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Abstract. We present new computational algorithms, based on equivariant moving frames, for
classifying the differential invariants of Lie symmetry pseudo-groups of differential equations and
establishing the structure of the induced differential invariant algebra. The Korteweg–deVries
and Kadomtsev–Petviashvili equations are studied to illustrate these methods.

1. Introduction

Differential invariants play a fundamental role in wide range of applications including equiv-
alence problems for geometric structures, classification of invariant differential equations and
variational problems arising in the construction of physical theories, solution methods for ordi-
nary and partial differential equations, computer vision, the design of numerical algorithms, and
so on. The focus of this paper is the differential and algebraic structure of the space of differential
invariants of Lie group and pseudo-group actions, with particular emphasis on those arising as
symmetry groups of systems of differential equations. The most basic feature is an analog of
the Hilbert Basis Theorem for such differential invariant algebras. The moving frame methods
developed in [4, 27, 28, 29] provide a constructive algorithm for determining the fundamental gen-
erating differential invariants and exposing their differential algebraic structure. In this paper,
we develop and implement the moving frame calculus in the context of two representative exam-
ples: the symmetry (pseudo-)groups of the Korteweg–deVries (KdV) and Kadomtsev–Petviashvili
(KP) equations.

Let M be a smooth m-dimensional manifold1, known as the total space. We will study
the action of finite-dimensional Lie groups and infinite-dimensional Lie pseudo-groups G on p-
dimensional submanifolds N ⊂M . In many applications, the total space is coordinatized by the
independent and dependent variables for a system of differential equations, the submanifolds are
the graphs of solutions u = f(x) and the (pseudo-) group G is the symmetry group of the system.

For 0 ≤ n ≤ ∞, let Jn(M,p) denote the nth order (extended) jet bundle for p-dimensional

submanifolds of M , whose local coordinates (x, u(n)) consist of the independent variables xi, the
dependent variables uα, and their derivatives uα

J = ∂#Juα/∂xJ for 0 ≤ #J ≤ n. The action

of G on submanifolds of M induces an action on Jn(M,p), known as its nth prolongation. As
usual, a differential invariant is a function2 I : Jn(M,p) → R that is not affected by the prolonged
action. We let I(G) denote the algebra3 of differential invariants. The over-riding goal of this

Date: September 30, 2005.
1In many applications, M is endowed with a bundle structure, but this is unnecessary in the general geometrical

formulation of symmetry groups of differential equations, [24].
2Throughout, we allow the domain of any map to be a (proper) open subset of its source space. Thus, a

differential invariant need only be defined on an open subset of the jet space.
3In our geometric approach to the subject, the term “algebra” is to be taken in a loose sense. We classify

differential invariants up to functional dependency, [23]. Keep in mind that differential invariants may only be
locally defined, and so functional combinations must respect the various domains of definition. A more technically
precise development would recast everything in the language of sheaves, [33, 13]. However, as our primary target
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research is to determine the detailed structure of the differential invariant algebra I(G) when G
is a symmetry (pseudo-)group of a system of differential equations.

The first step in this program is to establish a differential invariant version of the Hilbert Basis
Theorem — that the differential invariant algebra I(G) is finitely generated. However, “gener-
ated” does not mean in the algebraic sense — keep in mind that we are working up to functional
independence, and so algebraic dependencies among differential invariants are automatically ac-
counted for — but rather that, under suitable hypotheses, the differential invariant algebra I(G)
is (locally) generated by a finite number of differential invariants and their invariant derivatives.
The undefined terms in our version of the Basis Theorem can be found in the body of the paper
and in [10, 28].

Theorem 1.1. Let G be a Lie pseudo-group acting on M that acts regularly and locally freely

on an open subset V ⊂ Jn(M,p) for all sufficiently large n. Then, locally on V , the differential

invariant algebra I(G) admits a finite generating set I1, . . . , Ik, and invariant differential oper-

ators D1, . . . ,Dp, so that every differential invariant can be locally expressed as a function of

the generating invariants and their invariant derivatives: DJIκ = Dj1Dj2 · · · Dji
Iκ, κ = 1, . . . , k,

i = #J ≥ 0.

The original version of the Differential Invariant Basis Theorem is due to Tresse, [31]. Proofs
in the case of finite-dimensional Lie groups can be found in [24, 26, 30]. For infinite-dimensional
pseudo-groups, a rigorous modern formulation, based on the machinery of Spencer cohomology,
can be found in Kumpera, [13]. Our version emphasizes the role of freeness, as defined below;
indeed, Kumpera’s cohomological growth bounds are closely tied to the local freeness of the
prolonged pseudo-group action. In [29], we will present a fully constructive proof of the general
result based on moving frames and Gröbner basis techniques. Generalizing the Basis Theorem
to non-freely acting pseudo-groups will be the subject of future research.

In general, the differential-algebraic structure of I(G) is subject to the following complications:

• While the number p of independent invariant differential operators is fixed a priori by
the the dimension of the submanifolds (or, equivalently, by the number of independent
variables), the number k of generating differential invariants and their minimum order
in the jet variables depend on the pseudo-group and are difficult to predict in advance.

• The invariant differential operators do not necessarily commute. Thus, effective compu-
tations in I(G) will, of necessity, rely on the methods from noncommutative differential
algebra, [11].

• In general, the differentiated invariants are not necessarily functionally independent, and
are subject to certain functional relations or syzygies

S( . . . ,DJIκ, . . . ) ≡ 0.

Finding and classifying these syzygies is essential to understanding the structure of, as
well as computing in, the differential invariant algebra I(G).

A well-known example of a differential invariant syzygy is the Codazzi equation relating deriva-
tives of the principal curvatures (or, equivalently, the Gauss and mean curvatures), which are
the generating differential invariants in the geometry of surfaces S ⊂ M = R

3 under the action
of the Euclidean group, [2, 12].

The structure of the differential invariant algebra is completely revealed by appealing to a new,
equivariant approach to Cartan’s method of moving frames that was initiated in [9, 10], and then
developed through a series of papers, including [12, 27, 28]. The construction of moving frames

audience is oriented towards applications, we will refrain from this additional technicality, and proceed to work
locally on suitable open subsets of the indicated manifolds and bundles.
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for finite dimensional group actions can be effectively extended to the infinite-dimensional case
by allowing the pseudo-group jet bundle coordinates to assume the role of the group parameters.
Once a moving frame is fixed, the task of explicit construction, via invariantization, of differential
invariants of all orders, as well as invariant differential forms, invariant differential operators, etc.,
becomes a routine algorithmic procedure. The resulting recurrence formulas, relating normalized
and differentiated invariants, can then be used to prescribe a minimal generating set of differential
invariants, and, once the commutation formulas for the invariant differential operators have been
established, complete classification of the syzygies among the differentiated invariants. This
procedure relies essentially on the associated Maurer–Cartan forms, which, for Lie pseudo-groups
(and groups) are realized as invariant contact forms on the pseudo-group jet bundle, [27, 4].

In [4], we formulated an algorithm for obtaining the structure equations of symmetry (pseudo-)
groups directly from the infinitesimal determining equations. In a similar fashion, we show here
how to uncover the structure of their differential invariant algebras. Remarkably, our algorithms
require only linear algebra and differentiation, and do not require any explicit formulas for either
the moving frame, or the differential invariants and invariant differential operators, or even the
Maurer–Cartan forms! Our methods will be illustrated by the well-studied examples of the
Korteweg–deVries (KdV) and Kadomtsev–Petviashvili (KP) equations, [1] — although it should
be emphasized that these examples were chosen due to their familiarity, and not their remarkable
soliton properties. Our algorithms are applicable to arbitrary systems of differential equations.
The theoretical foundations underlying these computational methods were established in the
earlier papers [27, 28], and in [29]. In this paper, we quote the basic theorems from these
references, where detailed proofs can be found. In the interests of brevity, the general algorithms
will be illustrated mainly on the running example of the KdV equation; the technically more
complicated case of the KP equation will be deferred until the end of the paper.

Applications in case of the finite-dimensional symmetry groups can be found in many of the
references, including [12, 18, 19, 20, 25]. These include solution to equivalence and symme-
try problems, invariant variational problems arising in differential geometry and mathematical
physics, solution of symmetric overdetermined systems of partial differential equations, Poisson
geometry and integrability of flows in homogeneous spaces, as well as applications in computer
vision and numerical analysis, to name a few. Elsewhere, we will develop the corresponding
applications of our methods in the case of infinite-dimensional pseudo-groups, as well as the
construction of explicit solutions to nonlinear partial differential equations by Vessiot’s group
splitting method, [21, 22, 30, 32].

