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PREFACE

This volume arose from the Polish-North American Seminar on Group Actions
and Vector Fields held at the University of British Columbia from January 15 to
February 15, 1981. The papers contained herein (with three exceptions) are research
papers that were discussed during the seminar. Some of them were not in final form
at the time and work was continued during the meeting. The exceptions are the
papers of Akyildiz, Dolgachev, and Lieberman. I would like to thank Dolgachev and
Lieberman for allowing me to include their papers, both of which are fundamental,
but, for some reason or other, have not been published before. The paper of
Akyildiz, who was unable to attend, is a generalization of work I reported on.

I would like to express my deepest appreciaticn to the Natural Sciences and
Engineering Research Council of Canada for the support which made this meeting pos-
sible. I would also Iike to thank the Math Department at U.B.C. for its hospitality
and for supporting the typing of the manuscripts. Thanks go also to the very pleas-—
ant Math Department secretaries, especiaily Wanda Derksen for their speedy and ac—

curate typing and to Sinan Sertoz for the proofreading.

James B. Carrell
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VECTOR FIELDS AND COHOMOLOGY OF G/P
by
Ersan Akyildiz

Abstract
We discuss the cohomology rings nf homogenecus spaces from the viewpoint of

zeros of vector fields.

I. Intreduction

If a compact Kaehler manifeld X admits a holomerphic vector field V with
isolated zeros, then by a theorem due to J.B. Carrell and D. Lieberman [C_L2] the
cohomology ring of X can be caleulated around the zeros of V. Although hele-
morphic vector fields with isolated zeros are not abundant, they do exist on a fun-
damental class of spaces, namely the algebraic homogeneous spaces.

In this note, the cohomelogy ring of a homogeneous space G/P together with
the cohomology maps ef w:G/B > G/P, and 1i:P/B + G/B will be discussed from
the viewpecint of zeros of vector fields. In particular a theorem of A. Borel on
the cohomology ring of G/P [B} is obtained rather surprisingly as a limiting
case. This description of the cohomology rings and the cohomology maps was a key

point in computing the Gysin homomorphism of 1 :G/B + G/P in [A—Cl] and [A—Cz].

IT. Review of Vector TFields and Cohomology

A helomorphic vector field ¥V on a complex manifeld X defines, by way of

the contraction operator {{V) a complex of sheaves,

n-1

BRI IS DU A

0+ g"

If Vv has only finitely many zeros, then this complex is exact except at ), and
in fact provides a locally free resolution of the sheaf OZ = O/i(V)Ql , which is,
by definition, the structure sheaf of the variety 2 of zeres of V. It fellows
from the gereral facts on hypercchomology that there are two spectrazl sequences

* -
{"EE9}, {"eP>% abutting to Ext (X; 0,0 where 'EP*Y = 8%x,0"P), and
r T Z 1

"Eg’q = Hp(XtE§E§(OZ,Qn)) . The key fact proved in [C—Ll] is that if X ig comw-
pact Kaehler, then the first spectral sequence degenerates at 'E1 as long as

Z# ¢. As a consequence of the finiteness of Z and HO(X,OZ) ¥ Extn(x; Oz,Qn),
where n = dim X, we have the Theorem [C—Lz]. If X is a compact Kaehler mani-
fold admitting a holomorphic vector field V with Z = zero (V) finite But non-

trivial, then



(1) wP(x,0% =0 1f p#q

{1i) there exdsts a filtration
a _ 5
H (X,UZ) = Fn(V)D Fn_l(V)J el Fl(V)3 FD(V) s

where n = dim X, such that Fi(V)Fj(V)t:Fi {V) and having the property that as

+j
graded rings

. 0 - Pey oPy - g
(1 my:erll (X,0,)) = g FN/F () g Pex,efy = B (x,0

The key to understanding the isomorphism (1} is in knowing how the Chern
classes of a holomorphic vector bundle arise. To answer this we need te recall
the theory of V-equivariant bundles [Al]’ [A2]’ [C-Lzl. For our purpose we only

need to discuss the lipne bundles. We say a holomorphic line bundle L on X is

V-equivariant if there exists a V-derivation vV (L) - 0(L} ; 1i.e. a C-linear map
satisfying V(fs) = V(f)sﬂffG(s} if fec0, se@(L). Since V{f) = i(W)df, 9
defines a global section of End(({L) g Oz) ¥ Oz; i.e. Ve HO(X,OZ) . It is showm

tm [A], [A,], and [¢-L,] that

(a) Ve Fl(V) has image the first Cherm class cl(L} of L under

the isomerphism (1), and
(b) if Hl(X,OX) = 0, then any line bundle L on X dis V-equivariant.
The relation between cohomology maps and zeros of vector fields can be ex-

plained as follows. Let £:X+Y be a holomorphic map between compact Kaehler
manifolds, V and V.'!f holomorphic vector fields on X and Y with isolated ze-
ros. LI dE(V(x)) = V*(f(x)) for any x in X, then it feollows from the general
facts on hypercohomology and the functeriality cf the isomorphism HO(X,OZ) =
Extn(X; Uz,ﬂﬂ) {G-H, p. 707] that the natural map f* :HO(Y,UZ*} + HO(X,U } pre-
serves the filtrations, i.e. f*(FP(V*}) E,FP(V) for each p, and also form the

following commutative diagram between the cobomology rings.

& * *
£ iH (¥,0) ———————> H (X,0)

@ Ty ‘1 5| ™

§

i

gr(e)) : grn’(3,0,,)) —— grn’ix, 0,0 ,

* ® *
where Z = zero (V) , Z = zero (V}, gr(f } is the natural graded algebra homo-
*
morphism asscciated to f :HO(Y,Oz*) -+ HO(K,OZ).

If the vector field V on X has only simple isclated zeros, in other words

Z = zero (V) 1is nonsingular, then HD(K,UZ) = # C 1is precisely the ring of
peZ
complex valued functions on Z. Thus, algebraically, HD(K,OZJ can be quite

simple. The difficulty in analyzing the cohomology ting is in describing the fil-
tration Fp(V) . We will now give a vector field Vv on G/B 1inducing vector

fields on P/B and G/P with simple isolated zeros. Then by using some facts



from Invariant thecry we will compute the filtrarions induced by these vector fields,

and thus the cohomology rings and the cohomology maps.

III. Description of HO(GIP,OZ}

We will use the following notation: € will be a connected semisimple linear
algebraic group over the field of complex numbers, B a fixed Borel subgroup of
G, Bu the unipotent radical of B, H a fixed maximal torus contained in B, g
the Lie algebra of &, h and bu the lie algebras of H and Bu respectively,

*
Ach the root system of h din g, A, the set of positive toots, namely the

+
set of roots of h in bu , L cA+ the set of simple roots, W the Weyl group of
G, 9ci any subset of I, We the subgroup of W generated by the reflectionms
G s B¢ 9, P=P@ the parabolic subgroup of & corresponding to @, X(H) the

group of characters of H.

We shall denote by the same aymbol an element of X(H) and the corresponding
element of & (& = du, the differential of o« X{H) at the identity) when this
can be done without any ambiguity. For the basie facts about algebraic groups the

reader is referred to [E] .

Let w*v = Adw(v) denote the tangent action of W on h, weW, veh. W
thus acts effectively on h and on h* . Thus we get an action of W on R =
Sym(h*) , the symmetric algebra of B , in the usual way: w- f(v) = f(m_l - v)
for fe¢R. Let ¥ be the ring of invariants of W. Since the- degree of the

natural map Spec(R) - Spec(Rw) is equal to |W| , the order of W, there exists
a dense open set U in h such that we+v # v for any weW and veU. An
element v of U is called a regular vector in h. For a regular vector v in
h, exp(tv) glves a one-parameter subgroup of B so that the fixed peint scheme
of this action on G/B is exactly (G/B)H T {w:weWr, where H acts on G/B

via the left multiplication. Let V = c{i_t (Exp(tv))f Be the wector field on
t=0
*
C/B associated to this one-parameter family. Then dn(V) = V  is a well de-

fined vector field on G/P, where w=:G/B ~ /P is the natural projectiomn. Un
the otber hand, since V 1s tangent to the closed immersion i:P/B > G/B, we

alsc have a well defined vector field, say Ve = on P/B. The zeras of ¥,

+ V|e/s
Ve , and V  are all simple isolated, and moreover

HG(CIB,OZ) = 8 w, HO(P/B,OZ ) E @ (T, HD(G/P,OZ) T e o,
uew* e rewe . &‘Jew/we
where 7, Ze, and Z are the zeros of V, Ve and V respectively. We now
compute the filtrations induced by these vector fields. We start first with
10 (c/B,0,) .
Let o be a character ef H, and let LOL be the associated homogeneous
line bundle on G/B: La = gxC/~, (g,z} ~(g',z") if and only if g’ = gb for some

beB and z' = a(b—l)z, where o 1is extended on B8 with afu) =1 for u in



B .
u
Lemma: The function s, onm Z, sa{m} = w+alv) for weW, represents the
i
first Chern class cl(Lu) of the dual of the line bundle th in the isomarphism

(13.

Procf: The function Xt: Lct+La’ S\'t(x,z) = (atix,a{d(t))z) defines a well

defined C-action on Loe so that the natural map Ld-*-GfB is C-equivariant, where

At) = exp(tv) . Thus ¥ = aqf (i‘t) is a V-derivation on L(1 [Az]. Since the
t=0
zeros of V are all simple isclated, the function V on Z defined by V(w) =
ok
4 (a (ux,)) represents the first Chern class ¢,{L ) of L  in the isomor~
dt t ] =0 17 o
phism (1), where 2y = BeG/B, weW. Let A(tlw = u:tl for some tl cH. Then

we have xt(mxo,z) = (mtlxo,a(?\(t))z) = (wxo,a(tl)u(,\(t))z) = (wxo,u(m_l?\(t)m)
a(i{t))z) = (mxﬂ,wu()\(t))a(l(t))z) . Thus

=~ ok d -1 -1
V) = 40 x| =2 (e ™Mt ™
t=0 t=0
d
= - (wolexp(-tv)})oalexp(-tv))) = ~w e alv) -alv).
dt
t=0
Since the constant functions are in FO(V) by [Al], [C—LZ], the function —sa on
Z, —sa(w) = -w-*al(v) for weW, represents the first Chern class cl(Lu) of
%
Lu. . This proves the claim, berause Cl{LOI) = -—cl{La) .
Since & 1s semisimple, the roots A of h span h . Thus the lemma im-

plies that there is a well defined linear map 4V : h1l= -+ Fl{'V) determined by the
condition ¢{a) = 5, for any eeA. Let {Y:R =+ HO(G/B,UZ) (R = Sym h*) alsc
denote the algebra homomorphism extending this linear wmap, namely ¢(f)(w) = w = £({v)
for f¢R and weW. Unfortunately ¢ 1s not W-equivariant with respect to the
natural action of W on HO(G/B,OZ) gilven by (o~ £){(w) = f(cr_lu.!) . To ohtain
equivariance, one must force W to act on HO(G/B,OZ) on the right. Thus W acts
on HD(G/B,OZ) according te (o f){w) = f(w - 6_1) . Then 4 {is W-equivariant
in the sense that o+ ¢(f) = 1{){{:1-1 +f) for ceW, and feR. We need only the
following fact to compute the filtration FP(V) of HO(G/B,OZ) .
For any v # 0 in h, let Iv = {feRW:f(v) =0}, and let I = {feRw:
f{0) = g} . Then the ring R/I R is only graded when I,=1, i.e. only when
v =0, However RfIvR is filtered by degree. Namely, if p = 0,1,..., set
(R/IVR)p = Rp/Ian Rp where Rp = {fcR:deg f<p}. The natural homomorphism
T:R > R/IVR » () = flmod IVR) induces a surjective graded algebra homomerphism
grim) : R+gr(R/I R) = @ (R/IVR)P/(R/IVR)p_l - Since for fel, f-f(v)cI we
have w(I)c (R/IVR)0 , and thus w(IRn Rp) = (R/IVR)p_ This implies

1
IRgc ker(gr{w}) . But, if v 1is a regular vector in h, then dim. R/IVR =

dim.gr(R/IvR) = |w| . oOn the other band by a thesrem of Chevalley [CR] we have
dim R/IR = LW] . Thus for a regular vector v in h the natural homomorphism

T: R+ RIIVR induces a graded algebra isomorphism



(3) gr(m) : R/IR = gr(ﬁf’IvR)
We now prove a result due to Carrell and Casselman [C].

Theorem 1. Let v be a regular vector in h. Then the algebra homomorphism

prr o> E0(6/8,0,) , $(H) (W)

wr £{v) , induces a W-equivariant iscmorphism
- 0
¥ R/T R > HU(G/B,0p)

preserving the filtrations, i.e. —@((R/IVR}p) = F (V). Consequently for each p,
WFP(V) = Fp(V)‘ and the natural morphism Fl(V)eL FP(V) is surjective.

Proof: We only need to show ker(y) = IVR, and E((R/IVR)p) = Fp(‘\i’) for
each p. It is clear that IVR cker{y) . Since ¢ is W-equivariant, the variety
Y determined by ker(y¥) is a W-invariant subvariety of X = {w-*v:weWl, the
variety determined by LR, But X has no W-invariant non-trivial subset, and
Y# ¢. Therefore X =Y, and thus IVR = ker{y) by the Nullstellensatz, because
the radical of IvR = IVR .  This shows that §: R/IVR -+ HO(G/B,OZ) is an isomor-

phism, because dim R/IVR = dim HO(G/B,OZ} = lwi . On the other hand by the lemms

we have TJJ-((R/IVR)I)) EFP(VJ for each p. Now we compare the dimensicns. From
P

the Bruhat decomposition and the isomorphism (1) one gets dim FP(V) = y Card.
k=0

{wewWw: £(w) = k}, where £{w) 1is the length of w. On the other hand by the

P

isomorphism (3) we have dim (R/IVR)p = I dim(R}'IR}k , where (R!IR)k is the
k=0

k-th homogeneous part of R/IR. But from the algebraic facts due te Solomen

[Ca. p. 135] and Chevalley [Ch} we get dim (R/IR)k = Card.{weW:L(w) = k} . Thus
dim FP(V) = din (R/IVR)p . Since ¢ is an isomorphism, we get w{(R/IvR)p) = FP(V)
for each p. This finishes the precof of the theorem.

This theorem gives explicitly the filtratiom FP(V) of Hoic,"B,gZ) . By using
this filtration we obtain a theorem due to Borel [BE]. Let B:h -~ H(G/B,0) be
the linear map determined by the cendition &{a) : cl(L:) , the first Chern class
of the line bundle La , GeX(HY. Let B£:R ~+H (G/B,C) be the algebra homomor-

phism extending this linear map.

Corollary (Borel). The algebra homomorphism ¢ : R + HD(G/B,O ) induces a

W-equivariant surjective graded algebra hamomorpbism
0
griy) : R ~ gr(H (6/B,0,))
such that
*
m ° gr(y) = B:R + B (G/B,C) .
Moreover Lker(gr(¥}) = IR, and thus
. _ *
@, ° gr(y) = g : R/IR + H (G/B,C)
is a W-equivariant graded algebra isomorphism,

Proof: It follows from the thecrem 1 and the lemma because of the isomorphisms



{1y and (3). -
4] o] =]
We mext compute the filtrations of H (G/P,DZ*) and H (P/B,Gz Y. Let R
e
be the ring of invariants of we, and let J, = {feR E':f('.f) =D},
W

*
J= {fecR G‘: f{0) = 0} . Since the natural map :HO(G/P,OZ*) - HO(GIB,O )y is

*
given by 7 (£)(w) = £{Q) fa_r weW and feHO(G/P,GZ*) , m* is injective, and
* 0
T (H (G/P,Oz*)) = HO(G,"B, 7 : o
*
dimensions we get W (HO(G/P,UZ*)) = HG(G,’B,OZ) @ . Consider the filtratiom on

) o , the ring of invariants of W By comparing the

W, W,
R~ given by degree, Then the algebra homomorphism ¥ i R L HO(G/P,OE*) ,
W
wz(f) (@) = $(f)(w) for fecR ® and ae w/wa , is well defined and preserves the
*

filtrations, because =« preserves the filtrations and the cohomoleogy ma

* % * Yy Wg G
7 :H {(G/P,C) >+ H (G/B,C) is an injecticn. Since (R/IVR}p = (R /IVR }

for
each p, by theorem 1 the homemcrphism 11:2 induces a filtration preserving iso-

morphism forming the following commutative diagram

W W
- .8 8 0~ 0
¢'2 'R /IVR — (G/P,Ozﬁ)
(4) m
|
ViRt R e wlm,0)
H - Uz

A
Thus Fp(V ) = UJE((R /IVR ”)p) far each p.

We now compute the filtration Fp(Ve) of HO(P/I’.‘;,Oz } . Since the natural
0 0 &
map 1 :H (G/B,Uz) + H (I’/E,CFZ )  preserves the filtrations and the cohomology
e

K % *
map i :H (G/B,C) = H (P/B,C) is surjective, we have i (Fp(V)) = Fp(Ve) for

each p. This implies by theorem 1 that the algebra homomorphism ¥ =

L ® 0

i sp:R~+H (P/B,OZ ) is surjective and wl(Rp) = Fp(ve) for each p. Since
e

IR ¢ ker(p,) and dim R/J_R = dim #°(P/B,0, ) = |W_| , the order of W_, the

b 1 v Ze B o

homomorphism '*“1 induces a filtration preserving isomorphism forming the following

commutative diagram

0 e6/3,0,) —-es %m0, )

e

(5) v §
R/IVR - RvaR

Th =
us prVe) (R/JVR)p for each p.
We now summarize all of these in the following theorem. For any regular vec-

. 4}
tor v in h, let $:R-+H (G/B,Oz) be the algebra homomorphism given by



W
Pp{EY(w) = w-£f(v) for feR and geW. If .k HO(B/B,0, ), (R 2 s
¥ 7 ¥y

e
HG(G:"P,OZ*) are the algebra homomorphisms given by wl(f) (1) = wif)(t), lllz(g) (@) =

¥(g) (w) , then we have:

Theorem 2. The following diagram of praded algebras

TH i%

= * *
H (¢/p,) ————  H (G/B,0) ——> H (P/E,C)

on 2 = o |
0 0, .
gr(H (G/P,Oz*)) —— gr{H (G/B,UZ)) —_— gI(H(%P/B.O n
e

Gy |y ey e |y

R /IR —_— R/IR R/JR

is commutative,

Proof. The isecmorphism gr(wz) fellows diagram (4) and theorem 1, because

g Ya,  ¥g
(R/IvR)p = (B /IVR )P for each p. On the other hand, since W, is a reflec-

tion group, by a similar argument given in the proof of isomorphism (3) we get

gr(llll) : R/JR & gr(HO(P/B,Oz }) , because El : R/'JVR ¥ HO(P/B,OZ Y is a filtration
e e
preserving isomorphism. Thus the rest follows from theorem 1, and diagrams (2),

4y, (5.

We now prove a result similar to corollary of theorem 1. Let § = C[0]cR
be the polynomial algebra in the variables we ©, a:d let Be: S - H*(P/B,C) be
the algebra homomorphism determined by Eo(u) = cl(Lm) , the first Chern class of

the dual of the line bundle L, on P/B, for any e @. 8 1s invariant under
‘We . If we set IGj = {fe§ G: £(0) = 0}, where § @ is the ring of invariants
of We , then we have:
Corollary. The inclusion 1i:8-+R induces an isomorphism
s G
i:8/1°3 + R/JR
s0 that
e 8o o p*
m, cgr(y) e i=g,:8/1°s ¥ B (F/B,0)
e
Proof. Everything follows from the theorem above and corcllary of theorem 1
except the isomorphism 1 : S/IGS + R/JR. We now show that 1 is an isomorphism.

*
To see this, let hleh be the dual space of the space spanned by © in h ,

and vy be a regular vector in h1 for w@ . Consider the wecter field Vl on

P/B induced from the one parameter family exp(tvl) . where P = P/R(P),



E = B/R(P), R(P} 1is the radical of P. Then by theorem 1 (F ie semisimple)
and diagram (5) the natural isomorphism p: P/B ¥ P/E induces a filtration pre-

serving iscmorphism forping the following commutative diagram

HG(F/ﬁ,OZ ) —— HD(P/B,UZ )
e
1 sy,
& i
sf1” s —+ R/IR,
v v
1
9 Yo - o
where Z, = zero(Vl), I, = {fe§ :f(vl) = 0}, and i S/Iv S - R/JVR is the

1

homomorphism induced from the inclusion 1:S—+R (here v is considered as v =
v *v, for some v, h) . But this implies that 1: S/ISIS - R/JVR is a filgra=
tion preserving isomorphism. Thus the associated graded algebra bomomorphism
gr(i} :gr(Slls 8) -~ gr(R/JvR) gives, by theorem 2, diagtam (5), and the isomor-
phism (3}, thelisomorphism T:s/1% » R/IOR.

Remark:

(1) Here we have computed the filtration of HO(G/P,OZJ for the regular vec-
tor fields. At the other extreme GfP always admits a vector fileld with exactly
one zero by [A3]. Recently, it is shown by {A—C—L-i] that there exists a unique
vector field V with one zero on G/PF admitting a C -zction, and the filtration
of HO(G/P,UZ) for this vector field is given by the height of the roots. This
description of HO(G/P,OZ) gives information about the Schubert calculus like the
one given in [B-G-G! by means of EAA] and [AS}.

(2) Theorem 1 and its corcllary have also been obtained by J.B. Carrell and W.

Casselman. But their preof was only an cutline.
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COMPLETE QUOTIENTS BY ALGEBRAIC TORUS ACTIONS

by

andxzej Bialynicki-Birula and Joanna Swiecicka

The aim of the paper is to provide an answer to the following problem:

Let an algebraic torus T act on a normal complete variety X . Describe all
open T-invariant subsets U of X for which the geometric quotient space U/T
exists and is complete.

The problem has been studied in [B-B,8] for algebraic actions defined over the
complex number field { and for complex analytic actions. Here we consider the
algebraic case where the ground field k is algebraically closed of any characteris-—
tic. The main result is in the spirit of [B-B,S] , however ocur proof is based on
completely different ideas. The proof gives in fact a result concerning more general
quotients. The answer to the problem starting at the beginning follows directly

from this result.

§1. Notations and Terminology. The main result.

The ground field k 1is assumed to be algebraically closed; all algebraic
varieties and their morphisms are supposed to be defined over k . Let T denote a
one-dimensicnal torus and let X be a normal complete algebraic variety. Assume
that we have an action ¢f T on X . For any t € T and x & X , tx denotes the
value at x of the automorphism of X assigned to t .

T
Let X =X, ur==y Xr be the decomposition of the fixed peoint set of the action

1
given on X into connected components.
*
Let us fix an isomorphism T » k , Then for any x ¢ X , the morphism
¢x: T+ X , defined by ¢x[t) = tx , can be extended to the projective line

L]
Pl(kx) > k . The extended morphism will ke also dencted by ¢x . Define
) = 4 (D), T Hx) = ¢ (=)
R S xRy

X = {xex; ¢+(x)5x_}, W, = {xeX, & (x}eX.} .
1 1 1 1

Definition 1.1. Let i, j ¢ {1,2,...,r} . We say that Xi is directly less than

Xj if there exists x ¢ X - XT such that @+(x) € Xi , 7 (x) € X

5 We say that

Xi is less than Xj and we write xi < ¥, if there exists a sequence i = iO’
il""’ii = j such that Xi iz directly less than Xi s for s=1,...,£ . We
s-1 5
shall write X, < X, if X, < X, or X, = X_ .
1 ] 1 3 1 h)
Definition 1.2. A semi-section of {1,2,...,r} is a division of {l,...,r} into

three disjeint subsets A+, AO, A satisfying the following condition:



. +
if i et ua®ana Xj <X, then je at .

. . . + -
A section of {1,2,...,r} 1is a semi-section (a ,AO.A } where AO =g .

Definition 1.3. Let (a%,a%,A”) be a semi-section of {1,2,...,r} and let

+ - * ) .
U= (X, nX.) . Then U is called a semi-saftional set corresponding to the
, Q 3
LeA UA
jeA UA
. . + 0 - . . . . s
semi-section (A ,A",A ) . A semi-zectional set corresponding to a section is called

a sectional set.
Notice, that if U is a semi-sectional set corresponding to a semi-section
+ .0 .-
(& ,A",A ) then
- +
U=2x-1 U+X. v U X))
igat 1 ien” 1
In this paper we are going toc consider two concepts of quotient maps: a geo-
metric quotient and a semi-geometric quotient. The notion of a geometric guotient

was introduced by Mumford in [G.I.T.]. In the special case, we are considering in

this paper, his definition is eguivalent to the following:

Definition 1.4. Let an algebraic torus T act on an algebraic variety X . A
morphism mw: X + ¥ , where Y is an algebraic variety, is said to be a geometric
quotient of ¥ (with respect to the given action of T} if the following conditions
are satisfied:

(a) for any vy ¢ Y, ﬂ_l(y) is an oxbit in X ,

(b) m is an affine morphism,

{c} for any open affine U < Y, the ring k[U] of regular functions on U is
identified by w* with the ring k[n_l(U)]T
i

of regular T-invariant functions on

Definition 1.5. Let X, Y, v be as in Definition 1.4. The morphism 7: X » ¥ is
said to ke a semi-gecmetric quotient of X (with respect to the given action of T}
if conditions (b) and (c) of Definition 1.4 are satisfied. (The notion of a semi-
geometric guotient is equivalent to the notion of a good quotient of Seshadri, see
[8el}

We are going to denote a semi-geometric quotient of X by X + X/T .

1t is easy to see that if a semi-geometric quotient exists, then it is a
categorical gquotient. On the other hand if #: X + Y is a categorical gueotient and
m is an affine morphism, then #: X > ¥ is a semi-geometric guotient.

Now, we are ready to state the main result of the paper.
Theorem. Let X be a normal complete algebraic variety with an action of T . If

U is a semi-secticnal subset of X , then U is open, T-invariant, a semi-gecmetric
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guotient U -+ U/T exists, and U/T is complete. Conversely, if U is an open,
T-invariant subset of X such that a semi-geometric guotient 0O » U/T exists and

U/T is complete, then U is a semi-sectiocnal subset of X .

Corollary. Let X Dbe as in the theorem, If U is sectional, then a geometric
quotient 0 - U/T exists and U/T is complete. If for an open, T-invariant subset
U c X, a geometric guotient exists with U/T complete, then U is sectional.

In fact the above theorem summarizes the contents of Theorem 3.1 and Theorem

3.3 and the corollary follows directly from Remark 3.9 proved in §3.

Remark 1.6. It should be noted that for actions of T on smooth projective variet-
ies one can find such semi-sectional sets U which have complete non-projective
quotient spaces U/T . TFor example if X = Grassmanman {2,4) with the action of T

induced by the action on k? given by matrices

, where n are pairwise different integers,

1My rfy

then for at least cne (and at most two depending on the choice of the integers n .

nz,n3,n4) sectional sets, the quotient space is not projective.

Remark 1.7. If [ is a semi-sectional subset of U , then U is & maximal subset
of X which is open, T~invariant and which admits a semi-geometric quetient. How-
ever, in general, for a normal complete algebraic wvariety X the semi-sectional

subsets are not the only maximal subsets with the above properties (see [B-B,S]).

§2. BAuxiliary results.

If L is a T-linearized invertible sheaf on X , then xis or Xoo(L)
denotes the set of semi-stable points of X with respect to [ (see [G.I.T.] for
definitions). It has been proved by Mumford [G.I.T], that Xis is open, T~
invariant and that the semi-geometric guotient Xis > Xis/T exists and XTS/T is
quasi-projective. On the other hand, if for some algebraic variety U the semi-
geometric quetient U < U/T exists and U/T is guasi-projective, then U = Uis

for some T-linearized invertible ample sheaf L on U .

Example 2.1. Suppose T = k* acts on an n-dimensional projective space P . Then
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we can find a coordinate system on P such that the action of k¥ is given by

tnl
. 4]
t e = e * *
[xon .Xn] [xor rxn] .. , for any t ¢ k¥ and [xo,...,xn]eIP,
¢ ..M
"t
where 0 =n, = ,,. =n < n = . =mn Caanaa <1 = .= n is a sequence
1 + .
T 2 el
of integers.
T .
Then P = Py LU P, where Pi = {[xo,.‘.,xn] e F; Xy = oen = ® =0 =
_ r-1
X, = ... = xn}
trel
For any a = [ao,...,an] ¢ P, let ax be the non-zerce coordinate of a with

the smallest index and let a, ba the non-zero coordinate of a with the greatest

+

index. Let i, < £ <3i, and <k<i, . Then &' (x) e P, , ¢ (x) € P,
i-1 j b1 ]

i
i -1
Hence for any i,i, i < 3j , Pi is directly less than Pj , in particular Pi < Pj
Morecver if P, = P, and P. £ P, , then P, = P,
1 J ] 1 1 ]
If ¥ is a projective variety with an action of T embedded in an equivariant

way into IF (any normal guasi-projective variety with an action of T has such an
embedding, see {S8]), then it follows from the above that Xi = xj and xj < xi
implies Xi =X

3
All sections (A+,AO,A } of {1,...,r} (for the given actiocn of T on Ip)
are of the form A = {1,...,i}, A’ = @, A = {i+l,...,r}, all semi-sections which
are not gectiens are of the form at = {1,...i}, AO = {i+1}, Ao~ = {i+2,...,r}

all semi-sectional subsets of I’ are open. Moreover it follows directly from
[GIT] that for any semi-sectional set U ¢ P there exists a T-linearization of
8{1) such that U = Psste{l)) , hence a semi-geometric quotient U - U/T exists

with U/T projective. The quotient is geometric, if U is sectional.

Lemma 2.2. Let L be a T-linearized ample invertible sheaf on a projective variety

¥ ., Then the set Xis is semi-sectional.

Proof. Replacing L by L@n , for some natural number n , if necessary, we may
assume that | is very ample. Let ¢L: X+ B be an embedding determined by L
The given T-linearizatjon of | gives a representation of T in the space of
global gections T(x,l} and hence it gives a T-linearization of 0{1} on p

(we shall call it a T-linearization of &(l) corresponding to the given lineariza-
tion of L). The set (Pm)ss(e(l)) is semisecticnal (Example 2.1). Moreover,

for any global section s of L the set {xeX; a{x)70} is affine (since L is
very ample) and any T-invariant global section of [ can be extended to a T-
invariant section of 0(1) {(we identify X and ¢L(x) c 2™ . The set where the
extended section is different from zero is again affine. This shows that

Sy < (PM%P0y) . similarly (FOS(0L)) n X o Xx°%(l) . Hence



EMEFOMy nox = ¥ (). since (P™®%(0(1)) is semi-sectional (Example 2.1),

ss ) .
XL is also semi-sectional.

Proposition 2.3. Let X be a (not necessarily normal) algebraic complete variety

. - . T .
with an action of an algebraic torus T . Let ¥ = Xlu...uxI be the decomposition
into connected compoments, where Xl is the source and Xr is the sink., Then

< < ) =
Xl = Xj = XI ; for any 3 Ipeu-,xr o

Proof. Assume first that X is normal and@ projective., Suppose that X is not

= Xi , for some i , and let Xj be a minimal (with respect to <) component with

this property. Then X; = @ or there exists Xk # Xj such that X < xj and {by

k
the minimality assumption) Xj <X . If K; = g then Xj is the source X, ,
contradicting with the assumption that Xl is not = Xj . The second possibility

can not occur ejther because X can be T-eguivariantly embedded in " and we may
use the result stated in Example 2.1.

Now, if ¥ is any complete algebraic variety then there exists a normalization
morphism n: ¥ + X and by an Eguivariant Chow Lemma (Theorem 2 [Su]) a birational
T-equivariant morphism 6:¥ ~ X , where % is projective and normal. For a con~

=T . R
nected component Xi < X, let ¥ be any connected component of X contained in

(nB)-l(Xi) . Then by the first part of the proof the source of X is less than Y
and hence there exists a seguence of points Hygoo- g% € § such that ¢+(xl) be-
longs to the source of § r Q-(xi) and @+(xi+l) belong to the same connected com-
ponent of iT for i=1,...,s-1 , and Q_(xs) ¢ ¥ . Then the sequence
nB(xI},...,nB(xE) has the following properties: ¢+(n6(xl)) € X s @—(nB(xi]) and
¢+(ﬂ9{xi+l)) belong to the same connected component of X and @_(ne(xs)] € Xj .

Th X, £ X, . <
us 1 i By symmetry Xi Xr .

Proposition 2.4. Any semi-sectional subset U <= ¥ is open in X .

Procf. Let U correspond to the semi-section {A+,AO,A-) . Then U =X =
M ¥T oy xtn X . We shall prove that U ax
{i,qeat ¥y MR e S T s shatl p iqeart® 0 &
+ -
i ;E;_(xi n Xj) are claosed. Let 1i,je¢ A+ , let B be an irreducible compcnent
L

T
of xi n Xj ; let B Bs be the connected components of BT , with B_~the

1
, (%) « B£ . Then by

IEEREY’
; +
source and Bs-the sink. ILet R ¢ B and let ¢ (x) ¢ B

k
Proposition 2.3. Bl < Bk < BE < Bs . Let Bk < Xr ' B£ c Xt . Then
X, £X_ <X <X, and x & XL n X, ., Thus xe . U _, (¥7 nx7) and thus
i T t 3 b t i,jeat i h|
U Toaxly i Jo_(xtn x4 i
i,jeA+(xi n xj) is closed. By symmetry i,5ea (xi n Xj) is c¢closed. Hence U is

open.,

Propositjon 2.5, Let U be a semi-sectional set corresponding to the semi-section
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(A+,AO,A—1] and let ¢: U+ U/T be a semi-geometric quotient. Then
vV=uU- i:ie(xz u XI) is open and ¢EV: v+ ¢{V) is a geometric guotient.

Proof follows from Proposition 2.3, Definitions 1.4 and 1.5, Amplification 1.3
p- 30 [GIT] and the remark that all orbits contained in vV are closed in U .

In the sequel we shall use the following well known

lemma 2.6. Iet U > U/T be a semi-geometric quotient. If U is normel then U/T
is also normal.
Finally, we shall need the following two lemmas on gluing of algebraice

varieties.

Lemma 2.7. Suppose that we have the following commutative diagram of morphisms of

algebraic varieties {(where <—— denotes open immersion)

——
| / \1,1\4 A

/
\/£_+V
// 3 \
\ >V,
1 b 2
Assume that T is an isomerphism and that W and qltwl-w) are complete

2
and ;nl[Wl—W} = nz(wz—w) . Then Vv = {Vz - nzth-w))uTV

1 is a complete algebraic

variety and the induced map

-1 . .
n:(w2 =T, {nzth—wl))) uwl — ¥ iz a morphism.

The proof follows from the valuative criteria of properness and separatedness.

Similarly one proves the following

Lemma 2.8. Suppose that we hawve the following commutative diagram of morphisms of

algebraic varieties
T Yo 7,
o ¥, |
;N
N Yz\\;

L A

L

\4/

w <
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Assume that ¢ is surjective, V2 and Y3 - Y2 are complete.
Then V = (V2 - (Y3—Y2)) u, Vl is a complete algebraic variety and the induced
mapg n: Wl u w2 — V ig a morphism.

§3. Main results.

Theorem 3.1. Let X be normal complete variety and let T act on X ., For any
semi-sectional U = X, U is open and T-invariant, the semi-geometric guotient

U —= U/T exists and U/T is complete.

Proof. It follows from Proposition 2.4 that U is open, and from Definition 1.3
that U is T-invariant,.
Now, assume that X is projective. Iet §: X = " be a T-equivariant

embedding of X into a projective space F'. Let Pl,...,P be the irreducible

components of (EF)T and suppose that Pi < Pj for 1i < 3j; i%j =1,...,k . Let

Uy be the sectional set corresponding to the section ({1,...,i},#,{i+l,...,k}}

and Uzi—l be the semi-secticnal set corresponding to the semi-section

({1,...,i-1},{1},{i+1,...,k}). Now, let U be a semi-secticnal subset of X

corresponding to a semi-section (A+,AO,A—) . For any i =1,...,2k-1, Ui noyix)
O

. \ . + -
is a semi-sectional subset of X , let us denote by [Ai,A Ai) the corresponding

= r
i
semi-section of {l,...,r} . Let m be the greatest integer such that
+ + 0 o]
A ©— A ,A cCA
m m

We shall prove existence of the semi-gecmetric gquotient $: U+ U/T and

+
completeness of U/T by induction on £{0) = 2#(A+—Am) + #(AO—Ail . If E(uy =0
-1 .
them U =y (Um) and the semi-geometric guotient exists and U/T is complete
since it exists for Um and Um/T is projective (see Example 2.1). Assume that
the theorem is proved for all semi-sectional subsets v with £(v) < £ and let,
+ a
for U, £(U) = £ > 0 . Let n be the smallest integer such that A" © A, a? <AL
Then n > m .
g 0 o] , -
Case (a). An #@ . Then A ¥ @ . Let 3 ¢ A . Then U' =0 - X. corres-—

ponds to the semi-section (A+,AO ={3}, " u{ih) anda £(U*) = £(Uy -1<£ . Thus a
semi~geometric guotient 4': U' + U'/T exists and U'/T is complete. On the other
hand a semi-geometric gquotient ¢n: Un -+ Un/T exists with UnfT prejective. Let

V. be a T-invariant meighbourhood of Xj such that Vj < Un n U and

n
ing commutative diagram

$ \(Vj-(XE\JX;)), ¢'|(Vj n U') are geometric guotients. Then we have the follow-



U:YJ U(U '}S.—)-'- Uu{‘]

where £ 1is the morphism of quotients induced by open empedding Vj ngrc Vj , and
t is the cancnical isomorphism of geometric quotients. Let V = Vj/T UT((U'-Xj)/T]-
By Lemma 2.8 V is a complete algebraic variety and the induced morphism U =+ V

is a semi-geometric quotient.

0

Case (b}. A = g . Let je (A;-A; ) n &t (such j exists since n is

-1
the smallest integer for which A; > A+) . Let U' correspond to the semi-section
(A+-{:|}, {ij},A"} . Then Uf =U y X; . Morecover £(U') = £{U)-1<£ and hence a

semi-gecmetric quotient ¢': U' + U'/T exists and U'/T is complete. Let V,

be a T-invariant neighbourhocd of Xj such that Vj < U n Un+]_ and ¢'|Vj—x; is

a gecmetric guotient.

