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RIEMANNIAN GEOMETRY

A Modern Introduction

Second Edition

This book provides an introduction to Riemannian geometry, the geometry of
curved spaces, for use in a graduate course. Requiring only an understanding of
differentiable manifolds, the book covers the introductory ideas of Riemannian
geometry, followed by a selection of more specialized topics. Also featured
are Notes and Exercises for each chapter to develop and enrich the reader’s
appreciation of the subject. This second edition has a clearer treatment of many
topics from the first edition, with new proofs of some theorems. Also a new
chapter on the Riemannian geometry of surfaces has been added.

The main themes here are the effect of curvature on the usual notions of
classical Euclidean geometry, and the new notions and ideas motivated by cur-
vature itself. Among the classical topics shown in a new setting is isoperimetric
inequalities – the interplay of volume of sets and the areas of their bound-
aries – in curved space. Completely new themes created by curvature include
the classical Rauch comparison theorem and its consequences in geometry and
topology, and the interaction of microscopic behavior of the geometry with the
macroscopic structure of the space.

Isaac Chavel is Professor of Mathematics at The City College of the City
University of New York. He received his Ph.D. in Mathematics from Yeshiva
University under the direction of Professor Harry E. Rauch. He has published in
international journals in the areas of differential geometry and partial differen-
tial equations, especially the Laplace and heat operators on Riemannian mani-
folds. His other books include Eigenvalues in Riemannian Geometry (1984) and
Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives
(2001). He has been teaching at The City College of the City University of
New York since 1970, and he has been a member of the doctoral program of
the City University of New York since 1976. He is a member of the American
Mathematical Society.
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Preface to the Second Edition

In this second edition, the first order of business has been to correct mistakes,
mathematical and typographical, large and small, and clarify a number of ar-
guments that were unclear or given short shrift the first time round. I can only
hope that, in this process, and in the process of changes and additions described
below, I have not introduced any new errors.

I have added some proofs of theorems, and sketches to some of the exercises,
that were originally left completely to the reader in the first edition. I have added
some new notes and exercises as well.

In the text itself, I have made a few changes. I added a chapter with top-
ics from surfaces, immediately following the chapter on coverings (Chapter
IV). The chapter (Chapter V) now includes the Gauss–Bonnet theorem; but, it
also contains topics of current interest, showing that the Riemannian geome-
try of surfaces is alive and well, and is a constant testing ground, as well as
a source, of new ideas. As it contained the introduction to the isoperimetric
problem in Riemannian manifolds, presenting the Bol–Fiala inequalities, and
the Benjamini–Cao solution of the isoperimetric problem on the paraboloid of
revolution, I thought it best to follow the chapter with isoperimetric inequalities
in the classical constant curvature space forms (Chapter VI).

This last chapter (Chapter VI) is a bit different from what I presented in the
first edition. New proofs were given for the isoperimetric problem in Euclidean
space, with the famous proof by M. Gromov, using Stokes’ theorem, now ap-
pearing in my other book Isoperimetric Inequalities: Differential Geometric
and Analytic Perspectives (2001). The Brunn–Minkowski inequalities in hy-
perbolic space and the sphere were redone, hopefully improving on the first
presentation.

Chapter VI is followed by the original (now Chapter VII) on the kinematic
density, with little change. I was sorely tempted to include the Burago–Ivanov
solution to the E. Hopf conjecture that metrics on the torus, of all dimensions,
without conjugate points are flat. But, such an undertaking would have taken the

xiii
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xiv Preface to the Second Edition

discussion too far afield. This chapter is then followed by the one on isoperi-
metric inequalities in general Riemannian manifolds, and the chapter on the
Rauch comparison theorem and its consequences.

Beyond the Notes and Exercises sections that conclude each chapter, the
reader is highly recommended to M. Berger’s recent survey A Panoramic View
of Riemannian Geometry (2003), preceded by his preparatory essay Riemannian
Geometry During the Second Half of the Twentieth Century (2000). Just about
every page of this introduction to Riemannian geometry could have contained
references to Berger’s surveys for further background and future work.

It is a pleasure to thank the readers of my first edition for their warm reception
of the book and for the helpful criticisms – both in pointing out errors and in
suggesting improvements. I should add that I found the reviews very helpful,
and I am grateful for the effort that went into them. I hope this edition merits
the effort they invested.

ISAAC CHAVEL

Riverdale, New York
February 2005
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Preface

My goals in this book on Riemannian geometry are essentially the same as
those that guided me in my Eigenvalues in Riemannian Geometry (1984): to
introduce the subject, to coherently present a number of its basic techniques and
results with a mind to future work, and to present some of the results that are
attractive in their own right. This book differs from Eigenvalues in that it starts
at a more basic level. Therefore, it must present a broader view of the ideas from
which all the various directions emerge. At the same time, other treatments of
Riemannian geometry are available at varying levels and interests, so I need
not introduce everything. I have, therefore, attempted a viable introduction to
Riemannian geometry for a very broad group of students, with emphases and
developments in areas not covered by other books.

My treatment presupposes an introductory course on manifolds, the con-
struction of associated tensor bundles, and Stokes’ theorem. When necessary, I
recall the facts and/or refer to the literature in which these matters are discussed
in detail.

I have not hesitated to prove theorems more than once, with different points
of view and arguments. Similarly, I often prove weaker versions of a result
and then follow with the stronger version (instead of just subsuming the former
result under the latter). The variety of levels, ideas, and approaches is a hallmark
of mathematics; and an introductory treatment should display this variety as part
of the development of broad technique and as part of the aesthetic appreciation
of the mathematical endeavor.

I am confident that a short course could be easily crafted from Chapters I
to IV and VII (the second edition: Chapter IX), and a more ambitious course
from the remaining material. Every chapter of the book features a Notes and
Exercises section. These sections cover (i) references to earlier literature and to
other results; (ii) “toes in the water” introductions to topics emerging from the
ideas presented in the main body of the text; and (iii) examples and applications.
The Notes and Exercises sections of the first four chapters are quite extensive.

xv
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xvi Preface

These sections in the later chapters are not as ambitious as those in the first
four, since the first four chapters are genuinely introductory.

The Notes and Exercises sections are organized loosely under subheadings
of topics. These are not to be taken too literally; rather, they attempt to restrain
the variety of material in these sections from becoming chaotic.

A submotif in the Notes and Exercises sections is the method of calculation
with moving frames, even though the method is not used extensively in the main
body of the text itself. Besides the obvious claim that such calculations should
be included in an introductory treatment, I had in mind a quiet tribute to the late
William F. Pohl. I learned the magic long ago of repère mobile from Bill Pohl
at the University of Minnesota. I can still see his full frame at the blackboard,
extending his arm gracefully in front of him, moving his hands descriptively
with his fingers playing the role of the frame vectors, and declaring that ω2

3 = 0
since the frame vector field e2 did not turn in the direction of e3.1

It is a pleasure to thank my colleagues and friends for their contributions to
my work, in general, and to this book, in particular. P. Buser provided me with
some helpful discussions and read portions of the work. So did J. Dodziuk and
E. A. Feldman. Finally, I wish to thank the geometers of the doctoral program
of the City University of New York, namely J. Dodziuk, L. Karp, B. Randol,
R. Sacksteder, J. Velling, and Edgar A. Feldman – who have provided, over
the years, all sorts of help, mathematical stimulation and insight, and scientific
partnership. Their contribution permeates all the pages of this book.

ISAAC CHAVEL

Riverdale, New York
July 1992

1 My memory hits the mark. As soon as I mentioned to Ed Feldman that I put moving frames in
the book because of Bill Pohl, Ed performed an imitation of the grand gesture that was Bill’s
trademark.
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I

Riemannian Manifolds

One cannot start discussing Riemannian geometry without mention of the
classics. By “the classics,” we refer to the essays of C. F. Gauss (1825, 1827) and
B. Riemann (1854), to G. Darboux’s summary treatise (1894) of the work of the
nineteenth century (and beginning of the twentieth), and to E. Cartan’s lectures
(1946) in which the method of moving frames became a powerful exciting tool
of differential geometry.

Nor may one forget to recommend to the reader the delightful discussion of
differential geometry in D. Hilbert–S. Cohn-Vossen (1952).

H. Hopf’s notes (1946, 1956) remain eminently readable. A very helpful
collection of more current introductory essays is the MAA Studies volume edited
by S. S. Chern (1989).

In addition, one should refer to the “introductory” five-volume opus of M.
Spivak (1970) – wherein the practice of differential geometry is presented in
loving detail.

Most recently, one has a definitive overview of the subject at the end of the
twentieth century by M. Berger (2003).

Our treatment here is mostly inspired by, and follows in many respects,
J. Milnor’s elegant and exceptionally clear lecture notes Milnor (1963).1

A short summary of the progression of ideas of this chapter is as follows.
Whereas one has, given a differentiable manifold, a natural differentiation

of functions on the manifold, one does not have a naturally determined method
of differentiation of vector fields on the manifold. Therefore, one considers all
possibilities of such differentiation – connections on the manifold. Once one
actually picks such a differentiation procedure (i.e., a connection), one deter-
mines differentiation of vector fields along paths in the manifold. In particular,

1 See Note 1 in §I.9.

1
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2 Riemannian Manifolds

one has an acceleration vector field (the derivative of the velocity vector field)
associated with each C2 path in the manifold. “Straight lines,” usually referred
to as geodesics, are then the paths in the manifold for which the acceleration
is zero – they are the collection of paths describing the “law of inertia” for the
manifold with the given connection.

The exponential map (the name inspired by analogy to the exponential map
in Lie Theory) then provides a map from the tangent space of any given
point of the manifold to the manifold itself, in which lines emanating from
the origin of the tangent space are mapped to geodesics in the manifold it-
self emanating from the point in question. It is in this context that we intro-
duce the torsion and curvature tensors of a connection. For the torsion and
curvature tensors arise from the linearization of the differential equations of
geodesics; therefore, they will ultimately play a role in studying the differen-
tial of the exponential map – the precise role to be explicated in detail in later
chapters.

Next, we introduce the Riemannian metrics, the ability to calculate the length
of paths in the manifold and to calculate angles of tangent vectors in the same
tangent space of the manifold. Again, the specification of the Riemannian metric
is not uniquely determined. However, once one has such a metric, one automat-
ically has a preferred connection associated with it. It will always be assumed,
unless some explicit comment is made to the contrary, that this connection –
the Levi-Civita connection – is the one under consideration when examining a
given Riemannian metric.

The ability to determine lengths of paths in the manifold then induces a natural
metric space structure on the manifold. Namely, the distance between any two
points of the manifold is the infimum of the length of all paths connecting
the two points. One has the classical theorems that (i) if a path between two
points has length equal to the distance between them, then the path may be
reparameterized to be a geodesic, and (ii) given any point in the manifold,
the point has a neighborhood for which there is one and only one distance
minimizing geodesic connecting the original point to any other point in the
neighborhood. (Actually, more is true – see §I.6.) This development of ideas
concludes (§I.7) with the full characterization of the completeness of the metric
structure of the Riemannian metric in terms of the infinite extendability of the
geodesics of the Riemannian metric.

The chapter closes with a discussion of calculations using moving frames. We
do not really present any new material; rather, we revisit some of the previous
calculations with a new tool to be developed in its own right and to be used
later on.
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§I.1. Connections 3

§I.1. Connections

We refer the reader to Narasimhan (1968) and Warner (1971) for background
on differentiable manifolds. Needless to say, these are not the only possible
quality choices.

For a path ω(t) in a manifold M , we let ω′(t) denote the velocity vector of
ω at ω(t). When the manifold is R

n , we will distinguish between the velocity
vector and the derivative of the vector valued function, when necessary.

Unless otherwise stated, either explicitly or by unequivocal context, all our
manifolds are C∞, Hausdorff, with countable base, and connected. Unless oth-
erwise indicated, differentiable means C∞. When speaking of manifolds that
possess boundary, our use of the word “manifold” (nearly) always refers to the
interior. In particular, our compact manifolds are without boundary.

Let M be an n–dimensional differentiable manifold, with tangent bundle
T M and associated natural projection π : T M → M . For any p ∈ M , we let
Mp denote the tangent space to M at p. We denote the collection of C�, � =
0, 1, . . . ,∞, vector fields on M by ��(T M).

If φ : M → N is a differentiable map from the manifold M to the manifold
N , we let φ∗ : T M → T N denote the induced bundle map (in local coordinates
the Jacobian linear transformation) linear on each fiber. We also let φ∗ denote
the pullback maps of the associated cotangent bundles.

Definition. A connection on M is a map ∇ : T M × �1(T M) → T M , which
we write as ∇ξ Y instead of ∇(ξ, Y ), with the following properties: First we
require that ∇ξ Y be in the same tangent space as ξ , and that for α, β ∈ R,
p ∈ M , ξ , η ∈ Mp, Y ∈ �1(T M),

∇αξ+βηY = α∇ξ Y + β∇ηY.

Second, we require that for p ∈ M , ξ ∈ Mp, Y , Y1, Y2 ∈ �1(T M), f ∈ C1(M),
we shall have

∇ξ (Y1 + Y2) = ∇ξ Y1 + ∇ξ Y2,

∇ξ ( f Y ) = (ξ f )Y|p + f (p)∇ξ Y.

Finally, we require that ∇ be smooth in the following sense: if X, Y ∈ �∞(T M),
then ∇X Y ∈ �∞(T M).

The example that motivates the above definition is, naturally, R
n . We let

�p : R
n → (Rn)p be the natural identification of R

n with the (abstract) tangent
space to R

n at any p ∈ R
n . For the natural basis {e1, . . . , en} of R

n , the natural
basis of (Rn)p determined by the chart consisting of the identity map of R

n to
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4 Riemannian Manifolds

itself is given by

∂ j |p = �pe j

for j = 1, . . . , n. Let Y be a differentiable vector field on R
n such that Y =

� j η j∂ j . Then, the standard connection on R
n is given by

∇ξ Y =
n∑

j=1

(ξη j )∂ j .(I.1.1)

One easily checks that the requirements of the definition of a connection are
satisfied.

A more explicit geometric expression for the standard connection on R
n is

given as follows: Given ξ ∈ (Rn)p, let ω : (−ε, ε) → R
n ∈ C1 be a path in R

n

with ω(0) = p, ω′(0) = ξ . Then one verifies that

∇ξ Y = lim
t→0

�p ◦�ω(t)
−1Y|ω(t) − Y|p

t
.(I.1.2)

Thus, the natural identification of the tangent spaces (Rn)p and (Rn)q via the
map �q ◦�p

−1, for any p, q in R
n , is that which allows for the natural dif-

ferentiation of vector fields on R
n . In an abstract differentiable manifold, no

such natural identification exists, a priori. Therefore, it must be postulated in
advance. However, it is far more natural to postulate the differentiation of vector
fields first, and to then investigate the resultant identification of tangent spaces
at different points of the manifold. See §I.2.

Let M be our differentiable manifold with connection ∇. We note that, for
p ∈ M , ξ ∈ Mp, ∇ξ Y is uniquely determined by the restriction of Y to any open
set U containing p. To see this, fix p ∈ M , ξ ∈ Mp, and an open neighborhood
U of p.

We first show that Y |U = 0 implies ∇ξ Y = 0. Pick a differentiable function
f : M → R such that f (p) = 0 and f |M\U = 1. Then, f Y = Y and

∇ξ Y = ∇ξ ( f Y ) = (ξ f )Y|p + f (p)∇ξ Y,

both terms of which vanish at p. We conclude that, if two vector fields agree
on all of U , then so do their covariant derivatives.

We may proceed conversely, namely, if Y is given as defined only on U , then
pick open V relatively compact in U and φ : M → [0, 1] differentiable with
compact support such that φ|V = 1 and supp φ ⊆ U . Then define Y ∈ �1(T M)
by setting Y = φY on U , and Y = 0 on M\U ; and finally define

∇ξ Y = ∇ξ Y .
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§I.1. Connections 5

Then, ∇ξ Y is well-defined, that is, it is independent of the choice of extension
of Y to Y ∈ �1(T M). Thus, we may effectively calculate ∇ by restricting the
vector fields in question to, for example, the domain of a chart.

We now show more, namely, that to calculate ∇ξ Y , for given Y ∈ �1(T M),
we need only know Y restricted to a path through p = π (ξ ) with velocity vector
at p equal to ξ . Indeed, let x : U → R

n be a chart about p, and ξ given by

ξ =
∑

j

ξ j∂ j |p.

Then ∇ξ Y is given by

∇ξ Y =
∑

j

ξ j∇∂ j |p Y.

Also, one has the functions η j : U → R, j = 1, . . . , n, such that

Y |U =
∑

j

η j∂ j .

Now, there exist functions � jk
� : U → R, j , k, � = 1, . . . , n, referred to as

Christoffel symbols, such that

∇∂k ∂ j =
∑

�

� jk
�∂�(I.1.3)

on U . We then have

∇ξ Y =
∑

k

ξ k∇∂k|p Y

=
∑

k

ξ k∇∂k|p

(∑
j

η j∂ j

)

=
∑

k

ξ k

{∑
j

(∂kη
j )(p)∂ j |p +

∑
j,�

η j (p)� jk
�(p)∂�|p

}

=
∑

�

{∑
k

ξ k(∂kη
�)(p) +

∑
j,k

� jk
�(p)η j (p)ξ k

}
∂�|p,

that is,

∇ξ Y =
∑

�

{∑
k

ξ k(∂kη
�)(p) +

∑
j,k

� jk
�(p)η j (p)ξ k

}
∂�|p.(I.1.4)
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In particular, if ω : (α, β) → M is differentiable such that t0 ∈ (α, β), ω(t0) =
p, ω′(t0) = ξ , one then has

∇ξ Y =
∑

�

{
(η�◦ω)′(t0) +

∑
j,k

� jk
�(p)η j (p)ξ k

}
∂�|p,

which was our claim.

Next, we note that the choice of connection on M is highly undetermined. Given
any chart x : U → R

n , then any choice of n3 functions � jk
� : U → R ∈ C∞

determine a local connection on U , via the equations (I.1.3) and (I.1.4). One
can then create global connections on M from local ones, by using a partition
of unity.

Finally, we note the change of variable formula for the Christoffel symbols.
Given two charts x : U → R

n , y : U → R
n , on M , with respective Christoffel

symbols x� jk
�, y�st

r , then one verifies by direct calculation

(I.1.5)∑
�

x� jk
� ∂(yr ◦x−1)

∂x�
= ∂2(yr ◦x−1)

∂x j∂xk
+

∑
s,t

∂(ys ◦x−1)

∂x j

∂(yt ◦x−1)

∂xk y�st
r .

Definition. Let ω : (α, β) → M be a C1 path in M . We define a vector field
along the path ω to be a map X : (α, β) → T M , such that π ◦X = ω, that is,
X (t) ∈ Mω(t) for all t . (Note that in such a situation, we do not necessarily
obtain a vector field on the image of ω in M since it is possible, for example,
that t1, t2 ∈ (α, β), t1 
= t2, ω(t1) = ω(t2), but X (t1) 
= X (t2).)

We define the derivative of X along ω, ∇t X , as follows: Assume x : U → R
n

is a chart containing ω((α, β)) and define � jk
� as in (I.1.3). Also set

ω j = x j ◦ω, j = 1, . . . , n,

write X as

X =
∑

j

ξ j (∂ j ◦ω),

and finally, define

∇t X =
∑

�

{
(ξ�)′ +

∑
j,k

(� jk
�◦ω)ξ j (ωk)′

}
(∂�◦ω),(I.1.6)

for X ∈ C1.
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One checks, using (I.1.5), that the definition (I.1.6) is independent of the choice
of chart on M and thereby obtains a well-defined vector field ∇t X along ω even
if the image of ω is not contained in the domain of one chart on M . Also,

∇t (X1 + X2) = ∇t X1 + ∇t X2,(I.1.7)

∇t ( f X ) = f ′ X + f ∇t X,(I.1.8)

for all vector fields X, X1, X2 along ω, and f : (α, β) → R ∈ C1.

One can now use the above to consider a more general situation, namely,

Definition. Let N , M be differentiable manifolds, φ : N → M differentiable.
Then, define a vector field X along φ to be a map X : N → T M satisfying
π ◦X = φ, that is, X (q) ∈ Mφ(q) for all q ∈ N .

If X is a differentiable vector field along φ, q ∈ N , ξ ∈ Nq , and ∇ a con-
nection on M , define the derivative of X along φ in the direction ξ , ∇ξ X , as
follows: Let ω : (−ε, ε) → N be any differentiable path for which ω(0) = q,
ω′(0) = ξ , and let Y : (−ε, ε) → T M be the vector field along φ◦ω given by

Y = X ◦ω.

Define ∇ξ X by

∇ξ X = (∇t Y )(0).

∇ξ X is seen to be independent of the choice of ω, and is therefore well-defined
and satisfies

∇ξ (X1 + X2) = ∇ξ X1 + ∇ξ X2,

∇ξ ( f X ) = (ξ f )X |p + f (p)∇ξ X,

where X, X1, X2 are differentiable vector fields along φ and f : N → R is
differentiable.

§I.2. Parallel Translation of Vector Fields

Let M be a given differentiable manifold with connection ∇.

Definition. Let ω : (α, β) → M be a C1 path in M . We say that a vector field
X along ω is parallel along ω if

∇t X = 0

on all of (α, β).
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By (I.1.7), (I.1.8) one has that, given ω, ∇t is a linear operator on vector fields
along ω; thus, the set of parallel vector fields along ω is a vector space over R.
From (I.1.6), one has (via the theory of linear ordinary differential equations),
to each t0 ∈ (α, β), ξ ∈ Mω(t0), the existence of a unique parallel vector field X
along ω satisfying X (t0) = ξ . In particular, the space of parallel vector fields
along ω is finite dimensional and has dimension equal to that of M .

Thus, we can construct isomorphisms between the tangent spaces to M at
different points of ω, namely, let t1, t2 ∈ (α, β), and for ξ ∈ Mω(t1) let Xξ be the
parallel vector field along ω satisfying Xξ (t1) = ξ . Now set

τt1,t2 (ξ ) = Xξ (t2).

Then, τt1,t2 is a linear isomorphism of Mω(t1) onto Mω(t2) and is called parallel
translation along ω from Mω(t1) to Mω(t2).

Theorem I.2.1. Let ω : (α, β) → M be a differentiable path, X a differentiable
vector field along ω, and t0 ∈ (α, β). Then,

(∇t X )(t0) = lim
t→t0

τt,t0 (X (t)) − X (t0)

t − t0
.(I.2.1)

Proof. Let E1(t), . . . , En(t) be n parallel vector fields along ω, which are point-
wise linearly independent (of course, as soon as they are linearly independent
at one point, they are linearly independent at all points), n = dim M ; then, there
exist functions ξ j : (α, β) → R, j = 1, . . . , n such that

X (t) =
n∑

j=1

ξ j (t)E j (t)

on (α, β). One now calculates explicitly both sides of (I.2.1) and the result
follows. �

Remark I.2.1. The reader is invited to compare (I.2.1) with (I.1.2). Note that
the identification of tangent spaces τt1,t2 (ξ ) depends on the path ω connecting
ω(t1) to ω(t2). A local calculation shows that if parallel translation of vector
fields is independent of the choice of path connecting any two given points in M ,
then the curvature tensor of ∇ – to be defined below in §I.4 – vanishes identically
on M . Almost needless to say, if parallel translation of vector fields on M were
independent of the choice of path connecting any two given points in M , then
one could construct, at will, n linearly independent (over R) nonvanishing vector
fields on M – a global topological restriction on M . See, also, Remark I.5.2.
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§I.3. Geodesics and the Exponential Map

We are still with our differentiable manifold M and connection ∇.

Definition. A path ω : (α, β) → M ∈ C�, � ≥ 2, is called is called a
geodesic if

∇tω
′ = 0.(I.3.1)

on all of (α, β).

To write the equation for a geodesic in a chart, we let x : U → R
n be the

chart, set ω j = x j ◦ω, j = 1, . . . , n, and let � jk
�, j, k, � = 1, . . . , n be given

by (I.1.3). Then, (I.1.6) implies that (I.3.1) reads as

(ω�)′′ +
∑

j,k

(� jk
�◦ω)(ω j )′(ωk)′ = 0.(I.3.2)

We now exhibit the second-order system (I.3.2) as a first-order system on T M .
With the projection π : T M → M and chart x : U → R

n , we associate the
natural chart Q : π−1[U ] → R

2n = R
n × R

n by Q(ξ ) = (q(ξ ), q̇(ξ )), where

q = x◦π, q̇(ξ ) = ξ x

(where by ξ x we mean ξ j = ξ x j , j = 1, . . . , n). Thus,

ξ =
∑

j

q̇ j (ξ )∂ j |π (ξ ).

We find it convenient to write the basis of tangent spaces to T M at points of
π−1[U ] by {∂/∂q1, . . . , ∂/∂qn , ∂/∂q̇1, . . . , ∂/∂q̇n}. One immediately has

π∗(∂/∂q j ) = ∂/∂x j , π∗(∂/∂q̇ j ) = 0.

The differential equation (I.3.2) can then be written as a first-order equation in
π−1[U ]:

(q�)′ = q̇�,(I.3.3)

(q̇�)′ = −
∑

j,k

(� jk
�◦π )q̇ j q̇k .(I.3.4)

The solutions to (I.3.3), (I.3.4) are therefore integral curves of the vector field
G on π−1[U ] given by

G =
∑

�

{
q̇� ∂

∂q�
−

∑
j,k

(� jk
�◦π )q̇ j q̇k ∂

∂q̇�

}
.
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Since the geodesic equations are independent of the choice of coordinates on
M , we conclude that G defines a global vector field on T M .

Definition. The maximal flow of G is called the geodesic flow.

One easily has the following:

Theorem I.3.1. Let � : (α, β) → T M be an integral curve of G, and ω =
π ◦�. Then,

ω′ = �(I.3.5)

and ω is a geodesic in M. Conversely, given a geodesic ω : (α, β) → M and
� defined by (I.3.5), then � is an integral curve of G.

Thus, if ϕ(t, ξ ) denotes the maximal flow of G on T M, where t ∈ R, ξ ∈ T M,
then

γξ (t) := π ◦ϕ(t, ξ )

is the unique maximal (relative to its domain in R) geodesic in M satisfying

γξ (0) = π (ξ ), γξ
′(0) = ξ.

Of course,

γξ
′(t) = ϕ(t, ξ ).

In particular, γξ (t) depends differentiably (i.e., C∞) on t and ξ .
Finally, if Iξ is the maximal interval on which γξ is defined, then for any

α ∈ R, α 
= 0 we have

Iαξ = (1/α)Iξ , γαξ (t) = γξ (αt),(I.3.6)

where if Iξ = (β1, β2) then (1/α)Iξ := (β1/α, β2/α) when α > 0, and (1/α)
Iξ := (β2/α, β1/α) when α < 0.

Remark I.3.1. We note that (I.3.5) – the coordinate-free version of (I.3.3),
(I.3.4) – is the heart of a coordinate-free definition of a second-order differential
equation on a manifold. Namely, we say that a vector field X on T M determines
a second-order ordinary differential equation on M if

π∗(X|ξ ) = ξ
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for all ξ ∈ T M , that is, if we consider X : T M → T T M as a section on T M
into T T M then

π∗X = idT M .(I.3.7)

Thus, if � denotes an integral curve of X on T M , and ω = π ◦� is the projection
of � to M , then the validity of (I.3.5) for all integral curves � is equivalent to
(I.3.7).

Definition. By the zero section in T M , we mean the vector field o ∈ �(T M)
where o|p is the zero vector in Mp.

Note that o is an imbedding of M in T M .

Theorem I.3.2. Let T M be the subset of T M defined by

T M = {
ξ ∈ T M : 1 ∈ Iξ

}
.

Then T M is open and is starlike with respect to o ∈ �(T M), that is, for any
ξ ∈ T M we have αξ ∈ T M for all α ∈ [0, 1].

If we define exp : T M → M by

exp ξ = γξ (1),

then exp is differentiable, and exp has maximal rank on o(M) ⊆ T M.
If for any given p ∈ M we define expp : Mp ∩ T M → M by

expp = exp |Mp ∩ T M,

then expp is differentiable, and expp has maximal rank at 0 ∈ Mp.
Finally, the map π × exp : T M → M × M given by

(π × exp)(ξ ) = (π (ξ ), exp ξ )

is differentiable and of maximal rank (= 2dim M) on o(M) ⊆ T M. Thus, there
exists a neighborhood W of o(M) in T M such that (π × exp)|W is a diffeo-
morphism of W onto its image, an open subset of M × M.

Proof. That T M is open is a consequence of the fact that the domain of the
maximal flow is open. That T M is starlike follows from (I.3.6).

We shall calculate (π × exp)∗ on o(M), since this calculation contains that
of exp∗ on o(M), and (expp)∗|0.

Fix p ∈ M , and a chart x : U → R
n . On π−1[U ] we have the chart Q :

π−1[U ] → R
n × R

n as discussed previously; and on U × U we have the
chart y : U × U → R

n × R
n given by y(p1, p2) = (x(p1), x(p2)). Then
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(π × exp)−1[U × U ] is open in T M and contains o(U ). So our goal is to cal-
culate the rank of the Jacobian matrix of

z := y◦(π × exp)◦Q−1 : Q(π−1[U ]) → R
2n

on Q(o(U )).
Let π1 : R

n × R
n → R

n denote the projection onto the first factor. Then,

x◦π ◦Q−1 = π1;

so it remains to calculate (expp)∗|0.
For the calculation that follows, it will be more convenient to denote the

origin of Mp by o, and the origin of R by 0.
Let �o : Mp → (Mp)o be the canonical identification of Mp with its tangent

space at the origin o. We shall show that

(expp)∗|o◦�o = idMp .

Indeed, given ξ ∈ Mp consider the linear path ω in Mp given by ω(t) = tξ .
Then

ω′(0) = �oξ = ω∗|0
∂

∂t
,

which implies

(exp)∗|o◦�oξ = (exp)∗|o◦ω∗|0
∂

∂t

= (exp◦ω)∗|0
∂

∂t

=
{

d

dt
((exp◦ω)(t))

}
t=0

= γξ
′(0)

= ξ,

which is the claim.
The final statement of the theorem follows from the calculation just done,

and the following fact:

If M, N are Hausdorff spaces, M locally compact with countable basis, φ :
M → N a local homeomorphism, A closed in M , and φ|A is one-to-one, then
there exists a neighborhood V of A such that φ|V is a homeomorphism. �

Definition. We refer to exp : T M → M as the exponential map.
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§I.4. The Torsion and Curvature Tensors

M is our differentiable manifold with connection ∇.

Definition. For any p ∈ M , we shall define the multilinear maps

T : Mp × Mp → Mp, R : Mp × Mp × Mp → Mp,

henceforth referred to as the torsion and curvature tensors of ∇, respectively,
as follows: For ξ, η, ζ ∈ Mp, let X, Y, Z be extensions of ξ, η, ζ , respectively,
to vector fields on a neighborhood of p. Then define

T (ξ, η) = ∇η X − ∇ξ Y − [Y, X ]|p,(I.4.1)

R(ξ, η)ζ = ∇η∇X Z − ∇ξ∇Y Z − ∇[Y,X ]|p Z .(I.4.2)

In the above, and in all that follows, [ , ] denotes the Lie bracket of vector fields.

To show that T and R are well-defined (i.e., they are independent of the exten-
sions of ξ, η, ζ ), it is best to change the point of view and consider T and R as
defined on the vector fields X, Y, Z . We first show that T and R are multilinear
(with respect to X, Y, Z ) over functions on M , that is, for example,

T (X, Y ) = ∇Y X − ∇X Y − [Y, X ]

satisfies

T

(
2∑

i=1

fi Xi ,

2∑
j=1

g j Y j

)
=

2∑
i, j=1

fi g j T (Xi , Y j ).

Certainly, T (X, Y ) = −T (Y, X ); so we only have to show that T is linear over
functions with respect to the first variable. Clearly, T (X, Y ) is additive with
respect to X , and

T ( f X, Y ) = ∇Y ( f X ) − ∇ f X Y − [Y, f X ]

= (Y f )X + f ∇Y X − f ∇X Y − {(Y f )X + f [Y, X ]}
= f T (X, Y ).

So T is linear in X , hence multilinear in X and Y , over functions. But then, in
any coordinate chart x : U → R

n , we have for

X =
∑

j

ξ j ∂

∂x j
, Y =

∑
k

ηk ∂

∂xk
,
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the calculation

T (X, Y ) =
∑

j,k

ξ jηk T

(
∂

∂x j
,

∂

∂xk

)
.

So T (X, Y )|p is determined exclusively by the values of X |p and Y|p. The
discussion for the curvature tensor field R is similar.

As mentioned, one has

T (ξ, η) + T (η, ξ ) = 0.(I.4.3)

Also,

R(ξ, η)ζ + R(η, ξ )ζ = 0.(I.4.4)

Remark I.4.1. The above equations (I.4.3) and (I.4.4) are obvious conse-
quences of the definitions (I.4.1) and (I.4.2). For more involved calculations,
such as (I.4.5) immediately below, it helps to note that, for any chart on M , the
Lie bracket of coordinate vector fields associated with the chart vanishes iden-
tically on its domain. Since for calculating identities for tensor fields it suffices
to verify the results for coordinate vector fields of a chart, one has a consider-
able simplification of the resulting calculations, by verifying the identities for
coordinate vector fields of a chart.

If we are given that T = 0 on all of M then direct calculation yields the first
Bianchi identity

R(ξ, η)ζ + R(ζ, ξ )η + R(η, ζ )ξ = 0.(I.4.5)

To prove (I.4.5), it suffices to check that, in any chart x : U → R
n , we have

R(∂ j , ∂k)∂� + R(∂�, ∂ j )∂k + R(∂k, ∂�)∂ j = 0.

Well, since T = 0, we have ∇∂ j ∂k = ∇∂k ∂ j for all j, k, which implies

R(∂ j , ∂k)∂� + R(∂�, ∂ j )∂k + R(∂k, ∂�)∂ j

= ∇∂k ∇∂ j ∂� − ∇∂ j ∇∂k ∂� + ∇∂ j ∇∂�
∂k − ∇∂�

∇∂ j ∂k + ∇∂�
∇∂k ∂ j − ∇∂k ∇∂�

∂ j

= ∇∂k (∇∂ j ∂� − ∇∂�
∂ j ) + ∇∂ j (∇∂�

∂k − ∇∂k ∂�) + ∇∂�
(∇∂k ∂ j − ∇∂ j ∂k)

= 0.

We leave to the reader to verify that if x : u → R
n is a chart on M , and the

functions � jk
� : U → R, j, k, � = 1, . . . , n, are given by (I.1.3), then for

T (∂ j , ∂k) :=
∑

�

Tjk
�∂�
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we have

Tjk
� = � jk

� − �k j
�,

and for

R(∂ j , ∂k)∂i :=
∑

�

Ri jk
�∂�

we have

Ri jk
� = ∂k�i j

� − ∂ j�ik
� +

∑
r

{
�i j

r�rk
� − �ik

r�r j
�
}
.(I.4.6)

Both the torsion and curvature tensors appear in Jacobi’s equations of geodesic
deviation, that is, the linearized geodesic equations: Let ε0 > 0, v : (α, β) ×
(−ε0, ε0) → M be differentiable such that for each ε in (−ε0, ε0) the path
ωε : (α, β) → M given by ωε(t) = v(t, ε) is a geodesic. The coordinate vector
fields along v will be written as

∂t v = v∗∂t , ∂εv = v∗∂ε,

and differentiation of vector fields along v with respect to the directions ∂t , ∂ε

by ∇t , ∇ε respectively. One has, since [∂t , ∂ε] = 0,

∇ε∂t v − ∇t∂εv = T (∂t v, ∂εv),(I.4.7)

∇ε∇t − ∇t∇ε = R(∂t v, ∂εv).(I.4.8)

Theorem I.4.1. (C. F. Jacobi (1836)) Given the above, we have

0 = ∇t
2∂εv + ∇t (T (∂t v, ∂εv)) + R(∂t v, ∂εv)∂t v .(I.4.9)

Proof. We are given on all of (α, β) × (−ε0, ε0) that

0 = ∇t∂t v,

which implies

0 = ∇ε∇t∂t v

= ∇t∇ε∂t v + R(∂t v, ∂εv)∂t v

= ∇t {∇t∂εv + T (∂t v, ∂εv)} + R(∂t v, ∂εv)∂t v

= ∇t
2∂εv + ∇t (T (∂t v, ∂εv)) + R(∂t v, ∂εv)∂t v,

which yields the claim. �



P1: IWV

0521853680c01 CB980/Chavel January 2, 2006 10:29 Char Count= 611

16 Riemannian Manifolds

§I.5. Riemannian Metrics

Definition. Given a differentiable manifold M , define a Riemannian metric
g on M to be a mapping that associates with each p ∈ M an inner product
gp : Mp × Mp → R satisfying the following differentiability property: If U
is any open set in M and X, Y are differentiable vector fields on U , then the
function g(X, Y ) : U → R given by

g(X, Y )(p) = gp(X |p, Y|p)

is differentiable on U .
By a Riemannian manifold we mean a differentiable manifold with a given

Riemannian metric.

Definition. Let M, N be differentiable manifolds, h a Riemannian metric on N ,
φ : M → N differentiable, and M0 = {p ∈ M : φ∗|p is one-to-one}. Of course
M0 is a, possibly empty, open submanifold of M . The pull-back φ∗h of h is
defined to be the Riemannian metric on M0 given by

(φ∗h)(ξ, η) = h(φ∗ξ, φ∗η)(I.5.1)

where ξ, η ∈ Mp, p ∈ M0.
If p ∈ M\M0, then (I.5.1) defines a symmetric bilinear form on Mp, but the

form is only nonnegative.
Should M also be a Riemannian manifold with Riemannian metric g, then

we say that φ is a local isometry of M0 into N if g = φ∗h on M0. If M is
connected, then g = φ∗h also implies that M0 = M , that is, φ is a Riemannian
immersion. If φ is an imbedding satisfying g = φ∗h then we call φ an isometry
of M into N .

An isometry of M is a diffeomorphism of M onto itself that is an isometry.

When there is only one Riemannian metric under consideration, we usually
write 〈 , 〉 for g( , ).

Theorem I.5.1. (T. Levi-Civita (1929)) If M is a Riemannian manifold, then
there exists a unique connection ∇ (henceforth called the Levi-Civita connec-
tion) for which

∇X Y = ∇Y X + [X, Y ],(I.5.2)

X〈Y, Z〉 = 〈∇X Y, Z〉 + 〈Y, ∇X Z〉,(I.5.3)

for all differentiable vector fields X, Y, Z ∈ �(T M).
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Proof. Since at each point the inner product is a nondegenerate bilinear form,
to calculate ∇X Y it suffices to calculate 〈∇X Y, Z〉 for any X, Y, Z ∈ �(T M).
To this end we have, using (I.5.2), (I.5.3) alternatively,

〈∇X Y, Z〉 = X〈Y, Z〉 − 〈Y, ∇X Z〉
= X〈Y, Z〉 − 〈Y, ∇Z X〉 − 〈Y, [X, Z ]〉
= X〈Y, Z〉 − Z〈Y, X〉 + 〈∇Z Y, X〉 − 〈Y, [X, Z ]〉
= X〈Y, Z〉 − Z〈Y, X〉 + 〈∇Y Z , X〉 + 〈[Z , Y ], X〉 − 〈Y, [X, Z ]〉
= X〈Y, Z〉 − Z〈Y, X〉 + Y 〈Z , X〉 − 〈Z , ∇Y X〉 + 〈[Z , Y ], X〉

− 〈Y, [X, Z ]〉
= X〈Y, Z〉 − Z〈Y, X〉 + Y 〈Z , X〉 − 〈Z , ∇X Y 〉

− 〈Z , [Y, X ]〉 + 〈[Z , Y ], X〉 − 〈Y, [X, Z ]〉.
Therefore, we have

〈∇X Y, Z〉 = (1/2){X〈Y, Z〉 + Y 〈Z , X〉 − Z〈X, Y 〉(I.5.4)

− 〈X, [Y, Z ]〉 − 〈Y, [X, Z ]〉 − 〈Z , [Y, X ]〉},
that is, if we are given the restrictions (I.5.2), (I.5.3), then we have the explicit
calculation of 〈∇X Y, Z〉 – thus ∇X Y is uniquely determined. To establish the
existence of ∇, one takes (I.5.4) to define ∇, and verifies directly that ∇ indeed
defines a connection satisfying (I.5.2), (I.5.3). �

Remark I.5.1. Note that (I.5.2) says that the torsion tensor of the Levi–Civita
connection vanishes on all of M .

Remark I.5.2. Before proceeding with the further development of ideas and
results, it is worth illustrating the point made in Remark I.2.1, namely, that
parallel translation of vectors along paths might very well depend on the choice
of path, equivalently, that parallel translation around a closed path might have
distinct initial and terminal vectors. Consider, for simplicity, the 2–sphere S

2 of
radius 1 in R

3. Its standard metric is induced by restricting the standard metric
of R

3 to the tangent bundle of S
2. We shall show in §II.3 that the geodesics

of S
2 are the “great circles” of the sphere, that is, those circles obtained as the

intersection of S
2 with any 2–plane in R

3 passing through the center of S
2.

To illustrate parallel translation (see Figure I.1), consider a unit tangent vector
ξ at the north pole P . Consider the geodesic γξ determined by ξ , and parallel
translate ξ along γξ to obtain η = γξ

′(π/2) on the equator. Rotate η through
π/2 radians to obtain the unit tangent vector ζ tangent to the equator. Parallel
translate η along γζ (i.e., along the equator) to obtain the tangent vector σα at
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�
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�

� ��

�2

Figure I.1. Parallel translation on S
2.

γζ (α). Since (I.5.3) implies that lengths and angles are preserved by parallel
translation, then σα is a unit tangent vector, perpendicular to γζ

′(α), and pointing
toward the south pole. Finally, parallel translate σα along γ−σα

, back to the unit
tangent vector ξα = −γ−σα

′(π/2) at the north pole P . Then, for α ∈ (0, 2π ),
we certainly have ξα 
= ξ .

Let x : U → R
n be a chart on the Riemannian manifold M . Then, for each

p ∈ U , the matrix G(p) given by

G(p) = (gi j (p)), gi j (p) = 〈∂i |p, ∂ j |p〉,(I.5.5)

is positive definite symmetric, and the functions gi j : U → R, i, j = 1, . . . , n,
are C∞ on U . Conversely, given any n–dimensional manifold M , and a chart x :
U → R

n on M , one determines a local Riemannian metric on U by specifying a
C∞ function from U to the space of n × n positive definite symmetric matrices.
Since the n × n positive definite symmetric matrices form a cone in the space
of all n × n matrices, one may use partitions of unity to pass from the existence
of local Riemannian metrics to global ones.

Given the matrix function G on U , we denote the inverse G−1 by

G−1 = (gi j ).(I.5.6)

Let ∇ be the Levi–Civita connection of the Riemannian metric, and � jk
�

given by (I.1.3). Then (I.5.2) becomes

� jk
� = �k j

�,(I.5.7)
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and (I.5.4) becomes

� jk
� = 1

2

∑
r

g�r
{
∂ j grk + ∂k g jr − ∂r g jk

}
.(I.5.8)

Finally, we note that, for formal calculations, one uses the classical expression
for the Riemannian metric

ds2 =
∑

j,k

g jk(x) dx j dxk,

which on R
n becomes

ds2 = |dx |2.

§I.6. The Metric Space Structure

Let M, N be differentiable manifolds and A an arbitrary set in M . Recall that
a map φ : A → N is Ck on A, k ≥ 1, if there exist an open set U such that
A ⊆ U ⊆ M and a map φ̂ : U → N ∈ Ck satisfying φ̂|A = φ.

Definition. For a given differentiable manifold M , k = 1, . . . ,∞, we let Dk

denote the collection of all maps ω from closed intervals of R into M that
are continuous and piecewise Ck , that is, ω is given by ω : [α, β] → M ∈
C0 and there exist α = t0 < t1 < . . . < t� = β such that ω|[t j−1, t j ] ∈ Ck for
j = 1, . . . , �.

Let M be a Riemannian manifold. For any ξ ∈ T M , define the length of ξ ,
|ξ |, by

|ξ | = 〈ξ, ξ〉1/2.

For any path ω : [α, β] → M ∈ D1 define the length of ω, �(ω) by

�(ω) =
∫ β

α

|ω′(t)| dt.

For M connected (our usual assumption), p, q ∈ M , define the distance between
p and q , d(p, q), by

d(p, q) = inf
ω

�(ω),

where ω ranges over all ω : [α, β] → M ∈ D1 satisfying ω(α) = p, ω(β) = q.
One immediately verifies that

d(p, q) = d(q, p),

d(p, q) ≥ 0,

d(p, q) ≤ d(p, r ) + d(r, q),
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for all p, q, r ∈ M . Thus, to show that d( , ) turns M into a metric space, it
remains to show that if p and q are distinct points of M , then d(p, q) > 0. We
give two proofs of this fact. The first is short – it reduces the problem to that
of Euclidean space, which we may take as known. The second approach is far
more detailed, in that it recaptures those features of the Euclidean case that are
pertinent to the matter.

The first proof goes as follows (see Hopf–Rinow (1931, p. 213)): Assume
M is n–dimensional, and (henceforth) let B(x ; r ) denote the open ball in R

n ,
centered at x , with radius r . Given p ∈ M , let x : U → R

n be a chart on M ,
p ∈ U . Then there exists r > 0 for which

B(x(p); r ) ⊂⊂ x(U ),

which determines the existence of a constant λ > 0 such that, for all ξ ∈
T (x−1[B(x(p); r )]),

ξ =
∑

j

ξ j ∂

∂x j
,

we have

|ξ | ≥ λ

√∑
j

(ξ j )2.

So, on B(x(p); r ), the Riemannian lengths are uniformly bounded below by the
corresponding Euclidean lengths. Therefore, for q ∈ x−1[B(x(p); r )], we have

d(p, q) ≥ λ|x(p) − x(q)| > 0.

For q ∈ M \ x−1[B(x(p); r )], we obviously have

d(p, q) ≥ λr.

So p 
= q implies d(p, q) > 0.
For the second proof, recall that, for any ξ ∈ T M , the path

γξ (t) = exp tξ(I.6.1)

is the unique geodesic in M satisfying

γξ (0) = π (ξ ), γξ
′(0) = ξ,(I.6.2)

where π : T M → M is the projection map. Note that an immediate con-
sequence of (I.5.3), extended to differentiation of vector fields along paths,
is that

|γξ
′(t)| = |ξ |(I.6.3)

for all t for which γξ is defined.
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Also recall that if o : M → T M is the zero section of M in T M , and T M is
the domain of the exponential map exp, then by Theorem I.3.2 there exists an
open set W in T M such that o(M) ⊆ W ⊆ T M , and π × exp : W → M × M
is a diffeomorphism of W onto its image, an open subset of M × M .

Definition. For any q ∈ M , we let

B(q; ε) = {ξ ∈ Mq : |ξ | < ε}, Bq = B(q; 1),

and for any V ⊆ M we write

B(V ; ε) =
⋃
q∈V

B(q; ε).

Similarly, we define

S(q; ε) = {ξ ∈ Mq : |ξ | = ε}, Sq = S(q; 1),

S(V ; ε) =
⋃
q∈V

S(q; ε).

Theorem I.6.1. For each p ∈ M, there exists ε > 0 and a neighborhood U of
p in M such that

(i) any two points of U are joined by a unique geodesic in M of length < ε;
(ii) the geodesic depends differentiably on its endpoints; and
(iii) for each q ∈ U, expq maps B(q; ε) diffeomorphically onto an open set

in M.

Proof. Let W be the open set in T M described above. Then, for any p ∈ M ,
there exists a neighborhood V of p in M and an ε > 0 such that B(V ; ε) ⊆ W .
Next, there exists an open neighborhood U of p in M such that U × U ⊆
(π × exp)(B(V ; ε)). One now checks that U and ε will do the job. �

Theorem I.6.2. Let ε > 0 and U be given as in Theorem I.6.1, p,q ∈ U, and
γ : [0, 1] → M the geodesic of length less than ε satisfying γ (0) = p, γ (1) =
q. Let ω : [0, 1] → M ∈ D1 be any path satisfying ω(0) = p, ω(1) = q. Then

�(γ ) ≤ �(ω)(I.6.4)

with equality only if γ ([0, 1]) = ω([0, 1]).

Proof. We first require the following:

Lemma I.6.1. (Gauss’s lemma (1825, p. 107), (1827, p. 24)) Let p ∈ M and
B(p; δ0) ⊆ T M. Then, for any t ∈ (0, δ0), ξ ∈ Sp, and ζ ∈ (S(p; t))tξ , we have

〈γξ
′(t), (expp)∗|tξ ζ 〉 = 0.(I.6.5)
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Figure I.2. The geodesic variation in Gauss’ lemma.

Proof. Fix ξ ∈ Sp, and let

ξ⊥ = {η ∈ Mp : 〈η, ξ〉 = 0}.
Recall that �tξ : Mp → (Mp)tξ denotes the canonical isomorphism.
For fixed η ∈ ξ⊥, t > 0, consider the path in Mp given by

ωt (θ ) = t{(cos |η|θ )ξ + (sin |η|θ )η/|η|}.
(See Figure I.2.) Then,

ωt (0) = tξ, ωt
′(0) = t�tξ η ∈ (S(p; t))tξ .

Thus, the map

η �→ t�tξ η

is an isomorphism of ξ⊥ onto (S(p; t))tξ .
In particular, if ζ ∈ (S(p; t))tξ , let η ∈ ξ⊥ be given by

η = t−1�tξ
−1ζ,

and consider

v(t, θ ) = exp ωt (θ );
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then, for ∂t v = v∗∂t , ∂θv = v∗∂θ , we have

∂t v(t, 0) = γξ
′(t), ∂θv(t, 0) = (exp)∗|tξ ζ.

Thus, (I.6.5) is equivalent to showing

〈∂t v, ∂θv〉 = 0.(I.6.6)

First note that

|∂t v| = 1, ∇t∂t v = 0,

and that by (I.5.2), we have

∇t∂θv = ∇θ ∂t v .

Thus, by (I.5.3), (I.6.3),

∂t 〈∂t v, ∂θv〉 = 〈∇t∂t v, ∂θv〉 + 〈∂t v, ∇t∂θv〉
= 〈∂t v, ∇t∂θv〉
= 〈∂t v, ∇θ ∂t v〉
= (1/2)∂θ 〈∂t v, ∂t v〉
= 0.

So, for each fixed θ , 〈∂t v, ∂θv〉 is constant along the geodesic determined by the
unit vector t−1ωt (θ ). To evaluate the constant at t = 0, we have ∂θv(0, θ ) = 0
for all θ . Thus, (I.6.6) is valid for all (t, θ ). �

Lemma I.6.2. Let σ : [α, β] → U\{p} ∈ D1. Then, σ (τ ) may be written as

σ (τ ) = exp t(τ )ξ (τ ),

where t : [α, β] → (0, ε), ξ : [α, β] → Sp. We then have

�(σ ) ≥ |t(β) − t(α)|,(I.6.7)

with equality if and only if t(τ ) is monotone and ξ (τ ) is constant.

Proof. The functions t(τ ), ξ (τ ) are defined by setting

t(τ ) = |(exp |B(p; ε))−1σ (τ )|,
ξ (τ ) = (t(τ ))−1(exp |B(p; ε))−1σ (τ ).

To verify (I.6.7), introduce geodesic spherical coordinates about p by defining
V : [0, ε) × Sp → M by

V (t, ξ ) = exp tξ.
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As usual, set ∂t V = V∗(∂t ) and (∂ξ V )η = V∗(η) for η ∈ (Sp)ξ . Then, for (t, ξ ) ∈
[0, ε) × Sp, we have

∂ξ V (t, ξ ) = t(expp)∗|tξ�tξ ,

as we argued previously in the proof of Gauss’s lemma. Since exp |B(p; ε) is a
diffeomorphism, so is V |(0, ε) × Sp.

We now have

σ (τ ) = V (t(τ ), ξ (τ )),

σ ′ = t ′∂t V + (∂ξ V )ξ ′.

But (I.6.3), (I.6.6) imply

|σ ′|2 = (t ′)2 + |(∂ξ V )ξ ′|2 ≥ (t ′)2.

Thus,

�(σ ) =
∫ β

α

|σ ′| ≥
∫ β

α

|t ′| ≥ |
∫ β

α

t ′| = |t(β) − t(α)|,

which is the inequality (I.6.7). The case of equality is handled easily. �

Proof of Theorem I.6.2. Pick ε0 > 0 sufficiently small so that (ε0 + 1)�(γ ) <

ε; then, γ can be extended to a geodesic γ̂ : [−ε0, 1] → U . Then, �(γ̂ ) =
(ε0 + 1)�(γ ); also, ε, U satisfy Theorem I.6.1 with respect to γ̂ (−ε0).

Let G be the image under exp of the open annulus in Mγ̂ (−ε0) given by

B(γ̂ (−ε0); �(γ̂ ))\B(γ̂ (−ε0); ε0),

that is,

G = exp B(γ̂ (−ε0); �(γ̂ ))\B(γ̂ (−ε0); ε0).

Then, {τ : ω(τ ) ∈ G} is open in R and is given by a countable disjoint union of
open intervals {(α j , β j ) : j = 1, . . .}. Applying Lemma I.6.2 to each [α j , β j ],
we have

�(ω) ≥
∑

j

�(ω|[α j , β j ]) ≥
∑

j

|t j (β j ) − t j (α j )|,

where t j is the function t(τ ), above, for each ω|[α j , β j ]. Each summand in the
last term is either equal to 0 or �(γ ) and, at least one of the summands is �(γ ).
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This implies the inequality (I.6.4). Equality in (I.6.4) implies there is precisely
one interval in G, and the image of ω is that of γ by Lemma I.6.2. �

Corollary I.6.1. If p 
= q, then d(p, q) > 0. Thus, d : M × M → R given
above turns M into a metric space. For p ∈ M and δ > 0, we write

B(p; δ) := {q ∈ M : d(p, q) < δ},
S(p; δ) := {q ∈ M : d(p, q) = δ}.

Then, for a given p ∈ M and ε > 0 determined in Theorem I.6.1, we have for
all δ ∈ (0, ε)

B(p; δ) = exp B(p; δ),

S(p; δ) = exp S(p; δ)

diffeomorphically – thus the metric space topology coincides with the topology
of M possessed by the differentiable structure.

Corollary I.6.2. Let ω : [0, �] → M ∈ D1, |ω′| = 1 when ω′ exists, have the
property that � = d(ω(0), ω(�)). Then, ω, is a geodesic.

Proof. First, note that � = d(ω(0), ω(�)) implies that δ = d(ω(τ ), ω(τ + δ))
for all τ, τ + δ ∈ [0, �]. Otherwise, the triangle inequality would imply � <

d(ω(0), ω(�)).
Next, it suffices to show that, for every τ ∈ (0, �), there exists δ > 0 such

that ω|[τ, τ + δ] is a geodesic. To prove the existence of δ, given ω(τ ), let
ε be given by Theorem I.6.1 for p = ω(τ ), and set δ = min {ε/2, � − τ }.
Then, there exists a unique geodesic γ : [τ, τ + δ] → M , |γ ′| = 1, from p =
ω(τ ) = γ (τ ) to γ (τ + δ) = ω(τ + δ) of length δ. This implies δ = �(ω|[τ, τ +
δ]) ≥ �(γ |[τ, τ + δ]) = δ. Therefore, ω|[τ, τ + δ] = γ |[τ, τ + δ]. Since both
paths are parametrized with respect to arc length based at p, they must be
identical. �

Corollary I.6.3. Given a compact set K ⊆ M, there exists a δ > 0 so that any
two points of K with the distance less than δ are joined by a unique geodesic
of length less than δ. This geodesic minimizes distance between the two points
and depends differentiably on the endpoints.

Proof. To each point p ∈ K , construct U = U (p) and ε = ε(p) as in Theo-
rem I.6.1 – in particular, B(p; ε(p)) ⊇ U (p) for all p ∈ K . If our corollary
is false, then to each δ > 0, there exist points p, q ∈ K with d(p, q) < δ
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and for which there exists no p′ such that p, q ∈ U (p′). One then obtains a
sequence (pn, qn) ∈ K × K with d(pn, qn) → 0 such that {pn, qn} 
⊂ U (p′) for
any p′ ∈ K . Now one easily uses the compactness of K to obtain a
contradiction. �

§I.7. Geodesics and Completeness

Definition. Let M be a Riemannian manifold. We say that M is geodesically
complete if for every ξ ∈ T M , the geodesic γξ is defined on all of R, that is, if
exp is defined on all of T M .

Theorem I.7.1. (H. Hopf & W. Rinow (1931, pp. 216ff )) If M is connected
and geodesically complete, then any two points of M can be joined by a minimal
geodesic.

Proof. (G. de Rham (1952))2 The idea of the proof is to lay one’s hands on a
candidate geodesic at the very outset. It goes as follows:

Let p, q ∈ M , d(p, q) = δ > 0, and let ε = ε(p) > 0 as given in Theo-
rem I.6.1. If δ < ε, then there is nothing to prove; so assume δ ≥ ε and fix
δ0 ∈ (0, ε). Then, there exists p0 ∈ S(p; δ0) such that

d(p0, q) = d(S(p; δ0), q),

that is, p0 is the point on S(p; δ0) closest to q. Our candidate geodesic γξ ,
therefore, is given by ξ the unit vector in Mp determined by p and p0, that is,

ξ = (1/δ0)(exp |B(p; ε))−1(p0).

(See Figure I.3.) We shall prove for all t ∈ [δ0, δ] that

d(γξ (t), q) = δ − t.(I.7.1)

This will certainly prove the theorem.
First, we note that (I.7.1) is true for t = δ0. Indeed,

δ = d(p, q)

≤ d(p, p0) + d(p0, q)

= δ0 + d(p0, q).

2 See Note I.8 in §I.9.
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p0

p

q

�

�0

Figure I.3. Picking a candidate geodesic.

Furthermore, for every path ω : [0, 1] → M ∈ D1 satisfying ω(0) = p, ω(1) =
q , there exists α ∈ (0, 1) such that ω(α) ∈ S(p; δ0). Then,

�(ω) = �(ω|[0, α]) + �(ω|[α, 1])

≥ δ0 + d(ω(α), q)

≥ δ0 + d(p0, q)

≥ δ,

by the above argument. But, δ = inf �(ω) over ω just described. Thus, we have
δ = δ0 + d(p0, q) and (I.7.1) is valid for t = δ0.

Note that (I.7.1) implies d(p, γξ (t)) = t .
Now let

δ1 = max {t ∈ [δ0, δ] : (I.7.1) is valid for t}.

Our claim, of course, is that δ1 = δ. So we assume δ1 < δ and obtain a contra-
diction. Set p1 = γξ (δ1) and pick δ2 to satisfy 0 < δ2 < min {ε(p1), δ − δ1}.

Let p2 ∈ S(p1; δ2) satisfy d(p2, q) = d(S(p1; δ2), q). Then, by our previous
argument, using p1 for p and p2 for p0 and δ2 for δ0, we have

δ2 + d(p2, q) = d(p1, q) = δ − δ1.(I.7.2)
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Thus,

d(p, q) = δ

= δ1 + δ2 + d(p2, q)

= d(p, p1) + d(p1, p2) + d(p2, q)

≥ d(p, p2) + d(p2, q)

≥ d(p, q),

which implies

d(p, p2) = d(p, p1) + d(p1, p2).

Thus, the path γξ from p to p1, and the geodesic segment from p1 to p2 in
B(p1; ε(p1)) minimize arc length from p to p2. Thus, the path is differentiable
and p2 = γξ (δ1 + δ2). If we insert p2 = γξ (δ1 + δ2) into (I.7.2), we obtain that
(I.7.1) is valid for t = δ1 + δ2 > δ1 – a contradiction. �

Corollary I.7.1. (H. Hopf & W. Rinow (1931)) If M is geodesically complete,
then every closed and bounded subset is compact. As a consequence, M is a
complete metric space.

Proof. Let E ⊆ M be closed and bounded, p ∈ M , and δ = sup {d(p, q) : q ∈
E} < +∞. Then,

B(p; δ) = exp B(p; δ), S(p; δ) ⊆ exp S(p; δ) ⊆ B(p; δ)

by the argument of Corollary I.6.1. Thus, E ⊆ B(p; δ) = exp B(p; δ), which is
compact. Thus, E is compact. �

Theorem I.7.2. (H. Hopf & W. Rinow (1931)) If M is a complete metric space
then M is geodesically complete.

Proof. Assume M is a complete metric space, but there exists ξ ∈ T M such
that its maximal interval Iξ for the integral curve of the geodesic flow through
ξ is not all of R. Then, −∞ < α := inf Iξ and/or sup Iξ := β < +∞. Assume
the first case.

Pick tn ↓ α as n ↑ ∞. Then, (tn) is a Cauchy sequence and for n, m we have

d(γξ (tn), γξ (tm)) ≤ �(γξ |[tn, tm]) = |ξ ||tn − tm |;
thus, γξ (tn) is also a Cauchy sequence in M and γξ (tn) → q for some q ∈ M ,
as n → ∞.

But, for a relatively compact neighborhood U = U (q) of q, we have {ζ ∈
π−1[U ] : |ζ | = |ξ |} is compact in T M . Thus, we have a subsequence (τk) of
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(tn), and η ∈ Mq for which γξ
′(τk) → η as k → ∞. If we set

γη(t) = exp tη,

then for all k we have

γη(τk − α) = γξ (τk)

by the uniqueness of integral curves of the geodesic flow. Then, α 
= inf Iξ – a
contradiction. �

Corollary I.7.2. If M has a point p for which exp is defined on all of Mp, that
is, T M ∩ Mp = Mp, then M is a complete metric space, and therefore exp is
defined on all of T M.

Proof. The argument of Theorem I.7.1 shows that minimizing geodesics exist
between p and any other point of M . But, then one can argue as in Corol-
lary I.7.1, followed by Theorem I.7.2. �

§I.8. Calculations with Moving Frames

In this section, we do not derive new material; rather, we are more interested
in viewing some of our previous calculations from the perspective of moving
frames. We then hope to use these calculations in some of our future work.

In what follows, for ξ , η in a real vector space E , and α, β in its dual space E∗,
our definition of the wedge product will be given by

(α ∧ β)(ξ, η) = α(ξ )β(η) − α(η)β(ξ ).(I.8.1)

Also, for a differentiable manifold M , differentiable vector fields X , Y , and
a differentiable 1–form ω on M , our normalization of the exterior derivative
dω will be given by

dω(X, Y ) = X (ω(Y )) − Y (ω(X )) − ω([X, Y ]).(I.8.2)

Now, let M have a connection ∇, with associated torsion and curvature tensors.

Definition. The covariant differentiation of 1–forms is defined by

(∇Xω)(Y ) = X (ω(Y )) − ω(∇X Y ),(I.8.3)

that is,

X (ω(Y )) = (∇Xω)(Y ) + ω(∇X Y )(I.8.4)

(one checks that ∇Xω is indeed a 1–form).
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Note that

dω(X, Y ) = (∇Xω)(Y ) − (∇Y ω)(X ) − ω(T (X, Y )),

where T denotes the torsion tensor of ∇.

Let U be open in M and {e1, . . . , en} differentiable vector fields on U , which
are pointwise linearly independent. We refer to {e1, . . . , en} as a moving frame
on U . We let {ω1, . . . , ωn} denote the dual coframe field.

Then, for any tangent vector ξ in T U , one has an expansion of ∇ξ ek in terms
of the basis {e1, . . . , en}, namely,

∇ξ e j =
∑

k

ω j
k(ξ )ek .

Since ∇ξ e j is linear in ξ , the collection {ω j
k : j, k = 1, . . . , n} forms a matrix

of differentiable 1–forms, loosely referred to as the connection 1–forms.
Then, for any ξ ∈ T U , we have, by (I.8.4),

0 = ξ (ω�(e j ))

= (∇ξω
�)(e j ) + ω�(∇ξ e j )

= (∇ξω
�)(e j ) + ω j

�(ξ ).

Therefore,

∇ξω
� =

∑
j

(∇ξω
�)(e j )ω

j = −
∑

j

(ω j
�(ξ ))ω j .(I.8.5)

We then have

dω j (X, Y ) −
∑

k

(ωk ∧ ωk
j )(X, Y )

= X (ω j (Y )) − Y (ω j (X )) − ω j ([X, Y ])

−
∑

k

{ωk(X )ωk
j (Y ) − ωk(Y )ωk

j (X )}

= X (ω j (Y )) +
∑

k

ωk(Y )ωk
j (X )

− Y (ω j (X )) −
∑

k

ωk(X )ωk
j (Y ) − ω j ([X, Y ])

= X (ω j (Y )) − (∇Xω j )(Y )

− Y (ω j (X )) + (∇Y ω j )(X ) − ω j ([X, Y ])

= ω j (∇X Y − ∇Y X − [X, Y ])

= −ω j (T (X, Y ))
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(the first equality follows from (I.8.1) and (I.8.2), the second from rearranging
terms, the third from (I.8.5), the fourth from (I.8.3), and the fifth from the
definition of the torsion tensor). We therefore conclude

dω j =
∑

k

ωk ∧ ωk
j − ω j (T ),(I.8.6)

where we think of T as a 2–form with values in the tangent bundle, and therefore
ω j (T ) is a 2–form on U .

We now consider, by (I.8.2)

dω j
k(X, Y ) = X (ω j

k(Y )) − Y (ω j
k(X )) − ω j

k([X, Y ]).

To this end, we note

∇Y ∇X e j = ∇Y

∑
k

ω j
k(X )ek

=
∑

k

{
Y (ω j

k(X ))ek + ω j
k(X )∇Y ek

}
=

∑
k

{
Y (ω j

k(X )) +
∑

�

ω j
�(X )ω�

k(Y )

}
ek,

from which we have

∇Y ∇X e j − ∇X∇Y e j − ∇[Y,X ]e j

=
∑

k

{
Y (ω j

k(X )) − X (ω j
k(Y )) +

∑
�

(ω j
� ∧ ω�

k)(X, Y ) − ω j
k([Y, X ])

}
ek

=
∑

k

{
dω j

k(Y, X ) +
∑

�

ω j
� ∧ ω�

k(X, Y )

}
ek .

We conclude that if � j
k denotes the 2–form given by

� j
k(X, Y ) = ωk(R(X, Y )e j ),

then

dω j
k =

∑
�

ω j
� ∧ ω�

k − � j
k .(I.8.7)

For Riemannian manifolds, we summarize the discussion in the following

Theorem I.8.1. If M is a Riemannian manifold, and the frame {e1, . . . , en} is
picked to be orthonormal at every point of U, with dual coframe {ω1, . . . , ωn},
then

dω j =
∑

k

ωk ∧ ωk
j .(I.8.8)
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where

ω j
k(ξ ) = 〈∇ξ e j , ek〉, ω j

k = −ωk
j .(I.8.9)

For the curvature forms, we have

dω j
k =

∑
�

ω j
� ∧ ω�

k − � j
k,(I.8.10)

where

� j
k(X, Y ) = 〈R(X, Y )e j , ek〉, � j

k = −�k
j ,(I.8.11)

which implies the skew-symmetry of 〈R(X, Y )Z , W 〉 in Z and W . (See (II.1.4).)

§I.9. Notes and Exercises

Bibliographic Sampler

Note I.1. One must start by referring to de Rham (1955) for manifolds, dif-
ferential forms, de Rham cohomology and theorems, and the Laplacian on
differential forms.

For more up-to-date treatment of differential topology, see Milnor (1965)
and Hirsch (1976).

One can construct an ambitious shopping list of books with which to start
differential, and, more particularly, Riemannian geometry. Many of the more
introductory books start with surfaces in Euclidean space and then deal with the
exclusively intrinsic Riemannian geometry of surfaces. We refer to some of them
in Note II.2. Here, in addition to the references cited in the introduction to this
chapter, we just note the influential two-volume treatise of Kobayashi–Nomizu
(1969) on the general foundations – from connections through Riemannian
metrics through curvature through the first level of specializations of areas
in differential geometry, for example, curvature and geodesics, homogeneous
spaces, Kähler manifolds, etc.

For works more exclusively devoted to intrinsic Riemannian geometry see,
for example, Cheeger–Ebin (1975), do Carmo (1992), Gallot–Hulin–Lafontaine
(1987), Gromoll–Klingenberg–Meyer (1968), Klingenberg (1982), Lang
(1995), Lee (1997), O’Neill (1983), and Petersen (1998) – just to name a few!

Lie Brackets of Vector Fields

Note I.2. It may be helpful to remind the reader that, if X, Y are vector fields
on a differentiable manifold M , then their Lie bracket [X, Y ] can be defined by

[X, Y ] f = X (Y f ) − Y (X f )

for any differentiable function on M .
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One checks that if x : U → R
n is a chart on M , and X and Y are given by

X =
∑

j

ξ j ∂

∂x j
, Y =

∑
k

ηk ∂

∂xk
,

then [X, Y ] is given by

[X, Y ] =
∑
k, j

{
ξ k ∂η j

∂xk
− ηk ∂ξ j

∂xk

}
∂

∂x j
.

Another formula for [X, Y ] is given by the Lie derivative of Y with respect
to X , that is, one lets ϕt denote the 1–parameter flow on M determined by X ,
and defines

LX Y := d

dt

{
(ϕ−t )∗Y|ϕt

}∣∣∣∣
t=0

.

Then,

LX Y = [X, Y ].

Connections and Covariant Differentiation

Note I.3. The coordinate-free definition of connections presented in §I.1 is
originally due to Koszul, who communicated it to Nomizu (1954).

Note I.4. In nearly all of our discussions, we started with global coordinate-free
definitions of the concepts and then gave a calculation in local coordinates of the
objects defined. However, in the “old” days, the method ran the other way; that
is, one started with an expression in local coordinates and then established the
global character of the notions so defined. For a nice treatment of this approach,
we recommend Laugwitz (1966). Two vestiges of this approach are left in our
treatment of (i) differentiation of vector fields along a path and (ii) the resulting
definition of the vector field of the geodesic flow. For (i), an intrinsic a priori
global definition is given in Gromoll–Klingenberg–Meyer (1968), the approach
originally due to Dombrowski (1962). One can find a similar treatment in Besse
(1987), Klingenberg (1982), and also an intrinsic definition of (ii). Finally, one
can find a global characterization of the geodesic flow, via analytical mechanics,
in §V.1.

For the general covariant differentiation of tensor fields, one proceeds as fol-
lows: Recall that given a finite dimensional vector space F over R, the
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(r, s)–tensor space F⊗r,s may be considered as the collection of multilinear
maps

A : (F∗)r × Fs → R.

Given the n–dimensional manifold M with connection ∇, one extends the
covariant differentiation to general (r, s)–tensor fields over M , namely, given the
(r, s)–tensor field A, we define its covariant differential ∇ A to be the (r, s + 1)–
tensor field given by

(∇ A)(θ1, . . . , θ r ; X0, X1, . . . , Xr )

:= (∇X0 A)(θ1, . . . , θ r ; X1, . . . , Xs)

:= X0(A(θ1, . . . , θ r ; X1, . . . , Xs))

−
r∑

j=1

A(θ1, . . . , ∇X0θ
j , . . . , θ r ; X1, . . . , Xs)

−
s∑

k=1

A(θ1, . . . , θ r ; X1, . . . , ∇X0 Xk, . . . , Xs),

where θ1, . . . , θ r are 1–forms on M , and X0, . . . , Xs are vector fields on M .

Exercise I.1. Show that, for any p ∈ M , the value of ∇ A at p only depends
on the values of A on a neighborhood of p, and on the values of θ1, . . . , θ r ,
X0, . . . , Xs at p.

If M is Riemannian and r = 1, it is occasionally easier to view to A as a section
A in the bundle Hom (T M⊗s, T M) (the identification of the two viewpoints is
achieved through the canonical identification of F with (F∗)∗), in which case
one defines

(∇A)(X0, X1, . . . , Xs) := (∇X0A)(X1, . . . , Xs)

:= ∇X0 (A(X1, . . . , Xs))

−
s∑

k=1

A(X1, . . . , ∇X0 Xk, . . . , Xs),

where X0, . . . , Xs are vector fields on M .

Note I.5. For more on the covariant differentiation of general tensor fields see,
for example, Klingenberg (1982) and O’Neill (1983).
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The Second Bianchi Identity

Exercise I.2. Suppose we are given the connection ∇ with torsion and curvature
tensors T and R, respectively. Prove Bianchi’s second identity, that is, show
that T = 0 on M implies

(∇ζ R)(ξ, η) + (∇η R)(ζ, ξ ) + (∇ξ R)(η, ζ ) = 0

for all ξ , η, ζ in Mp, p ∈ M .

Covariant Differentiation in Vector Bundles

Let M be our manifold, and E a vector bundle over M , with fiber space the
finite-dimensional vector space F over R.

Definition. A connection on E is a map ∇ : T M × �1(E) → E (where �1(E)
denotes the C1 sections in E), which we write as ∇ξ Y instead of ∇(ξ, Y ), with
the following properties: First, we require that ∇ξ Y be in the same fiber as ξ ,
and that for α, β ∈ R, p ∈ M , ξ , η ∈ Mp, Y ∈ �1(E),

∇αξ+βηY = α∇ξ Y + β∇ηY.

Second, we require that, for p ∈ M , ξ ∈ Mp, Y , Y1, Y2 ∈ �1(E), f ∈ C1(M),
we shall have

∇ξ (Y1 + Y2) = ∇ξ Y1 + ∇ξ Y2,

∇ξ ( f Y ) = (ξ f )Y|p + f (p)∇ξ Y.

Finally, we require that ∇ be smooth in the following sense: if X ∈ �∞(T M),
Y ∈ �∞(E), then ∇X Y ∈ �∞(E).

One has the same local character of the covariant differentiation as that described
for E = T M , with corresponding notions of parallel translation along paths
in M .

Similarly, one has the curvature tensor defined as follows: For any p ∈ M
we define the multilinear map henceforth referred to as the curvature tensor of
∇, by: For ξ, η ∈ Mp, ζ ∈ E p (where E p denotes the fiber over p), let X, Y be
extensions of ξ, η, respectively, to vector fields, and Z an extension of ζ to a
section in E , on a neighborhood of p. Then define

R(ξ, η)ζ = ∇η∇X Z − ∇ξ∇Y Z − ∇[Y,X ]|p Z .

For an example, see Exercise II.11.



P1: IWV

0521853680c01 CB980/Chavel January 2, 2006 10:29 Char Count= 611

36 Riemannian Manifolds

Coordinate Characterization of T = 0

Exercise I.3. Prove that, for any connection ∇ on a manifold, the torsion tensor
T vanishes at a point p if and only if there exists a chart y : V → R

n for which
the Christoffel symbols of the connection vanish at p.

Gradients

Let f : M → R be a differentiable function on the Riemannian manifold M .

Definition. The gradient vector field of f on M , grad f , is defined by

grad f = θ−1(d f ),

where d f denotes the differential of f , and θ : T M → T M∗ denotes the natural
bundle isomorphism given by

θ (ξ )(η) = 〈ξ, η〉,

for all p ∈ M and ξ, η ∈ Mp.

Exercise I.4. Assume that

|grad f | = 1

on all of M . Show that the integral curves of grad f are geodesics.

Exercise I.5. (See Davies (1987, pp. 325–326)) Show that, for any Riemannian
manifold M , the distance function may be given analytically by

d(x, y) = sup {|ψ(x) − ψ(y)| : ψ ∈ C∞, |grad ψ | ≤ 1},

that is, where ψ varies over smooth functions for which |grad ψ | ≤ 1 on all
of M .

On Theorem I.6.1

Note I.6. See Hopf–Rinow (1931, p. 219), where they refer this result to O.
Bolza (1909, §33). A stronger theorem, that the unique geodesic of length < ε

is contained in U itself, was proved by Whitehead (1932). See our discussion
in §VII.6.
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The Hopf–Rinow Theorems

Note I.7. A precursor to the Hopf–Rinow theorems is in the work of Koebe.
See the references and comments in the original paper, Hopf–Rinow (1931).

Note I.8. The strength of de Rham’s proof of Theorem I.7.1 lies in its immediate
selection of a candidate geodesic to minimize distance between two points. If,
however, one tries to carry out the argument for a class of closed loops, for
example, if one attempts to minimize the length of loops in a nontrivial free
homotopy class of a compact Riemannian manifold, then one has nowhere
to aim. So one must return to the original argument of Hopf–Rinow (1931).
Namely, one must deal directly with a sequence of loops whose lengths approach
the infimum of all such possible lengths. See our discussion in the proof of
Theorem IV.12.

Also note that the hypothesis here in Theorem I.7.1 is geodesic completeness.
If one assumes instead, metric completeness of the Riemannian metric, then one
has an easy direct proof of the existence, given any two points, of a minimizing
geodesic joining the two points. The argument is direct variational, and uses
the Arzela–Ascoli theorem. (See the sketch to Exercise I.7.)

Exercise I.6. Let M be a complete noncompact Riemannian manifold. Show
that to each p ∈ M , there exists a geodesic ray emanating from p, that is, there
exists a geodesic γ : [0, +∞) → M such that γ (0) = p, and d(p, γ (t)) = t
for all t > 0.

Note I.9. The definition of the metric structure on Riemannian manifolds, and
the Hopf–Rinow theorems have been the subject of refinement, axiomatization,
and development (see W. Rinow (1961)). In what follows, we introduce some
of the work of M. Gromov (1981). A subsequent English edition (more than
just a translation) appeared in Gromov (1999). An excellent introduction to the
field is Burago–Burago–Ivanov (2001).

Length Spaces

The standard approach to lengths and distances that we presented starts with
the definition of lengths of a specified collection of paths (namely, D1), from
which is created a distance function, which is then shown to determine the same
topology as that with which we started. A more abstract approach is to consider
an arbitrary set X with a length structure, that is, to each closed interval I ⊆ R
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is associated a collection of maps CI from I to X , the resulting collection

C = ∪I CI ,

and a length function

� : C → [−∞, +∞]

satisfying:

(a) �( f ) ≥ 0 for all f ∈ C;
(b) �( f ) = 0 if and only if f is the constant map;
(c) if I ⊆ J then the restriction of any f ∈ CJ to the interval I is an element

of CI ;
(d) if f ∈ C[a,b] and g ∈ C[b,c], with f (b) = g(b), then f · g ∈ C[a,c] with

�( f · g) = �( f ) + �(g);

(e) if φ : I → J is a homeomorphism, and f ∈ CJ , then f ◦φ ∈ CI and

�( f ◦φ) = �( f );

(f) if I = [a, b], f ∈ CI , then the map

t �→ �( f |[a, t])

is continuous. One then naturally proposes a length distance d�(x, y) between
any two points x, y to be given by

d�(x, y) = inf{�( f ) : f ∈ C, f joins x to y}.
(To ultimately speak of all maps I → X for all I , one sets �( f ) = +∞ for any
f : I → X 
∈ CI .)

Note I.10. If X is given to be a topological space, then the paths in C are
restricted to be continuous and are assumed to satisfy: Given any x ∈ X , and
any open neighborhood Ux of x , the length of paths connecting x to points in
X \ Ux is bounded away from 0 (Burago–Burago–Ivanov (2001, p. 27)).

Also (see p. 28), if X is Hausdorff, then d� is indeed a metric (not just
nonnegative) – although points in the same component might have infinite
distance between them.

To construct a natural example of a length structure, simply stand the discussion
on its head, namely, start with a metric space X with distance function d. The
collection of paths C is to consist of all continuous maps of closed intervals to
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X ; and for any continuous f : [a, b] → X , define the length of f by

�d ( f ) = sup
k∑

j=1

d( f (t j−1), f (t j )),

where the supremum is taken over all partitions [a = t0 ≤ t1 ≤ . . . ≤ tk = b]
of the interval [a, b]. Thus, C consists of all continuous maps of closed intervals
in R to X .

We then have two “cycles”: First, start with a length structure �, determine
a length distance function d�, from which one determines a length structure �̃.
Second, start with a metric space with distance function d, determine the length
structure �d , which then determines a new length distance function d̃. The first
two questions, of course, are: When is � = �̃, and when is d = d̃? Here are
some results:

Start with the length structure �. Show that, if for every closed interval I , the
length function � restricted to CI is lower semicontinuous in the compact–open
topology of CI , then � = �̃.

Proposition A. Start with the metric d, and consider the following two prop-
erties of d:
1o: For any x, y ∈ X and ε > 0, there exists z ∈ X such that

sup {d(x, z), d(z, y)} ≤ d(x, y)

2
+ ε.

2o: For any x, y ∈ X and r1, r2 > 0 satisfying

r1 + r2 ≤ d(x, y),

one has

d(B(x ; r1), B(y; r2)) ≤ d(x, y) − r1 − r2.

Then, the two properties are equivalent. Also, d = d̃ implies that these proper-
ties are valid.

Conversely, if the metric d is complete, with these properties valid, show that
d = d̃ .

Definition. The metric space (X, d) is called a length space if d = d̃.

Proposition B. If X is a complete locally compact length space, then closed
and bounded sets are compact.

For the details, see Burago–Burago–Ivanov (2001, §2.3–4).
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One can now consider geodesics without ordinary differential equations.
Namely,

Definition. Let X be a length space with respect to the metric d. A minimizing
geodesic is a path f : I → X such that

d( f (t), f (t ′)) = |t − t ′|
for all t, t ′ ∈ I .

The path f : I → X is a geodesic if the restriction of f to all sufficiently
small intervals I is always a minimizing geodesic.

Exercise I.7. If X is a complete locally compact length space, then any two
points are joined by a minimizing geodesic. (See Remark IV.5.1.)

One has corresponding Hopf–Rinow theorems; see Burago–Burago–Ivanov
(2001, pp. 51ff).

Exercise I.8. Let M be a Riemannian manifold. Then, the Riemannian length
structure is given by all maps f : I → M ∈ D1, and the usual length function.
Show that the induced metric d – the Riemannian distance function – satisfies
1o of Proposition A. In particular, if M is Riemannian complete, it is a length
space.

Continue with M a Riemannian manifold with standard Riemannian length
structure � and associated distance function d. We wish the length structure �d

induced on all continuous maps of compact intervals into M to be an extension
of � from D1 maps to C0 maps. Note that one cannot invoke the result just prior
to Proposition A. Why?

Exercise I.9. Give an easy proof that

�d (ω) =
∫ b

a
|ω′| dt,

when ω is a D1 path in a Riemannian manifold.

A more general result is:

Theorem (See Rinow (1961, p. 106ff)) If f : [a, b] → X is Lipschitz, then

�d ( f ) =
∫ b

a
| f ′| dt
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(note that, by Rademacher’s theorem – see Chavel (2001, p. 20ff) – f ′ exists for
almost all t in [a, b]). For the proof, see Burago–Burago–Ivanov (2001, §2.7).

Moving Frames

Note I.11. The method of moving frames goes back at least to G. Darboux’s
(1898) triply orthogonal systems, was turned into a modern tool in differential
geometry in the works of É. Cartan (1946), and widely disseminated in the
1950s and 1960s in the various mimeographed lecture notes of S.S. Chern. An
attractive entrée into the method can be found in Flanders (1963).

Hessians

Definition. Given a function f on a Riemannian manifold M , its first covariant
derivative is, simply, its differential d f .

The Hessian of f , Hess f , is defined to be the second covariant derivative of
f , that is, ∇d f . So,

(Hess f )(ξ, η) = ξ (d f (Y )) − (d f )(∇ξ Y ),

where Y is any extension of η.

Exercise I.10. Prove

(a) Hess f is symmetric in ξ, η;
(b) the (1, 1)–tensor field associated with the (0, 2)–field Hess f is given by

ξ �→ ∇ξ grad f ;

(c) a function with positive definite Hessian has no local maxima.

Exercise I.11. So, for a moving orthonormal frame {e1, . . . , en} on M with
dual coframe {ω1, . . . , ωn}, we may write

∇ f = d f =
∑

j

Fjω
j .

Prove

(a) that

grad f =
∑

j

Fj e j ;
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(b) that

∇ω j = −
∑

k

ωk
j ⊗ ωk ;

(c) that Hess f is given by

Hess f = ∇d f =
∑

j

{
d Fj −

∑
k

ω j
k Fk

}
⊗ ω j

:=
∑

j,k

Fjk ω j ⊗ ωk ;

(d) Fjk is symmetric in j, k.

(e) that

d

{∑
j

(−1) j−1 F Fj ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωn

}

=
{∑

j

Fj
2 + F Fj j

}
ω1 ∧ · · · ∧ ωn

(we use the ̂ to indicate that the term in question is missing).

Moving Frames in Euclidean Space

Consider Euclidean space R
m with its standard Riemannian metric and as-

sociated Levi-Civita connection (I.1.1). Then, certainly, both the torsion and
curvature tensors vanish identically on R

m . One can recapture the fact with
moving frames as follows:

Let {e1, . . . , em} denote the standard basis of R
m , and let �p : R

m → (Rm)p

the standard identification of R
m with the tangent space of any of its points p.

Set

(E A)|x = �xeA, A = 1, . . . , m, x ∈ R
m,

and let eA denote a moving frame on R
m ; so one has a matrix function (from a

neighborhood in R
m to the orthogonal matrices) SA

B for which

eA =
∑

B

SA
B EB .

Set

T = S−1 = S∗ (where ∗ denotes transpose).
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Exercise I.12.
(a) Let

x =
∑

A

x A
eA.

So the coordinates {x A} are functions on R
n . Check that the 1–forms {dx A} are

dual to the frame {E A}.
(b) Prove that, for the moving coframe {θ1, . . . , θn} dual to {e1, . . . , en}, we

have

(θ A)|x =
∑

B

dx B TB
A.

(c) Prove that the connection 1–forms {θA
B} are given by

θA
B =

∑
C

d SA
C TC

B .

(d) Prove

dθ A =
∑

B

θ B ∧ θB
A

dθA
B =

∑
C

θA
C ∧ θC

B .

Note I.12. One can substitute (a) and (b) into (c) to verify it, but a more natural
way is to think of x and eA as functions on R

n with values in a fixed vector
space. There, one can use

0 = d2x = d2eA,

where d denotes exterior differentiation.

Examples

We first mention some obvious examples of Riemannian manifolds, namely,

� imbedded submanifolds of Euclidean space, wherein the Riemannian metric
of the Euclidean space is restricted to the submanifold (after all, this is how
the subject was created)

� the classical examples of constant curvature, the Euclidean space, sphere, and
hyperbolic space of all dimensions ≥ 2.

Both types of examples are discussed in Chapter II.
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A more unusual example is given by

Example I.9.1. Consider R
n+1 with a Minkowski quadratic form M given by

M((x, τ )) = |x |2 − τ 2, x ∈ Rn, τ ∈ R,

where |x | denotes the usual norm on R
n . For any ρ > 0, consider the subman-

ifold M in R
n+1 (consisting of two components) given by

|x |2 − τ 2 = −ρ2.

Show that the restriction of the quadratic form M to the submanifold M is
positive definite and therefore determines a Riemannian metric on M .

It will turn out that this example has constant sectional curvature = −1/ρ2.
See Exercise II.15.

Example I.9.2. Given Riemannian manifolds (M, g), (N , h), one naturally
considers the product Riemannian metric on the product manifold M × N ,
as follows: For x ∈ M , y ∈ N the tangent space (M × N )(x,y) is canonically
isomorphic to Mx ⊕ Ny . For vectors ξ, η ∈ Mx , ζ, ν ∈ Ny , we define the inner
product of ξ ⊕ ζ and η ⊕ ν by

(g, h)(ξ ⊕ ζ, η ⊕ ν) = g(ξ, η) + h(ζ, ν).

One can easily follow through with the calculation of the curvature tensor of
the Levi–Civita connection. (Which method is easier? Local coordinates, or
moving frames?)

Example I.9.3. Given Riemannian manifolds M and N , a smooth map π :
M → N is a submersion if π∗ maps Mx onto Nπ (x) for all x ∈ M . If π∗ maps
the orthogonal complement of the kernel of π∗, (ker π∗)⊥, isometrically onto
Nπ (x) for all x , then π is called a Riemannian submersion.

Of course, the projection of a Riemannian product onto either of its factors
is a Riemannian submersion.

If π : M → N is a submersion, then for any y ∈ N , the preimage π−1[y] is
a submanifold of dimension equal to dim M − dim N . Of course, if dim M =
dim N then π−1[y] is a discrete collection of points. Such examples include
Riemannian coverings, discussed at length in Chapter IV.

Suppose we are given a Riemannian submersion π : M → N . Then, with
each p ∈ M is associated an orthogonal decomposition of the tangent space

Mp = Hp ⊕ Vp,

where Vp the vertical subspace is the tangent space to the submanifold π−1

[π (p)] at p, and Hp the horizontal subspace is the orthogonal complement of
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Vp in Mp. With each q ∈ N , ξ ∈ Nq , and p ∈ π−1[q], we associate a unique
horizontal lift ξ ∈ Hp satisfying

π∗ξ = ξ.

Exercise I.13.
(a) Show that if T , S are vertical vector fields, and X is a horizontal vector

field, on M , then

〈[T, S], X〉 = 0.

(b) Show that if X , Y are horizontal vector fields, and T is a vertical vector
field, on M then, for any p in M , 〈[X, Y ], T 〉(p) depends only on the values of
X, Y, T at the point p.

Definition. If X is a vector field on M , and X is a vector field on N such that

π∗ X = X,

then we say that X is π–related to X. We also say that a vector field X on M
projects to N if there exists a vector field X on N that is π–related to X .

(c) Show that if X, Y are π–related to X, Y, respectively, then [X, Y ] is
π–related to [X, Y].

(d) Show that if X, Y, Z are horizontal vector fields on M , all of which
π–project, and T is a vertical vector field on M then

〈[X, Y ], Z〉 = 〈[π∗ X, π∗Y ], π∗ Z〉, 〈[X, T ], Z〉 = 0.

Exercise I.14. Here, we introduce coordinate systems adapted to the consid-
erations. Let n = dim M , k = dim N , � = n − k. Let

πk : R
k × R

� → R
k

denote the projection onto the first factor.
(a) Show, by the implicit function theorem, that, for each p ∈ M , there exist

neighborhoods U of p and V = π (U ) of q = π (p), and charts

x : U → R
n, y : V → R

k

such that

x(p) = 0, πk ◦x = y◦π.

Also, show that, for any vector field X on N , there exists a smooth horizontal
lift of X to M , that is, a vector field X on M π–related to X.
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(b) Show that charts x and y can also be chosen so that the submanifold Q
given by

xα = 0, α = k + 1, . . . , n,

is horizontal at p.
(c) Consider the section µ : V → Q ⊆ U given by

x◦µ = (y, 0), 0 ∈ R
�.

Show

µ∗dxr = dyr , r = 1, . . . , k.

Exercise I.15. Now for moving frames. Suppose we are given the orthonormal
frame field {Er : r = 1, . . . , k} with dual coframe field {θ r } on V ⊆ N . We
then associate with this frame field the horizontal lifts {er } on U of {Er } on
V . Complete this collection of vector fields to an orthonormal frame field {eA :
A = 1, . . . , n} on U , with dual coframe field {ωA}. In particular, {eα : α =
k + 1, . . . , n} are vertical vector fields.

(a) Show that

θ s = µ∗ωs on V, µ∗ωα = 0 at q = π (p).

We let ωB
A, θs

r denote the connection 1–forms on U , V of the respective
frame fields. Then,

dωA =
∑

B

ωB ∧ ωB
A, dθ r =

∑
s

θ s ∧ θs
r ,

with

ωB
A = −ωA

B, θs
r = −θs

r .

We set

ωB
A =

∑
C

�BC
AωC , �BC

A = 〈∇eC
eB , eA〉.

(b) Show

�rs
α = −�αs

r = −�sα
r = 1

2
〈[es, er ], eα〉.

(c) Show ∑
α,β

�αβ
rωα ∧ ωβ = 0.
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(d) Show

dθ r =
∑

s

θ s ∧ µ∗
(

ωs
r −

∑
α

�αs
rωα

)
,

and therefore

θs
r = µ∗

(
ωs

r −
∑

α

�αs
rωα

)
on V, θs

r = µ∗ωs
r at q.

(e) Conclude that, in general, for horizontal vector fields X , Y on M , which
are π–related to vector fields X, Y on N , we have

∇X Y = ∇XY + 1

2
[X, Y ]V ,

where ∇XY denotes the horizontal lift of ∇XY (we use the same ∇ for both Levi-
Civita connections), and the superscript V denotes the vertical component. In
particular, a horizontal path in M is a geodesic if and only if its image in N is
a geodesic.

Exercise I.16. We now relate the “horizontal” curvature of M to the curvature
of N . We continue with our calculations in moving frames. Let �B

A, �s
r denote

the curvature 2–forms on U , V , respectively. Then

dωB
A =

∑
C

ωB
C ∧ ωC

A − �B
A, dθs

r =
∑

t

θs
t ∧ θt

r − �s
r .

(a) Show that at q = π (p), we have

�s
r = µ∗�s

r −
∑
α,u,v

µ∗
{
�rs

α�uv
α + 1

2

[
�sv

α�ru
α − �su

α�rv
α
]}

θu ∧ θ v .

(b) Show that, for any horizontal vectors ξ, η ∈ Hp, we have for the curvature
tensors R, R of M , N , respectively,

〈R(π∗ξ, π∗η)π∗ξ, π∗η〉 = 〈R(ξ, η)ξ, η〉 + 3

4
|[ξ, η]V |.

Of course, [ξ, η]V is well-defined, by Exercise I.13(b). (See §II.1 for specific
interest in the values of 〈R(π∗ξ, π∗η)π∗ξ, π∗η〉.)

Note I.13. The first differential geometric calculations associated to submer-
sions were developed by B. O’Neill (1966b).

Example I.9.4. We now give an extremely barebones discussion of Lie groups,
just enough to do some calculations for invariant Riemannian metrics on them.
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The reader can start with Warner (1971, Chapter III) and progress from there
into the subject. Short discussions emphasizing our interests here, and our
discussion below of Riemannian homogeneous spaces, can be found in Chavel
(1970, 1972), Cheeger–Ebin (1975), and Milnor (1963). Results go back to E.
Cartan (1927) and, later on, to K. Nomizu (1954).

Recall that a Lie group is an n–dimensional, real analytic manifold G whose
elements possess a multiplication, for which the map x, y �→ x · y−1 of G ×
G → G is analytic.

For each g ∈ G, the maps Lg, Rg : G → G given by

Lg(g′) = g · g′, Rg(g′) = g′ · g,

are analytic diffeomorphisms of G, and are referred to as the left and right
translations of G, respectively. A vector field X on G is said to be left-invariant
if for every g, h ∈ G we have

X |g·h = (Lg)∗(X |h).

Since Lg is always a diffeomorphism, (Lg)∗ is always nonsingular. The set of
left-invariant vector fields on G form a real n–dimensional vector space, since
any left-invariant vector field X on G is of the form

X |g = (Lg)∗ξ,

where ξ is a fixed element of the tangent space to G at the identity e. Conversely,
for any given ξ ∈ Ge, the vector field X on G is left-invariant. One checks that
for left-invariant vector fields X , Y on G, the vector field [X, Y ] is left-invariant.
Hence, the set of left-invariant vector fields on G form an n–dimensional Lie
algebra g.

A 1–parameter subgroup is an analytic homomorphism γ : R → G. It is
known that any left-invariant vector field X is complete, that is, its integral
curves are defined over the whole real line; that the integral curve γ of X ∈ g

through the identity e of G is a 1–parameter subgroup of G; and that all other
integral curves of X are left translates of γ .

We may identify Ge with g, by our remarks. The exponential map exp : g →
G is defined by

exp ξ = γξ (1),

where γξ is the 1–parameter subgroup with velocity vector ξ at e. The 1–
parameter subgroup γξ is then given by

γξ (t) = exp tξ.

As in the case of Riemannian manifolds, there exists a starlike neighborhood
W of the origin of g such that exp |W is a diffeomorphism of W onto a
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neighborhood of e in G. (We shall be careful with notation when the two
exponential maps coexist in the same discussion.)

Note that one always has a natural collection of Riemannian metrics on
Lie groups. Indeed, given any basis {e1, . . . , en} of Ge, one declares them to
be orthonormal, and then uses left translation to declare the associated left-
invariant vector fields X1, . . . , Xn (satisfying X j |e = e j ) orthonormal at every
point of G.

(1) The most basic example of a Lie group isGL(V ), the general linear group
of a finite dimensional vector space, that is, GL(V ) consists of all nonsingular
linear transformations of V to itself. The group multiplication is given by the
composition of elements of GL(V ) as mappings, and the analytic manifold
structure is given by viewing GL(V ) as an open submanifold of the space L(V )
of all linear transformations of V , this latter space identified (after a choice of
basis of V ) with R

n2
, where n = dim V . Given any A ∈ L(V ) one sees that, in

the topology of L(V ), the series

et A :=
∞∑

k=0

t k Ak/k!

converges (uniformly for bounded t), and is a 1–parameter subgroup of GL(V ).
One concludes that the Lie algebra of GL(V ) is g = L(V ), and that the Lie
multiplication in g is given by

[A, B] = AB − B A.

(2) Once one has a Lie group G, one furthers the collection of examples by
considering Lie subgroups. A subgroup H of G is called a Lie subgroup of G
if H is a 1–1 immersed submanifold of G. Certainly, a Lie subgroup is itself a
Lie group (note: its topology might not coincide with relative topology, since
it is only immersed), with its Lie algebra h a Lie subalgebra of g. Also, one
knows that if G is a Lie group, and H an (abstract) subgroup of G which is
also a closed subset of G, then there exists a unique analytic structure on H
such that H is a Lie group. Standard examples of subgroups of GL(V ) are (i)
the special linear group, SL(V ), consisting of those elements of GL(V ) with
determinant equal to 1, (ii) the orthogonal group, O(V ), consisting of those
elements of GL(V ) that preserve a given inner product on V.

Exercise I.17.
(a) Let V be a real n–dimensional vector space, q ∈ V, A a linear transfor-

mation of V , and aA;q : V → V given by aA;q (p) = Ap + q. Check that

(aA;q )∗|p = �aA;q (p) A�p
−1.
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In particular, if V is an inner product space and A an orthogonal transformation,
then aA;q is an isometry of V for every q ∈ V .

(b) Show that the Lie algebra of SL(V ) consists of linear transformations
with trace equal to 0 (see Proposition II.8.2), and the Lie algebra of O(V )
consists of the skew-symmetric linear transformations of V .

(3) Here, we consider Lie groups with bi-invariant metrics, namely we con-
sider Lie groups that carry a Riemannian metric such that the metric is in-
variant relative to both left and right translations by elements of G. Before
considering any details of this situation, we first comment on inner automor-
phisms.

For every g ∈ G, the map of G to itself, inng , given by

inng(g′) = g · g′ · g−1

is an automorphism of G that fixes the identity (referred to as an inner au-
tomorphism). In particular (inng)∗ maps Ge to itself (nonsingular!), thereby
determining the representation g �→ (inng)∗ of G acting on g. It is common
to write Ad g for (inng)∗. So Ad : G → GL(g) is an analytic homomorphism,
the adjoint representation of G in GL(g). It is well-known that for ξ ∈ g, and
ad : g → L(g) given by

(ad ξ )(η) = [ξ, η],

we have

Ad exp tξ = et ad ξ .

Exercise I.18. If G possesses a bi-invariant Riemannian metric, show that for
every ξ, η, ζ ∈ g we have

〈[ζ, ξ ], η〉 + 〈ξ, [ζ, η]〉 = 0.

Exercise I.19.
(a) Show that if G is any Lie group with left-invariant vector fields {e1, . . . ,

en}, n = dim G, with dual 1–forms {ω1, . . . , ωn}, then there exist constants
C jk

i such that

[e j , ek] =
∑

i

C jk
i ei , dωi = −1

2

∑
j,k

C jk
i ω j ∧ ωk,

∑
�

C jk
�C�i

r + Ci j
�C�k

r + Cki
�C�j

r = 0.
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(b) Assume that G possesses a bi-invariant Riemannian metric relative to
which {e1, . . . , en} are orthonormal. Show that

C jk
i + C ji

k = 0.

(c) Continue our assumptions as in (b). Show that connection forms of the
Levi–Civita connection are given, relative to the frame {e1, . . . , en}, by

ω j
i = 1

2

∑
k

Ckj
iωk ;

so for left-invariant vector fields X, Y on G, we have

∇X Y = [X, Y ]/2.

Also show that the curvature 2–forms are given by

� j
i = 1

4

∑
�,r,s

C js
�C�r

i ωr ∧ ωs ;

so

R(ξ, η)ζ = 1

4
{[[ζ, η], ξ ] − [[ζ, ξ ], η]} and 〈R(ξ, η)ξ, η〉 = 1

4
|[ξ, η]|2

for all ξ, η ∈ g.

Example I.9.5. We now consider calculations associated to Riemannian met-
rics on homogeneous spaces. Let G be a Lie group, H a closed subgroup,
consider the set of cosets {gH : g ∈ G}, which we denote by G/H , and let
π : G → G/H denote the projection π (g) = gH . Then, the quotient topology
on G/H induced by π will be the unique topology on G/H such that π is
continuous and open. Since H is closed, G/H is a Hausdorff space. Let g, h

denote the Lie algebras of G, H , respectively, m a complementary subspace of
h in g, and ψ = exp |m. Then, G/H has a unique analytic structure for which
the following are true: (a) Let W be the neighborhood of 0 in Ge on which
exp |W is a diffeomorphism (as above). Then, there exists a neighborhood U of
0 in m, such that U ⊆ m ∩ W , and such that ψ maps it diffeomorphically onto
its image Q in G (with relative topology) and π ◦ψ maps U diffeomorphically
onto a neighborhood V of o = π (H ) on G/H . In particular, π is a submersion,
and there exists a local C∞ section µ : V → Q ⊆ G such that

µ(π (exp ξ )) = exp ξ
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for all ξ ∈ U . (b) If to each g ∈ G we assign the left translation of G/H ,
τg : G/H → G/H by

τg(g′ H ) = (gg′)H,

then G is a transitive Lie transformation group of the homogeneous space G/H ,
that is,

(i) τg1g2 = τg1 ◦τg2 for all g1, g2 ∈ G;
(ii) for all x ∈ G/H, g ∈ G the map G × G/H → G/H given by (g, x) �→

τg(x) is differentiable,
(iii) the collection of elements of G that leave the point p = gH fixed, the

isotropy group of p, is given by gHg−1,
(iv) and for any x1, x2 ∈ G/H , there exists an element g ∈ G such that

τg(x1) = x2.
Note that π∗ : m → (G/H )o is an isomorphism, and we may henceforth

identify m with the tangent space to G/H at o. Certainly, for any h ∈ H ,
we have τh(o) = o. One checks that if Ad h : g → g leaves m invariant, then
(τh)∗|o : m → m is given by

(τh)∗|o = Ad h|m.

We say that G/H is reductive if Ad h leaves m invariant, for all h ∈ h. Naturally
we have, under all circumstances,

[h, h] ⊆ h.

We now assume G/H to be Riemannian homogeneous, that is, G/H is
endowed with a Riemannian metric relative to which τg is an isometry, for
every g ∈ G. One can now think of the inner product as also existing on m. We
also assume that G/H is reductive. Thus, we have

[h, m] ⊆ m, and 〈[�, ξ ], η〉 + 〈ξ, [�, η]〉 = 0

for all � ∈ h, ξ, η ∈ m.
To calculate the curvature and geodesics of G/H , we use a variant of the argu-

ment for Riemannian submersions. We restrict ourselves to naturally reductive
Riemannian metrics, that is, in addition to the above, we assume that

〈[ζ, ξ ]m, η〉 + 〈ξ, [ζ, η]m〉 = 0

for all ξ, η, ζ ∈ m, whereby the subscript m we mean projection onto m.
Assume that dim G = n, dim H = �, dim G/H = k, with k + � = n. Let

{e1, . . . , ek} be an orthonormal basis of m, and {ek+1, . . . , en} a basis of h, and
determine the associated left-invariant vector fields {X1, . . . , Xn} on G. Let U
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be the neighborhood of 0 in m, V be the neighborhood of o = π (H ) in G/H
described above, and define the orthonormal frame field {E1, . . . , Ek} on V by

E j |π (exp ξ ) = (τexp ξ )∗e j , j = 1, . . . , k, ξ ∈ m.

Now imitate the calculations given for Riemannian submersions (the projection
π of G to G/H is a submersion) to:

Exercise I.20.
(a) Show that G/H is complete, and for every ξ ∈ m, we have

Expo ξ = π (exp ξ ),

where (just here) Expo denotes the Riemannian exponential map of G/H at o.
(b) Show that if ξ, η ∈ m and if Y (t) is the vector field along the geodesic

γ (t) = π (exp ξ ) given by

Y (t) = (τexp tξ )∗η.

Then

∇t Y (t) = 1

2
(τexp tξ )∗[ξ, η]m.

(c) Show that the curvature at o = π (H ) is given by

R(ξ, η)ζ = [[ξ, η]h, ζ ] + 1

2
[[ξ, η]m, ζ ]m + 1

4
[[ζ, ξ ]m, η]m + 1

4
[[η, ζ ]mξ ]m

for all ξ, η, ζ ∈ m.
(d) Assume that G possesses a bi-invariant Riemannian metric, with m the

orthogonal complement of h in g. Then Ad h leaves m invariant, for all h ∈ h,
and there therefore exists a naturally reductive Riemannian metric on G/H
such that the projection π is a Riemannian submersion. Prove that

〈R(ξ, η)ξ, η〉 = |[ξ, η]h|2 + 1

4
|[ξ, η]m|2

for all ξ, η ∈ m.