2. Preliminaries

Throughout, we will use the basic framework and notation of [23, 24] without further comment.
We are concerned with the point4 symmetry group of a system of differential equations

∆ν(x, u
(n)) = 0, ν = 1, 2, . . . , k, (1)

involving p independent variables x = (x1, . . . , xp) and q dependent variables u = (u1, . . . , uq)
and their derivatives uα

J up to some finite order n. We regard z = (x, u) as local coordinates on
the total space M , a manifold of dimension m = p + q, and so the system defines a subvariety
S∆ ⊂ Jn(M,p) of the nth order (extended) jet bundle of p-dimensional submanifolds of M , that
is, graphs of functions u = f(x). To avoid unnecessary technicalities, the system (1) is assumed
to be locally solvable, [23], and define a regular submanifold of Jn(M,p).

4In this paper, we restrict our attention to point symmetries. Extensions of our methods to, say, projectable
(fiber-preserving) or contact symmetry groups, [24], are straightforward.
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Let X (M) denote the space of smooth vector fields

v =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
, (2)

on M . Let

v(n) =

p∑

i=1

ξi ∂

∂xi
+

q∑

α=1

n∑

#J=0

ϕJ
α

∂

∂uα
J

(3)

denote the nth order prolongation of the vector field to Jn(M,p), whose coefficients are given by
the well-known prolongation formula

ϕJ
α = DJ

(
ϕα −

p∑

i=1

uα
i ξ

i
)

+

p∑

i=1

uα
J,iξ

i, (4)

obtained by repeatedly applying the total derivatives Di = Dxi , i = 1, . . . , p, to its character-
istic. Observe that each ϕJ

α is a certain linear function of the derivatives ξi
A = ∂#Aξi/∂zA,

ϕα
A = ∂#Aϕα/∂zA, of the vector field coefficients with respect to all variables z = (x, u) =

(x1, . . . , xp, u1, . . . , uq) with coefficients that are polynomials of the derivative coordinates uβ
K .

A vector field v ∈ X (M) is an infinitesimal symmetry of the system of differential equations
(1) if and only if it satisfies the infinitesimal invariance condition

v(n)(∆ν) = 0 on S∆ for all ν = 1, 2, . . . , k. (5)

When expanded out, this typically forms an overdetermined system of homogeneous linear partial
differential equations for the coefficients ξi, ϕα of the vector field (2). We let

L( . . . , xi, . . . , uα, . . . , ξi
A, . . . , ϕ

α
A, . . . ) = 0 (6)

denote the completion of the system of infinitesimal determining equations, which includes the
original determining equations along with all equations obtained by repeated differentiation.

The solution space g ⊂ X (M) to the infinitesimal determining equations (6) is the Lie algebra
of infinitesimal symmetries of the system (1), and can be either finite- or infinite-dimensional. In
[4], we developed new algorithms for directly determining the structure of the symmetry algebra g

that completely avoided integration of the determining equations. The goal of the present paper
is to develop analogous computational algorithms for studying the structure of its differential
invariant algebra I(G).

2.1. The KdV equation. Our running example will be the celebrated Korteweg–deVries (KdV)
equation, [1],

ut + uxxx + uux = 0. (7)

The total space M = R
3 has coordinates (t, x, u), and its solutions u = f(t, x) define p = 2-

dimensional submanifolds of M . The prolongation of a vector field

v = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ ϕ(t, x, u)

∂

∂u

on M to Jn(M, 2) has the form

v(n) = τ
∂

∂t
+ ξ

∂

∂x
+
∑

#J≥0

ϕJ ∂

∂uJ
,
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whose coefficients are given by the well-known explicit formulas, [23],

ϕt = ϕt + utϕu − utτt − u2
t τu − uxξt − utuxξu,

ϕx = ϕx + uxϕu − utτx − utuxτu − uxξx − u2
xξu,

...

(8)

The vector field v is an infinitesimal symmetry of the KdV equation if and only if

v(3)(ut + uxxx + uux) = ϕt + ϕxxx + uϕx + ux ϕ = 0 whenever ut + uxxx + uux = 0.

Substituting the prolongation formulas (8), and equating the coefficients of the independent
derivative monomials to zero, leads to the infinitesimal determining equations which together
with their differential consequences reduce to the system

τx = τu = ξu = ϕt = ϕx = 0, ϕ = ξt −
2
3uτt, ϕu = −2

3τt = −2ξx, (9)

while all the derivatives of the components of order two or higher vanish. The general solution

τ = c1 + 3c4t, ξ = c2 + c3t+ c4x, ϕ = c3 − 2c4u,

defines the four-dimensional KdV symmetry algebra with the basis given by

v1 = ∂t, v2 = ∂x, v3 = t∂x + ∂u, v4 = 3t∂t + x∂x − 2u∂u. (10)

3. Structure of Lie Pseudo-groups

Each vector field in the symmetry algebra g generates a one-parameter local transformation
group. These combine to form the (connected component of) the symmetry pseudo-group G
of the system, which forms a sub-pseudo-group of the pseudo-group D = D(M) of all local
diffeomorphisms of the total space M . Let us briefly discuss the structure and geometry of the
diffeomorphism and symmetry pseudo-groups, referring the reader to [4, 27] for details.

For 0 ≤ n ≤ ∞, let D(n) ⊂ Jn(M,M) be the subbundle D(n) → M consisting of the nth

order jets, jnψ, of local diffeomorphisms ψ : M → M . Local coordinates (x, u,X(n), U (n)) on

D(n) consist of the source (base) coordinates xi, uα on M , the corresponding target coordinates5

Xi, Uα, along with their derivatives Xi
A, U

α
A, 1 ≤ #A ≤ n, with respect to the source coordinates.

We view the jet coordinates Xi
A, U

α
A as representing the group parameters of the diffeomorphism

pseudo-group D.
The local coordinate expressions for the prolonged action of a local diffeomorphism of M on

the submanifold jet bundle Jn(M,p) are obtained by implicit differentiation. In view of the chain
rule, this action only depends on nth order derivatives of the diffeomorphism at the base point,
and so factors through D(n). To formalize the process we introduce the lifted horizontal coframe

dHX
i =

p∑

j=1

(DjX
i)dxj =

p∑

j=1

(
Xi

xj +

q∑

α=1

uα
j X

i
uα

)
dxj, i = 1, 2, . . . , p, (11)

where dH denotes the horizontal differential. Here Xi
xj ,X

i
uα are first order jet coordinates on D(1),

while uα
j are first order jet coordinates on J1(M,p). Thus, strictly speaking, the lifted horizontal

coframe consists of p one-forms on the bundles E(n) → Jn(M,p) obtained by forming the pull-

back bundle of D(n) →M under the usual jet projection πn : Jn(M,p) →M . Coordinates on E(n)

5Throughout, we adopt Cartan’s convention that source coordinates are denoted with lower case letters, while
target coordinates of diffeomorphisms and their jets are denoted by the corresponding upper case letters.
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consist of the submanifold jet coordinates xi, uα
J along with the diffeomorphism jet coordinates

(or group parameters) Xi
A, U

α
A.

The dual lifted total differential operators, denoted DX1 , . . . ,DXp , are defined so that

dHF =

p∑

j=1

(DXiF ) dHX
i for any function F : E(n) → R. (12)

The prolonged action of a diffeomorphism jet (X(n), U (n)) ∈ D(n) maps the submanifold jet

(x, u(n)) ∈ Jn(M,p) to the target jet (X, Û (n)) ∈ Jn(M,p), whose components6

Ûα
J = DXj1 · · ·DXjkU

α, 0 ≤ k = #J ≤ n, α = 1, . . . q, (13)

are obtained by repeatedly applying the lifted total differential operators to the target dependent

variables Uα = Ûα.
Warning : In these formulas, as in (11), the total derivatives Di = Dxi act on both the

submanifold jet coordinates uα
J and the diffeomorphism jet coordinates Xi

A, U
α
A in a natural

manner. See [27, 28] for full details.
The symmetry group G forms a sub-pseudo-group of the diffeomorphism pseudo-group D, and

hence its nth order jets determine a subbundle7 G(n) ⊂ D(n). When n < ∞, we let rn be the
fiber dimension of the subbundle G(n), which can be identified with the pseudo-group dimension
at order n. Clearly

0 ≤ r0 ≤ r1 ≤ r2 ≤ · · · . (14)

In the finite-dimensional case when the pseudo-group G represents the (local) action of a Lie group
G, the fiber dimensions stabilize: rn = r ≤ dimG for n � 0. On the other hand, for infinite-
dimensional pseudo-group actions, the fiber dimensions continue to increase without bound as
n → ∞. Local coordinates on G(n) consist of the source coordinates xi, uα on M along with rn
group parameters λ(n) = (λ1, . . . , λrn) that parametrize the fibers.

