)r−1 dy

∣∣∣∣ ≤ ‖f (r)‖∞w−r

r
|k − wt |r ,

the assertion follows from the definition of mr(ϕ). ��

Remark 8.2. We remark that, if r = 1, then (8.9) reduces to (8.3). This is important
since it means that the above estimate (8.10) for r = 1 holds under the assumptions
of Theorem 8.1.

According to Theorem 8.2, there follows an analogous condition equivalent to
(8.9).

Theorem 8.4. If ϕ ∈ Cc(R), then condition (8.9) is equivalent to

ϕ̂(j)(2πk) =


1/
√

2π, k = j = 0

0, k ∈ Z \ {0}, j = 0

0, k ∈ Z, j = 1, 2, . . . , r − 1, r ∈ N, r > 1.

(8.11)
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Proof. The proof is again a consequence of Poisson’s summation formula applied to
the function (−iu)jϕ(u). Then by a well-known property of the derivative of order r
of the Fourier transform, we obtain

(−i)j√
2π

+∞∑
k=−∞

(u− k)jϕ(u− k) ∼=
+∞∑

k=−∞
ϕ̂(j)(2πk)ei2πku,

and so the proof follows with reasonings similar to those of Theorem 8.2 (see also
[79]). ��

Example 8.2. If r = 2, the kernel ϕ2(t) = 3M2(t − 2)− 2M2(t − 3), satisfies (8.11)
(see Figure 8.4).

1

1

1

2

2

2

3

3

4 5 6
t

_

_

0

Figure 8.4. The kernel ϕ2

Moreover, in this case mr(ϕ2)/r! ≤ 15, and

‖f − Sϕ2
w f ‖∞ = O(w−2), w →+∞.

If r = 3, the kernel

ϕ3(t) = 1

8
{47M3(t − 2)− 62M3(t − 3)+ 23M3(t − 4)}

satisfies (8.11) (see Figure 8.5); in this case mr(ϕ3)/r! ≤ 54 and

‖f − Sϕ3
w f ‖∞ = O(w−3), w →+∞.
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Figure 8.5. The kernel ϕ3

The construction of such functions is based on the solution of linear systems in
the complex plane. We remark that the above kernels are constructed in such a way
that they satisfy (8.9) and that they have compact support contained in (0,+∞), just
as for the case of the prediction of a signal. For example, it is possible to show that
S
ϕ2
w f predicts a signal at least 1

w
units ahead with error O(w−2), and the associate

sampling series consists only of three terms, i.e., those for k = j − 3, j − 2, j − 1
for which t − 4

w
< k

w
< t − 1

w
< t . For readers interested in results of this type, we

suggest the paper of P. L. Butzer and R. L. Stens [79].

Remark 8.3. Also inverse results concerning the order of approximation have been
established. In [79] it is proved that using spline kernels it is not possible to ap-
proximate functions of the class C(s)(R) with s ≤ r with a rate better than O(w−s).
Moreover, it is also proved that for spline kernels of order r , the best possible order of
approximation which can be obtained for non-constant functions f is O(w−r ), even
if f is arbitrarily smooth.

8.2 Uniform convergence for a class of nonlinear
integral operators

In this section we will construct a general family of nonlinear integral operators which
contains, in particular, a nonlinear version of the generalized sampling operator intro-
duced in the previous section. For such nonlinear generalized sampling operators, we
will study uniform approximation results. From a mathematical point of view, the the-
ory developed gives a unitary approach to the study of convergence results for several
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families of nonlinear integral operators, very common in approximation theory (see
e.g. Chapter 3). Moreover, from the point of view of applications to signal processing,
the study of nonlinear approximation processes is important since it may describe
nonlinear systems in which the signal computed, during its filtering, generates new
frequencies.

As in Chapter 4, � will be a locally compact (and σ -compact) topological group
G, and H will denote another locally compact topological group with its Haar measure
µH on the class of Borel sets B(H). We suppose G abelian, but unimodularity would
be sufficient for our theory. Moreover, we will denote by U a base of symmetric
neighbourhoods of the neutral element θ ∈ G, and by local compactness we can use
a base with (measurable) symmetric compact neighbourhoods of θ . Let {hw}w∈W
be a net of functions (here W is a set of indices), hw : H → G such that hw is a
homeomorphism between H and hw(H).

Let X = L0(G) denote the space of all Borel measurable real-valued functions
defined on G.

As concerns convergence, in this section we will use, concerning the set W , the
same notations as in Section 3.2., assuming that w0 = +∞; i.e., we will assume that
W is an unbounded subset of the interval ]0,+∞[, +∞ being an accumulation point
of the set W . This is achieved by taking into account the nature of the classical results
given in Section 8.1, where w0 = +∞.

For every U ∈ U, w ∈ W and s ∈ G let us now define the sets

Us,w = {t ∈ H : s − hw(t) ∈ U} = h−1
w (s + U).

Moreover, let {Lw}w∈W be a family of measurable functions Lw : G → R, with
Lw(s − hw(·)) ∈ L1

µH
(H) for almost all s ∈ G.

We will suppose that for every w ∈ W , Lw : G → R
+ is a measurable function

which satisfies the following assumptions:

(Lw.1) for every U ∈ U,

lim
w→+∞

∫
H\h−1

w (s+U)

Lw(s − hw(t)) dµH (t) = 0,

uniformly with respect to s ∈ G,

(Lw.2) there is a constant N > 0 such that, for every s ∈ G and w ∈ W ,∫
H

Lw(s − hw(t)) dµH (t) ≤ N.

If the family {Lw}w∈W satisfies (Lw.1) and (Lw.2) then we will write {Lw}w∈W ⊂
Lw.

Later on, we will show that in some particular cases, assumption (Lw.2) implies
(Lw.1).
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Now we introduce an important class of kernels.
Let {Kw}w∈W be a net of globally measurable functions Kw : G× R → R such

that Kw(s − hw(·), u) ∈ L1
µH

(H) for every u ∈ R, s ∈ G, and there hold:

(Kw.1) Kw(s, 0) = 0 for s ∈ G,

(Kw.2) the family {Kw}w∈W is an (Lw,ψ)-Lipschitz kernel, i.e., there exists a family
{Lw}w∈W ⊂ Lw such that

|Kw(s, u)−Kw(s, v)| ≤ Lw(s)ψ(|u− v|)
for s ∈ G,u, v ∈ R and ψ : R

+
0 → R

+
0 is a function belonging to the class

M ( compare with the definitions given in Sections 3.1 and 4.1, dealing with
families of functions and ψ being independent of the parameter t ∈ � = G),

(Kw.3) for every n ∈ N and w ∈ W , putting

rwn (s) = sup
1
n
≤|u|≤n

∣∣∣∣1u
∫
H

Kw(s − hw(t), u) dµH (t)− 1

∣∣∣∣ ,
we have limw→+∞ rwn (s) = 0, uniformly with respect to s ∈ G.

From now on, if a family of kernels {Kw}w∈W satisfies (Kw.i), i = 1, 2, 3, then
we will write {Kw}w∈W ⊂ Kw, and if the function ψ ∈ M is also concave, we will
write ψ ∈ M̃.

Throughout this chapter, we will deal with the following net of nonlinear integral
operators

(Twf )(s) =
∫
H

Kw(s − hw(t), f (hw(t))) dµH (t) (8.12)

defined for every f ∈ Dom T = ∩w∈W Dom Tw, i.e., for every f ∈ L0(G) for which
(Twf )(s) exists, as an Haar integral, for every s ∈ G and for every w ∈ W .

In order to prove the main approximation result, we need the following preliminary
lemma.

Lemma 8.1. If {Kw}w∈W ⊂ Kw, then there exist w ∈ W and r > 0 such that for
every w ∈ W , w > w, and every s ∈ G, we have∫

H

Lw(s − hw(t)) dµH (t) > r.

Proof. Let n ∈ N be fixed. From the singularity, there is a w ∈ W such that, for every
w ∈ W with w > w and for every s ∈ G,

sup
1
n
≤|u|≤n

∣∣∣∣1u
∫
H

Kw(s − hw(t), u) dµH (t)− 1

∣∣∣∣ < 1

2
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or, for every w ∈ W , w > w, s ∈ G and 1
n
≤ |u| ≤ n,∣∣∣∣1u

∫
H

Kw(s − hw(t), u) dµH (t)− 1

∣∣∣∣ < 1

2
.

This implies the majorization

1

u

∫
H

Kw(s − hw(t), u) dµH (t) >
1

2
(8.13)

for every w ∈ W , w > w, s ∈ G and 1
n
≤ |u| ≤ n.

Suppose now that the assertion of this lemma is false, i.e., for every w ∈ W and
for every r > 0, ∫

H

Lw′(s − hw′(t)) dµH (t) ≤ r, (8.14)

for some s ∈ G and for some w′ ∈ W , w′ > w.
In particular we have that, for every r > 0, (8.14) holds for some s ∈ G and for

some w′ ∈ W , w′ > w.
Now, for such w′ ∈ W and s ∈ G and for a fixed n ∈ N, we may write, for every

u ∈ R, 1
n
≤ |u| ≤ n,∣∣∣∣1u

∫
H

Kw′(s − hw′(t), u) dµH (t)

∣∣∣∣
≤ 1

|u|
∫
H

|Kw′(s − hw′(t), u)| dµH (t)

≤ 1

|u|
∫
H

Lw′(s − hw′(t))ψ(|u|) dµH (t)

= ψ(|u|)
|u|

∫
H

Lw′(s − hw′(t)) dµH (t)

≤ ψ(|u|)
|u| r ≤ sup

1
n
≤|u|≤n

ψ(|u|)
|u| r = ψ(n)

1
n

r

= nψ(n)r.

Now we can choose r > 0 such that nψ(n) r < 1
2 and so we obtain a contradiction to

(8.13). Hence the assertion follows. ��

As in Section 8.1, let C(G) be the set of all bounded and uniformly continuous
functions f : G→ R. Now we may state the following approximation theorem.

Theorem 8.5. Let f : G → R, f ∈ C(G) and suppose that {Kw}w∈W ⊂ Kw and
{Lw}w∈W ⊂ Lw. Then

‖Twf − f ‖∞ → 0 as w →+∞.
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Moreover, Tw : C(G) → L∞(G) and for some constant N > 0, we have, for every
w ∈ W ,

‖Twf ‖∞ ≤ Nψ(‖f ‖∞).

Proof. First we evaluate ‖Twf ‖∞. By the (Lw,ψ)-Lipschitz condition and
Kw(s, 0) = 0, for every s ∈ G, we may write, taking into account that f ∈ C(G),

|(Twf )(s)| =
∣∣∣∣∫

H

Kw(s − hw(t), f (hw(t))) dµH (t)

∣∣∣∣
≤
∫
H

Lw(s − hw(t))ψ(|f (hw(t))|) dµH (t)

≤ Nψ(‖f ‖∞),

for every s ∈ G; hence we obtain ‖Twf ‖∞ ≤ Nψ(‖f ‖∞), and so Tw : C(G) →
L∞(G). We now evaluate ‖Twf − f ‖∞. We have

|Twf (s)− f (s)| =
∣∣∣∣∫

H

Kw(s − hw(t), f (hw(t))) dµH (t)

−
∫
H

Kw(s − hw(t), f (s)) dµH (t)

+
∫
H

Kw(s − hw(t), f (s)) dµH (t)− f (s)

∣∣∣∣
≤
∫
H

Lw(s − hw(t))ψ(|f (hw(t))− f (s)|) dµH (t)

+
∣∣∣∣∫

H

Kw(s − hw(t), f (s)) dµH (t)− f (s)

∣∣∣∣
= I1 + I2.

First we consider I1. By the uniform continuity of f , for a fixed ε > 0, there is a
compact neighbourhood Uε ∈ U such that |f (s + v) − f (s)| ≤ ε, for every s ∈ G

and v ∈ Uε. Moreover, by Lemma 8.1, there are w ∈ W and r > 0 such that, for
every w ∈ W w > w,

∫
H

Lw(s − hw(t)) dµH (t) > r, for every s ∈ G. We now put

Uε
s,w = {t ∈ H : s − hw(t) ∈ Uε} = h−1

w (s + Uε), for w ∈ W, w > w.

Then if t ∈ H \ h−1
w (s + Uε), s − hw(t) �∈ Uε and by property (Lw.1) there exists

a w ∈ W such that
∫
H\h−1

w (s+Uε)
Lw(s − hw(t)) dµH (t) < ε for w ∈ W , w > w,

uniformly with respect to s ∈ G.
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Taking w̃ = max{w,w}, we have that, for w > W , w > w̃, h−1
w (s + Uε) �= ∅,

I1 =
∫
h−1
w (s+Uε)

Lw(s − hw(t))ψ(|f (hw(t))− f (s)|) dµH (t)

+
∫
H\h−1

w (s+Uε)

Lw(s − hw(t))ψ(|f (hw(t))− f (s)|) dµH (t)

≤ ψ(ε)N + ψ(2‖f ‖∞)ε.

In order to estimate I2, since f is bounded, for every ε > 0 there is an n ∈ N such
that |f (s)| ≤ n, for every s ∈ G and 1

n
< ε. Now we fix this n ∈ N, and put

An = {s ∈ G : 0 < |f (s)| < 1
n
}. Then, since Kw(s, 0) = 0, for every s ∈ G, we

may write

I2 =
∣∣∣∣∫

H

Kw(s − hw(t), f (s)) dµH (t)− f (s)

∣∣∣∣
=
∣∣∣∣∫

H

Kw(s − hw(t), f (s)χAn(s)) dµH (t)− f (s)χAn(s)

+
∫
H

Kw(s − hw(t), f (s)χG\An(s)) dµH (t)− f (s)χG\An(s)

∣∣∣∣ .
Hence there follows

I2 ≤ rwn (s)|f (s)| +
∣∣∣∣∫

H

Kw(s − hw(t), f (s)χAn(s)) dµH (t)− f (s)χAn(s)

∣∣∣∣
= I 1

2 + I 2
2 .

Now, I 1
2 ≤ ‖f ‖∞rwn (s), and since ψ ∈ M,

I 2
2 ≤
∫
H

Lw(s − hw(t))ψ(|f (s)χAn(s)|) dµH (t)+ |f (s)χAn(s)|

≤ Nψ

(
1

n

)
+ 1

n

< Nψ(ε)+ ε.

Finally, for w ∈ W,w > w̃,

|Twf (s)− f (s)| ≤ Nψ(ε)+ ψ(2‖f ‖∞)ε +Nψ(ε)+ ε + rwn (s)‖f ‖∞
and so, since rwn (s)→ 0 uniformly with respect to s ∈ G, we obtain

lim sup
w→+∞

|Twf (s)− f (s)| ≤ Nψ(ε)+ ψ(2‖f ‖∞)ε +Nψ(ε)+ ε

uniformly with respect to s ∈ G. Hence the assertion follows, ε > 0 being arbitrary.��



150 8 Uniform approximation by sampling type operators

Remark 8.4. (a) Here we observe that in the case of f (s) = u, u �= 0 a fixed number,
for every s ∈ G it follows that if ‖Twf − f ‖∞ → 0 as w →+∞, then∣∣∣∣ ∫

H

Kw(s − hw(t), u) dµH (t)− u

∣∣∣∣→ 0 as w →+∞,

and this implies that

1

u

{∫
H

Kw(s − hw(t), u) dµH (t)− 1

}
→ 0 as w →+∞,

i.e., rwn (s) → 0 as w → +∞. This means that the notion of singularity is also
necessary in order to have the required approximation theorem.