Then we have the following commutative diagram:

VX e U= UuX’
/
d + /,,
1 &y\ﬁ-(x B )\ ¢

V-G S ATy

/

\{j-X;/T : > U



where T is the canonical isomorphism of geometric quotients and ¢ is induced by
vy - x;' S U . Let V = (UY/T - ¢'[x; uxj'_)) u_ vj-x;f/T . Then Dy Lemma 2.7 V
is a complete algebraic variety and the induced morphism ¢: U+ Vv is a semi-geo-
metric quotient. This completes the proof of the theorem for projective X .

Now, let X be any normal complete algebraic variety. It follows from
Theorem 2 [5}, that we may find a projective normal variety X' with an action of
T and a T-equivariant birational morphism E: X' -+ X . Suppose that U is a
sectional subset of X corresponding to a section (A+,9,A-). Let (B+,¢,B-) be a
)T

section for X' defined in the following way: let (X" = xi L...U x; be the

decompesition of (X')T ihto connected components; i ¢ 8" if and only if

E(xi} < Xj , where j ¢ a . Then E_l(U) is the sectional set corresponding to
(B+,H,B-) - Thus by the first part of the geometric quotient g'ltu) + E—I(U)/T
exists and qu(U)/T is a complete algebraic variety. ©n the other hand we have
U+ U/F where U is an algebraic prevariety. £ induces a surjective hiraticonal
morphism S*: E-l(U)/T + U/T . 1In order to prove that U/T is separated it suf-
fices to show the following:

*
Lemma 3.2. Let £ : W, » W, be a surjective morphism of a complete algebraic

2
variety W, onto an algebraic prevariety W2 . Assume that

* - -
£ " 1{V]: (€ 1(V) + V is an isomorphism for some dense and open subset

Vew, . Then W2 is a complete variety.

Proof. Since Wl is complete, if w2 is separated, then W2

algebraic variety, ZLet ( be a valuation ring in the field k(Wz) = k(v = k[Wl}

is a complete

Suppese that O dominates ¢, 0 where x_, x_ ¢ W, . Then { dominates
x] b 1 2 . 2 *

Oyl, Oyzr f:r some points ¥yr ¥, © W such that £7(y)) ==x, & (yz) = x,

{(because £ is proper). S8ince W1 is separated, ¥, T ¥y - Thus X =%,

The proof of lemma is finished.

Let us now go back tc the proof of Theorem 3.1. It still remains te show that
for any semi-sectional (but not sectional) set U = X , where X is a complete
normal variety, a semi-geometric quotient U + U/T exists and U/T is complete.

O,A_) . We shall prove this result by

Let U correspond to a semi-section (A+,A
induction on #AO .1t #a% = 0 , then U is sectional and we know already that

the theorem in this case is true. Suppose it is true when a semi-sectional set

. . + -
corresponds to a semi-section (B ,BO,B ) where #BO < #AG . Suppose #AO > 0 and
let j ¢ AO . Let 0" be the semi-secticnal set correspending to the semi-section
+ 0 -
{A ,27-{3}, A u{3}) . Then by the inductive assumption, & semi-geometric gquotient

U' = U'/T exists and U'/T is complete. We may progeed, now, in the same way as
in the proof of Case (a) if we show the existence of an open T-invariant neighbour-

hood Vj of Xj for which a semi-geometric guotient ¢j: Vj - vj/T exists (and
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+ -
¢j\Vj-—(Xj qu] is a geometric quotient). This fecllows from the existence of a
quasi-projective, T-invariant neighbourhood of any peint x e Xj ; the embedding
thecrem of Sumihiro [5] and the existence of semi-geometric quotients of semi-sec-

tional subsets of " (Example 2.1). The proof of Theorem 3.1 is complete.

Theorem 3.3. Let X Dbe a normal complete algebraic varlety with an action of T .

Let U < X be an open T-invariant subset of X such that the semi-geometric
quotient ¢: U + U/T exists and U/T is complete. Then U is a semi-sectional
gset in X .

The plan of the proof is the following. First we prove.

Propesition 3.4. Let U be an algebraic normal variety with an action of T for
which a semi-gecmetric quotient U + U/T exists and U/T is complete, Then there
exists a normal varjety U with an action of T and a biraticnal proper T-
eguivariant morphism ¢: U' + U sgsuch that the semi-gecmetric quotient O0f = U'/T
exists and U'/T iz projective.

In the next step we shall find a good equivariant embedding of U' in a normal

projective variety; more exactly we shall prove the following

pPropesition 3.5. Let U' be an algebraic normal variety with an action of T for
which the semi~geometric quotient U* - U'/T exists and U'/T is projective. Then
there exist a noraml projective variety X' with an action of T and an open
T-equivariant embedding i: U' <4 X' such that 1{U") is contained in a semi-
sectional set W for which the semi-geometric quotient W/T is projective.

Then we shall prove that i(U') is in fact a semi-sectienal set. We shall

identify, in the sequel, U" and i{U').

Proposition 3.6. Let U' be an open T-invariant subset of a normal projective
variety X' such that the semi-geometric quotient U' = U'/T exists with U'/T
complete. If U' is contained in a semi-sectional subsat W c X' , then U" 1is
equal te some semi-secticnal set in X' .

Let ¢' be a biraticnal map X' — X defined by a birational morphism of
open subsets $: U' > U . Taking the closure of the graph of ¢' in X x X' we
find an algebraic variety ¥ with an action of T and T-eguivariant morphisms

7: X+ X' and 1: X + X such that dfm =1 .
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Note that n-l(i(U‘J) = y* and T_I(U) = ﬂdl(i(U')). The latter follows from
the fact that T(n_l(i(U')) =0 and 1]n_l(i(U')) = ¢‘wiﬁ_l(itu')} is proper. To

complete the proof of the theorem it suffices to prove the following two propositiors:

Proposition 3.7. Let ¥+ X" bea T-equivariant morphism of algebraic varieties
. -1 :
and let U' © ¥' be a semi-sectional set in X' . Assume that |7 (U') is an

. -1 : . ;
isomorphism. Then w “(U') is a semi-sectional set in X ,

Proposition 3.8, Let T ¥+ % bea T-morphism of algebraic varieties and let

: -1 .
U « ¥ be an open T-invariant subset of ¥ such that T “(U) is a semisectional
set in X . Then U is semi-sectional in X .

This will finish the proof of Theorem 3.3.

Remark 3.9. A semi-secticnal set is sectional if and only if it contains no fixed
peints. Tt follows then that if U < X is an open T-invariant subset of a

normal projective variety X and U n xT = @ and asemt-geometric guotient of U
by T exists and is complete, then U is even a sectional set and U + U/T is a

geometric gquotient.

Proof of Proposition 3.4 By the Chow Lemma we may find a projective variety Vv with

a birational morphism Vv + U/T . Then V xU/T U is irreducible (since U is
irreducible and V - U/T is birational). Define v: 0' - ¥ XUKT U as the
noxmalization of 2 = V x T .

u/T

Then we obtain

Ut e 7 —— U

pr,

b

ar/T _$T+ vV ——U/T

Notice that ¢ = pr2°w: Ut — U is proper. Let L be an invertible T-linearized

ample sheaf on V x such that 2 = (vxu)is , i.e. 2 is composed of semi-

usr Y
stable points with respect to L [GIT] . The existence of such a sheaf follows from

the fact that pr Z > Visasemi-geometric quotient t{hence ¢: 2> V is a2 categori-

l:
cal guotient and ¢ is affine) and Converse 1.12 p. 41 [GIT] . Let L' = y*(L},
, B85
LI

metric gquotient U + U'/r exists. U'/T is normal by Lemma 2.6 because U' is

Since ¢ is an affine finite morphism, we have that U = U so the semi-gec-

normal ané projective (U'/T is quasi-projective by Theorem 1.10 p. 38 [GIT] and

U'/T » U/T is finite since T is reductive)

Proof of Proposition 3.5. Let L' be a very ample invertible T-linearized sheaf
ss
ur .

on U' such that U*' = Let ¢L' be the T-equivariant embedding of [*
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n
into some projective space F such that ¢I‘(O(l)) = L' . Cbviously ¢L,[U'}

ph 88
Ty
ization of L'). Let

{we take the T-linearization of (1) corresponding to the given linear-

n: ' —— X c B

\/'.

be the normalization of the closure X of ¢L,(U') in F'. Then n*0(1) = L"

is & T-linearized very ample sheaf on X' Moreover, ¢_,[(U'}) < ' so i(Uu")

c xL" . By Lemma 2.2 we know the set of semi-stable piints withoiiipect to a T-
linearized ample sheaf is semi-sectional. We also know [GIT theorem 1.10 and re-
mark and the end of page 4C] that a semi-geometric quotient of a set of semi-atable
points in this case exists, is projective and normail.

Praof of Proposition 3.6. ILet X' = X'l [V xé be the decomposition of
(X')T into connected components. Let W be determined by a semi-section
(A+ AO A ) of the set {1,...r} . We shall define a semi-section (B+,BO,B“) such
that U' is the semi-sectional set determined by the semi-section. We have the

following diagram:

g —— W
ﬂl 16 n, B - semi-geometric gquotients

———
o'/ T W/

(notice that vy is proper).

Let j ¢ A° . Then X! W and X! nU'=g or X cU' . In fact T-l(B(Xi)}
b a(xi nua') u Y_l(ﬁ(xi = Jv)) . The set B[Xi) is connected sc by Zariski's Main
Theorem, we have that xi Anb' =g or x; - y' =g, If Xi nu =g, then
l(B(Xi)) = a((Xi)+ nu') u u((xi)_ nU') . BAgain by Zariski's Main Theorem we in-
fer that {Xi)+ n =g or (Xi)— nU' = @ but at least one is nonempiy.
Define B = (B+,BO,E-) in the following way B+ = A+ U {ieAO; Xi n ' =g and
(Xi)_ nu' ¥ g, BO = {iﬁho; Xi cuU'}, and B =24 U {ieAO: (Xi)+ nU# P and
X nu o= @} . Then (B+,BO,B_) is a semi-section.
Let W' be the semi-sectional set determined by {B+,BOB_) . Tt is obvious that
U' ¢ W' €W . We shall prove that U' = W' . Let x ¢ W' . Suppose ¢+(x) € Xi f
& (x) « Xé . Then we have x ¢ (Xi)+ n [X%)_ and we consider the following four
cases:
(i) ieA” and 5 eA . Then x ¢ U' because a v “(E(x)) # # (and

1
(B(x)) is exactly one orbit),

(ii) 1,3 ¢ A° . Then i-= i oand x e X cu .
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s . + . ] , Q .
(iii) i e A , jen . If jeB then Xé cU' and x £ U' , because U' is
open (and hence contains x;] - If e B+ , then Xi AU"=@g and U' n (Xi)-iég.
But «{U' n (x&}') is complete, alU' A XD is a geometric gquotient and

J

af{U' n (X;)—) is contained in (XSJ_/T , SO X £ (Xé) c U .

. . o] . - ;
{iv) i € A" and j ¢ & . Then as above we cobtain that = ¢ U'
It follows, that U' = W' ., O
Procf of Proposition 3.7 and 3.8. Let U' be asemi‘sectional set in X' ocorres-
- + -
ponding to 2 ?  semi-section (H+,BO,B Y. We define a semi-section (C ,CO,C }

in ¥ in the following way: i ¢ C+ (i e CO, iec, respectively) if and only if

n(?i) is contained in Xé, where 3J ¢ B+ (i € BO, j e B, respectively). Clearly
+° 0

(c.,C ,C_) is a semi-section (notice that we have assumed that ﬂ|n'(U‘} is an
iscmorphism}.
o~ - - +
Similarly, if U' = 1 l(U] is defined by a semi-section (B ,BO,B }. Then we
+

. . . - . i e L.
define a semi-section ({C ,CG,C } for X in the following way: 1ieC (ieC , 1i¢C,
respectively) if and only if for any connected component Ej contained in r_l(xi),

+ - -
jeB {je BO, 3 € B, respectively). Clearly (C+,CO,C }  is a semi-section.
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A GENERALIZATION OF A THEOREM OF HORBOCKS

by
James B. Carrelll
and

Andrew John Sommese2

In [Hor], G. Borrocks proved that an algebraic action of a solvable group with
additive group factors on a connected complete algebraic variety has comnected fixed
point set, In this article we will show that Horrocks' theorem, and indeed his proof,
holds with little change for very general analytic actions. We were lead to consider
the generalization in the course of studying SL{2,T) actions on compact Kaehler
manifolds [C & 53].

Theorem. TLet p :Ux X+ X be a meromorphic actior on a compact connected complex

gpace X of a complex solvable linear algebraic groups U with a sequence:

0="UU, ¢ U1 £ ... € Un n = dimcU

of subgroups satisfying:

a) Ui is normal in Ui+l

LY Ui+1/ 4T for 1=0,...,n~1.
Y
Then XU is connected and nonempty.

for 1=0,...,n=-1,

The fact that XU is non-empty is just the Borel fixed point theorem; the
classical proof carries over with change (cf. (0.2)) .

The reason the above theorem carries cver is that the Donady family of closures
of orbits of a meromorphic [ action on an drreducible compact complex space is
compact. This is not immediate because the irreducible components of the Donady space
of such an ¥ don't have to he compact.

Horrocks alse proves in [Hor] that the pro-finite completions of ﬂl(X, %) and
nl(XU, x) for =x e XU are isomcrphic under the inclusion map. The surjectivity can
be proven by Horrocks' arguments. The injectivity is not so clear., In [B—BZJ there

is an etale cohomology proaf of a slightly weaker result.

§0 Notation and Background Material

By an algebraic solvable group U with factors isomerphic to [ we mean a

complex linear algebraic group U with a sequence of algebraic subgroups:

= - =1 i =
] UD = U1 ... = Un U with n dimEX

satisfying the properties:

1. Partially supported by a grant from the Natural Sciences and Engineering Research
Council of Canada.

2. Partially supported by W.S.F. Grant MCS-80-03257 .
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a) Ui is normal in Ui+l for 0« 1ixn-1
and
b} Ui+1fU ~L for 0=zizn-1.

let T bea pr;jective manifold with the properties that:
a) U 1is Zariski open in 1,
and
) the algebraiec action p :U x U+ U by multiplication extends to an algebraic

action:
gl x -1,

To see that U exists rote that because U 1s a linear algebraic group it can be
embedded by an algebraic homomorphism ¢ of U inte GL(¥, L) for some K. It

is easy to construct a projective manifold G for which a) and B) above are true
with (GL(N, L), G) in place of (U, N . Let U be an equiveriant desingularization
of the closure of (U} in €; the existence of an equivariant desingularizatiom

1s due to Hircnaka.

Let (U, 1) be as above. A meromorphic action p:Ux X+ X of U on a compact
complex space X 1is a holemorphic action p : U x X + X that extends to a meromorphic
map F:Ux X~ X.

¥ote that if U =T then U is Pl.

(0.2) Lemma. Let p:U x X+ X be as above. Then XU , the fixed point set of U

on X is non-empty.

Proof. Let x ¢ ¥, Let I be the graphof # in Ux X x X. Let
A:T > Ux X and B:I' + X

be induced by the projections of U x X x ¥ onto its first two and last factor
respectively.

Note A_l(U, ¥x) 1s biholomerphic to U. Further A_l(ﬁ, x) contains a compact
analytic set Y in which A_l(U, ®) 1is Zariski open and dense. Therefore B(Y) =
E?ET:S- and p{U, x} = B(A‘l(U, %)} . From this it is clear that the closures of
orbits are analytic sets. Since therefore ETTEﬁE? - p{lU, x} 1is a lower dimensional
analytic set of X it can be assumed by descending inducticn that Efﬁ:_§13-=p(U, x")
for some x' ¢ X. The usual argumentation for the Borel fixed point theorem shows
that p{U, x") = x'".

The following theorem is modelled on a theorem of FPujiki [F13 ; we often refer
to Fhe family £ :Z + 2 of the following theorem ae the Fujiki family of closures of
orbits. It should be noted that X is not assumed to be a C space. The proof is
based on the proof of an analogous resuit for E* actions in [B-B&S]. The proof
works for any meromorphic action of a linear algebraic group on a compact complex
space X,

(0.3) Theorem. Let p:L x X + X he a meromorphic action of T on an irraducible

reduced ¢compact complex space X . Then here is a diagram:
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with the following properties:

a) f 4s a flat morphism of irreducible compact complex spaces Z and Q3

b) ¢ 1is a bimercomorphic holomorphic map of Z onte X guch that the restric-

tion of ¥ to each fibre Zq = ftl(q) is an embedding;
¢} there is a natursl holomorphic action of T on Z making f and ¢

equivariant with respect to the trivial T actionen ¢ and p on X respectively;

d) there is a demse Zanski open set (O < Q such that for every q e O, Zq is
reduced, and m(zq) is the closure of a € orbit;

e} every fibre Zq of f 1e one dimensional and for fibres {Zq, Zq'} that
are reduced, w(Zq) = w(zq,) only 4f g = q'; and

£) Zq is connected for all lq . L
Progf. Let I' be the graph in P x X x X of the meromorphic extension § : P X=X
of p that exists by hypothesis. Let [I'' denote the fmage of T in X x X under
the product projection. Let a:T' + X and b:T' -+ X denote the maps of T' onto
X induced by the projections of X x X onto its first and second factor respectively.
There is a natural action vy :L x Xx X+ X * X induced by p . It is the product
action where:

1) T acts on the first factor of X by leaving all polnts fixed,

2) L acts on the second factor of X by p .

Note that:

3) T' 1is invariant under the above action of I.

4) The maps a:I'" + X and b:T' + X are equivariant with respect to this
action of T on T' and the actions of T on X given respectively in 1) and 2)
ahove.

Applvying Hiromaka's flattening theorem [Hir] to a:T' + X and using (3} and
(4) we obtain the following:

@) an irreducible compact complex analytic space X and an irreducible complex
analytic subspace G of X x X,

R) that the holomorphic map a:6+ X and B:G6-+ X {induced by the product
projections) which are respectively flat and surjective,

v} 1letting € act trivially on X and by p on X, and by the product action
on X x X, that G is invariant under [ and that a and b are equivariant.

We let 0 denote the image of X in the Douady space of X{D] induced by a.
We let f :2 » ¢ denote the flat family over . We let v denote the induced map
to X. Since X is an irreducible compact complex analytic space, it follows that
@ is irreducible compact complex analytic, This implies that statement a) of the

theorem is satisfied.
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From o), B), and vy) it follows that:
with the trivial action of £ on ¢, the action p on X, and the product action
of T on Qx X, 2 is dnvariant under T and f and ¢ are T equivariant.
From this we see that ¢} of the theorem is satisfied. From the definition of a,
it follows that there is a dense Zariski cpen set V of X with the property that

for any v ¢ V, b(a-l(v)) = iCx} u lim p(t,x) for some =x ¢ ¥X. From this and the
oo
construction of @ it follows that there is a dense Zariski open set V' of O such

that for qe V' the fibre zq of f has an image w(Zq} = p(L, x)} for some =xeX.
By this and the flatness of £, it follows that all fibres of f are one dimensional.

This and the definition of the Donady space imply (e) of the theorem is
verified.

There is a dense open set V"' of ¢ such that the fibres Z of f are
reduced for g e V', Let O = V' n V' where V' is as defined above., The map ¥
1s surjective since as noted in {8) b:G + X 4is surjective. From this and (e) it
follows that :f_l(O) - f_l(O)T' + X 1is a one to one map of a dense Zariski open
set in Z onto & Zariski dense constructible set in X.

Thus ¥ is a bimeromorphic holomorphic map of Z onta X which implies (h)
of the theorem in view of the definition of the Donady space, is true. This also

shows {d) .

§1 Procf of Horrocks Theorem

(1.0} Lemma. To prove the assertion:

(W) ={(If p:Lx X+ X ic a meromorphic action ¢f T on a compact connected

complex space, then ¥ is connected), it suffices to prove (H) under the addirdon-

al assumption that X i1s irreducible and reduced.

Proof. <Clearly X can be assumed ta be reduced without leoss of generality. Let

{Xl, ey XZ} ;e the irreducible components of ¥X. By {(H), with the irreducibility
agsumption, Xi is conmected for {1 = 1,...,n. To finish the proof of the above
lemma it suffices to show that xg n X:: is non-empty If Xi n Xj is non-empty.
Assume that Xi n Xj £ ¢.

Let Y, ,...,¥  be the irreducible components of X, n Xj . C Since p{L, Ki)EXi
it fulltéws t;at (L, Yh) = Yh for h=1,...,k. By (0.2), Yh is non-empty,

= . i - tvy.
i.e XinXJ is non-emply

(1.1) Lemma. Let p;E = X > X be a meromorphic action of ¥ on a reduced and

irreducible compact complex space X . Then Xl: is connected.

Proof. Given x ¢ X, the orbit map p{+, z) : T > X extends to a meromerphic map
of ]Pl {into X. Let $(x) denote the image of = ¢ ]Pl
p0) e xb

Since XE is a compact analytic set, it has finitely many connected components
Xl" Xy ovee 'Xr' Let Ai= {xc}(ida(x)exi} .

Since X dis the disjeint union of Al s e s Ar it will follow that r© = 1 1if

; it can be checked that
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we show that Ai 1s closed for all 1.

Let:

be the Fujikl family of closures of orbits (0.3) of the action p. Let x ¢ A

let <% > be a sequence In X with the property that:

X —* X .
n

Let <q_n> ¢ @ be a sequence satisfying the properties:

(*) x e w[f'l(qn}) and q > g€

Both properties can be satisfied since ¢ 1is surjective and 0 is compact. Let
Z= w(f'—l(q)] . It is an immediate consequence of the compactness of Z and the
continuity of ¢ and f that x ¢ Z.

Z is a compact connected one dimensional analytic set that is invariant under
the action of T. By (1.0} ZE is conmected {f (1.1) 1s proven for one dimensional

X. But this is straightforward. To finish the lemma, it suffices to show that Z

meets X, . To see this note that there is a convergent ‘sub-sequence: {yn} of
{cp(xi)} . Here v, > ¥« Xi . An easy argument based on the compactness of Z and
the continuity of £ and ¢ shows that LA A Z. This completes the proof.

(1.2) Horrocks' Theorem. Let p :U = X+ X be a meromorphic action of a solvable

algebraic group with factors isomorphic to T, {cf §0) , on a compact connected

analytic space X. Then XU is connected

Proof. Let:

0=U05U15...EUH=U with n=d1an

be a composition series for U satisfying the properties:

U is i
a) is nermal in Ui—i—

i 1°
h} Ui+lf ~LC for i=0,...,n-1.

U,

i
The theorem is true for UO trivially. Assume it 1s true for 0= j <k <n. By
induction we must only show it for Lk + 1. Let Xk = XUk . Since Uk is normal in
Uk+1 1t follows that p descends to an action:

pk:Uk+1/U x Xkﬂ) Xk.

k
Note that T = Uk+l,/ . The reader can check that Py is meromorphic. It follows
U

U
from (1.1) that XF = x <™

Kk is connected.
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§2 Closing Remarks
Horrocks' theorem has a pleasant application toward the characterization of

merpmorphic €  actions.

(2.1 Theorem. Let p:L x X+ X be a holomorphic T action a connected compact

Kaehler manifold X. The action p extends to & meromorphic map 9§ : IPl * X+ X if

and only XE is non-empty and connected,

Proof. By (0.2) and (1.2) it suffices to show that p extends to a mercmorphic map

D:‘W; * X+ X Af XE is non-empty and connected. If XE is non-empty then by the

basic result of [F1] or [L] the action p extends to a helomorphic actiom:
pt:Gx X+ X

where:
a) & 1is a connected linear algebraic group,
b} ©C 4is Zariski dense in ¢,

' extends meromorphically to G x X where & 1s any projective manifold

e} p
In which G embeds as a Zariski open set.
By b) there is the well known consequence that G is commutatlve and therefore

aXCb with B =0 or 1. Tn fact b 21 since

algebraically isomorphic to (I:*)
image of T in Ib is Zariski dense and since all subgroups of Eb are algebraic.
If b= 0, then XB = X(E*)a and since the latter is well known to be dis-
connected ([B_Bl’ C&Sl, FZD’ we get a contradiction. If b=1 and a>0 then XE-

x4 ot}
{Xt XCO)] L . Since X& x 0> is disconnected and left invariant by the induced

. R . L . . .
meromorphic action of 1 x L, it follows that X is disconnected. This contra-
diction shows that a = 0 and b =1.
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Almost Homogeneous C* actiens on
compact complex surfaces
by
James B, Carrell and Andrew John Sommese

1. Introduction and statement of resuits.

It is well known (see [C,H,K] and [0,KW]) that if X s a compact complex
suyrface which admits a holomorphic C* action with isolated fixed points, then X
is rational. More precisely, there eéxists a sequence of compact complex spaces xi
with C* action and equivariant holomorphic maps

o .70
(1) X=X X = Xy o X =1

where K is the monoidal transformation at a fixed point of X and Z s

either B2, p!

three (in the case of Pz) or four {in the other cases) fixed points.

i+l
x PI + or a rational ruled surface Fn with C* action having

The purpose of this note is to sharpen (1) by bringing weights into the pic-
ture. The weights of a C* action at a fixed point x are the weights of the rep-
resentation of C* dn GL(TX(X)) given by A}-+dhx . It is well known that when

C*
X

is isolated, then there exists a unique fixed point s, (called the source)

at which both weights are positive and a unigue fixed point0 s {the sink) at
which both weights are negative. At any other fixed point, there is one positive
and one negat®ve weight. Such fixed points are called hyperbolic.

Definition. A C* action on a compact complex surface X with isolated

fixed points is called almost homogeneous if the weights at the source and sink

each have multiplicity two.

By Lemma 3, below, if X has an almost homogeneous C(* action with weights
a, a at the source and b, b at the sink, then =-b . We now state the main
theorem.

Theorem 1. Suppose X is a compact complex surface having a C* action
with isolated fixed point set Xc* . Let a, b be the weights at the source of
X and let c¢=g.c.d.(a,b) . Then there exists a compact complex surface X with
aimost hompgeneous C* action having weights ¢ at the source and -c at the
sink and a relatively minimal complex surface Z with homogeneous C* action with
weights ¢ at the source and -c at the sink and a diagram of surjective helo-

/\

morphic equivariant maps
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Moreover, Z s either P] xP] ar Fz and the weights of the C* actionon Z
are f{a.,a) , {-a,a) , {~a,a} , and (-a,-a) .

Remark. If one blows up ¥ at the source and the sink, then one obtains ¥
with C* action having source and sink P] . Thus one is in the situation consid-
ered in [O,W] . An interesting point is that, by Theorem 1, the graph associated
to ¥ in [0,W] has either one or two arms (correspording to the singular chains
in ¥ ) . Hency by {O,W] , ¥ admits a C*=C* action. Hence by an easy argu-
ment, so does X (for any C*x{* action is equivariant with respact to blowing
down).

To prove Theorem 1, we will use

Thegrem 2. Let Y be as in the remark. Then there exists a holomorphic
equivariant projection ¢ Y->P] {with the trivial C(* action} which is an iso-
morphism on the sgurce and sink of Y . § has at most two singular fibres. These
are the singular chains in ¥ .
Far any orbit (0 =C%*-x , *1et UO =11g Aoxooand @ =1j£ a+x . These Timits
implies that X 1is projective. By a singular
] se--s0, so that (01)0 =5q {the
source}, (Ok}m =5, (the éink) and (Oi)w =(Oi+1)0 far 1<isk-1

Theorem 3. If X is finite, then there exist at most two singular chains

exist since the finiteness of XC

chain in X we mean a sequence of orbits 0

in X and every hyperbolic fixed point lies on exactly one of these chains. The

set of varieties @ where ¢ ds an orbit in X so that (01.)0 is a hyperboiic
fixed point form a homology basis of Hz(X,Z) . In particular bz(x) is the number
of hyperbolic fixed points in X . Finally there are two singular chains if and

only if the minimal model Z of X s P xP!

2. Some Lemmas on weights.

Lemma 1. The weights of any GC* action on P2 with isolated fixed points
are of the form

(3) (a,b} , (-a,b-a} , {a-b,-b)

for some distinct positive integers a and b . The weights of a C* action on a
rational ruled surface F, with isolated fixed points are

(4) (a,b) » {a,-b} , (-a,b-na) , {-a,na-b)

where a and b are distinct positive integers so that na#b . The weights of
any C* action on P]x P1 with isolated fixed points are

(5) (a:b) ) {a:'b) ) (_asb) [l (_a’_b}
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where a, b are any positive integers.

The proof of this lemma is in [C,.H,K] .

Lemma 2. Let @ : X+X denote the monoidal transform of X at a fixed
point xeX . Then the action on X 1lifts to ¥ so that = is equivariant. If
a, b denote the weights at x and a#b , then X has two fixed paints on n'](x)
with weights

(a,b-a) and (h,a-b)

respectively. If a=b , then n_l(x) is a component of XC* with weights (a,0) .

Proof. Let (u,v) denote equivariant local coordinates on a neighborhood
W of x so that x=(0,0) . Thus A-(u,v)=(Aau,Abv) . By definition, a neigh-
borhood V of w'](x) consists of all points (u.v,[x,y]l}eWx P1 sych that
uy=vx . C* actson V by a{u.,v,[x,¥]} =(Aau,mbv,[1ax,kby]) . This action ex-
tends to ¥ making 7 equivariant. If a#b , then V" consists of (0,0,[1,0])
and (0,0,[0,1]) . Since local equivariant coardinates near (0,0,[1,0]) are
{(u,y/x) , it follows that the weights at (0,0,[1,0}) are (a,b-a) . Similarly,
the weights at (0,0,[0.1]) are (b,a~b) . If a=b , then w'1{x) is a component
of V& with weights ({a,0) .

Lemma 3. Let X have weights (a,b) at Sg and weights {c,d) at s
Let X be cbtained from X by blowing up sources and sinks until the weights at
the source §0 of % are (g,q) and at the sink 5_ are (r,r) . Then
q=g.c.d.(a,b} » r=g.c.d.{c,d} , and r=-g .

Proof. That X exists and that gq=g.c.d.(a,b) and vr=g.c.d.{c,d) fol-
Tow from Lemma 2. Ta finish the proof we will show q=-r . Let O be an orbit
in % so that 00 =§0 and 0 =§m . Let yc@ and consider the isotropy group
of y . Since x»eC* acts with unigue weight g on Tg {X) , it follows that the
isotropy qroup of y consists ef the g-th rogts of uni%y. But as 0 =§m , the

=

g-th roots of unity and r-th roots of unity must coincide. Hence g=-r .
Lemma 4. Let 01, 02,...,Uk be a singular chain in X . Then if the

weight a»>0 occurs at (01.)on , 1si<k , the weight -a occurs at {01+1)0 .
Proof. To see this statement, argue on the isotropy groups as in Lemma 3.

§3. Proofs of the theorems.

We will first prove Theorem 2. Let Y be obtained from blowing up the

source and sink of X . Thus the source F+ and sink F~ of Y are both P1'5 .
Let O] and 0, be any pair of disjoint orbits from the source to the sink. Then
51 and ﬁé are both P1's that have the same 1ine bundle L . Hence we may take
1

The
bundle L has degree one on each fibre. But 0(1) is spanned by exactly two sec-
tigns sa y is biholomorphic on FY and F- . At most two fibres of ¢ fail to

disjoint sections of L to obtain an equivariant holomorphic map ¢ to P
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be nonsingular. These fibres are precisely the singular chains in X and we know
there are at most two singular chains in ¥ since the minimal model of ¥ has at
mest two singular chains by Lemma 4. This completes the proof of Theorem 2.

We will now prove Theorem 1. By Lemmas 2 and 3, we may as well assume X=X .
We know that X can be equivariantly blown down to a relatively minimal surface.
In fact, if C 1is an exceptional curve of the first kind in X , C is C* in-
variant since C(<C<0 . Hence exceptional curves of the first kind are closures of
orbits and, by Lemma 2, Tie on a singular chain (since if C can be blown down, C
cannot meet both the source and the sink). Thus we want to show that on any singu-
lar chain 01 + ... +0k > we can make the chain relatively minimal by blowing down
certain 01. with T<i<k . If neither 01 nar Ok
chain is not relatively minimal, then we may blow down a suitable O,i with 1<i<k

can be blown down, and if the

without affecting almost homcgeneity of the action. Thus we may continue in this
manner until chain is relatively minimal or either 0, or 0, can be blown down.

Now suppose 01 can be blown down. Then it follows that the weights at
(01)‘“ are Z2a,-a by Lemma 2. Now blow up s, and s, to obtain Y as in
Theorem 2. Let

F=)\1A] +}\2A2+ ”‘kAk
be the singular fibre in ¥ associated to 01 L H)k » Where A1. is the proper
transform of Oi . Each Ai is the closure of an orbit in Y and l_i(>0) is the
order of the isotropy group of Ai . Thus for example A1 SR e and Ay =2c .
Now by flatness of ¢ : Y+P , any two fibres of ¢ are homologous. Since Ai
misses the nonsingular fibres, F-Ai =0 for l=i<k . Thus if P =A1.-A,i .

APy ¥R, =0
{6) Ry tPhg Ay =0 for Tedck

Aea1 FRA R0

(6) follows since A.-A. =1 while AiAJIO if |i-3j; »1 . We must show that
p1.=-1 for some i with 1<i<k . Suppose all pis—Z for Y<i<k . Then

1 .
AiSE{AiJH“iH) , lT<ick .

Summing gives

50



and thus
RIS RS

But 1, =2a , ‘.10 and hy=hi =a . This is impossible, so Py =-1 for some

i with 1<i<k . After blowing down AT » blow down F* and F- and repeat the
argument on the new homogeneous action X' . Clearly the process eventually leads
to a relatively minimal surface 7 with almost homogeneous C* action as asserted.
That Z s either P]x P1 ar F2 with weights as asserted follows from {4) and
(5) of Lemma 1. This completes the proof of Theorem T.

The proof of Theorem 3 fellows from [C,5] and remarks above.
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0. Introduction.

In this paper I discuss the technique of weighted homegeneous coordinates
which has appeared in works of varlous geometers a few years ago and it seems has
been appreciated and armed by many people. In many cases this technilgque allows one
toe present a nonsingular algebraic variety as a hypersurface in a certain space (a
weighted projective space) and deal with it as it would be a nonsingular hypersur-
face in the projective space. A generalization c¢f this approach is the technique

of polyhedral projective spaces for which we refer to [5, 6, 15].
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Section 1 deals with weighted projective spaces, the spectrums of graded poly-
nomial rings. Most of the results from thls section can be found in [7].

In section 2 we generalize the Bott Lheorem on the cohomology of twisted
sheaves of differentials to the case of welghted projective spaces. Another proof
of the same result can be found in [23] and a similar result for torical spaces is
discussed in [5].

In section 3 we introduce the notion of a guasismooth subvariety of a weighted
projective space. For this we define the affine guasicone over a subvariety and
require that this quasicone is smooth outside its vertex, We show that quasismooth
welghted complete intersections have many properties of ordinary smooth complete
intersections in a pro]ective space. The work of Mori [19] contains a similar re-
sult but under more restrictive conditions. Pather surprisingly not everything
goes the same as for smooth complete intersections. For example, recent examples
of Catanese and Todorov show that the local Torelli theorem fails for some quasi-
smooth weighted complete intersections (see [4, 2Z4]).

In section 4 we generalize to the weighted case the results concetnlng the
Hodge structure of a smogth projective hypersurfaces. Our praof is an algebraic
version of one of Steenbrink [23] and can be applied to the calculation of the De
Rham cohomology of any such hypersurface over a field of characteristic zere. The
présent paper is partially based on my talks at a seminar on the Hodge-Deligne
theory at Moscow State University in 1975/76. 1t is a pleasure to thank all of its

participants for their attention and criticism.

1. Weighted projective space.

1.1. Notatious
Q= {qo,ql,...,qr}, - a finite set of positive integers;
in = qO+"'+qr;
5(Q) - the polynomial algebra k[TD,...,Tr] over a field k, graded by the condi-
tion deg(Ti)

1}

q i=0,...,r; IP(Q)= Praj(S(Q)) - weighted projective space of
T+l

t!EE g- u = A —{0]’ = SPeC(S(Q}) —{(TG"“’TI‘)}; m = (TD’“.’TI') "
Abbreviations:
Y o= P(L,...,1), S5=8(Q, P=PE.-

We suppose In the sequel that the characteristic p of k is prime to all 9, »

though many results are valid without this assumption. We also assume that
(qO,---sqr) = ]- .

The last assumption is not essential in virtue of the following:

Lemma. Let Q' = {aqo,...,aqr}. Then ®(Q) = ®(Q').
Really, S(Q')m = S(Q)am and hence in the standard netations of [12] we have
§(9") = s(Q) @ . applying ([12], 2.4.7) we obtain a canonical isomorphism

P(Q) = Proj(s(m) = Proj(s(@) ™) = B(Q") .



We refer to 1.3 for more general results.

Far any graded module M over a graded commutative ring A we denote by M(n)
the graded A-module obtained by shifting the graduation M(n)k = Mn-i'-k .
By M we denote the ( -Medule, associated with M. Recall ([12];

Proj(a}
2.3.2) that for any feAd

- - .
D, (),M) = Moy = Come M)

where open sets D+(E) = Spec(A(f)) form a base of cpen sets in Proj(a) .

1.2. Interpretatioms.

1.2.1. It is well known that a Z-graduation of a commutative ring is equivalent
to an action of a2 l-dimensional algebraic torus Gm on its spectrum. In our case
Gm acts on Arﬂ' = Spec(5(Q)) as follows

8§ — 58 k[x,x‘11

9
Ti—-z-Ti@X , 1=0,...,r
where Gm = Spec(k[}i,}{_l]) .
The corresponding action on points with the value in a field k's k 1is given
by the formulas

*Xk'r+1 T+l

k' + k

R
(t,(ao,...,ar)} - (aGt sere,at )

The open set U = ﬂrﬂ" - 10} is invariant with respect to this action and the uni-
versal geometric gquotient U/ Gm exists and coincides with TP(Q) .
If k=€ is the field of complex numbers then the analytic space " asso-
ciated to P(Q} is a complex amalvtic quotient space IBH-]' - {O}/E* where
E* acts on Erﬂ' by the formulas
(t, (2500002 )) > (zotqo,...,zrtqr)
In view of this interpretatlon the space FP(Q') from the lemma in 1.1 corresponds

to a noneffective action of G

1.2.2. For any positive integer q we denote by ‘,.Lq the finite group scheme of
g-roots of unity. This is a closed subgroup of Gm with the coordinate ring
k[x]/(x9 -1} .

