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PREFACE

The present volume contains written versions of a series of talks on

geometry of submanifolds and its applications delivered at Science University

of Tokyo from January 16 to February 6, 1981. The material of these talks mainly

bases on some of author's works and joint works done during the last few years.

Chapter I gives a brief review on the general theory of submanifolds for

later use. However, results given in §3 are new. Chapter II modifies a recent

paper of the author on sufaces. In Chaper III, a survey of recent results on

total mean curvature is given. In Chapter IV, the theory of generic sub-

manifolds is introduced. Some of its applications are given in this volume.

In Chapter V, a series of author's papers on CR-submanifolds is presented in

a simplified version. Chapter \I serves a brief expositary of (M+, M-)

-method which was introduced by T. Nagano and the author in 1978. Indication

of some of its applications is given. In the last chapter, some main results

on totally umbilical submanifolds are summarized. Due to limitation of pages,

proofs are given only to shorter ones or those appeared in less accessible

papers.

The author would like to take this opportunity to express his hearty

thanks to his teachers, professors Nagano and Otsuki, for their constant

encouragement and guidance. He also like to express his many thanks to

Professors Shibata and Yamaguchi and other colleagues at Science University

of Tokyo for the valuable discussions and their hospitality while the author

was a visiting professor there. Moreover, the author would like to express

his thanks to professors at Tokyo Metropolitan University, University of Tokyo,

Kushyu University, Nagoya University, Osaka University, Tsukuba University,

Tokyo Institute of Technology and Ochanomizu University in Japan and Soochow

University and Tsinghua University in Taiwan for their kind invitations to

visit and to give talks at their universities while the author was a visiting

professor at Sicence University of Tokyo. Turing those visits the author learn

much from them. In particular, the author is indebted to Prefessor Ogiue for

his help which resulted in improvements of the presentation. Finally, the author

wishes to thank miss Ikuko Fukui who typed the manuscript, for her patience and

cooperation.

Bang-yen Chen

in Tokyo, February 20, 1981.
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Chapter I: SUBMANIFOLDS

In this monograph manifolds and submanifolds are assumed to be connected

and differentiable of class C unless mentioned otherwise. In §§§1,2, and 4

we will recall some fundamental results and formulas for later use. (see,

e.g. Chen (1973a) and Kobayashi and Nomizu (1963).) In §3, we will study

submanifolds with planar normal sections. Applications to submanifolds with

either parallel second fundamental form or planar geodesics are given.

H. RIE4ANNIAN MANIFOLDS

Let M be a Riemannian manifold with metric tensor g and Riemannian

connection V. He have Vg= 0. For any vector fields X, Y, and Z tangent to

14, the curvature tensor R of 14 is given by

(1.1) R(X,Y)Z=axVY-VYVx-1[x,Y]

If E1'...,E are local orthonormal vector fields on M, then

n
(1.2) S(X,Y) g(R(E.,x)Y,E.)

i=1

defines a symmetric tensor field S of type (0,2), called the Ricci tensor of

M. Using the Ricci tensor S, the scalar curvature r is defined by

n
(1.3) r= S(Ei,Ei)

2=1

For the curvature tensor R we have the following identities:

(1.4) R(X,Y) +R(Y,X) = 0,

(1.5) R(X,Y)Z+R(Y,Z)X+R(Z,X)Y= 0, and

(1.6) R(X,Y;Z,W) =R(Z,W:X,Y),

where R(X,Y; Z, W) = <R(X,Y) Z, W> and <X, Y> = g(X,Y) .

Let X and Y be two linearly independent vectors at a point. The section-

al curvature K(X,Y) for the plane section spanned by X and Y is defined by

(1.7) K(X,Y) = R(X,Y;Y,X)
z<X, X><Y, Y> - <X, Y>

If the sectional curvature is equal to a constant c for all plane sec-

tions, M is called a space of constant curvature or a real-space-form,. In

this case we have
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(1.8) R(X,Y;Z,W) =cf<X,W><Y,Z>- <XZ><Y,k'>).

A Riemannian manifold M is said to be Einsteinian if the Ricci tensor

S satisfies S = Xg for some function A on manifold M. If dim M >2, A is a

constant. A Riemannian manifold M is called a ZocaZZy symmetric space if

its curvature tensor is covariant constant, i.e., OR = O . For a Riemannian

manifold, we define the conformaZ curvature tensor C by

(1.9) C(X,Y;Z,W) =R(X,Y;Z,W) -r 1 2 fS(X,w)<Y,Z>+S(Y,Z)<X,W>

-s(x,z)<Y,w>-S(Y,w)<x,Z>)

r r <x, 47><Y, Z> - <X, Z> <Y, W>) .n-1 (n-2)

If dim M< 3, C--O. And if dim M> 4, M is conformaZZy flat if and only if

C - O.

In this book, by a closed mani=old we mean a compact manifold without

boundary.

§2. SUBMANIFOLDS

Let m be an n-dimensional manifold immersed in an m-dimensional Riemannian

manifold M. We denote by g the metric tensor of M as well as that induced on

M. Let V and 0 be the covariant differentiations on M and M, respectively.

Then the Gauss and Weigarten formulas are given respectively by

(2.1) OXY = OXY + h (x, Y) ,

(2.2) VXE _ -A EX + DxC,

respectively, where X and Y are vector fields tangent to M and normal to M.

Moreover, h is the second fundamental for,, D the linear connection induced

in the normal bundle T1M, called the normal connection, and A the second

fundamental tensor at E. From (2.1) and (2.2) we have

(2.3) <AEX, Y> = <h (X, YIE>.

We denote by R, R and RD the curvature tensors associated with V, 0 and D,

respectively. For the second fundamental from h, we define the covariant

differentiation 7 with respect to the connection in (TM) e (T1M) by
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(2.4) (OXh) (Y, Z) = DX(h (Y, Z) ) - h (V _<, Z) - h (Y, VXZ)

for any vector fields X, Y and Z tangent to M. A submanifold is said to have

paraZZeZ second fundamental form if 7 hE 0. A geometric interpretation for

such submanifolds of a Euclidean m-space Em will be given in the next section.

The equations of Gauss, Codazzi, and Ricci are given respectively by

(2.5) R(X,Y;Z,W) = R(X,Y;Z,W) + <h(f,W),h(Y,Z)> - <h(X,Z),h(Y,W)>,

(2.6) (R(X,Y) Z)'= (Xh) (Y, Z) - (VXr) (X, Z) ,

(2.7) (X, Y; ,n) =RD(X,Y; n) -<(Ay,AX,-'>

for vectors X, Y, Z, W tangent to M, , r normal to M, and-L in (2.6) denotes

the normal component.

For an n-dimensional submanifold v in M. The mean curvature vector H

is given by

(2.8) H=
n

trace h.

A submanifold M is said to be minimal (respectively, totally geodesic) if

H E 0 (respectively, h E 0) .
If we have

(2.9) h(X,Y) = <X,Y>H,

for X, Y in TM, M is said to be totally umbilical.

A vector subbundle p of TIM is said to be paraZZeZ if u for any X

in TM and any vector field E in V.

§3. SUBMANIFOLDS WITH PLANAR NORMAL SECTIONS

Let M be an n-dimensional submanifold in a Euclidean m-space e. For any

point p in M and any unit vector t at p tangent to M, the vector t and the normal

space TpM of Mat p determine an Cm- n.+ 1)-dimensional subspace E(p,t) in Em.

The intersection of M and E,(p,t) gives a curve y (in a neighborhood of p) which

is called the normal section of U at p in the direction t. In general, the

normal section y is a (twisted) space curve in E(p,t).

In this section we shall give a necessary and sufficient condition for a

submanifold of Em to have planar normal sections. Using this result we will

obtain a geometric interpretation for submanifolds with parallel second fundament-

at form. Moreover, we shall find a relation between submanifolds with planar

normal sections and submanifolds with planar geodesics.
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First we give the following

THEOREM 3 . 1 . (Chen 1980a). met Al be an n-dimensional (n > 2) submanifoZd

of E. Then M has planar normal sections if and only if h and Oh satisfy

(3.1) h (t, t) A (-Vth) (t, t) = 0,

for any unit vector t tangent to M.

PROOF. Let M be an n-dimensional submanifold of e and y(s) any normal

section through pEM with s as its arc length. We denote by T the unit tangent

vector field along y(s) given by T = y(s), y(s) = . Assume that y(0) = p.

We choose a local field of orthonormal frame e in such a way

that, restricted to M, the vector fields are tangent to M, and hence,

are normal to M. And :moreover, e1=T along y(s). We denote by

wl...... wm the dual frame of There exist m2 1-forms uA; A,B =

such that

DeA =EwABeB

We put

wA+wy=0.

hr _ <h(ei,e.),er>

Because T =e
1

along y(s), we have

d2 n i(3.2) Y(s) = 2 = OTT = Z wl(T)ei + h(T,T) ,
ds i=2

3 n n
(3.3) y (s) = d y

= (0 )

=

Z T (w" (T)) e + z w (T) w` (T) eds3 T lr i=2 1 i i 1, j=1
n

+E ul(T)h(ei,T) - h11hliei+DT(h(T,T))

i=2 2

At y(0)=p, y(0) and y(0) lie in the (m-n+1)-space E(p,t). Since E(p,t)
is spanned by t and -M, (3.2) and (3.3) give

(3.4) u (t) = 0

(3.5) y(0) = h(t, t)

(3.6) y(0) =-11h(t,t)112t+ (DT(h(T,T))(0),.

Combining (3.4), (3.5), (3.6), and the definition of Oh, we have

(3.7) y (0) _ -K (0) 2t + (0th) (t, t) ,
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where K(0) _ I I h (t, t) I H is the curvature of y (s) at p = y(0) .
If the normal section y(s) is a planar curve, then 'y(0) is a linear

combination of Y(0) and Y(0). Hence we have (3.1), i.e., h(t,t) is parallel

to (_V th) (t, t) .

Conversely, if (3.1) holds for any vector at any point p in M tangent

to Al, then along the normal section y(s), the first normal space spanned by

h(T,T) is either zero or parallel along y(s) with respect to the normal connec-

tion D. Thus, y(s) is a planar curve. This completes the proof of the

theorem.

As an application of Theorem 3.1 we give the following simple geometric

interpretation for submanifolds with parallel second fundamental form.

THEORD4 3.2 (Chen 1980a). Let Al be an n-dimensional (n > 2) submanifold

of Em. Then the following three statements are equivalent.

(a) The second fundamental form h satisfies (4th)(t,t) --0.

(b) The second fundamental form h is parallel, i.e., Oh -0.

(c) Normal section of M at any point p EM is a planar curve with p as

one of its vertices.

,q_2

ds

By a vertex of a planar curve we mean a point x on the curve such that

=u at x.

PROOF.(a)=(b). Since M in a submanifold of Em, we have

(3.8) (Oh) (Y, Z) = ( h) (X, Z)

for any vectors X,Y,Z tangent to M.

Hence by putting t= X+ Y and t= X -Y, respectively, into (_V th) (t, t) =0,

we obtain (-V i) (X,Y) = 0. Thus, by linearity and (3.8), we may get Oh =0.

(b)=(a) . Trivial.
(b)=(c). If Oh - 0, (3.1) holds automatically. Thus, by Theorem 3.1,

the normal section y(s) of,M at p in any given direction t is planar. From

(3.2) the curvature K(s) of y(s) satisfies

(3.9) K2(s) _ I iy(s)112= n (w1(T))2+ jjh(T,T) II2
i

i=2

where T--Y(s). Thus

(3.10) d<2 (s) = 2 Z coi(T) T (mi(T)) + 2<DT(h(T,T)),h(T,T)> .
i=2
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Hence, by (3.4), we obtain

d<
2

ds (0) = 2<Dt(h(T,T)), h(t,t)>

= 2< (77th) (t,t) , h(t,t)>

=0

at p = y (0), that is, p is a vertex of the planar normal section -'().
(c)=(a). If normal sections y(s) of M at any point p E M is a planar

curve with p as one of its vertices, then, by Theorem 3.1, we have

(3.11) (V th) (t,t) = X(t)h(t,t) and

2
(3.12) ds (0) = 0,

Therefore, by (3.4), (3.10), and (3.12), we have

<(V th) (t, t) , h(t, t)> = 0

from which, together with (3.11), we obtain ( h)(t,t) = 0. This completes

the proof of the theorem.

REMARK 3.1. For a submanifold in a real-space-form, statements (a) and

(b) of Theorem 3.2 are equivalent. However, these two statements are different

if the ambient space is an arbitrary Riemannian manifold. This fact can be

easily seen by comparing Theorems 3.3 and 3.4.

REMARK 3.2. For a submanifold M in a Riemannian manifold k, statement

(a) is equivalent to the following statement (d). Every geodesic in M,

regarded as a curve in M, has parallel KN, where N is the principal normal.

Given a point p in a Riemannian manifold k and a small positive number

s, the geodesic sphere Ge(p) centered at p with radius e is the hypersurface

given by the image of the hypersphere SE(p) under expp, where Se(p) denotes

the hypersphere of Tp74 centered at p and with radius c.

THEOREM 3.3 (Chen and Vanhecke, 1978;1980). For any n-dimensional (n > 2)

Riemannian manifold k, the following three statements are equivalent.

(1) Locally, M is a Euclidean space or a rank one symmetric space,

(2) Sufficiently smaZZ geodesic spheres of M satisfy ( h)(t,t) - 0.

(3) Every geodesic of a sufficiently smaZZ geodesic sphere of NI has

constant curvature K in M.
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THEOREM 3.4 (Chen and Vanhecke, 1978; 1980). A Riemannian manifold k

of dimension >2 is a real-space-form if and only if sufficiently small geodesic

spheres of k have parallel second fundamental form.

For the proof of these two theorems and further results on geodesic

spheres, see Chen and Vanhecke (1978) and literatures mentioned in the

bibliography of that paper.

Now we shall characterize submanifolds with planar geodesics in terms of

planar normal sections.

THEOREM 3.5 (Chen 1980a). An n-dimensional (n > 2) submanifold M of e

has planar geodesics if and only if it has planar normal sections of the same

constant curvature, i.e., they are either portions of straight lines or circles

of the same radius.

PROOF. Let y(s) be the normal section at p e M in the direction of a

unit tangent vector t. By (3.2) and (3.5), we have

(3.13) K2(s) _ Z, (wl(T))2+ 1ih(T,T)
i2

i=2

(3.14) K2 (0) = II h (T, T)
112, wl (t) = 0.

If M has planar normal sections of the same constant curvature, then

(3.13) and (3.14) give wi(T) = 0 for This shows that the normal

section y(s) is in fact the geodesic in m through p with t as its initial

velocity vector. Since M has planar normal sections, M has planar geodesics.

Conversely, if M has planar geodesics, then, by a result of Hong (1973),

M is either contained in an n-plane or else all the geodesics are planar

circles of the same radius. If the first case holds, every normal section

is a portion of a straight line. If the second case holds, the curvature of

every geodesic a(s) of M is constant. We put X= a(s). We have 0 '= 0.

Therefore we find a (s) = D C= h(X,X) = K(s)N, where K = I I h(X,X) II is the curvature
of a(s) and N its principal,normal. Since a(s) is planar, Or,N = -KX. Thus

DXN = 0. Combining this with the constancy of K, we get

(-Va) (X, X) = DX (h (X, X) ) = 0.

Because this is true for every geodesic in M. we have - - 0 . Theorem 3.2

implies that M has planar sections. Thus, after observing that the planar

normal section given by E(p,t) and the planar geodesic throngh p with t as
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its initial velocity vector are in fact the same curve, we conclude that

normal sections of M are planar curves of the same curvature. This proves

the theorem.

REMARK 3.3. For submanifolds in Em, we put

then

been

A = {submanifolds

B= fsubmanifolds

c= fsubmanifolds

we have A B C .

Classification of

obtained by Ferus

with planar normal sections),

with Oh - 0),
with planar geodesics),

submanifolds of class B (respectively, class C) has

(1974) (see also Takeuchi (1981)) (respectively, Hong

(1973) and Little (1976)). It is obvious that class A contains all submanifolds

of Em of codimension one. In views of these, I would like to propose the

following.

PROBLEM 3.1. Classify submanifolds of class A.

PROBLEM 3.2. Find topological conditions for higher dimensional closed

submanifolds of Em to have planar normal sections.

§4. THE FIRST AND SECOND VARIATIONS OF VOLUME

In this section, we shall give the first and second variation formulas

of volume for later use.

Let f:M NI be an immersion from a compact n-dimensional manifold into

an m-dimensional Riemannian manifold M. Let {ft) be a 1-parameter family of

immersions of M- k with the property that fo= f and that the map F:Mx[0,1]-}M

defined by F(p,t) =f
t
(p), be differentiable. Then {ft) is called a variation

of f. If {ft) is a variation of ,f, it induces a vector field in M defined

along the image of M under f. We shall denote this field by n and it is

constructed as follows. Let a/at be the standard vector field in Mx [0,1].

We set

n(p)='(att(p,0)),

then n gives rise to cross-sections nT
and

nN
in TM and T 1M, respectively.

If we have nT = 0, {ft) in called a normal variation of f. For a given normal

vector field u on M, exp t u defines a normal variation {ft) induced from

u. We denote by Y'(t) the volume of M under ft with respect to the induced

metric and by'i" (u) and y' (u) the values dt I'" (t) and y1 (t) at t = 0 for
the normal variation induced from u. The following formula is well-known
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(see, for example, fp. 75 of Chen (1973a))

(4.1) 1G'' (u) _ -n J <u, H>dV
M

where dV denotes the volume element of f(M).

Let u be any normal vector field of f(M) and any orthonormal

frame in TM. We put

n

(4.2) S(u) _ ', H(u,ei;ei'u)
Z=1

then (4.2) is well-defined. The second variation formula is then given by the

following. (see, for example, Simons (1968)).

THEOREM 4.1. Let fft} be the normal variation induced from a normal
vector field u of f :M-TV such that ft 15M= fl-cm- If f is minimal, we have

(4.3) y/-(u)=J f 11

M

II2 -s(u) - fIAu1I2}dV .

A minimal submanifold M of if is said to be stable if )(-- (u) > 0 for any

normal vector field u of M in r!,otherwise, M is said to be unstable.
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Chapter II: SURFACES WITH PARALLEL NORMALIZED
MEAN CURVATURE VECTOR

K. INTRODUCTION

In the classical theory of surfaces in an ordinary space E3, the two

most important curvatures are the Gauss curvature and the mean curvature 1HI.

