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PREFACE

The present volume contains written versions of a series of talks on
geometry of submanifolds and its applications delivered at Science University
of Tokyo from January 16 to February 6, 1981. The material of these talks mainly
bases on some of author's works and joint works done during the last few years.

Chapter I gives a brief review on the general theory of submanifolds for
later use. However, results given in §3 are new. Chapter I modifies a recent
paper of the author on sufaces. In Chaper II, a survey of recent results on
total mean curvature is given. In Chapter I, the theory of generic sub-
manifolds is introduced. Some of its applications are given in this volume.

In ChapterV, a series of author's papers on CR-submanifolds is presented in

a simplified version. Chapter U serves a brief expositary of (M_, M)
-method which was introduced by T. Nagano and the author in 1978. Indication
of some of its applications is given. In the last chapter, some main results
on totally umbilical submanifolds are summarized. Due to limitation of pages,
proofs are given only to shorter ones or those appeared in less accessible
papers.

The author would like to take this opportunity to express his hearty
thanks to his teachers, professors Nagano and Otsuki, for their constant
encouragement and guidance. He also like to express his many thanks to
Professors Shibata and Yamaguchi and other colleagues at Science 'hhiversity
of Tokyo for the valuable discussions and their hospitality while the author
was a visiting professor there. Moreover, the author would like to express
his thanks to professors at Tokyo Metropolitan University, University of Tokyo,
Kushyu University, Nagoya University, Osaka University, Tsukuba University,
Tokyo Institute of Techrnology and Ochanomizu University in Japan and Soochow
University and Tsinghua University in Taiwan for their kind invitations to
visit and to give talks at their universities while the author was a visiting
professor at Sicence University of Tokyo. TNuring those visits the author learn
much from them. In particular, the author is indebted to Prefessor Ogiue for
his help which resulted in improvements of the presentation. Finally, the author
wishes to thank miss Ikuko Fukui who typed the manuscript, for her patience and

cooperation.

Bang-yen Chen
in Tokyo, February 20, 1981.
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Chapter I: SUBMANIFOLDS

In this monograph manifolds and submanifolds are assumed to be connected
and differentiable of class ¢  unless mentioned otherwise. In §6§§1,2, and 4
we will recall some fundamental results and formulas for later use. (see,
e.g. Chen (1973a) and Kobayashi and Nomizu (1963).) In §3, we will study
submanifolds with planar normal sections. Applications to submanifolds with
either parallel second fundamental form or planar geodesics are given.

§1. RIEMANNIAN MANIFOLDS
Let ¥ be a Riemannian manifold with metric tensor g and Riemannian
connection V. We have Vg=0. For any vector fields X, Y, and Z tangent to

M, the curvature temsor R of M is given by

(1.1) R(X,1)2=9,V, - V.7 -V

Y'x© (X, Y]

If El,---,En are local orthonormal vector fields on M, then

7

1.2 st =2 gRELNYE)
=1

defines a symmetric tensor field S of type (0,2), called the Riceti temsor of

M. Using the Ricci tensor S, the scalar curvature r is defined by

"
(1.3) r= Z S(E;,E;) .
=1

For the curvature tensor r we have the following identities:

(1.4) R(X,Y) +R(Y,X) =0,
(1.5) R(X,Y)Z2+R(Y,2)X+R(2,X)Y=0, and
(1.6) R(X,Y;2,W) =R(Z,W:X,Y),

where R(X,Y;Z,W)=<R(X,Y)Z,w> and <X,7>=g(X,7).
Let X and Y be two linearly independent vectors at a point. The section-
al curvature K(X,Y) for the plane section spanned by X and ¥ is defined by

R(X,Y;Y,X)

(1.7) KU, Y) = s 55 7

If the sectional curvature is equal to a constant ¢ for all plane sec-
tions, ¥ is called a space of constant curvature or a real-space-form. In

this case we have



Z

(1.8) R(X,7;2,W) = c{<X,W><Y, 2> - <X, 2><Y,i>}.

A Riemannian manifold ¥ is said to be Einsteinian if the Ricci tensor
S satisfies S=Xg for some function A on manifold #. If dim ¥>2, X is a
constant. A Riemannian manifold # is called a locally symmetric s‘pace if
its curvature tensor is covariant constant, i.e., VE=0. For a Riemannian

manifold, we define the conformal curvature tensor C by
(1.9) C(X,Y;2,W) = R(X,Y;2,W) -nlﬁ {S(x,W)<Y, 2>+ S(Y, 2)<X, W>

-S(X,2)<Y,W> - 5(Y,W)<X, 2>}

"—(ﬁ(m)— {<X_,W><Y,Z> - <X_,Z><_Y,W>}.

If dim <3, ¢=0. And if dim ¥>4, M is zonformally flat if and only if
c=0.
In this book, by a closed mani old we mean a compact manifold without

boundary.

§2 . SUBMANIFOLDS

Let M be an n-dimensional manifold immersed in an m-dimensional Riemannian
manifold M. We denote by g the metric tensor of ¥ as well as that induced on
M. Let V and V be the covariant differentiations on ¥ and M, respectively.

Then the Gauss and Weigarten formulas are given respectively by
(2.1) ﬁXY=va+ h(x,Y),
(2.2) VyE= -4 X+ DIE,

respectively, where X and Y are vector fields tangent to M and £ normal to /.
Moreover, % is the second fundamentzl form, D the linear connection induced
in the normal bundle TLM, called the normal connection, and ,4‘g the second

fundamental tensor at £. From (2.1) and (2.2) we have

(2.3) <ALX,Y>=<h(X,Y)E>.

3

We denote by R, R and RD the curvature tensors associated with v, V and D,
respectively. For the second fundamental from %, we define the covariant
differentiation V with respect to the connection in (T¥) e (TiM) by



(2.8) TR F,2) =Dy (h(1,2)) - h(T,2,2) - 1(1,7,2)

for any vector fields X, Y and Z tangent to #. A submanifold is said to have

parallel second fundamental form if T~=0. A geometric interpretation for

such submanifolds of a Euclidean m-space " will be given in the next section.
The equations of Gauss, Codazzi, and Ricci are given respectively by

(2.5) R(X,Y;2,0) = R(X,Y;2,0) + <h(X,W),h(¥,2)> - <h(X,2) ,h(¥,W)>,
(2.6)  REDDT= TR E,2) - T 02,
(2.7)  RYE,m) =B (4, 15E,0) - <y 4 12,2

for vectors X, Y, 7, W tangent to ¥, &, n normal to M, and L in (2.6) denotes

the normal component.
For an n-dimensional submanifold M in M. The mean curvature vector H

is given by

(2.8) H= trace h.

:|>—a

A submanifold ¥ is said to be minimal (respectively, totally geodesic) if
H=0 (respectively, n=0).
If we have

(2.9) h(X,Y) = <X,7>H,

for X, Y in ™, M is said to be totally umbilical.
A vector subbundle u of TlM is said to be parallel if DXE eu for any X

in 7M and any vector field £ in u.

§3., SUBMANIFOLDS WITH PLANAR NORMAL SECTIONS

Let ¥ be an n-dimensional submanifold in a Euclidean m-space E". For any
point p in ¥ and any unit vector ¢ at p tangent to M, the vector ¢ and the normal
space 7 of M at p determine an (m-n+1)-dimensional subspace E(p,t) in #".

The intersection of ¥ and E(p,t) gives a curve vy (in a neighborhood of p) which
is called the normal section of M at p in the direction #. In general, the
normal section y is a (twisted) space curve in E(p,t).

In this section we shall give a necessary and sufficient condition for a
submanifold of Z" to have planar normal sections. Using this result we will
obtain a geometric interpretation for submanifolds with parallel second fundament-
at form. Moreover, we shall find a relation between submanifolds with planar

normal sections and submanifolds with planar geodesics.



First we give the following

THEOREM 3.1. (Chen 1980a). Lzt M be an n-dimensional (n>2) submanifold
of E". Then M has planar normal szctions if and only if h and Vh satisfy

(3.1) ht,t) A(VR) (£,8) =0

for any wunit vector t rangent to M.

PROOF. Let M be an n-dimensional submanifold of E" and v(s) any normal

section through peM with s as its arc length. We denote by T the unit tangent
vector field along v(s) given by T=7v(s), v(s) =7izz— . Assume that y(0)=p

We choose a local field of orthonormal frame e e, in " in such a way

l’

that, restricted to M, the vector fields e *+*,e, are tangent to ¥, and hence,

l’
€410 " "»€, are normal to . And moreover, e

wh,+<++ 0™ the dual frame of e, tt,e, . There exist m- 1-forms wﬁ,
such that

=T along y(s). We denote by
A’B= 1,”‘,777,

S, - B
VeA—zfcuAeB , Oy 0
We put
r ..
hij=<h(e7:’ej)’er> , ;’J=1,...,n;r=n+l’-..’m‘

Because r=e, along y(s), we have

(3.2) e dy s G
. Y(s)————— VTT— Ew (T)e.+h(T,T),

(3.3 ) =LL=7 (vTT)-f_l Wme+ 3 wmulme,

d*“ i,4=1

+2 © (T)h(e T - 20 hllhl e+ Dp(h(2,1)) .

1= i,r

At v(0)=p, ¥(0) and ¥ (0) lie in the (m-n+1)-space E(p,t). Since E(p,%)
is spanned by ¢ and T;M, (3.2) and (3.3) give

(3.4) aﬂl?(t) -0

w

(3.5) ¥(0) = h(¢,t)
(3.6)  ¥(0) =-[n(t, &) | %t + (0, G=(2, 1)), -
Combining (3.4), (3.5), (3.6), and the definition of Vk, we have

(3.7)  ¥(0) == (0)%+ (T,7) (£, ),



where «(0) = ||n(¢,¢) ]| is the curvature of y(s) at p=vy(0).

If the normal section y(s) is a planar curve, then ¥ (0) is a linear
combination of ¥(0) and ¥(0). Hence we have (3.1), i.e., h(¢,t) is parallel
to (Vth) (t,t).

Conversely, if (3.1) holds for any vector at any point p in ¥ tangent
to M, then along the normal section y(s), the first normal space spanned by
h(T,T) is either zero or parallel along y(s) with respect to the normal connec-
tion p. Thus, y(s) is a planar curve. This completes the proof of the

theoren.

As an application of Theorem 3.1 we give the following simple geometric

interpretation for submanifolds with parallel second fundamental form.

THEOREM 3.2 (Chen 1980a). Let M be an n-dimensional (n> 2) submanifold
of ", Then the following three statements are equivalent.

(@) The second fundamental form h satisfies (Vth) (¢t,t) =0.

(b) The second fundamental form h is parallel, i.e., VA =0.

(¢) Normal section of M at any point p€ M 18 a planar curve with p as

one of its vertices.

By a vertex of a planar curve we mean a point x on the curve such that

dx<® _
"a—'s—— 0] at x.

PROOF. (a)=+(b). Since M in a submanifold of E", we have

(3.8) (V) (7,2) = (V1) (X, 2)

for any vectors X,Y,Z tangent to M.

Hence by putting ¢=X+Y and ¢t=X-Y, respectively, into (Vth) (t,t) =0,
we obtain (VXh) (x,Y) =0. Thus, by linearity and (3.8), we may get Vh=0.

(b)=(a). Trivial.

(B)==(c). If V=0, (3.1) holds automatically. Thus, by Theorem 3.1,
the normal section y(s) of M at p in any given direction ¢ is planar. From

(3.2) the curvature «(s) of y(s) satisfies
n .

(3.9 =¥ = T @@+ a0
1=2

where T=v(s). Thus

2 . .
(3.100 2Sle)y S ol (1) 7 (Wl (1)) + 2<D,(A(2,1)) ,A(2,1)> .

=2
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Hence, by (3.4), we obtain
d<® () - h h(t,8)>
—E (O)_2<Dt( (T,T))) ( s
= 2T (£,1), Rlt,t)>
=0

at p=v(0), that is, p is a vertex of the planar normal section y(s).
(c)=(a). If normal sections y(s) of M at any point p€M is a planar

curve with p as one of its vertices, then, by Theorem 3.1, we have
(3.11) (V%h)(t,t)= M) h(t,t) and
2
dx _
(3.12) 5 (0)=0,
Therefore, by (3.4), (3.10), and (3.12), we have
<(W%h)(t,t), h(t,t)>=0

from which, together with (3.11), we obtain (véh)(t,t)= 0. This completes
the proof of the theorem.

REMARK 3.1. For a submanifold in a real-space-form, statements (a) and
(b) of Theorem 3.2 are equivalent. However, these two statements are different
if the ambient space is an arbitrary Riemannian manifold. This fact can be

easily seen by comparing Theorems 3.3 and 3.4.

REMARK 3.2. For a submanifold ¥ in a Riemannian manifold ¥, statement
(a) is equivalent to the following statement (d). Every geodesic in ¥,
regarded as a curve in ¥, has parallel «N, where N is the principal normal.

Given a point p in a Riemannian manifold ¥ and a small positive number
€, the geodesic sphere GE(p) centered at » with radius e is the hypersurface
given by the image of the hypersphere Se(p) under exp s where SE(p) denotes

the hypersphere of TDM centered at p and with radius €.

THEOREM 3.3 (Chen and Vanhecke, 1978:1980). For any n-dimensional (n>2)
Riemannian manifold M, the following three statements are equivalent.

(1) Locally, M is a Euclidean space or a rank one symmetric space,

(2) Sufficiently small geodesic spheres of M satisfy (V%h)(t,t)z 0.

(3) Every geodesic of a sufficiently small geodesic sphere of M has

constant curvature « in M.



THEOREM 3.4 (Chen and Vanhecke, 1978; 1980). A Riemannian manifold M
of dimension >2 is a real-space-form i7" and only if sufficiently small geodesic

spheres of M have parallel second fundzmental form.

For the proof of these two theorems and further results on geodesic
spheres, see Chen and Vanhecke (1978) and literatures mentioned in the
bibliography of that paper.

Now we shall characterize submanifolds with planar geodesics in terms of

planar normal sections.

THEOREM 3.5 (Chen 1980a). 4n n-dimensional (n>2) submanifold M of E"
has planar geodesics if and only if it has planar normal sections of the same
constant curvature, i.e., they are eitner portions of straight lines or circles

of the same radius.

PROOF. Let y(s) be the normal section at p€ M in the direction of a

unit tangent vector ¢. By (3.2) and (3.5), we have
2 & 2. "2
(3.13) k()= 2 (@ () + |ln(r,0) ]
1=2
(3.14)  FO) = D lP, Wle)-o.

If M has planar normal sections of the same constant curvature, then
(3.13) and (3.14) give wi(T) =0 for 7=2,+-+,n. This shows that the normal
section Y(s) is in fact the geodesic in ¥ through p with ¢ as its initial
velocity vector. Since M has planar normal sections, M has planar geodesics.

Conversely, if M has planar geodesics, then, by a result of Hong (1973),
M is either contained in an xn-plane or else all the geodesics are planar
circles of the same radius. If the first case holds, every normal section
is a portion of a straight line. If the second case holds, the curvature of
every geodesic a(s) of M is constant. We put X=d&(s). We have VXX= 0.
Therefore we find &(s) = §XX= h(X,X) = «(s)N, where = ||n(x,X)|| 1is the curvature
of a(s) and ¥ its principal normal. Since a(s) is planar, ¥V ¥=-kx. Thus
DN = 0. Combining this with the constancy of «, we get i

(T (4,00 = D (h(%,10) = 0.

Because this is true for every geodesic in M, we have VA=0. Theorem 3.2
implies that M has planar sections. Thus, after observing that the planar
normal section given by E(p,t) and the planar geodesic throngh p with ¢ as
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its initial velocity vector are in fact the same curve, we conclude that
normal sections of M are planar curves of the same curvature. This proves

the theoremn.

REMARK 3.3. For submanifolds in " , we put
A= {submanifolds with planar normal sections},
B= {submanifolds with Vx =0},
c= {submanifolds with planar geodesics},
then we have ARBRC .
Classification of submanifolds of class B (respectively, class () has
been obtained by Ferus (1974) (see also Takeuchi (1981)) (respectively, Hong
(1973) and Little (1976)). It is obvious that class 4 contains all submanifolds
of E" of codimension one. In views of these, I would like to propose the

following.

PROBLEM 3.1. C(Classify submanifolds of class 4.
PROBLEM 3.2. Find topological conditions for higher dimensional closed

submanifolds of E" to have planar normal sections.

§4. THE FIRST AND SECOND VARIATIONS OF VOLUME

In this section, we shall give the first and second variation formulas
of volume for later use.

Let f:M—M be an immersion from a compact n-dimensional manifold into
an m-dimensional Riemannian manifold M. Let {ft} be a l-parameter family of
immersions of M—¥ with the property that fo= f and that the map F:Mx[0,1]—M
defined by F(p,t) =f,(P), be differentiable. Then {ft} is called a variation
of f. 1If {ft} is a variation of f, it induces a vector field in M defined
along the image of M under f. We shall denote this field by n and it is
constructed as follows. Let 3/3t be the standard vector field in Mx [0,1].
We set

_ 3
n(p) _I;('é?(p:o))’

then n gives rise to cross-sections nT and nN in 7 and TJ‘M, respectively.
If we have nT= 0, {ft} in called a normal variation of f. For a given normal
vector field u on M, exptwu defines a normal variation {f } induced from
u. We denote by ¥/(¢) the volume of M under ft with respect to the induced
metric and by ¥“(x) and »*(x) the values 1 (t) and —dz-)(/(t) at t=0 for

the normal variation induced from u. The follohlng formula is well-known



(see, for example, p. 75 of Chen (1973a))

(4.1) v (u) =-n J’ <u,H>dv
M

where dV denotes the volume element of f(M).
Let u be any normal vector field of f(M) and e ,""*,e, any orthonormal

frame in 7M. We put
— n ~
(4.2) S(u) =32 R(u,e.;e.,u),
21 71

then (4.2) is well-defined. The second variation formula is then given by the

following. (see, for example, Simons (1968)).

THEOREM 4.1. Let {ft} be the normal variation induced from a normal
vecter field u of fiM—M such that ft]8M=leM' If f is minimal, we have

(@3 =] el -5 - la, 1Par
M

A minimal submanifold M of ¥ is said to be stable if ¥ (u) >0 for any
normal vector field u of ¥ in M,otherwise, M is said to be unstable.
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Chapter II: SURFACES WITH PARALLEL NORMALIZED
MEAN CURVATURE VECTOR

§1. INTRODUCTION
In the classical theory of surfaces in an ordinary space E3, the two

most important curvatures are the Gauss curvature and the mean curvature |H#].
The Gauss curvature is intrinsic and the mean curvature is extrinsic. For

the Gauss curvature, the following result of Liebmann is well-known.