Exercise I.21. (Hopf fibration of S
3) We let 1, i, j, k denote the standard basis

of R
4. Beyond the vector space structure of R

4, we define a multiplication of
elements of R

4, where the multiplication of the natural basis is given by

1i = i = i1, 1j = j = j1, 1k = k = k1, i2 = j2 = k2 = −1,

and

ij = k = −ji, jk = i = −kj, ki = j = −ik.
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With this bilinear multiplication, R
4 becomes an algebra, the quaternions.

With each element

x = α1 + βi + γ j + δk

we associate its conjugate

x = α1 − βi − γ j − δk,

and its norm |x| defined by

|x|2 := xx = xx

with associated bilinear form

〈x|y〉 = 1

2
(xy + yx).

Note that xy = yx, which implies

|x|2 = |x|2, |xy| = |x||y|.
So

|x| = 1 ⇒ |xy| = |yx| = |y|.
We conclude that the unit quaternions, S

3, is a compact Lie group under the
quaternionic multiplication.

Also, for any x 
= 0, we have

x−1 = x
|x|2 .

Since 1 is the identity element of the unit quaternions, the basis of the tangent
space to S

3 at 1 can be thought of as given by

i, j, k.

More precisely, it is given by

�1i, �1j, �1k.

(a) Show that if ξ is a linear combination of i, j, k, then (i) ξ2 = −|ξ|2, and
(ii) the 1–parameter subgroup in S

3, γ (t) = exp tξ, is given by

exp tξ = (cos |ξ|t)1 + (sin |ξ|t) ξ

|ξ| .

(b) Show that the Lie algebra is given by

[i, j] = 2k, [j, k] = 2i, [k, i] = 2j.
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(c) Declare the basis {i, j, k} of S
3 to be orthonormal in the tangent space

to S
3 at 1 (S3 does not have a Riemannian metric, yet), and use left-invariance

to define a Riemannian metric on S
3. Show that the Riemannian metric is bi-

invariant and has sectional curvature identically equal to 1 (see §II.1 for the
definition of sectional curvature).

(d) Let H denote the Lie subgroup

H = S
1 = {cos θ1 + sin θ i : θ ∈ R}.

Show that G/H is the 2–sphere in R
3 with constant sectional curvature equal

to 4.

Exercise I.22. Given the orthogonal group O(n) acting on R
n .

(a) Show that the bilinear form given by

〈A, B〉 = −1

2
tr AB

for A, B ∈ g = o(n), where o(n) is the Lie algebra of skew-symmetric linear
transformations of R

n , is a bi-invariant Riemannian metric on G = O(n).
(b) Calculate the Riemannian metric and curvature of the Grassmann mani-

fold of k–planes in R
n,

O(n)/{O(k) × O(n − k)}.
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II

Riemannian Curvature

In this chapter, we begin to consider the invariant that truly characterizes
differential geometry – curvature. The original formal definition of the curvature
tensor, in §I.4, gives little hint to its profound geometric meaning; nevertheless,
we indicated there the direction in which we are most interested in studying
curvature – Jacobi’s equation. In the Riemannian case, the torsion tensor of the
Levi-Civita connection vanishes identically, so the curvature is the exclusive
influence in studying the behavior of geodesics neighboring a given geodesic.

This, of course, is not the historical origin of curvature. In the beginning
of differential geometry (i.e., in the beginning of the nineteenth century), it
was viewed from the perspective of immediate human experience. Namely, the
curvature of a curve attempted to measure the deviation of a curve in a plane
or in space from being a straight line, and the various studies of curvature
of a surface situated in space attempted to express how the surface deviated
from being a plane in space. C. F. Gauss (1825, 1827) was the first to realize
that one aspect of curvature, what we refer to as the Gauss curvature,1 did not
depend on how the surface is situated in Euclidean space; that if the surface was
bent – that is, deformed in such a manner as to preserve the measurement of
lengths and angles in the surface – then while some curvatures were changed,
other curvatures (namely, the Gauss curvature) were left invariant under the
bending. This very fact created the distinction between intrinsic and extrinsic
properties of the surface: The intrinsic properties are invariant under bending
of the surface, and, therefore, belong to the geometric study of the surface for
itself – independent of how the surface is visualized as situated in Euclidean
space. The extrinsic properties are those properties, once the original surface
with its intrinsic geometry is given, which describe the particular details of how

1 R. Osserman (1990) has noted that the definition and first study of the Gauss curvature goes back
to O. Rodrigues (1816).

56
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the surface is situated in Euclidean space. It studies precisely those properties
that change under the bending.

Both studies of submanifolds – the intrinsic and extrinsic – are alive and well.
Any particular focus on one of them will indicate the point of view with which
one looks at curvature. Subsequent experience (of the last 150 years) has shown
that the notion of curvature is so rich that, even within each of the categories
of intrinsic and extrinsic, one still constantly chooses, and thereby refines, the
view with which one studies the curvature of a Riemannian manifold.

Here, our view, by and large, is in the intrinsic category. Within this cate-
gory, the original most striking perspective of the study of curvature is through
the celebrated Gauss–Bonnet theorem and formula (see §V.2). Nevertheless, as
mentioned, we are mainly interested in studying the curvature from the per-
spective of the “straight lines” of the Riemannian manifold – the geodesics.

The flow of ideas of the chapter is as follows:

In the first three sections, we present the basic notions and facts of the
curvature of the Levi-Civita connection of a given Riemannian manifold. We
recapture Gauss’ original calculation, relating (it is no longer a discovery) the
intrinsic curvature of a submanifold to the curvature of the ambient manifold
and the extrinsic geometry of the imbedding of the submanifold. We also de-
scribe, in some detail, the model spaces of constant sectional curvature. These
are the spaces that represent the first level of study beyond Euclidean space,
and it is by reference to these spaces that the general Riemannian manifolds are
studied.

We then, in the succeeding sections, study the “local” theory of geodesics.
The word “local” in this context has at least two meanings. In Chapter I, it
referred to the fact that, given a point in the Riemannian manifold, one can
find a sufficiently small neighborhood of that point for which the shortest path,
from the point in question to any other point in the neighborhood, is given by
a unique length minimizing geodesic segment joining the two points. Here, in
Chapter II, by “local” we mean something else: Given a geodesic emanating
from a point, we wish to know for how long the geodesic minimizes the length
of all paths joining the initial point of the geodesic to the point in question on the
geodesic. The first level of study (which we initiate in this chapter) is to study
the competing length of curves which are “close” to the original geodesic in
which we are interested. This is what we mean by “local.” It is these questions
that lead to the detailed study of Jacobi’s equations and the associated Jacobi
criteria, and the study of the role played by curvature in these phenomena. At
the end of the chapter, we bring these notions back to the exponential map, in
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that the study of one-parameter families of geodesics is essentially equivalent
to the study of the differential of the exponential map.

§II.1. The Riemann Sectional Curvature

Unless otherwise noted, when given a Riemannian metric, we only use the
Levi-Civita connection.

So, M is our Riemannian manifold with Levi-Civita connection ∇. Recall that,
for X, Y, Z , W ∈ �(T M), we have

R(X, Y )Z = ∇Y ∇X Z − ∇X∇Y Z − ∇[Y,X ] Z ,

where R is the curvature tensor of ∇. Of course we have

R(X, Y )Z + R(Y, X )Z = 0;(II.1.1)

and since the torsion of ∇ vanishes identically, we also have

R(X, Y )Z + R(Z , X )Y + R(Y, Z )X = 0.(II.1.2)

One now establishes, using (I.5.2), (I.5.3), and Remark I.3.1,

〈R(X, Y )Z , W 〉 − 〈R(Z , W )X, Y 〉 = 0,(II.1.3)

〈R(X, Y )Z , W 〉 + 〈R(X, Y )W, Z〉 = 0.(II.1.4)

Since (II.1.1) implies that the curvature tensor vanishes identically for dim M =
1, all discussions concerning the curvature tensor will assume dim M ≥ 2.

Proposition II.1.1. For p ∈ M, ξ, η ∈ Mp define

k(ξ, η) = 〈R(ξ, η)ξ, η〉.
Then, by (II.1.1)–(II.1.4), we have for any ξ, η, ζ, μ ∈ Mp

〈R(ξ, η)ζ, μ〉 = 1

6

∂2

∂s∂t

∣∣∣∣
s=t=0

{k(ξ + sζ, η + tμ) − k(ξ + sμ, η + tζ )}.

Thus, the function k : Mp × Mp → R and the properties (II.1.1)–(II.1.4) com-
pletely determine R : Mp × Mp × Mp → Mp.

Proof. Direct calculation as for (II.1.3), (II.1.4).

Proposition II.1.2. For p ∈ M, ξ, η, ζ ∈ Mp, define

R1(ξ, η)ζ = 〈ξ, ζ 〉η − 〈η, ζ 〉ξ, k1(ξ, η) = 〈R1(ξ, η)ξ, η〉.
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Then

k1(ξ, η) = 〈ξ, ξ〉〈η, η〉 − 〈ξ, η〉2,

and R1 satisfies the axioms (II.1.1)–(II.1.4). Furthermore, if ξ, η are linearly
independent tangent vectors in Mp, then

K(ξ, η) := k(ξ, η)

k1(ξ, η)
= 〈R(ξ, η)ξ, η〉

|ξ |2|η|2 − 〈ξ, η〉2

is well-defined and only depends on the 2–dimensional subspace determined
by ξ and η.

Proof. All of the claims, except for the last, are straightforward exercises. For
the last claim, it suffices to note that if α, β, γ, δ are real numbers and ξ, η

linearly independent tangents vectors in Mp, then

〈R(αξ + βη, γ ξ + δη)(αξ + βη), γ ξ + δη〉 = (αδ − βγ )2〈R(ξ, η)ξ, η〉,
and

|αξ + βη|2|γ ξ + δη|2 − 〈αξ + βη, γ ξ + δη〉
= (αδ − βγ )2{|ξ |2|η|2 − 〈ξ, η〉},

which implies the claim. �

Definition. We refer to K(ξ, η) as the sectional curvature of the 2–section
determined by ξ, η. We note that, if G2 is the complete collection of all 2–
dimensional spaces tangent to M , then G2 can be provided a differentiable
structure in a natural manner, and K : G2 → R will then be differentiable.

Theorem II.1.1. If dim M = 2, then G2 = M; K is called the Gauss curvature
of M. For p ∈ M, ξ , η, ζ ∈ Mp, we have

R(ξ, η)ζ = K(p)R1(ξ, η)ζ.(II.1.5)

Proof. We only have to deal with the last claim. Let {e1, e2} be an orthonormal
basis of Mp. One easily sees that we only have to verify (II.1.5) for ξ = ζ = e1,
η = e2.

To this end, map R : Mp → Mp by

R(ξ ) = R(e1, ξ )e1.

Then, by (II.1.3), R is self-adjoint and therefore diagonalizable. Since e1 is
an eigenvector of R with eigenvalue 0, we have that e2 is an eigenvalue of
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R with eigenvalue

〈Re2, e2〉 = 〈R(e1, e2)e1, e2〉 = K(p).

Thus,

R(e1, e2)e1 = K(p)e2 = K(p)R1(e1, e2)e1,

and the claim is proven. �

Definition. For p ∈ M , we define the Ricci curvature tensor Ric : Mp×
Mp → R by

Ric (ξ, η) = trace (ζ �→ R(ξ, ζ )η),(II.1.6)

and the scalar curvature S is the trace of Ric with respect to the Riemannian
metric.

In particular, we have for any orthonormal basis of Mp, {e1, . . . , en},

Ric (ξ, η) =
n∑

j=1

〈R(ξ, e j )η, e j 〉.(II.1.7)

Thus, Ric is a symmetric bilinear form on Mp. To calculate its associated
quadratic form, pick {e1, . . . , en} so that en = ξ/|ξ |; then

Ric (ξ, ξ ) =
{

n−1∑
j=1

K(e j , ξ )

}
|ξ |2.

For any orthonormal basis {e1, . . . , en} of Mp, we have

S =
n∑

j 	=k; j,k=1

K(e j , ek).

§II.2. Riemannian Submanifolds

We are given Riemannian manifolds M, M with respective Riemannian metrics
g, g and an isometric imbedding ϕ of M in M . Thus, dim M ≤ dim M ; should
the dimensions be equal, M will be an open submanifold of M . Since ϕ is a
diffeomorphism, for any differentiable vector field X ∈ �(T M), we have ϕ∗ X , a
well-defined vector field on ϕ(M), that is, ϕ∗ X ∈ �(ϕ∗T M). One easily verifies
that

ϕ∗[X, Y ] = [ϕ∗ X, ϕ∗Y ]
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for all X, Y ∈ �(T M). Since ϕ is an isometry, we have by definition

g(ϕ∗ξ, ϕ∗η) = g(ξ, η)

for all ξ, η ∈ Mp, p ∈ M . For the rest of this section, we assume dim M <

dim M .
Thus, in what follows, nothing is lost in assuming that M ⊆ M and ϕ is the

inclusion map. For any p ∈ M , we let Mp
⊥ denote the orthogonal complement

of Mp in M p. For any p ∈ M , ξ ∈ M p, we shall denote the projection of ξ onto

Mp by ξ
T

, and the projection of ξ onto Mp
⊥ by ξ

N
. The normal bundle of M

in T M is defined by

νM =
⋃
p∈M

Mp
⊥,

and has a natural differentiable structure such that the inclusion of νM in
T M , the projection of T M to νM , and the projection of νM to M are all
differentiable. Also, we let �(νM) denote the differentiable sections of νM ,
that is, those differentiable maps of M into νM such that the image of any point
p is an element of Mp

⊥.

Proposition II.2.1. Let ∇, ∇ be the respective Levi-Civita connections of g, g.
Then, for any p ∈ M, ξ ∈ Mp, and Y ∈ �(T M), we have

∇ξ Y = (∇ξ Y )T .(II.2.1)

Furthermore, to each p ∈ M, there exists a symmetric bilinear map B : Mp ×
Mp → Mp

⊥ such that, for any ξ, η ∈ Mp, Y ∈ �(T M) satisfying Y|p = η, we
have

B(ξ, η) = (∇ξ Y )N .(II.2.2)

B is called the second fundamental form of M in M. If to each v ∈ Mp
⊥, we

let bv : Mp × Mp → R be the bilinear form defined by

bv(ξ, η) = 〈B(ξ, η), v〉,(II.2.3)

then the self-adjoint linear transformation Av : Mp → Mp determined by

bv(ξ, η) = 〈Avξ, η〉
is given by

Avξ = −(∇ξ V )T ,(II.2.4)

where V is any extension of v to an element of �(νM).
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Proof. To establish (II.2.1), one first decomposes ∇ξ Y , for ξ ∈ M , Y ∈ �(T M)
by

∇ξ Y = Dξ Y + B(ξ, Y ),

where Dξ Y = (∇ξ Y )T , and B(ξ, Y ) = (∇ξ Y )N as in (II.2.2). Next, one verifies
directly that D is a connection on M with no torsion (i.e., it satisfies (I.5.2)) and
preserves the inner product (i.e., it satisfies (I.5.3)). Thus, by Theorem I.5.1, D
is the Levi-Civita connection of M , and (II.2.1) follows.

For the symmetry of B, we have for any X, Y ∈ �(T M),

B(X, Y ) − B(Y, X ) = {∇X Y − ∇Y X}N = [X, Y ]N = 0,

since X , Y are tangent to M . That (B(X, Y ))|p depends only on X |p, Y|p follows
from the symmetry of B and (II.2.2).

Finally, we wish to show that if ξ, η ∈ Mp, v ∈ Mp
⊥ and V is any extension

of v in �(νM), then

〈B(ξ, η), v〉 = −〈(∇ξ V )T , η〉.

To do so extend η to a vector field Y ∈ �(T M). Then

−〈(∇ξ V )T , η〉 = −〈∇ξ V, η〉 = − 〈∇ξ V, Y 〉
= − ξ〈V, Y 〉 + 〈V, ∇ξ Y 〉 = 〈v, B(ξ, η)〉. �

Remark II.2.1. If we refer to the second fundamental form, we should have
already described the first fundamental form. The first fundamental form is just
the restriction of the Riemannian metric of M to the immersed submanifold M .

The map Av is commonly referred to as the Weingarten map.
The principal curvatures of M in M at p ∈ M, relative to the normal direc-

tion v, are the eigenvalues of the second fundamental form bv relative to the
first fundamental form – equivalently, the eigenvalues of Av . The associated
eigenvectors are referred to as the principal directions.

Theorem II.2.1. If R and R denote the respective curvature tensors of M and
M, then for any p ∈ M, ξ, η, ζ, μ ∈ Mp we have

R(ξ, η)ζ = (R(ξ, η)ζ )T + AB(ξ,ζ )η − AB(η,ζ )ξ,(II.2.5)

〈R(ξ, η)ζ, μ〉 = 〈R(ξ, η)ζ, μ〉 + 〈B(ξ, ζ ), B(η, μ)〉 − 〈B(ξ, μ), B(η, ζ )〉.
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In particular, if K, K denote the respective sectional curvatures of M, M, then
for linearly independent ξ , η we have

K(ξ, η) = K(ξ, η) + 〈B(ξ, ξ ), B(η, η)〉 − |B(ξ, η)|2
|ξ |2|η|2 − 〈ξ, η〉2

.(II.2.6)

Proof. Direct calculation, using (II.2.1)–(II.2.4) and (I.4.2), (I.5.2), (I.5.3). �

The Second Fundamental Form Via Moving Frames

Now assume M is m–dimensional, and M n–dimensional with n < m. For
p ∈ M , one may pick a neighborhood U of p in M , with orthonormal frame
field {e1, . . . , em}, and dual coframe {ω1, . . . , ωm}. We then have equations
(I.8.8), (I.8.9), and (I.8.10), (I.8.11), namely,

dωA =
∑

B

ωB ∧ ωB
A, ωA

B = −ωB
A,(II.2.7)

and

dωA
B =

∑
C

ωA
C ∧ ωC

B − �A
B,(II.2.8)

where

�A
B(X, Y ) = 〈R(X, Y )eA, eB〉 = −�B

A(X, Y ).(II.2.9)

For calculations relating M to M , we may pick {e1, . . . , em} so that {e1, . . . , en}
are tangent to M at all points of M ∩ U , and {en+1, . . . , em} are normal to M
at all points of M ∩ U . (See Figure II.1.)

In the calculation that follows, we let A, B, . . . range over 1, . . . , m; j, k, . . .

range over 1, . . . , n; and α, β, . . . range over n + 1, . . . , m. We also let

eA = eA|M, ωA = ωA|M, ωB
A = ωB

A|M.

Then, on M , we have

ωα = 0,

which implies

dω j =
∑

k

ωk ∧ ωk
j ,(II.2.10)

which is the analogue of (II.2.1); and

0 = dωα =
∑

j

ω j ∧ ω j
α,(II.2.11)
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e3

e2

e1

M 2 � �3

Figure II.1. Moving frame.

which implies

ω j
α =

∑
k

h jk
αωk, h jk

α = hkj
α.(II.2.12)

The equation (II.2.12) then encapsulates the description of the second funda-
mental form in Proposition II.2.1.

The Gauss equations of Theorem II.2.1 are obtained as follows: Let �A
B

denote the matrix curvature 2–form of M , as above, and� j
k the matrix curvature

2–form of M . Then,

dω j
k =

∑
�

ω j
� ∧ ω�

k +
∑

α

ω j
α ∧ ωα

k − (�|M) j
k,

which implies

� j
k = (�|M) j

k −
∑

α

ω j
α ∧ ωα

k,(II.2.13)

which is, using (II.2.12), a rewrite of Theorem II.2.1.

§II.3. Spaces of Constant Sectional Curvature

Let M be a Riemannian manifold of dimension ≥ 2, K the Riemann sectional
curvature of 2–dimensional spaces tangent to M .
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Definition. We say that M has constant sectional curvatureκ ,κ ∈ R, ifK(σ ) =
κ for all 2–sections σ .

From Propositions II.1.1 and II.1.2, we have immediately:

Proposition II.3.1. M has constant sectional curvature κ if and only if for any
p ∈ M, ξ, η, ζ ∈ Mp we have

R(ξ, η)ζ = κ{〈ξ, ζ 〉η − 〈ζ, η〉ξ}.(II.3.1)

Euclidean Space

Let M be R
n with its usual inner product (ξ, η) �→ ξ · η. As in §I.1, we let

�p : R
n → (Rn)p be the canonical isomorphism associated to each p ∈ R

n .
The standard Riemannian metric on R

n will be defined by

〈ξ, η〉 = �p
−1ξ · �p

−1η

for p ∈ R
n , ξ, η ∈ (Rn)p. A straightforward calculation shows that the Levi-

Civita connection on R
n given by Theorem I.5.1 is the standard connection on

R
n given by (I.1.1). One easily sees that the Riemann curvature tensor vanishes

identically. Thus, R
n with its standard Riemannian metric is flat, that is, it has

constant sectional curvature equal to 0.
The straight lines of R

n are easily seen to be its geodesics; since they are
infinitely extendible in both directions, R

n is complete.
For comparison to later considerations, we write the metric of R

n in spherical
coordinates, namely, for x ∈ R

n set

x = tξ, t > 0, ξ ∈ S
n−1,

where S
n−1 denotes the unit (n − 1)–sphere in R

n . Then,

dx = (dt)ξ + t dξ,

and since

|ξ |2 = 1, ξ · dξ = 0

(we are giving the phenomena on which the Gauss lemma is predicated), we
have

|dx |2 = dt 2 + t2|dξ |2,(II.3.2)

where |dξ |2 denotes the induced Riemannian metric on S
n−1.

We now consider S
n(ρ), the sphere in R

n+1 of radius ρ > 0, and show that
S

n(ρ) has constant sectional curvature 1/ρ2. Here, S
n(ρ) has the Riemannian
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y

NP

x

�1

Figure II.2. 1–Dimensional stereographic projection.

metric for which the inclusion of S
n(ρ) in R

n+1 is an isometry. Three methods
are available.

Spheres: The First Method

The first approach consists of using coordinates on S
n(ρ), given for example,

by stereographic projection, and carrying out the calculation explicitly.
Namely, the stereographic projection fixes the “north pole” NP of S

n(ρ), and
its equatorial n–dimensional hyperplane R

n in R
n+1. Then, with every point

y ∈ S
n(ρ), one associates x ∈ R

n to be the point of intersection of the line
in R

n+1, determined by NP and y, with the equatorial hyperplane R
n . (See

Figure II.2.) To carry out the associated calculations, let y = (y1, . . . , yn+1),
n ≥ 1, denote any point on S

n(ρ) ⊂ R
n+1, and (x1, . . . , xn) its image under

stereographic projection from the north pole to

R
n = {z ∈ R

n+1 : zn+1 = 0}.
It is standard that for j = 1, . . . , n, we have

y j = x j (ρ − yn+1)/ρ,
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from which one derives

yn+1 = −ρ2 + |x |2
ρ2 + |x |2 ρ,

(y1, . . . , yn) := y = 2ρ2x
ρ2 + |x |2 .

We claim that

g jk =
〈

∂

∂x j
,

∂

∂xk

〉
= 4δ jk

{1 + |x |2/ρ2}2
.(II.3.3)

The simplest way to derive (II.3.3) is to compute formally:

d y = 2ρ2 {ρ2 + |x |2}dx − 2x(x · dx)

{ρ2 + |x |2}2
,

|d y|2 = 4ρ4 {ρ2 + |x |2}2|dx |2 − 4ρ2(x · dx)2

{ρ2 + |x |2}4
,

dyn+1 = 4ρ3 x · dx
{ρ2 + |x |2}2

, (dyn+1)2 = 16ρ6 (x · dx)2

{ρ2 + |x |2}4
,

ds 2 =
n+1∑
a=1

(dyα)2 = 4ρ4 |dx |2
{ρ2 + |x |2}2

,(II.3.4)

which is (II.3.3).
Therefore, (II.3.3) and (I.5.8) imply

� jk
� = −2

ρ2 + |x |2 {δ�k x j + δ j�xk − δ jk x�}.

Therefore, for n ≥ 2, one now uses (I.4.6) to verify, by a long and tedious
calculation, that S

n(ρ) has constant sectional curvature 1/ρ2.

Spheres: The Second Method

The second approach is to use the apparatus of §II.2 to calculate the sectional
curvatures of S

n(ρ) in terms of those of R
n+1 and the second fundamental form

of S
n(ρ) in R

n+1.
It goes as follows: For any q ∈ S

n(ρ) ⊆ R
n+1, the exterior unit normal vector

v at q is given by

v = (1/ρ)�qq;

more informally,

v = q/ρ,
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which implies

dv = (1/ρ)dq;

more precisely, (II.2.4) becomes

Av = −(1/ρ)I.(II.3.5)

For n ≥ 2, one now can easily use (II.3.5) to show that the images of geodesics
on S

n(ρ) are obtained by intersecting S
n(ρ) with 2–planes through the cen-

ter of S
n(ρ). Also, one substitutes (II.3.5) into (II.2.6) to verify that sectional

curvatures of S
n(ρ) are equal to 1/ρ2.

The third approach is via Jacobi’s equation, relating the curvature of S
n(ρ)

with its geodesics. First,

Some Generalities about Isometries

Let M be a connected Riemannian manifold and � : M → M be a local isom-
etry, that is, � is C∞, and for all p ∈ M , ξ, η ∈ Mp we have

〈�∗ξ, �∗η〉 = 〈ξ, η〉.
If � is a global isometry, that is, � is a diffeomorphism in addition to being a
local isometry, then one verifies that � preserves the distance function, that is,

d(�(p), �(q)) = d(p, q)

for all p, q ∈ M . One also verifies that, when � is a local isometry, � preserves
the Levi-Civita connection; in particular, one has that � preserves geodesics,
that is,

�(exp ξ ) = exp �∗ξ(II.3.6)

for all ξ ∈ T M the domain of exp in T M . Also, � preserves sectional curvature,
that is, if p ∈ M , ξ, η ∈ Mp are linearly independent, then

K (�∗ξ, �∗η) = K (ξ, η).

Finally, if M1 is a submanifold of M , and � is an isometry of M satisfying
�(M1) ⊆ M1, then �|M1 is an isometry.

Let V be a real n–dimensional vector space, q ∈ V, A a linear transformation
of V , and aA;q : V → V given by aA;q (p) = Ap + q. Then (Exercise I.I.17),

(aA;q )∗|p = �aA;q (p) A�p
−1.

In particular, if V is an inner product space and A an orthogonal transformation,
then aA;q is an isometry of V for every q ∈ V .
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Spheres: The Third Method

Let V = R
n+1, n ≥ 2, with its standard Riemannian metric, and letO(n + 1) be

the group of orthogonal transformations of R
n+1. Then, for each A ∈ O(n + 1),

ρ > 0, we have A|Sn(ρ) is an isometry of S
n(ρ) to itself. Also, one easily sees

that for p ∈ S
n(ρ)

(Sn(ρ))p = �p(p⊥),

where p⊥ is the orthogonal complement of the span of p in R
n+1. From these two

facts, one easily has that for p, q ∈ S
n(ρ), ξ1, ξ2 orthonormal in (Sn(ρ))p and

η1, η2 orthonormal in (Sn(ρ))q , there exists A ∈ O(n + 1) such that A(p) = q,
A∗ξ j = η j , j = 1, 2. Thus, S

n(ρ) has constant sectional curvature. The only
question is: What is the constant?

We first consider the geodesics of S
n(ρ). (See Milnor (1963, p. 65).) By

Corollary I.6.3, there exists δ > 0 so that for any p, q ∈ S
n(ρ) satisfying

d(p, q) < δ, there exists a unique geodesic γ : [0, d(p, q)] → S
n(ρ), |γ ′| = 1,

such that γ (0) = p, γ (d(p, q)) = q. Pick such a p, q, p 	= q, let σ be the 2–
plane through the origin of R

n+1 spanned by {p, q}, and let A : R
n+1 → R

n+1

be the reflection of R
n+1 through σ , that is, if {e1, . . . , en+1} is an orthonormal

basis of R
n+1 such that span {e1, e2} = σ then A is determined by

Ae1 = e1, Ae2 = e2,

and

Aeα = −eα, α = 3, . . . , n + 1.

Then, A ∈ O(n + 1) with fixed-point set equal to σ .
Let � = σ ∩ S

n(ρ) be the great circle through p, q. Then A|Sn(ρ) is an
isometry with fixed-point set equal to �. Now, A(p) = p, A(q) = q implies
that A takes any minimizing geodesic from p to q to a minimizing geodesic
from p to q . But there is only one such geodesic: γ . Thus, A∗γ ′(0) = γ ′(0),
which implies Aγ (t) = γ (t), that is, γ is contained in �. So, the great circles
are the geodesics of S

n(ρ).
We now show that S

n(ρ) has constant sectional curvature equal to 1/ρ2.
We first argue informally: Let vo ∈ S

n(ρ) (it is helpful to think of vo as the
north pole), and let ξ vary over unit vectors in (Sn(ρ))vo

. We think of any such
ξ as an element of S

n ∩ vo
⊥. So, write y ∈ S

n(ρ) as

y = (cos t/ρ)vo + (ρ sin t/ρ)ξ,

dy =
{− sin t/ρ

ρ
vo + (cos t/ρ)ξ

}
dt + ρ(sin t/ρ) dξ.(II.3.7)
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Since, for each fixed ξ , y as a function of t describes the geodesic γξ (t), then
the Jacobi field of the variation of geodesics, determined by dξ , is given by

Y (t) = ρ(sin t/ρ) dξ

with dξ an S
n(ρ)–parallel tangent vector field along γξ (t). If we substitute Y (t)

into Jacobi’s equation (I.4.9) (with T = 0), we obtain κ = 1/ρ2.
More precisely, let vo ∈ S

n(ρ), ξ, η ∈ (Sn(ρ))vo
be orthonormal, and consider

the geodesic variation v given by

v(t, ε) = expvo
{(cos ε)ξ + (sin ε)η}t

= (cos t/ρ)vo + (sin t/ρ)�vo

−1ρ{(cos ε)ξ + (sin ε)η}.
Let γ be the geodesic given by

γ (t) = v(t, 0) = (cos t/ρ)vo + (sin t/ρ)�vo

−1ρξ,

and Y (t) the vector field along γ given by

Y (t) = (∂εv)(t, 0) = �γ (t)(sin t/ρ)�vo

−1ρη.

So, if we let e(t) be the S
n(ρ)–parallel vector field along γ satisfying e(0) = η,

that is,

e(t) = �γ (t)�vo

−1η,

then

Y (t) = ρ(sin t/ρ)e(t).

Since v is a geodesic variation, Y satisfies Jacobi’s equation (I.4.9)

∇t
2Y + R(γ ′, Y )γ ′ = 0;

note that in the Riemannian case, T = 0. Thus,

−(1/ρ)(sin t/ρ)e = ∇t
2Y

= −R(γ ′, Y )γ ′

= −ρ(sin t/ρ)R(γ ′, e)γ ′.

In particular, at t = 0, we obtain

ρR(ξ, η)ξ = η/ρ,

which implies

K(ξ, η) = 〈R(ξ, η)ξ, η〉 = 1/ρ2,

which is the claim. �
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Remark II.3.1. It may be worth commenting on the approach of the last
method. Its appeal is extremely natural, in that the curvature tensor is created to
describe the linearization of the equations for geodesics. Since, in general, the
geodesics of a Riemannian manifold are unknown, one tries at least to study how
geodesics behave “near” a given one. So one uses knowledge of the curvature
to inform about geodesics. But our situation with the sphere is quite the reverse,
namely, we know all the geodesics at the outset. So, we certainly know the local
behavior of geodesics, which implies that we know the curvature tensor. This
is what drives the third method.

Note that we have, from (II.3.7),

ds 2 = |dy|2 = dt 2 + ρ2(sin2 t/ρ)|dξ |2.(II.3.8)

Finally, we note that, from the above formal calculation, one can reclaim the
Riemannian metric for stereographic projection as follows: Let x ∈ R

n ,

x = rξ, r > 0, ξ ∈ S
n−1,

r = ρ tan t/2ρ, t ∈ [0, πρ].

Then, one verifies directly that

ds2 = 4|dx |2
{1 + |x |2/ρ2}2

= dt 2 + ρ2(sin2 t/ρ)|dξ |2.

Hyperbolic Space

To describe the model space of constant sectional curvature equal to −1, we
work with two models: (i) B

n the unit disk in R
n with radius 1, and (ii) R

n
+ the

upper half-space of R
n .

The first step is to give an identification of R
n
+ with B

n . To this end, set

y = x + (1/2 − 2xn)en,

where en denotes the n-th element of the natural basis of R
n . Then, x �→ y takes

R
n
+ to {yn < 1/2}. Now map {yn < 1/2} to B

n by

z = en + (y − en)|y − en|−2.

This provides a diffeomorphism of R
n
+ to B

n .
For the Riemann metric on B

n , choose:

ds 2 := 4|dz|2
{1 − |z|2}2

.(II.3.9)
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To write the induced Riemannian metric on R
n
+, we have

dz = |y − en|−2 dy − 2|y − en|−4{(y − en) · dy}(y − en),

|dz|2 = |y − en|−4|dy|2,
|z|2 = 1 + 2en · (y − en)|y − en|−2 + |y − en|−2,

1 − |z|2 = {1 − 2yn}|y − en|−2,

which implies

ds 2 = 4|dz|2
{1 − |z|2}2

= 4|dy|2
{1 − 2yn}2

.

Next,

|dy| = |dx |, 2yn − 1 = −2xn,

which implies

ds 2 = 4|dy|2
{1 − 2yn}2

= |dx |2
{xn}2

.

So, in R
n
+ the metric is written as

ds 2 = |dx |2
{xn}2

.(II.3.10)

To show that the sectional curvature K is identically equal to −1, we work
in R

n
+. Then, (I.5.5) implies

gi j = δi j

(xn)2
,

which implies, by (I.5.8),

� jk
� = −(xn)−1{δ jnδ�k + δknδ j� − δ�nδ jk}.

Therefore, for α, β = 1, . . . , n − 1, we have

∇∂α
∂β = (xn)−1δαβ∂n, ∇∂n ∂β = −(xn)−1∂β, ∇∂n ∂n = −(xn)−1∂n,

∇∂β
∇∂α

∂β = −(xn)−2δαβ∂β, ∇∂α
∇∂β

∂β = −(xn)−2∂α.

Therefore, we have, by (I.4.6), for α 	= β

R(∂β, ∂α)∂β = −(xn)−2∂α,

which implies, from the definition in Proposition II.1.2, that

K(∂α, ∂β) = −1.
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Also, we similarly have

R(∂n, ∂α)∂n = −(xn)−2∂α;

so

K(∂α, ∂n) = −1.

Thus, our space – referred to as hyperbolic space – has constant sectional
curvature equal to −1.

We note that, if we start with the n–disk B
n(ρ) in R

n , endowed with metric

ds 2 = 4|dz|2
{1 − |z|2/ρ2}2

,

then the sectional curvature becomes the constant −1/ρ2. Furthermore, if we
substitute

z = rξ, r > 0, ξ ∈ S
n−1,

r = ρ tanh t/2ρ,

then we obtain

ds 2 = dt 2 + ρ2(sinh2 t/ρ)|dξ |2.(II.3.11)

One easily sees that, in this model, the geodesics emanating from the origin are
given by straight lines emanating from origin, and their length to the boundary
S

n−1 is infinite. So hyperbolic space is Riemannian complete.

Remark II.3.2. A particularly clear and elegant discussion of the Riemannian
geometry of hyperbolic space can be found in B. Randol’s Chapter 11 of Chavel
(1984). See Note II.5 and II.6 in §II.9 for further references.

§II.4. First and Second Variations of Arc Length

M is our Riemannian manifold.

Definition. We are given ω : [α, β] → M ∈ D∞ (see §I.6). A variation v of ω

is a continuous mapping v : [α, β] × (−ε0, ε0) → M ∈ D∞ for some ε0 > 0,
for which

ω(t) = v(t, 0)

for all t ∈ [α, β], and such that there exists a subdivision [α = t0 < . . . < tk =
β] of [α, β] for which v|[t j−1, t j ] × (−ε0, ε0) ∈ C∞ for each j = 1, . . . , k.
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If v fixes endpoints, that is, v also satisfies

ω(α) = v(α, ε), ω(β) = v(β, ε)

for all ε in (−ε0, ε0), then we say that v is a homotopy of ω.
We refer to v as a smooth variation if v is differentiable on all of [α, β] ×

(−ε0, ε0).
We call v a geodesic variation of ω if for every ε in (−ε0, ε0) the path

ωε : [α, β] → M given by

ωε(t) = v(t, ε)

is a geodesic.

We write ∂tv, ∂εv for v∗(∂t ), v∗(∂ε), respectively, and denote differentiation of
vector fields along v with respect to ∂tv, ∂εv by ∇t , ∇ε , respectively.

For a geodesic variation v, we have (see (I.4.7), (I.4.8))

∇ε∂tv − ∇t∂εv = 0,

since the Levi-Civita connection has no torsion, and

∇ε∇t − ∇t∇ε = R(∂tv, ∂εv).

Theorem II.4.1. (The first variation of arc length) Assume ω : [α, β] → M is
differentiable, and v a differentiable variation of ω. For each ε in (−ε0, ε0), let
L(ε) be the length of ωε , namely,

L(ε) =
∫ β

α

|∂tv(t, ε)| dt.

Then, L is differentiable and

d L
dε

=
〈
∂v

∂ε
,

∂v

∂t

/ ∣∣∣∣∂v

∂t

∣∣∣∣〉∣∣∣∣β
α

−
∫ β

α

〈∂εv, ∇t (∂tv/|∂tv|)〉 dt.(II.4.1)

In particular, if ω is parameterized with respect to arc length, that is, |ω′| = 1,
and we set

Y (t) = (∂εv)(t, 0),

then

d L
dε

(0) = 〈Y, ω′〉
∣∣∣∣β
α

−
∫ β

α

〈Y, ∇tω
′〉 dt.(II.4.2)
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Proof. We have

∂ε L = ∂ε

∫ β

α

|∂tv| dt

=
∫ β

α

∂ε(〈∂tv, ∂tv〉1/2) dt

=
∫ β

α

|∂tv|−1〈∇ε∂tv, ∂tv〉 dt

=
∫ β

α

〈∇t∂εv, ∂tv/|∂tv|〉 dt

=
∫ β

α

{∂t 〈∂εv, ∂tv/|∂tv|〉 − 〈∂εv, ∇t (∂tv/|∂tv|)〉} dt

=
〈
∂v

∂ε
,

∂v

∂t

/ ∣∣∣∣∂v

∂t

∣∣∣∣〉∣∣∣∣β
α

−
∫ β

α

〈∂εv, ∇t (∂tv/|∂tv|)〉 dt,

which is (II.4.1). Equation (II.4.2) follows immediately. �

Lemma II.4.1. If ω : [α, β] → M ∈ D∞ and Y is a D∞ vector field along ω,
then there exists a variation v of ω for which Y = ∂εv|ε=0.

Proof. Simply set v(t, ε) = exp εY (t). �

Theorem II.4.2. A path ω : [α, β] → M, |ω′| = 1, is a geodesic if and only if

L ′(0) = 0(II.4.3)

for every homotopy v of ω.

Proof. For any vector field Z along ω, set

�Z (t0) = lim
t↓t0

Z (t) − lim
t↑t0

Z (t)

for any t0 ∈ (α, β).
If ω ∈ D∞, then for any homotopy v of ω, we have

L ′(0) = −
∑

t

〈Y, �ω′〉 −
∫ β

α

〈Y, ∇tω
′〉 dt.(II.4.4)

Thus, if ω is a geodesic, then (II.4.3) is valid for every homotopy v of ω.
If, on the other hand, (II.4.3) is valid for all homotopies v of ω, then

0 = −
∑

t

〈Y, �ω′〉 −
∫ β

α

〈Y, ∇tω
′〉 dt
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for every D∞ vector field Y along ω vanishing at t = α, β. Let t1 < . . . < tk−1

denote the discontinuities of ω′ and assume that there exists t0 ∈ (α, β)\{t1 . . . ,

tk−1} such that (∇tω
′)(t0) 	= 0. Pick δ1 > 0 so that {t : |t − t0| < δ1} ⊂ (α, β)\

{t1, . . . , tk−1}, and let Z (t) be the parallel vector field on {t : |t − t0| < δ1}
satisfying

Z (t0) = (∇tω
′)(t0).

Then there exists δ2 ∈ (0, δ1) such that 〈Z , ∇tω
′〉 > 0 on {t : |t − t0| < δ2}. Fi-

nally pick ϕ : [α, β] → [0, +∞) ∈ C∞ such that ϕ(t0) > 0, with supp ϕ con-
tained in {t : |t − t0| < δ2}, and set Y = ϕZ . Then, the right-hand side of (II.4.4)
will be strictly negative – a contradiction.

Thus, ∇tω
′ = 0 on (α, β)\{t1, . . . , tk−1}, and ω is at least piecewise geodesic.

It remains to show that ω ∈ C1 on [α, β]. For, if so, then the differential equa-
tions of geodesics in local coordinates (I.3.2) will then imply that ω ∈ C∞, that
is, ω is a geodesic. Well, our assumption now is that

0 =
∑

t j

〈Y, �ω′〉

for all D∞ vector fields Y along ω. Pick Y to be any D∞ vector field sat-
isfying Y (t j ) = �ω′(t j ), j = 1, . . . , k − 1. Then |�ω′|2(t j ) = 0 for each j =
1, . . . , k − 1 and ω ∈ C1. �

Theorem II.4.3. (The second variation of arc length) Let ω and L be as in
Theorem II.4.1, with |ω′| = 1. Then, for the second derivative of L, we have

(d2L/dε2)(0) = 〈∇ε∂εv |ε=0, ω
′〉∣∣β

α

+
∫ β

α

{|∇t Y |2 − 〈R(ω′, Y )ω′, Y 〉
− 〈ω′, ∇t Y 〉2 − 〈∇tω

′, ∇ε∂εv〉} dt.

(II.4.5)

Proof. For the second derivative of L , we start just prior to the integration by
parts in the proof of the formula for the first variation, namely,

∂2L
∂ε2

= ∂ε

∫ β

α

〈∇t∂εv, ∂tv/|∂tv|〉 dt

=
∫ β

α

{〈∇ε∇t∂εv, ∂tv/|∂tv|〉 + |∇t∂εv|2/|∂tv|
− |∂tv|−2∂ε(|∂tv|)〈∇t∂εv, ∂tv〉} dt.
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If we set ε = 0, then we obtain

d2L
dε2

(0) =
∫ β

α

{〈∇ε∇t∂εv, ∂tv〉|ε=0 + |∇t Y |2 − 〈∇t Y, ω′〉2} dt.

But

〈∇ε∇t∂εv, ∂tv〉 = 〈∇t∇ε∂εv, ∂tv〉 + 〈R(∂tv, ∂εv)∂εv, ∂tv〉
= ∂t 〈∇ε∂εv, ∂tv〉 − 〈∇ε∂εv, ∇t∂tv〉 − 〈R(∂tv, ∂εv)∂tv, ∂εv〉,

and (II.4.5) follows easily. �

Theorem II.4.4. Let γ : [α, β] → M, |γ ′| = 1 be a geodesic. For any variation
v of γ let

Y⊥ = Y − 〈Y, γ ′〉γ ′.

Then

L ′(0) = 〈Y, γ ′〉∣∣β

α
,(II.4.6)

L ′′(0) = 〈∇Y ∂εv, γ ′〉∣∣β

α
+

∫ β

α

{|∇t Y⊥|2 − 〈R(γ ′, Y⊥)γ ′, Y⊥〉} dt.(II.4.7)

In particular, if v is a homotopy of γ , then

L ′(0) = 0,(II.4.8)

L ′′(0) =
∫ β

α

{|∇t Y⊥|2 − 〈R(γ ′, Y⊥)γ ′, Y⊥〉} dt.(II.4.9)

Proof. One only has to realize that if γ is a geodesic, then

∇t Y⊥ = ∇t Y − 〈∇t Y, γ ′〉γ ′ = (∇t Y )⊥,

which implies

|∇t Y⊥|2 = |∇t Y |2 − 〈∇t Y, γ ′〉2. �

§II.5. Jacobi’s Equation and Criteria

We are given a fixed geodesic γ : [α, β] → M , |γ ′| = 1, and define ϒ0 to be
the vector space of D1 vector fields X along γ , orthogonal to γ and satisfying
X (α) = X (β) = 0. We may think of ϒ0 as having the inner product

(X, Y ) =
∫ β

α

〈X, Y 〉 dt.(II.5.1)
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Definition. On ϒ0, we define the symmetric bilinear form I (X, Y ) over R,
called the index form, by

I (X, Y ) =
∫ β

α

{〈∇t X, ∇t Y 〉 − 〈R(γ ′, X )γ ′, Y 〉} dt.

The motivation of considering such a bilinear form is, of course, that if
Y ∈ D∞ is induced by a homotopy of γ then L ′′(0) = I (Y, Y ). To obtain a
self-adjoint (relative to (II.5.1)) operator associated with the index form, we
require that X ∈ C2, in which case integration by parts gives

I (X, Y ) = −
∫ β

α

〈∇t
2 X + R(γ ′, X )γ ′, Y 〉 dt.(II.5.2)

So, the operator in question is

LX = − {∇t
2 X + R(γ ′, X )γ ′} ,

and for X, Y, ∈ C2, we have

(LX, Y ) = (X,LY ) = I (X, Y ).

The operator is defined, therefore, on C2 with associated bilinear form defined
on at least D1.

Definition. We define a Jacobi field along γ to be a differentiable vector field
Y along γ satisfying Jacobi’s equation

∇t
2Y + R(γ ′, Y )γ ′ = 0.(II.5.3)

Theorem II.5.1. The set J of Jacobi fields along γ is a vector space over R of
dimension equal to 2(dim M). More particularly, one has: Given any t0 ∈ [α, β],
ξ, η ∈ Mγ (t0), there exists a unique Y ∈ J satisfying Y (t0) = ξ , (∇t Y )(t0) = η.

Thus, if Y ∈ J , Y 	= 0, then

|Y |2 + |∇t Y |2 > 0(II.5.4)

on all of γ .
Also, if Y ∈ J , Y 	= 0, and Y (t0) = 0, then there exists an ε > 0 such that

Y (t) 	= 0 for all t satisfying 0 < |t − t0| < ε.

Proof. Let n = dim M , {e1, . . . , en} an orthonormal basis of Mγ (α), and
{E1, . . . , En} the parallel vector fields along γ satisfying E j (α) = e j . Then,
{E1(t), . . . , En(t)} is an orthonormal basis of Mγ (t), for every t ∈ [α, β], and
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Y (t) may be written as

Y (t) =
n∑

j=1

Y j (t)E j (t).

Set

R j
k(t) = 〈R(γ ′, E j )γ

′, Ek〉(t);
then, R j

k is symmetric for every t , and (II.5.3) reads as

(Y k)′′ +
∑

j

Y j R j
k(t) = 0,(II.5.5)

where j, k = 1, . . . , n.
The claims of the theorems follow immediately from the theory of linear

ordinary differential equations. �

Proposition II.5.1. For X, Y ∈ J , we have

〈∇t X, Y 〉 − 〈X, ∇t Y 〉 = const.(II.5.6)

Thus, for any Y ∈ J , we have constants a, b ∈ R for which

〈Y, γ ′〉 = at + b.(II.5.7)

In particular,

J ⊥ := {Y ∈ J : 〈Y, γ ′〉 = 0 on [α, β]}
is a subspace of J with codimension equal to 2.

Proof. Differentiate the left-hand side of (II.5.6). �

Definition. Given a real constant κ , we let Sκ denote the solution to the ordinary
differential equation

ψ ′′ + κψ = 0,

satisfying the initial conditions

Sκ (0) = 0, Sκ
′(0) = 1.

We also let Cκ denote the solution to the above ordinary differential equation
satisfying the initial conditions

Cκ (0) = 1, Cκ
′(0) = 0.
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Of course, we have

Sκ (t) =
⎧⎨⎩

(1/
√

κ) sin
√

κt κ > 0
t κ = 0
(1/

√−κ) sinh
√−κt κ < 0

.(II.5.8)

Also,

Cκ (t) =
⎧⎨⎩

cos
√

κt κ > 0
1 κ = 0
cosh

√−κt κ < 0
.(II.5.9)

Furthermore, we have

Sκ
′ = Cκ , Cκ

′ = −κSκ , Cκ
2 + κSκ

2 = 1,

(Cκ/Sκ )′ = (Sκ
′/Sκ )′ = −Sκ

−2.

Definition. Given the Riemannian manifold M , we refer to a geodesic γ as
a unit speed geodesic if γ is parameterized with respect to arc length. When
we refer to the sectional curvature along γ , we are referring to the sectional
curvature of 2–sections determined by γ ′ and a vector in the tangent space to
M at γ .

Given the Riemannian manifold M , γ a unit speed geodesic in M such that the
sectional curvature along γ is identically equal to the constant κ . Then, Jacobi’s
equation (II.5.3) becomes

∇t
2Y + κY = 0 for Y ∈ J ⊥,

and (II.5.5) becomes, with En = γ ′,

(Y j )′′ + κY j = 0, j = 1, . . . , n − 1.

For the Jacobi field Y ∈ J ⊥, we therefore have

Y (t) = Cκ (t)A(t) + Sκ (t)B(t),(II.5.10)

where A(t), B(t) are parallel vector fields along γ which are pointwise orthog-
onal to γ .

Definition. Given the Riemannian manifold M , γ a geodesic in M , a point
γ (t1) is said to be conjugate to γ (t0) along γ if there exists Y ∈ J , Y 	= 0 such
that

Y (t0) = Y (t1) = 0.(II.5.11)

Of course, Y in (II.5.11) must be an element of J ⊥ by (II.5.7). Also, one has
immediately
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Proposition II.5.2. If, for a given t0 ∈ (α, β], γ (t0) is not conjugate to γ (α),
then, for any ξ ∈ γ ′(t0)⊥, there exists a unique Y ∈ J ⊥ satisfying

Y (α) = 0, Y (t0) = ξ.

Theorem II.5.2. If M has constant sectional curvature κ along the unit speed
geodesic γ : R → M, then γ (0) has a conjugate point along γ if and only if
κ > 0, in which case γ (�π/

√
κ) is conjugate to γ (0) along γ , for any integer

�. Furthermore, these are the only points on γ conjugate to γ (0) along γ .

We recall from the beginning of this section that ϒ0 is the vector space of D1

vector fields X along γ , orthogonal to γ , and satisfying X (α) = X (β) = 0.

Theorem II.5.3. Let Y1, . . . , YN ∈ J ⊥ satisfy

〈Y j , ∇t Yk〉 − 〈Yk, ∇t Y j 〉 = 0(II.5.12)

for j, k = 1, . . . , N ≤ n − 1, and assume X ∈ ϒ0 has the representation

X =
N∑

j=1

f j Y j .

Then,

I (X, X ) =
∫ β

α

N∑
j=1

∣∣∣ f j ′
Y j

∣∣∣2
dt.

Proof. The proof is by direct calculation, namely,

∇t X =
∑

j

{
f j ′Y j + f j∇t Y j

}
,

〈R(γ ′, X )γ ′, X〉 =
∑

j,k

f j f k〈R(γ ′, Y j )γ
′, Yk〉,

(II.5.12) and (II.5.3) combine to imply

|∇t X |2 − 〈R(γ ′, X )γ ′, X〉
=

∑ {
f j ′ f k ′〈Y j , Yk〉 + f j ′ f k〈Y j , ∇t Yk〉 + f j f k ′〈∇t Y j , Yk〉

+ f j f k〈∇t Y j , ∇t Yk〉 − f j f k〈R(γ ′, Y j )γ
′, Yk〉

}
=

∣∣∣∑ f j ′Y j

∣∣∣2
+

∑ {
( f j f k)′〈∇t Y j , Yk〉 + f j f k〈∇t Y j , ∇t Yk〉

− f j f k〈R(γ ′, Y j )γ
′, Yk〉

}
=

∣∣∣∑ f j ′Y j

∣∣∣2
+

{∑
f j f k〈∇t Y j , Yk〉

}′
.
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Thus, we have

|∇t X |2 − 〈R(γ ′, X )γ ′, X〉 =
∣∣∣∑ f j ′Y j

∣∣∣2
+

〈∑
f j∇t Y j , X

〉′
,(II.5.13)

and the claim follows. �

Theorem II.5.4. (C. F. Jacobi (1836))2 If γ (α) has no conjugate points along
γ on (α, β] then the index form I is positive definite on ϒ0. If, however, we only
assume that γ (α) has no conjugate points on (α, β), then I is nonnegative on
ϒ0; and I (X, X ) = 0 if and only if X ∈ J ⊥ ∩ ϒ0, that is, X is a Jacobi field
satisfying X (α) = X (β) = 0.

Proof. Suppose we have linearly independent

{Y j ∈ J ⊥ : Y j (α) = 0, j = 1, . . . , n − 1}.
Then, for any X ∈ ϒ0, we certainly have the representation

X =
n−1∑
j=1

f j (t)Y j (t)

for all t ∈ (α, β). (Note the open interval (α, β).)
Then, the vector fields Y1, . . . , Yn satisfy (II.5.12), and (II.5.13) implies

I (X, X ) =
∫ β

α

{|∇t X |2 − 〈R(γ ′, X )γ ′, X〉} dt

= lim
ε↓0

∫ β−ε

α+ε

{|∇t X |2 − 〈R(γ ′, X )γ ′, X〉} dt

= lim
ε↓0

{∑
j

f j 〈∇t Y j , X〉∣∣β−ε

α+ε
+

∫ β−ε

α+ε

∣∣∣∑ f j ′Y j

∣∣∣2
dt

}
.

Assume, for the moment, that f j , j = 1, . . . , n − 1, are bounded on (α, β).
Then,

I (X, X ) = lim
ε↓0

∫ β−ε

α+ε

∣∣∣∑ f j ′Y j

∣∣∣2
dt ≥ 0.

If I (X, X ) = 0, then f j = constant for each j = 1, . . . , n − 1, that is, X ∈ J ⊥.
We already have X ∈ ϒ0 by assumption, which implies the claim.

2 See Exercise II.18 in §II.9.
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So, we must show that for each j, f j is bounded near t = α and β. We work
with t = β.

Let � = dim ϒ0 ∩ J ⊥, that is, the dimension of the space of Jacobi fields
vanishing at γ (α), γ (β); and let {Y1, . . . , Y�} be a basis of ϒ0 ∩ J ⊥. Let eμ =
(∇t Yμ)(α), μ = 1, . . . , �; complete {eμ : μ = 1, . . . , �} to a basis {e1, . . . ,

en−1} of γ ′(α)⊥, and let Yν , ν = � + 1, . . . , n − 1, be the Jacobi field along
γ vanishing at γ (α) with (∇t Yν)(α) = eν .

Now note that, by assumption, Y�+1(β), . . . , Yn−1(β) are linearly indepen-
dent. By (II.5.4), we have (∇t Y1)(β), . . . , (∇t Y�)(β) are linearly independent.
From (II.5.12), we have

{(∇t Y1)(β), . . . , (∇t Y�)(β)}⊥{Y�+1(β), . . . , Yn−1(β)}.

Thus,

{(∇t Y1)(β), . . . , (∇t Y�)(β), Y�+1(β), . . . , Yn−1(β)}

is a basis of γ ′(β)⊥.
Now, Taylor’s formula reads as

X (t) = τt0,t {X (t0) + (t − t0)(∇t X )(t0)} + o(t − t0),

where τt0,t : Mγ (t0) → Mγ (t) denotes parallel translation.
Next, for X ∈ ϒ0, we have a unique (ξ 1, . . . , ξ n−1) ∈ R

n−1 such that

(∇t X )(β) =
�∑

μ=1

ξμ(∇t Yμ)(β) +
n−1∑

ν=�+1

ξνYν(β),

which implies, for sufficiently small β − t > 0,

X (t) = τβ,t {(t − β)(∇t X )(β)} + o(t − β)

= τβ,t

{∑
μ

ξμ(t − β)(∇t Yμ)(β) +
∑

ν

(t − β)ξνYν(β)

}
+ o(t − β)

=
∑

μ

ξμYμ(t) + (t − β)
∑

ν

ξ νYν(t) + o(t − β),

from which one concludes

lim
t↑β

f μ(t) = ξμ, lim
t↑β

f ν(t) = 0.

Thus, f j , j = 1, . . . , n − 1, are bounded, which was our claim. �
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Theorem II.5.5. (C. F. Jacobi (1836)) Let γ (α) have a conjugate point at t =
t0 ∈ (α, β). Then there exists X ∈ ϒ0 such that I (X, X ) < 0. Thus, a geodesic
cannot minimize distance past its first conjugate point.

Proof. Let t0 ∈ (α, β), Y ∈ J ⊥, Y 	= 0 such that Y (α) = Y (t0) = 0. Then, for

Y1(t) =
{

Y (t) t ∈ [α, t0]
0 t ∈ [t0, β]

,

one easily has Y1 ∈ ϒ0, and I (Y1, Y1) = 0 by (II.5.2). We show how to perturb
Y1 to produce X satisfying I (X, X ) < 0.

Certainly (∇t Y )(t0) 	= 0. Pick Z (t) to be the parallel field along γ for
which Z (t0) = −(∇t Y )(t0); let ϕ : [α, β] → R be differentiable such that
ϕ(α) = ϕ(β) = 0 and ϕ(t0) = 1 and let

Xλ = Y1 + λϕZ .

Then, by explicit calculation and integration by parts, we have

I (Xλ, Xλ) = I (Y1, Y1) + 2λI (Y1, ϕZ ) + O(λ2)

= 2λ

∫ t0

α

{〈∇t Y, ∇t (ϕZ )〉 − 〈R(γ ′, Y )γ ′, ϕZ〉} dt + O(λ2)

= 2λ〈∇t Y, ϕZ〉|t0

α
+ O(λ2)

= −2λ|(∇t Y )(t0)|2 + O(λ2),

which is less than 0 for sufficiently small positive λ. The theorem is proven.
�

§II.6. Elementary Comparison Theorems

We start with the well-known:

Theorem II.6.1. (O. Bonnet (1855), S. B. Myers (1941)) Let M be a Rieman-
nian manifold, γ : [0, β] → M a unit speed geodesic in M such that

Ric(γ ′, γ ′) ≥ (n − 1)κ > 0

on γ ([0, β]). If β ≥ π/
√

κ , then γ ((0, β]) contains a point conjugate to γ (0)
along γ .

Therefore, if M is a complete Riemannian manifold, of dimension n ≥ 2,
such that there exists a constant κ > 0 for which

Ric(ξ, ξ ) ≥ (n − 1)κ|ξ |2(II.6.1)

for any ξ ∈ T M, then M is compact with diameter ≤ π/
√

κ .
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Proof. Given the unit speed geodesic γ , pick an orthonormal basis {e1, . . . ,

en−1} of γ ′(0)⊥; let E j be the parallel vector field along γ determined by
E j (0) = e j , j = 1, . . . , n − 1; and set, for each j = 1, . . . , n − 1,

X j (t) = sin(π t/β)E j (t).

Then, X j ∈ ϒ0, and∑
j

I (X j , X j )

=
∫ β

0

{
(n − 1)(π2/β2) cos2(π t/β) −

{∑
K(E j , γ

′)
}

sin2(π t/β)
}

dt

=
∫ β

0
{(n − 1)(π2/β2) cos2(π t/β) − Ric(γ ′, γ ′) sin2(π t/β)} dt

≤
∫ β

0
{(n − 1)(π2/β2) cos2(π t/β) − (n − 1)κ sin2(π t/β)} dt

= (n − 1)(β/2)(π2/β2 − κ).

So, if β ≥ π/
√

κ , then the index form is no longer positive definite on γ |(0, β],
which implies γ |(0, β] contains a point conjugate to γ (0) along γ . This is the
first claim.

For the second claim, we need only note, that given any p, q ∈ M , there exists
(by the completeness of M) a unit speed geodesic γ : [0, β] → M such that
γ (0) = p, γ (β) = q , and β = �(γ ) = d(p, q). Since γ |(0, β] is a minimizing
geodesic, its index form is positive semidefinite, which implies

d(p, q) = β ≤ π/
√

κ.

Thus, M has finite diameter bounded above by π/
√

κ , which implies M is
compact. �

Theorem II.6.2. (J. Hadamard (1898), E. Cartan (1946)) Let M be a Rieman-
nian manifold, γ : [0, β] → M a unit speed geodesic in M such that

K ≤ 0

for all sectional curvatures along γ |(0, β]. Then γ ((0, β]) contains no point
conjugate to γ (0) along γ .

Therefore, if M is complete and all its sectional curvatures are nonpositive,
then M has no conjugate points.
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Proof. Let γ : [α, β] → M , |γ ′| = 1 be a geodesic, and X ∈ ϒ0. Then,

I (X, X ) =
∫ β

α

|∇t X |2 − K(X, γ ′)|X |2 dt ≥
∫ β

α

|∇t X |2 dt ≥ 0,

and the claim follows from Theorem II.5.5. �

Theorem II.6.3. (M. Morse (1930), I. J. Schönberg (1932)) Let M be a Rie-
mannian manifold, δ > 0, γ : [0, β] → M a unit speed geodesic in M such
that

K ≤ δ

for all sectional curvatures along γ |[0, β]. Then, if t = β is a conjugate point
of γ (0) along γ , we have

β ≥ π/
√

δ.(II.6.2)

Proof. Let Y 	= 0, Y ∈ J ⊥ ∩ ϒ0. Then, one has

0 = I (Y, Y )

=
∫ β

0
{|∇t Y |2 − K(Y, γ ′)|Y |2} dt

≥
∫ β

0
{|∇t Y |2 − δ|Y |2} dt.

It is an easy consequence of Wirtinger’s inequality, for functions vanishing at
endpoints of an interval (see Exercise III.42), that∫ β

0
|∇t Y |2 dt ≥ (π2/β2)

∫ β

0
|Y |2 dt.(II.6.3)

Therefore,

π2/β2 − δ ≤ 0,

which implies the claim. �

Theorem II.6.4. (H. E. Rauch (1951)) Let M be a Riemannian manifold, δ a
real constant, γ : [0, β] → M a unit speed geodesic in M such that

K ≤ δ
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for all sectional curvatures along γ |[0, β]. If Y ∈ J ⊥, then the function |Y |
along γ satisfies the differential inequality

|Y |′′ + δ|Y | ≥ 0.(II.6.4)

on [0, β).
Furthermore, if ψ denotes the solution on [0, β] of

ψ ′′ + δψ = 0, ψ(0) = |Y |(0), ψ ′(0) = |Y |′(0),(II.6.5)

and ψ does not vanish on (0, β), then

{|Y |/ψ}′ ≥ 0,(II.6.6)

|Y | ≥ ψ,(II.6.7)

on (0, β).
We have equality in (II.6.6) at t0 ∈ (0, β) if and only if

K(Y, γ ′) = δ

on all of [0, t0], and there exists a parallel unit vector field E along γ for which

Y (t) = ψ(t)E(t)

on all of [0, t0].

Proof. We start with

|Y |′ = 〈Y, ∇t Y 〉|Y |−1,

which implies

|Y |′′ = |Y |−1{|∇t Y |2 − 〈Y, R(γ ′, Y )γ ′〉} − |Y |−3〈Y, ∇t Y 〉2

≥ −δ|Y | + |Y |−3{|∇t Y |2|Y |2 − 〈Y, ∇t Y 〉2}
≥ −δ|Y |

by the Cauchy–Schwarz inequality, which implies (II.6.4).
For second claim, since

{|Y |/ψ}′ = {|Y |′ψ − |Y |ψ ′}/ψ2,

we study the function

F := |Y |′ψ − |Y |ψ ′.



P1: IWV

0521853680c02 CB980/Chavel February 4, 2006 13:33 Char Count= 650

88 Riemannian Curvature

Well,

F(0) = 0, and F ′ = {|Y |′ψ − |Y |ψ ′}′ ≥ 0

by (II.6.4), (II.6.5). This implies (II.6.6). One immediately has (II.6.7).
If we have equality in (II.6.6) at some t0 ∈ (0, β], then F(t0) = 0, which

implies F = 0 on all of (0, t0], which implies

|Y | = ψ

on all of [0, t0]. Write

Y = ψ E, |E | = 1

along γ . Then,

∇t Y = ψ ′E + ψ∇t E .

Now we have equality in (II.6.4) on (0, t0], which implies equality in the
Cauchy–Schwarz inequality, which implies Y and ∇t Y are linearly dependent.
Since ∇t Y and Y are linearly dependent at every point of (0, t0], and E is a unit
vector field, we have E is parallel along γ |[0, t0]. �

§II.7. Jacobi Fields and the Exponential Map

Theorem II.7.1. Let M be a Riemannian manifold of dimension ≥ 2, T M
the domain of the exponential map of the Levi-Civita connection, p ∈ M, ξ ∈
T M ∩ Mp, and η ∈ Mp. Then, to calculate (expp)∗|ξ �ξ η set γ (t) = exp tξ ,
and let Y (t) be the Jacobi field along γ determined by the initial conditions

Y (0) = 0, (∇t Y )(0) = η.(II.7.1)

Then for all t such that tξ ∈ T M, we have

(expp)∗|tξ �tξ η = t−1Y (t).(II.7.2)

Proof. (See the argument of Gauss’ lemma (Lemma I.6.1).) For a vector space
V and a path ζ : (−ε0, ε0) → V , we shall denote the derivative (in contrast to
the velocity vector) of ζ by ζ̇ . Thus,

ζ ′(ε) = �ζ (ε)ζ̇ (ε).

Let V = Mp and pick ζ so that

ζ (0) = ξ, ζ̇ (0) = η;
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Figure II.3. Differentiating the geodesic variation.

and consider the geodesic variation

v(t, ε) = exp tζ (ε).

Then, its associated Jacobi field Y (t) = (∂εv)(t, 0) (see Figure II.3) is given by

Y (t) = (expp)∗|tξ �tξ t ζ̇ (0) = t(expp)∗|tξ �tξ η.

So, we wish to verify that Y is the Jacobi field associated with the initial con-
ditions (II.7.1). Certainly, Y (0) = 0. Also, ∇t∂εv = ∇ε∂tv, by (I.4.7), implies
that

(∇t∂εv)(0, ε) = ζ̇ (ε),

which implies

(∇t Y )(0) = (∇t∂εv)(0, 0) = η. �
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Corollary II.7.1. The null space of (expp)∗|ξ is isomorphic to the subspace of
Jacobi fields along γ (t) = exp tξ vanishing at p and exp ξ .

Remark II.7.1. See Exercises II.26 and II.27 for further detail on this result.

Corollary II.7.2. (J. Hadamard (1898), E. Cartan (1946)) If M is complete
with nonpositive sectional curvature, then exp is of maximal rank on all of T M.

§II.8. Riemann Normal Coordinates

Proposition II.8.1. Given p ∈ M, ξ, η, ζ ∈ Mp, |ξ | = 1, γ (t) = exp tξ , and
Y, Z Jacobi fields along γ determined by

Y (0) = 0, (∇t Y )(0) = η,

Z (0) = 0, (∇t Z )(0) = ζ ;

then the Taylor expansion of 〈Y, Z〉(t) about t = 0 is given by

〈Y, Z〉(t) = t2〈η, ζ 〉 − (t4/3)〈R(ξ, η)ξ, ζ 〉 + 0(t5).

Proof. Direct calculation. The idea is that Taylor’s expansion, in a neighbor-
hood of t = 0, for a vector field Y (t) along the geodesic γξ (t) is given by

Y (t) = τt
{
Y (0) + t∇t Y (0) + (t2/2)∇t

2Y (0) + (t3/6)∇t
3Y (0)

} + O(t4),

where τt denotes parallel translation along γξ from p to γt (ξ ). Now one uses
the hypotheses of the theorem to calculate the derivatives of Y (t) at t = 0.
In the inner product, one uses the fact that the parallel translation is an
isometry. �

Now fix p ∈ M and U an open set about, and starlike with respect to, 0 ∈ Mp

for which exp |U is a diffeomorphism of U onto its image U := exp U, an open
set in M about p.

Then, every choice of orthonormal basis {e1, . . . , en} of Mp determines a chart
n : U → R

n , referred to as Riemann normal coordinates, given by

n j (q) = 〈(exp |U)−1(q), e j 〉
for q ∈ U , that is, for v = ∑

j v j e j ∈ U, we have

n j (exp v) = v j .
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In this chart, we have for γ (t) = exp tv,

γ j (t) := (n j ◦γ )(t) = tv j , γ ′(t) =
∑

j

v j∂ j |γ (t).

If Y j is the Jacobi field along γ determined by the initial conditions

Y j (0) = 0, (∇t Y j )(0) = e j ,

then (II.7.2) implies

∂ j | exp tv = (expp)∗|tv �tve j = t−1Y j (t)(II.8.1)

for tv ∈ U.

Theorem II.8.1. For v ∈ U,

g jk(exp v) = δ jk − (1/3)〈R(v, e j )v, ek〉 + O(|v|3)

as v → 0.

Proof. Fix ξ ∈ Sp, and define γ ; Y1, . . . , Yn as above. Then, (II.7.2) and
Proposition (II.8.1) imply

g jk(exp tξ ) = t−2〈Y j , Yk〉(t)
= t−2{t2〈e j , ek〉 − (t4/3)〈R(ξ, e j )ξ, ek〉 + O(t5)}
= δ jk − (t2/3)〈R(ξ, e j )ξ, ek〉 + O(t3),

which implies the claim. �

Corollary II.8.1. In the above, we also have for v ∈ U,

det(g jk(exp v)) = 1 − (1/3)Ric (v, v) + O(|v|3)

as v → 0.

Proof. This is an immediate consequence of the formula for the derivative of
the determinant, namely,

Proposition II.8.2. Let A jk : R
m → R ∈ C1, j, k = 1, . . . , n. Then, on the

open set for which det (A jk) 	= 0 one has, setting A = (A jk),

∂

∂x�
ln det A = tr

∂A
∂x�

A−1(II.8.2)

for � = 1, . . . , m.
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Proof. It suffices to show that if A(ε) is a differentiable map of the reals to the
space of n × n–matrices (with obvious differentiable structure – see Example
I.9.4(1)) satisfying A(0) = I , the identity matrix, then the Taylor expansion,
about ε = 0, of the function ε �→ det A(ε) is given by

det A(ε) = 1 + ε tr A′(0) + O(ε2).

This is a direct consequence of the definition of the determinant. One then has
to adjust for A(0) not necessarily equal to the identity matrix I . �

Normal Coordinates in Constant Sectional Curvature Spaces

We now assume M has constant sectional curvature κ and consider a unit speed
geodesic γ : (α, β) → M . For convenience, we assume 0 ∈ (α, β). By J ⊥ we
denote, as in §II.5, the Jacobi fields along γ that are orthogonal to γ at every
point of γ . Recall that Y ∈ J ⊥ satisfying Y (0) = 0 is given by

Y = Sκ E, ∇t E = 0.

Thus, as proved in Theorem II.5.2, for κ ≤ 0 and M complete, M has no
conjugate points (see also Theorem II.6.2). For κ > 0, and p ∈ M satisfying
B(p; π/

√
κ) ⊆ T M , we conclude that M is compact (hence, complete), and

exp S(p; π/
√

κ) consists of precisely one point.

For the general Jacobi field Y along γ , we have a, b ∈ R and vector fields
E1, E2 parallel along γ and orthogonal to γ such that

Y (t) = (at + b)γ ′ + Cκ E1 + Sκ E2,

and for the initial condition Y (0) = 0, we have

Y (t) = atγ ′ + Sκ E2.

Now, let p ∈ M , and {e1, . . . , en} an orthonormal basis of Mp, thereby deter-
mining Riemann normal coordinates on a neighborhood U about p. Let ξ ∈ Sp,
γ (t) = exp tξ and, as in (II.8.1),

t−1Y j (t) = (expp)∗|tξ �tξ e j = ∂ j | exp tξ

j = 1, . . . , n. Then there exist a j ∈ R, and E j (t) a vector field parallel along
γ and orthogonal to γ , such that

Y j (t) = a j tγ ′ + Sκ E j .
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But

e j = (∇t Y j )(0) = a jξ + E j (0);

this implies

a j = 〈ξ, e j 〉 = ξ j , E j (0) = e j − ξ jξ.

Direct calculation now yields

g jk(exp tξ ) = ξ jξ k + Sκ
2(t)
t2

{δ jk − ξ jξ k}.
We therefore have the following:

Theorem II.8.2. Let M have constant sectional curvature κ , p ∈ M, U a neigh-
borhood about 0 ∈ Mp as above, and {e1, . . . , en} an orthonormal basis of Mp.
Then, in the resulting normal coordinate system, we have for v ∈ U

g jk(exp v) = v jvk

|v|2 + Sκ
2(|v|)
|v|2

{
δ jk − v jvk

|v|2
}

.(II.8.3)

In particular, if M, M ′ are Riemannian manifolds of constant sectional cur-
vature κ , p ∈ M and q ∈ M ′, then there exists δ > 0 such that each choice
of orthonormal bases in Mp and M ′

q determine an isometry of B(p; δ) onto
B(q; δ).

Remark II.8.1. We can use (II.8.3) to define, for each κ < 0, a Riemannian
metric on R

n which is complete, and which has constant sectional curvature κ .

As a prelude to what follows in later work, we give a formal calculation of
the Riemannian metric of constant sectional curvature κ in geodesic spherical
coordinates, namely, set

v = tξ, |ξ | = 1.

Then

dv = t dξ + (dt)ξ,

and

〈ξ, t dξ〉 = 0.

Also, ∑
j

v j dv j = t dt.
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Therefore, (II.8.3) simplifies to

ds 2 :=
∑

j,k

g jk(exp v) dv j dvk = dt 2 + Sκ
2(t)|dξ |2,(II.8.4)

a formula we derived in each of our examples of spaces of constant sectional
curvature.

§II.9. Notes and Exercises

Curvature Tensor Estimates

Exercise II.1. (J. P. Bourguignon & H. Karcher (1978)) From Propositions
II.1.1 and II.1.2, one concludes that full knowledge of the sectional curvatures
at a point determines the curvature tensor itself at that point. We sketch here
some practical versions of this fact.

For any λ ∈ R, we let

Rλ = λR1,

where R1 is defined in Proposition II.1.2.
Fix a point p in a given Riemannian manifold M . All calculations in this

exercise take place in the one tangent space, Mp. We set

κ = min K, δ = max K.

(a) Prove that for any u j ∈ Mp, j = 1, . . . , 4, we have

6〈R(u1, u2)u3, u4〉 = 〈R(u1, u2 + u3)(u2 + u3), u4〉
− 〈R(u1, u2 − u3)(u2 − u3), u4〉
+ 〈R(u2, u1 − u3)(u1 − u3), u4〉
− 〈R(u2, u1 + u3)(u1 + u3), u4〉.

(b) Also show, for ξ, η, ζ ∈ Mp, that

4〈R(ξ, η)ξ, ζ 〉 = 〈R(ξ, η + ζ )ξ, η + ζ 〉 − 〈R(ξ, η − ζ )ξ, η − ζ 〉.
Thus, (a) and (b) constitute an alternative version of Proposition II.1.1.

(c) Prove, for orthogonal ξ, η, ζ ,

〈R(ξ, η)ξ, ζ 〉 ≤ δ − κ

4
|ξ |2|η + ζ |2.

(d) Prove, for orthonormal u j , j = 1, . . . , 4,

|〈R(u1, u2)u3, u4〉| ≤ 2

3
(δ − κ).



P1: IWV

0521853680c02 CB980/Chavel February 4, 2006 13:33 Char Count= 650

§II.9. Notes and Exercises 95

(e) Prove, for arbitrary ξ, η,

|R(ξ, η)ξ − R(κ+δ)/2(ξ, η)ξ | ≤ δ − κ

2
|ξ |2|η|.

(f) Prove, for arbitrary unit vectors u j , j = 1, . . . , 3, that

|R(u1, u2)u3| ≤ 4

3
max |K|.

Schur’s Theorem

Exercise II.2. Prove (F. Schur (1886))

Theorem. If M is a Riemannian manifold of dim M ≥ 3, and there exists a
function κ : M → R such that

R(ξ, η)ζ = κ(p)R1(ξ, η)ζ

for all ξ , η, ζ ∈ Mp, p ∈ M, then the function κ must be a constant – so M has
constant sectional curvature.

Note II.1. Thus, Schur’s theorem provides a striking contrast to Theorem II.1.1.
An interesting theorem inspired by Schur’s theorem, and the full apparatus of
pinching theorems, was proved by E. A. Ruh (1982). It goes as follows:

Definition. The sectional curvature K of a Riemannian manifold M is said to
be locally δ–pinched if there exists a positive function κ : M → R such that

δκ(x) < K < κ(x)

at every point x ∈ M .

Theorem. There exists δ = δ(n) with

1/4 < δ < 1,

such that any compact locally δ–pinched Riemannian manifold of dimension
n is diffeomorphic to a spherical space form, that is a compact Riemannian
manifold of constant sectional curvature equal to 1.

It has been noted in Gribkov (1980) that the compactness is essential, namely,
if M is noncompact, then even if δ is arbitrarily close to 1, the variation of
sectional curvature over the manifold can still be arbitrarily large.

Ruh’s theorem has been refined in Huisken (1985).
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Bibliographic Sampler for Curves and Surfaces in Euclidean Space

Note II.2. Our treatment of submanifolds, done at breakneck speed in §II.2,
follows that of Hicks (1965), which is highly recommended to the reader.

For traditional treatments, we refer the reader to Struik (1961) and Stoker
(1969). More modern treatments of curves and surfaces in space are given in
do Carmo (1976), Klingenberg (1976), and O’Neill (1966a). Berger–Gostiaux
(1988) starts from manifolds and features a full study of curves in the plane

and in space, among other matters. More recent books include Gray (1998),
Morgan (1992), and Oprea (1997).

Totally Geodesic Submanifolds

Exercise II.3.

(a) Let M be a submanifold of M as described in §II.2. We say that M is totally
geodesic in M , if for any geodesic γ in M , for which there exists t0 such that
γ (t0) ∈ M and γ ′(t0) ∈ Mγ (t0), there exists an ε > 0 such that γ |(t0 − ε, t0 + ε)
is completely contained in M . Show that M is totally geodesic if and only if
the second fundamental form B vanishes identically on M .

(b) (S. Kobayashi (1958)) Show that if M is a Riemannian manifold possess-
ing an isometry φ : M → M , then any connected component of the set of all
points left fixed by φ is totally geodesic.

Two Norms of Linear Transformations

Definition. Let V be a finite-dimensional inner product space, A : V → V
a linear transformation, and B : V × B → R the associated bilinear form
given by

B(x, y) = 〈Ax, y〉.
The Gram–Schmidt norm of A is given by

‖A‖gs = tr (AA∗),

where A∗ denotes the adjoint of A.

Note II.3. To give an explicit formula for ‖A‖gs, pick an orthonormal basis
{e1, . . . , en} of V , and let A = (a jk) denote the matrix of A associated with the
basis {e j }, that is

Ae j =
∑

ekak j .
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Then A∗ is represented by AT , and

tr (AAT ) =
∑

j,k

a jk
2 =

∑
j

|Ae j |2.

Since AA∗ is self-adjoint, the arithmetic–geometric mean inequality implies

{det(AA∗)}1/n ≤ tr (AA∗)

n
≤ ‖A‖2,

that is,

(det A)1/n ≤ ‖A‖.

Thus, the Gram–Schmidt norm of A coincides with its norm as a (1, 1)–tensor
on V . To distinguish it from the usual sup norm of A,

‖A‖ = sup {|Ax | : |x | = 1},
we often use the bilinear form B instead, since the norms of A and B, relative
to the inner products associated to the respective tensor spaces generated by V ,
are equal. Namely,

‖B‖ = ‖A‖gs.

The Second Fundamental Form and Local Convexity

Exercise II.4. Let M be a codimension 1 submanifold of the Riemannian man-
ifold M , p ∈ M . Let ξ be a unit vector orthogonal to Mp. Let M̃p = exp Mp,
where exp denotes (for the moment) the exponential map in M . Show that M̃p

is a smooth submanifold in some neighborhood of p, and has vanishing second
fundamental form at p. (One might refer to M̃p as totally geodesic at p.) Show
that if the second fundamental form of M , with respect to ξ , is positive definite,
then p has a neighborhood U in M in which

M ∩ M̃p ∩ U = {p}.
Thus, when the second fundamental form is definite, one might say that “M
lies, locally, on one side of Mp” – a sort of local convexity.

Exercise II.5. Show that it is impossible to imbed a compact surface, of non-
positive Gauss curvature, into R

3.
A much deeper theorem, which goes back to D. Hilbert (1901), states that

any complete surface of constant negative curvature cannot be imbedded in
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R
3. Later, Efimov (1964) proved a corresponding theorem for variable negative

curvature. See T. K. Milnor (1972) for a detailed presentation.

Exercise II.6. Let Mn−1 be an immersed hypersurface in R
n . Show that its

second fundamental form is definite (positive or negative definite, depending
on the choice of local unit normal vector field) if and only if all its intrinsic
Riemannian sectional curvatures are positive.

Definition. Let Mm−1 ⊂ M
m

be an immersed submanifold. We say a point
p ∈ M is umbilic if the second fundamental form of M at p is a scalar multiple
of the first fundamental form.

Exercise II.7. Let M = R
m . Show that if every point of M is umbilic, then

M is a piece of a sphere in R
m . In particular, if M is compact and everywhere

umbilic in R
m then M is a sphere in R

m .

Mean Curvature

M is our given m–dimensional Riemannian manifold, and M a connected
n–dimensional submanifold of M , 0 ≤ n < m.

Definition. The mean curvature vector H of the submanifold M at p is given
by

H = tr B,

where B the second fundamental form, and the trace of B is taken with respect
to the Riemannian metric of M restricted to M , that is, the first fundamental
form of M in M .

Thus, if {e1, . . . , en} is an orthonormal basis of Mp, then

H =
n∑

j=1

B(e j , e j ).

Exercise II.8. Prove

tr Av = 〈H, v〉.
for all v ∈ Mp

⊥.

Definition. The manifold M is said to be a minimal submanifold of M if its
mean curvature vanishes identically on M .
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Note II.4. The literature and ongoing work on minimal submanifolds are enor-
mous. For openers, we refer the reader to Barbosa–Colares (1986), Bombieri
(1983), Dierkes–Hildebrandt–Kuester–Wohlrab (1992), Lawson (1980),
Nitsche (1989), and Osserman (1986, 1990, 1997). (This list is far from ex-

haustive, even definitive.)

Hessians, Again

Let f : M → R be a differentiable function on the Riemannian manifold M .
Define � f , the Laplacian of f , to be the trace of the Hessian (defined just
before Exercise I.10) of f relative to the first fundamental form, so

� f = tr (ξ �→ ∇ξ grad f ).

Exercise II.9. Let p ∈ M such that f (p) = α, and grad f does not vanish at p.
Then, the level surface of f through p, f −1[α], restricted to a sufficiently small
neighborhood of p, is an embedded (n − 1)–manifold. Show that the Hessian
of f at p is given by

(Hess f )|( f −1[α])p = B−grad f|p ,

the second fundamental form of f −1[α] associated to the normal vector −grad
f at p.

Now consider M a submanifold of M = R
m , m > n = dim M .

Let A, B, . . . range over 1, . . . , m; j, k, . . . range over 1, . . . , n; and α, β, . . .

range over n + 1, . . . , m. Consider a neighborhood U in R
m , with orthonormal

frame field {e1, . . . , em}, such that {e1, . . . , en} are tangent to M at all points
of M ∩ U , and {en+1, . . . , em} are normal to M at all points of M ∩ U . We let
{ωA} denote the coframe on U dual to {eA} and {ωB

A} the associated connection
forms. We also let

eA = eA|M, ωA = ωA|M, ωB
A = ωB

A|M.

Since M = R
m , we have the natural fixed basis {eA} of R

m , which we identify
with the moving parallel frame

E A |p = �p eA,

via the natural identification �p of R
m with its tangent space at p ∈ R

m . Here,
we continue the discussion (with the notation) of Exercise I.12.
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Henceforth, restrict x = ∑
A x AeA to M . So, dx is a form on M with values in

a fixed vector space, namely, R
m , and, similarly, for Hess x.

Exercise II.10.

(a) Prove

dx B =
∑

j

ω j S j
B .

Also, prove that

grad x A =
∑

j

TA
j e j ,

from which one has

|grad x|2 :=
∑

A

|grad x A|2 = n,

(b) Prove

∇dx B =
∑
j,α

ω j
α Sα

B ⊗ ω j .

So,

Hess x = B,

the second fundamental form, from which one concludes

�x = H.

In particular, the coordinate functions all have vanishing Hessian at a point
p ∈ M if and only if the second fundamental form vanishes at p.

(c) Consider the case of codimension 1, that is, M is a hypersurface in R
m .

Then,

n := em =
∑

A

Sm
A E A

is a unit normal vector field along M . And the mean curvature H is given by

H = hn,

where h is the mean curvature function relative to n.
Prove

dn = −
∑
k, j,A

h jk S j
Aωk E A = −

∑
k, j

h jkω
ke j ,
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and

∇dn = −
∑

j,k

{
dh jk +

∑
�

{ω j
�h�k − ωk

�h j�}
}

⊗ ωk e j

−
∑
j,k,�

h jkh j�ω
� ∧ ωk n

:= −
∑
j,k,�

h jk�ω
� ⊗ ωke j −

∑
j,k,�

h jkh j�ω
� ∧ ωk n.

Use 0 = d2 n to show h jk� = h j�k .
(d) Prove

� n = −grad h − ‖B‖2n.

(e) Prove

� (x·n) = −h + x·grad h − ‖B‖2(x·n).

Connections in Normal Bundles of Submanifolds

Let M be a (positive codimension) submanifold of M , with associated tangent
and normal bundles T M and νM , respectively, and Levi-Civita connection ∇
on M . Of course, the Levi-Civita connection in T M is given by

∇X Y = (∇X Y )T ,

where X and Y are sections in T M , and the superscript T denotes the projection
of T M to T M . A connection D in the normal bundle is defined by

DX Z = (∇X Z )N ,

where X and Z are sections in T M and νM , respectively, and the superscript
N denotes the projection of T M to νM .

Exercise II.11. Prove that for the curvature tensor RD of D (see §1.9) we have,
at p ∈ M ,

〈RD(ξ, η)σ, τ 〉 = 〈R(ξ, η)σ, τ 〉 +
∑

j

{〈B(e j , ξ ), σ 〉〈B(e j , η), τ 〉

− 〈B(e j , η), σ 〉〈B(e j , ξ ), τ 〉} ,

where ξ, η ∈ Mp and σ, τ ∈ Mp
⊥, and {e j } is an orthonormal frame of Mp.

Continue with M an m–dimensional Riemannian manifold, and M an n–
dimensional submanifold with n < m. We consider an orthonormal frame field
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{e1, . . . , em} on some neighborhood U in M of some p ∈ M , such that
{e1, . . . , en} are tangent to M at all points of M ∩ U , and {en+1, . . . , em} are
normal to M at all points of M ∩ U . Again, let A, B, . . . range over 1, . . . , m;
j, k, . . . range over 1, . . . , n; and α, β, . . . range over n + 1, . . . , m. We let
{ωA} denote the coframe on U dual to {eA}, and we set

eA = eA|M, ωA = ωA|M, ωB
A = ωB

A|M.

Exercise II.12.

(a) Let D denote the connection in the normal bundle. Show that for any
section η in the normal bundle νM , represented by

η =
∑

α

ηαeα,

we have

Dη =
∑
α,β

{
dηα +

∑
β

ηβωβ
α

}
⊗ eα :=

∑
k,α

ηα
k ωk ⊗ eα,

and

DDη =
∑
j,α

{
dηα

j −
∑

�

ω j
�ηα

� +
∑

β

ηβ
jωβ

α

}
⊗ ω j ⊗ eα

:=
∑
j,k,α

ηα
jk ω j ⊗ ωk ⊗ eα.

(b) Show that

d

{∑
j,α

(−1) j−1ηαηα
j ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωn

}
=

∑
j,α

{
(ηα

j )
2 + ηαηα

j j
}

ω1 ∧ · · · ∧ ωn.

On Isometries

Exercise II.13. Let M be a complete Riemannian manifold, φ, ψ isometries
of M . Assume that there exists p ∈ M such

φ(p) = ψ(p) and φ∗|p = ψ∗|p.

Show that φ = ψ on all of M .
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Spherical and Hyperbolic Geometry

Exercise II.14.

(a) Use the discussions of Examples I.9.4 and I.9.5 of §I.9 to calculate the
curvature of spheres by representing S

n in R
n+1 as the homogeneous space

SO(n + 1)/SO(n), where SO refers to the special orthogonal group, that is,
those elements of the orthogonal group with determinant equal to 1. Compare
with Exercise I.22.

(b) Of course, S
n can be represented as O(n + 1)/O(n). Using induction on

n, show that O(n) is the full group of isometries of S
n (see Wolf (1967, p. 66)).

Exercise II.15. Consider a connected component Mo of the submanifold M
of Minkowski space R

n+1, endowed with quadratic form M, as described in
Example I.9.1 of §I.9.

(a) Show that Mo is isometric to the hyperbolic space of constant sectional
curvature −1/ρ2.

(b) Let O(n, 1) be the orthogonal group of the quadratic form M, that is,
O(n, 1) is the group of linear transformations of R

n+1 that leave M invariant.
Show that every element of O(n, 1), when restricted to M , is an isometry of
M to itself. Furthermore, show that, given p ∈ Mo with orthonormal frame
{ep;1, . . . , ep;n} of (Mo)p, and q ∈ Mo with orthonormal frame {eq;1, . . . , eq;n}
of (Mo)q , then there exists A ∈ O(n, 1) such that

A(p) = q, A∗ep; j = eq; j .

Note II.5. We define a geodesic triangle pqr in a Riemannian manifold M to
consist of three pairwise distinct points p, q, r in M , and minimizing geodesics
σpq , σqr , σr p joining p to q , q to r , and r to p, respectively.

Given a geodesic triangle, whose sides have respective lengths a, b, c and
angles at opposite vertices are given, respectively, by α, β, γ , then if M is one
of our model spaces of constant sectional curvature κ we have the Law of Sines

sin α : sin β : sin γ = Sκ (a) : Sκ (b) : Sκ (c)

(where the colon denotes proportion). The Law of Cosines reads, when κ 	= 0,
as:

Cκ (a) = Cκ (b)Cκ (c) + κSκ (b)Sκ (c) cos α.

See Berger (1987, Vol. II, pp. 286, 329). Check what happens when κ → 0.
For spherical geometry and trigonometry see Berger (1987, Vol. II, Chapter

18); for elementary hyperbolic geometry and trigonometry see Berger (1987,
Vol. II, Chapter 19), Fenchel (1989), and Meschkowski (1964). For a view of
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hyperbolic trigonometry via Exercise II.15, see Buser (1992, Chapter 2). For a
comprehensive introduction to the classical geometries, see Ratcliffe (1994).

Note II.6. The Killing–Hopf theorem (Theorem IV.5) states that any complete
simply connected Riemannian manifold of constant sectional curvature is iso-
metric to one of the model spaces. For constant positive sectional curvature,
a full classification of all such spaces has been given by J. A. Wolf. See his
presentation in Wolf (1967). He also gives a discussion of manifolds of con-
stant vanishing sectional curvature. For a more extensive treatment, see Charlap
(1986).

For the geometry and topology of manifolds of constant sectional negative
curvature, start with Beardon (1983), Epstein (1987), Bedford–Keane–Series
(1991), and the recent Buser (1992), and progress from there to Thurston
(1979). More recently, one has Benedetti–Petronio (1994), Ratcliffe (1994),
and Thurston’s own Thurston (1997).

A Result of J. L. Synge

Exercise II.16. Consider a geodesic variation in the Riemannian manifold M –
one might call it a ruled surface. Show, using one of two possible arguments, that
the Gauss curvature of the surface is less than or equal to the sectional curvature
in M associated to each tangent 2–plane of the surface (Synge (1934)).

On Conjugate Points

Exercise II.17. Assume γ : [0, β] → M , p = γ (0), ξ = γ ′(0), is a unit speed
geodesic. Show that points along γ , conjugate to p along γ , are isolated.

On Jacobi’s Criteria

Theorem II.5.4 states that if γ : [0, β] → M is a unit speed geodesic with no
points on (0, β] conjugate to γ (0) along γ , then γ is a “strict local minimum”
of the distance function among curves connecting γ (0) to γ (β).

Here, “strict local minimum” is understood in the sense that if v(t, ε) is a ho-
motopy of γ , with length function L(ε), as described in §II.4, where L(0) = β,
then L ′(0) = 0 and L ′′(0) > 0. In the argument we gave, we followed Ambrose
(1961). The original version of the argument in 2 dimensions can be found in
Darboux (1894, Vol. III, pp. 95ff).

A different version of “strict local minimum” in Jacobi’s theorem goes as
follows:
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Exercise II.18. Let p = γ (0), ξ = γ ′(0) ∈ Sp. For ε in (0, 1), let Cε(ξ ) denote
the neighborhood of ξ ∈ Sp given by

Cε(ξ ) = {η ∈ Sp : 〈ξ, η〉 > 1 − ε};
and for any ε in (0, 1) and r > 0 let

Cε,r (ξ ) = {tη ∈ Mp : t ∈ [0, r ), η ∈ Cε(ξ )},
and

Cε,r (ξ ) = exp Cε,r (ξ ).

Prove the following:

Theorem. (C. F. Jacobi (1836)) Assumeγ : [0, β] → M, p = γ (0), ξ = γ ′(0),
is a unit speed geodesic such that γ |(0, β] is one-to-one with no points conju-
gate to p along γ . Then there exist ε in (0, 1), r > β, such that Cε,r (ξ ) ⊆ T M,
the domain of the exponential map. Furthermore, there exists sufficiently small
ε > 0 such that, if ω is a path from p to γ (β) with image completely contained
in Cε,r (ξ ) then

�(ω) ≥ β,

with equality only if the image of ω is the same as that of γ . (See Darboux
(1894, Vol. III, p. 86))

Note II.7. A different proof, for surfaces, of Theorem II.5.5 can be found in
Darboux (1894, Vol. III, p. 88).

Geometry of the Index Form

Exercise II.19. Let M be a Riemannian manifold, p a point in M , and r the
distance function on M based at p, that is, r is given by

r (x) = d(p, x).

(a) Show, for r > 0 sufficiently small, that r ∈ C∞ and |grad r | = 1.
(b) Show, with β > 0 sufficiently small as in (a), γ : [0, β] → M a unit speed

geodesic emanating from p, that for any Jacobi field Y along γ , vanishing at p
and orthogonal to γ along γ , its index form I is given by

I (Y, Y ) = 〈∇t Y, Y 〉(β) = B−grad r|γ (β) (Y (β), Y (β)) = Hess r (Y (β), Y (β))

where B denotes the second fundamental form of the level surface r−1[β].
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Definition. A function g : R → R is called convex if for any a < b and s ∈
(0, 1) we have

g((1 − s)a + sb) ≤ (1 − s)g(a) + sg(b).

The function g is called strictly convex if the inequality is strict inequality.
A function f on a Riemannian manifold M is (strictly) convex if for every

nontrivial geodesic γ : [0, 1] → M the function f ◦γ is (strictly) convex.
A subset A of a Riemannian manifold M is called convex if for any p, q ∈ A

there exist a unique unit speed minimizing geodesic γpq in M connecting p to
q , and γpq ⊆ A.

Note II.8. For discussion of uniqueness of minimizing geodesics joining points
of a Riemannian manifold, see the introductory discussion of §III.2. For other
notions of convexity – other than “convex” – see §IX.6.

Exercise II.20.

(a) Assume a function f on the Riemannian manifold M is C2. Show that f is
convex (resp. strictly convex) if Hess f is nonnegative (resp. positive definite).
Show that if f is (strictly) convex then Hess f is nonnegative.

(b) Let A be a convex open subset of M , and assume the sectional curvature
of M on A is nonpositive. Given p ∈ A, set r (q) = d(p, q). Show that the
function r : A → R is convex on A.

(c) Show in (b) that the distance function d : A × A → R is convex.

On Manifolds of Positive Curvature

Note II.9. If the sectional curvature of a complete Riemannian manifold is pos-
itive everywhere but not bounded away from 0, then one cannot conclude that
the manifold is compact – simply consider a paraboloid of revolution. But see
Calabi (1967) and Schneider (1972). On the other hand, the condition of strictly
positive curvature remains quite restrictive. D. Gromoll and W. Meyer (1969)
have shown that noncompact manifolds possessing a complete Riemannian

metric of strictly positive sectional curvature are contractible. The topological
structure of manifolds possessing a complete Riemannian metric of nonnega-
tive sectional curvature is richer. See the original papers of J. Cheeger and D.
Gromoll (1971), (1972), and the updated presentations in Cheeger–Ebin (1975,
Chapter 8), Klingenberg (1982, §2.9), and Besse (1987, p. 171ff). See some of
our remarks in §IX.9.
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On the Morse–Schönberg Theorem

Exercise II.21. The Rauch theorem (Theorem II.6.4) is stronger than the
Morse–Schönberg theorem (Theorem II.6.3) and therefore supplies another
proof of the Morse–Schönberg theorem. The following theorem is closer to the
original argument of Morse and Schönberg.

Prove:

Theorem. Let M1, M2 be Riemannian manifolds of same dimension, with γ1,
γ2 unit speed geodesics in M1, M2, respectively. Let K1, K2 denote respective
sectional curvatures along γ1, γ2, and assume that

sup K1|γ (t) ≤ min K2|γ (t)

for all t > 0. Then, the first conjugate point to γ1(0) along γ1 cannot occur
earlier than the first conjugate point to γ2(0) along γ2.

On the Rauch Theorem

Note II.10. The attribution of Theorem II.6.4 to H. E. Rauch is, actually, off
the mark, for the method of the argument certainly goes back to the Sturm’s
(1836) separation arguments of the nineteenth century, even if the specific Rauch
result and its applications (see Chapter IX) are more recent. The theorem more
properly belonging to Rauch is his corresponding comparison theorem for the
length of Jacobi fields when the sectional curvature is bounded from below.
Simply note that, in the argument given in Theorem II.6.4, if the curvature is
bounded from below, then the bound on the curvature pushes in the opposite
direction from that of the Cauchy–Schwarz inequality. Thus, a genuinely new
argument is required. See §IX.2 below.

Exercise II.22.

(a) For the original Sturmian argument, prove the following:

Theorem. Given continuous functions K , H → R, functions φ, ψ defined on
R satisfying the inequalities

φ′′ + Kφ ≥ 0, ψ ′′ + Hψ ≤ 0,

and

K ≤ H
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on all of R. Then, on any domain in R for which φ, ψ > 0, we also have

{φ′ψ − φψ ′}′ ≥ (H − K )φψ ≥ 0,

with equality at any given point if and only if all three given inequalities are
actually equalities at that point.

Thus, the additional assumptions

φ(α) ≤ ψ(α), φ′(α) ≥ ψ ′(α)

imply that

φ′/φ ≥ ψ ′/ψ, (φ/ψ)′ ≥ 0

on any interval on which φ > 0. If we also have φ(α) = ψ(α), then we may
conclude

φ/ψ ≥ 1

on any interval (α, β) on which φ > 0.

(b) Characterize the case of equality in any of the above.
(c) Prove the:

Corollary. Given κ ∈ R and a function f satisfying

f ′′ + κ f ≤ 0 f (0) = f ′(0) = 0,

and assume one has t > 0 for which Sκ > 0 on all of (0, t). Then, f ′ ≤ 0 on
all of [0, t].

Exercise II.23. Let M1, M2 be 2–dimensional Riemannian manifolds, with
respective sectional (here, Gauss) curvature functions K1, K2. Assume that

sup K1 ≤ inf K2.

Given points p1 ∈ M1, p2 ∈ M2, and a path ζ : [α, β] → R
2.

Let ι1 : R
2 → (M1)p1 and ι2 : R

2 → (M2)p2 be linear isometries (so, ι2◦ι1
−1

is an identification of the two tangent planes),

ζ1 = ι1◦ζ ⊆ T M1, ζ2 = ι2◦ζ ⊆ T M2,

and

ω1 = expp1
◦ζ1, ω2 = expp2

◦ζ2.

Assume that, for every ε in [α, β], the geodesic segmentγζ2(ε)/|ζ2(ε)||(0, |ζ2(ε)|]
has no points conjugate to p2.
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Then show that

�(ω1) ≥ �(ω2).(II.9.1)

Exercise II.24. Assume in the above that the common dimension of M1, M2

is n ≥ 2, and M2 has constant sectional curvature δ. Then derive (II.9.1).

Note II.11. The above two exercises are, then, the geometric versions of the
Rauch theorem (Theorem II.6.4). But, after all, it is only a first step. In practice,
one starts with M1 complete and a path ω1 in M1, and wishes to construct a path
ω2 in M2 with which to compare ω1. More precisely, suppose M2 is one of the
space forms constructed in §II.3, with constant sectional curvature δ, and we
are given p1 ∈ M1, x1, y1 ∈ B(p1; π/

√
δ) (when δ ≤ 0, we think of π/

√
δ as

+∞). We wish to estimate d(x1, y1) from below by comparison with distances
in M2. The naive way is as follows:

Connect p1 to x1, y1 by minimizing geodesics γξ1 , γη1 , where ξ1, η1 ∈ Sp1 ;
pick p2 ∈ M2; construct a linear isometry

ι : (M1)p1 → (M2)p2 ,

and let

ξ2 = ι(ξ1), η2 = ι(η1)

and

x2 = γξ2 (d(p1, x1)), y2 = γη2 (d(p1, y1)).

One would like to show

d(x1, y1) ≥ d(x2, y2).

The idea would be to let ω1 be a minimizing geodesic joining x1 to y1, lift
ω1 (via the exponential map) to a path ζ1 in (M1)p1 , proceed as in the previous
exercises to construct ω2, connecting x2 to y2, and then argue

d(x1, y1) = �(ω1) ≥ �(ω2) ≥ d(x2, y2).

However, the difficulty is in the construction of ζ1. Rauch’s Theorem II.6.4 and
Corollary II.7.2 imply that as long as ω1 ⊆ B(p1; π/

√
δ), we can produce a

local lift of ω1 to (M1)p1 via the inverse of expp1
. So, to carry out the argument,

the first thing we must guarantee is that ω1 ⊆ B(p1; π/
√

δ). (Of course, when
δ ≤ 0, this is not a problem.) The second difficulty is that – even if we have a lift
ζ1 starting from γ1 – we have no guarantee that ζ1 will connect d(p1, x1)ξ1 to
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d(p1, y1)η1! Thus, a more penetrating geometric study is required (see Chapter
IX).

Riemann Normal Coordinates

Exercise II.25. Given a Riemannian manifold M , p ∈ M . Show that given any
ε > 0, there exists δ > 0 such that

d(exp ξ, exp η)

|ξ − η| = 1 ± O(ε2)

for all ξ, η ∈ B(p; δ).

Exercise II.26. Assume dim M = 2. Letγ : [0, β] → M , p = γ (0), ξ = γ ′(0),
be a unit speed geodesic with γ (t1) conjugate to p along γ . Show that there
exists a neighborhood U of ξ in Sp, and ε > 0 such that, for every ζ ∈ U, the
geodesic γζ intersects γ at some value of t satisfying |t − t1| < ε.

Exercise II.27. Let γ : [0, β] → M , p = γ (0), ξ = γ ′(0), be a unit speed
geodesic with γ (t1) conjugate to p along γ . Prove that expp is not one-to-one
on any neighborhood of t1ξ .
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Riemannian Volume

We begin here our foray into the global theory – where we consider the full
Riemannian manifold M . Our very first steps, in this chapter, are devoted to
describing the cut locus of a point. In short, for each unit tangent vector ξ at a
point p, the cut point of p along the geodesic γξ emanating from p is the point
along γξ after which γξ no longer minimizes distance from p. The collection
of such cut points of p, the cut locus C(p) of p, determine the topology of M
since M \ C(p) is diffeomorphic to an n–disk.

In integration theory, the major topic of the chapter, the cut locus C(p) has
measure equal to 0, so the topology of M may be effectively disregarded at the
early stages of study of the influence the geometry of M has on the volume
measure of M . But one cannot be so cavalier. The Gauss–Bonnet theorem
(see §V.1) implies that when a connected compact surface has constant Gauss
curvature −1, then knowledge of the area (2–dimensional volume) of the surface
is equivalent to knowledge of the topology of the surface.

Nevertheless, our study in this chapter does not devote itself to the devel-
opment of this interplay between volume and topology. Rather, it starts at a
more elementary level. It continues the development of the comparison theo-
rems of Chapter II. The basic idea is that when curvature influences the rate
at which geodesics emanating from the same point separate, it automatically
influences the rate at which the volume grows. Thus, the study of the geodesics
is finer than the study of the volume. Nevertheless, the theory of volume com-
parison theorems is sufficiently elementary and rich to yield, for example, an
easy characterization (Theorem 11) of equality in the Bonnet–Myers theorem
(Theorem II.6.1).

The study of volume and topology is initiated in the following chapter, in the
context of Riemannian coverings and continued in §V.2 with the Gauss–Bonnet
theory of surfaces.

111



P1: JZP

0521853680c03 CB980/Chavel January 2, 2006 10:59 Char Count= 632

112 Riemannian Volume

The concluding sections of this chapter are for future reference. First we intro-
duce Fermi coordinates based on a submanifold of a given Riemannian mani-
fold and give appropriate generalizations of the comparison theorems discussed
heretofore. Then, in the last section, we summarize, for future work, the in-
tegration of differential forms on manifolds. We simply recall the necessary
definitions and facts through Stokes’ theorem, and then do the calculations that
pass from the general Stokes’ theorem to the Green’s formulae in Riemannian
manifolds.1

In an appendix to this chapter, we apply Green’s formulae of §7 to intro-
duce the Laplacian and its associated eigenvalue problems. We then use R. L.
Bishop’s volume comparison theorems to derive S. Y. Cheng’s (1975) lowest-
eigenvalue comparison theorems. We wished to include this section here be-
cause it contains immediate applications of work carried out in this chapter.
However, because its results are not used in the sequel, it seemed best to in-
clude it only as an appendix.