The Gauss curvature is intrinsic and the mean curvature is extrinsic. For

the Gauss curvature, the following result of Liebmann is well-known.

THEOREM 1.1. A closed surface of constant Gauss curvature in E3 is an

ordinary sphere.

Concerning mean curvature we have the following

THEOREM 1.2 (Hopf, 1951). A closed surface of genus zero in E3 is an

ordinary sphere if it has constant mean curvature.

It was conjectured by Hopf that spheres are the only closed immersed

surface of E3 with constant mean curvature.

For a surface M of Em , m> 3, the mean curvature vector H plays more

important role than the mean curvature H. Let be the unit vector field

in the direction of H, that is,

(1.1) a= JHI,

then is called the normalized mean curvature vector. It is obvious that a

surface M has parallel mean curvature vector, i.e., DH = 0, if and only if

either M is minimal or the mean curvature is a nonzero constant and the

normalized mean curvature vector is parallel. In Ruh and Vilms (1970),

we have

THEOREM 1.3 (Ruh and Vilms 1970). A submanifold M of Em has parallel

mean curvature vector if and only if the Gauss map of 11 is harmonic in the
sense of EeZZs and Sampson (1965).

In views of these, it is interesting and natural to classify submanifolds

with parallel mean curvature vector. For surfaces, this is done by the follow-

ing.

THEOREM 1.4 (Chen 1972a and Yau 1974). A surface M of Em has paraZZel
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mean curvature vector if and only if `± is one of the following surfaces;

(a) a minimal surface of Em,

(b) a minimal surface of a hypersphere of Em,

(c) a surface of E3 with constant mean curvature,

(d) a surface of a 3-sphere in E4 with constant mean curvature.

Since the condition of parallel normalized mean curvature vector is much

weaker than the condition of parallel mean curvature vector, it is natural to

study surfaces satisfying the first condition and to find its relation with

the second condition. The main purpose of this chapter is to deal with this

problem.

§2. EXAMPLES

In this section, we give examples of surface with parallel normalized

mean curvature vector.

EXAMPLE 2.1. Any minimal surface of of Em has parallel normalized

mean curvature vector in Em. This is simply due to the fact that the restric-

tion of the hyperplane unit normal to the surface is a parallel normalized

mean curvature vector.

EXAMPLE 2.2. Any surface of E' has parallel normalized mean curvature

vector because the unit surface normal is always parallel.

EXAMPLE 2.3. Any minimal surface of a hypersphere of Em has parallel

normalized mean curvature vector. This follows immediately from Theorem 1.4.

EXAMPLE 2.4. D. S. P. Leung (1980) proved that there are many analytic

surfaces of E4 with parallel normalized mean curvature vector. Moreover,

those surfaces do not lie in any hyperplane or hypersphere of E

§ 3. SURFACES WITH PARALLEL NORMALIZED M EAN CUR`rATUPE VECTOR

For simplicity we shall assume in this section that surfaces are of class

''C . We give the following results of Chen (1980b).

THEOREM 3.1. Let M be a surface of Em with parallel normalized mean

curvature vector. Then M is one of -,he following surfaces;

(a) a minimal surface of a hyperplane E 1 of Em,
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(b) a minimal surface of a hypersphere of Em,

(c) a surface of an affine 4-space E4 of E.

If M is minimal in Em, then any unit normal vector field is a normalized

mean curvature vector. In this case, the theorem follovs from the following.

LEMMA 3.2. A minimal surface M of Em admits a parallel unit normal vector

field if and only if either m=3 or m>3 and M Zies in hyperpZane of Em.

Let m be a minimal surface of e. If is a parallel unit normal vector
field, then we may choose m-2 orthonormal normal frame

3 = . Since 0, the Ricci equation implies [A3,Ar] = 0 for r = 4, ,m,

where Ar =A . Since trace Ar =O, either A =0 or RD=0 at any point p E M.

We put U= f p E MIA = 0 at p} . Then we have R - 0, on the closure of M-U. Now,
3

let (xl,x2) be an isothermal coordinate system in M, we put Xi = 9/9x and

L= h(X1,X1), M= h(X1,X2), N= h(X2,X2).

Then since 3 is parallel and trace A3= 0, Lemma 2.2 of p. 103 of Chen

(1973a) shows that the following function

=<LN i= /r,2 3
J

is analytic in z= x1 + ix
2.

Thus either - =0 or has only isolated zeros.

In the first case, we have A3= 0. Since 3 is parallel, M lies in a hyperplane

of e with S3 as the hyperplane normal. If ¢ has only isolated zero points,

the normal curvature tensor RD vanishes identically. Thus Lemma 3.2 follows

immediately from the following (Chen (1973a), p. 115).

LEMMA 3.3. If a minimal surface M of Em has flat normal connection, then

M is contained in an affine 3-space E3 of Em.

If M is not minimal, then because M is analytic, H vanishes only at

isolated points. We choose an orthonormal normal frame 3'...' m in such a

way that 3 is the parallel normalized mean curvature vector. Put

M1 = fp EMIA3= XT at p). Then, by using the Ricci and Codazzi equations, we

may conclude that RD - 0 on the closure of M-M
1
and <H,H> is constant on

each component of int(M1).

Form this we may conclude that either m has constant mean curvature or

RD- 0 on M. If the first case occurs, Theorem 1.4 finishes the proof. If
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the second case holds, we put

M2 = {p E M Idim Im h = 1 at p;,
M3= (pE P4Idim Im h= 2 at p,.

Then M = M2UM3 and M3 is an open subset of M. The next step is to show that

the closure of each component of int(M2) lies in an affine 3-space E3 of

in and the closure of each component of M_3 lies in an affine 4-space of

Em. Now, we apply Codazzi's equation and analytic function theory to show

that either M2 is the whole surface 14 or the closure of M3 is M. If M2 = M,

M lies in an affine 3-space. If closure (M3) = M, then M2 consists of curves

and points only. In this case, by applying analytic function theory and

Codazzi equation again, we may prove that the whole surface lies in an affine

4-space. For the details, see Chen (1980b).

By applying Theorem 3.1 we may also prove the following.

THEOREM 3.4. 11 a closed surface of genus zero in PEE"', has parallel

normalized mean curvature vector, then either M is a minimal surface of a

hypersphere of Em or M Zies in an affine 3-space E3 of Em.

THEOREM 3.5. If a closed surface M of Em has paraZZeZ normalized mean

curvature vector and constant Gauss curvature, then either M is a minimal

surface of a hypersphere of Em or M is the product surface of two plane

circles in a E
4
of E.

THEOREM 3.6. If a flat surface of Em has paraZZeZ normalized mean

curvature vector, then M is one of the following surfaces;

(a) a flat minimal surface of hypersphere of Em,

(b) an open portion of the product surface of two plane circles or two

straight lines, or

(c) a flat surface of an affine 3-space E3 of Em.

In views of these results we would like to recall the following.

PROPOSITION 3.7 (Chen 1972c; Yau 1974). Every minimal surface of Em is

totally geodesic if it has constant Gauss curvature.

The following problem seems to be interesting.
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PROBLEM 3.1. Classify submanifolds of Em with parallel mean curvature

vector or with parallel normalized mean curvature vector.
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Chapter III: TOTAL MEAN CURVATURE

§1. ROTATION INDEX, REGULAR HOTJOTOPY, AND TOTAL CTTRVATJRE

Let C be closed (smooth) oriented curve in E2. As a point moves along

C, the lines through a fixed point 0 and parallel to the tangent line of C

rotate through an angle 2nTr or rotate n times about 0. This integer n is

called the rotation index of C. It is known that if C is a simple curve,

n = ±1.

Two closed curves are said to be regularly homotopic if one can be

deformed to the other through a family of closed smooth curves. Because the

rotation index is an integer and it varies continuously through the deformation,

it must keep constant. Therefore, two closed smooth curves have the same rota-

tion index if they are regularly homotopic. A theorem of Graustein and Tw,'hitney

says that the converse of this is true. Thus, the only invariant of a regular

homotopy class is the rotation index.

Let (x(s), y(s)) be the Cartesian coordinates of the closed curve in E2

which is parameterized by its arc length s. Then we have

(1.1) X-= -Ky', Y-= Kx

where K denotes the curvature of C. Let 8(s) denote the angle between the

tangent line and the x-axis. Then we have

(1.2) de = xy ,_x 2 ds = Kds
x +y

From this we obtain the following formula;

(1.3) J K ds = 2nTr, n =the rotation index.

From (1.3) we conclude the following well-known result.

THEOREM 1.1. Let C be a closed curve in E2. Then the total absolute

curvature of C in E2 satisfies

(1.4)
1

IKI ds> 2Tr.

The equality holds if and only if C is a convex planar curve.

This result was generalized to closed curves in E3 by Fenchel (1929)

and to closed curves in E!, m > 3, by Borsuk (1947). In 1950, Milnor obtained

the following.



16

THEOREM 1.2. If a closed curve C in e satisfies

(1.5) TIKI ds < 47T
C

then c is unknotted.

In a 3-dimensional space E3, surfaces have far more important properties

than curves. These important properties are usually related either to the

Gauss curvature C or to the mean curvature a =JHI.

For a closed oriented surface M of E3, the integral of Gauss curvature

gives the following famous Gauss-Bonnet formula;

(1.6) Jc dV = 2Tr X (M) =4Tr (1 - g),
M

where X and g denote the Euler characteristic and genus of M, respectively.

On the other hand, by using Morse's theory, Chern and Lashof (1958) proved

the following.

(1.7) f IGI dV> 4Tr(1+g).

Let M = fp e All G > 0 at p} . Then (1.6) and (1.7) give

(1.8) fcdv>47r.
M+

From the definitions of Gauss and mean curvatures for surfaces in E3 we

have

(1.9) a2 > G,

where the equality holds if and only if M is totally umbilical. Thus, by

combining (1.8) and (1.9), we obtain

(1.10) fa2dv>4.
M

The equality holds if and only if M is an ordinary 2-sphere in E This

result was given in Willmore (1968). If M is a surface in a higher dimensional

Euclidean space (m > 3), inequality (1.7) is not true in general. However,

by using the notion of Otsuki frame, inequality (1.10) was obtained in Chen

(1970) for any closed surface in any Euclidean space.

§2. TOTAL MEAN CURVATURE.

According to Nash (1956), every n-dimensional closed Riemannian manifold
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of class C k (3 <k <-) can be C --isometrically imbedded in E7" with m-- Z (3n+ll) .
It is also well-known that most Riemannian manifolds cannot be isometrically

imbedded in En+l as hypersurfaces. Thus, the theory of submanifolds of higher

codimension is far richer than the theory of hypersurfaces, in particutar, than

surfaces of E3

Concerning the total mean curvature, we have the following general result

for any closed submanifolds of Em.

THEOREM 2.1 (Chen 1971a). Let M be an n-dimensional closed submanifoZd

of E. Then we have

(2.1) an dV > cn,
ra

where a=IHI is the mean curvature and cn the volume of unit n-sphere. The

equality of (2.1) holds if and only if M is ;mbedded as an ordinary n-sphere

in an a f fine (n + 1).-space when n> 1 and as a convex p Zanar curve when n= 1.

If n= 1, this theorem is nothing but the famous Fenchel-Borsuk inequality.

In the 1973 Symposium on Differential Geometry held at Stanford

University, the author proposed the following two problems (Chen, 1975).

PROBLEM 2.1. Let (M,g) be a closed Rier..annian manifold and an

isometric immersion from M into e. What can we say about the total mean

curvature fadV of f and the Riemannian manifold (M, g) ?

PROBLEM 2.2. Let M be a closed manifold and f:M_;Em an immersion from M

into Em. What can we say about the total mean curvature of f and the

differentiable manifold M (or f(M))? (see also Willmore (1971 b)).

It is the main purpose of this chapter to summarize the recent results

about these two problems. Some remarks and conjectures will be given in the

last section, (For the older results in this direction, see Chapter Ml of Chen

(1973a) and Willmore (1971b)).

§3. TOTAL MEAN CURVATURE AND CONFORMAL GEOMETRY

Let M be an m-dimensional Riemannian maniold with metric g and Riemannian

connection V. Let p be a positive fuction on M. Then g*= p2g defines a new

metric on M. It is called a conformal change of metric. Let 0* denote the
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Riemannian connection of g*. Then we have

(3.1) pXy= (x logp)Y+ (Y logp)X-g(X,Y)U

where u is given by g(u X) = X logp.

Let m be an n-dimensional submanifold of M and V and V* the covariant

differentiation on M induced from g and g*, respectively. For any vector

fields X,Y tangent to M and normal to M, we have

(3.2) OXY=VXY+h(X,Y), 0*Y =V**+h*(X,Y),

(3.3) OXC _ -A X + DXC , V XE = -A*X + DXE .

Form (3.1) we also have

(3.4) o* - V-X _ (X loge) - ( logP) X.

By substituting (3.3) into (3.4) we may obtain

(3.5) DX = DX + (X loge) E

Thus if we denote by I the identity transformation, we get

(3.6) DX = DX+ (X logp)I,

(3.7) RD*(X,Y) = RD(X,Y) + DX((Y logp)I) + (X logp)DY

-DY((X logp)I) - (Y logp)DX- ([X,Y] log p)I.

By using the definition of Lie product we find

(3.8)
RD*(X,Y)

= RD(X,Y).

Consequently, we have the following results of Chen (1974a).

THEOREM 3.1. Let M be a submanifoZd of a Riemannian manifold M. Then

the normal curvature tensor RD is a conformaZ invariant, i.e., it is invariant

under conformaZ change of metric on M.

By substituting (3.2) into (3.1) we may obtain

(3.9) h*(X,Y) - h(X,Y) = g(X,Y) Ell N,

where U denotes the normal component of U/M. Hence for any normal vector

field of M in k we have
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(3.10) g(A*X,Y) = g(AgX,Y) + g(X,Y)g( UN,g)

Let be principal orthonormal directions of Ag with respect to

g. Then
len

is an orthonormal frame of M which gives the principal

directions of A* with respect to g*. If we denote by the

prinicipal curvatures of Ag and k1 that of A, then (3.10) gives

(3.11) k 2 ( ) = ki(g) + A , X = g( UN,g)

Since A*= oA** and *= p-l is a unit vector with respect to g*, (3.11)

implies

(3.12) ofk -k*(g*)}=ki(d) -kj(O)

Now, let be an orthonormal normal frame with respect to g.

Then the mean curvature vector H is given by

(3.13) H= n Z (E kirr'
r z

Moreover the following quantity Ge is well-defined.

(3.14) Ge = n n2 1 E Z ki (fir) k- (fir) .

r i<j
We call Ge the extrinsic scalar curvature (with respect to g). From (3.12),

(3.13) and (3.14) we obtain the following.

THEOREM 3.2 (Chen 1974a). If M is a sucmanifoZd of a Riemannian manifold

M, then (a2 - Ge)g is a conformal invariant, i.e., (a2- Ge)g is invariant under

conformaZ changes of metric.

In particular, Theorem 3.2 implies immediately that
(a2- Ge)n/2dV

is a

conformaZ invariant, where n= dimRM. For surfaces in Em, the extrinsic scalar

curvature Ge is nothing but the Gauss curvature. For such surfaces we also

have the following (see, also White (1973) for the case m= 3).

THEOREM 3.3 (Chen 1973b). Let (M) be the closed surface obtained from

a closed surface 14 of Em under a conformaZ mapping from Em into Em. Then

(3.15) a2dV = r a2dV
M

where a and dv denote the mean curvature and area element of (M), re-

spectiveZy.
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§4. TOTAL MEAN CURVATURE, ORDER OF IMMERSION, ANT) SPECTRAL GEOMETRY

Let M be a closed Riemannian manifold and A the Laplace-T3eltrami operator

acting on differentiable functions in C°'(M). It is well-known that A is an

elliptic operator. The operator A has an infinite sequence

(4.1)

of eigenvalues. Let .= (fE C`°(M)IAf = Xif} be the.eigenspace with eigenvalue

ai. Then the dimension of each V. is finite. It is called the multiplicity

of X.. The set of eigenvalues of A enumerated with multiplicity, denoted by

spec(M), is called the spectrum of M.

If we define an inner product on C°'(M) by

(4.2) <f., g> = fg dV '
for f,g E CP'(M). Then the decomposition V. is orthogonal with respect to

this structure, moreover,
i

is dense in C(M). Since M is closed, V0 is

1-dimensional and it consists of constant functions. (For general results

on spectrum, see Berger, Gauduchon and PTazet (1971)).

For each function fECx(M), let fi be the projection of f onto the

subspace V. (i= We say that a function f EC(M) is of order p

(respectively, of order > p ) if fEp (respectively, if fi = 0 ; i= 0,1, ,p - 1).
It is clear that the zero function is of order p for each p.

For an isometric immersion x :M _'E'11. We put

x = (x1, ... m)

where xi is the i-th coordinate function of M in Em. Following Chen (1979a),

we call an isometric immersion x is of ordr p (respectively, of order > p) if

each coordinate function x. of x is of order p (respectively, of order > p).

In the following theorem we will show that the total mean curvature of

an isometric immersion is closely related with the order of immersion as well

as its spectrum. The results of this section are given in Chen (1979 a,b)

THEOREM 4.1. Let (Mg) be an n-dimensional (n >2) closed Riemannian

manifold. If x : M -->? is an isometric immersion of order >p (p> 1) from
M into e, then the total mean curvature of M satisfies

(4.3)
J

an dV > (
ap

)Z v (M)M = n

where v(M) denotes the volume of (Mg). The equality holds if and only if x

is an imbedding of order p.
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PROOF. Suppose that x : M-}Em is of order > p(? 1) . Then each
coordinate function x. is of order > p. Since (xi)t is the component of xi

in the eigenspace Vt, the inner product < , > on the pre-Hilbert space C (M)

satisfies

I
= < X

I1 (xi)t I
(

xi (xi) tdV) (J I (xi) t I
dV)_ 7

t M M

where the first identity defines alt and II . II denotes the norm induced

from < , > on c(m). By a similar argument as given in Berger, Gauduchon

and Mazet (1971, p. 186), we have

a. d(x.)
0 < 11 dxi -

Zt

t 2

t> z t
a.

