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Preface

One hundred years ago I. Fredholm published in 1903 his famous paper [103] on linear
integral equations. Since then, linear integral operators have become important tools
in many areas, including the theory of Fourier series and Fourier integrals, approxima-
tion theory and summability theory and the theory and practice of solving integral and
differential equations. In the case of integral and differential equations, applications
were soon extended beyond the confines of linear operators. In approximation theory,
however, applications were limited to linear operators because the notion of singu-
larity of an integral operator was closely connected with its linearity. Then, about
twenty years ago, the concept of singularity was extended to cover the case of nonlin-
ear integral operators [152]. Since that time a number of papers have appeared that
are devoted to the investigation of the role played by nonlinear integral operators in
approximation theory and related subjects. For example, the study of certain discrete
operators, the so-called “generalized sampling operators”, provides the basis for sev-
eral applications in signal analysis. From this work a new theory of signal processing
in the nonlinear setting may be developed. This is of considerable interest, not only
from the mathematical point of view, but also for applications in engineering. For
example, the reconstruction of signals by means of nonlinear sampling-type operators
may describe nonlinear models that are suitable for the processing of some class of
signals.

Recently, a number of important contributions by P. L. Butzer and his school have
been made to exponential sampling and Mellin—Fourier approximation theory. As a
consequence, it seems very useful for us to have at our disposal a nonlinear version of
the Mellin convolution operators with associated approximation properties in various
function spaces.

The purpose of this book is to present the fundamental theoretical results along
with a variety of recent applications. We consider nonlinear integral operators, replac-
ing linearity by generalized Lipschitz conditions for kernel functions generating the
operators and satisfying suitable singularity assumptions. Applications in approxima-
tion theory and summability theory require a notion of convergence for sequences or
directed families of such operators. We replace the standard setting of normed linear
spaces by the more general one of modular linear spaces. This extends the field of
applications and enables us to give a unitary approach to various kinds of approxima-
tion problems. For example, classical approximation theorems for linear or nonlinear
integral operators in L”-spaces, in Orlicz spaces and in other functional spaces can
be derived by a unique method.

The prerequisites needed to study this book consist of the theory of measure and
integral and some fundamental knowledge of functional analysis. With the exception
of the above, the material in the book is selfcontained.
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Chapter 1 is of a preliminary character and contains material concerning kernel
functions generating the operators and an introduction to the theory of modular spaces.
In this chapter we also discuss some special conditions concerning modulars, needed
for our purposes.

A fundamental role in application of integral operators in approximation theory
is played by the notion of modulus of continuity of functions in a modular space,
which is considered in Chapter 2. A convergence theorem for such moduli requires
the notion of absolute continuity of the modular, which is applied through a Lebesgue-
type dominated convergence theorem in the respective modular spaces.

In Chapter 3 we describe applications of nonlinear integral operators to approxi-
mation theory, presenting an embedding theorem, an estimate of the error of modular
approximation and a theorem concerning modular convergence to zero of the error in
the case of a family of operators. The rates of modular approximation in modular Lip-
schitz classes are also estimated. Finally, we present results in the case of a nonlinear
integral operator being split into a linear part and a nonlinear perturbation.

The above considerations are continued in Chapter 4, where Urysohn’s integral
operators with homogeneous kernels are investigated. We give again an estimation of
the error and a result on convergence of the error in the sense of modular convergence.
An application is given to nonlinear weighted Mellin convolution operators.

Chapter 5 contains results concerning conservative nonlinear summability methods
defined by families of nonlinear integral operators.

Prior to Chapter 6 we assume in most of the theorems that the modular which
generates the convergence is monotone. This holds for example in the case of Orlicz
spaces and a number of their generalizations. In Chapter 6 we consider modulars
generating the space of functions of generalized bounded variation, which are not
monotone. We obtain embedding-type inequalities and we also consider the case of
superposition of nonlinear integral operators. Convergence in generalized variation is
also studied, for a special class of nonlinear operators, namely the nonlinear Mellin-
type convolution operators. The problem of convergence for general nonlinear integral
operators is still an open problem.

In Chapter 7 a solution is given to the problem of existence for the domain of a
nonlinear convolution-type integral operator. We also present some results concerning
existence of solutions of the respective nonlinear integral equations through the fixed
point principles of Banach and Schauder.

Chapter 8 is devoted to uniform approximation of continuous functions by means
of nonlinear sampling type operators. The chapter begins with an introduction to the
theory of sampling. We give embedding results, estimation of the error of approx-
imation and a convergence theorem. Moreover, rates of uniform approximation are
considered. An application to regular methods of summability is also given.

In Chapter 9, results of Chapter 8 are extended from uniform approximation to the

case of modular approximation. We consider problems of modular convergence and
modular approximation for nonlinear sampling type operators, with special emphasis
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to the case of generalized Orlicz type modulars. We also give an application to regular
methods of summability.

This book is a result of collaboration between its authors during the years
1993-2002. Such collaboration would not have been possible without grants from
the Consiglio Nazionale delle Ricerche (CNR) in Italy. This support enabled the
second author to spend some time in Perugia each year, and he wishes to express
his gratitude for this generosity. The authors wish to acknowledge the hospitality of
the University of Perugia and would like to express their gratitude to the Faculty of
Mathematics and Computer Science of the A. Mickiewicz University in Poznan for
the grant GN-11/99 supporting the contacts between them over the period from 1998
to 2001.

The authors also wish to thank many colleagues for helpful discussions on the
material presented here. In addition, it gives them special pleasure to express their
gratitude to Professors P. L. Butzer, R. J. Nessel and R. L. Stens of the RWTH Aachen,
who read the text and made valuable suggestions, and to Professor A. M. Arthurs of
the University of York for his careful revision of the language of the text.

Perugia and Poznan, April 2003 Carlo Bardaro
Julian Musielak
Gianluca Vinti
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Chapter 1

Kernel functionals and modular spaces

1.1 Kernel functionals

Let (€2, ¥, i) be a measure space with a o-finite, complete measure p. Let LO()
denote the space of all extended real-valued, ¥-measurable functions on 2, finite a.e.
(n-almost everywhere), with equality p-a.e. A functional K : Q2 x Q@ x Dom K — R,
where Dom K C L°(Q), will be called a kernel functional, if for every f € Dom K,
the functional K (s, ¢, f) is measurable in the product Q2 x €2, and if K (s,#,0) = 0,
for all s, ¢ € Q2. The set Dom K is called the domain of the kernel functional K .

Example 1.1. Let K; : 2 x 2 x R — R be such that K (s, 7, #) is measurable as a
function of (s, 1) € Q x €, forevery u € R, and is continuous as a function of u € R
for all (s, t) € @ x Q. Let us suppose that K (s, ,0) = O forall s, € Q. Obviously
K is a kernel functional in the domain Dom K, consisting of the set of all constant
functions in L%($2). One may define another kernel functional K by means of K1,
taking K (s, ¢, f) = K1(s, t, f(¢)) for s, t € Q. Obviously Dom K = LO(Q).

Example 1.2. Let K7 : 2 x R — R be such that K;(¢, u) is X-measurable in €2 for
every u € R and is continuous in R for all # € Q (i.e. K> is a Carathéodory function).
Let K»>(¢,0) = O for all 1 € 2. Moreover let us suppose that there is an operation
+ : Q x  — €, which is measurable as a function from the product Q2 x € to
Q. Then K (s,t, f) = Ka(t, f(t 4+ s)) is a kernel functional and Dom K contains
all constant functions. It is easily seen that if @ = RY and ¢ + s means the sum of
vectors ¢ and s, u is the Lebesgue measure in the o -algebra of Lebesgue measurable
sets in RY, then Dom K = LY(Q).

The functions K, K7 of the previous examples, with the above assumptions, will
be called kernel functions.

Example 1.3. Let p : Q@ — R be X-measurable and let K (s, ¢, f) = K3(s, 1, ) :=
p() f(s) for every f € LO(Q). Obviously K is a kernel functional with domain
Dom K = LY%(Q).

Since from the measurability of a kernel functional K (s, ¢, f) in Q x Q there
follows its X-measurability as a function of the variable ¢ for p-a.e. s € €, so the
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kernel functional generates an integral operator T by the formula:

(Tf)(s):/QK(s, 1, f)du(), (1.1)

in the case the integral at the right-hand side of (1.1) exists for u-a.e. s € Q and is a
> -measurable function of s € 2. The set of all such functions f is called the domain
of the operator T and will be denoted by Dom T'.

Example 1.4. Let us examine the integral operator 7 of a kernel K(s,t, f) =
K>(t, f(t + 5)) (Example 1.2) in the special case when (2, +) is a unimodular,
locally compact Hausdorff topological group with Haar measure w. Then

)6 = [ Katt. f+ 0 dut) = [ Katt =5, @) duto.
Denoting g(t,u) = g(—t,u) forany g : Q x R > R, r € Q,u € R, we have
(Tf)(s) =/9152(S —t, f(0)dup(@). (1.2)

In case when kz(t, u) =K@)ufort € Q,u € Rand K : Q — R, the integral (1.2)
becomes a convolution: Tf = K * f.

In the general case we call the operator 7" defined by the formula (1.1) with
K(s,t, f) = Kao(t, f(t + 5)) a convolution-type operator. Later we consider such
operators without group structure of (€2, +).

Let us still remark that the kernel functional written in the form used in the for-
mula (1.2) is a special case of the kernel functional K (s, ¢, f) = K1(s, ¢, f(¢)) from
Example 1.1 if we put K(s, f,u) = Ka(t —s,u) = kz(s —t,u).

The operator (1.1) in the case of K(s,t, f) = Ki(s,t, f(t)) (Example 1.2) is
known as the Urysohn operator. A special case of this operator, called the Hammer-
stein operator is obtained by taking K (s, t, u) = K M (s, VKD (¢, u). Both operators
are studied mainly in connection with the theory of nonlinear integral equations of the
form

/Q Kils, 1, f@O) du(t) = £(s) + g(s)

and

/ KV, KD, f(0)dut) = f(s) + g(s)
Q

with known g and unknown f, called the Urysohn integral equation and Hammer-
stein integral equation, respectively. References to the above operators and integral
equations may be found e.g. in [133], [132], [131], [113], [182], [193], [194], [195].
We shall consider some nonlinear integral equations of the above type in Chapter 7.
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Finally, let us remark that in the case of the kernel functional K (s, z, f) = p(t) f (s)
from Example 1.3, the operator given in (1.1) is of the form

(T)s) = f(S)fQP(f)dM(t)-

Supposing further that p € L' () and writing A = fQ p(t)du(t),weobtainDom T =
LO() and (T f)(s) = Af(s), fors € Q.xp

1.2 Modular spaces and modular convergence

In order to investigate any kind of convergence process for sequences or families of
integral operators of the form (1.1), one has to specify some function spaces which
are subspaces of L%(€2) and to provide these subspaces with a suitable notion of
convergence. This can be done by taking normed linear spaces contained algebraically
in L°(2). However, in order to obtain results on a level of generality allowing a wide
spectrum of applications it is more suitable to replace the notions of a norm and a
normed linear space by those of a modular and a modular space. Here, we shall limit
ourselves to definitions in the case of function spaces only. A more general treatment
may be found e.g. in [153].

Let X be a linear space of real-valued functions (extended real-valued, eventually),
defined on a nonempty set €2, with equality everywhere (or almost everywhere). A
functional p : X — ]R(J)r = [0, +o00] is called a modular on X, if it satisfies the
following conditions for arbitrary f, g € X:

(1) p(f) =0ifand only if f =0,
2) p(=f) =p(f),
(3) plaf +Bg) < p(f)+p(g) fora, >0, + B =1.

The modular p is called a convex modular if (3) is replaced by

Y plaf +Bg) <ap(f)+ Bp(g),fora,f>0,a+p =1.

It is easily seen that conditions (3) and (3)’ may be extended by induction to any finite
number of terms, i.e. (3) is equivalent to

p(i@qﬁ) < Xn:p(f/),
j=1 j=1

for aj > 0, Z}lzl «; < 1and (3)' is equivalent to

p(Ywifi) = Y anth,
j=1 j=1
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fora; > 0, Zleaj < 1, for arbitrary f1, f2,..., fu € X.

Moreover, for any f € X the function p(«f) of the variable « > 0, is nonde-
creasing.

The modular p is called monotone, if f, g € X and | f| < |g|imply p(f) < p(g);
if p is monotone, and f € X implies | f| € X, then p(f) = p(| f]) forevery f € X.
Indeed, taking in the above definition g = | f|, we obtain p(f) < p(|f|), and taking
f=1gl, we get p(lg]) < p(g) forany f, g € X.

If p is a modular on X, then the modular space X, generated by the modular p
is defined as

Xp={f€X:p0f)— 0, asr— 0"}

It is easily verified that if p is convex, then X, is the set of functions f € X for which
p(rof) < 400 for some Ao > 0. It is clear that X, is a linear subspace of the space
X. There holds (see [153])

Theorem 1.1. (a) If p is a modular on X, then X, is an F-normed linear space with
F-norm ||| - ||, defined by

I£1l, = inf {u >0: p<£) < u}, for f € %,.

(b) If p is a convex modular on X, then X, is a normed linear space with norm
Il - o defined by

f

u

||f||p=inf{u >0:,0(
© L Wfllp <1, Gesp. 1 fllp < 1), then p(f) < M flllp, (resp. p(f) < 11 f1lp)-

Let us recall that a norm || - || is a nonnegative functional on a real linear space X,
such that || f|| = 0ifandonlyif f =0, || f 4+ gll < || fIl + llgll (triangle inequality)
and ||cf]| = |c]|l f|| (homogeneity), for any f, g € X, c € R.

An F-norm ||| - ||| is a nonnegative functional on a real linear space X, such that
IlfIl = 0if and only if /' = O, [IIf + gl = [IfIll + lligll, and the conditions
cn = ¢ I f = FIl = 0, imply llica f — cf Il = 0 asn — +oo, for any f, g, fu €
X, cp,ceR.

The couple (X, || - ||) is called a normed linear space, and the couple (X, ||| - |||) is
called an F-normed linear space. A normed linear space is always F-normed but not
conversely.

) < 1}, for f e X,.

Proof of Theorem 1.1. We limit ourselves to the case (b), leaving the case (a) to the
reader. If f € X, then p(f/n) — 0,asn — +o0o. Hencetheset{u > 0: p(f/u) <
1} is nonempty; in fact it is a halfline. If || f||, = O, then this halfline starts at u = 0,
whence p(f/u) < 1 for all u > 0. By convexity of p, we have for 0 < u < 1,

p(f)=p <u1> < up(f/u) <u.

u
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Taking u — 0T we get p(f) = 0 and consequently f = 0. In order to get the triangle
inequality, let us take any ¢ > O and letus putu = || f|l, + ¢, v = ||gll, + &, where
/.8 € X,. Then p(f/u) < 1and p(g/u) < 1. By convexity of p, we obtain

f+g\ u f vog
Y =p —+ -
u-—+v u+vu u+vv

u v
_ 4+ < +
u—l—vp(f/u) u—l—v'o(g/u)_u—i—v u+v

v
=1.

=

Thus || f+gll, <u+v=|flp,+Illglly + 2¢e. Since ¢ > 0 is arbitrary, we obtain
the triangle inequality for || - ||,. Finally, we have for f € X, and c € R

N (MY <1 i [ 0 (S
||cf||p_1nf{u>0.p< ” )Sl}—lcllnf:|c| >0.,0<(M/|c|))§1}

= lcll fllo-

We shall prove (c) in the case of the norm || - || ,. We may suppose that 0 < || f]l, < 1.
By convexity of p we obtain for any & > O such that || f||, +& < 1

f f
,O(f)zp[(llfll te)———— | =USfllp+p| 77— =Sl +¢
PN Sl e g Ifl,+e g
and taking ¢ — 0" we obtain p(f) < 1 fllp-
The proofs in the case of the F-norm ||| - |||, are analogous to the above ones. O

Example 1.5. (a) If (3, || - ||) is a normed linear space, then the functional p(-) = || - ||
is a convex modular in X;, as follows from the definition of p, immediately. Moreover,
we have

Xp={feX:|rfll>0asr— 0T} =%

and

Ifllp =inffu > 0| f/ull <1} =11,

for every f € X. This shows that the notions of a convex modular and of a modular
space generalize those of a norm and a normed linear space.

(b) Let (2, X, ) be a measure space with a o-finite, complete measure p. Let
@ Rg — ]R(J)r be a nondecreasing (resp. a convex) continuous function with ¢(0) =
0,¢(0) > 0, foru > 0, p(u) — +00 as u — +00; such a function will be called a
@-function (resp. a convex g-function). Then it is easily shown that

p(f) = I,(f) = /Qw(lf(t)l)du(t) (1.3)

is a modular (resp. a convex modular) on the space LO(). We call I, an Orlicz
modular in L°(2). The respective modular space L%(Q) is called an Orlicz space
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and it is denoted by L?(2, X, ), or briefly by LY(Q2). If Q = N = {1,2,...} and
W is the counting measure in €2, the respective Orlicz space is denoted by £ and it is
called the sequential Orlicz space .

If o(u) = u? foru > 0, p > 1, then L?(2) = LP(2) and the norm || - Iz, in
LO(Q) is equal to

P
1£l, = inf{u -0 :f du(r) < 1}
Q

1/p
</Q |f(t)|de(t)) = | fllLr (-

(c)Let (2, X, u) be as in the case (b). Let ¢ : Q x ]RE)F — R(J)r be such that (-, u)
is X-measurable for each u > 0 and ¢(t, :) is a p-function (resp. a convex ¢-function)
forevery t € Q. Let

f@

,O(f)=Iw(f)=/§2§0(t,|f(t)l)du(t)- (1.4)

Then p is a modular (resp. a convex modular) in L%(R). The modular space L%(Q)
generated by p = I, is called a generalized Orlicz space or a Musielak—Orlicz space
and it is denoted by L?($2, X, ), or briefly by L?(2). If ¢(¢, u) is independent
of the variable ¢, the Musielak—Orlicz space is reduced to the Orlicz space. Another
special case is provided by ¢ (¢, u) = lu|P®, where p is X-measurable and p(¢) > 1,
fort € Q. The respective modular I, is convex and the modular space Lg (2) is equal
to the space L") () of X-measurable functions f, integrable with variable powers
p(@).
(d) The following generalization of the case (c) is obtained, assuming (u,) to be
a sequence of o-finite measures in X, absolutely continuous with respect to . Then,
denoting by a, (¢), (t € 2), the Radon—Nikodym derivatives of w,, we write

p(f) = SUP/Qan(tW(t, LF @D du().

This is again a modular (a convex modular if ¢ is a convex ¢- function depending
on a parameter) in LO%(€2). In case of the counting measure 4 = Wy in the set
N = {1, 2, ...} of natural numbers, this modular has the form

o0
p(x) = SUPZanjwj ),
n .
j=1

and it generates the modular space X, of real sequences x = (¢;) such that p(Ax) — 0
as . — 0T. Sequences x € X, such that

o0
J:
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are called strongly (A, ¢)-summable to 0, where A = (a,;) and ¢ = (¢;). The space
To(A, @) of such sequences forms a subspace of the modular space X,. The reader
is encouraged to formulate analogous notions in case of a general measure space in
place of (N, 2N ).

(e) Let m be a measure on an interval [a, b[C R, where b may be 400, defined on
the o -algebra of all Lebesgue measurable subsets of [a, b[. Let W be a nonempty set
of indices and let (ay, (-))wew be a family of Lebesgue measurable positive real-valued
functions on [a, b[. Moreover, let @ : [a, b[x]Rar — ]R(J)r be a function satisfying the
following conditions:

1) ®(x, u) is a nondecreasing, continuous function of u > 0, for every x € [a, b|[,

2) ®(x,0) =0, d(x,u) > 0foru > 0, and ®(x,u) — 400 as u — 400, for
every x € [a, b,

3) there exists lim,_, ;- ®(x, u) = CTD(u) < 4oo forevery u > 0,
4) ®(x,u) is a Lebesgue measurable function of x in [a, b[ for every u > 0.

Let (2, ¥, ) and the space L%(R2) be defined as in (b). Then the functional
ot /) = [ @G 1£ O dut)

is an Orlicz modular in L°(Q) for every x € [a, b[ (see (b)). We denote by LY () the
subset of LO(£2) consisting of functions f € LO(2) such that Lo (-, fxa) is Lebesgue
measurable in [a, b[, for every A € X, where x4 is the characteristic function of the
set A. In particular, if ®(x, u) is a continuous (or a monotone) function of x € [a, b[
for every u > 0, then L,% () = LO(Q). We now define an extended functional A¢
on L?n (2) by means of the formula

b
Ao(f) = SUPW/ aw(®) Lo (x, f)dmx), [ €Ly (Q). (1.5)

Then A¢ is a modular on L?n (2), and in the case when ® (x, 1) is a convex function
of u > 0, for all x € [a, b[, A¢ is a convex modular. Supposing there is a notion of
convergence in W to an element wy € W, strong +4¢-summability of f to 0 may be
defined by means of the condition

b
lim / ay (X)) do(x, f)dm(x) =0,

w—w

which gives a connection between the modular #4¢ and the notion of strong summa-
bility to zero in L?n (2).
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(f) Let X be the space of all real-valued functions f on a compact interval [a, b] C
R and let ¢ be a ¢-function (see (b)). The @-variation V,(f, [a, b)) of the function f
in the interval [a, b] is defined by

Vi (f, [a, b]) = sup Y o(1f () — f (-1,
T =1

where the supremum runs over all partitions 7 = {a = xp < x| < --- < x, = b} of
the interval [a, b]. Then

p(f) =1f(@)|+ Vy(f, la,b])

is a modular on X. The respective modular space X, is called the space of functions
of bounded @-variation in [a, b].

The following statement gives a necessary and sufficient condition for norm con-
vergence of a sequence of functions f, € X, in the sense of the norm || - ||, (or the
F-norm ||| - [ll p):

Theorem 1.2. Let X, be the modular space generated by a modular p and let f € X,
and f, € X, forn =1,2,... There holds f, — f in the sense of the norm | - ||,
(F-norm || - |llp), if and only if p(A(fn — f)) — 0asn — o0, for every A > 0.

Proof (inthe case of |- ||,). Let p be aconvex modularin X and let p(A(f, — f)) — O
as n — 4o0 for every A > 0. Taking A = 1/u for a fixed u > 0 we obtain that
there is an index N, such that p((f, — f)/u) < 1, for n > N,. This means that
| fn — fllp £uforn > Ny ie. ||fu — fllp = 0asn — +4oo. Conversely, let us
suppose that || f,, — fll, — 0asn — +oo. Hence for every ¢ > 0 and u > 0, there
exists an index N such that || f;, — fl, < eu,forn > N,ie. ||[(f, — f)/ull, < e, for
n > N. Supposing ¢ < 1, we obtain, by Theorem 1.1 (c),

p((fo = H)/u) < fu — f”p <ég,

for n > N. Therefore p((f, — f)/u) — 0asn — +oo for every u > 0, i.e.
p(A(fn — f)) — 0asn — 400, for every A > 0.
The proof in the case of ||| - |||, is analogous. O

In connection with Theorem 1.2, one may introduce another kind of convergence
in a modular space. Namely, we say that a sequence of functions f, € X, is
p-convergent, or modular convergent to a function f € X, if there existsa A > 0

such that p(A(f, — f)) — 0,asn — +o00; we denote this convergence by f;, A f as
n — +00. Obviously, convergence in the sense of the norm || - ||, (or F-norm ||| - ||| )
generated by p of a sequence (f;;) to f implies its p-convergence to f. Both notions
are equivalent e.g. in the case given in Example 1.5 (a) or in the case of L”-spaces.
However, they are not equivalent in the general case, as the following example of an
Orlicz space shows.
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Example 1.6. Let u be the Lebesgue measure in the o -algebra ¥ of Lebesgue mea-
surable subsets of the interval Q2 = [0, 1]. Denote by L?([0, 1]) the Orlicz space
generated by the convex ¢-function (1) = e* —u — 1. Let A,, =]27",27"+1] for
n=12... Put f,(t) = k/2,fort € Ax, k =n,n+1,...,and f,(t) = O for
remaining ¢ € [0, 1], where n = 1,2, ... Obviously, f,(t) — 0asn — —+oo for

every ¢ € [0, 1[. Taking p(f) = [y ¢(|f(1)]) dt, we have

n -1
,O(fn)=<£> (1—£> —n+3—>0, as n — +o00,

2 2 2n

pPQf) = (/2 =Y k2F =Y "2 =00, foreveryn.
k=n

k=n k=n

Hence f, 2 0, but || fzllp 7~ 0asn — +oo.

There appears the problem, under what assumptions on the modular p, norm
convergence and modular convergence are equivalent in a modular space X,. In
considering this problem we shall limit ourselves to Orlicz spaces L? (2, X, u) (Ex-
ample 1.5 (b)).

The crucial property needed here is the (A2)-condition for the p-function ¢. There
are three versions of this condition: for all u, for large u and for small u; we shall
denote them as (A3)4, (Az); and (A»),, respectively. We say that ¢ satisfies (Aj),,
if there exists a constant M > 0 such that the inequality

¢Qu) = Mou) (1.6)

holds for all # > 0. The function g is said to satisfy (Aj);, (resp. (A3)s), if there are
constants M > 0 and up > O such that the inequality (1.6) holds for u > ug (resp.
for 0 < u < ugp). Itis easily seen that the condition (Aj);, (resp (Az);), is equivalent
to the following one (Az)} (resp. (Ap)}): for every up > 0 there exists a constant
M (ug) > 0 such that for every u > uq (resp. for every 0 < u < ug) there holds the
inequality

®Qu) < M(uo)p(u).

We shall prove the following

Theorem 1.3. Let LY (2, X, i) be an Orlicz space (see Example 1.5 (b)). Then each
of the following conditions is sufficient in order that norm convergence and modular
convergence be equivalent in LY (2, X, ).

1. ¢ satisfies (A2)q,
2. @ satisfies (Ay); and () < 400,

3. @ satisfies (A2)s and 2 = N, u being the counting measure in N.
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Proof. Obviously, norm convergence of (f;) to f is equivalent to the condition
I(p(ZNA(fn — f)) > 0asn — +oo,forsome A > Oandall N =1,2,... Suppose

1
that there holds the condition 1. and that f;, - f. Then there exists a A > 0 such
that I,(A(f, — f)) — 0 asn — +oo. The condition 1. implies, by easy induction,
that g0(2Nu) < MNga(u), for all u > 0. Hence

L, QYA(fu = 1) < MM I,Gu(fo = ) = 0, asn — +o0.

Consequently, f, — f in the sense of the norm in LY (2, ¥, u).

Now let us suppose 2. to be satisfied and f, i> foie I,(A(fy — f)) — Oas
n — oo for some A > 0. First, let us remark that the condition (A»); implies, by
an easy induction, the following one: for every ug > 0 and every natural number N,
there exists an My (ug) > 0 such that for every u > ug there holds the inequality

o2Nu) < My (uo)p(u).

Let us denote A, (ug) = {t € QL : |f,(t) — f()| > uo}, forug > 0,n =1,2,....
Then

L,QYA(fu — ) < / eQVALf (1) — O du(t) + 2N Aug) ()

Ap(up)

< My (uo) » )fp()»lfn(f) — fODdu) + 2N o) ()
nUuQ

< My o) I, (A (fu — 1)) + 02N hug) ().

Let us choose an arbitrary ¢ > 0. We may find ug > 0 so small that (p(2Nkuo)M(§2) <
e/2. Since I,(A(f,— f)) — Oasn — +o00, sokeeping u¢ fixed we may find an index
ng such that My (ug)l,(A(fn — f)) < &/2 forn > ng. Thus, I¢(2Nk(fn —f)) <e
for n > ng. This shows that f, — f in the sense of the norm in L?(2, X, w).

1
The proof that if f;, - f asn — oo and there holds 3., then f,, — f in the
sense of the norm in £, is obtained in a similar manner applying the fact that every
sequence x € £7 is bounded. We leave the details to the reader. O

1.3 Quasiconvex modulars

We are going to extend the notion of convexity of a modular p and of a ¢-function
¢ to the more general case of quasiconvexity. Let p be a modular on a real linear
function space X.. We say that p is quasiconvex with a constant M > 1, if for any
natural number z and for every elements f1, f>, ..., f; € X and nonnegative numbers
o1, a2, ..., qy,, satisfying the condition oy + - - - + o, = 1 there holds the inequality

p(Yaifi) = MY op(Mf.
j=1 j=1
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Let us remark that if M = 1, this is equivalent to convexity of the modular p.

Example 1.7. (a) In case when X = R, i.e. X is the space of all constant functions
on any set Q, we have p : R — R, and we may write ¢ in place of p. This yields the
following definition: a function ¢ : R — ]INQ(J)r is called quasiconvex with a constant
M > 1 (and in the case of M = 1, convex), if the conditions uy, us, ..., u, € R,
o, a2, ...,0, >0and o] + a2 + - - - + o, = 1 imply the inequality

n n
(p(ZOljuj) < MZO{ng(Muj)
j=1 j=1

with some fixed M > 1, independent of n.

(b)Letp : R — ]R(J)r be any even function such that u2/2 < o) < u? for all
uelR Letuy,ur,...,uy, >0,01,a2,...,0, >0and oy + o ---+ «a, = 1. Then

there holds, by convexity of the function ¢(u) = u?,

n n 2 n

. 2

w(ZwJ-) . (ZO‘J”J) =D o
j=1 j=1 j=1

— S/Ezq,%(f/iu,f <V2) ajp(V2u)).
j=1

j=1

Hence ¢ is quasiconvex with the constant M = ~/2. Obviously ¢ does not need to be
convex.

Remark 1.1. In the definition of quasiconvexity, as well as in the definition of con-
vexity, one may replace the equality o1 + oy + --- + o, = 1 by the inequality
o] +ar 4+ -+ -+ o, < 1. Indeed, let us suppose p to be quasiconvex with a constant
M > 1andlet By, B2,....,B8: > 0,81+ B2+ -+ By < 1. Letus putaj = B; for
j=12,...,nanda,11 = 1—=(B1+B2+ - -+Bn), thenay+o2+- - -+ +oyp = 1.
Hence for any f1, f2, ..., fu € X we have

n+1 n+1

p(D i) = MY wpfy),
j=1 j=1

where f,11 = 0. Consequently,

n n+1
o(218) = oY)
j=1 j=1
n+1 n

IA

MY ajp(Mf) =M Bip(Mf)).

j=1 j=1
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Let p be a modular on a linear subspace X of the space L?(2). The modular p is
called J-quasiconvex (quasiconvex in Jensen's sense), with a constant M > 1, if for
all ¥-measurable functions p : Q2 — RS’ such that || pll1(q) = fQ pt)du(t) =1
and for all functions F : 2 x Q — R('f suchthat F(-,:) € LO(QxQ)and F(t,:) € X
for every t € €, there holds the following inequality:

1Y (/Q p(F(, 1)du(1)> = M/gl?(t)p(MF(t, ) dp(r),

and both sides of this inequality make sense. If M = 1, we call p J-convex (convex
in Jensen’s sense). Similarly as in the discrete case, we may replace the equality
Ipllz1(@) = 1, by the inequality || pll,1q) < 1.

Example 1.8. Taking XX = R, we obtain a function ¢ in place of p (see Exam-
ple 1.7 (a)). This function ¢ is called J-quasiconvex (quasiconvex in Jensen's sense),
with a constant M > 1, if there holds the inequality

¢ (/Q P(t)F(t)dM(t)> < M/gzp(t)tp(MF(t))dM(t) (L.7)

for all X-measurable function p : Q — R(J)r such that |[pli g = 1 and all
Y -measurable functions F : Q — ]R(J)r . In case when M = 1 the above inequal-
ity becomes the well-known Jensen’s inequality for convex functions ¢.

Theorem 1.4. Let (2, X, ) be a measure space with a nonatomic measure such that
w() > 0and let X; be alinear subspace of L°(Q) containing characteristic functions
of the sets A € X of finite measure (v and such that if f € X then | f| € X. Let p be
a monotone, J-quasiconvex modular on X. Then p is quasiconvex in X.

Proof. First, let us suppose that @(£2) > 1. Since p is nonatomic, one may select a
set C € X of measure u(C) = 1. Taking p(t) = xc(t), the characteristic function of
the set C, we obtain, by quasiconvexity of p, the inequality

p(/c F(t,t)du(t)) SM/Cp(MF(t, ) dp() (1.8)

for every nonnegative function F(-,:) € L9 x Q) such that F(r,:) € X for all
te Q. Letaj,az,...,a, >0,a; +a2+ -+ a, = 1. Since u is atomless, there
exist pairwise disjoint subsets Ay, A, ..., A, € X of the set C such that A} U Ay U
-UA, =Cand u(Aj) =ajfor j=1,2,...,n. Let f1, fo,..., fn € X and let

F(t,5) = xa, () f1(s) + - - + x4, ) fu(s)

for s, € Q. Obviously, F(-,:) € LY%Q x Q) and since X is a linear space, we
have F(t,:) € X forallt € Q. Since f € X implies | f| € X, there also holds
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|F(t,:)] € X fort € Q. Hence, applying monotonicity of p and the inequality (1.8),
we obtain

p(Xwify)=n(Y nans)=r (/C F, :)du(t))
j=1 j=1
p (/ IF (. :)Idu(t)> < Mf P(MIF (. ))) du(r)

= M/ Zp(Mm( x4, (0 du(t) = M Za,p(MmD

j=1

= MZaj,o(ij).

j=l1

Thus, p is quasiconvex with the constant M.

Now, suppose that 0 < u(2) < 1. Put v(A) = u(A)/n(2) for A € X, then
v(Q)=1.Let F: Q2 x Q — ]R(J)r be such that F(-,:) € LY%(Q x Q) and F(t,:) € X
foreveryt € Qandlet p: Q — Rg, lpllL1 ) = 1. Then we have

F(,)
F(t,:)d = d
p( /Q p(OF(L,:) v(t)) p( / PO M(t)>

<M/ (t)p<@F(t ))du(t)

< M//Qp(t)p(M’F(t, D) dv(t),

where M’ = M/ (2). Thus, by the first part of the proof, p is quasiconvex with the
constant M’ = M /(). O

The converse problem, under what condition quasiconvexity of p implies its
J-quasiconvexity, will be examined in the case of the modular generating an Orlicz
space (see Example 1.5 (b)), i.e., p(f) is defined by the formula (1.3).

Example 1.9. (a) Let¢p : R — R(J)r be a nondecreasing function in R™ such that ¢
is quasiconvex with a constant M > 1. Then it is J-quasiconvex (see Example (1.8)),
i.e. there holds the inequality (1.7). We prove it first in the case when both p and F
are simple functions. Then there are constants ay, az, ..., a, > 0, bl by,...b, >0
and pairwise disjoint sets A1, Az, ..., A, € ¥ with A U Ay U---UA, = Qsuch
that p(t) = >/, aixa,(t) and F(t) = Z;’Zl bjxa; (1), where aj = 0 if u(A;) =
+00 and we put then a;u(A;) = 0, by convention. Since || pll;1q) = 1, we have
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Zle ajiu(Aj) = 1. Hence we obtain, by quasiconvexity of ¢ with a constant M > 1,

go(/gp(t)F(t)du(t)) = w(Xn:a,-MAj)bj)
j=1

<M aju(A))p(Mb))
j=1

=M/QP(I)§0(MF(I))dM(t),

i.e. the inequality (1.7). By the remark after the definition of J-quasiconvexity with
M > 1, the same holds if || p|| L@ =< 1. Now, let p and F be arbitrary nonnegative,
Y -measurable functions with || p||; 1(@) = 1. Then there are two sequences (p,) and
(Fy,) of nonnegative simple functions such that p,(¢) 7 p(¢t) and F,(¢t) / F(t)
for every 1 € Q. Obviously, ||pnllziq) < 1. Applying the inequality (1.7) to the
functions p, and F,, we get

w(/QPn(I)Fn(t)du(t)> SM/Qpn(tﬂp(Mﬂ(t))du(f)
SMLP(I)fﬂ(MF(l))dM(Z)-

Passing to the limit at the left-hand side of the above inequality and applying the Beppo
Levi’s theorem, we easily obtain the inequality (1.7) for arbitrary p and F. Thus ¢ is
J-quasiconvex with the same constant M.

(b) Let p be the modular (1.3) generating the Orlicz space (Example 1.5 (b)), where
we suppose that X contains a set C of finite, positive measure. Let us suppose p to
be quasiconvex with a constant M > 1. We show that the function ¢, generating the
modular p, is also quasiconvex with the same constant. Indeed, let oy, a2, ..., > 0,
ar +ay +---+a, = 1,and uy,uz,...,u, € R. Let fj(t) = u;jxc(t), then
fi € LO(Q), j=1,2,..., n. By quasiconvexity of p, we have

M(C)¢(Zn:ajuj) =/Q<p(zn:ajf,-(t)) dp(r) =p(2n:ajfj)
j=1 Jj=1 j=1

<MY aipMf) =M /Q @(Mf; () dpu(t)
j=1

j=1
= Mu(C) Y ajp(Muj)
j=1

which proves ¢ to be quasiconvex with constant M.
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Now by Example 1.9 (a) we conclude that ¢ is J-quasiconvex with constant M.
But this implies that the modular p is also quasiconvex with constant M, because, by
Fubini’s theorem, we have

P (/ p()F(t, :)du(t)> =/ ® (/ p(t)F(t,S)du(t)> du(s)
Q Q Q

< / M( [Q p(t)so(MF(z,s»du(r)) duu(s)

Q
= / 0 ( / <p<MF<t,s)>du<s)) dp (o)
Q Q

= M_/Qp(l)P(MF(t, D) dpu(r).

1.4 Subbounded modulars

For further considerations we need the notion of subboundedness of a modular 7 in a
linear subspace X of L(2), where Q is provided with an operation + : Q x Q2 — Q.
We will assume that X is invariant with respect to the operation +, i.e. if f € X then
f(@+-) € X forevery t € Q. Such a modular 5 is called subbounded (with respect
to the operation +), if there exist a constant C > 1 and a function £ : Q@ — ]R(J)r ,
£ € L°°(K2), such that for every function f € X and for every ¢ € Q2 there holds the
inequality

nlf (@ + )1 = n(Cf) + £(),

and its left-hand side is X-measurable. If the last inequality holds with the function
L(t) =0,fort € Qand f € X, n is called strongly subbounded.

Example 1.10. (a) Let X be an invariant subspace of LO(Q). If n is invariant with
respect to the operation +, i.e. n[f(t 4+ )] = n(f), forall f € X and ¢t € €2, then
obviously, 7 is strongly subbounded. This holds in the case of an Orlicz space LY (2)
(Example 1.5 (b)), if (€2, +) is a unimodular, locally compact Hausdorff topological
group, with Haar measure p.

(b) Let (€2, +) be the same as in (a) and let p be the modular n as in Example 1.5 (b),
i.e.

n(f) = /Qw(t, LfOD du(r).
Let us suppose that ¢ satisfies the inequality

o —t,u) < (s, Cu) + h(s,t), (1.9)
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for all s, € Q,u > 0, with some constant C > 1, independent of s, ¢, u and
0<h(,t)e LY(Q),fort € Q,ess sup[|1A(-, D) 1) < +00. Then

nlfe+1 = /pr(s,lf(t+S)I)du(S)

_ /Q (s — 1,1 f D) dpuls)

IA

fQ o5, CIF () duls) + /Q (s, 1) dpucs)

= n(Cf) + L),
with £(-) = fQ h(s,-)du(s) € L°°(2). Thus 7 is subbounded.

In many problems we shall need a connection between two modulars p, n on
L%(), and a function ¥ : Q x Rg — Rar satisfying the following conditions:
¥ (-, u) is X-measurable for all u > 0, ¥ (¢, :) is continuous and nondecreasing for
everyt € Q, ¥ (¢,0) =0,¢¥({,u) > 0foru > 0, ¥(t,u) > 400 asu — +oo, for
allt € Q.

We say that {p, ¥, n} is a properly directed triple if there is a set Q¢ C 2, Qp € X
such that (2\ 29) = O and forevery A withO < A < IthereexistsaC,,0 < C; < 1,
satisfying the inequality

pLCY (t, [F(D] = n(AF (),

forallt € Qg and F € LY(). Let us remark that one may choose Cj in such a
manner that C; N\ 0 as A \( 0. Moreover, the above condition immediately implies
the following inequality:

plC Y (@, [Fr (D] < n(AF ()
for every t € Qo and for any family (F;(-)):eq, of functions F; € LO(Q).

Example 1.11. Let p be an Orlicz modular on Lo, ie.

p(f) = /Q o(f D) du(o),

where ¢ is a convex ¢-function. Let i be the inverse to ¢ and 0 < A < 1. Then ¢ is
concave and there holds

PP (FOD] = /Q oD (F )] du(s)
< /Q olW I F ()] due(s)

_ /QMF(sNdu(s) — (),

if we take n(F) = || F||p1(q)- This means that {p, ¥, n} is a properly directed triple
with C; = A.
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Inequality (1.9) for a function ¢ with parameter was introduced by A. Kamiriska
[123] and by A.Kaminska and R. Pluciennik [124] as a necessary and sufficient con-
dition in order that || f(- + h) — f()ll;, > Oash — Ofor f € L¥(Q), Q C R",
Inequality (1.9) was used in [19] in order to define, in the case of a group (2, +),
a stronger property than subboundedness of a modular, requiring that 4(z) — 0 as
t — 0 (we call this stronger property “boundedness” of the modular: see the text after
the proof of Theorem 2.3). Strongly subbounded modulars were defined in [160], in
connection with problems of best approximation of periodic functions by means of
trigonometric polynomials in modular spaces. The notion of a properly directed triple
was introduced in [34] in the case of a group (€2, +) and further developed in [19],
[22].



Chapter 2

Absolutely continuous modulars and moduli
of continuity

2.1 Absolutely finite and absolutely continuous modulars

In this chapter we start with formulating a modular version of the Lebesgue dominated
convergence theorem. This requires further properties of modulars. Let us recall that
a modular p on X C L) is called monotone, if f,g € X and | f| < |g| imply
o(f) < p(g) (see Section 1.2). We say that a modular p is finite, if x4 € X, for
every A € ¥ such that £ (A) < +00. A modular p on X is said to be absolutely finite,
if it is finite and if for every ¢ > 0 and every A9 > O there exists a § > 0 such that
every set B € ¥ with u(B) < § satisfies the inequality p(Loxp) < &.

Example 2.1. (a) Let p be the modular /, generating the Orlicz space Lg(Q) =
L?(2) (Example 1.5 (b)). Obviously, p is monotone and absolutely finite in L?(£2).

(b) Let p be the modular /, generating a generalized Orlicz space Lg (Q) = LY(Q)
(Example 1.5 (c)). It is easily observed that p is always monotone, p is finite if and
only if ¢ (-, u) is locally integrable for small u (i.e. forevery A € ¥ with u(A) < +o00
there is a u > 0 such that fA o(t,u)du(t) < +00), and p is absolutely finite if and
only if ¢(-, u) is locally integrable (i.e. for every A € ¥ with u(A) < 400 there
holds [, ¢(t, u) du(r) for all u > 0).

(c) Let X be the space of all real-valued functions on the interval [0, 1] C R
and let VO1 (f) be the classical (Jordan) variation of a function f € X on [0, 1]. Let
p(f) = |£O)] + V{ () (Example (1.5)(f), with (u) = |u|). Take f(r) = sin(wr)
and g(t) = 1,fort € [0, 1]. Then 0 < f(¢) < g(¢) fort € [0, 1], but p(f) = 2 and
p(g) = 1, whence p(f) > p(g). Thus p is not monotone.

Let A1, A, ..., be a sequence of pairwise disjoint, closed subintervals of the
interval [0, 1] and let A = A; U A U ---, and u- the Lebesgue measure on [0, 1].
Then pw(A) < +o0, but x4 € X,, because VO1 (x4) = 4o00o. Thus p is not finite.
However, if we take as pu the counting measure, then u(A) < 4oo if and only if
A € [0, 1] is a finite set and so the modular p becomes finite.

In the following we shall need some additional assumptions on the linear subspace
X c LY%Q). We say that X is a correct subspace of LO(Q), if

(a) A€ Xand u(A) < +ooimply x4 € X,
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(b) feXand A e T imply fxa € X.

Obviously, X = LO(Q) is a correct subspace of itself. Moreover, if X is a correct
subspace of LO(Q) and f € X, then|f| € X. Indeed,let f € X andlet A = {r € Q :
f@)=>0},B=Q\A. ThenA, B € ¥,andso fy = fxa € Xand f_ = fxp € X.
Hence |f| = f+ + f- € X.

Let X be alinear correct subspace of L(2). We say that p is absolutely continuous
(a.c.), if there exists an o > 0 such that every function f € X with p(f) < 400
satisfies the following two conditions:

(a) for every ¢ > O there exists a set A € X with u(A) < —+oo such that
plafxa\a) <é,

(b) forevery e > O thereexists § > 0such that, forevery set B € ¥ with u(B) < §,
there holds p(af xp) < e.

If £ (2) < 400 then the condition (a) is obviously satisfied.

Example 2.2. (a) Let p be the modular [, in L°(2) generating the generalized Orlicz
space (Example 1.5 (c)). The condition p(f) < 400 means that the function F(t) =
@(t, | f(2)]) is integrable on 2. Then the absolute continuity of the modular p with
o = 1 follows from the well-known properties of the integral.

(b) This example is an exercise in technical problems concerning absolute conti-
nuity and may be omitted.

We shall examine the modular A¢ (Example 1.5 (e), formula (1.5)), keeping the
notations of Example 1.5 (e). We suppose additionally, that f ab ay(x)dm(x) < 1,
for w € W and thatif 0 < g(x) s € ]@f asx — b, being g : [a,b] — ]R(J)r
a nondecreasing function, then fub ay(x)g(x)dm(x) — s for w — wp. As regards
® : [a,b[xR{ — R{ satisfying the conditions 1)-4) of Example 1.5 (e), we also
need some additional assumptions. We suppose that there is a ¢ € [a, b[ such that

® is of monotone type in [c, b[, i.e. there exist two disjoint sets Ry, Ry C ]R(')F with
RiURy = R(J)r, such that

1°. ®(x, u) is a nonincreasing function of x € [c, b[, for every u € Ry,
2°. ®(x, u) is a nondecreasing function of x € [c, b[, for every u € R».
Finally, we suppose the following condition (H) to be satisfied:

(H) For every f € L?n(SZ) such that A (f) < +o00 and for every x € [a, c] there
is a neighbourhood Uy of x in [a, c[ such that the function

Hy () = sup ®(y, [f()D
yeUx

is p-integrable over 2 for x € [a, c].
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Let us mention that taking in the condition (H), Uy = [a, c] for all x € [a, c] one
obtains a condition, equivalent to (H). Condition (H) is satisfied for example if we
suppose that there are constants M > 0 and ug > 0 such that for all y, z € [a, c¢] and
u > ug, there holds the inequality ®(y, u) < MP(z, u). The reader is encouraged to
go through the details.