THEOREM 1.1. A4 closed surface of constant Gauss curvature in B3 is an

ordinary sphere.
Concerning mean curvature we have the following

THEOREM 1.2 (Hopf, 1951). 4 closed surface of genus zero in B> is an

ordinary sphere if it has constant mean curvature.

It was conjectured by Hopf that spheres are the only closed immersed
surface of E° with constant mean curvature.

For a surface M of EWT, m> 3, the mean curvature vector H# plays more
important réle than the mean curvature |H|. Let £ be the unit vector field

in the direction of H, that is,
(1.1) H=af, o= |H|,

then £ is called the normalized mean curvature vector. It is obvious that a
surface M has parallel mean curvature vector, i.e., DH=0, if and only if
either M is minimal or the mean curvature is a nonzero constant and the
normalized mean curvature vector £ is parallel. In Ruh and Vilms (1970),

we have

THEOREM 1.3 (Ruh and Vilms 1970). 4 submanifold M of E" has parallel
mean curvature vector if and only if the Gauss map of M is harmonic in the

sense of Eells and Sampson (1965).

In views of these, it is interesting and natural to classify submanifolds
with parallel mean curvature vector. For surfaces, this is done by the follow-

ing.

THEOREM 1.4 (Chen 1972a and Yau 1974). 4 surface M of E" has parallel
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mean curvature vector if and only if M is onz of the following surfaces;

(a) a minimal surface of Em,
(b) a minimal surface of a hypersvhere of E',
(c) a surface of B3 with constant mean curvature,

- 1 -
(d) a surface of a 3-sphere in E* with constant mean curvature.

Since the condition of parallel normalized mean curvature vector is much
weaker than the condition of parallel mean curvature vector, it is natural to
study surfaces satisfying the first condition and to find its relation with
the second condition. Themaln purpose of this chapter is to deal with this
problem.

§2. EXAMPLES

In this section, we give examples of surface with parallel normalized
mean curvature vector.

EXAMPLE 2.1. Any minimal surface of 77t of £ has parallel normalized
mean curvature vector in E'. This is simply due to the fact that the restric-
tion of the hyperplane unit normal to the surface is a parallel normalized

mean curvature vector.

EXAMPLE 2.2. Any surface of E> has parallel normalized mean curvature

vector because the unit surface normal is always parallel.

EXAMPLE 2.3. Any minimal surface of a hypersphere of F" has parallel

normalized mean curvature vector. This follows immediately from Theorem 1.4.

EXAMPLE 2.4. D. S. P. Leung (1980) proved that there are many analytic
surfaces of Eh with parallel normalized mean curvature vector. Moreover,

those surfaces do not lie in any hyperplane or hypersphere of Eh.

§3. SURFACES WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR

For simplicity we shall assume in this section that surfaces are of class
c®. We give the following results of Chen (1980b).

THEOREM 3.1. Let M be a surface of 7" with parallel normalized mean
curvature vector. Then M is one of the following surfaces;

(a) a minimal surface of a hyverzlare ol of B,
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(b) a minimal surface of a hypersphere of g s
(c) a surface of an affine 4-space E'L' of E".

If M is minimal in £, then any unit normal vector field is a normalized
mean curvature vector. In this case, the theorem follows from the following.

LEMMA 3.2. A minimal surface M of " admits a ’paraZZeZ unit normal vector
field if and only if either m=3 or m>3 and M lies in hyperplane of .

Let M be a minimal surface of E". If ¢ is a parallel unit normal vector
field, then we may choose m-2 orthonormal normal frame %,---,gm such that
g =g. Since DE =0, the Ricci equation implies [4_,4 ]— 0 for r=4,---,m,

3’

where A » A Slnce trace 4 = 0, either 4_ =0 or RD 0 at any point peM
We put U= {pe M[A =0 at p}. ”'hen we have R“ =0, on the closure of M-U Now,

let (x » X ) be an 1sothema1 coordinate system in M, we put X, = =3/3x" and

L= h(Xl,Xl) , M= h(Xl,XE) , N= h(Xg,Xe).

Then since £3 is parallel and trace Ag= 0, Lemma 2.2 of p. 103 of Chen
(1973a) shows that the following function

i= VT,

2 H €3>—<M’€3>i 1

is analytic in z =g' +4z°. Thus either ¢ =0 or 4 has only isolated zeros.

In the first case, we have A3= 0. Since £3 is parallel, M lies in a hyperplane
of £ with I—; as the hyperplane normal. If ¢ has only isolated zero points,
the normal curvature tensor #° vanishes identically. Thus Lemma 3.2 follows
immediately from the following (Chen (1973a), p. 115).

LEMMA 3.3. If a minimal surjace M of " has flat normal comnection, then

M is contained in an affine 3-space E’3 of A

If M is not minimal, then because ¥ is analytic, # vanishes only at
isolated points. We choose an orthonormal normal frame 53,-- -,Em in such a
way that g is the parallel normalized mean curvature vector. Put

= {pGMIA =XI at p}. Then, by using the Ricci and Codazzi equations, we
may conclude that RD 0 on the closure of ¥- M and <H,H> is constant on
each component of int (Ml)

Form this we may conclude that either  has constant mean curvature or

#=0 on M. If the first case occurs, Theorem 1.4 finishes the proof. If



the second case holds, we put

M, = {peM|dim Im n=1 at pI,
= {pe y|dim Im h=2 at pl.

Then M= M U14 and M3
the closure of each component of 1nt(M ) lies in an affine 3-space E of

is an open subset of M. The next step is to show that

£" and the closure of each component of M_ lies in an affine 4-space of

. Now, we apply Codazzi's equation and3analytic function theory to show
that either M, is the whole surface ¥ or the closure of M3 is M. If M, =M

M lies in an affine 3-space. If closure (M3)==M, then M, consists of curves
and points only. In this case, by applying analytic function theory and
Codazzi equation again, we may prove that the whole surface lies in an affine

4-space. For the details, see Chen (1980b).

By applying Theorem 3.1 we may also prove the following.
THEOREM 3.4. If a closed surface of genus zero in E" has parallel
normalized mean curvature vector, then either M i1s a minimal surface of a

hypersphere of " or M lies in an affine 3-space o of g

THEOREM 3.5. If a closed surjace M of " has parallel normalized mean
curvature vector and constant Gauss curvature, then either M is a minimal
surface of a hypersphere of F" or M is the product surface of two plane
circles in a Eh of "

THEOREM 3.6. If a flat surface of " has parallel normalized mean
curvature vector, then M is one of the following surfaces;

(a) a flat minimal surface of hypersphere of ",

(b) an open portion of the product surface of two plane circles or two
straight lines, or

() a flat surface of an affine 3-space E3 of g

In views of these results we would like to recall the following.

PROPOSITION 3.7 (Chen 1972c; Yau 1974). Every minimal surface of 7 is

totally geodesic if it has constant Gauss curvature.

The following problem seems to be interesting.
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PROBLEM 3.1. C(lassify submanifolds of E" with parallel mean curvature

vector or with parallel normalized mean curvature vector.
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Chapter III: TOTAL MEAN CURVATURE

§1. ROTATION INDEX, REGULAR HOMOTOPY, AND TOTAL CIRVATURE

Let ¢ be closed (smooth) oriented curve in 2. As a point moves along
C, the lines through a fixed point 0 and parallel to the tangent line of ¢
rotate through an angle Znm or rotate » times about 0. This integer = is
called the rotation index of C. It is known that if ¢ is a simple curve,
n=z*1.

Two closed curves are said to be regularly homotopic if one can be
deformed to the other through a family of closed smooth curves. Because the
rotation index is an integer and it varies continuously through the deformation,
it must keep constant. Therefore, two closed smooth curves have the same rota-
tion index if they are regularly homotopic. A theorem of Graustein and Whitney
says that the converse of this is true. Thus, the only invariant of a regular
homotopy class is the rotation index.

Let (x(s), y(s)) be the Cartesian coordinates of the closed curve in 5°

which is parameterized by its arc length s. Then we have
(1.1) ™= —xy”, y“=xx”,

where « denotes the curvature of C. Let 6(s) denote the angle between the

tangent line and the x-axis. Then we have

(1.2) ds =”2;”g—ds=de )
" +y”

From this we obtain the following formula;
(1.3) f k ds = 2nm, n=the rotation index.

From (1.3) we conclude the following well-known result.

THEOREM 1.1. Let C be a closed curve in E2. Then the total absolute

curvature of C in E’2 satisfies

(1.4) J k| ds > 2r.

The equality holds <if and only if C 18 a convex planar curve.

This result was generalized to closed curves in = by Fenchel (1929)
and to closed curves in ", m>3, by Borsuk (1947). In 1950, Milnor obtained
the following.



16

THEOREM 1.2. If a closed curve C in E" satisfies

(1.5) J |k| ds < 4m
c

then ¢ i1s unknotted.

In a 3-dimensional space E3, surfaces have far more important properties

than curves. These important properties are usually related either to the
Gauss curvature G or to the mean curvature o = ]HI.
For a closed oriented surface M of E3, the integral of Gauss curvature

gives the following famous Gauss-Bonnet formula;

(1.6) f(r' dv=2myx (M=41(1-g),
M

where y and g denote the Euler characteristic and genus of M, respectively.
On the other hand, by using Morse's theory, Chern and Lashof (1958) proved
the following.

(1.7) JIG! dv>4m(l+g).
M
Let M ={peM|G>0 at p}. Then (1.6) and (1.7) give

1.8 [earzan

My
From the definitions of Gauss and mean curvatures for surfaces in E3 we

have

1.9 o> g,
where the equality holds if and only if ¥ is totally umbilical. Thus, by
combining (1.8) and (1.9), we obtain

(1.10) faz av> 4n

M
The equality holds if and only if M is an ordinary 2-sphere in £3. This

result was given in Willmore (1968). If ¥ is a surface in a higher dimensional
Euclidean space E"(m> 3), inequality (1.7) is not true in general. However,
by using the notion of Otsuki frame, inequality (1.10) was obtained in Chen

(1970) for any closed surface in any Euclidean space.

§2. TOTAL MEAN CURVATURE.

According to Nash (1956), every n-dimensional closed Riemannian manifold
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of class Lk (3<k<=) can be Ck—isometrically imbedded in " with m-—%n (3n+11).
It is also well-known that most Riemannian manifolds cannot be isometrically
imbedded in " as hypersurfaces. Thus, the theory of submanifolds of higher
codimension is far richer than the theory of hypersurfaces, in particutar, than
surfaces of E-.

Concerning the total mean curvature, we have the following general result

for any closed submanifolds of .

THEOREM 2.1 (Chen 1971a). Let M be an n-dimensional closed submanifold
of E".  Then ve have

(2.1) f of dv>e ,
M

where o=|H| is the mean curvature and e, the volume of unit n-sphere. The
equality of (2.1) holds if and only if M is <mbedded as an ordinary n-sphere

in an affine (n+1)-space when n>1 and as a convex planar curve when n=1.

If n=1, this theorem is nothing but the famous Fenchel-Borsuk inequality.
In the 1973 Symposium on Differential Geometry held at Stanford
University, the author proposed the following two problems (Chen, 1975).

PROBLEM 2.1. Let (M,g) be a closed Riemannian manifold and f:M-*Em an
isometric immersion from M into £". What can we say about the total mean
curvature focn dv of f and the Riemannian manifold (M,g)?

PROBLEM 2.2. Let M be a closed manifold and f:1'4—+Em an immersion from M
into E". What can we say about the total mean curvature of f and the
differentiable manifold ¥ (or f(M))? (see also Willmore (1971 b)).

It is the main purpose of this chapter to summarize the recent results
about these two problems. Some remarks and conjectures will be given in the
last section, (For the older results in this direction, see Chapter VI of Chen
(1973a) and Willmore (1971b)).

§3. TOTAL MEAN CURVATURE AND CONFORMAL GEOMETRY

Let # be an m-dimensional Riemannian maniold with metric g and Riemannian
connection V. Let p be a positive fuction on ¥. Then g*= p2g defines a new
metric on M. It is called a conformal change of metric. Let V* denote the
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Riemannian connection of g*. Then we have
(3.1) ﬁ;y_vxﬁ (X logp)Y+ (Y logp)X - g(X,Y)U

where y is given by g(v ,X) =X logp.

Let ¥ be an n-dimensional submanifold of # and V and V* the covariant
differentiations on ¥ induced from g and g*, respectively. For any vector
fields X,Y tangent to M and £ normal to ¥, we have -

(3.2) %Xy=va+ n(x,y), VEY =VEY+ R*(X,7),

U r=_ Tkr = g% *
(3.3) V,E=-A X+ DE, VAL = -AXX+ DEE.

2 £

Form (3.1) we also have

(3.4) VEE - V,E = (X logo)E - (¢ logp)X.

By substituting (3.3) into (3.4) we may obtain

(3.5) D;?g =DyE+ (X logp)k.

Thus if we denote by I the identity transformation, we get
(3.6) D}‘( =D, + (X logp)1I,

(3.7 2060 =P ,1) ¢ 0, (¥ 1ogo)1) + (x logo)D,
- Dy((X 1ogo)) - (¥ logp)Dy - ([x,7] log o).

By using the definition of Lie product we find
*
3.8) B,y =Ru,y.

Consequently, we have the following results of Chen (1974a).

THEOREM 3.1. Let M be a submanifold of a Riemannian manifold M. Then

the normal curvature tensor R is a econformal invariant, t.e., it 18 invariant

under conformal change of metric on M.

By substituting (3.2) into (3.1) we may obtain
(3.9 EE(x,Y) -n(x,¥) = g(x,7) U7,

where ' denotes the normal component of /M. Hence for any normal vector
field £ of ¥ in ¥ we have
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(3.10) g(A’éX,Y) =g(A£X,Y) +g(X,Y)g(UN,E).

Let e e, be principal orthonormal directions of /1g with respect to

1’
g- Then o‘lel,
directions of AE with respect to g*. If we denote by kl(E),---,kn(E) the

prinicipal curvatures of AE and ki(&),---,k:l(i) that of 4%, then (3.10) gives

es 07t e, is an orthonormal frame of M which gives the principal

(3.11) K@=k @) +x, A =g(u0).

Since A§= oA¥, and g*= p'l£ is a unit vector with respect to g*, (3.11)
implies
% *) _ L% * = -
(3.12)  olk¥(E%) - KE(EN 1=k (8) - k;(2).
Now, let En+1’
Then the mean curvature vector # is given by

g be an orthonormal normal frame with respect to g.

1
(3.13)  H=—= %} (§k¢(5p))5p'

Moreover the following quantity ¢° is well-defined.

(3.14) ae=mnzT DI kp(EIRS(E).

r 1<j
We call g% the extrinsic scalar curvature (with respect to g). From (3.12),

(3.13) and (3.14) we obtain the following.

THEOREM 3.2 (Chen 1974a). If M is a subranifold of a Riemannian manifold
i, then (ocz— Ge)g is a conformal invariant, i.e., (oc2 - Ge)g 18 invariant under

conformal changes of metric.

n/ng is a

In particular, Theorem 3.2 implies immediately that (uz— )
conformal invariant, where n= dimRM. For surfaces in E" , the extrinsic scalar
curvature ¢° is nothing but the Gauss curvature. For such surfaces we also

have the following (see, also White (1973) for the case m=3).

THEOREM 3.3 (Chen 1973b). Let ¢ (M) be tne closed surface obtained from
a closed surface M of " under a conformal mapping ¢ from " into E". Then

2 [ 2
3.15 J o dv= asdv
( ) M er(M) L

where o 6 and dV, denote the mean curvature ard area element of ¢ (M), re-

¢

spectively.
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§4. TOTAL MEAN CURVATURE, ORDER OF IMMERSION, AND SPECTRAL GEOMETRY

Let M be a closed Riemannian manifold and A the Laplace-Beltraml operator
acting on differentiable functions in C*(¥). It is well-known that A is an
elliptic operator. The operator A has an infinite sequence

(4.1 0=>\o<>\l<>\2<---<)\p<---+w

of eigenvalues. Let V.= {fec=(M) |rf= Aif‘} be the .eigenspace with eigenvalue
A;+- Then the dimension of each V. is finite. It is called the multiplicity
of >‘i' The set of eigenvalues of A enumerated with multiplicity, denoted by
spec (M), is called the spectrum of M.

If we define an inner product on C®(M) by

(4.2) <frg>= Jfng,
M
for f,g € ¢”(M). Then the decomposition ZVi is orthogonal with respect to

this structure, moreover,ZVi is dense in C*(M). Since M is closed, Vo is
1-dimensional and it consists of constant functions. (For general results
on spectrum, see Berger, Gauduchon and Mazet (1971)).

For each function fe (™M), let fi be the projection of f onto the
subspace Vi (=0,1,2,+++). We say that a function fec”(¥) is of order p
(respectively, of order>p ) if feVp (respectively, if fi =0; 2=0,1,---,p-1).
It is clear that the zero function is of order p for each p.

For an isometric immersion z : M —E". We put

o= (2, ",z

where x is the i-th coordinate function of ¥ in #". Following Chen (1979a),
we call an isometric immersion x is of ordr p (respectively, of order>p) if
each coordinate function z, of z is of order p (respectively, of order >p).
In the following theorem we will show that the total mean curvature of
an isometric immersion is closely related with the order of immersion as well

as its spectrum. The results of this section are given in Chen (1979 a,b)

THEOREM 4.1. Let (M,g) be an n-dimensional (n>2) closed Riemannian
manifold. If =x: M — 1" is an isometric immersion of order >p (p>1) from

M into Em, then the total mean curvature of M satisfies
A n
(4.3) f o av> (2P uwm
M =''n

where v (M) denotes the volume of (M,q). The equality holds if and only if x

18 an imbedding of order p.
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PROOF. Suppose that x :M—E" is of order >p(> 1). Then each
coordinate function z; is of order >p. Since (xi)t is the component of x;
in the eigenspace V., the inner product < , > on the pre-Hilbert space Cw(ko

satisfies

a; =<xi,.__lzzlf___
: Ty,
where the first identity defines ait
from < , > on ¢ (M). By a similar argument as given in Berger, Gauduchon
and Mazet (1971, p. 186), we have
d(x;), .2

e, - 2 eyt |

1
2= ([ mean( 1epfart

and |[ . ” denotes the norm induced

0

[

de H '22 dx d(x) S ( Hd(xt)tHE
(x,b t! t>p H ” (xz)tng

de ” -22 —”—(——T_<x:—*(x) >
5 i )2 (z,),.0(x))
+ [ A — < (x. X . >
t>p 1,(-’17) vt

2 2
a7~ 2 Ay

£2p

From this we find

2 2 2 _ 2
laegP2 2 250" 2% (B )00l

(4.5) f |dx.|2dv> 2 [ < dv,
7 =P T
M M
where [dxil is the length of the 1-form dx, on . It is clear that the equality

holds if and only if x. is a function of order p. On the other hand, since
m
ldz|?= 30 |dz,|%=n=din 4,
=1
(4.5) implies

2
(4.6) nv(M);xp Lj [z|“dv ,

where |z| is the length of x with respect to the Euclidean metric of E". From
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(4.6) and the well-known Schwarz inequality, we have

z}2dn) ( [ a2dv)

2
o dV);Ap( f ’

nv(M)([ ’

( .7) /
> A (J alz]dr)®> A (I <H,x>dV)°
p M p M

where <H,x> is inner product of A and x in g". From Proposition 2.2 of Chen
(1972 d) we have

(4.8) v(M)+J <H,x>dv=0.
M
Thus, (4.7) and (4.8) give
5 A
(4.9) f a“dv>—L v ()
M

Now, by using the Holder inequality we find

A .
2 () < L oPdv< (f oZLant/r (J ant’e
M M

where —i— + %—=1, r,s>1. Thus we have

(4.10)  ( f a?rav) > [—Af]ru ) .
M

If n=2, (4.9) gives (4.3). If n>2, then by setting 2r=n, we get (4.3)
from (4.10).

