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PREFACE 

This volume arose from the Polish-North American Seminar on Group Actions 

and Vector Fields held at the University of British Columbia from January 15 to 

February 15, 1981. The papers contained herein (with three exceptions) are research 

papers that were discussed during the seminar. Some of them were not in final form 

at the time and work was continued during the meeting. The exceptions are the 

papers of Akyildiz, Dolgachev, and Lieberman. I would like to thank Dolgachev and 

Lieberman for allowing me to include their papers, both of which are fundamental, 

but, for some reason or other, have not been published before. The paper of 

Akyildiz, who was unable to attend, is a generalization of work I reported on. 

I would like to express my deepest appreciation to the Natural Sciences and 

Engineering Research Council of Canada for the support which made this meeting pos- 

sible. I would also like to thank the Math Department at U.B.C. for its hospitality 

and for supporting the typing of the manuscripts. Thanks go also to the very pleas- 

ant Math Department secretaries, especially Wanda Derksen for their speedy and ac- 

curate typing and to Sinan Sertoz for the proofreading. 

James B. Carrell 



LIST OF PARTICIPANTS 

A. Bialynicki - Birula (U. of Warsaw) 

J.B. Carrell (U.B.C.) 

I. Dolgachev (U. of Michigan) 

R. Douglas (U.B.C.) 

N. Goldstein (U.B.C., currently Purdue U.) 

M. Goresky (U.B.C., currently Northeastern U.) 

D. Gross (U. of Notre Dame) 

K. Hoechsmann (U.B.C.) 

R. Jardine (U.B.C., currently U. of Toronto) 

J. Konarski (U. of Warsaw) 

M. Koras (U. of Warsaw) 

D.I. Lieberman (Inst. Defense Analyses) 

L.G. Roberts (U.B.C.) 

S. Sertoz (U.B.C.) 

A.J. Sommese (U. of Notre Dame) 

J. Swiecicka (U. of Warsaw) 

P. Wagreich (U. of Ill. at Chicago Circle) 



TABLE OF CONTENTS 

AKYILDIZ, E. Vector fields and cohomology of G/P ............................ 1 

BIALYNICKI-BIRULA, A. and SWIECICKA, J. Complete quotients by algebraic torus ac- 
tions ......................................................... i0 

CARRELL, J.B. and SOMMESE, A.J. A generalization of a theorem of Horrocks ..... 23 

CARRELL, J.B. and SOMMESE, A.J. Almost homogeneous C actions on compact complex 
surfaces ...................................................... 29 

DOLGACHEV, I. 

KONARSKI, J. 

Weighted projective varieties .................................. 34 

A pathological example of an action of k ..................... 72 

KONARSKI, J. Properties of projective orbits of actions of affine algebraic 
groups ........................................................ 79 

KORAS, M. Linearization of reductive group actions ........................... 92 

LIEBERMAN, D.I. Holomorphic vector fields and rationality .................... 99 

SOMMESE, A.J. Some examples of C actions ................................. 118 

WAGREICH, P. The growth function of a discrete group ........................ 125 



VECTOR FIELDS AND COHOMOLOGY OF G/P 

by 

Ersan Akyildiz 

Abstract 

We discuss the cohomology rings of homogeneous spaces from the viewpoint of 

zeros of vector fields. 

I. Introduction 

If a compact Kaehler manifold X admits a holomorphic vector field V with 

isolated zeros, then by a theorem due to J.B. Carrell and D. Lieberman C-L2 the 

cohomology ring of X can be calculated around the zeros of V. Although holo- 

morphic vector fields with isolated zeros are not abundant, they do exist on a fun- 

damental class of spaces, namely the algebraic homogeneous spaces. 

In this note, the cohomology ring of a homogeneous space G/P together with 

the cohomology maps of ~ : G/B + G/P , and i : P/B + G/B will be discussed from 

the viewpoint of zeros of vector fields. In particular a theorem of A. Borel on 

the cohomology ring of G/P B is obtained rather surprisingly as a limiting 

case. This description of the cohomology rings and the cohomology maps was a key 

point in computing the Gysin homomorphism of ~ : G/B ÷ G/P in A-C1 and A-C2. 

II. Review of Vector Fields and Cohomology 

A holomorphic vector field V on a complex manifold X defines, by way of 

the contraction operator i(V) a complex of sheaves, 

0 + ~n i(V) ~ ~n-i --+ ... ~ hi ÷ 0 ~ O. 

If V has only finitely many zeros, then this complex is exact except at 0 , and 

in fact provides a locally free resolution of the sheaf 0 Z = 0/i(V)~ 1 , which is, 

by definition, the structure sheaf of the variety Z of zeros of V. It follows 

from the general facts on hypercohomology that there are two spectral sequences 

, P,q {,,EP,q} * { Er }' r abutting to Ext (X; 0Z,~ n) where '~P'q = Hq(x,~ n-p) and 
-1 

"KP'q-2 = HP(X'Ext~(0Z '~n)) . The key fact proved in C-L1 is that if X is com- 

pact Kaehler, then the first spectral sequence degenerates at 'E 1 as long as 

Z # ~ . As a consequence of the finiteness of Z and H0(X,0z ) ~ Extn(x; 0Z,~ n) 

where n = dim X, we have the Theorem C-L2. If X is a compact Kaehler mani- 

fold admitting a holomorphic vector field V with Z = zero (V) finite but non- 

trivial, then 



(i) HP(x,~ q) = 0 if p # q 

(ii) there exists a filtration 

H0(X,0z ) = Fn(V) m Fn_I(V) ..... FI(V)~ F0(V) , 

where n = dim X, such that Fi(V)Fj(V ) c Fi+j(V ) and having the property that as 

graded rings 

gr(g0(X,0z) ) * (i) mv: = • F (V)/Fp I(V) ~ • HP(x,~ p) = H (X,C) . 
pp - p 

The key to understanding the isomorphism (i) is in knowing how the Chern 

classes of a holomorphic vector bundle arise. To answer this we need to recall 

the theory of V-equivariant bundles AI , A2, C-L2. For our purpose we only 

need to discuss the line bundles. We say a holomorphic line bundle L on X is 

V-equivariant if there exists a V-derivation V: 0(L) ÷ 0(L) ; i.e. a C-linear map 

satisfying V(fs) = V(f)s+fV(s) if f E 0, s e 0(L) . Since V(f) = i(V)df , 

defines a global section of End(0(L) 8 0 z) ~ 0 Z ; i.e. V~ H0(X,0z ) . It is shown 

in AI , A2 , and C-L2 that 

(a) V~ FI(V) has image the first Chern class Cl(L) of L under 

the isomorphism (i), and 

(b) if HI(X,0x ) = 0 , then any line bundle L on X is V-equivariant. 

The relation between cohomology maps and zeros of vector fields can be ex- 

plained as follows. Let f : X+Y be a holomorphic map between compact Kaehler 

manifolds, V and V holomorphic vector fields on X and Y with isolated ze- 

ros. If df(V(x)) = V (f(x)) for any x in X, then it follows from the general 

facts on hypercohomology and the functoriality of the isomorphism H0(X,0 Z) 

Extn(x ; 0Z,~ n) G-H, p. 707 that the natural map f* : H0(y,0z ,) ÷ H0(X,0z ) pre- 

serves the filtrations, i.e. f (F (V)) c F (V) for each p , and also form the p -- p 

following commutative diagram between the cohomology rings. 

(2) 

f : H (Y,C) ~ H (X,C) 

* H 0 Y,0Z,)) H0(X,0 z gr(f ) : gr( ( ~ gr( )) , 

where Z = zero (V) , Z = zero (V) , gr(f ) is the natural graded algebra homo- 

* H0(y,0z ,) H0(X,0z ) morphism associated to f : ÷ . 

If the vector field V on X has only simple isolated zeros, in other words 

zero (V) is nonsingular, then H0(X,0z ) = @ C is precisely the ring of Z 
pcZ p 

complex valued functions on Z. Thus, algebraically, H0(X,0z ) can be quite 

simple. The difficulty in analyzing the cohomology ring is in describing the fil- 

tration F (V) . We will now give a vector field V on G/B inducing vector 
P 

fields on P/B and G/P with simple isolated zeros. Then by using some facts 



from Invariant theory we will compute the filtrations induced by these vector fields, 

and thus the cohomology rings and the cohomology maps. 

III. Description of H0(G/P,0 Z) 

We will use the following notation: G will be a connected semisimple linear 

algebraic group over the field of complex numbers, B a fixed Borel subgroup of 

G, B the unipotent radical of B , H a fixed maximal torus contained in B , g 
u 

the Lie algebra of G, h and b the Lie algebras of H and B respectively, 
. U U 

Ach the root system of h in g, &+ the set of positive roots, namely the 

set of roots of h in b u , E c A+ the set of simple roots, W the Weyl group of 

G, 0!I any subset of E , W G the subgroup of W generated by the reflections 

o , ~ £ 0 , P=Po the parabolic subgroup of G corresponding to @ , X(H) the 

group of characters of H . 

We shall denote by the same symbol an element of X(H) and the corresponding 

element of A (~ = d~ , the differential of ~£ X(H) at the identity) when this 

can be done without any ambiguity. For the basic facts about algebraic groups the 

reader is referred to HI . 

Let m" v = Adm(v) denote the tangent action of W on h, meW, vE h. W 
* 

thus acts effectively on h and on h . Thus we get an action of W on R = 

Sym(h ) , the symmetric algebra of h , in the usual way: m • f(v) = f( -i . v) 

for f E R. Let R W be the ring of invariants of W. Since the-degree of the 

natural map Spec(R) + Spec(R W) is equal to IWI , the order of W, there exists 

a dense open set U in h such that m • v # v for any ~ eW and v• U. An 

element v of U is called a regular vector in h. For a regular vector v in 

h, exp(tv) gives a one-parameter subgroup of H so that the fixed point scheme 

of this action on G/B is exactly (G/B) H ~ {m : ~W} , where H acts on G/B 

via the left multiplication. Let V = d~ (exp(tv)) be the vector field on 
t=0 

G/B associated to this one-parameter family. Then dn(V) = V is a well de- 

fined vector field on G/P, where ~ : G/B ÷ G/P is the natural projection. On 

the other hand, since V is tangent to the closed immersion i: P/B ~ G/B , we 

also have a well defined vector field, say Ve = VIp/BI on P/B . The zeros of V, 

V , and V are all simple isolated, and moreover 
e 

H0(G/B,0z ) ~ @ C~, H0(p/B,0z ) ~ @ CT, H0(G/P,0 Z) m @ C~ 

~W e T~W e &EW/W~ 

where Z , Z e , and Z are the zeros of V, V e , and V respectively. We now 

compute the filtrations induced by these vector fields. We start first with 

H0(G/B,0z ) • 

Let ~ be a character of H , and let L be the associated homogeneous 

line bundle on G/B : L = GxC/~, (g,z) ~ (g',z') if and only if g' = gb for some 

be B and z' = ~(b-l)z where ~ is extended on B with ~(u) = 1 for u in 



B u 

Lemma: The function s on Z , s (w) = m" e(v) for ~e W, represents the 

f i r s t  Chern  c l a s s  C l (L  ) o f  t h e  d u a l  o f  t h e  l i n e  b u n d l e  L i n  t h e  i s o m o r p h i s m  

( i ) .  

Proof: The function ~t: L ÷L , ~t(x,z) = (X(t)x,~(l(t))z) defines a well 

defined C-action on L so that the natural map L ÷ G/B is C-equivariant, where 

%(t) = exp(tv) . Thus ~ = d (~t) t=0 is a V-derivation on L~ A 2 . Since the 

zeros of V are all simple isolated, the function V on Z defined by V(m) = 
d ~* 
d-~ (Xt(~x0)) represents the first Chern class el(L ) of L in the isomor~ 

t=O ~ 

phism (i), where xo= B c G/B, ~cW. Let X(t)~ = ~t I for some t I c H. Then 

we have ~t(~x0,z ) = (~tlx0,~(X(t))z) = (~Xo,a(tl)~(l(t))z) = (~Xo,e(~-ix(t)~) 

~(l(t))z) = (~Xo,~(%(t))e(l(t))z) . Thus 

~(~) = d (%t(~Xo))~* t=O = d--td (ee(l(t)-l)e(l(t)-l)it=0 

= d (~(exp(-tv))~(exp(-tv))) = -~- e(v) -s(v). 
dt t=0 

Since the constant functions are in F0(V) by AI , C-L2 , the function -s on 

Z, -s (~) = -~. e(v) for ~eW , represents the first Chern class Cl(L ) of 

L . This proves the claim, because Cl(L ) = -Cl(L ) . 

Since G is semisimple, the roots A of h span h . Thus the lemma im- 

plies that there is a well defined linear map ~ : h ÷ FI(V) determined by the 

condition ~(~) = s for any ~ A . Let ~ : R ÷ HO(G/B,0 Z) (R = Sym h*) also 

denote the algebra homomorphism extending this linear map, namely ~(f)(~) = m • f(v) 

for f ~ R and m e W . Unfortunately ~ is not W-equivariant with respect to the 

natural action of W on H0(G/B,0z ) given by (o. f)(m) = f( -i ) . To obtain 

equivariance, one must force W to act on HO(G/B,0z ) on the right. Thus W acts 

on H0(G/B,0z ) according to (~ . f)(~) = f(~ . -i) . Then ~ is W-equivariant 

in the sense that o" ~(f) = ~(o -I. f) for oe W, and f£ R. We need only the 

following fact to compute the filtration F (V) of H0(G/B,0z ) . 

For any v # 0 in h let I {f : f(v) = O} , and let I = {re 
v 

f(0) = 0} . Then the ring R/IvR is only graded when I v = I , i.e. only when 

v = 0 . However R/I R is filtered by degree. Namely, if p = 0,i . set 
v ~'" ' 

= Rp/IvRn = _ . (R/IvR) p Rp where Rp {f e R : deg f < p} The natural homomorphism 

: R + R/I R , ~(f) = f(mod I R) induces a surjective graded algebra homomorphism 
v v 

gr(~) : R÷gr(R/IvR) = @ (R/IvR)p/(R/IvR)p i " Since for f ~ I f-f(v) ~ I we 
p - ' v 

have ~(I) c (R/Iv0R) , and thus ~(IR~ Rp)c (R/IvR)p_l. This implies 

IR~ker(gr(~)) . But, if v is a regular vector in h, then dim. R/I R = 
v 

dim.gr(R/IvR) = WI . On the other hand by a theorem of Chevalley Ch we have 

dim R/IR = IWI . Thus for a regular vector v in h the natural homomorphism 

: R + R/IvR induces a graded algebra isomorphism 



(3) gr(n) : R/IR c-+ gr(R/IvR) . 

We now prove a result due to Carrell and Casselman C. 

Theorem i. Let v be a regular vector in h. Then the algebra homomorphism 

~ : R + H0(G/B,0z ) , ~(f)(m) = w • f(v) , induces a W-equivariant isomorphism 

~: R/IvR + H0(G/B,0z ) 

preserving the filtrations, i.e. ~((R/IvR)p) = F (V) . 

WF (V) = F (V) and the natural morphism F ($)gP--+ 
p P 1 

Proof: We only need to show ker(~) = IvR, and 

each p . It is clear that I R~ker(~) . Since 
v 

Consequently for each p , 

F (V) is surjective. 
P 

_~((R/IvR) p) = Fp(V) for 

is W-equivariant, the variety 

Y determined by ker(~) is a W-invariant subvariety of X = {m • v : meW} , the 

variety determined by I R. But X has no W-invariant non-trivial subset, and 
v 

Y # ~. Therefore X = Y , and thus I R = ker(~) by the Nullstellensatz, because 
v 

the radical of IvR = IvR. This shows that ~: R/IvR ~ HO(G/B,0z ) is an isomor- 

phism, because dim R/IvR = dim H0(G/B,0 Z) = IWI . On the other hand by the lemma 

we have ~((R/IvR)p) ~ Fp(V) for each p . Now we compare the dimensions.D From 

the Bruhat decomposition and the isomorphism (I) one gets dim F (V) = E Card. 
P k=O 

{weW: £(m) = k} , where £(~) is the length of m. On the other hand by the 
P 

isomorphism (3) we have dim (R/IvR) p = Z dim(R/IR) k , where (R/IR) k is the 
k=O 

k-th homogeneous part of R/IR. But from the algebraic facts due to Solomon 

Ca. p. 135 and Chevalley Ch we get dim (R/IR) k = Card.{~e W :£(~) = k} . Thus 

dim Fp(V) = dim (R/IvR) p . Since ~ is an isomorphism, we get ~((R/IvR) p) = Fp(V) 

for each p. This finishes the proof of the theorem. 

gives explicitly the filtration Fp(V) of H0(G/B,0.) . By using This theorem 
, 2 L 

this filtration we obtain a theorem due to Borel B. Let B : h + H (G/B,C) be 

the linear map determined by the condition 8(~) = Cl(L ) , the first Chern class 

of the line bundle L , ~c X(H) . Let 8 : R ÷ H (G/B,C) be the algebra homomor- 

phism extending this linear map. 

Corollary (Borel). The algebra homomorphism ~ : R ÷ H0(G/B,0z ) induces a 

W-equivariant surjective graded algebra homomorphism 

gr(~) : R ÷ gr(HO(G/B,0z )) 

such that 

mvO gr(@) = ~ : R ÷ H (G/B,C) . 

Moreover ker(gr(~)) = IR, and thus 

mv o gr(~) = 8 : R/IR + H (G/B,C) 

is a W-equivariant graded algebra isomorphism. 

Proof: It follows from the theorem 1 and the lermma because of the isomorphisms 



(i) and (3). W@ 

We next compute the filtrations of HO(G/P,0z ,) and HO(p/B,0z ) . Let R 

W 0 e 

be the ring of invariants of W@ and let J = {f ~R : f(v) = 0} , 

W@ ' v * H0(G/P'0z *) H0(G/B'0z ) J = {fc R : f(0) = 0} . Since the natural map ~ : ÷ is 

• ~ H0(G/P,0z ,) given by ~ (f)(~) = f(g) for ~W and f , 7" is injective, and 
*0 
(H (G/P,0z,)) ~ H0(G/B,- ~) W0 , the ring of invariants of W . By comparing the 

• 0 ~ W @ 0 @ . 
dimensions we get ~ (H (G/P,0z,)) = H (G/B,0 Z) . Conslder the filtration on 

W@ R W H0(G/P,0z, ) R given by degree. Then the algebra homomorphism ~2 : @ ÷ 
T.T 

~2(f)(~) = ~(f)(m) for f c R ~@ and ~ W/W@ , is well defined and preserves the 

filtrations, because ~ preserves the filtrations and the cohomology map 
, , , %= (~°/i %) 

: H (G/P,C) ÷ H (G/B,C) is an injection. Since (R/I R) for 
vp v p 

each p , by theorem 1 the homomorphism ~2 induces a filtration preserving iso- 

morphism forming the following commutative diagram 

W W 

5 2 : R O/IvR O ~ > H0(G/P,0z. ) 

(4) 7" 

: R/IvR ~ ~ H0(G/B,0z ) . 

W W 

Thus Fp(V*) = ~2((R @/IvR @) ) for each p . 
P 

compute the filtration F (V) of H0(p/B,0z ) . Since the natural We now 
pe 

, H0(G/B,0z) H0(p/B,0 Z e map i : ÷ ) preserves the filtrations and the cohomology 
, , , e , 

map i : H (G/B,C) + H (P/B,C) is surjective, we have i (Fp(V)) = Fp(V e) for 

each p . This implies by theorem 1 that the algebra homomorphism ~i = 

o ~ : R + H0(p/B,0z ) is surjective and ~I(R ) = F (V) for each p . Since i 
e p pe 

J R ~ ker(~l) and dim R/J R = dim H0(p/B,0z ) = IW@I the order of W the v - v ' G' 
e 

homomorphism ~i induces a filtration preserving isomorphism forming the following 

commutative diagram 

(5) 

HO(G/B,0z ) i* > HO(p/B,0z ) 
e 

R/IvR ~ R/JvR 

Thus Fp(V e) = (R/JvR) p for each p. 

We now summarize all of these in the following theorem. For any regular vec- 

tor v in h , let ~ : R + H0(G/B,0z ) be the algebra homomorphism given by 



$(f)(m) = m • f(v) for f • R and m£ W . If ~i : R + H0(p/B,0z ) , ~2 : RW@ + 
e 

H0(G/P,0z,) are the algehra homomorphisms given 5y @l(f)(T) = ~(f)(T) , ~2(g)(~) = 

~(g)(m) , then we have: 

Theorem 2. The following diagram of graded algebras 

* n* * i* * 
H (G/P,C) > H (G/B,C) -+ H (P/B,C) 

mv~ II mv ~ roVe ~ 

gr(H0(G/e,0z,)) + gr(E0(G/B,0z )) -- ~ gr(H~P/B,0 Z )) 
e 

gr(~2) I~ gr($) ~ gr(~l) I~ 

W W 
R@/IE @ ~ R/IR ~ R/JR 

is commutative. 

Proof. The isomorphism gr(~2) follows diagram (4) and theorem i, because 

W@ RW@/IvRWO)p (R/IvR) p = ( for each p . On the other hand, since W 0 is a reflec- 

tion group, by a similar argument given in the proof of isomorphism (3) we get 

gr(~ I) : R/JR $ gr(H0(p/B,0z )) , because $i : R/JvR ~ H0(p/B'0z ) is a filtration 
e e 

preserving isomorphism. Thus the rest follows from theorem i, and diagrams (2), 

(4), (5). 

We now prove a result similar to corollary of theorem i. Let S = C@ cR 

be the polynomial algebra in the variables ~ e @ , and let 8@ : S ~ H (P/B,C) be 

the algebra homomorphism determined by B@(a) = Cl(L ) , the first Chern class of 

the dual of the line bundle L on P/B , for any ~ • 0 • S is invariant under 
W@ ~ W 0 

W@ . If we set I @ = {f e S : f(0) = 0} , where S is the ring of invariants 

of W@, then we have: 

Corollary. The inclusion i : S + R induces an isomorphism 

: S/I@S + R/JR 

so that 

m V ~gr($1) • i = 8@ 
e 

: S/10S $ H*(P/B,C) . 

Proof. Everything follows from the theorem above and corollary of theorem i 

except the isomorphism ~ : S/I@S + R/JR. We now show that T is an isomorphism. 

To see this, let h I ch be the dual space of the space spanned by @ in h , 

and v I be a regular vector in h I for W@. Consider the vector field V I on 

P/B induced from the one parameter family exp(tvl) , where P = P/R(P) , 



= B/R(P) , R(P) is the radical of P. Then by theorem i (P is semisimple) 

and diagram (5) the natural isomorphism p : P/B ~ P/B induces a filtration pre- 

serving isomorphism forming the following commutative diagram 

H0(~/~,0ZI ) ~ + H0(p/B,0z ) 
e 

S/I~IS l ~ R/Jr R , 

w h e r e  Z 1 = z e r o ( V  1) , 1 Ovl = { f  ~ S WO : f ( v  1) = O} , a n d  ~ :  S / I ~ I S  + R / J v R  i s  t h e  

h o m o m o r p h i s m  i n d u c e d  f r o m  t h e  i n c l u s i o n  i :  S ~ R ( h e r e  v i s  c o n s i d e r e d  a s  v = 

v l+v 2 for some v 2 ~ h) . But this implies that ~: S/I~IS ~ R/JvR is a filtra- 

tion preserving isomorphism. Thus the associated graded algebra homomorphism 

gr(~) : gr(S/l~ S) + gr(R/JvR) gives, by theorem 2, diagram (5), and the isomor- 
I 

phism (3), the isomorphism i: S/I@S + R/JR. 

Remark: 

(I) Here we have computed the filtration of H0(G/P,0z ) for the regular vec- 

tor fields. At the other extreme G/P always admits a vector field with exactly 

one zero by A3 . Recently, it is shown by A-C-L-S that there exists a unique 

vector field V with one zero on G/P admitting a C -action, and the filtration 

of H0(G/P,0 Z) for this vector field is given by the height of the roots. This 

description of H0(G/P,0z ) gives information about the Schubert calculus like the 

one given in B-G-G by means of A4 and A5. 

(2) Theorem i and its corollary have also been obtained by J.B. Carrell and W. 

Casselman. But their proof was only an outline. 

A 1  

A 2  

A 3  

A 4  
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COMPLETE QUOTIENTS BY ALGEBRAIC TORUS ACTIONS 

by 

Andrzej Bialynicki-Birula and Joanna Swiecicka 

The aim of the paper is to provide an answer to the following problem: 

Let an algebraic torus T act on a normal complete variety X . Describe all 

open T-invariant subsets U of X for which the geometric quotient space U/T 

exists and is complete. 

The problem has been studied in B-B,S for algebraic actions defined over the 

complex number field ~ and for complex analytic actions. Here we consider the 

algebraic case where the ground field k is algebraically closed of any characteris- 

tic. The main result is in the spirit of B-B,S , however our proof is based on 

completely different ideas. The proof gives in fact a result concerning more general 

quotients. The answer to the problem starting at the beginning follows directly 

from this result. 

§l. Notations and Terminology. The main result. 

The ground field k is assumed to be algebraically closed; all algebraic 

varieties and their morphisms are supposed to be defined over k . Let T denote a 

one-dimensional torus and let X be a normal complete algebraic variety. Assume 

that we have an action of T on X . For any t ~ T and x ~ X , tx denotes the 

value at x of the automorphism of X assigned to t . 
T 

Let X = X 1 U-.-u X be the decomposltion of the fixed point set of the action 
r 

given on X into connected components. 

Let us fix an isomorphism T = k Then for any x • X , the morphism 

~x: T ÷ X , defined by #x(t) = tx , can be extended to the projective line 

pl(k) D k The extended morphism will be also denoted by #x " Define 

¢+(x) = ~x(O), ~-(x) = ~x (~) 

+ 
X.l = {x£X; ¢+(x)£Xi} , X?l = {xeX, ~ (x)~X.}m o 

Definition i.i. Let 

X. if there exists 
3 i 

X.l is less than X.3 and we write Xi < X.3 if there exists a sequence i = 10,' 

il,...,i ~ = j such that X. is directly less than X i , for s = i,...,~ . 
is-i s 

shall write X. ~ X. if X. < X. or X. = X 
J • J • J 

i, j ~ {l,2,...,r} . We say that X. is directly less than 
l 

x e X - X T such that ~+(x) ~ X. , ~-(x) ~ X_ . We say that 

Definition 1.2. A semi-section of {1,2,...,r} is a division of {1,...,r} into 

three disjoint subsets A +, A 0, A- satisfying the following condition: 

We 



11 

if i £ A + u A 0 and X < X then j E A + 
j i 

A section of {l,2,...,r} is a semi-section (A+,A0,A -) where 

Definition 1.3. Let (A+,A0,A -) 

U = ~ .  _ (X~ N X~) . Then U 

semi-section ( A + , A O , A - )  . 

a sectional set. 

Notice, that if U 

(A+,A0,A -) then 

u = x - ( U x7 u U x~) 
ieA + i ieA- l 

In this paper we are going to consider two concepts of quotient maps: a geo- 

metric quotient and a semi-geometric quotient. The notion of a geometric quotient 

was introduced by Mumford in G.I.T.. In the special case, we are considering in 

this paper, his definition is equivalent to the following: 

A 0 = @ • 

be a semi-section of {1,2 .... ,r} and let 

is called a semi-se~ional set corresponding to the 

A semi-sectional set corresponding to a section is called 

is a semi-sectional set corresponding to a semi-section 

Definition 1.4. Let an algebraic torus T act on an algebraic variety X . A 

morphism z: X ÷ Y , where Y is an algebraic variety, is said to be a geometric 

quotient of X (with respect to the given action of T) if the following conditions 

are satisfied: 

(a) for any Y ~ y, -l(y) is an orbit in X , 

(b) ~ is an affine morphism, 

(c) for any open affine U c y, the ring kU of regular functions on U is 

identified by ~* with the ring k~-l(u) T of regular T-invariant functions on 
~-l(u) . 

Definition 1.5. Let X, Y, z be as in Definition 1.4. The morphism ~: X ÷ Y is 

said to be a semi-geometric quotient of X (with respect to the given action of T) 

if conditions (b) and (c) of Definition 1.4 are satisfied. (The notion of a semi- 

geometric quotient is equivalent to the notion of a good quotient of Seshadri, see 

se) 

We are going to denote a semi-geometric quotient of X by X + X/T . 

It is easy to see that if a semi-geometric quotient exists, then it is a 

categorical quotient. On the other hand if n: X + Y is a categorical quotient and 

is an affine morphism, then ~: X + Y is a semi-geometric quotient. 

Now, we are ready to state the main result of the paper. 

Theorem. Let X be a normal complete algebraic variety with an action of T . If 

U is a semi-sectional subset of X , then U is open, T-invariant, a semi-geometric 
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quotient U ÷ U/T exists, and U/T is complete. Conversely, if u is an open, 

T-invariant subset of X such that a semi-geometric quotient U + U/T exists and 

U/T is complete, then U is a semi-sectional subset of X . 

Corollar~. Let X be as in the theorem. If U is sectional, then a geometric 

quotient U ÷ U/T exists and U/T is complete. If for an open, T-invariant subset 

U c X , a geometric quotient exists with U/T complete, then U is sectional. 

In fact the above theorem summarizes the contents of Theorem 3.1 and Theorem 

3.3 and the corollary follows directly from Remark 3.9 proved in §3. 

Remark 1.6. It should be noted that for actions of T on smooth projective variet- 

ies one can find such semi-sectional sets U which have complete non-projective 

quotient spaces U/T . For example if X = Grassmannlan (2,4) with the action of T 

induced by the action on k 4 given by matrices 

tll t° 2 n 0 

t 3 

n t ~ 

, where nl,n2,n3,n4 are pairwise different integers, 

then for at least one (and at most two depending on the choice of the integers nl, 

n2,n3,n 4) sectional sets, the quotient space is not projective. 

Remark 1.7. If U is a semi-sectional subset of U , then U is a maximal subset 

of X which is open, T-invariant and which admits a semi-geometric quotient. How- 

ever, in general, for a normal complete algebraic variety X the semi-sectional 

subsets are not the only maximal subsets with the above properties (see B-B,S). 

§2. Auxiliary results. 

ss xSS() If  is a T-linearized invertible sheaf on X , then X or 

denotes the set of semi-stable points of X with respect to  (see G.I.T. for 

ss 
definitions). It has been proved by Mumford G.I.T, that X is open, T- 

ss + x S/T exists x s/T is invariant and that the semi-geometric quotient X i 

quasi-projective. On the other hand, if for some algebraic variety U the semi- 

geometric quotient U ÷ U/T exists and U/T is quasi-projective, then U = U~ s 

for some T-linearized invertible ample sheaf  on U . 

Example 2.1. Suppose T = k* acts on an n-dimensional projective space ~. Then 
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we can find a coordinate system on ~ such that the action of k* is given by 

n 

tx 0 ...... x n = x 0 .... x n 
• n 

• t n 

, for any t ~ k* and x 0 .... ,Xn ~ ~ , 

where 0 = n I = ... = nil < nil+l = ... = ni2 < ..... < n.lr+l = ...= nn is a sequence 

of integers. 

Then T= P1 u...u Pr ' where Pi = {Xo'''''Xn ~ ~; x0 = "'" = X.lr_l = 0 = 

x = ..• = x } . 
it+ 1 n 

For any a = a0,...,an ~ ~ , let ax be the non-zero coordinate of a with 

the smallest index and let a k be the non-zero coordinate of a with the greatest 

index. Let ii_ 1 < ~ -< i I and ij_ 1 < k < i. . Then ~+(x) £ ~i ' G-(x) ~ P. 
  

i 

Hence for any i,j, i < j , P. is directly less than P. , in particular P. < P. . 
z  z  

Pi -< P' , then P. = P. • Moreover if -< Pj and Pj 1 l 3 

If X is a projective variety with an action of T embedded in an equivariant 

way into ~ (any normal quasi-projective variety with an action of T has such an 

embedding, see S ) , then it follows from the above that X. -< X. and X. -< X. 
z j j 1 

i m p l i e s  X. : X .  . 
z  

A l l  s e c t i o n s  ( A + , A 0 , A  - )  o f  { l , . . . , r }  ( f o r  t h e  g i v e n  a c t i o n  o f  T on  ~ ) 

a r e  o f  t h e  f o r m  A + : { 1 , . • . , i } ,  A 0 = 0 ,  A -  = { i + l  . . . . .  r } ,  a l l  s e m i - s e c t i o n s  w h i c h  

a r e  n o t  s e c t i o n s  a r e  o f  t h e  f o r m  A + = {1  . . . .  i } ,  A 0 = { i + l } ,  A -  = { i + 2  . . . . .  r }  . 

A l l  s e m i - s e c t i o n a l  s u b s e t s  o f  ~ a r e  o p e n .  M o r e o v e r  i t  f o l l o w s  d i r e c t l y  f r o m  

G I T  t h a t  f o r  a n y  s e m i - s e c t i o n a l  s e t  U c p  t h e r e  e x i s t s  a T - l i n e a r i z a t i o n  o f  

8 ( 1 )  s u c h  t h a t  U = p S S ( e ( 1 ) )  , h e n c e  a s e m i - g e o m e t r i c  q u o t i e n t  U ÷ U / T  e x i s t s  

w i t h  U / T  p r o j e c t i v e .  The q u o t i e n t  i s  g e o m e t r i c ,  i f  U i s  s e c t i o n a l .  

Lemma 2.2. Let i be a T-linearized ample invertible sheaf on a projective variety 

ss 
X . Then the set X i is semi-sectional. 

Proof• Replacing i by i ~n , for some natural number n , if necessary, we may 

assume that  is very ample. Let ~i: X ÷ ~m be an embedding determined by i . 

The given T-linearization of i gives a representation of T in the space of 

global sections F(X,L) and hence it gives a T-linearization of 8(1) on ~m 

(we shall call it a T-linearization of 8(i) corresponding to the given lineariza- 

tion of i). The set (pm)Ss(@(1)) is semisectional (Example 2.1). Moreover, 

for any global section s of i the set {x£X; s(x)~0} is affine (since i is 

very ample) and any T-invariant global section of i can be extended to a T- 

invariant section of 0(i) (we identify X and ~i(x) c ~ m) . The set where the 

extended section is different from zero is again affine. This shows that 

xSS() c (~m) ss(0(1)) . Similarly (~m) ss(0(1)) N X D xSS() . Hence 
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(pm)Ss(0(1)) n X = xSS(L). Since (pm) Ss(0(1)) is semi-sectional (Example 2.1), 

ss 
X L is also semi-sectional. 

Proposition 2.3. Let X be a (not necessarily normal) algebraic complete variety 

with an action of an algebraic torus T . Let X T = XlU...UX r be the decomposition 

into connected compoments, where X 1 is the source and X is the sink. Then 
r 

X 1 ~ X. S X , for any j = l,...,r . 
3 r 

Proof. Assume first that X is normal and projective. Suppose that X 1 is not 

S X. , for some i , and let X. be a minimal (with respect to <) component with 
l 3 

this property. Then X?3 = @ or there exists X k ~ X.3 such that X k < Xj and (by 

the minimality assumption) X. < X k . If X? = @ then X. is the source X 1 , 
3 3 3 

contradicting with the assumption that X 1 is not ~ X. . The second possibility 
3 

can not occur either because X can be T-equivariantly embedded in ~m and we may 

use the result stated in Example 2.1. 

Now, if X is any complete algebraic variety then there exists a normalization 

morphism ~: X + X and by an Equivariant Chow Lemma (Theorem 2 Su) a birational 

T-equivariant morphism 8:~ ÷ X where , X is projective and normal. For a con- 

nected component X. c X , let Y be any connected component of X ~T contained in 
1 

(~@)-I(x i) . Then by the first part of the proof the source of ~ is less than Y 

and hence there exists a sequence of points Xl,...,x s • ~ such that ¢+(x I) be- 

longs to the source of x ~-(x.) and ~+ ' 1 (xi+ I) belong to the same connected com- 

ponent of ~T for i = l,...,s-i , and $-(x ) • Y . Then the sequence 
s 

nS(x I) ..... ~8(Xs ) has the following properties: ~+(nS(Xl)) • X 1 , ~-(ne(xi)) and 

~+(~@(Xi+l)) belong to the same connected component of X T and ~-(~@(x )) • X. . 
s 3 

Thus X 1 ~ X. . By symmetry X. S X 
1 1 r 

Proposition 2.4. Any semi-sectional subset U c X is open in X . 

Proof. Let U correspond to the semi-section (A+,A0,A -) Then U = X - 

( U + (Xl n X~) U U (X~ N X?)) . We shall prove that i,jUA+(XI D X?) 
i,j~A 3 i,j•A- l 3 3 ' 

• .U _(X~ N X~) are closed. Let i,j • A + let B be an irreducible component 
I,£A 1 3 

of X~ N Xj , let B 1 .... ,Bs be the connected components of B T , with Bl-the 

source and Bs-the sink. Let x • B and let #+(x) £ B k , #-(x) ~ B~ . Then by 

Proposition 2.3. B 1 ~ B k ~ B Z ~ Bs Let B k c X r , B Z c X t . Then 

X i -< Xr < Xt - < Xj and x ~ X +r n X t . Thus x £ i,~A +(X+l n X-)3 and thus 

i, A+(Xi n X 3) is closed. By symmetry i, A-(X + n x~.) is closed. Hence 

open. 

U is 

Proposition 2.5. Let U be a semi-sectional set corresponding to the semi-section 



15 

(A+,A0,A -1) and let #: U ÷ U/T be a seml-geometric quotient. Then 

V = U - U n(X~ U X~) is open and ~IV: V ÷ ~(V) is a geometric quotient. 
ieA ~ i 

Proof follows from Proposition 2.3, Definitions 1.4 and 1.5, Amplification 1.3 

p. 30 GIT and the remark that all orbits contained in V are closed in U . 

In the sequel we shall use the following well known 

Lemma 2.6. Let U ÷ U/T be a semi-geometric quotient. If U is normal then 

is also normal. 

Finally, we shall need the following two lemmas on gluing of algebraic 

varieties. 

U/T 

Lem~a 2.7. Suppose that we have the following co~nutative diagram of morphisms of 

algebraic varieties (where c ~ denotes open immersion) 

Assume that T is an isomorphism and that V 2 and ~I(W1-W) are complete 

and ~I(WI-W) = ~2(W2-W) . Then V = (V 2 - n2(W2-W))UTV 1 is a complete algebraic 

variety and the induced map 

~:(W2-~21(~2(W2-WI))) uW 1 -+ V is a morphism. 

The proof follows from the valuative criteria of properness and separatedness. 

Similarly one proves the following 

Lemma 2.8. Suppose that we have the following commutative diagram of morphisms of 

algebraic varieties 

1 I 
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map 

Assume that ~ is surjective, V 2 and Y3 - Y2 are complete. 

Then V = (V 2 - (Y3-Y2)) u T V 1 is a complete algebraic variety and the induced 

~: W 1 u W 2 --+ V is a morphism. 

§3. Main results• 

Theorem 3.1. Let X be normal complete variety and let T act on X . For any 

semi-sectional U c X, U is open and T-invariant, the semi-geometric quotient 

U ---~ U/T exists and U/T is complete. 

Proof. It follows from Proposition 2.4 that U is open, and from Definition 1.3 

that U is T-invariant. 

Now, assume that X is projective. Let ~: X ÷ ~n be a T-equivariant 

embedding of X into a projective space ~n . Let ~l,...,~k be the irreducible 

components of (~n)T and suppose that P. < P. for i < j; i,j = l,...,k . Let 
l 3 

U2i be the sectional set corresponding to the section ({l,...,i},@,{i+l .... ,k}) 

and U2i_l be the semi-sectional set corresponding to the semi-section 

({i, .... i-l},{i},{i+l ..... k}). Now, let U be a semi-sectional subset of X 

corresponding to a semi-section (A+,A0,A -) . For any i = l,...,2k-l, U i n ~(X) 
+ 0 -  

is a semi-sectional subset of X , let us denote by (Ai,Ai,A i) the corresponding 

semi-section of {l,...,r} . Let m be the greatest integer such that 

+ A 0 0 A c A + , c A 
m m 

We shall prove existence of the semi-geometric quotient ~: U ÷ U/T and 

completeness of U/T by induction on Z(U) = 2#(A+-A +) + #(A0-A 0) If ~(U) = 0 
m m 

then U = ~-I(u m) and the semi-geometric quotient exists and U/T is complete 

since it exists for U m and Um/T is projective (see Example 2.1). Assume that 

the theorem is proved for all semi-sectional subsets V with ~(V) < ~ and let, 

for U , ~(U) = ~ > 0 . Let n be the smallest integer such that A + c An+, A 0 C~n. 

