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1. Introduction and Notations

In this paper, we construct a pure algebraic theory for characteristics of linear
differential operator in the framework of [4]. We show that relations between
the characteristic ideal and the symbolic module of a differential operator in
the algebraic setting is the same as in the geometric one (cf. [2, 3]). It is dso
shown that junior symbols of differential operators can be introduced as module
morphisms over appropriate characteristic ideals.

In what follows, we consider a commutative unitary algebra A over a com-
mutative ring R. We deal with the functors of differential calculus arising in the
category M (A) of modules over A (see [4]). In this section, we recall some
essential definitions from [4] and [5].

Let P and Q be two A-modules and consider the algebra Difffﬁ) (P, Q) of lin-
ear differential operatorsacting from P to (). Due to embeddings Diff ,(i)l(P, Q) C

Diff 7 (P, Q) one can define quotient modules
_ Diffi? (P, Q)
Diff ™ (P, Q)

Note that two different A-module structures (the left and the right ones) coincide
in Sk(P, Q)

Sk(P,Q)
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DEFINITION 1.1. A-module S(P,Q) = > k0 Sk (P, Q) is called the module of
symbols of differential operators acting from P to (. We also use the notations

S(P)=>_SKP) for S(A,P) and S=>5, for S(A).
k>0 k>0
Let Diffgj)(P, Q) — Sk(P,Q) be the natural projection and consider A €

Diff 7 (P, Q). The image of A under this projection is denoted by [Al, = |A|
and is called the symbol of the operator A.
For any A-modules P, @Q, R one has an A-module homomorphism

Sk(P,Q) ®4 Si1(Q, R) — Sk11(P, R)
induced by the composition of differential operators:
VI~ [Alx =V o Algt
In particular, S(P, P) is an associative A-algebra.
Consider two operators A; € Diffg) (A, A). Evidently, their commutator
[A1, Ap] is an operator of order < k1 + k2 — 1 and, consequently, S(A) isacom-

mutative algebra. Consider now two elements s = |A| € Sy and t = |V| € S
and define

{s,t} o AoV —=VoAl|pti—1.
PROPOSITION 1.2. For any elements s,t,r € S one has

(i) {s,t} +{t,s} =0,
(i) {57 {t7 T}} + {t> {Tv 5}} + {Tv {57 t}} =0,
(iii) {s,tr} = {s,t}r +t{s,r}.
The operation {-,-}: S ®gr S — S is caled the Poisson bracket in S.

Remark 1.3. For the case A = C°°(M), where M is a smooth manifold, S
plays the role of the algebra of function on 7%(A/) polynomial along the fibers
of m: T*(M) — M. This justifies the notation 7*(A) for the space Specy A of
graded primitive ideals of A.

If A € Difff) (P,Q) is a differential operator, we define its symbolic map
(or simply, the symbol of A)

s(A) = smbl(A): S(P) — S(Q)
by
s(A)(t) = |Ao Vg fort=|V|, € Sk(P), Ve Diff 7 (4, P).

In what follows we use standard concepts and notations from commutative
algebra [1]. Namely, let A be a commutative algebra with a unit and P be an
A-module. Then:
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(i) Ann(P) C A denotes the annihilator of P in A,
(i) Supp(P) C Spec(A) is the support of P,
(i) if p C A isa multiplicative set, then by P, corresponding localization is
denoted,
(iv) in particular, if p C A is a primitive ideal, then by P, localization with
respect to A \ p is denoted,
(v) the quotient ring of A/p is denoted by (A,).
2. Characteristic Ideal
Let A e Difff) (P, Q) be adifferential operator of the order s.

DEFINITION 2.1. An element a € A is called a characteristic of the operator
A € Diff (P, Q) if the kernel of the map

6 (A) =[a, [a,...[a,A]...]] € homa(P,Q)

is nontrivial.

The set of characteristics of the operator A is denoted by char(A) C A.

PROPOSITION 2.2. If Ay, A, € Diff " (P,Q) are differential operators such
that |[A1| = |A2|, then char(A;) = char(A»).

Hence, char(A) is determined by the symbol of A only and for any s €
Si(P, Q) the set char(s) C A is well-defined.

