\sim \sim \sim \sim \sim \sim \sim

A geometrical vector in threedimensional space can be represented by a column vector whose entries are the x, y, and z components of the vector. A rotation of the vector can be represented by a three-by-three matrix. In particular, a rotation by ϕ about the z-axis is given by

$$
\begin{bmatrix}\n\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1\n\end{bmatrix} .
$$
\n(1.1)

For small rotations

$$
\begin{bmatrix}\n\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1\n\end{bmatrix} \approx I - i\phi T_z ,
$$
\n(1.2)

where T_z is the matrix

 \blacksquare

$$
\begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} . \tag{I.3}
$$

In a similar fashion we find T_x and T_y :

$$
T_x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix} , T_y = \begin{bmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix} .
$$
 (I.4)

By direct computation we find that the finite rotations are given as exponentials of the matrices T_x , T_y , and T_z . Thus we have

$$
\exp(-i\phi T_z) = \begin{bmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix} . \tag{I.5}
$$

The product of two rotations like $\exp(-i\theta T_y) \exp(-i\phi T_z)$ can always be written as a single exponential, say $\exp(-i\alpha \cdot I)$ where $\alpha \cdot I = \alpha_x I_x + \alpha_y I_y + \alpha_z I_z$. Suppose we set $\exp(-i\alpha + 1)$ $\exp(-i\beta + 1) = \exp(-i\gamma + 1)$ and try to calculate γ in terms of α and β . If we expand the exponentials we find

$$
[1 - i\alpha \cdot t - \frac{1}{2}(\alpha \cdot t)^2 + \cdots][1 - i\beta \cdot t - \frac{1}{2}(\beta \cdot t)^2 + \cdots]
$$

=
$$
[1 - i(\alpha + \beta) \cdot t - \frac{1}{2}((\alpha + \beta) \cdot t)^2 - \frac{1}{2}[\alpha \cdot t, \beta \cdot t] + \cdots]
$$

=
$$
\exp\{-i(\alpha + \beta) \cdot t - \frac{1}{2}[\alpha \cdot t, \beta \cdot t] + \cdots\}.
$$
 (I.6)

To this order in the expansion, to calculate γ we need to know the value of the commutators like $\{x_y, x_{y\}}$ but not ordinary products like x_x is in fact, this is true to all orders (and is known as the Campbell-Baker-Hausdorff theorem). It is for this reason that we can learn most of what we need to know about Lie groups by studying the commutation relations of the generators (here, the T 's). By direct computation we can find the commutation relations for the T 's:

I. $SU(2)$.

$$
[T_x, T_y] = iT_z, \quad [T_y, T_z] = iT_x, \quad [T_z, T_x] = iT_y.
$$
 (I.7)

These commutation relations which we obtained by considering geometrical rotations can now be used to form an abstract Lie algebra. We suppose there are three quantities t_x , t_y , and t_z with a Lie product indicated by $+$, $-$

$$
[t_x, t_y] = it_z, \quad [t_y, t_z] = it_x, \quad [t_z, t_x] = it_y. \tag{I.8}
$$

We consider all linear combinations of the t 's and make the Lie product linear in each of its factors and anti-symmetric:

$$
[a \cdot t + b \cdot t, c \cdot t] = [a \cdot t, c \cdot t] + [b \cdot t, c \cdot t], \tag{I.9}
$$

$$
[a \cdot t, b \cdot t] = -[b \cdot t, a \cdot t]. \tag{I.10}
$$

It is easy to show that the Jacobi identity follows from Eq. (1.8) :

$$
[a \cdot t, [b \cdot t, c \cdot t]] + [b \cdot t, [c \cdot t, a \cdot t]] + [c \cdot t, [a \cdot t, b \cdot t]] = 0
$$
\n(1.11)

When we speak of the abstract Lie algebra, the product $[a \cdot t, v \cdot t]$ is not to be $\frac{1}{2}$ to $\frac{1}{2}$ and $\frac{1}{2}$ are product a $\frac{1}{2}$ and $\frac{1}{2}$ defined. When we represent the algebra by matrices (as we did at the outset), then of course the ordinary product has a well-defined meaning. Nevertheless, by custom we often refer to the Lie product as a commutator

The abstract Lie algebra derived above from the rotation group displays the features which define Lie algebras in general. A Lie algebra is a vector space, L , (above, the linear combinations of the t 's) together with a bilinear operation (from $L \times L$ into L) satisfying

$$
[x_1 + x_2, y] = [x_1, y] + [x_2, y],
$$

\n
$$
[ax, y] = a [x, y],
$$

\n
$$
[x, y] = -[y, x],
$$

\n
$$
0 = [x, [y, z]] + [y, [z, x]] + [z, [x, y]],
$$

\n
$$
x, y \in L
$$

\n(1.12)

Here F is the field over which L is a vector space. We shall always take F to be the field of real numbers, \mathcal{R} , or the field of complex numbers, \mathcal{C} .

Having motivated the formal definition of a Lie algebra, let us return to the specific example provided by the rotation group. We seek the representations of the Lie algebra defined by Eq. (1.8) . By a representation we mean a set of linear transformations (that is, matrices) T_x , T_y , and T_z with the same commutation relations as the t's. The T's of Eqs. (1.3) and (1.4) are an example in which the matrices are 3×3 and the representation is said to be of dimension three.

We recall here the construction which is familiar from standard quantum mechanics texts. It is convenient to define

$$
t_{+} = t_{x} + it_{y} , \t t_{-} = t_{x} - it_{y} , \t (I.13)
$$

so that the commutation relations become

$$
[t_z, t_+] = t_+, \quad [t_z, t_-] = -t_- \;, \quad [t_+, t_-] = 2t_z \; . \tag{I.14}
$$

We now suppose that the t 's are to be represented by some linear transformations: $t_x \rightarrow T_x, t_y \rightarrow T_y, t_z \rightarrow T_z$. The T's act on some vector space, V. We shall in fact construct this space and the T's directly. We start with a single vector, v_j and define the actions of T_z and T_+ on it by

$$
T_z v_i = j v_i , \t T_+ v_i = 0 . \t (1.15)
$$

Now consider the vector T_{ν} . This vector is an eigenvector of T_{ν} with eigenvalue $j-1$ as we see from

I. $SU(2)$ –

$$
T_z T_- v_j = (T_- T_z - T_-) v_j = (j - 1) T_- v_j \tag{1.16}
$$

Let us call this vector $v_{j-1} \equiv T_{-}v_{j}$. We proceed to define additional vectors sequentially

$$
v_{k-1} = T_- v_k \t\t(1.17)
$$

If our space, V , which is to consist of all linear combinations of the v 's, is to be finite dimensional this procedure must terminate somewhere, say when

$$
T_{-}v_{q}=0\tag{I.18}
$$

In order to determine q, we must consider the action of T_{+} . It is easy to see that $T_{+}v_k$ is an eigenvector of T_z with eigenvalue $k + 1$. By induction, we can show that τ is in that the proportion to vk-I we constant of proportionally may be computed

$$
r_k v_{k+1} = T_+ v_k
$$

= $T_+ T_- v_{k+1}$
= $(T_- T_+ + 2T_z) v_{k+1}$
= $[r_{k+1} + 2(k+1)] v_{k+1}$. (I.19)

This recursion relation for r_k is easy to satisfy. Using the condition $r_j = 0$, which follows from Eq. (1.15) , the solution is

$$
r_k = j(j+1) - k(k+1). \tag{I.20}
$$

Now we can find the value of q defined by Eq. (I.18):

$$
T_{+}T_{-}v_{q} = 0
$$

= $(T_{-}T_{+} + 2T_{z})v_{q}$
= $[j(j+1) - q(q+1) + 2q]v_{q}$. (I.21)

There are two roots, $q = j + 1$, and $q = -j$. The former is not sensible since we should have $q \leq j$. Thus $q = -j$, and $2j$ is integral.

In this way we have recovered the familiar representations of the rotation group, or more accurately, of its Lie algebra, Eq. (I.14). The eigenvalues of T_z range from j to $-j$. It is straightforward to verify that the Casimir operator

$$
T^{2} = T_{x}^{2} + T_{y}^{2} + T_{z}^{2}
$$

= $T_{z}^{2} + \frac{1}{2}(T_{+}T_{-} + T_{-}T_{+})$, (I.22)

has the constant value $j(j + 1)$ on all the vectors in V:

$$
T^{2}v_{k} = [k^{2} + \frac{1}{2}(r_{k-1} + r_{k})]v_{k}
$$

= $j(j + 1)v_{k}$ (I.23)

 \ldots \ldots . The dimensional representation computation above is so being to be irreducible. This means that there is no proper subspace of V (that is, no subspace except V itself and the space consisting only of the zero vector) which is mapped into itself by the various T 's. A simple example of a reducible representation is obtained by taking two irreducible representations on the space V_1 and V_2 , say, and forming the space $V_1 \oplus V_2$. That is, the vectors, v, in V are of the form $v = v_1 + v_2$, with $v_i \in V_i$. If t_z is represented by T_z^- on v_1 and by T_z^- on v_2 , we take the representation of t_z on v to be $I_z(v_1 + v_2) = I_z^* v_1 + I_z^* v_2$, and so on for the other components. The subspaces V_1 and V_2 are **invariant** (that is, mapped into themselves) so the representation is reducible

I. $SU(2)$

A less trivial example of a reducible representation occurs in the "addition of angular momentum in quantum mechanics Here we combine two irreducible representations by forming the product space $V = V_1 \otimes V_2$. If the vectors u_{1m} and u_{2n} form bases for V_1 and V_2 respectively, a basis for V is given by the quantities $u_{1m} \otimes u_{2n}$. We define the action of the T's on V by

$$
T_z(u_{1m} \otimes u_{2n}) = (T_z^1 u_{1m}) \otimes u_{2n} + u_{1m} \otimes (T_z^2 u_{2n}), \qquad (1.24)
$$

etc. If the maximum value of I_z on V_1 is j_1 and that of I_z on V_2 is j_2 , there is an eigenvector of $T_z = T_{\bar{z}} + T_{\bar{z}}$ with eigenvalue $j_1 + j_2$. By applying $T_{\bar{z}} = T_{\bar{z}} + T_{\bar{z}}$ repeatedly to this vector, we obtain an irreducible subspace, $U_{j_1+j_2}$, of $V_1\otimes V_2$. On this space, $T^2 = (j_1 + j_2)(j_1 + j_2 + 1)$. Indeed, we can decompose $V_1 \otimes V_2$ into a series of subspaces on which T^2 takes the constant value $k(k+1)$ for $|j_1-j_2| \leq k \leq j_1+j_2$, that is $V_1 \otimes V_2 = U_{j_1 + j_2} \oplus \ldots \oplus U_{|j_1 - j_2|}$.

The representation of smallest dimension has $\gamma = 1/2$. Its matrices are 2×2 and traceress. The matrices for $\pm y$, $\pm y$, and $\pm z$ are mornitian (a hermitian matrix M , satisfies $M_{i\,i} \equiv M_{ij}$ where indicates complex conjugation). If we consider α real linear combinations of $\pm y$, α and $\pm z$ are obtain matrices, \pm , which are traceless and hermitian. The matrices $\exp(iT)$ form a group of unitary matrices of determinant unity (a matrix is unitary if its adjoint - its complex conjugate transpose is its inverse This group is called SU - ^S for special determinant equal to unity), and U for unitary. The rotations in three dimensions, $O(3)$, have the same Lie algebra as SU - I same are not identical as groups.

Footnote

1. See, for example, JACOBSON, pp. 170-174.

References

This material is familiar from the treatment of angular momentum in quan tum mechanics and is presented in all the standard texts on that subject. An especially fine treatment is given in GOTTFRIED.

Exercises

Define the standard Pauli matrices

$$
\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} , \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} , \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} .
$$

- 1. Prove that $t_x \rightarrow \frac{1}{2}\sigma_x$, $t_y \rightarrow \frac{1}{2}\sigma_y$, etc. is a representation of SU(2).
- 2. Prove, if $\alpha \cdot \sigma = \alpha_x \sigma_x + \alpha_y \sigma_y + \alpha_z \sigma_z$, etc. then $\alpha \cdot \sigma \beta \cdot \sigma = \alpha \cdot \beta + i \alpha \times \beta \cdot \sigma$.
- σ . I love that $\exp(-i\sigma n/2) = \cos(\sigma/2) = in$ or $\sigma \sin(\sigma/2)$, where $n n = 1$.
- 4. Prove $\exp(-i\nu\sigma \cdot n/2)\sigma \cdot n$ $\exp(i\nu\sigma \cdot n/2) = \sigma \cdot n$, where $n \cdot n = n \cdot n = 1$ and where $n'' = \cos \theta \; n' + n \cdot n' (1 - \cos \theta) n + \sin \theta \; n \times n'$. Interpret geometrically,
- 3. Prove $\exp(-i 2\pi n \cdot 1) = (-1)^{-i}$ where $n \cdot n = 1$ and $T = i(j + 1)$.

The preceding review of $SU(2)$ will be central to the understanding of Lie algebras in general. As an illustrative example, however, $SU(2)$ is not really adequate. The Lie algebra of $SU(3)$ is familiar to particle physicists and exhibits most of the features of the larger Lie algebras that we will encounter later.

The group $SU(3)$ consists of the unitary, three-by-three matrices with determinant equal to unity. The elements of the group are obtained by exponentiating iM , where M is a traceless, three-by-three, hermitian pmatrix. There are eight linearly independent matrices with these properties.

One choice for these is the λ matrices of Gell-Mann:

$$
\lambda_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \lambda_2 = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \lambda_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$

$$
\lambda_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \lambda_5 = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}, \qquad \lambda_6 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, (II.1)
$$

$$
\lambda_7 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.
$$

The first three are just the Pauli matrices with an extra row and column added. The next four also have a similarity to σ_x and σ_y . To exploit this similarity we define

$$
T_x = \frac{1}{2}\lambda_1 , \qquad T_y = \frac{1}{2}\lambda_2 , \qquad T_z = \frac{1}{2}\lambda_3 ,
$$

\n
$$
V_x = \frac{1}{2}\lambda_4 , \qquad V_y = \frac{1}{2}\lambda_5 ,
$$

\n
$$
U_x = \frac{1}{2}\lambda_6 , \qquad U_y = \frac{1}{2}\lambda_7 , \qquad Y = \frac{1}{\sqrt{3}}\lambda_8 .
$$
 (II.2)

There is no U_z or V_z because there are only two linearly independent diagonal generators. By historical tradition, they are chosen to be T_z and Y. Just as with $SU(2)$, it is convenient to work with the complex combinations

$$
T_{\pm} = T_x \pm i T_y, \quad V_{\pm} = V_x \pm i V_y, \quad U_{\pm} = U_x \pm i U_y \tag{II.3}
$$

It is straightforward to compute all the commutation relations between the eight generators. See Table II.1. We can consider these commutation relations to define the abstract Lie algebra of $SU(3)$. That is, a representation of $SU(3)$ is a correspondence $t_z \rightarrow T_z$, $t_+ \rightarrow T_+$, $t_- \rightarrow T_-$, $u_+ \rightarrow U_+$, *etc.* which preserves the commutation relations given in Table II.1. The three-by-three matrices given above form one representation, but as is well-known, there are six dimensional, eight dimensional, ten dimensional representations, etc.

Table II.1

The $SU(3)$ commutation relations. The label on the row gives the first entry in the commutator and the column label gives the second.

The eight dimensional representation is especially interesting. It can be obtained in the following fashion. We seek a mapping of the generators t_+ , t_- , t_z , u_+ , etc. into linear operators which act on some vector space. Let that vector space be the Lie algebra, L , itself, that is, the space of all linear combinations of $t's$, $u's$, *etc.* With t_z we associate the following linear transformation. Let $x \in L$ and take

$$
x \to [t_z, x] \tag{II.4}
$$

We call this linear transformation ad t_z . More generally, if $x, y \in L$, ad $y(x) =$ $[y, x]$.

Now the mapping $y \to ad y$ is just what we want. It associates with each element y in the Lie algebra, a linear transformation, namely ad y . To see that this is a representation, we must show it preserves the commutation relations, that is, if $[x, y] = z$ it must follow that $[\text{ad }x, \text{ad }y] = \text{ad }z$. (It is worth noting here that the brackets in the first relation stand for some abstract operation, while those in the second indicate ordinary commutation.) This is easy to show:

$$
[ad x, ad y] w = [x, [y, w]] - [y, [x, w]]
$$

$$
= [x, [y, w]] + [y, [w, x]]
$$

$$
= - [w, [x, y]]
$$

$$
= [[x, y], w] = [z, w]
$$

$$
= ad z(w) .
$$
(II.5)

In the third line the Jacobi identity was used.

This representation is eight dimensional since L is eight dimensional. The operators ad x can be written as eight-by-eight matrices if we select a particular basis. For example, if the basis for L is t_+ , t_- , t_z , u_+ , u_- , v_+ , v_- , and y (in that order), the pmatrix for ad t_+ is found to be (using Table II.1)

II. SU(3) $-$

while that for $\operatorname{ad} t_z$ is

$$
ad t_z = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$
 (II.7)

Both ad t_z and ad y are diagonal. Thus if $x = at_z + b$ y, then ad x is diagonal. Explicitly, we find

$$
ad x = \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2}a + b & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}a - b & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}a + b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2}a - b & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$
 (II.8)

In other words, t_+ , t_- , t_z , u_+ , u_- , v_+ , v_- , and y are all eigenvectors of ad x with eigenvalues $a, -a, 0, -\frac{1}{2}a + b, \frac{1}{2}a - b, \frac{1}{2}a + b, -\frac{1}{2}a - b$, and 0 respectively.

The procedure we have followed is central to the analysis of larger Lie algebras. We have found a two dimensional subalgebra (all linear combinations of t_z and y) which is **abelian** (that is, if x and y are in the subalgebra, $[x, y] = 0$). We have chosen a basis for the rest of the Lie algebra so that each element of the basis is an eigenvector of ad x if x is in the subalgebra (called the **Cartan subalgebra**). It is for this reason that we chose to work with t_+ and t_- rather than t_x and t_y , etc.

Once we have selected the Cartan subalgebra, H , the determination of the eigenvectors of ad x for $x \in H$ does not depend on a specific choice of basis for H. That is, we could choose any two linearly independent combinations of t_z and y as the basis for H . Of course, the eigenvectors are not uniquely determined, but are determined only up to a multiplicative constant: if u_+ is an eigenvector of ad x, then so is cu_+ , where c is a number. The eigenvalues, however, are completely determined, since, for example, u_+ and cu_+ have the same eigenvalue.

These eigenvalues depend, of course, on what x is. Specifically, we have

$$
ad (at_{z} + by)t_{+} = at_{+}
$$

\n
$$
ad (at_{z} + by)t_{-} = -at_{-}
$$

\n
$$
ad (at_{z} + by)t_{z} = 0t_{z}
$$

\n
$$
ad (at_{z} + by)u_{+} = (-\frac{1}{2}a + b)u_{+}
$$

\n
$$
ad (at_{z} + by)u_{-} = (\frac{1}{2}a - b)u_{-}
$$

\n
$$
ad (at_{z} + by)v_{+} = (\frac{1}{2}a + b)v_{+}
$$

\n
$$
ad (at_{z} + by)v_{-} = (-\frac{1}{2}a - b)v_{-}
$$

\n
$$
ad (at_{z} + by)y = 0y
$$
 (II.9)

The eigenvalues depend on x in a special way: they are linear functions of x. We may write

$$
\alpha_{u_{+}}(at_{z} + by) = -\frac{1}{2}a + b , \qquad (II.10)
$$

etc. The functions $\alpha_{u_{+}}$ are linear functions which act on elements of the Cartan subalgebra, H , and have values in the complex numbers. The mathematical term for a linear function which takes a vector space, V (here V is H , the Cartan subalgebra) into the complex numbers is a **functional**. The linear functionals on V comprise a vector space called the **dual space** , denoted V^* . Thus we say that the functionals α lie in H^* . These functionals, α , are called **roots** and the corresponding generators like u_+ are called **root** vectors.

The concept of a dual space may seem excessively mathematical, but it is really familiar to physicists in a variety of ways. If we consider a geometrical vector space, say the three-dimensional vectors, there is a well-defined scalar (dot) product. Thus if **a** and **b** are vectors, $\mathbf{a} \cdot \mathbf{b}$ is a number. We can think of $\mathbf{a} \cdot \mathbf{a}$ as an element in the dual space. It acts on vectors to give numbers. Moreover, it is linear: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$. A less trivial example is the bra-ket notation of Dirac: $|\rangle$ represents vectors in the space V, $\langle \rangle$ represents vectors in the dual space, V^* .

References

 $SU(3)$ is familiar to particle physicists and is presented in many texts. Particularly notable presentations are found in GASIOROWICZ and in CARRUTHERS.

Exercises

1. Show that λ_1, λ_2 , and λ_3 close among themselves under the commutation relations, that is that they generate an $SU(2)$ subalgebra. Show the same is true for λ_2, λ_5 , and λ_7 .

 $2. \,$ Show that

$$
\sum_i \lambda_{ab}^i \lambda_{cd}^i = -\frac{1}{3} \sum_i \lambda_{ad}^i \lambda_{cb}^i + \frac{16}{9} \delta_{ad} \delta_{cb} \ .
$$

III. The Killing Form

A fundamental step in the analysis of Lie algebras is to establish a geometrical picture of the algebra We shall eventually see how this geometry can be developed in terms of the roots of the algebra. Before turning to the roots, we must first define something resembling a scalar product for elements of the Lie algebra itself. We shall state our definitions for an arbitrary Lie algebra and illustrate them with $SU(3)$.

Let L be a Lie algebra and let $a, b \in L$. The **Killing form** is defined by

$$
(a, b) = \text{Tr ad } a \text{ ad } b \tag{III.1}
$$

Remember that $ad\ a$ is an operator which acts on elements of L and maps them into new elements of L . Thus the indicated trace can be evaluated by first taking a basis for π , α μ , α μ , α is the τ and α are the second with α μ μ and μ μ μ μ and express the result in terms of the x_i 's. The coefficient of x_j is the contribution to the trace It is easy to show that the trace is independent of the choice of basis As an example of the Killing form, consider $SU(3)$. Using Table II.1 we see that

$$
(t_z, t_z) = 3. \tag{III.2}
$$

This can be calculated simply using the matrix representation of the operator ad t_z , equate the contract of the contract of $\mathcal{L}_{\mathcal{A}}$

$$
[t_z, [t_z, t_z]] = 0 , \t [t_z, [t_z, u_+]] = \frac{1}{4} u_+
$$

\n
$$
[t_z, [t_z, y]] = 0 , \t [t_z, [t_z, u_-]] = \frac{1}{4} u_-
$$

\n
$$
[t_z, [t_z, t_+]] = t_+, \t [t_z, [t_z, v_+]] = \frac{1}{4} v_+
$$

\n
$$
[t_z, [t_z, t_-]] = t_- , \t [t_z, [t_z, v_-]] = \frac{1}{4} v_- .
$$
\n(III.3)

It is easy to see that a term like (t_z, t_+) must vanish. From Table II.1 we see that $ad t_z ad t_+ (t_z) = -t_+$ and hence gives no contribution to (t_z, t_+) , etc. If we take the Killing form between two of our basis elements, only a few are non-zero:

$$
(t_z, t_z) = 3
$$
, $(y, y) = 4$, $(t_+, t_-) = 6$,
 $(v_+, v_-) = 6$, $(u_+, u_-) = 6$. (III.4)

The Killing form is not a scalar product. In particular it is not positive definite. For example, since we are considering complex combinations of the $SU(3)$ generators, we can calculate $(iy, iy) = -4$.

There is a scalar product associated with the Lie algebra, but it is not defined on the Lie algebra itself, but rather on the space containing the roots. We recall that the roots live in a space called H , the dual space to the Cartan subalgebra, H . Often we can restrict ourselves to the space H_0 , the real, linear combinations of the roots

III Killing Form

The Killing form enables us to make a connection between the Cartan sub algebra, H, and its dual H \rightarrow If $\rho \in H$, there exists a unique element $n_{\rho} \in H$ such that for every $k \in H$,

$$
\rho(k) = (h_{\rho}, k) \tag{III.5}
$$

This unique connection between H and H^* occurs not for all Lie algebras but only for the class of semisimple Lie algebras which are the ones we shall be mostly concerned with. For semi-simple Lie algebras the Killing form, as we shall see, is non-degenerate. This means, in particular, that if $(a, b) = 0$ for every $b \in H$, then $a = 0$. More prosaically, non-degeneracy means that if x_1, x_2, \ldots is a basis for H, then the matrix (x_i, x_j) can be inverted. Thus the values of (a, x_j) completely determine a

This one-to-one relationship between H and H^* can be illustrated with $SU(3)$. Referring to Eqs. (II.9) and (II.10), we designate three non-zero roots by

$$
\alpha_1(at_z + by) = a
$$

\n
$$
\alpha_2(at_z + by) = -\frac{1}{2}a + b
$$

\n
$$
\alpha_3(at_z + by) = \frac{1}{2}a + b
$$
 (III.6)

The other non-zero roots are the negatives of these. Now we determine the elements in H corresponding to α_1 , α_2 , and α_3 . Each of these h's is to lie in H and is thus of the form

$$
h_{\alpha_i} = c_i t_z + d_i y \tag{III.7}
$$

Using the previously computed values of the Killing form, Eq. $(III.4)$, we see that

$$
(h_{\alpha_i}, t_z) = 3c_i
$$

\n
$$
(h_{\alpha_i}, y) = 4d_i
$$
 (III.8)

To determine the coefficients c_i and d_i , we combine the definition of h_α , Eq. (III.5), with the expressions for the roots, Eq. (III.6):

$$
\alpha_1(t_z) = 1 = (h_{\alpha_1}, t_z) = 3c_1 ,\n\alpha_1(y) = 0 = (h_{\alpha_1}, y) = 4d_1 ,\n\alpha_2(t_z) = -\frac{1}{2} = (h_{\alpha_2}, t_z) = 3c_2 ,\n\alpha_2(y) = 1 = (h_{\alpha_2}, y) = 4d_2 ,\n\alpha_3(t_z) = \frac{1}{2} = (h_{\alpha_3}, t_z) = 3c_3 ,\n\alpha_3(y) = 1 = (h_{\alpha_3}, y) = 4d_3 . \qquad (III.9)
$$

Thus we find the elements of H which correspond to the various roots:

$$
h_{\alpha_1} = \frac{1}{3}t_z; \quad h_{\alpha_2} = -\frac{1}{6}t_z + \frac{1}{4}y; \quad h_{\alpha_3} = \frac{1}{6}t_z + \frac{1}{4}y \; . \tag{III.10}
$$

Of course, this correspondence is linear. It would have sufficed to determine h_{α_1} and m_{α_2} and then noted that since $\alpha_0 = \alpha_1 + \alpha_2$, $m_{\alpha_3} = m_{\alpha_1} + m_{\alpha_2}$. Indeed, denote Eq. (III.10) we can find the element of H which corresponds to any element of H^* since such elements can be expressed in terms of, say, α_1 and α_2 .

We are now in a position to display the previously advertised scalar product. Let α and ρ be real linear combinations of the roots, that is, $\alpha, \rho \in H_0$ and let n_α and h- μ as the elements in H associated with the elements in the map η is Eq. I then μ then μ we denne a product on H_0 by

$$
\langle \alpha, \beta \rangle \equiv (h_{\alpha}, h_{\beta}) \tag{III.11}
$$

For the particular case of $SU(3)$, using Eq. (III.4), we have

$$
\langle \alpha_1, \alpha_1 \rangle = (h_{\alpha_1}, h_{\alpha_1}) = \left(\frac{1}{3}t_z, \frac{1}{3}t_z\right) = \frac{1}{3}
$$

\n
$$
\langle \alpha_2, \alpha_2 \rangle = (h_{\alpha_2}, h_{\alpha_2}) = \frac{1}{3}
$$

\n
$$
\langle \alpha_3, \alpha_3 \rangle = (h_{\alpha_3}, h_{\alpha_3}) = \frac{1}{3}
$$

\n
$$
\langle \alpha_1, \alpha_2 \rangle = (h_{\alpha_1}, h_{\alpha_2}) = -\frac{1}{6}
$$

\n
$$
\langle \alpha_1, \alpha_3 \rangle = (h_{\alpha_1}, h_{\alpha_3}) = \frac{1}{6}
$$

\n
$$
\langle \alpha_2, \alpha_3 \rangle = (h_{\alpha_2}, h_{\alpha_3}) = \frac{1}{6}
$$
 (III.12)

From these specific values, we can see that for $SU(3)$, \langle , \rangle provides a scalar product on the root space, H_0^* . Indeed, we can interpret Eq. (III.12) geometrically by representing the roots by vectors of length $1/\sqrt{3}$. The angles between the vectors are such that $\cos \theta = \pm \frac{1}{2}$ as shown in Fig. III.1.