= IIdx.112 - 2 Z `t <dx.,d(x.) > + (a ) 2
Z t?p xi)tI Z Z t t>p it

a
>11 dxi 112 - 2 Z (x t i < x2, n (x2)It

E
t>p

(a . )
2

Zt
2 < (xi) t5 A (xi) t >

(xi t

dxiI12- Z Xt(ait) 2t2

From this we find

11 dzi 112 Z at (ai ) 2 > XP C J (ait) 2) = X 11 xi 112
t>p t p t>p p

Ild(xi)t112
11 (xi)t112

i.e.,
r r

(4.5) J I dxi 1 2 dV > ap J x2 dV,
M M

where Idxil is the length of the 1-form dxi on M. It is clear that the equality

holds if and only if xS . is a function of order p. On the other hand, since

1dX12=
Idx

2=Z

(4.5) implies

2 = n = dim m,

(4.6) n v (M) > apJ I x 12 dV ,
,
1

where 1x1 is the length of x with respect to the Euclidean metric of Em. From
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(4.6) and the well-known Schwarz inequality, we have

(4.7)
2

n v (M) (J a2dV) > a (J j x 2dV) (J a2dV)
M

r

p
M

r

M

> a( J dV)2> Xp ( J <H,x>dV)
P M

where <H,x> is inner product of H and x in L. From Proposition 2.2 of Chen

(1972 d) we havef

(4.8) v (M) + J <H, x>dV = 0.
M

Thus, (4.7) and (4.8) give

a

(4.9) v (M)j2dv>

Now, by using the Holder inequality we find

a2dV < ( J a2rdV)1/r ( J dV) 1/s
n v (M) <

° M M

where
r

+
1
s

1. Thus we have

r a
(4.10) 2rdV) > (n rv (M) .

If n =2, (4.9) gives (4.3). If n> 2, then by setting 2r= n, we get (4.3)

from (4.10).

If the equality sign of (4.3) holds, the equalities above all become

equalities. Therefore, each coordinate function xi is of order p. From

this we conclude that x is an imbedding of order p.

Conversely, if x is an imbedding of order p, we have

(4.11) Ax = a_x .

A theorem of Takahashi (1966) implies that M is imbedded in a hypersphere

s°
1
(r) of radius r centered at the origin as a minimal submanifold. Now,

since Ax= nH and M is minimal in x= r2H. Thus (4.11) implies

a2 = r2 and Xp = 2r

From these we see that the equality sign of (4.3) holds

For any immersion from M into -, if we choose the center of gravity

to be the origin of Em, then x is an immersion of order >1. Since inequality

(4.3) is independent of the choice of the Euclidean coordinate system, Theorem
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4.1 implies the following.

COROLLARY 4 . 2 . Let x M---ET be an isomeric immersion of a closed n-

dimensional (n > 2) Riemannian manifold M into Then the total mean

curvature of x satisfies
n

12)
J

andV >
J

v(M)
fm

(_Ln
(4.

1

The equality holds if and only if there is a vector c in e such that x -c

is an imbedding of order 1.

If n = 2, Corollary 4.2 is due to Bleecker and Weiner (1976) and Reilly

(1977). By using Theorem 4.1 and Corollary 4.2 we may also obtain the follow-

ing results.

THEORIIM 4.3. Let M be the product surface S1(a) x S1(b) of two plane
circles of radii a and b, respectively. If a> b, then

E- in any Euclidean(a) M admits no isometric immersion of order p <
a

space, and

(b) every isometric immersion of order > b satisfies

2
a2dV >

2bTr

ll

The equality holds if and only if b is an integer and the surface M is

imbedded as of order
b

COROLLARY 4.4. Let M be the Riemannian product of n plane circles

of the same radius 1. Then every isometric immersion from M into e satisfies

(4.13)

L
4Tr

na dV >

The equality holds if and only if M is imbedded in a hypersphere of radius

r by an imbedding of order 1.

COROLLARY 4.5. Let M be a flat Klein bottle. Then, for any isometric

immersion from M into e, we have

2dV > 2Tr2a .

COROLLARY 4.6. Let RPn be the n-dimensional real projective space with
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the standard metric. Then, for any isometric immersion from RPn into Em,

we have

n

(4.14) and V >
(2(nn 1) z c

RPn
ll

The equality holds if and only if RPn is imbedded in an affine

2

n(n + 3)-

space as a Veronese submanifold.

COROLLARY 4.7. Let CPn be the complex n-dimensional complex projective

space with the Fubini-study metric. Then, for any isometric immersion from

CPn into Em, we have

(4.15) a2ndV> [ 2(n+1)Tr .]n/n!
CPn = n

The equality holds if and only if the immersion is an imbedding of order one.

COROLLARY 4.8. Every isometric immersion from the quaternionic projective

space HPn with the standard metric into Em satisfies

(4.16)
fsp

a4ndV > 2
[ (2n

n

3)
]

2nd (2n + 1) r
n

The equality holds if and only if the immersion is an imbedding of order one.

Let M be a submanifold of Em of order >p. A conformal mapping on Em is

said to preserve the order of M if (M) is order ?p under a suitable transla-

tion of Em, if it is necessary.

From Theorems 3.3 and 4.1 we may prove the following.

THEOREM 4.9. Let x:M----Em be an imbedding of order p from a closed surface

M into Em and a conformaZ mapping on Em which preserves the area and order of

M. Then the p-th eigenvaZues of the Laplace-BeZtrami operator of M and ¢(M)

satisfy

(4.17) ap (x) > ap ( x) .

The equality holds if and only if 6 is a Euclidean motion.

If x:M_-}Em is an immersion of order 1 from a closed surface M into Em,

then any conformal mapping on Em preserves the order of M. Therefore,

Theorem 4.9 gives the following conformaZ inequality for X1.

THFOREM 4.10. Let x:M-}Em be an imbedding of order one from a closed
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surface M into in. Then, for any conformaZ mapping on Em with

v (M) = v ( (M) ) , we have

(4.18) X1(x)

The equality holds if and only if is a Euclidean motion.

A surface of Em is called a conformaZ Clifford torus if it is the image

of the Clifford torus S1(1) x S1(1)C E Em under a conformal mapping on Em.

This class of surfaces includes cycZides of Dupin given by inversions of an

anchor ring in E3 with circles of radii a and b with ratio a _ From

Theorem 4.10 we have the following.

COROLLARY d.11. If M is a conformaZ Clifford torus in Em with area

4Tr2, then we have

(4.19) X1 < 1.

The equality holds if and only if M is a Clifford torus Sl(1)x Sl(1).

Let (x,y,z) be the Euclidean coordinates of E3 and be the

Euclidean coordinates of E5. We consider the mapping defined by ul = yz,

2 1 3 1 4 l 2 2 5 1 2 2 2U =
3

xz, u =--xy, u =- -(x -y ) and u =-57 (x +y -2z ). This defines
an isometric immersion of S2 (1) into S (1/v). Two points (x,y,z) and

(-x,-y,-z) of S
2
(1) are mapped into the same point. Thus, it defines an

imbedding from R P2 into S (1/1)C E5. This real projective plane in

E5 is called the Veronese surface. It is known that it satisfies v= 2Tr

and )1 = 6. A surface of Em is called a conformaZ Veronese surface if it

is the image of the Veronese surface under a conformal mapping on Em. From

Theorem 4.10, we also have the following.

COROLLARY 4.12. If M is a conformaZ Veronese surface in Em with area

2Tr, then we have

(4.20) x1 < 6.

The equality holds if and only if M is a Veronese surface.

§5. TOTAL MEAN CURVATURE AND TOPOLOGY.

By studying total mean curvature, sometime we may obtain some informa-
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tions about topological structure of the submanifold. In this section we

would like to mention some results in this direction. Those results can

be regarded as some partial solutions to Problem 2.2.

THEOREM 5.1 (Chen 1973c). Let M be a closed surface of E4 with Gauss

curvature G > 0 (or G < 0) . If we have

(5.1) fu2dv<c2+r)7T ,
m

M is diffeomorphic to a 2-sphere.then

For the proof of this theorem see Chen (1973a) or (1973c).

Let f :M ---E4 be an immersion of an oriented closed surface M into E4.

By applying regular deformation to f if necessary, f(M) intersects itself

transversally. Hence, f(M) intersects itself at isolated points. At each

point p of self-intersection, we assign +1 if the direct sum orientation of

the two complementary tangent planes equals the given orintation on E and

we assign -1 otherwise. Then the self-intersection number is defined as the

sum of the local contributions from all the points of self-intersection. It

is well-known that the self-intersection number a is the only immersion

invariant up to regular homotopy from M in E4.

THEOREM 5.2 (Wintgen 1979). Let be an immersion from a closed

oriented surface M into E4. Then we have

(5.2) iu2dv> 4rr (l+ q I - g)
M

where q and g are the self-intersection number and genus of M, respectively.

PROOF. Let x:M---E4 be an immersion of a closed oriented surface into

E4 E. We choose local field of orthonormal frame el,e2, in E4 such that,

restricted to 1,1, el,e2 are tangent to M and are normal to M. By
r

putting h. __ <h(e.,e ),S >, we see that the Gauss curvature G and normal
zj z J r

curvature GD are given respectively by

4

(5.3) G-R(ee,ee)
= E [hr

h
r

-
(hr )2l,l,22,lr=3 11 22 12

(5.4) CL = RD(el, e2;E41
3 = h12 (h22 - hip - hit (h2 - h3l)

Thus, the mean curvature a= 1.71 satisfies
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U2 1 f (h3 + h3 ) 2 + (h4 + h4 ) 21
3 11

3
222 l 22

2

= f
hl1

2 h22, +

h11

2

h22
+ (212 + (h 12) 2 + G

J

Il

4 3 3 3 4 4 ,

121 I h11 -h22
+ G > I G-D I + G .> I h21 I h1 - h22 I + 1h3

Hence, we have

(5.5) J a2dV> 2Tr (X + I XD I )
M

where X and XD denote the Euler number of TM and T1M, respectively. Since

X = 2q (see, Lashof and Smale (1958)), (5.5) gives inequality (5.2)D

(Q.E.D.)

From (5.2) and a result of Smale (1959), we have immediately the

following

THEORF24 5.3 (Wintgen 1979). Let f:Sbe an immersion of a 2-sphere
into E4. If

a2dV < 8Tr,

then f is reguZarZy homotopic to the standard imbedding of S2 into an affine

3-space E3.

If x:M
,E4

is an imbedding of a closed surface M into E4, the fund-

mental group 71(E4 - M) of E4 - M is called the knot group of x. The

minimal number of generators of knot group is called the knot number of M.

We have the following relation between total mean curvature and knot

number p.

THEOREM 5.4 (Wintgen 1978). Let f:M S4 be an imbedding of a closed

surface into E4. Then we have

a2dV > 4Trp .

For the proof see Wintgen (1978).

96. REMARKS AND CONJECTURES
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REMARK 6.1. Corollary 4.4 shows that every isometric immersion from the

Clifford torus, i.e., the product surface of two plane circles of the same

radius, into Em has total mean curvature
>27r2.

For arbitrary flat surfaces

we have the following best possible result.

THEOREM 6.1 (Chen 1981). Let M be a closed flat surface. Then every

isometric immersion from M into Em satisfies

(6.1) a2dV > 2Tr2.

The equality holds if and only if M is imbedded in an affine 4-space of Em

as a Clifford torus.

CONJECTURE 6.1. Inequality (6.1) holds for any immersion from a 2-torus

into Em.

Willmore made this conjecture for m= 3.

CONJECTURE 6.2 (Wintgen 1979). For any closed oriented surface immersed

in Em we have

(6.2) a2dV > 4Tr (1 + 1q D) .
.M

CONJECTURE 6.3 (Chen 1979a). For any immersion from R Pn into Em we have

(4.14).

CONJECTURE 6.4 (Chen 1979a). For any immersion from BPn into Em we

have (4.15).

CONJECTURE 6.5 (Chen 1979a). For any immersion from HPn into Em we have

(4.16).

REMARK 6.2. Lawson (1970) showed that for any positive integer g, there

is a closed minimal surface m in the unit 3-sphere S3 such that the genus of

M is g and the area of M is <87r. From this fact, we know that for any closed

oriented surface M, there exists an immersion from M into E3 whose total mean

curvature is < 87r.

CONJECTURE 6.6. Let M be a closed surface which is not homeomorphic to
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22 1 1S , RP or S xS . Then for any immersion of M into Em we have

2dV > 27r2f a .

REr4ARK 6.3. The relations between total mean curvature and the theory of

variations have been studied in Chen (1972e, 1973a), Willmore and Jhaveri

(1972). Chen and Houh (197S), Chen and Yano (1978), Weiner (1978), and others.

PR-TARK 6.4. Let Mn be a closed submanifold of Em defined by some homo-

geneous polynomials. Then one may define the degree of Mn by using the degree

of these polynomials. It seems to be interesting to find a relation between

total mean curvature and the degree of M similar to Theorem 4.1. It follows

from Theorem 2.1 that if f and V = cn, M is of degree 2.
M
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Chapter IV: GENERIC SUBMANIFOLDS OF KAEHLER MANIFOLDS

In this chapter we shall study generic submanifolds of a Kaehler manifold.

Results in this theory will be used to obtain some new results in older

theories, e.g. theories of complex submanifolds and CR-submanifolds

§1. DIFFERENTIABILITY AND OPENNESS.

Let (e_,J) be an almost complex manifold with almost complex structure J.

Let N be a submanifold of M. For each point x C N, we put

= TN nJ( TN)

Then x is the maximal complex subspace of the tangent space xM which is

contained in IM. If the dimension of Rl is constant along N, N is called

a generic submanifold of (kJ). For a generic submanifold N we denote by r

the distribution defined by x, x C N. We call P the hoZomorphic distribu-

tion of N. The following result shows the differentiability of this

distribution.

PROPOSITION 1.1. For any generic submanifold N of an almost complex

manifold (kJ), the holmorphic distribution is differentiable.

PROOF. It is well-known that the 11hitney sum TN e TN is a differentiable

vector bundle over N. Let N be a generic submanifold of (M,J). We define a

differentiable mapping

0 : TN ® TN-} TM

by ¢(X,Y) = X - JY. Because N is assumed to be generic, the implicit function

theorem implies that the kernel of 6, 0-1(I,7), is a differentiable submanifold

of TN®TN. Let : TN®TN -TN be the projection given by (X,Y) = X. Then

th 1(N) is one-to-one and '= ip(_-1(N)). This proves the proposition.

(Q.E.D.)

The author would like to express his thanks to Professors Nagano and

Otsuki for giving the simplified proof of this proposition.

If (M,J,a) is an almost Hermitian manifold, then for each x in a generic

submanifold N, we define R°x as the orthogonal complementary subspace ofx

in TN. Then, by Proposition 1.1, defines another differentiable

distribution on N. For this distribution1, we have

(1.1)
JA-1n'1 {0} .
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We call this distribution the purely real distribution. A generic sub-

manifold N in (19,J) is called a complex (respectively, purely real)

submanifold if = TN (respectively, '= (O )-

Let N be a compact manifold and _G2(N, C) the set of imbeddings from

N into Cm with dim > dim N-p for a n y X E 'i . Then we haveR x=

p(N, Cm) C [CPO (N) ] 2m,

with respect to the usual Frechet topology, this gives 9p(N, Cm) the induced

topology. It can be proved that the set of generic imbeddings from N into

cm with dimR' - dim N-p is open in -p (N, Ct) .
From Proposition 1.1 we see that every real submanifold of an almost

complex manifold is the closure of the union of some generic open sub-

manifolds. Thus this theory is very general.

Let N be a generic submanifold of an almost Hermitian manifold 7i. For

any vector field X tangent to N, we put

(1.2) JX=PX+FX

where PX and FX are the tangential and normal components of JX, respectively.

Then P is an endomorphism of TAI and F a normal-bundle-valved 1-form on TN.

For any vector field f normal to N, we put

(1.3) Jy = t + f

where is and f are the tangential and normal components of Jf. Then t is a

tangent-bundle-valued 1-form on TIN and f an endomorphism of T 1N. For a

generic submanifold N in (M,g,J) we have

(1.4) v j 1, Pr=X, and PXLX1
X x x X x

Moreover, F: y°1. -Fr 1 is an isomorphism.
Let vw be the vector subspace of Tx N given by

vx=TxNflJ(Tx N).

Then v is a differentiable complex vector bundle over N. It is easy to verify

that

1_ 1 1
(1.5) TN= Fr mv, t(T1N)

_ and F
L

_L v.

Throughout this and the next chapters we always put
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(1.6) h = dim,R'
1p=dim R'.

§2. INTEGRABILITIES

Throughout this chapter we shall always assume that N is a generic sub-

manifold of a Kaehler manifold M we shall adopt the notations given in 51.

The results given in this chapter are obtained in Chen (1980c).

PROPOSITION 2.1. We have <Jh (X, U) , > _ <h (JX, U), E> for any vectors
XEa, UETN and NEV.

PROPOSITION 2.2. The hoZomorphic distribution r is integrabZe if and

only if <h (X, JY), FZ> _ <h (JX, Y), FZ> for X. Y in R' and Z in t
Proposition 2.1 follows from the Gauss formula and OJ = 0. Proposition

2.2 follows from the fact that h(X,JY) - h(JX,Y) = J[X,Y] + VyJX - O7Y, for
X,Y ge-. (see, also, Blair and Chen (1979) and Bejancu (1978)).

PROPOSITION 2.3. The purely real distribution 1 is integrabZe if and

only if

(2.1) OZ (PW) - OW(PZ) + AFZW - APWZ E R-1

for Z, W E

PROOF. For any Z,W in 1 we have

JOZW+Jh(Z,W) =VZ(PW) +h(Z,PW) -AFWZ+DZ(FW),

from which we obtain

[Z, W] = P{AFWZ - AFZW + OW(PZ) - OZ (PW) }

+t{h(W,PZ) -h(Z,PW)+DW(FZ) -DZ(FW)}

Since t(TIN) =1, this proves the proposition.

PROPOSITION 2.4. If W is integrabZe and its leaves are totally geodesic

in N, then <h( FY-L> = {0}

PROOF. Under the hypothesis, OXZEr1 for vector fields X in and
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I
'rz q r Thus for Yin , we have

0= <VXZ, JY> = <AFZX, Y> - <VXPZ, Y> = <A -ZX, Y>.