If the equality sign of (4.3) holds, the equalities above all become
equalities. Therefore, each coordinate function x, is of order p. From
this we conclude that x is an imbedding of order p.

Conversely, if x is an imbedding of order p, we have
(4.11) Ax = Apx .

A theorem of Takahashi (1966) implies that » is imbedded in a hypersphere
g" 'l(r) of radius r centered at the origin as a minimal submanifold. Now,

since Ax=7nK and M is minimal in sn—l(r), z=7r°H. Thus (4.11) implies

a2=—L and A =2
e P »r

From these we see that the equality sign of (4.3) holds (Q.E.D.)

For any immersion from X into ZW, if we choose the center of gravity
to be the origin of Em, then x is an immersion of order >1. Since inequality

(4.3) is independent of the choice of the Euclidean coordinate system, Theorem
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4.1 implies the following.

COROLLARY 4.2. Let x M—E" be an isomeszric immersion of a closed n-
dimensional (n> 2) Riemannian manifold M into F".  Then the total mean

curvature of x satisfies

(4.12) f a”dv;[ Anl ]TU(M)
M

The equality holds if and only if there is a vector c in " such that x-c

18 an imbedding of order 1.

If n=2, Corollary 4.2 is due to Bleecker and Weiner (1976) and Reilly
(1977). By using Theorem 4.1 and Corollary 4.2 we may also obtain the follow-

ing results.

THEOREM 4.3. [Let M be the product surface Sl(a) XSl(b) of two plane
circles of radii a and b, respectively. If a> b, then
(@) M admits no isometric immersion of crder p< %— in any Euclidean
space, and

. . . . a . .
(5) every iscmetric immersion of order 23" satisfies

2
[ ocng_>_ _Zgw
M N

The equality holds if and only if % 18 an “nteger and the surface M is

imbedded as of order —%— .

COROLLARY 4.4. Let M be the Riemannian product of n plane circles

of the same radius 1. Then every isometric irmersion from M into E" satisfies

2 /2
(4.13) J a”dv>[4“ ]n
" =\ n

The equality holds if and only if M is <imbedded in a hypersphere of radius
r=yV/n by an imbedding of order 1.

COROLLARY 4.5. Let M be a flat Klein boitle. Then, for any isometric

immersion from M into ", we have

f oc2dV> 27r2.

COROLLARY 4.6. ILet RP' be the n-dimensional real projective space with
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the standard metric. Then, for any isometric immersion from RP" into H" >

we have

r
(4.14) f andv>[ 2(n+1) ]2 e
n = n 2
RP
The equality holds if and only if RP" is imbedded in an affine %n(n+ 3)-

space as a Veronese submanifold.

COROLLARY 4.7. Let CP' be the complex n-dimensional complex projective
space with the Fubini-Study metric. Then, for any isometric immersion from

cP’ into Em, we have

(4.15) [ azndv;[—zﬂ—““l)i']”/n!.
CcP”

The equality holds if and only if the immersion is an imbedding of order one.

COROLLARY 4.8. Every isometric immersion from the quaternionic projective

space HP" with the standard metric into E satisfies

n+3)m

(4.16) f a””dv;zﬂ -~ 17 (2n+1)! .
Hﬂ

The equality holds if and only if the immersion is an imbedding of order one.

Let ¥ be a submanifold of E" of order >p. A conformal mapping ¢ on " is
said to preserve the order of M if ¢(M) is order >p under a suitable transla-

tion of Em, if it is necessary.
From Theorems 3.3 and 4.1 we may prove the following.

THEOREM 4.9. Let z:M—E" be an imbedding of order p from a closed surface
M into " and ¢ a conformal mapping on E' which preserves the area and order of
M. Then the p-th eigenvalues of the Laplace-Beltrami operator of M and ¢ (M)
satisfy

(417) 2 (@) 2 (bea)

The equality holds if and only if ¢ is a Euclidean motion.
If x:M—E" is an immersion of order 1 from a closed surface M into Em,
then any conformal mapping on £" preserves the order of M. Therefore,

Theorem 4.9 gives the following conformal inequality for A

THEOREM 4.10. Let x:M—E" be an imbedding of order one from a closed
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surface M into £ Then, for any conformal mapping ¢ on " with
v(M) =v(d(M)), we have

(4.18) A (=) 22 (4+2).

The equality holds if and only if ¢ is a Euciidean motion.

A surface of E" is called a conformal Clifford torus if it is the image
of the Clifford torus 51(1) X Sl(l)CEhCE”Z under a conformal mapping on Z.
This class of surfaces includes cyclides of Dupin given by inversions of an
3 a

anchor ring in £~ with circles of radii a and b with ratio —F=% . From

Theorem 4.10 we have the following.

COROLLARY 4.11. If M is a conformal Clifford torus in F" with area
47r2, then we have

(4.19) <1

The equality holds if and only <if M is a Clifford torus Sl(l)x Sl(l) .

Let (x,y,z) be the Euclidean coordinates of 23 and (ul,---,us) be the

5

Euclidean coordinates of E”. We consider the mapping defined by wb =1 yz,

ue =%xzi u3= —%—xy, uh= %—2(302 - yg) and u° = % (x2 + y2 - 222) . This defines
an isometric immersion of S$°(1) into S (1//3). Two points (z,y,z) and
(~x,-y,-2z) of 52(1) are mapped into the same point. Thus, it defines an
imbedding from sz into Sh(l//?)CE’S. This real projective plane in

B’ is called the Veronese surface. It is known that it satisfies v =27

and A= 6. A surface of " is called a conformal Veronese surface if it

is the image of the Veronese surface under a conformal mapping on E". From

Theorem 4.10, we also have the following.

COROLLARY 4.12. If M is a conformal Veronese surface in " with area

2m, then we have
(4.20) xl;6.

The equality holds if and only if M 1s a Veronese surface.

§5. TOTAL MEAN CURVATURE AND TOPOLOGY.

By studying total mean curvature, sometime we may obtain some informa-
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tions about topological structure of the submanifold. In this section we
would like to mention some results in this direction. Those results can

be regarded as some partial solutions to Problem 2.2.

THEOREM 5.1 (Chen 1973c). Let M be a closed surface of E)4 with Gauss
curvature G>0 (or G<0). If we have

(5.1) f aEdV; (2+m)m,
M

then M is diffeomorphic to a 2-sphere.
For the proof of this theorem see Chen (1973a) or (1973c).

Let f: M—-—*Eh be an immersion of an oriented closed surface M into Eh.
By applying regular deformation to f if necessary, f(¥) intersects itself
transversally. Hence, f(M) intersects itself at isolated points. At each
point p of self-intersection, we assign +1 if the direct sum orientation of
the two complementary tangent planes equals the given orintation on Eh, and
we assign —1otherwise. Then the self-intersection number is defined as the
sum of the local contributions from all the points of self-intersection. It
is well-known that the self-intersection number ¢ is the only immersion

invariant up to regular homotopy from M in Eh.

THEOREM 5.2 (Wintgen 1979). [Iet x:M——-»E'h be an immersion from a closed

oriented surface M into Eh. Then we have
(5.2) f o®dv > 4r(1+]q] - g)
M
where q and g are the self-intersection nwmber and genus of M, respectively.
PROOF. Let .7c:M—->ELL be an immersion of a closed oriented surface into

L : . ;
E". We choose local field of orthonormal frame el,eg,%,gh in EL such that,
restricted to M, e, ,e, are tangent to M and 53,£h are normal to M. By

b
putting h§j= (e le f,g >, we see that the Gauss curvature G and normal
curvature GD are glven respectively by
i r ., r Lr N2
(5.3) “R(e),e e e )=E3 [h) s - ()T,

= . - 1,3 3k 3
(5.4) P RD(el,ez,Eh,%)—hlg(hz ABEUARCIEEY

Thus, the mean curvature a=|7| satisfies
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2 1 3 3,42 L )
af =g {0y + 150"+ (hyy + 550070

3 3.2 2
_ (ke (ha-hee)® 3 4
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2
+ (hl2) +G

~
et
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Hence, we have
(5.5) f ofdr> 2r(x + [xP])
M

where ¥ and XD denote the Euler number of TM and TIM, respectively. Since
XD= 2g (see, Lashof and Smale (1958)), (5.5) gives inequality (5.2)
(Q.E.D.)

From (5.2) and a result of Smale (1959), we have immediately the

following
!
THEOREM 5.3 (Wintgen 1979). TLet f”:SZ—-i’4 be an immersion of a 2-sphere
. .
wnto . If
[ Ol.2dV< 8,

then f is regularly homotopic to the standard imbedding of 5° into an affine

3-space B,

If x:M—*Eh is an imbedding of a closed surface M into Eh, the fund-
mental group nl(Eh—M) of Eh—M is called the knot group of x. The
minimal number of generators of knot group is called the knot number of M.

We have the following relation between total mean curvature and knot

number p.

THEOREM 5.4 (Wintgen 1978). Let f:M—»Eu be an imbedding of a closed

surface into Eh. Then we have

f aedVi_ 4mp .
M
For the proof see Wintgen (1978).

§6. REMARKS AND CONJECTURES
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REMARK 6.1. Corollary 4.4 shows that every isometric immersion from the
Clifford torus, i.e., the product surface of two plane circles of the same
radius, into Z” has total mean curvature > 212, For arbitrary flat surfaces

we have the following best possible result.

THEOREM 6.1 (Chen 1981). Let M be a closed flat surface. Then every

isometric immersion from M into " satisfies
(6.1) f o2dv > 2n°.
M

The equality holds <if and only if M is imbedded in an affine 4-space of il
as a Clifford torus.

CONJECTURE 6.1. Inequality (6.1) holds for any immersion from a 2-torus
into £".

Willmore made this conjecture for m= 3.

CONJECTURE 6.2 (Wintgen 1979). For any closed oriented surface immersed

in " we have

(6.2) f oa2dv>an(1+|q]).
M

CONJECTURE 6.3 (Chen 1979a). For any immersion from RP" into " we have
(4.14).

CONJECTURE 6.4 (Chen 1979a). For any immersion from gP" into " we
have (4.15).

CONJECTURE 6.5 (Chen 1979a). For any immersion from gP" into F" we have
(4.16).

REMARK 6.2. Lawson (1970) showed that for any positive integer g, there

3 such that the genus of

is a closed minimal surface M in the unit 3-sphere S
M is g and the area of M is<8n. From this fact, we know that for any closed
oriented surface M, there exists an immersion from ¥ into £ whose total mean

curvature is < 87.

CONJECTURE 6.6. Let M be a closed surface which is not homeomorphic to
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52, RP° or 5% x s'. Then for any immersion of » into E" we have

J OL2dV > 27r2 .
M

REMARK 6.3. The relations between total mean curvature and the theory of
variations have been studied in Chen (1972e, 1973a), Willmore and Jhaveri
(1972). Chen and Houh (1975), Chen and Yano (1978), Weiner (1978), and others.

REMARK 6.4. Let M be a closed submanifold of E" defined by some homo-
geneous polynomials. Then one may define the degree of o by using the degree
of these polynomials. It seems to be interesting to find a relation between
total mean curvature and the degree of M similar to Theorem 4.1. It follows

from Theorem 2.1 that if '5‘4 otndV=cn, M is of degree 2.
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Chapter IV: GENERIC SUBMANIFOLDS OF KAEHLER MANIFOLDS

In this chapter we shall study generic submanifolds of a Kaehler manifold.
Results in this theory will be used to obtain some new results in older
theories, e.g. theories of complex submanifolds and CR-submanifolds

§1. DIFFERENTIABILITY AND OPENNESS.
Let (#,J) be an almost complex manifold with almost complex structure J.
Let N be a submanifold of #. For each point x €N, we put

=T NNI (T,

Then ;Z’;c is the maximal complex subspace of the tangent space TxITZ which is
contained in T .M. If the dimension of Ky is constant along N, NV is called
a generic submanifold of (M,J). TFor a generic submanifold N we denote by %
the distribution defined by Hops S EN. We call # the holomorphic distribu-
tion of N. The following result shows the differentiability of this

distribution.

PROPOSITION 1.1. For any gereric submanifold N of an almost complex
manifold (M,J), the holmorphic dissribution is differentiable.

PROOF. It is well-known that the Whitney sum TWe@7TN is a differentiable
vector bundle over N. Let N be a generic submanifold of (M,J). We define a
differentiable mapping

6 : TN® TN—s TH
by ¢(X,Y) =X-JY. Because N is assumed to be generic, the implicit function
theorem implies that the kernel of 3, 4)_1(1.7), is a differentiable submanifold
of TN®TN. Let ¢y : TN® TN——TN be the projection given by y(X,Y) =x. Then
U ¢_l(lv) is one-to-one and /CV=\;';(:'1(N)). This proves the proposition.
(Q.E.D.)

The author would like to express his thanks to Professors Nagano and
Otsuki for giving the simplified proof of this proposition.

If (M,J,0) is an almost Hermitian manifold, then for each z in a generic
submanifold ¥, we define d‘l” Las the orthogonal complementary subspace of #,,
in T N. Then, by Pr0p051t10n 1.1, #, deFlnes another differentiable
distribution on ¥. For this dlstrlbutlon ;Z” , we have

1.1 agn#sl.



We call this distribution the purely real distribution. A generic sub-
manifold ¥ in (#,J) is called a complex (respectively, purely real)
submanifold if =TV (respectively, #={0:).

Let N be a compact manifold and 22, €™ the set of imbeddings from
¥ into ¢™ with dimRﬁ/gc >dim¥-p for any xe€ Y. Then we have

2Pw, c™c e,

with respect to the usual Frechet topology, this givesé?p(N,(?m) the induced
topology. It can be proved that the set of generic imbeddings from ¥ into
¢ with dim 57, =din8-p is open in g?w, c™.

From Proposition 1.1 we see that every real submanifold of an almost
complex manifold is the closure of the union of some generic open sub-
manifolds. Thus this theory is very general.

Let N be a generic submanifold of an almost Hermitian manifold 4. For

any vector field X tangent to N, we put

(1.2) JX=PX+ FX

where PX and FX are the tangential and normal components of JX, respectively.

Then P is an endomorphism of TW and F a normal-bundle-valved 1-form on TWN.

For any vector field £ normal to ¥, we put
(1.3) JE = tE+ fE

where tf and f£ are the tangential and normal components of J§. Then ¢ is a
tangent-bundle-valued 1-form on 'y and f an endomorphism of riy. For a
generic submanifold ¥ in (¥,g,J) we have

(1.4) jfx_[_%;', PH,=5, , and P%xlgj/j.

Moreover, F:;?”L———ﬂfg%”i‘is an isomorvhism.
Let v_ be the vector subspace of Zi‘N given by

v_=rirangsrt .
X X X
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Then v is a differentiable complex vector bundle over ¥. It is easy to verify

that

L L
(1.5) r=FF v, (W) =F and F# T Lv.

Throughout this and the next chapters we always put
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_ i L
(1.6) h=din X, p=dim, # .

§2. INTEGRABILITIES
Throughout this chapter we shall always assume that ¥ is a generic sub-

manifold of a Kaehler manifold ¥ we shall adopt the notations given in §1.
The results given in this chapter are obtained in Chgn (1980c).

PROPOSITION 2.1. We have <Jh(X,U),&E>=<h(JX,U),E> for any vectors
Xe #, UETN and £ €.

PROPOSITION 2.2. The holomorphic distribution % is integrable if and
only if <h(X,JY),FZ>=<h(JX,Y),FZ> for X,Y in # and 7 in Z’J‘.

Proposition 2.1 follows from the Gauss formula and VJ/=0. Proposition
2.2 follows from the fact that #(X,JY) - h(JX,Y) = J[X,¥] + V_YJX— VXJY, for
X,Y in . (see, also, Blair and Chen (1979) and Bejancu (1978)).

PROPOSITION 2.3. The purely real distribution %Lis integrable i1f and
only if

. 1
(2.1) VZ(PW) - VW(PZ,) *Ap W= Aol eH
for Z,We ﬁ/‘]‘
PROOF. For any Z,W in # L e have
IV W+ Jh(Z,H) = V,(PW) + 1(2,PH) - Ay 2+ D, (FW),
from which we obtain

(z,W] = P{AFWZ - Ap W+ VW(PZ) - vz(pw)}

F
+ t{n(W,P2) - h(Z,2%) + DW(FZ) - D, (Fi)}

Since t(rlm) =;z/‘L, this proves the proposition.

PROPOSITION 2.4. If & is irtegrable and its leaves are totally geodesic
in N, then <h(%, %), FH+>=1{0}.

PROOF.  Under the hypothesis, V,7 el for vector fields ¥ in # and
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ZS%‘E Thus for Y in %, we have

0= <VXZ,JY> =<A_ X, Y> - <VXPZ, Y>=<A_ X, Y>.

FZ =Z

This proves the proposition.

PROPOSITION 2.5. If Z”L 18 integrable and its leave are totally geodesic
in N, then <h(%’,Z/J'),F%’i.>= {0}.

PROOF. For vector fields X in &, Z,¥ in ﬁ’/’l, we have
0= <V, X /> = <:~7ZJX,PW> + <\7ZJX, FW> = < (JX, 2), FW> .

This proves the proposition.

These two propositions play important rdoles in the theory of generic
submanifolds because these two propositions tell us that if we impose suitable
intrinsic conditions on the generic submanifold ¥, we obtain important ex-
trinsic conclusions on ¥.

For the endomorphism P : TW——TN, if we put

(v, PYV=79,(PV) - (V1)
for vector fields v,V in TN, then we have
(2.2) (VUP)V= th(U,7) +AFVU

Thus we may obtain the following.