§III.1. Geodesic Spherical Coordinates

Given a manifold M , a coordinate system on M will be a C∞ map ϕ : O → M
from an open setO in R

n . Most often, the coordinate systems we use are inverse
maps of charts on M ; however, we prefer not to impose this constraint, so that
it might be possible that the map ϕ might fail to be one-to-one, or of maximal
rank.

Recall (from §I.3) that T M denotes the domain of the exponential map.

Given a Riemannian manifold M , p ∈ M , and a coordinate system ξ : O → Sp,
a coordinate system v on M is determined by

v(t, u) = exp tξ (u).

The domain of the map v will consist of the collection {(t, u)} in (0, +∞) × O
for which tξ (u) ∈ T M .

In what follows, given ξ ∈ Sp we let

τt ;ξ : Mp → Mγξ (t)

denote parallel translation along γξ , and we write

∂αξ := �ξ
−1◦ξ∗(∂/∂uα),

∂t v := v∗(∂/∂t), ∂αv := v∗(∂/∂uα),

1 On first reading, one might pass on these last sections, without disturbing the overall development
of ideas and results. One would then return to these sections as needed.
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α = 1, . . . , n − 1, where ∂/∂t and ∂/∂u1, . . . , ∂/∂un−1 are natural coordinate
vector fields on (0, +∞) and O, respectively. Then,

(∂t v)(t ; ξ ) = ∂t v| exp tξ = γξ
′(t),

and Theorem II.7.1 implies

(∂αv)(t ; ξ ) = ∂αv| exp tξ = Yα(t ; ξ ),

where Yα(t ; ξ ) is the Jacobi field along γξ determined by the initial conditions

Yα(0; ξ ) = 0, (∇t Yα)(0; ξ ) = ∂αξ.

Of course,

|∂t v| = 1;(III.1.1)

and since ∂αξ⊥ξ , we have by (II.5.7)

〈∂t v, ∂αv〉 = 0.(III.1.2)

(This is the content of the Gauss lemma (Theorem I.6.1).) So, the full knowledge
of the Riemannian metric along γξ requires the study of

〈∂αv, ∂βv〉(exp tξ ) = 〈Yα(t ; ξ ), Yβ(t ; ξ )〉.
If M has constant sectional curvature κ along γξ , then

Yα(t ; ξ ) = Sκ (t)τt ;ξ (∂αξ );

so

〈∂αv, ∂βv〉(exp tξ ) = Sκ
2(t)〈∂αξ, ∂βξ〉,

which is what we encapsulated in the formal calculations of Chapter II (see
(II.8.4)) as

ds 2 = dt 2 + Sκ
2(t)|dξ |2.

For the general situation, we proceed as follows: Given p ∈ M , ξ ∈ Sp, let ξ⊥

denote the orthogonal complement of Rξ in Mp; and, for each t > 0, let

R(t) = R(γξ
′(t), · )γξ

′(t),

R(t) = τt ;ξ
−1◦R(t)◦τt ;ξ .(III.1.3)

Of course, R(t) maps Rξ to 0, so one only considers R(t) as genuinely acting
on ξ⊥.
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We set A(t ; ξ ) to be the solution of the matrix (more precisely: linear trans-
formation) ordinary differential equation on ξ⊥:

A′′ + R(t)A = 0,(III.1.4)

satisfying the initial conditions

A(0; ξ ) = 0, A′(0; ξ ) = I.(III.1.5)

Then, for each η ∈ ξ⊥, the vector field Y (t) along γξ , given by

Y (t) = τt ;ξA(t ; ξ )η,

is the Jacobi field along γξ , in J ⊥ (see Proposition II.5.1), determined by the
initial conditions

Y (0) = 0, (∇t Y )(0) = η.

We therefore have

(∂αv)(t ; ξ ) = Yα(t ; ξ ) = τt ;ξA(t ; ξ )∂αξ,

which implies

〈∂αv, ∂βv〉(exp tξ ) = 〈A(t ; ξ )∂αξ,A(t ; ξ )∂βξ〉.(III.1.6)

In the spirit of our formal expressions above (II.8.4), we write

ds 2 = dt 2 + |A(t ; ξ ) dξ |2.(III.1.7)

Of course, for M with constant sectional curvature equal to κ , we have

A(t ; ξ ) = Sκ (t)I.

§III.2. The Conjugate and Cut Loci

M is our given Riemannian manifold.

Definition. Let p ∈ M . The conjugate locus of p in Mp (the tangential conju-
gate locus) may be defined in two ways – equivalent to each other by
Corollary II.7.1:

(i) It is the subset of Mp ∩ T M consisting of all critical points of expp.
(ii) It is the collection of vectors tξ ∈ Mp ∩ T M , with t > 0, ξ ∈ Sp, for

which

det A(t ; ξ ) = 0,(III.2.1)

where A is given by (III.1.4), (III.1.5). (Thus, for a given ξ ∈ Sp, the nullity of
expp at t0ξ is equal to the order of t0 as a zero of the function A(t ; ξ ) (in t).)
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By the conjugate locus of p in M (the conjugate locus), we mean the image
of the tangential conjugate locus under the exponential map expp.

Definition. Given p ∈ M , ξ ∈ Sp, we define c(ξ ) the distance to the cut point
of p along γξ by

c(ξ ) := sup {t > 0 : tξ ∈ T M, d(p, γξ (t)) = t}.
To appreciate the definition note that:

1. If d(p, γξ (t1)) = t1 for some given t1 > 0, then d(p, γξ (t)) = t for all t ∈
[0, t1]. Indeed, if there exists T ∈ [0, t1] such that d(p, γξ (T )) < T , then the
triangle inequality implies

d(p, γξ (t1)) ≤ d(p, γξ (T )) + d(γξ (T ), γξ (t1))

< T + (t1 − T )

= t1.

So, the geodesic minimizes distance between p and γξ (t) for all t ∈ [0, c(ξ )),
and fails to minimize distance for all t > c(ξ ).

Of course, if c(ξ ) is finite, and c(ξ )ξ ∈ T M , then γξ minimizes distance
between ξ and γξ (c(ξ )), as well.

2. Also, if t < c(ξ ), then γξ is the only minimizing geodesic from p to γξ (t). If
not, then there exists another η ∈ Sp for which γη(t) = γξ (t). But then, for any
T ∈ (t, c(ξ )), one could travel along γη from p to γξ (t) followed by traveling
along γξ from γξ (t) to γξ (T ). Then, one would have a minimizing broken
geodesic from p to γξ (T ), a contradiction to Corollary I.6.2.

3. One has a more detailed description of c(ξ ). Certainly, if p has a conju-
gate point γξ (T ) along γξ , then Jacobi’s criterion (Theorem II.5.5) implies that
c(ξ ) ≤ T . So, one possibility for c(ξ ) is that it is the distance along γξ to the
first conjugate point of p along γξ . What are the other possibilities? When M
is complete, there is only one other possibility, as follows:

Given ξ ∈ Sp, c(ξ ) < +∞, c(ξ )ξ ∈ T M , consider a strictly decreasing se-
quence (t j ) with t j > c(ξ ) for all j , and t j → c(ξ ) as j → ∞. Then there exists
(by Theorem I.7.1) sequences of geodesics emanating from p, with initial unit
velocity vectors η j ∈ Sp, and respective lengths d j > 0, such that

γξ (t j ) = γη j (d j ),

d j = d(p, γη j (d j )) < t j ,

that is, γη j minimizes distance – strictly less than t j – from p to γξ (t j ) for all
j . Of course, it is impossible that infinitely many η j denote the same element
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of Sp. Then, (η j ) has a convergent subsequence (ζk) = (η jk ) with ζk → ζ as
k → ∞. If ζ = ξ , then expp is not one-to-one in any neighborhood of c(ξ )ξ ; so
expp has a critical point at c(ξ )ξ , which implies γξ (c(ξ )) is conjugate to p along
γξ – the first possibility. If ζ �= ξ then d jk → c(ξ ), and γζ (c(ξ )) = γξ (c(ξ )). So,
the second possibility is that there are at least two distinct minimizing geodesics
from p to γξ (c(ξ )).

4. When M is complete then for all unit tangent vectors ξ ∈ T M , for which we
have c(ξ ) < +∞, we also have

c(−γξ
′(c(ξ ))) = c(ξ ).

5. Of course, if M is complete and γξ |[0, t] minimizes the distance from p to
γξ (t) for all t > 0, then c(ξ ) = +∞.

Notation. In what follows, we let SM denote the unit tangent bundle of M ,
that is

SM := {ξ ∈ T M : |ξ | = 1},
with the natural projection π |SM , where π denotes the projection of T M to
M . When there is no possibility of confusion, we write π in place of π |SM .

We shall now consider the function c(ξ ) as defined on SM , and prove

Theorem III.2.1. The function c : SM → (0, +∞], where c is the distance
along γξ from π (ξ ) to the cut point of π (ξ ) along γξ , is upper semicontinuous
on SM. If M is Riemannian complete, then the function c is continuous on SM.

Proof. Suppose we are given ξ ∈ SM , with a sequence (ξk) in SM for which
ξk → ξ as k → ∞. Set

p = π (ξ ), pk = π (ξk), dk = c(ξk).

If the sequence (dk) has an unbounded subsequence (δ j ) = (dk j ) for which
δ j ↑ +∞ as j → ∞, then for every T > 0 one has, for sufficiently large j ,
δ j > T . Then

lim
j→∞

γξk j
(T ) = γξ (T ),

and

d(p, γξ (T )) = lim
j→∞

d(pk j , γξk j
(T )) = T .

So, c(ξ ) = +∞.
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Similarly, if (dk) has a convergent subsequence

(δ j ) = (dk j ) → δ

as j → ∞, then again one has for all positive ε < δ

d(p, γξ (δ − ε)) = lim
j→∞

d(pk j , γξk j
(δ j − ε))

= lim
j→∞

δ j − ε

= δ − ε.

So, c(ξ ) ≥ δ. In sum, we have

lim sup
k→∞

c(ξk) ≤ c(ξ ).

It therefore remains to show that if M is complete, then

lim inf
k→∞

c(ξk) ≥ c(ξ ).(III.2.2)

It suffices to assume that the sequence (c(ξk)) converges to δ < +∞ as k →
∞. So, we wish to show that γξ cannot minimize past γξ (δ). By passing to a
subsequence if necessary, we may assume that either (i) γξk (c(ξk)) is conjugate
to pk along γξk for all k, or (ii) to each k one has ηk ∈ SM , ηk �= ξk for all k,
for which

π (ηk) = π (ξk) = pk and γηk (c(ξk)) = γξk (c(ξk))

for all k.
In case (i), γξ (δ) is certainly conjugate to p along γξ ; so, c(ξ ) ≤ δ. In case

(ii), by passing to a subsequence if necessary, we may assume the existence of
η ∈ SM for which ηk → η as k → ∞. But then, π (η) = π (ξ ) = p and γη(δ) =
γξ (δ). If η �= ξ , then certainly c(ξ ) ≤ δ. If η = ξ , then the map π × exp is not
a diffeomorphism on a neighborhood of (δξ, δξ ) in T M × T M . This implies
γξ (δ) is conjugate to p along γξ . Again, we have c(ξ ) ≤ δ. This concludes the
proof of (III.2.2), and, with it, the proof of the theorem. �

Definition. For every p ∈ M , we define the cut locus of p in Mp (the tangential
cut locus), C(p), by

C(p) := {c(ξ )ξ : c(ξ ) < +∞, ξ ∈ Sp} ∩ T M,

and the cut locus of p in M (the cut locus), C(p), by

C(p) := exp C(p).
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Also, we set

Dp := {tξ : 0 ≤ t < c(ξ ), ξ ∈ Sp},
Dp := exp Dp.

One immediately has

Theorem III.2.2. The domain Dp is the largest domain, starlike with respect to
the origin of Mp, for which expp restricted to that domain is a diffeomorphism.
Furthermore,

Dp = M \ C(p).

Note that item 4 above implies that, for p, q ∈ M , we have q ∈ C(p) if and
only if p ∈ C(q).

Also note that when M is complete, one always has, for all p ∈ M , δ > 0,

B(p; δ) = exp B(p; δ),(III.2.3)

which we already know (see Corollary I.6.1), and

S(p; δ) ∩ Dp = exp S(p; δ) ∩ Dp.(III.2.4)

Definition. Given any p ∈ M , we define the injectivity radius of p, inj p, by

inj p := inf {c(ξ ) : ξ ∈ Sp};
the injectivity radius of M , inj M , will be defined by

inj M := inf {inj p : p ∈ M}.
It is already an immediate consequence of Corollary I.6.3 that inj p is positive
for every p ∈ M , and that inj M is positive whenever M is compact. Of course,
these facts follow from the more detailed result Theorem III.2.1. We leave it to
the reader to prove

Theorem III.2.3. The function inj : M → (0, +∞] is continuous.

Theorem III.2.4. (Klingenberg’s lemma (1959)) Let M be a complete Rie-
mannian manifold, p ∈ M, and q ∈ C(p) such that

d(p, q) = d(p, C(p)),
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that is, q is the point in C(p) closest to p. If q is not conjugate to p along a
minimizing geodesic connecting p to q, then q is the midpoint of a geodesic
loop, starting and ending at p.

In particular, if M is compact and the sectional curvatures of M satisfy

K ≤ δ,

then

inj M ≥ min {π/
√

δ, �(M)/2},
where �(M) is the length of the shortest simple closed geodesic in M.

Proof. Given p and q as described previously, if q is not conjugate to p along
any minimizing geodesic connecting p to q, then there exist two distinct unit
speed minimizing geodesic segments γ1 and γ2 from p to q. Neither contain
any points conjugate to p. Let L denote the common length of γ1 and γ2,

γ1(0) = γ2(0) = p.

Then, one has two hypersurfaces given by

{γξ (L)} and {γη(L)},
where ξ varies over a neighborhood of γ1

′(0) in Sp, and η varies over a neighbor-
hood of γ2

′(0) in Sp. If γ1
′(L) �= −γ2

′(L), then the two hypersurfaces intersect
transversally at q . This implies that, for varying ξ and η,

{γξ (L − ε)} ∩ {γη(L − ε)} �= ∅,

(see Fig. III.1) for sufficiently small ε > 0, which contradicts the assumption
that q is the point in C(p) closest to p.

The second claim follows easily from the first claim and the Morse–Schönberg
theorem (Theorem II.6.3). �

§III.3. Riemannian Measure

We start with the formula for change of variables of integral calculus: Let D,
�, be domains in R

n , n ≥ 1, let

ϕ : D → �

be a C1 diffeomorphism, and let Jϕ(x) denote the Jacobian matrix associated
to ϕ at x . Then, for any L1 function f on �, we have∫

D
( f ◦ ϕ)| det Jϕ| dV =

∫
�

f dV .(III.3.1)



P1: JZP

0521853680c03 CB980/Chavel January 2, 2006 10:59 Char Count= 632

120 Riemannian Volume

�2

�1

q

p

{��(L − �)}

{��(L − �)}

Figure III.1. For Klingenberg’s lemma.

Now, let M be a Riemannian manifold, and let x : U → R
n be a chart on M .

Then, for each p ∈ U , we let (as in §I.5) Gx (p) denote the matrix given by

Gx (p) = (gx
i j (p)), gx

i j (p) =
〈

∂

∂xi |p,
∂

∂x j |p

〉
,

and we set

gx := det Gx > 0.

What if we are given a different chart y : U → R
n on the same U in M?

Then, we relate the formulae as follows: Set J to be the Jacobian matrix

Jr j = ∂(y ◦ x−1)r

∂x j
;

then we have

∂

∂x j
=

∑
r

∂

∂yr
Jr j ,

which implies

Gx = J T G y J,

where J T denotes the transpose of J , which implies√
gx = √

gy | det J |.
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Thus, we have the local densities√
gx dx1 · · · dxn = √

gy dy1 · · · dyn,(III.3.2)

by which we mean that the integral

I ( f ; U ) =
∫

x(U )
( f

√
gx )◦x−1 dx1 · · · dxn

depends only on f and U – not on the particular choice of chart x .
We now turn the local Riemannian measure to a global Riemannian measure

on all of M : First, pick an atlas

{xα : Uα → R
n : α ∈ A},

and subordinate partition of unity

{φα : α ∈ A}.
Then define the global Riemannian measure dV by

dV :=
∑
α∈A

φα

√
gxα dx1

α · · · dxn
α,

or, equivalently, ∫
M

f dV =
∑
α∈A

I (φα f ; Uα).

One easily checks that the measure is well-defined, that is, it is independent
of both the particular choices of atlas and subordinate partition of unity.

One easily checks that a function f is measurable with respect to dV if and
only if f ◦x−1 is measurable on x(U ) for any chart x : U → R

n .
In all that follows, we work with this measure.

Definition. For any measurable B in M , we let V (B) denote the measure
of B and refer to V (B) as the volume of B. If � is an (n − 1)–dimensional
submanifold of M , then we usually denote its Riemannian measure by d A; and
for any measurable � in �, we denote its measure by A(�), and refer to A(�)
as the area of �.

The Effective Calculation of Integrals

If the manifold M is diffeomorphic to R
n , then one has, possibly, a convenient

way to literally calculate an integral, by referring the calculation to one coor-
dinate system. However, as soon as one cannot cover the manifold with one
“naturally” chosen chart, one would then be forced to literally pick an atlas and
subordinate partition of unity! This would not go well, at all.
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The simplest overarching approach is to use the geometry of the Riemannian
manifold to indicate a judicious choice of a set of measure 0 to delete, which
will thereby leave an open set that is the domain of a chart on M . The quickest
example that comes to mind is the stereographic projection of the sphere S

n to
R

n (see §II.3), in which the domain of the chart covers all of S
n less the pole of

the projection. So any integral on the sphere may be referred to this one chart.
Before proceeding, we note that (III.3.2) implies that the notion of a set

of measure 0 depends only on the differentiable structure of the manifold. It
makes no difference whether we are referring to a local measure on M induced
by Lebesgue measure on the image of a chart on M , or whether we are referring
to Riemannian measure.

Continuing, we work, in our setting, with spherical coordinates as follows: For
convenience, we assume that M is complete. For any point p ∈ M , introduce
geodesic spherical coordinates about p, as described in §III.1. It is important
to remember that, there, the spherical coordinates actually describe (locally) a
differentiable map of (0, +∞) × Sp into M \ {p}, given by

(t, ξ ) �→ exp tξ.

The map may fail to be the inverse map of a chart on M \ {p} since the map
may fail to be a diffeomorphism; also, since Sp is not diffeomorphic to a subset
of R

n−1, one cannot use ξ , literally, as an (n − 1)–dimensional coordinate. The
second difficulty is simply addressed by picking a chart on Sp. It need never
be explicit, since the final formulae never require it (unless, possibly, in some
unusual circumstances – our goal is never to have to contend with them). The first
difficulty must be dealt with by restricting the geodesic spherical coordinates
to Dp \ {p}.

Thus, a chart on M \ C(p) = Dp is given by

(expp |Dp \ {p})−1 : Dp \ {p} → Dp \ {p};
and the Riemannian measure is given on Dp by

dV (exp tξ ) = √
g(t ; ξ ) dt dµp(ξ ),

for some function
√

g on Dp, where dµp(ξ ) denotes the Riemannian measure
on Sp induced by the Euclidean Lebesgue measure on Mp.

Of course, the set {p} has measure 0; so, we never have to explicitly include
it in, or exclude it from, our discussion of integrals. More significantly, C(p)
has measure 0. Indeed, the function c(ξ ) is continuous on all of SM , so its
restriction to Sp is certainly continuous. Thus, the tangential cut locus of p is
the image of the continuous map ξ �→ c(ξ )ξ from Sp to Mp, and therefore has
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Lebesgue measure equal to 0. The image of the tangential cut locus of p under
the differentiable exponential map is the cut locus of p in M , C(p). Therefore,

Proposition III.3.1. For any p ∈ M, the cut locus C(p) of p is a set of mea-
sure 0.

Thus, for any p ∈ M , and integrable function f on M , we have∫
M

f dV =
∫

Dp

f (exp tξ )
√

g(t ; ξ ) dt dµp(ξ )(III.3.3)

=
∫

Sp

dµp(ξ )
∫ c(ξ )

0
f (exp tξ )

√
g(t ; ξ ) dt(III.3.4)

=
∫ +∞

0
dt

∫
t−1S(p;t)∩Dp

f (exp tξ )
√

g(t ; ξ ) dµp(ξ ),(III.3.5)

where t−1S(p; t) ∩ Dp is the subset of Sp obtained by dividing each of the
elements of S(p; t) ∩ Dp by t .

It remains to calculate
√

g(t ; ξ ).

Theorem III.3.1. We have

√
g(t ; ξ ) = det A(t ; ξ ),

where A(t ; ξ ) is given by (III.1.4) and (III.1.5).

Proof. Let u be a chart on Sp, ξ = u−1, and let x be a chart on Dp \ {p} given
by

x = (u◦{(exp |Dp)−1/|(exp |Dp)−1|}, |(exp |Dp)−1|).
Then, what in §III.1 was called ∂t v is here equal to ∂/∂xn; and what was in §1
referred to as ∂αv is here equal to ∂/∂xα , α = 1, . . . , n − 1.

We let G denote the matrix of the Riemannian metric on M associated to
the chart x , and we let H denote the matrix of the Riemannian metric on Sp

associated to the chart u. Then, equation (III.1.6) translates to our language
here as

gαβ =
∑
γ,δ

A∗
αγ hγ δAδβ, α, β, γ, δ = 1, . . . , n − 1,

and (III.1.1) and (III.1.2) translate to

gnn = 1, gαn = gnα = 0, α = 1, . . . , n − 1.
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We conclude that
√

g = √
h det A,

which implies the claim. �

For Euclidean space R
n , with respect to spherical coordinates, we have the

previously known

dV (tξ ) = tn−1 dt dµn−1(ξ ),(III.3.6)

where dµn−1 denotes the Riemannian measure of S
n−1.

For a specific calculation of the volume of S
n−1, that is

cn−1 :=
∫

Sn−1
dµn−1,

we introduce the classical Gamma function �(x), given by

�(x) :=
∫ +∞

0
e−t t x−1 dt.

Then the integral converges for x > 0, and one verifies that

�(1) = 1,(III.3.7)

and, by integration by parts, that

�(x + 1) = x�(x).(III.3.8)

Also, one has {∫
R

e−t2
dt

}n

=
∫

Rn

e−|x |2 dV (x)

=
∫

Sn−1
dµn−1(ξ )

∫ +∞

0
tn−1e−t2

dt

= cn−1

∫ +∞

0
tn−1e−t2

dt

= cn−1�(n/2)/2,

that is, {∫
R

e−t2
dt

}n

= cn−1

2
�(n/2).(III.3.9)

Therefore, to evaluate cn−1, we must calculate the classical integral
∫

e−t2
dt

over R. In our context, we argue as follows: One easily has, by deleting one
point, that c1 = 2π . Therefore, by (III.3.9),{∫

R

e−t2
dt

}2

= 2π�(1)/2 = π,
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which implies ∫
R

e−t2
dt = √

π.

We therefore conclude

cn−1 = 2πn/2

�(n/2)
.(III.3.10)

To evaluate �(n/2), we have, for even n, n/2 an integer; one then uses (III.3.7)
and (III.3.8). To evaluate �(n/2), we have, for odd n, n/2 a half-integer; one
then uses (III.3.8), and the fact that (III.3.9) for n = 1 reads as

�(1/2) = √
π.

If M has constant curvature κ , then in spherical geodesic coordinates about any
point p ∈ M we have

√
g(t ; ξ ) = Sκ

n−1(t).(III.3.11)

In particular, if κ = 1, we conclude immediately that

cn = cn−1

∫ π

0
sinn−1 t dt.(III.3.12)

If one assumes the integral as known, then one uses (III.3.12) to calculate the
volume of S

n in a new way. If one assumes the knowledge of the volume of
spheres, then one has a new calculation of the integral∫ π

0
sinn−1 t dt.

Finally, we note that (III.3.6) and (III.3.10) imply that for ωn, the volume of the
unit disk B

n in R
n , we have

ωn = cn−1

n
= πn/2

�(n/2 + 1)
.(III.3.13)

Volume of Metric Disks

We now apply this approach to calculating volumes in the general Riemannian
setting.

Notation. Given x ∈ M , we let V (x ; r ) denote the volume of B(x ; r ), that is,

V (x ; r ) =
∫

B(x ;r )
dV .
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Definition. For any x ∈ M , r > 0, we define Dx (r ) to be the subset of Sx

consisting of those elements ξ for which rξ ∈ Dx , which we write as

rDx (r ) = S(x ; r ) ∩ Dx .

Given x ∈ M , we let A(x ; r ) denote the lower area of S(x ; r ); that is,

A(x ; r ) :=
∫

Dx (r )
det A(r ; ξ ) dµx (ξ ).

Remark III.3.1. We refer to A as the “lower area” because (i) A(x ; r ) is guaran-
teed to be the genuine (n − 1)–dimensional area of S(x ; r ) only if r is less than
inj x , and (ii) for any reasonable definition of area of S(x ; r ), when r > inj x ,
one will have A(x ; r ) less than or equal to the area of S(x ; r ). An example of
the difficulties when r is allowed to be greater than or equal to inj x would be
P

n , the real n–dimensional projective space of constant curvature equal to 1
(see §IV.2). Then, the distance sphere of x , S(x ; π/2), with radius equal to π/2
(the hyperplane at infinity) is, in fact, an (n − 1)–dimensional manifold with
area equal to cn−1/2. But the definition determines A(x ; π/2) to be equal to
0, since it excludes the intersection of S(x ; π/2) with the tangential cut locus.
On the other hand, if we were to include the intersection of S(x ; π/2) with the
tangential cut locus, then the integral would be taken over all of S(x ; π/2), in
which case each point in S(x ; π/2) in the manifold would be counted twice,
with the result that A(x ; π/2) would then be equal to cn−1.

We discuss the definition of the area of S(x ; r ), for arbitrary r , in §III.5.

For the above definition of A(x ; r ), we have, using (III.3.4), (III.3.5),

V (x ; r ) =
∫∫

Dx ∩B(x ;r )
det A(t ; ξ ) dt dµx (ξ )

=
∫ r

0
dt

∫
Dx (t)

det A(t ; ξ ) dµx (ξ )

=
∫ r

0
A(x ; t) dt.

We immediately have the first claims of:

Proposition III.3.2. The lower area function A(x ; r ) is integrable with respect
to r , V (x ; r ) is continuous for all r > 0, and differentiable for almost all r – in
which case its derivative is given by A(x ; r ).
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Even if V (x ; r ) is not differentiable for all r , one has the inequality

lim sup
ε↓0

V (x ; r + ε) − V (x ; r )

ε
≤ A(x ; r )

for all r > 0.

Proof. We first note that r < R implies

Dx (R) ⊆ Dx (r ).

Then

V (x ; r + ε) − V (x ; r )

ε
= 1

ε

∫ r+ε

r
A(x ; s) ds

= 1

ε

∫ r+ε

r
ds

∫
Dx (s)

√
g(s; ξ ) dµx (ξ )

≤ 1

ε

∫ r+ε

r
ds

∫
Dx (r )

√
g(s; ξ ) dµx (ξ )

=
∫

Dx (r )
dµx (ξ )

1

ε

∫ r+ε

r

√
g(s; ξ ) ds.

Let ε ↓ 0. Then, Lebesgue’s dominated convergence theorem implies the
claim. �

Also note that, even when V (x ; r ) might not be differentiable with respect to r
at some r0, we still have that V (x ; r ) is locally uniformly Lipschitz with respect
to r . Indeed, given R > 0, let κR denote the infimum of the Ricci curvature on
B(x ; R). Then, for s, r ∈ (0, R), s < r , we have, by (III.4.13),

V (x ; r ) − V (x ; s)

r − s
= 1

r − s

∫
Dx (s)

dµx (ξ )
∫ min {r,c(ξ )}

s
det A(t ; ξ ) dt,

≤ cn−1 max
[0,R]

Sκ
n−1,

which implies the claim.

§III.4. Volume Comparison Theorems

We start with some preliminaries.

Definition. We let Mδ denote the space form of constant sectional curvature
δ, namely, (i) the n–sphere of constant sectional curvature δ, when δ > 0, (ii)
R

n , when δ = 0, and (iii) the hyperbolic space of constant sectional curvature
δ, when δ < 0.
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Notation. Here, and in all that follows, we let π/
√

δ := +∞ when δ ≤ 0.

Notation. We denote the volume of the disk of radius r in Mδ by

Vδ(r ) = cn−1

∫ r

0
Sδ

n−1(t) dt.(III.4.1)

We denote the area of the disk of radius r in Mδ by

Aδ(r ) = cn−1Sδ
n−1(r ).(III.4.2)

Next we restate Rauch’s comparison theorem (Theorem II.6.4) in the form
we require for the current discussion. Let M be a Riemannian manifold; for
convenience, we assume that M is complete.

Let p ∈ M , ξ ∈ Sp, such that all the sectional curvatures along γξ are less
than or equal to some constant δ. Then, for any Jacobi field Y along γξ , pointwise
orthogonal to γξ , and vanishing at p = γξ (0), we have

|Y |′
|Y | ≥ Sδ

′

Sδ

,(III.4.3)

|Y | ≥ |∇t Y |(0)Sδ,(III.4.4)

for all t < π/
√

δ.
We have equality in (III.4.3) at t = t0 ∈ (0, π/

√
δ] if and only if there exists

a parallel vector field E along γξ such that

Y (t) = Sδ(t)E(t), R(t) E(t) = δE(t)(III.4.5)

for all t ∈ (0, t0] (R(t) is defined by (III.1.3)).
In particular, we have

(A∗A)(t ; ξ ) ≥ S 2
δ (t)I,(III.4.6)

where A∗ denotes the adjoint of the linear transformation A for all t ∈
(0, π/

√
δ], with equality in (III.4.6) at a t0 ∈ (0, π/

√
δ] if and only if

A(t ; ξ ) = Sδ(t)I, R(t) = δ I(III.4.7)

for all t ∈ (0, t0].

We now consider the corresponding comparison theorem for det A(t ; ξ ). In that
which follows, we shall write A(t) for A(t ; ξ ), since the geodesic γξ is fixed in
the discussion.

Theorem III.4.1. (P. Günther (1960), R. L. Bishop (1964)) Assume we have
the geodesic γξ as described above, with all sectional curvatures along γξ less
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than or equal to δ. Then

(det A)′

det A ≥ (n − 1)
Sδ

′

Sδ

,(III.4.8)

on (0, π/
√

δ), and

det A ≥ Sδ
n−1(III.4.9)

on (0, π/
√

δ].
We have equality in (III.4.8) at a t0 ∈ (0, π/

√
δ] if and only if (III.4.7) is valid

on all of [0, t0].

Proof. Instead of working with A, we work with

B := A∗A,

which is self-adjoint. Of course,

(det A)′

det A = 1

2

(det B)′

det B .

Given τ ∈ (0, π/
√

δ), let {e1, . . . , en−1} be an orthonormal basis of ξ⊥ con-
sisting of eigenvectors of B(τ ), and consider the solutions {η1(t), . . . , ηn−1(t)}
to the vector Jacobi equation in ξ⊥:

η′′ + R(t)η = 0,

given by

ηα(t) = A(t)eα, α = 1, . . . , n − 1.

Then, by Proposition II.8.2 and (III.4.3),

1

2

(det B)′

det B (τ ) = 1

2
trB′B−1(τ ) =

n−1∑
α=1

〈ηα
′, ηα〉

〈ηα, ηα〉 (τ ) ≥ (n − 1)
Sδ

′

Sδ

(τ ),

which implies (III.4.8), and, from it, (III.4.9).
The case of equality in (III.4.8) is easy, and is left to the reader. �

Theorem III.4.2. (P. Günther (1960), R. L. Bishop (1964)) Assume that the
sectional curvatures of M are all less than or equal to δ. Then, for every x ∈ M,
we have

V (x ; r ) ≥ Vδ(r )(III.4.10)

for all r ≤ min {inj x, π/
√

δ}, with equality for some fixed r if and only if B(x ; r )
is isometric to the disk of radius r in the constant curvature space form Mδ .
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Proof. The result is an immediate consequence of (III.3.5), Theorems III.3.1
and III.4.1, and the derivation of Theorem II.8.2. �

We now turn to volume comparison theorems when the curvature is bounded
from below. Here, the good news is that one uses the Ricci curvature instead
of the sectional curvature (in the spirit of the hypothesis of the Bonnet–Myers
theorem (Theorem II.6.1)), and the lower bound on the Ricci curvature yields
an upper bound on volume growth – valid beyond the injectivity radius! The
first step, however, is to give the upper estimate on the logarithmic derivative
of det A, valid up to the first conjugate point along each geodesic.

Definition. Given a geodesic γξ : [0, β) → M in the Riemannian manifold M ,
p = γξ (0), ξ = γξ

′(0), the first conjugate point of p along γξ , γ (to), is the point
for which to is the infimum of all t ′ for which γξ (t ′) is conjugate to p along γξ .
We denote to by conj ξ .

The function (t, ξ ) �→ A(t ; ξ ) is continuous on [0, ∞) × SM , and A(0; ξ ) = I
for all ξ . The zeroes of t �→ A(t ; ξ ), for each fixed ξ , characterize the conjugate
points of p = π (ξ ) along γξ . So, for each ξ , conj ξ is indeed a minumum (not
just an infimum) and conj ξ > 0.

Theorem III.4.3. (R. L. Bishop (1964)) Assume we are given a real constant
κ and the fixed geodesic γξ , with the Ricci curvature along γξ greater than or
equal to (n − 1)κ , that is,

Ric (γξ
′(t), γξ

′(t)) = trR(t) ≥ (n − 1)κ(III.4.11)

for all t ∈ (0, conj ξ ]. Then

(det A)′

det A ≤ (n − 1)
Sκ

′

Sκ

,(III.4.12)

on (0, conj ξ ), and

det A ≤ Sκ
n−1(III.4.13)

on (0, conj ξ ].
We have equality in (III.4.12) at t = t0 ∈ (0, conj ξ ) if and only if

A(t) = Sκ (t)I, R(t) = κ I(III.4.14)

for all t ∈ (0, t0].

Remark III.4.1. Note that (III.4.13) implies the Bonnet–Myers theorem, in
that it implies that det A(t) must have a zero not later than the first zero of
Sκ (t), that is, when κ > 0, not later than π/

√
κ .



P1: JZP

0521853680c03 CB980/Chavel January 2, 2006 10:59 Char Count= 632

§III.4. Volume Comparison Theorems 131

Proof of Theorem III.4.3. Again, note that by Proposition II.8.2 we have

(det A)′

det A = trA′A−1.

Next, set

Ctκ (t) := Sκ
′(t)/Sκ (t),(III.4.15)

arcCtκ the inverse function of Ctκ and consider

ψ := (n − 1)Ctκ .

Then, ψ satisfies the scalar Riccati equation

ψ ′ + ψ2

n − 1
+ (n − 1)κ = 0.

Also, ψ(t) is strictly decreasing with respect to t , for all t ; and, when κ ≤ 0,
has limiting value, as t ↑ +∞, equal to (n − 1)

√−κ .
Given linear transformations A(t), B(t) : V → V , depending differentiably

on t (where V denotes some finite-dimensional vector space), we associate their
Wronskian W(t) defined by

W(A, B) := A′∗B − A∗B′.

One verifies that, for our A(t), we have W(A,A) = 0. Set

U := A′A−1.

Then

U∗ − U = (A−1)∗W(A,A)A−1 = 0

so U is self-adjoint. Also, U satisfies the matrix (more precisely: linear trans-
formation) Riccati equation

U ′ + U2 + R = 0,(III.4.16)

which implies

(trU)′ + trU2 + trR = 0.

Now the Cauchy–Schwarz inequality implies

trU2 ≥ (trU)2

n − 1
,(III.4.17)

which implies, for

φ := trU = trA′A−1 = (det A)′

det A ,
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the differential inequality

φ′ + φ2

n − 1
+ (n − 1)κ ≤ 0.(III.4.18)

We, therefore, wish to compare φ with ψ .
As mentioned, we have

� := ψ2

n − 1
+ (n − 1)κ > 0

on all of (0, π/
√

κ). Next, note that

φ ∼ n − 1

t

as t ↓ 0. So, there exists ε0 > 0 such that

� := φ2

n − 1
+ (n − 1)κ > 0

on (0, ε0).
Assume that � > 0 on all of (0, t), t ∈ (0, conj ξ ). Then, the inequality

(III.4.18) implies

−φ′
φ2

n−1 + (n − 1)κ
≥ 1,(III.4.19)

which implies ∫ s

0

−φ′
φ2

n−1 + (n − 1)κ
(τ ) dτ ≥ s ∀ s ∈ (0, t].(III.4.20)

That is,

arcCtκ
φ(s)

(n − 1)
≥ s ∀ s ∈ (0, t],

which implies

φ ≤ ψ on [(0, t],

which is (III.4.12). Of course, (III.4.13) follows easily.
If we have equality in (III.4.12) at some t0 ∈ (0, t], then the equality in

(III.4.20) at s = t0 implies we have equality in (III.4.17) and (III.4.18) on all of
(0, t0]. This, in turn, implies

φ = ψ, trR = (n − 1)κ,

and U is a scalar multiple of the identity for each s ∈ (0, t0]. Since U is a scalar
multiple of the identity at each t , the Riccati equation (III.4.16) implies that is
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R is a scalar multiple of the identity for each s. This implies R(s) = κ I for all
s ∈ (0, t0]. Finally, since U is a scalar multiple of the identity and its trace is
identically equal to (n − 1)Sκ

′(s)/Sκ (s), we have

A′A−1(s) = Sκ
′(s)

Sκ (s)
I

for all s ∈ (0, t0]. But this then implies A(s) = Sκ (s)I for all s ∈ (0, t0], which
is (III.4.14).

Now, let t be arbitrary in (0, conj ξ ], and assume we do not have φ ≤ ψ on
all of (0, t). Then there exists a maximal t1 ∈ (0, t) such that φ ≤ ψ on (0, t1).
In particular, φ = ψ at t1. Then, �(t1) > 0 and there exists ε1 > 0 such that
�|[t1, t1 + ε1) > 0, which implies (III.4.19) is valid from t1 to any s ∈ (t1, t1 +
ε1), which implies φ ≤ ψ on (t1, t1 + ε1) – a contradiction to the maximality
of t1. So, we have (III.4.12) on all of (0, t].

To consider the case of equality, it suffices to consider the case where there
exists t2 ∈ [0, t] such that φ < ψ on (0, t2) and φ(t2) = ψ(t2). But then, �(t2) =
�(t2) > 0, which implies there exists ε > 0 such that (III.4.19) is valid on
(t2 − ε, t2]. For any t ∈ (t2 − ε, t2], integrate (III.4.19) from t to t2. One obtains
φ(t) ≥ ψ(t) – a contradiction. �

Theorem III.4.4. (R. L. Bishop (1964)) Assume that the Ricci curvatures of
M are all greater than or equal to (n − 1)κ . Then for every x ∈ M and every
r > 0 we have

V (x ; r ) ≤ Vκ (r ),(III.4.21)

with equality for some fixed r if and only if B(x ; r ) is isometric to the disk of
radius r in the constant curvature space form Mκ .

Proof. For any r > 0, we have

V (x ; r ) =
∫

Sx

dµx (ξ )
∫ min {c(ξ ),r}

0
det A(t ; ξ ) dt

≤
∫

Sx

dµx (ξ )
∫ min {c(ξ ),r}

0
Sκ

n−1(t) dt

≤
∫

Sx

dµx (ξ )
∫ r

0
Sκ

n−1(t) dt

= Vκ (r ).

The case of equality is easy. �
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Proposition III.4.1. Assume that the Ricci curvatures of M are all greater than
or equal to (n − 1)κ . Then for every x ∈ M, we have

A(x ; r )

Aκ (r )
(III.4.22)

is decreasing with respect to r .

Proof. We recall that r < R implies

Dx (R) ⊆ Dx (r ).

Now (III.4.12) is equivalent to saying that

det A(t ; ξ )

Sκ
n−1(t)

is decreasing with respect to t , for each ξ ∈ Sx . Therefore,

A(x ; r )

Aκ (r )
= cn−1

−1
∫

Dx (r )

det A(r ; ξ )

Sκ
n−1(r )

dµx (ξ )

≥ cn−1
−1

∫
Dx (R)

det A(r ; ξ )

Sκ
n−1(r )

dµx (ξ )

≥ cn−1
−1

∫
Dx (R)

det A(R; ξ )

Sκ
n−1(R)

dµx (ξ )

= A(x ; R)

Aκ (R)
,

which implies the claim. �

Lemma III.4.1. (M. Gromov (1982, 1986)) Suppose f and g are positive
integrable functions, of a real variable r , for which

f/g

is decreasing with respect to r . Then, the function∫ r

0
f

/∫ r

0
g

is also decreasing with respect to r .

Proof. Consider r < R. Then,∫ r

0
f
∫ R

0
g =

∫ r

0
f
∫ r

0
g +

∫ r

0
f
∫ R

r
g
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and ∫ R

0
f
∫ r

0
g =

∫ r

0
f
∫ r

0
g +

∫ R

r
f
∫ r

0
g.

Now we wish to show that∫ r

0
f
∫ R

0
g ≥

∫ R

0
f
∫ r

0
g,

which is therefore equivalent to showing∫ r

0
f
∫ R

r
g ≥

∫ R

r
f
∫ r

0
g.

Set f = gh. Then, by hypothesis, h is decreasing. This implies∫ r

0
f
∫ R

r
g =

∫ r

0
gh

∫ R

r
g ≥ h(r )

∫ r

0
g

∫ R

r
g ≥

∫ r

0
g

∫ R

r
hg =

∫ r

0
g

∫ R

r
f,

which is the claim. �

Theorem III.4.5. (M. Gromov (1982, 1986)) Assume that the Ricci curvatures
of M are all greater than or equal to (n − 1)κ . Then, for every x ∈ M, we have

V (x ; r )

Vκ (r )
(III.4.23)

is decreasing with respect to r .

Proof. The theorem is an immediate consequence of Proposition III.4.1 and
Lemma III.4.1. �

Recall that during this whole discussion we have assumed that M is complete.
Now suppose that our constant κ is positive, and that all Ricci curvatures are
bounded from below by (n − 1)κ . Then, the Bonnet–Myers theorem states that
M is compact, with diameter less than or equal to π/

√
κ . The Bishop theorem

then implies that V (M) is less than or equal to V (Mκ ), with equality if and only
if M is isometric to Mκ .

We now ask: what if the diameter of M is equal to π/
√

κ?

Theorem III.4.6. (V. A. Toponogov (1959), S. Y. Cheng (1975)) Given M
Riemannian complete, with all Ricci curvatures bounded from below by (n −
1)κ , κ > 0. If the diameter of M is equal to π/

√
κ , then M is isometric to the

standard sphere of constant sectional curvature equal to κ .
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Proof. (Shiohama (1983)) Pick points x, y ∈ M so that d(x, y) = π/
√

κ . Then,
the previous theorem implies

V (x ; π/2
√

κ)

V (Mκ )/2
≥ V (x ; π/

√
κ)

V (Mκ )
= V (M)

V (Mκ )
.

Therefore,

V (x ; π/2
√

κ) ≥ V (M)/2.

Similarly,

V (y; π/2
√

κ) ≥ V (M)/2.

But

B(x ; π/2
√

κ) ∩ B(y; π/2
√

κ) = ∅.

Therefore,

V (x ; π/2
√

κ) = V (y; π/2
√

κ) = V (M)/2.

Thus, V (M) = V (Mκ ), and M is isometric to Mκ . �

§III.5. The Area of Spheres

As usual, M is our Riemannian manifold. For convenience, we assume here
that M is complete.

We now consider the area of metric spheres S(x ; r ) for arbitrary r – even when
r ≥ inj x . For now, S(x ; r ) is no longer guaranteed to be a smooth imbedded
(n − 1)–dimensional submanifold of M . However, we shall be able to extend
the notion of (n − 1)–dimensional measure in such a fashion that, except for
a set of (n − 1)–dimensional measure (in this new sense) equal to 0, S(x ; r ) is
a Borel subset (in the relative topology) of an immersed (n − 1)–dimensional
submanifold (not necessarily connected) and therefore possesses a well-defined
area. This more general measure is Hausdorff measure. In what follows, we only
summarize the basic facts that we require from geometric measure theory. The
reader might start with F. Morgan’s guide (1988) and the references to other
introductions therein, before approaching the classic Federer (1969). We also
considered Hausdorff measure in Chapter IV of Chavel (2001).

Definition. Given any metric space X , a subset S in X , we define, as usual, its
diameter by

diam S = sup {d(x, y) : x, y ∈ S}.
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For any integer k ≥ 0, we define the δ–approximate k–dimensional Hausdorff
measure of S, Hk

δ (S), by

Hk
δ (S) = inf

∑
j

ωk

{
diam Sj

2

}k

,

where the infimum is taken over all countable covers {Sj } of S for which
diam Sj ≤ δ for all j ; we define the k–dimensional Hausdorff measure of S,
Hk(S), by

Hk(S) = lim
δ↓0

inf Hk
δ (S).

A subset E is called Hk–measurable if

Hk(E ∩ S) + Hk(E ∩ (X \ S)) = Hk(E)

for all subsets S of X .

Remark III.5.1. One may extend the definition of Hausdorff measure to non-
integral dimension, by replacing ωk by its corresponding expression in terms
of gamma functions (III.3.13).

The collection of Hk–measurable subsets of X form a σ–algebra, and this is
the one with which we work.

For Euclidean space R
n , n ≥ 1, with its usual metric, one always has

dHn = dV,(III.5.1)

where dV is Lebesgue measure on R
n . Furthermore, one has:

Theorem III.5.1. (The area formula) Let φ : R
k → R

n, k ≤ n, be a Lipschitz
function on R

k . Then:
(i) For any Lebesgue measurable subset E of R

k , we have∫
E

| det Jφ| dV =
∫

Rn

card E ∩ φ−1[x] dHk(x),

where card denotes cardinality.
(ii) If f is any L1 Lebesgue integrable function on R

k , then∫
Rk

f | det Jφ| dV =
∫

Rn

∑
y∈φ−1[x]

f (y) dHk(x).

Thus, the area formula generalizes (III.3.1).
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Theorem III.5.2. (The coarea formula) Let f : R
n → R be a Lipschitz func-

tion on R
n, with gradient vector field grad f (defined almost everywhere). Then,

for any measurable subset E of R
n, we have∫

E
|grad f | dV =

∫
R

Hn−1(E ∩ f −1[t]) dt.

Given M an n–dimensional Riemannian manifold, n ≥ 1, one uses the distance
function determined by the Riemannian metric on M to determine the collection
of Hausdorff measures on M . Again, one has (III.5.1).

Definition. We define the area of S(x ; r ), A(x ; r ), by

A(x ; r ) = Hn−1(S(x ; r )).

Proposition III.5.1. For any x ∈ M, we have

A(x ; r ) = A(x ; r )

for almost all r ∈ R.

Proof. Clearly,

A(x ; r ) − A(x ; r ) = Hn−1(C(x) ∩ S(x ; r )).

In the coarea formula, set E = C(x) and consider the distance function f (y) =
d(x, y) on M . Then, f is Lipschitz, with gradient of length equal to 1 almost ev-
erywhere on M (actually, everywhere except at x and C(x)). Then, Proposition
III.3.1 and the coarea formula yield

0 =
∫

R

Hn−1(C(x) ∩ f −1[r ]) dr =
∫

R

Hn−1(C(x) ∩ S(x ; r )) dr,

which implies the claim. �

§III.6. Fermi Coordinates

In this section we take note that one may consider the distance function based
on a submanifold, namely, let M be our given n–dimensional Riemannian
manifold, let M be a connected k–dimensional submanifold of M , 0 ≤ k < n,
and consider the distance function r to be the function on M given by

r (q) = d(q, M).

Here, one has a corresponding apparatus of first and second variations of
arc length, elementary comparison theorems, Fermi coordinates based on M
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(in place of geodesic spherical coordinates based on a point), focal cut and
conjugate loci, and volume comparison theorems. In what follows, we merely
give the definitions and results, leaving the extension of earlier arguments to
the reader. In places where more detail is warranted, we try to supply it.

We first note that the gradient vector field of r , when it is well-defined,
has unit length; thus, its integral curves are geodesics emanating from M (see
Exercise I.3).

Next, we note that if M is compact, then there exists an ε > 0 such that grad r
is defined and smooth on all of r−1[(0, ε)]. Also, when M has dimension greater
than 0, all the integral curves of grad r on r−1[[0, ε)] intersect M orthogonal
to M at the point of intersection. Indeed, it suffices to check the following:
Given any p ∈ M, there exists a neighborhood U of p in M, and εp > 0,
such that, if πν denotes the projection of the normal bundle νM to M, then
exp |πν

−1[U ] ∩ B(U ; εp) is a diffeomorphism of πν
−1[U ] ∩ B(U ; εp) onto its

image in M . (For the notation B(U ; ε), see §I.6.)

We now state the appropriate generalizations of Theorem I.6.2 and the argu-
ments used to derive it. First, set

νSp = Sp ∩ Mp
⊥,

the fiber over p in the unit normal bundle of M.
Assume M is compact. Let ε > 0 be given as above, p ∈ M, ξ ∈ νSp, γ (t) =

γξ (t), t0 ∈ (0, ε), q = γ (t0). Then, for any path ω starting in M and ending at
q , that is, ω : [0, 1] → M with ω(0) ∈ M, ω(1) = q, we have

�(ω) ≥ �(γ ) = t0 = r (q),

with equality only if the image of ω is the same as the image of γ . Conversely,
start with any q ∈ M . Then, for any unit speed path ω connecting a point p in
M to q , we have

�(ω) = d(q, M)

only if ω is a geodesic, and ω′|p ∈ Mp
⊥.

Before proceeding, first recall, from §II.2, that if M is a k–dimensional sub-
manifold of the n–dimensional Riemannian manifold M , then the second fun-
damental form of M in M is, at each point p ∈ M, a vector-valued symmetric
bilinear form B : Mp × Mp → Mp

⊥, given by

B(ξ, η) = (∇ξ Y )N ,

where Y is any extension of η to a tangent vector field on M, ∇ denotes the
Levi-Civita connection of the Riemannian metric on M , and the superscript N
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denotes projection onto Mp
⊥. To every vector v ∈ Mp

⊥ one has the real-valued
bilinear form

bv (ξ, η) = 〈B(ξ, η), v〉,
and Weingarten map Av : Mp → Mp given by

〈Avξ, η〉 = bv (ξ, η)

for ξ, η ∈ Mp – so

A
vξ = −(∇ξ V )T ,

where V is an extension of v to a normal vector field on M, and the superscript
T denotes projection onto Mp.

We now present the formulation of results associated with the first and second
variations of arc length from the submanifold M to a fixed point in M . Let
γ : [0, β] → M be a unit speed geodesic, such that

p = γ (0) ∈ M, ξ = γ ′(0) ∈ νSp, and q = γ (β).

Consider a variation v : [0, β] × (−ε0, ε0) → M , where

v(0, ε) ∈ M, v(β, ε) = q for all ε, and v(t, 0) = γ (t).

Set

Y (t) = (∂εv)(t, 0), η = Y (0),

and

L(ε) =
∫ β

0
|∂t v|(t, ε) dt.

Then

L ′(0) = 0,

and

L ′′(0) = −bξ (η, η) +
∫ β

0

{|∇t Y⊥|2 − 〈R(γ ′, Y⊥)γ ′, Y⊥〉} dt.

One also has

〈(∇t Y⊥)(0), Y⊥(0)〉 = −bξ (η, η).

Integration by parts then implies

L ′′(0) = −
∫ β

0
〈∇t

2Y⊥ + R(γ ′, Y⊥)γ ′, Y⊥〉 dt.
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Therefore, it is natural2 to consider the collection T of transverse vector fields
X along γ , that is, those vector fields X along γ for which X is pointwise
orthogonal to γ , with initial data

X (0) ∈ Mp, (∇t X )(0) + A
ξ X (0)⊥Mp.

Let T0 be the subcollection of T for which we also have

X (β) = 0.

Define the index form I on T by

I (X1, X2) = −bξ (X1(0), X2(0)) +
∫ β

0
〈∇t X1, ∇t X2〉 − 〈R(γ ′, X1)γ ′, X2〉 dt ;

then when the index form I and the linear operator

L = −{∇t
2 X + R(γ ′, X )γ ′}

are restricted to T0, we have I is the symmetric bilinear form of L.
We now consider transverse Jacobi fields. For any such transverse Jacobi

field Y ∈ T along γ , the index form I is given by

I (Y, Y ) = 〈∇t Y, Y 〉(β).(III.6.1)

Note that the collection of transverse Jacobi fields T along γ is an (n − 1)–
dimensional vector space. Indeed, it is rather easy to show that the collection
is a vector space. To calculate the dimension, first note that the full collection
of Jacobi fields Y with Y (0) ∈ Mp, pointwise orthogonal to γ , is (n + k − 1)–
dimensional. Then, map this (n + k − 1)–dimensional vector space to Mp by

Y �→ (∇t Y )(0) + A
ξ Y (0),

and show that Mp is in the range of this map.
Now assume the sectional curvatures along γ are all equal to κ , and the

Weingarten map of ξ , Aξ , is given by

A
ξ = λI.(III.6.2)

Then, the collection of transverse Jacobi fields along γ , pointwise orthogonal
to γ , are given as sums of the vectors fields:

Y (t) = Sκ (t)τtη, Z (t) = (Cκ − λSκ )(t)τtζ,

where τt denotes parallel translation along γ from p to γ (t), η ∈ ξ⊥ ∩ M⊥
p ,

and ζ ∈ Mp.

2 Here, “natural” is a bit too naive.
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Definition. Given M , M, p ∈ M, ξ ∈ νSp as above, γ = γξ , a point γ (t) is
said to be focal to M along γ if there exists a nontrivial transverse Jacobi field
Y such that Y (t) = 0.

Assume the sectional curvatures along γ are all equal to the constant κ , and the
Weingarten map Aξ satisfies (III.6.2). One can easily determine conditions on
κ and λ which characterize the existence of focal points.

The Jacobi criteria (Theorems II.5.4 and II.5.5), on the positivity of the index
form and the nonexistence of focal points, remain valid in this setting with an
important added comment. Continue with M , M, p ∈ M, ξ ∈ νSp. Expand the
domain of the index form I to ϒ , the collection of all vector fields X along γ ,
pointwise orthogonal to γ , for which X (0) ∈ Mp, and let ϒ0 consist of those
elements of ϒ that vanish at t = β. On ϒ , define the index form as above. One
can now verify, that the argument of Theorem II.5.4 remains valid for the index
form on ϒ0, not just on T0. This will ease the proof of some of the comparison
theorems in this setting. One can also check for the corresponding version of
Theorem II.5.5.

We now sketch appropriate versions of the volume results of this chapter – some
aspects of which lead to deep results later on. Early arguments were given in
Grossman (1967), and then extended and deepened in Heintze–Karcher (1978).
To start:

Let M be a complete n–dimensional Riemannian manifold, and M a k–
dimensional submanifold (we still include the case of dimension of M equal to
0). Let

Exp = exp |νM,

where νM denotes the normal bundle of M in M , with natural projection πν ;
also let

νSM = νM ∩ SM

denote the unit normal bundle of M. Map E : [0, +∞) × νSM → M by

E(t, ξ ) = Exp tξ,

so E determines radial coordinates on M , also known as Fermi coordinates,
associated wih the distance function r : M → R (defined previously).

For p ∈ M, ξ ∈ νSp, one calculates the Riemannian metric along the
geodesic

γ (t) = Exp tξ

as follows (Figure III.2):



P1: JZP

0521853680c03 CB980/Chavel January 2, 2006 10:59 Char Count= 632

§III.6. Fermi Coordinates 143

�

�

�

�
��

p

Figure III.2. 1–dimensional M in the 3–dimensional M .

(a) Let ζ ∈ Mp. Then, E∗|(t,ξ )�tξ ζ , for fixed ξ and varying t , is the Jacobi
field Zζ along γ , pointwise orthogonal to γ , determined by the initial conditions

Zζ (0) = ζ, (∇t Zζ )(0) = −A
ξ ζ.

Indeed, for any path ω(ε) in M satisfying ω(0) = p, ω′(0) = ζ , one first shows
that ξ can be extended to a normal unit vector field X along ω such that ∇ε X ∈
T M for all ε, that is, ξ may be extended to a local vector field along ω(ε) that is
parallel in the connection of the normal bundle νM (see Exercise II.12). Now
one can easily imitate the argument of Theorem II.7.1.

(b) Let η ∈ Mp
⊥ ∩ ξ⊥ = �ξ

−1((νSp)ξ ) – that is, consider η, orthogonal to
Mp and ξ , as a tangent vector at ξ to the unit normal ((n − k − 1)–dimensional)
sphere at p. Then, E∗|(t,ξ )t�tξ η is the Jacobi field Yη along γ , pointwise orthog-
onal to γ , determined by the initial conditions

Yη(0) = 0, (∇t Yη)(0) = η,

for fixed ξ and varying t .
We therefore let A(t ; ξ ) denote the matrix solution to Jacobi’s equation along

γ , pulled back to ξ⊥, as in §III.1:

A′′ + RA = 0,

subject to the initial conditions

A(0; ξ )|Mp = I, A′(0; ξ )|Mp = −A
ξ ,

and

A(0; ξ )|Mp
⊥ ∩ ξ⊥ = 0, A′(0; ξ )|Mp

⊥ ∩ ξ⊥ = I ;
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and we write

ds 2 = dt 2 + |A(t ; ξ ) dξ |2.

Definition. The focal locus of M in νM (the tangential focal locus) may be
defined in two ways:

(i) It is the subset of νM consisting of all critical points of Exp .
(ii) It is the collection of vectors tξ ∈ νM, with t > 0, ξ ∈ νSM, for which

det A(t ; ξ ) = 0,

where A is given above. (Thus, for a given ξ ∈ νSM the nullity of Exp at t0ξ
is equal to the order of t0 as a zero of the function (in t) A(t ; ξ ).)

By the focal locus of M in M (the focal locus), we mean the image of the
tangential focal locus of M under the exponential map Exp .

Definition. Given ξ ∈ νSM, we define cν(ξ ) the distance to the focal cut point
of M along γξ by

cν(ξ ) := sup {t > 0 : d(M, γξ (t)) = t}.

We define the focal cut locus of M in νM (the tangential focal cut locus),
νC(M), by

νC(M) := {cν(ξ )ξ : cν(ξ ) < +∞, ξ ∈ νSM},
and the focal cut locus of M in M (the focal cut locus), νC(M), by

νC(M) := Exp νC(M).

Also, we set

νDM := {tξ : 0 ≤ t < cν(ξ ), ξ ∈ νSM},
νDM := Exp νDM.

One now has corresponding versions of item 1 through item 5, and Theorems
1, 2, and 4 of §III.2.

We may now consider integration. For, f ∈ L1(M), we have the analogue of

∫
M

f dV =
∫

M

dVk(p)
∫

νSp

dµn−k−1,p(ξ )
∫ cν (ξ )

0
f (Exp tξ )

√
g(t ; ξ ) dt

(III.6.3)
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with
√

g(t ; ξ ) = det A(t ; ξ ),

where dVk the (k–dimensional) Riemannian measure of M, and dµn−k−1,p the
standard (n − k − 1)–dimensional measure on νSp.

To generalize the Bishop theorem (Theorem III.4.3) in the spirit of our previous
argument, one must restrict oneself to the case

k = n − 1.

(Otherwise, the argument, as presented, does not go through. Why?) The result
goes as follows:

Theorem III.6.1. Fix ξ ∈ νSM, γ (t) = exp tξ . Assume that all Ricci curva-
tures along γ are bounded below by (n − 1)κ , and assume that

tr A
ξ ≥ (n − 1)λ.

Let βκ,λ ∈ (0, +∞] denote the first positive zero of (Cκ − λSκ )(t), should such
a zero exist; otherwise, set βκ,λ = +∞. Then, M has a focal point along γ at
distance t0 ≤ βκ,λ, and

det A ≤ (Cκ − λSκ )n−1(III.6.4)

on all of [0, t0]. One has equality in (III.6.4) at τ ∈ (0, t0] if and only if A =
(Cκ − λSκ )I on all of t ∈ [0, τ ], in which case we have Aξ = λI , and R = κ I
on all of t ∈ [0, τ ].

Remark III.6.1. When k < n − 1 one may still obtain results using the ar-
guments of Exercise II.21, namely, suppose we are given, in addition to M1

and M2, submanifolds of the same dimension M j , p j ∈ M j , ξ j ∈ νSp j , with
attendant second fundamental forms bξ j , j = 1, 2. Assume

bξ1 ≤ bξ2

in the sense that the highest eigenvalue of bξ1 is less than or equal to the lowest
eigenvalue of bξ2 , and also assume the sectional curvature condition given in
Exercise II.21,

sup K1|γξ1
(t) ≤ min K2|γξ2

(t)

for all t > 0. Then, one can use the argument of Exercise II.21 to obtain the
analogue of the Morse–Schönberg theorem, that the first focal point to γξ1 (0)
along γξ1 cannot occur earlier than the first focal point to γξ2 (0) along γξ2 .
Note that this method of argument gives a Bonnet–Myers theorem with the
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assumption of a positive lower bound on the sectional curvature – both in the
conjugate and focal point versions.

Also, one has corresponding volume comparison theorems for sectional cur-
vature bounded from below. See our presentation in §IX.3.

§III.7. Integration of Differential Forms

Let E be a real vector space, E∗ its dual, and �k E∗ the space of alternating k–
covectors. Recall that, for any given ξ ∈ E , one defines i(ξ ) : �k E∗ → �k−1 E∗

by

(i(ξ )α)(ξ1, . . . , ξk−1) = α(ξ, ξ1, . . . , ξk−1)

when k ≥ 1, and i = 0 when k = 0.

Let M be an n–dimensional differentiable manifold, and �k T M∗ the alternating
k–cotangent bundle with its associated natural differentiable structure. The
differentiable differential k–forms on M are, then, differentiable sections of M
in �k T M∗.

Notation. We denote the collection of differentiable differential k–forms on M
by Sk(M). And, we let Sk

c(M) denote the compactly supported differentiable
differential k–forms on M .

Let X be a differentiable vector field on M , with associated flow φt : M → M .
Then, for any ω ∈ Sk , the Lie derivative of ω with respect to X ,LXω, is defined
by

LXω = (φt
∗ω)′(0),

where φt
∗ω denotes the pull-back of ω by φt , and the prime denotes differenti-

ation with respect to t . Then, it is well-known that LX is given by

LX = d◦i(X ) + i(X )◦d,(III.7.1)

where d denotes exterior differentiation.

As usual, our manifold M is connected.

Now, for any p ∈ M , the dimension of �n(Mp)∗ is, of course, equal to 1.
Therefore, if o denotes the zero section of M → �nT M∗, then �nT M∗ \ o(M)
has at most 2 components. M is orientable if �nT M∗ \ o(M) has, in fact, 2
components; and an orientation of M is a choice of one of those components.
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It is well-known that M is orientable if and only if there exists a cover of M
by charts {xα : Uα → R

n : α ∈ I} for which

det

(
∂(xβ ◦xα

−1) j

∂xα
k

)
> 0

on xα(Uα ∩ Uβ), for all α, β ∈ I. Also, M is orientable if and only if M pos-
sesses a nowhere vanishing differentiable differential n–form.

In establishing the above, one uses a useful calculation, namely, if E is an
n–dimensional real vector space, and β1, . . . , βn ∈ E∗, and the forms α j ∈ E∗,
j = 1, . . . , n, are given by

α j =
∑

k

βkak
j ,

then

α1 ∧ · · · ∧ αn = (det (ak
j ))β1 ∧ · · · ∧ βn.(III.7.2)

In particular, for charts x : U → R
n , y : U → R

n on M , we have

dy j =
∑

k

∂(y◦x−1) j

∂xk
dxk,

and

dy1 ∧ · · · ∧ dyn = det

(
∂(y◦x−1) j

∂xk

)
dx1 ∧ · · · ∧ dxn.

When M is orientable with fixed orientation �, and {e1, . . . , en} is a basis of
some tangent space to M , then {e1, . . . , en} is positively oriented if for its dual
basis {ω1, . . . , ωn} we have ω1 ∧ · · · ∧ ωn ∈ �.

Let M be (henceforth) orientable, with given fixed orientation �. Then, a
chart x : U → R

n on M is positively oriented if dx1 ∧ · · · ∧ dxn ∈ � on all of
U . Otherwise, the chart x is negatively oriented.

Given a differentiable n–form ω on M , then for any chart x : U → R
n on M ,

one has a function f : U → R
n ∈ C∞ such that

ω|U = f dx1 ∧ · · · ∧ dxn.

One then defines, for ω ∈ Sn
c (U ),

I (ω; U ) = (sign x)
∫

x(U )
f dx1 · · · dxn,

where sign x is +1 or −1 depending on whether x is positively oriented or
negatively oriented. One easily checks that I depends only on ω and U , and not
on the choice of x . Therefore, for any ω ∈ Sn(M), and for any cover of M by
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charts xα : Uα → R
n (where α belongs to some index set I) with subordinate

partition of unity {φα}, the integral∫
U

ω :=
∑
α∈I

I (φαω; Uα ∩ U ),

for any open U in M , is well-defined and depends only on ω and U . The
definition of

∫
· ω is consistent with the definition of I (ω; ·), in the sense that if

U is the domain of any chart, then∫
U

ω = I (ω; U ).

In particular, for any U , we have∫
U

ω =
∑
α∈I

∫
U

φαω.

Let M1, M2 be orientable, with respective orientations �1, �2, and let � :
M1 → M2 be a diffeomorphism. Then, � is orientation preserving if, for any
ω ∈ �2, we have �∗ω ∈ �1. Otherwise, � is orientation reversing. For any
integrable nowhere vanishing ω ∈ Sn(M2), we then have∫

M2

ω = (sign �)
∫

M1

�∗ω.

One immediately has, for any vector field X on M and ω ∈ Sn
c (M),∫

M
LXω = 0.

When M is Riemannian orientable, one can write the Riemannian measure as
a global n–form σ , the volume form of the Riemannian metric, on M . In any
chart x : U → R

n on M , we have

σ = (sign x)
√

gx dx1 ∧ · · · ∧ dxn.

Therefore, for integrable f on M , and any open U in M , we have∫
U

f dV =
∫

U
f σ.

Theorem III.7.1. (Stokes’ theorem I) If M is oriented and ω ∈ Sn−1
c (M), then∫

M
dω = 0.

If M is oriented n–dimensional, � an open subset of M with smooth boundary
∂�, p ∈ ∂�, and ξ ∈ Mp, ξ �= 0, we say that ξ is an outward vector if ξ �∈ (∂�)p

and there exists ε > 0, γ : (−ε, ε) → M ∈ C1 such that γ (0) = p, γ ′(0) = ξ ,
γ (t) ∈ � for t < 0 (in particular, γ (t) �∈ � for sufficiently small t > 0). A basis
{ξ2, . . . , ξn} of (∂�)p is positively oriented, if {ξ, ξ2, . . . , ξn} is a positively
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oriented basis of Mp for an outward vector ξ . The definition is independent of
the particular choice of outward vector ξ . Thus, in this manner, the orientation
of M determines an orientation on (∂�)p. Note that, here, we do not require
that � and ∂� be connected.

Theorem III.7.2. (Stokes’ theorem II) Let M, �, and ∂� be as previously
described. Then, for any ω ∈ Sn−1

c (M), we have∫∫
�

dω =
∫

∂�

ω.

Now, let ω ∈ Sn(M) be nowhere vanishing. Then, for any C1 vector field X on
M , we define the divergence of X with respect to ω, Divω X , by

(Divω X ) ω = LXω.

Theorem III.7.3. (Divergence theorem I) For any compactly supported C1

vector field X on M, and nowhere vanishing ω ∈ Sn(M), we have∫
M

(Divω X ) ω = 0;(III.7.3)

and ∫∫
�

(Divω X ) ω =
∫

∂�

i(X )ω,(III.7.4)

for any � with smooth boundary.

Green’s Formulae in Riemannian Manifolds

Let M be an n–dimensional Riemannian manifold. Then, the Riemannian metric
induces a natural bundle isomorphism θ : T M → T M∗ given by

θ (ξ )(η) = 〈ξ, η〉,
for all p ∈ M and ξ, η ∈ Mp.

Definition. For any C1 function f on M , the gradient vector field of f on M ,
grad f , is defined by

grad f = θ−1(d f ).

That is, for any ξ ∈ T M , we have

〈grad f, ξ〉 = d f (ξ ) = ξ f.

For C1 functions f, h on M , we have

grad ( f + h) = grad f + grad h,

and

grad f h = f grad h + hgrad f.
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If x : U → R
n is a chart on M then

grad f =
∑

j,k

∂( f ◦x−1)

∂x j
g jk ∂

∂xk
.

Let ∇ denote the Levi-Civita connection of the Riemannian metric.

Definition. For any C1 vector field X on M , we define the divergence of X
with respect to the Riemannian metric, div X , by

div X = tr (ξ �→ ∇ξ X ).

For the C1 function f and vector fields X, Y on M , we have

div (X + Y ) = div X + div Y,

and

div f X = 〈grad f, X〉 + f div X.

Proposition III.7.1. Assume also that M is oriented, σ the volume form on M.
Then,

div X = Divσ X

for all C1 vector fields X on M.

Proof. Let x : U → R
n be a positively oriented chart on M , and

X |U =
∑

j

ξ j ∂

∂x j
.

Then,

(Divσ X )σ = LXσ

= (di(X ))σ

= d(i(X )
√

g dx1 ∧ · · · ∧ dxn)

= d

(
n∑

j=1

(−1) j−1√gξ j dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxn

)

=
n∑

j=1

(−1) j−1d(
√

gξ j ) ∧ dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxn

=
n∑

j=1

∂(
√

gξ j )

∂x j
dx1 ∧ · · · ∧ dxn

=
{

1√
g

n∑
j=1

∂(
√

gξ j )

∂x j

}
σ,
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that is,

Divσ X = 1√
g

n∑
j=1

∂(
√

gξ j )

∂x j
.

On the other hand,

∇∂/∂x j X =
∑

�

{
∂ξ�

∂x j
+

∑
k

�k j
�ξ k

}
∂

∂x�
,

which implies

div X =
∑

�

{
∂ξ�

∂x�
+

∑
k

�k�
�ξ k

}
,

and

�k�
� = 1

2

∑
r,�

g�r {∂k gr� + ∂�gkr − ∂r gk�}

= 1

2

∑
r,�

g�r∂k gr�

= 1

2

∂k g

g

= ∂k
√

g√
g

(the third equality follows from Proposition II.8.2). So,

div X =
∑

�

{
∂ξ�

∂x�
+ ξ�

√
g

∂
√

g

∂x�

}
= 1√

g

n∑
j=1

∂(
√

gξ j )

∂x j
,

which implies the claim. �

One verifies that if X has compact support on M then, without requiring any
orientability of M , we have the Riemannian divergence theorem:∫

M
div X dV = 0.(III.7.5)

Definition. Let f be a C2 function on M . Then, we define the Laplacian of f ,
� f , by

� f = div grad f.

The function f is said to be harmonic if its Laplacian vanishes identically
on M .
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Thus, in a chart x : U → R
n , we have

� f = 1√
g

n∑
j,k=1

∂

∂x j

{√
gg jk ∂( f ◦x−1)

∂xk

}
.

Furthermore, for C2 functions f and h on M , we have

�( f + h) = � f + �h,

and

div f grad h = f �h + 〈grad f, grad h〉,
which implies

� f h = f �h + 2〈grad f, grad h〉 + h� f.

Theorem III.7.4. (Green’s formulae I) Let f : M → R ∈ C2(M), h : M →
R ∈ C1(M), with at least one of them compactly supported. Then,∫

M
{h� f + 〈grad h, grad f 〉} dV = 0.(III.7.6)

If both f and h are C2, then∫
M

{h� f − f �h} dV = 0.(III.7.7)

Corollary III.7.1. The only compactly supported harmonic functions are the
constant functions.

Theorem III.7.5. (Divergence theorem II) Let M be oriented, � a domain in
M with smooth boundary ∂�, ν the outward unit vector field along ∂� which
is pointwise orthogonal to ∂� (there is only one such vector field). Then, for
any compactly supported C1 vector field X on M we have∫∫

�

div X dV =
∫

∂�

〈X, ν〉 d A.(III.7.8)

Proof. It suffices to show that if σ is the volume form of dV , and τ that of d A,
then

i(X )σ = 〈X, ν〉τ(III.7.9)

on all of ∂�.
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Lemma III.7.2. Let M be oriented, σ the volume form of dV . If p ∈ M, and
{e1, . . . , en} is a positively oriented orthonormal basis of Mp with dual basis
{ω1, . . . , ωn}, then

σ = ω1 ∧ · · · ∧ ωn.

Proof. Let x : U → R
n be a positively oriented chart about p. Then there exist

unique matrices A and B satisfying

e j =
∑

k

A j
k ∂

∂xk
, ωr =

∑
s

dxs Bs
r .

Of course, B = A−1. But then

I = AG AT ,

which implies

√
g = det B.

Therefore, by (III.7.2),

ω1 ∧ · · · ∧ ωn = (det B) dx1 ∧ · · · ∧ dxn

= √
g dx1 ∧ · · · ∧ dxn

= σ. �

Corollary III.7.2. For any ξ ∈ Mp, we have

i(ξ )σ =
∑

j

(−1) j−1〈ξ, e j 〉ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωn.

The proof of (III.7.9) is now immediate. �

Theorem III.7.6. (Green’s formulae II) Given M, �, and ν as in the divergence
theorem (II), and given f ∈ C2(M), h ∈ C1(M), at least one of them compactly
supported. Then,∫∫

�

{h� f + 〈grad f, grad h〉} dV =
∫

∂�

h〈ν, grad f 〉 d A.(III.7.10)

If both f and h are C2, then∫∫
�

{h� f − f �h} dV =
∫

∂�

{h〈ν, grad f 〉 − f 〈ν, grad h〉} d A.(III.7.11)
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§III.8. Notes and Exercises

Riemannian Symmetric Spaces

Exercise III.1. Use geodesic spherical coordinates to prove the:

(Local) Cartan–Ambrose–Hicks Theorem. Suppose we are given Rieman-
nian manifolds M1, M2 of the same dimension, p j ∈ M j , and δ ∈ (0, min {inj p1,

inj p2}). Let

ι : (M1)p1 → (M2)p2

denote some fixed linear isometry, and map

φ : B(p1 : δ) → B(p2; δ)

by

φ(q) = exp ◦ι◦(exp |B(p1; δ))−1(q).(III.8.1)

For ξ j ∈ Sp j , j = 1, 2, let Rξ j (t) denote the respective curvature map of Mp j

to itself as given by (III.1.3), and assume that for all ξ ∈ Sp1 , t ∈ (0, δ), we
have

Rι(ξ )(t)◦ι = ι◦Rξ (t).

Then, φ is an isometry of B(p1; δ) onto B(p2; δ).

(See Cartan (1946), Ambrose (1956), Hicks (1965).) Note that we used precisely
this argument to prove Theorem II.8.2 and employed it in the case of equality
in the Bishop and Gromov theorems.

Definition. We say that a Riemannian manifold M is locally symmetric if ∇ R =
0 on all of M .

Exercise III.2.
(a) Show that the Riemannian manifold M is locally symmetric if and only

if for every geodesic γ (t), and parallel vector fields X1, . . . , X4 along γ , one
has

〈R(X1, X2)X3, X4〉(t) = const.

(b) Let M be Riemannian locally symmetric. Show that for any unit speed
geodesic γ there exist constants κ1, . . . κn−1, and parallel pointwise orthonormal
vector fields E1, . . . En−1 along γ , such that the space of Jacobi fields along γ ,
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pointwise orthogonal to γ , is spanned by Jacobi fields of the form

Y j (t) = {α j Cκ j (t) + β j Sκ j (t)}E j (t), j = 1, . . . , n − 1.

(c) Let M1, M2 be Riemannian locally symmetric of the same dimension,
p j ∈ M j , and δ ∈ (0, min {inj p1, inj p2}). Suppose we have a linear isometry

ι : (M1)p1 → (M2)p2

such that

ι◦R(ξ, η)ζ = R(ι(ξ ), ι(η))ι(ζ ),

for all ξ, η, ζ ∈ Mp1 . Show that φ defined by (III.8.1) is an isometry of B(p1; δ)
onto B(p2; δ).

Definition. Given a Riemannian manifold M , p ∈ M . We define the local
geodesic symmetry through p to be the map on B(p; inj p) given by

sp = exp◦− idMp ◦(exp |B(p; inj p))−1.

Exercise III.3. Prove that M is locally symmetric if and only if the local
geodesic symmetry sp is an isometry of B(p; inj p) onto itself, for every p ∈ M .

Definition. Given a Riemannian manifold M . We say that M is Riemannian
symmetric if, for each p ∈ M , the local geodesic symmetry sp through p can
be extended to a global isometry of M .

Exercise III.4.
(a) Prove that given a Riemannian manifold with involutive isometry φ to

itself (i.e., φ2 = idM ) for which p is an isolated fixed point, then φ is the
geodesic symmetry through p.

(b) Given M Riemannian symmetric. Show that if γ : R → M is a geodesic,
γ (0) = p, γ (α) = q , then

(sq ◦sp)(γ (t)) = γ (t + 2α)

for all t . Also show that if X is a parallel vector field along γ , then

(sq ◦sp)∗ X (t) = X (t + 2α)

for all t . Furthermore, M is complete, and, therefore, Riemannian homogeneous,
that is, to each p and q in M , there exists an isometry φ of M onto itself such
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that φ(p) = q . Finally, show that if γ : R → M is a geodesic for which there
exists L ∈ R such that γ (L) = γ (0), then γ is L–periodic.

Exercise III.5. Given M a symmetric space.
(a) Let p ∈ M , ξ a unit tangent vector in Mp, γ (t) = exp tξ . Show that the

family of isometries

�ξ = {φt = sγ (t/2)◦sp : t ∈ R}
is a 1–parameter group of isometries of M .

(b) Assume M has a periodic geodesic. Show that sectional curvatures along
the geodesic are nonnegative.

(c) Similarly, show that if M is compact then all sectional curvatures of M
are nonnegative.

Note III.1. The study of symmetric spaces is an immense subject, initiated and
developed by É. Cartan. Standard works include Helgason (1962), Kobayashi–
Nomizu (1969, Vol. II); for symmetric spaces of strictly positive curvature from
a Riemannian perspective, see Chavel (1972, Chapters III and IV), Cheeger–
Ebin (1975, Chapter III), Besse (1978, Chapter III); and for a more extended
Riemannian approach, see Klingenberg (1982, pp. 141–158).

To solve Jacobi’s equations (Exercise III.3) on the more general naturally
reductive Riemannian homogeneous spaces (Example I.9.5), see Chavel (1967;
1972, Chapter III).

The Cut Locus

Note III.2. The first explicit discussion of the cut locus seems to be in Poincaré
(1905). For introductory work on the cut locus, see Myers (1935), Weinstein
(1968), and Bishop (1977). For the conjugate locus, see Warner (1965).

Two-Point Homogeneous Spaces

Recall that we say that a connected Riemann manifold M is homogeneous, or
the collection of isometries of M acts transitively on M, if to each p, q ∈ M
there exists an isometry φ of M , such that φ(p) = q.

Of course, the collection I (M) of isometries of any Riemannian manifold M is
a group; less trivial, I (M) is a Lie group (Myers–Steenrod (1939)). Now, for
any φ ∈ I (M), one has the associated action of φ∗ on T M . Should φ leave a
point p invariant, then φ∗|Mp is an orthogonal transformation of Mp to itself.
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Exercise III.6.
(a) Let Hp denote the isotropy group of p, that is, the collection of isometries

that leave p fixed. Prove that if M is complete, then Hp is isomorphic to a
subgroup of O(n) (n = dim M).

(b) Assume G = I (M) acts transitively on M . Prove that M is complete.
(c) As in (b), assume I (M) acts transitively on M . Show that M may be

represented as the left cosets G/Hp. Also show that, for any p, q ∈ M , one has
Hp, Hq conjugate in G, that is, there exists g ∈ G such that Hq = gHpg−1.

More is known, namely, that when G acts transitively on M then the space M
is diffeomorphic to G/Hp, for any p ∈ M (Warner (1971, p. 123)).

Once one is considering the Riemannian homogeneous space M = G/H , one
naturally inquires as to transitivity of the associated action of G on T M , given
by

(τg)∗ : T M → T M, g ∈ G,

where τg denotes the left translation of G/H associated to g (as described in
Example I.9.5). Since τg is an isometry, the action cannot be transitive since
lengths of tangent vectors are preserved by (τg)∗; rather, one should really
consider the associated action of G on SM . Certainly, if the action of G on SM
is transitive on the collection of orthonormal pairs of vectors in SM , then M
has constant sectional curvature. The weaker hypothesis is therefore that one
only knows that the associated action of G is transitive (not knowing to what
extent) on SM .

Definition. A connected Riemannian manifold M is said to be two-point ho-
mogeneous if the associated action of I (M) on SM is transitive.

Exercise III.7. Show that the following are equivalent:
(a) M is two-point homogeneous.
(b) Given any p1, p2 and q1, q2 in M such that d(p1, p2) = d(q1, q2), there

exist an isometry g ∈ I (M) such that g · p j = q j , j = 1, 2.
(c) For any p ∈ M , the isotropy group Hp acts transitively on S(p; r ), for all

r > 0.

Note III.3. H. C. Wang (1952) and J. Tits (1955) proved, using classification
arguments, that two-point homogeneous spaces are Riemannian symmetric.
Direct proofs of this theorem were given for the noncompact case in Helgason
(1959) and Nagano (1959). A direct proof for the compact case was given
recently, in Szabo (1990, 1991).
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On the Riemannian Measure

Exercise III.8. Given p in the Riemannian manifold M ,
√

grnc the volume
density of the Riemannian measure in Riemann normal coordinates on the
geodesic disk B(p; inj p). Show that

√
grnc (exp tξ ) = t1−n√g(t ; ξ )

for all t ∈ (0, c(ξ )), ξ ∈ Sp.

Exercise III.9. (Folk result) Given a Riemannian manifold M , p ∈ M , ξ ∈ Sp,
q = exp ρξ , with ρ < c(ξ ). Show that

det A(ρ; ξ ) = det A(ρ; −γξ
′(ρ)).

Note III.4. One could define Riemannian measure abstractly (Gromov (1999)),
namely, the functional n–dimensional volume of an n–dimensional Riemannian
manifold

(i) endows the unit n–cube with volume equal to 1, and
(ii) has the monotonicity property that if M1 admits a one-to-one onto map to

M2, which does not increase distances, then the volume of M1 is not less than
the volume of M2.

The main result is that Riemannian volume is characterized by these two prop-
erties – see Burago–Burago–Ivanov (2001, pp. 193–195).

Burago–Burago–Ivanov (2001, pp. 201–205) also has a proof of Besikovitch’s
inequality, namely, let I = [0, 1], I n = [0, 1]n ⊂ R

n denote the unit n–cube,
endowed with some Riemannian metric g. For each i = 1, . . . , n, let di denote
the distance in this metric g between the faces F0

i and F1
i , where F0

i (resp. F1
i )

denotes the set of points in I n whose i–th coordinate is 0 (resp. 1). Then, the
g–volume Vg(I n) of I n satisfies

Vg(I n) ≥
n∏

i=1

di .

Definition. A Riemannian manifold is said to be harmonic if to each p ∈ M
there exist εp ∈ (0, +∞] and a function σp : [0, εp) → [0, +∞) such that for
every ξ ∈ SM , we have

| det A(t ; ξ )| = σπ (ξ )(t).

The manifold is referred to as globally harmonic if εp is always equal to +∞.
Otherwise, M is called locally harmonic.
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Exercise III.10.
(a) Show that a two-point homogeneous space is globally harmonic.
(b) Show that σp is independent of p, more precisely, show that if M is

harmonic there exists a function σ : [0, supp εp) → [0, +∞) such that

σp = σ |[0, εp).

Note III.5. The Lichnerowicz conjecture states that a harmonic space is two-
point homogeneous. One does not distinguish between local and global har-
monic in the conjecture, since the two definitions coincide if the Riemannian
manifold is real analytic. But one knows that local harmonic implies real ana-
lytic; therefore, the two are equivalent. Most recently, Z. I. Szabo verified the
conjecture for compact harmonic spaces with finite fundamental group. See
Ruse–Walker–Willmore (1961) for the early classical discussion, Besse (1978,
Chapter VI) for a modern introduction, and Szabo (1990) for the solution. Also,
counterexamples to the conjecture in the noncompact case were announced in
Damek–Ricci (1992).

The Area Formula

Some discussion of Hausdorff measure – including a proof that in the top
dimension it is equal to Riemannian measure, and a proof of the area formula –
is presented in Chapter IV of Chavel (2001).

The Smooth Coarea Formula

Let Mm , N n be Cr Riemannian manifolds, m ≥ n, and � : M → N a C1 map
from M to N . We want to give an effective calculation of the volume disortion
of the map, namely, of

J�(x) =
√

det �∗◦(�∗)adj.

Exercise III.11. Prove

J�(x) =
{

0 rank �∗ < n∣∣det (�∗|(ker �∗)⊥)
∣∣ rank �∗ = n

.

Let {eA}, A = 1, . . . , m, an orthonormal moving frame on M with dual coframe
{ωA}, and {E j }, j = 1, . . . , n, an orthonormal moving frame on N with dual
coframe {θ j }. Then, the local volume forms on M and N are given by ω1 ∧
· · · ∧ ωm and θ1 ∧ · · · ∧ θn , respectively.
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There exist functions σ j
A on M such that

�∗θ j =
∑

A

σ
j

AωA.

Exercise III.12. Prove:
(a) If at some x ∈ M , we have dim ker �∗|x > m − n, then

�∗(θ1 ∧ · · · ∧ θn) = 0 at x .

(b) If at some x ∈ M , we have dim ker �∗|x = m − n, then

J� ω1 ∧ · · · ∧ ωm = �∗(θ1 ∧ · · · ∧ θn) ∧ ωn+1 ∧ · · · ∧ ωm .

(c) Let M, N be Cr Riemannian manifolds, with m = dim M ≥ dim N = n,
r > m − n, and let � : M → N ∈ Cr . Then, for any measurable function f :
M → R, which is everywhere nonnegative or is in L1(M), one has∫

M
f J� dVm =

∫
N

dVn(y)
∫

�−1[y]
( f |�−1[y]) dVm−n,

where, for any k, dVk denotes k–dimensional volume.
(d) Let Mm be a Cm Riemannian manifold, and let � : M → R ∈ Cm . Then,

for any measurable function f : M → R, which is everywhere nonnegative or
is in L1(M), one has∫

M
f |grad �| dV =

∫
R

dy
∫

�−1[y]
( f |�−1[y]) d A.

(e) Let Mk−1 be a hypersurface in R
k , given by the graph of a C1 function

φ : G → R, where G is open in R
k−1; so M is given by

xk = φ(x1, . . . , xk−1), (x1, . . . , xk−1) ∈ G.

Then, the surface area element on M , d A, is given by

d A =
√

1 + |gradk−1 φ|2 dvk−1,

where dvk−1 denotes Lebesgue measure on R
k−1, and gradk−1 denotes the

gradient of functions on R
k−1.

(f) If � ⊂⊂ R
n is a domain with C1 boundary, ν the exterior unit normal vec-

tor field along ∂�, and, for a given ξ ∈ S
n−1, pξ : ∂� → ξ⊥ is the projection,

then ∫
∂�

|νw ·ξ | d A(w) =
∫

ξ⊥
card (∂� ∩ pξ

−1[y]) dvn−1(y).
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(g) If � ⊂⊂ R
n is a domain with C1 boundary, and for every ξ ∈ S

n−1,
pξ : ∂� → ξ⊥ denotes the projection, then

A(∂�) = 1

2ωn−1

∫
Sn−1

dµn−1(ξ )
∫

ξ⊥
card (∂� ∩ pξ

−1[y]) dvn−1(y).

(h) If � is convex, ∂� ∈ C1, then

A(∂�) = 1

ωn−1

∫
Sn−1

vn−1(pξ (�)) dµn−1(ξ ).

(i) If � is convex, ∂� ∈ C1, and �o is open containing �, then

A(∂�) ≤ A(∂�o).

The First Variation of Area

We continue as in §III.6, where M is a k–dimensional submanifold of the n–
dimensional Riemannian manifold M , 0 ≤ k < n. Let φ : M → M denote the
inclusion of M in M , and let

� : M × I → U

be a variation of φ, that is, � is a differentiable map such that: I is an open
interval about 0 in R; for each ε ∈ I , �|M × {ε} is an imbedding; and �|M ×
{0} = φ.

For each fixed ε ∈ I , we define the imbedding φε : M → M by

φε(x) = �(x, ε).

So,

�(M × {ε}) = φε(M).

Let

X := �∗∂ε = ξ + η,

where ∂ε is the natural coordinate vector field on I , and ξ is tangent to φε(M), η
normal to φε(M), for all ε. Then, for each fixed ε, X can be viewed as a vector
field on M along the mapping φε .

Exercise III.13. Verify that if � is a k–form on M , then

d

dε

∫
φε (M)

� =
∫

M

d

dε
φε

∗� =
∫

M

φε
∗{(d◦i(X ) + i(X )◦d) �}.
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Let p ∈ M, U a neighborhood of p in M , and

eA : U × I → T M, A = 1, . . . , n,

be vector fields on M such that: for each (q, ε) ∈ U × I the collection {eA |(q,ε) :
A = 1, . . . , n} is an orthonormal basis of Mq ; and such that for each ε in I ,
er |M × {ε} is tangent to φε(M), r = 1, . . . , k, and eα|M × {ε} is normal to
φε(M), α = k + 1, . . . , n. Finally, let {ω1, . . . , ωn, dε} be the coframe dual to
{e1, . . . , en, ∂ε} on U × I .

Then for each ε ∈ I ,

Ak(ε) =
∫

φε (M)
ω1 ∧ · · · ∧ ωk =

∫
M

φε
∗(ω1 ∧ · · · ∧ ωk)

is the k–dimensional area of φε(M).

Exercise III.14. Prove that if X is compactly supported, then

Ak
′(ε) = −

∫
φεM)

〈η, H〉 ω1 ∧ · · · ∧ ωk = −
∫

φε (M)
〈η, H〉 dVk,

where H denotes the mean curvature vector field of the imbedding of M in M
(see §II.9), and dVk denotes k–dimensional Riemannian measure.

In particular, M is a stationary point of the k–dimensional area functional if
and only if M is minimal in M , that is, if and only if H vanishes identically on
all of M. Compare the result with Theorems II.4.1 and II.4.2.

For the second variation, see Exercise III.32.

Note III.6. Note that the calculations and final result are valid if φε is a 1–
parameter family of immersions of M into M .

Exercise III.15. Recall (Exercise II.5) that one cannot imbed a compact ori-
entable surface M of nonpositive Gauss curvature K isometrically in R

3. Show
that, in particular, there are no compact orientable minimal surfaces imbedded
in R

3.

Note III.7. Now that we know that there are no compact orientable minimal
surfaces in R

3 (we shall show in Exercise III.29 that there are no immersed
compact minimal surfaces in R

3), one might ask whether there are any complete
noncompact examples. For a long time, the only available examples of such
minimal surfaces in R

3 with finite topological type were the plane, the catenoid,
and the helicoid. However, C. J. Costa (1984) constructed a new example of a
complete noncompact immersed minimal surface in R

3, and D. Hoffman and
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W. Meeks (1985) subsequently showed this example to be imbedded. For recent
papers, to work one’s way back, see Hoffman–Karcher (1997).

Hypersurfaces of Constant Mean Curvature

Let M be our Riemannian manifold, � a relatively compact domain in M with
smooth boundary M, and exterior unit normal vector field ν along M. Then,
we may write

H = hν,

where h is now the mean curvature function of the compact hypersurface M.
Furthermore, the vector field η on M of any normal variation of M is given by

η = ϕν.

So, the first variation formula (Exercise III.14) reads as

A′(0) = −
∫

M

ϕh d A.

Exercise III.16. Consider the variation � : � × I → M (where I is an open
interval in R containing the origin), �ε(x) = �(x, ε), of the closed domain �,
that is, �|� × {0} = id�; and set

ϕ = 〈(∂�/∂ε)|M×{0}, ν〉.
Denote the variation of volume of � by

V (ε) =
∫

�ε (�)
dV,

and prove

V ′(0) =
∫

M

ϕ d A.

Exercise III.17. So, the previous exercise says that if the variation � preserves
volume, then ∫

M

ϕ d A = 0.

Prove the converse, namely, prove that given any function f : M → R satisfy-
ing ∫

M

f d A = 0,
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there exists a vector field Z on M whose flow �ε on M preserves the volume of
�, that is, V (�ε(�)) = V (�), for sufficiently small ε, and satisfies Z |M = f ν.

Exercise III.18. Prove that if M has minimum (n − 1)–area among all bound-
aries of domains with volume equal to that of �, then M has constant mean
curvature, that is, h is identically constant on M.

The Gauss Map

Exercise III.19. Let M be an oriented surface in R
3, that is, M is an imbed-

ded 2–dimensional submanifold of R
3 with inherited Riemannian metric, and

smooth unit normal vector field n on M . Consider n as a smooth map of M to
S

2. Let σS2 denote the area 2–form on S
2, σ the area 2–form on M , and K the

Gauss curvature function on M . Prove that

n∗(σS2 ) = K σ.

Note III.8. For discussion of the Gauss map in greater generality, start with
Hoffman–Osserman (1980) and Osserman (1980).

On the Günther–Bishop Theorems

Note III.9. Note that, for the volume comparison theorems, we only cited
Günther (1960) when discussing the lower bound of V (x ; r ) under the hypoth-
esis of an upper bound on sectional curvature, and the restriction r < inj x
(Theorems III.4.1 and III.4.2). Günther also considered comparison theorems
for upper bounds on V (x ; r ), but, he assumed that the sectional curvature – not
just the Ricci curvature – was bounded below, and he only considered r < inj x .
Thus, for upper bounds, the Bishop theorems were a significant improvement.

Note III.10. P. Kröger (2004) has given a proof of the Günther theorem – that
is, when all sectional curvatures are bounded from above by a constant δ, and
the disks under consideration have radius less than the injectivity radius of their
common center – in the spirit of the Günther–Bishop theorem with the Ricci
curvature bounded from below.

Namely, along every geodesic γ (t) = exp tξ , he proves the inequality

d2

dt2

( A(t ; ξ )

Sδ(t)n−2

)
+ κ

A(t ; ξ )

Sδ(t)n−2
≥ 0,

note the exponent of Sδ(t) ! Once one has the inequality, then for

φ(t) := A(t ; ξ )

Sδ(t)n−2
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we have

φ′′ + κφ ≥ 0, φ(0) = 0,

which implies φ′Sδ − φS′
δ ≥ 0, which then implies the result.

Note III.11. Assume M is complete, with Ricci curvature bounded from below
by (n − 1)κ . Fix x ∈ M , V (r ) := V (x ; r ). Then, the Gromov theorem implies
that V ′(r )/Sn−1

κ (r ) is a decreasing function of r . In particular, V ′(r ) has right-
and left-handed limits at every value of r . Then, R. Grimaldi and P. Pansu (1994)
have shown that

lim
s↓r

V ′(s) − lim
s↑r

V ′(s) = −2Hn−1(S(x ; r ) ∩ C(x)),

where Hn−1 is (n − 1)–dimensional Hausdorff measure, and C(x) is the cut
locus of x . (See the proof of Proposition III.5.1.)

In particular, if, in addition, M is noncompact and real analytic, then V (r ) ∈
C1 for all r > 0.

On Volumes of Disks

Exercise III.20. (E. Calabi, S. T. Yau) Show that if M is complete noncompact,
with nonnegative Ricci curvature, then for any x ∈ M we have

V (x ; R) ≥ const.x R

as R ↑ +∞. Note that the result is sharp, in the sense that for M consisting of
the flat cylinder M = S

n−1 × R, we have

V (x ; R) ∼ 2cn−1 R

as R ↑ +∞.

Note III.12. Other results and examples can be found in Croke–Karcher (1988).

Fermi Coordinates

Exercise III.21. (Remark in a discussion with J. Velling) Show that if M is
compact, M has nonpositive sectional curvature, and r the distance function
on M based on M, as described in §III.6, then there exists ρ0 > 0 such that
for all ρ > ρ0, the level surface r−1[ρ] is an immersed differentiable (n − 1)–
manifold.
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Exercise III.22. (See Velling (1999)) Use Theorem II.2.1 and (III.6.1) to show
that if M is a 3–dimensional space form Mκ , and M is a geodesic in Mκ , then
the cylinder S(M; r ) always has Gauss curvature equal to 0.

Exercise III.23. Prove the following result of T. Frankel (1961):

Theorem. Let M be a complete connected Riemannian manifold of positive
sectional curvature, and let M1 and M2 be two compact totally geodesic sub-
manifolds of M. If

dim M1 + dim M2 ≥ dim M,

then M1 and M2 have nonempty intersection.

H. Weyl’s Formula for the Volume of Tubes

Note III.13. We refer the reader to a result of H. Weyl (1939) which states that,
for any k–dimensional submanifold M of R

n with compact closure, k < n,
the volume of the tubular neighborhood B(M; r ) of M of radius r is given by
a polynomial in r with coefficients depending only on the intrinsic geometry
of M, not on the imbedding. For a full treatment of the result, with further
developments, see the survey Gray (1990).

Geometric Interpretation of the Riccati Equation

The following view has been effectively emphasized in Eschenburg (1987),
Grove (1987), and Karcher (1989).

Exercise III.24. Given M a connected k–dimensional submanifold of M , then
for any ξ ∈ νSM, t > 0, U−γξ

′(t) will denote the Weingarten map (here we
change the notation for the Weingarten map – the reason will immediately
become obvious) of S(M; t)γξ (t) at a regular point γξ (t) of S(M; t).

(a) Show that if Y is any transverse Jacobi field along γξ , then

(∇t Y )(t) = U−γξ
′(t)Y (t).

(b) Show that if

U = A′A−1,

where A is given as in §III.6, then

U = τt
−1◦U−γξ

′(t)◦τt ,
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where τt denotes parallel translation along γξ from Mγξ (0) to Mγξ (t), and U
satisfies the Riccati equation (III.4.16)

U ′ + U2 + R = 0.

Note that the self-adjointness of U is now immediate.

Exercise III.25. (See Velling (1999)) Show that if M is n–dimensional hyper-
bolic space, and M a k–dimensional submanifold of M , then for any ξ ∈ νSM,
the Weingarten map U−γξ

′(t) of S(M; t)γξ (t) is asymptotic to the identity map I
of S(M; t)γξ (t), as t ↑ +∞.

Manifolds With No Conjugate Points

Exercise III.26. Let M be a complete Riemannian manifold with no conjugate
points. For any x, y ∈ M, let NT (x, y) denote the number of geodesic segments
of length ≤ T joining x to y.

(a) Show that NT (x, y) is finite for all x, y, T .
(b) Prove ∫

M
NT (x, y) dV (y) =

∫ T

0
dt

∫
Sx

√
g(t ; ξ ) dµx (ξ ).

The Laplacian

Exercise III.27. Note that we have given two definitions of the Laplacian of
a function: one here just prior to Theorem III.7.4, and the other just prior to
Exercise II.9. Prove that the two coincide, that is, prove that, for a C2 function
on a Riemannian manifold M, we have

div grad f = tr Hess f.

Exercise III.28. Let M be a complete Riemannian manifold, o ∈ M . Then, for
functions f defined on M, we define the averaging operator avo based at o by

(avo f )(x) = A(o; r )−1
∫

S(o;r )
f d A, r = d(o, x).

Show that M is harmonic if and only if the Laplacian commutes with the
averaging operator at o, that is,

�◦avo = avo◦�,

for all o ∈ M .
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Exercise III.29.
(a) Prove that an immersed submanifold M of the Euclidean space R

m is
minimal in R

m if and only if the restriction of the natural coordinate functions
of R

m to M are all harmonic on M (i.e., their Laplacian – relative to the metric
on M – vanishes identically on M).

(b) Prove that there are no compact minimal immersed submanifolds of R
m .

(See Exercise III.15)

Exercise III.30. In these problems, we think of x as a tangent vector at the
position x .

(a) Prove Minkowski’s formula: If � ⊂⊂ R
n is a domain with differentiable

boundary, then

V (�) = 1

n

∫
∂�

x · n d A,

where n is the unit normal exterior vector field of � in M along ∂�.
(b) Prove Jellet’s formula (J. H. Jellet (1853)): If � is a domain in M ,

an n–dimensional submanifold of R
m , with � having compact closure and

differentiable boundary � in M , then∫∫
�

{n + 〈x, H〉} dV =
∫

�

〈x, n〉 d A,

where H is the mean curvature vector field of M in R
m .

(c) Prove: For any closed hypersurface S in R
n , we have

A(S) = 1

n

∫
S

h〈x, n〉 d A,

where n is a unit normal vector field of S in R
n , and h is the mean curvature

function of S relative to n.
(d) Prove: If S is a closed hypersurface in R

n with nonzero constant mean
curvature h, then

A(S) = −1

h

∫
S

‖B‖2〈x, n〉 d A.

(e) Also, to complete the apparatus of formuale, we will include Exercise
II.10(d)–(e): Prove

� n = −grad h − ‖B‖2n,

and

� (x·n) = −h + x · grad h − ‖B‖2(x · n).
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The Second Variation of Area

Consider the k–dimensional submanifold M of the n–dimensional Riemannian
manifold M , with inclusion φ : M → M , and variation � : M × I → M of
φ, as described prior to Exercise III.14 (the first variation of area). Again, we
write

�∗∂ε := ξ + η,

where ξ is tangent, and η is normal, to �(M × {ε}), for all ε. For p ∈ M, U a
neighborhood of p in M , we consider the vector fields

eA : U × I → T M, A = 1, . . . , n,

on M such that: for each (q, ε) ∈ U × I the collection {eA |(q,ε) : A = 1, . . . , n}
is an orthonormal basis of Mq ; and such that for each ε in I , er |M × {ε} is
tangent to φε(M), r = 1, . . . , k, and eα|M × {ε} is normal to φε(M), α = k +
1, . . . , n. Finally, we let {ω1, . . . , ωn, dε} be the coframe dual to {e1, . . . , en, ∂ε}
on U × I .

To pose the problem of calculating the second variation of area Ak
′′(0), we

require a few preliminaries.

Definition. Consider the k–dimensional submanifold M of the n–dimensional
Riemannian manifold M , with D the connection in the normal bundle (see
§II.9, especially Exercise II.12). For a normal vector field η on M, define the
Laplacian of η, �η, by

�η :=
∑

r

(DDη)(er , er ) =
∑

r

{Dr
2 − D∇r er }η.

We define the normal Ricci transformation Ric : νM → νM to be the bundle
map given by

Ric η =
∑

r

{R(er , η)er }⊥.

In what follows, we always let B denote the second fundamental form of M in
M relative to η with Weingarten map Aη at each point of M.

Exercise III.31. Show that, for compactly supported η, we have

−
∫

M

〈�η, η〉 d Ak =
∫

M

|Dη|2 d Ak,

where d Ak denotes the Riemannian measure on M.
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Exercise III.32. Prove the second variation formula:

Ak
′′(0) =

∫
M

{|Dη|2 + 〈H, η〉2 − ‖B‖2 − 〈∇ηη, H〉 − 〈Ric η, η〉} d Ak .

Exercise III.33. Conclude that if k = n − 1, that is, M is a hypersurface in M ,
then any normal vector field η along M is given by

η = ϕν, ϕ = ϕ(x, ε),

where ν is a unit normal vector field along φε(M); H = hν, that is, the mean
curvature is essentially scalar, in which case the variation formulae read as:

d A

dε
(0) = −

∫
M

ϕh d A,

and

d2 A

dε2
(0) =

∫
M

{|dϕ|2 − 〈∇ηη, hν〉 + ϕ2{h2 − ‖B‖2 − 〈Ric ν, ν〉}} d A,

where B is the second fundamental form relative to ν.

Note III.14. The approach in Exercise III.14 and in Exercise III.33 via moving
frames (as described in our sketches for solutions to the exercises) is highly
influenced by S. S. Chern’s (1968).

Note III.15. Recall that the hypersurface M is minimal in M when H vanishes
on all of M. So, one can now consider the stability of such submanifolds,
namely, under what circumstances the second variation of area is nonnegative,
that is, ∫

M

{|dϕ|2 − ϕ2
(‖B‖2 + 〈Ric ν, ν〉)} d A ≥ 0,

for all compactly supported functions ϕ on M. For two basic studies, see
Barbosa–do Carmo (1976) and Fischer–Colberie–Schoen (1980). See also
Osserman (1980).

Exercise III.34. In a similar vein, show that if D is a relatively compact domain
in M with smooth boundary M = ∂ D having constant mean curvature, and then
the second variation of area of M, subject to deformations of � that preserve
the volume of D is∫

∂ D

{|dϕ|2 − ϕ2
(‖B‖2 + 〈Ric ν, ν〉)} d A,

for all functions ϕ on ∂ D satisfying
∫
∂ D ϕ d A = 0.
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Definition. We say that an immersed closed hypersurface � : M → M of con-
stant mean curvature is stable if its “second variation” is nonnegative, that is,∫

M

{|dϕ|2 − ϕ2
(‖B‖2 + 〈Ric ν, ν〉)} d A ≥ 0,

for all functions ϕ on M satisfying
∫
M

ϕ d A = 0.

