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A geometrical vector in three�dimensional space can be represented by a
column vector whose entries are the x� y� and z components of the vector� A
rotation of the vector can be represented by a three�by�three matrix� In particular�
a rotation by � about the z�axis is given by

�
��
cos � � sin� �

sin� cos � �

� � �

�
�� � �I���

For small rotations� �
��
cos� � sin� �

sin� cos� �

� � �

�
�� � I � i�Tz � �I���

where Tz is the matrix
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In a similar fashion we 	nd Tx and Ty


Tx �

�
��
� � �

� � �i

� i �

�
�� � Ty �

�
��

� � i

� � �

�i � �

�
�� � �I���

By direct computation we 	nd that the 	nite rotations are given as expo�
nentials of the matrices Tx� Ty� and Tz� Thus we have

exp��i�Tz� �

�
��
cos � � sin� �

sin� cos � �

� � �

�
�� � �I��

The product of two rotations like exp��i�Ty � exp��i�Tz� can always be written as
a single exponential� say exp��i� � T � where � � T � �xTx ��yTy ��zTz� Suppose
we set exp��i� � T � exp��i� � T � � exp��i� � T � and try to calculate � in terms of
� and �� If we expand the exponentials we 	nd

��� i� � t� �

�
�� � t�� � � � ����� i� � t� �

�
�� � t�� � � � ��

�
�
�� i��� �� � t� �

�
���� �� � t�� � �

�
�� � t� � � t� � � � �

�
� expf�i��� �� � t� �

�
�� � t� � � t� � � � �g � �I���

To this order in the expansion� to calculate � we need to know the value of the
commutators like �Tx� Ty�� but not ordinary products like TxTy � In fact� this is true
to all orders �and is known as the Campbell�Baker�Hausdor� theorem��� It is for
this reason that we can learn most of what we need to know about Lie groups by
studying the commutation relations of the generators �here� the T �s�� By direct
computation we can 	nd the commutation relations for the T �s
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�Tx� Ty� � iTz� �Ty� Tz� � iTx� �Tz� Tx� � iTy� �I���

These commutation relations which we obtained by considering geometrical
rotations can now be used to form an abstract Lie algebra� We suppose there are
three quantities tx� ty� and tz with a Lie product indicated by � � �

�tx� ty� � itz� �ty� tz� � itx� �tz� tx� � ity� �I���

We consider all linear combinations of the t�s and make the Lie product linear in
each of its factors and anti�symmetric


�a � t� b � t� c � t� � �a � t� c � t� � �b � t� c � t� � �I���

�a � t� b � t� �� �b � t� a � t� � �I����

It is easy to show that the Jacobi identity follows from Eq� �I���


�a � t� �b � t� c � t�� � �b � t� �c � t� a � t�� � �c � t� �a � t� b � t�� � � � �I����

When we speak of the abstract Lie algebra� the product �a � t� b � t� is not to be
thought of as a � t b � t � b � t a � t � since the product a � tb � t has not been de	ned�
When we represent the algebra by matrices �as we did at the outset�� then of course
the ordinary product has a well�de	ned meaning� Nevertheless� by custom we often
refer to the Lie product as a commutator�

The abstract Lie algebra derived above from the rotation group displays the
features which de	ne Lie algebras in general� A Lie algebra is a vector space� L�
�above� the linear combinations of the t�s� together with a bilinear operation �from
L� L into L � satisfying
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�x� � x�� y� � �x�� y� � �x�� y� � x�� x�� y � L

�ax� y� � a �x� y� � a � F� x� y � L

�x� y� � � �y� x� � x� y � L

� � �x� �y� z�� � �y� �z� x�� � �z� �x� y�� � x� y� z � L � �I����

Here F is the 	eld over which L is a vector space� We shall always take F to be
the 	eld of real numbers� R� or the 	eld of complex numbers� C�

Having motivated the formal de	nition of a Lie algebra� let us return to the
speci	c example provided by the rotation group� We seek the representations of
the Lie algebra de	ned by Eq� �I���� By a representation we mean a set of linear
transformations �that is� matrices� Tx � Ty � and Tz with the same commutation
relations as the t�s� The T �s of Eqs� �I��� and �I��� are an example in which the
matrices are �� � and the representation is said to be of dimension three�

We recall here the construction which is familiar from standard quantum
mechanics texts� It is convenient to de	ne

t� � tx � ity � t
�

� tx � ity � �I����

so that the commutation relations become

�tz� t�� � t� � �tz� t�� � �t
�

� �t�� t�� � �tz � �I����

We now suppose that the t�s are to be represented by some linear transformations

tx � Tx�ty � Ty� tz � Tz � The T �s act on some vector space� V � We shall in
fact construct this space and the T �s directly� We start with a single vector� vj and
de	ne the actions of Tz and T� on it by

Tzvj � jvj � T�vj � � � �I���

Now consider the vector T
�

vj� This vector is an eigenvector of Tz with eigenvalue
j � � as we see from
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TzT�vj � �T
�

Tz � T
�

�vj � �j � ��T
�

vj � �I����

Let us call this vector vj�� � T
�

vj � We proceed to de	ne additional vectors se�
quentially


vk�� � T
�

vk � �I����

If our space� V � which is to consist of all linear combinations of the v�s� is to be
	nite dimensional this procedure must terminate somewhere� say when

T
�

vq � � � �I����

In order to determine q� we must consider the action of T�� It is easy to see
that T�vk is an eigenvector of Tz with eigenvalue k� �� By induction� we can show
that T�vk is indeed proportional to vk��� The constant of proportionality may be
computed


rkvk�� �T�vk

�T�T�vk��

��T
�

T� � �Tz�vk��

��rk�� � ��k � ���vk�� � �I����

This recursion relation for rk is easy to satisfy� Using the condition rj � �� which
follows from Eq� �I���� the solution is

rk � j�j � ��� k�k � ��� �I����

Now we can 	nd the value of q de	ned by Eq� �I����
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T�T�vq ��

��T
�

T� � �Tz�vq

��j�j � ��� q�q � �� � �q�vq � �I����

There are two roots� q � j � �� and q � �j� The former is not sensible since we
should have q � j� Thus q � �j� and �j is integral�

In this way we have recovered the familiar representations of the rotation
group� or more accurately� of its Lie algebra� Eq� �I����� The eigenvalues of Tz
range from j to �j� It is straightforward to verify that the Casimir operator

T � �T �x � T �y � T �z

�T �z � �

�
�T�T� � T

�

T�� � �I����

has the constant value j�j � �� on all the vectors in V 


T �vk ��k
� � �

�
�rk�� � rk��vk

�j�j � ��vk � �I����

The �j�� dimensional representation constructed above is said to be irreducible�
This means that there is no proper subspace of V �that is� no subspace except V
itself and the space consisting only of the zero vector� which is mapped into itself
by the various T �s� A simple example of a reducible representation is obtained by
taking two irreducible representations on the space V� and V�� say� and forming the
space V��V�� That is� the vectors� v� in V are of the form v � v��v�� with vi � Vi�
If tz is represented by T �z on V� and by T �z on V�� we take the representation of
tz on V to be Tz�v� � v�� � T �z v� � T �z v�� and so on for the other components�
The subspaces V� and V� are invariant �that is� mapped into themselves� so the
representation is reducible�
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A less trivial example of a reducible representation occurs in the �addition
of angular momentum� in quantum mechanics� Here we combine two irreducible
representations by forming the product space V � V� 	 V�� If the vectors u�m and
u�n form bases for V� and V� respectively� a basis for V is given by the quantities
u�m 	 u�n� We de	ne the action of the T �s on V by

Tz�u�m 	 u�n� � �T �z u�m� 	 u�n � u�m 	 �T �z u�n� � �I����

etc� If the maximum value of T �z on V� is j� and that of T �z on V� is j�� there is an
eigenvector of Tz � T �z � T �z with eigenvalue j� � j�� By applying T

�

� T �
�

� T �
�

repeatedly to this vector� we obtain an irreducible subspace� Uj��j� � of V�	V�� On
this space� T � � �j��j���j��j����� Indeed� we can decompose V�	V� into a series
of subspaces on which T � takes the constant value k�k��� for jj��j�j � k � j��j��
that is V� 	 V� � Uj��j� � � � �� Ujj��j�j�

The representation of smallest dimension has j � ���� Its matrices are �� �
and traceless� The matrices for Tx� Ty� and Tz are hermitian �a hermitian matrix
M � satis	es M�

ji � Mij where � indicates complex conjugation�� If we consider
the real linear combinations of Tx� Ty� and Tz we obtain matrices� T � which are
traceless and hermitian� The matrices exp�iT � form a group of unitary matrices
of determinant unity �a matrix is unitary if its adjoint � its complex conjugate
transpose � is its inverse�� This group is called SU ���� S for �special� � determinant
equal to unity�� and U for unitary� The rotations in three dimensions� O���� have
the same Lie algebra as SU ��� but are not identical as groups�
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Footnote

�� See� for example� JACOBSON� pp� ��������

References

This material is familiar from the treatment of angular momentum in quan�
tum mechanics and is presented in all the standard texts on that subject� An
especially 	ne treatment is given in GOTTFRIED�

Exercises

De	ne the standard Pauli matrices

�x �

�
� �

� �

	
� �y �

�
� �i

i �

	
� �z �

�
� �

� ��

	
�

�� Prove that tx �
�

�
�x� ty �

�

�
�y� etc� is a representation of SU����

�� Prove� if � �� � �x�x��y�y ��z�z� etc� then � ��� �� � � � � � i�� � ���

�� Prove that exp��i�� � n��� � cos����� � in � � sin������ where n � n � ��

�� Prove exp��i�� �n���� �n� exp�i�� �n��� � � �n��� where n �n � n� �n� � � and
where n�� � cos � n��n �n���� cos ��n�sin � n�n�� Interpret geometrically�

� Prove exp��i�	n � T � � �����j where n � n � � and T � � j�j � ���
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III�The Killing Form

A fundamental step in the analysis of Lie algebras is to establish a geometrical
picture of the algebra� We shall eventually see how this geometry can be developed
in terms of the roots of the algebra� Before turning to the roots� we must �rst
de�ne something resembling a scalar product for elements of the Lie algebra itself�
We shall state our de�nitions for an arbitrary Lie algebra and illustrate them with
SU����

Let L be a Lie algebra and let a� b � L� The Killing form is de�ned by

�a� b� � Tr ad a ad b � �III���

Remember that ada is an operator which acts on elements of L and maps them
into new elements of L� Thus the indicated trace can be evaluated by �rst taking
a basis for L� say x�� x�� � � �� Then we calculate for each xj � the quantity 	a� 	b� xj


and express the result in terms of the xi�s� The coe�cient of xj is the contribution
to the trace� It is easy to show that the trace is independent of the choice of basis�
As an example of the Killing form� consider SU���� Using Table II�� we see that
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�tz� tz� � �� �III���

This can be calculated simply using the matrix representation of the operator ad tz�
Eq� �II���� or more tediously

	tz� 	tz� tz

 �� � 	tz� 	tz � u�

 �
�

�
u�

	tz� 	tz � y

 �� � 	tz� 	tz � u�

 �
�

�
u
�

	tz� 	tz� t�

 �t� � 	tz� 	tz� v�

 �
�

�
v�

	tz� 	tz� t�

 �t� � 	tz� 	tz� v�

 �
�

�
v
�

� �III���

It is easy to see that a term like �tz� t�� must vanish� From Table II�� we see
that ad tz ad t� �tz� � �t� and hence gives no contribution to �tz� t��� etc� If we
take the Killing form between two of our basis elements� only a few are non�zero�

�tz � tz� �� � �y� y� � � � �t�� t�� � � �

�v�� v�� �� � �u�� u�� �� � �III���

The Killing form is not a scalar product� In particular it is not positive de�nite� For
example� since we are considering complex combinations of the SU��� generators�
we can calculate �iy� iy� � ���

There is a scalar product associated with the Lie algebra� but it is not de�ned
on the Lie algebra itself� but rather on the space containing the roots� We recall
that the roots live in a space called H�� the dual space to the Cartan subalgebra�
H� Often we can restrict ourselves to the space H�

�
� the real� linear combinations

of the roots�
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The Killing form enables us to make a connection between the Cartan sub�
algebra� H� and its dual H��� If � � H�� there exists a unique element h� � H such
that for every k � H�

��k� � �h�� k� � �III���

This unique connection between H and H� occurs not for all Lie algebras
but only for the class of semi�simple Lie algebras which are the ones we shall be
mostly concerned with� For semi�simple Lie algebras the Killing form� as we shall
see� is non�degenerate� This means� in particular� that if �a� b� � � for every b � H�
then a � �� More prosaically� non�degeneracy means that if x�� x� � � � is a basis for
H� then the matrix �xi� xj� can be inverted� Thus the values of �a� xj� completely
determine a�

This one�to�one relationship between H and H� can be illustrated with
SU���� Referring to Eqs� �II��� and �II����� we designate three non�zero roots by

���atz � by� � a

���atz � by� � ��

�
a� b

���atz � by� � �

�
a � b � �III���

The other non�zero roots are the negatives of these� Now we determine the
elements in H corresponding to ��� ��� and ��� Each of these h�s is to lie in H and
is thus of the form

h�i
� citz � diy � �III���

Using the previously computed values of the Killing form� Eq� �III���� we see that

�h�i
� tz� ��ci

�h�i
� y� ��di � �III��
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To determine the coe�cients ci and di� we combine the de�nition of h��
Eq� �III���� with the expressions for the roots� Eq� �III����

���tz� �� � �h�� � tz� � �c� �

���y� �� � �h�� � y� � �d� �

���tz� �� �

�
� �h�� � tz� ��c� �

���y� �� � �h�� � y� � �d� �

���tz� �
�

�
� �h�� � tz� � �c� �

���y� �� � �h�� � y� � �d� � �III���

Thus we �nd the elements of H which correspond to the various roots�

h�� �
�

�
tz� h�� � ��

�
tz �

�

�
y� h�� �

�

�
tz �

�

�
y � �III����

Of course� this correspondence is linear� It would have su�ced to determine h��
and h�� and then noted that since �� � �� � ��� h�� � h�� � h��� Indeed� using
Eq� �III���� we can �nd the element of H which corresponds to any element of H�

since such elements can be expressed in terms of� say� �� and ���

We are now in a position to display the previously advertised scalar product�
Let � and � be real linear combinations of the roots� that is� �� � � H�

�
and let h�

and h� be the elements in H associated with them according to Eq� �III���� Then
we de�ne a product on H�

�
by

h�� �i � �h�� h�� � �III����

For the particular case of SU���� using Eq� �III���� we have
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h��� ��i ��h�� � h��� ����tz� ��tz� � �

�

h��� ��i ��h�� � h��� � �

�

h��� ��i ��h�� � h��� � �

�

h��� ��i ��h�� � h��� � � �

�

h��� ��i ��h�� � h��� � �

�

h��� ��i ��h�� � h��� � �

�
� �III����

From these speci�c values� we can see that for SU���� h� i provides a scalar
product on the root space� H�

�
� Indeed� we can interpret Eq� �III���� geometrically

by representing the roots by vectors of length ��
p
�� The angles between the vectors

are such that cos � � ��

�
as shown in Fig� III���

��
��

Fig� III��

It is important to note that h� i is quite di�erent from � � �� There is no
�natural� basis for the Cartan subalgebra so some of the symmetry is not apparent�
Thus we found �tz� tz� � �� but �y� y� � �� Moreover� we might as well have chosen
iy instead of y and found �iy� iy� � ��� There are naturally distinguished elements
of H�� namely the roots� As a result� the product on H� displays more clearly the
symmetry of the Lie algebra�
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So far we have limited our discussion to the Lie algebras of SU��� and SU���
�or� more precisely� their complex extensions�� Let us now generalize this and
explain the terms �simple� and �semi�simple��

Suppose L is a Lie algebra� A subalgebra� M� is simply a subspace of
L which is closed under the Lie product� For example� tz� t�� and t

�

generate a
subalgebra of SU��� which is indeed isomorphic �equivalent� to SU���� Symbolically�
if M is a subalgebra and x� y � M � then 	x� y
 �M � An ideal is a special kind of
subalgebra� If J is an ideal� and x � J and y is any element of L� then 	x� y
 � J �
If J were only a subalgebra instead of an ideal� we would have to restrict y to be in
J rather than just in L�

As an example� consider the group U���� the set of all three�by�three unitary
matrices� We can think of its Lie algebra as being the set of all Hermitian three�
by�three matrices� This is the same as for SU��� except that the matrices need
not be traceless� Thus we might take for a basis� the eight matrices displayed in
Eq� �III���� plus the three�by�three identity matrix�

Now consider the one�dimensional space spanned by the identity matrix� that
is� the space given by multiples of the identity� This space� J � is an ideal because if
x � J and y is any element of the Lie algebra� 	x� y
 � � � J � In fact� if we consider
the space of all traceless matrices� J �� we see that it too is an ideal� This follows
since the trace of a commutator is necessarily traceless� Thus every element in U���
can be written as a sum of one element from J and one element from J �� The full
algebra is the sum of the two ideals�

A Lie algebra which has no ideals �except the trivial ones comprising the full
algebra itself or the ideal consisting solely of �� is called simple� A subalgebra in
which all members commute is called abelian� An algebra with no abelian ideals
is called semi�simple� Thus the Lie algebra of SU��� is simple� while that of U���
is neither simple nor semi�simple�

A semi�simple Lie algebra is the sum of simple ideals� Consider� for example�
the �ve�by��ve traceless hermitian matrices which are zero except for two diagonal
blocks� one three�by�three and one two�by�two� Suppose we consider only matrices
where each of these two blocks is separately traceless� The resulting set is a Lie
algebra which can be considered the sum of two ideals� one of which is isomorphic
to SU��� and the other of which is isomorphic to SU���� If we require only that the
sum of the traces of the two diagonal blocks vanish� the resulting algebra is larger�
including matrices proportional to one whose diagonal elements are �

�
� �
�
� �
�
���

�
���

�
�

This element and its multiples form an abelian ideal so this larger algebra �SU ����
SU ��� � U ���� is not semi�simple�
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Because semi�simple Lie algebras are simply sums of simple ones� most of
their properties can be obtained by �rst considering simple Lie algebras�

There is an intimate relationship between the Killing formand semi�simplicity�
the Killing form is non�degenerate if and only if the Lie algebra is semi�simple� It
is not hard to prove half of this fundamental theorem ��which is due to Cartan�� if
the Killing form is non�degenerate� then L is semi�simple� Suppose L is not semi�
simple and let B be an abelian ideal� Let b�� b�� � � � be a basis for B� We can extend
this to a basis for the full algebra L by adding y�� y�� � � � where yi �� B� Now let
us calculate �b�� a� where a � L� First consider 	b�� 	a� bj

� The inner commutator
lies in B since B is an ideal� But then the second commutator vanishes since B
is abelian� Next consider 	b�� 	a� yj

 The �nal result must lie in B since b� � B so
its expansion has no components along the yk�s and along yj in particular� Thus
there is no contribution to the trace� The trace vanishes and the Killing form is
degenerate�
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Footnotes

�� We follow here JACOBSON� p� ����

�� JACOBSON� pp� ������

Exercise

�� De�ne a bilinear form on SU��� using the three�dimensional representation
as follows� Let x and y be a linear combination of the matrices in Eq� �II���
and de�ne ��x� y�� � Trxy� Compare this with the Killing form� i�e� �x� y� �
Tradxady� It su�ces to consider x and y running over some convenient
basis�



IV� Structure of Simple Lie Algebras ��

IV� The Structure of Simple Lie Algebras

Our study of the Lie algebra of SU��� revealed that the eight generators could
be divided up in an illuminating fashion� Two generators� tz and y� commuted with
each other� They formed a basis for the two dimensional Cartan subalgebra� The
remaining generators� u�� u�� v�� v�� t�� and t

�

were all eigenvectors of ad tz and
ad y� that is� �tz� u�� was proportional to u�� etc� More generally� each of the six was
an eigenvector of ad h for every h � H� The corresponding eigenvalue depended
linearly on h� These linear functions on H were elements of H�� the dual space of
H� The functions which gave the eigenvalues of ad h were called roots and the real
linear combinations of these roots formed a real vector space� H�

� �

The SU��� results generalize in the following way� Every semi	simple Lie
algebra is a sum of simple ideals� each of which can be treated as a separate simple
Lie algebra� The generators of the simple Lie algebra may be chosen so that one
subset of them generates a commutative Cartan subalgebra� H� The remaining
generators are eigenvectors of ad h for every h � H� Associated with each of these
latter generators is a linear function which gives the eigenvalue� We write
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�ad h�e� � ��h�e� � �IV���

This is the generalization of Eq� �II�� where we have indicated generators like
u�� u�� etc�� generically by e��

The roots of SU��� exemplify a number of characteristics of semi	simple Lie
algebras in general� First� if � is a root� so is ��� This is made explicit in
Eq� �II��� where we see that the root corresponding to t

�

is the negative of that
corresponding to t�� and so on� Second� for each root� there is only one linearly
independent generator with that root� Third� if � is a root� �� is not a root�

How is the Cartan subalgebra determined in general� It turns out that the
following procedure is required� An element h � L is said to be regular if adh has
as few zero eigenvalues as possible� that is� the multiplicity of the zero eigenvalue
is minimal� In the SU��� example� from Eq� �II��� we see that ad tz has a two
dimensional space with eigenvalue zero� while ad y has a four dimensional space of
this sort� The element tz is regular while y is not� A Cartan subalgebra is obtained
by �nding a maximal commutative subalgebra containing a regular element� The
subalgebra generated by tz and y is commutative and it is maximal since there is
no other element we can add to it which would not destroy the commutativity�

If we take as our basis for the algebra the root vectors� e�� � e�� � � � plus
some basis for the Cartan subalgebra� say h�� h� � � �� then we can write a matrix
representation for adh�
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adh �

�
�����������������

�

�

�

�

���h�

���h�

�

�

�n�h�

�
�����������������

� �IV� ��

From this we can see that the Killing form� when acting on the Cartan subalgebra
can be computed by

�h�� h�� �
X
���

��h����h�� � �IV���

where � is the set of all the roots�

We know the commutation relations between the root vectors and the mem	
bers of the Cartan subalgebra� namely Eq� �IV���� What are the commutation
relations between the root vectors� We have not yet speci�ed the normalization of
the e��s � so we can only answer this question up to an overall constant�

Let us use the Jacobi identity on �e�� e���

�h� �e�� e��� � � �e�� �e�� h��� �e� � �h� e���

���h� �e�� e�� � ��h� �e�� e� �

� ���h� � ��h�� �e�� e�� � �IV���

This means that either �e�� e�� is zero� or it is a root vector with root � � �� or
�� � � � � in which case �e�� e�� commutes with every hand is thus an element of
the Cartan subalgebra�
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It is easy to show that �e�� e�� � � unless � � � � �� This is simply a
generalization of the considerations surrounding Eq� �III���� We examine �e�� �e� � x��
where x is some basis element of L� either a root vector or an element of the Cartan
subalgebra� If x � H� the double commutator is either zero or proportional to a
root vector e��� � In either case� there is no contribution to the trace� If x is a root
vector� say x � e� � the double commutator is either zero or of the form e����� �
and thus does not contribute to the trace unless �� � � ��

We have seen that �e�� e��� must be an element of the Cartan subalgebra� We
can make this more explicit with a little calculation� First we prove an important
property� invariance� of the Killing form�

�a� �b� c�� � ��a� b� � c� � �IV���

where a� b� and c are elements of the Lie algebra� The proof is straightforward�

�a� �b� c�� �Tr ad aad �b� c�

�Tr ad a �ad b� ad c�

�Tr �ada� ad b� ad c

�Tr ad �a� b�ad c

���a� b� � c� � �IV�
�

Now we use this identity to evaluate ��e�� e��� � h� where h is some element of the
Cartan subalgebra�

��e�� e��� � h� ��e�� �e��� h��

���h��e�� e��� � �IV���

Both sides are linear functions of h� Referring to Eq� �III���� we see that �e�� e���
is proportional to h� � where h� has the property

�h� � k� � ��k�� h�� k � H � �IV���

More precisely� we have
�e�� e��� � �e�� e���h� � �IV��
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This is� of course� in accord with our results for SU���� As an example�
let e� � u�� e�� � u

�

� From Table II��� we see that �u�� u�� � �y�� � tz� From
Eq� �III���� �u�� u�� � 
� while from Eqs� �III�
�� �III����� and �II��� we �nd that
hu� � y�� � tz�
� Thus indeed� �u�� u�� � �u�� u��hu� �

The Killing form is the only invariant bilinear form on a simple Lie algebra�
up to trivial modi�cation by multiplication by a constant� To demonstrate this�
suppose that �� � �� is another such form� Then

��h� � �e�� e����� � ��h�� �e�� e���h���

� �e�� e�����h� � h���

� ���h� � e�� � e����

� �h�� h����e�� e���� � �IV����

Thus ��h�� h�����h� � h�� � ��e�� e������e�� e��� and this ratio is independent of �
as well� Thus we can write

��h�� h���

�h�� h��
� k �

��e�� e����

�e�� e���
� �IV����

In a simple algebra� we can start with a single root� �� and proceed to another
root� � such that �h�� h�� �� � and continue until we have exhausted the full set of
roots� so a single value of k holds for the whole algebra� Separate simple factors of
a semi	simple algebra may have di�erent values of k however�

We can summarize what we have thus far learned about the structure of
semi	simple Lie algebras by writing the commutation relations� We indicate the set
of roots by � and the Cartan subalgebra by H�
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�h�� h�� �� � h�� h� � H

�h� e�� ���h�e� � � � �

�e�� e�� �N��e��� � �� � � �

��e�� e���h� � �� � � �

�� � �� � �� � � �� � �� � � �IV����

Here N�� is some number depending on the roots � and � which is not yet deter	
mined since we have not speci�ed the normalization of e��

References

A rigorous treatment of these matters is given by JACOBSON�

Exercise

�� Show that atz � by is almost always regular by �nding the conditions on a
and b such that it is not regular�

�� Show that invariant bilinear symmetric forms are really invariants of the Lie
group associated with the Lie algebra�
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V� A Little about Representations

There is still a great deal to uncover about the structure of simple Lie al�
gebras� but it is worthwhile to make a slight detour to discuss something about
representations� This will lead to some useful relations for the adjoint represen�
tation �c�f� Eqs� �II��� and �II���� and thus for the structure of the Lie algebras
themselves�

The study of representations of Lie algebras is based on the simple principles
discussed in Chapter I� The reason for this is that the elements e�� e��� and h�
have commutation relations

	h�� e�
 ���h��e� � �h� � h��e� � h�� �ie� �

	h�� e��
 �� h�� �ie� �

	e�� e��
 ��e�� e���h� � �V���

which are just the same as those for t�� t�� and tz� except for normalization�Thus
for each pair of roots� � � and �� �there is an SU��� we can form� What makes the
Lie algebras interesting is that the SU���s are linked together by the commutation
relations



�� V� A Little about Representations

	e�� e� 
 � N��e��� � �� � � � � �V���

We recall that a representation of the Lie algebra is obtained when for each
element of the algebra we have a linear transformation �i�e� a matrix� acting on
a vector space �i�e� column vectors� in a way which preserves the commutation
relations� If we indicate the representation of a� b� and c by A� B� and C� then

	a� b
 � c � 	A�B
 � C � �V���

Let us continue to use this notation so that if h�� h�� � � � is a basis for the
Cartan subalgebraH� we will indicate their representatives byH��H�� � � � �Similarly�
the representatives of e� will be E�� The transformationsHi and E� act on vectors
�a in a space� V � Since the hs commute� so do the Hs� We can choose a basis for
the space V in which the Hs are diagonal �The representation is in particular a
representation for the SU ��� formed by H�� E�� E��� We know how to diagonalize
H�� But all the H�s commute so we can diagonalize them simultaneously���

Hi�
a � �ai �

a � �V���

The eigenvalues �ai depend linearly on the Hs�Thus if h �
P

i cihi so that H �P
i ciHi� then

H�a �

�X
i

ci�
a
i

�
�a

�Ma�h��a � �V���

We can regard the eigenvalue associated with this vector� �a� to be a linear function
de�ned on H�
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Ma

�X
i

cihi

�
�
X
i

ci�
a
i � �V���

The functions Ma are called weights� As linear functionals on H� they are
members of the dual space� H�� just as the roots��� are� We shall see later that the
weights can be expressed as real �in fact� rational� linear combinations of the roots�
We can use the product h� i we de�ned on the root space also when we deal with
the weights�

A simple example of Eq� �V��� is given by the three dimensional representa�
tion of SU���� Eqs� �II��� and �II����

Tz �

�
��

�

�

��

�

�

�
�� � Y �

�
��

�

�

�

�

��

�

�
�� � �V���

The weight vectors of the three dimensional representation are

�a �

�
��
�

�

�

�
�� � �b �

�
��
�

�

�

�
�� � �c �

�
��
�

�

�

�
�� � �V���

We consider the action of H � aTz � bY on the weight vectors to �nd the weights�

H�a ���
�
a� �

�
b��a � Ma�atz � by��a �

H�b ����

�
a� �

�
b��b � M b�atz � by��b �

H�c ����

�
b��c � M c�atz � by��c � �V���

The weights can be expressed in terms of the roots of SU���� Eq� �III���� Only two
of the roots are linearly independent so we need use only two of them� say ��and ���
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Then

Ma �� �

�
�� �

�

�
�� �

M b �� �

�
�� �

�

�
�� �

M c �� �

�
�� �

�

�
�� � �V����

In SU���� T�and T� act as raising and lowering operators� This concept may
be generalized in the following way� Suppose that �a is a weight vector with weight
Ma� Then E��

a is a weight vector with weight Ma � � unless E��
a � ��

HE��
a � �E�H � ��h�E���

a

� �Ma�h� � ��h��E��
a � �V����

Thus we can think of the E� as raising operators and the E�� as lowering operators�

IfM is a weight� then it lies in a string of weightsM�� M���� � � � � M� � � � �
M� � q�� Let us see how q is determined by M�� Let �� be a weight vector with
weight M�� Then� if it is non�zero� the vector

�E���
j
�� � �j �V����

is a weight vector with weight M� � j�� On the other hand� E��k has weight
M� � �k � ���� and is proportional to �k��� We can �nd q by using the relation

E���q � � � �V����

The calculation is simpli�ed by choosing a convenient normalization for the
generators e�and e�� � �e�� e��� � �� Thus

	e�� e��
 � h� � �V����
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In terms of the representation� then

	E�� E��
 � H� � �V����

We shall also need the relation �see Eq� �III����

M �h�� � �hM � h�� � hM��i � �V����

By analogy with our treatment of SU���� we de�ne

E��k � rk�k�� �V����

and seek a recursion relation� We �nd

E��k �rk�k��

�E�E���k��

��E��E� �H���k��

�rk���k�� � 	M��h��� �k � ����h��
�k��

�	rk�� � hM�� �i � �k � ��h�� �i
�k�� � �V����

The solution to the recursion relation which satis�es r� � � is

rk � khM�� �i � �

�
k�k � ��h�� �i � �V����

Now from Eq� �V���� we know that

E�E���q � � � rq���q �V����

so we have found q in terms of M� and � �

q �
�hM�� �i

h�� �i
� �V����



�� V� A Little about Representations

In practice� we often have a weight�M � which may or may not be the highest
weight in the sequence M � p�� � � � M� � � �M � m�� We can obtain an extremely
useful formula for m � p by using Eq� �V�����

m � p �
�hM � p�� �i

h�� �i

m � p �
�hM��i

h�� �i
� �V����

As an example� let us consider the three dimensional representation of SU����
Now suppose we wish to �nd the string of weights spaced by �� containing the weight
Ma � �

�
�� �

�

�
��� Using the table of scalar products in Eq� �III����� we compute

m � p �
�h�

�
�� �

�

�
��� ��i

h��� ��i
� � � �V����

In fact� m � � and p � ��

So important is Eq� �V���� that it is worthwhile to pause for a geometrical
interpretation� Suppose the number of weights in the string is odd� Then there
is a central weight� M�� such that p � m and hM�� �i � �� This suggests the
existence of a symmetry� a re�ection which acts about the mid�point� If the full
string is M��M� � �� � � �M� � q�� this symmetry would relate the weights M �
M� � j� and M � � M� � �q � j�� � M � �q � �j��� Using Eq� �V���� with
p � j and m � q � j� we see that q � �j � �hM��i�h�� �i� Thus the symmetry
among the weights can be expressed by

S� � M �M �
�hM��i

h�� �i
� � �V����

It is clear that this works similarly if the string is even� In either event� S� maps
weights into weights�
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This symmetry is called a Weyl re�ection� If we consider elements made
up of any number of re�ections� these elements form a group called the Weyl

group� The Weyl group maps weights into weights� Associated with each weight
is a weight space consisting of all weight vectors with a given weight� For an
irreducible representation of SU���� each weight space is one dimensional� but in
general this is not so�

If we consider a string of weights�M�� � � �M��q�� and the associated weight
spaces� we can restrict our consideration to the subalgebra generated by e�� e��� and
h� � This SU��� subalgebra is represented by E�� E��� and H�� The representation
of SU��� on the weight spaces associated with the string is in general reducible� It
contains at least one copy of the �q � � dimensional representation of SU���� In
addition� there may be other representations of lesser dimension� Each of these
representations will be arranged symmetrically with respect to the re�ection S�
with the result that S� will map a weight M into a weight M � whose weight space
has the same dimension�

The symmetry of some SU��� representations is apparent in Fig� V���

Fig� V��
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References

The material is standard� See� for example� JACOBSON� pp� ��������

Exercise

�� Find the elements of the Weyl group for SU��� and their multiplication table�
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VI� More on the Structure of Simple Lie Algebras

In this Chapter we shall use the results on representations just obtained to
learn about the algebras themselves by considering the adjoint representation� In
the adjoint representation� the Lie algebra itself serves as the vector space on which
the E�s and H�s act� Thus if x is an element of the Lie algebra L� then e� is
represented by E� where

E�x � ad e��x� � �VI���

Before studying the adjoint representation� let us 	rst state a few properties of
simple �and semi
simple� Lie algebras which may sound intuitive or obvious� but
which require real mathematical proof� As is often the case� it is these innocent
sounding statements which are the most di�cult to prove and we omit their proofs�
which may be found in standard mathematical texts�

First� if � is a root� then h�� �i �� �� While we have asserted that h � i will
become a scalar product on the root space� we have not proved it� In fact� we shall
prove it later� based on the assumption that h�� �i �� ��
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Second� if � is a root� then the only multiples of � which are roots are �� ���
and �� We can show that �� must be a root because �e�� e�� � � unless �� � � ��
and we cannot have �e�� x� � �for every x in the Lie algebra� because then the
Lie algebra would not be semi
simple �see Chapter III �� It might be thought that
to show that �� is not a root would be simple� since e�� might arise from �e�� e��
which is certainly zero� However� this proves nothing since e�� might arise from�
say��e��� � e����� Nevertheless� the result is true� In fact� if �� �� and � � � are
roots� then �e�� e�� �� ��

Third� there is only one linearly independent root vector for each root� This
may be stated in terms of the adjoint representation� every weight space �except
the root zero space which is the Cartan subalgebra� is one dimensional�

The adjoint representation has other important properties� We know that
there is no limit to the length of a string of weights for a representation� even for
SU��� we can have arbitrarily long strings� j� j � � � � �� j� However� in the adjoint
representation� a string can have no more than four weights in it� That is� a string of
roots can have no more than four roots in it� We shall see that this has far
reaching
consequences�

Suppose to the contrary� there is a string containing 	ve roots which we label
without loss of generality � � ��� � � �� �� � � �� and � � ��� Since � is a root�
�� � �� � ���� � is not a root� nor is ��� � �� � �� � ��� � �� Thus � � �� is in
a �
string of roots with only one element� Thus from Eq� �V����

h� � ��� �i � � � �VI���

Similarly�

h� � ��� �i � � � �VI���

But then h�� �i � �� which is impossible� Geometrically� we see that � is perpen

dicular to both � � �� and � � �� which is possible only if � � ��

Now if the �
string containing � is four elements long� ����� ���� �� ����
then m�p in Eq� �V���� can be only �� or ��� If the string is three elements long�
m� p can be only �� or �� If it is two elements long� m� p is ��� and if it is only
one element long� m � p is ��
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We can obtain more information from the ubiquitous Eq� �V����� Using it
twice� we write

h�� �ih�� �i

h�� �ih�� �i
� �

�
mn �VI��

where m and n are integers given by the appropriate values of m� p� We recognize
the left hand side as cos� � where � is the angle between the vectors � and ��
Anticipating that we really have a scalar product� we use the Schwarz inequality to
assert that mn� must be less than unity unless � and � are proportional� Thus
cos� � can take on only the values �� �

�
� �
�
� and �

�
�

We shall later see how this restriction of permissible angles limits the possi

bilities for simple Lie algebras� Indeed� we shall see that every simple Lie algebra
falls either into one of four sequences of �classical� algebras or is one of the 	ve
�exceptional� Lie algebras 	rst enumerated by Killing� Since every semi
simple
Lie algebra is a sum of simple Lie algebras� this will give an exhaustive list of the
semi
simple Lie algebras as well�

For the present� we pursue our analysis of the nature of roots of simple Lie
algebras� First we show that every root is expressible as a linear combination of
a basis set of roots with real� rational coe�cients� Suppose ��� �� � � � is a basis of
roots for H�� �It is not hard to show the roots span H��� Let � be a root expressed
as � �

P
i qi�i� Then

�
h�� �ji

h�j� �ji
�
X
i

qi �
h�i� �ji

h�j� �ji
� �VI���

This is a set of linear equations for qi� All the coe�cients are rational and
indeed integers according to Eq� �V����� Therefore� when we solve for the qi� they
will all be rational�

We can go further and show that h�� �i is rational when � and � are roots�
Using Eq� �IV���� we have
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h�� �i � �h� � h��

�
X
���

��h����h��

�
X
���

h�� �i� � �VI���

The root � is in some �
string of roots� so �h�� �i � �m�p��h�� �i for some integral
�m � p��� Thus

h�� �i �
X
���

�

�
��m � p���

�
h�� �i��

�

�X
���

�

�
��m� p���

�

���
� �VI���

This shows that h�� �i is rational� Also� h�� �i � �m�p��h�� �i�� is rational�
We see� then� from Eq� �VI��� that h � i is positive de	nite on the space of rational
linear combinations of roots� In particular� this means that h � i is a scalar product�

References

This is standard material� See� for example� JACOBSON� pp� ��������

Exercise

�� Assuming that for each root � there is only one linearly independent root
vector� show that if �� �� and ��� are roots� then �e�� e�� �� �� Hint� consider
the adjoint representation and then the SU ��� generated by e�� e��� and h��
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VII� Simple Roots and the Cartan Matrix

The next step in analyzing the simple Lie algebras is to de�ne an ordering
among the elements in the root space� the space H�

�
of real linear combinations of

roots� This ordering is necessarily somewhat arbitrary� there is no natural ordering
in the root space� Nevertheless� we shall see that even an arbitrarily chosen ordering
can provide much useful information� Let ��� �� � � ��n be a �xed basis of roots so
every element of H�

�
can be written � �

P
i ci�i� We shall call � positive �� � �	 if

c� � �� or if c� � �� we call � positive if c� � �� etc� If the �rst non
zero ci is negative
we call � negative� Clearly this ordering is possible only because we consider only
real linear combinations of roots rather than the full dual space� H�� We shall write
� � � if � � � � ��

Given the choice of an ordered basis� we can determine which roots are
positive and which are negative� A simple root is a positive root which cannot be
written as the sum of two positive roots� Let us consider SU��	 as an example�
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According to Eq� �III��	� the roots are

���atz � by	 � a

���atz � by	 � ��

�
a� b

���atz � by	 � �

�
a � b �III��	

and the negatives of these roots� Suppose we select as a basis for H�
�
the roots

�� and ��� in that order� Now since �� � �� � ��� �� is negative� What are the
simple roots The positive roots are ������� and ��� Now �� � �� � ����	 so
�� is the sum of two positive roots and is thus not simple� The simple roots are
��� and ��� and ��� � ��� Of course� this depends on our original ordering of the
basis�

We denote the set of simple roots by � and the set of all roots by �� One
very important property of the simple roots is that the di�erence of two simple
roots is not a root at all� �� � � � � � � � �� �� To see this� suppose that to
the contrary � � � is a root� Then either � � � or � � � is positive� Thus either
� � ��� �	 � � or � � �� ��	 �� can be written as the sum of two positive roots
which is impossible for simple roots�

If � and � are simple roots� then h�� �i � �� This follows from Eq� �V���	
because � is a root� but ��� is not a root� Thus in Eq� �V���	�m � �� so m�p � ��

From this result it is easy to show that the simple roots are linearly inde

pendent� If the simple roots are not linearly independent we can write an equality

X
�i��

ai�i �
X
�j��

bj�j � � VII��	

where all the ai and bj are non
negative� and no simple root appears on both sides
of the equation� �If there were a relation

P
i ci�i � � with all positive coe�cients�

the roots �i could not all be positive�	 Now multiplying both sides of Eq� �VII��	
by
P

i ai�i�
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h
X
i

ai�i�
X
j

aj�ji � h
X
i

ai�i�
X
j

bj�ji � �VII��	

The left hand side is positive since it is a square� but the right hand side is a sum of
negative terms� This contradiction establishes the linear independence of the simple
roots� Thus we can take as a basis for the root space the simple roots� since it is
not hard to show they span the space�

We now demonstrate a most important property of the simple roots� every
positive root can be written as a positive sum of simple roots� This is certainly true
for the positive roots which happen to be simple� Consider the smallest positive
root for which it is not true� Since this root is not simple� it can be written as the
sum of two positive roots� But these are smaller than their sum and so each can� by
hypothesis� be written as a positive sum of simple roots� Hence� so can their sum�

From the simple roots� we form the Cartan matrix� which summarizes all
the properties of the simple Lie algebra to which it corresponds� As we have seen�
the dimension of the Cartan subalgebra� H� is the same as that of H�

�
� the root

space� This dimension� which is the same as the number of simple roots� is called
the rank of the algebra� For a rank n algebra� the Cartan matrix is the n � n
matrix

Aij � �
h�i� �ji

h�j� �ji
�VII��	

where �i� i � �� � � �n are the simple roots�

Clearly� the diagonal elements of the matrix are all equal to two� The matrix
is not necessarily symmetric� but if Aij �� �� then Aji �� �� In fact� we have shown
�see the discussion preceeding Eq� �VI��	 	 that the only possible values for the o�

diagonal matrix elements are �������� and � �� Indeed� since the scalar product
of two di�erent simple roots is non
positive� the o�
diagonal elements can be only
�������� and � ��

We have seen that h � i is a scalar product on the root space� The Schwarz
inequality tells us that
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h�i� �ji
� � h�i� �iih�j� �ji � �VII��	

where the inequality is strict unless �i and �j are proportional� This cannot happen
for i �� j since the simple roots are linearly independent� Thus we can write

AijAji � �� i �� j � �VII��	

It follows that if Aij � �� or � �� then Aji � ���

Consider again the SU��	 example� For simplicity� �and contrary to our
choice above 	 take the positive basis to be ��and ��� Then since �� � �� � ���
the simple roots are also ��and ��� We computed the relevant scalar products in
Eq� �III���	�

h��� ��i �
�

�

h��� ��i �� �

�

h��� ��i �
�

�
� �VII��	

From this we compute the Cartan matrix

A �

�
� ��

�� �

�
� �VII��	

The Cartan matrix� together with the ubiquitous Eq� �V���	� su�ces to de

termine all the roots of a given simple Lie algebra� It is enough to determine all
the positive roots� each of which can be written as a positive sum of simple roots�
� �

P
i ki�i� We call

P
i ki the level of the root �� Thus the simple roots are

at the �rst level� Suppose we have determined all the roots up to the nthlevel and

wish to determine those at the level n��� For each root � at the nthlevel� we must
determine whether or not � � �i is a root�
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Since all the roots through the nthlevel are known� it is known how far back
the string of roots extends� �� � � �i� � � �� �m�i� From this� we can compute how
far forward the string extends��� � � �i� � � �� � p�i� We just put our values into
Eq� �V���	�

m � p � �
h�� �ii

h�i� �ii

�
X
j

�kj
h�j � �ii

h�i� �ii

�
X
j

kjAji � �VII��	

In particular� � � �i is a root if p � m �
P

j kjAji � � �

It is thus convenient to have an algorithm which keeps track of the n quanti

ties

P
j kjAji for each root as it is determined� It is clear that this is accomplished

by adding to the n quantities the jthrow of the Cartan matrix whenever the jthsimple
root is added to a root to form a new root�

Let us carry out this construction for SU��	� We begin by writing down the
Cartan matrix� then copying its rows to represent the simple roots�

�
� ��

�� �

�

� �� �� �

� �

Beginning with the root �� we ask whether the addition of �� produces a root in
the second level� �Remember that ��� cannot be a root� nor can �� � ��	� Since
the second entry in the box for the �rst root is negative� the corresponding value of
p in Eq� �VII��	 must be positive� so �� ��� is a root� The same conclusion would
be reached beginning with ��� Is there a root at level three Looking back in the
�� direction� m � �� Since the �rst entry in the box for �� � �� is one� we have
p � � so we cannot add another ��� The same applies for ��� There are no roots
at the third level�
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As a slightly more complex example� we display the result for the exceptional
algebra G�� which we shall discuss at greater length later�

�
� ��

�� �

�

� �� �� �

� ��

� �

�� �

� �

Not only does the Cartan matrix determine all of the roots� it determines
the full commutation relations for the algebra� To see this� let us introduce the
notation of Jacobson�� Start with any choice of normalization for e�and e��� We
have shown that �e�� e��� � �e�� e��	h� � Now for every simple root� �i� de�ne

ei � e�i

fi � e��i
� � ��e�i

� e��i
	h�i� �ii�

��

hi � h�i
�

�

h�i� �ii
� �VII��	

By direct computation we �nd

�ei� fj� � 	ijhj

�hi� ej� � Ajiej

�hi� fj� � �Ajifj � �VII���	
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The commutator �ei� fj� vanishes unless i � j since it would be proportional to
e�i��j

and �i � �j is not a root since �i and �j are simple�

A full basis for the Lie algebra can be obtained from the ei�s� fi�s and hi�s� All
of the raising operators can be written in the form ei� � �ei� � ei� � � �ei� � �ei� � ei� �� � etc��
and similarly for the lowering operators constructed from the f �s� Two elements
obtained from commuting in this way the same set of e�s� but in di�erent orders�
are proportional with constant of proportionality being determined by the Cartan
matrix through the commutation relations in Eq� �VII���	� Among the various
orderings we choose one as a basis element� Following the same procedure for the
f �s and adjoining the h�s we obtain a complete basis� The commutation relations
among them can be shown to be determined by the simple commutation relations
in Eq� �VII���	� that is� by the Cartan matrix�

The Cartan matrix thus contains all the information necessary to determine
entirely the corresponding Lie algebra� Its contents can be summarized in an elegant
diagrammatic form due to Dynkin� The Dynkin diagram of a semi
simple Lie
algebra is constructed as follows� For every simple root� place a dot� As we shall
show later� for a simple Lie algebra� the simple roots are at most of two sizes�

Darken the dots corresponding to the smaller roots� Connect the ithand jthdots by
a number of straight lines equal to AijAji� For a semi
simple algebra which is not
simple� the diagram will have disjoint pieces� each of which corresponds to a simple
algebra�

For SU��	 and G�� we have the Cartan matrices and Dynkin diagrams shown
below�

SU ��	 � A�

�
� ��

�� �

�

h

��

h

��
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G�

�
� ��

�� �

�

h

��

x

��

The darkened dot for G� corresponds to the second root� since the presence
of the �
�	 in the second row indicates that the second root is the smaller�

In subsequent sections we will determine the full set of Dynkin diagrams
which represent simple Lie algebras� Here we anticipate the result somewhat in
order to demonstrate how the Cartan matrix and Dynkin diagrams determine each
other� Consider the Dynkin diagram�

h

��

h

��

x

��

The Cartan matrix is determined by noting that A�� � A�� � �� since the
�rst and third dots are not connected� Since one line connects the �rst and second
points� we must have A�� � A�� � ��� The second and third points are connected
by two lines so A��A�� � �� Since the third root is smaller than the second� it must
be that A�� � �� while A�� � ��� Thus we have

�
��

� �� �

�� � ��

� �� �

�
��
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Footnote

�� JACOBSON� p� ����

References

Dynkin diagrams were �rst introduced in DYNKIN I� An excellent review of
much of the material presented in this and other chapters is found in the Appendix
to DYNKIN III�

Exercises

�� Find the Dynkin diagram for

�
�����

� �� � �

�� � �� �

� �� � ��

� � �� �

�
����� �

�� Find all the roots of B� whose Cartan matrix is�
� ��

�� �

�
�

Draw a picture of the roots of B� like that in Fig� III���

�� Draw a picture of the roots of G� and compare with Fig� III���
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VIII� The Classical Lie Algebras

The general considerations of the previous chapter can be applied to the
most familiar simple Lie algebras� the classical Lie algebras� SU�n�� SO�n�� and
Sp��n�� These algebras are de�ned in terms of matrices and are simpler to visualize
than some of the exceptional Lie algebras we shall encounter soon� The explicit
construction of the Cartan subalgebra and the root vectors and roots for the classical
algebras should make concrete our earlier results�

The space of all n � n matrices has a basis of elements eab where the com�
ponents of eab are

�eab�ij � �ai�bj � �VIII�	�

Thus the multiplication rule for the matrices is

eabecd � ead�bc �VIII���
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and the commutator is
�eab� ecd� � ead�bc � ecb�ad � �VIII�
�

The matrix I �
P

i eii commutes with all the basis elements� It thus forms the basis
for a one�dimensional Abelian subalgebra� Consequently� the Lie algebra of all the
n�n matrices is not semi�simple� However� if we restrict ourselves to traceless n�n
matrices� we do obtain a semi�simple �in fact� simple� Lie algebra called An��� This
is the complex version of SU�n��

The elements of An�� are linear combinations of the eabs for a �� b and of
elements h �

P
i �ieii where

P
i �i � �� FromEq� �VIII�
� we �nd the commutation

relation
�h� eab� � ��a � �b�eab � �VIII���

Thus eab is a root vector corresponding to the root
P

i �ieii � �a � �b�

Let us choose as a basis for the root space

�� �
X
i

�ieii � �� � ��

�� �
X
i

�ieii � �� � ��

� � �

�n�� �
X
i

�ieii � �n�� � �n �VIII���

and declare these positive with �� � �� � � � � �n��� It is easy to see that these
same roots are the simple roots�

In order to �nd the scalar product h � i� we �rst determine the Killing form
as applied to elements of the Cartan algebra� using Eq� �IV�
� and Eq� �VIII����
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�X
i

�ieii�
X
j

��jejj
�
� Tr ad

�X
i

�ieii

�
ad

�
�X

j

��jejj

�
A

�
X
p�q

��p � �q���
�
p � ��q�

� �n
X
p

�p�
�
p � �VIII���

The Killing form determines the connection between the Cartan subalgebra � H�
and the root space H�

� � That is� it enables us to �nd h�i�

�h�j �
X
i

�ieii� � �j�
X
i

�ieii�

� �j � �j�� � �VIII���

Combining this with Eq� �VIII���� we see that

h�i � �eii � ei�� i������n� �VIII���

and
h�i� �ji � ���ij � �i j�� � �i�� j����n� � �VIII���

This agrees in particular with our earlier computation for SU�
�� From the value
of h�i� �ji we see that the Cartan matrix and Dynkin diagram are given by

An �

�
����������	

� �	 � �

�	 � �	 �

� �	 � �

� �	 �

�	 � �	
� � � � �	 �



�����������

h

��

h

��

� � � h

�n
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where we have chosen to represent An rather than An���

We next consider the symplectic group Sp��m� and its associated Lie
algebra� The group consists of the �m��m matrices A with the property AtJA � J
where � �t indicates transpose and J is the �m� �m matrix

J �


� I

�I �

�
� �VIII�	��

The corresponding requirement for the Lie algebra is obtained by writing A �
exp�A� � I � A� Thus we have At � JAJ � In terms ofm � m matrices� we can
write

A �

A� A�

A� A�

�
�VIII�		�

and �nd the restrictions At
� � �A��A� � At

��A� � At
�� In accordance with these�

we choose the following basis elements �j� k � m��

e�jk � ejk � ek�m�j�m �

e�jk � ej�k�m � ek�j�m � j � k

e�jk � ej�m�k � ek�m�j � j � k � �VIII�	��

The Cartan subalgebra has a basis hj � e�jj� By direct computation we �nd that if
h �

P
i hi�i� �

h� e�jk
�
� ���j � �k�e

�
jk � j �� k�

h� e�jk
�
� ���j � �k�e

�
jk � j � k�

h� e�jk
�
� ���j � �k�e

�
jk � j � k � �VIII�	
�
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We take as an ordered basis of roots ���h� � �� � ��� ���h� � �� � ���
� � ��m���h� � �m�� � �m� �m�h� � ��m� With this ordering� the �is are them�
selves simple roots� For example� the root ��h� � �m�� � �m is not simple since it
is the sum of �m�� and �m�

We calculate the Killing form on the Cartan subalgebra explicitly by consid�
ering in turn the contribution of each root to the trace which de�nes the form�

�X
i

�ihi�
X
j

��jhj
�
�
X
p�q

��p � �q���
�
p � ��q� � �

X
p�q

��p � �q���
�
p � ��q�

�
X
p�q

���p � �q���
�
p � ��q� � ��p � �q���

�
p � ��q�� �

X
p

��p�
�
p

� ��m� 	�
X
p

�p�
�
p � �VIII�	��

We easily see then that

h�i �
�hi � hi���

��m � 	�
� i � m

h�m �
hm

��m � 	�
� �VIII�	��

Since �hi� hj� � �ij��m� 	�� we can compute directly all the terms we need for the
Cartan matrix�

h�i� �ji � 	

��m � 	�
���ij � �i j�� � �i�� j�� i� j �� m

h�i� �mi � � 	

��m � 	�
�i�� m� i �� m

h�m� �mi � 	

�m � 	�
� �VIII�	��

The Lie algebra which is associated with Sp��n� is denoted Cn� From
Eq� �VIII�	�� we derive its Cartan matrix and Dynkin diagram�
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Cn �

�
����������	

� �	 � � � �

�	 � �	 �

� �	 � �

� � �	 �

� �	 � �	
� � � � �� �



�����������

x

��

x

��

� � � x

�n��

h

�n

The orthogonal groups are given by matrices which satisfy AtA � I�
Using the correspondence between elements of the group and elements of the Lie
algebra as discussed in Chapter I� A � expA � I�A�we see that the requirement is
A�At � �� Clearly these matrices have only o��diagonal elements� As a result� it
would be hard to �nd the Cartan subalgebra as we did for An and Cn by using the
diagonal matrices� To avoid this problem� we perform a unitary transformation on
the matrices A� This will yield an equivalent group of matrices obeying a modi�ed
condition� Let us write

A � UBUy � �VIII�	��

so that
AtA � UytBtU tUBUy � I� �VIII�	��

Setting K � U tU � we have BtKB � K� Writing B � I � B� we have

BtK �KB � �� �VIII�	��

A convenient choice for the even dimensional case� n � �m� is
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U �
	p
�


i �i
�	 �	

�
� �VIII����

so that

K �


� I

I �

�
� �VIII��	�

Representing B in terms of m�m matrices�

B �

B� B�
B� B�

�
�VIII����

the condition becomes

B� � �Bt� � B� � �Bt� � B� � �Bt� � �VIII��
�

We can now select a basis of matrices obeying these conditions�

e�jk � ej�k � ek�m�j�m�

e�jk � ej�k�m � ek�j�m� j � k

e�jk � ej�m�k � ek�m�j � j � k �VIII����

and designate the basis for the Cartan subalgebra by

hj � e�jj � �VIII����

Writing a general element of the Cartan subalgebra as

h �
X
i

�ihi � �VIII����

we compute the various roots
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�
h� e�jk

�
� ��j � �k�e

�
jk j �� k�

h� e�jk
�
� ��j � �k�e

�
jk j � k�

h� e�jk
�
� ���j � �k�e

�
jk j � k � �VIII����

Note that for e�jk and e�jk we must have j �� k or else the matrix vanishes� Thus
there are no roots corresponding to ���j � We may take as a basis of simple roots
���h� � �� � ��� ���h� � �� � ��� � � ��m���h� � �m�� � �m� �m�h� � �m�� � �m�

The Killing form restricted to the Cartan subalgebra is given by

�
X
i

�ihi�
X
j

��jhj� �
X
i ��j

��i � �j���
�
i � ��j� � �

X
i�j

��i � �j���
�
i � ��j�

�
X
i�j

���i � �j���
�
i � ��j� � ��i � �j���

�
i � ��j���

X
i

��i�
�
i

� ��m� 	�
X
i

�i�
�
i � �VIII����

From this relation we can determine the h�is�

h�i �
hi � hi��
��m � 	�

� i � m �VIII���a�

h�m �
hm�� � hm
��m � 	�

� �VIII���b�

The scalar products of the roots are now easily computed�

h�i� �ji � ���ij � �ij�� � �i��j �����m� 	�� i� j � m

h�m� �mi � 	����m� 	��

h�m��� �mi � ��

h�m��� �mi � �	����m� 	�� � �VIII�
��
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Thus the Cartan matrix and Dynkin diagram are

Dn �

�
�������������	

� �	 � � � � �

�	 � �	 �

� �	 �

� � �	 � �

� �	 � �	 �	
� � �	 � �

� � �	 � �



��������������

h

��

h

��

� � � h

�n��

�
�
�
�
�
h

�n��

�
�
�
�
�
h

�n

For the odd dimensional case of the orthogonal group� we proceed the same
way except that we set

U � �p
�

�
�	
p
� � �

� im �im
� �	m �	m



�� �VIII�
	�

so that

K �

�
�	
	 � �

� �m 	m

� 	m �m



�� �VIII�
��

where the subscript m indicates an m � m matrix� The corresponding matrix B
may be parameterized as
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B �

�
�	
b� c� c�

d� B� B�
d� B� B�



�� � �VIII�

�

For the �m � �m pieces of the matrix� the conditions are the same as for the even
dimensional orthogonal algebra� The constraints on the new matrices are

b� � � � c� � �dt� � c� � �dt� � �VIII�
��

Thus we must add to our basis for the �m dimensional orthogonal algebra the
elements �	 � j � m� �

e�j � e�j � ej�m � � e�j � ej� � e� j�m � �VIII�
��

The corresponding roots are seen to be

�
h� e�j

�
� ��je�j �

�
h� e�j

�
� �je

�
j � �VIII�
��

Using these new roots� together with those found for the even dimensional case� we
compute the Killing form

�X
i

�ihi�
X
j

��jhj
�

�
X
i ��j

��i � �j���
�
i � ��j� � �

X
i�j

��i � �j���
�
i � ��j� � �

X
i

�i�
�
i

� ��m � �

�
�
X
i

�i�
�
i � �VIII�
��

From this we can infer the values



�� VIII� The Classical Lie Algebras

h�i �
h�i � h�i��
��m � �

�
�

� i � m

h�m �
h�m

��m� �

�
�

�VIII�
��

where now the simple roots have the values ���h� � �� � ��� ���h� � �� �
��� � � ��m���h� � �m����m � �m�h� � �m� Note that the last of these was not even
a root for the even dimensional case� Using the Killing form� it is easy to compute
the scalar product on the root space�

h�i� �ji � 	

��m� �

�
�
���ij � �i j�� � �i�� j�� i � m

h�m� �ii � �� i � m � 	

h�m� �m��i � � 	

��m� �

�
�
�

h�m� �mi � 	

��m� �

�
�
� �VIII�
��

Accordingly� the Cartan matrix and Dynkin diagram are

Bn �

�
����������	

� �	 � � � �

�	 � �	 �

� �	 �

� � �	 �

� �	 � ��
� � � � �	 �



�����������

h

��

h

��

� � � h

�n��

x

�n

Notice the similarity between Bn and Cn� In the Cartan matrix they di�er only by
the interchange of the last o��diagonal elements� The corresponding change in the
Dynkin diagrams is to reverse the shading of the dots�
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��	�	� and
MILLER� pp� 
�	�
���

Exercise

	� Starting with the Dynkin diagrams� construct drawings of the roots of B��
D�� A�� B�� and C��
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IX� The Exceptional Lie Algebras

We have displayed the four series of classical Lie algebras and their Dynkin
diagrams� How many more simple Lie algebras are there� Surprisingly� there are
only �ve� We may prove this by considering a set of vectors �candidates for simple
roots� �i � H�

� and de�ning a matrix �analogous to the Cartan matrix���

Mij 	 

h�i� �ji

h�j � �ji
�IX���

and an associated diagram �analogous to the Dynkin diagram�� where the ithand

jthpoints are joined byMijMji lines� The set �i is called allowable � �in Jacobson�s
usage� if

i� The �i are linearly independent� that is� if det M �	 �

ii� Mij �  for i �	 j�

iii� MijMji 	 � �� 
� or ��
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With these de�nitions� we can prove a series of lemmas�

�� Any subset of an allowable set is allowable� Proof� Since a subset of a
linearly independent set is linearly independent� �i� is easy� Equally obvious
are �ii� and �iii��


� An allowable set has more points than joined pairs� Proof� Let � 	P
i �ih�i� �ii

�
�

� � Since the set is linearly independent� � �	  so h�� �i � �
Thus

 � h�� �i 	
X
i�j



h�i� �ji

h�i� �ii
�

� h�j � �ji
�

�

� no� of points

 � �
X
i�j

�MijMji�
�

� � no� of points � �IX�
�

For each pair of joined points� MijMji is at least unity� so

no� of joined pairs � no� of points�

�� An allowable set�s diagram has no loops� Proof� If it did� there would be a
subset with at least as many joined pairs as points�

�� If an allowable set has a diagram with a chain of points joined only to suc�
cessive points by single lines� there is an allowable set whose diagram is the
same except that the chain is shrunk to a point� Proof� Let the chain be
��� ��� � � ��m and let � 	

P
i �i� Now

h�� �i 	
X
i

h�i� �ii � 

X
i�j

h�i� �ji

	 mh��� ��i � �m � ��h��� ��i

	 h��� ��i �IX���

so � is the same size as the individual points in the chain� Moreover� if
� is joined to the chain at the end�say to ��� then h�� ��i 	 h�� �i� since
h�� �ji 	  for all j �	 ��
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�� No more than three lines emanate from a vertex of an allowable diagram�
Proof� Suppose ��� ��� � � � �m are connected to ��� Then h�i� �ji 	  � for
i� j �	  since there are no loops � Since �� is linearly independent of the �i� its
magnitude squared is greater than the sum of the squares of its components

along the orthogonal directions �ih�i� �ii
�
�

� �

h��� ��i �
X
i

h��� �ii
�h�i� �ii

�� � �IX���

Thus � �
P

iM�iMi�� But M�iMi� is the number of segments joining
�� and �i�

�� The only allowable con�guration with a triple line is

h h

�� An allowable diagrammay have one vertex with three segments meeting at a
point� but not more� It may have one double line segment� but not more� It
may not have both� Proof� In each of these instances� it would be possible
to take a subset of the diagram and shrink a chain into a point so that the
resulting diagram would have a point with more than three line emanating
from it� Note that this means that a connected diagram can have roots of at
most two sizes� and we henceforth darken the dots for the smaller roots�

�� The diagrams

x x h h h

and

x x x h h
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are not allowable� Proof� Consider the determinant of M for the �rst
diagram� �

��������


 ��   

�� 
 ��  

 �
 
 �� 

  �� 
 ��

   �� 


�
��������
�

We see that if we add the �rst and last columns� plus twice the second and
fourth� plus three times the third� we get all zeros� Thus the determinant
vanishes� The matrix for the second diagram is just the transponse of the
�rst�

�� The only diagrams with a double line segment which may be allowable are
of the form�

x x � � � x h

h h � � � h x

h h x x

�� By ��� above� the only diagrams with a branch in them are of the form�
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h

h

�
�
�

h h � � �

h

h � � � h h

��� The diagram below is not allowable

h h

h

h

h h h

Proof� The matrix for the diagram is�

�
��������������


 ��     

�� 
 ��    

 �� 
 ��  �� 

  �� 
 ��  

   �� 
  

  ��   
 ��

     �� 


�
��������������

Straightforward manipulation like that above shows that the determinant
vanishes�
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�
� The only allowable diagrams with a branch in them are of the form�

h h � � � h
�
�
�
�
�
h

�
�
�
�
�
h

h h � � �

h

h � � � h h

��� The diagram below is not allowable� This is proved simply by evaluating the
associated determinant and showing it vanishes�

h h

h

h h h h h h
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��� The complete list of allowable con�gurations is

An

h h � � � h h

Bn

h h � � � h x

Cn

x x � � � x h

Dn

h h � � � h
�
�
�
�
�

h

�
�
�
�
�
h

G�

h x



IX� The Exceptional Lie Algebras ��

F�

h h x x

E�

h h

h

h h h

E�

h h

h

h h h h

E�

h h

h

h h h h h

Above are given the names use to designate the �ve exceptional Lie al�

gebras� So far we have only excluded all other possibilities� In fact� these �ve
diagrams do correspond to simple Lie algebras�
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Footnote

�� Throughout the chapter we follow the approach of JACOBSON� pp� �
��
����

Exercise

�� Prove ��� and ��� above�
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X� More on Representations

We continue our discussion of Section IV� As before� a representation is a
mapping of the elements of the Lie algebra into linear operators�

e� � E�

hi � Hi �X���

which preserves the commutation relations of the Lie algebra� The operators E and
H act on a vector space with elements generically denoted �� We can select a basis
in which the H�s are diagonal�� Thus we can write

H�M �M �h��M �X�	�

where M � H�

� is called a weight and �M is a weight vector�
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The weights come in sequences with successive weights di�ering by roots of
the Lie algebra� We have seen that if a complete string of roots is M � p�� � � �M�

� � �M �m�� then �see Eq� �V�		��

m � p � 	
hM��i

h�� �i
� �X���

A nite dimensional irreducible representation must have a highest weight� that
is� a weight � such that every other weight is less than �� where the ordering is
determined in the usual fashion �That is� we pick a basis of roots and order it�
A weight is positive if� when expanded in this ordered basis� the rst non�zero
coe�cient is positive� and we say M� � M� if M� �M� � ���

Let f�ig be a basis of simple roots and let � be the highest weight of an
irreducible representation� Then � � �i is not a weight� Thus by Eq� �X����

�i � 	
h�� �ii

h�i� �ii
� � � �X�
�

Each greatest weight� �� is thus specied by a set of non�negative integers called
Dynkin coe�cients�

�i � 	
h�� �ii

h�i� �ii
� �X���

We could use the inverse of the Cartan matrix to determine the precise expansion
of � in terms of the simple roots� but this is rarely worthwhile�

Given the Dynkin coe�cients of the highest weight� it is easy to determine
the full set of weights in the irreducible representation� expressed again in terms
of their Dynkin coe�cients� The algorithm is similar to that we used to nd all
the roots of a Lie algebra from its Cartan matrix� Given a weight� M � we need to
determine whether M ��j is also a weight� Since we begin with the highest weight
and work down� we know the value of p in Eq� �X���� We shall keep track of the
integers

Mi � 	
hM��ii

h�i� �ii
� �X���
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If
mj � pj �Mj � � � �X���

then we know we can subtract the root �j from the rootM to obtain another root�
We record the Dynkin coe�cients ofM ��j by subtracting fromMi the quantities
Aji� This is most easily carried out by writing the Cartan matrix at the top of the
computation�

Consider an example for SU��� �or A� in the other notation�� Let us de�
termine the weights corresponding to the irreducible representation whose highest
weight has Dynkin coe�cients ������

�
	 ��

�� 	

�

� �

�� �

� ��

The Dynkin coe�cients are entered in the boxes and successive rows are obtained
by subtracting the appropriate row of the Cartan matrix� It is easy to see that the
highest weight here can be expanded in simple roots as

� � �
��� �

�
��� � �X���

Thus the weights of this three dimensional representation are

�
��� �

�
��� � ��

��� �
�
��� � ��

��� �
�
��� �

Of course� if we had started with Dynkin coe�cients ������ we would have obtained
a three dimensional representation with weights
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�
��� �

�
��� �

�
��� �

�
��� � ��

��� �
�
��� �

Actually� we have relied on our previous knowledge of SU��� to assert that these
representations are three dimensional� All we have seen is that there are three
di�erent weights� It is often the case that a weight may correspond to more than
one �linearly independent� weight vector� so that the weight space may be more
than one dimensional� Consider for example the SU��� representation with Dynkin
coe�cients ������ the familiar adjoint representation�

�
	 ��

�� 	

�

� �

�� 	 	 ��

� �

� �	 �	 �

�� ��

This representation is eight dimensional� The weight with Dynkin coe�cients �����
corresponds to a two dimensional space� Indeed� since this is the adjoint repre�
sentation� we recognize that this space coincides with the Cartan subalgebra� The
procedure for determining the dimensionality of a weight space will be discussed
later�

As two additional examples� consider the representations of SO���� �D��
specied by the Dynkin coe�cients ����������� and ����������� where the simple
roots are numbered�
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h

��

h

��

h

��

�
�
�
�
�

h

��

�
�
�
�
�
h

��

We have then the schemes�

�
��������

	 �� � � �

�� 	 �� � �

� �� 	 �� ��

� � �� 	 �

� � �� � 	

�
��������

� � � � �

�� � � � �

� �� � � �

� � �� � �

� � � �� � � � � � ��

� � � �� ��

� � �� � �

� �� � � �

�� � � � �

and
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��������

	 �� � � �

�� 	 �� � �

� �� 	 �� ��

� � �� 	 �

� � �� � 	

�
��������

� � � � �

� � � � ��

� � �� � �

� �� � � � � � � �� �

�� � � � � � �� � �� �

�� � � �� � � � �� � �

�� � �� � � � � � � ��

� �� � � � �� � � � ��

� �� � � ��

� � �� � �

� � � �� �
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New representations may be obtained by taking products of representations�
This procedure when applied to SU�	� is the familiar addition of angular momentum
in quantum mechanics� Suppose we have two representations� x � X��� and x �
X��� where x � L and X��� and X��� are linear operators on vector spaces whose
basis elements will be denoted by � and � respectively�

X����i �
X
j

X
���
ij �j �X��a�

X����i �
X
j

X
���
ij �j � �X��b�

Here X���
ij and X���

ij are coe�cients� not operators� We can dene a product rep�
resentation on the product space whose basis elements are of the form �i � �j as
follows�

X�i � �j �
X
k

X
���
ik �k � �j �

X
l

�i �X
���
jl �l � �X����

For the rotation group� we might write J � L� S and � and � might represent the
spatial and spin parts of the wave function�

If x is an element of the Cartan subalgebra we indicate it by h and its
representation by H� If � and � are weight vectors with weights M ��� and M ����
then ��� is a weight vector of the product representation with weightM ����M ����
as we see from Eq� �X����� If the highest weights of the two representations are
���� and ����� then the highest weight of the product representation is ���� ������

Our construction of the weights of an irreducible representation from the
Dynkin coe�cients of its highest weight shows that all the weights are determined
by the highest weight� It is also possible to show that the weight space of the
highest weight is always one�dimensional for an irreducible representation� Thus
each product of irreducible representations contains one irreducible representation
whose highest weight is the sum of the highest weights of the two representations
forming it�
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As an example� consider again SU���� The three dimensional representation
may be represented by ����� and the other three dimensional representation by
������ Their product must contain the representation ������ which is in fact the
eight dimensional representation�

Consider the special case in which the representations being multiplied are
identical� The product space can be broken into two parts� a symmetric part with
basis �i� �j ��j � �i� and an anti�symmetric part� with basis �i��j � �j ��i� If
the highest weight of the representation carried by � is �� then the highest weight
carried by the symmetric space is 	�� The anti�symmetric space does not contain
the vector with this weight since it is symmetric � The highest weight in the anti�
symmetric space is found by taking the sum of the highest and the next�to�highest
weights�

Again� a simple example may be taken from SU���� Consider � � � �i�e�
��� ������ ���� The second highest weight in ����� is ������� Thus the anti�symmetric
space carries the representation whose highest weight is ������������������� This is
the ��� The symmetric space carries the �	���� the � of SU���� In general� however�
the product contains more than two irreducible components�

It is possible to extend the anti�symmetrization procedure by taking the n�
fold anti�symmetric product of a given representation� It is clear that the three
fold anti�symmetric product will contain a representation whose highest weight is
the sum of the three highest weights of the irreducible representation from which
it is made� and so on� Similarly� the n�fold symmetric product will contain an
irreducible representation whose highest weight is n�times the highest weight of the
initial irreducible representation�

These procedures are especially easy to apply to An� beginning with the
fundamental representation������ � � ��� Calculating the weights of this represen�
tation� we quickly see that the two�fold anti�symmetrization yields a highest weight
��� �� �� � � ��� the three�fold anti�symmetrization ��� �� �� �� � � ��� and so on�

In fact� combining these operations we can produce any of the irreducible
representations of An� To produce the representation with highest weight �m��

m�� m�� � � ��� we take the m��fold symmetric product of ��� �� �� � � �� and the m��
fold symmetric product of ��� �� �� � � �� and form their product� The irreducible
representation with highest weight in the product is �m��m�� �� � � ��� We continue
in this fashion to build �m�� m�� m�� � � ���
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The representations with Dynkin coe�cients all equal to zero except for one
entry of unity are called basic representations� It is clear that every representa�
tion can be formed from basic representations simply using the highest weights of
product representations� Moreover� for An� we have seen that every basic represen�
tation can be obtained from a single fundamental representation�

Consider� on the other hand� B�� �O����� We display the weights of the
representations ������� and ��������

�
��

	 �� �

�� 	 �	

� �� 	

�
��

� � �

�� � �

� �� 	

� � �

� � �	

� �� �

�� � �
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�
��

	 �� �

�� 	 �	

� �� 	

�
��

� � �

� � ��

� �� �

�� � � � � ��

�� � ��

� �� �

� � ��

We see that the twice anti�symmetric product of ������� contains �������� but
the three times anti�symmetric product is �����	�� Thus we cannot build all the
basic representations from �������� Nor can they all be built from �������� We must
begin with both the ������� and ������� to generate all the basic representations�

Analogous considerations establish that a single representation will generate
all representations for the Cn algebras� but three initial representations are necessary
for the Dn algebras�
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Footnote

�� See JACOBSON� p ����

References

Representations are discussed at length in the appendix to DYNKIN III�
For SU �n�� Young tableaux are the most e�ective procedure� They are explained
in GEORGI� For a mathematical exposition� see BOERNER� For a very practical
exposition� see SCHENSTED�

Exercises

�� Find the weight scheme for the representations ��� � and ��� �� of B��

	� Find the weight scheme for ��� �� of G��

	� Find the weight scheme for ��� �� and ��� �� of F��
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XI� Casimir Operators and Freudenthal�s Formula

One of the most familiar features of the analysis of SU��� is the existence of an
operator T � � T �

x�T �
y �T �

z which commutes with all the generators	 Tx� Ty� and Tz�
It is important to note that T � really has meaning only for representations	 and not
as an element of the Lie algebra since products like txtx are not de
ned for the
algebra itself� Products like TxTx are de
ned for representations since then Tx is
a linear transformation of a vector space into itself	 and can be applied twice� We
seek here the generalization of T � for an arbitrary simple Lie algebra�

It is well�known that T � � �
� �T�T� � T�T�� � TzTz� This is the form which

is easiest to relate to the forms we have used to describe Lie algebras in general�
We might guess that the generalization will be roughly of the form

C �
X
j�k

HjMjkHk �
X
����

E�E�� �XI���
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where Hj � H�j and the �j are a basis of simple roots� The matrix M is to be
determined by requiring that C commute with all the generators of the algebra� The
normalizations of the e� are chosen so �e�� e�� � �����	 and thus

�e�� e��� � h� � �XI��a�

�E�� E��� � H� � �XI��b�

Let us de
ne N�� by

�e�� e�� � N��e��� � �N� �e��� � �XI���

It is clear that C in Eq� �XI��� already commutes with all the generators
of the Cartan subalgebra since �Hi�Hj� � � and �E�E���Hi� � �� It remains to
calculate the commutator of C with E�� We begin with the second term in C�

�
�X
����

E�E��� E�

�
� �

X
����

����

E�N����E���

�
X
����
�����

N��E���E�� �E�H�� �H��E� � �XI���

We can obtain the necessary relation between the coe�cients N�� using the invari�
ance of the Killing form�

�e�� �e� � e� �� � N��� ������� � �N������ �������

� ��e�� e� � � e��

� N����������

N��� � �N������ � �XI��

Thus we have

X
� ���

�����

N��E���E�� �
X
�� ���

�� ���

N������E��E����

�
X
�� ���

�� ���

�N�����E��E���� � �XI���
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so the piece of the commutator of E� with C we have calculated is

�
�X
����

E�E��� E�

�
� � E�H�� �H��E� � �XI���

We now arrange the matrix M so that the remainder of the commutator of C with
E� just cancels this�

�
�X

j�k

HjMjkHk� E�

�
� �

X
j�k

�h�k� �iHjMjkE� � h�� �jiMjkE�Hk� � �XI���

Now suppose that � has the expansion in terms of simple roots

� �
X
l

kl�l � �XI���

Then the coe�cients are given by

kl �
X
j

h�� �jiA
��
jl �XI����

where the matrix A is

Apq � h�p� �qi �XI����

and A�� is its inverse� Now
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H� �
X
l

klHl

�
X
j�k

h�� �jiA
��
jk Hk � �XI����

Thus if we take the matrixM to be A��	 then the second portion of the commutator
is �

�X
j�k

HjA
��
jkHk� E�

�
� � H�E� � E�H� � �XI����

just cancelling the 
rst part� Altogether then

C �
X
j�k

HjA
��
jk Hk �

X
����

E�E�� � �XI����

Consider SU��� as an example� Our standard commutation relations are

�tz� t�� � t�� �tz� t�� � �t�� �t�� t�� � �tz � �XI���

from which we 
nd
�t�� t�� � Trad t�ad t� � � � �XI����

Thus to obtain the normalization we have used in deriving the Casimir operator	
we must set

t�
�
�

�

�
t� � t�

�
�

�

�
t� � �XI����

so that
�t�
�
� t�

�
� � � � �XI����
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Now we regard t�
�
as the e�� The corresponding h� is accordingly

h� �
�
t�
�
� t�

�

�
�

�

�
tz� �XI����

It is straightforward to compute

h�� �i � �h� � h�� �
�

�
�tz� tz� �

�

�
� �XI����

It follows that the �� � matrix M � A�� is simply �� Altogether then	 we 
nd

C � �H�H� �E�E�� �E��E�

�
�

�
TzTz �

�

�
�T�T� � T�T�� � �XI����

This di�ers from the conventional SU��� Casimir operator by an overall factor of
�
�
	 a result simply of our need to establish some initial normalization in Eq� �XI����

The importance of the Casimir operator is that since it commutes with all the
generators	 including the raising and lowering operators	 it has the same value on
every vector of an irreducible representation	 since every such vector can be obtained
by applying lowering operators to the highest weight vector� In fact	 we can 
nd
the value of the Casimir operator on an irreducible representation by considering its
action on the highest weight vector� Suppose the highest weight is � and that �� is
a vector with this weight� Then for every positive root � we know that E��� � �
since otherwise it would have weight � � �� On the other hand	 we can compute
E�E���� � �E��E� � H���� � ��h���� � h�� �i��	 if � is positive� Thus we
have

C�� �
X
j�k

HjA
��
jk Hk�� �

X
���

h�� �i��

�
X
j�k

h��jiA
��
jk h�� �ki�� �

X
���

h�� �i�� � �XI����
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Thus on this irreducible representation

C �
X
j�k

h��jiA
��
jk h�� �ki�

X
���

h�� �i

� h���i� h�� ��i �XI����

where we have introduced the element of H�
�

� �
�

�

X
���

� � �XI����

A few comments are in order concerning normalizations� We have derived
our scalar product from the Killing form� As we saw in Chapter IV	 all invariant
bilinear forms are proportional to the Killing form if the algebra is simple� Suppose
we de
ne a second form by