This proves the proposition.

PROPOSITION 2.5. If rI is integrabZe and its Zeave are totally geodesic

in N, then <h( ,F 1>= {0).

PROOF. For vector fields X in .41, Z,W in , we have

0 = <VZX, W> = <VZJX, PW> + <VZJX, FW> = <i (JX, Z), FW>.

This proves the proposition.

These two propositions play important roles in the theory of generic

submanifolds because these two propositions tell us that if we impose suitable

intrinsic conditions on the generic submanifold N, we obtain important ex-

trinsic conclusions on N.

For the endomorohism P : TN -TN, if we put

(VUP) V = vU(PV) - P(VUV)

for vector fields U,V in TN, then we have

(2.2) (VUP) v= th(U, v) + AFVU

Thus we may obtain the following.

LD14A 2.6. P is paraZZeZ if and only if (1) R' is integrabZe,

(2) AFUX = 0 for X E ' and U E TN, and (3) A` UV = AFVU for U, V in TN.

For the normal bundle-valued 1-form F, if we put

(VUF)V=DV (FV) - F(VUV),

for vector fields U,V tangent to N, we have

(2.3) (VUF)v= fh(U,v) -h(U,PV).

Thus we obtain the following.

LEWM4A 2.7. F is paraZZeZ if and only if =-AEPU for U in TN and
in T'N .
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By using this lemma we may prove the following

2.8. If F is paraZZeZ, then

(1) W is integrable and its leaves are totally geodesic in N,

(2) V/ FR' and AFUX
=

0,

(3) F land v are paraZZeZ in the normal bundle, and

(4) (vXP) Z = (vUP) X = 0,

for X in , Z inand U in T?',

Let i:N -M be a generic submanifold of a Kaehler manifold M. If

we denote by and ya the fundamental 2-form (or the Kaehler form) and the

a-th Chern form of k, respectively. And by O = i*S2 and ya = i*ya the in-
duced forms on N. Then dO = dy

a

= 0. Thus, if N is closed, Q and y define
cohomology classes [0] and [ya ] in H2 (N; R ) and in H2a (N; R), respectively.
We call them the fundamental class and a-th Chern class of N, respectively.

Such cohomology classes will be studied later.

§3. GENERIC SUBMANIFOLD OF COMPLEX-SPACE-FORMS

For a generic submanifold N of a Kaehler manifold k, if is integrable

and

(3.1) <h( ;0),F 1>= {O), i.e.,

then, by the Codazzi equation, for X,Y in e and Z,W in we have

(3.2) R(X,Y;Z,FW) -<DXh(Y,Z) -Ilh(X,Z),FW>

_ <AFWY, JVXJZ> - <AFWX, J'7 _1TZ>

= <JAFNT-,VYPZ> - <JAFWY,v._p2> + <AFN ',JA.,ZY> - <AFWY,JAFZX>.

Since is integrable, (3.1) and Proposition 2.2 imply that, for X E

WEB

3 3) F PX = -JAFZX.

Thus, (3.2) and (3.3) give

(3.4) R(X,JX;Z,FZ) - <DXh(JX,Z) - DJXJ2(X,Z),FZ>

_ <JAFZX, VJXPZ> - <AFZX, V 2Z> + 2 I i AFZX
i

j

2
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On the other hand, we have <JAFZX,PZ>=0 and (3.1). Thus we obtain

(3.5) <JAFZX, V JXPZ> = < [JX,AFZX] , JPZ> + <7 _ X PZ>_Z

<[AFZX,X],PZ> + <OX(r_ZX),PZ> = -<AFZX,OXPZ>,

(3.6) OXPZ = AFZX + PTXZ.

Thus, by (3.4), (3.5) and (3.6), we have

(3.7) (X,JX;Z,FZ) - <DXh(JX,Z) - DJXh(X,Z),FZ>

= 211A
FZ

X 112
- 2

11

VXFZ l f 2+ 2<:7 XZ, Vxpz>.

From (3.6) we also have II AFZX I I2 = II 4XPZ 1 12 + , PVXZ II2- 2<4XPZ,PTXZ> . Substitut-
ing this into (3.7) we get

(3.8) R(X,JX;Z,FZ) - <DXh(JX,Z) - DJXh(X,Z),FZ>

11

AFZX 11 2 - 11 vX-DZ 112 +
11

PV z
i2

If M is a complex-space-form of constant holomorohic sectional curvature

c, then we have

(3.9) R(X,Y)Z={<Y,Z>X-<X,Z>Y+<JY,Z>J.?-<JX,Z>JY+2<X,JY>JZ}

for X,Y,Z ETM. Thus, for X ER' and Z E r1, we obtain

(3.10) R(X,JX;Z,FZ) =--- <X,X><FZ,FZ>.

DEFINITION 3.1. A generic submanifold N in M is called mixed totaZZy

geodesic if L)= {0}.

From (3.8) and (3.10) we obtain the following.

3.1. Let N be a generic submanifold of a complex-space-form 71(c).

If r is integrabZe and N is either (a) mixed totally geodesic or (b) F.7
1

is parallel and (3.1) holds, then for unit vectors X in and Z in we

have

(3.11)
I I OXPZ 11 2 = -1I FZ 11 2 +

11

PVXZ 112 + J J

AFZX
. 2

By using Proposition 2.4. Lemma 3.1, formulas (2.2) and (3.12), we obtain
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PROPOSITION 3.2. Let N be a mixed totally geodesic generic submanifold

of a complex-space-form M(c), c# 0. Then ' is integrabZe and its leaves

are totally geodesic in N if and only if N is either a complex submanifold

or a purely real submanifold.

A generic submanifold is said to be proper if it is neither a complex

submanifold nor a purely real submanifold.

THEOREM 3.3. Let N be proper generic submanifold of a complex-space-

form M(c). If VF = 0 , then c = 0.

PROOF. If VF E 0, then, by Lemma 2.8 and Lemma 3.1, we have (3.11).
Moreover, Lemma 2.8 also gives A_rZX= 0 and VX(PZ) = POXZ, for X in "and

Z in 1
. Thus (3.11) gives c II FZ 112 = 0. Since FZ 10, c = 0.

EXAMPLE 3.1. Let NT be a complex submanifold of the complex number

space Cr and N1- any p-dimensional purely real submanifold of Then the

Riemannian product space NT x N1 is a generic submanifold of C2'+p

satisfying VP - 0 and VF - 0.

THEOREM 3.4. Let N be proper generic submanifold of a complex-space-

form M"+p(c). If OP - O, c =0.

PROOF. Because dimC P1 "+p (c) =dims, Y+ dimR1, Lemma 2.6 implies
that AFZX = 0 for X E' and Z E R1 and Y is integrable. If c 0, (3.11)

gives FYcv1= 0). This shows that N is not proper.

§4. GENERIC PRODUCTS

A real submanifold N of a Kaehler manifold M is called a generic product

if it is locally the Riemannian product of a complex submanifold NT and a

purely real submanifold N1 of M.

Examples of generic product in have been given in Example 3.1. In

the following we give examples of generic product in C Pm.

EXAMPLE 4.1. Let CPS' be the complex m-dimensional complex projective

space of constant holomorphic sectional curvature 4. The Segre imbedding
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is defined by (z0,...)zh) where

(zi) and (wa.) are the homogeneous coordinates for CPh and CPp, respectively.

It is easy to see that Shp is a non-totally geodesic Kaehler imbedding such

that each component is totally geodesic in
CPh+p+hp

Let NJ-be any p-dimen-

sional purely real submanifold of C PP. Then C Pp x N 1 is a non-totally

geodesic generic product in
CPh+p+hp

in which CPh is imbedded as a totally

geodesic complex submanifold in
CPh+p+hp

DEFINITION 4.1. A generic product N = NTx N -L in a CP" is called a standard

generic product in CF" if (1) l7 lies in a totally geodesic complex submanifold

CPh+p+hp of C11 " and (2) NT is immersed in C P as a totally geodesic complex

submanifold.

LEMMA 4.1. If N is a generic product of a KaehZer manifold Al, then (1)

AFZX = 0 and (2) (4XP) Z = 0 for X in R' and Z inl

This follows from Proposition 2.4, Proposition 2.5, and (3.12).

For a Kaehler manifold M, the holomorphic bisectional curvature HB of t71

is defined by

(4.1) HB(X,Y) =R(X,JX;JY,Y)

for orthonormal vectors X,Y tangent to M.

PROPOSITION 4.2. If N is a generic product of a KaehZer manifold Al,

then, for unit vectors X in M' and Z in we have

(4.2) HB(X,Z) = 211 h(X,Z) 112.

PROOF. If N is a generic product, (3.8) holds. On the other hand,

Proposition 2.2 and (3.1) give, for X E , Z E

(4.3) <DXh (JX, Z) - D JXh (X, Z) , PZ> _ <h (X, Z) , o JXFZ> - <h (JX, Z) , OXFZ>

_ <h(X,Z),Jh(JX,Z)> - <h(X,Z) ,h(JX,PZ)> - <h(JX,Z),Jh(X,Z)>

+ <h (JX, Z) , h (X, PZ) >

211 h(X,Z) 112+ 2<Jh(X,Z),h(X,PZ)> .
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By the equation of Gauss and (3.1) we also have

(4.4) R(X,JX;Z,PZ) =R(X,JX;Z,PZ) - 2<Jh(X,Z),h(X,PZ)>

Combining (3.8), (4.3) and (4.4) we obtain

(4.5) HB(X,Z) = R (X, JX; PZ, Z) + 2IIh(X,Z) II2+ IIvXpZII2- IIPOXZII2- IIAFZXII2

for unit vectors x E R, and ZE Now, by Lemma 4.1, this gives

HB(X,Z) =R(X,JX;PZ,Z) + 2IIh(X,Z) II 2.

Since N is the Riemannian product of NT and N 1 , R(X,JX;PZ,Z) = 0 This gives

(4.2).

By using Proposition 4.2 we obtain the following.

THEOREM 4.3. Let k be any KaehZer manifold with negative hoZomorphic

bisectionaZ curvature. Then k admits no proper generic products. In

particular, the complex hyperbolic space admits no proper generic products.

THEOREM 4.4. Every complete, 1-connected, generic product in C m is the

Riemannian product of a complex submanifold of a CN and a purely real sub-
r

manifold of a C
m

This theorem simply follows from Proposition 4.2 and a result of Moore

(1971).

THEOREM 4.5. Let N be a generic product of CPm. Then

(4.6) m> h + p + hp.

If m = h + p + hp, then N is a standard generic product.

PROOF. From Proposition 4.2 we have, for unit XE,e, ZE J-

(4.7) (I h(X,Z) II =1.

Thus by linearity we obtain

(4.8) <h(xi,Z),h(XJ,Z)>=0, i# ,

where and are orthonormal bases for "PI and
1
respective-
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ly If p = 1, then Lerruna 4.1, (4.7) and (4.8) imply (4.6).
If p >2, then by applying linearity to (4.8) and using the equation of

Gauss, we see that fh(Xi,Z0) I i = 1,---,2h; c x= forms an orthonormal

basis for v. Thus (4.6) follows.

Now, assume that N is a generic product of c? with m = h + o + hp.
Then, for vectors X,Y in 1' and Z in ; (3.9) and the equation of Gauss

give

(4.9) <h(X,Y) ,h(JX,Z)> = <h(X,Z) ,h(JX,Y)>.

On the other hand, Propositions 2.2 and 4.2 imply

<h (X, Z) , h (JX, Y) > = <h (X, Z) , Jh (X,Y) >

_ -<Jh (x, Z) , h (X, Y) > _ -<Jh (X, Z) , Jfh (X, Y) >

_ -<h(Jx,Z),h(X,Y)>.

Combining this with (4.9) we get

(4.10) 0= <h(X,Z),h(Jx,Y)> = <h(X,Z),h(X,JY)>

for X,Y in and Z in W'1 Thus by linearity we find

<h(X,Z),h(Y,W)>+ <h(Y,Z),h(X,W)>= 0

for x,Y,W in Ve' and z in1 Hence, by equation of Gauss, we have

(4.11) <h(X,Z),h(Y,W)>= 0

for X,Y,W in ' and Z in X'1. Because m = h + p + hp, this gives

(4.12) h-- F,,l'1
Combining this with Lemma 4.1 we obtain h(Y, ') = 0. Since NT is totally

geodesic in N, NT is totally geodesic in CF1. This proves the theorem.

By using Proposition 4.2 we may also prove the following.

THEOREM 4.6. Let N be a generic product of CFA. Then

(4.13)
I I h 112 > 4hp.

If the equality holds, ZocaZZy, N is the Riemannian product of the totally
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geodesic conrpZex submanifoZd CPh and a totaZZy geodesic totaZZy real sub-

manifold RPh of C?. Moreover, the immersion is rigid.

By a totaZZy real submanifoZd N of a Kaehler manifold k we mean a purely

real submanifoZd with T -L
N. (see, Chen and Ogiue (1974a))

For general results of complex submanifolds see Ogiue (1974).

§5. APPLICATION TO COMPLEX GEOMETRY

By using Theorem 4.5 we obtain easily the following converse theorem to

Segre imbedding.

THEOREM 5.1. Let M= Mx M2 be the Riemannian product of two KaehZer

manifolds with dim C M1 = h and dim
C

= p.

(1) M admits no KaehZer immersion into

Then

CPm for any m < h + p + hp, and
(2) If M admits a XaehZer immersion into

(2.1) M1 and M2 are open submanifcZds of

and

CPh+p+hp,
then we have

Cph and CPp, respectively,

(2.2) the KaehZer immersion is given by the Segre imbedding.

PROOF. Let N2 be any p-dimensional purely real submanifold of
submanifolds exist extensively). We put N = M1 x N2 . If M= Ml x M2 admits a
Kaehler immersion into cPm, then N= Ml x N2 C M1 x M2C CFA is a generic
product in cP' . Thus, by Theorem 4.5 we obtain m > h + p + hp.

If M admits a Kaehler immersion into
CPh+p+hp,

then N = M1x N2 is a

generic product in
CPh+p+hp.

Thus, by Theorem 4.5, M
1

is a totally geodesic

complex submanifold of
CPh+p+hp

Hence M1 is an open submanifold of CPh.

By applying the same argument to M2, we conclude that M2 is an open sub-

manifold of CPp. Therefore, statement (2) follows from the Calabi local

rigid theorem of Kaehler immersion. (Q.E.D.)

REMARK 5.1. Let t4 by any complex hypersurface of C Pn+1. Then M1 x CPp

admits a Kaehler imbedding into
CPh+2p+hp+1.

Hence, in order to conclude

statement (2.1) of Theorem 5.1, the assumption on the dimension is necessary.

RETIARK 5.2. Further applications of the theory of generic submanifolds

will be given in Chapters V and H.
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Chapter V: CR-SUBMANIFOLDS OF KAEHLER MANIFOLDS

The main purpose of this chapter is to summarize some results obtained

in Chen (1978a) and Chen (1980d). For the details and further results, see

these two papers and furthcoming part of this series.

§1. INTEGRABILITY, MINIMALITY AND COHOMOLOGY.

A generic submanifold N of an almost Hermitian manifold k is called a

CR-suLmanifolld if its purely real distribution, lis totally real, i.e.,

Jx c Tx N, x EN. This notion was first introduced in Bejancu (1978). It

has been proved in Blair and Chen (1979) that every CR-submanifold is a CR-

manifold in the sense of Andreotti and Hill (1972). It is clear that every

generic submanifold with dimR = 1 is a CR-submanifold. However, if

dimR 11> 1, generic submanifolds are not necessary CR-submanifolds.

We shall use the same notations given in previous chapters. Throughout

this chapter, N is assumed to be a CR-submanifold of a Kaehler manifold M

unless mentioned otherwise.

LEVMA 1.1. For vector fields X is yr, Z , W in in v, and U in

TN, we have

(1.1) <VUZ, X> = <JA JZU, X> ,

(1.2) AJZW=A jWZ , and

(1.3) AJEX = -AEJX.

This follows from the indentities, JVUZ + J h (U, Z) = -A JZU + DUfZ and

<v Jx,E>= <Jh(X,Y),E>.

For a CR-submanifold N, PR°1= {0}. Thus, from Proposition 1V,2.3 (i.e.,

Proposition 2.3 of Chapter N) and Lemma 1.1, we obtain the following fun-

damental result for CR-submanifolds.

THEOREM 1.2. The totally real distribution r1 of a CR-submanifold of

a Kaehler manifold is always integrable.

This theorem was generalized to CR-submanifolds in a locally conformal

almost Kaehler manifold by Blair and Chen (1979). Moreover, in Blair and

Chen (1979). they have constructed CR-submanifolds in some Hermitian manifolds

in which 1 is not integrable.
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By using (1.1) and proposition N, 2.5, we find

PROPOSITION 1.3. For a CR-submanifoZd N of a KaehZer manifold i, the

leaves of y-L are totaZZy geodesic in N if and only if <h( ),J I>= {0},

This proposition can also be found in Bejancu, Kon and Yano (1980).

Moreover, we have the following.

LEMMA 1.4. If is integrabZe and leaves of R'l are totaZZy geodesic

in N, then for any X E Y and E E J°-1, we have

(1.4) AJX = -JA X.

Let 9 be a differentiable distribution on a Riemannian manifold N.

We put

(1.5) h(X,Y) = (VxY)1

for any vector fields X,Y in 1, where (V/-)' is the component of VXY in the

orthogonal complementary distribution 31- of _q. Then h is a well-defined

-9 1-valued tensor of type (0,2). From the Frobenius theorem, we have

LEMMA 1.5. The distribution g is integrable if and only if h is

symmetric on 2 x-9.

Let Xl," ,Xr be an orthonormal basis of 9. We put

pp(1.6) H= r
1 trace h= 1 (X.,X.).

0 0
Then H is a well-defined vector field on N (up to sign). We call H the mean-

curvature vector of -9. If

mean-
0
= 0, _Q is called a minimal distribution. If

0

h =0, -9 is called a totaZZy geodesic distribution.

TI- OREM 1.6. If N is a C?-submanifoZd of a XaehZer manifold M, then

(a) the hoZomorphic distribution 0 is always minimal and

(b) is totaZZy geodesic if and only if '° is integrabZe and its

leaves are totaZZy geodesic in ^.

PROOF. For any vector fields x in and z in r 1, Lemma 1.1 gives
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Thus we find

(1.8) <Z,vJXJX> = -<AJZX,JX>.