The prolonged action of the pseudo-group G on the submanifold jets Jn(M,p) is then given by
restricting the prolonged diffeomorphism action (13) to G(n) ⊂ D(n). Or, once a parametrization
of the pseudo-group subbundle is specified, one can directly apply the induced lifted differentiation
operators as in (13).

3.1. The KdV symmetry pseudo-group. When M = R
3 has coordinates (t, x, u), the in-

duced coordinates on the diffeomorphism jet bundle D(n) are denoted by

(t, x, u, T,X,U, Tt, Tx, Tu,Xt,Xx,Xu, Ut, Ux, Uu, Ttt, Ttx, Txx, Ttu, Txu, Tuu,Xtt,Xtx,Xxx, . . . ).

By integrating the infinitesimal symmetries (10), we recover the action of the KdV symmetry
group GKdV on M , which can be obtained by composing the flows of the symmetry algebra basis
and is given by

(T,X,U) = exp(λ4v4) ◦ exp(λ3v3) ◦ exp(λ2v2) ◦ exp(λ1v1)(t, x, u)

=
(
e3λ4(t+ λ1), e

λ4(λ3t+ x+ λ1λ3 + λ2), e
−2λ4(u+ λ3)

)
,

(15)

6We place hats over the transformed submanifold jet coordinates bUα
J to avoid confusing them with the diffeo-

morphism jet coordinates Uα
A .

7As always, we are assuming regularity of the symmetry pseudo-group.
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where λ1, λ2, λ3, λ4 are the group parameters. A parametrization of the subbundle G(n) ⊂ D(n) is
obtained by repeatedly differentiating T,X,U with respect to t, x, u, which yields the expressions

T = e3λ4(t+ λ1), X = eλ4(λ3t+ x+ λ1λ3 + λ2), U = e−2λ4(u+ λ3),

Tt = e3λ4 , Tx = 0, Tu = 0, Xt = λ3e
λ4 , Xx = eλ4 , Xu = 0, Ut = 0, Ux = 0, Uu = e−2λ4 ,

Ttt = 0, Ttx = 0, Txx = 0, Ttu = 0, Txu = 0, Tuu = 0, Xtt = 0, Xtx = 0, Xxx = 0, . . . ,
(16)

implying that the fiber dimension of G(n) is rn = 4 = dimG for all n ≥ 1.
The lifted horizontal coframe, when restricted to G, is

dHT = (Tt + utTu)dt+ (Tx + uxTu)dx = e3λ4dt,

dHX = (Xt + utXu)dt+ (Xx + uxXu)dx = λ3e
λ4dt+ eλ4dx,

(17)

with dual lifted total derivative operators

DT = e−3λ4Dt − λ3e
−3λ4Dx, DX = e−λ4Dx, (18)

where now Dt, Dx are the usual total derivative operators on J∞(M, 2). A repeated application

of these to Û = U = e−2λ4(u+λ3), as in (13), produces the explicit formulas for prolonged action
of G on the submanifold jet space Jn(M, 2). Specifically, we have

T = e3λ4(t+ λ1), X = eλ4(λ3t+ x+ λ1λ3 + λ2), Û = U = e−2λ4(u+ λ3),

ÛT = DT Û = e−5λ4(ut − λ3ux), ÛX = DX Û = e−3λ4ux,

ÛTT = D2
T Û = e−8λ4(utt − 2λ3utx + λ2

3uxx), ÛTX = DXDT Û = e−6λ4(utx − λ3uxx),

ÛXX = D2
X Û = e−4λ4uxx, ÛTTT = D3

T Û = e−11λ4(uttt − 3λ3uttx + 3λ2
3utxx − λ3

3uxxx),

ÛTTX = DXD
2
T Û = e−9λ4(uttx − 2λ3utxx + λ2

3uxxx),

ÛTXX = D2
XDT Û = e−7λ4(utxx − λ3uxxx), ÛXXX = D3

X Û = e−5λ4uxxx, . . . .

(19)

4. Moving Frames and Invariantization

In the finite-dimensional theory, [10], a moving frame is defined to be an equivariant map from
(an open subset of) the jet bundle Jn(M,p) back to the Lie group G. In the more general context
of pseudo-groups, [27, 28], the role of the group is played by the bundles (or, more accurately,

groupoids) G(n) → M . Let H(n) −→ Jn(M,p) be the pull-back of G(n) along the usual jet

projection πn : Jn(M,p) →M , which, assuming regularity, forms a subbundle H(n) ⊂ E(n). Local

coordinates on H(n) have the form (x, u(n), λ(n)), where (x, u(n)) are jet coordinates on Jn(M,p)

while the fiber coordinates λ(n) are the pseudo-group parameters of order ≤ n. Since G acts on
Jn(M,p) by prolongation, and on G(n) through right jet multiplication, G also acts on H(n). The
key definition was first proposed in [28]:

Definition 4.1. An nth order moving frame for a pseudo-group G acting on p-dimensional
submanifolds N ⊂ M is a locally G-equivariant section ρ(n) : Jn(M,p) → H(n) of the bundle

H(n) → Jn(M,p).

As in the finite-dimensional version, necessary and sufficient conditions for the existence of a
moving frame are that the action be locally free and regular, [28]:
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Theorem 4.1. A locally equivariant moving frame exists in a neighborhood of a jet (x, u(n)) ⊂
Jn(M,p) if and only if the G-orbits near (x, u(n)) form a regular foliation having rn-dimensional

leaves.

Remark : The local freeness condition requires that, at order n, the dimension of the intersection
of the pseudo-group orbits with the jet fibers Jn(M,p) |z is the same as the fiber dimension of

G(n). In the case of finite-dimensional group actions, local freeness in the usual sense (discrete
isotropy) implies local freeness as a pseudo-group, but not conversely, [28]. In practice, local
freeness does not need to be checked a priori, but is a consequence of the successful solution to
the moving frame normalization equations.

A practical way of constructing a moving frame ρ(n) is through normalization based on the
choice of a cross-section to the G-orbits. The computational algorithm is as follows:

(i) First, explicitly write out the local coordinate formulas (13) for the prolonged pseudo-

group action on Jn(M,p) in terms of the jet coordinates (x, u(n)) and the rn independent
pseudo-group parameters λ(n),

(X, Û (n)) = P (n)(x, u(n), λ(n)). (20)

(ii) Set rn of the coordinate functions (20) to constants,

Pκ(x, u(n), λ(n)) = cκ, κ = 1, 2, . . . , rn, (21)

suitably chosen so as to form a cross-section8 to the pseudo-group orbits.
(iii) Solve the normalization equations (21) for the independent group parameters

λ(n) = h(n)(x, u(n)) (22)

in terms of the submanifold jet coordinates. The induced moving frame section
ρ(n) : Jn(M,p) → H(n) is given by

ρ(n)(x, u(n)) = (x, u(n), h(n)(x, u(n))). (23)

From here on, we assume that the pseudo-group acts eventually locally freely, which means that
it acts (locally) freely on an open subset of Jn(M,p) for all sufficiently large n ≥ n?. According
to [26], all finite-dimensional Lie groups (more correctly, all those that act locally effectively on
subsets) act eventually locally freely. For infinite-dimensional pseudo-group, it can be proved,
[29], that local freeness at order n automatically implies local freeness at all higher orders; the
minimal such n will be called the order of freeness of the pseudo-group. Pseudo-groups that
act eventually freely admit an infinite order moving frame: a hierarchy of mutually compatible
moving frames. In practice, compatibility is assured by retaining all lower order cross-section
normalizations when proceeding to the next higher order. See [28] for details, as well as a Taylor
series version of the algorithm that performs all moving frame normalizations simultaneously.

4.1. A moving frame for the KdV equation. As noted earlier, the KdV symmetry group
has dimension 4. Let us choose the cross-section to the G-orbits in Jn(M, 2), n ≥ 1, defined by
the four normalization equations

T = e3λ4(t+ λ1) = 0,

X = eλ4(λ3t+ x+ λ1λ3 + λ2) = 0,

Û = e−2λ4(u+ λ3) = 0,

ÛT = e−5λ4(ut − λ3ux) = 1.
(24)

8Thus, we restrict our attention here, for simplicity, to coordinate cross-sections. Moving frames based on
general cross-sections can be treated by adapting the methods presented by Mansfield, [18].