Consider the action of the group scheme u = u_ *.,..% uq on P' which

is induced by the action uq on 5

. —
T, T, 8K,
where ii =X mod(Xqi- 1} in the coordinate ring of u

i
94
The hemomorphism of rings S(Q) S5, T, =T

N i yields the isomorphism
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S(Q)y = she | It is easy to see that the corresponding morphism of projective spec-

trums is well defined and gives an isomerphism

PQ) = Proj(SuQ) = pfy Hy -

In case k = €
P = BTE ug ()
where uQ(E) acts by the formulas
(g,{zD,. ..,zr)) - (ZUgO" ..,zrgr)

g = (go,...,gr) s By exp(Eﬂibi/qi) s Gibi<qi.
1.2.3. The previous interpretation easily gives, for instance, that for Q=
{1,1,...,1,n} the weighted prajective space IF(Q) equals the projective cone
over the Vercnese variety vn(Er"l).
For example, P{l,1,n), n#1 is obtained by the blowing down the exceptional

section of the ruled surface IFn {wvhen n=2 1t is an ordinary quadratic come).

1.2.4. For Q= {l’ql""’q:} the spaces IP{Q) are compactifications of the af-
fine space At Indeed, the cpen set D+(TO) is isomorphic te the spectrum of
T T
the polynomial ring k El’ ’T—r . Its complement ceincides with the weighted
o o
ptojective space IP(ql,...,qr) .

1.2.5. Weighted projective spaces are complete toric spaces. More precisely,
P(qo,...,qr) is isomorphic to the polyhedral space ]PA of [6], where A =
{({x ...x)e§R+:qu=q...q}.

0’ r i%i 0 T

1.3. The first properties
1.3.1. For different {Q and Q' the corresponding spaces P(Q} and IP(Q') can

be isomorphic.

Let
A IR FINEL FFCETERER
a; = £.c.m. (do,.. "di-—l’di+l"' .,dr)
a = -(’_.c.m.(da,...,dr) .

ote that a g, (a;,d) =1 and ad =a.

Propesition. (Delorme [7].)} Let Q' = {qO/a,...,qr/ar} . Then there exists a
natural isomorphism F(Q) = ®(Q"} .
=]
For the proof we consider the graded sugring 8 = ngo S(Q)an of S(Q) and

note that §' = k[X .,Xr] , where Xi = T]__i is of degree aq]_'/ai . But then

N
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5(Q") = S'(a) and hence Proj(S{Q')) = Proj(s') ([12],2.4.7). Now there exists alseo
an isomorphism Proj(5'} = Proj(S(Q)(a}) = Proj{s(Q)) .

Corollary. Fach P{Q) = ®(Q'), where (qé,...,qi_l,qi+1,...,q;) =1 for 1=
[{ R
Corollary. Assume that 9y = & for i=0,...,r. Then P{Q) = i

For example, it is so if all numbers ﬁ.c.m.(qo,...,qr)/qi are coprime. In

this case the previous fact was independently discovered by M. PReid.

Note that in case r =1 we can use the previcus corollary and obtain that
P(qo,ql) ='Pl for any qo,ql. This fact however follows also from interpretation
1l.2.2.

1.3.2. Remarks. 1. There is a certain difference between the identifications of
the proposition and of the lemma in 1.1. In terms of 3.5, the spaces T{Q) and
P(Q') from the proposition are not projectively isomorphic.

2. It can be shown that the isomorphism P(Q) = P(Q') eof 1.3.1 induces an {so-

r

morphism of sheaves (_(n) = (_({un~ I b,{ndq,)/a), where b (n} are uniguely
r ¥ j=g i i

determined by the property

n= bi(n)qi + Ci(n)di , W] ‘;bi<_di

1.3.2. Let G be a finite group of linear automorphisms of a finite-dimensional

vector space V over a field k. An element geC is called a pseudoreflection

*
if there exists an element eg eV and fge v such that

glx) = x + fg(x)cg for every ®mcV.

Lemma. ([3], ch.¥, &5, th.4.) let B be the symmetric algebra of V and A =3B,
the subalgebra of G-invariant elements. Assume that 4#G 1is invertible in k.

Then the following assertions are equivalent:

(i) G is generated by pseudoreflections;

(ii) A 1is a graded polynomial k-algebra.

Example. Mg acts on 5 as a group generated by pseudoreflections.

These pseudoreflections act by the formula
T, = T.@‘i..
i i i

3 5 if4i, i=0,...,n.

1.3.3. Proposition
(i) P(Q) is a normal irreducible projective algebraic variety;
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(11)  all singularities of T(Q) are cyclic guotients singularities (in particu-
lar, P(Q) is a V-variety);

(iii} a nonsingular P(Q} is isomorphic to r

For the preoof of property {i) we remark that this property 1s preserved under

an action of a finite group and use interpretation 1.2.2. To see (ii), we use in-
T

terpretation 1.2.1., Let P = Ui be the canonical covering ef T, where Ui =
i=0
+1
D+(Ti) . Consider the closed subvariety Vi = Spec{S/(Ti- 1}) of Ar = Spec(5).
The action of Gm an Ar+l induces the action of wu on V’i which, after iden-
i
tifying Vi with Spec(k[TD, ""Ti—l’Ti+1""’TrD , can be given by the formulas

9
T T 8RS, 40, L, s

where notations as in 1.2.2.

It is easy to see that Ui = vi/”q. and, since Vi = Ar, we have property {(ii)
of P(Q) . .

For the proof of (iii) we use 1.3.1 and the previous construction. By 1.3.1

we may assume that (qo, .,qr) =1, Then it is easy to see that

21000
the action of on Vi is generated by pseudoreflections only in the case

i
9 = 1. It remains to apply 1.3.2.

1.4, Cohomolegy of O]P(n) .

1.4.1. Recall that OP(n) denotes an OIP -Module associated tp the graded 5{Q)-
module 8{Q}(n) . For any homogeneous f ¢ ${Q) we have a natural homomorphism
S(Q)n + 5{(Q) (n)(f) (a+a/l) which defines a natural hemomerphism o S(Q)n -

HO(I’(Q),UJP(n)) (the Serre homomorphism).

Theorem.

(i) @ Sn 5 HG(]P, OIP {n)) is bijective for any neZ ;
(ii) Hi(]P,O]P(n)) =0 for 14 0,v, negZ;

r

1i) # = .
(111) 8(R,0p () =5 o
Proof. According to general properties of projective spectrums we can identify

U = Spec(8) - {m} with the affine spectrum of the graded OIP -Algebra & O]P {n)
e
([12], 8.3). The corresponding projection p:U~+F coincides with the quotient

morphism U + U/Gm from 1.2.1. Since p is an affine morphism we have
i i i i
H (U’OU) = H (]P,p*(OU)) =H (P, & 0_(n)) = & H(F,0_{n)).
P i
ne& neZZ
Fow we use the local cohomology theory ([13]). We have an exact sequence

o]

0 1
0 > H{H}(S) + 5 > H (0,0, ~+ H{m}(S) + 0

and isomorphisms
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Him}(s) = Hi'l(U,O Y, i=1.

It is easy to see that the homomorphism 5 - HD(U,UU) induces on each Sn the
Serre homomorphism an:Sn - HO(P,UEjn)) . Since S is a Cohen-Macaulay ring, we
have
H{'m}(s) =0, 1#c+1.
This proves assertions (i), (ii} of the thearem.
For the preof of (iii} we have to use the explicit calculation of H??ﬁ(s)-
We have

+l m
) (8/{Tgy...,TI,8) =

= ﬁiﬂ
= Lig Bxt" s/ (1™ ,5)
mn
Jn

m, _
where (T} = (TO,...,Tr).

Let V be a2 free S-podule of rang r+1 with the basis (eo,...,er}. Grade
V by the condition deg(e ) = q;m and consider the induced gradation on its ex-
terior powers R (V) (where deg(e ATRTCN } = rn(qi +.o.t 9y }» . The Koszul
1 p P
complex for (T :
1 2 r+l
S+ AV) <« AV} + ...« A(V) «0O
e, A...nei - E(—l)kTT B, AL AB, ALLLAR,
1 Pk kh *x *p

defines & rvesolution of graded S-modules for S/(Ew) and hence we have an isomor-

phism of graded S-modules
T+l
Hom{ A& (V), S)/Im(Hom(A(V) g) =

"

s,

1]

(/0™ (-ma)
Put
= (8/ (™) (-m Q) ,

then
r+l
s
{m}{ P T T
where the inductive system is described as follows.
m-a m-a

Let t" be the image of T 0...T ¥ in I_. Tt is clear that

agrrerad 0 r m

for O<a, <m to form a basis of I . In this notation the transition
i 4.,.-.,a m
0 r

map

um,m+s: Im - Im+s
is multiplication by TS...T? and

B 3 = (S
m, mts CIYPRFLE apte, ... ,a ts T
Let e be the image of &M in lim I . Module Hr+l(5) is a
Bgyeredy agseready Bl {m}



41

graded S-module and elements e a form its homogeneous basis. We have
Brypread
deg(ea A Y = deg(&a e a Y o= (m-a0)+...+(m—ar)—qu| = -E a,q,
0 r 0 r i=0
Thus we obtain that e with
By erasd
r
n=-I aq (ai>9)
i=0

T+1 .
generate H{m}(s)n as a k-space. Since

r
r+l | _ - -
#{(bo,...,br)e]N s-n-| G| _E biqi}

It

d im.kS -n-Q

#{(ao,...,ar)emfl:-n= I a

u

we have
r+1
H ] = 8 .
{P’ﬂ}( )n -n~|gq|
It remains to notice that

r+l

M my

I
(5)n = | (IP,OIP(n)) .

1.4.2. Llet integers a be determined by the identity

T
P_{(t) = I ath = T (1-t
S n=0g ©® i=0

qi)-l_

Then as a corcllary of the previcue thecrem we have

an i=20
dimka‘(r,om(n)) =40 14 0,1
faelof r T

In fact, Ps(t) ig the Poincare series of the graded algebra S{Q) (see 3.4) and
a = d:i.mkS(Q}n .

1.5. Pathelogies
1f P =T then the following properties are well knowm.

(i) for any ne Z OIP(n) is an invertible sheaf;

{i1) an invertible sheaf O]P(n) is ample;

{1ii) the homorphism of multiplication S{n} ® 3(m) » S(n+m) dinduces the isomor-
phism UP(n) ] U]P(rn) = (?IP(n +m) ;

(iv) for any graded S-module M and neZ

M{n) = M8, O
Ma) = ®y

v (n)

None of these propertiles is wvalid for general T(Q).

1.5.1. Let Q= {1,1,2}. The zestricticn of O]P (1) to D, (T,) is given by the
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-modul
S(Tz) module
a
S(l)(T y < {_E: aﬁ.SZk_l}
2 T2
o !
i 1 =5 - — i t f 5
It is clear that S¢{ )(T ) ()T + S(T y, L me a free
2 2472 2772
one.
This is a counterexample to property (i).
1.5.2. On a weighted projective line P (qO,ql) all sheaves
ble. In fact, GP (n)\D+(Ti) is associated teo the S(Ti)

1y generated by T?/T?, where n = kqi-qu and k/n, p/n a

with qj and a9 respectively.
Since P (qo,ql) = Pl

Y it T(P.0

bml(bn). Moreover, if A(P,Lm{n))# 0, then

bn = dimkF(]P,O]?(n)) -1,
Thus, UP(n) is ample if dimkl‘(I‘,OP(u)) 2.
F(E,Om(n)) =0 (1.4.1}).

This is a counterexample to property (ii).

1.5.3. 1In notations of 1.5.2 assume that q; = qoﬁ-l, L >1.
bq0+ql+1 =0, bq1+l <0, But
0p (ap) 8 Op (a; +1) = Op (bqo) 8 0p1 (bq1+1) = 0pp (b
Op (gptq +1) = Op1 (bq0+q1+1} :

This is a counterexample teo property (iii).

1.5.4.
that

To cbtain a counterexample to property (iv) we can take

5{m)(n) S({m+n)

and use the counterexample from 1.3.3.

1.5.5. Ve refer to the paper of Delorme {[7]) for mere details

ties of the sheaves OP(n) . For example, one can find there a
the duality theorem for P(Q) , the particular case of which we
We remark also that according to Mori ([1%]) everything is

v D, D ¢ D (T). v
k kxq +'71

set n where = Namely,

k»1 k

i

scheme such that OP(1)|V is invertible and (OP(I)‘V)Bm = Op

2. Bott's theorem.

2.1. Sheaves 5; .

(T jmodule of rang
2

are inverti-

OP {n}

-module S(n}(T ) free—
i

re integers coprime

(1.3.1), an invertible sheaf O?(n} is equal to some

But, if mn=< min{qe,ql} and m >0,

Then B

+1)

+b
99 %

M= 8(m) , note

concerning proper-
generalization of
have proved in l.4.1.

well in the open

is the maximal open sub-

(m)y]v, ¥meZ.
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2.1.1. Let Qé be the S-module of k-differentials of S. This is a free module
. i
with a basis dTD""’dTr Denote by R; its exterior ith power A(ﬂé) (as
usual we put ﬂg = 8). This is a free S-module with the basis {de A...AdTS H
. 1 i

0= sl< ceu % siS rt . Grade H; by the condition

deg(dT a,..AMdT ) =q +...+q .

8 sg 8§y 54

We have an isomorphism of graded 5(Q)-modules

Qi - - o ens o ;
S 0=s <.?.<s <r s( qs qs-)

1 i 1 i
For i =t we obtain

r+l |
‘ns - S(_‘Ql)

1
Let d:5 - QS be the canonical universal differentiation. By defipition of the

partial derivatives we have

T oa
da = I g,l:*—d'rj, aed.
=0 i
The k-linear map d eéxtends to the exterior differentiation
i i+l
d : QS -+ QS
uniquely determined by the conditicons
dlwau') = dwAw' + (—l)iwAdw' R We Ri, w'e Qé
dd(w) =0, Vuen.
2.1.2. Recall the Euler formula:
r da
na= I — q.T. Vae S{O) .
. aT : n
-0 7y 1!
Using the linearity of both sides of this identity we may verify this formula
S s
only in the case when a is a monomial TOO...TIr. But in this case it can be

done without any difficulties.

2,1.3. Define the homomorphism of grades S-modules

A:Q;‘-’—Q;_l, izl
by the formula

i R
AET AeondT 3 = £ (1Mq T dT aloadT_a.nar
1 81 gel %k %k 51 Sk 51

Lemma.
(1) Alwaw’) = W) awe’ + (-1) waa(u'd , weny, w'eal;
(i1 A{da) = na, aeS
(1i1) A{dw) +d(A{w}) = nw, we {n;)n.
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Using the linearity cf A we may verify (i) only iIn the case w=dTS A, .-r\dT5 .

1 i
w!=dT _,A...AdT ;. But this is easy.
5y Sj
Property {(ii) is a corollary of the Euler foymula. To verify property (iid)
it suffices tc consider the case w= ade A...Ade s, &€ Sk . We have
1 i
A{dw) = A{da/\dTS f\...AdTS‘) = A(da)hd'l's A...Ade - da/\A(dTS /\...AdTS'} =
1 i 1 i 1 i

= kadT A...AdT ~dasd{dT A...AdT )
S s, 5 ]
1 i 1 i

d(A(w)) = 4(ad{dT A...AdT ) = dasd(dT  A...AdT ) +ad(A(dT_ A...adT_ ) =
£ S, Ed 8. s 5.
1 i . L i 1 i
: 41 iy _
= dard{dT_ A...AdT Y +ad{ I {-1) q, Ts de A...Aqu A...AdTS ) =
51 51 RS e % 51 % i
= daaA(dT e dT )+ (L g JadT_ A...aAdT
Sl Si 221 S£ Sl Si
Adding we get
i
Apldw) +d(A(w)) = {(k+ I q, W = OW.
£=1 ~t

2.1.4, It is easy to identify the sequence

0 - Q;+1—{\:>ﬂ§ G e Q; > 8
with the Koszul complex for the regular sequence (qCTO,.. .,qur) . Thus, we ob-

tain that it is an exact sequence.
Now put
e ol b, A=l i+l 4
fig Ker(uls—*ﬂs ) Im(SIS -1}

with the induced grading.

i
g’

80, we have the exact sequences of graded S-modules:

0+ Bhtn) = 2l +5§‘1cn> ~0, i1, nez

2.1.5. Define the sheaf E;P on P(Q} by
= §_ , where M denotes the sheaf associated to a graded S-module M.

Also we put

—i =i

QP(H)-BS(n), ne Z .

Since MM 15 anm exact functor we have exact sequences of sheaves on P(Q) :

0+ 8L (n) » al(n) +511P'1(n) >0, 1=1.

It is clear that for i = r+1, 5119 (n) =0, thus for i=r

T @ = 227w - sta- o) - op tn-fa)



2.1.6. F¥ote that in the case rchar(k) = 0 property (iii) in lemma 2.1.3 gives an
algebraic proof of the acyclicity of the De Rham complex

0+ k-sSa b néﬂ ~0,

2.2, Justifications.
In this section we try to convince the reader that the sheaves E} introduced
in the previous section are good substitutes for the sheaves of germs of differen-

. i : :
tials QPr on the usual projective space T

2,2.1. Let P = PY. Let us show that
i

]Pl’(n) .

i -
QE (n} = @
In this case

U= V0, (-1)" = spec( # Opr ()
neZ

is the complement to the zerc section of the tautological line bundle V(Owr(_l))

on P and the canonical merphism p:U -+ BY is smooth,

The standard exact sequence

* 1 11
0 p iy >

P T ~0

induces the exact sequences
i-1

B % g

i

o] *Q
o
p s

> QUi—z—Ql

i > o

The homomerphism
1
A Rt ) T
g S (?aidTi -+ ?aiqili)
1 1
induces after restriction to U 2z surjective homomorphism of sheaves
1
LRt OU
(here we use that (qi,char(k)) = 11). It is easy to verify that A{p*ﬂi) =0 and
hence A defines a surjective homemorphism

~ .1

A0 + 0

wE U’
. 1 L. ) "
Since QU/P is invertible we obtain that A is in fact an iscmorphism.
Thus we have exact sequences

i1,

0 - p*ﬁ;’ > 9 > prop 0

i
T
and applying p, we obtain exact sequences

0+ @ ﬂ; {n) + @ _Q;(n) ~ & SE;‘P_I(H} > 0.
neZ. neZ neZ
It is easy to see that in this way we obtain exact sequence 2.1.5 of the definition

—i
of Rphﬂ.
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2.2,2, Lemma. In the notation of 1.3.2, let us assume that G 1is generated by
pseudoreflections and its order is invertible in k. Then the canonical hemomer-

phism
i i G
e T g

is an isomorphism of A-modules.

Proof. Since B {(resp. A) is a polynomial algebra, the B-module n;jk (resp. Q;Ik)
is a free B-module (resp. A-medule). Since B is a free A-module ([3],ch.5, 5,

th.5}, ﬂg/k ig a free A-module. Let be the canonical homomorphism

1 i
Bk T e
of A-modules {the inverse image of a differential form}. 1t is injectdve (because

i
QA/k is free and it iIs injective over a dense open subset of Spec A). Let T be

its cokernel and

i i
o ﬁA/k QB/k

- T =+ 4
be the corresponding exact sequence.
1
Now, for every G-B-medule M, the homomorphism m -+ Jc ég(m) is a projector
onto a direct summand {(here we use the assumption that #G is invertible in k},
thus the functor ( )G is ewact. Applying this functor to the above exact sequence,

we gel an exact sequence

i bl WG .G

0 » nAfk 4 (AB/k) =T =0
where (ﬂ;/k}c, being a direct summand of a free A-module, is a projective A-module.
This shows that dim. proj. (TG)S 1 and, hence, depth (TG) zdim B-1. This implies

that TG = 0 if its localization (TG)P = 0 for any prime P of A of height 1.

Let Q be a prime ideal of B such that QrA =P and G. = {geG:g(Q) = Q) be

the decompesitien group of ¢. Then (TG) = (T.) Q - coker{n® -~ (o )y Q.
P Q AP/k EQ/k
Let Gé be the inertia group of §, the subgroup of G of eleTents which act
G G
trivially in the residue field K of B_ . Then B_sB. = (3) 9o(B) ¢ =4,
y ; Q7B = By Ve t,

the extension 3B} AP is etale, the group Gé is a cyclie group of order e

Q

equal to the ramification index of the extension BQJ Bé {[3],ch.¥, 5, n"5). This
r 3 + a GI G‘
shows that 0° @ A' ~ ), and, hence, £ = {(iL,) Q/ Q. Thus, it suffices
A/k A, QB A B
P Q P Q
te show that
G’
i i .70
L, = (80 )
B} B
Q
Passing to the completions, we may assume that BQ = K[[T]], Bé = K[[Te]] and a
generater g of Gé acts on BQ by multiplying T by a2 primitive e-th root of
mnity £. Let tl""’tn-l be a separable transcendence basis of K cver k.
Then
n;, = IB' dt, A...adt 4t
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ﬂ-; = EBQ dt, A...AdE, AdT
Q J1 31—1 o
4 direct computation shows that (R ] Q.

'k‘
B /k BQ/

2.2.3. Let a:F° » T be the natural projection B ~ Pr/uq = P(Q) from 1.2.2.

Let us show that

=i _ ©,.1
Gp = a, (WL},
where G = Mg and aS is the functor of Invariant direct image ([11],5.1).
The action of G on P' is induced by ane on S. Since SG is a polynomial

algebra, this latter action is generated by pseudereflections and hence, by lemma

2.2.2, we have an iscwmorphism cof S(Q)}-modules

1. G
ot = (f
sqq) = ()
and, hence, an isomorphism of sheaves
i G,.i
Q = )
Hapgy = 2l
applying af to the exact sequence {(sea 2,1.5)
L +—9;3’+ 0

. G
and using the exactness of aS {p is an affine morphism and ( ) is an exact
functor) we obtain an exact seguence:
S+ 0.

™

G,L
[ a*(ﬂmr) S(Q) -+

iy.3

. ¢ - . ) G
Since a,(0 ) = OP we obtain by induction that a (@ P

r P

2.2.4, Let us show that ﬁ; coincides with the sheaf ﬁ; introduced for any
V-variety in [23].
Recall that
=i i
G = 3,{(R
p - Y
where j:W -+ P is the gpen immersion of the smooth locus of IP. In notations

af 2.2.3, let us conslder a commutative diagram

W) v~_4;L___ﬂ¥+ PT

[

i Ly

-1
Here a' = aja’ (W) =2pnd j' 1is the natural immersion. Simce W is smooth, the

action of MQ on a (W) 1is generated locally by pseudoreflections. Then, by

lemma 2.2.2, we get
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)
Lowy

Sfnce codim(P -W,P) 22 (P is a normal scheme) and P is smooth,

i c, i
Wy = a'*(“a_

st =t
*aton T
Thus
R O S L S S L ¢ e S L
PR e A O

2.3. Cohomology of -ﬁ;(n).
2.3.1. Let us consider the graded $(Q)-modules 5; , introduced in 2.1.4 and let

H?nﬂ dencte the local cohemology group for a S-module M (cf. 1.4).

Proposition.

F—Hg:l—h
=
pe==
—
sl
w1
S
[}

Proof. We have exact sequences (2.1.4)
O+§i+ﬂ‘+ﬂ + 0, il

S S S

which, after applying the functor H?m}’ vield the exact sequences of local coho-

mology
i-1,.4 i-1,=i-1 i =i 3ol
“es H : E . 3 .
>y (g > My (gD > By (8~ By, (RG) >
Since Q; = §(-n} for some neZ and S is a Cohen-Macaulay ring, H%m}(ﬂ;) = 0
if j# r+1. Thus, we have an isomorphism

] =i j-1,=i-1 .
= { 1.
H{m}(ﬂs) H{m}ms y for j # r+
By induction, we obtain

_ieitl —
s Wy g

Mow, first terms of the Koszul complex from (2.1.4) give an exart sequence

i gt
H{m}(gs)

D+ Ty » gm0,
which easily implies that

Hl

=1
, g =

This proves the proposition.

Corellary. E; is a Cohen-Macaulay S-module if and only if 1 = r.
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2.3.2. TFor any subset Je<[0,r] = {0,...,r} denote by [Q the sum & q:i .
jeJ
Notdce that |Q[O,r]| = |Q| in our old notations. Put a = di.mkS{Q)!_1 .

5

Theorem. Let h(j,ijn) = dimkHJ(E,ﬁ;P(n)). Then

h(0,i;n) = I a j - h{0,1-1;n), d1i=z2z1l, neZ

g3=1 PoIQg
h{j,isn) =0, if j # 0,i,r, neZ
h{i,i;0) = 1, i=0,...,r
hii,i;n) = 0, n+#Q0, i¢rT,0
hir,i;n) = £

a__‘ | - bh{r,i-1;n}, 120, nec¢Z
fI=r+l-i TIQ

Proof. Using the same arguments as in the proof of theorem 1.4.1 we obtain the

exact sequence

[ (- § =i 0, =i =i

Qg = H{m}{ﬂs) > QS Ll n?ZH (]P,ﬂ]?{n)) - H{m}(ﬂs) -+ Q
and an iseomorphism

i =1 3-1 =i

H{m}mS:| v ng.'«EH (IP’Q]P(H)) )
Applying 2.3.1 we get that

0 =i ~—1 i A =i-1

= = §

H (]E’,Q]P(n)) (QS)rl Ker(QS - VES )n

3 =i - .

H (P'QIP(H}) =0, j#0,i,r, n¢XZ

Hl(r,ﬁIlP(n)) =k, n=20, i#r

i i -

H(P,0p,(m)) =0, nf0, i#0r
Now SE; = o S(—fQJI) and A 1is surjective (2.1). So, we get all the assertions

#J=1
except theqaét one.

Consider exact sequence 2.1.5
=i ~d 1=l
0~ QP{n) > Q_S(n) - “p {n) ~ 0
and the corresponding cohemoleogy sequence

H Mok » WA Yy - BT @L () -+ k) + nt ek Ty v 0.

Since ﬂl(n) = &0 (n—‘Q I) we can apply theorem 1.4.1 and obtain that
-5 #3=1 ¥ J
am ALY = E a_ ol
Frerel-i G

Using this sequence and preceeding results we obtain the last equality.

2.3.3. (Corollary.
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BT, T (0)) = 0,  if n<mint||: #3 = 1}

Hr(]P,ﬁliP(n)) =0, if n>-miollo|: 47 = TH-1) .

2.3.4. Corollary <{(Bott-Steenbrink). If n>0 then
Bl -1
R (P,0_{n)) # 0

only when j = 0 and n>min{|QJ|: #1 =4} .

2.3.5. Corollary.
i .
T (w1)£+1

h{0,i;n} L a
£=0 PR LY

h{r,ij;n) = h{0,r-i;-n)

Here the first assertion immediately follows from 2.3.2 and ro verify the second
one we nave to consider the identity

hir,i;n) - h{d,r-i;-n) = h(0,r+l;-n) = dimkHO(]P,ﬁ.?-l {(-n)) =0 .

2.3.6. Corollary. If k =C, then

£, 1 even
Hi(IP,I:} =

0, i odd

1, p=q
np’q(mai

a, p#qg

This follows from the degeneracy of the spectral sequence Ei’q = Hq(]P,ﬁ]I)E) =
+
uF q(X,E) proven by Steenbrink [23].

3. Welghted complete intersections.

3.1. Quasicones.

3.1.1, Let X be z closed subscheme of a weighted projective space T{Q) and

p: U~ ®P(Q) be the canonical projectiou.

The scheme ¢losure of p_l(X) in Ar+1 is called the affine quasicone over

X. The point D¢ CK 1s called the vertex of CX'
Let J be the Ideal of X in P then the ideal I of €, in 5 is equal

to HO(U,p (Ne, 0 0 0 *
o ( P OP U) ind BEZH (IP’JOIPQ P (l'l)) .
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3.1.2. FPropasition.

(1) I is a homogeneous ideal of S§(Q};

(ii)  the maximal ideal m, of the vertex of C; coincides with the irrelevant
ideal of the graded ring 5{(Q)/I and has no immersed components (i.e.
depthm(S/I) 21);

(ii1) The closed embedding Proj(S/I) - Proj(5) = P corresponding to the natural
projection 8 + 5/I determines an isomorphism PFroj($/1) = X

{1iv) I 1is uniguely determined by the properties ahove.

This is an easy exercise in the theory of prejective schemes, which we omit

(it will not be used in the sequel).

3-1.3, An affine variety V is called guasiconic (or quasicone) if there {s an
effective action of Gm on ¥V such that the intersecticn of the closures of zll or-

bits is a closed peint. This point is cailed the vertex of a quasicone.

3.1.4. FPropgsition. Let V be an affine algebraic variety over a field k. The
following properties are equivalent:

(1) V is a quasicone;

(i) k[v] = I‘(V,OV) has a nonnegative grading with k[V]CI =k

(iii) there is a closed ewbedding j: V +£~.r+l such that j(V) is invariant with

r+1

respect to the action of Gm an A defined as in 1.2.1;

{(1v)  there is a closed embedding j: V 2™ suen that the ideal of j(V) is
generated by weighted-homogenecus polynomials with integer positive weights
(i.e. homegeneous elements of some 5(Q) ) .
The procf consists of standard arguments of the algebraic group theory {(cf.

[8l, [20]5.

GCoreoilary. Any affine quasicone is a quasicone. Conversely any gquasicone without

immersed components in its vertex is an affine quasicone for some X< FP(Q) .

3.1.5. A closed subscheme Xc P(Q) is called quasismooth {with respect to the em-

bedding X + P(Q) } if its affine quasicone iz smooth outside its vertex.
3.1.6. Theprem. A quasismooth closed subscheme X ¢ P(Q) is a V~variety.

Froof. Let CX be the affine quasicone over X and x¢X be a closed polnt. In

notations of the proof of 1.3.2 let wi = vincx . Let us show that for any ¥ swi

over x{Wi is nonsingular in y. We have to show that the tangent space T, ()
X

is net contained in the tangemt space TV
i

* -
of p to CX=CX—{D} and F = p' 1(::)

%
The fihre F {is an orbit of the

£
(y).Let p':C, > % be the restriction

red °
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*
peint vy with respect te the action of GTrl restricted ta CX' If

(§0""’;i—l’l’§i+l""’§r) denctes the coordinates of y, then F coincides with
r+1

the image of the map Gm = Spec(k[t,tﬁl]) - A = Spec(S) whiech is given by the
formula:
- qo — qi_l q'i — qi+l q2
(Tos'--,Ti_laTi’TjH_ls-"sTr) * (yOt ;---s)’i_lt £ ’Yi+lt IEREERS t ) .
The tangent lire to the curve F 1s the image of the corresponding tangent map and

daefined by the equation

qi’“"Tr“?r A

To=%g = ag¥ge - o Ty ¥4 = 85 q¥30 7571 =

It is clear that TF(y) ¢ TV (y) = vi and, since TF(y) 3 TC {y) , we abtain that
i X
¥ is anonsingular point of wi.
The end of the proef is the same as in the proof of 1.3.2: we obtain that

Uk¢2X is locally isomorphic to the quotient of the nonsingular variety W, by the

iS[)tt(?Py’ group G <G of the point V. -

3.2, Weighted complete intersections.

3.2.1. Assume that the ideal I<35 of the affine quasicone Cx of XcP is
generated by a regular sequence of homogeneous elements of the ring S(Q) . It
dl,...,dk are the degrees of these elements then we say that X 1s a weighted com-
piete intersection of multidegree d = (dl,...,dk} and denote X by Vd(Q).

In case 1 is a principal ideal (F} and P‘sS(Q)d we say that T X isa

weighted hypersurface of degree d and denote X by Vd(Q).

*
3.2.2. 1In the sequel, CX

will denote the punctured affine quasicone CX-{O}.
*
Let p :CX + X be the corresponding projection,

Lemma. Assume that X = Vd(Q) is quasismooth. Than

*
(1) PiC(CX) =0 4if dim X=3;

*
{ii)  any Gm—equivariant etale covering of Cp is trivial if dim X222
*
(11)" ﬂl(CX) =0 if k=C and dim x>2;
*
(i1d) Hl(cK,OC*) =0, 0O<i<dim X.
X

Proof. (i) Since the lacal ring 0 is a complete intersection ring of dimen-

CX’O
sion 4, rTegular outside its maximal ideal, it is a factorial rimg ([13], exp.XI).
This shows that Pic(C;) = Pic(CX}. The latter greoup, being isomorphic to the
group of classes of invertible diviscrial ideals of a graded commutative ring, is
trivial ([10]). This proves (i).

(1i) A similar reference ([13}, exp.X) shows that OC o 1ls pure. Hence, every
X

*
etale covering of CX iz a restriction of an etale covering of C Moreover,

¥ -
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the same is true for Gm—equivariant coverings. Let f:Y » Cx be an {rreducible
Gm—equlvarlant etale covering of CX . Then Y = Spec B, where B = n?Z Bn 15 an
integral Z -graded k-algebra, and f 1g defined by an inclusion of graded rings
k[CX] cB. Let m= k[C]>o = n>o k[C ] be the maximal ideal of the vertex o« Cy -
Then m]3\CB)(J and B/mB is a finite separable k-algebra, Since B is integral,

this easily implies that Bm 0 for m<0 and Bo is a finite algebra over

kfcx]/m = k. Since B is a subalgebra of an integral algebra B, this implies
that BO is a field. Thus, we obtain that Y {s a quasicone and its vertex 1s
the enly peint lying over the vertex of CX' Because f d1s etale and k is alge-
braically closed, this implies that f dis an isomorphism. This proves {ii).

(ii)"' Let Cy be g —equivariantly embedded into L The subgroup R _ of posi-
tive real numbers of the group E acts freely on C Intersecting every R,
orbit with a sphere Sin -l of small radius =& with the center at the origin, we
get a map C; > IR+X KE , whEI: KE = SZn—l n CX . It is easily verified that this
map 1= g diffeomorphism of CX onto }R+ch . HNow, since the vertex of CX is a

complete intersection isolated singularity, the space Kc is (d-2)-connected
*
(d = dim Cy = dim ¥+ 1) (see [14,18]}. Thus, wl(cx} = wl(KE) =0 1f dim X22.

To verify (iil) we again use the local cchomology theory. Since CX = Spec(3/I)
is affine,

1+l i+l

al (C C‘ ) H{O}(C )=H{ }(S/I)

Since S§/1, being a quotient of a regular ring by a regular sequence, i{s a Cohen-

Macaulay ring, Hj{“:]l}(S/I) =0, 1f i+4+1 # dim(s8/1) = dim X+ 1.
0

*
3.2.3. Remark. If char k>0, then wilg(cx) may be not trivial. For

example, n?lg(ﬂn— {ah) # 0, because A" has nontrivial etale coverings.

3.2.4. Theporem. Under the conditions of the lemma
(1) Pic(X) =Z, 1if dim X=z3;

(11) walg(x) <0, if dim Kz?;

(G n(X)—CI if k=L and dim Xz2;
(iii) H(XO(n))=D neZ, 0<i<dimX.

* *
Procf, Let L be an invertible sheaf on X. Since Pic{C, Y =0, p (L) = O *
X

and is determined as a Gm—sheaf by scme character eH (G Aut(G *)) H (_G G )”

= Z . 1In this way we obtain a homomorphism f: Pic(X) A If p *) =p (L )
as Gm—sheaves, then 1 = p*m(p*(?_.}) =L" = pf(p*L')) and, hence, f 1z injective.
This proves (i).

Let X' be an etale finite covering of X and A be a correspondlng 0 -

Algebra (i.e. X' = Spec(A)). Since the covering X' = X' XXC of CX is a
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— *
Gm—equivariant covering, by lemma 3.2.2 (ii) we get that ¥' = Spec(p (A)) is tri-
vial.

Hence the Gm—OC;—Algebra B = pk(A) = AOXGOCZ splits, i.e. B = B %8, ,
where Bi are nontrivial. Since Gm is connected, the Subalgebras Bl and 32

are invariagt Subalgebras and we have a splitténg of Gm-Algebras B = Bl=<82-
Applying P*m , we obtain that A= pEm(B) = p*m(Bl) H Pim(BZ) splits. This
shows that the covering X' splits and proves (ii).

To prove {ii)' we apply Lemma 3.2.2 (ii} and notice that the canonical homo-
morphism ﬂl(C;) - ﬂl(X) is surjective because the fibres of C; + X are path-
wise connected.

To prove {iii} we note that

i,.% . 4 vy i p N
H (CX,O L) = H (cx,Oxeo Op = E(X,0,8p,01) = & W (X,0,8, 0Op(n))

¢
Cy i3 T

But UXSOP OE,{n) = Ox(n} and we can apply 3.2.2 and obtain {iii).

3.2.5. BRemark. The proof of (i) easily gives that Pic(X) 1is generated by some
Ox(n} , where,in general, n # 1. For example, Pic(P(l,...,1,n}) ds
generated by OI,(2).

3.2.6. One can alse prove 3.2.4 (and its generalizations to torical spaces) using

the metheds of [L3] (ef. [9)).

3.3. The dualizing sheaf.

3.3.1. Recall that according to Grothendieck for any nermal integral projective

Cohen-Macaulay variety X there is a sheaf by (the dualizing sheaf) such that

Bl(x,F) = (Ext“‘i(x;F,wx))* (n = dim ¥)

for any coherent OX—MDdulE F. The sheaf wy, Can be determined as the sheaf of
germs of differential forms which are regular at nonsingular peints of X (see, for
example [16]).
In other words,
wy = 3,00
where j:Z -+ X is the open immersion of the nonsingular locus of X.
In this section we shall compute wy for a quasismooth weighted complete in-—

tersection,

3.3.2. Lemma. Let X be & closed quasismooth subscheme of T, CK be its pro-

jecting quasicone, Z be the nonsingular locus of X, then

1

G
hurss -
Py (JC§!X)|Z = OZ .
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Proof. The embedding of smooth schemes C; -+ U dafines an exact sequence

2 1 1
0~ J/3 » 0 8,0, ~ 0 + 0
x
u/e 0, Cc C&/X
where J 1is the ideal sheaf of C; in U. Censider the surjective homomorphism
Iy :SEI]}/_JP -+ OU from 2.2.1 (its construction does not use the assumption that P =
r , the latter is used only to check that £ 1is an igomerphism). It is easy to
see that the induced map E':ﬁé*/x - OC* is well defined and is surjective.
X b4
Gm
Since p, is exact, the map
Gm-— Gm 1
Py (8) Py (B, ) > Oy
XX

is surjective. Thus,it is sufficient to show that the restriction of the left hand
side sheaf to 2 is an invertible sheaf.

This verification is local. Let =xe?Z and Zx be its neighbourhood of the
form W/G where W is a nomsingular subvariety of C§ of codimension 1 and G
is a finite subgroup of Gm constructed in the praof of theorem 3.1.6.