Under the above conditions, +¢ is absolutely continuous (a.c.) with respect to
the measure . Indeed, let f € L%(Q) be such that A¢ < +00 and let us take an
arbitrary set P € X. Obviously, we have

Ao (fxp) <T1(fxp) +T2(f xp),

where

c b
Li(f) = Sup/ ay(x)d(x, f)dm(x), Ta(f)= Sup/ ay (x)L(x, f)dm(x).

weW weW

In order to prove A¢ to be a.c. it is sufficient to show both I'y and I'; to be a.c..
First, we prove I'1 to be a.c. Applying the condition (H) we observe that the function
H() = SUPye(a,c] D (y, | f(2)]) fort € Q is pu-integrable on 2. Hence there are a set
S1 € X such that £(S1) < 400 and a number §; > 0 such that

H@)du) < ¢g/2, /H(t) du@) <e/2, ifSeX, ulS) <é.
Q\ Sy S

Consequently, we have for arbitrary y € [a, c]
| ewis@nau <.

Q\S1

/q>(y, lf@ONdu) <e/2, ifSeX, us) <d.
s
This implies
Lo Fras) = [ SOFONdu() < e/2
Q\ S

1q><y,f)<s>=/Sd><y,|f<t>|>du<z> <e/2, ifSe, ulS) <.

Thus, we have for any w € W,

/Caw(X)lcb(L fxa\s;) dm(x) < g/c ay(x)dm(x) < /2,

where ;1 (S1) < 400, and similarly

/ a0 () Lo (x, fxs)dm(x) < e/2.
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if $ € ¥ and u(S) < §;. Hence it follows that

Ci(fxens) <€/2,T1(fxs) <e/2, if§SeX, ulS) <o,

where S| € X, u(S1) < +oo. Thus, I' is a.c..
In order to prove that I'; is a.c., let us write forany f € L9 () such that Ao (f) <

m
+o0o,A={teQ:|f(t) € Ri},B={teRy:|f(t)] € Ry}, where R| and R, are
sets from the definition of the function ® of monotone type. Let P € X be fixed and let
t € A. Wehave ®(x, [f(t)]) \yasc <x /b ,andso ®(x, |f(®)]) < P(c, |f(@)])
forc <x < b,t € A. Hence

Lo(x, fxaxe) <Jdolc, fxaxp) < do(c, f) < 400,

for ¢ < x < b; the condition ¢ < 400 follows, applying the condition (H) to y = c.
Therefore there exist a set S € X with u(S7) < +00 and a number 87 > 0 such that

Lo(x, fxans, xa) < dao(c, fxa\s,xa) < e/4

and
Lo(x, fxsxa) < do(c, fxsxa) <e/4 ifSeX, ulS) < s,
for every x € [c, b[. Thus

Co(fxa\s, xa) < €/4
Ca(fxsxa) <eg/4 if SeX, u(s) < é.

Next, we have for every P € X, (see Example 1.5 (e))

O, [f(OIxpOxs®) 7 B(f @) xp®)xp (1))

asc <x /b ,forallt € Q, and so

Lo(x, fxpxs) /" 13(fxpXxB)

(2.1)

asc <x /" b~, where
Ia<f>=/Q<T><|f(t>|>du<r>,

for all f € LO(). By the assumption on ay,(x) applied to the function g(x) =
o (x, fXPXB)X[c,b[ (X), We obtain

b
f aw(X)do(x, fxpxp)dm(x) — Ig(fxpxp), asw — wo.

On the other hand, we have

b b
/ () do(x, fxpxs) dm(x) < / o) I3 (Fpxs) dm(x) < I5(Fxpxs).
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Hence
b
Iz(fxpxp) = wli%o . ay(x)do(x, fxpxp) dm(x)
b
= SUP/ aw () Lo (x, fxpxp)dm(x)
weW Jce
= Ia(fxpxB).

Taking P = Q2 we obtain
I3(fxB) = T2(fxB) < Aa(f) < +o0.
Thus, there are a set S3 € X with ©(53) < 400 and a number §3 > 0 such that
I3(fxao\s;xB) < &/4, I3(fxsxp) < &/4, ifSeX, uls) < ss.
Consequently,
Do(fxans; x) < €/4

Da(fxsxs) <e/4, ifSeX, uS) < ds.

But we have for any set P € ¥ and x € [c, b|,

(2.2)

lo(x, fxp) =do(x, fxpxa) +do(x, fxrPXxB).

whence
Da(fxp) = Ta(fxpxa) + D2(f xpxB)-
Consequently, by (2.1) and (2.2) we have, taking S4 = S> U S3, and 64 = min{éz, 83},

Ca(fxansy) < €/2, Ta(fxs) <e/2,

with S4 € ¥, u(S4) < +o0,and S € X, u(S) < 4.
This shows that I'; is a.c. We finally proved that 44 is absolutely continuous. O

Remark 2.1. (a) Let us suppose that €2 is a locally compact and o -compact Hausdorff
topological group, equipped with its Haar measure . Then in the definition of absolute
continuity of a monotone modular p on L°(2) we can replace the set A in (a) with a
compact A. Indeed, let p be monotone and absolutely continuous. In particular for
everye > (0and f € LO() with p(f) < 4oothereisaset A € ¥, A C €2, such that
n(A) < +ooand p(af xo\a) < €/2. Since Qis o - compact, wehave G = U,fil W,
where W,, are compact (in the case this sum is finite, then €2 is compact itself and so
we can take A = Q). Taking V,, = (J;_; Wk, we obtain again Q = |2, V,,, where
V, are compact, and V,,_1 C V,, forn = 2,3, .... Hence

o0
A=UAﬂVn,

n=1
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and (ANV,) is an increasing sequence of sets of finite measure in X. By a well-known
theorem, we have

400 > ,bL(A) = lim ,LL(A N Vy),
n—-+00
and so we obtain
(AN Vi) = (AN (AN V,) = 1(A) — p(ANV,) — 0

as n — +o0o. We now apply condition (b) of absolute continuity of p with £/2 in
place of €. Let § be a number corresponding to £/2, and let N € N be so large that
foreveryn > N, u(A\ V,) <4. Thusforn > N

paf xaw,) < ¢&/2.

Butsince Q\ 'V, C (2\ A)U (A \ V), we have xo\v, < xo\a + xa\v,. Hence for
n>N

o o o
,O(EfXQ\Vn> < P(EfXQ\A + EfXA\V,,)

< plafxana) + plaf xav,)
<e/2+e/2=c¢,

and so the assertion follows.

(b) Let us still remark that additionally assuming the family of functions @ (x, u)
to be equicontinuous in [a, b[ at u = 0 we may show the modular A ¢ to be absolutely
finite. Indeed, for every ¢ > O there is a § > O such that, for any u € [0, §[ and
x € [a,b[, we have ®(x,u) < &. Now, let A € ¥ and u(A) < +o00. Then
Jo(x, Axa) = n(A)®(x, 1), for every A > 0. Hence

b
Ap(Axa) = u(A) SUPW/ ay(X)P(x, A)dm(x) < eu(A).
we a

Consequently, #4¢ is finite. The same inequality with ¢ = 1, A = A9, A = B shows
that A ¢ is absolutely finite.

Now, we are able to formulate the following modular version of the Lebesgue
dominated convergence theorem.

Theorem 2.1. Let p be a monotone, finite and absolutely continuous modular on a
linear, correct subspace X of L°(2). Let (f,) be a sequence of functions f, € X
such that f,(t) — 0asn — 400 u-a.e. in 2. Moreover, let us suppose there exists
a function g € X, such that p(3g) < +oo and | f,(t)| < g(t) p-a.e. in Q, for
n=1,2,... Then p(f,) > 0asn — +o0.
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Proof. Let ¢ > 0 be arbitrary and let « > 0, A € ¥ and § > 0 be chosen as in the
definition of absolute continuity, with f replaced by 3g and ¢ replaced by /3. By
Egoroft’s theorem, there exists a set A, € X, A, C A, such that u(A,) < § and
fn(t) = 0asn — 400, uniformly on A \ A,. Since

1
FAGIES §[3|fn(t)|XQ\A(t) + 31/ O xa\a, () + 3] fa (Dl xa. (D],
for t € 2, applying monotonicity of p we obtain

pafy) < pQGafuxa\a) + pGafuxaa) + o Gafuxa,)
< pBagxaa) + pBafuxaa,) + pGagxa,)-

By the choice of A, and § we obtain

pQBagxa\a) <¢&/3 and pQBagxa,) <e/3.
Hence 5
plafn) < 3¢ + pBafuxaa,),

forn = 1,2, ... Inview of the finiteness of p, we have x4 € X ,. Hence there exists
aAg > Osuchthat p(Aaxs) < /3 for0 < A < A,. Since f,(t) — Oasn — 400,
uniformly in A \ A, there exists an index ng such that 3«| f;, ()| < A, fort € A\ A,
and n > ng. Hence, by monotonicity of p,

pQBafuxaa,) < p(hexaa,) < p(lexa) < &/3,

for n > ng. Consequently,

2
plofy) < 38 +oGafuxaa,) <&,

for n > ng. This proves that p(«f,) — Oasn — +oo. O

2.2 Moduli of continuity

One of the important tools in approximation theory and in other applications of math-
ematical analysis is the notion of modulus of continuity. We shall define it in the
case of modular spaces X, generated by a modular n in a linear correct subspace
X c L%(R). Here, we assume 2 to be equipped with an operation + : 2 x Q — Q.
For the sake of simplicity we shall suppose throughout this section that the operation +
is commutative. There is no problem to extend this to the case of a non- commutative
operation and then the notions defined below, have their right-hand side and left-hand
side versions (the reader may consult e.g. [117]).

In the following we shall need the notion of a filter U of subsets of 2. We recall
this notion: a family U # @, of nonempty subsets of 2 is called a filter in 2 if it
satisfies the following two conditions:
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1. fU;,Up e U, then U1 NU; € U.
2. IfU, € U,Up C Q,and U; C U; then U; € U.

Let us mention two important filters. In the first one, 2 = N is the set of positive
integers and the filter U of its subsets consists of complements of finite subsets of
N (including the empty set). Convergence of a sequence a,, — a, (a,,a € R), as
n — 400 can be expressed saying that for every ¢ > 0 there exists a set U, € U such
that |a, — a| < ¢ for all n € U,. In the second one, 2 = T will mean a topological
space and U is the family of all neighbourhoods of a fixed element 7y € T. Again, a
function f : Q — Risconvergenttoa € R, if and only if for every ¢ > 0 there exists
aset U, € U suchthat | f(t) —a| < eforallt € U,.

The notion of convergence may be generalized to a general filter U of subsets of €2
and obviously, we may restrict ourselves to convergence to zero. Namely, a function
f: Q — Ris U-convergent to zero if for every ¢ > 0 there is a set U, € U such that

|f()] < ¢ forallt € U,. We shall denote it writing f(¢) l> 0. One may define a
basis of a filter as a family Uy C U such that for every set U € U there exists a set
V € Ug such that V C U. Obviously, f : 2 — R is U-convergent to zero, if and
only if for every & > 0 there exists a set U, € Ug such that | f(¢)| < ¢, forallt € U,.
In the first of our previous examples of 2 = N as Up we may take the countable
family of sets U, = {n,n+1,n+2,...},forn = 1,2, ... In the second example of
Q =T, supposing T be a metric space and ¢ty € T to be fixed, we may take as a basis
U, the countable family of balls with centre at 79 and radiir, = 1/n,n = 1,2, ...

Applying the notion of a filter we shall specify a connection between the operation
+ in 2, the o-algebra ¥ and the measure p in the measure space (€2, X, u). Let us
denote for arbitrary A € Q and t € €,

Ai={seQ:t+se€A, s¢€A ort+s¢A, se A}

Let U be a filter in 2. We say that {2, U, X, u} is a correctly filtered system with
respect to X, if

1. the filter U contains a basis Uy C X,

2. if A € ¥ and n(A) < 400, then A; € X forevery ¢t € Q2 and u(A;) i) 0,

3. X is invariant with respect to the operation +.

Example 2.3. Let (2, +) be an abelian locally compact Hausdorff topological group.
For U we take the filter of neighbourhoods of the neutral element of Q2 and u will
denote the Haar measure on (€2, 4-). Denoting by AA B the symmetric difference of
sets A and B, we have A; = AA(A —1t) foreach A C Q and r € Q. It is well-
known that if A € ¥ then A; € X foreacht € Q and u(A;) i) 0 (see e.g. [117]).
Moreover, if f is X-measurable and a € R, t € 2, we have

{seQ: ft+s)>al={c—1teQ: f(c)>al={ce€Q: f(c)>a}—te X,
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whence f(t + -) is also X-measurable. Thus, the system {2, U, X, u} is correctly
filtered.

Let U be a filter on 2 with basis Uy € X and let X be an invariant, correct linear
subspace of LY(£2). Let 1 be a modular on X. The n-modulus of continuity is defined
as the map -

Wy X x U — R(J)r ,

where

wy(f,U) =supn(ft+-)— f(),

teU

forall f € X and U € U. The elementary properties of a modulus of continuity are
summarized in the following

Theorem 2.2. If n is a monotone modular on X;, then
@) wy(f, V) <wy(f.U), for fe€X, U VeUVCU,
(®) w,(1f1,U) < w,(f,U),for f € X,U € U,
(©) wylaf,U) <wy(bf,U),for f € X, U € U,0=<a=<b,

@ oy (Xf_y 5. U) < Y0 wp(nf;, U), for fi, fa,... fu € X, U € U

Proof. Properties (a), (c), (d) are obvious. Applying the fact that X is a correct
subspace of L?(Q) so that f € X implies | f| € X, and the monotonicity of 7, we
obtain

n(fE+IN=1fOD =n(fe+)=fOD=n(f+) = f0),

which implies (b). O

We now solve the problem, under what assumptions the n-modulus of continuity
of a function f € X tends to zero in the sense of the filter U. First, we consider the
case when the function f is a simple function, vanishing outside a set of finite measure
w. If X is a correct linear subspace of L%(2) then all such functions belong to X.

Theorem 2.3. Let (2, U, X, ) be a correctly filtered system and let X be an invari-
ant, correct linear subspace of L°(Q). Let ) be a monotone, absolutely finite modular
on X;. Then for any simple function f on 2, vanishing outside a set of finite measure

w and for every A > 0 there holds the relation w,(Af, U) LN 0.

Proof. Let f = x4 be the characteristic function of a set A € ¥ of measure u(A) <
+o00. It is easily verified that

Ixa(t +s) — xa(s)| = xa,(s),
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for every s,t € Q. Since u(A) < +oo and (2, U, X, u) is correctly filtered, so

Ay € X, fort € Q and u(Ay) l> 0. Thus, there exists a Uy € U such that
w(A;) < +oo fort € Up. Since n is finite, we have x4 € X, and xa, € X, for
t € Up. Since X, is linear, we thus have Ao xa, € X, fort € Up and every A¢ > 0.
Let ¢ > 0 be arbitrary. Since 7 is absolutely finite, there exists a § > 0 (depending on

€ and XAg), such that if B € ¥ and u(B) < §, then n(Agxp) < €. Since u(A;) l 0,
there isaset U € U, U C Up such that u(A;) < § for all + € U. Consequently,
n(hoxa,) < e forallt € U. Thus, sup,c; n(hoxa,) = wy(roxa,U) < e. This

shows that wy, (Ao x4, U) l 0.

Now, let f = Z;-l:leXAj, where Aj € ¥, u(Aj) < +oofor j =1,2,...,n
and Ay, Az, ..., A, are pairwise disjoint. Since Xa; € Xy, for j =1,2,...,n,
so f € X;,. Let A > O be arbitrary and let A¢ = nAmax; |c;|. Applying Theo-
rem 2.2 (d) and (c), we obtain the inequality

n
Wy Of, U) <Y oy (oxa;, U).
j=1

From the first part of the proof we conclude that w,(Aox Ajs U) ﬂ) 0, for j =

1,2,...,n. Consequently, w,(Af, U) LA 0. O

In Section 1.4 we introduced the notion of a subbounded modular and a strongly
subbounded modular with respect to the operation 4. Applying the filter U we dis-
tinguish now a notion between the two above ones. Namely a modular 7 in a linear
subspace X of LO(2) will be called bounded (with respect to the operation + and a
filter U in 2), if there are a constant C > 1 and a function £ : Q2 — RS’ satisfying

the conditions £ € L°(R2), £(t) l) 0, such that for every function f € X and every
t € Q there holds the inequality

n(f(+-) =n(Cf) +£().

Obviously, a strongly subbounded modular 7 is always bounded, and a bounded mod-
ular 7 is always subbounded.

Example 2.4. Let the system {2, U, X, u} be defined as in Example 2.3 and let the
function ¢ be as in Example 1.5 (c). Moreover, let ¢ satisfy the inequality (1.9) in
Example 1.10 (b), for s, € Q2,u > 0, where C > 1 is a constant and 0 < h(-,¢t) €
LY(Q), fQ h(s,t)du(s) — Oast — 6, where 6 is the neutral element of the group €2.
Following the estimates in Example 1.10 (b) one may check easily that the modular
n(f) = fQ o(t, | f(t)]) dun(t) is bounded with respect to the operation + and the filter
U of neighbourhoods of 6 in €.

Now we may generalize Theorem 2.3 to the whole space X.
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Theorem 2.4. Let {2, U, X, u} be a correctly filtered system and let X be an in-
variant, correct linear subspace of LO(Q). Let n be a monotone, absolutely finite,
absolutely continuous and bounded modular on X.. Then for every function f € X,
there exists a number A > 0 such that

oy f, U) -5 0.

Proof. Let us first remark that it is sufficient to prove the theorem for functions f > 0.
Indeed, suppose the theorem to be true for functions f € X, f > Oandlet f € X,,
be arbitrary. Denoting by f., f— the positive part and the negative part of f, we have
fr = Q/20f1+ f), f- = (A/2)(|f] — f). Since X is a correct subspace, the
assumption f € X implies | f| € X, and since 5 is monotone, so n(f) = n(| f|),
and from f € X,, we conclude that |f| € X,. Since X, is linear, this implies
f+, f= € Xy. Thus, by Theorem 2.2 (d) we obtain

1 1
a),7<§)»f, U) = a)n<§)\(f+ - f_), U)
oy (fy U) + g (hf-, U) = 0,

IA

since f1, f— > 0. Hence we may restrict the proof to functions f > 0.

Let f € Xy, f > 0. There exists a sequence (g,) of nonnegative simple functions
such that g,(t) / f(t) asn /' 400, n-a.e. in 2. Since the measure u is o-finite,
we may define g, in such a manner that each g, vanishes outside a set A, € X of
finite measure p. Since the modular 7 is finite, we have g, € X, forn =1,2,....
Hence also f,, = f — g, € Xy, forn = 1,2,.... Moreover, 0 < f,(r) \ 0 as
n /' 4+ooand f,(t) < f(t) forall t € Q. Since f € X,, there exists a number
Ao > 0 such that n(3Agf) < +oo. Applying Theorem 2.1 with g(z) = Ao f(?),
we obtain (Ao f;) — 0 as n — +oo. Additionally, we may take Ao so small that
n(Aof) < 4o0. Selecting eventually a subsequence from (g,) we may suppose that

1
nao(f —gn)) < o n=1,2,... (2.3)

Let C > 1 and £ € L*®(Q), £(1) l) 0, be as in the definition of a bounded
modular. Since n(Ag(f —gn)) < +o00,forn = 1,2, ..., we may apply the definition
of boundedness of 1 to the function (Ag/C)(f — gn) in place of f, obtaining the
inequality

A
n(EO(f(t +) =gt + -))) = no(f — gn)) +€@), forre Q.
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This implies
(ﬂ(f(t +— f(-))) < <@(f(t F)— gt + ‘)>)
N 3¢ =l ¢ 8gn
Ao ; Ao
+ n(E(gn( +) - gn(~))> + n(E(gn - f))

=

2
; +£(t) + wy(hogn, U),

for arbitrary U € U,t € U,n = 1,2,.... Let us take an arbitrary ¢ > 0 and let
us fix an index n in such a manner that 2/n < ¢/3. By Theorem 2.3, there exists a
Ui € U such that for every V € U, V C U there holds w,(Xogs, V) < ¢/3. Since

£(1) l 0, there is a Uy € U such that £(¢t) < ¢/3 for t € U,. Consequently, taking
t e Uy NU; € U, we obtain

(X—O( (t+-)— ('))) <
N3¢ f S <e
Thus, w,((A0/3C) f, V) <¢e,forV € U, V C Uy N U,. This shows that
oy ((0/3C) f, U) =5 0. O

Example 2.5. (a)LetQ = R(J{ be provided with the operation of usual addition + and
let u be the Lebesgue measure in the o-algebra of all Lebesgue measurable subsets
on ]R(J)r . Let ¢ be the function from Example 1.5 (c) and let

+00
n(f) =1I,(f) = /0 o, |f (O] dt.

Let U be a filter in ]Rar with basis Ug consisting of all intervals of the form Us = [0, §[
with § > 0. Obviously, {]R(J)r , U, X, u} is a correctly filtered system. The space
L(,)] (IR(J)r ) is equal to the generalized Orlicz space LY (Rar ), and if we restrict the modulus
wy, to the basis Up, denoting w, (f, §) = w;,(f, Us), we obtain, by Theorem 2.4 that
forevery f € LY (Rg ), there exists a number A > 0 such that

+00
wy(Af,8) = sup /(; O, A f(t+5)— fs))ds -0, assé— 0.

0<t<$

(b) Let  =]0, 1] provided with the operation of usual multiplication - and let
be the measure defined by du(t) = dt/t, where dt is the Lebesgue measure in the
o-algebra of all Lebesgue measurable subsets on ]0, 1]. Let ¢(¢, u) be the function
from Example 1.5 (c), defined for (¢, u) €]0, 1] x R, and eventually extended by
1-periodicity with respect to the first variable, to the whole R™. Let

1 dt
() = 1y (f) = /O ATGIES
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Let U be a filter in ]0, 1] with basis Ug consisting of all intervals of the form Us =
J1 —4,1], for 6 €]0, 1/2[. Then L%(Q) is the space of all measurable functions
f 1 2 — R, such that there is A > 0 for which

1 dt
/0 e, A f@®D) — <too.

As before, it is easily seen that {]0, 1], U, X, u} is a correctly filtered system, and
putting again wy (f, 8) = w,(f, Us), we obtain

1
wy(Af,8) = sup /0 o, A f@ts) — f(s)))ds — 0, asé— 0.

1-8<t<l1

(c) Let Q = Ng = {0, 1, 2, ...} be the semigroup of nonnegative integers, en-
dowed with the usual operation of addition + and with the counting measure @ on
the o-algebra of all subsets of 2. As before, we take into consideration the filter U
consisting of the complements of all finite subsets of 2 with basis Ug given by the
sets {n,n + 1,n+2,...}, n = 1,2,.... Then again {N, U, X, u} is a correctly
filtered system. Let 7 be any modular defined on the space £°(2), consisting of all the
sequences (Z;) of real numbers, satisfying all the assumptions of Theorem 2.4. Then
for asequence f = (fj);en,, in the corresponding modular space, denoted by 20, there
holds y

wy,(Af,U) =supn(A(ty; — 1)) — 0.

j=n

2.3 Bibliographical notes

The notions of a monotone modular and a finite modular were introduced in [155], as a
generalization of classical Kothe norms ( see [139]). The concepts of absolutely finite
and absolutely continuous modular were defined in [20] (see also [155]). The notion
of a correct subspace X of L°(£2) may also be found in [20]. Spaces connected with
strong summability were first considered in [148] (general matrix methods) and [165]
(first arithmetic means), and then the investigations were continued by A. Waszak
[203]. For Example 2.2 (b), see [18]. Theorem 2.1 plays a key role in applications of
modular spaces and was proved in [155].

In order to define a modulus of continuity generated by means of a modular n, we
need an operation + from 2 x Q to Q. We do not need to suppose (€2, +) to be a
group. However, we need some continuity property of + which leads to the notion
of a correctly filtered system {€2, U, X, u}, where U is a filter of subsets of 2 with
a basis U of X-measurable subsets. This notion was introduced in [20] and further
applied in [22]. The connection between this notion and the special case of a locally
compact topological group structure is explained by Example 2.3.

The notion of a modulus of continuity of a function in various function spaces,
especially in Banach function spaces, belongs to fundamental tools in the theory of
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approximation (see e.g. [67]). It was transferred to the more general case of modular
spaces in [155], where its basic properties were also investigated. The proof of Theo-
rem 2.4, a fundamental property stating that the -modulus of a function in a modular
space L%(Q) tends to zero in the sense of the n-convergence was finally proved in
[20]. It requires a notion of a bounded modular n introduced in [155] and then applied
in [19] and in other papers, where it was termed as T-bounded modular.



Chapter 3

Approximation by convolution type operators

3.1 Embedding theorems and the error of modular
approximation

In this chapter we shall deal with convolution-type operators of the form

(Tf)s) = _/QK(L f+9))du(), (3.1

defined by Example 1.2. Here, (2, ¥, i) will be a measure space with a o-finite,
complete measure, + is acommutative operation from €2 x €2 to 2. We will assume that
this operation is a measurable function from 2 x Q2 to Q. The function K : QxR — R
is a Carathéodory kernel function, i.e. it is X-measurable in Q2 for every u € R, and it
is continuous in R for every ¢ € Q, with K(z,0) = 0. Let L9() be the space of all
extended real-valued, X-measurable and finite p-a.e. functions f. It is well-known
that if f € L9(Q), then K (¢, f(t + 5)) is a E-measurable function of r € , for
every s € 2. As in 1.1, the domain Dom T of the operator T defined by (3.1) is
defined as the set of all functions f € L%(2) for which the integral (3.1) exists for
a.e.s € Q and (Tf)(s) is a X-measurable function of s € Q. A special case of the
kernel functign K is obtaingd when we suppose K (¢, u) to be a linear function of u, i.e.
K(t,u) = K(t)u, where K : 2 — R is X-measurable on 2. The convolution-type
operator (3.1) takes on the form

(Tf)(s) =/Ql?(t)f(t+S)dM(t)-

Operators of this form are used in approximation theory since the beginnings of this
theory.

Example 3.1. (a)Let f € Lén, i.e. fisa2m-periodic, real valued function, Lebesgue
integrable in the interval [—m, 7r]. Let S, be the n-th partial sum of the Fourier series
of the function f, then

Sn(s) = /ﬂ Dy (1) f(t + s)dr,

—TT
for n € N, where

Lsin[(Zn + 1) (u/2)]

Dn ) = S ntur2)

, forO<ul<m
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are the Dirichlet kernel functions.

(b) Let (0;,) be the sequence of arithmetic means of the sequence (S,) from (a),
then

- 7
Urz(s):n—_Hgsk(S):/ K,(t)f(t+s)ds

-

for n € N, where

K, () 1 (sin[(n + Du/2]

2
= _ forO < |u| <m
2r(n+1) sin(u/2)

are the Fejér kernel functions.
(c)Let f € Léﬂ and let

1 o0
Ay (s) = 40 + Z r"(a, cosns + by, sinns),

n=1

where (a,), (b,) are the sequences of Fourier coefficients of the function f. Since the
sequences (a,) and (b,) are bounded, the series A, (s) is uniformly convergent for
s € [—m, ], if r € [0, 1] is fixed. Moreover, we have

4
o) = [ A s s
—TT
for r € [0, 1[, where
1 1—7r2
27 1 —2rcost + 1?2

A (t) = for |t| <m

are the Abel—Poisson kernel functions.

One of the fundamental questions in the theory of Fourier series is, under what
conditions the above defined sequences of operators (S,,), (0,,) and (+4,) tend to f as
n — o0 in the first two cases and as r — 17 in the third one. This also depends on
the kind of convergence we require: almost everywhere, pointwise, uniform (i.e. in
the space Cy, of 2w -periodic, continuous functions), in Léﬂ, etc.

In case of operators (3.1), the linear operators are replaced by nonlinear ones. In
order to apply operators (3.1) in approximation theory, we first have to find a tool,
which would replace linearity of a kernel function. This will be a generalized Lipschitz
condition. Let L : Q — RS’ = [0, 4oo[ be X-measurable, 0 #= L € L'(€), and let
us put ||[Lll; = [o L(t)du(1), p(t) = L(@t)/|L|, for t € Q; obviously, || pll = 1.
Let W be the class of all functions v : 2 x R(J)r — Ra” which satisfy the assumptions
given in 1.5, i.e. ¥ (-, u) is X-measurable for every u > 0, ¥ (¢, :) is continuous and
nondecreasing, forevery r € Q, ¥ (¢,0) =0, ¥ (¢,u) > 0,foru > 0, ¥ (¢, u) - +o0
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asu — +oo,forallr € Q. We say that the kernel function is (L, v)-Lipschitz, briefly
K e (L, y)-Lip,if forallt € @, u, v € R, there holds the following inequality

|K (2, u) — K(t,v)| < L(O)P (2, [u — v]). (3.2)

Moreover, we say that K is (L, ¥)o-Lipschitz, briefly K € (L, ¥)o-Lip, if for all
t € Q, u € R there holds the inequality

|K (1, u)| < L(OY (@, |ul). (3.3)

Since K (7,0) = 0, if K is (L, ¥)-Lipschitz, it is also (L, ¥)o-Lipschitz.

In case of a linear kernel K (¢, u) = K (¢)u, an important role in approximation
theory play the assumptions of singularity of the function K. For example, one of the
fundamental tools in approximating 2 -periodic functions f, integrable in the interval
[—m, ], by means of the sequence (o) of first arithmetic means of partial sums of its
Fourier series (Example 3.1 (b)), is the singularity of these kernel functions, defined
by the conditions

-4 b4
/ K,(t)dt — 0, and / K,(®)dt — 0,

T 1)

as n — +o0, for any § €]0, 7 [ and
g
/ K,t)dt =1, forn=1,2,...
—JT

It is obvious that, in analogy to the linear case, also in the general case of convolution-
type operators one will need some singularity assumptions on the kernel functions in
order to obtain results in approximation theory.

Finally, one should decide about the notion of convergence used for the approxi-
mation of f by means of T f. We shall apply here modular convergence in the space
L%(Q), generated by a modular p, i.e. we are going to estimate the error of approx-
imation p(«(Tf — f)). Due to Example 1.5 (a), this includes approximation in the
sense of a norm in a normed linear subspace of the space L°(2). However, first we
shall investigate the problem of continuity of the operator 7 from a modular space Lg
generated by a modular 7 to a modular space L%(Q) generated by a modular p.

We prove the following

Theorem 3.1. Let p be a monotone, quasiconvex with a constant M > 1 modular on
LO(2) and let n be a modular on L), subbounded with respect to the operation
+ with constant C > 1 and function £ € L*>°(Q2). Let K be an (L, y)o-Lipschitz
Carathéodory kernel function such that {p, ¥, n} is a properly directed triple and let
the operator T be defined by (3.1). Finally, letU € £,0 < A < 1land0 < a <
C,.(M||L||\1)~" be arbitrary. Then for every f e LS(Q) N Dom T there holds the
inequality

pTf) = Mn(CAf) + M|l /Q\U p@)du(t) + Messsup,c £().
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Consequently, T : L?,(Q) NDomT — Lg (2).

Proof. Since K € (L, ¥)o-Lip, we have

ITf(s)| < /Qp(t)llLllulf(t, Lf @+ ) du().

Applying monotonicity and quasiconvexity of p and the assumption that {p, ¥, n}isa
properly directed triple, we obtain for 0 < A < 1 and @ > O such that M||L||;a < Cy,
the inequalities

A

p@Tf) < p (a/Qp(t)llLIIﬂ/f(t, If(t+~)|)du(t))

IA

M/QP(I),O[MIILlllaw(t, L@+ ) dur)

IA

M/Qp(t)n(klf(t-i-~)l)du(t)-

Since 7 is subbounded, we have n(A| f (¢ +-)|) < n(CAf)+£€(t), where ||£] s < +00.
Hence

IA

p@Tf) M/QP(t)n(Ckf)dM(t)+M/Qp(t)lf(t)du(t)

IA

M’?(C)»f)+M/ P(I)K(l)du(l)+M/ p()L(t) du(r)
Q\U U

IA

Mn(CAf) + M€l /Q\U p(t)du(t) + Mess sup, . £(2)

for arbitrary U € X. O

Now, as an immediate consequence, we may state the following

Corollary 3.1. Let p be a monotone, quasiconvex with a constant M > 1 modular
on L% and let n be a modular on L°(R2), strongly subbounded with respect to
the operation + with constant C > 1. Let K be an (L, ¥r)o-Lipschitz Carathéodory
kernel function such that {p, ¥, n} is a properly directed triple and let the operator T
be defined by (3.1). Let 0 < A < 1 and 0 < a < C,(M||L||1)~" be arbitrary. Then
for every f € Lg(Q) N Dom T there holds the inequality

p@Tf) < Mn(CArf)

and consequently the operator T is continuous at 0 in the sense of modular conver-
gence.
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The last part of Corollary 3.1 means that if f,, € L(,)](Q) NDom 7T forn =1,2,...,
then f, —> 0 implies T'f, - 0.

The next theorem will give an estimation of the error of modular approximation

p@(Tf = f)).

Theorem 3.2. Let p be a monotone, J-quasiconvex with a constant M > 1 modular
on L) and let n be a modular on L°(S2), subbounded with respect to the operation
+ with a constant C > 1 and a function £ € L*°(2). Let K be an (L, v)-Lipschitz
Carathéodory kernel function such that {p, V¥, n} is a properly directed triple and let
the operator T be defined by (3.1). Finally, let U € £,0 < A < 1and0 < o <
C M| L|[)~" be arbitrary. Then for every f € Lg(Q) N Dom T there holds the
inequality

pla(Tf — )] = My, (Af, U) + M[2n(2CAf)

(3.4)
+1leloe] f p() du(t) + R,
Q\U

where

R=,0<2a

Tf(S)—f(S):/Q[K(t,f(tJrS))—K(t,f(S))]dM(t)Jr/SZ K(t, f(s))dpu(®)—f(s)

/QK(L fE)du() — f(-)D : (3.5)

Proof. Since

so, by the (L, v)-Lipschitz condition, we obtain
ITf(s)— f()] < /Qp(t)llLllﬂ/f(t, |f@+s)— fs)D)du)

_|_

/Q K, £()dp() — £(s)

for s € Q. Since p is a monotone modular, we get
pla(Tf =l = p [ZG/QPU)IILIIH/I(I, lf+)— f(-)l)du(t)]

—I-,0|:2a

/ K(t, f(-)du() — f(~)H .
Q
Denoting by J; the first term at the right-hand side of the last inequality, we have

pla(Tf — )l = J1 +R. (3.6)
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By quasiconvexity of p, we obtain

Ji < M/QP(I)/O[ZGMIILIIW(I, Lf@+) = fODIdu@).
Since {p, ¥, n} is a properly directed triple, so choosing, for a given A €]0, 1[, a
number « such that 0 < 2aM||L||; < C, we obtain, for an arbitrary U € X, the
inequality

<M /U PONAF G+ — FETdu()

+M o pOMCAL(t + ) +n2rf()]du(@).
Since n[A(f(t + ) — f()] < wy(Af, U) fort € U, we obtain
Ji = Mwy(Af,U) + M/Q\U pOMCAf( + ) +n2Af()]du ().

By subboundedness of n we thus get

Ji

IA

Mawy(Af, U) + M/Q\U POMEACS) + Illloo +n(2Af)]dpu(r)

IA

May(f, U) + MI2Zn@ACF) + [1€]1o0] /Q PO,

The last inequality together with the inequality (3.6) implies (3.4). O

We have now to estimate the remainder term R in (3.4), given by (3.5). We put

) 1
r*V =sup|— | K@, uydpu)—1{,
uz0 | U JQ
1
r® = sup —/ K@, uwdu(t) —1|,
1k<lul<k U JQ
fork = 1,2, ... Moreover, we denote for any function f € LO(Q)

Av=1{teQ:|f(O)] >k}, B ={r € Q:|f(1)] < 1/k}, Ck = 2\ (A U By)
fork = 1,2, .... There holds the following

Lemma 3.1. Let p be a monotone, J-quasiconvex with a constant M > 1 modular on
LY%) and let n be an arbitrary modular on L%Q). Let K be an (L, Yr)o-Lipschitz
Carathéodory kernel function such that {p, ¥, n} is a properly directed triple and
let the operator T be defined by (3.1). Finally, let 0 < A < 1 and « be such that
0 < 16aM|L||1 < Cy. Then for an arbitrary set S € X and function [ € L(/)7+77(Q)
there holds
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@ R < pQRar@®f),
) fork=1,2,...,

R < Mn(Afxa\s) + n(Af xsna,) + n(Af xsng)]
+ [p(16af xa\s) + p(16af xsna,) + p(16af xsnp)]

+p@Bar®f),
where R is given by (3.5).
Proof. (a) immediately follows from the inequality R < r©@|£(s)|. In order to

prove (b), we apply the obvious inequality p(3_7_; fj) < > i_; p(nf;) withn = 4,
obtaining

/QK(L FOxans()du) — f(')st\s(')H

R§p|:8a

+p |80 /Q Kt FOxsna () di) — FOxsna ()

+p | 8a /QK(t,f(-)XsmBk(-))dM(t)—f(')XsmBk(')

+p | 8a /QK(t,f(-)Xsnck(-))dﬂ(t)—f(-)Xsmck(-)

Let P € X be arbitrary. Applying the assumptions that K is (L, ¥ )o-Lipschitz, p is
monotone, J-quasiconvex and the triple {p, ¥, n} is properly directed, we obtain

0 |:805

/QK(I, FOxp () dpu(r) — f(')XP(')H

<p [1606/9 |K (1, f(-)XP(-))IdM(t)] + p(16af xp)
=p [/Q p(O16a| L1 (r, |f(')|XP('))dM(t)i| + p(16af xp)

< M_/Qp(t)p[maMllLIIlW(L | fOlxp () du(t) + p(16af xp)

< Mn(hfxp) + p(16af xp).
Applying the last inequality for P = Q\ S, P = SN Ak, P = SN By and the definition

of r®, we obtain the inequality (b). O
3.2 Convergence theorems

Theorem 3.2 and Lemma 3.1 will be the basis for an approximation theorem. We
shall approximate functions from a modular space Lg +(£2) by means of families of
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integral operators T, of the form

(Tw f)(s) =/9Kw(t, f+s))du(), (3.7)

where K, are kernel functions and w € W. Here, W will be an infinite set of indices.
For the sake of simplicity we shall limit ourselves to the case when W is an infinite
subset of the interval [a, wg[, where a € R and wg € R, wg > a, or wg = 400, and
wy is a point of accumulation of the set W. Convergence a,, = ap, where ay,, ag € R,
w € W, will mean that for every ¢ > 0 there exists a left neighbourhood U, of wy,
equal to an interval Jwg — §, wo[ when wg < 400 and equal to a halfline [w1, +o0o[ in
the case when wg = 400, such that |a,, — ag| < ¢ for all w € U, N W. In case when
W = [a, wo[ and wg < 400 we get ag = limw_)wa ay, taking wg = 400 we obtain
ao = limy,—, 40 ayy and taking W = IN = the set of positive integers, wg = 400, we
have ap = lim,,_, 1~ a,. Let us remark that a necessary and sufficient condition in
order that a,, 5 ap is that for any sequence (wy,) such that w,, € W forn = 1,2, ...
and w, — w, as n — -+oo there holds a,, — ap asn — +o0o. We may limit
ourselves here to increasing sequences (w;). At the end let us still remark that most
considerations below remain valid in the more general case when W is an abstract set
and convergence is meant in the sense of a filter of subsets of W. For some purposes
it is also needed that the convergence in the sense of the filter be countably generated.
A family of Carathéodory kernel functions K = (K,)ywew, is called a Carathéo-
dory kernel. Let . = (L)wew be a family of nonnegative functions L,, € LY()
for w € W. We say that the kernel K = (Ky)wew is (L, ¥)-Lipschitz, briefly
K e (L, ¥)-Lip, if Ky, € (Ly, ¥)-Lipforw € Wand D = sup,,cw | Lyll1 < +o00.
Let U be a filter of subsets of 2 with a basis Uy C X (see (2.2)). We write

©) 1

ry’ =sup|— | Ky(t,u)du(r) -1},
w0 | U Jo

*) 1

rn’ = sup — | Ky, u)ydu(t)—1
1k<lu|<k | Jo

forw e Wand k =1, 2, ... We say that the kernel K is singular, if

/ Pw () du(t) 20 for every U € U, (3.8)
Q\U

't = sup,ew r,ﬂf‘) < +o00 and r,g,k) 5 0 fork = 1,2, ... If there hold (3.8),
[y = sup,cw r® < +ooand rl” 5 0, then the kernel K is called strongly singular.

Obviously, a strongly singular kernel is singular.

Example 3.2. Let K = (Ky)ywew consist of linear kernels, i.e. Ky, (¢, u) = I?w Hu.
Then

1 1 ~ ~
—/ Ky (t, u)du(r) = —/ Kw(t)udu(t)zj K (1) dp(r)
uJg uJg Q
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for u # 0 and w € W. Thus, for an arbitrary k = 0, 1, 2, ... the condition r,g)k) %0
means that

/ Ko@) du(t) S 1.
Q

This shows that in our case conditions (3.8) and rﬁ,k) 5 0 are analogous to those
mentioned for Fejér kernel functions K, in Section 3.1.

Let T = (Ty)wew be the family of operators defined by (3.7). The domain of
T is defined as Dom T = (7),,cy Dom T,,. We shall prove now the main theorem
concerning approximation of functions f € Lg +7(§2) N Dom T by operators of the
form (3.7).

Theorem 3.3. Let {2, U, X, u} be acorrectly filtered systemand let + : Qx Q2 — Q
be a commutative operation in Q. Let p be a monotone, J-quasiconvex with a constant
M > 1 modular on LO(Q) and let n be a monotone, bounded with respect to the
operation +, absolutely finite and absolutely continuous modular on L°(R). Let K
be a singular Carathéodory (L, W)-Lipschitz kernel such that {p, ¥, n} is a properly
directed triple and let us suppose that one of the following two conditions holds:

(1) K is strongly singular,
(2) p is finite and absolutely continuous.

Then for every f € Lg +2(§2) N Dom T there exists an o > 0 such that

pla(Ty, f — )1 0.

Proof. LetU e £,0<A <1and0 < o < C,(2M D)~!, where D = sup,ew I Lwll1.
Let us write

Ru=p [20: / Ko, f()) du(t) — f(~)H forw € W.
Q

By Theorem 3.2, we have

pla(Twf — ] = Mwy(Af, U) + M[2n(20Cf)

T leloo] / o) du(t) + Ry
QU

for w € W. Let ¢ be an arbitrary positive number. Since 7 is a monotone, bounded,
absolutely finite and absolutely continuous modular on LO), {(Q, U, T, u)is a

correctly filtered systemand f € LS (£2), by Theorem 2.4 there holds w, (A f, U) LA 0
for sufficiently small & > 0, and we may assume that . < 1. Moreover, we may choose
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A so small that n(2ACf) < 400, because f € L(,)](SZ). Let us fix aset U € Ug such
that Mw,(Af, U) < /4. By (3.8), we have

‘/ Puw(®)du(t) > 0,
Q\U
hence there exists a w; € W such that
M[2nQ2rCf) + IIEIIOO]/ pw(@®)dp(t) <e/4
Q\U

for w € [wy, wp[. Consequently, we obtain

MMHJ—fH<§+Rw (3.9)

for sufficiently small A > 0 and ¢ > 0 and w € [w], wo[. What remains is to show
that R, Zo.

First, we prove this under the assumption (1). By Lemma 3.1 (a), there holds
Ry < ,o(2ar1(uo) f) for w € W. By the assumption of strong singularity of K, there
holds rl(uo) 2 0. Since f e Lg(Q), we have p(8f) — 0 as § — 01, whence there
is a §o > 0 such that if 0 < § < §g, then p(§f) < &/2. Now, we take a wy € W,
wy > wi, such that 2arl(l,0) < 8¢ for w € [wy, wo[. Then R, < ,0(2ar,(1?)f) <¢g/2
for w € [wy, wo[, w € W. Consequently, Ry, £ 0and pla(Ty f — f)] < e for
w € [wa, wol, w € W. Thus p[a(Ty f — )] — 0.

The situation in the case of the assumption (2) is a little more complicated. Again,
by (3.9) we have to show that Ry, 50, applying the estimation (b) from Lemma
3.1 with Ry, in place of R. Let S € X be an arbitrary subset of finite measure of €2.
Since Ay D Ay D ---,wehave SN A D SNA; D... and u(SN Ay) < +o0.
Hence lim_, 100 (S N Ax) = u(S NN, Ax). But by f € LO(RQ), there is a set
Qo C 2, Qo € X of measure ;£(20) = 0 such that | f(t)| < +oo fort € Q\ Q.
From the inclusion ﬂ,fil(S N Ag) C 0 we deduce that limg_, ;oo (S N Ag) = 0.
Now, applying absolute continuity of both n and p we may choose a set S of finite
measure and constants A > 0 and o > 0 so small that

Mn(\f xa\s) + p(160f xo\s) < &/12. (3.10)

Keeping S fixed, we may find an index ko such that

Mn(Af xsnay) + p(16af xsna,) < &/12 (3.11)

for all k > kg. We also have

A 16«
Mn(Af xsng,) + p(16af xsnp,) < Mﬁ(zXS) + p(TXS)
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Since n and p are finite, the right-hand side of the last inequality tends to 0 as k — +oo.
Hence one may fix an index k > kg such that

A 16
H(EXS) < ¢&/24 and p(%xg) < &g/24.
Consequently, we have for this fixed index k the inequality

Mn(if xsng) + p(16af xsnp,) < /12.

Inserting the last estimation and (3.10) and (3.11) in the inequality (b) from Lemma
3.1, we obtain the inequality

I
Ry = 7+ o Bar® f) (3.12)

for w € W and for the above fixed index k. Repeating the argument used in the case
(1) to the second term of the above inequality we easily obtain the relation

p@Bar® £y 5 0.