It is important to note that \langle , \rangle is quite different from $(,)$. There is no "natural" basis for the Cartan subalgebra so some of the symmetry is not apparent. Thus we found $(t_z, t_z) = 3$, but $(y, y) = 4$. Moreover, we might as well have chosen iy instead of y and found $(iy, iy) = -4$. There are naturally distinguished elements of H , namely the roots. As a result, the product on H -displays more clearly the \blacksquare symmetry of the Lie algebra

So far we have limited our discussion to the Lie algebras of $SU(2)$ and $SU(3)$ (or, more precisely, their complex extensions). Let us now generalize this and explain the terms "simple" and "semi-simple".

Suppose L is a Lie algebra. A subalgebra, M, is simply a subspace of L which is closed under the Lie product. For example, t_z , t_{+} , and t_{-} generate a subalgebra of $SU(3)$ which is indeed isomorphic (equivalent) to $SU(2)$. Symbolically, if it is a subalgebra and $x_i, y \in M$ then $|x_i, y_i \in M$ in the case is a special kind of subalgebra If g is an ideal and $x \in g$ and y is any element of L then $\vert w \vert$ y $\vert \subset g$. If J were only a subalgebra instead of an ideal, we would have to restrict y to be in J rather than just in L .

As an example, consider the group $U(3)$, the set of all three-by-three unitary matrices We can think of its Lie algebra as being the set of all Hermitian three by-three matrices. This is the same as for $SU(3)$ except that the matrices need not be traceless Thus we might take for a basis the eight matrices displayed in Eq. $(III.1)$, plus the three-by-three identity matrix.

Now consider the one-dimensional space spanned by the identity matrix, that is, the space given by multiples of the identity. This space, J , is an ideal because if \sim J and y is any element of the Lie algebra $\vert w,y\vert =0$. In fact, if we consider the space of all traceless matrices, J' , we see that it too is an ideal. This follows since the trace of a commutator is necessarily traceless. Thus every element in $U(3)$ can be written as a sum of one element from J and one element from J' . The full algebra is the sum of the two ideals

A Lie algebra which has no ideals (except the trivial ones comprising the full algebra itself or the ideal consisting solely of θ) is called **simple**. A subalgebra in which all members commute is called **abelian**. An algebra with no abelian ideals is called semi-simple. Thus the Lie algebra of $SU(3)$ is simple, while that of $U(3)$ is neither simple nor semi-simple.

A semi-simple Lie algebra is the sum of simple ideals. Consider, for example, the five-by-five traceless hermitian matrices which are zero except for two diagonal blocks, one three-by-three and one two-by-two. Suppose we consider only matrices where each of these two blocks is separately traceless. The resulting set is a Lie algebra which can be considered the sum of two ideals, one of which is isomorphic to $SU(2)$ and the other of which is isomorphic to $SU(3)$. If we require only that the sum of the traces of the two diagonal blocks vanish, the resulting algebra is larger, including matrices proportional to one whose diagonal elements are $\frac{1}{2}$, $\frac{1}{2}$, This element and its multiples form an abelian ideal so this larger algebra SU $SU(2) \times U(1)$ is not semi-simple.

Because semisimple Lie algebras are simply sums of simple ones most of their properties can be obtained by first considering simple Lie algebras.

There is an intimate relationship between the Killing form and semi-simplicity: the Killing form is non-degenerate if and only if the Lie algebra is semi-simple. It is not hard to prove half of this fundamental theorem $\bar{\ }$ (which is due to Cartan). If the Killing form is non-degenerate, then L is semi-simple. Suppose L is not semisimple and let B be an abelian ideal. Let b_1, b_2, \ldots be a basis for B. We can extend this to a basis for the full algebra L by adding y_1, y_2, \ldots where $y_i \notin B$. Now let α and α and α a α are α and α are α binds to the inner commutator of α lies in B since B is an ideal. But then the second commutator vanishes since B α abeliant α consider β || α | β || \pm no must result must no mi- β since β | \subset β so its expansion has no components along the y_k 's and along y_j in particular. Thus there is no contribution to the trace The trace vanishes and the Killing form is degenerate

Footnotes

- $1. \,$ We follow here $\rm JACOBSON,$ p. $110. \,$
- JACOBSON pp -

Exercise

1. Define a bilinear form on $SU(3)$ using the three-dimensional representation as follows. Let x and y be a linear combination of the matrices in Eq. (II.1) and define $((x, y)) = \text{Tr} xy$. Compare this with the Killing form, i.e. $(x, y) =$ Tr ad x ad y . It suffices to consider x and y running over some convenient basis

IV. The Structure of Simple Lie Algebras

Our study of the Lie algebra of $SU(3)$ revealed that the eight generators could be divided up in an illuminating fashion. Two generators, t_z and y, commuted with each other. They formed a basis for the two dimensional Cartan subalgebra. The remaining generators, u_+, u_-, v_+, v_-, t_+ , and t_- were all eigenvectors of ad t_z and ad y, that is, $[t_z, u_+]$ was proportional to u_+ , etc. More generally, each of the six was an eigenvector of ad h for every $h \in H$. The corresponding eigenvalue depended linearly on n . These linear functions on H were elements of H , the dual space of H. The functions which gave the eigenvalues of ad h were called roots and the real linear combinations of these roots formed a real vector space, H_0 .

The $SU(3)$ results generalize in the following way. Every semi-simple Lie algebra is a sum of simple ideals each of which can be treated as a separate simple Lie algebra The generators of the simple Lie algebra may be chosen so that one subset of them generates a commutative Cartan subalgebra, H . The remaining generators are eigenvectors of ad h for every $h \in H$. Associated with each of these latter generators is a linear function which gives the eigenvalue. We write

$$
(\text{ad } h)e_{\alpha} = \alpha(h)e_{\alpha} \tag{IV.1}
$$

This is the generalization of Eq. (II.9) where we have indicated generators like $u_{+}, u_{-}, etc.,$ generically by e_{α} .

The roots of $SU(3)$ exemplify a number of characteristics of semi-simple Lie algebras in general. First, if α is a root, so is $-\alpha$. This is made explicit in Eq. In the root we see that the root corresponding to the root medium to the three corresponding to t_{+} , and so on. Second, for each root, there is only one linearly independent generator with that root. Third, if α is a root, 2α is not a root.

How is the Cartan subalgebra determined in general? It turns out that the following procedure is required. An element $h \in L$ is said to be regular if ad h has as few zero eigenvalues as possible, that is, the multiplicity of the zero eigenvalue is minimal. In the SU(3) example, from Eq. (II.8) we see that $ad t_z$ has a two dimensional space with eigenvalue zero, while ad y has a four dimensional space of this sort. The element t_z is regular while y is not. A Cartan subalgebra is obtained by finding a maximal commutative subalgebra containing a regular element. The subalgebra generated by t_z and y is commutative and it is maximal since there is no other element we can add to it which would not destroy the commutativity

If we take as our basis for the algebra the **FOOt** vectors, e_{α_1} , e_{α_2} ... plus some basis for the Cartan subalgebra say h h- --- then we can write a matrix representation for $ad h$:

From this we can see that the Killing form when acting on the Cartan subalgebra can be computed by

$$
(h_1, h_2) = \sum_{\alpha \in \Sigma} \alpha(h_1) \alpha(h_2) , \qquad (IV.3)
$$

where Σ is the set of all the roots.

We know the commutation relations between the root vectors and the mem bers of the Cartan subalgebra, namely Eq. $(IV.1)$. What are the commutation relations between the root vectors? We have not yet specified the normalization of the e_{α} 's, so we can only answer this question up to an overall constant.

Let us use the Jacobi identity on $[e_{\alpha}, e_{\beta}]$:

$$
[h, [e_{\alpha}, e_{\beta}]] = -[e_{\alpha}, [e_{\beta}, h]] - [e_{\beta}, [h, e_{\alpha}]]
$$

$$
= \beta(h) [e_{\alpha}, e_{\beta}] + \alpha(h) [e_{\alpha}, e_{\beta}]
$$

$$
= (\alpha(h) + \beta(h)) [e_{\alpha}, e_{\beta}]. \qquad (IV.4)
$$

This means that either $[e_{\alpha}, e_{\beta}]$ is zero, or it is a root vector with root $\alpha + \beta$, or $\alpha + \beta = 0$, in which case $[e_{\alpha}, e_{\beta}]$ commutes with every hand is thus an element of the Cartan subalgebra

IV Structure of Simple Lie Algebras

It is easy to show that $(e_{\alpha}, e_{\beta}) = 0$ unless $\alpha + \beta = 0$. This is simply a generalization of the considerations surrounding Eq. (III.3). We examine $[e_{\alpha}, [e_{\beta}, x]]$ where x is some basis element of L , either a root vector or an element of the Cartan subalgebra. If $x \in H$, the double commutator is either zero or proportional to a root vector $e_{\alpha+\beta}$. In either case, there is no contribution to the trace. If x is a root α is equal to do the double commutation is either and the form e-form e-form α β β β β and thus does not contribute to the trace unless $\alpha + \beta = 0$.

 \mathcal{W} , where seen that $\lceil \mathcal{W} \rceil$ \sim $\lceil \mathcal{W} \rceil$ must be an element of the Cartan subalgebra $\lceil \mathcal{W} \rceil$ can make this more explicit with a little calculation First we prove an important property, *invariance*, of the Killing form:

$$
(a, [b, c]) = ([a, b], c), \qquad (IV.5)
$$

where a, b , and c are elements of the Lie algebra. The proof is straightforward:

$$
(a, [b, c]) = \text{Tr ad } a \text{ad } [b, c]
$$

= \text{Tr ad } a [ad b, ad c]
= \text{Tr } [ad a, ad b] ad c
= \text{Tr ad } [a, b] ad c
= ([a, b], c) . \t(IV.6)

 $\mathbf{I} = \mathbf{I} \cdot \mathbf{I}$

 $\mathcal{L}(\mathcal{O}_n)$ we use this identity to evaluate $\{[\mathcal{O}_n]\}_{n=0}$, where n is some element of the Cartan subalgebra

$$
([e_{\alpha}, e_{-\alpha}], h) = (e_{\alpha}, [e_{-\alpha}, h])
$$

$$
= \alpha(h)(e_{\alpha}, e_{-\alpha})
$$
 (IV.7)

Both sides are linear ranched or κ . Referring to Eq. (Hr.s), we see that $\lvert \sigma_{\ell} \rvert$ $\sigma = \alpha_1$ is proportional to h_{α} , where h_{α} has the property

$$
(h_{\alpha}, k) = \alpha(k), \qquad h_{\alpha}, k \in H \tag{IV.8}
$$

More precisely, we have

$$
[e_{\alpha}, e_{-\alpha}] = (e_{\alpha}, e_{-\alpha})h_{\alpha} \tag{IV.9}
$$

IV Structure of Simple Lie Algebras

This is, of course, in accord with our results for $SU(3)$. As an example, α is the set α - α is the set of α . Then the use α is the set of α is the set of α $\mathbb{E}[\mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}}] = \mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}} \mathbf{y}^{\mathsf{T}}]$ hu y tz - Thus indeed u uu uhu

The Killing form is the only invariant bilinear form on a simple Lie algebra up to trivial modification by multiplication by a constant. To demonstrate this, suppose that $(,)$ is another such form. Then

$$
((h_{\beta}, [e_{\alpha}, e_{-\alpha}])) = ((h_{\beta}, (e_{\alpha}, e_{-\alpha})h_{\alpha}))
$$

$$
= (e_{\alpha}, e_{-\alpha})((h_{\beta}, h_{\alpha}))
$$

$$
= (([h_{\beta}, e_{\alpha}], e_{-\alpha}))
$$

$$
= (h_{\beta}, h_{\alpha})((e_{\alpha}, e_{-\alpha})) .
$$
 (IV.10)

Thus h hh h e e-e e- and this ratio is independent of as well Thus we can write

$$
\frac{((h_{\beta}, h_{\alpha}))}{(h_{\beta}, h_{\alpha})} = k = \frac{((e_{\alpha}, e_{-\alpha}))}{(e_{\alpha}, e_{-\alpha})} \tag{IV.11}
$$

In a simple algebra, we can start with a single root, α , and proceed to another \mathbf{r}_i , such that $\{n_i\}, \{n_i\}$, \emptyset which continue until \mathbf{r}_i can also the full set of roots, so a single value of k holds for the whole algebra. Separate simple factors of a semi-simple algebra may have different values of k however.

We can summarize what we have thus far learned about the structure of semi-simple Lie algebras by writing the commutation relations. We indicate the set of roots by Σ and the Cartan subalgebra by $H\colon$

$$
[h_1, h_2] = 0, \t\t h_1, h_2 \in H
$$

\n
$$
[h, e_\alpha] = \alpha(h)e_\alpha, \t\t \alpha \in \Sigma
$$

\n
$$
[e_\alpha, e_\beta] = N_{\alpha\beta}e_{\alpha+\beta}, \t\t \alpha+\beta \in \Sigma
$$

\n
$$
= (e_\alpha, e_{-\alpha})h_\alpha, \t\t \alpha+\beta = 0
$$

\n
$$
= 0, \t\t \alpha+\beta \neq 0, \t\t \alpha+\beta \notin \Sigma.
$$
 (IV.12)

Here $N_{\alpha\beta}$ is some number depending on the roots α and β which is not yet determined since we have not specified the normalization of e_{α} .

References

A rigorous treatment of these matters is given by JACOBSON

Exercise

- 1. Show that $at_z + by$ is almost always regular by finding the conditions on a and b such that it is not regular.
- 2. Show that invariant bilinear symmetric forms are really invariants of the Lie group associated with the Lie algebra

V. A Little about Representations

There is still a great deal to uncover about the structure of simple Lie al gebras, but it is worthwhile to make a slight detour to discuss something about representations This will lead to some useful relations for the adjoint represen tation (c.f. Eqs. $(II.4)$ and $(II.5)$) and thus for the structure of the Lie algebras themselves

The study of representations of Lie algebras is based on the simple principles discussed in Chapter I. The reason for this is that the elements e_{α} , $e_{-\alpha}$, and h_{α} have commutation relations

$$
[h_{\alpha}, e_{\alpha}] = \alpha (h_{\alpha}) e_{\alpha} = (h_{\alpha}, h_{\alpha}) e_{\alpha} = \langle \alpha, \alpha \rangle e_{\alpha} ,
$$

\n
$$
[h_{\alpha}, e_{-\alpha}] = - \langle \alpha, \alpha \rangle e_{\alpha} ,
$$

\n
$$
[e_{\alpha}, e_{-\alpha}] = (e_{\alpha}, e_{-\alpha}) h_{\alpha} ,
$$

\n
$$
(V.1)
$$

which are just the same as those for t_{+} , t_{-} , and t_{z} , except for normalization. Thus for each pair of roots, α , and $-\alpha$, there is an SU(2) we can form. What makes the Lie algebras interesting is that the $SU(2)$'s are linked together by the commutation relations

$$
[e_{\alpha}, e_{\beta}] = N_{\alpha\beta} e_{\alpha+\beta}, \qquad \alpha + \beta \in \Sigma . \tag{V.2}
$$

We recall that a representation of the Lie algebra is obtained when for each element of the algebra we have a linear transformation (i.e. a matrix) acting on a vector space (i.e. column vectors) in a way which preserves the commutation relations. If we indicate the representation of a, b , and c by A, B , and C , then

$$
[a, b] = c \qquad \rightarrow \qquad [A, B] = C \tag{V.3}
$$

. Let us continue to use the interaction so that if here is a basis for the interaction so that if μ Cartan subalgebra H we will indicate their representatives by H H---- Similarly the representatives of e_{α} will be E_{α} . The transformations H_i and E_{α} act on vectors φ – in a space, v . Since the n s commute, so do the π s. We can choose a basis for the space V in which the H 's are diagonal (The representation is in particular a representation for the $SU(2)$ formed by H_{α} , E_{α} , $E_{-\alpha}$. We know how to diagonalize H_{α} . But all the H_{α} 's commute so we can diagonalize them simultaneously.):

$$
H_i \phi^a = \lambda_i^a \phi^a \tag{V.4}
$$

The eigenvalues λ_i^a depend linearly on the H's.Thus if $h = \sum_i c_i h_i$ so that $H =$ $\sum_i c_i H_i$, then

$$
H\phi^a = \left(\sum_i c_i \lambda_i^a\right) \phi^a
$$

$$
\equiv M^a(h)\phi^a .
$$
 (V.5)

We can regard the eigenvalue associated with this vector, $\varphi^-,$ to be a linear function defined on H :

$$
M^{a}\left(\sum_{i}c_{i}h_{i}\right)=\sum_{i}c_{i}\lambda_{i}^{a}.
$$
 (V.6)

The functions M^a are called weights. As linear functionals on H , they are members of the qual space, H , just as the roots, α , are. We shall see later that the weights can be expressed as real (in fact, rational) linear combinations of the roots. We can use the product \langle , \rangle we defined on the root space also when we deal with the weights

A simple example of Eq. $(V.5)$ is given by the three dimensional representation of SU Equipment (2001) and II-set 2

$$
T_z = \begin{bmatrix} \frac{1}{2} & & \\ & -\frac{1}{2} & \\ & & 0 \end{bmatrix} , \qquad Y = \begin{bmatrix} \frac{1}{3} & & \\ & \frac{1}{3} & \\ & & -\frac{2}{3} \end{bmatrix} . \tag{V.7}
$$

The weight vectors of the three dimensional representation are

$$
\phi^a = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \qquad \phi^b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , \qquad \phi^c = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} .
$$
 (V.8)

We consider the action of $H = aT_z + bY$ on the weight vectors to find the weights:

$$
H\phi^{a} = (\frac{1}{2}a + \frac{1}{3}b)\phi^{a} = M^{a}(at_{z} + by)\phi^{a},
$$

\n
$$
H\phi^{b} = (-\frac{1}{2}a + \frac{1}{3}b)\phi^{b} = M^{b}(at_{z} + by)\phi^{b},
$$

\n
$$
H\phi^{c} = (-\frac{2}{3}b)\phi^{c} = M^{c}(at_{z} + by)\phi^{c}.
$$

\n(V.9)

The weights can be expressed in terms of the roots of $SU(3)$, Eq. (III.6). Only two of the roots are linearly independent so we need use only two of them say and - Then

$$
M^{a} = + \frac{2}{3}\alpha_{1} + \frac{1}{3}\alpha_{2} ,
$$

\n
$$
M^{b} = -\frac{1}{3}\alpha_{1} + \frac{1}{3}\alpha_{2} ,
$$

\n
$$
M^{c} = -\frac{1}{3}\alpha_{1} - \frac{2}{3}\alpha_{2} .
$$
\n(V.10)

In $SU(2)$, T_+ and T_- act as raising and lowering operators. This concept may be generalized in the following way. Suppose that φ^- is a weight vector with weight M . Then $E_{\alpha} \varphi$ is a weight vector with weight M + α unless $E_{\alpha} \varphi$ = 0.

$$
HE_{\alpha}\phi^{a} = (E_{\alpha}H + \alpha(h)E_{\alpha})\phi^{a}
$$

= $(M^{a}(h) + \alpha(h))E_{\alpha}\phi^{a}$. (V.11)

Thus we can think of the E_{α} as raising operators and the $E_{-\alpha}$ as lowering operators.

If M is a weight, then it lies in a string of weights M , $M - \alpha, \ldots, M, \ldots$, $M_+ = q \alpha$. Let us see now q is determined by M_+ . Let φ_0 be a weight vector with weight M . Then, if it is non-zero, the vector

$$
(E_{-\alpha})^j \phi_0 = \phi_j \tag{V.12}
$$

is a weight vector with weight $M^* - j\alpha$. On the other hand, $E_{\alpha} \phi_k$ has weight $M = (k - 1)\alpha$, and is proportional to φ_{k-1} . We can find q by using the relation

$$
E_{-\alpha}\phi_q = 0 \tag{V.13}
$$

The calculation is simplified by choosing a convenient normalization for the a u u u u

$$
[e_{\alpha}, e_{-\alpha}] = h_{\alpha} \tag{V.14}
$$

V A Little about Representations

In terms of the representation, then

$$
[E_{\alpha}, E_{-\alpha}] = H_{\alpha} \tag{V.15}
$$

We shall also need the relation (see Eq. $(III.5)$)

$$
M(h_{\alpha}) = (h_M, h_{\alpha}) = \langle M, \alpha \rangle . \tag{V.16}
$$

By analogy with our treatment of $SU(2)$, we define

$$
E_{\alpha}\phi_k = r_k \phi_{k-1} \tag{V.17}
$$

and seek a recursion relation. We find

$$
E_{\alpha}\phi_k = r_k \phi_{k-1}
$$

\n
$$
= E_{\alpha} E_{-\alpha} \phi_{k-1}
$$

\n
$$
= (E_{-\alpha} E_{\alpha} + H_{\alpha}) \phi_{k-1}
$$

\n
$$
= r_{k-1} \phi_{k-1} + [M^*(h_{\alpha}) - (k-1)\alpha(h_{\alpha})] \phi_{k-1}
$$

\n
$$
= [r_{k-1} + \langle M^*, \alpha \rangle - (k-1)\langle \alpha, \alpha \rangle] \phi_{k-1} .
$$
 (V.18)

The solution to the recursion relation which satisfies $r_0 = 0$ is

$$
r_k = k\langle M^*, \alpha \rangle - \frac{1}{2}k(k-1)\langle \alpha, \alpha \rangle \tag{V.19}
$$

 N is the from Eq. () and N -from Eq. () and N -from Eq. () and N -from Eq. () and N

$$
E_{\alpha}E_{-\alpha}\phi_q = 0 = r_{q+1}\phi_q \tag{V.20}
$$

so we have found q in terms of M^* and α :

$$
q = \frac{2\langle M^*, \alpha \rangle}{\langle \alpha, \alpha \rangle} \tag{V.21}
$$

In practice, we often have a weight, M , which may or may not be the highest weight in the sequence \mathbb{R}^n , p is the sequence \mathbb{R}^n . The sequence of \mathbb{R}^n \mathbf{r} for the formula formula formula formula for \mathbf{r} , \mathbf{r} and \mathbf{r} \mathbf{r} and \mathbf{r} \mathbf{r} and \mathbf{r}

$$
m + p = \frac{2\langle M + p\alpha, \alpha \rangle}{\langle \alpha, \alpha \rangle}
$$

$$
m - p = \frac{2\langle M, \alpha \rangle}{\langle \alpha, \alpha \rangle}.
$$
 (V.22)

As an example, let us consider the three dimensional representation of $SU(3)$. Now suppose we wish to find the string of weights spaced by α_1 containing the weight $M^* = \frac{1}{3}\alpha_1 + \frac{1}{3}\alpha_2$. Using the table of scalar products in Eq. (111.12), we compute

$$
m - p = \frac{2\langle \frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2, \alpha_1 \rangle}{\langle \alpha_1, \alpha_1 \rangle} = 1.
$$
 (V.23)

In fact managers of the measurers of the contract of the con

So important is Eq. $(V.22)$ that it is worthwhile to pause for a geometrical interpretation. Suppose the number of weights in the string is odd. Then there is a central weight) we can central part with the λ - λ in that λ is such that λ existence of a symmetry, a reflection which acts about the mid-point. If the full string is $M_1, M_- = \alpha, \ldots, M_- = q\alpha$, this symmetry would relate the weights $M_$ $m = \gamma \alpha$ and $m_{\gamma} = m_{\gamma} - (q - \gamma) \alpha = m_{\gamma} - (q - 2 \gamma) \alpha$. Using Eq. (V.22) with \mathbf{r} , in the symmetry is the symmetry of the symmetry interest \mathbf{r} , and it is the symmetry is the symmetry among the weights can be expressed by

$$
S_{\alpha}: \quad M \to M - \frac{2\langle M, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \tag{V.24}
$$

It is clear that this works similarly if the string is even. In either event, S_{α} maps weights into weights
V A Little about Representations

This symmetry is called a Weyl reflection. If we consider elements made up of any number of reflections, these elements form a group called the Weyl group The Weyl group maps weights into weights Associated with each weight is a weight space consisting of all weight vectors with a given weight. For an irreducible representation of $SU(2)$, each weight space is one dimensional, but in general this is not so

If we consider a string of weights, M , \ldots M $=$ $q\alpha$, and the associated weight $$ spaces, we can restrict our consideration to the subalgebra generated by e_{α} , $e_{-\alpha}$, and h_{α} . This SU(2) subalgebra is represented by E_{α} , $E_{-\alpha}$, and H_{α} . The representation of $SU(2)$ on the weight spaces associated with the string is in general reducible. It contains at least one copy of the copy of the copy of the copy of SU in the co addition, there may be other representations of lesser dimension. Each of these representations will be arranged symmetrically with respect to the reflection S_{α} with the result that S_α will map a weight M -mto a weight M -whose weight space $$ has the same dimension

The symmetry of symmetry of some SU representations in Fig. V \sim 10 $\,$ cm s \sim 10 $\,$ cm

Fig. $V.1$

References

The material is standard See for example JACOBSON pp ----

Exercise

- Find the elements of the Weyl group for SU and their multiplication table

VI. More on the Structure of Simple Lie Algebras

In this Chapter we shall use the results on representations just obtained to learn about the algebras themselves by considering the adjoint representation. In the adjoint representation, the Lie algebra itself serves as the vector space on which the E's and H's act. Thus if x is an element of the Lie algebra L, then e_{α} is represented by E_{α} where

$$
E_{\alpha} x = \text{ad} \ e_{\alpha}(x) \tag{V1.1}
$$

Before studying the adjoint representation, let us first state a few properties of simple (semi-simi-simple) mit mytholis with intuitive or obvious but allegebras which may sound which require real mathematical proof. As is often the case, it is these innocent sounding statements which are the most difficult to prove and we omit their proofs, which may be found in standard mathematical texts

 \blacksquare interface as we have asserted the statistical through the statistical value of \blacksquare \blacksquare . While the statistical value of \blacksquare \blacksquare . While the statistical value of \blacksquare . While the statistical value of become a scalar product on the root space, we have not proved it. In fact, we shall prove it later based on the assumption that $\{w_i, v_{i+1}, \ldots, v_{i+1}\}$

Second, if α is a root, then the only multiples of α which are roots are α , $-\alpha$, α nd et die van show tot must be a root because $\{e_{\mathcal{U}}\}_{\mathcal{U}}$ because a $\mathcal{U}_{\mathcal{V}}$ because and we cannot have $\{e_{ij}\}_{i=1}^N$ were closed in the algebra because then the Lie algebra would not be semi simple see Chapter III It might be thought that \sim show that \sim not a root would be simple, since e $_{2a}$ might arise from equation which is certainly zero. However, this proves nothing since $e_{2\alpha}$ might arise from, α is α the result is true in factor in the result in factor in α is α if α is a set of 10000 , 100000 , 10000

Third, there is only one linearly independent root vector for each root. This may be stated in terms of the adjoint representation: every weight space (except the root zero space which is the Cartan subalgebra) is one dimensional.

The adjoint representation has other important properties. We know that there is no limit to the length of a string of weights for a representation: even for S U we can have arbitrarily long strings, j , j if j if the adjoint α representation, a string can have no more than four weights in it. That is, a string of roots can have no more than four roots in it We shall see that this has far reaching consequences

Suppose to the contrary, there is a string containing five roots which we label m and m is a root in m , m is a root in m root is a root. $2\alpha = (\beta + 2\alpha) - \beta$ is not a root, nor is $2(\beta + \alpha) = (\beta + 2\alpha) + \beta$. Thus $\beta + 2\alpha$ is in a string of roots with only one element Thus from Eq V

$$
\langle \beta + 2\alpha, \beta \rangle = 0 \tag{VI.2}
$$

Similarly

$$
\langle \beta - 2\alpha, \beta \rangle = 0 \tag{VI.3}
$$

 B are versely into the measurement in the section of controllers in the α is perpendicular to α dicular to both $\beta + 2\alpha$ and $\beta - 2\alpha$ which is possible only if $\beta = 0$.

 \ldots is the containing containing ρ is four elements long ρ . See For ρ , $\omega_1 \rho_1 \rho_2$, ω_1 \cdots , and \cdots is the string is three elements longer is the string is the string is three elements \cdots \mathcal{P} is the positive positive or \mathcal{P} is the contract of \mathcal{P} is \mathcal{P} is \mathcal{P} is only and \mathcal{P} one element long, $m - p$ is 0.