(b) We remark that in the particular case of (Lw, 1)-Lipschitz kernel {Kw}w∈W ⊂
Kw, (strongly Lipschitz kernels), i.e.,

|Kw(s, u)−Kw(s, v)| ≤ Lw(s)|u− v|
for s ∈ G,u, v ∈ R, and {Lw}w∈W ⊂ Lw, from Theorem 8.5 we obtain for some
constant N > 0 the estimate

‖Twf ‖∞ ≤ N‖f ‖∞.

(c) As a particular case, Theorem 8.5 contains the linear case, i.e., Kw(t, u) =
K̃w(t)u.

8.3 Applications to the convergence results

In this section we discuss some examples of operators (8.12) to which Theorem 8.5
can be applied.

(I) Let G = H = (RN,+) and µH = dt , the Lebesgue measure. Put hw(t) = t for
every w ∈ W ; then we obtain

(Twf )(s) =
∫

RN

Kw(s − t, f (t)) dt, s ∈ R
N.

Setting Kw(t, u) = Ǩw(−t, u), the above operators become those of the form con-
sidered in Chapters 3 and 7.

Here it is shown that the assumptions on {Lw}w∈W and {Kw}w∈W represent natural
extensions of the approximate identity to the nonlinear setting. Indeed, if Kw(t, u) =
K̃w(t) u, (Lw.1) and (Lw.2) become respectively

lim
w→+∞

∫
|z|>δ

|Kw(z)| dz = 0, for every δ > 0,
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and

there is a constant N > 0 such that
∫

RN

|Kw(z)| dz ≤ N.

Moreover, the (Lw,ψ)-Lipschitz condition is always satisfied as an equality with
Lw = |Kw| and ψ(u) = u, and condition rwn (s) → 0 as w → +∞ uniformly with
respect to s ∈ G, becomes

∫
RN Kw(z) dz→ 1 as w →+∞.

(II) An analogous application gives a nonlinear version of the Mellin convolution
operator of the form

(Twf )(s) = (Mwf )(s) =
∫ +∞

0
Kw(st−1, f (t))t−1 dt, s > 0,

(see also Section 4.7). In order to obtain the above operators we take G = H =
(R+, ·), µH = ∫ t−1 dt, hw(t) = t , for every w ∈ W . In the particular case of
Kw(t, u) = K̃w(t)u we obtain the Mellin convolution operator; it is connected with
the theory of “moment type operators”. The assumptions on {Lw}w∈W and {Kw}w∈W
are the natural extensions to nonlinear instance of the usual assumptions used for
moment type kernels.

(III) Here we consider the case of discrete operators. Such applications reproduce,
in particular, the nonlinear form of the generalized sampling operators (series) intro-
duced, in the linear case, in Section 8.1.

We put G = (R,+) and H = (Z,+) with the counting measure µH . Given the
family of homeomorphisms {hw}w∈W , hw : Z → h(Z) ⊂ R, we define the kernels
(Kw)w∈W,Kw : R× R → R, and {Lw}w∈W,Lw : R → R

+
0 with (Kw)w∈W ⊂ Kw

and {Lw}w∈W ⊂ Lw.
In this case (Lw.1) and (Lw.2) become respectively

lim
w→+∞

∑
|s−hw(k)|>δ

Lw(s − hw(k)) = 0, for every δ > 0,

uniformly with respect to s ∈ R, and

+∞∑
k=−∞

Lw(s − hw(k)) ≤ N

for every s ∈ R, w ∈ W .
For {Kw} ⊂Kw, the operators (Twf ) now take on the form

(Twf )(s) =
+∞∑

k=−∞
Kw(s − hw(k), f (hw(k))), s ∈ R, w ∈ W.

Therefore, it is possible to state Theorem 8.5 for the above discrete operators.
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Now we will consider a particular case, namely, we take W = R
+, G and H

as above and hw : Z → R, defined by hw(k) = k
w

, w > 0, k ∈ Z; moreover, we
put Kw(z, ·) = K(wz, ·), w > 0, z ∈ R where K : R × R → R, satisfies the
(L,ψ)-Lipschitz condition, i.e.,

|K(s, u)−K(s, v)| ≤ L(s)ψ(|u− v|)
for s ∈ R, u, v ∈ R, ψ ∈ M.

So we define the nonlinear generalized sampling operators as

(Twf )(s) =
+∞∑

k=−∞
K

(
ws − k, f

(
k

w

))
, s ∈ R, w > 0. (8.15)

We put Lw(z) = L(wz), w > 0, z ∈ R and L : R → R
+
0 is a measurable function.

In this case the assumptions (Lw.1) and (Lw.2) become respectively

(a) lim
w→+∞

∑
|ws−k|>δw

L(ws − k) = 0

and

(b)
+∞∑

k=−∞
L(ws − k) ≤ N, for every s ∈ G and w > 0.

Moreover, in this case

(c) rwn (s) = sup
1
n
≤|u|≤n

∣∣∣1
u

+∞∑
k=−∞

K(ws − k, u)− 1
∣∣∣→ 0, as w →+∞,

uniformly with respect to s ∈ R.
In the linear case, i.e., when Kw(t, u) = K̃w(t)u, the assumption rwn (s) → 0 as

w → +∞ becomes
∑+∞

k=−∞ K̃(ws − k) → 1 as w → +∞, and (a) and (b) hold
with |K̃| instead of L. The above assumptions are those of the theory of generalized
sampling series as considered in Section 8.1. In this particular case of the sampling
operator, it is not difficult to prove that (Lw.2) implies (Lw.1) , i.e., (b) implies (a)
(see [175]).

Therefore we may state the following corollary.

Corollary 8.2. Let f : R → R, f ∈ C(R) and suppose that K is (L,ψ)-Lipschitz,
with ψ ∈ M and where L satisfies assumptions (b) and (c). Then

∥∥∥ +∞∑
k=−∞

K(w · −k, f (
k

w
))− f (·)

∥∥∥∞ → 0, as w →+∞;
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moreover ∥∥∥ +∞∑
k=−∞

K(w · −k, f (
k

w
))

∥∥∥∞ ≤ Nψ(‖f ‖∞),

N being the constant of Theorem 8.5.

Remark 8.5. (a) The previous theory also subsumes a version of the multivariate
nonlinear sampling operator. Indeed, we may take G = (RN,+), H = (ZN,+)

with the counting measure, and f : RN → R.
We then define the multivariate nonlinear sampling operator (series) as the oper-

ator of the form

(Twf )(s) =
∑
ZN

K

(
ws − k, f

(
k

w

))
where s ∈ R

N,w ∈ R
N+ , and K : R

N → R. Here w = (w1, w2, . . . , wN) ∈ R
N+

and we define w1 ≤ w2 if and only if w1
i ≤ w2

i , i = 1, 2, . . . N . Moreover, if
s = (s1, s2, . . . , sN ) and k = (k1, k2, . . . , kN), we setws = (w1s1, w2s2, . . . , wNsN),
k
w
= ( k1

w1
, k2
w2

, . . . ,
kN
wN

)
, and w → +∞ means that wi → +∞ for each i = 1,

2, . . . , N .

(b) The previous theory holds also for more general H . Indeed, it suffices to
take (H,B(H), µH ) as a locally compact Hausdorff topological space with its Borel
σ -algebra B(H) and µH a regular measure on it. Moreover, the real parameter w > 0
can be replaced by an abstract parameter w varying in an arbitrary filtering partially
ordered set W .

8.4 Rate of uniform approximation

In this section we study the rate of approximation of ‖Twf −f ‖∞. To this aim, since
f is defined on a group G, we must adapt the definition of the classical Lipschitz
classes to this setting.

So, let ω : G × G → R
+ be a measurable symmetric function (i.e., ω(x, y) =

ω(y, x)); we say that f : G→ R is ω-Lipschitz if there exists a constant R > 0 such
that for every x, y ∈ G, we have

|f (x)− f (y)| ≤ R ω(x, y).

We will assume that ω and {hw}w∈W are connected by the following relation.

There exist a function λ : R
+ → R

+ with limw→+∞ λ(w) = 0 and a family of
functions {�w}, �w : G × H → R

+ with the following property: for every s ∈ G

and w ∈ W , there exists a sw ∈ G such that

ω(s, hw(t)) ≤ �w(sw, t)λ(w).
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From now on, if f is ω-Lipschitz and the previous relation between ω and hw is
satisfied, we will write f ∈ Lipω.

In particular, for x = s and y = hw(t), we obtain

|f (s)− f (hw(t))| ≤ R�w(sw, t) λ(w).

Moreover, we will suppose that

rw(s) ≡ sup
n∈N

rwn (s) = O(λ(w)) as w →+∞,

uniformly with respect to s ∈ G.
Let us set mω = supw∈W sups∈G

∫
H

Lw(s − hw(t))�w(sw, t) dµH (t).

We are ready to state the following

Theorem 8.6. Letf : G→ R withf ∈ C(G), and let {Kw}w∈W ⊂Kw, {Lw}w∈W ⊂
Lw, and ψ ∈ M̃. If f ∈ Lipω, mω < +∞ and rw(s) = O(λ(w)), as w →+∞
uniformly with respect to s ∈ G, λ being the function in the definition of the class
Lipω, then

‖Twf − f ‖∞ = O(ψ(λ(w))) as w →+∞.

Proof. Arguing as in Theorem 8.5, we may estimate |Twf (s)− f (s)| as follows,

|Twf (s)− f (s)| ≤
∫
H

Lw(s − hw(t))ψ(|f (hw(t))− f (s)|) dµH (t)

+
∣∣∣∣∫

H

Kw(s − hw(t), f (s)) dµH (t)− f (s)

∣∣∣∣
= I1(w)+ I2(w).

Now, I2(w) ≤ rw(s)|f (s)| ≤ rw(s)‖f ‖∞, and hence, by the assumptions, we have
I2(w) = O(λ(w)) as w → +∞. Now, since ψ ∈ M̃ is concave, then λ(w) =
O(ψ(λ(w))) as w →+∞, and hence I2(w) = O(ψ(λ(w))) as w →+∞.

We estimate I1(w).

I1(w) =
∫
H

Lw(s − hw(t))ψ(|f (hw(t))− f (s)|) dµH (t)

≤
∫
H

Lw(s − hw(t))ψ(R �w(sw, t) λ(w)) dµH (t).

PuttingBw(s) = ∫
H

Lw(s−hw(t)) dµH (t), by Lemma 8.1 and by assumption (Lw.2),
there exist w ∈ W and r > 0 such that r < Bw(s) ≤ N , for w ∈ W , w > w and for
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every s ∈ G. Hence by the concavity of ψ ∈ M̃, we have

I1(w) ≤ 1

Bw(s)

∫
H

Lw(s − hw(t))Bw(s)ψ(R �w(sw, t) λ(w)) dµH (t)

≤ Nψ

(
1

Bw(s)

∫
H

Lw(s − hw(t))R �w(sw, t) λ(w) dµH (t)

)
≤ Nψ

(
Rλ(w)

r

∫
H

Lw(s − hw(t))�w(sw, t) dµH (t)

)
≤ Nψ

(
Rλ(w)

r
mω

)
.

Taking r > 0 so small that Rmωr
−1 > 1, again by the concavity of ψ ∈ M̃, there

holds I1(w) = O(ψ(λ(w))) as w →+∞, and therefore the assertion follows. ��

8.5 Applications regarding rate of convergence

In this section we discuss some examples of operators (8.12) to which Theorem 8.6
can be applied.

(I) We consider, as in (I) of Section 8.3, the case of nonlinear convolution integral
operators, i.e., when G = H = (RN,+), µH = dt being the Lebesgue measure, and
we put hw(t) = t for every w ∈ W ; then we obtain

(Twf )(s) =
∫

RN

Kw(s − t, f (t)) dt, s ∈ R
N.

In this case we may take ω(x, y) = |x − y|α = wα|x − y|αw−α = (w|x − y|)αw−α ,
0 < α ≤ 1. So �w(x, y) = ω(w(x−y)) = (w|x−y|)α and λ(w) = w−α . Moreover

|f (s)− f (hw(t))| = |f (s)− f (t)| ≤ R(w|s − t |)αw−α,

and therefore sw = s ∈ R
N , for every w ∈ W . Furthermore,

rw(s) = sup
u�=0

∣∣∣1
u

∫
RN

Kw(s − t, u) dt − 1
∣∣∣ = sup

u�=0

∣∣∣1
u

∫
RN

Kw(z, u) dz− 1
∣∣∣

which is independent of s, and

mω = sup
w∈W

sup
s∈RN

∫
RN

Lw(s − t)ω(w(s − t)) dt

= sup
w∈W

sup
s∈RN

∫
RN

Lw(s − t)wα|s − t |α dt

= sup
w∈W

wα

∫
RN

Lw(z)|z|α dz
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represents the αth-moment of the kernel {Lw}w∈W .
Hence Theorem 8.6 applied to the above family of nonlinear convolution integral

operators can be formulated as follows.

Corollary 8.3. Let f : R
N → R with f ∈ C(RN), and let {Kw}w∈W ⊂ Kw,

{Lw}w∈W ⊂ Lw, and ψ ∈ M̃. If f ∈ Lipω,mω = supw∈W wα
∫

RN Lw(z)|z|α dz <

+∞, and

rw = sup
u�=0

∣∣∣∣1u
∫

RN

Kw(z, u) dz− 1

∣∣∣∣ = O(w−α) as w →+∞,

then ∥∥∥∥∫
RN

Kw(· − t, f (t)) dt − f (·)
∥∥∥∥∞ = O(ψ(w−α)) as w →+∞.

(II) We now take into consideration the case of discrete operators.
Here we put G = (R,+) and H = (Z,+) with the counting measure µH . We

will use the same notations as in (III) of Section 8.3. For {Kw} ⊂ Kw, the operators
(8.12) now take on the form

(Twf )(s) =
+∞∑

k=−∞
Kw(s − hw(k), f (hw(k))), s ∈ R, w ∈ W.

So we may take the function ω(x, y) = |x − y|α = �w(x, y), for every w ∈ W and
0 < α ≤ 1; since hw(t) = hw(k), we have

|f (s)− f (hw(k)| ≤ R|sw − k|αλ(w)

for some sw ∈ R and λ : R+ → R
+ such that limw→+∞ λ(w) = 0. Moreover,

rw(s) = sup
n∈N

rwn (s) = sup
u�=0

∣∣∣1
u

+∞∑
k=−∞

Kw(s − hw(k), u)− 1
∣∣∣,

and

mω = sup
w∈W

sup
s∈R

+∞∑
k=−∞

Lw(s − hw(k))|sw − k|α.

Now, let us consider the particular case of nonlinear generalized sampling series, i.e.,
when W = R

+, hw(k) = k
w

, w > 0, k ∈ Z, and Kw(z, ·) = K(wz, ·), w > 0,
z ∈ R and K : R× R → R, were K satisfies a Lipschitz condition as in Example III
of Section 8.3 and let Lw(z) = L(wz), w > 0, z ∈ R where L : R → R

+
0 is the

measurable function in the Lipschitz condition of K . In this case

(Twf )(s) =
+∞∑

k=−∞
K

(
ws − k, f

(
k

w

))
,
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and

ω(s, hw(k)) =
∣∣∣∣s − k

w

∣∣∣∣α = ∣∣∣∣ws − k

w

∣∣∣∣α = |ws − k|αw−α,

and hence sw = sw,�w(sw, k) = |ws − k|α and λ(w) = w−α .
Therefore we obtain that the class Lipω consists of all functions f : G→ R such

that there exists a constant R > 0 in such a way that, for every x, y ∈ R,

|f (x)− f (y)| ≤ R|x − y|α,
and hence |f (s)− f (hw(k))| ≤ R|ws − k|αw−α .