Hence there exists a w3 € W, w3 > wp, wsz € [wy, wo[ such that
3
pBar f) < 1

for w € [ws, wo[, w € W. By the inequality (3.12), we have R,, < &/2 for such w.
Thus, applying the inequalities (3.9) and (3.12), we obtain

pla(Twf = f)) <e

for w € [w3, wo[, w € W. Consequently

p@(Tyf — ) = 0. O

3.3 Examples

The second part of the assumption of singularity of a kernel K, stating that rl(f ) %0,
may be interpreted as a statement that K, (¢, u) behaves nearly as u for w sufficiently
near to wg. Following this way of argument one could try to conclude that if K,
satisfy a generalized Lipschitz condition with a function ¥ (¢, u), then ¢ as a function
of u should also behave nearly as u, i.e. the generalized Lipschitz condition is nearly
a usual Lipschitz condition with power 1. The next example shows that this kind of
argumentation is wrong.
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Example 3.3. Let W = N = the set of positive integers, wg = +00, and let (2, X, 1)
be a measure space and let U be a filter of subsets of €2, with a basis Uy C X. Let
0<L,eL (Q)forn=1,2,... besuchthat|L,|; — Land [, 1y La (D) dpu(t) —
0 asn — 4o0 for every U € Uy (for example, as L, we may take the Fejér kernel
functions, with Q@ = [—, ] endowed with the Lebesgue measure). Let L = (L,);2
and let H, : R — R be defined by

1 K\1Y? &k k k+1
Hwu)=3-(u— - +— forue|—, ,k=0,1,2,...
n n n n o n

and let us extend H, (u) to the whole R on putting H,(u) = —H,(—u) foru < 0,
wheren = 1,2,... Let K,(t,u) = L,(t)H,(u) fort € Q,u e R,n =1,2,....
It is easily seen that K = (K,,)72 | is an (I, v)- Lipschitz Carathéodory kernel with
Y(t,u) = /u fort € Q, u > 0, but does not satisfy a Lipschitz condition with
Y (t, u) = u. Moreover, fQ K, (t,u)du(t) converges as n — 400 to u uniformly on
every interval [a, b[C RT, where 0 <a < b € R. Hence one may deduce easily that
K is singular.

Example 3.4. In a similar manner as in Example 3.3 one can also define a strongly
singular kernel. For example we modify the definition of H,(«#) from Example 3.3
near the point # = 0 in such a way that

1
forO <u < —
n
Now we conclude the section with further examples.

Example 3.5. Let Q = [0, 1] C R with Lebesgue measure and let us interpret the
operation + as usual multiplication. Let w, : [0, 1] — ]RaL for r € RT =]0, +o00],
with ro = 4+00. Let us suppose that

1
/ wy(t)dt =1 foreveryr € R,
0
1-6
/ w,(t)dt - 0 asr — 400
0

for every 6 €]0, 1/2[. We take (see Example 2.5 (b)) U = {[1 — 6, 1] : § €]0, 1/2[}
as a basis of a filter U. Operators 7, defined by

1
(Trf)(s):/ w () f(ts)dt, reRT
0

are called average operators or moment operators.
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Example 3.6. Let Q = [0, +-o0[= R(J{ be equipped with the operation of usual ad-
dition + and let X be the o-algebra of all Lebesgue measurable subsets of €2 and let
g:Q - R(J)r be a locally integrable function. We put u(A) = fA g(t)dt for an
arbitrary set A € X. Obviously, p is a o-finite measure on X. Let U be the filter of
all right-neighbourhoods of zero in 2. A basis Up of U consisting of X-measurable
sets may be defined e.g. by Ug = {[0,1/n) : n = 1,2,...}. Then (2, U, X, n)
is a correctly filtered system, and a family of convolution-type operators (7y,)yew 1S
defined by

+o00
(Tw f)(s) = /0 Ky (t, f(t+5)du(r).

Example 3.7. Let Q = Ny = {0,1,2,...}, ¥ = 2% and let u be the counting
measure on No. Now, the function f is a sequence (#;);2,,. Let p(f) = Z?io |t;| for
any f and let n be a modular on Q2. As U we can take the family of complements
of finite (or empty) sets (see Example 2.5 (c)). For w € W we may define operators
Twf ={(Twf)j)$2 =00 of the form

(Twf)j =Y Kuiltiy)),

i=0

with K, ; : R — R. Singularity of the kernel K defined by the kernel functions
K, : Nyg x R — R means that

Zle(u)—l‘—>0

1/k<|u|<k

fork=1,2,...,and py ; —w>0foreveryi =0,1,2..., where

0 -1
Pw,i = Lw,i [ Z Lw,i:|
i=1

are the normalized functions L,, given in the Lipschitz condition of K.

3.4 Rates of modular approximation in modular
Lipschitz classes

Let {2, X, u} be a (Hausdorff topological) measure space with a o-finite, complete
measure, + :  x 2 — € is a commutative operation with unity 6. Let U be the
filter of neighbourhoods of 6. As before we will suppose that U contains a base Uy
of measurable subsets of €2.

Let p, n be two modulars on L°(2) and let Lg(Q), LS(Q) be the modular spaces
generated by p and 7, respectively.
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Let 7 be the class of measurable functions 7 : 2 — RaL suchthatt(¢) > 0,1 € Q,
t # 0. For a given T € 7, we define the subspace Lip, (p) of Lg by

Lip,(0)={f € Lg(Q) : there is o > O with p[a| f(-+1)—fF()|] = O(t(¥)),t — 6},

where, for any two functions f, g € LO(), f@) =0(g()),t — 0, means that there
is a constant B > 0 and U € Ug such that | f(t)| < B|g(t)| fort € U.

Analogously we define the class Lip, (). We call these classes modular Lipschitz
classes.

Example 3.8. Let o(f) = | fllp, the L”-norm of a function f € LP(), p > 1.
Then we have

Lip,(p) = {f € LY@ : [If (- +1) — fFOl, = O(x ().t — 6}.

In particular if 2 = R with Lebesgue measure and t(¢) = ¢, with ¢ > 0, we obtain
the classical Zygmund classes for L?-spaces.

We will obtain some results about the rates of modular approximation of a family
of nonlinear integral operators, whose kernels satisfy an (L, ¥)- Lipschitz condition.

Let € W be a given function (see Section 3.1) and let W C R be a set of indices,
as in Section 3.2, and {K}yew a (IL, ¥)-Lipschitz Carathéodory kernel. Let E be
the class of all functions £ : W — R such that £(w) — 0 as w — W -

For a given £ € E, we will say that (Ky,)yew 1s strongly &-singular if

(i) forevery U € Ugp, we have

/ pw(@®)du(t) = 0Ew)), w— wy,
Q\U

(i1) T'o = sup,,cw r&o) < +00, and r,(uo) =0Ew)), w— w,.

For the given kernel (Ky,)yew we denote by T = (Ty)yew the family of integral
operators

(T f)(s) =/9Kw(t,f<s+z))du<t), seq

for f € DomT.
We have the following

Theorem 3.4. Lett € T and & € E be fixed. Let p be a monotone, quasiconvex and
J-quasiconvex with a constant M > 1 modular on LY%(Q), and n be a monotone and
subbounded modular on L°(R), such that the triple {p, ¥, n} is properly directed.
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Let {Ky} be a &-strongly singular, (L, V)-Lipschitz Carathéodory kernel and f €
Lip.(n) N Lg. Let us suppose that there is U € Ug such that

/Upw(t)f(t)du«(t) =0(EW), w— w,. (3.13)
Then for sufficiently small a > 0,
pla(Ty f — HI=0E W), w— w,.
Proof. For f € Lip,(n) leta > 0, U € Up, and R > 0, be such that
nlalf+-)— fOI = Rz(@),
forevery r € U. Let R’ > 0 be such that
ry) < R'E(w),

for w € W, sufficiently near wg. Let A > 0 be such that n(2ACf) < 400, where C
is the constant from the subboundedness of n, and A < «. Let a > 0 be such that
2aDM < C;, where D = sup,,cw l|ILw |1, M is the constant of the J-quasiconvexity
of p and Cj is the constant of the definition of properly directed triple, and such that
p[2aM R’ ] < +00. We have

pla(Twf =l < p [ZaLIKw(t,f(t+-)) - Kw(t,f('))ld/vt(t)}

+p[2a

/QKw(t, F)du) - f(')H =1+ L.

We now evaluate J;. From the J-quasiconvexity of p, the choice of a > 0 and the
assumption on the triple {p, ¥, n}, we have

Ji

IA

M/Qliw(t)n[)nlf(hL')—f(-)l]du(t)

M {/ +/ }Pw(l‘)ﬂ[)»|f(t+ ) — fFONdu(t) = Jll + 112.
U Q\U

If we choose U in such a way that (3.13) holds, and taking into account that A < «,
we have

J < MR/UPw(t)T(l)dM(l) =0(EW), w— w,

and from the subboundedness of 1, we obtain

JP < M{[[€]loo + 20[22.C 1} /Q\U pu®)dp) = 0E W), w— wy.
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Next, we consider J,. For every w, sufficiently near wg, we have
J2 < p[2aR'E(w) f1.

Now, since & (w) il 0, we have that £ (w) < 1 for w € W, sufficiently near wg. Thus,
by quasiconvexity of p, we finally deduce

Jo < MEw)p[2aM R f1 = OGw)), w — wy.

The assertion is now proved. O

Example 3.9. Let Q = R with Lebesgue measure. We recall that given a function
L:R — R, L e L'(R), the a-absolute moment of L is defined by the integral

Va:/ t|*IL(®)]dt,
R

if it is finite. The assumption (3.13) is linked to the existence of moments. Indeed,
let W = [1, +o0[, and wg = 00 and let us suppose that the functions (p,,),, are of
type

puw(t) = wL(wt),
for every w € W, where L : R — R(J)r is a fixed Lebesgue integrable function, with
IL|l1 = 1. Let us take 7 (¢) = [¢t|*, and £ (w) = w™ %, for @ > 0. Then if v, < 400,
(3.13) holds. Indeed, for U =] — &, §[ we have

Sw
w"‘/ wL(wt)|t|* dt = / L(2)|z|* dz < vy < 400,
U —sw

that is the assertion.

3.5 Nonlinear perturbations of linear integral operators

In this section we apply the methods developed in this chapter to approximation
properties of a family of nonlinear operators given by the sum of a linear integral
operator and a nonlinear perturbation, generated by a Carathéodory kernel function
(the perturbating kernel).

Let {2, U, X, u} be a correctly filtered system, with respect to a commutative
operation 4+, and let Ug be a basis of the filter U with Uy C X.

We will consider integral operators of the form

(TF)(s) = (K  f)(s) + (Pf)(s), (3.14)

where

(K % f)(s) = /Q K@) f(s + 1) du(t)
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and

(Pf)(S)=/Qk(t,f(t+S))dM(t)

for f € L°(2) belonging to some modular function spaces. We suppose that K :
Q — R, belongs to L'(R), and ||K|; > 0, and moreover k QxR = Ris
a Carathéodory kernel function (see Section 1.1). We will call K the linear kernel
function and k the perturbating kernel function. We will assume a (L, 1 )o-Lipschitz
condition on k, where ¥ : Q2 x Rg — R(J)r belongs to the class ¥ (see Section 3.1),
and L : Q — Rg is a function in L'(), with [[L]; > 0. As before, we will put
p(t) = L()/ILI1.
We begin with the following embedding theorem.

Theorem 3.5. Let p, n be two J-quasiconvex with the same constant M > 1 modulars
on LY(Q), subbounded with constants C', C" and functions £, €' respectively. Let the
perturbating kernel function k be (L, v)o-Lipschitz with L € L' (). Suppose that
{0, ¥, n} is a properly directed triple, and the operator T be defined by (3.14). Let
O<A<landletO <o < (1/2)min(A/(M||K 1), Co,/(M||L||1)). Then for every
Sfunction f € Lg (&) NDom T there holds the inequality

p@Tf) < MIp(AC'f) +nGC" ) + 1Llloo + 1€ lloc]-

Proof. Since p is monotone, JN—quasiconvex with constant M > 1, and subbounded,
and o > 0 is such that 2o M || K || < A with0 < A < 1, we obtain

pQa(K * f))

IA

_ K®pO|ft+ ) du(t
||K||1/sz @®pAlf( D du(t)

M(p(LC'f) + [1€lloo]-

IA

Since k is (L, ¥)o-Lipschitz, the triple {p, ¥, n} is properly directed, and « is taken
such that 2aM||L||; < C,, we get, again by J-quasiconvexity of p with constant
M > 1 and by subboundedness of 7,

M

pQa(Pf) < — / LOnGS &t + ) du(r)
A

MIG.C" ) + 1€ ol

IA

We get finally

p(@Tf) < pQa((K * f)) + pa(Pf))
< MIp(AC' ) +n(GC" ) + 1l + 1€ loc]- o

As a corollary we may conclude immediately



3.5 Nonlinear perturbations of linear integral operators 49

Corollary 3.2. Under the assumptions of Theorem 3.5, T maps L%, () N Dom T

o+n
into Lg(Q). If moreover p and n are strongly subbounded, if f,, € LY. (2)NDom T

p+n
and f, 2250, then Tf, 5 0.

Next we will estimate the error of modular approximation of f by T f (compare
with Theorem 3.2).

Theorem 3.6. Let p be a monotone modular on L°(S2), J -quasiconvex with constant
M > 1, subbounded with constant C' and function £ and let n be a subbounded
modular on LO(Q) with constant C" and function £'. Let the linear kernel function
K be non-negative and let the perturbating kernel function k be (L, vr)o-Lipschitz.
Moreover, let{p, ¥, n} be a properly directed triple. Let0 < . < 1,2aM||L||; < C,,
UeUyand f € Lg+n(9) N Dom T'. Then there holds the inequality

p((Tf — f) < Mw,(daM| K|\ f,U) +2M[pBaC’ M| K |1 f)

+ el K du(t) + MInO.C" ) + 1€ xu |
27 Jaw 1K * (3.15)

+ M/”oo/ p(t)du(®)] + plda(|K 1 — D f].
Q\U

Proof. For every o we have

p(@(Tf — ) < pl2a(K * f — )]+ plRa(Pf)]. (3.16)

Applying the identity

(K f— f)s) = fg KW (f(t+s)— f&)du@) + (1K1 — 1) f(s),
by monotonicity of p we obtain

pRa(K  f — 1 < Ji + Ja, (3.17)

where
J1 = p(4a/§2f<v(t)(f(t +) = fO)du@), J=p@a(Kli — 1D f). (3.18)

Now following essentially the same methods used in Theorems 3.2 and 3.5, we have,
by J-quasiconvexity with constant M > 1 and subboundedness of p (the details are
left to the reader)

Ji < Mw,(4aM||K||1 f,U)
L 1 K@) (3.19)
+2M[p@BaC'M|K| 1 f) + —||6||oo]/ = du().
2 aw Kl
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Moreover, since p is monotone and J-quasiconvex, the perturbating kernel is (L, ¥ )o-
Lipschitz, {p, ¥, n} is a properly directed triple and 7 is subbounded, we obtain for
UeUyp,0<A<land0 <2aM|L| < C,

pQa(Pf)) = M[n(?»C”f)+_/Up(t)€/(t)du(t)+/;2w PO (1) du(n]

=M [W()»C//f) + 1€ xulloo + IIE/IIoo/ P(t)du(t)] .
Q\U

Taking together the last inequality and inequalities (3.16), (3.17), (3.18) and (3.19)
we obtain (3.15). O

Finally, we take a family T = (Ty,)yecw of operators Ty, of the form (3.14), where
W is a subset of R, as in Section 3.2, and let wq a point of accumulation of W. Thus
we have

(Tw)(5) = (Ky * £)(s) + (Py f)(s)

for u- a.e. s € Q (the exceptional set of measure zero is supposed independent of the
index w). The family of functions K, : Q2 — R, K = (Ky)wew, is called a linear
kernel, and the family K = (ky)wew 1s called a perturbating kernel. The domain
Dom T of T is defined in Section 3.2, i.e. Dom T = ("), .y Dom T,. The definition
of an (L, v)o-Lipschitz kernel K for a family of non-negative functions L, € LY(Q)
is that introduced in Section 3.2.

We say that the linear kernel K is singular if the following two conditions hold:

(1) forevery U € Uy we have

- Ko@) du(t) = 0,
1Kl /sz\U !

(b) the set {||I?||1 :w € W}is bounded and
1Kl = 1.

For the perturbating kernel K we do not need the singularity, but we simply assume
that the family {||L|/; : w € W} is bounded and for any U € Ug we have

1
[ Lwll1

/ Lo (1) du(t) = 0. (3.20)
Q\U

. w
Now we formulate a theorem concerning p-convergence Ty, f — f.

Theorem 3.7. Let p be aJ-quasiconvex with a constant M > 1, monotone, absolutely
finite, absolutely continuous, bounded modular on L°(R2). Let n be a bounded modular
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on LY(Q). Let K = (Ew)weW be a singular linear kernel, where K, (t) > Ofort € L,
and let K = (ky)wew be an (IL, ¥)o-Lipschitz perturbating kernel such that (3.20) is
satisfied. Let {p, W, n} be a properly directed triple and let f € Lg+n(9) N Dom T.
Then there exists a A > 0 such that

pA(Twf — )15 0.

Proof. The proof may be worked with the same arguments used in Theorem 3.3, using
now the inequality of Theorem 3.6. The details are left to the reader. O

3.6 Bibliographical notes

Example 3.1 shows the background of the idea of convolution-type nonlinear integral
operator, namely some concrete linear integral operators used in classical approxima-
tion by trigonometric polynomials (see e.g. [67], compare also [157]). In the general
case, linearity of the kernel function K (¢, u) with respect to the variable u € R is
replaced by an (L, y)-Lipschitz condition with respect to u, expressed by the in-
equality (3.2); this condition plays a key role in results presented in this book. In case
we are not interested in approximation, but in embedding-type inequalities only, the
(L, vr)-Lipschitz condition may be replaced by the weaker (L, v)o-Lipschitz condi-
tion, defined by means of the inequality (3.3). In earlier results (see [154], [155])
the (L, ¥)-Lipschitz condition was taken in a strong form, namely with the function
Y(u) = |ul|, i.e. a usual Lipschitz condition. This was replaced by an arbitrary
increasing, concave function i with ¥ (0) = 0 (see [156]). Further progress was
obtained in [17], where ¥ is supposed to be of the form v (¢, u), as in the inequalities
(3.2) and (3.3) (see also [158]). A study of functions in metric spaces may be found
in [172].

Theorem 3.1 concerning some embedding-type inequality was first given in [19] as
Proposition 1. Theorem 3.2 and Lemma 3.1 are theorems on modular approximation
of f by means of Tf, where T f is given by the convolution-type operator (3.1) and
give estimates of the error of approximation. The first version of these results was
obtained already in [155], with estimation of the remainder term R as in Lemma
3.1 (a). The estimation of R of the form as in Lemma 3.1 (b) was obtained first in [19].
Theorem 3.2 was extended to the case of vector-valued functions in [23].

Families of linear integral operators of the form (3.7) were first investigated in
[150] in the case when W = N = the set of positive integers. These investigations
were generalized in [151] to the case when W is an arbitrary filtered set of indices. This
degree of generality was also maintained in [152] by considering the approximation
by families of nonlinear integral operators, and in subsequent papers, as [155], [19]
and [22]. Since in applications it suffices to consider the special kind of the set W with
its natural convergence, presented in 3.2, we limit ourselves in this book to the case
when W is an infinite subset of an interval [a, wo[C R, wp being an accumulation



52 3 Approximation by convolution type operators

point of W, wy finite or +00. There is no problem with generalization of theorems
presented here to the case of an abstract filtered set W of indices.

The aim of Section 3.2 is to obtain sufficient conditions in order that the right-hand
side of the inequality (3.4), i.e. the error of modular approximation of f by means
of Ty, f with K replaced by K,,, converges to zero as w — wp. Analogously as in
the case of approximation by linear integral operators, this requires the notions of
singularity or strong singularity of the kernel K = (K )yew ( a family of kernel
functions), as defined just before Example 3.2. A singular kernel K was defined and
applied in [19] and a strongly singular kernel in [155]. The fundamental Theorem 3.3
was given in [19] as Theorem 2. Examples 3.3-3.4, which show that the assumption of
singularity or strong singularity are not contradictory with (L, v)-Lipschitz condition
with a function v such that u_IW(t, u) - +ooasu — 0F, may be found in [22].

The notion of rates of convergence of approximation was developed by P. L. Butzer
in various classical papers (see the monograph [67]), with respect to various kinds of
convergence (pointwise, uniform or in L”-norm). A fundamental tool for this theory
is given by Lipschitz classes of functions. For pointwise or uniform convergence they
are based on the classical Holder condition of functions, while in L?-spaces they are
defined by means the Zygmund conditions.

The theory of the degree of approximation for linear integral operators, takes its
origin from the study of the rapidity of convergence of Fourier series, (see the classical
papers by Hardy and Littlewood [115], Bernstein [45]) and in the determination of
the saturation classes in the theory of approximation (see e.g. [51], [56]). For a wide
bibliography on this subject see [67]. More recent contributions in this direction were
given in [47], [180], [181], [9], for uniform or pointwise approximation. Finally, it is
important to mention here a series of papers by P. L. Butzer and his school on the use
of the Banach—Steinhaus principle in the study of the rate of approximation for linear
operators (see e.g. [54], [89], [90]).

Based on the definition of the classical Zygmund class of L?”-functions, the notion
of modular Lipschitz class Lip, (o) was introduced in [38], (see Section 3.4), and a
result for linear integral operators of convolution type was given.

For families of nonlinear operators first results in this direction were given again
in [38] in the case when the function f belongs to modular Lipschitz classes. The
results in Section 3.4 were given in [38].

In Section 3.5 we consider the case when the nonlinear integral operator 7' is a sum
of a linear operator defined by means of a linear kernel function K and a nonlinear
operator generated by a perturbating kernel function k. Theorems 3.5, 3.6 and 3.7 are
analogous of Theorem 3.1, 3.2, and 3.3, respectively (see [162]).



Chapter 4

Urysohn integral operators with homogeneous
kernel functions. Applications to nonlinear
Mellin-type convolution operators

4.1 General concepts of homogeneity
and Lipschitz conditions

Throughout this chapter, €2 will be a locally compact (and o -compact) topological
group G, provided with its (regular) Haar measure, denoted by . Here, for the sake
of simplicity, we suppose G abelian. Let 6 be the neutral element of G and U a
base of measurable neighbourhoods of 6 € G. Let X = L%(G), the space of all the
measurable functions f : G — R, finite a.e. in G.

Let p be a monotone modular on L9%(G), and let Lg(G) be the corresponding
modular space.

Let{:G— Rtand L : G x G — Rar be measurable functions.

We say that L is ¢ -subhomogeneous if there is a constant R > 1 such that

C(L(s + v, t +v) < RC(t + v)L(s, 1),

forevery s, t,v € G.
We denote by £ the class of all the {-subhomogeneous functions L.
If L is ¢-subhomogeneous with R = 1, it is easy to see that we have now

CWL(s+v,t+v)=¢(+v)L(s, 1),

forevery s, 7, v € G. In this case we say that L is ¢ -homogeneous and we will denote
by £ the class of all {-homogeneous functions L.

Example 4.1. (a) Let G = (R, -) be the multiplicative group of positive real num-
bers. If L : R* x Rt — R{ is homogeneous of degree @ € R, with respect to
(s,1) € RT xRT, then L is £-homogeneous with ¢ () = %, t € R™. In particular we
can take the modified moment kernels defined, for any positive integersn = 1, 2, ...,

by
tn+1
Kn(ss t) = (n + 1)3‘/3+—n+1)(]0,v[(t)9

for a fixed B € R. This function is homogeneous of degree — . For 8 = 0, we obtain
the classical moment operators.
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(b) Let G = (R, +) be the additive line group. If L(s,t) = H(s — t), with
H measurable, then L is homogeneous of degree 0, and this implies that L is ¢-
homogeneous with {(t) = 1, for every ¢ € G.

(c) Let G = (RY,+), where Rﬁ = (10, +ooD)" and for x = (xq,...,xN),
y=1,.--,YN) € Rﬁ, we define xey = (x1y1,...,xnyyYn). Thus G is a locally

compact topological abelian group, with neutral element® =1 = (1, ..., 1), and for
x = (x1, ..., xy) the inverse of x is given by x~l= (xl_l, A x;l).
Putting for every x € RY x = (x1,...,xn), (x) = 1—[11(\7:1 Xk, the Haar measure

@ on G is given (up to multiplicative factors), by

d
dp(x) = é

where dx is the usual Lebesgue measure.
Leta = (ai, ..., ay) be a fixed multi-index. Denoting x* = (x{", ...x3"), for
x = (x1, ..., xy), we say that ameasurable function L : G x G — Ris homogeneous
of degree « if
L(xv, yv) = (") L(x, ),

foreveryx, y, v € Rﬁ. Then putting ¢ (v) = (v*), we obtain aclass of ¢ -homogeneous
functions. A simple example is given by the “box” functions of type

L(x,y)=Li(x1,y1)L2(x2,y2) ... Ln(xn, YN),

forx,y e Rﬁ, where L; is aj-homogeneous with respect (x;, y;), j =1,..., N.

(d) For G = (RT,.) let £ : G — RT be a measurable function. Let H :
GxG— Rg be a measurable function homogeneous of degree @ € R. Then the
kernel K (s, t) = £(¢)H (s, t) is {-homogeneous with respect to { (1) = t¥£(t).

(e) Let G = (Z, +) be the additive group of integers, and let F : Rt x RT — R
be a measurable function which is homogeneous of degree o € R. For a fixed positive
constant 7 > 0, let us define the function L : G x G — R given by

L(m,n) = F@"'T, Ty, m,neZ.

Then it is easy to show that L is homogeneous with respect to the function ¢ : Z — R
defined by ¢ (k) = exp(ka/T), k € Z.

Let K : G x G x R — R be a measurable function. We will say that K is (L, 1)-
Lipschitz if there is a non-negative measurable function L : G x G — ]R(J)r such that

|K(s,t,u) — K(s,t,v)| < L(s, t)|u — v,

forevery (s,7) € G x Gand u, v € R.
Let now W’ be the class of all the functions ¥ : G x ]Rar — Rg such that the
following assumptions hold (compare with Sections 1.4, 3.1):
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(1) ¥ (z,-) is a continuous, nondecreasing function, for every ¢t € G,
2) ¥(,0)=0,%(,u) >0, foru > 0 and forevery t € G,

(3) ¥ is t-bounded, i.e., there are two constants E{, E; > 1 and a measurable
function F : G x G — R(‘; such that

V(s +z,u) < E1W(z, Equ) + F(s, 2),
for every u € Rg,s,z €G.

Note that if ¥ (¢, u) = ¥ (u), i.e. ¥ is independent of the parameter ¢t € G, then
(3) is obviously satisfied with £y = E; = 1 and F = 0.

According to the definition given in Section 3.1, we say that K is (L, y)-Lipschitz
if there is a non- negative measurable function L : G x G — R(J)“ such that

|K(S, t’u) - K(S7tv U)| S L(S,f)‘/f(fv |M - U|)7

forevery (s,7) € G x G and u, v € R.

We will denote by KX ; the class of all the measurable functions
K:GxGxR—->R
such that

() K(s,1,0) =0,
(i1) K isan (L, 1)-Lipschitz function, where L satisfies the following assumptions:

(@) L € £y,

(b) the functions L(8,-) and £(-) = (¢(-))"'L(, ") belong to LY(G) and
0 < 1€l

Analogously we define the class JC;’ for a fixed ¢ € W’. In this case the function
K satisfies an (L, ¥)-Lipschitz condition, with L satisfying (a) and (b). We simply
denote by K one of the classes K 1 x ép . When the function L is ¢-homogeneous

(i.e., R = 1), we will write K € le, J?;p
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For K € K¢, and the corresponding L € £, we will use the following notations:
AL = [I€lh =/ Uz)du(z) = / @) 7'LO.2) du(z)
G G
L= IL@ 0 = [ LO.due). B =maxiaL Ay)
G
AL(U)=/ €(z)dpu(z) =/ @) L0, 2) dp(z)
G\U G\U
A’L(U)=/ L(0,z2)du(z)
G\U

1
rm(s) =  sup )—/K(s,t,u)du(t)—l, m=12....
G

I/m<|ul<m ' U

1
ro(s) = sup ry,(s) = sup —f K(s,t,u)du(t) — 1‘
meN uz0'U JG

forany U € U.
Note that r,,(s) < ro(s), for every m € N, and therefore ro(s) < o0 implies
rm(s) < 4o00.

Let now K € K be fixed. We define the integral operator (of Urysohn type)
(Tf)(s) = / K(s, 1, f(t))du(r), se€G, 4.1
G

for f € DomT, i.e. forevery f € L9%(G) for which (Tf)(s) is well defined and
measurable as a Haar integral for almost all s € G.

4.2 Some estimates for T

Let p be a monotone modular on L%(G), and let Lg (G) be the corresponding modular
space.

We begin with the following embedding theorem in the case when the kernel
function of T belongs to the class KX €1

Theorem 4.1. Let p be a monotone, J-quasiconvex with a constant M > 1, and
subbounded modular on L°(G). Let K € X ; and let

So,L =: / L(2)hp(z)dp(z) < 400, “4.2)
G

where h,, is the function from the subboundedness assumption on p. Then for every
f eDomT, such that ¢ f € Lg(G), we have for A > 0,

p(Tf) < Mp(AMCRALL) + MAL'S, 1, (4.3)
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where C is the constant from the subboundedness assumption of p.

Proof. From the assumptions on K and putting g = ¢ f, we have

(THE) < /G L(s, DLF Ol dut)

IA

R /G (s + @) TLO, DIf (s + )| dp(z)

= R/Ge(z)|g(s+z)|du(z)-

Then, by the assumptions on the modular p, for any A > 0 we have

PIATF] < pIARAL fG (@)1g( + DIAT dpu ()]

IA

ALlM/ E(z)p[XRMALCg]dM(z)+AL1M/ U(2)hy(2) dp(z)
G G

MS, 1
= MpIARMALCg] + — 2=,
L

and so the assertion follows. O

Remark 4.1. If p is quasiconvex with the same constant M > 1 (or if p is atomless),
Theorem 4.1 implies that Tf € LY(G) whenever g = ¢f € L9(G). The following is
a simple example, in the linear case, which shows that we cannot replace in general
the assumption g € Lg(G) by f € Lg (G).

Example 4.2. Let G = (R, -) be the multiplicative group of positive real numbers,
and let p(f) = | fll1(g)- Thus we cantake M = C = R = 1, h, = 0. For every
B > 1land « €]0, 1[, we put K (s, t,u) = Ki(s, t)u, where

\f 1
Kl(sv t) = ; t_OlX]O’S[(Z)’

for (s, 1) € G x G, and u € R. This kernel is homogeneous of degree —«, and it is
easy to show that

—+00
AL :/ %Ki1(1,2)z ' dz < 0.
0

Now let us take the function f(¢r) = %, if 0 <t < 1, f(t) = 0,ift > 1. Then
f € LY (G), while gt) = ¢@®)f(@) = t~*f(¢) is not integrable in G and also
Tf ¢ LY(G).

Itis easy to show that when ¢ € L*°(G),then Tf € L,(G) whenever f € L,(G).
This happens, for example, for homogeneous functions L of degree zero of type
L(s,t)=H(s—1), s,t €G.
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Now we will state a second inequality for the operator 7', when K € K ;0, e v,
For this purpose, let p, n be two modulars and let ¢ € W’. We recall that the triple
{p, ¥, n} is properly directed, if for every A €]0, 1[ there is a constant C; €]0, 1[
satisfying the inequality

PLCY (2, [8: (D] < nlAg: ()],

for every family {g,};ec C L°(G), (see Section 1.4).
Finally, we will say that a function g : G x G — Rg satisfies property (x) if

g(-,2) 2 0asz — 0 in the sense of the topology in G, and there is a constant A" > 0
such that o[/ g(-, 2)] < E3, forevery z € G.
We are ready to prove the following

Theorem 4.2. Let p and n be monotone modulars on L°(G) such that p is J-quasi-
convex with a constant M > 1, and n is subbounded. Let K € JCCW with¢ € L°°(G),
and let us suppose that the triple {p, ¥, n} is properly directed. Assume that

Sp,L =t / L(2)hy(z2) du(z) < +oo, (4.4)
G

where h,, is the function from the subboundedness assumption on 1. Let the function
F from the definition of the class V' satisfy condition (x). Let f € L97(G) N Dom T
and let ) €]0, 1] be such that n[ACE> f] < +00. Then there is a > 0, depending on
A, such that for every ¢ > 0, there is U, € U such that

p@Tf) < Mn(.CEyf) + MAL'S, 1 + EsMAL'AL(Ue) +6,  (45)

where the constants are previously introduced.

Proof. We can assume || ||oo < 1. Moreover, let A’ > 0 be a constant such that (x) is
satisfied for F. With similar reasonings used in Theorem 4.1, we have

(TF)s)] < R/Ge<z>;<s+z>w<s+z, G5+ 2D du()

IA

R/ E(Z)Ellﬁ(z,E2If(S+Z)|)dM(z)+R/ L(2)F (s, z)du(z),
G G
and so fora > O such that 2A; MaRE; < C;,and 2A; MaR < )\’ we have

M
plaTf] = A—L/GZ(Z),O[ZALMGREW(Z, B> f(-+2)D]du(2)

M
+ —/ L(2)p[2RALMaRF(-,2)]du(z) = J + J2.
AL Jg
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Now, as the triple {p, ¥, n} is properly directed, taking into account of the choice of
a and of the subboundedness of 1, we have

M
s / LNOELf (- +2) du(2)
L JG

M M
<= f L@NACE2 f1du(@) + ——Sy.L
AL G Arp

= MnD.CEyf1+MAL'S, L.

Now we estimate J>. Let ¢ > 0 be fixed. Then there exists U = U, € U such that
PIVF(, 2] < —,
M
for every z € U,. Hence, since 2A; MaR < )/, we have

M

L {/ +f }E(z)p[k/F(',Z)]dM(Z)
L U G\U

e+ EsMA;'AL(U)

J

IA

IA

which implies the assertion. O

Remark 4.2. As before we remark that if p is also quasiconvex with the same constant
M > 1, (or if p is atomless), under the assumptions of Theorem 4.2, we deduce
Tf € Lg(G) whenever f € Lg(G). Note that the above inequality is simpler in the
case the function v is independent of the parameter ¢ € G, i.e., ¥ (¢, u) = ¥ (u) for
everyt € G,u € ]R(J)r . Indeed, in this case the Lipschitz condition on K is simpler and,
consequently, the assumption on the triple {p, 1, n} is also simpler, and we can take
F = 0, in property (3) of ¥. In this case, clearly, property () is obviously satisfied
for the function F'.

4.3 Estimates of p[T f — f]: case K € JC}

In this section we will obtain estimates of the error of approximation of f by means of
its transform 7 f, under the integral operator 7', defined by (4.1), in the case K € KX {1
To this end we need some further assumptions on the weight ¢, which defines the
subhomogeneity assumption.

We will denote by .V the class of all measurable functions ¢ : G — R™ such that
the following assumptions hold.

(N.1) There are constants C’, D’ > 1 such that
@) ¢z +s) < C'es)+ D,

forevery s, z € G.
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(N.2) For every compact set V C G there results
IE(s) = ¢z + ) =o(l), z—0,
uniformly with respectto s € V.
Example 4.3. (a) If G = (RT, -) we have ¢, € N, where {,(t) = t%, a € R. More

generally, every continuous submultiplicative function ¢ on R™ clearly satisfies (N.1),
(N.2) with ' = D' = 1.

(b) Taking again into consideration the group G of (a), any continuous function
{:G — R(J{ belongs to the class AV, if it satisfies a global A’-condition, i.e., there
exists ¢ > 0 such that the following inequality holds

¢(ts) < cg()¢(s)
forevery s, t € G.

As in Section 3.1, for the given measurable function f € L%(G), we will denote
by A, By, Ciy,m = 1,2, ..., the following subsets of G:

Am ={s € G:|f(s)] > m},
Bn={seG:|f(s)] <1/m},
Cpn =G\ (A U Bp).

Moreover for a subbounded modular p we put 21, 0 = || 0o-

We begin with the following theorem.

Theorem 4.3. Let { € N be fixed and let K € K. Let p be a monotone, J-quasi-
convex and subbounded modular on L°(G). Let f € Lg (G) N Dom T, for which
g=¢f € Lg (G),andryf € Lg (G). Then for any A > 0, for any U € U, compact

VCG,andm =0,1,..., the following inequality holds:
M
pIMTf — ] < A—La)p[S)LMRALg, U]

M

+ AL 2pIOAMRALCgl + hp o}
L
+ p| 102R / 0@y (2) du(@) ]+ 2p1400RC' AL x6\v 8]
U

+ p[4OARD AL xG\v f1+ p[5rAL(U)g]
+ p[10ARC'A} (U)gl + p[10ARD' A} (U) f14 Rim
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where the constants are previously introduced and
Ro = p[5rro(-) f ()]
Rin = Mp[4AOAMCRALEf xc\v]+ Mp[4A0OAMCRALL f xvna,]
+ Mp[4AOAMCRALS f xvnB,,] + p[40Af () xc\v] + p[40Af () xvna,,]
+ p[40Af () xvag, ] + P20Arm () fF ()] +3MAL'S, L.

form=1,2,...

Proof. We can suppose, without loss of generality, that the second member of the
previous inequality is finite. We first estimate the difference 7f — f. We have

(Tf)(s) = f)l = /GIK(S,I,f(t))—K(s,t,f(S))ldM(t)

+

/GK(S» t, f(s))du(t) — f(s)
=11+ 1.

We apply the Lipschitz condition on the kernel K and obtain

I

IA

fGL(S, DLf () = f$)]du(r)

IA

R /G LDz +)f(z+s5)— f()lduz).
Let U be a fixed (measurable) neighbourhood of 8. Then

I

IA

R/;;Z(Z)|g(z+s)—g(s)|dﬂ(2)
+R|f(S)|/U€(Z)|§(S)—((z+s)|du(z)

+ ng(S)I/ ) dpu(z) + RIf(S)I/ L2)¢(z +5)dp(2)
G\U G\U
=1 +1}++1
Let A > 0. By the properties of the modular p, we have

4

pLUTS = P <Y pISAI{1+ plSil).
j=1
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Step 1. Estimation 0fp[5)»111].

IA

M
pISAL]] A—L/GE(Z)p[S)»MRALIg(ZwL-)—g(~)I]du(z)

IA

M
A_/ 2)p[SAMRAL|g(z + ) — g()I]du(2)
LJu

M
+ " L(2)p[10AMRA|g(z + )1 du(z)
L JG\U

+ — L(2)p[IOAMRALgldu(z)
AL Jow
=Ji+ L+ Js.
‘We have
M
JI £ —wp[SAMRALg, U],
Ar

while, by subboundedness of p,

J

IA

— L(z){p[1OLMRACg] +hp,0}dM(Z)
AL Jowu

M
(PLIOAMRALCE1 1) /G L@

and finally

M
J3 = p[lOAMRALg]—/ L(z)du(z).
AL Jo\u
To summarize, taking into account that C > 1, we obtain the estimate of p[SA] 11 1,

M
PISAI] < ——w,[SAMRALg, U]
Ap
M 4.6)
+ —{2p[10OAMRA;Cg] + hp,o}/ L(2)du(z).
A G\U

Step 2. Estimation of p[SA1 12]. Let V be a fixed compact subset of G. Putting

Ty () =sup|i(s+2) —¢(s)], zeU,

seV
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we may write

pISAIT] = p[SXIf(-)IR/UE(Z)IC(J — ¢ +2)du)]

IA

PIIOAR xv ()1 f ()] /UE(Z)IK(') — (- +2)ldu(2)]

+ p[1OAR xG\v ()1 f ()] /U £@IE() — ¢+ 2)ldu(2)]

A

p[IOXRIf(-)IfUZ(Z)fV(Z) du(z)] + p[20ARAL xG\v ()8 ()]

+ p[20ARxG\v|f ()l / L2 +2)du(2)].
U
From assumption (N.1), the last term of the above inequality is dominated by

P[40ARC' A} xc\v ()1g()I] + p[40ARD' A} xc\v ()1 f O]].

Thus p[S5A1 12] is estimated by

pISAIT] < p[IO)»RIf(-)I/UE(Z)TV(Z) du(z)] + p[20ARAL xG\v ()8 ()]
+ p[40ARC' A} xG\v ()1g()[1 + p[40ARD" A7 xc\v I f O],

and taking into account that C’ > 1, and the definition of A L, we finally have

pI5AI2] < p[10AR| £ ()| /U (@t (@) du@)]

4.7)
+ 2p[40ARC AL x6\v ()OI + p[40ARD AL xc\v ()| f(I].
Step 3. Estimation of,o[SkI{], j = 3,4. We have by definition
pISAIT] < p[SAALU)Ig ()1, (4.8)
while for p[SAI}'] we have
,0[5)»114] < p[10ARC'A’ (U)gl + p[10ARD' A’ (U) f1. (4.9)

Step 4. Estimation of p[SAI3]. For m = 0, by definition, we easily have

L =ro)|f$)l, seG,

and so

pI5AL] < p[Siro() f ()], (4.10)



64 4 Urysohn integral operators with homogeneous kernel functions

and the assertion follows from (4.6), (4.7), (4.8), (4.9) and (4.10) for m = 0.
Letustakenowm = 1,2, .... Then

pl5A L] = p [sx'/GK(-,t, S du@) — f(-)H

A

) [20k /G K, t, fOxe\w ) du(t) — f(')XG\V(')H

+ 0 | 204 /GK(‘, 1 fOxvaa, (D) du) — f()xvna, ()

+ 0 | 204 /GK(‘J,f(')vaBm(J)dM(t)—f(')XVmBm(J‘

+ o202 /G Koty £FOxve, () dr® — FOxvac, ()

For every measurable subset P C G, from Theorem 4.1 we have
P [20% ‘/G K(,t, fOxp()dun(t) — f(')XP(')H
< ,0[40K/G IKCot, fOxpO)dp@)] + p[404f () xp ()]

M
< Mp[AOAMCRALLf xpl+ A_LSp,L + p[40Af xp].

Thus writing the above inequality for P =G\ V, P =V NA,, and P =V N By,
by the definition of r,, (s), we obtain the required expression for R, and the assertion
follows form =1,2,.... O

Remark 4.3. Note that for the validity of the inequality of Theorem 4.3 in the case
m=1,2,...,wecan assume r,, f € Lg(G), for every m, instead of ro f € Lg(G)
(the proof is left to the reader).

4.4 Estimates of p[T f — f]: case K € JC;#

Here we will obtain an estimation of the modular distance between T f and f for the
kernel functions K € JC;b In this case we have to assume that ¢ is an essentially
bounded function. This restriction seems to be very strong but, as an example, any
convolution Mellin operator has a kernel which is homogeneous of degree zero, i.e.,
¢(t) = 1, for every t € G. Moreover for compact groups we can take for ¢ any
continuous function defined on G.

If ¢ € L°°(G), then we do notneed ¢ € N.

Let p, n be two modulars and let 1 € W’. Using the previous notations, we state
the following
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Theorem 4.4. Let ¢ € L°°(G) be fixed and let K € K ;ﬂ . Let the function F from the
definition of the class V' satisfy (x). Let p, n be two finite, monotone and absolutely
continuous modulars on L°(G), and let us suppose that p is J-quasiconvex, with a
constant M > 1, and n is subbounded. Assume that the triple {p, W, n} is properly
directed. Let f € LY, (G)NDom T suchthatry, f € L9(G),foreverym =1,2,...,
and let ). €0, 1[ be such that n2ACE> f) < +o00. Then there is a constant v > 0,
depending only on f and X, such that for every ¢ > 0 there are U = U, € U and
m € N such that, for every fixed compact subset V. C G, the following inequality
holds:

pW(Tf — f)] < Mwy[AE2f, U]

M ME3
+ —{20[2ACE2 f1+ hyo}AL(U) +

AL L
+7e +3MA;'S, 1 +3E3AL(Ue) + Mn[ACEa f xG\v]
+ pl16vf xG\v]+ p[Bvrz(-) f ()],

where C is the constant from the subboundedness of n and hy o = ||hyllo, hy being
the corresponding function.

ApLU)

Proof. Arguing as in the proof of Theorem 4.3, we can write
@06 = 761 = [ Le0w1£0 = FODdut)

+

/GK(S, t, f($)du(t) — f(s)

=L+ b.

We first estimate /1. Assuming that ||{||.o < 1, one has

I

IA

R _/G LY (s + 2z, |f(s+2)— f(s))dn(z)

IA

RE, /GE(ZW(Z, Esf(s+2)— f()Ddu(z)

+R f L) F (5. 2) dp(z)
G

1 2
Let A > 0 be such that n(2ACE; f) < +00, and let " be the constant from property
(¥). Let v > 0 such that 1l6vRA; ME| < Cj and 4vRA;Mv < A'. From the
properties of the modular p we have
p(Tf — ] = pl2vIi] + p[2vI2]
pl4vI} ]+ p[4vI?] + p[2v 1]

Ji+ T+ U3,

A
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and therefore
M
nsg /G Q) plAVRALME Y . Eal £+ 2) — FOD i)
M
< A—/ COMAELf (- +2) — FONdR ).
L JG

Lete > Oand let U = U, € U be such that p[A'F(-, z)] < ¢/M, for every z € Uy,
and p[)'F(-, z)] < E3, for every z € G. Then we have

Ji < Mowy[AEs f, U]

M M
+ A—{n(%CEzf) + hyolAL(U) + A—n(ZXEzf)AL(U),
L L
and thus taking into account that C > 1,
M
Ji S MwyAE> f, U] + E{2n[2ACE2f] + hyolALU).
Next, we estimate J,. We have
S = p[4RV/ L()F (-, 2)du(z)]
G
M
<M / €@ PI4RMALVF (-, )] dp(2)
AL Je

M
_ —{ / + / }z(z)p[4RMALvF(-,z)]du<z)
AL v Jow

ME;
Ar

<e+ ApLU).

