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Preface

This manuscript consists of lecture notes for CPSC-669 Computational
Optimization as it was taught by me in the Fall of 1995 at Department of
Computer Science, Texas A&M University. The notes were first taken by
students in the class then were rewritten by myself. The notes were not
meant at all to be in polished form and they probably contain many errors.
I will appreciate that readers let me know their corrections and comments.

Because of the time limit, I was not able to cover many other recent
interesting and important results in this set. The first few of them in my
mind are the probabilistic method and derandomization, recent improved
approximation algorithms for Max-Sat and Max-Cut, and approximability
of Steiner trees. The discussion on linear programming should certainly be
in more detail and in more depth. My plan is to add at least these topics in
the next revision.

Help from the following list of scribes is acknowledged: M. Chatterjee,
X. Chen, 5. Lu, L. Shao, B. Varanasi, J. Walter, W. Zhang, and H. Zheng.
I also appreciate encouraging discussion and comments from Professors D.
Friesen and C. Papadimitriou.
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1 Introduction

Most computational optimization problems come from practice in industry

and other fields.

Definition 1.1 An optimization problem @) is a 4-tuple (Ig, Sqg, fg, optg).
where I is the set of input instances, S¢ is a function such that for each
input = € Ig, Sg(z) is a set of solutions to x, fg is the objective function
such that for each pair z € Ig and y € Sg(z), fo(2,y) is an integer, and
optg € {max,min} specifies the problem to be a mazimum problem or a
minimum problem.

Therefore, an optimization problem can be defined as follows: given an
input instance z, find a solution y in Sg(z) such that the objective function
value fg(x,y) is optimized (maximized or minimized depending on optg)
among all solutions in Sg(z).

Remark 1.2 The 4-tuple must satisfy the following conditions for an opti-
mization problem:

1. It should be testable in polynomial time whether a given 2 is an input
instance of Q.

2. It should be testable in polynomial time given z and y whether y is a
solution in S(z).

3. The objective function f(z,y) should be computable in polynomial
time, given 2 € Ig and y € So(2).

Examples of combinatorial optimization problems:
1. Minimum Spanning Tree

2. Shortest Path

3. Knapsack



4. Bin Packing

5. Vertex Cover

6. Traveling Salesman Problem

This list is not exhaustive. There are many other optimization problems.

Example 1.3 How do we formulate the Minimum Spanning Tree problem
using the above formulation?

By using the definition of an optimization problem, we can formulate the
MST problem as follows:

lg: weighted graph &

Sg:  all spanning trees of ¢&

for  fo(G,T)= sum of weights of edges of T', a spanning tree of ¢

optg: min

Example 1.4 How do we formulate the Shortest Path problem?

lg: weighted graph G with two specified vertices u,v
Sg:  all paths connecting vertices u,v in ¢

for fo(G,u,v,p) = length of p, a path connecting u, v
optg: min

Example 1.5 How do we formulate the Knapsack problem?

Ig: Set S ={z1,22,...,2,}, where each z has size s; and profit f;. Bound
B on size is also defined.

Sgr 5CS, > essi < B

for fo(8,8) =205 ki

optg: max
Example 1.6 How do we formulate the Bin Packing problem?

Ig:  Set S ={x1,29,...,2,}, where 0 < z; < 1.
Sg: Partition P of § into 57 U S3 U...U S, such that ersi r <1
for fo(S,P)=r

optg: min

Example 1.7 How do we formulate the Vertex Cover problem?



Ig:  Agraph G = (V, E).

Sg: A subset 5 of V such that every edge e in £ has at least one end
in 5.

for  fo(G,S) = the number of vertices in 5.

optg: min

Example 1.8 How do we formulate the Traveling Salesman problem?

Ig: A weighted complete graph G = (V, E).
So: A path P in G that goes through all vertices of G.
fo:  fo(G,P) = the weight of the path P.

optg: min

Examples 1.3 and 1.4 can be solved in polynomial time. Examples 1.5
to 1.8 are known to be NP-hard, which means it is unlikely to have efficient
algorithms for solving them precisely. For these problems, we will discuss
efficient approximation algorithms that find solutions “close” to the optimal
ones. We will see that for Knapsack problem, there is a very good approx-
imation algorithm that produce solutions arbitrarily close to the optimal
solutions. For Bin Packing problem and Vertex Cover, we will see that ap-
proximation algorithms of constant ratio will be possible while it is unlikely
for them to have further better approximation algorithm. For Traveling
Salesman problem, we will see that any reasonable approximation will be
infeasible.

The course will start with optimization problems that can be solved
in polynomial time. Examples are Maximum Flow, Matching, and Linear
Programming. Then we discuss approximation algorithms on NP-hard op-
timization problems. We first discuss techniques that approximate NP-hard
optimization problems with solutions that are arbitrarily close to optimal
solutions. This class of optimization problems includes Knapsack and many
scheduling problems. Then we present approximation algorithms with con-
stant ratio for certain optimization problems and show that no much better
approximation algorithms are possible for these problems. Bin Packing and
Vertex Cover belong to this class. We will also discuss optimization problems
such as Traveling Salesman Problem, which are very hard to approximate.
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2 Max-Flow Problem

Definition 2.1 A flow graph G' = (V, F')is a directed and positively weighted
graph with two distinguished vertices s (the source) and ¢ (the sink). The
weight on an edge (u,v) is called the capacity of the edge, and is designated
by cap(u,v). If there is no edge from vertex u to vertex v, then we define
cap(u,v) = 0.

Remark 2.2 Edges can be directed into the source and out of the sink.

Definition 2.3 A flow f on a flow graph G = (V, F) is a function on pairs
of vertices of (& satisfying the following conditions:

1. For all u,v € V, cap(u,v) > f(u,v).
2. For all w,v € V, f(u,v) = —f(v,u).
3. Forall u # s,t, 3" v f(u,v) = 0.

Question 2.4 What is the flow value from u to v if there is no edge between
w and v ¢

By the definition, if there is no edge between u and v, then we have cap(u,v) =
cap(v,u) = 0. By the first condition of a flow f, we must have cap(u,v) >
f(u,v) and cap(v,u) > f(v,u). These together with the second condition of
the flow f(u,v)= —f(v,u) give immediately f(u,v)=0.

Remark 2.5 Note the following about capacities and flows:
e cap(u,v) is always defined.
o If cap(u,v) =0, then f(u,v) can be negative.

e cap(u,v) is in general not equal to cap(v,u).



Definition 2.6 Given a flow graph ¢ = (V, F') and given a flow f on G, the
residual graph Gy = (V, E’) of G (with respect to the flow f) has the same
vertex set as (G. Moreover, for each vertex pair u, v, if cap(u,v) > f(u,v),
then (u,v)is an edge in Gy with capacity cap(u,v) — f(u,v).

Remark 2.7 New edges may be created in the residual graph Gy that were
not originally present in the original graph G.

Remark 2.8 Max-Flow problem can be formulated using our definition of
optimization problems as a 4-tuple Max-Flow = (I, 5, f, opt)

I:  flow graphs G with source s and sink ¢

S: S(G) is the set of valid flows f on G

Fi HG ) = Toey f(s0)

opt: max

Remark 2.9 The goal in the Maximum Flow Problem is to find the max-
imum flow from source to sink. Solving the Max-Flow problem involves
finding paths from s to ¢ and pushing the maximum flow over those paths.
Formally, the goal of Max-Flow is to maximize }_ oy f(s,v), the amount of
flow coming out of the source. Alternatively, the goal could be specified as
maximizing )", <y f(w, 1), the amount of flow going into the sink. It can be
proved that these two definitions are equivalent. The proof is not very hard
and left to the students.
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3 Max-Flow Problem (Contd.)

Theorem 3.1 Let G be a flow-graph and let [ be a flow in G. The flow f
is a mazimum flow in G if and only if the residual graph Gy has no positive

flow.

PROOF.

(=). Assume that there is a positive flow f* in the residual graph G,
Le. [f*] =Y ev [*(s,v) > 0.

Define a function f* on each pair (u,v) of vertices in the flow-graph ¢
as follows:

JH(uv) = flu,0)+ [*(u,0)
Claim: f7T is a valid flow in G.

Proof for the Claim: A flow is valid if it satisfies all the three conditions as
described in Definition 2.3. The conditions are verified as follows.

(a) For all u,v € V, cap(u,v) > f*(u,v):

We compute the value cap(u,v) — f¥(u,v). By definition we have

cap(u,v) — f+(u7 v) = cap(u,v) — f(u,v)— f*(u,v)

Now by the definition of capy, we have cap(u,v) — f(u,v) = caps(u,v).
Moreover, since f*(u,v)is a valid flow in the residual graph G'¢, caps(u,v)—
/*(u,v) > 0. Consequently, we have cap(u,v)— f*(u,v) > 0. The condition
is thus satisfied.