VI Structure of Simple Lie Algebras

We can obtain more information from the ubiquitous Eq. $(V.22)$. Using it twice, we write

$$
\frac{\langle \alpha, \beta \rangle \langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle \langle \beta, \beta \rangle} = \frac{1}{4}mn
$$
\n(VI.4)

where m and n are integers given by the appropriate values of $m - p$. We recognize the left hand side as $\cos^2 \theta$ where θ is the angle between the vectors α and β . Anticipating that we really have a scalar product, we use the Schwarz inequality to assert that $mn/4$ must be less than unity unless α and β are proportional. Thus $\cos^2 \theta$ can take on only the values $0, \frac{1}{4}, \frac{1}{5},$ and $\frac{1}{4}$.

 \sim \sim \sim \sim \sim \sim

 $-$ __

We shall later see how this restriction of permissible angles limits the possi bilities for simple Lie algebras. Indeed, we shall see that every simple Lie algebra falls either into one of four sequences of "classical" algebras or is one of the five exceptional and industrial model communicated by Killing Since every semi-place every semi-Lie algebra is a sum of simple Lie algebras this will give an exhaustive list of the semi simple as well as

For the present, we pursue our analysis of the nature of roots of simple Lie algebras First we show that every root is expressible as a linear combination of a basis set of roots with real rational coemeticates Suppose $\alpha_1, \alpha_2, \ldots$ is a basis of roots for H . The state is not hard to show the roots span H . Thet ρ be a root expressed as $\beta = \sum_i q_i \alpha_i$. Then

$$
2\frac{\langle \beta, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle} = \sum_i q_i \ 2\frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle} \ . \tag{V1.5}
$$

This is a set of linear equations for q_i . All the coefficients are rational and indeed integers according to Eq. (V.22). Therefore, when we solve for the q_i , they will all be rational

 \mathcal{W} is can go further and show throw $\{ \infty, \infty \}$ to factorize which is and following Using Eq. $(IV.3)$, we have

$$
\langle \beta, \beta \rangle = (h_{\beta}, h_{\beta})
$$

=
$$
\sum_{\alpha \in \Sigma} \alpha(h_{\beta}) \alpha(h_{\beta})
$$

=
$$
\sum_{\alpha \in \Sigma} \langle \alpha, \beta \rangle^{2}
$$
. (VI.6)

The root α is in some β setting of roots so $\mathbb{F}(\alpha, \beta)$ and β is some integral. $(m-p)_{\alpha}$. Thus

$$
\langle \beta, \beta \rangle = \sum_{\alpha \in \Sigma} \frac{1}{4} [(m - p)_{\alpha}]^2 \langle \beta, \beta \rangle^2,
$$

=
$$
\left(\sum_{\alpha \in \Sigma} \frac{1}{4} [(m - p)_{\alpha}]^2 \right)^{-1}.
$$
 (VI.7)

 \mathcal{I} is the state h-left is rational \mathcal{I} is rational \mathcal{I} is rational intervals. we see that the seed that is not the space of rational control that is positive density and space of rational linear combinations of roots In particular this means that ^h - ⁱ is a scalar product

References

This is standard material See for example JACOBSON pp -

Exercise

1. Assuming that for each root α there is only one linearly independent root $v_{\rm cool}$ show that if α/β and α/β are roots than $\alpha_{\rm eff}$ of γ and γ cannot consider α adjoint representation and then the $D\cup\{p\}$ generated by equently and α

VII. Simple Roots and the Cartan Matrix

The next step in analyzing the simple Lie algebras is to define an ordering among the elements in the root space, the space H_0 of real linear combinations of roots. This ordering is necessarily somewhat arbitrary: there is no natural ordering in the root space. Nevertheless, we shall see that even an arbitrarily chosen ordering can provide much useful information Let μ information μ and μ every element of H_0^* can be written $\rho = \sum_i c_i \alpha_i$. We shall call ρ **positive** $(\rho > 0)$ if called with α is the recent if the recent case of α is non-top controller component of the resolution of we call ρ negative. Clearly this ordering is possible only because we consider only real intear combinations of roots rather than the full dual space, H_+ . We shall write $\rho > \sigma$ if $\rho - \sigma > 0$.

Given the choice of an ordered basis, we can determine which roots are positive and which are negative A simple root is a positive root which cannot be written as the sum of two positive roots Let us consider SU-p us an example.

According to Eq. $(III.6)$, the roots are

$$
\alpha_1(at_z + by) = a
$$

\n
$$
\alpha_2(at_z + by) = -\frac{1}{2}a + b
$$

\n
$$
\alpha_3(at_z + by) = \frac{1}{2}a + b
$$
 (III.6)

and the negatives of these roots. Suppose we select as a basis for H_0 the roots and in the since α is negative α is negative α is negative whose α is negative α is negative α simple roots are positive roots and α_{11} and α_{21} are α_{12} and α_{13} and α_{21} are α_{31} α_1 is the sum of two positive roots and is thus not simple. The simple roots are and and - and basis

-

We denote the set of simple roots by Π and the set of all roots by Σ . One very important property of the simple roots is that the difference of two simple roots is not at roots in the suppose that to see the support $\mathcal{L}_\mathbf{r}$ the contrary $\alpha - \beta$ is a root. Then either $\alpha - \beta$ or $\beta - \alpha$ is positive. Thus either $\alpha = (\alpha - \beta) + \beta$ or $\beta = (\beta - \alpha) + \alpha$ can be written as the sum of two positive roots which is impossible for simple roots.

If α and β are simple roots, then $\{\alpha, \beta\} \rightarrow 0$. This follows from Eq. (α . $=$ because β is a root, but $\beta - \alpha$ is not a root. Thus in Eq. (V.22), $m = 0$, so $m-p \leq 0$.

From this result it is easy to show that the simple roots are linearly inde pendent If the simple roots are not linearly independent we can write an equality

$$
\sum_{\alpha_i \in \Pi} a_i \alpha_i = \sum_{\alpha_j \in \Pi} b_j \alpha_j , \qquad (VII.1)
$$

where all the air α and big are not both sides α and α sides α and α and α and α of the equation. (If there were a relation $\sum_i c_i \alpha_i = 0$ with all positive coefficients, the roots α_i could not all be positive.) Now multiplying both sides of Eq. (VII.1) by $\sum_i a_i \alpha_i$,

$$
\langle \sum_i a_i \alpha_i, \sum_j a_j \alpha_j \rangle = \langle \sum_i a_i \alpha_i, \sum_j b_j \alpha_j \rangle . \tag{VII.2}
$$

The left hand side is positive since it is a square, but the right hand side is a sum of negative terms This contradiction establishes the linear independence of the simple roots. Thus we can take as a basis for the root space the simple roots, since it is not hard to show they span the space

We now demonstrate a most important property of the simple roots: every positive root can be written as a positive sum of simple roots This is certainly true for the positive roots which happen to be simple Consider the smallest positive root for which it is not true. Since this root is not simple, it can be written as the sum of two positive roots. But these are smaller than their sum and so each can, by hypothesis, be written as a positive sum of simple roots. Hence, so can their sum.

From the simple roots, we form the Cartan matrix, which summarizes all the properties of the simple Lie algebra to which it corresponds. As we have seen, the dimension of the Cartan subargebra, H , is the same as that of H_0 , the root space. This dimension, which is the same as the number of simple roots, is called the rank of the algebra. For a rank n algebra, the Cartan matrix is the $n \times n$ matrix

$$
A_{ij} = 2 \frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle} \tag{VII.3}
$$

where it is interested in the simple roots of the simple roots in the simple roots of the simple roots in the s

Clearly, the diagonal elements of the matrix are all equal to two. The matrix is not not necessary symmetric but if $\{i\}$ if $\{i\}$ is the Air fact $\{j\}$ in a shown we have shown (see the discussion preceeding Eq. $(VI.4)$) that the only possible values for the offdiagonal matrix elements are in the since the since the scalar products are stated as α of two dierent simple roots is non positive the o diagonal elements can be only \circ , \circ

We have seen that \langle , \rangle is a scalar product on the root space. The Schwarz inequality tells us that

$$
\langle \alpha_i, \alpha_j \rangle^2 \le \langle \alpha_i, \alpha_i \rangle \langle \alpha_j, \alpha_j \rangle \tag{VII.4}
$$

where the inequality is strict unless α_i and α_j are proportional. This cannot happen for $i \neq j$ since the simple roots are linearly independent. Thus we can write

$$
A_{ij} A_{ji} < 4, \qquad i \neq j \tag{VII.5}
$$

It follows that if $\{f_i\}$ is a set of $\{f_i\}$. Then $\{f_i\}$

reconstruction the SU-God contrary to our simplicity and contrary to our simplicity and contrary to our contra choice above a choice above the positive basis to be a since μ and μ and μ and μ and μ the simple roots are also and -- We computed the relevant scalar products in Eq. $(III.12)$:

$$
\langle \alpha_1, \alpha_1 \rangle = \frac{1}{3}
$$

$$
\langle \alpha_1, \alpha_2 \rangle = -\frac{1}{6}
$$

$$
\langle \alpha_2, \alpha_2 \rangle = \frac{1}{3} . \qquad (VII.6)
$$

From this we compute the Cartan matrix

$$
A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} .
$$
 (VII.7)

The Cartan matrix, together with the ubiquitous Eq. $(V.22)$, suffices to determine all the roots of a given simple Lie algebra It is enough to determine all the positive roots, each of which can be written as a positive sum of simple roots: $\beta = \sum_i k_i \alpha_i$. We call $\sum_i k_i$ the **level** of the root β . Thus the simple roots are at the first level. Suppose we have determined all the roots up to the n^{th} level and wish to determine those at the level n+1. For each root β at the nthlevel, we must determine whether or not $\beta + \alpha_i$ is a root.

Since all the roots through the nthlevel are known, it is known how far back the string of roots extends the string $\{r_i\}$ is the string of roots $\{r_i\}$ and the computer of $\{r_i\}$ \Box , and the string extends in the string extends of \Box Eq. $(V.22)$:

$$
m - p = 2 \frac{\langle \beta, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle}
$$

=
$$
\sum_j 2k_j \frac{\langle \alpha_j, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle}
$$

=
$$
\sum_j k_j A_{ji}
$$
 (VII.8)

In particular, $\beta + \alpha_i$ is a root if $p = m - \sum_i k_j A_{ji} > 0$.

It is thus convenient to have an algorithm which keeps track of the n quantities $\sum_j k_j A_{ji}$ for each root as it is determined. It is clear that this is accomplished by adding to the n quantities the jthrow of the Cartan matrix whenever the jthsimple root is added to a root to form a new root

we can construct the construction for SU-C α - SU-C α and α are survived down the surface of α Cartan matrix, then copying its rows to represent the simple roots:

$$
\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}
$$

$$
\begin{array}{c|c}\n\hline\n2 & -1 & -1 & 2 \\
\hline\n1 & 1\n\end{array}
$$

 $B = B$ and the root indicate \mathbb{R} root indicates a root indicate of - \mathbb{R} root indicates a root indicate \mathbb{R} root indicates a root indicate \mathbb{R} root indicates a root indicate \mathbb{R} root indicates a ro the second level Λ -conditions in that \equiv \sim 1 , which is a root in that \sim 1 , \sim \sim 2), which is the second entry in the box for the first root is negative, the corresponding value of function is a root of \mathbf{F} is a root \mathbf{F} of \mathbf{F} is a root \mathbf{F} is a ro be reached beginning with - Is there a root at level three
 Looking back in the and are constantly in the rotation matrix in the form in the state α_1 , and α_2 are stated in the box for p so we can not add another The same and applies for - α at the third level

As a slightly more complex example, we display the result for the exceptional algebra G- which we shall discuss at greater length later

Not only does the Cartan matrix determine all of the roots, it determines the full commutation relations for the algebra. To see this, let us introduce the notation of Jacobson . Start with any choice of normalization for e_α and $e_{-\alpha}$, we have shown that every simple root in the even simple root in the even simple root in the contract of the contr

$$
e_i = e_{\alpha_i}
$$

\n
$$
f_i = e_{-\alpha_i} \cdot 2 \left[(e_{\alpha_i}, e_{-\alpha_i}) \langle \alpha_i, \alpha_i \rangle \right]^{-1}
$$

\n
$$
h_i = h_{\alpha_i} \cdot \frac{2}{\langle \alpha_i, \alpha_i \rangle} .
$$
\n(VII.9)

By direct computation we find

$$
[e_i, f_j] = \delta_{ij} h_j
$$

\n
$$
[h_i, e_j] = A_{ji} e_j
$$

\n
$$
[h_i, f_j] = -A_{ji} f_j
$$
 (VII.10)

The commutator $[e_i, f_j]$ vanishes unless $i = j$ since it would be proportional to $\alpha_i-\alpha_j$ and α_i and in the since in the simple is and α_i and α_j are simple in

A full basis for the Lie algebra can be obtained from the e_i 's, f_i 's and h_i 's. All of the raising operators can be written in the form eight (1, (1, (1, (1, (1, (1, (2,) = (3,)))))))) (and similarly for the lowering operators constructed from the f 's. Two elements obtained from commuting in this way the same set of e 's, but in different orders, are proportional with constant of proportionality being determined by the Cartan matrix through the commutation relations in Eq. (VII.10). Among the various orderings we choose one as a basis element Following the same procedure for the f 's and adjoining the h 's we obtain a complete basis. The commutation relations among them can be shown to be determined by the simple commutation relations in Eq. (VII.10), that is, by the Cartan matrix.

The Cartan matrix thus contains all the information necessary to determine entirely the corresponding Lie algebra. Its contents can be summarized in an elegant diagrammatic form due to Dynkin The Dynkin diagram of a semi simple Lie algebra is constructed as follows. For every simple root, place a dot. As we shall show later, for a simple Lie algebra, the simple roots are at most of two sizes. Darken the dots corresponding to the smaller roots. Connect the i^{th} and j^{th} dots by and the straight lines equal to AijAj in Forma semi-metric α semi-metric in Forma semi-metri simple, the diagram will have disjoint pieces, each of which corresponds to a simple algebra

For SU- and G- we have the Cartan matrices and Dynkin diagrams shown below

$$
SU(3) = A_2 \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}
$$

$$
\begin{matrix}\n\mathbf{0} & \mathbf{0} \\
\alpha_1 & \alpha_2\n\end{matrix}
$$

The darkened dot for G-corresponds to the second root since the presence of α \mathcal{N} in the second root is the smaller

In subsequent sections we will determine the full set of Dynkin diagrams which represent simple Lie algebras. Here we anticipate the result somewhat in order to demonstrate how the Cartan matrix and Dynkin diagrams determine each other. Consider the Dynkin diagram:

The Cartan matrix is determined by noting that $A_{13} = A_{31} = 0$, since the first and third dots are not connected. Since one line connects the first and second points we must have a region and the second and the second points are connected and by two lines so μ two the third root is smaller than the second it must be seen for the second be the $\Delta_{\mu\nu}$ are the $\Delta_{\mu\nu}$ and Δ_{ν} are the first weights we have the set of $\Delta_{\mu\nu}$

$$
\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -2 \\ 0 & -1 & 2 \end{bmatrix}
$$

Footnote

1. JACOBSON, p. 121.

References

Dynkin diagrams were first introduced in DYNKIN I. An excellent review of much of the material presented in this and other chapters is found in the Appendix to DYNKIN III

Exercises

1. Find the Dynkin diagram for

- \blacksquare . \blacksquare the roots of \blacksquare and \blacksquare and \blacksquare
	- $\begin{bmatrix} 2 & -2 \end{bmatrix}$ _________

 \sim . The roots of the roots of B- μ in Fig. . The roots of B- \sim

- Draw a picture of the roots of G- and compare with Fig III

VIII. The Classical Lie Algebras

The general considerations of the previous chapter can be applied to the most familiar simple Lie algebras, the classical Lie algebras, $SU(n)$, $SO(n)$, and Spn- These algebras are dened in terms of matrices and are simpler to visualize than some of the exceptional Lie algebras we shall encounter soon- The explicit construction of the Cartan subalgebra and the root vectors and roots for the classical algebras should make concrete our earlier results-

The space of all $n \times n$ matrices has a basis of elements e_{ab} where the components of e_{ab} are

$$
(e_{ab})_{ij} = \delta_{ai}\delta_{bj} \tag{VIII.1}
$$

Thus the multiplication rule for the matrices is

$$
e_{ab}e_{cd} = e_{ad}\delta_{bc} \tag{VIII.2}
$$

and the commutator is

$$
[A_b, e_{cd}] = e_{ad} \delta_{bc} - e_{cb} \delta_{ad} \tag{VIII.3}
$$

The matrix $I = \sum_i e_{ii}$ commutes with all the basis elements. It thus forms the basis for a onedimensional Abelian subalgebra- Consequently the Lie algebra of all the nn matrices is not semisimple- to traceless to the complete the semisimple of the semisimple in the complete o matrices we do obtained a semi-matrice for simple in analyze fact sides and called An-An-An-An-An-An-An-An-Anis the complex version of $SU(n)$.

The elements of \mathcal{L} and of the eables of the eab elements $h = \sum_i \lambda_i e_{ii}$ where $\sum_i \lambda_i = 0$. From Eq. (VIII.3) we find the commutation relation

$$
[h, e_{ab}] = (\lambda_a - \lambda_b)e_{ab} \tag{VIII.4}
$$

Thus e_{ab} is a root vector corresponding to the root $\sum_i \lambda_i e_{ii} \to \lambda_a - \lambda_b$.

Let us choose as a basis for the root space

 $[$ e

$$
\alpha_1: \qquad \sum_i \lambda_i e_{ii} \to \lambda_1 - \lambda_2
$$

$$
\alpha_2: \qquad \sum_i \lambda_i e_{ii} \to \lambda_2 - \lambda_3
$$

$$
\cdots
$$

$$
\alpha_{n-1}: \qquad \sum_i \lambda_i e_{ii} \to \lambda_{n-1} - \lambda_n \qquad \qquad \text{(VIII.5)}
$$

and declare these positive with μ is easy to see that the these these that these that the see that th same roots are the simple roots.

In order to nd the scalar product h - i we rst determine the Killing form as appendent to elements of the Cartan algebra using Eq. (File) and Eq. (There is

$$
\left(\sum_{i} \lambda_{i} e_{ii}, \sum_{j} \lambda'_{j} e_{jj}\right) = \text{Trad}\left(\sum_{i} \lambda_{i} e_{ii}\right) \text{ad}\left(\sum_{j} \lambda'_{j} e_{jj}\right)
$$

$$
= \sum_{p,q} (\lambda_{p} - \lambda_{q})(\lambda'_{p} - \lambda'_{q})
$$

$$
= 2n \sum_{p} \lambda_{p} \lambda'_{p} . \tag{VIII.6}
$$

The Killing form determines the connection between the Cartan subalgebra $, H,$ and the root space H_0 . That is, it enables us to find h_{α_i} :

$$
(h_{\alpha_j}, \sum_i \lambda_i e_{ii}) = \alpha_j (\sum_i \lambda_i e_{ii})
$$

= $\lambda_j - \lambda_{j+1}$ (VIII.7)

Combining this with Eq- VIII- we see that

$$
h_{\alpha_i} = (e_{ii} - e_{i+1} i_{+1})/(2n)
$$
 (VIII.8)

and

$$
\langle \alpha_i, \alpha_j \rangle = (2\delta_{ij} - \delta_{i,j+1} - \delta_{i+1,j})/(2n) . \tag{VIII.9}
$$

 \blacksquare This agrees in particular with our earlier computation for SU \blacksquare of hi- ji we see that the Cartan matrix and Dynkin diagram are given by

$$
A_n: \begin{bmatrix} 2 & -1 & 0 & & & \\ -1 & 2 & -1 & & & \\ 0 & -1 & . & & & \\ & & & \ddots & -1 & 0 \\ & & & & -1 & 2 & -1 \\ & & & & & 0 & -1 & 2 \end{bmatrix}
$$

$$
\begin{array}{ccc}\n\bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\alpha_1 & \alpha_2 & \alpha_n\n\end{array}
$$

where we have chosen to represent A_n rather than A_{n-1} .

We next consider the symplectic group $Sp(2m)$ and its associated Lie algebra. The group consists of the $2m \times 2m$ matrices A with the property $A^*JA \equiv J$ where $\binom{1}{1}$ indicates transpose and J is the $2m \times 2m$ matrix

$$
J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} . \tag{VIII.10}
$$

The corresponding requirement for the Lie algebra is obtained by writing $A =$ $\exp(\mathcal{A}) \approx I + \mathcal{A}$. Thus we have $\mathcal{A}^* = J \mathcal{A} J$. In terms of $m \times m$ matrices, we can write

$$
\mathcal{A} = \begin{bmatrix} \mathcal{A}_1 & \mathcal{A}_2 \\ \mathcal{A}_3 & \mathcal{A}_4 \end{bmatrix}
$$
 (VIII.11)

and find the restrictions ${\cal A}_1^{\cdot} = -{\cal A}_4, {\cal A}_2 = {\cal A}_2^{\cdot}, {\cal A}_3 = {\cal A}_3^{\cdot}$. In accordance with these, we choose the following basis elements j- k m

$$
e_{j\,k}^{1} = e_{j\,k} - e_{k+m,j+m} ,
$$

\n
$$
e_{j\,k}^{2} = e_{j,k+m} + e_{k,j+m} ,
$$

\n
$$
j \le k
$$

\n
$$
e_{j\,k}^{3} = e_{j+m,k} + e_{k+m,j} ,
$$

\n
$$
j \le k .
$$

\n(VIII.12)

The Cartan subalgebra has a basis $n_j = e_{jj}$. By direct computation we find that if $h = \sum_i h_i \lambda_i$,

$$
[h, e_{jk}^1] = +(\lambda_j - \lambda_k) e_{jk}^1, \quad j \neq k
$$

\n
$$
[h, e_{jk}^2] = +(\lambda_j + \lambda_k) e_{jk}^2, \quad j \leq k
$$

\n
$$
[h, e_{jk}^3] = -(\lambda_j + \lambda_k) e_{jk}^3, \quad j \leq k
$$
 (VIII.13)

We take as a second basis of roots $\mathbb{P}\left[\mathcal{A}^{t+1}, \ldots, \mathcal{A}^{t-1}\right]$. The second basis of \mathcal{A}^{t+1} $m \rightarrow \infty$ are the internal the internal theorem is an area ordered the internal term in the inte selves simple roots-cool in the root \mathcal{S} and \mathcal{S} are root in the root since it is not since it is n is the sum of α_{m-1} and α_m .

We calculate the Killing form on the Cartan subalgebra explicitly by consid ering in turn the contribution of each root to the trace which defines the form.

$$
\left(\sum_{i} \lambda_{i} h_{i}, \sum_{j} \lambda_{j}^{\prime} h_{j}\right) = \sum_{p,q} (\lambda_{p} - \lambda_{q})(\lambda_{p}^{\prime} - \lambda_{q}^{\prime}) + 2 \sum_{p \leq q} (\lambda_{p} + \lambda_{q})(\lambda_{p}^{\prime} + \lambda_{q}^{\prime})
$$

$$
= \sum_{p,q} [(\lambda_{p} - \lambda_{q})(\lambda_{p}^{\prime} - \lambda_{q}^{\prime}) + (\lambda_{p} + \lambda_{q})(\lambda_{p}^{\prime} + \lambda_{q}^{\prime})] + \sum_{p} 4\lambda_{p} \lambda_{p}^{\prime}
$$

$$
= 4(m+1) \sum_{p} \lambda_{p} \lambda_{p}^{\prime}.
$$
(VIII.14)

We easily see then that

$$
h_{\alpha_i} = \frac{(h_i - h_{i+1})}{4(m+1)}, \qquad i < m
$$
\n
$$
h_{\alpha m} = \frac{h_m}{2(m+1)}.
$$
\n(VIII.15)

Since hi- hj ij m we can compute directly all the terms we need for the Cartan matrix

$$
\langle \alpha_i, \alpha_j \rangle = \frac{1}{4(m+1)} (2\delta_{ij} - \delta_{i j+1} - \delta_{i+1 j}), \qquad i, j \neq m
$$

$$
\langle \alpha_i, \alpha_m \rangle = -\frac{1}{2(m+1)} \delta_{i+1 m}, \qquad i \neq m
$$

$$
\langle \alpha_m, \alpha_m \rangle = \frac{1}{(m+1)}.
$$
 (VIII.16)

The Lie algebra which is associated with \mathcal{L} is denoted Cn-Eq- VIII- we derive its Cartan matrix and Dynkin diagram

The **orthogonal groups** are given by matrices which satisfy $A^t A = I$. Using the correspondence between elements of the group and elements of the Lie algebra as discussed in Chapter I, $A = \exp A \approx I + A$, we see that the requirement is $\mathcal{A} + \mathcal{A}^\top = 0$. Clearly these matrices have only off-diagonal elements. As a result, it would be hard to find the Cartan subalgebra as we did for A_n and C_n by using the diagonal matrices- To avoid this problem we perform a unitary transformation on the matrices A- This will yield an equivalent group of matrices obeying a modied

$$
A = UBU^{\dagger} \t\t(VIII.17)
$$

so that

$$
A^t A = U^{\dagger t} B^t U^t U B U^{\dagger} = I.
$$
 (VIII.18)

Setting $K = U'U$, we have $B'KD = K$. Writing $B \approx I + D$, we have

$$
\mathcal{B}^t K + K \mathcal{B} = 0. \tag{VIII.19}
$$

A convenient choice for the even dimensional case, $n = 2m$, is

$$
U = \frac{1}{\sqrt{2}} \begin{bmatrix} i & -i \\ -1 & -1 \end{bmatrix},
$$
 (VIII.20)

so that

$$
K = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}.
$$
 (VIII.21)

Representing β in terms of $m \times m$ matrices,

$$
\mathcal{B} = \begin{bmatrix} \mathcal{B}_1 & \mathcal{B}_2 \\ \mathcal{B}_3 & \mathcal{B}_4 \end{bmatrix}
$$
 (VIII.22)

the condition becomes

$$
\mathcal{B}_1 = -\mathcal{B}_4^t , \quad \mathcal{B}_2 = -\mathcal{B}_2^t , \quad \mathcal{B}_3 = -\mathcal{B}_3^t . \tag{VIII.23}
$$

We can now select a basis of matrices obeying these conditions

$$
e_{jk}^{1} = e_{j,k} - e_{k+m,j+m},
$$

\n
$$
e_{jk}^{2} = e_{j,k+m} - e_{k,j+m}, \qquad j < k
$$

\n
$$
e_{jk}^{3} = e_{j+m,k} - e_{k+m,j}, \qquad j < k
$$
\n(VIII.24)

and designate the basis for the Cartan subalgebra by

$$
h_j = e_{jj}^1 \t\t\t (VIII.25)
$$

Writing a general element of the Cartan subalgebra as

$$
h = \sum_{i} \lambda_i h_i \tag{VIII.26}
$$

we compute the various roots

$$
[h, e_{j\,k}^1] = (\lambda_j - \lambda_k) e_{j\,k}^1 \qquad j \neq k
$$

\n
$$
[h, e_{j\,k}^2] = (\lambda_j + \lambda_k) e_{j\,k}^2 \qquad j < k
$$

\n
$$
[h, e_{j\,k}^3] = -(\lambda_j + \lambda_k) e_{j\,k}^3 \qquad j < k
$$
\n(VIII.27)

Note that for e_{ik}^- and e_{ik}^- we must have $j \neq k$ or else the matrix vanishes. Thus there are no roots corresponding to increase as a basis of simple roots of simple roots. $\mathcal{L}^{\mathcal{L}}$. The matrix $\mathcal{L}^{\mathcal{L}}$ is a matrix of the matrix $\mathcal{L}^{\mathcal{L}}$. The matrix $\mathcal{L}^{\mathcal{L}}$ is a matrix of the ma

The Killing form restricted to the Cartan subalgebra is given by

$$
\left(\sum_{i} \lambda_{i} h_{i}, \sum_{j} \lambda'_{j} h_{j}\right) = \sum_{i \neq j} (\lambda_{i} - \lambda_{j})(\lambda'_{i} - \lambda'_{j}) + 2 \sum_{i < j} (\lambda_{i} + \lambda_{j})(\lambda'_{i} + \lambda'_{j})
$$
\n
$$
= \sum_{i,j} \left[(\lambda_{i} - \lambda_{j})(\lambda'_{i} - \lambda'_{j}) + (\lambda_{i} + \lambda_{j})(\lambda'_{i} + \lambda'_{j}) \right] - \sum_{i} 4 \lambda_{i} \lambda'_{i}
$$
\n
$$
= 4(m - 1) \sum_{i} \lambda_{i} \lambda'_{i} . \tag{VIII.28}
$$