Then n > m . 

• . . A 0 U' X~ corres- Case (a) A 0 ~ ~ Then A 0 ~ ~ Let 3 e . Then = U - 
n 3 

ponds to the semi-section (A+,A0- {j}, A- u{j}) and ~(U') = Z(U)-i<~ . Thus a 

semi-geometric quotient ¢': U' ÷ U'/T exists and U'/T is complete. On the other 

hand a semi-geometric quotient #n: Un + Un/T exists with Un/T projective. Let 

Vj be a T-invariant neighbourhood of X. such that V. c U n U and 
3 3 n 

~nI (Vj - (X~ u X-)) ~'I (V. N U') are geometric quotients. Then we have the follow- 
3 3 '  3 

ing co~autative diagram 



1"1 

V 

- , - _  . ,  

LY \,v 
9 
1 

where ~ is the morphism of quotients induced by open embedding V. n U' c V. , and 
3 3 

Y is the canonical isomorphism of geometric quotients. Let V = Vj/T UT((U'-Xq)/T)._ 

By Lemma 2.8 V is a complete algebraic variety and the induced morphism U ÷ V 

is a semi-geometric quotient. 

Case (b). A 0 = @ . Let j £ (A+-A+nn 1 ) N A + 
n 

the smallest integer for which A + D A+). Let U' 
n 

(A +- {3}, {j},A-) . Then U' = U U X~ . Moreover 
3 

semi-geometric quotient ~': U' + U'/T exists and 

be a T-invariant neighbourhood of X. such that 
3 

a geometric quotient. 

Then we have the following commutative diagram: 

(such j exists since n is 

correspond to the semi-section 

£(U') = Z(U) - 1 < Z and hence a 

U'/T is complete. Let V. 
3+ 

V.3 c U' N Un+ 1 and ~'IVj-X., 3 is 

%1 
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where T is the canonical isomorphism of geometric quotients and ~ is induced by 

+ ~ J u T Vj-X V. - X.3 c ~ U' . Let V = (U'/T - ~'(X 3 UX~)) /T . Then by Lemma 2.7 V 

is a complete algebraic variety and the induced morphism 9: U ÷ V is a semi-geo- 

metric quotient. This completes the proof of the theorem for projective X . 

Now, let X be any normal complete algebraic variety. It follows from 

Theorem 2 S, that we may find a projective normal variety X' with an action of 

T and a T-equivariant birational morphism ~: X' ÷ X . Suppose that U is a 

sectional subset of X corresponding to a section (A+,@,A-). Let (B+,@,B -) be a 

section for X' defined in the following way: let (Xf) T = X{ u...u X's be the 

decomposition of (X') T into connected components; i ~ B + if and only if 

~(Xl) c X. , where j ~ A + Then ~-I(u) is the sectional set corresponding to 
3 

(B+,@,B -) Thus by the first part of the geometric quotient ~-l(u) + 5-1(U)/T 

exists and ~-I(u)/T is a complete algebraic variety. On the other hand we have 

U ÷ U/T where U is an algebraic prevariety. ~ induces a surjective birational 

morphism 5*: <-I(u)/T ÷ U/T . In order to prove that U/T is separated it suf- 

fices to show the following: 

Lemma 3.2. Let 5 : W 1 ÷ W 2 be a surjective morphism of a complete algebraic 

variety W onto an algebraic prevariety W Assume that 
, _ 1 -i ÷ 2 " 

5 I (~*) I(V) : (~*) (V) V is an isomorphism for some dense and open subset 

V c W 2 . Then W 2 is a complete variety. 

Proof. Since W 1 is complete, if W 2 is separated, then W 2 is a complete 

algebraic variety. Let 0 be a valuation ring in the field k(W 2) = k(v) = k(Wl) . 

Suppose that 0 dominates 0Xl , 0x2 where Xl, x 2 ~ W 2 . Then 0 dominates 

0y I, 0y2, for some points YI' Y2 e W 1 such that 5*(y I) = Xl, ~*(y2 ) = x 2 

(because 5" is proper). Since W 1 is separated, Yl = Y2 " Thus x I = x 2 . 

The proof Of lemma is finished. 

Let us now go back to the proof of Theorem 3.1. It still remains to show that 

for any semi-sectional (but not sectional) set U c X , where X is a complete 

normal variety, a semi-geometric quotient U ÷ U/T exists and U/T is complete. 

Let U correspond to a semi-section (A+,A0,A -) We shall prove this result by 

induction on #A 0 . If #A 0 = 0 , then U is sectional and we know already that 

the theorem in this case is true. Suppose it is true when a semi-sectional set 

corresponds to a semi-section (B+,B0,B -) where #B 0 < #A 0 . Suppose #A 0 > 0 and 

let j ~ A 0 . Let U' be the semi-sectional set corresponding to the semi-section 

(A+,A 0- {j}, A-u{j}) . Then by the inductive assumption, a semi-geometric quotient 

U' ÷ U'/T exists and U'/T is complete. We may proceed, now, in the same way as 

in the proof of Case (a) if we show the existence of an open T-invariant neighbour- 

hood Vj of X.3 for which a semi-geometric quotient Cj: V.3 + Vj/T exists (and 
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~jlVj -(Xj ÷_ Ux~)_ is a geometric quotient). This follows from the existence of a 

quasi-projective, T-invariant neighbourhood of any point x ~ X. , the embedding 
3 

theorem of Sumihiro S and the existence of semi-geometric quotients of semi-sec- 

tional subsets of ~n (Example 2.1). The proof of Theorem 3.1 is complete. 

Theorem 3.3. Let X be a normal complete algebraic variety with an action of T . 

Let U c X be an open T-invariant subset of X such that the semi-geometric 

quotient #: U ÷ U/T exists and U/T is complete. Then U is a semi-sectional 

set in X . 

The plan of the proof is the following. First we prove. 

Proposition 3.4. Let U be an algebraic normal variety with an action of T for 

which a semi-geometric quotient U ÷ U/T exists and U/T is complete. Then there 

exists a normal variety U' with an action of T and a birational proper T- 

equivariant morphism ¢: U' ÷ U such that the semi-geometric quotient U' ÷ U'/T 

exists and U'/T is projective. 

In the next step we shall find a good equivariant embedding of U' in a normal 

pro3ective variety; more exactly we shall prove the following 

Proposition 3.5. Let U' be an algebraic normal variety with an action of T for 

whlch the semi-geometric quotient U' + U'/T exists and U'/T is projective. Then 

there exist a noraml projective variety X' with an action of T and an open 

T-equivariant embedding i: U' c_+ X' such that i(U') is contained in a semi- 

sectional set W for which the semi-geometric quotient W/T is projective. 

Then we shall prove that i(U') is in fact a semi-sectional set. We shall 

identify, in the sequel, U' and i(U'). 

Proposition 3.6. Let U' be an open T-invariant subset of a normal projective 

variety X' such that the semi-geometric quotient U' + U'/T exists with U'/T 

complete. If U' is contained in a semi-sectional subset W c X' , then U' is 

equal to some semi-sectional set in X' . 

Let #' be a birational map X' --+ X defined by a birational morphism of 

open subsets ~: U' ÷ U . Taking the closure of the graph of ~' in X × X' we 

find an algebraic variety X with an action of T and T-equivariant morphisms 

7: X ÷ X' and T: X ÷ X such that ~'~ = T . 

U' ~U 
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Note that ~-l(i(U')) = U' and T-I(u) = z-l(i(U')) . The latter follows from 

the fact that T(~-I(i(U')) = U and TI~-l(i(u')) = ~'~In-l(i(u')) is proper. To 

complete the proof of the theorem it suffices to prove the following two proposition: 

Propositiqn 3.7. Let ~: X ÷ X' be a T-equivariant morphism of algebraic varieties 

and let U' c X' be a semi-sectional set in X' . Assume that ~In-l(u ') is an 

isomorphism. Then ~-l(u') is a semi-sectional set in X . 

Pro~ositign 3.8. Let T: X ÷ X be a T-morphism of algebraic varieties and let 

U c X be an open T-invariant subset of X such that T-I(u) is a semisectional 

set in X . Then U is semi-sectional in X . 

This will finish the proof of Theorem 3.3. 

Remark 3.9. A semi-sectional set is sectional if and only if it contains no fixed 

points. It follows then that if U c X is an open T-invariant subset of a 

normal pro3ective variety X and U N X T = @ and a sem~geometric quotient of U 

by T exists and is complete, then U is even a sectional set and U + U/T is a 

geometric quotient. 

Proof of Proposition 3.4 By the Chow Lemma we may find a projective variety V 

a birational morphism V ÷ U/T . Then V x U is irreducible (since U is 
U/T 

irreducible and V ÷ U/T is birational). Define 4: U' + V ×U/T U as the 
F 

normalization of Z = V × U . 
U/T 

Then we obtain 

with 

U' -----+Z >U 

I ~ IPrlPr2 ~ 

U'/T ~ V ---+U/T 

Notice that # = Pr2"~: U' ---+ U is proper. Let i be an invertible T-linearized 
ss 

ample sheaf on V XU/T U such that Z = (V×U) i , i.e. Z is composed of semi- 

stable points with respect to i GIT . The existence of such a sheaf follows from 

the fact that Prl: Z ÷ visasemi-geometric quotient (hence ~: Z ÷ V is a categori- 

cal quotient and ~ is affine) and Converse 1.12 p. 41 GIT . Let i' = ~*(i). 

Since ~ is an affine finite morphism, we have that U' ,ss = U, so the semi-geo- 

metric quotient U' ÷ U'/T exists. U'/T is normal by Lemma 2.6 because U' is 

normal and projective (U'/T is quasi-projective by Theorem i.i0 p. 38 GIT and 

U'/T ÷ U/T is finite since T is reductive) 

Proof of Proposition 3.5. Let i' be a very ample invertible T-linearized sheaf 

on U' such that U' = U 'ss . Let ~i' be the T-equivariant embedding of U' 
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n * i' 
into some projective space ~ such that ~,(0(i)) = Obviously ~i,(U') 

n ss 
c ~0(i) (we take the T-linearization of 0(I) corresponding to the given linear- 

ization of '). Let 

~: X' ~ X c i~ n 

U v 

be the normalization of the closure X of ~£,(U') in n . Then n*0(1) = i" 

^ss 
is a T-linearized very ample sheaf on X' Moreover, cL,,(U') c X0(1) so i(U') 

vss 
c Xl, , . By Lemma 2.2 we know the set of semi-stable points with respect to a T- 

linearized ample sheaf is semi-sectional. We also know GIT theorem i.i0 and re- 

mark and the end of page 40 that a semi-geometric quotient of a set of semi-stable 

points in this case exists, is projective and normal. 

Proof of Proposition 3.6. Let X' = X' 1 u...u X'r be the decomposition of 

(X') T into connected cemponents. Let W be determined by a semi-section 

(A+,A0,A -) of the set {l,...r} . We shall define a semi-section (B+,B0,B -) such 

that U' is the semi-sectional set determined by the semi-section. We have the 

following diagram: 

U' ~ W 

U' /T ¥ W/T 

~, B - semi-geometric quotients 

(notice that y is proper). 

Let i E A 0 . T h e n  X~ < W a n d  X ~. n U ' =  0 o r  X~ c U '  I n  f a c t  Y - l ( 8 ( X l ) )  
1 1 ' - 1  1 

= ~(X~ N U') U ¥ (8(X'. - U')) The set B(X'.) is connected so by Zariski's Main 
1 1 1 

Theorem, we have that X'. n U' = ~ or X~ - U' = ~. If X'. N U' = ~ , then 
-I i l 

y (8(Xl)) = ~((X1)+ N U') U ~((X~)- N U') . Again by Zariski's Main Theorem we in- 

fer that (X~)+I n U' = ~ or (Xl)- n U' = ~ but at least one is nonempty. 

Define B = ( B + , B 0 , B  - )  i n  t h e  f o l l o w i n g  w a y  B + = A + u { i ~ A 0 ;  X~ n U '  = ~ a n d  
1 

(X~)- n U' ¢ ~} , B 0 = (ieA0; X'. c U'} , and B- = A- u {ieA0; (X~) + n U'~ ~ and 
l l l 

X~ N U' = @} . Then (B+,B0,B -) is a semi-section. 
l 

Let W' be the semi-sectional set determined by (B+,BOB -) It is obvious that 

U' c W' c W . We shall prove that U' = W' . Let x ~ W' . Suppose ~+(x)- - ~ X~ , 
l 

#-(x) £ X~ . Then we have x ~ (X~) + N (X!)- and we consider the following four 
3 x 

cases: 

(i) i £ A + and j £ A- . Then x ~ u' ~cause ~-ly-l(8(x)) ~ @ (and 

-i-i 
y (8(x)) is exactly one orbit), 

(ii) i,j ~ A 0 Then i = j and x E X~ c U' 
l 
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(iii) i e A + , j 6 A 0 . If j ~ B 0 then X c U' and x ~ U' , because U' is 
 

open (and hence contains X?) . If j 6 B + , then X~ D U' = @ and U' N (X~)-#@. 
3 3 3 

But e(U' N (X)-) is complete, eIU' n (X)- is a geometric quotient and 
3  

u(U' N (X~)-) is contained in (X~)-/T , so x e (X) c U' . 
3 A0 3 3 

(iv) i e and j e A- . Then as above we obtain that x ~ U' . 

It follows, that U' = W' . 

Proof of Pro~osition 3.7 and 3.8. Let U' be a s~sectional set in X' corres- 

ponding to k-~ 9 semi-section (B+,B0,B-). We define a semi-section (C+,cO,c -) 

in X in the following way: i ~ C + (i £ C 0, i £ C-, respectively) if and only if 

n(X.) is contained in X~, where j 6 B + (j ~ B 0, j £ B-, respectively). Clearly 
z 3 

(C+,C0,C -) is a semi-section (notice that we have assumed that ni~'(U ') is an 

isomorphism). 

Similarly, if U' = T-I(u) is defined by a semi-section (B-,B0,B+). Then we 

define a semi-section (C+,C0,C -) for X in the following way: i £ C+(i e C 0, i ~ C-, 

respectively) if and only if for any connected component X. contained in T-I(x.) , 
3 z 

j e B+(j ~ B 0, j £ B-, respectively). Clearly (C+,C0,C -) is a semi-section. 
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A GENERALIZATION OF A THEOREM OF HOP, ROCKS 

by 

James B. Carrell I 

and 
2 

Andrew John Sommese 

In Hor, G. Horrocks proved that an algebraic action of a solvable group with 

additive group factors on a connected complete algebraic variety has connected fixed 

point set. In this article we will show that Horrocks' theorem, and indeed his proof, 

holds with little change for very general analytic actions. We were lead to consider 

the generalization in the course of studying SL(2,E) actions on compact Kaehler 

manifolds 

Theorem. 

space X 

C & S 3  . 

Let p : U x X + X be a meromorphic action on a compact connected complex 

of a complex solvable linear algebraic groups U with a sequence: 

0 = U 0 E U I ~ ... ~ Un n = dimEU 

of subgroups satisfying: 

a) U i is normal in Ui+ I for i = 0 , ... , n-i , 

Ui+ I ~ K for i = 0 , ... , n-I . b) /U.  
z 

Then X U i s  c o n n e c t e d  and nonempty .  

The fact that X U is non-empty is just the Borel fixed point theorem; the 

classical proof carries over with change (cf. (0.2)) . 

The reason the above theorem carries over is that the Donady family of closures 

of orbits of a meromorphic ~ action on an irreducible compact complex space is 

compact. This is not immediate because the irreducible components of the Donady space 

of such an X don't have to be compact. 

Horrocks also proves in Hor that the pro-finite completions of ~I(X, x) and 

~I(X U, x) for x c X U are isomorphic under the inclusion map. The surjectivity can 

be proven by Horrocks' arguments. The injectivity is not so clear. In B-B 2 there 

is an etale cohomology proof of a slightly weaker result. 

§0 Notation and Background Material 

By an algebraic solvable group U with factors isomorphic to K we mean a 

complex linear algebraic group U with a sequence of algebraic subgroups: 

0 = U 0 ~ U I E ... = Un = U with n = dim~X 

satisfying the properties: 

i. Partially supported by a grant from the Natural Sciences and Engineering Research 

Council of Canada. 

2. Partially supported by N.S.F. Grant MCS-80-03257 . 
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Let 

B) 

action: 

a) U.l is normal in Ui+ I for 0 ~ i ~ n-I 

and 

Ui+ 1 ~ ~ for 0 s i ~ n-i . 
b) IU. 

i 
U be a p r o j e c t i v e  m a n i f o l d  w i t h  t h e  p r o p e r t i e s  t h a t :  

~) U i s  Z a r i s k i  open i n  U , 

and 

the algebraic action p : U x U ÷ U by multiplication extends to an algebraic 

p:Ux U÷U. 

To see that U exists note that because U is a linear algebraic group it can be 

embedded by an algebraic homomorphism ~ of U into GL(N, E) for some N. It 

is easy to construct a projective manifold G for which =) and B) above are true 

with (GL(N, E), G) in place of (U, U) . Let U be an equivariant desingularization 

of the closure of ~(U) in G; the existence of an equivariant desingularization 

is due to Hironaka. 

Let (U, U) be as above. A meromorphic action p :U x X ÷ X of U on a compact 

complex space X is a holomorphic action p : U x X ÷ X that extends to a meromorphic 

map ~ :U x X ÷ X. 

Note that if U = E then U is IP 1 . 

(0.2) Lemma. Let p : U x X ÷ X be as above. Then X U , the fixed point set of U 

on X is non-empty. 

Proof. Let x e X. Let F be the graph of ~ in U x X x X. Let 

A:F ÷ U x X and B : £ ÷ X 

be induced by the projections of U x X x X onto its first two and last factor 

respectively. 

Note A-I(u, x) is biholomorphic to U. Further A-I(u, x) contains a compact 

analytic set Y in which A-I(u, x) is Zariski open and dense. Therefore B(Y) = 

p(U, x) and p(U, x) = B(A-I(u, x)) . From this it is clear that the closures of 

orbits are analytic sets. Since therefore p(U, x) - p(U, x) is a lower dimensional 

analytic set of X it can be assumed by descending induction that p(U, x')= p(U, x') 

for some x' e X. The usual argumentation for the Borel fixed point theorem shows 

that p(U, x') = x' 

The following theorem is modelled on a theorem of Fujiki IF I ; we often refer 

to the family f : Z ÷ 2 of the following theorem as the Fujiki family of closures of 

orbits. It should be noted that X is not assumed to be a C space. The proof is 

based on the proof of an analogous result for E actions in B-B & S. The proof 

works for any meromorphic action of a linear algebraic group on a compact complex 

space X . 

(0.3) Theorem. Let p : ~ x X ÷ X be a meromorphic action of ~ on an irreducible 

reduced compact complex space X. Then here is a diagram: 
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Q 

with the following properties: 
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> X 

a) f is a flat morphism of irreducible compact complex spaces Z and Q ; 

b) ~ is a bimeromorphic holomorphic map of Z onto X such that the restric- 

tion of ~ to each fibre Z = f-l(q) is an embedding; 
q 

c) there is a natural holomorphic action of ~ on Z making f and 

equivariant with respect to the trivial E action on Q and p on X respectively; 

d) there is a dense Zanski open set 0 ~ ~ such that for every q e 0 , Z is 
q 

reduced, and ~(Zq) is the closure of a ~ orbit; 

e) every fibre Z of f is one dimensional and for fibres {Zq, Zq,} that 
q 

are reduced, ~(Zq) = ~(Zq,) only if q = q' ; and 

f) Z is connected for all q. 
q 

Proof. Let F be the graph in ~i × X x X of the meromorphic extension ~ : ~Ixx÷X 

of p that exists by hypothesis. Let F' denote the image of F in X x X under 

the product projection. Let a : £' + X and b : F' + X denote the maps of F' onto 

X induced by the projections of X x X onto its first and second factor respectively. 

There is a natural action y :~ x X x X ÷ X x X induced by 0 • It is the product 

action where: 

I) E acts on the first factor of X by leaving all points fixed, 

2) E acts on the second factor of X by p . 

Note that: 

3) F' is invariant under the above action of K . 

4) The maps a : £' + X and b : F' + X are equivariant with respect to this 

action of ~ on F' and the actions of ~ on X given respectively in i) and 2) 

above. 

Applying Hironaka's flattening theorem Hir to a : £' + X and using (3) and 

(4) we obtain the following: 

~) an irreducible compact complex analytic space X and an irreducible complex 

analytic subspace G of X x X , 

6) that the holomorphic map a : G + X and b : G + X (induced by the product 

projections) which are respectively flat and surjective, 

y) letting ~ act trivially on X and by p on X , and by the product action 

on X x X, that G is invariant under ~ and that a and b are equivariant. 

We let ~ denote the image of X in the Douady space of XD induced by a . 

We let f : Z ÷ ~ denote the flat family over ~. We let ~ denote the induced map 

to X . Since X is an irreducible compact complex analytic space, it follows that 

is irreducible compact complex analytic. This implies that statement a) of the 

theorem is satisfied. 
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From ~) , ~), and y) it follows that: 

with the trivial action of E on ~, the action p on X, and the product action 

of ~ on ~ × X , Z is invariant under ~ and f and ~ are E equivariant. 

From this we see that c) of the theorem is satisfied. From the definition of a , 

it follows that there is a dense Zariski open set V of X with the property that 

for any v £ V, b(a-l(v)) = {Ex} u lim p(t,x) for some x ~ X. From this and the 
t-~o 

construction of ~ it follows that there is a dense Zariski open set V' of Q such 

that for q e V' the fibre Z of f has an image ~(Zq) = p(E, x) for some x£X. 
q 

By this and the flatness of f , it follows that all fibres of f are one dimensional. 

This and the definition of the Donady space imply (e) of the theorem is 

ver if ied. 

There is a dense open set V" of Q such that the fibres Z of f are 
q 

reduced for q c V" . Let 0 = V" n V' where V' is as defined above• The map 

is surjective since as noted in (B) b : G + X is surjective. From this and (e) it 

follows that ~0 : f-l(0) - f-l(0)E ÷ X is a one to one map of a dense Zariski open 

set in Z onto a Zariski dense constructible set in X. 

Thus ~ is a bimeromorphic holomorphic map of Z onto X which implies (b) 

of the theorem in view of the definition of the Donady space, is true. This also 

shows (d) . 

§i Proof of Horrocks Theorem 

(i.0) Lemma. To prove the assertion: 

(H) = (If p : E x X ÷ X is a meromorphic action of ~ on a compact connected 

complex space~ then X ~ is connected), it suffices to prove (H) under the addition- 

al assumption that X is irreducible and reduced. 

Proof. Clearly X can be assumed to be reduced without loss of generality. Let 

{XI, ... , X 2} be the irreducible components of X . By (H) , with the irreducibility 

assumption, XE is connected for i = i , .•. , n . To finish the proof of the above 
l 

lemma it suffices to show that X~ n X~ is non-empty if X. n X. is non-empty. 
l 3 l 3 

Assume that X i n Xj ~ ~ . 

Let YI " Yk be the irreducible components of X i n X.. Since O(E, Xi)~X i 
, •. , J 

it follows that O(E, Yh ) ~ Yh for h = i .... , k. By (0.2), Yh is non-empty, 

i.e. X~ n X~ is non-empty. 
i 3 

(i.i) Lemma. Let P : E × X ÷ X be a meromorphic action of E on a reduced and 

irreducible compact complex space X. Then X E is connected. 

Proof. Given x c X, the orbit map 0(', x) : E + X extends to a meromorphic map 

of ~i into X Let ~(x) denote the image of c ~i • = ; it can be checked that 

~(x) ~ x ~ . 

Since X E is a compact analytic set, it has finitely many connected components 

X 1 X 2 .. X r Let A i = {x~X I ~(x)eX.} 

Since X is the disjoint union of ~ , ... , A r it will follow that r = 1 if 
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we show that 

Let: 

A i is closed for all i. 

Z 

Q 

X 

be the Fujiki family of closures of orbits (0.3) of the action p . Let x ¢ Ai" 

Let < x > be a sequence in X with the property that : 
n 

X > X • 
n 

Let <qn > c Q be a sequence satisfying the properties: 

(*) x n ~ $f-l(qn) ) and qn ÷ q e 

Both properties can be satisfied since ~ is surjective and ~ is compact. Let 

Z = ~f-l(q)) . It is an immediate consequence of the compactness of Z and the 

continuity of ~ and f that x ~ Z . 

Z is a compact connected one dimensional analytic set that is invariant under 

the action of ~. By (i.0) Z ~ is connected if (I.I) is proven for one dimensional 

X. But this is straightforward. To finish the lemma, it suffices to show that Z 

meets X i . To see this note that there is a convergent sub-sequence: {yn } of 

{~(xi)} . Here Yn -> y ~ X.. An easy argument based on the compactness of Z and 
1 

the continuity of f and ~ shows that Yn ÷ y e Z . This completes the proof. 

(1.2) Horrocks' Theorem. Let p : U × X + X be a meromorphic action of a solvable 

algebraic group with factors isomorphic to ~, (cf §0) , on a compact connected 

analytic space X. Then X U is connected 

Proof. Let : 

0 = U 0 ~ U I E -.. c_ Un = U with n = dim~U 

be a composition series for U satisfying the properties: 

a) U i is normal in Ui+ I , 

b) Ui+I/u. ~ K for i = 0 , ... , n-i . 

l 
The theorem is true for U 0 trivially. Assume it is true for 0 ~ j ~ k < n . 

induction we must only show it for k + i . Let X k = X Uk . Since U k 

Uk+ I it follows that P descends to an action: 

Pk :Uk+I/Uk x X k + X k. 

Note that E ~ Uk+i/ . The reader can check that Pk is meromorphic. 

E Uk Uk+l _ • 

f r o m  ( 1 . 1 )  t h a t  X k = X i s  c o n n e c n e a .  

By 

is normal in 

It follows 
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§2 Closing Remarks 

Horrocks' theorem has a pleasant application toward the characterization of 

meromorphic ¢ actions. 

(2.1) Theorem. Let 0 : E x X ÷ X be a holomorphic ~ action a connected compact 

Kaehler manifold X . The action 0 extends to a meromorphic map ~ : x X ÷ X if 

and only X E is non-empty and connected. 

Proof. By (0.2) and (1.2) it suffices to show that 0 extends to a meromorphic map 

I X ÷ X if X E is non-empty and connected. If X E is non-empty then by the : ~ x 

basic result of F I or L the action 0 extends to a holomorphic action: 

O' :Gx X÷X 

is any projective manifold 

where: 

a) G is a connected linear algebraic group, 

b) G is Zariski dense in G , 

c) 0' extends meromorphically to G x X where 

in which G embeds as a Zariski open set. 

By b) there is the well known consequence that G is commutative and therefore 

algebraically isomorphic to (~*)a × ~b with b = 0 or i . In fact b ~ I since 

image of E in Kb is Zariski dense and since all subgroups of E b are algebraic. 

If b = 0 , then X K = X (K*)a and since the latter is well known to be dis- 

connected (B-B I, C&S I, F2), we get a contradiction. If b =I and a>O then X ~= 

 ,a  x~,a×<o> X E x<0> IxE Since is disconnected and left invariant by the induced 

meromorphic action of i x E , it follows that X E is disconnected. This contra- 

diction shows that a = 0 and b = i . 

B-B l  

B-B 2  

B-B&S  

C&S I  

C&S 2  

F I  

IF 2 

Hir 

Hor  

L 
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Almost Homogeneous C* actions on 

compact complex surfaces 

by 

James B. Carrell and Andrew John Sommese 

I .  Introduction and statement of results. 

I t  is well known (see C,H,K and O,W) that i f  X is a compact complex 

surface which admits a holomorphic C* action with isolated fixed points, then X 

is rational. More precisely, there exists a sequence of compact complex spaces X i 

with C* actiion and equivariant holomorphic maps ~i 

70 XO 
(1) X =XO---~x I ~X 2 ~ . . . . .  Xn =Z 

where ~ is the monoidal transformation at a fixed point of Xi+ l and Z is 

either p2 , pl x ~l , or a rational ruled surface F with C* action having 
n 

three (in the case of p2) or four (in the other cases) fixed points. 

The purpose of this note is to sharpen (1) by bringing weights into the pic- 

ture. The weights of a C* action at a fixed point x are the weights of the rep- 

resentation of C* in GL(Tx(X)) given by ~-+d~ x I t  is well known that when 

X C* is isolated, then there exists a unique fixed point s o (called the source) 

at which both weights are positive and a unique fixed point s (the sink) at 

which both we-Jghts are negative. At any other fixed point, there is one positive 

and one negat~rve weight. Such fixed points are called hyperbolic. 

Definition. A C* action on a compact complex surface X with isolated 

fixed points is called almost homogeneous i f  the weights at the source and sink 

each have mul t ip l ic i ty  two. 

By Lemma 3, below, i f  X has an almost homogeneous C* action with weights 

a, a at the source and b, b at the sink, then a =-b . We now state the main 

theorem. 

Theor~l I .  Suppose X is a compact complex surface having a C* action 

with isolated fixed point set X c* . Let a, b be the weights at the source of 

X and let  c=g.c.d.(a,b) . Then there exists a compact complex surface X with 

almost homogeneous C* action having weights 

sink and a relat ively minimal complex surface 

weights c at the source and -c 

morphic equivariant maps 

c at the source and -c at the 

Z with homogeneous C* action with 

at the sink and a diagram of surjective holo- 

/ \  
X Z 
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Moreover, Z is e i ther  ~I ×~I or ~2 and the weights of the C* action on Z 

are (a,a) , ( -a,a)  , ( -a,a)  , and ( -a , -a)  . 

Remark. I f  one blows up X at the source and the sink, then one obtains Y 

with C* action having source and sink ~l . Thus one is in the s i tuat ion consid- 

ered in O,W . An interest ing point is that ,  by Theorem l ,  the graph associated 

to Y in O,W has e i ther  one or two arms (corresponding to the singular chains 

in Y ) . Hency by O,W , Y admits a C*× C* act ion. Hence by an easy argu- 

ment, so does X ( for  any C'×C* action is equivar iant with respect to blowing 

down). 

To prove Theorem l ,  we w i l l  use 

Theorem 2. Let Y be as in the remark. Then there exists a holomorphic 

equivar iant project ion ~: y÷p l  (with the t r i v i a l  C* act ion) which is an iso- 

morphism on the source and sink of Y . ~ has at most two singular f ibres.  These 

are the singular chains in Y . 

For any o rb i t  O=C*'x , l e t  00=l im ~'x and 0 =l im X.x . These l im i ts  

ex i s t  since the f i n i t eness  of X C* imp l ies  tha t  X is  p r o j e c t i v e .  By a s inqu la r  

chain in X we mean a sequence of  o r b i t s  01 . . . . .  O k so tha t  (O1) O=s o ( the 

source) ,  (Ok) ~ = s  ( the s ink)  and ( O i ) ~ = ( O i + l ) O  fo r  1 ~ i  ~ k - 1  . 

Theorem 3. I f  X C* is f i n i t e ,  then there e x i s t  a t  most two s ingu la r  chains 

in X and every hyperbo l ic  f i xed po in t  l i e s  on exac t l y  one of these chains.  The 

set of  v a r i e t i e s  0 where 0 is  an o r b i t  in X so tha t  (Oi) 0 is a hyperbo l ic  

f i xed  po in t  form a homology basis of  H2(X,Z) . In p a r t i c u l a r  b2(X) is  the number 

of  hyperbo l ic  f i xed  points  in X . F i n a l l y  there are two s ingu la r  chains i f  and 

only i f  the minimal model Z of  X is ~ l x p 1  . 

2. Some Lemmas on weights. 

Lemma I .  The weights of any C* action on p2 with isolated f ixed points 

are of the form 

(3) (a,b) , ( -a,b-a) , (a-b,-b) 

for some d i s t i nc t  posi t ive integers a and b . The weights of a C* action on a 

rat ional  ruled surface F n with isolated f ixed points are 

(4) (a,b) , (a,-b) , (-a,b-na) , (-a,na-b) 

where a and b are d i s t i nc t  posi t ive integers so that na#b . The weights of  

any C* action on ~l x ~l with isolated f ixed points are 

(5) (a,b) , (a,-b) , ( -a,b)  , ( -a , -b)  
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where a, b are any p o s i t i v e  i n tege rs .  

The proof  of  t h i s  l emma is  in C,H,K . 

Lemma 2. Let ~ : X÷X denote the monoidal t ransform of  X at  a f i xed  

po in t  x c X  . Then the ac t ion  on X l i f t s  to X so tha t  ~ is  equ i va r i an t .  I f  

a, b denote the weights a t  x and a ~ b  , then X has two f i xed  points  on ~ - l ( x )  

w i th  weights 

(a ,b -a )  and (b ,a -b )  

r e s p e c t i v e l y .  I f  a = b  , then ~ ' l ( x )  is a component of  RC* w i th  weights (a,O) . 

Proof.  Let (u ,v )  denote equ i va r i an t  loca l  coord inates on a neighborhood 

W of  x so tha t  x= (O ,O)  . Thus ~- (u ,v )=(xau ,~bv)  . By d e f i n i t i o n ,  a neigh- 

borhood V of  x - l ( x )  cons is ts  of  a l l  points ( u , v , x , y ) E W × p I  such tha t  

uy=vx  . C* acts on V by X . ( u , v , x , y )  = (xau ,~bv ,~ax ,~by )  • This ac t ion  ex- 

tends to X making ~ equ i va r i an t .  I f  a #b , then V C* cons is ts  of  ( 0 , 0 , I , 0 )  

and ( 0 , 0 , 0 , I )  . Since loca l  equ i va r i an t  coord inates near ( 0 , 0 , I , 0 )  are 

( u , y / x )  , i t  fo l lows tha t  the weights a t  ( 0 , 0 , I , 0 )  are (a ,b -a )  . S i m i l a r l y ,  

the weights at  ( 0 , 0 , 0 , I )  are (b ,a -b)  . I f  a =b , then ~ - l ( x )  is a component 

of  V c* w i th  weights (a,O) . 

Lemma 3. Let X have weights (a ,b)  at  s O and weights (c ,d)  at  s 

Let X be obtained from X by blowing up sources and sinks u n t i l  the weights at  

the source So of  X are (q ,q)  and at  the s ink s are ( r , r )  . Then 

q = g . c . d . ( a , b )  , r = g . c . d . ( c , d )  , and r = - q  . 

Proof.  That X ex is ts  and tha t  q = g . c . d . ( a , b )  and r = g . c . d . ( c , d )  f o l -  

low from Lemma 2. To f i n i s h  the proof  we w i l l  show q = - r  . Let 0 be an o r b i t  

in X so tha t  00 =sO and 0 = s  Let y c O  and consider the i so t ropy  group 

of  y . Since ~EC* acts w i th  unique weight q on T~ (X) , i t  fo l lows tha t  the 

i so t ropy  group of  y cons is ts  of  the q- th  roots  o f  uni~y. But as O® = s  , the 

q- th  roots of  un i t y  and r - t h  roo ts  of  un i t y  must co inc ide .  Hence q = - r  . 

Lemma 4. Let 01, 02 . . . . .  O k be a s ingu la r  chain in X . Then i f  the 

weight a > 0 occurs at  (Oi) ~ , 1 ~ i  < k , the weight -a occurs a t  (O i+ l )  0 • 

Proof.  To see th i s  s tatement ,  argue on the i so t ropy  groups as in Lemma 3. 

§3. Proofs o f  the theorems. 

We wi l l  f i r s t  prove Theorem 2. Let Y be obtained from blowing up the 

F + s . source and sink of X . Thus the source and sink F- of Y are both pl ,  

Let 01 and 02 be any pair of d is jo in t  orbits from the source to the sink. Then 

Ol and 02 are both pl 's  that have the same l ine bundle L . Hence we may take 

d is jo in t  sections of L to obtain an equivariant holomorphic map ~ to ~l The 

bundle L has degree one on each f ibre.  But O(1) is spanned by exactly two sec- 

tions so ~ is biholomorphic on F + and F- . At most two fibres of ~ fa i l  to 
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be nonsingular. These f ibres are precisely the singular chains in X and we know 

there are at most two singular chains in X since the minimal model of X has at 

most two singular chains by Lemma 4. This completes the proof of Theorem 2. 

We w i l l  now prove Theorem I .  By Lemmas 2 and 3, we may as well assume X =X . 

We know that X can be equivariant ly blown down to a re la t i ve l y  minimal surface. 

In fact ,  i f  C is an exceptional curve of the f i r s t  kind in X , C is C* in- 

variant since C.C<O . Hence exceptional curves of the f i r s t  kind are closures of 

orbi ts and, by Lemma 2, l i e  on a singular chain (since i f  C can be blown down, C 

cannot meet both the source and the sink). Thus we want to show that on any singu- 

lar  chain 01 + . . .  +0 k , we can make the chain re la t i ve l y  minimal by blowing down 

certain 0 i with l < i <  k . I f  neither Ol nor Ok can be blown down, and i f  the 

chain is not re la t i ve ly  minimal, then we may blow down a suitable Oi with l < i <  k 

without affect ing almost homogeneity of the action. Thus we may continue in this 

manner unt i l  chain is re la t i ve ly  minimal or ei ther Ol or Ok can be blown down. 

Now suppose Ol can be blown down. Then i t  follows that the weights at 

(0 l ~  are 2a,-a by Lemma 2. Now blow up s O and s to obtain Y as in 

Theorem 2. Let 

F=XlAI +~2A2+...+XkA k 

be the singular f ibre in Y associated to 01 + . . .  +0 k , where A i is the proper 

transform of 0 i . Each A i is the closure of an o rb i t  in Y and xi(>O) is the 

order of the isotropy group of A i . Thus for example Xl =Xk =c and x2 =2c . 

Now by flatness of ~ : y÷p l  , any two f ibres of @ are homologous. Since A i 

misses the nonsingular f ibres,  F.A i =0 for  l s i  ~k . Thus i f  Pi =A''A" 
1 1 

}'I Pl + x2 = 0 

(6) X i_ l+P iX i+X i+ l  =0 for l < i < k  

~k-I + PkXk = 0. 

(6) f o l l ows  since A i . A i +  1 = I  wh i le  AiA j =0 i f  l i - j l  > I  . 

Pi = - I  f o r  some i w i th  1 < i <  k . Suppose a l l  Pi ~ -2  f o r  

We must show that 

1 < i <  k . Then 

X i -<½(Xi_ 1 +Xi+l) , 1 < i  < k . 

Summing gives 

k- I  1 k-2 1 k 

SO 



and thus 
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+>'k-I <½ (>'I +X2 +~'k-I +~'k ) 

~2+~k-l-<~l +~k 

But ~2 =2a , Xk-I >0 and Xl =~k =a . This is impossible, so Pi =-I for some 

i with l < i < k  . After blowing down A i , blow down F ÷ and F- and repeat the 

argument on the new homogeneous action X' . Clearly the process eventually leads 

to a relat ively minimal surface Z with almost homogeneous C* action as asserted. 

That Z is either p l×p l  or F 2 with weights as asserted follows from (4) and 

(5) of Lemma I.  This completes the proof of Theorem I.  

The proof of Theorem 3 follows from C,S and remarks above. 
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O. Introduction. 

In this paper I discuss the technique of weighted homogeneous coordinates 

which has appeared in works of various geometers a few years ago and it seems has 

been appreciated and armed by many people. In many cases this technique allows one 

to present a nonsingular algebraic variety as a hypersurface in a certain space (a 

weighted projective space) and deal with it as it would be a nonsingular hypersur- 

face in the projective space. A generalization of this approach is the technique 

of polyhedral projective spaces for which we refer to 5, 6, 15. 
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Section 1 deals with weighted projective spaces, the spectrums of graded poly- 

nomial rings. Most of the results from this section Can be found in 7. 

In section 2 we generalize the Bott theorem on the cohomology of twisted 

sheaves of differentials to the case of weighted projective spaces. Another proof 

of the same result can be found in 23 and a similar result for torical spaces is 

discussed in 5. 

In section 3 we introduce the notion of a quasismooth subvariety of a weighted 

projective space. For this we define the affine quasicone over a subvariety and 

require that this quasicone is smooth outside its vertex. We show that quasismooth 

weighted complete intersections have many properties of ordinary smooth complete 

intersections in a projective space. The work of Mori 19 contains a similar re- 

sult but under more restrictive conditions. Rather surprisingly not everything 

goes the same as for smooth complete intersections. For example, recent examples 

of Catanese and Todorov show that the local Torelli theorem fails for some quasi- 

smooth weighted complete intersections (see 4, 24). 