(b) For all u,v € V, ft(u,v)=—f*(v,u):

Since both f(u,v) and f*(u,v) are valid flows in flow-graphs G and G¥,
respectively, we have f(u,v)= —f(v,u)and f*(u,v)= —f*(v,u). Thus,

Fr(u,v) = flu,v) + f5(u,v) = —f(v,u) — f(v,u) = —fH(v,u)

(c) For all w # s,t, >, cv fH(u,v) = 0:
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Again, since both f(u,v) and f*(u,v) are valid flows in flow-graphs ¢
and Gy, respectively, we have for all u # s,¢

Zf(uvv): Zf*(u,v)zo

veV veV

Thus
S ) = Y fuo)+ S f )= 0

veV veV veV

Thus, the function f¥1 satisfies all three conditions for a flow in G and
is a valid flow in the flow-graph G. Now we compute |fT| and note that
|f*| > 0, we get

[ =22 [Fs0)= D fls,o)+ D0 F(s,0) = 1+ 177> |/]

veV veV veV

Hence f is not a maximum flow in G.

(«<). Here, we assume that f is not a maximum flow in G. Let fiax be
a maximum flow in &, Thus, | fimax| — |f| > 0. Now define a function f~ on
each pair (u,v) of vertices in the flow-graph G5 as follows.

7 (u,v) = fax(u,v) — f(u,v)

Claim: f~ is a valid flow in Gy.

Proof for the Claim: Again we verify the three conditions of a flow in Gy.
(a) For all u,v € V, caps(u,v) > f~(u,v):

caps(u,v) — [~ (u,v) = cap(u,v) — f(u,v) — [~ (u,v)

Note that f(u,v)+ f~(u,v) = fimax(u,v). Since fiayx is a valid flow in G,
we have cap(u,v) — fmax(w,v) > 0. Consequently, we have caps(u,v) —
f(u,v) > 0.

(b) For all u,v € V, f~(u,v) = —f(v,u):

f_(uv ?J) = fmax(uv ?J) - f(uv ?J) = _fmax(vv u) + f(?], u) = _f_(vv u)
(c) For all w # s,t, >,y f(u,v) = 0:

Z f_(u,v) = Z fmax(uﬂf) - Z f(u,v) =0

veV veV veV



This, f~ is a valid flow in the flow-graph ;. Moreover, since we have

|f_| = Zf_(s,?]): meax(svv)_ Zf(s,?]): |fmax| - |f| >0

veV veV veV

We conclude that the residual graph Gy has a positive flow.
This completes the proof of the theorem. []

Theorem 3.1 ensures the correctness of the following algorithm.

Algorithm 3.1 Max-Flow

Input: A flow-graph (.

Output: A maximum flow f on (.

1. Let f(u,v)=0 for all pairs (u,v) of vertices in G

2. Construct the residual graph Gy;

3. while there is a positive flow f* in Gy do
Construct a positive flow f* in Gy;
Let f= f+4 f* be the new flow on G.
Construct the residual graph G'y;

Remark 3.1 Whenever there is a positive flow f* in Gy, there is at least
one directed path in Gy from s to ¢t on which all the edges have a positive
capacity. There can be several approaches to find such paths in the residual
graph Gy. An algorithm by Ford-Fulkerson finds a path of maximum capac-
ity. This algorithm is efficient in most cases, but can perform badly in some
cases. In this context, Dinic’s (Dinitz) algorithm has a stronger bound on
the time complexity. This algorithm tries to find the shortest path from s to
t. The path length is based on the number of edges in the path. The short-
est path can be determined by using breadth first search (BF'S) algorithm.
In each iteration of the while loop in Algorithm 3.1, Dinic’s algorithm will
push the flow through all the shortest paths, so that in the next iteration,
the length of the shortest path increases at least by one. Dinic’s algorithm
and its analysis will be presented in the next lecture.
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4 Max-Flow Problem (Contd.)

Algorithm 4.1 BFS Dinic
Input: A flow-graph (.
Output: A leveled graph L = (Vi, Ep) containing all shor-
test paths in G from s to t.
1. Cllevel = —1; { C_level = current level }
. For all vertices v, levellv]=n+1;
3. levells]|=0; @ — s; Vi ={s};
{) is a queue.}
4. while () is non-empty and C_level < levellt] do
ve—Q;
if (Clevel <« level[v]) then C_level = levell[v];
for each edge (v,w) in G do
if (levellw]=n+1)
then Vp, =V, U{w}; Q@ — w;
if (levell[w] > level[v]) then
Er = ELU{(v,w)};
level[w] = levellv]+ 1;

Remark 4.1 The above algorithm is a modification of the famous breadth
first search algorithm. The analysis can be performed similarly as for
breadth first search. Thus, we conclude that the time complexity of the
algorithm is O(e), where e is the number of edges in the flow-graph G. This
algorithm stops either when it reaches ¢ (in this case, the leveled graph L is
constructed), or when it exhausts all the edges (in this case, the vertices s
and t are disconnected).

Given the leveled graph L. we find all paths in L from the source s to
the sink ¢ as follows. Starting from the vertex s, we follow the edges of L
to find a path p of length level[t]. Since the graph L is leveled, the path p



can be found in a straightforward way (i.e., at each vertex, simply follow
an arbitrary edge from the vertex). Thus, the path p can be constructed in
time O(level[t]) = O(n), where n is the number of vertices in . Now if the
ending vertex is ¢, then we have found a path from s to t. We trace back
the path p to find the edge e on p with minimum capacity ¢. Now we can
push ¢ amount of flow along the path p. Note that this cuts at least one
edge, e.g. the edge e, from the path p. On the other hand, if the ending
vertex v of p is not ¢, then » must be a "deadend”. Thus, we can cut all
incoming edges to v. In conclusion, in the above process of time O(n), at
least one edge is removed from the leveled graph L. Thus, after at most e
such processes, the vertices s and ¢ are disconnected, i.e., all shortest paths
from s to ¢ are saturated. This totally takes time O(ne). We give a formal
description for the above process.

Algorithm 4.2 SATURATING
Input: Leveled graph L.
1. while there is an edge from s do
find a path p of maximal length from s
if p leads to ¢
then saturate p and delete at least one edge on p.
else delete the last edge on p.

Now the complete version for Dinic’s algorithm can be given as follows.

Algorithm 4.3 Max-Flow Dinic

Input: A flow-graph (.

Output: A maximum flow f on (.

1. Let f(u,v)=0 for all vertex pairs (u,v);

2. Construct the residual graph Gy;

3. while there is a positive flow in Gy do
Call BFS_Dinic on Gy to construct the leveled graph L;
Call SATURATING to saturate all paths in L;

Let f* be the flow in (/; constructed by SATURATING;

Let f= f+4 f* be the new flow in G;
Construct the residual graph G'y;

By the above discussion, each execution of the body of the while loop
in Algorithm 4.3 takes time O(ne). Now we study the number of times the
body of the while loop is executed.
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Theorem 4.1 On a flow-graph G of n vertices, the body of the while loop
in Step 3 of Algorithm 4.3 is executed at most n — 1 times.

PROOF. We first prove that after each execution of the body of the while
loop, the length of the shortest path in the flow-graph is increased by at
least one. We need some notations. Let GG be a flow-graph, let f be the flow
obtained by one execution of the body of the while loop on the flow-graph
G/, and let Gy be the residual graph of G on the flow f. For any vertex v of
G, let level(v) be the distance from s to v in the graph G, and let levels(v)
be the distance from s to v in the graph Gy.

Claim 1: Suppose (v, w) is an edge in Gy, then level(w) < level(v) + 1.

Proof for Claim 1: (v, w) can be an edge in G’y due to two cases:

Case 1: (v, w) is an edge in . Then either the vertex w is seen before
we start the search from the vertex v — in this case the level of w cannot
be larger then level(v) 4+ 1, or the vertex w is discovered in the search from
v — in this case, the level of w is exactly one plus the level of v.

Case 2: (v, w)is not an edge in G. Since (v, w)is an edge in the residual
graph Gy of G on the flow f, we must have that (w,v) is an edge in G and
there is a positive flow in f from the vertex w to the vertex v. Since we only
push flow in the leveled graph L on edges that only connect consecutive levels
of vertices, we conclude that level(v) is one plus level(w). Thus, certainly
we also have level(w) < level(v) + 1.

Claim 2: For all vertices v, we have level(v) < level¢(v).

Proof for Claim 2: Let r = level¢(v) be the distance from s to v in the graph
Gy. Let (s,21,29,...,2,-1,v) be a shortest path in Gy from s to v. Then

level(v) < level(z,_1)+1 {due to Claim1}
< level(z,_g2) + 2
< level(zy) 4+ (r—1)
< level(s) + 7

r = levely(v)

In particular, we have level(t) < levels(¢), which implies that the length
of the shortest path from s to t is not decreased after each execution of the
body of the while loop.

11



Claim 3: level(?) < level¢(¢).

Proof for Claim 3: It has been already shown that level(t) < levels(¢) in
Claim 2. Hence, to prove Claim 3, we only need to show that level(¢) and
levels(t) are different. Let us assume the contrary that level(t) = level¢(¢) =
r and derive a contradiction.

