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ABSTRACT. A new method of constructing structure equations of Lie symmetry
pseudo-groups of differential equations, dispensing with explicit solutions of the
(infinitesimal) determining systems of the pseudo-groups, is presented, and il-
lustrated by the examples of the Kadomtsev–Petviashvili and Korteweg–de-Vries
equations.

1. INTRODUCTION

The theory of continuous groups of transformations created by Sophus Lie in
the late nineteenth century has evolved to become one of the most important tools
for geometric and algebraic study of general nonlinear partial differential equa-
tions. Lie himself made no essential distinction between finite-dimensional Lie
group actions and infinite-dimensional pseudo-group actions. However, since
his time, the two subjects have developed in very different directions. The the-
oretical foundations of finite-dimensional Lie groups and Lie algebras were well-
established in the early twentieth century. In contrast, despite its evident impor-
tance in both mathematics and applications, the basic theory for infinite-dimen-
sional Lie pseudo-groups remains in relatively primitive shape. Unlike Lie groups,
to this day, there is no generally accepted abstract object that represents an infinite-
dimensional pseudo-group, and so, like Lie and Cartan, [3], we can only study
them in the context of their action on a manifold. This makes the subject con-
siderably more difficult than the finite-dimensional case, and a significant effort
has been made in establishing a proper rigorous foundation for pseudo-groups,
[9, 12, 13, 14, 25, 28].

Lie pseudo-groups appear in gauge theories, Hamiltonian mechanics, symplec-
tic and Poisson geometry, conformal geometry of surfaces, conformal field the-
ory, and geometry of real hypersurfaces, as symmetry groups of both linear and
nonlinear partial differential equations arising in fluid mechanics, solitons, rela-
tivity, etc., and as foliation-preserving groups of transformations. In general, a
Lie pseudo-group G is defined in terms of a system R of (typically nonlinear)
differential equations, called its determining system, whose solutions are the lo-
cal diffeomorphisms constituting the pseudo-group. One immediate issue is to
determine their local structure, which is usually expressed in the form of Maurer–
Cartan structure equations, as in the case of finite-dimensional Lie groups. Both
Lie’s attempt to use his infinitesimal method based on the infinitesimal determin-
ing system obtained by linearizing the determining system, and Cartan’s method
using intricate recursive prolongation of exterior differential systems are either
limited in scope or impractical from the standpoint of applications. Along this
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line of research in the last decade, G. Reid, et al., [15, 16, 17, 26, 27], developed
methods for determining Cartan structure equations of Lie pseudo-groups, which
depended only on algebraic and differential manipulation, without any integra-
tion, of infinitesimal determining systems, hence increasing the feasibility of their
computer algebra implementation. Their algorithms were successfully applied to
certain types of Lie symmetry pseudo-groups of differential equations. A major
drawback, however, is that their methods were based on ad hoc series expansions
and became significantly more complicated, requiring more case-by-case analyses,
if they worked at all, when it came to intransitive pseudo-group actions.

More recently, the second and third authors developed a theory, [23], where the
invariant contact forms on the diffeomorphism jet bundle were interpreted as the
Maurer–Cartan forms of the Lie pseudo-group. (For finite-dimensional symmetry
groups, Morozov, [21], has introduced a related approach based on the method of
moving coframes, [8].) As a result, a very efficient method for constructing the
structure equations of the Maurer–Cartan forms was discovered. This method by-
passes the troublesome process of integrating either the determining system R or
its linearization, or the complicated Cartan prolongation process. Moreover, the al-
gorithm directly applies to completely general Lie pseudo-group actions, whether
finite- or infinite-dimensional, transitive or intransitive, and can be easily imple-
mented in computer algebra systems.

The goal of this paper is to show how to use the method to directly construct
structure equations for Lie (point) symmetry pseudo-groups of differential equa-
tions. Our algorithm works for any general Lie symmetry pseudo-group, and it
will also give us better understanding of known local symmetry structures, as
well as revealing those of a wide range of differential equations that still wait to
be investigated. We also wrote some Mathematica routines, [4], to facilitate the
computations needed for the implementation of our method on specific differen-
tial equations. To illustrate our algorithm, we will use the Kadomtsev–Petviashvili
(KP) equation,

(1) (ut + 3
2uux + 1

4uxxx)x + 3
4εuyy = 0, ε = ±1,

and the Korteweg–de-Vries (KdV) equation

(2) ut + uxxx + uux = 0,

both of which are integrable soliton equations, possessing, respectively, infinite-
and finite-dimensional Lie symmetry pseudo-groups, [1, 5, 6, 7, 18, 19, 20].