LEMMA 2.6. P <s parallel if and only <f (1) H# is integrable,
(2) Ag X=0  for xe and UE€TN, and (3) A V=Ag U for U,V in TH.

For the normal bundle-valued 1-form F, if we put
(v, FIv=D (V) -F(V 1),
for vector fields U,V tangent to N, we have
(2.3) (VUF)V= fu(u,v) - h(U,PV).

Thus we obtain the following.

LEMMA 2.7. F s parallel if and only if AfEU =—A€PU for U in TN and

£ in TW .
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By using this lemma we may prove the following

LEMMA 2.8. If F is parallel, then
(1) % is integrable and its leaves are totally geodesic in W,
(2) VUXG F and Ap X=0,
(3 F% and v are parallel <in the normal bundle, and
(4) VXP)Z= (VUP)X= 0,
for X in#, Z in 2/‘1; and U in TE,

Let i:N——# be a generic submanifold of a Kaehler manifold M. If
we denote by { and \?a the fundamental 2-form (or the Kaehler form) and the
a-th Chern form of M, respectively. And by Q=7*Q and Y, = 71*7 the in-
duced forms on N. Then dQ= dy =0, Thus, if ¥ is closed Qand Yy define
cohomology classes [Q] and [Y 1 in i (#; R) and in i (N R), respectively.
We call them the fundamental cZass and o-th Chern class of N, respectively.
Such cohomology classes will be studied later.

§3. GENERIC SUBMANIFOLD OF COMPLEX-SPACE-FORMS
For a generic submanifold ¥ of a Kaehler manifold M, if % is integrable
and

(3.1) <), EF =10}, i, LFEH

r
then, by the Codazzi equation, for X,Y in # and Z,¥ in %J‘, we have
(3.2) R(X,Y;2,FW) - <DXh(Y,Z) - 2yh(x,2) ,Fw>

= <Ap ¥, ﬁXJz> - <Ay X JvlJz>

= <JAp XV PL> = <JAp Y,V P>+ <Apy Y I V> = <Ap Y, JA g X>

Since #° is integrable, (3.1) and Proposition 2.2 imply that, for Xe€
wesrh

3 ) TY = —.JA
(3.3) AFWuX uAFWX.
(3.2) and (3.3) give
3.4 R ; - -
(3.4) R(X,JX;2,FZ) - <D,h(JX,2) - Do h(X,2) ,F2>

=< _ 2 2
JAFZX,VJXPZ> <AFZX v. Dz>+ "AFZy]



On the other hand, we have <J4_ X,Pz>=0 and (3.1). Thus we obtain

FZ
(3.5) TAp X,V PL> = < [J%,4 FZX] ,JPZ> + <‘7__:FZ P2
< [AFZX, X1,Pz> + <§X(;_:_ZX) ,PZ> = ~<Ap X,V PL>,
(3.6) Vi PZ=Ag, X+ PV, 2.

Thus, by (3.4), (3.5) and (3.6), we have
(3.7) R(X,JX;2,F2) - <D h(JX,2) - D h(X,2) 72>
_ p) 2. s
= ZHAFZXH - zllvxnzl] +2<2Y,2,9.P2>.

2 2, o 2 :
From (3.6) we also have HAFZXH = HVXPZH + :VXZH - 2<V,Pz,PV,2>. Substitut
ing this into (3.7) we get

(3.8) R(X,JX;2,F2) - <D h(JX,2) - D, h(X,2),Fz>
2 2 "e
= flag,xll? - 1922012 + I[Py, 2"

If ¥ is a complex-space-form of constant holomorphic sectional curvature

¢, then we have
(3.9) R(X,7)Z= —g—{<§,2>)~( - <X, 5T + <JY,7>J7 - <JX, Z>JY + 2<X,JY>J7}
for X,Y,Z em™. Thus, for X €% and Zeﬁ’l, we obtain

(3.10)  R(X,JX;2,F2) =-—5 <X,X><FZ,FZ>.

DEFINITION 3.1. A generic submanifold ¥ in ¥ is called mixed totally
geodesic if h(g//,%L)= {0}.

From (3.8) and (3.10) we obtain the following.

LEMMA 3.1. Let N be a generic submanifold of a complex-space-form M(e).
If @ is integrable and N is either (a) mixed totally geodesic or (b) rat
18 parallel and (3.1) holds, then for unit veciors X in H and Z in;’{/’J; we
have

(3.11)  [|v,2zl|® = SlEz|® « (| 20,z ® + (4,21

By using Proposition 2.4. Lemma 3.1, formulas (2.2) and (3.12), we obtain
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PROPOSITION 3.2. Let N be a mixed totally geodesic generic submanifold
of a complex-space-form M(c), c¢#0. Then # is integrable and its leaves
are totally geodesic in N if and only <if N is either a complex submanifold

or a purely real submanifold.

A generic submanifold is said to be proper if it is neither a complex

submanifold nor a purely real submanifold.

THEOREM 3.3. Let N be proper generic submanifold of a complex-space-
form M(e). If VF=0 , then c=0.

PROOF. If VF=0, then, by Lemma 2.8 and Lemma 3.1, we have (3.11).
Moreover, Lemma 2.8 also gives Ap X = 0 and VX(PZ) =2, for X in & and
Zin# . Thus (3.11) gives cl|7z||°=0. Since FZ#0, c¢=0.

EXAMPLE 3.1. Let ¥ be a complex submanifold of the complex number
space c” and vt any p-dimensional purely real submanifold of ¢P. Then the
Riemannian product space wr % NJ‘ is a generic submanifold of c”'P

satisfying VP=0 and VF=O0.

THEOREM 3.4. Let N be proper generic submanifold of a complex-space-
form fjﬁp(c). If VP=0, c=0.

PROOF. Because dj_TnCZ'7h+p (e) = dimc H+ dimR %‘L, Lemma 2.6 implies
that 4,,X=0 for X€X and Ze & and # is integrable. If c#0, (3.11)
gives FH#={0}. This shows that & is not proper.

§4. GENERIC PRODUCTS
A real submanifold ¥ of a Kaehler manifold ¥ is called a generic product
if it is locally the Riemannian product of a complex submanifold i and a

purely real submanifold IVl of M.

Examples of generic product in ¢™ have been given in Example 3.1. In

the following we give examples of generic product in cP".

EXAMPLE 4.1. Let cFP" be the complex m-dimensional complex projective
space of constant holomorphic sectional curvature 4. The Segre imbedding
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Shp

is defined by (zo, see ,zh) (mo, cee ,mp) —*(zowo, o ,ziwj, ce ,zhwp) , where
(zi) and (wj) are the homogeneous coordinates for ceh and PP , respectively.
It is easy to see that Sh is a non-totally geodesic Kaehler imbedding such

that each component is totally geodesic in cPPPTP et vl be any p-dimen-

sional purely real submanifold of cF’. Then ¢ xyt isa non-totally

Fep+hp in which CPh is imbedded as a totally

geodesic generic product in CP
h+p+hp

geodesic complex submanifold in CP

DEFINITION 4.1. A generic product v=wxyl ina cP" is called a standard
generic product in CP" if (1) ¥ lies in a totally geodesic complex submanifold
CPh+p+hp of ¢P" and (2) v is irmersed in cZ" as a totally geodesic complex

submanifold.

LEMMA 4.1. If N is a generic product of a Kaehler manifold M, then @9
Ay X=0 and (2) (VP)2=0 for X in 3 and 2 in 7

This follows from Proposition 2.4, Proposition 2.5, and (3.12).

For a Kaehler manifold ¥, the holomorphic bisectional curvature Hy of M

is defined by
(4.1) I?B(X,y) =R(X,JX;JY,Y)

for orthonomal vectors X,Y tangent to .

PROPOSITION 4.2. If N is a generic product of a Kaehler manifold 1~4,

then, for unit vectors X in ¥ and 7 in %i, we have

(4.2)  Fyx,2)=2]nx, )2

PROOF. 1If ¥ is a generic product, (3.8) holds. On the other hand,
Proposition 2.2 and (3.1) give, for x € # , ZG%L,

(4.3) <DXh(JX,Z) - DJXh(X,Z) ,FZ> = <h(X,2) ,VJXFZ> - <h(JX,2),V,Fz>
=<h(X,2),Jh(JX,2)> - <a(X,2) ,h(JX,P2)> - <h(JX,Z) ,Jh(X,2)>
+<h(JX,2) ,h(X,PZ)>

=2||n(x,2) |2+ 2<7n(x,2) ,h(X,P2)> .
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By the equation of Gauss and (3.1) we also have

(4.4) R(X,JX;2,P2) = R(X,JX;2,PZ) - 2<Jh(X,2) ,h(X,PZ)> .

Combining (3.8), (4.3) and (4.4) we obtain

(4.5) H_(x,2) = R(X,JX;PZ,2) + 2||n(x,2) || %+ ||v.2z]| 2 - ||Pv 2| ° - |4, x]|?
- p02) = RULIXPZ, : 7 22I1° - Mg,

for unit vectors x€ H and Ze€ %i Now, by Lemma 4.1, this gives

112

Hy(X,2) = R(X,JX;P2,2) + 2||n(x,2) ]

Since N is the Riemannian product of w7 and yt , R(x,Jx;Pz,2) =0 This gives
(4.2).

By using Proposition 4.2 we obtain the following.

THEOREM 4.3. Let M be any Kaehler manifold with negative holomorphic
bisectional curvature. Then M admits no proper generic products. In

particular, the complex hyperbolic space admits no proper generic products.

THEOREM 4.4. Every complete, l-comnected, generic product in c™ is the
Riemannian product of a complex submanifold of a CN and a purely real sub-

manifold of a c™ .

This theorem simply follows from Proposition 4.2 and a result of Moore
(1971).

THEOREM 4.5. ILet N be a generic product of CF".  Then
(4.6) m>h+p+hp.
If m=h+p+hp, then N is a standard generic product.
PROOF. From Proposition 4.2 we have, for unit Xe %, Ze %i s
4.7) |n(x,2)]| =1.
Thus by linearity we obtain
(4.8) <h(xi,z),h(xj,z)>=0, i#d,

where Xl’ .. ’X2h and Zl" .. ,Zp are orthonormal bases for % and %L respective-



ly If p=1, then Lemma 4.1, (4.7) and (4.8) imply (4.6).

If p>2, then by applying linearity to (4.8) and using the equation of
Gauss, we see that {h(Xi,ZOL) | ©=1,+++,2h; a=1,-++,p} forms an orthonormal
basis for v. Thus (4.6) follows.

Now, assume that ¥ is a generic product of CFP" with m=h+p+hp.

Then, for vectors X,y in % and z in %, (3.9) and the equation of Gauss

give
(4.9) <h(X,Y) ,h(JX,2)>=<n(X,2) ,h(JX,Y)>.
On the other hand, Propositions 2.2 and 4.2 imply
<h(X,2) ,h(JX,Y)>= <u(X,2) ,Jh(X,¥)>
= -<Jh(X,2) ,h(X,Y)>= -<Jh(X,2) ,Jfh(X,¥)>
= -<h(JX,2) ,h(X,Y)>.
Combining this with (4.9) we get
(4.10) 0=<n(x,2) ,h(Jx,7)>=<h(X,2) ,h(X,JY)>
for X,y in # and z in #'% Thus by linearity we find
<h(X,2) ,h(Y,W)>+ <h(Y,2) ,h(X,W)>=0
for x,7,W in # and Z in 7 Hence, by equation of Gauss, we have
(4.11) <h(X,2) ,h(7,W)>=0
for x,Y,W in # and z in %’l. Because m=h+p+ hp, this gives
(4.12)  w#,H)sFH

Combining this with Lemma 4.1 we obtain n(%, %) =0. Since ar is totally
geodesic in py, wt s totally geodesic in ¢P". This proves the theorem.

By using Proposition 4.2 we may also prove the following.

THEOREM 4.6. Let N be a generic product of cP".  Then
(4.13)  [|n]|®> 4mp.

If the equality holds, locally, N is the Riemannian product of the totally
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geodesic complex submanifold CPh and a totally geodesic totally real sub-

manifold RPh of cP". Moreover, the immersion is rigid.

By a totally real submanifold N of a Kaehler manifold M we mean a purely
real submanifold with Jy“/lg T‘LlJ. (see, Chen and Ogiue (1974a))
For general results of complex submanifolds see Ogiue (1974).

§5. APPLICATION TO COMPLEX GEOMETRY
By using Theorem 4.5 we obtain easily the following converse theorem to

Segre imbedding.

THEOREM 5.1. Let M=Ml><M2 be the Riemannian product of two Kaehler
manifolds with dimCM1= h and dimCM2=p. Then

(1) M admits no Kaehler immersion into CP. for any m<h+p+hp, and

(2) If M admits a Kaehler irmersion into CPh+p+hp, then we have

(2.1) M1 and M2 are open submanifolds of CPh and CPp, respectively,
and

(2.2) the Kaehler immersion is given by the Segre imbedding.

PROOF. Let N% be any p-dimensional purely real submanifold of M, (Such

submanifolds exist extensively). We put N= M, x N2L . If M=M xM, admits a

Kaehler immersion into c¢F", then m¥= MlXNé“C M, xM,C cP" is a generic
product in €P". Thus, by Theorem 4.5 we obtain m>h+p+hp.

If M admits a Kaehler immersion into CPh+p+hp, then N=M1>< 1\72i is a
htpthp . Thus, by Theorem 4.5, My is a totally geodesic
h+p+hp. Hence M is an open submanifold of CPh.
By applying the same argument to #,, we conclude that M, is an open sub-
manifold of CFP. Therefore, statement (2) follows from the Calabi local

Tigid theorem of Kaehler immersion. (Q.E.D.)

generic product in CP
complex submanifold of cCP

REMARK 5.1. Let M; by any complex hypersurface of cP™ L. Then M711 x cpP
admits a Kaehler imbedding into ¢p""2P*AP*1,
statement (2.1) of Theorem 5.1, the assumption on the dimension is necessary.

Hence, in order to conclude

REMARK 5.2. Further applications of the theory of generic submanifolds
will be given in Chapters V and VI.
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Chapter V: CR-SUBMANIFOLDS OF KAEHLER MANIFOLDS

The main purpose of this chapter is to summarize some results obtained
in Chen (1978a) and Chen (1980d). For the details and further results, see

these two papers and furthcoming part of this series.

§1. INTEGRABILITY, MINIMALITY AND COHOMOLOGY.

A generic submanifold ¥ of an almost Hermitian manifold ¥ is called a
CR-sukmanifold if its purely real distributionyfj'is totally real, i.e.,
J%;CL < T;;L N, xelN. This notion was first introduced in Bejancu (1978). It
has been proved in Blair and Chen (1979) that every CR-submanifold is a Cr-
manifold in the sense of Andreotti and Hill (1972). It is clear that every
generic submanifold with dim R;{/= 1 1is a CR-submanifold. However, if
dim Rﬁf" > 1, generic submanifolds are not necessary CR-submanifolds.

We shall use the same notations given in previous chapters. Throughout
this chapter, ¥ is assumed to be a (r-submanifold of a Kaehler manifold ¥

unless mentioned otherwise.

LEMMA 1.1. For vector fields X is %, 72 , ¥ in # 1, £ in v, and U in
TN, we have

1.1 <VUZ, x> = <JAJZU, x>,

(1.2) A W=4_7, and
.3 = - .

1.3 AJEX AEJX

This follows from the indentities, JV 2+ Jh(U,2) = -A;,U* D2 and
<h(JX,Y),E>= <VYJX, £>=<Jh(X,Y),&>.

For a CR-submanifold W, P%L= {0}. Thus, from Proposition W, 2.3 (i.e.,
Proposition 2.3 of Chapter V) and Lemma 1.1, we obtain the following fun-

damental result for CR-submanifolds.

THEOREM 1.2. The totally real distribution -t of a CR-submanifold of

a Kaehler manifold is always integrable.

This theorem was generalized to CR-submanifolds in a locally conformal
almost Kaehler manifold by Blair and Chen (1979). Moreover, in Blair and
Chen (1979), they have constructed CrR-submanifolds in some Hermitian manifolds

|

in which %~ is not integrable.
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By using (1.1) and Proposition WV, 2.5, we find

PROPOSITION 1.3. For a CR-submanifold N of a Kaehler manifold M, the
leaves of %‘L are totally geodesic in N if and only if <h(y/,yfj‘),JZA>= {0}.

This proposition can also be found in Bejancu, Kon and Yano (1980).

Moreover, we have the following.

LEMA 1.4. If%F is integrable and leaves of H#~+ are totally geodesic
in N, then for any Xe X and § eJ%i, we have

(1.4) AEJX= —-JAEX.

Let @ be a differentiable distribution on a Riemannian manifold ~.

We put
(1.9 Ry = @0t

for any vector fields X,Y in %, where (V},_Y)i is the comnonent of VXY in the
orthogonal complementary distribution @1 of £. Then % is a well-defined
2 -Valued tensor of type (0,2). From the Frobenius theorem, we have

LEMMA 1.5. The distribution @ is integrable if and only if f is

symmetric on PxD.

Let Xl’ X be an orthonormal basis of . We put

(1.6) A=

*s]»—-

-
trace 2—-;— %}n(xi,xi).

0 0
Then # is a well-defined vector field on ¥ (up to sign). We call # the mean-
curvature vector of @. If ]3= 0, @2 is called a minimal distribution. If
0
h=0, 2 1is called a totally geodesic distribution.

THEOREM 1.6. If N is a CR-submanifold of a Kaehler manifold M, then
(a) the holomorphic distribution g¢ is always minimal and
(b) g is totally geodesic if and only if H is integrable and its

leaves are totally geodesic in .

PROOF. For any vector fields X in g and 2 in ;Z/"‘L, Lemma 1.1 gives

1.7 =
(1.7) <LV X> = <A X, K>
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Thus we find

(1.8) <z,vJ X>=-<AJZX,JX>.

From (1.7) and (1.8) we get <VXX+ VJ;{IX: Zz>=0. This implies (a). Statement
(b) follows from (1.5) and Lemma 1.5. (Q.E.D.)

For a CR-submanifold ¥ of a Kaehler manifold ¥, we choose
el,---,eh,Jel,---,Jeh an orthonormal local frame of /‘Z" We let ) )
wl,---,mh,---,m% be the 2k 1-forms on ¥ satisfying @' (2)=0 and w*(e.) =&"
for ,5=1,+++,2h and Z in%L, where eh+j=’]ej' Then J J

(1.9) m=mlA---Am2h

defines a 2h-form on N. This form is a well-defined global form on ¥ since %
is orientable. It has been proved (see, for example, Tachibana 1973) that
this form is closed if # is minimal and its orthogonal complemental distribu-
tion # * is integrable. In our case, Theorems 1.2 and 1.6 say that these

conditions hold, automatically. Thus we have the following

THEOREM 1.7. For each closed CR-submanifold N of a Kaehler manifold M,

there is a canonical deRham cohomology class given by
- 2) - 3:
(1.10) eM) = [w]e BV (W; R), h—dl:nc%.
Moreover, this cohomology class is nontrivial if H 1is integrable and

%Lis minimal.