Let P = (s,z1,22,...,2,-1,1) be a shortest path in the graph Gy from
the source s to the sink ¢. Then we must have

levely(t) = levely(z, 1)+ 1= ...=levelg(s) +r =7

By Claim 1, we have

level(t) < level(z,_1)+ 1
< level(z,_g) + 2
< level(zy) 4+ (r—1)
< level(s)+ 7

r

By our assumption, we also have level(¢) = 7, thus all inequalities “<” in the
above formula should be equality “=". This gives level(z;41) = level(z;)+ 1
foralli=1,...,7r—2,level(z1) = level(s)+ 1, and level(t) = level(z,_1)+ 1.
Now we show that P is also a path in the graph G. In fact, if (s,21) is not
an edge in G, then since (s, 1) is an edge in Gy, (21, s) must be an edge in
G and we have pushed a flow in f along the edge (21,s). But this implies
that (21,s) is an edge in the leveled graph L so level(z1) + 1 = level(s),
contradicting the fact that level(z1) = level(s) 4+ 1, Thus, (s,21) is an edge
in G. Similarly, all edges on the path P are edges in the graph GG. Therefore,
the path P is also a path in the graph G. Since the length of the path P is
r = level(t), P is a shortest path in (. By our SATURATING algorithm,
at least one of the edges on P is saturated, thus at least one of the edges
on P should not appear in the residual graph Gy. This contradicts the
assumption that P is also a path in the graph G/y. The contradiction proves
level(t) < levelz(1).

Thus, each execution of the body of the while loop in Algorithm 4.3
increases the length of the shortest path from s to ¢ in the flow graph G's
by at least 1.

Now we can complete the proof of the theorem. Since we start with the
original flow-graph G in which the length of the shortest paths from s to

12



t is at least one (we can always assume that the source s and the sink ¢
are different), if the body of the while loop were executed more than n — 1
times, Claim 3 says that the length of the shortest path from s to ¢ in the
resulting residual graph Gy would be at least n, i.e., would consist of more
than n vertices. But this contradicts the fact that the graph 'y has only n
vertices. [

Theorem 4.2 The running time of Dinic’s Mazimum Flow algorithm (Al-
gorithm 4.3) is O(n%e).

13
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5 Max-Flow Problem (Contd.)

5.1 Edmonds-Karp’s Algorithm

We first give a formal proof for a claim we made in the last lecture. Recall
that we denote by level(v) and levels(v) the distance from the source node
5 to the node v in the flow-graphs ' and Gy, respectively.

Lemma 5.1 Let G be a flow-graph and let f be the flow generated by an
execution of the body of the while loop in Dinic’s algorithm. If (u,v) is an
edge in the residual graph Gy and level(u) = level(v) — 1 in G, then (u,v)
s also an edge in the original flow-graph graph G'.

PROOF. Suppose (u,v) is not an edge in G. Since (u,v) is an edge in the
residual graph Gy, we must have that (v, u) is an edge in G and we pushed
a flow in f from vertex v to vertex u. However, since each execution of
the while of Dinic’s algorithm pushes flow only in the leveled graph I, we
conclude that

level(v) 4+ 1 = level(u)

This contradicts the condition given in the lemma that level(u) = level(v)—1.

O

In the last lecture, we have proved that if level(¢) = level(t), then for
a shortest path P = (s,2y,...,2,-1,t) in the graph Gy, we must have
level(z;) = level(z;41) — 1, level(s) = level(z1) — 1, and level(z,_1) =
level(#) — 1 in . Applying Lemma 5.1 claims that P is also a path in the
original graph G. Since P is a shortest path in Gy and level(t) = level¢(t), P
is also a shortest path in the original graph G. Consequently, P is contained
in the leveled graph L. By the subroutine SATURATING, all paths in the
leveled graph L are saturated. Thus, the path P in G should have also been
saturated, and at least one of the edges on P should have not appeared in

14



the residual graph G/'y. But this contradicts the assumption that P is a path
in G'¢. This contradiction combined with the inequality level¢(¢) > level(t)
gives

level ¢ () > level(?)

Therefore, each execution of the body of the while loop in Dinic’s al-
gorithm (Algorithm 4.3) increases the length of the shortest path in the
flow-graph G’y by at least 1. Since the lengths of the shortest paths in Gy
cannot be larger than n — 1, the while loop can be executed at most n — 1
times. Moreover, as we have discussed before, each execution of the body
of the while loop takes time O(ne). This concludes that Dinic’s algorithm
runs in time O(n%e).

It will be interesting to compare Dinic’s algorithm with Edmonds-Karp’s
algorithm, which also uses the strategy of finding shortest augmenting path.
Instead of finding all shortest paths, Edmonds-Karp’s algorithm finds just
one shortest path each time and saturates the path. The algorithm can be
given as follows.

Algorithm 5.1 Edmonds-Karp
Input: a flow-graph G
Output: a maximum flow on (¢

1. let f be the zero flow;
construct the residual graph G;
3. while there is a positive capacity path P in Gy do
find a shortest positive capacity path Fpy;
increase the flow f along the Fy as much as possible;
construct Gy for the new f;

We omit the detailed analysis here. An informal analysis can be given as
follows. Finding a single shortest path from s to ¢ can be done using breadth
first search in time O(e). Other steps in the loop can easily be done in time
O(e). Thus, each execution of the body of the while loop takes time O(e).
Each execution of the body of the while loop in the above algorithm cuts at
least one edge from a shortest path. Therefore, after at most e executions,
all shortest paths of the same length have been cut so that the length of
the shortest paths in the flow-graph G'y must be increased by at least 1.
Now using the same argument as above, the length of the shortest paths
cannot be larger than n — 1. Therefore, after at most O(en) executions of
the body of the while loop in the above algorithm, there will be no positive
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capacity path from s to ¢ in Gy and the algorithm stops with a maximum
flow. This concludes that Edmonds-Karp’s algorithm runs in time O(ne?),
which is slightly worse than Dinic’s algorithm.

5.2 Multiple source-sink flow problem

We say that a flow-graph G is a multiple source-sink flow-graph if GG has
more than one source or more than one sink (or both). The multiple source-
sink flow problem can be reduced to the single source-sink flow problem as
follows.

1. add a new source S and add a new sink 7;

2. add directed edges which goes from the new source S to all old sources
in the original flow-graph, and add an directed edge from every old sink
to the new sink 7.

3. define the capacity of every new added edge. We can simply let the
capacity be a very large number. For example, this number can be the
sum of the capacities of all edges in the original flow graph.

This is easy to see that a maximum flow in the new constructed single
source-sink flow-graph gives a maximum flow in the original multiple source-
sink flow-graph.

5.3 Graph Matching

Definition 5.1 Given an undirected graph G' = (V, F'), a mazimum match-
ing is a maximum subset of edges E' of E such that no two edges in E’
share a common endpoint.

Using the formal definition of an optimization problem, we can formulate
the Graph Matching problem as a 4-tuple ) = (Ig, Sg, fg.optg), where:

Ig: the set of all undirected graphs G = (V, E);

Sg: given G = (V, E) € I, Sq(G) is the collection of all subsets E' of E
such that no two edges in £’ share a common endpoint;

fo: given G € Ig and E' € Sg(G), fo(G, E') is equal to the number of
edges in F’;
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opltg: max

In this lecture we will discuss a special case: to find maximum matchings
in bipartite graphs.

Definition 5.2 A bipartite graph is an undirected graph G = (V, F) in
which V' can be partitioned into two sets V; and V, such that (u,v) €
implies either u € V4 and v € V5 or uw € V5 and v € V. That is, all edges go
between the two sets V; and V5.

There are several approaches to solve the maximum matching problem
in bipartite graphs.

e We can use the method of augmenting paths, which is described in our
Algorithm Analysis course. The time complexity for this method is
O(ne). We will give a more detailed and careful study on this method
for general non-bipartite graphs.

e We can use Dinic’s Algorithm to find a maximum matching in an
undirected bipartite graph G = (V, F) by constructing a flow graph
in which flows correspond to matchings. We define the corresponding
flow graph G’ as follows:

a. add two new vertices, let them be the source s and the sink ¢,

b. add new directed edges from the source s to the vertices in Vj
and new directed edges from the vertices in V5 to the sink ¢,

c. give each edge in the original graph ' a direction so all these
edges go from Vp to Vy,

d. assign unit capacity to each edge in the graph G'.

The proof of the following Theorem is straightforward and left for the
reader.

Theorem 5.2 A mazimum matching in a bipartite graph G corresponds
directly to a mazimum flow in the flow-graph G'.

If we apply Dinic’s Algorithm directly to the above flow-graph G’, we can
only claim a time bound O(n%e), which is worse than the augmenting path
method. However, a more careful analysis plus a slight modification will
show that the running time of Dinic’s Algorithm on the above flow-graph
G’ is bounded by O(y/ne), thus a better result than the direct augmenting
path method. The details of this analysis and the modification will be given
later in this course.
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6 Karzanov’s Algorithm

In this lecture, we present Karzanov’s Algorithm to get a maximum flow.
This approach runs in O(n?) time, thereby an improvement upon Dinic’s
Algorithm which runs in O(n%e) time. Let us review Dinic’s Algorithm
first.