From (1.7) and (1.8) we get <p Y+ Vj TX, Z> = 0. This implies (a). Statement
(b) follows from (1.5) and Lemma 1.5. (Q.E.D.)

For a CR-submanifold N of a Kaehler manifold Ti/, we choose

an orthonormal local frame of J. We let

wl, ... ,wh, ... ,w 2h be the 2h 1-forms on N satisfying w(Z) = 0 and tut (e j ) = 11

for i , j=1, , 2h and Z in r 1, where eh+j = Jet.. Then

(1.9) w = w1A...Aw2h

defines a 2h-form on N. This form is a well-defined global form on N since

is orientable. It has been proved (see, for example, Tachibana 1973) that

this form is closed if `e' is minimal and its orthogonal complemental distribu-

tion R 1 is integrable. In our case, Theorems 1.2 and 1.6 say that these

conditions hold, automatically. Thus we have the following

THEOREM 1.7. For each closed CR-submanifold N of a KaehZer manifold M,

there is a canonical deRham cohomoZogy class given by

(1.10) c(N) = [w] e H2h(N; R), h=dimCY(.

Moreover, this cohomoZogy class is nont:-iviaZ if is integrable and

is minimal.

The last statement follows from the fact that if ' is integrable and

L is minimal, the form co is harmonic. (see, e.g., Tachibana 1973). By

using Theorem 1.7 we have the following

THEOREM 1.8. Let N be a closed CR-submanifoZd of a KaehZer manifold P.

If

(1.11) H2k(N; R) = 0

for some k< dimCV. Then either' is not integrable or XI is not

minima Z.

PROOF. We choose a local field of orthonormal frame

in M in such a way that, restricted to
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N, e1, ,eh,Je1' ... Jeh are in , and eh+1,. 'eh+p are in 71. We denote by'.
W1.....

6j the dual frame of We put

6A =
wA

+
4-1wA*

and B = (/ - I wA*, A= 1, ,m. Restricting and

to N, we have 6a = 6 = m' for a= h, 1 , , h + p, and 6r = 8 = 0 for
r =h+ p+ 1 , ... , m. The fundamental form S2 of M is given by S2 = Z6AAOA .

h
Thus the induced fundamental form S2= i*S2= 62R62. From this we find

i=1

that the cononical class c(N) and the fundamental class [0] of N satisfy

(1.12) [0] h= (-1) h (h!) c (N) .

If R is integrable and the leaves of 71 are minimal in N, Theorem 1.7 and

(1.12) imply H2k(N;R) 0 for k= 1,2,---,h. (Q.E.D.)

In Chen and Ogiue (1974a) the following result is proved.

PROPOSITION 1.9. A submani old N of a complex-space-form M(c), c# 0, is

a complex submanifold or a totally real submanifold if and only if

R (X, Y) TNC TN for X, Y in TN.

For CR-submanifolds we have the following.

PROPOSITION 1.10 (Blair and Chen, 1979). A generic submanifold N of a

complex-space-form i(c), c# 0, is a CR-submanifold if and only if

R(7,7; 71, "i) = f0).

This proposition follows from formula (IT,3.9).

§2. CR-PRODUCTS OF KAEHLER MANIFOLDS

DEFINITION 2.1. A CR-submanifold of a Kaehler manifold is called a CR-

product if it is a generic product.

PROPOSITION 2.1. A CR-submanifold of a Kaehler manifold is a CR-product

if and only if P is paraZZel, i.e., VP -0.

PROOF. If VP - 0, equation (17. 2.2) yields
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In particular, if X E R, then FX= 0. Thus we have

(2.2) AJZX=O

for any XE and ZE Therefore, by Proposition N.2.2 and 1.3, "''is

integrable and each leaf N-L of is totally geodesic in N. Let N1 denote

the leaf o f Then for X,Y E `' and Z E JK'1, (2.2) and Lemma 1.1 give

0= <AJZY, X> = <p7Z, JX> _ -<Z, 4YJX> .

From this we conclude that N is a CR-product of M.

Conversely, if N is a CR-product, we have 0UYE for Y cand UE TN.

Thus, we may obtain Jh(U,Y) = h(U,JY). From this we may prove (4UP)Y = 0.

Similarly, from V for Z E 1, we may obtain (DUP) Z = 0.

Bejancu informed me that he also obtained this proposition independently.

In Bejancu, Kon and Yano (1980), they proved that if 17P= 0 and N is anti-

holomorphic, then N is a CR-product. By an anti-holomorphic submanifold, we

mean a CR-submanifold with Jy-( = T 1N.

By using Proposition N, 4.2 and Theorem IV, 4.6, we have

PROPOSITION 2.2. If N is a minimal CR-rroduct of CFA, then the scalar

curvature r of N satisfies

(2.3) r< 4h2 + 4h + p2 - p

The equality holds if and only if (a) N Zies in a totaZZy geodesic C Ph+p+hp

of CFJ, (b) ZocaZZy, N is the Riemannian product of a totaZZy geodesic,

complex submanifold C Ph and a totaZZy geodesic, totaZZy real submanifold

R PP and (c) the immersion in induced from the Segre imbedding.

PROOF. Since N is a minimal CR-product, the Ricci tensor S of N satisfies

S(x,x)=(2h+p+ 2)lxll2- IIAF x1 2, xE ,
r

S(Z,Z)=2h+p-1- IIAZll2; ZED
r

2 + 4hp. Thus the propositionfrom these we obtain r= 4h2 + 4h + p2 - p- 11h
(Q.E.D.)follows from Theorem N, 4.6.
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PROPOSITION 2.3. Let N be a CR-product of a non-positively curved

KaehZer manifold M. If N is anti-hoZomorphic, then

(a) the Ricci tensors of M and NT satisfy

(2.4) S(X,Y) =ST (X, Y) for X,Y tangent to NT and

(b) NT is totaZZy geodesic in k

PROOF. Under the hypothesis, Proposition N. 4.2 implies

K(X,Z) =K(X,JZ) = IIh(X,Z) 11 = 0 for XE, and ZEWwhere k denotes the
the sectional curvature of M. On the other hand,since N is anti-holomorphic

and a CR-product, (2.2) gives h( ', ) = 0. Thus NT is totally geodesic in

M. From this we find K(X,Y) = KT(X,Y) for X,Y E TNT. Since K(X,Z)=K(X,JZ)=0,

we have (2.4). (Q.E.T).)

By using Proposition 2.3 and an argument which we used in Chen (1978b),

we may prove the following.

THEOREM 2.4. Let k be a Hermitian symmetric space of non-compact type

and N a complete CR-product in M. If N is anti-hoZomorphic, then

(1) NT is a Hermitian symmetric space of non-compact type,

(2) there is a Hermitian symmetric space M -L of non-compact type such

that

(2.1) M is the Riemannian product of NT and M -t and

(2.2) N -L is a totaZZy real submanifoZd of M M.

THEOREM 2.5. Let N be a proper CR-product of an irreducible Hermitian

symmetric space of non-compact type. Then N is not anti-hoZomorphic.

REMARK 2.1. The rank 2 non-compact irreducible Hermitian symmetric

space SU(2,m)/S(U2x Un) admits a proper CR-product N for any h= dim
r

satisfying 0 <h <m.

For the tangent-bundle-valued 1-form t defined in (N,1.3) if we put,

for vector fields U in TN and in T 1 N,

(2.S) (V Ut) = tD,
then we have (VUt) = A fEU - PA U . Therefore, Cat =_0 if and only if for any
vector fields U,V in TlN and E in T 1N, we have



48

<D+(JX, Z) - DJX"(X, Z),JZ> = -2II h(X,Z) II 2

by using a similar argument as given in (IV, 4.3). Thus we obtain (3.1).

This lemma was also obtained by F. Urbana in 1980 independently. As an

application of this lemma we obtain

THEOREM 3.2. Let N be a CR-submanifoZd of C Pm. If W is integrabZe

and the leaves o f R--L are total Zy geodesic in N, then m > 2h + p.

PROOF. From (3.1) we have I h(X, Z)
II2

= 1+IIAJZXII 2 for it vectors X e
and z E ' 1. Thus, for orthonormal basis X1 , X of, we have

(3.2) <h (Xi , Z) , h (X
J , Z) > = <AJZXi, A JZXJ

> i#j.

For a given Z in ri, let X2h be the eigenvectors of AJZ. Then

(3.2) gives <h(X1-,Z),h(X17.,Z)>=0, i#j. Since IIh(X,Z)II>1 and

<h(X,Z),JP1>= 0, we obtain the theorem.

DEFINITION 3.1. A CR-submanifold N of a Kaehler manifold M is said to

be mixed foliate if (1) is integrable and (2) N is mixed totally geodesic,

i.e., h( ,,r-L) = 0 .

PROPOSITION 3.3. Let IV be a mixed foliate CR-submanifoZd of a XaehZer

manifold M. For unit vectors X E .(, Z El , we have

(3.3) RB (X, Z) = -2 11 AJZXI 12 .

This proposition follows immediately from Lemma 3.1. From this we obtain

the following.

THEOREM 3.4. If k is a Kaehler manifold of positive hoZomorphic bisec-

tional curvature, then M admits ro mixed foliate proper CR-submanifoZds.

From this we obtain immediately the following.

COROLLARY 3.5 (Bejancu, Kon and Yano 1980). CPm admits no mixed foliate

proper CR-submanifoZds.

REMARK 3.1. The geodesic sphere G (p) of CiP is a mixed totally geodesic
e
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CR-hypersurface, but its holomorphic distribution is not integrable.

THEOREM 3.6. A CR-submanifoZd of Cm is r,^ixed foliate if and onl
if it is a CR-product.

This theorem follows from Proposition 3.3 and Theorem 2.1. For mixed

foliate CR-submanifolds in a complex hyperbolic space HTh = Mr'(-4), we have

the following.

THEOREM 3.7. If N is a mixed foliate proper CR-submanifoZd of H m, then

(a) each Leaf NT of lies in a complex (h +p)-dimensional totally

geodesic complex submanifoZd Hh+p of F,

(b) each Leaf NT is an Einstein-KaehZer submanifold of Hh+p with Ricci

tensor given by ST = -2 (h + p + 1) g,
(c) h+1>p>2;h>2,
(d) the Leaves of R1 are totaZZy geodesic in N, and

(e) dimRN>6.

For the proof of this theorem, see Chen (1980d). For Hermitian symmetric

spaces of compact type we have the following.

THEOREM 3.8. Let N be a mixed foliate CR-submanifoZd of a Hermitian

symmetric space of compact type. Then

(1) N is a CR-product, and

(2) K(X,Z) =K(X,JZ) = 0 for unit XEW and Z E

This theorem follows from Proposition 3.3. The compact irreducible

Hermitian symmetric space SU(2+ m)/S(U2 x Um) admits a mixed foliate CR-

submanifold for any h, 0 <h< m. From Theorem 3.8 we may also obtain the

following.

THEOREM 3.9. Let N be a complete mixed foliate anti-holomorphic sub-

manifoZd of a Hermitian symmetric space M of compact type. Then 74= NTX M-L

where NT and M1 are Hermitian symmetric spaces of compact type. Moreover

N=NT x N-L where N1 Lies in M1 as a totaZZy real submanifoZd.

DEFINITION 3.2. A CR-submanifold N of a complex-space-form Pi(c) is

said to have semi-flat normal connection if its normal curvature tensor RD

satisfies
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(4.1) RD(X,Y;E,n) = Z <X,PY><JE,n>

for vectors X,Y in TN and E,n in ^1N

For such submanifolds we have the following classification theorem.

For its proof, see Chen (1980d).

THEOREM 3.10. A CR-submanifoZd N of a complex-space-form FCC), c 0,

has semi-flat normal connection if and only if N is one of the following

submanifolds:

(1) a totaZZy geodesic complex submanifoZd of TP(c),

(2) a flat totaZZy real submanifoZd of a totaZZy geodesic submanifoZd

i?(c) of t1P(c),
(3) a proper anti-hoZomorphic submanifoZd with flat normal connection

in a totaZZy geodesic complex sub; Manifold M
o"+p(c)

of AP(c),
(4) a space of positive constant sectional curvature immersed in a

totaZZy geodesic complex submanifcld ?+1(c) of 74m(c) as a totaZZy real sub-

manifoZd with flat normal connection.

Combining Proposition 2.6 and Lemma 3.1 we obtain immediately the follow-

ing.

PROPOSITION 3.11. For any CF-submanifoZd N of any KaehZer manifold

if OF- 0, we have HB) _ {0}.

§4. STABILITY OF TOTALLY REAL

Let N be a p-dimensional closed totally real minimal submanifold of a

complex p-dimensional Kaehler manifold M. Then, for any normal vector field

u along N, we consider the normal variation of N in M induced from u. By

Theorem 1,4.1, we have

p
(4.1) (u) r { Du 2 ~(e.,u;u,ei) _ 11Auli2FdV,

N i=1

where is an orthonormal frame of TIV.

Since N is totally real in k with the smallest possible codimension,

there is a tangent vector field X of N such that JX = u. Using '7J = 0, we

have
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On the other hand, by the equation of Gauss, we find

(4.3) jlR(ei,u;u,ei) _ E,R(Jei,X;X,Jei)

=S(X,X) - J]R(eZ.,X;X,e Z.)

=s(X,X) -S(X,X) - h(X,ei)1,2.

Moreover, from (1.2) of Lemma 1.1, we have IIA;1211h(ei,X)Ij2. Thus

(4.1), (4.2) and (4.3) imply

.
{11°x112-s(x,x)+s(x,x)}d-(4.4) "(u)= j

N

We put

W= V .K+ (div X) X,

where div X denotes the divergence of X. Let E be the 1-form associated with

X. Then, by computing the divergence of W, we get (see, for example, Yano

and Bochner (1953))

(4.5) 0 (div W)dV= f (s(X,X)+ 119Xi12- IIZ 1f2-
.N n7

Combining (4.4) and (4.5) we obtain

(4.6) yl `(u) =
J

(- IId 112 + (6E) 2 - S(X, X) }dV.
M

If the Kaehler manifold M has positive Ricci tensor S and H1(N, R) 0,

then there is a harmonic 1-form 5 on N, Thus d5= 6S= 0. Let u= JY, where Y

is the vector field on N associated with 5. Then, for this normal vector

field u, we have y/"(u) < 0. Thus, N is unstable.
If the Ricci tensor S of M is nonpositive, then (4.6) shows that

"(u) > 0 for any normal vector field on N. Therefore, N is always stable.

Consequently, we have the following result.

THEOREM 4.1 (Chen, Leung, and Nagano 1980). Let N be a closed, totaZZy

real, minimal submanifold of'a KaehZer manifold M with dim RN=dim CM.
(1) If k has positive Ricci tensor and H1(N; R) 0, then N is unstable,

and

(2) If k has nonpositive Ricci tensor, then N is stable.

There exist many totally real submanifolds. In fact, we have the follow-

ing.
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THEOREM 4.2 (Chen and Nagano 1978). Let B be a totally geodesic sub-

manifold of a locally Hermitian symmetric space. If B is irreducible and

non-Hermitian, then B is totally real.

REMARK 4.1. In Chen, Leung and Nagano (1980) a general method to determine

stability of totally geodesic submanifolds of symmetric spaces is established

by using representation theory. Moreover, they have used this method to

determine stability of the basic totally geodesic submanifolds M+, M of the

next chapter.
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Chapter VI: (M+, M_ )-METHOD AND ITS APPLICATIONS

In this chapter we will briefly discuss the (M+,,V_)-method of Chen and

Nagano (1978) and indicate some of its applications. Results obtained in

this chapter are joint works with Professor Tadashi Nagano unless mentioned

otherwise. For the details, please refer to Chen and Nagano (1977, 1978)

and forthcoming parts of this series.

fl. . TOTALLY GEODESIC SUT3MANI FOLDS AND (u+ , M_) -METHOD

A submanifold B of a Riemannian manifold 'd is a totally geodesic sub-

manifold if its second fundamental form vanishes. It is well-known that B

is totally geodesic in M if and only if geodesics of B are geodesics of M.

In other words, B is totally geodesic in M if and only if bridges and

tunnels are not need if one wants to travel in shortest way between any two

nearby points in B. The following problems are fundamental.

PROBLEM 1.1. For a given Riemannian manifold M, find all totally

geodesic submanifolds of M.

PROBLEM 1.2. Give two Riemannian manifolds, when there is a totally

geodesic immersion from one into the other?

PROBLEM 1.3. Suppose the space we live is the ordinary n-sphere Sn.

When our space Sn can be realized in a Riemannian manifold m as a totally

geodesic submanifold?

It is known for a longtime that totally geodesic submanifolds of e

and Sm are linear subspaces and great spheres, respectively. It is somewhat

surprising that totally geodesic submanifolds of all rank one symmetric spaces

are not classified until 1963 by Wolf.

Concerning Problem 1.1 for symmetric spaces of higher rank, Chen and Lue

(1975) classified totally geodesic surfaces of the complex quadric

Qm = S0(m + 2)/SO(2) x SO(m). The complete classification of totally geodesic

submanifolds of Qm was done in Chen and Nagano (1977). However the methods

used in the works of Wolf (1963), Chen and Lue (1975), and Chen and Nagano

(1977) are not unified and difficult. So, we introduced the (M+,M_)-method

to solve Problems 1.1, 1.2, and 1.3. However, due to the simplicity of this

method, we may also apply this new method to solve some other problems in
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mathematics.

§2. GENERAL THEORY

An isometry s of a Riemannian manifold is called involutive if its

iterate s2 = is the identity map. A Riemannian manifold M is called

a symmetric space if, for each point q of M, there exists an involutive

isometry s
4

of M such that q is an isolated fixed point of s
q

. We call

such sq the symmetry of M at q. We denote by GM or simply G the closure

of the group of isometries generated by fsaIq EM) in the compact-open

topology. Then G is a Lie group which acts transitively on the symmetric

space M; hence the typical isotropy subgroup H, say at 0, is compact and

M =G/H. (For the general theory of symmetric spaces, see Kobayashi and

Nomizu (1963, vol.I1 ) and Helgason (1978)).
For each closed smooth geodesic of a compact symmetric space M, a

circle for short, c through 0, we consider the antipodal point p of 0 on

c. We denote by M+(p) the orbit H(p). We have the following.