DIFFERENTIAL INVARIANTS OF SYMMETRY GROUPS 9

On the subset9 V = {ut + uux > 0}, these can be solved for the group parameters

λ1 = −t, λ2 = −x, λ3 = −u, λ4 = 1
5 log(ut + uux), (25)

thereby prescribing the moving frame ρ(n) : Jn(M, 2) → H(n) ⊂ E(n) for n ≥ 1. Namely, by sub-

stituting into (16), ρ(n) maps the point (t, x, u, ut, ux, utt, utx, . . . ) ∈ Jn(M, 2) to the pseudogroup

jet in H(n) with fiber coordinates

T = 0, X = 0, U = 0, Tt = 1, Tx = 0, Tu = 0, Xt = −u(ut + uux)1/5,

Xx = (ut + uux)1/5, Xu = 0, Ut = 0, Ux = 0, Uu = (ut + uux)−2/5,

Ttt = 0, Ttx = 0, Txx = 0, Xtt = 0, Ttu = 0, Txu = 0, Tuu = 0, Xtx = 0, Xxx = 0, . . . .

(26)

By Theorem 4.1, the existence of a moving frame implies that the action of G is locally free
and regular on the subset V = {ut + uux > 0} ⊂ Jn(M, 2) for all n ≥ 1. In practice, the
existence of moving frames can be verified through direct (and successful) implementation of the
normalization procedure, rather than checking the condition of local freeness and regularity of
the action a priori.

Once a moving frame is fixed, the induced invariantization process ι associates to each object
on Jn(M,p) — differential function, differential form, differential operator, etc. — a uniquely
prescribed invariant counterpart with the property that they coincide when restricted to the
cross-section. In local coordinates, this is accomplished by writing out the transformed version
of the object, and then replacing all occurrences of the pseudo-group parameters by their moving
frame expressions (22). In particular, invariantizing the nth order jet coordinates (x, u(n)) leads
to the normalized differential invariants

H i = ι(xi), Iα
J = ι(uα

J ). (27)

These naturally split into two classes: Those that correspond to the rn coordinate functions used
in the normalization equations (21) are equal to the corresponding normalization constants cκ,
and are known as the phantom differential invariants. The remaining sn = dim Jn(M,p) − rn
differential functions form a complete system of functionally independent differential invariants,
in the sense that any differential invariant of order ≤ n can be locally uniquely written as a
function of the non-phantom differential invariants (27).

Theorem 4.2. If the pseudo-group G acts locally freely and regularly on an open subset of

Jn(M,p) for n � 0, then the non-phantom normalized differential invariants (27) of all orders

n ≥ 0 are functionally independent and generate the differential invariant algebra I(G).

Invariantization is clearly an algebra morphism, so

ι
(
Φ(F1, . . . , Fk)

)
= Φ

(
ι(F1), . . . , ι(Fk)

)

for any function Φ of the differential functions F1, . . . , Fk. Moreover, it defines a projection,
meaning that ι ◦ ι = ι; see [10, 28]. In particular, ι does not affect differential invariants, which
implies the elementary, but extremely powerful Replacement Theorem, [10]:

Theorem 4.3. If I(x, u(n)) = I(. . . , xi, . . . , uα
J , . . .) is any differential invariant, then

I(x, u(n)) = ι
(
I(x, u(n))

)
= I(. . . ,H i, . . . , Iα

J , . . .)

9One can define alternative moving frames that include points where ut + uux = 0 by employing different
cross-sections. For brevity, in this paper we only deal with this particular choice of moving frame.
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on the domain of definition of the moving frame. Similarly, any invariant system of differential

equations ∆(x, u(n)) = 0 can be rewritten10 in terms of the normalized differential invariants by

invariantization:
ι
(
∆(x, u(n))

)
= ∆(. . . ,H i, . . . , Iα

J , . . .) = 0.

The alternative, classical method for generating higher order differential invariants is by in-
variant differentiation. A basis for the invariant differential operators D1, . . . ,Dp can be obtained
by invariantizing the total differential operators D1, . . . ,Dp. More explicitly, we let

ωi = (ρ(n))∗dHX
i, i = 1, 2, . . . , p, (28)

be the contact-invariant11 horizontal coframe obtained by pulling back the lifted horizontal
coframe (11) via the moving frame. In practice, the one-forms (28) are found by substitut-
ing for the pseudo-group parameters in the lifted horizontal coframe (11) in accordance with the
moving frame formulas (22). The invariant differential operators are the dual total differential
operators, defined so that

dHF =

p∑

i=1

(DiF ) ωi for any differential function F : Jn(M,p) → R. (29)

They can be obtained directly by replacing the pseudo-group parameters in the lifted total
differential operators DXi by their moving frame expressions.

4.2. Differential invariants for the KdV equation. For the KdV symmetry group, the
differential invariants are obtained by invariantizing the jet coordinates t, x, u, ut, ux, utt, utx, . . .,
which is equivalent to substituting the moving frame expressions (25) into the prolonged action
formulas (19). The constant phantom differential invariants

H1 = ι(t) = 0, H2 = ι(x) = 0, I0 = ι(u) = 0, I10 = ι(ut) = 1, (30)

result from our particular choice of normalization (24). The invariantizing the remaining co-
ordinate functions yields a complete system of functionally independent normalized differential
invariants:

I01 = ι(ux) =
ux

(ut + uux)3/5
, I20 = ι(utt) =

utt + 2uutx + u2uxx

(ut + uux)8/5
,

I11 = ι(utx) =
utx + uuxx

(ut + uux)6/5
, I02 = ι(uxx) =

uxx

(ut + uux)4/5
,

I30 = ι(uttt) =
uttt + 3uuttx + 3u2utxx + u3uxxx

(ut + uux)11/5
, I21 = ι(uttx) =

uttx + 2uutxx + u2uxxx

(ut + uux)9/5
,

I12 = ι(utxx) =
utxx + uuxxx

(ut + uux)7/5
, I03 = ι(uxxx) =

uxxx

ut + uux
, . . . .

(31)

The Replacement Theorem 4.3 allows us to immediately rewrite the KdV equation in terms of
the differential invariants by applying the invariantization process to it:

0 = ι(ut + uux + uxxx) = 1 + I03 =
ut + uux + uxxx

ut + uux
.

10The invariantized system may include an additional multiplier.
11These one-forms are invariant if the pseudo-group acts projectably, but only invariant modulo contact forms

in general, cf. [12, 28]. A familiar example is the arc length form ω = ds in Euclidean curve geometry, which is
only contact-invariant under general Euclidean motions, [24].
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Note the appearance of a nonzero multiplier indicating that the KdV equation is initially defined
by a relative differential invariant, [24]. The invariant horizontal one-forms

ω1 = (ut + uux)3/5dt, ω2 = −u(ut + uux)1/5dt+ (ut + uux)1/5dx, (32)

are obtained by substituting (25) into the lifted horizontal coframe (17), while the corresponding
invariant differential operators

D1 = (ut + uux)−3/5Dt + u(ut + uux)−3/5Dx, D2 = (ut + uux)−1/5Dx, (33)

can be found either by using duality (29), or by directly substituting the moving frame expres-
sions (25) into the lifted total derivative operators (18). Higher order differential invariants can
then be constructed by repeatedly applying the invariant differential operators to the lower or-
der differential invariants, and hence can be expressed in terms of the normalized differential
invariants. For example,

D1I01 = −3
5I

2
01 + I11 −

3
5I01I20, D2I01 = −3

5I
3
01 + I02 −

3
5I01I11,

as can be checked by a somewhat tedious explicit calculation. In the next section, we will develop
an algorithm for constructing these recurrence formulas in a much simpler, direct fashion.

5. The Algebra of Differential Invariants

Unlike the normalized differential invariants obtained from Theorem 4.2, the differentiated

invariants are typically not functionally independent. Thus, it behooves us to establish the
recurrence formulas relating the normalized and differentiated invariants, which will, in turn,
enable us to write down a finite generating system of differential invariants as well as a complete
system of syzygies or functional dependencies among the differentiated invariants. The required
recurrence formulas rely on the Maurer–Cartan forms for the pseudo-group, and so we begin by
briefly reviewing their construction, as developed in [4, 27].

5.1. The Maurer–Cartan forms. First, the Maurer–Cartan forms for the diffeomorphism
pseudo-group D are explicitly realized as the right-invariant contact forms on the infinite jet
bundle D(∞). A basis is labeled by the fiber coordinates Xi

A, Uα
A on D(∞), and we use the

symbols

χi
A, µα

A, for i = 1, . . . p, α = 1, . . . , q, #A ≥ 0, (34)

to denote the corresponding basis Maurer–Cartan forms. Their explicit formulas, along with the
complete system of diffeomorphism structure equations, will not be required here, but can be
found in [4, 27] .

The Maurer–Cartan forms for a Lie pseudo-group G ⊂ D are obtained by restricting the
diffeomorphism Maurer–Cartan forms12 (34) to the subbundle G(∞) ⊂ D(∞). Of course, the
resulting differential forms are no longer (pointwise) linearly independent. But remarkably, the
complete system of linear dependencies among the restricted forms can be immediately described
in terms of the infinitesimal determining equations for the pseudo-group.