PROPOSITION 2.3. Let A; € Diff{" (P, Q), Az € DiffS"(Q, R) be two differ-
ential operators. Then one has the following embeddings

char(A1) C char(Az o0 Aq) C char(Az) Uchar(Az).
Proof. It follows from the identity
8t (A2 0 A1) = 65(A2) 0 6,(A1)
which is valid for any a € A.

COROLLARY 2.4. For any two operators Ap, Ay € Diffﬁf) (A, A) one has

char(A1 o Ap) = char(Aj1) U char(Ay).
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Proof. Due to Proposition 2.3, one has
char(A1) C char(Az 0 Ag) C char(Az) Uchar(Az).

On the other hand, since char(A) dependson |A| only, one has char(Ajo0Aj) =
char(Az o Az). Consequently

char(Az) C char(Az o0 Ag) C char(A1) Uchar(Ayz)
and

char(A1) U char(Ay) C char(Az 0 Ag) C char(A1) Uchar(Ay).

COROLLARY 2.5. For any operator A € Diffff)(A, A) and n > 1 one has
char(A™) = char(A).

From here till the end of Section 2 we suppose that A has no zero divisors.
Note that in this case an element a € A lies in char(A), A € Diff\ ") (4, A) if

and only if 6 (A) = 0. Note also that the absence of zero divisors in A implies
the same for property for S(A).

LEMMA 2.6. For any two operators Ay, Ay € DiffEH(A, P) one has
char(A1) Nchar(Az) C char(Ay + Ay).

Proof. Let a € char(A1) N char(Ay). It means that there exist two nonzero
elements a1, ap € A such that

6Z(Aj)(aj) = ajpj = 0, ] = 1, 2,
where p; = 6%(A;)(1). Then azaz # 0 and consequently

854 (A1+ Ag)(a1a2) = araz(py + p2) = 0.

Consider an operator A € Diffff)(P, Q) and the sets J; C S; defined by
Ji = Ji(A) = {s € S; | char(A) C char(s)}.

From Lemma 2.6 it follows that these sets are additively closed, while from
Proposition 2.3 one has that Ja = -, J; isanidea in S.

DEFINITION 2.7. The ideal Ja is caled the characteristic ideal of the operator
A € Diff P (P, Q).

PROPOSITION 2.8. The characteristicideal coincideswith itsradical, i.e. Jao =
r(Ja).



CHARACTERISTICS OF LINEAR DIFFERENTIAL OPERATORS 261

Proof. Let s € S and s = s1 + --- + s, be a decomposition of s in homo-
geneous elements satisfying deg(s1) < deg(sz) < --- < deg(sy). Suppose that
s™ € Ja for some n > 0 and prove by induction with respect to k that s € Ja.

For k = 1 it follows from Corollary 2.5.

Let now k£ > 1 and suppose that the statement is valid for kK — 1. Then in the
decomposition

iq
(s14 -+ sp)" = Z w
i1+ Fi=n

nl Sl-..Sk

the summand s} is of the maximal order (which equals to » - deg(sy)). Hence,
sy € Ja which means that s;, lies in Jo as well. Consequently, (sy + --- +
sp—1)" € Ja, from where it follows that s + - - - + sp_1 € Ja by the induction
hypothesis.

PROPOSITION 2.9. The characteristic ideal is involutive, i.e. it is closed with
respect to the Poisson bracket in S, {Ja, Ja} C Ja.

Proof. It is sufficient to prove the statement for homogeneous el ements only.
Let a € char(A) and |A1| € Jiy, |Az] € Jip. Then 6i2(Aq) = 6§2(Az) = 0 and
consequently

Sitiz=Y([Ag, Ag]) = (“ i 1) (8 (A1), 827 (A2)] +
] ip — 1 f— i
(Zl Z 2 ) 07 H(A1),62(A2)] = 0.
But, by definition, {|As], |Az]} = [[A1, A2]liy i1

For any element a € A define the sets
mi(a) = {s € S; | a € char(s)}

and m(a) = 3 ;omi(a).
From Proposition 2.3 and Lemma 2.6 it follows that m(a) is an ideal in S.

PROPOSITION 2.10. The ideal m(a) is primitive for any a € A.

Proof. Consider elementss,t € Sandlets = s1+---+sp, t = t1+---+t; be
their decompositions in homogeneous elements such that deg(s1) < deg(sz) <
.-+ < deg(sk) and deg(tq) < deg(tz) < --- < deg(t;). Suppose that s -t € m(a)
and prove by induction with respect to & + [ that either s € m(a) or t € m(a).