The last statement follows from the fact that if # is integrable and
# Lis minimal, the form @ is harmonic. (see, e.g., Tachibana 1973). By

using Theorem 1.7 we have the following

THEOREM 1.8. Let N be a closed CR-submanifold of a Kaehler manifold M.
If

(1.11)  #%w;Rr)=0

for some k;dim(:%. Then either # is not integrable or ?/“L is not

minimal.

PROOF. We choose a local field of orthonormal frame €15t sep58p s

.. . - in M i t i
’eh+p’eh+p+l’ ,em,Jel} ,Jem in # in such a way that, restricted to
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1 *
wl,---,wm,wl*,---,wm the dual frame of e ,-*+,e ,Je_,+++,Je_. We put
4 4 4% 2 2 ¥ 1 m o m 4 —4”
8" =w"+/ 1" and ' =« -LT &, A=1,-+-,m. Restricting 6 s and 6~ s
to N, we have 6%=8%=4* for a=h+ l,-++,h+p, and 6"=8"=0 for
r=h+p+1,-++m. The fundamental form Q of ¥ is given by §~2=—'/:2]-'-26AA5A.

hoo. .
Thus the induced fundamental form Q= i*fz=€}— N 6“A8%. From this we find
i=1 -

. . 1
N, e, ,eh,Jel, ’Jeh are in g and > ’eh+p are in # . We denote by

that the cononical class ¢(¥) and the fundamental class [Q] of ¥ satisfy
1.12) @)= DPmnew.

If # is integrable and the leaves of #~ are minimal in ¥, Theorem 1.7 and
(1.12) imply 2K R) #0 for k=1,2,-++,h. (Q.E.D.)

In Chen and Ogiue (1974a) the following result is proved.

PROPOSITION 1.9. 4 submanifold N of a complex-space-form M(e), c#0, is
a complex submanifold or a totally real submanifold if and only if
R(X,Y)TNCTN for X,Y in TN.

For CR-submanifolds we have the following.

PROPOSITION 1.10 (Blair and Chen, 1979). A generic submanifold N of a
complex-space-form HM(e), ¢#0, is a CR-submanifold if and only if

R0t N = (0).

This proposition follows from formula (I, 3.9).

§2. CR-PRODUCTS OF KAEHLER MANIFOLDS

DEFINITION 2.1. A CR-submanifold of a Kaehler manifold is called a CR-

product if it is a generic product.

PROPOSITION 2.1. A CR-submarifold of a Kaehler manifold is a CR-product
if and only if P is parallel, i.e., VP=0.

PROOF. If VPzO0, equation (V. 2.2) yields

(2.1) th(U,v) = -AFVZ/.



In particular, if X € #, then FX=0. Thus we have

(2.2) A,X=0

for any X€# and zea* Therefore, by Proposition V. 2.2 and 1.3, #is
integrable and each leaf vt of ‘i/i is totally geodesic in N. Let v denote
the leaf of 5. Then for X,Ye# and Zz €%, (2.2) and Lemma 1.1 give

0= <AJZY, X>= <VYZ,JX> =<7, VYJX>.

From this we conclude that N is a CR-product of .

Conversely, if N is a CR-product, we have VUYE;"?’ for Ye# and Ue€7TN.
Thus, we may obtain Jh(U,Y) =h(U,JY). From this we may prove (VUP)Y= 0.
Similarly, from V2 e#L for ze %‘L, we may obtain (v, P)Z=0.

Bejancu informed me that he also obtained this proposition independently.
In Bejancu, Kon and Yano (1980), they proved that if VP=0 and ¥ is anti-
holomorphic, then ¥ is a CR-product. By an anti-holomorphic submanifold, we
mean a CR-submanifold with J}’/AL =rly.

By using Proposition IV, 4.2 and Theorem LV, 4.6, we have

PROPOSITION 2.2. If N is a minimal CR-vreduct of CPm, then the scalar

curvature r of N satisfies

(2.3) r<dn®+an+p®op .

The equality holds if and only if (a) N lies in a totally geodesic cpPrhp

of C€F", (b) locally, N is the Riemannian product of a totally geodesic,
complex submanifold CPh and a totally geodesic, totally real submanifold
RP and (¢) the immersion in induced from the Segre imbedding.

PROOF. Since ¥ is a minimal ¢R-product, the Ricci tensor § of ¥ satisfies

s(,0 = @+ p+ D217 - S la 11, xe g,
r r
sz,2)=2h+p-1- 3 4 2]|% ze,
P r

from these we obtain =4+ 4k +p°-p - ||n||2+4np. Thus the proposition
follows from Theorem IV, 4.6. (Q.E.D.)
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PROPOSITION 2.3. Let N be a CR-product of a non-positively curved
Kaehler manifold M. If N is anti-holomorphic, then

(a) the Ricei temsors of M and W satisfy

(2.4) 5(x,Y) =ST(X,Y) for X,Y tangent to v and

(») IVT is totally geodesic in M

PROOF. Under the hypothesis, Proposition V. 4.2 implies
kK(x,2) =k(x,72) = ||n(x,2)|| =0 for Xxe€ % and ze# L, where ¥ denotes the
the sectional curvature of M. On the other hand,since ¥ is anti-holomorphic
and a CR-product, (2.2) gives h(%,%)=0. Thus W is totally geodesic in
M. From this we find X(X,Y) =KT(X,Y) for Xx,Y ern’. Since K(x,2)=K(x,J2)=0,
we have (2.4). (Q.E.D.)

By using Proposition 2.3 and an argument which we used in Chen (1978b),

we may prove the following.

THEOREM 2.4. Let M be a Herritian symmetric space of non-compact type
and N a complete CR-product in M. If N is anti-holomorphic, then
(1 NT 18 a Hermitian symmetric space of non-compact type,
(2) there is a Hermitian symmetric space ml of non-compact type such
that
(2.1) M is the Riemannian product of W and M1 and
(2.2) 1\7-]' 18 a totally real submanifold of ML,

THEOREM 2.5. Let N be a proper CR-product of an irreducible Hermition

symmetric space of non-compact type. Then N is not anti-holomorphic.

REMARK 2.1. The rank 2 non-compact irreducible Hermitian symmetric
space SU(Z,m)/S(U2>< Um) admits a proper Cz-product ¥ for any A= dmc%
satisfying O0<h<m.

For the tangent-bundle-valued 1-form ¢ defined in (W, 1.3) if we put,
for vector fields v in 7W and £ in TiN,

(2.5 (7,E=V,(8) - D,

then we have (VUt)£=Af£U—PA£U . Therefore, v¢=0 if and only if for any

vector fields v,V in 7W and £ in TJ-N, we have
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DAWXZ) - D h(x,2),02> = -2[[n(x,2) ||

by using a similar argument as given in (¥, 4.3). Thus we obtain (3.1).

This lemma was also obtained by F. Urbana in 1980 independently. As an

application of this lemma we obtain

THEOREM 3.2. Let N be a CR-submanifold of CP'. If S is integrable
and the leaves of XL are totally geodesic in N, then m>2h+p.

PROOF. From (3.1) we have ||A(X, Z)H2=1+HAJZXH2 for unit vectors Xe ¥

and 7 € ,%/”’i. Thus, for orthonormal basis X_,***,X

1 o of %, we have

(3.2) <h(Xi’Z)’h(Xj’Z)>=<AJZX7j’AJZXj> T1#4.

For a given Z in i, let Yl"“jeh be the eigenvectors of 4,,. Then
(3.2) gives <h(7i,z),h(3(_j,z)>=0, 1#4. Since ||n(X,2)]|>1 and
<h(X,2),J%1t>=0, we obtain the theorem.

DEFINITION 3.1. A CR-submanifold ¥ of a Kaehler manifold ¥ is said to
be mized foliate if (1) % is integrable and (2) N is mixed totally geodesic,
ie., wgH#H= 0.

PROPOSITION 3.3. Let N be ¢ mixed foliate CR-submanifold of a Kaehler
manifold M. For unit vectors X € %, 7 Gf/l , we have

(3.3)  HEy(x,2) =-2]la X%

This proposition follows immediately from Lemma 3.1. From this we obtain

the following.

THEOREM 3.4. If M is a Kaerler manifold of positive holomorphic bisec-

tional curvature, then M admits ro mized foliate proper CR-submanifolds.
From this we obtain immediately the following.

COROLLARY 3.5 (Bejancu, Kon and Yano 1980). CcP" admits no mized foliate
proper CR-submanifolds.

REMARK 3.1. The geodesic sphere G, (p) of cP" is a mixed totally geodesic



49

CR-hypersurface, but its holomorphic distribution 5 is not integrable.

THEOREM 3.6. A CR-submanifold of c™ is mized foliate if and only
if it is a CR-product.

This theorem follows from Proposition 3.3 and Theorem 2.1. For mixed
foliate CR-submanifolds in a complex hyperbolic space Hm=ﬂ”(-4), we have
the following.

THEOREM 3.7. If N is a mized foliate prover CR-submanifold of Hm, then

(a) each leaf IVT of ## lies in a complex (h+p)-dimensional totally
geodesic complex submanifold Hh+p of o 5

(b) each leaf NT 18 an Einstein-Kaehler submanifold of Hh+p with Ricel
tensor given by s = -2(h+p+1)g,

() h+1>p>2;h>2,

(d) the leaves of 2L ave totally geodesic in N, and

(e) dimR N>6.

For the proof of this theorem, see Chen (1980d). For Hermitian symmetric

spaces of compact type we have the following.

THEOREM 3.8. TLet N be a mixed foliate CR-submanifold of a Hermitian
symmetric space of compact type. Then

(1) ¥ Zs a CR-product, and

(2) X(X,2) =K(X,J2) =0 for unit X€H and 7 € st

This theorem follows from Proposition 3.3. The compact irreducible
Hermitian symmetric space SU(2+m)/S(U2 x Um) admits a mixed foliate CR-
submanifold for any %, 0<kh<m. From Theorem 3.8 we may also obtain the

following.

THEOREM 3.9. Let N be a complete mixed foliate anti-holomorphic sub-
manifold of a Hermitian symmetric space M of compact type. Then =T xud
where W' and ' are Hermitian symmetric spaces of compact type. Moreover
v=ntxvL where vl zies in ul as a totally real submanifold.

DEFINITION 3.2. A CR-submanifold N of a complex-space-form M(e) is
said to have semi-flat normal connection if its normal curvature tensor R

satisfies
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4.1) A, ve,m) = L <K, PY><IE, >

for vectors X,Y in TV and £,n in =y
For such submanifolds we have the following classification theorem.
For its proof, see Chen (1980d).

THEOREM 3.10. A CR-submanifcld N of a complex-space-form W(c), e#0,
has semi-flat normal comnection iF and only if N is ome of the following
submanifolds:

(1) a totally geodesic complex submanifold of e,

(2) a flat totally real submanifold of a totally geodesic submanifold
() of H'(e),

(3) a proper anti-holomorphic submanifold with flat normal comnection
in a totally geodesic complex subriznifold ITIh+p(c) of f/n(c),

(4) a space of positive constant sectional curvature immersed in a
totally geodesic complex submanifcld W+l(c) of ") as a totally real sub-

manifold with flat normal connection.

Combining Proposition 2.6 and Lemma 3.1 we obtain immediately the follow-

ing.

PROPOSITION 3.11. For any CE-submanifold N of any Kaehler manifold
fl, if VP20, ve have A (#7) = 0}

§4. STABILITY OF TOTALLY REAL SUBMANIFOLDS

Let N be a p-dimensional closed totally real minimal submanifold of a
complex p-dimensional Kaehler manifold M. Then, for any normal vector field
u along N, we consider the normal variation of ¥ in ¥ induced from u. By

Theorem I1,4.1, we have

YN

r . 1 12
kei.’uau:ei) - HAMII }dV_,

- ( 112 <H

(4.1) ¥ 7 (u) =J {hDuh - Z
N =1

where e, "se is an orthonormal frame of 7W.

Since § is totally real in M with the smallest possible codimension,

there is a tangent vector field x of & such that Jx=u. Using Vs=0, we

have

(4.2) D JX=Jv X.
Y Y
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On the other hand, by the equation of Gauss, we find
(4.3) EJR(ei,u;u,ei) = EB.R(Jei,X;X,Jei)
=5(X,X%) - ZR(ei,X‘,X,ei)
— o " 2
S(x,0) -5(X,0 - 3 ihxe )"

Moreover, from (1.2) of Lemma 1.1, we have HAu[12==§E{]h(ei,X)[]2. Thus
(4.1), (4.2) and (4.3) imply

(4.4) V”(u)=[ {\vane-écx,x) +S(x,X%)}47.
i
We put

W=V X+ (div X)X,

where div X denotes the divergence of X. Let & be the 1-form associated with
X. Then, by computing the divergence of W, we get (see, for example, Yano
and Bochner (1953))

(4.5) o=f (div W)dV=J 5060 + [[9x012 - - laz P - (58)Phav.
N N
Combining (4.4) and (4.5) we obtain
e v [ o1 2 2 . .
(4.6 vt - | lael®s 92500107
M

If the Kaehler manifold M has positive Ricci tensor S and Hl(N,It)% 0,
then there is a harmonic 1-form 8 on ¥, Thus dR=68=0. Let u=JY, where ¥
is the vector field on ¥ associated with 8. Then, for this normal vector
field u, we have ¥ ™(u) <0. Thus, ¥ is unstable.

If the Ricci tensor S of ¥ is nonpositive, then (4.6) shows that
¥ (w) >0 for any normal vector field on ¥. Therefore, ¥ is always stable.
Consequently, we have the following result.

THEOREM 4.1 (Chen, Leung, and Nagano 1980). rLet N be a closed, totally
real, minimal submanifold of ‘a Kaehler manifold M with dimp N=dim .M.

(1) If M has positive Ricei tensor and Hl(ﬂ;}i)# 0, then N is unstable,
and

(2) If M has nonpositive Ricei tensor, then N is stable.

There exist many totally real submanifolds. In fact, we have the follow-

ing.
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THEOREM 4.2 (Chen and Nagano 1978). Let B be a totally geodesic sub-
manifold of a locally Hermitian symmetric space. If B is irreducible and

non-Hermitian, then B is totally real.

REMARK 4.1. In Chen, Leung and Nagano (1980) a general method to determine
stability of totally geodesic submanifolds of symmetric spaces is established
by using representation theory. Moreover, they have used this method to
determine stability of the basic totally geodesic submanifolds M, M_of the

next chapter.
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Chapter VI: (M., M_)-METHOD AND ITS APPLICATIONS

In this chapter we will briefly discuss the (¥, ,# )-method of Chen and
Nagano (1978) and indicate some of its applications. Results obtained in
this chapter are joint works with Professor Tadashi Nagano unless mentioned
otherwise. For the details, please refer to Chen and Nagano (1977, 1978)

and forthcoming parts of this series.

§1. TOTALLY GEODESIC SUBMANIFOLDS AND (M, ,_)-METHOD

A submanifold B of a Riemannian manifold ¥ is a totally geodesic sub-
manifold if its second fundamental form vanishes. It is well-known that B
is totally geodesic in M if and only if geodesics of B are geodesics of M.
In other words, B is totally geodesic in » if and only if bridges and
tunnels are not need if one wants to travel in shortest way between any two

nearby points in B. The following problems are fundamental.

PROBLEM 1.1. For a given Riemannian manifold u, find all totally

geodesic submanifolds of M.

PROBLEM 1.2. Give two Riemannian manifolds, when there is a totally

geodesic immersion from one into the other?

PROBLEM 1.3. Suppose the space we live is the ordinary n-sphere g".
When our space §” can be realized in a Riemannian manifold M as a totally

geodesic submanifold?

It is known for a longtime that totally geodesic submanifolds of E"
and §" are linear subspaces and great spheres, respectively. It is somewhat
surprising that totally geodesic submanifolds of all rank one symmetric spaces
are not classified until 1963 by Wolf.

Concerning Problem 1.1 for symmetric spaces of higher rank, Chen and Lue
(1975) classified totally geodesic surfaces of the complex quadric
Qﬂ=.§0(m4-2)/30(2)><So(m). The complete classification of totally geodesic
submanifolds of g, was done in Chen and Nagano (1977). However the methods
used in the works of Wolf (1963), Chen and Lue (1975), and Chen and Nagano
(1977) are not unified and difficult. So, we introduced the (#, ,M_)-method
to solve Problems 1.1, 1.2, and 1.3. However, due to the simplicity of this
method, we may also apply this new method to solve some other problems in
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mathematics.

§2. GENERAL THEORY
An isometry s of a Riemannian manifold is called involutive if its

iterate s°=g-s is the identity map. A Riemannian manifold M is called
a symmetric space if, for each point g of M, there exists an involutive
isometry s of M such that g is an isolated fixed point of Sq' We call
such s the symmetry of M at q. We denote by G, or simply G the closure
of the group of isometries generated by {sa]q eM} in the compact-open
topology. Then G is a Lie group which acts transitively on the symmetric
space M; hence the typical isotropy subgroup #, say at 0, is compact and
M=G/H. (For the general theory of symmetric spaces, see Kobayashi and
Nomizu (1963, vol.Il ) and Helgason (1978)).

For each closed smooth geodesic of a compact symmetric space M, a
eirele for short, ¢ through 0, we consider the antipodal point p of 0 on
c. We denote by M, (p) the orbit H(p). We have the following.

LEMMA 2.1. M, (p) Zs a totally geodesic submanifold of the symmetric
space M= G/H.

LEMMA 2.2  The normal space TpJ‘M+ (p) of M (p) at p in M Ts the tangent
space of a complete comnected totally geodesic submanifold M_(p).

It is well-known that every complete totally geodesic submanifold of a
symmetric space is a symmetric space. For a symmetric space M the dimension
of a maximal flat totally geodesic submanifold of ¥ is called the rank of M,
denoted by rk M. From the equation of Gauss, it follows that rk B<rk M
if B is totally geodesic in M.

LEMVA 2.3. The symmetric space M _(p) has the same rank as M.
LEMMA 2.4. ¥, (p) =H(p) 1is connected.

For each point p in M, we denote by o, the involution of G which
corresponds to s, i.e., o_(g) =spgs_l . Then °, leaves H invariat. Let [
and g denote the Lie algebras of F and G, respectively. Then it is known
that ) is the eigenspace with eigenvalue 1 of the involutive automorphism

6: 8 —f induced from g, G—GC. Let m denote the eigenspace of o with



eigenvalue -1. Then we have g = b + m, called the Cartan decomposition,

Moreover, m can be regarded as the tangent space of M at o.