In section 4 we generalize to the weighted case the results concerning the 

Hodge structure of a smooth projective hypersurfaces. Our proof is an algebraic 

version of one of Steenbrink 23 and can be applied to the calculation of the De 

Rham cohomology of any such hypersurface over a field of characteristic zero. The 

present paper is partially based on my talks at a seminar on the Hodge-Deligne 

theory at Moscow State University in 1975/76. It is a pleasure to thank all of its 

participants for their attention and criticism. 

i. Weishted projective space. 

i.i. Notations 

Q = {qo,ql,...,qr } , - a finite set of positive integers; 

IQI = qo +-.. +qr ; 
S(Q) - the polynomial algebra kT 0 .... ,T r over a field k, graded by the condi- 

tion deg(Ti) = qi i= O,...,r ; ~(Q) = Proj(S(Q)) - weighted projective space of 

type Q. U ~r" +i - {0} Spec(S(Q)) - {(T O ..... rr)} ; m = (T O ..... T r) • 

Abbreviations: 

~r = ~(i,...,i) , S = S(Q) , • = ~(Q) • 

we suppose in the sequel that the characteristic p of k is prime to all qi ' 

though many results are valid without this assumption. We also assume that 

(q0 ..... qr ) = i. 

The last assumption is not essential in virtue of the following: 

Lemma° Let Q' = {aq0 .... ,aqr} . Then ~(Q) = ~(Q') . 

Really, S(Q') m = S(Q)am and hence in the standard notations of 12 we have 

S(Q') = S(Q)(a). Applying (12, 2.4. D we obtain a canonical isomorphism 

(Q) = Proj(S(Q)) = Proj(S(Q)(a)) = ~(Q,) . 
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We refer to 1.3 for more general results. 

For any graded module M over a graded commutative ring 

the graded A-module obtained by shifting the graduation M(n) k 

By M we denote the 0Proj(A)-Module , associated with M. 

2.5.2) that for any f c A d 

= {m- 
F(D+(f),M) = M(f) fk :me Mkd} , 

where open sets D+(f) = Spec(A(f)) form a base of open sets in 

A we denote by M(n) 

= Mn+ k • 

Recall (12; 

Proj(A) . 

1.2. Interpretations. 

1.2.1. It is well known that a ~-graduation of a commutative ring is equivalent 

to an action of a 1-dimensional algebraic torus G on its spectrum. In our case 
m 

G acts on ~r+l = Spec(S(Q)) as follows 
m 

S --+ S @ kX,X -I 

qi 
T.--+ T. @ X , i= O,...,r 
1 1 

where G = Spec(kX,x-l) . 
m 

The corresponding action on points with the value in a field k'm k is given 

by the formulas 

* k,r+l r+l k' × ÷ k' 

(t,(a 0 ..... ar)) ÷ (a0 tq0 ..... ar tqr) 

The open set U = ~r+l_ {0} is invariant with respect to this action and the uni- 

versal geometric quotient u/G exists and coincides with ~(Q) . 
m 

If k = ~ is the field of complex numbers then the analytic space ~an asso- 

ciated to ~(Q) is a complex analytic quotient space ~r+l _ {0}/~* where 
* r+l 

acts on ~ by the formulas 

(t,(z 0 .... ,Zr)) ÷ (Zo tqO,...,zr tqr) 

In view of this interpretation the space ~(Q') from the lemma in i.i corresponds 

to a noneffective action of G . 
m 

1.2.2. For any positive integer q we denote by 

q-roots of unity. This is a closed subgroup of G 
m 

kX/(X q- I) . 

= x Consider the action of the group scheme ~Q ~q0 

is induced by the action ~Q on S 

-~T i @X Ti i ' 

where Xo -= X mod(X qi-l) in the coordinate ring of 
l qi 

qi 
The homomorphism of rings S(Q) ÷ s , T i -~ T i 

the finite group scheme of 
q 
with the coordinate ring 

~r 
... × ~ on which 

qr 

yields the isomorphism 
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S(Q) = s~Q. It is easy to see that the corresponding morphism of projective spec- 

trums is well defined and gives an isomorphism 

P(Q) = Proj(S Q) ~ ~r/ ~Q" 

In case k = ¢ 

~(Q)an = ~r(~)/ ~Q(C) 

where ~Q(~) acts by the formulas 

(g,(z 0 ..... Zr)) ~ (z0g 0 ..... Zrg r) 

g = (go'"''gr) ' gi = exp(2~ibi/qi) ' 0 ~b i < qi" 

1.2.3. The previous interpretation easily gives, for instance, that for Q = 

{l,l,...,l,n} the weighted projective space ~(Q) equals the projective cone 

over the Veronese variety Vn(~r-l) . 

For example, ~(l,l,n) , n # 1 is obtained by the blowing down the exceptional 

section of the ruled surface • (when n= 2 it is ~ ordinary quadratic cone). 
n 

1.2.4. For Q = {l,ql,...,q r} the spaces ~(Q) are compactifications of the af- 

fine space ~r . Indeed, the $~en set D+(To) is isomorphic to the spectrum of 

the polynomial ring k ,..., . Its complement coincides with the weighted 

projective space ~(ql,...,qr ) . 

1.2.5. Weighted projective spaces are complete toric spaces. More precisely, 

• (qo,...,qr ) is isomorphic to the polyhedral space ~ of 6, where & = 
~r+l 

{(x 0 .... ,x r) • : Eqix i = q0...qr } • 

1.3. The first properties 

1.3.1. For different Q and Q' the corresponding spaces ~(Q) and ~(Q') can 

be isomorphic. 

Let 

d i = (q0,...,qi_l,qi+l,...,qr) 

a i = £.c.m.(do,...,di_l,di+l,...,dr) 

a = £.c.m.(d 0 .... ,dr). 

Note that aiqi, (ai,d i) = I and aod. = a . 
ii 

Proposition. (Delorme 7.) Let Q' = {qo/a,...,qr/ar} . Then there exists a 

natural isomorphism ~(Q) = ~(Q') . 

For the proof we consider the graded subringai S' = n~ 0 S(Q)an of S(Q) and 

note that S' = kX0,...,Xr , where X i = T i is of degree aqi/a i . But then 
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S(Q') = S '(a) and hence Proj(S(Q')) = Proj(S') (12,2.4.7). Now there exists also 

an isomorphism Proj(S') = Proj(S(Q) (a)) = Proj(S(Q)) . 

Corollary. Each ~(Q) = ~(Q') , where (q~,...,qi_l,qi+l,..' ' .,q$) = 1 for i = 

O,...,r . 

Corollary. Assume that qi = a. for i = 0,...,r. Then ~(Q) = pr. 
1 

For example, it is so if all numbers £.c.m.(q0,...,qr)/qi are coprime. In 

this case the previous fact was independently discovered by M. Reid. 

Note that in case r = 1 we can use the previous corollary and obtain that 

~(q0,ql) = pl for any q0,q I . This fact however follows also from interpretation 

1.2.2. 

1.3.2. Remarks. i. There is a certain difference between the identifications of 

the proposition and of the lemma in i.I. In terms of 3.5, the spaces ~(Q) and 

IP(Q ') from the proposition are not projectively isomorphic. 

2. It can be shown that the isomorphism ~(Q) ~- P(Q') of 1.3.1 induces an iso- 
r 

morphism of sheaves 0~(n) = 0~,((n- ~ bi(n)qi)/a) , where h.(n)1 are uniquely 
i=O 

determined by the property 

n = bi(n)qi + ci(n)d i _  _ , O_<bl. <dl" " 

1.3.2. Let G be a finite group of linear automorphisms of a finite-dimensional 

vector space V over a field k. An element g • G is called a pseudoreflection 

if there exists an element e • V and f • V such that 
g g 

g(x) = x + fg(X)eg for every x• V . 

Lemma. (3, ch.V, §5, th.4.) Let B be the s}~metric algebra of V and 

the subalgebra of G-invariant elements. Assume that #G is invertible in 

Then the following assertions are equivalent: 

(i) G is generated by pseudoreflections; 

(ii) A is a graded polynomial k-algebra. 

A = B G , 

k. 

Example. pQ acts on S as a group generated by pseudoreflections. 

These pseudoreflections act by the formula 

T ÷ TiSX i i' 

T. -~ T. , j # i, i = O,...,n. 
J J 

i. 3.3. Proposit ion 

(i) ~(Q) is a normal irreducible projective algebraic variety; 



39 

(ii) all singularities of P(Q) are cyclic quotients singularities (in particu- 

lar, • (Q) is a V-variety); 

(iii) a nonsingular ~(Q) is isomorphic to ~r . 

For the proof of property (i) we remark that this property is preserved under 

an action of a finite group and use interpretation 1.2.2. To see (ii), we use in- 
r 

terpretation 1.2.1. Let ~ = u U. be the canonical covering of • , where U. = 
1 1 

i=0 
D+(T i) . Consider the closed subvariety V i = Spec(S/(Ti-l)) of ~r+l = Spec(S). 

The action of G on Ar+l induces the action of ~ on V. which, after iden- 
m qi l 

tifying V.I with Spec(kT0,...,Ti_ l,Ti+ l,...,Tr) , can be given by the formulas 

_qJ 
T. -~ T. 8 X. , j = 0,...,i-l,i+l,...,r 
3 3 i 

where notations as in 1.2.2. 

It is easy to see that U. = V./~ and, since Vo = ~r, we have property (ii) 
i i qi 1 

of ~(Q) . 

For the proof of (iii) we use 1.3.1 and the previous construction. By 1.3.1 

we may assume that (q0'''''qi-l'qi+l '''''qr ) = i . Then it is easy to see that 

the action of ~ on V. is generated by pseudoreflections only in the case 
qi 

qi = i. It remains to apply 1.3.2. 

1.4. Cohomology of 0~(n) . 

1.4.1. Recall that 0~(n) denotes an 0~-Module associated to the graded S(Q)- 

module S(Q)(n) . For any homogeneous f E S(Q) we have a natural homomorphism 

S(Q) n ÷ S(Q)(n)(f) (a÷a/1) which defines a natural homomorphism an : S(Q) n ÷ 

H0(~(Q),0~(n)) (the Serre homomorphism). 

Theorem. 

(i) ~n : Sn + H0(~' 0F (n)) is bijective for any 

(ii) Hi(~,0~(n)) = 0 for i ~ 0,r, n ~ ~ ; 

(iii) Hr(~,0~(n)) = S_n_IQI . 

neZg ; 

Proof. According to general properties of projective spectrums we can identify 

U = Spec(S) - {m} with the affine spectrum of the graded 0 F-Algebra @ 0 F (n) 
n6~ 

(12, 8.3). The corresponding projection p:U+~ coincides with the quotient 

morphism U ÷ U/G from 1.2.1. Since p is an affine morphism we have 
m 

Hi(U,0u) = Hi(p, p,(0U)) = Hi(p, @ 0 F (n)) = @ Hi(~,0~(n)) . 

n6~ ne~ 

Now we use the local cohomology theory (13). We have an exact sequence 

0 + H~m}(S) ÷ S ÷ H0(U,0u ) ÷ H~m}(S) + 0 

and isomorphisms 
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H~m}(S) -- Hi-I(U,0u ) ' i >i . 

It is easy to see that the homomorphism S -~ H0(U,0 U) induces on each Sn the 

Serre homomorphism en:Sn -~ H0(~,0p(n)) . Since S is a Cohen-Macaulay ring, we 

have 

H~m}(S) = O, i ~ r+l . 

This proves assertions (i), (ii) of the theorem. 
r+l 

For the proof of (iii) we have to use the explicit calculation of H{m}(S) • 

We have 
r+l 

H{m}(S) = ~ Extr+l(s/(T0 ..... Tr)m,s) = 

m 

= i~ Extr+l(s/(r_m),s) 

m 
m 

where (T m) = (T O . . . .  ,Tm) . 

Let V be a free S-module of rang r+l with the basis 

V by the conditionn deg(e i) = qi m and consider the induced gradation on its ex- 

terior powers ~ (V) (where deg(eilA'''Aei ) = m(qi +'''+ qi )) " The Koszul 

P P 
complex for (T_ TM) : 

i 2 r+l 
S ÷ A(V) ÷ A(V) ..... ÷ A (V) ÷ 0 

e.A...Ae. ÷ Z(-I)kT TM e. A...A~. A...Ae. 
i I ip k i k i I i k Ip 

defines a resolution of graded S-modules for S/(T 2) and hence we have an isomor- 

phism of graded S-modules 

r+l r 
Extr+l(s/(r_m),S) ~- Hom( A (V),S)/Im(Hom(A(V),S) = 

Put 

then 

= (S/(Tm))(-mIQl) 

I = (S/(Tm))(-mlQI) 

r+l 
H{m}(S) = li~m I m, 

m 
where the inductive system is described as follows. 

m-a 0 m-a 
Let t TM be the image of T O ...T r 

a 0, • • - ,m r r 

for 0< a. _<m t m form a basis of I . 
i a 0, •- • ,a r m 

map 

Um,m+s: Im "+ Im+s 

s T s and is multiplication by TO... r 

u . (t m = t m+s 
m,mts a0,...,ar ) a0+s,...,ar+S 

Let e be the image of e m in 
a0,-.-a r a0,.-.,a r 

(e0,...,er) . Grade 

In this notation the transition 

r+l 
lim I . Module H{m}(S ) is a 
~> m 

in I . It is clear that 
m 
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graded S-module and elements 
q 

e 
a 0 , - .. ,a r 

form its homogeneous basis. 

deg(eq0 ..... ar) = deg(eam 0 ..... ar) = (m-a0> +... + (m-a r) -mIQ I = 

Thus we obtain that e with 
a 0, •.. ,a r 

r 

n = - E aiq i (a i > 0) 
i=0 

Hr+l - generate {m}(S)n as a k-space. Since 
r 

dimkS_n_Q = #{(b 0 ..... b r) e ~r+l :_n_IQ I = E biq i} = 
i=0 

r 
= #{(a0,...,a r) c IW r+l+ :-n = 2 aiq i} , 

i=0 

we have 

Hr+l -. 
{m}(S)n -- S_n_IQI. 

It remains to notice that 

Hr+l -. e Hr(~,O~(n)) 
{ m}(S)n 

We have 

r 
Z 

i=0aiqi 

1.4.2. Let integers a be determined by the identity 
n 

r 
Ps(t) = ~ an tn = ~ (i- tqi) -I . 

n=0 i=0 

Then as a c o r o l l a r y  o f  t h e  p r e v i o u s  t h e o r e m  we h a v e  

a i= 0 
n 

dimkHi(F,0F(n)) = 0 i # 0,r 

a_n_iQl , i = r 

In fact, Ps(t) is the Poincare series of the graded algebra 

a n = dimkS(Q) n . 

S(Q) (see 3.4) and 

1.5. Pathologies 

If ~ = ~r then the following properties are well known. 

(i) for any ne ~ 0F(n) is an invertible sheaf; 

(ii) an invertible sheaf 0F(n) is ample; 

(iii) the homorphism of multiplication S(n) 8 l~(m) + S(n+m) 

phism 0F(n) 8 0F(m) = 0F(n+m) ; 

(iv) for any graded S-module M and n e 

M(n) = MSOF 0 F (n) 

None of these properties is valid for general ~(Q) . 

induces the isomor- 

1.5.1. Let Q = {1,1,2}. The restriction of 0 F (i) to D+(T 2) is given by the 
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S(T2)-m°dule 

S(1)(T2) = {_~: a ( S2k_l} . 
T 2 

T O T 1 
It is clear that S(1)(T2) = S(T2)~ +L S (T2)T22 
one. 

This is a counterexample to property (i). 

is not a free S(T2~module of rang 

1.5.2. On a weighted projective line ~ (qo,ql) all sheaves 0~ (n) are inverti- 

ble. In fact, 01) (n)ID+(T i) is associated to the S(T )-module S(n)(Ti ) , free- 
i 

p k ly generated by Tj/Ti, where n = kqi-pqj and k/n, p/n are integers coprime 

with qj and qi respectively. 

Since ~ (q0,ql) _- ~i (1.3.1), an invertible sheaf 01~(n) is equal to some 

01~l(b n) . Moreover, if F(~,01p(~)) # 0 , then 

b = dimkF(lP,0p(n)) - 1 . 
n 

Thus, 0 (n) is ample if dimkF(~,0p(n)) > 2 . But, if n< min{q0,q I} and n > 0 , 

r(~,0~(n)) = 0 (1.4.1). 

This is a counterexample to property (ii). 

1.5.3. In notations of 1.5.2 assume that ql = q0 +I , qo > 1 . Then b 
q0 

b = O, b < O. But 
q0+ql +I ql +I 

+ = @ 0~i (bql+l) = 0~i (bq0+bql+l) 0~ (q0) @ ~ (ql i) 0~i (bqo) 

O~ (qo +ql +I) = 0~I (b + .I) • 
qo ql tl 

This is a counterexample to property (iii). 

1.5.4. To obtain a counterexample to property (iv) we can take M = S(m) , note 

that S(m)(n) = S(m+n) and use the counterexample from 1.5.3. 

1.5.5. We refer to the paper of Delorme (7) for more details concerning proper- 

ties of the sheaves 0~(n) . For example, one can find there a generalization of 

the duality theorem for ~(Q) , the particular case of which we have proved in 1.4.1. 

We remark also that according to Mori (19) everything is well in the open 

set V = n D k, where D k = u D+(Ti) . Namely, V is the maximal open sub- 
k>l kxqi 

scheme such that 0~(1) IV is invertible and (0~(1) IV) ~m ~ 0~(m)V, Vmc m. 

2. Bott' s theorem. 
--i 

2.1. Sheaves ~i~ . 



43 

i be the S-module of k-differentials of 
~S 

2.1.1. Let S . 

i 
with a basis dT0,...,dT r . Denote by ~S its exterior i th 

usual we put ~S 0 = S). This is a free S-module with the basis 

i by the condition O~ s I < ... < s i~r~ . Grade ~S 

deg(dTslA'"AdTs i) = qsl+ ... +qsi • 

We have an isomorphism of graded S(Q)-modules 

i ~ ^< < • S(-qs I - ) . 
~S u-s I ...<siNr .... qs i 

For i = r we obtain 

~r+l S(_IQI ) 
S 

I be the canonical universal differentiation. Let d:S ÷ a S 

partial derivatives we have 
r 

da = j=0 ~--~jZ ~a dTj , a• S . 

The k-linear map d extends to the exterior differentiation 

i ÷ ~i+l 
d : a s u s 

uniquely determined by the conditions 

• i w' g~S d(wAw') = dwAw' + (-l)lwAdw ' , w• ~S ' • 

i 
d(d(w)) = 0 , Vw• ~S " 

This is a free module 
i 

power A(~) (as 

{dTslA...AdT : s i 

By definition of the 

2.1.2. Recall the Euler formula: 
r 

na = j~0Z --~--~ Va~ S(Q) qj rj , n 

Using the linearity of both sides of this identity we may verify this formula 
So .Tsr 

only in the case when a is a monomial T O .. . But in this case it can be 
r 

done without any difficulties. 

2.1.3. Define the homomorphism of grades S-modules 

i + i-i 
&: a S a s , i ~ i 

by the formula 

i ^ 

A(dTslA. . .^dT s ) = Z ( -1)k+lqskTskdTslA. . .^dTskA. . .AdT 
i k=l si 

Lemma. 

(i) 

(il) 

(iii) 

A(w^w') = a(w)^w' + (-l)lw^a(w ') , 

A(da) = na, a• S 
n; 

i 
A(dw) +d(A(w)) = nw, w• (aS) n. 

i w' J 
WEas, •a ; 
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Using the linearity of A we may verify (i) only in the case w= dTslA...AdTsi, 

w'= dTsiA...AdTs~ . But this is easy. 

3 
Property (ii) is a corollary of the Euler formula. To verify property (iii) 

it suffices to consider the case w = adTslA'''AdTs''l a ~ S k . We have 

- da^A(dTslA...AdT s ) = A(dw) = ~(daAdTslA...AdT s ) = ~(da)AdTslA...AdTs. 

= kadT A...AdT - daAA(dT A...AdT ) 
s I s. S I s i 1 

d(A(w)) = d(aA(dT A...AdT ) = daAA(dT A...AdT ) +ad(A(dT ^...^dT ) = 
s I s i s I s i s I s i 

^ 
i £+i d 

= daAA(dTsl^...AdTsi) +ad(.£=IE (-i) qs£Ts£ TslA...AdTs~^-.-AdTs.1) = 

I 

• .- qs£)adT • = daAA(dTsl dT ) + ( ~ A ..AdT 
s i l=l Sl s i 

Adding we get 
i 

A(dw) +d(A(w)) = (k+ E )w = nw. 
£=I qs~ 

2.1.4. It is easy to identify the sequence 

_r+l~ r + .... + ~i + S 
0 ÷ ~S aS S 

with the Koszul complex for the regular sequence 

tain that it is an exact sequence. 

Now put 

--ias = Ker(~ A--+~si-l) = Im(a~ +l~a~) 

with the induced grading. 

So, we have the exact sequences of graded 

il 
0 ÷ ~ (n) ÷ a (n) + a S (n) ÷ 0, 

(qoT0 .... ,qrTr ) • 

S-modules : 

i_>l, neTZ 

Thus, we ob- 

2.1.5. Define the sheaf --i ~ on ~(Q) by 

--i --i ~ = ~ , where M denotes the sheaf associated to a graded S-module M. 

Also we put 

--iaF (n) = _~s(n) , n ~ 7z . 

Since M÷M is an exact functor we have exact sequences of sheaves on ~(Q) : 

0 -~ ~il D (n) ÷ _~(n) -> ~iIp-l(n) ~ 0, i>-i . 

that for i = r+l , ~ (n) = 0, thus for i = r 

(n) : ~+l<n) : S(n- qJ) : 0~ (n- q). 

It is clear 



45 

2.1.6. Note that in the case char(k) = 0 property (iii) in lemma 2.1.3 gives an 

algebraic proof of the acyclicity of the De Rham complex 

0 ÷ k ÷ S ~  S d Ar+l -I+ "'" + ~S + O. 

2.2. Justifications. 

In this section we try to convince the reader that the sheaves % introduced 

in the previous section are good substitutes for the sheaves of germs of differen- 

on the usual projective space ~r. tials ~i ~r 

2.2.1. Let 

In this case 

I ~ = I ~r . Let us show that 

~--i~ (n) = ~$r(n) 

U = V(0~r (-i)) = Spec( @ 0~r (n)) 
neFf 

is the complement to the zero section of the tautological line bundle V(0~r(-l)) 

on pr and the canonical morphism p : U + I ~r is smooth. 

The standard exact sequence 

* 1 i i 
0 -~ p ~ + ~U ÷ ~U/~ ~ 0 

induces the exact sequences 

* i i 1 i-i 
0 ÷ p ~ -~ aU÷~U/~ Op.~ + O. 

The homomorphism 

i 
A : a S ÷ S (Ya.dT. + Za.q.T.) 

• i 1 . 1 1 1 
l 1 

induces after restriction to U a surjective homomorphism of sheaves 

1 _~Ou A:~ U 

we use that (qi,char(k)) = i!). It is easy to verify that A(p*~ I) = (here 0 and 

hence A defines a surjective homomorphism 

i 
~: au/~ ÷ 0 U. 

i 
Since ~U/l~ is invertible we obtain that ~ is in fact an isomorphism. 

Thus we have exact sequences 

0 -> p.~i i i-I 0 

and applying p. we obtain exact sequences 

i (n)÷ @ ~s(n)+ @ ~-l(n)-~ 0 0 ÷ @ ~2p Q 

neFf neff neff 

It is easy to see that in this way we obtain exact sequence 2.1.5 of the definition 

of g$(n) . 



4B 

2.2.2. Lemma. In the notation of 1.3.2, let us assume that G is generated by 

pseudoreflections and its order is invertible in k. Then the canonical homomor- 

phism 

i i G 
~A/k ÷ (~/k) 

is an isomorphism of A-modules. 

i i 
Proof. Since B (reap. A) is a polynomial algebra, the B-module ~B/k (reap. ~A/k ) 

is a free B-module (reap. A-module). Since B is a free A-module (3,ch.5, 5, 
i i i 

th.5), ~B/k is a free A-module. Let ~A/k ~ ~B/k be the canonical homomorphism 

of A-modules (the inverse image of a differential form). It is injective (because 
i 

~A/k is free and it is injective over a dense open subset of Spec A). Let T be 

its cokernel and 

0 ~ i i 
~A/k * ~B/k + T ÷ 0 

be the corresponding exact sequence. 
i 

Now, for every G-B-module M, the homomorphism m ~ ~-~ ~g(m) is a projector 

onto a direct summand (here we use the assumption that #G is invertible in k ) , 
G 

thus the functor ( ) is exact. Applying this functor to the above exact sequence, 

we get an exact sequence 

i i G T G 
0 ÷ ~A/k ~ (~B/k) ~ ~ 0 

i G being a direct summand of a free A-module, is a projective A-module. where (~B/k) , 

This shows that dim. proj. (T G) ~ i and, hence, depth (T G) edim B- i. This implies 

that T G = 0 if its localization (TG)p = 0 for any prime P of A of height i. 

Let Q be a prime ideal of B such that QnA = P and GQ = {g c G: g(Q) = Q} be 

(TG)p (TQ)GQ (~p/k ~Q/k )GQ) the decomposition group of Q, Then = = Coker ÷ (~ . 

Let G~ be the inertia group of Q , the subgroup of GQ of elements which act 
G~ G~ 

. = (BQ) ~ ~ (BQ) ~ = ~ , trivially in the residue field K of BQ Then BQ ~B~ 

t the extension B~ Ap is etale, the group GQ is a cyclic group of order e 

equal to the ramification index of the extension 
i A' = i ~i shows that ~/k @Ap Q ~B~ and, hence, Ap 

to show that 

i = .Q)G~ 

~B~ (~ 

Passing to the completions, we may assume that BQ 

v generator g of GQ acts on BQ by multiplying 

unity ~. Let tl,...,tn_ 1 

Then 

B ~ B' (3,ch.V, 5, n°5). This 
Q i Q G!/G ~ . Q Q  

= (~B.) Thus, it suffices 
Q 

= KT , B~ = KTe and a 

T by a primitive e-th root of 

be a separable transcendence basis of K over k. 

i = ~B~ dt. A...^dt dT e 
~B 4 J 1 J i-i 



47 

~ = ~BQ dtj A...Adtj ^dT 

Q i i-i G' 
i Q i 

A direct computation shows that (aBQ/k) = ~B~/k"  

2.2.3. Let a: ~r + ~ be the natural projection pr ~ ~r/~Q = ~(Q) from 1.2.2. 

Let us show that 

ap = a ,  (a ) , 

G 
where G = ~Q and a, is the functor of invariant direct image (ii,5.1). 

The action of G on ~r is induced by one on S . Since S G is a polynomial 

algebra, this latter action is generated by pseudoreflections and hence, by lemma 

2.2.2, we have an isomorphism of S(Q)-modules 

i = (a~)G 
aS(Q) 

and, hence, an isomorphism of sheaves 

~(Q) G'ai" 
= a , t ~ S )  - 

A p p l y i n g  a~ to  t h e  e x a c t  sequence (see 2 . 1 . 5 )  

0 ÷ a i ÷ a i ÷ a i-I 
~r --S ~r ÷ 0 

and using the exactness of a~ (p is an affine morphism and ( )G is an exact 

functor) we obtain an exact sequence: 

• i Gt~i-l~ 
0 + a~(a Ir ) + aS(Q) ÷ 0 

G Gi --i 
Since a,(0 r ) = 0 F we obtain by induction that a,(a r ) = a~. 

2.2.4. Let us show that ~ coincides with the sheaf ~p~i i n t r o d u c e d  f o r  any 

V - v a r i e t y  in  23.  

Recall that 

~i . ai 
a~ = 3,( w ) 

where j : W + • is the open immersion of the smooth locus of • • In notations 

of 2.2.3, let us consider a commutative diagram 

a-i (W) j' ~ ~r 

a t 

Here a' = ala-l(w)' and 
-i 

action of ~Q on a 

lemma 2.2.2, we get 

a 

W J -+~ 

j' is the natural immersion. Since W is smooth, the 

(W) is generated locally by pseudoreflections. Then, by 
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Since 

,G ~i 
a ,(~ -i ) " 

a (w) 

codim(P-W,~) _>2 (~ is a normal scheme) and 

•, i ~i 
3"(~-i ) = ~r 

a (W) 

~r is smooth, 

Thus 

~i j,(~) . ,G ~i G, , ~i aG(~r ) 
fl~ = = 3*(a* (~a-l(w)) = a, lj,(~a_l(w)) = 

2.3. Cohomology of ~$(n) . 

2.3.1. Let us consider the graded S(Q)-modules --i~s ' introduced in 2.1.4 and let 

i H{m } denote the local cohomology group for a S-module M (cf. 1.4). 

Proposit ion. 

0, j # i+l, r+l 

k, j = i+l # r+l . 

Proof. We have exact sequences (2.1.4) 

0 + --i i --i-i 0 , i > 1 

i 
which, after applying the functor H{m} ' yield the exact sequences of local coho- 

mology 

j-i i j-l---i-l- " --i " (~) + ... 
. . . .  H{m}(aS) ÷ H{m}(a S ) ÷ H~ H~m } m } ( a s )  ÷ ~ 

j i 
i S(-n) for some n ~ ~ and S is a Cohen-Macaulay ring, H{m}(£ S) = 0 Since ~S = 

if j # r + I . Thus, we have an isomorphism 

)  -l-i-1 
= H{m}(~ S ) for j # r + i. 

By induction, we obtain 

{m} ( n s ) "  

Now, first terms of the Koszul complex from (2.1.4) give an exart sequence 

÷ ÷ m +  0 , 

which easily implies that 

H~m}(~) = { 0, 1 # 2, r + l  

k , i = 2 # r + i . 

This proves the proposition. 

Corollary. --i~s is a Cohen-Macaulay S-module if and only if i = r. 
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2.3.2. For any subset jc 0,r = {0 .... ,r} denote by Qj the sum Z 
jeJ 

Notice that IQ0,r = Q in our old notations. Put a n = dimeS(Q) n . 

Theorem. Let h(j ,i;n) = dimkHJ (~ --i , ~p (n)) . Then 

h(0,i;n) = #J=iZ an_Qj - h(0, i-l;n) , i->l , n ~2Z 

h(j,i;n) = 0 , if j # 0,i,r , n • 2Z 

h(i,i;0) = i, i = 0,...,r 

h(i,i;n) = 0, n # 0, i # r,0 

h(r,i;n) = E a - h(r,i-l;n) , i>0 nc2Z 
#J=r+l-i -n-Q j - ' 

qj. 

Proof. Using the same arguments as in the proof of theorem 1.4.1 we obtain the 

exact sequence 

0 ÷ H + ÷ (n)) ÷ ÷ 0 
n 7z 

and an isomorphism 

J (~,~(n)) . H{m}(as) ÷ n~m Hi-1 

Applying 2.3.1 we get that 

H0(p,~(n)) = (~S) n-i = Ker(~s 4--i-l~s )n 

HJ(~,~(n)) = 0, j # 0,i,r, n~ 7Z 

Hi(~,~(n)) = k, n = 0, i # r 

Hi(P,~(n)) = 0, n # 0, i ~ 0,r 

i 
Now ~S = @ S(-IQjI) and A is surjective (2.1). So, we get all the assertions 

• #J=i 
except the last one. 

Consider exact sequence 2.1.5 

0 ÷ ~(n)÷ _~s(n) ÷ ~-l(n) ÷ 0 

and the corresponding cohomology sequence 

Hr-l(~(n)) ÷ Hr-l(~-l(n)) -~ Hr(~ (n))÷ Hr(_~s(n) ) ÷ Hr(~-l(n))÷ 0. 

~(n) -~ • 0~ (n-QjI) we can apply theorem 1.4.1 and obtain that Since 
#J=i 

r i 
dimkH (is(n)) = 

#J=r+l-i a-n- 1QJ  

Using this sequence and preceeding results we obtain the last equality. 

2.3.3. Corollary. 
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Hr(~,~(n)) = O, 
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if n <min{IQj: #J = i} 

if n >-min{IQjl: #J = r+l-i} . 

2.3.4. Corollary (Bott-Steenbrink). If n > 0 

HJ(~,~(n)) ~ 0 

only when j = 0 and n >min{IQjl: #J = i} . 

then 

2.3.5. Corollary. 

i 
h(0,i;n) = ~ (-i)/+i E 

/=0 #J=~ an-IQJ 1 

h(r,i;n) = h(O,r-i;-n) . 

Here the first assertion immediately follows from 2.3.2 and to verify the second 

one we have to consider the identity 

h(r,i;n) - h(0,r-i;-n) = h(0,r+l;-n) = dimkH0(~,~--r+l (-n)) = 0 . 

2.3.6. Corollary. If k = K , then 

, i even 

0 , i odd 

i, p = q 

~P'q(p) = 

0, p # q 

This follows from the degeneracy of the spectral sequence 

HP+q(x,K) proven by Steenbrink 23. 

P,q = Hq(~,~--P) ----> 
E 1 

3. Weighted complete intersections. 

3.1. Quasicones. 

3.1.1. Let X be a closed subscheme of a weighted projective space ~(Q) and 

p : U + ~(Q) be the canonical projection. 

The scheme closure of p-l(x) in A r+l is called the affine quasicone over 

X. The point 0 ¢ C X is called the vertex of C X. 

Let J be the Ideal of X in • then the ideal I of C X in S is equal 
0 * 

to H (U,p (J)@0~ 0U) = n~H0(~'J0~@0~ (n)) . 
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3.1.2. Proposition. 

(i) I is a homogeneous ideal of S(Q) ; 

(ii) the maximal ideal m 0 of the vertex of C X coincides with the irrelevant 

ideal of the graded ring S(Q)/I and has no immersed components (i.e. 

depthm(S/I) ~ i); 

(iii) The closed embedding Proj(S/I) + Proj(S) = • corresponding to the natural 

projection S ÷ S/I determines an isomorphism Proj(S/I) = X ; 

(iv) I is uniquely determined by the properties above. 

This is an easy exercise in the theory of projective schemes, which we omit 

(it will not be used in the sequel). 

3.1.3. An affine variety V is called Nuasiconic (or quasicone) if there is an 

effective action of G on V such that the intersection of the closures of all or- 
m 

bits is a closed point. This point is called the vertex of a quasicone. 

3.1.4. Proposition. Let V be an affine algebraic variety over a field k. The 

following properties are equivalent: 

(i) V is a quasicone; 

(ii) kV = F(V,0v) has a nonnegative grading with kV0 = k ; 

(iii) there is a closed embedding j : V ÷~r+l such that j(V) is invariant with 

respect to the action of G on A r+l defined as in 1.2.1; 
m 

(iv) there is a closed embedding j : V +Ar+l such that the ideal of j(V) is 

generated by weighted-homogeneous polynomials with integer positive weights 

(i.e. homogeneous elements of some S(Q) ) . 

The proof consists of standard arguments of the algebraic group theory (cf. 

8, 20). 

Corollary. Any affine quasicone is a quasicone. Conversely any quasicone without 

immersed components in its vertex is an affine quasicone for some Xc ~(Q) . 

3.1.5. A closed subscheme Xc ~(Q) is called quasismooth (with respect to the em- 

bedding X + ~(Q) ) if its affine quasicone is smooth outside its vertex. 

3.1.6. Theorem. A quasismooth closed suhscheme X c ~(Q) is a V-variety. 

Proof. Let C X be the affine quasicone over X and x~ X be a closed point. In 

notations of the proof of 1.3.2 let W i = V in C X. Let us show that for any y ~W. 
i 

over xSW.l is nonsingular in y. We have to show that the tangent space TCx(Y) 

is not contained in the tangent space Tv.(y ). Let p' : C X + X be the restriction 

* -i I 

of p to C X = C X- {0} and F = p' (X)re d . The fibre F is an orbit of the 
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point y with respect to the action of G m restricted to C X. If 

(yo,...,Yi_l,l,Yi+l,...,~r) denotes the coordinates of y , then F coincides with 

the image of the map Gm = Spec(kt,t-l) ,~r+l = Spec(S) which is given by the 

formula: 

-- q0 -- qi -I qi -- qi +I -- q2 
. . . .  ,yr t ) (To, .... Ti_l,Ti,Ti+ 1 .... ,Tr) ÷ (yo t ,. ,Yi_l t ,t ,Yi+l t ,. 

The tangent line to the curve F is the image of the corresponding tangent map and 

defined by the equation 

To-Yo = qOYo'''''Ti-i -yi-I = qi-lYi-l'Ti -I = qi'''''Tr-Yr = qrYr " 

It is clear that TF(Y) ~ TV (y) = V.1 and, since TF(Y ) c TCx(Y ) , we obtain that 
i 

y is anonsingular point of W.. 
l 

The end of the proof is the same as in the proof of 1.3.2: we obtain that 

U k c X is locally isomorphic to the quotient of the nonsingular variety W i by the 

cG of the point Yi " isotropy group Gy m 

3.2. Weighted complete intersections. 

3.2.1. Assume that the ideal IcS of the affine quasicone C X of Xc ~ is 

generated by a regular sequence of homogeneous elements of the ring S(Q) . If 

dl,...,d k are the degrees of these elements then we say that X is a weighted com- 

plete intersection of multidegree d = (dl,...,dk) and denote X by Vd(Q) . 

In case I is a principal ideal (F) and FE S(Q) d we say that X is a 

weighted hypersurface of degree d and denote X by Vd(Q) . 

3.2.2. In the sequel, C X will denote the punctured affine quasicone C X- {0} . 

Let p : C X ÷ X be t h e  c o r r e s p o n d i n g  p r o j e c t i o n .  

Lemma. Assume that X = Vd(Q) is quasismooth, Then 

(i) Pic(Cx) = 0 if dim X~ 3 ; 
* 

(ii) any G -equivariant etale covering of C X 
,m 

(ii)' Zl(Cx) = 0 if k = C and dim Xe 2 ; 

(iii) HI(c~,0C*> = 0, 0< i< dim X. 
~ X 

is trivial if dim Xz 2 ; 

Proof. (i) Since the local ring 0Cx, O is a complete intersection ring of dimen- 

sion 4, regular outside its maximal ideal, it is a factorial ring (13, exp. XI). 

This shows that Pic(C X) = Pic(Cx) • The latter group, being isomorphic to the 

group of classes of invertible divisorial ideals of a graded commutative ring, is 

trivial (i0). This proves (i). 

(ii) A similar reference (13, exp. X) shows that 0C. ~ is pure. Hence, every 
x 

etale covering of C X is a restriction of an etale covering of C X. Moreover, 
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the same is true for Gm-equivariant coverings. Let f : Y + C X be an irreducible 

G m-equivariant etale covering of C X . Then Y = Spec B , where B = n~ Bn is an 

integral ~ -graded k-algebra, and f is defined by an inclusion of graded rings 

kCx cB. Let m = kC> ° = n~o kCxn be the maximal ideal of the vertex o e C X- 

Then mBc B>o and B/mB is a finite separable k-algebra. Since B is integral, 

this easily implies that B m = 0 for m < 0 and B ° is a finite algebra over 

kCx/m = k. Since B is a subalgebra of an integral algebra B this implies 
o 

that B is a field. Thus, we obtain that Y is a quasicone and its vertex is 
o 

the only point lying over the vertex of C X . Because f is etale and k is alge- 

braically closed, this implies that f is an isomorphism. This proves (ii). 

(ii)' Let C X be Gm-equivariantly embedded into ~n . The subgroup ~+ of posi- 

tive real numbers of the group ~ acts freely on C X . Intersecting every ~+- 

orbit with a sphere S 2n-I of small radius c with the center at the origin, we 

, a s2n_ 1 get a map C X + ~+x K e , where K = n C X. It is easily verified that this 
, £ 

map is a diffeomorphism of C X onto ~+xK . Now, since the vertex of C X is a 

complete intersection isolated singularity, the space K is (d-2)-connected 

(d = dim C X = dim X+ i) (see 14,18). Thus, nI(Cx) = ~I(KE) = 0 if dim Xe2 . 

To verify (iii) we again use the local cohomology theory. Since C X = Spec(S/I) 

is affine, 

i * 0C~) = Hi+I.c = i+l 
H (Cx, {0}( X,OCx ) H{mo}(S/I ) . 

Since S/I, being a quotient of a regular ring by a regular sequence, is a Cohen- 

Macaulay ring, i+l = 0 , if i+l # dlm(S/I) = dim X+ i . H{m0}(S/I) 

3.2.3. Remark. If char k> 0 , then -algt~*~ "i <UX ~ may be not trivial. For 

example, n~ig(An_ {0}) # 0, because A n has nontrivial etale coverings. 