Algorithm 6.1 Dinic’s Algorithm
Input: a flow-graph G
Output: a maximum flow on (¢

1. 1let f be the zero flow;

2. construct the residual graph Gy;
3. while there is a positive capacity path P in Gy do
begin
3.1 find all shortest paths of positive capacity from s
to t in Gy
3.2 increase the flow f along these paths as much as
possible;
3.3 construct Gy for the new flow f;
end

Step 3.1 can be done in O(e) time by Breadth-First Search, and Step
3.3 can easily done in time O(e). Moreover, we have already proved that
the while loop can be executed at most n — 1 times. Finally, our early
implementation shows that Step 3.2 takes time O(en). Therefore if we want
to improve the time complexity from O(n?e) to O(n?), what we need to do
is to improve the running time of Step 3.2. Now the question is how to
improve it.

Let us have a closer look at our implementation of Step 3.2 in Dinic’s
algorithm. With the leveled graph L being constructed, we iterate the pro-
cess of searching a path in L from the source s to the sink ¢, pushing flow
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along the path, and saturating (thus cutting) at least one edge on the path.
In the worst case, for each such a path, we may only be able to cut one edge.
Therefore, to ensure that the leveled graph L is eventually cut, we may have
to perform the above iteration e times.

The basic idea of Karzanov’s algorithm is to reduce the number of times
of the above iteration from e to n. In each iteration, instead of saturating
an edge in L, Karzanov saturates a vertex in L. Since there are at most n
vertices in the leveled graph L, the number of iterations is bounded by n.

Definition 6.1 Let v be a vertex in the leveled graph L = (Vg, Ep). Define
the capacity cap(v) of the vertex v to be

cap(v) = min Z cap(w,v), Z cap(v,u)

(w,v)€Ey (v,u)EEy

That is, cap(v) is the maximum amount of flow we can push through the
vertex v. For the source s and the sink t, we naturally define

cap(s) = Z cap(s,u) and  cap(t) = Z cap(w,t)

(s,u)EEy (w,t)€Ey

If we start from an arbitrary vertex v and try to push a flow of amount
cap(v) through v, it may not always be possible. For example, pushing
cap(v) = 10 units flow through a vertex v may require to push 5 units
flow along an edge (v,w), which requires that cap(w) is at least 5. But
the capacity of the vertex w may be less than 5, thus we would be blocked
at the vertex w. However, if we always pick the vertex w in L with the
smallest capacity, this problem will disappear. In fact, trying to push a flow
of amount cap(w) will require no more than cap(v) amount of flow to go
through a vertex v for all vertex ». Therefore, we can always push the flow
all the way to the sink ¢ (assuming we have no deadend vertices). Similarly,
we can pull this amount cap(w) of flow from the incoming edges of w all the
way back to the source s. Note that this process saturates the vertex w.
Thus, the vertex w can be removed from the leveled graph L in the rest of
the iterations of the algorithm SATURATING on L.

Now we can formally describe Karzanov’s Algorithm. The first subrou-
tine deletes all deadends in the leveled graph I and computes the capacity
for each vertex in L.

Algorithm 6.2 INITIALIZATION
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Input: the leveled graph L

1.

Perform a depth first search on L to delete all
vertices that are not on a path from s to ¢;
for each vertex v # s,t do

in[v] = 0; out[v] =0; flv]=0;
in(s) = 4o0; out(t) = 4003
for each edge (u,v) do

in[v] = in[v] + cap(u,v);

out[u] = out[u] + cap(u,v);
for each vertex v do

cap(v) = min{in[v], out[v]}

Here, infv] is the sum of capacities of all incoming edges of vertex v, out[v]
is the sum of capacities of all outgoing edges of vertex v, and f[v] is the
amount of flow we want to push (or pull) through vertex v.

We will always start with a vertex v with the smallest cap(v) and push
a flow of amount cap(v) through it all the way to the sink ¢. This process
is similar to the breadth first search algorithm, starting from the vertex v.
We use the array f[-] to record the amount of flow we need to push through
the corresponding vertex. f[w] = 0 implies that the vertex w has not been
seen in the breadth first search.

Algorithm 6.3 PUSH(v)
Input: the leveled graph L
{) is a queue used for the breadth first search.}

-

© 00 N O O WwN

=
= O -

=
w N

Q —wv;  [flv] = cap(v);
while ) is not empty do
u—Q;  fo= flul;
while f; >0 do
let (u,w) be the next edge from u
if flw]=0 and w# ¢ then Q — w;
if cap(u,w) < fo then
cut edge (u,w);
flw] = L]+ cap(u,w); fo = fo— cap(u, w);
else
push fp along (u,w);
cap(u,w) = cap(u,0) — fo;  flw] = fluw] + fos
if w# v then cap(u) = cap(u)— fo;
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14. if v # v and cap(u) =0
then delete u from the leveled graph L.

Note that we neither change the value cap(v) nor remove the vertex v
from the leveled graph L. This is because the vertex v will be used again in
the following PULL algorithm.

The algorithm PULL is very similar to algorithm PUSH. We start from
the vertex v and pull cap(v) amount of flow all the way back to the source
vertex s. Note that now the breadth first search is on the reversed directions
of the edges of the leveled graph L. This can be easily done by a reorgani-
zation of the adjacency list representation of the graph L and the process
can be done in time O(e) (this only needs to be done once for all calls to
PULL). Moreover, note that the only vertex that can be seen in both PUSH
subroutine and PULL subroutine is the vertex with the smallest capacity.
Therefore, no updating is needed for array f[-].

Algorithm 6.4 PULL(v)
Input: the leveled graph L
{Q’ is a queue used for the breadth first search.}

1. Q —wv;  flv]=cap(v);

2. while @' is not empty do

3. u—Q"5  fo= flu];

4, while f; >0 do

5. let (w,u) be the next edge into u

6. if flw]=0 and w# s then Q' — w;

7. if cap(w,u) < fo then

8. cut edge (w,u);

0. flw] = flul 4 cap(w. ) fo = fo— cap(w, u);
10. else

11. push fp along (w,u);

12. cap(w,u) = cap(w,w) — fo;  flw]= flw]+ fo; fo=0;
13, cap(u) = cap(u) — fo;

14. if cap(u) =10

then delete u from the leveled graph L.

Again note that after the execution of the PULL algorithm, the vertex
v with minimum capacity always gets removed.

With the subroutines PUSH and PULL, a new saturating subroutine can
be given as follows.
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Algorithm 6.5 SATURATING-Karzanov
Input: the leveled graph L
Output: a flow f on L that saturates all paths in L

1. call INITIALIZATION;

2. while there is a path from s to ¢t in L do

3 let v be the vertex in [ with minimum cap(v);
4. call PUSH(v);

5 call PULL(v);

We now analyze the algorithm SATURATING-Karzanov.

Lemma 6.1 The algorithm SATURATING-Karzanov takes time O(n?).

PROOF.  Step 1 takes time O(e) = O(n?). Steps 3 takes time O(n). Since
each execution of the loop body Steps 3-5 deletes at least one vertex from L,
the while loop body (Steps 3-5) is executed at most n times. Therefore, all
executions of Step 3 in the algorithm SATURATING-Karzanov take time
O(n?).

Now we study the complexity of Steps 4 and 5. Let us first consider
the subroutine PUSH. To push a flow of amount f[u] through a vertex wu,
we take each outgoing edge from w. If the capacity of the edge is smaller
than the amount of flow we need to push, we saturate the edge, and if the
capacity of the edge is not smaller than the amount of flow we need to push,
we let all remaining flow go along that edge and jump out from the while
loop of Steps 4-12 in the algorithm PUSH. Moreover, once an edge gets cut
at Step 8 of the algorithm, the edge will never appear in the leveled graph L
for the later calls for PUSH in the while loop of Algorithm SATURATING-
Karzanov. Thus, each execution of the while loop body Steps 5-12 in the
algorithm PUSH, except the last one, deletes an edge from the leveled graph
L. Therefore, the number of total such executions cannot be larger than e.
Consequently, all such executions in the algorithm SATURATING-Karzanov
take time O(e) = O(n?). Besides these executions, the subroutine PUSH
spends constant time on each vertex u, thus O(n) time on the graph L. Since
there are only O(n) calls to the PUSH in the algorithm SATURATING-
Karzanov, we conclude that the algorithm SATURATING-Karzanov takes
time O(n?) on all calls to PUSH. Similarly, the total time spent on the calls
to PULL is also bounded by O(n?). [

Algorithm 6.6 Karzanov’s Algorithm
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Input: a flow-graph G
Output: a maximum flow on (¢

let f be the zero flow;

construct the residual graph G;

while there is a path from s to t in Gy do

1. construct the leveled graph I;

.2, call SATURATING-Karzanov to find a flow f* to
saturate L;

3.3. f=f+f"; construct G for the new flow f;

W w wN =

Theorem 6.2 Karzanov’s Algorithm (Algorithm 6.6) runs in time O(n®)

PROOF. According to the discussion of Dinic’s algorithm, we know that the
body of the while loop in Algorithm 6.6 is executed at most n — 1 times.
Moreover, Steps 3.1 and 3.3 takes time O(e) = O(n?). By Lemma 6.1,
each call to the subroutine SATURATING-Karzanov takes time O(n?). We
conclude that Karzanov’s algorithm takes time O(n?). [
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7 Maximum matching on bipartite graphs

In this lecture, we study maximum matching problem on bipartite graphs.
We show that the problem can be reduced to a special form of the max-flow
problem, for which Dinic’s algorithm runs very efficiently.