For k 4+ [ = 2 it follows from Corollary 2.4.

Let k41 > 2 and suppose that the statement is valid for £ +1— 1. Thenin the
decomposition s - ¢ = 3, ; s;t; the summand sy¢; is of the maximal order (and
equals to deg(sy) + deg(t;)). Hence, sit; belongs to m(a). From here it follows
that either s or ¢; belong to m(a). Let, say, s € m(a). Then

(s1+ - +sp—1)(ta+---+1t) € m(a)
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and consequently either sq + -+ + sp_1 Of t1 + --- + t; lies in m(a) by the
induction hypothesis.

Remark 2.11. The absence of zero divisors in A is necessary for the proof
of Lemma 2.6. This Lemma, in its turn, is used to prove that J; and m;(a)
are closed with respect to summation. Multiplicative properties of these sets are
independent of the existence of zero divisors in A. In particular, both Jo and
m(a) are stable with respect to multiplication by any element of the symbolic
ring, while S \ m(a) is closed with respect to multiplication.

Remark 2.12. Let a € A. Consider the map ¢: S — A defined by
85(s) = 64(A), s€S;, [Al=s.

Obviously, ¢ is an epimorphism. Denote its kernel by mi(a). If A possesses no
zero divisors, one has m(a) = m(a). The map & is an algebraic analog of the
section of the cotangent bundle corresponding to the form da, while 77(a) cor-
respond to a Lagrangian submanifold in 7%(M) related to this form (cf. [5]).
The ideal T(a) is closed with respect to the Poisson bracket. It can be proved
in the same way as it was done in Proposition 2.9. On the other hand, the ideal
Ja playsthe role of the Hamilton—Jacobi equation, and in the rest of this Section
we deal with the algebraic viewpoint on the relations between characteristicity
and solutions of the Hamilton—Jacobi equation corresponding to the operator A.

PROPOSITION 2.13. For any a € char(A) the ideal m(a) contains Ja. More-
over, one has the following equality Ja = Nycchar(a) m(a).

Proof. It is sufficient to prove the statement for homogeneous components.
Let s € Ja be a homogeneous element and a € char(A). Then a € char(s), i.e.
s € m(a). Hence, Ja C Naccha(a) m(A)-

Conversely, if a ¢ Ja, thenchar(A) ¢ char(s). Hence, there exists an element
a € char(A), such that a ¢ char(s). Therefore, s ¢ m(a).

PROPOSITION 2.14. The following statements are equivalent:
(i) char(A) C e, char(s)

and
(ii) a € char(A) if and only if Jo C m(a).

Remark 2.15. Condition (i) of the previous Proposition holds, for example,
in the following situation. Suppose that the operator A is such that the module
P = Naechar(a) Ker 6¢(A) is nontrivial. Suppose further that for any nontriv-
id ¢ € Q there exists ¢* € homy(Q, A) such that ¢*(¢) # 0. Note that the
embedding char(A) C Nz, Char(s) is dways valid. Let now a ¢ char(A).
Then 6 (A): P — @ if a monomorphism. Consider an element p € P’ and
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define a homomorphism ,: A — P by setting ¢,(1) = p. Choose an ele-
ment ¢* € homu(Q, A) such that (¢* o ¢.(A))(p) # 0. Then for the operator
0= qo Aoy, onehas

8a(0) = q" 0 8,(A) o pp # 0,
i.e. a ¢ char(9). On the other hand, if o’ € char(A), then

(6w 9)(1) = (¢" © 8, (A))(p) = O,

i.e. 0 € Ja.

The result obtained allows us to generalize the definition of the characteristics
of linear differential operators and to give the following

DEFINITION 2.16. Let A € Difffﬁ) (P, Q). A generalized characteristic of the
operator A is a graded primitive idea p of the symbolic ring .S, such that Ja C
p. A characteristic manifold of the operator A is the space Specy (S/Ja) C
Specy S = T (A).

3. Symbolic Module

Here we define the concept of symbolic module (cf. [2]) which makes it possible
to get rid of the absence of zero divisors condition and to define the notion of
characteristics in a general algebraic setting.