3.2.4• Theorem. Under the conditions of the lemma 

(i) Pic(X) = ~ , if dim X~ 3 ; 

(ii) ~Ig(x) = 0 , if dim X~2 ; 

(ii)' Zl!X) = 0 , if k = ~ and dim Xe2 ; 

(iii) HI(X,Ox(n)) = 0 , n ~ ~ , O< i < dim X. 

Proof. Let L be an invertible sheaf on X Since Pic(C X) = 0 P (L) = 0 * 
• , C X 

and is determined as a Gm-sheaf by some character X L eHI(G ,Aut(0~*)) = HI(G ,G )= 
m OX m m 

= ~ • In this way we obtain a homomorphism f : Pic(X) ÷ ~ . If p*(L) = p*(L') 

~m(p*(L)) L' p~(p*L')) and, hence, f is injective. as Gm-sheaves , then L = p = = 

This proves (i). 

Let X' be an etale finite covering of X and A be a corresponding 0 X- 

Algebra (i.e. X' = Spec(A)). Since the covering X' = X' XxCx* of C X* is a 
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= Spec(p (A)) is tri- Gm-equivariant covering, by lemma 3.2.2 (ii) we get that X' * 

vial. 

Hence the Gm-0c~-Algebra B = p*(A) = A0-X80r*~X splits, i.e. B = B 1 × B 2 , 

where B. are nontrivial. Since G is connected, the Subalgebras B 1 and B 2 
l m 

are invariant Subalgebras and we have a splitting of Gm-Algebras B = B 1 × B 2 • 
Gm G 

Applying p, , we obtain that A = p,dm(B) = p,m(B I) Gm × p, (B2) splits. This 

shows that the covering X' splits and proves (ii). 

To prove (ii)' we apply Lemma 3.2.2 (ii) and notice that the canonical homo- 

morphism ~I(Cx) ÷ ~I(X) is surjective because the fibres of C X ÷ X are path- 

wise connected. 

To prove (iii) we note that 

Hi(c~,0 ,) H i * 0 = (Cx, XS0~ 0 U) = Hi(X,0~Sp,0 U) = n~Hi(X,0x@0~ 0~ (n)) . 

C x 

But 0XS0~ 0 F (n) = Ox(n ) and we can apply 3.2.2 and obtain (iii). 

3.2.5. Remark. The proof of (i) easily gives that Pic(X) is generated by some 

0x(n) , where, in general, n # i. For example, Pic(~(l,...,l,n)) is 

generated by 0p (2) . 

3.2.6. One can also prove 3.2.4 (and its generalizations to torical spaces) using 

the methods of 13 (cf. 9). 

3.3. The dualizin$ sheaf. 

3.3.1. Recall that according to Grothendieck for any normal integral projective 

Cohen-Macaulay variety X there is a sheaf w X (the dualizing sheaf) such that 

n-i * 
Hi(X,F) " = (Ext (X;F,~x)) (n = dim X) 

for any coherent 0x-MOdule F. The sheaf ~X can be determined as the sheaf of 

germs of differential forms which are regular at nonsingular points of X (see, for 

example 16). 

In other words, 

= ~n 
~0 X J,( Z ) 

where j : Z + X is the open immersion of the nonsingular locus of X. 

In this section we shall compute ~X for a quasismooth weighted complete in- 

tersection. 

3.3.2. Lemma. Let X be a closed quasismooth subscheme of 

jecting quasicone, Z be the nonsingular locus of X, then 
G 
m 1 

P, (f~C~/X) I z -~ 0 Z • 

, C x be its pro- 
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* + U defines an exact sequence Proof. The embedding of smooth schemes C X 

0 j/72 I @OuO C -~ f21 ÷ ÷ ~u/ :~  ~ c ~ / x  + o 

* in U Consider the surjective homomorphism where J is the ideal sheaf of C X 

7:1 ~U/~ + 0 U from 2.2.1 (its construction does not use the assumption that P = 

~r , the latter is used only to check that ~ is an isomorphism). It is easy to 
i 

see that the induced map ~ : ~C~/X ÷ 0C.*. is well defined and is surjective. 
x 

G 
m 

Since p, is exact, the map 
G G 

m,~l . 
p,m(~) : P* t c* ) ÷ OX 

~x/x  
is surjective. Thus, it is sufficient to show that the restriction of the left hand 

side sheaf to Z is an invertible sheaf. 

This verification is local. Let xe Z and Z be its neighbourhood of the 
x 

form W/G where W is a nonsingular subvariety of C~ of codimension i and G 

is a finite subgroup of G constructed in the proof of theorem 3.1.6. 
m 

Since W is regularly embedded in C~, we have an exact sequence: 

i i 
0 ÷ NWlCx ÷ ~c~iXOOcOW + ~WlZx ÷ o . 

Since NW/Cx is locally free of rank i we may assume (replacing W by smaller 

one) that NW/Cx = 0 W . 

It is clear that 
G 
m.~l 0 : pT(~lc,/x00 0 W) 

P* ( C~/X 0CxOW) X C~ 

G i 
Since x is nonsingular, G acts by pseudoreflections and hence p,(~ ) = 0 

G W/Zx 
m 

(see the proof of 2.2.2). Applying p, to the above sequence we obtain 
G 
m,~l , G 0 

P. t c*IxJlZxx = p*(W) : 0Zx 

This proves the lemma. 

3.3.3. proposition. In conditions of 3.3.2 
G 
m, ~n+l, 

~X = p* tg , ) (n = dim X) . 
C X 

Proof. Since X is a normal Cohen-Macaulay variety (it follows easily from 3.1.6), 

by 3.3.1 it is sufficient to show that 
G 
m,~n+l, 

P* t C~ ) Iz ~ an "z 

Consider the exact sequence 

0 ~ p*~ + ~Ip-I(z) ÷ ~Ip-l(x) ÷ 0. 
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G 
Applying p,m and using 3.3.2 we obtain the exact sequence 

i Gm.~l., 
0 + ~Z + p* ( C~ )Iz ÷ 0Z ÷ 0 . 

Taking the exterior power we get 
G 

n = n = m. ~n+l I Z 
~z ~Z~OzOz P* < c~ ) 

q.e.d. 

3.3.4. Theorem. Let X = Vd(Q) 

multidegree d = (d I ..... ds) . 

~X = Ox(l~l -IQI) 

where 1~I = dl+'''+d s 

be a quasismooth weighted complete intersection of 

Then 

Proof. Let I be the ideal of the projecting quasicone over 

There is an isomorphism of graded A-modules 

1/12 = B(-dl) + ... + B(-d s) . 

The exact sequence 

IS i->0 0 ÷ 1/12 ÷ ~ @S B -~ ~B 

gives the homomorphism 

s o r +i -s i 
r+l-s = A(I/I~)@ B n (~B) f : ~B (-Idl) -> 

Since C~ is smooth, the restriction of 

~r+l-s 
c~ = B(_d - Q) . 

It remains to use the above proposition. 

X and B = S/I. 

2+I(~)8sB B(-IQI) A = . 

f to C~ is an isomorphism. Hence 

3.4. The Poincare series. 

3.4.1. Let A = n~0 An be a graded k-algebra of finite type. 

series is defined by 

PA(t) = E (dimkAn)tn . 
n=0 

If Xo,...,x r are homogeneous generators of A and qo,...,qr 

then PA(t) is a rational function of the form 
r 

eA(t) = F(t)/i~ 0 (i- t qi) 

where F(t) is a polynomial (2, Ii.i). 

Then its Poincare 

are its degrees, 

3.4.2. Assume that A = S(Q) is a graded polynomial k-algebra. Then (3, ch.V, 

§5, n°l) 
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and 

This formula follows from the above formula. 

Then A i = A i -1 / ( f i  ) and obviously 

d. 

t iPAi_l(t) + PAi(t) = PAi_l(t) . 

Thus 

PS(Q)(t) = I/i~o(l- t qi) . 

Let fl,...,fs be a regular sequence of homogeneous elements of the ring 

d l,...,dr be its degrees, let A = S(Q)/(fl,...,f s) . Then 
s d. 

PA(t) = i~l(1-t l)/ ~ (i-tqi) . 
i=0 

Put A 0 = S (Q) , 

d. 

PAi(t) = (i-t z)pA -i i (t) ' i = l,...~S 

S(Q) 

A i = S(Q)/(f I .... fi ). 

and we obtain our formula. 

3.4.3. For X = Proj(A) we put 

Px(t) = n~o(dimkHO(X,Ox(n))tn 

Lemma. Let m = n~0 An be the irrelevant ideal of A . Assume that depthm(A) ~ 2 

(for example, A is normal). Then 

PA(t) = Px(t) • 

The same argument as in the proof of 3.2.4 (iii) and 1.4.2(i) shows that the Serre 

homomorphism of graded algebras 

A ÷ n~m HO(X, Ox(n)) 

is bijective. 

3.4.4. Theorem. Let X = Vd(Q) be a quasismooth weighted complete intersection, 

Px(t) = n~ 0 an tn be the power series defined above. Then 
s d. r . 

Px(t) = i=~(l- t 1)/i$0(i- t qz) . 

Corollary. Define pg(X) = dimk Hdim X(X,0x) , then in notations of the theorem 

pg(Vd(Q)) = ald I _ IQI 

Indeed, since w = 0x(Id I -IQI) is the dualizing sheaf (3.3.4) we have that 
X 

dimkHdim X(X'0x) = dimkH°m(0x'~x) = dimkHO(X'~x) = al~l- IQI " 

3.5. Examples. 

3.5.1. We shall say that two closed subvarieties X cP and X' c I ~' are affine 
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isomorphi 9 if their affine quasicones are isomorphic and projectively isomorphic if 

their quasicones are Gm-iSomorphic. It is clear that in general there are only two 

implications 

projectively isomorphic => affine isomorphic 

projectively isomorphic => isomorphic 

between these three notions. 

3.5.2. Weighted plane curves. 

projective plane • (q0,ql,q2) 
i 

coincides with the canonical sheaf ~X 

~xl = 0x(d_q0_ql_q2) 

Its genus is calculated by the formula 

g = coefficient at t d-IQl 

(i- td)/i~O (i- t qi) . 

A quasismooth hypersurface X = Vd(Q) in a weighted 

is a smooth projective curve. Its dualizing sheaf 

and we have (3.3.4): 

in the formal series 

The affine quasicone of such a curve is given by a weighted-homogeneous equation 

f(x0,xl,x 2) = 0 with an isolated singularity at the origin. Such singularities 

were studied by many authors (1,8,18,20). 

Let 

m = d-q0-ql- q2 " 

Each weighted plane curve with m< 0 is affine isomorphic to one of the fol- 

lowing curves 

(q0,ql,q2) Equation d 

1 

2k 

4k+2 

2k-2 

12 

18 

3O 

1 D (i,i,i) x 0 = 0 

2k 2 2 
(l,k,k) x 0 +Xl+X 2 = 0 

(2,2k+l,2k+l) x2k+l+ x21 +x22 = 0 

1 ~ (2 ,k-2 ,k-l) k-i 2 2 
x 0 + XlX 0 + x 2 = 0 

I~ (3,4,6) x40+x31 +x22 = 0 

3 3 2 
1 D (4,6,9) X0Xl+Xl+X 2 = 0 

5 3 2 
P (6,10,15) Xo+Xl+X 2 = 0 

Name 

A2k_ I , 

A2k , 

D k 

E 6 

E 7 

E 8 

k>l 

k_>l 

k_>4 

The equations of corresponding projecting quasicones are well known two-dimensional 

singularities, which are called the platonic singularities, D__U_U Val singularities, 

Klein singularities, ADE singularities, double rational singularities, simple sin- 

gularities, O-modal singularities. 

Note that any curve which is affine isomorphic to a curve of type D k or E 
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is projectively isomorphic to this curve. 

It is clear that all such curves with m < 0 are isomorphic to yl . 

When m= 0 each weighted plane curve is projectively isomorphic to one of the 

following curves: 

(qo,ql,q 2) 

(1,1,1) 

(1,1,2) 

(1,2,3) 

d 

3 

4 

6 

Equation 

3 3 3 
x 0+x l+x 2 +ax0xlx 2 = 0 , 

4 4 2 2 2 
x 0+x l+x 2+axOx I = 0 , 

x~+ 3 2 22 
x l+x 2+axlx 2 = 0 , 

a3+27 # 0 

2 
a -4#0 

4a 3 + 27 # 0 

Name 

36 or P8 

37 or X 9 

38 or Jl0 

It can be shown (V. I. Arnold) that for any fixed m there is only a finite 

number of collections (q0,ql,q2;d) for which there is a smooth weighted plane 

curve Vd(q0,ql,q2) . 

For m= 1 there are exactly 31 collections. The corresponding affine quasi- 

cones have a canonical quasihomogeneous singularity embeddable in ~3. There is 

a natural correspondence between the 31 collections and the 31 possible signatures 

of the Fuchsian groups of the first kind with compact quotient for which the alge- 

bra of automorphic forms is generated by three elements (8,25). 

Of course, a general smooth projective curve is not isomorphic to any weighted 

plane curve. 

3.5.3. Surfaces. There are no classification results in this case, there are only 

some interesting examples. 

Let f(x0,xl,x 2) = 0 be an equation of a smooth weighted plane curve Vd(Q). 

Then the equation 

f(x0,xl,x 2) +x~ = 0 

defines a quasismooth hypersurface Vd(qO,ql,q2,1) . 

For curves with m = 0 we obtain in this way dell Pezzo surfaces 15 of de- 

gree 3, 2 and 1 respectively (M. Reid). 

For curves with m = 1 we obtain simply-connected projective surfaces with 

the dualizing sheaf ~X ~ 0X" Resolving its singularities (which are double ra- 

tional points) we get minimal models of nonsingular K3-surfaces. One example of 

such a surface is the following Klein surface: 

x7+ x3+ 2 42 V42(6,14,21,I) : 0 i x 2 + x 3 = 0 • 

This surface has 3 singular points 

(i,-I,0,0) of type A 1 

(0,-I,i,0) of type A 6 

(-i,0,i,0) of type A 2 . 
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For any such surface the complement to the curve x 3 = 0 is isomorphic to the 

affine surface with an equation 

f(x0,xl,x 2) + i = 0 

which is diffeomorphic to the Milnor space F@ for the singularity f(x0,xl,x 2) =0 

(18). This fact can be used for the explanation of some observations in the sin- 

gularity theory by means of the theory of algebraic surfaces (see 21). 

3.5.4. Multiple spaces. Let X ÷ ~r-i be a finite Galois covering with a cyclic 

automorphism group of order m branched along a smooth surface wc~r-i of degree 

d. Let f(x0,...,Xr_ I) = 0 be the equation of W. Assume that (d,char(k)) = i. 

Then X is isomorphic to a weighted quasismooth hypersurface 

Vd(Q) : f(x0 ..... Xr-l) + xmr = 0 

where Q = {i ..... l,d/m}. 

It is easy to see that such X is smooth. From 3.2.4 we obtain that all such 

varieties are simply-connected if r e 3 (i.e. ~ig(x) = 0 or ~I(X) = 0 if 

k = ~) (cf. 22). Moreover, Pic(X) = ~ if r e4 . 

The Poincare series Px(t) has the form (3.4.4) : 

Px(t) = (i- td)/(l- t)r(l- t d/m) = (i+ t d/m+ "''+td(m-l)/m)/(l- t) r • 

In particular, 

pg(X) = the coefficient at 

For example 

td_r_d/m = m-i I d(m-l-S)m 1 
s$0 1 . 

r-i 

m = 2, r = 2 (hyperelliptic curve) pg = d/2 - i 

= m = 2, r = 3, d = 6 (K3-surface) pg i . 

It is very useful for the construction problems in algebraic geometry to con- 

sider also weighted multiple planes, cyclic coverings of weighted projective spaces. 

For example, the Klein surface from 3.5.3 is such a multiple plane. 

4. The Hodge structure on the cohomology of weighted hypersurfaces. 

4.1. A resolution of ~i 
X" 

Let X = VN(Q) be a quasismooth weighted hypersurface, C X its affine quasi- 

cone, Ic S(Q) the ideal of C X, f ~ S(Q) N its generator, A = S(Q)/I the coor- 

dinate ring of C X, m 0 the maximal ideal of the vertex of C X, C~ = C X- {0} . 

Since X is a V-variety (3.1.6) its cohomology has (in case k = C) a pure 

Hodge structure and the corresponding Hodge numbers are calculated by the formula 

(see 23) 

hP'q(x) = dimk(Hq(X,~) ) . 
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In this section we shall construct a suitable resolution for the sheaf 

4.1.1. Define a k-linear map 

i ~+i i z 0 df : m S 

setting for homogeneous elements of the S-module 

df(w) = fdw + (-l)i+l~ 1 wAdf , 

where w denotes for brevity the degree of w. 

i 
~S (2. i. i) 

~X " 

n emNa. 

(i) 

(ii) 

(iii) 

(-i) iwAdf i df(wAw') = df(w) Aw' + (w') , WE ~S' 

df(df(w)) = 0 Vwe ~i 
' S; 

d(df(w)) = (i + )dfAdw, Ywe ~S ; 

(iv) df(dw) = " dfAdw, Yw• m S ; 

(v) df((~S)n) c (~i+l- 
" S )n+N " 

This is directly verified. 

Let us show that df induces a linear map of S-modules 

w' •4; 

--i i A i-I 
~S = Ker(~s---+eS ) (2.1.4). 

Lemma (continuation). 

i 
(vi) df(&(w)) = -A(df(w)) , w• ~S ; 

(vii) df(~) =i+l c u S . 

It is clear that (vii) follows from (vi). Let us prove (vi). Recalling pro- 

perties of the map A (2.1.3), we obtain 

A(df(w)) = 8(fdw+ (-i) i+l l~ wAdf) = f&(dw) + (-i) i+l I~I &(wAdf) = 

= -fd(A(w)) + fww+ (-i) i+l ~ A(w)Adf-wfw = 

= -fd(A(w)) + (-I) i A(~ A(w)Adf = -df(A(w)) 
N 

4.1.2. Properties (ii) and (v) of the lemma make possible to introduce the follow- 

ing complex R of graded S-modules: 
1 

Rki = ~((k-i)N) 

d k = (-l)kdf : R~l ÷ R~+ll 

k + k-i determine morphisms Property (vi) implies that the homomorphisms A : ~S ~S 

of complexes 

A : R; ÷ Ri_l-i  . 

Property (vii) shows that 
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is a subcomplex of R~ such that 
1 

Ri = Ker(Ri + Ri_l-l) 

Ri-l-l = Im(Ri ÷ Ri_ I-I) . 

Thus we have the exact sequence of complexes of graded S-modules: 

--° i --° 
0 + R i ÷ R ÷ Ri_l-l + 0, ie ~ . 

4.1.3. The multiplication by f defines the inclusion of graded S-modules 

~sk ÷ ~ (N) ' --k ~ (N) ' ~ S  

which induces the inclusion of complexes 

• --• --o 

R; ~ Ri_ 1 , R i ÷ Ri_ 1 . 

Consider the corresponding quotient complexes 

, • 

The exact sequence of complexes from 4.1.2 induces the exact sequence of com- 

plexes of graded S-modules: 

o 

0 + K- i + K_ i ÷ Ki_l-l + 0 m 

4.1.4. Lemma (De Rham). Let A be a commutative ring, wcA r+l be a regular 

sequence of elements of A, he ~(A r+l) , p ~ r . Then wAh = 0 iff N B ~ PAI(Ar+I) 

such that h = wAB. 

This is a reformulation of the theorem of acyclicity of the Koszul complex for 

a regular sequence. 

We shall use this lemma in the following situation: A is the coordinate ring 

of CX, A r+l i i i i = ~s/f~s , w is the image of df in ~s/f~s. 

* is smooth, the jacobian ideal Since C X 

0f = ( ~f .. Sf ) c S(Q) 
~T O' "'~T 0 

is mO-primary and hence df determines a regular sequence. 

It is clear that the differential of the complex K~ coincides (up to the 
l 

multiplication by a constant) with the exterior multiplication by df. Since 
s 

K s i i 
i = A(~s/f~s) 

we may use the De Rham lemma and deduce 

Corollary: 

H q(K~.) = 0 , q # r + i , Vi ~ ZZ . 
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4.1.5. Proposition. 

Hq(K I) = 0, q->0, ieZZ 

Proof. The above corollary and exact sequence 4.1.3 imply that 

Hq(Ki) = Hq-I(K;_I-I) = Hq-2(Ki_l ) , qNr . 

Since for q< 0 and q > r Hq(Ki) = 0 we obtain the assertion of the proposition. 

4.1.6. Define a graded A-module ~ by the equality 

--i Ker(~+~i+l. Ker(~(N)/~ df --i+1 --i+l 
gA = i J = > m S (2N)/~ S (N)) . 

Then we deduce from 4.1.5 that the sequence of graded A-modules 

0 + "~A ÷ ~ ( N ) / ~  + ~ + I ( 2 N ) / ~ + I ( N )  . . . . .  ~s((r-I)N)/~s((r-i-I)N) + 0 

is a resolution of ~i" 

Taking associated sheaves on X = Proj(A) , we obtain the resolution of the 

sheaf ~i: 

0 + ~ ÷ ~7(N)/~ ..... ÷ ~((r-l)N)/~((r-i-l)N) ÷ 0 . 

4.1.7. We are almost at the goal. It remains to show that the sheaf ~ coincides 
~i . ~i 

with the sheaf ~x~i defined as in 2.2.4 by setting ~X = J*( U ) , where U = 

X - Sing(X). 

i l i and Let Z be an open set of nonsingular points of X such that ~ Z = ~Z 

~i~ 80p 0Z = ~i 801~ 0Z . We have the exact sequence of locally free sheaves 

1 80 V 0Z 1 0 0÷~x/~l z d ~ ÷~z ÷ 

where NX/pIZ = 0z(-N) is the normal sheaf of Z÷I ~ . 

This sequence determines exact sequences 

0 + i + 0z d_<  z+l(N) 

which can be extended to the right to obtain the resolution 

0 ÷ ~iz ÷ ~i~ (N) 80~ 0Z ÷ ~2m-i+l(2N) @0P 0Z -~ "'" " 

Since 

~+k((l + k)N) @ 

we see that this resolution is the resolution of 

Hence 
i 

and we obtain that 

0p 0Z -~ ~ +k((l +k)N)/~ +k(kN) l Z 

--i ~7 (4.1.6) restricted on --A 
Z . 
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A = ~X " 

Thus, we have constructed the resolution of ~i 
X 

r ((r-i+l)N)/~ ((r-l)N) ÷ 0 . 0 ÷ ~ix ÷ ~i (N)/~ ..... ~i~ 

4~2. The Griffiths theorem. 

This theorem generalizes for weighted hypersurfaces a result of II and allows 
i Hi 

to calculate the cohomology H (X,~ X) as certain quotient spaces of differential 

forms on • with poles on X. 

th 
4.2.1. Denote by K p the p component of the resolution of ~iax f r o m  4 . 1 . 7 :  

K p = ~i+P((p+I)N)/~+P(pN) i 

Using the exact sequence 

0 ÷ ~$+P(pN) ÷~+P((p+I)N) ÷ K p ~ 0 

and the theorem of Bott-Steenbrink (2.3.4) we obtain that 

Hq(X,K p) = Hq(~,K p) = 0 , q> 0, p > 0 

Hq(X,K 0) = Hq(~,K 0) = Hq+l(~,~) = { k, q=i-i 
0, q#i-I 

Put 

L = K e r ( K  1 + K 2)  . 

Then we have the exact sequence of sheaves 

0 ÷ Hi K 0 
~X ÷ ÷ L ÷ 0 

which gives the exact cohomology sequence 

.... Hq-I(x,L) ÷ Hq(x,~) ÷ Hq(X,K 0) ÷ Hq(X,L) .... . 

The sequence 

0 ÷ L ÷ K 1 K 2 K r - i - 1  

i s  a n  a c y c l i c  r e s o l u t i o n  o f  L .  Thus  we h a v e  

H q ( X , L )  = H q ( F ( X , K ' ) )  = 0 ,  q > r - i - 2  

H r - i - 2 ( X , L  ) = r ( X , K r - i - 1 ) / i m r ( X , K  r - i - 2 )  = 

r ( ~ , ~  ( (r - i )N)  / r ( P , g ~  ( ( r - i - 1 ) N ) )  + 

I m r ( ~ - , ~  -1 ( ( r - i -1 )N)  . 

4.2.2. Theorem (Weak Lefschetz theorem). The homomorphism 

H q(X,~ X)Hi ÷ Hq(X,K 0) ~ Hq+l(~,~) 

is an isomorphism, if q > r-i-i and an epimorphism if q=r-i-i . 
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Proof. Follows from the exact cohomology sequence 4.2.1 and the above calculation 

of Hq(X,L) . 

Corollary. Assume that k = ~ . Then we have an isomorphism of the Hodge struc- 

tures 

Hn(x,~) = Hn+l(~,~) 

if n # r-i and an epimorphism 

Hr-I(x,K ) ÷ Hr(~,~) . 

For n er-i this directly follows from the theorem. For n< r-i we use the 

Poincare duality for V-varieties (which are rational homology varieties). 

Since the Hodge structure of • is known and very simple (2.3.6) we see 

that, as in the classic case, only cohomology Hr-I(x) are interesting. 

4.2.3. Put 

h~'r-i-l(x) = hi'r-i-l(x) - a 

where 

j i, r = 2i 
a 

0, r # 2i . 

Then we obtain that 

i,r-i-l. 
h 0 (X) = dimkHr-i-2(X,L) . 

Hence by calculations of 4.2.1 we obtain 

Theorem (Grif f iths-St eenbrink). 

i,r-i-i r 
h 0 (X) = dimk(r(~,~p((r-i)N))/F(l~,~((r-i-l)N)) + 

r-i 
ImF(~, ~ip ((r-i-l)N))) . 

4.3. Explicit calculation. 

4.3. i. Let 

~f ~f 

Of = ( -~0 ..... ~--Tr ) 

be the  j a c o b i a n  i d e a l  w i t h  r e s p e c t  to  a g e n e r a t o r  f c S(Q) N of  t h e  i d e a l  o f  t h e  

affine quasicone C x of a weighted quasismooth hypersurface Xc ID(Q) . 
~f 

By the Euler formula 2.1.2 each ~. is a homogeneous element of S(Q) of 
l 

d e g r e e  N -  q i "  Hence t h e  i d e a l  Of i s  homogeneous and t h e  q u o t i e n t  space  

S(Q)/0f has a natural gradation. Since ef is m0-primary this quotient space 

is finite d i m e n s i o n a l .  
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4.3.2. Theorem (Steenbrink). Assume that char(k) = 0. Then 

hi,r-i-l(x = dimk(S(Q)/0f)(r_i)N_iQ I 0 

Proof. We have a natural isomorphism of graded S(Q)-modules: 

~i/~(-N)Adf = (S(Q)/ef)(-IQ I) • 

Since (see the proof of theorem 2.3.2) 

F(~,~(a)) = (~)a, Ya~ ~ 

r+l and the differential F(~,~ (a)) + r(~, g~ (a+N)) corresponds to the operator 

df from 4.1.1, we can reformulate theorem 4.2.3 in the following form: 

--r ~--r-i f~s(_N))(r_i)N n 0"i'r-i-l(X) = dimk(~s/df~ S (-N) + 

Thus it remains to construct an isomorphism of graded S-modules 

~s/df~s -I(-N) + f~s (-N) ~ ~r+l" r~S /~s(-N)'Ad-i . 

By property (iii) of lemma 2.1.3, we obtain that the k-linear map 

d: ~S ÷ ~+i 

is in fact an isomorphism of graded S-modules (here we use that char(k) = 0!). 

By property (iii) of lemma 4.1.1, we set 

d(d?~-l(-N)) c a~(-N)^df . 

I n  f a c t ,  w e  h a v e  h e r e  a n  e q u a l i t y .  S i n c e  d i s  S - l i n e a r  i t  i s  s u f f i c i e n t  t o  s h o w  

that all forms 

dXilA'''AdX'l ^df ~ d(d?~-l(-N))) • 
r 

But 

where a,c 

Thus 

r-i s+l A~Xi 
d(df(A(dXil...dx i ))) = d(df(s~l(-l) x i dXilA... ^...^dx.l )) = 

r s s r 
^ 

= d(rfdx. ^...^dx. + (-l)ra(z(-l)S+Ix. dx. A...Adx. A...Adx° )^df) = 
11 1 r 1 11 1 1 s s r 

= C d x .  ^ . . . A d x .  ^ d f  
11 i r 

are some rational numbers which we are too lazy to write down explicitly. 

d induces an isomorphism 

r+l r 
~s/df~s -I(-N) ~ ~S /~s(-N) df . 

We have 

But, since f E 8f (the Euler formula), 

d(f~s) c dfA~s . 

f_r+l e ~Adf and hence 
~S 
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Thus 

f~(-N) c df~-l(-N) 

and we are through. 

4.3.3. The theorem above can be reformulated in the following form. Define a 

function £ : 2g__>~l + 7z by 

1 r 
£(a) = ~ i__X0 (ai+l)q i a = (a0, .,ar) e2zr+l 

' "" ->0 

Let {Ta}a£ J be a set of monomials of S(Q) whose residues mod ef generate 

the basis of the space S(Q)/0f (such monomials are called basic monomials). Then 

•, r-i-i (X) 
h 0 = #{ac J: £(a) = r-i} 

4.4. Examples and supplements. 

4.4.1. Suppose f(T0,...,T r) • S is of the form 

T N 
f(T0'''''Tr) = r + g(T0 .... 'Tr-l) " 

If (Tb)bcj , are basic nomomials for g(T 0 .... ,Tr~ I) considered as elements 
b br 

of S(q0 .... 'qr 1 ) ' then the set {T T : bE J' , 0~b ~N-2} is the set of basic 
- r r 

monomials for f. 

This implies that 
b +i 

hi,r-i-1.., r 
0 ~x) = #{b • J' : £(b) + ~ = r- i} 

= #{b• J' : r-i- l<£(b) <r- i} . 

This formula was obtained in Ii in the homogeneous case. 

4.4.2. 

then 

More generally, if 

f(T 0 ..... T r) = g(T 0 .... ,Tr_ I) + T~ 

hi'r-i-l(x) e : r- - + N _<£(b) r-i-N #{b j' i i } 
0 < 

For example, if g is homogeneous then X is a multiple space (3.5.4) and we ob- 

tain 

i'r-l-i(x) #{b • 7z r h 0 = :(r-i-2)N+m_< Ibl _< (r-i-l)N-m , 0_<b. _<N-2} 
3 

where b I = b 0 + --" + br_ I (cf. III, 8.8). 

This can be written in more explicit form 

h o ,  r _ i _ l  ( r - i - 1 ) N - m  
= Z c 

s 
s= ( r - i - 2 ) N - m  

c s i s  t h e  c o e f f i c i e n t  a t  t s i n  (1 + . . .  + tN~2 )  r . w h e r e  
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4.4.3. Let y c ~ (q0,...,qr_l) = ~ (Q') be the hypersurface defined by the poly- 

nomial g(T0,...,Tr) from 4.4.1. Then 

hi,r-i-2(y) = #{b~ J' : £(b) = r-i-l} 
0 

Assume now that k = K. The exact sequence of Hodge structures 

.... Hi(x) + Hi(X-y) + Hi-l(y)(-l) ~ Hi+I(x) + ... 

(dual to the compact cohomology sequence) determines the morphisms of the Hodge 

structures: 

i, : Hi-I(Y) (-i) ÷ Hi+I(x) 

which are obviously induced by the analogous morphisms 

Hi(~ (Q'))(-I) ÷ Hi+2(~ (Q)) 

Applying the Weak Lefschetz theorem (4.2.2) we have that i, is an isomorphism 

if i # 0, r- i. Thus for U = X-Y 

Hi(U) = 0, i # 0,r-i . 

The Hodge structure on Hr-I(u) has the following form 

GrW(Hr-I(u)) = 0, i # r,r-i 
1 

GrW(Hr-I(U))r = Hr-2(Y)(-I)0 

Gr~_I(Hr-I(u)) = Hr-I(H)0 , 

where 

Hr-l(x)0 = Coker(Hr-3(y)(-l) + Hr-I(x)) 

Hr-2(Y)0 = Ker(Hr-2(y)(-l) ----+ Hr(x)) 

For the Hodge numbers hP'q(u) we obtain (cf. 19) 

hP'q(u) = 0, if p+q ~ r-l,r 

hi'r-i-l(u) i'r-i-l(x) = #{b e J' : r-i-l< £(b)< r-i} 
= h 0 

h~,r-i(u) = . i-l,r-i-l~ 
h 0 (Y) = #{b e J' :£(b) = r-i-l} 

where we recall that 

r T b 
J' = {b~ ~ e0 : are basic monomials for g(T0,...,Tr_l) }. 

4.4.4. 

set 

tion 

The calculations of 4.4.3 presents an interest since the open affine sub- 

UcX is isomorphic to the nonsingular affine variety in ~r with the equa- 

analytic functions. 

g(x 0 .... ,Xr_ I) = i . 

This variety plays an important part in the theory of critical points of 

The cohomology space Hr-I(u) is isomorphic to the space of 



the vanishing cohomology of the isolated critical point 0 ~ C r of the analytic 

function t = g(ZO,...,Zr_ I) (18). Its dimension (the Milnor number) 

= dimcCT 0 ..... Tr_l/@g = #j' . 

It can be seen from above as follows: 

r-i r-2 
i,r-i-l- - i-l,r-i-l- 

dimeHr-l(u) = E h 0 (X) + ~ h 0 (Y) = 
i=0 i=l 

= #{b~ J' : l(b) < r} 

and so we have to show that for any basic monomial T b l(b) < r 

r-I 
deg(r b) < E ('N-qi) = rN - Q'I • 

i=0 

Let 

Then (i) 

~k = #{b ~ J' : deg(T b) = k} 

k 
= E ~k z Xg(Z) k 

r-i zN-qi_l 

Xg(Z) = i=0 zqi-I 

It is clear that ×g(Z) is of degree n = rN-21Q' I and hence for k>n 

This proves the assertion above. 

Note that the Hodge numbers of Hr-I(u) can be expressed in terms of 

follows 

hi'r-i-l(u) = E(r-i-I)N-IQ  < k< (r-i)N-IQ 1 ~k 

hi'r-i(g) = ~(r-i-l)N-JQJ 

The symmetry of the Hodge numbers is in the accord with the symmetry of 

or, equivalently, 

~k = 0. 

~k as 

Dk: 

~k = Hn-i 

4.4.5. Let X = Vn(Q) be a quasismooth surface (r=3). We know that 

h0'2(X) = h2'0(X) = #{a e J: £(a) = I} = HN_jQ j 

hl'l(x) = #{a~ J :l(a) = 2} = ~2N_jQ 1 

B2(X) = 2h2,0(X) + NI'I(x) = 2HN_jQ j + ~2N_IQ I , 

In case 

where 

E~ k k r N-qi qi z = n (z -l)/(z -i) 
i=0 

It is clear that ~N-I-'J~J = aN-'-'IWJ in notations of 3.4.4. ID (Q) = ~3 we 



have 

l  
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E~k zk = ((zN-l-l)/(z-l))4 = (i+ z+ ''' +zN-2) 4 
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A PATHOLOGICAL EXAMPLE OF AN ACTION OF k 

by 

Jerzy Konarski 

In this lecture we shall construct an example of the action of k on a nor- 

mal variety in which there exists an orbit "starting" and "finishing" in the same 

connected component of the fixed point set. We shall also give some properties of 
* 

k -actions, which will be needed in the following lecture. 

i. Notations. Let k be an algebraically closed field of any characteristic. 

All varieties and morphisms will be defined over k. We shall consider algebraic 

actions of the multiplicative group k of the field k. We shall identify k 

with the open subset of the projective line pl consisting of the points different 

than 0 and ~. Let us assume that there is given an action ~:k ×X + X on a 

variety X . For each point x E X , consider the morphism ~x:k -> X defined by 

~x(t) = tx = ~(t,x) for t E k If this morphism extends 

to a morphism ~-x :k*  ~-x U {0} ÷ X, we denote the value (0) by lim tx ; similarly 
t÷0 * 

we define lim tx . If F 1 .... ,Fp ~ denote the connected components of X k , then the 
t-~o 

--X~'(FI) give an invariant cover of X if X is complete, where X+(F)= {x:lim tx£ F} 
t+0 

(and similarly for the sets X-(FI) where X-(F) is defined analo~ouslv as {x:limtxeF}). 
t->= 

We call them the cells of the plus decomposition of X determined by the action 
* 

of k , or simply the plus-cells of X. Analogously the minus-cells are defined. 

The above decompositions were defined and studied by A. Bialynicki-Birula in 

2 and i in the case, when the variety X was nonsingular. They have in this 

case very nice propoerties, see 2, i: 

A). The cells X+(Fi) are locally closed in X and the projections along 

the orbits ~i:X+(Fi ) ÷ Fi, ~i(x) = lim tx, x~ X+(Fi ) are morphisms, 
t-~0 

~i:X+(Fi ) ÷ F i are algebraic bundles over F i with affine spaces as B). 

fibres. 
* 

It is easy to construct non-normal surfaces with actions of k which do not 

satisfy the above conditions (e.g. identify suitable fixed points in the suitable 

linear action on the projective plane p2), thus we shall restrict our assumptions. 

2. Definition. An action of k on a variety X is called locally linear, if 

for every point x ~ X there exists a k -invariant open affine neighbourhood of 

x , w h i c h  c a n  be  e q u i v a r i a n t l y  e m b e d d e d  i n  an  a f f i n e  s p a c e  w i t h  a l i n e a r  a c t i o n  o f  

k . 
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3. Theorem. (Sumihiro, 6) If the variety X is normal, then every action of 

k on X is locally linear. 

Let us consider a locally linear action of k on a complete variety X. 

Let U be an open affine invariant subset of X and let j:U+A N be an equivari- 

ant embedding, as in the definition above. Ue may assume that the action of k 

ml mNxN ) * on A N is diagonal: t(xl,...,xN) = (t Xl,...,t for every t • k , 

(x I ..... xN) • A N and for some weights m I ..... ~7. 

4. Remark. The set X+(X k N U) is locally closed in X (closed in U~ and the 

projection along the orbits is regular on X+(X k* AU) . Indeed, X+(X k AU) = 

U n j-l({y ~AN:lim ty exists in AN}) = U n j-l({y = (Yl ..... YN ) •AN:inf mi< 0~Yi=0}). 
t÷O 

The projection is a morphism, since it is a restriction of the projection in A N . 

5. Lemma. The cells of the plus decomposition of X are constructible. 

Proof. Let UI,...,U j denote open affine subsets, as in definition 2, covering 

Then, for every i = i,...,£, the cell X+(Fi ) is constructible since it is a 

union of locally closed subsets X+(F i nUk) , k = l,...,j . 

6. Remark. The lemma is true for arbitrary (not necessarily locally linear) 

actions. For the proof one uses normalization and the theorem of Sumihiro. 

X. 

7. Corollary. There exists a cell which is a dense subset of X. 

8. Definition. The dense cell is called the big cell. The connected component of 

the fixed point set contained in the big cell is called the source for the plus 

decomposition and the sink for the minus decomposition. 

9. Theorem. Let F I denote the source of a locally linear action of k on a 

complete variety X. Then the big cell X+(FI) is open in X , the component F 1 

is irreducible and the projection ~I:X+(FI ) + F 1 is a morphism. 

Proof. As above we choose a covering X = u U k. There exists k, such that 
l~k~j 

X+(FI n Uk) is open in X. Ue may assume k = 1 . The set X+(FI n U I) is irre- 

ducible as an open subset of an (irreducible) variety X , thus F 1 n U 1 is also 

v irreducible as the image of X+(FI n U I) under the regular map (Remark 4). Let F 1 

' is an irreducible component of F I. denote the closure of F 1 n U 1 in X, then F 1 

' and let us choose one of the open sets U k, for example Let us fix a point xe F 1 

let it be U 2 , containing x. The set X+(F~ nU I nU 2) is open in X+(F~ nU2) . 