To evaluate J3 = p[2v1>], let V be a compact subset of G. As in Theorem 4.3, we
have

J3<p [SU /GK(', t, fOxe\wv () du(t) — f(')XG\V(')H

+p|8v /GK(-J, FOxvaa, () du@) — f()xvaa, ()

+po|8v /G K(G,t, fOxvng,())du@) — f()xvns, ()

+p|8v /GK(-J, FOxvac, () du@) — fxvne, ()

So by using Theorem 4.2 in place of Theorem 4.1, arguing as in Theorem 4.3 and
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taking into account that 16vRA; M E| < C,, we obtain

J3 < M{n(.CEa>f xvna,) + n(.CExf xvag,)} + nrCEx2 f xc\v1+3MA'S, 1
+3E3AL(Ue) + pl16vf xG\v] + p[16vf xvna,l+ p[16vf xvns,,]
+ 3¢ + p[8vry £

Since f € Lg+n(G) and | f(s)|] < 400, a.e. in G, by finiteness of n and p, and

following the same reasonings as for Theorem 3.3, for the fixed ¢, there exists an
integer m such that

NACE: f xvna,] < €/2M, nl(1/m)CEAxv] < &/2M,
pll6vf xvnazl < e, pl(1/m)lovxy] < e.
So we have
Mn[ACE: f xvnaz] + Mn[ACE> f xvnB;] + p[16vf xvna;] + p[16vf xvns,,]

< £/2 + My[(1/mACEaxy] + pl16vf xynay] + pl(1/m)16vxy]

< 3e¢.
Thus finally we obtain
J3 < 68 +3MAL'S, 1 +3E3AL(Ue) + Mn[ACEx f xG\v]
+ pl16vf xc\v1+ p[8vram () f ()],

and thus the assertion follows. O

Remark 4.4. Note that, as in Theorem 4.2, the inequality stated in Theorem 4.4,
becomes simpler if the function v is independent of the parameter t € G. If we drop
the assumption of absolute continuity and finiteness of the modulars p and 5, we can
obtain the following less sharp inequality

pv(Tf — )] = May[rEs f, U]
M
+ A—L{Zn[%CEzf] + hy0tAL(U)

MEs
AL(U) +¢&,
Ar

+ p[2vro() f ()] +

by involving the function ry(s) instead of r,, (s) and assuming ro f € Lg (G).
Moreover, it is clear that the inequality given in Theorem 4.4 is also satisfied if we
replace the term p[8vrz(-) f ()] by p[8vro(-) f()].
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4.5 Convergence theorems

In the following, we will use the Remark 2.1 (a) about the absolute continuity of a
monotone modular.

Here we apply the results of the previous sections to the approximation of a function
in a modular space by means of nets of nonlinear integral operators of the form (4.1).
For the sake of simplicity, for a set of indices, let W C R be chosen as in Section 3.2,
ie. W = [a, wo[ with wy € R, endowed with its natural order and the notions of
convergence specified in Section 3.2.

Let {¢ }wew be a family of functions in & such that C’, D’ in (N.1) are absolute
constants for any w € ‘W sufficiently near to wo, i.e., there exists w € W such that
C’, D' are independent of w €]w, wo[ and in (N.2) the uniformity is also taken with
respecttow € W, w €]w, wyl i.e., the family {&y }wew, w>w is uniformly equicontin-
uous on every compact subset V. C G. Moreover we will assume that the functions
¢y are uniformly bounded by a measurable, locally bounded (i.e. bounded on every
compact subset V C G) function ¢ : G — R™, for w €]w, wol.

Let K = (Ky)wew, Ky € K, be a family of kernel functions and for the
corresponding family of functions L, € £, we will put £ =~£w, Ap, = Ay,
AL, (U) = Au(U), A} (U) = AL (U), A} = Al A, = Au, SyL = S
So.L = Sw,p and 1y (5) = 1y w(s), for every s € G,w € W. If the family {K,,}
satisfies the above conditions, then we will write {Ky}wew € Kiz,)-

Thus we have a family of nonlinear operators T = {T},}, defined by

(Tw f)(s) Z_/C;Kw(s,t,f(t))du(l), s €G,

forany f € DomT = (1, cy Dom T,,.

In order to state the modular convergence theorems, we introduce a concept of
singularity for the family of kernel functions {K },cw, in a similar manner as in
Section 3.2. We will say that the family {K}yew, with Ky, € K, , is a singular
kernel if the following assumptions hold:

(j) there exista; > 0,ay > 1 such thata; < ||£y]l1 < az and Avw < ap, for every
weWw,

(jj) forevery U € U, we have A} (U) + A, (U) — 0,as w — wy,

(jjj) foreverym = 1,2, ..., there is a positive measurable function p,, : G — ]R(J)r
such that for w € W, sufficiently near to wo, 7y, (s) < pn(s) forevery s € G,
and

lim 7y (s) =0,
w—wy

ae.fors € G, foreverym = 1,2, ...
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Finally the family { K, }wew is called strongly singular if in (jjj) we have

lim rp(s) =0,
w—>wa

and there is a measurable function p : G — ]R(J)r such that rq_, (s) < p(s), for every
w € W, sufficiently near to wy.

It is clear that strong singularity implies singularity. The above concepts are
equivalent to those introduced in Section 3.2 for kernels of type

K(s,t,u) = Ki(t —s,u).

We begin with the case of singular kernel {K,,} € X {1§w} (see Section 4.1).

Theorem 4.5. Let {Ky}wew € J{{lgw} be a singular kernel. Let p be a monotone,
absolutely finite, absolutely continuous, J-quasiconvex with a constant M > 1 and
strongly subbounded modular on LY%G). Let f € Lg(G) N Dom T be such that
g =¢f € Lg(G) and py, f € Lg(G),for everym = 1,2,.... If Sy, — 0, as
w — w, then there exists & > 0 such that

lim p[A(Tyf — f)]=0. 4.11)

w—)wa

Proof. Without loss of generality we can assume that there is a measurable function
p:G— ]R(T such that p,, < p,foreverym € N, and g’ = pf € Lg(G). We will
use the notations of the previous section. Putting &, f = gy, we have |gy| < |gl,
for w € W, sufficiently near to wg and so we can replace g by g, in the inequality
of Theorem 4.3, written with T,,. Let f € Lg(G) such that g, g’ € Lg(G). There is
a > 0 such that p(Maf) + p(Mag) < +o00 and p(ag’) < +00. Let0 < a < 1 be
the constant from absolute continuity of p. Choose A > 0 such that 40ARva, < ac,
where v = max{C, C’, D'}, 5AMRa, < a and 20\ < a. Let ¢ > 0 be fixed and we
can suppose ¢ < 1. Thus for a suitable compact V = V,, we have

2p[40ARvas xG\v gl + p[40ARvas xg\v f] < 3e.
Note that from the assumption f € L?(G), it follows that

lim w(VNA,) =0.
m—+00

Thus, since the modular p is finite and absolutely continuous, by using the local
boundedness of the function ¢, there is m such that

Mp[40AMvas f xvna.] + Mp[40AMvarg xvna,.] < €

and
pl40AMvax(1/m) xv] + p[40AMvax(1/m)¢ xv] < e.
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So we have

Mp[A0AMCRaxg xG\v] + Mp[40AM CRasg xvna.]
+ Mp[4OAM CRazg xvna;] + p[40Af () xG\v]

+ p[40Af () xvnas] + p[40Af () xvnB.-]
< He,

for a suitable constant H > 0. Let w = w, be such that {{y }yefw,we[ 1S uniformly
equicontinuous on V,. By Theorem 2.4, we can choose the constant a, independent
of &, such that

M
—wp(ag,Ug) < &
ai

for a suitable U, € U. Thus, since SAM Ray < a, we have

M
—wp[SAMRazg, U] < &.
ai

Furthermore we can suppose that U, is chosen in such a way that

v, (2) =  sup  sup [{u(s +2) — Sw(s)| < ,
weW,w>w seV, b Y 10ARay

for every z € U,. Thus for any w € ‘W, w > w, we have
p[IOKRf/ Ly (D)Ty, (2) du(z)] < plaef] < MeplaMf].
U

Now, for every w € ‘W, w > w, we deduce
pMTyf — < (H+ De+ MeplaMf]
M
+ a—Aw(Ue){Zp[IO?»MR@Cg] +hp 0}
1

+ p[51Au (Us)gl + p[10ARC A}, (Ue)g] (4.12)
+ p[10ARD' A}, (U,) f1

M
+ p[20)ﬁ‘m,w(-)f(-)] + 3aSw,p'

Next, for the fixed ¢ > 0, we have

lim {Ay,(Ue) + A, (Ue)} =0,

w—wy
and so since f, g € Lg(G), we obtain

PI5AAL(Ue)gl + pl10ARC' AL, (Us)g] + p[10ARD' Al (Uo) 1 — 0,  w — wy.
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Finally, since r7,,(s) — 0 a.e. and in view of the inequalities 77, (s) < p(s) and
20A < a, we can apply Theorem 2.1, obtaining

P20Arm7w f1— 0, w — wy

and so the assertion follows from (4.12) and from the assumption S, , — 0, letting
w —> w . O

Remark 4.5. We remark that in the case of a strongly singular kernel, the proof of
the previous theorem is easier, because we only have to estimate the term R in
the inequality of Theorem 4.3. This estimation is immediate taking into account of
pf € Lg (G), and Theorem 2.1.

Analogously we can obtain a modular convergence theorem when K, € JC;/;,
with ¢ € W', and {¢y }wew is uniformly bounded by a constant. As in Theorem 4.4
we can assume, without loss of generality, that the constant is equal to 1. This happens
for example for convolution integral operators on Rﬁ in which we have ¢, () = 1,
for every t € Rﬁ, w € W. As in Section 4.4, in this case we do not need ¢, € N.
Under this assumption on {,,}, we have the following result.

Theorem 4.6. Let {K}yew € J{{vgw} be a singular kernel. Let p, n be two monotone,

absolutely continuous modulars on L°(G), and let us suppose that p is finite and
J-quasiconvex, and n is absolutely finite and subbounded. Assume that the triple
{p, ¥, n} is properly directed, and let the function F from the definition of the class
V' satisfy (x). If Sw,y, — 0, as w — w then for any f € L97+p(G) N Dom T there
is A > 0 such that

lim p[MTy f = f)I=0.

w—>w0

Proof. The proof follows by similar arguments, by applying Theorem 4.4, Theo-
rems 2.1, 2.4 and the singularity assumption. Details are left to the reader. O

Remark 4.6. Note that in the case of strongly singular kernels the proof of Theo-
rem 4.6 is easier, because the inequality of Theorem 4.4 is simpler.

4.6 Order of approximation in modular Lipschitz classes

As in Section 3.4, we now study the degree of modular approximation in modular
Lipschitz classes, where the family {K,,} satisfies a strong singularity assumption.

Let 7 be the class of all functions 7 : G — R, continuous at 6, with () #0
fort #6.
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Here we recall the definition of modular Lipschitz classes, generated by a modular.
Let p be a modular on L%(G). For a fixed T € T, we define the class

Lip, (p) = {f € LY(G) : Ja > 0 with pla| f(t + ) — f ()] = O(z (@), t — 6}

Let E be the class introduced in Section 3.4, i.e. the class of all functions & : W —
R™, such that §(w) — O as w — wy .

For a given & € E, we introduce the concept of &-singularity for a family of kernel
functions {Ky }yew € Kz, in a similar manner as in Section 3.4.

We will say that { K, }ew is a strongly &-singular kernel if the following assump-
tions hold:

(6.1) forany w € W, (14 (C())"DLw(6, ) = Ly, ) + £,(-) € L'(G),

(£.2) there exist two constants ay, ap such that a; < A, = ||[€y]|l1 < ay, for any
we Wand Ay, < ap,

(£.3) for any neighbourhood U of 6

AL (U) + Ap(U) = 0G W),  w— wy,

(§.4) foreveryw e W
row(s) = 0Ew)), w— wy,

uniformly with respectto s € G.

For a kernel {K,}, € K {lg,,,} or X {‘gw}, Y € W, we will consider the family of
integral operators T defined by

(T f)(s) =/GKw(S,t,f(t)))dM(t) (4.13)

for f € DomT.

In this section we will give two approximation theorems for {7,} in modular
Lipschitz class Lip, (p), fora givent € 7.

At first we will state an approximation theorem in the case {K,,} € X {lgw}' To this

end we will assume that the family of “weights” {¢,, },yew C N satisfies the following
assumptions:

(N’.1) there are (absolute) constants C’, D’ > 1 such that

(@) Cw(z+5) < C'Cw(s)+ D',

forevery s,z € G,w € W,
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(N’.2) the family {¢,,}wew is uniformly equicontinuous on G, in the sense that,
1Cw(s) — Cw(z+ )| =0(t(2), z—0,

uniformly with respecttos € Gand w € W,

(N’.3) there is a non-negative measurable function ¢ : G — Rg such that ¢, < ¢,
for every w € W.

Example 4.4. Let G = (RT, ). Let {a,,} be a net of real numbers such that 0 < a <
oy < b, for two fixed constants a, b. We can take the following family of functions

{é‘w}»
v O0<t<l,

é‘w(t)z 1, r>1.

Then {¢,,} satisfies the conditions (N'.1)—(N".3)

As before, for f € Lg(G), we will put g(¢) = ¢(@) f (), t € G.
We begin with the following theorem.

Theorem 4.7. Let p be a quasiconvex and J-quasiconvex with a constant M > 1,
monotone and subbounded modular on L°(G) with constant C and function h,. Let
T €T,& € Ebefixed. Let {¢ }wew be afamily of measurable functions with properties
(N".1)=(N’".3). Suppose that {Ky}wew € Jf{lgw} is a strongly &-singular kernel. Let
us assume further that there is U € U such that

/ Ly(@)T(D)du(z) = 0E W), w— w,. (4.14)
U
If f e Lg(G) N Dom T is such that g € Lip,(p), then there is a > > 0 such that

pIAMTwf = I =0Ew)), w— wy.

Proof. From the properties of ¢ and since g = {f € Lip,(p), there are « > 0 and
U € U such that

pla(gz++) —g()] < Br(2),
|§w(Z +5) — fw(s)| < Bt1(2),

forany z € U,s € G,and w € W. We can assume that U also satisfies (4.14). Let
A > 0, be so small that SAMRA < «, p[10CM Razrg] < +00, p[AMf] < +00 and
PIAM (| f|+ 18D] < +oo.
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We first estimate | Ty, f — f|. We have

1Ty f(s) = f($)] =

/ Kw(sytvf(t))dt_/‘ Kw(sytaf(s))dt

G G

+ / Ky(s,t, f(s))dt — f(s)
G

< /Gwa,z)(;w(z))—l;w(z+s)R|f(z+s)—f(s>|dz

4 fG KuGs, 1, f(s)di — [(s)

< /G L0, 2)(&w(2) ™ Rlgz + ) — g(s)| dz
+/GLw(e,z)(¢w<z>)1R|f<s>||¢w<s)—cw<z+s)|dz
+ ‘ fG Ky(s.t, f(s))dt — f(s)

< /G Ly(0,2)(¢w(2) ' RIg(z +5) — g(s) dz
+/ULw<e,z)<cw<z>)1R|f(s>||cw<s>—f;w<z+s)|dz
+R|g(s)|/G\U Loy(0,2) (4w (2)) " dz

+ le(s)lf L8, 2)¢(z +5)(Cw(2) " dz
G\U

+ ‘/ Ky(s,t, f(s))dt — f(s)].
G

Now, by the quasiconvexity and monotonicity of the modular p and by (4.14), for the
above fixed A, we obtain

M
pIA(Twf — )] = a—l/GLw(9,z)(Cw(Z))_Ip[SXMRazlg(Z+-) —8()lldz
+p 5R}¥|f(')|/I;Lw(evz)@w(z))_llfw(')_fw(Z+')le:|

+p 5R?~|g(-)|/ Lw(G,Z)(Cw(Z))_ldz} +
L G\U

+p 5RXC'D/(|g(-)I+|f(-)I)/ Lw(G,Z)dZ}
L G\U
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+,0[5k /GKw(-,t,f(-))dt—f(-)H
=Lh+b+5L+1i+Is.

To estimate I;, we have

I

M

el {/ _|_/ }Lw(e, 2w (@) pISRAMaz|g(z + ) — g()|1dz
ar Vv Jew

=I{ +1I{.

By assumption (4.14) and since g € Lip,(p) and SRAMa, < o, we have

M _ _
=2 [ L0096 10 dz = 0w, w > uj.
U
Next by 7-boundedness of p, we have

M
If < — Ly(0,2)(Gw(2) " p[10AM Raz|g(z + -)[1dz
ay Jo\u

M
+— Ly(8,2)(Cw(2) " p[10AM Razgldz
air Je\u

M
M 0 p[10C M Rasig] + o) [ L0, 2) (6w (@)~ dz
ai G\U

IA

=0¢EWw)), w—w,.

Now we estimate />. By the assumptions on {,,} we obtain
L=p [5R>»If(-)| /U Ly(©.2)w @) 2w () — Cwlz + -)Idz]

<p [SABRfoLw(G,Z)(Cw(Z))_lf(Z)dZ]-

Hence, by assumption (4.14), there are w € W and B’ such that for every w € W,
w>w,

/ Ly(0, 2)(¢w(2) '1(2)dz < B'E(w).
U
We can assume B = B’. Thus we obtain the estimate

I < p[SAB*RE(w) f1.

Finally since §(w) — 0 as w — w,, we can choose w € W in such a way that
SBzRé(w) < 1, forany w € W, w > w, and so, from quasiconvexity of p, we have

L < SB>RMEW)p[AMf] = O(E(w)), w — wy.
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By using the strong &-singularity, with similar reasonings, we easily obtain the esti-

mation
I=p [5Rk|g(-)l /G\U Ly (0, 2)(Cw() ™! dZ] =0Ew)), w— w,.
For 14 we have

Iy = p [SRKC'D’(Ig(')I + If(')l)/ Ly (0,2) dz}
G\U

pISRAC'D'PEw)(|f + IgD],

IA

for a suitable constant P > 0. Thus, as in the estimations of /> and I3, we get
Iy = 0EW). w— wy.

In order to estimate the term

Is =,O|:5)»

/ Ky (o1, f())dr — f(')H,
G
we remark that by the £-singularity, we have

‘/C;Kw(s,t,f(S))dt—f(S) < ru@®[f)],

and since g, (s) = O (§(w)), uniformly with respect to s € G, we easily deduce
I5=0¢Ww)), w-— w,.
Thus, taking into account of the previous estimates, we finally obtain
pMTy f = HI=0EW), w— wy,

and so the assertion follows.

O

Now we state an analogous approximation theorem for the family of operators
T = {Ty}wew, when the kernel {K,},, belongs to the class Jf{llgw}, where ¢, : G —

R™ is a family of essentially bounded functions on G. In this case we do not need the
assumptions (N'.1)—(N’.2), while we will suppose that (N'.3) is still satisfied with an

essentially bounded function ¢.
We have the following

Theorem 4.8. Let v € V', and let p,n be two modulars on L°(G) such that p
is quasiconvex and monotone and n is strongly t-bounded and monotone. Let us
suppose that the triple {p, V¥, n} is properly directed. Let T € T,& € E be fixed
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and let £y, : G — R be a family of essentially bounded functions satisfying (N'.3).

Suppose that {K }yew € K {ﬁw} is a strongly & -singular kernel. Let us assume further
that there is U € U such that

/Uﬁw(z)f(z) du(z) = 0 w)), w— wy, (4.15)

and that the function F from the definition of the class V' satisfies condition (%) of
Section 4.2 and there is ) > 0 such that p[M'F(-,2)] = O(t(z)), as z — 0. If

f e Lg+n(G) N Dom T, is such that f € Lip,(n), then there is v > 0 such that

plv(Twf — HI=0EwW), w— wy.

Proof. Without loss of generality, we can assume that ||y, ||cc < 1, for every w € W.
By assumptions, there are « > 0, B, B’ > 0 and U € U such that

nla(fz+-) = fO)] = Br(2),
PN F (-, 2)] < B't(2)

for any z € U. Let A €]0, 1[ be fixed in such a way that n(2LE> f) < 400 and
MEy; < . Letv > Osuchthat3v < A,3MRE va; < C;, and 3M Ra, < )/, where
C,. is the constant corresponding to A in the definition of properly directed triple. As
in Theorem 4.7, we have

Ty f(s) = f($)] = /Gﬁw(Z))Rl/f(z+s,|f(z+S)—f(S)I)dM(Z)

+ ‘_/G Ky (s, 1, f(s))du(t) — f(s)

< /G tw@REW (@ B2l f 2 +5) — £ dn2)
+R [ () F (s, 2) du(2)
G

+

_/GKw(SJ,f(S))dM(t)—f(S)

So, applying the modular p and the property of the triple {p, 1, ¥}, we have

M
pv(Tw f = ] = —/Gﬁw(z)n[llf(erJ — fODIdp(2)

ay

M /
+ _/ Cw )PV F(-, 2)]1du(z)
ar JG

+p[3v /;Kw(-,t,f(~))du(t)—f(')u
= Jl +J2+J3
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Now J; and J3 can be estimated as in Theorem 4.7, while for J, we have

S =< M :B’f Ly (2)T(2) dp(z) + E3/ Ly (2) dM(Z)} =0(Ew)), w— wy.
U G\U

a

Hence the assertion follows. O

In the following section we apply the theory developed to a particular case: the
nonlinear Mellin-type operators.

4.7 Application to nonlinear weighted Mellin
convolution operators

Here we consider G = (R, -), equipped with the Haar measure du(t) = 1/t.

We will consider a neighbourhood base of the neutral element 1, defined by Us =
11-8, 1+3[, for§ €]0, 1[and we will put U§ = RT\Us. Let W C R be any half-line
of type [a, +o0[, considered with its natural order. Let {Hy }wew, Hy : RT — R(J)r
be measurable functions, and {I";,},yew, [y : R — R be equi-lipschitzian functions
(and we will assume, for the sake of simplicity, that the absolute Lipschitz constant
is equal to 1) such that Iy, (0) = 0, for every w € W. Let {ay}ywew be a net of real
numbers such that o, — 0, as w — 400, and we can assume that o < a,, < 8,
for w € W, where o, 8 € R, « < 0 < . Then the family of functions {¢,,}, with
Cw(t) = %, is uniformly equicontinuous on every compact set V C R™ and satisfies
(N’.1) uniformly with respect to w € W.

The functions L,, : RT x RT — Rg, defined by

Ly(s, 1) = 1% Hy(ts™")
are homogeneous of degree o, i.e. §,(¢) = t*». In this particular case, we have
€y(2) =2 % Ly(l,2) = Hy(z), ze€R*
Ay = [€wllt = Hwll1,
Ay = 1O Hy Ol

dz
Ay(d) = / i Hy(2)—,
Ug <

dz
AL, ) = / 2% Hy (2) —.
U Z
For the sake of simplicity we limit ourselves to strongly singular kernels. We will
define
My (s, t,u) = 1% Hy (65~ DT (),

fors,t € RT,u € R. Then My, is a (L,,, 1)-Lipschitz function, and we will assume
{M,} e KX {1{1”}, to be a strongly singular kernel, and we will put rg 4, (s) = 7y, (s).
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In particular we have

r oo d
oo Lw2t) / 0 Hy () = —1].
u 0 4

ry(s) = sup

u#0

Now we consider some conditions in order that (jjj) of Section 4.5 is satisfied. Let us

suppose that (j), (jj) of Section 4.5 hold. Then in particular A/, < aa, for sufficiently
large w € W. Moreover we have

r
sup sup w(u)‘ <1

weW u#0 u

Then we can take p(¢) = 1 + az sup,,cw s“*, and

Iy ()
u

lim sup
w—>+00 u#o

Al s — 1’ =0,

for almost all s € R*. For example, this happens when 'y, (1) — u, uniformly on R
and A}, — 1,as w — +o0.
For the given kernel {M,,} we define the family M of integral operators via

+00
(«wa)(S)=/ t"‘"’Hw(ts_l)Fw(f(t))%, s eRT. (4.16)
0

For any w € W, we call the family M a nonlinear Mellin convolution operator with
weight t*» or nonlinear Mellin convolution operator of order o,.

Taking ., = 0, for every w € W, we obtain the family M of nonlinear Mellin
convolution operators, defined by

+00

_ _1 di
(Mw f)(s) = A Hy (257 )T (£ (1)) =

fors € R*. The functions L, (s, t) = Hy(ts~1), w € W, are homogeneous of degree
0,i.e., ¢y(t) = 1forevery w € W,t € R,
Example 4.5. For every n € N, let us consider the function
n+1+4oy,
(n + I)S,ITXJO,s[(l‘), s,t € RT,

where {0} is a sequence of real numbers such that o, — 0. Then the corresponding
family of operators M, given by

K tn+1+ot,1 dt
(Mn f)(s) = (n+ 1)/ T (f (@) —,
o S t

is called the nonlinear weighted moment operator with weights t*» , and taking o,, = 0
for any n, we obtain the nonlinear moment operators.
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Thus the previous theory can be applied to the families Ml = {M},,, M = {M},, w €
W, in modular function spaces, in which the modular satisfies the conditions of Sec-
tion 4.5. In particular, just as an example, we can consider the Orlicz space Lﬁ (R1),
for a fixed ¢-function ¢ € ®, (see Example 1.5 (b)), in which the modular functional
takes now the form

I,(f) = /R er@ndr,

for f € LO(R*). We assume that the generating function ¢ : R(‘)" — R(J)r is J-quasi-
convex, with a constant M > 1. For completeness we report the assumptions on ¢.

(¢.1) ¢ is continuous and nondecreasing,
(9.2) 90) =0,¢w) > 0,foru > 0, and lim,_, ;o0 ¢ (1) = +00,

(¢.3) thereis M > 1, such that, for any g € LL(R*) with ||g]li =1land g > O,

+00 +oo
@ ( fo If(t)lg(t)t‘ldt) <M /O e(M|f()Dgt)e " dt,

forany f € LY(R™).

If ¢ satisfies (¢.i),i = 1, 2, 3, we will write ¢ € ®. We will denote by L(ﬁ (R™) the
Orlicz space generated by ¢, with respect to the Haar measure du(t) = dt/t, i.e.,

LY@®RY) = {f € L°R™) : I,(Af) < 400 for some A > 0}.

As a consequence of Theorem 4.1, under the previous assumptions on the functions
H,, T, we have Lﬁ (RT) c Dom M, for any w € W (the reader is encouraged to
find the proof). We have the following corollary.

Corollary 4.1. Let ¢ € ® and let us assume that the functions M., satisfy the above
conditions of singularity. Let f € L{(R") be such that pf € LY, (RY) and ¢f €
LY (RT), where ¢ = sup,,cyy s“v. Then there is ). > 0 such that

Jim ,0(M f = )] =0.

In the same manner we can obtain a version of Theorem 4.6, for the family M
of operators M,,, where the functions 'y, satisfy a (L, ¥)-Lipschitz condition, in
the case of Orlicz spaces generated by two ¢-functions ¢p, ¢, such that the triple
{Iy,, ¥, 1,} is properly directed. In [34] there are given some conditions on ¢, ¢2
in order that the above triple is properly directed. In this instance, it is clear that the
function  is taken independent of ¢ € G.
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Remark 4.7. Let us consider now the linear case, i.e. I'y,(#) = u, for every w € W.
In [15] there are given some results about modular convergence of these operators,
when the homogeneity of the kernel is taken with respect to the same function ¢,
for every w € ‘W. But in this case we obtain M,, f — ¢f in modular sense and in
general we cannot replace ¢ f with f. Indeed if for example o, = o, foreveryw € W,
condition (jjj) of the singularity assumption is satisfied only if « = 0, i.e., {(t) = 1,
for every t € R*. However taking a net of “weights” of type ¢, () = t**, such that
oy — 0, we can improve the result given in [15], obtaining an approximation theorem
for f.

4.8 Bibliographical notes

The study of linear integral operators with homogeneous kernel (of degree «) takes
its origin in the theory of inequalities. The classical Hardy, Hardy—Littlewood and
Schur inequalities involve some special linear integral operator acting on L?-spaces.
Extensions of these inequalities are obtained by several authors. We quote here Flett
[100], E.R. Love [136], [137], F. Feher [97], P. L. Butzer and F. Feher [58], C. Bardaro
and G. Vinti [29], I. Mantellini and G. Vinti [142]. Operators with homogeneous
kernels are also considered in connection with fractional calculus by A. Erdélyi in
[96], H. Kober [128], K. B. Oldham and J. Spanier [169]. Also, the moment kernel
may be considered as a function with degree of homogeneity zero if we consider a Haar
measure, and of degree —1 if we consider the Lebesgue measure on R*. Results on
moment type operators, in connection with approximation theory, fractional calculus
and calculus of variations, are given by many authors. We quote the contribution of C.
Vinti [198], who obtained, for a general class of linear operators, some convergence
results with respect to some integral functional of Calculus of Variations. These results
were again taken into consideration by F. Degani Cattelani [84], [85], for convergence
in perimeter, and by C. Fiocchi [98] for convergence in area. Moment-type operators
in approximation theory in L”-spaces were also considered by F. Barbieri [8] and
C. Bardaro [9]. In connection with fractional calculus, we recall here the contribution
of Zanelli [212] and C. Fiocchi [99], in which an application of the moment operator
theory to Hausdorff dimension of some fractal set is studied.

The general definition of homogeneity given in Section 4.1 takes its origin in
the paper [31], in which some estimates of linear integral operators with general as-
sumptions of homogeneity are considered with respect to some variational functional.
Inequalities for such operators are also given in Musielak—Orlicz spaces in [32].

Approximation theorems in function spaces by means of general linear integral
operators of type

fG Ku(s. 0 f (1) du(0),

with ¢-homogeneous kernel {K,,}, were given firstly in [35], in Musielak—Orlicz
spaces, and then in [15] for general modular spaces.
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The results given in this chapter for nonlinear operators were obtained in [43].
For Orlicz spaces some convergence results, for nonlinear integral operators with
homogeneous kernels (in the sense given in Section4.1), were givenin [37]. Here, as an
application, a nonlinear version of Mellin convolution integral operator is introduced.
The definition of these operators is also further generalized by introducing a weight
function (given essentially by the function ¢ from the homogeneity assumption).

Classical Mellin (linear) convolution operators came from the theory of the Mellin
transform, extensively studied by P. L. Butzer and S. Jansche [61], [62], [64], [65], in
which the foundations of Mellin approximation theory are given.

The Urysohn-type operators considered here are related to convolution operators
by means of the homogeneity assumption on the kernel, in the sense that these assump-
tions represent a generalization of convolution. By considering a suitable definition of
singularity and by stating a density theorem in modular topology, in [13], [14], C. Bar-
daro and I. Mantellini obtained convergence theorems in Orlicz or Musielak—Orlicz
spaces for families of general Urysohn-type operators, without any homogeneity as-
sumption.

Finally we wish to point out that the assumption of homogeneity given here is a
useful tool in studying approximation theory by means of operators with homogeneous
kernels in abstract topological groups. The definition proposed here is different from
that used in abstract harmonic analysis (in homogeneous group, see e.g. Folland—Stein
[102]).



Chapter 5

Summability methods by convolution-type
operators

5.1 An estimate of p[a(Ty f — T>g)]

In Chapter 3 we were concerned with the problem of approximation of a function f €
Lg +7(§82) NDom T by means of a family T = (7;)wew of convolution-type operators
in the sense of p-convergence in a space L(/))(Q) (Theorem 3.3). Here, we shall
apply the same operators to summability problem of a family ( f,,)wew of functions,
i.e. to the investigation of the problem of convergence of the transformed sequence
(Ty fw)wew. The main problem is: under what conditions, a convergent family
(fw)wew is transformed in a convergent family (7T, f,,)wew. Here, convergence is
meant in the sense of the respective modulars.

In this chapter we will deal with a measure space (€2, ¥, u) with a o-finite and
complete measure p, where 2 is equipped with a commutative operation + : 2x Q2 —
Q.

First of all, we need a fundamental inequality similar to the inequality (3.4) in
Chapter 3.

Let Ky : 2 - R and K3 : 2 — R be two Carathéodory kernel functions and let
0<LieL'(Q),0<LeL(Q);lety: QxRS — R, be a function belonging
to the class W (see Section 3.1), defining the Lipschitz condition. We consider the
respective convolution-type operators

(T1f)(s) =/§2K1(I,f(t+S))dM(t), (ng)(S)=/QK2(t,g(t+S))dM(t)

for f € DomT] and g € Dom 7T>. Let us write pi(t) = Li()/||L1ll1, p2(t) =
Lo (#)/I| L2l forz € 2 and let us put L 2 = max(||L1|D1, [[L2]l1)-

Theorem 5.1. Let p be a monotone, J-quasiconvex with a constant M > 1 modular
on L) and let n be a modular on L°(S2), subbounded with respect to the operation
~+ with a constant C > 1 and a function £ € L°°(Q). Let K| be an (L1, v)-Lipschitz
Carathéodory kernel function and let Ky be an (L, {¥r)-Lipschitz Carathéodory
kernel function such that {p, ¥, n} is a properly directed triple. Finally, let U € X,
0 <A<land0 < a < C/(6ML;),i = 1,2, be arbitrary. Then for every
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f, g€ L(,)](SZ) N Dom 71 N Dom T, there holds the inequality

pla(Ti f —Thg)l < p [60! /U(Kl(f, S@+) — K2, [+ ) du(r) ]
+ M[n(ACf)
+ 11€]loc] (/ p1(t) du(t) +/ Pz(t)du(t)> (5.1
Q\U Q\U
+ M[nAC(f —g) + I€xulleo]

+ M[nQ2ACS) +n(2rCg) + 2[€] ] /Q\U p2(t) du(1).

Proof. Since

I(T1/)(s) = (T28)(s)| =

/Q(Kl(t, J+5) = Ka(t, f(r+5))du(r)

+ /Q(Kz(t, f@+s) — Ka(t, g(r + 5))) dpu(r)

)

/Q(Kz(l, fa+) — Ka(t, g(t + ) du(r)

k]

so by monotonicity of p, we have for arbitrary o > 0

pla(l f —Thg)l < p [201

/Q(Kl(l, fa+2) — Ko, f(t+4)))du(r)

+p|:2a

Ik

Denoting the two terms on the right-hand side of the last inequality by / and 71,
respectively, we have

pla(Ti f —Thg)l <1 +11.

We shall estimate / and /] separately. Since p is a modular, we have

p(fi+ 2+ f3) = pGBfi)+pBf)+pBf)

for f1, f2, f3 € L%(2). Hence by monotonicity of p we obtain for every U € %

)

+p[6a/ |K1(t,f(t+~))|du(t)}+p[6a/ IKz(t,f(t+-))|dM(t)]
Q\U Q\U

15,0[60{

/U(Kl(t, fa+) — Ka(t, f(t+4)du(r)

Denoting the three terms on the right-hand side of the last inequality by I’, 11’ and
111, respectively, we have

I<I'+1I'+11I.
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We shall estimate 71’. Since K; is an (L1, ¥)-Lipschitz kernel function, by
J-quasiconvexity with constant M > 1 of p, we obtain

n=m o p1@®)pl6a MLyl (2, [ f(r+)D]1du).

Applying the assumption that {p, 1, n} is a properly directed triple with any A €]0, 1]
and the respective C €]0, 1[ we obtain for 0 < 6aM||L||; < C)

I'<Mm prOnALf (@ 4+ ) 1dup(r).
Q\U

Since 7 is subbounded with constant C > 1 and function £ € L°°(R2), we get
11" < M[n(ACf) + ||5I|oo]/ p1(t) dpu(t).
Q\U
Similarly, we get for 0 < 6aM||Ly||; < C,, the inequality

111" < M[n(ACf) + ||5||oo]/ p2(t) du(r).
Q\U

)

Pl(t)d,u(t)Jr/ Pz(t)du(t)>-
U Q\U

Consequently, we obtain the estimation

I§p[6a

/U(Kl(l, fa+) = Ka(t, f(t+4)))du(r)

+ M[n(ACS) + [1€]l00] (f
Q\

Now, we are going to estimate //. Since p is monotone and J-quasiconvex with
constant M > 1, and K7 is (L3, ¥)-Lipschitz, we obtain

11

IA

) [20:/9 |Ka(z, f(t+-) — Ka(t, g(t + 1)) du(t)}

A

M/sz(t)p[MMlleIhW(t, |ft+) =g+ )D]du).

Since {p, ¥, n} is a properly directed triple, so taking for a given A €]0, 1[ the number
o > 0so small that 0 < 2aM||L>||; < C;, we obtain

Il < M/sz(t)n[K(f(t +) — g+ -Nldu@).

Let us put
v(A)Zprz(t)n[)»(f(tﬂLJ—g(t+‘))]du(t)
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for arbitrary A € ¥. Then we have for arbitrary U € ¥
I <Mv(U)+ Mv(Q\U).
Since 7 is subbounded, we obtain

v(U) = nlAC(f =1+ l€xullco

and

v(Q\U) < / p2(OnQ2Af (¢t + ) du(r) +/ p2(On(2Ag(t +-)) du(t)
Q\U Q\U

IA

[nACS) +n(2ACg) + 2|[£]| 0] /Q\U p2(t) dpu(r).

Then
IT < Mn(AC(f = &) + [I€xullo]
+ M[n(2ACS) +n(2rCg) + 2IIKIIOQ]/ p2(t) dp(r).
Q\U
Estimations of / and /1 give together the inequality (5.1). O

5.2 Conservative summability methods

Let W be an infinite set of indices defined as in Section 3.2, 1i.e., W C [a, wg[, Where
a € Rand wg € R, wg > a, or wyg = +00 and wy is a point of accumulation of W.
Convergence with respect to W is defined as left-hand side convergence w — wy,,
w € W. In Section 1.2 we defined p-convergence, i.e., modular convergence with
respect to amodular p on X for a sequence ( f,,) of functions f, € X, by the condition
P(A(fn—f)) = Oasn — oo forsome A > 0. This definition may be transferred to
the case of convergence =, immediately. We say that a family ( fy,)wew of functions
fn € X, is p-convergent to a function f € X, if there exists a A > 0 (depending

on the family (f,)ywew) such that p(A(fy, — f)) 2 0. In the same manner one
may define || - ||,-norm convergence of (fy)wew to f by means of the condition

I fw— flp 50. Similarly as in the case of Theorem 1.2 it is easily proved that

I fw — fll, = 0 if and only if there holds p(A(f, — f)) — 0, for every A > 0.
Obviously the same holds if we replace the norm || - || , generated by a convex modular

p, by the F-norm ||| - |||, generated by a general modular p. Besides p-convergence
and || - |[,-norm (or ||| - |, — F-norm) convergence, one may also introduce the
p-Cauchy condition and the || - || ,-Cauchy condition (or ||| - || ,-Cauchy condition) for

families (fy)wew. We say that the family (fy,)wew with f,, € X, forallw € W
is p-Cauchy or satisfies the p-Cauchy condition, if there exists a A > 0 such that for
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every ¢ > 0 there is a left- neighbourhood U, of wq such that p(A(fy — fy)) < € for
every w, v € U N W. We say that the family ( fy)wew with f,, € X, forallw € W
is || - || p-Cauchy (resp. ||| - |ll,-Cauchy), or satisfies the || - || ,-Cauchy condition with
respect to the norm || - ||, (resp. F-norm ||| - |||,), if for every & > 0 there is a left-
neighbourhood U, of wq such that || £, — full, < € (resp. || fw — fulllp < &) for
every v, w € U, N W. Itis easily observed (compare with the proof of Theorem 1.2)
that (fu)wew is || - || ,-Cauchy (resp. ||| - |||,-Cauchy) if and only if for every A > 0
and ¢ > O there exists a left-neighbourhood U, of wg such that p(A(fy, — fv)) < €
forallv,w e U. N W.

We may treat a family T = (T )wew of convolution type operators (3.7) as a
method of summability saying that a family (fy,)wew of functions f,, € DomT

is (T, p)-summable to a function f € Lg(Q), if Ty, fu il f in the sense of the

p-convergence, i.e. p(A(Ty fw—f)) = 0Ofor sufficiently small A > 0. A summability
method generated by the family T of operators will also be called the T-method. We
shall say that the T-method of summability is conservative from Lg () to Lg (2),orT
is (n, p)-conservative, if for every family ( f,,))wew suchthat f,, € Lg (2)NDom T for
w € W, n-convergentto a function f € Lg (R2), there exists a function g € Lg (2) such
that the family (7, fu )wew 1S p-convergent to g. If we have always g = f, we call the
T-method to be regular or permanent from L?, (RQ) to Lg (£2). We say that a T-method

is Cauchy conservative from Lg () to L?) (), oris (n, p)-Cauchy conservative, if for
every family ( f,,)wew suchthat £, € L(,)](Q) NDom T for w € W which is n-Cauchy,

there holds Ty, fy € Lg (2) for w € W and the family (T fi,)wew is p-Cauchy.
Instead of the pair of modulars (77, p) one may take norms (or F-norms) generated
by these modulars, which leads to the notions of (|| - |5, || - [| »)-conservativeness and
(Il - I, II - I p)-Cauchy conservativeness (or (||| - [ll;, Il - |ll,)— conservativeness and
(I N5 Il - llp)-Cauchy conservativeness) of a T-method.

It is obvious that an (5, p)-conservative T-method is (7, p)-Cauchy conservative,
as well as that a (|| - ||, || - |lp)-conservative T-method is (|| - I, || - Il,)-Cauchy
conservative and a (||| - [ll,, Ill - Il p)-conservative T-method is (||| - [ll;, Il - [l ,)-Cauchy
conservative. In order to obtain a converse result we need the space Lg(Q) to be p-
complete or || - || ,-complete (||| - ||| ,-complete). We have to define what p-completeness
of L%(Q) means. A sequence (f;) of functions f, € X,,n = 1,2,..., is called
(p, A)-Cauchy with a constant ). > 0, if for every &€ > 0 there is an index N such that
p(A(fu — fm)) < eforall m,n > N. The modular space X, is called p-complete,
if for every A1 > O there exists a number A, > 0 such that every sequence (f;,),
fn€Xpforn=1,2,...,whichis (p, A1)-Cauchy with A1, is p-convergent with A,
toan f € X,,i.e. p(A2(fn — f)) — 0asn — +oo. There holds the following

Theorem 5.2. (a) If the modular space Lg(Q) is p-complete, then every p-Cauchy
Sfamily (fy)wew is p-convergent to a function [ € Lg(Q).
(b) If the modular space Lg(Q) is || - || p-complete (resp. ||| - ||l ,-complete), then
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every || - || p-Cauchy (resp. ||| - | o-Cauchy) family ( fuw)wew is || - || p-convergent (resp.
Il - Il p-convergent) to a function f € Lg(Q).

Proof. We limit ourselves to the proof of (a). Let (fy)wew be p-Cauchy, i.e. there
existsanumber A; > Osuch thatforevery ¢ > 0 there is aleft-neighbourhood U, of wg
with the property that p (A1 (fyy — f)) < eforallw € U.NW. Let (w,) be a sequence
of elements of W such that w, — w, asn — +00. Then p(A1(fw, — fuw,)) < €if
m, n are so large that w,, w,, € U,. Hence the sequence ( fy, ) is (0, A1)-Cauchy with
the constant A ;. Since Lg(Q) is p-complete, it follows that there exists an f € Lg(Q)
and a number A > 0 such that p(A2(fy, — f)) = 0asn — 4o00. Let us observe
that the function f is independent of the sequence (w,). Indeed should f and g be
two limit functions relative to sequences (wj;) and (v,), then

1
P<§)k2(f - g)) < pra2(f — fwn)) + P()\Z(fwn - fv,,)) + P()kz(fvn - g)).

Since (fw)wew is p-Cauchy, the right-hand side of the last inequality tends to O as
n — 4oo. Thus f = g. Since the sequence (w;) was arbitrary, we conclude that

p(A2(fuw — f)) = 0. 0

The following corollary may immediately be deduced from Theorem 5.2.

Corollary 5.1. (a) If Lg () is p-complete, then any (n, p)-Cauchy conservative
T-method is (n, p)-conservative.

Md) If Lg (2) is || - || p-complete (or ||| -||| ,-complete), then any (|| -1y, || - || p)-Cauchy
conservative (||l - llly, Il - lll p)-Cauchy conservative) T-method is (|| - |, || - || p)-con-
servative ((|Il - llly, Ill - Il p)-conservative).

In various circumstances it is advisable to consider a weaker notion than that of
(n, p)-conservativeness of a T-method of summability, considering not all families
(fw)wew, but only uniformly bounded families. We say that a family (fy)wew
of functions f,, € Lg(Q) for w € W is uniformly bounded, if f,, € L°(2) for
w € Wand sup,,cw Il fwlloo < +00. A T-method will be called a boundedly (n, p)-
conservative method (resp. boundedly (n, p)-Cauchy conservative method), if for
every uniformly bounded family (fy)wew, fu € Lg (2) NT for w € W, which
is n-convergent to a function f € L?I(Q) (resp. which is n-Cauchy) there holds
Ty fu € L%(Q) for w € W and the family (7, fi)wew 1S p-convergent to some
g € Lg(Q) (resp. is p-Cauchy). Analogously, one may define that the T-method is
boundedly (||-||;;, I|-]| »)- conservative or boundedly (||| ;. |- || ,)-Cauchy conservative;
the same may be done in the case of the F-norms ||| - [||;, and ||| - [,

In order to formulate a theorem on (), p)-conservativeness and bounded (7, p)-
conservativeness of a T-method of summability we shall need still some special proper-
ties of the kernel K = (K ) ew. We say that the Carathéodory kernel K = (Ky,)yew
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consists of near kernel functions, if for every § > 0 there exista ws € W, Uy C Uop
such that for every U € Ug, U C Up and all v, w € [ws, wo["W, u € LO(Q) there
holds the inequality

‘/U[Kw(t, u(®)) — Ky (t, u()]dp(@)| < 6. (5.2)

We say that the Carathéodory kernel K = (Ky,)yew consists of almost near kernel
functions, if for every § > O and y > 0, y < +o0, there exist a ws,, € W and
Uyp € Uo, such that for every U € Up, U C Up and all v, w € [ws ,, wo[NW,
lu(t)| < y for u-a.e. t € Q2 there holds the inequality (5.2). Obviously, if a kernel K
consists of near kernel functions, then it consists of almost near kernel functions.

Theorem 5.3. Let {2, U, X, u} be a correctly filtered system with respect to the
operation +. Let p be a monotone, J-quasiconvex modular on L°(Q) such that
XQ € Lg(Q). Let 1) be a modular on L°(R), bounded with respect to the operation

+ with a constant C > 1 and a function £ € L% (2) such that £(t) l) 0. Let
K = (Ky)wew be an (L, ¥)-Lipschitz Carathéodory kernel, where v € W, L =

(Lw)wew, S =supycw |Lwl1 < +00and py(t) = Ly(t)/|| Lyl for t € Q satisfy
the condition

f puw @) du(t) > 0 for every U € Uy. (5.3)
Q\U
Suppose that {p, ¥, n} is a properly directed triple. Let T = (Ty)wew, where Ty, are

defined by (3.7). Then

(a) if K consists of near kernel functions, then the T-method is (n, p)-Cauchy
conservative;

(b) if K consists of almost near kernel functions, then the T-method is boundedly
(n, p)-Cauchy conservative.

Proof. Let (fy)wew be n-Cauchy and let C > 1 and A > 0 be arbitrary. We have for
arbitrary w, w; € W the inequality

n(2ACfw) = n2AC(fw — fuw) +2ACfu,]
N@AC(fu = fw)) + 1(4rCfy,).