 \mathfrak{a}_i

$$
h_{\alpha_i} = \frac{h_i - h_{i+1}}{4(m-1)}, \qquad i < m \tag{VIII.29a}
$$

$$
h_{\alpha m} = \frac{h_{m-1} + h_m}{4(m-1)} \,. \tag{VIII.29b}
$$

The scalar products of the roots are now easily computed

$$
\langle \alpha_i, \alpha_j \rangle = [2\delta_{ij} - \delta_{ij+1} - \delta_{i+1j}] / [4(m-1)] \qquad i, j < m
$$
\n
$$
\langle \alpha_m, \alpha_m \rangle = 1 / [2(m-1)]
$$
\n
$$
\langle \alpha_{m-1}, \alpha_m \rangle = 0,
$$
\n
$$
\langle \alpha_{m-2}, \alpha_m \rangle = -1 / [4(m-1)]. \qquad (VIII.30)
$$

Thus the Cartan matrix and Dynkin diagram are

$$
D_n:
$$
\n
$$
\begin{bmatrix}\n2 & -1 & 0 & & & & \\
-1 & 2 & -1 & & & & \\
0 & -1 & & & & & \\
& & & 2 & -1 & 0 & 0 \\
& & & & -1 & 2 & -1 & -1 \\
& & & & 0 & -1 & 2 & 0 \\
& & & & 0 & -1 & 0 & 2\n\end{bmatrix}
$$

For the odd dimensional case of the orthogonal group, we proceed the same way except that we set

$$
U = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & i_m & -i_m \\ 0 & -1_m & -1_m \end{bmatrix}
$$
 (VIII.31)

so that

$$
K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0_m & 1_m \\ 0 & 1_m & 0_m \end{bmatrix}
$$
 (VIII.32)

where the subscript m indicates an m m m matrix-corresponding matrix-corresponding matrixmay be parameterized as

$$
\mathcal{B} = \begin{bmatrix} b_1 & c_1 & c_2 \\ d_1 & B_1 & B_2 \\ d_2 & B_3 & B_4 \end{bmatrix} .
$$
 (VIII.33)

For the $2m \times 2m$ pieces of the matrix, the conditions are the same as for the even adimensional orthogonal algebra. The constraints on the new matrices are new

$$
b_1 = 0 , \t c_1 = -d_2^t , \t c_2 = -d_1^t . \t (VIII.34)
$$

Thus we must add to our basis for the $2m$ dimensional orthogonal algebra the elements $(1 \leq j \leq m)$:

$$
e_j^4 = e_{0j} - e_{j+m \ 0} \ ; \qquad e_j^5 = e_{j \ 0} - e_{0 \ j+m} \ . \tag{VIII.35}
$$

The corresponding roots are seen to be

$$
[h, e_j^4] = -\lambda_j e_j^4 ; \qquad [h, e_j^5] = \lambda_j e_j^5 . \qquad \qquad \text{(VIII.36)}
$$

Using these new roots, together with those found for the even dimensional case, we compute the Killing form

$$
\left(\sum_{i} \lambda_{i} h_{i}, \sum_{j} \lambda'_{j} h_{j}\right)
$$

=
$$
\sum_{i \neq j} (\lambda_{i} - \lambda_{j})(\lambda'_{i} - \lambda'_{j}) + 2 \sum_{i < j} (\lambda_{i} + \lambda_{j})(\lambda'_{i} + \lambda'_{j}) + 2 \sum_{i} \lambda_{i} \lambda'_{i}
$$

=
$$
4(m - \frac{1}{2}) \sum_{i} \lambda_{i} \lambda'_{i}.
$$
 (VIII.37)

From this we can infer the values

$$
h_{\alpha_i} = \frac{h_{\alpha_i} - h_{\alpha_{i+1}}}{4(m - \frac{1}{2})}, \qquad i < m
$$
\n
$$
h_{\alpha_m} = \frac{h_{\alpha_m}}{4(m - \frac{1}{2})} \tag{VIII.38}
$$

where \mathbf{v} is the simple roots have the simple roots have the values \mathbf{v} is the values of \mathbf{v} \mathbf{u} is the most of the last of the l a root for the even dimensional case- Using the Killing form it is easy to compute the scalar product on the root space

__

$$
\langle \alpha_i, \alpha_j \rangle = \frac{1}{4(m - \frac{1}{2})} (2\delta_{ij} - \delta_{i j+1} - \delta_{i+1 j}), \qquad i < m
$$

$$
\langle \alpha_m, \alpha_i \rangle = 0, \qquad i < m - 1
$$

$$
\langle \alpha_m, \alpha_{m-1} \rangle = -\frac{1}{4(m - \frac{1}{2})},
$$

$$
\langle \alpha_m, \alpha_m \rangle = \frac{1}{4(m - \frac{1}{2})}.
$$
(VIII.39)

Accordingly, the Cartan matrix and Dynkin diagram are

$$
B_n: \begin{bmatrix} 2 & -1 & 0 & \cdots & & & \\ -1 & 2 & -1 & & & & \\ 0 & -1 & & & & & \\ \vdots & & & & 2 & -1 & 0 \\ \vdots & & & & -1 & 2 & -2 \\ \vdots & & & & & 0 & -1 & 2 \end{bmatrix}
$$

Notice the similarity between Bn and Cn- In the Cartan matrix they dier only by the interchange of the last odiagonal elements- The corresponding change in the Dynkin diagrams is to reverse the shading of the dots-

References

This material is discussed in DYNKIN I JACOBSON pp- and MILLER pp- -

Exercise

 - Starting with the Dynkin diagrams construct drawings of the roots of B ل — الله – ا

IX. The Exceptional Lie Algebras

We have displayed the four series of classical Lie algebras and their Dynkin diagrams- How many more simple Lie algebras are there Surprisingly there are only ve- We may prove this by considering a set of vectors candidates for simple roots) $\gamma_i \subset H_0$ and denning a matrix (analogous to the Cartan matrix) :

$$
M_{ij} = 2 \frac{\langle \gamma_i, \gamma_j \rangle}{\langle \gamma_j, \gamma_j \rangle} \tag{IX.1}
$$

and an associated diagram (analogous to the Dynkin diagram), where the i^{th} and j^{**} points are joined by $M_{ij}M_{ji}$ lines. The set γ_i is called allowable , (in Jacobson's usage) if

- ii-matrix is independently that is if the independent that is if the linearly and it is if α
- ii- Mij for i j-
- \cdots and ι if ι is a contract to the contract of ι

IX-12-20 The Exceptional Lie Algebras Company and Lie Algebras Company and Lie Algebras Company and Lie Algebra

With these definitions, we can prove a series of lemmas:

- Any subset of an allowable set is allowable- Proof Since a subset of a linearly independent set is linearly independent i is easy- Equally obvious are (ii) and (iii) .
- An allowable set has more points than joined pairs- Proof Let $\sum_i \gamma_i \langle \gamma_i, \gamma_i \rangle^{-\frac{1}{2}}$. Since the set is linearly independent, $\gamma \neq 0$ so $\langle \gamma, \gamma \rangle > 0$.

$$
0 < \langle \gamma, \gamma \rangle = \sum_{i < j} 2 \frac{\langle \gamma_i, \gamma_j \rangle}{\langle \gamma_i, \gamma_i \rangle^{\frac{1}{2}} \langle \gamma_j, \gamma_j \rangle^{\frac{1}{2}}} + \text{no. of points}
$$
\n
$$
0 < -\sum_{i < j} \left[M_{ij} M_{ji} \right]^{\frac{1}{2}} + \text{no. of points} \tag{IX.2}
$$

For each pair of joined points, $M_{ij}M_{ji}$ is at least unity, so

no- of joined pairs no- of points-

- , allow the set set sound be allowed be a set of the allowed be a set of the set of the set of the set of the subset with at least as many joined pairs as points.
- If an allowable set has a diagram with a chain of points joined only to suc cessive points by single lines, there is an allowable set whose diagram is the same except that the chain is shrunk to a point- Proof Let the chain be $\beta_1, \beta_2, \ldots \beta_m$ and let $\beta = \sum_i \beta_i$. Now

$$
\langle \beta, \beta \rangle = \sum_{i} \langle \beta_i, \beta_i \rangle + 2 \sum_{i < j} \langle \beta_i, \beta_j \rangle
$$
\n
$$
= m \langle \beta_1, \beta_1 \rangle - (m - 1) \langle \beta_1, \beta_1 \rangle
$$
\n
$$
= \langle \beta_1, \beta_1 \rangle \tag{IX.3}
$$

so is the same size as the individual points in the chain-theories in the chain- γ is joined to the chain at the end, say to β_1 , then $\langle \gamma, \beta_1 \rangle = \langle \gamma, \beta \rangle$, since $\langle \gamma, \beta_i \rangle = 0$ for all $j \neq 1$.

- No more than three lines emanate from a vertex of an allowable diagramreconnected to a suppose the connected to the connected to a connected to a support of the second to a second ii j α is constant there are no loops - is linearly independent of the independent of the independent of the i magnitude squared is greater than the sum of the squares of its components along the orthogonal directions $\gamma_i \langle \gamma_i, \gamma_i \rangle^{-\frac{1}{2}}$:

$$
\langle \gamma_0, \gamma_0 \rangle > \sum_i \langle \gamma_0, \gamma_i \rangle^2 \langle \gamma_i, \gamma_i \rangle^{-1} . \tag{IX.4}
$$

Thus $4 > \sum_i M_{0i}M_{i0}$. But $M_{0i}M_{i0}$ is the number of segments joining γ_0 and γ_i .

- The only allowable conguration with a triple line is

- An allowable diagram may have one vertex with three segments meeting at a point but not more- It may have one double line segment but not more- It may not have both- Proof In each of these instances it would be possible to take a subset of the diagram and shrink a chain into a point so that the resulting diagram would have a point with more than three line emanating from it- Note that this means that a connected diagram can have roots of at most two sizes, and we henceforth darken the dots for the smaller roots.

 \sim - and diagrams are diagrams and diagrams are discussed as \sim

and

<u>IX-12-20 and Exceptional Lie Algebras Companies and Lie Algebras Companies and Lie Algebras Companies and Lie A</u>

are not allowed the determinant of M for the second of the rate α diagram

> $\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$. – – – – $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

We see that if we add the first and last columns, plus twice the second and fourth plus three times the third we get all zeros- Thus the determinant vanishes- The matrix for the second diagram is just the transponse of the $first.$

- The only diagrams with a double line segment which may be allowable are of the form

 B_1 above the only diagrams with a branch in the formulation in the

- The diagram below is not allow is not allow in the diagram below is not allow in the diagram below is not all

Proof: The matrix for the diagram is:

				$\vert 0 \vert$			
	$\overline{\mathbf{2}}$		$\begin{array}{cccc} 2 & -1 & 0 & 0 \\ & -1 & 0 & \\ & & -1 & 0 \end{array}$	0	0		
0	-1	$\overline{2}$	-1	$\overline{0}$	-1	0	
0		$0 \quad -1$	$2 - 1$				
	$\overline{0}$	$\vert 0 \vert$	$-1\,$	$\overline{2}$			
		-1	$\vert 0 \vert$	0	$\overline{2}$		
		0	$\overline{0}$	θ			

Straightforward manipulation like that above shows that the determinant $vanishes.$

- The only allowable diagrams with a branch in them are of the form

- This is not allow is not allowed simply below is proved simply by evaluating the \sim associated determinant and showing it vanishes.

^h ^x

 $\overline{G_2}$

Above are given the names use to designate the five exceptional Lie algebrasis- of far we have only excluded all other possibilities- in fact, these its diagrams do correspond to simple Lie algebras-

Footnote

- Throughout the chapter we follow the approach of JACOBSON pp- $135\,.$

Exercise

- Prove and above-
X. More on Representations

We continue our discussion of Section IV. As before, a representation is a mapping of the elements of the Lie algebra into linear operators

$$
e_{\alpha} \to E_{\alpha}
$$

\n
$$
h_i \to H_i
$$
 (X.1)

which preserves the commutation relations of the Lie algebra. The operators E and H act on a vector space with elements generically denoted ϕ . We can select a basis in which the H 's are diagonal.¹ Thus we can write

$$
H\phi^M = M(h)\phi^M \tag{X.2}
$$

where $M \in H_0^*$ is called a weight and ϕ^M is a weight vector.

X. More on Representations

The weights come in sequences with successive weights differing by roots of the Lie algebra \mathcal{L} algebra \mathcal{L} and \mathcal{L} are seen that if a complete string of roots is M p-d- \cdots $m - m\alpha$, then (see Eq. (v.22))

$$
m - p = 2 \frac{\langle M, \alpha \rangle}{\langle \alpha, \alpha \rangle} \tag{X.3}
$$

A finite dimensional irreducible representation must have a highest weight, that is, a weight Λ such that every other weight is less than Λ , where the ordering is determined in the usual fashion (That is, we pick a basis of roots and order it. A weight is positive if, when expanded in this ordered basis, the first non-zero coemetent is positive, and we say $m_1 > m_2$ if $m_1 - m_2 > 0$.

Let $\{\alpha_i\}$ be a basis of simple roots and let Λ be the highest weight of an irreducible representation α is not a weight Thus by Eq X-F and Th

$$
\Lambda_i = 2 \frac{\langle \Lambda, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \ge 0 \tag{X.4}
$$

Each greatest weight, Λ , is thus specified by a set of non-negative integers called Dynkin coefficients:

$$
\Lambda_i = 2 \frac{\langle \Lambda, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \tag{X.5}
$$

We could use the inverse of the Cartan matrix to determine the precise expansion of Λ in terms of the simple roots, but this is rarely worthwhile.

Given the Dynkin coefficients of the highest weight, it is easy to determine the full set of weights in the irreducible representation expressed again in terms of their Dynkin coefficients. The algorithm is similar to that we used to find all the roots of a Lie algebra from its Cartan matrix. Given a weight, M , we need to α determine whether $m - \alpha_i$ is also a weight. Since we begin with the highest weight and work down we was also the value of p in Eq. (field). The shall keep the shall compo integers

$$
M_i = 2 \frac{\langle M, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \tag{X.6}
$$

X More on Representations

If

$$
m_j = p_j + M_j > 0 \tag{X.7}
$$

then we know we can subtract the root -^j from the root ^M to obtain another root We record the Dynkin coefficients of $M - \alpha_i$ by subtracting from M_i the quantities A_{ii} . This is most easily carried out by writing the Cartan matrix at the top of the computation

Consider an example for SU- or A- in the other notation Let us de termine the weights corresponding to the irreducible representation whose highest weight has Dynkin coefficients $(1,0)$.

The Dynkin coefficients are entered in the boxes and successive rows are obtained by subtracting the appropriate row of the Cartan matrix It is easy to see that the highest weight here can be expanded in simple roots as

$$
\Lambda = \frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2 \tag{X.8}
$$

Thus the weights of this three dimensional representation are

$$
\frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2 \ ; \quad -\frac{1}{3}\alpha_1 + \frac{1}{3}\alpha_2 \ ; \quad -\frac{1}{3}\alpha_1 - \frac{2}{3}\alpha_2 \ .
$$

Of course, if we had started with Dynkin coefficients $(0,1)$, we would have obtained a three dimensional representation with weights

$$
\frac{1}{3}\alpha_1 + \frac{2}{3}\alpha_2 ; \quad \frac{1}{3}\alpha_1 - \frac{1}{3}\alpha_2 ; \quad -\frac{2}{3}\alpha_1 - \frac{1}{3}\alpha_2 .
$$

Actually we have relied on our previous knowledge of SU- to assert that these representations are three dimensional All we have seen is that there are three different weights. It is often the case that a weight may correspond to more than one (linearly independent) weight vector, so that the weight space may be more than one dimensional Consider for example the SU- representation with Dynkin coefficients $(1,1)$, the familiar adjoint representation:

This representation is eight dimensional. The weight with Dynkin coefficients $(0,0)$ corresponds to a two dimensional space. Indeed, since this is the adjoint representation, we recognize that this space coincides with the Cartan subalgebra. The procedure for determining the dimensionality of a weight space will be discussed later

As two additional examples, consider the representations of $SO(10)$ (D_5) specified by the Dynkin coefficients $(1,0,0,0,0)$ and $(0,0,0,0,1)$ where the simple roots are numbered

We have then the schemes

 -1 0 0 0 0 0 0 $-$

and

X. More on Representations

New representations may be obtained by taking products of representations This procedure when applied to $SU(2)$ is the familiar addition of angular momentum in quantum mechanics. Suppose we have two representations, $x \to X^{(1)}$ and $x \to$ $X^{(2)}$ where $x \in L$ and $X^{(1)}$ and $X^{(2)}$ are linear operators on vector spaces whose basis elements will be denoted by ϕ and η respectively:

$$
X^{(1)}\phi_i = \sum_j X^{(1)}_{ij} \phi_j \tag{X.9a}
$$

$$
X^{(2)}\eta_i = \sum_j X_{ij}^{(2)}\eta_j . \tag{X.9b}
$$

Here X_{ij}^{γ} and X_{ij}^{γ} are coefficients, not operators. We can define a product representation on the product space whose basis elements are of the form $\phi_i \otimes \eta_i$ as follows

$$
X\phi_i\otimes\eta_j=\sum_k X_{ik}^{(1)}\phi_k\otimes\eta_j+\sum_l\phi_i\otimes X_{jl}^{(2)}\eta_l\ .\hspace{1cm} (X.10)
$$

For the rotation group, we might write $J = L + S$ and ϕ and η might represent the spatial and spin parts of the wave function

If x is an element of the Cartan subalgebra we indicate it by h and its representation by H . If φ and η are weight vectors with weights $M \setminus \wedge$ and $M \setminus \wedge$ then $\phi \otimes \eta$ is a weight vector of the product representation with weight $M^{\langle + \rangle} + M^{\langle + \rangle}$, as we see from Eq. $(X.10)$. If the highest weights of the two representations are $\Lambda^{<\sim}$ and $\Lambda^{<\sim}$, then the highest weight of the product representation is $\Lambda^{<\sim}$ $+$ $\Lambda^{<\sim}$.

Our construction of the weights of an irreducible representation from the Dynkin coefficients of its highest weight shows that all the weights are determined by the highest weight It is also possible to show that the weight space of the highest weight is always one-dimensional for an irreducible representation. Thus each product of irreducible representations contains one irreducible representation whose highest weight is the sum of the highest weights of the two representations forming it

as an example consider again SU-C - three dimensional representation of the three dimensional representation o may be represented by $(1,0)$ and the other three dimensional representation by $(0,1)$. Their product must contain the representation $(1,1)$, which is in fact the eight dimensional representation

Consider the special case in which the representations being multiplied are identical. The product space can be broken into two parts, a symmetric part with basis $\phi_i \otimes \phi_j + \phi_j \otimes \phi_i$, and an anti-symmetric part, with basis $\phi_i \otimes \phi_j - \phi_j \otimes \phi_i$. If the highest weight of the representation carried by ϕ is Λ , then the highest weight carried by the symmetric space is 2Λ . The anti-symmetric space does not contain the vector with this weight since it is symmetric. The highest weight in the antisymmetric space is found by taking the sum of the highest and the next-to-highest weights

Again, a simple example may be taken from $SU(3)$. Consider 3×3 (i.e. $(1,0) \times (1,0)$. The second highest weight in $(1,0)$ is $(-1,1)$. Thus the anti-symmetric space carries the representation whose highest weight is $(1,0) + (-1,1) = (0,1)$. This is the σ . The symmetric space carries the $(z,0)$, the σ of $SO(3)$. In general, however, the product contains more than two irreducible components

It is possible to extend the anti-symmetrization procedure by taking the nfold anti-symmetric product of a given representation. It is clear that the three fold antisymmetric product will contain a representation whose highest weight is the sum of the three highest weights of the irreducible representation from which it is made, and so on. Similarly, the n-fold symmetric product will contain an irreducible representation whose highest weight is n-times the highest weight of the initial irreducible representation

These procedures are especially easy to apply to A_n , beginning with the fundamental representation, $(1, 0, \ldots)$. Calculating the weights of this representation, we quickly see that the two-fold anti-symmetrization yields a highest weight $(0, 1, 0, \ldots)$, the three-fold anti-symmetrization $(0, 0, 1, 0, \ldots)$, and so on.

In fact, combining these operations we can produce any of the irreducible representations of A_n . To produce the representation with highest weight $(m_1,$ m-matrix matrix and matrix of the model of the model o fold symmetric product of $(0, 1, 0, ...)$ and form their product. The irreducible representation with highest weight in the product is matches μ and μ and μ in this fashion to build model with $\{1, \ldots, p\}$, we have the set of the set

X More on Representations

The representations with Dynkin coefficients all equal to zero except for one entry of unity are called basic representations. It is clear that every representation can be formed from basic representations simply using the highest weights of product representations. Moreover, for A_n , we have seen that every basic representation can be obtained from a single fundamental representation

Consider, on the other hand, B_3 , $(O(7))$. We display the weights of the representations $(1,0,0)$ and $(0,0,1)$.

We see that the twice anti-symmetric product of $(1,0,0)$ contains $(0,1,0)$, but the three times anti-symmetric product is $(0,0,2)$. Thus we cannot build all the basic representations from $(1,0,0)$. Nor can they all be built from $(0,0,1)$. We must begin with both the $(0,0,1)$ and $(1,0,0)$ to generate all the basic representations.

Analogous considerations establish that a single representation will generate all representations for the C_n algebras, but three initial representations are necessary for the D_n algebras.

Footnote

See JACOBSON p -

References

Representations are discussed at length in the appendix to DYNKIN III For $SU(n)$, Young tableaux are the most effective procedure. They are explained in GEORGI. For a mathematical exposition, see BOERNER. For a very practical exposition, see SCHENSTED.

Exercises

Find the scheme for the scheme for the representations \mathbf{r}

- Γ find the weight scheme for Γ and Γ find the weight scheme for Γ
- 2. Find the weight scheme for $(1,0)$ and $(0,1)$ of F_4 .

XI. Casimir Operators and Freudenthal's Formula

One of the most familiar features of the analysis of $SU(2)$ is the existence of an operator $T = T_x + T_y + T_z$ which commutes with all the generators, T_x, T_y , and T_z . It is important to note that T - really has meaning only for representations, and not as an element of the Lie algebra since products like the η $_{\nu}$ are not denote the not algebra itself-then itself-then \mathbb{P}_k are defined for representations since the \mathbb{P}_k is a linear transformation of a vector space into itself and can be applied twice- We seek here the generalization of $\scriptstyle I$ = for an arbitrary simple Lie algebra.

It is well-known that $I^* = \frac{1}{2}(I + I - I + I - I + I + IzIz)$. This is the form which is easiest to relate to the forms we have used to describe Lie algebras in general-We might guess that the generalization will be roughly of the form

$$
\mathcal{C} = \sum_{j,k} H_j M_{jk} H_k + \sum_{\alpha \neq 0} E_{\alpha} E_{-\alpha}
$$
 (XI.1)

where \mathcal{H}_j are a particle roots-simple roots-simple roots-simple roots-simple roots-simple roots-simple rootsdetermined by requiring the generators of the algebra \Box the algebra \Box α . The extra strong through so the extra string α is the chosen so that α

$$
[e_{\alpha}, e_{-\alpha}] = h_{\alpha} \t\t(\text{XI}.2a)
$$

$$
[E_{\alpha}, E_{-\alpha}] = H_{\alpha} \tag{X1.2b}
$$

Let us de ne N- by

$$
[e_{\alpha}, e_{\beta}] = N_{\alpha\beta}e_{\alpha+\beta} = -N_{\beta\alpha}e_{\alpha+\beta}.
$$
 (XI.3)

It is clear that \mathcal{N} is clear that \mathcal{N} -commutes with all the generators with all the generators with a of the Cartan subalgebra since $|H_i|H_j| = 0$ and $|H_i|H_j| = 0$. It remains to calculate the commutator of \mathbf{v} with $E_{\mathcal{Y}}$ with \mathbf{v} and the second term in \mathbf{v} ,

$$
\left[\sum_{\alpha \neq 0} E_{\alpha} E_{-\alpha}, E_{\beta}\right] = \sum_{\substack{\alpha \neq 0 \\ \alpha \neq \beta}} E_{\alpha} N_{-\alpha,\beta} E_{\beta-\alpha} + \sum_{\substack{\alpha \neq 0 \\ \alpha \neq -\beta}} N_{\alpha\beta} E_{\alpha+\beta} E_{-\alpha} + E_{\beta} H_{-\beta} + H_{-\beta} E_{\beta} \quad (XI.4)
$$

we can obtain the necessary relation between the coefficients $\mathbf{u}_{\mathcal{U}}$ and $\mathbf{u}_{\mathcal{U}}$ and $\mathbf{u}_{\mathcal{U}}$ ance of the Killing form

$$
(e_{\alpha}, [e_{\beta}, e_{\gamma}]) = N_{\beta, \gamma} \delta_{-\alpha, \beta + \gamma} = -N_{-\alpha - \beta, \beta} \delta_{\alpha + \beta, -\gamma}
$$

$$
= ([e_{\alpha}, e_{\beta}], e_{\gamma})
$$

$$
= N_{\alpha, \beta} \delta_{\alpha + \beta, -\gamma}
$$

$$
N_{\alpha, \beta} = -N_{-\alpha - \beta, \beta}.
$$
(X1.5)

Thus we have

$$
\sum_{\substack{\alpha \neq 0 \\ \alpha \neq -\beta}} N_{\alpha\beta} E_{\alpha+\beta} E_{-\alpha} = \sum_{\substack{\alpha' \neq 0 \\ \alpha' \neq \beta}} N_{\alpha'-\beta,\beta} E_{\alpha'} E_{\beta-\alpha'}
$$
\n
$$
= \sum_{\substack{\alpha' \neq 0 \\ \alpha' \neq \beta}} -N_{-\alpha',\beta} E_{\alpha'} E_{\beta-\alpha'} , \qquad (XI.6)
$$

so the piece of the commutator of $\equiv y$ with \bullet we have calculated is

$$
\left[\sum_{\alpha \neq 0} E_{\alpha} E_{-\alpha}, E_{\beta}\right] = E_{\beta} H_{-\beta} + H_{-\beta} E_{\beta} . \tag{XI.7}
$$

We now arrange the matrix M so that the remainder of the commutator of $\mathcal C$ with E- just cancels this-

$$
\left[\sum_{j,k} H_j M_{jk} H_k, E_\beta\right] = \sum_{j,k} \left[\langle \alpha_k, \beta \rangle H_j M_{jk} E_\beta + \langle \beta, \alpha_j \rangle M_{jk} E_\beta H_k \right] . \tag{XI.8}
$$

Now suppose that β has the expansion in terms of simple roots

$$
\beta = \sum_{l} k_{l} \alpha_{l} \tag{XI.9}
$$

Then the coefficients are given by

$$
k_l = \sum_j \langle \beta, \alpha_j \rangle \mathcal{A}_{jl}^{-1} \tag{XI.10}
$$

where the matrix ${\mathcal A}$ is

$$
\mathcal{A}_{pq} = \langle \alpha_p, \alpha_q \rangle \tag{XI.11}
$$

and $A =$ is its inverse. Now

$$
H_{\beta} = \sum_{l} k_{l} H_{l}
$$

=
$$
\sum_{j,k} \langle \beta, \alpha_{j} \rangle A_{jk}^{-1} H_{k} .
$$
 (XI.12)

Thus if we take the matrix M to be A, then the second portion of the commutator is \mathbf{r} -

$$
\left[\sum_{j,k} H_j \mathcal{A}_{jk}^{-1} H_k, E_\beta\right] = H_\beta E_\beta + E_\beta H_\beta , \qquad (XI.13)
$$

just cancelling the rst part- Altogether then

$$
\mathcal{C} = \sum_{j,k} H_j \mathcal{A}_{jk}^{-1} H_k + \sum_{\alpha \neq 0} E_{\alpha} E_{-\alpha} . \qquad (XI.14)
$$

commutation (=) and the commutation commutation relations are relations are commutation relations are commutations are commutations are commutations of the commutation of the commutation of the commutation of the commuta

$$
[t_z, t_+] = t_+; \quad [t_z, t_-] = -t_-; \quad [t_+, t_-] = 2t_z \tag{XI.15}
$$

$$
(t_{+}, t_{-}) = \text{Tr}\,\text{ad}\,t_{+} \text{ad}\,t_{-} = 4\tag{XI.16}
$$