Exercise III.35. Prove the following:

Theorem. (Barbosa–do Carmo (1984)) If x : Mn−1 → R
n, M compact, is an

immersion with nonzero constant mean curvature, and the immersion is stable,
then x(M) is a sphere.

One can find a recent survey of the case of nonzero constant mean curvature of
a hypersurface, with discussion of and references to stability questions, in do
Carmo (1989).

§III.9. Appendix: Eigenvalue Comparison Theorems

In this section, we introduce a study of functions on Riemannian manifolds that
highlights the interplay of the geometry–topology of the manifold with the ana-
lytic properties of the functions under consideration. We give very few details of
the general analytic theory. We only highlight those aspects required for applica-
tion of the volume comparison theorems to the study of analysis. The subject has
recently become quite vast, and we recommend the student to Courant–Hilbert
(1967) for the early most basic background, to Gilbarg–Trudinger (1977) for
the fundamental results on elliptic equations, and to Berger–Gauduchon–Mazet
(1974) and Bérard (1986) for the explicitly Riemannian character of the theory.
See also Jost (1995). For recent developments, see Buser (1992). Much of what
we say here was presented in Chavel (1984), and the reader is referred there for
more results and details. More recently, one has Davies–Safarov (1999).

To start, we let L2(M) denote the space of measurable functions f on M for
which ∫

M
| f |2 dV < +∞.

On L2(M), we consider the usual inner product, and induced norm, given by

( f, h) =
∫

M
f h dV, ‖ f ‖2 = ( f, f ),

for f , h in L2(M). With this inner product L2(M) is a Hilbert space.
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One considers, among others, the following two eigenvalue problems.

Closed eigenvalue problem. Let M be compact, connected. Find all real num-
bers λ for which there exists a nontrivial solution φ ∈ C2(M) to the equation

�φ + λφ = 0.(III.9.1)

Dirichlet eigenvalue problem. For M connected with compact closure and
smooth boundary, find all real numbers λ for which there exists a nontrivial
solution φ ∈ C2(M) ∩ C0(M) to (III.9.1) satisfying the boundary condition

φ | ∂ M = 0.(III.9.2)

The desired numbers λ are referred to as eigenvalues of �, and the vector space
of solutions of the eigenvalue problem with given λ – it is a linear problem in
both of these instances – its eigenspace. The elements of the eigenspace are
called eigenfunctions. The basic result is:

Theorem III.9.1. For each of the above eigenvalue problems, the set of eigen-
values consists of a sequence

0 ≤ λ1 < λ2 < . . . ↑ +∞,

and each associated eigenspace is finite dimensional. Eigenspaces belonging
to distinct eigenvalues are orthogonal in L2(M), and L2(M) is the direct sum
of all the eigenspaces. Furthermore, each eigenfunction is in C∞(M).

We give a few comments on the theorem. First, as soon as one knows that the
eigenfunction φ ∈ C2(M) ∩ C1(M), one also knows that its eigenvalue must
be nonnegative. Indeed, one sets f = h = φ and applies the appropriate Green
formula ((III.7.6) or (III.7.10)) to obtain

λ = ‖φ‖−2
∫

M
|grad φ|2 dV ≥ 0.(III.9.3)

From (III.9.3), one has: λ = 0 implies that φ is a constant function. Therefore, in
the closed eigenvalue problem, we have λ1 = 0, and in the Dirichlet eigenvalue
problem, we have λ1 > 0.

Also note that the orthogonality of distinct eigenspaces is a direct conse-
quence of the Green formulae (III.7.7) and (III.7.11). Indeed, let φ, ψ be eigen-
functions of the respective eigenvalues λ, τ . Then,

0 =
∫

M
{φ�ψ − ψ�φ} dV = (λ − τ )

∫
M

φψ dV,

and the remark follows.
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The dimension of each eigenspace is referred to as the multiplicity of the
eigenvalue. It will be convenient to (henceforth) list the eigenvalues as

0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞,

with each eigenvalue repeated according to its multiplicity.
If {φ1, φ2, . . .} is an orthonormal sequence in L2(M) of eigenfunctions so

that φ j is an eigenfunction of λ j for each j = 1, 2, . . ., then {φ1, φ2, . . .} is a
complete orthonormal sequence of L2(M). In particular, for f ∈ L2(M), we
have

f =
∞∑
j=1

( f, φ j )φ j in L2(M), and ‖ f ‖2 =
∞∑
j=1

( f, φ j )
2.

These last two formulae are referred to as the Parseval identities.
If we think of the Laplacian as an operator on C2 functions, then for M

compact the Laplacian is symmetric in the sense that

(�φ, ψ) = (φ, �ψ) = −
∫

M
〈grad φ, grad ψ〉 dV ;(III.9.4)

and a similar comment holds when M has compact closure and smooth boundary
for functions in C2(M) ∩ C1(M) that vanish on ∂ M . So, the bilinear form
representing −� is given by the Dirichlet or energy integral

D[ f, h] =
∫

M
〈grad f, grad h〉 dV .

Note, however, that the bilinear form D only involves the first derivatives of
f and h, and we may therefore extend its definition to C1(M), with vanishing
boundary data (III.9.2) when there is nonempty boundary.

Moreover, when φ ∈ C2(M) ∩ C1(M) satisfies (III.9.2), one has

(�φ, ψ) = −
∫

M
〈grad φ, grad ψ〉 dV,(III.9.5)

even if we relax the differentiability on ψ – that we only require ψ ∈ C1(M).
Therefore, in what follows, we let f range over C1(M) when considering the
closed eigenvalue problem, and over functions in C1(M) satisfying (III.9.2)
when considering the Dirichlet eigenvalue problem.

Theorem III.9.2. (Lord Rayleigh) For all f �= 0, we have

λ1 ≤ D[ f, f ]

‖ f ‖2
(III.9.6)

with equality if and only if f is an eigenfunction of λ1.
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If {φ1, φ2, . . .} is a complete orthonormal basis of L2(M) such that φ j is an
eigenfunction of λ j for each j = 1, 2, . . . , then for f �= 0, satisfying

( f, φ1) = · · · = ( f, φk−1) = 0,(III.9.7)

we have the inequality

λk ≤ D[ f, f ]

‖ f ‖2
,(III.9.8)

with equality if and only if f is an eigenfunction of λk .

Proof. The argument is based on (III.9.5). Given f �= 0, set

α j = ( f, φ j ).

Then, (III.9.7) is equivalent to saying that

α1 = · · · = αk−1 = 0.

So, for all k = 1, 2, . . ., and r = k, k + 1, . . . , we have

0 ≤ D
[

f −
r∑

j=k

α jφ j , f −
r∑

j=k

α jφ j

]

= D[ f, f ] − 2
r∑

j=k

α jD[ f, φ j ] +
r∑

j,l=k

α jαlD[φ j , φl]

= D[ f, f ] + 2
r∑

j=k

α j ( f, �φ j ) −
r∑

j,l=k

α jαl(φ j , �φl)

= D[ f, f ] −
r∑

j=k

λ jα j
2.

We conclude that
∞∑
j=k

λ jα j
2 < +∞,

and

D[ f, f ] ≥
∞∑
j=k

λ jα j
2 ≥ λk

∞∑
j=k

α j
2 = λk‖ f ‖2,

by the Parseval identities. The case of equality follows easily. �

Thus the eigenvalues of the Laplacian may be realized via a variational problem
on C1 functions. Moreover, the variational problem actually lives on a larger
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space. Namely, one might consider all those functions that are limits of C1

functions relative to the Dirichlet and L2 integrals. Then, the eigenvalues would
satisfy (III.9.6) and (III.9.8) for this larger class of functions. More precisely,
we endow C1(M) with the metric

( f, h)H := ( f, h) + D[ f, h],(III.9.9)

and let H (M) denote the completion of C1(M) with respect to this metric.
It is known that C∞(M) is dense in H (M). Also, it is known that uniform
Lipschitz functions may be realized as elements of H (M), with their gradient –
defined almost everywhere in M – in L2(M). (One uses a standard regularization
argument; see Adams (1975, pp. 29ff).)

Notation. For the closed eigenvalue problem, we let H(M) denote H (M). For
the Dirichlet eigenvalue problem, we let H(M) denote the closure in H (M) of
those functions in C1(M) vanishing on ∂ M . It is known that, in this latter case,
C∞

c (M) is dense in H(M).

Thus, (III.9.6) and (III.9.8) are valid – by definition (for D is defined on all of
H(M) by taking limits) – if we allow f to range over all of H(M). The char-
acterization of equality is a more delicate matter. However, the result remains
valid that, if for some f ∈ H(M), we have equality in (III.9.6) or (III.9.8), then
f is an eigenfunction of the eigenvalue in question.

We now sketch the argument that φ1 the eigenfunction of λ1 never vanishes
on M . (Courant–Hilbert (1967, Vol. I, pp. 451ff). The close details were first
worked out in Bérard–Meyer (1982).) Certainly, in the closed eigenvalue prob-
lem, we have φ1 equal to a constant and there is very little to discuss. So, we
wish to consider the Dirichlet eigenvalue problem.

Before we begin this argument, we note that one may be in situations in
which M has compact closure, but nothing is known about the smoothness
of the boundary. So, the existence theory of eigenvalues–eigenfunctions is far
more delicate. It is nevertheless possible, at the most elementary level, to simply
consider minimizing the functional

f �→ D[ f, f ]

‖ f ‖2
,

where f varies over H(M), the completion of C∞
c (M) relative to the metric

(III.9.9). We then define the fundamental tone of M , λ∗(M) by

λ∗(M) = inf
f ∈H(M); f �=0

D[ f, f ]

‖ f ‖2
.
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Clearly, if

M1 ⊆ M2, dim M1 = dim M2,

then

λ∗(M1) ≥ λ∗(M2).

We now proceed to show that, when M has compact closure and smooth
boundary, the eigenfunction φ1 for the Dirichlet eigenvalue problem does not
vanish. The first step is to use the strong maximum principle Courant–Hilbert
(1967, Vol. I, p. 326ff), or the unique continuation principle Aronszajn (1957),
to show that if φ ever vanishes in M, then it must change sign. Next, we argue
here that it is impossible that φ1 ever change sign in M – therefore, φ1 never
vanishes in M .

This, itself, consists of two steps. First, we show that if D is any domain in
M for which

φ1 | D > 0, φ1 | ∂ D = 0,(III.9.10)

then ∫
D

|grad φ1|2 dV = λ1

∫
D

φ1
2 dV .(III.9.11)

Indeed, if one knew that ∂ D was C1, then the result would follow from the
Green formula (III.7.10). When we know nothing of the smoothness of ∂ D, we
argue as follows: Let ε be any regular value of φ1 | D, and

Dε = {x ∈ D : φ1(x) > ε}.
Then ∫∫

Dε

|grad φ1|2 dV = λ1

∫∫
Dε

φ1
2 dV +

∫
∂ Dε

φ1
∂φ1

∂ν
d A

= λ1

∫∫
Dε

φ1
2 dV + ε

∫
∂ Dε

∂φ1

∂ν
d A

= λ1

∫∫
Dε

φ1
2 dV + ε

∫∫
Dε

�φ1 dV

= λ1

∫∫
Dε

{φ1
2 − εφ1} dV

≤ λ1

∫∫
D

φ1
2 dV .

If we let ε ↓ 0, we obtain

λ1 ≥
∫∫

D
|grad φ1|2/

∫∫
D

φ1
2 ≥ λ∗(D) ≥ λ∗(M) = λ1
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by Rayleigh’s theorem, which implies (III.9.11). Furthermore, it also implies

λ∗(D) = λ1.(III.9.12)

We now conclude the proof that φ1 cannot change sign. Since M has smooth
boundary, the strong maximum principle implies that the normal derivative of
φ1 along ∂ M never vanishes. So, φ1 cannot change sign in a neighborhood of
the boundary. Assume that φ1 < 0 in this neighborhood. If φ1 changes sign in
M, then one has a domain D ⊂⊂ M on which φ1 satisfies (III.9.10). One then
also has a nonnegative function ψ ∈ C∞

c (M) such that

ψ | D = 1.

Set � = M \ D and consider the functions φ and ψε in H(M) defined by

φ | D = φ1 | D, φ | � = 0,

and

ψε = φ + εψ.

Then ∫∫
M

ψε
2 dV =

∫∫
D
{φ1

2 + 2εφ1} dV + ε2
∫∫

M
ψ2 dV,∫∫

M
|grad ψε |2 dV = λ1

∫∫
D

φ1
2 dV + ε2

∫∫
�

|grad ψ |2 dV .

Now, one easily shows that for sufficiently small ε > 0

D[ψε, ψε]

‖ψε‖2
< λ1,

which contradicts Rayleigh’s theorem.
An immediate consequence of the positivity of φ1 on all of M is that the

multiplicity of the eigenvalue λ1 is precisely 1. Indeed, if the multiplicity is
greater than 1, then λ1 has an eigenfunction ψ L2–orthogonal to φ1, which
implies ψ cannot be everywhere nonzero – a contradiction.

We now wish to consider comparison theorems for λ∗. In the spirit of the earlier
comparison theorems, we wish to compare what happens in our Riemannian
manifold with the corresponding phenomena in a space form of constant sec-
tional curvature. Recall from §III.4, for each fixed κ ∈ R, we let Mκ denote
space form of constant sectional curvature κ as described in §II.3 (we assume
the dimension is some fixed n > 1).

We let L denote the Laplacian on S
n−1. We also fix a point o in Mκ and

consider spherical geodesic coordinates in Mκ centered at o. Then, for r > 0
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and ξ ∈ So, and a function f on Mκ , one easily has

(� f )(exp rξ ) = Sκ
1−n∂r (Sκ

n−1∂r f ) + Sκ
−2Lξ f,(III.9.13)

where, when writing Lξ f we mean that f |S(o; r ) is to be considered as a
function on So with associated Laplacian L.

We now consider the Dirichlet eigenvalue problem on

M := Bκ (o; R) ⊂ Mκ .

We let Eo denote the radial functions with respect to o (i.e., functions that depend
only on distance from o) in L2(M). The orthogonal complement Eo

⊥ of Eo is
seen to be given by

Eo
⊥ = {G : M → R ∈ L2 :

∫
Sκ (o;r )

G d A = 0 ∀r > 0},

where d A denotes the (n − 1)–measure on Sκ (o; r ).
Now � certainly maps Eo → Eo. Let f be an eigenfunction of

λκ (R) := λ1(M),

and write f as

f = F + G,

where F ∈ Eo and G ∈ Eo
⊥. Then,

F(exp rξ ) = 1

cn−1

∫
So

f (exp rv) dµo(v),(III.9.14)

which implies by (III.9.13)

�F + λκ (R)F = 0,

which therefore yields

�G + λκ (R)G = 0.

Since f |Sκ (o; R) = 0, we have, by (III.9.14), F |Sκ (o; R) = 0, which implies,
G|Sκ (o; R) = 0. Thus, F and G themselves are eigenfunctions of λκ (R), so ei-
ther F = 0 or G = 0. Since the Dirichlet eigenfunction of λκ (R) never vanishes,
but

∫
G d A = 0 over every Sκ (o; r ), we have G = 0 on all of Bκ (o; R). Said dif-

ferently, the eigenfunction of the lowest Dirichlet eigenvalue of Bκ (o; R) ⊂ Mκ

is radial with respect to o.
We are now given a Riemannian manifold M . For convenience, assume that

M is complete. For any x in M and ρ > 0, let λ(x ; ρ) denote the lowest Dirichlet
eigenvalue of B(x ; ρ), when the boundary S(x ; ρ) is smooth – for example, when
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ρ < inj x . When the boundary is not smooth – for example, when ρ ≥ inj x –
let λ(x ; ρ) denote the fundamental tone λ∗(B(x ; ρ)) of B(x ; ρ).

Theorem III.9.3. (S. Y. Cheng (1975)) Assume that the sectional curvatures
of M are all less than or equal to δ. Then, for every x ∈ M, we have

λ(x ; ρ) ≥ λδ(ρ)

for all ρ ≤ min {inj x, π/
√

δ}, with equality for some fixed ρ if and only if
B(x ; ρ) is isometric to the disk of radius ρ in the constant curvature space form
Mδ .

Lemma III.9.1. (J. Barta (1937)) For any function f ∈ C2(B(x ; ρ)) ∩
C1(B(x ; ρ)) with

f |B(x ; ρ) > 0, f |S(x ; ρ) = 0,

we have

inf
B(x ;ρ)

� f

f
≤ −λ(x ; ρ) ≤ sup

B(x ;ρ)

� f

f
.

Proof. Let φ be an eigenfunction λ(x ; ρ) with

φ|B(x ; ρ) > 0, φ|S(x ; ρ) = 0;

and set

h = φ − f.

Then

−λ(x ; ρ) = �φ

φ
= � f

f
+ f �h − h� f

f ( f + h)
.

Since f ( f + h)|B(x ; ρ) > 0, and∫
B(x ;ρ)

{ f �h − h� f } dV = 0,

the claim follows. �

Proof of Theorem III.9.3. We let φ denote an eigenfunction of λδ(ρ) with
φ|Bδ(o; ρ) > 0. Then, one has

φ(exp rξ ) = �(r ),
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where exp denotes the exponential map in Mδ , and � satisfies

∂r
2� + (n − 1)

Cδ

Sδ

∂r� + λδ(ρ)� = 0,(III.9.15)

with boundary conditions

(∂r�)(0) = �(ρ) = 0.

One may write (III.9.15) as

Sδ
1−n∂r (Sδ

n−1∂r�) + λδ(ρ)� = 0,

which implies

(Sδ
n−1∂r�)(r ) = −λδ(ρ)

∫ r

0
Sδ

n−1� < 0

on all of (0, ρ) – so � is strictly decreasing with respect to r .
Now consider the function F : B(x ; ρ) → R given by

F(exp rξ ) = �(r ),

where exp denotes here the exponential map from Mx to M . Then,

�F

F
(exp rξ ) = ∂r {√g(r ; ξ )∂r F}√

g(r ; ξ )F

= 1

F

{
∂r

2 F + ∂r
√

g(r ; ξ )√
g(r ; ξ )

∂r F

}
≤ 1

F

{
∂r

2 F + (n − 1)
Cδ

Sδ

∂r F

}
= −λδ(ρ)

by Theorem III.4.1 and the negativity of ∂r F ; so

−λ(x ; ρ) ≤ sup
�F

F
≤ −λδ(ρ).

The case of equality is handled easily. �

Theorem III.9.4. (S. Y. Cheng (1975)) Assume that the Ricci curvatures of
M are all greater than or equal to (n − 1)κ . Then, for every x ∈ M, ρ > 0, we
have

λ(x ; ρ) ≤ λκ (ρ),

with equality for some fixed ρ if and only if B(x ; ρ) is isometric to the disk of
radius ρ in the constant curvature space form Mκ .

Proof. Here, we have no guarantee that S(x ; ρ), the boundary of B(x ; ρ), is
smooth, so we may only think of λ(x ; ρ) as the fundamental tone of B(x ; ρ).
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Thus, we wish to show that given any ε > 0 there exists a function F on B(x ; ρ),
approximated relative to the metric (III.9.9) by functions in C∞

c (B(x ; ρ)), such
that

D[F, F] ≤ {λκ (ρ) + ε}‖F‖2.

The function F is constructed as above, namely, we let φ denote an eigen-
function of λκ (ρ) with φ|Bκ (o; ρ) > 0, where Bκ (o; ρ) denotes the disk in Mκ .
Then, one has

φ(exp rξ ) = �(r ),

where exp denotes the exponential map in Mκ , and � satisfies

∂r
2� + (n − 1)

Cκ

Sκ

∂r� + λκ (ρ)� = 0,(III.9.16)

with boundary conditions

(∂r�)(0) = �(ρ) = 0.

Again,

(∂r�)(r ) < 0

on all of (0, ρ) – so � is strictly decreasing with respect to r . Then, we define
F : B(x ; ρ) → R by

F(exp rξ ) = �(r ),

where the exp denotes the exponential map from Mx to M . We note that the
function F is defined for rξ ∈ B(x ; ρ) ∩ Dx , that is, for those rξ inside the
tangent cut locus of x .

The function F is well defined on all of B(x ; ρ), since if two minimiz-
ing geodesics, emanating from x , intersect at y, then both geodesics have the
same length. The function F is continuous, since the function c(ξ ), ξ ∈ Sx ,
the distance along the geodesic γξ to its cut point, is continuous. Also, for
rξ ∈ B(x ; ρ) ∩ Dx , we have

|(grad F)(exp rξ )| = |∂r�(r )|;
so grad F has bounded length on B(x ; ρ). Since grad F is continuous every-
where except, possibly, on C(x) ∩ B(x ; ρ) – a set of Riemannian n–measure
equal to 0 – we conclude that F ∈ H (B(x ; ρ)).

We now wish to show that F ∈ H(B(x ; ρ)), that is, that F is approximated
in H (B(x ; ρ)) by a function G ∈ Cc

∞(B(x ; ρ)).
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Let L : [0, ∞) → R ∈ C∞ with L ′(0) = 0, and supp L ⊆ [0, ρ1] for some
ρ1 < ρ; and let G : B(x ; ρ) → R be defined by

G(exp rξ ) = L(r )

for all rξ ∈ B(x ; ρ) ∩ Dx . Then, G ∈ H (B(x ; ρ)) (as F is) and has compact
support. Also, we have

‖F − G‖2 =
∫

Sx

dµx (ξ )
∫ min {c(ξ ),ρ}

0
(� − L)2(r )

√
g(r ; ξ ) dr

≤
∫

Sx

dµx (ξ )
∫ min {c(ξ ),ρ}

0
(� − L)2(r )Sκ

n−1(r ) dr

≤
∫

Sx

dµx (ξ )
∫ ρ

0
(� − L)2(r )Sκ

n−1(r ) dr

= cn−1

∫ ρ

0
(� − L)2(r )Sκ

n−1(r ) dr,

which is the L2 distance of functions on Bκ (o; ρ) determined by the functions
� and L . A similar estimate holds for D[F − G, F − G]. So, any degree of ap-
proximation achieved in H (Bκ (o; ρ)) is achieved automatically in H (B(x ; ρ)).
Thus, F is an admissible function, that is, an element of H(B(x ; ρ)).

Let

b(ξ ) = min {c(ξ ), ρ}.
Then, it suffices to establish∫ b(ξ )

0
(∂r�)2√g(r ; ξ ) dr ≤ λκ (ρ)

∫ b(ξ )

0
�2√g(r ; ξ ) dr

for every ξ ∈ Sx . Well,∫ b(ξ )

0
(∂r�)2√g(r ; ξ ) dr = �(∂r�)

√
g(r ; ξ )

∣∣b(ξ )

0
−

∫ b(ξ )

0
�∂r {(∂r�)

√
g(r ; ξ )} dr

= (�∂r�)(b(ξ ))
√

g(b(ξ ); ξ )

−
∫ b(ξ )

0
�∂r {(∂r�)

√
g(r ; ξ )} dr

≤ −
∫ b(ξ )

0
�

{
∂r

2� + (∂r�)
∂r

√
g(r ; ξ )√

g(r ; ξ )

} √
g(r ; ξ ) dr

≤ −
∫ b(ξ )

0
�

{
∂r

2� + (n − 1)
Cκ

Sκ

∂r�

} √
g(r ; ξ ) dr

= λκ (ρ)
∫ b(ξ )

0
�2√g(r ; ξ ) dr,
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which is our claim. Note that we have used (i) �|[0, ρ) > 0, (ii) ∂r�|(0, ρ] < 0
and (iii) Theorem III.4.3.

The case of equality is easily handled. �

Notes and Exercises

Max–Min Methods

Exercise III.36. Prove the following important generalization of Rayleigh’s
theorem:

Max–Min Theorem. Consider the Dirichlet or closed eigenvalue problem.
Given any v1, . . . , vk−1 in L2(M), let

µ = inf D[ f, f ]/‖ f ‖2,

where f varies over the subspace (less the origin) of functions in H(M) or-
thogonal to v1, . . . , vk−1 in L2(M). Then, for the eigenvalue λk (the counting
is with multiplicity), we have

µ ≤ λk .

Of course, if v1, . . . , vk−1 are orthonormal, with each vl an eigenfunction of λ�,
� = 1, . . . , k − 1, then µ = λk .

Note III.14. Important consequences may be obtained from the arguments of
the previous exercise. They include theorems on (i) domain monotonicity of
eigenvalues, and (ii) the number of nodal domains of an eigenfunction (i.e., the
number of connected components where the eigenfunction does not vanish) –
Courant’s nodal domain theorem.

Similarly, one can replace vanishing Dirichlet boundary data with vanishing
Neumann boundary data, with a similar (although more restrictive) max–min
theorem.

For these and other matters, see the classic Courant–Hilbert (1967) and the
more recent Chavel (1984).

Exercise III.37. Let jn,k denote the k–th Dirichlet eigenvalue of B
n (with

eigenvalues repeated according to multiplicity).
(a) Show that λk(Bn(ε)), the k–th Dirichlet eigenvalue of B

n(ε), is given by

λk(Bn(ε)) = jn,k

ε2
.



P1: JZP

0521853680c03 CB980/Chavel January 2, 2006 10:59 Char Count= 632

184 Riemannian Volume

(b) Let M be an n–dimensional Riemannian manifold, x ∈ M . Use Riemann
normal coordinates (§II.8) and the max–min theorem to prove

λk(B(x ; ε)) ∼ jn,k

ε2

as ε ↓ 0.

Exercise III.38. We use the following variant of the argument of the max–min
theorem. Consider the case of M compact Riemannian, with closed eigenvalue
problem. List the eigenvalues as

{λ1 = 0 < λ2 ≤ λ3 ≤ . . . ↑ +∞},
with eigenvalues repeated according to multiplicity, and with corresponding
L2(M)–orthonormal eigenfunctions

{φ1, φ2, φ3, . . .}.
Consider k pairwise disjoint domains �1, . . . , �k , each with compact closure
and smooth boundary, and let λ(� j ) be the lowest Dirichlet eigenvalue of � j .
Prove

λk(M) ≤ sup
j=1,...,k

λ(� j ).

Weyl’s Asymptotic Formula

Note III.15. The celebrated Weyl formula (1911, 1912) states that

N (λ) ∼ ωnV (M)

(2π )n
λn/2,

as λ ↑ +∞, where N (λ) denotes the number of eigenvalues, counted with
multiplicity, ≤ λ. Similarly,

λ� ∼ (2π )2

ωn
2/n

{
�

V (M)

}2/n

as � ↑ +∞. See Courant–Hilbert (1967, Vol. I, Chapter VI) and Chavel (1984)
for discussions of the result.

The Weyl formula allows one to determine V (M) once one knows the spec-
trum of the Laplacian of M . It was then asked whether the knowledge of the
spectrum determines the Riemannian metric itself (see Kac (1966)). The answer
was known quite early in the game that counterexamples exist (Milnor (1964)),
and a vigorous search for very simple and elementary examples has ensued.
See Buser (1992) for extended discussions, and Gordon–Webb–Wolpert (1992a,
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1992b), Buser–Conway–Doyle–Semmler (1994), Gordon–Webb (1996), and
Gordon (2000) for the most recent progress, with references.

Exercise III.39. Solve the closed eigenvalue problem on the circle and the
Dirichlet eigenvalue on an interval. Verify Weyl’s asymptotic formula.

Exercise III.40. Let M be compact n–dimensional with Ricci curvature boun-
ded below by (n − 1)κ . A subset G of M is said to be ε–separated if any two
distinct points of G have distance at least ε. So, if G is maximal ε–separated,
then all disks of radius ε/2 centered at points of G are pairwise disjoint, and

M =
⋃
ξ∈G

B(ξ ; ε).

Show that, for such a G, we have

cardG ≥ V (M)

Vκ (ε)
.

(The exercise is Lemma IV.4.1 in Chapter IV. It is given here for use in the
following exercise.)

Exercise III.41. Let M be compact n–dimensional with Ricci curvature boun-
ded below by (n − 1)κ . Show that there exists a constant depending only on n
and κ such that

λ�(M) ≤ c(n, κ)

{
�

V (M)

}2/n

.

Eigenvalues and Wirtinger’s Inequality

Exercise III.42. (Wirtinger’s inequality) Prove that for f : R → R ∈ D1

which is L–periodic, and that satisfies∫ L

0
f = 0,

one has ∫ L

0
( f ′)2 ≥ 4π2

L2

∫ L

0
f 2,

with equality if and only if

f (t) = α cos
2π t

L
+ β sin

2π t

L
.
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The “fixed-endpoint” version goes as follows: Prove that for f : [0, L] →
R ∈ D1, which satisfies

f (0) = f (L) = 0,

one has ∫ L

0
( f ′)2 ≥ π2

L2

∫ L

0
f 2,

with equality if and only if

f (t) = β sin
2π t

L
.

Hint: Usually, it is an exercise in Fourier series. In the context here, it is
Rayleigh’s theorem applied to Exercise III.39.

When the Fundamental Tone Is Bounded Away From 0

Exercise III.43.
(a) Let M2 be a 2–dimensional Riemannian manifold minimally imbedded

in R
3. Show that, for every relatively compact domain � in M2 ∩ B

3(R), one
has

λ∗(�) >
1

4R2
.

In particular, if M2 is complete, and contained in B
3(R) for some fixed R > 0,

then λ∗(�) > const. > 0 for all relatively compact �.
(b) Also show, if M is any complete Riemannian manifold with λ∗(�) uni-

formly bounded away from 0 for all relatively compact �, then for any o ∈ M
and fixed k > 0, lim sup V (o; r )/rk = +∞, as r ↑ +∞.

Lichnerowicz’s Formula

Exercise III.44. Prove the Lichnerowicz formula (1958)

1

2
�(|d F |2) = |Hess F |2 + 〈grad �F, grad F〉 + Ric (grad F, grad F)

for all smooth functions on the Riemannian manifold M .

Exercise III.45. Use the Lichnerowicz formula to prove that if M is com-
pact n–dimensional, with Ricci curvature bounded below by (n − 1)κ , then the
first nonzero eigenvalue λ2(M) (for the closed eigenvalue problem the lowest
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eigenvalue is equal to 0) satisfies

λ2(M) ≥ nκ.

We note that a result of M. Obata (1962) states that one has equality if and
only if M is an n–sphere of constant sectional curvature κ . We suggest a slick
argument in Exercise VI.6. (See the hint there.) Also see the discussion (based
on Cheng (1975)) in Chavel (1984, pp. 82–84).

Exercise III.46. Given Mκ , κ > 0. Show that, for any fixed o ∈ Mκ , φ(x) =
cos

√
κd(o, x) is an eigenfunction of λ2(Mκ ) = nκ .
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Riemannian Coverings

In this chapter, we continue the development of the global theory, wherein we
emphasize volume and integration. The major theme is the study of the volume
growth of Riemannian manifolds, and the fundamental approach is to reduce
the study of the volume growth to a corresponding discrete problem.

Such a study presupposes that the Riemannian manifold has sufficient local
uniformity to allow us to disregard local fluctuations of the geometric data.
The primary example is that of a noncompact manifold covering a compact
Riemannian manifold, where the Riemannian metric on the cover is the lift of
the Riemannian metric on the compact via the covering (this example was first
considered in this context by V. Efremovič (1953), A. S. Svarc (1955), and
J. Milnor (1968)). The covering determines a discrete group of isometries of
the cover, which, in turn, induces a tiling of the cover by relatively compact
fundamental domains – each isometric to the other. Thus, the estimate of the
volume of a metric disk in the cover is reduced to counting the number of
fundamental domains contained in the disk, and the smallest number of fun-
damental domains containing the disk. Since the action of the group is free,
counting fundamental domains is the same as counting elements of the group.
The quantitative estimates used here are the Bishop theorems of §III.4.

More generally, one may relax the degree of local uniformity and nevertheless
obtain similar discretizations of Riemannian manifolds. Here, for the calibration
of discrete to the continuous, one must use Gromov’s refinement of the Bishop
theorems (see §III.4). Our treatment, in §IV.4, follows that of M. Kanai (1985).

We consider a number of other matters along the way. First, we give a skeleton
summary of basic background on coverings and fundamental groups. We finish
a matter first discussed in §II.8, namely, the determination of the Riemannian
metric of constant sectional curvature. Here, we derive the theorem of W.
Killing (1891, 1893), and H. Hopf (1925), which states that any complete

188
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Riemannian manifold of constant sectional curvature is covered by one of the
models presented in §II.3, namely, the spheres, Euclidean space, hyperbolic
space; and that any simply connected complete Riemannian manifold of con-
stant sectional curvature is isometric to one of these models. At the end of the
chapter, we also give the proof that any nontrivial free homotopy class of a
compact Riemannian manifold possesses a closed geodesic.

§IV.1. Riemannian Coverings

For the necessary background from topology, and for details that we do not
discuss here, we refer the reader to Massey (1967).

Definition. If M̃, M are connected topological manifolds, we say that a map
ψ : M̃ → M is a covering if every p ∈ M has a connected open neighborhood
U such that ψ maps each component of ψ−1[U ] homeomorphically onto U .

It is standard that given the above covering, a point p ∈ M , and a path ω :
[0, β] → M ∈ C0 such that ω(0) = p, then to each p̃ ∈ ψ−1[p] there exists a
unique lift ω̃ : [0, β] → M̃ ∈ C0 satisfying ω̃(0) = p̃ and ψ ◦ ω̃ = ω. This is
referred to as the unique lifting lemma.

Definition. If M̃, M are connected differentiable manifolds, then ψ : M̃ →
M is a differentiable covering if ψ is a covering, and ψ is differentiable of
maximum rank on all of M̃ .

If M̃, M are connected Riemannian manifolds, then ψ : M̃ → M is a
Riemannian covering if ψ is a differentiable covering which is a local isometry
of M̃ onto M .

Proposition IV.1.1. If ψ : M̃ → M is a Riemannian covering, then M is com-
plete if and only if M̃ is complete.

Proof. One uses the fact that

exp ψ∗ξ̃ = ψ(exp ξ̃ )(IV.1.1)

for all ξ̃ ∈ T M̃ (see the generalities on isometries in §II.3) as follows:
If M̃ is complete, let γ : I → M be a maximal geodesic with interval I

containing the origin of R. Pick p̃, ξ̃ ∈ M̃ p̃ so that φ( p̃) = γ (0), φ∗|̃p ξ̃ = γ ′(0).
Then φ(γ̃ ξ̃ (t)) = γ (t) for all t ∈ I . But, φ(γ̃ ξ̃ (t)) is defined for all t ∈ R. This
implies (since I is maximal) that I = R. So, every geodesic in M is infinitely
extendable in both directions. Therefore, M is complete.
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If M is given to be complete, and γ̃ (t), t ∈ Ĩ is a maximal geodesic in M̃ ,
then γ (t) := φ(γ̃ (t)) is a geodesic in M . But γ can be defined on all of R. The
unique lifting lemma will then imply that γ̃ can be defined on all of R. �

Theorem IV.1.1. (S. B. Myers (1941)) If M satisfies the hypotheses of the
Bonnet–Myers Theorem (Theorem II.12), that is, if M is complete and the Ricci
curvature of M is bounded from below by a positive constant, then not only is
M compact, but also any cover of M, M̃, is compact.

Proof. Exercise for the reader. �

Proposition IV.1.2. Let X, Y be Riemannian manifolds, φ : X → Y a local
isometry. Then, for any p ∈ X, there exists an ε > 0 such that

φ|B(p; ε) : B(p; ε) → B(φ(p); ε)

is an isometry.

Proof. Let εp and εφ(p) satisfy

exp |B(p; εp) : B(p; εp) → B(p; εp)

exp |B(φ(p); εφ(p)) : B(φ(p); εφ(p)) → B(φ(p); εφ(p))

be diffeomorphisms, and pick ε = min{εp, εφ(p)}. The (Euclidean) disks B(p; ε)
and B(φ(p); ε) are isometric under φ∗|p, and

φ|B(p; ε) = {exp |B(φ(p); ε)}◦φ∗|p ◦{exp |B(p; ε)}−1

is, therefore, a diffeomorphism, which implies the proposition. �

Theorem IV.1.2. Let M̃ be connected and complete, and let ψ : M̃ → M be
a local isometry of M̃ onto M. Then, ψ is a covering.

Proof. M is certainly connected since ψ is continuous.
Let γ : [0, To] → M be any geodesic segment in M , p̃ ∈ M̃ such that ψ( p̃) =

γ (0). Then, γ has a unique lift in M̃ starting at p̃. Indeed, consider ξ̃ ∈ T M̃
such that ψ∗|̃p ξ̃ = γ ′(0). Then (by Proposition IV.1.2), there exists an ε > 0
such that γ̃ ξ̃ (t) is defined for t ∈ [0, ε). Therefore, if we set

T = sup {τ : γ |[0, τ ] has lift starting at p̃},
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then T > 0 and ψ(γ ξ̃ (t)) = γ (t) for all t ∈ [0, T ); also

lim
t↑T

γ (t) = ψ(γ̃ ξ̃ (T )).

If T < To, the lift can be defined at T and beyond, which implies T = To.
Next, suppose we are given p ∈ M ; we wish to construct a connected open

neighborhood U of p such that ψ maps each component of ψ−1[U ] homeomor-
phically onto U . To this end, fix ε > 0 so that exp |B(p; ε) is a diffeomorphism
of B(p; ε) onto B(p; ε).

Now one shows

ψ−1[B(p; ε)] =
⋃

p̃∈ψ−1[p]

B( p̃; ε).

Indeed, if

q̃ ∈
⋃

p̃∈ψ−1[p]

B( p̃; ε),

then there exists a path ω̃ joining some p̃ ∈ ψ−1[p] to q̃ having length less than
ε. This implies that ω := ψ(ω̃) joins p to ψ (̃q) and has length less than ε. So,
ψ (̃q) ∈ B(p; ε), that is, q̃ ∈ ψ−1[B(p; ε)].

On the other hand, if q̃ ∈ ψ−1[B(p; ε)], then q := ψ (̃q) ∈ B(p; ε), which
implies there exists a geodesic γq,p : [0, T ] → M from q to p, with length less
than ε. Then, γq,p has a lift γ̃ : [0, T ] → M̃ starting at q̃; so ψ(γ̃ (T )) = p, and
d (̃q, γ̃ (T )) < ε, which implies

q̃ ∈ ψ−1[B(p; ε)],

which implies the claim.
Finally, by the triangle inequality, given p̃1, p̃2 ∈ ψ−1[p], p̃1 �= p̃2, ε <

d( p̃1, p̃2), one has

B( p̃1; ε/3) ∩ B( p̃2; ε/3) = ∅.

But the claims of the preceding paragraph are also valid for when ε is replaced
by ε/3. Thus, the desired neighborhood U about p is B(p; ε/3). �

Corollary IV.1.1. The map E i : R → S
1 given by

θ 
→ (cos θ, sin θ ) := E iθ

is a covering.
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Theorem IV.1.3. (J. Hadamard (1898), E. Cartan (1946))1 If M is complete,
and all of its sectional curvatures are nonpositive, then for any p ∈ M, expp :
Mp → M is a covering.

Proof. Let g denote the Riemannian metric on M and consider the Riemannian
metric (expp)∗g on Mp. Then, straight lines emanating from the origin of Mp

are geodesics in the Riemannian metric (expp)∗g.
By Corollary I.7.2, (expp)∗g is a complete Riemannian metric on Mp. The

theorem now follows from Corollary II.7.2 and Theorem IV.1.2. �

Theorem IV.1.4. Let M be a complete Riemannian manifold of constant sec-
tional curvature κ > 0, dim M = n ≥ 2. Then there exists a Riemannian cov-
ering ψ : S

n(1/
√

κ) → M.

We first require two lemmata.

Lemma IV.1.1. (S. B. Myers & N. Steenrod (1939)) Let M be a Riemannian
manifold, and ϕ : M → M an onto map (not assumed to be continuous) such
that d(ϕ(p), ϕ(q)) = d(p, q) for all p, q ∈ M. Then, ϕ is an isometry, that is,
ϕ is a diffeomorphism preserving the Riemannian metric.

Proof. Besides the original proof of Myers and Steenrod, one can also refer to
the proof in Kobayashi–Nomizu (1969, Vol. I, p. 169), based on Palais (1957).
See Exercise IV.3. �

Lemma IV.1.2. (W. Blaschke (1967), L. W. Green (1963)) Given κ > 0, and
M a complete Riemannian manifold such that for every p ∈ M,

exp |B(p; π/
√

κ) has maximal rank,

and

exp∗ |T (S(p; π/
√

κ)) = 0.

Then (i) for every p ∈ M, the image exp (S(p; π/
√

κ)) in M consists of
precisely one point. Thus, the map Q : M → M given by

Q(p) = exp (S(p; π/
√

κ))(IV.1.2)

1 The 2–dimensional version, of any two points being joined by a unique geodesic, goes back to
H. von Mangolt (1881).
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Q(p)

S (p;π/√κ)

Figure IV.1. A wiedersehnspunkte.

is well defined. Moreover, (ii) one has

Q2 = idM ,(IV.1.3)

(iii) Q is an isometry of M, and (iv) every unit speed geodesic γ on M is
periodic, with period equal to 2π/

√
κ .

Finally, (v) M is diffeomorphically covered by the sphere.

Proof. (i) is straightforward.
To prove (ii), one simply notes that, if p ∈ M , ξ ∈ Sp, and γξ (t) = exp tξ

then,

p = exp (−(π/
√

κ)γξ
′(π/

√
κ)).

To prove (iii) that Q is an isometry, we show that Q satisfies the hypothesis
of Lemma 1, that is, Q preserves distances. First note that

Q(γξ (t)) = γξ (t + π/
√

κ).(IV.1.4)

Next, note that if p, q ∈ M , then there exists ξ ∈ Sp such that q = γξ (d(p, q)).
Then, by (IV.1.4)

d(Q(p), Q(q)) = d(γξ (π/
√

κ), γξ (d(p, q) + π/
√

κ))

≤ d(p, q),
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that is, for all p, q ∈ M , d(Q(p), Q(q)) ≤ d(p, q). But with (IV.1.3), we have

d(p, q) = d(Q2(p), Q2(q))

≤ d(Q(p), Q(q))

≤ d(p, q),

which implies Q preserves the distance metric d( , ).

To prove (iv) that every unit speed geodesic has period 2π/
√

κ , one need
only argue via (IV.1.3), (IV.1.4), that

γξ (t) = Q2(γξ (t)) = Q(γξ (t + π/
√

κ)) = γξ (t + 2π/
√

κ).

We now prove (v), that M is diffeomorphically covered by the sphere. Let
M̃ = S

n(1/
√

κ). Certainly, M̃ satisfies the hypothesis of the lemma. If Q̃ is the
map for M̃ given by (IV.1.2), then Q̃ is the antipodal map of S

n(1/
√

κ), that is,
it is the restriction of −idRn+1 to S

n(1/
√

κ).
The idea in the explicit construction of the covering is to fix two points, one

in M , the other in M̃ , fix an orthonormal frame in each respective tangent space,
determine associated Riemann normal coordinates in each of the two manifolds,
and then match the points in the manifold by their coordinates. One must then
realize that, even though this mapping has maximal rank on the open disks of
radius π/

√
κ , in each manifold, there is still one point left over, and one must

guarantee that extending the map to this extra point remains differentiable of
maximal rank. The construction of the map itself in more direct coordinate-free
language goes as follows:

Pick p ∈ M , p̃ ∈ M̃ , a linear isometry ϕ : M̃ p̃ → Mp, and define ψ by:

ψ |B( p̃; π/
√

κ) = exp ◦ϕ ◦ (exp |B( p̃; π/
√

κ))−1,(IV.1.5)

ψ(Q̃( p̃)) = Q(p).

Then, (IV.1.5) automatically guarantees that ψ |B( p̃; π/
√

κ) is a local diffeo-
morphism onto its image B(p; π/

√
κ). Also, note that

ψ∗|̃p = ϕ.(IV.1.6)

Now, we consider the map ψ at Q(p). To do so, we claim

ψ |B(Q̃( p̃); π/
√

κ) = exp ◦Q∗ ◦ ϕ ◦ Q̃∗ ◦ (exp |B(Q̃( p̃); π/
√

κ))−1.(IV.1.7)

Indeed, if q ∈ M , η ∈ Sq , t ∈ [0, π/
√

κ], then we have

exp tη = exp (−(π/
√

κ − t)γη
′(π/

√
κ)) = exp (−(π/

√
κ − t)Q∗(η));
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and a similar statement certainly holds in M̃ . Therefore, if q̃ = Q̃( p̃), η̃ ∈ S q̃ ,
we have

ψ(exp t η̃) = ψ(exp (−(π/
√

κ − t)Q̃∗ (̃η)))

= exp ◦ϕ ◦ (−(π/
√

κ − t)Q̃∗ (̃η))

= exp (−(π/
√

κ − t))ϕ ◦ Q̃∗ (̃η))

= exp Q∗ ◦ ϕ ◦ Q̃∗(exp tη),

that is, (IV.1.7).
Thus, ψ is differentiable of maximal rank. Since M is compact, ψ is a

covering by Theorem IV.1.3. �

Proof of Theorem IV.1.4. One immediately has via Theorem II.8.2 that ψ

constructed above is a local isometry. �

§IV.2. The Fundamental Group

In this section, we summarize the background material in a fashion suitable
for our subsequent use. Again, the reader can find the necessary background in
Massey (1967).

1. Let M be a topological manifold, � a group of homeomorphisms of M .
We say that � acts properly discontinuously on M if to each p ∈ M there is a
neighborhood U of p such that the collection of open sets {ϕ(U ) : ϕ ∈ �} are
pairwise disjoint.

In particular, ϕ �= idM implies ϕ(p) �= p for all p ∈ M . Thus, the action of
φ is free on M .

Let ψ : M̃ → M be a covering. We say that a homeomorphism ϕ : M̃ → M̃
is a deck transformation of the covering ψ if ψ ◦ ϕ = ψ . The collection of
deck transformations form a group under composition. One checks that the
deck transformation group acts properly discontinuously on M̃ .

Conversely, given M , and � acting properly discontinuously on M , let M/�

be the orbit space of �, that is, for p ∈ M , let [p] =: {ϕ(p) : ϕ ∈ �}, π : M →
M/� the projection π (p) = [p], and endow M/� with the quotient topology.
One sees that π is a covering with deck transformation group �.

Let � act properly discontinuously on M , a differentiable manifold. If each
ϕ ∈ � is a diffeomorphism, then M/� has the natural structure of a differen-
tiable manifold and π : M → M/� is a differentiable covering. Furthermore,
the group �∗ = {ϕ∗ : T M → T M : ϕ ∈ �} acts properly discontinuously on
T M , and T M/�∗ is naturally diffeomorphic to T (M/�). Therefore, if, in
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addition, M is Riemannian and � consists of isometries of M , then M/� has
a natural Riemannian metric for which π is a Riemannian covering.

2. Let M = S
n(1/

√
κ), κ > 0, and let

� = {idRn+1 |Sn(1/
√

κ), −idRn+1 |Sn(1/
√

κ)}.
Then the quotient Riemannian manifold M/� is called P

n(1/
√

κ), n–dimen-
sional real projective space (and when n ≥ 2) of constant sectional curvature
κ . One easily checks that P

n(1/
√

κ) has diameter equal to π/2
√

κ , that all
geodesics are simply closed of length π/

√
κ , that the cut locus of any point

consists of the metric sphere centered at that point with radius π/2
√

κ , that the
volume of P

n(1/
√

κ) is half that of S
n(1/

√
κ), and that the cut locus of any

point is isometric to the projective space P
n−1(1/

√
κ) of dimension n − 1.

Let Z
n be the n–fold Cartesian product of the integers and V an n–dimensional

real vector space. Fix a basis {e1, . . . , en} of V . Then to each (α1, . . . , αn) ∈ Z
n

is associated a transformation of V , α, given by

α(ξ ) = ξ +
n∑

j=1

α j e j .

The resulting group of transformations � is isomorphic to Z
n and acts properly

discontinuously on M := V . The quotient manifold thus obtained is diffeomor-
phic to the torus

T
n := (S1)n

(see Corollary IV.1.1).
If V is an inner product space with its induced standard Riemannian metric,

then M/� is flat, that is, all its sectional curvatures are equal to 0. Note, however,
that a change of basis of V changes �, and there is no a priori expectation that
the new quotient space (which is also flat) is isometric to the old one. (See
Exercises IV.4–IV.8)

3. Again, start with M a fixed topological manifold. Two continuous paths
ω0 : [α, β] → M , ω1 : [α, β] → M with the same endpoints, that is,

ω0(α) = ω1(α), ω0(β) = ω1(β),

are said to be homotopic if there exists a continuous map v : [α, β] × [0, 1] →
M satisfying

v(t, 0) = ω0(t), v(t, 1) = ω1(t), for all t ∈ [α, β],

v(α, ε) = ω0(α) = ω1(α), v(β, ε) = ω0(β) = ω1(β), for all ε ∈ [0, 1].
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When ω0, ω1 are homotopic to each other, we write ω0 ∼ ω1. The relation
“homotopic” is an equivalence relation.

Given continuous paths ω : [0, 1] → M , γ : [0, 1] → M satisfying ω(1) =
γ (0), one composes ω, γ to define ω · γ by

(ω · γ )(t) =
{

ω(2t) 0 ≤ t ≤ 1/2
γ (2t − 1) 1/2 ≤ t ≤ 1.

One easily proves that if ω0 ∼ ω1, γ0 ∼ γ1 and ω0(1) = ω1(1) = γ0(0) = γ1(0),
then ω0 · γ0 ∼ ω1 · γ1. So, the multiplication may be defined on the homotopy
classes.

Given p ∈ M , let π (M, p) be the homotopy classes of loops ω : [0, 1] →
M ∈ C0 satisfying ω(0) = ω(1) = p. Then, π (M, p) has the structure of a
group and is called the fundamental group of M based at p.

If p0, p1 ∈ M then any path γ : [0, 1] → M ∈ C0 satisfying γ (0) = p0,
γ (1) = p1 determines an isomorphism π (M, p0) → π (M, p1) via

ω 
→ γ −1 · ω · γ.

M is called simply connected if π (M, p) consists of the unit element alone,
that is, all loops based at p may be deformed to p. One can show that M is simply
connected if and only if any two paths with same endpoints are homotopic.

Of course, R
n is simply connected for all n ≥ 1.

Let ψ : M̃ → M be a covering. Recall that if ω is a path in M with initial
point p, then to each p̃ ∈ ψ−1[p] there exists a unique lift of ω in M̃ with initial
point p̃. Actually, a stronger statement, known as homotopy lifting lemma is
true: Given a homotopy v : [0, 1] × [0, 1] → M with p = v(0, ε) for all ε in
[0, 1], and p̃ ∈ ψ−1[p], there exists a unique ṽ : [0, 1] × [0, 1] → M̃ such that
ṽ(0, ε) = p̃ for all ε in [0, 1], and ψ ◦ ṽ = v . In particular, ṽ(1, 0) = ṽ(1, ε)
for all ε in [0, 1].

4. We now describe the universal covering of M . Fix p ∈ M and let �p consist
of all continuous paths in M starting at p, that is,

�p = {ω : [0, 1] → M ∈ C0 : ω(0) = p}.

On �p introduce the equivalence relation given by homotopy of two paths
starting at p, and let M0 = �p/ ∼, the space of homotopy classes of paths
starting at p. Since homotopic paths have the same endpoints one obtains a
natural projection � : M0 → M . Then, M0 can be endowed with a topology
for which it is simply connected, and � is a covering called the universal
covering of M .
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Furthermore (and this is the “universal” property of �), given any covering
ψ : M̃ → M there exists a covering ψ0 : M0 → M̃ such that � = ψ ◦ ψ0. The
map ψ0 is defined as follows: Fix p̃ ∈ ψ−1[p]. For ω ∈ �p, map ω → ω̃(1) ∈
M̃ , where ω̃ is the unique lift of ω through p̃. Actually, by the homotopy lifting
lemma, the map is defined on the equivalence class of ω – so it is a map from
M0 to M̃ .

Finally, if M̃ itself is simply connected then ψ0 is a homeomorphism.

5. An immediate consequence of the universal property and Theorem 4 is:

Theorem IV.2.1. (W. Killing (1891, 1893), H. Hopf (1925)) S
n is simply con-

nected for n ≥ 2.
Furthermore, a complete simply connected Riemannian manifold of constant

sectional curvature κ is uniquely determined up to isometry. In particular such
a space is isometric to the appropriate model among those discussed in §II.3.

6. Let ψ : M̃ → M be the universal covering of M , and fix p ∈ M , p̃ ∈ ψ−1[p].
Let � be the deck transformation group of the covering. Then, � is isomorphic
to π (M, p).

The map is given as follows: given γ ∈ �, all paths joining p̃ to γ ( p̃) are
homotopic (since π1(M̃) is trivial), and therefore project to a well-defined el-
ement of π (M, p). The map is clearly a homomorphism. By the homotopy
lifting lemma, the map is one-to-one into. Should one start with a homotopy
class in α ∈ π (M, p), one proceeds to obtain the element ϕα ∈ � as follows:
Let q̃ ∈ M̃ . Then, q̃ is determined by some homotopy class ξ of paths in M
joining p to q := ψ (̃q). Then define ϕα (̃q) to be the point in M̃ corresponding
to the homotopy class ω · ξ of paths joining p to q, where the loop ω is a
representative of the class α. Certainly ϕα commutes with ψ , and is one-to-one.

Also, one has that � acts transitively on ψ−1[p] for each p ∈ M .

Theorem IV.2.2. (S. B. Myers (1941)) Let M be a complete Riemannian
manifold, of dimension n ≥ 2, such that there exists a constant κ > 0 for which

Ric(ξ, ξ ) ≥ (n − 1)κ|ξ |2(IV.2.1)

for any ξ ∈ T M, then π1(M) is finite.

Proof. The universal cover of M is complete, with the same estimate on
the Ricci curvature. Hence, by the original Bonnet–Myers theorem (Theorem
II.6.1), the universal cover of M is compact, and the the number of preimages
of any p in M must be finite. �
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§IV.3. Volume Growth of Riemannian Coverings

We start with an elementary result on the growth of groups.

Definition. Let � be a finitely generated group, with {γ1, . . . , γk} a given set
of generators. To every γ ∈ �, we associate the norm of γ , |γ |, defined to be
the minimum length of γ as a word in the given set of generators {γ1, . . . , γk}.
We also define the counting function n(λ) by

n(λ) = card {γ : |γ | ≤ λ}.
Note that

n(λ) ≤ (2k)(2k − 1)λ−1.

Proposition IV.3.1. The limit of n(λ)1/λ, as λ ↑ +∞, exists.

Proof. Certainly,

n(λ + τ ) ≤ n(λ)n(τ ),(IV.3.1)

which implies

n(�λ) ≤ n(λ)�.

Given any λ, t > 1 then pick

� := [λ/t] + 1 ≥ λ/t,

where [x] denotes the largest integer < x . Then n(λ) ≤ n(�t) ≤ n(t)� ≤
n(t)λ/t+1, from which one concludes

n(λ)1/λ ≤ n(t)1/t+1/λ.

Thus, one has

lim sup
λ↑+∞

n(λ)1/λ ≤ n(t)1/t

for all t > 1. Now, let t ↑ +∞. Then,

lim sup
λ↑+∞

n(λ)1/λ ≤ lim inf
λ↑+∞

n(λ)1/λ,

which implies the claim. �

Now we consider what happens if we use a different set of generators
{γ ∗

1 , . . . , γ ∗
� }, with counting function n∗(λ). Let

N = max {|γ ∗
r |{γ1,...,γk } : r = 1, . . . , �}.
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Then

n∗(λ) ≤ n(Nλ),

which implies

ln n∗(λ)

λ
≤ N

ln n(Nλ)

Nλ
.

Therefore, the change of generators of � leaves invariant the vanishing or
nonvanishing of the lim {ln n(λ)}/λ, as λ ↑ +∞.

Definition. We say that � has exponential growth if

lim sup
λ↑+∞

ln n(λ)

λ
> 0.

Otherwise, we refer to � as having subexponential growth.

Definition. Given a Riemannian manifold M , we say that M has exponential
volume growth if

lim sup
r↑+∞

ln V (x ; r )

r
> 0

for some (therefore, for all) x in M . Otherwise, we refer to M as having sub-
exponential volume growth.

Proposition IV.3.2. For any Riemannian manifold M, x ∈ M,

lim sup
r↑+∞

ln V (x ; r )

r

is independent of the choice of x.

Proof. Given x and y in M , we have

B(x ; r ) ⊆ B(y; r + d(x, y)),

which implies

lim sup
r↑+∞

ln V (x ; r )

r
≤ lim sup

r↑+∞

ln V (y; r + d(x, y))

r
= lim sup

r↑+∞

ln V (y; r )

r
,

and the same inequality with the roles of x and y interchanged. Therefore, the
two limsups are equal. �
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As the above proof indicates, there can be no a priori expectation that the
limsup is uniform with respect to x . However, when M is a noncompact cover
of a compact, then we prove below that the limsup is uniform; furthermore, the
limsup is actually a limit.

Definition. Let ψ : M̃ → M be a covering, with deck transformation group �.
We say that a domain � ⊆ M̃ is a fundamental domain of the covering if

γ (�) ∩ � = ∅ for all γ ∈ �, and ψ(�) = M.

When � acts transitively on the fibers ψ−1[p] for each p ∈ M , then ψ(�) = M
is equivalent to saying that ⋃

γ∈�

γ (�) = M̃ .(IV.3.2)

When considering a Riemannian covering one may construct a fundamental
domain using cut loci. Namely, assume M̃ is complete, p̃ ∈ M̃ , p = ψ( p̃) ∈ M .
Then ψ∗|̃p : M̃ p̃ → Mp is a linear isometry, and, of course, one has (IV.1.1) for
all ξ̃ ∈ M̃ p̃. Therefore to each p ∈ M , we have

p 
→ Dp ⊆ Mp 
→ ψ∗|̃p
−1(Dp) ⊆ M̃ p̃ 
→ exp p̃ (ψ∗|p

−1(Dp)),

which is a fundamental domain in M̃ .
In what follows here, we shall change notation slightly, in that we have M

the cover of Mo.

Theorem IV.3.1. (A. Manning (1979)) Let M be the universal cover of Mo,
Mo compact. Then, for x ∈ M the limit

µ := lim
r↑+∞

ln V (x ; r )

r

exists, the value is independent of x, and the convergence is uniform with respect
to x.

Proof. We already know that if the limit exists, then its value is independent
of x .

Furthermore, if we let F denote a fundamental domain of Mo in M , and d
its diameter, then for all x , y in F and r > d we have

B(x ; r − d) ⊆ B(y; r ) ⊆ B(x ; r + d),
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which implies

V (x ; r − d) ≤ V (y; r ) ≤ V (x ; r + d)(IV.3.3)

for all x , y in M . Therefore, since any p ∈ M can be translated to F by the
deck transformation group of the covering, any convergence will be uniform
with respect to the choice of origin x .

To show that the limit itself exists, one is guided by the fact that the local
behavior of the Riemannian metric is uniform to a very high degree. Indeed, all
data – the metric, the density of the Riemannian measure, the various curvatures,
etc. – vary over some fundamental domain, and are then translated by the deck
transformation group over all of M , as mentioned in the previous paragraph.
Therefore, one must only consider how to piece together this locally uniform
behavior to obtain the global result. The key element of this uniformity, in our
situation here, is that, for any fixed r > 0, the constant

cr := inf {V (z; r/2) : z ∈ M} > 0.

(Why is the constant positive?) With this in hand, we now prove the existence
of the limit µ. In analogy with the argument of the previous proposition, we
must find an analogue of (IV.3.1).

Fix x ; for any r, s > 0, we have

B(x ; r + s) =
⋃

y∈B(x ;r )

B(y; s).

Fix some b > 0. If Y is any subset of B(x ; r ) whose points are, pairwise, at
least distance b apart from each other, then⋃

y∈Y

B(y; b/2) ⊆ B(x ; r + b/2),

where the left-hand side is a disjoint union, which implies

V (x ; r + b/2) ≥
∑
y∈Y

V (y; b/2) ≥ cbcard Y ;

so

card Y ≤ cb
−1V (x ; r + b/2).(IV.3.4)

Now choose Y ⊆ B(x ; r ) to be maximal with respect to the property that all
its points, pairwise, have distance at least b from each other. Since Y is maximal
in this sense, then every point of B(x ; r ) is within distance b of Y , which implies

B(x ; r + s) ⊆
⋃
y∈Y

B(y; s + b)
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for all s > 0. Therefore,

V (x ; r + s) ≤ (card Y ) max
y∈Y

V (y; s + b)

≤ cb
−1V (x ; r + b/2)V (x ; s + b + d),

by (IV.3.3), (IV.3.4), for all r, s, b > 0, which may be rewritten as

V (x ; r + b/2 + s − b/2) ≤ cb
−1V (x ; r + b/2)V (x ; s − b/2 + 3b/2 + d).

By changing r + b/2 to r , and s − b/2 to s, one obtains

V (x ; r + s) ≤ cb
−1V (x ; r )V (x ; s + 3b/2 + d)(IV.3.5)

for all r > b/2, s > −b/2, b > 0. This is the desired analogue of (IV.3.1).
The end of the proof follows the same lines: Set

α = cb
−1, A = 3b/2 + d.

Then

V (x ; r + s) ≤ αV (x ; r )V (x ; s + A)

for r and s as above. We conclude

V (x ; (k + 1)r ) ≤ αk V (x ; r + A)k+1

for all r > b/2, k = 1, 2, . . . . Therefore, given any r > b/2, δ ∈ (0, r ), and
k = 1, 2, . . . , we have

V (x ; kr + δ) ≤ V (x ; (k + 1)r ) ≤ αk V (x ; r + A)k+1,

which implies

ln V (x ; kr + δ)

kr + δ
≤ k ln α

kr + δ
+ k + 1

kr + δ
ln V (x ; r + A),

which implies, by fixing r and letting k ↑ +∞,

lim sup
s↑+∞

ln V (x ; s)

s
≤ ln α

r
+ ln V (x ; r + A)

r

for all r > b/2, which implies

lim sup
s↑+∞

ln V (x ; s)

s
≤ lim inf

s↑+∞
ln V (x ; s)

s
,

which implies the theorem. �

We now pursue this passage from the locally uniform to the global in a more
detailed manner. Now, our consideration is: Since every fundamental domain
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has the same volume, then the growth of V (x ; r ), with respect to r , is essentially
equivalent to the growth of the number of images of x , under the action of the
deck transformation group, in B(x ; r ), for large r . Since the action of the deck
transformation group on the covering space is free, then the counting of images
of x , under this action, may be calibrated to the counting of elements of the
deck transformation group. The details of the calibration – we follow Milnor
(1968) – (most explicit in (IV.3.6), (IV.3.10) below) go as follows:

Lemma IV.3.1. Let M be a complete Riemannian manifold, let � be any finitely
generated subgroup of isometries M acting properly discontinuously on M.
Then, for any x ∈ M and set of generators of �, there exist positive numbers µ

and ε, depending only on x and the choice of generators, such that

n(λ) ≤ V (x ; λµ + ε)

V (x ; ε)
(IV.3.6)

for all λ > 0.
If M/� is compact then µ and ε may be chosen independently of x.

Proof. Given a collection of generators {γ1, . . . , γk} of �, set

µ = max
j=1,...,k

d(x, γ j (x)).

Then, for any γ ∈ �, we have, by the triangle inequality,

d(x, γ (x)) ≤ |γ | max
j=1,...,k

d(x, γ j (x)) = |γ |µ,(IV.3.7)

which implies that, for any λ > 1, B(x ; λµ) contains at least n(λ) distinct images
of x under the action of �.

Now there exists ε > 0 such that

B(x ; ε) ∩ γ (B(x ; ε)) = ∅

for all γ ∈ �, x ∈ M . One immediately has (IV.3.6). �

One immediately concludes from Bishop’s comparison theorem (Theorem
IIII.4.4):

Theorem IV.3.2. (J. Milnor (1968)) Let M be a complete Riemannian man-
ifold with nonnegative Ricci curvature, and let � be any finitely generated
subgroup of isometries M acting properly discontinuously on M. Then, for any
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set of generators of �, we have

lim
λ↑+∞

ln n(λ)

λ
= 0.

Remark IV.3.1. Of course, the more precise version of the theorem is that
since M has polynomial growth, that is,

V (x ; r ) ≤ const.rn

for all x and r , we also have (from (IV.3.6)) that � has polynomial growth, that
is,

n(λ) ≤ const.λn

for all λ.

Lemma IV.3.2. Let M be a complete Riemannian manifold, � a finitely gen-
erated subgroup of isometries M acting properly discontinuously on M, such
that M/� is compact; and let E be a compact neighborhood for which⋃

γ∈�

γ (E) = M.

(i) Then {γ (E) : γ ∈ �} is a locally finite cover of M by compact neighbor-
hoods.

(ii) Let

�E = {γ ∈ � : γ (E) ∩ E �= ∅};
then, �E generates E. Furthermore, if we set

ν = inf
γ /∈�E

d(γ (E), E),

then we have, for any given γ ∈ �,

|γ | ≤
[

d(y, γ (x))

ν

]
+ 1,(IV.3.8)

for all x, y ∈ E, where the length of γ is measured relative to the elements
in �E .

Proof. (i) If the cover is not locally finite, there would exist y ∈ M and
r > 0 for which B(y; r ) contains points from infinitely many distinct γ (E). If
d denotes the diameter of E , then B(y; r + d) contains infinitely many distinct
γ (E), which contradicts the proper discontinuity of the action of � on M .

(ii) We prove both of the claims of (ii) together.
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For |γ | = 1 the estimate (IV.3.8) is obviously true.
So let |γ | > 1. Given any x, y ∈ E , connect y to γ (x) by a minimizing unit

speed geodesic segment ω. Let k denote any integer for which

d(y, γ (x))

k
< ν,(IV.3.9)

and set

z j = ω( jd(y, γ (x))/k),

j = 0, . . . , k. Then, of course,

d(z j−1, z j ) < ν.

So, if we let γ0 denote the identity transformation of M , and pick γ j ∈ �

so that z j ∈ γ j (E) for j = 1, . . . , k, then γ jγ j−1
−1 ∈ �E for all j = 1, . . . , k.

Furthermore,

γ = (γkγk−1
−1) · · · (γ1γ0

−1),

which implies γ is generated by �E , and |γ | ≤ k. But the most efficient choice
of k for which (IV.3.9) is valid is

k =
[

d(y, γ (x))

ν

]
+ 1,

which implies the lemma. �

Lemma IV.3.3. Let M be a complete Riemannian manifold, and let � be any
finitely generated subgroup of isometries M acting properly discontinuously on
M, such that M/� is compact. Then there exist positive numbers ν and δ, such
that

n(λ) ≥ V (x ; λν − (ν + 2δ))

V (x ; δ)
(IV.3.10)

for all λ ≥ 1 + 3δ/ν, x ∈ M.

Proof. Let � be a fundamental domain of �, and δ equal to the diameter of �.
Then, B(x ; δ) contains� for all x ∈ �. Apply the Lemma IV.3.2 to E = B(x ; δ);
denote the ν corresponding to x , defined in the statement of the lemma, by νx ,
and let

ν = inf
x∈M

νx .

For any � > 0, set

�� = {γ ∈ � : γ (B(x ; δ)) ∩ B(x ; � + δ) �= ∅}.
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Then

B(x ; � + δ) ⊆ ��(B(x ; δ)),

which implies

V (x ; � + δ) ≤ (card ��)V (x ; δ).

To estimate card �� from above, we note that the argument of Lemma IV.3.2
implies

|γ | ≤ � + 3δ

ν
+ 1 for all γ ∈ ��,

which implies

n

(
� + 3δ

ν
+ 1

)
≥ card �� ≥ V (x ; � + δ)

V (x ; δ)
,(IV.3.11)

which implies the claim. �

The Günther–Bishop comparison theorem (Theorem III.4.2) then implies:

Theorem IV.3.3. (J. Milnor (1968)) Let Mo be a compact Riemannian man-
ifold of strictly negative curvature. Then, the fundamental group of Mo, π1

(Mo, xo) for any xo, has exponential growth.

§IV.4. Discretization of Riemannian Manifolds

We now view the deck transformation group of a covering as a discretization of
the manifold. The highlight of the above section was the ability to employ the
strong local uniformity of the Riemannian geometry of the covering to calibrate
growth of volume by growth of number of fundamental domains, that is, by
growth of the deck transformation group. In this section, we digress from the
specific geometry of coverings to show how to preserve this local uniformity
in more general settings. But, first, some preliminaries.

Definition. Let X and Y be metric spaces with map φ : X → Y . We say that
φ is a quasi-isometry if there exists a constant c ≥ 1 such that

c−1d(x1, x2) ≤ d(φ(x1), φ(x2)) ≤ cd(x1, x2)

for all x1, x2 in X .
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There is no claim thatφ is onto. So a quasi-isometry is not necessarily a Lipschitz
homeomorphism. See the discussion in the example that follows. Of course,
φ : X → φ(X ) is a Lipschitz homeomorphism.

Example IV.4.1. We recast the Milnor theorems in our current setting.
Let � be a finitely generated group, with A = {γ1, . . . , γk} a given set of

generators. Recall that with every γ ∈ � is associated the norm of γ , |γ |A,
defined to be the minimum length of γ as a word in the given set of generators
A. Note that

|γ |A ≥ 0, with |γ |A = 0 ⇔ γ = id,

|βγ |A ≤ |β|A + |γ |A, and |γ −1|A = |γ |A,

for all β, γ in �. The word metric on � is then given by

δA(β, γ ) = |β−1γ |A.

If we use a different set of generators B := {γ ∗
1 , . . . , γ ∗

� } then, as described in
§IV.3, we have the metrics induced by A and B quasi-isometric to each other,
namely, let

N = max {|γ ∗
r |A : r = 1, . . . , �};

then

N−1|γ |A ≤ |γ |B ≤ N |γ |A
for all γ ∈ �.

Now, let M be a complete Riemannian manifold, and � a finitely generated
subgroup of isometries M acting freely and properly discontinuously on M ,
such that M/� is compact. For each x ∈ M , let ‖ · ‖x denote the displacement
norm on �, given by

‖γ ‖x = d(x, γ ·x)

for all γ ∈ �, where d denotes distance in M . Then, again, we have

‖γ ‖x ≥ 0, with ‖γ ‖x = 0 ⇔ γ = id,

‖βγ ‖x ≤ ‖β‖x + ‖γ ‖x , and ‖γ −1‖x = ‖γ ‖x ,

for all β, γ in �. Then, the results of Milnor (IV.3.7) and (IV.3.8) imply the
existence of a constant a ≥ 1 such that

a−1|γ |A ≤ ‖γ ‖x ≤ a|γ |A
for all γ ∈ �, which implies that the induced metrics are quasi isometric.
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Furthermore, the map φ : � → M , given by

φ(γ ) = γ ·x,

satisfies

a−1δA(β, γ ) ≤ d(φ(β), φ(γ )) ≤ aδA(β, γ )

for all β, γ in � – so φ is a quasi-isometry.
Finally, (IV.3.6) and (IV.3.10) imply the existence of constants a ≥ 1, b ≥ 0,

and c ≥ 1 such that

c−1nA(a−1λ − b) ≤ V (x ; λ) ≤ cnA(aλ + b),(IV.4.1)

where nA(λ) denotes the counting function of A, given by

nA(λ) = card {γ : |γ |A ≤ λ}.

Definition. Let X and Y be metric spaces with map φ : X → Y . We say that
φ is a rough isometry if there exist constants a ≥ 1, b > 0, and ε > 0 such that

a−1d(x1, x2) − b ≤ d(φ(x1), φ(x2)) ≤ ad(x1, x2) + b

for all x1, x2 in X , and φ is ε–full, that is,⋃
x∈X

B(φ(x); ε) = Y.

Note that the definition of rough isometry does not require that the map φ be
continuous.

Also, the following proposition shows that “X is roughly isometric to Y ” is
an equivalence relation.

Proposition IV.4.1. If φ : X1 → X2 and ψ : X2 → X3 are rough isometries,
then so is ψ ◦ φ.

If φ : X → Y is a rough isometry, then there exists φ− : Y → X a rough
isometry, for which both d(φ− ◦ φ(x), x) and d(φ ◦ φ−(y), y) are uniformly
bounded on X and Y , respectively.

Any two spaces of finite diameter are roughly isometric.
If X and Y are roughly isometric, then X and Y × K are roughly isometric

for any compact metric space K .

Proof. We only comment on the second claim. By definition, φ(X ) is ε–full
in Y for some ε > 0. Then, given any y ∈ Y , there exists an x ∈ X for which
d(φ(x), y) < ε. Then, define φ−(y) := x . One checks that φ− is a mapping
from Y to X satisfying the claim of the proposition. �
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We are now given a countable set G, such that for each ξ ∈ G, there is a finite
nonempty subset N(ξ ) ⊆ G \ {ξ}, of cardinality m(ξ ), each element of which
is referred to as a neighbor of ξ . Furthermore, we require that η ∈ N(ξ ) if and
only if ξ ∈ N(η). Then, one determines a graph structure G by postulating the
existence of precisely one oriented edge from any ξ to each of its neighbors,
that is, the elements of N(ξ ). We refer to m(ξ ) as the valence of G at ξ .

Definition. We say that the graph G has bounded geometry if the valence
function m(ξ ) is bounded uniformly from above on all of G.

A sequence of points (ξ0, . . . , ξk) is a combinatorial path of length k if
ξ j ∈ N(ξ j−1) for all j = 1, . . . , k. The graph G is called connected if any two
points are connected by a path. Note that m(ξ ) ≥ 1 for all ξ if G is connected.

For any two vertices ξ and η in the connected graph G, one defines their
distance d(ξ, η) to be the infimum of the length of all paths connecting ξ to
η. We also refer to d as the combinatorial metric. We set the notations for the
respective metric “disks” and their “bounding spheres”:

β(ξ ; k) = {η ∈ G : d(η, ξ ) ≤ k} and σ (ξ ; k) = {η ∈ G : d(η, ξ ) = k},
for any ξ ∈ G.

Proposition IV.4.2. Assume G is connected, with more than one edge and with
bounded geometry. Set

m = max
ξ∈G

m(ξ ).

Then for any finite K ⊆ G, and k > 0, we have

card {η ∈ G : d(η,K) = k} ≤ mkcardK;

from which one also has

card {η ∈ G : d(η,K) < k} ≤ mkcardK.

Also, if G, F are connected graphs, G with bounded geometry, and

φ : G → F

is a rough isometry, then there exists µ ≥ 1 for which

cardK ≤ µcard φ(K)

for all finite subsets K of G.

Remark IV.4.1. Of course, one always has: card φ(K) ≤ cardK.
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Proof. The first claim is obvious. For the second claim, we wish to show that
there exists µ ≥ 1 such that, given any η ∈ F , we have

card φ−1[η] ≤ µ.

Well, the rough isometry property implies that, for all ξ , ξ ′ in φ−1[η], we have

a−1d(ξ, ξ ′) − b ≤ 0,

that is, d(ξ, ξ ′) ≤ ab, which implies φ−1[η] ∈ β(ξ ; ab) for any ξ ∈ φ−1[η].
Therefore,

card φ−1[η] ≤ mab + 1 := µ. �

Example IV.4.2. Let � be a finitely generated group, with generator set A, as
in Example IV.4.1. Given any γ ∈ �, we let

N(γ ) = γ (A ∪ A−1)

be the neighbors of γ . Then, the combinatorial metric of the graph structure
coincides with the word metric. It is common to refer to this graph as the Cayley
graph of �.

Definition. Let M be a complete Riemannian manifold. A graph G in M is a
discrete subset G of M , for which there exists R > 0 such that

M =
⋃
ξ∈G

B(ξ ; R),(IV.4.2)

with the graph structure G determined by the collection of neighbors of ξ ,

N(ξ ) := {G ∩ B(ξ ; 3R)} \ {ξ},

for each ξ ∈ G.
We refer to R as the covering radius of the graph G.

Theorem IV.4.1. Let M be Riemannian complete, and G a graph in M, cov-
ering radius R. Then there exists a constant a ≥ 1 such that

1

3R
d(ξ1, ξ2) ≤ d(ξ1, ξ2) ≤ 1

R
d(ξ1, ξ2) + 1(IV.4.3)

for all ξ1, ξ2 in G. Thus, the inclusion map of G into M is a rough isometry.
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Proof. Given a combinatorial path ξ1 = η0, . . . , η� = ξ2 in G, connecting ξ1 to
ξ2 of length �. Then,

d(ξ1, ξ2) ≤
�∑

j=1

d(η j−1, η j ) ≤ 3R�,

so

d(ξ1, ξ2) ≤ 3Rd(ξ1, ξ2),(IV.4.4)

which is the lower bound.
Given ξ1, ξ2 in G joined by a minimizing geodesic γ . Let � be the integer for

which

(� − 1)R ≤ d(ξ1, ξ2) < �R,

and ξ1 = η0, . . . , η� = ξ2 evenly spaced points on γ . So,

d(η j−1, η j ) = d(ξ1, ξ2)

�
< R.

To each ηα , α = 1, . . . , � − 1, there exists ζα ∈ G such that d(ζα, ηα) < R,
which implies, by the triangle inequality, d(ζ j−1, ζ j ) < 3R for j = 1, . . . , � (we
are setting ξ1 = ζ0, ξ2 = ζ�), which implies d(ζ j−1, ζ j ) < 1 for j = 1, . . . , �,
which implies

d(ξ1, ξ2) ≤ � ≤ 1

R
d(ξ1, ξ2) + 1,

which implies the claim. �

Definition. Let M be a Riemannian manifold. A subset G of M is said to be ε–
separated, ε > 0, if the distance between any two distinct points of G is greater
than or equal to ε.

Lemma IV.4.1. Let M be complete, with

Ric ≥ (n − 1)κ, κ ≤ 0(IV.4.5)

on all of M, and G an ε–separated subset of M. Then,

card {G ∩ B(x ; r )} ≤ Vκ (2r + ε/2)

Vκ (ε/2)

for all x ∈ M and r > 0.

Proof. We first comment that, without the lower bound on the Ricci curvature,
one knows that there are only a finite number of elements of G in B(x ; r ).
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Indeed,

B(x ; r + ε/2) ⊇
⋃

ξ∈G∩B(x ;r )

B(ξ ; ε/2),

where the union on the right-hand side is disjoint union. Therefore,

V (x ; r + ε/2) ≥
∑

ξ∈G∩B(x ;r )

V (ξ ; ε/2)

≥ card {G ∩ B(x ; r )} inf
η∈G∩B(x ;r )

V (η; ε/2).

But Corollary II.8.1 implies infη∈G∩B(x ;r ) V (η; ε/2) > 0. So, the real question
is to obtain an upper bound for cardG ∩ B(x ; r ) that depends only on r and ε.

Since cardG ∩ B(x ; r ) is finite, there exists ξ ∈ G ∩ B(x ; r ) such that

V (ξ ; ε/2) = inf
η∈G∩B(x ;r )

V (η; ε/2).

Therefore, we have, using Theorem III.4.5,

card {G ∩ B(x ; r )} ≤ V (x ; r + ε/2)

V (ξ ; ε/2)
≤ V (ξ ; 2r + ε/2)

V (ξ ; ε/2)
≤ Vκ (2r + ε/2)

Vκ (ε/2)
. �

Definition. Let M be a complete Riemannian manifold. A discretization of M
is a graph G determined by an ε–separated subset G of M , for which there exists
R > 0 such that

M =
⋃
ξ∈G

B(ξ ; R).(IV.4.6)

Then, ε is called the separation radius, and R the covering radius of the dis-
cretization. As before, the graph structure G is determined by the collection of
neighbors of ξ ,

N(ξ ) := {G ∩ B(ξ ; 3R)} \ {ξ},
for each ξ ∈ G.

Remark IV.4.2. Note card N(ξ ) ≥ 1 for all ξ .

Remark IV.4.3. To achieve the local uniformity of the geometry required to
calibrate volumes in the manifold by those in in discretizations, we will require
Gromov’s improvement (Theorem III.10) of Bishop’s theorem (Theorem III.9).
In the case of strong unformity of coverings of compact manifolds, we only
required Bishop’s theorem.
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Note that when the Ricci curvature is bounded from below as in (IV.4.5),
then for the graph G we have

1 + m(ξ ) ≤ Vκ (4R + ε/2)

Vκ (ε/2)
:= Mε,2R

for all ξ ∈ G – so G has bounded geometry.

To conveniently formulate for future reference,

Corollary IV.4.1. If M is complete, then any two discretizations are roughly
isometric.

On the collection of vertices G, we have two natural measures. The first is
simply the counting measure dι; thus, for any subset K of G we have

ι(K) = cardK.

The second is what we call the volume measure dV on G, defined by

dV(ξ ) = m(ξ ) dι(ξ ).

Of course, when G has bounded geometry, the two measures are commensurate
in the sense that the Radon–Nikodym derivative of dV with respect to dι is
uniformly bounded away from 0 and +∞. Since in what follows we generally
discuss graphs of bounded geometry, and we are only interested in qualitative
estimates on volumes, we shall work with the counting measure dι – even when
we announce the results in terms of the volume measure dV.

Definition. We define

V(ξ ; r ) = V(β(ξ ; r ))

for any ξ ∈ G, r > 0.
We say that G has exponential volume growth if

lim sup
r↑+∞

ln V(ξ ; r )

r
> 0;

otherwise, we say that G has subexponential volume growth. Also, we say that
G has polynomial volume growth if there exists k > 0 such that

V(ξ ; r ) ≤ const.rk

for sufficiently large r > 0.
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Theorem IV.4.2. (M. Kanai (1985)) Let G, F be connected, roughly isometric
graphs, both with bounded geometry. Then, G has polynomial (resp., exponen-
tial) volume growth if and only if F has polynomial (resp., exponential) volume
growth.

Proof. If φ : G → F is a rough isometry, then

a−1d(ξ1, ξ2) − b ≤ d(φ(ξ1), φ(ξ2)) ≤ ad(ξ1, ξ2) + b

for all ξ1, ξ2 in G, which implies (by Proposition IV.4.2)

card β(ξ ; r ) ≤ µcard φ(β(ξ ; r )) ≤ µcard β(φ(ξ ); ar + b)

which implies the claim. �

Lemma IV.4.2. Let M be a complete Riemannian manifold, with Ricci curva-
ture bounded from below as in (IV.4.5), and assume there exist positive constants
r0 and V0 such that

V (x ; r0) ≥ V0

for all x ∈ M. Then, for any r > 0, one has a positive constant const.r such
that

V (x ; r ) ≥ const.r

for all x ∈ M.

Proof. If r > r0, then simply use V0. If r < r0, then simply note that the Bishop–
Gromov theorem implies

V (x ; r ) ≥ Vκ (r )

Vκ (r0)
V (x ; r0) ≥ Vκ (r )

Vκ (r0)
V0,

which implies the claim. �

Theorem IV.4.3. (M. Kanai (1985)) Let M be a complete Riemannian man-
ifold, with Ricci curvature bounded from below as in (IV.4.5). Then, for any
discretization G of M, G has polynomial (resp., exponential) volume growth
only if (resp., if ) M has polynomial (resp., exponential) volume growth.

If, on the other hand, there exist positive constants r0 and V0 such that

V (x ; r0) ≥ V0
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for all x ∈ M, then for any discretization G of M, G has polynomial (resp.,
exponential) volume growth if (resp., only if ) M has polynomial (resp., expo-
nential) volume growth.

Proof. If ξ ∈ G, y ∈ B(ξ ; r ), then there exists η ∈ G ∩ B(y; R), which implies

d(ξ, η) < r + R, ⇒ B(ξ ; r ) ⊆
⋃

η∈G∩B(ξ ;r+R)

B(η; R),

which implies

V (ξ ; r ) ≤ Vκ (R) cardG ∩ B(ξ ; r + R).

But

d(ξ1, ξ2) ≤ A d(ξ1, ξ2) + B

by (IV.4.3), which implies

V (ξ ; r ) ≤ const. card β(ξ ; A(r + R) + B).

Therefore, G (resp., M) has polynomial (resp., exponential) volume growth
only if the same holds for M (resp., G).

For the second claim, we have, by the previous lemma, for every ξ ∈ G,
ρ > 0,

const.ε/2 cardG ∩ B(ξ ; ρ) ≤
∑

η∈G∩B(ξ ;ρ)

V (η; ε/2) ≤ V (ξ ; ε/2 + ρ)

(where ε is the separation of the discretization), that is,

const.ε/2 cardG ∩ B(ξ ; ρ) ≤ V (ξ ; ε/2 + ρ).

Now (IV.4.4) implies

β(ξ ; ρ) ⊆ B(ξ ; 2Rρ),

which implies

const.ε/2 card β(ξ ; ρ) ≤ V (ξ ; ε/2 + 2Rρ).

Therefore, if M (resp., G) has polynomial (resp., exponential) volume growth,
then so does G (resp., M). �

Corollary IV.4.2. Suppose both M1, M2 are complete Riemannian manifolds
with Ricci curvature bounded from below, for which there exist r j , Vj > 0 such
that

V (x j ; r j ) ≥ Vj
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for all x j ∈ M j , j = 1, 2. If M1 and M2 are roughly isometric, then they both
have the same type of volume growth.

Proof. The corollary follows directly from the above two theorems. �

§IV.5. The Free Homotopy Classes

M is our given Riemannian manifold.

Definition. A loop in M is a map � : S
1 → M ∈ C0.

Of course, any loop � in M is equivalent to a 2π–periodic map γ : R → M
determined by

γ (θ ) = �(E iθ ).(IV.5.1)

(See Corollary IV.1.1) As a map of manifolds, for any k ≥ 1, � ∈ Ck if and
only if γ ∈ Ck . Similarly, we shall say � ∈ Dk if and only if for any bounded
interval [α, β] ⊆ R, γ |[α, β] ∈ Dk (see §I.6).

Definition. For any � ∈ C1, and p ∈ S
1, we define the velocity vector of � at

�(p), �′(p), by

�′(p) = γ ′(θ0), p = E iθ0 ,(IV.5.2)

where γ is given by (IV.5.1). For � ∈ D1, we may define the length of �, �(�),
by

�(�) =
∫ 2π

0
|γ ′|.(IV.5.3)

Definition. A closed geodesic in M is a differentiable loop � : S
1 → M such

that γ given by (IV.5.1) is a geodesic.

Definition. Two loops, �0 and �1, in M are freely homotopic if there exists
� : S

1 × [0, 1] → M ∈ C0 such that

�|S1 × {0} = �0, �|S1 × {1} = �1.(IV.5.4)

“Free homotopy” determines an equivalence relation on the class of loops in
M , but has no obvious group structure.

Definition. A trivial free homotopy class will be one which contains a constant
map.
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Theorem IV.5.1. Let � be a nontrivial free homotopy class of loops in a
differentiable manifold M. Then, � contains loops that are D1. If M is compact
Riemannian, then

λ := inf{�(�) : � ∈ � ∩ D1} > 0.(IV.5.5)

In this case, there actually exists �0 ∈ � ∩ D1 with length equal to λ. Finally,
�0 is a closed geodesic.

Proof. The first claim is easy and will be left to the reader.
To show that λ is strictly positive when M is compact Riemannian, we note

that the compactness of M implies (Theorem I.3.2) that ε := inj M is positive.
Thus, if � ∈ � ∩ D1 and �(�) < ε, then �(S1) ⊆ B(p; ε) for any p ∈ �(S1),
which would imply that � is homotopic to a constant map – a contradiction.
So, λ is positive.

If there exists �0 ∈ � ∩ D1 satisfying �(�0) = λ, then �0 is a geodesic, by
the first variation formula (Theorem II.4.1) (there are no boundary terms by the
periodicity of γ associated with �) and the argument of Theorem II.4.2.

It remains to show that if M is compact Riemannian, then there exists �0 ∈
� ∩ D1 for which �(�0) = λ. Well, assume we are given a sequence � j : S

1 →
M ∈ � ∩ D1 for which �(� j ) ↓ λ as j → +∞. We leave it to the reader to
verify that we may assume |� j

′| is constant on S
1 for each j – the constant will

be equal to �(� j )/2π . Let α = sup �(� j ) < +∞. Consider S
1 as a compact

Riemannian manifold with standard metric. Then, for q, q∗ ∈ S
1 we have

d(� j (q), � j (q
∗)) ≤ (α/2π )d(q, q∗).(IV.5.6)

Let ε be as above, that is, for any p ∈ M , exp |B(p; ε) is a diffeomorphism
and fix an integer N > max {α/ε, 2}. Pick qk = ei2πk/N , k = 0, 1, . . . , N (of
course, q0 = qN ), and let ωk be the closed segment on S

1 of length 2π/N
from qk−1 to qk . Let pk; j = � j (qk), let γk; j : ωk → M denote the minimizing
geodesic joining pk−1; j to pk; j , and let � j denote the piecewise-geodesic loop
given by

� j |ωk = γk; j , k = 1, . . . , N .

Then, � j |ωk and γk; j are contained in B(pk−1; j ; ε), which implies that � j is
freely homotopic to � j , which implies

λ ≤ �(� j ) ≤ �(� j )

for all j , which implies �(� j ) → λ as j → 0. So, we only have to show that
there exists a subsequence of � j which converges to a D1 loop.
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Set ξk; j = γ j
′(qk−1+), that is, ξk, j is the initial unit velocity vector of the

geodesic segment γk; j . Since M is compact, so is its unit tangent bundle. We
therefore have a subsequence { jr }, and unit tangent vectors ξk , k = 1, . . . , N
such that

ξk; jr → ξk, k = 1, . . . , N .

The continuity of the exponential map easily implies the existence of a limit
piecewise-geodesic loop of some subsequence of � j . �

Remark IV.5.1. One can carry out the limit argument using the Arzela–Ascoli
theorem. Namely, (IV.5.6) implies that the sequence of mappings (� j ) is equi-
continuous. Since M is compact, the Arzela–Ascoli Theorem implies that
(� j ) converges uniformly to a loop � : S

1 → M ∈ C0. Fix an integer N >

max {α/ε, 2}, and set qk = ei2πk/N , k = 0, 1, . . . , N , p� = �(q�).
Note that � also satisfies (IV.5.6). Therefore, d(pk−1, pk) < ε for all k =

1, . . . , N . Let γk : ωk → M be the unit speed geodesic of length d(pk−1, pk)
joining pk−1 to pk , and define �0 by �0|ωk = γk , k = 1, . . . , N . Since γk(ωk) ⊆
B(pk−1; ε) for each k one easily has �0 ∈ �. Of course, �0 ∈ D1. To evaluate
�(�0), one has by definition �(�0) ≥ λ; but, on the other hand,

�(�0) =
N∑

k=1

�(γk) = lim
j→∞

N∑
k=1

d(� j (qk−1), � j (qk))

≤ lim
j→∞

N∑
k=1

�(� j |ωk) = lim
j→∞

�(� j ) = λ,

which implies �(�0) = λ.
For an argument in a similar spirit, see Exercise I.7.

§IV.6. Notes and Exercises

Parallel Translation and Curvature

Exercise IV.1. Let M be a Riemannian manifold,T k M the alternating k–vector
bundle over M , with naturally induced metrics on the fibers. Thus, if p ∈ M ,
{e1, . . . , en} an orthonormal basis of Mp, then an orthonormal basis of the fiber
over p is given by the collection of k–vectors

{e j1 ∧ · · · ∧ e jk : 1 ≤ j1 < . . . < jk ≤ n}.
Show that if k ≤ n, φ : G → M is an imbedding of an open subset G of R

k into
M (thus, φ−1 is a chart on the k–dimensional submanifold φ(G)), and we set

∂ jφ = φ∗
∂

∂u j
,
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j = 1, . . . , k, where ∂/∂u j are natural coordinate vector fields on R
k , then

dVφ(G) = |∂1φ ∧ · · · ∧ ∂kφ| du1 · · · duk,

relative to the chart φ−1 on φ(G).

Exercise IV.2. (a) Prove that for a C1 path ω in a Riemannian manifold M ,
and a C1 vector field X along ω, one has

|X |′ ≤ |∇t X |.
(b) Let v : [0, 1] × [0, 1] → M ∈ D1 be a homotopy with fixed endpoints

p = v(0, s), q = v(1, s).

Let X = X (t, s) be a vector field along v such that

X (0, s) = x0 ∈ Mp, ∇t X = 0.

We want to estimate, quantitatively, the difference of parallel translation along
t 
→ v(t, 0) from t 
→ v(t, 1), or, equivalently, |X (1, 1) − X (1, 0)|. Prove

|X (1, 1) − X (1, 0)| ≤ 4

3
{sup |X |}�

∫ 1

0
ds

∫ 1

0
|∂t v ∧ ∂sv| dt,

where � = sup |K|.

The Myers–Steenrod Theorem

Exercise IV.3. Prove Lemma IV.1.1 in the following steps.
(a) Show that ϕ is a homeomorphism.
(b) Fix p and ϕ(p) in M . Let δ1 denote the injectivity radius of M at p. Show

that we have a well-defined map F : B(p; δ1) → B(ϕ(p); δ1) defined by

F(ξ ) = (exp |B(ϕ(p); δ1))−1◦ϕ◦exp ξ.

(c) Show that for ξ ∈ B(p; δ1), s ∈ [0, 1] one has

F(sξ ) = s F(ξ ).(IV.6.1)

Then show that F may be extended to all of Mp so that it satisfies (IV.6.1) and

|F(ξ )| = |ξ |(IV.6.2)

for all ξ ∈ Mp, s ≥ 0.
(d) Next, use Exercise II.25 to show that, given any ε > 0, there exists suffi-

ciently small δ > 0 so that

|F(ξ ) − F(η)| = |ξ − η|{1 ± O(ε2)}
for all ξ, η ∈ B(p; δ).
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(e) Next, show |F(ξ ) − F(η)| = |ξ − η| for all ξ, η ∈ Mp.
(f) Let |ξ | = |η| = 1. Use the formula

|ξ − η| = 2 sin
1

2
�(ξ, η)

and (IV.6.2) to show that

sin
1

2
�(F(ξ ), F(η)) = sin

1

2
�(ξ, η),

which therefore implies

cos �(F(ξ ), F(η)) = cos �(ξ, η),

which implies F preserves the inner product.
(g) Use the expansion of vectors with respect to an orthonormal basis of an

inner product space to show that F is additive, and therefore, linear. Then show
that F = ϕ∗|p, which implies the lemma.

Note IV.1. The argument presented from (c) onward also proves that any metric
preserving transformation � of R

n is a Euclidean transformation, that is, it is
given by

�(x) = Ax + a,

where a is a vector in R
n , and A is an element of the orthogonal group O(n)

of R
n .

Deck Transformation Groups, Discrete Groups, and Tori

Exercise IV.4. Let π1 : Mo → M1 and π2 : Mo → M2 denote two Riemannian
universal coverings (so Mo is simply connected) with respective deck transfor-
mation groups �1 and �2. Show that M1 and M2 are isometric if and only if �1

and �2 are conjugate subgroups of the full group of isometries Mo.

Exercise IV.5. Let O(n) denote the orthogonal group of R
n , and E(n) the

Euclidean transformation group of R
n – so T ∈ E(n) if

T x = Ax + a, A ∈ O(n), a ∈ R
n.

(a) Show that a subgroup of O(n) is discrete if and only if it is finite.
(b) Show that any discrete subgroup � of translations of R

n must be of
the form

� =
{

x 
→ x + a : a =
k∑

j=1

n j v j

}
,
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where n j , j = 1, . . . , k, vary over the integers, and v1, . . . , vk are k fixed lin-
early independent vectors in R

n .
(c) Let T x = Ax + a be a Euclidean transformation of R

n with no fixed
points. Show that there exists a line along which T is a translation.

Exercise IV.6. Letπ : R
n → Mo be a Riemannian covering, Mo compact,� the

deck transformation group of the covering. Show that � is a discrete subgroup
of E(n).

Exercise IV.7. Let n = 2. Categorize the discrete subgroups ofE(2) and thereby
characterize the 2–dimensional compact flat Riemannian manifolds.

Exercise IV.8. A slightly different problem is, for example, to determine when
two different parallelograms in R

2 determine the same Riemannian torus.

Global Cartan–Ambrose–Hicks Theorem

Exercise IV.9. Let M be a connected Riemannian manifold, φ and ψ two
isometries of M onto itself. Suppose there exists a point p ∈ M for which
φ(p) = ψ(p) and φ∗|p = ψ∗|p. Show that φ = ψ .

Definition. Let M , N be Riemannian manifolds of the same dimension, U j ,
j = 1, 2, domains in M with nonempty intersection, and φ j , j = 1, 2 isometries
of the domains U j into N , such that φ1|U1 ∩ U2 = φ2|U1 ∩ U2. Then, we refer
to φ1 and φ2 as immediate continuations, one of the other.

Let φ be an isometry of a domain U ⊆ M onto a domain in N . Let ω(t),
0 ≤ t ≤ 1, be a continuous curve in M such that ω(0) ∈ U . The isometry φ is
said to be extendable along ω if for each t ∈ [0, 1] there exists an isometry φt

of a domain Ut containing ω(t) onto an open subset of N such that φ0 = φ, and
such that φt , φs are immediate continuations whenever |t − s| is sufficiently
small. The family {φt : t ∈ [0, 1]} is called a continuation of φ along ω.

Exercise IV.10.
(a) Let M , N be complete real analytic Riemannian manifolds, and φ an

isometry of a domain U ⊆ M onto a domain in N . Let ω(t), t ∈ [0, 1], be a
continuous curve in M such that ω(0) ∈ U . Prove that φ is extendable along ω.

(b) Suppose, in addition, that the path σ (t), t ∈ [0, 1], is continuous, and
homotopic (fixed endpoints) to ω. Let {φt }, {ψt } be continuations of φ along ω,
σ , respectively. Show that φ1 = ψ1 on some neighborhood of ω(1) = σ (1).
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Note IV.2. One can find details for the two previous exercises in Helgason
(1962, pp. 62–64).

Exercise IV.11. (See Exercises III.1–III.5.)
(a) Show that if M , N are locally symmetric then we do not require the

hypothesis of real analyticity in Exercise IV.10(b) above (even though it is a
general theorem that a locally symmetric space is real analytic (Helgason (1962,
p. 187))).

(b) Show that a simply connected complete locally symmetric Riemannian
manifold is Riemannian symmetric.

On the Myers Comparison Theorem

Note IV.3. One has the following generalization of Theorem IV.2.2. Assume M
is complete, with nonnegative Ricci curvature. Fix x ∈ M . Then, the Gromov
theorem (Theorem III.4.5) implies that V (x ; r )/ωnrn is a decreasing function
of r . Set

αM = lim
r↑+∞

V (x ; r )

ωnrn
.

Then, αM is independent of x – of course αM ≤ 1. M. T. Anderson (1990b) has
proved that if αM > 0, then the order of π1(M) is bounded above by 1/αM .

Manifolds of Nonpositive Curvature

It is an immediate consequence of the Hadamard–Cartan theorem (Theorem
IV.1.3) that a complete simply connected manifold of nonpositive curvature is
diffeomorphic to Euclidean of the same dimension.

Exercise IV.12. (A. Preissmann (1943)) Prove that, if M is a complete simply
connected Riemannian manifold of nonpositive curvature, then

(a) every two points of M are connected by precisely one geodesic; the
geodesic is minimizing, and it varies differentiably with respect to its endpoints;

(b) if given a geodesic triangle with sides a, b, c and angle θ at the vertex
opposite the side of length c, then

c2 ≥ a2 + b2 − 2ab cos θ ;

what if all the sectional curvatures are bounded above by the constant δ < 0?;
(c) the sum of the angles of a geodesic triangle is less than or equal to π , with

equality if and only if the geodesics span a totally geodesic surface isometric
to a Euclidean triangle;
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(d) the sum of the angles of a geodesic quadrilateral is less than or equal to
2π , with equality if and only if the geodesics span a totally geodesic surface
isometric to a Euclidean quadrilateral.

Exercise IV.13. Let M be as in the previous exercise, and let γ : M → M be
an isometry. Define

δγ = inf
x

d(x, γ ·x),

and assume δγ > 0 (of course, if γ has a fixed point, then δγ = 0). An axis of
γ is a unit speed D1 path ω : R → M such that

γ ·ω(t) = ω(t + δγ ).

(a) Prove that an axis is a geodesic.
(b) Prove that if δγ > 0 and there exists an x ∈ M such that

δγ = d(x, γ ·x),

then the geodesic containing the minimizing geodesic segment joining x to γ ·x
is an axis.

(c) Prove that, except for shift and reorientation of the parameter t , the isom-
etry γ possesses more than one axis only if any two such axes bound a totally
geodesic surface isometric to a flat infinite strip (α, β) × R with canonical
Euclidean metric.

(d) Now assume that the curvature of M is strictly negative. Show that any
isometry has at most one axis.

(e) Continue with the assumption of strictly negative curvature. Let γ1, γ2 be
isometries of M which commute (in their action on M). Assume γ1 possesses
an axis ω1. Prove that γ2|ω1 maps ω1 to itself. Show that if γ2 also has an axis,
then the axis must be ω1.

Exercise IV.14. Prove:

Preissmann’s Theorem (1943). Let π : M → Mo be a covering by simply
connected M with strictly negative curvature and �0 an abelian subgroup of �,
the deck transformation group of the covering. Then, Mo compact implies that
�0 is cyclic.

Note IV.4. See Eberlein–O’Neill (1973) for extensive discussion of complete
Riemannian manifolds of negative curvature, as generalizations of hyperbolic
geometry. More recent, and still fuller, discussion is to be found in Ballman–
Gromov–Schroeder (1985).
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Fundamental Domains

Exercise IV.15. Here is a different construction of a fundamental domain of
a covering π : M → Mo, with deck transformation group �. Fix x ∈ M and
define the Dirichlet fundamental domain based at x , Dirx , by

Dirx = {y ∈ M : d(x, y) < d(x, γ ·y) ∀γ ∈ �, γ �= idM}.
Prove:

(a) Dirx is, in fact, a fundamental domain of the covering;
(b) when Mo is compact, with diameter d(Mo), then Dirx ⊆ B(x ; d(Mo)).
(c) Let �x = {γ �= idM : γ (Dirx ) ∩ Dirx �= ∅}; and show that

Dirx = {y ∈ M : d(x, y) < d(x, γ ·y) ∀γ ∈ �x , γ �= idM}.

Exercise IV.16. Let M be a noncompact covering a compact, with deck trans-
formation group � and fundamental domain F . Show that there exists a positive
constant so that for every x ∈ M , we have

A(S(x ; r ) ∩ F) ≤ const.

for almost all r > 0.

Coverings by Compacta

Exercise IV.17. Let π : M → Mo be a a nonsingular differentiable mapping
of M onto Mo. Assume that M is compact. Show that π is a covering.

Exercise IV.18. Let π : M → Mo be a Riemannian covering with deck trans-
formation group �. Assume that M is compact. Show that

V (M) = V (Mo)card �.

(We casually assumed this result, when stating in §III.3 that the volume of real
projective space P

n is 1/2 that of the sphere S
n .)

Exercise IV.19. Let x : M → R
n be a Riemannian immersion of the compact

(n − 1)–manifold M into R
n , where all of the Riemannian sectional curva-

tures of M are positive. Show that the associated Gauss map n : M → S
2 is a

diffeomorphism.

On Theorem IV.4.1

Note IV.5. The theorem was originally presented in our first edition following
the formulation and proof of M. Kanai (1985). For a discrete subset G whose
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disks of radius R > 0 cover the Riemannian manifold M , he defined the as-
sociated graph by N(ξ ) = {η ∈ G \ {ξ} : d(η, ξ ) < 2R}, for every ξ ∈ G. He
had to postulate that the Ricci curvature was bounded uniformly from below. I.
Holopainen (1994) realized that if one defined N(ξ ) by

N(ξ ) = {η ∈ M \ {ξ} : d(η, ξ ) < 3R},
then one could drop the hypothesis of Ricci curvature from below!

Homotopy Considerations

Exercise IV.20. Prove:

J. L. Synge’s Lemma (1936). Let M be a compact, even-dimensional ori-
entable Riemannian manifold with strictly positive curvature. Then, M is simply
connected.

Exercise IV.21. Use the argument of Theorem IV.5.1 to show that if M is
compact, then given any real ρ > 0, there are at most a finite number of free
homotopy classes with minimizing geodesic having length less than or equal
to ρ.

Exercise IV.22. Formulate and prove the corresponding version of The-
orem IV.5.1 for homotopy classes of closed paths with a fixed base point. Note
that here the manifold need not be compact – only complete.

Exercise IV.23. (A. Preissmann (1943, pp. 191ff)) The proof given in The-
orem IV.5.1 and the above two exercises exist “downstairs”– in the Rieman-
nian manifold itself. Another approach is to go “upstairs” – to use the uni-
versal covering. It goes as follows: Given a Riemannian manifold Mo, with
universal cover π : M → Mo and associated deck transformation group �.
Prove:

(a) Given xo ∈ Mo, x ∈ π−1[xo], and γ ∈ �. Then, d(x, γ ·x) is the mini-
mum length of all D1 paths in the homotopy class in π1(Mo, xo) determined
by γ . Furthermore, the minimum length is realized by projecting, under π , a
minimizing geodesic segment joining x to γ ·x to a geodesic loop in M based
at x .

(b) The collection of free homotopy classes of Mo are in one-to-one corre-
spondence with the elements of �.