Let us recall how the classical Lie symmetry method, [22], works in the context
of the KP equation. Let M = R

4 with coordinates t, x, y, u given by the inde-
pendent and dependent variables in the differential equation, and let J∞(M, 3)
stand for the jet bundle of equivalence classes of three-dimensional submanifolds
u = f(t, x, y) of M under the equivalence relation of infinite-order contact. The
infinitesimal symmetry algebra g of the KP equation consists of the local vector
fields

(3) v = τ∂t + ξ∂x + η∂y + φ∂u

on M such that their prolongations v
(∞) are tangent to the variety in J∞(M, 3)

defined by the equation (1). This characterizing condition yields the system of
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partial differential equations

ηu = 0, ηx = 0, ξu = 0, ηt + 3
2εξy = 0, 3ξx − τt = 0,

3
2φ− ξt + uτt = 0, 3

2ηy − τt = 0, τu = 0, τx = 0, τy = 0,

τt + 3
2φu = 0, 2

3τtt − 3φx = 0, φtx + 3
2uφxx + 1

4φxxxx + 3
4εφyy = 0,

(4)

for the coefficient functions of the infinitesimal symmetries v. These equations
are the minimal infinitesimal (or linearized) determining system of the Lie symmetry
pseudo-group G of the KP equation. Once the system (4) is completed to invo-
lution, all the higher order equations are obtained by differentiation with respect
to t, x, y, u. The key point of this paper is to determine the local structure of G
directly from its infinitesimal determining system (4). This set-up has an obvious
counterpart for the KdV equation (2), too, which, for brevity, we will not elaborate
on until the end of the paper.

Our subsequent discussions in the paper are organized in such a way that the
results of each section are applied to the case of the KP equation within that sec-
tion, and, starting from the current section, consistent notation without further
comment will be used for the examples. It is worth emphasizing that both finite-
dimensional and infinite-dimensional symmetry pseudo-groups are handled, on
an equal footing, by precisely the same algorithms to be presented here.

2. MAURER–CARTAN FORMS FOR THE PSEUDO-GROUP

OF LOCAL DIFFEOMORPHISMS

LetM be a smooth manifold of dimensionm, and D = D(M) the pseudo-group

of local diffeomorphisms on M . For each 0 ≤ n ≤ ∞, let D(n) = D(n)(M) be the

bundle of n-jets of maps in D. The bundle D(n) is double-fibered over M with
fibrations being the source projection

σσσ(n) : D(n) −→ M, σσσ(n)(jnz φ) = z,

and the target projection

τττ (n) : D(n) −→ M, τττ (n)(jnz φ) = φ(z),

where z ∈ M and φ ∈ D. Composition of local diffeomorphisms turns D(n) into a
Lie groupoid with multiplication law

(jnz φ) · (jnwψ) := jnw(φ ◦ψ) provided σσσ(n)(jnz φ) = z = ψ(w) = τττ (n)(jnwψ).

Local coordinates of the base space M and the total space D(n) are denoted by

z = (zi) and (z, Z(n)) = (zi, ZaJ), respectively, where Z = (Za) and ZaJ , with J a
symmetric multi-index, represents the derivative ∂JZa/∂zJ . The natural identifi-

cation, obtained by viewing maps in terms of their graphs, of D(∞) with an open
subbundle of the jet bundle J∞(M × M) of infinite jets of local sections of the
trivial bundle

M ×M −→ M, (z, Z) 7−→ z,

induces a variational bicomplex structure, [2, 10, 11], on the cotangent bundle

T ∗D(∞), where the horizontal subbundle is spanned by the horizontal forms dz1, . . . , dzm,
and the vertical subbundle is spanned by the basic contact forms

Υa
J := dZaJ −

m
∑

i=1

ZaJ,idz
i, a = 1, . . . ,m, #J ≥ 0.
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Accordingly, the exterior differential d = dM+dG on D(∞) splits into the horizontal

differential1 dM and the contact (or vertical) differential dG, so that

dF = dMF + dGF =

m
∑

i=1

(DziF )dzi +

m
∑

a=1

∑

#J≥0

(∂Za
J
F )Υa

J ,

for any smooth function F : D(∞) → R. Here, Dzi is the total differential operator
with respect to the base coordinate function zi, and ∂Za