Thus to obtain the normalization we have used in deriving the Casimir operator we must set $\mathbf{1}$ $\overline{1}$

$$
t'_{+} = \frac{1}{2}t_{+} \; ; \quad t'_{-} = \frac{1}{2}t_{-} \; . \tag{XI.17}
$$

so that

$$
(t'_{+}, t'_{-}) = 1 \tag{X1.18}
$$

Now we regard ι_+ as the e_α . The corresponding n_α is accordingly

$$
h_{\alpha} = [t'_{+}, t'_{-}] = \frac{1}{2}t_{z}.
$$
 (XI.19)

It is straightforward to compute

$$
\langle \alpha, \alpha \rangle = (h_{\alpha}, h_{\alpha}) = \frac{1}{4}(t_z, t_z) = \frac{1}{2}.
$$
 (XI.20)

It follows that the 1×1 matrix $M = A^{-1}$ is simply 2. Altogether then, we find

$$
\mathcal{C} = 2H_{\alpha}H_{\alpha} + E_{\alpha}E_{-\alpha} + E_{-\alpha}E_{\alpha}
$$

= $\frac{1}{2}T_zT_z + \frac{1}{4}(T_+T_- + T_-T_+)$. (XI.21)

This differs from the conventional $SU(2)$ Casimir operator by an overall factor of $\frac{1}{2}$, a result simply of our need to establish some initial normalization in Eq. (AT.1). __ The importance of the Casimir operator is that since it commutes with all the generators, including the raising and lowering operators, it has the same value on every vector of an irreducible representation, since every such vector can be obtained by applying lowering operators to the highest weight vector- In fact we can nd the value of the Casimir operator on an irreducible representation by considering its action on the highest weight vector- Suppose the highest weight is and that is a vector with the weight- which is a very positive root of the matrix weight to a very positive root of the Eu since otherwise it would have well well have the other handle many we can compute E_{R} E_{R} E_{R} E_{R} is the state α is the state α is the state α is positive. Thus we have

$$
\mathcal{C}\phi_{\Lambda} = \sum_{j,k} H_j \mathcal{A}_{jk}^{-1} H_k \phi_{\Lambda} + \sum_{\alpha > 0} \langle \Lambda, \alpha \rangle \phi_{\Lambda}
$$

=
$$
\sum_{j,k} \langle \Lambda \alpha_j \rangle \mathcal{A}_{jk}^{-1} \langle \Lambda, \alpha_k \rangle \phi_{\Lambda} + \sum_{\alpha > 0} \langle \Lambda, \alpha \rangle \phi_{\Lambda} .
$$
 (XI.22)

Thus on this irreducible representation

$$
\mathcal{C} = \sum_{j,k} \langle \Lambda \alpha_j \rangle \mathcal{A}_{jk}^{-1} \langle \Lambda, \alpha_k \rangle + \sum_{\alpha > 0} \langle \Lambda, \alpha \rangle
$$

= $\langle \Lambda, \Lambda \rangle + \langle \Lambda, 2\delta \rangle$ (XI.23)

where we have introduced the element of $H_{\rm 0}$

$$
\delta = \frac{1}{2} \sum_{\alpha > 0} \alpha \tag{X1.24}
$$

 A few comments are in order concerning normalizations-concerning normalizations-concerning normalizations-concerning A our scalar product from the Killing forms from the Chapter IV all in Chapter II all invariants bilinear forms are proportional to the Killing form if the algebra is simple- Suppose we define the dependence of the second form by the second form by the second form \mathcal{L}_1

$$
(x, y)' = c(x, y) = c \operatorname{Tr} \operatorname{ad} x \operatorname{ad} y \tag{X1.22}
$$

now since he is dependent of the single section of the single section of the single section of the single section of μ

$$
(h_{\rho}, k) = \rho(k) \tag{X1.23}
$$

we denne n_{ρ} by

$$
(h'_{\rho}, k)' = \rho(k) \tag{X1.24}
$$

so that

$$
h'_{\rho} = \frac{1}{c} h_{\rho} \tag{X1.25}
$$

and

$$
\langle \rho, \tau \rangle' \equiv (h_{\rho}', h_{\tau}')' = \frac{1}{c} \langle \rho, \tau \rangle \tag{X1.26}
$$

We now compare the commutation relations as expressed using the two dif ferent scalar products-we have been determined by the scalar products-we have been determined by the scalar products-

$$
[h_{\alpha}, e_{\beta}] = \beta(h_{\alpha})e_{\beta} = (h_{\beta}, h_{\alpha})e_{\beta} = \langle \alpha, \beta \rangle e_{\beta}
$$
 (XI.27)

which becomes

$$
[h'_{\alpha}, e_{\beta}] = \beta(h'_{\alpha})e_{\beta} = (h'_{\alpha}, h'_{\beta})'e_{\beta} = \langle \alpha, \beta \rangle' e_{\beta} . \tag{XI.28}
$$

Thus the commutation relations look the same for this new scalar product- A new Casimir operator (which is just a multiple of the old one) can be chosen so that its value is just $\{\Lambda, \Lambda + Z\theta\}$. In this way, we can choose a scalar product with any desired normalization and have the computations go through just as before- For some applications, it is traditional to use a scalar product which gives the largest root a length squared equal to - we indicate this scalar product product by h i-i2.

One particular way to choose an invariant bilinear form is to take the trace of two representation matrices where ω_1 is placed production explicitly and ω_1

$$
((x, y)) = \text{Tr}\,\phi(x)\phi(y) \tag{X1.29}
$$

The invariance of this form follows from the invariance of traces under cyclic per mutation-that is the form that $\{ \}$ is proportional to the Killing form and to the form χ , χ_{B} are constant χ , χ_{B} , the constant of proportionality to the latter is called the index of the representation, l_{ϕ} :

$$
((x, y)) = l_{\phi}(x, y)_{2} \tag{X1.30}
$$

XI- Casimir Operators and Freudenthals Formula

Now we can evaluate l_{ϕ} by considering C with the normalization appropriate to a representation with the main α representation with α in take α is a representation of α True get α is the dimension of the dimensional α is the dimensional of the representation- α is the dimensionthe other hand, replacing $((,))$ by $l_{\phi}([,)_2$ yields $l_{\phi}N_{adj}$ where N_{adj} is the dimension of the algebra that is the dimension of the adjoint representation of the adjoint representation-

$$
l_{\phi} = \frac{N_{\Lambda} \langle \Lambda, \Lambda + 2\delta \rangle_2}{N_{adj}} . \tag{X1.31}
$$

We shall see some applications of the index in later chapters.

One particular application of the Casimir operator is in deriving Freuden**thals recognized returnate** for the dimensionally of a weight space. From design we developed an algorithm for determining all the weights of an irreducible rep resentation, but without ascertaining the dimensionality of each weight space, an omission which we now rectify- will be used this result will be used to derive Weyl's formula for the dimension of an irreducible representation.

We consider an irreducible representation whose highest weight is Λ and seek the dimensionality of the space with weight M- Now we know the constant value of C on the whole carrier space of the representation, so we can calculate the trace of C restricted to the space with weight M :

$$
\operatorname{Tr}_{M} \mathcal{C} = n_{M} \langle \Lambda, \Lambda + 2\delta \rangle \tag{X1.32}
$$

Here n_M is the dimensionality of the space with weight M, that is, the quantity we wish to compute first and children children wanded quantity and child way- way- was another way of $\mathcal C$ gives us

$$
\operatorname{Tr}_{M} \sum_{j,k} H_{j} \mathcal{A}_{j,k}^{-1} H_{k} = \sum_{j,k} \langle \alpha_{j}, M \rangle \mathcal{A}_{j,k}^{-1} \langle \alpha_{k}, M \rangle n_{M}
$$

$$
= n_{M} \langle M, M \rangle . \tag{XI.33}
$$

What remains is

$$
\operatorname{Tr}_M \sum_{\alpha > 0} (E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha) , \qquad (XI.34)
$$

where our normalization is $(e_{\alpha}, e_{-\alpha}) = 1$ so

$$
[E_{\alpha}, E_{-\alpha}] = H_{\alpha}, \qquad [H_{\alpha}, E_{\alpha}] = \langle \alpha, \alpha \rangle E_{\alpha} . \qquad (X1.35)
$$

Now usually for $SU(2)$ we have

$$
[T_+, T_-] = 2T_z, \qquad [T_z, T_+] = T_+ \tag{XI.36}
$$

and

$$
T^{2} = T_{z}^{2} + \frac{1}{2} [T_{+}T_{-} + T_{-}T_{+}]. \tag{X1.37}
$$

We want to exploit our understanding of $SU(2)$ so we consider the $SU(2)$ generated \mathcal{L}_f \mathcal{L}_g and \mathcal{L}_g . The correspondence which gives the right normalization is

$$
T_z = \frac{H_\alpha}{\langle \alpha, \alpha \rangle}, \qquad T_+ = \sqrt{\frac{2}{\langle \alpha, \alpha \rangle}} E_\alpha \ , \qquad T_- = \sqrt{\frac{2}{\langle \alpha, \alpha \rangle}} E_{-\alpha} \ . \tag{XI.38}
$$

Now consider the weight space associated with the weight M- The full ir reducible representation contains, in general, many irreducible representations of the SU associated with the root of the root pick a space for the weight space for the weight space \sim weight ^M so that each basis vector belongs to a distinct irreducible representation of the SU- \sim SU-called and integration is characterized by an integration is characterized by an integer or half is the maximal eigenvalue of the maximum eigenvalue of α . The case of the usual Casimiriri operators in the value that the value the value that \mathcal{X} is a strong propriate weight to a compare vector then we can write

$$
\left[\frac{H_{\alpha}H_{\alpha}}{\langle\alpha,\alpha\rangle^{2}} + \frac{1}{\langle\alpha,\alpha\rangle}E_{\alpha}E_{-\alpha} + \frac{1}{\langle\alpha,\alpha\rangle}E_{-\alpha}E_{\alpha}\right]\phi_{t} = t(t+1)\phi_{t}
$$
\n(XI.39)

so that

$$
[E_{\alpha}E_{-\alpha} + E_{-\alpha}E_{\alpha}]\phi_t = \langle \alpha, \alpha \rangle t(t+1)\phi_t - \frac{\langle M, \alpha \rangle^2}{\langle \alpha, \alpha \rangle} \phi_t \qquad (XI.40)
$$

where we have a the fact that the particular weight \mathcal{L} and \mathcal{L} ϕ_t belongs to a series of weight vectors which form a basis for an irreducible representation of the SU described above- Suppose the highest weight in this series is m is a stated weight weight vector is a stated weight vector in τ and τ and τ

$$
T_z \phi_{M+k\alpha} = t \phi_{M+k\alpha} = \frac{H_\alpha}{\langle \alpha, \alpha \rangle} \phi_{M+k\alpha} = \frac{\langle \alpha, M+k\alpha \rangle}{\langle \alpha, \alpha \rangle} \phi_{M+k\alpha} . \tag{XI.41}
$$

Thus we can indentify

$$
t = \frac{\langle \alpha, M + k\alpha \rangle}{\langle \alpha, \alpha \rangle} \tag{XI.42}
$$

This result can now be inserted in Eq. () and \mathcal{A} -for a non-to-definite independent in Eq. (

$$
[E_{\alpha}E_{-\alpha} + E_{-\alpha}E_{\alpha}] \phi_t = [k(k+1)\langle \alpha, \alpha \rangle + (2k+1)\langle M, \alpha \rangle] \phi_t . \qquad (XI.43)
$$

Each of our basis vectors for the space with weight M has associated with it a value of hit and basis and control control manager than one basis vector control vector at hit A moment's reflection reveals that the number of such basis vectors is precisely the dierence between the dimension of the space with weight M k k k with that α with weight and accordingly we write

$$
\mathrm{Tr}_{M} \sum_{\alpha > 0} \left[E_{\alpha} E_{-\alpha} + E_{-\alpha} E_{\alpha} \right]
$$
\n
$$
= \sum_{k \ge 0} \left(n_{M + k\alpha} - n_{M + (k+1)\alpha} \right) \left[k(k+1)\langle \alpha, \alpha \rangle + (2k+1)\langle M, \alpha \rangle \right]
$$
\n
$$
= n_{M} \langle M, \alpha \rangle + \sum_{k=1}^{\infty} n_{M + k\alpha} \left[2k \langle \alpha, \alpha \rangle + 2\langle M, \alpha \rangle \right]. \tag{XI.44}
$$

result with Eqs- and XI-methods and XI-methods and XI-methods and XI-methods and XI-methods and XI-methods and

$$
\begin{aligned} \text{Tr}_{M} \mathcal{C} &= n_{M} \langle \Lambda, \Lambda + 2\delta \rangle \\ &= n_{M} \langle M, M \rangle \\ &+ \sum_{\alpha > 0} \left[n_{M} \langle M, \alpha \rangle + \sum_{k=1}^{\infty} 2n_{M + k\alpha} \langle M + k\alpha, \alpha \rangle \right] \end{aligned} \tag{XI.45}
$$

This relation may be solved for n_M in terms of the higher weights:

$$
n_M = \frac{\sum_{\alpha>0} \sum_{k=1}^{\infty} 2n_{M+k\alpha} \langle M+k\alpha, \alpha \rangle}{\langle \Lambda + M + 2\delta, \Lambda - M \rangle}.
$$
 (XI.46)

The highest weight always has a space of dimension one-free of dimension one-free Ω \blacksquare . The dimensionality of the dimensionality of the spaces of we successively-denominator is most easily evaluated by expressing the denominator is most expression of \mathbf{r}_i rst factor by its Dynkin coecients and the second factor in terms of simple roots-As we shall demonstrate later the Dynkin coecients of are  - Since and M appear in the table of weights expressed in Dynkin coefficients, it is easy then to determine $\mathbf{y} = \mathbf{y} - \mathbf{y}$. Similarly, the table of the table of the table of the table of the table $\mathcal{L}_{\mathbf{A}}$ is the Dynamic coefficients of $\mathcal{L}_{\mathbf{A}}$ are $\mathcal{L}_{\mathbf{A}}$

$$
(\Lambda + M + 2\delta) = (a_1, a_2, \ldots) \tag{XI.47}
$$

and

$$
\Lambda - M = \sum_{i} k_i \alpha_i \tag{XI.48}
$$

then

$$
\langle \Lambda + M + 2\delta, \Lambda - M \rangle = \sum_{i} a_i k_i \frac{1}{2} \langle \alpha_i, \alpha_i \rangle \tag{XI.49}
$$

XI- Casimir Operators and Freudenthals Formula

The quantity in the numerator can be evaluated fairly easily as well- For a given positive root, α , we check to see whether $M = M + \kappa \alpha$ is also a weight. If it is, then M -and M he in a string of weights separated by α s. Let the highest and lowest weights in the string be $M_+ + p\alpha$ and $M_- - m\alpha$. Then by Eq. (v.22),

$$
2\langle M', \alpha \rangle = (m - p)\langle \alpha, \alpha \rangle \tag{XI.50}
$$

Let us consider an application of the Freudenthal formula to SU- The dimensional representation has the Pynkin representation $\mathcal{L} = \{ \mathcal{L} \mid \mathcal{L} \}$. The representation $\mathcal{L} = \{ \mathcal{L} \}$ sentation with highest weight in the product of two adjoint representations-

First note that the weights $(0,3)$ and $(3,0)$ clearly are one dimensional since there is only one way to reach them by lowering operators from the highest weight- \mathcal{A} is found the weight in the weight \mathcal{A}

$$
\Lambda + M + 2\delta = (5, 5)
$$

$$
\Lambda - M = \alpha_1 + \alpha_2
$$

$$
\langle \Lambda + M + 2\delta, \Lambda - M \rangle = 10 \cdot \frac{1}{2} \langle \alpha_1, \alpha_1 \rangle \tag{XI.51}
$$

where we have also the relation $\{x_1, x_1, \ldots, x_d, x_d\}$

To compute the numerator, we remember that there are three positive roots α_1 , α_2 , α_3 , α_4 , α_5 , α_6 , α_7 , α_8 , α_7 , α_8 , α_9 , α_1 , α_2 , α_3 , α_5 , α_7 , α_8 , α_9 , α_9 , α_1 , α_2 , α_3 , α_7 , α_8 , α_9 , α_9 , α_1 , α_2 m and p-similarly field which where \mathfrak{p} is the preceding \mathfrak{p} , \mathfrak{p} and \mathfrak{p} and \mathfrak{p} $\mathcal{L} = \{ \mathcal{L} \mid \mathcal$ $\frac{1}{2}$ and roots of $\frac{1}{2}$ $\frac{1}{2}$ have the same size $\frac{1}{2}$ include for the numerator $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ and thus

$$
N_{(1,1)} = 2 \tag{X1.52}
$$

For the weight $(2,-1)$ we have

$$
\Lambda + M + 2\delta = (6,3)
$$

\n
$$
\Lambda - M = \alpha_1 + 2\alpha_2
$$

\n
$$
\langle \Lambda + M + 2\delta, \Lambda - M \rangle = (6+6) \cdot \frac{1}{2} \cdot \langle \alpha_1, \alpha_1 \rangle
$$
 (XI.53)

The numerator receives a contribution of $\mathbf{r}_{\{a_1\}}$ and the root \mathbf{a}_1 , Then the root \mathbf{a}_2 $\frac{1}{2}$ and $\frac{1}{2}$ the preceding weights to consider. The weight $\frac{1}{2}$ contributes $\frac{1}{2}$ ($\frac{1}{2}$). The weight $\{1,1\}$ contributes $\mathbb{F}\left[\mathbb{F}\right]$ $\{N\}$ where the factor of two comes from the dimensionality of the weight space for χ -paper for the root \sim χ \sim \sim \sim \sim α . α and α is the summatrix α is the summatrix of α

$$
N_{(2,-1)} = \frac{4+3+2+3}{12 \cdot \frac{1}{2}} = 2.
$$
 (XI.54)

References

The derivation of Freudenthal's formula follows that given by JACOBSON, pp-index of a representation is developed by DYNKIN index of a representation in the index of a representation \blacksquare . The properties of the properties

Exercises

- - Find the index of the seven dimensional representation of G-
- Find the dimensionalities of all the weight spaces of the dimensional rep resentation of $SU(3)$.
- show that the index of the method representation of SU \sim 1-7 m $(k-1)k(k+1)/6$.

XII. The Weyl Group

The irreducible representations of $SU(2)$ manifest a very obvious symmetry: for every state with T z , and there is a state with T z , and Tailor Tz is the symmetry is the symmetry source of a more complex symmetry in larger algebras- The SU representations are symmetric with respect to reection about their centers- The larger algebras have reflection symmetries and the group generated by these reflections is called the Weyl group.

consider an irreducible representation of a simple mass and represent the simple \sim root of the algebra, we can consider the SU($=$) generated by eque $=$ quantum α representation of the full algebra will in general be a reducible representation of this SU- Let ^M be some particular weight and consider the weights and weight spaces α ssociated with α is α in α in α in α in α is α in α in α is α representation of the SU- Under the SU reection this representation is mapped into itself-contract space in which we have a part of which we contract the space of the space of the s element belongs to a distinct $SU(2)$ representation, it is clear that the reflection will map one weight space into another of the same dimension- What is the relation between the original weight and the one into which it is mapped? This is easily inferred from goodness, the portion of M paradicties to a model will be an and the portion perpendicular to it is the mean in the collection of the removement the means of the

sign of the former and leaves unchanged the latter- Thus the reection of the weight can be written

$$
S_{\alpha}(M) = M - 2\frac{\langle M, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha , \qquad (XII.1)
$$

where S_{α} is an operator acting on the space of weights, H_0 . It maps weights into weights whose weight spaces are of the same dimension-the same dimension- α range over all the roots of the algebra we get a collection of reections- By taking all combinations of these reflections applied successively, we obtain the Weyl group.

The 27-dimensional representation of $SU(3)$ provides a good example of the symmetry at hand-off contains three SU multiplets three SU multiplets three SU multiplets on with the subspace \blacksquare . The with T- \blacksquare and \blacksquare subspace \blacksquare subspace contains two \blacksquare multiplets and with T and one with T and T a $SU(2)$ reflection maps the weight diagram into itself, preserving the dimensionality of each weight space-

Rather than consider all the S_α , it turns out that it suffices to consider just those S William Correspondence of the full weight o find

$$
S_{\alpha_1}: \quad \alpha_1 \to -\alpha_1
$$

\n
$$
\alpha_2 \to \alpha_1 + \alpha_2 = \alpha_3
$$

\n
$$
S_{\alpha_2}: \quad \alpha_1 \to \alpha_1 + \alpha_2 = \alpha_3
$$

\n
$$
\alpha_2 \to -\alpha_2 .
$$

\n(XII.2)

The full Weyl group for $SU(3)$ has six elements.

We shall not need to know much about the Weyl group for specific algebras. The utility of the Weyl group is that it enables us to prove quite general propositions without actually having to consider the details of representations since it permits the exploitation of their symmetries-

Let us proveanumber of useful facts about the Weyl group- First the Weyl group is a set of orthogonal transformations on the weight space- Orthogonal transformations are those which preserve the scalar product- It is intuitively clear that reections have this property- To prove this for the full Weyl group it suces to prove it for the S which generate it. The matter

$$
\langle S_{\alpha} M, S_{\alpha} N \rangle = \langle M - 2 \frac{\langle M, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha, N - 2 \frac{\langle N, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \rangle
$$

= $\langle M, N \rangle$. (XII.3)

We know that the Weyl group maps weights into weights, so by taking the adjoint representation we see that it maps roots into reection and particular reection tions in the state of the state property in the property-certainly state α , which is a special property of the state of the sta every other positive root, $p \in \mathbb{Z}^+$, $\mathcal{S}_\alpha(p)$ is positive. To see this, express

$$
\beta = \sum_{j} k_{j} \alpha_{j} . \qquad (XII.4)
$$

now the same of the say system of the same of

$$
S_{\alpha_1}(\beta) = \sum_j k_j \alpha_j - 2\alpha_1 \sum_j k_j \frac{\langle \alpha_j, \alpha_1 \rangle}{\langle \alpha_1, \alpha_1 \rangle}
$$

=
$$
\sum_{j>1} k_j \alpha_j + \alpha_1 \times \text{something} .
$$
 (XII.5)

 $S_{\rm H}$ is a some keep λ , λ for λ is the root support $S_{\rm H}$ and some positive coecient in its expansion in terms of simple roots- and this is enough to established that all the coefficients are positive and hence so is the root.

The Weyl group provides the means to prove the relation used in the preced ing section, that the Dynkin coefficients of $\delta = \frac{1}{2} \sum_{\alpha > 0} \alpha$ are all unity. Let α_i be σ is the simple roots- σ and orthogonally or the Weyl remotions, $\lceil \sigma_{\alpha_i}, \sigma_{\beta_i} \rceil$ handles all the other than α is α interchanges all the positive roots except interchange $s = \alpha_1 + \cdots + \alpha_n$

$$
\langle \delta - \alpha_i, \alpha_i \rangle = \langle \delta, -\alpha_i \rangle
$$

$$
2 \langle \delta, \alpha_i \rangle = \langle \alpha_i, \alpha_i \rangle
$$
 (XII.6)

as we wished to show.

 $\bf r$ many, consider an the weights M -which can be obtained by acting on the weight M with an element $S \in W$, the Weyl group. We claim that the M -which is the highest has Dynkin coefficients which are an hon-negative. Suppose M_{\odot} is the highest of these weights SM , and further suppose that the Dynkin coefficient $\Delta\{M_-, \alpha_i\}/\langle \alpha_i, \alpha_i\rangle < 0$. Then $\beta_{\alpha_i}M_- = M_- - 2\alpha_i\langle M_-, \alpha_i\rangle/\langle \alpha_i, \alpha_i\rangle$ is an even higher weight, providing a contradiction.

References

The Weyl group is covered by Jacobson of the Thomas Song

Exercise

- Find the elements of the Weyl group for G- and their multiplication table-

XIII. Weyl's Dimension Formula

In this Section we derive the celebrated formula of Weyl for the dimension ality of an irreducible representation of a simple Lie algebra in terms of its highest weight. Our derivation is essentially that of Jacobson, which is based on the technique of Freudenthal

we shall be considering functions defined on H_0 . Instead of parameterizing elements of H_0 in terms of the simple roots, it is convenient to over-parameterize by writing $p \in H_0$ as

$$
\rho = \sum_{\alpha \in \Sigma} \rho_{\alpha} \alpha \tag{XIII.1}
$$

We can define the action of an element, S, of the Weyl group on a function of ρ by

$$
(SF)(\rho) = F(S^{-1}\rho) \tag{XIII.2}
$$

As an example, consider the function known as the character of the representation

$$
\chi(\rho) = \sum_{M} n_{M} \exp\langle M, \rho \rangle \tag{XIII.3}
$$

where the sum is over all the weights of a representation and n_M is the dimensionality of the weight space for M . Now we calculate the action of $S \in W$ on χ .

$$
(S\chi)(\rho) = \sum_{M} n_{M} \exp\langle M, S^{-1}\rho \rangle
$$

=
$$
\sum_{M} n_{M} \exp\langle SM, \rho \rangle
$$

=
$$
\sum_{M} n_{M} \exp\langle M, \rho \rangle.
$$
 (XIII.4)

Here we have used the orthogonality property of the Weyl group and the relation $n_M = n_{SM}$. Thus we see that $S\chi = \chi$, that is χ is invariant under the Weyl group.