(c) If Mo is compact, then any fundamental domain F of Mo in M has
compact closure. Now use the argument of (a) to derive a second proof of
Theorem IV.5.1.
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(d) If Mo is compact with nonpositive sectional curvature, show that, for any
nontrivial free homotopy class, the minimizing closed geodesic is covered by
an axis of the element in � associated to the class.

(e) If Mo is compact, with strictly negative curvature, then any nontrivial free
homotopy class has precisely one minimizing geodesic.

Also, if ωo is the minimizer in Mo of the free homotopy class associated with
γ ∈ �, then the minimizer of the free homotopy class determined by γ k , k ∈ Z,
is the geodesic ωo covered |k| times, in the appropriate direction.

The Results in Length Spaces

See the discussion of length spaces in §I.9.

Exercise IV.24. (See Remark IV.5.1.) Let X be a compact length space.
(a) Show that every nontrivial free homotopy class in X has a minimizing

geodesic. (See Remark IV.5.1.)
(b) Also show that given any real ρ > 0, there are at most a finite number

of free homotopy classes with minimizing geodesic having length less than or
equal to ρ.

Exercise IV.25. Formulate and prove corresponding versions of Theo-
rem IV.5.1 and the previous exercise for homotopy classes of closed paths
with a fixed base point.

On the Displacement Norm

Given a Riemannian manifold M with a group � of isometries acting freely
and properly discontinuously on M , then to each x ∈ M , we associate the norm
(see §IV.4) on � defined by ‖γ ‖x = d(x, γ ·x).

Exercise IV.26. Prove the following:

Theorem. (M. Gromov (1981, p. 43)) Given a compact Riemannian manifold
Mo, with universal cover π : M → Mo and associated deck transformation
group �. Then, the fundamental group � is generated by those elements γ for
which

‖γ ‖x ≤ 2d(M),(IV.6.3)

where d(M) denotes the diameter of M.

Exercise IV.27. Continue as in the previous exercise. Fix x ∈ M . Show that
given any ε > 0 there exists a positive constant σ , such that any γ ∈ � can be
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written as a word

γ =
∏

j

γ j ,

where

‖γ j‖x ≤ σ ∀ j,
∑

j

‖γ j‖x ≤ (1 + ε)‖γ ‖x .

Existence of Closed Geodesics

Note IV.6. If a compact Riemnannian manifold is simply connected, then one
cannot use Theorem IV.5.1 to guarantee the existence of simple closed geodesics
on M .

An interesting approach, for Riemannian metrics on S
2, was first posed by

Poincaré (1905). The idea is to consider the variational problem of minimizing
the length of those smooth simple closed curves on S

2 that divide S
2 into two

domains of equal total Gauss curvature (i.e.,
∫

K d A = 2π for both domains).
One can easily check (do it!) that should a smooth simply closed curve achieve
the minimum length in this class, then it must be a geodesic. The existence
of the minimum, and the positivity of its length, were carefully worked out in
Croke (1982).

The existence of more than one geodesic on spheres, and other simply con-
nected compact Riemannian manifolds, is the subject of much research. See
Klingenberg (1982, §3.6) and his detailed monograph (1978).
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Surfaces

In this chapter, we present, before resuming the general theory in all dimensions,
a variety of results for oriented 2–dimensional Riemannian manifolds – surfaces
(the phrase “Riemann surface” reserved for when the surface is orientable with
constant curvature equal to −1). So, in all that follows,

Definition. A surface will be an oriented 2–dimensional Riemannian manifold.

We start with a topic motivated by the concluding one of Chapter IV. Namely,
once one knows that in a nontrivial free homotopy class of a compact Rie-
mannian manifold M there is a minimizing closed geodesic, one may ask for
geometric estimates on its length, for example, to estimate its length against
the volume of the manifold. Or, one may ask such a question for any homology
class. Here, for surfaces, we estimate the length of the shortest homotopically
nontrivial closed geodesic (among all homotopically nontrivial closed curves)
against the area of M . This study was initiated by C. Loewner and P. Pu in the
1950s, almost completely dormant for 30 years, and resuscitated in the 1980s
by M. Gromov. Here, we only introduce the subject.

Then, we turn (§V.2) to the celebrated Gauss–Bonnet theorem and formula,
followed by (§V.3) B. Randol’s collar theorem for compact Riemann surfaces,
that is, surfaces of constant curvature −1. The result quite fundamental in the
geometry of Riemann surfaces and in analysis on them and the proof is quite
beautiful in its own right.

In §V.4, we begin discussion of one of the major themes of the rest of the
book, the isoperimetric problem in Riemannian manifolds. The problem has
its roots in classical antiquity, features a rich history of results and methods,
and is still a subject of current research. In this chapter, we concentrate on two
versions of the problem on surfaces: (i) for surfaces with curvature bounded
from above (starting in the 1930s and 1940s, but updated in the 1980s) and

229
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(ii) the isoperimetric problem for paraboloids of revolution (1980s and 1990s).
In subsequent chapters, we consider different aspects of the problem in higher
dimensions.

§V.1. Systolic Inequalities

Henceforth, M is compact.

Definition. The systolic length of M , �(M), is the shortest homotopically non-
trivial closed geodesic in M . The geodesic itself is referred to as the systole.

Theorem V.1.1. (C. Loewner) (P. M. Pu (1962)) Let G denote a Riemannian
metric on the 2–dimesional torus T

2, with total area AG and systole �G . Then,

�G2

AG
≤ 2√

3
,(V.1.1)

with equality if and only if G is a flat metric on T
2 generated by the equilateral

triangle.

Proof. We refer the reader to Exercises IV.6–IV.8 for background on tori cov-
ered by R

n .
The uniformization theorem (Farkas–Kra (1980, Chapter IV)) implies that,

given the Riemannian metric G on T
2, there is a positive function φ : T

2 →
(0, ∞) and a flat Riemannian metric Go on T

2 such that

G = φ2Go on T
2.

Now, the torus acts isometrically on itself as a group translations of the flat
metric. To distinguish between the two, we denote the arbitrary “point on T

2”
by q and the arbitrary “translation of T

2” by T . The area element (for the
flat metric Go) of the points will be denoted, as usual, by d AGo (q), and of the
translations by dµ(T ).

Let ω : S
1 → T

2 be any loop in T
2, T any translation. Then,

LG(ω) =
∫

S1
|ω′(t)|G dt =

∫
S1

(φ◦ω)(t)|ω′(t)|Go dt,

which implies

LG(T · ω) =
∫

S1
(φ◦(T · ω))(t)|(T · ω)′(t)|Go dt =

∫
S1

(T ∗φ)(ω(t))|ω′(t)|Go dt.
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If we restrict ω to noncontractible loops in T
2, then T · ω is noncontractible for

all translations T , which implies

�G ≤
∫

S1
(T ∗φ)(ω(t))|ω′(t)|Go dt

for all translations T .
Now, average the inequality over all translations T ∈ T

2. Then,

�G ≤ 1

µ(T2)

∫
T2

dµ(T )
∫

S1
(T ∗φ)(ω(t))|ω′(t)|Go dt

=
∫

S1
dt

1

µ(T2)

∫
T2

(T ∗φ)(ω(t))|ω′(t)|Go dµ(T )

= �

∫
S1

|ω′(t)|Go dt,

= �LGo (ω),

where � is the constant given by

� = 1

µ(T2)

∫
T2

(T ∗φ)(q) dµ(q) = 1

AGo (T2)

∫
T2

φ(q) d AGo (q);

that is,

�G ≤ �LGo (ω).(V.1.2)

If we minimize (V.1.2) over all noncontractible loops ω, then we obtain �G ≤
��Go . The Cauchy–Schwarz inequality implies

�G2

�Go
2

≤ �2 ≤ 1

AGo (T2)

∫
T2

φ2(q) d AGo (q) = AG
AGo

;

therefore,

�G2

AG
≤ �Go

2

AGo

.(V.1.3)

We conclude that the systolic ratio �2/A is maximized by a flat Riemannian
metric on the torus, with �2/A maximal only if it is flat. The question is: Which
metric is maximal among all the flat ones?

We may always multiply the Riemannian metric by a constant to normalize
the area to equal to 1. So, assume we have a flat torus of area equal to 1
and systolic length �. We identify the torus with its fundamental domain – a
parallelogram in R

2, and we may assume the lattice in R
2 is generated by

e1 = �i, e2 = α�i + 1

�
j, α ∈ (−1/2, 1/2].
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This describes the full collection of isometrically distinct flat tori of area equal
to 1 and with systolic length �.

Then,

�2 ≤ α2�2 + 1

�2
⇒ (1 − α2)�2 ≤ 1

�2
⇒ �4 ≤ 1

1 − α2
≤ 4

3
,

that is, �2 ≤ 2/
√

3, which is the claim.
We have equality if and only if

α = 1/2, and |e1| = |e2| =
√

2√
3
,

which implies

cos θ (e1, e2) = �2

2

√
3

2
= 1

2
, ⇒ θ = π

3
,

which implies the claim. �

Second Proof That the Optimal Metric is Flat. (M. Gromov (1996)) Again,
Go is a flat metric on the torus, with the lattice generated by

e1 = �i, e2 = α�i + 1

�
j, α ∈ (−1/2, 1/2], � = �Go ,

where e1 is the element of the lattice closest to the origin, and e2 is the next
closest. So, we have normalized the area of the flat metric to be equal to 1.

One now considers the family of closed geodesics, determined by the pro-
jection of

t 
→ γs(t) = se2 + te1, 0 ≤ t, s ≤ 1

to T
2
Go

(in short, the horizontal segments of length � starting at points on e2).
Then,

d AGo = |e1||e2| sin θ (e1, e2) ds dt = ds dt.

Assume we are given a metric G on T
2 by

G = φ2Go on T
2.

Then, the Cauchy–Schwarz inequality implies

AG(T2) =
∫ 1

0
ds

∫ 1

0
φ2(t, s) dt ≥

∫ 1

0
ds

{∫ 1

0
φ(t, s) dt

}2

=
∫ 1

0
{LG

2(γs)/�2} ds ≥ �G
2/�2,

which implies �G2/AG is maximized in its conformal class by the flat metric.
�
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Before continuing with surfaces, we give an estimate for higher dimensional
tori.

Theorem V.1.2. (M. Gromov (1996)) For higher dimensional flat torus T
n,

n � 2, with Riemannian metric Go, we have

�Go
n

VGo

= o(n(n+1)/2).

If VGo = 1 then �Go ≤ const.n1/2.

Proof. We write the torus as T
n = R

n/	, where 	 is a lattice in R
n . Let � = �Go ,

V = VGo .
For every R > 0 satisfying V (Bn(R)) ≥ V (Tn), we must have R ≥ �/2. In-

deed, for any ρ > 0 satisfying V (Bn(ρ)) > V (Tn), the covering map p : R
n →

T
n restricted to B

n(ρ) cannot be a diffeomorphism. So, there exist two points
x1, x2 ∈ B

n(ρ) so that p(x1) = p(x2), which implies |x1 − x2| ≥ � (see Exer-
cise IV.23). But |x1 − x2| ≤ 2ρ, which implies the claim.

Then, for large n � 1, we have, by Stirling’s formula (Olver (1974, p. 88)),

�n

V
≤ 2n

ωn
= 2nn	(n/2)

2πn/2
∼ 2nn(n/2)n/2(2π )1/2

2πn/2en/2(n/2)1/2
= √

πn

(
2n

πe

)n/2

,

which implies the claim. �

Definition. Recall, from surface topology, that any compact oriented surface
M may be realized as a 2–sphere with g(M) handles attached. The number
g(M) is referred to as the genus of M .

Theorem V.1.3. (M. Gromov (1996)) Let M be a compact surface of constant
Gauss curvature equal to −1, g � 1, where g denotes the genus of M. Then,

�2

A
≤ const.

{
ln g√

g

}2

.

Proof. We may realize M as M = H
2/	, where H

2 is the hyperbolic plane
of constant Gauss curvature equal to −1, and 	 is a discrete subgroup of the
isometries of H

2. (See Theorem IV.2.1 and Exercise IV.23.)
By the Gauss–Bonnet theorem (V.2.15), below, we have

A(M) = 4π{g(M) − 1}.
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Therefore, again, as in the previous proof, the systolic length �/2 ≤ R for every
R satisfying A(B2

−1(R)) ≥ A(M), that is �/2 ≤ R for every R satisfying

2π{cosh R − 1} ≥ 4π{g − 1}, ⇒ 2π{cosh �/2 − 1} ≥ 4π{g − 1}.
For g � 1, we have

e�/2 ≥ (1 − ε)4g, ⇒ � ≥ const. ln g = const.
ln g√

g

√
g ≥ const.

ln g√
g

A1/2,

which implies the theorem. �

Theorem V.1.4. (J. Hebda (1982)) For all compact orientable 2–dimensional
Riemannian manifolds M of genus ≥ 1, we have

�2(M) ≤ 2 A(M).

Proof. Let φ : S
1 → M denote the minimizing homotopically nontrivial geo-

desic in M of systolic length � = �(M), |φ′| = �/2π , and fix p ∈ φ(S1), and
set φ(0) = p.

Pick any r < �/2. Then, π1(B(p; r ); p) is trivial. If not, there exists a mini-
mal homotopically nontrivial geodesic loop in B(p; r ) based at p. Since the two
halves of the loop are geodesics emanating from p, their total length is≤ 2r < �;
therefore, the shortest closed homotopically nontrivial geodesic is shorter,
which is impossible. Thus, the loop must be null-homotopic, a contradiction.
So π1(B(p; r ); p) is trivial.

Next, φ(π ) is the cut point of p along φ. Assume the opposite; then
d(p, φ(t)) < �/2 for all t ∈ S

1. Now, on the one hand, for any to ∈ (0, 2π ),
a minimizing geodesic joining p to φ(to), pφ(to) cannot be homotopic to
both φ|[0, to] and φ|[to, 2π ] (otherwise, the full loop would be null-homtopic).
But, on the other, the length of φ|[0, to] · φ(to)φ(2π ) is strictly less than �,
which implies φ|[0, to] · φ(to)p is null-homotopic, and the same is true for
φ|[to, 2π ] · φ(to)p, which implies a contradiction.

We claim that

A(M) ≥ A(p; �/2) ≥ �2/2.

To prove the claim, consider φ written as γ : [−�/2, �/2], |γ ′| = 1, γ (0) = p.
For any 0 < r < �/2, consider γ |[−r, r ]; then γ (−r ) and γ (r ) are not cut points
of p.

Now, each component of S(p; r ) is homeomorphic to the image (possibly
degenerate) of a circle. If γ (−r ) and γ (r ) belong to the same component of
S(p; r ), it must be a nontrivial component. Each “half of the component” is
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homotopic to γ |[−r, r ], which implies its length ≥ 2r (if not, replace γ |[−r, r ]
by that “half-component”). Therefore, each component of S(p; r ) has length
≥ 4r .

Assume γ (−r ) and γ (r ) belong to different components of S(p; r ). If one of
these components has length strictly less than �, then it is null-homotopic and
bounds a disk in M , which implies γ would intersect S(p; r ) more than twice,
which is impossible. Therefore, each such component has length ≥ � ≥ 2r ,
which implies the two components of S(p; r ) have length ≥ 4r .

In sum, L(p; r ) ≥ 4r for all r < �/2, which implies

A(p; �/2) ≥
∫ �/2

0
4r dr = �2/2,

which is the theorem. �

Remark V.1.1. Gromov (1983) improved Hebda’s theorem by proving a gen-
eral estimate that implied

�2(M)

A(M)
≤ 64

4
√

g(M) + 27
,

where g(M) denotes the genus of M . In particular,

sup
M :g(M)=g

�2(M)

A(M)
→ 0, as g → ∞.

More recently, Katz–Sabourau (2005) generalized Theorem V.1.3 to all compact
surfaces; namely,

sup
M :g(M)=g

�2(M)

A(M)
≤ 1

π

{
ln g√

g

}2

(1 + o(1)), as g → ∞.

See Katz (2005) for a broad survey of recent systolic inequalities.

§V.2. Gauss–Bonnet Theory of Surfaces

When speaking of Euclidean space R
n of any dimension n, we always consider

its canonical orientation e1 ∧ · · · ∧ en , where {e1, . . . , en} denotes the canonical
basis of R

n . When speaking of S
n we always assume it is endowed with the

orientation inherited from its natural imbedding in R
n+1.

When given a Riemannian manifold M with orientation, then for any domain
D with smooth boundary C , we orient C as in §III.7.

For the rest of this section, M will be a 2–dimensional oriented connected
Riemannian manifold.
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Notation. In what follows, we let ι denote the rotation of tangent spaces to M
by π/2 radians.

Consider an open subset U of M with orthonormal frame field {e1, e2} and
associated dual coframe field of 1–forms {ω1, ω2}. Thus, ω1 ∧ ω2 is the area
form associated to the Riemannian measure d A as in §III.7; and from §I.8, we
have the connection 1–forms ω j

k given by

ω j
k(ξ ) = 〈∇ξ e j , ek〉,

satisfying

ω j
k = −ωk

j , dω j =
∑

k

ωk ∧ ωk
j .

Of course, since dim M = 2, we only have the one nonvanishing connection
form

ω1
2 = −ω2

1.

Also, recall that if � j
k denotes the curvature 2–form given by

� j
k(X, Y ) = ωk(R(X, Y )e j ),

then

dω j
k =

∑
�

ω j
� ∧ ω�

k − � j
k, and � j

k(X, Y ) = 〈R(X, Y )e j , ek〉.(V.2.1)

Therefore, in our 2–dimensional situation, (V.2.1) becomes

dω1
2 = −Kω1 ∧ ω2 = −dω2

1,(V.2.2)

where K denotes the Gauss curvature, by Theorem II.1.

Definition. Given an immersed C2 path γ : (α, β) → M , we define the geo-
desic curvature of γ by

κg = 〈∇tγ
′, ιγ ′〉

|γ ′|3 .

Thus, κg is the quotient of the second fundamental form of the immersion,
relative to the unit normal vector ιγ ′/|γ ′|, by the first fundamental form. (In
particular, if the orientation of γ is reversed, the effect on the geodesic curvature
is to multiply it by −1.)

If the image of the immersion γ is in our neighborhood U above, then

γ ′ = |γ ′|{ξ 1e1|γ + ξ 2e2|γ }
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for functions ξ 1(t), ξ 2(t); so, the map

t 
→ γ ′(t) 
→ (ξ 1(t), ξ 2(t))

is a map from (α, β) → S
1, which has a lift θ : (α, β) → R, which implies

γ ′ = |γ ′|{(cos θ )e1◦γ + (sin θ )e2◦γ }.
Then,

∇tγ
′ = {|γ ′|}′

|γ ′| γ ′ + |γ ′|θ ′{−(sin θ )e1◦γ + (cos θ )e2◦γ }

+ |γ ′|{(cos θ )∇t (e1◦γ ) + (sin θ )∇t (e2◦γ )}

= {|γ ′|}′
|γ ′| γ ′ + θ ′ιγ ′ + |γ ′|{(cos θ )ω1

2(γ ′)e2◦γ + (sin θ )ω2
1(γ ′)e1◦γ }

= {|γ ′|}′
|γ ′| γ ′ + {θ ′ + ω1

2(γ ′)}ιγ ′,

which implies

κg|γ ′| = θ ′ + ω1
2(γ ′).(V.2.3)

Therefore, given a domain D in U , with compact closure and smooth bound-
ary C , we have from (V.2.2) and (V.2.3)

−
∫∫

D
K d A =

∫∫
D

dω1
2 =

∫
C

ω1
2 =

∫
C

κg ds − dθ,

that is, ∫
C

κg ds +
∫∫

D
K d A =

∫
C

dθ,(V.2.4)

where ds is the 1–dimensional Riemannian measure of C (thus, κg ds is a
differential form along the oriented C). Now, C is a compact 1–manifold; so, it
consists of a finite union of imbedded circles. We, therefore, have the existence
of an integer k for which ∫

C
dθ = 2πk.

We now comment that k is independent of the Riemannian metric on U , if U
is the domain of a chart x on M . Indeed, for p ∈ U , let G(p) denote the matrix
of the Riemannian metric given by

G(p) = (gi j (p)), gi j (p) = 〈∂i |p, ∂ j |p〉,(V.2.5)

i, j = 1, 2, and define the family Gε of Riemannian metrics on U by

Gε = (1 − ε)G + ε I,
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where I denotes the identity matrix. Then, k depends continuously on ε; since
k is always integral, it remains constant. Therefore, when U is diffeomorphic to
a subset of the Euclidean plane, it suffices to consider the case where the plane
is endowed with its flat canonical Riemannian metric.

The Umlaufsatz

Or “the theorem of turning tangents.”

Theorem V.2.1. (G. N. Watson (1916)) If C consists of precisely one imbedded
circle in R

2 then

k = 1.(V.2.6)

Proof. (H. Hopf (1935)) Assume that C is given by the orientation preserving
	 : S

1(L/2π ) → R
2, parameterized with respect to arc length, where S

1(L/2π )
denotes the circle of radius L/2π and L denotes the length of C . Set

γ (t) = 	((L/2π )E2π i t/L )(V.2.7)

(see Corollary IV.1.1). Then, γ is L–periodic, with unit speed.
Let T be the triangle in R

2 given by

T = {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ x2 ≤ L},

and map v : T → S
1 by

v(t, s) =


{γ (s) − γ (t)}/|γ (s) − γ (t)| 0 < s − t < L
γ ′(t) s = t
−γ ′(0) = −γ ′(L) s = L , t = 0

.

Then the homotopy lifting lemma implies the existence of a continuous lift of
v to � : T → R, that is, � satisfies

v = E i�.

Thus,

2πk = �(L , L) − �(0, 0) = {�(L , L) − �(0, L)} + {�(0, L) − �(0, 0)}.
To facilitate the evaluation of each of the parentheses, we may pick γ so that

γ 2(t) ≥ γ 2(0)(V.2.8)

for all t (see Figure V.1). Then,

γ ′(0) = e1.(V.2.9)

One now easily checks that each of the above parentheses is equal to π . �
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�(s) − �(0)

 �(0)

�(0, s)

Figure V.1. For the Umlaufsatz.

Applications of the Umlaufsatz

Note that, although the closed curve C was given in the statement of the Um-
laufsatz as the boundary of a domain, the argument only uses the fact that C is
an imbedded circle in the plane, with a given orientation – counterclockwise. If
C is simply given to be an imbedded circle 	, then γ may be chosen to satisfy
(V.2.8), and then (V.2.9) is replaced by

γ ′(0) = ±e1.

One then has (V.2.6) replaced by

k = ±1,

with e1 
→ k = 1 and −e1 
→ k = −1.

Also, the argument of the Umlaufsatz only requires that 	 ∈ C1.

Theorem V.2.2. For M with closure diffeomorphic to the closed unit disk B2

in R
2, we have ∫

∂ M
κg ds +

∫∫
M

K d A = 2π.(V.2.10)

For M diffeomorphic to the sphere S
2, we have∫∫

M
K d A = 4π.(V.2.11)

For M with closure diffeomorphic to the closed annulus in R
2, we have∫

∂ M
κg ds +

∫∫
M

K d A = 0.(V.2.12)
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One then has:

Theorem V.2.3. (Gauss–Bonnet theorem) For M diffeomorphic to the sphere
with g attached handles, we have∫∫

M
K d A = 4π (1 − g).(V.2.13)

Proof of Theorems V.2.2 and V.2.3. (W. Blaschke (1967, pp. 163–167)1) Equation
(V.2.10) is a direct consequence of the Umlaufsatz applied to (V.2.4).

To obtain (V.2.11), one applies (V.2.10) to the two domains bounded by the
preimage of a great circle of S

2 under the diffeomorphism. Each domain orients
this preimage opposite to the other, so the sum of the boundary integrals of the
geodesic curvature vanishes, and (V.2.11) follows immediately.

For (V.2.12), we note that the Umlaufsatz applied to the total boundary of an
annulus implies ∫

dθ = 0,

since the two boundary curves have opposite orientation.
We note that the same consideration implies that if D is a domain in R

2

diffeomorphic to a disk with h holes, then∫
∂ D

dθ = 2π (1 − h).

Then, for (V.2.13), we remind the reader that for connected, oriented 2–
dimensional manifolds M and M, to say that M is obtained by attaching a
handle to M is to say that there exist two Jordan curves γ1, γ2 in M such
that M \ ({γ1} ∪ {γ2}) consists of two open connected submanifolds �1, �2

such that �1 is diffeomorphic to M with two closed disks removed, and �2 is
diffeomorphic to a cylinder (see Figure V.2).

Thus, we may pick a point p in M with neighborhood � diffeomorphic to
an open 2–disk, such that M \ � is diffeomorphic to a closed 2–disk with g
handles attached. One now applies the above to obtain the desired result. �

1 It seems that not only does the proof belong to Blaschke, but also the Gauss–Bonnet theorem is in
fact “Blaschke’s theorem” (personal communication from R. Osserman based on his own research
and conversations with S. S. Chern). See Petersen (1999, pp. 298–300) for some historical
background.
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�2

�1

�2�1

M

Figure V.2. Attaching a handle.

Theorem V.2.4. The 2–dimensional torus has genus equal to 1. Therefore, for
any Riemannian metric on a torus M we have∫∫

M
K d A = 0.(V.2.14)

For any compact surface of constant curvature −1, we have∫∫
M

K d A = 4π{g(M) − 1}.(V.2.15)

In particular, g(M) ≥ 2.

We now consider D with boundary C possessing corners.
Note that (V.2.6) is valid if we only assume that C is given by orientation

preserving 	 : S
1(L/2π ) → M ∈ C1 ∩ D2, parameterized with respect to arc

length, in which case the Umlaufsatz implies∫
C

dθ = 2π.

Now consider D diffeomorphic to the 2–disk with compact closure, and with
open neighborhood U ⊃ D diffeomorphic to a subset of R

2; and assume the
boundary C of D is given by the orientation preserving 	 : S

1(L/2π ) → M ∈
D2, |	′| = 1 at points where 	 ∈ C1. Since the discontinuities of 	′ are isolated,
we may define at all points q = γ (t) ∈ S

1(L/2π ) the one-sided limits

	′
−(q) = lim

τ↑t
γ ′(τ ), 	′

+(q) = lim
τ↓t

γ ′(τ ),

where γ (τ ) = 	((L/2π )E2π iτ ), and

q = (L/2π )E2π i t .
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To require that C has, at worst, corners (i.e., no cusps) is to require that

	′
+(q) �= −	′

−(q)

for all q ∈ S
1(L/2π ). We then have for every p = 	(q) ∈ C , the well-defined

exterior angle α(p) ∈ (−π, π ) defined as the oriented angle from 	′
−(q) to

	′
+(q), for every p. (Of course, points of continuity of 	′ are described by

α(p) = 0.)

Theorem V.2.5. (Gauss–Bonnet formula; O. Bonnet (1848, p. 124)) Given
M, D, and C, as described above, we have∫

∂ D
κg ds +

∫∫
D
K d A = 2π −

k∑
j=1

α(p j ),(V.2.16)

where p1, . . . , pk are the corners of C.

Proof. Let γ be given by γ (τ ) = 	((L/2π )E2π iτ ). By rotating S
1(L/2π ) first,

if necessary, we may assume that γ is C2 at t = 0 and t = L . Set

q j = (L/2π )E2π i t j /L , p j = 	(q j ) = γ (t j ),

j = 1, . . . , k, where t1 < · · · < tk ∈ (0, L), and t0 = 0, tk+1 = L .
Then, certainly, ∫

C
κg ds =

k∑
j=0

∫ t j+1

t j

κg(γ (t)) dt.

We smooth out the corners as follows: There exist ε0 > 0, and Riemann
normal coordinates x j : U j → R

2 centered at p j , j = 1, . . . , k, such that

γ (R) ∩ U j = γ ((−ε0 + t j , t j + ε0))

for all j . For each ε in (0, ε0), let γ̂ε, j denote the smaller circular arc in
R

2, parameterized with respect to arc length, connecting (x j ◦γ )(−ε + t j )
to(x j ◦γ )(t j + ε), and tangent to x j ◦γ |(−ε0 + t j , t j + ε0) at the points
(x j ◦γ )(−ε + t j ) and (x j ◦γ )(t j + ε); and set

γε, j = x j
−1 ◦ γ̂ε, j ,

for each j = 1, . . . , k. Replace γ |(−ε + t j , t j + ε) by γε, j , j = 1, . . . , k. Call
the new domain, resulting from the change of boundary, Dε . Then∫

∂ Dε

κg ds +
∫∫

Dε

K d A = 2π.



P1: KsF

0521853680c05 CB980/Chavel January 3, 2006 5:37 Char Count= 707

§V.2. Gauss–Bonnet Theory of Surfaces 243

Then, one verifies that, as ε ↓ 0,∫
∂ Dε

κg ds →
∫

∂ D
κg ds +

k∑
j=1

α(p j )

and ∫∫
Dε

K d A →
∫∫

D
K d A.

This completes the proof. �

Corollary V.2.1. (C. F. Gauss (1827, pp. 29ff)) If C consists of three geodesic
segments, with interior angles β(p j ) ( from 	′

+(q j ) to −	′
−(q j )), j = 1, 2, 3,

then ∫∫
D
K d A =

3∑
j=1

β(p j ) − π.(V.2.17)

Now consider compact M with a triangulation, each of whose closed triangles
is in a domain diffeomorphic to a subset of R

2. Then,∫∫
M
K d A =

∑
faces

{2π −
∑

exterior angles}

=
∑
faces

{−π +
∑

interior angles}

= 2πV − π F,

where V denotes the number of vertices, and F denotes the number of faces, of
the triangulation. Let E denote the number of edges of the triangulation. Then,
since M is compact,

3F = 2E ;

so

−F = 2(F − E),

which implies

Theorem V.2.6. (W. Blaschke (1967, pp. 163–167)) For M compact, with
triangulation as above, we have∫∫

M
K d A = 2π{V − E + F} = 2πχ (M),(V.2.18)

where χ (M) denotes the Euler characteristic of M.
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In particular, if M is compact orientable with no boundary, then

χ (M) = 2 − 2g(M).

Theorem V.2.7. More generally, for M orientable, with with compact closure
and smooth boundary, we have∫

∂ M
κg ds +

∫∫
M

K d A = 2πχ (M).(V.2.19)

If the boundary ∂ M has corners with exterior angles {α j , j = 1, . . . , k},
then ∫

∂ M
κg ds +

∫∫
M

K d A = 2πχ (M) −
k∑

j=1

α j .(V.2.20)

§V.3. The Collar Theorem

Definition. A Riemann surface will be an oriented 2–dimensional Riemannian
manifold of constant Gauss curvature equal to −1.

Let M be a compact Riemann surface, and let γ denote a simply closed geodesic
in M of length �. Then, B. Randol’s (1979) collar theorem states that the distance
from γ to its focal cut locus ≥ arcsinh csch �/2 (see §III.6 for definitions and
notation). Furthermore, the area inside the focal cut locus, A(νD

γ
), is greater

than or equal to 2�csch �/2.

First, the reader should refer to Exercises IV.12–IV.14 and Exercise IV.23. Their
content and arguments will be used throughout the proof.

Second, note that because the Riemann surface has negative curvature, the
Gauss–Bonnet Theorem (V.2.15) implies that the genus of M is greater than or
equal to 2.

Notation. For any point p in M , we let ιp denote the rotation of π/2–radians
in the tangent space Mp.

To prove Randol’s collar theorem, we first require a lemma from hyperbolic
trigonometry (see Ratcliffe (1994, p. 96)).

Lemma V.3.1. Let ABC D denote a geodesic quadrilateral in H
2, the hyper-

bolic plane, with A, B, C all right angles, and � D = φ.
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Assume the length of AB and BC are r and t, respectively. Then,

cos φ = (sinh r )(sinh t).

Theorem V.3.1. (B. Randol (1979)) Let M be a compact Riemann surface
with simple closed geodesic γ of length � > 0, and let inj γ denote the distance
from γ to its focal cut locus. Then,

inj γ ≥ arcsinh csch �/2.(V.3.21)

Corollary V.3.1. Let Cγ = {q ∈ M : d(q, γ ) < inj γ } denote the cylinder
“inside the focal cut locus.” Then,

A(Cγ ) ≥ 2�csch �/2.

Proof. For the area, we have

A(Cγ ) = 2�

∫ inj γ

0
cosh t dt ≥ 2�

∫ arcsinh csch �/2

0
cosh t dt = 2�csch �/2.

�

Proof of Theorem V.3.1. Let γ : S
1(�/2π ) → M , |γ ′| = 1, be a simple closed

geodesic of length �.
Klingenberg’s lemma can be adapted here to show the existence of two

distinct geodesic segments σ j : [0, inj γ ] → M , |σ ′| = 1, σ j (0) on γ , for both
j = 1, 2, satisfying

σ1(inj γ ) = σ2(inj γ ), and σ1
′(inj γ ) = −σ2

′(inj γ ).

So, the union of the two geodesic segments is a smooth geodesic segment
that can be written as σ : [0, 2inj γ ] → M , |σ ′| = 1, σ (0) = σ1(0) :=
p1, σ (2inj γ ) = σ2(0) := p2. We set q = σ (inj γ ). Note that Figure V.3 con-
tains the two possibilities of how σ intersects γ at p2.

Assume that the base geodesic γ is parameterized so that γ (0) = p1 and that
γ is oriented so that σ ′(0) = ιp1 · γ ′(0).

Next, consider the geodesic τ in M for which τ (0) = q, and τ ′(0) = −ιq ·
σ ′(inj γ ). We claim that if (V.3.21) is false, then τ is a geodesic loop that is
freely homotopic to γ .

Indeed, lift the geodesics γ , σ to geodesics γ̃ , σ̃ in the universal cover of
M , H

2, starting at some lift p̃ of p1. As in M , σ̃ ′(0) = ι̃ p̃ · γ̃ ′(0). Let � be
the geodesic in M such that �(0) = γ (−�/2) = γ (�/2) and �′(0) = ι�(0) ·
(γ ′(�/2)) = ι�(0) · (−γ ′(−�/2)). When γ is lifted, starting at p1, to γ̃ by the
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p1 �

p2(ii)

p2(i)

(i)

(ii)

(ii)

Figure V.3. The focal cut point.

covering to H
2, the lifts of γ (−�/2), γ (�/2) are now distinct points, thereby

determining two lifts �̃1, �̃2 of �, starting at γ̃ (−�/2), γ̃ (�/2), respectively.
The lift, now, of the geodesic τ , τ̃ , starting at τ̃ (0) = σ̃ (inj γ ) will be oriented
so that τ̃ ′(0) = −ι̃σ̃ (inj γ ) · σ̃ ′(inj γ ). By Lemma V.3.1, if (V.3.21) is false, then
τ̃ will have to intersect �̃1 and �̃2. By symmetry, the intersection must be at
the same arc length along �̃1 and �̃2 (see Figure V.4). The respective points of
intersection q̃1 and q̃2 will then project, under the covering, to the same point
in M . Therefore, τ̃ projects to the loop τ in M , which is freely homotopic to γ .
We distinguish two possibilities: Let ξ denote the continuous unit vector field

�1
~

~

�2
~

~

~

�

~�

�

q1
~q2

Figure V.4. The lifts to H
2.
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~

~

�

~�

�

Figure V.5. The lifts to H
2.

along γ , orthogonal to γ , for which σ ′(0) = ξ (p1). The two possibilities are:
(i) σ ′(2inj γ ) = −ξ (p2) and (ii) σ ′(2inj γ ) = ξ (p2).

Assume (i) σ ′(2inj γ ) = −ξ (p2). Go through the same lifting construction
as above, except that, now, start at p2. Since the lift of σ starting at p2 is
oriented opposite the lift starting at p1, the lift of τ now appears with the
orientation opposite to that obtained by starting at p1. The result is that τ is
freely homotopic to γ −1, which implies γ is freely homotopic to γ −1, which
contradicts Preissmann’s theorem (Exercise IV.14).

Assume (ii) σ ′(2inj γ ) = ξ (p2). This time, lifting the picture starting at p2

will result, as in Figure V.5, by cutting M along γ in a homotopy between the
new boundaries. This is impossible since the genus of M is greater than 2. �

§V.4. The Isoperimetric Problem: Introduction

Let M be a Riemannian manifold. As usual, M always refers to the interior,
independent of whether M has, or does not have, a nonempty boundary. The
isoperimetric problem is to find, for any given v less than the volume of M , the
region of volume v with minimal area of its boundary. The analytic aspect of
the problem is to write this minimal area as a function of v , namely,

Definition. The isoperimetric profile v 
→ IM (v) of M, defined for every v ∈
(0, V (M)) (the volume of M might be infinite), is given by

IM (v) = inf {A(∂ D) : V (D) = v, D ⊂⊂ M},
where D varies over relatively compact open submanifolds of M with smooth
boundary in M . Such open subsets of M will simply be referred to as smooth
regions. (In particular, they can have at most finitely many components.)

One, naturally, seeks explicit knowledge of the function IM (v). Also, one wants
to know if, given any v , a region � exists for which V (�) = v and A(∂�) =
IM (v); such a region is called an isoperimetric region or minimizer for short.
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Furthermore, one also wants know if the boundary of the isoperimetric region
is smooth. Finally, if it exists, it is unique.

A weaker version of the problem is to offer an accessible lower bound φ(v)
for IM (v), that is, an isoperimetric inequality of the form

A(∂ D) ≥ φ(V (D))(V.4.1)

for all relatively compact smooth regions D.
The classical isoperimetric inequality in Euclidean space of all dimensions

represents the best all worlds, namely, for any such region in R
n , one has

A(∂ D)

V (D)1−1/n
≥ A(Sn−1)

V (Bn)1−1/n
= cn−1

ωn
1−1/n

.(V.4.2)

One has equality in (V.4.2) if and only if D is a disk in R
n . (See the proofs in

§§VI.1 and VI.2.) Since the quotient on the right-hand side of (V.4.2) remains
the same for disks of any radius r in R

n , the inequality constitutes a complete
solution of the isoperimetric problem. It says that, for any given volume v ,
the disks of volume v are the only minimizers of the bounding area, and the
isoperimetric profile IM (v) is known explicitly, namely,

cn−1 = nωn, ⇒ IRn (v) = nωn
1/nv1−1/n.

For the general situation, we quote a broad existence theorem.

Theorem V.4.1. (Main theorem for M without boundary) If Mn is compact,
or covers a compact, then, for any v, 0 < v < V (M), there exists �v ⊂⊂
M whose boundary in M, �v = ∂�v minimizes area among smooth regions
of volume v, that is, A(�v ) = IM (v). Moreover, except for a singular set of
Hausdorff dimension at most n − 8, the boundary �v of any minimizer is a
smooth imbedded hypersurface with constant mean curvature.

Of course, the theorem applies to the standard simply connected spaces of
constant sectional curvature – Euclidean space, the sphere, and hyperbolic space
of all dimensions.

Theorem V.4.2. (Main theorem for M with boundary) Assume, in the above,
M has boundary and Mn is compact (the boundary may be C1,1). Then, again,
the minimizer �v exists, with boundary �v . �v might include some of the
boundary ∂ M, in which case �v ∈ C1,1 in a neighborhood of ∂ M. The mean
curvature h = hv is constant on the set of all smooth points of �v ∩ M. The
mean curvature of �v ∩ ∂ M must satisfy h ≤ hv .
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Note that, in this case, A(�v ∩ ∂ M) is included in the area A(�v ). Also, the
mean curvature of �v is always relative to the interior unit normal vector field
along �v . Finally, the mean curvature of �v ∩ ∂ M is defined in a weak sense.
This formulation of the main theorems is from A. Ros (2001); see the references
there for the proof of the theorem. The proof of C1,1 regularity in a neighborhood
of the boundary is in B. White (1991) and E. Stredulinsky–W. P. Ziemer (1997).

Let � be an arbitrary region with compact closure and smooth boundary in M ,
and assume a 1–parameter family of regions is given by perturbing the boundary
∂� by

�(ε; w) = exp εν|w , w ∈ ∂�,

where ν denotes the exterior unit normal vector field along ∂�. Let �ε be the
region with boundary ∂�ε = �ε(∂�), where �ε(w) = �(ε; w). Let νε denote
the exterior unit normal vector field along ∂�ε , for every ε. Set V (ε) = V (�ε)
and A(ε) = A(∂�ε). Then, the standard variational formulae (Exercises III.14
and III.33) read as:

V ′(ε) = A(ε), A′(ε) =
∫

∂�ε

hε d A,(V.4.3)

where hε is the mean curvature relative to −νε , and

A′′(ε) =
∫

∂�ε

{hε
2 − ‖Bε‖2 − 〈Ric νε, νε〉} d A,(V.4.4)

where 〈 , 〉 denotes the Riemannian inner product in M , ‖Bε‖2 denotes the
Gram–Schmidt norm of the second fundamental form Bε of ∂�ε relative to νε ,
and Ric denotes the Ricci curvature of M , .

Theorem V.4.3. (C. Bavard–P. Pansu (1986)) Let � be an isoperimetric
region with smooth boundary, and constant mean curvature h with respect to
the unit interior normal along the boundary. Then, the isoperimetric profile IM

has weak (in the sense of Calabi – see below) left- and right- first derivatives
and second derivative satisfying

D+ IM

dv
≤ h ≤ D− IM

dv
, v = V (�),

and

D2 IM

dv2
≤ − 1

IM
2(v)

∫
∂�

{‖B‖2 + 〈Ric ν, ν〉} d A, at v = V (�).
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If the Ricci curvature of M is bounded from below, then

D2

dv2

{
IM

2(v) +
(

inf
M

Ric

)
v2

}
≤ 0 at v = V (�).

In particular, the function

v 
→ IM
2(v) +

(
inf
M

Ric

)
v2

is concave, which implies IM (v) is locally Lipschitz.

Proof. Given an arbitrary function f (x), to say that it satisfies

D+ f

dx
(xo) ≤ C1 ≤ D− f

dx
(xo) and

D2 f

dx2
(xo) ≤ C2

at xo in the sense of Calabi is to say that there exists a smooth function φ(x)
defined on some neighborhood of xo such that

f (x) ≤ φ(x) ∀ x, φ(xo) = f (xo),

φ′(xo) = C1, φ′′(xo) = C2.

Let ε(v) denote the inverse function of V = V (ε), then

d A

dv
= A′

A
⇒ d2 A

dv2
= 1

A

{
A′′

A
−

(
A′

A

)2
}

.

Therefore, if ∂� has constant mean curvature, then

d2 A

dv2

∣∣∣∣
ε=0

= − 1

A2

∫
∂�

{‖B‖2 + 〈Ric ν, ν〉} d A.(V.4.5)

Then, for ε in a neighborhood of 0, we have V (ε) in a neighborhood of V (�),
and

IM (v) ≤ A(v) for v in a neighborhood of V (�),

IM (V (�)) = A(V (�)).

Then (V.4.5) implies

d2 A2

dv2

∣∣∣∣
ε=0

≤ −2 inf
M

Ric,

which implies

d2

dv2

{
A2(v) +

(
inf
M

Ric

)
v2

}∣∣∣∣
ε=0

≤ 0,

which implies the claim. �
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Remark V.4.1. The theorem remains valid when M has a boundary, because
we can use a variation of ∂� compactly supported on ∂� ∩ M with infinitesmal
variational vector field η (in the notation of Exercise III.14) pointing into �.

§V.5. Surfaces with Curvature Bounded from Above

Here, M is a surface. We use A and L for V and A, respectively, and write the
isoperimetric function as I (a).

The Wirtinger inequality (Exercise III.42) gives rise to a proof of the classical
isoperimetric inequality in the plane R

2. The argument is from A. Hurwitz
(1901).

Theorem V.5.1. Let � be a domain in R
2 bounded by the C1 Jordan curve 	,

and let the area of � be denoted by A, the length of 	 by L. Then,

L2 ≥ 4π A,

with equality if and only if � is a disk.

Proof. Let x denote the position vector of the point x ∈ R
2. One identifies

the position vector x with the tangent vector �xx ∈ (Rn)x ; then, the divergence
theorem (III.7.8) implies

2A =
∫

	

〈x, ν〉 ds

where ds denotes arc length along 	. Cauchy’s inequality, for vectors and for
integrals, then, in turn, imply

2A =
∫

	

〈x, ν〉 ds ≤
∫

	

|x| ds ≤
{∫

	

|x|2 ds

}1/2 {∫
	

12 ds

}1/2

= L1/2

{∫
	

|x|2 ds

}1/2

,

that is,

2A ≤ L1/2

{∫
	

|x|2 ds

}1/2

.

Next, translate the curve x so that∫
	

x(s) ds = 0.
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Note that A(�), L(	), and x′(s) (for every s) are invariant under the translation.
Therefore, we can apply Wirtinger’s inequality to obtain

2A ≤ L3/2

2π

{∫
	

|x′|2 ds

}1/2

.

We are thinking of x as x = x(s), where s is arc length; so |x′| = 1 on all of 	,
which implies the theorem.

The case of equality follows easily. �

The Theorems of Carleman and Weil

The first generalization of this inequality was given by T. Carleman (1921).

Theorem V.5.2. Let � be a 2–dimensional domain in a minimal surface � in
R

3, bounded by the C1 Jordan curve 	. Then,

L2 ≥ 4π A,

with equality if and only if � is a flat totally geodesic disk in R
3.

Proof. The proof is the same as above, except that now uses Jellet’s formula
(Exercise III.30(b)) to prove

2A =
∫

	

〈x, ν〉 ds.

The rest of the argument is the same. �

Theorem V.5.3. (A. Weil (1926)) If M is a simply connected surface with
complete Riemannian metric of nonpositive Gauss curvature one also has, for �

a 2–dimensional domain in M bounded by the C1 Jordan curve 	, the inequality

L2 − 4π A ≥ 0,

with equality if and only if � is a geodesic disk of Gauss curvature identically
equal to 0.

Remark V.5.1. The Weil theorem is a generalization of the Carleman theorem
since every minimal surface has nonpositive Gauss curvature – use (II.2.6).

Lemma V.5.2. Let p ∈ M, {e1, e2} be an orthonormal basis of Mp, and y :
M → R

2 normal coordinates on M determined by {p; e1, e2}. Then, {p; e1, e2}
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may be chosen so that ∫
	

y j ds = 0.

Proof. Fix po ∈ M , {E1, E2} an orthonormal frame at po, and parallel translate
the frame {E1, E2} along every geodesic emanating from po and thereby obtain
a differentiable orthonormal frame field {e1, e2} on all of M (we are using
the simple connectedness and nonpositivity of the Gauss curvature). For every
p ∈ M , let yp : M → R

2 denote the Riemann normal coordinates on all of M
determined by {e1, e2} at p. Let (yp) j , j = 1, 2 denote the coordinate functions
of yp. Then, the vector field

Y (p) =
2∑

j=1

{∫
	

(yp) j ds

}
e j (p)

is a continuous vector field on M . Restrict Y to a geodesic disk B in M that
contains �. Then, the nonpositivity of the Gauss curvature implies that B is
convex (see Exercise II.20); therefore, on the boundary of B, Y points into B.
The Brouwer fixed-point theorem then implies that Y has a zero in B. �

Proof of Theorem V.5.3. Let p be given by the lemma, y given by the normal
coordinates based at p, and consider the vector field on M given by

X =
2∑

j=1

y j ∂

∂y j
.

From Exercise III.8 and the relation

X f = t
∂ f

∂t

for any function f , where t denotes distance from p, one deduces

div X (exp tξ ) = 2 + t

{
∂
√

g(t ; ξ )

∂t
− 1

t

}
,

where ξ denotes any unit tangent vector in Mp. Since the Gauss curvature is
nonpositive, the Sturm comparison theorem (Exercise II.22) implies div X ≥ 2.

Therefore,

2A ≤
∫∫

�

div X d A ≤ L1/2

{∫
	

{|y1|2 + |y2|2} ds

}
.
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We assume the boundary is parameterized with respect to arc length and that
the point p satisfies the lemma. Then,

2A ≤ L3/2

2π

{∫
	

{((y1)′)2 + ((y2)′)2} ds

}1/2

= L2/2π,

which implies the claim. The case of equality is handled easily. �

Remark V.5.2. The inequality L2 − 4π A ≥ 0 can be extended to all compact
regions in the complete simply connected M of nonpositive Gaussian curvature.
Indeed, it is certainly true for every region � diffeomorphic to a disjoint union
of disks. If the region D is obtained from the disjoint union of disks, �, by
the removal of a finite number of diffeomorphic disks, then A(D) < A(�). But
L(∂D) > L(∂�). Since the inequality is valid for �, it is automatically valid
for D. The case of equality is easily handled.

Remark V.5.3. Finally, E. F. Beckenbach–T. Rado (1933) noted that if L2 ≥
4π A for all simply connected domains on a surface then the Gauss curvature
is nonpositive. The argument is an easy calculation. Fix any x ∈ M . Consider
the geodesic disk B(x ; ε), for ε > 0 sufficiently small, with area A(x ; ε) and
boundary length L(x ; ε). Then, one uses Corollary II.8.1 to show

L(x ; ε) = 2πε

{
1 − ε2K

6
+ O(ε3)

}
, A(x ; ε) = πε2

{
1 − ε2K

12
+ O(ε3)

}
,

which implies

L2(x ; ε)/A(x ; ε) = 4π

{
1 − 3ε2K

12
+ O(ε3)

}
.

Therefore, L2(x ; ε)/A(x ; ε) ≥ 4π for all sufficiently small ε > 0 implies that
K is nonpositive. �

The Bol–Fiala Inequalities

We now are given an oriented complete 2–dimensional real analytic Rieman-
nian manifold M , and a relatively compact domain D bounded by C, a finite
number of simple closed real analytic Jordan curves, each having positive length
(this excludes, for example, deleting a point from the domain). Each component
curve of C is given by a periodic map ω : R → M , parameterized with respect
to arc length.

Let q denote a point in C, as well as an arc length parameter along each com-
ponent of C. Also, let T denote the unit velocity vector field along C.



P1: KsF

0521853680c05 CB980/Chavel January 3, 2006 5:37 Char Count= 707

§V.5. Surfaces with Curvature Bounded from Above 255

Let N denote the interior unit normal vector field along C, and ι denote the
rotation of tangent vectors by π/2–radians. The orientation of C is chosen as
usual, that is, so that N = ιT. In particular,

∇qT = κgN,

where κg denotes the geodesic curvature of ω.
Consider Fermi coordinates on M , given by

v(t ; q) = exp tN(q), t ∈ R, q ∈ C.

Then, standard calculation yields (see Gauss’ lemma – Theorem I.6.1)

|∂t v| = 1, ∇t∂t v = 0, 〈∂t v, ∂qv〉 = 0.

Also, ∂qv satisfies Jacobi’s equation (see §III.6)

∇t
2∂qv + K∂qv = 0,

where K denotes the Gauss curvature of M , along each geodesic γq (t) :=
v(t ; q), with initial conditions

∂qv(0; q) = T(q), ∇t∂qv(0; q) = ∇qN(q) = −κgT(q).

One can write

∂qv := η (−ι(∂t v));

therefore,

ds2 = dt2 + η2 dq2

for the Riemannian metric, and η satisfies the scalar Jacobi equation:

∂t
2η + Kη = 0, with initial conditions η(0; q) = 1, (∂tη)(0; q) = −κg(q).

Notation. For every q ∈ C, let P(q) denote the first positive zero of t 
→
∂qv(t ; q); that is, v(P(q); q) is the first focal point of C along the geodesic
γq (t) = v(t ; q), t > 0. If no such zero exists, then we set P(q) = +∞.

Since η and ∂tη cannot vanish simultaneously, then P(q), when finite, is a real
analytic function (by the implicit function theorem), with P ′(q) bounded on
any strip 0 ≤ t ≤ r .

Immediate results are:

Proposition V.5.1. If, for any given ro > 0, the equation P(q) = ro has in-
finitely many solutions in C, then D is a disk.
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Similarly, if P ′(q) = 0 has infinitely many solutions, then either (i) D is a
disk, or (ii) for every accumulation point qo of solutions of P ′(q) = 0 we have
P(qo) = +∞.

Let Zo denote the set of r for which P(q) = r has at least one solution qo

satisfying P ′(qo) = 0 at P(qo) = r; then, Zo is discrete.

Proposition V.5.2. (Hüllcurvensatz) For each component of C, along the path
q 
→ v(P(q); q) where P(q) is finite, the Riemannian metric reads as

ds = |P ′(q)| dq;

so when P ′ �= 0 on an interval [q1, q2], we have that the length of the path
along the first focal locus, from q1 to q2, is given by |P(q2) − P(q1)|.

Definition. Given the geodesic γq (t) = v(t ; q), we let

ρ(q) = sup {τ : d(C, γq (t)) = t ∀ t ∈ (0, τ ]}.

So, ρ(q) < +∞ is the distance from q to the focal cut point γq (ρ(q)) of C
(we usually just say, cut point of C) along γq .

Proposition V.5.3. A cut point p = v(ρ(q); q) of C is either the first focal point
of C along γq or is the intersection of at least two geodesic arcs minimizing
distance from C to p. Note that these two arcs need not emanate from the same
component of the boundary.

So, ρ(q) ≤ P(q). Furthermore, if ρ(qo) = P(qo) < ∞, then P ′(qo) = 0.

Proof. The proof of the first claim is standard (see §III.2 for the discussion of
the cut locus of a point), so we only consider the last claim.

If P ′(qo) �= 0, then there exists q close to qo with P(q) < P(qo). One can
then travel from q on C to v(P(qo); qo) by going along the geodesic γq (t)
from q to γq (P(q)) and then traveling along the focal locus to v(P(qo); qo). By
Proposition V.5.2, the full path has length P(qo), which implies γqo (t) does not
minimize distance from C to γqo (P(qo)), which is a contradiction. �

Definition. A cut point p of C along the geodesic γq is normal if it is not a
focal point of C along γq (i.e., ρ(q) < P(q)), and it is the endpoint of precisely
two distance minimizing arcs (one of them γq ) from C to p.

A cut point of C, which is not normal, will be referred to as anormal.
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Proposition V.5.4. Let po be a normal cut point of C along the two geodesics
γq1 and γq2 at distance ρo. Then, the function ρ = ρ(q) is real analytic on
neighborhoods of q1 and q2.

Also, there exists a local real analytic function µ(q), from a neighborhood
of q1 to a neighborhood of q2, satisfying

µ(q1) = q2, v(ρ(q); q) = v(ρ(q); µ(q)).

Furthermore, the locus v(ρ(q); q) near q1 (or q2) bisects the angle between
the minimizing geodesics γq and γµ(q) meeting at v(ρ(q); q).

Assume q1 and q2 are in the same component of C, and q1 < q2 < q1 + �,
where � is the length of their common component. Then, the map q 
→ µ(q) is
strictly decreasing.

Proof. Let U1 be a neighborhood of (ρo, q1) such that v1 := v|U1 is a dif-
feomorphism, let U2 be a neighborhood of (ρo, q2) such that v2 := v|U2 is a
diffeomorphism and satisfying v1(U1) = v2(U2). Set

(τ, σ ) = (v2
−1◦v1)(t, s)

(so, we let s replace q in a neighborhood of q1, and let σ replace q in a neigh-
borhood of q2). Then write for φ = v2

−1◦v1,

τ := φ1(t, s), σ := φ2(t, s).

If γs(t), γσ (τ ) denote two distinct geodesics producing the normal cut point of
C at γs(ρ) = γσ (ρ), then

ρ = φ1(ρ, s), σ = φ2(ρ, s).

Therefore, solve t = φ1(t, s) for t as a function of s on some neighborhood of
s = q1. To use the implicit function theorem, it suffices to show that ∂φ1/∂t < 1
at (t, s) = (ρo, q1). But,

(∂φ1/∂t)(ρo, q1) = 〈∂t v(ρo, q1), ∂τ v(ρo, q2)〉 < 1,

which is the first claim. The function µ(q) is given by µ(q) = φ2(ρ(q), q).
Thus, the focal cut locus is given, locally by q 
→ v(ρ(q); q). Its velocity

vector is given by

ρ ′(q)∂t v|v(ρ(q);q) + ∂qv|v(ρ(q);q) = ρ ′(q)γq
′(ρ(q)) + ∂qv|γq (ρ(q));

so, the cosine of its angle with γq
′(ρ(q)) is ρ ′(q). And the same is true for the

geodesic γµ(q), since ρ(µ(q)) = ρ(q). This implies the focal cut locus is the
angle bisector of the intersecting geodesics.
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For the last claim, it suffices to note that the arcs ω|[q1, q2], γq1 |[0, ρo], and
γq2 |[0, ρo] are the boundary of a bounded domain in D. �

Corollary V.5.1. In the above, we have ρ ′(q) = 0 if and only if γq
′(ρ(q)) =

−γµ(q)
′(ρ(q)), that is, the two geodesics meet smoothly at the cut point of C.

If ρ ′(q) ≡ 0 on one component of C, then either D is a geodesic disk or a
geodesic annulus.

Proposition V.5.5. The function q 
→ ρ(q) is continuous.
If v(ρ(qo); qo) is a normal cut point of C, then qo has a neighborhood for

which v(ρ(q); q) is a normal cut point of C.

Proof. For the first claim, see the proof of Theorem III.2.1. It is easily adapted
to our situation. So, we only consider the second claim.

If there is a sequence of q j → qo such that all v(ρ(q j ); q j ) are all focal points
of C, then so is v(ρ(qo); qo).

If one has a sequence q j → qo so that all v(ρ(q j ); q j ) are all nonfocal, anor-
mal cut points of C, then the “normality” of v(ρ(qo); qo) comes from the strict
decrease of the number of distinct geodesics associated with each q j , which
implies that the exponential map – more precisely, v – is not locally 1–1 on the
preimage of v(ρ(qo); qo), which implies (see Exercise II.27) that v(ρ(qo); qo) is
a focal cut point along some geodesic and is therefore anormal. �

The arguments of Propositions V.5.4 and V.5.5 also imply:

Proposition V.5.6. Let vo be a nonfocal, anormal cut point of C. Then there
exist a finite number of q–values, q1, q2, . . . qn, n ≥ 3, satisfying

vo = v(ρ(q j ); q j ), j = 1, . . . n.

Furthermore, for each j , ρ(q) is C1 on a small closed interval ending at q j and
real analytic on the interior of that interval; and the set of (normal!) cut points
of C in a neighborhood of vo consist of n arcs of class C1 ending at vo. At each
point of these arcs, the arc bisects the angle of the geodesics meeting there.

Corollary V.5.2. The anormal cut points of C are isolated. In particular, there
are at most a finite number of them.

Definition. A number t > 0 is called an exceptional value if there exists q ∈ C
such that v(t ; q) is an anormal cut point of C, or is a normal cut point of C with
ρ ′(q) = 0. Otherwise, t is a nonexceptional value.
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�t

t

Dt

Ct

Figure V.6. Parallel-coordinate domains in D.

Corollary V.5.3. The set of exceptional values is finite.
For any given ro, if ρ(q) is not identically equal to ro on a component of C,

then the set of solutions to ρ(q) = ro is finite.

Proof. The first claim is obvious.
For the second, first recall that if ρ(q) ≡ ro on a component, then D must be

a geodesic disk or annulus, and ρ(q) ≡ ro everywhere on C.
So, assume ρ(q) is not identically equal to ro, but is equal to ro at infinitely

many points of C. Then, ρ(q) = ro at infinitely many normal cut points of C.
But since ρ(q) is real analytic away from nonfocal, anormal cut points of C,
this implies ρ(q) ≡ ro on a component, which implies ρ(q) ≡ ro everywhere,
which we assumed is not the case. �

Notation. For any t > 0, define

Ct = {p ∈ D : d(p, C) = t},
�t = {p ∈ D : d(p, C) < t},
Dt = {p ∈ D : d(p, C) > t}

(see Figure V.6).
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Let t be a nonexceptional value. Then, Ct consists of a finite number of simply
closed curves, piecewise real analytic, written as

pt (q) = v(t ; q), q ∈
m(t)⋃
j=1

[α j (t), β j (t)],

where the m(t) denotes the number of intervals required for Ct . The intervals
{[α j (t), β j (t)] : j = 1, . . . , m(t)} might be associated with different boundary
components of the original C.

The value of α j (t) increases with respect to t , and the value of β j (t) decreases
with respect to t . Once t is greater than or equal to the distance from C to its
closest cut point, the points v(t, α j (t)) and v(t, β j (t)) are normal cut points, and
both functions α j (t) and β j (t) are local analytic inverse functions of t = ρ(q).

If to is an exceptional value, then one has the same result with some of the
simply closed curves possibly being degenerate (i.e., a point) or two of them
touching.

To consider what happens when t ↑ to, first note that lim α j (t) := αo and
lim β j (t) := βo exist as t ↑ to. What might happen is that αo = βo, in which
case the “interval” disappears as t goes above to. Or, the interval [αo, βo] con-
tains new points of the focal cut locus, in which case the number of “intervals”
increases as t goes above to. By Corollary V.5.3, there can only be a finite
number of new intervals.

Assume that at to the limit of the set

“ lim
t↑to

” [α j (t), β j (t)] = [αo, δo] ∪ [δo, βo].

Even if αo denotes an anormal cut point, we may assume that α j (t) has an
increasing continuous extension beyond to. If not, then α j (t) would have a
jump discontinuity at t = to, which implies there exists an interval on which
ρ(q) = to, which would imply that D is a disk. This is the easiest case. A
corresponding remark applies for βo.

Thus, for δo, there exist continuous functions D(t), D∗(t) defined for t > to
so that

lim
t↓to

D(t) ↑ δo and lim
t↓to

D∗(t) ↓ δo,

where Ct ∩ [αo, βo] = [α j (t), D(t)] ∪ [D∗(t), β j (t)].

Notation. We let τ denote the furthest distance from C into D, that is,

τ = sup {d(q, C) : q ∈ D}.
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Note that τ is the inradius of D. That is, there exists qo ∈ D such that d(qo,D) =
τ ; B(qo; τ ) ⊆ D; and for any t > τ , q ∈ D, the disk B(q; t) is not contained
in D.

Theorem V.5.4. (G. Bol (1941) and F. Fiala (1940)) For every value t, let
L(t) and A(t) denote

L(t) = L(Ct ), A(t) = A(Dt ).

Then L(t) and A(t) are continuous with respect to t . Moreover, at all nonex-
ceptional values of t we have

A′(t) = −L(t).(V.5.1)

If the Gauss curvature K satisfies K ≤ κ , then for all nonexceptional values of
t , we have

L ′(t) ≤ −2πχ (D) + κ A(Dt ).(V.5.2)

Equations (V.5.1) and (V.5.2) are valid even if D has a finite number of com-
ponents.

Proof. We work only with L(t). The argument for A(t) is easier.
For any t ∈ [0, τ ], Ct is a finite union of circles (some of them may be

degenerate, that is, points), given by

Ct = v(t ; Ct ), Ct =
m(t)⋃
j=1

[α j (t), β j (t)]

(notation for the intervals as described above). Then,

L(t) =
∫
Ct

ds =
∫

Ct

η(t ; q) dq,

which implies

|L(t) − L(to)| =
∣∣∣∣∣
∫

Ct

η(t ; q) dq −
∫

Cto

η(to; q) dq

∣∣∣∣∣
≤

∫
Ct ∩Cto

|η(t ; q) − η(to; q)| dq + sup
[0,τ ]×C

|η(t ; q)|
∫

Ct �Cto

dq,

which implies that L(t) is continuous.
As there are at most only a finite number of exceptional values of t , a similar

argument shows that L(t) is real analytic everywhere, except possibly at the
exceptional values.
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αj(t) βj(t)

aj(t)

ϑaj(t)

bj(t)

ϑbj (t)

C

Figure V.7. The corners of Ct .

For the nonexceptional value t , the loci

a j (t) := v(t ; α j (t)), b j (t) := v(t ; β j (t)), j = 1, . . . m(t),

consist of normal cut points along Ct , and are locally real analytic paths with
respect to t . Let

ϑa j (t) = �[∂t v → a j
′(t)], ϑb j (t) = �[∂t v → b j

′(t)]

(see Figure V.7). Then

a j
′ = ∂t v + α j

′∂qv = ∂t v + (−α j
′η)ι∂t v,

b j
′ = ∂t v + β j

′∂qv = ∂t v + (−β j
′η)ι∂t v,

which implies

α j
′(t)η(t ; α j (t)) = − tan ϑa j (t), β j

′(t)η(t ; β j (t)) = − tan ϑb j (t).

Therefore,

L(t) =
m(t)∑
j=1

∫ β j (t)

α j (t)
η(t ; q) dq,

L ′(t) =
m(t)∑
j=1

{
β j

′(t)η(t ; β j (t)) − α j
′(t)η(t ; α j (t)) +

∫ β j (t)

α j (t)
(∂tη)(t ; q) dq,

}

=
m(t)∑
j=1

{
− tan ϑb j (t) + tan ϑa j (t) +

∫ β j (t)

α j (t)
−κg(t ; q)η(t ; q) dq,

}
,

where κg(t ; q)η(t ; q) is the geodesic curvature of Ct at v(t ; q). We now apply
the Gauss–Bonnet formula (V.2.20), and note that the exterior angle at the j–th
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corner is given by ϑb j (t) − ϑa j (t), that ϑb j (t) is positive and ϑa j (t) is negative, and
that χ (�t ) is nonpositive. We then have, by (V.2.19) and (V.2.20),

L ′(t) =
m(t)∑
j=1

{
ϑb j (t) − tan ϑb j (t) − (ϑa j (t) − tan ϑa j (t))

} + 2πχ (�t )

−
∫

∂D
κg ds −

∫∫
�t

K d A

≤ −
∫

∂D
κg ds −

∫∫
�t

K d A

= −2πχ (D) +
∫∫

Dt

K d A,

that is,

L ′(t) ≤ −2πχ (D) +
∫∫

Dt

K d A. �

Theorem V.5.5. IfD is a relatively compact region in the complete real analytic
surface M, with Gauss curvature K less or equal to the constant κ , then

L2(∂D) ≥ 4πχ (D)A(D) − κ A2(D).(V.5.3)

If D has n components, all of which are, topologically, disks, then

L2(∂D) ≥ 4πn A(D) − κ A2(D).(V.5.4)

Proof. Set A(t) = A(Dt ). Then,

L(t)L ′(t) ≤ −2πχ (D)L(t) + κL(t)A(t).

Integrate from 0 to τ ; then,

1

2
{L2(τ ) − L2(0)} ≤ 2πχ (D){A(τ ) − A(0)} − κ

2
{A2(τ ) − A2(0)},

that is,

−1

2
L2(∂D) ≤ −2πχ (D)A(D) + κ

2
A2(D),

which implies (V.5.3). �

Remark V.5.4. If M is a Cartan–Hadamard surface, that is, it is complete,
simply connected, with K ≤ κ ≤ 0 – and is therefore diffeomorphic to the
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plane – then, one has

L2(∂D) ≥ 4π A(D) − κ A2(D)

for all regions in M . Indeed, it is certainly true for every region � diffeomorphic
to a disjoint union of disks. If the region D is obtained from � by the removal
of a finite number of diffeomorphic disks, then A(D) < A(�), which implies
(since κ ≤ 0)

4π A(D) − κ A2(D) < 4π A(�) − κ A2(�).

But, L(∂D) > L(∂�). Since the inequality is valid for �, it is automatically
valid for D. The case of equality is easily handled.

Proposition V.5.7. (Y. D. Burago (1978)) Assume M is complete, and homeo-
morphic to the plane, with K ≤ κ . Then, for po ∈ D satisfying d(po, ∂D) = τ ,
τ the inradius of D, we have

inj po ≥ π/
√

κ.

(If κ ≤ 0, then π/
√

κ denotes +∞.)

Proof. (C. Bavard (1984)) Ifκ ≤ 0, then inj M =+∞by the Cartan–Hadamard
theorem (Theorem IV.1.3). So, assume κ > 0. First, note that, by the Morse–
Schönberg Theorem (Theorem II.6.3), the inequalityK ≤ κ on all of M implies
that the first conjugate point of the initial point of a geodesic cannot occur prior
to distance π/

√
κ along the geodesic.

Let qo denote the closest cut point of po in M and assume qo is not conjugate
to po. Then, by Klingenberg’s lemma (Theorem III.2.4), one has a geodesic
loop starting and ending at po of length 2(inj po), and qo bisects the curve. Let
D denote the disk bounded by the loop. Then, one can give an argument based
on those of Propositions V.5.4 and V.5.5 that there is a geodesic emanating from
qo into D with a conjugate point q in D. In particular, d(q, qo) ≥ π/

√
κ .

For every w ∈ ∂D, consider a minimizing geodesic connecting w to q and
intersecting the geodesic loop at x . Then,

d(w, q) = d(w, x) + d(x, q), d(po, qo) = d(po, x) + d(x, qo),

which implies

d(w, q) + d(po, qo) ≥ d(w, po) + d(q, qo),

which implies

d(w, q) + inj po ≥ τ + π/
√

κ.
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Therefore, by minimizing d(w, q) over ∂D, we obtain

τ + inj po ≥ d(∂D, q) + inj po ≥ τ + π/
√

κ,

which implies the claim. �

Notation. For any q ∈ M and r > 0, we write A(q; r ) = A(B(q; r )). In the
complete simply connected 2–dimensional space form of constant curvature
κ , we let Bκ (r ) denote a metric disk of radius r , Aκ (r ) its area, and Lκ (r ) the
length of its boundary circle.

Corollary V.5.4. By the Günther–Bishop Theorem (Theorem III.4.1), we also
have A(D) ≥ Aκ (τ ).

Lemma V.5.2. (R. Osserman (1979)) Consider the real numbers A, a, L, �,
and κ , satisfying A, a > 0, L , � ≥ 0, and

0 = �2 − 4πa + κa2,(V.5.5)

�L ≥ 2π (a + A) − κa A,(V.5.6)

If κ A < 4π , then � > 0, and

L2 − 4π A + κ A2 ≥
{

2π

�
(A − a)

}2

.(V.5.7)

Proof. From (V.5.5), we have 4π − κa ≥ 0. Therefore, 4π − κ A > 0 implies

1

a
+ 1

A
>

κ

2π
,

which implies from (V.5.6) that � > 0. Now, square both sides of (V.5.6) and
use (V.5.5). �

Theorem V.5.6. (R. Osserman (1979)) AssumeD is, topologically a disk, with
boundary C. Then

L2 − 4π A + κ A2 ≥
{

2π

Lk(τ )
(A − Aκ (τ ))

}2

≥ 0.(V.5.8)

We have L2 − 4π A + κ A2 = 0 if and only if D = Bκ (τ ).

Proof. Set

A(t) = A(�t ) = A − A(Dt ).
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Then, (V.5.2) reads as:

A′′ + κA ≤ −2π + κ A, A(0) = 0, A′(0) = L .

We want to compare A(t) to the solution B(t) of:

B′′ + κB = −2π + κ A, B(0) = 0, B′(0) = L .

To this end, consider bε given by:

bε
′′ + κbε = −2π + κ A, bε(0) = 0, bε

′(0) = L + ε,

and aε := bε − A; thus,

aε
′′ + κaε ≥ 0, aε(0) = 0, aε

′(0) = ε.

A standard Sturmian argument (Exercise II.22) implies aε(t) ≥ εSκ (t), which
implies

bε(t) ≥ A(t) + εSκ (t) ∀ε > 0,

which implies B(t) ≥ A(t) ∀t ∈ [0, π/
√

κ]. One checks explicitly that

B(t) = (−2π + κ A)

2π
Aκ (t) + L

2π
Lκ (t);

therefore,

L Lκ (t) ≥ 2π (A(t) + Aκ (t)) − κ AAκ (t).

Let τκ = min {τ, π/
√

κ}. Then, Burago’s result (Proposition V.5.7) implies

A = A(τ ) ≥ A(po; τ ) ≥ Aκ (τκ )

(where po ∈ Cτ ), with equality in the first inequality if and only ifD = B(po; τ ),
and in the second inequality if and only if τ ≤ π/

√
κ and K|B(po; τ ) = κ .

On the other hand, our interest in D is only for A < 4π/κ – otherwise, the
inequality yields no information. For this case, we have, by Corollary V.5.4,
τ ≤ π/

√
κ , which implies

L Lκ (τ ) ≥ 2π (A + Aκ (τ )) − κ AAκ (τ ),

which implies (V.5.8).
The case of equality follows easily. �

Remark V.5.5. The benefit of the Bonnesen type estimate is that it preserves
the characterization of the case of equality even when approximating the dif-
ferentiable case by the analytic one.
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The Curvature Flow: Background

The beginning of our discussion seems modest enough. M. Gage (1983), in the
spirit of ideas and methods of R. Hamilton (1982) for deforming Riemannian
metrics along their (Ricci) curvature, proved the following:

Given x(t) a parameterization of a C2 Jordan curve in R
2, with inward pointing

unit normal vector field n(t), and curvature κ(t) with respect to n(t). Deform
x(t) by the heat equation:

∂xε(t)

∂ε
= κε(t)nε(t), x0(t) = x(t),

where κε denotes the curvature of the deformed curve xε , and nε(t) denotes
the unit normal vector field along xε . If s denotes arc length along each curve
t 
→ xε(t), then the differential equation reads as the usual heat equation:

∂x
∂ε

= ∂2x
∂s2

.

Let Dε the domain bounded by xε , and A(ε) = A(Dε), L(ε) = L(xε). Then,

∂

∂ε

(
L2

A

)
= −2L

A

{∫
xε

κε
2 ds − π L

A

}
.

If x is convex then ∫
x

κ2 ds ≥ π L

A
.

Also, if x(t) is convex, then xε is convex for all ε, which implies the quotient
L2/A is decreasing with respect to ε. Note that, by the Umlaufsatz (Theorem
V.2.1), A′(ε) = −2π .

Gage (1984) then proved that a family of C2 closed convex curves xε , which
satisfies the heat equation for 0 < ε < εo and for which limε→εo A(ε) = 0,
also satisfies L2(ε)/A(ε) → 4π as ε → εo – the result uses the isoperimet-
ric inequality. Also, the normalized curves yε = √

π/A(ε) xε converge in the
Hausdorff metric (see Chavel (2001, p. 53ff), Burago–Burago–Ivanov (2001,
p. 252ff)) to the unit circle.

This was followed by the proof of M. Gage and R. Hamilton (1986) that if
x is a convex curve in R

2, then the heat equation shrinks x to a point in finite
time. The curve remains convex and becomes circular in the sense that (a) the
ratio of the inscribed to circumscribed radius → 1; (b) max κ/ min κ → 1;
(c) the higher order derivatives of κ go to 0 uniformly; (d) if the initial curve
is convex, but contains straight line segments, then the straight line segments
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disappear immediately as the curve evolves, and the succeeding curves are all
strictly convex.

Finally, for the Euclidean plane, M. A. Grayson (1987) extended the Gage–
Hamilton result to nonconvex curves of bounded curvature. He showed that the
curve becomes convex in finite time, without developing any singularities.

Before giving the statement of the theorem for the curvature flow on surfaces,
we first recall, from Exercise II.20:

Definition. Let M be a complete Riemannian manifold. A set A in M is convex
if, for any p, q ∈ A, there exists a geodesic γpq ⊆ A such that γpq is the unique
minimizer in M connecting p to q.

Given A ⊂ M , define the convex hull of A, conv A, to be the smallest convex
set containing A.

Theorem V.6.1. (The curvature flow theorem for surfaces) (M. A. Grayson
(1989b)) Let M be a 2–dimensional Riemannian manifold that is convex at
∞, that is, the convex hull of every compact set is compact. Then there exists
ε∞ ∈ (0, ∞] for which a solution of the heat equation exists for ε ∈ (0, ε∞).

If ε∞ is finite, then the deformation converges to a point. If ε∞ = ∞, the
geodesic curvature → 0 in the sense of (b) and (c) above (in additon to κ → 0).

Grayson notes that, for ε∞ = ∞, one does not rule out the possibility that
the evolution is accumulating to an infinite set of closed geodesics. One can
say: (i) they all have the same length; (ii) any two intersect at least once; and
(iii) the number of intersections between any two is independent of the
geodesics.

The Isoperimetric Inequality

Going in the direction opposite to that of Gage, Topping (1998) indicated how
the curvature flow might be used to prove isoperimetric inequalities:

Assume, in Grayson’s theorem, that∫∫
B(p;R)

K+ d A < 2π ∀ p ∈ M, R > 0, K ≤ κ,

where K+ = max {K, 0}. Let C be a simple closed curve, bounding a domain
D. For the argument that follows, assume that M is diffeomorphic to a plane,
and C converges to a point under the curvature flow. Then,

L2 ≥ 4π A − κ A2.
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Proof. The formula for the first variation of the area of the deformed Dε and
the length of the deformed Cε is given by (see Exercise III.14)

A′(ε) = −
∫
Cε

κg,ε ds = −2π +
∫∫

Dε

K d A < 0,(V.6.1)

L ′(ε) = −
∫
Cε

κg,ε
2 ds ≤ − 1

L(ε)

{∫
Cε

κg,ε ds

}2

,(V.6.2)

where κg,ε denotes the geodesic curvature of Cε (the last inequality in (V.6.2) is
a consequence of the Cauchy–Schwarz inequality). The function A(ε) is strictly
decreasing; so, we may set ε = ε(a) to be the inverse function of A(ε).

1

2

d L2

da
≥

∫
Cε

κg,ε ds = 2π −
∫∫

Dε

K d A ≥ 2π − κa,

which implies the inequality, by integrating from a = 0 to a = A(D). �

The Paraboloid of Revolution

The second development of using the curvature flow to prove isoperimetric
inequalities was the solution by I. Benjamini–J. Cao (1996) of the isoperimetric
problem for the 2–dimensional paraboloid of revolution. We discuss it in more
detail.

Theorem V.6.2. Assume M is diffeomorphic to the plane, with Riemannian
metric a complete surface of revolution about the vertex o ∈ M. Let BR denote
the geodesic disk of radius R centered at o. Assume∫∫

BR

K+ d A < 2π, ∀ R > 0,(V.6.3)

and assume that the Gauss curvature of M, K = K(R) is a decreasing function
of R. Given � a relatively compact region in M, then for A(BR) = A(�), we
have L(∂ BR) ≤ L(∂�) with equality if and only if � is isometric to BR. The
result applies to the paraboloid of revolution.

Remark V.6.1. The condition (V.6.3) implies that, for any disk � ⊂ M , we
have

∫
∂�

κg ds > 0. Indeed, the Gauss–Bonnet formula implies∫
∂�

κg ds = 2π −
∫∫

M
K d A ≥ 2π −

∫∫
M

K+ d A > 0.(V.6.4)

One might say that the condition (V.6.3) implies that every curve that bounds a
disk is, on average, convex. Once

∫
K+ d A > 2π , the convexity breaks down.

Just consider a metric disk of radius greater than π/2 on the unit sphere.
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Proof. We break up the proof of Theorem V.6.2 into a succession of steps.

Step 1. Start with an arbitrary M, a 2–dimensional Riemannian manifold.
Let �ε be a smooth 1–parameter family of domains obtained by the curvature
flow applied to the domain ∂�, for all ε. Then, for the general �, the inequality
(V.6.2) implies

d L2

da
≥ 2

{
2πχ (�ε) −

∫∫
∂�ε

K d A

}
.(V.6.5)

Assume, in addition, that M is complete, simply connected, and satisfies
(V.6.3). Then, M must be the plane or the sphere. But Gauss–Bonnet implies
that M must be diffeomorphic to the plane. So, henceforth, M is diffeomorphic
to the plane.

Now assume, also, that M is a surface of revolution about a point o. Note
that the geodesic curvature is constant on ∂ BR for all R. So (V.6.4) implies that
each ∂ BR has positive geodesic curvature.

Step 2. We claim that BR is convex for every R > 0. If not, there exist points
p and q in ∂ BR such that the interior of a minimizing geodesic pq connecting
them is contained in M \ BR . Then, an open topological disk � in M \ BR is
bounded by pq and an arc σ of ∂ BR . For every point z in the interior of pq,
consider the geodesic γz emanating from it orthogonally into �, and the first
distance dz along it at which γz hits σ . Then, dz assumes a maximum value, at
which point γz is perpendicular to σ . This implies that the geodesic curvature
of ∂ BR relative to the interior of � is nonnegative, which contradicts the fact
that relative to the interior of BR it is strictly positive.

In particular, M is convex at infinity.
By Grayson’s theorem (Theorem V.6.1), the curvature flow deforms a Jordan

curve to a point or a closed geodesic. If it flows to a geodesic; but the geodesic
will not have positive geodesic curvature, which is impossible. Therefore, the
curvature flow deforms a Jordan curve to a point.

Step 3. If � ⊂⊂ M is a domain (i.e., � is connected) with C2 boundary and
χ (�) ≤ 0, then one can find a domain D diffeomorphic to the disk so that

A(D) = A(�), L(∂ D) ≤ L(∂�).

The proof goes as follows: First, there is a simply connected domain �∗ from
which � is obtained by deleting a finite number of disks with smooth boundary.
Replace � by �∗. Then,

L(∂�∗) ≤ L(∂�) and A(�∗) ≥ A(�).

Now apply the curvature flow to ∂�∗. Because �∗ is a disk, (V.6.1) implies,
with Grayson’s theorem, that A(ε) ↓ 0 and L(ε) is decreasing. Then stop ε at
εo satisfying A(εo) = A(�).



P1: KsF

0521853680c05 CB980/Chavel January 3, 2006 5:37 Char Count= 707

§V.6. The Isoperimetric Problem on the Paraboloid of Revolution 271

Step 4. The final added assumption: the Gauss curvature is a decreasing
function of R. Start with the case where � is a domain. By Step 3, we may
assume � is bounded by a single Jordan curve.

Set ao = A(�) = A(BR). One can use the curvature flow to obtain a family
of domains

{�a : � = �ao and A(�a) = a, ∀ 0 < a ≤ ao}.

Proceed as follows: Apply the curvature flow to � to obtain a family of domains
�ε converging to a point as ε → some εo < +∞. Let A(ε) = A(�ε), and ε(a)
its inverse function (by (V.6.1) the function A(ε) is strictly decreasing). Then,
set �a = �ε(a).

Also consider the function ρ = ρ(a) satisfying A(Bρ(a)) = a, that is, ρ(a)
is the radius of geodesic disk about o having area equal to a. Then, A(�a) =
A(Bρ(a)) = a, and (V.6.5) implies

d L2(∂�a)

d a
≥ 2

{
2π −

∫∫
�a

K d A

}
≥ 2

{
2π −

∫∫
Bρ(a)

K d A

}
= d L2(∂ Bρ(a))

d a
,

the second inequality uses K(R) ↓, and the last equality uses the fact that κr ,
the geodesic curvature along ∂ Br , is constant for each r . Since

lim inf
a↓0

L(∂�a) ≥ 0 = lim
a↓0

L(∂ Bρ(a)),

we integrate the inequality

d L2(∂�a)

d a
≥ d L2(∂ Bρ(a))

d a

from 0 to ao to obtain

L2(∂�) = L2(∂�ao ) ≥ L2(∂ Bρ(ao)) = L2(∂ BR),

which is the claim.
If L(∂�) = L(∂ BR), then

d L2(∂�a)

d a
= d L2(∂ Bρ(a))

d a

for every a ∈ [0, ao], which implies∫∫
�a

K d A =
∫∫

Bρ(a)

K d A
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for every a ∈ [0, ao]. Since K(R) is nonincreasing, this implies that if Bρ is the
smallest disk, centered at o and containing �, then the Gauss curvature K must
be constant on Bρ . This would then easily imply that � is a disk isometric to BR .

Remark V.6.2. In the case of equality above, if the Gauss curvature is strictly
decreasing, for example, then � is BR .

Continuation of the Proof of Theorem V.6.2. Assume � has more than one
component – we may assume each of which is diffeomorphic to a disk – and
then subject � to the curvature flow. If the components never meet, then the
argument is similar to the above. Should components touch, for some ε, then
one can replace the “offending” domains with fewer domains having the same
area and lower boundary, as follows:

Step 5. Consider the case where � = �1 ∪ �2, where �1 and �2 are do-
mains, with disjoint closures, each diffeomorphic to a disk. Subject ∂�1 and
∂�2 simultaneously to the curvature flow, to obtain the families of domains
(�1)ε and (�2)ε . Let ε1 be the time for �1 to deform to a point, and the same
for ε2 and �2.

First assume that 0 < ε2 ≤ ε1 and that (�1)ε ∩ (�2)ε = ∅ for all ε ∈ [0, ε2).
Then, set

�ε =
{

(�1)ε ∪ (�2)ε 0 ≤ ε ≤ ε2
,

(�1)ε ε2 ≤ ε ≤ ε1

and A(ε) = A(�ε). Let ε(a) denote the inverse function of A(ε), and set

Da = �ε(a).

Then, A(Da) = a for all a ∈ [0, A(�)], and

d L2(∂ Da)

d a
≥ 2

∫
∂ Da

κg ds

=
 2

(
2π − ∫∫

Da
K d A

)
0 ≤ a ≤ A(ε2)

2
(

4π − ∫∫
Da

K d A
)

A(ε2) ≤ a ≤ A(�1) + A(�2)

> 2

(
2π −

∫∫
Bρ(a))

K d A

)

= d L2(∂ Bρ(a))

d a
.

If we set a1 = A(�1) and a2 = A(�2), then we have

L(∂�1) + L(∂�1) ≥ L(Bρ(a1+a2)),

which implies the inequality in this case. The case of equality is now easy.
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Step 6. As in Step 5, consider the case where � = �1 ∪ �2, where �1 and �2

are domains, with disjoint closures, each diffeomorphic to a disk; and subject
∂�1 and ∂�2 simultaneously to the curvature flow, to obtain the families of
domains (�1)ε and (�2)ε . Except that, now, assume one has εo such that εo is
the lowest value of ε for which (�1)ε ∩ (�2)ε �= ∅.

One first backs off a bit to ε∗ < εo, and constructs a connected �∗ satisfying

a∗ := A(�∗) > A((�1)ε∗ ) + A((�2)ε∗ ) := aε∗ ,(V.6.6)

L(∂�∗) < L(∂(�1)ε∗ ) + L(∂(�2)ε∗ ).(V.6.7)

We describe how to do this below in Step 7. If �∗ is not diffeomorphic to a
disk, replace by a domain that is, as in Step 3, and call the new domain �∗.

Now, deform �∗, using the curvature flow, to obtain the family of domains
(�∗)a , where A((�∗)a) = a, for all 0 ≤ a ≤ a∗.

Set a1 = A(�1), a2 = A(�2) as above, and define

Da =
{

(�∗)a 0 ≤ a ≤ aε∗

(�1)ε(a) ∪ (�2)ε(a) aε∗ ≤ a ≤ a1 + a2
,

where ε(a) is the inverse function of A(ε) = A((�1)ε) + A((�2)ε), 0 ≤ ε ≤ ε∗.

Then, L(0) = 0,

d L2(∂ Da)

d a
≥ d L2(∂ Bρ(a))

d a
,

as in Step 4. By integrating the inequality, we obtain

lim
a↑aε∗

L2(∂ Da) ≥ L2(∂ Bρ(aε∗ )).

Since aε∗ < a∗ and since L(∂(�∗)a) is increasing on [0, a∗], (V.6.6) and (V.6.7)
imply

lim
a↓aε∗

L2(∂ Da) > lim
a↑aε∗

L2(∂ Da) ≥ L2(∂ Bρ(aε∗ )).

For a ∈ (aε∗ , a1 + a2), we have

d L2(∂ Da)

d a
≥ 2

∫
∂ Da

κg ds

= 2

(
4π −

∫∫
Da

K d A

)
> 2

(
2π −

∫∫
Bρ(a))

K d A

)

= d L2(∂ Bρ(a))

d a
,
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as above. If we integrate the inequality from aε∗ to a1 + a2, we obtain

L(∂�1) + L(∂�1) ≥ L(Bρ(a1+a2)),

which is the claim.
Step 7. We now show how to replace (�1)ε∗ ∪ (�2)ε∗ with �∗, satisfying

(V.6.6) and (V.6.7).

Let po be any point where (�1)εo touches (�2)εo . Let ∂((�1)ε) and ∂((�2)ε) be
parameterized by closed paths (ω2)ε and (ω2)ε , respectively, and assume that
both (ω1)εo and (ω2)εo are parameterized with respect to arc length, such that
(ω1)ε(0) = (ω2)εo (0) = po. For small τ > 0, consider the arcs

(ω1)εo−τ 2 |[−τ, τ ] and (ω2)εo−τ 2 |[−τ, τ ],

and replace them by the two minimizing geodesics connecting

(ω1)εo−τ 2 (−τ ) to (ω2)εo−τ 2 (−τ ) and (ω1)εo−τ 2 (τ ) to (ω2)εo−τ 2 (τ ).

For sufficiently small τ > 0, the triangle inequality and Taylor’s formula imply
that the resulting �∗ satisfies (V.6.6) and (V.6.7).

Step 8. If one starts with more than two components of �, then the argu-
ment is a generalization of Steps 5–7 (see the original paper Benjamimi-Cao
(1996)). �

§V.7. Notes and Exercises

Systolic Inequalities

Note V.1. The study of the shortest homotopically nontrivial closed geodesic
was initiated by C. Loewner (unpublished) for the 2–torus, and continued in
Pu (1962) for the projective plane and the Möbius strip. For Riemann surfaces
(of higher genus), the notion of extremal length was introduced for homology
in Ahlfors–Beurling (1950) and worked out in Accola (1960), Blatter (1961).
The generalizations to higher dimensions were formulated in Berger (1972a,
1972b); and completely new insights were embarked on in Gromov (1983).
Also see Katz (1983, 2005). Finally, also see Gromov’s notes (1996), and the
English edition of his book (1999).

The Gauss–Bonnet Theorem

Note V.2. We refer the reader to Milnor (1965) and Berger–Gostiaux (1988,
pp. 253ff) for discussions of degree and index of singularities of vector fields.
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Note V.3. The Umlaufsatz actually states that if 	 : S
1 → R

2 is an imbedding
of S

1 in the plane, T : S
1 → S

1 given by T = 	′/|	′|, then the degree of T is
equal to ±1, depending on the orientation of 	. As is well known, the degree of
a smooth mapping from a compact manifold M to a compact manifold N of the
same dimension depends only on the smooth homotopy class of the mapping;
so, given a 1–parameter family 	ε of imbeddings of S

1 in the plane, the degree
of the associated Tε remains constant. Furthermore, a famous theorem of H.
Hopf (1926a) states that when N = S

n , n = dim M , then any two smooth maps
M → N of the same degree are smoothly homotopic. Thus, given 	0, 	1 two
imbeddings of the circle in the plane with associated T0, T1 possessing the same
degree, there is a smooth homotopy Tε , ε ∈ [0, 1] taking T0 to T1.

Exercise V.1. Prove the following result of H. Whitney (1937): Given 	0, 	1

two imbeddings of the circle in the plane with associated T0, T1 possessing the
same degree, there is a smooth homotopy 	ε , ε ∈ [0, 1] of imbeddings of S

1

into the plane taking 	0 to 	1.

Exercise V.2. Consider an oriented Riemannian 2–manifold M with a local
positively oriented frame field {e1, e2} on a neighborhood U diffeomorphic to a
subset of R

2. Let X denote a vector field on M with isolated zero at p ∈ U , and
let x1 = X/|X | be the associated unit vector field on U \ {p}. Let x2 denote the
vector field on U \ {p} obtained by rotating x1 by π/2 radians. For any circle
C (in local or polar coordinates) about p, one can write

x1 = (cos θ )e1 + (sin θ )e2, x2 = −(sin θ )e1 + (cos θ )e2.

Show that if ω j
k denotes the connection 1–form of the frame field {e1, e2} on

U , and τ j
k denotes the connection 1–form of the frame field {x1, x2} on U \ {p},

then

τ1
2 = dθ + ω1

2.

Note that ∫
C

dθ = 2π (index X at p).

Exercise V.3. (H. Hopf (1956, pp. 107–118))
(a) Given an orientable compact Riemannian 2–manifold M with smooth

vector field X whose set of zeros is the subset {p1, . . . , p�} of M . Show that∫
M

K d A = 2π

�∑
j=1

(index X at p j ).
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This recaptures the Poincaré–Hopf theorem (Hopf (1926b)) that the sum of the
indices of the singularities of a vector field on a compact differentiable manifold
is equal to its Euler characteristic.

(b) Also prove that if M is imbedded in R
3 with Gauss map n : M → S

2 (as
described in Exercise III.19), show that the degree of n satisfies

deg n = χ (M)/2.

Note V.4. Higher dimensional versions of the Gauss–Bonnet theorem were
given, for submanifolds of higher dimensional Euclidean space, by C. B. Al-
lendoerfer (1940) and W. Fenchel (1940). Allendoerfer–Weil (1943) considered
the case of Riemannian polyhedra, but, again used imbedding methods. The first
intrinsic proof of the higher dimensional Gauss–Bonnet theorem was given by
S.S. Chern (1944).

Exercise V.4. Prove Theorem V.2.7, the Gauss–Bonnet formula for manifolds
with boundary. That is, show that if M is a 2–dimensional orientable Riemannian
manifold with compact closure and differentiable boundary, then∫

∂ M
κg ds +

∫∫
M

K d A = 2πχ (M).

On Randol’s Collar Theorem

Note V.5. I. Chavel and E. A. Feldman (1978a) considered the result for neg-
ative variable Gauss curvature on an oriented compact surface. They assumed
that the Gauss curvature K satisfied

−1 ≤ K ≤ −δ2 < 0

and γ a simple closed geodesic of length �. Then, the estimate for the distance
to the cut locus of γ is as above,

inj γ ≥ arcsinh csch �/2,

and the area estimate is given by

A(Cγ ) ≥ (2�/δ) sinh (δ arcsinh csch �/2).

When δ = −1, their estimates coincide with those of Randol.
The estimate for inj γ only uses −1 ≤ K ≤ 0, and the fact that the genus of

M is ≥ 2. If the genus of M were equal to 1, then possibility (ii) in the proof
of Randol’s theorem could occur – for the torus T

2.
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Buser (1978) also has a differential geometric generalization of Randol’s
estimate. For early results, see Keen (1974) and Halpern (unpublished). More
developments can be found in Basmajian (1972).

The Theorems of Carleman and Weil

Note V.6. Carleman’s argument was based on complex analysis. The first to
free the original proofs from such considerations was W. T. Reid (1959), who
based his argument on Jellet’s formula.

Definitive results for minimal varieties of arbitrary co-dimension in Euclidean
spaces were obtained, via geometric measure theory, by F. Almgren (1986).

One advantage of the above argument is that there are no restrictions on the
topology of �, only that it be bounded by one curve. See Chavel (1978) for the
details, and for the literature between Carleman (1921) and Chavel (1978).

The proof of Lemma V.5.2 is adapted from Weinberger (1956).
I. Chavel (1978) combined Jellet’s formula with A. Hurwitz (1901), and

Lemma V.5.2, to give a unified generalization of the Carleman and Weil result
to higher dimensions (n > 2). The result is a weak isoperimetric inequality,
since the analogue of Wirtinger’s inequality is Rayleigh’s principle; and the
lowest eigenvalue of the boundary depends on more than just its (n − 1)–area.

The approach here to Carleman’s theorem was extended further in P. Li–R.
Schoen–S. T. Yau (1984) and J. Choe (1990).

Note V.7. P. Hartman (1964) extended the Bol–Fiala inequalities to the case of
minimal differentiability assumptions by direct analysis of the continuity and
differentiability of the function L(t). Namely, except for a set of measure 0
(in t), the curves 	t are piecewise smooth, and the function L(t) is well-defined
and C1, with L(t) integrable with respect to t . Furthermore, Fiala’s differential
inequalities for L ′(t) remain valid off this singular set of measure 0. A more
recent extended discussion of these results can be found in Shiohama–Shioya–
Tanaka (2003, Chapter 4)

I. Chavel and E. A. Feldman (1980) extended the inequalities to the differ-
entiable case by approximating the differentiable case by the real analytic one.

It seems that the first to consider the isoperimetric inequality on manifolds
besides Euclidean space was F. Bernstein (1905), wherein he considered the
isoperimetric problem for domains in the standard 2–sphere bounded by con-
vex curves. The Bol–Fiala result is generalization of his result. Subsequent
generalizations of the Bol–Fiala inequalities were given by A. D. Alexan-
drov (1948) and A. Huber (1954), and summarized in a unified presentation in
Y. D. Burago–V. A. Zalgaller (1988). Further generalization was given in P.
Topping (1998, 1999).
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Note V.8. Higher dimensions. C. Croke (1984) proved the following: Assume
M is a 4–dimensional Riemannian manifold with smooth boundary, so that
M is compact. Assume that M has nonpositive sectional curvature, and every
geodesic in M minimizes distance from its initial point until it hits the boundary.
Then,

A(∂ M)

V (M)3/4
≥ A(S3)

V (B4)3/4
,

with equality if and only if M is isometric to a disk in R
n .

B. Kleiner (1992) then considered the 3–dimensional case: Let M be a 3–
dimensional complete simply connected Riemannian manifold, with sectional
curvature less than or equal to a constant κ ≤ 0, and let � ⊂⊂ M with smooth
boundary, and Bκ (�) the disk in the 3–dimensional model space of constant
curvature κ , having the same volume as �. Then,

A(∂�) ≥ A(∂(Bκ (�))),(V.7.1)

with equality if and only if � is isometric to Bκ (�).

The corresponding inequalities in higher dimensions, known as the Aubin
conjecture (1976), that simply connected domains D on manifolds of all di-
mensions ≥ 2 with nonpositive Riemannian sectional curvature satisfy (V.4.2),
namely

A(∂ D)

V (D)1−1/n
≥ A(Sn−1)

V (Bn)1−1/n
= nωn

1/n,

remains open.

Curvature Flow in Higher Dimensions

Note V.9. For higher dimensions, G. Huisken (1984) proved the following: Let
x : Mn−1 → R

n be an (n − 1)–dimensional strictly convex hypersurface in R
n .

Then, the heat equation

∂xε

∂ε
= hεnε, x0 = x

has a smooth solution on a finite time interval 0 < ε < εo, and xε converges to
a point as Po as ε → εo. Also, with a specific change of parameter, ε 
→ τ , xε

has a homothetic expansion yτ about Po , of area A(M), so that yτ → sphere
of area A(M) as τ → ∞ in the C∞ convegence. M. A. Grayson (1989a) and
S. B. Angenent (1992) showed that the theorem is false if M is not convex.
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Further Isoperimetric Inequalities on Surfaces

Note V.10. An elementary approach to the isoperimetric problem for com-
pact surfaces is presented in Hass–Morgan (1996), followed by application
of its methods to the isoperimetric problem for surfaces of revolution of de-
creasing Gaussian curvature, beyond the paraboloid of revolution, in Morgan–
Hutchings–Howards (2000).

In H. Howards–M. Hutchings–F. Morgan (1999), one can find results on cir-
cular cylinders, flat tori and Klein bottles, and circular cones; in C. Adams–F.
Morgan (1999), hyperbolic surfaces; and in M. Ritoré (2001), general sur-
faces of nonnegative curvature. In A. Ros (2005), one can find a number of
3–dimensional examples, especially P

3—3–dimensional real projective space.
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VI

Isoperimetric Inequalities
(Constant Curvature)

This chapter continues the discussion initiated in §V.4, the isoperimetric prob-
lem, with the emphasis on results valid for all dimensions n ≥ 1 (the case
n = 1 is easy to work out and is included to cover all formulae.) As mentioned
in (V.4.2), the main result, to be proved below, is

A(∂�)

V (�)1−1/n
≥ A(Sn−1)

V (Bn)1−1/n
= cn−1

ωn
1−1/n

= nωn
1/n,(VI.0.1)

where � is any domain in R
n , A denotes (n − 1)–dimensional measure, and

V denotes n–dimensional measure. Equality is achieved if and only if � is an
n–disk. Furthermore, the inequality is invariant under similarities of R

n .
As soon as one expands the problem to the model spaces of constant sectional

curvature, that is, to spheres and hyperbolic spaces, one has no self-similarities
of the Riemannian spaces in question. And, if the disks on the right-hand side
of (VI.0.1) are to have radius r , then the right-hand side of the inequality in
(VI.0.1) is no longer independent of the value of r . So, the analytic formulation
becomes more involved. For n = 2, the Bol–Fiala inequality (see §V.5) reads
as follows: If M = M

2
κ , then the isoperimetric inequality becomes

L2 ≥ 4π A − κ A2.(VI.0.2)

By Remark V.5.4, the result is valid for all regions with compact closure and
smooth boundary, when κ ≤ 0, with equality if and only if the region is a
geodesic disk. When κ > 0, the result is only proved when the region is a
pairwise disjoint union of topological disks (again, with equality if and only if
the region is a geodesic disk).

In this chapter, we investigate the standard space forms of constant sec-
tional curvature of all dimensions, the Euclidean spaces, spheres, and hyper-
bolic spaces. Instead of giving a definitive all embracing method to definitively

280
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prove the theorem, we prefer to give a variety of arguments illustrating the
wealth of techniques associated with the inequality.

A variety of techniques were presented for Euclidean space in Chavel (2001),
with a full proof using Steiner symmetrization for sets with finite perimeter.
Here, we do not aim for such generality; although the proofs below (excluding
the solution of the Neumann problem) of the isoperimetric inequality are valid
for compacta with quite general boundaries, the characterization of equality
is limited to relatively compacta with C2 boundary, in order not to take the
discussion to far afield.

The proofs of the isoperimetric inequality in simply connected space of con-
stant sectional curvature are consequences of the Brunn–Minkowski inequality
(see §VI.1 for Euclidean space and §VI.3 for hyperbolic spaces and spheres).
The two arguments given are classical, whereas for Euclidean space we included
(§VI.2) a recent striking proof of X. Cabré (2000, 2003) which presupposes the
solution of a Neumann problem in Euclidean space. Only then do we consider
characterization of the case of equality.

The characterization of equality for the isoperimetric inequality on spheres
(§VI.6) is achieved by a far-reaching method of M. Gromov (1986), which was
first employed for compact manifolds with strictly positive Ricci curvature (in-
cluding the spheres, of course). The argument then appeared in M. Berger (2003,
pp. 63–66) applied to Euclidean space, and is valid for hyperbolic spaces as well.
These latter two cases are presented separately (§VI.5), as a “warm-up,” as they
do not use the full power of the method. In this manner, the student might come
to a better appreciation of the different components of Gromov’s argument.

A limited bibliography for background, in general, and symmetrization ar-
guments, various differential geometric arguments, and Gromov’s argument in
Euclidean space using Stokes’ theorem, in particular, is given in Notes VI.1–
VI.3 at the end of the chapter.

§VI.1. The Brunn–Minkowski Theorem

For n ≥ 1, we present here the “integrated version” of the isoperimetric in-
equality, more popularly known as the Brunn–Minkowski inequality. More
specifically, let M = Mκ be the simply connected n–dimensional space of con-
stant sectional curvature, n ≥ 1. To each compact subset X of Mκ , associate
the closed metric disk D in Mκ with the same volume as that of X . For every
ε > 0, let [X ]ε denote the closed set of points in Mκ whose distance from X is
less than or equal to ε, that is,

[K ]h = {x ∈ Mκ : d(x, K ) ≤ h}.
Note that X is a metric disk if and only if [X ]ε is a metric disk for all ε > 0.
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Definition. Let K be a compact subset of Mκ . Define its Minkowski area,
Mink (K ) by

Mink (K ) = lim inf
h↓0

vn([K ]h) − vn(K )

h
.

Thus, K �→ Mink (K ) is a functional defined on collection compacts sets K –
not on the boundary of K . Furthermore, the Minkowski area is generalization
of Riemannian (n − 1)–dimensional area in that:

Proposition VI.1.1. When K = � in Mκ with ∂� ∈ C1, we have

Mink (K ) = A(∂�).

Remark VI.1.1. However, note that when n = 1, then Mink {xo} = 2 at the
same time that v1({xo}) = 0.

Theorem VI.1.1. Let X and Y be bounded measurable subsets of R
n. Then,

V (X + Y )1/n ≥ V (X )1/n + V (Y )1/n.(VI.1.1)

Proof. Assume X and Y consist of one “box” each, with no intersections (if
they have an intersection then we may translate one of them – this will have no
effect on the volume). Then,

V (X ) =
n∏

j=1

α j , V (Y ) =
n∏

j=1

β j ,

and X + Y is then a box with

V (X + Y ) =
n∏

j=1

(α j + β j ).

The arithmetic–geometric mean in inequality then implies{ ∏
α j∏

(α j + β j )

}1/n

+
{ ∏

β j∏
(α j + β j )

}1/n

≤ 1

n

n∑
j=1

α j

α j + β j
+ 1

n

n∑
j=1

β j

α j + β j
= 1,

which implies the inequality (VI.1.1).
Now assume that we have the inequality when X and Y are each the union

of non-overlapping boxes (except maybe at the boundary) such that the total
number of boxes is ≤ k − 1, k > 2. So, consider the case when the union of X
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and Y consists of k boxes. Then, either X or Y has at least 2 boxes. Assume it
is X .

Then there exists a hyperplane in R
n that divides R

n into two closed half-
spaces H+ and H−, such that any box in X is either in H+ or H−, and that
each half-space has at least one box in X . Then, one can translate the boxes of
Y so that P divides Y into Y + and Y − satisfying

V (X+)

V (X )
= V (Y +)

V (Y )
,

V (X−)

V (X )
= V (Y −)

V (Y )
.