A

As (fw)wew is n-Cauchy, there exist Ag > 0 and wy € W with n(4roC(fyy — fu,)) <
1/2 for w, wy € [wa, wo[NW. Since fy,, € L(,)](Q), we may choose 1 so small that
n(4roCfuw,) < 1/2. Hence we have

nQ2ACSy) <1 54
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for 0 < A < Ao and w € [wz, wo[NW. Now, we apply inequality (5.1), replacing

Tls T25 K17 K27 p17 p27 f9 g by Tw, T’Us KUH KU! puh pv» fw, fl}srespeCtlvely' Apply_
ing (5.4), we obtain for 0 < A < Ag and w, v € [wy, wo[NW the inequality

p[a(waw - vav)]
<y [6«1 /U (Ko (ts fult + ) = Ko(t, fult + ) dp(0) }
+ M+ 1€l0) ( / Pt dp(t) + / pu(t)du(t)) (5.5)
QU Q\U
+ MINCA G — fu) + 10 loo]

+2M(1 + IIKlloo)/ po(t) du(t)
Q\U

for every U € Up.

Puty = sup,,cw |l fwlloo; Obviously, y < 4-ooif and only if ( fy,)wew is uniformly
bounded. Let us take an arbitrary ¢ > 0. Since xq € L%(Q), there exists a § > 0
such that

p6adxa) <¢e/l.

By assumptions (a) and (b) there exist wz € W, wz > w; and Uy € Ug such that for
arbitrary U € Up, U C Up, v, w € [w3, wo[NW and u € LO(2) such that |u(r)| < y
u-a.e. t € , there holds the inequality (5.2). Here, y = 400 in the case (a) and
y < +o00, y fixed, in the case (b). Thus we have

‘/;](Kw(t, Ju +5)) = Ky(t, fu(t +5))du)| <

for U € Uy, U C Up, v, w € [wz, wo[NW and all s € Q2. Hence we obtain, by
monotonocity of p, the inequality

o [6a

for U € Ug, U C Uy, v, w € [w3z, wo[NW. Since £(t) i) 0, we may suppose
U € Uy be so small that

/U(Kw(t, Ju+) = Ky, fu+ ) du(t)

] < p(badxq) <e/7

€
I€xulloco < ™
We fix a set U satisfying the above inequalities. Since
/ pu(®) du() = 0,
Q\U

there exists a wqy € W, w4 > w3 such that

M(1+ ||5||oo)/ pw(®)du(t) < E M1+ ||5||oo)/ pu(D)du(t) < :
Q\U 7 Q\U 7
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for w € [wa, wo[NW. Thus, the inequality (5.5) leads to an estimation

6
pla(Ty fu — Ty fu)] < ?8 + Mn(CA(fuw — fv)

for v, w € [wa, wo[NW. Since (fy)wew is n-Cauchy, there is a ws € W, ws > wy
such that Mn(CA(fy — fv)) < €/7 for v, w € [ws, wo[NW. Thus,

pla(Ty fu —Tufu)l <€

for v, w € [ws, wo[NW. Consequently, the family (7, fi)wew is p-Cauchy. O

Let us remark that version (a) of Theorem 5.3 is less interesting in the case when
the kernel functions are linear (Example 3.1), i.e., Ky, (¢, u) = K(¢)u. In this case
inequality (5.2) becomes

' fU (Ko (t) — Ro@)ut) dp()| < 5.

Taking u(t) = u € R, an arbitrary constant function, this is true only if
Jy Kw®du@t) = [, Ky()du(r) foraU € Ug and w,v € W, w, v sufficiently
near wo.

5.3 Regularity of methods with respect to different
modulars

Now we shall indicate a possibility to investigate the (n, p)-regularity of a T-method
directly, without applications of the Cauchy condition. The (1, p)-regularity of a T-
method means that if (fy,)wew With f,, € Lg(Q) N Dom T is n-convergent to an
f e Lg (2), then (Ty, fu)wew is p-convergent to f. This could be obtained applying
the inequality

pla(Ty fu — NI = pR2a(Ty fu — fu)l + pR2a(fu — ],

if we only know that n-convergence f,, 5 f implies p-convergence f,, =5 f; the
first term on the right-hand side of the last inequality could be estimated by means of
an inequality of the form (3.4).

In order to solve the problem, when n-convergence f, 5 f implies p-convergence
Sfw = f we introduce the following relation. Let  and p be two modulars on L%(2).
We shall say that p is weaker than n, if there are positive constants «, 8, y and c such
that for every f € LO(Q) there holds the inequality

plaf) < Bn(rf) +ec.

Moreover we will say that p is strictly weaker than n, if the previous relation holds
with ¢ = 0.
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Example 5.1. Let us take

p(f)=/g<p(|f(t)|)du(t) and n(f)=/91ﬂ(|f(t)l)du(t),

where @, ¢ are g-functions and @ (€2) < +oo (Example 1.5 (b)). Let us suppose that
there exist positive constants «, b, ag, by and ug such that

plau) < by (aou) + bo
for every u > ug. Let f € LO(Q) andlet A ={r e Q: |f(®)] = uo}, B=Q\ A.

Then we have

plaf) < /A @l FO) dul) + /B o(auo) du(o)

< /A by (aol F O dpe) + /A bo dpu(t) + g(auo)(B)
< bu(aof) + (bo + p(auo) ().

This means that p is weaker than 7. If by = 0 and g = 0 the modular p is clearly
strictly weaker than 7. In case when ¢(#) = u” and ¥ () = u? for u > 0 the above
condition for ¢ and ¢ means that 0 < p < g < +o0.

Theorem 5.4. Let p and n be modulars on L°(Q2) such that p is quasiconvex and
weaker than n. Then LS(Q) - Lg(Q). Moreover if p is strictly weaker than n, the
embedding is continuous both in the sense of modular convergence and in the sense
of norm convergence in the spaces Lg(Q) and Lg(Q).

Proof. Let f € L%(€2) and 1o > 0 be such that n(iof) < +oo. Let A > 0 be such
that Ay < Ag. Since p is weaker than 1, we have

plarf) < BniyAf) +c < Bnrof) + ¢ < +o0.

Since p is quasiconvex, with a constant M > 1, we finally deduce that f € Lg(Q).

Now let us assume that p is strictly weaker that n, i.e. ¢ = 0. Let g, € L?I(Q)
forn = 1,2, ... be asequence such that g, — 0 in the sense of n-convergence. Let
X > 0 be such that

lim n(yig,) =0.
n—+00
Since p is strictly weaker than n we have

plargy) < Bn(yAgn),

and so the sequence g, — 0 in the sense of p-convergence.
The proof in the case of norm convergence follows the same lines. O

Arguing as in the proof of Theorem 5.4 one immediately obtains the following
result.
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Theorem 5.5. Let p and n be modulars on L°(2) such that p is quasiconvex and
strictly weaker than 1. Let (fy)wew be a family of functions f,, € Lg (RQ),weWw.

@ If fu = f in the sense of n-convergence, then f, Bt f in the sense of p-
convergence, t0o.

®d) If fu il f in the sense of || - ||,-convergence (or ||| - |||,-convergence), then
Sfw il f inthe sense of || - || p-convergence (or ||| - ||| ,-convergence).

We may now prove the following theorem on regularity of a T-method.
Theorem 5.6. Let {2, U, X, u} be a correctly filtered system with respect to the
operation +. Let p be a monotone, J-quasiconvex with constant M > 1 modular on
LO(Q) and let n be an absolutely finite, absolutely continuous and bounded modular
on L%Q) such that p is strictly weaker than n. Let K = (Ky)wew be an (L, ¥)-
Lipschitz, strongly singular Carathéodory kernel such that {p, V¥, n} is a properly

directed triple. Then the T-method defined by the family T = (Ty)wew of operators
given by (3.7) is (n, p)-regular.

Proof. By Theorem 3.2, inequality (3.4) and Lemma 3.1 (a) we have
pla(Ty fu — fw)] < Mwn()\fwa U) + M[2n2ACfy)

o (5.6)
+ 1€l oc] fQ\U pw®) du(t) + pQar,” fu), weW,

forUe,0<1<1,0<a<C@MS)"and f,, € LY(Q) N Dom T, where
S = supyew I Lwll1 < +00. First, we estimate w;, (Afy, U). By the boundedness of
n, we have fort e U and w € W

NAfuw @ +2) = fu(D] = nBAfu @+ ) — f+ )]
+nBAf @+ ) — fD]+nBAC) — fw())]
< NBAC(fw — HI+ @) +nBAf( + ) — f())]
+ nBA(fw — )]
< 2nBAC(fw — HI+ I€xullcc + wyBAf, U),
for w € W. Hence
wy(Afuw, U) = 2n[3AC(fu — O+ €xullco + @y BArf, U).
Inserting the above inequality in (5.6), we obtain the inequality
pla(Ty fu — fw)l = 2MnBAC(fuw — ]+ M[€xulleo

+ Mw,GAf, U) + M[2n(2LC fy) 5.7)

T lleloo] / o A () + pQar® £,).
Q\U
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Let ¢ > 0 be given. Since 7 is bounded, we have ||€xy |l l> 0. Moreover, by

Theorem 2.4, we have w, (2Af, U) LN 0 for sufficiently small A > 0. Hence there
existaset U € Up and A €]0, 1] such that

M|€xulloo <€/6 and Mw,(3Af,U) <¢/6

for 0 < A < A;. Since fy, = f in the sense of n-convergence, there exist w; € W
and 0 < Ay < Xj such that

2M[BAC(fw — )] < &/6

for w € [wy, wo[NW and 0 < A < Xp. Moreover, arguing as in the proof of
Theorem 5.3 we may easily show that taking A, sufficiently small and w; sufficiently
near to wg we have

nQACfy) < 1

for A €]0, A2[ and w € [wy, wo[NW. Hence, from (5.7) we obtain the inequality
£
pla(Ty fu = fu)] < 5+ M2+ [1€]o0) f Pu @ du() + pQary) fu) (5.8)
Q\U

for w € [wy, wo[NW, where U € Uy is the set we have fixed above, 0 < A < Ay
and 0 < o < C,(2MS)~ L. Since K is singular, we may take a wy € W such that
wy € [wy, wol and

MI2+ [1€]1oc] f pu(®) du(t) < £/6
Q\U

for w € [wy, wo[NW, where U is the above fixed set in Up. Hence, by (5.8), we
obtain

2
pla(Ty fu — fuw)] < 55 + p(zaréjo)fw)

for @ > 0 as above, say 0 < @ < g and w € [wy, wo[NW. Thus, if 0 < @ < «g and
wy < w < wp, w € W, we have

pla(Ty fu — fu)l < %s + pl4ar (fu — £+ par f). (5.9)

Since p is quasiconvex and strictly weaker than 1 so, by Theorem 5.4, Lg (RQ) C Lg ()
and this embedding is continuous in the sense of modular convergence. Consequently,

since fy, € L?Y(Q) forwe W, f e LS(Q) and fy, el f inthe sense of n-convergence,

we obtain f € Lg(Q) and f,, 5 f in the sense of p-convergence. Thus, there exist

B > 0and w3 € W with w3 > wy, such that p(8f) < e/6 and p[B(fw — f)] < €/6
for w € [w3, wo[NW. Since K is strongly singular, there holds rl(uo) £ 0. Hence there

isawyq € W, wg > w3 such that 4aor$) < B for w € [wyg, wo[NW. Consequently,

pdaorV f) <e/6 and  pldaor® (fu — )] < €/6
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for w € [wa, wo[NW. Hence we obtain, applying the inequality (5.9),
pla(Ty fu — ]l <e¢

for 0 < a < ag, w € [wg, wo[NW. Thus, choosing for example y < «, we may
write

p[g(waw — DI = ply(Ty fu — fu)l+ oly (fw — )]

and thus T, f, = f in the sense of p-convergence O

Let us still remark that similarly as in Theorem 3.3, the assumption of strong
singularity of the kernel K may be replaced by a weaker one of singularity; however,
the modular p must be finite and absolutely continuous. We are not going into details
of the formulation of the theorem in this case. Let us also remark that Theorems 5.3
and 5.6 are not referred to summability methods T = (Ty,)yew with Ty, = T for
w € W, since in this case the condition (5.3) is never satisfied.

Example 5.2. Let us take €2 = Z the set of all integers, X the o -algebra of all subsets
of Z, n the counting measure on Z. Then we have for f(j) = a;, j € Z,

/Q f@du@) =) a;.

JEZ
Let W = N the set of all positive integers, wg = +o0o. We take a linear kernel
K = (K22, ie. Ky(j.u) = a{"u for j € Z,n € N. Then obviously |K,(j, u) —

n=1"

K,(j,v)| < |a;")||u —v|foru,v e R, j € Z,n € N. This means that the kernel K
is (L. )-Lipschitz with I = (L,)S2, where L, (j) = |a;"|, and with ¥/ (j, 1) = u

n=1>
for u > 0. We have ||L,||| = ZjeZ |aj(.”)|, whence the condition L, € L'(Q) for

n € N means that the series ) ieZ a}") are absolutely convergent for n € N and the

condition S = sup,,cy L, |l1 < 400 means that sup,, Zjez |a}")| < +00. Moreover,
we have p,(j) = ||L,1||1_1Ln(j) for j € Z,n € N. Now, let U be the family of sets
U C Z such that Z \ U is finite or empty. Taking Uy = {j € Z : |j| > k} for
k=1,2,... we see that Uy = {U1, Us, Us, ...} is a basis of the filter U. We are

going to interpret what singularity and strong singularity of the kernel K means. We
have for U = U, € Uy

£ la)|
puw®)du(t) = / forn € N,
/Q\U v j:Z_k 1 Lnll

and so the condition (5.3) is equivalent to
k (n)
la i | _

lim Z —
n—+oo &~ ||L,|{
j=—k
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fork = 1,2, ..., and this is equivalent to the condition
jay™|
im J =0, foreveryj€Z. (5.10)
n=>+00 || Lyl

Moreover, we have for/ =1, 2, ...

1
= s 23 a1 =[Ea - 1=
JEL

I=1<|ul<l jez

forn =1, 2, .... Hence singularity of K is equivalent to strong singularity of K and
it is given by the conditions (5.10) and

. (n)
| S =1. .
. —}r-il:loo a; 1 (5.1
JEZL
Let us still examine the assumption that the kernel K = (K,)7° | consists of almost

near kernel functions. Let § > O and y > 0 be given and U C Uy; then the inequality

(5.2) is equivalent to
5
‘Z(a(.n) —agm)) < —.
J J y
jeu
Thus, the assumption on K to consist of almost near kernel functions means that for

every ¢ > 0 there exist N € N and k € N such that for every set U C Z with |j| > k
for all j € U and for any m,n > N there holds the inequality

‘Za;") — Zaj(m)‘ < €.

jeU jeu

5.4 Bibliographical notes

Problems of summability by means of families (7, ),cw of convolution-type nonlinear
integral operators were started in [159], and continued by B. Tomasz [190], [191].
Theorem 5.1 with the estimation (5.1) was proved as Theorem 6 in [147], Theorem 5.3
as Theorem 8 in [147]. The contents of Section 5.3 have not been published.



Chapter 6

Nonlinear integral operators in the space BV,

6.1 Preliminaries

In this chapter we will discuss some properties concerning nonlinear integral operators
of convolution type applied to functions belonging to the space of functions with
bounded g-variation (see Example 1.5(f)) on an interval / C R.

For the sake of simplicity we will consider the (unbounded) interval I =]0, +oo[,
endowed with its Lebesgue measure. As in Example 1.5 (f), we denote by X the
space of all real valued functions defined on /. However, we always assume that the
functions in X are measurable. We recall here the definition of the ¢-variation of f.
Let ¢ be a ¢-function (see Example 1.5 (b)). We define

n
Vo () = Vo(fs ) =sup D~ o(1f (i) = f(si-1D), 6.1)
o “
j=1
where the supremum runs over all finite increasing sequences {s1, ..., s, }, withs; € I,

j=1,...,n.

Recall that the functional f —— V (f) is not a modular functional on X, because
Vo (f) = O only implies f = constant. However, as remarked in Example 1.5(f), it is
easy to show that the functional p : XX — RBL defined by

p(f) =1f@|+ Vy(f), (6.2)

for every f € X and a fixed a € I, is a modular functional. The corresponding
modular space X, is the space of functions with bounded ¢-variation in / and it is
usually denoted by BV, (1).

Alternatively, it is possible to define the above modular space, by observing that
two functions f, g such that f — g = constant, have the same @-variation. Thus,
introducing in X the following equivalence relation

f~g iff f— g = constant,

the functional V,(f) is a modular on the quotient space X;/ ~. Using this approach,
we identify functions which differ by an additive constant.

Let us remark firstly that functions f € BYV,(/) are bounded and the limit
lim,_, o+ f(¢) exists and it is finite. We will prove the second assertion (bounded-
ness being trivial).
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Obviously, if the limit exists, then it is finite, otherwise the function f could not be
bounded. Now, putting L = lim,_, o+ f(¢),] = lim,_, o+ f(¢), if the assertion is false,
then T = L — [ > 0. Then there are two decreasing sequences {f;};en and {s;};en in
I, with t; — 0 and s; — 0, such that f(s;) — L and f(#;) — [. We can choose the
points #; and s; in such a way that#; _; < s; < t;. In this way for sufficiently large i, j
we have, for any A > 0, (A| f(s;) — f(#)]) > ¢(A(r/2)). Taking a finite sequence
of numbers {£1, ...&x} where {&,} are alternatively of type #; and s; for sufficiently
large indices i, j, we obtain

N-1

Y el fE) = FEADD > (N = DM (t/2)),

v=1

and so f ¢ BV,(I).
As a consequence, we can define the modular functional (6.2) using the formula

p(f) = 1f O]+ V().

6.2 Some estimates in BV,

One of the main problems concerning the modular space BV, (1) is that the generating
modular (6.2), (or the functional (6.1)), is not monotone. Moreover it is neither finite
nor absolutely continuous. Thus the study of the properties of nonlinear integral
operators in this setting is quite difficult, and a large part of the theory developed in
the previous chapters, leads actually to various open problems.

In this section we will obtain some inequality related to the functional (6.1). As
consequences we will obtain some embedding theorems.

At first we introduce the class of operators. Let K : I x I x X — R be the
functional defined by

K(s,t, f) = K, f(s1)),

for any s, € I and f € X, where the function K : I x R — R is a measurable
function satisfying a (L, ¥)-Lipschitz condition of type

|K (1, u) — K(z,v)| < L)Y (2, [u — v]),

foreveryt € Rt,u,veR,where L € L! (R™) and the function Y belongs to the class
W (see Section 3.1). We will assume always that ¥ is a concave function with respect
to the second variable. Note that we do not need the assumption that K (s, ¢, 0) = 0.
We will denote the class of such functions K by K. We define our operator by means
of the formula

(T)s) = /R+ K(t, f(sn))dr, (6.3)
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where f € Dom T, the set of all functions f € X such that 7 f is well defined and
[(Tf)(s)| < 400, forevery s € R*. In order to obtain some inequalities, that lead to
embeddings theorems, we introduce an assumption similar to those used in Section 1.4.
Given a ¢-function ¢ : ]R(J)r — R(‘; , we will assume the following condition.

There are a p-functiony : R(')" — R(J)r and a measurable function v : RT™ — Rar such
that

oY (t,u)) <v@®)yw), foreveryueRI, teR’, ¢ eW. (6.4)
Note that this assumption does not imply that the modulars generated by the variations
Vi, V,, and the function v determine a properly directed triple (see Section 1.4).

The following estimation relates the spaces BV, (/) and BV, (I); namely we
establish that T’ maps Dom T' N BV, (I) into BV, ([).

Theorem 6.1. Let K € K, ¢ a convex ¢-function, v € V and let y be a ¢-function
satisfying condition (6.4). Let moreover a be a constant with 0 < a < 1/Ar, where

0<AL ::/ L(t)dt < +o0, AY =/ L(t)v(t)dt < +oo.
R+ R+

Then, if f € Dom T, there results
Vola(Tf)] < AL AYVy[aAL f].
Proof. We may suppose V,[aA[ f] < +o0o. Let D = {s;};=0,1,..~ be an increasing

finite sequence in /. Fixed arbitrarily an index i € {1, 2, ... N}, we obtain, from the
Lipschitz condition of K,

(TF)si) = (TF)sion)] < /H; IKG FGit) — K@, fim)di
< /R LOW . £ (sit) — f(sioan)]) d.

Now, by monotonicity of ¢, Jensen’s inequality and concavity of v (¢, -), we obtain:

N
> @@l (Tf)(si) = (T (si-))

i=1

IA

N
>t [ LOV1F60 = Fsmnbdn
i=1

) N
- L(Z)Z<p(aALW(LIf(Sil)—f(Si—lt)I))dt =<

A
LU o

IA
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IA

L/ L(t)ﬁ: (Y (2, aALlf(sit) — f(si—10)])) dt
AL R+ i:1§0 s L i i—1

IA

L/ L(t)v(t)i (aALlf(sit) — f(si-it)]) dt
AL R+ iz])/ L i i—1

1
<o [ LOvOV,laaLf1dr = A7 ALV aL £
Ar Jr+
the assertion follows by the arbitrariness of the set D. O

Remark 6.1. Let now consider the particular case when (¢, u) = u, for every ¢t €
R* and u € R ; then the Lipschitz condition takes now the form

|K (1, u) — K(t,v)| < L(t)|u — v|

foreveryt € R*,u,v € R, being L : Rt — Rar a summable function. This is the
so-called “strongly-Lipschitz” condition. In this case condition (6.4) is satisfied as
an equality with y (1) = ¢(u) and v(¢) = 1 forevery t € RT. Hence, A} = Aj and
so Theorem 6.1 gives the estimate: Vy[a(T f)] < VylaAL f] where a is a positive
constant. So in this case Theorem 6.1 states that 7 maps Dom T N BV, (RT) in
BV, (RT). The same estimate is obtained in the particular case of a linear operator of
the form

(Mf)(s) = /W K (1) f(st)dt

when 0 < Az = [py K(1)dt < +o0. If Ap = 1, as it happens for moment type
kernels, i.e. K; (t) = At* 1 xj0.1((t), t € R¥, A > 1, and a = 1, then Theorem 6.1
gives

VoM f1= Vol f] (6.5)

where (M), f)(s) = [p+ K (1) f (st) dt.
Inequality (6.5) is the so-called p-variation-non augmenting (diminishing) prop-
erty for M f.

6.3 A superposition theorem in BV,

In fractional calculus some generalized concepts of variation are used. In particular,
by using some classical /inear integral operators, like Riemann—Liouville fractional
integrals, as example, a concept of fractional variation was introduced in [212]. It is
defined simply by taking the variation of the transformed function under the integral
transform considered. Thus, for example, denoting by £, f the Riemann—Liouville
integral of f of order @ €]0, 1[, defined by

(Po f)(s) = T ! F_JO dr, se€ R+’ VS LllOC(RJr)’

(I—-a)Jo (s =0
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the a-variation of f in / is defined by

V) = VLD = V(Paf).

The Riemann-Liouville fractional integral is a linear integral operator with kernel

1 1
H(s,1) = - G —0° X10,s[ (1),

and the domain of this operator is LllOC (R™) (see [145]).

It is remarkable that this concept is used in order to describe some geometric
properties (e.g. Hausdorff dimension) of some fractal sets (see e.g. [99]). For this
concept of variation, some “variation diminishing” properties for integral operators
were given (see e.g. [212]).

We can obtain a general approach to this problem, by introducing a concept of
(U, p)-variation, where U is a general nonlinear integral operator. So given U we can
define

V() =V, Uf),

for any f belonging to suitable subspaces of X.

Thus it seems to be very natural to study some “variation diminishing” properties
for these concepts of variation. This involves some estimate concerning the superpo-
sition of integral operators. Here we give some contribution to this problem.

We consider the following nonlinear integral operators

WfHgs) :/ H(t, f(st))dt, f e€DomU
R+

and

(Tf)(s) =/ K(t, f(st))dt, feDomT,
R+

being H, K : Rt x R — R measurable functions with H, K € X, where H is
(M, 6)-Lipschitz, i.e. there exist & € W, (concave with respect to the second variable),
and a measurable function M : Rt — R(J)r such that

|H(t,u) — H(t,v)| = M), lu —v]),

foreveryt € R*, u, v € R. Moreover we assume 7 f € Dom U. In order to establish
an estimate for the composition of the nonlinear integral operators, we will need of
the following condition (x).

Let ¢ be a convex ¢-function, ¥, 0 € W, there exist o, A : ]R(‘)|r — RS’, where o is a
convex g-function and X is a p-function, and measurable functions vy, vy : RT — R(J)r ,
such that the following relations are satisfied

PO, w) <vi@o W), oW, u) <vOrw), ueRi,reRT. (¥
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Example 6.1. A class of functions satisfying the conditions () is given for example
by taking ¢(u) = e — 1,0 > 1land 0 € W of type 6(t,u) = 6(u). So we put
o(u) = @) = 7w l,vi =1,i = 1,2 forevery t € RT, and there results
that ¢ is a convex ¢-function and o (1) may be a convex (or not convex) ¢-function,
(this depends on the form of the function 8 and on the exponent «).

Now we are ready to state a sufficient condition under which the operator (U o T)
maps Dom 7' N BV, (R™) in BV, (R™).

Theorem 6.2. Let H, K € K, with H (M, 0)-Lipschitz, 8 € V. Let ¢ be a convex
@-function, ¥ € WV and let o and ) be the functions of the condition (x). Furthermore

let us suppose

i) 0< AL :=/ L(t)dt < +o0, AP :=/ L(Hva(t)dt < 400,
Rt Rt

i) 0 < Ay :=/ M((t)dt < +o0, A"A}, :=f M@t)vi(t)dt < 400,
R+ R+

and let a be a constant with 0 < a < min {m, ﬁ} Then, if f € Dom T, there
results
V] Ul 4 V2
Ay MAL
Vola(U o T) f] <= —=VolaAu(Tf)] < VilaAy AL f1.
Am AyAL

Proof. We may suppose Vy[aAyAr f] < +o0; let D = {s;}i=0,1,.. v be a finite
increasing sequence in R*. Fixed arbitrarily an index i € {1,2, ..., N}, we have

(U oT)f(si) = (UoT)f(si-1)| = /R+ |H(t, (Tf)(sit)) — H(t, (Tf)(si-10))| dt
=< /ﬂ§+ M@0z, [(Tf)(sit) — (Tf)(si-11)]dr.

Now, by monotonicity of ¢, Jensen’s inequality, concavity of 8 (¢, -) and condition (%),
we may write

N
D @@lUoT)f(si) = U oT)f(si-1))

i=1

IA

N
pr(a /R+ M@0, [(Tf)(sit) — (Tf)(si—1t)))dr)
i=1

1 N
— | M®Y  9@Aub, |(Tf)(sit) = (Tf)(si1)))dt <

A
M JR* i—=1

A
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N
< ﬁ - M(U;w(@(t,aAMl(Tf)(Sﬂ)—(Tf)(Si—1t)|))dl
N
< L[ M(t)vl(t)ZG(aAMKTf)(S'I)—(Tf)(s'flt)Ddt
= Ay - a i i
|
=

1 A
—/ M@)v1(1)VolaAu(T)ldt = Vo laAu(TH)].

Applying Theorem 6.1, there results

)  ap
—VolaAy(Tf)] < ———=VilaAy AL f],
Ay f Ay AL S

and the assertion follows by the arbitrariness of the sequence D. O

Remark 6.2. In the particular case when 0 (¢, u) = ¥ (t, u) = u, foru € RT, then in
condition (x) we may take o (u) = A(u) = ¢(u) and v;(¢) = 1,i = 1,2 and hence
we obtain

Vola(U o T) 1 < VylaAu(TH)] < VylaAu AL 1.

The same result is clearly obtained when both U and T are linear operators; in this
case Ay = [p+ H(t)dt and A := [p, K(¢)dt. In particular when U is the linear
operator of Riemann-Liouville we obtain an inequality concerning an estimate of 7 f
in terms of the fractional variation of a function f € LlloC (RY)NDomT.
Analogously, the number V,,[(U o T) f] may be interpreted as the (U, ¢)-variation
of Tf. In this respect, Theorem 6.2 gives an embedding result for 7', with respect to

the U-Musielak—Orlicz variation.

6.4 Dependence on a parameter: the space BV 0

In this section we extend the results given in Sections 6.2 and 6.3 to a more general
situation when the ¢-function generating the Musielak—Orlicz variation depends on a
parameter. As before we will consider I = R as base measure space, provided with
its Lebesgue measure. Let ¢ : RT x R(J)r — Rg be a function such that ¢(z, -) is a
@-function, for every ¢t € R™, and ¢(-, u) is Lebesgue measurable for every u € R(J)r .
For the sake of simplicity we denote by & the class of all these functions and when
@(t, -) is also convex, for every t € R, we write ¢ € ®.

We give now the generalized concept of variation. Let D = {f;};—0,1,..n C Rt a
finite increasing sequence and let s; € [t;_1,#;] fori = 1,2,..., N. Then, for every
f € X, we define the generalized Musielak—Orlicz p-variation of f in RT by means
of the following formula:

N
Vo) = Vol f. 11 = snggo(si, |f ) = fai-DD

i=1
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where the supremum is taken over all the finite sequences D = {t;};=0.1.. v C R
and the intermediate points {s;};=1,...n- .

As for the Musielak—Orlicz variation, the functional V, is not a modular functional,
but we can define a modular by putting

) =1 f @]+ V().

where a is a fixed point in /. Finally we denote by ﬁ(p (1) the corresponding modular
space, called the space of functions with bounded generalized Musielak—Orlicz ¢-
variation in I.

Now, in order to obtain estimates in this setting, we need of the following growth
condition on the function ¢, called s-boundedness condition which represents a suit-
able modification of the boundedness condition for ¢-functions depending on a pa-
rameter (see formula (1.9), Example 1.10), which takes into account of the variation
functional.

A function ¢ € @ will be said s-bounded in I = R*, if there exist measurable
functions & : RT — ]RE)F and [ : Rt x RT™ — R and positive constants N1, N, such
that, for every finite, increasing sequence {so, s1, ..., sy} C R™T, there results

@(t,u) < Nth()e(tz, Nou) + |AUC, 2); [si—1, siD|
foreveryt € [s;_1,5;] CRT,i=1,2,...,N,ze R, u ¢ RE{ and where
AU, 2);5 [sic1, D) = 1(si, 2) — 1(si—1, 2).

If (p(tA3 u) is a convex function with respectto u € R}, for everyt € R™, we will write
¢ € ® and in the s-boundedness condition we may take N1 = 1.

Example 6.2. Here we give a nontrivial class of functions ¢ € &, which satisfies
the s-boundedness property. Take ¢(t,u) = t%0(u), a € R,t € RT, where o is a
@-function of u. Then if « = 0, p(t, u) = o (u), clearly satisfies the above condition
for N1, N > 1,h > 1 and for arbitrary functions / or for suitable Ny, No, h and [.
If « # 0, it is sufficient to choose /(¢, z) = kB(z), for some constant k € R(J)r and
B :RT — Rar , (i.e. [ is a constant function with respect to t € R™). In this case
the s-boundedness condition is satisfied with A(I(-, z); [a, b]) = 0O, for any interval
[a,b] CRY, h(z) = z7%, foreacht,z e RT,and u ¢ Rar and Ny = N = 1.

We will use the following notation: given a function / : R* x Rt — R, we
will denote by V;(z) = V[I(-, z)] the variation of I(¢, z) with respect to t € R™, for
every fixed z € RT. Let K € X and T be the corresponding integral operator of
Section 6.2.

In order to establish an estimate for 7 f we will use the following extension of the
condition (6.4).
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Let ¢ : Rt x Rar — R(J{, Q€ P, L/ ]R(J{ — RaL, Y € W, there exist measurable
functions y : Rt x Ra' — R(J)r, yed,andv: Rt — Rar such that

s, Y(t,u)) <v(@)y(s,u) (6.6)
foreveryt,s e Rt u e Ra'.
We give some examples.
Example 6.3. A class of functions satisfying condition (6.6) is given by ¢(s, u) =
b(s)u® with @ > 1, being b : Rt — R(J)r a measurable function. Now, if we take
vt,u) = gt)r(u) With g : Rt — R(J)“ measurable and r : ]R.(J)r — Rg, rev,

then there results ¢ € ®, ¥ € WV, and ¢(s, ¥ (¢, u)) = b(s)g*@)r*(u) = v(t)y (s, u),
where v(t) = g%(t) and y (s, u) = b(s)r*(u) € ®.

__Now we are ready to establish that the operator 7 maps Dom 7' N ﬁy (RT) into
BV, (R™).

Theorem 6.3. LetK € K, ¢ € ® and let y € ® be a function satisfying the s-bound-
edness condition, with constants N1, N, and functions e : RT™ — ]R(J)r d:RTxRT —
R. Moreover we suppose that y satisfies condition (6.6) and Vi(t) < 400 a.e.

t € RT. Let a be a constant with 0 < a < ALL and suppose that

) 0< AL :=/ L(t)dt < +o0,
R+
i) C¢ :=/ L(t)e(t)v(t)dt < +oo,
R+

iii) D, :=/ L)1) Va(t) dt < 400,
R+

Then, if f € Dom T, there results

e Va
—~ CL —~ DL
Vola(Tf)] < Ni—=V,[aA N> f] + —=. (6.7)
AL AL

Proof. We may suppose \Z,[aALsz] < +oo. Let D = {s;}i=0,1,...n be a finite
increasing sequence in R™ and let & € [s;_1,s;] fori = 1,2,..., N. For fixed but
arbitrary i € {1,2, ..., N} we have that

[(Tf)(si) — (Tlsi—)] < /R+ LY@, | f(sit) — f(sip)]) dt.
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Hence, by monotonicity of ¢(t, u) with respect to u € R, Jensen’s inequality, con-
cavity of (¢, -), condition (6.6) and s-boundedness of y, we may write

N
> oL al(TH)(si) — (TG

i=1

N
< X:W(éi,a/]R+ L@y, | f(sit) = fsi1)]) dr)
i=1

1 N
— | L@OD e, aAry @, |f(sit) = fsimin)]) dr +)
.

AL Jr i=1

IA

IA

1 N )
AL /R Low® Yy &, aALlf(sin) = fsiminD di

i=1

IA

1 N
i /R L) Y INie@y (6. aAL Nl f(sit) = f(siin)D)de

i=1

N
+ ALL /R+ L(t)v(r) ; |A@C, 1); [si-1, siDl dt

IA

NIL/ L(t)e(t)v(t)\Z,[aALsz]dt—kL/ L®)v()Vy(t)dt
AL R+ AL R+

Cé ~ D)
=N —=V,[aALN —=
lAL ylaAr 2f]+AL
Hence the assertion follows by the arbitrariness of D and {§;}. O

Remark 6.3. a) Theorem 6.3 represents an extension of Theorem 6.1. Indeed if we
put ¢(t,u) = ¢(u) and y (¢, u) = y(u) i.e. ¢ and y do not depend on the parameter
t € R™, then the s-boundedness condition for the function y is satisfied in particular
withe(t) =1, N| = N, = land A(d(+, t); [a, b]) = Oforany interval [a, b] C I,and
condition (6.6) becomes condition (6.4). Hence C] = Aj, DZ‘Z = ( and inequality
(6.7) becomes the assertion of Theorem 6.1.

b) In case when the kernel K satisfies a strongly-Lipschitz condition, we obtain

— Ch ~ DVI
Vola(T)] < —EV, [aALNy f] 4 — &
AL Al

being C} = [py L(OK(1)dt, D} = [, L(t)Vi(t) dt, with 0 < C}, D} < 400,
and 4 : RT — ]R(J)r and [ : Rt x R™ — R are the functions of the s-boundedness of
@ € ®. In this case we have that 7 maps Dom 7' N BV, (RT) in BV, (R™).

c) We remark here that the s-boundedness condition may be replaced by the fol-
lowing slighter one.
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There exist measurable functions h : Rt — Rg and F : Rt — ]Rar and positive
constants N1, Np such that, for every finite increasing sequence {s;};=o.1,...N C RT,
there results

N N
Y 9 u) < Nih(0) ) g, Naup) + F (1) (++)
i=1 i=1
for every N € N, for every & € [si—1,si],i = 1,..., N and for every u;,i =
1,2,...,N,u; e R{.

This condition can be obtained by the previous one, on putting ¢ = &;, u = u;, for
every fixedi = 1,2, ..., N and passing to the sum with i running from 1 to N; here
F(t) = V;(¢+). With this condition, (6.7) of Theorem 6.3 holds with DZ”’ = Dg =
fR+ L(t)G(t)dt, where G(t) = V4(¢). Condition (++) is exactly what we need in
order to obtain the above estimate. But the original s-boundedness condition is more
readable and, as we remarked before, it is similar to the form of the boundedness
condition used in the theory of Musielak—Orlicz spaces.

6.5 A superposition theorem in BV 0

In this section we will study inequalities for the composition of two nonlinear integral
operators, with the same reasonings as in Section 6.3.

In order to do this, we have to modify assumption (x) of Section 6.3, due to the
fact that we deal now with functions ¢, o, A depending on a parameter. So, we will
assume the following condition.

Let ¢ € P, Y, 0 € Y, there exist measurable functions o, ). : Rt x R+ — R+ with
o€ ®andh € ®, and (measurable) vy, vo : Rt — R(J)r, such that the followmg
conditions are satisfied

@(s,0(t,u)) <vi()o(s,u), o(s, ¥t u)) < va(H)A(s, u) (*#)

+
foreverys,t € R, u e RJ.

Examples of functions satisfying (**) are similar to those given in Section 6.3 for
the condition (x), taking into account that here the functions ¢, o and A depend on the
parameter ¢ € R,

Now we are ready to establish that, given two nonlinear integral operators U and
T, as defined in Section 6.3, (U o T') maps DomT N BV, (R¥) in BV,(R™). Namely
we can formulate the following

Theorem 6.4. Let H, K € X, with H (M, 0)-Lipschitz and let g € ®, ¥, 0 € W, let
moreover o € ® and . € ® be two s-bounded functions satisfying condition (»x).
We denote by m : R — Ry, p : RY x Rt — Rand Q € RY respectively the
functions and the constant of the s-boundedness of o € ®, while byn:Rt — R+
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g :RT x RT — Rand Py, P, € RY respectively the functions and the constants of
the s-boundedness of A € ®. Let moreover V,(t) and V,;(t) < +00,a.e.t € R and
let A, with0 < A < +oo and Ay with 0 < Ay < +00 be the constants as in
Theorem 6.2. Moreover we suppose

i cm :=/ M(6ym(6)va(1) dt < +oo,
R+

iiy D7 ::/ M (t)va(t)V, (t) dt < +00,
R+

iii) C7 ::f L)n(t)vi(t)dt < +0o0,
R+

iv) D¢ = /w L)1 (t)V, (1) dt < 400,

and let a be such that 0 < a < min {ﬁ, m}. Thenif f € Dom T, there results
- cm o D)’
Vola(U o T)f] < ——=VolaAy Q(Tf)] +
Am Am
v v (6.8)
< S p L Py 0ayA f]+CT4DLq 1 Pu
= Ay 1ALA612 MAL Ay AL A

Proof. The proof runs on similar lines as in Theorem 6.2; the details are left to the
reader. =

Remark 6.4. a) Following similar reasoning as in Remark 6.2, we may obtain, as
a particular case, an estimate with a strongly-Lipschitz condition and hence also an
estimate for the composition of two linear integral operators.

b) Theorem 6.4 is an extension of Theorem 6.2 in Section 6.3: indeed if we
take @(t,u) = @(u),o(t,u) = o(u) and A(t,u) = A(u), then the s-boundedness
conditions for the functions o and A are satisfied with m(t) = n(t) =1, Q = P =
P, =1and A(p(-, t); [a, b]) = A(q(-, t); [a, b]) = O for any interval [a, b] C [ and
condition (xx) becomes condition (*).

6.6 The problem of convergence in ¢-variation

In Chapters 3 and 4 we discussed modular approximation theorems to f, for families
of nonlinear integral operators {7y, } of convolution type, or with kernel satisfying some
homogeneity assumptions, where f belongs to modular function spaces, in which the
generating modular functional satisfies some suitable assumptions, like monotonicity,
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finiteness, absolute continuity, etc. These assumptions play an important role in the
convergence properties of the modulus of continuity (see Sec. 2.2). As we remarked
before, the modular p generating the space BV,,(I) or BV ,(I), does not satisfy any
of the above assumptions. This makes the problem of modular convergence of 7y, f
towards f, in the space BV,(I) or BV ,(I) very difficult. We limit ourselves to
consider the space BV, (/).

A family of functions f,, : I — R, f,, € BV, (L ), is said to be convergent in
@-variation to f € BV, for w — wo, w € R, wp € R, if there is a constant A > 0
such that

wli>mw0 V(p[)\(fw - Hl=0.

In the following, for the sake of simplicity, we will assume that w runs over the positive
real axis |0, +oo[ and wg = +o00.
In this frame a suitable modulus of continuity is defined by

w(f,8) = IISzlllp(S Vo(tnf — 1),

where (15, f)(s) = f(s + h), is the translation operator, in the case when the interval
I = [a, b], and the involved functions are extended by periodicity b —a outside [a, b].
When [ is the group of positive real numbers, it is more convenient to use the dilation
operator (&, f)(s) = f(hs), and the modulus of continuity takes now the form

o(f,8) = sup Vy(&nf — [).
lh—1]<8

In both cases, it is well known that w(f, ) — 0, as § — 0, if and only if the function
f satisfies a special continuity assumption, called ¢-absolute continuity, (see [163]
for the translation operator, [30], [177] for the dilation operator). So, unlike the theory
of modular function spaces described in Section 2.2, the convergence property of the
modulus of continuity @ doest not hold for every function f € BV, (I).

We quote here the definition of g-absolute continuity. Let us suppose first that
I = [a, b]. In this case we say that f : I — R is g-absolutely continuous in I, if
there is A > 0 such that the following condition holds: for every ¢ > O there is § > 0
such that

N
D @I f(B) — flell <e.
i=1

for all finite sets of non-overlapping intervals [«;, 8;] C [a,b],i = 1,2, ..., N such
that

N
Y (B —ai) <8
i=1

We denote the space of all g-absolutely continuous functions with ACy, (). If I is
an open, or unbounded interval, for example, I = R™, we will say that f is locally
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@-absolutely continuous in I if f € ACy(J), for every compact interval J C I, with
an absolute constant A > 0 (see Section 6.7 below).

Itis well known that AC, (1) is a subspace of BV, (1), when [ is abounded interval
(see [163]).

The above considerations, suggest that a modular convergence theorem of type

VolA(Twf — H1—0, w— 400, (6.9)

is possible only when f belongs to suitable subspaces of BV, (/). In particular, if
f € ACy (1), or locally, it is natural to think that the above convergence is true. This
is really true for some class of linear integral operators. Let us mention two results in
this direction.

For families of linear integral operators of convolution type, {7}, in which the
kernel satisfies a classical singularity assumption, (6.9) holds for every function f €
ACy(I), where I = [a, b], and the involved functions are extended by periodicity
b — a outside . Here the ¢-function satisfies some further suitable assumption, (see
e.g. [163], [188]).

A recent general result like (6.9), was given in [177], in which I = R*, and
the dilation operator &), is used. Here, {T},} is a family of linear integral operators,
whose (singular) kernel satisfies a general homogeneity condition (as in Section 4.1,
in the case of R = 1), with respect to a weight function ¢ : I — R(J)r . In fact, the
operators here studied are the linear counterparts of those considered in Chapter 4.1.
The modular approximation theorem established in [177], gives a convergence result
similar to (6.9) for every f € X such that an appropriate auxiliary function, linked
to f, is locally absolutely continuous in /. Namely, putting g(¢) = t{(¢) f(¢), there
results

VolAM(Tw f — )] — 0, w— 400

whenever g is locally absolutely continuous in /.

Another important result given in [177] concerns with the rate of modular approx-
imation in suitable subspaces of BV, (1) which represent the “variational” analogy of
the modular Lipschitz classes (see Chapter 3).

We report here the definition of this class. Let I be the class of all measurable
functions y : I — R(J)r such that y(1) = 0, and y(s) # 0 for s # 1. For a fixed
y € I', we define the class:

Lip, (Vp) = {f € BVy(1) : 30 > 0: V(& f — /)] = Oy(5)), ass — 1},

where, as usual, for any two functions f, g € X, f(s) = O(g(s)) ass — 1 means that
there are constants C > 0,8 > 0 such that | f(s)| < C|g(s)|, fors € [1 — 8,1+ 3].

In this respect, the result in [177] states that, under suitable assumptions, similar
to those used in Chapter 4, if f € X is such that g(¢) =t () f(t) € Lipy(V(p), then
for sufficiently small 1 > O we have:

Vol ATy f — @)1= 0Ew™), asw — 4oo.
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This is the “state of the art” for what concerns the convergence in the space BV, (1).

For families of nonlinear integral operators a convergence theorem was recently
proved in [25], in the particular case when the kernel functions K,, are of type
Ky(t,u) = Ly (t)Hy,(u), for every t € RT, and u € R, and by using a suitable
notion of singularity for the family of kernel functions K,,. We will discuss these
results in the next section. For more general nonlinear integral operators there are not
known convergence theorems in BV, (I). ~

Finally we remark that in the case of the space BV (1), also the linear case is an
open problem.

6.7 A convergence theorem in BV,, for Mellin-type
nonlinear integral operators

In this section, without restrictions, we will consider the closed interval R(‘; =
[0, +o0ol, and we will denote again by X the space of all Lebesgue measurable func-
tions f : R:{ — R.

Moreover we will consider here the class ®’ of g-functions, ¢ : R(‘)" — ]RE)|r , such
that

i) ¢ is a convex function on R,
i) u™t +
ou) > 0asu — 0.

We begin with some further definitions.

We will say that a family of functions { f, },,~0 C X is of equibounded ¢-variation,
if it is of bounded ¢-variation, uniformly with respect to w > 0.

Now we recall the following result about ¢-variation, which we will use in the
following (for a proof see [163]):

) if f1, fo, ..., fu € X, then

Vw[gﬁ]i

S| =

> V,nfil.
i=1

Let ¢, n € @’ be fixed. We will say that a function f : R(}L — Ris locally (¢, n)-
absolutely continuous if there is a A > 0 such that the following property holds: for
every ¢ > 0 and for every bounded interval J C ]R(')F there is § > O such that for
any finite collection of non-overlapping intervals [a;, b;] C J,i = 1,2,..., N, with
SN @b —a;) < § there results

N
D o nGlf ) — flal < e (6.10)

i=1
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If n = ¢ in the above property, we will say that f is locally g-absolutely continuous
(see [163], [153], [177]), and we will denote by ACl‘f)C(Ra’) the class of all these
functions.

We will say that a family of functions { f,,}ws0 is locally equi (¢, n)-absolutely
continuous if there is . > 0 such that for every ¢ > 0 and every bounded interval
J C R+, we can choose a § > 0 for which the local (¢, n)-absolute continuity of f,,
holds uniformly with respect w > 0. For n = ¢ we will say that { f;,},y~0 is locally
equi g-absolutely continuous.