Consider next the function

$$
Q(\rho) = \prod_{\alpha > 0} \left[\exp\left(\frac{1}{2} \langle \alpha, \rho \rangle\right) - \exp\left(-\frac{1}{2} \langle \alpha, \rho \rangle\right) \right] . \tag{XIII.5}
$$

We want to determine the behavior of this function when acted upon by elements of the Weyl group. It suffices to determine the effect of the $S_i = S_{\alpha_i}$, the reflections associated with simple roots

$$
(S_i Q)(\rho) = \prod_{\alpha > 0} \left[\exp \left(\frac{1}{2} \langle \alpha, S_i^{-1} \rho \rangle \right) - \exp \left(-\frac{1}{2} \langle \alpha, S_i^{-1} \rho \rangle \right) \right]
$$

=
$$
\prod_{\alpha > 0} \left[\exp \left(\frac{1}{2} \langle S_i \alpha, \rho \rangle \right) - \exp \left(-\frac{1}{2} \langle S_i \alpha, \rho \rangle \right) \right] . \tag{XIII.6}
$$

We have already seen that S_i interchanges all the positive roots except α_i whose sign it changes. Thus we see directly that

$$
(S_i Q)(\rho) = -Q(\rho) \tag{XIII.7}
$$

Now S_i reverses the sign of α_i , but leaves every vector orthogonal to α_i unchanged. Thus $\det S_i = -1$ and we can write

$$
(S_i Q) = (\det S_i) Q . \tag{XIII.8}
$$

Indeed, every $S \in W$ is a product of S_i 's, so

$$
SQ = \det SQ \tag{XIII.9}
$$

Functions with this property are called alternating

We can make alternating functions by applying the operator

$$
\sigma = \sum_{S \in W} (\det S) S \tag{XIII.10}
$$

for we have

$$
S'\sigma = \sum_{S \in W} S'(\text{det}S)S
$$

=
$$
\sum_{S \in W} \text{det}S' \text{det}(S'S)S'S
$$

=
$$
\text{det}S'\sigma
$$
. (XIII.11)

It is convenient to nation of the convenient of the alternating function \mathbf{q}_i (p) in the form f $\{r_j\}$ form and denition of $\{q_i\}_{i=1}^n$ is the annual contract because the annual expansion of the form

XIII. Weyl's Dimension Formula 2002. [2015] [2016] MILL Weyl's Dimension Formula

$$
Q(\rho) = \sigma \sum_{\beta} c_{\beta} \exp\langle \delta - \beta, \rho \rangle \tag{XIII.12}
$$

where δ is half the sum of all the positive roots and where β is a sum of distinct positive roots. Now in such an expansion it is redundant to include both $\sigma \exp\langle M, \rho \rangle$ and $\sigma \exp\langle SM, \rho \rangle$ since they are equal up to a factor detS. We have already seen that among all the SM , $S \in W$, the largest one has only non-negative Dynkin coefficients. Thus we need only consider terms where $\delta - \beta$ has only non-negative Dynkin coefficients. In fact, we can restrict this further because if M has a Dynkin coefficient which is zero, then $\sigma \exp\langle M, \rho \rangle = 0$. This is easy to establish since if , and \mathcal{M} is the Sim in the Sim of \mathcal{M} in the simulation is the simulation of \mathcal{M} in the simulation of \mathcal{M} $\det S_i \sigma \exp\langle M, \rho \rangle = -\sigma \exp\langle M, \rho \rangle = 0$. However, we have seen that δ has Dynkin coefficients which are all unity. Now since β is a sum of positive roots it cannot have only negative Dynamics Dynamics Thus we see that the sum Equation Coecients Thus we see that the sum Equation include only μ . We see the comparison of expressions of exploiting μ we see that c- μ = 0 μ = 0 μ

$$
Q(\rho) = \prod_{\alpha > 0} [\exp \frac{1}{2} \langle \alpha, \rho \rangle - \exp -\frac{1}{2} \langle \alpha, \rho \rangle]
$$

=
$$
\sum_{S \in W} (\det S) \exp \langle S \delta, \rho \rangle .
$$
 (XIII.13)

We shall now use these results to analyze the character. We begin with the Freudenthal recursion relation, Eq. (XI.45), together with $\sum_{k=-\infty}^{\infty}n_{M+k\alpha}\langle M+$ $k\alpha, \alpha \rangle = 0$:

$$
[\langle \Lambda + \delta, \Lambda + \delta \rangle - \langle \delta, \delta \rangle - \langle M, M \rangle] n_M
$$

=
$$
\sum_{\alpha \neq 0} \sum_{k=0}^{\infty} n_{M+k\alpha} \langle M + \kappa \alpha, \alpha \rangle.
$$
 (XIII.14)

Mulitplying by $\exp\langle M, \rho \rangle$ and summing over M, we have

$$
[\langle \Lambda + \delta, \Lambda + \delta \rangle - \langle \delta, \delta \rangle] \chi - \sum_{M} n_{m} \langle M, M \rangle \exp \langle M, \rho \rangle
$$

=
$$
\sum_{M} \sum_{\alpha \neq 0} \sum_{k=0}^{\infty} n_{M + \kappa \alpha} \langle M + \kappa \alpha, \alpha \rangle \exp \langle M, \rho \rangle . \quad (XIII.15)
$$

 \mathbb{R} . The equation of \mathbb{R} is the equation of \mathbb{R} is the equation of \mathbb{R}

$$
\langle M, N \rangle = \sum_{\alpha \in \Sigma} \alpha(h_M) \alpha(h_N) = \sum_{\alpha \in \Sigma} \langle M, \alpha \rangle \langle \alpha, N \rangle , \qquad (XIII.16)
$$

we derive the relations

$$
\frac{\partial}{\partial \rho_{\alpha}} \exp\langle M, \rho \rangle = \langle \alpha, M \rangle \exp\langle M, \rho \rangle , \qquad (XIII.17a)
$$

$$
\sum_{\alpha \in \Sigma} \frac{\partial^2}{\partial \rho_{\alpha}^2} \exp\langle M, \rho \rangle = \langle M, M \rangle \exp\langle M, \rho \rangle . \tag{XIII.17b}
$$

Inserting the Eq \mathbf{I} into \mathbf{I} is the Eq \mathbf{I}

$$
[\langle \Lambda + \delta, \Lambda + \delta \rangle - \langle \delta, \delta \rangle - \sum_{\alpha \in \Sigma} \frac{\partial^2}{\partial \rho_\alpha^2}] \chi
$$

=
$$
\sum_{M} \sum_{\alpha \neq 0} \sum_{k=0}^{\infty} n_{M + \kappa \alpha} \langle M + \kappa \alpha, \alpha \rangle \exp \langle M, \rho \rangle .
$$
 (XIII.18)

To analyze the right hand side of Eq XIII let us rst x - and consider the SU - Contraction of the international properties of the full contraction o algebra is in general a reducible representation of this SU - The dimensionality nM is just the number of SU - irreducible representations present at the weight M Thus we can proceed by calculating the contribution of each SU - irreducible representation to the sum for fixed M and α . The string of weights containing M which corresponds to an SU - irreducible representation are distributed symmetric representation are distributed symmetric representation are distributed symmetric representation are distributed symmetric representation ar rically about a center point, M_0 which can be expressed in terms of the highest weight in the sequence, M , as

$$
M^{0} = M^{*} - \alpha \frac{\langle M^{*}, \alpha \rangle}{\langle \alpha, \alpha \rangle} . \tag{XIII.19}
$$

Note that $\langle M_-, \alpha \rangle = 0$.

Thus each weight in the sequence is of the form $M^0 + m\alpha$ where m is an integer or half-integer. The range of m is from $-j$ to j, where again j is an integer or halfinteger now we can write the contribution of a single SU \sim single SU \sim single SU \sim single SU \sim representation to the sum as

$$
\sum_{M} \sum_{k=0}^{\infty} \langle M + \kappa \alpha, \alpha \rangle \exp\langle M, \rho \rangle
$$

=
$$
\sum_{m} \sum_{k=0}^{j-m} \langle M^{0} + m\alpha + k\alpha, \alpha \rangle \exp\langle M^{0} + m\alpha, \rho \rangle
$$

=
$$
\sum_{m} \sum_{k=0}^{j-m} \langle \alpha, \alpha \rangle (m+k) \exp\langle M^{0}, \rho \rangle \exp(m \langle \alpha, \rho \rangle)
$$

=
$$
\langle \alpha, \alpha \rangle \exp\langle M^{0}, \rho \rangle \sum_{m} \sum_{k=0}^{j-m} (m+k) \exp(m \langle \alpha, \rho \rangle) .
$$

 $\sqrt{1}$

The double sum is most easily evaluated by multiplying first by $\exp\langle \alpha, \rho \rangle - 1$:

$$
\sum_{m=-j}^{j} \sum_{k=0}^{j-m} (k+m) \exp\langle m\alpha, \rho \rangle (\exp\langle \alpha, \rho \rangle - 1)
$$

=
$$
\sum_{m=-j}^{j} \sum_{k=0}^{j-m} (m+k) \exp\langle (m+1)\alpha, \rho \rangle
$$

-
$$
\sum_{m=-j-1}^{j-1} \sum_{k=0}^{j-m-1} (m+k+1) \exp\langle (m+1)\alpha, \rho \rangle
$$

=
$$
j \exp\langle (j+1)\alpha, \rho \rangle + \sum_{m=-j}^{j-1} [j - (j-m)] \exp\langle (m+1)\alpha, \rho \rangle
$$

+
$$
\sum_{k=0}^{2j} (k-j) \exp\langle -j\alpha, \rho \rangle
$$

=
$$
\sum_{m=-j}^{j} m \exp\langle (m+1)\alpha, \rho \rangle .
$$
 (XIII.21)

 \mathbf{r} is the contribution of one SU - \mathbf{r} is

$$
\langle \alpha, \alpha \rangle \exp\langle M^0, \rho \rangle \sum_{m=-j}^j m \exp\langle (m+1)\alpha, \rho \rangle [\exp\langle \alpha, \rho \rangle - 1]^{-1}
$$

=
$$
\sum_{m=-j}^j \langle M, \alpha \rangle \exp\langle M + \alpha, \rho \rangle [\exp\langle \alpha, \rho \rangle - 1]^{-1} . \qquad \text{(XIII.22)}
$$

summing over and all successives all presentations we have the representations were representatively and over

$$
[\langle \Lambda + \delta, \Lambda + \delta \rangle - \langle \delta, \delta \rangle - \sum_{\alpha \in \Sigma} \frac{\partial^2}{\partial \rho_{\alpha}^2}] \chi
$$

=
$$
\sum_{\alpha \neq 0} \sum_{M} n_M \langle \alpha, M \rangle \exp\langle M + \alpha, \rho \rangle [\exp\langle \alpha, \rho \rangle - 1]^{-1} . \quad \text{(XIII.23)}
$$
XIII. Weyl's Dimension Formula 2009

From the definition of Q , we see that

$$
\prod_{\alpha \neq 0} [\exp \langle \alpha, \rho \rangle - 1] = \eta Q^2(\rho)
$$
 (XIII.24)

where η is η the number of positive roots is the number of it is odder to the total η

$$
\frac{\partial}{\partial \rho_{\beta}} \log \eta Q^2(\rho) = \sum_{\alpha \neq 0} \frac{\exp\langle \alpha, \rho \rangle}{\exp\langle \alpha, \rho \rangle - 1} \langle \alpha, \beta \rangle
$$
 (XIII.25)

and

$$
\frac{\partial}{\partial \rho_{\beta}} \exp\langle M, \rho \rangle = \langle \beta, M \rangle \exp\langle M, \rho \rangle \tag{XIII.26}
$$

so

$$
\sum_{M} \sum_{\alpha \neq 0} n_{M} \langle \alpha, M \rangle \exp\langle M + \alpha, \rho \rangle [\exp \langle \alpha, \rho \rangle - 1]^{-1}
$$

=
$$
\sum_{\beta} \frac{\partial}{\partial \rho_{\beta}} \log \eta Q^{2}(\rho) \frac{\partial}{\partial \rho_{\beta}} \chi
$$

=
$$
2Q^{-1} \sum_{\beta} \frac{\partial}{\partial \rho_{\beta}} Q \frac{\partial}{\partial \rho_{\beta}} \chi
$$

=
$$
Q^{-1} \left[\sum_{\beta} \frac{\partial^{2}}{\partial \rho_{\beta}^{2}} (Q \chi) - Q \sum_{\beta} \frac{\partial^{2}}{\partial \rho_{\beta}^{2}} \chi - \chi \sum_{\beta} \frac{\partial^{2}}{\partial \rho_{\beta}^{2}} Q \right].
$$
 (XIII.27)

Combining these results, we have the differential equation

$$
\langle \Lambda + \delta, \Lambda + \delta \rangle Q \chi = \chi \left[\langle \delta, \delta \rangle - \sum_{\beta} \frac{\partial^2}{\partial \rho_{\beta}^2} \right] Q + \sum_{\beta} \frac{\partial^2}{\partial \rho_{\beta}^2} Q \chi \ . \tag{XIII.28}
$$

From the relation

$$
Q(\rho) = \sum_{S \in W} (\det S) \exp \langle S \delta, \rho \rangle , \qquad (XIII.29)
$$

it follows that

$$
\sum_{\beta} \frac{\partial^2}{\partial \rho_{\beta}^2} Q(\rho) = \langle \delta, \delta \rangle Q(\rho) , \qquad (XIII.30)
$$

where we have used the orthogonality of the S 's. Altogether then we have

$$
\sum_{\beta} \frac{\partial^2}{\partial \rho_{\beta}^2} Q \chi = \langle \Lambda + \delta, \Lambda + \delta \rangle Q \chi .
$$
 (XIII.31)

Now the function Q is alternating since it is the product of an alter nating function and an invariant one Since

$$
\chi(\rho) = \sum_{M} n_M \exp\langle M, \rho \rangle , \qquad (XIII.32)
$$

and

$$
Q(\rho) = \sum_{S \in W} (\det S) \exp \langle S \delta, \rho \rangle , \qquad (XIII.33)
$$

the product must be of the form

$$
Q(\rho)\chi(\rho) = \sigma \sum_{N} c_N \exp\langle N, \rho \rangle , \qquad (XIII.34)
$$

where N is of the form $M + S\delta$ where M is a weight and where S is in the Weyl group. Substituting into the differential equation, we see that M contributes only if

$$
\langle S^{-1}M + \delta, S^{-1}M + \delta \rangle = \langle \Lambda + \delta, \Lambda + \delta \rangle . \tag{XIII.35}
$$

XIII. Weyl's Dimension Formula 2008. All the state of the state of

In fact, we can show that Eq. (AIII.59) is satisfied only when $S-M = \Lambda$. We first note that $\langle SM + \delta, SM + \delta \rangle$ is maximized for fixed M when SM has only non noghin components Indianally Indeed if α_i is and if α_i if α_i indeed if α_i if α_i the simple in the first of the simple in the simple st . And in the state of the similar constant \mathcal{A} is a similar constant of the similar constant \mathcal{A} arguments, it is easy to show that $\langle \Lambda + \delta, \Lambda + \delta \rangle > \langle M + \delta, M + \delta \rangle$. It follows that the sum in Eq. (the single term for Single term for Single term for $\mathbf{r} = \mathbf{r} + \mathbf{r}$ comparison with the denitions of Qapparison and Alpha is easy to see the overall coefficient is unity, so

$$
Q(\rho)\chi(\rho) = \sum_{S \in W} (\det S) \exp \langle \Lambda + \delta, S\rho \rangle . \tag{XIII.36}
$$

This then yields Weyl's character formula

$$
\chi(\rho) = \frac{\sum_{S \in W} (\det S) \exp \langle \Lambda + \delta, S\rho \rangle}{\sum_{S \in W} (\det S) \exp \langle \delta, S\rho \rangle} .
$$
 (XIII.37)

More useful for our purposes is the less general formula which gives the dimension of an irreducible representation It is clear that this dimension is the value of Λ , μ , $\$ obtained as a limit. We choose $\rho = t\delta$ and let $t \to 0$. This gives

$$
\chi(t\delta) = \frac{\sum_{S \in W} (\det S) \exp \langle S(\Lambda + \delta), t\delta \rangle}{\sum_{S \in W} (\det S) \exp \langle S\delta, t\delta \rangle}
$$

$$
= \frac{Q(t(\Lambda + \delta))}{Q(t\delta)}
$$

$$
= \exp \langle -\delta, t\Lambda \rangle \prod_{\alpha > 0} \frac{\exp \langle \alpha, t(\Lambda + \delta) \rangle - 1}{\exp \langle \alpha, t\delta \rangle - 1} . \tag{XIII.38}
$$

In this expression we can let the dimensional interestimating the distribution of \mathcal{A}

$$
\dim R = \prod_{\alpha > 0} \frac{\langle \alpha, \Lambda + \delta \rangle}{\langle \alpha, \delta \rangle} .
$$
 (XIII.39)

To evaluate this expression, we write each positive root, α , in terms of the simple roots α_i :

$$
\alpha = \sum_{i} k_{\alpha}^{i} \alpha_{i} \tag{XIII.40}
$$

where the Dirac coefficients of α is the direction of α in the set of α in α if α if α if α Then we have

$$
\dim R = \prod_{\alpha > 0} \frac{\sum_{i} k_{\alpha}^{i} (\Lambda_{i} + 1) \langle \alpha_{i}, \alpha_{i} \rangle}{\sum_{i} k_{\alpha}^{i} \langle \alpha_{i}, \alpha_{i} \rangle} .
$$
 (XIII.41)

The algebras A_n, D_n, E_6, E_7 , and E_8 have simple roots all of one size, so for them we can drop the factors of $\{x_i\}$ in Eq. () is equal to $\{x_i\}$

Let us illustrate this marvelous formula with a number of examples. Consider rest α such that α the same size so we ignore the size so we is an expected the size so we ignore the size factor in iii μ is the positive roots are -planet in iii μ in the shall absence in the shall abbreviate here by and interesting representation at hand has a support of the interest of the interest of the interest of here we construct with $\frac{1}{2}$ and $\$

dim
$$
R = \left(\frac{m_1 + 1}{1}\right) \left(\frac{m_2 + 1}{1}\right) \left(\frac{m_1 + m_2 + 2}{2}\right)
$$
. (XIII.42)

From this example and the fundamental formula Eq XIII we see that the rule for finding the dimensionality of an irreducible representation may be phrased as follows: The dimension is a product of factors, one for each positive root of the algebra. Each factor has a denominator which is the number of simple roots which compose the positive root. The numerator is a sum over the simple roots in the positive root, with each simple root contributing unity plus the value of the Dynkin coefficient corresponding to the simple root. If the simple roots are not all the same size, each contribution to the numerator and to the denominator must be weighted \mathbf{b} is in its interval in the set of \mathbf{b}

XIII. Weyl's Dimension Formula 2002. All the state of the state of

Let us consider a more complicated application of Weyl's formula. The algebra G_2 has, as we have seen, fourteen roots, of which six are positive. If the simple roots are denoted - and with the latter being the smaller then the sterming the contract three times larger than the positive roots are Δt . The positive roots are - Δt $\alpha_1+\alpha_2, \alpha_1+z\alpha_2, \alpha_1+\beta\alpha_2, \text{and } z\alpha_1+\beta\alpha_2, \text{ which we denote here (1), (2), (12), (12^{+}),}$ (12°) , and $(1^{\circ}2^{\circ})$. We compute below the dimensions of the representations with the thighest weights $\{ \cdot \mid \tau \}$ where $\{ \tau \mid \tau \}$ where the rest entry pertains to $\tau \tau$ where the τ second to α_2 .

 \mathcal{N} , and is defined we consider SO \mathcal{N} and is D \mathcal{N} . The simple roots is D \mathcal{N} are numbered so that α_4 and α_5 are the ones which form the fork at the end of the Dynkin diagram There are
 roots of which - are positive Below we calculate the dimensionality of the representations with highest weights and the contract and the contract of the contract of

With little effort, we can derive a general formula for the dimensionality of and it is a same notation of $\mathcal{N}(t)$ is An-in the same notation as above no such as above notation as above no the roots are - --- - - --- - - - - - - - - -n We compute the whose highest is a constant whose highest weight is a more than the representation of the constant of the representation of the constant of th

It is a simple matter to multiply all these factors to find the dimension of the representation

We can recognize the correspondence between the Dynkin notation and the more familiar Young tableaux if we start with the fundamental representation, $-$ -model take the ktimes and take the k its a strain obtain \mathbf{r} . This corresponds to the tableau with one of th column of the tableau \Box and the tableau \Box with m_k columns of k boxes.

References

We follow closely Jacobson's version of the Freudenthal derivation of the Weyl formula, except that we have adopted a less formal language. See JACOBSON,pp.

Exercises

- of the dimensional the dimensionality of the SO (2) for the SO (2) \sim (2) \sim (\sim (
- Determine the dimensionality of the E representations of the E represe
- show that the EU representation $\{z \mid z \mid z = 0, z = 1, z = 1\}$ and a dimensionality of divisible by 137.

XIV. Reducing Product Representations

In Chapter X we began the consideration of finding the irreducible components of a product representation- The procedure for SU is familiar and trivial-The product of the representations characterized by j_1 and j_2 , the maximal values of T_z , contains the irreducible representations for j such that $|j_1 - j_2| \leq j \leq j_1 + j_2$ once each (of course we take only integral j if $j_1 + j_2$ is integral and j half inte- F . For SU the reduction is most easily obtained by the method is m of Young Tableaux- The general solution to the problem of nding the irreducible components of the product of two irreducible representations of a simple Lie algebra can be obtained from the Weyl character formula but the result Kostant s formula involves a double sum over the Weyl group and is not particularly probability probability probability probability probability \mathcal{U} . In this notice particular probability probability probability probability probabilit chapter, we introduce some techniques which are sufficient for solving the problem in most cases of moderate dimensions-

XIV- Reducing Product Representations

Of course we already have sufficient tools to solve the problem by brute force- We can calculate all the weights of the representations associated with highest weights Λ_1 and Λ_2 , and using the Freudenthal recursion relations we can determine the multiplicity of each weight- Then the multiplicity of the weight M in the product representation is found by writing $M = M_1 + M_2$, where M_1 and M_2 are weights of the two irreducible representations- The multiplicity of the weight M in the product representation is

$$
n_M = \sum_{M=M_1+M_2} n_{M_1} n_{M_2}
$$
 (XIV.1)

where $m_{\rm M\,I}$ where $m_{\rm M\,2}$ are the multiplicities of the weights $M_{\rm O}$ and $M_{\rm H\,II}$ and $M_{\rm H\,II}$ and $M_{\rm H\,II}$ $\Lambda_1 + \Lambda_2$ is the highest weight of one irreducible component so we can subtract its weights with proper multiplicities from the list- Now the highest remaining weight must be the highest weight of some irreducible component which again we find and eliminate from the list- Continuing this way we exhaust the list of weights and most likely, ourselves.

A more practical approach is to use some relations which restrict the possible choices of irreducible components- The rst such relation is the obvious one is the highest weight of one irreducible component- The second relation is a generalization of the rule demonstrated before for the antisymmetric product of a representation with itself-

Dynkins Theorem for the Second Highest Representation provides a simple way to find one or more irreducible representations beyond the highest. Suppose we have two irreducible representations with highest weights Λ_1 and Λ_2 , with the distribution of the state \mathcal{M}_M is that the shall say that two elements of the theory root space, β and α are joined if $\langle \alpha, \beta \rangle \neq 0$. Moreover, we shall say that a chain of simple roots, $\alpha_1, \alpha_2, \ldots, \alpha_k$, connects Λ_1 and Λ_2 if Λ_1 is joined to α_1 but no \Box is the chain and no other in the chain and no other in the chain and each in the chain and each in the chain and each in is joined only to the succeeding and preceding s- We can represent this with a Dynkin diagram by adding a dot for each of Λ_1 and Λ_2 and connecting them by segments to the simple roots with which they are joined- Then a chain is the shortest path between the weights \mathbf{r}_1 and \mathbf{r}_2 , and the substrate \mathbf{r}_1 , \mathbf{r}_2 and the substrate \mathbf{r}_2 representations $(1,1,0,0,0,0,0)$ and $(0,0,0,0,2,1,0)$.

Fig- V-

Here $\{\alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ is a chain joining Λ_1 and Λ_2 , but $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ is not.

s theorem tells us that if α is a chain if α is a chain if α chain α is a chain if α is a chain $\Lambda_1 + \Lambda_2 - \alpha_1 - \alpha_2 - \ldots - \alpha_k$ is the highest weight of an irreducible representation in the product representation formed from the irreducible representations with highest weights in the above example the product representation contains the product representation contains the product of $(1, 1, 0, 0, 2, 1, 0) - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5 = (2, 0, 0, 0, 1, 2, 0).$

The theorem is proved by establishing that there is a weight vector with the weight described by the theorem which is annihilated by all the raising operators associated with the simple roots- Thus this weight vector generates through the lowering operators a separate irreducible representation- Of course there are other weight vectors with the same weight which do not share this property-

with a sequence of the starting as sequence of weight vectors starting with - With - Since \mathcal{S} $\langle \Lambda_1, \alpha_1 \rangle \neq 0$ and must be non-negative, it is positive and thus $\Lambda_1 - \alpha_1$ is a weight and has a weight vector

$$
\xi_1 = E_{-\alpha_1} \xi_0 \tag{XIV.2}
$$

Also, since $\langle \Lambda_1, \alpha_2 \rangle = 0$, $\Lambda_1 - \alpha_2$ is not a weight. However, $\Lambda_1 - \alpha_1 - \alpha_2$ is a weight since $\langle \Lambda_1 - \alpha_1, \alpha_2 \rangle = \langle -\alpha_1, \alpha_2 \rangle > 0$. Proceeding in this way we construct

$$
\xi_j = E_{-\alpha_j} \xi_{j-1}
$$

= $E_{-\alpha_j} \dots E_{-\alpha_1} \xi_0$. (XIV.3)

Any reordering of the lowering operators in the sequence results in the quantity vanishing just as $E_{-\alpha_2} \xi_0 = 0$.

XIV- Reducing Product Representations

Now consider

$$
E_{\alpha_m} \xi_j = E_{\alpha_m} E_{-\alpha_j} \xi_{j-1}.
$$
 (XIV.4)

If $m \neq j$, $\left[E_{\alpha_m}, E_{-\alpha_j}\right] = 0$ since $\alpha_m - \alpha_j$ is not a root. Thus

$$
E_{\alpha_m} \xi_j = E_{-\alpha_j} E_{\alpha_m} \xi_{j-1} . \tag{XIV.5}
$$

If we continue commuting Ξ_{m} and Ξ_{m} and Ξ_{m} are Ξ_{m} and Ξ_{m} and Ξ_{m} responds to the modern weight- \sim . The only alternative is that \sim \sim α_{Hl} alternative is that take the term

$$
E_{-\alpha_j} \dots [E_{\alpha_m}, E_{-\alpha_m}] \dots E_{-\alpha_1} \xi_0 \tag{XIV.6}
$$

But this vanishes since the commutator is just an H which we can move outside picking up some constant terms leaving a series of E s which are not in the proper \cdots \cdots \cdots \cdots \cdots

In the event $m = j$, we compute

$$
E_{\alpha_j} \xi_j = \left[H_{\alpha_j} + E_{-\alpha_j} E_{\alpha_j} \right] \xi_{j-1}
$$

\n
$$
= H_{\alpha_j} \xi_{j-1}
$$

\n
$$
= \langle \Lambda_1 - \alpha_1 \dots - \alpha_{j-1}, \alpha_j \rangle \xi_{j-1}
$$

\n
$$
= -\langle \alpha_{j-1}, \alpha_j \rangle \xi_{j-1} \qquad (j > 1)
$$

\n
$$
E_{\alpha_1} \xi_1 = \langle \Lambda_1, \alpha_1 \rangle \xi_0 .
$$
 (XIV.7)

At the other end of the chain we have an analogous situation- We dene

$$
E_{-\alpha_k} \eta_0 = \eta_1
$$

$$
E_{-\alpha_{k-j}} \eta_j = \eta_{j+1}
$$
 (XIV.8)

and find

$$
E_{\alpha_m} \eta_{k-j+1} = 0. \qquad (m \neq j),
$$

\n
$$
E_{\alpha_j} \eta_{k-j+1} = -\langle \alpha_{j+1}, \alpha_j \rangle \eta_{k-j} \quad (j < k)
$$

\n
$$
E_{\alpha_k} \eta_1 = \langle \Lambda_2, \alpha_k \rangle \eta_0 .
$$
\n(XIV.9)

We are now in a position to establish the existence of a vector with weight $\alpha_1 + \alpha_2 - \alpha_1 - \ldots - \alpha_k$ which is annihilated by every E_{α_j} , for α_j a simple root. This will then be a weight vector for the highest weight of the desired irreducible representation- The most general weight vector with this weight is using the results of the discussion above \overline{L}

$$
\zeta = \sum_{s=0}^{k} c_s \xi_s \otimes \eta_{k-s} . \tag{XIV.10}
$$

We simply choose the coefficients so that the vector is annihilated by every raising operator. For $j \neq 1, k$:

$$
E_{\alpha_j} \zeta = c_j E_{\alpha_j} \xi_j \otimes \eta_{k-j} + c_{j-1} \xi_{j-1} \otimes E_{\alpha_j} \eta_{k-j+1}
$$

=
$$
[-c_j \langle \alpha_{j-1}, \alpha_j \rangle - c_{j-1} \langle \alpha_j, \alpha_{j+1} \rangle] \xi_{j-1} \otimes \eta_{k-j}
$$

= 0. (XIV.11)

Thus for $j \neq 1, k$

$$
c_j \langle \alpha_{j-1}, \alpha_j \rangle + c_{j-1} \langle \alpha_j, \alpha_{j+1} \rangle = 0.
$$
 (XIV.12)

Similarly, considering $j = 1$ and $j = k$,

$$
c_1 \langle \Lambda_1, \alpha_1 \rangle - c_0 \langle \alpha_1, \alpha_2 \rangle = 0 ,
$$

$$
-c_k \langle \alpha_k, \alpha_{k-1} \rangle + c_{k-1} \langle \Lambda_2, \alpha_k \rangle = 0 .
$$
 (XIV.13)

It is clear we can solve these equations say with c - Thus exists and so does the asserted representation.

The second technique we use to reduce product representations is $Dynkin's$ method of parts- This is very easy to apply- If some of the dots in a Dynkin diagram of, say, a simple Lie algebra are deleted, the result is the diagram of a semisimple subalgebra of the original algebra original diagram was group along measured with integers to indicate an irreducible representation, the truncated diagram will represent a particular irreducible representation of the subalgebra- Now if we con sider two irreducible representations of the original algebra there are associated two irreducible representations of the subalgebra- If we compare the product repre sentations formed by both the representations of the full algebra and those of the subalgebra, it turns out that each irreducible component of the product representation of the subalgebra has a diagram which is a "part" of a diagram of an irreducible component of the product representation of the full algebra in the sense that it is obtained again by deleting the same dots as before-

The utility of this technique lies in the possibility that the subalgebra s prod ucts may be easier to deal with the full algebra Ω delete some dots so that the remaining algebra is in the series A_n , the products can be calculated using the wellknown technique of Young tableaux- For example by deleting one dot from E_6 we get A_5 , D_5 , $A_4 + A_1$, or $A_2 + A_2 + A_1$, each of which is somewhat easier to deal with.