If X consists of � boxes, then Y consists of k − � boxes, and both Y + and Y −

have at most k − � boxes. But each of X+ and X− have strictly less than �

boxes. So, both X+ ∪ Y + and X− ∪ Y − have strictly less than k boxes, each.
By hypothesis, the theorem is valid for X+ ∪ Y + and X− ∪ Y −. Therefore,

V (X + Y ) ≥ V (X+ + Y +) + V (X− + Y −)

≥ {
V (X+)1/n + V (Y +)1/n

}n + {
V (X−)1/n + V (Y −)1/n

}n

= V (X+)

{
1 +

(
V (Y +)

V (X+)

)1/n
}n

+ V (X−)

{
1 +

(
V (Y −)

V (X−)

)1/n
}n

= V (X+)

{
1 +

(
V (Y )

V (X )

)1/n
}n

+ V (X−)

{
1 +

(
V (Y )

V (X )

)1/n
}n

= V (X+)

V (X )

{
V (X )1/n + V (Y )1/n

}n + V (X−)

V (X )

{
V (X )1/n +V (Y )1/n

}n

= {
V (X )1/n + V (Y )1/n

}n
.

which is (III.2.2), when X and Y consist of a finite number of boxes.
For arbitrary bounded measurable sets X and Y , one approximates them from

within by finite unions of nonoverlapping boxes. �

Corollary VI.1.1. (The isoperimetric inequality for Minkowski area) If Y =
B

n, the unit n–disk in R
n, then X + εB

n = [X ]ε , which implies

V ([X ]ε)1/n ≥ V (X )1/n + εωn
1/n,(VI.1.2)

which implies

Mink (X ) ≥ nωn
1/n V (X )1−1/n = A(Sn−1)

V (Bn)1−1/n
V (X )1−1/n.(VI.1.3)

If � is a relatively compact region with C1 boundary, then

A(∂�)) ≥ nωn
1/n V (�)1−1/n.(VI.1.4)
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Remark VI.1.2. Note that even if one has an easy characterization of equality
in (VI.1.2), it cannot guarantee that the argument itself will pass to the limiting
result (VI.1.3). However, D. Ohman (1955) proved that if A is nonconvex, then
there exists a constant c so that

V ([X ]ε) ≥ {
V (X )1/n + εωn

1/n
}n + cε.

See Burago–Zalgaller (1988, pp. 71–74). In particular, if A is nonconvex, one
cannot have equality in the classical isoperimetric inequality. In the case where
A is convex, one can give the classical proof (based on calculus) to characterize
equality in the isoperimetric inequality.

§VI.2. Solvability of a Neumann Problem in R
n

First note that, for Euclidean space, one may reduce the collection of competing
regions to domains (that is, connected regions). Indeed, if � = �1 ∪ · · · ∪ �k

is a decomposition of � into domains then Minkowski’s inequality (applied
to the characteristic functions of the components of �) implies (see Lemma
VIII.3.1)

k∑
j=1

{V (� j )}(n−1)/n ≤
{

k∑
j=1

V (� j )

}(n−1)/n

,

with equality if and only if � is connected. Therefore, knowledge of the isoperi-
metric inequality for domains implies its validity for relatively compact regions,
with the same characterization of the case of equality.

Therefore, consider a domain D ⊂⊂ R
n , with C2 boundary. The argument

of X. Cabré (2000, 2003) relies on the solvability of the Neumann problem

	 u = 1 on D
∂u

∂ν
= c on ∂ D.

A necessary condition is:

V (D) =
∫∫

D
	 u dV =

∫
∂ D

∂u/∂ν d A = cA(∂ D).

So, c must given by c = V/A. Standard arguments from Fredholm and regular-
ity theory (see Gilbarg–Trudinger (1977)) imply that there is indeed a solution
for c = V/A.

Now define

�+ := {y ∈ D : u(x) ≥ u(y) + (∇u)(y) · (x − y) ∀ x ∈ D}.
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That is, the tangent hyperplane to the graph of u, at the point (y, u(y)), supports
the graph in the upper half-space defined by the tangent hyperplane. At every
point of �+, the Hessian of u is positive semidefinite, so all of its eigenvalues
are nonnegative.

We normally think of ∇u as a vector field on D, but we may also think of it
as a mapping ∇u : D → R

n . Then, the Hessian of u is the Jacobian matrix of
the mapping ∇u, which implies

V (D)

nn
≥ V (�+)

nn
=

∫∫
�+

[
	 u

n

]n

dV =
∫∫

�+

[
tr Hess u

n

]n

dV = · · ·

· · · ≥
∫∫

�+
det Hess u dV ≥ V

[
(∇u)(�+)

]
(the last inequality might come from many to one points of the mapping). It
remains to show

(∇u)(�+) ⊇ B
n(c).(VI.2.1)

If we do so, then we would have V/nn ≥ ωncn = ωnV n/An , which is A ≥
nωn

1/n V 1−1/n , the isoperimetric inequality (VI.0.1).
To prove (VI.2.1), we argue as follows: For any ξ ∈ R

n , consider a hyperplane
in R

n+1 moving up the xn+1–axis from −∞, with normal vector ξ − en+1. Then,
there is a first point at which the hyperplane intersects – and therefore touches –
the graph of u : D → R

n . If that first point of contact is over ∂ D, then the slope
of the hyperplane is ≥ c, which implies the slope of the normal ≤ 1/c, which
implies |ξ | ≥ c.

So, for any ξ , satisfying |ξ | < c, the hyperplane must hit the graph at some
(y, u(y)), y ∈ D, which implies ξ = (∇u)(y); so, y ∈ �+, and this implies the
(VI.2.1).

If we have equality in the isoperimetric inequality, then: (1) (∇ u)(�+) =
B

n(c), the n–disk of radius c; (2) ∇ u is a diffeomorphism; (3) �+ = D, which
implies u is convex; and (4) we have equality in the arithmetic–geometric mean
inequality.

Therefore

∂2u

∂x j 2
= 1

n
,

∂2u

∂x j∂xk
= 0 ∀ j = k,

which implies

∂u

∂x j
= x j

n
+ α j ,
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that is,

(∇u)(x) = x

n
+ α.

Therefore, for all w ∈ ∂ D, we have

|w + nα| = nc,

so ∂ D is a sphere.

§VI.3. Fermi Coordinates in Constant Sectional Curvature Spaces

We review here some basic information from §III.6 to be used in the sections
that follow.

Let M be an n–dimensional simply connected space of constant sectional cur-
vature κ , M an (n − 1)–dimensional submanifold of M , q ∈ M, ξ a unit vector
at q orthogonal to M, γξ (t) the geodesic with initial velocity vector ξ .

Letη a principal direction of the second fundamental form ofM relative to ξ , that
is, an eigenvector of Aξ : Mq → Mq with eigenvalue λ. Then, the transverse
vector field Y (t) along the geodesic γξ (t) satisfying

Y (0) = η, ∇t Y (0) = −λη,

is given by

Y (t) = {Cκ − λSκ (t)}η(t),(VI.3.1)

where η(t) is the parallel vector field along γξ (t) satisfying η(0) = η. Let βκ,λ

denote the first positive zero of Y (t), should it exist, that is, the first positive
solution to

Cκ (βκ,λ)

Sκ (βκ,λ)
= λ.(VI.3.2)

If we let A(t ; ξ ) denote the matrix solution to Jacobi’s equation along γ ,
pulled back to ξ⊥, as in §III.1:

A′′ + RA = 0,

subject to the initial conditions

A(0; ξ )|Mq = I, A′(0; ξ ) = −Aξ ,

then for an orthonormal basis e1, . . . , en−1 of Mq of principal directions of Aξ ,
we have

A(t ; ξ ) = {Cκ − λ j Sκ (t)}e j , j = 1, . . . , n − 1,
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and

detA(t ; ξ ) =
n−1∏
j=1

{Cκ (t) − λ j Sκ (t)}.

Also, recall that if cν(ξ ) denotes the distance to the focal cut point of M along
γξ , that is,

cν(ξ ) := sup {t > 0 : d(M, γξ (t)) = t},
then

cν(ξ ) ≤ min
j=1,...,n−1

βκ,λ j .(VI.3.3)

Example. Let M = ∂�, where � is a domain in M with compact closure
and smooth boundary. Construct Fermi coordinates in � based on ∂�. So, for
every q ∈ ∂� let ξq denote the interior unit vector at q, orthogonal to ∂�,
and

E(t ; q) = expq tξq .

If λ1(q), . . . , λn−1(q) denote the principal curvatures of the second fundamental
form of ∂� at q , with respect to ξq , then, by (III.6.3), the volume of � is given
by

V (�) =
∫

∂�

d Aq

∫ cν (q)

0

n−1∏
j=1

{Cκ (t) − λ j (q)Sκ (t)} dt.(VI.3.4)

Note that when � is an n–disk of radius r , B(r ), the formula (VI.3.4)
reduces to

Vκ (r ) = Aκ (r )
∫ r

0
{Cκ (t) − (Cκ (r )/Sκ (r ))Sκ (t)}n−1 dt.(VI.3.5)

Example. Let M = M
n
κ , M = M

n−1
κ be a totally geodesic hypersurface of con-

stant sectional curvature κ . Then,

A(t ; ξ ) = Cκ (t)I, detA(t ; ξ ) = Cκ
n−1(t).

Let Mt denote the t–parallel hypersurface in M, that is,

Mt = E(t ; M); ⇒ d(x, M) = |t | ∀ x ∈ Mt .

Then, Mt is totally umbilic in M with principal curvature (relative to γξ
′(t))

equal to λ = κSκ (t)/Cκ (t) (compare Exercises II.19 and III.25), and is therefore
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an (n − 1)–dimensional Riemannian manifold with intrinsic constant sectional
curvature K = κ + κ2S2

κ (t)/C2
κ (t) (by (II.2.6)). Thus,

Mt = M
n−1
κ+κ2S2

κ (t)/C2
κ (t).

By (III.6.3), the volume element on M is given by

dV (t ; q) = Cκ
n−1(t) dt d A(q), t ∈ R q ∈ M.(VI.3.6)

§VI.4. Spherical Symmetrization and Isoperimetric Inequalities

Symmetrization arguments are the earliest of those initiating the modern study
of isoperimetric inequalities, starting with Steiner (1838), and continuing in
the work of Schwarz (1884) and Caratheodory–Study (1909). As the title
suggests, it relies heavily on the symmetries of the ambient Riemannian space,
and is therefore most useful in the classical space forms of constant sectional
curvature Mκ .

Definition. Let M denote any metric space. The metric on M induces the
Hausdorff metric δ on the space X of nonempty compact subsets of M , given by

δ(X, Y ) = min {ρ : X ⊆ [Y ]ρ, Y ⊆ [X ]ρ}.

The Blaschke selection theorem (see Chavel (2001, pp. 55ff)) states that if M
is a space in which closed and bounded sets are compact, then X is complete.
Also, if M is compact, then X is compact.

Definition. For any bounded subset Y of M , we let r (Y ) denote the circumra-
dius of Y , that is,

r (Y ) = min {ρ : Y ⊆ B(x ; ρ) for some x ∈ M}.
A circumdisk of Y is a disk of radius r (Y ) containing Y .

The set function X �→ r (X ) is continuous on X. But, one only has the set
function X �→ V (X ) is upper semicontinuous on X, that is,

lim sup
k→∞

V (Xk) ≤ V (X ),

when Xk is a sequence in X for which δ(Xk, X ) → 0 as k → ∞.

Definition. Given any compact X in M , set

U(X ) = {Y ∈ X : V (Y ) = V (X ), V ([Y ]ε) ≤ V ([X ]ε) ∀ ε > 0}.
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Lemma VI.4.1. Assume M is one of the simply connected constant curvature
spaces. Given X ∈ X, there exists an element Y ∈ U(X ) with minimal circum-
radius.

Proof. If X itself realizes the minimum circumradius, then we are done. If not,
then we need only consider elements of U(X ) with circumradius less than or
equal to r (X ). Using the isometry group of M , we need only consider those
Y ∈ U(X ), with circumdisk centered at the center o of the circumdisk of X ,
and satisfying r (Y ) ≤ r (X ). Then, this collection Vo(X ) of compact subsets
of B(o; r (X )) is compact in X. Given a sequence Y k in Vo(X ) ∩ U(X ), such
that r (Y k) → min

Vo (X ) r , there exists Y ∈ Vo(X ) such that δ(Y k, Y ) → 0 as
k → ∞. This implies r (Y ) = min r . So, we want to verify that Y ∈ U(X ).

Suppose we are given ε > 0. For every η > 0, there exists k0 > 0 such that
Y ⊆ [Y k]η for all k ≥ k0. Then,

[Y ]ε ⊆ [Y k]η+ε,

which implies

V ([Y ]ε) ≤ V ([Y k]η+ε) ≤ V ([X ]η+ε)

for all η, ε > 0, since Y k ∈ U(X ) for all k. This implies for all ε > 0

V ([Y ]ε) ≤ inf
η

V ([X ]η+ε) = V

(⋂
η>0

[X ]η+ε

)
= V ([X ]ε),

the last equality since X is compact. So, to show Y ∈ U(X ), it remains to show
that V (Y ) = V (X ). From the above, we certainly have V (Y ) ≤ V (X ). But the
upper semicontinuity of the Riemannian measure on U implies

V (Y ) ≥ lim sup
k→∞

V (Y k) = V (X ),

which is the claim. �

The Argument in Hyperbolic Space

Theorem VI.4.1. Let M be hyperbolic space with constant curvature κ . Given
X ∈ X = X(M), let D denote the geodesic disk with volume equal to that X.
Then,

V ([X ]ε) ≥ V ([D]ε)

for all ε > 0.
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Corollary VI.4.1. If � is a relatively compact region with C1 boundary, then

A(∂�) ≥ A(∂ D).

Proof of Theorem VI.4.1. Before proceeding, we note that, for n = 0, the space
M can be considered to be the metric space consisting of one point, the space
endowed with counting measure. The theorem is then valid in this case.

The method of proof of Theorem VI.4.1 is by induction on n = dim M ,
starting with the truth of the theorem for n = 0. When wishing to prove the
theorem for the dimension n, one assumes that one already has the truth of
the theorem in dimension n − 1. (We only use the induction in Lemma VI.4.2
below.)

We prove the theorem for κ = −1 (of course, it is then valid for any κ).
Henceforth we consider n ≥ 1.

First, consider a fixed (n − 1)–dimensional hyperbolic space H
n−1 totally

geodesic in H
n , and introduce Fermi coordinates based on H

n−1, relative to a
(parallel) normal unit tangent vector field ξ along H

n−1, specifically

E(t ; q) = Exp tξq , t ∈ R, q ∈ H
n−1.

Then, the metric on H
n reads as

|dx |2 = (dt)2 + cosh2 t |dq|2,
where |dx |2 denotes the Riemannian metric on H

n , and |dq|2 on H
n−1. Also,

by (VI.3.6),

dV (t ; q) = coshn−1 t dt d A(q),(VI.4.1)

Let

Ht = E(t ; H
n−1)

denote the t–parallel hypersurface in H
n . Then, Ht is totally umbilic in H

n

with principal curvature κ = tanh t (compare Exercise III.25), and is therefore
an (n − 1)–dimensional Riemannian manifold with intrinsic constant sectional
curvature K = −1 + tanh2 t (by (II.2.6)). Thus,

Ht = H
n−1
−1+tanh2 t

.

Second, for every unit tangent vector ξ , one considers the geodesic γξ (t)
(determined by the initial velocity vector ξ ) and the hypersurface Hξ determined
by ξ , namely, the totally geodesic H

n−1 in H
n orthogonal to ξ . Let Ht

ξ denote
the hypersurface t–parallel to Hξ .
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As above, introduce the Fermi coordinates

Eξ (t, q) = Exp tξq := λt (q), t ∈ R, q ∈ H
n−1,

where ξ is a continuous extension of ξ to a unit normal vector field on Hξ .
Fix ε > 0. For any σ , there exists a real-valued function ησ (s) supported on

{s : |s − σ | ≤ ε}, such that, for any x = Eξ (σ, q), q ∈ Hξ , the closed n–disk
about x of radius ε is given by

[{x}]ε = B(x ; ε) =
⋃

{s: |s−σ |≤ε}
λs(BHξ

(q; ησ (s))).

This implies that, for

Z ⊆ Hσ
ξ ,

we have

[Z ]ε ∩ Hs
ξ = λs([λσ

−1(Z )]ησ (s) ∩ Hξ ) := λs([λσ
−1(Z )]ησ (s),ξ ),

where [Y ]ε,ξ denotes ε–thickening of Y in Hξ . That is, we start with an (n − 1)–
dimensional subset Z of Hσ

ξ , thicken it in M by ε, and then slice it by Hs
ξ . The

result is the same as exponentiating to Hs
ξ the thickening of Z in Hξ by ησ (s).

Note that |s − σ | > ε implies [Z ]ε ∩ Hs
ξ = ∅.

For a compact subset X in M , and t ∈ R, let Xt
ξ = X ∩ Ht

ξ ; and Dt
ξ = Dt

ξ (X )
denote closed (intrinsic) (n − 1)–dimensional disk in Ht

ξ , centered at γξ (t), with
(n − 1)–dimensional area A(Dt

ξ ) = A(Xt
ξ ); and we set

Sξ (X ) =
⋃

t

Dt
ξ .

One verifies directly thatSξ (X ) is compact and, by (VI.4.1), V (Sξ (X )) = V (X ).

Lemma VI.4.2. Given any compact X in M, ξ ∈ SM, we have Sξ (X ) ∈ U(X ).

Proof. Given X and ξ (for convenience, we drop the subscript ξ in the rest of
this lemma). Fix ε > 0. Set

[X ]t
ε = [X ]ε ∩ Ht .

For any t ∈ R, the intersection of [X ]ε with Ht , [X ]t
ε , is composed of contribu-

tions from Xs , for |s − t | ≤ ε. Therefore,

[X ]t
ε =

⋃
{s: |s−t |≤ε}

λt ([λs
−1 Xs]ηs (t)).
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Also, for W = Sξ (X ),

[W ]t
ε =

⋃
{s: |s−t |≤ε}

λt ([λs
−1W s]ηs (t)).

Of course, A(W t ) = A(Xt ) by the very construction of W .
Of course, we have

[X ]t
ε =

⋃
{s: |s−t |≤ε}

λt ([λs
−1 Xs]ηs (t)) ⊇ λt ([λs

−1 Xs]ηs (t)) for all {s : |s − t | ≤ ε}

which implies

A([X ]t
ε) = A

( ⋃
{s: |s−t |≤ε}

λt ([λs
−1 Xs]ηs (t))

)
≥ sup

{s: |s−t |≤ε}
A(λt ([λs

−1 Xs]ηs (t))),

that is,

A([X ]t
ε) ≥ sup

{s: |s−t |≤ε}
A(λt ([λs

−1 Xs]ηs (t))).(VI.4.2)

For W = �(X ), we have equality in (VI.4.2), since each λt ([λs
−1W s]ηs (t)) is

an (n − 1)–disk in Ht centered at γ (t).
Now assume the Theorem VI.4.1 is true for dimension n − 1. Then, it is true

for every hyperbolic space Ht , which implies

A(λt ([λs
−1 Xs]ηs (t))) ≥ A(λt ([λs

−1W s]ηs (t)))

for all |t − s| ≤ ε, which implies

A([X ]t
ε) ≥ sup

{s: |s−t |≤ε}
A(λt ([λs

−1 Xs]ηs (t)))

≥ sup
{s: |s−t |≤ε}

A(λt ([λs
−1W s]ηs (t)))

= A([W ]t
ε).

We therefore have A([X ]t
ε) ≥ A([W ]t

ε) for all t ∈ R. By (VI.4.1), we have

V ([X ]ε) ≥ V ([W ]ε). �

Lemma VI.4.3. Consider X ∈ X, which is not a disk. Let r = r (X ), and B(o; r )
the circumdisk of X. Then there exists a finite number of unit tangent vectors
ξ1, . . . , ξk at o such that

r (Sξk (Sξk−1 (. . . (X ) . . .))) < r (X ).

Proof. Given X not a disk, any symmetrization determined by a unit tangent
vector at o leaves B(o; r ) invariant. Since X is not all of B(o; r ), then Sξ (X )
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is not all of B(o; r ) for any ξ and does not contain the complete boundary
S(o; r ) = ∂ B(o; r ). The idea of what follows is to decrease the intersection of
the image of successive symmetrizations of X with S(o; r ), until it becomes
empty. But then the circumradius will have become strictly less than r .

To carry out the argument, one simply notes:
(i) If Y is a closed subset of B(o; r ), and x ∈ {S(o; r ) \ Y }, then x ∈ Sξ (Y )

for all ξ .
(ii) Let Y be a closed subset of B(o; r ), and G a relatively open subset of

S(o; r ), which does not intersect Y . Since G is open, it contains a spherical cap
subtending an angle α > 0 in (Hn)o, the tangent space to H

n at o. If α > π ,
then G contains antipodal points, and one symmetrizes relative to the geodesic
they determine to finish the job. On the other hand, if 0 < α < π , then one can
find a ξ for which there exists a relatively open subset Gξ of S(o; r ), disjoint
from Sξ (Y ), which contains a spherical cap subtending an angle 5α/4 in (Hn)o.

This suffices to prove the lemma, and with it, Theorem VI.4.1. �

The Argument in the Sphere

To carry out the argument on the sphere, one notes that, for every unit tangent
vector ξ , one considers the geodesic segment γξ (t) for t ∈ [−π/2, π/2], and
the “equator” Sξ determined by ξ , namely, the totally geodesic S

n−1 in S
n

orthogonal to ξ .
Then, one considers Fermi coordinates based on Sξ ,

Eξ (t ; q) = Exp tξq , t ∈ R, q ∈ Sξ ,

where ξ is the continuous extension of ξ to a normal unit field along Sξ . Then,
the metric on S

n reads as

|dx |2 = (dt)2 + cos2 t |dq|2,
where |dx | denotes the Riemannian metric on S

n and |dq|2 on Sξ . The volume
element, in these coordinates, is given by (see (VI.3.6))

dV (t ; q) = cosn−1 t dt d A(q).(VI.4.3)

Let

St = Eξ (t ; S
n−1)

denote the t–parallel hypersurface in S
n , that is

d(x, Sξ ) = |t | ∀ x ∈ St .
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Then, St is totally umbilic in S
n with principal curvature κ = tan t , and is

therefore an (n − 1)–dimensional Riemannian manifold with intrinsic constant
sectional curvature K = 1 + tan2 t . Thus,

St = S
n−1
1+tan2 t .

Now one can work through the argument as above.

§VI.5. M. Gromov’s Uniqueness Proof – Euclidean
and Hyperbolic Space

Let M denote n–dimensional Euclidean space or hyperbolic space of con-
stant curvature −1, B(r ) the disk of radius r , with boundary S(r ). We know
that B(r ) is a solution to the isoperimetric problem for domains � satisfying
V (�) = V (B(r )), that is, A(∂�) ≥ A(S(r )) for all such �. Here, we consider
the uniqueness question in the category of domains with C2 boundary. We
show that if V (�) = V (B(r )), A(∂�) = A(S(r )), ∂� ∈ C2, then � is isometric
to B(r ).

Of course, one can invoke the Theorem V.4.1 to claim that ∂� is regular except
for, at worst, a singular set of codimension ≥ 7, in which case the argument
presented below is valid as well. But, for purposes of the exposition, we find it
simpler to stay in the more restricted category of C2.

First, let V(r) denote the volume of B(r ), A(r ) the area of S(r ), and R(v) the
inverse function of V(r ). Then,

A′(r )

V′(r )
= A′(r )

A(r )
= hr ,

where hr denotes the mean curvature of S(r ) relative to the inward pointing
normal of S(r ) into B(r ). So,

V(r ) = ωnrn = cn−1rn/n, A(r ) = cn−1rn−1, hr = (n − 1)/r

for Euclidean space, and

V(r ) = cn−1

∫ r

0
sinhn−1 t dt, A(r ) = cn−1 sinhn−1 r, hr = (n − 1) coth r

for hyperbolic space.
In both cases, we let I(v) denote the isoperimetric profile of M ; therefore,

I(v) = A(R(v)).

For any isoperimetric region � with C2 boundary, the mean curvature of
∂� (relative to the interior of �) is constant, h�, and for any C2 variation
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�t , t ∈ (−to, to), of �, we have

A(∂(�t ))

I(V (�t ))
≥ 1,

A(∂(�))

I(V (�))
= 1,

which implies

0 = d

dt

A(∂(�t ))

I(V (�t ))

∣∣∣∣
t=0

= h� − A′(r )

V′(r )
= h� − hR(V (�)),

by Exercises III.16 and III.14 (the first variation of volume and area), and the
chain rule. That is,

h� = hR(V (�))(VI.5.1)

for any isoperimetric region � in M .

Next, consider M = R
n . Let � be an isoperimetric region in R

n , with V (�) =
V(r). Construct Fermi coordinates in � based on ∂�. For every q ∈ ∂�, let ξq

denote the interior unit vector at q, orthogonal to ∂�, and

E(t ; q) = expq tξq .

If λ1(q), . . . , λn−1(q) denote the principal curvatures of the second fundamental
form of ∂� at q , with respect to ξq (recall that the mean curvature is the sum
of the principal curvatures), then, by (VI.3.3),

cν(q) ≤ 1/ max
j=1,...,n−1

λ j (q).

Also, the volume of � is given by (see (VI.3.4))

V (�) =
∫

∂�

d Aq

∫ cν (q)

0

n−1∏
j=1

{1 − λ j (q)t} dt.

The arithmetric–geometric mean inequality implies

V (�) ≤
∫

∂�

d Aq

∫ 1/ max λ j (q)

0

n−1∏
j=1

{1 − λ j (q)t} dt

≤
∫

∂�

d Aq

∫ 1/ max λ j (q)

0

[
1 − h�t

n − 1

]n−1

dt

≤
∫

∂�

d Aq

∫ (n−1)/h�

0

[
1 − h�t

n − 1

]n−1

dt

= A(∂�)
∫ (n−1)/hr

0

[
1 − hrt

n − 1

]n−1

dt

= A(r)
∫ r

0

[
1 − t

r

]n−1

dt

= V(r)



P1: JZP

0521853680c06 CB980/Chavel January 3, 2006 5:47 Char Count= 697

296 Isoperimetric Inequalities (Constant Curvature)

the last equality follows from (VI.3.5). Therefore, we have equality in the
arithmetric–geometric mean inequality, which implies every point of ∂� is
umbilic, so ∂� is a sphere and � a disk. �

In hyperbolic space, the argument is the same, only the formulae are different.
Let � be an isoperimetric region in H

n , with V (�) = V(r). Construct Fermi
coordinates in � based on ∂�. For every q ∈ ∂�, let ξq denote the interior unit
vector field at q , orthogonal to ∂�, and

E(t ; q) = expq tξq .

If λ1(g), . . . , λn−1(q) denote the principal curvatures of the second fundamental
form of ∂� at q , with respect to ξq , then

cν(q) ≤ arctanh (1/ max
j=1,...,n−1

λ j (q)).

Also, the volume of � is given by

V (�) =
∫

∂�

d Aq

∫ cν (q)

0

n−1∏
j=1

{cosh t − λ j (q) sinh t} dt,

and

V (�) ≤
∫

∂�

d Aq

∫ arctanh (1/ max λ j (q))

0

n−1∏
j=1

{cosh t − λ j (q) sinh t} dt

≤
∫

∂�

d Aq

∫ arctanh (1/ max λ j (q))

0

[
cosh t − h�

n − 1
sinh t

]n−1

dt

≤
∫

∂�

d Aq

∫ arctanh ((n−1)/h�)

0

[
cosh t − h�

n − 1
sinh t

]n−1

dt

=
∫

∂�

d Aq

∫ arctanh ((n−1)/hr)

0

[
cosh t − hr

n − 1
sinh t

]n−1

dt

=
∫

∂�

d Aq

∫ r

0

[
cosh t − hr

n − 1
sinh t

]n−1

dt

= A(�)
∫ r

0

[
cosh t − hr

n − 1
sinh t

]n−1

dt

= A(r)
∫ r

0
[cosh t − coth r sinh t]n−1 dt

= V (r).

Therefore, we have equality in the arithmetric–geometric mean inequality,
which implies every point of ∂� is umbilic; so, ∂� is a sphere and � a
disk. �
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§VI.6. The Isoperimetric Inequality on Spheres

In this section, we prove a theorem of M. Gromov, a special case of which is
the solution of the isoperimetric problem on spheres.

Theorem VI.6.1. (M. Gromov (1986)) Let M be an n–dimensional compact
Riemannian manifold whose Ricci curvature satisfies

Ric ≥ (n − 1)κ > 0,

and Mκ the n–sphere of constant sectional curvature equal to κ > 0. Then, the
Bishop theorem (III.4.4) states that

β := V (M)

V (Mκ )
≤ 1.

To any given � ⊆ M, we associate the geodesic disk D in Mκ satisfying

V (�) = βV (D).

Then,

A(∂�) ≥ β A(∂ D),(VI.6.1)

with equality in (VI.6.1) if and only if M is isometric to the sphere Mκ , and �

is isometric to the geodesic disk D.

Proof.
Step 1. We let � vary over all compact (n − 1)–submanifolds of M that

divide M into two domains M1, M2 for which

V (M1) = V (�);

and we consider the variational problem of minimizing the area of �, A(�),
over this collection of �. Let A0 be the minimum value and assume that we
have a differentiable �0 for which A0 = A(�0) (see Step 5). Then (see Exercise
(III.18)), �0 has constant mean curvature λ, with the unit normal vector field ξ

along �0 pointing into the domain M0
1 with volume equal to that of �.

Step 2. As above, introduce the Fermi coordinates as E : (−∞, +∞) ×
�0 → M given by

E(t ; q) = exp tξ|q .

When discussing the focal cut locus, it is best to write

c(q) = cν(ξ|q ), c(−q) = cν(−ξ|q ),

where cν denotes the distance to the cut point of �o.
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Step 3. For f ∈ L1(M), one has in Fermi coordinates based on the subman-
ifold �0, ∫

M
f dV =

∫
�0

d A(q)
∫ c(q)

−c(−q)
f (E(t ; q)) det A(t ; q) dt,(VI.6.2)

by (III.6.3).
Now the Bishop comparison theorem (Theorem III.6.1) in this context reads

as follows: Let β+
κ,λ denote the first positive zero of (Cκ − λSκ )(t) (should it

exist – otherwise, we set β+
κ,λ = +∞), and −β−

κ,λ the first negative zero of
(Cκ − λSκ )(t) (should it exist – otherwise we set β−

κ,λ = ∞). Then,

c(−q) ≤ β−
κ,λ, c(q) ≤ β+

κ,λ,(VI.6.3)

and

det A(t ; q) ≤ (Cκ − λSκ )n−1(t)(VI.6.4)

(by the arithmetic–geometric mean inequality) for all t ∈ [−c(−q), c(q)]. We
have equality in (VI.6.4) at a given τ ∈ [−c(−q), c(q)] \ {0} if and only if

A(t ; q) = (Cκ − λSκ )(t)I(VI.6.5)

for all t in the interval connecting τ to 0, in which case we have

Aξ|q = λI, R(t) = κ I

on the interval connecting τ to 0.
Step 4. We are now ready to finish the proof of the theorem. First, let rD

denote the radius of D.
Let f = IM0

1
. Then,

V (�) = V (M0
1 ) =

∫
�0

d A(q)
∫ c(q)

0
det A(t ; q) dt

≤ A(�0)
∫ β+

κ,λ

0
(Cκ − λSκ )n−1(t) dt.

If � is a disk of radius r in Mκ , then we have equality above, which yields

Vκ (r ) = Aκ (r )
∫ r

0
(Cκ − λSκ )n−1(t) dt.

We conclude for general �,

V (�) ≤ A(�0)
Vκ (β+

κ,λ)

Aκ (β+
κ,λ)

.
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Let rD denote the radius of D. Note that the function r �→ Aκ (r )/Vκ (r ) is
strictly decreasing. Therefore, if rD ≥ β+

κ,λ then

A(�0) ≥ V (�)

Vκ (β+
κ,λ)

Aκ (β+
κ,λ) ≥ V (�)

Vκ (rD)
Aκ (rD) = β Aκ (rD).

On the other hand, if rD < β+
κ,λ, then rD > β−

κ,λ. Then, one has

A(�0) ≥ V (M \ �)

Vκ (β−
κ,λ)

Aκ (β−
κ,λ) ≥ V (�)

Vκ (rD)
Aκ (rD) = β Aκ (rD).

This implies (VI.6.1).
Step 5. Our proof assumed that �0 has no singularities. However, the main

existence–regularity theorem for the isoperimetric problem (see Theorem V.4.1)
implies the validity of (VI.6.2), even when there are singularities.

First, the singularities of � are restricted to subsets of submanifolds of codi-
mension greater than or equal to 7, and therefore the collection of singularities
has (n − 1)–measure equal to 0. So, if �∗

0 denotes the regular points of �0, then

∫
�0

d A(q) · · · =
∫

�∗
0

d A(q) · · · .

Moreover (see Gromov (1980)), for any point x in M \ �0, there exists a
point qx ∈ �∗

0 for which

x = E(d(x, qx ), qx ).

That is, any point in M not in � is in the image of the exponential map of the nor-
mal bundle over points of �∗

0 . Indeed, such a qx that minimizes distance from x
to �0 certainly exists in �0. Let y be the midpoint of a minimizing geodesic seg-
ment connecting x to qx , and consider the closed metric disk B(y; d(x, qx )/2).
Then,

�0 ∩ B(y; d(x ; qx )/2) = {qx }

(since, otherwise, one would have a broken minimizing geodesic from x to �0).
Furthermore, the bounding metric sphere S(y; d(x, qx )/2) is smooth at qx . We
conclude that the tangent cone of �0 at x is contained in a half-space at x , which
implies (Almgren (1976)) �0 is regular at x .

Step 6. One easily checks that equality implies β = 1, which implies M is
isometric to Mκ by the Toponogov–Cheng theorem (Theorem III.4.6). �
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§VI.7. Notes and Exercises

Note VI.1. Bibliographic sampler on isoperimetric inequalities. The litera-
ture is quite large, and a good start is in the following: Burago–Zalgaller (1988),
Gromov (1986, 1981, Chapter 6) Osserman (1978, 1979), and A. Ros (2005).

Symmetrization

Note VI.2. The modern study of isoperimetric inequalities, inaugurated in
the papers of J. Steiner (1838), H. A. Schwarz (1884), and C. Caratheodory–
E. Study (1909), was originally restricted to 2– and 3–dimensional Euclidean
space. The isoperimetric problem for manifolds beyond the Euclidean plane and
space was first solved for domains in the 2–sphere bounded by convex curves,
by F. Bernstein (1905); and a unified proof for the simply connected spaces
of constant sectional curvature of all dimensions (which might be viewed as
a summary statement of all the previous work) using spherical symmetriza-
tion was given in E. Schmidt (1948). See also the extensive treatment in Y.
D. Burago–V. A. Zalgaller (1988).

Yet another symmetrization argument of J. Steiner (1842) was, more re-
cently, revived by W. Y. Hsiang (1991), H. Howard–M. Hutchings–F. M. Mor-
gan (1999), and A. Ros (2001). See our comments in Chavel (1984, p. 11ff).

Still another approach to symmetrization, two-point symmetrization, was
initiated, it seems, by L. V. Ahlfors (1973), and used on the n–sphere by A.
Baernstein–B. A. Taylor (1976). Also, see the notes of Y. Benjamini (1983).

For current presentations of symmetrization methods, see E. H. Lieb–M. Loss
(1996) and A. Baernstein (2004). For the Brunn–Minkowski inequalities see the
recent R. J. Gardner (2002). For a complete proof of the isoperimetric inequal-
ity, using Steiner symmetrization, valid for compacta and domains with finite
perimeter, and with characterization of the case of equality, see Chavel (2001).

Other Methods

Note VI.3. The classical isoperimetric inequality in R
n also has the advantage

of possessing a veritable wealth of techniques (especially in the plane), each
of which “represents” some subfield of analysis and/or geometry. Many of the
2–dimensional arguments are presented in Burago–Zalgaller (1988, Chapter 1).
We only sampled two of higher dimensional arguments in our presentation, here.
In Chavel (2001, Chapter II), we present a sampling of other arguments associ-
ated with the isoperimetric inequality, most of which are related to uniqueness.

(i) We note there (see also Exercise III.18) that the classical Euler–Lagrange
equation for an extremal area subject to constant volume constraint is that the
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mean curvature of the boundary of the extremal domain have constant mean
curvature.

(ii) We give F. Almgren’s (1976) proof that any solution to the isoperimetric
problem in R

n , with C2 boundary must be an n–disk.
(iii) We then give A. D. Alexandrov’s (1962) proof that any domain in R

n

with C2 boundary of constant mean curvature must be isometric to a disk. These
arguments complement the argument of Gromov presented here.

(iv) Finally, we give, there, M. Gromov’s (1986) argument proving the
isoperimetric inequality for domains with C1 boundary, as a consequence of
Stokes’ theorem!

The Elementary Version of Steiner Symmetrization

We describe the basic idea of Steiner symmetrization (Steiner (1838)). In gen-
eral, symmetrization arguments are always at the heart of isoperimetric inequal-
ities in space forms of constant sectional curvature, since they give immediate
expression to the intuition that the more symmetric a set, the “closer” the set is
to the solution of the isoperimetric problem.

The basic idea is as follows: We work in R
2. Given two differentiable functions

f j (x), j = 1, 2 defined on the interval [a, b] in R, with f1(x) ≤ f2(x) for all
x ∈ [a, b], consider the domain

� =: {(x, y) : f1(x) ≤ y ≤ f2(x), a ≤ x ≤ b}.

To the domain �, we associate the symmetrized domain �∗ obtained by con-
sidering the function

f ∗(x) = f2(x) − f1(x)

2

and setting

�∗ =: {(x, y) : − f ∗(x) ≤ y ≤ f ∗(x), a ≤ x ≤ b}.

Exercise VI.1. Prove

A(�) = A(�∗), L(∂�) ≥ L(∂�∗).

Also show that, if � is given by

� =: {(x, y) : f2 j−1(x) ≤ y ≤ f2 j (x), j = 1, . . . , k a ≤ x ≤ b},
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where f1(x) ≤ f2(x) ≤ . . . ≤ f2k−1(x) ≤ f2k(x) for all x , with f2 j ≡ f2 j+1 for
at least one j , and the symmetrization �∗ of � is defined by setting

f ∗(x) = 1

2

k∑
j=1

{ f2 j (x) − f2 j−1(x)},

and

�∗ =: {(x, y) : − f ∗(x) ≤ y ≤ f ∗(x), a ≤ x ≤ b},
then show that

A(�) = A(�∗), L(∂�) > L(∂�∗).

So, the symmetrization preserves the area and decreases the length.

Note VI.4. See Pólya–Szegö (1951) and Kawohl (1985) for extended dis-
cussions emphasizing the connection of symmetrization methods to analysis.

The Faber–Krahn Inequality

We give below an application of symmetrization to analysis. It involves the
application of “geometric” isoperimetric inequalities to isoperimetric inequal-
ities for eigenvalues. The inequality is as follows: Let M = Mκ be the simply
connected space form of constant sectional curvature κ . To each open set �,
consisting of a finite union of relatively compact domains with smooth bound-
ary, we associate the disk D in M with V (�) = V (D). Then, the isoperimetric
inequality implies A(∂�) ≥ A(∂ D), with equality if and only if � is congruent
to D.

But first we have to quote the coarea formula (Theorem VIII.3.3 below; also
Theorem III.5.2 and Exercise III.12).

Coarea Formula. Let � be a domain in M with compact closure and f :
� → R a function in C0(�) ∩ C∞(�), with f | ∂� = 0. For any regular value
t of | f |, we let

�(t) = | f |−1[t], A(t) = A(�(t)),

and d At denote the (n − 1)–dimensional Riemannian measure on �(t). Then,

dV|�(t) = d At dt

|grad f | ,
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and for any function φ ∈ L1(�), we have∫
�

φ|grad f | dV =
∫ ∞

0
dt

∫
�(t)

φ d At .

Recall that the critical values, in R, of f have Lebesgue measure equal to 0, by
Sard’s theorem (Narasimhan (1968, p. 19ff)). The regular values of f , R f , are
open in R, and for t ∈ R f the preimage f −1[t] ∩ � is an (n − 1)–submanifold
in M with f −1[t] ∩ � compact. For any t ∈ R f , we write

�(t) = {x : | f |(x) > t}, V (t) = V (�(t)).

Theorem. (C. Faber (1923) and E. Krahn (1925)) Let � be a bounded domain
in M, and let D be the disk in M satisfying V (�) = V (D). Then,

λ∗(�) ≥ λκ (D),

where λ∗ denotes the fundamental tone, and λκ the lowest eigenvalue, relative
to the Dirichlet eigenvalue problem, of the domain indicated. If � also has
smooth boundary, then one has equality if and only if � is isometric to D.

The theorem answers in the affirmative a conjecture of Lord Rayleigh (1877,
§210). We sketch the proof, with some details relegated to exercises. (The
reader should check §III.7 for background.)

Exercise VI.2. Consider the collection of functions

Hnd := {φ ∈ Cc(�) : ∂(supp φ) ∈ C∞, (φ|int supp φ) ∈ C∞,

φ| int supp φ only has nondegenerate critical points}.

Then, Hnd is dense in H(�) (Aubin (1982, p. 40)). Show that to prove the first
claim of the theorem, it suffices to show that for any φ ∈ Hnd, �φ := int supp φ,
for the geodesic disk Dφ in M satisfying V (�φ) = V (Dφ), we have

D[φ, φ]/‖φ‖2 ≥ λκ (Dφ).

Exercise VI.3. Let f = |φ|, φ ∈ Hnd. By Lemma VIII.3.2, the Rayleigh quo-
tients of φ and |φ| are the same. Prove that, for f , the volume function V (t) is
continuous.
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Now the idea of the proof is to associate to f a function F : D → R for which
F |∂ D = 0, and for which∫∫

�

|grad f |2 dV ≥
∫∫

D
|grad F |2 dV,

∫∫
�

f 2 dV =
∫∫

D
F2 dV .

This would then prove the claim.

To this end, let T = max f |�, and for t ∈ [0, T ] let D(t) be the geodesic disk
(fix the center o once and for all) in M with V (t) = V (D(t)). So, if r(t) denotes
the radius of D(t), then

V (t) = Vκ (r(t)).

Also, set r0 = r(0); in particular, D = Bκ (o; r0). Now, the function r : [0, T ] →
[0, r0] is in C0([0, T ]) ∩ C∞(R f ∩ (0, T )) and is strictly decreasing. We let
ψ : [0, r0] → [0, T ] be the inverse function of r, and define F : D → R by

F = ψ◦r, r (x) = d(o, x).

Exercise VI.4.
(a) Verify

V ′(t) = Vκ
′(r(t))r′(t) = Aκ (r(t))r′(t), 1 = ψ ′(r(t))r′(t),

and ∫∫
�

f 2 dV =
∫∫

D
F2 dV .

(b) Prove∫∫
�

|grad f |2 dV ≥
∫ T

0
A2(t)

{∫
�(t)

|grad f |−1 d At

}−1

dt.

(c) Prove∫ T

0
A2(t)

{∫
�(t)

|grad f |−1 d At

}−1

dt ≥ −
∫ T

0
Aκ (r(t))(r′(t))−1 dt.

(d) Prove ∫∫
D

|grad F |2 dV = −
∫ T

0
Aκ (r(t))(r′(t))−1 dt.

This, then, implies the first claim of the theorem. To consider the case of equality
in the theorem, one could not obtain (easily, if at all) a characterization using
a collection of functions dense in H(�). (For that, one would need a Bonnesen
inequality – see Note 6.) So, we assume � has smooth boundary, in which
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case λ∗(�) = λ1(�), and we may work directly with a positive eigenfunction
f of λ1(�). Of course, f |∂� = 0. Similarly, � might be a nodal domain of
an eigenfunction φ (i.e., � is a connected component of {φ = 0}) of a larger
domain (e.g., a compact manifold). Then, as we showed in §III.9, f = | φ|� |
realizes λ∗(�). So, again, we work with the specific f .

Exercise VI.5. Let f be the eigenfunction under consideration. If p is a point
in � such that grad f vanishes at p, show that for Riemann normal coordinates
x : U (p) → R

n about p, we have

∂2 f

∂x j 2
< 0

for at least one of the j ∈ {1, . . . , n}. Thus, the set of points for which grad f =
0 is contained in an (n − 1)–manifold. In particular, for every t , V (�(t)) = 0,
which implies V = V (t) is continuous with respect to t .

Now one can argue as above. If λ1(�) = λκ (D), then the argument shows that
A(t) = Aκ (r(t)) for all regular values of t . But, then, for every such t , one has
�(t) isometric to D(t). Sard’s theorem implies that � = �(0) is isometric to
D(0) = D. �

Note VI.5. The Faber–Krahn inequality was generalized, in Chavel–Feldman
(1980), to simply connected domains on surfaces with Gauss curvature bounded
from above.

Note VI.6. A different generalization and application of the Faber–Krahn in-
equality was given in Bérard–Meyer (1982). Let M be compact with Ricci curva-
ture bounded from below by (n − 1)κ , with κ > 0. Set β = V (M)/V (Mκ ), and
given any domain � in M , let D be the metric disk in Mκ with V (�) = βV (D).

Exercise VI.6.
(a) Prove λ∗(�) ≥ λκ (D). If � has smooth boundary, characterize equality.
(b) Prove the Obata theorem (Obata (1962)). Namely, we know that λ2(M) ≥

nκ (see Exercise III.45). Show that λ2 = nκ if and only if M is isometric
to Mκ .

Other Developments

Note VI.7. Start, for convenience, in the Euclidean plane R
2. A Bonnesen

inequality is a sharpened form of the isoperimetric inequality. Namely, given
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the domain �, one looks for a nonnegative invariant B(�) ≥ 0 of the domain
� (i) that vanishes if and only if � is a disk, and (ii) that satisfies

L2 − 4π A ≥ B.

This not only contains an immediate proof of the isoperimetric inequality, but
it also contains an immediate characterization of equality.

Of course, one can easily formulate such questions for surfaces with curvature
bounded from above and for higher dimensional Euclidean space. The first
such result was F. Bernstein’s proof (1905) of the isoperimetric inequality on
the 2–sphere. Osserman’s (1979) sharpened form of the Bol–Fiala inequality
(Theorem V.5.6) was of Bonnesen type.

Note VI.8. A different approach to the isoperimetric inequality in Euclidean
space, using geometric measure theory, is given in Almgren (1986). It is built
on the following:

Theorem. Let M be a k–dimensional submanifold of R
n, k < n, without bound-

ary, and assume that the length of the mean curvature vector on all of M is
less than or equal to that of S

k . Then, the Vk(M) ≥ ck (where Vk denotes k–
dimensional volume), with equality if and only if M is congruent to S

k .

Note VI.9. For fuller discussion of analytic isoperimetric inequalities related
to geometric considerations, see Chavel (1984, Chapter IV; 2001, Chapters
VI–VIII).
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VII

The Kinematic Density

In this chapter, we discuss integration over the unit tangent bundle of a given
Riemannian manifold. The geodesic flow of the Riemannian metric acts on the
unit tangent bundle, and one of its salient features is the existence of a natural
measure on the unit tangent bundle, called the kinematic density or the Liouville
measure, which is invariant under the action of the geodesic flow. Furthermore,
the integral of a function on the unit tangent bundle can be calculated by first
integrating the function relative to the kinematic density over each of the fibers
((n − 1)–spheres) in the unit tangent bundle and then integrating the resulting
function on the base manifold relative to its Riemannian measure. The measure
on the fibers is the natural measure on spheres induced by Lebesgue measure
on the tangent spaces.

We could present the kinematic density by simply writing it as the local
product measure of the natural measure on tangent spheres and the Riemannian
measure on the base manifold, and then verifying that it is invariant relative to
the geodesic flow. However, we prefer a different route, one that detours through
the formalism of classical analytical mechanics. This affords an opportunity to
connect the discussion to an extremely important collection of ideas, important
historically and in current research. We do not pursue this connection here to
any extent, rather, we concentrate on Riemannian results that emerged from
these notions.

Our presentation of the formalism of analytic mechanics is different from that
usually presented in classical mechanics (Goldstein (1950) and Arnold (1980)).
By this, I mean that in classical mechanics, (i) one starts with a Lagrangian
functional associated with some dynamical system in R3; (ii) in generalized
coordinates in configuration space (i.e., the view of the variables of the system
as a differentiable manifold), the Lagrangian becomes a function defined on
the state space (the tangent bundle); (iii) under the canonical transformations
of the data to generalized momenta in phase space (the cotangent bundle), the

307
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energy function associated with the Lagrangian becomes a Hamiltonian, rela-
tive to which the dynamical system satisfies the associated Hamilton equations.
But, we shall proceed in the opposite direction, namely, (a) we start with the
cotangent bundle and note the existence of a canonical 1–form on the cotan-
gent bundle whose exterior derivative, the canonical 2–form, is nondegenerate.
This determines, after any choice of (Hamiltonian) function on the cotangent
bundle, the Hamiltonian system of differential equations of the induced flow.
The important point is that the canonical forms are determined by the differ-
entiable structure of the original base manifold – nothing else. (b) Given any
(Lagrangian) function on the tangent bundle, one then constructs an associated
bundle map of the tangent bundle to the cotangent bundle to pull the canonical
forms from the cotangent bundle back to the tangent bundle. (c) Once these
forms exist on the tangent bundle, they and the energy function associated with
the Lagrangian determine the flow in the tangent bundle whose integral curves
project to the solutions of the associated classical Euler–Lagrange equations.

From there, we restrict to the Riemannian case and interpret the above in this
situation. As mentioned previously, our emphasis will be on Riemannian results.
We present the analytic aspects of the solution to the Blaschke conjecture, and
the first steps in the dynamical theory of manifolds with no conjugate points.
In the last section, we discuss Santalo’s formula, of interest in its own right,
in its application to the Blaschke conjecture (see, e.g., Exercise VII.13(c)) and
to isoperimetric inequalities on Riemann manifolds – to be discussed in the
following chapter.

A note on our presentation of the classical mechanics. We have done so by calcu-
lating in local coordinates. Such treatments are out of fashion these days – there
is an almost ideological prejudice against such treatments. But then that very
fact, that local coordinates are no longer “in,” may constitute a recommendation
for a second look for at least one topic.

§VII.1. The Differential Geometry of Analytical Dynamics

For any vector space V with bilinear form B, one has the natural homomorphism
(as in the case of an inner product)

θB : V → V ∗

given by

(θB(ξ ))(η) = B(ξ, η).

If E is finite dimensional, then θB is an isomorphism if and only if B is nonde-
generate (i.e., B(ξ, η) = 0 for all η ∈ E implies ξ = 0).
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Definition. A symplectic 2–form � on a differentiable manifold M is a closed
(i.e., d� = 0) nondegenerate differentiable differential 2–form on M .

Let M be any manifold endowed with the symplectic 2–form �. Then, with
any function f on M , we associate the vector field (analogous to the gradient)
X f on M given by

X f = −θ�
−1 d f

that is,

− d f = θ�(X f ) = i(X f )�.(VII.1.1)

Proposition VII.1.1. (a) The function f is constant along the integral curves
of X f , and (b) the symplectic 2–form � is invariant relative to the flow of X f .

Proof. For (a), we simply have

X f f = d f (X f ) = −�(X f , X f ) = 0,

which implies the claim; and for (b), we have (see §III.7), by (III.7.1),

LX f � = {d◦i(X f ) + i(X f )◦d}� = d◦i(X f )� = −d2 f = 0. �

The Canonical Symplectic Form on Cotangent Bundles

Our standard example is given by considering our perennial n–dimensional
manifold M , with respective tangent and cotangent bundles T M and T M∗, and
respective projection maps

π1 : T M → M, π2 : T M∗ → M.

Definition. We define the canonical 1–form on T M∗, ω, by

ω|τ = π2
∗τ,

where ω|τ denotes the 1–form ω evaluated at τ ∈ T M∗. We define the canonical
2–form on M , �, by

� = dω.

Proposition VII.1.2. The 2–form � on T M∗ is symplectic.
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Proof. Clearly, � is closed. To show that � is nondegenerate, we consider a
local chart x : U → Rn , with associated charts

(q1, . . . , qn; q̇1, . . . , q̇n), (q1, . . . , qn; p1, . . . , pn)

on π1
−1[U ] in T M , and on π2

−1[U ] in T M∗, respectively, defined as follows:
For ξ ∈ π1

−1[U ] we have

ξ =
n∑

j=1

ξ j ∂

∂x j
=

n∑
j=1

dx j (ξ )
∂

∂x j
;

so we set

q j = x j ◦π1, q̇ j = dx j ,

where dx j is viewed here as a function on π1
−1[U ]. For τ ∈ π2

−1[U ], we have

τ =
n∑

j=1

τ j dx j =
n∑

j=1

(
∂

∂x j

)∗∗
(τ ) dx j ;

so we set

q j = x j ◦π2, p j =
(

∂

∂x j

)∗∗
.

Then,

τ =
∑

j

p j (τ ) dx j

implies

ωτ = π2
∗τ =

∑
j

{p j dq j }|τ ,

which implies

� = dω =
n∑

j=1

dp j ∧ dq j ,

which is nondegenerate. �

Given any function, a Hamiltonian H : T M∗ → R, then to calculate X H we
set

X H =
∑

j

α j ∂

∂q j
+ β j ∂

∂p j
.

Then,

d H =
∑

j

∂ H
∂q j

dq j + ∂ H
∂p j

dp j = −i(X H )� =
∑

j

α j dp j − β j dq j .
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So,

X H =
∑

j

∂ H
∂p j

∂

∂q j
− ∂ H

∂q j

∂

∂p j
,

and the differential equation of the flow of X H on T M∗ is given by

dq j

dt
= ∂ H

∂p j
,

dp j

dt
= − ∂ H

∂q j
.

Lagrangian-Induced Symplectic Forms on Tangent Bundles

Now, the symplectic form on T M∗ is determined by the differentiable structure
on M . What about symplectic forms on T M?

We proceed as follows: To any function, a Lagrangian L : T M → R, one
associates a bundle map F L : T M → T M∗ defined by

{F L(ξ )}(η) = d
dt

(L(ξ + tη))

∣∣∣∣
t=0

for all η ∈ Mp, where p ∈ M , ξ ∈ Mp. Then, one sets

� = F L∗�.

Certainly, � is closed. If F L has maximal rank, then � will also be nondegen-
erate and, therefore, symplectic. In what follows, we will explicitly calculate
� for a natural class of examples.

One defines the action A : T M → R and energy E : T M → R functions on
T M by

A(ξ ) = {F L(ξ )}(ξ ), E = A − L .

When F L has maximal rank, then � is nondegenerate; then, one can study the
flow of the vector field X on T M determined by � and E .

We calculate the above quantities in local coordinates. Let x : U → Rn be a
chart on M , and (q; q̇) : π1

−1[U ] → R2n , (q; p) : π2
−1[U ] → R2n the associ-

ated charts on T M , T M∗, respectively. Then,

L(ξ + tη) = L(q(ξ + tη); q̇(ξ + tη)) = L(q(ξ ); q̇(ξ + tη)),

which implies

d
dt

L(ξ + tη)

∣∣∣∣
t=0

=
∑

j

∂L
∂q̇ j

(ξ )q̇ j (η) =
{∑

j

∂L
∂q̇ j

(ξ ) dx j

}
(η);
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so F L(ξ ) is the 1–form at π1(ξ ) given by

F L(ξ ) =
∑

j

∂L
∂q̇ j

(ξ ) dx j ,

which implies

A(ξ ) =
∑

j

∂L
∂ q̇ j

q̇ j , E =
∑

j

∂L
∂q̇ j

q̇ j − L .(VII.1.2)

To calculate �, we have the map F L given in the local coordinates by

q j �→ q j , q̇ j �→ p j (ξ ) = ∂L
∂q̇ j

(ξ ).

We conclude

� = F L∗� = F L∗ ∑
j

dp j ∧ dq j =
∑

j

d
(

∂L
∂q̇ j

)
∧ dq j .(VII.1.3)

So, � is the symplectic form of T M induced by the Lagrangian L . Given
the energy function E , derived from L above, we calculate the vector field X
on T M determined by � and E , as in equation (VII.1.1), namely,

− d E = i(X )�.(VII.1.4)

First set

X =
∑

j

γ j ∂

∂q j
+ δ j ∂

∂q̇ j
.(VII.1.5)

Then, from (VII.1.2), we have

− d E =
∑

j

∂L
∂q j

dq j − q̇ j d
(

∂L
∂q̇ j

)
;(VII.1.6)

on the other hand, from (VII.1.3) and (VII.1.5), one easily has

i(X )� =
∑

j

{
X

(
∂L
∂q̇ j

)}
dq j − γ j d

(
∂L
∂q̇ j

)
.(VII.1.7)

We claim that (VII.1.6) and (VII.1.7) imply

γ j = q̇ j(VII.1.8)

for all j , that is, the vector field X actually represents a second-order differential
equation on M (see §I.3), and

X
(

∂L
∂q̇ j

)
= ∂L

∂q j
(VII.1.9)
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for all j . Well,

d
(

∂L
∂ q̇ j

)
=

∑
k

{
∂2L

∂qk∂q̇ j
dqk + ∂2L

∂q̇k∂q̇ j
dq̇k

}
.

But, to say that � is nondegenerate is to say that the matrix L, given by

Lk j = ∂2L
∂q̇k∂q̇ j

is nonsingular. Then, this implies the claim. Equation (VII.1.9) is referred to as
the Euler–Lagrange equation.

To determine δ j in (VII.1.5), one uses (VII.1.8) and (VII.1.9):

∂L
∂q j

= X
(

∂L
∂ q̇ j

)
=

∑
k

q̇k ∂2L
∂qk∂q̇ j

+ δk ∂2L
∂q̇k∂q̇ j

,

which implies ∑
k

δk ∂2L
∂ q̇k∂ q̇ j

= ∂L
∂q j

−
∑

k

q̇k ∂2L
∂qk∂q̇ j

.(VII.1.10)

One can now use the nonsingularity of L to determine δ j .

Newton’s Equations in Riemannian Geometry

The classical example from Newtonian mechanics goes as follows: Let M be a
Riemannian manifold, and V : M → R a function on M . For the Lagrangian
L : T M → R, we pick

L(ξ ) = |ξ |2
2

− (V ◦π1)(ξ ),(VII.1.11)

so, in the local coordinates on T M , we have

L(ξ ) = 1

2

∑
j,k

g jk(q)q̇ j q̇k − V (q).

The function V is referred to as a potential function of the force field −grad V
on M .

Theorem VII.1.1. The vector field X represents “Newton’s equation of mo-
tion” on M for the force field −grad V . That is, if �t denotes the flow of X on
T M, and for any ξ ∈ T M, we set

γξ (t) = π1◦�t (ξ ),
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then

γξ
′(t) = �t (ξ ), ∇tγξ

′ = −(grad V )◦γξ .(VII.1.12)

Thus, when V is constant on M, X is the vector field of the geodesic flow. In
other words, the projection of the trajectories of X to M yield the paths given
by the “law of inertia” – geodesics.

Proof. The first equality in (VII.1.12) is (VII.1.8); so, we concentrate on prov-
ing the second.

We give the local calculation. First,

∂L
∂q j

= 1

2

∑
r,s

∂grs

∂q j
q̇r q̇s − ∂V

∂q j
,

∂L
∂q̇k

=
∑

s

gks q̇s,

which implies

∂2L
∂q j∂ q̇k

=
∑

s

∂gks

∂q j
q̇s,

∂2L
∂q̇ j∂q̇k

= g jk .

If we substitute into (VII.1.10), we obtain∑
s

δs gs j = 1

2

∑
r,s

∂grs

∂q j
q̇r q̇s − ∂V

∂q j
−

∑
r,s

∂g js

∂qr
q̇r q̇s

= 1

2

∑
r,s

{
∂grs

∂q j
− ∂g js

∂qr
− ∂gr j

∂qs

}
q̇r q̇s − ∂V

∂q j
;

so,

δ j = −
∑
r,s

�rs
j q̇r q̇s −

∑
s

g js ∂V
∂qs

,

which implies the theorem. �

The Liouville Theorems

Our goal now is to calculate the forms

�n, ϑ ∧ �n−1,

where

ϑ = F L∗ω, � = F L∗�

(ω is the canonical 1–form on T M∗, and the exponent of the forms indicates
the number of times the form is wedged with itself). We first note
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Lemma VII.1.1. Given a vector space V and

{σ 1, . . . , σ 2n} ⊆ V ∗,

then there exists a (not necessarily positive) constant c(n, k), so that(
n∑

j=1

σ j ∧ σ j+n

)k

= c(n, k)
∑

j1<...< jk

σ j1 ∧ · · · ∧ σ jk ∧ σ j1+n ∧ · · · ∧ σ jk+n.

Therefore, for the canonical 1–form and 2–form on T M∗,

ω =
∑

j

p j dq j , � =
∑

j

dp j ∧ dq j ,

we have

�n = c(n) dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ · · · ∧ dqn(VII.1.13)

and

ω ∧ �n−1 = (−1)nc(n, n − 1)

{∑
j

(−1) j p j dp1 ∧ · · · ∧ d̂p j ∧ · · · ∧ dpn

}
∧

∧dq1 ∧ · · · ∧ dqn.(VII.1.14)

Given L as in (VII.1.11), then

{F L(ξ )}(η) = 〈ξ, η〉,
which implies that the coordinate p j at the point F L(ξ ) in T M∗ is given by

p j (F L(ξ )) = ∂L
∂q̇ j

(ξ ) =
∑

r

g jr (q)q̇r .(VII.1.15)

Therefore, if we let m(q̇; q) denote the volume form of Mπ1(q) at q̇, associ-
ated with Lebesgue measure on Mπ1(q), and σ the local volume form of the
Riemannian measure on M , then (VII.1.13) implies

�n = c(n)g dq̇1 ∧ · · · ∧ dq̇n ∧ dq1 ∧ · · · ∧ dqn

= c(n) m(q̇; q) ∧ π1
∗σ (q),

where g, as usual, denotes det (gi j ). We conclude:

Theorem VII.1.2. The form �n is the local product, up to constant multi-
ple, of the Riemannian volume form on M with the Lebesgue volume form on
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the tangent space to M. In particular, T M is orientable, independent of the
orientability of M.

Thus, for any �n–integrable function F on T M, we have “integration over
the fibers” ∫

T M
F �n = c(n)

∫
M

dV (p)
∫

Mp

{F |Mp} dmp,

where dmp denotes the canonical Lebesgue measure on Mp, for any p ∈ M.
Also, since � is invariant with respect to the flow of X H for any Hamiltonian

H on T M∗, we also have �, and therefore �n, invariant with respect to the
flow �t of X on T M.

The same type of theorem is true of ϑ ∧ �n−1, although the details are messier.
They go as follows:

First, we have from (VII.1.14) and (VII.1.15)

ϑ ∧ �n−1

= c(n)
∑

j,r

(−1) j g jr q̇r ·

·
∑

r1,...,r̂ j ,...,rn

(g1r1 dq̇r1 ) ∧ · · · ∧ ̂(g jr j dq̇r j ) ∧ · · · ∧ (gnrn dq̇rn ) ∧

∧ dq1 ∧ · · · ∧ dqn

= c(n)
∑

j

(−1) j
∑

r1,...,rn

g1r1 · · · gnrn q̇r j dq̇r1 ∧ · · · ∧ d̂q̇r j ∧ · · · ∧ dq̇rn ∧

∧ dq1 ∧ · · · ∧ dqn.

So, we study

dq̇r1 ∧ · · · ∧ d̂q̇r j ∧ · · · ∧ dq̇rn

where r j has the value �. If � < j , then

dq̇r1 ∧ · · · ∧ d̂q̇r j ∧ · · · ∧ dq̇rn

= dq̇r1 ∧ · · · ∧ dq̇r�−1 ∧ d̂q̇� ∧ dq̇r� ∧ · · · ∧ dq̇r j−1 ∧ dq̇r j+1 ∧ · · · ∧ dq̇rn

= ε
1···(�−1)�(�+1)··· j( j+1)···n
r1···rl−1�rl ···r j−1r j+1···rn

dq̇1 ∧ · · · ∧ d̂q̇� ∧ · · · ∧ dq̇n

= (−1)�− jε1···n
r1···rn

dq̇1 ∧ · · · ∧ d̂q̇� ∧ · · · ∧ dq̇n,
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where ε denotes the parity of the indicated permutation; and a corresponding
argument holds for � > j . Therefore,

ϑ ∧ �n−1 = c(n)
∑

j

(−1) j
∑

r1,...,rn

g1r1 · · · gnrn q̇r j dq̇r1 ∧ · · · ∧ d̂q̇r j

∧ · · · ∧ dq̇rn ∧ dq1 ∧ · · · ∧ dqn

= c(n)
∑

r1,...,rn

ε1···n
r1···rn

g1r1 · · · gnrn·

·
∑

�

(−1)�q̇� dq̇1 ∧ · · · ∧ d̂q̇� ∧ · · · ∧ dq̇n ∧ dq1 ∧ · · · ∧ dqn

= c(n)g
∑

�

(−1)�q̇� dq̇1 ∧ · · · ∧ d̂q̇�∧ · · · ∧ dq̇n ∧ dq1∧ · · · ∧ dqn

= c(n){√g
∑

�

(−1)�q̇� dq̇1 ∧ · · · ∧ d̂q̇� ∧ · · · ∧ dq̇n} ∧ π∗
1 σ.

Lemma VII.1.2. For any p in the domain U of our chart, the form{
√

g
∑

j

(−1) j q̇ j dq̇1 ∧ · · · ∧ d̂q̇ j ∧ · · · ∧ dq̇n

}∣∣∣∣∣ Sp

is, up to sign, the (n − 1)–volume form on Sp associated with μp the Euclidean
(n − 1)–measure on the tangent sphere Sp.

Proof. The simplest way to derive the result is to assume that the coordinates
q j , j = 1, . . . , n are orthonormal at p (nothing is lost by such an assumption).
Then, the problem is to show that the (n − 1)–form

τ =
∑

j

(−1) j x j dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxn

on Rn is, when restricted to the unit sphere Sn−1, the volume form of Sn−1.
But this may be easily handled by noting that τ is invariant with respect

to the orthogonal group acting on Rn . Since the orthogonal group acts on the
unit sphere by isometries, then both the volume form on Sn−1 and τ | Sn−1 are
invariant (n − 1)–forms on Sn−1. But, at (1, 0, . . . , 0), we have

τ |Sn−1 = −dx2 ∧ · · · ∧ dxn,

which is minus the volume form of Sn−1 at (1, 0, . . . , 0), since {dx2, . . . , dxn}
is the coframe dual to a positively oriented orthonormal frame at (1, 0, . . . , 0).
The invariance of both forms under the action of the orthogonal group on Sn−1

implies that τ |Sn−1 is minus the volume form on all of Sn−1. �
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Theorem VII.1.3. The form (ϑ ∧ �n−1)|SM is the local product, up to constant
multiple, of the Riemannian volume form on M with the Lebesgue (n − 1)–
volume form on the unit tangent spheres of M. In particular, SM is orientable,
independent of the orientability of M.

Thus, for any ((ϑ ∧ �n−1)|SM )–integrable function f on SM, we have
“integration over the fibers”∫

SM
f ϑ ∧ �n−1 = c(n)

∫
M

dV (p)
∫

Sp

{ f |Mp} dμp.

Finally, if we let μ denote the measure on SM, associated with (n − 1)–form
c(n)−1ϑ ∧ �n−1, that is, μ is the local product of the canonical measure on
unit tangent spheres with the Riemannian measure on the base manifold, then
V = 0 on all of M implies that μ invariant with respect to the geodesic flow
�t of X on T M.

Proof. We only need consider the invariance of μ with respect to the geodesic
flow. Well, the first thing one must note is that if V = 0, then X is always
tangent to SM ⊆ T M , since the geodesic flow maps SM to SM .

Then,

LX
(
(ϑ ∧ �n−1)|SM

) = (
LX (ϑ ∧ �n−1)

)
|SM = (d L ∧ �n−1)|SM = 0,

which implies the claim. �

We summarize:

Definition. Let M be an n–dimensional Riemannian manifold, and SM the
unit tangent bundle of M with natural projection π : SM → M .

The geodesic flow on SM is denoted by �t and is given by

�t (ξ ) = γξ
′(t),

where γξ denotes the geodesic with initial point π (ξ ) and initial velocity vector
ξ . The kinematic density or Liouville measure dμ on SM is given by∫

SM
F(ξ ) dμ(ξ ) =

∫
M

dV (x)
∫

Sx

F(ξ ) dμx (ξ );

Theorem VII.1.4. (Liouville’s theorem) The measure dμ on SM is invariant
with respect to the geodesic flow.
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§VII.2. The Berger–Kazdan Inequalities

The first inequality is strictly analytic, so we temporarily suspend any reference
to geometric data. Our discussion here closely follows our presentation in §V.1
and §V.2 of Chavel (1984).

The setting will be an N–dimensional inner product space V over R, with given
family of self-adjoint linear transformationsR(t) : V → V , where t ranges over
R. One associates with R(t) the matrix Jacobi equation

A′′ + R(t)A = 0,(VII.2.1)

where each A(t) is a linear transformation of V . Of course, for each fixed ξ ∈ V ,
the vector function

η(t) = A(t)ξ

is a solution of the vector Jacobi equation

η′′ + R(t)η = 0.

Notation. In what follows, we let A(t) denote the solution of (VII.2.1) deter-
mined by the initial conditions

A(0) = 0, A′(0) = I,

where I denotes the identity transformation of V . For every s ∈ R, we let Cs(t)
denote the solution of (VII.2.1) determined by the initial conditions

Cs(s) = 0, Cs
′(s) = I.

Proposition VII.2.1. For every t, we have

A∗A′ = A′∗A.(VII.2.2)

Assume that I is an interval in R such that A(t) is invertible for all t ∈ I,
t �= 0. Then, for any s ∈ I, we have the representation formula for all t ∈ I,

Cs(t) = A(t)
{∫ t

s
(A∗A)−1(τ ) dτ

}
A∗(s).(VII.2.3)

Proof. Recall from §III.4 that, for any linear transformations A(t), B(t) : V →
V , depending differentiably on t , their associated Wronskian W(t) is defined
by

W(A, B) := A′∗ B − A∗ B ′,
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and for solutions A, B of (VII.2.1), we have W(A, B) is constant. One then
easily has, for our A(t),

W(A,A) = 0,

which implies (VII.2.2).
Furthermore, if we set

U := A′A−1,

then

U∗ − U = (A−1)∗W(A,A)A−1 = 0;

so, U is self-adjoint.
Denote the right-hand side of (VII.2.3) byBs(t). Then, the self-adjointness of

A′A−1 implies that Bs is a solution of Jacobi’s equation. Certainly, Bs(s) = 0.
Furthermore,

Bs
′ =

{
A′

∫
s

(A∗A)−1(τ ) dτ + (A−1)∗
}
A∗(s),

which implies Bs
′(s) = I . �

Theorem VII.2.1. (J. L. Kazdan (1978)) If A(t) is invertible for all t ∈ (0, π ),
then for any C2 positive function m(t) on (0, π ) satisfying

m(π − t) = m(t),(VII.2.4)

on (0, π ), we have

∫ π

0
ds

∫ π

s
m(t − s) det Cs(t) dt ≥

∫ π

0
ds

∫ π

s
m(t − s) sinN (t − s) dt.

(VII.2.5)

Equality in (VII.2.5) is achieved if and only if

R(t) = I

on all of [0, π ], that is, if and only if

Cs(t) = sin (t − s)I

on all of [0, π ].

Proof. We proceed in a series of steps.
Step 1. We use the representation formula (VII.2.3), to which we apply the

following version of Jensen’s inequality:
If F = F(B) is a strictly convex function defined on C, the convex set of

positive definite self-adjoint linear transformations of V , and ν is any positive



P1: KsF

0521853680c07 CB980/Chavel February 6, 2006 15:15 Char Count= 652

§VII.2. The Berger–Kazdan Inequalities 321

measure on R, then

F
{

1

ν((α, β))

∫ β

α

B(τ ) dν(τ )

}
≤ 1

ν((α, β))

∫ β

α

F(B(τ )) dν(τ )(VII.2.6)

for any B : [α, β] → C, with equality in (VII.2.6) if and only if B(τ ) is a
constant function on [α, β].

To apply the inequality, one sets

F(B) = (det B)−1, φ(t) = {det A(t)}1/N ,

and

B(τ ) = φ2(τ )(A∗A)−1(τ ), dν(τ ) = φ−2(τ ) dτ.

To check that the function B �→ F(B) is strictly convex, restrict F to some line
B(t) in C, that is, B ′′(t) = 0. Use the formula for differentiating determinants
(Proposition II.8.2) to imply

d2

dt2
(det B)−1 = (det B)−1{(tr B−1 B ′)2 + tr (B−1 B ′)2}.

Now, B−1 B ′ is self-adjoint with respect to the quadratic form B(x, x) =
Bx ·x (where · denotes the inner product in V), from which one concludes
that (d2/dt2)(det B)−1 is nonnegative and is equal to 0 if and only if B ′ = 0.

Step 2. So, we may now apply the Jensen inequality. Then, we obtain

det
∫ t

s
(A∗ A)−1(τ ) dτ ≥

{∫ t

s
φ−2(τ ) dτ

}N

,

which, in turn, implies from (VII.2.3)

det Cs(t) ≥
{
φ(t)φ(s)

∫ t

s
φ−2(τ ) dτ

}N

.(VII.2.7)

We consider the case of equality in (VII.2.7). This is characterized by

A∗A(τ ) = φ2(τ )I(VII.2.8)

for all τ . Then, (VII.2.2) and (VII.2.8) imply

A∗A′ = φ′φ I,

which implies

A′ = φ′φ(A∗)−1 = φ′

φ
A,

which implies

A = φ I
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on all of (0, π ). Certainly, if A is a scalar multiple of I at each t , then one has
equality in (VII.2.7).

Step 3. The next step is to apply Hölder’s inequality to the functions

f = {det Cs(t)}1/N , h = sinN−1(t − s),

with respective conjugate exponents

p = N , q = N/(N − 1),

and measure ε on

�2 := {(t, s) ∈ R2 : s ≤ t ≤ π, 0 ≤ s ≤ π}
given by

dε = m(t − s) dtds.

Then Hölder’s inequality and (VII.2.7) combine to imply∫ π

0
ds

∫ π

s
m(t − s) det Cs(t) dt(VII.2.9)

≥ {G(φ)}N
{∫ π

0
ds

∫ π

s
m(t − s) sinN (t − s) dt

}1−N

,

where

G(φ) =
∫ π

0
φ(s) ds

∫ π

s
m(t − s) sinN−1(t − s)φ(t) dt

∫ t

s
φ−2(τ ) dτ.

Equality is achieved in (VII.2.9) if and only if

sinN (t − s) = det Cs(t), A(t) = φ(t)I,

that is, if and only if

A(t) = sin t I(VII.2.10)

on [0, π ].

Step 4. Thus, we are led to the study of G(φ). Note that if φ(t) = sin t , then∫ t

s
φ−2(τ ) dτ =

∫ t

s

dτ

sin2 τ
= sin (t − s)

(sin t)(sin s)
,

which implies

G(sin) =
∫ π

0
ds

∫ π

s
m(t − s) sinN (t − s) dt.

Therefore, the inequality (VII.2.5) is a consequence of the inequality

G(φ) ≥ G(sin).(VII.2.11)
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We shall prove (VII.2.11) under the hypothesis that φ(t) has the form φ(t) =
tα(π − t)βh(t), where 0 ≤ α, β ≤ 1, and h(t) is positive and continuous on all
of [0, π ].

Let

�3 := {(τ, t, s) ∈ R3 : s ≤ τ ≤ t, s ≤ t ≤ π, 0 ≤ s ≤ π}
and consider the measure σ on �3 given by

dσ = (sin s)(sin t)

sin2 τ
m(t − s) sinN−1(t − s) dτdtds.

Note that G(sin) = σ (�3).
Since φ(t) is of the form described above, we may write φ(t) as

φ(t) = eu(t) sin t,

where u(t) is continuous on (0, π ). Then, the usual form of Jensen’s inequality
implies

G(φ) ≥ G(sin) exp

{
1

G(sin)

∫
�3

{u(s) + u(t) − 2u(τ )} dσ

}
.(VII.2.12)

So, (VII.2.11) will be a consequence of∫
�3

{u(s) + u(t) − 2u(τ )} dσ = 0(VII.2.13)

for all u. Note that we have yet to use the symmetry hypothesis (VII.2.4) for
m(t). We show that (VII.2.13) is valid for all u under consideration if and only
if m(t) = m(π − t) for all t ∈ [0, π ].

Step 5. First one employs some manipulation to rewrite (VII.2.13) as∫ π

0
u(t) f (t)(sin t)−2 dt = 0(VII.2.14)

for all u, where f (t) is a C2 function on [0, π ], satisfying f (0) = 0, and

{(sin t)−2 f ′(t)}′ = (sin t)−2{(sin3 t)[ρ(t) − ρ(π − t)]}′,

{(sin t)−2 f ′(t)} |t=0 =
∫ π

0
(cos s) {ρ(s) − ρ(π − s)} ds,

where

ρ(t) := m(t) sinN−1 t, ρ(t) − ρ(π − t) = {m(t) − m(π − t)} sinN−1 t.

If m(t) = m(π − t) for all t ∈ [0, π ], then f = 0, and (VII.2.14) is valid for
all u. Conversely, if (VII.2.14) is valid for all u, then f = 0 and ρ(t) =
const.(sin t)−3, which implies the constant is 0.
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This concludes the proof of the inequality (VII.2.5). One can now easily deal
with the case of equality. �

Before proceeding to the geometric applications of Kazdan’s inequality, we first
prove:

Proposition VII.2.2. For all n ≥ 1, we have

cn = cn−1

∫ π

0
sinn−1 t dt,(VII.2.15)

and

πcn/2cn−1 =
∫ π

0
ds

∫ π−s

0
sinn−1 t dt.(VII.2.16)

Proof. Equation (VII.2.15) is just (III.3.12). See the discussion in §III.3.
To prove (VII.2.16), we have

πcn/cn−1 =
∫ π

0
ds

∫ π

0
sinn−1 t dt

=
∫ π

0
ds

∫ π−s

0
sinn−1 t dt +

∫ π

0
ds

∫ π

π−s
sinn−1 t dt,

and ∫ π

0
ds

∫ π

π−s
sinn−1 t dt =

∫ π

0
ds

∫ π

π−s
sinn−1(π − t) dt

=
∫ π

0
ds

∫ s

0
sinn−1 t dt

=
∫ π

0
ds

∫ π−s

0
sinn−1 t dt

(by the change of variable s �→ π − s), which implies the claim. �

Theorem VII.2.2. (M. Berger (1980)) If M is a compact Riemannian manifold
of dimension n ≥ 1, then

V (M) ≥ cn{inj M/π}n,(VII.2.17)

with equality in (VII.2.17) if and only if M is isometric to the standard n–sphere
with radius equal to inj M.

Proof. We first refer the reader to §§III.1–3 for background and notation.
For convenience, normalize the Riemannian metric on M , so that inj M = π

(namely, change the Riemannian metric on M by multiplying the length of
every element of T M by π/inj M).
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Step 1. First, note that for all r ∈ [0, π/2], and all ξ ∈ SM , we have empty
intersection of the geodesic disks B(γξ (0); r ) and B(γξ (π ); π − r ). Therefore,

V (M) ≥ V (γξ (0); r ) + V (γξ (π ); π − r ).(VII.2.18)

Next note that∫
SM

V (π (ξ ); r ) dμ(ξ ) =
∫

M
dV (p)

∫
Sp

V (π (ξ ); r ) dμp(ξ )

= cn−1

∫
M

V (p; r ) dV (p),

and Liouville’s theorem implies∫
SM

V (γξ (π ); π − r ) dμ(ξ ) =
∫

SM
V (π ◦�π (ξ ); π − r ) dμ(ξ )

=
∫

SM
V (π (ξ ); π − r ) dμ(ξ )

= cn−1

∫
M

V (p; π − r ) dV (p).

If we integrate (VII.2.18) over all of SM , we obtain

cn−1V (M)2 = μ(SM)V (M)

≥
∫

SM
{V (γξ (0); r ) + V (γξ (π ); π − r )} dμ(ξ )

= cn−1

∫
M

{V (p; r ) + V (p; π − r )} dV (p),

that is,

V (M)2 ≥
∫

M
{V (p; r ) + V (p; π − r )} dV (p).(VII.2.19)

Step 2. One easily verifies∫
M

V (p; r ) dV (p) =
∫ r

0
dt

∫
SM

√
g(t ; ξ ) dμ(ξ ),(VII.2.20)

for all r ∈ [0, π ], and, by interchanging the order of integration, we obtain∫ π/2

0
dr

∫ r

0

√
g(t ; ξ ) dt +

∫ π/2

0
dr

∫ π−r

0

√
g(t ; ξ ) dt(VII.2.21)

=
∫ π/2

0
{(π − t)

√
g(t ; ξ ) + t

√
g(π − t ; ξ )} dt

for all ξ ∈ SM .
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Now integrate (VII.2.19) over r ∈ [0, π/2]. Then, (VII.2.20) and (VII.2.21)
imply

(π/2)V (M)2 ≥
∫ π/2

0
dr

{∫ r

0
dt

∫
SM

√
g(t ; ξ ) dμ(ξ )

+
∫ π−r

0
dt

∫
SM

√
g(t ; ξ ) dμ(ξ )

}
=

∫ π/2

0
dt

∫
SM

{(π − t)
√

g(t ; ξ ) + t
√

g(π − t ; ξ )} dμ(ξ ).

But,

(π − t)
∫

SM

√
g(t ; ξ ) dμ(ξ ) =

∫ π−t

0
dr

∫
SM

√
g(t ; ξ ) dμ(ξ )

=
∫ π−t

0
dr

∫
SM

√
g(t ; �rξ ) dμ(ξ )

by Liouville’s theorem, and, similarly,

t
∫

SM

√
g(π − t ; ξ ) dμ(ξ ) =

∫ t

0
dr

∫
SM

√
g(π − t ; �rξ ) dμ(ξ ).

We, therefore, have

(π/2)V (M)2 ≥
∫ π/2

0
dt

∫
SM

dμ(ξ )

{∫ π−t

0

√
g(t ; �rξ ) dr

+
∫ t

0

√
g(π − t ; �rξ ) dr

}
.(VII.2.22)

Step 3. We now apply Kazdan’s inequality (VII.2.5) for N = n − 1, and

Cs(t) = A(t − s; �sξ ), det Cs(t) = √
g(t − s; �sξ ).

Inequality (VII.2.5) can then be written as∫ π

0
ds

∫ π−s

0
m(r )

√
g(r ; �sξ )dr ≥

∫ π

0
ds

∫ π−s

0
m(r ) sinn−1 rdr.(VII.2.23)

For the function m(t), we pick

m = δt + δπ−t ,(VII.2.24)

the sum of the Dirac distribution at t and the Dirac distribution at π − t . Inequal-
ity (VII.2.5) is valid for this choice of m, since (VII.2.5) is valid for all positive
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C2 functions m = m(t) on [0, π ] satisfying (VII.2.4). One easily obtains∫ π−t

0

√
g(t ; �rξ ) dr =

∫ π

0
dr

∫ π−r

0
δt (s)

√
g(s; �rξ ) ds,

and ∫ t

0

√
g(π − t ; �rξ ) dr =

∫ π

0
dr

∫ π−r

0
δπ−t (s)

√
g(s; �rξ ) ds.

Therefore, (VII.2.22) and (VII.2.23) imply

(π/2)V (M)2 ≥
∫ π/2

0
dt

∫
SM

dμ(ξ )
∫ π

0
ds

∫ π−s

0
{δt + δπ−t }(r ) sinn−1 r dr

=
∫

SM
dμ(ξ )

∫ π/2

0
dt

∫ π

0
ds

∫ π−s

0
{δt + δπ−t }(r ) sinn−1 r dr

= cn−1V (M)
∫ π/2

0
dt

∫ π

0
ds

∫ π−s

0
{δt + δπ−t }(r ) sinn−1 r dr.

that is,

(π/2)V (M) ≥ cn−1

∫ π/2

0
dt

∫ π

0
ds

∫ π−s

0
{δt + δπ−t }(r ) sinn−1 r dr.

(VII.2.25)

Step 4. We now finish the proof of the theorem. First, one checks that if M
is isometric to Sn , then all the above inequalities are equalities. This implies
that the right-hand side of (VII.2.25) is equal to (π/2)cn; so, (VII.2.25) is to be
rewritten as

(π/2)V (M) ≥ (π/2)cn,

and (VII.2.17) follows.
If we have equality in (VII.2.17), then we have equality in (VII.2.23), with

m as given in (VII.2.24). We conclude, from the case of equality in Kazdan’s
inequality, that

A(t ; ξ ) = {√g(t ; ξ )}1/(n−1) I

for all (t ; ξ ) ∈ [0, π ] × SM , and
√

g(r − s; ξ ) = sinn−1(r − s)

almost everywhere on {(r, s) : 0 ≤ s ≤ r, 0 ≤ r ≤ π}, with respect to the
measure

dε = {δt + δπ−t }(r − s) drds,
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for all ξ ∈ SM . Thus,

√
g(t ; ξ ) = sinn−1 t,

√
g(π − t ; ξ ) = sinn−1(π − t)

for all t ∈ [0, π/2]. Thus, we have

A(t ; ξ ) = sin t I

on all of [0, π ] × SM , which implies M has constant sectional curvature equal
to 1. The universal covering of M is (by Theorem IV.1.4) Sn . But since V (M) =
V (Sn), we must have M isometric to Sn . �

The Blaschke Conjecture

Here is the basic definition.

Definition. A complete Riemannian manifold M is referred to as a wiedersehn-
sraum if there exists a constant κ > 0 such that for every p ∈ M , exp |B(p; π/√

κ) has maximal rank, and exp∗ T (S(p; π/
√

κ)) = 0.

The reader will recall (for sure) that wiedersehnsräume were the topic of Lemma
IV.1.2, in which it was proved that,
(i) for every p ∈ M , the image exp (S(p; π/

√
κ)) in M consists of precisely

one point. Thus, a map Q : M → M is well defined by

Q(p) = exp (S(p; π/
√

κ)).(VII.2.26)

(ii) One has

Q2 = idM ,

(iii) Q is an isometry of M .
(iv) every unit speed geodesic γ on M is periodic, with period equal to 2π/

√
κ .

(v) M is diffeomorphically covered by the sphere.

W. Blaschke (1967) had conjectured that any simply connected wiedersehn-
sraum is, in fact, isometric to a sphere and had derived the above properties
(i)–(v). L. W. Green (1963) verified the conjecture in the 2–dimensional case
(see our discussion in Exercise VII.13). Later, A. Weinstein (1974) showed that,
for M , a simply connected even dimensional wiedersehnsraum one has its vol-
ume equal to the volume of the standard sphere whose geodesics have the same
length as the common length of those in M . With the Berger–Kazdan inequal-
ities, the Blaschke conjecture was thereby settled for even dimensions. Later,



P1: KsF

0521853680c07 CB980/Chavel February 6, 2006 15:15 Char Count= 652

§VII.3. On Manifolds with No Conjugate Points 329

C. T. Yang (1980) settled the Blaschke conjecture by explicitly calculating the
volume of wiedersehnsräume in odd dimensions.

For additional discussion, see Berger–Kazdan (1980), Kazdan (1982), and Yang
(1990). For more general discussions of Riemannian manifolds, all of whose
geodesics are closed, see Besse (1978).

§VII.3. On Manifolds with No Conjugate Points

We start with a partial converse to the Morse–Schönberg theorem (Theo-
rem II.14).

Theorem VII.3.1. (L. W. Green–M. Berger (Green (1963))) Let M be a com-
pact Riemannian manifold, κ > 0, and assume that, for any unit tangent vector
ξ ∈ SM, the point γξ (t) = exp tξ is not conjugate to γξ (0) along γξ for all
t < π/

√
κ (i.e., the distance between conjugate points, when they exist, along

any geodesic is ≥ π/
√

κ). Then, the integral of the scalar curvature S over M
(see §II.1) satisfies

1

V (M)

∫
M

S dV ≤ n(n − 1)κ,(VII.3.1)

with equality if and only if M has constant sectional curvature κ .

Proof. To any ξ ∈ SM , we associate its geodesic

γξ (t) = exp tξ = (π ◦�t )(ξ ), γξ
′(t) = �t (ξ ),

where π denotes the natural projection of SM to M (we hope there will be no
confusion with the various uses of π ) and �t the geodesic flow. Then, given any
vector field X ∈ C∞ along γξ |[−π/2

√
κ, π/2

√
κ], pointwise orthogonal to γξ ,

and vanishing at γξ (−π/2
√

κ) and γξ (π/2
√

κ), we have by Jacobi’s criterion
(Theorem II.10)

0 ≤
∫ π/2

√
κ

−π/2
√

κ

{|∇t X |2 − 〈R(γξ
′, X )γξ

′, X〉} dt,(VII.3.2)

with equality if and only if X is a Jacobi field on γξ .

Given any ξ ∈ SM , p = π (ξ ). Complete ξ to an orthonormal basis {e1, . . . ,

en−1, ξ} of Mp, and let {E1(t), . . . , En−1(t), �tξ} be the parallel orthonormal
frame field along γξ determined by the initial data {e1, . . . , en−1, ξ}. Set

X j (t) = (cos
√

κt)E j (t);
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then

0 ≤
n−1∑
j=1

∫ π/2
√

κ

−π/2
√

κ

{|∇t X j |2 − 〈R(γξ
′, X j )γξ

′, X j 〉} dt

=
n−1∑
j=1

∫ π/2
√

κ

−π/2
√

κ

{κ sin2 √
κt − (cos2 √

κt)K(E j (t), �tξ )} dt

=
∫ π/2

√
κ

−π/2
√

κ

{(n − 1)κ sin2 √
κt − (cos2 √

κt)Ric (�tξ, �tξ )} dt,

with equality if and only if each X j , j = 1, . . . , n − 1, is a Jacobi field. In such a
case, one concludes that K(E j (t), �tξ ) = κ for all t ∈ [−π/2

√
κ, π/2

√
κ] for

all j = 1, . . . , n − 1, that is, all 2–planes containing �tξ , t ∈ [−π/2
√

κ, π/

2
√

κ], have sectional curvature equal to κ .

Lemma VII.3.1. Let V be a real n–dimensional inner product space, β : V ×
V → R a bilinear form, S the unit sphere in V with canonical (n − 1)–measure
dε. Then, ∫

S
β(ξ, ξ ) dε(ξ ) = cn−1

tr β

n
.(VII.3.3)

Proof. First diagonalize β with respect to the inner product, that is, pick an or-
thonormal basis {e1, . . . , en} of V for which β(ξ, ξ ) = ∑n

j=1 λ j (ξ j )2 whenever
ξ = ∑n

j=1 ξ j e j . Then, tr β = λ1 + · · · + λn , and∫
S

β(ξ, ξ ) dε(ξ ) =
n∑

j=1

λ j

∫
S

(ξ j )2 dε(ξ ).

From the symmetry of S, we have∫
S

(ξ j )2 dε(ξ )

independent of j = 1, . . . , n. One concludes∫
S

(ξ j )2 dε(ξ ) = cn−1

n
,

from which one obtains (VII.3.3). �

Conclusion of the Proof of Theorem VII.3.1. Set

fκ (t, ξ ) = (n − 1)κ sin2 √
κt − (cos2 √

κt)Ric (�tξ, �tξ ),
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and define the function Fκ on SM by

Fκ (ξ ) =
∫ π/2

√
κ

−π/2
√

κ

fκ (t, ξ ) dt.

Then, Fκ ≥ 0 on all of SM , which implies

0 ≤
∫

SM
Fκ (ξ ) dμ(ξ )

=
∫

SM
dμ(ξ )

∫ π/2
√

κ

−π/2
√

κ

fκ (t, ξ ) dt

=
∫ π/2

√
κ

−π/2
√

κ

dt
∫

SM
fκ (t, ξ ) dμ(ξ )

:= J1 − J2,

where

J1 =
∫ π/2

√
κ

−π/2
√

κ

dt
∫

SM
(n − 1)κ sin2 √

κt dμ(ξ ) = (n − 1)κcn−1V (M)π/2
√

κ,

and

J2 =
∫ π/2

√
κ

−π/2
√

κ

dt
∫

SM
cos2 √

κt Ric (�tξ, �tξ ) dμ(ξ )

=
∫ π/2

√
κ

−π/2
√

κ

cos2 √
κt dt

∫
SM

Ric (�tξ, �tξ ) dμ(ξ )

=
∫ π/2

√
κ

−π/2
√

κ

cos2 √
κt dt

∫
SM

Ric (ξ, ξ ) dμ(ξ )

= π

2
√

κ

∫
SM

Ric (ξ, ξ ) dμ(ξ )

= π

2
√

κ

∫
M

dV (x)
∫

Sx

(Ric (ξ, ξ )|Sx ) dμx (ξ )

= π

2
√

κ

∫
M

cn−1S
n

dV (x),

to go from the second to the third lines, one uses the invariance of the dμ relative
to the geodesic flow. So,

0 ≤ J1 − J2 = πcn−1

2
√

κ

{
(n − 1)κV (M) − 1

n

∫
M

S dV
}

,

which is the inequality (VII.3.1).

If we have equality in (VII.3.1), then Fκ = 0 on all of SM . But this will then
imply K = κ on all of M . �
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Theorem VII.3.2. (E. Hopf (1948), L. W. Green (1958)) If M above has no
conjugate points, then ∫

M
S dV ≤ 0.(VII.3.4)

Furthermore, one has equality in (VII.3.4) if and only if M has sectional cur-
vature identically equal to 0.

If M is a compact Riemannian 2–dimensional manifold, diffeomorphic to a
torus, and possessing no conjugate points, then the Gauss curvature vanishes
identically on M.

Proof. (Following Berger (1965, pp. 273–276)) The final claim is a direct
consequence of the Gauss–Bonnet Theorem (Theorems V.2.3, V.2.6), since it
implies that one has equality in (VII.3.4). So, the real issue is inequality (VII.3.4)
and the characterization of equality in (VII.3.4).

The inequality (VII.3.4) follows from that fact that if M has no conjugate
points, then (VII.3.1) is valid for all positive κ . Simply let κ ↓ 0.

We now consider the case of equality in (VII.3.4), but first, we require some
preliminaries.

Let γ be a geodesic in a Riemannian manifold, and I an interval containing
t = 0, such that any solution to Jacobi’s equation along γ vanishes at most once
onI (said casually, the intervalI, or the geodesic segment γ |I, has no conjugate
points). In what follows, we view the Jacobi equation as a matrix equation in a
single real vector space, most conveniently, in V = Mγ (0) as described toward
the end of §III.1.

Lemma VII.3.2. We let A(t) denote the matrix solution to Jacobi’s equation
determined by the initial data

A(0) = 0, A′(0) = I ;

and for any T ∈ I \ {0}, we let DT denote the matrix solution of Jacobi’s
equation determined by the boundary data

DT (0) = I, DT (T ) = 0.

Then, for t, T ∈ I \ {0}, tT > 0, we have

DT (t) = A(t)
∫ T

t
(A∗A)−1(s) ds.(VII.3.5)

Proof. The argument is the same as that of Proposition VII.2.1. �
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Furthermore, from the above argument we have

DT
′(t) = A′(t)

∫ T

t
(A∗A)−1(s) ds − (A−1)∗(t),(VII.3.6)

and

W(A,DT ) = I.

Lemma VII.3.3. (L.W. Green (1958)) Assume M is a complete Riemannian
manifold with a geodesic γ , with no two points of γ conjugate to each other
along γ . Then,

D := lim
T ↑+∞

DT

exists, and

D′ = lim
T ↑+∞

DT
′.

The convergence of DT → D and DT
′ → D′ is uniform on compact subsets of

R, and D is nonsingular on all of R.
In particular, for any e ∈ γ ′(0)⊥ and T > 0, consider the solution YT to

Jacobi’s equation along γ satisfying

YT (0) = e, YT (T ) = 0.

Then, YT converges as T ↑ +∞ uniformly on compact subsets of R to a
nowhere vanishing solution Ye of Jacobi’s equation satisfying

Ye(0) = e.

Proof. First, we note that by evaluating W(DT ,DT )(t) at t = T , one has

W(DT ,DT ) = 0,

and by then evaluating W(DT ,DT )(t) at t = 0, one has the self-adjointness
of DT .

Next, for T > σ , we have

DT − Dσ = A
∫ T

σ

(A∗A)−1(s) ds,

DT
′ − Dσ

′ = A′
∫ T

σ

(A∗A)−1(s) ds,

DT
′(0) − Dσ

′(0) =
∫ T

σ

(A∗A)−1(s) ds.
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Thus, DT
′(0), viewed as a self-adjoint linear transformation depending on T ,

is strictly increasing with respect to T .
To show that DT

′(0) is bounded from above, fix α < 0; and for any
v ∈ V , let

ηT (t) =
{
Dα(t)v α ≤ t ≤ 0
DT (t)v 0 ≤ t ≤ T

.

Then,

0 < I (ηT , ηT )

=
∫ T

α

{|ηT
′|2 − 〈R(γξ

′, ηT )γξ
′, ηT 〉}(s) ds

= 〈ηT , ηT
′〉(0−) − 〈ηT , ηT

′〉(0+) −
∫ T

α

〈ηT , ηT
′′ + R(γξ

′, ηT )γξ
′(s)〉 ds

= 〈Dα
′(0)v, v〉 − 〈DT

′(0)v, v〉.
One now has easily the claims of the lemma. �

Remark VII.3.1. One also has from the proof of the lemma

(D − DT )(t) = A(t)
∫ ∞

T
(A∗A)−1(s) ds,(VII.3.7)

and

D(t) = A(t)
∫ ∞

t
(A∗A)−1(s) ds.(VII.3.8)

Conclusion of the Proof of Theorem VII.3.2. (Berger (1965)) Given equality
in (VII.3.4), we have by Fatou’s lemma

lim inf
κ↓0

Fκ (ξ ) = 0

for almost all ξ ∈ SM .

Assume we are considering such a ξ . Then, for any parallel vector field E(t)
along γξ , pointwise orthogonal to γξ , we have for

Xκ (t) = cos
√

κt E(t)

the limit

0 = lim inf
κ↓0

∫ π/2
√

κ

−π/2
√

κ

{|∇t Xκ |2 − 〈R(γξ
′, Xκ )γξ

′, Xκ〉} dt.
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Let Y j,κ , j = 1, . . . , n − 1, denote the Jacobi field along γξ such that

Y j,κ (0) = E j (0), Y j,κ (π/2
√

κ) = 0;

then, by Lemma VII.3.3, we have

Y j := lim
κ↓0

Y j,κ , ∇t Y j = lim
κ↓0

∇t Y j,κ

uniformly on compact subsets of R, with {Y1, . . . , Yn−1} pointwise linearly
independent on all of R and with

Y j (0) = E j (0).

Determine functions α j,κ for which Xκ above is given by

Xκ =
n−1∑
j=1

α j,κY j,κ .

Then, Theorem II.5.4 implies

0 = lim inf
κ↓0

∫ π/2
√

κ

−π/2
√

κ

|
∑

j

α j,κ
′Y j,κ |2 ≥

∫
R

lim inf
κ↓0

|
∑

j

α j,κ
′Y j,κ |2;

so

0 = lim inf
κ↓0

|
∑

j

α j,κ
′Y j,κ |2.(VII.3.9)

On the other hand, since Xκ → E and Y j,κ → Y j asκ ↓ 0 uniformly on compact
subsets of R, there exist functions α j , j = 1, . . . , n − 1, such that α j,κ → α j

uniformly on compact subsets of R; and since ∇t Xκ → 0 and ∇t Y j,κ → ∇t Y j

as κ ↓ 0, we also have α j,κ
′ → α j

′ uniformly on compact subsets of R. Thus,
(VII.3.9) implies α j

′ = 0 on all of R. In particular,

E =
∑

j

α j Y j ,

where α j , j = 1, . . . , n − 1, are constants. We conclude that all parallel vector
fields along γξ are Jacobi fields. This implies, directly from Jacobi’s equation,
that all sectional curvatures of 2–planes containing velocity vectors of γξ all
vanish. This is true for almost all ξ ∈ SM . Continuity of the sectional curvature
implies that it vanishes identically on all of M . �

Second Proof of Theorem VII.3.2. (L. W. Green (1958)) Again, we use
Lemma VII.3.3, except that now we vary the initial point of the geodesic. So,
DT and D are now replaced by matrix solutions DT ;ξ and Dξ , respectively, of
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the Jacobi equation

∇t
2 A + Rξ (t)A = 0,(VII.3.10)

where Rξ (t) is the self-adjoint map of γξ
′(t)⊥ = (�tξ )⊥ given by

Rξ (t)η = R(γξ
′(t), η)γξ

′(t).

Thus, DT ;ξ (t) and Dξ (t) are linear transformations of (�tξ )⊥. The initial data
for DT ;ξ are given by

DT ;ξ (0) = I, DT ;ξ (T ) = 0;

and, of course,

Dξ = lim
T ↑+∞

DT ;ξ .

We now comment on ∇t in (VII.3.10). Given any 1–parameter family of
linear transformations

aξ (t) : (�tξ )⊥ → (�tξ )⊥

we define its covariant derivative

∇taξ (t) : (�tξ )⊥ → (�tξ )⊥

in the obvious way, namely, given η ∈ (�tξ )⊥ let X be a parallel vector field
along γξ for which X (t) = η. Then, (∇taξ )(η) is defined by

(∇taξ )(η) = ∇t (aξ X ).

One then has a natural notion of parallel translation of aξ along γξ .
We denote all parallel translation along γξ , from γξ (t) to γξ (s), by τt,s;ξ ; for

convenience, τs;ξ = τ0,s;ξ .
Note that one easily verifies

DT −s;�sξ (t) = DT ;ξ (s + t)◦τs,t+s;ξ ◦DT ;ξ (s)−1,

which implies

D�sξ (t) = Dξ (s + t)◦τs,t+s;ξ ◦Dξ (s)−1.

Therefore, if we set

Uξ (t) = (∇tDξ )(t)◦Dξ (t)−1,

then we have

U�sξ (t) = Uξ (t + s).

Moreover, Uξ (t) is a self-adjoint solution of the matrix Riccati equation

∇tU + U 2 + Rξ (t) = 0
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along γξ (see the proof of Theorem III.4.3). As in the proof of Bishop’s theorem
(Theorem III.4.3), we have

(tr Uξ )′ + (tr Uξ )2

n − 1
+ tr Rξ ≤ 0.(VII.3.11)

We consider U = Uξ (t) as a function on R × SM . Fix s > 0 and integrate
(VII.3.11) over [0, s] × SM . Of course, one must first verify the measurability
of U – an easy matter.1 Indeed, for any T > 0,

UT ;ξ = (∇tDT ;ξ )◦DT ;ξ
−1

varies continuously with respect to ξ ∈ SM . Now, let T ↑ +∞.
So, we consider the integration of (VII.3.11) over [0, s] × SM . First,∫ s

0
dt

∫
SM

(tr Uξ )′(t) dμ(ξ ) =
∫

SM
{tr Uξ (s) − tr Uξ (0)} dμ(ξ )

=
∫

SM
tr U�sξ (0) dμ(ξ ) −

∫
SM

tr Uξ (0) dμ(ξ )

= 0

by Liouville’s theorem. Furthermore, as in the proof of Theorem VII.3.1,∫
SM

tr Rξ (t) dμ(ξ ) =
∫

SM
Ric (�tξ, �tξ ) dμ(ξ )

=
∫

SM
Ric (ξ, ξ ) dμ(ξ )

= cn−1

n

∫
M

S dV,

again, we have used the Liouville theorem. Thus, we obtain

cn−1

n

∫
M

S dV ≤ −1

s

∫ s

0
dt

∫
SM

(tr Uξ )2

n − 1
(t) dμ(ξ ) ≤ 0.(VII.3.12)

This implies, again, (VII.3.4).
If we have equality in (VII.3.4), then we have equality in (VII.3.11) on all of

(0, +∞). Since Uξ (t) is self-adjoint, this implies that Uξ (t) is a scalar multiple
of the identity transformation of (�tξ )⊥. Then, equality in (VII.3.12) implies
Uξ (t) = 0 for all t > 0 for almost all ξ ∈ SM . In particular, Rξ (t) = 0 for all
t > 0 for almost all ξ ∈ SM . But Rξ is continuous with respect to ξ . Thus Rξ

vanishes identically on SM , and M is flat. �

1 But, see Remark VII.3.3.
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Remark VII.3.2. The E. Hopf conjecture states that any Riemannian metric
on an n–dimensional torus, n ≥ 2, that has no conjugate points must be flat.
The conjecture was proved in Burago–Ivanov (1994). Regrettably, any detailed
discussion here would take us too far afield.

Remark VII.3.3. In E. Hopf’s (1948), he claimed that he had a proof that Uξ

was continuous with respect to ξ (although he did not publish it). However, a
counterexample is given in Ballman–Brin–Burns (1987).

Remark VII.3.4. One thinks of Dξ as a “contracting,” or stable, nonsingular
solution of the matrix Jacobi equation on all of γξ – “contracting” in the di-
rection of ξ . One might denote Dξ , more precisely, as D−

ξ . Of course, one can
construct a corresponding “expanding”, or unstable, solution D+

ξ to the matrix
Jacobi equation along γξ , namely, D+

ξ = D−ξ . The corresponding logarithmic
derivative solutions of the matrix Riccati equation are then denoted by U−

ξ and
U+

ξ , respectively.