7.1 Max-Flow Min-Cut Theorem

Definition 7.1 Let ¢ = (V, E) be a flow graph with source s and sink ¢.
A partition of V = ViUV, (ie. ViUV, =V and V1NV, = ¢) is a cut if
S € Vl, te Vs

Definition 7.2 The capacity of a cut (V1,V3) is defined by the value:
cap(Vy,Va) = Z cap(v,w)
UEVl,wEVQ
The following lemma will be used in our later discussion.

Lemma 7.1 Let G = (V, E) be a flow graph and let (V1,V3) be a cut of G.
Then for any flow f on G we have

|f|: Z f(vvw)

UEVl ,u}EVQ

PROOF. By definition, we have |f| = >, cv f(s,w). By the definition of a
flow, we have 3~ cy f(v,w) = 0 for all vertices v € Vi — {s}. Therefore, we
have

|fl = Zf(svw): Z flv,w)

weV veV] weV

Yoo fw)+ D> fv,w)

UEVl,wevl UEVl,wEVQ

Now since f(v,w)= —f(w,v) for all vertices v, w € Vq, the first term in the
last expression of the above equation is equal to 0. The lemma follows. [J
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Lemma 7.1 implies one direction of the following fundamental theorem
in the study of maximum flow problem.

Theorem 7.2 (Max-Flow Min-Cut Theorem) For any flow graph G =
(V, E),

max{|f|: f is a flow on G} = min{cap(Vy, V2) : (V1,V3) is a cut of G}

PROOF. Let f be a flow on G and let (V1, V3) be a cut of G. By Lemma 7.1
and note that f is a flow on G thus f(v,w) < cap(v, w) for all vertices v € V;
and w € V;, we have

lfl = Z flo,w) < Z cap(v,w) = cap(Vy, Vz)

UEVl,wEVQ UEVl,wEVQ

Since f is an arbitrary flow on G and (Vq, V3) is an arbitrary cut of G, we
conclude

max{|f|: fis a flow on G} < min{cap(Vy,Vz2): (V1,V3) is a cut of G'}

To prove the other direction, let f be a maximum flow on the flow graph
G. Let Gy be the residual graph of G with respect to f. By Theorem 3.1,
there is no path from the source s to the sink ¢ in the residual graph G';.
Define V7 to be the set of vertices that are reachable from the source s in
the graph G'y. Thus, s € V; and ¢t ¢ V. Therefore, if we let Vo =V — V7,
then (V4,V3) is a cut of the flow graph G. Now let e = (v, w) be an edge in
G such that v € V7 and w € V;. Since e is not an edge in the residual graph
(' (otherwise, the vertex w would be reachable from s in G'y), the edge e
must be saturated by the flow f. That is, f(v,w) = cap(v,w). Therefore,
we have

cap(ViVa)= Y caplvw)= S f(v.w)

UEVl,wEVQ U€V1,IU€V2
By Lemma 7.1, the last expression is equal to |f|. This proves
max{|f|: fis a flow on G} > min{cap(Vy, V) : (V1,V3) is a cut of G'}

The proof of the theorem is thus completed. []
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7.2 Hopcroft and Karp’s analysis

Now we describe an analysis given first by Hopcroft and Karp, which gives an
O(y/ne) time algorithm for maximum matching on bipartite graphs, which
is the best algorithm known so far for the problem.

Given a bipartite graph B = (V4,V3), we can construct a flow-graph G
by adding two vertices s and ¢, adding a directed edge from s to each of
the vertices in V4, adding a directed edge from each of the vertices in V5 to
t, giving each original edge in B a direction from V; to V;, and setting the
capacity of each edge in GG to 1. The resulting flow-graph G has some very
interesting properties that can be characterized as follows.

Definition 7.3 A flow graph G is a simple flow-graph if it satisfies the
following two conditions:

1. the capacity of each edge of G is 1; and

2. every vertex v # s,t either has only one incoming edge or has only
one outgoing edge.

Clearly, the flow-graph G' constructed above from a bipartite graph is a
simple flow-graph. Now consider Dinic’s algorithm on a simple flow-graph

G.

Algorithm 7.1 Dinic’s Algorithm

1. [f=0;
Construct Gy;
3. while there is a path from s to t in Gy do
construct the leveled graph I;
saturate all the paths in L from s to %;
update the flow f;
construct the new Gy;

Lemma 7.3 Let G = (V, F) be a simple flow-graph and let f be a flow on G
such that f(v,w) is either 1 or 0 for all pairs (v, w) of vertices in G. Then
the residual graph Gy is also a simple flow-graph.

PROOF. Consider any vertex w in GG, w # s,t. Suppose that the vertex w
has only one incoming edge e = (v, w).

If f(v,w) = 0 then f(w,u) = 0 for all w € V. Thus, in the residual
graph Gy, e is still the only incoming edge for the vertex w.
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If f(v,w) = 1 then there must be an outgoing edge (w,u) of w such
that f(w,u) = 1, and for all other outgoing edges (w,u') we must have
f(w,u') = 0. Therefore, in the residual graph G's, the edge (v, w) disappears
and we add another outgoing edge (w, v), and the edge (w, u) disappears and
we add a new incoming edge (u,w), which is the unique incoming edge of
the vertex w in Gy.

The case that the vertex w has only one outgoing edge can be proved
similarly. [J

Lemma 7.4 Let G = (V, F) be a simple flow-graph, and let f be a maz-
flow on G, let | be the length of the shortest path from s tot in G. then
I <n/|f|+ 1, where n is the number of vertices in G.

PROOF. Define V; to be the set of vertices of distance ¢ from s in G.
Fix an 7, 0 <7 <[ — 1. Define C'{ and Cy by

CIIU‘/]' and CQIV—Cl

It is clear that (Cy,C73) is a cut of the flow graph G.

We claim that for any edge e = (v, w) of GG such that v € C7 and w € Cy,
we have v € V; and w € Vi4q1. In fact, if v € V}, for some h < 7, then the
distance from s to w cannot be larger than h + 1 < ¢. This would imply
that w is in €. Thus, v must be in V;. Now since e = (v, w) is an edge in
G, wis in Vi for some £ > ¢+ 1, and v is in V;, we must have w € V1.
This observation together with Lemma 7.1 gives us

|fl= Z f(vvw)é Z f(vvw)

veC1,wels veVi,weViq4

Now since G is a simple flow graph, there is at most one unit flow through
a vertex v # s,t. Therefore, if ¢ = 0 (i.e., V; = {s}), then |f| < |Vi41], and
ifi =141 (ie., Vigr ={t}), then |f| <|Vi|, and for 0 < i < [+ 1, we have
both |f] < |Vit1] and | f| < |Vi|. Summarizing these inequalities for all ¢, we
get

n=|VIzWVil+[Val+ -+ [Vie| =2 (1= DI f]

which gives immediately | < n/|f|+ 1. U

Now we are ready for analyzing the complexity of Dinic’s algorithm on
simple flow-graphs.
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Lemma 7.5 For simple flow-graphs, the constructed leveled graph L in
Dinic’s algorithm can be saturated in time O(e).

PROOF. The saturating is based on a depth first search process, starting
from the source s. Any subtree constructed during the depth first search
can be entirely deleted if it does not lead to the sink . Moreover, once a
path from s to ¢ is found, all edges on the path will be saturated because
all edges in a simple graph have capacity 1. Therefore, in this process, each
edge is processed at most twice then will be deleted from the leveled graph
L. This concludes that the running time of the saturating process can be

done in time O(e). U

Since other steps in the while loop body of Dinic’s algorithm can be
easily done in time O(e), we conclude that each execution of the while loop
body of Dinic’s algorithm takes time O(e).

Lemma 7.6 On a simple flow-graph, the while loop body of Dinic’s algo-
rithm is executed at most 2,/n + 1 times, where n is the number of vertices
in the simple flow-graph.

PROOF. Let h be the number of times the while loop body of Dinic’s
algorithm is executed on a simple flow graph G of n vertices. Let fi,ax be a
maximum flow on G.

If | fnax] < 24/, then of course the loop body is executed at most 2y/n
times since each execution of the loop body increases the flow value by at
least 1.