�x� y�� � c�x� y� � cTr adxady � �XI����

Now since h� is de
ned by
�h�� k� � ��k� �XI����

we de
ne h�� by
�h��� k�

� � ��k� �XI����

so that

h�� �
�

c
h� �XI���
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and

h�� � i� � �h��� h
�
� �
� �

�

c
h�� � i � �XI����

We now compare the commutation relations as expressed using the two dif�
ferent scalar products� We have

�h�� e� � � ��h� �e� � �h� � h��e� � h�� �ie� �XI����

which becomes

�h��� e�� � ��h���e� � �h��� h
�
��
�e� � h�� �i�e� � �XI����

Thus the commutation relations look the same for this new scalar product� A new
Casimir operator �which is just a multiple of the old one� can be chosen so that
its value is just h���� ��i�� In this way	 we can choose a scalar product with any
desired normalization and have the computations go through just as before� For
some applications	 it is traditional to use a scalar product which gives the largest
root a length squared equal to �� We indicate this scalar product by h � i��

One particular way to choose an invariant bilinear form is to take the trace
of two representation matrices� That is	 if � is a representation ��e�� � E�	 etc�	
then we de
ne

��x� y�� � Tr��x���y� � �XI����

The invariance of this form follows from the invariance of traces under cyclic per�
mutation� We know then that �� � �� is proportional to the Killing form and to the
form � � �� which yields h � i�� The constant of proportionality to the latter is called
the index of the representation	 l��

��x� y�� � l��x� y�� � �XI����
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Now we can evaluate l� by considering C with the normalization appropriate
to � � ��� For a representation with highest weight �	 C � h���� ��i�� If we take
Tr C	 we get N�h���� ��i�	 where N� is the dimension of the representation� On
the other hand	 replacing �� � �� by l�� � �� yields l�Nadj where Nadj is the dimension
of the algebra	 that is	 the dimension of the adjoint representation� Thus

l� �
N�h���� ��i�

Nadj

� �XI����

We shall see some applications of the index in later chapters�

One particular application of the Casimir operator is in deriving Freuden�

thal�s Recursion Formula for the dimensionality of a weight space� Previously	
we developed an algorithm for determining all the weights of an irreducible rep�
resentation	 but without ascertaining the dimensionality of each weight space	 an
omission which we now rectify� Subsequently	 this result will be used to derive
Weyl�s formula for the dimension of an irreducible representation�

We consider an irreducible representation whose highest weight is � and seek
the dimensionality of the space with weight M � Now we know the constant value
of C on the whole carrier space of the representation	 so we can calculate the trace
of C restricted to the space with weight M �

TrMC � nM h���� ��i � �XI����

Here nM is the dimensionality of the space with weight M 	 that is	 the quantity we
wish to compute� Now we calculate the same quantity another way� The 
rst part
of C gives us

TrM
X
j�k

HjA
��
jk Hk �

X
j�k

h�j�M iA��jk h�k�M inM

� nM hM�M i � �XI����
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What remains is

TrM
X
���

�E�E�� � E��E�� � �XI����

where our normalization is �e�� e��� � � so

�E�� E��� � H�� �H�� E�� � h�� �iE� � �XI���

Now usually for SU��� we have

�T�� T�� � �Tz� �Tz � T�� � T� �XI����

and

T � � T �
z �

�

�
�T�T� � T�T�� � �XI����

We want to exploit our understanding of SU��� so we consider the SU��� generated
by E�� E��� and H�� The correspondence which gives the right normalization is

Tz �
H�

h�� �i
� T� �

s
�

h�� �i
E� � T� �

s
�

h�� �i
E�� � �XI����

Now consider the weight space associated with the weight M � The full ir�
reducible representation contains	 in general	 many irreducible representations of
the SU��� associated with the root �� We can pick a basis for the weight space for
weight M so that each basis vector belongs to a distinct irreducible representation
of the SU���� Each such irreducible representation is characterized by an integer or
half�integer	 t which is the maximal eigenvalue of Tz � Moreover	 the usual Casimir
operator	 Eq� �XI����	 then has the value t�t � ��� If �t is an appropriate weight
vector then we can write
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�
H�H�

h�� �i�
�

�

h�� �i
E�E�� �

�

h�� �i
E��E�

�
�t � t�t� ���t �XI����

so that

�E�E�� � E��E���t � h�� �it�t� ���t �
hM��i�

h�� �i
�t �XI����

where we have used the fact that �t has weight M � The particular weight vector
�t belongs to a series of weight vectors which form a basis for an irreducible repre�
sentation of the SU��� described above� Suppose the highest weight in this series is
M � k�	 and the associated weight vector is �M�k�� Then

Tz�M�k� � t�M�k� �
H�

h�� �i
�M�k� �

h��M � k�i

h�� �i
�M�k� � �XI����

Thus we can indentify

t �
h��M � k�i

h�� �i
� �XI����

This result can now be inserted in Eq� �XI���� to 
nd

�E�E�� � E��E���t � �k�k � ��h�� �i� ��k � ��hM��i��t � �XI����

Each of our basis vectors for the space with weight M has associated with
it a value of k� In fact	 more than one basis vector may have the same value of k�
A moment�s re�ection reveals that the number of such basis vectors is precisely the
di�erence between the dimension of the space with weight M � �k � ��� and that
with weight M � k�� Accordingly	 we write

TrM
X
���

�E�E�� � E��E��

�
X
k��

�
nM�k� � nM��k����

	
�k�k � ��h�� �i� ��k � ��hM��i�

� nM hM��i�
�X
k��

nM�k���kh�� �i� �hM��i� � �XI����
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Combining this result with Eqs� �XI���� and �XI����	 we 
nd

TrMC � nM h���� ��i

� nM hM�M i

�
X
���



nM hM��i�

�X
k��

�nM�k�hM � k�� �i

�
� �XI���

This relation may be solved for nM in terms of the higher weights�

nM �

P
���

P�
k�� �nM�k�hM � k�� �i

h��M � �����M i
� �XI����

The highest weight always has a space of dimension one� Using Freudenthal�s
formula	 Eq� �XI���	 we can determine the dimensionality of the spaces of the lower
weights successively� The denominator is most easily evaluated by expressing the

rst factor by its Dynkin coe�cients and the second factor in terms of simple roots�
As we shall demonstrate later	 the Dynkin coe�cients of � are ��� �� � � ��� Since �
and M appear in the table of weights expressed in Dynkin coe�cients	 it is easy
then to 
nd � �M � ��� Similarly	 � �M is easily determined from the table of
weights� If the Dynkin coe�cients of � �M � �� are

�� �M � ��� � �a�� a�� � � �� �XI����

and
��M �

X
i

ki�i �XI����

then

h��M � �����M i �
X
i

aiki
�

�
h�i� �ii � �XI����
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The quantity in the numerator can be evaluated fairly easily as well� For a
given positive root	 �	 we check to see whether M � � M � k� is also a weight� If it
is	 then M � and M lie in a string of weights separated by ��s� Let the highest and
lowest weights in the string be M � � p� and M � �m�� Then by Eq� �V����	

�hM �� �i � �m � p�h�� �i � �XI���

Let us consider an application of the Freudenthal formula to SU���� The
���dimensional representation has the Dynkin representation ��	��� It is the repre�
sentation with highest weight in the product of two adjoint representations�



� ��

�� �

�

� �

� � � �

�� � � � � ��

�� � � ��

�� � � � � ��

�� � � ��

�� � �� �� � ��

�� � � ��

�� ��

First note that the weights ��	�� and ��	�� clearly are one dimensional since
there is only one way to reach them by lowering operators from the highest weight�
Thus the 
rst ambiguity is for the weight ��	��� We compute with M���	��
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� �M � �� � �� �

��M � �� � ��

h� �M � �����M i � �� �
�

�
h��� ��i �XI���

where we have used the relation h��� ��i � h��� ��i�

To compute the numerator	 we remember that there are three positive roots
��� ��� and �� � ��� The weight preceding ��	�� by �� is ��	��� For this weight	
m�� and p��� Similarly for ��	�� which precedes ��	�� by ��� The weight preceding
��	�� by �� � �� is ��	��� For this weight	 m�� and p ��� Remembering that all
the roots of SU��� have the same size	 we have for the numerator �������h��� ��i
and thus

N����� � � � �XI���

For the weight ��	��� we have

� �M � �� � ��� ��

� �M � �� � ���

h��M � �����M i � �� � �� �
�

�
� h��� ��i � �XI���

The numerator receives a contribution of �h��� ��i from the root ��� For the root ��
there are two preceding weights to consider� The weight ��	�� contributes �h��� ��i�
The weight ��	�� contributes ��� � ��h��� ��i	 where the factor of two comes from
the dimensionality of the weight space for ��	��� For the root �� � ��	 there is a
contribution �h��� ��i� Altogether	 then	

N������ �
� � � � � � �

�� � ��
� � � �XI���
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References

The derivation of Freudenthal�s formula follows that given by JACOBSON	
pp� �������� The index of a representation is developed by DYNKIN II	 see in
particular pp� ��������

Exercises

�� Find the index of the seven dimensional representation of G��

�� Find the dimensionalities of all the weight spaces of the ���dimensional rep�
resentation of SU����

�� Show that the index of the k dimensional representation of SU ��� is
�k � ��k�k � �����
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XII� The Weyl Group

The irreducible representations of SU��� manifest a very obvious symmetry�
for every state with Tz � m there is a state with Tz � �m� This symmetry is the
source of a more complex symmetry in larger algebras� The SU��� representations
are symmetric with respect to re�ection about their centers� The larger algebras
have re�ection symmetries and the group generated by these re�ections is called
the Weyl group�

Consider an irreducible representation of a simple Lie algebra� Now if � is a
root of the algebra	 we can consider the SU��� generated by e�� e��� and h� � The
representation of the full algebra will in general be a reducible representation of this
SU���� LetM be some particular weight and consider the weights and weight spaces
associated with � � � �M 
 ��M�M � �� � � �� These together form some reducible
representation of the SU���� Under the SU��� re�ection	 this representation is
mapped into itself� Moreover	 since each weight space has a basis in which each
element belongs to a distinct SU��� representation	 it is clear that the re�ection will
map one weight space into another of the same dimension� What is the relation
between the original weight and the one into which it is mapped� This is easily
inferred from geometry� The portion of M parallel to � is �hM��i�h�� �i and the
portion perpendicular to it is then M ��hM��i�h�� �i� The re�ection changes the
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sign of the former and leaves unchanged the latter� Thus the re�ection of the weight
can be written

S��M � �M � �
hM��i

h�� �i
� � �XII���

where S� is an operator acting on the space of weights	 H�

� � It maps weights into
weights whose weight spaces are of the same dimension� If we let � range over all
the roots of the algebra we get a collection of re�ections� By taking all combinations
of these re�ections applied successively	 we obtain the Weyl group�

The ��dimensional representation of SU��� provides a good example of the
symmetry at hand� The Y�� subspace contains three SU��� multiplets	 one with
T��	 one with T��	 and one with T��� The Y�� subspace contains two SU���
multiplets	 one with T���� and one with T����� The Y�� subspace has T��� The
SU��� re�ection maps the weight diagram into itself	 preserving the dimensionality
of each weight space�

Rather than consider all the S�	 it turns out that it su�ces to consider just
those S� where � � �� These will also generate the full Weyl group� For SU��� we
�nd

S�� � �� ����

�� � �� 
 �� � ��

S�� � �� � �� 
 �� � ��

�� ���� � �XII���

The full Weyl group for SU��� has six elements�

We shall not need to know much about the Weyl group for speci�c algebras�
The utility of the Weyl group is that it enables us to prove quite general propositions
without actually having to consider the details of representations since it permits
the exploitation of their symmetries�
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Let us prove a number of useful facts about the Weyl group� First	 the
Weyl group is a set of orthogonal transformations on the weight space� Orthogonal
transformations are those which preserve the scalar product� It is intuitively clear
that re�ections have this property� To prove this for the full Weyl group it su�ces
to prove it for the S� which generate it� We have

hS�M�S�N i � hM � �
hM��i

h�� �i
��N � �

hN��i

h�� �i
�i

� hM�N i � �XII���

We know that the Weyl group maps weights into weights	 so by taking the
adjoint representation	 we see that it maps roots into roots� The particular re�ec�
tions S� where � is simple have a special property� Certainly S���� � ��� For
every other positive root	 � � ��	 S���� is positive� To see this	 express

� �
X

j

kj�j � �XII���

Now � is one of the �j�s	 say � � ��� Thus

S�� ��� �
X

j

kj�j � ���
X

j

kj
h�j� ��i

h��� ��i

�
X

j��

kj�j 
 �� � something � �XII���

Since � �� � � ��	 some kj �� � for j � �� Thus the root S���� has some positive
coe�cient in its expansion in terms of simple roots� But this is enough to establish
that all the coe�cients are positive and hence so is the root�

The Weyl group provides the means to prove the relation used in the preced�
ing section	 that the Dynkin coe�cients of � � �

�

P
��� � are all unity� Let �i be

one of the simple roots� By the orthogonality of the Weyl re�ections	 hS�i
�� �ii �

h����ii� On the other hand	 S�i
interchanges all the positive roots except �i itself	

so S�i
� � � � �i� Thus
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h� � �i� �ii � h����ii

�h�� �ii � h�i� �ii �XII���

as we wished to show�

Finally	 consider all the weights M � which can be obtained by acting on the
weight M with an element S � W 	 the Weyl group� We claim that the M � which
is the highest has Dynkin coe�cients which are all non�negative� Suppose M� is
the highest of these weights SM 	 and further suppose that the Dynkin coe�cient
�hM�� �ii�h�i� �ii � �� Then S�i

M� �M����ihM�� �ii�h�i� �ii is an even higher
weight	 providing a contradiction�

References

The Weyl group is covered by JACOBSON	 pp� ��������

Exercise

�� Find the elements of the Weyl group for G� and their multiplication table�
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XIII� Weyl�s Dimension Formula

In this Section we derive the celebrated formula of Weyl for the dimension�
ality of an irreducible representation of a simple Lie algebra in terms of its highest
weight� Our derivation is essentially that of Jacobson� which is based on the tech�
nique of Freudenthal�

We shall be considering functions de�ned on H�
� � Instead of parameterizing

elements of H�
� in terms of the simple roots� it is convenient to over�parameterize

by writing � � H�
� as

� �
X
���

��� � 	XIII��


We can de�ne the action of an element� S� of the Weyl group on a function of � by

	SF 
	�
 � F 	S���
 � 	XIII��
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As an example� consider the function known as the character of the represen�

tation

�	�
 �
X
M

nM exphM��i 	XIII��


where the sum is over all the weights of a representation and nM is the dimen�
sionality of the weight space for M � Now we calculate the action of S � W on
��

	S�
	�
 �
X
M

nM exphM�S���i

�
X
M

nM exphSM� �i

�
X
M

nM exphM��i � 	XIII�


Here we have used the orthogonality property of the Weyl group and the relation
nM � nSM � Thus we see that S� � �� that is � is invariant under the Weyl group�

Consider next the function

Q	�
 �
Y
���

�exp	
�

�
h�� �i
� exp	�

�

�
h�� �i
� � 	XIII��


We want to determine the behavior of this function when acted upon by elements
of the Weyl group� It su�ces to determine the e�ect of the Si � S�i � the re�ections
associated with simple roots�

	SiQ
	�
 �
Y
���

�
exp

�
�

�
h�� S��i �i

�
� exp

�
�
�

�
h�� S��i �i

��

�
Y
���

�
exp

�
�

�
hSi�� �i

�
� exp

�
�
�

�
hSi�� �i

��
� 	XIII��




�� XIII� Weyl�s Dimension Formula

We have already seen that Si interchanges all the positive roots except �i whose
sign it changes� Thus we see directly that

	SiQ
	�
 � �Q	�
 � 	XIII��


Now Si reverses the sign of �i� but leaves every vector orthogonal to �i unchanged�
Thus detSi � �� and we can write

	SiQ
 � 	detSi
Q � 	XIII��


Indeed� every S � W is a product of Si�s� so

SQ � detSQ � 	XIII��


Functions with this property are called alternating�

We can make alternating functions by applying the operator

� �
X
S�W

	detS
S 	XIII���


for we have

S�� �
X
S�W

S�	detS
S

�
X
S�W

detS�det	S�S
S�S

� detS�� � 	XIII���


It is convenient to �nd a representation of the alternating function Q	�
 in
the form �F 	�
� From the de�nition of Q	�
 it is clear that there must be an
expansion of the form
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Q	�
 � �
X
�

c� exph� � �� �i 	XIII���


where � is half the sum of all the positive roots and where � is a sum of distinct
positive roots� Now in such an expansion it is redundant to include both � exphM��i
and � exphSM� �i since they are equal up to a factor detS� We have already seen
that among all the SM � S � W � the largest one has only non�negative Dynkin
coe�cients� Thus we need only consider terms where � � � has only non�negative
Dynkin coe�cients� In fact� we can restrict this further because if M has a Dynkin
coe�cient which is zero� then � exphM��i � �� This is easy to establish since if
M 	hi
 � �� then SiM � M and Si� exphM��i � � exphSiM��i � � exphM��i �
detSi� exphM��i � �� exphM��i � �� However� we have seen that � has Dynkin
coe�cients which are all unity� Now since � is a sum of positive roots it cannot have
only negative Dynkin coe�cients� Thus we see that the sum� Eq� 	XIII���
 need
include only � � �� Comparing the coe�cients of exph�� �i we see that c��� � � so

Q	�
 �
Y
���

�exp
�

�
h�� �i � exp�

�

�
h�� �i�

�
X
S�W

	detS
 exphS�� �i � 	XIII���


We shall now use these results to analyze the character� We begin with
the Freudenthal recursion relation� Eq� 	XI��
� together with

P�

k��� nM�k�hM �
k�� �i � � �

�h�� ���� �i � h�� �i � hM�M i�nM

�
X
����

�X
k��

nM�k�hM � ��� �i� 	XIII��


Mulitplying by exphM��i and summing over M � we have
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�h�� ���� �i � h�� �i���
X
M

nmhM�M i exphM��i

�
X
M

X
����

�X
k��

nM���hM � ��� �i exphM��i � 	XIII���


Remembering that 	see Eq� 	IV��



hM�N i �
X
���

�	hM
�	hN 
 �
X
���

hM��ih��N i � 	XIII���


we derive the relations

	

	��
exphM��i � h��M i exphM��i � 	XIII���a


X
���

	�

	���
exphM��i � hM�M i exphM��i � 	XIII���b


Inserting this into Eq� 	XIII���
 gives

�h�� ���� �i � h�� �i �
X
���

	�

	���
��

�
X
M

X
� ���

�X
k��

nM���hM � ��� �i exphM��i � 	XIII���


To analyze the right hand side of Eq� 	XIII���
� let us �rst �x � �� � and consider
the SU	�
 generated by E�� E��� and H�� The irreducible representation of the full
algebra is� in general� a reducible representation of this SU	�
� The dimensionality
nM is just the number of SU	�
�irreducible representations present at the weight
M � Thus we can proceed by calculating the contribution of each SU	�
�irreducible
representation to the sum for �xed M and �� The string of weights containing M
which correspond to an SU	�
 irreducible representation are distributed symmet�
rically about a center point� M� which can be expressed in terms of the highest
weight in the sequence� M�� as
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M� �M� � �
hM�� �i

h�� �i
� 	XIII���


Note that hM�� �i � ��

Thus each weight in the sequence is of the form M� � m� where m is an
integer or half�integer� The range of m is from �j to j� where again j is an integer
or half�integer� Now we can write the contribution of a single SU	�
 irreducible
representation to the sum as