Let now K be the class of all the functions K : R(J{ x R — R of the form
K@, uy=L(t)Hum), teR, ueR,

where L € Ll(]R(J)r ),L > 0and H : R — R is a function satisfying a Lipschitz
condition of type

|Hu) — HW)| <¢¥(u—v]), u,vek, (6.11)
where ¥ : Rar — Rg’ is a function with the following properties:
(1) ¥ (0)=0,v¥(u) >0foru >0,
(2) ¥ is continuous and nondecreasing.

We will denote again by W the class of all functions v satisfying the above conditions.

Let K = {K,}w>0 be a set of functions from K, K (t,u) = L ()Hy(u),
w > 0,7 € RS, u € R. We will say that K is singular in BV, (R(), if the following
assumptions hold:

(K.1) there exists A > 0, such that 0 < ||Lyl|l; = Ay < A forevery w > 0,
(K.2) forevery s €]0, 1[, we have

lim Ly,(t)dt =0,

w—>+00 Ji1_f|>s

(K.3) putting G, (#) = Hy (1) —u, forevery u € R, w > 0, there exists A > 0 such
that
VolAGy, J1 = 0, asw — +oo,

for every bounded interval J C 1.

Example 6.4. For every n € N, let
Ku(t,u) = Ly()H,(w), t€R}, ueR,
where

nlog(l + u/n), O<u<l1

H =
=0 tog( 4+ 1), > 1,
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where we extend in odd-way the definition of H, for u < 0; moreover {L,},eN is a
classical kernel with the mass concentrated at 1, i.e.

+00
/ L,(t)dt =1, foreveryn €N,
0

with the property (K.2). It is easy to show that
|H,() — Hy(v)| < |lu —v|, foreveryu,veR, andn € N
and, for every u > 0, we have

u —nlog(l +u/n), O<u<l1

|G @) = | Hn ) —ul = {u[l —nlog(1+1/m)], u> 1.

Then |G, (u)| is increasing on ]R(J)r . Ife o R(J)“ — R(J)“ is a convex function, using
Proposition 1.03 in [163], we have, for every interval J = [0, M],

VolGr, J1 = ¢(IGn(M) — G, (0)]) - 0, asn — +o0.

Analogously, by the definition of H, for u < 0, we have V,[G,, [-M,0]] — 0, as
n — +00.

Before we formulate the following lemmas, we recall the definition of convergence
in ¢@-variation (see Section 6.6).

We recall that a sequence ( fy)yer+ € BV, is convergent in g-variation to f €
BV, if there exists a A > 0 such that Vy[A(fy — f)] — 0as w — +o0.

Moreover we will use the following relation between the functions ¢, ¥ and 7,
where ¢ and 5 are two p-functions, with 1 not necessarily convex, and Y € W.

We say that the triple {@, n, ¥} is properly directed, if the following condition
holds (for similar assumptions see [143]; compare with the definition of Section 1.4):
for every A > 0, there exists a constant C; such that

o(Ca¥r(u)) < n(iu), foreveryu > 0. (6.12)

Now we start formulating the following lemma.

Lemma 6.1. Let f : Rg — R be a locally (¢, n)-absolutely continuous function.
Let {Hy}ws0 be a class of functions satisfying (6.11) for a fixed € ¥V and for every
w > 0 and let us assume that the triple {@, n, ¥} is properly directed. Then the family
{Hy o flwso is locally equi p-absolutely continuous.

Proof. Let A > 0 be a constant for which the definition of (¢, n)-absolute continuity
of f holds and let 0 < p < C,, being C; the constant in (6.12). Since f is locally
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(¢, n)-absolutely continuous, for a fixed interval J C Rar and & > Othereisad > 0
such that (6.10) holds for any finite collection of intervals I; = [a;, b;],i =1,2,... N,
with ZlN:l ¢(b; — a;) < 8. For such a family {/;}, we have

N
> @Gl (Hy o £)(bi) — (Hy o f)(ai)])

i=1

M=

(G (1 f (Bi) = fla)D)

=
i=1

=

= D _n@lf i) — fla))) <e.

1 O

Lemma 6.2. Let f be a locally ¢-absolutely continuous function such that f €
BV(p(R(J{). Let {Hy}yw=0 be a family of functions H,, : R — R such that (K.3)
holds. Then there is ). > 0 such that the following property holds: for every ¢ > 0
and every bounded interval [0, b] C Rar , there exist w > 0 and a step function
v R(J)“ — R such that

Vo (Hyo f —v),[0,b]) <e¢
uniformly with respect to w > Ww.
Proof. Let [0, b] C R(J{ be a fixed bounded interval. From Lemma 1 in [177] (see
also Theorem 2.21 of [163]), there is a A > 0 such that, for a fixed & > 0 there is

a partition D = {ryp = 0, 7(, ..., T, = b} of the interval [0, b], such that the step
function v : Rar — R, defined by

fric), tia<t<t,i=1,...m

Vo= f), rzb
satisfies
Vo A(f —v), [0, b]) < g/2.
Let D = {ry, t1, ..., t,} be an arbitrary partition of [0, b] withtyg < t; < --- < ,. We
have

n

ZQO(MHw(f(ti)) — () — {Hy (f(ti-1)) —v({E-1})

i=1

1 n
<z ;so(zww(f(n» — f(t) = (Hy(f(ti1) = £t}

1 n
+ 5 2 @Q@Uf@E) =) = {f ) = v} = I + b,

i=l1
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Since f € BV, (R(J{), f is bounded, i.e. there is a constant M > 0 such that | f(¢)| <
M. Putting J = [-M, M], we have

1
I < 5 V@G J).

Thus using (K.3) we can take A > 0 such that /1 < ¢/2 for sufficiently large w > 0.
The assertion follows being I, < %V(p Qr(f —v),[0,b]) < ¢&/2. O

Lemma 6.3. Let f € BV,?(]R(')F) and {Hy} be a family of functions H,, : R — R
satisfying (6.11). Let us suppose that the triple {@, n, ¥} is properly directed. Then
the family {Hy, o f} is of equibounded @-variation on every interval I* C Rar .

Proof. Let D = {tg,t1,...t,} C I* be fixedandlet A > 0. For0 < u < C,, Cy,
being the constant in (6.12), we have

> @l(Hu o (1) — (Huw o HG—DD < 3 @(Copr(Lf @) — fE-aD).

i=1 i=1
Now, by (6.12) we have
Zw(MI(Hw o f/)ti) — (Hy o f)ti—1]) < Z N f () — ftio1]) < Vyf, ),
i=1 i=1

and so the assertion follows. O

For any z € R™, we will put

T f(s) = f(s2),

for every f : Ra’ — Rands € RS“. Using the above lemmas, we show the following
theorem

Theorem 6.5. Let ¢, n be fixed, and let f : R(J)r — R be a locally p-absolutely
continuous function, such that f € BVy, (Rar ). Let {Hy,} be a family of functions
Hy, : R — R satisfying (K.3) and (6.11) for a fixed v € V. Let us assume that
the triple {@, n, ¥} is properly directed. Then for every A > 0 there exist a constant
uw > 0andw > 0 such that

lim Vo [p(rz(Hy © f) = (Hy © f))] =0

uniformly with respect to w > w.
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Proof. Let g, = Hy, o f, forw > 0. Since f € BVW(R(J{), from Lemma 1 of [177],
given ¢ > 0 there is ¢ > 0 and A9 > 0 such that V, (Af, [c, +o0[) < ¢, for every
0 < A < Ag. From Lemma 6.3, there exists a constant ;& > 0 so small that

Vo(4ugw, [c, +o0) < Vy(Af, [c, +0[) < &

uniformly with respect to w > 0. Let us choose constants d, b withd > b > ¢
and let v be the step function on [0, d] given in Lemma 6.2. Let now z be such that
c¢/b < z <min{d/b, b/c}. By convexity of ¢, and property j), for every z sufficiently
near to 1, we have now, for sufficiently small > 0,

Vol (tzgw — guw)]

1
5 WVel2n(r2gw = 8w). [0, P11 + Vo [21(T: 8w — 8uw). [b, +-o0ll}

IA

IA

%V¢[2M(fzgw — gw), [0, b))
+ %{Vw(“llfzgw, [b, +00[) + Vi (4118w, [b, +00])}
< %Vw[zﬂ(fzgw — &), [0, D11 + %Vn(kf[c, +o0[)
< S Vol2a(rgu — gu), 10, b1 5.
The first inequality comes from a classical property of ¢-variation (see [163], Propo-

sition 1.17).
Now we consider the interval I* = [0, b]. We have, for sufficiently small u > 0,

Vo2 (t28w — 8uw). I”]

1
g{vrp[6//vfz(gw —v), I"1+ V¢[6M(V — 8uw)» "1+ V¢[6M(TZV —v), I"]}

IA

IA

1
§{2V¢[6u(gw =), [0,d]] + Vy[6p(zv —v), [0, d]]}
=11+ Db.

From Lemma 6.2, I} < ¢/2, while as in Theorem 1 in [30], we have I, < ¢/2. Thus
the assertion follows. O

Let K = {Ky (¢, u)}y>0 be a singular kernel in BVw(Rar), where, as before,
K(t,u) = Ly(t)Hy(u) fort € R}, u € R.

We will study approximation properties of the family of nonlinear integral opera-
tors T = {T,,} defined by

“+00

+00
(wa)(s):/ Kw(t,f(st))dtzf Ly Hy(f(s)dt, s € Ry,
0 0
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where f € Dom T is the class of all measurable functions f : Rar — Rsuchthat T, f
is well defined as a Lebesgue integral for every s € ]Rg . Let us remark here that if the
function f is such that (Hy o f) € L'(R{), orif f € L¥(Ry), then f € DomT.
So in particular, if f is of bounded g-variation, where ¢ is an arbitrary ¢-function,
f € DomT.

Let now ¢ € @ and 5 be two ¢-functions, with ¢ convex and 7 not necessarily
convex, such that the triple {¢, n, ¥} is properly directed. Then, by Theorem 6.1, if
feBV, (Rar ), then Ty, f is of bounded g-variation for every w > 0 (see also [143]).

We have the following

loc
{o, n, ¥} is properly directed. Let K = {K,,} C K be a singular family of kernel
functions in BV, (Rar ). Then there exists a constant & > 0 such that

wgrﬂoo V(p[M(wa - NH1=0.

Theorem 6.6. Let f € ACY (Rar )N BV¢,+,7(R(')|r ) and let us assume that the triple

Proof. First of all we remark that T, f — f € BV, (]RE)L ). We can assume that A, = 1,
for every w > 0, where A,, are the constants given in (K.1). Let A > 0 be such that
Vy(Af) < +00, and let & > 0 so small that 4 < C;, and

Zh_r)n] Vo 2pu(t,(Hy o ) — (Hy o [))] =0,
uniformly with respect to sufficiently large w > 0 (Theorem 6.5).

Let D = {so,s1,...,5n} C ]R(J{ be a finite increasing sequence and let p be
sufficiently small. We have

N
> ol (T (i) = (Tw f)(sio1) = fs) + fsimDI]

i=1

+00
=S ofu] [ Lt ) = Hut )

i=1

+ Hu(f(500) = f(s) = Hu(f (si-10))
o+ Hoy (f si-10) = Hu(f5i-) + f (51~ d ]

=

N —

N +o00
> /0 Loy (D@I20| (Huy (f (5i1)) — Hp (f (51)))
i=1
— (Hy (f(si1)) = Hy(f(si-)[1dt
1 &L oo
+52 /0 Loy () @[2p| (Hu (f (50)) — £ (s0))
i=1

— (Hy(f (si-1) — f(si—))[1dt
=L+ DL
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Now given § €]0, 1[, we write

% é {/|1—r|<5 +/1—t>8}

Luy(O)@24|(Hu (f (si0)) — Huw (f (51)))
= (Hy (f (si-11)) — Hy (f (si-1))|] dt
=I{ +1I}.

I

IA

Next,
1 146
H=s /1 LoV Qulr(Hy o )= (Hy o D) ds

and so, for sufficiently small § €]0, 1[ we have 111 < &, uniformly with respect to
w > 0.
Now, by property j),

<l f Lu()Vy@u(Hy o ) dt < 2V, () Lo()d,
4 Jj1—t)>s 4 [1—1]>8

and so, from (K.2), 112 — 0, as w — +o0.
Finally, we estimate I;. We have

1 [T 1
I < EA Lw(t)vw(z,qu) dr = Evrp(zl/«Gw)-

But since f is bounded, there is a constant M > 0, such that | £ ()| < M for every
t e R(J)r . Putting J = [-M, M], we apply the singularity assumption (K.3) and we
obtain I, — 0 as w — +o00.

The proof is now complete. O

6.8 Bibliographical notes

The classical concept of (Jordan) variation of a function f : [a, b)] — R was firstly
generalized in 1924 by N. Wiener [208], who introduced the notion of quadratic
variation of f. This work was followed by a series of papers of L. C. Young [209],
[210]and E.R.Love and L. C.Young [138], and by E. R. Love [135], where generalized
variation with power of order p > 1, the respective generalized absolute continuity
and application to Riemann—Stieltjes integral and to Fourier series are given. The
definition of ¢-variation given here, was introduced by L. C. Young [210] and further
developed by J. Musielak and W. Orlicz [163], in the case when ¢ is not dependent on
the parameter. In the same paper also the concept of absolute continuity with respect
to ¢ is introduced and its important connections with the convergence of the modulus
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of continuity are studied. Other contribution to the theory of ¢-variation were given
by H. Herda [116], R. Lésniewicz and W. Orlicz [134] and J. Musielak [149], in which
spaces of sequences of finite ¢-variation are considered.

The results given in Sections 6.2, 6.3 were proved by I. Mantellini and G. Vinti in
[143]. The linear case was considered in [31] for general linear operators with homo-
geneous kernel of degree «, and for superposition of two linear integral operators, in
which the homogeneity assumptions are given in a generalized sense(¢ -homogeneity).
In [31] some applications to fractional calculus are also given, in particular embedding
theorems are obtained for linear operators with homogeneous kernel, with respect to
the fractional g-variation, introduced there by using the Riemann-Liouville integral
of f. In the classical case (¢(u) = u), the fractional variation was studied by several
authors, in connection with “shape-preserving” properties of linear operators (see e.g.,
[212], [99]). Multidimensional versions of these results are available for linear inte-
gral operators in [31]. Here a concept of Vitali ¢-variation is introduced in a natural
way.

In a series of papers (see [105]-[110]), S. Gnilka investigated the properties of
the generalized variation, in which the function ¢ depends on a parameter. Also a
generalized concept of absolute continuity was introduced and studied.

G. Vinti [201] introduced a multidimensional version of the generalized ¢-variation,
when ¢ depends on a parameter, following the approach of the Vitali variation and
here the notion of s-boundedness for ¢-functions depending on a parameter is also in-
troduced. In this setting, some estimate of linear operators with homogeneous kernel
are obtained, and some application to fractional calculus is studied.

Results about convergence of linear integral operators with respect to ¢-variation
were given firstly in [163] for sequences of linear integral operators of convolution
type and then this result was extended by J. Szelmeczka [188] for filtered families of
such operators. In [30], by using the dilation operator &, this result was extended to
moment type operators, acting on functions defined on R™. There, the “multiplicative”
version of the modulus of continuity is given, using the dilation operator §;, and its
connections with g-absolute continuity are studied.

The moment kernel satisfies a homogeneity condition with degree —1 (if we con-
sider Lebesgue measure). Based on this remark, S. Sciamannini and G. Vinti [177]
gave some convergence theorems in g-variation, for a general class of linear operators
with ¢-homogeneous kernels. Moreover, by introducing the corresponding Lipschitz
classes, the rate of convergence is also studied. Recently, in [178] a convergence result
for more general nonlinear integral operators of Volterra type has been considered.

The convergence results of Section 6.7 are given in [25].

A related problem is a “weak” form of the convergence in ¢-variation for a family
of integral operators, namely a relation of type

VolTw f1— Vylf], (6.13)

for f € BV,(I) or f € BV ,(I).
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This problem takes its origin from classical problems of Calculus of Variations,
through the work of L. Tonelli [192], T. Radé [173], L. Cesari [82], [83], E. Baiada
[5], E. Baiada and G. Cardamone [6], E. Baiada and C. Vinti [7], C. Vinti [196], [197],
[198], [199].

In particular in [197],[198] the Tonelli-Cesari variation is considered in the mul-
tidimensional case, and results like (6.13) are obtained, for various classes of linear
integral operators (also non-convolution). Applications to convergence in perimeter,
area and length are also given there. The true definition of perimeter, introduced by
E. De Giorgi in 1954 (see [86], [87]), is essentially given by a convergence in (dis-
tributional) variation, similar to (6.13). Distributional versions of the results given in
[173], [197], [199], were obtained by C. Goffman and J. Serrin [111], M. Boni [48],
[49], E. Michener [146], C. Bardaro and D. Candeloro [11], [12], C. Bardaro [10],
C. Bardaro and G. Vinti [28], [33]. In these papers a concept of F -variation is used,
in the multidimensional case, where ¥ is a sublinear functional. Applications to the
Serrin integral of Calculus of Variations are also given. For similar results, in the
setting of Weierstrass Integrals, see also [80], [81].

The general problem of “weak” convergence in ¢-variation is still open.



Chapter 7

Application to nonlinear integral equations

7.1 An embedding theorem

Let (2, X, ) be a measure space with a o -finite, complete measure, endowed with a
commutative operation + from 2 x €2 to Q.

We are going to investigate nonlinear integral equations generated by the convo-
lution-type operator (3.1), i.e. equations of the form

/QK(t,f(tJrS))du(t)=f(S)+g(S) (7.1)

for p-almost all s € 2, where g € LO(Q) is given and f € LO(Q) is the unknown
function. In order that the left-hand side of this equation makes sense, we suppose that
the space L() is invariant and K is a Carathéodory kernel function. Under these as-
sumptions, we have K (-, f(-+s)) € LO(Q) for every s € 2 (see Section 3.1). In order
to be able to apply the Fubini—Tonelli theorem, we should know that K (¢, f (¢t + s))
is a measurable function on 2 x Q. Let Xo be the smallest o-algebra of subsets
C C 2x Qsuchthat A x B € ¥y whenever A, B € ¥, and let £, be any o -algebra
of subsets of Q2 x Q such that ¥y C X,;. We denote by po the product measure
on Xg, i.e. uo(A x B) = u(A)u(B) for A, B € X, and we denote by u, any
extension of the measure o from %o to ¥,. We denote by NJ{ﬂ the class of all
Carathédory functions K : €2 x R — R such that the function K : £ x € — R de-
fined by K (s,t) = K(¢, f(t +s)) is X -measurable for every f € LO(€2). Functions
K € K, will be called X, -regular Carathéodory functions.

Example 7.1. Let u be the Lebesgue measure on the o-algebra X of all Lebesgue
measurable subsets of = R and let 1> be the Lebesgue measure on the o -algebra %2
of all Lebesgue measurable subsets of R%. Let 4+ be acommutative operation on R such
that the space LO(R) is invariant. We shall write o (s, r) = s+, and we suppose that &
is (X2, ¥)-measurable, i.e., if A € T then o~ (A) € 2. Moreover, we suppose that
w? is o -absolutely continuous (o -a.c.) with respectto i, i.e.,if A € ¥ and u(A) =0,
then ,u,z(a’l(A)) =0. Let K : @ x R — R be a Carathéodory kernel function. We
shall show that K is Ez—regular, i.e., the function K (s, 1) = K(¢, f(t + s)) is »2-
measurable for every f € L%(S). First, we shall prove it in the case when f has a
bounded support, i.e., f(#) = 0 outside a compact interval [a, b] C R. By Fréchet’s
theorem, there exists a sequence (f,) of continuous functions on [a, b] such that
fa(t) — f(t) u-a.e.in [a, b]. Denoting by A the set of ¢ € 2 for which the sequence
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(f(1)) does not converge to f(¢), we have u(A) = 0. Hence u?(o~!(A)) = 0, by
the o -absolute continuity of ,u2 withrespectto . If (s, ¢) € o1 (A),ie.,o(s, 1) € A,
then f,(o(s,t)) — f(o(s,t)) asn — +oo, whence f,(c(s,t)) — f(o(s,t)) as
n — 4oo p?-ae. in R%. If we know that K (¢, f,((o (s, t))) are ¥?-measurable
then also K (¢, f((o (s, 1))) is ¥%-measurable, since the measure p? is complete. So,
we may limit ourselves to the case of continuous functions f. Let f : R — R be
continuous on R. Let (0;) be a sequence of simple integrable functions with respect to
(R2, £2, 1u?), convergent to the functiono (s, t) = s+t forall (s, 7) € R2. This means

that there exist pairwise disjoint sets Agi), Ag), e, A,({l;) € Y2 of finite measure ,u2 and

constants c?), cg), R c,((';) € R such that o;(s, 1) = Zf’zl CJ(-i)XAQ') (s, t) converges

J
to o(s,t) for all s, € R. By continuity of f and K (¢, -), and from the condition
K (t,0) = 0, we obtain

ki .
K@ flo(s,0) = lim K@ flois+m) = 1im 3 K@ fe])x,000.
j=1 ’

But the function at the right-hand side of the above equality is ¥%>-measurable. Thus
K(t, f(o(s,1)))is > 2-measurable. Now we omit the assumption that f has bounded
support. Let f € LO(R) be arbitrary. We put f,,(t) = f(t) fort € [—n,n] and
fn(t) = 0 otherwise. Then f,(t) — f(¢) asn — +oo for t € R. By continuity of
K(t,-), we have K (¢, f,(0(s,1))) — K(t, f(o(s,t))) asn — 4oo forall s,¢ € R.
As we have already proved, K (¢, f,,(o(s,t))) are >2-measurable forn = 1,2, ...,
since f, € LO(R). Thus, K (, (o (s, 1)) is ¥>-measurable for every f € LO(R).
Consequently, K is a X 2-regular Carathéodory function. O

Let us still remark that the usual addition + in R is ¥2-measurable and 2 is
o-a.c., since we have then 0 ~1(A) = {(s,1) e R? : s + ¢ € A} for any A C R.

It is obvious that if K is a X, -regular Carathéodory function, then its absolute
value | K| defined by |K|(¢, u) = |K (¢, u)| is also a X -regular Carathéodory kernel.
Thus, the integral

/ |K(t, f(t+s)|duz(s, 1)
QxQ

exists for every f € L(2). By the Fubini—Tonelli theorem, the integral

/QIK(t,f(twLS))Idﬂ(t)

exists for p-almost all s € 2 and is a X-measurable function of the variable s
in 2. Obviously, this integral may be infinite. We are going to formulate a the-
orem showing that for functions f from some modular spaces Lg(Q), we have
fQ |K(t, f(t +5))|du() < +oo p-a.e. on 2, and that Lg(Q) C Dom T (see Sec-
tion 1.1).
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Theorem 7.1. Let the following assumptions be satisfied.

(@) p is a J-quasiconvex modular on L°(2), subbounded with respect to the oper-
ation +,

(b) K is a Xy-regular, (L, ¥r)o-Lipschitz Carathéodory kernel function, where
L:Q — ]R(J)r is a X-measurable function such that 0 # L € LY(Q), and
Yo QX RaL — R(J)r satisfies the conditions: (-, u) is X-measurable for all
u > 0, ¥(t,:) is continuous, concave and nondecreasing for every t € €,
v, 0) =0, %@, u) >0foru >0, ¥ u) — +o0asu — +oo for all
t e

(©) LOY(, 1) € LY(Q), and
/QL(I)W(E DIf®ldu) < +oo
for every f € Lg(Q)_
Then Lg (2) c DomT.

Proof. First we show that if f € Lg(Q) then fQ |K(t, f(t +5))]du(t) < +oo for
s € 2. Since ¥ is concave, we have for u > 1

uyp(t, 1) = ul//(t, lu) > ullﬁ(t, u)
u u

foreveryt € Q. Forafixeds € Qweput Ay, ={t € Q:|f(t+s)| = 1}, By = Q\ A;.
By the (L, v)o-Lipschitz condition, we obtain

|K(, f(t+s)| = LOY @, [f(+s5)D)
=LY, [fE+9)Dxs, @) + LOYE, [f+9)Dxa(0)
= LY@, Dxa, @) + LY@, DIf (¢ + )| xa, (0).

A

Since K is X -regular, the function |K (¢, f(t + s))| is X;-measurable in Q x Q.
Hence it follows

/Q |K (2, f(t495)|du(0)

S/B L)y (1, 1)du(t)+A Ly, DIf @+ 9)ldu()

s

S/QL(I)W(L 1)a’M(t)+/QL(t)1/f(l, DIf @+ )l d ().

Since L(-) ¥ (-, 1) € L' (), the first of the integrals on the right-hand side of the above
inequality is finite. In order to prove that the integral |, o | K@, ft+s5)du(t) < +oo
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itis sufficient to show that the second integral on the right-hand side of this inequality is
finite, too. However, since p is subbounded with respect to 4, we have the inequality
oAf(C+5)) < p(CAf) + h(t) with some C > 1,0 < h € L*°(Q) and every
f e Lg(Q),s € 2,1 > 0. Henceif 0 < A < 1, we have

PP f(+5)) < AMpOMS (- +5)) < AMp(CAMS) + AM||h|oo,

where M > 1 is the constant in the definition of J-quasiconvexity of p. Since the
right-hand side of this inequality tends to 0 as A — 0T for every f € Lg(Q), NY)

p(Azf(- +5)) — 0as A — 0T. Hence f(-+s) € Lg(Q) for every s € Q. By
assumption (c), we have

/QL(I)W(I, DIf(t +9)du(t) < 400

for every s € 2. Thus, we proved that
[ K+ sl dn < oo
Q
u-a.e.on 2. In order to prove X-measurability of (T'f)(s) = fQ K, f(t+s))du(t),
let us remark that if K is a X, -regular, (L, ¥)o-Lipschitz Carathéodory kernel func-

tion, then both the positive part K, and negative part K_ of K are also (L, ¥)o-
Lipschitz, ¥ -regular Carathéodory kernel functions. Denoting

(T+f)(S)=/QK+(t,f(t+S))du(t), (T—f)(S)=/S2K—(t,f(f+S))dM(t)

we observe, applying the first part of the proof to 7 and 7_ in place of T, that the
integrals

/ Ky (t, f(t+5))du), / K_(t, f(t+5))du(r) (1.2)
Q Q
are finite for almost all s € 2. Applying the Tonelli theorem to the functions

K, f(t+s)) and K_(t, f(t + s)) on the product 2 x €2, we see that both in-
tegrals (7.2) are X-measurable functions of s € Q. Thus,

(Tf)s) = / Ky, f(t+5)du@) — / K_(t, f(t+5))du()
Q Q
is a X-measurable function on 2. Consequently, Lg () c DomT. O

Example 7.2. Let us suppose that ¢ : Rg — Rar is an N-function, i.e. it is convex,
¢(0) =0, ¢(u) > 0 foru > 0 and

im £ 0 and  fim 2%

u—0t U u—>—+o0o Y

—+00
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The function ¢* : R(J)r — R(J{ , defined by the formula

@™ (u) = sup(uv — ¢(v)),

v>0

called conjugate to ¢ in the sense of Young, is also an N-function (see e.g. [153]). Let
us denote

P(f)=/g<p(|f(t)|)du(t), p*(f)=/ﬂ</>*(|f(t)|)du(t)

for f € LY(Q), (see Example 1.5 (b)). The modular spaces L?(2) = Lg(Q) and

LY (Q) = Lg* are Orlicz spaces generated by the above modulars. From the definition
of the function ¢* we obtain the Young inequality

uv < o(u) + ¢*(v),
for u, v > 0, immediately. In particular, we have for every A > 0,
MLOYE, DIFO] < e fOD + e*ALOY (¢, D).

Hence

A

/Q LOV @ DIFOldp®) < — [ 0Ol FOD dp)

22 Ja

1
+ﬁ/ @* ALY (t, 1)) du(t)
Q

1 1
ﬁp(kf) + ﬁp*(/\L(-)w(-, D).

Since f € L(p)(Q), we have p(Lf) < +oo for sufficiently small A > 0. Now,
let us suppose that L(-)¥ (-, 1) € Lg*(Q), then also p*(AL()¥ (-, 1)) < 400 for
sufficiently small & > 0. This shows that fQ Ly, D] f(@)]|du(t) < +ooforevery
f e L%(Q), i.e. the assumption (c) in Theorem 7.1 is satisfied, if only L(-)y (-, 1) €
Lg* (Q) = LY (). In this manner we proved the following corollary to Theorem 7.1.

Corollary 7.1. Let ¢ and ¢* be a pair of N-functions, conjugate in the sense of Young.
Let K be a ¥, -regular, (L, Yr)o-Lipschitz Carathéodory kernel function with functions
L and  satisfying the assumption (b) of Theorem 7.1. Moreover, let L(-){(-, 1) €
LY (2) and let

(Tf)is) = /QK(L S +9)du@).
Then LY (2) C Dom T.

Let us remark that under the conditions of Theorem 7.1 or of Corollary 7.1, we

have obviously Lg(Q) NDom T = Lg(Q). This means that in this case the condition
f e Lg(Q) NDom T, resp. f € Lg+n(9) N Dom T, in Theorems 3.2 and 3.3 may

be replaced by f € LS(Q) resp. f € L?)Jrn (2).
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7.2 Existence and uniqueness results via Banach’s fixed
point principle

In the next theorem we show that, under suitable assumptions, the convolution-type
operator T is a contraction.

Theorem 7.2. Let p be a monotone, J-quasiconvex modular on an invariant space
Lg(SZ), strongly subbounded with respect to the operation + in Q2. Let K be a
Carathéodory kernel function satisfying the Lipschitz condition

|K(t,u) — K(t,v)] < L({t)lu —v| foru,veR, teQ,
where L : Q — Rar, 0£4Le€e LY (). Then

@ T:LY(Q)NDomT — LY(Q).

(®) p(MTf —Tg)) < Mp[ACMILIi(f — )] for f. g € LY(Q) NDom T, and
any A > 0, where M and C are the constants from the definitions of J-quasi-
convexity and strong subboundedness of p, respectively.

Moreover, if we suppose p to be convex and J-convex, then

© ITf =Tgll, < CILIIf =gl for f. g € LY(2) NDom T.

Proof. (a) Applying the monotonicity of p, the Lipschitz condition with v = 0,
J-quasiconvexity of p with a constant M > 1 and strong subboundedness of p with a
constant C > 1, successively, we obtain for arbitrary f € Lg ()NDom T and A > 0

IA

p(ATf) ,0<)»/QL(I)|f(t+‘)|d/L(t)>

o (/Q POMILILf( + ) du(l)>

IA

M/Qp(t)p[)»MllLllllf(H-')I]du(t)

A

< M/Qp(t)p(?»CMllLlllf)dM(t) = Mp(ACM||L|l1f),

where p(t) = L(t)/||L]|; fort € Q. Since f € Lg(Q), we have p(ACM||L||; f) —
0 as A — 0T. By the above inequality, there holds p(ATf) — 0 as A — 0F.
Consequently, T f € Lg(Q).

(b) We apply the monotonicity of p, the Lipschitz condition, J-quasiconvexity
and strong subboundedness of p, successively, obtaining for f, g € LS(Q) N Dom T
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and A > 0

pMTf —Tg)

IA

P <?»/QL(I)|f(t +)—gl+ -)Idu(t))

A

Mfgp(t)p[?»MllLllllf(t +) — g+ )ldu@)

IA

M/Qp(t),O[XCMIILlh(f—g)]du(t)

Mp[ACM|IL||1(f = &)]-

(c) From the inequality in (b) with M = 1 we obtain, taking A = 1/u for arbitrary
u > 0 and supposing f, g € Lg(Q) N Dom T, the inequality

<Tf—Tg> (CIILlll(f—g)>
pl——=)<p| ——m).
u u

{u>0:p(w)51}C{u>0:p(w>§l}.
u

u

Hence

Consequently

Tf—T
ITf = Tgll, = inffu > mp(%) <1
5inf{u>o:p<%f_g)) <1}

= CILIf = gllp- O

Now, applying the Banach’s fixed point principle, we are able to prove the follow-
ing theorem.

Theorem 7.3. Let the following assumptions be satisfied:

(a) p is a monotone, convex, J-convex modular on an invariant space LO(),
strongly subbounded with respect to the operation + in Q with a constant
Cc=>1,

(b) The modular space Lg(Q) is complete with respect to the norm || - || 5,

() L:Q — R{ satisfies the condition 0 # L € L' (Q) and [o, L(t)| f (1) du(t) <
~+o00 for every f € Lg(Q),
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(d) K is a Xy-regular Carathéodory kernel function satisfying the Lipschitz con-
dition |K(t,u) — K(t,v)| < L(t)lu — v| for u,v € Randt € Q, where
ClLlh < 1.

Then, for every g € Lg(Q), the integral equation

/ K, f(t+s)dui)= f(s)+g(s), p-a.e. onS, (7.3)
Q
has a unique solution f € LS(Q).

Proof. Let us observe that from the assumptions (a)—(d) it follows that there are
satisfied the assumptions of both Theorems 7.1 and 7.2, with (¢, u) = |u| for all
t € Qand u > 0. By Theorem 7.1, there holds L%(Q) C Dom T. Hence, by
Theorem 7.2(a), T : LY(Q) — LY(Q). f weput Ty f = Tf — g, for g € LY(Q)
then also 77 : Lg(Q) — L%(Q). Moreover, we have T1 f1 — T1 fo = Tf1 — T f> for
f1, fr € Lg(Q). Hence, by Theorem 7.2 (c), we have

1T fi—Tif2llp =T/ —=Thl, < CILIW A — f2p

for f1, f>» € Lg(Q), and since C||L||; < 1, Ty is a contraction in Lg(Q). Since Lg(Q)
is complete, we may apply Banach’s fixed point principle. Thus, there exists a unique
f € Lg(Q) such that T f = f,ie., Tf = f + g, which means that the equation
(7.3) admits f as a unique solution. O

Example 7.3. Let the modulars p and p* be defined as in Example 7.2, where ¢ and
@* are N-functions, conjugate in the sense of Young. Then p satisfies all assumptions
of Theorem 7.3 with constant C = 1. Moreover, the Orlicz space L%(Q) = L% (Q)
is complete. Let us suppose that K is a X, -regular Carathéodory kernel function
satisfying the Lipschitz condition |K (¢, u) — K(¢,v)| < L(t)lu — v| for u,v € R,
t € Q with a function L : © — R such that 0 # L e L'() N LY (Q) and
IL|l1 < 1. Then, by Example 7.2, we have fQ L@)|f@)|du(t) < 4oo for every
f € L?(R2), and so there are satisfied all the assumptions of Theorem 7.3. Thus the
equation (7.1) has a unique solution f € L?(2).

Let us still remark that the condition ||L||; < 1 may be omitted, if we consider in
place of (7.1) the integral equation

k[g K(t, f(t+s)du) = f(s)+g(s),

where 0 < A < 1/||L||1, replacing the kernel function K by means of the kernel
function AK . Finally, let us remark that if 0 < w(2) < 400, then L‘p*(Q) c LY(Q),
and so the assumption 0 # L € LY (Q)NLY(Q) may be replacedby 0 = L € LY (Q).
Indeed, if 0 < ©(€2) < 400, we obtain for every o > 0

* 1 1 .
Y (M(Q’) fg""f(’)'d“(”> < g | @rODdnw,
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by convexity of *. If f € L (), then the right-hand side of the above inequality
is finite for sufficiently small « > 0. Hence fQ | f(®)|du(t) < +oo,ie. f € LY(Q).

7.3 Existence results via Schauder’s fixed point principle

We shall now investigate the possibility of an application of the following Schauder
fixed point principle to the integral equation (7.1).

Theorem 7.4 (Schauder fixed point principle). Let X be a Banach space with norm
|| - || and let Vo be a nonempty, compact, convex subset of X. Let T : Vo — Vg be a
continuous map of Vy into itself. Then there exists a point xo € Vo such that T xo = xg.

For the proof, see e.g. [95].

Applying this theorem, we prove the following

Corollary 7.2. Let X be a Banach space with norm || - || and let V be a nonempty,
closed, convex subset of X. Let T : 'V — V be a continuous map of 'V into itself
such that the image TV of V is conditionally compact in X. Then there exists a point
xo € V such that T xo = xop.

Proof. Since the closure TV of the set TV is compact, so, by Mazur’s theorem (see
[95]) its closed convex hull conv(T V) is also compact. Since 7 : V — V, we have
TV Cc VandsoTV C V = V,because V is closed and hence conv(T V) C convV =
V. Let us write Vo = conv(T V), then Vp is a nonempty, compact, convex subset of
X. The inclusion above shows that Vy C V. Moreover, TV C Vy. Hence T'Vy C V),
and so T maps V) into itself. Since T is continuous in V, it is also continuous in Vj.

Thus applying Theorem 7.4, we obtain that there exists an xog € Vp such that
T xo = xg. O

We shall apply this corollary in the case when X = Lg (Q)orX = Eg (2), where p
is a convex modular in L°() and E () is the set of finite elements of Lg(Q), i.e., of

functions f € LO(R) suchthat p(Af) < 4ooforall A > 0. Wehave E0(Q) C L9(®)
and we equip both these spaces with the norm || - || ,, generated by the modular p. It
is easily seen that if the space Lg(Q) is complete with respect to the norm || - || ,, then

ES(Q) is complete with respect to the same norm, too. Indeed, let ( f;,) be a Cauchy
sequence in Eg (2). Then it is also a Cauchy sequence in Lg(Q), and so there is an

f e Lg(Q) suchthat || f, — fll, — Oasn — +oo. We have to show that f € Eg(Q).
By Theorem 1.2, we have p(A(f, — f)) — 0 asn — +oo for every A > 0. There
holds

1 1
p(Af) = 5/0(2%(}” —fi)+ E,O(ZKfn)
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forn =1, 2, ... andforevery A > 0. From the above inequality it follows that for any
A > 0 there exists an index n such that p(2A(f, — f)) < +o0o. Since f;,, € Eg (2),
so p(2Af,) < +oo for every A > 0. Hence p(Af) < 400 for every A > 0. Thus,
f e ENQ).

We shall prove the following

Theorem 7.5. Let p be a monotone, convex, J-convex modular on Lg(Q), strongly
subbounded with a constant C > 1 with respect to the operation + in Q. Let K be
an (L, ¥)o-Lipschitz Carathéodory kernel function satisfying the assumptions (b) and
(c) from Theorem 7.1. Moreover, let us suppose the triple {p, V¥, p} to be properly
directed with Cj, satisfying the condition .~ Cy. > a > 0 for any » > 0. We denote
by X any of two spaces Lg(Q), ES(Q) and weput V, = {f € X : | fll, < 1}.
Let (Tf)(s) = fQK(t, f@+s)du@) and T\ f = Tf — g, where g € X and
lgll, =6 < L. Finally, let |L||; < aC~'(1 — 0). Then T maps V, into itself.

Proof. First, let us remark that by Theorem 7.1, X C LS(Q) C Dom T. Applying the

monotonicity of p, the (L, 1 )o-Lipschitz condition and J-convexity of p, we obtain
for arbitrary o > 0

p@Tf)

IA

p (a /Q K f(+ ~))|du(t))

IA

o (/Q pOal L, | f(r+ -)I)du(t)>

A

=< /Qp(t),o[allLlluﬂ(t, Lf &+ )D1du().

By the assumption that {p, v, p} is properly directed for all A > 0, taking «||L||; <
C,, we obtain

plelLilty @, | f (& +)D] < p(Af( + D).

Hence, by the strong subboundedness of p with a constant C > 1, we obtain
paTf) < /Q pOpALf(E+)D)du()

=< /Qp(t)p(kcf)du(t) = p(ACY).

Taking @ = C, /||L||1, we thus obtain

C
C
'O(||L||1Tf> < p(ACf)

for A > 0. But A~1C; > a for A > 0, so from the last inequality we obtain

a
—_ C
,O(HLHI?»Tf) < p(ACf)
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for A > 0. If we put > = 1/u, we get

p( aly ) < pu'Ch)

ull Ll

foru > 0. Hence we obtain, similarly as in the proof of Theorem 7.2 (c), the inequality

ITfllp = gllLlllllfIIp. (7.4)
Since ||L]l; <aC~ (1 —6), we get
ITfll, = A= fllp,
if f € X. Now, supposing f € V,, we have || f||, < 1 and so
T fllp <(A=60)+6=1

This shows that 71 : 'V, — V. o

Let us remark that if the (L, ¥ )g-Lipschitz condition holds with the function
¥ (u) = u,thenthetriple {p, ¥, p} is properly directed with C; = A, and the condition
}Fle > a > 0 is satisfied with a = 1.

From Corollary 7.2 and Theorem 7.5 we immediately obtain the following state-
ment.

Theorem 7.6. Let the assumptions of Theorem 7.5 be satisfied, and let the space
Lg(Q) be complete with respect to the norm | - ||,. Let us suppose further that the
operator

Tf(s)z/QK(t,f(tJrs))du(t)

is continuous on the ball V,, and the image T'V,, is conditionally compact in X, then
the integral equation (7.1) has a solution f € V,.

Remark 7.1. Let us assume that (€2, +) is a locally compact and o -compact group,
endowed with its Haar measure p on the o-algebra of its Borel subsets. Since the
modular p is monotone, the normed space Lg (R2) is apreideal space . In this case there
are known conditions for continuity of 7" and conditional compactness of TV, (X),
also in the more general case of an Urysohn operator 7" (see [193], Theorem 2.1).

In case of a general modular p on Lg (2) we do not know any necessary and
sufficient conditions in order that a set A C X be conditionally compact in X, where
X = L%(Q) or X = Eg(SZ). We shall quote the results in the case of a modular p de-
fined by (1.4) from Example 1.5 (c). Proofs may be found e.g. in [153], Theorem 9.12.

Let @ C R” be a Lebesgue measurable set and let du = dr be the Lebesgue
measure in the o-algebra X of all Lebesgue measurable subsets of 2. Let ® be the
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class of all functions ¢ : X Rar — Rar which are measurable with respect to the
first variable for every value of the second variable, and are convex ¢-functions of
the second variable with respect to every ¢ € 2. The modular p will be defined by
formula (1.4),1i.e., p(f) = fQ @(t, | f(2)]) dt for every Lebesgue measurable function
f on Q (see Example 1.5 (c)). We say that ¢ € ® is locally integrable in 2, if for
every set A € ¥ of finite measure and every u > O there holds | A @t u)dt < 400
(see Example 2.1 (b)). We say that ¢ € @ satisfies the condition (00), if there exists
a sequence (fx) of measurable, nonnegative functions, such that [ 4 Je(@)dt < o0
for every set A € X of finite measure and k = 1, 2, .. ., and such that for every u > 0
the inequality

1
u < z(ﬂ(t, u) + fi(t)

holds for almost all # € Q. It is easily seen that if ¢ € ® satisfies (00), then for
every set A € X of finite measure and every measurable function f on 2 such
that fx4 € L?(R2) there holds fxa € L'(2). Moreover, we define the integral
means (Steklov functions) f, of a locally integrable function f on €2 as follows. Let
f(s) = f(s)fors € Q, f(s) =0 fors € R*\ Q and let B, (¢) be the closed ball in
R”" with centre at the point # € 2 and with radius » > 0; by m, we denote the volume
of B, (t). The integral means f, of f are defined by the formula

fr@®) = L f(s)ds
My J B, (1)
forr € Qandr > 0.
Let E?(£2) denote the space of all finite elements f € L?(2), i.e. all functions
f € L?(2) such that p(Af) < +oo for every A > 0. Both spaces L?(2) and E¥($2)
are Banach spaces with respect to the norm || - ||,, generated by p. There holds the
following theorem ([153], Theorem 9.12).

Theorem 7.7. Letafunction € ® belocally integrable and let it satisfy the condition
(00). Let A C EN(Q).

1. Suppose the following conditions hold:
(a) there exists an M > O such that || fll, < M forall f € A,

(b) for every ¢ > 0 there exists a compact set A C 2 such that for every
f € A there holds the inequality || f xa\allp < €,

(c) for every ¢ > 0 and every compact set A C 2 there exists a number
ro > O such that for every f € A and every r satisfying the inequalities
0 < r < rg, there holds the inequality ||(f — fr)xallp < e.

Then A is conditionally compact in E¥(2).

2. Let us additionally assume that ¢ satisfies the following condition: there exist
numbers § > 0,C > 1,aset A € ¥, A C Q of measure zero and a function
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h:QxQ— Ra' integrable with respect to the second variable and satisfying
the condition SUP|5|<s fQ h(s,t)dt < +o00, such that for everyu > 0, |s| < §
andt € QN (QL+s5) \ A there holds the inequality

ot —s,u) <o, Cu)+ h(s,t).

Then if A C E¥(R) is conditionally compact, then the conditions (a), (b) and
(c) are satisfied.

Remark 7.2. Concerning the condition in 2., compare with Example 1.10 (b). This
condition is trivially satisfied if the function ¢ (¢, 1) is independent of the variable ¢.

7.4 Bibliographical notes

The problem of the domain Dom T of the operator T was investigated in [161], [147]
and [23], where one can find versions of Theorems 7.2 and 7.3. Theorems 7.5 and
7.6 were given in [24]. Theorem 7.7 is due to A. Kaminiska [123] and to A. Kamirska
and R. Pluciennik [124]. As regards Remark 7.1, a detailed exposition may be found
in [195], (see also [211] and [193]). For a classical theory of nonlinear integral
equations see e.g. [132], while a recent exposition can be found in [113]. Recent
results about complete continuity of Urysohn integral operators and applications to
integral equations can be found in [193], [194], [195]. Other extensions of the theory of
integral equations can be found in [2], in which multivalued operators are considered,
and in [4].



Chapter 8

Uniform approximation by sampling type
operators. Applications in signal analysis

In this chapter we will consider the problem of approximating a function f, belonging
to a certain functional space, by means of a general family of nonlinear integral
operators. The main idea is that of building up this family in such a way that it can
reproduce, in particular cases, several classical families of nonlinear integral operators
of approximation theory. To this end, as in Chapter 4, we will consider functions acting
from a Hausdorff locally compact topological group to R. But one of the main interests
of this chapter is the fact that among the families of operators we will deal with, there
are the so-called generalized sampling operators in their nonlinear form. The family
of linear generalized sampling operators or sampling series has been introduced and
studied by P. L. Butzer and his school in Aachen. The study of its nonlinear form
with respect to approximation and to rates of convergence gives applications in signal
processing.