Now assume | fiax| > 2v/n. Let ko be the largest integer such that after
ko executions of the while loop body, the flow fy constructed in Dinic’s
algorithm is still less than | finax| — /7. A few interesting facts about kg are

.k0<h;

e after (kg + 1)st execution of the while loop body in Dinic’s algorithm,
the constructed flow is at least | fiax| — /73

o the value of the maximum flow in the flow graph Gy, is larger than

NG

By the third fact, the length of the shortest path from s to ¢ in the flow
graph Gy, is bounded by n/y/n+ 1 = /n + 1. Now since each execution
of the while loop body increases the length of the shortest path from s to
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t by at least 1 (see Claim 3 in the proof of Theorem 4.1), we conclude that
ko < \/ﬁ

By the second fact, after (kg + 1)st execution of the while loop body in
Dinic’s algorithm, the constructed flow f; is at least |fiax| — /1. There-
fore, with another \/n executions of the while loop body, starting from the
flow-graph G'y,, Dinic’s algorithm must reach the maximum flow value fpax
because each execution of the while loop body increases the flow value by
at least 1.

In conclusion, we have h < kg + 1 ++/n < 2y/n + 1. This completes the
proof. [

Theorem 7.7 Dinic’s algorithm runs in time O(y/ne) on a simple flow
graph of n vertices and e edges.

PROOF. Follows directly from Lemma 7.5 and Lemma 7.6. []

Corollary 7.8 The maximum matching problem on bipartite graphs can be

solved in time O(y/ne).
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8 Maximum matching for general graphs

Now we study the maximum matching problem on general graphs. Recall
that a matching M on a graph G = (V, F')is a subset of edges in & such that
no two edges in M share a common endpoint. A vertex v is a matched vertex
if v is an endpoint of an edge in M, otherwise, the vertex is an unmatched
vertez.

Definition 8.1 Let M be a matching in a graph G. An alternating path is
a simple path p = {ug, uy, ug, ...} such that the vertex u; is unmatched and
that the edges (ug;—1,ug;) are in M, for ¢ = 1,2,.... An alternating path is
an augmenting path if it starts and ends with unmatched vertices.

Note that alternating paths and augmenting paths are relative to a fixed
matching M. The following theorem serves as a fundamental theorem in
graph matching.

Theorem 8.1 Let G be a graph and let M be a matching in G. M is
mazimum if and only if there is no augmenting path in G.

PROOF. Suppose that there is an augmenting path p = (ug, u1,...,u,) in
the graph GG with respect to the matching M.

It is easy to see that the length r of p is odd. Let r = 2h + 1, where h is
an integer. Consider the set of edges M’ = M @& p, where @ is the symmetric
difference defined by A¢ B = (A— B)U(B — A). Since the number of edges
on p that are in M is one less than the number of edges on p that are not in
M, the number of edges in M’ is one more than that in M. It is also easy
to check that M’ is also a matching in G: M' = M @p=(M-p)U(p—M),
for any two edges e; and ez in M’, (1) if both e; and ey are in M — p then
they are in M so have no common endpoint because M is a matching; (2)
if both e; and e, are in p — M then ey and e; have no common endpoint
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because p is alternating; and (3) if e; is in M — p and ey is in p— M then ey
cannot have an endpoint on p since the two endpoints of p are unmatched
and all other vertices on p are matched by edges on p.

Therefore, M’ is a matching larger than the matching M. This proves
that if there is an augmenting path p, then the matching M cannot be
maximum.

Conversely, suppose that the matching M is not maximum. Let My
be a maximum matching. Then |Mpy.| > |M|. Consider the graph Gy =
Mpax B M = (M — Mumax) U (Mmax — M ). No vertex in Gy has degree larger
than 2. In fact, if a vertex v in GGy had degree larger than 2, then at least
two edges incident on v belong to either M or My, contradicting the fact
that both M and My, are matchings in G. Therefore, each component of
G must be either a simple path, or a simple cycle. In each simple cycle
in Gy, the number of edges in My« — M should be exactly the same as
the number of edges in M — Mpy.c. For each simple path in Gy, either
the number of edges in M — My is the same as the number of edges in
Mmax — M (in this case, the path has an even length), or the number of
edges in M — My, is one more than the number of edges in My, — M, or
the number of edges in M.« — M is one more than the number of edges in
M — Myax. Since |Mpyax| > | M|, we conclude that there is at least one path
p = (u1,ug,...,uzpt1) in Go in which the number of edges in Myax — M is
one more than the number of edges in M — M,,«. Note that the endpoint w4
of the path p must be unmatched in M. In fact, since (uy, ug) € Mmax — M,
if uy is matched in M by an edge e, we must have e # (uq,uz). Now since u;
has degree 1 in G, e € Gy, e is also contained in My, ax. This would make
the vertex w; incident on two edges (ui,uz) and e in the matching Mpyay.
Similar reasoning shows that the vertex wugp4q is also unmatched in M. In
consequence, the path pis an augmenting path in the graph &' with respect
to the matching M.

This completes the proof. [

Based on the above theorem, a maximum matching algorithm can be
given as follows.

Algorithm 8.1 Max-matching for general graphs
1. M= ¢;

while there is an augumenting path in (' do
find an augmenting path p;
construct the matching M = M @ p with one more edge;
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Since a matching in a graph G of n vertices cannot contain more than
n/2 edges, the while loop in the above algorithm will be executed at most
n/2 times. In the next lectures, we will show how an augmenting path can
be constructed when a matching is given for a graph.
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9 Theorems on maximum matching problem

Let us first review the fundamental theorem and algorithm for maximum
matching for general graphs.

Theorem 9.1 Let G be a graph and let M be a matching in G. M is
mazimum if and only if there is no augmenting path in G.

Algorithm 9.1 Max-matching for general graphs
1. M= ¢;

2. while there is an augumenting path in ¢ do
find an augmenting path p;
Let M = M & p;

All known algorithms for maximum matching of general graphs are based
on Theorem 9.1 and Algorithm 9.1. The main point here is how an aug-
menting path can be found. For the rest of the discussion, we assume that
G is a fixed graph and that M is a fixed matching in G.

Observe that an augmenting path P must start with an unmatched ver-
tex vg. The next vertex v; must be a neighbor of vg. If g is also unmatched,
then the edge (v, v1) constitutes an augmenting path. On the other hand,
if the length of P is larger than 1, then the third vertex vy on P must be the
one that matches vy in M. Now since the path {wg, vy, v2} does not make
an augmenting path, the fourth vertex vs must be a neighbor of the vertex
vg, and so on. Therefore, it seems that we can search the augmenting path
using a breadth first search manner: start with vg, then search all neighbors
of vg, then search all vertices that match the neighbors of vy, and so on until
we find an unmatched vertex. In this search, we give each vertex v a level
number level[v] such that all roots of the breadth first search trees are at
level 0, and that the children of a vertex at level ¢ are at level 1+ 1. A vertex
will be called an even level vertex or an odd level vertex according to its level
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number. On each even level vertex wvyp, we search all neighbors of vy, and
on each odd level vertex vg41, we only take the unique vertex wyp49 such
that the edge (vap41,v2n42) is in the matching M.

Another modification we will made is that we will perform this BFS
fashion search starting from allunmatched vertices at the same time, instead
of starting from a single vertex. Implementation of this modification is
simple: as for the standard BFS, we use a first-in first-out queue. However,
we first put all unmatched vertices in the queue then perform the BFS
fashion search until either an augmenting path is found or the queue @) is
empty. It is easy to see that this search will first construct the first level for
all BF'S trees rooted at the unmatched vertices, then the second level for all
BES trees, and so on.

Remark 9.1 These modifications make the BFS trees lose many of their
well-known and nice properties. The following lost properties should be
mentioned:

(1) in the modified BFS process, a cross-edge (i.e., an edge of GG that links
two vertices in the BFS trees that do not have a father-son relation) may
link two vertices whose level numbers differ by an arbitrarily large number.
On the other hand, in the standard BFS process, each cross-edge links two
vertices whose level numbers differ by at most 1;

(2) in the modified BFS process, a tree path from an ancestor to a
descendent may no longer be a shortest path between the two vertices; and

(3) in the modified BF'S process, a tree may not necessarily contain all
vertices in a connected component of the graph G. In fact, now there may
be cross-edges that link two vertices in two different BFS trees.

We present our first draft of the algorithm.

Algorithm 9.2 Modified BFS (Version 1)

1. put all unmatched vertices in the queue @J;
while no augmenting path has been found do
Let v be the next vertex in the queue (;
if v is an even level vertex
then make all unvisited neighbors of v the children
of v and add them to ()
else {v is an odd level vertex.}
if the vertex w that matches v is unvisited,
then make w a child of » and add w to ().
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Algorithm 9.2 does not describe the details of how an augmenting path
can be found, which is discussed in the rest of this section.

Definition 9.2 In the modified BFS process, a cross-edge e is a good cross-
edge if either e € M and e links two odd level vertices in two different BF'S
trees, or e € M and e links two even level vertices in two different BFS trees.

Lemma 9.2 If a good cross-edge is given in the modified BFS process, then
an augmenting path can be constructed in linear time.