Before proving the correctness of the method of parts, let us consider an example- a presummer note that for D i i-c D of D i-c d ten-dimensional representation, $(1,0,0,0,0)$ is given by $(2,0,0,0,0) + (0,1,0,0,0) +$ - This is easy to see because the rst piece follows from the rule for the highest weight of a product representation- The second follows for the rule for the second highest weight, or the rule for the anti-symmetric product of an irreducible representation with itself- Use of the Weyl dimension formula reveals that the di mension of the $(2,0,0,0,0)$ representation is 54 and that of the $(0,1,0,0,0)$ is 45, so the remaining representation in the course the course that is one dimensional interesting and the course of course results can be obtained by more elementary means!) Now let us try to compute the stuare of the E representation - This is the smallest representation of the smallest representatio ω again the rules for the rules for the highest weight and second highest ω weight give $(2,0,0,0,0,0)$ and $(0,1,0,0,0,0)$ as irreducible components of the

product representation- in computation-reveal their dimensions to be the factor \sim \mathcal{L} the remaining representation is its interferent contribution is in the representation is its interferent contribution is its interferent contribution is in the following contribution is in the following contribut or $(0,0,0,0,1,0)$? Let us use the method of parts, deleting the fifth simple root to leave us with the diagram for D- Now we know that squared in D is $\mathbf{1}$ -method of parts tells us that each of parts tells us that each of parts $\mathbf{1}$ these can be obtained from the irreducible representations in the E_6 product by addeleting the first root- which clearly working for the first works for the rate that \cdots we must choose $(0,0,0,0,1,0)$ as the final representation of E_6 .

we proceed to a more formal consideration of the method of parts- we can be a simple Lie algebra with a basis of simple roots $\{\alpha_i\}$. Select a subset, $\{\beta_j\} \subset \{\alpha_i\}$ and let G be the semi-simple algebra which is generated by the e_{β_i} s and $e_{-\beta_i}$ s. The Cartan subalgebra, H' of G' is contained in the Cartan subalgebra, H of G . The Dynkin diagram for G' is obtained from that of G by deleting the appropriate dots.

Suppose M is a weight of a representation of G and ϕ_M is an associated weight vector

$$
H\phi_M = M(h)\phi_M \tag{XIV.14}
$$

Then ϕ_M is a weight vector for the induced representation of G', since if $h' \in H'$,

$$
H'\phi_M = M(h')\phi_M \tag{XIV.15}
$$

Now the weight in the induced representation, \overline{M} , has the property $\overline{M}(h') = M(h')$ but diers from M because it can be expressed entirely in terms of the junction \mathcal{U} write

$$
M = [M - \sum_{i,j} \beta_i \langle M, \beta_j \rangle \langle \beta_j, \beta_i \rangle^{-1}] + \sum_{i,j} \beta_i \langle M, \beta_j \rangle \langle \beta_j, \beta_i \rangle^{-1}.
$$
 (XIV.16)

we see that the second term is precisely M . This is so because every n is a linear combination of h s and because the rst term vanishes on every h-

We see from Eq- XIV- that M has exactly the same Dynkin coecients with respect to the ρ s as M itself. The Dynkin coefficients with respect to G are obtained simply by dropping the requisite coecients from the coecients from the Mparticular, if Λ is the highest weight of a representation of G, $\overline{\Lambda}$ is a highest weight of one of the irreducible representations contained in the representation of G' arising from the representation of G- \pm examples the $\{+,-\}$ representation of \pm \pm contains the (1) representation of A_1 (SU(2)) when we obtain the SU(2) by deleting one dot from the Dynkin diagram of $SU(3)$.

The representation associated with $\overline{\Lambda}$ is obtained by operating on the weight vector for A with all the lowering operators $E_{\alpha_i}, \alpha_i \in \Sigma'$. It is easy to see that for all vectors ϕ in this representation, if $\alpha_j \notin \Sigma'$ then $E_{\alpha_j} \phi = 0$.

Now consider two irreducible representations R and ^R of G where and the their terms are the selection of the two irreducible are two interesting the two interests of the two i representations of G , $R_{\Lambda'_1}$ and $R_{\Lambda'_2}$. Now consider the product representations $R_{\Lambda_1}\times R_{\Lambda_2}$ and $R_{\Lambda_1'}\times R_{\Lambda_2'}$. In general these are both reducible:

$$
R_{\Lambda_1} \times R_{\Lambda_2} = R_{\Lambda_a} + R_{\Lambda_b} + \dots \tag{XIV.15}
$$

and

$$
R_{\Lambda_1'} \times R_{\Lambda_2'} = R_{\Lambda_a'} + R_{\Lambda_b'} + \dots \tag{XIV.16}
$$

We want to show that for some Λ_a , $\overline{\Lambda_a} = \Lambda'_a$, etc. Now consider the highest weight vector of $R_{\Lambda'_a}$. It is annihilated by $E_{\alpha_i}, \alpha_i \in \Sigma'$ and also by all the $E_{\alpha_i}, \alpha_j \in \Sigma$. Thus it is a highest weight also for G as well as for G' , and thus defines one of the K_{Λ_a} 's. Thus every scheme of $K_{\Lambda'_1}\times K_{\Lambda'_2}$ corresponds to one of the schemes of $R_{\Lambda_1}\times R_{\Lambda_2}$ with the appropriate dots deleted.

In reducing product representations for $SU(2)$, it is clear that the product of irreducible representations contains only either integral spin or half-integral spin representations- In Dynkin language the Cartan matrix is the number - The Dynkin coecient of the highest weight is a single integer- The lower weights are obtained by subtracting the highest \mathcal{F} the coefficient of the c the highest weight is odd the coecient of every weight is odd- The oddness or evenness of the the two irreducible representations thus determines the oddness or evenness of all the irreducible representations in their product-

The analogous complex for SU is triality. The fundamental representation is is said to have triality $\mathcal{C} = \{x_1, x_2, \dots, x_n\}$ weight in this representation is obtained from $\{x_1, x_2, \dots, x_n\}$ by subtracting a row of the cartan matrix-consider the quantity ℓ and ℓ For i this is zero while for i it is three- Thus if we calculate for any weight (a_1, a_2) of an irreducible representation the quantity $a_1 + 2a_2 \pmod{3}$, it must be the same as it is for the highest weight- Thus for the three dimensional representation we have the have interesting a state μ is and μ is and μ is clear that μ the triality, $a_1 + 2a_2 \pmod{3}$, of a representation in the product of two irreducible representations is the sum of the trialities $\pmod{3}$ of the components.

If we look at the Cartan matrix for A_n , we see that $\sum_j jA_{ij} = 0 \pmod{n+1}$. Thus each irreducible representation of A_n can be characterized by a number $C \equiv \sum_{i} ja_{j} \pmod{n+1}$ where the highest weight of the representation has coecients are the international methods and in the international contract representation of the international co will have the same value for C- For a product of representations R and Reach irreducible component has the value $C \equiv C(R_1) + C(R_2)$. For example, consider 5° \times 5 $^{\circ}$ in SU(5), that is $(0,0,0,1) \times (0,0,0,1) = (0,0,0,2) + (0,0,1,0)$. We have $C((0,0,0,1)) = 4, C((0,0,0,2)) = 8 \equiv 3 (mod 5), C((0,0,1,0)) = 3.$ We refer to the irreducible representations with a fixed value of C as conjugacy classes.

For B_n , there are two conjugacy classes which are given by $C = a_n \pmod{2}$, since the last column of the Cartan matrix is given entirely by even integers- If C the representation is a spinor representation- This nomenclature makes sense even for B which is the complex form of \mathcal{S} form of \mathcal{S} form of \mathcal{S} form of \mathcal{S} form of \mathcal{S} are seen to be the half-integral angular momentum representations.

For the algebras Constitution of the algebra \sim . The canonical constitution of the constitution of this will work by taking the sum of the first, third, fifth, etc. elements in a row of the Cartan matrix and noticing that its value is always even-

The algebra Dn is slightly more complicated- First we notice that for any row of the Cartan matrix the sum of the last two entries is an even number- Thus $-$ 1 \cdots 10 $-$ 1 \cdots 10 \cdots 1 \cdots . sum of the rst third fth--- elements of a row of the Cartan matrix it is always event we choose α and α and α and α odd we choose α of α and α $\alpha_1 \alpha_2 - a_1 - a_3 - \ldots - a_{n-2} - a_{n-1} - a_n$

As an example, consider the SO(10) decomposition of $(0,0,0,1,0) \times (0,0,0,1,0)$, i.e. 16 \times 16. The 16 has $C_1 = 1$ and $C_2 = \frac{1}{2}$. Thus the irreducible representations in the product will have $C_1 = 2 \equiv 0 \pmod{2}$ and $C_2 = 1$. The actual decomposition is $(0,0,0,2,0) + (0,0,1,0,0) + (1,0,0,0,0)$, each piece of which has the proper values of C_1 and C_2 .

An examination of the Cartan matrix for E_6 reveals that $A_{i1} + A_{i4} = A_{i2} +$ A_{i5} (inou *s*), so we can take $C = a_1 - a_2 + a_4 - a_5$ (inou *s*). Similarly, for E_7 , we see that C a \mathcal{A} and algebras the conjugacy classes the conjugacy classes of the conjugacy classes are conjugacy con G_2, F_4 , and E_8 have only a single conjugacy class.

As an example of the techniques discussed in this chapter, let us consider the decomposition of $(2,0,0,0,0,0) \times (2,0,0,0,0,0,0) = 351 \times 351$ in E_6 . The $(2,0,0,0,0,0)$ is in the conjugacy class $C \equiv 2 \pmod{3}$, so all the components in the product will be in the conjugacy class $C \equiv 4 \equiv 1 \pmod{3}$. Clearly one irreducible component has highest weight - Using the rule for the second highest weight we find that $(4,0,0,0,0,0) - (2,-1,0,0,0,0) = (2,1,0,0,0,0)$ is a highest weight of an irreducible component- Next we use the method of parts striking the sixth root to reduce E to A-, The products in A-, the calculated by Young tableaux with the calculated by Young tableaux with the result $(2,0,0,0,0) \times (2,0,0,0,0) = (4,0,0,0,0) + (2,1,0,0,0) + (0,2,0,0,0).$ Thus the E_6 product contains $(4,0,0,0,0,0) + (2,1,0,0,0,0) + (0,2,0,0,0,X)$ where X is a non-next let use the parts method striking the parts method striking the first method striking the f to reduce E_6 to D_5 . Now we must calculate $(2,0,0,0,0)\times(2,0,0,0,0)=54\times54$ in D_5 .

the subsidiary calculation is itself a useful example- the internal θ and θ $C_1 = 0$ and $C_2 = 0$, so the irreducible components of the product must have these values as well-contained the D product contains <code> assemble to the D product contains well-well-transferred the S</mark></code> see using the highest weight and second highest weight procedures- Using the parts method to reduce D_5 to A_4 we see that the product must contain a term $(0,2,0,0,W)$. Since $C_1 \equiv 0, \; W$ is even. It is a fair bet that $(0, 2, 0, 0, 2)$ has too high a dimension, so we guess that $\mathcal{L}_{\mathcal{A}}$ is in the product-dimension formula weight-dimension for $\mathcal{L}_{\mathcal{A}}$ find the D_5 values, $\dim(4,0,0,0,0) = 660$, $\dim(2,1,0,0,0) = 1386$, $\dim(0,2,0,0,0) = 770$. This totals to so we need an additional - The smallest rep resentations in the proper conjugacy class are $(0,0,0,0,0)$, $(2,0,0,0,0)$, $(0,1,0,0,0)$, and with dimensions of the spectrum of the spe that in D_5 , $(2,0,0,0,0) \times (2,0,0,0,0) = (4,0,0,0,0) + (2,1,0,0,0) + (0,2,0,0,0) +$ $(2,0,0,0,0) + (0,1,0,0,0) + (0,0,0,0,0).$

Returning to E_6 , we note that the representation identified as $(0,2,0,0,0,X)$ must be $(0,2,0,0,0,0)$ in order to account for the D_5 representation $(0,2,0,0,0)$. Again, by comparison with the D_5 representations, we know that the E_6 product must contain, at a minimum, the representations $(2,0,0,0,T,0)$, $(0,1,0,0,Y,0)$, and Z where TY and Z are nonnegative integers- We can determine these integers by considering the conjugacy classes. We have $2 - T \equiv 1 \pmod{3}$, $-1 - Y \equiv$ $1 \pmod{3}$, and $-Z \equiv 1 \pmod{3}$. The smallest solutions are $T = 1$, $Y = 1$, and $Z=2$. Thus we guess that the E_6 decomposition is $(2, 0, 0, 0, 0, 0) \times (2, 0, 0, 0, 0, 0) =$ $(4,0,0,0,0,0) + (2,1,0,0,0,0) + (0,2,0,0,0,0) + (2,0,0,0,1,0) + (0,1,0,0,1,0) +$ - Using the Weyl formula the dimensions of these are determined to be $351 \times 351 = 19,305 + 54,054 + 34,398 + 7,722 + 7,371 + 351 = 123,201$.

This example shows that the hardest work required in reducing such products is simply the evaluation of the Weyl formula for the dimension-

One additional technique for reducing product representations is worth men tioning-we recall from Chapter XI the denition of the index of a representation of the index of a representation of ϕ :

$$
\text{Tr}\ \phi(x)\phi(y) = l_{\phi}(x,y)_2\tag{XIV.19}
$$

where $(,)_2$ is proportional to the Killing form but normalized so that the largest roots has a length squared of two-

Now suppose we have a representation which is the sum of two representa tions in the contract of the c

$$
l_{\phi_1 + \phi_2} = l_{\phi_1} + l_{\phi_2} \tag{XIV.20}
$$

On the other hand, for a product representation, we see that

$$
l_{\phi_1 \otimes \phi_2} = N_{\phi_1} l_{\phi_2} + N_{\phi_2} l_{\phi_1}
$$
 (XIV.21)

where $\sim \varphi_1$ and $\sim \varphi_2$ are the dimensions of the representations-control we know we know how to compute the indices in terms of the Casimir operators, this can be used to reduce signicantly the possibilities for the irreducible components of the product representation.

References

Most of this material is due to E- B- Dynkin- For the method of the second highest representation, see

dynamics are all the controller to the controller problem in the c

For the method of parts see

DYNKIN III especially pp- -

For conjugacy classes, see

 \blacksquare . The property property of the property property \blacksquare

Some of the same material is discussed by SLANSKY-

Exercises

1. Reduce $10 \times 10 | 10 = (0, 0, 0, 0, 1) |$ in SO(10).

- 2. Reduce 14×14 $|14 = (1,0)|$ in G_2 . Check using indices.
- 3. Reduce 27×27 for $27 = (1,0,0,0,0,0,27) = (0,0,0,0,1,0)$ in E_6 .

XV. Subalgebras

Some examples may be illuminating as an introduction to the topic of sub algebras. Suppose we start with the algebra $G = A_5$, i.e. SU(6), the traceless 6×6 matrices Now one subalgebra is obtained by considering only those matrices with nonzero and and and and pieces in the contract and and and and pieces in the contract of the two diagonal blocks are required to be traceless separately then the restricted set is the subalgebra $G = A_3 + A_1 \subset A_5 = G$. It is clear that we can take as the Cartan subalgebra $H' \subset G'$ the diagonal matrices, so $H' \subset H$. The dimension of H' is one fewer than that of H since there is a one dimensional subspace of H proportional to the diagonal element which is $+1$ for the first four components and $\mbox{-}2$ on the last two.

The root vectors of G' are just the root vectors of G which have non-zero components only in the two diagonal blocks. If the space proportional to e_{α} is denoted G_{α} , we have

$$
G = H + \sum_{\alpha \in \Sigma} G_{\alpha} \tag{XV.1}
$$

while for some set $\Sigma' \subset \Sigma$

$$
G' = H' + \sum_{\alpha \in \Sigma'} G_{\alpha} . \qquad (XV.2)
$$

 \mathcal{F}

A subalgebra with this property is called regular. In addition to this $SU(6)$ example, the subalgebras we employed in the method of parts – which were obtained by deleting dots from Dynkin diagrams – were regular. Not all subalgebras, however, are regular

Let us consider again A_5 and a particular embedding of $G_1 = A_2 + A_1(\mathcal{O} U(3)) \times$ $SU(2)$). We know that every matrix in the Lie algebra of $SU(2)$ is a linear combination of -- - and and every matrix in the Lie algebra of SU is a linear combination of -- - Let us add to these and which are the and 2×2 identity matrices. Now every 6×6 matrix can be written in terms of

ie is a set of i - i regarding the six dimensional vectors in the carrier space as having two indices with the σ acting on the first and the λ on the second.

Now suppose we consider only elements of the forms $\sigma_0 \otimes \lambda_i$ and $\sigma_i \otimes \lambda_0$. Then an element of one form commutes with an element of the other. Thus these elements for the cartan \mathcal{A}_1 and \mathcal{A}_2 , and the A-theorem subalgebra of the A- \mathcal{A}_1 and has a basic vector with a basic vectors are the root vectors are \sim 1911 - 2011 - 2022 - 2022 - 2022 - 2022 $t_+,\sigma_0\otimes t_-,\sigma_0\otimes u_+,\sigma_0\otimes u_-,\sigma_0\otimes v_+$, and $\sigma_0\otimes v_-$. We see that $H_-\subset H$. However, the root vectors of G' are not among those of G . Thus, for example,

$$
\sigma_{+} \otimes \lambda_{0} = \begin{bmatrix} 0 & \lambda_{0} \\ 0 & 0 \end{bmatrix} . \qquad (XV.3)
$$

We cannot write G' in the form Eq. $(XV.2)$, so the subalgebra is not regular.

The six dimensional representation of A_5 gave a reducible representation of \mathcal{L} . The non-regular subalgebra \mathcal{L} and \mathcal{L} are non-regular subalgebra \mathcal{L} a-2 (a-1) Outra and indication is presentation is a shall see the meaning from the second typical

As a further example of regular and non-regular subalgebras, consider $SU(2)$ as a subalgebra of SU is $\{f\}$, and the SU is generated by the SU is and the SU is and the SU is an regular subalgebra. On the other hand, there is a three dimensional representation of SU(2). The 3×3 matrices of this representation are elements of SU(3) so this provides a second embedding of $SU(2)$ in $SU(3)$, which is not regular. Under the regular embedding, the 3 dimensional representation of $SU(3)$ becomes a reducible $2 + 1$ dimensional representation of SU(2), while under the second embedding, it becomes an irreducible representation of $SU(2)$.

It is clear that a moderate sized algebra may have an enormous number of subalgebras. To organize the task of finding them we introduce the concept of a **maximal subalgebra**. G' is a maximal subalgebra of G if there is no larger subalgebra containing it except G itself. Now we can proceed in stages finding the maximal subalgebras, then their maximal subalgebras, and so on.

There is a slight flaw in this approach. A maximal subalgebra of a semisimple algebra need not be semi-simple. Consider, for example, $SU(2)$ and the subalgebra generated by t_{+} and t_{z} . It is certainly maximal, since if we enlarge it we shall have all of SU(2). However, the subalgebra is not simple because t_+ generates an ideal in it We shall generally restrict ourselves to the consideration of maximal semisimple subalgebras that is semisimple algebras contained in no other semi-simple subalgebras except the full algebra.

Dynkin introduced the notions of an R -subalgebra and an S -subalgebra. An R-subalgebra is a subalgebra which is contained in some regular subalgebra. An S-subalgebra is one which is not. The task then is to find the regular maximal subalgebras and the maximal S-subalgebras. The regular subalgebras are more easily dealt with

Suppose G' is a regular subalgebra of a simple algebra $G, \Sigma' \subset \Sigma$ is the set of its roots, and $\Pi_{\alpha} \subset \Sigma_{\alpha}$ is a basis of simple roots for G . Now if α , $\rho_{\alpha} \in \Pi_{\alpha}$, then $\alpha = \beta$ \in Δ . In fact $\alpha = \beta$ \in Δ , since if $\alpha = \beta$ \in Δ , $|e_{\alpha'}e_{-\beta'}| \sim e_{\alpha'-\beta'}$ so then - Thus to
nd regular subalgebras of G we seek sets such that α , ρ ϵ in \Rightarrow α \rightarrow ρ ϵ ω . Then we take as G the subalgebra generated by the e_{α} , $e_{-\alpha}$, n_{α} , $\in \mathbf{H}$

An algorithm for this has been provided by Dynkin. Start with Π , the simple roots of G. Enlarge it to $\overline{\Pi}$ by adding the most negative root in Σ . Now $\overline{\Pi}$ has the property that if α , ρ \in **ii** , then α \rightarrow ρ $\;\not\in$ Σ . However, if is a linearly dependent set. Thus, if we eliminate one or more vectors from $\overline{\Pi}$ to form Π' , it will have the required properties. In general, \mathbb{I}' will generate a semi-simple algebra, not a simple one

This procedure is easy to follow using Dynkin diagrams. We form the extended Dynkin diagram associated with by noting that the vector added to II is the negative of the highest weight γ , of the adjoint representation. Since we know the Dynkin coefficients of this weight, it is easy to add the appropriate dot. \mathbf{F} the adjoint representation for the extended \mathbf{F} diagram is

Similarly for Dn the highest weight of the adjoint is - - - so the extended diagram is

In an analogous fashion, we find the remaining extended diagrams:

A few examples will make clear the application of these diagrams. By deleting a single dot from the extended diagram for G_2 we obtain in addition to the diagram for G_2 itself

 \mathbf{r} are regular subalgebras of \mathbf{r} and \mathbf{r} are regular subalgebras of \mathbf{r} are regular subalgebras of \mathbf{r} we find among others, the subalgebra $B_3 + D_3$. In other words, we have $O(13)$ $O(7) \times O(6)$.

The A_n algebras are somewhat pathological. If we remove a single dot from the extended diagram, the result is simply the original diagram. If we remove two dots we obtain a regular subalgebra, but one that is maximal only among the semi-simple subalgebras, not maximal among all the subalgebras. This is actually familiar: from SU(5) one obtains not just SU(3) x SU(2), but also SU(3) x SU(2) x $U(1)$, which itself lies in a larger, non-semi-simple subalgebra of SU(5).

Dynkin s rule- for midling the maximal regular subalgebras is this: the regular semisimple maximal subalgebras are obtained by removing one dot from the extended Dynkin diagram. The non-semi-simple maximal regular subalgebras are obtained by selecting one of the simple roots, $\alpha \in \Pi$, and finding the subalgebra generated by e and h together with e - e-- and h for all the simple roots other than α . Such a non-semi-simple algebra contains a semi-simple subalgebra generated by excluding e_{α} and h_{α} as well. This may be maximal among the semisimple subalgebras, or it may be contained in an S-subalgebra.

Dynkins rule has been shown to be not entirely correct In particular it would have a set of the maximal in F α while in fact A α in F α , α in fact α in factorizing the set A  A  A- D  A- E and in E A  A D A-  A  A A  E and a - α - α - α - α - α - α

. In an annual with the example SU special CD state that the substantial state of \mathbb{R}^3 S , and S is a substant of the space of S . The space of S is the space of S , we have a specific order of S where the embedding is the obvious one Each of these gives a regular subalgebra except for $O(s) \times O(t)$ when s and t are odd, as is easily verified from the extended diagrams. The last embedding is thus an S-subalgebra.

We have already seen two examples of maximal S-subalgebras. One was the embedding a \mathcal{A} are decomposition of the decomposition of the fundamental contribution of representation is a field that the notation in this section in this section by passing and from the Lie algebras to the associated groups. Thus we have $SU(6) \supset SU(3) \times$ $SU(2)$. More generally, we have $SU(st) \supset SU(s) \times SU(t)$ as a (non-simple) maximal S-subalgebra.

For the orthogonal groups we follow the path used in Chapter VIII Rather than require $A^t A = I$, we consider the more general relation $B^t K B = K$ where K is a symmetric $n \times n$ matrix. This is the same as taking all $n \times n$ matrices, B, which preserve a symmetric bilinear form $(\phi, \eta) = \sum_{i,j} \phi_i K_{ij} \eta_j$, $K_{ij} = K_{j\, i}$. Now consider the groups Os- and Os preserving -- - -and - If we consider the s-s dimensional space spanned by vectors like $\mathbb{F}_4 \times \mathbb{F}_4$ and symmetric bilinear symmetric bilinear form defining the subgroup of $\{a\}$ and $\{a\}$ and $\{a\}$ is the subgroup of $\{a\}$ and $\{a\}$ acts as B-L α -B-L α clear that this subgroup indeed leaves the symmetric bilinear form invariant and thus Os- Os Os-s Indeed it is a maximal Ssubgroup

In a similar fashion, we can consider $Sp(2n)$ to be the set of $2n \times 2n$ matrices preserving an antisymmetric bilinear form - (filip) - (filip) - (filip) - (filip) - (filip) - (filip) we take Spiritual and Spiritual act of dimensional space of dimensional contract \mathbb{P}^1 λ ri virial virial λ rial diale the form is state the form is symmetric and with the spiritual space of \mathcal{S} , the spiritual space of \mathcal{S} and \mathcal{S} . We have the space of \mathcal{S} maximal S-subgroup.

The other maximal S-subalgebra we have encountered is in the embedding $SU(2) \subset SU(3)$ whereby the three dimensional representation of $SU(3)$ becomes the three dimensional representation of $SU(2)$. Since $SU(2)$ has a three dimensional representation by 3×3 matrices, it is bound to be a subalgebra of $SU(3)$. More generally, if G is a simple algebra with an *n*-dimensional representation, $G \subset SU(n)$. Is G then maximal in $SU(n)$? For the most part, the answer is this: if the ndimensional representation of G has an invariant symmetric bilinear form, G is maximal in $SO(n)$, if it has an invariant anti-symmetric bilinear form it is maximal in $Sp(n)$ (*n* must be even). If it has no invariant bilinear form, it is maximal in $SU(n)$. The exceptions to this are few in number and have been detailed by Dynkin³

Let us consider an example with $SU(3)$, which has an eight dimensional adjoint representation. Rather than think of the vectors in the eight dimensional space as columns, it is convenient to think of them as 3×3 traceless matrices:

$$
\phi = \sum_{i} \phi_{i} \lambda_{i} \tag{XV.4}
$$

where the λ_i are those of Eq. (II.1). Now we remember that the adjoint representation is given by

$$
ad\,x\lambda_i = [x,\lambda_i] \tag{XV.5}
$$

 \mathcal{N} symmetric form - interference of an inter $\exp B \approx I + B$ yields

$$
(\mathcal{B}\phi,\eta) + (\phi,\mathcal{B}\eta) = 0.
$$
 (XV.6)

For the adjoint representation, the linear tranformation β corresponding to an element a simple and magnetic is simply B b and the the simple simple simple \mathbb{R}^2

$$
(\phi, \eta) = Tr \ \phi \eta \tag{XV.7}
$$

the invariance of the form follows from the identity

$$
Tr [x, \phi] \eta + Tr \phi [x, \eta] = 0 . \qquad (XV.8)
$$

Thus we see there is a symmetric invariant bilinear form for the adjoint represen tation and the SU \setminus SU \setminus SU \setminus SU \setminus such the demonstration is more general. $SU(10) \subset SU(10^- = 1)$.

It is clear that we must learn how to determine when an n -dimensional representation of a simple Lie algebra admits a bilinear form and whether the form is symmetric or anti-symmetric. As a beginning, let us consider $SU(2)$ and in particular the $2j + 1$ dimensional representation. We shall construct explicitly the bilinear invariant. Let

$$
\xi = \sum_{i} c_{i} \phi_{i}
$$

$$
\eta = \sum_{i} d_{i} \phi_{i}
$$
 (XV.9)

where the ϕ_i are a basis for the representation space and

$$
T_z \phi_m = m \phi_m
$$

\n
$$
T_+ \phi_m = \sqrt{j(j+1) - m(m+1)} \phi_{m+1}
$$

\n
$$
T_- \phi_m = \sqrt{j(j+1) - m(m-1)} \phi_{m-1}
$$
 (XV.10)

Suppose the bilinear form is

$$
(\xi, \eta) = \sum_{m,n} a_{mn} c_m d_n \tag{XV.11}
$$

Now the invariance of the form requires in particular

$$
(T_z \xi, \eta) + (\xi, T_z \eta) = 0
$$
 (XV.12)

Thus in the sum we must have $m + n = 0$ so

$$
(\xi, \eta) = \sum_{m} a_m c_m d_{-m} . \qquad (XV.13)
$$

If we next consider the requirement

$$
(T_{-}\xi, \eta) + (\xi, T_{-}\eta) = 0 , \qquad (XV.14)
$$

we find that up to a multiplicative constant the bilinear form must be

$$
(\xi, \eta) = \sum_{m} (-1)^{m} c_{m} d_{-m} . \qquad (XV.15)
$$

We see that we have been able to construct a bilinear invariant and moreover, if j is integral the form is symmetric under interchange of and while if j is half-integral it is anti-symmetric.