THEOREM 2.5. Let O be a point Ffixed by H in a compact symmetric space
M=G/H. Then

(1) the fixed point set F(sy,M) = {qgeM|s(q) =q)} less O is the set of
all points p which are antipodal points of the circles passing through O,

(i1) to each such point p there corresponds an inner involutive auto-
morphism ad(b)#1 of G, b€ HNexp m such that

(ii-a) M+(p) =H(p) 1is a covering space of HfF(ad(b),H),

(ii-b) M_(p), the connected component containing p of F(b,M), is locally
isometric with F(ad(b),G)/F(ad(b),H) and

(ii-c) the tangent spaces to the totally geodesic submanifolds M, (p)
and M_(p) at p are the orthogonal complements of each others in TbM and
finally,

(iii) as to the ranks, one has rk M_(p) =rk M and if H is connected,

rk F(ad(b),H) =1k H.

Given a pair of antipodal points (0,p) on a circle in a compact symmetric

space ¥, we have the system (0,p,, (p),4_(p)) as considered above. The

isometry group G=4, acts on the set of all such systems in the natural

M
fashion. We denote the orbit set by P(¥). Then P(¥) is a finite set and
the cardinal number #P(M) of P(M) gives us a global invariant. This rumber
gives us many information about # and it plays an important réle in the

theory of symmetric spaces.

THEOREM 2.6. For a compact symmetric space M we have

rk M

(2.1) #P(M) < 2 1.

If, in addition, M is irreducible, we have

(2.2)  #P(M) <rkM,

A Riemannian manifold M is called a two-point homogeneous space if for
any two pairs of points (p,q) and (p”,q”) of M with the same distance, there
is an isometry of M which carries one pair into the other. It is known that
two-point homogeneous spaces are E" or rank one symmetric spaces (Wang 1952;
Tits 1955). It follows from Theorem 2.6 the following.
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COROLLARY 2.7. An irreducible compact symmetric space M is a two-point

homogeneous space if and only if #P(M) = ZrkM— 1.

For a compact symmetric space M of rank one, any two pairs of antipodal
points have the same distance and, moreover, there is an isometry of M which
carries one pair into the other. In the following we call a compact Riemannian
manifold ¥ an equal-antipodal-pair space if any two pairs of antipodal points
have the same property. A compact symmetric space M is an equal-antipodal-

pair space if and only if #P(M) =1.
We have the following result for equal-antipodal pair spaces.

PROPOSITION 2.8. A compact symmetric space M is an equal-antipodal-pair
space if and only if M is either a rank one symmetric space or one of the
following spaces Gg, GI, and EV .

Any isometric totally geodesic imbedding f :B—¥ gives rise to a mapping
P(f) : P(B)—P(M) induced by the mapping carring (o,p,B+ (p),B_(p)) into
(r(a),f(p), M+(f(p)),M_ (f(®))). 2(f is well-defined since every isometry ¢
in Gp "extends' to an isometry ¢~ in Gy SO that we have f+¢=¢"-f. It is easy
to see from Theorem 2.5 that f(B+(p))CM+(f(p)) and f(B_(p))CM (f(p)) as
totally geodesic submanifolds. The later one follows from (ii-c). Since
this is an important fact, we express it by saying that P(f) is a pairwise
totally geodesic immersion. We record this as the next Theorem.

THEOREM 2.9. Every isometric totally geodesic imbedding f :B——M of
a compact symmetric space into another induces a pairwise totally geodesic

immerstion P(f) : P(B)— P(M).
We also have the following Theorems.

THEOREM 2.10. If a totally ceodesic submanifold B of a compact symmetric
space M has the same rank as M, tren

(1) P(f) : P(B)—P(M) is suriective, where f is the inclusion. In
particular, we have #P(B) > #P(M),

(ii) the Weyl group W(B) of B is a subgroup of W(M), and

(1ii) <f the Weyl group W(B) is isomorphic with W(M) by the natural
homomorphism, then P(f) is bijective.



THEOREM 2.11. M <s globally determined by E(M), <.e., the set of the
global isomorphism classes of compact irreducible symmetric spaces is in

one-to-one correspondence with the set of the corresponding E(M).

It should be noted that the Satake diagram and the Dynkin diagram for
symmetric spaces do not distinguish symmetric spaces globally, for example,
in their diagrams the sphere 5" and the real projective space RE" have the
same diagram. However, P(Sn) and P(ltPn) are quite different as we seen in
Table V. For the Satake deagram and Dynkin diagram, see, for instances,
Araki (1962) and Helgason (1978).

In the following we will discuss how the set of the pairs (¥ _(p),¥_(p))
is related to the corresponding set of any other locally isometric space.
Thus we assume in addition that M=G/# 1is l-connected and G is the connect-
ed isometry group (which acts on ¥ effectively). Then ¥ is the identity
component of F(q),G). This g=0, can act on the adjoint group ad G=G/C,
where ¢ is the center of ¢. And we obtain another symmetric space

ad G/F(0,ad G), denoted by #* throughout. It is known that M* is
characterized by the property that every locally isometric space to M is
a covering Riemannian manifold of M*. Thus, there is a locally isometric
projection 7 : M——M*. Let c* be a circle in ¥* which passes through the
origin 0*=7(0). Let c be the 1ift of c* which starts at 0, then the
k-time extension ke of ¢ will be a circle if k denotes the order of the

homotopy class of e* in nl(M*). We have
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THEOREM 2.12. If k is even, the antipodal point q of 0 on ke is a fixed
p q

point of H so that (M, (q),M_(q))= ({g},M). If k is odd, q and the pair
(M+(q),M_(q)) project to the antipodal point p* and (Mf(p*), M*(p*)),
respectively.

PROPOSITION 2.13. M*(p*) cannot be a singleton {p*}.

By using Theorem 2.5 and Proposition 2.13 we have the following

THEOREM 2.14. Any symmetric space M of dimension >2 contains a totally

geodesic submanifold B satisfies

1

- dim M<dim B<din M.

This estimate is best possible because the maximal dimension of totally

geodesic submanifolds of the 16-dimensional Cayley plane FII is 8.
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§3. DETERMINATION OF THE PAIRS

We will determine P() in this section. In view of §2, we may assume
M=M*=qad G/F(ad sO,G) and G is simple. The results will be listed in Tables
I, I and I, in which only the local isomorphism classes of symmetric spaces
in each member [(0,p,#, (P),M_ (p))] of P(M) will be indicated. The classifica-
tion can be accomplished by means of Theorem 2.5 as principle. In practice,
additional use of known facts on symmetric spaces will be helpful. A tool
among others we used to find and crosschecked is the root system R(#) of w.
Theorem 2.5 tells us that one obtains those pairs in a similar way to the
algorithm of Borel and Siebenthal (1949) for finding the maximal subalgebras
of the same rank. Namely, one expresses the highest root as a linear combina-
tion Emiai of the simple roots a. Pick up the vertices in the extended
Dynkin diagram which correspond to m, = 2 or the vertices in the Dynkin
diagram which correspond to m, = 1. Then do as Borel-Siebenthal say. When
R(M) is not reduced, i.e., the diagram is of BC-type, one first removes every
root A such that 2) is also a root (this already gives us one pair), before
one applies the above method. The multiplicities of the roots are determined

in each case.

TABLE I

M M, M #P(M)
AnS”(n+1),n;1 | SWE)xUMn+1-k)) n
BnSO(2n+ 1),n>2 ‘ S0(k) x50(2n+1-k) n
cSp(m),n>3 5 U(n),Sp(k) x Sp(n - k) n
D,50(2n),n > 4 ’ M, =M/M_ | U(n),S0(2k) x SO(2n - 2Kk) n
E, Eg | SU(6) x SU(2),Spin(10) x T 2
E, B J SU(8),50(12) x SU(2),Egx T 3
Eg Eg | 50(16), E, x 5U(2) 2
F, F, , Spin(9),5p(3) x SU(2) 2
G, G, ; SU(2) x 5U(2) 1
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'b=d ozoym d=y x03 siared ay3 soe{dox prnoys aIoyy (y)

ATuo 4w uo
USAS = U Tmlu oV xZ ﬁ$u oV xJ
UDAS =
£ >3 >0 (¢ - ) 10a x () ma O =) o n/(uz)os () 1ma
(+) (v =z (d)ds
d b>d>y>o  (u-by-d)ox ) | M-bu)px(q-du)p (bed) 0 I
(W) 1V %I (W) IV x &
u T-u>%>0 Cr-®10x ()10 Cr-u) 0 Wn/Wds (W10
(%) (D1v>i (d)os
d b>dSu>0 | (y-by-dynx (uy)yn | (M-bu)ox (y-dyy b dyn  Iag
(+) (Dn (d)n
d b>d>y>0 | (u-by-d) ox () p | (4-bU) 9x(-duy) p (o mv
T-u [-u>%>0 Cr-w)ay x COIV x4 Ct-u™) 0 (Wds/(wg)ns (W) ov
T-u T-u>%>0 - G-I IV Ot -u™)y 9 (Wos/(Wns  (W)1v
(W) d# YIeuey n W

I dT4dvl
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TABLE II
M M, M Remark #P(M)

EI 2,2 (5,5 xT 2
CI(4) AT (6) x §°

FII 4,2 ¢ 6,4) 2
5°x66(3,3) 52 x¢%(3,3)

FII | DI(5) 52 % 6% (5,1) 2
¢ 8,2) d'(8,2)

EV FI 7x 57

BV ¢Ca,4) & (6,6) x 52
AT (4) T xEL ‘ on M* only
AT (8) AT (8) on M* only

Al (8,4 8,8 2
52 % DII (6) 5% % DI (6)

AT | BT s2x d'10,2) 2
TXENV Tx EN

I | G(8,8) s,8) 2
DTI (8) 52 x BV

EKX EV 2,4 2
5% x B\IT 52 x BT

7l 5° % ¢1(3) 5% % ¢1(3) 2
da,2) (5,4

FT s 8 1

61 5°x §° 5% x 52 1

For compact symmetric spaces of rand one by using the informations on

’ﬂ'l,

we have the following.

TABLE W
M l M, M
5" {a point} 5"
rE" rP" \ st
cP” co” | 52
i il : s*
F s 1 8
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§4. APPLICATIONS
I. APPLICATION TO TOTALLY GEODESIC SUBMANIFOLDS
For compact Lie groups, the following results gives a complete answer
to Problem 1.1.

THEOREM 4.1. Let M be a compact Lie group. Then the local isomor-
phism classes of totally geodesic submanifold of M are exactly those of

symmetric space B= GB/HB such that GB are subgroups of GM=M><M.

For a general compact symmetric space Y, 1f B is a complete totally
geodesic submanifold of ¥, Theorem 2.9 tells us that for any pair (8,,B.)
in P(B), there is a pair (M+,M_) in P(M) such that B, and B_ are totally
geodesic in M, and M_, respectively. By applying this argument to B, CM,,
B_CM ,***, and so on, we obtain a sequence of totally geodesic submanifolds
as follows which gives us a sequence of conditions for the original totally

geodesic imbedding;

6,), 1), =
—

B,CHM, T
/ &) ) ~— .....
BCM

\ B),co), =

/ T~ ...

B CM— .....
S~y cwy =

T .....

For example, by using Table ¥ and this argument to rank one symmetric
spaces, we obtain the following results of Wolf (1963) very easily.

THEOREM 4.2. The maximal totally geodesic submanifold of §* is Sn_l;
of RP' is RPn_l; of c? are ¢P' and R?n; of HP" are BP' and cr;
of FII are HP2 and 5‘8.

In Chen and Nagano (1978), such method was used to obtain the classica-
tion of totally geodesic submanifolds of symmetric spaces of higher rank.

Concerning Problem 1.2, Theorem 2.10 provides an easy method to solve
Problem 1.2 by using arithmetic or group theory. Just to give one simplest
example, from Theorem 2.10, we conclude immediately that the 8-dimensional
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rank two symmetric space GI= 62 /8U(2) x SU(2) cannot be isometrically
imbedded in any rank two Grassmann manifold M of any dimension as totally
geodesic submanifold. This important fact follows simply from the follow-
ing inequality: #P(GI)=1<2=#pP(M).

We would like to mention the following best possible result which
follows easily from the (M, ,_)-method. Using induction argument on

dimension and rank of B,, B_, M, and #_, we have

THEOREM 4.3. Let M be an irreducible symmetric space and B a totally
geodesic submanifold of M. Then

(4.1 codim B>rk M.

Concerning Problem 1.3, we may again use the (¥, ,M )-method to give

the following answer.

THEOREM 4.4. Let M be an irreducible symmetric space. Then an n-
sphere can be isometrically immersed in M as a totally geodesic submanifold

if and only if n<i, where X is the integer given in the following table.

TABLE V.
M A M
AT(n),n>3 n-1 EM
All(n), n =3,4,5,6 5,6,6,6 A1 10
n>6 n-1 EMVIT 8
“1,q) max(2,q) EX 12
Gc(p,q),Z;p;q max(4,q) FI 5
Fa,o q FII 8
'(p,0),22p>4q q I 2
cI(n),n>3 n-1 A, max(2,n)
.9 .p<a max(4,4) B ,m22 2
DI (n) ,n = 4,5,6 6 L Cn>3 max (4,7 - 1)
n>6 max (3,7 -1) ‘ D, ,n>4 2n-1
EI 5 B, 9
EI 6 E, 11
ETI 8 Eg 15
EV 9 B,
EV 7 G, 3
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Theorems 4.3 and 4.4 may have important impacts to the theory of submanifolds
of symmetric spaces. The simplest application is to obtain the following.

THEOREM 4.5. Every submanifold N with parallel second fundamental

form in an irreducible symmetric space M satisfies codim N > rk M.

This theorem follows immediately from Theorem 4.3, the equation of
Codazzi, and Lemma VI, 3.4. Another important application of Theorem 4.3
is to prove results of the following type.

THEOREM 4.6 (Chen and Verstraelen 1980). Spheres real and complex
projective spaces and their noncompact duals are the only Zrreducible

symmetric spaces in which one can find tubular hypersurfaces.

By a tubular hyperurface we mean a hypersurface ¥ on which the second
fundamental tensor has a constant eigenvalue of multiplicity >dim ¥-1.

Let N be a hypersurface of a Kaehler manifold M. Let £ be a unit
normal vector field of ¥ in # and n the 1-form on ¥ associated with J%.
Then ¥ is called an n-hypersurface of M if the second fundamental form % of
N has the form; k= (ag+bnen)t, for some functions ¢ and b on ¥. For n-
hypersurfaces of a Hermitlian symmetric space we have the following

THEOREM 4.7 (Chen and Verstraelen 1980). The following statements hold
(1) The only irreducible Hermitian symmetric spaces which admit n-
hypersurfaces are the complex projective spaces and their noncompact duals.
(2) 4 hypersurface of a complex projective space or its noncompact
dual of dimension >4 is an n-hypersurface if and only if it is a geodesic

hypersphere.

Since the curvature tensor of a general symmetric space is very difficult
to handle, the non-existence theorems of certain submanifolds are very
difficult to obtain by using the standard methods, e.g., by using the
fundamental equations. However, by applying the (M, ,M_)-method, if one
can obtain a conclusion about the existence of a totally geodesic submanifold
(or more general submanifold) of certain codimension, Theorem 4.3 (or Theorem
4.5 or Theorem VI, 3.7) will automatically reduce the class of ambient spaces
to a class of small ranks. This is the essential idea used in Chen and
Verstraelen (1980). For the proof of Theorems 4.6 and 4.7 and further
results in this direction, see Chen and Verstraelen (1980).
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More applications of Theorems 4.3 and 4.4 will be given in Application
I and ChapterVI.

II. APPLICATIONS TO LIE GROUPS

Since a closed subgroup of a compact Lie group M is a totally geodesic
submanifold of M, the (M+,M_)-method provides a new method to the theory of
Lie groups and their subgroups. We mention two applications in this direc-
tion. First, by using Theorem 4.3 we may determine the codimension of closed

subgroups as follows.

THEOREM 4.7. Let H be a closed subgroup of a compact simple Lie group
G. Then codim H>1k G.

Second, we may use the new global invariant #P(M) to distinguish

classical simple Lie groups and exceptional simple Lie groups.

II. APPLICATIONS TO TOPOLOGY AND OTHER SUBJECTS

It is well-known that many important global invariants, such as the
Hirzebruch index, Lefschetz number, and spectrum of the Laplace-Betrami
operator A, are closely related with the fixed point set of an isometry (see,
e.g., Atiyah and Singer (1968), Atiyah and Bott (1968), Donnelly (1976), and
Donnelly and Patodi (1977)).

For a symmetric space M, the simplest and most natural isometries are
symmetries. In fact, from Theorem 2.5, we know that the union of {0} and
the Ms is nothing but the fixed point set of s, on M. Since M]s are lower
dimensional manifolds and the M s of a compact symmetric space ¥ have been
completely determined, it is possible to apply the (¥ _,M_)-method to
determine some global invariants of M. For example, by applying a result
of Atiyah and Singer (1968), index for compact symmetric spaces can be
determined by using this new method in a unified and simpler way. For
some special symmetric spaces, index has been determined by various authors
by using various different and difficult methods. For GI and FII see
Borel and Hirzebruch (1958); for cP” see Atiyah and Singer (1968); for
¢ €(p,q) and ¢%(p,q) see Mong (1975) and also Connolly and Nagano (1977); and
for G'R(p,q) see Shanahan (1979).
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Chapter VII: TOTALLY UMBILICAL SUBMANIFOLDS

The main purpose of this chapter is to classify totally umbilical sub-
manifolds of a locally symmetric space. The results are obtained in a
series of papers given in Chen (1976a), (1977a,b,c), (1978a), (1979c,d,e)
and (1980e,f,g) unless mentioned otherwise.

§1. FIXED POINT SET AND TWISTED PRODUCTS

As we already defined in Chapter I, a totally wmbilical submanifold
N of a Rimannian manifold M is a submanifold whose first fundamental form
(i.e., the metric tensor) and second fundamental form are proportional.

An ordinary hypersphere 5 of an affine (n+1)-space 77 of B is the
best known example of totally umbilical submanifold. In fact, from
differential geometric point of views, totally umbilical submanifolds are
the simplest submanifolds next to totally geodesic submanifolds. In this
section we will give many examples of such submanifolds by using conformal
mappings and the twisted products.