PROOF. Let e = (02541, u2t41) be a good cross-edge such that e € M,
{v0,¥1,...,02511} is a tree path in a BF'S tree T, from root vy to vy541, and
{wo, ty,. .., uze11} is a tree path in a BFS tree T, from root ug to wugiyq,

where vy # ug. By the modified BFS process, vy and ug are unmatched
vertices, the edges (vg;,v9i41) and (ugj, ugj41) are not in M, for all ¢ =
0,...,sand j =0,...,¢, and the edges (v2i41, v2i42) and (ugj41, ugj42) are
in M, foralle=0,...,s—1and j =0,...,t — 1. Therefore, the path

{?]0, Viyeey V25, V2541, U¢41, U2ty - - -5 UT, UO}

is an augmenting path that can be easily constructed in linear time.
The case that the good cross-edge is not in M and links two even level
vertices can be proved similarly. [J

Lemma 9.2 suggests a refinement of Algorithm 9.2.

Algorithm 9.3 Modified BFS (Version 2)

1. put all unmatched vertices in the queue @J;
while no augmenting path has been found do
Let v be the next vertex in the queue (;
if v is an even level vertex then
for each neighbor w of v do
if (v,w) is a good cross-edge then
construct an augmenting path and stop;
if w is unvisited then
make w a child of v and add w to @);
else {v is an odd level vertex.}
let w be the vertex matching v;
if (v,w) is a good cross-edge then
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Figure 1: The structure of a blossom

construct an augmenting path and stop;
if w is unvisited then
make w a child of v and add w to @);

for years people believed that Algorithm 9.3 was sufficient for construct-
ing an augmenting path until the following structure was discovered.

Definition 9.3 In the modified BFS process, a cross-edge e is a bad cross-
edge if either ¢ € M and e links two odd level vertices in the same BFS tree,
or e ¢ M and e links two even level vertices in the same BFS tree.

Let us consider how a bad cross-edge may make the modified BF'S process
fail to find an existing augmenting path. Let e = {v,v'} be an edge in M
such that both v and v" are odd level vertices in the same BFS tree. When
we first encounter the edge e in the modified BF'S process, both vertices v
and v" have been visited. Therefore, the edge cannot be added to the BFS
tree. However, the edge cannot be simply ignored since it may “hide” an
augmenting path from our BF'S process. Consider the case in Figure 1(a),
where each single line represents an edge not in the matching M and each
double line represents a matched edge in M.

The only two unmatched vertices in Figure 1(a) are vg and ug. Thus, the
modified BF'S process starts with vg and ug being in the queue ¢ and stops
as in Figure 1(b) without finding an augmenting path. Note that the edge
(vg, uz) is not included in the BFS trees because at time uz is expanding, vs
has been visited through vy, and at time vg is expanding, only the matched
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edge (vg, v5) is considered. The edge (v,v’) is also not included in the BFS
trees because at time v (resp. v’) is processed, v’ (resp. v) has been visited.
However, there is clearly an augmenting path from vy to uo:

!
{?foa U1, V2,3, 04,0,V , V5, Vs, U2, U1, Uo}

In a similar case when e is a bad edge such that e is not in M and e
links two even level vertices in the same BFS tree, we can also construct
a configuration in which the modified BFS process fails to find an existing
augmenting path.

This discussion motivates the following definition.

Definition 9.4 In the modified BFS process, a blossom is a simple cycle
consisting of a bad cross-edge e = (v,v’) together with the two unique tree
paths from v and v’ to their least common ancestor v”. The vertex v” will
be called the base of the blossom.

For example, the cycle {vy, v3, v4, v,v’, v5, vg, v2} is a blossom whose base
18 v3y.

Remark 9.5 There are a number of interesting properties for blossoms.
We list those that are related to our later discussion.

(1). A blossom consists of an odd number of vertices. This is because
either both ends v and v’ of the bad cross-edge are odd level vertices or both
v and v’ are even level vertices.

(2). Suppose that the cycle b = {vg, v1,...,v2s,v0} is a blossom, where
v is the base, then the edges (vqs,v9) and (vgi, v2;41) forall i =0,...,5—1,
are not in the matching M, and the edges (vgj_1,vq;) forall j =1,..., s are
in the matching M.

(3). If an edge eq is not contained in a blossom but is incident to a vertex
v in the blossom, then the edge ey cannot be in the matching M unless the
incident vertex » is the base of the blossom. This is because each vertex,
except the base, in a blossom is incident on a matched edge in the blossom.

Identifying and constructing a blossom is easy, as stated in the following
lemma.

Lemma 9.3 In linear time, we can identify a bad cross-edge and construct
the corresponding blossom.

PROOF. In the modified BFS process, we keep track of the level number
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for each visited vertex. Once a cross-edge e = (v,?’) is found, we can follow
the tree edges back to the root to check whether the two ends v and v' of e
belong to the same BF'S tree. This together with the level numbers of v and
v’ is sufficient for deciding if e is a bad cross-edge. For a bad cross-edge, we
trace the two tree paths back from the common root to find the last common
vertex v" on the paths. The vertex v” is the base for the blossom. [

Thus, blossoms are structures that may make the modified BFS process
fail. Is there any other structure that can also fool the modified BF'S process?
Fortunately, blossoms are the only such structures, as we will discuss below.
We start with the following lemma.

Lemma 9.4 If a matched edge in M is a cross-edge, then it is either a good
cross-edge or a bad cross-edge.

PROOF. Lete = (v,v') be a matched edge that is a cross-edge. The vertices
v and v’ cannot be roots of the BFS trees since roots of the BF'S trees are
unmatched vertices. Let w and w’ be the fathers of v and v’, respectively.
The tree edges (w,v) and (w’,v') are not matched edges since (v,?') is a
matched edge. Thus, v and v" must be odd level vertices. Now if v and v’
belong to different BF'S trees, then the edge e is a good cross-edge, otherwise
e is a bad cross-edge. [

Lemma 9.5 If there is no blossom in the modified BFS process, then there
s a good cross-edge if and only if there is an augmenting path.

PROOF. By Lemma 9.2, if there is a good cross-edge, then there is an
augmenting path that can be constructed from the good cross-edge in linear
time.

Conversely, suppose there is an augmenting path p = {ug, w1, ..., uoiy1}.
If t = 0, then the path p itself is a good cross-edge and we are done. Thus,
assume t > 0. Let vy, ..., vy be the roots of the BF'S trees, processed in that
order by the modified BFS process. Without loss of generality, we assume
ug = vp where b is the smallest index such that vy is an end of an augmenting
path. With this assumption, the vertex uy is a child of ug in the BF'S tree
rooted at ug. If any matched edge e on pis a cross-edge, then by Lemma 9.4,
e is either a good cross-edge or a bad cross-edge. Since there is no blossom,
e must be a good cross-edge again the lemma is proved.
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Thus, we assume that the augmenting path p has length larger than 1,
no matched edges on p are cross-edges, and uq is a child of ug in the BFS
tree rooted at ug.

Case 1. Suppose that all vertices on p are contained in the BFS trees.

Both ug and ugi41 are even level vertices. Since the path p is of odd
length, there must be an index ¢ such that level[u;_1] = levellu;] mod 2.
Without loss of generality, assume ¢ is the smallest index satisfying this con-
dition. The edge (u;—1,u;) must be a cross-edge. Thus, by our assumption,
(ui—1,u;) is not a matched edge.

Suppose that both u;_1 and wu; are odd level vertices, then ¢ > 2. Since
(ui—2,u;—1) is a matched edge, u;_o # ug. Moreover, by our assumption,
(ui—2,u;—1) is a tree edge. Thus, u;_ is an even level vertex. Moreover,
since (u;—g,u;—1) is a matched edge, the index ¢ — 2 is an odd number. Now
the partial path

Pi—2 = {UO, U, .- -,Uz’—z}

is of odd length and has both ends being even level vertices. This implies
that there is an index j such that j < ¢—2 and level[u;_1] = level[u;] mod 2.
But this contradicts the assumption that ¢ is the smallest index satisfying
this condition.

Thus, w;—1 and u; must be even level vertices. So (u;—1,u;) is either a
good cross-edge or a bad cross-edge. By the assumption of the lemma, there
is no blossom. Consequently, (u;—1,u;) must be a good cross-edge and the
lemma is proved for this case.

Case 2. Some vertices on p are not contained in any BFS trees.

Let u; be the vertex on p with minimum ¢ such that u; is not contained
in any BFS trees. Then 7 > 2.

Suppose (u;—1,u;) € M. If u;_1 is an odd level vertex then u; would have
been made a child of u;_1. Thus u;_1 is an even level vertex. However, since
u;_1 cannot be a root of a BFS tree, u;_1 would have matched its father in
the BFS tree, this contradicts the assumption that w;_; matches u; and wu;
is not contained in any BF'S trees.

Thus we must have (u;—q1,u;) ¢ M. Then (u;—2,u;—1) is in M. Thus,
the index ¢ — 2 is an odd number. By our assumption, (u;_2,u;—1) is a tree
edge. If u;_1 is an even level vertex, then u; would have been made a child
of u;_q. Thus, u;_s is an even level vertex. Now in the partial path of odd
length

Pi—2 = {u07 Uy .-y ui—Q}v
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all vertices are contained in the BFS trees, and the two ends are even level
vertices. Now the proof goes exactly the same as for Case 1 — we can
find a smallest index j < ¢ — 2 such that level[u;_1] = level[u;] mod 2 and
(u;—1,u;) is a good cross-edge.