The generalization to all the simple Lie algebras is only slightly more com plicated. From the analogs of Eq. $(XV.12)$, we conclude that we can form a bilinear invariant only if for every weight M in the representation -M is a weight also To determine which irreducible representations have this property it suffices to consider the representations from which we can build all others. For example, for A_n , the representation with the weight of a contained with the weight of the weight of the weight of the weight of the wei but instead in the other the other hands the adjoint representation whose $\mathcal{L}_{\mathcal{A}}$ highest weight is a contained the weight and weight and weight and a series of the weight of the weight of the ally for An if the state medium of the state that the symmetric control of the symmetric control the weights do occur in opposite pairs M and -M

 T . The gradient contraction T is the following representation of T and T and e also the algebras and the and the algebras Andrews And The algebras Angles Angles Angles And the algebras An have invariant bilinear forms for representations of the forms:

$$
A_n \quad \underset{\alpha_1}{\bigcirc} \quad \underset{\alpha_2}{\bigcirc} \quad \cdots \quad \underset{\alpha_{n-1}}{\bigcirc} \quad \underset{\alpha_n}{\underbrace{m_2}} \quad m_1
$$

Now as for the symmetry or antisymmetry of the bilinear form it turns out to be determined by the number of levels in the weight diagram. Dynkin calls the number of levels less one the **height of the representation**. Thus for $SU(2)$, the $2j + 1$ dimensional representation has a height $2j$. For all the simple Lie algebras, just as for $SU(2)$, if the height is even, the form is symmetric, and if the height is odd, the form is anti-symmetric. Now Dynkin has determined the heights of the irreducible representations of the simple Lie algebras in terms of their Dynkin $coefficients⁴$ The results are summarized in the following Table:

An n- n - --n $\mathcal{L} = \{ \mathbf{h}_1, \ldots, \mathbf{h}_n \}$. The summarization of $\mathcal{L} = \{ \mathbf{h}_1, \ldots, \mathbf{h}_n \}$. The summarization of $\mathcal{L} = \{ \mathbf{h}_1, \ldots, \mathbf{h}_n \}$ C_n $(1 \cdot (2n-2), 2(2n-2), \ldots, (n-1)(n+1), n^2)$ $\mathcal{D} = \{ \mathbf{0} \mid \mathbf{0} \in \mathbb{R}^n : \mathbf{0} \in \mathbb{R}^n$ \sim \sim \sim \sim \sim \sim \sim F - - - E - - - - - E_7 - - - - - - E - -- - - -- - --

The height of the representation is calculated by multiplying each Dynkin coefficient by the number from the table corresponding to its location. Thus, for example the adjoint representation of R with \mathcal{A} and \mathcal{A} and \mathcal{A} and \mathcal{A} has height $2n$. It is clear that to determine whether a bilinear form is symmetric or antisymmetric we need only consider those entries in the table and those Dynkin coefficients which are odd. It is apparent that since $SU(3)$ representations have a bilinear form only if the Dynkin coefficients of the highest weight are of the form , all such a latter forms are seen for the other hand we see the second we see the other hand we see that \mathcal{S} mas a representation with highest weight (a) v) role and dimension results and an anti-symmetric bilinear invariant. Thus $SU(6) \subset Sp(20)$.

There are a few instances in which the procedure described above does not identify a maximal subalgebra. These exceptions have been listed by Dynkin⁵ and we shall not dwell on them here. One example will suffice to indicate the nature of these exceptions. There is a 15 dimensional representation of A_2 , which has a M and M are maximal in A-M-maximal in A-Mbilinear invariant. In fact, there is an embedding of A_2 in A_5 under which the dimensional representation of A - and A representation of $\{x_2\}$ we have the chain $\{x_1, x_2, \ldots, x_n\}$ \subseteq and $\{x_1, x_2, \ldots, x_n\}$ and the chain $\{x_1, x_2, \ldots, x_n\}$ the embedding of A_2 in A_5 as follows. Since A_2 has a six dimensional representation, it is maximal in A_5 , i.e. $SU(6)$. The anti-symmetric product of the six with itself, in both A_2 and A_5 is an irreducible fifteen dimensional representation. Thus the embedding which maps the six into the six, also maps the fifteen into the fifteen.

It is clear that the approach above will not help us find the S-subalgebras of the exceptional Lie algebras. Fortunately, this problem has been solved, again by Dynkin. In order to display his results we must introduce some additional notation. In particular, we need a means of specifying a particular embedding of a subalgebra G' in an algebra, G . This is done with the **index of the embedding**. In Chapter XI, we introduced the concept of the index of a representation, which is simply the ratio of the bilinear form obtained from the trace of the product of two representation matrices to the bilinear form which is the Killing form normalized in a particular way. Here we define the index of an embedding to be the ratio of the bilinear form on G' obtained by lifting the value of the Killing form on G to the Killing form on G' itself:

$$
j_f(x', y')_2' = (f(x'), f(y'))_2
$$
 (XV.16)

where j_f is the index of the embedding and $f : G' \to G$ is the embedding. As we have seen, on a simple Lie algebra all invariant bilinear forms are proportional, so this definition makes sense. Now suppose ϕ is a representation of G, that is, a mapping of elements of G onto a space of linear transformations. Then $\phi \circ f$ is a representation of G Moreover, for x , $y \in G$.

$$
Tr \phi(f(x'))\phi(f(y')) = l_{\phi \circ f}(x', y')_2'
$$

= $l_{\phi}(f(x'))$, $f(y'))_2$
= $l_{\phi}j_f(x', y')_2'$ (XV.17)

so we see that the index of the embedding is determined by the ratio of the indices of the representations ϕ and $\phi \circ f$:

$$
j_f = \frac{l_{\phi \circ f}}{l_{\phi}} \tag{XV.18}
$$

Consider G_2 , which we know has a 7 dimensional representation. Thus we might hope to this and $\mathcal{L}_{\mathcal{A}}$ representation in a dimensional representation in G $_{\mathcal{A}}$. Hence the in fact possible. Now we compute the index of the seven dimensional representation of A-, according to the methods of Chapter XIII is a state of the method of \mathcal{S} seven dimensional representation of G $_{\Delta}$ and dimensional property for $_{\rm I}$ and $_{\rm I}$ are the control of $_{\rm I}$ Problems following Chapter XI Thus the index of the embedding is - Dynkin indicates this subalgebra by A_1^{\sim} . If there is more than one subalgebra with the same index, we can use primes to indicate this.

Having established this notation we list the results of Dynkin for the max imal S-subalgebras of the exceptional Lie algebras:

Maximal S-subalgebras of Exceptional Lie Algebras

 G_2 A_1^{28} F_4 A_1^{\cdots} , $G_2^{\cdots} + A_1^{\cdots}$ E_6 $A_1, G_2, C_4, G_2 + A_2, F_4$ L_7 A_1^{\cdots} , A_1^{\cdots} , A_2^{\cdots} , G_2^{\cdots} + C_3^{\cdots} , F_4^{\cdots} + A_2^{\cdots} , G_2^{\cdots} + A_1^{\cdots} + A_1^{\cdots} E_8 $A_1^{\text{-}}$, $A_1^{\text{-}}$, $A_1^{\text{-}}$, $G_2^{\text{-}}$ + F_4 , $A_2^{\text{-}}$ + $A_1^{\text{-}}$, $D_2^{\text{-}}$

We summarize here the results on the maximal semisimple subalgebras of the simple Lie algebras

- 1. Regular subalgebras are found using the algorithm of extended Dynkin diagrams
	- a. Dropping a dot from an extended diagram yields a regular subalgebra which is semi-simple and maximal unless it is one of the exceptions mentioned on pp
	- b. Dropping a dot from a basic diagram yields a subalgebra which may be maximal among the semi-simple subalgebras.
- 2. Non-Regular (S-subalgebras)
	- a. Of classical algebras:
	- is the streethear of S in the substitution of S . So that is streethear of S is the substitution of S S , and S , and S is a special order to S . So the Os S of S is a special order to S . On S , and S is a special order to S . On S , and S is a special order to S . On S , and S is a special $O(s+t)$ for s and t odd.
	- ii. Simple: If G has an n dimensional representation it is maximal in $SU(n)$, $SO(n)$, or $Sp(n)$, unless it is one of the few exceptions listed by Dynkin If the representation has a symmetric bilinear form the subalgebra is maximal in $SO(n)$. If it has an anti-symmetric bilinear form, it is maximal in $Sp(n)$. If it has no bilinear form, it is maximal in $SU(n)$.
	- b. Of exceptional Lie algebras: the maximal S-subalgebras are listed above

Footnotes

DYNKIN II program i drugi staroči star

2. GOLUBITSKY and ROTHSCHILD.

DYNKIN III

<u>sy sa salasan sasy</u> pilananan

5. DYNKIN II, p. 231.

References

This material is comes from DYNKIN II, III.

Very useful tables are provided in SLANSKY

Incredibly extensive tables are given in MC KAY and PATERA

Exercises

- 1. Find the maximal semi-simple subalgebras of A_4 .
- 2. Find the maximal semi-simple subalgebras of D_5 . Note that it is necessary to consider some subalgebras which are only maximal among the semi-simple subalgebras ans and all the algebras material in matches are all that the angle of μ
- 3. Find the maximal semi-simple subalgebras of F_4 .
- Final semisimple semisimple subalgebras of Γ becomes of B Γ B

XVI. Branching Rules

Having determined with much help from E- B- Dynkin the maximal semi simple subalgebras of the simple Lie algebras we want to pursue this further to learn how an irreducible representation of an algebra becomes a representation of the subalgebra - To do this we shall have to be more precise about the embedding of the subalgebra in the algebra- Indeed as we have already seen the three dimen sional representation of $SU(3)$ may become either a reducible representation or an irreducible representation of $SU(2)$ depending on the embedding.

We start with a subalgebra G' embedded in the algebra G by a mapping $f: G' \to G$, where f is a homomorphism, that is, it preserves the commutation relations

$$
f([x', y']) = [f(x'), f(y')] , \qquad x', y' \in G' .
$$
 (XVI.1)

Moreover, we can arrange it so that the Cartan subalgebra $H_+ \subset G_-$ is mapped by f into the Cartan subalgebra H - G- Note that if - is a representation of G then $\varphi\circ f$ is a representation of G .

If we are to make progress, we must deal not only with the algebras but with the root spaces H_0^+ and H_0^+ as well. Given the mapping f , we define $f^+ : H_0^+ \to H_0^+$ for by

$$
f^* \circ \rho = \rho \circ f \tag{XVI.2}
$$
where $\rho \in H_0$. That is to say, if $n \in H$

$$
(f^* \circ \rho)(h') = \rho(f(h')) \tag{XVI.3}
$$

Instead of thinking of G' as external to G, it is easier to imagine it already within G- Then $f: H \to H$ simply maps H onto itself as the identity. We recall that there is a one-to-one correspondence between the elements of the root space, $\rho\in {n_0}$ and the elements n_ρ of the Cartan subalgebra. This one-to-one mapping connects to H $^{\prime}$ a space which we regard as H_0 $^{\prime}$. Now let us decompose H_0^{\prime} as the sum of H_0^+ and a space H^+ orthogonal to it. That is, if $\tau \in H_0^+$ and $\kappa \in H^+$, then $\langle \tau, \kappa \rangle = 0$. Then the elements of H are functionals which when applied to H give zero. This is so because if $\kappa \in H^+$ corresponds to $h_{\kappa} \in H$ and $\tau \in H_0^+$ corresponds to $n_{\tau} \in H$, then $\kappa(n_{\tau}) = (n_{\kappa}, n_{\tau}) = \langle \kappa, \tau \rangle = 0$. Now the action of f is simply to project elements of H_0^* onto H_0^* . This follows because if $\rho = \rho_1 + \rho_2, \rho_1 \in H_0^*, \rho_2 \in H^*$, then for $h' \in H', f^* \circ \rho(h') = \rho(f(h')) = (\rho_1 + \rho_2)(h') = \rho_1(h')$. Thus $f^* \circ \rho = \rho_1$.

 \blacksquare of a representation of a representation of a representation of \blacksquare

$$
\phi(h)\xi_M = M(h)\xi_M \tag{XVI.4}
$$

Then If $n \in H \subset H$,

$$
\phi(f(h))\xi_M = M(f(h))\xi_M
$$

= $f^* \circ M(h)\xi_M$ (XVI.5)

It follows that if M is a weight of φ , then $f \circ M$ is a weight of the representation $\varphi\circ f$ of G- - More graphically, the weights of the representation of the subalgebra are obtained by projecting the weights of the algebra from H_0^+ onto H_0^+ .

A simple but important consequence of this conclusion is that if the rank of \rm{G} is the same as the rank of \rm{G} , then the subalgebra is regular. This is so because if the ranks are the same, then H_0^+ coincides with H_0^+ so the projection is simply the identity- Thus if we start with the adjoint representation of G it will be mapped (by the identity) into a reducible representation of G' which contains the adjoint of $\,G$. But the weights of the adjoint of G -must then have been among the weights $\,$ of the adjoint of G .

Let us pause to consider an example. Let us take $G = G_2$ and $G = A_2$. We know this is a regular subalgebra- Indeed examining the root diagram we see that the six long roots form the familiar hexagon of the adjoint representation of $SU(3) = A_2$. The projection finere is just the identity map since the algebra and the subalgebra have the same rank- The fourteen dimensional adjoint representation becomes the sum of the eight dimensional adjoint representation of $SU(3)$ and two conjugate three dimensional representations-

We state without proof two of Dynkins theorems- If G is a regular subal gebra of G and I is representation of G theory I is reducible-there approximately converse is also true. If G is A_n, B_n or C_n , and G has a reducible representation which makes it a subalgebra of G by being respectively n-dimensional with no bilinear invariant or $2n+1$ dimensional with a symmetric bilinear invariant, or zn dimensional with an anti-symmetric bilinear invariant, then G is regular. In other words, if A_n, B_n , or C_n has an S-subalgebra, that S-subalgebra must have an irreducible representation of dimension, $n, 2n+1$, or $2n$ respectively.

What happened to D_n in this theorem? As we saw in the last chapter, $O(s) \times O(t)$ is an S-subalgebra of $O(s + t)$ if both s and t are odd.

We now proceed to the determination of f , the mapping which connects H_0 to H_0^+ '. Once we know f^+ we can find the weights of $\phi \circ f$ for any representation $\phi^$ of a given algebra- From these weights we can infer the irreducible representations into which \mathbf{f} - In fact extensive tables of these branching rules have been branching rules for the compo been computer sy computer seek to develop and Patera-Alle method is also as some patern. intuitive understanding of the procedure.

\mathbf{B} and \mathbf{B} and \mathbf{B} and \mathbf{B} and \mathbf{B} and \mathbf{B} are probably and \mathbf{B}

To be explicitly we shall take an example α . That is α is α that is α that is α the previous chapter we can easily find the maximal regular semi-simple subalgebras: A  D and AAA- In seeking the Ssubalgebras we note that the technique os de la completa de la construction and a seven the other than the seventh and the seventh and a seventh contr dimensional representation which has a symmetric bilinear form- Thus we might anticipate that A is a maximal Ssubalgebra of B-C is an isle of Western See A is a matter of A is a Δ and G- is maximal in B -

There is a simple and effective way to find the mappings feltor the regular subalgebrasie the procedure for construction the extended Distribution of the extended Dynamics of the extended gramma - we added the vector - was diagrams-the simple algebra where was also well where μ was algebra where μ the highest root-collection for the set which was the union of the set which was the union μ and the simple roots- From this set we struck one root- The remainder furnished a basis of simple roots for the subalgebra- The Dynkin coecients for the weights relative to the new basis of simple roots are just the Dynkin coefficients with respect to the surviving old simple roots, together with the Dynkin coefficient with respect to - Thus we simply calculate the Dynamic coefficient of each with with respect to $\mathcal{L}_{\mathcal{A}}$ to and use it in place of one of the old coecients- Calculating the coecient with respect to $-\gamma$ is trivial since we can express $-\gamma$ as a linear combination of the simple roots.

Let us use this technique to analyze the regular subalgebras of B- The are coefficients of a state that α is the coefficient of the cartan matrix we see that the coefficient of $\mathcal{L} = \{ \mathcal{L}^{\text{max}} \}$ is the coecient of the coefficient of \mathcal{L}^{max} is the coefficient of \mathcal{L}^{max} is the coefficient of \mathcal{L}^{max} of a weight with respect to is a set α -coefficient of the Dynamics with the Dynamics with α respect to and are a respectively-more and are a respectively-

In this way we construct the extended weight scheme for the seven di mensional representation of B_3 :

Now the A_3 regular subalgebra is obtained by using the fourth column, the one-than \mathcal{C} than the third one-third one-third the third column we have the third column we

-1 -1
1 -1 — 1
$\overline{0}$ $\vert 0 \vert$ $^{\rm -1}$
$\overline{0}$ θ 0.
$\overline{0}$ $\mathbf{1}$ $\overline{0}$
1 ¹ $^{\rm -1}$ $\mathbf{1}$

This is a representation of A -a-candidates for A -a-candidates for irreducible A components are $(0,1,0)$ and $(0,0,0)$ since these are the only ones with purely nonnegative Dynkin coecients- Indeed these give a six dimensional representation and a core monedimentation-controllering-controllering-can deduce the projectionoperator for this subalgebra directly by comparing three weights in the original basis to their values in the basis for the subalgebra A- In this way we
nd

$$
f_{A_3}^*(1,0,0) = (1,0,-1)
$$

\n
$$
f_{A_3}^*(0,1,0) = (0,1,-2)
$$

\n
$$
f_{A_3}^*(0,0,1) = (0,0,-1)
$$
 (XVI.6)

Knowing this mapping gives us an alternative method of finding the weights of some irreducible representation of B with respect to the subalgebra A- σ are respect to the subalgebra Aexample, we can map the weights of the adjoint representation (it suffices just to consider the positive roots) of B_3 into weights of A_3 :

From these weights and their negatives, it is clear that the candidates for highest weights are $(1,0,1)$ and $(0,1,0)$ which indeed correspond to representations of dimension fifteen and six respectively.

If we consider the subalgebra $A_1 + A_1 + A_1$, deleting the Dynkin coefficients with respect to the second root, we find the seven dimensional representation of B_3 is mapped into

$\mathbf{1}$	0	-1	
	0	$^{\rm -1}$	
$\overline{0}$	$^{-}$ 2	0 ¹	
\vert 0	θ	0	
$\vert 0 \vert$	-2	$\overline{0}$	
	0		

This is the reducible representation whose Dynkin expression is - In the notation which indicates dimensionality it is -

It is clear that the regular subalgebras can be dealt with in a very simple fashion- The Ssubalgebras require more eort- It is always possible to order the Cartan subalgebras of the initial algebra and of its subalgebra so that if $x > y$, $x, y \in H$ then $f_+(x) > f_-(y)$. Now we exploit this by writing the weights of the

seven dimensional representations of B and G- beside each other

Thus it is clear that we must have

Equipped with this mapping we can project the weights of any representation of B onto the space of weights of G- and thus identify the branching rules-

For example, we again consider the positive roots of B_3 to find the branching rule for the adjoint representation

The weights with nonnegative Dynkin coecients are and - Now the fourteen dimensional representation has highest weight $(1,0)$ and includes the we see that the sees that the sees that the sees that the sees that the becomes becomes the becomes becomes th the sum of a 14 dimensional representation and a 7 dimensional representation.

Footnote

- DYNKIN III produced by the control of th

References

Again the entire chapter is due to DYNKIN III- The works of SLANSKY and of MC KAY AND PATERA provide exhaustive tables.

Exercises

- Find the branching rules for the tendimensional representation of SU for the maximal semi-simple subalgebras.
- Find the branching rules for the and dimensional representations of F into its maximal semi-simple subalgebras.

Semi-Simple Lie Algebras and Their Representations

i

Robert N. Cahn

Lawrence Berkeley Laboratory University of California Berkeley, California

THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book Program · Menlo Park, California Reading, Massachusetts London Amsterdam Don Mills, Ontario Sydney ii

Preface

Particle physics has been revolutionized by the development of a new paradigm that of gauge theories teractions and the color $SU(3)$ theory of strong interactions provide the present explanation of three of the four previously distinct forces. For nearly ten years physicists have sound to unify the SU \sim U \sim U \sim U \sim U \sim SU \sim group. This has led to studies of the representations of $SU(5)$, $O(10)$, and E_6 . Efforts to understand the replication of fermions in generations have prompted discussions of even larger groups

The present volume is intended to meet the need of particle physicists for a book which is accessible to non-mathematicians. The focus is on the semi-simple Lie algebras, and especially on their representations since it is they, and not just the algebras themselves, which are of greatest interest to the physicist If the gauge theory paradigm is eventually successful in describing the fundamental particles, then some representation will encompass all those particles

The sources of this book are the classical exposition of Jacobson in his Lie Algebras and three great papers of E.B. Dynkin. A listing of the references is given in the Bibliography. In addition, at the end of each chapter, references

are given, with the authors' names in capital letters corresponding to the listing in the bibliography. in the bibliography of the bibliography of

The reader is expected to be familiar with the rotation group as it arises in quantum mechanics A review of this material begins the book A familiarity with $SU(3)$ is extremely useful and this is reviewed as well. The structure of semi-simple Lie algebras is developed, mostly heuristically, in Chapters III -VII, culminating with the introduction of Dynkin diagrams. The classical Lie algebras are presented in Chapter VIII and the exceptional ones in Chapter IX. Properties of representations are explored in the next two chapters. The Weyl group is developed in Chapter XIII and exploited in Chapter XIV in the proof of Weyl's dimension formula. The final three chapters present techniques for three practical tasks: finding the decomposition of product representations, determining the subalgebras of a simple algebra, and establishing branching rules for representations. Although this is a book intended for physicists, it contains almost none of the particle physics to which it is germane An elementary account of some of this physics is given in H. Georgi's title in this same series.

This book was developed in seminars at the University of Michigan and the University of California, Berkeley. I benefited from the students in those seminars, especially H. Haber and D. Peterson in Ann Arbor and S. Sharpe in Berkeley. Sharpe, and H.F. Smith, also at Berkeley, are responsible for many improvements in the text. Their assistance is gratefully acknowledged.

Table of Contents

vi

Bibliography

BOERNER, H., Representations of Groups, North-Holland, Amsterdam,

CARRUTHERS, P., Introduction to Unitary Symmetry, Interscience, New York -

DYNKIN, E. B., The structure of semi-simple Lie algebras, Uspehi Mat. Nauk - pp - Am Math Soc Trans No - pp DYNKIN I

 $DYNKIN, E. B., Semi-simple subalgebras of semi-simple Lie algebras, Mat.$ Sbornik - - pp
- Am Math Soc Trans Ser - pp DYNKIN II

DYNKIN, E. B. Maximal subgroups of the classical groups. Trudy Moskov. math a comment of all and places are the comment of the series of all \sim \mathbf{v} and \mathbf{v} in the problem in t

GASIOROWICZ, S. Elementary Particle Physics, John Wiley & Sons., New York - York

Bibliography 2015

GEORGI, H., Lie Algebras in Particle Physics, Benjamin/Cummings, Reading Mass -

GILMORE, R., Lie Groups, Lie Algebras, and Some of their Applications, John Wiley Sons New York -

GOLUBITSKY, M. and ROTHSCHILD, B., Primitive Subalgebras of Exception and the property of the Society Society and the society pp - state of the society of the society of th

GOTTFRIED, K., Quantum Mechanics, v. I, W. A. Benjamin, New York, -

HAMERMESH, M., Group Theory and its Application to Physical Problems, A and A a

JACOBSON N Lie Algebras Interscience - Dover New York --

MC KAY, W.B., and PATERA, J., Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras, Marcel Dekker, new York - Property - P

MILLER, W., Symmetry Groups and their Applications, Academic Press, \cdots . \cdots \cdots \cdots \cdots

SCHENSTED, I., A Course on the Applications of Group Theory to Quantum Mechanics NEO Press Peaks Is Mechanics NEO Press Peaks Is Mechanics NEO Press Peaks Is Mechanics Neo Press

 S is a construction for \mathcal{A} , we have seen also for \mathcal{A} and \mathcal{A} and \mathcal{A} are positive \mathcal{A} . Then \mathcal{A}

Index

 A_n , 53, 70 Abelian subalgebra Ad Adjoint representation

-Algebra semisimple simple Allowable set Alternating function Angular momentum, 7,79 \blacksquare \blacks Basic representation Bilinear forms invariance and the contract of Killing, 17 symmetric, 135-139 anti-symmetric, 135-139 Boerner, H., 83 Branching rules C_n , 56, 70 Carruthers, P., 16 Cartan matrix for A_n , 54 for B_n , 62 for C_n , 57 for D_n , 60 \sim - \sim Casimir operator, 6, 84, 87, 89 Campbell-Baker-Hausdorff theorem, 2 Chain of roots Character of a representation Classical Lie algebras

Commutation relations Commutator Conjugacy classes and conjugacy conjugacy conjugacy conjugacy conjugacy conjugacy conjugacy conjugacy conjugacy D_n , 60, 70 Dimension of a representation, 111, 112 for $SU(n)$, 114 Dirac bra-ket notation, 15 Dual space, 15 Dynkin i -

 coefficients, 74 diagram, 49 for A_n , 54 for B_n , 62 for C_n , 57 for D_n , 60 extended diagrams Method of Parts Second Highest Rep. Theorem, 117 E_6 , 71 $E_7, 71$ E- Exceptional Lie algebras Dynkin digrams for Extended Dynkin diagram Extended Weight Scheme $F_4, 71$ Freudenthals Recursion Formula -- Functional, 15 Fundamental representation $G_2, 70$ Cartan matrix

Representations Gasiorowicz, S., 16 Gell-Mann matrices, 10, 16 Georgi, H., ii, 83 Golubitsky, M., 134, 143 Gottfried, K., 8 H_0 , 10 Height of a representation, 139 Hermitian matrix -------Index of an embedding Index of a representation of product representations of products and products representations of products and products of products and p Invariance of Killing forms of Killing for Invariant function Invariant subspace Irreducible representation Jacobi identity, 3 Jacobson

 - Killing form invariance of the control of the co non mog moen av generale relation to semisimplicity Kostant's formula, 116 Level, 46 Lie algebra, 3 Lie product, 3 Mc Kay, W. B., 143, 146, 153 Maximal subalgebra

 Method of Parts and Miller, W_{\cdot} , 63 $O(7), 81$ Orthogonal group

Operators Casimir, 6, 84, 87, 89 lowering, 4, 34 raising, 4, 34 Patera, J., 143, 146, 153 Pauli matrices, 8, 10 Positive root, 43 algorithm for finding, 46-47 Product representation - Rank Reducible representation Regular element Regular subalgebra -Representation adjoint to the contract of the basic character of dimension of fundamental index of irreducible product the set of the antisymmetric symmetric, 80 reducible spinorio e escritorio e controllare e controllare e controllare e controllare e controllare e controllare e co Roots set of the positive simple, 43 $\Pi =$ set of, 44 Root vectors Rotation group Rothschild, B., 134, 143

R-subalgebra, 130 Scalar product on $H_0^+,$ 20 $$ for \mathbf{S} such that \mathbf{S} is the sum of \mathbf{S} is the sum of \mathbf{S} in root space Schensted, I., 83 Second Highest Representation \sim - algebra algebr \sim simple algebra a Simple root, 43 Slandsky Robert Slands Robert Slands \sim \sim \sim \sim \sim \sim \sim Killing form, 59 Cartan matrix SO n Killing form Cartan matrix $SO(7), 81$ $SO(10)$, Dynkin coefficients, 77 Representations Sp n Cartan matrix Spinorial representation S-subalgebra, 130 String of weights, 34, 40 $S = \{1, 2, \ldots, n\}$ Casimir operator for $SU(3), 9$ Adjoint representation, 12 Cartan matrix Dynkin coefficients, 75

Freudenthal formula applied to - Killing form Root vectors Weight vectors, 33 Weyl group -dimensional representation - and the presentation - and the presentation - and the presentation - and the pres $SU(n)$, 53, 114 Subalgebra Abelian C - C maximal proper regular - $R-, 130$ $S-, 130$ Triality of the control of U
 Unitary matrix Vector root Vector space, 3 weight, 33, 73 Weight, 33, 73 Weight space, 37, 76 Weight vector, 33,73 Weyl, character formula, 111 dimension formula, 111, 112 ————————————— references to the control of the co Young tableaux correspondence with Dynkin diagram