For a Riemannian manifold # with metric tensor g, we denote by C(,q)
the group of conformal transformations of (¥,g) and by ¢, (M,g) the comnected
component of the identity. We denote by I(#,g) the group of isometries of
(M,g). According to Obata (1971), a subgroup G of C(¥,g) is called essential
if there is no function p >0 such that ¢ is a subgroup of I(M,g%), g*= pgg.

PROPOSITION 1.1. Let (M,g) be a compact Riemannian manifold and
o) GC’O(M,g). Then every connected component of the fimed point set F(¢,M) is
totally umbilical in M.

PROOF. This Proposition is trivial if the dimension of ¥ is <2. So

we may assume that dim M=m> 3.

If the group CO(M,g) is inessential, there is a conformal change of
metric given by g¥*= peg such that CO(M,g)CI(M,g*) . From Lemma 2.1 of
Chen and Nagano (1977), we see that every comnected component of F(¢,M) is
totally geodesic in (M,g*). In particular, it is totally umbilical in
(M,g*). Thus, by (II, 3.11), we see that each component of F(¢,M) is
totally umbilical in (#,g).

If ¢ (M,g) is essential, ¥ is conformally diffeomorphic to an ordinary
m-sphere (.Sm,go) with the standard metric 9o (Obata 1971). Thus, there is
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a conformal mapping f from (¥,g) into s" A ). For any ¢ in ‘ M,g) we
consider the conformal transformation ¢=7F - ¢ f on (Sm ’90 It is well-
known that each connected component of F(& ,.Sm ) is a totally umbilical sub-
manifold of (Sm,go) . Since F(¢,M) =f_l(F($,5m)) and f is conformal, each
connected component of F(¢,) is totally umbilical in (M,g). (Q.E.D.)

REMARK 1.1. If CO(M,g) acts transitively on M, the assumption on

compactness of ¥ can be removed.

In the following, we shall simply denote a totally umbilical submanifold
by a t. u. submanifold. In order to construct more examples of t. u. sub-
manifolds with various properties, we recall the notion of twisted products
introduced in Chen (1977c).

Let B and F be Riemannian manifolds and f a positive function on BXF.
Consider the product manifold Bx F with projections m : Bx F——B and
m° : Bx F——F. The twisted product M=B fo is by definition the manifold

Bx Fwith the Riemannian structure given by
1.1) 12112 = lIm x]1? + (£Bo)) 2 llmax | ®

for vector X tangent to ¥ at (b,p). If f depends on B only, twisted product
becomes the so-called warped product of B and F in the sense of Bishop and
0'Neill (1969). If B is a singleton {b}, the twisted product is nothing but
a conformal change of metric on F. Furthermore, if we regard m: Bx F——B
as a submersion, then the fibers are conformally related with each other.
This gives us a conformal submersion.

It follows trivially from (1.1) that each ﬂ’_l (p), peF, is totally
geodesic in M and each i (), beB is totally umbilical in M (see, also,
Adati (1963)).

By identifying the tangent space T M, (b,p)e BxF, with T.B+ TpF ,

(b,D) b
we say that a vector Xe TM is horizontal if X €T,B and X is vertical if
Xe TpF. For simplicity, we shall denote by Df the horizontal component of

the gradient of f. We give the following result.

PROPOSITION 1.2. Let M=BX_F be a twisted product of B and F. Then

(1) for each be B, the fibJer Fy = {b} xF is t. u. in M with -Df/f as
its mean curvature vector,

(2) fibers have constant mean curvature if and only if ||D log f|| <s a
function of B, and



(3) fibers have parallel mean curvature vector if and only if f is the

product of two positive functions A(b) and u(p) of B and F, respectively.

PROOF. From (1.1) we get
(1.2) <X, v>=0

for horizontal vector X and vertical vector 7, where < , > denote the inner

product on M. Since [X,7] =0 for such X and Vv, we have

(1.3) V=YX,

where V denotes the covariant differentiation on M. Let v and W be any two

vertical vector fields on M, we have

(1.4) X<V, W>= X(f‘2<V, w>F) =2 ng) <V,W>

for horizonal vector field X, where < , >p denotes the inner product on F
induced from the metric of F. On the other hand, (1.3) implies

(1.5) X<V, W> = 2<VVX,W>

Consecuently, from (1.4) and (1.5), we find that the second fundamental

form # of fibers is given by

n(v,W) =‘DTf <V, W>

This shows (1) and (2). Now, let E oo E, be an orthonormal basis of

horizontal space, then we have

r .
== X ( E}f )Ei=-z7:: (&, log fE,.

i=1

Thus, for any vertical vector V, we have

(1.6) VVH=—2V(E’7: log f')Ei— E(Ei log f)VVE‘i.

. -1 .. B .
Since 7~ (p) are totally geodesic in M, the last term of (1.6) is vertical.
Thus (1.6) shows that the mean curvature vector H of fibers is parallel if

and only if
1.7) V(X log =0

for all horizontal vector X and vertical vector V. This proves (3).
(Q.E.D.)

67
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§2. REDUCIBLE TOTALLY UMBILICAL SUBMANIFOLDS

First we recall the following general results.

PROPOSITION 2.1 (Schouten 1954). Every t. u. submanifold of dimension

>4 in a conformally flat space is conformally flat.

PROPOSITION 2.2 (Miyazawa and Chuman, 1972). Tet N be a t. u. sub-
manifold of dimension >4 of a locally symmetric space M. Then each

component of {zeN|H#0 at x} is conformally flat.

PROPOSITION 2.3 (Miyazawa and Chuman, 1972). 4 t. u. submanifold of a
locally symmetric space is locally symmetric if and only if the mean

curvature 1s constant.
We give the following classification of reducible t. u. submanifolds.

THEROREM 2.4. If N is a reducible t. U. submanifold of a locally
symmetric space M, then N is one of the following locally symmetric spaces:

(1) a totally geodesic submanifold,

(2) a local Riemannian product of a curve and a real-space-form N2(c)
of contant curvature c,

(3) a local Riemannian product of two real-space-forms Nl(c) and
N2(—c), c#0.

PROOF. If ¥ is a reducible t. u. submanifold of a locally symmetric

space M, then locally N= N %N, asa Riemannian product. For any Z in

TN, we put 2= 2+ 2, where 7, and z, are tangent to ¥, and ¥,, respective-
ly. Then we have

2. ; =0.

(z.1) R(X ,¥,;Y,,X)=0

By using equation (I,2.5) of Gauss we get for unit vectors X and Y,
(2.2) R(X.,Y.37.,X.) = -a° o? = <8, 5>

122y ’ aal

For any U tangent to v, (2.2) gives

2.3 —Ua® = 2B . &y .
(2.3) Ua ZR(VUXI,Yz,Y2,Xl)+2<U,X1>R(H,Y

L7y,

+2~ . 7S .y
R(Xl’vae"YQ’Xl) + 2<U,12>R(X1,H,)2,Xl) .
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Because N=N, <N locally, and # is t. u. in ¥, equations (I,2.5) and (I,2.6)

- 2,
imply
> . = 2=
(2.4) R(VUX1’Y2’Y2’X1) -<Y2,Y2><VUX1,Xl>a 0,
= . _1 2
(2.5) R(H,Y,3Y5,X,) = 5 X",

for unit vector fields X tangent to N and Y, tangent to N Combinining

(2.3), (2.4) and (2.5) we obtain

o*

(2.6) —Ua® = <U,X.>(X 0L2) +<U,Y >(Y az).

1 1 2
From this we conclude that ¥ has constant mean curvature. If a«=0, ¥ is
totally geodesic. If a#0, # is locally symmetric and conformally flat.
From these we may conclude that ¥ is one of those spaces given in (2) or

(3). (Q.E.D.)

REMARK 2.1. The symmetric space R xS° admits irreducible t. u.
hypersurfaces which are not locally symmetric, and hence with nonconstant

mean corvature.

REMARK 2.2. Some locally symmetric spaces admit reducible non-totally

geodesic, t. u. submanifolds.

§3. CODIMENSION OF TOTALLY UMBILICAL SUBMANIFOLDS.

By an extrinsic sphere we mean a t. u. submanifold with nonzero
parallel mean curvature vector. Extrinsic spheres have been characterized
by Nomizu and Yano (1974). We recall the following. (Chen, 1979 d)

THEOREM 3.1. Let N be an n-dimensional (n>2) submanifold of a locally
symmetric space M. Then N is an extrinsic sphere of M if and only if N
is an extrinsic hypersphere of an (n+1)-dimensional totally geodesic sub-

manifold M of constant sectional curvature.

As an application of (M+,M_)—theory, we obtain from Theorem M, 4.3 and
Theorem 3.1 the following.

THEOREM 3.2. The maximal dimension of extrinsic spheres of an

irreducible symmetric space M is given by X -1, where X is the integer
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given in Theorem I, 4.3,

THEOREM 3.3. Let N be a t. u. submanifold of a locally symmetric space
M. If

(3.1) codim V<rk M- 2,

then either N is totally geodesic or N is an extrinsic sphere.

PROOF. Since our study is local, we may assume that ¥ is a symmetric
space. For any fixed point xe N, we regard x as the origin of M and we
have M= G/H where H is the isotropy subgroup at x. Let g=h +m be
the Cartan decomposition of 8. Then m can be identified with T M. A
well-known result of E. Cartan says that the curvature tensor % of M at
x satifies (see, e.g,., Kobayashi and Nomizu (1963)),

(3.2) RX,NZ=-[[X,7Y],7) for X,¥,Zem.

The famous criterion of Cartan is given by the following.

LEMMA 3.4. A linear subspace w of TxM 1s the tangent space to some
totally geodesic submanifold B of M if and only <if T satisfies [[m,m],m]C.
Moreover, B is flat if and only <if [m,m]=0.

Now, for any vectors X, Y, and Z in TN at x, we have from (I1,2.4),
(1,2.6), and (I,2.9) that

(3.3) Rx, Nt =<y, DA - <X,7°D H.

For any given vector X in TN, there exists a flat totally geodesic sub-
manifold B through x such that Xxe 7B and dim B=rk M. If (3.1) holds,
there is a unit vector Y in TleﬂTxB such that <Xx,y>=0. Hence, (3.3)

gives
(3.4) Gx,NNL = D, H

On the other hand, since B is flat, totally geodesic in M, TxB forms
an abelian linear subspace of m. Thus, we have [X,Y]=0. Consequently,
(3.2) and (3.4) give DXH= 0. Since X can be chosen to be any vector
tangent to ¥ at x and x can be chosen to be any point in N, the mean

Curvature vector is parallel.



Combining Theorems U, 4.3 and 3.1 we obtain the following

PROPOSITION 3.5. There is no t. u. submanifold N in any irreducible

locally symmetric space M with codim N<rtk M- 2.

Since the rank 2 symmetric space RxSs" admits a t. u. hypersurface
which is neither totally geodesic nor an extrinsic hypersphere, Theorem 3.3
is best possible. For irreducible locally symmetric spaces, we also have

the following.

PROPOSITION 3.6 (Chen and Verheyen 1980a). There <s no t. u. submani-

fold N in any irreducible locally symmetric space M with codim ¥=r1k M-1.

By combining Propositions 3.5 and 3.6, we obtain the following best

possible result for irreducible case.

THEOREM 3.7. Let N be a t. u. submanifold of an irreducible locally

symmetric space M. Then

(3.5) codim ¥ > rk M.

§4. TOTALLY UMBILICAL HYPERSURFACES.

In this section we shall classify locally symmetric spaces which admit
a t. u. hypersurface. It follows from Theorem 3.7 that such spaces are either
reducible or of rank one. Totally umbilical submanifolds of rank one
symmetric spaces have been studied and classified. For complex-space-forms
it was done in Chen and Ogiue (1974b); for quaternion-space-forms it was
done in Chen (1978c); and for the Cayley place FIl, it was studies in Chen
(1977a).

THEOREM 4.1. A locally symmetric space M admits a non-totally geodesic,
t. u. hypersurface if and only if M is one of the following.

(a) a real-space-form M(c) of constant curvature c,

(b) a local Riemannian product of a line and a real-space-form,

(c) a local Riemannian product of two real-space-forms Ml(c) and MZ(—C)'

If dim M>4, M is conformally flat.

PROOF. If dim M<4, this Theorem is trivial. Thus we may assume that
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dim ¥ >4. Since ¥ is t. u. and non-totally geodesic, the conformal curvature

tensor of N vanishes. This is trivial if dim ¥=3. From (I,1.9) we have

(4.1) R(X,Y;2,0) =0

for any orthogonal vectors X,Y,Z and W in 70. This formula is trivial if
dim ¥=3. Because N is t. u. in M, (4.1) and the equation (I,2.5) of Gauss

give
(4.2) R(X,Y;2,W) =0

for orthogonal vectors X,Y,Z and ¥ in 7¥. From (I,2.6) and (I,2.9), we
find

(4.3) R(X,Y;2,8) =0

for any Z in TN perpendicular to any X,Y in 70 and & in . Let U be any
vector in 7N. Because M is locally symmetric, (4.3) yields

(4.4) 0= <X,U>R(H,Y;2,8) + R(V,X,Y;2,€) + <X, U>R(X,H; 2,E)
+B(X,V,¥;2,8) + R(X,¥;V,2,€) - aR(X,Y;2,V)

where £ is the unit normal vector such that EF=af. By (I,2.6) and (4.4) we
may obtain

(4.5) R(X,Y;2,U) = <X,U>R(E,Y;2,€) - <Y, U>R(E,X;2,E)

for z perpendicular to X and Y and v in 7W. Let X,Y,Z,” be orthogonal vectors

tangent to M. If X,¥,7,# are tangent to ¥, we have R(X,¥;Z,#) =0 by (4.2).
If X,Y,Z,W are not all tangent to X, there exist orthogonal vectors ¥°,¥",%",
and ¥° satisfying
(4.6) XANY=X" 07", ZAW=7"h W, and

4.7 <¥*,E>=<7",E>=0.

For such X”,Y”,%”,i” we have R(X,¥,Z,0) =R(X",¥";Z",#"). We put
(4.8) X =(cos 8)x+ (sin 8)E, W" = (cos ¢)W+ (sin ¢)W,

where X and W are tangent to n. Since <Xx”,/">=0, we obtain

(4.9) cos B cosd <X,W>+sin 6 sin¢=0.
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From (4.3) and (4.8) we find

R(X,¥;Z,W) =cos8coss R(Z,¥°;Z°,%) +sind sin¢ R(E,¥7;27,€).

(4.10) R(X,Y3;Z,W) = cos 8 cos {R(X, Y7327, %) - <X,W>R(E,Y":2°,E)} .
On the other hand, since X Y‘ Z” and 7 are orthogonal, and }‘,5’ are

tangent to N, <Y,#>=<Y",¥">=0. Thus (4.5) yields

(4.11)  R(X,Y";27,W) = <X,W>R(E,Y"3Z7,8).

From (4.10) and (4.11) we get R(X,Y;Z,¥) =0 for orthogonal vectors X, Y, 7,
in TxM’ x€N. Since M is locally symmetric, the same property holds at every
point of M. Thus, by a result of Schouten (1954), ¥ is conformally flat.
Because M is locally symmetric, ¥ is one of those spaces given in (a), (b) or

(c). The converse is trivial. (Q.E.D.)

From Theorem 4.1 we may obtain the following result which says that non-
totally geodesic, t. u. hypersurfaces of a locally symmetric space are in

fact given by fixed point sets of some conformal mappings.

THEOREM 4.2. Let M be a locally symmetric space of dimension > 4. If
N is a non-totally, t. u. hypersurface of M, then, for any point p in N,
there is a neighborhood U of p in M and a ccnformal mapping ¢ from U into M

such that UNN Llies in the fixed point set of ¢.
From Theorems 4.1, I, 4.2 and ¥, 4.3 we obtain the following

COROLLARY 4.3. The only irreducible locally symmetric spaces which

admit t. u. hypersurfaces are real-spzce-forrs.
From Theorem 4.1 we may also prove the following.

THEOREM 4.4. Let /1 be a Hermiticn symmetric space and N a t. u.
hypersurface of M. Then

(a) If N is totally geodesic, ¥ is the Ziemannian product of two
Hermitian symmetric spaces Ml and 1‘v12 cf complex dimension m-1 and 1,
respectively. Moreover, N is the Riemannian »roduct of Ml and a geodesic

of M_, locally.
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(b) If N is non-totally geodesic, then one of the following three
statments holds.

(b.1) ¥ is a (jPl(c), Cl , or Dl(—c) and N any curve in M. Here ¢ and
-c¢ denote the sectional curvature of cPt and Dl, respectively.

(b.2) ¥ is a t. u. hypersuriace of ¥ and M= CPl(c)><Dl(—c).

(b.3) M is c™ and N is an oven portion of an ordinary hypersphere of
c™

If statement (b.2) holds, locally, N is the confbrmal image of a

hypersphere Sscnﬂa hyperplane E3 of C2 under a conformal mapping from C2

into M.

T. u. hypersurfaces of cpl(c)><Dl(—c) do not have constant mean
curvature in general. However, for higher dimensional Kaehler manifolds,

we have the following surprising result.

THEOREM 4.5. If M is any Kaehler manifold of complex dimension >3, then
every t. u. hypersurface of M is either totally geodesic or an extrinsic

hypersphere.

The following result follows easily from the equation of Codazzi (see,
Chen (1979c) and Kawalski (1972)).

PROPOSITION 4.5. Every t. u. hypersurface N of an Einstein space M of

dimension >3 is either totally geodesic or an extrinsic sphere.

PROOF. Since ¥ is t. u, in M, the equation of Codazzi gives

5 ) p 2
(4.12) R(El,E’i,E’i,H) = Ejoc.

o4 4

where El.--~.En is an orthonormal frame of TN. Thus the Ricci tensor S of ¥

satisfies 0=3(X,H) = (n 5 1 ) Xoc2 for any X in TN. This proves the Proposi-

tion.

In views of Theorem 4.1 the author would like to ask the following.

PROBLEM 4.1. Let ¥ be an n-dimensional (n>3) ¢. u. submanifold of a
locally symmetric space X. If the mean curvature a# 0 everywhere on N, does
N lie in a conformally flat totally geodesic submanifold of M?



Theorem 4.1 tells us that the answer to this problem is affirmative if

the codimension of y is one.

§5. TRREDUCIBLE TOTALLY UMBILICAL SUBMANIFOLDS

Reducible . u. submanifolds of a locally symmetric space were studied
in 82. In this section we will treat irreducible case Contrary to reducible
case, irreducible t. u. submanifolds do not have constant mean curature in
general (see, REMARK 2.1). For hypersurface case, a t. u. hypersurface of
a locally symmetric space M is locally the fixed point set of a conformal
mapping on M. From the equation of Gauss, it follows trivially that every
t. u. submanifold of a (locally) symmetric space of compact type is either
totally geodesic or irreducible. For irreducible t. u. submanifolds in a

general locally symmetric space, we have the following.