Moreover,

rw(s) = sup
n∈N

rwn (s) = sup
u�=0

∣∣∣∣1u
+∞∑

k=−∞
K

(
w

(
s − k

w

)
, u

)
− 1

∣∣∣∣
= sup

u�=0

∣∣∣∣1u
+∞∑

k=−∞
K(ws − k, u)− 1

∣∣∣∣,
and

mω = sup
w>0

sup
s∈R

+∞∑
k=−∞

L

(
w

(
s − k

w

))
|ws − k|α

= sup
w>0

sup
s∈R

+∞∑
k=−∞

L(ws − k)|ws − k|α.

Note that mω < +∞ if sups∈R

∑+∞
k=−∞ L(s − k)|s − k|α < +∞, and the latter is a

classical assumption in the theory of generalized sampling series. Hence it is possible
to state the following corollary.

Corollary 8.4. Let f : R → R, f ∈ C(R), and let K be an (L,ψ)-Lipschitz kernel
function, with ψ ∈ M̃ and where L satisfies assumption b) of (III) of Section 8.3. If
f ∈ Lipω, mω < +∞, and

rw(s) = sup
u�=0

∣∣∣∣1u
+∞∑

k=−∞
K(ws − k, u)− 1

∣∣∣∣ = O(w−α), as w →+∞,

uniformly with respect to s ∈ R, with 0 < α ≤ 1, then

∥∥∥ +∞∑
k=−∞

K(w · −k, f (
k

w
))− f (·)

∥∥∥∞ = O(ψ(w−α)), as w →+∞.
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Remark 8.6. (a) We remark that if K is strongly-Lipschitz, then ψ(u) = u, for every
u ∈ R

+
0 , and we obtain

∥∥∥ +∞∑
k=−∞

K(w · −k, f (
k

w
))− f (·)

∥∥∥∞ = O(w−α), as w →+∞.

This result can be applied to the particular case of linear sampling operators, i.e., when
K(t, u) = K̃(t)u (see [175]).

(b)According to Remark 8.5 (a), we may find a result on the order of approximation
for the multivariate nonlinear sampling operator. In this case λ : R

N+ → R
+ with

λ(w) = w−α = (∏N
i=1 wi

)−α , where w = (w1, w2, . . . , wN) ∈ WN .

8.6 Uniform regular methods of summability

In this section we will investigate the problem when the general family of operators
(8.12) defines a T-regular method of summability, as defined in Section 5.2, with
respect to uniform convergence, i.e., the case in which both the convergence of the
functions fw and of the operators Twfw is the uniform one. The results presented here
are based on Theorem 8.5, and what is remarkable is that the classes Kw and Lw are
exactly the same as considered there. Here the set of indices W will be taken as in the
previous section. This results in a wholly unified theory.

Let {fw}w∈W be a family of functions on G and consider the family of nonlinear
operators T = (Tw)w∈W ,

(Twfw)(s) =
∫
H

Kw(s − hw(t), fw(hw(t))) dµH (t),

defined for any fw ∈ Dom T = ∩w∈W Dom Tw.
We say that {fw}w∈W ⊂ C(G) is uniformly (Tw)-summable to f ∈ C(G) if

Twfw → f as w →+∞ uniformly with respect to s ∈ G.
We will say that (Tw)w∈W is a uniform regular method of summability on C(G) if

‖fw − f ‖∞ → 0 as w →+∞ implies that fw is Tw-summable to f,

i.e.,
‖Twfw − f ‖∞ → 0, as w →+∞.

Now let Kw and Lw be families of kernels as defined in Section 8.2. We formulate
the following

Theorem 8.7. Let f : G → R, f ∈ C(G), and suppose {Kw}w∈W ⊂ Kw and
{Lw}w∈W ⊂ Lw. Then (Tw)w∈W is a uniform regular method of summability on
C(G).
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Proof. Let {fw}w∈W be a family of functions on C(G) such that ‖fw − f ‖∞ → 0 as
w →+∞. We may write

|(Twfw)(s)− f (s)| ≤ |(Twfw)(s)− (Twf )(s)| + |(Twf )(s)− f (s)|
= Iw

1 (s)+ Iw
2 (s).

We evaluate Iw
1 . By the (Lw,ψ)-Lipschitz condition we have

Iw
1 (s) =

∣∣∣∣∫
H

Kw(s − hw(t), fw(hw(t))) dµH (t)

−
∫
H

Kw(s − hw(t), f (hw(t))) dµH (t)

∣∣∣∣
≤
∫
H

Lw(s − hw(t))ψ (|fw(hw(t))− f (hw(t))|) dµH (t)

≤
∫
H

Lw(s − hw(t))ψ(‖fw − f ‖∞) dµH (t)

≤ Mψ(‖fw − f ‖∞),

and since ψ ∈ M and ‖fw − f ‖∞ → 0 as w → +∞, we deduce that Iw
1 (s)→ 0 as

w →+∞ uniformly with respect to s ∈ G.
Now, Iw

2 (s) = |Twf (s) − f (s)| ≤ ‖Twf − f ‖∞, and so, by Theorem 8.5,
Iw

2 (s)→ 0 as w →+∞, uniformly with respect to s ∈ G.
Therefore the assertion follows, taking the supremum of s ∈ G. ��

8.7 Bibliographical notes

It is not completely clear who first established the sampling theorem and in this respect
there are different opinions. Indeed I. Kluvanek (1965, [127]) says: “The origin of
this theorem can hardly be traced”.

One of the historical roots of the sampling theorem is in interpolation theory with
equidistant nodes; and considering the case of not necessarily band-limited functions,
the first person who considered the sampling theorem in this respect was the Belgian
mathematician Charles-Jean Baron de la Vallée Poussin in 1908 in [88]. His work
dealt with the case of duration-limited functions, a class of functions which cannot be
simultaneously band-limited and that represents signals which occur in practice.

De la Vallée Poussin considered the finite interpolation formula

Fm(x) =
+∞∑

k=−∞
f (ak)

sin m(x − ak)

m(x − ak)

where f is a bounded function on a compact interval [a, b] and ak := kπ/m, k ∈ Z,
m = n or m = n + 1/2, n ∈ N. Here it is assumed that f : R → R is zero outside
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[a, b]. For such functions Fm, de laVallée Poussin established sufficient conditions for
pointwise and uniform convergence. But such a study is connected with the sampling
theorem since Fm interpolates f at the nodes ak .

De la Vallée Poussin’s work was followed by M. Theis in 1919 (see [189]). Now in
de la Vallée Poussin’s approach continuity of a function f at a point x0 alone does not
suffice for the convergence of Fm to f , and further assumptions such as the existence
of f ′(x0) or the requirement that f is of bounded variation in a neighbourhood of x0,
are needed. However, in order to obtain convergence for any continuous functions f ,
Theis replaced the kernel sin x

x
by
{ sin x

x

}2
, which is the counterpart of Fejér’s method

of summation of Fourier series, and she established a convergence result solely under
continuity assumptions. Later on, in 1927, J. M. Whittaker in [207] generalized
the convergence theorem for Fm of de la Vallée Poussin for functions which are not
necessarily duration-limited. Studies following the same direction as those of de la
Vallée Poussin include the work of J. L. Brown in 1967 (see [50]) with associates
aliasing error estimates, and the work of P. L. Butzer’s school at Aachen since 1976.
As mentioned in [78], many electrical and communication engineers dealt with the de
la Vallée Poussin interpolation formula even though they may not have been aware of
the fact that he was one of its major initiators.

Underlying this kind of work, there was also interest in regarding the series Fm not
in terms of its behavior for m→ +∞, but from the point of view of an interpolation
formula. In this respect the paper [206] of E. T. Whittaker in 1915 contains the
interpolation problem of finding a function passing through the points

(
k
W

, f
(

k
W

))
,

k ∈ Z, W > 0. Among all analytic functions which are solutions of the above problem,
he choose the function

C(x) :=
+∞∑

k=−∞
f

(
k

W

)
sin π(Wx − k)

π(Wx − k)
.

Note that C(x) is just Fm(x) for m = πW , and C(x) is an entire function, band-
limited to [−πW,πW ]. The above series, called by Whittaker cardinal series, can
be obtained as a limiting case of Lagrange’s interpolation formula as the number of
nodes tends to infinity. A number of mathematicians have studied the relationship of
the above series with the Newton–Gauss series, the Everett, Stirling and Bessel series;
all these series solve the same interpolation problem and are related to the cardinal
series.

The interpolation problem posed in the sampling theorem, as shown in Sec-
tion 8.1, is the so-called Shannon sampling theorem for band-limited functions. Indeed
C. E. Shannon established the following important engineering principle: If a signal f
has a bounded frequency content, then all the information contained in such a signal
is in fact contained in the sample values at equidistantly spaced sample points and
knowledge of the bound determines the minimum rate at which the signal needs to
be sampled in order to reconstruct it exactly. This rate, which is called the “Nyquist
sampling rate”, is measured in W samples per second.
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Shannon’s work goes on to discover that other sets of data can be used in order
to reconstruct the band-limited signal f : namely, one can also consider the values of
f and its first derivative at every other sample point, or the values of f and its first
and second derivative at every third sample point and further, it is also possible to use
sample points which are not uniformly spaced (non uniform or irregular sampling).
An interesting example which illustrates a concrete sampling situation in which the use
of the derivative is important, is given in [118]. There, as an example, is discussed an
airplane pilot’s instruments panel, where derivative information could be available to
the pilot. Moreover, even if a version of this theorem was known by Borel in 1897, the
sampling theorem was introduced into the engineering literature by Shannon, whose
paper was apparently written in 1940 but not published until after World War II in
1949 ([179]); but it seems that its contents were in circulation in the United States by
1948 (see [179]).

A little later, news emerged from Russia that Kotel’nikov had published the sam-
pling theorem in 1933 ([130]), and there it was known by his name. His results began
to appear in the western literature in the late 1950s. Other contribution to sampling
theory were given by Someya in [183], who continued the Japanese interest in cardinal
series going back to Ogura in 1920 ([168]), and by Weston in [205]. Other contrib-
utors to the engineering literature were Nyquist, Bennet, Gabor and Raabe. But it is
really impossible to quote here all the mathematicians who have been interested in the
sampling theorem directly or not; indeed we invite the interested reader to read the
survey papers by Jerri [122], Butzer [55], Butzer–Stens [78] and Higgins [118].

If now we denote by (SWf ) := C(x), and we observe that (Sm/πf )(x) = Fm(x),
then it transpires that de la Vallée Poussin was the first who in 1908 considered the
reconstruction of a function f by means of its sampling series, being f duration-
limited, (i.e. f has compact support).

The interpolation formula of the sampling theorem shown in Section 8.1, has been
considered by many authors, but in Ogura’s paper ([168]) of 1920 there is a formulation
of the sampling theorem similar to Shannon’s’ (Section 8.1). Even so, Ogura attributes
it to E. T. Whittaker (1915), probably erroneously. Ogura seems to be the first to prove
the sampling theorem rigorously, and J. M. Whittaker in 1927 ([207]) obtained results
containing a weak version of the sampling theorem. But probably, neither Ogura, nor
J. M. Whittaker, unlike V. A. Kotel’nikov and C. E. Shannon, realized the importance
of their results in relation to the sampling theorem.

Another important step in the history of the sampling theorem appeared when
in 1960’s some mathematicians began to consider the interpolation formula of the
classical sampling theorem when the band-limitation is weakened in some sense.
Results in this respect are due to P. Weiss (1965, [204]) and J. L. Brown (1967, [50]),
and gave the following estimates.

If f ∈ L2(R) ∩ C(R) is such that f̂ ∈ L1(R), then there holds:

|f (x)− (SWf )(x)| ≤
√

2

π

∫
|v|≥πW

|f̂ (v)| dv, W > 0.
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The above inequality is interesting since the right-hand side tends to zero for W →
+∞ and this shows that f can be uniformly approximated by the sampling series
SWf . This also shows that f is not exactly represented by the interpolation series
as in the sampling theorem, but it can only be approximated when W → +∞; and
this goes in the same direction of the work of de la Vallée Poussin. Moreover, the
above upper bound for the error occurring when f is approximated by SWf , is the

best possible in the sense that the constant
√

2
π

cannot be improved. Further, it is
important to note that in the particular case of a band-limited f , the right-hand side
vanishes and we obtain the exact representation of f by means of SWf , which is the
Shannon sampling theorem.

This is just in the direction of the work of P. L. Butzer and his school at Aachen.
Earlier they considered time (duration)-limited functions and later this condition was
weakened assuming conditions on the behavior of f at infinity. Later they began to
consider the generalized sampling series of f , obtaining the results quoted in Sec-
tion 8.1 (see [79]). Concerning the behavior of the function f in correspondence of
jump-discontinuities, they gave a partial solution to a conjecture of R. Bojanic. They
proved that a series having the interpolation property cannot converge at points of dis-
continuity. But if the assumption that the kernel ϕ in SWf is continuous, is dropped,
then in this case they showed that there exist kernels ϕ such that (SWf )(x) interpolates
f at the nodes n/W, n ∈ Z and converges as W →+∞.

Subsequently C. Bardaro and G. Vinti in [36] considered the generalized sampling
series in the sense of Butzer and in [39], for the first time, the case of a generalized sam-
pling series in its nonlinear form was studied and uniform approximation results and
error estimates proved. Here the authors used a general approach in a locally compact
topological group, as did Kluvanek in [127] and later Beaty and Dodson in [120], [44]
for the classical Shannon sampling theorem. More precisely, the authors considered
a general form of linear or nonlinear integral operators from which it is possible to
deduce the generalized sampling case, as also other classical cases, as convolution or
Mellin operators. Moreover in [40], [41] the authors also investigated the possibility
that the convergence process for the family of nonlinear generalized sampling oper-
ators or more generally for the family of nonlinear integral operators considered in
Section 8.2, defines a regular method of summability in the sense mentioned there.

To conclude, even if the origin of sampling theorem seems to be a very complicated
problem, Butzer and Stens ([79]) say that de la Vallée Poussin can be considered as the
father of sampling theory in the case of time-limited functions. Moreover M. Theis
was the first to consider generalized sampling series in the sense that the kernel sin x/x

is replaced by the particular Fejér kernel (sin πx/πx)2.



Chapter 9

Modular approximation by sampling type
operators

As seen in Section 8.1, the classical sampling theorem holds for continuous and band-
limited signals which have finite energy, i.e., for functions f ∈ L2(R) ∩ C0(R)

(being C0(R) the space of continuous functions on R), while in Theorem 8.1, in a
different frame, it is required for the generalized sampling operator that f ∈ C(R). In
Section 8.2 the results of Section 8.1 have been extended to the nonlinear case still in
the frame of C(R). Now coming back for a moment to the classical signal analysis,
it would be of some interest to give an approximation result, in the nonlinear frame
of Section 8.2, for functions belonging only to L2(G), i.e. for signals having finite
energy, but which are not necessarily either continuous or band-limited. But still more
than this, it would be of some interest to give such approximation results for functions
belonging to an Lp-space, for p ≥ 1 or to a more general functional space. Indeed,
this fact may have the following interpretation in signal theory: the power of a signal
is defined as

Pf = lim
T→+∞

1

2T

∫ T

−T

|f (t)|2 dt,

and there exist signals which have finite power, but infinite energy, which means that
one can deal with signals which do not belong to L2. As examples of these kind
of signals there are the periodic power signals, the aperiodic ones and the random
processes.