On the other hand, it is open in X+(FI n U I) = X+(FI n UI) and therefore it is open 

in X. Since X+(F~ n U2) is closed in U 2 (Remark 4) and contains the set 
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X+(FI n U 1 nU 2) open in X, it follows that X+(F~ nU 2) = U 2 (we use the irreduci- 

bility of X here). Thus we have found a neighbourhood X+(Fi n U 2) = U 2, x e U 2, open 

in X and contained in X+(Fi). Since the point x was chosen arbitrarily, the 

• ' = F 1 : in fact, in the open set X+(F~) is open in X It follows also that F 1 

neighbourhood X+(F~) of F~ there are no fixed points lying out of F~ . At 

least the projection along the orbits is a morphism, since it is regular on each of 

the open subsets X+(FI n Uk) , k = 1 ..... j . 

i0. Remark. The irreducibility of the big cell is important in this proof• The 

same proof is good for any irreducible cell. 

ii. Remark. It follows from the theorem, that the source F 1 forms a cell of the 

minus decomposition. 

Now we shall construct an example of an action of k on a normal variety 

(therefore the action will be locally linear) such that there exists a cell which 

is not locally closed and the projection along the orbits is not continuous on this 

cell. In this example, the essential property is the existence of an orbit for 

which both limits belong to the same component of the fixed point set. 

12. Remark. Property A) doesn't follow from Remark 4. 

13. Remark. Let II,...,I p denote all the irreducible components of the fixed 

point set. I don't know if the sets X+(I.) , j = l,...,p , are locally closed and 
J J_ 

if the projections xT(Ij) ÷ Ij are regular. I missed it in my paper 5. Also, 

I don't know if there may exist an orbit with both limits in one I.. 
J 

Following Jurkiewicz 3, we shall consider k -actions on torus embeddings 

given by a homomorphism of k into the torus. First we recall 

the needed facts, details and proofs can be found in 4. Let T denote an n- 

dimensional torus. A normal variety X with the given action of T is called a 

torus embedding, if X contains T as an open T-inv~riant subset and the action 

of T on X restricted to T is multiplication. The torus embedding X is 

called complete, if the variety X is complete, and is affine, if the variety X 

is affine. 
* 

Let M denote the group X(T) = Hom(T,k ) of characters of the torus T, N 
* 

the group Y(T) = Hom(k ,T) of one-parameter subgroups of T, and let M R = 

M ~ ~ and N~ = N 9~ ~ be the corresponding vector spaces over the field of 

real numbers R. The natural pairing < , > extends linearly from MxN onto 

M R x N~ . A subset o c N~ is called a rational convex polyhedral cone or simply 

a cone, if the following equivalent conditions are satisfied: 
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i) there exists a finite number of linear functionals £. ,i = 1 .... ,N, defined 
1 

over the field of rational numbers Q such that o = {xCNR:£1(x)->0 for i=l .... ,N}. 

ii) there exists a finite number of vectors x iE NI~, i = I,...,N, defined 

N 
over Q such that o = { E ~ixi : h i-> 0 , i= I,°..,N} . 

i=l 
v 

For the given cone o. c N~ we denote by o its dual cone in M~ ~ which con- 

sists of all the functionals r EMIR satisfying <r,a>>0 for each aE 0.. If 

o = { x:li(x) -> 0 , i = I,...,N} is a cone in N R, any subset 

o. I = o. n {x:l.(x) = 0 for ie I} where I is a subset in {I,...,N} , is called 
i ' I V 

a face of 0.. If o I is a face of 0.~ we define the face o. I of the cone o. 
i v 

as o. I = {re o.:<r,o.l> = 0}. We define the interior of the face o. as Into. = 

{we 0.: inf <X,W>>0} . 

XE~-o ± 

Let a cone o. not contain any line (i.e. one-dimensional subspace) in N~. 
v 

We denote by X the corresponding torus embedding, i.e. X = Specko. n M. 

There is a one-to-one correspondence between orbits of the action of T on X 
o. 

and the faces of the cone o. Namely, let o I be a face of o and let a be 

any point of N nInt o I . The point a is a one-dimensional subgroup of T, let 

us consider the orbit of the unit element ec TcX under the action of a. Since 
o. v 

aE o. and x(a(t)) = t <X'a> for xeM, t6 k* then <x,a>>0 for all Xe o. 

and therefore the limit e = lim a(t)e exists in X . The orbit 00"1 of the 
a t÷0 o. 

action of T on X corresponding to the face o. 1 of the cone o. is defined as 
o. 

the orbit of the point e This orbit may be described by the condition: 
a 

0 °l = {p E X : inf X(P) # 0 ~=> X c 0.1 } (note that x(e a) # 0 ~=> <x,a> = 0 ~=> 
o v 

x c o n M  

X(ea)o= i) ' The above correspondence has the following properties. Firstly, 

1 dim 0 + dim o. 1 = dim T (dim o. 1 denotes here the dimension of the subspace 

spanned by 0.1). Secondly, o. 1 is a face of 02 if and only if ~D~D 00.2 . 

If g = {0. n} is a rational partial polyhedral decomposition of NR, i.e. a 

finite set of cones satisfying the following conditions: 

i) if o. is a face of o. , then o. E E , 

ii) for any ~, B, o. n o. B is a face of o~ and o B , 

then we can glue the Xo.a's together, obtaining a variety X Z . The torus embed- 

ding X Z is complete if NI~ = u o. . Given Z and a one-parameter subgroup 
, o.c~E Z c~ k* 

a:k ÷T of T, (i.e. aEN), let us consider the induced action of on X E . 

We shall describe this action in terms of the rational partial polyhedral decompo- 

sit ion Z . 

14. Lemma. (Jurkiewicz) Let o I be a face of o , let p be any point in the 

orbit 0 °I , and let a cN (i.e. a is some one-parameter subgroup of T). Then 

the limit Pa = lim a(t)p belongs to the orbit 0 °2 of the action of T on X 
t~O o 

if and only if the face o 2 satisfies the following condition: "for each 
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wcInt Ol, there exists c>0 such that for any q, 0~q< e, the point w + qa 

" We may rephrase this condition by saying that the vector a , belongs to Int 02 . 

when attached to the face o I , points into the face o 2 . 

Proof. We use the equality k(a(t)p) = t<×'a>x(p) for t ~ k , X~ M. The limit 

Pa = lim a(t)p exists in X = Speck v n M if and only if for each character 
t÷0 o 

v 
XconM, we have X(P) = 0 (i.e. Xc v \o ) or <x,a>_>0. 

Assume that Pa exists in X . Since X(Pa) = lim X(p)t <X'a> , then, for 
v o t÷0 

X • onM, the following conditions are equivalent: 

i) ×• 

ii) ×(pa ) = 0 

iii) X(P) = 0 or <x,a> > 0 
± 

iv) Xc v \ °i or <x,a> > 0 . 

The last condition is equivalent to the condition from the assertion of the lemma: 

I 
for each w tint o I and X{ v \ o2 , <X,w+qa> = <×,w> + q<x,a> >0 for any q 

from some interval (0,s) . 

Now assume that Pa doesn't exist in X thus there exists a character 
v o ' 

Xc onM, such that X(P) # 0 (i.e. <X,oI>= 0) and <×,a> <0. Then 

<X,w+qa> <0 , thus for any q > 0 the point w+qa lies outside o . Therefore, 

in this case there exist no faces in o satisfying the condition of the lemma. 

15. Corollary. The orbit 

and only if ac lin o I . 

0 °I consists of fixed points of the action of k* if 

The above lemma is essential in the construction of our example. The idea is 

following: we want to find a normal variety (torus embedding) with an action of k 

such that there exists an orbit having both limits in the same connected component 

of the fixed point set. Let T be now a three-dimensional torus. Then N~ is a 

three-dimensional vector space. We shall describe the suitable rational partial 

polyhedral decomposition of N~ by drawing pictures - we avoid in this way writing 

down the coordinates of vectors spanning particular cones and the essence of the 

construction will be more clear. 

Let us consider a rational partial polyhedral decomposition F as in diagram 

i. In this picture is drawn the intersection of F with a sphere with a centre in 

0 e NR (strictly speaking, only some of the cones are drawn, over and below them 

may occur other ones). The corresponding torus embedding X = X F is drawn in the 

diagram 2. By the same letters we denote as well the faces in F as the corres- 

ponding subsets in X. The vector a is "vertical" and lies in linear hulls of 

"vertical" faces: three-dimensional A,B,...,U,Z,V,... and two-dimensional 

b,c,...,u,v. The corresponding points A,B,...,U,Z,V and connecting lines 

b,c,...,u,v form a connected component of the fixed point set X k* (Corollary 15). 
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Let us call this component Y. Note the position of the faces Z,z,w and ~. 

There corresponds to them in X : the fixed point Z , curves z and w and the 

surface ~. Points lying on the curves z and w and on the surface ~ are not 

fixed by k , their limits as t ÷ 0 are shown in diagram 2. 

The cell X+(Y) of the plus decomposition of X is not locally closed: it 

contains the surface ~ , doesn't contain the curve z lying in the closure of ~, 

but contains the point A lying on z . Also, projection along the orbits of the 

action of k is not continuous on X+(Y) , because of the existence of the orbit 

w joining two fixed points A and V lying on Y . A rational partial polyhedral 

decomposition with required properties may be constructed for instance from seven 

three-dimensional cones (diagram 3). 

The variety X F obtained above is normal, singular, and complete but not pro- 

jective. If it were nonsingular or projective and normal, it would have the proper- 

ty A) mentioned in the beginning. The latter case follows from the possibility of 

equivariant embedding of projective normal varieties into a projective space with a 

linear action of k , see 6. 

i A. 

2 A. 

I3 J. 

4 G. 

5 J. 
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PROPERTIES OF PROJECTIVE ORBITS 

OF ACTIONS OF AFFINE ALGEBRAIC GROUPS* 

by 

Jerzy Konarski 

Let a connected affine algebraic group act on a variety X. Then by X we 

will denote the set of all points xc X such that their orbits Gx are projective 
* 

varieties. Our aim is to describe properties of the set X . The main results say 
* 

that: a) the orbit type is locally constant on X ; let us choose a connected 

Componer~t X 1 of X , a parabolic subgroup P1 representing the orbit type on 

X 1 and a point x~ El, b) if X is normal and all orbits in X 1 are G-isomor- 

k = 0), then X 1 ~ is G-isomorphic to a product (X~') P1 ~ ~ × Gx, phic (e.g. if char 
* p * 

where (XI) i denotes the set of points in X 1 fixed by PI" Then, assuming G 

to be reductive and X to be complete, we shall construct a decomposition of X 

into disjoint G-invariant subsets, each of them containing one of the connected 
* 

components of X 

All varieties and morphisms, that will occur, will be defined over an algebra- 

ically closed field k. For an action o : G× X -~ X of an affine algebraic group 

G on a variety X and for any subset (or element) Y in X, GY will denote 

the image o(G×Y) . The set of fixed points of the action of G on X will be 

denoted by X G. For any vector space V, IP(V) will denote its projectivization. 

All varieties will be irreducible, unless otherwise stated. All algebraic groups 

will be affine. I will frequently use some facts on algebraic groups and parabolic 

and Borel subgroups. One can find them in 2. The needed notions and properties 
* 

of actions of the multiplicative group k may be found in the preceding lecture 

4. Several times I will use a theorem of Sumihiro, which says that if a connected 

algebraic group (respectively a torus) acts on a normal variety, we can cover this 

variety by open quasi-projective (respectively affine) invariant subsets; it is 

known also, that each of such subsets may be equivariantly embedded in a projective 

(resp. affine) space with a linear action of the group, see 5. Theorems 2 and ii 

were proved earlier by J.B. Carrell and A.J. Sommese for analytic actions of SL2 

3. The construction of decomposition mentioned above follows A. Bi~lynicki- 

Birula's construction for actions of SL2 I. 

i. Notations. We refer to the preceding lecture (4) for the basic notions and 

facts on actions of k used here without further comment, especially for the 

*) This is a revised version of a preprint issued at Warsaw University in 1979. 
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notions of limits and of the plus and minus decompositions. 

For any torus T (i.e. a product of a finite number of k 's), the character 

group X(T) is a free abelian group whose dual group Y(T) is the group of one- 

parameter subgroups of T . The duality < , > : X(T) x Y(T) ~ ~ is given by 

<X,p > = m for X • X(T) , ~ • Y (T) if and only if X(D(t)) = t TM for all t e T. 

For a finite number of nontrivial characters XI,...,X n c X(T) , there exists an 

element ~ •Y(T) such that <×i,~> # 0 for i = l,...,n . This follows, since 

for a finite number of hyperplanes in the vector space Y(T) @ IR there exists in 

Y(T) an element net lying on any one of them. Composition laws in X(T) and 

Y(T) are written additively. 

If T is a maximal torus of an algebraic group G , then nontrivial weights 

of the adjoint representation of T on the tangent space T G at the identity 
e 

e• G are called roots. If G is reductive, we have another definition: a charac- 

ter ~• X(T) is a root if there exists in G a one-parameter additive subgroup 

t g a ( r ) t - 1  , k + g~ : k + ÷ G such that = ga(~(t)r) for all t • T r • . The subgroup 

g~ is then unique up to a constant scalar. The set of roots of G with respect 

to T will be denoted by ~. 

Let G be a connected algebraic group acting on an arbitrary variety X and 

let T be a fixed maximal torus in G. Then there exists such a one-parameter 
* 

subgroup % : k ÷T that 

i) ~ is regular, i.e. <~,~> # 0 for all ~• ~ , 

ii) X %(k*) = X T. 

This is so, because the action of T may be described with use of a finite number 

of nontrivial characters ×i • X(T) , i = l,...,s (we normalize X and use the 

theorem of Sumihiro). Now we have to find an element % •Y(T) such that <Xi,%># 0 

for i = l,...,s and <~,%> # 0 for all ~• $ ; this is possible as we have seen 

above. The one-parameter subgroup % determines a Borel subgroup B+(%) in G. 

Recall its definition. Let us choose any Borel subgroup B containing T. Let 
* 

us consider the action of k on G/B induced by % and by the action of T on 

G by conjugation (we shall call it the action of %(k )). Then B+(%) is the 

Borel subgroup corresponding to the source (consisting of one point, because % is 
* 

regular) of the action of %(k ) on G/B . If G is reductive, there is another 

useful chracterization: B+(%) is a subgroup in G , generated by T and by the 
+ 

subgroups g~ for all ~• $ = {~ ~ : <~,~> > 0} . 

Note also that conversely~ for a Borel subgroup BmT , there exists such a 

regular %• Y(T) that X %(k*) = X T and B = B+(%) . Really, {% • Y(T) : B = B+(%)} 

is the intersection of the lattice Y(T) with a nonempty open cone {y•Y(T) ~ ~: 

<~,y> > 0 for ~• ~+} . If we add conditions <Xi,Y> # 0 for i = l,...,s , we 

shall still obtain a nonempty set. Now we can formulate the first theorem. 

2. Theorem. Let G be a reductive group acting on a variety X. Let T be 
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a fixed maximal torus in G and let ~ : k ÷ T be a regular one-parameter sub- 

group in T having the same fixed points in X as T . If x,y are points in X 

such that lim %(t)x = y , then lim %(t)bx = y for all b • B+(%) . In other 

t÷0 t+0 

words, B+(%) preserves limits as t ÷0 of the action of %(k*) on X. In par- 

ticular, if X is complete, the cells of the plus decomposition of X determined 

by the action of %(k ) are B+(%)-invariant. 

3. Remark. The Borel subgroup B-(%) = B+(-%) , opposite to B+(I) , 

limits as t ÷~ of the action of l(k ) on X. 

preserves 

Proof. Since X %'k*1(~ = X T , T preserves limits of orbits of the action of %(k*)- 

on X : lim ~(t)sz = lim s~(t)z = slim ~(t)z = lim ~(t)z for s • T , z •X , t ~ k 
+ 

Thus it suffices to show that lim %(t)g (r)x = y for ~e ~ , r•k. From the 
t-~O , 

definition of g~ it follows that %(t)g (r)x = g (t<~'%>r)%(t)x for t • k , r • k. 

Denote <a,~> by m (thus m>0). Then lim ~(t)g (r)x = lim g (tmr)~(t)x. 

t+0 t+O 

Next, let us consider the following two morphisms, f : k* ÷ G , given by 

f(t) = g~(tmr) for t ~ k and g : k ÷ X, g(t) = %(t)x for t • k . They induce 

a morphism from k into the product G×X and, by composition with the action of 

G on X, a morphism p : k -> X given by p(t) = g~(tmr)%(t)x for t • k Since 

m> 0 , f extends to a morphism f : k ÷ G with T(0) = g (0) = e , the identity. 

Also g extends to a m o r p h i s m  g :  k ~ X ,  w i t h  g ( O )  = y ( b e c a u s e  l i m  ) t ( t ) x  = y ) .  
t÷O 

H e n c e  p e x t e n d s  t o  a m o r p h i s m  " p :  k ÷ X a n d  l i m  g c ~ ( t m r ) ) , ( t ) x  = -p(O) = y . T h i s  

proves the theorem, t÷O 

4. Corollary. Let G be a reductive group, T - a maximal torus in G and 
* 

% : k ~ T a regular one-parameter subgroup in T. Let B = B+(%) and X = G/B. 

The action of G on X induced by multiplication on the left determines an action 
* 

of %(k ) on X. The plus decomposition of X determined by this action is then 

equal to the Bruhat decomposition. 

Proof. Let N(T) denote the normalizer of T in G and W - a Weyl group N(T)/T. 

The Bruhat cells are the cosets BwBc G/B for w•W. Since % is regular, 

X %(k*) = X T = {gBe X : Tc gBg -I} = {wB • X: w~ W} (2). For w•W let X+(w) de- 

note the plus cell in X containing the fixed point wB . By the theorem 

BwB c X+(w) . Since the cells X+(w) , w • W , are disjoint and the Bruhat cells 

BwB , w•W, cover X, then for all w•W, BwB = X+(w) . 

We shall apply the above theorem later. Now we shall pass to actions of arbi- 

trary groups. Let us fix the following notation: G - a connected algebraic affine 

group acting on a variety X, T - a maximal torus in G and B - a Borel subgroup 
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containing T . We shall denote by X the set of all points x ~ X such that 

their orbits Gx are projective varieties. Recall that the orbit of x is pro- 

jective if and only if the isotropy subgroup G of x is parabolic, i.e. it con- 
x 

tains some Borel subgroup. Recall also that an orbit type of an orbit Gx is the 

conjugacy class of the isotropy subgroup G in G. 
x 

5. Theorem. The orbit type is locally constant on X 

X ~ Proof. Let v : ÷ X be the normalization of X. The action of G lifts to an 

X v action on . Since the morphism v is finite and parabolic subgroups are con- 

X v nected, for y c and x = v(y) c X, isotropy subgroups G and G are equal. 
y x 

Thus it is enough to prove the theorem for X normal. In this case we apply the 

theorem of Sumihiro and we see that it suffices to prove the theorem in the case 

when G acts linearly on a projective space P(V) , i.e. there is given a homo- 

morphism of algebraic groups G ÷ IPGL(V) ; V denotes here a vector space. In 

general the homomorphism G ~ I~GL(V) doesn't lift to a homomorphism G ÷ GL(V) , 

in that case we replace G by the group G x PGL(V) GL(V) . So, now we shall assume 

that the action on P(V) is induced by a rational representation of G in the 

vector space V. For xe P(V) , by 2 we shall denote any point in V lying 

over x . 

If the orbit Gx of a point x c ~(V) is projective, the isotropy subgroup 

G x contains some Borel subgroup B' . Since x is fixed with respect to B' , 

there exists a character X' of B' such that b'i = x~(b')~ for all b' c B' . 
x g-1 , 

The subgroups B and B' are conjugate, i.e. B = gB' for some gc G , so X x 

determines a character Xx of B given by Xx(gb'g -I) Xx = '(b') for all b' £B' . 

This definition does not depend on the choice of g by the theorem on a normalizer 

(2, 11.15). Therefore we may define a function from P(v)* to the group X(B) 

of characters of B : x ÷ Xx for xe IP(V) 

6. Lermna. The above function is locally constant. 

Proof. For a character X e X(B) let V = {ye V : by = x(b)y} • The sets V , 
× X 

Xe X(B) , are linear subspaces in V and the set C = {Xe X(B) : V # {0} } is 
X 

finite. We have ~(v)B= u ~(V ) the union of disjoint closed subvarieties. 
x~C X ' * 

For X ~ C let ~X : G/B x ~(Vx) ÷ ~(V) be a morphism given by {x(gB,a) = ga for 

all gB e,G/B , a~ ~(Vx) ; let YX denote the image of ~X" All Y~'s are closed 

in ~(V) , as images of projective varieties; they cover all ~(V) and they are 

disjoint since each orbit in ~(V) intersects ~(V) B in exactly one point. 

Hence, ~(V) is a union of a finite number of disjoint closed subvarieties Y 
X 

such that on each of them the function x ÷ Xx is constant. 

We come back to the proof of the theorem. Let x be a point in F(V) For 
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a suitable g£ G , gx = y belongs to ~(V) B. Denote by X the character X x = Xy 

of B . We claim that the isotropy subgroup G is the largest subgroup containing 
Y 

B such that X extends to it. We shall show that: 

a) X extends to G , 
Y 

b) if X extends to a subgroup P~ B , then PY = X(P)Y for all p c P • 

(In other words, if X extends on P , then P =G .) 
Y 

a) is clear, since y is fixed by G . The proof of b) is following: the mor- 
V 

phism ~ : P÷V given by ~(P) = X(p~-I . p~ for all p ~ P , is constant on each 

coset pB , p~ P , so it factors through P/B , whence it is constant, since P/B 

is a projective variety and V is affine. 

This is what we wanted: since the function x + X x is locally constant on 
* 

• (V) and its values determine the orbit type, then the orbit type is also locally 

constant on ~(V) 

7. Corollary. (1 Theorem 5) X G is a union of some connected components of X . 

* X* B will denote the com- Now, let us fix a connected component X I in . X I 

ponent of X B contained in ,XI, i.e. X B = XBN X~ . Let a sub group P lm B re- 

present the orbit type on X I , i.e. PI is the isotropy subgroup of all points in 

8. Theorem. If X 

* B 
: X I ÷ X I • 

is normal, then there exists a G-equivariant morphism 

Proof. As a map, ~ is determined uniquely. Since X is normal, we can cover it 

by open G-invariant quasi-projective subsets. For any set U of this covering, 

we have to show that the restriction ~IXSN U: X~N U + X~N U is regular. We may 

embed U equivariantly in some projective space ~ with a linear action of G. 

Let ~i denote the component of ~ containing the image of Xln U , and let 

B = ~i n ~B * B ~i . It suffices to show that the G-equivariant projection ~:~i ÷~I 

is regular. 
* 

Note that since the radical Rad G acts trivially on • , the action of G 
,i 

induces an action of a semisimple group G' = G/Rad G on 7 1 such that orbits of 

both actions are equal. Let T' be the image of T in G' ; then T' is a maxi- 
* 

mal torus in G' . Let %' : k + T' be such a one-parameter subgroup in T' that 

the Borel subgroup B' = B/Rad G in G' preserves limits lim %'(t)x for xc ~i" 

t*O 
We shall show that the action of %'(k ) on ~i is locally linear (see 4 for 

a definition). Since T N Rad G is a direct summand in T, then %' ifts to a 

one-parameter subgroup % : k ~ T. %(k ) c G, so it acts linearly on ~ . Since 

the action of %'(k ) on ~i is equal to the action of %(k ) , then it is 
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locally linear. Now, let U denote the big (plus) cell of this action. Since 

~i = G~ is irreducible, there exists a regular projection (%'(k)-equivariant) 

* B-, where B- is the Borel subgroup opposite to B . w' : W ÷ source of ~i = ~i 

Of course ~' = ~JW ' whence the projection ~ is regular on the neighbourhood 

B- 
W of ~i " 

If we repeat the above construction, taking another Borel subgroup gBg -I in- 

stead of B and composing the previously obtained projection with the translation 
* B- 

x + gx for x • ~I ' we obtain regularity of ~ on a neighbourhood of g~l " 

Since such neighbourhoods form a covering of ~i ' it follows that ~ is a mor- 

phism. 

9. Before proving the next theorem, we recall, for the convenience of the reader, 

some facts about morphisms from 2: 

A) a dominant morphism ~ : X÷Y is separable if and only if there exists a regular 

point x• X such that ~(x) is regular and the differential dx~ is an epi- 

morphism. 

B) If ~ : X÷Y is an open separable morphism, Y is normal and Y = ~(X) , then 

is a quotient morphism, i.e. for any morphism ~ : X+Z constant on fibres 

of ~ , there exists a unique morphism e : Y÷Z such that ~ = eo# . 

C) In particular, if ¢ is a bijective open separable morphism and its image is 

normal, then ~ is an isomorphism. 

D) If Y is a normal variety and ~ : X÷Y is a dominant morphism such that all 

the irreducible components of the fibres of ¢ are of the same dimension, then 

is open. 

E) For a vector space V, the natural projection p : V \{0}+P(V) and its re- 
-i 

striction plp_l(z) : p (Z) +Z , where Z is any normal subvariety of ~(V) , 

are quoti~t morhpisms Cby B and D). 

i0. Corollary (of Theorem 5). If char k = 0, then all orbits in X 1 are G-iso- 

morphic t o  G /P  1 .  I n  o t h e r  w o r d s ,  t h e  o r b i t s  i n  X 1 a r e  r i g i d .  

Proof. It follows from the separability of the morphism ~ : G/P l÷Gx , ~(gPl ) = gx 
B 

for g• G, xc X 1 and from 9DC above. 

Now we would like to mention some results obtained by Ewa Duma on deformations 

of two-dimensional orbits for actions of SL2 (unpublished). In SL2 we have the 

following types of one-dimensional subgroups (up to conjugacy) : T - a maximal torus; 

N(T) - the normalizer of T ; and N for m a natural number - the product of a 
m 

unipotent subgroup by a cyclic group of order m. If there exists an action of 

SL2 such that the orbit type on an open subset U is H and in some point in the 

closure of U it is H' , then we say H deforms to H' . The results are 
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following: i) all three types deform to SL2 and to B , a Borel subgroup, ii) T 

deforms to N(T) and to all N's , iii) N(T) doesn't deform to T and it de- 
m 

forms to N ~--->m is even, iv) N doesn't deform to T and to N(T) and it de- 
m m 

forms to Nn~-;m divides n . There are also some results, still not complete, on 

finite isotropy subgroups. 

We come back to projective orbits. Choose an arbitrary point y in the com- 
B * * 

poenent X 1 . Let X denote the subset of X 1 consisting of all points, the or- 
Y 

bits of which are G-isomorphic to the orbit Gy. For instance, if char k = 0 , 

* * X B X* X B then X = X 1 . Let = n . There is an action of G on the product 
Y Y Y R 

X B " Gy x X, induced by the action of G on Gy and by trivial action on 
y Y 

* X B II. Theorem. If X is normal, then X is G-isomorphic to Gy x . 
Y Y 

G/Pl B -~ X1 be a morphism induced by the action of G on X , Proof. Let o : x X1 

B 
i.e. o(gPl,X) = gx for gPl e G/P1 ' xc X 1 . Let w : G/P l->Gy be a morphism 

given by ~(gPl ) = gy for gc G. Since o and ~ are bijections, there exists 

a unique map • such that the diagram commutes 

B o ~ * 
G/p I x X 1 X1 

~× id  T 

B 
Gy × X 1 

We have to prove that the sets 

Gy x X B -~ X* is an isomorphism. 
Y Y 

then by Sumihiro's theorem we may prove the statement for a linear action of G on 

a projective space. Thus, we shall assume that : there is given a linear action of 
B 

G on a projective space ~ ; PI denotes a component in ~B with a corresponding 

isotropy subgroup P1 ; ~B B * B • Y= {z e ~I : Gz is G-isomorphic to Gy} ; F 1 = G • ~i ; 

= • y G. ~B We have also a diagram, as before: 
Y 

B op . 

G/p I x ~i .... > ~i 
I 

× id 
T~ 

B 
Gy x I~ 1 

Now we have to show that ~B and I ~ are subvarieties of ~ (i.e. are locally 
Y Y , 

closed) and that r~IGY x pB is an isomorphism of Gy x Ip B onto • . As in the 
y Y Y 

proof of Theorem 5 we shall assume that the action of G on P is induced by a 

representation in a vector space V, i.e. ~ = ~(V) , a projectivization of V, 

and the projection p : V \{0} -~ ~(V) is G-equivariant. Denote V \{0} by A. 

Let z 0,...,z kc ~B be a maximal linearly independent subset, we may assume 
Y 

z 0 = y. For i = 0,...,k choose z'l ~ A such that p(~i ) = z i . Now, let 

X By and Xy are varieties and that T IGy xX B : 

Y 
These properties are local and since X is normal, 
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Ay = lin(z0,...,Zk ) \ {0} = p-l(~ (z0,...,Zk)) c A, where ~ (Zo,...,Zk) means the 

projective subspace spanned by z0,...,z k . By Theorem 5, for some character X 

cV = {v~ V : bv = X(b)v for Bc B} . The orbits G~0,...,G~ k of B , we have Ay X 

are G-isomorphic by the following lemma. 

B 
12. Lemma. Let ~i ' 32 ~A be such points that x I = p(i I) , x 2 = p(R2 ) EPI " 

Then the orbits GX 1 and Gx 2 are G-isomorphic if and only if the orbits Gi 1 

Gi 2 are G-isomorphic. 

and 

Proof. (~) Let a : G~ l÷Gi 2 be a G-isomorphism. Then plGi I : Gi l+Gx I and 

po~: Oi l÷Gx 2 are quotient morphisms by 9E. Since they have the same fibres, there 

exists a G-isomorphism e' : Gx l÷Gx 2 . 

(~) Let ~' : Gx l÷Gx 2 be a G-isomorphism. We shall construct an isomor- 

phism of Gi I and G~ 2 . Let us fix i = 1,2 . Let U- denote the unipotent part 

of B- , then U-B is open in G and since i. is an eigenvector with respect to 
i 

B , then U-kl I. = U-B~.I is open in Gi i by 9D. 

First we shall prove that U-kl i is isomorphic to k x U-X i . Let 

qi:k× U-~ i ~ U-ki.l be given by qi(a,z) = az for a~ k, z ~ U-i..i qi is open 

by 9D and is bijective, since unipotent groups have no characters. So, by 9C it 

suffices to prove that the differential d(l,xi)ni is an isomorphism. Suppose the 

converse. As we see easily, the restrictions of d(l,x.)q i to the tangent spaces 
1 

T(l,xi)(kx {xi} ) and T(l,xi)({l} × U-i.)l are isomorphisms, so we must have 

T~ikR icTi.U-~i.l Let U' be a maximal unipotent subgroup in GL(V) containing 

the image of U-. Then we have T kilcT" R.U'Ri" Since U' is an affine space 
i l 

and the action is linear, we may rewrite this inclusion in the form kR. c U'R.. 
i i 

This is a contradiction, because U' consists of unipotent elements and they have 

all eigenvalues equal one. 

- U-xi Next we note that PlU-i. : U i i ÷ is an isomorphism. Indeed, it is bi- 
i 

jective, open by 9D and separable, whence an isomorphism by 9C. Therefore the orbits 

U-i I and U-R 2 are isomorphic. It follows that in Gi I and Gi 2 there are iso- 

morphic open subsets U-Bi I and U-BR 2 . Moreover, the isomorphism is compatible 

with the action, i.e. gil+gR 2 for g~ U-B . We can now cover GRi, i = 1,2, by 

open subsets gU-Bi i for g£ G. Note gU-BR i = gU-g-lgBg-lgii thus, repeating 
- 

the above construction for the points gi i and the Borel subgroup gBg , we ob- 

tain an isomorphism of gU-Bi I and gU-Bi 2 . Since all these isomorphisms are 

compatible with the action, we can glue them to an isomorphism of GR 1 and Gi 2 . 

Continuing the proof of the theorem we shall show now that ~B is open in 
Y 

(z0,...,Zk) . Let Si: G~ 0 ÷ G~ i be G-isomorphisms for i = 0,...,k. Let 
k 

B : G~ 0 ×A ~ A be a morphism given by B(w,~) = S(w, E ~i~i ) = Z~iSi(w) for 
Y i=0 
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k 
wc G~ 0 and ~ = E %.z. •A . For ~ •A let 6£ : G~ 0 ÷ G~ be given by 

i= 0 i 1 y y 

B~(w) = 6(w,~) for w• G~ 0. The morphisms 6 and B~ are G-equivariant. Since 

Aye V×, all points in Ay have the same isotropy subgroup (equal to ker× cpl). 

Thus, for all ~ eA B^ is a bijective mcrphism onto a normal variety and it is 
y' z 

open by 9Do Hence, B~ is an isomorphism if and only if its differential d^ 6^ 

is an isomorphism. Since d~0g ~ = E~id~0~ i and d~06 i are isomorphisms, th:~ z 

d~08 ~ is an isomorphism if and only if the coefficients lO,...,%k satisfy 

det(E%id~06 i) # O. This condition gives anonempty open subset in A . Thus {~•A :B~ is 

an isomorphism} is open in A . It follows that ~B is open in • __(Zo,.-.,z k) o 

Let us now consider a morphism 

= p t G ~ o X P l A y  : G~0XAy ~ Gz0x~By = ~ (z 0 . . . .  . z k) xGz 0 . I t  i s  s e p a r a b l e ,  open 

by 9D and i t s  image  i s  n o n s i n g u l a r .  The m o r p h i s m  p°6  i s  c o n s t a n t  on f i b r e s  o f  

~ ,  h e n c e  by t h e  u n i v e r s a l  p r o p e r t y  9B t h e r e  e x i s t s  a u n i q u e  m o r p h i s m  ~ s u c h  t h a t  

t h e  f o l l o w i n g  d i a g r a m  commut e s .  

6 
G~0xA ~ G A c A 

Y Y 

Gz Ox ~B ~ ~ G ~----'g-c ~ 
Y Y 

• * ~B 
We also see that ~ is locally closed in ~ . Really, • = G is the 

Y ~B . Since Gz~ is Y Y of the open set x x ~ the union of fibres of image , GZo y ~ 9__, y 

and ~ is closed, ~ is open in G ~s = ~ . 
Y Y Y 

13. Remark. If char k = 0, all the above part of the proof may be replaced by 

the sentence: the morphism w : G/PI+GY is an isomorphism by Corollary I0, whence 

T = oo (mx id) -I is a morphism. 

Now we want to prove that T is separable. For all z £ ~B we shall show 
-- --~ ~ Y 

that the differential d(zo,Z)~ : T(z0,z)GZ 0 x Y + Tz ~y is a monomorphism. Since 

~-IGz 0 x {z} : Gz0 x {z} + Gz and Tl{z0} x I~ B : {z O} ÷ pB + ~B are isomorphisms, it 
y Y Y 

suffices to prove that T Gz n Tz ~B = {0}. By Theorem 8 we have the projection 
z 

~ : 1 ~ ÷IP . For v£T G nT ~ B-y = we have d ~(v) = 0, since ~IGz const; and 
y y z z y z 

dz~(V) = v, since v l~B = id. Thus v = 0. This implies the separability of -%- 
y --~ 

since in ~B there are points which are regular on 1 ~ , d~ is then an isomor- 
Y Y 

phism. 

Since T is bijective and proper, it is a homeomorphism and since Gz 0 × ~B 
-- , Y 

is normml, it factors through the normalization ~ : (ID*) ~ + P of the variety 

* i.e. there exists a morphism T v ~B (g)7 Y -- ~Y ' -- --v : Gz0 x Y ÷ such that T = rot 

Since ~ is separable, so is • because they "coincide" on an open set. Since 
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Gz 0 × ~B is complete, ~-~ is a homeomorphism. Since its image is normal, then by 

9C T v y is an isomorphism. It follows that ~ is finite (it is even a normaliza- 

tion). In particular T = TIGz0 x ~B is finite. As we showed above, for all 

Y 
q ~ Gz 0 x ~B dqT~ is an isomorphism. Since Gz 0 x ~B is nonsingular, then %~ 

Y Y 
is an isomorphism, thus the theorem is proved. 

* B 
14. Corollary. If char k = 0, then X I is isomorphic to G/P I ×X I. 

tic version this recently has been proved by M. Koras. 

In analy- 

The following example illustrates the theorem and shows that if char k # 0 , 

then 

B 
i )  o r b i t s  p a s s i n g  t h r o u g h  X 1 may n o t  be  G - i s o m o r p h i c ,  

ii) the set ~ may not be isomorphic (not only G-isomorphic !) to the product 

of an orbit with ~, 

B 
i i i )  t h e  s e t  X~ may be s Jmtgu la r ,  even  when X 1 i s  n o n s i n g u l a r .  

15. Example. Let char k 2 and let G SL2 act on X k I 1 ~2 = = = x by 

I: :I ix°I I I ixol I: :I (t, x I ) = (t, 0 a 2 b 2 • x I ) for c G, t e k I , 

x 2 0 c 2 d 2 I X2J 
ab B= 

x0,xl,x 2 c ~2 . Let B = {(0 d ) ~ G} . Then X B has two components: X 1 

B klx I,0,0 The corresponding isotropy subgroups are k I x 0,i,0 and X 2 = 

and G respectively. All orbits in XI, are projective lines, but they are G- 

isomorphic only for t # 0. The set X 1 is singular and is not isomorphic to 
B 

~ix X 1 which is nonsingular. On the other hand let W = {(t,z) ~ X : t# 0} and 

let H be an orbit in XINW. Then XInW is G-isomorphic to H x (xBnw) . 

Now we shall assume that G is reductive and X is complete. As before, B 
* 

will denote a Borel subgroup in G containing a maximal torus T and % : k * T 

be a regular one-parameter subgroup in T having the same fixed points on X as 

T. Let us assume that the action of %(k ) onX is locally linear (cf 4). De- 

note by X + the sink of this action. This is a connected and irreducible com- 

ponent in X %(k*) (4, Theorem 9). From Theorem 2 it follows 

16. Proposition. GX + is a connected and irreducible component in X* 

Proof. X + is a minus cell of X (4, Remark ii). By Remark 3 X+c X B~(%) 

Since X B-(%) ~ X %(k*) and X+is a component in X %(k*) , then X + is a component 

in ~~(%). Therefore GX + is a connected and irreducible component in 
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* (~) 
X = GX B 

Let X 1 , . . . , X  r d e n o t e  a l l  c o n n e c t e d  c o m p o n e n t s  o f  X . 

17. Definition. For i = l,...,r let X. = {x6X: sink GxcX.} . 
1 l 

Then Xi~ X.I for all i , X inX.3 = ~ for i # j and X is the union of the 

Xi's. Obtained decomposition will be called the decomposition of X determined 

by the action of G. Notice, that it depends on a choice of ~. We call X. 
l 

the cells of this decomposition. So now we have two types of cells - plus and mi- 
* 

nus cells determined by the action of %(k ) and the cells defined above. 

Let X d be the_ cell containing GX + = X~.Lu Then X+ = (x~)B~u For 
(~) 

xe Xd, sink GxcX B (~) , hence X d = {x ~ X: sink ~cX +} . Denote the big plus 

cell of the action of %(k ) on X by U. Then X d = {x c X : Gx nU # ~} = GU = 

U (big cell of the action of g%(k*)g -I on F0. The last equality follows, 
geG 
since lim %(t)x = y if and only if lim g%(t)g-lgx = gy for g c G, x,y c X. X d 

t+0 t->0 
is called the big cell. 

18. Corollary. The big cell X d is open in X. 

Next, let us consider other cells. Choose one of them, e.g. X 1 . For yc X I, 
-- ~-(~) * __ 

sink Gyc X , hence the big cell of the action of %(k ) on Gy is contained 

in X+(X~-(%)) . So, Gyc G-ycX+(X~ (%)). This inclusion holds for all yc X 1 , 

whence X 1 c X+(X~ -(%)) . 

19. Theorem. The cells defined above are locally closed in X, if the action of 

%(k*) has the property A) : the plus cells are locally closed and the projections 

along orbits are regular. 

Proof. Suppose X 1 is not locally closed in a point z c X 1 . Since {y~ X 1 : X 1 

is not locally closed at y} is closed in X 1 and G-invariant, we may assume 

z£ X~ -(X) Then in some neighb~urhood of z in X 1 there exists a point lying 

not in X 1 . We may take X+(X~ (%)) n X~l as such neighbourhood, it is open by A) . 

Let y be an element of X~I n X+(X~ -(%)) - X 1 . Then Gy n X+(X~ -(%)) is open in 

-- _B-(~) 
Gy, since GycXICX+(X~ (%)) and GynX+(X~ (%)) # ~. Therefore sink Gycx I , 

thus ye X 1 , a contradiction. Hence the cell X 1 is locally closed. 

20. Corollary. In particular, if X is nonsingular or normal projective, then 

all the cells are locally closed. 
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Now we shall describe the cells containing fixed points. 