Consider an operator A € Diffz(*)(P, Q). Then one can define an S-module
homomorphism o(A): S(Q,A) — S(P,A) in the following way. For |V| €
Sk(Q> A) we set

a(A)(IV]) = |V o Algri € Seri(@Q, A)-

Co-kernel of this homomorphism is called the symbolic module of the operator A
and is denoted by Ma: coker(c(A)) = Ma.

Note that an element s = |0|, deg(s) = r, liesin Ann(Ma) if and only if
for any V € Diff 1) (P, A) there exist V' € Diff 1), (Q, 4) and ¢ € Diff'}),,
(Q, A) such that

0oV =V oA+e¢. (@D
From (1) it follows that if s € Ann(Ma), then
char(A) C char(s) U ( N char(s’)>.
s'€S(P,A)

Hence, if Nycg(p.a)char(s’) is empty, then one has the following
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PROPOSITION 3.1. The annihilator of Ma liesin Ja, Ann(Ma) C Ja.

Due to Proposition 2.8, one has aso the following
COROLLARY 3.2. The radical of Ann(Ma) liesin Ja, r(Ann(Ma)) C Ja.

In the sequel we restrict ourselves to the operators A for which the symbolic
module M is of finite type. Then
Supp(Ma) = Spec(S/ANN(Ma)) C T*(A)

and hence, due to Proposition 3.1, for any generalized characteristic p €
Specy, (A/Ja) localization (Ma), is nontrivial. It means that the set of general-
ized characteristics of the operator A liesin Supp(Ma ). These remarks motivate
another.

DEFINITION 3.3. Let p be a primitive ideal of the algebra A. Denote by (S,)
the quotient field of the algebra S/p. A graded primitive ideal p is a generalized

characteristic of the operator A € Diffﬁf) (P,Q), if the map
sp(A): S(P)/(pS(P)) ®syp (Sp) — S(Q)/(PS(Q)) @s/p (Sp)

induced by the homomorphism s(A): S(P) — S(Q), possesses a nontrivial
kernel.

Denote by A'(A) the A-module of 1-forms of the algebra A (see [4]).

THEOREM 3.4. Suppose that the modules A%(A), P,Q are projective and of

finite type. Let the operator A € Diff (") (P,Q) be such that Mx is of finite

type as well. Then a graded primitive ideal p € Specy(S) is a generalized

characteristic of A in the sense of Definition 3.3 if and only if (M), # O.
Proof. Consider a homomorphism n: S(P) — homg(S(P, A), S) defined by

(VD8] = [Vod|, VeDiffiP4,p), aeDiff{?(p,A).
Then 7 induces a homomorphism
1p: S(P)/(pS(P)) ®syp (Sp) — homs(S(P, A), (Sp))

for any p € Spec(S). Moreover, for any A € Diff (") (P, Q) one has a commu-
tative diagram

S(P)/(pS(P)) @s)p (Sp) — 22

w|

homS(S(P’ A)7 <Sp>)

5(Q)/(pS(Q)) ®s/p (Sp)

|

a*(A) hOmS(S(Q’A)’ <Sp>)
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where s,(A) is induced by the symbolic map smbl(A): S(P) — S(Q).
The functor homg(+, (S,)) is exact from the right. Hence, the kernel of s, (A)
is trivial if and only if homg(Ma, (Sp)) = 0. But

homg (Ma, (Sp)) 2 homg,, (Ma ®sg (Sp), (Sp))-

Since (S,) is afield, the maps,(A) is a monomorphism if and only if Ma ®g
(Sp) = 0. On the other hand,

Ma @5 (Sp) = Ma @5 5p @s, (Sp) = (Ma)p ®s, (Sp)-
Let po be the maximal ideal of the local ring S,,. Then (S,) ~ S, /po and

(MA)p
Mp), ®g, (Sp) ~ ————.
( A)p SP ( p> pO(MA)p
Due to the Nakayama lemma [1], it is equivalent to triviality of the mod-
ule (Ma)p.

COROLLARY 3.5. If an ideal p € Specy(S5) is a characteristic of the opera-
tor A in the sense of Definition 2.16, then p is a characteristic in the sense of
Definition 3.3.

To prove the equivalence of Definitions 2.16 and 3.3, we suppose additionally
that

(a) the modules P, () are free,
(b) S possesses the following property of divisibility: if s,s1,...,s. € S and
s € Ni—_1(char(s;)), then there exist elements ¢4, ..., ¢, € S, such that

S = Ztisi, (2)
=1

(c) the numbé? of generators in () is greater or equa than the one in P, i.e.
A is not an underdetermined operator (naturaly, it can always be done by
embedding @ in some R with sufficient number of generator).