9.1 Modular convergence for a class of nonlinear integral
operators

In this section, we will develop a theory of convergence for operators (8.12) in modular
spaces. As seen in Section 1.2, the theory of modular spaces contains, in particular,
that one of the Musielak–Orlicz and the Orlicz spaces, which are generalizations of
the classical Lp-spaces. In this manner, we have a theory that, from the point of view
of applications, gives a unifying approach to signals having finite energy, but also to
other signals like, for example, the power signals.

The concept of convergence used is the modular convergence introduced in Sec-
tion 1.2.
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We will use the notions of Section 8.2, and we will deal with the family of nonlinear
integral operators (8.12). Let µG be the Haar measure on the class of Borel sets B(G),
associated to the group G.

By L0(G) and L0(H) we will denote the vector spaces of all Borel measurable
real-valued functions defined on G and H , respectively, and by L0

ρ(G) and L0
ρ(H)

the corresponding modular spaces. Moreover, by Cc(G) we denote the subspace of
all continuous functions with compact support on G. For G = (Rn,+) we denote
by C

(r)
c (Rn) the space of all real-valued functions with compact support and with

continuous derivative of order r , for 1 ≤ r ≤ +∞.

The general setting of modular spaces has required the use of some notions on the
modulars taken into consideration, which we have introduced in Section 2.1. A new
notion is needed in order to formulate Theorems 9.2 and 9.4, which is the following.

We say that a modular ρ is strongly finite if the characteristic function χA of a set
A of finite measure belongs to the modular space Eρ .

Of course, such notion, like finiteness, absolute finiteness, absolute continuity and
monotonicity, is obviously satisfied when one deals with modulars which have an
integral representation like, for example, the modulars generating the Orlicz spaces.
In case of modulars generating a Musielak–Orlicz space, we recall that finiteness
and absolute finiteness or strong finiteness are equivalent to the requirement that the
ϕ-function generating the modular is locally integrable for small u and is locally
integrable, respectively (see Example 2.1 (b) for the above notions). Moreover it is
easy to show that, if the underlying space G is of finite measure, (for example if G

is a compact group), then absolute continuity together with strong finiteness implies
absolute finiteness (see [16]).

Let W be an unbounded subset of R
+, as in Section 8.2. Now let (G,B(G), µG)

and (H,B(H), µH ) be two locally compact and σ -compact topological groups and
let {µw}w∈W be a family of functions µw : G×B(H)→ R

+
0 , with w ∈ W such that

µw(·, A) is measurable for every A ∈ B(H) and µw(s, ·) is a measure on B(H).

Now we introduce a notion of “regularity” on the family {µw}w∈W .

We will say that {µw}w∈W is regular if

a) putting µs
w = µw(s, ·), for w ∈ W, s ∈ G we have 0 ≤ µs

w << µH for
every s ∈ G,w ∈ W , where “<<” means that µs

w is absolutely continuous with
respect to µH ,

b) supw∈W ||µ(·)
w (H)||∞ < +∞ and there exist a measurable set F ⊂ G with

µG(F) = 0 and two positive real constants r and w ∈ W such that for every
w ∈ W,w > w and for every s ∈ G \ F , one has 0 < r ≤ µ

(s)
w (H),

c) setting ξw(s, t) = dµs
w

dµH
, we have that ξw is a globally measurable function and

||ξw(·, t)||1 ≤ ηw for every t ∈ H and for ηw ∈ R
+.
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Let now ρG, ρH be two modular functionals on L0(G) and L0(H), respectively.
Due to the general setting of modular spaces, we introduce a condition of compatibility
between the family {µw}w∈W and the modulars ρG and ρH .

We will say that a regular net {µw}w∈W is compatible with the couple (ρG, ρH ) if
there are two constants D,M > 0 and a net {bw} of positive numbers with bw → 0
as w →+∞ such that

ρG

(∫
H

g(t) dµ(·)
w (t)

)
≤ MηwρH (Dg)+ bw

for any g ≥ 0, g ∈ L0(H) and for sufficiently large w ∈ W , where ηw is the net
introduced in assumption c) of the regularity of {µw}w∈W .

Now we will show that if ρG, ρH are convex modulars generating Orlicz spaces,
then every regular net {µw}w∈W is compatible with the couple (ρG, ρH ).

Proposition 9.1. Let ϕ : R
+
0 → R

+
0 be a convex ϕ-function as defined in Exam-

ple 1.5 (b), and let

IG
ϕ (f ) := ρG(f ) =

∫
G

ϕ(|f (t)|) dµG(t),

and

IH
ϕ (g) := ρH (g) =

∫
H

ϕ(|g(t)|) dµH (t)

be the modulars on L0(G) and L0(H) generating the Orlicz spaces. Then every
regular net {µw}w∈W is compatible with the couple (ρG, ρH ).

Proof. Let us consider a regular family {µw}w∈W according to the previous definitions.
For every s ≥ 0 , putting

βw(s) = µw(s,H) = µ(s)
w (H)

and supw∈W ‖ µ
(·)
w (H) ‖∞≡ D we have βw(s) ≤ D for every s ∈ G, w ∈ W and

ρG

[∫
H

g(t) dµ(·)
w (t)

]
= ρG

[∫
H

g(t)βw(s) dµ̃(·)
w (t)

]
where µ̃

(s)
w (E) := µ

(s)
w (E)
βw(s)

, E ∈ B(H). Hence, by using Jensen’s inequality, we obtain

ρG

[ ∫
H

g(t) dµ(·)
w (t)

]
=
∫
G

ϕ

[ ∫
H

g(t) dµ(·)
w (t)

]
dµG(s)

≤
∫
G

{∫
H

ϕ[βw(s)g(t)] dµ̃(s)
w (t)

}
dµG(s)

=
∫
G

{∫
H

1

βw(s)
ϕ[βw(s)g(t)] dµ(s)

w (t)

}
dµG(s).
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Since µw(s, ·), µH , there exists a nonnegative measurable function ξw(s, t) , such
that dµw(s, ·) = ξw(s, t)dµH (·). Thus, by the definition of regularity of {µw} , we
deduce

ρG[
∫
H

g(t) dµ(·)
w (t)] ≤ 1

r

∫
G

{∫
H

ϕ[Dg(t)]ξw(s, t) dµH (t)

}
dµG(s)

= 1

r

∫
H

ϕ[Dg(t)]
{∫

G

ξw(s, t) dµG(s)

}
dµH (t)

≤ ηw

r
ρH (Dg)

for sufficiently large w ∈ W . So the assertion follows with bw ≡ 0 and M = 1/r . ��

Concerning the assumptions on the families {Kw}w∈W and {Lw}w∈W we will
assume that {Kw}w∈W ⊂Kw where in the assumption (Kw.3) of Section 8.2 we will
use the weaker requirement that limw→+∞ rwn (s) = 0 a.e. on G, and the class Lw is
given by the family of measurable functions Lw : G→ R

+
0 such that Lw(s−hw(·)) ∈

L1
µH

(H) for s ∈ G, satisfying the following assumptions:

(Lw.1) Lw : G→ R
+
0 are functions with compact support on G such that for every

U ∈ U there is a w ∈ W such that for every w ∈ W,w > w the supports of
Lw are contained in U ,

(Lw.2) there is a constant N > 0 such that∫
H

Lw(s − hw(t)) dµH (t) ≤ N,

for every s ∈ G and w ∈ W ,

(Lw.3) there are measurable set F ⊂ G with µG(F) = 0 and two positive real
constants r and w ∈ W such that for every w ∈ W w > w and for every
s ∈ G \ F , we have ∫

H

Lw(s − hw(t)) dµH (t) > r.

We remark that the new assumption (Lw.1) implies that one of Section 8.2. Indeed,
we may establish the following

Proposition 9.2. If (Lw.1) is satisfied, then for every U ∈ U and s ∈ G

lim
w→+∞

∫
H\h−1

w (s+U)

Lw(s − hw(t)) dµH (t) = 0.
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Proof. Let U ∈ U be fixed. From (Lw.1) there exists w ∈ W such that suppLw ⊂ U

for w ∈ W,w ≥ w. If t ∈ H \ h−1
w (s + U), then for every z ∈ U we have that

t �= h−1
w (s + z), for every s ∈ G; since hw is a homeomorphism, for every w ∈ W ,

we may conclude that hw(t) �= s + z, and hence s − hw(t) �= −z, which implies that
s − hw(t) �∈ U . Now, from the assumption (Lw.1) we obtain for w ≥ w that∫

H\h−1
w (s+U)

Lw(s − hw(t)) dµH (t) = 0, for every s ∈ G,

i.e. the assertion follows. ��

Let moreover L∗w ⊂ Lw be a subclass of Lw whose elements {Lw}w∈W satisfy the
further condition that Lw ∈ L1

µG
(G) for every w ∈ W , and γw :=

∫
G
Lw(z) dµG(z)

for w ∈ W , is a bounded net.
It is clear that if in particular we take µ̃s

w(A) := ∫
A
Lw(s − hw(t)) dµH (t),

A ∈ B(H), s ∈ G, w ∈ W , then the family {µ̃w}w∈W is regular.
Indeed, the condition a) of the regularity is obviously satisfied and b) is a con-

sequence of (Lw.2) and (Lw.3). Finally, assumption c) is satisfied with ηw = γw,
w ∈ W .

Now, we show some sufficient conditions under which the compatibility of a regu-
lar net with the couple (ρG, ρH ) holds, if ρG, ρH are modulars generating Musielak–
Orlicz spaces.

We take G and H such that H ⊂ G (i.e., H is a subgroup of G) and µH will denote
the Haar measure of the subgroup H . Let now ϕ : G × R

+
0 → R

+
0 be a measurable

function with respect to s ∈ G, for every u ∈ R
+
0 , and such that ϕ(s, ·) is a convex

ϕ-function, as in Example 1.5 (c), which satisfies inequality (1.9) of Section 1.4 in the
following equivalent form.

There are a constant C ≥ 1 and a globally measurable function F : G×G→ R
+
0

such that for every t, s ∈ G and u ≥ 0 there holds

ϕ(s, u) ≤ ϕ(t, Cu)+ F(t, s). (9.1)

Let {µ̃w}w be the family defined by means of the net of kernels {Lw}w∈W ⊂ Lw.
We set, according to Example 1.10 (b),

IG
ϕ (f ) := ρG(f ) =

∫
G

ϕ(s, |f (s)|) dµG(s),

IH
ϕ (g) := ρH (g) =

∫
H

ϕ(t, |g(t)|) dµH (t)

for f ∈ L0
ρG

(G) and g ∈ L0
ρH

(H). Note that inequality (9.1) implies the subbound-
edness of the modulars ρG and ρH (see Example 1.10 (b)). Finally we put

δw =
∫
G

∫
H

F(t, s)Lw(s − hw(t)) dµH (t)dµG(s).
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Then we may prove the following

Proposition 9.3. If δw → 0 as w → +∞, the family {µ̃w}w is compatible with the
couple (ρG, ρH ).

Proof. Putting µ̃w(s, E) = µ̃s
w(E) = ∫

E
Lw(s − hw(t)) dµH (t), E ∈ B(H), s ∈ G,

we have

ρG

[ ∫
H

g(t) dµ̃(·)
w (t)

]
=
∫
G

ϕ

[
s,

∫
H

g(t) dµ̃s
w(t)

]
dµG(s).

By the Jensen inequality and (Lw.2)

ρG

[ ∫
H

g(t) dµ̃(·)
w (t)

]
≤ 1

r

∫
G

{∫
H

ϕ(s,Ng(t))Lw(s − hw(t)) dµH

}
dµG(s).

Now applying inequality (9.1) to the function ϕ, we obtain

ρG

[ ∫
H

g(t) dµ̃(·)
w (t)

]
≤ 1

r

∫
G

{∫
H

ϕ[t, NCg(t)]Lw(s − hw(t)) dµH (t)

}
dµG(s)

+ 1

r

∫
G

{∫
H

F(t, s)Lw(s − hw(t)) dµH (t)

}
dµG(s).

By the Fubini–Tonelli theorem and since {Lw}w∈W ⊂ L∗w, we obtain

ρG

(∫
H

g(t) dµ̃(·)
w (t)

)
≤ 1

r
γwρH (NCg)+ δw

r
,

and so the assertion follows, with M = 1/r, γw = ηw,D = NC and bw = δw/r . ��

Here are some examples in which the condition δw → 0 as w →+∞ is satisfied.

Example 9.1. (I) Let G = H = (R,+) and hw(t) = t , with the Lebesgue measure.
Let us suppose that the function ϕ satisfies (1.9) in the following strong sense.

There is a constant C ≥ 1 and a globally measurable function F : R× R → R
+
0

such that
ϕ(t − s, u) ≤ ϕ(t, Cu)+ F(t, s)

for every t, s ∈ G,u ∈ R
+
0 where F is such that ||F(·, s)||L1(R) =: Q(s) → 0 as

s → 0.

In this case we have

ϕ(s, u) ≤ ϕ(t, Cu)+ F(t, t − s),

and so we can put F(t, s) = F(t, t − s).
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Now we calculate δw:

δw =
∫

R

∫
R

F(t, s)Lw(s − t) dt ds

=
∫

R

∫
R

F(t, t − s)Lw(s − t) dt ds

=
∫

R

{∫
R

F(t,−(s − t))Lw(s − t) ds

}
dt

=
∫

R

{∫
R

F(t,−z)Lw(z) dz

}
dt

=
∫

R

Lw(z)

{∫
R

F(t,−z) dt

}
dz.

Let ε > 0 be fixed. Then there is δ > 0 such that Q(−z) < ε for |z| < δ. Moreover,
there is w̃ ∈ W such that for every w ∈ W,w > w̃,

δw =
∫ δ

−δ

Lw(z)Q(−z) dz < ε

∫
R

Lw(z) dz,

and if ||Lw||L1(R) is a bounded net, we have δw → 0, as w →+∞.

(II) Let G = (R,+),H = (Z,+) with µG the Lebesgue measure on R , µH the
counting measure on Z and take hw(k) = k

w
. Moreover, we put, for f ∈ L0(R) and

g : Z → R,

IG
ϕ (f ) := ρG(f ) =

∫
R

ϕ(s, |f (s)|) ds,

and

IH
ϕ (g) := ρH (g) =

+∞∑
k=−∞

ϕ(k, |g(k)|).

By inequality (9.1), we obtain

ϕ(s, u) ≤ ϕ(k, Cu)+ F(k, s)

where F(k, s) = F(k, k − s). In this case,

δw =
∫

R

+∞∑
k=−∞

F(k, s)Lw

(
s − k

w

)
ds.
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If we take Lw(s) = L(ws), for L ∈ L1(R) and w ∈ W , we obtain

δw =
+∞∑

k=−∞

∫
R

F(k, s)L(ws − k) ds

=
+∞∑

k=−∞

∫
R

F(k, k − s)L(ws − k) ds

=
+∞∑

k=−∞

1

w

∫
R

F

(
k,

kw − k − z

w

)
L(z) dz

= 1

w

∫
R

+∞∑
k=−∞

F

(
k,

kw − k − z

w

)
L(z) dz.