J
is the partial differential

operator with respect to the fiber coordinate function ZaJ .
Let

Rψ(jnz φ) := (jnz φ) · (jnz ψ)−1 = jnψ(z)(φ ◦ψ−1)

denote the right action of the diffeomorphism pseudo-group on its jets. A differ-

ential form µ on D(n) is said to be right-invariant if R ∗
ψ µ = µ, whenever defined,

for all ψ ∈ D. In particular, the target coordinate functions Za are right-invariant.

Since the right action preserves the splitting of T ∗D(∞), the horizontal and contact
differentials of invariant forms are invariant. Thus,

σa := dMZ
a =

m
∑

i=1

Zai dz
i, µa := dGZ

a = Υa, a = 1, . . . ,m,

are, respectively, invariant horizontal forms and invariant contact forms. The invariant
differential operators, denoted DZa , are dual to the invariant horizontal forms σa, so

dMF =

m
∑

a=1

(DZaF )σa for all F ∈ C∞(D(∞)).

Lie derivatives of invariant differential forms with respect to the invariant differ-
ential operators are invariant. Thus, the higher order invariant contact forms

µaJ := D
J
Zµ

a := DZj1 DZj2 . . .DZjkµ
a

are obtained by repeated Lie differentiation. As argued in [23, 24], these invariant
contact forms play the role of the Maurer–Cartan forms for D.

Let us present the explicit formulas in the case relevant to the KP equation.
Since the KdV case is completely similar, except with one fewer independent vari-
able, it will not be explicitly presented.

KP equation 1. The KP equation has independent variables t, x, y and dependent
variable u, which we regard as coordinates on the total space M = R

4. We denote

the corresponding local coordinates of the diffeomorphism groupoid D(∞) by

(t, x, y, u, T,X, Y, U, Tt, Tx, Ty, Tu, Xt, Xx, Xy, Xu, . . . ).

The horizontal forms on D(∞) are dt, dx, dy, du, and the contact forms are

Υt := dGT = dT − Ttdt− Txdx− Tydy − Tudu,

Υx := dGX = dX −Xtdt−Xxdx−Xydy −Xudu,

Υy := dGY = dY − Ytdt− Yxdx− Yydy − Yudu,

Υu := dGU = dU − Utdt− Uxdx− Uydy − Uudu,

Υt
t := DtΥ

t = dGTt = dTt − Tttdt− Ttxdx− Ttydy − Ttudu,

. . . and, in general, Υa
h,k,l,n := D

h
t D

k
xD

l
yD

n
uΥ

a,

1We retain the notation adopted in [23].
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where we use a to signify either t, x, y or u, and h, k, l, n ≥ 0, with Dt, Dx, Dy , Du

denoting the total differential operators. The invariant horizontal forms are

σt := dMT = Ttdt+ Txdx+ Tydy + Tudu,

σx := dMX = Xtdt+Xxdx +Xydy +Xudu,

σy := dMY = Ytdt+ Yxdx+ Yydy + Yudu,

σu := dMU = Utdt+ Uxdx+ Uydy + Uudu,

(5)

and the invariant contact forms are

µt := dGT = Υt, µx := dGX = Υx, µy := dGY = Υy, µu := dGU = Υu,

µtT := DTµ
t, µtX := DXµ

t, . . . and, in general, µah,k,l,n := D
h
TD

k
XD

l
Y D

n
Uµ

a,

where a = t, x, y or u, and

(6)









DT

DX

DY

DU









=









Tt Xt Yt Ut
Tx Xx Yx Ux
Ty Xy Yy Uy
Tu Xu Yu Uu









−1 







Dt

Dx

Dy

Du









are the invariant differential operators.