Choosefree basesin P and @ and represent the operator A by the matrix [0y,

where 0, € Diffﬁf) (P,Q). Denote by Vi,...,V, the leading minors of this
matrix. Note that though these minors are not well-defined, their symbols are
uniquely determined. Hence, there characteristics are well-defined.

PROPOSITION 3.6. Ja =Y /_1 Jv,.

Proof. Let i be the order of A and n be the dimension of the leading minors.
Let a € A. Since ker &2 (A) # 0 if and only if 67(V;) # O0foral I =1,...,r,
one has char(A) = (), char(V;). Our result follows now from the divisibility
condition formulated above.

Under conditions (a), (b), (c) one also has the following
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PROPOSITION 3.7. The equality char(A) = (¢, char(s) holds.

Thus in the case under consideration, an element a € A is a characteristic
of A if and only if Ja C m(a) (see Proposition 2.14).

We shall also need the following result valid in terms of conditions (a), (b),
(c) formulated above.

LEMMA 3.8. If |V| € S, then Jy isthe principal ideal generated by |V|: Jy =
(IV]).

Consider again the localization s,(A) of the symbol of the operator A. Its
kernel is nontrivial if and only if al its leading minors (in some coordinate
representation) vanish. In other words, the kernel is nontrivial if and only if for
each V,; there exists an element ¢; € S\ p, such that ¢;|V,| € p. Since p is
a primitive ideal, it is equivalent to the fact that |V;| € p. This, together with
Proposition 3.6 and Lemma 3.8, gives the following

THEOREM 3.9. If the symbolic module of the operator A is of finite type and
if the conditions (), (b), (c) hold, then Definitions 2.16 and 3.3 are equivalent.

COROLLARY 3.10. Under conditions of Theorem 3.9 one has
Jan = r(AnnMap).

4. Characteristics of Morphisms and Junior Symbols

Let, as before, R be a commutative ring with a unit and B be a commutative
unitary R-algebra. Consider B-modules P and Q.

DEFINITION 4.1. A primitive ideal p € Spec B is caled a characteristic of a
morphism ¢ € homg (P, Q), if the kernel of the map

pp: P/(pP) @p/p (Bp) — Q/(pQ) ®pp (B)

is nontrivial.

Denote the set of characteristics of ¢ by char(y). We call J, = (,cchar(y) P
the characteristic ideal of .

EXAMPLE 4.2. Let V' be a finite-dimensional space over a field k and L €
Endy (V). Consider a k[z]-module structure in V' defined in the standard way:
x-v = L(v), v e V. Consder the trivial endomorphism o of this module. Then
Jo =r(det(L — zE)). If k is algebraically closed, then char(o) = Spec(B/Jo).

Consider relations between Spec(B/J,) and the set char(y).
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DEFINITION 4.3. Let o*: Q* — P* be a morphism dual to . The module
M, = coker(y*) is called the symbolic module of .

PROPOSITION 4.4. If P and @ are finitely generated modules, then one has
char(¢) = Supp(My).
Proof. Consider the natural isomorphism

mp: P/(pP) @pyp (Bp) — homp (P, (Bp)),
where p € Spec(B). Then one has a commutative diagram

P/(pP) @p/p (Bp) Q/(pQ) ®@p/p (Bp)

w| |

homg (P, (By)) homg(Q*, (By))
The rest of the proof literary repeats the proof of Theorem 3.4.

* %k
¥p

COROLLARY 45. .J, = r(Ann M,,).

THEOREM 4.6. Let the conditions of Proposition 4.4 be valid. Then a primitive
ideal p liesin char(y) if and only if J, C p, i.e.

char(y) = Spec(B/J,).
Proof. Let J, C p. Then Ann(AM,) C p and, consequently, p € char(y).