Therefore it is sufficient to assume that

Q(s) := ||F(·, s)||l1(Z)

is uniformly bounded with respect to s ∈ R in order to get the required result.

In order to state the main modular approximation results for the operators (8.12),
we will use a density result which we state as follows.

Theorem 9.1. Let ρ be a modular on L0(G), absolutely continuous, monotone and

absolutely finite. Then
ρ

Cc(G)= L0
ρ(G) where “ ρ” represents the modular closure.

Proof. Let a > 0 be an absolute constant and consider a characteristic function χA

with A ∈ B(G), µG(A) < +∞. Let ε > 0 be fixed. Then, since ρ is absolutely finite,
there exists δε,a such that we have ρ(aχD) < ε for D ∈ B(G) and µG(D) < δε,a .
Since G is σ -compact, the measure µG is regular. Then there are a compact set C ⊂ A

and an open set V ⊃ A such that µG(V \ C) < δε,a .
By the locally compact version of Urysohn’s lemma, there is f ∈ Cc(G) such that

χA ≤ f ≤ χV , and so by monotonicity of ρG,

ρG(a(χA − f )) ≤ ρG(aχV \C) < ε.

Let now ξ : G → R be a simple function, that is ξ(s) = ∑N
k=1 akχAk

(s) with
µG(Ak) < +∞ andAm∩An = ∅ , n �= m. Let εj be a sequence with εj ↓ 0. For every
j and k = 1, 2, . . . , N there is a function fj,k ∈ Cc(G) such that ρG[X(χAk

−fj,k)] ≤
εj
N

, k = 1, . . . , N , where X =∑N
k=1 |ak|. Consider fj (s) =∑N

k=1 akfj,k(s). Then
we have fj ∈ Cc(G) and

ρG(ξ − fj ) ≤ ρG

( N∑
k=1

|ak||χAk
− fj,k|

)
≤

N∑
k=1

ρG[X|χAk
− fj,k|] < εj .
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Thus for every simple function ξ there is a sequence of fj ∈ Cc(G) with ρG(ξ−fj ) <

εj , that is there exists a sequence {fj } ⊂ Cc(G) with limj→+∞ ρG(ξ − fj ) = 0. Let
f ∈ L0

ρ(G) be fixed.There exists a constant γ > 0 such that ρG(3γf ) < +∞. If
f ≥ 0 , there exists a monotone sequence of simple functions ξk such that ξk ↗ f a.e.
Moreover 0 ≤ f − ξk ≤ f and so by the Lebesgue dominated convergence theorem
for modular spaces formulated in Section 2.1 we have ρG(λ(f−ξk))→ 0 with λ ≤ γ .
For general f we consider f = f+ − f−. In this case it is sufficient to apply the
previous method separately to f+ and f−.

We can suppose λ < 1. From the above reasoning, for every ξk there is a sequence
{fj,k}j ⊂ Cc(G) with limj→+∞ ρG(ξk − fj,k) = 0. Now we consider the function
ν : N → N defined as follows: for every k ∈ N , ν(k) is the first integer such that
ν(k) > k and ρG(ξk − fν(k),k) < 1

k
. Finally we put fk = fν(k),k . Then fk ∈ Cc(G)

and

ρG(
λ

2
(f − fk)) ≤ ρG[λ(f − ξk)] + ρG[λ(ξk − fk)]

≤ ρG[λ(f − ξk)] + ρG[ξk − fk]
<

1

k
+ ρG[λ(f − ξk)].

Thus limk→+∞ ρG

[
λ
2 (f − fk)

] = 0 and the assertion follows. ��

If G = (RN,+) the space Cc(G) can be replaced by C∞c (RN) by using a C∞-
version of Urysohn lemma.

Now we will assume that ρH and ηH are two modulars on L0(H) such that
{ρH ,ψ, ηH } is a properly directed triple (see Section 1.4; here for the sake of simplicity
we will suppose � = �0 = H ).

Finally, for {Kw}w∈W ∈Kw, we define the operators

(Twf )(s) =
∫
H

Kw(s − hw(t), f (hw(t))) dµH (t)

for every f ∈ Dom T = ∩w∈W Dom Tw.
We will prove the following corollary, which will be used afterwards.

Corollary 9.1. For every open set A ⊂ G there is a w ∈ W such that for every
w ∈ W,w ≥ w there results h−1

w (A) �= ∅.

Proof. If the assertion is false, there are an open set A0 ⊂ G and a sequence of positive
numbers wn, n ∈ N, such that h−1

wn
(A0) = ∅. Let f ∈ Cc(A0) be not identically zero

and let us set C = supp f . Consider

Cn = {t ∈ H : hwn(t) ∈ C} = h−1
wn

(C).

Then Cn = ∅ and so Twnf ≡ 0. By Theorem 8.5 this means that f ≡ 0, a contradic-
tion. ��
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Now we state the following modular approximation theorem for functions belong-
ing to Cc(G).

Theorem 9.2. Let {Kw}w∈W ⊂ Kw and {Lw}w∈W ⊂ Lw; let ρ be a modular on
L0(G), monotone, strongly finite and absolutely continuous. Then for every f ∈
Cc(G) and λ > 0, there results

lim
w→+∞ ρ[λ(Twf − f )] = 0.

Proof. Let f ∈ Cc(G) and let C = suppf ; we will suppose that C �= ∅. Moreover
we put

Cw = {t ∈ H : hw(t) ∈ C} = h−1
w (C).

By Corollary 9.1, Cw is a nonempty compact subset of H , for sufficiently large w ∈ W

and if t �∈ Cw, f (hw(t)) = 0. Therefore, by (Kw.1),

(Twf )(s) =
∫
Cw

Kw(s − hw(t), f (hw(t))) dµH (t), s ∈ G.

By conditions (Kw.1) and (Kw.2), we have that

|Kw(s − hw(t), f (hw(t)))| ≤ Lw(s − hw(t))ψ(|f (hw(t))|).
Now, by (Lw.1), denoting by U a compact neighbourhood of θ ∈ G such that
suppLw ⊂ U for sufficiently largew ∈ W , we may deduce that suppKw(·, u) ⊂ U for
sufficiently largew ∈ W and for everyu ∈ R. Put nowB = U+C. If s �∈ B, for every
t ∈ Cw, s−hw(t) �∈ U , and Kw(s−hw(t), u) = 0 for sufficiently large w ∈ W ; hence
Twf vanishes outside the compact set B. Thus ρ[λ(Twf −f )] = ρ[λ(Twf −f )χB ].
By the (Lw,ψ)-Lipschitz condition we deduce

|(Twf )(s)− f (s)| ≤ |(Twf )(s)| + |f (s)|
=
∣∣∣∣ ∫

H

Kw(s − hw(t), f (hw(t))) dµH (t)

∣∣∣∣+ |f (s)|

≤
∫
H

Lw(s − hw(t))ψ(|f (hw(t))|) dµH (t)+ |f (s)|
≤ Nψ(||f ||∞)+ ||f ||∞,

for s ∈ G and w ∈ W . So λ|Twf (s)− f (s)|χB ≤ λχB [Nψ(||f ||∞)+ ||f ||∞], for
s ∈ G. Since the modular is strongly finite, we have that χB ∈ Eρ and therefore
ρ[λ(Twf − f )χB ] ≤ ρ[λ(Nψ(||f ||∞) + ||f ||∞)χB ] < +∞. By Proposition 9.2,
Theorem 8.5 holds with the almost everywhere convergence of rwn (s) (assumption
Kw.3)) obtaining that ((Twf )(s) − f (s)) → 0 as w → +∞ , a.e. on G. Hence,
applying the Lebesgue dominated convergence theorem for modular spaces (see Sec-
tion 2.1), we obtain that

lim
w→+∞ ρ[λ(Twf − f )] = 0. ��
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Let us denote by ηH a modular on L0(H). Given E > 0, let

LE ≡ L(G,H, {hw}, {γw}, E)

be the subset of L0
ηG

(G) whose elements f satisfy the assumption

lim sup
w→+∞

γwηH [λ(f ) hw)] ≤ EηG[λf ] (9.2)

for every λ > 0. Then we may establish the following

Theorem 9.3. Let {Kw}w∈W ⊂ Kw, {Lw}w∈W ⊂ L∗w and let ρG be a monotone
modular and suppose that ρH and ηH are modulars such that the triple {ρH ,ψ, ηH }
is properly directed; we assume moreover that the family µ̃s

w(A) = ∫
A
Lw(s −

hw(t)) dµH (t), A ∈ B(H), s ∈ G is compatible with the couple (ρG, ρH ). Then,
given f, g ∈ Dom T with f −g ∈ LE , there is an absolute constant P > 0, depending
on E > 0, such that for any λ ∈]0, 1[ there exists a constant c > 0 for which there
holds

lim sup
w→+∞

ρG[c(Twf − Twg)] ≤ PηG[λ(f − g)].

Proof. Let λ > 0 be fixed with λ < 1. By the (Lw,ψ)-Lipschitz condition, we have

ρG[c(Twf − Twg)]
= ρG[c

∫
H

[Kw(· − hw(t), f (hw(t)))−Kw(· − hw(t), g(hw(t)))] dµH (t)]

≤ ρG[c
∫
H

|Kw(· − hw(t), f (hw(t)))−Kw(· − hw(t), g(hw(t)))| dµH (t)]

≤ ρG[c
∫
H

Lw(· − hw(t))ψ(|f (hw(t))− g(hw(t))|) dµH (t)].

By the regularity of {µ̃s
w} defined above, with ηw = γw = ||Lw||L1(G), and by the

compatibility with the couple (ρG, ρH ), we have, for sufficiently large w ∈ W ,

ρG[c(Twf − Twg)] ≤ MγwρH [cDψ(|(f − g) ) hw|)] + bw.

Then, since {ρH ,ψ, ηH } is properly directed, we obtain for cD ≤ Cλ that

ρG[c(Twf − Twg)] ≤ MγwρH [Cλψ(|(f − g) ) hw|)] + bw

≤ MγwηH [λ((f − g) ) hw)] + bw.

Since f − g ∈ LE , we have

lim sup
w→+∞

ρG[c(Twf − Twg)] ≤ MEηG[λ(f − g)].

The assertion easily follows by putting P = ME. ��

Now we are ready to prove the main theorem of this section.
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Theorem 9.4. Let {Kw}w∈W ⊂ Kw, {Lw}w∈W ⊂ L∗w and let ρG, ηG be mono-
tone, absolutely and strongly finite and absolutely continuous modulars and ρH be a
modular, such that {ρH ,ψ, ηH } is properly directed. Let us suppose that the family
µ̃s

w(A) = ∫
A
Lw(s − hw(t)) dµH (t), A ∈ B(H), s ∈ G, w ∈ W is compatible with

the couple (ρG, ρH ). Then for every f ∈ L0
ρG+ηG

(G) such that f − Cc(G) ⊂ LE ,
there is a constant c > 0 such that

lim
w→+∞ ρG[c(Twf − f )] = 0.

Proof. Let f ∈ L0
ρG+ηG

(G) be such that f − Cc(G) ⊂ LE . By Theorem 9.1, there

is a λ > 0 (we may take λ < 1) and a sequence {fn} ⊂ Cc(G) such that

(ρG + ηG)[λ(fn − f )] → 0, n→+∞.

Let ε > 0 be fixed and let ñ be an integer such that for every n ≥ ñ

(ρG + ηG)[λ(fn − f )] < ε. (9.3)

Fix now ñ; in correspondence to such λ we choose a constant c > 0 such that c ≤
min
{ Cλ

3D , λ
3

}
. Then we have

ρG[c(Twf − f )] ≤ ρG[3c(Twf − Twfñ)] + ρG[3c(Twfñ − fñ)] + ρG[3c(fñ − f )]
= I1 + I2 + I3.

Applying Theorem 9.3 to I1, we obtain

lim sup
w→+∞

ρG[3c(Twf − Twfñ)] ≤ PηG[λ(f − fñ)],

where, without loss of generality, we can suppose P > 1.
Since by Theorem 9.2, we have limw→+∞ ρG[3c(Twfñ−fñ)] = 0, applying (9.3)

we have

lim sup
w→+∞

ρG[c(Twf − f )] ≤ P(ρG + ηG)(λ(f − fñ)) ≤ Pε;

hence the assertion follows, ε > 0 being arbitrary. ��

9.2 Applications

In order to give some applications, for the sake of simplicity, we consider the particular
case of Musielak–Orlicz spaces, where we take H ⊂ G (H is a subgroup of G) and
µH will denote the Haar measure of the subgroup H .

As before ϕ : G×R
+
0 → R

+
0 is a measurable function with respect to s ∈ G, for

every u ∈ R
+
0 , such that ϕ(s, ·) is a convex ϕ-function which satisfies inequality (9.1).
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We will denote the class of functions satisfying the previous properties by /̃. In
absence of convexity, we will denote such class simply by /.

Here we consider some examples of operators Twf to which the theory developed
can be applied.

(I) Let G = H = (RN,+) and µG = µH = dt the Lebesgue measure. Let
IG
ϕ (f ) := IH

ϕ (f ) := ρG(f ) = ρH (f ) = ∫
RN ϕ(t, |f (t)|) dt , IG

ξ (f ) = IH
ξ (f ) :=

ηG(f ) = ηH (f ) = ∫
RN ξ(t, |f (t)|) dt with ϕ ∈ /̃, ξ ∈ /, and let Lϕ(RN), Lξ (RN)

be the Musielak–Orlicz spaces generated by the modulars ρ and η. Put hw(t) = t for
every w ∈ W . Then, as in Section 8.3, we obtain

(Twf )(s) =
∫

RN

Kw(s − t, f (t)) dt, s ∈ R
N.

In this case it is clear that LE = Lξ (RN) with E = supw γw < +∞. Moreover, it
is easy to see that in the linear case, i.e. when Kw(s, u) = K̃w(s)u, the assumptions
(Kw.i) and (Lw.i), for i = 1, 2, 3, become the classical ones for approximate identities
with compact support. So the theory developed includes, as particular cases, the
classical convergence theorems in Musielak–Orlicz spaces, in Orlicz spaces and in
Lp-spaces with p ≥ 1 for linear integral operators of convolution type.