Theorem 5.1. The restricted Maurer–Cartan forms satisfy the lifted determining equations

L( . . . ,Xi, . . . , Uα, . . . , χi
A, . . . , µ

α
A, . . . ) = 0 (35)

12To avoid unnecessary clutter, we will retain the same notation for the restricted forms.
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that are obtained by applying the following replacement rules to the infinitesimal determining

equations (6):

xi 7−→ Xi, uα 7−→ Uα, ξi
A 7−→ χi

A, ϕα
A 7−→ µα

A, for all i, α, A. (36)

As discussed in [27] (see also [4]), the structure equations for the pseudo-group G(∞) can simply
be obtained by imposing the dependencies (35) on the structure equations of the diffeomorphism
pseudo-group.

In the construction of recurrence formulas, the most important forms are not the Maurer–
Cartan forms per se, but rather, their pull-backs under the moving frame map. In what follows,
we will only need the horizontal components of the resulting invariantized forms, as specified by
the splitting of coordinates on M into independent and dependent variables, [24, 28].

Definition 5.1. Given a moving frame ρ(n) : Jn(M,p) → H(n), we define the invariantized

Maurer–Cartan forms to be the horizontal components of the pull-backs

βi
A = πH [ (ρ(n))∗χi

A ], ζα
A = πH [ (ρ(n))∗µα

A ]. (37)

Remark 5.1.1. In general, the pull-backs (ρ(n))∗χi
A and (ρ(n))∗µα

A are one-forms on Jn(M,p)
with non-trivial vertical or contact components. Only the horizontal components are required
in the analysis of the algebraic structure of differential invariants. The contact components are

important in the study of invariant variational problems and the invariant variational bicomplex,
[12], and will be the focus of future research.

Applying the moving frame pull-back map to (35) and then extracting the horizontal com-
ponents of the resulting linear system, we deduce the corresponding dependencies among the
invariantized Maurer–Cartan forms.

Theorem 5.2. The invariantized Maurer–Cartan forms satisfy the invariantized determining
equations

L( . . . ,H i, . . . , Iα, . . . , βi
A, . . . , ζ

α
A, . . . ) = 0. (38)

We next extend the invariantization process to include, besides differential functions and forms,
the derivatives (jet coordinates) of vector field coefficients13 by setting

ι(ξi
A) = βi

A, ι(ϕα
A) = ζα

A. (39)

The invariantization of any linear differential function14

∑

i,A

F i
A(x, u(n))ξi

A +
∑

α,A

Fα
A(x, u(n))ϕα

A,

on the space of vector fields X (M) is the corresponding invariant linear combination
∑

i,A

F i
A(H, I(n))βi

A +
∑

α,A

Fα
A(H, I(n))ζα

A, (40)

of invariantized Maurer–Cartan forms. In other words, to invariantize, we replace jet coordinates
xi, uα

J by the corresponding differential invariants H i, Iα
J , while derivatives of the vector field

13Each derivative ξi
A, ϕα

A serves to define a linear function on the space of vector fields X (M), and so should
properly be viewed as a differential form. Thus, the fact that its invariantization is another differential form should
not come as a complete surprise.

14All sums are finite.
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coefficient are replaced by the corresponding invariantized Maurer–Cartan forms for the pseudo-
group. In particular, applying the invariantization process ι to the infinitesimal determining
equations (6) yields the linear dependencies (38) among the invariantized Maurer–Cartan forms.

5.2. Maurer–Cartan forms for the KdV symmetry group. Let us apply our constructions
to the KdV symmetry group. Its Maurer–Cartan forms are obtained by restricting the diffeo-
morphism Maurer–Cartan forms to the pseudo-group subbundle G(∞) ⊂ D(∞). Let νA, χA, µA

be the diffeomorphism Maurer–Cartan forms (34) corresponding to the target jet coordinates TA,
XA, UA. According to Theorem 5.1, the restricted forms satisfy the linear equations

νX = νU = χU = µT = µX = 0, µ− χT + 2
3 UνT = 0,

µU = −2
3νT = −2χX , νTT = νTX = · · · = 0,

(41)

obtained from the determining equations (9) by using the replacement rules (36). From these
equations we see that the forms ν, χ, µ, νT form a basis for the Maurer–Cartan forms for the four-
dimensional symmetry group G of the KdV equation. In [4], this fact was used to establish the
structure of the KdV symmetry group directly without having to solve the determining equations.

We now pull back the Maurer–Cartan forms by our moving frame map. The resulting (hori-
zontal) invariantized Maurer–Cartan forms are denoted by

ι(τA) = αA, ι(ξA) = βA, ι(ϕA) = γA. (42)

They are subject to the equations obtained by invariantization of the determining equations (9),
and so, in view of the normalizations (30),

αX = αU = βU = γT = γX = 0, γ − βT = 0,

γU = −2
3αT = −2βX , αTT = αTX = · · · = 0.

(43)

As with the lifted forms, we can use these linear relations to write all of the invariantized Maurer–
Cartan forms as linear combinations of

α = ι(τ), β = ι(ξ), γ = ι(ϕ), ζ = αT = ι(τt). (44)

5.3. The Recurrence Formulas. According to the prolongation formula (4), the coefficients
ϕJ

α of a prolonged vector field are certain well-prescribed linear combinations of the derivatives
ξi
A, ϕα

A, #A ≤ #J , of its original coefficients. Let

ψJ
α = ι(ϕJ

α) (45)

denote their invariantizations, which, in accordance with the general procedure (40), are linear
combinations of invariantized Maurer–Cartan forms βi

A, ζ
α
A defined in (39) whose coefficients

are differential invariants; in fact, they are certain universal polynomial functions of the basic
normalized differential invariants Iα

J . These particular invariant differential forms provide the
crucial correction terms in the recurrence relations for the differentiated invariants. See [28] for
a proof of this key result.

Theorem 5.3. The recurrence formulas for the normalized differential invariants (27) are

dHH
j =

p∑

i=1

(
DiH

j
)
ωi = ωi + βi, dHI

α
J =

p∑

i=1

(
DiI

α
J

)
ωi =

p∑

i=1

Iα
J,i ω

i + ψJ
α . (46)
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The recurrence formulas (46) split into two types: First, whenever Hj or Iα
J is a phantom

(constant) differential invariant, its differential is identically zero, and so the left hand side of
the phantom recurrence equation in (46) vanishes. Under the assumption that the pseudo-group
acts locally freely at order n, the resulting equations can be solved for all the independent
invariantized Maurer–Cartan forms of order #A ≤ n; see [29] for the general proof. We then
substitute the resulting expressions for the invariantized Maurer–Cartan forms into the remaining
non-phantom recurrence equations in (46) to produce the recurrence formulas. Identifying the
induced coefficients of the invariant horizontal coframe ω1, . . . , ωp results in a complete system
of recurrence formulas relating the differentiated and normalized invariants.

Thus, the basic recurrence formulas have the form

DiH
j = δj

i + M̂ j
i , DiI

α
J = Iα

J,i +Mα
J,i, (47)

where δi
j is the usual Kronecker delta, and the correction terms M̂ j

i ,M
α
J,i are fixed by the preceding

algorithm. Iterating, we establish the general recurrence formulas

DKI
α
J = Iα

J,K +Mα
J,K , (48)

valid for any multi-indices J,K. In computations, the correction terms Mα
J,K are rewritten in

terms of the generating differential invariants.
The most striking fact is that the preceding algorithm establishes the recurrence formulas,

without any need to explicitly compute the Maurer–Cartan forms or their pull-backs in advance,
nor the explicit formulas for the differential invariants and invariant differential forms, nor the
infinitesimal generators or symmetry group transformations. Once the cross-section normaliza-
tions have been chosen, the algorithm is entirely based on the standard prolongation formula,
and the resulting infinitesimal determining equations for the symmetry group!

With the recurrence formulas (47, 48) in hand, the generating set of differential invariants and
the syzygies can, at least in relatively simple examples, be found by inspection along the same
lines as in the finite-dimensional version presented in [10]. A more sophisticated approach relies
on the additional algebraic structure underlying the differential invariant algebra revealed in [29],
which we now briefly summarize.

Let R[x] be the ring of real-valued polynomials p(x) =
∑

J cJx
J in the independent variables

x1, . . . , xp. Let R[x;u] be the R[x] module consisting of polynomials q(x, u) =
∑

J cJ,αx
Juα

which are linear in the dependent variables u1, . . . , uq. By Dickson’s Lemma, [5], any monomial

submodule J ⊂ R[x;u] is generated by finite number of monomials xJ1uα1 , . . . , xJkuαk . We call
a subspace J ⊂ R[x;u] an eventual monomial module of order n if it is spanned by monomials,
and its “high degree” component J>n, that is spanned by all monomials xJuα of degree #J > n
in J , forms a module. A generating set for an eventual monomial ideal of order n is given by a
Gröbner basis for J>n along with all monomials xIuβ ∈ J of degree #I ≤ n.