X
M

�X
k��

hM � ��� �i exphM��i

�
X
m

j�mX
k��

hM� �m�� k�� �i exphM� �m�� �i

�
X
m

j�mX
k��

h�� �i	m� k
 exphM�� �i exp	mh�� �i


� h�� �i exphM�� �i
X
m

j�mX
k��

	m � k
 exp	mh�� �i
 �

	XIII���
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The double sum is most easily evaluated by multiplying �rst by exph�� �i � ��

jX
m��j

j�mX
k��

	k �m
 exphm�� �i	exph�� �i � �


�

jX
m��j

j�mX
k��

	m� k
 exph	m � �
�� �i

�

j��X
m��j��

j�m��X
k��

	m � k � �
 exph	m � �
�� �i

� j exph	j � �
�� �i�

j��X
m��j

�j � 	j �m
� exph	m � �
�� �i

�

�jX
k��

	k � j
 exph�j�� �i

�

jX
m��j

m exph	m � �
�� �i � 	XIII���


Thus the contribution of one SU	�
 irreducible representation to the original sum
is

h�� �i exphM�� �i

jX
m��j

m exph	m � �
�� �i�exph�� �i � ����

�

jX
m��j

hM��i exphM � �� �i�exph�� �i � ���� � 	XIII���


Summing over all SU	�
 irreducible representations� and over all the roots� we have

�h�� ���� �i � h�� �i �
X
���

	�

	���
��

�
X
����

X
M

nM h��M i exphM � �� �i�exph�� �i � ���� � 	XIII���
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From the de�nition of Q� we see that

Y
����

�exph�� �i � �� � 
Q�	�
 	XIII��


where 
 is �� if the number of positive roots is even and �� if it is odd� Thus

	

	��
log 
Q�	�
 �

X
����

exph�� �i

exph�� �i � �
h�� �i 	XIII���


and
	

	��
exphM��i � h��M i exphM��i 	XIII���


so

X
M

X
����

nM h��M i exphM � �� �i�exph�� �i � ����

�
X
�

	

	��
log 
Q�	�


	

	��
�

� �Q��
X
�

	

	��
Q

	

	��
�

� Q��

�
�X

�

	�

	��
�

	Q�
 �Q
X
�

	�

	��
�

�� �
X
�

	�

	��
�

Q

�
� � 	XIII���


Combining these results� we have the di�erential equation

h�� ���� �iQ� � �

�
�h�� �i �X

�

	�

	��
�

�
�Q�

X
�

	�

	��
�

Q� � 	XIII���


From the relation

Q	�
 �
X
S�W

	detS
 exphS�� �i � 	XIII���


it follows that X
�

	�

	���
Q	�
 � h�� �iQ	�
 � 	XIII���


where we have used the orthogonality of the S�s� Altogether then we have

X
�

	�

	���
Q� � h�� ��� � �iQ� � 	XIII���
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Now the function Q	�
�	�
 is alternating since it is the product of an alter�
nating function and an invariant one� Since

�	�
 �
X
M

nM exphM��i � 	XIII���


and
Q	�
 �

X
S�W

	detS
 exphS�� �i � 	XIII���


the product must be of the form

Q	�
�	�
 � �
X
N

cN exphN� �i � 	XIII��


where N is of the form M � S� where M is a weight and where S is in the Weyl
group� Substituting into the di�erential equation� we see that M contributes only
if

hS��M � �� S��M � �i � h� � ���� �i � 	XIII���
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In fact� we can show that Eq� 	XIII���
 is satis�ed only when S��M � ��
We �rst note that hSM � �� SM � �i is maximized for �xed M when SM has only
non�negative Dynkin coe�cients� Indeed if hi � �h�i�h�i� �ii and if M 	hi
 � ��
then hSiM � �� SiM � �i � hM � ��M � �i � h�M 	hi
�i� �M � �� �M 	hi
�ii �
�h�i� �iiM 	hi
  �� Now consider M � � with M 	hi
 � �� Then� by similar
arguments� it is easy to show that h�� ���� �i  hM � ��M � �i� It follows that
the sum in Eq� 	XIII��
 need contain only the single term for N � � � �� By
comparison with the de�nitions of Q	�
 and �	�
� it is easy to see that the overall
coe�cient is unity� so

Q	�
�	�
 �
X
S�W

	detS
 exph�� �� S�i � 	XIII���


This then yields Weyl�s character formula

�	�
 �

P
S�W 	detS
 exph�� �� S�iP
S�W 	detS
 exph�� S�i

� 	XIII���


More useful for our purposes is the less general formula which gives the
dimension of an irreducible representation� It is clear that this dimension is the
value of �	� � �
� This cannot be obtained simply by setting � � �� but must be
obtained as a limit� We choose � � t� and let t� �� This gives

�	t�
 �

P
S�W 	detS
 exphS	� � �
� t�iP

S�W 	detS
 exphS�� t�i

�
Q	t	� � �



Q	t�


� exph��� t�i
Y
���

exph�� t	� � �
i � �

exph�� t�i � �
� 	XIII���


In this expression we can let t� � and �nd the dimensionality � dim R � �	�
�

dim R �
Y
���

h���� �i

h�� �i
� 	XIII���
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To evaluate this expression� we write each positive root� �� in terms of the
simple roots �i�

� �
X
i

ki��i � 	XIII��


Suppose the Dynkin coe�cients of � are �	hi
 � �i� where hi � �h�i�h�i� �ii�
Then we have

dim R �
Y
���

P
i k

i
�	�i � �
h�i� �iiP
i k

i
�h�i� �ii

� 	XIII��


The algebras An� Dn� E�� E�� and E� have simple roots all of one size� so for them
we can drop the factors of h�i� �ii in Eq� 	XIII��
�

Let us illustrate this marvelous formula with a number of examples� Consi�
der �rst SU	�
� that is� A�� The simple roots are all the same size so we ignore the
factor h�i� �ii� The positive roots are ��� ��� and ������ which we shall abbreviate
here by 	�
� 	�
� and 	��
� Suppose the irreducible representation at hand has a
highest weight with Dynkin coe�cients 	m��m�
� then we compute

dim R �

�
m� � �

�

��
m� � �

�

��
m� �m� � �

�

�
� 	XIII��


From this example and the fundamental formula� Eq� 	XIII��
� we see that the
rule for �nding the dimensionality of an irreducible representation may be phrased
as follows� The dimension is a product of factors� one for each positive root of the

algebra� Each factor has a denominator which is the number of simple roots which

compose the positive root� The numerator is a sum over the simple roots in the

positive root� with each simple root contributing unity plus the value of the Dynkin

coe�cient corresponding to the simple root� If the simple roots are not all the same

size� each contribution to the numerator and to the denominator must be weighted

by h�i� �ii�
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Let us consider a more complicated application of Weyl�s formula� The
algebra G� has� as we have seen� fourteen roots� of which six are positive� If the
simple roots are denoted �� and �� with the latter being the smaller� then the
square of �� is three times larger than that of ��� The positive roots are ��� ���
������ ������� ������� and �������� which we denote here 	�
� 	�
� 	��
� 	���
�
	��	
� and 	���	
� We compute below the dimensions of the representations with
the highest weights 	���
 and 	���
� where the �rst entry pertains to �� and the
second to ���
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dim � � dim � �

As yet another example� we consider SO	��
� that is� D�� The simple roots
are numbered so that � and �� are the ones which form the fork at the end
of the Dynkin diagram� There are � roots of which �� are positive� Below we
calculate the dimensionality of the representations with highest weights 	���������
�
	���������
� and 	���������
�

	�� �� �� �� �
 	�� �� �� �� �
 	�� �� �� �� �
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dim R � �� dim R � �� dim R � ���
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With little e�ort� we can derive a general formula for the dimensionality of
an irreducible representation of SU	n
� that is An��� In the same notation as above�
the roots are 	�
� 	�
� � � �	��
� 	��
� � � �	���
� 	��
� � � �� 	��� � � �n
� We compute the
dimensionality for the representation whose highest weight is 	m��m�� � � �mn
�

	�
� 	�
� � � �	n
 m���
�

m���
� � � � mn��

�

	��
� 	��
� � � �	n� � n
 m��m���
�

m��m���
�

mn���mn��
�

� � �

	�� � � �n
 m��m�����mn�n
n

It is a simple matter to multiply all these factors to �nd the dimension of the
representation�

We can recognize the correspondence between the Dynkin notation and the
more familiar Young tableaux if we start with the fundamental representation�
	�� �� � � ��
� and take the k�times anti�symmetric product of this representation with
itself to obtain 	�� �� � � ��mk � �� � � � ��
� This corresponds to the tableau with one
column of k boxes� More generally� 	m��m�� � � �mn
 corresponds to the tableau
with mk columns of k boxes�
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References

We follow closely Jacobson�s version of the Freudenthal derivation of the Weyl
formula� except that we have adopted a less formal language� See JACOBSON�pp�
�������

Exercises

�� Determine the dimensionality of the SO	��
 representations 	�� �� �� �� �
 and
	�� �� �� ���
�

�� Determine the dimensionality of the E� representations 	�� �� �� �� ���
 and
	�� �� �� ���� �
�

�� Show that the E� representation 	��� ��� ��� ��� ��� ��
 has a dimensionality
divisible by ����
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XIV� Reducing Product Representations

In Chapter X we began the consideration of �nding the irreducible compo�
nents of a product representation� The procedure for SU��� is familiar and trivial�
The product of the representations characterized by j� and j�� the maximal values
of Tz� contains the irreducible representations for j such that jj�� j�j � j � j�	 j�
once each �of course we take only integral j if j� 	 j� is integral and j half inte�
gral otherwise�� For SU�n�� the reduction is most easily obtained by the method
of Young Tableaux� The general solution to the problem of �nding the irreducible
components of the product of two irreducible representations of a simple Lie algebra
can be obtained from the Weyl character formula� but the result �Kostant
s formula�
involves a double sum over the Weyl group and is not particularly practical� In this
chapter� we introduce some techniques which are su�cient for solving the problem
in most cases of moderate dimensions�
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Of course we already have su�cient tools to solve the problem by brute
force� We can calculate all the weights of the representations associated with highest
weights � and �� and using the Freudenthal recursion relations we can determine
the multiplicity of each weight� Then the multiplicity of the weightM in the product
representation is found by writing M � M� 	M�� where M� and M� are weights
of the two irreducible representations� The multiplicity of the weight M in the
product representation is

nM �
X

M�M��M�

nM�
nM�

�XIV���

where nM�
and nM�

are the multiplicities of the weightsM� andM�� Now we know
� 	 � is the highest weight of one irreducible component so we can subtract its
weights �with proper multiplicities� from the list� Now the highest remaining weight
must be the highest weight of some irreducible component which again we �nd and
eliminate from the list� Continuing this way� we exhaust the list of weights� and
most likely� ourselves�

A more practical approach is to use some relations which restrict the possible
choices of irreducible components� The �rst such relation is the obvious one� � 	
� is the highest weight of one irreducible component� The second relation is a
generalization of the rule demonstrated before for the anti�symmetric product of a
representation with itself�

Dynkin�s Theorem for the Second Highest Representation provides
a simple way to �nd one or more irreducible representations beyond the highest�
Suppose we have two irreducible representations with highest weights � and ��
with highest weight vectors �� and ��� We shall say that two elements of the
root space� � and � are joined if h�� �i �� �� Moreover� we shall say that a chain
of simple roots� ��� ��� � � ��k� connects � and � if � is joined to �� but no
other of the �
s� � is joined to �k and no other � in the chain� and each �i
is joined only to the succeeding and preceding �
s� We can represent this with
a Dynkin diagram by adding a dot for each of � and � and connecting them
by segments to the simple roots with which they are joined� Then a chain is the
shortest path between the weights � and �� For example� consider SU��� and the
representations ��������������� and ����������������
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Fig� V��

Here f��� ��� ��� ��g is a chain joining � and �� but f��� ��� ��� ��� ��g is not�

Dynkin
s theorem tells us that if ��� � � ��k is a chain joining � and �� then
�	�������� � � ���k is the highest weight of an irreducible representation in
the product representation formed from the irreducible representations with highest
weights � and �� In the above example� the product representation contains
��� �� �� �� ������� �� � �� � �� � �� � ��� �� �� �� ���� ���

The theorem is proved by establishing that there is a weight vector with the
weight described by the theorem which is annihilated by all the raising operators
associated with the simple roots� Thus this weight vector generates� through the
lowering operators� a separate irreducible representation� Of course� there are other
weight vectors with the same weight which do not share this property�

We begin by constructing a sequence of weight vectors starting with ��� Since
h�� ��i �� � and must be non�negative� it is positive and thus � � �� is a weight
and has a weight vector

�� � E����� � �XIV���

Also� since h�� ��i � �� ���� is not a weight� However� ������� is a weight
since h� � ��� ��i � h���� ��i � �� Proceeding in this way we construct

�j � E��j�j��

� E��j � � �E����� � �XIV���

Any reordering of the lowering operators in the sequence results in the quantity
vanishing just as E����� � ��
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Now consider
E�m�j � E�mE��j�j��� �XIV���

If m �� j�
h
E�m� E��j

i
� � since �m � �j is not a root� Thus

E�m�j � E��jE�m�j�� � �XIV���

If we continue commuting E�m through until it hits ��� we get zero since �� cor�
responds to the highest weight� The only alternative is that E��m occurs and we
take the term

E��j � � � �E�m � E��m� � � �E����� � �XIV���

But this vanishes since the commutator is just an H which we can move outside
�picking up some constant terms� leaving a series ofE�
s which are not in the proper
order� Thus E�m�j � � unless m � j�

In the event m � j� we compute

E�j
�j �

h
H�j

	E��jE�j

i
�j��

� H�j
�j��

� h� � �� � � �� �j��� �ji�j��

� �h�j��� �ji�j�� �j � ��

E��
�� � h�� ��i�� � �XIV���

At the other end of the chain we have an analogous situation� We de�ne

E��k�� � ��

E��k�j�j � �j�� �XIV���
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and �nd

E�m�k�j�� � �� �m �� j��

E�j
�k�j�� � �h�j��� �ji�k�j �j � k�

E�k
�� � h�� �ki�� � �XIV���

We are now in a position to establish the existence of a vector with weight
� 	 � � �� � � � � � �k which is annihilated by every E�j

� for �j a simple root�

This will then be a weight vector for the highest weight of the desired irreducible
representation� The most general weight vector with this weight is� using the results
of the discussion above�

� �
kX
s��

cs�s � �k�s � �XIV����

We simply choose the coe�cients so that the vector is annihilated by every raising
operator� For j �� �� k�

E�j
� � cjE�j

�j � �k�j 	 cj���j�� �E�j
�k�j��

� ��cjh�j��� �ji � cj��h�j� �j��i��j�� � �k�j

� � � �XIV����

Thus for j �� �� k
cjh�j��� �ji	 cj��h�j� �j��i � � � �XIV����

Similarly� considering j � � and j � k�

c�h�� ��i � c�h��� ��i � � �

�ckh�k� �k��i	 ck��h�� �ki � � � �XIV����
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It is clear we can solve these equations� say with c� � �� Thus � exists and so does
the asserted representation�

The second technique we use to reduce product representations is Dynkin�s

method of parts� This is very easy to apply� If some of the dots in a Dynkin
diagram of� say� a simple Lie algebra are deleted� the result is the diagram of a
semi�simple subalgebra of the original algebra� If the original diagram was marked
with integers to indicate an irreducible representation� the truncated diagram will
represent a particular irreducible representation of the subalgebra� Now if we con�
sider two irreducible representations of the original algebra there are associated two
irreducible representations of the subalgebra� If we compare the product repre�
sentations formed by both the representations of the full algebra and those of the
subalgebra� it turns out that each irreducible component of the product representa�
tion of the subalgebra has a diagram which is a �part� of a diagram of an irreducible
component of the product representation of the full algebra in the sense that it is
obtained again by deleting the same dots as before�

The utility of this technique lies in the possibility that the subalgebra
s prod�
ucts may be easier to deal with than those of the full algebra� In particular� if we
delete some dots so that the remaining algebra is in the series An� the products can
be calculated using the well�known technique of Young tableaux� For example� by
deleting one dot from E� we get A�� D�� A� 	A�� or A� 	 A� 	A�� each of which
is somewhat easier to deal with�

Before proving the correctness of the method of parts� let us consider an
example� As a preliminary� note that for D�� i�e� SO����� the square of the
ten�dimensional representation� ����������� is given by ����������� 	 ����������� 	
������������ This is easy to see because the �rst piece follows from the rule for the
highest weight of a product representation� The second follows for the rule for the
second highest weight� or the rule for the anti�symmetric product of an irreducible
representation with itself� Use of the Weyl dimension formula reveals that the di�
mension of the ����������� representation is �� and that of the ����������� is ��� so the
remaining representation is one dimensional� i�e� it is ������������ �Of course� these
results can be obtained by more elementary means�� Now let us try to compute the
square of the E� representation �������������� This is the smallest representation of
E�� with dimension ��� Again the rules for the highest weight and second highest
weight give ������������� and ������������� as irreducible components of the
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product representation� A computation reveals their dimensions to be ��� �both
of them��� Thus the remaining representation is �� dimensional� Is it �������������
or �������������� Let us use the method of parts� deleting the �fth simple root to
leave us with the diagram for D�� Now we know that ����������� squared in D� is
����������� 	 ����������� 	 ������������ The method of parts tells us that each of
these can be obtained from the irreducible representations in the E� product by
deleting the �fth root� This clearly works for the �rst two� Moreover� we see that
we must choose ������������� as the �nal representation of E��

We proceed to a more formal consideration of the method of parts� Let G be
a simple Lie algebra with a basis of simple roots f�ig� Select a subset� f�jg � f�ig
and let G� be the semi�simple algebra which is generated by the e�j 
s and e��j 
s�
The Cartan subalgebra� H� of G� is contained in the Cartan subalgebra� H of G�
The Dynkin diagram for G� is obtained from that of G by deleting the appropriate
dots�

Suppose M is a weight of a representation of G and 	M is an associated
weight vector�

H	M �M �h�	M � �XIV����

Then 	M is a weight vector for the induced representation of G�� since if h� � H��

H�	M �M �h��	M � �XIV����

Now the weight in the induced representation� M � has the property M �h�� �M �h��
but di�ers from M because it can be expressed entirely in terms of the �j 
s� If we
write

M � �M �
X
i�j

�ihM��jih�j � �ii
���

	
X
i�j

�ihM��jih�j � �ii
�� � �XIV����
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we see that the second term is precisely M � This is so because every h� is a linear
combination of h�
s and because the �rst term vanishes on every h��

We see from Eq� �XIV���� that M has exactly the same Dynkin coe�cients
with respect to the �
s as M itself� The Dynkin coe�cients with respect to G�

are obtained simply by dropping the requisite coe�cients from those of M � In
particular� if  is the highest weight of a representation of G�  is a highest weight
of one of the irreducible representations contained in the representation of G� arising
from the representation of G� For example� the ����� representation of A� �SU����
contains the ��� representation of A� �SU���� when we obtain the SU��� by deleting
one dot from the Dynkin diagram of SU����

The representation associated with  is obtained by operating on the weight
vector for  with all the lowering operators E�i

� �i � ��� It is easy to see that for
all vectors 	 in this representation� if �j 
� �� then E�j

	 � � �

Now consider two irreducible representations� R
�
and R
�

of G� where
� and � are their highest weights� Associated with these are two irreducible
representations of G�� R
�

�

and R
�

�

� Now consider the product representations
R
�

�R
�
and R
�

�

� R
�

�

� In general these are both reducible�

R
�
� R
�

� R
a
	 R
b

	 � � � �XIV����

and
R
�

�

� R
�

�

� R
�

a
	 R
�

b
	 � � � � �XIV����

We want to show that for some a�a � �a� etc� Now consider the highest weight
vector of R
�

a
� It is annihilated by E�i

� �i � �� and also by all the E�j
� �j � ��

Thus it is a highest weight also for G as well as for G�� and thus de�nes one of
the R
a


s� Thus every scheme of R
�

�

� R
�

�

corresponds to one of the schemes of
R
�

�R
�
with the appropriate dots deleted�



��� XIV� Reducing Product Representations

In reducing product representations for SU���� it is clear that the product
of irreducible representations contains only either integral spin or half�integral spin
representations� In Dynkin language� the Cartan matrix is the number �� The
Dynkin coe�cient of the highest weight is a single integer� The lower weights are
obtained by subtracting the � from the highest weight� Thus if the coe�cient of
the highest weight is odd� the coe�cient of every weight is odd� The oddness or
evenness of the the two irreducible representations thus determines the oddness or
evenness of all the irreducible representations in their product�

The analogous concept for SU��� is triality� The fundamental representation
is said to have triality 	�� Every weight in this representation is obtained from �����
by subtracting a row of the Cartan matrix� Now consider the quantity �Ai�	�Ai��
For i��� this is zero� while for i � �� it is three� Thus if we calculate for any weight
�a�� a�� of an irreducible representation the quantity a�	�a��mod ��� it must be the
same as it is for the highest weight� Thus for the three dimensional representation
we have ������ ������� and ������� where a� 	 �a� is ���� and ��� It is clear that
the triality� a� 	 �a��mod ��� of a representation in the product of two irreducible
representations is the sum of the trialities �mod �� of the components�

If we look at the Cartan matrix for An� we see that
P

j jAij � ��mod n	���
Thus each irreducible representation of An can be characterized by a number
C �

P
j jaj�mod n 	 �� where the highest weight of the representation has co�

e�cients �a�� a�� � � �an�� We see that every weight in the irreducible representation
will have the same value for C� For a product of representations� R� and R��each
irreducible component has the value C � C�R�� 	 C�R��� For example� consider
�� � �� in SU���� that is ��������� � ��������� � ��������� 	 ���������� We have
C���� �� �� �� ��� � �� C���� �� �� ��� � � � ��mod ��� C���� �� �� ��� � �� We refer to
the irreducible representations with a �xed value of C as conjugacy classes�

For Bn� there are two conjugacy classes which are given by C � an�mod ���
since the last column of the Cartan matrix is given entirely by even integers� If
C � �� the representation is a spinor representation� This nomenclature makes
sense even for B� which is the complex form of O���� The spinor representations
are seen to be the half�integral angular momentum representations�

For the algebras Cn� we take C � a�	a�	a�	 � � � �mod �� �We can see that
this will work by taking the sum of the �rst� third� �fth� etc� elements in a row of
the Cartan matrix and noticing that its value is always even�
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The algebra Dn is slightly more complicated� First we notice that for any
row of the Cartan matrix� the sum of the last two entries is an even number� Thus
we can take C� � an��	 an�mod ��� Next consider the case n even� If we take the
sum of the �rst� third� �fth���� elements of a row of the Cartan matrix� it is always
even� Thus for n even� we choose C� � a� 	 a� 	 � � �an�� �mod ��� For n odd� we
take C� � a� 	 a� 	 � � � an�� 	 �an�� � an�
��mod ���

As an example� consider the SO���� decomposition of ������������ ������������
i�e� ��� ��� The �� has C� � � and C� �

�

�
� Thus the irreducible representations

in the product will have C� � � � ��mod �� and C� � �� The actual decomposition
is ����������� 	 ����������� 	 ������������ each piece of which has the proper values
of C� and C��

An examination of the Cartan matrix for E� reveals that Ai� 	Ai� � Ai� 	
Ai��mod ��� so we can take C � a� � a� 	 a� � a��mod ��� Similarly� for E	� we
see that C � a� 	 a� 	 a	�mod �� determines the conjugacy classes� The algebras
G�� F�� and E� have only a single conjugacy class�

As an example of the techniques discussed in this chapter� let us consider the
decomposition of ��� �� �� �� �� ������ ���� �� ���� � ������� in E�� The �������������
is in the conjugacy class C � ��mod ��� so all the components in the product will
be in the conjugacy class C � � � ��mod ��� Clearly one irreducible component
has highest weight �������������� Using the rule for the second highest weight we
�nd that ��� �� �� �� �� ��� �������� �� ���� � ��� �� �� �� ���� is a highest weight of an
irreducible component� Next we use the method of parts� striking the sixth root to
reduce E� to A�� The products in A� may be calculated by Young tableaux� with
the result ��� �� �� �� �� � ��� �� �� �� �� � ��� �� �� �� �� 	 ��� �� �� �� �� 	 ��� �� �� �� ���
Thus the E� product contains ������������� 	 ������������� 	�����������X� where X
is a non�negative integer� Next� let us use the parts method� striking the �fth root
to reduce E� to D�� Now we must calculate ��� �� �� �� ��� ��� �� �� �� �� � ��� �� in
D��

This subsidiary calculation is itself a useful example� The �� in D� has
C� � � and C� � �� so the irreducible components of the product must have these
values as well� Certainly the D� product contains ����������� 	 ����������� as we
see using the highest weight and second highest weight procedures� Using the parts
method to reduce D� toA� we see that the product must contain a term ���������W��
Since C� � �� W is even� It is a fair bet that ����������� has too high a dimension� so
we guess that ����������� is in the product� Using the Weyl dimension formula� we
�nd the D� values� dim���������������� dim����������������� dim����������������
This totals to ���� so we need an additional �������������� The smallest rep�
resentations in the proper conjugacy class are ������������ ������������ ������������
and ����������� with dimensions �� ��� ��� and ��� respectively� Thus we conclude
that in D�� ��� �� �� �� ��� ��� �� �� �� �� � ��� �� �� �� ��	 ��� �� �� �� ��	 ��� �� �� �� ��	
��� �� �� �� ��	 ��� �� �� �� ��	 ��� �� �� �� ���



��� XIV� Reducing Product Representations

Returning to E�� we note that the representation identi�ed as �����������X�
must be ������������� in order to account for the D� representation ������������
Again� by comparison with the D� representations� we know that the E� product
must contain� at a minimum� the representations ���������T���� ���������Y���� and
���������Z���� where T�Y� and Z are non�negative integers� We can determine these
integers by considering the conjugacy classes� We have ��T � ��mod ������Y �
��mod ��� and � Z � ��mod ��� The smallest solutions are T��� Y��� and
Z��� Thus we guess that the E� decomposition is ��� �� �� ���� ��� ����� �� ������ �
��� �� �� �� ����	 ��� �� �� �� ����	 ��� �� �� �� ���� 	 ��� �� �� �� ���� 	 ��� �� �� �� ���� 	
��� �� �� �� ����� Using the Weyl formula� the dimensions of these are determined to
be ���� ��� � ��� ��� 	 ��� ��� 	 ��� ���	 �� ��� 	 �� ��� 	 ��� � ���� ����

This example shows that the hardest work required in reducing such products
is simply the evaluation of the Weyl formula for the dimension�

One additional technique for reducing product representations is worth men�
tioning� We recall from Chapter XI the de�nition of the index of a representation�
	�

Tr 	�x�	�y� � l��x� y�� �XIV����

where � � �� is proportional to the Killing form but normalized so that the largest
roots has a length squared of two�

Now suppose we have a representation which is the sum of two representa�
tions � 	� and 	�� Then� clearly

l����� � l�� 	 l�� � �XIV����
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On the other hand� for a product representation� we see that

l����� � N�� l�� 	N�� l�� �XIV����

where N�� and N�� are the dimensions of the representations� Since we know
how to compute the indices in terms of the Casimir operators� this can be used to
reduce signi�cantly the possibilities for the irreducible components of the product
representation�
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Exercises

�� Reduce ��� �� ��� � ��� �� �� �� ��� in SO�����

�� Reduce ��� �� ��� � ��� ��� in G�� Check using indices�

�� Reduce ��� ��� �for �� � ��� �� �� �� �� ��� ��� � ��� �� �� ���� ��� in E��
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XV� Subalgebras

Some examples may be illuminating as an introduction to the topic of sub�
algebras� Suppose we start with the algebra G � A�� i�e� SU��	� the traceless �� �
matrices� Now one subalgebra is obtained by considering only those matrices with
non�zero 
�
 and ��� diagonal pieces� and zeros in the 
�� o�� diagonal pieces� If
the two diagonal blocks are required to be traceless separately� then the restricted
set is the subalgebra G� � A� � A� � A� � G� It is clear that we can take as
the Cartan subalgebra H� � G� the diagonal matrices� so H� � H� The dimension
of H� is one fewer than that of H since there is a one dimensional subspace of H
proportional to the diagonal element which is �� for the rst four components and
�� on the last two�

The root vectors of G� are just the root vectors of G which have non�zero
components only in the two diagonal blocks� If the space proportional to e� is
denoted G�� we have
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G � H �
X
���

G� �XV��	

while for some set �� � �
G� � H � �

X
����

G� � �XV��	

A subalgebra with this property is called regular� In addition to this SU��	 exam�
ple� the subalgebras we employed in the method of parts � which were obtained by
deleting dots from Dynkin diagrams � were regular� Not all subalgebras� however�
are regular�

Let us consider againA� and a particular embedding ofG� � A��A��SU ��	�
SU ��		� We know that every matrix in the Lie algebra of SU��	 is a linear com�
bination of ��� ��� and �� and every matrix in the Lie algebra of SU��	 is a linear
combination of ��� ��� � � ���� Let us add to these ��and �� which are the �� � and
�� � identity matrices� Now every �� � matrix can be written in terms of

�
�i �

� �i

�
�

�
�i �

� ��i

�
�

�
� �i

�i �

�
�

�
� �i�i

i�i �

�
�

i�e� �� � �i� �� � �i� �� � �i� �� � �i� i � �� �� � � ��� Now this is equivalent to
regarding the six dimensional vectors in the carrier space as having two indices�
with the � acting on the rst and the � on the second�

Now suppose we consider only elements of the forms �� � �i and �i � ���
Then an element of one form commutes with an element of the other� Thus these
elements form a subalgebra which is A��A�� The Cartan subalgebra of the A��A�

has a basis �� � ��� �� � ��� �� � ��� The root vectors are �� � ��� �� � ��� �� �
t�� ��� t�� ��� u�� ��� u�� ��� v�� and ��� v�� We see that H� � H� However�
the root vectors of G� are not among those of G� Thus� for example�

�� � �� �

�
� ��

� �

�
� �XV��	
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We cannot write G� in the form Eq� �XV��	� so the subalgebra is not regular�

The six dimensional representation of A� gave a reducible representation of
the regular subalgebra� A� � A�� � � �
� �	 � ��� �	� The non�regular subalgebra�
A� � A�� gave an irreducible representation� � � ��� �	� As we shall see� this is
typical�

As a further example of regular and non�regular subalgebras� consider SU��	
as a subalgebra of SU��	� If the SU��	 is generated by t�� t�� and tz � the SU��	 is a
regular subalgebra� On the other hand� there is a three dimensional representation
of SU��	� The � � � matrices of this representation are elements of SU��	 so this
provides a second embedding of SU��	 in SU��	� which is not regular� Under the
regular embedding� the � dimensional representation of SU��	 becomes a reducible
� � � dimensional representation of SU��	� while under the second embedding� it
becomes an irreducible representation of SU��	�

It is clear that a moderate sized algebra may have an enormous number
of subalgebras� To organize the task of nding them we introduce the concept of
a maximal subalgebra� G� is a maximal subalgebra of G if there is no larger
subalgebra containing it except G itself� Now we can proceed in stages nding the
maximal subalgebras� then their maximal subalgebras� and so on�

There is a slight �aw in this approach� A maximal subalgebra of a semi�
simple algebra need not be semi�simple� Consider� for example� SU��	 and the
subalgebra generated by t� and tz� It is certainly maximal� since if we enlarge
it we shall have all of SU��	� However� the subalgebra is not simple because t�
generates an ideal in it� We shall generally restrict ourselves to the consideration
of maximal semi�simple subalgebras� that is� semi�simple algebras contained in no
other semi�simple subalgebras except the full algebra�

Dynkin introduced the notions of an R�subalgebra and an S�subalgebra�
An R�subalgebra is a subalgebra which is contained in some regular subalgebra�
An S�subalgebra is one which is not� The task then is to nd the regular maximal
subalgebras and the maximal S�subalgebras� The regular subalgebras are more
easily dealt with�
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Suppose G� is a regular subalgebra of a simple algebra G� �� � � is the set
of its roots� and �� � �� is a basis of simple roots for G�� Now if ��� �� � ��� then
�� � �� �� ��� In fact �� � �� �� �� since if �� � �� � �� �e�� � e��� � � e����� so then
�� � �� � ��� Thus to nd regular subalgebras of G we seek sets �� � � such that
��� �� � �� � �� � �� �� �� Then we take as G� the subalgebra generated by the
e�� � e��� � h�� � ���

An algorithm for this has been provided by Dynkin� Start with �� the simple
roots of G� Enlarge it to � by adding the most negative root in �� Now � has the
property that if ��� �� � �� then �� � �� �� �� However� � is a linearly dependent
set� Thus� if we eliminate one or more vectors from � to form ��� it will have the
required properties� In general� �� will generate a semi�simple algebra� not a simple
one�

This procedure is easy to follow using Dynkin diagrams� We form the ex�
tended Dynkin diagram associated with � by noting that the vector added to
� is the negative of the highest weight ��� of the adjoint representation� Since we
know the Dynkin coe�cients of this weight� it is easy to add the appropriate dot�
For Bn the adjoint representation has highest weight ��� �� �� � � ��	� so the extended
diagram is

B�
n h

��

h��

h

��

� � � h

�n��

x

�n
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Similarly� for Dn� the highest weight of the adjoint is ��� �� �� � � ��	 so the extended
diagram is

D�
n h

��

h��

h

��

� � � h

�n��

�
�
�
�
�

h

�n��

�
�
�
�
�
h

�n

In an analogous fashion� we nd the remaining extended diagrams�

�
�
�
�
aaa

aaaa
aaA�

n h

��

h��

h

��

� � � h

�n

C�
n h

��

x

��

x

��

� � � x

�n��

h

�n

G�
� h

��

h

��

x

��
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A few examples will make clear the application of these diagrams� By deleting
a single dot from the extended diagram for G� we obtain in addition to the diagram
for G� itself

h x

h h

Thus we see that A� and A� � A� are regular subalgebras of G�� Starting with B	

we nd among others� the subalgebra B� �D�� In other words� we have O���	 �
O��	� O��	�

The An algebras are somewhat pathological� If we remove a single dot from
the extended diagram� the result is simply the original diagram� If we remove
two dots we obtain a regular subalgebra� but one that is maximal only among the
semi�simple subalgebras� not maximal among all the subalgebras� This is actually
familiar� from SU��	 one obtains not just SU��	 x SU��	� but also SU��	 x SU��	 x
U��	� which itself lies in a larger� non�semi�simple subalgebra of SU��	�

Dynkin�s rule� for nding the maximal regular subalgebras is this� the reg�
ular semi�simple maximal subalgebras are obtained by removing one dot from the
extended Dynkin diagram� The non�semi�simple maximal regular subalgebras are
obtained by selecting one of the simple roots� � � �� and nding the subalgebra
generated by e� and h�� together with e� � e��� and h� for all the simple roots �
other than �� Such a non�semi�simple algebra contains a semi�simple subalgebra
generated by excluding e� and h� as well� This may be maximal among the semi�
simple subalgebras� or it may be contained in an S�subalgebra�
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Dynkin�s rule has been shown to be not entirely correct�� In particular� it
would have A� � A� maximal in F� while in fact A� � A� � B� � F�� Similarly�
A��A��A� � D	�A� � E
 and in E�� A��A� � D�� A��A��A� � A��E	�
and A
 �A� � E
 �A��

In an analogy with the example SU �
	�SU ��	 � SU ��	� we see that SU �s	�
SU �t	 � SU �s � t	� O�s	 � O�t	 � ��s � t	� and Sp��s	 � Sp��t	 � Sp��s � �t	�
where the embedding is the obvious one� Each of these gives a regular subalgebra
except for O�s	�O�t	 when s and t are odd� as is easily veried from the extended
diagrams� The last embedding is thus an S�subalgebra�

We have already seen two examples of maximal S�subalgebras� One was the
embedding A� � A� � A� which produced the decomposition of the fundamental
representation � � ��� �	� We can simplify the notation in this section by passing
from the Lie algebras to the associated groups� Thus we have SU ��	 � SU ��	 �
SU ��	� More generally� we have SU �st	 � SU �s	�SU �t	 as a �non�simple	 maximal
S�subalgebra�

For the orthogonal groups we follow the path used in Chapter VIII� Rather
than require AtA � I� we consider the more general relation BtKB � K where K
is a symmetric n�n matrix� This is the same as taking all n�n matrices� B� which
preserve a symmetric bilinear form ��� 		 �

P
i�j �iKij	j�Kij � Kji� Now consider

the groups O�s�	and O�s�	 preserving ���� 	�	�and ���� 	�	�� If we consider the s�s�
dimensional space spanned by vectors like �� � ��� we have a symmetric bilinear
form dened by ������� 	��	�	 � ���� 	�	����� 	�	�� The subgroup O�s�	�O�s�	
acts as B� � B���� � ��	 � B��� � B��� for B� � O�s�	 and B� � O�s�	� It is
clear that this subgroup indeed leaves the symmetric bilinear form invariant and
thus O�s�	 �O�s�	 � O�s�s�	� Indeed� it is a maximal S�subgroup�

In a similar fashion� we can consider Sp��n	 to be the set of �n � �n
matrices preserving an anti�symmetric bilinear form� ��� 		 � ��	� �	� Now if
we take Sp��n�	 � Sp��n�	 we will act on a space of dimension 
n�n�� With
��� � ��� 	� � 	�	 � ���� 	�	����� 	�	� we see that the form is symmetric and
Sp��n�	 � Sp��n�	 � O�
n�n�	� Analogously� Sp��n	 � O�s	 � Sp��ns	 as a
maximal S�subgroup�

The other maximal S�subalgebra we have encountered is in the embedding
SU ��	 � SU ��	 whereby the three dimensional representation of SU ��	 becomes
the three dimensional representation of SU��	� Since SU ��	 has a three dimensional
representation by � � � matrices� it is bound to be a subalgebra of SU ��	� More
generally� ifG is a simple algebra with an n�dimensional representation� G � SU �n	�
Is G then maximal in SU �n	� For the most part� the answer is this� if the n�
dimensional representation of G has an invariant symmetric bilinear form� G is
maximal in SO�n	� if it has an invariant anti�symmetric bilinear form it is maximal
in Sp�n	 �n must be even	� If it has no invariant bilinear form� it is maximal
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in SU �n	� The exceptions to this are few in number and have been detailed by
Dynkin��

Let us consider an example with SU ��	� which has an eight dimensional
adjoint representation� Rather than think of the vectors in the eight dimensional
space as columns� it is convenient to think of them as �� � traceless matrices�

� �
X
i

�i�i �XV�
	

where the �i are those of Eq� �II��	� Now we remember that the adjoint represen�
tation is given by

ad x�i � �x� �i� � �XV��	

The invariance of a symmetric form ��� 		 under an innitesimal transformation
expB 	 I � B yields

�B�� 		 � ���B		 � � � �XV��	

For the adjoint representation� the linear tranformation B corresponding to an ele�
ment x of the Lie algebra is simply B� � �B� ��� Now if we dene

��� 		 � Tr �	 �XV��	

the invariance of the form follows from the identity

Tr �x� ��	 � Tr � �x� 	� � � � �XV��	
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Thus we see there is a symmetric invariant bilinear form for the adjoint represen�
tation and thus SU ��	 � SO��	� Of course the demonstration is more general�
SU �n	 � SO�n� � �	�

It is clear that we must learn how to determine when an n�dimensional
representation of a simple Lie algebra admits a bilinear form and whether the form
is symmetric or anti�symmetric� As a beginning� let us consider SU ��	 and in
particular the �j � � dimensional representation� We shall construct explicitly the
bilinear invariant� Let


 �
X
i

ci�i

	 �
X
i

di�i �XV��	

where the �i are a basis for the representation space and

Tz�m �m�m

T��m �
p
j�j � �	�m�m � �	�m��

T��m �
p
j�j � �	�m�m � �	�m�� � �XV���	

Suppose the bilinear form is

�
� 		 �
X
m�n

amncmdn � �XV���	

Now the invariance of the form requires in particular

�Tz
� 		 � �
� Tz		 � � � �XV���	

Thus in the sum we must have m� n � � so

�
� 		 �
X
m

amcmd�m � �XV���	
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If we next consider the requirement

�T�
� 		 � �
� T�		 � � � �XV��
	

we nd that up to a multiplicative constant the bilinear form must be

�
� 		 �
X
m

���	mcmd�m � �XV���	

We see that we have been able to construct a bilinear invariant and moreover� if
j is integral� the form is symmetric under interchange of 
 and 	� while if j is
half�integral it is anti�symmetric�

The generalization to all the simple Lie algebras is only slightly more com�
plicated� From the analogs of Eq� �XV���	� we conclude that we can form a bilinear
invariant only if for every weight M in the representation� �M is a weight also� To
determine which irreducible representations have this property it su�ces to consider
the representations fromwhich we can build all others� For example� forAn� the rep�
resentation with highest weight ��� �� � � ��	 does not contain the weight ���� �� � � ��	
but instead ��� �� � � � � ����	� On the other hand� the adjoint representation whose
highest weight is ��� �� � � ��� �	 does contain the weight ���� �� � � �����	� More gener�
ally for An� if the highest weight has the symmetric conguration �n�� n�� � � �n�� n�	�
the weights do occur in opposite pairs� M and �M �

The general result is the following� Representations of Bn� Cn� D�n� G�� F��
E
� and E� always have an invariant bilinear form� The algebras An� D�n��� and E	

have invariant bilinear forms for representations of the forms�

An
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Now as for the symmetry or anti�symmetry of the bilinear form it turns out
to be determined by the number of levels in the weight diagram� Dynkin calls the
number of levels less one the height of the representation� Thus for SU ��	� the
�j � � dimensional representation has a height �j� For all the simple Lie algebras�
just as for SU��	� if the height is even� the form is symmetric� and if the height
is odd� the form is anti�symmetric� Now Dynkin has determined the heights of
the irreducible representations of the simple Lie algebras in terms of their Dynkin
coe�cients�� The results are summarized in the following Table�

An �n� �n� �	�� � � � � n	

Bn �� 
 �n� � 
 ��n� �	� � � � � �n� �	�n� �	� n�n� �	��	

Cn

�
� 
 ��n� �	� ���n� �	� � � � � �n� �	�n� �	� n�

�
Dn �� 
 ��n� �	� � 
 ��n� �	� � � � � �n� �	�n� �	� n�n� �	��� n�n� �	��	

G� ���� �	

F� ���� 
�� ��� ��	

E	 ���� ��� 
�� ��������	

E
 ��
� ��� ��� ��������� 
�	

E� ���� ���� ���� ����������
� ��� ���	
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The height of the representation is calculated by multiplying each Dynkin
coe�cient by the number from the table corresponding to its location� Thus� for
example� the adjoint representation of An� with Dynkin coe�cients ��� �� � � ��� �	
has height �n� It is clear that to determine whether a bilinear form is symmetric or
anti�symmetric we need only consider those entries in the table and those Dynkin
coe�cients which are odd� It is apparent that since SU ��	 representations have a
bilinear form only if the Dynkin coe�cients of the highest weight are of the form
�n� n	� all such bilinear forms are symmetric� On the other hand� we see that SU ��	
has a representation with highest weight ��� �� �� �� �	 and dimension �� which has
an anti�symmetric bilinear invariant� Thus SU ��	 � Sp���	�

There are a few instances in which the procedure described above does not
identify a maximal subalgebra� These exceptions have been listed by Dynkin� and
we shall not dwell on them here� One example will su�ce to indicate the nature
of these exceptions� There is a �� dimensional representation of A�� which has a
highest weight ��� �	� We would expect this to be maximal in A�� since it has no
bilinear invariant� In fact� there is an embedding of A� in A� under which the
�� dimensional representation of A�� ��� �� �� �� �	� becomes the fteen dimensional
representation of A�� Thus we have the chain A� � A� � A��� We can understand
the embedding ofA� in A� as follows� Since A� has a six dimensional representation�
it is maximal in A� � i�e� SU ��	� The anti�symmetric product of the six with itself�
in both A� and A� is an irreducible fteen dimensional representation� Thus the
embedding which maps the six into the six� also maps the fteen into the fteen�

It is clear that the approach above will not help us nd the S�subalgebras
of the exceptional Lie algebras� Fortunately� this problem has been solved� again
by Dynkin� In order to display his results we must introduce some additional
notation� In particular� we need a means of specifying a particular embedding of a
subalgebra G� in an algebra� G� This is done with the index of the embedding�
In Chapter XI� we introduced the concept of the index of a representation� which is
simply the ratio of the bilinear form obtained from the trace of the product of two
representation matrices to the bilinear form which is the Killing form normalized in
a particular way� Here we dene the index of an embedding to be the ratio of the
bilinear form on G� obtained by lifting the value of the Killing form on G to the
Killing form on G� itself�
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jf �x
�� y�	�� � �f�x�	� f�y�		� �XV���	

where jf is the index of the embedding and f � G� � G is the embedding� As
we have seen� on a simple Lie algebra all invariant bilinear forms are proportional�
so this denition makes sense� Now suppose � is a representation of G� that is� a
mapping of elements of G onto a space of linear transformations� Then � � f is a
representation of G�� Moreover� for x�� y� � G��

Tr ��f�x�		��f�y�		 �l��f �x
�� y�	��

�l��f�x
�		� f�y�		�

�l�jf �x
�� y�	�� �XV���	

so we see that the index of the embedding is determined by the ratio of the indices
of the representations � and � � f �

jf �
l��f
l�

� �XV���	

Consider G�� which we know has a � dimensional representation� Thus we
might hope to embed A�� which has a � dimensional representation� in G�� This is
in fact possible� Now we compute the index of the seven dimensional representation
of A� according to the methods of Chapter XI� l � � � � � ��� � ��� For the
seven dimensional representation of G� we have l � �h��� � ��i��
 � �� See the
Problems following Chapter XI� Thus the index of the embedding is ��� Dynkin
indicates this subalgebra by A��

� � If there is more than one subalgebra with the
same index� we can use primes to indicate this�
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Having established this notation� we list the results of Dynkin �for the max�
imal S�subalgebras of the exceptional Lie algebras�

Maximal S�subalgebras of Exceptional Lie Algebras

G� A��
�

F� A��	
� � G�

� � A�
�

E	 A�
�� G

�
�� C

�
� � G

�
� �A���

� � F �
�

E
 A���
� � A���

� � A��
� � G

�
� � C���

� � F �
� � A���

� � G�
� � A


�� A
��
� �A��

�

E� A����
� � A
	�

� � A���
� � G�

� � F �
� � A

	�
� � A�	

� � B��
�

We summarize here the results on the maximal semi�simple subalgebras of
the simple Lie algebras�

�� Regular subalgebras are found using the algorithm of extended Dynkin dia�
grams�

a� Dropping a dot from an extended diagram yields a regular subalgebra
which is semi�simple and maximal unless it is one of the exceptions
mentioned on pp� ��
 � ����

b� Dropping a dot from a basic diagram yields a subalgebra which may
be maximal among the semi�simple subalgebras�

�� Non�Regular �S�subalgebras	

a� Of classical algebras�

i� Non�simple� SU �s	 � SU �t	 � SU �st	� SO�s	 � SO�t	 � SO�st	�
Sp�s	� Sp�t	 � SO�st	� Sp�s	� SO�t	 � Sp�st	 � and O�s	�O�t	 �
O�s � t	 for s and t odd�

ii� Simple� If G has an n dimensional representation it is maximal in
SU �n	� SO�n	� or Sp�n	� unless it is one of the few exceptions listed
by Dynkin� If the representation has a symmetric bilinear form the
subalgebra is maximal in SO�n	� If it has an anti�symmetric bilinear
form� it is maximal in Sp�n	� If it has no bilinear form� it is maximal
in SU �n	�

b� Of exceptional Lie algebras� the maximal S�subalgebras are listed
above�
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Footnotes

�� DYNKIN II� p� �
��

�� GOLUBITSKY and ROTHSCHILD�

�� DYNKIN III�


� DYNKIN III� p� ����

�� DYNKIN II� p� ����

References

This material is comes from DYNKIN II� III�

Very useful tables are provided in SLANSKY�

Incredibly extensive tables are given in MC KAY and PATERA�

Exercises

�� Find the maximal semi�simple subalgebras of A��

�� Find the maximal semi�simple subalgebras of D�� Note that it is necessary
to consider some subalgebras which are only maximal among the semi�simple
subalgebras� ans� A� � A� �A�� A�� B�� D�� A� � B�� B� �B��

�� Find the maximal semi�simple subalgebras of F��


� Find the maximal semi�simple subalgebras of B��
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XVI� Branching Rules

Having determined� with much help from E� B� Dynkin� the maximal semi�
simple subalgebras of the simple Lie algebras� we want to pursue this further to
learn how an irreducible representation of an algebra becomes a representation of
the subalgebra� To do this we shall have to be more precise about the embedding
of the subalgebra in the algebra� Indeed� as we have already seen� the three dimen�
sional representation of SU ��� may become either a reducible representation or an
irreducible representation of SU ��� depending on the embedding�

We start with a subalgebra G� embedded in the algebra G by a mapping
f 	 G� � G� where f is a homomorphism� that is� it preserves the commutation
relations	

f�
x�� y��� � 
f�x��� f�y��� � x�� y� � G� � �XVI���

Moreover� we can arrange it so that the Cartan subalgebra H� � G� is mapped by
f into the Cartan subalgebra H � G� Note that if � is a representation of G� then
� � f is a representation of G��

If we are to make progress� we must deal not only with the algebras but with
the root spaces H� �

�
andH�

�
as well� Given the mapping f � we dene f� 	 H�

�
� H� �

�

by
f� � � � � � f �XVI���
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where � � H�

�
� That is to say� if h� � H�

�f� � ���h�� � ��f�h��� � �XVI���

Instead of thinking of G� as external to G� it is easier to imagine it already
within G� Then f 	 H� � H simply maps H� onto itself as the identity� We recall
that there is a one�to�one correspondence between the elements of the root space�
� � H�

�
and the elements h� of the Cartan subalgebra� This one�to�one mapping

connects to H � a space which we regard as H� �

�
� Now let us decompose H�

�
as the

sum of H� �

�
and a space H� orthogonal to it� That is� if � � H� �

�
and � � H�� then

h�� �i � �� Then the elements of H� are functionals which when applied to H� give
zero� This is so because if � � H� corresponds to h� � H and � � H� �

�
corresponds

to h� � H�� then ��h� � � �h�� h� � � h�� � i � �� Now the action of f� is simply
to project elements of H�

�
onto H� �

�
� This follows because if � � �� � ��� �� �

H� �

�
� �� � H�� then for h� � H�� f� � ��h�� � ��f�h��� � ��� � ����h�� � ���h���

Thus f� � � � ���

Let M be a weight of a representation � of G	

��h��M �M �h��M � �XVI���

Then if h � H� � H�

��f�h���M �M �f�h���M

�f� �M �h��M � �XVI���
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It follows that if M is a weight of �� then f� �M is a weight of the representation
� � f of G�� More graphically� the weights of the representation of the subalgebra
are obtained by projecting the weights of the algebra from H�

�
onto H� �

�
�

A simple but important consequence of this conclusion is that if the rank of
G� is the same as the rank of G� then the subalgebra is regular� This is so because if
the ranks are the same� then H� �

�
coincides with H�

�
so the projection is simply the

identity� Thus if we start with the adjoint representation of G� it will be mapped
�by the identity� into a reducible representation of G� which contains the adjoint of
G�� But the weights of the adjoint of G� must then have been among the weights
of the adjoint of G�

Let us pause to consider an example� Let us take G � G� and G� � A��
We know this is a regular subalgebra� Indeed� examining the root diagram� we see
that the six long roots form the familiar hexagon of the adjoint representation of
SU ��� � A�� The projection f

� here is just the identity map since the algebra and
the subalgebra have the same rank� The fourteen dimensional adjoint representation
becomes the sum of the eight dimensional adjoint representation of SU ��� and two
conjugate three dimensional representations�

We state without proof two of Dynkin�s theorems�� If G� is a regular subal�
gebra of G and � is representation of G� then � � f is reducible� An approximate
converse is also true� If G is An� Bn or Cn� and G� has a reducible representa�
tion which makes it a subalgebra of G by being respectively n�dimensional with
no bilinear invariant or �n�� dimensional with a symmetric bilinear invariant� or
�n dimensional with an anti�symmetric bilinear invariant� then G� is regular� In
other words� if An� Bn� or Cn has an S�subalgebra� that S�subalgebra must have an
irreducible representation of dimension� n� �n��� or �n respectively�

What happened to Dn in this theorem� As we saw in the last chapter�
O�s� �O�t� is an S�subalgebra of O�s� t� if both s and t are odd�

We now proceed to the determination of f�� the mapping which connects H�

�

to H� �

�
� Once we know f� we can nd the weights of � � f for any representation �

of a given algebra� From these weights we can infer the irreducible representations
into which � � f decomposes� In fact� extensive tables of these branching rules have
been compiled by computer �see McKay and Patera�� Here we seek to develop some
intuitive understanding of the procedure�



XVI� Branching Rules ���

To be explicit� we shall take an example	 B�� that is O���� By the methods of
the previous chapter we can easily nd the maximal regular semi�simple subalgebras	
A� � D� and A��A��A�� In seeking the S�subalgebras� we note that the technique
O�s� � O�t� � O�st� is of no avail for st � �� On the other hand� A� has a seven
dimensional representation which has a symmetric bilinear form� Thus we might
anticipate that A� is a maximal S�subalgebra ofB�� In fact� as we shall see� A� � G�

and G� is maximal in B��

There is a simple and e�ective way to nd the mappings f� for the regular
subalgebras� Remember the procedure for constructing the extended Dynkin dia�
grams� We added the vector �� to the diagram for the simple algebra� where � was
the highest root� We then had a diagram for the set which was the union of ��
and the simple roots� From this set� we struck one root� The remainder furnished
a basis of simple roots for the subalgebra� The Dynkin coe�cients for the weights
relative to the new basis of simple roots are just the Dynkin coe�cients with respect
to the surviving old simple roots� together with the Dynkin coe�cient with respect
to ��� Thus we simply calculate the Dynkin coe�cient of each weight with respect
to �� and use it in place of one of the old coe�cients� Calculating the coe�cient
with respect to �� is trivial since we can express �� as a linear combination of the
simple roots�

Let us use this technique to analyze the regular subalgebras of B�� The
Dynkin coe�cients of � are ��� �� ��� Referring to the Cartan matrix we see that
�� � ����������� Since h�� �i � h��� ��i � h��� ��i � �h��� ��i� the coe�cient
of a weight with respect to �� is �a� � �a� � a� if the Dynkin coe�cients with
respect to ��� ��� and �� are a�� a�� and a� respectively�
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In this way we construct the extended weight scheme for the seven di�
mensional representation of B�	

� � � ��

�� � � ��

� �� � �

� � � �

� � �� �

� �� � �

�� � � �

Now the A� regular subalgebra is obtained by using the fourth column� the
one for ��� rather than the third one� Deleting the third column we have

� � ��

�� � ��

� �� �

� � �

� � �

� �� �

�� � �

This is a representation of A�� The candidates for highest weights of irreducible
components are ������� and ������� since these are the only ones with purely non�
negative Dynkin coe�cients� Indeed� these give a six dimensional representation
and a one�dimensional representation� Moreover� we can deduce the projection
operator for this subalgebra directly by comparing three weights in the original
basis to their values in the basis for the subalgebra A�� In this way we nd
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f�

A�
��� �� �� ���� �����

f�

A�
��� �� �� ���� �����

f�

A�
��� �� �� ���� ����� � �XVI���

Knowing this mapping gives us an alternative method of nding the weights of
some irreducible representation of B� with respect to the subalgebra A�� Thus for
example� we can map the weights of the adjoint representation �it su�ces just to
consider the positive roots � of B� into weights of A�	

� � � � � � ��

� �� � � � �� ��

�� � � � �� � ��

� � � � � � ��

�� � � � �� � ��

� � �� � � � ��

� �� � � � �� �

�� � �� � �� � ��

� �� � � � �� �

From these weights and their negatives� it is clear that the candidates for high�
est weights are ������� and ������� which indeed correspond to representations of
dimension fteen and six respectively�



��� XVI� Branching Rules

If we consider the subalgebra A��A��A�� deleting the Dynkin coe�cients
with respect to the second root� we nd the seven dimensional representation of B�

is mapped into
� � ��

�� � ��

� � �

� � �

� �� �

� � �

�� � �

This is the reducible representation whose Dynkin expression is 
������������ �

������������� In the notation which indicates dimensionality� it is ����������������

It is clear that the regular subalgebras can be dealt with in a very simple
fashion� The S�subalgebras require more e�ort� It is always possible to order the
Cartan subalgebras of the initial algebra and of its subalgebra so that if x 	 y�
x� y � H� then f��x� 	 f��y�� Now we exploit this by writing the weights of the
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seven dimensional representations of B� and G� beside each other	

� � � � �

�� � � � ��

� �� � �� �

� � � � �

� � �� � ��

� �� � �� �

�� � � � ��

Thus it is clear that we must have

f�

G�
��� �� �� ���� ��

f�

G�
��� �� �� ���� ��

f�

G�
��� �� �� ���� �� � �XVI���

Equipped with this mapping� we can project the weights of any representation of
B� onto the space of weights of G� and thus identify the branching rules�
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For example� we again consider the positive roots of B� to nd the branching
rule for the adjoint representation	

� � � � � �

� �� � � �� �

�� � � � � �

� � � � � �

�� � � � � ��

� � �� � � ��

� �� � � �� �

�� � �� � � ��

� �� � � �� �

� � � � � �

The weights with non�negative Dynkin coe�cients are ������ ������ and ������ Now
the fourteen dimensional representation has highest weight ����� and includes the
weight ������ Thus we see that the �� dimensional representation of B� becomes
the sum of a �� dimensional representation and a � dimensional representation�
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Footnote

�� DYNKIN III� pp� ��������

References

Again� the entire chapter is due to DYNKIN III� The works of SLANSKY
and of MC KAY AND PATERA provide exhaustive tables�

Exercises

�� Find the branching rules for the ten�dimensional representation of SU��� for
the maximal semi�simple subalgebras�

�� Find the branching rules for the �� and �� dimensional representations of F�
into its maximal semi�simple subalgebras�
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Preface iii

Preface

Particle physics has been revolutionized by the development of a new
�paradigm�� that of gauge theories� The SU	
� x U	�� theory of electroweak in�
teractions and the color SU	� theory of strong interactions provide the present
explanation of three of the four previously distinct forces� For nearly ten years
physicists have sought to unify the SU	� x SU	
� x U	�� theory into a single
group� This has led to studies of the representations of SU	��� O	���� and E��
E�orts to understand the replication of fermions in generations have prompted
discussions of even larger groups�

The present volume is intended to meet the need of particle physicists
for a book which is accessible to non�mathematicians� The focus is on the
semi�simple Lie algebras� and especially on their representations since it is
they� and not just the algebras themselves� which are of greatest interest to the
physicist� If the gauge theory paradigm is eventually successful in describing
the fundamental particles� then some representation will encompass all those
particles�

The sources of this book are the classical exposition of Jacobson in his
Lie Algebras and three great papers of E�B� Dynkin� A listing of the references
is given in the Bibliography� In addition� at the end of each chapter� references



iv Preface

are given� with the authors� names in capital letters corresponding to the listing
in the bibliography�

The reader is expected to be familiar with the rotation group as it arises
in quantummechanics� A review of this material begins the book� A familiarity
with SU	� is extremely useful and this is reviewed as well� The structure of
semi�simple Lie algebras is developed� mostly heuristically� in Chapters III �
VII� culminating with the introduction of Dynkin diagrams� The classical Lie
algebras are presented in Chapter VIII and the exceptional ones in Chapter
IX� Properties of representations are explored in the next two chapters� The
Weyl group is developed in Chapter XIII and exploited in Chapter XIV in the
proof of Weyl�s dimension formula� The �nal three chapters present techniques
for three practical tasks� �nding the decomposition of product representations�
determining the subalgebras of a simple algebra� and establishing branching
rules for representations� Although this is a book intended for physicists�
it contains almost none of the particle physics to which it is germane� An
elementary account of some of this physics is given in H� Georgi�s title in this
same series�

This book was developed in seminars at the University of Michigan and
the University of California� Berkeley� I bene�ted from the students in those
seminars� especially H� Haber and D� Peterson in Ann Arbor and S� Sharpe in
Berkeley� Sharpe� and H�F� Smith� also at Berkeley� are responsible for many
improvements in the text� Their assistance is gratefully acknowledged�
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