3. STRUCTURE EQUATIONS OF THE DIFFEOMORPHISM PSEUDO-GROUP

The invariant coframe for the diffeomorphism pseudo-group are the invariant
horizontal and contact forms σa, µaJ . The structure equations amount to writing
their differentials dσa, dµaJ as linear combinations of wedge products of the invari-
ant differential forms. A concise way to write down the structure equations, as

first described in [23], rests on a formal power series expansion2. To this end, we
define the vector-valued formal power series

(7) µ[[H ]] := ( µa[[H ]]) =





∑

#J≥0

1

J !
µaJH

J





whose coefficients are the invariant contact forms on D(∞). In particular, if we set
H = (Ha) = 0 in (7), then µ[[0]] = µ := (µa). The key result, proved in [23], is
that the structure equations of the invariant coframe can be read off from certain
matrix identities.

Lemma 3.1. Let

∇µ[[H ]] :=

(

∂µa[[H ]]

∂Hb

)

denote the Jacobian matrix of the vector µ[[H ]] of power series in the variables H = (Ha).
Then

(8) dµ[[H ]] = ∇µ[[H ]] ∧ (µ[[H ]] − dZ).

The structure equations of the invariant horizontal forms are given by

(9) dσ = −dµ

where σ := (σa).

2Unlike Reid, et al., [16, 17, 26, 27], we are not using power series to expand the determining equa-

tions. They are merely a convenient notational device.
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The coefficients of the powers HJ in equations (8), along with (9), form the
complete system of structure equations for the diffeomorphism pseudo-group D.

KP equation 2. We use the capital letters H,K,L,N ∈ R to denote variables for

power series. The structure equations for the invariant contact forms on D(∞) are
given by the identity

(10) dµ[[H,K,L,N ]] = ∇µ[[H,K,L,N ]] ∧ (µ[[H,K,L,N ]] − dZ),

where

dµ[[H,K,L,N ]] =
∑

h,k,l,n≥0

HhKkLlNn

h! k! l! n!









dµth,k,l,n
dµxh,k,l,n
dµyh,k,l,n
dµuh,k,l,n









,

∇µ[[H,K,L,N ]] =

∑

h,k,l,n≥0

HhKkLlNn

h! k! l! n!









µth+1,k,l,n µth,k+1,l,n µth,k,l+1,n µth,k,l,n+1

µxh+1,k,l,n µxh,k+1,l,n µxh,k,l+1,n µxh,k,l,n+1

µyh+1,k,l,n µyh,k+1,l,n µyh,k,l+1,n µyh,k,l,n+1

µuh+1,k,l,n µuh,k+1,l,n µuh,k,l+1,n µuh,k,l,n+1









,

µ[[H,K,L,N ]] − dZ = −









σt

σx

σy

σu









+
∑

h,k,l,n≥0
h+k+l+n≥1

HhKkLlNn

h! k! l! n!









µth,k,l,n
µxh,k,l,n
µyh,k,l,n
µuh,k,l,n









.

Once the structure equations for the invariant contact forms are established,
those for the invariant horizontal forms are immediately obtained by









dσt

dσx

dσy

dσu









= −









dµt

dµx

dµy

dµu









.

4. MAURER–CARTAN EQUATIONS FOR LIE SYMMETRY PSEUDO-GROUPS

Let X = X (M) denote the space of locally defined vector fields

v =
m

∑

a=1

ζa∂za

on M , i.e., the space of local sections of its tangent bundle TM . Given a sub-
pseudo-group G ⊂ D, let g ⊂ X denote its local Lie algebra of infinitesimal genera-

tors, and g
(n) their jets. With each sufficiently large n, the subbundle g

(n) ⊂ JnTM
is characterized by the linearized (or infinitesimal) determining equations

(11) L(n)(zi, ζaJ) = 0

for the pseudo-group G. Here ζaJ = ∂Jz ζ
a are the jet coordinates of a vector field v.

If G is the symmetry group of a system of differential equations, then (11) are (the
involutive completion of) the usual determining equations obtained through Lie’s
infinitesimal symmetry method.
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A complete, though certainly not minimal, system of invariant differential one-
forms for G is obtained by restricting the invariant coframe {σa, µaJ} to the Lie sub-

groupoid G(∞) ⊂ D(∞) given by the jets of pseudo-group diffeomorphisms. For
simplicity, we will not explicitly employ the pull-back notation on these restricted
forms. The resulting dependencies among the restricted forms are elucidated by
the following theorem, [23].

Theorem 4.1. The invariant forms µaJ on G(n) satisfy the linear system

(12) L(n)(Zi, µaJ) = 0

obtained by replacing zi by Zi and ζaJ by µaJ in the linearized determining equations (11).