Given a moving frame (of infinite order) based on compatible coordinate cross-sections, we
identify each non-phantom normalized differential invariant Iα

J with the monomial xJuα. We
let M(G) ⊂ R[x;u] be the subspace spanned by these non-phantom monomials. An infinite
order moving frame is called algebraic of order n if M(G) is an eventual monomial module of
order n. Moving frames for finite-dimensional Lie group actions are always algebraic; indeed, if
the moving frame has order n, then M(G)>n contains all monomials of degree > n, and so is
trivially a module. Under mild regularity assumptions, it can be proved, [29], that if an infinite-
dimensional pseudo-group action is eventually free of order n, then it admits an algebraic moving
frame of order n.
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The following results will be established in [29]. For simplicity, we shall assume that the
pseudo-group acts transitively on the independent variables, and that the cross-section has been
chosen so that all H i = ι(xi) = ci, i = 1, . . . , p, are phantom differential invariants. (Including
cases when some of the independent variables lead to non-phantom differential invariants requires
only technical modifications of the results.) We now state a constructive version of Tresse’s Basis
Theorem.

Theorem 5.4. Suppose G acts eventually freely at order n, and let ρ(∞) : J∞(M,p) → H(∞) be

an algebraic moving frame. Then, the non-phantom differential invariants Iα
J corresponding to

the generators of its order n eventual monomial module M(G) generate its differential invariant

algebra I(G).

Furthermore, in [29], we apply Gröbner basis methods to analyse the algebraic structure of
syzygies amongst the generating system constructed in Theorem 5.4. As in the finite-dimensional
theory, [10], under suitable regularity assumptions, the generating syzygies fall into two classes.
The first one consist of syzygies of the form

DKI
α
J = cαJK +Mα

J,K , (49)

where Iα
J is a generating differential invariant and Iα

JK = cαJK is a phantom differential invariant,
while the second one consists of all equations of the form

DJI
α
LK −DKI

α
LJ = Mα

LK,J −Mα
LJ,K , (50)

where Iα
LK and Iα

LJ are generating differential invariants, the multi-indices K ∩J = ∅ are disjoint
and non-zero, and L is an arbitrary multi-index. Note that the first type of syzygy (49) only
arises when Iα

J has order ≤ n, and usually don’t occur. All other syzygies amongst the gener-
ating differential invariants are invariant linear combinations of the invariant derivatives of the
generating syzygies.

Fine details of the algorithm are illustrated in the course of the following examples.

5.4. Recurrence formulas for the KdV equation. In the case of the KdV equation, the
prolongation of the general infinitesimal symmetry generator

v = (c1 + 3c4t)∂t + (c2 + c3t+ c4x)∂x + (c3 − 2c4u)∂u

has

ϕjk = −j c3utj−1xk+1 − (3j + k + 2) c4utjxk , j + k ≥ 1, (51)

as the coefficient of ∂/∂utjxk . Identifying c3 = ξt, c4 = 1
3 τt, the corresponding invariantized

forms are

α = ι(τ), β = ι(ξ), ψ = ι(ϕ) = γ,

ψjk = −j Ij−1,k+1 γ −
3j + k + 2

3
Ij,k ζ, j + k ≥ 1.

(52)
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Thus, according to (46),

0 = dHH
1 = ω1 + α,

0 = dHH
2 = ω2 + β,

0 = dHI00 = I10ω
1 + I01ω

2 + ψ = ω1 + I01ω
2 + γ,

0 = dHI10 = I20ω
1 + I11ω

2 + ψT = I20ω
1 + I11ω

2 − I01γ − 5
3 ζ,

dHI01 = I11ω
1 + I02ω

2 + ψX = I11ω
1 + I02ω

2 − I01ζ,

dHI20 = I30ω
1 + I21ω

2 − 2I11γ + ψTT = I30ω
1 + I21ω

2 − 2I11γ − 8
3I20ζ,

dHI11 = I21ω
1 + I12ω

2 − I02γ + ψTX = I21ω
1 + I12ω

2 − I02γ − 2I11ζ,

dHI02 = I12ω
1 + I03ω

2 + ψXX = I12ω
1 + I03ω

2 − 4
3I02ζ,

...

(53)

The left-hand-sides of the first four recurrence formulas in (53) are all zero since they are the
differentials of the phantom invariants (30). Thus we can solve those phantom recurrence equa-
tions to establish the explicit formulas for the independent invariantized Maurer–Cartan forms
in terms of the invariant horizontal coframe:

α = −ω1, β = −ω2, γ = −ω1 − I01ω
2, ζ = 3

5 (I20 + I01)ω
1 + 3

5 (I11 + I2
01)ω

2. (54)

Substituting these results into the recurrence formulas for the differentials

dHI = (D1I)ω
1 + (D2I)ω

2

of non-phantom invariants, and equating the coefficients of ω1, ω2 on both sides yields the com-
plete collection of recurrence formulas for the differentiated invariants:

D1I01 = I11 −
3
5I

2
01 −

3
5I01I20, D2I01 = I02 −

3
5I

3
01 −

3
5I01I11,

D1I20 = I30 + 2I11 −
8
5I01I20 −

8
5I

2
20, D2I20 = I21 + 2I01I11 −

8
5I

2
01I20 −

8
5I11I20,

D1I11 = I21 + I02 −
6
5I01I11 −

6
5I11I20, D2I11 = I12 + I01I02 −

6
5I

2
01I11 −

6
5I

2
11,

D1I02 = I12 −
4
5I01I02 −

4
5I02I20, D2I02 = I03 −

4
5I

2
01I02 −

4
5I02I11,

(55)

and so on.
In general, the expressions (52) yield the recurrence formulas

D1Ij,k = Ij+1,k −
3j + k + 2

5
(I20 + I01)Ij,k + j Ij−1,k+1,

D2Ij,k = Ij,k+1 −
3j + k + 2

5
(I2

01 + I11)Ij,k + j I01Ij−1,k+1,

for all i, j ≥ 0, (56)

for the normalized differential invariants, where, by definition, I−1,k = 0. As a consequence, we
conclude that every normalized differential invariant can be obtained from the two fundamental
differential invariants

I01 =
ux

(ut + uux)3/5
, I20 = ι(utt) =

utt + 2uutx + u2uxx

(ut + uux)8/5
, (57)

by invariant differentiation, and hence I01 and I20 generate the KdV differential invariant alge-
bra I(GKdV ). This is in accordance with Theorem 5.4, since the module corresponding to the
non-phantom differential invariants induced by our choice of cross-section is generated by the
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monomials xu ∼ I01 and t2u ∼ I20. Finally, according to (49, 50), there is one fundamental
syzygy, namely,

D2
1I01 + 3

5I01D1I20 −D2I20 +
(

1
5I20 + 19

5 I01
)
D1I01 −D2I01 −

6
25I01I

2
20 −

7
25I

2
01I20 + 24

25I
3
01 = 0.

5.5. The algebra of differential invariants for the KP equation. In this example, we will
show how to obtain the structure of the algebra of differential invariants, including a minimal set
of generators and a complete list of basic syzygies, for the symmetry pseudo-group GKP of the
KP equation

utx + 3
2uuxx + 3

2u
2
x + 1

4uxxxx + 3
4 ε uyy = 0, ε = ±1, (58)

without having to establish its (prolonged) action in advance. Earlier work on its symmetry
group and differential invariants can be found in [6, 7, 8, 14, 15, 16, 17]. The underlying total
space is M = R

4 with coordinates (t, x, y, u). Applying the standard Lie algorithm, [23], we find
that a vector field

v = τ(t, x, y, u)
∂

∂t
+ ξ(t, x, y, u)

∂

∂x
+ η(t, x, y, u)

∂

∂y
+ ϕ(t, x, y, u)

∂

∂u

is an infinitesimal symmetry of the KP equation if and only if its coefficients satisfy the infini-
tesimal symmetry determining equations

τx = 0, τy = 0, τu = 0, ξx − 1
3τt = 0, ξy + 2

3 ε ηt = 0, ξu = 0,

ηx = 0, ηy −
2
3τt = 0, ηu = 0, ϕ− 2

3 ξt + 2
3 uτt = 0,

(59)

along with all their differential consequences.
Our actual choice of cross-section that defines the moving frame will be deferred until we

acquire some familiarity with the structure of the recurrence formulas. First, invariantization of
the determining equations (59) implies the complete system of linear dependencies among the
invariantized Maurer–Cartan forms