21. Example. If G is semisimple and a component 
* 

points, then X 2 = X 2 . 

X 2 of X consists of fixed 

Proof• We may assume X normal. Let x be a point in the cell X 2 and let Y 

denote the sink of the action of X(k ) on Gx. Then, for g e G, the sink of 

the action of g%(k*)g -I on G-~ is the set gY Since y cX G • , Y is the sink 

of the action of any torus conjugate to %(k ) on Gx. For w e W, the Weyl 

group, let w(%) be a one-parameter subgroup in T given by w(%)(t) = n%(t)n -I 

for t ~ k , where n eN(T) represents w~W. For w£W, denote by U w the 

big cell of the action of w(X) on Gx (the sink is Y) and by ~ : U ÷Y the 
w w 

projection along orbits of this action. Choose a point y cY. Since X is nor- 

mal, there exists a T-invariant open affine neighbourhood V of y in Gx. 

I(V open Since Gx and each of the sets ~T nY),weW, are in Gx, then the set 

U = Gxn n ~I(vnY) is nonempty. Let z ~ U. Then, for weW, we have 

w£W 
lim w(X)(t)z ~ VnY . Embed V T-equivariantly in an affine space A with a linear 

t+0 
action of T. Let Z be the component of A T such thal V nY cZ . In particu- 

lar, for weW, lim w(%)(t)z e Z . Let ~ = Z w(%) , i.e. ~(t) = H w(%)(t) 

, t-~0 w~W , weW 

for t ~ k Since the weights of the action of ~(k ) are sums of the corres- 

ponding weights of the actions of w(%) , lim ~(t)z ~ Z . We shall show that 

t÷0 

is trivial, i.e. ~(k ) = {e} . Then it follows z ~ Z, so it is fixed by T. 

z was arbitrary, whence the action of T is trivial on U. Thus it is trivial 

on U = Gx. Since Y is a component of Gxx T , then Y = G--x- In particular 

x e X G. It remains to prove ~(k*) = {e} . Notice that ~ is a fixed point of 

the action of W on Y(T) . Indeed, for w' EW, w'(~)(t) = w' ~ w(%)(t) = 

w~W 

E w'w(%)(t) = ~(t) . Thus, ~(k*) is contained in the connected component (TW) 0. 
w~W 

of the set of fixed points of the action of W on T. Since G is semisimple, 

then (TW) 0 = P.ad G = {e} by 2, 14.2 . Therefore ~(k*) = {e} and we are done. 

22. Corollary. i If a semisimple group acts nontrivially on a complete variety 

X, then there exist in X nontrivial projective orbits• 

23. Example. (cf i) Assume G is semisimple and there is given a representation 

m I m k m. 
p = O 1 0...0 Pk of G in a vector space V = • V. l where Pi are irreducible 

representations in V. for i = l,...,k. This induces an action of G on ~(V). 
i 

Then, as shows an easy computation, the cells of the decomposition of ~(V) deter- 
m I m i m I ovmi-l) 

mined by this action are of the form ~(V)i= ~(V 1 0...0 V i )- ~(V 1 0... i-i 
ml 

for i = 2,...,k and P(V) 1 = ~(V 1 ) . 
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LINEARIZATION OF REDUCTIVE GROUP ACTIONS 

by 

Mariusz Koras 

The purpose of this paper is to prove the following theorem 

Theorem I. Let G be a connected, reductive, complex Lie group. Let o : G x X ÷ X 

be an analytic action on a compact KNhler manifold X. Then for every point p e X G 

there exist a G-invariant open neighborhood U of p and an analytic isomorphism 

: U ÷ ~(U) c C n such that ~(p) = 0 and ~ is G-equivariant with respect to a 

linear action of G on C n . 

In connection with the above see 3 , 4 where a similar theorem is proved in 

the infinitesimal version. 

Definition i. Let o :G × X ÷ X be a continuous action of a topological group G 

on a topological space X . We say that o has the C-property at a point p EX G 

iff the following condition holds: for every open neighborhood U of p there 

exists an open neighborhood V c U of p such that for every point x e X the set 

{g c G : gx E V} is connected. 

We shall show that this property is equivalent to the linearization of an 

analytic action of a connected reductive group on a complex manifold near a fixed 

point. 

Let G be as in Theorem i. Let Z denote the centre of G and Z the 
o 

connected component of the unit in Z . Z is a torus, i.e. is isomorphic to a 

product C x C x ... x C , and G = Z • P where P is a semisimple, connected 
o 

group. Let K be a maximal, compact• connected subgroup in P . Lie algebras of 

G , P , K ... we shall denote by L(G) , L(P) , L(K) .... Then L(P) = L(K)+iL(K). 

Let T be a maximal torus in G and K I be the maximal, connected, compact, 

commutative subgroup in K contained in T . Let iv e iL(K) . There exists a 

maximal, connected, compact, commutative subgroup of the group K containing exp v. 

This subgroup is conjugate in K with K I . It follows that there exists a ko E K 

such that ko.eX p v.k -I E T . Thus v e L(k-l.T.k ) . Also iv E L(k-l.T.k ) 
o o o o o 

This implies that exp iv c k-l.T.k . It is known that P = K.exp(iL(K)) . There- 
o o 

fore, if g ~ G then g = Zo. p , z ° e Zo ' P ~ P and p = k.exp iw for some k£ K 
I 

and w E L(K) . There exist k E K t ~ T such that exp iw = k~t.k . Thus 
O • ~ O 

g = z .k.k-l.t.k = k.k-l.z .t.k . But Z is contained in every maximal torus 
O O O O O O O 

of G . Thus we have proved the following lemma 

Lemma i. G = K. • k .T.k -1 
koeK o o 

Lemma 2. Let T = C x ... x C be a torus. Let o : T x C n ÷ C n be a linear 
m 
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action (analytic) of T . Then o has the C-property at 0 e C n . 

Proof. Let S = S 1 × x S I be the maximal, connected, compact subgroup of T 

We may assume that T acts diagonally; this means that there exist integers kij 

kll kml kin m kmn. Zn) . Let 
such that (tl,...,tm)-(z I ..... Zn)=(t I ....-t m Zl,... , t I -...-t 

U e = {(Zl,...,Zn) : Izil < e i = l,...,n} Since U is S-invariant it is 
' " E 

enough to show that the set {t ~ R + × ... x R + : tx £ U } is connected for every 
n £ 

x e C n . But this set is equal to the set i=l• {(t.±,.. .,tm) e R +× ... × R+ : 
E t li tm i< which is connected 

Proposition i. Let T be a torus and o :T x X + X be a holomorphic action on a 

X T complex manifold. Assume that o has the C-property at a point p e . Then 

o is linearizable near p i.e. there exists a T-invariant open neighborhood U 

of p and an analytic isomorphism ~ : U + ~(U) c C n such that ~ (p) = 0 and 

C n is T-equivariant with respect to a linear action of T on 

Remark i. Let G be a complex, reductive, connected Lie group and K denote a 

maximal, connected, compact subgroup of G . Let o : G × X ÷ X be an analytic 

action of G on a complex manifold X . Let p E X G be a fixed point of this 

action. It is known (see  3 ,  4 ) that there exists an arbitrarily small open 

K-invariant neighborhood U of p and an analytic coordinate system on U such 

that K acts linearly on U (with respect to these coordinates). 

* , S I S I Proof of Proposition I. Assume T = C × ... x C and S = x ... x c T . It 

follows from the above remark that there exists an open S-invariant neighborhood 

V of p and an analytic isomorphism ~ : V + #(V) c C n such that ~(p) = 0 and 

is S-equivariant with respect to a linear action of S on C n . We may extend 

the action of S on C n to the analytic linear action of T . We may assume that 

each orbit of T intersects the set ~(V) along a connected set (lemma 2). Let 

= ~-i . We extend ~ to ~ : tTT t~(V) ÷ X letting ~(tx) = t~(x) for t £ T 

and x e ~(V) . We must check that this is well defined. Let A = {taT : txe~(V)} 

for fixed x e ~(V) . The set A is connected and contains S . Let us consider 

two analytic maps e,8 : A ÷ X where ~(t) = t~(x) and 8(t) = %(tx) . They are 

equal on S , thus they are equal. It follows easily that ~ is well defined. 

Now choose V 1 c V an open connected neighborhood of p such that the set 

{tat : tx e V I} is connected for every x e X . As above we can extend ~ : V 1 ÷ C n 

to ~ : U tV I + Cn • ~ considered on U t~(Vl) is the inverse map to 
taT taT 

because ~ o ~ = id on ~(VI) . Of course $ is T-invariant. 

Proposition 2. Let G be as in Theorem i. Let o : G x X -~ X be an analytic 

action of G on a complex manifold X. Let T be a maximal torus of G. Assume 



94 

that the induced action of T on X has the C-property at a point p E X G . 

Then o has the C-property at p . 

Proof. Let K be as in Lemma i. For every k e K , let o k : T + Aut X be defined 

by Ok(t)x = o(ktk-l,x) . We shall prove that for every open neighborhood U of p 

there exists a K-invariant open neighborhood V of p such that V c U and for 

every k ¢ K , x ~ X the set {tcT: Ok(t)x c V} is connected. We may assume t~t 

U is K-invariant and there exists an analytic isomorphism ~ : U+~ n , ~(p) = 0 

such that ~ is K-invariant with respect to some linear action at K on C n 

C n (remark i). We may assume that K acts on by isometries and T acts 

diagonally. We may also assume that for every e the set Be= {(Zl,...,Zn) : 

Izil < ~ , i=l ..... n} is contained in ~(u) . Put U n = ~-I(BI) ; U n is K- 

invariant. Let us assume tbmt for every n there exist k ~ K and x e U such 
n n n 

that the set {tET :Okn(t} x n e Un } is disconnected. The action of the torus T 

has the C-property at p , so there exists an open neighborhood W c U of p 

that the set {tET : tx E W } is connected for every x ~ X . As in the proof of 

Proposition 1 the isomorphism ~ :W + ~(W) extends to T-invariant isomorphism 

: U tW + t9 t~(W) . From the proof of Lemma 2 it follows that, for every U c W 
nET nET r~ x 

and x ¢ X, the set (tcT: tx ¢ U k} is connected. Let Ur c W . Put Yr = k . 

Then the set {toT :Okr(t)x r ¢ U r} {t : (krtk-l)xrr e U } = {t :tk-lx ¢ U } = 
r r r r 

{t : ty r E U r} is connected, a contradiction. 

Now let U be an arbitrary open neighborhood of p . Let V c U be a K- 

invariant open neighborhood of p such tPmt for all k E K and all x E X the 

set {tET : ok(t)x e V} is connected. Assume that x E V and gx E V for some 

g ¢ G. Decompose g as g = k.ko.t.k-lo ' k,k ° e K, t E T (lemma i). Since 

kV = V, (ko.t.k~l)x~ = Oko(t)x E V . There exists a path y : <0,I> + T such that 

every r ~ <0,i> (k .y(r).k-l)x- E V . Let ~ : <0,i> ÷ K y(O) l,y (i) t and for 
0 0 

be a path joining 1 with k. Put B(r) = ~(r) .k . y(r) . k -I . Then B(O) = I, 
0 0 

B(1) = g and for every r ~ <0,i> B(r) x c V. It follows that the set 

{gEG : gx ~ V} is connected for every x c X . 

It follows from Proposition 2 and Lemma 2 that every linear action of a 

connected, reductive group on affine space C n Pms the C-property at 0. 

Repeating the proof of Proposition 1 we get the following theorem: 

Theorem 2. Let G be as in Theorem i. Let o : G x X + X be an analytic action 

of G on a complex manifold X. Then o is linearizable in a neighborhood of a 

point p e X G iff it has the C-property at p. 

For the proof of Theorem 1 we need the following theorem due to Frankel. 

Theorem 3 (Frankel 2). Let {~t}t E R be a 1-parameter group of isometries 

acting on a compact manifold X . Let V be the vector field induced by this 
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group. Assume that the zero set of V is nonempty. If m denotes the Kahler form 

on X, then there exists a smooth real function f on X such that i(V)m = df , 

where i(V) denotes the contraction operator induced by V. 

Assume we have an analytic action of C on a compact K~hler manifold X . 

i X C* Assume that the K~hler form on X is S -invariant and # ~ . Then, from 

Frankel's theorem, there exists a corresponding function. Every such function we 

call a Frankel function of this action. It is a very nice (and easy) fact observed 

by Carrell and Sommese i that a Frankel function is strictly increasing along the 

nontrivial orbits of R + c C*. 

Proof of Theorem i. It is enough to show that an action of a torus T on a compact 

• X T K~hler manifold X has the C-property at each fixed point Let p e . Assume 

* * S I S I T = C x ... x C and let S = x ...x . Then L(T) = L(S) + i L(S) . We may 

assume that the Kahler form on X is S-invariant . There exists the 1-1 

correspondence between elements of iL(S) and 1-parameter subgroups y :R+ * T 

defined by y(t) = (tal,...,tam),a. e R . In the following we shall identify an 
i 

element of iL(S) corresponding to y with the sequence A = (al,...,a m) • This 

identification gives an R-isomorphism iL(S) ~ R TM . For A e iL(S) we denote by 

o A the induced action of R + on X • Let fA be the corresponding Frankel 

function, fA is strictly increasing along the nontrivial orbits of the action a A. 

We may choose functions fA ' A e iL(S) in such a way that the function 

f : iL(S) x X + R defined by f(A,x) = fA(x) is smooth. Let U be an S-invariant 

open neighborhood of p and ~ : U ÷ ~(U) c C n be an analytic isomorphism such that 

%(p) = 0 and ~ is S-equivariant with respect to a linear action of S on C n . 

C n We may assume that S acts on by isometries and we may extend this action to 

C n . the linear action of T on We may also assume that the action is diagonal. Thus 

klk 
there exist integers kij such that (tl,"',tm)(Zl,''',z n) = I''', t I ..- " 

t kmi zi,. .) for every (tl, ,t m) e r and (z I ,z n) e C n = m " " ... , . . . .  Let A k 

{z e C n i : Izil <~, i=l ..... n} ° Let If'If : ie(s) ÷ R denote the euclidean norm 

on R TM . We shall prove that for all n there exists a k e n such that for all 

x e X and for all A e ie(s) with IIAII =i , the set {teR+:OA(t)xe~-l(~)} 

is connected. Assume not. Then there exists an n such that for all k e n , 

there exists an x e X and A e if(S) with IIAII = i so that the set {teR + : 

OA(t)xe~-l(Ak)} is disconnected. Thus we obtain sequences (Xk)k> n , (Ak)kan,Xk~X, 

= : e e ie(s) with IIAkl I = i such that the set Dk,xk {teN + OAk(t)x k ~-I(Ak)} 

~ ~ A . Let ak,b k be is disconnected for every k ~ n . We may assume that -l(A ) and the interval 

parameters such that OAk(ak)x k e ~-l(Ak) , OAk(bk)X k e 

Assume that a_ > b_ Set o a x = v ak,b k is not contained in Dk,x~ - . K I k " Ak ( k ) k Jk ' 

and bk/ak = c k. Then Yk e ~-i(~) , o A (ck)Y k c ~- (A k) and the interval 

Ck,l is not contained in Dk,y k = {t~R+~ OAk(t)y k e ~-l(Ak)} . The isomorphism 

has the property that if z , toZ e U and l,t ° belong to the same connected 

component of the set {teT : tz e U} then ~(toZ) = to#(Z). As Dk,y k is disconnected, 



{teR + : OAk(t)y k ~ ~-I(AI)} is disconnected (this follows from the arguments used 

in the proof of L~m~ma 2). Hence, for every k e n there exists a parameter d k £R + 

such that c k < d k < i and OAk(dk)Y k ~ ~-i(~) . Assume that the sequence (dk) 

• dkl o A ÷ o A (d)p = p . But has a limit point d # 0 Let ÷ d . Then dkllYkl 
k I o 

OAkldkllYkl • X-~-I(A! ) for every ~. Therefore p would be in X - ~-i(~) . 

Thus d k ÷ 0 and also c k ÷ 0 . Let q c X - ~-I(A I) be a limit point of the 

sequence OAk(dk)Y k . 

In the product R x R m x X x X x R x X we consider the set {(t,A,x,y,s,z) : 

Y=OA(t)x , z =OA(S)X , 0 < t < s < i} , a semianalytic set. The point 

(0,Ao,p,p,0, q) belongs to the closure of this set. Thus we can reach this point 

from that set with the aid of an R-analytic 

R-analytic curves defined on 0,e : 

such 

(7) 

curve. More precisely, there exist 

(i) t(r) t(0) = 0 t(r) £ R 

(2) A(r) A(0) = A A(r) e R m = iL(S) 
o 

(3) x(r) x(0) = p x(r) E X 

(4) y(r) y(0) = p y(r) e X 

(5) s(r) s(0) = 0 s(r) e R 

(6) z(r) z(0) = q z(r) • X 

that 

0 < t(r) < s(r) < 1 for r > 0 

m 

We have (9) Yi(r) ÷ 0, ~ kji aj < 0, 
j=l 

then 

(8) y(r) = OA(r)(t(r))x(r) , z(r) = OA(r)(S(r))x(r) for r > 0 

It follows from (8) , (4) , (6) that the set {teR+ :OA(r)(t)x(r) £ ~-I(A)is dis- 

connected for r < e' < e . Let p(r) be the right end point of connected component 

of parameter t(r) in the set {teR+ :OA(r)(t)x(r) £ ~-I(A2)} , r < e' Of course 

t(r) < p(r) < I . We introduce analytic coordinates z = (Zl,...,Zn) on ~-I(AI) 

with the aid of ~ . Let A(r) = (al(r) .... am(r)) , A ° = (a I .... ,a m ) . It follows 

from the definition of p(r) that OA(r)(P(r)) x(r) E ~-I(A 2) - ~-I(A 2) . We may 

assume that OA(r)(P(r)) x(r) -> w = (Wl,...,w n) . Notice that 

OA(r)(P(r)) x(r) = OA(r)P(r)/t(rl y(r) = 

 .... p(r)/t(r)klial(r)+...+ kia m(r) " Yi(r) ' "''I 

1 < P(r)/t(r) < i/t(r) and i=l,...,n . If 

m 
.E a.(r) 

  J=Ikji j 0 
Ui(r ) = P(r)/t(r) - Yi(r) ÷ . 

m 
Thus, in this case w. = 0. Assume that ~ k.. a. = 0. If there exists a 

i j=l 3 10 3 

sequence r ÷ 0 such that  k.. a.(r ) -< 0 for every n , then u i (r n) ÷ 0 
n j Jl o 3 n o 
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and w. = 0 again. Assume now that  k a.(r) > 0 for every r . It follows 
i o ~ ~ j Jlo J 

from (4) , (i) that Yi (r) = r "Yi (r) , ~ > 0 , y± (0) # 0 and t(r) = rU.(r) , 
o o o 

~(0) # 0 , u > 0 . Hence, from (9), we obtain 

-Z k.. (r) (r) l = 
u.l (r)< t(r)J Jl°aJ Yi 

o o 

-u Y k.. a.(r) + I -I k.. a.(r) 
j 31 o J 

r ~(r) J if° J Yi (r) + 0 as r -> 0 

I o 

We have again obtained that w. = 0 . Thus we have proved that w. = 0 provided 
i i 

m o 
k..a. -< 0. 

j=l 31j 

Since the action o A satisfies ~A (t)z = t j 31 j for every • ..9 .zi~... 
o o 

z e ~-I(~) it follows that lim o A (t)w = p . Moreover w # p because 
t÷0 o 

w e ~-I(A 2) -~-I(A 2) . It follows that w is not a fixed point of the action o A . 

Since t(r) < p(r) < I , o 

fA(r) °A(r) (t (r)) x(r) I < fA(r)OA(r)(P(r))x(r) < 

< fA(r)(X(r)) . 

Taking the limit as r ÷ 0, we obtain fA (p) -< fA (w) -< fA (p) " Thus fA (w) = 
o o o o 

fA (p) " But this is impossible because fA is strictly increasing along the 
o o 

orbit a A (t)w . It follows that for all n , there exists a k -> n 
o 

such that for all x ~ X and A ~ iL(S) , the set {tcR + : OA(t) xe #-I(~) } is 

connected. 

Assume now that the set teR + : ~A(t) x ~ $-i (Ak)} is connected for every x £ X 

and A e iL(S) . Let x , toX E ~-l(~),to E T . We can find s e S and A~ iL(S) 

such that to = S.aA(t) . The set #-I(~) is S-invariant hence OA(t) xe#-l(~). 

There exists a path ~ : 0,i -> R + such that ~(0) = I , ~(i) = t and 

OA(~(r)) x ~ ~-i (~) for r E 0,i . Let B : 0,I ÷ S be a path joining i with 

s . Take T(r) = B(r)oA(a(r)) . Then ~(0) = i , T(1) = to and T(r)x ~ ~-i(~) 

for every r e 0,I . 

We have proved that for all n , there exists a k >- n so that for all x e X 

the set {ter : tx e ~-l(Ak)} is connected. Q.E.D. 
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HOLOMORPNIC VECTOR FIELDS AND RATIONALITY 

by 

David I. Lieberman* 

Preface. 

This manuscript was written in the fall of 1973. It was not published, since 

the referee pointed out that the main result (rationality of a projective manifold 

having a holomorphic vector field with a generic zer~ could be understood more 

directly by employing techniques from the theory of algebraic groups. I have 

carried out this program subsequently (cf. Proc. Sympos. Pure Math IXXX, p. 273). 

However, the techniques, notably equivariant projection and the theory of substantial 

vector fields, developed in the present manuscript have an independent interest and 

provide a ready reference for the study of equivariant geometry. In view of the 

number of requests I have received for the manuscript and the number of occasions 

it has been cited as an (unpublished) reference, I am pleased to have this oppor- 

tunity to include it in these proceedings. Perhaps it may prove of use in settling 

the still unsolved conjecture that a projective manifold having a holomorphic vector 

field with isolated zeroes is rational. 

Introduction. 

This note is a preliminary study of Carrell's problem: given a compact complex 

space X having a global holomorphic vector field with isolated zeroes determine 
~n 

whether X must be rational (bimeromorphic to ). All spaces studied are 

assumed reduced and irreducible. 

A compact Kahler n-manifold X having a global holomorphic vector field V 

with isolated zeroes is known to be projective algebraic and to have vanishing 

= dim(HO (X irregularity (i.e. HO(x, ~ ) = 0 , ) 5. Moreover, the plurigenera Pr 
n~r 

(~X) )) ,r > 0 , are known to vanish i0. Thus if n= 0 , i or 2 then X is known 

to be rational (cf. also 4). 

One can easily construct examples of non-rational normal surfaces having vector 

fields with isolated zeroes (cf. §2 below). When one resolves the singular points 

on such surfaces the vector field lifts uniquely to the resolution but will have 

non-isolated zeroes. To avoid this disappearance of isolated zeroes of a vector 

field under blowing up we introduce the notion of "generic zero". Namely, given any 

(possibly singular) algebraic variety X and a global holomorphic vector field V 

vanishing at x ~ X , then to say x is generic means roughly that given any 

~ > X obtained by a succession of monoidal transforms such that V lifts to 

*(Sloan Foundation Fellow, partially supported by National Science Foundation 
Grant GP-28323A2.) 
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on X then V has isolated zeroes on ~-l(x) . (In fact these zeroes of V are 

again evidently generic). Our main theorem is 

Theorem i: If X is a projective algebraic variety over C and V is a global 

holomorphic vector field on X having a generic zero, then X is rational. 

As a corollary one obtains 

Theorem 2: If X is a compact Kahler manifold and V is a global holomorphic 

vector field having a generic zero and satisfying dim(zero(V)) ~ i, then X is 

rational. 

This theorem follows from the remark in 5 that such Kahler manifolds are all 

algebraic. The theorems can be immediately generalized to Moisezon spaces by proving 

an equivariant version of the Chow lemma, (a result claimed by Hironaka). 

The study begins by collecting, in §i, the basic results about global vector 

fields and equivariant maps. Given a vector field V on X , a map f :X , Y 

is called V-equivariant if there exists a vector field W on Y so that W= f,(V). 

By abuse of language, if only V (resp. W) is given, f will be called equivariant 

provided some choice of W (resp. V) renders f e~uivariant. Key results of §i 

concern substantial vector fields. Substantiality means the only global meromorphie 

functions annihilated are constants. Every vector field having a generic zero is 

substantial. The property of substantiality is preserved under equivariant bi- 

rational maps, and more importantly if V is substantial on X and f : X ~ Y 

is a V-equivariant rational map with dense image, then f,(V) is substantial on Y . 

In §2 we show that all the standard rational varieties: flag manifolds and 

Grassmanians and products thereof, all carry substantial vector fields and we classify 

the substantial vector fields on ~n . We also exhibit examples of nonrational 

normal surfaces having global (insubstantial) vector fields with isolated zeroes. 

We know of no example of a nonsingular nonrational projective variety having a 

global vector field with only isolated zeroes. 

In §3 we show that every projective variety X of dimension n carrying a 

holomorphic substantial vector field with zero(V) ~ ~ admits an equivariant 

rational map g : X > ~n with dense image. The argument is by induction on n 

and proceeds by equivariantly imbedding X ~ ~N (Blanchard's theorem) and 

employs the technique of equivariant projection. This technique was inspired by 

work of A. Howard 9. 

There exists an invariant hypersurface H~n such that the map X- g-l(H) ----+ 

~n_H is an unramified finite covering (cf. §4). The key argument of the paper is 

to show that the only invariant hypersurfaces in ~n are unions of coordinate 

hyperplanes, which follows from the substantiality of the vector field on ~n , 

(recall the argument of §I). But then X- g-l(H) is a cover of either (a) 
~n 

(if H=~ ) , (b) C n , or (c) ¢*× ... × C*× C k . In cases (a) and (b) the covering 
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is clearly one sheeted and X is rational. In case (c) the covering may have many 

sheets, but the theory of the algebraic ~i (cf. 7) implies X- g-l(H) ~ ~ C*× 
... × ¢* £k 

× (by an algebraic map) and again X is rational. 

The hypotheses of the theorem should clearly be weakened. The characteristic 

0 hypothesis seems essential only for the application of Hironaka's work. The 

substantiality hypothesis (i.e. generic zeroes) is only essential in §4 where it 

is employed to restrict the nature of the "branch locus" H . Various other hypo- 

theses (e.g. H0(X,@) ~ 0 and H0(X,~ I) = 0) would suffice to find the equivariant 

rational g : X > ~n by induction. A more careful analysis of hypotheses needed 

to restrict the nature of H is clearly required. 

The problem of studying the relationship of existence of isolated zeroes of 

vector fields and rationality questions was proposed by J. Carrell to the author. 

After several unsuccessful joint attempts on the problem by rather different tech- 

niques, we set it aside. The author owes both his interest in the problem and his 

knowledge of basic techniques to the stimulating collaboration with Carrell at 

Purdue. Theorems i.i- 1.6 were obtained jointly. The present work would not have 

been possible without Hironaka's gracious explanations of his recent, as yet 

unpublished works. Thanks are also due W. Messing for a willing ear and for his 

commuter course on 
i " 

§i. Equivariant maps. 

Given a complex space X and VeH0(X,@), 

then general holomorphic maps f : X ----+ Y or 

a global holomorphic vector fiel~ 

g : Y ~ X will not be equivariant, 

i.e. V will not push forward with f or lift with g . For example, a subvariety Z 

of X is equivariantly embedded only if V is tangent to Z . Such subvarieties 

are said to be invariant. We fix X and V for our discussion of several important 

special cases where maps may be shown to be equivariant. 

Theorem i.i: Given f : X - > Y a surjective proper map with connected fibers 

then f is equivariant, provided Y is normal, or f is smooth. 

~ :  The hypotheses on f guarantee that f,(0X) = 0y . In fact the injectivity 

of the natural map follows from the surjectivity of f . Surjectivity follows by 

observing that a function g on X holomorphic on a neighborhood of the fibre is 

necessarily constant on the compact connected fibres and hence defines a continuous 

function ~ on Y . This function is holomorphic on any Zariski open set U where 

f admits a local section. If Y is normal, g is holomorphic since it is clearly 

weakly holomorphic. Since derivations of 0 X define derivations of f,O X = 0y , 

we see that vector fields descend. 

As a particular corollary of the preceding, if X ~ Y is a fibre bundle with 

fibre ~n , then every vector field on X descends to Y . Conversely, given a 

vector bundle of rank n+l , E > Y with X----+ Y the associated projective 

bundle, the problem of lifting vector fields W from Y to X may be solved as 
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follows. Cover Y by open sets U ° ~ o over which E -----+ £nx U s . Let x~ ... x n be 

the corresponding local dual basis of E* . Holomorphic vector fields on ~n lift 

to certain fields on @n , namely the derivations on Cx0,...,x n which preserve 

the degree of all polynomials, i.e. ~ cij x.j~x i , and are specificable bysthe 

induced C-linear map x i ) E cij xj . Derivations of the form c E xi ~x i descend 

to the trivial field on n (Euler's formula). Noting that @~nxu ~=@~n ~@U s , 

one sees that derivations on ~nx U °lifting W are of the form (g,x~) > W(g)x~+ 

g E fij xuj where g ' fij E F(U~ 0) , i.e. the derivations are specified by giving a 

@-linear D : F(U~,E *) -----+ F(U°,E *) which satisfies D o(go) =W(g) a+gD (o) for 

g£F(UU,0) , oeF(U~,E *) , with D and D' giving the same derivation on ~nxu~ 
o o 

if and only if (D - Do) (x) = f x9 for some f ~ £(U~,0) . Note that in general the 
1 

difference of two derivations D D' both lifting W is determined by a linear 

map E* -----+ E* . Given a collection of derivations D on U lifting W , they 
o o 

yield a global lift of W if and only if D B-D : E* -----+ E* is an 0UO 
o n UB 

multiple of the identity. The existence of such a global lifting is obstructed 

precisely by D B-D ° c HI(y,Hom(E*,E*)/0y) . Recall the Atiyah-Chern class i 

C(E*) e HI(y , Hom(E*,E*) ~i) which obstructs the construction of a D : E* + ~I®E, 

satisfying D(fo)= df ~G+fD(o) . Given such a D , one may define D : E* -----+ E* 

by D=i(W) oD where i(W) : ~iy ~ 0y is contraction and D(f o) =W(f) o+fD(o) is 

then a lift of W . Thus one obtains 

Theorem 1.2: The vector field W on Y lifts to ~(E) -----+ Y if and only if 

i(W)(C(E)) = OcHI(y , Hom(E*,E*)/0) , where C(E*) c HI(y , Hom(E*,E*) ~i) is the 

Atiyah Chern class. 

The lifting is always possible provided E is a direct sum of line bundles, 

and zero(W) #~ . This follows from 1.5, and the additivity of C(E) . (Compare 

i0, pp. 109-110). 

Remark 1.3: Note that the construction of a global C-linear D : E > E satisfying 

D(fo) =W(f) o+ fD(o) is obstructed precisely by i(W)C(E) e HI(y , Hom(E,E)) . The 

vanishing of this class is necessary and sufficient for W to lift to E* -- > Y 

in such a way that it descends to ~(E*) ~ Y . The real importance of this 

obstruction lies in another direction. Given a "W-connection" D : E - > E as above, 

assume moreover that the global sections of E span the fibre of E at at least 

one point (and hence actually on an open set U ). The map H0(U,E) x U ~ EIU 

defines a varying n+l quotient of the N+I dimensional space HO(u,E) , i.e. 

a holomorphic map U ~ Grass (n,N) . The "W-connection" D gives rise to a 

global vector field on Grass (n,N) , which is tangent to the image of U , and 

induces W on U . Hence the pair (E,D) defines an e_e_quivariant rational map 

Y " + Grass (n,N) . We consider explicitly the case where E is a line bundle. 

Letting o0,...,o N be a basis for H0(y,E) the rational map Y ~ ~N is defined 

by y ~ (o0(y),...,ON(Y)). Thus the o. are the restrictions to Y of the 
1 
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H0(y,E) ~ H0(y,E),~ i 

~n. The function 

homogeneous coordinates x i . D induces a C-linear map 

I C.l]. o.] , which yields the vector field D= I cij xj ~ on 

x./x. restricts to f=o./o, on Y , i.e. o. = fo. so that 
J 1 j 1 3 1 

Dfq ~ -Oj D(~ i) 
or rewriting ~ J'~i 2 =W(f) . But the left hand term is D(xj/xi) on 

l 

Y , as asserted. Consequently, 

Theorem 1.4: Given a line bundle L > X and given V£ H0(X,8) , if C(L)~ HI(x,~ I) 

is annihilated by i(V) : HI(x,~ I) > HI(x,0), then L defines an equivariant 

rational map X ~ ]pN , N= dim H0(X,L) Conversely, given that L defines an 

equivariant map and that the map is globally defined then i(V) (C(L)) = 0 . 

Proof: The first assertion is proven above. Conversely, if f : X > ]pN is 

globally defined with f,(V) =V' , then, since the sheaf of sections _L of L is 

f*(0(1)) , we see that i(V)C(L) = f*(i(V') C(0(1)))= 0 , since H 1 (]pN,0)= 0 . 

Characteristic zero hypotheses were unnecessary for the preceding results. 

The next theorem, which gives a simple criterion for i(V) C(L)= 0 , requires in 

its proof the "Hard Lefschetz" result ]Ln-I:HI(x,0) - > Hn(x,~ n-l) (for X a 

Kahler n-manifold, and ]L c HI(x,~ I) the fundamental class). 

Theorem 1.5: (Generalizes Matsushima [12], Lichnerowicz [ii]): Given a compact 

Kahler n-manifold X and a V e H0(X,@) , the following properties are all equi- 

zero(V) # 

i(V) : H0(X,~ I) ÷ H0(X,0) is zero 

i(V) :Hn(X,~ n) ~ Hn(X,~ n-l) is zero 

i(V) : HI(x,~ I) ..... > HI(x,0) is zero 

i(V)(~) = 0 where ~eHI(x,~ I) is the Kahler class 

valent: 

(a) 

(b) 

(c) 

(d) 

(e) 

D(oj) =W(f)q i+fD(oi) 

e > a If i(V)(~) = 0 then also denoting by • a closed (i,I) form repres- 

enting • , i(V)(~) =3f for some function f . Hence (i(V) +~)(~- f) = 0 , 

and (i(V) +~)((~- f)n= 0 . Consider the double complex E p'q of global C ~ forms 

with total differential i(V) +~ , where i(V) : E p'q ~ E p-l'q and ~ : E p'q 

E p'q+l The form (~_ f)n is a cycle. If zero(V) =@ then the rows i(V) : . 

E p'q ' E p-l'q > ... are exact (fixing I e E I'0 such that i(V)(X) = i , 

wedge product with 1 defines a homotopy for i(V)). It follows that (~_ f)n= 

i(V) +~)(~) for some ~ . But then necessarily ~n=~ (~n,n_l) and this contra- 

ducta ~n # 0 ~ Hn(~ n) . 

c > d It suffices to show c ~ e , since c does not depend on the choice 

.Proof: a-----+ b for ¢ eH0(~ I) , i(V)(¢) 

constant, and vanishes on zero (V). 

b ~ c Serre duality 

d ÷ e trivial 

is a global holomorphic function, hence 
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of Kahler class ~ , and any element of HI(x,~ I) is a linear combination of Kahler 

classes. Now ~n~ Hn(~n) hence O= i(V) ~n=n~n-i (i(V) ~) . Since L n-I : 

HI(x,0) ~ + Hn(x,~ n-l) , O= i(V)(~) as required. 

It was shown in 5 that zero(V) #~ if and only iff i(V) :HP(~ q) > HP(~ q-l) 

is zero for all values of p and q . 

For any complex space X , let @o(X) denote the set of vector fields V with 

zero(V) # @ . 

Corollary 1.6: If HI(x,0) = 0 , then H0(X,O) = 0 0 , for X a Kahler manifold. 

Corollary 1.7: (Borel-Sommese 16). Given X a Kahler manifold, Ve O0(X) and 

Y an invariant subvariety, then Viye @0(Y) . 

Proof: One may assume Y nonsingular since Sing(Y) , Sing(Sing(Y)) , are invariant 

and the last stratum is nonsingular. Under f : Y > X one has f*(~) is a Kahler 

class on Y and the result follows by a > d on X and d ~ a on Y . 

Theorem 1.8: generalizes Blanchard 2). If X is a Kahler manifold, or a normal 

projective variety and L ~ X is a line bundle then the rational map X 

• (H0(L) *) is 0 0 equivariant. 

Proof: For X a manifold this follows from 1.4, 1.5. For X normal, let f : 

be an equivariant resolution of X (i.e. all vector fields lift, cf. 1.12 below). 

For any V~ 0 0 its lift V will be in @0(X) (cf. lemma 1.13, below). Then the 

commutative diagram 

HI(~) i(V) HI(0^) 

X 

T 
HI(~I) i(V) HI(0x ) 

completes the proof once one observes that i(V) = 0 , by 1.5 and that f* : HI(0x ) 

HI(0^) is injective. This latter follows from the Leray spectral sequence, and the 
X 

remark that f,(0~) = 0 X since X is normal. 

The theorem may fail if X is not normal, for example if X is the nodal curve 

obtained by identifying 0 and ~ in 1 G 0= C acts nontrivially on Pic(X) 

The main theorem in the nonnormal case is: 

Theorem 1.9: (cf. Siedenberg 14): Given X a complex space and f : X ~ X 

its normalization. Then all vector fields on X lift to X and 0 0 lifts to 9 0 D 

Proof: Characteristic zero is essential for the theorem 14. The simplest proof is 

to observe that a vector field V on X integrates to give a 1-parameter family of 

local automorphisms of X . Since X is functorial in X , the family lifts to a 

1-parameter family on X . Moreover zeroes of V correspond to fixed points of the 

flow. The fibre over any fixed point is mapped to itself. The fibre is therefore 

pointwise fixed since it is discrete and the maps are homotopic to the identity. 
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Theorem i.i0: Let X be a complex space, V ~ HO(x,@) and let Z c X be a V- 

invariant subvariety. If ~ : X-- ~ X is the monoidal transform centered at Z , 

then V lifts uniquely to Vc HO(x,@). If V~ @o(X) then V~ @0(X) • 

Proof: Viewing V as a derivation V : 0X-----~ 0 X and letting I Z ~ 0 X be the 

sheaf of ideals defining Z , we may express the invariance of Z by V(I Z) ~ I Z • 
; n 

Consequently V(I ) $ I Z for all n . Hence V gives rise uniquely to grading 

preserving derivation of the sheaf of rings A= 0 Xel el 2 • ...... Since X=Proj(A) 

the result follows. For a more explicit local construction of V , useful in the 

sequel, proceed as follows. Let fo,.,.,fr be local generators for I Z over U~X . 

Then U= n-l(u) is the Zariski closure in U × ~r of the subvariety of (U - Z) x ~r 

defined by X ifj -Xj fi= 0 where XO,...,X r are homogeneous coordinates on ~r . 

Since Z is invariant, V(fi) $ Z aij fj for suitable functions ^aij • Consider the 

vector field V=V+Z ark Xk ~ on U× ~r . ~ is tangent to U since 

V(Xifj-X j fi) =Xi V(fj)-Xj V(fi)+~aik ~ fj-~ ajkX k fi 

=~ ajkfkXi-~ aik fkXj + ~ aikXk fj- ~ ajkXkf i 

= I ajk (fk Xi - Xk fi ) +  aik (~ fj - fk Xj ) . 
k 

The restriction of V to 0 is the required lift. 

If x eU is a zero of V , the vector field V on U× ~r is tangent to 

{x}× ~r and to the subvariety 0n {x} × ~r .Moreover V has a zero on 0 n{X} × ~r by 1.7. 

~r 
Remark: Given a vector field W = ~ cij Xi~ " on , its zeroes occur precisely 

at points of C r+l where W is proportiona~ to the vector field Z Xj ~ , i.e. 