In accordance with [23], we refer to (12) as the lifted determining equations for the
pseudo-group.

Theorem 4.2. The structure equations of the invariant coframe for a Lie pseudo-group
G are obtained by restricting the diffeomorphism structure equations (8–9) to the space of
solutions of the lifted determining equations (12).

Since the target coordinates Z = (Za) are right-invariant, the individual fibers

of the target fibration τττ (n) : G(n) →M are invariant under the right action of G and,

for that matter, G(n). The Cartan structure equations of a Lie pseudo-group, [3], are

obtained by restricting the invariant coframe to a single fiber G(n)|Z = (τττ (n))−1(Z),

whereZ ∈M is fixed. Since 0 = dZa = σa+µa when restricted to a fiber G(n)|Z , we
can replace σa by −µa, and hence only the independent invariant contact forms µaJ
will appear in the resulting structure equations. For example, if the pseudo-group
is defined by the (local) action of a finite-dimensional Lie transformation group G

on M , then, under mild regularity assumptions, G(n) → M has the structure of a
principalG-bundle for n sufficiently large,. Each fiber can be identified with a copy
of the Lie group, and the restrictions of the independent invariant contact forms

to G(n)|Z ' G are a system of classical (right-invariant) Maurer–Cartan forms for
the group G.

These results form the foundation for a general, intrinsic algorithm for directly
determining the structure of the symmetry group of a system of differential equa-
tions, as well as the structure of its algebra of differential invariants, as fixed by a
choice of a moving frame, [8, 10]. The key point is that the required computations
rely exclusively on linear differential algebra, and so can be readily implemented
in any standard symbolic computation package. In this paper, we have concen-
trated on the first part of the method, the determination of the structure of the
symmetry (pseudo-)group. The second part, on the structure of the differential in-
variant algebra and the invariant variational bicomplex, [10, 11], will be explained
in more detail in a subsequent publication.

KP equation 3. Let G denote the infinite-dimensional symmetry pseudo-group of
the KP equation (1). We begin by writing out the lifted determining equations

µyU = 0, µyX = 0, µxU = 0, µyT + 3
2εµ

x
Y = 0, 3µxX − µtT = 0,

3
2µ

u − µxT + UµtT = 0, 3
2µ

y
Y − µtT = 0, µtU = 0, µtX = 0, µtY = 0,

µtT + 3
2µ

u
U = 0, 2

3µ
t
TT − 3µuX = 0, µuTX + 3

2Uµ
u
XX + 1

4µ
u
XXXX + 3

4εµ
u
Y Y = 0,

(13)
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and so on, which are obtained from the KP symmetry determining equations (4)
by replacing t, x, y, u by T,X, Y, U and τ, ξ, η, φ by the invariant contact forms
µt, µx, µy, µu, respectively. These and their higher order counterparts obtained
by Lie differentiation with respect to the invariant differential operators (6) form a
complete system of linear dependencies among the invariant contact forms when

restricted to the symmetry groupoid G(∞).
We solve the lifted system of equations (13) (or, equivalently, the original sys-

tem (4) of infinitesimal determining equations prior to the lifting) through cross-
differentiations and Gaussian Elimination to determine the following basis of lin-
early independent Maurer–Cartan forms

ω1 := µt, ω2 := µx, ω3 := µy, ω4 := µu, ω5 := µtT = µt1,0,0,0,

ω6 := µyT = µy1,0,0,0, αi := µui,0,0,0, βi := µui−1,1,0,0, γi := µui−1,0,1,0,
(14)

for i = 1, 2, 3, . . . . For example,

µxT = 3
2ω

4 + Uω5, µtX = 0, µxX = 1
3ω

5,

µyX = 0, µtY = 0, µxY = − 2
3εω

6, µyY = 2
3ω

5,

µtU = 0, µxU = 0, µyU = 0, µuU = − 2
3ω

5,

µtTT = 9
2β

1, µxTT = 3
2α

1 + 9
2Uβ

1, µyTT = − 9
4εγ

1,

µtTX = 0, µxTX = 3
2β

1, µyTX = 0, µtTY = 0, . . .