Since W 1is regularly embedded in C;, we have an exact sequence:

1

1
0= Nose * Oasx® Oy 7 Sypg 70 -
* X C§ ®

Since NW/C is locally free of rank 1 we may assume (replacing W by smaller
X

N = 0.
W/CX W

1t 1s clear that

one) that

m, L _ . G.1
P (Trape®p O = Puling 48 O
e, X" Yok

G, 1
Since =% is nensingular, ( acts by pseudoreflections and hence p*(”w/z y=0
G X
(see the proof of 2.2.2). Applying p*m to the above sequence we obtain
Cm, 1 G, -
Py (‘Qc*/x)izx = p*((}w) = OZ
X X

This proves the lemma.

3.3.3. Propesition. In conditions of 3.3.2

_ m, 0+l
“x T Px (Qc§

) {fn = dim %}
Proof. Since X 1is a normal Cohen-Macaulay variety (it follows easily from 3.1.6),
by 3.3.1 it is sufficient to show that

n+l
*
CX

L

Gm
P, ()2 = it

Censider the exact sequence

0 - p*ﬂl

1.-1 Lo -1
. 4'QC§|p (z) - MC§‘p (z) ~ 0.
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G
Applying p*m and using 3.3.2 we obtain the exact sequence
1 “n 1
0 =8y +py @)z >0, > 0.
X
Taking the exteriocr power we get
G
n T m, .n+l
= a. 0 = Y
“g ﬂzOzz Px “c;c{)lz

g.e.d.

3.3.4. Theorem. Let X

Vd(Q) be a quasismooth welghted complete intersection of

wultidegree d = (dl""’ds)i Then
uy = 0, (12l - leh

where |i! = d1+“'+dS .

Proof. 1let I be the ideal of the projecting quasicone over ¥ and B = S/I.
There is an isomorphism of graded A-modules
2 _ .
I/17 = B(=d;) + + B(-d )

The exact gequence

0+ 1/12 - 918 B s nl

35 g "0
gives the homomcrphism
t+l-s PP A e B TR |
£ - = A G ! = B(-
Uy (-]a]) = alz/t ey h () » A (2088 = B( lal3
Since C§ is smooth, the restriction of f to C§ is an isomorphism. Hence
r+l-g
QC* = BclﬂJ - ]Q‘)

X

It remains to use the above proposition.

3.4, The Poincare series.

3.4.1. Let A= & A
n=0 "n
series is defined by

be a graded k-algebra aof finite type. Then its Poincare

oa
- . . n
PA(t) b (dlmkAn)t .
n=0
If Xgre--ax o are homogeneous generators of A and Qpsee-29,  are its degrees,

then PA(t) is a rational function of the form

qi)

where F(t) is a polynomial ([2], 11.1).

r
P e) = F(e}/ 0, (L-t

3.4.2. Assume that A = 5(Q) is a graded polynomial k-algebra. Then {[3], ch.V,
5, n®l)
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( TR
Poy®) = Vylpyl-t )

Let fl""’fs be a regular seguence of homogenecus elements of the ring S{Q)
and dl""’dr be its degrees, let A = S(Q)/(fl,...,fs) . Then

>

=] di r qi
P, (1) = i;Il(l—t WO (l-t .

i=0

This formula follows from the abowve formula. Put AO = S(Q), Ai - S(Q)/(fl,..,fi
Then A1 = Al-lf(fi) and obviously

di

t P (£ +P {(t) =P (t)

Ai—l Al Ai—l
Thus
di
P ()= (1-t )P, {t), i=1,...,8
A A

and we cbtain our formula.

3,4.3, For X = Proj(A) we put

LT a0 n
P (€)= I (dim H (X0, ()¢

Lemma. Let m = ngo An be the irrelevant i{deal of A . Assume that depthm{A) 22

{for example, A 1is normal). Then
PA(t) = Px(t}

The same argument as in the proecf of 3.2.4 (iii) and 1.4.2(1) shows that the Serre

homomorphism of graded algebras
0
A~ 0,0 (X,0.(n))

is bijective.

3.4.4, Thecrem. Let X = Vd(Q) be a2 gquasismooth weighted complete intersection,

Px(t) = nzo antn be the power series defined above. Then
9
1

s di r
P = - D/ Ra-e )

dim X

Corollary. Define pg(X) = dimkH (X’OK) , then in notations of the theorem

pg(VQ(Q)) = a|2‘ - ql

Indeed, since w, = DX(‘QJ —]QJ) is the dualizing sheaf (3.3.4) we have that

. .dim X . - G
dim H (X’OK) = dim Hom(ox,mx} = dimkH (X,mx) a

K % {d] - la]

3.5. Examples.
3.5.1, We shall say that two closed subvarieties Xc TP and X'<P' are affine
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isomorphic 1f their affine quasicones are isomorphic and projectively isomorphic if

their quasicones are Gm—isomorphic. It is clear that in general there are only two
implications

projectively isomorphic == affine isomorphic

projectively isomorphic => isomcrphic

between these three notions.

3.5.2. Weighted plane curves. A quasismooth hypersurface X = Vd{Q) in a weighted
projective plane T (qo’ql’qZ) is a smooth projective curve. Its dualizing sheaf
coincides with the cancnical sheaf “X and we have (3.3.4):

ol o (d-q,—9,-9,)

X X [ W]
Its genus is calculated by the formula
La-lel

g = coefficient at in the formal series

(1- td)/iﬁo -t
The affine quasicone of such a curve is given by z weighted-homogeneous equaticn
f(xo,xl,xz) = 0 with an isclated singularity at the origin. Such singularities
were studied by wmany authors ([1,8,18,20]).
Let
T
Each weighted plane curve with m< 0 is afifine isomorphic to one of the fol-

lowing curves

P (qo,ql,qz) d J Equation Name

— , - i S
P(1,1,1) L Xy = 0 [

P (1,kK 2k el ex =0 Ay s Kzl
P (2,2k+1, 2k+1) AN x§k+l+xi+x§ -0 Ay > k2l
P22 k2 | xg—l+x§xo+x2 =0 D . k24
P (3,4,6) 12 xg+x1+x22 =D E6

P (4,6,9) 18 xgx1+xi+x2 _— E

P (6,10,15) 30 Kg+xl+x§ =0 g

|

The equations of correspending projecting quasicones are well known two-dimensional

singularities, which are called the platonic singularjities, Du Val singularities,

kKlein singularities, ADE singularities, double ratjonal singularities, simple sin-

gularities, Q-modal singularities.

Fote that amy curve which is affine isomorphic te a curve of type Dk cr E



is projectively isomorphic to this curve.
It is ciear that all such curves with m<( are {somorphic to Pl.
When m=0 each weighted plane curve is projectively isomorphic to cne of the

following curves:

g (qo,ql,qz) d Equation Name
3,.3,.3 _ 3 ~

P (1,1,1) . 3 x0+x1+x2+axﬂx1x2 =0, a +27#0 E6 or PS
4, 4,2 22 2 ~

P (1,1,2) 4 x0+xl+x2+ax0xl =0, a - 4#0 ET ar Xg
6, 3.2, 22 3 ~

F(1,2,3) 6 ottty baxg - 0, 4a+27 # 0 B, or Ji,

It can be shown (V. I. Arnold) that for any fixed m there is only a finite
number af ceollections (qo,ql,qz;d) for which there is a smooth weighted plane
curve Vd(qo,ql,qz).

For m=1 there are exactly 31 collections. The corresponding affine quasi-
cones have a canonical guasihomogensous singularity embeddable in ‘h3. There is
a natural correspondence between the 31 collectiens and the 31 possible sighatures
of the Fuchsian groups of the first kind with compact guotient for which the alge-
bra of automorphic forms is generated by three elements ([8,25]).

0f course, a general smooth projective curve is not isomorphic to any weighted

plane curve.

3.5.3. Surfaces. There are no classification results in this case, there are only
some interesting examples.

Let f(xo,xl,xz) = 0 be an equation of a smooth weilghted plane curve Vd(Q).
Then the equation

d _
f(xo,xl,x2)4-x3 =0

defines a quasismooth hypersurface Vd(qo'ql’qZ’l)'

For curves with m = [ we obtain in this way dell Pezzo surfaces [15] of de—
gree 3, 2 and 1 respectively (M. Reid).

For curves with m =1 we obtain simply-connected projective surfaces with
the dualizing sheaf wy ® OX'
tional points) we get minimal models of nonsingular Ki~surfaces. One example of

Resolving its singularities (which are double ra-

such a surface is the following Kiein surface:

7 3 2 42
V42(6,14’21,1) H x0+xl+x2+x3 =0 .

This surface has 3 singular points
(1,-1,0,0)  of type A
(0,-1,1,0)  of type A,

(-1,0,1,0) of type Az .
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For any such surface the complement to the curve %y = 0 is isomorphle to the

affine surface with an equation
f(xo,xl,xz} +1=20

which is diffecmorphic te the Milnor space Fe for the singularity f(xo,xl,x2)= a
([18]). This fact can be used for the explamation of some observatiens in the sin-

gularity theory by means of the theory of algebraic surfaces (see [21]}.

3.5.4., Multiple spaces. Let X - Pr_l ke a finite Galois covering with a cyclic
-1

automorphism group of order m branched aleng a smooth surface Weph of degree

d. Let f(KO""’xr~l) = 0 be the equation of W. Assume that (d,char(k)) = 1.

Then X is lsomorphic to a weighted quasismooth hypersurface

Vd(Q): f(xo,...,xr_l) +ox = 0

where @ = {1,...,1,d/m}.

It is easy to see that such X is smooth. From 3.2.4 we obtain that all such
varieties are simply-connected if r=3 ({i.e. wilg{x) =0 or nlfx) =0 if
k=C) (cf. [22]). Moreover, Pic(X) = Z if r=4.

The Poincare series Px(t} has the form (3.4.4) :

B (t) = -t/ -0 (1~ I Ao V2o L
In particular,
m—-1
p (X} = the coefficient at td_r_d/m = L dlm-1-s) _ 1
g s=D m
-1

For example

m=2, v =2 (hyperelliptic curve) pg a/z - 1
m=2, =23, d=25§ (R3-surface) Pg =1,
It is very useful for the construction problems in algebrailc geometry to con-—

sider also weighted multiple planes, cyclic coverings of weighted projective spaces.

For example, the Klein surface from 3.5.3 is such a multiple plane.

4, The Hodge structure on the cohomology of weighted hypersurfaces.

4,.1. A resolutiom of E;.
Let X = Vv _{(Q) be a guasismooth weighted hypersurface, € its affine gquasi-
N g P X
cone, Tc8(Q) the ideal of C fe S(Q)N its generstor, A = S(Q}/I the coor-

* = -
cF = G {0} .

K’
¥ mo the maximal ideal of the vertex of CX’
Since X is a V-variety (3.1.6) its cohomology has (in case k = L) a pure

dinate ring af C

Hodge structure and the corresponding Hodge numbers are calculated by the formula
(see [23])

PoQryy - a5 (udy SP
h (X dlmk(H (X,ﬂx))
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In this section we shall construct a suitable resolution for the sheaf ﬁi.
4.1.1. Define a k-linear map
i i+l .
df : QS -+ ﬂs , iz0
setting for homogenecus elements of the S-module 9; (2.1.1)
a0 = faw + (1IED e
4 N
where |w‘ denotes for brevity the degree of w.
Lemma.
: 1 i j
(i) df(wnw') = df(w)AW' + (-1} wAdf(w'}, Wwe QS, w'e ﬂg;
. _ i,
(ii) df(df(w}) =4, Vwens :
(iii) d(a ) = +|§[)df!\dw, o 23
; I 1 i,
{iv) df(dw) =% dfadw, Vwe ﬂs,
i i+l
v aah ) ewith
This is directly verified.
Let us show that d; induces a linear map of 5-modules 5; = Ker(Q;-é*R;_l) (2.1.4).

Lemma (continuation).

el

(vi) 4 (AG)) = -Ad (W), we
. =i =i+l
(vii) df(ﬁs) cgs
It is clear that (vii) follows from (vi). Let us prove {(vi). Recalling pro-

perties of the map 4 (2.1.3), we obtain

8 (w) = alzaw (1) |§‘ wAdf) = £4{dw) + (-1) ¥ |§| A{wadf) =
= —sa(alw) + £lufw+ (-1 l%' B(w)rdf - |wfw =
= -fd(ﬂ(w))-%(—l)l |é%?ﬂ Aw)ndf = -df(A(w))
4.1.2, Properties (ii) and (v) of the lemma make possible to introduce the follow-

ing complex R; of graded 5-modules:

k_ k )
Ri = QS((k—l)N)

_ k., |k ktl
dk— (-1} df.R_ +Ri

-1 .
Property (vi) implies that the homomorphisms & : ﬂz *’ﬂ: determine merphisms

of complexes

4:Ry Ry (1) .

Property {vii) shows that
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—_— _k
= (0 - i)W
R, = (Agl(k- DM,
is a subcomplex ef R; such that
Ri = Ker(Ri - Ri_l[—l])
Ri_l[—l] = Im(Ri > Rihl[_l]) .
Thus we have the exact sequence of complexes of graded S-modules:

0+i'i+R;+i'i_l{—1]+0, ieZ .

4.1.3. The multiplication by f defines the inclusion of graded S-medules

* k =k =k
QS - QS(N) y QS - QS(N),

which induces the inclusicn of complexes
' - * N -
Ry 7Ry RymRy

Consider the correspending guotient complexes

Ky = Ry /Ry, Xy =Ry /R

The exact sequence of complexes from 4,1.2 induces the exact sequence of com-

plexes of graded S-modules:

0K, » K, »K _[-11+0.

4.1.4, Lemma {De Rham). Let A be a commutative ring, w eAr+l be a regular

sequence of elements of A, h({ﬁ(Ar+l}, psr. Then wah =0 iff I3 gle(Ar+l)
such that h = waf .

This is a reformulation of the theorem of acyelicity of the Koszul complex for
a regular sequence.

We shall use this lemma in the following situation: A dis the coordinate ring

of C, FLapi ﬂ;/fﬂé, w is the image of df in né/fné.
Since C; is smooth, the jacobian ideal
0, = %0,...,—2%0) < §(Q)
is mo—primary and hence df determines a regular sequence.
It is clear that the differential of the complex Ki coineides {up to the
multiplication by a constant} with the exterior multiplication by df. Since

s
5 _ 1 1
Ki = A(QS/fQS)

we may use the De Rham lemma and deduce

Corollary:
Hq(K;) =0, qfr+l, Viewm.



4.1.5. Proposition.

Hq(E;)=O, qz0, ie¢Z

Broof, The above corollary and exact sequence 4.1.3 imply that

q 5% _ q-l e g2
nf &) = W) = atE )

Since for g< 0 and gq->r Hq(E;) = (0 we cbtain the assertion of the propositicn.

qQ=r .

4.1.6. Define a graded A-module gt by the equality

A
_ d
’i Ker(K . Ker (ig (V) /EE —£, sz“

i+l

l(zw)m ()

Then we deduce from 4.1.5 that the sequence of graded A-modules

g =i, =i 1+1 :1+l A 4 _ oF _i—
0+ 8, > AN/ - (28 /0wy + ag ((r-DIN) /2  ((r-1-1)N) > 0

is a resolution of ﬁi.
Taking associated sheaves on X = Proj(A) , we obtain the resolution of the
sheaf @i

— —i
08, > RP(N}/HIPf*"'--* 51 ({z- l)N)/Q ((r-i-1)N} + 0 .

4.1.7. We are almost at the goal. It remains to show that the sheaf E: colncides
~q ~T 1

with the sheaf Q; defined as in 2.2.4 by setting Q; = j*(RU) , where U =

X - Sing(X) .

lLet Z be an open set of noasingular points of X such that ﬁ;kz = ﬂ; and

ﬁi @, 0= Qi 8. O, . We have the exact sequence of locally free sheaves
PO,z ¥ O,z
i P
d 1 1
0—>NX/]P|Z—>-Q]PQO 0, + &, ~ 0
I

where 7= O (-¥) 4s the normal sheaf of Z-+T.

X/]PL
This sequence determines exact sequences

i i d i+l
0~ 5}2 - Q]P(N) GG]P GZ — ‘Qz (M)

which can be extended to the right to obtain the resolution
O+Q AQ {N)GO O +52 {2N)@ GZ+---
P P
Since

l+k(kN)| z

+k((l+k}N)@0 0 = l+k{(1+k)N)/Q
P Z

we see that this resolutien 1s the resalution of E; {(4.1.6) restricted on Z.

Hence

and we obtain that
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Thus, we have constructed the resolution of HX

0 - ﬁi - Q_JiP(N)/ﬁ]iP G > QrP ((r—i+1)N)/n‘i'P ((-1}N) ~ Q .

4.2. The Griffiths theorem.

This theorem generalizes for weighted hypersurfaces a result of [11] and allows
to calculate the cohomology Hl(x,ﬁi) as certain gquotient spates of differential

forms on ¥ with pcles en X.

4.2,1. Denote by kP the pth component of the resolution of ﬁ; from 4.1.7:
i+ —i+
kP = 2P (M) /27 P ()
Using the exact sequence
0> 80P - PP Erm » ¥P - 0

and the theorem of Bott-Steenbrink (Z2.3.4) we obtain that

1,k = alp k") =0, q>0, p-o
q 0, _ .9 0y _ ga*l, ol y _ ¢ ko g=i-1
BYK,KTY = HX(P,K) = KT (P, ) = | 0, qfi-l

Put

L= Ker(Kl - Kz)

Then we have the exact sequence of sheaves
¢ -+ ﬁ; -+ KO + L =+ 0
which gives the exact cohomclogy sequence

R S ESI LeN i L R S IR AT R SRR

The sequence

B L +R + K e axm L g

is an acyclic resolution of L. Thus we have
rdx, Ly = nYreg,x’y = 0, q>r-i-2
) = ekt Y k5 -

- I‘(IP,E;,( (r—i}N)/F(P,E;P((r—i—l)lﬂ)) +

ImI‘(]F,Er]P_l ({r-1-1)N)

4,2.2, Theorem (Weak Lefschetz theorem). The homomorphism
B, )+ a9k, k9 = Hq+1(19,n]ip)

is an isomorphism, if g>r-i-l1 and ac epimorphism if g=r-i-1.
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Proof. Follows from the exact cohomology sequence 4.2.1 and the above calculation

of HI{z,1).

Corollary. Assume that k =T, Then we have an lsomorphism of the Hodge struc-

tures

+
ey = a e,
if n # r-1 and an epimorphism

B, - aN(eLT) .

For nzr-l this directly follows from the theorem. For n< r~1 we use the

Poincare duality for V-varieties (which are ratiomal homolagy varieties).

Since the Hodge structure of TP iz known and very simple (2.3.6) we see

r-1

that, as in the classic case, only cchomology H (¥) are interesting.

4.2.3. Put

hi,r-i-—l(

i,r-i-1
. o

X) = h - a

where

1, r = 2%
+-{

0, r #2i.

Then we obtain that

N io
;" i-1 dim 851 w1

h k

X

Hence by calculations of 4.2.1 we obtain

Theorem (Griffiths-Steenbrink}.

i, r=i-~

hg

Lexy = atm (POP, 2% ((e-00)/ 0 (R, 0 (r-1-1)N)) +

Tal{®, Q;—l((r—i—l)N)))

4.3. Explicit calculation.
4.3.1, Let

- ¢ of af
B = (r seeoyy )
Q r

be the jacobian ideal with respect to a generator f« S(Q)N of the ideal of the

affine gquasicone CX of a weighted gquasismocth hypersurface XcP{Q) .

By the Euler formula 2.1.2 each %% is a homogeneous element of $(Q}
i
degree N-—qi. Hence the ideal Gf is homogeneous and the quotient space
S(Q)/Bf has a natural gradatien. Since ap is mo—primary this quotient space

is finite dimensional.



4.3.2.

Proof.

66

Theorem (Steenbrink). Assume that char(k) = 0. Then

i,r=-i-1 i
ho (x) = dlmk(S(Q)/Of)(r—i)N-|Q|

We have a natural isomorphism of graded S{Q}-modules:

aZtt/el(-Wyade = (s(@/e ) (-[a])

Since (see the proof of theorem 2.3.2)

I‘(]P,—ﬁjI"P(a)) = (EfJ:)a, VaeZZ

and the differential F(P,D;(a)) + T(P, Q;jl(a+N)) corresponds to the operator

f

d_ from 4,1.1, we can reformulate theorem 4.2.3 in the following form:

i, r-i-1 4. o —r-1 P
hy (X} = dim, (25748, (-N) + £o( N))(r_i}N .

Thus it remains to construct an isomorphism of graded S-modules

Br,q »r-l =T ~ Tl x
0 - Ny = ol )
S/dfsls (-1 + fns( N) g /”s( N) Adf

By property (iii) of lemma 2.1.3, we obtain that the k-iinear map

+1
d:nk Qr
g 7 Mg

is in fact an isomorphism of graded S-modules {here we use that char(k) = 0!).

By property (iii) of lemma 4.1.1, we set

—=r-1 bs
d(dfﬂS (1) = ﬂs(-N}ndf .

In fact, we have here an equality. Since d is S-linear it is sufficient to show

that all forms

But

dx. A...Adx, AdFed(d TE T
i g

" ) Eheann

s+l

r-1
d(dfm(dxil...dxi MY = a2 (DT x ax aadk Acadxg )) =

where
Thi

We have

a,c

us

But, since

d

Tt s 1 8 r

r o .. s+1 i
d{rfdx, A...adx, + (-1) a(z(-1) x. dx. A...Adx, A.,.Adx, Jadf) =
i i i i i i
1 T E 1 ] T

c dx, A...Adx, adf
i i
1 T
are some rational numbers which we are toe lazy to write down explicitly.

induces an isomorphism

=r,, =r-1 JUR & AP
Qsldfﬂs (-8 = fg /RS(—N) af .

x r r+l
d{£q dfan §
( s} < g 15
fe Bf (the Euler formula), fﬂ§+l rﬂ;Adf and hence

r

d(fﬂ;) = dfang .
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Thus

—T -1
fag(+N) = dgfty "(-K) ,

and we are threough.

4.3.3. The theorem above can be refermulated in the following form. Define a

function £:Z :;1 + Z by
_1t r+l
Bla) =y 4Zg (a5t Vag, 2= Coguensad e Z g
Let {Ta}aeJ be a set of momomials of $(Q) vhose residues mod 8, generate
the basis of the space S(Q)/Sf {such monomials are c¢alled basic monomials). Then
i,r=1-1

ho () = HaecT: £(a) = r-1}

4.4. Examples and supplements.

4.4.1. Suppose £(Tpse-+,T ) eS8 dis of the form

F(T

b
I (T )beJ’

of S(qo,...,qr_l) , then the set {Tb'frI tbed', DsbtsN—z} i{s the set of basic

N
.-,Tr) =T+ g(TO,...,T )

[k r-1

are basic nomonials gor g(TD""’Tral) considered as elements

moncmials for f.

This implies that
b +1
Hbeld' : £(b) + rN = -1}

#HbeJ tr-i-1<f(by<r- i} .

i,r-1i-1
0

]

h (X

This formula was obtained inm [11] in the homogeneous case.

4.4.2. More generally, if

In

T(Tgee s T = BT, T ) + Ty
then

BTy = fbestir-1-1 4+ Reg) cr-i-2)

0 N N
For example, if g is homogeneous then X is a multiple space (3.5.4) and we ob-
tain

b TRy = b e 2T (et 4 ms ] < (e-im1)N-w 0ch <N-2)

where |b]| = b, + - + br (cf. III, 8.8).

Q -1
This can be writtem in more explicit form
f,r-i-1 (r-1i-1)N-m
h = I [
0 s

s=(r-i~-2)N-m

B

where c_ is the coefficient at t= dn (1 + +.e + tNﬁz)r .
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4.4.3., Let YcP {qo,...,qr_l) = P (Q') be the hypersurface defined by the poly-
nomial g(TD,...,Tr) from 4.4.1. Then

BTN = Hbe s s L) = reidl) .
Assume now that k = T . The exact sequence of Hodge structures

vee 2 g »utoen w2ty en - 2B e o e

(dual to the compact tohomology sequence} determines the morphisms of the Hodge

structures:

1,5t o > s

which are obvicusly induced by the analogous morphisms
i 142
(P (QU))(-1) + H (P ()

Applying the Weak Lefschetz theorem (4.2.2) we have that 1, is an isomorphism
if i#0, r-1. Thus for U= X~-Y

Hi(U) =0, 14 0,r-1

-

The Hodge structure on H l(U) has the following form

ory (17 (w))

0, i# r,r-1

W, -1 .
cro™T (W) = BT (-1)

W r-1 _ g1
Gry,_y BTN = 1T (),
where
Hr—l(X)U = Coker(B" vy -1y » u" hexy)
T (1), = Ker (B2 (1) (-1) — K5 (X))

For the Hodge numbers hp’q(U) we cbtain (cf. [19])
WPl =0, if p+q# r-L,r

hi’r'i'lw) = hé’r'i'lcx) = #Hbed :r-i-l< ()< x -1}

1]

h;’r“i(u) = hé_l’r_i_l('f) #{be I 1 £(b) = r-i-1}

where we recall that

- r b s .
I ={bex gt T are basic monomizls for g(TO,...,Tr_l)}.

0

4.4.4, The caleulations of 4.4.3 presents an interest since the open affine sub-
set Uc<X is isomorphic to the nonsingular affine variety in 'Ar with the equa-

tien
g(xo,...,xr_l) =1.

This variety plays an important part in the theory of critical points of

analytic funections. The cohomology space Hr_l(U) is iscmorphic to the space of
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the vanishing cohemelogy of the isclated critical point 0ecc” of the analytic

function & = g(zD,...,zr_l) ([18]1). TIts dimension {the Milnor number)
= di = #3!
" dlmcC[To,...,Tr_l]/Gg #J

It can be seen from above as follows:

1 -1 | _i-1 r-2
dimCHr m = t h;’r =+ 1w

i=0 i=1
#H{be It £{b) <}

b N .
and so we have to show that for any basic momomial T £(b) <t or, equivalently,

b r-1
deg(T") < I (N-q) = N - la}
i=0
Let
f b
u = #H{bhed" :deg(T ) = k}
k
z) = E poz
xg( ) "
Then ([1])
r=1 ZN_qi_1
x {g) = 1
5 i=0 %
z -1
It is clear that xg(z) is of degree n = T¥-2i0Q'] and hence for konm by T 0.
This proves the assertion above.
Note that the Hodge numbers of Hr-l(U) can be expressed in terms of vy as
follows
i,r-i-1, .
b W = z(r—i-l)N—}Q]< k< (r-1)8-]Q] "k
i,r-1 - .
h ) = L(r—i—])N—|Q|
The symmetry of the Hodge numbers is In the accord with the symmetry of Uy !
e ™ Mag
4.4.5, Let X = Vn{Q) be a guasismocoth surface (r=3). We know that
2% = v %0 = Maca:lia) = 1) = T
1,1 - . - -
h (X) = #{aecJ: f(a) 2} ;.ZN_‘QI
2,0 1,1
bo (X} = 2h°7(X0) + vt = 24 + 1 ,
2 w-lel 7 Tan-iq|
where
k T N"q- q.
fwozo= M (z  -1)/(z -1}
k -
i=0
3

It {s clear that in notations of 3.4.4., In case P (R} = P we

Pu-fal 7 "a-lel



have

(1]

[2]

|

[4]

5]

(7]

[8]

[91

[10]

(1]

70

o, 2 = (G et = (Laza e RS

REFERENCES

.I. APNOL'D: Normal forms of functions, Uspehi Mat. MNauk, 29, No.2 (1974),

11-49 (in Russian; Engl. Transl.: PBRussian Math, Surveys, 29, No. 2
{1974), 10-50).

. ATIYAH, 1. MACDONALD: Introduction to commutative algebra, Addison-Wesley

Publ. Comp., 1969.

. BOURBAKI: CGroupes et Algebres de Lie, ch, IV-VI, Hermann, 1968.

, CATANESE: Surfaces with k2 = pg = 1 and their period mapping; Proc.

Copenhagen Sum. Meeting on Alg. Geom., Lect. Notes in Math. vol. 732,
1-29, Springer-Verlag, 1975.

. DANTLOV: Geometry of torical varieties. Uspehi Mat. Nauk 33, No. 2 (1978)

83-134 (din Rusgian; Engl. Transl.: Russian Math. Surveys, 33, No. 2
(1978), 97-154),

. DANTLOV: Newton polytopes and vanishing ecohomology. Funkt. Anal.

Priloz 13, No. 2 (1979}, 32-47 (in Russian; Engl. Transl. Funct.
Anal. Appl. 13, No. 2 (1979}, 103-114),

. DELORME: Espaces projectifs anisotropes, Bull. Soc. Math., France, 103,

1975, 203-223.

. DOLGACHEV: Automerphic forms and quasihomogeneous singularities (in pre-

paration}.

. DOLGACHEV: Newton polvhedra and factorial rings, J. Pure and App. Algebra

18 (1980), 253-258; 21 (1981}, 9-10.

. FOSSUM: The divisor class group of a Krull demain, Ergeb. Math. Bd. 74,

Springer-Verlag. 1973,

P. GRIFFITHS: On the periods of certain ratiocnal integrals I, Ann. Math. 90

(1969), 460-495.



71

[12] A, GROTHENDIECK: Elements de Geometrie Algebrique, ch. 2, Publ. Math. de
1'IHES, No. 8, 1961.

[13] A. GROTHENDIECK: Cohomologie locale des falscesux cohfrents et théoremes de
Lefschetz lacaux et glabaux {SGA2), North Helland Publ., 1968,

[14] H, HAMM: Die Topologie isolierten Singularititen von vollstandigen Ddrch-

schmitten koplexer Hyperfldcher Dissertation. Bonn. 1969.

[15] A. HOVANSKIT: Newton polyhedra and the genus of complete intersectiomns,
Funkt. Anal.: Priloz. 12, Wo 1 (1978), 51-61 (in Russian; Engl. Transl.:
Funct. Anal. Appl., 12, No 1 (1978), 38-46}.

[16] E. KUNZ: Holemorphen Differentialformen auf algebraischen Varletdten mit
Singularitdten. Manuscripta Math., 15 (1975), 91-108.

[17] ¥U. I. MANIN: Cubic forms, Moscow, 1972; (in Russian: Engl. Transl. by
North Holland, 1974).

[18] J. MILNOR: Singular peints of complex hypersurfaces, Ann. Math. Studies,
No 61, Princeton, 1968.

[19] S§. MORI: On a generalization of complete intersecticms, Journ. Math. Kyoto
Univ., vol, 15, 3 (1975), 619-646,

*
{201 F. ORLIK, P. WAGREICH: Isvlated singularities with T -actiom, Anm. Math.,
93 (1971), 205-228.

[21] H. PINKHAM: Singularités exceptionneles, la dualite &trange d'Arnold et
les surfaces K3, C.R. Acad. Sci. Paris, 284 (1977), 615-617.

[22] H. POPP: Fundamentalgruppen algebraischer Mannigfaltigkeiten, Lect. Notes
Math., vol., 176, Springer-Verlag 1970.

f23] J. STEENBRINK: Intersecticon forms for quasihomogeneous singularities, Comp.
Math., v. 34, Fasc. 2, (1977} 211-223.

{24) A, TODOROV: Surfaces of general type with K2 =p =1

g , I, Ann. Scient. Ec.

Norm. Sup., 13 (1980), 1-21.

[25] P. WAGREICH: Algebras of automorphic forms with few generators. Trans. AMS
262 (19803, 367-389.



*
A PATHOLOGICAL EXAMPLE OF AN ACTION OF k
by

Jerzy Konarski

*

In this lecture we shall comstruct an example of the actiom of k on a ner-
mal varlety in which there exists an orbit "starting" and "finishing'" in the same
connected compenent of the fixed point set. Ve shall also give some properties cf

*
k -—actiens, which will be needed in the following lecture.

l. Wotations. Let k be an algebraically clesed field of any characteristic.

All varieties and morphisms will be defined over k. We shall consider algebraic
actiona of the multiplicative group k* of the field k. We shall jdentify k*
with the cpen subset of the projective line Pl consisting of the points different
than (¢ and =. Let us assume that there is given an action ¢:kf xX+X ona
variety X. TFor each point iesx , consider the morphism ¢x:k*->x defined by
¢x(t) = tx = ${t,x} for tek . If this morphism extends

— * —
to a morphism ¢x:k {0} = X, we denote the value ¢x(0) by lim tx ; similarly
t+0 *

we define lim tx . If FlL...,FE denote the comnected components of X

£
i : . + -
XT(Fi) give an invariant cover of X 1f X is complete, where X (F)={x:lim txe F}
g t]
(and similarly for the sets X_(Fi> where X (F) 1s defined analogously as {x:%imtxsf}l
]

, then the

We cali them the cells of the plus decomposition of X determined by the action
of k*, or simply the plus-cells of ¥X. Analogously the minus-cells are defined.
The above decompositions were defined and studied by A, Bialynicki-Birula in
[2] and [1] in the case, when the variety X was nonsingular. They have in this
case very nilce propoerties, see [2], [1]:
A). The cells X+(Fi) are locally c¢losed in X and the projectlons along

+ +
the orbits ¢1:X (Fi) > Fi, ¢i(x) = lim tx, xzeX (Fi) are morphisms,
t+0
+
B). ¢i:x (Fi) + Fi are zlgebraic bundles over Pi with affine spaces as

fibres.
*
It is easy to construct non-normal surfaces with actions o©f k which do not
satisfy the above conditions {e.g. identify suitable fixed points in the suitabie

linear actien on the projective plane Pz), thus we shall restrict our assumptions.

*

2. Definition. An action 0f k on a variety X is called locally linear, 1if
*

for every point x€X there exists a k —invariant open affine neighbourhoed of

x , which can be equivariantly embedded In an affine space with a linear action of
*
k
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3. Theorem. (Sumihirc, [6]} If the variety X is normal, then every action of
*
k on X 1s locally linear.

Let us consider a locally linear action af k* gn a complete variety X.
Let U be an open affine Invariant subset of X and let j:U**AF be an equivari-
ant embedding, as in the definition above. 1e may assume that the action of k*
on AN is diagonal: t(xl,...,xN) = (tmlxl,...,tmeN) for every te k*,
(xl,...,xN) EAN and for some weights ml""'mN'

*

4. PRemark. The set X+(Xk nl) is locally closed in X (closed in UQ and the
projection along the orbits is regular on X+(Xk* nt) . Indeed, X+(Xk nUy =

-1 N ] 1
Unj (yed :lim ty exists in AN}) =TUnj l({y = (yl,...,yN) EAH:inf w, < 0’>yi=0]).
t+0
The projection is a morphism, since it is a restriction of the projection im AN.

5. Lemma. The cells of the plus decomposition eof ¥ are constructible.

Proof. Let U Uj denote open affine subsets, as in definition 2, covering X.

1aenes
Then, for every 1= 1,...,%, the ceil X+(Fi) is constructible since 1t is a

union of locally closed subsets X+(Fi nUk), k=1,...,7.

6. Remark. The lemma is true for arbitrary (net necessarily locally linear)

actions., For the procf one uses normalization and the theorem of Sumihira.
7. Corollary. There exists a cell which is a dense subset of X.

2. Definition. The dense cell is called the big cell. The connected component of
the fixed point set contained in the big cell is called the source for the plus

decomposition and the sink for the minus decomposition,

*
9. Theorem. Let F1 denote the gource of a locally linear action of k on a

complete variety X. Then the big cell X+(Fl) ig open in X, the component Fl

is drreducible and the projection ¢1:X+(Fl) -+ F is a morphism.

1
Proof. As above we choose a3 covering ¥ = U Uk' There exists k, such that
15k
X+(F1 nUk) is open in X. Ve mav assume k = 1, The set X+(Fl nUl) is irre-
ducible as an open subset of an (irreducible) variety X, thus Fluﬁul
irreducible as the Image of X+(Fln Ul) under the regular map (Remark 4). Let Fi
1
for example

is also

denote the closure of Fan1 in X, then Fi is an irreducible component of F

Let us fix a peint =« F{ and let us choose one of the open sets Uk’
let it be Uz, containing =x. The set X+(Fir1U :1U2) is open in X+(Fi nUz).

1
On the other hand, it is open in X+(Fi nT

1) = X+(Fler1) and therefore 1t is open
in X. Since X+(Fir1U2) is clesed in u, (Remark 4) and contains the set
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X+(Fir1Ul ﬂUz) open in X, it follows that X+(Fi ﬂUz) = U2 {we use the irreduci-
bility of X here). Thus we have found a neighbourhood X+(Fi nUZ) = Uz,erUZ, open
in X and contained in X+(Fi). Since the point x was chesen arbitrarily, the
set x+(Fi) is open in X. It follows also that Fi = Fl ; in fact, in the open

+ N
neighbourhood X (Fi) of Fi there are no fixed points lying out of Fi. At
least the projection along the orbits is a morphism, since it 1s regular on each of

the open subsets X+(Fl no k= 1,....,3.

s
10. Remark. The Irreduciblility of the blg cell is important im this proef. The

same proof is good for any irreducible cell.

11. Remark. It follows from the theorem, that the source F1 ferms a cell of the

minus decomposition,

Now we shall construct an example of an action of k* en a normal varlety
(therefore the action will be locally linear) such that there exists a cell which
is not locally closed and the projection along the orbits is not centinuous on this
cell. 1In this example, the essential property is the existence of an orbit for

which both limits belong to the same component of the fixed point set.

12. Remark. Property A) doesn't follow from Remark 4.

13, Remark. Let 11,...,Ip denote all the irreducible components of the fixed
point set. I don't know 1f the sets X+(Ij) , 3=1,...,p, are lccally clesed and

if the projections X+(Ij) + 1, are regular. I missed it in my paper [5]. Alse,

3

I don't know if there may exist an orbit with both limits in one Ij.

Fellowing Jurkiewicz [3], we shall consider k*—actions on torus enbeddings
given by a homomorphism of k* into the torus. First we recall
the needed facts, details and preofs can be found in [4]. Let T denote an n-
dimensional torus. A normal variety X% with the given action of T is called a
torus embedding, if X contains T as an open T-invgriant subset and the action
of T on X restricted to T is multiplication. The torus embedding X is
called complete, if the wvariety X s complete, and is affine, if the variety X
is affine.