LEMMA 2.1. M+(p) is a totally geodesic submanifold of the symmetric

space M= G/H.

LF.MM& 2.2 The normal space Tp M+ (p) of M (p) at p in M is the tangent
space of a complete connected totaZZy geodesic submanifold M_(p).

It is well-known that every complete totally geodesic submanifold of a

symmetric space is a symmetric space. For a symmetric space M the dimension

of a maximal flat totally geodesic submanifold of M is called the rank of M,

denoted by rk M. From the equation of Gauss, it follows that rk B< rk M

if B is totally geodesic in M.

LEMMA 2.3. The symmetric space M_(p) has the same rank as M.

LEMMA 2.4. + (p) = H (p) is connected.

For each point p in M, we denote by a the involution of G which
0

corresponds to sp, i.e., ap(g) = sp g spl. Then a leaves H invariat. Let C)
0

and g denote the Lie algebras of H and G, respectively. Then it is known

that 1) is the eigenspace with eigenvalue 1 of the involutive automorphism

o : g -; 9 induced from a
0

: G---G. Let in denote the eigenspace of a with
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eigenvalue -1. Then we have q= 1) + in, called the Cartan decomposition,

Moreover, in can be regarded as the tangent space of M at o.

THEOREM 2.5. Let 0 be a point fixed by H in a compact symmetric space

P l= G/H. Then

(i) the fixed point set F(s0,M) = !q E MI s (q) = q} Zess 0 is the set of
all points p which are antipodal points of the circles passing through 0,

(ii) to each such point p there corresponds an inner invoZutive auto-

morphism ad (b) / 1 of G, be H n exp in such that
(ii-a) M, (p) = H(p) is a covering space of H/F(ad(b),H),

(ii-b) M(p), the connected component containing p of F(b,M), is ZocaZZy

isometric with F(ad(b),G)/F(ad(b),H) and

(ii-c) the tangent spaces to the totally geodesic submanifolds M+(p)

and M_(p) at p are the orthogonal complements of each others in TpM and

finally,

(iii) as to the ranks, one has rk M _(p) = rk M and if H is connected,

rk F (ad (b) , H) = rk H.

Given a pair of antipodal points (0,p) on a circle in a compact symmetric

space M, we have the system (O,p,M+(p),M-(p)) as considered above. The

isometry group G= GV acts on the set of all such systems in the natural

fashion. We denote the orbit set by P(M). Then P(M) is a finite set and

the cardinal number #P(M) of P(M) gives us a global invariant. This number

gives us many information about M and it plays an important r6le in the

theory of symmetric spaces.

THEOREM 2.6. For a compact symmetric space M we have

(2.1) #P(M) < 2rkM-1.

If, in addition, M is irreducible, we have

(2.2) #P(M) <rkM,

A Riemannian manifold M is called a two-point homogeneous space if for

any two pairs of points (p,q) and (p',q') of M with the same distance, there

is an isometry of M which carries one pair into the other. It is known that

two-point homogeneous spaces are En or rank one symmetric spaces (Wang 1952;

Tits 1955). It follows from Theorem 2.6 the following.
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COROLLARY 2.7. An irreducible compact symmetric space M is a two-point

homogeneous space if and only if #P(M) =
2rk M -1

For a compact symmetric space M of rank one, any two pairs of antipodal

points have the same distance and, moreover, there is an isometry of M which

carries one pair into the other. In the following we call a compact Riemannian

manifold M an equal-antipodal-pair space if any two pairs of antipodal points

have the same property. A compact symmetric space M is an equal-antipodal-

pair space if and only if #P(M) = 1.

We have the following result for equal-antipodal pair spaces.

PROPOSITION 2.8. A compact symmetric space M is an equal-antipodal-pair

space if and only if M is either a rank one symmetric space or one of the

following spaces G2, GI, and EN .

Any isometric totally geodesic imbedding f: B ---M gives rise to a mapping

P(f) : P(B) -}P(M) induced by the mapping carring (o,p,B+(p),B_(p)) into

(f(o),f(p), M+(f(p)),M_(f(p))). P(f) is well-defined since every isometry 4)

in GB "extends" to an isometry c' in GM so that we have f 4) = It is easy

to see from Theorem 2.5 that f(B+(p))C M+(f(p)) and f(B_(p))C M (f(p)) as

totally geodesic submanifolds. The later one follows from (ii-c). Since

this is an important fact, we express it by saying that P(f) is a pairwise

totally geodesic immersion. We record this as the next Theorem.

T OREM 2.9. Every isometric totaZZy geodesic imbedding f:B --*M of

a compact symmetric space into another induces a pairwise totaZZy geodesic

immersion P(f) : P(B) -> P(M).

We also have the following Theorems.

THEOREM 2.10. If a totaZZy geodesic submanifold B of a compact symmetric

space M has the same rank as M, then

(i) P(f) : P(B) --P(M) is sur,ective, where f is the inclusion. In

particular, we have #P(B) > #P(M),

(ii) the WeyZ group W(B) of B is a subgroup of W(M), and

(iii) if the WeyZ group W(B) is isomorphic with W(M) by the natural

homomorphism, then P(f) is bijective.



57

THEOREM 2.11. M is globally determined byy P(M), i.e., the set of the

gZobaZ isomorphism classes of compact irreducible symmetric spaces is in

one-to-one correspondence with the set of the corresponding P(M).

It should be noted that the Satake diagram and the Dynkin diagram for

symmetric spaces do not distinguish symmetric spaces globally, for example,

in their diagrams the sphere Sn and the real projective space RPn have the

same diagram. However, P(Sn) and P(R Pn) are quite different as we seen in

Table N. For the Satake deagram and Dynkin diagram, see, for instances,

Araki(1962) and Helgason (1978).

In the following we will discuss how the set of the pairs (M+(p),M (p))

is related to the corresponding set of any other locally isometric space.

Thus we assume in addition that Al = G/H is 1-connected and G is the connect-

ed isometry group (which acts on M effectively). Then H is the identity

component of F(ao,G). This a= ao can act on the adjoint group ad G= G/C,

where C is the center of G. And we obtain another symmetric space

ad G/F(a,ad G), denoted by M* throughout. It is known that M* is

characterized by the property that every locally isometric space to M is

a covering Riemannian manifold of M*. Thus, there is a locally isometric

projection Tr: M -M*. Let c* be a circle in M* which passes through the

origin 0*=Tr(0). Let c be the lift of c* which starts at 0, then the

k-time extension kc of c will be a circle if k denotes the order of the

homotopy class of c* in 7 1(M*) . We have

THEOREM 2.12. If k is even, the antipodal point q of 0 on kc is a fixed

point of H so that (M+(q),M (q)) _ ({q},M). If k is odd, q and the pair

(M(q),M-(q)) project to the antipodal point p* and (M+(p*), M*(p*)),
respectively.

PROPOSITION 2. 13. M+(p*) cannot be a singleton fp*},

By using Theorem 2.5 and Proposition 2.13 we have the following

THEOREM 2.14. Any symmetric space M of dimension >2 contains a totaZZy

geodesic submanifoZd B satisfies

1
2 dim M < dim B < dim M.

This estimate is best possible because the maximal dimension of totally

geodesic submanifolds of the 16-dimensional Cayley plane FII is 8.
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§3. DETERMINATION OF THE PAIRS

We will determine P(M) in this section. In view of §2, we may assume

M= M*= ad G/F(ad s0,G) and G is simple. The results will be listed in Tables

I, II and III, in which only the local isomorphism classes of symmetric spaces

in each member [(O,p,M+(p),M_(p))] of P(M) will be indicated. The classifica-

tion can be accomplished by means of Theorem 2.5 as principle. In practice,

additional use of known facts on symmetric spaces will be helpful. A tool

among others we used to find and crosschecked is the root system R(M) of M.

Theorem 2.5 tells us that one obtains those pairs in a similar way to the

algorithm of Borel and Siebenthal (1949) for finding the maximal subalgebras

of the same rank. Namely, one expresses the highest root as a linear combina-

tion J miai
of the simple roots a.. Pick up the vertices in the extended

Dynkin diagram which correspond to m.= 2 or the vertices in the Pynkin

diagram which correspond to mi = 1. Then do as Borel-Siebenthal say. When

R(M) is not reduced, i.e., the diagram is of BC-type, one first removes every

root A such that 2A is also a root (this already gives us one pair), before

one applies the above method. The multiplicities of the roots are determined

in each case.

TABLE I

Al j A" #p(M)

AnST7(n + l),n > 1 S(U(k) x U(n + l - k)) n

BnSO (2n + 1), n > 2 SO (k) x SO (2n + 1 - k) n

nSp(n),n> 3 U(n),Sp(k) x Sp(n - k) n

DnSO(2n),n> 4 M = M/M_ U(n) , SO (2k) x SO (2n - 2k) n

E6 E6 SU(6) x SU(2),Spin(lO) x T 2

E E SO(12) x SU(2)SU(8) E x T 37 7 , , 6

E8 E8 SO (16),E7 x SU(2) 2

F4 F4 Spin(9),Sp(3) x Su(2) 2

G2 G2 SU(2) x SU(2) 1
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TABLE III

M M Remark #P(M)

EI (2, 2) ` (5, 5) x T 2

CI (4) AI (6) x S2

Ell GC(4,2) GR(6,4) 2

S2 x GC(3, 3) S2 x GC(3, 3)

EIII DM (5) S2 x GC(5,1) 2

GR(8,2) GR(8,2)

EIV FBI TxS9 1

EV GC(4,4) GR(6,6) x S2 3

ABI (4) T x EI on M* only

AI(8) AI(8) on M* only

ELI GR(8,4) GR(8,4) 2

S2xDIII(6) S2xDIIT(6)

Em S2 x GR(10, 2) 2

TX ETV TxEN
EWII GR(8,8) GR(8,8) 2

DBII(8) S2xEV

E( EIV GR(12,4) 2

2xEVIIS S2 xE`dI

Fl S2 x CI (3) S2 x CI (3) 2

GR(1,2) GR(5,4)

FIT S8 S8 1

GI S2xS2 S2xS2 1

For compact symmetric spaces of rand one by using the informations on

7l, we have the following.

TABLE IV

M M M

Sn {a point}
Sn

RP?' RP?' Si

CPn CPn S2

HP?' HPn S4

F S8 S8
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§4. APPLICATIONS

I. APPLICATION TO TOTALLY GEODESIC SUBMANIFOLDS

For compact Lie groups, the following results gives a complete answer

to Problem 1.1.

THEOREM 4.1. Let M be a compact Lie group. Then the local isomor-

phism classes of totally geodesic submanifold of M are exactly those of

symmetric space B= GB/HB such that GB are subgroups of GM = M x M.

For a general compact symmetric space if B is a complete totally

geodesic submanifold of M, Theorem 2.9 tells us that for any pair (B+,B_)

in P(B), there is a pair (M+,M_) in P(M) such that B+ and B_ are totally

geodesic in M+ and M, respectively. By applying this argument to B+ C M+,

B_C M and so on, we obtain a sequence of totally geodesic submanifolds

as follows which gives us a sequence of conditions for the original totally

geodesic imbedding;

B+C M+\ .... .

BCM

B CM

C (M
) + .....

4 (B
) C

(M
) .....

For example, by using Table N and this argument to rank one symmetric

spaces, we obtain the following results of Wolf (1963) very easily.

THEOREM 4.2. The maximal totaZZy geodesic submanifoZd of Sn is Sn-1;

of RPn is RPn-1; of CPn are CPn-1 and RPn; of HPn are HPn-1 and CPn;
of FIT are HP2 and S8.

In Chen and Nagano (1978), such method was used to obtain the classica-

tion of totally geodesic submanifolds of symmetric spaces of higher rank.

Concerning Problem 1.2, Theorem 2.10 provides an easy method to solve

Problem 1.2 by using arithmetic or group theory. Just to give one simplest

example, from Theorem 2.10, we conclude immediately that the 8-dimensional
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rank two symmetric space G- T= G2/SU(2) x SU(2) cannot be isometrically

imbedded in any rank two Grassmann manifold M of any dimension as totally

geodesic submanifold. This important fact follows simply from the follow-

ing inequality: #P(GI) = 1 < 2 = #P(M) .
We would like to mention the following best possible result which

follows easily from the (M+,M_)-method. Using induction argument on

dimension and rank of B+, B_, M and M_, we have

THEOREM 4.3. Let M be an irreducible symmetric space and B a totally

geodesic submanifoZd of M. Then

(4.1) codim B > rk M.

Concerning Problem 1.3, we may again use the (M+,M_)-method to give

the following answer.

THEOREM 4.4. Let M be an irreducible symmetric space. Then an n-

sphere can be isometricaZZy immersed in M as a totally geodesic submanifold

if and only if n< X, where X is the integer given in the following table.

TABLE V.

M X M X

AI(n),n> 3 n-1 E\I 8

AII (n), n =3,4,5,6 5,6,6,6 10

n>6 n-1 8

GC(1,a) max(2,q) E]X 12

GC(p,q),2>p>q max(4,a) FI 5

G
R

(1,a) q FII 8

G (P,a),2>p>a q GI 2

CI (n) , n > 3 n-1 A max(2,n)
n

C(P,a),p<a max(4,a) B n,n > 2 2

DIU(n),n= 4,5,6 6 C n>3 max(4,n - 1)n =
n>6 max(3,n - 1) D n>4 2n - 1n =

EI 5 E6 9

EII 6 E7 11

FIJI 8 E8 is

EN 9 E, 8

nI 7 G2 3
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Theorems 4.3 and 4.4 may have important impacts to the theory of submanifolds

of symmetric spaces. The simplest application is to obtain the following.

THEOREM 4.5. Every submanifold N with parallel second fundamental

form in an irreducible symmetric space M satisfies codim N> rk M.

This theorem follows immediately from Theorem 4.3, the equation of

Codazzi, and Lemma W,3.4. Another important application of Theorem 4.3

is to prove results of the following type.

THEOREM 4.6 (Chen and Verstraelen 1980). Spheres, real and complex

projective spaces and their noncompact duaZs are the only irreducible

symmetric spaces in which one can find tubular hypersurfaces.

By a tubular hyperurface we mean a hypersurface N on which the second

fundamental tensor has a constant eigenvalue of multiplicity > dim N -1.

Let N be a hypersurface of a Kaehler manifold M. Let be a unit

normal vector field of N in k and n the 1-form on N associated with

Then N is called an n-hypersurface of k if the second fundamental form h of

N has the form; h= (ag + bn (&n)y, for some functions a and b on N. For n-

hypersurfaces of a Hermitian symmetric space we have the following

THEOREM 4.7 (Chen and Verstraelen 1980). The following statements hold

(1) The only irreducible Hermitian symmetric spaces which admit n-

hypersurfaces are the complex projective spaces and their noncompact duals.

(2) A hypersurface of a complex projective space or its noncompact

dual of dimension >4 is an n-hypersurface if and only if it is a geodesic

hypersphere.

Since the curvature tensor of a general symmetric space is very difficult

to handle, the non-existence theorems of certain submanifolds are very

difficult to obtain by using the standard methods, e.g., by using the

fundamental equations. However, by applying the (M+,M-)-method, if one

can obtain a conclusion about the existence of a totally geodesic submanifold

(or more general submanifold) of certain codimension, Theorem 4.3 (or Theorem

4.5 or Theorem MI, 3.7) will automatically reduce the class of ambient spaces

to a class of small ranks. This is the essential idea used in Chen and

Verstraelen (1980). For the proof of Theorems 4.6 and 4.7 and further

results in this direction, see Chen and Verstraelen (1980).
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More applications of Theorems 4.3 and 4.4 will be given in Application

II and ChapterW .

R. APPLICATIONS TO LIE GROUPS

Since a closed subgroup of a compact Lie group M is a totally geodesic

submanifold of M, the (M+,M_)-method provides a new method to the theory of

Lie groups and their subgroups. We mention two applications in this direc-

tion. First, by using Theorem 4.3 we may determine the codimension of closed

subgroups as follows.

THEOREM 4.7. Let H be a closed subgroup of a compact simple Lie group

G. Then codim H > rk G.

Second, we may use the new global invariant #P(M) to distinguish

classical simple Lie groups and exceptional simple Lie groups.

11. APPLICATIONS TO TOPOLOGY AND OTHER SUBJECTS

It is well-known that many important global invariants, such as the

Hirzebruch index, Lefschetz number, and spectrum of the Laplace-Betrami

operator A, are closely related with the fixed point set of anisometry (see,

e.g., Atiyah and Singer (1968), Atiyah and Bott (1968), Donnelly (1976), and

Donnelly and Patodi (1977)).

For a symmetric space M, the simplest and most natural isometries are

symmetries. In fact, from Theorem 2.5, we know that the union of {0} and

the M"s is nothing but the fixed point set of s0 on M. Since M+s are lower

dimensional manifolds and the MI's of a compact symmetric space M have been

completely determined, it is possible to apply the (M+,M_)-method to

determine some global invariants of M. For example, by applying a result

of Atiyah and Singer (1968), index for compact symmetric spaces can be

determined by using this new method in a unified and simpler way. For

some special symmetric spaces, index has been determined by various authors

by using various different and difficult methods. For GI and FIT see

Borel and Hirzebruch (1958); for C Pn see Atiyah and Singer (1968); for

G C(p,q) and GH(p,q) see Hong (1975) and also Connolly and Nagano (1977); and

for GR(p,q) see Shanahan (1979).
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Chapter VII: TOTALLY UMBILICAL SUBMANIFOLDS

The main purpose of this chapter is to classify totally umbilical sub-

manifolds of a locally symmetric space. The results are obtained in a

series of papers given in Chen (1976a), (1977a,b,c), (1978a), (1979c,d,e)

and (1980e,f,g) unless mentioned otherwise.

§1. FIXED POINT SET AND TWISTED PRODUCTS

As we already defined in Chapter I, a totaZZy umbilical submanifold

N of a Rimannian manifold M is a submanifold whose first fundamental form

(i.e., the metric tensor) and second fundamental form are proportional.

An ordinary hypersphere Sn of an affine (n +l)-space
En+1

of e is the

best known example of totally umbilical submanifold. In fact, from

differential geometric point of views, totally umbilical submanifolds are

the simplest submanifolds next to totally geodesic submanifolds. In this

section we will give many examples of such submanifolds by using conformal

mappings and the twisted products.