αijkl = ι(τijkl), βijkl = ι(ξijkl), γijkl = ι(ηijkl), ζijkl = ι(ϕijkl),

namely,

αX = 0, αY = 0, αU = 0, βX =
1

3
αT , βY = −

2

3
ε γT , βU = 0

γX = 0, γY = 2
3αT , γU = 0, ζ = 2

3βT − 2
3I000αT ,

(60)

and so on. Here we denote the corresponding normalized differential invariants by

H1 = ι(t), H2 = ι(x), H3 = ι(y), Iijk = ι(uijk),

some of which will be phantom, i.e., constant, once the moving frame is fixed. As in [4], a basis
of the invariantized Maurer–Cartan forms is obtained from the involutive completion of the lifted
determining equations (60) and, for example, is seen to be given by the forms

αT n , βT n , γT n , n ≥ 0. (61)
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The remaining lifted invariant forms can now easily be expressed in terms of the basis forms (61).
We have

αT nXpY qUr = 0, if (p, q, r) 6= (0, 0, 0);

βT nX = 1
3αT n+1 , βT nY = −2

3ε γT n+1, βT nY Y = −4
9ε βT n+2 , γT nY = 1

3αT n+1 ,

βT nXpY qUr = 0, γT nXpY qUr = 0, for all other choices of (p, q, r);

ζT n = 2
3βT n+1 − 2

3

n∑

s=0

(
n

s

)
Is00αT n−s+1 , ζT nX = 2

9αT n+2 − 2
3

n∑

s=0

(
n

s

)
Is10αT n−s+1 ,

ζT nY = −4
9ε γT n+2 − 2

3

n∑

s=0

(
n

s

)
Is01αT n−s+1 , ζT nY Y = − 4

27ε αT n+3 − 2
3

n∑

s=0

(
n

s

)
Is02αT n−s+1 ,

ζT nXpY q = −2
3

n∑

s=0

(
n

s

)
IspqαT n−s+1 , for all other choices of (p, q),

ζT nU = −2
3αT n+1, ζT nXpY qUr = 0, if r ≥ 2.

(62)

Let D1,D2,D3 be the invariant differential operators dual to the invariantized horizontal
coframe

ω1 = ι(dt), ω2 = ι(dx), ω3 = ι(dy). (63)

As above, the explicit formulas are not required at the moment.
It follows from (60) that the correction terms ψJ

α in equation (45) for the KP symmetry algebra
are precisely the coefficients of the invariantization of the vector field obtained by first prolonging
the vector field

w = τ(t)
∂

∂t
+ ξ(t, x, y)

∂

∂x
+ η(t, y)

∂

∂y
+
(
−2

3uτt(t) + 2
3ξt(t, x, y)

) ∂

∂u
(64)

and then applying the relations

ξx = 1
3τt, ξy = −2

3ε ηt, ηy = 2
3τt (65)

and their differential consequences to express the resulting coefficient functions solely in terms of
the repeated t-derivatives of τ , ξ and η. This yields the expression

ψpqr = 2
9δq1δr0αT p+2 − 4

9δq0δr1ε γT p+2 − 8
27δq0δr2ε αT p+3

−

p∑

s=0

(
p

s

)(
2 + q + 2r

3
+
p− s

s+ 1

)
Ip−s,q,rαT s+1 + 2

9ε r(r − 1)

p∑

s=0

(
p

s

)
Ip−s,q+1,r−2αT s+2

−

p∑

s=1

(
p

s

)
Ip−s,q+1,rβT s −

p∑

s=1

(
p

s

)
Ip−s,q,r+1γT s + 2

3ε r

p∑

s=0

(
p

s

)
Ip−s,q+1,r−1γT s+1

(66)

for the correction terms ψpqr = ψT pXqY r , where δij denotes the Kronecker delta.
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With (66), equations (46) directly yield the recurrence formulas

dHH
1 = ωt + α, dHH

2 = ωx + β, dHH
3 = ωy + γ,

dHI000 = I100ω
t + I010ω

x + I001ω
y − 2

3I000αT + 2
3βT ,

dHI100 = I200ω
t + I110ω

x + I101ω
y − 5

3I100αT − 2
3I000αTT − I010βT + 2

3βTT − I001γT ,

dHI010 = I110ω
t + I020ω

x + I011ω
y − I010αT + 2

9αTT ,

dHI001 = I101ω
t + I011ω

x + I002ω
y − 4

3I001αT + 2
3 ε I010γT − 4

9 ε γTT ,

dHI200 = I300ω
t + I210ω

x + I201ω
y − 8

3I200αT − 7
3I100αTT − 2

3I000αTTT

− 2I110βT − I010βTT + 2
3βTTT − 2I101γT − I001γTT ,

dHI110 = I210ω
t + I120ω

x + I111ω
y − 2I110αT − I010αTT + 2

9αTTT − I020βT − I011γT ,

dHI101 = I201ω
t + I111ω

x + I102ω
y − 7

3I101αT − 4
3I001αTT − I011βT

+ (2
3 ε I110 − I002)γT + 2

3 ε I010γTT − 4
9 ε γTTT ,

dHI020 = I120ω
t + I030ω

x + I021ω
y − 4

3I020αT ,

dHI011 = I111ω
t + I021ω

x + I012ω
y − 5

3I011αT + 2
3 ε I020γT ,

dHI002 = I102ω
t + I012ω

x + I003ω
y − 2I002αT + 4

9 ε I010αTT − 8
27 ε αTTT − 4

3 ε I011γT ,

...

(67)

In general, a specification of normalization equations defines a valid cross-section to the pseudo-
group orbits if and only if the resulting phantom recurrence equations (67) can be solved for the
basis (61) of invariantized Maurer–Cartan forms. For this, we choose the normalizations

H1 7−→ 0, H2 7−→ 0, H3 7−→ 0, I000 7−→ 0, I100 7−→ 0, I010 7−→ 0,

I001 7−→ 0, I200 7−→ 0, I101 7−→ 0, I020 7−→ 1, I011 7−→ 0, I002 7−→ 0,

Ii,0,0 7−→ 0, Ii−1,0,1 7−→ 0, Ii−2,0,2 7−→ 0, for all i ≥ 3,

(68)

which, when substituted into equations (67), yield the expressions

α = −ωt, β = −ωx, γ = −ωy,

αT = 3
4(I120ω

t + I030ω
x + I021ω

y), αTT = 9
2(I110ω

t + ωx),

αTTT = 27
8 ε (I012ω

x + I003ω
y), . . . ;

βT = 0, βTT = −3
2I110ω

x, βTTT = −3
2I210ω

x, . . . ;

γT = −3
2ε (I111ω

t + I021ω
x + I012ω

y), γTT = 0,

γTTT = 9
4ε (−I110I111ω

t + (I111 − I110I021)ω
x − I110I012ω

y), . . .

(69)
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for the basic invariant forms. The higher order invariantized Maurer-Cartan forms can be recur-
sively determined from the equations

αT p+3 = 27
8 ε (Ip12ω

x + Ip03ω
y) + 3

2

p−1∑

s=0

(
p

s

)
Ip−2,1,0αT s+2 − 27

8 ε

p∑

s=1

(
p

s

)
Ip−s,1,2βT s

+ 9
2

p−1∑

s=0

(
p

s

)
Ip−s,1,1γT s+1 − 27

8 ε

p∑

s=1

(
p

s

)
Ip−s,0,3γT s ,

βT p+1 = −3
2Ip10ω

x + 3
2

p−1∑

s=1

(
p

s

)
Ip−s,1,0βT s ,

γT p+2 = 9
4ε Ip11ω

x − 9
4ε

p−1∑

s=1

(
p

s

)
Ip−s,1,1βT s + 3

2

p−1∑

s=0

(
p

s

)
Ip−s,1,0γT s+1.