§VII.4. Santalo’s Formula

We are given a Riemannian manifold M and a relatively compact domain � in
M with smooth boundary. For any ξ ∈ S�, we set

τ (ξ ) = sup {τ > 0 : γξ (t) ∈ � ∀ t ∈ (0, τ )},
that is, when τ (ξ ) is finite, then γξ (τ (ξ )) will be the first point on the geodesic
to hit the boundary of �. We also set

�(ξ ) = inf {c(ξ ), τ (ξ )},
where c(ξ ) denotes the distance from π (ξ ) to its cut point along γξ , and

U� = {ξ ∈ T � : c(ξ ) ≥ τ (ξ )}.
We now consider the boundary ∂� of �. Let ν denote the inward unit normal
vector field along ∂�, and let S+∂� denote the collection of inward pointing
unit vectors along ∂�, that is,

S+∂� = {ξ ∈ S�|∂� : 〈ξ, νπ (ξ )〉 > 0},
with measure

dσ (ξ ) = dμπ (ξ )(ξ )d A(π (ξ )),

where d A denotes the (n − 1)–measure on ∂�.

One checks that τ = τ (ξ ) is lower semicontinuous on S� ∪ S+∂�.
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���
���

� = �(−���)

� = �(−���)
� �

�

��

Figure VII.1. For Santalo’s formula.

Theorem VII.4.1. (Santalo’s formula (1976, pp. 336ff)) For all integrable F
on S�, we have∫

−U�

F dμ =
∫

S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )
∫ �(ξ )

0
F(�tξ ) dt.(VII.4.1)

Furthermore, if τ < +∞ on all of S�, then we also have∫
S�

F dμ =
∫

S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )
∫ τ (ξ )

0
F(�tξ ) dt.(VII.4.2)

Proof. Map

(t, ξ ) �→ �tξ, (t, ξ ) ∈ (0, ∞) × S+∂�

(see Figure VII.1). Then (in what follows, we let s denote distance from ∂�),

dμ(�tξ ) = (�t )∗dμ(ξ )

= (�t )∗dμπ (ξ ) dV (π (ξ ))

= (�t )∗dμπ (ξ ) ds(π (ξ )) d A(π (ξ ))

= (�t )∗
ds
dt

(ξ ) dt dσ (ξ )

= (�t )∗〈ξ, νπ (ξ )〉 dt dσ (ξ )

= 〈ξ, νπ (ξ )〉 (�t )∗dt dσ (ξ )

= 〈ξ, νπ (ξ )〉 dt dσ (ξ ),
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that is,

dμ(�tξ ) = 〈ξ, νπ (ξ )〉 dt dσ (ξ ).(VII.4.3)

We note that the third line is obtained from (III.6.3).
Since � is relatively compact in M , we have � < ∞ on all of S�. Therefore,

with any η ∈ S� we associate

t = �(−η) and ξ = −γ−η
′(�(−η));

of course,

t < �(ξ ).

Therefore, the map that takes (t, ξ ) to �tξ is a diffeomorphism

{(t, ξ ) : 0 < t < �(ξ ), ξ ∈ S+∂�} → −U� \ N ,

where N denotes a set of μ–measure equal to 0, which implies (VII.4.1). (We
have to leave out a set N , since −U� contains N := {��(ξ )ξ : ξ ∈ S+∂�}.)
This implies (VII.4.1).

To obtain (VII.4.2), we note that since τ < ∞ on all of S�, the map which
takes (t, ξ ) to �tξ is a diffeomorphism

{(t, ξ ) : 0 < t < τ (ξ ), ξ ∈ S+∂�} → S�. �

Proposition VII.4.1. For any e ∈ Sn−1, we have∫
He

〈ξ, e〉 dV (ξ ) = cn−2

n − 1
,(VII.4.4)

where He denotes the hemisphere of Sn−1 centered at e.

Proof. By direct calculation: Write ξ = (cos θ )e + (sin θ )η, where η varies
over the equator of e (that is, θ = π/2). Then,∫

He

〈ξ, e〉 dV (ξ ) =
∫

Sn−2
dμn−2(η)

∫ π/2

0
cos θ sinn−2 θ dθ

= cn−2

∫ π/2

0
cos θ sinn−2 θ dθ

= cn−2

n − 1
. �

Definition. For every x ∈ M , we let Ux denote the subset of Sx given by

Ux = (π |U�)−1[x], ωx := μx (Ux )

cn−1

, ω := inf
x∈�

ωx .

It is common to refer to ωx as the visibility angle at x .
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In particular,

μ(−U�) = μ(U�)) = cn−1

∫
�

ωx dV (x) ≥ cn−1ωV (�).

For any w ∈ ∂�, set

S+
w = (π |S+∂�)−1[w].

Theorem VII.4.2. (C. Croke (1980)) Let d(�) denote the diameter of �. Then,

A(∂�)

V (�)
≥ (n − 1)cn−1ω

cn−2d(�)
,(VII.4.5)

with equality in (VII.4.5) if � is a hemisphere of constant positive curvature,
in which case ω = 1 and d(�) is the diameter of the hemisphere.

Proof. We have

ωcn−1V (�) ≤ μ(U�)

=
∫

S+∂�

�(ξ )〈ξ, νπ (ξ )〉 dσ (ξ )

=
∫

∂�

d A(w)
∫

S+
w

�(ξ )〈ξ, νw 〉 dμw (ξ )

≤ d(�)cn−2 A(∂�)

(n − 1)
,

by (VII.4.4), that is,

ωcn−1V (�) ≤ d(�)cn−2 A(∂�)

(n − 1)
,

which implies (VII.4.5).
One easily verifies the equality when � is a hemisphere of constant positive

curvature. �

Theorem VII.4.3. (C. Croke (1980)) Let M be a compact n–dimensional
Riemannian manifold, all of whose Ricci curvatures are bounded below by
(n − 1)κ . Let d(M) denote the diameter of M. If � is any (n − 1)–dimensional
compact submanifold of M dividing M into open submanifolds M1, M2, satis-
fying ∂ M1 = ∂ M2 = �, then, setting � = M1, we have

ωx ≥ V (M2)

/
cn−1

∫ d(M)

0
Sκ

n−1(VII.4.6)

for all x ∈ M1.
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Proof. Santalo’s formula (VII.4.1) is valid even when � is a finite disjoint
union of regular domains.

To prove (VII.4.6) for x ∈ M1, let

�x = {q ∈ M : q = γξ (t), t ∈ (0, c(ξ )], ξ ∈ Ux }.
Then, any point q ∈ M2 has a unit speed minimizing geodesic connecting x to
q . This geodesic must hit the boundary of M1 (to reach a point in M2); therefore,
its initial velocity vector is in Ux . We conclude M2 ⊆ �x , which implies

V (M2) ≤
∫

Ux

dμx (ξ )
∫ c(ξ )

0

√
g(t ; ξ ) dt

≤
∫

Ux

dμx (ξ )
∫ c(ξ )

0
Sκ

n−1(t) dt

≤ ωx cn−1

∫ d(M)

0
Sκ

n−1,

the right-hand side of the first line is precisely equal to V (�x ); and the second
line is a consequence of the Bishop comparison theorem (Theorem III.4.3).

�

§VII.5. Notes and Exercises

The Kinematic Density Via Moving Frames

Our treatment of the Liouville measure was presented from the perspective of
Hamiltonian mechanics, namely, given any manifold, the differentiable struc-
ture alone determined a canonical 1–form on the cotangent bundle, with its as-
sociated symplectic 2–form and Hamiltonian differential equation. Then, given
any Lagrangian on the tangent bundle, one has a natural (depending on the
Lagrangian) method of bringing the data from the cotangent bundle to the tan-
gent bundle. Given a Riemannian metric, one picks the Lagrangian to be half the
norm squared of vectors in the tangent bundle, and lo and behold, one obtains
the geodesic flow on the tangent bundle.

In what follows, we give an explicit Riemannian approach, with the cal-
culations using the method of moving frames. To fix the data, let M be an
n–dimensional Riemannian manifold, with projection maps

π1 : T M → M, π2 : T M∗ → M

of the tangent and cotangent bundles, respectively. Recall the natural isomor-
phism θ : T M → T M∗ given by

(θ (ξ ))(η) = 〈ξ, η〉,
and the canonical 1–form ω on T M∗ given by

ω|τ = π2
∗τ,
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which determines the 1–form ϑ on T M (the same as in §VII.1) given by

ϑ = θ∗ω.

Then, ϑ is the fundamental object in what follows.
Now, simply refer to π1 as π . Given a chart x : U → Rn on an open set U

in M , fix a frame field {e1, . . . , en} on U , with coframe field {ω1, . . . , ωn} and
matrix of connection 1–forms (ω j

k).
Use the chart x and the frame field {e1, . . . , en} to determine a chart y :

π−1[U ] → R2n given by

y j (ξ ) = x j ◦π (ξ ), y j+n(ξ ) = 〈ξ, e j 〉.
Then, of course,

π∗∂
y
j = ∂ x

j , π∗∂
y
j+n = 0.

For

e j =
∑

k

A j
k∂ x

k ,

set

E j =
∑

k

(A j
k ◦π )∂ y

k ,

and consider the local forms on π−1[U ] given by

τ j = π∗ω j , τ j
k = π∗ω j

k .

Exercise VII.1.

(a) Show that

ϑ|π−1[U ] =
∑

j

y j+nτ j ,

and

� = dϑ =
∑

j

{
dy j+n +

∑
k

yk+nτk
j

}
∧ τ j .

(b) For the vector field G of the geodesic flow on π−1[U ] show that

G =
∑

j

y j+n E j −
∑

k

yk+nωk
j∂

y
j+n,

where ωk
j is viewed here, and, in what follows, as a real-valued function on

T M .
(c) Show that

τ j (G) = y j+n, τk
j (G) = ωk

j , dy j+n(G) = −
∑

k

yk+nωk
j .
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Exercise VII.2.

(a) Show that for the function L on T M , given by

L(ξ ) = |ξ |2 =
∑

j

(y j+n)2,

we have

G L = 0.

So, the geodesic flow takes the unit bundle SM to itself.
(b) Show that

i(G)ϑ = L , i(G)� = −d L , LGϑ = 1

2
d L , LG� = 0.

(c) Show that

(ϑ ∧ �n−1)|SM

is, up to a constant depending only on n, the Liouville measure on SM , and is
invariant with respect to the geodesic flow on SM .

(d) Show that �, restricted to any complementary subspace of G in T SM , is
nondegenerate.

(e) Show there is no closed codimension 1 submanifold of T SM that is
transverse to G.

The Differential of the Geodesic Flow

Continue the previous discussion. Let �t denote the geodesic flow, with vector
field G. Let π : T M → M denote the standard projection of T M to M , and π :
T T M → T M the standard projection to T M from its tangent bundle. Assume
M is complete.

Consider the map T : T T M → T M given as follows: For any p ∈ M , ξ ∈
Mp, and x ∈ (T M)ξ , let Z (ε) be a path in T M satisfying

Z (0) = ξ, Z ′(0) = x,

so Z ′ is the velocity vector of a path in T M . Define

T x = (∇ε Z )(0),

where the covariant differentiation is along the path π ◦Z .

Exercise VII.3.

(a) Show that T is well defined, that is, show that it only depends on x; more
particularly, calculate, using moving frames with the above notation,

T x =
∑

j

{
dy j+n(x) +

∑
k

yk+n(π ◦x)ωk
j (ξ )

}
e j ,
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where yk+n(π ◦ x) denotes the k–th coordinate of π ◦ x, and ωk
j (ξ ) denotes the

action of the 1–form ωk
j on ξ .

(b) Show that the kernel of T is transverse to the kernel of π∗.
(c) Define the Sasaki metric (Sasaki (1958, 1962)) on T M by

|x|s2 = |π∗x|2 + |T x|2.

Since the two kernels are transverse, the metric provides an orthogonal decom-
position of every tangent space of T M .

Exercise VII.4. Show that T G = 0.

Exercise VII.5. Given the path Z (ε) above, consider the geodesic variation

�(t, ε) = exp t Z (ε),

with associated Jacobi field Yx along γξ given by: Yx = ∂ε�|ε=0. Show that

Yx(t) = π∗◦(�t )∗x, (∇t Yx)(t) = T ◦(�t )∗x.

which implies

|(�t )∗x|s2 = |Yx(t)|2 + |∇t Yx(t)|2.

We know that there exist constants a and b so that 〈Yx, γξ 〉 = at + b. Show that

a = 1

2
(|Z |2)′(0), b = 〈(�t )∗x,G(�tξ )〉s.

If we restrict ξ to SM , and x to T SM , then a = 0. Henceforth, restrict x to
G(ξ )⊥. Then, b = 0.

Exercise VII.6. Show that the geodesic flow �t is an isometry for all t ∈ R if
and only if M has constant sectional curvature equal to 1.

Manifolds Without Conjugate Points

Assume M has no conjugate points, and to each ξ ∈ SM , T > 0, consider the
matrix solutions Dξ ;T ,Dξ ;−T of Jacobi’s equation on γξ , as described in the
proof of E. Hopf’s theorem. Then, the linear span of Jacobi vector fields

J
ξ ;T := {D

ξ ;T η,D
ξ ;−T η : η ∈ ξ⊥}



P1: KsF

0521853680c07 CB980/Chavel February 6, 2006 15:15 Char Count= 652

346 The Kinematic Density

is actually equal to Jξ
⊥, the collection of all Jacobi fields along γξ pointwise

orthogonal to γξ . Furthermore, the subspaces

J −
ξ ;T := {D

ξ ;T η : η ∈ ξ⊥}, J +
ξ ;T := {D

ξ ;−T η : η ∈ ξ⊥}
determine respective (n − 1)–dimensional subspaces2 Xs;T (ξ ), Xu;T (ξ ) of
(SM)ξ , whose direct sum is all of G(ξ )⊥.

The question is: what happens when T ↑ ∞? Said differently, are the
(n − 1)–dimensional subspaces

J −
ξ := {D−

ξ η : η ∈ ξ⊥}, J +
ξ := {D+

ξ η : η ∈ ξ⊥}
of Jacobi fields in J ⊥

ξ transverse one to the other? The two extremes are illus-
trated by: M = Rn , where the two spaces J −

ξ , J +
ξ coincide; and by M = Hn ,

where the two spaces are transverse, and hence the subspaces Xs(ξ ), Xu(ξ ) are
transverse (exercise for the reader).

Exercise VII.7. Assume M has negative sectional curvature uniformly bounded
away from 0. Show that Xs(ξ ), Xu(ξ ) are transverse for all ξ ∈ SM .

Note VII.1. A theorem of P. Eberlein (1973) states that, when Xs(ξ ), Xu(ξ )
are transverse for all ξ ∈ SM , M compactly homogeneous (e.g., M is the cover
of a compact manifold), then the geodesic flow on SM is Anosov. (See his
paper for definitions and proofs.) This then implies the earlier theorem of D. V.
Anosov (1967) that a Riemannian manifold with sectional curvature bounded
above and below by two negative constants is Anosov.

A Variant of E. Hopf’s Theorem

The following theorem is proved in Green–Gulliver (1985).

Theorem. Let g be a smooth Riemannian metric on R2 that differs from the
canonical flat metric g0 on at most a compact set. If (R2, g) has no conjugate
points, then it is isometric to (R2, g0).

The Osserman–Sarnak Inequality

We sketch here the results of Osserman–Sarnak (1984) in the narrow sense,
that is, only in those aspects pertinent to the Riemannian situation. See their
discussion of how the inequalities that follow relate to the various entropies of
the geodesic flow.

2 “s” is for stable and “u” is for unstable.
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We are given the compact n–dimensional Riemannian manifold M without
conjugate points. Then, to every ξ ∈ SM , we have the nonsingular stable matrix
solution Uξ of the Riccati equation defined on all of R, as described in the second
proof of Hopf’s theorem. Recall that

U�sξ (t) = Uξ (t + s).

So, we may think of U (ξ ) = Uξ (0) as a matrix function on SM . We let U ′(ξ )
denote (∇tUξ )(0), where the covariant differentiation is along the geodesic
γξ (t).

Exercise VII.8. Show that ∫
SM

tr U ′U−1 dμ = 0.

Now assume that M has strictly negative curvature. With every ξ ∈ SM , asso-
ciate the quadratic form Qξ on Mπ (ξ ) given by

Qξ (w) = 〈R(ξ, w)ξ, w〉,
with self-adjoint linear transformation Kξ associated with −Qξ and given by

Kξ (w) = −R(ξ, w)ξ = −(Rξ (0))(w)

We denote the commmon spectra spec Kξ = spec – Qξ by

{0 = λ0(ξ ) < λ1(ξ ) ≤ . . . ≤ λn−1(ξ )},
and consider

−σ (ξ ) = tr Kξ
1/2 =

n−1∑
j=1

λ j (ξ )1/2, α(M) =
∫

SM
σ (ξ ) dμ(ξ ).

(We are loyal to the notations of Osserman–Sarnak (1984).)

Exercise VII.9. Prove

−σ (ξ ) = min
n−1∑
j=1

〈Kξ e j , e j 〉1/2,

where the minimum is taken with respect to all orthonormal bases {e1, . . . , en−1}
of the orthogonal complement ξ⊥ of ξ in Mπ (ξ ). Show that one has equality for
a choice of a particular orthonormal basis if and only if that orthonormal basis
consists of eigenvectors of Kξ .
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Exercise VII.10. Show that∫
SM

tr U dμ =
∫

SM
tr KU−1 dμ.

Exercise VII.11.

(a) Use the Cauchy–Schwarz inequality on

tr K 1/2 = tr (U−1/2 K 1/2)U 1/2

to show

tr K 1/2 ≤ {tr KU−1}1/2{tr U }1/2,

with equality if and only if there exists a positive function k(ξ ) on SM such
that

K = k2(ξ )U 2.

(b) Use the integral Cauchy–Schwarz inequality to show that∫
SM

tr K 1/2 dμ ≤
∫

SM
tr U dμ,

with equality if and only if there exists a constant β such that

tr KU−1 = βtr U.

Exercise VII.12. (Osserman–Sarnak (1984)) Show that

−α(M) ≤
∫

SM
tr U dμ,

with equality if and only if Kξ is parallel along the geodesic γξ , for all ξ , that
is, if and only if M is locally symmetric.

Aufwiedersehnsfläche

Exercise VII.13. (On the title, see Green (1963).) Give the following ele-
mentary proof (namely, L. W. Green’s (1963)) of Blaschke’s 2–dimensional
conjecture.

(a) Consider properties (i)–(v) of wiedersehnsfläche as given. Now prove that,
if M is simply connected, then the Gauss–Bonnet theorem (Theorem IV.V.2.3)
(for the sphere) and Theorem VII.3.1 above imply that the area of M , A(M),
satisfies

A(M) ≥ 4π,
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with equality if and only if M has constant sectional curvature (in which case
it is isometric to the standard sphere).

(b) Show that c(ξ ) = conj (ξ ) for all ξ ∈ SM , where conj (ξ ) denotes distance
to first conjugate point along γξ .

(c) Use Santalo’s formula (VII.4.1) to explicitly calculate the area of M .

An Eigenvalue Inequality

Exercise VII.14. We are given a relatively compact domain � with smooth
boundary in an n–dimensional Riemannian manifold M , with τ (ξ ) < +∞ for
all ξ ∈ S�. Let λ = λ(�) denote the lowest eigenvalue of the Dirichlet eigen-
value problem of �. For every ξ ∈ S� set

δ(ξ ) = τ (ξ ) + τ (−ξ ),

that is, δ(ξ ) is the full length of the geodesic segment in � determined by ξ .
Prove

λ ≥ π2n inf
x∈�

1

cn−1

∫
Sx

dμx (ξ )

δ2(ξ )
.

Note VII.2. The result of the above exercise is from Croke–Derdziński (1987),
in which they also give a characterization of the case of equality (a nontrivial

matter). Another estimate, for domains in Rn , similar to the Croke–Derdziński
result, is presented in Davies (1984), with an inequality of Hardy in place of
the fixed-endpoint Wirtinger inequality. See his discussion (with some added
detail) in Davies (1989, pp. 25–33, 56–57).

An interesting feature of both the Croke–Derdziński and Davies results is that
if the domain � is perturbed by deleting a small disk then the lower bound is
not grossly disturbed. That the Dirichlet eigenvalues are not grossly disturbed
by “small” perturbations of the domain is a highly developed subject. See
Chavel–Feldman (1978b, 1988) For further references to the earlier literature
see Chavel–Feldman (1988). We also refer the reader to Courtois (1987, 1995).
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VIII

Isoperimetric Inequalities
(Variable Curvature)

We now return to isoperimetric inequalities in general complete Riemannian
manifolds. Here, even if the manifold satisfies the conditions of Theorem V.4.1,
to guarantee the existence of an isoperimetric region, one would have no idea
how to identify it and how to decide whether it is unique. So, the focus shifts
elsewhere to describe the isoperimetric profile, I(v), usually by providing lower
bounds such as I(v) ≥ const.v1−1/n – in qualitative imitation of R

n (when the
manifold has dimension n).

A better sense of the possibilities is given the isoperimetric inequality for a
surface of constant curvature κ , namely,

L2 ≥ 4π A − κ A2.(VIII.0.1)

Note that when κ < 0, and the domain is a geodesic disk of radius r for large
r , then the dominant term on the right-hand side of (VIII.0.1) is −κ A2. More
precisely, the inequality (VIII.0.1) implies both the inequalities

L/A1/2 ≥
√

4π, L/A ≥ √−κ,

and both are sharp. The first is sharp for geodesic disks of radius r as r ↓ 0, and
the second is sharp for geodesic disks of radius r as r ↑ +∞. This suggests
that, for a more profound understanding of the relation of areas to volume in
general Riemannian manifolds, one cannot remain limited to minimizing the
quotient L/A1/2 or, more generally, the quotient A/V 1−1/n over the domains in
question. Rather, it is important to consider a fuller apparatus of isoperimetric
constants.

We will proceed as follows: First we give C. Croke’s (1980) lower bound
(Theorem VIII.1.1) for A(∂�)/V (�)1−1/n valid in any n–dimensional Rie-
mannian manifold, using Santalo’s formula from the previous chapter. Then,

350
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we prove P. Buser’s (1982) lower bound (Theorem VIII.2.1) for

A(�)/ min {V (D1), V (D2)}
complete n–dimensional Riemannian manifold, with

Ric ≥ (n − 1)κ, κ ≤ 0

on all of M , where � is a smooth hypersurface in B(x ; r ) (x ∈ M , r > 0) di-
viding B(x ; r ) into domains D1 and D2. Then, in §VIII.3, we introduce the full
apparatus of isoperimetric constants, and study, in the following sections, the re-
lation of isoperimetric constants of the manifold with those of any discretization
of the manifold.

Before proceeding, a comment on notation. In what follows, for functions f and
vector fields X on a Riemannian manifold, we denote their respective L p–norms
by

‖ f ‖p =
{∫

| f |p dV

}1/p

, ‖X‖p =
{∫

|X |p dV

}1/p

,

respectively.

§VIII.1. Croke’s Isoperimetric Inequality

In what follows, we require the following version of the Berger–Kazdan in-
equality (see §VII.2): Given ξ ∈ SM , then for all � ∈ (0, c(ξ )], we have∫ �

0
ds

∫ �−s

0

√
g(r ; �sξ ) dr ≥ πcn

2cn−1
(�/π )n+1,(VIII.1.1)

with equality if and only if

A(t ; ξ ) = (sin tπ/�)I

for all t ∈ [0, �].

This follows from (VII.2.5) with m = 1 in (VII.2.4), and (VII.2.15).

Theorem VIII.1.1. (C. Croke (1980)) Let � be a relatively compact domain
in the n–dimensional Riemannian manifold M, with ∂� ∈ C∞. Let ω be the
minimum visibility angle as defined in §VII.4. Then,

A(∂�)

V (�)1−1/n
≥ cn−1

{cn/2}1−1/n
ω1+1/n,(VIII.1.2)

with equality if and only if � is a hemisphere of a constant sectional curvature
sphere.
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Proof. For every x ∈ �, we have

V (�) ≥
∫

Sx

dµx (ξ )
∫ �(ξ )

0

√
g(t ; ξ ) dt

(where �(ξ ) is given in §VII.4), which implies

V (�)2 ≥
∫

�

dV (x)
∫

Sx

dµx (ξ )
∫ �(ξ )

0

√
g(t ; ξ ) dt

=
∫

S�

dµ(ξ )
∫ �(ξ )

0

√
g(t ; ξ ) dt

≥
∫

−U�

dµ(ξ )
∫ �(ξ )

0

√
g(t ; ξ ) dt

=
∫

S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )
∫ �(ξ )

0
ds

∫ �(�sξ )

0

√
g(t ; �sξ ) dt,

by Santalo’s formula (VII.4.1) applied to the function

F(ξ ) =
∫ �(ξ )

0

√
g(t ; ξ ) dt.

Since

�(�sξ ) ≥ �(ξ ) − s,

we have

V (�)2 ≥
∫

S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )
∫ �(ξ )

0
ds

∫ �(ξ )−s

0

√
g(t ; �sξ ) dt

≥ cn

2πncn−1

∫
S+∂�

�(ξ )n+1〈ξ, νπ (ξ )〉 dσ (ξ )(VIII.1.3)

≥ cn

2πncn−1

{∫
S+∂�

�(ξ )〈ξ, νπ (ξ )〉 dσ (ξ )

}n+1

×
{∫

S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )

}−n

(VIII.1.4)

= cn

2πncn−1

{
n − 1

cn−2

}n
µ(U�)n+1

A(∂�)n
(VIII.1.5)

≥ ωn+1cn

2

{
(n − 1)cn−1

πcn−2

}n V (�)n+1

A(∂�)n
,

the inequality (VIII.1.3) is the Berger–Kazdan inequality; the inequality
(VIII.1.4) is Hölder’s inequality, and the equality (VIII.1.5) is (VII.4.4).
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Note that if � is a hemisphere in a constant sectional curvature sphere, then
ω = 1 and we have equality in every step of the argument. In particular,

cn

2

{
(n − 1)cn−1

πcn−2

}n

= cn−1
n

{cn/2}n−1
.

Thus, the inequality (VIII.1.2) is valid, with equality if � is a hemisphere in a
constant sectional curvature sphere.

It remains to assume equality in (VIII.1.2) and show that � is a hemisphere
in a constant sectional curvature sphere.

From the continuity of c(ξ ) and lower semicontinuity of τ (ξ ), we have given
ξ0 ∈ S� ∪ S+∂� for which c(ξ0) < τ (ξ0), the existence of a neighborhood G
of ξ0 in S� ∪ S+∂� on which c < τ .

Now, assume equality in (VIII.1.2). Then, U� = S�, that is c = τ on all
of S� ∪ S+∂�. Equality in (VIII.1.4), the Hölder inequality, implies �(ξ ) is
constant, say, equal to �, on all of S+∂�. Thus,

{γξ (t) : ξ ∈ S+∂�, t ∈ [0, �]}
covers all of�; and equality in (VIII.1.3), the Berger–Kazdan inequality, implies
that � has constant sectional curvature equal to (π/�)2. Then,

c(ξ ) = τ (ξ ) = �

for all ξ ∈ S+∂� implies that � is a hemisphere. �

Corollary VIII.1.1. Given any o ∈ M, ρ > 0, such that expo is defined on
B(o; ρ), then for

r <
1

2
min

{
inf

x∈B(o;ρ)
inj x, ρ

}

we have

ω(o; r ) := ω(B(o; r )) = 1,

which implies

V (o; r ) ≥ const.nrn.

§VIII.2. Buser’s Isoperimetric Inequality

Theorem VIII.2.1. (P. Buser (1982)) Let M be a complete n–dimensional
Riemannian manifold, with

Ric ≥ (n − 1)κ, κ ≤ 0(VIII.2.1)
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on all of M. Then there exists a positive constant depending on n, κ , and r,
c(n, κ, r ), such that for any given x ∈ M ,r > 0, a dividing smooth hypersurface
� in B(x ; r ) with � imbedded in B(x ; r ), and

B(x ; r ) \ � = D1 ∪ D2,

where D1, D2 are open in B(x ; r ), we have

min {V (D1), V (D2)} ≤ c(n, κ, r )A(�).(VIII.2.2)

Proof. We shall actually prove a more general result, namely, we shall consider
a domain D, in a Riemannian manifold M satisfying (VIII.2.1), for which there
exist 0 < r ≤ R and o ∈ M such that

(a) expo is defined on B(o; R),
(b) B(o; r ) ⊆ D ⊆ B(o; R),
(c) D is starlike with respect to o, that is, for any q ∈ D, any minimizing

geodesic joining o to q is contained in D.
Under these conditions, we shall prove that for any t ∈ (0, r/2), we have

A(�)

min {V (D1), V (D2)} ≥ c(n, κ, t, r, R),(VIII.2.3)

where � ranges over smooth hypersurfaces in D for which � is imbedded in
D, and

D \ � = D1 ∪ D2,

where D1, D2 are open in D. So, one obtains the best lower bound by maxi-
mizing the right-hand side of (VIII.2.3) with respect to t ∈ (0, r/2).

Before starting the proof, we recall some notation and some comparison
estimates (from Chapter III): For o in M , So denotes the unit tangent sphere at
o, with (n − 1)–measure dµo. For ξ ∈ So, c(ξ ) denotes the distance along the
geodesic γξ from o to its cut point along γξ . Also recall that C(o) denotes the
cut locus of o.

For ξ ∈ So, s ∈ (0, c(ξ )), we have for the n–measure on M

dV (exp sξ ) = √
g(s; ξ ) ds dµo(ξ ),

and for (n − 1)–measure on the smooth points of the metric sphere S(o; s)

d AS(o;s)(exp sξ ) = √
g(s; ξ ) dµo(ξ ).

When M = Mκ , the simply connected space form of constant curvature κ ,
the area of the sphere S(o; s), and the volume of the disk B(o; s) are given
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respectively by

Aκ (s) = cn−1Sκ
n−1(s), Vκ (s) = cn−1

∫ s

0
Sκ

n−1(t) dt.

Then, Theorem III.4.3 implies

d

ds

{√
g(s; ξ )

Aκ (s)

}
≤ 0,(VIII.2.4)

from which one easily derives
√

g(s1; ξ )

Aκ (s1)
≥

√
g(s2; ξ )

Aκ (s2)
(VIII.2.5)

for 0 < s1 ≤ s2,
√

g(r ; ξ )

Aκ (r )
≥ 1

Vκ (R) − Vκ (r )

∫ R

r

√
g(s; ξ ) ds(VIII.2.6)

for 0 ≤ r < R,

1

Vκ (r1) − Vκ (r0)

∫ r1

r0

√
g(s; ξ ) ds ≥ 1

Vκ (r2) − Vκ (r1)

∫ r2

r1

√
g(s; ξ ) ds

(VIII.2.7)

for 0 ≤ r0 < r1 ≤ r2, and

1

Vκ (r )

∫ r

0

√
g(s; ξ ) ds ≥ 1

Vκ (R)

∫ R

0

√
g(s; ξ ) ds(VIII.2.8)

for 0 < r < R.
Basic idea of the Proof.1 First note that we may substitute

A(�) ≥ c(n, κ, t, r, R)V (D1)(VIII.2.9)

for (VIII.2.3), independent of whether D1 has the minimum volume of V (D1),
V (D2). Next, note that if � = S(o; r/2), then pick D1 = D \ B(o; r/2). Then,
the claim of the theorem easily follows from (VIII.2.6). Then, one adjusts the
above argument to the general situation for �, where D \ B(o; r/2) contains a
“significant” portion of D1 (CASE 1 in Steps 2–3). When D \ B(o; r/2) does
not contain a “significant” portion, then one gives the argument relative to a
new “origin” (replacing o) in D (CASE 2 in Steps 4–6).

Step 1 of the Proof. Fix t ∈ (0, r/2). We set, for any s > 0,

Bs = B(o; s), Vs = V (o; s).

1 My thanks to P. Buser for helpful discussions of his theorem.
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Given �, determine the two disjoint nonempty open subsets D1, D2 whose
union is D \ �, and assume that D1 satisfies

V (D1 ∩ Br/2) ≤ 1

2
Vr/2.(VIII.2.10)

(Certainly, either D1 or D2 must satisfy the inequality.) Then, it suffices to
verify (VIII.2.9) for this particular choice of D1.

Now, fix any α ∈ (0, 1) and consider two CASES: the FIRST:

V (D1 ∩ Br/2) ≤ αV (D1),

and the SECOND:

V (D1 ∩ Br/2) ≥ αV (D1).

Step 2. CASE 1. To each p ∈ D1 \ C(o), we determine p∗ to be the first
point on the directed geodesic segment po, from p “back” to o, where this ray
intersects �. If the geodesic segment po from p to o is completely contained
in D1, then we set p∗ = o.

To each p ∈ D1 \ {C(o) ∪ Br/2} – that is,

p = expo sξ, r/2 ≤ s < c(ξ ), |ξ | = 1,

determine the geodesic segment

rod p := {expo τξ : t ≤ τ ≤ s},
and the subsets A1, A2, A3 of D1 by:

A1 := {p ∈ D1 \ {C(o) ∪ Br/2} : p∗ �∈ Bt },
A2 := {p ∈ D1 \ {C(o) ∪ Br/2} : p∗ ∈ Bt },
A3 := {Br/2 \ Bt } ∩

⋃
p∈A2

rod p.

(See Figure VIII.1.2) Then, (VIII.2.7) implies

V (A2)

V (A3)
≤ Vκ (R) − Vκ (r/2)

Vκ (r/2) − Vκ (t)
:= γ.(VIII.2.11)

Also, since we are in CASE 1, we have (1 − α)V (D1) ≤ V (D1 \ Br/2) =
V (A1) + V (A2). But, V (A3) ≤ V (D1 ∩ Br/2) ≤ αV (D1), which implies by
(VIII.2.11)

(1 − α)V (D1) ≤ V (A1) + γαV (D1),

2 My thanks to P. Buser and Gauthier–Villars for their permission to reprint Figure VIII.1 from
Buser (1982, p. 224).
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A1

A3

A2

A1

p0
p∗

t

p

rod (p)

r/2

Γ

Figure VIII.1. For Buser’s inequality.

that is,

{1 − α(1 + γ )}V (D1) ≤ V (A1)(VIII.2.12)

which implies

A(�)

V (D1)
= A(�)

V (A1)

V (A1)

V (D1)
≥ A(�)

V (A1)
{1 − α(1 + γ )}.(VIII.2.13)

Step 3. Now project ν : BR \ {C(o) ∪ {o}} → So by

ν(exp sξ ) = ξ.

Then,

V (A1) =
∫

So

dµo(ξ )
∫ min {R,c(ξ )}

0
IA1 (exp sξ )

√
g(s; ξ ) ds

=
∫

ν(A1)
dµo(ξ )

∫ min {R,c(ξ )}

r/2
IA1 (exp sξ )

√
g(s; ξ ) ds.

Now, for ξ ∈ ν(A1), we have∫ min {R,c(ξ )}

r/2
IA1 (exp sξ )

√
g(s; ξ ) ds =

∑
jξ

∫ β jξ

α′
jξ

√
g(s; ξ ) ds.



P1: IWV

0521853680c08 CB980/Chavel January 2, 2006 13:12 Char Count= 685

358 Isoperimetric Inequalities (Variable Curvature)

If α′
jξ

> r/2, then set α jξ = α′
jξ

; if α′
jξ

= r/2, then set α jξ = | expo
−1(expo

(r/2)ξ )∗|. Then, for all jξ , we have exp α jξ ξ ∈ �, and ν(A1) = ν(�0) for �0 =
{exp α jξ ξ : jξ = 1, . . . ; ξ ∈ ν(A1)}. We therefore have for ξ ∈ ν(A1)

∑
jξ

∫ β jξ

α′
jξ

√
g(s; ξ ) ds

≤
∑

jξ

∫ β jξ

α jξ

√
g(s; ξ ) ds

≤
∑

jξ

Vκ (β jξ (ξ )) − Vκ (α jξ (ξ ))

Aκ (α jξ (ξ ))
√

g(α jξ (ξ ); ξ )

≤
∑

jξ

Vκ (R) − Vκ (t)

Aκ (t)
√

g(α jξ (ξ ); ξ ),

which implies, where we let Rν|�0 denote the regular values of ν|�0,

V (A1) ≤ Vκ (R) − Vκ (t)

Aκ (t)

∫
ν(�0)

∑
jξ

√
g(α jξ (ξ ); ξ ) dµo(ξ )

= Vκ (R) − Vκ (t)

Aκ (t)

∫
Rν|�0

∑
jξ

√
g(α jξ (ξ ); ξ ) dµo(ξ )

≤ Vκ (R) − Vκ (t)

Aκ (t)
A(ν|�−1[Rν|�0 ])

≤ Vκ (R) − Vκ (t)

Aκ (t)
A(�),

which implies by (VIII.2.13)

A(�)

V (D1)
≥ Aκ (t)

Vκ (R) − Vκ (t)
{1 − α(1 + γ )},(VIII.2.14)

where

γ = Vκ (R) − Vκ (r/2)

Vκ (r/2) − Vκ (t)
.

Step 4. Before considering CASE 2, we first require the following:

Lemma VIII.2.1. Set either

W0 = D1 ∩ Br/2, W1 = D2 ∩ Br/2,

or

W0 = D2 ∩ Br/2, W1 = D1 ∩ Br/2.
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Then for at least one of two choices of the pair {W0, W1}, we have the existence
of a point w0 ∈ W0, and a measurable subset W1 ⊆ W1, such that

(i) V (W1) ≥ V (W1)/2,
(ii) for each q ∈ W1 every minimizing directed geodesic segment qw0 from

q to w0 intersects � in a first point q∗ such that

d(q, q∗) ≤ d(q∗, w0).

Proof. Consider W1 × W0 with the product measure. Since the cut locus of
any point has n–measure equal to 0, we have, except for a possible nullset N ⊆
W1 × W0, for each (q, w) ∈ {(W1 × W0) \ N } a unique minimizing geodesic
qw from q to w .

Now qw is not necessarily contained in Br/2, but since it is minimizing and
has length less than r , it must be contained in Br , that is,

qw ⊆ Br ⊆ D,

which implies qw must intersect �.
Let V0, V1 ⊆ (W1 × W0) \ N be given by

V0 = {(q, w) : d(q, q‡) ≤ d(q‡, w)},
and

V1 = {(q, w) : d(q, w ‡) ≥ d(w ‡, w)},
where q‡ (respectively, w ‡) is the first intersection of qw (respectively, wq)
with �. Since V0 ∪ V1 = (W1 × W0) \ N , we either have

vol2n(V0) ≥ 1

2
vol2n(W1 × W0), or vol2n(V1) ≥ 1

2
vol2n(W1 × W0),

where vol2n denotes 2n–dimensional Riemannian measure on W1 × W0. One
now uses Fubini’s theorem to obtain the claim. �

Step 5. CASE 2. Here, we have αV (D1) ≤ V (D1 ∩ Br/2) ≤ (1/2)V (Br/2),
which implies αV (D1) ≤ V (D2 ∩ Br/2). Therefore, however W1 is picked ac-
cording to the conclusion of the lemma, we have

αV (D1) ≤ 2V (W1),

so we bound A(�)/V (W1) from below.

Center geodesic spherical coordinates at w0, and project

ν : B(o; r/2) \ C(w0) → Sw0
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as described before for o. (We are keeping the same notation ν, for simplicity,
even though the actual projection here is different.)

To each ξ ∈ ν(W1 \ C(w0)), we determine a collection of disjoint intervals
{(αξ, j , βξ, j ) : j ∈ Iξ }, where Iξ is a finite or countably infinite index set, as
follows: For

q = exp t0ξ ∈ W1, pick αq = d(w0, q∗),

where q∗ is as described in the lemma, and

βq = sup {t > αq : γξ (t) ∈ W1 and γξ ((αq , t)) ⊆ D \ �}.

The collection of open intervals thus obtained is disjoint and, at most, countably
infinite. Also,

W1 ∩ γξ ((0, ∞)) ⊆
⋃
j∈Iξ

γξ ((αξ, j , βξ, j )).

By the definition of q∗, we have

βξ, j ≤ 2αξ, j < r

for all j ∈ Iξ , ξ ∈ ν(W1 \ C(w0)).
Therefore,

V (W1) ≤
∫

ν(W1\C(w0))
dµw0 (ξ )

∑
j∈Iξ

∫ βξ, j

αξ, j

√
g(s; ξ ) ds

≤
∫

ν(W1\C(w0))

∑
j∈Iξ

Vκ (βξ, j ) − Vκ (αξ, j )

Aκ (αξ, j )
√

g(αξ, j ; ξ ) dµw0 (ξ ).

Now,

Vκ (βξ, j ) − Vκ (αξ, j )

Aκ (αξ, j )
≤ Vκ (βξ, j ) − Vκ (βξ, j/2)

Aκ (βξ, j/2)
≤ Vκ (r ) − Vκ (r/2)

Aκ (r/2)
,

which implies

V (W1) ≤ Vκ (r ) − Vκ (r/2)

Aκ (r/2)
A(�).

Therefore,

A(�)

V (D1)
≥ α

2

Aκ (r/2)

Vκ (r ) − Vκ (r/2)
.
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Step 6. In summary, we have

A(�)

V (D1)

≥ max
t∈(0,r/2)

max
α∈(0,1)

{
min

[
α

2

Aκ (r/2)

Vκ (r ) − Vκ (r/2)
,

Aκ (t)

Vκ (R) − Vκ (t)
{1 − α(1 + γ )},

]}
,

where

γ = Vκ (R) − Vκ (r/2)

Vκ (r/2) − Vκ (t)
.

This concludes the proof of (VIII.2.3). �

Remark VIII.2.1. Note that the argument of CASE 1 does not require the as-
sumption (VIII.2.10).

§VIII.3. Isoperimetric Constants

M is our given n–dimensional Riemannian manifold. We let V denote n–
dimensional Riemannian measure, and A denote (n − 1)–dimensional Rieman-
nian measure.

Definition. To each ν > 1 and open submanifold � of M , with compact clo-
sure and smooth boundary, associate the ν–isoperimetric quotient of �, �ν(�),
defined by

�ν(�) = A(∂�)

V (�)1−1/ν
.

The ν–isoperimetric constant of M , Iν(M), is defined as the infimum of �ν(�)
over all � described above. For ν = ∞, define Cheeger’s constant I∞(M) by

I∞(M) = inf
�

A(∂�)

V (�)
,

where � ranges over open submanifolds of M described above.

Remark VIII.3.1. If M is compact, then by considering M \ B(x ; ε), for small
ε > 0, one can easily show that Iν(M) = 0 for all ν. A similar remark holds
for the Sobolev constants considered below. We indicate the appropriate mod-
ification of the definitions in §VIII.5.
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Lemma VIII.3.1. For domains � j , j = 1, . . . , N, in M, and any k ≥ 1, we
have

∑
j

V (� j )
1/k ≥

{∑
j

V (� j )

}1/k

.

Proof. The inequality is a simple application of Minkowski’s inequality. In-
deed, for I j the indicator function of � j , we have

{∑
j

V (� j )
1/k

}k

=
{∑

j

‖I j‖k

}k

≥ ‖
∑

j

I j‖k
k = · · ·

· · · =
∫ {∑

j

I j

}k

≥
∫ ∑

j

I j
k =

∑
j

∫
I j =

∑
j

V (� j ). �

Theorem VIII.3.1. (S. T. Yau (1975)) In the definition of Iν(M), ν ∈ (1, ∞],
it suffices to let � range over open submanifolds of M which are connected.

Proof. We only consider the case where ν is finite. The proof for ν = ∞ is
similar.

Let Iν(M) denote the infimum of �ν(�), where � ranges over domains
(i.e., connected open submanifolds) in M with compact closure and smooth
boundary. Then, obviously, Iν(M) ≤ Iν(M). So, we wish to show the opposite
inequality.

Let � be open with compact closure and smooth boundary. Then, we must
show

A(�) ≥ Iν(M)V (�)1−1/ν .(VIII.3.1)

To this end, we write

∂� =
k⋃

j=1

� j ,(VIII.3.2)

where�1, . . . , �k are compact connected (n − 1)–submanifolds in M and verify
(VIII.3.1) via induction on k.

If k = 1, then � is connected, and (VIII.3.1) is valid.
Assume (VIII.3.1) is valid for all open submanifolds with k boundary com-

ponents, for all k ≤ k0, and suppose ∂� is given by (VIII.3.2) with k = k0 + 1.
If � is connected, then we are done. If not, we may assume that � may be
written as the disjoint union of open sets �1, �2. We number the components
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of ∂� so that

∂�1 = �1 ∪ · · · ∪ ��, ∂�2 = ��+1 ∪ · · · ∪ �k0+1.

Then,

A(∂�) = A(∂�1) + A(∂�2)

≥ Iν(M)V (�1)1−1/ν + Iν(M)V (�2)1−1/ν

≥ Iν(M){V (�1) + V (�2)}1−1/ν

= Iν(M)V (�)1−1/ν

(the third line follows from Lemma VIII.3.1), which is the claim (VIII.3.1).
�

Definition. For each ν > 1, define the Sobolev constant of M , Sν(M), by

Sν(M) = inf
f

‖grad f ‖1

‖ f ‖ν/(ν−1)
,

where f ranges over C∞
c (M). Similarly, define S∞(M) by

S∞(M) = inf
f

‖grad f ‖1

‖ f ‖1
,

where f ranges over C∞
c (M).

Theorem VIII.3.2. (H. Federer–W. H. Fleming (1960), Federer (1969)) We
have for all ν ∈ (1, ∞]

Iν(M) = Sν(M).(VIII.3.3)

Proof. Again, we only consider the case of finite ν. The case of ν = ∞ is
referred to as Cheeger’s theorem (Cheeger (1970b)).

Let � be any open submanifold of M with compact closure and smooth
boundary. For sufficiently small ε > 0, consider the function

fε(x) =



1 x ∈ �

(1/ε)d(x, ∂�) x ∈ M \ �, d(x, ∂�) < ε

0 x ∈ M \ �, d(x, ∂�) ≥ ε

.

Then, fε is Lipschitz for every ε, and we may approximate (using regularization
arguments – see Adams (1975, p. 29); also, see Chavel (2001, pp. 19–23)) fε
by functions φε, j ∈ C∞

c (M) for which

‖φε, j − fε‖ν/(ν−1) → 0, ‖grad φε, j − grad fε‖1 → 0,
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as j → ∞. One concludes

Sν(M) ≤ ‖grad fε‖1

‖ fε‖ν/(ν−1)
.

One easily sees that

lim
ε↓0

∫
M

| fε |ν/(ν−1) dV = V (�).

Furthermore,

|grad fε | =
{

1/ε x ∈ M \ �, d(x, ∂�) < ε

0 otherwise
,

which implies

lim
ε↓0

∫
M

|grad fε | dV = lim
ε↓0

V ({x �∈ � : d(x, ∂�) < ε})
ε

= A(∂�).

Thus,

Sν(M) ≤ A(∂�)

V (�)1−1/ν

for all such �, from which we conclude

Sν(M) ≤ Iν(M).

It remains to prove the opposite inequality, that is,∫
M

|grad f | dV ≥ Iν(M)

{∫
M

| f |ν/(ν−1) dV

}1−1/ν

(VIII.3.4)

for all f ∈ C∞
c (M).

To prove (VIII.3.4), we require the

Theorem VIII.3.3. (Coarea formula)3 Let � be a domain in M with compact
closure and f : � → R a function in C0(�) ∩ C∞(�), with f | ∂� = 0. For
any regular value t of | f |, we let

�(t) = | f |−1[t], A(t) = A(�(t)),

and d At denote the (n − 1)–dimensional Riemannian measure on �(t). Then,

dV|�(t) = d At dt

|grad f | ,(VIII.3.5)

3 See Theorem III.5.2 and Exercise III.12.
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and for any function φ ∈ L1(�), we have∫
�

φ|grad f | dV =
∫ ∞

0
dt

∫
�(t)

φ d At .(VIII.3.6)

Proof. The critical values, in R, of f have Lebesgue measure equal to 0, by
Sard’s theorem (Narasimhan (1968, p. 19ff)). The regular values of f , R f , are
open in R, and for t ∈ R f the preimage f −1[t] ∩ � is an (n − 1)–submanifold
in M with f −1[t] ∩ � compact.

Let (α, β) ⊆ R f and µ ∈ (α, β). Then, one can construct a diffeomorphism

� : f −1[µ] × (α, β) → f −1[(α, β)]

for which

f (�(q, t)) = t

for all (q, t) ∈ f −1[µ] × (α, β). One does this as follows: On f −1[(α, β)],
define the vector field

X := grad f

|grad f |2 ,

ψt the flow determined by X ; and

�(q, t) = ψt−µ(q).

Then, � is the desired map. Moreover,

|d�/dt | = |grad f |−1,

and d�/dt is always orthogonal to the level surface f −1[t]. One immediately
has (VIII.3.5) and (VIII.3.6). �

Lemma VIII.3.2. Given any φ ∈ C∞
c (M), then

|grad |φ| | = |grad φ|(VIII.3.7)

almost everywhere on M.

Proof. On the open set {φ > 0} we have |φ| = φ, and on the open set {φ < 0}
we have |φ| = −φ, and (VIII.3.7) is certainly valid. So, we only have to consider
the validity of (VIII.3.7) on {φ = 0} – even here, we only must consider what
happens on

Nφ := {φ = 0} ∩ {grad φ �= 0}.
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But, in this case, Nφ is an (n − 1)–submanifold of M , and therefore has n–
measure equal to 0. �

Proof of (VIII.3.4). Given f ∈ C∞
c (M), let

�(t) = {x : | f |(x) > t}, V (t) = V (�(t))

for t ∈ R f . Then, the coarea formula implies∫
M

|grad f | dV =
∫ ∞

0
A(t) dt ≥ Iν(M)

∫ ∞

0
V (t)1−1/ν dt,

and ∫
M

| f |ν/(ν−1) dV =
∫

M
dV

∫ | f |

0

ν

ν − 1
t1/(ν−1) dt

= ν

ν − 1

∫ ∞

0
t1/(ν−1) dt

∫
�(t)

dV

= ν

ν − 1

∫ ∞

0
t1/(ν−1)V (t) dt

the second equality is the “layer cake representation” (Lieb–Loss (1996, p. 26).
So, to prove (VIII.3.4), it suffices to show∫ ∞

0
V (t)1−1/ν dt ≥

{
ν

ν − 1

∫ ∞

0
t1/(ν−1)V (t) dt

}1−1/ν

.(VIII.3.8)

To establish (VIII.3.8), set

F(s) =
∫ s

0
V (t)1−1/ν dt, G(s) =

{
ν

ν − 1

∫ s

0
t1/(ν−1)V (t) dt

}1−1/ν

.

Note that

F(0) = G(0);

also, since V (s) is a decreasing function of s, we have

G ′(s) = ν − 1

ν

[
ν

ν − 1

]1−1/ν {∫ s

0
t1/(ν−1)V (t) dt

}−1/ν

s1/(ν−1)V (s)

≤
[

ν

ν − 1

]−1/ν {∫ s

0
t1/(ν−1) dt

}−1/ν

s1/(ν−1)V (s)1−1/ν

= V (s)1−1/ν

= F ′(s).

Then, (VIII.3.8) follows immediately. �
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Proposition VIII.3.1. Suppose, for a given ν ∈ (1, ∞), we have

Iν(M) > 0.

Then, for the area and volume of metric spheres and disks, we have

A(x ; r ) ≥ Iν(M)V (x ; r )1−1/ν(VIII.3.9)

for all x ∈ M and r > 0.

Proof. The point, of course, is even when r > inj x . The argument is similar
to the argument in the first half of the Federer–Fleming theorem (Theorem
VIII.3.2).

For ε > 0, define the function ρε : [0, ∞) → [0, 1] by (i) ρε(s) = 1 when
s ∈ [0, r ], (ii) ρε(s) = (r + ε − s)/ε when s ∈ [r, r + ε], and (iii) ρε(s) = 0
when s > r + ε. Also, define the function fε : M → R by

fε(y) = ρε(d(x, y)).

Then,

V (x ; r )1−1/ν ≤ ‖ fε‖ν/(ν−1) ≤ Iν(M)−1‖grad fε‖1

≤ Iν(M)−1 V (x ; r + ε) − V (x ; r )

ε
.

Now, let ε ↓ 0. Then, we conclude, from Proposition III.3.2,

V (x ; r )1−1/ν ≤ Iν(M)−1
A(x ; r ) ≤ Iν(M)−1 A(x ; r ),(VIII.3.10)

which implies the claim. �

Proposition VIII.3.2. Suppose, for a given ν ∈ (1, ∞), we have Iν(M) > 0.
Then, for the volume of metric disks, we have for all x ∈ M

V ′(x ; r ) ≥ Iν(M)V (x ; r )1−1/ν(VIII.3.11)

(where the prime denotes differentiation with respect to r ) for almost all r > 0.
In particular,

lim inf
r↑∞

V (x ; r )r−ν > 0.(VIII.3.12)

Proof. One simply uses (VIII.3.10) in conjunction with the fact that

A(x ; r ) = V ′(x ; r )

for almost all r (Propositions III.3.2 and III.5.1) to obtain (VIII.3.11). Now
integrate (VIII.3.11) to obtain (VIII.3.12). �
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A similar argument shows:

Proposition VIII.3.3. Suppose I∞(M) > 0. Then, for the volume of metric
disks, we have for all x ∈ M

V ′(x ; r ) ≥ I∞(M)V (x ; r )(VIII.3.13)

for almost all r > 0.
In particular,

lim inf
r↑∞

V (x ; r )e−I∞(M)r > 0.(VIII.3.14)

Theorem VIII.3.4. (S. T. Yau (1975)) If M is connected, complete, simply
connected, with all sectional curvatures less than or equal to κ < 0, then

I∞(M) ≥ (n − 1)
√−κ.(VIII.3.15)

The inequality (VIII.3.15) is sharp in the sense that we have equality for M
the n–dimensional hyperbolic space of constant sectional curvature κ .

Proof. The argument is a simple application of the divergence theorem, as
follows:

Consider a fixed point o ∈ M , and the distance function r : M → (0, ∞)
given by

r (x) = d(o, x).

Then, r ∈ C∞ on M \ {o}, and

�r = ∂r
√

g(r ; ξ )√
g(r ; ξ )

≥ (n − 1)
Cκ

Sκ

◦r,

(by the Bishop comparison theorem (Theorem III.4.1)) which implies, for any
domain � in M with compact closure and smooth boundary,

A(∂�) ≥
∫

∂�

〈grad r, ν〉 d A

=
∫∫

�

�r dV

≥ (n − 1)
∫∫

�

Cκ

Sκ

◦r dV

≥ (n − 1)
√−κV (�),

which implies the first claim.
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The last claim simply follows from considering geodesic disks and their
bounding spheres, namely, one easily verifies Aκ (r )/Vκ (r ) → (n − 1)

√−κ as
r ↑ ∞. �

Theorem VIII.3.5. Let M be an open submanifold of a Riemannian manifold
N, M possessing compact closure and smooth boundary. Then,

I∞(M) > 0.

The result is an easy consequence of Santalo’s formula – see Theorems VII.4.2
and VII.4.3.

Remark VIII.3.2. We note that the inequality Iν(M) > 0 is only possible for
n ≤ ν ≤ ∞. Indeed, let ν < n, and consider small metric disks B(x ; ε), with
center x ∈ M and radius ε > 0. Then, for the isoperimetric quotient of B(x ; ε),
we have

�ν(B(x ; ε)) ∼ const.εn−1−n(1−1/ν) = const.εn/ν−1

as ε ↓ 0; so Iν(M) = 0 whenever ν < n. So, it seems at first glance that one
only has a discussion of isoperimetric constants for ν ≥ n = dim M . However,
we deal with modified isoperimetric constants, for ν < n.

Modified Isoperimetric Constants

We now deal with the fact that the inequality Iν(M) > 0 is only possible for
ν ≥ n. As we described, it is a strictly local phenomenon. Nevertheless, one
has a simple example to illustrate the necessity of a corresponding notion for
ν ∈ [1, n). Consider the Riemannian product M = M0 × R

k , where M0 is an
(n − k)–dimensional compact Riemannian manifold. Then Ik(M) = 0. Yet, for
extremely large domains – for example, geodesic disks of large radius – one
expects the volume of these domains and the area of their boundaries to reflect
k–dimensional space.

On the other hand, in discretizations of M , as described in §IV.4, the local
phenomena disappear and no local difficulties occur. In our example, pick one
point x0 ∈ M0 and consider the integer lattice Z

k in R
k . Then,

G := {x0} × Z
k

is a discretization of M = M0 × R
k , and we expect, since Z

k is a discretization
of R

k , that isoperimetric data of M should somehow be similar, or “equivalent,”
to isoperimetric data on R

k . That is, for general M , the isoperimetric data should
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depend only on the coarse macroscopic geometry of M — once we assume some
version of local uniformity of M .

Definition. In the variational problems for modified isoperimetric constants
with parameter ρ, to be defined below, we let � vary over open submanifolds
of M with compact closure and smooth boundary, and with inradius greater
than ρ, that is, � which contain a closed metric disk of radius ρ.

For ν = 1, ρ > 0, the modified 1–isoperimetric constant of M , I1,ρ(M), is
defined as the infimum of

�1(�) = A(∂�).

For ν > 1, ρ > 0, the modified ν–isoperimetric constant of M , Iν,ρ(M), is de-
fined as the infimum of �ν(�) = A(∂�)/V (�)1−1/ν . For ν = ∞, ρ > 0, we
define the modified Cheeger constant I∞,ρ(M) as the infimum of �∞(�) =
A(∂�)/V (�).

Recall from Chapter IV that the Riemannian manifold M has bounded geom-
etry if the Ricci curvature of M is bounded uniformly from below, and if the
injectivity radius of M is bounded uniformly away from 0 on all of M .

Theorem VIII.3.6. (Chavel–Feldman (1991)) If M is Riemannian complete
with bounded geometry, then I1,ρ(M) > 0 for every ρ > 0.

Proof. Set

δ = min {ρ, inj M}.
Assume we are given � as above, containing B(x ; ρ) for some x ∈ M . One

easily has the existence of z ∈ M for which ∂� ∩ B(z; δ/2) divides B(z; δ/2)
into two open subsets for which the smaller volume is greater than or equal to
V (z; δ/2)/3. But, then, Buser’s isoperimetric inequality states that

A(∂� ∩ B(z; δ/2)) ≥ const.
V (z; δ/2)

3
.

The corollary above implies

V (z; δ/2) ≥ cnδ
n,

which bounds A(∂�) away from 0. �

For the modified isoperimetric constants, the Federer–Fleming theorem goes
as follows: For each ρ > 0, let C∞

c,ρ(M) consist of those compactly supported
Lipschitz functions φ on M , for which (i) there exists an x ∈ M such that the
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preimage of max |φ|, �φ , satisfies �φ ⊇ B(x ; ρ), and (ii) φ | M\�φ ∈ C∞. For
each ν > 1 and ρ > 0, define the modified Sobolev constant of M , Sν,ρ(M), by
minimizing the functional

f �→ ‖grad f ‖1

‖ f ‖ν/(ν−1)
,(VIII.3.16)

where f ranges over C∞
c,ρ(M). Then, one also has

Iν,ρ(M) = Sν,ρ(M)(VIII.3.17)

by the argument of the Federer–Fleming theorem.

Similarly, one has:

Proposition VIII.3.4. If M is Riemannian complete, and Iν,ρ(M) > 0, for some
ν ∈ [1, ∞), ρ > 0, then

lim inf
r→+∞ V (x ; r )r−ν > 0(VIII.3.18)

for all x ∈ M. If M is Riemannian complete, and I∞,ρ(M) > 0, for some ρ > 0,
then

lim inf
r→+∞ V (x ; r )e−I∞,ρ (M)r > 0(VIII.3.19)

for all x ∈ M.

To restate the matter, if ν0 is the supremum of ν for which (VIII.3.18) is valid,
then Iν,ρ(M) = 0 for all ν > ν0, ρ > 0. Also, one easily verifies:

Proposition VIII.3.5. If Iν,ρ(M) > 0 for some ν ∈ [1, ∞), ρ > 0 then, for any
ε > 0, V (x ; ρ + ε) is uniformly bounded from below for all x with d(x, ∂ M) >

ρ + ε. Therefore, Iµ,ρ+ε(M) > 0 for all µ in [1, ν).

Remark VIII.3.3. Note that the proof of the proposition breaks down when
ν = ∞ — unless we postulate the existence of ρ0 > 0 for which

V (x ; ρ0) ≥ const. > 0

for all x (the constant independent of x). Moreover, one has a counterexample.
Consider the Riemannian metric on M = R × S given by

ds2 = dr2 + e2r dθ2.

Then

dV = er dr dθ.
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To calculate I∞(M) = S∞(M), we consider f : M → (0, +∞), and for each
θ ∈ S, we set

Fθ := {r : f (r, θ ) �= 0} =
⋃

j

(α j (θ ), β j (θ )).

Then,

‖grad f ‖1 ≥
∫

S

dθ
∑

j

∣∣∣∣∣
∫ β j (θ )

α j (θ )
(∂r f )er dr

∣∣∣∣∣ = ‖ f ‖1,

the last equality obtained by integration by parts; so I∞,r0 (M) ≥ I∞(M) =
S∞(M) ≥ 1. On the other hand, for any r0 > 0 and α ∈ R one has for, � =
(α, α + r0) × S,

A(∂�) = 2πeα(er0 + 1), V (�) = 2πeα(er0 − 1).

One easily shows

I∞,ρ(M) = I∞(M) = 1, Iν,ρ(M) = 0

for all ν ∈ [1, ∞), ρ > 0. By the way, the Gauss curvature of M is identically
equal to −1.

Proposition VIII.3.6. Let D be a relatively compact domain in the Rieman-
nian complete M with smooth boundary �, D′ an n–dimensional Riemannian
manifold with compact closure and smooth boundary � such that M ′, given by

M ′ = {M\D} ∪ D′,

is smooth Riemannian. If Iν,ρ(M) > 0 for given ν ∈ [1, ∞) and ρ > 0, then
there exist ρ ′ > 0 such that Iν,ρ ′ (M ′) > 0.

Proof. Suppose we are given any α ∈ (0, ∞). The value of α will be fixed
throughout the argument, although its precise value will be determined as we
go along.

Since Iν,ρ(M) > 0, there exists R > ρ such that

V (x ; R)1−1/ν ≥ αA(�)

for all x ∈ M . Let δ′ denote the diameter of D′. We pick

ρ ′ = 2ρ + R + δ′.

Let E = M \ D, and suppose we are given �′ ⊆ M ′, with compact closure
and smooth boundary.
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We first assume that �′ ⊇ B(y′; ρ ′), with d(y′, D′) < R. Then, B(y′; ρ ′) ⊇
D′, which implies ∂�′ ⊆ E . Set � = (�′ \ D′) ∪ D. Then, ∂� = ∂�′, and �

contains a disk in M with inradius ρ, which implies

A(∂�′) ≥ Iν,ρ(M)V (�)1−1/ν .

We obtain

A(∂�′) ≥ Iν,ρ(M){V (D) + V (�′ ∩ E)}1−1/ν

≥ min {1, V (D)/V (D′)}1−1/ν Iν,ρ(M){V (D′) + V (�′ ∩ E)}1−1/ν

= min {1, V (D)/V (D′)}1−1/ν Iν,ρ(M)V (�′)1−1/ν .

We now assume d(y′, D′) ≥ R. Then, B(y′; R) ⊆ E , which implies

V (�′)1−1/ν ≥ V (y′; R)1−1/ν ≥ αA(�).(VIII.3.20)

Assume first that V (�′ ∩ E) ≥ 1
2 V (�′). Then,

A(∂�′) ≥ A(∂�′ ∩ E) ≥ A(∂(�′ ∩ E)) − A(�)

≥ Iν,ρ(M)V (�′ ∩ E)1−1/ν − 1

α
V (�′)1−1/ν

since R ≥ ρ. So,

A(∂�′) ≥
{

Iν,ρ(M)

21−1/ν
− 1

α

}
V (�′)1−1/ν .

Therefore, we pick α at the very outset to also be greater than or equal to
Iν,ρ(M)/22−1/ν . We obtain

A(∂�′) ≥ Iν,ρ(M)/22−1/νV (�′)1−1/ν .

The final situation to consider is, therefore, d(y′, D′) ≥ R and V (�′ ∩ D′) ≥
1
2 V (�′). We still have (VIII.3.20); then,

A(∂�′) ≥ A(∂�′ ∩ D′)

≥ A(∂(�′ ∩ D′)) − A(�)

≥ I∞(D′)V (�′ ∩ D′) − 1

α
V (�′)1−1/ν

≥ I∞(D′)
V (�′)

2
− 1

α
V (�′)1−1/ν

≥
{

I∞(D′)V (�′)1/ν

2
− 1

α

}
V (�′)1−1/ν

≥
{

I∞(D′){αA(�)}1/(ν−1)

2
− 1

α

}
V (�′)1−1/ν .



P1: IWV

0521853680c08 CB980/Chavel January 2, 2006 13:12 Char Count= 685

374 Isoperimetric Inequalities (Variable Curvature)

In addition to the above, pick, at the outset, α sufficiently large so that

I∞(D′){αA(�)}1/(ν−1)

2
− 1

α
≥ I∞(D′)A(�)1/(ν−1)

2
.

This will then imply the proposition. �

Remark VIII.3.4. The proof is not valid for ν = ∞, since it uses a uniform
bound from below for V (x ; r ). See the previous remark.

Remark VIII.3.5. In our example above, M = M0 × R
k , where M0 is com-

pact, we will have (see below) Iν,ρ(M) > 0 if and only if 1 ≤ ν ≤ k. Our proof
will use the discretizations of Riemannian manifolds (see the following section).

§VIII.4. Discretizations and Isoperimetry

We refer the reader to the discussions and notation of §IV.4, wherein we in-
troduced the basic notion of discretization of Riemannian manifolds. Here, we
continue the story, starting with the definition of boundaries of subgraphs. To
this end, we denote the collection of oriented edges of the connected graph G by
Ge. The oriented edge from ξ to η will be denoted by [ξ, η]; and when we wish
to consider the unoriented edge connecting ξ and η, we denote it by [ξ ∼ η].

Any finite subset K in G determines a finite subgraph K of G, for which one
can describe a variety of suitable definitions for its boundary. Our definition
will be that the boundary of K, ∂K, will be the subset of Ge consisting of those
oriented edges which connect points of K to the complement of K in G.

We define the area measure dA on Ge to be the counting measure for the
oriented edges. Thus, for any finite subset of vertices, the area of its boundary
will be equal to the number of edges in the boundary.

Definition. For any ν ≥ 1 and any finite subgraph K in G, the isoperimetric
quotient of K is defined by

�ν(K) = A(∂K)

V(K)1−1/ν
;

and for any ν ≥ 1, the isoperimetric constant Iν(G) is defined the infimum of
�ν(K), where K varies over all finite subgraphs of G.

Another definition of the boundary of a finite subgraph K of G is given by

∂K = {ξ ∈ G : d(ξ, K) = 1}.
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Thus, by this definition, ∂K is a subset of vertices in the complement of K. Its
area is defined to be its cardinality. When G has bounded geometry, the two
choices of area functions

K �→ A(∂K),

as functions on the collection of subgraphs K of G, are commensurate each
with respect to the other in the sense that the quotient of the two functions are
bounded uniformly away from 0 and ∞.

Therefore, when G has bounded geometry, we will work with the counting
measure for the volume of K, and the second definition of ∂K with counting
measure for its area – despite the fact that the theorems are formulated with
respect to the original notions of volume, boundary, and area.

Lemma VIII.4.1. If G, F are roughly isometric graphs, both with bounded
geometry, then Iν(G) > 0 if and only if Iν(F) > 0.

Proof. Given any finite K ⊆ G, we wish to find J ⊆ F such that

card ∂J
(cardJ )1−1/ν

≤ const.
card ∂K

(cardK)1−1/ν
,

where the constant is independent of K and J . This will then imply

Iν(F ) ≤ const.
card ∂K

(cardK)1−1/ν

for all finite K ⊆ G, which implies

Iν(F ) ≤ const.Iν(G).

By switching the roles of G and F , one obtains the theorem.
So, we are given K ⊆ G and we wish to pick J ⊆ F . Let φ : G → F be the

rough isometry. Then there exists a smallest nonnegative integer k such that φ

is (k + 1)–full. Then pick

J := {η ∈ F : d(η, φ(K)) ≤ k}.
By Proposition IV.4.2, there exists µ ≥ 1 such that

cardJ ≥ card φ(K) ≥ µ−1cardK.

So, it remains to bound card ∂J from above, in terms of card ∂K.
Given η ∈ ∂J , then d(η,J ) = 1 (we are working with the second definition

of the boundary), which implies by the triangle inequality that d(η, φ(K)) ≤
k + 1 — so d(η, φ(K)) = k + 1.
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Also, because φ is (k + 1)–full, there exists ξ ∈ G such that

d(η, φ(ξ )) ≤ k.(VIII.4.1)

The triangle inequality then implies

1 ≤ d(φ(K), φ(ξ )) ≤ 2k + 1,

which implies (i) that φ(ξ ) �∈ φ(K) — so ξ �∈ K. Also, there exist a ≥ 1 and
b ≥ 0 such that

a−1d(ξ,K) − b ≤ d(φ(ξ ), φ(K)),

which implies (ii) 1 ≤ d(ξ,K) ≤ a{2k + 1 + b} := σ + 1, which implies

d(ξ, ∂K) ≤ σ.(VIII.4.2)

In summary, (VIII.4.1), (VIII.4.2) imply

∂J ⊆ β(φ(β(∂K; σ )); k),

which implies, by Proposition IV.4.2,

card ∂J ≤2mF
kcard φ(β(∂K; σ ))≤2mF

kcard β(∂K; σ ) ≤ 4mF
kmG

σ card ∂K,

which implies the claim. �

Theorem VIII.4.1. Let M be a complete Riemannian manifold with bounded
geometry. Then, for any ν ≥ 1, we have Iν,ρ(M) > 0 if and only if Iν(G) > 0,
for any discretization G of M.

Proof. First, given Iν,ρ(M) > 0.
By Corollary IV.4.1 and the previous lemma, we may work with any dis-

cretization. Therefore, we consider a discretization G of M with separation
constant ε > 0 and covering radius R = ρ. We wish to derive the existence of
positive constants such that given any K ⊆ G, we may find � ⊆ M of inradius
≥ ρ for which

A(∂�) ≤ const. card ∂K,(VIII.4.3)

and

V (�) ≥ const. cardK.(VIII.4.4)

We proceed as follows: Given a finite subset K, set

� :=
⋃
ξ∈K

B(ξ ; R).
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Then, ∑
ξ∈K

V (ξ ; R) ≤ Mε,R V (∪ξ∈KB(ξ ; R)) = Mε,R V (�),

where Mε,R is an upper bound (depending on ε, R, and the lower bound of the
Ricci curvature) of the maximum number of ε–separated points in a disk of
radius R (see Remark IV.3). So, for

VR := inf
x∈M

V (x ; R) > 0

(the positivity of VR follows from Croke’s inequality (Corollary VIII.1.1)), we
have

VR cardK ≤ Mε,R V (�),

which implies (VIII.4.4).
For the upper bound of A(∂�), we note that

∂� ⊆
⋃

ξ∈∂(G\K)

S(ξ ; R).

Indeed, if x ∈ ∂�, then d(x, ξ ) ≥ R for all ξ ∈ K, and there exists ξ0 ∈ K
such that x ∈ S(ξ0; R). But there must exist ξ ′ ∈ G such that d(x, ξ ′) < R,
which implies ξ ′ �∈ K. Then, d(ξ0, ξ

′) < 2R, which implies ξ0 ∈ N(ξ ′). So,
ξ0 ∈ ∂(G \ K), which is the claim.

Therefore,

A(∂�) ≤ Aκ (R) card ∂(G \ K) ≤ mAκ (R) card ∂K,

which implies (VIII.4.3). So, we have the “only if” claim of the theorem.
For the “if” claim, we again note that we may work with any discretization.

Therefore, assume that we are given the graph G, for which Iν(G) > 0, with
covering radius R = ρ < inj M/2. We want to consider small ρ so that we may
be able to restrict � to smooth hypersurfaces – to apply Buser’s isoperimetric
inequality.4

Suppose we are given �, with compact closure, smooth boundary, and inra-
dius greater than ρ. Set

K0 := {ξ ∈ G : V (� ∩ B(ξ ; ρ)) > V (ξ ; ρ)/2},
K1 := {ξ ∈ G : 0 < V (� ∩ B(ξ ; ρ)) ≤ V (ξ ; ρ)/2}.

4 We made no such fuss in the “only if” part of the argument, since Federer–Fleming (Theorem
VIII.3.2 and its argument) and the proof of Proposition VIII.3.1 show that � above is admissible
for the variational problem defining Iν,ρ .
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So, both K0 and K1 are contained in B(�; ρ). Then, for at least one of j = 0, 1,
we have

V (�)

2
≤ V (� ∩ ∪ξ∈K j B(ξ ; ρ)).(VIII.4.5)

If (VIII.4.5) is valid for j = 1, then we have directly from Buser’s inequality

V (�)

2
≤

∑
ξ∈K1

V (� ∩ B(ξ ; ρ)) ≤ const.
∑
ξ∈K1

A(∂� ∩ B(ξ ; ρ))

≤ const.Mε,ρ A(∂�)

(without any hypothesis on Iν(G)), which implies

A(∂�) ≥ const.V (�) = const.V (�)1/νV (�)1−1/ν ≥ const.V (�)1−1/ν,

since � contains a disk of radius ρ, which, by Croke’s estimate has volume
uniformly bounded from below. So, we must consider the case when (VIII.4.5)
is valid only for j = 0.

First,

V (�)

2
≤

∑
η∈K0

V (� ∩ B(η; ρ)) ≤ Vκ (ρ)cardK0.

Therefore, it suffices to give a lower bound of A(∂�) by a multiple of card ∂K0 –
the multiple independent of the choice of K0.

Set

H := {x ∈ M : V (x ; ρ)/2 = V (� ∩ B(x ; ρ))}.
(So, H ⊆ B(�; ρ).) To each ξ ∈ ∂K0, there exists η ∈ N(ξ ), η ∈ K0; we have,
of course,

d(ξ, η) < 3ρ.

By definition,

V (� ∩ B(η; ρ)) > V (η; ρ)/2, V (� ∩ B(ξ ; ρ)) ≤ V (ξ ; ρ)/2,

which implies the minimizing geodesic connecting ξ to η contains an element
ζ ∈ H , which implies

∂K0 ⊆ B(H ; 3ρ),

which implies ⋃
ξ∈∂K0

B(ξ ; ρ) ⊆ B(H ; 4ρ).
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Now let Q be a maximal 2ρ–separated subset of H . Thus,⋃
ξ∈∂K0

B(ξ ; ρ) ⊆ B(Q; 6ρ),

which implies

Vρcard ∂K0 ≤
∑

ξ∈∂K0

V (ξ ; ρ)

≤ Mε,ρ

∑
ζ∈Q

V (ζ ; 6ρ)

≤ Mε,ρconst.
∑
ζ∈Q

V (ζ ; ρ)

= 2Mε,ρconst.
∑
ζ∈Q

V (� ∩ B(ζ ; ρ))

≤ 2Mε,ρconst.
∑
ζ∈Q

A(∂� ∩ B(ζ ; ρ))

≤ 2Mε,ρ
2const.A(∂�),

the third inequality uses the Gromov comparison theorem (Theorem III.4.5);
the following equality follows from the definition of H ⊇ Q; and the fourth
inequality uses Buser’s inequality. �

When ν ≥ n = dim M , then we have the stronger:

Theorem VIII.4.2. (M. Kanai (1985)) Let M have bounded geometry. Then,
for any ν ≥ n, we have Iν(M) > 0 if and only if Iν(G) > 0, for any discretization
G of M.

Proof. The “only if” is precisely as above.
So we assume that Iν(G) > 0. Suppose we are given �, with compact closure,

smooth boundary, with no assumption on the inradius. As above, we set

K0 := {ξ ∈ G : V (� ∩ B(ξ ; ρ)) > V (ξ ; ρ)/2},
K1 := {ξ ∈ G : 0 < V (� ∩ B(ξ ; ρ)) ≤ V (ξ ; ρ)/2}.

Again, bothK0 andK1 are contained in B(�; ρ), and for at least one of j = 0, 1,
we have (VIII.4.5):

V (�)

2
≤ V (� ∩ ∪ξ∈K j B(ξ ; ρ)).



P1: IWV

0521853680c08 CB980/Chavel January 2, 2006 13:12 Char Count= 685

380 Isoperimetric Inequalities (Variable Curvature)

If (VIII.4.5) is valid for j = 0, then we argue as above – for the only place we
invoked the hypothesis, of the inradius uniformly bounded away from 0, was
when (VIII.4.5) is valid only for j = 1. We therefore adjust the argument for
(VIII.4.5) valid only for j = 1.

Lemma VIII.4.2. There exists a constant jν > 0 such that

A(∂� ∩ B(x ; ρ)) ≥ jνV (� ∩ B(x ; ρ))1−1/ν .

for all x ∈ K1.

Proof of Theorem. Assume the lemma is valid. Then, Minkowski’s inequality
implies

∑
ξ∈K1

V (� ∩ B(ξ ; ρ)) ≤
{∑

ξ∈K1

V (� ∩ B(ξ ; ρ))1−1/ν

}ν/(ν−1)

.

Therefore, (VIII.4.5) and the lemma imply

V (�)

2
≤ V (� ∩

∑
ξ∈K1

B(ξ ; ρ))

≤
∑
ξ∈K1

V (� ∩ B(ξ ; ρ))

≤ const.A(∂�)ν/(ν−1),

which implies the claim. So, it remains to prove the lemma.

Proof of Lemma 6. Let D = � ∩ B(ξ ; ρ); then,

V (D) ≤ V (ξ ; ρ)

2
≤ Vκ (ρ)

2
.

Therefore, ν > n implies

V (D)1−1/ν ≤
{

Vκ (ρ)

2

}1/n−1/ν

V (D)1−1/n;

so it suffices to prove

V (D)1−1/n ≤ const.A(∂ D ∩ B(x ; ρ)).

Well, since ρ < inj M/2, we have, by Croke’s isoperimetric inequality
(VIII.1.2),

V (D)1−1/n ≤ const.A(∂ D) = const.{A(∂ D ∩ B(x ; ρ)) + A(∂ D ∩ S(x ; ρ))}.
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So, we want to show

A(∂ D ∩ S(x ; ρ)) ≤ const.A(∂ D ∩ B(x ; ρ)).

Consider geodesic spherical coordinates centered at x . Let Cx denote the
subset of Sx for which

exp ρCx = ∂ D ∩ S(x ; ρ).

For each ξ ∈ Cx , let

σ (ξ ) = sup {t ≥ 0 : exp tξ ∈ ∂ D ∩ B(x ; ρ)}.

Note that, if σ (ξ ) < ρ, then the geodesic segment from exp σ (ξ )ξ to exp ρξ is
contained in D. The Bishop–Gromov theorem (Proposition III.4.1) implies

∫ ρ

σ (ξ )

√
g(s; ξ ) ds ≥ Vκ (ρ) − Vκ (σ (ξ ))

Aκ (ρ)
√

g(ρ; ξ )

= Vκ (ρ)

Aκ (ρ)
√

g(ρ; ξ ) − Vκ (σ (ξ ))

Aκ (ρ)
√

g(ρ; ξ )

≥ Vκ (ρ)

Aκ (ρ)
√

g(ρ; ξ ) − Vκ (σ (ξ ))

Aκ (σ (ξ ))
√

g(σ (ξ ); ξ )

≥ Vκ (ρ)

Aκ (ρ)
{√g(ρ; ξ ) − √

g(σ (ξ ); ξ )},

which implies

V (D) ≥ Vκ (ρ)

Aκ (ρ)

∫
Cx

{√g(ρ; ξ ) − √
g(σ (ξ ); ξ )} dµx (ξ )

≥ Vκ (ρ)

Aκ (ρ)
{A(∂ D ∩ S(x ; ρ)) − A(∂ D ∩ B(x ; ρ))},

which implies, by Buser’s inequality (Theorem VIII.2.1),

A(∂ D ∩ S(x ; ρ)) ≤ Aκ (ρ)

Vκ (ρ)
V (D) + A(∂ D ∩ B(x ; ρ))

≤ const.A(∂ D ∩ B(x ; ρ)) + A(∂ D ∩ B(x ; ρ))

= const.A(∂ D ∩ B(x ; ρ)),

which implies the claim. �
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§VIII.5. Notes and Exercises

Analytic Isoperimetric Inequalities

Exercise VIII.1. Prove, if Iν(M) > 0 for some given ν > 2, that for any func-
tion φ in C∞

c (M), we have

‖grad φ‖2 ≥ ν − 2

2(ν − 1)
Iν(M)‖φ‖2ν/(ν−2).

Exercise VIII.2. Prove, if Iν(M) > 0 for a given ν ≥ 2, that there exists a
positive const.ν such that

||φ||22+4/ν ≤ const.ν ||grad φ||22||φ||14/ν

for all φ ∈ C∞
c (M).

Exercise VIII.3. (J. Cheeger (1970b)) Prove, if I∞(M) > 0, that for any func-
tion φ in C∞

c (M), we have

‖grad φ‖2 ≥ 1

2
I∞(M)‖φ‖2.

In particular, the fundamental tone of M , λ∗(M), satisfies

λ∗(M) ≥ 1

4
I∞2(M).

Furthermore (H. P. McKean (1970); also see Pinsky (1978)), if M is connected,
complete, simply connected, with all sectional curvatures less than or equal to
κ < 0, then

λ∗(M) ≥ −(n − 1)2κ

4
.

The inequality is sharp in the sense that we have equality for M the n–
dimensional hyperbolic space of constant sectional curvature κ . See Pinsky
(1978), Gage (1980).

The Compact Case

Let M be compact Riemannian, n ≥ 1 the dimension of M . Then, as noted in
Remark VIII.3.1, all isoperimetric constants vanish. Alternatively, by consid-
ering the function f ≡ 1 on M , one has that all the Sobolev constants of M
vanish. Nevertheless, one can adjust the definitions as follows (here one only
needs the isoperimetric dimensions n and ∞):
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Definition. Define the isoperimetric constant In(M) by

In(M) = inf
�

A(�)

min {V (D1), V (D2)}1−1/n
,

where � varies over compact (n − 1)–dimensional submanifolds of M that
divide M into two disjoint open submanifolds D1, D2 of M . Define Cheeger’s
constant I∞(M) by

I∞(M) = inf
�

A(�)

min {V (D1), V (D2)} ,

where � varies over compact (n − 1)–submanifolds of M as described above.

Exercise VIII.4. Prove the analogue of Theorem VIII.3.1 (Yau (1975)), that
in the definition of Iν(M), ν = n, ∞, it suffices to assume that the open sub-
manifolds D1 and D2 are connected.

Definition. Define the Sobolev constant of M , sn(M), by

sn(M) = inf
f

‖grad f ‖1

infα ‖ f − α‖n/(n−1)
,

where α varies over R, and f over C∞(M).

Exercise VIII.5. Prove (the analogue of the Federer–Fleming theorem
(Federer–Fleming (1960), Federer (1969)):

In(M) ≤ sn(M) ≤ 2In(M).

Exercise VIII.6. Prove Cheeger’s (1970b) inequality:

λ2 ≥ I∞2(M)

4
,

where λ2 is the second (i.e., the lowest nonzero) eigenvalue of the closed eigen-
value problem on M .

Note VIII.1. The Cheeger inequality for compact Riemannian manifolds has
been used extensively, especially for surfaces of (constant) negative curvature.
For the possibility of constructing metrics on a given compact Riemannian man-
ifold so that the inequality is sharp, and for many other matters, see the survey
of Buser (1980). For lower bounds without the employment of Cheeger’s in-
equality, see Dodziuk–Randol (1986). For a more recent survey of applications
of Cheeger’s inequality, see Buser (1992).



P1: IWV

0521853680c08 CB980/Chavel January 2, 2006 13:12 Char Count= 685

384 Isoperimetric Inequalities (Variable Curvature)

In contrast to the McKean result in Exercise VIII.3, it is possible that a
compact Riemannian manifold of constant negative sectional curvature κ sat-
isfies λ2 < −(n − 1)2κ/4 (Randol (1974)). This has led to consideration of the
phenomenon of “small eigenvalues.” See Buser (1992, Chapter 8).

Buser’s Isoperimetric Inequality

Note VIII.2. Buser (1982) gave an upper bound of λ2(M) in terms of the
Cheeger constant, namely, if compact M of dimension n has Ricci curvature
bounded from below by (n − 1)κ , κ ≤ 0, then

λ2(M) ≤ c(n){I∞(M)
√−κ + I∞2(M)},

where c(n) is a constant depending only on n. He gave two proofs, the second
using Theorem VIII.2.1.

For M complete noncompact, the result reads as:

λ∗(M) ≤ c(n)I∞(M)
√−κ.

See Ancona (1990) and Canary (1992) for the analytic argument.

Note VIII.3. Also, for M compact n–dimensional with Ricci curvature
bounded below by (n − 1)κ , Buser (1982) also has derived, from his isoperi-
metric inequality, lower bounds on eigenvalues λ�(M) that complement those
of Exercise III.41.
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IX

Comparison and Finiteness Theorems

In this chapter, we introduce one of the most powerful theorems in Riemannian
geometry: H. E. Rauch’s comparison theorem. It allows for direct comparison
of the growth of Jacobi fields in a given Riemannian manifold M with those in
a simply connected space form of constant sectional curvature in both cases,
where the constant sectional curvature is an upper or lower bound of the sectional
curvatures along the geodesic under consideration in M . The case where the
curvature is bounded from above is quite elementary; and for the curvature
bounded from below, we have already dealt with the weaker conjugate point
(Bonnet–Myers) and volume (Bishop) comparison theorems (in those cases
lower bounds on the Ricci curvature sufficed). So, now we turn to the strongest
version, the one discussing the Jacobi fields themselves. (See the preliminary
discussion in Notes II.10–II.11.)

The major applications we consider here are (i) the Heintze–Karcher volume
comparison theorem for the volume of tubular neighborhoods of submanifolds
of arbitrary codimension, (ii) the Alexandrov–Toponogov triangle comparison
theorems, and (iii) Cheeger’s finiteness theorem. Our applications are only a
sample. One has, at least, a whole panoply of “sphere theorems” (see §IX.9),
which were the initial major application of the Jacobi field comparison theo-
rems – the original program of Rauch. And, most recently, one has M. Gromov’s
convergence theorems for Riemannian manifolds (see §IX.9).

We first list some small, but necessary, preliminaries.

§IX.1. Preliminaries

We fix our perennial Riemannian manifold M .

1. Fix p ∈ M , its tangent space Mp, and the curvature tensor R acting on Mp. Set

Rα(u, v)w = α{〈u, w〉v − 〈v, w〉u},

385
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the curvature tensor associated to constant sectional curvature α (Proposition
II.3.1 and Exercise II.2). Suppose all sectional curvatures K at p satisfy

κ ≤ K ≤ δ.(IX.1.1)

Then, by Exercise II.1(e), we have

|R(v, u)v − R(κ+δ)/2(v, u)v| ≤ δ − κ

2
|u||v|2.(IX.1.2)

2. Parallel translation and curvature. Recall from Exercise IV.2, that if v :
[0, 1] × [0, 1] → M ∈ D1 is a homotopy with fixed endpoints

p = v(0, s), q = v(1, s),

X a vector field along v such that

X (0, s) = X0 ∈ Mp, ∇t X = 0,

then

|X (1, 1) − X (1, 0)| ≤ 4

3
{sup |X |}�

∫ 1

0
ds

∫ 1

0
|∂t v ∧ ∂sv| dt.

where � = sup |K|. Note that, by Exercise IV.1, the double integral is the area
of the surface spanned by the homotopy.

3. Reparameterization of geodesics. Given a geodesic γ = γ (t), and a Jacobi
field Y = Y (t) along γ , that is,

∇t
2Y + R(γ ′, Y )γ ′ = 0,

consider the reparameterization

γ (t) = ω(αt), Y (t) = Z (αt)

of the geodesic, and set s = αt . Then,

γ ′(t) = αω′(s), (∇t Y )(t) = α(∇s Z )(s),

and the Jacobi equation for Z along ω becomes

∇s
2 Z + R(ω′, Z )ω′ = 0.

In particular, if s is arc length along the geodesic, all the sectional curvatures
along the geodesic are equal to κ , and η is any Jacobi field along ω satisfying
η(0) = 0, then

η(s) = Sκ (s)E(s),
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where E(s) is a parallel vector field along ω. Therefore, if our Jacobi field
satisfies Y (0) = 0 then we have

Y (t) = αSκα2 (t)E(αt), (∇t Y )(t) = αCκα2 (t)E(αt),

where E is a parallel vector field along ω, which implies

〈Y, ∇t Y 〉
〈Y, Y 〉 (t) = Cκα2

Sκα2
(t).

4. Note that for any vector function η(t), whenever η 	= 0, we have

|η|′ = 〈η′, η〉
〈η, η〉 ;

and when η(t0) = 0 we have, for the right-hand derivative,

|η|′+(t0) = |η′|(t0).

§IX.2. H. E. Rauch’s Comparison Theorem

For convenience, we separate the analytic aspects from the geometric aspects.
First, the analytic.

We fix a real inner product space V of finite dimension N . For any β > 0, let

ϒ = {X : [0, β] → V ∈ D1 : X (0) = 0}, ϒ0 = {X ∈ ϒ : X (β) = 0}.
We are given the familyR(t) : V → V , t ∈ [0, β], of self-adjoint linear maps

of V to V , with which we associate the index form

I (X, Y ) =
∫ β

0
{〈X ′, Y ′〉 − 〈R(t)X, Y 〉} dt

and the Jacobi equation

η′′ + R(t)η = 0.(IX.2.1)

Of course, we have in mind the identification, via parallel translation, of the
subspaces γ ′(t)⊥ along a geodesic γ (t). See §III.1.

Lemma IX.2.1. Assume I is positive definite on ϒ0, and let η ∈ ϒ be a non-
trivial solution of (IX.2.1). Then, for any X ∈ ϒ satisfying

X (β) = η(β)

we have

I (X, X ) ≥ I (η, η) = 〈η′, η〉(β),

with equality if and only if X = η.
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Proof. We have

0 ≤ I (X − η, X − η)

= I (X, X ) − 2I (X, η) + I (η, η)

= I (X, X ) − 2〈X, η′〉(β) + 〈η′, η〉(β)

= I (X, X ) − 〈η′, η〉(β)

= I (X, X ) − I (η, η),

which implies the claim. �

Theorem IX.2.1. (H. E. Rauch (1951)) Assume

R(t) ≤ δ I

for all t ∈ [0, β]. If η is a solution to the Jacobi equation (IX.2.1), then the
function |η| satisfies the differential inequality

|η|′′ + δ|η| ≥ 0.(IX.2.2)

on [0, β). Furthermore, if ψ denotes the solution on [0, β] of the initial value
problem

ψ ′′ + δψ = 0, ψ(0) = |η|(0), ψ ′(0) = |η|′(0),

and ψ does not vanish on (0, β), then

{|η|/ψ}′ ≥ 0,(IX.2.3)

|η| ≥ ψ,(IX.2.4)

on (0, β).
We have equality in (IX.2.3) at t0 ∈ (0, β) if and only if R(t)η = δη on all

of [0, t0], and there exists a constant vector E for which η(t) = ψ(t)E on all of
[0, t0].

The theorem is merely a restatement of Theorem II.6.4, with the geometric data
deleted.

Theorem IX.2.2. (H. E. Rauch (1951)) Assume

R(t) ≥ κ I

on all of [0, β], and assume that Jacobi’s equation (IX.2.1) has no points in
(0, β) conjugate to t = 0, that is, assume that for any nontrivial solution η to
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Jacobi’s equation satisfying η(0) = 0, we have η nonvanishing on all of (0, β).
Then, for any nontrivial solution η to Jacobi’s equation satisfying

η(0) = 0

we have

|η|′
|η| = 〈η′, η〉

〈η, η〉 ≤ Cκ

Sκ

.(IX.2.5)

Therefore,

{|η|/Sκ}′ ≤ 0,(IX.2.6)

|η| ≤ |η′(0)|Sκ ,(IX.2.7)

on (0, β).1

We have equality in (IX.2.6) at t0 ∈ (0, β) if and only if

R(t)η = κη

on all of [0, t0], and there exists a constant vector E for which

η(t) = Sκ (t)E

on all of [0, t0].

Proof. Since t = 0 has no conjugate points in (0, β), the argument of the
Bonnet–Myers theorem (Theorem II.6.1) implies that β ≤ π/

√
κ – so, we are

guaranteed that Sκ > 0 on all of (0, β).
Fix t ∈ (0, β). Since t = 0 has no conjugate points in (0, β), the analytic

version of the Jacobi criteria (Theorem II.5.4) implies that the index form
for the interval [0, t] is positive definite on ϒ0. Then for any X ∈ D1([0, t])
satisfying

X (0) = 0, X (t) = η(t)

we have, by Lemma IX.2.1,

〈η, η′〉(t) =
∫ t

0
|η′|2 − 〈Rη, η〉 ≤

∫ t

0
|X ′|2 − 〈RX, X〉 ≤

∫ t

0
|X ′|2 − κ|X |2.

Pick the specific X given by

X (s) = Sκ (s)

Sκ (t)
η(t), s ∈ [0, t].

1 See the notes and exercises “On the Rauch theorem” in §II.9.
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Then, one has explicitly
∫ t

0
|X ′|2 − κ|X |2 = Cκ (t)

Sκ (t)
|η(t)|2,

which implies (IX.2.5). The rest of the claims follow easily. �

Theorem IX.2.3. (The geometric Rauch theorem) Given M, p ∈ M, ξ ∈ Sp,
with sectional curvatures satisfying (IX.1.1) along γξ ; assume that γξ has no
points conjugate to p along γ |(0, t]. Then,

Sδ(t)

t
≤ |(expp)∗|tξ�tξ v|

|v| ≤ Sκ (t)

t
(IX.2.8)

for all v ∈ ξ⊥.

Remark IX.2.1. Of course, if one is given only one of the inequalities of
(IX.1.1), then one only has the corresponding inequality in (IX.2.8).

Also, if κ < 0, then the upper bound in (IX.2.8) is valid for all v ∈ Mp.
Similarly, if δ > 0, then the lower bound is valid for all v ∈ Mp.

§IX.3. Comparison Theorems with Initial Submanifolds

In this section, we prove the appropriate version of Bishop’s theorem (Theorem
III.6.1) for Fermi coordinates based on a submanifold with codimension greater
than 1. First, we recall the setting and basic background from §III.6.

Let M be our given n–dimensional Riemannian manifold, M be a connected k–
dimensional submanifold of M , 0 ≤ k < n. We first recall, from §II.2, that the
second fundamental form of M in M is, at each point p ∈ M, a vector-valued
symmetric bilinear form B : Mp × Mp → Mp

⊥, given by

B(ξ, η) = (∇ξ Y )N ,

where Y is any extension of η to a tangent vector field on M, ∇ denotes the
Levi-Civita connection of the Riemannian metric on M , and the superscript N
denotes projection onto Mp

⊥. To every vector v ∈ Mp
⊥, one has the real-valued

bilinear form bv (ξ, η) = 〈B(ξ, η), v〉, and Weingarten map Av : Mp → Mp

given by 〈Avξ, η〉 = bv (ξ, η) for ξ, η ∈ Mp – so,

A
vξ = −(∇ξ V )T ,

where V is an extension of v to a normal vector field on M, and the superscript
T denotes projection onto Mp.
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For p ∈ M, we let νSp denote the normal unit tangent sphere at p, that is,

νSp = Sp ∩ Mp
⊥.

Fix ξ ∈ νSp, and set γ = γξ . We let T denote the collection of transverse vector
fields X along the geodesic γ , that is, those vector fields X along γ for which
X is pointwise orthogonal to γ , with initial data

X (0) ∈ Mp, {(∇t X )(0) + A
ξ X (0)} ∈ Mp

⊥.

The collection of transverse Jacobi fields along γ is an (n − 1)–dimensional
vector space.

If the sectional curvatures along γ are all equal to κ , and the Weingarten map
of ξ , Aξ , is given by

A
ξ = λI,(IX.3.1)

then the collection of transverse Jacobi fields along γ , pointwise orthogonal to
γ , are given as sums of the vector fields:

Z (t) = (Cκ − λSκ )(t)τtζ, ζ ∈ Mp, and Y (t) = Sκ (t)τtη, η ∈ ξ⊥ ∩ M
⊥
p ,

where τt denotes parallel translation along γ from p to γ (t).

Definition. A point γ (t) is said to be focal to M along γ if there exists a
nontrivial transverse Jacobi field Y such that Y (t) = 0.

Let ϒ denote the collection of vector fields X along γ , pointwise orthogonal
to γ , for which X (0) ∈ Mp, and let ϒβ consist of those elements of ϒ which
vanish at t = β. On ϒ , define the index form by

Iβ(X1, X2) = −bξ (X1(0), X2(0)) +
∫ β

0
〈∇t X1, ∇t X2〉 − 〈R(γ ′, X1)γ ′, X2〉 dt.

The Jacobi criteria (Theorems II.5.4 and II.5.5) on the positivity of the index
form (on ϒβ) and the nonexistence of focal points remain valid in this setting. In
particular, one has the corresponding version of Lemma IX.2.1 above, namely,
that if M has no focal points along γ |[0, β], then for any transverse Jacobi field
η along γ and any vector field X in ϒ satisfying

X (β) = η(β)

we have

Iβ(X, X ) ≥ Iβ(η, η) = 〈η, η′〉(β),

with equality if and only if X = η on [0, β].
Now let Exp = exp |νM, where νM denotes the normal bundle of M in M ,

with natural projection πν ; also let νSM = νM ∩ SM denote the unit normal
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bundle of M. Map E : [0, +∞) × νSM → M by

E(t, ξ ) = Exp tξ,

so E determines radial coordinates on M , also known as Fermi coordinates.
Then for f ∈ L1(M), we have

(IX.3.2)∫
M

f dV =
∫

M

dVM(p)
∫

νSp

dµn−k−1,p(ξ )
∫ cν (ξ )

0
f (Exp tξ )

√
g(t ; ξ ) dt.

In (IX.3.2), cν(ξ ) denotes the distance along γξ to the focal cut point of M

along γξ ; dVM the (k–dimensional) Riemannian measure of M; dµn−k−1,p the
standard (n − k − 1)–dimensional measure on νSp;

√
g(t ; ξ ) = det A(t ; ξ ),

where A(t ; ξ ) denotes the matrix solution to Jacobi’s equation along γξ , pulled
back to ξ⊥, as in §III.1:

A′′ + RA = 0,

subject to the initial conditions

A(0; ξ )|Mp = I, A′(0; ξ )|Mp = −A
ξ ,

A(0; ξ )|Mp
⊥ ∩ ξ⊥ = 0, A′(0; ξ )|Mp

⊥ ∩ ξ⊥ = I.

Theorem IX.3.1. (F. W. Warner (1966)) Assume M has codimension 1, that is,
that k = n − 1. Also assume that all sectional curvatures along γξ are bounded
below by κ , and that

A
ξ ≥ λI.

Let βκ,λ ∈ (0, +∞] denote the first positive zero of (Cκ − λSκ )(t), should such
a zero exist; otherwise, set βκ,λ = +∞. Then (by Theorem III.6.1), M has a
focal point along γ at distance β ≤ βκ,λ. Let Y (t) be a transverse Jacobi field
along γξ , orthogonal to γξ . Then,

|Y (t)| ≤ (Cκ − λSκ )(t)|Y (0)|
on all of [0, β]. One has equality at t0 ∈ [0, β] if and only if Y (t) = (Cκ −
λSκ )τt Y (0) on all of [0, t0], in which case Aξ Y (0) = λY (0), and R(t)τt Y (0) =
κτt Y (0) all of [0, t0].

Proof. The argument is the same for the original Rauch theorem (Theorem
IX.2.2), except that one must adjust the argument for the new initial data. It
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goes as follows (of course, the reader has to check why it does not work in
higher codimension – also see Remark III.6.1):

Fix t ∈ (0, β). Then, for any X ∈ ϒ satisfying X (t) = Y (t), we have

〈Y, ∇t Y 〉(t) = −bξ (Y (0), Y (0)) +
∫ t

0
{|∇sY |2 − 〈R(s)Y, Y 〉} ds

≤ −bξ (X (0), X (0)) +
∫ t

0
{|∇s X |2 − 〈R(s)X, X〉} ds

≤ −λ|X (0)|2 +
∫ t

0
{|∇s X |2 − κ|X |2} ds.

Pick the specific X given by

X (s) = (Cκ − λSκ )(s)

(Cκ − λSκ )(t)
τs−t Y (t), s ∈ [0, t].

Then, one has explicitly

−λ|X (0)|2 +
∫ t

0
{|∇s X |2 − κ|X |2} ds = 〈X, ∇t X〉(t) = (Cκ − λSκ )′(t)

(Cκ − λSκ )(t)
|Y (t)|2.

Thus,

〈Y, ∇t Y 〉(t) ≤ (Cκ − λSκ )′(t)
(Cκ − λSκ )(t)

|Y (t)|2,

which implies the theorem. �

Definition. Given p ∈ M , ξ ∈ Sp, we say that γξ (β) is a focal point of p along
γξ if γξ (β) is a focal point of the submanifold M = exp ξ⊥ along γξ . Thus, the
transverse Jacobi fields under consideration satisfy ∇t Y (0) = 0.

A geometric application of this last theorem goes as follows: Given M of dimen-
sion n, with sectional curvatures bounded below by the constant κ , consider M

2
κ

(the 2–dimensional space form of constant curvature κ). Fix p ∈ M , p ∈ M
2
κ ,

and unit speed geodesics γ : [0, �] → M , γ : [0, �] → M
2
κ . Consider parallel

vector fields E, E along γ, γ , respectively, satisfying

|E | = |E |, 〈E, γ ′〉 = 〈E, γ ′〉.
Let φ : [0, �] → R ∈ D1, and consider the paths

ω(ε) = exp φ(ε)E(ε), ω(ε) = exp φ(ε)E(ε).

Corollary IX.3.1. (M. Berger (1962)) Assume that for every ε ∈ [0, �], γ (ε)
has no focal points along the geodesic t �→ exp t E(ε), t ∈ [0, φ(ε)] – in
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particular, φ(ε) ≤ π/2
√

κ . Then,

�(ω) ≤ �(ω).

Proof. Consider the geodesic variations

v(t, ε) = exp tφ(ε)E(ε), v(t, ε) = exp tφ(ε)E(ε)

in M , M
2
κ , respectively. Then,

�(ω) =
∫ �

0
|∂εv|(1, ε) dε, �(ω) =

∫ �

0
|∂εv|(1, ε) dε.

As usual, ∂εv is a Jacobi field along the geodesic t �→ v(t, ε), for each fixed ε. To
estimate its length from above one has to decompose it into its projections onto,
and perpendicular to, the geodesic; take into account that t is not necessarily arc
length – so use 3 of §IX.1; and use Theorem IX.3.1 – with appropriate initial
conditions. �

For codimension greater than or equal to 1, we do have the volume comparison
theorem:

Theorem IX.3.2. (E. Heintze & H. Karcher (1978)) Let H denote the mean
curvature vector of M in M. Assume that all sectional curvatures along γξ are
bounded below by κ . Let τ denote the first positive zero of

{Cκ − 〈H, ξ〉
k

Sκ}(t)

(should such a zero exist; otherwise, set τ = +∞). Then, M has a focal point
along γξ at distance c f (ξ ) ≤ τ , and

det A(t ; ξ ) ≤ {Cκ − 〈H, ξ〉
k

Sκ}k(t)Sκ
n−k−1(t)(IX.3.3)

on all of [0, c f (ξ )].

Corollary IX.3.2. Let M be compact, all sectional curvatures of M bounded
below by the constant κ . Let d(M) denote the diameter of M. Then for any
simple closed geodesic γ in M with length �(γ ) we have

V (M) ≤ cn−2

n − 1
�(γ )Sκ

n−1(d(M)).(IX.3.4)

Proof of the Heintze–Karcher Theorem. Since ξ is fixed, in what follows, we
simply write A(t) for A(t ; ξ ).
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Our method, as usual, is to study the logarithmic derivative of det A(t). To
this end, fix r > 0 for which det A(t) > 0 on (0, r ), fix s ∈ (0, r ), and set

B = A∗A, C(t) = B(t)B(s)−1.

Then (the prime denotes differentiation with respect to t),

1

2

(det A)′

det A (s) = (det C)′

det C (s) =
n−1∑
j=1

〈X j , X j
′〉(s) =

n−1∑
j=1

Is(X j , X j ),

where {X j : j = 1, . . . , n − 1} are transverse Jacobi fields along γξ such that
{X j (s) : j = 1, . . . , n − 1} is an orthonormal basis of γξ (s)⊥.

Now our differential equation lives in ξ⊥. Consider the solution Aκ (t) to the
matrix differential equation in ξ⊥

Aκ
′′ + κAκ = 0,(IX.3.5)

with the same initial conditions as A(t). Then, the vector solutions of the asso-
ciated vector differential equation

Y ′′ + κY = 0(IX.3.6)

are given by Y = Aκη, where η ∈ ξ⊥, and Y is transverse to Mp. One also has
the associated index form

Iκ,β(X1, X2) = −bξ (X1(0), X2(0)) +
∫ β

0
〈X1

′, X2
′〉 − κ〈X1, X2〉 dt,

for any β > 0.
Pick transverse solutions {X j : j = 1, . . . , n − 1} of (IX.3.6) such that

X j (s) = X j (s)

for all j = 1, . . . , n − 1. Then,

n−1∑
j=1

Is(X j , X j ) ≤
n−1∑
j=1

Is(X j , X j ) ≤
n−1∑
j=1

Iκ,s(X j , X j ) = 1

2

(det Aκ )′

det Aκ

(s).