Let M denote the group X(T) = Hom(T,k*) of characters of the torus T, N

*
the group Y¥{T) = Hom(k ,T} of one-parameter subgroups of T, and let M

R
M 92 ® and Ng =N BZ R be the corresponding vector spaces over the field of
real numbers R®. The natural pairing < , » extends linearly from MxN onte
M]RXNIR . A subset UCN]R is called a rational convex pelyhedral cone or simply

a cone, 1f the following equivalent conditions are satisfied:
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i} there exists a finite number of linear functionals Ei ,i=1,...,H, defined
over the field of rational numbers  such that ¢= {st]R:Ei(x)>.O for i=l,..,N}.
{1} there exists a finite numbe§ of vectors x € NR.’ i=1,...,0, defined
over Q such that o= { % Aixi: AiP 0,i=1,...,0}.
i=1
For the given come o rNBR we denote by g its duazl cone in ME.’ which con-
sists of all the functionals re MJR satisfying <r,a>z{ for each acc. If
g={ x:ﬂi{x)z 0,i=1,...,N} 4s a cone in NR , any subset
o, =¢@n {x:ﬂi(x) =0 for ie¢I}, where I 1is a subset in f{1,...,N}, 1is called
a face of o. Tf oy is a face of ¢, we define the face Gi of the cone g
as Ui = {rc ¥:<r,ql> = 0}. We define the intericr of the face o as 1Int ¢ =

{wea: inf  <yx,w>>0},
WET=T

Let a cone ¢ mnot contain any line (i.e. pne-dimensional subspace) in ¥

Ve denate

R
v
by XU the corresponding torus embedding, i.e. XU = Spec[kla nM]L

There is a one-to-one correspondence between orbits of the action of T on X

a
and the faces of the cone o. Namely, let Gy be a face of o and let a be
any point of N nlnt a - The point a is a one-dimensional subgroup of T, let
us consider the crbit of the unit element e« Tf'xU under the action of a. 3ince

aeg o and

*
x(alt)) = th’a> for yeM, tck , then <y,a»20 for all xe g,

53
and therefore the limit ea = lim a{t)e exists in Xc' The orbit O 1 of the
=0

action of

the orbit

T on Xo corresponding te the face 9y of the cone 5 is defined as

cf the point s This orbit may be described by the condition:

o
0l = {p eXb: inf xp) #0 = ye ui} (note that x(ea) £0 = <y,a» =0 =

¥eagnM
x(ea) = 1) . The above correspondence has the following properties. Firstly,
o
dim 0 1 + dim o, = dim T (dim o, denotes here the dimension of the subspace

1 1

ey a
spanned by Ul). Secendly, o is a face of a, if and only if O bsg2,

If &= {Uu} is a rational partial polyhedral decomposition of N

1

B® i.e. a8

finite set of cones satisfying the following conditions:

i)
1)

then we can glue the Xc 's together, obtaining a varilety X

di X
ng X,

*
a:k +T of T, (i.e. aeN), let us consider the induced action of k on X_.

if o is a face of cu, then oel,

for any o, B, Iy rce is a face of ﬂa and cB,

5 The torus embed-

is complete 1%y = Y o . @Given I and a one-parameter subgroup
R 0,fL @ x

)

We shall describe this acticm in terms of the rational partial polyhedral decompo-

sition 1.

14, Lemma. (Jurkiewicz) Let o, be a face of o, let p be any point In the

1

a
orbit @ 1, and let aeWN (i.e. a is some one-parameter subgroup of T}. Then

the limit

if and only if the face <o

a
P, = lim a{t)p belongs to the orbit O 2 of the action of T on XU
t+0

5 satisfies the following condition: "for each
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we Int 01 there exists €>0 such that for any q, 0<q<e, the point w + gqa

belongs to Int UZ”. We may rephrase this cendition by saying that the vector a,

when attached to the face 9 s points into the face Uy .

{X,a?

*
Proof. We use the equality x{a(t)p} = ¢ ¥(p) for tek , xeM. The limit

P, = lim a(t)p exists in Xo = Spec k[ger] if and only if for each character

0
v 't
xeanM, we have x{(p) =0 (i.e. yeco \ul) or <y,arz0.
Assume that p exists in X_. Since yx(p_ } = lim x(p)t<x’a> , then, far
a a a tadl

v
¥xeonM, the follewing conditions are equivalent:

i) e 8ok

x " %3
i) xlpy =0
i11) xipy = 0 or <x,ar =0
v

iv) yeo Ui or <y,ax> 0,
The last condition is equivalent to the conditicn from the assertion of the lemma:
for each welInt 9y and x € é i c; , <¥,w+qar = <y,w> + g<y,a>>0 for any q
from some interval {Q,c} .

Now assume that P, doesn't exist in Xq, thus there exists a character
X € ér1M, such that x(p) # 0 (i.e. <xyuy v = 0} and <y,a> <0. Then
<x,w+qga><0, thus for any ¢q>0 the point w+ga lies outside o . Therefore,

in this case there exist no faces in ¢ satisfying the condition of the lemma.

15. Corellary. The orbit 0ol censists of fixed points of the action of k* if
and only if ae¢ lin @y
The above lemma is essential in the construction of our example. The idea is
following: we want to find a normal variety {(torus embedding) with an action of k*
such that there exlsts an orbit having both limits in the same connected compoment
of the fixed point set, Let T be now a three-dimensicnal torus. Then NB. is a

three-dimensional vector space. We shall describe the suitable rational partial

pelyhedral decomposition of N_ by drawing pictures - we avoid in this way writing

down the coordinates of vectcrzkspanning particular cones and the essence of the
construction will be more clear.

Let us consider a rational partial polyhedral decomposition T as in diagram
1. In this picture is drawn the intersection of I with a sphere with a centre in
G EN]R (strictly speaking, only some of the cones are drawn, over and below them
may occur other ones). The corresponding torus embedding X = XT is drawn in the
diagram 2. By the same letters we denote as well the faces in I as the corres-

pending subsets in ¥ . The vector a is '"vertical” and lies in linear hulls of
"vertical” faces: three-dimensional A,B,...,U,Z,V,... and two-dimensional
b,e,...,u,v. The corresponding points A,B,...,U,Z,V and connecting lines

*

b,¢y...,u,v form a connected component of the fixed point set Xk {Corollary 15).
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Let us call this cemponent Y. Note the position of the faces Z,z,w and o,
There corresponds tec them in X: the fixed point Z, curves z and w and the
surface o. Points lying on the curves =z and w and on the surface o are not
fixed by k”, their limits as t-+0 are shown in diagram 2.

The cell X+(Y) of the plus decomposition of X 1is not locally clesed: it
contains the surface o, doesn't contain the curve =z 1lying in the closure of o,
but contains the peint 4 lying on =z ., Alse, projection along the orbits of the
action of k* is not continuous on X+(Y}, because of the existence of the orbit
w joining two fixed points A and V lying on Y. A ratiopal partial polyhedral
decomposition with required properties may be constructed for instance from seven
three-dimensional cones {diagram 3).

The variety X abtained above is normal, singular, and complete but not pro-
jective, If it weré nonsingular or prejective and normal, it would have the proper-
ty A) mentioned in the beginning. The latter case follows from the possibility of
equivariant embedding of prejective normal varieties inte a projective space with a

*
lipear action of k , ses [A].
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w Here, 1nstead of a sphere, the
intersection of [ with the surface
[ ELN v b . . .
of & triangular prism is drawn
U A fthe prism has centre of mass at
at. CEgN
f €y




PROFPERTTES OF PROJECTIVE QRRBITS
OF ACTIONS OF AFFINE ALGEBRAIC GROUPS*

by

Jeérzy Komarski

Let 2 connected affine algebraic group act on a variety X. Then by X* we
will denote the set of all points x¢ X such that their orbits Gx are projective
varieties. Our aim {s to describe properties cf the set X" . The main results say
that: a) the orbit type is locally constant on X 1 lev us choose a comnected

* *
component X of X , a parabolic subgroup P, representing the orbilt type on

1 1
a * *
Xl and a point xe Xl, b} 1f X is normal and all orbits in Xl are G-isomor-—
* *
phiec (e.g. if char k = 0), then Xl is G-isomorphic te a product (Xl)Pl x Gx ,
% *
where (Xl)Pl denctes the set of points in Xl fixed by Pl. Then, assuming G

to be reductive and X to be complete, we shall construct a decomposition of X
inteo disjoint G~invariant subsets, each of them containing one of the cannected
components of X*

All varieties and morphisms, that will occur, will be defined over an algebra-
ically closed field k. For an action o: GxX - X of an affine algebraic group
G on a variety X and for any subset (cr element) Y 4in ¥, GY will dencte
the image o(G>Y¥). The set of fixed points of the actiom of @ on X will be
denoted by XG. For any vector space V, TP(V) will denote its projectivization.
All varieties will be irreducible, unless otherwlse stated. All algebraic groups
will be affine. I will frequently use some facts on algebraic groups and parabolic
and Borel subgroups. One can find them in [2]. The needed notions and properties
of actions of the multiplicative group k* may be found in the preceding lecture
f431. Several times I will use a theorem of Sumihiro, which says that if a connected
algebraic group (respectively a torus) acts on a normal variety, we can cover this
variety by open quasi-projective (respectively affine} invariant subsets; it is
known also, that each of such subsets may be equivariantly embedded in a projective
(resp. affine) space with a linear action of the group, see [5]. Theorems 2 and 11
were proved earljer by J.B. Carrell and A.J. Sommese for analytic actions of SL2
[3]. The construction of decomposition mentioned above follows A. Bidlynicki~

Birula's constryction for actioms of sSL2 [1].

l. Notatfons. We refer to the preceding lecture {[4]) for the basic notions and

%
facts on actions of k  used here without futther comment, especially for the

*} This is a revised version of a preprint issued at Warsaw University in 1979.
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notions of limits and of the plus and minus decompositiens.

¥or any torus T {(i.e, a product of a finite number of k*'s), the character
group X(T) 1is a free abelian group whose dual group Y(T) is the group of one-
parameter subgroups of T. The duality < , > 1 X{(T) xY(T) = Z d1s given by

<¥,u> = m for %eX{(T), ne¥(T) if and only 1f y(u(t)} = t® for all teT.
For a finite number of nontrivial charzecters }.11, ’Xn ¢ X(T} , there exists an
element ue¥(T) such that Ky #0 for i=1,...,n0. This follows, since

for a finite number of hyperplanes in the vector space Y(T} & EEIR there exists In
Y(T) an element mot lydng on any one of them. Composition laws in X(T) and
Y{T) are written additively.

If T is a maximal torus of an algebraic group G, then nontrivial weights
of the adjoint representation of T on the tangent space TeG at the identity
ee G are called rocts. Tf G 1is reductive, we have another definition: a charac-
ter ae¢ X{T) 1is a root if there exists in € a one-parameter additive subgroup
8y :k+ - G such that tgu(r)t_l = ga(a(t)r) for all te«T, re¢ k+. The subgroup
By is then unique up to a constant scalar. The set of roots of G with respect
to T will be denoted by ¢ .

Let G be a connected algebraic group acting on an arbitrary variety X and
let T be a fixed maximal torus in G. Then there exists such a one-parameter
subgroup A : k*—>T that
i} A is regular, i.e. <a,i> # 0 for all aed,
iy T
Thie is so, because the action of T may be described with use of a finite number
of nontrivial characters Xg € (T), i=1,...,8 {we normalize X and use the
theorem of Sumihire). MNow we have to find an element )¢ ¥(T) such that <x1,k># D
for 1 =1,...,8 and ~<a,A> # 0 for all ac¢$; this is possible as we have seen
above. The one-parameter subgroup X determines a Borel subgroup B+(A) in G.
Recall its definition. Let us choose any Borel subgroup B containing T. Let
us ceongider the action of k* on G/B induced by X and by the action of T on
G by conjugation (we shall call it the action of h(k*)). Then B+(A) is the
Borel subgroup corresponding to the source {consisting of one point, because X 1is
regular) of the action of A(k*) on G/B. If G is reductive, there is another
useful chracterization: B'(i) is a subgroup in G, generated by T and by the
subgroups g, for all ae ¢+ = ‘ae¢t ca,nn > 0}

Mote also that conversely, for a Borel subgroup B=T, there exists such a

*
P 3T and B = BTG) . Really, [3e¥(T):B = BU()}

regular X e Y(T) that

is the intersection of the lattice Y{T) with a nonempty open cone {ye Y(T} 8 ZZIR:
+

<a,y>>0 for med }. If we add conditions e ¥E #0 for i=1,...,8, we

shall still obtain a nonempty set. HNow we can formulate the first theorem.

2. Theorem. Let § be a reductive group acting onm a varlety X. Let T be
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*
a fixed maximal terus in G and let A:k -+ T be a regular one-parameter sub-

group in T having the same fixed points in X as T. It x,y are points in X
+
such that lim A{t)x = y, then lim A(t)}bx =y for all beB {A). In other
t+0 £+0
*
wozrds, B+(5\) pteserves limits as t+0 of the action of A(k ) on X. In par-

ticular, if X is complete, the cells of the plus decomposition of X determined

*
by the actiom of A(k )} are B+(}.)“invariant.

3. BRemark. The Borel subgroup B (}) = B+(—}.) , opposite to B+()J , preserves
*
limits as t -+« of the acticen of A(k) on X.

X}‘(k*) _ T

*
Proof, Since X . T preserves limits of orbits of the action of (k)

*
on X: lim A(t)sz = lim sr(tdz = s lim a(t)z 1im x(t)z for s¢T, 2eX, tcok .

+
vy for ac¢ , Tek. From the
<, A

Thus it suffices to show that 1._1)_51 J\(t)ga(r)x
X
definition of g, it follows that A(t}g&(r)x - ga(t atyx for tek , rek.

Denote <u,i> by m (thus m>0)., Then Lim A(t)g {(rix = Lim g () a{t)x.
o o
[ at] £+0
Next, let us consider the following two morphisms, £: k¥ » G, given by

& S #

f{t} = ga(tmr) for tek and g:k + X, g(t) = A(t)x for tek . They induce
*

a morphism from k  into the product G=X and, by composition with the action of

% %
G on X, amorphism p:k -+ X given by g(t) =ga(tmr)).(t)x for tek . Since

m>0, f extends to a morphism F:k » ¢ with E(0} ga(O} = e, the identity.

Also g extends to a morphism g:k » X, with g(0) = y (because lim A{t)x = y).
>0
Hence p extends to a morphism p:k »+ X and lim ga(tmr);\(t)x = p(0)} = y. This

>0
proves the theorem.

4. Corollary. Let & be a reductive group, T - a maximal torus in G and

A k* + T a regular one-parameter subgroup in T. Let B = B+(A) and X = G/B.
The action of G on X induced by multiplication on the left determines an action
of R(k*) an X. The plus decomposition of X determined by this action is then

equal to the Bruhat decompositicn.

Proof. Let N{T) denote the normalizer of T in G and W - a Weyl group N(T)/T.
The Bruhat cells are the cosets BwBc G/B8 for weW. Since i is regular,

XMk*) = x! - {gBeX:Trng"l} = {wBeX:weW! ([2]). For weW let X+(w) de~
note the plus cell in X containing the fixed point wB . By the thecrem

BwB CX+(w) . Since the cells X+(w) , weW, are disjeint and the Bruhat cells

+
BwB, weW, cover X, then for all weW, BwB = X (w) .

We shall apply the above theorem later. Now we shall pass to actlons of arbi-
trary groups. Let us fix the following notation: & -~ a connected algebraic affine

group acting on a variety X, T - a maximal torus in € and B - a Borel subgroup
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containing T. We shall denote by X* the set of all points x <X such that
their orbits Gx are projective varieties. Recall that the orbit of x is pro-
jective if and only if the isctropy subgroup Gx of =x 1is parabelic, i.e. it con-
tains some Borel subgroup. Recall alsoc that an orbit type cof an orbit Gx is the

conjugacy class of the isotropy subgroup Gx in G.

5. Theorem. The orbit type is locally constant on X*

Proof. Let wv: 0 -+ X be the normalization of X. The action of G 1lifts to an
action on XV. Since the morphism v 1is finite and parabolic subgroups are con-—
nected, for ye)(v and x = v{y} e X, isotropy subgroups G_ and Gx are equal.
Thus it is enough to prove the theorem for X normal. In tﬂis case we apply the
thecrem of Sumihiro and we see that it suffices to prove the theorem in the case
when G acts linearly on a prejective space TP(V) , i.e. there is given a homo-
morphism of algebraic groups G » PCL{V) ; V denotes here a vector space. In
general the homomorphism ¢ ~ BCL{V) deesn't lift te a homomerphism © + GL(V),

in that case we replace G by the group Gx GL({V) . So, now we shall assume

that the action on T{V) is induced by a raf’fol-n(avl) representation ef G in the
vector space V. TFor xeTP{(V), by & we shall dencte any point in V lying
over x.

If the orbit Gx of a point =c P(V) is projective, the isotropy subgroup
Gx contains some Borel subgroup B'. Since x 1s fixed with respect to B,
there exists a character x}'c of B' such that b'% = xgx(b")% for all b'eB'.
The subgroups B and B' are conjugate, i.e, B = gB'g“l for some geG, SO x}"
determines a character Xy of B given by xx(gb'g"l) = x)‘((b’) for all b'eB'.
This definition does not depend on the choice of g by the theorem on a normalizer
([2], 11.15). Therefore we may define a function from ]P(V)* to the group X(B)

*
of characters of B.:x > Yo for xe (V) .
6. Lemma. The above function is locally constant.

Proof. For a2 character y e X(B) let V>< = {yeV:by = xtb)y}. The sets VX s
¥ X(BY , are linear subspaces in V and the set € = {ye¢ X(B) : VX £ {0}} is

finite. We have ]P(V)B= U P{V }, the union of disjoint closed subvarieties.
%el %
For xeC let q)X : G/B x ]P(Vx) + (V) be a morphism given by q:x(gB,a) = ga far

all gB E*G/B, ae lP(VX) ; let Y_X denote the image of q[ax . ALl Y*}(‘S are closed
in P(V) , as images of projective varieties; they cover all (V) and they are
disjoint since each orbit in ]P(V)* intersects ]P(V)B in exactly one point.
Hence, P(V):ﬂr is a union eof a finite number of disjoint closed subvarieties Y){

such that on each of them the function x -+ ¥ is constant.
X

*
We come back to the proof of the theorem. Llet x be a point in ¥(V) . For
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a suitable g:G, gx =y belongs te IP(V)B. Denote by x the character x = Xy
of B. We claim that the isotropy subgroup GY is the largest subgroup containing
B  such that y extends to it. We shall show that:

a) x extends to Gy \

b} 1f x extends to a subgroup Po B, then p¢ = y{p)¥ for all peP.

(In other werds, if x extends on P, then P=G .)

a} is clear, since y 1is fixed by G . The proof of b) is following: the mer-
phism ¢:P~+V given by z(p) = )((p)"l p¢ for all peP, is constant on each
coset pB, peP, so it factors through P/B, whence it is constant, since P/B
is a projective vardety and V is affine.

*This is what we wanted: aince the function x - Xx is locally constant on
IP(V} and its values determine the orbit type, then the orbit type is alse locally
constant on ]P(V)*

*
7. Corollary. {[1] Theorem 5) XG ig a union of some connected components of X .
. * o * B
Now, let us fix a comnec¢ted component Xl in ¥ . Xl will denote the com-
® *
ponent of XB centained in X i.e. XB = XBn ¥, . Let a subgroup P. o B re-

17 1 1 1
®
present the orbit type on Xl , i.e. P is the isotropy subgroup of all points in

2. 1

8. Theorem. If ¥ is normal, then there exists a G-equivariant morphism
*
i Xl -+ X'E .

Proof. As a map, 1 is determined uniquely. Since X is normal, we can cover it

by open G-invariant quasl-projective subsets. For any set U of this covering,

we have to show that the restriction “EX*n Ut XIn U+ X];m U is regular. We may
1
embed U equivariantly in some projective space T with a linear action of G .

» * *

Let ]E’1 denote the component of P containing the image of X.ln T, and let
*

I’]l3 = ]E’l r'.IE‘B . It suffices to show that the G-equivariant projection n]P:]Plr'*]P?

is regular.

*
Note that since the radical Rad ¢ acts trivizlly on P the action of G

1 ¥
*
induces an action of a semisimple group G' = G/Rad G on ]?1 such that orbits of
both actions are equal. Let T' be the image of T din G'; themn T' is a maxi-
*
mal torus in G'. Let x':k -+ T' be such a one-parameter subgroup in T' that
*
the Borel subgroup B' = B/Rad G in G' preserves limits lim A'{f)x for erPl.
. « t+0
We shall show that the action of A'(k ) on P is locally linear (see [4] for

1
a definition). Since Tnkad G is a direct summand in T, then X' 1lifts to a

* %
cne-parameter subgroup A:k -+ T. A(k »cG, so it acts linearly on TP . Since

* * *
the action of A'(k ) on ]P1 is equal to the action of A(k ), then it is



locally linear. Fow, let U denote the big (plus) cell of this action. Since

* *
B o= G]P? is irreducible, there exists a regular projection (A'(k )-equivariant)
* - -
m' i W + source of F, = ]P]i , where B dis the Borel subgroup opposite to B.
Of course 1' = lelw , whence the prejecticn e is regular on the neighbourhood
Noof BY

If we repeat the above construction, taking another Borel subgroup ng’l in-
stead of B and composing the previously obtained projection with the translation
¥ +gx for xe¢ ]P; , we obtain regularity of ’.‘TIP* on a neighbourhood of g]Pf-
8ince such neighbeurhoads form a covering of B, , it follows that np is a mor-
phism.

9. Before proving the next theorem, we recall, for the convenience of the reader,

gome facts about morphisms from [2]:

A) a dominant morphism ¢ : X+Y dis separable if and only if there exists a regular
point xc¢ X such that ¢{x) 1is regular and the differential dx¢ is an epi-
morphism.

B) If ¢$:X+Y dis an open separable morphism, ¥ is normal and Y = ¢(X} , then
$ 1s a quotient morphism, i.e. for any morphism 3 : X—+Z constant on fibres
of ¢, there exists a unique morphism ©:%Y—+Z such that y = ged.

C) In particular, if ¢ 1is a bijective open szeparable morphism and its image 1is
normal, then ¢ dis an isomorphism.

D) If Y is a normal variety and ¢ :X-+7Y i1s a dominant morphism such that all
the irreducible components of the fibres of ¢ are of the same dimension, then
¢ is open.

E)} For a vector space V, the natural projection p:V y{0}->P(V) 2znd its re-

striction p_l(Z) +7Z, where Z 1is any normal subvariety of T(V) ,

plp"'l(z) .
are quotient morhpisms (by B and D).

#
1¢. Corallary (of Theorem 5). If char k = O, then all crbits in }(l are G-iso-
%
morphic to G/Pl . In other words, the orbits in Xl are rigid.

Proof. It follows from the separability of the morphism w: {'}/Pl > Gx , m(gPl} = gx
for ge G, x¢ Xg and from 9DC above.

Now we would like to mention some results obtained by Ewa Duma on deformations
of two-dimensional orbits for actions of SL2 {unpublished). In SL2 we have the
following types of one-dimensional subgroups (up to conjugacy) : T - a maximal tarus;
N(T) - the normalizer of T; and Nm for m a natural number - the product of a
unipotent subgroup by a cyeclic group of order m. If there exists an action of
512 such that the arbit type on an open subset U 1s H and in some point in the

closure of U it 48 H', then we say # deforms to H'. The results are
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following: i) all three types deform to SL2 and to B, a Borel subgroup, 11) T
deforms to N(T) and to all Nm's , 1ii) N(T) doesn't deform to T and it de-
forms to Nmm')m is even, iv) Nm doesn't deform to T and to N(T) and it de-
forms to Nn <>m divides n. There are also some results, still not complete, on
finite isotropy subgroups.

We come back to projective orbits. Choose an arbitrary point y in the com—

% *
poenent X? . Let Xy denote the subset of Xl consisting of all points, the or-
bits of which are G-~isomorphic to the orbit Gy . For instance, if char k = 0,
# * *
then Xy = Xl . Let X]; = XY nXB .  There is an action of G on the product

Gy x X? , induced by the action of G on Gy and by trivial action on Xz .

* B
11. Theorem. If X is normal, then Xy is G~isomorphic to nyxy.

*
Proof. Let o: G/Pl x Xi + X; be a merphism induced by the action of G on X,
i.e. G(gPl,x) = gx for gP e G/Pl y X€ X? . Let w: G/Pl—!-Gy be a merphism
given by m(gPl) = gy far geG. Since o and w are bijections, there exists
4 unique map 1 such that the diagram commutes
B 5] *
G/p) x¥y — %y
w¥ id j T
B
Gy = Xl

®
We have to prove that the sets X}Br and Xy are varieties and that TIG}'XXB
¥

*
GyXX§ - Ky is an isomorphism. These properties are local and since X 1is normal,
then by Sumihiro's theorem we may prove the statement for a limear acticn of © on
a projective space. Thus, we shall assume that : there is given a linear action of

. . 3 . B .
G on a projective space P ; P denotes a component in P with a corresponding

1
*
isotropy subgroup Pl H P§= {z ¢ Pi t Gz is G-isomorphic to Gy}l ; P1= G- P? H
*
P = G- }PB . We have also 2 diagram, as before:
¥ ¥y o
. B r
(./Plx ]P1 —— IPl
wx1d l ‘p
B
Gy x ]Pl

3
Now we have to show that ]Pz and Py are subvarieties of P {i.e. are locally

*
closed) and that B is an isomorphism of Gy x IP? onta JPY . As in the

¥
proof of Theorem 5 we shall assume that the action of G on P is induced by a

TllZ'IG:»rXIP

representation in a vector space V, i.e. P = P(V), a projectivization of V¥,
and the projection p:V \{0} = P(V) is G-equivariant. Denote V¥ \{0} by A&.
Let ZsaeeaZy € ]P]; be a maximal linearly independent subset, we may assume

Zy=y. For i-= 0,...,k choose zisA such that p(ﬁi) =z . Fow, let
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- R -1
= 1i ) = - i - means the
Ay' lln(zq,...,zk) Vil = p (P (20,...,zk))FA, where P(zo, zk) e
projective subspace spanned by zo,....zk. By Theorem 53, for some character ¥
of B, we have AYCVX ={veVibv = y(b)v for beBj. The orbits GZO,...,Gﬁk
are G-isomorphic by the following lemma.
B
12, L . Le , i = = e P
emma et fcl ﬁzeA be such points that %, p(i‘cl} » %y p(ﬁz) P1
Then the orbits le and Gx, are G-isomorphic if and only if the orbits Gﬁl and
Gﬁz are G-isomerphic.
Proof. (=) Let w: Gk ~G#, be a G-isomorphism. Then pj| : Gk, +Gx, and

1 2

pea ! Gil+Gx2 are gquotient morphisms by 9E. Since they have the same fibres, there

le 1 1

exists a G-isomorphism o : Gxy > ze .

(=) Let o': le—erz be a G-isomorphism. We shall construct an isomor-
phism of G}Tcl and G22 . Let us fix 1= 1,2. Let U dencte the unipotent part
of B , then UB 1is open in & and since fci is an eigenvector with respect to
B, then U kﬁkl = U chi iz open in chi by 9L.
First we shall prove that U kf&i is isomorphic to kxTU 21 . Let

n_L:ka ﬁi E kﬁi be given by ni{a,z) =az for ack, 20U ﬁi- n; is open
by 9D and is bijective, since unipetent groups have no characters. So, by 9C it
suffices to prove that the differential d(l,xi)ni is an isomorphism. Suppose the

converse. As we see easily, the restricticns of d ng to the tangent spaces

(l,xi)
T(l,xi) (k = {xi}) and T(l,x,)({l} XU_Ri} are isomorphisms, sc we must have
Tit kﬂic_Tg Uﬂxi. Let U" be a maximal unipotent subgroup in GL(V) containing
i L
the image of U . Then we have TR ko T}’i U'S{i . Since U' 1is an affine space

and the actien is linear, we may rewrite this inclusion in the form kﬁir U'ﬁi .
This is a contradiction, because U' copnsiscs of unipotent elements and they have
all eigenvalues equal one.

Next we note that :UF}’*ci - U_xi is an isomorphism. Indeed, it is bi-

Ply e,
i
jective, open by 9D and separable, whence an isomorphism by 9C. Therefore the orbits

U_ﬁl and U &, are isomorphic, It follows that in Gf and G#% there are iso~-

2 1 2
morphic open subsets U—BR]_ and L'dBi?:2 .  Moreover, the isomorphism is compatible
with the action, i.e. gi{l*gﬂz for g<UB. We can now cover Ggi , 1=1,2, by

open subsets gU_Bﬁi for geG. Note gL‘FBﬁi = gU_g_lngﬂlgﬁi thus, repeating
the above comstruction for the points gﬁi and the Borel subgroup ng_1 , we ob-

tain an isomorphism of gUﬂBﬁl and gU"B)'t2 . Since all these isomorphisms are

compatible with the action, we can glue them to an isomerphism of Gﬁl and GRZ .

Coentinuing the proof of the theorem we shall show now that JP;D: is epen in
P (ZD’ e .,zk) . Let Bi : 920 - Gii ke G-iscmorphisms for 1 = 0,...,k. Let
B G2 KAy + A be a morphism given by RB(w,2) = B(w, & liﬁi) = EAiBi(w) for

0 i=0
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k
we Gzo and 2 = 150 J\izi € Ay . For Ze Ay let 62: Gio + G£ be given by
Bﬁ(w) = B(w,8) for weGE,. The morphisms B and £, are G-equivariant. Since

AyC VX , all points in Ay have the same isotropy subgroup (equal to kery CPl).

Thus, for all £ cAy , B is a bijective mcrphism onto a normal vwariety and it 1is

2
open by 9D. Hence, 32 is an isomorphism if and only if its differential dé Sﬁ
is an isomorphism. Since d, B, = Zi_d, B, and d, B, are isomorphisms, then
L 2 i 20 i 25 1
d.’i E?,_\ is an isomorphism if and e¢nly if the coefficients AO,...,Ak satisfy
g ?

der.(Z)\id2 £;) # 0. This condition gives anonempty open subset in A . Thus {£ea 13, 1s

) : ;
an isomorphism} is open in A . It follows that ]Pi is open in TP (zo,.. .,zk) .

Let us now consider a m;rph]’_sm
5 B .

o= P]GEO"PM}: : GZO*‘A}, - GZO><]Py =P (zO,...,zk) *Gzg. Lt is separable, open

by 9D and its image is nonsingular. The morphism pef 1s constant on fibres of
n, hence by the universal property 9B there exists a unique morphism T such that
the following diagram commutes.

B

G _*A ——+ GA <A
0 Ty v

T ¥ +p

Gz x Bo—Is G P P
0 ¥ ¥

* ®
We also see that P is locally closed in P . PEeally, ]Py= G 11’5 is the
¥

image of the open set Gz, * ]PE . Since Czﬂ_x }PE is the union of fibres of T
* _E *
and T 1is clased, ]PY is open in G T = T

~

13. PRemark. If char k = 0, all the above part of the proof may be replaced by

the sentence: the wmorphism w G/Pl +Gy is an isomorphism by Corellary 10, whence
T = gefmx id)—l is a2 morphism.
Now we want tc prove that T 1is separable. For all =z« IPB we shall show
_ -x — ¥
T: T Gz, *TF -+ T P
(zy»2) (2q:2) 0 "y 2y

that the differential d i3 a monomorphism. Since

- . — —_ B B .
T‘Gzox{z} .Gzox {z} - Gz and 1‘{20} X]Pi : {zo} -+ ]P'y + ]Py are lsomorphisms, it

suffices to prove that Tsz f TZIP? = {0} . By Theorem B we have the projectiom
¥ B —
7m: P +F . PFor veT GznT IPB_ we have d w(v}) = 0, since = const; and
¥ v z 2"y z Gz
dz‘ﬂ(V) = v, since TT|F = did. Thus v = 0. This implies the separability of T

since in ]?fr there arey pointe which are regular on ]P: R dT 1s then an 1somor-

phism. —
Since ¥ dis bijective and proper, it is a homeca@;rphism_a;nd since Gz ]I??r

is normal, It factors through the normalization v: (P »vos ]Py of the variety

¥
Since

* — * — —_
P_, i.e. there exists a morphism T’ : Gzo b ]P?’ > ("I[’y)‘j such that 1 = vert
T

. v . .
1s separable, so is 1 because they "coincide'" on an open set. Since



Gzo x IPB is complete, 1Y dis = homeomorphism. Since its Iimage is normal, then by
¥

-V - - . . .
9C 1 is an isomerphism. Tt fellows that 1 is finite (it is even a normaliza-

tion). In particular t_ =T B 15 finite. As we showed above, for all
P 6z, = P
qe GZ0 XP? qu]P is an isomorphism. Since GszPfr is nonsingular, then '[I]P

is an isomorphism, thus the theorem is proved.

* B
14. Corpllary. If char k=0, then X, is isomorphic to G/P) xX, . 1In analy-

tic version this recently has been proved by M. Xoras.

The followlng example illustrates the theorem and shows that if char k # 0,
then
i) orbits pas:ing through XE may not be G-isomorphic,
ii) the set Kl may not be isomorphic {(not only G-isomorphic !) to the product
of an orbit with Xf N

£11) the set Xl may be singular, even when X];_ is nonsingular.

1.2
15. Example. Let char k=2 and let G = 5L2Z acton X = k" xP by

B X (1 ta; tb;l X, a b .
(t,| x Yy = {t, :0 a [ B4 ) for e G, tek ,
1 ! 1
c d '[0 CZ d2 < ¢ 4
%2 2

=

[x..x ,x]s]Pz. Let E={(ab)gG}. Then X has two components: X, =
0r ¥y 04 P

klx [0,1,0] and X]; = kl =« [1,0,0]. The corresponding isotropy subgroups are B

*
and G respectively. All erbits in X, are projective lines, but they are G-

1
%
isomorphic only for t # 0. The set Xl 1s singular and is hot isomorphic te
IP1>< Xi which is nonsingular. {n the other hand let W= {t,z)eX:t#0} and
* *
let H be an orbkit in Xl aW. Then xlnw igs G-isomorphic to Hx (Xf nwy .

Now we shall assume that G is reductive and X 1is complete. As before, 3B
will denote a Borel subgroup in G containing & maximal torus T and A: k*-r']."
be a regular one-parameter subgraup in T having the same fixed points om X as
T. let us assume that the action of A(k*) on X 1s locally linear (cf [4])}. De-
note by X+ the sink of this action. This is a connected and irreducible com-

MERY 14,

ponent in X Theorem 9). From Theorem 2 it follows

. + %
16, Proposition. GX iz a connected and irreducible component in X

Proof. X+ is a minus cell of X ([4], Remark 11). By Remark 3 xt XB (A).

x13“(1\) . Xl(k*) ACk*)

. +. + .
Since and X is a component in X , then X is a component

3 - + »
in XB U). Therefore GX  is a connected and irreducible component in
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X = GXB (A).
* *
Let Xl,...,Xr dencote all connected components of X
— *
17. Definition, For 1= 1,...,r let Xi = {xe¢¥:sink chxi;e .
*

Then X4y for all i, Xin}{j =9 for i# j and X 1s the unicn of the
Xi's . Obtained decomposition will be czlled the decomposition of X determined
by the actionm of €. Notice, that it depends on a choice of A . We call Xi

the cells of this decomposition. 5o now we have two types of cells - plus and mi-
*

nus cells determined by the action of *(k ) and the cells defined above.

B (A)

*
Let X, be the cell containing GX+ = Xd . Then X (X ) For
e
x€X;, sink Gxe i ) , hence Xy = {xeX:sink GreX }. Denote the big plus
*
cell of the action of Ak ) on X by U. Them X, = {xeX:GxnU# 9§} =¢CU =

d
®  _
U (big cell of the action of gl(k Jg 1 on ¥). The last equality follows,
g6 -
since lim A{t)x =y 1if and only if 2im gi(r)g 1gx =gy for ge¢G, x,vyeX. Xd
>0 t>0
is called the big cell.

18, Coroilary. The big cell X, is oper in X.

;]
Next, let us consider other cells. Choose one of them, e.g. Xy - Par vye X.l,
N =X * R
sink Gy < Xi’ ) , hence the big cell of the action of i{k ) on Gy 1s contained
B (A e -
in X (X ! )) S0, GyrGycX-l-(X}f (A)) . This inclusion holds for all yeXl ,
PR P3N
whence X LX+(XB ).

13. Theorem. The cells defined zbove are locally closed in X, if the action of
*
A{lk ) has the property A) : the plus cells are locally closed and the projections

along orbits are regular.

Proof. Suppose Xl is not locally closed in a point =z« Xl . Since {ye Xl : Xl

is not {.ocally closed at  y! is closed in XI and G-invariant, we may assume

2 Xﬁ ) . Then in some neighbourhood of z in X_l there exists a point lying

not in Xl . We may take X+(KB UL)) nX. as such neighbourhood, it is open by A) .

Let v be an element of Xl n X {XB (A)) - Then GynX (XB O }) is open in
—E'm B e

} # #. Therefore sink Gycxf—("),

Gy , since GyCXICX (X and Gyr!}{ (X

thus y < X a contrad1ction. Hence the cell X. is locally closed.

1’ 1

20. Corollary. In particular, if X is nonsingular or normal projective, then
all the cells are locally closed.
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Now we shall describe the cells containing fixed points.

* *
21. Example. If G is semisimple and a component Xy of X consists of fixed

*
points, then X2 = X2 .

Proof. We may assume X mnormal. Let x be a point in the cell X2 and let ¥

w —_
denote the sink of the action of Ak } oen Gx. Then, for ge (G, the sink of
* - — P
the action of gi(k Jg 1 on T is the set gY . Since yex© , ¥ is the sink
* —
of the action of any torus conjugate to A{k } on Gx. For weW, the Weyl

group, let w(3) be a one-parameter subgroup in T given by w(}){(t) = nA(t)n_l
for te k* , where n eN(T) represents weW. For we¥W, denote by Uw the
big cell of the action of w(X) on Gx {the sink is ¥) and by T[w: Uw+Y the
projection along orbits of this action, Choose a paint yeY. Since X 1is nor-
mal, there exists a T-invariant open affine neighbourhood V of y in Gx .