For a Riemannian manifold M with metric tensor g, we denote by C(M,g)

the group of conformal transformations of (M,g) and by C0(M,g) the connected

component of the identity. We denote by I(M,g) the group of isometries of

(M,g). According to Obata (1971), a subgroup G of C(M,g) is called essential

if there is no function p> 0 such that G is a subgroup of I(M,g*), g*= p2g.

PROPOSITION 1.1. Let (M,g) be a compact Riemannian manifold and

EC
0
(Mg). Then every connected component of the fixed point set F(¢,M) is

totaZZy umbilical in M.

PROOF. This Proposition is trivial if the dimension of m is < 2. So

we may assume that dim M = m > 3.

If the group C0(M,g) is inessential, there is a conformal change of

metric given by g* = p2g such that C0(M,g) c I(M,g*). From Lemma 2.1 of

Chen and Nagano (1977), we see that every connected component of F(¢,M) is

totally geodesic in (M,g*). In particular, it is totally umbilical in

(M,g*). Thus, by (III, 3.11), we see that each component of F(¢,M) is

totally umbilical in (M,g).

If C0(M,g) is essential, M is conformally diffeomorphic to an ordinary

m-sphere (Sm,go) with the standard metric g0. (Obata 1971). Thus, there is
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a conformal mapping f from (M,g) into (Sn,g0). For any in C0(M,g) we
1

consider the conformal transformation 4 = f f on (S"7, go). It is well-

known that each connected component of F (,Sm) is a totally umbilical sub-

manifold of (Sm,g p) . Since f_1 (F(T,S"h)) and f is conformal, each
connected component of is totally umbilical in (M,g). (Q.E.D.)

REMARK 1.1. If C0(M,g) acts transitively on M, the assumption on

compactness of M can be removed.

In the following, we shall simply denote a totally umbilical submanifold

by a t. u. submanifoZd. In order to construct more examples of t. u. sub-

manifolds with various properties, we recall the notion of twisted products

introduced in Chen (1977c).

Let B and F be Riemannian manifolds and f a positive function on Bx F.

Consider the product manifold B x F with projections Tr : B x F -B and
Tr- : B x F---F. The twisted product M- B x ,F is by definition the manifold
B x F with the Riemannian structure given by

(1.1) IIX 2= IITr *XII2+ (f(b,p))21fTF;XII2

for vector X tangent to M at (b,p). If f depends on B only, twisted product

becomes the so-called warped product of B and F in the sense of Bishop and

O'Neill (1969). If B is a singleton fb), the twisted product is nothing but

a conformal change of metric on F. Furthermore, if we regard Tr:B x F-- B

as a submersion, then the fibers are conformally related with each other.

This gives us a conformaZ submersion.

It follows trivially from (1.1) that each 7r-1(p), p e F, is totally

geodesic in M and each 7-1(b), b EB is totally umbilical in M (see, also,

Adati (1963)).

By identifying the tangent space T(b,p)M, (b,p)E B x F, with TbB + T
p
F

we say that a vector XE TM is horizontal if XE.TbB and X is vertical if

XE pF. For simplicity, we shall denote by Df the horizontal component of

the gradient of f. We give the following result.

PROPOSITION 1.2. Let M = Bx1F be a twisted product of B and F. Then
J

Cl) for each b E B, the fiber Fb = fb) x F is t. U. in M with -Df/f as
its mean curvature vector,

(2) fibers have constant mean curvature if and only if IID lop f11 is a

function of B. and
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(3) fibers have parallel mean curvature vector if and only if f is the

product of two positive functions l(b) and u(p) of B and F, respectively.

PROOF. From (1.1) we get

(1.2) <X, V>= 0

for horizontal vector x and vertical vector V, where < , > denote the inner

product on M. Since [X, V] = 0 for such x and V, we have

(1.3) VXV= DAY

where V denotes the covariant differentiation on M. Let V and w be any two

vertical vector fields on M, we have

(1.4) X<V,W>= X(f2<V,W>F) = 2 ( f) <7, W>f
for horizonal vector field X, where < , >F denotes the inner product on F

induced from the metric of F. On the other hand, (1.3) implies

(1.5) X<V,W>= 2<V7x,W>

Consecuently, from (1.4) and (1.5), we find that the second fundamental

form h of fibers is given by

h (V, W) = f <V, W>

This shows (1) and (2). Now, let he an orthonormal basis of

horizontal space, then we have

H=- 21 (Ezf )Ei=- (Ei 10a f)Ei.
i=1 f

Thus, for any vertical vector V, we have

(1.6) V ,a_ - V(Ei log f) Ei - 1] (Ei log f)VVEi.

Since Tr'1(p) are totally geodesic in M, the last term of (1.6) is vertical.

Thus (1.6) shows that the mean curvature vector H of fibers is parallel if

and only if

(1.7) V(X log f) = 0

for all horizontal vector x and vertical vector V. This proves (3).

(Q.E.D.)
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92. REDUCIBLE TOTALLY UMBILICAL SUBMANIFOLDS

First we recall the following general results.

PROPOSITION 2.1 (Schouten 1954). Every t. u. submanifold of dimension

>4 in a conformaZZy flat space is conformaZZy flat.

PROPOSITION 2.2 (Miyazawa and Chwman, 1972). Let N be a t. u. sub-

manifold of dimension >4 of a locally symmetric space M. Then each

component of {x E NJH 1 0 at x} is conformaZZy flat.

PROPOSITION 2.3 (Miyazawa and Chwnan, 1972). A t. u. submanifold of a

locally symmetric space is locally symmetric if and only if the mean

curvature is constant.

We give the following classification of reducible t. ii. submanifolds.

'IHEROREM 2.4. If N is a reducible t. U. submanifold of a locally

symmetric space M, then N is one of the following locally symmetric spaces:

(1) a totally geodesic submanifold,

(2) a local Riemannian product of a curve and a real-space-form N2(c)

of contant curvature c,

(3) a local Riemannian product of two real-space-forms N1(c) and

N2(-c), c 0.

PROOF. If N is a reducible t. u. submanifold of a locally symmetric

space M, then locally N= N1 x N2 as a Riemannian product. For any z in

TN, we put Z= Z1 + Z2, where Z1 and Z2 are tangent to Ni and N2, respective-
ly. Then we have

(2.1) R(X1)Y2;Y2,X1) = 0.

By using equation (I,2.5) of Gauss we get for unit vectors X1 and Y2,

(2.2) R(X1)Y2;Y2,X1) = -a2, a2 = <H,H>.

For any U tangent to N, (2.2) gives

(2.3) -Ua2 = 2R(VUX1,Y2;Y2,Xl) + 2<U,X1>R(H,Y2;Y2,X1)

+ 2R(X1,VUY2;y2,X1) +2<U,Y2>R(X1,H;Y2) X1).
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Because N= N1x N2, locally, and N is t. u. in m, equations (I,2.5) and (I,2.6)

imply

(2.4) R(V 1,Y2;Y2,X1) _ -<Y2,Y2><V 1,X1>a2 = 0,

(2.5) R(H,Y2;Y2,X1) = 72-
X1a2,

for unit vector fields X1 tangent to N1 and Y2 tangent to N2. Combinining

(2.3), (2.4) and (2.5) we obtain

(2.6) -Ua2 = <U,XI>(X1a2) + <U,Y2>(Y2a2).

From this we conclude that N has constant mean curvature. If a = 0, N is

totally geodesic. If a 0, N is locally symmetric and conformally flat.

From these we may conclude that N is one of those spaces given in (2) or

(3) (Q. E. D.)

REMARK 2.1. The symmetric space R x ' admits irreducible t. u.

hypersurfaces which are not locally symmetric, and hence with nonconstant

mean corvature.

REMARK 2.2. Some locally symmetric spaces admit reducible non-totally

geodesic, t. u. submanifolds.

g3. CODIMENSION OF TOTALLY UMBILICAL SUBMANIFOLDS.

By an extrinsic sphere we mean a t. u. submanifold with nonzero

parallel mean curvature vector. Extrinsic spheres have been characterized

by Nomizu and Yano (1974). We recall the following. (Chen, 1979 d)

THEOREM 3 . 1 . Let N be an n-dimensional (n > 2) submanifold of a locally

symmetric space M. Then N is an extrinsic sphere of NI if and only if N

is arc extrinsic hypersphere of an (n + 1)-dimensional totally geodesic sub-

manifold M of constant sectional curvature.

As an application of (M+,M_)-theory, we obtain from Theorem \ ,4.3 and

Theorem 3.1 the following.

THEOREM 3.2. The maximal dimension of extrinsic spheres of an

irreducible symmetric space M is given by X- 1, where X is the integer
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given in Theorem VI, 4.3.

THEOREM 3.3. Let N be a t. u. submanifoZd of a ZocaZZy symmetric space

M. if

(3.1) codim N < rk M - 2,

then either N is totaZZy geodesic or N is an extrinsic sphere.

PROOF. Since our study is local, we may assume that M is a symmetric

space. For any fixed point x E N, we regard x as the origin of M and we

have M= G/H where H is the isotropy subgroup at x. Let g= [) + tit be

the Cartan decomposition of 1. Then in can be identified with xM. A

well-known result of L Cartan says that the curvature tensor R of M at

x satifies (see, e.g,., Kobayashi and Nomizu (1963)),

(3.2) R (X,Y) Z = - [ for X,Y, Z EM-

The famous criterion of Cartan is given by the following.

LEMMA 3.4. A Zinear subspace Tr of TxM is the tangent space to some
totaZZy geodesic submanifoZd B of M if and only if Tr satisfies [ [Tr, Tr], Tr] c Tr .

Moreover, B is flat if and only if [Tr,Tr] = 0.

Now, for any vectors X, Y, and Z in TN at x, we have from (I,2.4),

(I,2.6), and (I,2.9) that

(3.3) (R(X,Y) Z)1 = <Y, Z> DXH - <X, Z>DYH.

For any given vector X in T N, there exists a flat totally geodesic sub-

manifold B through x such that XE T
x
B and dim B = rk M. If (3.1) holds,

there is a unit vector Y in T
x
N n T

x
B such that <X,Y> = 0. Hence, (3.3)

gives

(3.4) (R(X,Y)Y)1 = DXH

On the other hand, since B is flat, totally geodesic in M, T
x
B forms

an abelian linear subspace of in. Thus, we have [X,Y] = 0. Consequently,

(3.2) and (3.4) give DXH = 0. Since X can be chosen to be any vector

tangent to N at x and x can be chosen to be any point in N, the mean

curvature vector is parallel.
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Combining Theorems V, 4.3 and 3.1 we obtain the following

PROPOSITION 3.5. There is no t. u. submanifoZd N in any irreducible

ZocaZZy symmetric space M with codim N< rk iv - 2.

Since the rank 2 symmetric space R x Sn admits a t. u. hypersurface

which is neither totally geodesic nor an extrinsic hypersphere, Theorem 3.3

is best possible. For irreducible locally symmetric spaces, we also have

the following.

PROPOSITION 3.6 (Chen and Verheyen 1980a). There is no t. u. submani-

fold N in any irreducible ZocaZZy symmetric space M with codim TI= rk M -1.

By combining Propositions 3.5 and 3.6, we obtain the following best

possible result for irreducible case.

THEOREM 3.7. Let N be a t. u. submanifold of an irreducible ZocaZZy

symmetric space M. Then

(3.5) codim N> rk M.

54. TOTALLY UMBILICAL HYPERSURFACF.S.

In this section we shall classify locally symmetric spaces which admit

a t. u. hypersurface. It follows from Theorem 3.7 that such spaces are either

reducible or of rank one. Totally umbilical submanifolds of rank one

symmetric spaces have been studied and classified. For complex-space-forms

it was done in Chen and Ogiue (1974b); for quaternion-space-forms it was

done in Chen (1978c); and for the Cayley place F]I, it was studies in Chen

(1977a).

THEOREM 4.1. A ZocaZZy symmetric space M admits a non-totally geodesic,

t. u. hypersurface if and only if M is one of the following.

(a) a real-space-form M(c) of constant curvature c,

(b) a local Riemannian product of a Zine and a real-space-form,

(c) a local Riemannian product of two real-space-forms M1(c) and M2(-c).

If dim M> 4, M is conformaZly flat.

PROOF. If dim M<4, this Theorem is trivial. Thus we may assume that
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dim M >4. Since N is t. u. and non-totally geodesic, the conformal curvature

tensor of N vanishes. This is trivial if dim N = 3. From (I,1.9) we have

(4.1) R(X,Y;Z,W)=0

for any orthogonal vectors X,Y,Z and Win TN. This formula is trivial if

dim N= 3. Because N is t. u. in M, (4.1) and the equation (I,2.5) of Gauss

give

(4.2) R(X,Y; Z' W) = 0

for orthogonal vectors X,Y,Z and W in TN. From (I,2.6) and (I,2.9), we

find

(4.3) R(X,Y; Z, ) = 0

for any Z in TN perpendicular to any X,Y in TN and C in TIN. Let U be any

vector in TN. Because M is locally symmetric, (4.3) yields

(4.4) 0 = <X, U>R(H,Y; Z, E) + R(0 ',Y; Z, ) + <Y, U>R(X,H; Z, E)

+R(X,V ';Z, ) +R(x,Y;VUZ, ) -aR(X,Y;Z,U)

where E is the unit normal vector such that By (I,2.6) and (4.4) we

may obtain

(4. 5) R(X,Y; Z, U) = <X, Z, E) - <Y, U>R(E,X; Z,

for Z perpendicular to X and Y and U in TN. Let X,Y,Z,w be orthogonal vectors

tangent to M. If X,Y,Z,w are tangent to N, we have 0 by (4.2).

If X,Y,2,w are not all tangent to N, there exist orthogonal vectors

and w' satisfying

(4.6) XAY=X'AY', ZAW=Z'A w', and

(4.7) <'Z',E> = 0.

For such Y', 2', w' we have R(X,Y,2,w)=R(Y',Y';2',?%'). !Ale put

(4.8) (cos 6)x+ (sin 8) , w' = (cos ¢)W+ (sin )W,

where X and W are tangent to N. Since <X',W'> = 0, we obtain

(4.9) cos 6 cosh<X,W>+sin0 sin4=0.
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From (4.3) and (4.8) we find

R(X,Y;Z,W)=cos9cos +sinesin¢

Combining this with (4.9) we find

(4.10) R(X,Y;-Z,-W) = cos e cos ¢ (R(7, Y";z',W) - <X,W>R(

On the other hand, since X',Y',Z' and are orthogonal, and ?,-Z' are

tangent to N, < , W > = < , 1 > = 0 . Thus (4.5) yields

(4.11) R(X,Y';Z',W) _ <X,W>R(,Y';Z", ).

From (4.10) and (4.11) we get 0 for orthogonal vectors X,Y,Z,W

in TxM, x E N. Since M is locally symmetric, the same property holds at every

point of M. Thus, by a result of Schouten (1954), M is conformally flat.

Because M is locally symmetric, M is one of those spaces given in (a), (b) or

(c). The converse is trivial. (Q.E.D.)

From Theorem 4.1 we may obtain the following result which says that non-

totally geodesic, t. u. hypersurfaces of a locally symmetric space are in

fact given by fixed point sets of some conformal mappings.

TIEORB 4.2. Let M be a locally symmetric space of dimension > 4. If

N is a non-totally, t. u. hypersurface of M, then, for any point p in N,

there is a neighborhood U of p in M and a conformaZ mapping ¢ from U into M

such that Uf1N Zies in the fixed point set of ¢.

From Theorems 4.1, V1, 4.2 and u, 4.3 we obtain the following

COROLLARY 4.3. The only irreducible locally symmetric spaces which

admit t. u. hypersurfaces are real-space-forns.

From Theorem 4.1 we may also prove the following.

THEOREM 4.4. Let Ti be a Hermitian symmetric space and N a t. u.

hypersurface of M. Then

(a) If N is totally geodesic, M is the =iemannian product of two

Hermitian symmetric spaces Ml and M2 of complex dimension m - 1 and 1,

respectively. Moreover, N is the Riemannian product of M1 and a geodesic

of M2, locally.
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(b) If N is non-totaZZy geodesic, then one of the following three

statments holds.

(b.l) M is a C P1(c), Cl , or D1(-c) and N any curve in M. Here c and

-c denote the sectional curvature of CP1 and Dl, respectively.

(b. 2) N is a t. u. hypersurface of M and M'= CP1(c) x Dl (-c).
(b.3) M is C m and N is an open portion of an ordinary hypersphere of

C
m

If statement (b.2) holds, ZocaZZy, N is the conformaZ image of a

hypersphere .5, or a hyperpZane E3 of C2 under a conformaZ mapping from C2

into M.

T. u. hypersurfaces of Cp1(c) x Dl(-c) do not have constant mean

curvature in general. However, for higher dimensional Kaehler manifolds,

we have the following surprising result.

THEOREM 4.5. If M is any Kaehler manifold of complex dimension > 3, then

every t. u. hypersurface of M is either totaZZy geodesic or an extrinsic

hypersphere.

The following result follows easily from the equation of Codazzi (see,

Chen (1979c) and Kawalski (1972)).

PROPOSITION 4.5. Every t. u. hypersurface N of an Einstein space M of

dimension > 3 is either totaZZy geodesic or an extrinsic sphere.

PROOF. Since N is t. u. in M, the equation of Codazzi gives

(4.12) R(E,,Ei;Ei,H) _ Ela2.

where is an orthonormal frame of TN. Thus the Ricci tensor S of M

satisfies 0= (X,H)
n

2

1
) X a

2
for any X in TN. This proves the Proposi-

tion.

In views of Theorem 4.1 the author would like to ask the following.

PROBLEM 4.1. Let N be an n-dimensional (n >3) t. u. submanifold of a

locally symmetric space M. If the mean curvature a 0 everywhere on N, does

N lie in a conformally flat totally geodesic submanifold of M?
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Theorem 4.1 tells us that the answer to this problem is affirmative if

the codimension of N is one.

§5. IRREDUCIBLE TOTALLY UMBILICAL SUBMANIFOLDS

Reducible t. u. submanifolds of a locally symmetric space were studied

in §2. In this section we will treat irreducible case Contrary to reducible

case, irreducible t. u. submanifolds do not have constant mean curature in

general (see, REMARK 2.1). For hypersurface case, a t. u. hypersurface of

a locally symmetric space M is locally the fixed point set of a conformal

mapping on M. From the equation of Gauss, it follows trivially that every

t. u. submanifold of a (locally) symmetric space of compact type is either

totally geodesic or irreducible. For irreducible t. u. submanifolds in a

general locally symmetric space, we have the following.