(II) Analogous applications can be deduced for the Mellin convolution operators of
the form

(Twf )(s) ≡ (Mwf )(s) =
∫ +∞

0
Kw(st−1, f (t))t−1 dt, s > 0

(see Section 8.3), where {Kw}w∈W is a suitable family of kernels. Here we take
G = H = (R+, ·), µG = µH = ∫ t−1 dt, hw(t) = t for every w ∈ W , IG

ϕ (f ) =
IH
ϕ (f ) := ρG(f ) = ρH (f ) = ∫ +∞0 ϕ(t, |f (t)|)t−1dt , IG

ξ (f ) = IH
ξ (f ) := ηG(f ) =

ηH (f ) = ∫ +∞0 ξ(t, |f (t)|)t−1dt with ϕ ∈ /̃, ξ ∈ / and Lϕ(R+), Lξ (R+) are the
Musielak–Orlicz spaces, respectively. Also in this case we have LE ≡ Lξ (R+) with
the same E as before. The above operators are connected with the theory of moment
type operators, as well as with the theory of Mellin transform. Moreover, in the case
of G = H = (Rn+, •) with R

n+ = (]0,+∞[)n and the inner operation “•” defined for
s = (s1, . . . , sn) ∈ R

n+ and t = (t1, . . . , tn) ∈ R
n+ as s • t = (s1t1, . . . , sntn) ∈ R

n+,
the previous theory also includes the multidimensional version of the nonlinear Mellin
convolution operators. In fact, G is a locally compact, topological, abelian group with
neutral element θ = 1 = (1, . . . , 1), the inverse of t is given by t−1 = (t−1

1 , . . . , t−1
n )

and if we put 〈t〉 =∏n
k=1 tk , the Haar measure µG is given by

µG = µH =
∫

dt

〈t〉 ,

dt being the Lebesgue measure.
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(III) As in Section 8.3, let W = R
+,G = (R,+),H = (Z,+) with µG the Lebesgue

measure on R, µH the counting measure on Z, hw : Z → R of the form hw(k) = k
w

,
k ∈ Z, w > 0. In this case we obtain the nonlinear version of the generalized sampling
operators of the form

(Twf )(s) =
+∞∑

k=−∞
K

(
ws − k, f

(
k

w

))
, s ∈ R, w > 0,

where K : R× R → R is a kernel function with a Lipschitz condition of the form

|K(s, u)−K(s, v)| ≤ L(s)ψ(|u− v|),
for every s ∈ R, u, v ∈ R and for a fixed ψ ∈ M, and where L ∈ L1(R) is a function
with compact support.

Moreover, for f ∈ L0(R) and g : Z → R

IG
ϕ (f ) := ρG(f ) =

∫
R

ϕ(s, |f (s)|) ds, IH
ϕ (g) := ρH (g) =

+∞∑
k=−∞

ϕ(k, |g(k)|),

IG
ξ (f ) := ηG(f ) =

∫
R

ξ(s, |f (s)|) ds, IH
ξ (g) := ηH (g) =

+∞∑
k=−∞

ξ(k, |g(k)|),

with functions ϕ ∈ /̃ and ξ ∈ /, generating the Musielak–Orlicz spaces Lϕ(R),
Lϕ(Z) and Lξ (R), Lξ (Z), respectively.

Here assumption (Kw.3) becomes assumption (c) of Section 8.3 with the almost
everywhere convergence instead of the uniform one and assumption (Lw.1) is always
satisfied since Lw(z) := L(wz) has compact support and∫

R

Lw(z) dz =
∫

R

L(wz) dz = ||L||L1(R)

w
= γw.

Moreover, assumption (Lw.3) is easily deduced in this case.
In the particular case in which Kw is linear, i.e., when Kw(s, u) = K̃w(s)u, then

Lw(s) ≡ |K̃w(s)|. If in this case we suppose that

i)
∑

k∈Z
K̃(s − k) = 1, for every s ∈ R,

ii) sups∈R

∑
k∈Z

L(s − k) < +∞,

then (c) and (b) of Section 8.3 are satisfied. The assumptions i) and ii) are very common
in the theory of sampling series.

The condition (9.2) of the class LE now takes on the form

lim sup
w→+∞

1

w

+∞∑
k=−∞

ξ

(
k, λ

∣∣∣∣f( k

w

)∣∣∣∣) ≤ S

∫
R

ξ(s, λ|f (s)|) ds
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for every λ > 0 and for some constant S > 0. Now, taking into account that the density
result (Theorem 9.1) can be restated in the present framework with C∞c (R) instead of
Cc(R), using a C∞-version of Urysohn’s lemma, we formulate, as an application of
Theorem 9.4, the following corollary.

Corollary 9.2. Let ϕ ∈ /̃, ξ ∈ / with ϕ and ξ locally integrable for every u ∈ R

and let f ∈ Lϕ+ξ (R). We suppose that {ρH ,ψ, ηH } is properly directed and that
Q(s) := ||F(·, s)||l1(Z) is uniformly bounded with respect to s ∈ R, where F is the
function of Example 9.1. Moreover, let f : R → R be such that the following property
holds

lim sup
w→+∞

1

w

+∞∑
k=−∞

ξ

(
k, λ

∣∣∣∣g( k

w

)∣∣∣∣) ≤ S

∫
R

ξ(s, λ|g(s)|) ds

for every g ∈ f − C∞c (R), λ > 0 and for some constant S > 0. Then there exists a
constant c > 0 such that

lim
w→+∞

∫
R

ϕ

(
s, c

∣∣∣∣ +∞∑
k=−∞

K

(
ws − k, f

(
k

w

))
− f (s)

∣∣∣∣) ds = 0.

As an example, we consider a function ξ : R× R
+
0 → R

+
0 of the form

ξ(s, u) = ξ̃ (s)γ (u)

where ξ̃ : R → R
+
0 satisfies the following conditions:

1) ξ̃ is measurable,

2) there exists a constant a > 0 such that ξ̃ (s) ≥ a for every s ∈ R,

3) the sequence εk = ξ̃ (k), k ∈ Z, is bounded.

We also suppose that γ is a continuous, nondecreasing function such that γ (0) =
0, γ (u) > 0 for every u > 0. In this case, for any function f , we have

1

w

+∞∑
k=−∞

ξ(k, λ|f (
k

w
)|) = 1

w

+∞∑
k=−∞

ξ̃

(
k

w

)
γ

(
λ

∣∣∣∣f( k

w

)∣∣∣∣) ξ̃ (k)

ξ̃
(
k
w

) (9.4)

≤ F

w

+∞∑
k=−∞

ξ

(
k

w
, λ

∣∣∣∣f( k

w

)∣∣∣∣)

where F = ||̃ξ(k)||l∞
a

is a positive constant. The last term of inequality (9.4) represents
a generalized Riemann sum of ξ(·, λ|f (·)|). Thus, if f : R → R is such that the
function ξ(·, λ|g(·)|) is a Riemann integrable function and of bounded variation on R,
being g ∈ f − C∞c (R), we have that g ∈ LE (the proof of this fact can be deduced
from Theorem 3 in [114]). Thus we have, under the same assumptions of Corollary 9.2
on ϕ and ξ , the following result.
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Corollary 9.3. Let ξ : R× R
+
0 → R

+
0 be of the form ξ(s, u) = ξ̃ (s)γ (u) satisfying

the previous conditions and let {ρH ,ψ, ηH } be a properly directed triple.
If f : R → R is such that f ∈ Lϕ+ξ (R) and for every g ∈ f − C∞c (R) and

λ > 0, the function ξ(·, λ|g(·)|) is Riemann integrable and of bounded variation on
R, then there exists a constant c > 0 such that

lim
w→+∞

∫
R

ϕ

(
s, c

∣∣∣∣ +∞∑
k=−∞

K

(
ws − k, f

(
k

w

))
− f (s)

∣∣∣∣) ds = 0.

Here we show that in the particular case of an Orlicz space, the previous corollary
can be formulated in terms of sufficient conditions on the function f (see [202]).

First we observe that the class LE contains, in particular, the set of all functions
f : R → R such that hλ(·) = ξ(λ|f (·)|) is Riemann integrable on R for every λ > 0
and

lim
w→+∞

1

w

+∞∑
k=−∞

ξ

(
λ

∣∣∣∣f( k

w

)∣∣∣∣) = ∫
R

ξ(λ|f (s)|) ds. (9.5)

The sums in (9.5) are generalized Riemann sums of the integral on the right-hand side
of (9.5). Theorem 3 in [114] proves that a characterization of the class of functions
hλ satisfying (9.5) is given by the functions hλ(·) Riemann integrable on R and of
bounded coarse variation for every λ > 0. The concept of bounded coarse variation
(see [114]), is a generalization of the classical concept of bounded variation in the
sense of Jordan. Thus, if in particular hλ ∈ BV (R) (the set of all functions with
bounded variation on R) and if it is Riemann integrable for every λ > 0, then (9.5)
holds. If BVξ (R) is the set of all functions such that ξ(λ|f |) ∈ BV (R), for every
λ > 0, we finally conclude that

LE ⊃ BVξ (R) ∩ Eξ(R),

where Eξ(R) denotes the space of finite elements of the Orliz space Lξ (R) (see also
Section 7.3). Hence, under the previous assumptions on the families of kernels, we
may formulate the following

Corollary 9.4. Let ϕ ∈ /̃, ξ ∈ / with ξ locally Lipschitz in R
+
0 and suppose that

(ρH ,ψ, ηH ) is a properly directed triple. Let f : R → R be an absolutely Riemann
integrable function on R, and of bounded variation on R such that f ∈ Lϕ(R). Then
there exists a constant c > 0 such that

lim
w→+∞

∫
R

ϕ

(
c

∣∣∣∣ +∞∑
k=−∞

K

(
ws − k, f

(
k

w

))
− f (s)

∣∣∣∣) ds = 0.

Proof. Since ξ is locally Lipschitz in R
+
0 , then for every λ > 0, ξ ) λ|f | is also

Riemann integrable on R for every λ > 0, which means that f ∈ Eξ(R). Indeed,
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since f ∈ BV (R), we have that f is bounded and so, since ξ ∈ / is locally Lipschitz,
we have

|ξ(|f (t)|)− ξ(0)| ≤ K|f (t)|, for some K > 0.

Now, since ξ(0) = 0 and since f is absolutely Riemann integrable on R, we deduce
that ξ ) λ|f | is Riemann integrable on R for every λ > 0. Moreover, we obtain that
ξ ) λ|f | is of bounded variation on R which means that f ∈ BVξ (R). Indeed, take an
arbitrary finite sequence of real numbers. In view of the boundedness of f we have

N∑
i=1

|ξ(|f (ti)|)− ξ(|f (ti−1)|)| ≤ K

N∑
i=1

||f (ti)| − |f (ti−1)||

≤ K

N∑
i=1

|f (ti)− f (ti−1)| ≤ KVR(f ) < +∞

for some K > 0, where VR(f ) is the total variation of f in R. Now, passing to the
supremum over all the sequences of real numbers, we obtain that (ξ ) |f |) ∈ BV (R)

and hence also (ξ ) λ|f |) ∈ BV (R). Finally we have that f ∈ BVξ (R) ∩ Eξ(R) ⊂
LE ⊂ Lξ (R). Obviously, g ∈ C∞c (R), is absolutely Riemann integrable and bounded
on R and so λ(f − g) is also absolutely Riemann integrable on R, for every λ > 0
and bounded on R. So, (f − g) ∈ Eξ(R), being ξ locally Lipschitz. Moreover, for
g ∈ C∞c (R), one has g ∈ BV (R), and hence λ(f − g) ∈ BV (R) for every λ > 0
which implies that (f − g) ∈ BVξ (R) as before. Finally, we have that f − g ∈ LE ,
and hence by Corollary 9.2 as formulated for Orlicz spaces, the assertion follows. ��

Remark 9.1. (a) According to Remark 8.5 (a), the previous theory also contains the
case of the multivariate sampling series of a function f : R

N → R, in its nonlinear
form. Indeed it suffices to take G = (RN,+), H = (ZN,+) with the Lebesgue mea-
sure and the counting measure, respectively. Hence the above generalized sampling
operators take on the form

(Twf )(s) =
∑
k∈ZN

K

(
ws − k, f

(
k

w

))
,

for s ∈ R
N,w ∈ R

N+ , K : R
N × R → R and f : R

N → R. Here w is a vector, i.e.,
w = (w1, . . . , wn) ∈ R

N+ , and we define w1 ≤ w2 if and only if wi
1 ≤ wi

2 for i =
1, 2, . . . N . Moreover if w = (w1, . . . , wN), s = (s1, . . . , sN ), k = (k1, . . . , kN),
we set ws = (w1s1, . . . , wNsN), k

w
= ( k1

w1
, . . . ,

kN
wN

)
and w →+∞ means now that

wi →+∞ for each i = 1, . . . , N . Moreover, we have∫
RN

Lw(z) dz =
∫

RN

L(wz) dz = 1∏N
k=1 wk

∫
RN

L(z) dz = ‖L‖L1(R)∏N
k=1 wk

= γw,
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and assumption (9.2) of the class LE becomes

lim sup
w→+∞

1∏N
k=1 wk

∑
k∈ZN

ξ(k, λ|f (
k

w
|) ≤ S

∫
RN

ξ(s, λ|f (s)|) ds

for every λ > 0 and for some constant S > 0.

(b) In the previous theory we may replace the real parameter w > 0 by an abstract
parameter w varying in an arbitrary filtering partially ordered set W .

(c) In case of ϕ(u) = up, p ≥ 1, the previous Corollary 9.4 gives convergence
results in Lp-spaces for the nonlinear sampling series of f .

(d) We remark here that, under suitable assumptions on the family of homeomor-
phisms {hw}, the previous theory could also contain the case of nonuniform or irregular
sampling operators in its nonlinear form.

(e) We point out that in the theory developed, we may take a more general H .
Indeed, we may consider (H,B(H), µH ) as a locally compact Hausdorff topological
space equipped with its Borel σ -algebra B(H) and with a regular measure µH .

9.3 Modular regular methods of summability

In order to obtain a result for the general family (Tw)w∈W concerning methods of
regular summability in modular spaces, we give the following definition.

Given the modularsρG, ηG andηH , we say that (Tw)w∈W defines a modular regular
method of summability with respect to ρG and ηH , if ηH [λ(fw − f ) ) hw] → 0 as
w → +∞ for some λ > 0 implies that ρG[c(Twfw − f )] → 0 as w → +∞ for
some c > 0, where f ∈ L0

ρG+ηG
(G) and fw ∈ L0(G).

We remark that in the case of G = H and ρG = ηH we obtain the definition of a
regular method of summability in the modular space L0

ρ , given in Section 5.2; indeed
in this case hw(t) = t , for every w ∈ W .

Now we may formulate the following

Theorem 9.5. Under the assumptions of Theorem 9.4, if {γw}w∈W is a bounded net,
we have that (Tw)w∈W defines a modular regular method of summability with respect
to ρG and ηH .

Proof. Let fw be a family of functions in L0(G), f ∈ L0
ρG+ηG

(G) and let λ > 0 be

such that ηH (λ(fw − f ) ) hw)→ 0 as w →+∞. We may take β ≤ min
{
c
2 , Cλ

2D

}
, c

being the constant of Theorem 9.4 and Cλ the constant of the properly directed triple.
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As in Theorem 8.7 of Section 8.6, we may write

|(Twfw)(s)− f (s)| ≤ |(Twfw)(s)− (Twf )(s)| + |(Twf )(s)− f (s)|
= Iw

1 (s)+ Iw
2 (s).

From the properties of the modular, we have

ρG[β(Twfw − f )] ≤ ρG[2βIw
1 (·)] + ρG[2βIw

2 (·)] = J1(w)+ J2(w).

So

J2(w) = ρG[2β(Twf − f )]
and hence J2(w)→ 0 as w →+∞ from Theorem 9.4, since 2β ≤ c.

To evaluate J1(w) by the (Lw,ψ)-Lipschitz condition and monotonicity of ρG,
we have

J1(w) ≤ ρG[2β
∫
H

Lw(· − hw(t))ψ (|fw(hw(t))− f (hw(t))|) dµH (t)].