-1 o —
Since Gx and each of the sets ., (VaY),weW, are open in Gx, then the set

U=2Gzgr n TT_l(VPY) is nonempty. Let =z¢U. Then, for wc¢¥W, we have

weld
1im w{A)(t)zeVnY. Embed V T-equivariantly in an affine space A with a linear
t>0 T
action of T. Let Z be the component of A such that VnY¥ecZ. In particu-
lar, for weW, limw(i)(t)zeZ. Let p= I w(A), di.e. p(t) = T w(A)(t)

% -0 weW " weW
for tek .  Since the weights of the action of (k) are sums of the corres-
ponding weights of the acticns of w(3d), lim u{t)ze Z. We shall show that wu

=0
# .

is trivial, i.e. u(k ) = {e*. Then it fellows =ze¢2, so0o it is fixed by T.
z was arbitrary, whence the actien of T 1is trivial on U. Thus it is trivial

on U= Gx. Since Y is a compenent of E",—)ET , then Y = Gx . In particular

-\

*
X € XG. It remains to prove pu(k } = {e}. DMNotice that u 1s a fixed point of

the action of W on ¥(T). Indeed, for w':=¥W, w{() =w' I w{d(t) =
welW

%

T w'w(x)(t) = u(t) . Thus, 1(k } 1is contained in the connected component (TW)O.
well

of the set of fixed points of the action of W on T. Bince G 1is semisimple,

then (Tw)o = Fad G = {e} by [2], 14.2 . Therefore u(k*) = {e} and we are done.

22. Corollary. [1] If a semisimple group zcts nontrivially on a complete variety

X, then there exdst in X nontrivial projective orbits.

23. Example. (cf [1]) Assume G 15 semisimple and there is given a representation

m m m

" .
P =02y $...8 Pr of G in a vector space V = § Vi]‘, where p, are irreducible
representations in Vi for i =1,...,k. This induces an action of G on P(V}.

Then, as shows an easy computation, the cells of the decomposition of WF(V) deter-
m my m my
mined by this action are of the farm ]P{V)i: P(Vllﬂ).. R Vil) —]P(Vll [ .@Viill)
0 -
for 1=2,...k and B(V), = B(V,0) .
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LINEARIZATION OF REDUCTIVE GROUP ACTIONS
by

Mariusz Koras
The purpose of this paper is to prove the following thecrem

Theorem 1. Let G be a connected, reductive, complex Lie group. Let o :G » X > X
be an analytic action on a compact Kihler manifold X . Then for every point pe XG
there exist a G-invariant open neighborhcod U of p and an analytic isomarphism
e U > ¢(U) < ¢™  auch that #(p) = 0 and ¢ is G-equivariant with respect to a
linear action of G om C°

In connection with the above see [3]1, [4] where a similar theorem is proved in

the infinitesimal version.

Definition 1. Let o :Gx X+ X be a continucus action of a topological group G
on a topological space X. We say that ¢ has the C-property at a point p EXG
iff the following condition holds: for every open neighborhoed U of p there
exists an epen neighborhood V ¢ U of p such that for every point x ¢ X the set
{g e G:gx ¢ VI is connected.

We shall shew that this property is equivalent to the linearization of an
analytic action of a connected reductive group on a complex manifold near a fixed

point.

Let G be as in Theorem 1., Let Z denote the centre of G and ZD the

connected ;.;ompo:tent of th: unit in Z . ZO is a torus, i.e. is isomorphic to a
product € x ¢ % .,.x C , and G = ZO *P where P 1is a semisimple, connected
group. Let K be a maximal, compact, connected subgroup in P . Lie algebras of
G, P, K... we shall denote by L(G), L(P), L(K)... . Then L{P) = L{K)+iL(K).
Let T be a maximal torus in G and Kl be the maximal, connected, compact,
commutative subgroup in ¥ contained in T. Let div ¢ iL{K) . There exists a

maximal, connected, compact, commutative subgroup of the group K containing expw.
This subgroup is conjugate in K with Kl . It follows that there exists a ko e X
such that ko.exp v.k;1 e T. Thus v r L(k;l.T.kD) . Also 1iv e L(k;l.T.ko)

This implies that expiv « k;l Tk . It is known that P = E.exp{iL(K)) . There-

fore, if g ¢ G then E =2, 2 eZO, peP and p = k.exp iw for some keX

o
and w ¢ L(K) . There exist k ¢ K, t eT suchthat exp iw = kl;].'t.l(D . Thus
g =2z .k.k._l.'.:.k. = k.k_l.z Lk . But Z is contained in every maximal torus
a © [ [ a o

of G. Thus we have proved the following lemma

-1
Lemma 1. G =K. y k .T.k
— kgek @ ©

% % n n

Lemma 2. Let T =0C x_,.% be a torus. Let o :T > C" =+ C be a linear
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action (analytic) of T. Then o has the C-property at 0 ¢ ot

Proof. Let S = Sl X , .. X Sl be the maximal, connected, compact subgroup of T.
— i —

We may assume that T acts diagonalli; this means that there exist integers k

1
11 n1 kip n J
such that (tl,...,tm) (zl,...,zn)—(tl T T sttty zn) . Let
v, = {(Zl,..-,zn): Izil <eg, = 1-;-...,n} . +Since U, is S-invariant it is
encugh to show that the set {t e R x ...x R :tx ¢ UE} is cconnected for every
n
x ¢ €. But this set is equal to the set _ﬂl{(tl,...,tm) e K x ...><R+:
i=

tili-...-timi < |£;i} which is connected.
Proposition 1. Let T be a torus and o :T x X+ X be a holomorphic action on a
complex manifeld. Assume that ¢ has the C-property at a peint p ¢ XT . Then
¢ 1is linearizable near p i.e. there exists a T-invariant open neighborhood U
of p and an analytic isomorphism ¢ : U - ¢{(U) < c® such that t(p) = 0 and ¢

. : . ; . R n
is T-equivariant with respect to a linear actijon of T on C,

Remark 1. ZLet & be a complex, reductive, connected Lie group and K denote a
maximal, connected, compact subgroup of G. Let og:Gx X+ X be an analytic
action of G on a complex manifeld X. Let p ¢ XG be a fixed point of this
action. It is known (see [ 3], [ 41) that there exists an arbitrarily small open
K-invariant neighborhood U of p and an analytic coordinate system on U such
that K acts linearly on U (with respect to these coordinates).

* *
Proof of Proposition 1. Assume T =C = ...x C and § = Sl o X S1 <T. It

follows from the ahove remark that there exists an open S-invariant neighborhood

¥V of p and an analytic isomorphism ¢ :V + ¢(V) c ¢" such that $(p) =0 and

% is S-equivarlant with respect to a linear action of 5 on L We may extend
the action of 5 on C" to the analytic linear action of T . We may assume that
each orbit of T intersects the set 4(V) along a connected set {lemma 2). Let

B o= ¢_1 . We extend V¥ to ru‘; : tLCJ’I tp(V) + X letting E(tx) = tb(x) for t T
and x ¢ ¢(V) , We must check that this is well defined. Tet A = {teT :txep(V)}
for fixed x ¢ $(V) . The set A 1is connected and contains §. Let us consider
two analytic maps «,B : A+ X where a(t) = tP(x) and A(t) = ¢{tx) . They are
equal on 5, thus they are equal. It follows eagily that U is well defined.

Now cheose Vl © V an open connected neighborhood of p such that the set

{tcT 1 tx € ‘Jl} is connected for every x ¢ X. As above we can extend ¢ :‘Jl + "
top $: WA A c? . $ considered an 1) t$(V.} is the inverse map to $

ter L tér ok
because $ o § = 1@ on ¢(V1) . Of course ¢ is T-invariant.

Proposition 2. Let G be as in Theorem 1. Let o :G ¥ X > X be an analytic

action of G on a complex manifold X. Tet T be a maximal torus of G. Assume



that the induced acticon of T on X has the C-property at a point p € XG .

Then ¢ has the C-property at p.

Proof. Let K be as in Lemma 1. For every k ¢ K, let T T+ Aut ¥ be defined
by ok(t)x = G(ktk_l,x) . We shall prove that for every apen neighborhood U of p
there exists a K-invariant open neighborhood V of p such that V o U and for
every k¢ K, x ¢ X the set {teT: Ok(t)x € VI 4is connected. We may assume that
U is K-invariant and there exists an analytic isomorphism ¢ ST, #(p) =0
such that ¢ is K-invariant wirh respert teo some linear action at K on c?
{remark 1). We may assume that K acts on c” by isometries and T acts
diagonally. We may also assume that for every ¢ the set Ea: {(zl,...,zn):

E

i <, 1=1,...,n) i contained fn (U . Pur U_ =T (B); U s K-
invariant. Let us assume that for every n there exist kn enK and x, € Un such
that the set {teT :ckn(t} x € Un} is disconnected. The action of the torus T
has the C-property at p, sc there exists an open neighborhood W < U of p

that the set {teT:tx ¢ W} is conmnected for every x £ X. As in the proof of

Proposition 1 the isomorphism ¢ :W = ¢({W) extends to T-invariant isomerphism

$: U tW + 1) t5(W) . From the proof of Lemma 2 it follows that, for every U < W
ceT

teT €
and x ¢ X, the set {tcT:tx ¢ Uk} 1s connected., Let Ur - W, Put yr=:k; x
Then the set {teT:0, (tj)x_ < U} = It :(krtk_l)x e Ul = {t :tk_lx s U =
r r r ‘Tr r r'r r

{t Tty e Ur} is connected, a contradiction,

Now let U be an arbitrary open neighborhoed of p. Tet Vv c U bea K-
invariant open neighborhead of p such that for all k ¢ K and all x ¢ ¥ the
set {teT :Uk(t)x £ ¥V} is connected. Assume that x ¢ V and gx ¢ V for some
g e 6. Decompose g as g = k.ko.t.kgl . k’kb e K, t €T {lemma 1). Since

-1
kV = ¥, (ko.t.kO Y= Uk (t)x ¢ V. There exists a path v :<0,1> » T sguch that

be a path joining 1| with k. Put B(r) = a(r} 'ko' y(r) . k;l . Then B(0) =

y{0) = 1,v{1) = £t and [02 every r e <(,1l> (RD.T(r).k;l)x o V. fet a:<0,1> > K
1,
(1) = g and for every r ¢ <0,1v B(r) x ¢ V. It follows that the sat
igeG i gx ¢ ¥} is conmected for every x ¢ X.
It follows from Proposition 2 and Lemma 2 that every linear action of a
connected, reductive group on affine space ¢ has the C-preoperty at 4.,

Repeating the proof of Proposition 1 we get the following theorem:

Theorem 2. Let § be as in Theorem 1. Let o G ¥ X+ X ke an analytic action
of G on a complex manifold X. Then o is linearizable in a neighborhood of a
point p € XG iff it has the C-property at p.

For the proof of Theorem 1 we need the following theorem due to Frankel.

Theorem 3 (Framkel [2]). Let {¢t}t € R be a l-parameter group of isometries

acting on a compact manifold X. Let V be the vector field induced by this
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group. Assume that the zero set of V is nonempty. If « denotes the Kihler form
on X, then there exists a smeooth real function f on X such that 1i{Viw = df,
where 1(V) denctes the contraction operator induced by V.

Assume we have an analytic action of C* on a compact Kahler manifeld X.
Assume that the Kahler form on X is Sl-invariant and XC* # @ . Then, from
Frankel's theorem, there exists a corresponding function. Every such function we
call a Frankel function of this action, It is a very nice (and easy) fact observed
by €Carrell and Sommese [1] that a Frankel function is strictly increasing along the

%
nontrivial orbits of R+ = S

Proof of Theorem 1. It is enough to show that an action of a torus T on a compact

Kahler manifeld X has the C-property at each fixed peint. Let p € XT . Assume
1 1

T=C*><...>‘ C* and let S =58 = .,..x 8 . Then L(T) = L{8) + i L{(8). We wmay
assume that the Kahler form on X is S-invariant . There exists the 1-1
correspondence between elements of iIL(S) and l-parameter subgroups Y :R+ + T
defined by y(t) = (tal,...,ta'm),ai ¢ R. Tn the following we shall identify an
element of iL(S) corresponding to vy with the sequence A = (al,...,am) . This
identification gives an R-isomorphism 1L(5) ~ " . For A e 1L{S) we denote by
o the induced action of R+ on X. Let f be the corresponding Frankel

A A

function. fA is strictly increasing along the nontrivial orbits of the action a, -

We may choose functions fA ,» A& ¢1iL{S) in such a way that the function
f:iL(8) = X+ R defined by £(A,x) = fA(X) is smooth. Let U be an S-invariant
open neighborhood ¢f p and ¢ :U -+ ¢(U) = ™ be an analytic isomorphism such that
¢{p) = 0 and ¢ is S-equivariant with respect to a linear action af S on Cn .
We may assume that S acts on c” by isometries and we may extend this action to

the linear action of T on C'. We may also assume that thc action 1z diagenal. Thus

k
there exist integers Lk such that (t ,...,t )(2 ,...,2 ) = [ t1k°...°
kmi ij 1 m 1 n n ? .
£ 'zi,...] ior every (tl,...,tm) € T and (zl,...,zn) c €. Let Ay =
{fz e C : \zi| <v 1=L,...,mb . Let [[+]] 1118} + B denote the euclidean norm
on B . We shall prove that for all n there exists a k * n such that fer all
x ¢ X and for all A ¢ iL(S) with |la]/ =1, the set {tc‘R+:0A(t)xs¢-l(A.K)}
is5 connected. Assume nat, Then there exists an n such that for all k zn

+
there exists an x ¢ X and A ¢ 11{8) with ||a]| =1 so that the set {teR :

-1
UA(t)xe'd) (Ak)} is disconnected. Thus we obtain sequences +(xk)1L>n , (Ak)kzn » %, €,
A e L(8) with [{a ]l =1 such chat the set Dy g, = (teR :O’Ak(t)xk c d:_l(A.k)}
is disconnected for every k > n. We may assume that Ak -+ AD . Let ak’bk be

-1 e
te . ;
parameters such that UAk(ak)xk € ¢ (A.k_) . CAk(bk)xk £ ¢ (Ak) and the interval
kixk Assume that al_{l> bk . Set OAk(ak)xk = Yy
and bk/ak =g . Then Yy ¢ & {Ak) . GAk(ck)yk € (A.k) and the interval

[ck,l:l is not contained in D

[ak’bk] is not contaired in D

= + -1 :
Ko ¥ {teR": UAk(t)yk e b (Ak)} . The isomorphism

¢ has the property that if =z, tz« U and l’to belong to the same connected

component of the set {teT:tz ¢ U} then ¢(tcz} = to¢(z). As D is discomnnected,

k!yk
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{tek’ : UAk(t)yk € ¢_1(A1)} is disconnected (this follows from the arguments used

in the proof of Lemma 2). Hence, for every k 2z n there exists a parameter dke B.+

-1
such that gy < dk <1 and Sy (dk)yk ko (Al) . Assume that the sequence (dk)
has a limit point d # 0. Let d, +d. Then o F’dk )y + o, {ddp=p. But

Ry kl AO

by Akl
-1 -1
oAkl[dkl]ykl e X=1 (Al) for every kl . Therefore p would be in X - ¢ (Al) .

Thus dk + 0 and also e 0, Let gqe¢ X ~ ¢_1(Al) be a limit point of the
sequence UAk(dk)yk . Y

In the product R x B = X x X x R x ¥ we consider the set {(t,A,x,y,s,2) :
y=cé(t)x . z=0A(s)x , 0 <t «<s <1}, a semianalytic set. The point
(O,Ao,p,p,O,q) belongs to the closure of this set. Thus we can reach this paoint
from that set with the aid of an R-analytic curve. More precisely, there exist

R-analytic curves defined on [0,e]:

(1} t(xr) £(0) = 0 t{r) « ®
(2)  alr) a(0) = & Alr) « B® = 1L(8)
(3 x(r) x(0) = p x(xr) ¢ X
4y y(r) ¥(0) = p y(r) ¢ X
(3)  s{r) s(0) =0 s{r) ¢ R
(6) =z(r) z(0) = q z(r) ¢ X
such that
(7} 0 < t{r) < s{r) <1 fer r » 0

(8) y(r) =9 (e(e)yx(r}y, 2(r) = o (s())=(r) for r > Q

Alr) Alr) + 1
It follows from (8) , (4), (5) that the set {teR :GA(r) (B)x(r) e ¢ (A) is dis-
connected for r < e' < e. Let p{r) be the right end point of connected component
of parameter t(r) in the set {t€R+:crA( )(t)x(r) € ¢_1(A2)} , T <e'. Of course

r -1

LrereaBg) on ¢ T{A))
with the aid of ¢ . Let A(r) = (al(r),...am(r)) , A = (al,...,am) . It follows
from the definition of p(r) that OA(r)(p(r)) x(r) € ¢"1(Az) - ¢"1(A2) . We may

t{r) < p(ry <« 1. We introduce analytic coordinates z = (z

assume that a(r) (plr}) ={x) » w = (wl,...,wn} .  Notice that
7
~ pi{t) _
ey PED RO =0, /tm} oto)
"k, .a (r)+ ...+ k ,a {r)
[...,[p(r)[t(r)] 1371 mim . yi(r) ) aas
L
o
We have (9} 1 « P(r)/r_(r) < 1",1:(1:) and yi(r} +0, i=14...,n. If 7} k‘ji aj =0,
=1
then 3
t k., a (r)
=11
[ui(r) . [p(r)jt(r)] .y (o) > 0.
1
. . N = )
Thus, in this case w, = 0. Assume that } k., a, =0. If there exists a
i §=1 11,1

sequence I + 0 such that S kji a_(rn) £ 0 for every m, then uy (rn) =+ 0
3 ° ]
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and w, =0 again. Assume now that zkji aj(r) >0 for every r. It fellows
o - 3 [+] - ~
from (4), (1) that y, (r) = r!l'yi (), 2 >0, 5 (040 and t(x) =),
o o o

E(O) # 0, u >0, Hence, from (9), we obtain

TR
N ORRICE IR S A I

o o
-u§ kjioaj(r) +1 _ —ijioa.(r)
r .ot{e) v, {x)| + 0 as ¥ > 0
Yo
We have again cbtained that w, = 0. Thus we have proved that w, = 0 provided
m *a +
E k"ia. = 0.
j5p 4t
tka
Since the actien 9y satisfies o, {t)z = [, gl I3 .zi,...J for every
1 o o
z ¢ @ (Al} it follows that lim 9y (t)w=p. Moreover w # p because
—_— t+C To
W o€ q‘)_l(Az) —¢_1(A2) . Tt follows that w 1is mot a fixed point of the action o, .
o

Since t(r) < p(r) < 1,
£ate) "A(r)(t‘f”"(r)] RIS [GA(r)(P{r}) "(r)J <

<<

fA(r) (x({r)) .

Taking the limit as t =+ O, we obtain fA (p} < fA (w) = fA (p) . Thus fA {w) =

a a ) o
fA (p} . But this is impossible because fA is strictly Increasing along the
[ o
orbit E {(t)w. It follows that for all n, there existsa k = n
o

such that for all = ¢ X and A ¢ iL(S8), the set {tER+ : UA(E) xE ¢—1(Ak) } s
connected.

Assume now that the set {t€R+ H GA(t) X € ¢-—1 (A.k)} is connected for every xe¢X
and A ¢ 1L(8) . Let =x, tox € ¢—1(Ak),t0 ¢ T. We can find s ¢ § and Ae iL(8)
such that to = s.oA(t) . The sei ¢_1(Ak} is S-invariant Thence GA(I:) xF¢_l(Ak).
There exists a path o« :{0,1] » R such that a(0)y = 1, a(l} =t and
UA(O‘.(I‘)) x€¢_l (Ak) for r e« [0,1]. Let R :[0,1]1+ 5 be a path jeining 1 with
s. Take =(r) = B(r)cA(a(r)) . Then {(Q0) =1, (1) = to and T(r)x ¢ ¢“1(Ak)
for every 1t ¢ [0,1].

We have proved that for all n, there exists 2 k = n so that for all x ¢ X
the set {teT :tx ¢ ¢_1(Ak)} is connected. Q.E.D.



REFERENCES

J. Carrell, A. Sommese : Seme topological aspects of C¥-actions on compact
Kaehler manifolds, Comment. Math. Helvetici 54 (1979).

T. Frankel, Fixed points on Kaehler manifolds, Annals of Math. 70(1939),

V. Guillemin, S. Sternberg, Remarks on a paper of Hermann, Trans. Amer. Math.
Soc. 130(1968).

A.G. Kusznirenko, An analytic action of a semisimple group Is equivalent to a
linear action near fixed point {(Russian) Functiocmal Analysis 1 (1967}



HOLOMORPHIC VECTOR FIELDS AND RATIONALITY

by
. *
David 1. Lieberman

Preface.

This manuscript was written in the fall of 1973. It was not published, since
the referee pointed out that the main result (rationality of a projective manifold
having 2 holomorphic vector field with a generic zero) could be understood more
directly by employing techniques from the theory of algebraic groups. 1 have
carried out this program subsequently (cf. Proc. Sympos. Pure Math IXXX, p. 273).
However, the techniques, notably equivariant projection and the theory of substantial
vector fields, developed in the present manuscript have an independent interest and
ptovide a ready reference for the study of equivariant geometry. In view of the
number of requests I have received for the manuscript and the number of occasicns
it has heen cited as an (unpublished) reference, I am pleased to have this oppor-
tunity to include it in these proceedings. TPerhaps it may prove of use in settling
the still unselved conjecture that a projective menifold having a holomorphic vector

field with isolated zerves 1s ratiomal.

Introduction.

This note is a preliminary study of Carrell's problem: given a compact complex
space X having a global holemorphic vector field with {solated zeroes determine
whether X must be rational {bimercmerphic to Er:). All spaces studied are

assumed reduced and irreducible.

A compact Kahler n-manifold X having a global holomorphic vector field V
with isolated zeroces is known to be projective algebraic and to have vanishing
irregularity (i.e. HO(X, Qi)= 0, [5]. Moreover, the plurigenera PI_=dim{H0(X,
(ﬂg)gr)) ,T¥>0 , are known to vanish [10}. Thus if n=0, 1 or 2 then X 1s known
to be rational {cf. also [4]).

One can easily conmstruct examples of non-rational normal surfaces having vector
fields with isolated zeroes (cf. 52 below). When one resolves the singular points
on such surfaces the vector field 1lifts uniquely to the resolution but will have
non-isolated zeroes. To aveid this disappearance of isolated zerves of a vector
field under blowing up we intreduce the notion of “generic zero'. Namely, given any
{possibly singular) algebraic variety X and a global holomorphic vector field ¥
vanishing at xec X , then to say =x is generic means roughly that given any

T x obtained by a succession of monoidal transforms such that V¥ lifts re V

*(Sloan Foundation Fellow, partially supported by National Science Foundation
Grant GP-28323A2.)
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on X then ¥ has isolated zerces on W_l{x) . (In fact these zeross of V are

again evidently generic). Our main theorem is

Theorem 1: If X is a projective algebralc variety cver € and V is a global

holomorphic vector field on X having a generiec zeroc, then X is rational.
As a cerollary one obtains

Theorem 2: 1If X is a compact Kahler manifold and V is a global holomorphic
vector field having a generic zerc and satisfying dim(zero(V)) <1, themn X is

rational.

This theorem follows from the remark in [5] that such Kahler manifolds are all
algebraic. The theorems can be immediately generalized to Moisezon spaeces by proving
an equilvariant version of the Chow lemma, {a result claimed by Hironaka}.

The study begins by collecting, in §1, the basic results about global vector
flelds and equivariant maps. Given a vector field V on X, amap f:X — Y
1s called V-equivariant if there exists a vector field W on Y so that W=f.{(V).
By abuse of language, if only V (resp. W) is given, f will be called equivarfant
provided some choice of W ({resp. V) renders f equivariant. Key results of i1
concern substantial vector fields. Substantiality means the only glebal meromorphic
functions annihilated are constants. Every vector field having a generic zero is
substantial, The property of substantiality is preserved under equivariant bi-
rational maps, and more importantly if V 1is substantial on ¥ and f:X —— ¥
is a V-equivariant rational map with dense image, then £,(V) is substantial on Y.

In 652 we show that all the standard rational varieties: flag manifolds and
Grassmanians and products thereof, all carry substantial vector fields and we classify
the substantial vector fields on P . We also exhibit examples of nonrational
normal surfaces having gleobal (dnsubstancial} vector flelds with Isolated zeroes.

We know of no example of a nensingular nonrational projective variety haviug a
global vector field with only isclated zerces.

In 53 we show that every projective variety X of dimensien n carrying a
holomorphic substantial vector field with zero(V)#) admits an equivariant
rational map g: X — P" with dense image. The argument is by induction on n
and proceeds by equivariantly imbedding X —— PN (Blanchard's thecrem) and
employs the technique of equivariant projection., This technique was inspired by
work of A. Howard [9].

There exists an invariant hypersurface HeP® such that the map X-—g_l(H) —
Pn-H is an unramified finite covering (cf. §4). The key argument of the paper is
to show that the anly invariant hypersurfaces in " are unions of coordinate
hyperplanes, which follows from the substantiality of the vector field on P s
(recall the argument of §1). But then X-—g_l(H) is a cover of either (a} r"

(1f H=¢ )} , (W) ¢’ ,or (e} £ % L x gk . In cases {a) and (b} the covering
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is clearly one sheeted and % is rational. TIn case (c) the covering may have many
sheets, but the theory of the algebraic "y (cf. [7]) implies k-—g_l(H} — " x
g Ck (by an algebraic map) and again X is rational.

The hypotheses of the theorem sheould clearly be weakened. The characteristic
0 Thypothesis seems essential only for the application of Hiromaka's work. The
substantiality hypothesis (i.e. generic zerces) is only essential in 54 where it
is empleyed to restrict the nature of the "branch locus" H . Various other hypo-
theses (e.g. HD(X,G)# 0 and HO(X,91)= 07 would suffice to find the equivariant
rational g:X —= " by induction. A more careful analysis of hypotheses needed
to restrict the nature of H is clearly required.

The problem of studying the relationship of existence of isolated zerces of
vector fields and rationality questions was proposed by J. Carrell to the author.
After several unsuccessful joint attempts on the problem by rather differeat tech-
niques, we set it aside, The author owes both his interest in the problem and his
knowledge of basic techniques to the stimulating collaboration with Carrell at
Purdue. Theorems 1.1- 1.6 were obtained jointly. The present work would not have
been possible without Hironaka's gracious explanations of his recent, as yet
unpublished works. Thanks are alsoc due W. Messing for a willing ear and for his
commuter course on T

1"

§1. Egquivariant maps.

Given a complex space X and V'EHO(X,B), a global holomorphic vector field,
then pgeneral holomorphic maps f:X —* Y or g:Y — X will not be equivariant,
i.e. V will not push forward with f or lift with g . For example, a subvariety Z
of X is equivariantly embedded only if V is tangent to Z . Such subvarieties
are said to be dnvariant. We fix X and V for our discussicn of several important

special cases where maps may be shown to be equivariant.

Theorem 1.1: Given f : X -— Y a surjective proper map with connected fibers

then f is equivariant, provided Y is normal, or f is smooth.

Praof: The hypotheses on f guarantee that f*{OX)* OY . In fact the injectivity
of the natural map follows from the surjectivity of £ . Surjectivity follows by
observing that a function g on ¥ holomorphic on a neighborhoed of the fibre is
necessarily constant on the compact connected fibres and hence defines a continuous
functieon E on ¥ . This function is holomorphic on any Zariski open set U where
f admits a local section. If Y is normal, g 1is holomorphic since it is clearly
weakly holomorphic. Since derivations of OX define derivatioms of f*UX= OY s
we see that vecter fields descend.

As a particular corollary of the preceding, if X —— Y 1is a fibre bundle with
fibre " , then every vector field on X descends te Y . Conversely, given a
vector bundle of rank n+1 , E—— Y with X —— Y the asaociated projective

bundle, the problem of lifting vector fields W from ¥ to X may be sclved as
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follows. Cover Y by open sets U* over which B —— €%x U™ | Let xg xz be
the corresponding local dual basis of E#* . Holomorphlc vector fields on P 1lift
to certain fields on €° , namely the derivations an C[xﬂ,. ..,xu] which preserve
the degree of all polynomials, i.e. 2 Cij xj 5—%; , and are specificable byathe
induced C-linear map X E Cij xJ, . Derivations of the form ¢ I %y E—q descend

to the trivial field on P° (Euler"s formula). Noting that OIPnXUQweIP“@eUG‘ '

one sees that derivations an BT xp™ lifting W are of the form (g,x“i) —_— W(g)xci!"l-
gL fij x? where g, f .e T(u® 0} , i.e. the derivations are specified by giving a
€-linear a T(U JE*) —— ™ ,E*¥} , which satisfies Du(gcr)=w(g) ﬂ+gDa<G) for
g€ I'(UQ,C) , o e T(U™,E%) , with Dcx and D; giving the same derivation on heyg”

if and only if (DQ—D&} (x?_) = fxg for some feT(U%,0) . Note that in general the
difference of two derivations DOL , Dc; both lifting W is determined by a linear

map E* — EX¥ , (Given a collection of derivations Da on Ua lifting W , they
yield a global 1ift of W if and only if DS—DQ i E* —— E* ig an OUOL A TR
muitiple of the Ldentity The existence of such a global lifting is obstructed
prec:.sely by D 3 H (Y Bom(E*, E*)/O } . Recall the Atiyah-Chern class [1]

C{E*) F_H (¥, Hom(E* Ef) ®f ) which Dbstructs the construction of a D : E% —— ﬂl@E*
satisfying D(fc)= df ®o+fD(c) . Given such a D , one pay define D :FE#% — E*
by D=3i(W) aD where 1(W) : ﬂ — O is contraction and D{fo)=W(f) o+ fDn(o} is

then a 11ft of W . Thus one obtams

Theorem 1.2: The vector field W on Y 1ifts to P(E) — ¥ if and only if
1(W){C(E}) =0 EHl(Y , Hom(E* ,E#} /) , where C(E*)e Hl(Y » Hom(E* ,E*) SJQl) is the
Atiyah Chern class.

The lifting is always possible provided E is a direct sum of line bundles,
and zero(W)+#¢ . This follows from 1.5, and the additivity of C{E) . (Compare
[10], pp. 109-110).

Remark 1.3: Note that the comstruction of a global C-linear D :E ——— E satisfying
D(fo)=W(f) o+ £D{a) 1s obstructed precisely by 1(W)C(E)« Hl(‘f , Hom(E,E)} . The
vanishing of this class is necessary and sufficient for W to 1lift to E¥ —— ¥

in such a way that it descends to TP(E*) —+ Y . The real impertance of this
obstruction lies in another direction. Given a "W-commection™ D :E —— E as above,
assume moreover that the global sections of E span the fibre of E at at least

one point {and hence actually on an open sect U ). The map HU(U,E) T — E‘U
defines a varying n+1 gquotient of the N+ 1 dimensicnal space HO(U,E) , i.e.
a holomorphic map U —— Grass (n,N) . The "W-connection™" D gives rise to a
global vecter field on Grass (n,N) , which is tangent te the image of U , and
induces W on U . Hence the pair (E,D} defines an equivariant rational map

Y — Grass (n,N) . We consider explicitly the case where E i3 a line bundle.

,0,. be a basis for HO(Y,E) the rational map Y —+ 11?N is defined

grere o0y
by y — (ch(y),...,I:sN(y)). Thus the u‘i are the restrictions to Y of the

Letting o
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homogeneous ccordinates Xy o D induces a €-linear map HO(Y,E) —_— HG(Y,E) 2T —

L ¢,.0,, which yields the vector field D=1 c, . x,—a on ]?n . The function
ij ] ij 7j exg

x,/x, restricts toe f=g /o, on Y , i.e. o,=fog, so that D{c.,)=%W({)o,+fD(z,)

371 Ji i i j i i

or rewriting M - -yi{f) . But the left hand term is ﬁ(xj/xi) an

Y , as asserted., Consequently,

Theorem 1.4: Given a line bundle L —— X and given V¢ HU(X,G) , 1f C(L) ¢ Hl(X,Rl)

is annihilated by 1{V) :Hl(X,ﬂl) — 1-11(}(,0), then L defines an equivariant
raticenal map X — ]PN , N=dim HG(X,L) . Conversely, given that 1. defines an
equivariant map and that the map is globally defined themn 4i(V) (C(L)) =0 .

Proof: The first assertion is preven above. Conversely, if f ;X ——+ IPN is

globally defined with £, (V) =V' , then, since the sheaf of sections I of L is
£*(0(1}) , we see that {1{VIC(L) = £*{i(V') C{0(1))) =0 , since Hl (]PN,OJ =0.
Characteristic zero hypotheses were unnecessary for the preceding results.
The next theorem, which gives a simple criteriom for 1(V) C{L})=0 , requires in
its proof the "Hard Lefschetz" result ]Ln~1:H1{X,0) — Hn(}{,ﬂn—l) (for X a

Kahler n-manifold, and L e Hl()(,ﬂl) the fundamental class).

Theorem 1.5: (Generalizes Matsushimaz [12Z], Lichnerowicz [11]): Given a compact
Kahler n-manifold X and a Ve HO(X,EJ) » the following properties are all equi-
valent:

(a) zero(V)#9

(b) 1(V) :Ho(x,sel) — HO(X,U) is zero

(€) 1(¥) : HMx,2%) — w1, et

(d)y i(v) :Hl(}{,ﬂl) — HI(X,O) 15 zero

(e) i(Vi{L)=0 where ]LEHI(X,QI) is the Kahler class

} is zero

JLroof: a—> b for ¢« HO(Ql) , 1{V)($) 4is a gziobal holomorphic function, hence
constant, and vanishes on zero (V).

b ——+ ¢  Serre duality

d— e trivial

e -~ g If 1(V}(IL) =0 then also denoting by L a closed (1,1) form repres—
enting L, i(V)(L}=3f for some function f . Hemce (i(VI+T(L-f=0 ,

and (i +D(L-£"=0. Consider the double complex P9 g global, ¢ forms
with total differential {(V)+3 , where i(V) cpPd —— Ep—l,q and §5:gP?4 —
Ep,q+l . The form {]L-f)u is a cycle, If zero(V)=¢ then the rows i(V) :
P29 gP L are exact (fixing Ae BT such that 1WAy =1 ,
wedge product with i defines a homotopy for i(V}). It follows that (L-6"=
i(V) +3)(¢) for some ¢ . But then necessarlily =3 {p and this centra-
ducta anf Oc Hn(Qn) .

e —d It sufficestoshow ¢ —— e , since ¢ does not depend on the choice

n,n—l)
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of Rahler class 1L, and any element of Hl(X,Ql) is a linear combination of Kahler

classes. Now IL.nan(Qn) hence G=1(V) 1Ln=n]Ln_l (i(V) L) . 8Since
Bh(%,00 —=— #N,a" Y, 0= L(V) (L) as required.

o—-1 _

it was shown in [5] that zero(V) #¢ if and only iff 1i(V) :Hp(ﬁ.q) —_— HP(Qq—l)

is zere for all values of p and g

For any complex space X , let GO(X) denote the set of vector fields V with

zero(V) # 0 .

Corollary 1.6: If Hl(X,O) =0, then }lO(X,B):@O , for ¥ a Kahler manifold.

Corollary 1.7: (Borel-Sommese [16]). Given X a Kahler manifold, VEOO{X) and

Y an invariant subvariety, then VIYFGO(Y)

Proof: One may assume ¥ nonsingular since Sing(Y) , Sing(Sing(¥}) , are invariant

and the last stratum is nonsingular. Under f:Y —— X one has f*{IL) is a Kahler

class on Y and the result follows by a—+ d on X and d

raon Y .

Theorem 1.8: [generalizes Blanchard [2]). If X is a Kahler manifold, or a notrmal

projective variety and L —= X is a line bundle then the rational map X —

]P(HD(L)*) is &, equivariant.

0

Proof: For X a manifold this follows from L.4, 1.5. For X normal, let £: ¥ ——

be an equivariant resolution of X (i.e. all vector fields lift, cf. 1.12 below).

For any Ve0, its lift ¥ will be in QO()}.) (cf, lemma 1.13, below).

¢
commutative diagram

Hl ( .rz%} A Hl( 0.y

| Iff

1.1 i(V) 1
A ———H (C‘X}

Then the

~ 1
completes the preof once one observes that i(V) =0 , by 1.5 and that f£* :H (GX) —

Hl(O») is injective. This latter follows from the Leray spectral sequence, and the
X

remark that fw((}}"()=0K since X is normal.

The theorem may fail if ¥ is not rormal, for example if X is the nodal curve

1

obtained by identifying 0 and « in P, -30=IE acts nontrivially on Pic(X)

The main thecrem in the nonnormal case is:

Theorem 1.9: (cf. Siedenberg [14]): Given ¥ a complex space and £ X

its normalization. Then all vector fields on % lift to X and E)D

= X

lifts to ©

0

Proof: Characteristic zero is essential for the theorem [l4]. The simplest proof is

to observe that a vector field V on X integrates to give a l-parameter family of

local automerphisms of X . Since X is functorial in X , the family lifts to a

l-parameter family on % . Moreover zerces of V correspond tu fixed points of the

flow. The fibre over any fixed point is mapped to itself. The fibre is therefore

pointwise fixed since it is discrete and the maps are homotopic to the identity.
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Theorem 1.i0: Let X be a complex apace, V¢ HG(X,B) and let Z<X be a V-
invariant subvariety. If #: ¥ — X 1s the monoidal transform centered at Z

then V 1lifts uniquely to {?cHD(f{,B). If Veeo(x) then {feoo(f{)

>

Proof: Viewing V as a derivation V: GK —r DX and letting IZ EC’X be the
sheaf of ideals defining Z , we may express the invariance of Z by V(Iz) = IZ .
Consequently V(I;) [ I; for all n . Hence V gives rise uniquely to grading

preserving derivation of the sheaf of rings A= OxaaItBIz@ ..... . Since §C=Proj (A)
the result follows. For a more explicit lecal construction of ¥ , useful in the
sequel, proceed as follows. Let fG,...,fr be local generators for Iz over UcX .
Then fJ=n_l(U) is the Zariski closure in Ux BT of the subvariety of (U-2)x ;i
defined by Xif --X £,=0 where X,,...,X  are homogeneous coordinates on »t
Since Z is invanant, V(fi)= E aij f. for suitable functions aij . Congider the
vector fleld V=V+I . X‘k ?ﬂ on UxPBY. V is tangent to o gince

v(xi fj - % £} =X, V{fj} -xj V(£,) +gaikxkfj -E aijk £

E ik fe s %aikkaj+£ 2% b Eajk by

=lg( 2y (£, 2 -X £+ {aik (% £

The restriction of ¥ to U is the required lift.
If xeU is a zero of V , the vector field V on UxP° is tangent to

- - N r
{x}x P* and to the subvariety Un{x}x ¥° . Moreover V has a4 zero on Dn{XixTP by 1.7.