~--~--= % Z a.~ for suitable ~ , 
the points (a 0 ..... a r) for which i~ cij ai ~Xj J ~heJzeroes are isolated if 
that is (a0,...,a r) is an eigen-vector for (cij) . 

and only if (cij) has precisely one eigen-vector for each eigen-value, e.g. if 

there are r + 1 distinct eigen-values. In particular in the preceding proof we 
~r 

noted that at a zero x e X of V the induced vector field on x {x} is given 

by the matrix a..(x) • The vector field on 0 will have only isolated zeroes over 
z3 

x if x itself is isolated and if moreover the matrix a..(x) has distinct eigen- 
x 

values. This may be given an intrinsic interpretation, namely choose f0,...,fr so 

that their images give a basis for I/M~ I (where I is the ideal of Z and M x 

the ideal functions vanishing at x ). Since V vanishes at x , V(0x) ! M x and 
n it follows readily that V(M ) ~M n • In particular V defines a natural linear 

^ x x 2 

transformation L(V) : M /M z ~ M/M • The restriction of this transformation to 
xx ~ 

I/Mx'l has the matrix aij(x) .. Thus, if the eigen-values of L(V) are distinct, 

those of a..(x) are. Moreover, x is an isolated fixed point itself, if L(V) has 
13 

no zero eigen-value. Indeed, if x is not isolated, and W is locus of zeroes of 

V then L(V) is zero on the cotangent space to x in W . 
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In the sequel we shall need to ensure that an isolated zero remains isolated 

under successive monoidal transforms. We have seen that given a monoidal transform 

~ X then we may ensure that over a zero x of V the zeroes of its lift 

will be isolated by assuming that L(V) has distinct non zero eigen-values. We 

seek to determine the eigen-values of L(V) at one of these isolated zeroes. One 

may assume f0 "'''f chosen so that their images in I/M -I form a basis of ei~en- 
' r x 

vectors and extend this basis by fr+l "'" fn yielding an eigen-basis for M /M 2 
x x 

with corresponding eigen-values %0'''''%n " We investigate the eigen-values at 

x = (i,0,...,0)E . At this point the functions f0 ' fr+l ' "'" ' fn and xi=Xi/X 0 

generate M/M 2 and fi = xi f0 E M 2 , for i= i , .... , r Note that 

~(xi) " (~(xi)x0 - ~(x0)xi)/x20 = ~ixix01 - ~0xix01 = (~i - ~0)xi " 

Hence the eigen-values are (%0 ' %r+l ' "'" ' %n ' %1-%0 ' "'" ' %r-%0 ) " Note that if 

the eigen-values %0 ' "'" ' %n are linearly independent over Z then the resulting 

eigen-values are linearly independent (and, in particular, distinct). Moreover, 

under any succession of monoidal transforms this independence (and hence distinctness) 

will be preserved. This motivates 

Definition: A zero x6 X of the vector field V will be called generic if the 

e i g e n - v a l u e s  of  L(V) :M /M 2 + M /M 2 a r e  l i n e a r l y  i n d e p e n d e n t  o v e r  Z 
X X X X 

We have observed 

Proposition i.ii: If x • X is a generic zero of V , and if z : X > X is a 

composition of equivariant monoidal transformations then every zero of V on ~-l(x) 

is isolated, and generic. 

This notion of generic zero goes back essentially to Poincar~ 13 and the 

following remark is derived from his thesis. 

Remark: Let x • X be a generic zero of V c H0(X,@); then X is nonsingular at x 

and one may choose "formal" local coordinates x i , i = i , ... , n at x so that 
a 

V = E %ix'~ , where %. are the eigen-values of (V) at x . 
i ~x. l 

i 
Any surface may he resolved by a succession of (a) normalizations and (h) monoidal 

transfornmtions at isolated singular points. Consequently, every surface X (char. O) 

has an equivariant resolution ~ : X ~ X , (i.e. all vector fields lift from X 

to X , cf. 3). This follows immediately from Theorems 1.9 , i.i0 and the remark 

that in char. 0 every isolated singular point is automatically invariant (a fact which 

is readily seen to he false in general for char. p). This result has been vastly 

generalized by the following, soon to he published, result of Hironaka, of. 8. 

Theorem 1.12: Given a compact complex space X , there exists a sequence X=X ) 
n 

Xn_ I ~... ) XI -----~ X 0 = X with X nonsingular and Xi+ 1 ) X i a monoidal 

transformation with nonsingular center Z i which is invariant under all vector fields 

V on X i which descend to X 0 = X . Hence X ~ X is equivariant with respect 
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to H0(X,@) . 

Remark: If X is normal then every vector field on X (and on any of the Xj) 

descends to X (Theorem i.i). In this case the monoidal transformations Xi+ I 

are strictly equivariant, i.e. H0(Xi+I,@) ~ ~ H0(Xi,@) . If X is not normal, it 

X. 
l 

is in general impossible to resolve in a strictly equivariant manner. 

Lem~a 1.13: Let X ~ X be an equivariant resolution of singularities. If 

V c @0(X) then V c @0(X) , in fact V has a zero lying over every zero of V . If 

V has a generic zero, so does V . 

Proof: The result follows from i.i0, I.ii, 1.12. 

In our initial study of generic zeroes we employed the following 

Conjecture: Given V£ H0(X,@) and x~ X a generic zero of V , let f : X ~Y 

be a surjective, V-equivariant map with y = f(x) a simple point of Y . Then y is 

a generic zero of f,(V) . 

This would follow from the assertion that if 0 ~ 0 is an injective map 
y x 

of convergent power series rings, then the induced mapping on formal power series is 

also injective. Counterexamples to this general assertion have been obtained by 

Gabrielov. 

To avoid this difficulty we introduce a larger class of vector field. 

Definition: Given V~ H0(X,@) , a point x~ X will be said to be substantiating 

for V if for any f , g ~ 0 X , the vanishing of the Wronskian W(f,g) =V(f)g- fV(g) 

implies that f and g are @-linearly dependent. V will be called substantial if 

it has a substantiating point. 

Note that on a complex analytic manifold X , if V(x) @ 0 then x is never 

substantiating (unless dimX = i in which case all points are substantiating if V ~ 0). 

An easy calculation shows that if x is a generic zero of V , then it is substan- 

tiating. 

Lemma 1.14: Given an algebraic variety X and V £ H0(X,@) , if V is substantial 

then every point of X is substantiating, i.e. V is substantial if and only if it 

induces a substantial derivation of the field of global meromorphic functions. 

Proof: Assume x is substantial for V . Consider the derivation V induced on 

k(X) = the field of global meromorphic functions. Given f,ge k(X) choose a,b,c ~ 0 
x 

such that f=~ ' g=~c " Note that W(f,g) =~2 W(a,b) , hence if 0=W(f,g) it 

follows that a and b are @-linearly dependent (and therefore so are f and g). 

The result follows by noting that every local ring is a subring of k(X) 

Corollary 1.15: Suppose given V ~ H0(X,@) and f : X ÷ Y a rational V-equivariant 

map with dense image. If V is substantial on X , then f,(V) is substantial on 

Y . If f is birational, then V is substantial if and only if f,(V) is. 

Proof: f induces an injection k(Y) > k(X) , which is an isomorphism if f 
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is birational. 

Note that in general the algebraic local ring at a point x is a subring of 

the analytic local ring. Hence any algebraic vector field which is analytically 

substantial at x , is algebraically substantial. The converse is false, as may be 

seen by regarding a vector field on an n-torus whose integral curves are dense. This 

field is algebraically substantial, but for n e 2 is not analytically substantial. 

Problem: If V is an analytic vector field substantial at x , and V(x) = 0 , does 

it follow that x is an isolated zero of V ? 

The following remarks about derivations of k(X) are not used in the sequel, 

but serve to clarify the notion of substantiality. Given D : k(x) ~ k(X) a 

C-linear derivation, denote by G the set of eigen-values of D , i.e. I e C such 

that D(f) = If for some f # 0 . One shows readily that G is a free abelian group 

of rank~ tr deg (k(X)) where N~k(X) is the subfield of D-invariants. In 

particular rank(G) ~ dim(X) , and equality can hold only if D is substantial. (The 
d 

converse is in general false, i.e. dxx on C(x) is substantial and has G = {0} , 

or more pathologically consider the derivation given by a skew vector field on the 

torus). Note that k(X) admits substantial derivations with rank(G) =dim(X) , 

obtained by making the elements of a separating transcendence basis the eigen- 

functions and extending uniquely to k(X) . 

Our results imply that if k(X) has a nonsingular projective model for which 

such a D is holomorphic, and vanishes somewhere, then k(X) is a purely trans- 

cendental extension of C . 

§2. Remarks on substantial vector fields. 

(a) Examples of substantial vector fields. 

Fixing I0,...,I ne¢ which are linearly independent over ~ , the vector field 
n 

E liXi ~-~ ' is substantial on • (in fact its zeroes are all generic). Similarly, 
i 

consider the variety Grass(r,N) of r planes in cN . The r planes near a 

given r plane P may be coordinatized by the (r x N - r) matrices ((aij)) 
N 

where v ,...,v give a basis for ¢ with the first r giving a basis for P 
1 N 

N r or the lane corres ondln to a and v + E a v give a basis f p p " g (( o.)) • 
i i=l ij j*r iJ t'-. 

Picking independent I.. , one may extend the one parameter family a°° ~ e AIj 
lj lj fN~ -i aij 

to a one parameter family of collineations of the Plucker coordinate space ~rJ 

which leave Grass(r,N) invariant. The corresponding vector field on Grass(r,N) 

is substantial (having again, generic zeroes). Similar constructions may be employed 

for flag manifolds. Moreover, if X,V (resp. Y,W) are two spaces having vector 

fields with generic zeroes at x , (resp. y) then (V,~'S) will have a generic zero 

at (x,y) ~ X × Y provided y e ¢ is sufficiently general. Hence, the standard homo- 

geneous rational varieties all admit substantial (even generic) vector fields. 
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pn 
(b) Classification of all substantial vector fields on . 

3 pn . By a linear change Consider the global vector field V = E aii X i ~ on 

of coordinates, we may assume that the matrix A = ((aij)) is in Jordan normal form 

with the largest Jordan block being in the upper-left corner. Moreover, subtracting 

a multiple of E X i ~ , one may assume that the eigen-value for this Jordan block 
.t 

is zero. Let hI'''''%k be the eigen-values corresponding to the other Jordan 

blocks. 

Proposition 2.1: Such a vector field V~ H0(pn,@) is substantial if and only if 

the largest Jordan block is at most 2 × 2 , the Jordan blocks corresponding to the 

~. are i × i and the %. are linearly independent over Z (in particular each 
i I 

eigen-value has only one Jordan block). 

Proof: Assume V is substantial. Suppose the largest Jordan block is (r+l) × (r+l). 

We have assumed that such a block corresponds to the variables X0,...,X r and has 

eigen-value 0 . Hence V(X r )  = 0 , V(Xr_  1) = X r a n d  V(Xr_ 2) = X r _  1 . L e t t i n g  
2 

x. =X./X we see that V(Xr_ I) = i and V(Xr_ 2) =Xr_ I whence V(2Xr_ 2-xr_ I) = 0 l 1 r ' ' " 
2 

But 2Xr_ 2 -Xr_ 1 is clearly a non-constant meromorphic function on pn if r > 2 

Since V is substantial, r_< 1 . Assuming r = 1 , we let y= Xo/X 1 and note that 

V(y) = 1 . Suppose there is another 2x2 Jordan block, i.e. V(Xi+l)= IXi+ 1 and V(Xi)= 

IX i+ Xi+ 1 . Then V(Xi/Xi+l) = 1 . Hence V(y-Xi/Xi+l) = 0 and V is not substantial t 

Thus there is at most one 2×2 block. Let x. = X.+~/X~ , so that V(xj) = l.xj3 " Note 
T T j J ± 

t h a t  i f  I = ( i l , . . . , i  k)  t hen  V ( x ~ ) = ( l . ~ ) x  ~ w h e r e l ' X = E  i . ~ . .  I f  t h e  X. a r e  Z -  
3 J J 

dependen t ,  i . e .  f o r  s o m e l  , I . ~  =0 , t hen  V (x  I )  = 0 c o n t r a d i c t i n g  t h e s u b s t a n t i a l i t y o f  V . 

C o n v e r s e l y ,  assuming a t  most one 2 x 2 J o r d a n  b l o c k  and ~ - i n d e p e n d e n c e  o f  t h e  

h i we v e r i f y  s u b s t a n t i a l i t y  by i n d u c t i o n  on n . For  n =  1 a l l  v e c t o r  f i e l d s  a r e  

s u b s t a n t i a l .  

Assume there is a 2x 2 Jordan block, and fixing y,x i , satisfying V(y) = 

i, V(x i) = h ix i , as above, we verify substantiality of V on R = ¢Y,Xl,...,Xn_l. 

(The case of i × i Jordan blocks is handled below). 
i 

Assume O#F , G~ R and W(F,G) = 0 • Expand as polynomials F = E fiy ' 

G= E gi yj where fi ' gi e ~Xl'''''Xk and let r (resp. s) be the y degree of 

F (resp. G). We may assume r_> s and obtain strict inequality by subtracting a 

constant multiple of F from G . We must show G = 0 . Now 

O=W(F,G) = ~ W(fi,gj) Y i+j+ ~ (i-3) figj Y l+j-I 
i,j i,j 

Therefore W(fr,gs)=O , (it is the highest coefficient). But then gr s-kfres-± (by 

induction) and clearly k# 0 , assuming G# 0 . The coefficient of y 

O =W(fr,gs_ I) +W(fr_l,g s) + (r-S)frg s 

Noting that W(fr_l,gs) =W(fr_l,kfr) =-W(fr,kfr_l) and W(fr,gs_l) -W(fr,kfr_ I) = 

W(fr,gs_ l-kfr_l) =-W(gs_ l-kfr_ I , fr ) , we may rewrite the equation as 
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k(r- s)f~ =w(gs_ l-kfr_ I , fr ) . 

However, we will show that the equation 

(*) nb2 = W(a,b) 

has no solution with a,b• CXl,...,x k , n• C and b,h#0 . It follows that 

G = 0 in the preceding. 
I J I+J 

Let a = laix and b = Ebjx so that W(a,b)=E(I-J)'%albjX We 

lexicographically order the multi-indices I = (il,...,i k) by I < I' if i k= i~ 

for k<t and it <i' . Note that if I<I' and J-<J' then I+J< I'+J' 
t 

I 
The leading coefficient Pi0 of a polynomial E PI x is that PI ~ 0 for which I 

is minimal. 

Let aT (resp. b T ) be the leading coefficient of a (resp. b). The leading 

coefficient±Of W(a,b)i0~b 2 is either ~b2 0 if J0-<I0 , or (I0-J0)'~ai0bj0 

if J0 > I0 " If n¢ 0 then this leading coefficient is clearly nonzero (recalling 

the Z-independence of %i ) ' and the equation (*) cannot be solved. 

Note moreover that the only solutions of W(a,b) = 0 are of the form b=ka . 

Indeed, the leading coefficient of W(a,b) will be (I 0- J0)-%ai0bJ0 unless 

I0= J0 " However, by subtracting a constant multiple ka from b one may assume 

I0#J 0 ,and thus one concludes that W(a,b) =0 implies b=ka . This last remark 

yields the proof for the case where all Jordan blocks are ix 1 and completes the 

proof of the proposition. 

The following discussion of the homogeneous eigen-functions of V acting on 

CX0,...,Xn is useful in the sequel. We assume V is substantial. 

Case i: V= E %iXi~ with %0= 0 and %1 ' "'" ' %n Z-independent. The homo- 

geneous eigen-functions are precisely the monomials. X I has eigen-value I'% . 

Indeed, let F(X0,...,X n) # 0 be homogeneous of degree d with V(F) =q F . Let 

f(xl,..,x n) = F/X d Then V(f) =h f • Expanding f = E fI xI ' then letting 

%= (%l,...,%n) we have 

V(f) = E fl(l'l) x I = E nf I x I 

and clearly (h- (l-%))fl= 0 . If fl#0 , n=l.% . Since I.%~J.% for l#J 

there is at most one fI # 0 . 

___Case _2: V= Ei %iXi-~X" + X.i~x~ with %0= %1 = 0 and ~2 ' "'" ' %n H-independent. 
• l . u xl The homogeneous emgen-functlons are precisely the monomials , where I = (0, 

i I , ... , i n ) and I.% is the eigen-value. 

Indeed, letting Y=X0/X I and x i= Xi/X I i = 2 , ... , n , then given F(X 0 , ... , X n) 

of degree d with V(F) = hF form f(y,x 2 , ... , Xn) =F/X~ ; V(f) = ~f . Expand 
i 

f= E fi y where fi • Cx2 ' "'" ' Xn " Comparing coefficients in 

V(fi)yi+ E i fi yi-l= E nfi yi 
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I 
one finds V(fr)=~f where r is the y degree of f . By case i, f =c x 

r r r 
for some I= (i 2 , .... in) and ~ = I-% 

r-i 
Examining the coefficient of X I in the coefficients for y in our equation, 

one finds 

(I'X)Cr_ l+rc r= (I'%) Cr_ 1 

and necessarily r = 0 , i.e. f is independent of y . Thus 

Remark 2.2: If V is substantial, the only homogeneous eigen-functions are monomials° 

Moreover, the group of eigen-values of V on k(~ n) is the free group with basis 

the nonzero eigen-values of the matrix of V • 

(c) Examples of nonrational surfaces 

Let X be a projective algebraic variety of dimension 2, and let V~ H0(X,@) 

have only isolated zeroes. By successively normalizing and blowing up singular 

points of X one obtains f : X * X and V~ H0(X,@) with f,(V) =V , and with 

a nonsingular projective algebraic variety. Moreover, V has (not necessarily 

isolated) zeroes on X , cf. ..13. Note that X is birational to a ruled surface 

since all plurigenera of X vanish (I0). This may be seen more directly. 

Assuming X is not rational, we know the zeroes of V are not isolated and moreover 

that dim(Alb(X)) = dim H0(X,~ I) # 0 (since otherwise the vanishing of P2 implies 

rationality). The image C of X------+ AIb(X) is necessarily i dimensional, since 

H0(X,~ 2) = 0 . C is a nonsingular curve of genus el (cf. 15 p. 54). 

Since V has zeroes, (V,~) = 0 for all ¢ e H0(X,~ I) so that f : X -----+ AIb(x) 

is equivariant with f,(V) ~ 0 . Thus V is tangent to all the fibres of f , and 

hence by Borel-Sommese has a zero on each component of each fibre (cf. 16). 

cannot vanish identically on any fibre, since a fibre has self intersection zero, 

hence is not collapsed under X----+ X and on X the zeroes of V are isolated. 

Similarly, if X is chosen to be a minimal resolution, V will not vanish on any 

component of any fibre. Since the components of the fibre are curves admitting a 

nontrivial vector field with isolated zeroes they are all rational, i.e. X is 

clearly ruled and the zeroes of V are curves transverse to the fibres. 

One can easily make examples of such X and X . Namely let Y = 1 x C , where 

g(C) e 1 . Consider the vector field W = ((g ~) , 0) with % ~ 0 , which is "tangent 

to the fibres". The zeroes of W are C I= (i,0) × C and C 2= (0,i) × C ° These 

varieties have self intersection zero. Let X be obtained from Y by blowing up 

one point on each C. , and let V be the lift of W • The zeroes of V are the 
i 

proper transforms C'I of C.l and two other isolated points. Since (Ci,Ci) =-I 

one may blow down the C. to obtain X and V . 
i 

§3. Equivariant_projectio~s. The induction step. 

In the following sections we prove by induction on n=dimX that if X is a 
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complex projective algebraic variety and V e H0(X,0) is substantial on X and 

zero (V) #~ , then there is an equivariant birational map X ~ ~n . 

Remarks: The assumption zero(V) #~ is necessary since any vector field W on ~n 

has zeroes, and hence given ~n > X equivariant, rational one employs Hironaka's 

results to find Y ~ ~n by a sequence of equivariant monoidal transformations so 

that f : Y + X is equivariant and holomorphic. The lift Q of W to Y has 

zeroes (1.13) and hence f,(Q) has zeroes on X . Moreover, the hypothesis is 

needed to rule out various examples, e.g. skew vector fields on abelian varieties. 

The hypothesis that V be holomorphic is immaterial, but is employed to eliminate 

a multitude of counter-examples e.g. any X admits a meromorphic V satisfying the 

other hypotheses. A more detailed study of the admissible polar loci is currently 

being carried out. The projective hypothesis may be replaced by "complete" by 

noting that the standard proof of the Chow lemma is equivariant. Completeness 

again is only essential to avoid poles of V "hidden at ~ " 

We may clearly assume X is normal, replacing X if necessary by its normal- 

ization and lifting V (cf. 1.9). 

Hence we may imbed X equivariantly in ~N (1.8). Let W be the corresponding 
~N ~N 

vector field on and let p E be a zero of W . The projection from p 

~N > ~N-I is W equivariant. (Selecting coordinates so that p = (0,...,0,i) 

the projection~ is (a0,...,aN) ----* (~0,...,aN_l) but since p is a zero for 

W= ij E cij Xj ~i ' i.e. Ecin~ i i  =%~ , we see that C.in=0 for i<n and hence 

W yields a well defined vector field W 1 on ~N-I). Denote by X 1 the closure 

of the image of X in ~N-I . W 1 is tangent to X 1 . Note that either dim(X I) =n 

or dim(X I) = n - 1 and this second case can only arise if every line through p 

meeting X in a point q#p lies entirely in X . If dimX l=n , project equi- 

variantly from Pl' ~N-I > ~N-2 obtaining X 2 and W 2 and continue in this 

manner until dim(X r) = n - 1 (while dim(Xr_ 1 = n ) . This will surely occur for 
Q 

r ~ N - n + 1 . 

Note that the vector field W is substantial on X since the equivariant 
r r 

rational map X ----~ X has dense image (1.15). Moreover, W has zeroes on X , 
r r r 

since it has zeroes on ~N-r (cf. 1.7). Hence by induction X is equivariantly 
r 

birational to ~n-i It is now evident that Xr_ 1 is birational to ~n 

Indeed, the fibres of the projection Xr_ 1 ~ X r are simply the lines through 

p , whence Xr_ 1 is exhibited as a ~i bundle over the rational variety X r and 

is clearly rational. To be more precise, and to obtain equivariance, we describe 

Xr 1 more precisely, namely if 0(1) denotes the canonical line bundle on 
- N-r ----+ 

X ~ then X ~ is equivariantly birational to ~(0~0(i)) X , (i.e. 
r rn~ + r 

^ m-rl ^ 
if ~ denotes ~ blown up at Pr-i and Xr_ 1 denotes the proper transform 

^ ^ 
of Xr_ 1 , then • is ~(0~0(i)) over ~N-r and Xr_ 1 is just the restriction 

of this bundle over X r. This monoidal transform is equivariant (i.i0)). 

The proof that Xr_ 1 is e__Ruivariantly birational to ~n is completed by the 
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following two lemmata. 

Len~ma 3.1: Given f : ~n-I _ -> y equivariantly birational and given Z =~(0 @ L') 

for i' > Y a line bundle then Z is equivariantly birational to ~(0 • i) for 

L > ~n-i a suitable line bundle. 

Lemma 3.2: Given a substantial vector field V on ~(0@ L) for L > ~n-i 

a line bundle, there is an equivariant birational map P(0~ L) ~ pn . 

~n 
Given the equivariant birational map Xr_ I ~ we turn to the study of 

the induced equivariant, rational, dominant map X ) ~n in §4. 

Proof of 3.1: We may assume Y is nonsingular (replacing Y by an equivariant 

resolution Y > Y and replacing Z by Z x Y ~ ) . Moreover, since Y is 

birational to ~pn-i we know HI(y,0y) = 0 . Hence a vector field on Z is deter- 

mined by its image V' on Y and by giving D' : O~L' -----+ O~L' satisfying 

D'(go) =V'(g) o+gD'(o) for g a function and ~ a section of E'=0eL ' , 

(cf. 1.2, 1.3, noting that HI(Hom(E',E')) > HI(Hom(E',E')I0) is injective). 

Consider the rational map f : pn-i + Y defined on an open set U_c ~n-i 

whose complement has codimension > - 2. The line bundle f*(L') on U extends 

uniquely to a line bundle L on pn-l, (72 , Exp. XI, §3, pp. 126-130). Clearly, 

Z is birational to P(0 • L) over pn-i . To check equivariance we must extend 

the derivation D' from 0~ LIU to 0@L . Note that V' extends to a vector 

field V on ~n-i (since f is equivariant). Now given any point p e pn-Iu 

one may uniquely extend D' to a neighborhood W of p by selecting a basis 

el,e 2 for 0~ L at p , then noting that D'(ei) = ~ aij e.j for aij being holo- 

morphic functions on (pn-l_ U) n W which extend uniquely to holomorphic functions 

on W (since cod(P n-l-U) -> 2). 

~n-i 
Proof of 3.2: Given a substantial vector field on P(0~ L) over we denote 

by V the induced vector field on IP n-I Note that V is substantial (1.15) 

We chose homogeneous coordinates X. so that either (cf. 2.1) 
l 

Case i: V=Xo ~/~XI+i>IE XiXi$/~Xi or 

Case 2: V= E X.X. ~/~X. 
i>0 1 i l 

The vector field on ~(0eL) is given by a V-derivation D : 0eL* ----+ 0eL* 

We may assume L=0(k) for k->O since ~P(0eL) "~ ~ IP(Oei*). 

In terms of a local basis e for /*= 0(k) one may determine D locally by 

D(1) =a-l+b'e ; D(e) =c-l+d-e and changing the choice of e one finds that the 

b's (resp. c's) define a global section of 0(k) (resp. 0(-k) , and "a" is a 

scalar. Thus c = 0 if k > 0 and * is necessarily a D invariant sub-bundle. 

, L* If k=O then choose a suitable basis for 0e = 0e0 so that D has upper 

triangular form, i.e. again c = 0 and i* is invariant. Thus, in either case D 

k of L* is an eigen-section for defines a V-derivation of L* . The section X 0 

D , in view of the form of V • Normalizing D (subtracting off a scalar multiple 
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of the identity) one may assume D(X~) = 0 . 
k 

Thus on the affine X 0# 0 , one may take e=X 0 , so that 

D(1) =a'l+b'e , or letting t= i/e be the fibre coordinate 

D(e) = 0 and 

D(t) +at+b 

where "a" is a scalar and b = b(x) a polynomial of degree-<k in the affine 
-i 

coordinates x i = XiX 0 . 

We show below that for a suitable choice of fibre coordinate t' the rational 

mapping P(0~0(L) > pn defined by (l,Xl,...,Xn_l,t') is equivariant (carrying 

our vector field to a $1obal holomorphic field on pn). We let Yi denote homo- 
pn 

geneous coordinates on , and Yi = Yi/Y0 " 

Case I: V = ~/3x l+i>IZ fix i 3/~x i ; D(t) = at+b 

We seek a polynomial q(x) such that if t' = t-q then D(t') =a t' . Given 

t' , V would correspond to the vector field 

n-i ~/3Yi+aY n ~/3y n on pn 
~/3YI+i=EI XiYi 

Such a q(x) is precisely a solution to the equation V(q)-aq= b. Expanding 

x I I q= Z ql , b= Z b I x one obtains the equations 

(il+l)ql+el+(~.l) ql+aql=bl for each 

l=(ir...,in_l) where i= (i2,...,in_l) and (l+e I) = (il+l,i2,...,in_ I) . Note 

that all multiindices appearing in this equation have the same I . Hence for each 

fixed I one has an independent system of equations. We fix I and solve. If 

(I'I + a) = 0 then the equations become (i I + i) ql+e I = b I and are readily solved. 

If (l'l+a) ~ 0 , then recursively solve for the ql descending on i I and 

defining ql = 0 if b I, = 0 for all i~ ~ i I , I = I' . Then the q so obtained is 

clearly polynomial. 

Case II: V = Z I.x. ~/~x. , D(t) =at+b . 
i>0 l i l 

Again we seek q(x) such that D(t-q)= a(t-q) . We obtain equations 

(l-l-a)ql=b I . 

defining ql For those I such that I-I# a we solve the equations for q~ with b ~ 0 

otherwise and set t '= t-q . Then D(t') = at'+b where b= E bl x I 

unless I-I= a , i.e. V(b) = ab . If b= 0 we have succeeded, if not we redefine 

t' as t '= (t-q)/b . Then D(t') = i . The birational map defined by x i and 

this t' transports our vector field to n~l liYi ~/~Yi +~/~yn which is globally 
i=l 

holomorphic on ~n. 

=0 
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§4. Analysis of the map X_____ + ~n . 

Consider the rational dominant equivariant map X ~ ~n constructed on §3. 

One may obtain X - ~ X by a sequence of nomoidal transformations with non-singular 

invariant centers so that X is nonsingular and the induced rational map f:X ~ ~n 

extends to a globally defined holomorphic map (by employing Hironaka's equivariant 

resolution). Consider y ~Pn the analytic subset which is the image of the locus 

where df is not of maximal rank. Clearly Y is invariant, and i_ f-l(y) > pn_ y 

is a connected covering with finitely many sheets. Note that for d > > 0 there 

exist hypersurfaces of degree d in ~n which contain Y . 

One may select such a hypersurface H which is invariant. Indeed, the set of 

hypersurfaces of degree d which contain Y is an invariant nonempty subset of the 

projective space of degree d hypersurfaces. By 1.7 (Borel-Sommese) there exists 

an invariant point H in this set. Again ~_ f-l(H ) ~ ~n _ H is a connected 

finitely sheeted covering map. 

However, since X ~ ~n is equivariant and dominant the induced vector 

field on ~n is substantial. The homogeneous defining equation for H is an eigen- 

function for this vector field and is hence a monomial (cf. 2.2). Thus H is a 

union of coordinate hyperplanes and ~n_H ~ ~ cn-r × (¢,)r , where H is set 

theoretically the union of r + i hyperplanes. The fundamental group of ~n _ H is 

then Z (r) and the algebraic isomorphism classes of connected algebraic covers 

of ~n_H are in I-I correspondence with subgroups of finite index in Z (r) 

(7, expose 12, 5.1). 

Such a subgroup is specified by giving a nonsingular r x r matrix of integers 

((nij)) (the columns of this matrix being a set of basic generators for the sub- 

group) with two matrices corresponding to the same subgroup if and only if they 

differ by post multiplication by GL(r,~) . Given ((nij)) the corresponding 

cover is 

4.1: C n-2 × C *r ~ C n-r× C *r 

n n nlr Nrl nr2 nrr 
(x'Yl ..... Yr ) ÷ (x'ylll y212 "'" Yr ..... Yl Y2 "'" Yr )" 

Hence X- f-l(H) is algebraically isomorphic to C n-r × C *r and therefore X is 

rational, as is X . To complete the inductive step we must verify that the 

rational map ~ .. ~ ~n envisaged, i.e. (l,Xl,...,Xn_r, yl,...,y r) is equivariant. 

We explicitly compute (in terms of the affine coordinates on X denoted by 

x,y as in 4.1) the vector field V lifting V on ~n (which will be expressed 

in affine coordinates u,v , according to the C n-r , C r of 4.1). We must verify 

that V closes up to a holomorphic vector field on ~n. 

Recall that since V is substantial, it had the form E ~. X. ~/~X. or 
ii i 

XO ~/~Xl+i~1%iXi ~/~Xi " In the second case the monomial defining H will not 

involve the variable X I , (cf. §2) so that XI/X 0 is one of the "u" variables. 
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To lift V , note that the vector fields u. ~/~u. and ~/~u. lift to x. ~/~x. and 
i i 1 1 1 

~/~x i . Moreover, the image of yj ~/~yj is E n.. v. ~/~v. • Hence the vector 
i 13 l 1 

field Zlivi~/~vi is the image of E qj yj ~/~yj where q=N-l~ , N= ((qij)) . 
pn 

The lifted vector field clearly extends to a holomorphic vector field on 

exhibiting the equivariant birationality of X and ~n , and completing the 

inductive proof. 

Remark: The more unpleasant aspects of the proof of §3 and §4 lay in showing that 

given a certain X birational to ~n and a global holomorphic vector field on 

X , then X was equivariantly birational to ~n (not perhaps by the given rational 

map). A simple example where the given rational map is inadequate but a different 

birational map is equivariant may be obtained by considering a quadric Q in ~N+I 

Projection from a point q on Q yields a birational map Q >~n Fixing 

any vector field V on ~n+l which is tangent to Q the birational map is 

equivariant if and only if q is a zero of V . The question of whether there 

always exists an equivariant birationality is an interesting one. 
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SOME EXAMPLES OF £ ACTIONS 

by 

Andrew John Sommese 

In this note I give examples of C actions whose Bialynicki-Birula decomposi- 

tions exhibit a number of bad properties. 

Let r : ¢ × X ÷ X denote a meromorphic action of ~ on a compact connected 

complex manifold X ; i.e. r is a holomorphic action that extends to a meromorphic 

map ~i x X ÷ X . Let FI,...,F r be the connected components of X(C*) , the fixed 

point set of the action. Under the above hypotheses the maps: 

A + * : X ~ X(C ) A- : X ÷ X(C*) 

defined by: 

A+(x) = lim r(t,x) and A-(x) = lim r(t,x) 
t÷0 t ÷~ 

are well defined. Let: 

X. + = A + -I(F.) and X.- = A- -I(F.) 
l l i i 

These sets are constructible. They are called respectively, the plus and minus com- 

ponents ove r  X . .  There  a r e  two d i s t i n c t  f i x e d  p o i n t  components  deno ted  F 1 and 
i 

F called respectively the source of the action and the sink of the action that are 
r + 

characterized by the properties that X 1 and Xr are dense Zariski open sets of 

X. 

The B i a l y n i c k i - B i r u l a  p l u s  and minus  d e c o m p o s i t i o n s  1,  2, 5, 8,  11, 12 a r e :  

X +  - X = u and X = u X. 
i l 

i i 

respectively. These above functorial decompositions that generalize the classical 

Bruhat decomposition play a key role 2, 3, 4, 6, 7, 8 in the study of C actions. 

If X is either Kaehler or algebraic, the above decompositions enjoy a number of 

good properties. Two of the most important properties are: 

a) the maps A + + : X. ÷ F. and A- : X i ÷ F. are continuous (and in fact) 
i l l 

holomorphic maps, 

and, 

b) the sets X + and X.- are locally closed. 
i l , 

In §i I give an example (cf. (1.3)) of a meromorhpic C action on a compact 
3 

complex manifold~ X ~ that is bimeromorphic to ~ and for which the maps in a) 

are discontinuous and b) fails. It is also shown (cf. (i.i)) that b) can hold 

while the maps in a) are discontinuous. The examples are variations on Hironaka's 

famous example 9, pg. 441ff of an algebraic non-projective manifold. 
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By the same method examples are given in §I that exhibit the phenomenon first 

discovered by Jurkiewicz i0 of non-trivial cycles of orbits. Recall that Jurkie- 
, 

wicz produced an example of an algebraic C action on an algebraic manifold X 

with a sequence of non-fixed points x I , x 2 , ...,x n with the property that: 

#) A+(x')l = A-(Xi_l) for i = 1 to n (with the convention that x 0 = Xn). 

In Jurkiewicz's example constructed by torus embeddings n ~ 7 . For algebraic mani- 

folds Bialynicki-Birula pointed out that n must be at least 2. I give a very 
* 

simple example (I.i) of an algebraic ¢ action on an al~ebraic manifold with the 

property #) and n = 2 ~ the minimum possible. I also give an example (1.2) of a 

meromorphic action of £ on a Moisezon manifold, X , for which n = 1 occurs, 

i.e. there is a point xe X which is not in X(C ) and such that A+(x) and 

A (x) both belong to the same fixed point component. 

In §I I also make a conjecture which if true will put a definite limit on the 

pathologies that can be expected for meromorphic C actions on compact complex 

manifolds. 

In §2 I give an example that is surprising in light of the results of 3. 

Most of these examples were worked out during the stimulating conference or- 

ganized by James Carrell with NSERC funds at the University of British Columbia 

during the period January 15, 1981 to February 15, 1981. I would like to thank the 

National Science Foundation, the University of Notre Dame, and the Sloan Foundation 

for their support during parts of the period when this research was carried out. 

These examples would not have been worked out without the encouragement of Andrzej 

Bialynicki-Birula. I would also like to thank David Liebermann for providing some 

extra impetus to construct the examples in §i. 

~I The Main Examples 

I start by giving Hironaka's example 9, pg. 441ff with attention to the fact 
* 

that it can be presented so that it comes equipped with a ¢ action. 

2 1 Let r' denote the ac- (i.i) Example. Let S denote ~ and let M = S x ~. 

tion on M given by: 

r'(t, s, Zo, Zl) = (s, z0, tzl) 

where Zo,Zl denotes homogeneous coordinates. Let 0 denote i,0 and let S O 

denote S x 0 , the source of the action r' Let C denote a line on S and let 

D denote a smooth conic on S that meets C in two distinct points, x , y . 

Cover S with three open sets U, V, and W such that x doesn't belong to VuW 

and y doesn't belong to U uW . Let U', V', and W' denote the inverse images 

of U, V, and W respectively under the projection M+ S • Under the projection 

from M to S , I identify C, D, x, and y with the corresponding curves and 

points on S O . Blow up (CuD) nW' to get a complex manifold W" . Blow up 

C N U' to get a complex manifold U" . Blow up the proper transform of D n U' in 
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U" to get a complex manifold U . Blow up D nV' to get a complex manifold V" . 

Blow up the proper transform of C nV' to get a complex manifold V . It is easy 

to check that the three complex manifolds U, V, and W" patch to give a compact 

complex manifold X . This manifold is algebraic and birational to M and hence 
3 

~ 9, pg. 441ff. Using the following standard lemma repeatedly the reader can 

check that the action r' lifts to a meromorphic action of £ on X. 

(i.I.i) Lemma. Let r : C ×Y ÷ Y denote a holomorphic action of C on a complex 

manifold Y . Let Y' denote Y with a complex submanifold B blown up. If 

r(C ,B) = B then the action r lifts to a holomorphic action r' on Y' . If r 

is a meromorhpic action then so is r' 

The above example has 4 fixed point components. Besides the source and the 

i Under the induced projection sink there are two components biholomorphic to ~. 

from p : X ÷ S these components F and G go biholomorphically onto C and D 

respectively. There is a point x' E p-l(x) such that A+(x ') ~ F and A-(x') £ G . 

There is a point y' c p-l(y) such that A+(y ') E G and A-(y') £ F . 

It is easy to modify the above example to get X , a Moisezon manifold bira- 
3 * * 

tional to ~ with a meromorphic C action possessing a point x' E X-X(C ) 

such that A+(x ') and A-(x') belong to the same fixed point component. Note that 

in such an example the property a) of the Bialynicki-Birula decomposition that was 

discussed in the introduction fails. The discontinuity occurs because by continuity 

A-(x') should go to A+(x ') and not to A+(A-(x')) = A-(x') . Let me sketch this 

construction. 

(1.2) Example. Let S, M, S O and r' be as in the last example. Let C be an 

irreducible cubic curve on S which has precisely one singularity x. Assume 

1 by identifying two points. Cover that x is a node, i.e. C is gotten from ~ 

S with two open sets U and V such that x doesn't belong to V and such that 

C n U is the union of two irreducible components C 1 and C 2 which are both smooth. 

Let U' and V' be as in the last example. Identify C and x with the corre- 

sponding curve and point on S O . Blow up C nV' to get a complex manifold V" . 

Blow up C 1 to get a complex manifold U" . Blow up the proper transform of C 2 

in U" to get a complex manifold U. It is easily checked that V" and U 

patch to give the desired example. 

The above construction can be modified further to yield an example where both 

of the properties a) and b) of the Bialynicki-Birula decomposition that were 

discussed in the introduction fail. 

(1.3) Example. Let C and D be two irreducible curves on a rational surface S . 

Assume that: 

I) C and D meet only in a point x, 

2) D is smooth and x is the only singular point of C , 

3) there is an open set U containing x such that C n U consists of two 
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components C 1 and C 2 that are both smooth and meet transversely at x , 

4) D meets both C 1 and C 2 transversely at x. 

It is easy to find such a triple (S, C, D). Indeed let D' be a smooth line on 

2 C' 2 • ~ and let be a cubic curve on ~K as in the last example. Assume that C' 

and D' meet at the singular point of C' in a manner satisfying properties 2), 3) 

and 4) above. C' and D' also meet in a point y besides the singular point of 

2 
C' . Let S be ~ with y blown up. Let C and D be the proper transforms 

of C' and D' respectively. 

1 and let £ act on M as in the past examples. Let V be Let M = S × ~E 

an open set on S such that UuV = S and x~V. Let U' and V' be the open 

sets on M as in the preceding examples, Identify C, D, and x with curves and 

a point of the same name on S 0 = S × 0 . Blow up (Cu D) nV' to get a complex 

manifold V" . Blow up C 1 n U' to get a complex manifold U" . Blow up the proper 

transform of D oU' on U" to get a complex manifold U # . Blow up the proper 

transform of C 2 n U' on U # to get a complex manifold U . U and V" patch to 
* 

give the desired Moisezon manifold X . By lemma (i.i.i) the ¢ action on M 

lifts to a meromorphic action: 

* 
r :C × X ~ X . 