8.1 Classical results

In the last century, Whittaker, Kotel 'nikov and Shannon formulated the famous WKS-
sampling theorem, which says that given a function f € L2(R)NCO(R) (being C O(R)
the space of all continuous functions on R),which has the support of its Fourier trans-
form f contained in an interval [-7r w, mw], for w > 0, it is possible to reconstruct f
on the whole real time-axis from the sequences f (%) of its sampled values, by means
of the interpolation series (see Figure 8.1)

+00
foy= > f<§>sinc[n(wt—k)], t € R. (8.1)

k=—o00

Here sinc(¢) = sint/t for t # 0 and sinc(0) = 1. Such interpolation takes into
account the behaviour of the function f only at its sampled values f (5) computed
just at the “nodes” % for k € 7Z, uniformly spaced on the whole real axis. The

interpolation (8.1) is “free” in the sense that the sequence { f ( k )}

w) txez» Which belongs
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to [2, can be an arbitrary sequence {c }xez € 12, Moreover, the Parseval identity holds,

1 +0o0 k ) 2
EIEOOME) :leﬂm dr.

Figure 8.1. Interpolation by sampling

Now taking into account that, in the language of signal theory, a function f be-
longing to L?(R) is regarded as a signal which has finite energy and that the support of
its Fourier transform denotes the spectrum of f, the WKS-sampling theorem can be
formulated in the language of transmission information theory as follows (see [46]).

Let f be asignal of finite energy on R with bounded frequency spectrum contained
in [-rw, mw], which means that this signal does not contain frequencies higher than
% cycles for second. Moreover, let the signal have a certain communication channel.
In order to recover this signal at the output of this communication channel it is sufficient

to transmit over this channel only the values f (ﬁ) of the signal at the nodes L
w w

Here Ar = % denotes the time “interval” between samples, 5> = % denotes

the bandwith of f which is measured in cycles per unit time, while R = & denotes
the sampling rate measured in samples per unit time. H. Nyquist has marked out
the meaning of the “interval” (number) % for telegraphy and C. Shannon called this
“interval” the Nyquist interval corresponding to the frequency [—mrw, tw]. Then
R = w is called the Nyquist rate which represents the theoretical minimum sampling
rate in order to reconstruct the signal completely.
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Of course it is also possible to sample signals having a sampling rate bigger than
R, which means the use of a thinner sequence of sample values, and this is the case of
so-called oversampling. In practice, oversampling occurs very often since a “fudge
factor” must be introduced due to the fact that sampling and interpolation cannot
exactly match the theoretical one; this is the case of the so called round-off error or
quantization error. Moreover, another error in time occurs when the samples cannot
be taken just at the instants %; this error is the so-called time jitter error. A concrete
example of an oversampling phenomenon is the compact disk player; indeed, taking
into account that the highest audible frequency is approximately 18.000 cycles per
second (Hertz), depending on the listener, according to the previous theory an audio
signal must be sampled at least 36.000 times per second in order that the signal be
reconstructed completely; but the actual rate on compact disk players is usually 44.000
samples per second.

Sometimes it also happens that one does not have at own disposal a reasonable
number of samples in order to reconstruct the signal completely. This happens when
the distance between the nodes is greater than the Nyquist “interval” and we have
the so-called undersampling. In this case the aliasing phenomenon appears and the
spectral replics of the sampled signal are not disjoint.

Just to point out the importance of the WKS-sampling theorem in the applica-
tions, we remark that besides communication theory, there are several applications to
medicine through the use of image processing; only as an example, magnetic resonance
imaging (MRI) can be considered .

But in practice, the interpolation formula (8.1) has some disadvantages. First of
all, according to (8.1), in order to reconstruct the signal completely, the number of
sample values should be infinite, which in practice does not occur. Furthermore, if
we fix an instant 7o as the present time, then formula (8.1) means that one should
know the samples of the signal not only in the past of the instant 7o, but also in the
future, that is for % > fg. Still more, in the WKS-sampling theorem, the signal should
be band-limited, which is a rather restrictive assumption; indeed if f € LZ(R) is a
band-limited function, by Paley—Wiener theorem, this implies that f is the restriction
to the real axis of an entire function of exponential type 7w w, which means that the
function is extremely smooth; moreover, such a function cannot be simultaneously
duration limited, and in practice most of the signals have the last property.

In order to avoid the above disadvantages, P. L. Butzer and his school replaced the
sinc function in formula (8.1) by a function ¢ which is continuous with compact sup-
port contained in a real interval, obtaining an approximate sampling formula. Clearly,
by using such a function ¢ one only needs to know a finite number of sample values
and, if the interval containing the support belongs to R, then the sample values can
be taken only from the past, which means one is dealing with prediction of the signal.
Moreover, in this case the signal should not be necessarily band-limited. Of course,
one cannot expect to obtain an interpolation formula like the above one in (8.1), but
we will need approximation results in order to reconstruct the signal f.
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Namely, we consider a family of discrete operators, called generalized sampling
operators of the form

+00
SRICESY f(g)go(wt —k), teR keZ w>0, (8.2)
k=—00

and we will establish pointwise and uniform convergence of Sy, f toward f, as w —
+00, together with some results concerning the rate of approximation of (S, f — f).

In the following we will denote by C (R) the space of all uniformly continuous
and bounded functions f : R — R, endowed with the norm || f |lco = sup,cg | f(#)I,
and by C ) (R) the space of all functions f € C(R) such that there exists the r-th
derivative, r € N, and f©) € C(R). Finally, we will denote by C.(R) and by
Cc(r)(]R), r € N, the subspaces of C(R) and of C (R) consisting of functions with
compact support.

Now, for ¢ € C.(R) and f € C(R), we consider the series (8.2).

Since ¢ has compact support, for every fixed w the series (8.2) consists of only a
finite number of non-zero terms, i.e., of those k € Z for which wt — k belongs to the
support of ¢. Moreover, it is easy to observe that Sy, : C(R) — C(R), and that the
following estimate can be established

155 loo < mo (@)l flloos

where mo(9) = SUP,cr D qes o l0U — k)| < +00.

The following theorem holds.

Theorem 8.1. Let ¢ € C.(R) be such that

+o00

Y -k =1 uek (8.3)

k=—o00

If f : R — R s a continuous function at ty € R, then
lim (S§ /) (t0) = f(to). (8.4)
w—+00
Moreover, if f € C(R), then

e e
Jlim S8 f = Flloo = 0. 8.5)

Proof. First we prove (8.4). Given ¢ > 0, by the continuity of f at #g, there exists
8 > 0 such that

|f(10) — f(k/w)| <&
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for |to — k/w| < 6. Now, if w > 0, by (8.3) we may write

+o00 oo
| £ (t0) = (S £)(t0)] =\ Y fl)pwig—k)— > fk/w)p(wiy — k)
k=—00

k=—00

A

+00
< > 1f (o) = fk/w)llpwio — k)|

k=—o00

- (Z+Z)|f(’0) — fk/w)llp(wig — k)|
(1) 2)
=11+ D,

where 2(1) is the sum over those k € Z for which |wfy — k| < dw, while 2(2) is that
over those k € Z such that |wfg — k| > dw.

Now I} < ¢ Z,J;'ioo lp(wtg — k)| < emg(p). Moreover, for § > 0 we may
choose w > 0 so large that the support of ¢ is contained in [—5w, Sw]. Therefore
I, = 0, and (8.4) follows.

The uniform convergence is proved analogously because, by uniform continuity

of f we can choose § independent of ¢ € R. O

The following corollary shows that taking the function ¢ with compact support in
R™, (8.4) gives a prediction of the signal f.

Corollary 8.1. Suppose that the assumptions of Theorem 8.1 are satisfied. Then if
the function ¢ has compact support in R™, then at every point ty of continuity of f,
we have

Jim (8§ 1)) = lim WZ) fkjwyp(wio = k) = f (10). (8.6)
w) <ty

Proof. The proof is an easy consequence of the fact that ¢ (wtyg — k) = 0if k/w > 1p.
Hence

(SO = Y flk/wpwio—k),

k/w<tgy

and the assertion follows by Theorem 8.1. O

Remark 8.1. (a) We point out that (8.6) gives the prediction of the signal at an instant
to by the knowledge of only a finite number of sample values chosen from the past
of 1.

(b) It is important to observe that condition (8.3) is not only sufficient in order to

obtain the convergence result (8.4); indeed, putting f(¢) = 1, it is easy to see that it
becomes necessary too.
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(c) Results concerning the approximation of functions having jump discontinuities,
by sampling sums can be found in [71]; there it is proved that at points of discontinuity,
pointwise approximation is not possible in general.

According to the above Remark 8.1 (b), it is important to have conditions on the
function ¢ such that (8.3) holds; indeed, in general, it is not easy to decide whether a
function ¢ € C.(R) satisfies (8.3) or not. In order to do this, the following theorem
will be helpful.

Theorem 8.2. If ¢ € C.(R), then condition (8.3) is equivalent to:

R 1 k=0
V2 Qrk) = 0. ik ez ) (8.7)

The interested reader can find a proof in [79]; it is a consequence of Poisson’s
summation formula (see [67])

1 —+00 —+00 -
= > -k = Y puke
21 k=—00 k=—00

where = means that the second series is the Fourier series of the 1-periodic function
on the left.

By means of the above Theorem 8.2, it is possible to furnish examples of functions
¢ € C.(R) satisfying (8.7), and hence equivalently (8.3).

Example 8.1. For n € N, we define the central B-spline of order n by

Xn:(—l)j(’;)(g+t—j>i_l,

Jj=0

My (1) = n—1)!

where, x! = forx e R,r e N,

El

For n = 2, we obtain the roof-function (see Figure 8.2),

L=, |t =<1
My(t) =
0, it > 1
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Figure 8.2. The B-spline M»

while for n = 3 we get (see Figure 8.3),

1 3\2 3 1\2 1
(1 +3)" =3 (el +3)", ltl=3
_J1 3\2 1 3
M3(t)— z(—|t|+§) s §<|[|§§
0, lt] > 3.
0.5
: : . : t
-2 -1 1 2

Figure 8.3. The B-spline M3
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For n > 3 it is convenient to use the following recursive formula (see e.g. [176])

((n/2) + OMp—1(t +1/2) + ((n/2) — )Mp—1(t — 1/2)

Mn(t): n—1

Moreover, for the Fourier transform we have

2n M, () = [%] . AeR. neN, (8.8)

and hence in particular (8.8) gives

M,Qrk) =0, keZ\{0}, M,0)= \/%

Now in order to study the rate of approximation in (8.5), it is necessary to assume
some further conditions besides (8.3). To this aim, for » € NU {0} and ¢ € C.(R),
we put

+00
my(p) =sup Y |u—k|"lpu — k).

ueR k=—00

Now the following theorem on the order of approximation can be formulated.

Theorem 8.3. Let ¢ € C.(R) and suppose that for some r € N\ {1}, there holds

+00 . L i=o0
Y w-blpw—k=1" T (8.9)
0, j=12,...,r—1
k=—o00
for everyu € R. Then
® m; (@) r) —r
If =Sy flleo = Tllf llocw ™, (8.10)

for f € C(R) and w > 0.

Proof. Applying to the function f the Taylor expansion formula in the integral form
with order r, we may write

r—1

RS VANO) "
f(”)_h;) TR Ty

/ FOO@ -y tdy.
t
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Hence
(S.)(1) — f(0)
+00
= Y fk/wypwt —k) — f(t)

k=—00
+oo r—1

Qe
=y Zf ()((k/ ) — D' p(wt — k)

k=—00 h=0

™ 1 k/w
(r) o1 N
+k;oo " — D! :/, Ok /w) — ) dy} p(wt — k) — f(1)

for every t € R. Taking into account (8.9), we have

(SEFIO — F(2)
_ i (=" f(”)(t)

wh

Z (wt — k)" p(wt — k)
h=1
+00

* Z z _1),{ / FOOk/w) =)™ 1dy}(p(wt k)

1 k/w |
k=—o0 4
Estimating now the above integral via

<’>(y)(<k/w> -y < 17

— wt|",

the assertion follows from the definition of m, (¢). |

Remark 8.2. We remark that, if » = 1, then (8.9) reduces to (8.3). This is important
since it means that the above estimate (8.10) for » = 1 holds under the assumptions
of Theorem 8.1.

According to Theorem 8.2, there follows an analogous condition equivalent to
(8.9).

Theorem 8.4. If ¢ € C.(R), then condition (8.9) is equivalent to

1/V2r, k=j=0
¢V 2rk) = {0, keZ\{0},j=0 (8.11)
0, keZ,j=1,2,...,r—1,reN,r > 1.
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Proof. The proof is again a consequence of Poisson’s summation formula applied to
the function (—iu)’ ¢ (u). Then by a well-known property of the derivative of order r
of the Fourier transform, we obtain

=) —

o U SUTUE SN D Eer IS
2 T Pt
and so the proof follows with reasonings similar to those of Theorem 8.2 (see also
[79D). -

Example 8.2. If r = 2, the kernel ¢ (¢) = 3M>(t —2) — 2M, (¢t — 3), satisfies (8.11)
(see Figure 8.4).

Figure 8.4. The kernel ¢)

Moreover, in this case m,(¢z)/r! < 15, and
If =82 fllc = Ow™?), w— +c0.
If r = 3, the kernel
1
»3(t) = §{47M3 (t—2)—62M5(t — 3) + 23M5(t — 4)}

satisfies (8.11) (see Figure 8.5); in this case m, (¢3)/r! < 54 and

If =S flloo = O(w™), w— +o0.
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Figure 8.5. The kernel ¢3

The construction of such functions is based on the solution of linear systems in
the complex plane. We remark that the above kernels are constructed in such a way
that they satisfy (8.9) and that they have compact support contained in (0, +00), just
as for the case of the prediction of a signal. For example, it is possible to show that
S¥2 f predicts a signal at least % units ahead with error @ (w™2), and the associate
sampling serief1 conskists only 1of three terms, i.e., those fork = j —3,j —2,j — 1

for whichr — o < 7- <t — - < t. For readers interested in results of this type, we

suggest the paper of P. L. Butzer and R. L. Stens [79].

Remark 8.3. Also inverse results concerning the order of approximation have been
established. In [79] it is proved that using spline kernels it is not possible to ap-
proximate functions of the class C )(R) with s < r with a rate better than @ (w ™).
Moreover, it is also proved that for spline kernels of order r, the best possible order of
approximation which can be obtained for non-constant functions f is @(w™"), even
if f is arbitrarily smooth.

8.2 Uniform convergence for a class of nonlinear
integral operators

In this section we will construct a general family of nonlinear integral operators which
contains, in particular, a nonlinear version of the generalized sampling operator intro-
duced in the previous section. For such nonlinear generalized sampling operators, we
will study uniform approximation results. From a mathematical point of view, the the-
ory developed gives a unitary approach to the study of convergence results for several
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families of nonlinear integral operators, very common in approximation theory (see
e.g. Chapter 3). Moreover, from the point of view of applications to signal processing,
the study of nonlinear approximation processes is important since it may describe
nonlinear systems in which the signal computed, during its filtering, generates new
frequencies.

As in Chapter 4, 2 will be a locally compact (and o -compact) topological group
G, and H will denote another locally compact topological group with its Haar measure
w i on the class of Borel sets B(H). We suppose G abelian, but unimodularity would
be sufficient for our theory. Moreover, we will denote by U a base of symmetric
neighbourhoods of the neutral element 6 € G, and by local compactness we can use
a base with (measurable) symmetric compact neighbourhoods of 6. Let {hy}yew
be a net of functions (here W is a set of indices), h,, : H — G such that &, is a
homeomorphism between H and h,, (H).

Let X = L°(G) denote the space of all Borel measurable real-valued functions
defined on G.

As concerns convergence, in this section we will use, concerning the set W, the
same notations as in Section 3.2., assuming that wg = +00; i.e., we will assume that
W is an unbounded subset of the interval ]0, +-00[, +00 being an accumulation point
of the set W. This is achieved by taking into account the nature of the classical results
given in Section 8.1, where wg = +o00.

Forevery U € U, w € W and s € G let us now define the sets

Uw=1{teH:s—hy,@t)eU}y=h,'(s+U).

Moreover, let {L,}ycw be a family of measurable functions L,, : G — R, with
Ly(s — hy () € L), (H) for almost all s € G.

We will suppose that for every w € W, L, : G — R is a measurable function
which satisfies the following assumptions:

(Ly.1) forevery U € U,
lim Ly(s — hw()dpp () =0,
W=+ JH\hy' (s+U)
uniformly with respect to s € G,

(Ly.2) thereis a constant N > 0 such that, forevery s € G and w € W,

/ Lu(s — hu(®) diun() < N.
H

If the family {L,, }yew satisfies (Ly,.1) and (L,,.2) then we will write {L, }yyew C
L.
Later on, we will show that in some particular cases, assumption (L,,.2) implies
(Ly-1).
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Now we introduce an important class of kernels.
Let {Ky }wew be a net of globally measurable functions K, : G x R — R such
that Ky, (s — hy (), u) € L}LH (H) forevery u € R, s € G, and there hold:

(Kw.1) Ky(s,0)=0fors € G,

(Ky.2) the family {K, }wew is an (L, ¥)-Lipschitz kernel, i.e., there exists a family
{Ly}wew C Ly such that

|Kw (s, u) = Ky (s, v)| < Ly (s)¥(Ju —v))

fors € G,u,v e Rand ¢ : ]R(J)r — Rar is a function belonging to the class
W ( compare with the definitions given in Sections 3.1 and 4.1, dealing with
families of functions and i being independent of the parameter t € Q = G),

(Ky.3) foreveryn € Nand w € W, putting

r)’(s) = sup
L<juj<n

l/ Kun(s — oy (), 0) dpps () — 1|
H

we have lim,, 4o 7' (s) = 0, uniformly with respectto s € G.

From now on, if a family of kernels {K,}yecw satisfies (Ky.i), i = 1, 2, 3, then
we will wri~te {Kylwew C Ky, and if the function ¢ € W is also concave, we will
write Y € V.

Throughout this chapter, we will deal with the following net of nonlinear integral
operators

(Ty f)(s) = /H Ky (s = hy (1), f(hy(1))) dpn (1) (8.12)

defined for every f € Dom T = Ny ecw Dom Ty, i.e., for every f € L%(G) for which
(Ty f)(s) exists, as an Haar integral, for every s € G and for every w € W.

In order to prove the main approximation result, we need the following preliminary
lemma.

Lemma 8.1. If {Ky}ywew C Ky, then there exist w € W and r > 0 such that for
everyw € W, w > w, and every s € G, we have

/ Ly(s —hy@)dug ) >r.
H

Proof. Let n € N be fixed. From the singularity, there is aw € W such that, for every
w € W with w > w and for every s € G,

sup

1
n <lul<n

l/ Ky(s — hy (), u)dpp (1) — 1 <1
H 2
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or, forevery w e W, w > w, s € Gand% <lu| <n,

l/ Ky(s —hy@),u)dpg ) — 1] < l
H 2

u

This implies the majorization

1/ Ky (s = hy(0), u) dpp (1) > : (8.13)
H 2

u

foreveryw e W, w > w, s € Gand% < |ul <n.
Suppose now that the assertion of this lemma is false, i.e., for every w € W and
for every r > 0,

/ Ly (s = hy (1) dug(t) <, (8.14)
H

for some s € G and for some w’ € W, w’ > w.

In particular we have that, for every » > 0, (8.14) holds for some s € G and for
somew’ € W,w' > w.

Now, for such w’ € W and s € G and for a fixed n € N, we may write, for every
ueR,%SluISn,

1
_/HKw/(s—hw/(t),M)dMH(t)

u

1
< —/H|Kw/(s—hwf(l),u)|dlLH(f)

=Tl
1

< L Lts = by ) QuD dun®
lu| Jg

= YD s = b o) dpn ()
lu| Ju

< YluD sup Y(uh) Y@

1

Jul iz 1l P
= ny(n)r.
Now we can choose > 0 such that nyr (n) r < % and so we obtain a contradiction to
(8.13). Hence the assertion follows. O

As in Section 8.1, let C(G) be the set of all bounded and uniformly continuous
functions f : G — R. Now we may state the following approximation theorem.

Theorem 8.5. Let f : G — R, f € C(G) and suppose that {Ky}ywew C Ky and
{Lylwew C Ly. Then

||wa_f||oo—> 0 asw — +oo.
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Moreover, Ty, : C(G) — L°°(G) and for some constant N > 0, we have, for every
wew,

ITw flloo = NV (Il f lloo)-

Proof. First we evaluate ||Ty fllco- By the (L, ¥)-Lipschitz condition and
Ky(s,0) =0, for every s € G, we may write, taking into account that f € C(G),

|(Tw f)(s)| =

fH Ku(s — hu(0), f(ho()) dpes (1)

< /HLw(S—hw(t))llf(lf(hw(t))l)dMH(t)
Ny ([l flloo)

IA

for every s € G; hence we obtain ||y, fllco < NV (|| flleo), and so Ty, : C(G) —

L% (G). We now evaluate || Ty, f — f|lco. We have

|Tw f(s) = f()] = ’/H Ku(s = hy(0), f(hy (1)) dpen (1)

_/HKw(s—hw(t),f(s))dMH(f)

+ /H Ku(s — hu(0), £() di () — £(5)

IA

/H Ly (s = hwO)Y (| f (hw(@®) — f($)]) dpn ()

+ ’/H Ky (s — hy(t), f(s))dpn(t) — f(s)
=11+ 1.

First we consider /;. By the uniform continuity of f, for a fixed ¢ > 0, there is a
compact neighbourhood U, € U such that | f(s + v) — f(s)| < ¢, forevery s € G
and v € U,. Moreover, by Lemma 8.1, there are w € W and r > 0 such that, for
everyw € Ww > w, fH Ly(s —hy(@)dug(t) > r, forevery s € G. We now put

Uf’w:{teH:s—hw(t)eUg}:h;l(s—{—Ug), forwe W, w>w.

TlEn ift € H\ h;l(s + Ug), s — hy(t) € Ue and by property (L,.1) there exigs
aw € W such that fH\hal(HUS) Luw(s —hy@)duy(t) < eforw e W, w > w,
uniformly with respectto s € G.
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Taking @ = max{w, w}, we have that, for w > W, w > @, h;l(s + Ug) £ 0,
I = / I Loy (s = hywO)Y (| f (hw(@) — f($)D) dip (1)
hy (s+Ue)

+/ 1 Ly(s = hw@O)Y (| f (hw(®) = f($)]) dpn ()
H\hy' (s+U¢)

= V(N + ¥ 2l flleo)e.

In order to estimate I», since f is bounded, for every ¢ > 0 there is an n € N such
that | f(s)| < n, for every s € G and % < &. Now we fix this n € N, and put

Ap={seG:0<|f(s) < %}. Then, since K, (s,0) = 0, for every s € G, we
may write

L =

/H Koy (s — hy(0), f(s))dpnu(t) — f(s)
= VH Koy (s — hoy (1), () XA, () dpen () — f(5)xa,(s)

+ /H Ku(s — hu(0), £()xcva, ) dis () — F©)xea, (s)

Hence there follows

I

IA

ry OLf ()] +

/H Ko (s = hu(0), f(5)Xxa, () dun () — f(s)xa,(s)
=L +1;

Now, I} < || flleor (s), and since ¥ € ¥,
I < /HLw(S—hw(t))l”ﬂf(s)XA”(S)DdMH(t)+|f(S)XA,1(S)|

1\ 1
N1ﬁ<;> +-

Ny (e) + e.

IA

A

Finally, forw € W, w > w,

ITw f(s) = f() = Ny (e) + ¥ 2l fllow)e + Ny (e) + &+ 1 ()] flloo

and so, since r,” (s) — 0 uniformly with respect to s € G, we obtain

limsup [T, f(s) — f($)| = Ny (&) + V2l fllow)e + N (e) + ¢

w—+00

uniformly with respect to s € G. Hence the assertion follows, ¢ > 0 being arbitrary.00
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Remark 8.4. (a) Here we observe that in the case of f(s) = u, u # 0 a fixed number,
for every s € G it follows that if || Ty f — f|lcc = 0 as w — +o0, then

— 0 asw — 400,

‘/ Ku(s — hu (1), u) dis (1) — u
H

and this implies that

l{/ Ky —hy@®),u)dug(t) — 1} — 0 asw — +o0o,
H

u
ie, rY(s) — 0as w — +4oo. This means that the notion of singularity is also
necessary in order to have the required approximation theorem.

(b) We remark that in the particular case of (L,,, 1)-Lipschitz kernel { Ky, }yew C
K, (strongly Lipschitz kernels), i.e.,

| K (s, u) = Ky (s, v)| < Ly(s)|lu — vl

fors € G,u,v € R, and {L,}yew C Ly, from Theorem 8.5 we obtain for some
constant N > 0 the estimate

17w flloo < NI flloo-

_ (c) As a particular case, Theorem 8.5 contains the linear case, i.e., Ky (7, u) =
Ky,(®u.

8.3 Applications to the convergence results

In this section we discuss some examples of operators (8.12) to which Theorem 8.5
can be applied.

(D Let G =H = (RN, +) and uy = dt, the Lebesgue measure. Put /,,(¢) = t for
every w € W; then we obtain

(wa)(S)=/ Ku(s—1, f())dt, s eRY,
RN

Setting Ky, (¢, u) = K w(—t, u), the above operators become those of the form con-
sidered in Chapters 3 and 7.

Here it is shown that the assumptions on {L, },,ew and { Ky, },yew represent natural
extensions of the approximate identity to the nonlinear setting. Indeed, if K, (#, u) =
Ky(t)u, (Ly.1) and (Ly.2) become respectively

lim |Ky(z)|dz =0, foreveryd > 0,

w—+00 ‘Z|>6
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and
there is a constant N > 0 such that/ |Ky(z)|dz < N.
RN

Moreover, the (L,,, ¥)-Lipschitz condition is always satisfied as an equality with
Ly, = |Ky| and ¥ (u) = u, and condition r (s) — 0 as w — +oo uniformly with
respect to s € G, becomes f]RN Ky()dz — 1asw — +oo.

(II) An analogous application gives a nonlinear version of the Mellin convolution
operator of the form

+00
(Tw)(s) = (My f)(s) = f Ky(st™h faene~tde, s>0,
0

(see also Section 4.7). In order to obtain the above operators we take G = H =
R*, ), ug = [t7Vdt, hy(t) = t, for every w € W. In the particular case of
Ky(t,u) = Ky(t)u we obtain the Mellin convolution operator; it is connected with
the theory of “moment type operators”. The assumptions on {L, }y,ew and {Ky }wew
are the natural extensions to nonlinear instance of the usual assumptions used for
moment type kernels.

(IIT) Here we consider the case of discrete operators. Such applications reproduce,
in particular, the nonlinear form of the generalized sampling operators (series) intro-
duced, in the linear case, in Section 8.1.

We put G = (R, 4+) and H = (Z, +) with the counting measure py. Given the
family of homeomorphisms {hy}yew, Ay : Z — h(Z) C R, we define the kernels
(Kw)wew, Kw : R x R — R, and {Ly}wew, Ly : R > R with (Ky)wew C Ku
and {Ly}wew C L.

In this case (Ly,.1) and (L,,.2) become respectively

wErEoo Z Ly(s —hy((k)) =0, forevery$ > 0,
s~y (k)| >8

uniformly with respect to s € R, and

+00
Y Lu(s—hyk) <N

k=—00

forevery s e R,w € W.
For {K,} C Ky, the operators (T, f) now take on the form

+00
(Tw f)(s) = Z Ky(s = hw(k), f(hy(k)), seR, weW.

k=—o00

Therefore, it is possible to state Theorem 8.5 for the above discrete operators.
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Now we will consider a particular case, namely, we take W = RT, G and H
as above and hy, : Z — R, defined by Ay (k) = 5 w > 0, k € Z; moreover, we
put Ky,(z,-) = K(wz,+), w > 0,z € R where K : R x R — R, satisfies the
(L, ¥)-Lipschitz condition, i.e.,

|K (s, u) — K(s, v)| < L(s)¥ (lu — v])

fors e R,u,ve R,y € V.
So we define the nonlinear generalized sampling operators as

+00 k
(Tw f)(s) = Z K(ws —k, f(—)), seR, w>0. (8.15)
k=—00 w

Weput L (z) = L(wz),w >0,z€e Rand L : R — Rg is a measurable function.
In this case the assumptions (L,,.1) and (L,,.2) become respectively

(a) JJim Y Lws—k=0
lws—k|>8w
and
+00
(b) > L(ws—k) <N, foreveryseGandw > 0.
k=—00

Moreover, in this case

+00
1
(c) ry (s) = sup ‘— Z Kws —k,u)—1| =0, asw — +o0,

1 u
S =lul<n k=—00

uniformly with respect to s € R. _

In the linear case, i.e., when Ky, (¢, u) = Ky, (¢)u, the assumption rY'(s) = Oas
w — 400 becomes Z,j;’ioo K(ws —k) - 1 as w — 400, and (a) and (b) hold
with |E | instead of L. The above assumptions are those of the theory of generalized
sampling series as considered in Section 8.1. In this particular case of the sampling
operator, it is not difficult to prove that (L,,.2) implies (L,,.1) , i.e., (b) implies (a)
(see [175]).

Therefore we may state the following corollary.

Corollary 8.2. Let f : R — R, f € C(R) and suppose that K is (L, {)-Lipschitz,
with W € U and where L satisfies assumptions (b) and (c). Then

-— k
H Z K(w'_kvf(z))—f(~)Hoo—>0, as w — +00;

k=—o00
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moreover

~+00 k
| Y K=k fCEn| = NI,
w’ oo
k=—o00
N being the constant of Theorem 8.5.

Remark 8.5. (a) The previous theory also subsumes a version of the multivariate
nonlinear sampling operator. Indeed, we may take G = (RN, +), H = (ZV,+)
with the counting measure, and f : RV — R.

We then define the multivariate nonlinear sampling operator (series) as the oper-

ator of the form .
(Tw/)(s) =) K(ws —k, f(;))

7N

N N . N _ N
where s € R, w € R, and K : RY — R. Here w = (w1, wa, ..., wy) € R+
and we define w; < w, if and only if wl.1 < u)l.z,i = 1,2,...N. Moreover, if
s = (s1,52,...,sy)andk = (k1, kp, ..., kn),wesetws = (WS, wW2s2, ..., WNSN),
k _ (kL k L9 . P
- _(wl,wz,..., wN), and w — 400 means that w; — 400 for each i = 1,
2,...,N.

(b) The previous theory holds also for more general H. Indeed, it suffices to
take (H, B(H), ;tp) as a locally compact Hausdorff topological space with its Borel
o-algebra B(H) and py aregular measure on it. Moreover, the real parameter w > 0
can be replaced by an abstract parameter w varying in an arbitrary filtering partially
ordered set 'W.

8.4 Rate of uniform approximation

In this section we study the rate of approximation of || Ty, f — f||lo- To this aim, since
f is defined on a group G, we must adapt the definition of the classical Lipschitz
classes to this setting.

So,letw : G x G — R™ be a measurable symmetric function (i.e., w(x, y) =
w(y, x)); we say that f : G — R is w-Lipschitz if there exists a constant R > 0 such
that for every x, y € G, we have

|f () = fI = Roo(x, y).

We will assume that w and {h,},cw are connected by the following relation.

There exist a function A : Rt — RT with limy_, 1 50 A(w) = 0 and a family of
functions {Q,}, Ry : G x H — R with the following property: for every s € G
and w € W, there exists a s, € G such that

(s, hy(1)) = Ry (sw, DM (w).
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From now on, if f is w-Lipschitz and the previous relation between w and h,, is
satisfied, we will write f € Lip,,.

In particular, for x = s and y = h,(¢), we obtain
[f(s) = f(hw()] < RQy(sw, 1) AMw).
Moreover, we will suppose that

r?(s) = supr, (s) = O(M(w)) asw — 400,
neN

uniformly with respectto s € G.
Let us set m, = SUp,, ey SUPseg [ Lw (s — hu (1)) Quy(sw, 1) dip (1).

We are ready to state the following

Theorem 8.6. l;etf :G — Rwith f € C(G),andlet{Ky}wew C Ky, {Lw}twew C
Ly, and y € V. If f € Lip,, m, < 400 and r(s) = O(A(w)), as w — 400
uniformly with respect to s € G, A being the function in the definition of the class
Lip,, then

ITwf — flloo = O (A (w))) asw — +oo.
Proof. Arguing as in Theorem 8.5, we may estimate |Ty, f (s) — f(s)| as follows,
Ty f(s) = f($)] = /H Loy(s = hwO)Y (| f(hw(®) = f()D dip (1)

+

/H Kuls — hu(D), £() dpm(®) — £(s)
— I(w)+ h(w).

Now, I(w) < rY(s)|f(s)] < r*(s)|| fllco, and hence, by the assumptions, we have
L(w) = O(A(w)) as w — +oo. Now, since ¥ € W is concave, then A(w) =

O (A(w))) as w — 400, and hence Ir(w) = O (Y (A(w))) as w — +00.
We estimate 11 (w).

ILi(w) = /HLw(S—hw(l))W(If(hw(t))—f(S)I)dMH(t)
< /HLw(S—hw(t))W(RQw(sw,t)?u(w))dMH(ll

Putting By, (s) = fH Ly (s—hy(2))dug(t), by Lemma8.1 and by assumption (L,,.2),
there exist w € W and r > O such that r < By,(s) < N, forw € W, w > w and for
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every s € G. Hence by the concavity of ¥ € W, we have

1
Li(w) = / Luy(s = hw (1)) By ()Y (R Qu (sw, 1) A(w)) dpwp (t)
By(s) Ju
< NW( 1 / Ly(s — hy ()R 2y (Sw, t))»(w)d/LH(t)>
By(s) Ju

Nw(RA(w) /HLw(s_hw(,))gw(sw,t)duy(t))

r

< Ny < RA(w) mw)'

Taking r > 0 so small that Rm,r~! > 1, again by the concavity of ¥ € \TJ, there
holds 71 (w) = O (¥ (A(w))) as w — 400, and therefore the assertion follows. m|

8.5 Applications regarding rate of convergence

In this section we discuss some examples of operators (8.12) to which Theorem 8.6
can be applied.

(I) We consider, as in (I) of Section 8.3, the case of nonlinear convolution integral
operators, i.e., when G = H = (RN, +4), wy = dt being the Lebesgue measure, and
we put iy, (¢) = t for every w € W; then we obtain

(wa)(s>=/ Ku(s —1, f(0)dr, seRY.
RN

In this case we may take w(x, y) = |x — y|* = w¥x — y|*w™% = (w|x —y)%w™%,
O<a=<1.5Qyux,y) =w(wkx—y)) = (w|lx—y))* and L(w) = w™%. Moreover

|f(s) = flhw@)] =1f(s) = f(O] < R(wls —t)*w™,
and therefore s, = s € RV, for every w € W. Furthermore,
w 1 1
r(s) = sup |— Kw(s—t,u)dt—1‘=sup — Ky(z,u)dz — 1
uz0 U JRN u#0 U JRN
which is independent of s, and

Mg = Sup sup / Ly(s —Ho(w(s —1t))dt
wEW_yGRN RN

= sup sup/ Ly(s —Hw%|s —t|“dt
RN

weW geRN

= sup w® /RN Ly (2)|z|* dz

weW
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represents the ath-moment of the kernel {L,}yew.
Hence Theorem 8.6 applied to the above family of nonlinear convolution integral
operators can be formulated as follows.

Corollary 8.3. Ler f : RY — R with f € CRY), and let {Ky}pew C Ku,

{Lw}wew C L, and ¥ € V. If f € Lip,,, my, = sup,cy W [pnv Luw(2)|z|*dz <
+o00, and

1
= sup —/ Ky (z, u)dz—l‘ =0w™) asw — +oo,
uz0 | U JRN

then

H/JRN Ky(—1t, f(t))dt — f(-)H =0 (w™) asw — +oo.

(IT) We now take into consideration the case of discrete operators.

Here we put G = (R, 4+) and H = (Z, +) with the counting measure py. We
will use the same notations as in (III) of Section 8.3. For {K,,} C K, the operators
(8.12) now take on the form

+o0
(Twf)$) = Y Kuls —hyk), f(hpk)), seR, weW.

k=—00

So we may take the function w(x, y) = |x — y|* = Qu(x, y), for every w € W and
0 < a < 1;since hy(t) = hy(k), we have

| f(s) = fhw )] < Rlsw — k|*A(w)

for some s, € Rand A : RT™ — R such that lim,,_, { o A(w) = 0. Moreover,

r(s) = supr, Y(s) = sup |— Z Ku(s — hyk), u) — 1|,
uz0'U

and
+o0

My = sup sup Z Lu(s — huw(R)[sw — k|,
weW seR

Now, let us consider the particular case of nonlinear generalized sampling series, i.e.,
when W = RY, h, (k) = %, w > 0,k € Z,and Ky(z,-) = K(wz,-), w > 0,
ze€Rand K : R x R — R, were K satisfies a Lipschitz condition as in Example III
of Section 8.3 and let L,,(z) = L(wz), w > 0,z € Rwhere L : R — ]R(‘)|r is the
measurable function in the Lipschitz condition of K. In this case

+00 k
(T )= Y K<ws—k,f<5)),

k=—o00
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and
o

k

s — —
w

ws — k
= |ws — k|w™?,

(s, hy (k) =

a ‘

w

and hence sy, = sw, Qy (s, k) = |ws — k|* and A(w) = w™?.
Therefore we obtain that the class Lip,, consists of all functions f : G — R such
that there exists a constant R > 0 in such a way that, for every x, y € R,

|f(x) = fOD] = Rlx = yI¥,

and hence | f(s) — f(hy(k))| < Rlws — k|*w™7.

Moreover,
1 =2 k
— E Klwls——),u)—-1
u w
k=—00

r(s) = supr, (s) = sup
neN u#0
1 +00
= sup |— Z K(ws —k,u) — 1|,
u#0 u k=—o00

and

+00 X
Mg, = Sup sup Z L(w(s — —>)|ws — k|
w>OseRk=700 w

+00
= sup sup Z L(ws — k)|ws — k|*.

w>0seR k=—00

Note that my, < +00 if sup,cg Z,:i’ioo L(s —k)|s — k|* < +o00, and the latter is a
classical assumption in the theory of generalized sampling series. Hence it is possible
to state the following corollary.

Corollary 8.4. Let ji ‘R — R, f € CR), and let K be an (L, yr)-Lipschitz kernel
function, with W € W and where L satisfies assumption b) of (IIl) of Section 8.3. If
f e Lip,, m, < 400, and

1 X
r(s) = sup - Z K(ws —k,u) — 1' =0w™%), asw — +oo,
u70 k=—00

uniformly with respect to s € R, with0 < a < 1, then

| > K FEy = 70| = 0ww . asw - +oo.

k=—00
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Remark 8.6. (a) We remark that if K is strongly-Lipschitz, then ¥ (1) = u, for every
u e R+, and we obtain

H k:XZK(w —k, f(g)) — f(.)HOO _ 0, asw — +oo.

This result can be applied to the particular case of linear sampling operators, i.e., when
K(t,u) = K(t)u (see [175]).

(b) According to Remark 8.5 (a), we may find a result on the order of approximation

for the multivariate nonlinear sampling operator. In this case A : Rﬁ — R* with

Aw) =w% = (]_[lN:1 wi)_a, where w = (w1, wa, ..., wy) € WV,

8.6 Uniform regular methods of summability

In this section we will investigate the problem when the general family of operators
(8.12) defines a T-regular method of summability, as defined in Section 5.2, with
respect to uniform convergence, i.e., the case in which both the convergence of the
functions f,, and of the operators T, f,, is the uniform one. The results presented here
are based on Theorem 8.5, and what is remarkable is that the classes K, and £, are
exactly the same as considered there. Here the set of indices W will be taken as in the
previous section. This results in a wholly unified theory.

Let { fu}wew be a family of functions on G and consider the family of nonlinear
operators T = (Ty)wew,

(Tw fuw)(s) = / Koy (s — hy (1), fu(hy (1)) dpn (1),
H
defined for any f,, € Dom T = Nycw Dom Ty,.
We say that {fy}wew C C(G) is uniformly (Ty)-summable to f € C(G) if
Ty fuw — f as w — +oo uniformly with respect to s € G.
We will say that (T)ywew is a uniform regular method of summability on C (G) if

| fw — flloo = 0 as w — +o0 implies that f, is T;,-summable to f,
i.e.,
1 Twfw — flloo—= 0, asw — +oo.
Now let KX, and £, be families of kernels as defined in Section 8.2. We formulate

the following

Theorem 8.7. Let f : G — R, f € C(G), and suppose {K}wew C Ky and
{Lywlwew C Ly. Then (Ty)wew is a uniform regular method of summability on
Cc(G).
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Proof. Let { fiy }wew be a family of functions on C(G) such that || f, — f|lcc = O as
w — 4o00. We may write

[(Tw fuw)(s) — f()| < [(Tw fw)(s) — (Tw S|+ [(Tw f)(s) — f(s)]
= 1{°(s) + L, (s).

We evaluate 1{”. By the (L, ¥)-Lipschitz condition we have
I{'(s) = ‘/ Ky (s — hy (1), fuw(hy(@)))dpw ()
H

—/HKw(s—hw(t),f(hw(t)))duﬂ(t)

IA

/H Ly(s = hwO)Y (| fuw(hw(®) = f(huw()]) dup ()

IA

/H Lu(s — hu)W (L fw — fllso) dies (1)
MY (L fuw — fllso),

IA

and since ¥ € ¥ and || fyy — flloo = 0as w — +o00, we deduce that I;”(s) — 0 as
w — 400 uniformly with respectto s € G.

Now, 1;°(s) = |Twf(s) — f(s)| < [ITwf — flloo, and so, by Theorem 8.5,
I;°(s) — 0 as w — +o00, uniformly with respectto s € G.

Therefore the assertion follows, taking the supremum of s € G. O

8.7 Bibliographical notes

It is not completely clear who first established the sampling theorem and in this respect
there are different opinions. Indeed I. Kluvanek (1965, [127]) says: “The origin of
this theorem can hardly be traced”.

One of the historical roots of the sampling theorem is in interpolation theory with
equidistant nodes; and considering the case of not necessarily band-limited functions,
the first person who considered the sampling theorem in this respect was the Belgian
mathematician Charles-Jean Baron de la Vallée Poussin in 1908 in [88]. His work
dealt with the case of duration-limited functions, a class of functions which cannot be
simultaneously band-limited and that represents signals which occur in practice.

De la Vallée Poussin considered the finite interpolation formula

+00 .
Fu(x) =Y. f(ak)W

k=—00 (x

where f is a bounded function on a compact interval [a, b] and ay := kn/m, k € Z,
m=norm=n+ 1/2,n € N. Here it is assumed that f : R — R is zero outside
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[a, b]. For such functions F},, de la Vallée Poussin established sufficient conditions for
pointwise and uniform convergence. But such a study is connected with the sampling
theorem since F,, interpolates f at the nodes ay.

De la Vallée Poussin’s work was followed by M. Theis in 1919 (see [189]). Now in
de la Vallée Poussin’s approach continuity of a function f at a point xg alone does not
suffice for the convergence of F, to f, and further assumptions such as the existence
of f/(xp) or the requirement that f is of bounded variation in a neighbourhood of xo,
are needed. However, in order to obtain convergence for any continuous functions f,
Theis replaced the kernel % by {% }2, which is the counterpart of Fejér’s method
of summation of Fourier series, and she established a convergence result solely under
continuity assumptions. Later on, in 1927, J. M. Whittaker in [207] generalized
the convergence theorem for F;, of de la Vallée Poussin for functions which are not
necessarily duration-limited. Studies following the same direction as those of de la
Vallée Poussin include the work of J. L. Brown in 1967 (see [50]) with associates
aliasing error estimates, and the work of P. L. Butzer’s school at Aachen since 1976.
As mentioned in [78], many electrical and communication engineers dealt with the de
la Vallée Poussin interpolation formula even though they may not have been aware of
the fact that he was one of its major initiators.

Underlying this kind of work, there was also interest in regarding the series F, not
in terms of its behavior for m — o0, but from the point of view of an interpolation
formula. In this respect the paper [206] of E. T. Whittaker in 1915 contains the
interpolation problem of finding a function passing through the points (%, f (%)),
k € Z, W > 0. Among all analytic functions which are solutions of the above problem,
he choose the function

= k\sint(Wx — k)
=2, 1 () S

Note that C(x) is just Fy,(x) for m = 7 W, and C(x) is an entire function, band-
limited to [—7 W, w W]. The above series, called by Whittaker cardinal series, can
be obtained as a limiting case of Lagrange’s interpolation formula as the number of
nodes tends to infinity. A number of mathematicians have studied the relationship of
the above series with the Newton—Gauss series, the Everett, Stirling and Bessel series;
all these series solve the same interpolation problem and are related to the cardinal
series.

The interpolation problem posed in the sampling theorem, as shown in Sec-
tion 8.1, is the so-called Shannon sampling theorem for band-limited functions. Indeed
C. E. Shannon established the following important engineering principle: If a signal f
has a bounded frequency content, then all the information contained in such a signal
is in fact contained in the sample values at equidistantly spaced sample points and
knowledge of the bound determines the minimum rate at which the signal needs to
be sampled in order to reconstruct it exactly. This rate, which is called the “Nyquist
sampling rate” , is measured in W samples per second.
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Shannon’s work goes on to discover that other sets of data can be used in order
to reconstruct the band-limited signal f: namely, one can also consider the values of
f and its first derivative at every other sample point, or the values of f and its first
and second derivative at every third sample point and further, it is also possible to use
sample points which are not uniformly spaced (non uniform or irregular sampling).
An interesting example which illustrates a concrete sampling situation in which the use
of the derivative is important, is given in [118]. There, as an example, is discussed an
airplane pilot’s instruments panel, where derivative information could be available to
the pilot. Moreover, even if a version of this theorem was known by Borel in 1897, the
sampling theorem was introduced into the engineering literature by Shannon, whose
paper was apparently written in 1940 but not published until after World War II in
1949 ([179]); but it seems that its contents were in circulation in the United States by
1948 (see [179]).

A little later, news emerged from Russia that Kotel’'nikov had published the sam-
pling theorem in 1933 ([130]), and there it was known by his name. His results began
to appear in the western literature in the late 1950s. Other contribution to sampling
theory were given by Someya in [183], who continued the Japanese interest in cardinal
series going back to Ogura in 1920 ([168]), and by Weston in [205]. Other contrib-
utors to the engineering literature were Nyquist, Bennet, Gabor and Raabe. But it is
really impossible to quote here all the mathematicians who have been interested in the
sampling theorem directly or not; indeed we invite the interested reader to read the
survey papers by Jerri [122], Butzer [55], Butzer—Stens [78] and Higgins [118].

If now we denote by (Sw f) := C(x), and we observe that (S, f)(x) = Fj,;(x),
then it transpires that de la Vallée Poussin was the first who in 1908 considered the
reconstruction of a function f by means of its sampling series, being f duration-
limited, (i.e. f has compact support).