Using the regularity of the family µ̃w
s (E) = ∫

E
Lw(s − hw(t)) dµH (t), the compat-

ibility of the couple (ρG, ρH ), with ηw = γw, and the properly directed triple, we
deduce that

J1(w) ≤ MγwρH (2βDψ(|fw(hw(·))− f (hw(·))|)+ bw

≤ MγwηH (λ(fw − f ) ) hw)+ bw,

M being the constant of the definition of compatibility for a regular net. Since
ηH (λ(fw − f ) ) hw) → 0, as w → +∞ for some λ > 0, {γw} is a bounded net
and bw → 0 as w → +∞, then J1(w) → 0 as w → +∞. Therefore the assertion
follows. ��

9.4 Bibliographical notes

The study of the modular convergence for the generalized sampling operators is very
recent and was began by C. Bardaro and G. Vinti in [36] in Orlicz spaces. Here
the modular convergence was obtained for the linear form of the general family of
integral operators defined in Section 8.2, which contains, in particular, the generalized
sampling series. Moreover the nonlinear case has been studied in the modular sense by
G. Vinti in [202] in Orlicz spaces and then extended in [1] to Musielak–Orlicz spaces
and finally to general modular spaces by I. Mantellini and G. Vinti in [144]. All these
results share aspects of the approach of Butzer and his school, in the sense that an
approximation process is needed in order to reconstruct the signal. The motivation
for the use of the modular convergence instead of the uniform one and of the meaning
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of a nonlinear process in a sampling frame is pointed out in the introduction to this
chapter and in Section 9.1. Moreover in [41], C. Bardaro and G. Vinti proved that
the convergence process for the family of nonlinear integral operators considered in
Section 8.2, defines a regular method of summability in the modular sense. For the
concept of modular regular method of summability we invite the reader to see the
bibliographical notes of Chapter 6.



References

[1] L. Angeloni, G. Vinti, A unified approach to approximation results with appli-
cations to nonlinear sampling theory, submitted, 2003.

[2] J. Appell, E. De Pascale, H. T. Nguyen, P. P. Zabreiko, Nonlinear integral inclu-
sions of Hammerstein type. Contributions dedicated to Ky Fan on the occasion
of his 80th birthday, Topol. Methods Nonlinear Anal. 5 (1995), 111–124.

[3] J. Appell, M. Dörfner, Some spectral theory for nonlinear operators, Nonlinear
Anal. 28 (1997), 1955–1976.

[4] J. Appell, A. Vignoli, P. P. Zabreiko, Implicit function theorems and nonlinear
integral equations, Exposition. Math. 14 (1996), 385–424.

[5] E. Baiada, La variazione totale, la lunghezza di una curva e l’integrale del
Calcolo delle Variazioni in una variabile, Atti Accad. Naz. Lincei Rend. Cl. Sci.
Fis. Mat. Natur. (8) 22 (1957), 584–588.

[6] E. Baiada, G. Cardamone, La variazione totale e la lunghezza di una curva,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)11 (1957), 29–71.

[7] E. Baiada, C. Vinti, Generalizzazioni non markoviane della definizione di
perimetro, Ann. Mat. Pura Appl. (4) 62 (1963), 1–58.

[8] F. Barbieri, Approssimazione mediante nuclei momento, Atti Sem. Mat. Fis.
Univ. Modena 32 (1983), 308–328.

[9] C. Bardaro, OnApproximation Properties for Some Classes of Linear Operators
of Convolution Type, Atti Sem. Mat. Fis. Univ. Modena 33 (1984), 329–356.

[10] C. Bardaro, Indipendenza dal peso della convergenza di funzionali sublineari
su misure vettoriali ed applicazioni, Rend. Istit. Mat. Univ. Trieste 19 (1987),
44–63.

[11] C. Bardaro, D. Candeloro, Sull’approssimazione dell’integrale di Burkill–
Cesari di funzionali sublineari su misure ed applicazioni all’integrale multi-
plo del Calcolo delle Variazioni, Atti Sem. Mat. Fis. Univ. Modena 26 (1977),
339–362.

[12] C. Bardaro, D. Candeloro, Teoremi di approssimazione per l’integrale multiplo
del Calcolo delle Variazioni, Rend. Circ. Mat. Palermo (2) 30 (1981), 63–82.

[13] C. Bardaro, I. Mantellini,A modular convergence theorem for general nonlinear
integral operators, Comment. Math. Prace Mat. 36 (1996), 27–37.

[14] C. Bardaro, I. Mantellini, Modular approximation by sequences of nonlinear
integral operators in Musielak–Orlicz spaces, Atti Sem. Mat. Fis. Univ. Modena
46 (1998), suppl., 403–425, special volume dedicated to Prof. Calogero Vinti.



184 References

[15] C. Bardaro, I. Mantellini, Linear integral operators with homogeneous ker-
nel: approximation properties in modular spaces. Applications to Mellin-type
convolution operators and to some classes of fractional operators. In Applied
Mathematics Reviews, Vol. 1, G. A. Anastassiou (Ed.), pp. 45–67, World Sci.
Publishing, River Edge, NJ, 2000. Ed.

[16] C. Bardaro, I. Mantellini, On approximation properties of Urysohn integral
operators, Int. J. Pure Appl. Math. 3 (2002), 129–148.

[17] C. Bardaro, J. Musielak, G. Vinti, Modular estimates and modular convergence
for a class of nonlinear operators, Math. Japon. 39 (1994), 7–14.

[18] C. Bardaro, J. Musielak, G.Vinti, On absolute continuity of a modular connected
with strong summability, Comment. Math. Prace Mat. 34 (1994), 21–33.

[19] C. Bardaro, J. Musielak, G.Vinti,Approximation by nonlinear integral operators
in some modular function spaces, Ann. Polon. Math. 63 (2) (1996), 173–182.

[20] C. Bardaro, J. Musielak, G. Vinti, On the definition and properties of a gen-
eral modulus of continuity in some functional spaces, Math. Japon. 43 (1996),
445–450.

[21] C. Bardaro, J. Musielak, G. Vinti, Some modular inequalities related to Fubini–
Tonelli theorem, Proc. A. Razmadze Math. Inst. 119 (1998), 3–19.

[22] C. Bardaro, J. Musielak, G. Vinti, Nonlinear operators of integral type in some
function spaces. Fourth International Conference on Function Spaces (Zielona
Góra, 1995) Collect. Math. 48 (1997), 409–422.

[23] C. Bardaro, J. Musielak, G. Vinti, On nonlinear integro-differential operators
in generalized Orlicz–Sobolev spaces, J. Approx. Theory 105 (2000), 238–251.

[24] C. Bardaro, J. Musielak, G. Vinti, On nonlinear integral equations in some
function spaces, Demonstratio Math. 35 (2002), 583–592.

[25] C. Bardaro, S. Sciamannini, G. Vinti, Convergence in BVϕ by nonlinear Mellin-
type convolution operators, Funct. Approx. Comment. Math. 29 (2001), 17–28.

[26] C. Bardaro, G.Vinti, Perimetro e variazione generalizzata rispetto ad una misura
in R

2, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 173–190.

[27] C. Bardaro, G. Vinti, Modular convergence in generalized Orlicz spaces for
moment type operators, Appl. Anal. 32 (1989), 265–276.

[28] C. Bardaro, G. Vinti, On approximation properties of certain non convolution
integral operators, J. Approx. Theory 62 (1990), 358–371.

[29] C. Bardaro, G.Vinti, Modular estimates of integral operators with homogeneous
kernels in Orlicz type classes, Results Math. 19 (1991), 46–53.



References 185

[30] C. Bardaro, G. Vinti, On convergence of moment operators with respect to
ϕ-variation, Appl. Anal. 41 (1991), 247–256.

[31] C. Bardaro, G. Vinti, Some estimates of certain integral operators with respect
to multidimensional Vitali ϕ-variation and applications in Fractional Calculus,
Rend. Mat. Appl. (7) 11 (1991), 405–416.

[32] C. Bardaro, G. Vinti, Some estimates of certain integral operators in generalized
fractional Orlicz classes, Numer. Funct. Anal. Optim. 12 (1991), 443–453.

[33] C. Bardaro, G. Vinti, A general convergence theorem with respect to Cesari
variation and applications, Nonlinear Anal. 22 (1994), 505–518.

[34] C. Bardaro, G. Vinti, Modular approximation by nonlinear integral operators
on locally compact groups, Comment. Math. Prace Mat. 35 (1995), 25–47.

[35] C. Bardaro, G. Vinti, Modular estimates and modular convergence for linear
integral operators. In Mathematical Analysis, Wavelets, and Signal Processing,
Contemp. Math. 190, pp. 95–105, Amer. Math. Soc., Providence, RI, 1995.

[36] C. Bardaro, G. Vinti, A general approach to the convergence theorems of gen-
eralized sampling series, Appl. Anal. 64 (1997), 203–217.

[37] C. Bardaro, G. Vinti, A modular convergence theorem for certain nonlinear
integral operators with homogeneous kernel. Fourth International Conference
on Function Spaces (Zielona Góra, 1995), Collect. Math. 48 (1997), 393–407.

[38] C. Bardaro, G. Vinti, On the order of modular approximation for nets of integral
operators in modular Lipschitz classes, Funct. Approx. Comment. Math. 26
(1998), 139–154, special issue dedicated to Prof. Julian Musielak.

[39] C. Bardaro, G. Vinti, Uniform convergence and rate of approximation for a
nonlinear version of the generalized sampling operator, Results Math. 34 (1998),
224–240, special issue dedicated to Prof. P.L. Butzer.

[40] C. Bardaro, G. Vinti, Nonlinear sampling type operators: uniform and modular
approximation results. In Sampta 99, Proc. Internat. Workshop on Sampling
Theory and Appl., August 11–14, 1999, Loen, Norway, Norvegian University
of Science and Technology, 209–215.

[41] C. Bardaro, G. Vinti, Nonlinear sampling type operators: approximation prop-
erties and regular methods of summability, Nonlinear Anal. Forum 6 (1) (2001),
15–26.

[42] C. Bardaro, G. Vinti, On some class of integral operators in modular spaces,
Far East J. Math. Sci. 2001, Special Volume, Part II, 129–154.



186 References

[43] C. Bardaro, G. Vinti, Urysohn integral operators with homogeneous kernel:
approximation properties in modular spaces, Comment. Math. Prace Mat. 42
(2) (2002), 145–182.

[44] M. G. Beaty, M. M. Dodson, Abstract harmonic analysis and the sampling
theorem. In Sampling theory in Fourier and signal analysis: advanced topics,
Oxford Science Publications, J. R. Higgins and R. L. Stens (Eds.), Oxford Univ.
Press, Oxford 1999.

[45] S. N. Bernstein, Sur un procede de sommation des series trigonometriques, C.
R. Acad Sci. Paris Sér. I Math. 191 (1930), 976–979.

[46] L. Bezuglaya, V. Katsnelson, The sampling theorem for functions with limited
multi-band spectrum I, Z. Anal. Anwendungen 12 (1993), 511–534.

[47] R. Bojanic, O. Shisha, On the precision of uniform approximation of continuous
functions by certain linear positive operators of convolution type, J. Approx.
Theory 8 (1973), 101–113.

[48] M. Boni, Sull’approssimazione dell’Integrale multiplo del Calcolo delle Vari-
azioni, Atti Sem. Mat. Fis. Univ. Modena 20 (1971), 187–211.

[49] M. Boni, Teoremi di approssimazione per funzionali sublineari su misure e
applicazioni all’integrale del Calcolo delle Variazioni, Atti Sem. Mat. Fis. Univ.
Modena 21 (1972), 237–263.

[50] J. L. Brown, Jr., On the error in reconstructing a non-bandlimited function by
means of the band-pass sampling theorem, J. Math. Anal. Appl. 18 (1967),
75–84; Erratum, ibid. 21 (1968), 699.

[51] P. L. Butzer, Zur Frage der Saturationsklassen Singularer Integraloperatoren,
Math. Z. 70 (1958), 93–112.

[52] P. L. Butzer, Representation and approximation of functions by general singular
integrals Ia, Ib, Indag. Math. (N.S.) 22 (1960), 1–24.

[53] P. L. Butzer, Fourier transform methods in the theory of approximation, Arch.
Ration. Mech. Anal. 5 (1960), 390–415.

[54] P. L. Butzer, The Banach–Steinhaus theorem with rates, and applications to
various branches of analysis. In General Inequalities II (Proc. Second Internat.
Conf., Oberwolfach, 1978), E. F. v. Beckenbach (Ed.), Internat. Schriftenreihe
Numer. Math. 47, pp. 299–331, Birkhäuser, Basel 1980.

[55] P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some
of its extensions, J. Math. Res. Exposition 3 (1983), 185–212.



References 187

[56] P. L. Butzer, H. Berens, Semi-groups of operators and approximation,
Grundlehren Math. Wiss. 145, Springer-Verlag, Berlin, Heidelberg, New York
1967.

[57] P. L. Butzer, W. Engels, S. Ries, R. L. Stens, The Shannon sampling series and
the reconstruction of signals in terms of linear, quadratic and cubic splines,
SIAM J. Appl. Math. 46 (1986), 299–323.

[58] P. L. Butzer, F. Fehér, Generalized Hardy and Hardy–Littlewood inequalities in
rearrangement-invariant spaces, Comment. Math. 1 (1978), 41–64, special issue
dedicated to Władysław Orlicz on the occasion of his seventy-fifth birthday.

[59] P. L. Butzer, A. Fisher, R. L. Stens, Generalized sampling approximation of
multivariate signals: theory and applications, Note Mat. 10 (1990), 173–191.

[60] P. L. Butzer, G. Hinsen, Reconstruction of bounded signal from pseudo-
periodic, irregularly spaced samples, Signal Process. 17 (1989), 1–17.

[61] P. L. Butzer, S. Jansche, Mellin transform theory and the role of its differen-
tial and integral operators. In Transform Methods & Special Functions (Proc.
Second Internat. Workshop, Varna, August 1996), Bulgarian Acad. Sci., Sofia
1998.

[62] P. L. Butzer, S. Jansche, A direct approach to the Mellin Transform, J. Fourier
Anal. Appl. 3 (1997), 325–375.

[63] P. L. Butzer, S. Jansche, The exponential sampling theorem of Signal Analysis,
Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 99–122, special volume
dedicated to Prof. Calogero Vinti.

[64] P. L. Butzer, S. Jansche,A self-contained approach to Mellin transform analysis,
for square integrable functions; Applications, Integral Transform. Spec. Funct.
8 (1999), 175–198.

[65] P. L. Butzer, S. Jansche, Mellin Fourier series and the classical Mellin transform,
Comput. Math. Appl. 40 (2000), 49–62.

[66] P. L. Butzer, S. Jansche, R. L. Stens, Functional analytic methods in the solu-
tion of the fundamental theorems on best-weighted algebraic approximation.
In Approximation Theory (Proc. 6th Southeast. Approximation Theory Conf.,
Memphis, TN, 1991) Lecture Notes in Pure Appl. Math. 138, pp. 151–205,
Marcel Dekker, New York 1992.

[67] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Pure Appl.
Math. 40, Academic Press, New York, London 1971.

[68] P. L. Butzer, R. J. Nessel, De la Vallée Poussin’s work in approximation and its
influence, Arch. Hist. Exact Sci. 46 (1993), 67–95.



188 References

[69] P. L. Butzer, R. J. Nessel, Aspects of de la Vallée Poussin’s work in approx-
imation and its influence. In Charles-Jean de la Vallée Poussin, Collected
Works/Oeuvres Scientifique, vol. I, pp. 3–9, P. L. Butzer, J. Mawhin, and P.
Vetro (Eds.), Académie Royale de Belgique, Brussels; Circolo Matematico di
Palermo, Palermo, 2000.