(70)

Next we substitute expressions (69) for the invariantized Maurer-Cartan forms into the equa-
tions for the non-phantom variables in (67) to derive the recurrence formulas between the differ-
entiated and normalized invariants

D1I110 = I210 −
3
2I110I120, D2I110 = I120 −

3
2I110I030 + 3

4ε I012,

D3I110 = I111 −
3
2I110I021 + 3

4ε I003,

D1I210 = I310 −
9
4I210I120 + 3

2ε I
2
111 + 9

8I111I003 + 12I2
110,

D2I210 = I220 −
9
4I210I030 + 3

4ε I112 + 3
2ε I111I021 + 9

8I003I021 + 27
2 I110,

D3I210 = I211 −
9
4I210I021 + 3

2ε I111I012 + 3
4ε I103 + 9

8I012I003,

D1I120 = I220 + 3
2ε I111I021 −

7
4I

2
120 + 6I110,

D2I120 = I130 −
7
4I120I030 + 3

2ε I
2
021 + 6,

D3I120 = I121 −
7
4I120I021 + 3

2ε I021I012,

D1I111 = I211 −
(
3I120 −

3
2ε I012

)
I111,

D2I111 = I121 −
(
I120 −

3
2ε I012

)
I021 − 2I111I030,

D3I111 = I112 −
(
I120 −

3
2ε I012

)
I012 − 2I111I021,

D1I030 = I130 −
5
4I030I120, D2I030 = I040 −

5
4I

2
030, D3I030 = I031 −

5
4I030I021,

D1I021 = I121 − I030I111 −
3
2I120I021,

D2I021 = I031 −
5
2I030I021,

D3I021 = I022 − I030I012 −
3
2I

2
021,

D1I012 = I112 − 2I021I111 −
7
4I120I012 − 2I110,

D2I012 = I022 − 2I2
021 −

7
4I030I012 − 2,

D3I012 = I013 −
15
4 I021I012,

D1I003 = I103 − 3I012I111 − 2I003I120, D2I003 = I013 − 3I012I021 − 2I003I030,

D3I003 = I004 − 3I2
012 − 2I003I021, . . . .

(71)

By a repeated application of the operators D1, D2, D3, these formulas can be used to express
higher order normalized invariants in terms of the lower order invariants. As an example, the
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first four equations in (71) yield the expressions

I310 = D2
1I110 + (3

2I120 + 9
4D2I110 + 27

8 I110I030 −
27
16ε I012)D1I110 + 27

8 I110I120D2I110

− 3
2ε (D3I110)

2 −
(

9
2ε I110I021 −

9
8I003

)
D3I110 + 3

2I110D1I120

+
(

81
16I120I030 −

27
8 ε I

2
021

)
I2
110 −

81
32ε I110I120I012 + 27

16I110I021I003 − 12I2
110.

(72)

Moreover, in light of the results in [29], we derive the following fundamental syzygies amongst
the basic differential invariants I110, I030, I021, I012, I003:

D3I012 −D2I003 + 3
4I012I021 − 2I030I003 = 0,

D2I021 −D3I030 + 5
4I021I030 = 0,

D3I021 −D2I012 −
1
2I

2
021 −

3
4I012I030 − 2ε = 0,

D2D2I110 −D1I030 −
3
4εD3I021 + 3

2I110D2I030 + 2I030D2I110

− 9
8ε I

2
021 + 3

16ε I030I012 + 3
4I

2
030I110 −

9
2 = 0,

D2D3I110 −D1I021 + I030D3I110 + I021D2I110 + 3
2I110D3I030

− 3
4εD2I003 −

9
8I110I030I021 −

3
4ε I030I003 −

9
8ε I021I012 = 0,

D2D3I110 −D1I021 + I030D3I110 + I021D2I110 + 3
2I110D2I021

+ 3
4I110I030I021 −

3
4εD2I003 −

9
8ε I021I012 −

3
4ε I030I003 = 0,

D3D3I110 −D1I012 + 3
2I021D3I110 −

3
4I012D2I110

+
(

3
2D2I012 + 3

4I
2
021 + ε

)
I110 −

3
4εD3I003 −

15
16ε I

2
012 = 0,

D3D3D3I110 −D1D2I003 − 2I030D1I003 + 3I021D1I012 − 2I003D1I030

+
(
2D3I021 −

7
4I

2
021

)
D3I110 +

(
21
16I012I021 −

5
4D3I012)D2I110

+
(

3
2D3D3I021 −

15
4 I021D3I021 −

15
8 D3I012I030 + 63

32I021I012I030

+ 3
4I

3
021 + 6ε I021

)
I110 −

3
4εD3D3I003 + 9

8ε I021D3I003

− 57
16ε I012D3I012 + 3

4ε I003D3I021 −
3
8ε I

2
021I003 −

3
2I003 + 9

64ε I021I
2
012 = 0.

(73)

These allow us to reduce the number of generating differential invariants:

Theorem 5.5. The differential invariants I110, I021, I003 form a generating set for the algebra

I(GKP ) of differential invariants for the KP symmetry pseudo-group.

Computations indicate that I110, I021, I003 form, in fact, a minimal generating set. However,
a few details remain to be overcome.

After some work, the standard algorithm [23] for constructing a group action from the infini-
tesimal generators yields the finite KP symmetry transformations which are given by

T = F (t),

X = xF ′(t)1/3 − 2
9ε y

2F ′(t)−2/3F ′′(t) − 2
3ε yF

′(t)−1/3H ′(t) +G(t),

Y = yF ′(t)2/3 +H(t),

U = uF ′(t)−2/3 + 2
9xF

′(t)−5/3F ′′(t) − 4
27y

2
(
ε F ′(t)−5/3F ′′′(t) + 4

3F
′(t)−8/3F ′′(t)2

)

+ 4
9ε y

(
F ′(t)−7/3F ′′(t)h′(t) − F ′(t)−4/3H ′′(t)

)
+ 2

9ε F
′(t)−2H ′(t)2 + 2

3F
′(t)−1G′(t),

(74)

where F (t) is an arbitrary smooth, invertible function and G(t), H(t) are arbitrary smooth
functions; see also [16]. Thus the prolonged action of the KP symmetry algebra on submanifold
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jets can be obtained by applying the differential operators

DX = F ′(t)−1/3Dx, DY = F ′(t)−2/3Dy + ε (4
9yF

′(t)−5/3F ′′(t) + 2
3F

′(t)−4/3G′(t))Dx,

DT = F ′(t)−1Dt +
(
−1

3xF
′(t)−2F ′′(t) + ε y2(2

9F
′(t)−2 F ′′′(t) − 4

9F
′(t)−3F ′′(t)2)

+ ε y(2
3F

′(t)−5/3G′′(t) − 10
9 F

′(t)−8/3F ′′(t)G′(t)) − F ′(t)−4/3H ′(t)

− 2
3ε F

′(t)−7/3G′(t)2)
)
Dx + (−2

3yF
′(t)−2F ′′(t) − F ′(t)−5/3G′(t))Dy,

(75)

to U in (74). Now normalizations (68) yield the expressions

I110 = u−3/2
xx

(
utx + 3

2uuxx + 3
2u

2
x + 3

4ε uyy

)
,

I030 = u−5/4
xx uxxx,

I021 = u−5/2
xx (uxxuxxy − uxyuxxx),

I012 = u−15/4
xx (u2

xxuxyy − 2uxxuxyuxxy − 2ε uxu
3
xx + u2

xyuxxx),

I003 = u−5
xx (u3

xxuyyy − 3u2
xxuxyuxyy + 3uxxu

2
xyuxxy − u3

xyuxxx),

(76)

for the basic differential invariants for the KP symmetry algebra as well as the expressions

D1 = u−3/4
xx Dt + 3

4u
−11/4
xx (2uu2

xx − ε u2
xy)Dx + 3

2ε uxyu
−7/4
xx Dy,

D2 = u−1/4
xx Dx,

D3 = −u−3/2
xx uxyDx + u−1/2

xx Dy,

(77)

for the invariant differential operators.
Additionally, by applying the invariantization map as in Theorem 4.3, we see that KP equation

(58) can be written in terms of the normalized differential invariants as

I110 + 1
4 I040 = u−3/2

xx (utx + 3
2u

2
x + 3

4ε uyy + 3
2uuxx) + 1

4u
−3/2
xx uxxxx = 0. (78)

The KP symmetry algebra is known to possess a Kac–Moody–Virasoro structure. It would be
an interesting problem, which now can be systematically studied by our methods, to investigate
to what extent the Lie algebra structure of a symmetry algebra determines the structure of its
differential invariant algebra.
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[13] Kumpera, A., Invariants différentiels d’un pseudo-groupe de Lie, J. Diff. Geom. 10 (1975) 289–416.
[14] Lou, S.Y., Symmetries of the Kadomtsev–Petviashvili equation, J. Phys. A: Math. Gen. 26 (1993) 4387–4394.
[15] Lou, S.Y., and Hu, X.B., Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math.
Phys. 38 (1997) 6401–6427.

[16] Lou, S.Y., and Ma, H.C., Non–Lie symmetry groups of (2+1)–dimensional nonlinear systems obtained from
a simple direct method, J. Phys. A: Math. Gen. 38 (2005) L129–L137.

[17] Lou, S.Y., and Tang, X., Equations of arbitrary order invariant under the Kadomtsev–Petviashvili symmetry
group, J. Math. Phys. 45 (2004) 1020–1030.

[18] Mansfield, E.L., Algorithms for symmetric differential systems, Found. Comput. Math. 1 (2001) 335–383.
[19] Maŕı Beffa, G., Relative and absolute differential invariants for conformal curves, J. Lie Theory 13 (2003)
213–245.
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