The interpolation formula of the sampling theorem shown in Section 8.1, has been
considered by many authors, but in Ogura’s paper ([168]) of 1920 there is a formulation
of the sampling theorem similar to Shannon’s’ (Section 8.1). Even so, Ogura attributes
itto E. T. Whittaker (1915), probably erroneously. Ogura seems to be the first to prove
the sampling theorem rigorously, and J. M. Whittaker in 1927 ([207]) obtained results
containing a weak version of the sampling theorem. But probably, neither Ogura, nor
J. M. Whittaker, unlike V. A. Kotel’'nikov and C. E. Shannon, realized the importance
of their results in relation to the sampling theorem.

Another important step in the history of the sampling theorem appeared when
in 1960’s some mathematicians began to consider the interpolation formula of the
classical sampling theorem when the band-limitation is weakened in some sense.
Results in this respect are due to P. Weiss (1965, [204]) and J. L. Brown (1967, [50]),
and gave the following estimates.

If f € L>(R) N C(R) is such that f e L' (R), then there holds:

2 n
£ — (Sw ()] < ,/—/ Fldv. W 0.
T Jlzzw
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The above inequality is interesting since the right-hand side tends to zero for W —
400 and this shows that f can be uniformly approximated by the sampling series
Sw f. This also shows that f is not exactly represented by the interpolation series
as in the sampling theorem, but it can only be approximated when W — +4o00; and
this goes in the same direction of the work of de la Vallée Poussin. Moreover, the
above upper bound for the error occurring when f is approximated by Sy f, is the
x
important to note that in the particular case of a band-limited f, the right-hand side
vanishes and we obtain the exact representation of f by means of Sy f, which is the
Shannon sampling theorem.

This is just in the direction of the work of P. L. Butzer and his school at Aachen.
Earlier they considered time (duration)-limited functions and later this condition was
weakened assuming conditions on the behavior of f at infinity. Later they began to
consider the generalized sampling series of f, obtaining the results quoted in Sec-
tion 8.1 (see [79]). Concerning the behavior of the function f in correspondence of
jump-discontinuities, they gave a partial solution to a conjecture of R. Bojanic. They
proved that a series having the interpolation property cannot converge at points of dis-
continuity. But if the assumption that the kernel ¢ in Sy f is continuous, is dropped,
then in this case they showed that there exist kernels ¢ such that (Sy f)(x) interpolates
f atthe nodes n/ W, n € Z and converges as W — +oo.

Subsequently C. Bardaro and G. Vinti in [36] considered the generalized sampling
series in the sense of Butzer and in [39], for the first time, the case of a generalized sam-
pling series in its nonlinear form was studied and uniform approximation results and
error estimates proved. Here the authors used a general approach in a locally compact
topological group, as did Kluvanek in [127] and later Beaty and Dodson in [120], [44]
for the classical Shannon sampling theorem. More precisely, the authors considered
a general form of linear or nonlinear integral operators from which it is possible to
deduce the generalized sampling case, as also other classical cases, as convolution or
Mellin operators. Moreover in [40], [41] the authors also investigated the possibility
that the convergence process for the family of nonlinear generalized sampling oper-
ators or more generally for the family of nonlinear integral operators considered in
Section 8.2, defines a regular method of summability in the sense mentioned there.

To conclude, even if the origin of sampling theorem seems to be a very complicated
problem, Butzer and Stens ([79]) say that de la Vallée Poussin can be considered as the
father of sampling theory in the case of time-limited functions. Moreover M. Theis
was the first to consider generalized sampling series in the sense that the kernel sin x /x
is replaced by the particular Fejér kernel (sin 77 x /7 x)?.

best possible in the sense that the constant cannot be improved. Further, it is



Chapter 9

Modular approximation by sampling type
operators

As seen in Section 8.1, the classical sampling theorem holds for continuous and band-
limited signals which have finite energy, i.e., for functions f € L?*(R) N C°(R)
(being CO%R) the space of continuous functions on R), while in Theorem 8.1, in a
different frame, it is required for the generalized sampling operator that f € C(R). In
Section 8.2 the results of Section 8.1 have been extended to the nonlinear case still in
the frame of C(R). Now coming back for a moment to the classical signal analysis,
it would be of some interest to give an approximation result, in the nonlinear frame
of Section 8.2, for functions belonging only to L?(G), i.e. for signals having finite
energy, but which are not necessarily either continuous or band-limited. But still more
than this, it would be of some interest to give such approximation results for functions
belonging to an L”-space, for p > 1 or to a more general functional space. Indeed,
this fact may have the following interpretation in signal theory: the power of a signal
is defined as
P lim — ' 2d
(RN

and there exist signals which have finite power, but infinite energy, which means that
one can deal with signals which do not belong to L?. As examples of these kind
of signals there are the periodic power signals, the aperiodic ones and the random
processes.

9.1 Modular convergence for a class of nonlinear integral
operators

In this section, we will develop a theory of convergence for operators (8.12) in modular
spaces. As seen in Section 1.2, the theory of modular spaces contains, in particular,
that one of the Musielak—Orlicz and the Orlicz spaces, which are generalizations of
the classical L?-spaces. In this manner, we have a theory that, from the point of view
of applications, gives a unifying approach to signals having finite energy, but also to
other signals like, for example, the power signals.

The concept of convergence used is the modular convergence introduced in Sec-
tion 1.2.
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We will use the notions of Section 8.2, and we will deal with the family of nonlinear
integral operators (8.12). Let ug be the Haar measure on the class of Borel sets 8(G),
associated to the group G.

By L%(G) and LO(H) we will denote the vector spaces of all Borel measurable
real-valued functions defined on G and H, respectively, and by L?,(G) and Lg(H )
the corresponding modular spaces. Moreover, by C.(G) we denote the subspace of
all continuous functions with compact support on G. For G = (R", 4+) we denote
by Cé’) (R™) the space of all real-valued functions with compact support and with
continuous derivative of order r, for 1 < r < +o0.

The general setting of modular spaces has required the use of some notions on the
modulars taken into consideration, which we have introduced in Section 2.1. A new
notion is needed in order to formulate Theorems 9.2 and 9.4, which is the following.

We say that a modular p is strongly finite if the characteristic function x4 of a set
A of finite measure belongs to the modular space E,,.

Of course, such notion, like finiteness, absolute finiteness, absolute continuity and
monotonicity, is obviously satisfied when one deals with modulars which have an
integral representation like, for example, the modulars generating the Orlicz spaces.
In case of modulars generating a Musielak—Orlicz space, we recall that finiteness
and absolute finiteness or strong finiteness are equivalent to the requirement that the
@-function generating the modular is locally integrable for small u and is locally
integrable, respectively (see Example 2.1 (b) for the above notions). Moreover it is
easy to show that, if the underlying space G is of finite measure, (for example if G
is a compact group), then absolute continuity together with strong finiteness implies
absolute finiteness (see [16]).

Let W be an unbounded subset of R, as in Section 8.2. Now let (G, B(G), ug)
and (H, B(H), nm) be two locally compact and o -compact topological groups and
let {ity }wew be a family of functions wy, : G x B(H) — R(J)r, with w € W such that
Uy (-, A) is measurable for every A € B(H) and 1y, (s, -) is a measure on B(H).

Now we introduce a notion of “regularity” on the family {ity }yew-
We will say that {py }wew is regular if

a) putting u) = Uy(s, ), forw € W,s € G we have 0 < puj << py for
every s € G, w € W, where “<<” means that i}, is absolutely continuous with
respect to iy,

b) sup,,cw ||M1(:})(H)||oo < +00 and there exist a measurable set FF C G with
G (F) = 0 and two positive real constants r and w € W such that for every
we W, w>wandforeverys € G\ F,onehas0 < r < /Lg,f)(H),

duy,

duy

[1Ew (-, )]|1 < 1y for every t € H and for n,, € R™.

c) setting &, (s, 1) = , we have that &, is a globally measurable function and
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Let now pg, pg be two modular functionals on L°(G) and L°(H), respectively.
Due to the general setting of modular spaces, we introduce a condition of compatibility
between the family {1y }wew and the modulars pg and py .

We will say that a regular net {iy }wew 1s compatible with the couple (pg, pr) if
there are two constants D, M > 0 and a net {b,,} of positive numbers with b,, — 0
as w — 400 such that

pG< /H g(r)du;?(z)) < Mnypu(Dg) + by

forany g > 0, g € LY(H) and for sufficiently large w € W, where 1, is the net
introduced in assumption c) of the regularity of {1ty }ywew-

Now we will show that if pg, py are convex modulars generating Orlicz spaces,
then every regular net {uty, }ew i1s compatible with the couple (oG, pH)-

Proposition 9.1. Let ¢ : R(‘)" — Rar be a convex @-function as defined in Exam-
ple 1.5 (b), and let

IS(f) = pG(f>=wa<|f(r>|)duG(z),

and
17 (g) = pu(g) = /H (gD dpn @)

be the modulars on L°(G) and L°(H) generating the Orlicz spaces. Then every
regular net {{Ly }wew is compatible with the couple (pG, pH)-

Proof. Letus consider aregular family {t,, }wew according to the previous definitions.
For every s > 0, putting

Bu(s) = pu(s, H) = ') (H)
and sup,,cw | ,u,(l})(H) loco= D we have B,,(s) < D forevery s € G, w € W and

PG [ / g(t)duf;})(t)}=PG [ / g(r)ﬂw<s>diz,§?<r>]
H H

1 (E)
Buw(s) >

pa[ [ g(z)dufﬁ(t)} _ / ¢[ / g(r)dug?(r)] d1ic(s)
H G H

< / { / w[ﬁw@)g(r)]dﬁg)(t)}dm(s)
G H

1
= / { / —w[ﬁwmg(r)}duS)(r)}duG(s>.
¢ LJu Bw(s)

where ﬁfj) (E) :=

E € B(H). Hence, by using Jensen’s inequality, we obtain
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Since wy (s, -) < (g , there exists a nonnegative measurable function &, (s, ¢) , such
that d iy (s, -) = &y (s, 1)dug (). Thus, by the definition of regularity of {u,,} , we
deduce

1
oGl f g()ydul) ] < - f { / w[Dg(t)]Ew(s,t)dMH(t)}dMG(S)
H G H

r

1
= —f ¢[Dg(t)]{/ Ew(s,t)duc(s)}duﬁ(t)
rJH G

IA

n
o (Dg)
,
for sufficiently large w € W. So the assertion follows with by, =0and M = 1/r. O

Concerning the assumptions on the families {Ky }yew and {Ly}ywew we will
assume that {K,,},,ew C Ky where in the assumption (K,.3) of Section 8.2 we will
use the weaker requirement that lim,,—, 1o 7,y (s) = O a.e. on G, and the class &£, is
given by the family of measurable functions L, : G — Rar such that L, (s —hy,(+)) €
LL , (H) for s € G, satisfying the following assumptions:

(Ly.l) Ly : G — Rg are functions with compact support on G such that for every
U € U there is aw € W such that for every w € W, w > w the supports of
L., are contained in U,

(L.2) thereis aconstant N > 0 such that
/ Ly(s —hy@)dpm(t) <N,
H

foreverys e Gandw € W,

(Ly.3) there are measurable set /' C G with ug(F) = 0 and two positive real
constants » and w € W such that for every w € W w > w and for every
s € G\ F,we have

[ Luts = hu) dunt =
H
We remark that the new assumption (L,,.1) implies that one of Section 8.2. Indeed,
we may establish the following
Proposition 9.2. If (Ly.1) is satisfied, then for every U € U and s € G

lim Ly(s —hy(@)dug@) =0.
w—=>+00 J g\ pol(s+U)
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Proof. Let U € U be fixed. From (L,.1) there exists w € W such that supp L,, C U
forw e W,w>w. Ifr € H\ h;l(s + U), then for every z € U we have that
t £ h;l(s + z), for every s € G; since hy, is a homeomorphism, for every w € W,
we may conclude that /1, (¢) # s + z, and hence s — hy, () # —z, which implies that
s — hy(t) € U. Now, from the assumption (L,,.1) we obtain for w > w that

/ Ly(s —hy(t)dpg(t) =0, foreverys e G,
H\hp'(s+U)
i.e. the assertion follows. O

Let moreover £ C £, be asubclass of .£,, whose elements {L, },,cw satisfy the
further condition that L, € L}LG (G) forevery w € W, and yy, := fc Ly()dug(2)
for w € W, is a bounded net.

It is clear that if in particular we take [$ (A) = fA Ly(s — hy@®)dug(t),
A€ B(H),s € G,w € W, then the family {{l,,}wew is regular.

Indeed, the condition a) of the regularity is obviously satisfied and b) is a con-
sequence of (L,.2) and (L,,.3). Finally, assumption c) is satisfied with n,, = ),
weW.

Now, we show some sufficient conditions under which the compatibility of a regu-
lar net with the couple (pg, py) holds, if pg, pg are modulars generating Musielak—
Orlicz spaces.

We take G and H suchthat H C G (i.e., His asubgroup of G) and g will denote
the Haar measure of the subgroup H. Let now ¢ : G % ]Rg — Rg be a measurable
function with respect to s € G, for every u € R, and such that ¢(s, -) is a convex
@-function, as in Example 1.5 (c), which satisfies inequality (1.9) of Section 1.4 in the
following equivalent form.

There are a constant C > 1 and a globally measurable function F : G x G — R(J{
such that for every ¢, s € G and u > 0 there holds

o(s,u) < o(t, Cu) + F(1, 5). 9.1)

Let {1y} be the family defined by means of the net of kernels {Ly }yew C L.
We set, according to Example 1.10 (b),

19() = pa(f) = /G 005 1 F O dpig(s),
17(g) = pu(g) = f o, g dpw ()
H

for f € Lg . (G) and g € Lg " (H). Note that inequality (9.1) implies the subbound-
edness of the modulars pg and py (see Example 1.10 (b)). Finally we put

51y = / f F(t. ) Lu(s — hu(®) dis ()duc(s).
GJH
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Then we may prove the following

Proposition 9.3. If §,, — 0 as w — 400, the family {ji}y is compatible with the
couple (pG, PH)-

Proof. Putting L, (s, E) = i3, (E) = fE Ly(s —hy(@)dunt), E € B(H),s € G,

we have
PG[ / g(t)dﬁf;)(t)} = / ¢[s, / g(z)dﬁ;m] dug(s).
H G H

By the Jensen inequality and (L,,.2)

- 1
pc[ f g(t)dufj,)(t)} <- / { / o(s, Ng(r))Lw(s—hw(t»duﬂ}duc(s).
H rJg H

Now applying inequality (9.1) to the function ¢, we obtain

1
PG[ /H g(r)dﬁ&?(r)] < - /G { /H olt, Ncg(l)]Lw(S—hw(l))dMH(l)}dMG(S)

1
+—/ {/ F(t,S)Lw(s—hw(t))dMH(t)}dMG(S)~
¢ \Ju

r

By the Fubini-Tonelli theorem and since {L,}yew C £, we obtain

PG gWydu,; (1) ) < —ywpH(NCg) + —,
H r r
and so the assertion follows, with M = 1/r, y,, = ny, D = NC and by, = 6,,/r. O
Here are some examples in which the condition §,, — 0 as w — 4-00 is satisfied.
Example 9.1. (I) Let G = H = (R, +) and h,,(¢) = ¢, with the Lebesgue measure.

Let us suppose that the function ¢ satisfies (1.9) in the following strong sense.

There is a constant C > 1 and a globally measurable function " : R x R — R(J{
such that
ot —s,u) < ¢, Cu) +I'(t, 5)

for every t,s € G,u € R(‘; where I" is such that ||[T'(-, $)[|1g) =: Q(s) — 0 as
s — 0.

In this case we have
(s, u) <o, Cu) +T(,t —s),

and so we canput F(¢t,s) =T'(¢,t — ).
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Now we calculate &,,:

Sw ://F(t,s)Lw(s—t)dtds
R JR
://F(t,t—s)Lw(s—t)dtds
R JR
:/{/F(t,—(s—t))Lw(s—t)ds}dt
R R
— / {/ F(t,—z)Lw(z)dz}dt
R R
:/Lw(z){/r‘(t, —z)dt}dz.
R R

Let & > 0 be fixed. Then there is § > 0 such that Q(—z) < ¢ for |z] < §. Moreover,
there is w € W such that for every w € W, w > w,

S
Sw =/ Ly (2)Q(—=2)dz < 8/ Ly(z)dz,
-8 R

and if || Ly || 11 (r) is a bounded net, we have §,, — 0, as w — +00.

) Let G = R, 4+), H = (Z, +) with u¢ the Lebesgue measure on R , wy the
counting measure on Z and take A, (k) = % Moreover, we put, for f € LO(R) and
g:7Z—> R,

lf(f) =pc(f) = / (s, | f(s)]) ds,
R

and
+00

1@ = pu(@) = Y ¢k, gk).
k=—00
By inequality (9.1), we obtain
@(s,u) < @k, Cu) + F(k, s)
where F(k,s) = I'(k, k — s). In this case,

+o00 k
Sy = /R Z F(k, s)Lw(s - E) ds.

k=—o00
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If we take L, (s) = L(ws), for L € L'(R) and w € W, we obtain

+o0
Sw= Y /RF(k,s)L(ws—k)ds

k=—00
+o00

— Z /F(k,k—s)L(ws—k)ds
k=—o0 /R
+o0

-y ifr<k, M)L(ZW
k:—oow R w

—l/ f Pk "2 L

Cw R < w ) o

k=—00
Therefore it is sufficient to assume that
0() == ITC, 9)lln ez
is uniformly bounded with respect to s € R in order to get the required result.

In order to state the main modular approximation results for the operators (8.12),
we will use a density result which we state as follows.

Theorem 9.1. Let p be a modular on L°(G), absolutely continuous, monotone and

0
absolutely finite. Then C.(G) = Lg(G) where “—r” represents the modular closure.

Proof. Let a > 0 be an absolute constant and consider a characteristic function x4
with A € B(G), ug(A) < +o0o. Lete > 0be fixed. Then, since p is absolutely finite,
there exists 8, , such that we have p(axp) < ¢ for D € B(G) and pug(D) < 8¢ 4.
Since G is o -compact, the measure (i is regular. Then there are a compactset C C A
and an open set V D A such that ug(V \ C) < 8¢ 4.

By the locally compact version of Urysohn’s lemma, there is f € C.(G) such that
xa < f < xv, and so by monotonicity of pg,

pc(a(xa — f)) < pclaxv\c) < e

Let now £ : G — R be a simple function, that is £(s) = Z,]{VZI ak xa, (s) with
uG(Ax) < +oocand A,,NA, =@, n # m. Letej beasequence withe; | 0. Forevery
jandk =1,2,..., Nthereisafunction fj; € C.(G) suchthat pG[A(xa, — fijx)] <
Y k=1,...,N, where A = Y}, |a|. Consider fj(s) = Yo, ax f;,x(s). Then
we have f; € C.(G) and

N N
pG(E — fj) = PG(Z larll xa, — fj,k|) <Y pclAlxa, — fixll < &j.
k=1 k=1
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Thus for every simple function & there is a sequence of f; € C.(G) with pg (§ — f;) <
&j, that is there exists a sequence {f;} C C.(G) with lim;_, y  pG(§ — fj) = 0. Let
f € Lg (G) be fixed.There exists a constant y > 0 such that pg(3yf) < 4oo. If
f = 0, there exists a monotone sequence of simple functions & such that&; 7 f a.e.
Moreover 0 < f — & < f and so by the Lebesgue dominated convergence theorem
for modular spaces formulated in Section 2.1 we have pg (A(f —&;)) — Owith A < y.
For general f we consider f = f* — f~. In this case it is sufficient to apply the
previous method separately to fT and f~.

We can suppose A < 1. From the above reasoning, for every & there is a sequence
{fik}j C Cc(G) with limj_ o0 pG (& — fj k) = 0. Now we consider the function
v : N — N defined as follows: for every k € N, v(k) is the first integer such that
v(k) > k and pg (& — fow.k) < 1. Finally we put fi = foo k- Then fi € Co(G)
and

A

A
PG(E(f — 1) < pGIA(f — &)+ pclAr — fi)]
< pGlA(f — &)+ pcléx — fil

1
P PG (f = &0l

A

Thus limg_, 4 o PG [%(f — fk)] = 0 and the assertion follows. O

If G = (RY, +) the space C.(G) can be replaced by cx (RM) by using a C*-
version of Urysohn lemma.

Now we will assume that py and ng are two modulars on LO(H) such that
{oH, ¥, ng}isaproperly directed triple (see Section 1.4; here for the sake of simplicity
we will suppose 2 = Q¢ = H).

Finally, for {K,}wew € Ky, we define the operators

(Ty f)(s) = fHKw(S — hy(t), f(hy()) dip (1)

for every f € DomT = Nyew Dom Ty,.
We will prove the following corollary, which will be used afterwards.

Corollary 9.1. For every open set A C G there is a w € W such that for every
w € W, w > w there results h;l(A) = 0.

Proof. If the assertion is false, there are an open set Ag C G and a sequence of positive
numbers w,, n € N, such that h;’} (Ag) = 0. Let f € C:(Ag) be not identically zero
and let us set C = supp f. Consider

Cp={t € H:hy,(t) € C} =hy!(O).

Then C,, = ¥ and so Ty, f = 0. By Theorem 8.5 this means that f = 0, a contradic-
tion. O
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Now we state the following modular approximation theorem for functions belong-
ing to C.(G).

Theorem 9.2. Let {K}wew C Ky and {Ly}wew C Ly, let p be a modular on
L%(G), monotone, strongly finite and absolutely continuous. Then for every f &
C.(G) and A > 0, there results

pim_p[a(Tw f = )] =0.

Proof. Let f € C.(G) and let C = supp f; we will suppose that C # (. Moreover
we put
Cy={teH: hy@t)eC)=h,'(C).

By Corollary 9.1, C,, is anonempty compact subset of H, for sufficiently large w € W
and if t & Cy,, f(hy(t)) = 0. Therefore, by (K .1),

(T f)(s) = / Ky (s —hy (D), fhw(®)dpu(®), seG.

Cw

By conditions (K,.1) and (K,.2), we have that

|Kw(s — ho (1), f(hw(OD] = Lu(s —hy @) (| f (hy(@)))]).

Now, by (Ly.1), denoting by U a compact neighbourhood of & € G such that
supp L., C U for sufficiently large w € W, we may deduce that supp K, (-, u) C U for
sufficiently large w € W and foreveryu € R. Putnow B = U+C. If s ¢ B, forevery
t € Cy,s—hy(@) € U,and Ky, (s —hy (1), u) = O for sufficiently large w € W; hence
Ty f vanishes outside the compact set B. Thus p[A (T, f — f)] = p[A(Tw f — ) xB]-
By the (L, ¥)-Lipschitz condition we deduce

I(Tw () = fI = [(Tw )]+ 1 ()]
= '/HKw(S—hw(t),f(hw(t)))duy(t) + 1 ()l

< /H Lus(s — hu )W (Lf (hw )] ditsr (1) + LF(5)]
< N1 1loo) + 11 1loos

fors € Gandw € W. So ATy f(s) — f5)xs < 2xsINW (I fllo) + I flloo], for
s € G. Since the modular is strongly finite, we have that xp € E, and therefore
pIA(Tw f = fxsl = pIANY ([ flloo) + 1 flloc) xB] < +00. By Proposition 9.2,
Theorem 8.5 holds with the almost everywhere convergence of r’ (s) (assumption
K,,.3)) obtaining that ((T, f)(s) — f(s)) = 0as w — +00, a.e. on G. Hence,
applying the Lebesgue dominated convergence theorem for modular spaces (see Sec-
tion 2.1), we obtain that

A

m p[A(Twf = )1 =0. o
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Let us denote by g a modular on LO(H). Given E > 0, let
Lg=L(G, H, {hw}, {yw}, E)
be the subset of Lg ;(G) whose elements f satisfy the assumption

lim sup yy g [A(f © hy)] < Eng[Af] 9.2)

w—~+00
for every A > 0. Then we may establish the following
Theorem 9.3. Let {Ky}twew C Kuw, {Lwtwew C LI and let pg be a monotone
modular and suppose that pyg and nyg are modulars such that the triple {pg, ¥, ng}
is properly directed; we assume moreover that the family i3, (A) = f A Lw(s —
hy(@)dug @), A € B(H), s € G is compatible with the couple (pg, pg). Then,
given f, g € Dom T with f —g € LE, thereis an absolute constant P > 0, depending

on E > 0, such that for any A €]0, 1[ there exists a constant ¢ > 0 for which there
holds

lim sup pglc(Tw f — Twg)l < PngIA(f — &)
w——+00
Proof. Let & > 0 be fixed with A < 1. By the (L,,, ¥)-Lipschitz condition, we have
ocle(Ty f—Twg)]

= PG[C/H[Kw(‘ — hy (1), f(hw(@)) — Ky (- = hy(1), g(hw(O)N]dpn )]
= pG[C/H |Kw (- = hw (@), f(hw()) = Ky (- = hy (1), g(hw(@)) | dpn (0)]

= ,OG[C/H Ly (- = hy )Y (1 f (hy (1)) — g(hw (@)D dpen (1))

By the regularity of {iz},} defined above, with 1,y = yy, = [||Lyl| L1(G)» and by the
compatibility with the couple (oG, pr), we have, for sufficiently large w € W,

pGle(Ty f—Twg)l < MywpulcDY(I(f — &) o hwD]+ bu.
Then, since {py, ¥, ng} is properly directed, we obtain for cD < C, that
pGle(Twf = Twg)l < Mywpu Gy (I(f —8) o hy D]+ by
< Myyngl[A((f —g) o hy)]l+ by.

Since f — g € L, we have

lim sup pgle(Ty f — Twg)l < MEngIA(f — g)].

w——+400

The assertion easily follows by putting P = M E. O

Now we are ready to prove the main theorem of this section.
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Theorem 9.4. Let {Ky}yew C Ky, {Luwlwew C L3 and let pg, ng be mono-
tone, absolutely and strongly finite and absolutely continuous modulars and py be a
modular, such that {py, W, ng} is properly directed. Let us suppose that the family
s, (A) = fA Ly(s —hy(@)dug), A e B(H),s € G,w € W is compatible with
the couple (pG, pr). Then for every f € Lgchnc (G) such that f — C.(G) C LE,
there is a constant ¢ > 0 such that

ym pgle(Tw f = f)1=0.

Proof. Let f € L(/))c+nc (G) be such that f — C.(G) C Lg. By Theorem 9.1, there

isax > 0 (we may take A < 1) and a sequence { f;;} C C.(G) such that

(06 + 1) (fa = HI =0, n— +o0.

Let ¢ > 0 be fixed and let 7 be an integer such that for every n > 1

(06 + )M (fu — )] <& 9.3)

Fix now 7; in correspondence to such A we choose a constant ¢ > 0 such that ¢ <
min {i Z} Then we have

3D’ 3J"
pcle(Twf — NI = pcBc(Tw f — Tw fid)] + p6[3¢(Tw fi — fid)] + pcBe(fi — )]

=L+ L+
Applying Theorem 9.3 to 1, we obtain

lim sup pG [3¢(Ty f — Tw fi)] < PnGIAM(f — fi)l,
w——+00
where, without loss of generality, we can suppose P > 1.
Since by Theorem 9.2, we have limy,_, 400 pG[3¢c(Ty fii — f7)] = 0, applying (9.3)
we have

lim sup pGlc(Tw f = f)] < P(pG +n6)A(f — f7)) < Pe;

w—>+00

hence the assertion follows, ¢ > 0 being arbitrary. O

9.2 Applications

In order to give some applications, for the sake of simplicity, we consider the particular
case of Musielak—Orlicz spaces, where we take H C G (H is a subgroup of G) and
wu will denote the Haar measure of the subgroup H.

As before ¢ : G % Rar — Rg is a measurable function with respect to s € G, for
every u € ]R(J)r , such that ¢ (s, -) is a convex @-function which satisfies inequality (9.1).
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We will denote the class of functions satisfying the previous properties by ®. In
absence of convexity, we will denote such class simply by ®.

Here we consider some examples of operators Ty, f to which the theory developed
can be applied.

(D Let G = H = (RN, +) and ug = py = dt the Lebesgue measure. Let
19(f) = IE(f) = p6(f) = pu(f) = fpw 9. [fODd1, IE(f) = IH(f) =
nG(f) = nu(f) = [en ¢ | f (O] dt withg € B, & € ®, and let LY (RY), LE (RY)
be the Musielak—Orlicz spaces generated by the modulars p and 5. Put 4,,(t) = t for
every w € W. Then, as in Section 8.3, we obtain

(wa)(S)=/ Ky(s —t, f()dt, seR".
RN

In this case it is clear that Lz = LE(RY) with E = sup,, Yw < 400. Moreover, it
is easy to see that in the linear case, i.e. when Ky, (s, u) = K w ($)u, the assumptions
(Ky.i)and (Ly,.i),fori = 1, 2, 3, become the classical ones for approximate identities
with compact support. So the theory developed includes, as particular cases, the
classical convergence theorems in Musielak—Orlicz spaces, in Orlicz spaces and in
L?-spaces with p > 1 for linear integral operators of convolution type.

(II) Analogous applications can be deduced for the Mellin convolution operators of
the form

+00
(wa)(S)E(wa)(S)=/ Ky(st™", fayr~de, s >0
0

(see Section 8.3), where {K }wew is a suitable family of kernels. Here we take
G=H=®R""), pug=mpun = [t71dt, hy,(t) =t forevery w € W, IZ(f) =
1(f) = pa(f) = pu(f) = [ ot |f @Dt~ de 18 (f) = 17 (f) = na(f) =
nu(f) = [ &, | f(O)De~dt with ¢ € ®,& € ® and LY(RT), LE(RY) are the
Musielak—Orlicz spaces, respectively. Also in this case we have L = L& (RT) with
the same E as before. The above operators are connected with the theory of moment
type operators, as well as with the theory of Mellin transform. Moreover, in the case
of G = H = (R}, +) with R", = (]0, +00[)" and the inner operation *“«” defined for
s =(s1,....8) € Rl andt = (t1,...,1,) € R asset = (s111,...,5.1,) € R},
the previous theory also includes the multidimensional version of the nonlinear Mellin
convolution operators. In fact, G is a locally compact, topological, abelian group with
neutral element§ = 1 = (1, ..., 1), the inverse of ¢ is given by 1= (tl_l, R tn_l)
and if we put (r) = [];_, t, the Haar measure ¢ is given by

_ _ dt
V«G—V«H—/m,

dt being the Lebesgue measure.
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(ITI) As in Section 8.3, let W = R*, G = (R, +), H = (Z, +) with g the Lebesgue
measure on R, uy the counting measure on Z, hy, : Z — R of the form A, (k) = %
k € Z,w > 0. Inthis case we obtain the nonlinear version of the generalized sampling
operators of the form

+00 .
T =Y K(tﬂs—k,f(;)), seR, w0,

k=—00

where K : R x R — R is a kernel function with a Lipschitz condition of the form
|K (s, u) — K(s,v)| < L(s)¥(lu —v)),

forevery s € R, u, v € R and for a fixed Y € W, and where L € LY(R) is a function
with compact support.
Moreover, for f € L°(R) and g : Z — R

+00

IS(f) = pG(f>=/R<p(s,|f<s>|>ds, (@) =pu@ = > ok gk),

k=—o00

+o0
IE(f) = nc(f) = A{ EG IfGDds. I (9) =nu(®) = D &k, g,

k=—00

with functions ¢ € ®and £ € D, generating the Musielak—Orlicz spaces L? (R),
L?(Z) and L& (R), L% (Z), respectively.

Here assumption (K,,.3) becomes assumption (c) of Section 8.3 with the almost
everywhere convergence instead of the uniform one and assumption (L,.1) is always
satisfied since L, (z) := L(wz) has compact support and

/Lw(z)dz=f L(wz)dz =
R R

Moreover, assumption (L,,.3) is easily deduced in this case. _
In the particular case in which K, is linear, i.e., when Ky, (s, u) = Ky, (s)u, then
Ly (s) = |Ky(s)|. If in this case we suppose that

Yw-

L)
— =

i) D ez I?(s —k) =1, forevery s € R,

il) supger Y gez L(s — k) < 400,

then (c) and (b) of Section 8.3 are satisfied. The assumptions i) and ii) are very common
in the theory of sampling series.
The condition (9.2) of the class £ g now takes on the form

. 1 +o00o k
lim sup — Z é(k,k’f(;)‘) §S'/R$(s,)»|f(s)|)ds
k=—00

w—+oo W



9.2 Applications 177

forevery A > 0 and for some constant § > 0. Now, taking into account that the density
result (Theorem 9.1) can be restated in the present framework with C2°(R) instead of
C.(R), using a C*°-version of Urysohn’s lemma, we formulate, as an application of
Theorem 9.4, the following corollary.

Corollary 9.2. Let ¢ € P, & € © with ¢ and & locally integrable for every u € R
and let f € L?t5(R). We suppose that {pn, ¥, ny} is properly directed and that
Q(s) := [IUC, 9z is uniformly bounded with respect to s € R, where T" is the
function of Example 9.1. Moreover, let f : R — R be such that the following property

holds
hmsup— Z S(k A‘ (k)D SS/&(S,Mg(S)Dds
R

w—+00 w

forevery g € f —C° (]R), A > 0 and for some constant S > 0. Then there exists a

constant ¢ > 0 such that
+00 k
> K<ws —k, f(—)) — f(s) )ds =0.
w

lim ols,c
w—>+0 Jp
k=—o00

As an example, we consider a function & : R x R(J)“ — RBL of the form

E(s,u) = E(s)y (u)

where £ : R — ]R(J)r satisfies the following conditions:

1) gis measurable,
2) there exists a constant @ > 0 such that g(s) > a forevery s € R,
3) the sequence g = g(k), k € Z, is bounded.

We also suppose that y is a continuous, nondecreasing function such that y (0) =
0, y(u) > 0 for every u > 0. In this case, for any function f, we have

s 2P CNig o

: Egj(i’kif(é)\)

where [’ = w is a positive constant. The last term of inequality (9.4) represents
a generalized Riemann sum of £(-, A| f(-)|). Thus, if f : R — R is such that the
function £ (-, A|g(-)]) is a Riemann integrable function and of bounded variation on R,
being g € f — C°(R), we have that g € L (the proof of this fact can be deduced
from Theorem 3 in [114]). Thus we have, under the same assumptions of Corollary 9.2
on ¢ and &, the following result.

1 X k
— 2 &R AFD

k=—o00
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Corollary 9.3. Let & : R x R:{ — ]Rar be of the form &(s, u) = g(s)y(u) satisfying
the previous conditions and let {py, ¥, ng} be a properly directed triple.
If f : R — Ris such that f € L5 (R) and for every g € f — CX(R) and
A > 0, the function £(-, M|g(-)|) is Riemann integrable and of bounded variation on
R, then there exists a constant ¢ > 0 such that
lim (p(s, c ) ds =0.
w——+00 R

+00 k
> K(ws —k, f(—)) — f(s)
w
k=—o00

Here we show that in the particular case of an Orlicz space, the previous corollary
can be formulated in terms of sufficient conditions on the function f (see [202]).

First we observe that the class £ g contains, in particular, the set of all functions
f :R — Rsuch that 4, (-) = £(A| f(-)|) is Riemann integrable on R for every A > 0
and

lim 1 Jf S(k‘f<£)‘) =/§(klf(S)|)ds 9.5)
w—>+oowk:_oo w R ' '

The sums in (9.5) are generalized Riemann sums of the integral on the right-hand side
of (9.5). Theorem 3 in [114] proves that a characterization of the class of functions
h, satisfying (9.5) is given by the functions 4, (-) Riemann integrable on R and of
bounded coarse variation for every A > 0. The concept of bounded coarse variation
(see [114]), is a generalization of the classical concept of bounded variation in the
sense of Jordan. Thus, if in particular i, € BV (R) (the set of all functions with
bounded variation on R) and if it is Riemann integrable for every A > 0, then (9.5)
holds. If BVg(R) is the set of all functions such that £(A| f|) € BV (R), for every
A > 0, we finally conclude that

LE D BV:(R) N E*(R),

where E% (R) denotes the space of finite elements of the Orliz space LE(R) (see also
Section 7.3). Hence, under the previous assumptions on the families of kernels, we
may formulate the following

Corollary 9.4. Let ¢ € P, & € ® with & locally Lipschitz in ]R(')|r and suppose that
(pH, ¥, nE) is a properly directed triple. Let f : R — R be an absolutely Riemann
integrable function on R, and of bounded variation on R such that f € L?(R). Then
there exists a constant ¢ > 0 such that

) ds =0.

+o0 k
> K(ws —k, f(—)) —f©)
w
k=—00
Proof. Since £ is locally Lipschitz in Ri, then for every A > 0, & o A| f]| is also
Riemann integrable on R for every A > 0, which means that f € E®(R). Indeed,

)
Jim [
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since f € BV (R), we have that f is bounded and so, since £ € ® is locally Lipschitz,
we have

1EAF@OD —§O) = K|f(@®)], forsome K > 0.

Now, since £(0) = 0 and since f is absolutely Riemann integrable on R, we deduce
that £ o 1| f] is Riemann integrable on R for every A > 0. Moreover, we obtain that
& o A| f|is of bounded variation on R which means that f € BVg(R). Indeed, take an
arbitrary finite sequence of real numbers. In view of the boundedness of f we have

A

N N
DUIEALE) = EQfG-DD] < K Y NF)] = | f @G-l

i=1 i=1

N
K 1f) — i)l < KVR(f) < +00

i=1

IA

for some K > 0, where Vr(f) is the total variation of f in R. Now, passing to the
supremum over all the sequences of real numbers, we obtain that (§ o | f|) € BV (R)
and hence also (§ o A| f|) € BV (R). Finally we have that f € BV:(R) N E5R) C
L C L5(R). Obviously, g € C 2°(R), is absolutely Riemann integrable and bounded
on R and so A(f — g) is also absolutely Riemann integrable on R, for every A > 0
and bounded on R. So, (f — g) € E5(R), being & locally Lipschitz. Moreover, for
g € C°(R), one has g € BV (R), and hence A(f — g) € BV(R) for every A > 0
which implies that (f — g) € BVg(R) as before. Finally, we have that f — g € L,
and hence by Corollary 9.2 as formulated for Orlicz spaces, the assertion follows. O

Remark 9.1. (a) According to Remark 8.5 (a), the previous theory also contains the
case of the multivariate sampling series of a function f : RN — R, in its nonlinear
form. Indeed it suffices to take G = (RN, 4), H = (Z", 4) with the Lebesgue mea-
sure and the counting measure, respectively. Hence the above generalized sampling
operators take on the form

(Twf)s) = K(ws —k, f(%))

keZN

fors e RV, w e RY, K : RV xR%Randf:RN—HR. Here w is a vector, i.€.,

w = (wg,...,w,) € RY, and we define w; < w» ifandonlyifw’i < wé fori =
1,2,...N. Moreover if w = (wy,...,wyn),s = (s1,...,5n5), k = (ki, ..., kn),
we set ws = (WSq, ..., WNSN), % = (1];—'1 e f}—f;’v) and w — 400 means now that
w; — +ooforeachi =1, ..., N. Moreover, we have
/ Ly(2)dz =/ L(wz)dz = N;/ L(z)dz = wﬂ = Y,
RN RV [Te=i we JRY [Te=r wk
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and assumption (9.2) of the class £ g becomes

1 k
timsup —— 3 £k AFC D < S/RN £(s, AL f(5)]) ds

w—+00 l_[k=1 Wk (N

for every A > 0 and for some constant S > 0.

(b) In the previous theory we may replace the real parameter w > 0 by an abstract
parameter w varying in an arbitrary filtering partially ordered set ‘W.

(c) In case of ¢(u) = uP, p > 1, the previous Corollary 9.4 gives convergence
results in L?-spaces for the nonlinear sampling series of f.

(d) We remark here that, under suitable assumptions on the family of homeomor-
phisms {/,,}, the previous theory could also contain the case of nonuniform or irregular
sampling operators in its nonlinear form.

(e) We point out that in the theory developed, we may take a more general H.
Indeed, we may consider (H, 8(H), 1y ) as a locally compact Hausdorff topological
space equipped with its Borel o -algebra 8(H) and with a regular measure .

9.3 Modular regular methods of summability

In order to obtain a result for the general family (73,),ew concerning methods of
regular summability in modular spaces, we give the following definition.

Given the modulars pg, ng and g, we say that (T,,) e w defines amodular regular
method of summability with respect to pg and ng, if ng[A(fw — f) o hy] — 0 as
w — oo for some A > 0 implies that pg[c(Ty fw — f)] > 0as w — oo for

some ¢ > 0, where f € Lgc+nc (G)and fyy € LY%G).

We remark that in the case of G = H and pg = ny we obtain the definition of a
regular method of summability in the modular space LY, given in Section 5.2; indeed
in this case hy, (t) = ¢, for every w € W.

Now we may formulate the following

Theorem 9.5. Under the assumptions of Theorem 9.4, if {yy,}wew is a bounded net,
we have that (Ty,)yew defines a modular regular method of summability with respect
to pg and ny.

Proof. Let f,, be a family of functions in L°(G), f € LY _,, (G) and let & > 0 be

such that ng (A(fy — f) o hy) — 0as w — +o00. We may take 8 < min {%, 2%}, c
being the constant of Theorem 9.4 and Cj the constant of the properly directed triple.
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As in Theorem 8.7 of Section 8.6, we may write

[(Tyw fuw) () = f)| = (T fuw) () — (Tw O]+ [(Ty H(s) — f(5)]
= 1{(s) + L, (s).

From the properties of the modular, we have

pG[B(Tw fw — 1 < p6 281 (O] + p6 281 ()] = Ji(w) + o (w).

So

S2(w) = pc[28(Tw f — f)]

and hence J>(w) — 0 as w — 400 from Theorem 9.4, since 28 < c.
To evaluate J;(w) by the (L, ¥)-Lipschitz condition and monotonicity of pg,
we have

Ji(w) < pG[Zﬂ/HLw(' — hw )Y (| fw(hw (1) = f(hw())]) dun )]

Using the regularity of the family gl (E) = fE Ly(s — hy(2)) dpg(t), the compat-
ibility of the couple (pg, pg), with n,, = yy, and the properly directed triple, we
deduce that

Ji(w) = Mywpu2BDY (| fu(hw () — f(hw()]) + by
< Myung A (fuw — f) o hy) + by,

M being the constant of the definition of compatibility for a regular net. Since
ngA(fw — f) ohy) = 0,as w — 4oo for some L > 0, {y,,} is a bounded net
and b, — 0as w — +00, then J;(w) — 0 as w — +o00. Therefore the assertion
follows. O

9.4 Bibliographical notes

The study of the modular convergence for the generalized sampling operators is very
recent and was began by C. Bardaro and G. Vinti in [36] in Orlicz spaces. Here
the modular convergence was obtained for the linear form of the general family of
integral operators defined in Section 8.2, which contains, in particular, the generalized
sampling series. Moreover the nonlinear case has been studied in the modular sense by
G. Vinti in [202] in Orlicz spaces and then extended in [1] to Musielak—Orlicz spaces
and finally to general modular spaces by I. Mantellini and G. Vinti in [144]. All these
results share aspects of the approach of Butzer and his school, in the sense that an
approximation process is needed in order to reconstruct the signal. The motivation
for the use of the modular convergence instead of the uniform one and of the meaning
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of a nonlinear process in a sampling frame is pointed out in the introduction to this
chapter and in Section 9.1. Moreover in [41], C. Bardaro and G. Vinti proved that
the convergence process for the family of nonlinear integral operators considered in
Section 8.2, defines a regular method of summability in the modular sense. For the
concept of modular regular method of summability we invite the reader to see the
bibliographical notes of Chapter 6.
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N-function, 124
of bounded coarse variation, 178
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w-Lipschitz, 153
@-absolutely continuous, 109
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Musielak—Orlicz ¢-variation, 103
Orlicz space, 6
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integral operator, 2
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operation +, 15
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Orlicz space, 5
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perturbating kernel, 50
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@-function, 5
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properly directed triple, 16

quantization error, 136
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rate of modular approximation, 44, 110
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regular summability method, 87

Riemann-Liouville integral, 100
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p-Cauchy condition, 86

p-complete modular space, 87

p-convergent sequence, 8

round-off error, 136
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samples, 134

Schauder fixed point principle, 129

sequential Orlicz space, 6

Y -regular Carathéodory functions,
121

o -absolutely continuous measure, 121

signal, 135

singular kernel, 39

singularity in BV,,, 112

space invariant with respect to the
operation +, 15

space of functions of bounded
@-variation, 8, 97, 104

spectrum of a function, 135

strongly (A, ¢)-summable sequence, 7

strongly &-singular, 45

strongly finite, 164

strongly singular kernel, 39, 69

strongly subbounded modular, 15

subbounded modular, 15

time jitter error, 136

(T)-method of summability, 87

(T, p)- summable family of functions,
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U-convergent function, 25
undersampling, 136
uniform regular method

of summability, 158
Urysohn integral equation, 2
Urysohn operator, 2

weaker modular, 91
WKS-sampling theorem, 134

Young conjugate functions, 125

¢-homogeneous function, 53
¢-subhomogeneous function, 53



In 1903 Fredholm published his famous paper on integral equations.
Since then linear integral operators have become an important tool in
many areas. including the series and Fourier
integrals. approximation theory and summability theory, and the
d diff

theory of inte

pproximation theory, however, applications were limited to
linear operators since the notion of singularity of an integral operator
was closely connected with s linearity

empt at a comprehensive treatment
1 operators in

This book represents the first
of approximatio y means of nonlinear int
function spaces. In particular, the fundamental notions of ap-

proximate identity for kemels of nonline:

concept of modulus of contin
consistent approximation results. Applications to nonlin
ations and nonlinear sampling theory

ators in

mability, nonlinear integral eg
given. In particular, the study of nonlinear sampl

various function spaces is important since the results permit the
als

processing of several classes of sig

In a wider context, the material of this ook represents a starting
point for new areas of research in nonfinear analysis. For this reason
the text is written in a style accessible not only to researchers but to
advanced students as well

[0

ISBN3 1101
ISSN 0941




	Preface
	Contents
	Chapter 1 Kernel functionals and modular spaces
	Chapter 2 Absolutely continuous modulars and moduli of continuity
	Chapter 3 Approximation by convolution type operators
	Chapter 4 Urysohn integral operators with homogeneous kernel functions. Applications to nonlinear Mellin-type convolution operators
	Chapter 5 Summability methods by convolution-type operators
	Chapter 6 Nonlinear integral operators in the space BVφ
	Chapter 7 Application to nonlinear integral equations
	Chapter 8 Uniform approximation by sampling type operators. Applications in signal analysis
	Chapter 9 Modular approximation by sampling type operators
	References
	Index