THEOREM 5.1. If N is an irreducible t. u. submanifold with constant
mean curvature of a locally symmetric space M, then

(1) ¥ is either totally geodesic or a real-space-form and

(2) 2f dim N>2 and the mean curvature vector H is not parallel, then

dim N <% dim M.

PROOF. If ¥ is a t. u. submanifold with constant mean curvature of a
locally symmetric space, then ¥ is either totally geodesic, or conformally
flat. Moreover, ¥ is locally symmetric. Since ¥ is irreducible by assump-
tion, ¥ is Einsteinian. Thus, by (I, 1.9), we conclude that either y is
totally geodesic or ¥ is of constant sectional curvature, this proves (1).

If # is not parallel, ¥ is a real-space form N(e) of constant curvature,
say ¢. Since N has constant mean curvature, (I,2.4), (I,2.6) and (I,2.9) give

(5.1) R(X,7;2,H) =0

for vector fields X,v,Z tangent to N. By using V#=0, (I,2.1), (I,2.6),
(I,2.9), and (5.1), we may find

(5.2) WPR(X, Y3 2,0) = <U,X>R(H,Y;2,H) - <U,Y>E(H,X; 72, H)
+ <y,z><DXH,DUH>-<X,Z><DYH,DUH>

for v tangent to ¥. Let Xx=y, Y=2 be orthonormal vectors tangent to N.
Then we find, from (I,2.5) and (5.2), that
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(5.3) «PR(H, Y)——]DXH|2+0L2c-ah,

where Z denotes the sectional curvature of M. Because (5.3) holds for all
orthonormal vectors X,Y in 70, and dim ¥>2, ]DXH] is independent of X.

In particular, IDXHI is nonzero for any unit vector X in TxN for some x eN.
Ry setting U=xX=E, and summing on < for (5.2), we find

(5.4) (n-1)R(H,Y;2,H) = OLZS(Y,Z) -(n- l)och<Y,Z> + <D H,D H> - <Y,7>|DH| 2
where IDH[2 = ﬁi lDE%HIZ. Substituting (5.4) into (5.2) we obtain
1=1
(5.5) (n- 1)a23(x,y;z,y) = [DH{2{<Y, U><X, 2> - <X,U><Y, 7>}
+<U, X>{0L2$(Y, 7) + <DYH,DZH>}
-<U, i’>{a25(X, 7) + <D, DZH>}
+ (n-1){<y, Z><D H,D H> - <X, 2><D H, DUH>}.
By setting Y= Z=E; and suming on %, we get

2 éz
<X, U>|DH|T - ——r <x,U>.

(5.6) (n ~ 2)<D H,D ji> = afs(x, 1) + 2=

Since ¥ is of constant curvature, (5.6) gives <Dy H, DUH>= 0 for orthogonal

X and U. Because DXH 0 for any unit vector X at T N, H, D H, »Dp H are
orthogonal and they span an (n+1)-dimensional 11near subspace of TJ-N. This
proves (2). Q. E D.)

From the proof we have the following.

COROLLARY 5.2. Let N be a t. u. submanifold of a locally symmetric
space M. If N is of constant sectional curvature, then N is either totally

. L . , 1 ;.
geodesic, or an extrinsic sphere, or of dimension <<7T-d1m M.

PROBLEM 5.1. Determine whether there exists a t. u. submanifold of
constant sectional curvature in a locally symmetric space with nonparallel

mean curvature vector.

§6. TOTALLY UMBILICAL SUBMANIFOLDS OF A KAEHLER MANIFOLD

In this section we will apply the theory of generic submanifolds to the

theory of totally umbilical submanifolds. We shall use the same notations as
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before. The results obtained in this section are given in Chen and Verheyen

(1980b) unless mentioned otherwise.

LEMMA 6.1. Let N be t. u. generic submanifold of a Kaehler manifold
M. Then

(1) the purely real distribution - is integrable and its leqves are
totally geodesic in N,

(2) ©f N is not purely real, Hergplt, ond

(3) if He F#L-, both FH#land v are parallel.

PROOF. For vector fields U in 7 and £ in 7w, we have

- JAU D E=V h(U,tE) - Af€U+ 2,fEs

from which we find

(6.1) V,tE = <fE,H>U - <E,H>PU+ D £,

U
(6.2) DUf'E = —FA£U+ fDUg - n(U,tg).

In particular, if Z,We %J', these give v E o+, This proves (1). Let n
be any vector field in v and x in #, we have <X,X><H,n>= <J§XX,Jn>
=<h(X,JX),Jsn>=0. This proves (2).

By (6.2) and statement (2) we have le/"=fDU£ for £ in v. On the
other hand, JD = ﬁUE = §UJE =D,JE. Therefore, we obtain ¢0 £=0. Thus v
is parallel. Since F# Lis the orthogonal cormplementary distribution of v

in 71w, F#1is also parallel.

LEMMA 6.2. Let N be a t. u. submanifold of a Hermitian symmetric space
M. Then, for any unit vectors XE€ %, Z EZ’;‘L at xelN with o(x) #0, we have
X(x,2)=0.

PROOF. Under the hypothesis, we have X(7,z) = R(Z,X;JX,PZ) + R(2,X;JX,FZ) .
By using this and the equations of Gauss and Codazzi, we may obtain
X(x,2) =R(2,X;J2,P7). Since ¥ is t. u. with a(x) #0 in M, N is conformally
flat in a neighborhood of x €. Because Z,X,7x and PZ are orthogonal,

R(Z,X;JX,P7) =0. (Q.E.D.)

PROPOSITION 6.3. Let N be a t. u. generiz submanifold of a positively

(or negatively) curved Kaehler manifold M. Tren N is either a complex totally
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geodesic submanifold or a purely real submanifold.

PROOF. Assume that ¥ is a proper generic t. u. submanifold. For any
vector Xe # and ze%, equation (I,2.6) implies

(6.3) 0=R(JX,Z;X,F2) = R(FZ,X;%,FZ) + R(PZ,X;X,FZ),
(6.4) ]FZIQZ(X,FZ) = <Dy, H,FZ>.

On the other hand, we have k(X,J2) = R(X,PZ;JX,2) = R(PZ,X;X,PZ) + <Dy, H,FZ>.
Combining this with (6.4) we get

(6.5) \Fz|?{R(x,02) + R(x,F2) } = |pz|?(%(x,P2) - R(X,J2)}.

If M is positively curved, this gives X(x,Pz) > k(Jx,z) for unit vectors
XeH and ze# - Replacing z be Pz we have

(6.6) x(x,P%2) > k(Jx,P2) > K(X,7) .

Now, for z, We %,L we have <Z,PW>= <Z,JW>= -<PZ,W>. Thus (P/%L)Q is a
symmetric endomorphism of #+. If 7°z0 on 2"'; <PZ,P7> = -<P°2,7>=0 for
z et Thus (6.5) gives Fz=0. This is a contradiction. Consequently,
P°£0 on st Thus, there is a unit vector ze# -~ such that PPy = Az, A#0.
This contradicts (6.6). Similar argument applies to negatively curved

Kaehler manifolds.
By using Proposition 6.3 we obtain the following two results.

THEOREM 6.4. Let N be a t. u. submanifold of a positively (or negative-
ly) curved Kaehler manifold M. If dim N>3, then N is either a totally

geodesic complex submanifold or purzly real.

THEOREM 6.5. There is no extrinsic sghere of dimension >m in any
positively (or negatively) curved >zehler manifold M of complex dimension m

for m> 2.

Theorem 6.4 follows immediately from Proposition 6.3 and Theorem 6.5

follows from Theorem 3.1 and Proposition 6.3.

REMARK 6.1. ¢P" and its non-compact dual are positively curved and

negatively curved Kaehler manifolds which admit an extrinsic sphere of



dimension m-1. Thus, Theorem 6.5 is best possible. This result improves a
result of Chen (1977b).

By using the equation of Codazzi and (¥, 1.5) we have the following.

LEMMA 6.6. Let N be a t. u. generic submanifold of a Kaehler manifold
M. Then

(6.7) Rl sw TN =10},
CRINENNIE S Tt % SRR
By using Lemmas 6.1 and 6.6 we may also prove the following.

LEMMA 6.7. Let N be a t. u. generic submanifold of a locally Hermitian
. . 4
symmetric space M. If dlmR% =p>2, then

(6.9) Rl s2:978,1) = (0},
PROOF. For Z,U,V,W in %+ and X in #, Lemma 6.6 gives
0=UR(Z,W¥; V,X)=<U,2>B(H, W ; V,X) + <U,W>R(Z,H ; V,X)

+R(V, 2,0 ; v, X) +R(z,vU,J; V,X) +R(Z,W; VLX) R(Z,W; V,VZ/Y) .
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By applying Lemmas 6.1 and 6.6 this gives 0=<yu,z>R(H#,W;V,X) + <U,W>R(Z,H;V,X).

If p>2, this yields (6.9).

PROPOSITION 6.8. Let N be a t. u. generic submanifold of a locally
Hermitian symmetric space M. If dimRIV; 4, then either N is purely real or N

has constant mean curvature.

PROOF. If p>2, (I,2.6) and Lemma 6.7 give 0=R(z,X;Z,H) = -<2,2><D,H,H>
for ze#‘and XeH# . If N is proper, this implies xa®=0. Now, we put
v°={rxen| o#0 at xz}. Then each component of ¥ is an open submanifold of
N. If N° is nonempty and ¥ is not purely real, ¥ is proper generic. By
Lerma 6.2, we get R(2,X;%,2) =0 for X € % and Ze%‘l'. Thus, by linearity,
we get B(z,x;¥,2) = 2(2,%;%,W) = 0 for vector fields X,y in # and z,i in #*
on ¥°. From this we get 0= (1/2)WR(Z,X;X,Z) = <Z,W>R(H,X;X,2) by Lemma 6.1.

Combining this with (I,2.6) we get za®=0 for ze#

o F eN”. Therefore
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. . . 2. . 2 .
o is constant on each component of ¥°. Since o is continuous,a” is constant

on V.
If p=1, this proposition follows from the following.

THEOREM 6.9 (Chen 1980g). Let N be a t. u. generic submanifold of a
locally Hermitian symmetric space M. If (TimRN_z_S and dimRy/l=l, then
(a) the mean curvature vector H of N is parallel, and
(d) Zf N is not totally geodesic, N is locally isometric to a sphere of
1

radius - and tk M> dimRIV. Moreover, I 1s a t. u. hypersurface of a flat

totally geodesic submanifold of M.
REMARK 6.2. For t. u. CR-submanifolds we have the following

THEOREM 6.10 (Chen, 1980g). <ILet N be a t. u. CR-submanifold of a Kaehler
manifold M. Then

(1) ¥ <s totally geodesic, or

(11) the totally real distribution is one-dimensional, or

(iii) N Zs totally real.

If (iii) occurs, dimRM;Z di:nR]V. Tn particular, if N is not totally

geodesic and dlmR N>2, then d]mR “>2 dmRN+ 2.
By using Proposition 6.8, we may obtain the following.

THEOREM 6.11. Let N be a t. u. generic submanifold of a locally
Hermitian symmetric space M. If dimRN;4, then one of the following
statements holds

(a) v s purely real,

(b) v Zs totally geodesic,

(c) vk u> dimRIV and N lies <in a maximal flat totally geodesic sub-

manifold of M as an extrinsic sphere.

It is easy to see that all of these three cases actually occur.
For the proof see Chen and Verheyen (1980b). By applying this theorem
we obtain the following two Theorems.

THEOREM 6.12. TLet N be a t. u. submanifold of a locally Hermitian

syrmetric space M. If dimRIV >dim.CM and dimRNz 4, then either
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(a) v is totally geodesic in M or
(b) rk M> dimR

manifold of M as an extrinsic svhere.

N and N lies in a maximal Flat totally geodesic sub-

THEOREM 6.13. Let N be a t. u. submanifeold of a locally Hermitian
symmetric space M of compact or non-compact tyre. If dimRN> dim(,M and
dimR N>4, then N is totally geodesic.

REMARK 6.3. If dinhlvi 3, Theorems 6.11 and 6.12 are not ture in general.

Moreover, if M is of Euclidean type, Theorem 6.13 is false.

REMARK 6.4. Since 5% x5"% can be isometrically immersed in the irreducible
rank two Hermitian symmetric space Qrz= S0(n+ 2)/50(2) x S0(n) (Chen and Nagano,
1977). &, admits a purely real t. u. submanifold of dimension »-1 with non-

constant mean curvature.

§7. EXTRINSIC SPHERES OF KAEHLER MANIFOLDS.

Since extrinsic spheres have the same extrinsic properties as ordinary
spheres in a Euclidean space, it is natural to ask when an extrinsic sphere
is an ordinary sphere. It follows from Proposition 1.2 that every Riemannian
manifold F can be an extrinsic sphere in the twisted product M= Bx MJF' Here
A and p are positive functions on B and F, respectively. Hence in order to
conclude that an extrinsic sphere is isometric to an ordinary sphere we need
to impose some suitable conditions on the ambient space. For extrinsic

spheres in a Kaehler manifold, we have the following.

THEOREM 7.1. A4 complete, l-connected, even-dimensional extrinsic sphere
N of a Kaehler manifold M is isometric to an ordinary sphere if its normal

connection is flat.

PROOF. Since ¥ is 1l-connected and its normal connection of N in ¥ is
flat, there exist 2m - 2»n mutually orthogonal unit parallel normal vector
fields defined globally on », where dirnRN=2n and dimCM=m. Because,
N is an extrinsic sphere of ¥. We have

(7.1) n(x,y) =<X,Y>H, DXH=0, and H#0.

Since # is parallel, the mean curvature o= |#| is constant. We put E=4#/a.
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Then € is parallel. Now, suppose that El, ---,Ean_zn are mutually orthogonal
unit normal vector fields on ¥. Then we may assume that £l= . We put

o, = <J§,Er>, r=2,+++,2m—2n. Then we have

(7.2) VyE, = A X+ Dyt =0,
Thus we get
(7.3) X<I>P= <JVX£, £r>= oc<X,J£r>.

From (7.1), (7.2), and (7.3) we obtain XY¢r=aX<Y,JE;r>=oL<§X.Y,J£r>
= G<VXY’JEI’> +a<h(X,Y) ,JE;P> = (VXY) °,- a2®r<x, Y>, from which we find

= 2 = LN ) p—
(7.4) VXdCI)r— -0 CDPX, r=2, ,2m - 2n.

Now, we shall claim that at least one of the functions @r, r=2e«++2m-2n,
is nonconstant. If all of the ¢ are constant, then (7.1) and (7.2) imply

0= chr: <JVX€’€1’>= -a<JX,gr> = a<X,J£r>, r=2,++,2m-2n.

Thus, the subspace spanned by 52,---,6_:27”_271, J£2,---.J£2m_2n is a complex
normal subspace. Thus, it is even-dimensional and of dimension greater than
2m-2n-1. Hence, it is the whole normal subspace 7'w. This implies that »
is a complex submanifold. Hence, it is totally geodesic. This is a con-
tradiction. Thus, there is a nonconstant function ¢ defined on ¥ and
satisfying the differential equation de©= ~aox for Xe . Therefore, by
a result of Obata (1962), N is isometric to an ordinary 2n-sphere of radius

1/a. (Q.E.D.)

In the following we shall give an odd-dimensional example of such an
extrinsic sphere which is not an ordinary sphere, in fact, not even a
homotopy sphere.

Let Fl’ TeLF be r irreducible homogeneous polynomials in m complex
variables 2,005z, The set 1‘?=1?(F1,---,Fr) of all common zeros of
Fl’“"Fr less the origin is a complex variety. If the » hypersurfaces
given by F, (zl, e ,zm) =0, ¢{=1,--+,r, are in general position, this variety
is nonsingular and is called a corplete intersection in c™ Clearly the
natural Kaehler structure of €™ induces a Kaehler structure on M.

Let s7™1 (1) be the unit hypersphere of ¢™ centered at the origin 0
and ¥#=#N5""1(1). Then we have the following.

2m-1

PROPOSITION 7.2. The intersection M= IT!(Fl, .. -,Fr) ns (1) is a closed



extrinsic hypersphere of I‘NJ(Fl, .. -,FP) .

If we consider 3,3, as the homogeneous complex coordinates of
Cpm'l, the homogeneous equations Fl = =F = 0 define an algebraic

manifold 4(M) of c?" 1. We have

PROPOSITION 7.3. The homotopy groups of M=174(F1, -'-,Fr)ﬂszm—l(l) and
the associated algebraic manifold A(M) satisfy

(7.5) wk(M)gwk(A(M)), k>3.

Moreover, if ™ (AM) =0 and dijA(M) >3, then either ™ (M) =7T2(M) =0 or
TTl(M) = 1T2(M) =7.

From this Proposition we see that in general the extrinsic sphere
MzMFlc’z” .,Fr)ﬂ Szm_l(lgz is not a homotopy sphere. In particular, if
= d se e = es e = 3 1
Fi=a;z vazs+ ta 2z - Fy=a,, ’Fr Zr: then the extrinsic sphere M
is 1-connected and its normal connection in M(Fl,--',FP) is flat. Thus, we

may obtain the following.

THEOREM 7.4. For each positive odd integer k; k< 2m-3, there is a
Kaehler manifold M of complex dimension m and a submanifold M of real
dimension 2m-k in M such that

(1) M is closed and l-connected,

(2) M is an extrinsic sphere of M,

(3) the normal connection of M in M is flat, and

(4) M Zs not a homotopy sphere.

As we already know from Theorem 7.1, there is no such submanifold if k

is even.
In Blair and Chen (1980), we have also the following.

THEOREM 7.5. Let M be a complete extrinsic sphere of a complete in-
tersection X!(Fl, -”,Fr) in ™. Then either M is isometric to an ordinary

sphere or M is an extrinsic sphere of M obtained in the way mentioned above.

For extrinsic spheres in a locally Hermitian symmetric space we have

the following stronger result than Theorem 6.11.

THEOREM 7.6. Let N be an extrinsic sphere of a locally Hermitian
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symmetric space M, then either N is totally real in M or Tk M> di‘nR N and N

lies in a flat totally geodesic submanifold of M as an extrinsic sphere.

PROOF. From Theorem 3.1 we known that N lies in a totally geodesic sub-
manifold ¥ of constant sectional curvature ¢ of ¥ as an extrinsic sphere.
If ¢=0, i.e., M is filat, it is done. If ¢#0, M is an irreducible, non-
Hermition, locally symmetric space immersed in ¥ as a totally geodesic sub-
manifold. Thus, by applying Theorem V, 4.2 of Chen and Nagano (1978), we
conclude that ¥ is totally real in ¥. In particular, ¥ is totally real in
M. (Q.E.D.)
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