Remark: Gilven a vector field W=I ¢, i3 i 33{ on P , its zeroes occur precisely
3
at points of Cr-’-:L where W is proportlonag to the vector field I ‘(J AR i.e.
. . 3 . . J
the points (ao,...,ar) for which f cu 1 ij e R §aj BX for suitable .
that is (aG,...,ar) is an eigen-vector for (Cij . The zerves are isolated if

and only if (cij) has precisely one efgen-vector for each eipgen-value, e.g. if
there are r+1 distinct eigen-values. 1In particular in the preceding proof we
noted that at a zero xe¢X of V the induced vector field on P % (x} is given
by the matrix aij {x) . The vector field on { will have only isclated zeroes over
x if x itself is isolated and if morecver the matrix 314 (%) has distinct eigen-
values. This may he giver an intrinsic interpretation, namely choose fa}""’fr so
that their images give a basis for '[/Mx"[ (where T 4s the ideal of Z and M

the ideal functions vanighing at x ). Since V vapishes at x , V(Ox) EMx and

1t follows readily that v(:»[i) g}f’x . In particular V defines a natural linear

transformation L{V) :Mx/Mz —_ Mx/Mi . The restriction of this transformation to
=

I/Mx'I has the matrix aij{x) .. Thus, {f the eigen-values of L(V} are distinect,

those of aij(x) are. Moreover, x dis an isolated fixed point itself, if L(V) has
no zero elgen-value. Indeed, if x 1s not isolated, and W is locus of zerves of

V then [I(V) is zero on the cotangent space te x in W .
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In the sequel we shall need to ensure that an isclated zero remains isolated
under successive monoidal transforms. We have seen that given a monoidal transform
I —— X then we may ensure that over a zero x of V the zerces of its lift i
will be isolated by assuming that L{V) has distinct non zerc eigen-values. We
seek to determine the eigen-values of L(\:’f) at one of these isolated zeroes. CQOne

may assume fO""’fr chosen so that their images in I/Mx'l' form a basis of eigen-

. . . . : 2
vectors and extend this basis by fr+l fn yielding an eigen-basis for Mx/Mx
with corresponding eigen-values )\O,...,)\n . We investigate the eigen-values at

~1
=(1,0,...,0 . i i , R, =
x= (1,0 JeX At this poi;t the functions f,,f 4 foand x, Xi/KO
generate [-I."M2 and fi=xifoeM , for i=1,...,T . Note that
Gx,) = (FIX, - VX = a2t - x Xt = (L, - ADE .
i 170 0771 0 iT1a 0710 i (L

Hence the eigen~values are (10 s A s Ay Al— }\0 s ren sy J-r—)\o) . Note that if

+l1* "7 n

the eigen-values J\O yoraa s An are linearly independent over Z then the resulting
eigen-values are linearly independent {and, in particular, distinct). Moreover,
under any succession of monoidal transforms this independence {and hence distinctness)

will be preserved. This motivates

Definition: A gzera xe X of the vector field V will be called generic if the

. 2 .
eigen-values of L(V) :Mx/Mx —— Mx/Mi are linearly independent over Z
We have ochserved

Proposition 1.11: If xeX 1is a generic zero of V , and 4f 1 : ¥—+ X is a

- . . ) -1
compositien of equivariant meonoidal transformations then every zero of V on w “{x)

is isclated, and generic.

This notlen of generic zero goes back essentially to Peincaré [13] and the

following remark is derived from his thesis.

Remark: Let xe¢X be a generic zero of VeHO(X,G); then X is nonsingular at x
and one may choose "formal" local coordinates x; i=1l,...,n at x s0 that
V=12 Ai xia—i-j—_ , where }\i are the eigen-values of L(V) at x

Any surface may be resolved by a succession of (a) normalizations and (b) moncidal
transformations at isolated singular points. Consequently, every surface ¥ (char. 0}
has an equivarilant resolution = : X — X » (i.e. all vector fields lift from X
te ¥, cf. [3]). This follows immediately from Theorems 1.9 , 1.10 and the remark
that in char. 0 every isolated singular point is automatically invariant {a fact which
is readily seen to be false in general for char. p}. This result has been vastly

generalized by the fellowing, saoon to be published, result of Hironaka, cf. [B].

Theorem 1.12: Given a compact complex space X , there exists a sequence f{=Xn —*

Xn-l e R R Xl — XO 1 T Xi a moncidal

transformation with nonsingular center Zi which is invariant under all vector fields

=X with X nonsingular and Xi+

¥V on Xi which descend to KO=X . Hence X —+ ¥ is equivariant with respect
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ko 1°(x,0)

Remark: If X is normal then every vector field on ¥ (and on any of the Xj)
descends to X (Theorem 1.1). In this case the monoidal transformations Xi+1 — X

are strictly equivariant, i.e. HD(X By —— HO(Xi,EI) . If X is not normal, it

1+1°
is 1n general impossible to resolve in a strictly equivariant manner.

Lemma 1.13: Let ¥ ——+ X be an equivariant resclution of singularities. If

Ve EIG(X) then Ve 90(?() , in fact ¥V has a zero lying over every zero of V . If

V has a generic zero, so does V .

Procf: The result follows from 1.10, 1.11, 1l.12.

In our initial study of generic zerces we employed the following

Conjectura: Given VEHO(X,G) and xc¢X a generic zero of V, let f£:X——Y
be a surjective, V-equivariant map with y=1f(x)}) a simple point of ¥ . Ther y is
a generic zero of f£,(V)

This would follow from the assertion that if Oy —_ OX is an injective map
of convergent power series rings, then the induced mapping on formal power series is
also injective. Counterexamples to this general assertion have been obtained by
Gabrielov.

To avoid this difficulty we introduce a2 larger class of vector field.

Defipnition: Given \TEHO(X,G) , & polnt xeX will be said tc be substantiating
for V 1if for any f,gr Ox , the vanishing of the Wronskiam W(f,z)}=V{f}g-£fV(g)
implies that f and g are €-linearly dependent. V¥V will be called substantial if

it has a substantiating point.

Note that on a complex analytic manifold X , if V{(x) #0 then =x 1is never
substantiating (unless dimX =1 in which case all points are substantiating if V# Q).
An easy calculation shows that if x 1is a generic zero of V , then it is substan-—

tiating.

Lemma 1.14: Given an algebraic variety X and Ve HO(X,@) , if V is substastial
then every point of X 1s substantiating, i.e. V is substantial if and only if it

induces a substantial derivation of the field of global meromorphic functions.

Proof: Assume x dis5 substantial for V . Consider the derivation V induced on
k(X) = the field of global meromorphic functions. Given f,ge k(X) choose a,b,ce Ox
such that f=% s g=% . HNote that W(f,g) =C—12~ W{a,b) , hence if Q0=W({f,g) it
follows that a and b are $-linearly dependent (and therefore so are { and g).

The result follows by moting that every local ring is a subring of k(X)

Corcllary 1.15: Suppese given Ve HD(X,B) and f:X —— Y a rational V-equivariant
map with dense image. If V is substantial on X, then f,(V) {is substantial on

Y . If f dis birational, then V {is substantial if and only if f,(V) is.

Proof: £ induces an injection k(Y¥) — k{X) , which is an isomorphism if f

i
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iz birational.

Note that in general the algebraic local ring at a point =x is a subring of
the analytic local ring. Hence any algebraic vector field which is amalytically
substantial at x , is algebraically substantial. The converse is false, as may be
seen by regarding a vector field on an n-torus whose Integral curves are dense. This

field is algebraically substantial, but for n=2 is ncot analytically substantial.

Problem: If V 1is an analytic vector field substantial at x , and V(x)=0 , does

it follow that x 1is an isolated zero of V 7

The following remarks about derivations of k(X) are not used in the sequel,
but serve ta clarify the notion of substantiality. Given D:k(X) — k{X) a
f-linear derivation, denote by G the set of eigen-values ¢f I, i.e. xel such
that D(f) =af for some f£+#0 . One shows readlly that G is a free abelian group
of rank 2tr deg (k(X)) where ¥zk(X) is the subfield of D-invariants. In
particular rank(G) <dim{X) , and equality can hold only if D dis substantial. (The
converse is in general false, i.e. é%— on C{x) is substantial and has G={0} ,
or more pathologically consider the derivation given by a skew vector field on the
torus}. MNote that k(¥X) admits substantial derivations with rank(G} =dim(X} ,
obtained by making the elements of a separating transcendence basis the eigen-
functions and extending uniquely to k{X)

Our results imply that if k(X) has a nonsingular projective model for which
such a D is holemorphic, and vanishes somewhere, then k{X) iz a purely trans-—

cendental extension of €

§2. Remarks on substantial wector fields.

{a) Examples of substantial vectar fields.

Fixing A ..,Ane € which are linearly independent over Z , the vector field

ye
I3 Aixi E%T isosubstantial on B° (in fact its zeroes are all generic). Similarly,
consider %he variety QCrass(r,N) of r planes in EN . The T planes near a

given r plane P may be ccordinatized by the (r=WN-r) matrices ((aij))

where vl,...,vN give a basis for tN with the first r giving a basis for P

and v, + gzi 455 Vi give a basis for the plane correspending to ((ai.))

Picking iniependent lij , one may extend the cne parameter family aij — %flij aij
to a one parameter family of collineations of the Plucker coordinate space P[r} -1
which leave Grass(r,N) invariant. The corresponding vector field on Grass(r,N)}

1s substantial (having again, generic Zerces). Simllar constructions may be employved
for flag manifelds. Moreover, if X,V ({resp. ¥,W) are two spaces having vector
fields with generic zeroes at x , (resp. y) then (V,¥-5} will have a generic zero
at (x,y) cXxY¥ provided Yec€ is sufficiently general. Hence, the standard homo-

genecus rational varieties all admit substantial {even generic) vector fields.
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(b} Classification of all substantial vector fields on .
Consider the global vector field V=L a, i XJ 5—%— on IP By a linear change

of coordinates, we may assume that the matrix A= ((au)) is in Jordan normal form

with the largest Jordan block being in the upper-left corner. Moreover, subtracting

: 3 . .
a multiple of I Xi 3%, ° one may assume that the eigen-value for this Jordan block
i
1s zere. Llet }\l,...,lk be the eigen-values corresponding to the other Jordan

blocks.

Proposition 2.l: BSuch a vector field Ve HO(PH,G} is substantial if and only if
the largest Jordan bleck is at most 2x 2 , the Jordan blocks cotresponding to the
)\i are 1x1 and the Ai are linearly independent over Z (dn particular each

eigen-value has only one Jordan block).

Proof: Assume V is substantial. Suppose the largest Jordan block is {r+1} = (c+1).

We have assumed that such a block corresponds to the variables X -,Xr and has

0"

and V(Xr_2)=§( . Letting

eigen-value 0 . Hence V(Xr}=0 , V(X .

r—l') =X

= = = , =
e Ki/Xr R w; see that V(xr_l) 1 and V(xr_z) x._q whence '\..(21(]:_:2 X _ 1) 0.
But 2xr_2-—xr_1 iz clearly a non-constant meromorphic function en %, if r=z2 .
Bince V is substantial, r=<1 . Assuming r=1 , we let y= Xot’Xl and note that
V(y})=1 . Suppose there is another 2x2? Jordan block, i.e. V(K:Hl) = Ax‘i—i-l and V(Xi) =
?\Xi—IrX:H_l . Then v(xi/xi+1) =1 . Hence V(y—X./X. )= 0 and V 1s not substantial,
Thus there is at most one 2x2 block Let x /5( that \(x Y=A,x, . HNote

! 1
that if I=‘(il,...,ik) then V(x) (I~ ;\)x where I- A-Tl }x . If the ?LJ are X—

dependent, 1.e. for some I , I-4 =0, then V(x }=40 contradlcting the substantiality of ¥V .
Conversely, assuming at most one 2x 2 Jordan block and Z-independence of the
}\i we verify substantiality by induction on mn . For n=1 all vector fields are
substantial.
Assume there is a 2% 2 Jordan block, and fixing VoK o satisfying V(y)=
1, V(xi)=;\ixi , as above, wea verify substantiality of ¥V on R=£[y,xl,...,xn_1].
(The case of 1x1 Jordan blocks is handled helow’.
Assu.me 34#F , GeR and W(F,G) =0 . Expand as polynomials F= I fi_vi,
G= Egj yJ where fi R gj sE[xl,...,xk} and let r (resp. s) be the y degree of

F (resp. G). We may assume r=>s and obtain scrict inequality by subtracting a

constant multiple of F from G . We must show G=0 . Now
+ 1+i-1
0=u(F,&) = ] w(f.g)y”+ Ity
i,] i,]
Therefore w(fr,gs)=0 , {it is the highest coefficient). But then gs=kfr (by
-1
induction) and clearly k# 0 , assuming G#0 . The coefficient of yr+5

0= w{fr,gs_l) + w(fr_l,gs) +(r - S)frgs

Noting that W(fr_l,gs) =W(fr_1,

WlE ag g —kE )= -Wlg -k,

K ) = W(E L kf

fr) , we may rewrite the equatiomn as

} and w(f‘r’gs—fL) —W(fr,kfr_l) =
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2
k(r - s)fr = W(gs_l - kfr“-l R fr)
However, we will show that the equation
2
(*) nb” =W(a,b)
has no seclution with a,beC[xl,...,xk} s ne€C and b,n#0 . It follows that
G=0 in the preceding.
1 J I+J

Let a=cfa;x and b= Zbe s¢ that W{a,b) =I(I-I)-2 aIbe . We
lexicographically order the multi-indices 1= {il, ""ik) by I<I' if ik= il'(
for k<t and it<i£ . Note that if I<I' and J=J' then I+J<I1I'+J'

The leading coefficlient op of a polynomial E Pr

is minimal.

I
¥ is that uI#o for which I

Let a (resp. bI )} be the leading coefficient of a {resp. b). The leading

Ip

S0
coefficient of W(a,hJ—wbz is either nbi if J. =1 or (I

, -J.J)*xa_. b
07 ¢e VR IS PR 1

if J.»>I. . If n#0 then this leading coeifficient is clearly nonzero (recalling

0 0
the Z-independence of Ai ), and the equation (%) cannct be solwved.

Note moreover that the only solutions of W(a,b)=0 are of the form b=ka .
Indeed, the leading coefficient of W{a,b) will be (ID—JO)olaIO bJO unless
IO= JO . However, by subtracting a constant multiple ka from b one may assume
IGa‘JO ,and thus one concludes that W(a,b) =0 dimplies b=ka . This last remark
yields the proof for the case where 211 Jordan blocks are 1x1 and completes the

proof cof the propositien.

The following discussion of the homogeneous eigen-functions of V acting on

C[KD,. "’Xn] is useful in the sequel. We assume V is substantial.
3 N _ .
Case 1: = I )”i Xlﬁ— with )\07 0 and Al s vy Rn Z-independent. The hamo-

1 I
geneous eigen-functions are precisely the monomials. X has eigen-value I+)

Indeed, let F(XO,...,Kn) # 0 be homopeneous of degree d with V(F)=nF. ZLet
f(xl,...,xn) =F/X8 . Then V{f)=nf. Expanding f= fI xI , then letting

A= (Al,...,)\n) we have

1

s oy WL
V(f) = LtI(I A) x —L.r]fIx

and clearly (n—(I-;\))fI=O . If fI#O , n=1+x . Since I+r#£J-ax for T#J

there is at most one fIaEO .

g 2 B -3 =
Case 2: V'Likixiax.’kxlaxo with Aow}\lvD and )\2,.

. ln Z-independent
The homogeneocus eigen-functions are precisely the monomials X1 , where TI=(0,

i, ..., 1 ) and I+x 1is the eigen-value.
1 n
Indeed, letting y=X0/X1 and xizxi/){l i=2,...,n , then given F(XO, ..
d
A 2,...,xn)—FfX1 ; V{fy=nf . Expand
f=I fiy where fi € C[x2 s ey xn] . Comparing coefficients in

i i-1 i
+Iif -
EV(fi)y tif.y Enf.y

of degree d with V(F}=nF form f(y,x

-,xn)
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one finds V(fr)= Nf where r is the y degree of f . By case 1, fo=e, x
for some I= (iz, [N in) and n=T1«) .

Examining the coefficient of XI in the coefficients for yr_l in our equation,
one finds

(I-J\)cr_l+r e.= (T2 e 4

and necessarily r={0 , i.e, f 1is independent of ¥y . Thus

Remark 2.2: If V d4s substantial, the only homogeneous eigen—functions are monomials.
Moreover, the group of eigeu-values of V on k(Pn) is the free group with basis

the nonzero eigen-values of the matrix of V .

{c) Examples of nonrational surfaces

Let X be z projective algebraic variety of dimension 2, and let Ve HO(X,B)
have only igolated zeroes. By successively normalizing and blowing up singular
points of X one obtains f X —— X and ﬁszHo(%,e) with f*(§)= V , and with
% a nonsingular projective algebraic variety. Moreaver, ¥V has (not necessarily
isolated) zeroes on X , ¢f. 1.13. Note that X is biratiomal to a ruled surface
since zll plurigenera of % vanish ([10]). This may be seen more directly.
Assuming i is not rational, we know the zerces of V are not isvlated and moreover

that dim(Alb(i))= dim HD(X,RI)¥ 0 {since otherwise the vanishing of P implies

raticnality). The image C of — A1b(¥) 1is necessarily 1 dimensignal, since
HO(§,92)= 0 . € is a memsingular curve of genrusz1l (cf. [15] p. 54).

Since V has zeraes, (V,4)=0 for all ¢ éHO(x,Ql) sa that f :i —_— Alb(ﬁ)
is equivariant with f*(§)= ¢ . Thus V ig tangent to all the fibres of f , and
hence by Borel-Sommese has a zero on each component of each fibre {cf. [1B]).
¥V cannot vanish identically on any fibre, since a fibre has self intersection zero,
hence is not collapsed under ¥ — X and an X the zerces of V are isolated.
Similarly, if X is chosen to be a minimal resolution, ¥ will not vanish on any
component of any fibre. Since the components of the fibre are curves admitting a
nontrivial vector field with isolated zeroes they are all ratiomal, i.e. X is
clearly ruled and the zeroes of ¥ are curves transverse te the fibres.

One can easily make examples of such X and X . Namely let Y='P1x C, where
g(C) =1 . Consider the vector field W= ((8 2) ,0) with A#0 , which is "tangent
to the fibres'. The zerces of W are Clz (1,0} xC and sz (0,l) x C , These
varieties have self intersectiom zero. Let £ be obtained from Y by blowing up
one peint on each Ci , and lat V be the 1ift of W . The zeroes of ¢ are the
preoper transforms Ci of Ci and twe other isolated points. Since (éi,&i)= -1

one may blow down the Ci to obtain X and V .

§3. Equivariant projections. The induction step.

In the fellowing sectipons we prove by induction on n=dimX that if X iz a



112

complex projective algebraic variety and Ve HO(X,G) is substantial on X and

zerc (V) #@ , then there is an equivariant birational map X —— pt .

Remarks: The assumption zero(V)}## is necessary since any vector field W omn "

o . . .
has zeroes, and hence given P —— X equivariant, rational one employs Hironaka's

results to find Y - P" by a sequence of equivariant monecidal transformations so
that f: Y —— X 1is equivariant and holomorphic. The lift W of W to Y has
zerves (1.13) and hence f*(ﬁ) has zeroes on X . Moreover, the hypothesis is
needed te rule out various examples, e.g. skew vector fields on abelian varieties.
The hypothesis that V be holomorphic is immaterial, but is employed to eliminate
a muititude of counter-examples e.g. any X admite a meromorphic V satisfying the
ather hypotheses. A more detailed study of the admissible polar leci is curremntly
being carried out. The projective hypothesis may be replaced by "complete" by
noting that the standard procf of the Chow lemma is equivariant. Completeness
again is only essential to avoid poles of v ‘hidden at ='".

We may clearly assume X is normal, replacing X if necessary by its normal-
ization and lifting V (cf. 1.9).

N
Hence we may imbed X equivariantly in P (1.82). Let W be the corresponding

vector field on IE’N and let pe IPN be a zero of W . The projection froem p

]PN — PNﬂl is W equivariant. {Selecting coordinates so that p=(0,...,0,1)

the projection is {aD,...,aN) q—-wr (aO""’aN—1) but since p is a zero for

W= :i:zj cij Xjﬁ; , i.e. E_Cinﬁ; =)\a\7 , we sezflhat cin=(} for i<n and hence
W yields a well defined vector field Wl on TP ). Denote by Xl the clogure
of the image of X in I’N—l . wl is tangent to Xl . HKote that either dim(X1)=n
ar dim(xl) =n-1 and this second case can only arise if every line through p
meeting X in a point q#p lies entirely in X . If dimX1=n , project equi-—
variantly from Py + ]PN_l —_— IPN_2 obtaining X2 and W2 and continue in this

manngr until dim(Xr) =n-1 (while dim(}{r_l= n) . This will surely accur for

reN-n+1

Note that the vector field W is substantial on Xr since the equivariant
r

rational map X r X‘r has dense image (1.15). Moreover, Wr has zeroes on Xr f

gince 1t has zeroes on ]PN‘r {cf. 1.7). Hence by induction Xr is equivariantly
- - - . n
birational to P 1 . It is now evident that Xr-l ig birational ta 1T .

Indeed, the fibres of the projection Xr—l — Xr are simply the lines through

p , whence Xr— is exhibited as a P! bundle over the rational variety X and

1
is clearly rational. To be more precise, and to obtain equivariance, we describe

Xr-—l more precisely, namely if 0(1) denotes the canonical line bundle on
N-r

X P then Xr—Nl is equivariantly birational to TP(Jed{1)) — Xr , (i.e.

A By ~
if T denctes T rhl blown up at Pl and Xr—l denctes the proper transform
of Xr—l , then T is P(0®0(1)) over IPN_r and ir—l is just the restriction

of this bundle over X . This monoidal transform is equivariant (1.10)).

The proof that Xr—l is equivariantly birational to 7' is completed by the
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following two lemmata.

Lemma 3.1: Given f: an_l —— Y equivariantly birational and given Z=P(0&L")

for L' —— ¥ a line bundle then Z is equivariantly biratiomal to P(lal) for
L— II.'-":I_l a suitable line bundle.

Lemma 3.2: Given a substantial vector field Vv on P(0el) for L —— ]Pn—l

a line bundle, there is an equivariant birational map P{lel) — ]Pn .

Given the equivariant birational map Xr_ — B" we turn to the study of

the induced equivariant, rational, dominant ma; X —— P in §4.

Proof of 3.1: We may assume Y is nonsingular {replacing Y by an egulvariant

resolution ¥ —-» ¥ and replacing Z by ZXY‘]\T ). Moreover, since ¥ 1is

birational to ]Pnﬂl we know HI(Y,UY) =0 . Hence a vector field on Z is deter-

mined by its image V' on Y and by giving D':0el' —— Ce@l' satisfying

D'{go)=v'(g) o+gD'(v) far g a function and ¢ a section of E'=0®L'

(cf. 1.2, 1.3, noting that Hl(Hom(E',E')) — Hl(Hom(E',E')}O} is injective).
Consider the rational map f: }:E'n_1 — Y defined on an open set Usan_l

whose complement has codimension 22. The line bundle f*{L') omn U extends
n-1

uniquely to a line bundle [ on TP . ([72], Exp. XI, 83, pp. 126-130). <Clearly,
% is biratlonal ta W{0®Ll) over ]Pn‘l . To check equivariance we must extend
the derivation D' from (e LlL'- to O®L . WNote that V' extends to a vector

. - . . . R -1
field V on B L (since £ {is equivariant). WNow given any point p«£ PR
one may uniquely extend D' o a neighborhood W of p by selecting a basis
e se, for 0L at p , then noting that D'(ei) =L a,,e, for a,. being holo-

o 13 3 1]

morphic functions on (P -U) nW which extend uniquely to holeomorphic functions

on W (since cod(Pn-1 -mz2),
Proof of 3.2: Given a substantial vector field on B(J@l) over ]Pn_l we denote
by V the induced vector field on ]Pn'-l . Note that V is substantial (1.15}.

We chose homogeneous coordinates Xi se that either {ef. 2.1)

Case 1: V=X, a/axl+i§l A Xy /9%, or

Case 2: V= ¢ X_¥. 38/3%,
_— i¥p L1 i.

The vector field on P(0®!l) is given by a V~derivation D: (e s Qe l* .
We may assume L=0(k) for k=0 since P(0s®l) *— P0e ).

In terms of a local basis e for L[*= 0{k) one may determine D locally by
D(l) =a-l+b*e; D{e}=c+l+d-e and changing the choice of e one finds that the
b's (resp. e¢'s) define a global section of O(k) (resp. 0(-k) , and "a" iz a
scalar. Thus c=0 if k>0 and (* is necessarily a D invariant sub-bundle.
If k=0, then choose a suitable basis for 08L* =090 so that D has upper
triangular form, i.e. again c¢=0 and {* is invariant. Thus, in either case D
defines a V-derivation of [* . The section }(k of (¥ is an eigen-section for

0
D, in view of the form of V . Normalizing D (subtracting off a scalar multiple
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of the identity) one may assume D(X]S) =0 .
Thus on the affine XO#O , one may take e=X15 , 80 that D(e)=0 and
D(1) =a*i+h*e , or letting t=1/e be the fibre coordinate

p{t) +at+hb

where ™"a" is a scalar and b=b{x) a polynomial of degree <k in the affine
1

coordinates x, =X X
i i

We show below that for a suitable choice of fibre coordinate t' the rational

mapping W(0®0(L) — " defined by (l,xl,.. t') 1is equivariant {carrying

. R
n=1

: , i n _

our vector field to a global holomorphic field on T ). We let Yi dencte homo

geneous coordinates on I[’n, and yi:Yi/YU .

Case I: V= 8/3x1+i§1 li x; a/axi ; D{t) =at+b

We seek a polynomlal q{x) such that if t'=t-q then D{(t')=at'. Given
t' , V would correspond to the vecter field

n-1 n
a
3/3y1+i£l )\iyi 8/3y1+ayn 3/ Y, oo P
Such a qf{x) 1is precisely a solution to the equation V(g) ~aq=b . Expanding

I
q= L qq xI . b=1L bI X one obtains the equations

(:Ll+l)ql,+el+(l‘l) q1+an:bI for each

I=(il,...,in_l) where I=(12,.. 3 and (I+el)=(il+l,i Y . Note

"in-l g"“’in—l
that all multiindices appearing in this equation have the same I . Hence for each
fixed I one has an independent system of equations. We fix I and solve. If
{AI+a)=0 then the equations become (i;*+1) qp,, =b; and are readily solved.
If (A*I+a)#0 , then recursively solve for the ar descending on 1, and
defining q =0 if bl' =0 for all iizil , I=1'" . Then the g so obtained is
clearly polynomial.

Cage II: v=i§{] Aixt a/axi , D{t)Y=ac+hb .

Again we seek q{x) such that D(t-g)=al{t-q) . We obtain equations

(T+a-a)q =b;

For those I such that I+i#a we solve the equations for g, defining qI=O

otherwlse and set t'=t-g . Then D(t')=ac' +b where b= El;Ix with bI’O
unless I*A=a , i.e. V{(b)=ab. If b=0 we have succeeded, if not we redefine
t' as t'=(t-g)/b . Then D(t')=1 . The birational map defined by x, and

this t' tramsports our vector field to :gi Ay Yy alayi+a/ayn which 1s globally

holoemorphic on .
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34, Analysis of the map X -—~—> B",

Consider the ratiomal dominant equivariant map X —— P"  constructed om §3.
One may cbtain §— 3 by a sequence of nomeidal transfermations with non-singular
invarlant centers so that X is nonsingular and the induced rational map f1 8 — P
extends to a globally defined holomorphic map (by employing Hironaka's equivariant
resolution). Consider Y <P the analytic subset which is the image of the locus
where df 1is not of maximal rank. Clearly Y is invariant, and )A(—f_l(Y)——*‘ Pt -
iz a connected covering with finitely many sheets. WNote that for d> >0 there
exist hypersurfaces of degree d in " which contain Y

One may select such a hypersurface H which is invariant. Indeed, the set of
hypersurfaces of degree d which contain Y is an invariant nonempty subset of the
projective space of degree d hypersurfaces. By 1.7 (Borel-Sommese) there exists
an invariant point H in this set. Again )A(—f_‘l(H) —— P"-H is a connected
finitely sheeted covering map.

However, since X ——— IPn is equivariant and deminant the induced vector
field on P" is substantial. The homegeneous defining equation for H is an eigen-
funetion for this vector field and is hence a monomial (cf, 2.2). Thus H 1is a
union of coordinate hyperplanes and Y P cn_rx (c*)r y where H is set
theoret:z.c;llly the union of r+1 hyperplanes. The fundamental group of P'-1 s

T

then Z and the algebraic isomorphism classes of connected algebraic covers
of BP"-H are in 1-1 correspondence with subgroups of finite index in Z{r)
([7], expose 12, 5.1).

Such a subgroup is specified by giving a nonsingular T xr matrix of Iintegers
((nij)) (the columns of this matrix being a set of basic generatars for the sub-

group) with two matrices corresponding to the same subgroup if and only if they

differ by post multiplication by GL(r,#Z) . Given ((nij)) the corresponding
cover is
4.1 Cn_2 T — (T T
(x ) P SO R F Tel M2 Tor
,yls---,}'r > ,yl Yz ---}’r v-“:Yl Yz -"yr .

Hence f{—f_l(l{) is algebraically isomorphic to "7 % ¢**  and therefore X is

rational, as is X . To complete the inductive step we must verify that the
rational map %~ p" envisaged, i.e. (l,xl,... S yl,...,yr) is equivariant.

We explicitly compute (in terms of the affine coordinates on ¥ denoted by
X,y as in 4.1) the vector field ¥ lifting V on r° (which will be expressed
in affine coordinates wu,v , according to the T N " of 4.1). We must verify
that ¥ closes up toe a holomorphic vector field on "

Recall that since V 1is substantial, it had the form I }\i Xi E)/BXi or
XD 3/3X1+ iEl )‘i Xi B."BXi . In the second case the monomial defining H will not

involve the variable Xl , {cf. §2) s0 that }{l/KD is one of the "u" variables.
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To lift V , note that the vector fields uy Elaui and 3/8ui lift to xialaxi and
B/Sxi . Moreover, the image of Y Bfayj is i Ry vialavi . -ﬁence the vector
field I Aivi Bf’Bvi is the image of Enj yj a/ayj where n=4 "} , N=(('r'|ij))

The lifted vector field clearly extends te a holomorphic wvector field on " ,

exhibiting the equivariant birationality of ¥ and P , and completing the
inductive proof,

Remark: The more unpleasant aspects of the proof of 3 and §4 lay in showing that
given a certain X birational to P® and a global holomorphic vector field on

X , then X was equivariantly birational to " (not perhaps by the given rational
map}. A simple example where the given rational map is inadequate but a different
birational map is equivariant may be obtained by considering a quadric ¢ in PN+l
Projection from & peinrt g on { yields a biratienal map @ — Fixing
any vector field V on prtl which is tangent to § the birational map is
equivariant if and only if g is a zero of V . The question of whether there

always exists an equivariant birationality is an interesting one.
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*
SOME EXAMPLES OF € ACTIONS

by

Andrew John Sommese

*
In this note I give examples of (€ actions whose Bialynicki-Birula decomposi-
tions exhibit a number of bad properties.
* *
Let r:€ xX ~+ X denote a merumerphic action of € on a compact connected

complex manifold X ; i.e. r 1is a holomorphic action that extends to a meromerphic

%
map Pé x¥%X+ X. Let Fl""’Fr be the connected components of X(C€ ), the fixed
point set of the action. Under the above hypotheses the maps:

+ * - &
A X = X(C) 4 X v X{C)
defined by:
+ -
A (x) = 1im r(t,x) and A (x) = lim r{t,x)
t+0 |l
are well defined. Let:
- - - =1
x et YF) and X7 = AT T

These sets are constructible., They are called respectively, the plus and minus com-
ponents over Xi . There are two distinct fixed point components denoted Fl and
F called respectively the source of the action and the sink eof the action that are
characterized by the properties that Xl+ and Xr_ are dense Zariski open sets of
X,
The Bialynicki-Birula plus and minus decompositions [1, 2, 5, &, 11, 12] are:
r=u X.+ and X=uX%,

i 1 N i
respectively. These above functorial decompositions that generalize the classical
Bruhat decompositicon play a key role {2, 3, 4, 6, 7, 8] in the study of C* actions.
If X 1is either Kaehler or algebraic, the above decompositions enjoy a number of
good properties. Two of the most important properties are:

+ - -
a) the maps A+ ;Xi -+ Fi and A :Xi - Fi are continuous (and in fact)

holomorphic maps,
and,
+ -
b) the sets Xi and Xi are locally closed.

*
In §1 1 give an example {cf. (1.3)}) of a meromvrbpic & action on a compact

complex menifold, X, that is bimeromorphic to ]P; and for which the maps in a)

are discontinuous and b) fails. 1t is also shown (cf. (1.1)) that b) can hold

while the maps in a) are discontinuous. The examples are variations on Hircnaka's

famous example [Y, pg. 441ff] of an algebraic non-projective manifold.
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By the same method examples are given in §1 that exhibit the phenomenon first
discovered by Jurkiewicz [10] of non-trivial cycles of orbits. Recall that Jurkie-
*
wicz produced an example of an algebraic € actlion on an algebraic manifold X

with a sequence of non-fixed points x x_ with the property that:

R R

+ -
#) A (Xi) = A (xi—l) for i =1 to n {wlth the convention that Xy = xn).

In Jurkiewicz's example constructed by torus embeddings nz7. For algebraic mani-
folds Bialynicki-Birula pointed cut that n must be at least 2. I give a very

*
simple example (1.1} of an algebraic ¢ action on an algebraic manifold with the

property #) and n = the minimum possible. 1 alsc give an example (1.2) of a

2 3
*
meromorphic action of € on a Moisezon manifold, X, for which n =1 oceccours,

® +
i.e. there is a point x¢ ¥ which is not in X(€ ) and such that A {(x) and

A"(x) both belong to the same fixed point component.

In §1 I alsc make a conjecture which if true will put a definite limit on the
pathologies that can be expected for meromorphic C* acticens on compact complex
manifolds.

In §2 I give an example that is surprising in light of the results of [3].

Most of these examples were worked out during the stimulating conference or-
ganized by James Carrell with NSERC funds at the University of British Columbia
during the period January 153, 1981 to February 15, 1981. 1T would like te thank the
National Science Foundationm, the University of Notre Dame, and the Sloan Foundation
for their support during parts of the pericd when this research was carried out.
These examples would neot have been worked out without the encouragement of Andrze]
Bialynicki-Birula. I would alsa like to thank David Liebermann for providing some

extra impetus to construct the examples in 81,

il The Main Examples

1 start by giving Hironaka's example [9, pg. 441ff] with attentfon to the fact

*
that it can be presented so that it comes equipped with a € acticn.

(1.1) Example. Let 3 denote Pi and let M= §x Pé . Let ' denote the ae-
tion om M given by:

(e, s, lzg, 210 = (s, lzg, tz, D)
where [zo,zl] denctes homogeneous coordinates. Let O denote [1,0] and let S0
denote Sx0, the source of the action ' . Let C dencte a line on S and let

D denote a smooth conic on § that meets C in two distinct points, x, ¥.
Cover 5 with three open sets U, V, and W such that x doesn't belong to vuw

and doesn't belong to UuW. Let U', v', and W' denote the inverse images
v £

+ ]

of U, V, and W respectively under the projection M+35. Under the projection
from M to 8, 1 identify C, D, x, and y with the corresponding curves and
points on §.. Blow up (CuD)nW' tc get a complex manifold W' . Blow up

0
CrnU" to get a complex manifold U" . Blow up the preoper transfarm of DnU' in



120

U" to get a complex manifold (., Blowup DnrV' to get a complex manifold V™.
Blow up the proper transform of CnV' to get a complex manifold V. It is easy
to check that the three complex manifolds U, V, and W" patch te give a compact

complex manifold X. This manifold is algebraic and birational to M and hence

Pi [9, pg. 441ff]. TUsing the following standard lemma repeatedly the reader can

check that the action '

*
lifts to & meromorphilc action of € on X.

* *
(1.1.1) Lemma. Llet r:€ «x¥Y +Y denote a holomorphic action of € on a complex

manifold Y. Let Y' denote Y with a complex submanifold B blown up. If
on Y'., If «r

*
r{C ,B) = B then the action r 1ifts to a holomorphic action '

is a meromoxhpic action then so is r'.

The above example has 4 fixed point components. Besides the source and the
sink there are two compoments biholomorphic to Pé . Under the induced prejection
from p:X > S these components F and G go biholomorphically onte C and D
respectively. There is a point x’ Ep_l(x) such that A+(x')e F and A (x")=G.
There is a point y'e phl(y) such that A+(y‘) €G and A (y") cF.

It is easy lo meodify the above example to get X, a Molsezon manifold bira-
tional to Pg with a meromorphic C* action possessing a point x'c.X-x(Cﬂ)
such that A+(x') and A (x') belong to the same fixed point component. Note that
in such an example the property a) of the Bialynicki-Birula decomposition that was
discussed in the intreduction fails. The discentinuity occurs because by continuity
A {x') should go to A+(x') and not to A+(A—(x')) = A (x') . Llet me sketch this

construction.

(1.2) Example. Let 3§, M, S0 and r' be as in the last example. Let C be an

irreducible cubic curve on 5 which has precisely one singularity x . Assume

that x 1is a node, i.e. € 415 gotten from Pi by ldentifying two points. Caover
§ with two open sets U and V such that x doesn't belong to V and such that
CnU is the union of two irreducible components €, and C, which are both smeoth.

1 2
Let U' and V' be as in the last example. Identify ¢ and =x with the corre-

sponding curve and point on SO . Blowup CnV"' te get a complex manifold V",
Blow up Cl to get a complex manifold U" . Blow up the proper transform of C2
in U" to get a2 complex manifold U. It is casily checked that V" and U

patch to give the desired example.
The above constructdon can be modified further to yield an example where both
of the properties a) and b) of the Bialynicki-Birula decomposition that were

discussed in the introduction fail.

(1.3) Ixample. Let C and D be two irreducible curves on a rational surface 3.
Assume that:
1) € and D meet only in a point x,

2) D is smooth and x 1s the only singular peint of €,

J) there is an open set U containing =x such that CnU consists of two
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compaonents C1 and C2 that are both smocoth and meet transversely at x

4y D meets both Cl and C2 transversely at x.

Tt is easy to find such a triple (S, C, 1. Indeed let D' be a smocth line on

]

2 2
PE and let C' be a cubic curve on EE as in the last example. Assume that G’

and D' meet at the singular peint of ' in a manner satisfying properties 2}, 3)
and 4) above. C' and D' alsc meet in a point y besides the singular point of

C'. Let S5 he Pi with y blown up. Let € and D be the proper transforms

of €' and D' respectively.