There are two fixed point components F and G for this action that map biratio- 

nally onto C and D respectively under the projection 

f :X----~ S 

I ÷ S Let Z denote the fibre of X÷S over x under induced from M = S x P~ . x 

the map f . There are points: 

{Xl, x2, x3} c Zx - X(¢ ) 

such that A+(x3 ) = A-(x 2) = z ~ G , A-(x 3) ~ F , and A+(x2 ) = A-(x I) ~ F . It is a 

straightforward t o p o l o g i c a l  c h e c k  t h a t  t h e  m i n u s  c o m p o n e n t  F o v e r  F i s  n o t  l o -  

cally closed at z. Nor is the restriction of A- to F- continuous at z. The 

following picture might help: 
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(1.4) To end this section I would like to point out a pathology that follows by 
* 

carrying the above constructions a little further. Let r' : C x X ÷ X be a mero- 

morphic C action on a compact complex manifold. By a principle orbit is meant 
* 

an orbit 0 = r(C ,x) such that A+(0) belongs to the source and A-(0) belongs 

to the sink of the action. It makes sense cf. 8, 3 to consider limits of princi- 

ple orbits. Such a limit consists of a sequence of orbits {01,...,0 k} such that 

A+(0.) = A-(0j i) for j = 2,...,k. For example Z in the last example minus 
j - x 

its intersections with the source and with the sink is a limit of principle orbits. 

Fix a finite set of letters a, b, ... and any finite word in them, e.g. for con- 

creteness abracadabra. Then an example can be constructed of a Moisezon manifold 

3 * * 
birational to ~ with a meromorphic ¢ action r : C x X ÷ X such that: 

a) the fixed point components of r are the source S O , the sink S , and 

components indexed by a , b , ..., 

b) there is a limit of principle orbits {01,...,0 k} 

the fixed point sets to which A-(0j) belong for 

the given word. 

To construct this example choose a rational surface S with a finite set HI,...,H r 

of irreducible curves, and an assignment of one letter to each of the H.. The 
i 

required properties of these curves are: 

i) for different i and j , H i and Hj meet only in a point x that is 

independent of i and j , 

2) there is an open set Uc S such that for each i , H n U is the union of 
-- l 

d(i) smooth curves, Hi,d(1),...,Hi,d(i) , each two of which meet trans- 

versely at x , 

3) for different i and j , each component of H nU meets each component 
l 

of H. n U transversely in x , 
J 

4) d(i) equals the number of times the letter associated to H i occurs in 

the word fixed at the beginning of the construction. 

A surface S and curves satisfying the above properties can always be constructed 

by blowing up and blowing down. By blowing up the H. . in the order prescribed 
l,j 

by spelling the specified word backwards, the example is constructed. 

I would like to make a simple conjecture which if true would put a limit on 
* 

the pathologies that can occur for meromorphic C actions. 

(1.5) Conjecture. Let r : ¢ × X ÷ X be a meromorphic action of C on a compact 

complex manifold X . There is no xE X-X(¢ ) such that: 

lim r(t,x) = lim r(t,x) . 
t÷0 t->~ 

with the subscripts of 

j = l,...,k-i , spelling 

§2 A Further Example 

Let Y be a connected projective manifold. Let A and B be two projective 
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submanifolds of Y . Let Z denote the set theoretic intersection of A and B . 
1 

Let M = ~x X . Let A 0 = i,0 xA and let B denote 0,i x B . Blow up A 0 

and B to get a complex manifold X. The meromorphic ¢ action on M along 
1 

the ~ l i f t s  t o  a m e r o m o r p h i c  a c t i o n  r o f  ¢ o n  X . T h e r e  a r e  t w o  f i x e d  

p o i n t  c o m p o n e n t s  F a n d  G f o r  t h i s  a c t i o n  b e s i d e s  t h e  s o u r c e  a n d  t h e  s i n k .  F i s  

b i h o l o m o r p h i c  t o  A a n d  G i s  b i h o l o m o r p h i c  t o  B . L e t  F + d e n o t e  t h e  p l u s  c o m -  

p o n e n t  o v e r  F a n d  l e t  G d e n o t e  t h e  m i n u s  c o m p o n e n t  o v e r  G .  I t  i s  a s t r a i g h t -  

f o r w a r d  c h e c k  t h a t  t h e  s e t  t h e o r e t i c  i n t e r s e c t i o n  F + r i G -  i s  b i h o l o m o r p h i c  t o  

¢ xZ. 

The above shows that the sets X. +nX for a ¢ action can be rather un- 
i 3 

pleasant, e.g. disconnected and singular, even when X is a projective manifold. 

This is not so s u r p r i s i n g  b y  i t s e l f  b u t  p o i n t s  o u t  t h e  u n e x p e c t e d  s i m p l i c i t y  o f  t h e  

results of 3. There it is shown that ¢ invariant open sets X-X(C ) with 

c o m p a c t  c o m p l e x  g e o m e t r i c  q u o t i e n t s  a r e  b u i l t  o u t  o f  t h e  s e t s  X. + n X . -  ( a n d  n o t  
1 3 

t h e i r  c o n n e c t e d  c o m p o n e n t s ! ) .  
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THE GROWTH FUNCTION OF A DISCRETE GROUP 

Philip Wagreich* 

Suppose G is a finitely generated group and S is a set of generators. As- 
-I 

sume for simplicity, that if s e S then s ~ S . One can define a function 

£s:G ......... > Z 

by 

£s(g) = inf{nlg = Sl...s n s. e S} 
' i 

i.e., £s(g) is the length of the shortest word in the generators which represents 

g. We call £s(g) the length of g (relative to S and note that £S(I) = 0) . 

Definition (i.i): The growth function (or growth sequence) of G relative to S 

is defined to be 

= card{ge GI£s(g) = n} 
a n 

the number of elements of G of length n . An important tool for studying a se- 

quence is the generating function for the series, hence we define 

Definition (1.2): If G , S are as above then we define a formal power series 

Ps(t) = ~ an tn 
n=0 

= ~ t l(g) 
gcG 

We call PS the growth power series of G , S . If G is a finite group 

then this power series is a polynomial. We shall see that for many infinite groups 

it is a rational function. 

The growth function was studied by Milnor in Mi i, where he showed that 

there is a relation between the curvature of a compact manifold and the growth of 

its fundamental group. The growth power series arises in many contexts, for example 

if G is Coxeter group and S is a natural set of generating reflections. In the 

second section of this paper we will give a survey of some of the surprising and 

beautiful results that have been proven about this function in certain special cases. 

My interest in the growth function was inspired by the preprint of Alan Durfee's 

*Research partially supported by grants from the National Science Foundation 

and the University of Illinois at Chicago Circle Research Board. 
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paper, '14 Characterizations of Rational Double Points and Simple Critical Points'. 

It was known that the simple singularities are the only singularities with finite 

monodromy group. Durfee conjectured that only the simple elliptic singularities 

have monodromy groups with polynomial growth (i.e., a bounded above by a polyno- 
n 

mial function of n , see 2.9) and all others have exponential growth (see 2.9). 

To prove this conjecture I was led to study the growth functions of the simplest in- 

finite Coxeter groups, namely hyperbolic triangle groups. These groups turned out 

to have such marvelous and surprising properties that I never got to study Durfee's 

conjecture. (It was proven by Looijenga shortly after Durfee's preprint appeared. 

The paper appeared as '15 Characterizations of Rational Double Points and Simple 

Critical Points'.) 

We adopt the convention that ~ stands for the sum from n= 0 to ~ . 

(1.3) The hunt for invariants. 

One reason for studying growth functions is to find invariants of the group. 

There are not many strong results in this direction but there are some tantalizing 

hints. Serre Se has shown that for a Coxeter group G (see 1.6) and the standard 

Coxeter generating set S , the value of Ps(t) at t = 1 is I/X where X is 

the Euler characteristic of the group G (this makes sense when PS has a pole at 

t if we let i/0 = ~) . This result is trivially true for finite groups because 

Ps(1) = order G and X = 1/order G. In all examples of infinite groups that I 

know the same equality holds. 

Bass Ba has shown that if G is nilpotent then for any generating set {a n } 

has polynomial growth and the 'degree of polynomial growth' can be defined and is 

independent of S . 

Finally, if G is a discrete transformation group and S is a set of genera- 

tors having some geometric significance then the radius of convergence R of Ps(t) 

should also have some geometric significance. If G has exponential growth then 

R determines the 'rate' of growth of {a } • 
n 

(1.4) Triangle groups. 

Suppose p , q , r are positive integers and i/p + i/q + i/r < 1 . Let T be 

a triangle in the hyperbolic plane with angles H/p, ~/q and ~/r . Let A 
p,q,r 

be the group generated by the three reflections Sl,S2,S 3 in the sides of T. 

Then g is a discrete discontinuous group of isometries of the hyperbolic 
p,q,r 

plane 

Proposition (1.5). If S = {Sl,S2,S 3} then Ps(t) is a rational function, in 

fact 
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(i+ t) (i- t p)(1- t q)(l- t r) 

Ps(t) ............................................................................. 

i - 2t + t p+I + t q+l + t r+l - t p+q - t p+r - t q+r + 2t p+q+r - t p+q+r+l 

This can be easily proven by noting that A is a Coxeter group and using the 
p,q,r 

algorithm in B (see 2.8). There is an alternate proof W using facts about tes- 

selations of the hyperbolic plane. This proof generalizes to Fuchsian groups. It 

will be discussed in §3. Note that the numerator and denominator of PS are reci- 

procal polynomials i.e., if % is a root then 1/% is a root of the same multipli- 

city. 

The location of the poles of PS is of some interest. For example, G has 

exponential growth if and only if there is a pole inside the unit circle. It is also 

interesting to note that the coefficients of the numerator and denominator above are 

anti-palindromic. Theorem (i.i0) below was conjectured after examining three pounds 

of computer printout from a program written by A.O.L. Atkin. (His program efficient- 

ly factors polynomials over ~.) In order to state the theorem we must first in- 

troduce some notation. 

(1.6) Coxeter groups (see B). 

Suppose n ~ N . A Coxeter sraph F is a graph with vertices Vl,...,v n and 

for each pair of vertices at most one edge and an integer (or ~) weight m.. > 3 
13 

for each edge. If there is no edge from v. to v. we define m.. = 2. We de- 
I 3 13 

fine m.. = 1 , for i = l,...,n . The matrix M = (m..) is called the Coxeter ma- 
ll 13 

trix associated to F. Note that M is symmetric. The Coxeter group G F asso- 

ciated to F is the group with the following presentation: 

generators: Sl,...,s n 

m. 
1,j 

relations: (sisj) = i , 

2 
Note that for i = j we get s. = i , so that 

l 

der 2. Let S r = { S l , . . . , S n }  . 

for all i , j . 

G F is generated by elements of or- 

Example (1.7). If F = O and i/p + i/q + i/r < I , 

07-0 
then G F is isomorphic to A . If i/p + i/q + I/r = i (resp. > i) then G F 

p,q,r 
is the group generated by the reflections in the sides of the euclidean (resp. sphe- 

rical) triangle with angles n/p, n/q, ~/r . 

Example (1.8). Let Ga,b, c be the Coxeter group associated to the graph 
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t 

" ?} 

(all edges have weight 3). This group is finite if and only if 

See B where it is shown that G F is finite if and only if F 

well known list of graphs, namely: 

A k, B k, D k, E 6, E 7, E 8, F 4, G 2, H 3, H 4, I2(P) 

• --0-- O- O--O . . . . .  O 

;-~ 

I/a + I/b + i/c < i. 

is on a certain 

Definition (1.9). A Coxeter element of a Coxeter group G is an element of the 

form g = s Is 2 ...s n , where the s i are the generators defined above. 

Any two Coxeter elements are conjugate, thus if G is finite h = order G is 

a well defined integer called the Coxeter number of G. 

Theorem (i.i0): W Let G = A with I/p + i/q + i/r < 1 and S = {Sl,S2.S 3} 
p,q,r 

as above. Let Ps(t) = f(t)/g(t) with f and g relatively prime. Then 

i. all but one of the irreducible factors of g is cyclotomic. 
th 

2. suppose $ is a primitive n root of unity. Then g(~) = 0 if and only 

if the following three conditions hold: 

a) n does not divide p, q, and r . 

b) I/p + i/q + i/~ > 1 (where x denotes the remainder of x after di- 

vision by n). 

c) n is the Coxeter number of the finite Coxeter group G------ 
p,q,r 

This theorem partially answers a question of Serre S, i.e., he asked for the 

location of the poles of Ps(t) . The proof of this theorem uses a theorem of James 

Cannon, proven after the above was conjectured. Further information about the poles 

of Ps(t) is given by the following theorem of Cannon. 

Theorem (i.ii). If G and S are as in (i.i0), then Ps(t) has two positive 

real poles % and 1/%. All other poles of Ps(t) lie on the unit circle. 

Cannon's main tool is the theory of reciprocal polynomials. Recall, a polyno- 

mial with complex coefficients is called reciprocal if for every root % , 1/% is 

a root of the same multiplicity. In particular, polynomials f whose coefficients 

are palindromic (a i = an_i, n = deg f) or anti-palindromic (a.l = -an_z.) are recipro- 

cal. 

A Salem number ~ is an algebraic integer whose monic irreducible polynomial 

over Q , f , is reciprocal with at most one root of modulus > 1 . Salem has 

shown Sa that if ~ is a Salem number which is not a root of unity then f has 
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two reciprocal roots, and all other roots lie on the unit circle. Salem studied 

these polynomials in connection with some problems in Fourier analysis. Theorem 

(i.ii) implies that % and 1/% are Salem numbers. Cannon has also proven Theorem 

(i.ii) for G = the fundamental group of a compact Riemann surface of genus g and 

+i +i ±i +i 
S = la I- ,b I- ,...,ag ,bg- } 

a set of 4g generators for G , then Ps(t) satisfies the conclusion of (I.ii). 

§2. Growth functions throush history 

(2.1) The growth function of a group G may be interesting even for a finite group. 

Suppose W is a finite Coxeter group and let S be the set of all reflections in 

W . Then 

l 
Ps(t) = N (i + mit ) 

i=0 

where the m. are certain well known numbers called the exponents of W. The ex- 
i 

ponents of a finite Coxeter group can be defined as follows: B, Ch.V, §6, no.2. 

Let g be the Coxeter element of W and h = the order of g. Then there are in- 

tegers 0 <m I < ... <m l<h so that the eigenvalues of g are exp(2~im./h) 
j 

j = l,...,1. The exponents are also related to the invariant polynomials of W as 

follows. Every Coxeter group has a canonical real representation. If the graph has 

l vertices then the group W acts on R l B, Ch.V, §4. This representation in- 

duces an action of W on the polynomial ring in /-variables. The ring of invariant 

polynomials (if W is finite) is isomorphic to a polynomial ring in /-variables. 

The degrees of the generators of the ring of invariants are m I + I, m 2 + l,...,ml+l. 

Ch, Co, St, B, Ch.V, 55,6. 

There is another interesting power series which arises in this context. 

Definition (2.2): If X is a topological space and F is a field so that 
i 

dimFH (X,F) is finite for all i we can define the Poincare power series of 

(relative to F) by 
co 

Px(t ) = ~ i i dimFH (X,F) t 
i=O 

If PX is a polynomial we call it the Poincare polynomial of X . 

Example (2.3). Orlik and Solomon 0-SI have discovered that the growth power series 

(actually a polynomial) defined above for a finite Coxeter group is actually the 

Poincare polynomial of X = C l - u H where the H are the reflecting hyper- 
s s 

sES 

planes of W , i.e., H is the fixed point set of s e S . Note that S is the 
s 

set of all reflections in W . Orlik and Solomon have generalized their results to 
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unitary reflection groups. A unitary reflection is a complex £×£ matrix having 

1 as an eigenvalue of multiplicity £-1 . The corresponding reflecting hyperplane 

is the eigenspace of the eigenvalue 1 . If W is a finite group generated by uni- 

tary reflections and X = C £ - u H as above then they show that the Poincare 
s 

s6S 

power series of X factors 

£ 

Px(t) = H (i + n t) o 

i= 0 1 

The n i above agree with the exponents m. if G is a real reflection group, but 
i 

in general are different from the m.. Terao has shown the above factorization 
l 

holds for certain arrangements of hyperplanes in C £ (called free) which need not 

arise from groups. 

Returning to the finite Coxeter groups, there is another natural choice of ge- 

nerating set S . Namely let S = {Sl,...,s n} where the s i are the generators 

corresponding to the vertices of the Coxeter graph F . Then Solomon So has 

shown that 

£ m 
Ps(t) = H (i + ... + t i) 

i=0 

There is a third way of constructing an interesting rational function. Suppose F 

is a field and R is a graded F-algebra, i.e., R is an F-algebra so that 

R = • R. where the R. are F-subspaces of R so that R i • R. c Ri+ j for all 
i=-~ i i J 

i,j . 

Definition (2.5). Suppose dim R i < ~ , for all 

power series of R to be 

PR(t) = ~ (dimFRi) ti 

i. Then define the Poincare 

The Poincare power series of a topological space is actually a special case of 

this (obtained by letting R = H*(X,F) and R. = Hi(X,F)). If R is a finitely 
i 

generated positively graded (i.e., R. = 0 for i < 0), F-algebra then one can show 
i 

that PR(t) is a rational function A-M, Ch.10. 

We noted above (2.1), that if W is a finite Coxeter group, there is a natural 

action of W on the polynomial ring R in £ variables and the ring of invariant 

polynomials A = R W is isomorphic to a polynomial ring in £ variable. Moreover 

A is generated by polynomials PI,...,P£ so that degree P'l = m.l + 1 . One can 

easily see that the Poincare power series of the graded ring A is 

£ m.+l 
PA(t) = ~ i/(i - t i ) . 

i=l 
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Bott Bot remarks that R/(PI,...,P£) is isomorphic to H*(G/B) where G is the 

Lie group associated to W and B is a Borel subgroup. It is interesting to note 

that the Poincare polynomial of this graded algebra is equal to 
m 

(l+ ... + t i) 

i=O 

Example (2.6). Suppose G is the dihedral group of order 2n. Then G is the 

Coxeter group corresponding to the Coxeter graph 

O n O 

The Coxeter representation of G is as the group generated by the reflections s I , 

s 2 in two lines L I , L 2 so that the angle between L I and L 2 is 2~/n . If 

S = {Sl,S 2} one can easily check that 

Ps(t) = 1 + 2t + 2t 2 + ... + 2t n-I + t n 

(l+t)(l+ ... +t n-l) 

while if 

if 

Ps(t) = (l+t)/(l-t) if 

S = the set of all reflections and W is finite then 

Ps(t) = 1 + nt + (n-l)t 2 = (l+t)(l+ (n-l)t) . 

n is finite. 

n = ~  

(2.7) The first interesting calculation of a growth series for an infinite group is 

the generalization of Solomon's result (2.4) to the affine Weyl groups B, Ch. VI, 

§4, ex.10, Bot, I-M. If W is an affine Weyl group, W is the corresponding 
a 

finite Weyl group, and ml,...,m£ are the exponents of W and S is the set of 

generators for W corresponding to the vertices of the Coxeter graph then 

£ ... m ~it mi) 
= ~ (i + + t ij~l-t 

Ps o 

i=l 

Bott's proof is interesting since he relates PS to the Poincare power series of a 

topological space, namely the loop space ~(G) of the simply connected compact Lie 

group corresponding to W . 

(2.8) Rationality of growth series. 

The growth series of a finitely presented group need not be a rational function. 

Cannon Cal has shown that if S is a set of generators for G yielding a finite 

presentation and the a. are algorithmically calculable (for example if Ps(t) is 
1 

a rational function, see 3.8) then the group G has solvable word problem. It is 

known that there exist groups as above with non-solvable word problem. 

Coxeter groups have rational growth series. Bourbaki B gives an algorithm 

for computing PS for the standard generators. If F is a Coxeter graph we let 

PF denote the growth series of W F relative to S F . Then 
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i/PF(t) = - ~ g(F')/pF,(t) if W F is infinite. (2.8.1) 
F'cF 

g(F')pF(t)/PF,(t) = t TM if W F is finite. (2.8.2) 
F'cF 

where m = length of the (unique) element of maximal length, a(F') = (-i) card F' 

and F' ranges over all subgraphs of F . Note that p~(t) = I , where ~ denotes 

the empty graph. 

These formulas allow one to calculate, in principle, PF by induction. Using 

these formulas one can see that the zeros of PF are roots of unity, i/PF(~) is 

an integer and I/PF(t-l) ~ Zt . 

The formulas above allows one to easily calculate PF for the graph 

O T O  
to get (1.5). If the expression for PS in (1.5) is rewritten in a suitable form 

it is valid even if p , q or r = ~ Namely, let n = i + t + ... + t n-I = 

(i- tn)/(l- t) if p is finite and ~ = i + t + t 2 + ... = i/(i- t) . If F = 

O n O 

then PF(t) = 2In (see 2.6). Applying the formula (2.8.1) above we see that 

if F is as in (2.8.1) with p,q,r ~ N u {~} and i/p + i/q + i/r ~ I (this is the 

case when W F is infinite) then 

PF .......................... iE!fE!!~!i~l ............................... 
2pqr - t(p-lqr + pq-lr + pqr-l) 

One can verify that the denominator is a reciprocal polynomial if and only if 

p , q and r are finite. 

(2.9) Growth and curvature. 

Much of the interest in growth functions was started by Milnor who showed that 

there is a relation between the curvature of a compact manifold and the growth rate 

of its fundamental group. In Mi 1 he proved the following theorems: 

Theorem (2.9.1): If M is a complete n-dimensional Riemannian manifold whose mean 

curvature tensor Rij is everywhere positive semidefinite then the growth function 

{a.} associated to any finitely generated subgroup of the fundamental group (and z 

any set of generators) must satisfy: 

there exists a constant C so that, a. < C. i n-I for all i. 
i 
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Definition (2.9.2): If the inequality in (2.9.1) holds for a set of generators of 

G then it holds for all generating sets Mi l and we say G has polynomial growth. 

Theorem (2.9.3): If M is compact Riemannian with all sectional curvatures less 

than zero, then the growth function of the fundamental group HI(M) is exponential, 

i.e., 

i 
a. > c , for all i 
i 

for some constant c > i . 

Definition (2.9.4): If a. satisfies the condition above for one (and hence for 
1 

all) sets of generators of a group G we say that G has exponential growth. 

The study of exponential, non-exponential and polynomial growth was continued 

by Wolf, Milnor and Bass Wo, Mi i, Ba. Milnor showed by a simple direct argu- 

ment that a finitely generated solvable group not of exponential growth is polycy- 

clic. Wolf showed that if G is polycyclic then it is virtually nilpotent, i.e., 

G has a nilpotent subgroup of finite index. Bass found an expression for the de- 

gree of polynomial growth of a nilpotent group and conjectured that a finitely ge- 

nerated group not of exponential growth is virtually nilpotent. Recently Gromov G 

proved that a finitely generated group of polynomial growth is virtually nilpotent. 

§3. Calculation of PS : some examples. 

In this section we will first give some examples for which PS can be computed 

directly by counting group elements. The second part of this section will be de- 

voted to showing how geometry can be used to calculate growth series for some Fuch- 

sian groups. 

Example (3.1): Let G = ~ S = {+I,-i} Then a = 2 for all n> i 
' " n 

Ps(t) = (l+t)/(l-t) 

Example (3.2): Cal (due to P. Melvin). G = ~ , S = {±2,±3}. Then 

PS = 1 + 4t + 8t 2 + E6t n = -5 - 2t + 2t 2 + 6/(1-t) . 

Melvin has shown that every generating set for Z gives a growth sequence 

which is eventually constant hence 

Ps(t) = f(t) + c/(l- t) 

where f is a polynomial and c is a positive integer. 

and hence 

n 
Proposition (3.3): Suppose f(t) = E ant ,a n non-negative integers with a 0 = i. 

If f ( t )  i s  a r a t i o n a l  f u n c t i o n  t h e n  

(i) a has exponential growth if and only if f has a pole at some ~ such 
n 



that 0< I~I < i . 

(ii) a has polynomial growth if and only if all poles of 
n 

unity. 

f are roots of 

Proof: Cal, Theorem 8.5: By P-Sz, p.141-144 we can write 

f(t) = g(t)/h(t) 

where g and h are relatively prime polynomials with integer coefficients and 
i/n 

h(0) = I. It is sufficient to consider the case degree h = m> 0. Now lima 
n 

n~o 

exists Mi i and equals I/R where R is the radius of convergence. Thus f has 

a pole at some $ inside the unit circle, if and only if a n has exponential 

growth. On the other hand, if a does not have exponential growth then R>-I . 
n 

Now if we let h(t) = a t m m + "'" + alt + 1 then the product of the roots of h is 

i/a But all roots have modulus _> 1 , hence a = 1 and all roots lie on the 
m m 

unit circle. A polynomial with integer coefficients all of whose roots have modulus 

1 is a product of cyclotomie polynomials (by Kronecker's theorem). Thus a has 
n 

polynomial growth implies a does not have exponential growth which implies all 
n 

poles of f are roots of unity. Conversely one can easily show that if the poles 

of f are roots of unity then a has polynomial growth. 
n 

Proposition (3.4): G = H x K is a semi direct product, S H and S K are generating 

sets for H and K respectively, kSHk-i = S H for all ke K and 

then 

S = S H u S K 

Ps(t) = PSH(t) • ps K(t) . 

Corollary: If G is the free abelian group on generators e I .... ,e n 

{±el,...,±en} then 

Ps(t) = ((I+ t)/(l- t)) n 

and S = 

Example (3.5): If G is the free non-abelian group on n-generators el,...,e n 

and S = {e-+ll,...,e±l n} then 

Ps(t) = 1 + ~ (2n)(2n-l)i-lti = (l+t)/(l- (2n-l) t) 

i=l 

i-I 
Proof: We prove that a.l = (2n)(2n-i) by induction on i. Clearly, al= 2n. 

Assume the assertion true for i-i. Every element of length i has a unique 
-i 

representation in the form g = Cl...ei where e.j e S for all j and e.j # e j+l 

for all j = l,...,i-i . Thus g can be written uniquely in the form g's where 
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g' has length i-i and s is not the inverse of the last element in 

for each g' there are 2n-i possible choices for s eS . Thus 

a. (2n = (2n - i) (2n) (2n - i) i-2 
z = - l)ai-i 

by the inductive hypothesis. This is the desired result. 

g' . So 

(3.6) Change of generating set. 

If S and T are two generating sets for G, it seems difficult in general 

to see the relation between PS and PT" There is a rather weak statement that 

one can make when S is a subset of T. We shall also give a special case where 

one can give precise information. 

The statement of the result is more natural when given in terms of the "cumula- 

tive growth series of G ". To be precise let 

n 
qs(t) = Z bnt 

where bn = {go G I Is(g) _<n} . Thus 

n 

°  
b n a i 

-= i 0 

and hence 

qs(t) = Ps(t)/(l- t) . 

Proposition: If ScT then qT(t) - qs(t) has non-negative coefficients. 

Proof: If £s(g) ~n then clearly £T(g) ~n . 

(3.7): If we take T to be the set of all elements of 

length ~ k for some k , then we can calculate PT from 

G which are words of 

PS " 

Proposition: Suppose S is a generating set for G , k> 0 and 

T = {go G I ~s(g) ~k} . 

Let c.l = #{g e G I IT(g) ~i} and b.1 = {g ~ G I /s(g) ~ i} . Then 

c i = bki , for i> 0 . 

Proof: One can easily verify that Is(g) ~ ki if and only if 

Corollary: k-PT(t k) = Ps(t) + ps(~t) + ... + ps(~k-lt) 

k th root of 1 . 

£T(g) ~ i. 

where m is a primitive 

(3.8). Calculations for Fuchsian Groups. 

Cannon's method for computing PS involves looking at the Cayley graph 
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associated to a presentation of a group. We show that there is an alternative me- 

thod of calculating PS when the group is a discrete transformation group and the 

generating set has geometric significance. This method involves looking at the tes- 

selation defined by the translates of a fundamental region for the action. 

In order to motivate what follows we first discuss the significance of the ra- 

tionality of PS " Let p(t) = Z a t n denote any power series with integer coef- 
n 

ficients. It is shown in P-Sz, p.141-142 that if p is a rational function then 

we can write 

p(t) = f(t)/g(t) 

where g and f are polynomials with integer coefficients. Moreover, if a 0 = 1 
m 

we can assume the constant terms of g and f are 1 . Suppose that g(t) = 

n i=O 
t i b'til and f(t) = VA c.i " Then we have a linear recursion relation for the ai, 

i=O 

i>n 

= -(blai_ 1 + ... + b a. ) (3.8.1) a i m 1-m 

For i~n we have 

a i = -(blai_ 1 + ... + bmai_m) + c i (3.8.2) 

(define a. = 0 for i < 0). 
l 

These equations come from comparing the coefficients of t i in the identity 

p(t)g(t) = f(t) . Conversely, if we are given a sequence of a i , ie 0 , which are 

defined by a linear recurrence relation as in (3.8.1), (3.8.2) then we can easily 

read off f and g. For example if {a.} is the Fibonacci sequence 
l 

then 

a 0 = a 

a I = b 

a i = ai_ 1 + ai_ 2 i-> 2 

p(t) = (a + (b- a)t) /(i- t - t 2) 

In summary, to calculate 

for {ai}. 

PS it is sufficient to find a linear recurrence relation 

(3.9). Tesselations. 

Now we specialize to the case where G is a discrete group of isometries of 

the upper half-plane H+ or Euclidean plane ~2 . We assume that G has a funda- 

mental region F 0 such that 

(i) area F 0 is finite. 

(ii) F 0 has a finite number of sides each of which is a hyperbolic line seg- 

ment. 

The translates of F 0 under G cover H+ and g(F0 ) nh(F O) # ~ implies g = h 
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(where F denotes interior). Thus the translates of F 0 give a tesselation of the 

plane. 

Let 0={g(F0) I ge G} (where __T 0 denotes the closure of F0). An element 

FEe will be called a tile of the tesselation. We call define the lensth of a tile 

inductively, as follows: 

(1) £(F 0) = 0. 

(2) Suppose the tiles of length ~ n-i have been defined. Then F is a tile 

of length n if its length has not yet been def~led and F is adjacent to a 

tile of length n- 1 . 

Clearly, every tile of the tesselation 0 has a well defined length. 

(3.10). 

lated to a length function on G for a suitable generating set 

fined as follows: 

If F 0 is a fundamental region as above then for each side 

is an element gz E F 0 such that either 

(1) gz identifies Z with another side of F 0 or 

(2) gz is the reflection in Z . 

Let SF0 = {gz I Z is a side of F 0} . Then S F is a generating set for 

£s(g) = l(g(Fo)) for all gE G . 

It is not hard to see that this notion of length of a tesselation is re- 

SF0 , which is de- 

Z of F 0 there 

G and 

Definition (3.11): (The growth function of a tesselation). If we have a tessela- 

tion as above let 

a n = #{FE O I £(F) = n} 

the number of tiles of weight n . Then we can define the srowth power series of 

8 to be 

p0(t) = Z an tn 

By the remark above if S = SF0 then 

Ps(t) = Ps(t) • 

Note: This definition can be made for any tesselation of a topological space. It 

does depend on the choice of a base tile F 0 . Terao and the author have studied 

some examples of finite tesselations associated to free arrangements of hyperplanes 

(in the sense of Terao T). The associated growth power series (polynomials in 

this case) appear to have nice factorization properties (cf. 2.4) provided the 

'correct' base tile is chosen. 

We will be looking for recurrence relations defining the sequences {a } . To 
n 

do this it appears to be necessary to introduce some auxiliary notions, the weight 

of a vertex and "overlapping tiles". 
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Definition (3.12): A tile of weight 

to at least 2 tiles of weight n-l. 

of weight n . 

n is said to be overlapping if it is adjacent 

We let b be the number of overlapping tiles 
n 

Definition (3.13): The weisht of a vertex v is the smallest n so that v is a 

vertex of a tile F of weight n . Let c be the number of vertices of weight n. 
n 

Similarly one can define the weisht of an edse Z as the smallest n so that Z 

is an edge of a tile of weight n . 

Example (3.14): If we let 

teral triangles we get 

e be the tesselation of the Euclidean plane by equila- 

n a b c 
n n n 

0 i 0 3 

i 3 0 3 

2 6 0 6 

3 8 2 6 

Our first calculation of PS will be for the covering group of a compact Rie- 

mann Surface. This was first done by Cannon Cal using a different method. 

Proposition (3.15): Suppose G is the covering group of a compact Riemann surface 

of genus g e2 and F 0 is a 4g sided fundamental region for G , then 

( t )  . . . . . . . . . . . . . . . . . . . . .  ! l-+-~!~:~L . . . . . . . . . . . . . . . . . . . . . . .  

PF0 i - (4g-l)t + (4g-l)t 2g - t 2g+l 

Thus if S is the corresponding set of 4g generators for G we see that Ps(t) 

is as above. 

Proof: The proposition depends on the following lem~a. 

Lemma (3.15.1): a n = (4g-l)an_ I - bn_ I - b n , for ne 2 (i) 

= Cn_2g b n , for n e 0 (2) 

c = (4g-2)a n - b , for n e i (3) 
n n 

Equation (2) makes sense for all n < 0 if we define c. = 0 for i< 0 . If we let 
z 

b(t) = Z b t n and c(t) = Z c t n then 
n n 

p(t) = (4g-l) t p(t) - t b(t) - b(t) + 1 + t (l*) 

b(t) = t2gc(t) (2*) 

(3*) c(t) = (4g-2)p(t) - b(t) + 2 
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Proof of the proposition: (i*), (2*), and (3*) are 3 linear equations in 3 unknowns, 

p(t), b(t), c(t). Solve for p(t) by substituting for b(t) using (2*). We get 

(i- (4g-l)t)p(t) + (l+t)t2gc(t) = i + t 

(2-4g)p(t) + (l+t2g)c(t) = 2 

and solving for p gives the desired result. 

Proof of the lemma: The equations (i*), (2*), and (3*) follow immediately from (i), 

(2) and (3), respectively and a direct check of the coeEficients of low degree. To 

verify (i), (2), and (3) we first note that each vertex of the tesselation lies on 

4g tiles. It is easy to see that a 0 = I, b 0 = i, c o = 4g, a I = 4g, b I = O, c I = 

(4g-2)a I . If v is a vertex of weight i then v lies on 2 tiles of weight 

i+l, 2 tiles of weight i+2,...,2 tiles of weight i+ 2g- i and one tile of weight 

i + 2g. 

For each vertex of weight i there is a unique overlapping face of weight i+ 2g . 

This proves (2). To prove (I) we note that every tile of weight n is adjacent to 

at least one and at most two tiles of weight n-i . A tile of weight n- 1 will 

have (4g- i) edges of weight n- i if it is non-overlapping and (4g-2) edges 

of weight n- i if it is overlapping. Now # of tiles of weight n = # edges of 

weight n - i - # overlapping tiles of weight n , hence 

a n = ((4g- l)an_ I - b n I ) - b 
- n 

which gives us (I). Finally, to compute c we note that a tile of weight n has 
n 

4g-2 vertices of weight n if it is not overlapping and 4g-3 vertices of weight 

n if it is overlapping. Every vertex of weight n lies on a unique tile of 

weight n , hence (3) follows. 
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(3.16). We shall now apply the above methods to calculate the growth series of a 

triangle group. Of course, this can be done using the method of B since a triangle 

group is also a Coxeter group. However, our method is applicable in the non-Coxeter 

case. Suppose F 0 is a triangle with angles ~/p, ~/q and ~/r and assume I/p + 

I/q + i/r ~ 1 . If i/p + i/q + i/r = 1 then our triangle is Euclidean, otherwise 

it is hyperbolic. Recall that G = A is the group generated by the reflec- 
p,q,r 

tions in the sides of F 0 • 

Proposition (3.16.1): If G is as above and S = {Sl,S2,S 3} are the three re- 

flections in the sides of F 0 , then S generates G and 

Ps(t ) ......................... ~ ! ~ ! ~ ! ~ Z ~  ........................... 

i - 2t + t p+I + t q+l + t r+l - t p+q - t p+r - t q+r + 2t p+q+r - t p+q+r+l 

In order to prove the proposition we must make some definitions and prove a lemma. 

Definition (3.16.2): Number the vertices of the triangle F 0 so that the angle at 

v.1 is ~/e.1 where e I = p, e 2 = q, e 3 = r . If F is any tile of the tessela- 

tion and v e F is a vertex, there is a unique i so that v is the image of v. 
1 

= for some g£ G . We say i is the type of the vertex v . We let Cn i the num- 

ber of vertices of weight n and type i. If F is an overlapping triangle we 

define the type of F to be the type of its unique vertex of lowest weight. Let 

bn, i = the number of overlapping triangles of weight n and type i. Clearly 

b n = bn, 1 + bn, 2 + bn, 3 

and 

Let 

= 

c n Cn, I + Cn, 2 

B.(t) = Z b t n 
l n,i ' 

B(t) = Bl(t) + B2(t) + B3(t) , 

n 
.t Yi(t) = Z Cn, I 

+ Cn, 3 

Lemma (3.16.3): If G and S are as above then 

= 2an i - b - an - n bn-I 

b = c 
n,i n-el, i ' 

Cn, I = Cn_l, 2 + Cn_l, 3 + bn_l, I - bn, 2 - bn, 3 , 

Cn, 2 = Cn_l, I + Cn_l, 3 + bn_l, 2 - bn, I - bn, 3 , 

Cn, 3 = Cn_l, I + Cn_l, 2 + bn_l, 3 - bn, I - bn, 2 , 

for 

for 

for 

for 

for 

n_>2 

n_>O 

n_>2 

n_>2 

n>_2 

(1) 

(2) 

(3) 
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and 

Ps(t) = 2tPs(t) - E(t) - tB(t) + i + t (i*) 

e 

Ei(t ) = t i~i(t ) for i = 1,2,3 (2*) 

Yl(t) = tY2(t) + tY3(t) + tEl(t ) - E2(t) - 83(t) + i - t 

Y2(t) = tYl(t) + tY3(t) + tE2(t ) - El(t) - 83(t ) + i - t (3*) 

Y3(t) = tYl(t) + t72(t) - tE3(t) - 81(t) - B2(t ) + i - t 

Proof of proposition: Substitute for the 8. in (i*) and (3*) using (2*). Then 
1 

we ge t  4 l i n e a r  e q u a t i o n s  in  4 unknowns P ' ~1 ' Y2 ' ~3 " The m a t r i x  o f  t he  e q u a t i o n  

e I e 2 e 3 
l-2t (l+t)t (l+t)t (l~t) t l+t 

e l + l  e 2 e 3 
0 l-t -t+t -t+t I - t 

e I e2+l  e 3 
0 -t+t l-t -t+t i - t 

e I e 2 e3+l  
0 -t+t -t+t l-t 1 -t 

is 

Solve for p using Cramer's rule. For the numerator we get 

e I e 2 e 
(l+t)B(l-2t)(l-t )(l-t )(l-t 3) . 

Calculate the denominator and cancel (l+t)2(1-2t) and we get the desired result. 

Proof of Lemma (3.16.3); (i*), (2*) and (3*) follow from (i), (2) and (3) and di- 

rect calculation of the coefficients for n = 0 and i . Equations (i) and (2) are 

proven the same way as in Lemma (3.15.1). Finally, we prove the first equation of 

(3) (the others follow by symmetry). Suppose na 2. Let A = set of all vertices 

of type i and weight n . At each vertex v of weight i in the tesselation we 

have the weights of the tiles meeting v are as follows: 
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since there is an even number of angles at v. If v is a vertex let F be the 
v 

unique triangle so that v• F v and weight v = weight F v . Note that F v cannot 

be an overlapping tile (since in that case weight v < weight F for all vertices 

of F) . Thus F is adjacent to a unique tile of weight n- 1 . Let 
v 

B = {v• A  F is adjacent to an overlapping triangle} . 
v 

If v • B we have the following diagram 

The overlapping triangle must be type 1 , hence #B = bn_l, 1 . On the other hand, 

if v E A-B then we have 

Thus for each vE A-B we can associate to v a unique vertex w of weight n-I 

and type # 1 . Conversely, given a vertex w of type # 1 and weight n-i there 

is a unique vertex of type 1 and weight n adjacent to w unless the tile F is 

overlapping. Thus 

#(A-B) = c + c 
n,2 n,3 - bn,2 - bn,3 

#B = bn_l, I . 

This gives the desired result. 
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