[70] P. L. Butzer, S. Ries, R. L. Stens, Shannon’s sampling theorem, Cauchy’s inte-
gral formula, and related results. In Anniversary Volume on Approximation The-
ory and Functional Analysis (Proc. Conf., Math. Res. Inst. Oberwolfach, Black
Forest, July 30–August 6, 1983), P. L. Butzer, R. L. Stens, and B. Sz.-Nagy
(Eds.), Internat. Schriftenreihe Numer. Math. 65, pp. 363–377, Birkhäuser,
Basel 1984.

[71] P. L. Butzer, S. Ries, R. L. Stens, Approximation of continuous and discontin-
uous functions by generalized sampling series, J. Approx. Theory 50 (1987),
25–39.

[72] P. L. Butzer, K. Scherer, On the fundamental approximation theorems of D.
Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Steckin,
Aequationes Math. 3 (1969), 170–185.

[73] P. L. Butzer, W. Splettstößer,A sampling theorem for duration-limited functions
with error estimates, Inform. and Control 34 (1977), 55–65.

[74] P. L. Butzer, W. Splettstößer, R. L. Stens, The sampling theorem and linear
prediction in signal analysis, Jahresber. Deutsch. Math.-Verein 90 (1988), 1–
70.

[75] P. L. Butzer, R. L. Stens, The Poisson Summation Formula, Whittaker’s car-
dinal series and approximate integration. In Second Edmonton Conference on
Approximation Theory (Edmonton,Alta., 1982), CMS Conf. Proc. 3, pp. 19–36,
Amer. Math. Soc., Providence, RI, 1983.

[76] P. L. Butzer, R. L. Stens, The Euler–McLaurin summation formula, the sampling
theorem and approximate integration over the real axis, Linear Algebra Appl.
52/53 (1983), 141–155.

[77] P. L. Butzer, R. L. Stens, A modification of the Wittaker–Kotelnikov–Shannon
sampling series, Aequationes Math. 28 (1985), 305–311.

[78] P. L. Butzer, R. L. Stens, Sampling theory for not necessarily band-limited
functions: a historical overview, SIAM Rev. 34 (1992), 40–53.

[79] P. L. Butzer, R. L. Stens, Linear prediction by samples from the past. In Ad-
vanced Topics in Shannon Sampling and Interpolation Theory, R. J. Marks II
(Ed.), Springer Texts Electrical Engrg., pp. 157–183, Springer, NewYork 1993.



References 189

[80] D. Candeloro, P. Pucci, L’integrale di Burkill–Cesari su un rettangolo e appli-
cazioni all’integrale di Fubini–Tonelli relativamente a coppie di curve continue,
Boll. Un. Mat. Ital. 17-B, (1980) 835–859.

[81] D. Candeloro, P. Pucci, L’integrale di Burkill-Cesari come integrale del Calcolo
delle Variazioni, Boll. Un. Mat. Ital. 18-B (1981), 1–24.

[82] L. Cesari, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa Cl.
Sci (2) 5 (1936), 299–313.

[83] L. Cesari, Quasiadditive set functions and the concept of integral over a variety,
Trans. Amer. Math. Soc. 102 (1962), 94–113.

[84] F. Degani Cattelani, Nuclei di tipo distanza che attutiscono i salti in una o piú
variabili, Atti Sem. Mat. Fis. Univ. Modena 30 (1981), 299–321.

[85] F. Degani Cattelani, Approssimazione del perimetro di una funzione medi-
ante nuclei di tipo momento, Atti Sem. Mat. Fis. Univ. Modena 34 (1985–86),
145–168.

[86] E. De Giorgi, Definizione ed espressione analitica di perimetro di un insieme,
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (7) 14 (1953), 390–393.

[87] E. De Giorgi, Su una teoria generale della misura (r − 1)-dimensionale in uno
spazio ad r dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191–213.

[88] Ch.-J. De La Vallée Poussin, Sur la convergencen des formules d’interpolation
entre ordonnées équidistantes, Bull. Cl. Sci. Acad. Roy. Belg. 4 (1908), 319–410.

[89] W. Dickmeis, R. J. Nessel, A unified approach to certain counterexamples in
approximation theory in connection with a uniform boundedness principle with
rates, J. Approx. Theory 31 (1981), 161–174.

[90] W. Dickmeis, R. J. Nessel, A quantitative condensation of singularities on ar-
bitrary sets, J. Approx. Theory 43 (1985), 383–393.

[91] M. M. Dodson, A. M. Silva, Fourier analysis and the sampling theorem, Proc.
Roy. Irish. Acad. Sect. A 85 (1985), 81–108.

[92] T. Dominguez-Benavides, M. A. Khamsi, S. Samadi, Asymptotically regular
mappings in modular function spaces, Sci. Math. Japon. 53 (2001), 295–304.

[93] T. Dominguez-Benavides, M. A. Khamsi, S. Samadi, Uniformly lipschitzian
mappings in modular function spaces, Nonlinear Anal. 46 (2001), 267–278.

[94] T. Dominguez-Benavides, M. A. Khamsi, S. Samadi, Asymptotically nonex-
pansive mappings in modular function spaces, J. Math. Anal. Appl. 265 (2002),
249–263.



190 References

[95] N. Dunford, J. T. Schwartz, Linear Operators, I. General Theory, Pure Appl.
Math. 7, Interscience Publishers, New York, London 1958.

[96] A. Erdelyi, On fractional integration and its application to the theory of Hankel
transforms, Quart. J. Math. Oxford Ser. (2) 11 (1940), 293–303.

[97] F. Fehér, A generalized Schur–Hardy inequality on normed Köthe spaces. In
General Inequalities II (Proc. Second Internat. Conf., Oberwolfach, 1978), E.
F. v. Beckenbach (Ed.), Internat. Schriftenreihe Numer. Math. 47, pp. 277–285,
Birkhäuser, Basel 1980.

[98] C. Fiocchi, Nuclei momento due-dimensionali e convergenza in area, Atti Sem.
Mat. Fis. Univ. Modena 33 (1984), 291–312.

[99] C. Fiocchi, Variazione di ordine α e dimensione di Hausdorff degli insiemi di
Cantor, Atti Sem. Mat. Fis. Univ. Modena 34 (1991), 649–667.

[100] T. M. Flett, A note on some inequalities, Proc. Glasgow Math. Assoc. 4 (1958),
7–15.

[101] G. B. Folland, Real Analysis. Modern Techniques and their Applications, Pure
Appl. Math., A Wiley-Interscience Publication. John Wiley & Sons, Inc., New
York, 1984.

[102] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes
28, Princeton Univ. Press, Princeton 1982.

[103] I. Fredholm, Sur une classe d’equations fonctionelle, Acta Math. 27 (1903),
365–390.

[104] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs
Math. 80, Birkhäuser, Basel 1984.

[105] S. Gniłka, On the generalized Helly’s theorem, Funct. Approx. Comment. Math.
4 (1976), 109–112.

[106] S. Gniłka, On the approximation of M-absolutely continuous functions. I.
Approximation by step-functions, Funct. Approx. Comment. Math. 4 (1976),
113–123.

[107] S. Gniłka, Remarks on the generalized absolute continuity, Funct. Approx. Com-
ment. Math. 5 (1977), 39–45.

[108] S. Gniłka, On the approximation of M-absolutely continuous functions. II.
Approximation by Steklov functions, Funct. Approx. Comment. Math. 5 (1977),
161–166.



References 191

[109] S. Gniłka, On the approximation of M-absolutely continuous functions. III.
Approximation by singular integrals, Funct. Approx. Comment. Math. 5 (1977),
167–169.

[110] S. Gniłka, Modular spaces of functions of bounded M-variation, Funct. Approx.
Comment. Math. 6 (1978), 3–24.

[111] C. Goffman, J. Serrin, Sublinear functions of measures and variational integrals,
Duke Math. J. 31 (1964), 159–178.

[112] A. Gogatishvili, V. Kokilashvili, Criteria of weighted inequalities in Orlicz
classes for maximal function defined on homogeneous type spaces, Georgian
Math. J. 1 (1994), 641–673.

[113] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract
Spaces, Math. Appl. 373, Kluwer Acad. Publ., Dordrecht 1996.

[114] S. Haber, O. Shisha, Improper integrals, simple integrals and numerical quadra-
ture, J. Approx. Theory 11 (1974), 1–15.

[115] G. H. Hardy, J. E. Littlewood, A convergence criterion for Fourier series, Math.
Z. 28 (1928), 612–634.

[116] H. H. Herda, Modular spaces of generalized variation, Studia Math. 30 (1968),
21–42.

[117] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis. I. Structure of topological
groups. Integration theory, group representations, Grundlehren Math. Wiss.
115, Springer-Verlag, Berlin 1963.

[118] J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc.
12 (1985), 45–89.

[119] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations,
Oxford Univ. Press, Oxford 1996.

[120] J. R. Higgins and R. L. Stens (Eds.), Sampling theory in Fourier and signal
analysis: advanced topics, Oxford Science Publications, Oxford Univ. Press,
Oxford 1999.

[121] T. H. Hildebrandt, Introduction to the Theory of Integration, Pure Appl. Math.
13, Academic Press, New York, London 1963.

[122] A. J. Jerri, The Shannon sampling-its various extensions and applications: a
tutorial review, Proc. IEEE 65 (1977), 1565–1596.
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Abel–Poisson kernel function, 33
absolutely continuous modular, 19
absolutely finite modular, 18
aliasing phenomenon, 136
almost near kernel functions, 89
α-absolute moment, 47

Banach fixed point principle, 126
basis of a filter, 25
bounded modular, 27
boundedly (η, ρ)-Cauchy conservative

method, 88
boundedly (η, ρ)-conservative method,

88

Carathéodory function, 1
�π -regular, 121

Carathéodory kernel, 39
function, 32

central B-spline, 139
classKπ of Carathédory functions, 121
class K1

ζ of measurable functions, 55
compatibility between modulars and a

family of measures, 165
concave function, 98
condition (42), 9
condition (H), 19
condition∞, 132
conditional compactness in L0

ρ(�)

and E0
ρ(�), 131

conjugate functions in the sense ofYoung,
125

convergence in ϕ-variation, 113
convex ϕ-function, 5
convex modular, 3
convolution-type operator, 2, 32
correct subspace, 18

correctly filtered system, 25

dilation operator, 115
Dirichlet kernel function, 33
domain of a family of integral

operators, 40
domain of the integral operator, 2, 32
domain of the kernel functional, 1

equibounded ϕ-variation, 111
error of modular approximation, 36
(η, ρ)-Cauchy conservative method, 87
(η, ρ)-conservative summability

method, 87
η-modulus of continuity, 26

F-norm, 4
F-normed space, 4
filter, 24
finite elements of L0

ρ(�), 129
finite energy, 135
finite modular, 18
fractional variation, 100
function

conjugate to ϕ in the sense
of Young, 125

N -function, 124
of bounded coarse variation, 178
of monotone type, 19
ω-Lipschitz, 153
ϕ-absolutely continuous, 109
quasiconvex, 10
quasiconvex in Jensen’s sense, 12
s-bounded, 104
satisfying the condition (42), 9
τ -bounded, 55
ζ -homogeneous, 53
ζ -subhomogeneous, 53
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function modular, 17

generalized
Musielak–Orliczϕ-variation, 103
Orlicz space, 6
sampling operators, 134, 137, 152

Hammerstein integral equation, 2
Hammerstein operator, 2

integral equation, 121, 128, 131
integral operator, 2
interval between samples, 135

kernel
(L,ψ)-Lipschitz, 39
linear, 50
linear singular, 50, 51
modified moment, 53
perturbating, 50
singular, 39, 68
strongly ξ -singular, 45, 72

kernel function
Abel–Poisson, 33
Dirichlet, 33
Fejér, 33
linear, 48
(L,ψ)-Lipschitz, 34
(L,ψ)0-Lipschitz, 34
perturbating, 48

kernel functional, 1
kernel functions, 1

linear kernel, 50
linear kernel function, 48
linear singular kernel, 50
locally (ϕ, η)-absolutely continuous

function, 111
locally equi (ϕ, η)-absolutely

continuous family
of functions, 112

locally integrable for small u function
ϕ, 18

locally integrable function ϕ, 18

(L,ψ)-Lipschitz kernel, 39
(L,ψ)-Lipschitz kernel function, 34
(L,ψ)0-Lipschitz kernel function, 34

Mellin convolution operator, 79
modified moment kernel, 53
modular, 3

absolutely continuous, 19
absolutely finite, 18
bounded, 27
convex, 3
finite, 18
function, 17
invariant with respect to the

operation +, 15
J-convex, 12
J-quasiconvex, 12
monotone, 4
quasiconvex, 10
quasiconvex in Jensen’s sense, 12
strongly finite, 164
strongly subbounded, 15
subbounded, 15

modular ρ weaker than η, 91
modular ρ strictly weaker than η, 91
modular convergent sequence, 8
modular function space, 17
modular Lipschitz class, 45, 71
modular regular method

of summability, 180
modular space, 4
moment, 47

α-absolute, 47
monotone modular, 4
multivariate nonlinear sampling

operators (series), 153
Musielak–Orlicz space, 6

near kernel functions, 89
almost, 89

nonlinear
generalized sampling operator,

152, 176
integral equation, 121, 128, 131
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integral operator, 2
Mellin convolution operator, 79
Mellin convolution operator

of order αw, 79
moment operator, 79
weighted moment operator, 79

Nyquist interval corresponding
to a frequency, 135

Nyquist rate, 135

ω-Lipschitz function, 153
Orlicz modular, 5
Orlicz space, 5
oversampling, 136

permanent summability method, 87
perturbating kernel, 50
perturbating kernel function, 48
ϕ-absolutely continuous function, 109
ϕ-function, 5
ϕ-variation of a function, 8, 97, 104
preideal space, 131
properly directed triple, 16

quantization error, 136
quasiconvex function, 11
quasiconvex function in Jensen’s sense,

12
quasiconvex modular, 10

rate of modular approximation, 44, 110
regular family of measures, 164
regular summability method, 87
Riemann–Liouville integral, 100
ρ-convergent family of functions, 86
(ρ, λ)-Cauchy sequence with a con-

stant λ, 87
ρ-Cauchy condition, 86
ρ-complete modular space, 87
ρ-convergent sequence, 8
round-off error, 136

s-bounded function, 104
samples, 134
Schauder fixed point principle, 129
sequential Orlicz space, 6
�π -regular Carathéodory functions,

121
σ -absolutely continuous measure, 121
signal, 135
singular kernel, 39
singularity in BVϕ , 112
space invariant with respect to the

operation +, 15
space of functions of bounded

ϕ-variation, 8, 97, 104
spectrum of a function, 135
strongly (A, ϕ)-summable sequence, 7
strongly ξ -singular, 45
strongly finite, 164
strongly singular kernel, 39, 69
strongly subbounded modular, 15
subbounded modular, 15

time jitter error, 136
(T)-method of summability, 87
(T, ρ)- summable family of functions,

87

U-convergent function, 25
undersampling, 136
uniform regular method

of summability, 158
Urysohn integral equation, 2
Urysohn operator, 2

weaker modular, 91
WKS-sampling theorem, 134

Young conjugate functions, 125

ζ -homogeneous function, 53
ζ -subhomogeneous function, 53
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