Since s is arbitrary in (0, r ) we have

detA ≤ det Aκ

on all of [0, r ].
Let {eε : ε = 1, . . . , k} be an orthonormal basis of Mp consisting of eigen-

vectors of the Weingarten map Aξ , with respective eigenvalues λε . And let
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{eδ : δ = k + 1, . . . , n − 1} be an orthonormal basis of ξ⊥ ∩ Mp
⊥. Then,

Aκ (t)eε = {Cκ − λεSκ}(t)eε, ε = 1, . . . , k,

Aκ (t)eδ = Sκ (t)eδ, δ = k + 1, . . . , n − 1,

which implies

det Aκ = Sκ
n−k−1

k∏
ε=1

{Cκ − λεSκ} ≤ {Cκ −
∑

ε λε

k
Sκ}kSκ

n−k−1,

by the arithmetic–geometric mean inequality, which is (IX.3.3). �

Remark IX.3.1. Of course, we may read (IX.3.4) as a lower bound on the
length of any simple closed geodesic in M in terms of the volume, diameter,
and lower bound on the sectional curvature, of M . By Klingenberg’s theorem
(Theorem III.2.4), we obtain:

Theorem IX.3.3. (J. Cheeger (1970b)) Let M be compact n–dimensional, all
sectional curvatures of M bounded in absolute value from above by �, diam M
bounded from above by D, and V (M) bounded from below by V . Then,

inj M ≥ min

{
π√
�

,
n − 1

2cn−2

V

S−�
n−1(D)

}
:= c(n, V, D, �)

§IX.4. Refinements of the Rauch Theorem

The work of this section is from Karcher (1977, Proposition A6) and Buser–
Karcher (1981, pp. 97ff). It consists of a close study of analytic comparison
theorems, without the use of the index form.

Let V be a real inner product space of finite dimension N . We are given
the family R(t) : V → V of self-adjoint linear maps of V to V , to which we
associate the Jacobi differential equation (IX.2.1). We assume

κ I ≤ R(t) ≤ δ I,(IX.4.1)

where κ ≤ δ are given constants. Set

� := max {|κ|, |δ|}.
Let ε denote some parameter usually, but not necessarily, in (κ, δ), and set

λ := max {δ − ε, ε − κ}.
We consider the Jacobi differential equations

η′′ + R(t)η = 0, E ′′ + εE = 0,
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with initial data

E(0) = η(0), E ′(0) = η′(0).

We also consider the scalar initial value problem:

σ ′′ + (ε − λ)σ = λ|E |, σ (0) = σ ′(0) = 0.

Theorem IX.4.1. For any t > 0 for which Sε |(0, t) > 0 we have |η − E | ≤ σ

on all of [0, t].

Proof. Let P denote a unit vector in V . Then,

〈η − E, P〉′′ + ε〈η − E, P〉 = 〈εη − R(t)η, P〉 ≤ λ|η|
by the self-adjointness ofR, and the bounds onR. So φ := 〈η − E, P〉 satisfies

φ′′ + εφ ≤ λ|η|.
Let µ satisfy the scalar initial value problem:

µ′′ + εµ = λ|η|, µ(0) = µ′(0) = 0.

Then, the standard Sturmian argument (Exercise II.22) implies φ ≤ µ for all
such choices of P . Therefore,

|η − E | ≤ µ, ⇒ |η| ≤ |E | + µ,

which implies

µ′′ + (ε − λ)µ ≤ λ|E | = σ ′′ + (ε − λ)σ.

Again, the Sturmian argument implies µ ≤ σ , which implies

|η − E | ≤ µ ≤ σ,

which is the claim. �

Corollary IX.4.1. Assume, in addition to the above, that (i) the vectors η(0)
and η′(0) are linearly dependent, and (ii) the function

fε := |η(0)|Cε + |η|′(0)Sε

is positive on all of (0, t). Then,

fε = |E |, |E |−1 E = const., σ = fε−λ − fε

on all of (0, t).
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Proof. By the differential equation for E , one has constant vectors P and Q
such that

E = Cε P + Sε Q.

Since η(0) and η′(0) are linearly dependent, we have the existence of a constant
unit vector e, and real constants α and β, such that E = (αCε + βSε)e, which
implies α = |E(0)| = |η(0)| and β = |E |′(0) = |η|′(0), which implies

E = fεe.

The rest is easy. �

Corollary IX.4.2. We also have

|η − E | ≤ fε−λ − fε,(IX.4.2)

and

|η| ≤ fκ .(IX.4.3)

Proof. The inequality (IX.4.2) follows directly from the theorem; and the
inequality (IX.4.3) comes from the theorem, with the specific choice of
ε = (κ + δ)/2. �

Remark IX.4.1. If, in the above corollary, we have η(0) = 0, then (IX.4.3) is
the estimate from Rauch’s theorem (Theorem IX.2.1) on the interval

(0, π/
√

(κ + δ)/2) ⊆ (0, π/
√

κ).

Thus, although this argument is extremely elementary, it requires the upper
bound on R(t), and the restriction to a smaller interval than the one given by
the Rauch theorem.

We also note, more generally, that by lowering ε one obtains a larger interval
on which Sε > 0. The price one pays is that the right hand side of (IX.4.2), for
example, increases with respect to decreasing ε – so the inequality becomes
weaker as ε decreases.

Corollary IX.4.3. If we also have η(0) = 0, then

|η(s) − sη′(0)| ≤ |η′(0)|{S−�(s) − s}
for all s > 0.
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�1

�1(0)

�1(�1) = �2(0)

�

�2(�2)

Figure IX.1. A geodesic hinge.

Proof. Here, we pick ε = 0, which implies λ = �, which implies

E = sη′(0), σ = |η′(0)|{S−�(s) − s},
which implies the claim. �

§IX.5. Triangle Comparison Theorems

By “triangle comparison theorems,” we mean global forms of the Rauch com-
parison theorem. Such theorems were first proved by A. D. Alexandrov (1948)
and V. A. Toponogov (1959). The theorems are presented in detail, with increas-
ing simplifications of the earliest arguments, in Berger (1962), Cheeger–Ebin
(1975), Gromoll–Klingenberg–Meyer (1968), Grove (1987), Karcher (1989)
and Klingenberg (1982). For completeness, we sketch the proof here, following
Grove (1987).

Definition.
A geodesic hinge (γ1, γ2, α) in a Riemannian manifold is a configuration of

two unit speed geodesics γi : [0, �i ] → M which meet at p = γ1(�1) = γ2(0)
with oriented angle ∠(−γ1

′(�1), γ2
′(0)) = α. (See Figure IX.1.)

Let (γ1, γ2, α) be a hinge in M , and consider the unit parallel field E along
γ1 determined by E(�1) = γ2

′(0). We say that the hinge (γ1, γ2, α) is thin if,
(i) for the corresponding hinge (γ 1, γ 2, α) and E in M

2
κ , a minimal path

c(ε) from γ 1(0) to γ 2(�2) is given by c(ε) = exp φ(ε)E(ε) for some function
φ : [0, �1] → R, and

(ii) for each ε ∈ [0, �1], γ1(ε) has no focal points (as first defined in §IX.3
above) along the geodesic t �→ exp tφ(ε)E(ε), t ∈ [0, 1].
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A geodesic triangle in a Riemannian manifold M is a configuration of three
unit speed geodesics γi : [0, �i ] → M (the sides) such that

γi (�i ) = γi+1(0), �i + �i+1 ≥ �i+2,

indices taken modulo 3. The points pi = γi+2(0) are called the vertices of the
triangle and αi = ∠(−γi+1

′(�i+1), γi+2
′(0)) the corresponding angles.

Theorem IX.5.1. (Alexandrov–Toponogov distance comparison theorem) Let
M be a complete Riemannian manifold with sectional curvature K ≥ κ .

Let (γ1, γ2, α) be a geodesic hinge in M. Suppose γ1 is minimal, and if
κ > 0 suppose �2 ≤ π/

√
κ . Let (γ 1, γ 2, α) be a geodesic hinge in M

2
κ such

that �(γ i ) = �i . Then,

d(γ1(0), γ2(�2)) ≤ d(γ 1(0), γ 2(�2)).

Theorem IX.5.2. (Alexandrov–Toponogov angle comparison theorem) Let
M be a complete Riemannian manifold with sectional curvature K ≥ κ .

Let (γ1, γ2, γ3) be a geodesic triangle in M. Suppose γ1, γ3 are minimal, and
if κ > 0 suppose �2 ≤ π/

√
κ . Then there exists a geodesic triangle (γ 1, γ 2, γ 3)

in M
2
κ such that

�(γ i ) = �i ∀i, α1 ≤ α1, α3 ≤ α3.

Except in the case κ > 0, and �i = π/
√

κ for some i , the triangle (γ 1, γ 2, γ 3)
is uniquely determined.

Lemma IX.5.1. A geodesic triangle (γ 1, γ 2, γ 3) in M
2
κ , with side lengths �i ,

is uniquely determined (up to congruence) by the triplet (�1, �2, �3), unless
�i = π/

√
κ for some i .

Moreover, if we fix the lengths �1, �2, and the geodesic γ 1, and consider
the hinge (γ 1, γ 2, α) in M

2
κ , with φ(α) = d(γ 1(0), γ 2(�2)), then α �→ φ(α) is

strictly increasing on [0, π ], except when κ > 0 and �i = π/
√

κ for at least
one i , in which case φ is constant.

Proof. Assume κ > 0. Note that φ(0) = |�1 − �2|, and φ(π ) = min {�1 +
�2, (2π/

√
κ) − (�1 + �2)}. Also, if φ(α) = π/

√
κ for some α, then one eas-

ily sees that α = π . Therefore, for all κ , we consider α < π .
Then there exists a unique minimal geodesic cα from γ 1(0) to γ 2(�2). One

can easily deduce the result from the Law of Cosines (see Note II.4, when
κ 	= 0). �

Corollary IX.5.1. Theorems IX.5.1 and IX.5.2 are equivalent.
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Proof of Theorems IX.5.1 and IX.5.2. For the moment, we refer to Theorems
IX.5.1 and IX.5.2 as the hinge theorem and the angle theorem, respec-
tively. We refer to Lemma IX.5.1 as the monotonicity lemma.

Whenever we invoke restrictions on lengths in terms of
√

κ , we are in the
situation of κ > 0.

Step 1. Given a thin hinge (γ1, γ2, α), consider the path c(ε) = exp φ(ε)E(ε)
in M from γ1(0) to γ2(�2), as determined above. Then, Corollary IX.3.1 implies

d(γ1(0), γ2(�2)) ≤ L(c) ≤ L(c) = d(γ 1(0), γ 2(�2)),

which implies the hinge theorem for thin hinges. (Note that K ≥ κ implies
�2 < π/2

√
κ .) The ultimate proof of the theorem will then be to reduce the

case of arbitrary hinges to thin hinges.
Step 2. Consider the subclass H of hinges (γ1, γ2, α) in M for which

�2 <
π√
κ

, max
t

d(γ1(0), γ2(t)) := d2 <
π√
κ

.

The set of all minimal geodesics from γ1(0) to γ2(t), t ∈ [0, �2] is compact
(in the topology of the unit sphere of Mγ1(0)). Then there exists a subdivision
{0 = t0 < t1 < · · · < tk = �2} such that

(i) γ2|[ti , ti+1] is minimizing, and
(ii) the minimal geodesics γ3,i from γ1(0) to γ2(ti ), i = 0, . . . k, are such that

the hinges

(γ3,i , γ2|[ti , ti+1], αi ), (γ3,i , γ2
−1|[ti , ti−1], βi ),

are thin – in particular |ti − ti−1| < π/2
√

κ (see Fig. IX.2).
Step 3. Note that, in Mκ , �2 ≤ �1 + d(γ 1(0), γ 2(�2)); so, if �2 ≥ �1 +

d(γ1(0), γ2(�2)) in M , then the hinge theorem is certainly valid. Therefore,
we may also assume2 that

�2 ≤ �1 + d(γ1(0), γ2(�2)).

One can easily check that all triangle inequalities are valid for all the triangles
(γ3,i , γ2|[ti , t j ], γ3, j

−1), i < j .
Step 4. Now use an induction that oscillates between the hinge theorem and

the angle theorem.
First, the hinge theorem is valid for the hinges

(γ3,0, γ2|[t0, t1], α0), and (γ3,1, γ2
−1|[t1, t0], β1),

which implies, by the monotonicity lemma, that the angle theorem is valid for
the triangle (γ3,0, γ2|[t0, t1], γ3,1

−1).

2 The point is even though γ2|[0, �2] might not minimize the distance from γ2(0) to γ2(�2) in M .
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�2

�1

�1(0)

�i

�1(�1) = �2(0)

� = �0

�i

�3, i

�2(ti)

�2(�2)

Figure IX.2. For the Alexandrov–Toponogov theorem.

So, if β1 is the angle in Mκ corresponding to β1 in M , then β1 ≤ β1. There-
fore, for the supplementary angles α1 and α1 and of β1 and β1, respectively, we
have α1 ≤ α1. But the hinge theorem is valid for the hinge (γ3,1, γ2|[t1, t2], α0);
the monotonicity lemma then implies that the hinge theorem is valid for the
hinge (γ3,0, γ2|[t0, t2], α0).

We now have the hinge theorem for the hinges

(γ3,0, γ2|[t0, t2], α0) and (γ3,2, γ2
−1|[t2, t1], β2).

The monotonicity lemma implies the validity of angle theorem to the larger
triangle (γ3,0, γ2|[t0, t2], γ3,2

−1). Now one can extend the hinge theorem to the
hinge (γ3,0, γ2|[t0, t3], α0) as above.

By continuing the argument, one has the theorem for hinges in the class H.
Step 5. To obtain the general theorem for all hinges, apply a limit argument

to hinges (first on α and then on the lengths �i ) in H. �

Remark IX.5.1. Suppose in the angle theorem we have equality, that is, we
have �2 < π/

√
κ , 0 < α < π , and

d(γ1(0), γ2(�2)) = d(γ 1(0), γ 2(�2)).

Then, one has an isometric totally geodesic imbedding (see Exercise II.3) of
the triangular surface in M

2
κ determined by (γ 1, γ 2, α) to M , which maps
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(γ 1, γ 2, α) to (γ1, γ2, α) to M . Moreover, the image of the minimal geodesics
in M

2
κ from γ 1(0) to γ 2(t) are minimal geodesics in M from γ1(0) to γ2(t).

§IX.6. Convexity

In the general Riemannian setting, there are many notions of convexity, all of
which coincide in R

n .

Definition. Let M be a complete Riemannian manifold. A set A in M is:
� weakly convex if for any p, q ∈ A there exists a geodesic γpq ⊆ A such

that γpq is the unique minimizer in A connecting p to q;
� convex if for any p, q ∈ A there exists a geodesic γpq ⊆ A such that γpq

is the unique minimizer in M connecting p to q;
� strongly convex if for any p, q ∈ A there exists a geodesic γpq ⊆ A such

that γpq is the unique minimizer in M connecting p to q, and γpq is the only
geodesic contained in A joining p to q.

Calculations Associated with Convexity

Given a point p ∈ M , and a path �(t) in Mp. Set

ω(t) = expp �(t), v(s, t) = expp s�(t), φ(t) = 1

2
|�(t)|2.

Of course, |�(t)| is the length of the geodesic γt (s) = v(s, t) from p to �(t).
Then,

φ′(t) = 〈∂sv, ∂t v〉s=1,

by Gauss’ lemma (Lemma I.6.1) or the first variation of arc length (Theorem
II.4.1). If ω is a geodesic, then

φ′′(t) = 〈∇t∂sv, ∂t v〉s=1 = 〈∇s∂t v, ∂t v〉s=1.

Write

∂t v = sα∂sv + Yt .

Then, Yt is the Jacobi field along the geodesic γt (s) = v(s, t), pointwise orthog-
onal to γt , and satisfying Yt (0) = 0, which implies

∇s∂t v = α∂sv + ∇sYt .

One concludes

φ′′(t) = α2|�(t)|2 + 〈∇sYt , Yt 〉s=1.
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If, in addition, one assumes that

K ≤ δ(IX.6.1)

on M , then

φ′′ ≥ α2|�|2 + Cδ|�|2
Sδ|�|2

(1)|Yt |2(1) ≥ min

{
1,

Cδ|�|2
Sδ|�|2

(1)

}
|ω′|2,(IX.6.2)

when |�| < π/
√

δ. Of course, this is only useful when |�| < π/2
√

δ.

Applications

Theorem IX.6.1. Assume (IX.6.1) on M, and set

r1 = min

{
inj M

2
,

π

2
√

δ

}
.

Then, B(x ; r1) is strongly convex.

Proof. By replacing δ by δ + ε, ε > 0 arbitrarily small, we may assume that
the inequality in (IX.6.1) is strict inequality.

If p, q ∈ B(x ; r1), then any geodesic in B(x ; r1) joining p to q must be a
unique minimizer. Therefore, for any minimizer in M joining p to q, it suffices
to show that it is completely contained in B(x ; r1).

Consider such a minimizer. Then, the geodesic triangle xpq has length < 4r1.
Therefore, if δ > 0, no two points on the path xpq have distance π/

√
δ one

from the other. By comparison to the triangle xδ pδqδ in M
2
δ with the same

corresponding sides, the angles at p and q are strictly less than the respective
angles at pδ and qδ . (See Corollary IX.5.1 and Exercise IX.1 in §IX.9.)

Parameterize both geodesic segments γpq and γpδqδ
from 0 at p (respectively,

pδ) to 1 at q (respectively, qδ). Then, the first variation of arc length formula
(Theorem II.4.1) implies there exists ρ > 0 for which we have

d(x,γpq (s)) < d(xδ, γpδqδ
(s))(IX.6.3)

for all s ∈ (0, ρ) ∪ (1 − ρ, 1). But, this very same argument now implies that
(IX.6.3) is valid for all s ∈ (0, 1). Therefore,

d(x, γpq (s)) < d(xδ, γpδqδ
(s)) < max {d(xδ, pδ), d(xδ, qδ)}

= max {d(x, p), d(x, q)}
for all s ∈ (0, 1), which is the claim. �
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Theorem IX.6.2. Assume (IX.6.1) on M, and let

r2 = min

{
inj M,

π

2
√

δ

}
.

Then, B(x ; r2) is weakly convex.

Proof. (Buser–Karcher (1981, p. 102)) Given p and q in B(x ; r2). Then, the
Arzela–Ascoli theorem implies (see Exercises IV.24 and IV.25) that there exists
a shortest path ω(t) ⊆ B(x ; r2) connecting p to q. (Of course, any subsegment
of this path contained in the interior B(x ; r2) is geodesic.) We assume d(x, p) ≥
d(x, q), and show that

ω ⊆ B(x ; d(x, p)).

This will then imply that ω is a minimizing geodesic in B(x ; r2).
To this end, we write

ω(t) = expx �(t),

set

�̃(t) = d(x, p)

max {d(x, p), |�(t)|}�(t),

ω̃(t) = expx �̃(t) ⊆ B(x ; d(x, p)) ⊆ B(x ; r2).

Then, ω̃ is a path from p to q; and (IX.6.1), the estimate on r2, and the Rauch
theorem imply

�(ω̃) ≤ �(ω).

We conclude that the shortest connection from p to q in B(x ; r2) is contained
in B(x ; d(x, p)), and is therefore a geodesic.

We assumed thus far that p and q were in the interior of B(x ; r2). If we
are given that p and q are arbitrary in B(x ; r2), then we may approach p and
q from the interior B(x ; r2) to obtain the existence of a minimizing geodesic
connecting p to q , which is completely contained in B(x ; r2). So, it remains to
show that this geodesic is unique in B(x ; r2).

First, minimizers from p to q must have length ≤ 2r2 < π/
√

δ, which implies
p and q have no conjugate points on γpq (to be precise, one should also say γqp).
Therefore, consider the collection of points {(p, q) ∈ B(x ; r2) × B(x ; r2)} for
which p is joined to q by more than one B(x ; r2)–minimizing geodesic. Consider
the pair with minimal distance. Then, the Klingenberg argument (Theorem
III.2.4) implies there exists a closed geodesic γ in B(x ; r2). But, the function
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t �→ d(x, γ (t))2/2 can have no maximum, which implies a contradiction, which
implies the uniqueness of the minimizer. �

Definition. For any x ∈ M , we define conv x , the convexity radius of x , by

conv x = sup {ρ : B(x ; r ) convex for all r < ρ}.

Lemma IX.6.1. Given x, y ∈ M such that

d(x, y) := R < 2 min {conv x, conv y}.
Then, B(x ; R/2) ∩ B(y; R/2) = ∅.

Proof. Let γ be a unit speed geodesic from x to y, with midpoint z0 = γ (R/2).
If z ∈ B(x ; R/2) ∩ B(y; R/2), then join z0 to z by a unique minimizer

ω ⊆ B(x ; R/2) ∩ B(y; R/2).

Then, ω(t) may be lifted to respective paths �x (t) and �y(t) in Mx and My ,
with associated functions of distance φx (t), φy(t) are described in our calcula-
tions above. The formula for the first variation of arc length (Theorem II.4.1)
implies

lim
t↓0

φx
′(t) = lim

t↓0
φy

′(t) = 0,

and the hypothesis on convexity implies φx
′′ ≥ 0, φy

′′ ≥ 0, which implies
φx ≥ R/2, φy ≥ R/2, which is a contradiction. �

Proposition IX.6.1. (M. Berger (1976)) We always have

conv M ≤ inj M

2
.

Proof. If not, that is, if conv M > (1/2)inj M , then there exist p, q ∈ M such
that p and q are cut points one to the other, and

d(p, q) < 2conv M.

Let γ be a minimizing unit speed geodesic from p to q, z the midpoint of γ , and
consider B(z; conv M). Then, both p and q are in B(z; conv M), which implies
that γ is the unique minimizer from p to q, which implies (see §III.2) p and q
are conjugate along γ .

Let t0 = d(p, q), and set γ (0) = p, γ (t0) = q. Then, for small t − t0 > 0, we
have d(p, γ (t)) < t , which determines a unique minimizing unit speed geodesic
γt from p to γ (t), with γt → γ as t ↓ t0. Consider B(p; t/2) and B(γ (t); t/2).
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Both closures are convex, which implies by the above lemma that they are
disjoint (indeed: t/2 < (conv M)/2). On the other hand, their intersection must
contain the point γt (d(p, γ (t))/2), which is a contradiction. �

§IX.7. Center of Mass

Here, we follow Karcher (1977).

In R
n , one has the following typical situation. One is given a subset A of R

n ,
with positive finite measure, and one considers the vector field on R

n given by

v(x) = 1

V (A)

∫
A

(x − a) dV (a).

More generally, for any probability measure m on A one can consider the vector
field

v(x) =
∫

A
(x − a) dm(a).

The usual definition of center of mass of (A, m) is that point in R
n solving the

equation v(x) = 0. Needless to say, the solution x is unique. Note that for

E(x) = 1

2

∫
A

|x − a|2 dm(a),

we have

(grad E)(x) = v(x).

To consider a center of mass in a general Riemannian manifold, we start with
a given probability space (A, m), a mapping f : A → M , and consider the
function E on M given by

E(x) = 1

2

∫
A

d2(x, f (a)) dm(a).

Then ask when does E have a unique minimum.

First consider

Ea(x) := 1

2
d2(x, f (a)).

Assume f (A) ⊆ B, where B is a weakly convex subset of M . Then to each
x, y ∈ B, we have well-defined expx

−1 y. One immediately sees that, for all
x ∈ B we have,

(grad Ea)(x) = − expx
−1 f (a).



P1: IWV

0521853680c09 CB980/Chavel January 3, 2006 5:8 Char Count= 670

408 Comparison and Finiteness Theorems

Proposition IX.7.1. Assume (IX.6.1) on M, and diam B ≤ π/2
√

δ. Then E
has a unique minimum C in B.

Proof. Let ω(t) be a geodesic in B, and φ(t) = Ea(ω(t)). Then, the hypotheses
imply that φ′′ > 0, which implies (Exercises II.9 and II.20(a)) the claim. �

Proposition IX.7.2. Assume (IX.6.1) is valid on M, and let B = B(p; r0),
where

r0 < min

{
inj M

2
,

π

4
√

δ

}
.

Then, for x ∈ B, we have

|grad E |(x) ≥ d(x, C)
C2δr0

S2δr0

(1).

Proof. Let γ : [0, 1] → M denote the minimizing geodesic from C to x . Then,

|grad E |(x)|γ ′|(1) ≥ 〈(grad E)(x), γ ′(1)〉
=

{
d

dt
E(γ (t))

}
t=1

=
∫ 1

0

d2

dt2
(E◦γ )(t) dt

=
∫

A
dm(a)

∫ 1

0

d2

dt2
(Ea ◦γ )(t) dt

≥ C2δr0

S2δr0

(1)d2(x, C),

by (IX.6.2), which implies the claim. �

§IX.8. Cheeger’s Finiteness Theorem

Since the dimension n of the manifolds under consideration never changes, we
write B(r ) for B

n(r ), the n–disk of radius r in R
n .

The heart of the matter is contained in the following lemma.

Lemma IX.8.1. (S. Peters (1984)) We are given two compact n–dimensional
Riemannian manifolds M and M, n ≥ 2, whose sectional curvatures satisfy

|KM |, |KM | ≤ �,

with injectivity radii satisfying

inj M, inj M ≥ ι.
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Fix R such that

0 < R <
ι

4
.

We consider respective discretizations of M, M, with the same number of el-
ements equal to N, and both having separation distance and covering radius
equal to R (see §IV.4).

In M : To each zi , i = 1, . . . , N of the discretization, associate a linear isom-
etry

ui : R
n → Mzi ,

and Riemann normal coordinates

φi = expzi
◦ui

on Dzi , the set about zi inside the cut locus of zi (see §III.2). Also, for
d(zi , z j ) < ι, let

Pi j : Mzi → Mz j

denote parallel translation along the minimizing geodesic connecting zi to z j .
In M : Consider the corresponding data zi , ui , φi , Pi j , i, j = 1, . . . , N.
Then, R = R(n, �, ι) may be chosen sufficiently small so that there exist

constants

ε0 = ε0(R), ε1 = ε1(R)

for which M and M are diffeomorphic whenever

|φ j
−1φi − φ j

−1φi | <
2ε0

3
(IX.8.1)

on B(3R), and

|u j
−1 Pi j ui − u j

−1 Pi j ui | < ε1,(IX.8.2)

on R
n, for all i, j . (See Fig. IX.3.)

The proof of the lemma is quite involved, and we shall break it into a number
of steps. But first we show how to use it to derive Cheeger’s finiteness theorem.

Theorem IX.8.1. (J. Cheeger (1970a)) Given real numbers n, d, V, � > 0.
Then there exist only finitely many diffeomorphism classes of compact n–
dimensional Riemannian manifolds satisfying

diam M ≤ d, V (M) ≥ V, |K| ≤ �.(IX.8.3)
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�n

ui

expzi

Mzi

M

�i

Figure IX.3. Indexing the Riemann normal coordinate systems.

Proof. It suffices to show that given any infinite sequence Mα of compact n–
dimensional Riemannian manifolds satisfying (IX.8.3), then it is possible to pick
an infinite subsequence for which any two of the manifolds are diffeomorphic.
To actually pick this subsequence, we proceed as follows:

By Theorem IX.3.3, there exists ι, depending only on n, d, V, �, such that

inj Mα ≥ ι

for all α, and the disk B(xα; ι/2) is convex for all α, xα ∈ Mα .
Fix R < ι/4. Pick a typical M in the sequence {Mα}. Pick a discretization of

M with separation constant and covering radius both equal to R. Then, N the
number of elements of the discretization satisfies (see Lemma IV.4.1)

N ≤ V−�(diam M)

V�(R/2)
.

Now the Arzela–Ascoli theorem implies that if we consider the collection
HK1 of imbeddings F : B(R) → B(R) for which

sup
B(R)

{|F| + |grad F|} ≤ K1,
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then HK1 is totally bounded in the sense that, given any ε0 > 0, there exists a
subset H consisting of finitely many elements of HK1 such that any F ∈ HK1

has C0–distance (i.e., the distance between F1 and F2 is sup |F1 − F2|) from
H strictly less than ε0/3.

Note that the Rauch comparison theorem implies there exists a K1 for which
the mappings φ j

−1φi of any discretization of M , as described in Peters’ lemma,
are all elements of HK1 , for all i, j .

Also, the mappings u j
−1 Ri j ui of any discretization of M , as described in

Peters’ lemma, are all elements of O(n), the orthogonal group of R
n , for all

i, j . Since O(n) is compact, given any ε1 > 0, there exists a finite covering of
O(n) by disks of radius ε1/2. (See Exercise I.22(a) for the Riemannian metric
on O(n).)

We are now ready to finish the proof. Since, in each of the conditions below,
there are only finitely many distinct possibilities, we have for our sequence Mα

of Riemannian manifolds, a subsequence – also called Mα – satisfying:
(i) Nα = N ≤ N0 for all α, that is, all discretizations under consideration

have the same number of elements;
(ii) the network of overlaps match, more precisely, φα

i (B(R)) ∩ φα
j (B(R)) 	=

∅ if and only if φ
β

i (B(R)) ∩ φ
β

j (B(R)) 	= ∅ for all α, β; i, j ;
(iii) for each i, j , the full collection {(φα

j )−1φα
i }α all belong to the same

ε0/3–disk in HK1 ;
(iv) for each i, j , the full collection {(uα

j )−1 Pα
i j u

α
i }α all belong to the same

ε1/2–disk in O(n).
Then, for sufficiently small choices of ε0, ε1, we may use Peters’ lemma to

guarantee that all Mα are diffeomorphic. �

Proof of Peters’ Lemma. The idea behind the proposed diffeomorphism is as
follows: The collection of maps

Fi = φiφi
−1

is a collection of locally defined diffeomorphisms from M to M . The conditions
(IX.8.1) imply that for any p ∈ M one has a neighborhood U (p) such that the
different images {Fi (U (p))}N

i=1 are pointwise sufficiently close one to the other
to allow the construction of an “average image” through the center of mass
construction of the previous section.

Step 1. Given any p ∈ B(zi ; R) ∩ B(z j ; R), we want an upper bound on
d(Fi (p), Fj (p)). We start with some

R <
ι

4
.
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Of course, for any such R > 0, there exists ε0 > 0 for which (IX.8.1) is valid
on B(3R). Then, p ∈ B(zi ; R) ∩ B(z j ; R) implies

d(zi , z j ) < 2R < ι,

which implies, since φ j
−1φi and φ j

−1φi will both map B(R) to B(3R), for all
i, j , that

d(φ j
−1(p), φ j

−1 Fi (p)) = |{φ j
−1φi − φ j

−1φi }φi
−1(p)| <

2ε0

3
.

That is,

d(φ j
−1(p), φ j

−1 Fi (p)) <
2ε0

3
.

Now, φ j
−1(p), φ j

−1(p) ∈ R
n , and u jφ j

−1(p), u jφ j
−1 Fi (p) ∈ Mz j . So, we

must know the largest possible expansion in distance to which two points are
subject under expz j

. Well, if ρ ≤ ι and Fj (p), Fi (p) ∈ B(z j ; ρ), then by (IX.2.8)
(see Remark IX.1), we have

d(Fj (p), Fi (p)) <
S−�(ρ)

ρ

2ε0

3
,

so we must find a good estimate of ρ for which Fj (p), Fi (p) ∈ B(z j ; ρ). Clearly,
d(Fj (p), z j ) < R. What about d(Fi (p), z j )? Well,

d(Fi (p), z j ) ≤ d(Fi (p), Fi (zi )) + d(Fi (zi ), z j )

= d(p, zi ) + d(zi , z j )

≤ R + d(zi , Fi (z j )) + d(Fi (z j ), z j )

< 3R + d(Fi (z j ), z j ).

Then, by applying (IX.8.1) to ζ = φi
−1(z j ), we obtain

d(Fi (z j ), z j ) = |φ j
−1 Fi (z j )| = |{φ j

−1φi − φ j
−1φi }(ζ )| <

2ε0

3
.

So, we want ρ = 3R + 2ε0/3. Thus, we shall require of ε0 that ε0 ≤ R. Then,
for

ε0 ≤ R <
ι

4
,

such that (IX.8.1) is valid on B(3R) for all i, j , we have

d(Fj (p), Fi (p)) <
S−�(4R)

4R

2ε0

3
.
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Pick

R0 > 0:
S−�(4R0)

4R0
= 5

4
, R1 = min {R0, ι/5}.

Then, for ε0 ≤ R ≤ R1, the validity of (IX.8.1) on B(3R) implies

d(Fi (p), Fj (p)) < ε0

for p ∈ B(zi ; R) ∩ B(z j ; R). Henceforth, R ≤ R1.
Step 2. We now let

ε0 = min {π/2
√

�, R}
and assume (IX.8.1) is valid on B(3R). Then,

ε0 < conv M, conv M .

Now, for any p ∈ M , there exists q(p) ∈ M for which Fi (p) ∈ B(q(p); ε0) for
all those i for which p ∈ B(zi ; R). So, we apply the center of mass construction
to the set {Fi (p)} as follows:

Fix η : [0, +∞) → [0, 1] ∈ C∞
c such that

|η′| ≤ 4, η =
{

1 r ≤ 1/2
0 r ≥ 1

.

For every i , consider

ηi (p) = η

(
d(p, zi )

2R

)
, ψi (p) = ηi (p)∑

j η j (p)
.

For every p ∈ M , consider the measure space (Ap, mp), where mp is the
measure on Ap, given by

Ap := {Fi (p) ∈ M : p ∈ B(zi ; R)}, mp(Fi (p)) = ψi (p).

The map f (in the definition of the center of mass) from Ap to M is the inclusion
{Fi (p)}N

i=1 ↪→ M . The energy function E on M is given by

Ep(x) = 1

2

N∑
i=1

d2(x, Fi (p))ψi (p),

with gradient vector field

(grad Ep)|x = −
N∑

i=1

ψi (p) expx
−1 Fi (p).



P1: IWV

0521853680c09 CB980/Chavel January 3, 2006 5:8 Char Count= 670

414 Comparison and Finiteness Theorems

We therefore define F(p) to be the unique minimum point in B(q(p); ε0) of the
function Ep, that is, the solution in B(q(p); ε0) of

N∑
i=1

ηi (p) expx
−1 Fi (p) = 0.

Write

v(p; x) :=
N∑

i=1

ηi (p) expx
−1 Fi (p).

To solve

v(p; x) = 0(IX.8.4)

for x = x(p), we may use the implicit function theorem, since Hess Ep is non-
singular. Furthermore, x is differentiable with respect to p.

Step 3. The next thing to do is to show that x(p) has maximal rank. Differ-
entiate (IX.8.4) with respect to p j (local coordinates for p). We obtain

∇∂p j v +
∑

k

∂xk

∂p j
∇∂xk v = 0.

We already know that the matrix (relative to some coordinate system about x )
∇∂xk v is nonsingular. So, it suffices to show that ∇∂p j v is nonsingular.

Consider a path ω in M with

p = ω(0), ξ = ω′(0).

Then, we wish to show that the covariant derivative ∇t v of v along the map
t �→ x(ω(t)) does not vanish at t = 0. First, we have

∇ξ v = {∇t v|ω(t)}|t=0

=
∑

i

{
d(ηi (ω(t)))

dt
expx

−1 Fi (p) + ηi (p)(expx
−1)∗|Fi (p)

d(Fi (ω(t))

dt

}
|t=0

.

For convenience, write, for q ∈ B(p; r )

xi (q) = expx
−1 Fi (q), x = F(p).

Then, we may write

∇ξ v =
∑

i

{
(dηi |p · ξ )xi (p) + ηi (p)(xi )∗|p · ξ

}
,

so

|∇ξ v| ≥
∣∣∣∣∣
∑

i

ηi (p)(xi )∗|p · ξ

∣∣∣∣∣ −
∣∣∣∣∣
∑

i

(dηi |p · ξ )xi (p)

∣∣∣∣∣ .
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Start with estimating ∣∣∣∣∣
∑

i

(dηi |p · ξ )xi (p)

∣∣∣∣∣
from above. Of course,

|xi (p)| = d(F(p), Fi (p)) < ε0

(since F(p) is the minimum point of Ep), and

|dηi |p · ξ | ≤ 4|ξ |/R,

which implies

|(dηi |p · ξ )xi (p)| ≤ 4ε0

R
|ξ |;

so we must now give an upper bound on the number of dηi that do not vanish
at p, that is, an upper bound for the cardinality N ′(p) of

G p := {zi : i = 1, . . . , N } ∩ {B(p; R) \ B(p; R/2)} ⊆ B(p; R).

The Bishop–Gromov argument (see Lemma IV.4) gives the upper bound –

N ′(p) ≤ V−�(5R/2)

V−�(R/2)
≤ const.�,ι;

we conclude ∣∣∣∣∣
∑

i

(dηi |p · ξ )xi (p)

∣∣∣∣∣ ≤ 4ε0

R

V−�(5R/2)

V−�(R/2)
|ξ |.

Step 4. The hard part is to estimate∣∣∣∣∣
∑

i

ηi (p)(xi )∗|p · ξ

∣∣∣∣∣
from below. We are evaluating at v = 0, so

xi (p) = expF(p)
−1 Fi (p) = expF(p)

−1◦ φi ◦φi
−1(p),

which implies directly from the geometric Rauch theorem (Theorem IX.2.3),
that for each |(xi )∗|p ·ξ |, we have

|(xi )∗|p · ξ | ≥ |xi (p)|
S−�(|xi (p)|)

S�(d(p, zi ))

S−�(d(p, zi ))
|ξ |.

So, we will want

ε0 ≤ R ≤ R2 := min {R1, sup ρ},
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where the sup is taken over all ρ for which

α

S−�(α)

S�(β)

S−�(β)
≥ 1 − �ρ2 ∀α, β ∈ (0, ρ).

This will then imply

|(xi )∗|p · ξ | ≥ 1 − �R2.

We denote the elements of G p by zi ′ , i ′ = 1, . . . , N ′(p), and the associated
maps by xi ′ . Since we have such an estimate for each individual (xi )∗|p · ξ , we
now want to show that the collection of points

{(xi ′ )∗|p · ξ}N ′(p)
i ′=1 ⊆ M F(p)

are sufficiently close each to the other so that no significant cancellation effects
can apply to

∑
i ′

ηi ′ (p)(xi ′ )∗|p · ξ.

Step 5. We prepare here for Step 6, in which we replace the linearized
exponential map (xi ′ )∗|p by parallel translation. So, we first compare the two.
For ξ ∈ Sp, we have

|{(expp)∗|tξ ◦�tξ − τp,γξ (t)}η| ≤
{

S−�(t)

t
− 1

}
|η|,

where τp,γξ (t) denotes parallel translation along the minimizing geodesic γξ

from p to γξ (t). That is, we have η ∈ ξ⊥ �→ Yη, and the above estimate is
for |t−1Yη(t) − τp,γξ (t)η| (see Theorem II.16 and Corollary IX.4.3). To go in
the opposite direction, we are given v ∈ γξ (t)⊥ �→ η ∈ ξ⊥: v = t−1Yη(t) and
estimate |η − τp,γξ (t)

−1v|. Well,

|η − τp,γξ (t)
−1v|S�(t)

t
≤ |t−1Yη−τp,γξ (t)

−1v (t)|
= |t−1Yη(t) − t−1Yτp,γξ (t)

−1v (t)|
= |v − t−1Yτp,γξ (t)

−1v (t)|

≤
{

S−�(t)

t
− 1

}
|v|,

which implies

|η − τp,γξ (t)
−1v| ≤ t

S�(t)

{
S−�(t)

t
− 1

}
|v|,
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that is,

|{�tξ
−1◦(expp

−1)∗|tξ − τp,γξ (t)
−1}v| ≤ t

S�(t)

{
S−�(t)

t
− 1

}
|v|.

Step 6. Now, we want to replace

(xi )∗|p = (expF(p)
−1)∗|Fi (p)◦(φi )∗|φi

−1(p)◦(φi
−1)∗|p.

by

τFi (p),F(p)◦τzi ,Fi (p)◦ui ◦ui
−1◦τp,zi .

In what follows, we let

t = d(p, zi ) = d(Fi (p), zi ) < R, α = d(Fi (p), F(p)) < ε0.

Given

v ∈ Mp �→ τp,zi v ∈ Mzi , η ∈ Mzi : t−1Yη(t) = v

�→ v := ui ◦ui
−1(τp,zi v), η := ui ◦ui

−1(η) ∈ Mzi

�→ τzi ,Fi (p)v, t−1Y η(t) ∈ M Fi (p)

�→ τFi (p),F(p)◦τzi ,Fi (p)v ∈ M F(p), ζi ∈ M F(p) : α−1Y ζi (α) = t−1Y η(t).

Therefore, if we set

ζi = (xi )∗|pv,

then, recalling that ui ◦ui
−1 is an isometry, we have

|τFi (p),F(p)◦τzi ,Fi (p)v − ζi | ≤ |τzi ,Fi (p)v − t−1Y η(t)|+ |τFi (p),F(p)(t
−1Y η(t))− ζi |

≤ |τp,zi v − η| + |τzi ,Fi (p)η − t−1Y η(t)|
+ |τFi (p),F(p)(t

−1Y η(t)) − ζi |

≤ t

S�(t)

{
S−�(t)

t
− 1

}
|v| +

{
S−�(t)

t
− 1

}
|η|

+ α

S�(α)

{
S−�(α)

α
− 1

}
|t−1Y η(t)|

≤ t

S�(t)

[
2

{
S−�(t)

t
− 1

}

+ α

S�(α)

{
S−�(α)

α
− 1

}
S−�(t)

t

]
|v|.
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p zi

zj

Fi (p)

F(p)

Fj

zi

zj

Figure IX.4. For Step 7.

So, we restrict εo and R to

ε0 ≤ R ≤ R3 := min {R2, sup ρ},

where the sup is taken over all ρ for which

t

S�(t)

[
2

{
S−�(t)

t
− 1

}
+ α

S�(α)

{
S−�(α)

α
− 1

}
S−�(t)

t

]
≤ �ρ2

2

for all α, t ∈ (0, ρ).
Step 7. Now that we have replaced (xi )∗|p with τFi (p),F(p)◦τzi ,Fi (p)◦ui ui

−1◦
τp,zi , we must therefore compare

τFi (p),F(p)◦τzi ,Fi (p)◦ui ui
−1◦τp,zi with τFj (p),F(p)◦τz j ,Fj (p)◦u j u j

−1◦τp,z j .

Then, by 3 of §XI.1, the difference is bounded above by the sum of the areas
of the triangles pzi z j , zi Fi (p)F(p), zi F(p)z j , and z j F(p)Fj (p), added to the
difference between the parallel translations Pi j , Pi j , as described in (IX.8.2).
(See Fig. IX.4.) Since all the sides of the triangles have lengths less than or
equal to 3R, we will further restrict R so that

R ≤ R4 := min {R3, π/6
√

�}.

This will then imply the existence of a constant const.�,ι > 0 such that the sum
of the areas of the triangles is less that or equal to const.�,ι R2. (We leave it to
the reader to estimate the area of each triangle.)

Step 8. We therefore conclude that

|{(xi )∗|p − {(x j )∗|p} · ξ | ≤ {const.�,ι R
2 + ε1}|ξ |;
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so pick ε1 = const.�,ι R2. Then,∣∣∣∣∣
∑

i

ηi (p)(xi )∗|p · ξ

∣∣∣∣∣
=

∣∣∣∣∣
∑

i

ηi (p)(x jo )∗|p · ξ +
∑

i

ηi (p){(xi )∗|p − (x jo )∗|p} · ξ

∣∣∣∣∣
≥ |(x jo )∗|p · ξ | − sup

i
|{(xi )∗|p − (x jo )∗|p} · ξ |

≥ {1 − const.�,ι R
2}|ξ |,

which implies∣∣∣∣∣
∑

i

{
(dηi |p · ξ )xi (p) + ηi (p)(xi )∗|p · ξ

}∣∣∣∣∣ ≥ {1 − const.�,ι(R2 + ε0/R)}|ξ |.

We may therefore choose R, ε0 sufficiently small to imply that F has maximal
rank.

But if F has maximal rank, then F is a covering (Theorem IV.IV.1.3). This
implies that the similarly constructed map F : M → M is a covering. Therefore,
the mappings F ◦F , F ◦F are coverings. But both F ◦F , F ◦F map every point
to a convex neighborhood of itself, in which case they are homotopic to the
identity. This implies that both F , F are diffeomorphisms. �

§IX.9. Notes and Exercises

The Rauch Comparison and Sphere Theorems

Note IX.1. Our proof of Rauch’s theorem (Theorem IX.2.1) followed his orig-
inal argument, wherein he used the index form on vector fields along the
geodesic. A proof avoiding use of the index form, using instead the matrix Ric-
cati equation, was first given in Karcher (1977). (See the discussion in §III.8.)
A proto-version of this approach was given by L. W. Green (1954, Lemma
2.1, 1958, Lemma 3). More subtle details are treated in Eschenburg–Heintze
(1990).

Note IX.2. Let M be a simply connected compact Riemannian manifold of
positive sectional curvatures. We say that M is δ–pinched, 0 < δ ≤ 1, if

min K = δ sup K

where K varies over all sectional curvatures on M . H. E. Rauch (1951) in his
seminal work first proved that there exists a δ0 > 0 such that any δ–pinched
Riemannian manifold, with δ ≥ δ0, is homeomorphic to a sphere. His first
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estimate of δ0 was δ0 ∼ 3/4. The most ambitious choice δ0 is: any value of δ0 >

1/4; for the Riemannian symmetric spaces of strictly positive curvature, which
are not homeomorphic to spheres, have pinching equal to 1/4. The theorem was
further improved until M. Berger (1960) proved the theorem in even dimensions
for δ > 1/4, and W. Klingenberg (1961) proved the theorem for δ > 1/4 in
odd dimensions. See the presentations in Cheeger–Ebin (1975), Gromoll–
Klingenberg–Meyer (1968), Grove (1987), Karcher (1989) and Klingenberg
(1982). Also see Eschenburg (1986), and the recent elementary argument in
do Carmo (1992, Chapter 13). Surveys of the subsequent developments of the
sphere theorems in Riemannian geometry are given in Berger (1985), Grove–
Petersen (1997), Petersen (1997, 1998, 1999), Sakai (1984), and Shiohama
(2000).

Diameter Sphere Theorems

One first recalls the Bonnet–Myers theorem that if M is Riemannian complete
with Ricci curvatures bounded below by (n − 1)κ , whereκ is a positive constant,
then M is compact with diameter less than or equal to π/

√
κ . The Toponogov–

Cheng theorem then states that if, in addition, the diameter of M is maximal,
that is equal to π/

√
κ , then M is isometric to the sphere of constant sectional

curvature κ . The following theorem gives a different type of pinching result:

Theorem. (Grove–Shiohama (1977); see also Grove (1987, pp. 205–207)) Let
M be a complete Riemannian manifold with sectional curvatures K ≥ κ , κ > 0
a constant, and diam M > π/2

√
κ . Then, M is homeomorphic to a sphere.

Note IX.3. Of course, π/2
√

κ is sharp, since the real projective space of con-
stant sectional curvature κ > 0 provides a counterexample.

The theorem cannot be simply extended to Ricci curvature, without additional
hypotheses (see Anderson (1990a) and Otsu (1991)). For some positive results,
see also Shiohama (1983) and Eschenburg (1991).

The Alexandrov–Toponogov Comparison Theorems

Exercise IX.1. We give an easy Toponogov theorem for curvature bounded
from above. Given a complete Riemannian manifold M , and geodesic hinge
(γ1, γ2, α) at p in M . Assume

K|B(p; inj p) ≤ δ,

3∑
i=1

�i < min

{
2inj p,

2π√
δ

}
,
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where �3 denotes the distance between the endpoints of γ1, γ2. Let (γ 1, γ 2, α)
be a geodesic hinge in M

2
κ such that L(γ i ) = �i . Prove

d(γ1(0), γ2(�2)) ≥ d(γ 1(0), γ 2(�2)).

Characterize the case of equality.

Busemann Functions and Halfspaces

We are given a complete noncompact Riemannian manifold.

Exercise IX.2. Let γ : [0, +∞) → M be a ray (Exercise I.5) in M . To every
t ∈ [0, +∞), associate the function φt : M → R given by

φt (x) = t − d(x, γ (t)).

Prove:
(a) |φt (x) − φt (y)| ≤ d(x, y) for all t , x, y ∈ M .
(b) |φt (x)| ≤ d(x, γ (0)) for all t , x ∈ M .
(c) t > s ⇒ φt (x) ≥ φs(x) for all t > s, x ∈ M . One therefore has the ex-

istence of a limit function, the Busemann function of γ ,

φγ (x) = lim
t↑+∞

φt (x).

(d) For any s > 0, let γs denote the geodesic given by γs(t) = γ (s + t).
Show that φγs (x) = φγ (x) − s for all s > 0, x ∈ M .

(e) Consider the subset

Bγ =
⋃
t>0

B(γ (t); t)

in M . Show that φγ (x) = s for all s > 0, x ∈ ∂ Bγs .

Definition. A subset A of any Riemannian manifold is totally convex if for any
p, q ∈ A and γpq any geodesic in M connecting p to q then γpq ⊆ A.

Exercise IX.3. Let M be as above, with nonnegative sectional curvature on all
of M . For any ray γ in M , let Hγ denote the half-space given by

Hγ = M \ Bγ ,

where Bγ is given above. Prove that Hγ is totally convex.

Note IX.4. One can continue from here to the study of the Cheeger–Gromoll
theory of manifolds of nonnegative curvature. See the references in Note II.8.
Also, see the nice treatment in Grove (1987, pp. 208ff).



P1: IWV

0521853680c09 CB980/Chavel January 3, 2006 5:8 Char Count= 670

422 Comparison and Finiteness Theorems

Note IX.5. Continue with the assumption that all sectional curvatures are non-
negative. Check that, inside the cut locus of γ (t), the function φt has a nonneg-
ative Hessian – which suggests a convexity of φγ . This lies behind the result
of the above exercise. When we are only given the nonnegativity of the Ricci
curvature, this “nonnegativity of the Hessian” translates to a weak form of the
nonnegativity of the Laplacian of φγ – enough to prove that φγ is subharmonic.
See Besse (1987, pp. 171ff), and the proof there of the splitting theorems of
Cohn-Vossen (1936), Toponogov (1964), and Cheeger–Gromoll (1971), fol-
lowing simplifications by Eschenburg–Heintze (1984).

Now assume M is complete, simply connected of nonpositive curvature. It is
common to refer to M as a Hadamard–Cartan manifold. Note that all geodesics
are lines, that is, they minimize distance between any two of their points.

Exercise IX.4.
(a) We know that for any q ∈ M the distance function rq (x) = d(q, x) is a

convex function on M . Show that, for any ray γ , the Busemann function φγ is
concave, that is, −φγ is convex. Show, therefore, that Bγ is convex.

(b) Show that for:
(i) any p ∈ M , r > 0, and x 	∈ B(p; r ) there exist points y1, y2 ∈ S(p; r )

such that |rx (y1) − rx (y2)| = 2r .
(ii) the Busemann function φγ of the ray γ , r > 0, and any p ∈ M ,

there exist y1, y2 ∈ S(p; r ) such that |φγ (y1) − φγ (y2)| = 2r . Furthermore, the
choice of two points y1, y2 is unique.

(c) Show that φγ is C1, with |grad φγ | = 1 on all of M .

Exercise IX.5. Show that if φ : M → R is a concave C1 function with
|grad φ| = 1 on all of the Hadamard–Cartan manifold M , then φ is the Buse-
mann function of a geodesic in M .

Note IX.6. For extended discussion see Ballman–Gromov–Schroeder (1985)
and Jost (1997).

Finiteness Theorems

Note IX.7. A short elegant argument was given by A. Weinstein (1967) to
obtain the following finiteness theorem for homotopy type.

Theorem. For any even number 2n and any constant δ > 0, there are only
finitely many homotopy types of 2n–dimensional, δ–pinched manifolds.
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A more general theorem is:

Theorem (Grove–Peterson (1988)). Given real numbers n, d, V, κ > 0. Then
there exist only finitely many homotopy types of compact n–dimensional Rie-
mannian manifolds satisfying

diam M ≤ d, V (M) ≥ V, K ≥ κ.

In fact, the number of homotopy types is bounded above by a constant de-
pending only n, V −1dn , and κd2. For a survey of these and other directions in
finiteness theorems, see Cheeger (1991).

Convergence Theorems for Riemannian Manifolds

The pinching and finiteness theorems have since led to convergence theorems of
M. Gromov (1981) for Riemannian metrics. We mention here some of the def-
initions and results in this theory. See Grove (1987, pp. 214ff) for introductory
arguments.

Definition. Given metric spaces X and Y , we define their Lipschitz distance
dL (X, Y ) by

dL (X, Y ) = inf {| ln dil f | + | ln dil f −1|},

where f varies over Lipschitz homeomorphisms f : X → Y . Should no
Lipschitz homeomorphisms exist, then we define dL (X, Y ) = +∞.

Exercise IX.6. If X and Y are compact, with dL (X, Y ) = 0, then X and Y are
isometric.

Exercise IX.7. Show that, on the spaceXof compact metric spaces, the function
dL is a distance metric.

Theorem. (A. Shikata (1966)) For all integers n ≥ 2, there exists a positive
ε = ε(n) such that any two n–dimensional compact Riemannian manifolds M,
M satisfying

dL (M, M) < ε

are diffeomorphic.
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See the refinements in Karcher (1977) and the application to the differentiable
pinching problem in Shikata (1967).

Definition. Fix a metric space Z . Then, for sets A, B ⊆ Z define their Haus-
dorff distance d Z

H (C, D) by

d Z
H (C, D) = inf {ε > 0 : [C]ε ⊇ D [D]ε ⊇ C},

where [C]ε = {q ∈ Z : d(q, C) < ε}, and similarly for Dε .
For two fixed metric spaces X and Y , define their Hausdorff distance

dH (X, Y ) by

dH (X, Y ) = inf {d Z
H ( f (X ), g(Y ))},

where Z varies over all metric spaces, and ( f, g) vary over all isometric im-
mersions

f : X → Z , g : Y → Z .

Exercise IX.8. When X and Y are compact then dH (X, Y ) < +∞.

The following exercise is evocative of S. Peters’ approach to Cheeger’s finite-
ness theorem:

Exercise IX.9.
(a) Suppose we are given a sequence of compact metric spaces X j ∈ X

converging, relative to dH , to X ∈ X. Then, for any discretization G of X (see
§IV.4), there exist discretizations G j of X j such that dL (G j , G) → 0 as j → ∞.

(b) Suppose we are given the collection {X j : j = 1, . . .} ⊆ X, and X ∈ X

such that

sup {diam X j , diam X} < +∞;

and suppose that for every R > 0 there exist discretizations G j of X j , G of X , of
covering radius R, such that dL (G j , G) → 0 as j → ∞. Then, dH (X j , X ) → 0,
as j → ∞.

(c) Show that for X, Y ∈ X, we have dH (X, Y ) = 0 ⇒ dL (X, Y ) = 0.

The two Gromov convergence theorems are as follows:

Theorem. Given constants κ ∈ R and d > 0. Then, the set of all compact n–
dimensional Riemannian manifolds satisfying Ric ≥ (n − 1)κ and diam M ≤
d is precompact in the Hausdorff metric on X.
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Theorem. Given real numbers n, d, V, � > 0. With respect to the Lipschitz dis-
tance topology, the collection of compact n–dimensional Riemannian manifolds
satisfying

diam M ≤ d, V (M) ≥ V, |K| ≤ �

is relatively compact in the larger class of n–dimensional C1,1–manifolds with
C0–Riemannian metrics.

One can find a proof of the first theorem in Grove (1987, p. 218); and a proof
of the second theorem in Peters (1987). The latter is built on Peters’ Lemma
IX.8.1. In fact, he proves a stronger result: Given any sequence of compact
n–dimensional Riemannian manifolds satisfying the conditions on diameter,
volume, and sectional curvature, as above, there exists a subsequence converg-
ing with respect to the Lipschitz topology to an n–dimensional differentiable
manifold M with metric of Hölder class C1,α , 0 < α < 1.

Other versions of similar approaches can be found in Greene–Wu (1988)
and Kasue (1989). Recent treatments can be found in Gromov (1999), Petersen
(1997), and Shiohama–Shioya–Tanaka (2003).
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Hints and Sketches: Chapter I

Exercise I.2. Hint: Use the first Bianchi identity.

Exercise I.3. Sketch: If the Christoffel symbols of a chart vanish at p, then certainly
T = 0 at p. So, consider the converse. Assume T = 0 at p. Given a chart x : U → R

n ,
p ∈ U , with Christoffel symbols � jk

� symmetric in j, k, define

y�(q) = x�(q) − x�(p) + 1

2

∑
j,k

� jk
�(x(p))(x j (q) − x j (p))(xk(q) − xk(p)).

Check that there exists a domain V in U , such that (y|V ) : V → R
n is a chart for which

the Christoffel symbols vanish at p.

Exercise I.4. Sketch: Since grad f has constant length, one certainly has grad
f ⊥∇grad f grad f . Therefore, given p ∈ M , ξ ∈ Mp , ξ⊥(grad f )|p , it suffices to show
ξ⊥∇(grad f )|p grad f . Let ω(t) be the integral curve of grad f satisfying ω(0) = p, and
X the parallel vector field along ω satisfying X (0) = ξ . Then, one easily shows that
〈∇(grad f )|p grad f, ξ〉 = 〈∇tω

′, X〉|t=0 vanishes.

Exercise I.5. Sketch: One can easily check that for such ψ one has

|ψ(x) − ψ(y)| ≤ d(x, y).

So, the issue is to show that, among these functions, we may choose ψ so that |ψ(x) −
ψ(y)| is arbitrarily close to d(x, y). To this end, consider the function

ψ(z) = min {d(z, x), d(y, x)}.

Then, ψ is constant (actually equal to d(x, y)) outside B(x ; d(x, y)), and

|ψ(x) − ψ(y)| = d(x, y).

Even though ψ is not C∞, it is uniformly Lipschitz, in that

|ψ(z) − ψ(w)| ≤ d(z, w)

427



P1: IWV

0521853680c10 CB980/Chavel January 2, 2006 13:23 Char Count= 931

428 Hints and Sketches for Exercises

for all z, w ∈ M . Now, one requires an argument that ψ may be approximated by C∞

functions ψn for which |grad ψn| ≤ 1.

Exercise I.7. Sketch:
(i) First show it is always possible to reparameterize any f in the length structure

with the new parameter proportional to arc length, that is, one can reparameterize f to
γ : [0, 1] → X so that

�(γ |[0, t]) = �(γ )t.

(ii) Fix the interval I = [0, 1]. Assume we are given a sequence γn : I → X ∈ C0,
parameterized proportional to arc length, such that γn(0) = x, γn(1) = y for all n =
1, 2, . . . , and �(γn) ↓ d(x, y) as n → ∞. Show that the sequence of mappings (γn) is
equicontinuous. Since B(x ; 2d(x, y)) is compact, the Arzela–Ascoli Theorem implies
that (γn) converges uniformly to γ : I → X ∈ C0 connecting x to y.

(iii) Now verify that

�(γ ) = d(x, y).

Exercise I.9. Sketch: We want to show

�d (ω) =
∫ b

a
|ω′| dt

for any D1 path ω : [a, b] → M . One easily has from the definition of �d that

�d (ω) ≤
∫ b

a
|ω′| dt ;

so the real issue is the opposite inequality. The argument is as follows:
One proves that given any compact K in M and any real λ > 1, there exists (see

Riemann normal coordinates below, in §II.8) a finite cover of K , {U1, . . . , Uk}, with
charts x j : U j → R

n such that

λ−1 ≤ |ξ |
|ξ |Rn

≤ λ

(where |ξ |Rn denotes the standard norm on R
n) for all ξ ∈ T U j , j = 1, . . . , k, and

λ−1 ≤ d(p, q)

|x j (p) − x j (q)| ≤ λ

for all p, q ∈ U j , j = 1, . . . , k. From this, it is easy to prove that

�d (ω) ≥ λ−2

∫ b

a
|ω′| dt,

for all λ > 1.

Exercise I.11(d). Hint: Consider 0 = d2 F .
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Exercise I.13(b). Hint: Use the properties of the Levi-Civita connection to show

〈[X, Y ], T 〉 = 〈X, ∇Y T 〉 − 〈Y, ∇X T 〉.
Exercise I.15(b). Hint: Use Exercise I.13(b) and the properties of the Levi-Civita con-
nection to show that �rs

α is skew-symmetric with respect to r, s.

Exercise I.21(b). Hint: From

Ad exp tξ = et adξ, (ad ξ)(η) = [ξ,η],

we have

[ξ,η] = d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

exp tξ exp sη exp −tξ.

Now that we know the 1–parameter subgroups explicitly, one can check that

[ξ,η] = ξη − ηξ.

Exercise I.21(c). Hint: Use Exercise I.19.

Exercise I.21(d). Hint: Use Exercise I.20 to show that the space has constant curvature
4. Check that the geodesics have length equal to π . Then construct a map from the
2–sphere in R

3 of radius 1/2 to G/H . Check that it is an isometry. (See §IV.1. Also see
Thurston (1997, §2.7).)

Hints and Sketches: Chapter II

Exercise II.2. Hint: Use the second Bianchi identity (Exercise I.2).

Exercise II.5. Hint: Since the surface M is compact, it is contained in some open 3–
disk, B(o; R). Now, keep o ∈ R

3 fixed, and decrease R towards 0, and consider what
happens when R = ro := inf {r : M⊂ B(o; r )}.

Exercise II.7. Sketch: Use moving frames as in Exercise II.10 to show ω j
m = λ(x)ω j ,

for j = 1, . . . , m − 1. Now, calculate dω j
m two ways, and show thereby that dλ = 0

on M . Conclude that em = −λx + qo, for some constant vector qo, which implies that
|x − qo/λ| = const.

Exercise II.8. Hint: Use moving frames.

Exercise II.13. Hint: Use (II.3.6).

Exercise II.15(a). Hint: For convenience, assume τ > 0. First, check that the Rieman-
nian metric on Mo is given by

ds2 = |dx |2 − (x · dx)2

|x |2 + ρ2
.
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Then, introduce spherical coordinates

x = rξ r > 0, ξ ∈ S
n−1,

and show

ds2 = ρ2(dr )2

r 2 + ρ2
+ r 2|dξ |2.

Finally, set

r = ρ sinh t/ρ,

and substitute.

Exercise II.16. Hint: The first argument consists of noting that if an M–geodesic lies
in the surface, and passes through a point in the surface, then the second fundamental
form at that point cannot be definite.

The second argument consists of noting that, for any Jacobi field Y along an M–
geodesic lying in the surface, we have

|Y |′′ + 〈R(γ ′, Y )γ ′, Y 〉 ≥ 0,

see the beginning of the proof of Theorem II.6.4.

Exercise II.18. Hint: First use Theorem II.7.1 to derive the existence of ε in (0, 1),
r > β, such that exp |Cε,r (ξ ) is a diffeomorphism, and use the arguments of Theorem
I.6.2.

Exercise II.20(b). Hint: Use Theorem II.6.2 and the previous exercise.

Exercise II.20(c). Hint: Adapt the derivation of the second variation of arc length.

Exercise II.21. Hint: Use a linear isometry

ι : (M1)γ1(0) → (M2)γ2(0)

and parallel translation along the respective geodesics to identify vector fields along γ1

with vector fields along γ2. Now compare the respective index forms and use the Jacobi
criteria.

Exercise II.25. Hint: Use Theorem II.8.1.

Exercise II.26. Sketch: Recall that Exercise II.17 shows that points along γ , conjugate
to p along γ , are isolated. So, pick to < t1 < t2 so that [to, t2] has only γ (t1) conjugate
to p along γ .

One considers both geodesic polar coordinates and Riemann normal coordinates
based at at p. Let e1 = ξ , and e2 orthonormal to e1. The polar coordinates are given by

v(t, θ ) = expp t{cos θ + sin θ},
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and the normal coordinates by

ζ = exp
2∑

j=1

ζ j e j ⇒ n(exp ζ ) = (ζ 1, ζ 2).

So, we want to solve the equation ζ 2(t, θ ) = 0 for some function t = ϕ(θ ) in a neigh-
borhood of (t1, 0).

Use Theorem II.5.1 to show that there exists a nonzero constant σ such that the Taylor
expansion of ζ 2(t, θ ) in a neighborhood of (t1, 0) is given by

ζ 2(t, θ ) = (t − t1)θσ + o(|t − t1|) + o(|θ |)h(t),

where h(t) is bounded. Then show that ζ 2(t, θ ) = 0, can be solved for some function
t = ϕ(θ ) in a neighborhood of (t1, 0).

Exercise II.27. Sketch: Again, recall that Exercise II.17 shows that points along γ ,
conjugate to p along γ , are isolated. So pick to < t1 < t2 so that [to, t2] has only γ (t1)
conjugate to p along γ .

Pick a nonzero Jacobi field Y (t) along γ satisfying: Y (0) = Y (t1) = 0 and set

Y1(t) =
{

Y (t) t ∈ [0, t1]
0 t ∈ [t1, β]

.

As in the proof of Theorem II.5.5, let Z (t) be a differentiable vector field along γ

satisfying

Z |[0, to] ∪ [t2, b] = 0, Z (t1) = −(∇t Y )(t1),

and

X = Y1 + λϕZ .

Assume the theorem is false. So, we assume there is a neighborhood U of t1ξ on
which expp is one-to-one. Then, the geodesic s �→ expγ (to) sY (to) has a lift to a path δ(s)
in Mp , that is,

δ(s) := expγ (to) sY (to) = expp δ(s).

Therefore, consider the variation v(t, s) of γ (t) given by

v(t, s) =
{

expp tδ(s)/to t ∈ [0, t0]
expγ (t) s X (t) t ∈ [t0, β]

.

First show that ∂sv(t, 0) = X (t).
Then, use the argument of Theorem II.5.5 to show that, if |s| sufficiently small, the

length of ωs(t) := v(t, s) is strictly less that β.
Next, note that, for s sufficiently small, ωs |[to, t2] ⊂ exp(U), which implies ωs has a

lift ωs to Mp . Now use the argument of Exercise II.18 to show the length of ωs is greater
than or equal to β – a contradiction.
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Hints and Sketches: Chapter III

Exercise III.3. Hint: Given that M is locally symmetric, use the explicit knowledge
of the Jacobi fields along any geodesic to show that the geodesic symmetry is a local
isometry. Conversely, given that the geodesic symmetry is a local isometry, show that
M satisfies the criterion of Exercise III.2(a).

Exercise III.5(a). Hint: First show that group property is valid along γ (t). Then use
Exercise II.13.

Exercise III.5(b). Hint: Pick the 2–section along the geodesic with the lowest curvature,
assumed to be negative. Let ξ be a unit vector in this 2–section perpendicular to the
geodesic, and consider the 1–parameter group of isometries �ξ . Then, by differentiating
with respect to the group parameter, the group will determine a periodic Jacobi field
along the geodesic, which will contradict the specific knowledge of the Jacobi field as
unbounded.

Exercise III.5(c). Hint: Use Klingenberg’s lemma (Theorem III.2.4), and
Exercises III.4(b) and III.5(b).

Exercise III.9. Hint: First show that the matrix Wronskian of two solutions of (III.1.4)
is constant, that is, if C(t), D(t) are solutions of (III.1.4), then

C ′∗D − C∗D′ = const.

Then pick appropriate C and D.

Exercise III.10(b). Hint: Use Exercise III.9.

Exercise III.12(c). Hint: One requires Sard’s theorem.

Exercise III.12(h). Hint: Integrate the previous formula, that is, (g), over the unit
sphere.

Exercise III.14. Sketch: One easily verifies that the contribution of d◦i(ξ ) + i(ξ )◦d to
the integral is 0. So, one must deal exclusively with the contribution of d◦i(η) + i(η)◦d.

First check that

Ak
′(ε) =

∫
M

φε
∗((i(η)◦d) ω1 ∧ · · · ∧ ωk).

(Hint: i(η)ωr = 0 for all r .)
Next, check that, when restricted to φε(M), one has

(i(η)◦d) ωs = −
∑

r

(ωr
s(η))ωr +

∑
α

ηαωα
s,

where {ωA
B} are the connection forms of the coframe {ωA} (as described in §I.8 and

§II.2), and

ηα = 〈η, eα〉,
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which implies (when restricted to φε(M))

(i(η)◦d) ω1 ∧ · · · ∧ ωk =
∑

r

ω1 ∧ · · · ∧ ((i(η)◦d) ωr ) ∧ · · · ∧ ωk

=
∑
r,α

ηα ω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

= −〈η, H〉 ω1 ∧ · · · ∧ ωk .

Exercise III.17. Sketch: On the image of the normal bundle of M under the exponential
map Exp , first define the vector field Z locally on a neighborhood of M by

Z |(w,ε) = f (w)√
g(ε; w)

∂ε,

where ∂ε is the velocity vector of the geodesic γν(ε). Then extend Z smoothly to all of
M so that the support of Z is contained in Exp (M × (−εo, εo)). Let �ε denote the flow
of Z . Finally, let φ(w, ε) denotes the solution to the initial-value problem

∂φ

∂ε
= f (w)√

g(φ; w)
, φ(w ; 0) = 0.

Verify that (i) �ε(M) is the boundary of �e p(�); and (ii) for w ∈ M, we have

�ε(w) = Exp (w, φ(w, ε)).

Now prove that

∂{V (�ε(�))}
∂ε

=
∫

�

f d A� = 0.

Exercise III.20. Hint: Pick a ray γ : [0, +∞) → M from x to ∞, |γ ′| = 1. Let xk =
γ (k). First show that

V (xk ; k − 1) ≥
{

k − 1

k + 1

}n

V (xk ; k + 1),

which implies (why?)

V (x ; 2k) ≥ V (xk ; k − 1) ≥ (k − 1)n

(k + 1)n − (k − 1)n
V (x ; 1),

which implies the claim.

Exercise III.29(a). Hint: Use Exercise II.10.

Exercise III.29(b). Hint: Use Exercise III.29(a), with Green’s formula.

Exercise III.30. Hint: See Exercise II.10.
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Exercise III.32. Solution: We start from

Ak
′(ε) =

∫
φε (M)

∑
r,α

ηα ω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

(see the sketch for Exercise III.14). Then,

Ak
′′(ε) =

∫
φε (M)

(i(η)◦d)

{∑
r,α

ηα ω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

}
(again, there is no contribution from ξ ).

First, one has

d
∑
r,α

ηαω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk(1)

=
∑
r,α

dηα ∧ ω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

+
∑
α,r

∑
s<r

(−1)s−1ηαω1 ∧ · · · ∧ (ωr ∧ ωr
s)s ∧ · · · ∧ ωα

r ∧ · · · ∧ ωk

+
∑
α,β,r

∑
s<r

(−1)s−1ηαω1 ∧ · · · ∧ (
ωβ ∧ ωβ

s
)

s ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

+
∑
j,r,α

(−1)r−1ηαω1 ∧ · · · ∧ (
ωα

j ∧ ω j
r
)

r ∧ · · · ∧ ωk

+
∑
r,α,β

(−1)r−1ηαω1 ∧ · · · ∧ (
ωα

β ∧ ωβ
r
)

r ∧ · · · ∧ ωk

−
∑
r,α

(−1)r−1ηαω1 ∧ · · · ∧ �α
r ∧ · · · ∧ ωk

+
∑
α,r

∑
s>r

(−1)s−1ηαω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ (ωr ∧ ωr

s)s ∧ · · · ∧ ωk

+
∑
α,β,r

∑
s>r

(−1)s−1ηαω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ (

ωβ ∧ ωβ
s
)

s ∧ · · · ∧ ωk .

For lines 3, 5, and 8 of (1), we have∑
α,r

∑
s<r

(−1)s−1ηαω1 ∧ · · · ∧ (ωr ∧ ωr
s)s ∧ · · · ∧ (ωα

r )r ∧ · · · ∧ ωk

+
∑
j,r,α

(−1)r−1ηαω1 ∧ · · · ∧ (
ωα

j ∧ ω j
r
)

r ∧ · · · ∧ ωk

+
∑
α,r

∑
s>r

(−1)s−1ηαω1 ∧ · · · ∧ (ωα
r )r ∧ · · · ∧ (ωr ∧ ωr

s)s ∧ · · · ∧ ωk

=
∑
α,r

∑
s<r

(−1)sηαω1 ∧ · · · ∧ (ωα
r ∧ ωr

s)s ∧ · · · ∧ ωk

+
∑
s,r,α

(−1)s−1ηαω1 ∧ · · · ∧ (ωα
r ∧ ωr

s)s ∧ · · · ∧ ωk

+
∑
α,r

∑
s>r

(−1)sηαω1 ∧ · · · ∧ (ωα
r ∧ ωr

s)s ∧ · · · ∧ ωk

= 0.
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For lines 4 and 9 of (1), we note again that ωα|φε(M) = 0. Therefore, one calculates
to obtain{

i(η)

(∑
α,β,r

∑
s<r

(−1)s−1ηαω1 ∧ · · · ∧ (
ωβ ∧ ωβ

s
)

s ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

+
∑
α,β,r

∑
s>r

(−1)s−1ηαω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ (

ωβ ∧ ωβ
s
)

s ∧ · · · ∧ ωk

)}
|φε (M)

=
{∑

α,β

∑
s<r

ηαηβω1 ∧ · · · ∧ ωβ
s ∧ · · · ∧ ωα

r ∧ · · · ∧ ωk

+
∑
α,β

∑
s>r

ηαηβω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωβ

s ∧ · · · ∧ ωk

}
|�ε (M)

=
∑

α,β, j,�

∑
s<r

ηαηβhsj
βhr�

αω1 ∧ · · · ∧ (
ω j

)
s ∧ · · · ∧ (

ω�
)

r ∧ · · · ∧ ωk

+
∑

α,β, j,�

∑
s>r

ηαηβhsj
βhr�

αω1 ∧ · · · ∧ (
ω�

)
r ∧ · · · ∧ (

ω j
)

s ∧ · · · ∧ ωk

=
∑
α,β

∑
s<r

ηαηβhss
βhrr

αω1 ∧ · · · ∧ ωk

+
∑
α,β

∑
s<r

ηαηβhsr
βhrs

αω1 ∧ · · · ∧ ωk

+
∑
α,β

∑
s>r

ηαηβhss
βhrr

αω1 ∧ · · · ∧ (ωr )s ∧ · · · ∧ (ωs)r ∧ · · · ∧ ωk

+
∑
α,β

∑
s>r

ηαηβhsr
βhrs

αω1 ∧ · · · ∧ (ωs)r ∧ · · · ∧ (ωr )s ∧ · · · ∧ ωk

=
∑
α,β

∑
s �=r

ηαηβhss
βhrr

αω1 ∧ · · · ∧ ωk

−
∑
α,β

∑
s �=r

ηαηβhsr
βhrs

αω1 ∧ · · · ∧ ωk

=
∑

α,β,s,r

{
ηαηβhrr

βhss
α − ηαηβhsr

βhrs
α
}
ω1 ∧ · · · ∧ ωk

= {〈η, H〉2 − ‖B‖gs
2
}
ω1 ∧ · · · ∧ ωk .

For line 7 of (1), we first have

�A
B(X, Y ) = 〈R(X, Y )eA, eB〉,

which implies

�A
B = 1

2
〈R(eC , eD)eA, eB〉 ωC ∧ ωD ;
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therefore

i(Z )�A
B = 〈R(Z , eC )eA, eB〉 ωC .

Then, i(η) applied to line 7, and then restricted to φε(M), is given by{
−

∑
r,α

(−1)r−1ηαω1 ∧ · · · ∧ i(η)(�α
r ) ∧ · · · ∧ ωk

}
φε (M)

= −
∑

r

〈R(η, er )η, er 〉 ω1 ∧ · · · ∧ ωk

= −Ric(η, η) ω1 ∧ · · · ∧ ωk .

It remains to consider line 2 and 6 of (1), that is, we must study

i(η) ·
(∑

r,α

dηα ∧ ω1 ∧ · · · ∧ ωα
r ∧ · · · ∧ ωk

+
∑
r,α,β

(−1)r−1ηαω1 ∧ · · · ∧ (
ωα

β ∧ ωβ
r
)

r ∧ · · · ∧ ωk

)

= i(η)

(∑
r,α,β

{dηα + ηβωβ
α} ∧ ω1 ∧ · · · ∧ ωα

r ∧ · · · ∧ ωk

)
=

∑
r,α,β

{dηα + ηβωβ
α}(η)ω1 ∧ · · · ∧ ωα

r ∧ · · · ∧ ωk

+
∑
r,α,β

(−1)r {dηα + ηβωβ
α} ∧ ω1 ∧ · · · ∧ ωα

r (η) ∧ · · · ∧ ωk .

If we restrict to φε(M), then∑
r,α,β

{dηα + ηβωβ
α}(η) ∧ ω1 ∧ · · · ∧ ωα

r ∧ · · · ∧ ωk

= −
∑
r,α

(Dηα)(η)hrr
αω1 ∧ · · · ∧ ωk

= −〈∇ηη, H〉ω1 ∧ · · · ∧ ωk,

where D denotes the Levi-Civita connection in the normal bundle of M.
Finally,

ωα
r (η) = 〈∇ηeα, er 〉

= −〈eα, ∇ηer 〉
= −〈eα, ∇er η + [η, er ]〉.

But, since η is the projection of �∗(∂M
ε ) into the normal bundle of M in M , we have

[η, er ] is tangent to �(M × {ε}), which implies

ωα
r (η) = −〈eα, ∇er η〉 = −〈eα,Der η〉.
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One then has{∑
r,α,β

(−1)r {dηα + ηβωβ
α} ∧ ω1 ∧ · · · ∧ ωα

r (η) ∧ · · · ∧ ωk

}
φε (M)

=
{∑

r,α,β

(−1)r−1〈Der η, eα〉{dηα + ηβωβ
α} ∧ ω1 ∧ · · · ∧ ω̂r ∧ · · · ∧ ωk

}
φε (M)

But for

Dη =
∑
α, j

ηα
; j eα ⊗ ω j

we have

ηα
; j = 〈De j η, eα〉,

which implies{
{dηα +

∑
β

ηβωβ
α} ∧ ω1 ∧ · · · ∧ ω̂r ∧ · · · ∧ ωk

}
φε (M)

=
∑

j

ηα
; jω

j ∧ ω1 ∧ · · · ∧ ω̂r ∧ · · · ∧ ωk = (−1)r−1ηα
;rω

1 ∧ · · · ∧ ωk,

which implies{∑
r,α,β

(−1)r {dηα + ηβωβ
α} ∧ ω1 ∧ · · · ∧ ωα

r (η) ∧ · · · ∧ ωk

}
φε (M)

= |Dη|2 ω1 ∧ · · · ∧ ωk .

Exercise III.34. Sketch: Check that if Z = ξ + η (ξ tangent to �ε(�)), and η normal
to �ε(�))) is the vector field of a variation of D, with flow �ε , then

∂{V (�ε(�))}
∂ε

=
∫

�ε (∂ D)
〈η, ν〉 d A,

and

∂2{V (�ε(�))}
∂ε2

=
∫

�ε (∂ D)

{〈∇ηη, ν〉 − H〈η, ν〉2
}

d A.

Now use the fact that the variation is volume preserving, and H = const. when ε = 0.

Exercise III.35. Hint: Consider the function

f (x) = H (x · n) + n − 1.
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Check that
∫

M f d A = 0 and show that

0 ≤ −
∫

M
f {� f + f ‖B‖2} d A

= −
∫

M
(n − 1)

{−H 2 + (n − 1)‖B‖2
}

d A ≤ 0,

which implies M is everywhere umbilic, which implies the claim.

Exercise III.36. Hint: Show that a nontrivial function

f =
k∑

j=1

α jφ j

exists, where φ1, . . . , φk are orthonormal, and each φ j is an eigenfunction of λ j , such
that f is orthogonal to v1, . . . , vk−1 in L2(M). Then, use the argument of the proof of
Rayleigh’s theorem.

Exercise III.38. Hint: Let ψ j be a Dirichlet eigenfunction on � j of λ(� j ), with L2(� j )–
norm equal to 1. Extend ψ j to vanish on M \ � j .

(i) Show that among all functions f on M of the form

f =
k∑

j=1

α jψ j ,

there is at least one that is L2(M)–orthogonal to {φ1, . . . , φk−1}. Thus,

λk(M) ≤ D[ f, f ]/‖ f ‖2.

(ii) Show that

D[ f, f ] ≤
{

sup
j

λ(� j )

}
‖ f ‖2.

Exercise III.41. Hint: Let vκ denote the inverse function of Vκ (so vκ (c) is the radius
of the disk in Mκ whose volume is c). Prove, using Exercises III.36 and III.38,

λ�(M) ≤ λκ

(
1

2
vκ

(
V (M)

�

))
.

Then, prove, using Exercise III.37,

λκ

(
1

2
vκ

(
V (M)

�

))
≤ c(n, κ)

{
�

V (M)

}2/n

.

Exercise III.43(a). Hint: Let x : M2 → R
3 denote the imbedding, and u : M → R

given by u(x) = |x|2. Recall that (i) |grad x|2 = 2, (ii) �x = 0. Then show that �u = 4
on all of M2. To prove that λ∗(�) > 1/(4R2) is to prove that∫∫

�

|grad φ|2 d A ≥ 1

4R2

∫∫
�

φ2 d A
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for any C∞ function with compact support in �. Prove the estimate by considering∫∫
�

φ2�u d A,

and applying, to it, Green’s theorem and the Cauchy–Schwarz inequality.

Exercise III.43(b). Hint: Given any B(o; R), where o is a fixed point in M , and α ∈
(0, 1), consider the function φ on B(o; R) defined by

φ(x) =


1 d(x, o) ≤ αR,

(R − d(x, o))/(R − αR) αR ≤ d(x, o) ≤ R
0 d(x, o) ≥ R

.

Show that the assumption∫∫
B(o;R)

|grad φ|2 dV ≥ const.
∫∫

B(o;R)
φ2 dV

leads to the inequality

V (o; R) ≥ {const.(1 − α2)R2 + 1}V (αR).

Now show that any polynomial estimate

V (o; R) ≤ const.r � for all R � 1,

for any fixed � > 0 leads to a contradiction.

Exercise III.44. Hint: Use moving frames, as in Exercise I.11. The argument can be
simplified by assuming, at any fixed point p, that one may choose the frame field {e j }
to satisfy [e j , ek]|p = 0 for all j, k.

(i) Write, as in Exercise I.11,

∇F = d F =
∑

j

Fj e j , ∇∇F =
∑

jl

Fjl ω
l ⊗ ω j ,

and

∇∇∇F =
∑

jlk

Fjlk ωk ⊗ ωl ⊗ ω j ,

where

d Fjl −
∑

r

ω j
r Frl −

∑
r

ωl
r Fjr =

∑
k

Fjlkω
k .

Use the symmetry of Fjl to show

Fjlk = Flk j + 〈R(e j , ek)grad F, el〉.
(ii) Show ∑

k

Fkk j = 〈grad �F, e j 〉.
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(iii) Consider

G = 1

2
|d F |2, dG =

∑
i

Gi ωi ,

and show

Gi =
∑

j

Fj Fji ,

∇∇G =
∑

jkl

{Fjk Fjl + Fj Fjlk} ωl ⊗ ek .

(iv) Now use all of the above to derive the formula.

Hints and Sketches: Chapter IV

Exercise IV.2(b). Hint: Use (a) to first show that

|X (1, 1) − X (1, 0)| ≤
∫ 1

0
ds

∫ 1

0
|R(∂sv, ∂t v)X | dt,

and then use Exercise II.1(f).

Exercise IV.3(e). Hint: Use (IV.6.1).

Exercise IV.4. Sketch: If there is an isometry � of Mo, so that �2 = �−1�1�, then map
φ : M2 → M1 by

φ(x) = π1◦�◦π2
−1[x].

If x ∈ π2
−1[x] and γ2 ∈ �2 then there exists γ1 ∈ �1 such that

�(γ2 · x) = γ1 · �(x)

which implies φ is a well-defined isometry.
If φ : M1 → M2 is an isometry, then π1◦φ is a covering of M2 by Mo. The universal

property of the covering π2 : Mo → M2 implies that π1◦φ factors through � : Mo →
Mo, that is, there exists a � such that π1◦φ = �◦π2, which implies the claim.

Exercise IV.5(b). Sketch: One proves the result by induction on n.
For n = 1: Let � be a nontrivial discrete subgroup of R. Then, for any r > 0, the

interval (−r, r ) has at most a finite number of elements of �, which implies � has an
element u �= 0 closest to the origin. This implies {ku : k ∈ Z} ⊆ �. If given any v ∈ �,
then there exists k ∈ Z such that v ∈ [ku, (k + 1)u), which implies |v − ku| < |u|, which
implies v − ku = 0, which implies the claim for n = 1.

Assume the result is true for R
n−1, n ≥ 1, and let � be a nontrivial discrete subgroup

of R
n . Again, there is an element u �= 0 closest to the origin. So � ∩ Ru = {ku : k ∈ Z}.

Consider the projection

π : R
n → R

n/Ru;

Here is the argument to show π (�) is discrete in R
n/Ru (this will imply the result):
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Assume one has a sequence v j ∈ � such that π (v j ) → 0, that is, v j → 0 (mod Ru).
Then there exists a sequence r j in R such that

v j − r j u → 0 in R
n .

Write each r j as

r j = ρ j + k j , k j ∈ Z, |ρ j | ≤ 1/2.

Then,

|v j − k j u − ρ j u| < |u|/2

for sufficiently large j , which implies |v j − k j u| < |u|, which contradicts the fact that u
is closest to the origin. Therefore, ρ j = 0 for all but a finite number of j , which implies
the result.

Exercise IV.5(c). Sketch: Clearly, if T ∈ E(n) has a line � on which it acts as a trans-
lation, then T maps every hyperplane perpendicular to � to a hyperplane perpendicular
to �. This implies that T has no fixed points.

If T = Ax + a has no fixed points, then decompose

R
n = V ⊕ W, V = {x ∈ R

n : Ax = x}, W = V ⊥,

and write

a = b + c, x = y + z, b, y ∈ V, c, z ∈ W.

Then, A − I |W : W → W is an isomorphism. Check that this implies that b �= 0 (so V
is nontrivial) and that a line � is given by

�(t) = tb − {(A − I )|W }−1c.

Exercise IV.12(a). Hint: Use the Hadamard–Cartan theorem (Theorem IV.1.3).

Exercise IV.12(b). Hint: Pick up where Note II.11 leaves off. Also, see Note II.5.

Exercise IV.13(b). Hint: Let ω′|x denote the velocity vector of ω at x ; it suffices to show
that

γ∗ ·ω′|x = ω′|γ · x .

Use the triangle inequality.

Exercise IV.14. Hint: Let ωo : R → M be an axis of γo ∈ �o. For any other γ ∈ �o and
t ∈ R, consider γo(γ ◦ω(t)).

Exercise IV.16. Sketch: (Check the notations, definitions, and results of §§III.3–5.)
First, fix r > 0 and x ∈ M , and consider that part of S(x ; r ) in Dx (that is, the inside of
the cut locus) which intersects F . The idea is to show the desired inequality for this area
for all r and then to use Proposition III.5.1. We will use the fact that, since M covers a
compact, its Ricci curvature is bounded uniformly from below by a constant, say, κ .
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Proceed as follows: LetF denote the union of all translates of F by �, which neighbor
F (i.e., whose closures intersect the closure of F), and let δ > 0 denote the distance
from F to M \ F . Let DF(r ) denote the collection of unit tangent vectors in Dx (r ), such
that exp rξ ∈ F . Now, verify

V (F ) ≥
∫

DF(r )
dµx (ξ )

∫ r

r−δ

√
g(t ; ξ ) dt ≥ δ

Sκ (r − δ)

Sκ (r )

∫
DF(r )

√
g(r ; ξ ) dµx (ξ ),

which implies the claim.

Exercise IV.20. Hint:
(i) Assume M is not simply connected. Then, M possesses a nontrivial free homotopy

class, with attendant shortest closed geodesic�. Prove that� possesses a periodic parallel
vector field.

(ii) Use the second variation of arc length to obtain a contradiction.

Exercise IV.24. Hint: Here, one must use the fact that a homotopy class in the space of
continuous maps of S

1 to X , C0(S1, X ), is an open set in C0(S1, X ) (with topology of
uniform convergence).

Exercise IV.26. Sketch: Use the isomorphism of � with π1(Mo, xo). Given any homo-
topy class α ∈ π1(Mo, xo), fix ε > 0, and let α be represented by the continuous path
γ : [0, 1] → M with γ (0) = γ (1) = xo.

(i) Show that [0, 1] may be subdivided into subintervals [t j−1, t j ], j = 1, . . . ,

N , so that

d(γ (t j−1), γ (t j )) < ε

for all j .
(ii) Connect xo to every γ (t j ), j = 1, . . . , N − 1, by a minimizing geodesic, and

prove that α is generated by homotopy classes each of whose minimizing loops have
length less than 2d(M) + ε.

(iii) Now use Exercise IV.21, with fixed basepoint, to prove (IV.6.3).

Exercise IV.27. Hint: The argument is a variant of the argument of Lemma IV.3.2.

Hints and Sketches: Chapter V

Exercise V.1. Hint: Note that the degree of T is given by the integral of the geodesic
curvature of the imbedding with respect to arc length. So, the first step is to reparame-
terize the imbeddings with respect to multiples of arc length (show that this can be done
through smooth homotopies), smoothly deform through convex combinations the cur-
vature function of �0 to the curvature function of �1, and then check that this homotopy
can be “integrated” to a homotopy of �0 to �1.

Exercise V.3.
(a) Hint: Use Stokes’ theorem on dω1

2.
(b) Hint: Use Exercise III.19.
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Hints and Sketches: Chapter VI

Exercise VI.4(a). Sketch: Indeed, for the second claim, we have∫∫
D

F2 dV =
∫ r0

0
ψ2(r )Aκ (r ) dr

= −
∫ T

0
ψ2(r(t))Aκ (r(t))r′(t) dt

= −
∫ T

0
t2V ′(t) dt

=
∫∫

�

f 2 dV,

by the coarea formula.

Exercise VI.4(b). Sketch: Use the coarea formula and the Cauchy–Schwarz inequality:∫∫
�

|grad f |2 dV =
∫ T

0
dt

∫
�(t)

|grad f | d At

≥
∫ T

0
A2(t)

{∫
�(t)

|grad f |−1 d At

}−1

dt.

Exercise VI.4(c). Sketch: Use the isoperimetric inequality:

∫ T

0
A2(t)

{∫
�(t)

|grad f |−1 d At

}−1

dt = −
∫ T

0
A2(t)(V ′(t))−1 dt

= −
∫ T

0
A2(t){Aκ (r(t))r′(t)}−1 dt

≥ −
∫ T

0
Aκ (r(t))(r′(t))−1 dt.

Exercise VI.4(d). Sketch: Use |grad F |2(r(t)) = (r′(t))−2 to show∫∫
D

|grad F |2 dV =
∫ r0

0
|grad F |2(r )Aκ (r ) dr

= −
∫ T

0
(r′(t))−2 Aκ (r(t))r′(t) dt

= −
∫ T

0
Aκ (r(t))(r′(t))−1 dt.

Exercise VI.6(a). Hint: Define r(t) by V (t) = βVκ (r(t)).

Exercise VI.6(b). Hint: Given the equality, let � be a nodal domain (see Exercise VI.4
above) of the eigenfunction φ of λ2(M), with volume less than or equal to half the
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volume of M . Then show

nκ = λ∗(�) ≥ λκ (D) ≥ nκ,

using Exercise III.46.

Hints and Sketches: Chapter VII

Exercise VII.2(d). Hint: Use Parts (b) and (c) of this exercise.

Exercise VII.2(e). Hint: Assume such a submanifold N exists. Show, using (d) of this
exercise, that

∫
N �n−1 �= 0. Also show, on the other hand, that �n−1 is exact, which

implies its integral over N is 0.

Exercise VII.5. Hint: First show that the Jacobi field Jx(t) associated with the geodesic
variation �(t, ε) satisfies the initial conditions

Jx(0) = π∗x, (∇t Jx)(0) = T x;

then show that the Jacobi field along γξ (t) associated with the geodesic variation given
by

�(t, ε) = π ◦�t Z (ε)

has the same initial conditions. Therefore, they are the very same.

Exercise VII.7. Hint: Use the Rauch comparison theorem (Theorem II.6.4) to show
that, for η ∈ ξ⊥, ξ ∈ SM , we have |D+

ξ (t)η| → +∞ as t ↑ +∞, and |D+
ξ (t)η| remains

bounded as t ↓ −∞.

Exercise VII.8. Hint: Use the formula for the derivative of determinants, and the in-
variance of the Liouville measure under the geodesic flow.

Exercise VII.9. Hint: For an arbitrary orthonormal basis {e1, . . . , en−1} of ξ⊥, we
have

−σ (ξ ) = tr Kξ
1/2

=
∑

j

〈Kξ
1/2e j , e j 〉

≤
∑

j

|Kξ
1/2e j |

=
∑

j

〈Kξ
1/2e j , Kξ

1/2e j 〉1/2

=
∑

j

〈Kξ e j , e j 〉1/2.

Exercise VII.10. Hint: Multiply Riccati’s equation on the right by U−1, take the trace,
and the use Exercise VII.8.
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Exercise VII.12. Hint: Equality in Exercise VII.11(b) implies

β

∫
tr U =

∫
KU−1 =

∫
tr U,

by the exercise above; so, β = 1. Since β = 1, we have, with equality in
Exercise VII.11(a),

tr U = tr KU−1 = k2(ξ )tr U,

which implies k = 1 on all of SM . So, K = U 2, which implies U is parallel along the
geodesic flow, which implies K is parallel along the geodesic flow.

Exercise VII.14. Sketch: Use Lord Rayleigh’s characterization of eigenvalues (Theo-
rem III.9.2), that is, show∫

�

|grad f |2 dV ≥ π2n inf
x∈�

1

cn−1

∫
Sx

dµx (ξ )

δ2(ξ )

∫
�

| f |2 dV .

To carry it out, first use Lemma VII.3.1, applied to the bilinear form

(ξ, η) �→ 〈∇ f, ξ〉〈∇ f, η〉,
to show ∫

�

|grad f |2 dV = n

cn−1

∫
S�

〈(grad f )◦π, ξ〉 dµ(ξ ).

Note that along S+� one has δ(ξ ) = τ (ξ ), which implies by Santalo’s formula that this
last integral is equal to

n

cn−1

∫
S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )
∫ δ(ξ )

0
( f ◦γξ

′(t))2 dt.

Now use the fixed-endpoint version of Wirtinger’s inequality (Exercise III.42) to estimate
this last integral from below by

n

cn−1

∫
S+∂�

〈ξ, νπ (ξ )〉 dσ (ξ )
∫ δ(ξ )

0

π

δ2(ξ )
( f ◦γξ (t))2 dt.

Note that δ(�tξ ) is constant with respect to t . Now finish off the argument.

Hints and Sketches: Chapter VIII

Exercise VIII.1. Sketch: Set f = |φ|2(ν−1)/(ν−2); p = 2(ν − 1)/(ν − 2). So, |d f | =
p|φ|p−1|grad |φ| | = p|φ|p−1|grad φ|, which implies, by the Cauchy–Schwarz inequal-
ity, that ∫

M
|d f | dV ≤ p‖grad φ‖2||φ‖2(p−1)

p−1,

which easily implies the claim.
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Exercises VIII.2. Sketch: Start with Exercise VIII.1 for ν > 2. Next one shows Moser
(1964, p. 116)), ∫

φ2+4/ν dV ≤ const.||grad φ||22||φ||24/ν

for all ν ≥ 2. Indeed, if ν > 2, set f = |φ|2, p = ν/(ν − 2) and g = |φ|4/ν , q = ν/2,
and use Hölder’s inequality. On the other hand, if ν = 2, one has directly

||φ2||2 ≤ const.||grad (φ2)||1 ≤ const.||φ||2||grad φ||2.
Square both sides.

To obtain the claimed inequality (see Cheng–Li (1981)), simply apply
Hölder’s inequality to f = |φ|4/(ν+4), p = (ν + 4)/4 and g = |φ|(2ν+4)/(ν+4), q = (ν +
4)/ν.

Exercises VIII.4–VIII.6. Hint: See Chavel (1984, pp. 109–112).

Hints and Sketches: Chapter IX

Exercise IX.1. Hint: See Exercise II.24 and Note II.11.

Exercise IX.3. Sketch: If Hγ is not totally convex, then there exists geodesic ω :
[0, 1] → M such that ω(0), ω(1) ∈ Hγ , and there exists s ∈ (0, 1) such that q = ω(s) ∈
Bγ .

(i) Show that there exist t0 > 0, ε > 0 such that

t0 − ε = d(q, γ (t0)), d(q, γ (t)) ≤ t − ε

for all t ≥ t0.

(ii) To each t ≥ t0, associate a point ωst on ω closest to γ (t); construct an appropriate
hinge at ωst with which one can conclude, using the fact that ω(0) ∈ Hγ , and using the
Toponogov–Alexandrov theorem, that

t2 ≤ d(γ (t), ω(0))2 ≤ �(ω)2 + (t − ε)2

for all t ≥ t0, which is impossible for large t .

Exercise IX.4(b). Hint: In a Hadamard–Cartan manifold, the function rq (x)= d(q, x)
is C∞ with gradient equal to 1. The same applies to φt . Now, let t ↑ +∞.

Exercise IX.4(c). Hint: The idea is to first pick a candidate vector field for grad φγ , and
then to verify that it is indeed the gradient.

Given p ∈ M , pick y1, y2 as in (b–ii). Show that we may assume

φγ (y1) = φγ (p) + r, φγ (y2) = φγ (p) − r.

Pick the unit vector field ξ|p to be the initial vector field of the unit speed geodesic
connecting p to y1. Show that the geodesic passes through y2. Then, show that, for any
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unit speed geodesic ω(s), satisfying ω(0) = p, we have

r − d(ω(s), y1) ≤ φγ (ω(s)) ≤ −r + d(ω(s), y2).

Now use the first variation formula (Theorem II.4.1) to show that the function φγ ◦ω has
a derivative at s = 0 equal to 〈ξ, ω′(0)〉.

Exercise IX.5. Hint: First show that the integral curves of grad φ are geodesics (see
Exercise I.4 – one does not need the C∞ hypothesis here). Pick x ∈ M so that φ(x) = 0,
γ = γ(grad φ)|x , that is, γ is the unit speed geodesic emanating from x with initial velocity
vector equal to the gradient of φ at x . This is the candidate for the Busemann function;
that is, show φ = φγ . Use |grad φ| = 1 on all M to show that φγ ≤ φ. Use the concavity
of φ and φγ to show they are in fact equal.

Exercise IX.6. Hint: For any ε > 0, there exists a Lipschitz homeomorphism fε : X →
Y such that

| ln dil fε | + | ln dil fε
−1| < ε.

Show that one can use the Arzela–Ascoli theorem to obtain a sequence ε j → 0 for which
one has the uniform limit f = lim fε j , as j → ∞. Then verify that f is an isometry.

Exercise IX.8. Hint: The idea is to construct a metric space Z0 for which there are
isometric immersions of X and Y . Pick Z0 to be the disjoint union of X and Y . The
metric? For two points in X (resp. Y ), keep the distance as before. This will provide for
an isometric immersion. But first, a genuine metric. What will the distance be between
points x ∈ X , y ∈ Y ? Keep in mind the safest way to guarantee the triangle inequality.

Exercise IX.9. Hint: See Grove (1987, pp. 215–217).
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Die Innere Geometrie der konvexen Flächen. Berlin: Akademie Verlag, 1955.

Alexandrov, A. D. (1962). A characteristic property of spheres. Ann. di Math. Pura
Appl. 58, 303–315.

Allendoerfer, C. B. (1940). The Euler number of a Riemannian manifold. Am. J.
Math. 62, 243–248.

Allendoerfer, C. B. and A. Weil (1943). The Gauss–Bonnet theorem for Riemannian
polyhedra. Trans. Am. Math. Soc. 53, 101–129.

Almgren, F. (1976). Existence and Regularity Almost Everywhere of Solutions to
Elliptic Variational Problems with Constraints, Volume 4 of Memoir AMS.
Providence, RI: American Mathematical Society.

Almgren, F. (1986). Optimal isoperimetric inequalities. Ind. U. Math. J. 35, 451–547.
Ambrose, W. (1956). Parallel translation of Riemannian curvature. Ann. Math. 64,

337–363.
Ambrose, W. (1961). The index theorem in Riemannian geometry. Ann. Math. 73,

49–86.
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Barbosa, J. L. and A. Colares (1986). Minimal Surfaces in R

3, Volume 1195 of Lecture
Notes Math. Berlin: Springer Verlag.

Barbosa, J. L. and M. do Carmo (1976). On the size of a stable minimal surface in R
3.

Am. J. Math. 98, 515–528.
Barbosa, J. L. and M. do Carmo (1984). Stability of hypersurfaces with constant mean

curvature. Math. Zeit. 185, 339–353.
Barta, J. (1937). Sur la vibration fundamentale d’une membrane. C. R. Acad.

Sci. Paris 204, 472–473.
Basmajian, A. (1972). Generalizing the hyperbolic collar lemma. Bull. Am. Math.

Soc. 27, 154–158.
Bavard, C. (1984). Le rayon d’injectivité des surfaces à courbure majoree. J. Diff.
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Bernstein, F. (1905). Über die isoperimetrische Eigenschaft des Kreises auf der
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positive. Comment. Math. Helv. 13, 293–346.
Fischer-Colberie, D. and R. Schoen (1980). The structure of complete stable minimal

surfaces in 3–manifolds of nonnegative scalar curvature. Comm. Pure Appl.
Math. 33, 199–211.

Flanders, H. (1963). Differential Forms. New York: Academic Press.
Frankel, T. (1961). Manifolds with positive curvature. Ann. Math. 11, 165–174.
Gage, M. (1980). Upper bounds for the first eigenvalue of the Laplace–Beltrami

operator. Ind. U. Math. J. 29, 897–912.
Gage, M. (1983). An isoperimetric inequality with applications to curve shortening.

Duke Math. J. 50, 1225–1229.
Gage, M. (1984). Curve shortening makes convex curves circular. Invent. Math. 76,

357–364.
Gage, M. and R. Hamilton (1986). The heat equation shrinking plane convex curves. J.

Diff. Geom. 23, 69–96.
Gallot, S., D. Hulin, and J. Lafontaine (1987). Riemannian Geometry. Berlin: Springer

Verlag.
Gardner, R. J. (2002). The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39,

355–405.
Gauss, C. (1825). In New General Investigations of Curved Surfaces, pp. 79–114.

Hewlett, NY: Raven Press, 1965. Reprint of 1902 English translation by
A. Hiltebeitel & J. Moorehead.

Gauss, C. (1827). In General Investigations of Curved Surfaces, pp. 3–78. Hewlett,
NY: Raven Press, 1965. Reprint of 1902 English translation by A. Hiltebeitel & J.
Moorehead.

Gilbarg, D. and N. S. Trudinger (1977). Elliptic Partial Differential Equations of
Second Order. Berlin: Springer Verlag.

Goldstein, H. (1950). Classical Mechanics. Reading, MA: Addison-Wesley.
Gordon, C. (2000). In Handbook of Differential Geometry, pp. 3–78. Amsterdam:

North-Holland.
Gordon, C. and D. Webb (1996). You can’t hear the shape of a drum. Am. Scientist,

46–53.
Gordon, C., D. Webb, and S. Wolpert (1992a). Isospectral plane domains and surfaces

via Riemannian orbifolds. Invent. Math. 110, 1–22.
Gordon, C., D. Webb, and S. Wolpert (1992b). One can’t hear the shape of a drum.

Bull. Am. Math. Soc. 27, 134–138.
Gray, A. (1990). Tubes. Reading, MA: Addison-Wesley.
Gray, A. (1998). Modern Differential Geometry of Curves and Surfaces with

Mathematica (2nd ed.). Berlin: Springer Verlag.
Grayson, M. (1987). The heat equation shrinks embedded plane curves to round

points. J. Diff. Geom. 26, 285–314.



P1: IWV

0521853680bib CB980/Chavel January 2, 2006 13:38 Char Count= 606

456 Bibliography

Grayson, M. (1989a). A short note on the evolution of a surface by its mean curvature.
Duke Math. J. 58, 555–558.

Grayson, M. (1989b). Shortening emdedded curves. Ann. Math. 129, 71–111.
Green, L. and R. Gulliver (1985). Planes without conjugate points. J. Diff. Geom. 22,

43–47.
Green, L. W. (1954). Surfaces without conjugate points. Trans. Am. Math. Soc. 76,

529–546.
Green, L. W. (1958). A theorem of E. Hopf. Mich. Math. J. 5, 31–34.
Green, L. W. (1963). Aufwiedersehnsflächen. Ann. Math. 78, 289–299.
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451–470.

Helgason, S. (1959). Differential operators on homogeneous spaces. Acta Math. 102,
239–299.

Helgason, S. (1962). Differential Geometry and Symmetric Spaces. New York:
Academic Press.

Hicks, N. (1965). Notes on Differential Geometry. New York: Van Nostrand.
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Hopf, H. (1935). Über die Drehung der Tangenten und Sehnen ebener Kurven. Comp.

Math. 2, 50–62.
Hopf, H. (1946). In Differential Geometry in the Large, Volume 1000 of Lecture Notes

Math., pp. 1–75. Berlin: Springer Verlag, 1983. Reprint of Lecture Notes from
Stanford University 1946.

Hopf, H. (1956). In Differential Geometry in the Large, Volume 1000 of Lecture Notes
Math., pp. 77–184. Berlin: Springer Verlag, 1983. Reprint of Lecture Notes from
New York University 1956.
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