TiEORE.M 5.1. If N is an irreducible t. u. submanifoZd with constant

mean curvature of a ZocaZZy symmetric space 14, then

(1) N is either totally geodesic or a real-space-form and

(2) if dim N>2 and the mean curvature vector H is not paraZZel, then

dim N <
Z

dim M.

PROOF. If N is a t. u. submanifold with constant mean curvature of a

locally symmetric space, then N is either totally geodesic, or conformally

flat. Moreover, N is locally symmetric. Since N is irreducible by assump-

tion, N is Einsteinian. Thus, by (I, 1.9), we conclude that either N is

totally geodesic or N is of constant sectional curvature, this proves (1).

If H is not parallel, N is a real-space form N(c) of constant curvature,

say c. Since N has constant mean curvature, (1,2.4), (1,2.6) and (I,2.9) give

(5.1) R(X,Y;Z,H) = 0

for vector fields X,Y,Z tangent to N. By using OR =0, (1,2.1), (1,2.6),

(I,2.9), and (5.1), we may find

(5.2) a2R(X,Y;Z,U) = <U,X>R(H,Y;Z,H) - <U,Y>R(H,X;Z,H)

+ <Y, Z><DXH, DUJI> - <X, Z><D 1, D 1>

for U tangent to N. Let X= U, Y= z be orthonormal vectors tangent to N.

Then we find, from (1,2.5) and (5.2), that
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(5.3) a2K (H, Y) _ - I DXH 12 + a2c - a4,

where k denotes the sectional curvature of M. Because (5.3) holds for all

orthonormal vectors X,Y in TN, and dim N >2, IDXHI is independent of X.

In particular, IDXHJ is nonzero for any unit vector X in xN for some x EN.

By setting U= X = Ei and summing on i for (5.2), we find

(5.4) (n - 1)R(H,Y; Z, H) = a2S(Y, Z) - (n - 1)a4<Y, Z> <Y, Z> I
DH12,

n
where IDHI2 = IDE HI2. Substituting (5.4) into (5.2) we obtain

i=1 z

(5. 5) (n - 1)a2R(X,Y; Z, U) = I DH j 2{<Y,
U><X, Z> - <X, U><y, Z>}

+ <U, X> {a2S (Y, Z) + <DYH, DZH> }

- <U, Y> {a2S (X, Z) + <DXH, DZH> }

t (n - 1) {<Y, Z><DXH, DUH> - <X, Z><DYH, DUH> } -

By setting Y= Z= Ei and summing on i, we get
2

(5.6) (n-2)<DXH,DUH>2S(X,U)+ n-2 <X,U>IDHI2- C'-r <X,U>.
n n

Since N is of constant curvature, (5.6) gives <DXH,DUH> = 0 for orthogonal

v and U. Because DXH r 0 for any unit vector X at TxN, H, DE H,... DE H are

orthogonal and they span an (n +1)-dimensional linear subspace of Tx N. This

proves (2). (Q.E.D.)

From the proof we have the following.

COROLLARY 5.2. Let N be a t. u. submanifoZd of a locally symmetric

space M. If N is of constant sectional curvature, then N is either totally

geodesic, or an extrinsic sphere, or of dimension < 2 din M.

PROBLEM 5.1. Determine whether there exists a t. u. submanifold of

constant sectional curvature in a locally symmetric space with nonparallel

mean curvature vector.

§6. TOTALLY UMBILICAL SUBMANIFOLDS OF A KAEHLER MANIFOLD

In this section we will apply the theory of generic submanifolds to the

theory of totally umbilical submanifolds. We shall use the same notations as
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before. The results obtained in this section are given in Chen and Verheyen

(1980b) unless mentioned otherwise.

LEMMA 6.1. Let N be t. u. generic subma-nifoZd of a Kaehler manifold

M. Then

(1) the purely real distribution is integrable and its leaves are

totally geodesic in N,

(2) if N is not purely real, H E F_4" , and
(3) if HE both F-1-and v are pa_ralleZ.

PROOF. For vector fields U in T:i and in TIN, we have

- JA U+ JDU = OUtE + h (U, tE) -A DU.f

from which we find

(6.1) V tE _ tDUE,

(6.2) Duff = -FA U+ fDU -

In particular, if Z,W E these give U Z'd E 1. This proves (1) . Let n
be any vector field in v and X in , we have <X,X><H,n> _ <JV ,X,JT->

=<h(X,JX),Jn> = 0. This proves (2) .
By (6.2) and statement (2) we have DAIS = fDUE for E in v. On the

other hand, JDUE
=

J V UE V U7 = DST Therefore, we obtain tDUE = 0. Thus v

is parallel. Since F, 1is the orthogonal complementary distribution of v

in T1N , FR' 1 is also parallel.

LEMMA 6.2. Let N be a t. u. submanifold of a Hermitian symmetric space
M. Then, for any unit vectors X E 1°, Z E R-L at x e N with a (x) 0, we have
K(X, Z) = 0.

PROOF. Under the hypothesis, we have K(X,Z) = R(Z,X;JX,PZ) + R(Z,X;JX,FZ).

By using this and the equations of Gauss and Codazzi, we may obtain

K(X,Z) = R(Z,X;JZ,PZ). Since N is t. ,:. with a(x) 0 in M, N is conformally

flat in a neighborhood of x E N. Because Z,X,JX and PZ are orthogonal,

R(Z,X;JX,PZ) = 0. (Q. E. D.)

PROPOSITION 6.3. Let N be a t. u. generic submanifold of a positively

(or negatively) curved Kaehler manifold M. Than N is either a complex totally
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geodesic submanifoZd or a purely real submanifold.

PROOF. Assume that N is a proper generic t. u. submanifold. For any

vector XE and ZE 1, equation (I,2.6) implies

(6.3) 0 = R(JX,Z;X,FZ) = R(FZ,X;X,FZ) + R(PZ, X; X, FZ) ,

(6.4) IFZ12K(X,FZ) _ -<DPZH,FZ>.

On the other hand, we have K(X,JZ) = R(X,PZ;JX,Z) = R(PZ,X;X,PZ) +<DPZH,FZ>.

Combining this with (6.4) we get

(6.5) FZI2{K(X,JZ) +K(X,FZ) } = PZI2{K(X,PZ) -K(X,JZ)}.

If M is positively curved, this gives K(X,PZ) >K(JX,Z) for unit vectors

X E 'and z E r. Replacing z be PZ we have

(6.6) K(X,P2Z) > K(JX,PZ) > 7" (X, Z) .

Now, for z, WE r; we have <Z,PW> = <Z,JW> = -<PZ,W>. Thus (p/mil) 2 is a
symmetric endomorphism of r1. If P2 - 0 on <PZ,PZ> _ -<P2Z, z> = 0 for
Z EM'L. Thus (6.5) gives FZ= 0. This is a contradiction. Consequently,
P21 0 on A' I. Thus, there is a unit vector 2ER" such that P2Z= XZ, X # 0.
This contradicts (6.6). Similar argument applies to negatively curved
Kaehler manifolds.

By using Proposition 6.3 we obtain the following two results.

THEOREM 6.4. Let N be a t. u. submanifoZd of a positively (or negative-

Zy) curved KaehZer manifold M. If dim N >3, then N is either a totally

geodesic complex submanifold or pu_rsZy real.

THEOREM 6.5. There is no extrinsic sphere of dimension >m in any

positively (or negatively) curved aehZer manifold M of complex dimension m

for m> 2.

Theorem 6.4 follows immediately from Proposition 6.3 and Theorem 6.5

follows from Theorem 3.1 and Proposition 6.3.

REMARK 6.1. CFA and its non-compact dual are positively curved and

negatively curved Kaehler manifolds which admit an extrinsic sphere of
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dimension m - 1. Thus, Theorem 6.5 is best possible. This result improves a

result of Chen (1977b).

By using the equation of Codazzi and (K,1.5) we have the following.

LErMA 6.6. Let N be a t. u. generic submanifold of a Kaehler manifold

M. Then

(6.7) R(° ,l;d`Z°,T1N) _ {0},

(6.8)

By using Lemmas 6.1 and 6.6 we may also prove the following.

LEMvIA 6.7. Let N be a t. u. generic submanifold of a locally Hermitian

symmetric space M. If dirrIx 1= p>= , then

(6.9) R( {0) .

PROOF. For Z,U,V,W in X1 and X in W, Lemma 6.6 gives

0=UR(Z,W; V,X) =<U,Z>P(H,W; V,X) +<U,W>R(Z,H; V,X)

+P(DUZ,W ; V,X) +R(Z,0 W ; V,X) +R(Z,W ; FUV,X) +P(Z,W ; V,O ) .

By applying Lemmas 6.1 and 6.6 this gives 0 = <U,Z>R(H,W;V,X) + <U,W>R(Z,H;V,X).

If p > 2 , this yields (6.9) .

PROPOSITION 6.8. Let N be a t. u. generic submanifold of a locally

Hermitian symmetric space M. If dimR N > 4, then either N is purely real or N

has constant mean curvature.

PROOF. If p >2, (1,2.6) and Lemma 6.7 give 0=R(Z,X;Z,H) _ -<Z,Z><D,H>

for Z E?1 and X E ' . If N is proper, this implies Xa2 = 0. Now, we put

N' _ {x E N! a 0 at x} . Then each component of N' is an open submanifold of
N. If N' is nonempty and N is not purely real, N' is proper generic. By

Lemma 6.2, we get R(Z,X;X,Z) = 0 for X E ' and ZE Thus, by linearity,

we get R(Z,X;Y,Z) = (Z,X;X,W) = 0 for vector fields X,Y in ° and Z, W in '7e'

on N'. From this we get 0= (l/2)0(Z,X;X,Z) _ <Z,W>R(H,X;X,Z) by Lemma 6.1.

Combining this with (I,2.6) we get Za2 = 0 for Z E oc
,

x c N'. Therefore
x
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a2 is constant on each component of N'. Since a2 is continuous, a2 is constant

on N.

If p = 1, this proposition follows from the following.

THEOREM 6.9 (Chen 1980g). Let N be a t. u. generic submanifoZd of a
locally Hermitian symmetric space M. If climRN> 5 and dime 1=1, then

(a) the mean curvature vector H of N is parallel, and

(b) if N is not totally geodesic, N is locally isometric to a sphere of

radius and rk M > dim R N. Moreover, 11 is a t. u. hypersurface of a flat

totally geodesic submanifoZd of M.

REMARK 6.2. For t. u. CR-submanifolds we have the following

THEOREM 6.10 (Chen, 1980g). Let N be a t. u. CR-submanifoZd of a KaehZer

manifold M. Then

(i) N is totally geodesic, or

(ii) the totally real distribution is one-dimensional, or

(iii) N is totally real.

If (iii) occurs, dimRM> 2 dimRN. In particular, if N is not totaZZy
geodesic and dimR N> 2, then dirnR ?I> 2 dimRN+ 2.

By using Proposition 6.8, we may obtain the following.

THEOREM 6.11. Let N be a t. a. generic submanifoZd of a locally

Hermitian symmetric space M. If dim RN > 4, then one of the following

statements holds

(a) N is purely real,

(b) N is totally geodesic,

(c) rk M > dimR N and N Zies in a maximal flat totally geodesic sub-

manifold of M as an extrinsic sphere.

It is easy to see that all of these three cases actually occur.

For the proof see Chen and Verheyen (1980b). By applying this theorem

we obtain the following two Theorems.

THEOREM 6.12. Let N be a t. u. submanifoZd of a locally Hermitian

symmetric space M. If dimRN > dimC M and dim RN > 4, then either
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(a) N is totaZZy geodesic in M or

(b) rk M > dimR N and N Zies in a maximal -lat totaZZy geodesic sub-

manifold of M as an extrinsic sohere.

THEOREM 6.13. Let N be a t. u. submanifold of a locally Hermitian
symmetric space M of compact or non-compact tire. If dimRN>dimCM and
dimR N >4, then N is totaZZy geodesic.

REMARK 6.3. If dimRN < 3, Theorems 6.11 and 6.12 are not ture in general.

Moreover, if M is of Euclidean type, Theorem 6.13 is false.

REMARK 6.4. Since
S1 x Sn-1

can be isometrically immersed in the irreducible

rank two Hermitian symmetric space 9.n = SO(n + 2)/SO(2) x SO(n) (Chen and Nagano,

1977). On admits a purely real t. u. submanifold of dimension n -1 with non-

constant mean curvature.

§7. EXTRINSIC SPHERES OF KAE'HLER MANIFOLDS.

Since extrinsic spheres have the same extrinsic properties as ordinary

spheres in a Euclidean space, it is natural to ask when an extrinsic sphere

is an ordinary sphere. It follows from Proposition 1.2 that every Riemannian

manifold F can be an extrinsic sphere in the twisted product M= B x AP F. Here

A and U are positive functions on B and F, respectively. Hence in order to

conclude that an extrinsic sphere is isometric to an ordinary sphere we need

to impose some suitable conditions on the ambient space. For extrinsic

spheres in a Kaehler manifold, we have the following.

THEOREM 7.1. A complete, 1-connected, even-dimensional extrinsic sphere

N of a Kaehler manifold M is isometric to an ordinary sphere if its normal

connection is flat.

PROOF. Since N is 1-connected and its normal connection of N in M is

flat, there exist 2m- 2n mutually orthogonal unit parallel normal vector

fields defined globally on N, where dimRN= 2n and dimCM=m. Because,

N is an extrinsic sphere of M. We have

(7.1) h(X,Y) _ <X,Y>H, DXH= 0, and H 0.

Since H is parallel, the mean curvature a= IHI is constant. We put C = H/a.
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Then is parallel. Now, suppose that are mutually orthogonal

unit normal vector fields on N. Then we may assume that F1 = . We put

0r = <JF, Fr>, r= 2,---,2m,2m-2n. Then we have

(7.2) VXFr = -ArX + DXFr = 0.

Thus we get

(7.3) XOr = <JVXF, Fr> = a<X, JFY,>.

From (7.1), (7.2), and (7.3) we obtain XYl)
r=

aX<y,JFr> = a<VXY,JFr>

= a<VXY,JFr> + a<h(X,Y),JF r> _ (DAY) Or - a2(Dr<X,Y>, from which we find

(7.4) VXd0 _ -a20rX, r= 2 , ,2m - 2n.

Now, we shall claim that at least one of the functions 0r, r= 2 ,2m -2n,

is nonconstant. If all of the,, are constant, then (7.1) and (7.2) imply

0 = XOr = <JOXF, Fr> _ -a<JX, Fr> = a<X, JFr>,
r = 2, ... , 2m - 2n.

Thus, the subspace spanned by JF 2m-2n
is a complex

c
normal subspace. Thus, it is even-dimensional and of dimension greater than

2m-2n -1. Hence, it is the whole normal subspace T N. This implies that N

is a complex submanifold. Hence, it is totally geodesic. This is a con-

tradiction. Thus, there is a nonconstant function 0 defined on N and

satisfying the differential equation VXde = -a2OX for XE TN. Therefore, by

a result of Obata (1962), N is isometric to an ordinary 2n-sphere of radius

1/a. (Q.E.D.)

In the following we shall give an odd-dimensional example of such an

extrinsic sphere which is not an ordinary sphere, in fact, not even a

homotopy sphere.

Let be r irreducible homogeneous polynomials in m complex

variables z l , , z The set M = of all common zeros of

less the origin is a complex variety. If the r hypersurfaces

given by 0, i= are in general position, this variety

is nonsingular and is called a complete intersection in Cm. Clearly the
natural Kaehler structure of C m induces a Kaehler structure on M.

Let S2it-1 (1) be the unit hypersphere of C m centered at the origin 0

and M =
MfS2m-1(1).

Then we have the following.

PROPOSITION 7.2. The intersection N_= is a closed



extrinsic hypersphere of

If we consider
Cp

as the homogeneous complex coordinates of
m-1, the homogeneous equations Fl = = Fr = 0 define an algebraic

manifold A(M) of CPi-1. We have

PROPOSITION 7.3. The homotopy groups of M = M(Fl, , Fr) n S-1(1) and
the associated algebraic manifold A(M) satisfy

(7.S) Trk(M) =Trk(A(M)), k> 3.

Moreover, if 7r1(A (M)) = 0 and dims A (M) > 3, then either Tr1(M) = Tr2 (M) = 0 or

Trl (M) = 772 (M) = Z.

From this Proposition we see that in general the extrinsic sphere

M= M(F )n S2rr'-1(1) is not a homotopy sphere. In particular, if

Fl = alzd + a2zd + + amzd. F2 = z2, ,Fr = Zr, then the extrinsic sphere M
is 1-connected and its normal connection in is flat. Thus, we

may obtain the following.

THEOREM 7.4. For each positive odd integer k ;k <2m -3, there is a
Kaehler manifold M of complex dimension m and a submanifoZd M of real

dimension 2m - k in M such that

(1) M is closed and 1-connected,

(2) M is an extrinsic sphere of M,

(3) the normal connection of M in M is flat, and

(4) M is not a homotopy sphere.

As we already know from Theorem 7.1, there is no such submanifold if k

is even.

In Blair and Chen (1980), we have also the following.

THEOREM 7.5. Let M be a complete extrinsic sphere of a complete in-

tersection M is isometric to an ordinary

sphere or M is an extrinsic sphere of M obtained in the way mentioned above.

For extrinsic spheres in a locally Hermitian symmetric space we have

the following stronger result than Theorem 6.11.

THEOREM 7.6. Let N be an extrinsic sphere of a ZocaZZy Hermitian
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symmetric space M, then either N is totally real in M or rk M> di,nR N and N

lies in a flat totally geodesic submanifold of l9 as an extrinsic sphere.

PROOF. From Theorem 3.1 we known that N lies in a totally geodesic sub-

manifold M of constant sectional curvature c of as an extrinsic sphere.

If c= 0, i.e., k is flat, it is done. If c 0, M is an irreducible, non-

Hermition, locally symmetric space immersed in l9 as a totally geodesic sub-

manifold. Thus, by applying Theorem V, 4.2 of Chen and Nagano (1978), we

conclude that M is totally real in M. In particular, N is totally real in

14. (Q.E.D.)
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