Note that the result of previous subsections remain valid in the category of
graded modules over a graded algebra B. Suppose additionally that the graded
objects B, P, and () are associated with filtered ones, B’, P’, @', i.e. B’ =
(; B, Bi_, C B], Bi = B//B]_,, etc. Let ¢ = ¢, P — @ be a morphism
of the grading n > 0 associated with a filtered morphism ¢’ = ¢/,: P’ — @Q'.
Denote the characteristic ideal of by J7 = J". Obviously, ¢(J"P) C J"Q.
Consider the natural homomorphism of graded B/.J"-modules

Y. PIJ"P — Q/J"Q.

Let a € P, deg(a) = i. Then the class aJ" P liesin ker(p ) if and only if
Oa) =0+, where [d'| = a, V| =0 € J"Q, deg(t/) =n+i—1 (as
before, by |s| we denote an element of the graded object corresponding to the
element s from the filtered object). Since the element o’ is defined up to a sum of
elementsa”, |a”| € J"P, and o, deg(a”") = i — 1, then one has a well-defined
morphism ¢,,_1: ker(y ;) — coker(y ;.) of the grading n — 1. Hence, one can
define the set

char(pn—1) C Spec(B/J") C Spec(B)

and the ideal .J,,, ,. Denote by J"~* = .J2~* the inverse image of .J,,, _, under
the natural projection B — B/J".
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PROPOSITION 4.7. For all j =n —1,...,0 one has well-defined morphisms

QOJ ker(gonH) e COker(SDJj+1)>

where ideals J7+1 and morphisms

0 il ker(ysi+2) . coker(p si+2)
"
7 J¢j+1 ker(@,]jﬂ) J@j-»-iCOker(‘PJjH)
are naturally constructed using the morphisms ;1.
Proof. Use the inverse induction by j. For j = n — 1 the statement has been

proved already. Let now j < n — 1 and suppose that ¢; has been constructed.
Consider natural projections

coker(¢ ;)
J‘Pkfl(:Oker(sD,]k’)

Tk COKer(y k) —

and

coker (¢ s« )
J oy, COKEr (¢ 1)

ox: — coker(ii-1),

where k = n + 1,...,j. Then it can be easily seen that an element o’ € P/
determines an element @ < ker(y ;;) if and only if

SOl(a/) — bl + @/(a") + bl/7
where

— b is of filtration 7 + n,
= (pj+20mj420 0 ppy1 o mup1)([]) € Jp, coker(ep 1),

—a” is of filtration 7 — 1,
—b" isof filtration j — 1.
Hence there exists a well-defined element
0j-1(@) = (pj+10Tjt10 - 0 ppi1 0 M) ([07]).
DEFINITION 4.8. The morphism
SOj: ker(‘PijLl) I COker(SOJjw%)

defined above is called the j-th symbol of the morphism ¢, j=n—-1,...,0.

Let J7 = J7 be the inverse image of J,,, in B. Obviously, one has a sequence
of embeddings

JrcJvlc...cJtcJ’c B.
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DEFINITION 4.9. The ideal Jg, is called the characteristic idea of the rank j
for the morphism . A primitive graded ideal

pE Spngr(B/Jj) - Spngr(B)
is called a characteristic of the rank j for the morphism .

Denote the set of such characteristics by char;(y). Obviously, one has a
sequence of embeddings

char(p) = charg(y) C chari(p) C -+ C chary(p) C Specy(B).

THEOREM 4.10. Let ker(y ;1) and coker(p,;11) be projective B/.J7+1 mod-
ules of finite type. Then a primitive graded ideal p € Specy(B) belongs to
char; () if and only iff the kernel of the map

coker (¢ ;j41)

ker(‘PJJ’-ﬁ-l)
D ooKer( 1)

(‘Pj )P: D ker(gonH)

is nontrivial.

B/p ( p> ®B/p <Bp>

Remark 4.11. Let B, C be unitary commutative algebras over a commutative
ring R. Let f: B — C beahomomorphism due to which C' can be considered as
an B-algebra. If P isan B-module, then C®p P isaC-module. This construction
is an algebraic analog of the induced bundle. In particular, if J isan idea in B,
then an B/J-module P/(JP) ~ (B/J) ®p P geometrically corresponds to the
restriction onto a submanifold determined by the ideal J. Thus one can see that
the (n — 1)st symbol is defined on submanifold of degeneration of the senior
symbol, the next one is defined on the submanifold of degeneration of the (n—1)-
St, etc.

Remark 4.12. Junior symbols of adifferential operator A: P — (Q arise, when
one considers S for B and an S-module homomorphism ¢ = smbl(A): S(P) —
S(Q) and applies the results of this section to .
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