1 *
Let M= 5 EE and let € gct on M as in the past examples. Let V be

an open zet on § such that UuV =8 and %x¢V. Let U' and V' be the cpen
sets on M as in the preceding examples. Identify C, D, and x with curves and

a point of the same name on S0 = §x0. Blowup (CuD)nV' to get a complex

manifeld V" . Blow up Cl nu' to get a2 complex manifold U™ . Blow up the praper
#

transform of DnU' on U" to get a complex manifold 1" . Blow up the proper

transform af 02 nu' on U’:r toc get a complex manifold U, U and V" patch to
*
give the desired Moisezon manifold X . By lemma (1.1.1) the ¢ actionm on M

lifts to a meromerphic action:
*
r:& »¥—— X .

There are two fixed point components F and G for this action that map biratio-

nally onto C and D respectively under the projection

f:X——8
induced frem M = Sx‘wé + 8, Let Zx denote the fibre ¢f X+ § over x under
the map £. There are points:

{ Y ez - xie"

R e

+ — - -

such that &' (x;) = A (x,) = 2¢G, AT(x,) ¢, and A+(x2) =A(x)eF. Itisa
straightforward topological check that the minus component F over F is mot lo-
cally closed at 2. Nor is the restriction of A to F  continucus at =z . The

following picture might help:
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{(1.4) To end this section I would iike to point out a pathology that follows by
carrying the above constructions a little further. Let «r': C*X X+ X be a mero-
morphic € action on a compact complex manifold. By a principle orbit is meant
an orhit 0 = r(C*,x) such that A+(O) belongs to the source and A (0) belangs
to the sink of the action. 1t makes sense [cf. 8, 3] to consider limits of princi-
ple orbits. Such a limit consists of a sequence of orbits {Dl,...,Ok} such that
+ -

A (Dj) = A (ijl

its intersections with the source and with the sink is a limit of principle arbits.

) for j = Z2,...,k. For example Zx in the last example minus

Fix a finite set of letters a, b, ... and any finite word in them, e.g. for con-
creteness abracadabra. Then an example can be constructed of a Moisezon manifold
bhirational to Ti with a meromocrphic C* action r: C*K X + X such that:
a) the fixed point components of r are the source SD’ the sink §_, and
components indexed by a, b, ...,
by there is a limit of principle orbits {Ol,...,Ok} with the subseripts of
the fixed point sets to which A (Oj) belong for j = 1,...,k-1, spellin
the given word.
To construct this example chocse a rational surface § with a finite set Hl,...,H
of irreducible curves, and an assignment of one letter to each of the Hi' The
requirad properties of these curves are:

1} for different 1 and jJ

3

H, and H. meet only in a point x that 1s
1 ]
independent of i and j,
2) there is an open set UcS such that for each i, HiIWU is the union of

H each two of which meet trans-

d(i) smooth curves, Hi,d(l)""’ f,d(i)e

versely at =,
3} for different i and Jj, each component of Hi nU meets each component
of Hj nll transversely in x|
4) d(i) equals the number of times the letter associlated to Hi occurs in
the word fixed at the begionding of the constructiom.

A surface 5 and curves satisfying the above properties can always be constructed

by blowing up and blowing down. By blowing up the Hi 5 in the order prescribed

by spelling the specified word backwards, the example 1s constructed.
I would like to make a simple conjecture which if true would put a limit on

®
the patholugies that can oceur for meromorphic €  actions.

x *
(1.5} Conjecture. Let r:& %X+~ X be a meromorphic action of € on a compact

8

T

*
complex manifecld X . There is no =xeX-X{(C )} such that:

lim r(t,z) = lim ©{t, x)
t*0 (e

§2 A Further Example

Let Y be a connected projective manifold. Let A and B be two projective
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submanifelds of Y. Let Z denote the set theoretic intersection of A and B,
Let M = mé><x - Let A, = [1,0] A and let B_ denote £0,1]><B - Blowup A,
and B to get a complex manifold X . The meromorphic € action on M along
the PE 1lifts to a meromorphic action r of C* on X . There are two fixed
point components F and G fer this action besides the source and the sink. F 1is
bihoelomorphic to A and G is biholomorphic to B, Let F+ dencote the plus com-—
ponent over F and let G denote the minus compenent over G. 1t is a straight-

forward check that the set theoretic intersection F+ NG  is biholomorphic to
E*x Z,

The above shows that the sets xi+:1x,_ for a C* action can be rather un-
pleasant, e.g. disconnected and singular, even when X 1s a projective manifold.
This is not so surprising by itself but points out the unexpected simplicity of the
results of [3]. There it is shown that ﬂ* invariant open sets X-—X[C*) with
compact complex geemetric guotients are built out of the sets Xi+(WXj_ (and not

their connected components!).
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THE GROWTH FUNCTION OF A DISCRETE GROUP

Philip Wagreich*

Suppose G is a finitely generated group and S d1s a set of generators. As-

sume for simplicity, that if s¢$S then smle S . One can define a fuacticn

H e > 2
ES ¢
by
£S(g) = inf{n|g = SpeeeS s 8 € 5}
i.e., ﬂs(g) is the length of the shortest word ir the generators which represents

g. We ecall £S(g) the length of g ({relative to 5 and note that £S(l) = Q).

Definition {1.1): The growth function (or grewth sequence) of G relative to §
is defined to bhe

a = card{g« G‘ﬂs(g) =n}

the number of elements cf G of length n. An important tool for studying a =se-

quence is the generating function for the series, hence we define

Befinition {1.2): If G, S are as above then we define & formal power series
o

n
pgit) = 3 a t
n=0
5 L)
gl
We call Pg the growth power series of G, 8. If 6 1is a finite group

then this power series is a polynomial. We shall see that for many infinite groups
it is a raticonal functiom.

The growth function was studied by Milnor in [Mi 1], where he showed that
there is a relation between the curvature of a compact manifold and the growth of
its fundamental group. The growth power series arises in many contexts, for example
if G is Coxeter group and § is a natural set of generating reflections. In the
sacond section of this paper we will give a survey of some of the surprising and
beautiful results that have been proven about this function in certain special cases.

My interest in the growth function was inspired by the preprint of Alan Durfee's

*Research partially supported by grants from the National Science Foundation

and the University of Illinols at Chicapge Circle Research Board.



126

paper, ‘14 Characterizations of Rational Double Points and Simple Critical Points'.
It was known that the simple singularities are the only singularities with finite
monodromy group. Durfee conjectured that only the simple elliptic singularities
have monodromy groups with polynomial growth (i.e., a bounded above by a polyno-
tial function of n, see 2,9) and all others have exponential growth {see 2.9).

To prove this conjecture I was led te study the growth functions of the simplest in-
finite Coxeter groups, namely hyperbolic triangle groups. These groups turned out
to have such marvelous and surprising properties that I never got to study Durfee's
conjecture. (It was proven by Locijenga shortly after Durfee's preprint appeared.
The paper appeared as 'l5 Characterizations of Rational Double Points and Simple

Critical Poinzs',)

We adept the conventicn that I stands for the sum from n=10 to =,

(1.3} The hunt for invariants.

One reason for studying growth functions is to find invariants cof the group.
There are not many strong results in this direction but there are some tantalizing
hints. Serre [Se] has shown that for a Coxeter group G (see 1.6} and the standard
Coxeter generating set S, the value of pgit) at t =1 is 1/yx where x 1is
the Euler characteristic of the group ( {this makes sense when Py has a pole at
t if we let 1/0 = «=) . This result is trivially true for finite groups because
pS(l) = order ¢ and x = l/order G. 1In all examples of infinite groups that I
know the same equality holds.

Bass [Bal has shown that if G is nillpotent then for any generating set {an}
has polynomial growth and the "degree of polyncmial growth' can be defined and is
independent of 5,

Finaily, if ¢ 1is a discrete transformation group and 5 1is a set of genera-
tors having some geometric significance then the radius of convergence R of ps(t)
should also have some geometric significance. If € has exponential growth then

R determines the ‘rate' of growth of {aﬂ}.

(1.4) Triangle groups.

Supposé p,q,r are positive integers and 1l/p + l/g + 1/r < 1. Llet T be
a triangle in the hyperbplic plane with angles a/p, /g and w/r. Let Ap,q,r
be the group generated by the three reflections 51,52,53 in the sides of T.
Then A is a discrete discontinuous group of iscvmetries of the hyperbolic

Psq»T
plane

Propusition (1.5%). If § = {51,52,53} then ps(t) is a rational function, in

fact
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A+l -tHa-eHa-c5H
P {t) = —mmmmme e -

+1
p+l tq+1 N tr+l _ tp+q _ q+r prqtr tp+q+r+1

-t + 2t

This can be easily proven by meoting that A is a Coxeter group and using the
algorithm in [B] {see 2.8). There is an altégﬁate proof [W] using facts about tes-—
selations of the hyperbolic plane. This proof generalizes to Fuchsian groups. It
will be discussed in §3. Note that the numerator and demominator of p. are reci-

procal polynomials i.e., if A 1s a root them 1/A is a root of the same multipli-

city.

The location of the poles of g is of some interest. For example, G has
exponential growth if and only if there is a pole inside the unit ecircle. It is also
interesting to note that the coefficients of the numerator and denominator above are
anti-palindromic, Theorem (1.10) below was conjectured after examining three pounds
of computer printout from a program written by A.0.L. Atkin. (His program efficient-

ly factors polynomials over Z.) In order to state the theorem we must first in-

troduce some notation.

(1.6} fLoxeter groups (see [B]).

Suppase neMN. A Coxeter graph [ is a graph with vertices VosensVp and
for each palr of vertices at most one edge and an integer (or =) weight mij >3
for each edge. 1If there is ne edge from vy to vj we define mij = 2. We de-
fine L 1, for i=1,...,n., The matrix M = (mij) is called the Coxeter ma-
trix associated to [ . Note that M is symmetric. The Coxeter group GF asso-

clated to T is the group with the following presentation:

Benerators: §/,...,8
mo
relations: (sisj) oo , for all i,j.
Note that for i =3 we get si2 = 1, sc that GT iz generated by elements of or-
der 2. Let SP = {sl,...,sn}.
Example (1.7). If T = (Q and 1/p + ifq + 1/r < 1,
£/ \
00
then ¢ is isomerphic to ﬂp 4" If 1fp + 1/g+ 1/r =1 (resp.>1) then G,
3 ’

is the sroup generated by the reflections in the sides of the euclidean (resp. sphe-

rical} triangle with angles =/p, 7/q, 7/r .

Example (1.8). Let G, p o D€ the Coxeter group associated to the graph
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O—- - —0—0—0—0—": ++ =0

a-4 0 b-1

(all edges have weight 3). This group is finite if and only if 1l/a + 3/b + 1l/e<l.
See {B] where it is shown that GT is finite if and only if T 1is on a certain
well known list of graphs, namely:

Ay, By, D, g, By, B, L G, By, By, I0p)

Definition (1.9). A Coxeter element of a Coxeter group & 1is an element of the

form g = s where the 5, are the generaters defined above.

S
172 n’
Any two Coxeter elements are conjugate, thus if G is finite h = order ¢ 1is

a well defined integer called the Coxeter number of G.

Theorem (1.10): [W] Let & = Ap,q,r with 1l/p + l/g+ 1/T <« 1 &nd S = {51,32.53}
as above, Let ps(t} = £{t)/g{t} with f and g relatively prime. Then
1. all but one of the irreducible factors of g is cyclotomic.
2. suppose [ 1is a primitive nth root of unity. Then g(&} = 0 if and only
if the following three conditions hold:
a) n does not divide p, q, and r.
8) 1/p + 1/q + 1/ » 1 (where x denotes the remainder of =z after di-
vision by mu).
¢} n is the Coxeter number of the finite Coxeter group G;;H»;.
This thecrem partially answers a guestion of Serre [S], i.e., he asked for the
location of the pales of ps(c) . The proof of this theorem uses a thecrem cof James

Cannon, proven after the above was conjectured. Further informaticn about the poles

] Dalt is given by the fellowing theorem o ATINON .
f pg(t) is given by the following th £ C

Theorem (1.11). If G and § are as in (1.10), then pg(t) Thas two positive
real poles A and 1/ . All other poles of ps(t) lie on the unit circle.
Cannon's main tool is the theory of recipreocal polynomials. Recall, a polyno-
mial with complex coefficients is called reciprocal if for every root X, Ll/A is
a root of the same multiplicity. 1In particular, polynomials £ whose ceefficients
are palindromic {ai =a ., 0= deg £) or anti-palindromic {ai = —an_i) are recipro-
cal.
A Salem nmumber o is an algebraic integer whose monic irreducible polyncomial
over {}, fu , 1is reciprocal with at most oune root of modulus » 1. Salem has

shown [Sal that if ¢ is a Salem number which is not a root of unity then £  has
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two reciprocal rocts, and all other roots lie on the unit circle. BSalem studied
these polynomials in connection with seme problems in Fourier analysis. Theorem

{1.11} implies that A and 1/% are Salem numbers. Cannon has also proven Thecrem

(1.11) for G = the fundamental group of a compact Riemann surface of gemus g and

a set of 4g generators for &, then ps{t) satisfies the conclusion of (1.11).

§2. Growth functions through history

(2.1) The growth function of a group € may be interesting even for a finite group.

Suppese W is a finite Coxeter group and let & be the set of all reflections in

W. Then

£

Ps(t) = 10 (1 -+ mit)

i=0
where the m; are certain well known numbers called the expoments of W. The ex-
ponents of a finite Coxeter group can be defined as folleows: [B, Ch.V, 36, mo.2].
Let g be the Coxeter element of W and h = the order of g. Then there are in-
tegers 0 Wy <o m£<1h so that the eigenvalues of g are exp(2ﬂimj/h),
§=1,...,£. The exponents are also related to the invariant polynomials of W as

follows. Every Coxeter group has a canonical real representation. If the graph has
£ wvertices then the group W acts an R£ [B, Ch.V, §4]. This representation in-
duces an action of W on the polynomial ring in £-variables. The ring of invariant
polyneomials (if W 1s finite} is isomorphic to a polynomial ring in f-variables.
The degrees cf the generators of the ring of invariants are m, + 1, m

[ch]l, [Cel, [st]}, [B, Ch.Vv, §5,6].

+ l,...,mf-+l.

1 2

There is another interesting power series which arises in this context.

Definition (2.2): T1If X 1is a topological space and F is a field so that
dimFHI(X,F) is firite for all i we can define the Podncare power series of X
(relative to F) by

pe(t) = dimFHl(x,F)tl ;

ol
e~ 8
=]

If Py is a polynomial we call it the Poincare polynomial of X.

Example (2.3). Orlik and Sclomon [0-51] have discovered that the growth power series

(actually a polynomial) defined ahove for a finite Coxeter group is actually the

Poincare polynomial of X = Cﬂ - u H  where the HS are the reflecting hyper-
se8
planes of W, i.e., Hs is the fixed point set of s5e¢8. Note that S is the

set of all reflections in W. Orlik and Solomon have generalized their results to
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unitary reflection groups. A unitary reflection is a complex £ x{ matrix having

1l as an eigenvalue of multiplicity £-1. The corresponding reflecting hyperplane

is the eigenspace of the eigenvalue 1., If W is a finite group generated by uni-

tary reflections and X = CE - L Hs as above then they show that the Poincare
5€5

power series of X factors

£
px(t) = ‘n {1+ nit)
i=0
The ni above agree with the exponents m; if G dis a real reflection group, but
in general are different from the m, - Terao has ;hown the above factorization
holds for certain arrangements of hyperplanes in € (called free) which need not
arise from groups.

Returning to the finite Coxeter groups, there is another natural choice of ge-

nerating set S . Namely let § = {sl,...,sn} where the s; are the generators
corresponding to the vertices of the Coxeter graph T . Then Solomon [So0] has
shown that
£ m,
bty = T (1+ ...+¢ H
i=0D

There 1s a third way of constructing an interesting rational function. Suppose F

is a field and R 1is a graded F-algebra, i.e., R 1is an F-algebraz so that

R= % R, where the R_ are F-subspaces gf R so that R, "R, ¢ R_ . for all
j=ow + i i i i+j

i,j.

for all i. Then define the Poincare

T

Definiticn (2.5). Suppose dim Ri < =

power series of R to be
o

pp(t) = ;m(dimFRi)ti

The Poincare power series of a topelogical space is actually a special case of
this (obtained by letting R = H*{(X,F) and R = Hi(X,F)). 1f R is a finitely
generated positively graded (i.e., Ri = 0 for 1i<{}, F-azlgebra then one can show
that PR(t) is a rational function [A-M, Ch,10].

We noted above (2,1), that if W is a finite Coxeter group, there is a matural
action of W on the polynomial ring R in £ wvariables and the ring of invariant
poelynomials A = Rw is isomorphic te a polynomial ring in £ variable. Moreover

A 1is generated by polynomials Pl,...,P so that degree Pi =m, + 1. One can

£
easily see that the Poincare powar series of the graded ring A is
£ m,+1
Pty = T 1/(1-t? )
i=1
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Bott [Bot] remarks that R/(?l""'PE) is isomorphic to H*(G/B) where G is the
Lie group asscclated to W and B is a Borel subgroup. It is interesting to note

that the Poincare poclynomial of this graded algebra is equal to
- m.
I L+ ...+t
i=0

Example {2.6). Suppese CG 1is the dihedral group of order 2n. Then G 1s the

Coxeter group corresponding to the Coxeter graph
>0——0

The Coxeter representation of § 1is as the group generated by the reflections s

1’
s, in two lines Ll ,L2 so that the angle between 1.1 and L2 ig 27/n. If
s = {sl,sz} one can easily check that
po(E) = 1+ 2¢ + T P
n-1 . B -
= (1+)(l+...4+¢ ) if n is finite.
pS{t) = {1+£)/{1-0) if n=m

while if § = the set of all reflecticns and W 1s finite then

pg(t) = 1+mt + (a-1t° = (L+1) {1+ (a-1)t)

(2.7} The first interesting calculation of a growth series for an infinite group is
the generalization of Sclomon's result (2.4) to the affine Weyl groups [B, Ch.VI,

84, ex.iC], [Bot], [I-M]. 1If Wa is an affine Weyl group, W 1s the corresponding

finite Weyl group, and ml""’mﬂ are the exponents of W and 5 is the set of
generators for W corresponding te the vertices of the Coxeter graph then
my m,
pe = I (1+ ...+t )/l-t™h
5 o4a1

Bott's proof is interesting since he relates Pg to the Poincare power setries of a
topological space, namely the loop space G(G) of the simply connected compact Lie

group corresponding to W,

(2.8) Rationality of growth series.

The growth series of a finitely presented group need not be a rational function.
Cannon [Cal] has shown that if § 1is a set of generaters for G yielding a finite
presentation and the a, are algerithmically calculable (for example if ps(t) is
a ratienal funection, see 3.8) then the group G has solvable word problem. It is
known that there exist groups as above with non-solvable word problem.

Coxeter groups have rational growth series. Bourbaki [B] gives an algorithm
fer computing Pg for the standard generators., If [ 1s a Coxeter graph we let

P denaote the growth series of Wao relative to SF . Then
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1/p.(t) = = § e(T")p., (1) if W, is infinite. (2.8.1)
r . T r
r'erl
Ve yp (t)/p., () = " if W_ is finite. (2.8.2)
. r T r
T'el
. . . card T'
where m = length of the (unique) element cf maximal length, e(T') = (-1)
and T'' ranges over all subgraphs of T . Note that p¢(t) = 1, where ¢ denotes

the empty graph.

These formulas allow come to calculate, fn principle, Pp by induction. Using
these formulas one can see that the zeros of pF are roots of unity, 1/pr(m) is
an integer and 1/pr(t_l)e ZI[tl] .

The formulas above allows one to easily calculate Pr for the graph

P/O\q‘ (2.8.3)
0——0

te get (1.5). XIf the expression for pg inm {1.5) ie rewritten in a suitable form

it is valid even if p, q or r = . VNamely, let [n} =1+t + ... + tn_l =
(1.—tn)/(1 -t} if p is finite and f[=] =1+t +t2 ... =1/{1l-t). If T =
C)_____Jl_;g_g{)

then pr(t) = [2][n] (see 2.6). Applying the formula (2.8.1) above we see that
if [ is as in {2.8.1) with p,q,reNu{=} and 1/p + l/g + 1/r £ 1 (this is the

case when W is infinite) then

™
1

[211pllal(x} - tC[p-11Iqi[r] + [pllg-111e] + [pllql[z-11)

One can verify that the denominator is a reciprocal polynomial if and only if

P, q and r are finite.

{2.9) Growth and curvature.

Much of the interest in growth functions was started by Milnor who showed that
there is a relation between the curvature of a compact manifold and the growth rate

of its fundamental group. In [Mi 1] he proved the following thecrems:

Theorem (2.9.1): If M 13 a complete n-dimensional Riemannian manifold whose mean
curvature tensor Rij is everywhere positive semidefinite then the growth functien

{ai} assoclated to any finitely generated subgroup of the fundamental group {and

any set of generators) must satisfy:

. ety
there exists a constant C so that, a_ < C+1i 1 for all i.
1
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Definition (2.9.2): 1If the inequality in (2.9.1) holds for a set of generators of

G then it holds for all generating sets [Mi 1] and we say G has polynomial growth.

Theorem (2.9.3): If M is compact Riemannian with all sectional curvatures less
than zerc, then the growth function of the fundamental group WI(M) is exponential,
i.e.,

a, > ci y for all i
i

for some constant ¢ > 1.

Definition (2.9.4): 1f a, satisfies the condition above for cone (and hence for

all) sets of generators of a group G we say that G has exponential growth.

The study of exponential, non-exponential and polynomial growth was continued
by Wolf, Milnor and Bass [Wo], [Mi 1], [Ba]. Milnor showed by a simple direct argu-
ment that a finitely generated solvable group not of exponential growth is polyecy-

clic. Wolf showed that if ¢ is polycyclic then it is virtually nilpotent, i.e.,

G has a nilpotent subgroup of finite index. Bass found an expression for the de-
gree af polynomial growth of a nilpotent group and conjectured that a finitely ge-
nerated group not of exponential growth is virtually nilpotent. Recently Gromov [G]

proved that a finitely generated group of polynomial growth is virtually nilpeotent,

§3. Calculation of pg ¢ some examples.,

In this section we will first give some examples for which pg can be computed
directly by counting group elements. The second part of this section will be de-
voted to showing how geometry can be used ta calculate growth series for some Fuch-

sian groups.

Example (3.1): Let G = Z, § = {+1,~-1}. Then a = 2 for all n>1 and hence

Pglt) = (1+6)/(1-1)

Example (3.2): [Cal] (due to P. Melvin), G=Z, § {£2,£3} . Then

ps=l+4t+8t2+26tn=-5-2t+2t + 6/(1-1)

Melvin has shown that every generating set for Z gives a growth sequence

which is eventually constant hence
pg(t) = £() + /{1l -1}

where £ is a pelynomial and ¢ is a positive integer,

Proposition {3.3): Suppose f£(t) = & antn,an non-negative integers with ag = 1.

If f(t) 1is a ratiomal function then

(i) a, has exponential growth if and only if f has a pole at some £ such



that 0O<|g[<1.
(ii) a, has polynomial growth if and only if all poles of £ are reots of

unity,

Proof: [Cal, Theorem 8.5]: By [P-3z, p.l4l-144] we can write
£(t) = g(t)/n(L)

where g and h are relatively prime pelynomials with integer cecefficients and

k(0) = 1. It is sufficient to consider the case degree h = m>0. Now lhnanlfn
-0

exists {Mi 1] and equals 1/R where R is the radius of convergence. Thus f Thas
a pole at some £ inside the unit circle, if and only if a has exponential
growth., On the other hand, if a does not have exponential growth them Rz1.

1
l/am » But all rocots have modulus = 1, hence a. = 1 and all roots lie on the

Now if we let h{t) = amtm + ...+ a.t +1 then the product of the roots of h 1is

unit circle. A polynomial with integer ceefficlents all of whose roots have modulus
1 is a product of cyclotomic polynomials (by Kronecker's theorem). Thus a, has
polynomial growth implies a does not have exponentjal growth which implies all
poles of f are roots of unity. Conversely one can easily show that if the poles

of § are roots of unity then a, has polynomial growth.

Proposition (3.4}): G = HxK is a semi direct produect, §

£ and S are generating
_1 H K

sets for H and K respectively, kSHk = SH for all keK and
5 = SHLbK
then
pgi{t) = p, (£) =p, ()
g o
: SH Sy
Corollary: If G ds the free abelian group on generators Blreees®) and 8 =
+ +
{"el,...,,en} then
p(t) = (O+0)/@-n"
Exgmple (3.5): If G 1is the free non-abelian group on n-generators e .

+1 1 o

1
and 8 = {e R } then
1 n

pg(t) = 1+ [ men-1 et - rn/a - @b
i=1
i1
Proof: We prove that a, = {2n) (2n —1)1 by induction on i . Clearly, a = 2n.,
Agssume the assertion true for i-1. Every element of length i has a unique

representation in the form g = ¢ Ei where Ej ¢8 for all j and Ej # e_l

1 j+‘[
for all j =1,...,i-1. Thus g can be written uniquely in the form g's where
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g' has length if-1 and s is not the inverse of the last element in g’ . So

for each g' there are Zn-1 poasible choices for se3. Thus
a, = (In-Da,_, = (n-1)(n) -1
i " -1 "

by the inductive hypothesis. This is the desired result.

{3.6) Change of generating set,

If § and T are two generating sets for ¢, it seems difficult in general
to see the relation between Pg and P - There 1s a rather weak statement that
one can make when § 1s a subset of T. We shall also give a special case where
one can give precise information.

The statement of the result is more natural when given in terms of the "cumula-
tive growth series of G ". To be precise let

n
qs(t) =Ibt

where bn = {geG J Zs(g) £n}. Thus

and hence

qg{t) = pg(£)/(1- 1)
Proposition: TIf 35cT then qT(t} - qs(t) has non-negative coefficients.
Proof: If ﬂs(g) <n then clearly ET(g) <n .,

{3.7): 1If we take T to be the set of all elements of G which are werds of

length<k for some k, then we can calculate pp from pg.

Proposition: Suppose § is a generating set for G, k>0 and
T = {gsGIES(g) <k}
Let ¢, = #HgeG! f_T(g) <i} and b, = {gei]| ﬂs(g) <1} . Then

c, = b for i>0.

i ki’
Proof: One can easily verify that ﬂs(g) <ki 4if and only if ET(g) €1,

Corollary: k- pT(tk) = ps(t) + ps(u.t) + ...+ ps(wkklt) where w 1is a primitive

kth root of 1.

{3.8). CGCalculations for Fuchsian Groups.

Cannon's method for computing Pg invelves looking at the Cayley graph



136

associated to a presentatien of a group. We show that there is an alternative me-
thod of calculating Bg when the group is a discrete transformation group and the
generating set has geometric significance. This method involves looking at the tes-
selation defined by the translates of a fundamental region for the actien.

In oxder to motivate what follows we first discuss the significance of the ra-
tienality of By - Let p(t) = £ antn denote any power series with integer coef-
ficients, It is shown in [P-Sz, p.l41-142] that if p 1is a raticnal function then
we can write

plt) = £(t)/g(t)

where g and f are polynomials with integer coefficients. Moreover, if a, = 1
m
we can assume the censtant terms of g and f are L. Suppose that g{t) = }
i ju 1 i=0
bit and f(t) = E cit . Then we have a linear recursion relation for the ags
=0
i>n
a, = _(blai—l + oL, 4+ bmai—m (3.8.1)

For i<n we have

a, = h(blaiwl + ...

(define a; = 0 for i<0).

+ba, Y +c, (3.8.2)
m 1-m 1

o . s i, : .
These equations come from comparing the coefficients of ¢ in the identity

p(tig(ty = £(t) . Conversely, if we are pgiven a sequence of a;, iz0, which are
defined by a linear recurrence relation as in (3.8.1), (2.8.2) then we can easily
read cff £ and g. TFor example 1f {ai} is the Fibonacci sequence

a, = a

al=h

a, = a, + & iz2

then
p(t) =~ (a + (b-alt) /{1l-t-t)

In summary, to calculate Py it ig sufficient te find a linear recurrence relation

for f{a.l.
i

(3.9), Tesselations.

Now we specialize to the case where G  is a disvrete group of isometries of
the upper half-plane H+ or Euclidean plane E? . We assume that G has a funda-
mental region F, such that

g

(i) area F0 ig finite.

(i1) FG has a finite number of sides each of which is a hyperbolic line seg-

ment,

The translates of FO under & cover H+ and g(fo)rwh(ﬁo) # ¢ 1implies g ="h
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(where T denotes interior). Thus the translates of FO give a tesselation of the
plane.

Let 6={g(fb)‘ ge Gl (where ?b
Fed will be called a tile of the tesselation. We can define the length of a tile

denotes the closure of FO)' An element

inductively, as follows:
(1) £(FO) = 0.
(2} Suppose the tiles of length £ n-1 have been defined, Then F is a tile
of length n if its leagth has not yet been defined and F is adjacent to a
tile of length n-1.

Clearly, every tile of the tesselation @ has a well defined length.

(3.10). Tt is not hard to see that this notion of length of a tesselation is re-

lated to a length function on G for a suitable generating set SF , which is de-

fined as follows: 0

If FU is a fundamental region as above then for each side I of FO there
is8 an element By € FD such that either

(1) gy identifies I with another side of FD or

(2) Ex is the refleection in ¥ .

Let SF = {gZ IE is a side of FO} . Then SF is a generating set for G and
0
ﬂs(g) = E(g(FO)) for all geG.

Definition (3.11}: (The growth function of a tesselation). If we have a tessela-
tion as above let

a = #H{Fe 6| L{F} = n}

the number of tiles of weight n . Then we can define the growth power series of
8 to be
n
= g
Pa(t) z ant
By the remark above if § = SF then
Pt} = p (1)

Note: This definition can be made for any tesselation of a topoleogical space. It
does depend on the choice of a base tile FO .  Terao and the author have studied
some examples of finite tesselations associated to free arrangements of hyperplanes
(in the sense of Terac [T]). The associated growth power series (polynomials in
this case) appear to have nice factorization properties (cf. 2.4) provided the
'correct' base tile is chosen.

We willl be looking for recurrence relations defining the sequences {an} . To
do this it appears te be necessary te introduce some auxiliary notions, the weight

of a vertex and "overlapping tiles".
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Definition {3.12): A tile of weight n is said to be overlapping if it is adjacent
to at least 2 tiles of weight n-1. We let bn be the number of overlapping tiles

of weight n .

Definition (3.13): The weight of a vertex v is the smailest n so that v 1is a

vertex of a tile F of weight n ., Let 0 be the number of vertices of weight n.
Similarly one can define the weight of an edge 7 as the smallest n so that I
is an edge of a tile of weight n.

Example (3.14): If we let & be the tesselation of the Euclidean plane by equila-

teral triangles we get

n a bn <,
0 i ¥ 3
1 3 0 3
2 6 0 6
3 8 2 )

Our first calculation of Fg will bLe for the covering group of a compact Rie-

mann Surface. This was first done by Cannon [Cal] using a different method.

Propositien (3.15): Suppose & 1is the covering group of a compact Riemann surface

of genus g=z2 and F0 is a 4g sided fundamental region for &, then

(l+t)(1—t2%)

p. () =
F
B t2g+l

0 L = (hg=1)t + (4g-1)t°8

Thus if § is the correspending set of 4g generators for G we see that pS(tJ

is as ahbove.

Proof: The praposition depends on the following lemma.

.15.1) w (Gg- - - =
Lemma (3.15.1) & {4g l}an_l bn—l hn , for n=22 {1

b =¢ , for nzQ {2)

n n-2g

€, = {45—2)an - bn , for n=zl (3
Equation {2) makes sense for all n <0 if we define ;= 0 for 1<0. If we let

h(e} = L bntn and c¢{t) = I cntn then

pit) = (4g-1)t p{t) - t b(t) - b{t) + 1 + ¢ {1%)
b(t) = t2Be(r) (2%)
et} = {4g-2)p(t) - b(t) + 2 (3%}
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Proof of the propesition: (1%), (2*), and (3%*) are 3 linear equations in 3 unknowns,

pft), b(t), e(t). Solwe for p(t) by substituting for b{t) wusing (2%). We get

1+t

(L - (4g-11e)pl) + {1+ £y e28e (1)

(2 -4g)plry + (1+L2g')c(t) 2

and solving for p gives the desired result.

Proof of the lemma: The equations (1%}, {(2%), and (3®) follow immediately from (1},

(2) and (3), respectively and a direct check of the coefficients of low degree. To

verify (1), (2), and (3) we first note that each vertex of the tesselation lies on

4 tiles. It 1s easy to see that ag = 1, b0 =1, ey = 4g, a, = Y- bl =0, €y =
(43-2)&1 . If v is a vertex of weight 1 then v 1lies on 2 tiles of welght

i+l, 2 tiles of weight i+2,...,2 tiles of weight i+2g-1 and one tile of weight
i+2g,

For each vertex of weight i there Is a unique overlapping face of weight 1+42g.
This proves (2). To prove (1) we nete that every tile of weight n 1is adjacent to
at least one and at most two tiles of weight n-1. 4 tile of weight n-1 will
have (4g-1} edges of weight n-1 if it is non-overlapping and (4g-2) edges
of weight mn-1 if it is overlapping. Now f of tiles of weight n = # edges of

weight n-1-4 overlapping tiles of weight n, hence

an = ((Ag_l)ankl - bn--l) - bn

which gives us (1). Finally, te compute e, we note that a tile of weight n has
4g - I vertices of weight n if it is not overlapping and 4g=-3 vertices of weight
n if it is overlapping. Every vertex of weight n lies on a unique tile of

weight n, hence {3) follows.
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(3.18). We shall now apply the above methods to calculate the growth series of a
triangle group. Of course, this can be done using the method of [B] since a triangle
group is also a Coxeter group. However, cur method is applicable in the non-Cuxeter

case. Suppose FCI is a triangle with angles =/p, 7/q and w/r and assume 1/p +

i/q+ 1/t = 1. 1If 1l/p+ 1/qg+ 1/r =1 then our triangle is Euclidean, otherwise

it is hyperbolic. Reeall that G = Ap r is the group generated by the reflec-
’q‘l

tions in the sides of FO.

Proposition (3.16.1): If & is as above and 5§ = {81,32,53} are the three re-

flections in the sides of FD , them § pgenerates G and

(1+e) (1-cP) (1-£) (2T

+q+r+L
tq+l " tr+1 _ tp+q _ tp+r _ tq+r + 2tp+q+r - pPratT

In order to prove the proposition we must make scme definitions and prove a lemma.

Definition (3.16.2): DMNumber the vertices of the triangle FU s0 that the angle at

vy is w/ei where 2, =P, By = q, ey =T. If F is any tile of the tessela-
tion and ve¢F is a vertex, there is a unique i so that v is the image of vi
. i i t . S -
for some ge & We say 1 dis the type of the vertex v . We let Cn,l he num
ber of vertices of weight n and type 1. If F is an overlapping triangle we

define the type of F to be the type of its unlque vertex of lowest weight. TLet

bn i " the number of overlapping triangles of weight n and type i. Clearly
3
= +
bn bn,l + bn,Z bn,3
and
= + +
‘n Cn,l Cn,Z Cn,3
Let B, {(t) = b
1 n,i ?

BCL)

Bl(t) + Bz(t) + 33(” ,

n
™7
2]
rt

Yi(tJ

Lemma (3.16.3): 1If G and S are as above then

= 2 - -
%0 %n-1 bn bn_l * for nx2 (1)
bh,i % © P o for m20 {2)
n,i n-e,,
i
= + + a B .
Cn,l Cn-1,2 Cn_1,3 bn—l,l bn!z bn,} s for n=x2
Cn,2 = Cn—]_,l + Cn—1,3 + bn—l,z - bn,l - bn,3 s for nz2 (3)
cn,3 = cn—l,l + Cn—1,2 * bn_1,3 - bn,l - bn,z » for n=z=2
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and
ps(t} = ths(t) - B{t) - tB(Lt) + 1+ ¢ (1%)

e,
t 1Yi(c) for i=1,2,3 (2#)

8,(8)

Tl(t) = th(t) + tYB(t) + tﬁl(t) - Sz(t) - Bjit) +1 -t

Yz<t) Ly, (&) + tw3(t) + B, (t) - Bl(t) - BalE) +1 -t (3%)

Y4{E) = ty () + ey, (£) - tBy(t) - B (1) - B,(£) +1 - ¢

Proof of propeosition; Substitute for the Bi in  (1#%) and (3%) using (2*}. Then

we get 4 linear equations in 4 unknowns p s ¥ e Y Vg The matrix of the equation
ig
1 2 3
1-2¢t (L+t)t (1+tt {1+t)t 1+t
e, +1 e e
0 1ot © et 2 et 1ot
e e, +1 e
0 et 1-t 2 -t+t 3 1-t
e e e +1
4] —t+t 1 -4+t 2 1=t 3 1-t

Solve for p using Cramer's rule. For the numerator we get
e e [
(L+)F(1-20) (1-t Dy (1t D) (1-t %)

Calculate the denominator and cancel (1+t)2{1—2t) and we get the desired result.

Proof of Lemma (3.16.3); €1%*), (2%) and (3%) follow from (1), (2) and (3} and di-~
rect calculation of the coefficients for n = 0 and 1. Egquations (1) and (2) are
proven the same way as in Lemma (3.15.1). Finally, we prove the first equation of
(3) (the others follow by symmetry). Suppose nz22. Let A = set of all vertices
of type 1 and weight n . At each vertex v of weight 1 in the tesselation we

have the weights of the tiles meeting v are as fellows:
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since there is an even number cof angles at v . 1If v 1s a vertex let FV be the
unigque triangle so that wve« FV and weight v = weight FV . Note that Fv cannot
be an overlapping tile {since in that case weight v <weight F for all vertices

of F) . Thus Fv is adjacent to a unique tile of weight n-1. Let
B=({veA i Fv is adjacent to an overlapping triangle}

If veB we have the following diagram

The overlapping triangle must be type 1, hence #B = bn 11 0o the other hand,
L

if veA-B then we have

6!0 e.iﬁh% -1

Thus for each ve¢A-B we can associate to v a unique vertex w of weight n-1
and type # 1. Conversely, given a vertex w of type # 1 and weight n -1 there
1s a unigue vertex of type 1 and weight n adjacent to w wunless the tile F is
overlapping. Thus

#(A-B) = (:.n’2 + Cn,3 - Dn,2 ~ bn,f}

#8 =t

This gives the desired result.
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