(15)

The independent invariant contact forms (14) together with the restricted in-
variant horizontal forms {σt, σx, σy, σu} form an invariant coframe on the Lie
groupoid G(∞). The structure equations of this coframe are obtained by imposing
the dependence relation (15) on the structure equations (10) for the full diffeomor-

phism groupoid D(∞). The resulting structure equations are

dσt = ω5 ∧ σt,

dσx = 3
2ω

4 ∧ σt + Uω5 ∧ σt + 1
3ω

5 ∧ σx − 2
3εω

6 ∧ σy,

dσy = 2
3ω

5 ∧ σy + ω6 ∧ σt,

dσu = − 2
3ω

5 ∧ σu + α1 ∧ σt + β1 ∧ σx + γ1 ∧ σy,

dω1 = − ω5 ∧ σt,

dω2 = − 3
2ω

4 ∧ σt − Uω5 ∧ σt − 1
3ω

5 ∧ σx + 2
3εω

6 ∧ σy,

dω3 = − 2
3ω

5 ∧ σy − ω6 ∧ σt,

dω4 = 2
3ω

5 ∧ σu − α1 ∧ σt − β1 ∧ σx − γ1 ∧ σy,

dω5 = − 9
2β

1 ∧ σt,

dω6 = − 1
3ω

5 ∧ ω6 − 3β1 ∧ σy + 9
4εγ

1 ∧ σt,

dα1 = − 3
2ω

4 ∧ β1 − 5
3ω

5 ∧ α1 − Uω5 ∧ β1 − ω6 ∧ γ1 + 3β1 ∧ σu

− α2 ∧ σt − β2 ∧ σx − γ2 ∧ σy ,

dβ1 = − ω5 ∧ β1 − β2 ∧ σt,

(16)
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dγ1 = − 4
3ω

5 ∧ γ1 + 2
3εω

6 ∧ β1 + 4
3εβ

2 ∧ σy − γ2 ∧ σt,

dα2 = − 3ω4 ∧ β2 − 8
3ω

5 ∧ α2 − 2Uω5 ∧ β2 − 2ω6 ∧ γ2 + 9α1 ∧ β1

+ 3β2 ∧ σu − α3 ∧ σt − β3 ∧ σx − γ3 ∧ σy,

dβ2 = − 2ω5 ∧ β2 − β3 ∧ σt,

dγ2 = − 7
3ω

5 ∧ γ2 + 2εω6 ∧ β2 − 9
2β

1 ∧ γ1 − γ3 ∧ σt + 4
3εβ

3 ∧ σy,

...

After restricting the equations (16) to a target fiber (τττ (∞))−1(T,X, Y, U), i.e.,
fixing the values of the target coordinates T,X, Y, U , we find the Maurer–Cartan
equations for the KP symmetry pseudo-group G to be

dω1 = − ω1 ∧ ω5,

dω2 = − 3
2ω

1 ∧ ω4 − Uω1 ∧ ω5 − 1
3ω

2 ∧ ω5 + 2
3εω

3 ∧ ω6,

dω3 = − ω1 ∧ ω6 − 2
3ω

3 ∧ ω5,

dω4 = − ω1 ∧ α1 − ω2 ∧ β1 − ω3 ∧ γ1 + 2
3ω

4 ∧ ω5,

dω5 = − 9
2ω

1 ∧ β1,

dω6 = 9
4εω

1 ∧ γ1 − 3ω3 ∧ β1 − 1
3ω

5 ∧ ω6,

dα1 = − ω1 ∧ α2 − ω2 ∧ β2 − ω3 ∧ γ2 + 3
2ω

4 ∧ β1 − 5
3ω

5 ∧ α1 − Uω5 ∧ β1

− ω6 ∧ γ1,

dβ1 = − ω1 ∧ β2 − ω5 ∧ β1,

dγ1 = − ω1 ∧ γ2 + 4
3εω

3 ∧ β2 − 4
3ω

5 ∧ γ1 + 2
3εω

6 ∧ β1,

dα2 = − ω1 ∧ α3 − ω2 ∧ β3 − ω3 ∧ γ3 − 8
3ω

5 ∧ α2 − 2Uω5 ∧ β2

− 2ω6 ∧ γ2 + 9α1 ∧ β1,

dβ2 = − ω1 ∧ β3 − 2ω5 ∧ β2,

dγ2 = − ω1 ∧ γ3 + 4
3εω

3 ∧ β3 − 7
3ω

5 ∧ γ2 + 2εω6 ∧ β2 − 9
2β

1 ∧ γ1,

...

(17)

The structure equations for a slightly different variant of the KP equation ob-
tained by G. Reid, et al., [15, 16, 17], involve nine basic Maurer–Cartan forms
{ωωωi| i = 1, 2, . . . , 9}. The Maurer–Cartan equations that our algorithm finds for
the particular target fiber U = 0 can be mapped to theirs by the scaling correspon-
dence

ω3 = µy 7−→ pωωω1, ω2 = µx 7−→
p2

q
ωωω2, ω1 = µt 7−→ qωωω3,

ω4 = µu 7−→ −
p2

q2
ωωω4 γ1 = µuY 7−→ −

p

q2
ωωω5, β1 = µuX 7−→ −

1

q
ωωω6,

α1 = µuT 7−→ −
p2

q3
ωωω7, ω5 = µtT 7−→ −

3

2
ωωω8 ω6 = µyT 7−→ −

2p

q
ωωω9,

β2 = µuTX 7−→
1

q2
πππ1, γ2 = µuTY 7−→ −

p

q3
πππ2, α2 = µuTT 7−→ −

p2

q4
πππ3,

(18)
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where p, q are any nonzero constants. Moreover, the other invariant forms {πππ1,πππ2,πππ3}
appearing in their list of structure equations will correspond to rescalings of our
next three second-order Maurer–Cartan forms α2, β2, γ2.

KdV equation Now let G denote the symmetry group of the KdV equation (2).
Applying Lie’s algorithm, the infinitesimal symmetries v = τ∂t + ξ∂x + φ∂u must
satisfy the (minimal) determining equations

ξu = 0, 3ξx − τt = 0, φ− ξt + 2
3uτt = 0, τu = 0,

τx = 0, φuu = 0, φxu = 0, φt + uφx + φxxx = 0.

When this system is completed to involution, all the higher order equations are
obtained by differentiation. The corresponding lifted determining equations are

µxU = 0, 3µxX − µtT = 0, µu − µxT + 2
3Uµ

t
T = 0, µtU = 0,

µtX = 0, µuUU = 0, µuXU = 0, µuT + UµuX + µuXXX = 0,

and so on, where the higher order equations are obtained by repeated Lie differ-

entiation with respect to DT ,DX ,DU . Restricting to the symmetry groupoid G(∞),
there are precisely 4 independent invariant contact forms:

ω1 := µt, ω2 := µx, ω3 := µu, ω4 := µtT ,

which reflects the fact that the symmetry group of the KdV equation is a four-
dimensional Lie group. The structure equations of the coframe are

dσt = ω4 ∧ σt,

dσx = ω3 ∧ σt + 2
3Uω

4 ∧ σt + 1
3ω

4 ∧ σx,

dσu = − 2
3ω

4 ∧ σu,

dω1 = −ω4 ∧ σt,

dω2 = −ω3 ∧ σt − 2
3Uω

4 ∧ σt − 1
3ω

4 ∧ σx,

dω3 = 2
3ω

4 ∧ σu,

dω4 = 0,

where σt, σx, σu are the invariant horizontal forms. The Maurer–Cartan equations
for the Lie symmetry pseudo-group G are obtained by restricting to a target fiber
where T,X,U are fixed, whence

dω1 = −ω1 ∧ ω4,

dω2 = −ω1 ∧ ω3 − 2
3Uω

1 ∧ ω4 − 1
3ω

2 ∧ ω4,

dω3 = 2
3ω

3 ∧ ω4,

dω4 = 0.

5. DISCUSSION

An efficient method for finding the local structure of Lie symmetry pseudo-
groups of differential equations was explained, and was demonstrated for the
particular cases of the KP and KdV equations. The algorithm can be straight-
forwardly applied to any system of differential equations, irrespective of whether
its symmetry group is finite-dimensional or infinite-dimensional. To apply our
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method to other more complicated differential equations, we should optimize our
computational procedure and develop more efficient symbolic algebra routines.

The next stage of applications of our method is to develop the moving frame
algorithms for pseudo-group actions on submanifolds, [24], which will construct
complete systems of differential invariants and invariant differential forms, clas-
sify their syzygies and recurrence relations, analyze invariant variational princi-
ples, [10, 11], and solve equivalence and symmetry problems arising in geometry
and physics.
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