This completes the proof of the claim. []

By Lemma 9.5, if there is an augmenting path and if no bad cross-edge
is found (thus no blossom is found), then the modified BFS process will
eventually find a good cross-edge. By Lemma 9.2, an augmenting path can
be constructed in linear time from this good cross-edge. In particular, if the
graph is bipartite, then the modified BF'S process will always be able to con-
struct an augmenting path if one exists, since a bipartite graph contains no
odd length cycle, thus no blossom can appear in the modified BF'S process.
This gives the well-known algorithm of running time O(ne) for maximum
matching on bipartite graphs.

In order to develop an efficient algorithm for maximum matching on
general graphs, we need to resolve the problem of blossoms. Surprisingly,
the solution to this problem is not very difficult, based on the following
“blossom shrinking” technique.

Definition 9.6 Let G be a graph and M a matching in G. Let b be a
blossom found in the modified BFS process. Define G/b to be the graph
obtained from G by “shrinking” the blossom b. That is, G/b is a graph
obtained from G by deleting all vertices (and their incident edges) of the
blossom b then adding a new vertex v, that is connected to all vertices that
are adjacent to some vertices in b in the original graph G.

It is easy to see that given the graph G' and the blossom b, the graph
(/b can be constructed in linear time.

Since there is at most one matched edge that is incident to but not
contained in a blossom, for a matching M in &, the edge set M — b is a
matching in the graph G/b.

Theorem 9.6 (Edmond) Let G be a graph and M a matching in G. Letb
be a blossom in G. Then there is an augmenting path in G with respect to
M if and only if there is an augmenting path in G [b with respect to M —b.

PROOF.  Suppose that the blossom is b = {wg,vy,..., v, 00}, Where vg is
the base. We first show that the existence of an augmenting path in G/b
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implies an augmenting path in G.. Let p = {ug, uy, ..., u;} be an augmenting
path in G//b and let v, be the new vertex in (/b obtained by shrinking b.

Case 1. If the vertex v, is not on the path p, then clearly p is also an
augmenting path in G.

Case 2. Suppose v, = u;. Then v, is an unmatched vertex in the
matching M — b. Consequently, the base vy of the blossom b is unmatched
in the matching M.

If the edge (u;—1,u) in G'/b corresponds to the edge (u;—1,v0) in G, then
the path

p1 = {uo, U1, ... U1, v0}

is an augmenting path in G.

If the edge (w¢—1,u;) in G/b corresponds to the edge (u;—1,v;) in G,
where vy, is not the base of b, then one of the edges (v,_1,vs) and (va, vp41)
is a matched edge. Without loss of generality, suppose that (v, vp41) is a
matched edge. Then, the path

P2 = {u07u17 <oy Ut—15Vhy Vit - - '7?]57?]0}

is an augmenting path in G.

The case vy, = ug can be proved similarly.

Case 3. Suppose that v, = wug, where 0 < d < t. Then without
loss of generality, we assume that (ugq_1,uq) is a matched edge in M — b
and (ug,u441) is an unmatched edge. The edge (ug—1,uq) in G/b must
correspond to the matched edge (ugq—1,v9) in . Let the edge (ug, ugq41) in
(/b correspond to the edge (vp, ug41) in G.

If vy, = vg, then the path

P2 = {u07' <oy Ud—15V0, Ud41 s - - '7ut}

is an augmenting path in G.
If vy, # vg, then as we proved in Case 2, we can assume that (vy_1,vp)
is a matched edge. Thus, the path

p3 = {u07' <oy Ud—1,V0, V15« oy Vh—1, Vh, Ud41, - - '7ut}

is an augmenting path in G.

Therefore, given an augmenting path in G /b, we are always able to con-
struct an augmenting path in G.

The proof for the other direction that the existence of an augmenting
path in G implies an augmenting path in G/b is rather complicated based
on a case by case analysis. We omit the proof here. [
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Corollary 9.7 Let GG be a graph of n vertices and let b be a blossom. Given
an augmenting path in G/b, an augmenting path in G can be constructed in

time O(n).

PROOF. Directly follows from the construction given in the proof of The-
orem 9.6. [
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10 Algorithms for maximum matching problem

We first review two theorems given in the last lecture.

Theorem 10.1 Suppose we perform the modified BF'S process. If there is
an augmenting path and there are no blossoms, then the BFS process will
find an augmenting path.

Theorem 10.2 If a blossom b is found in the modified BFS process, then
there is an augmenting path in G with respect to the matching M if and only
if there is an augmenting path in G /b with respect to the matching M — b.
Moreover, an augmenting path in G can be constructed in time O(n) if an
augmenting path in G [b is given.

Now the idea is fairly clear for how we can find an augmenting path:
we perform the modified BFS process, either we find an augmenting path
in G then we are done, or we find a blossom then we shrink the blossom
and search an augmenting path in G'/b. Once an augmenting path in G/b
is found, we can easily convert it into an augmenting path in G, as stated
in Corollary 9.7. Theorem 9.6 ensures that if we cannot find an augmenting
path in GG/b then there is no augmenting path in G.

The main algorithm for constructing a maximum matching for a general
graph now can be rewritten as follows.

Algorithm 10.1 Maximum Matching
Input: a graph G
Output: a maximum matching M in G

1. M=2¢.

2. repeat
if there is an augmenting path in ¢ w.r.t.M
then
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construct an augmenting path p;
let M =M & p;
until no augmenting path is found

The process of finding an augmenting path is implemented by the mod-
ified BF'S process as follows.

Algorithm 10.2 Finding An Augmenting Path

1. Perform the modified BFS process;
if an augmenting path is found then
convert it to an augmenting path for the original
graph (7, stop;
3. if a blossom is found then
construct the graph (//b, resume the modified BFS
process;

To give a more detailed description for the modified BFS process, we
give a level number level[v] to each vertex v. Initially, level[v] = —1 for all
vertices v. Thus, a vertex v is visited if and only if its level number is larger
than —1.

Algorithm 10.3 Finding An Augmenting Path (Refined)
Input: a graph G and a matching M in &
Output: an augmenting path in (7, or report no such a path

1. for all vertices w of G do levellw]= —1;
2. for all unmatched vertices w in ¢ do
levellw] =0; Q — w;
3. while the queue () is not empty do
ve— Q;

if level[v] is even then
for each neighbor w of v do

if (v,w) is a good cross-edge then
construct an augmenting path;
convert it into an augmenting path in G
stop;

if (v,w) is a bad cross-edge then
construct the blossom b based on (v,w);
construct the graph G//b;
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update the queue () properly
go back to the beginning of Step 3;
if levellw] = —1 then
make w a child of wv;
level[w] = level[v] 4+ 1;
Q — w;
else {v is an odd level vertex.}
let w be the vertex matching v;
if (v,w) is a good cross-edge then
construct an augmenting path;
convert it into an augmenting path in G
stop;
if (v,w) is a bad cross-edge then
construct the blossom b based on (v,w);
construct the graph G'/b;
update the queue () properly
go back to the beginning of Step 3;
if level[w] = —1 then
make w a child of wv;
level[w] = level[v] 4+ 1;
Q — w;
4. {At this point, the modified BFS is finished without
finding an augmenting path}
return ("no augmenting path")

The correctness of Algorithm 10.3 is ensured by Lemma 9.5 and Theo-
rem 9.6.

Lemma 10.3 Algorithm 10.3 runs in time O(ne) on a graph of n vertices
and e edges.

PROOF. A BFS process takes time O(e).

If a blossom b is found, the graph G /b is constructed and the queue @ is
updated. It is easy to see that constructing G'/b and updating @) can be done
in time O(e). Moreover, the the number of vertices in the graph G//b is at
least two less than the number of vertices in the graph . Therefore, there
are at most n/2 blossoms found in Algorithm 10.3, and for each blossom
it takes time O(e) for Algorithm 10.3 to update the graph and the queue.
Therefore, the total time spent by Algorithm 10.3 on processing blossoms is
bounded by O(ne).

45



Once an augmenting path is found, by Corollary 9.7, in time O(n) we can
expand a vertex back to a blossom and construct an augmenting path for the
new graph. Since there are at most n/2 such blossom restoration operations,
the total time Algorithm 10.3 spends on constructing an augmenting path
for the original graph is bounded by O(n?). This proves the time bound for
the algorithm stated in the lemma. [

Theorem 10.4 The mazimum matching problem on general graphs can be
solved in time O(n’e).

PROOF. By Lemma 10.3, an augmenting path can be found in time O(ne).
Since each augmenting path increases one edge for the matching, and there
are no more than n/2 edges in a matching for a graph of n vertices, the
repeat loop in Algorithm 10.1 is executed at most O(n). The theorem
follows. [

We should point out that O(n?e) is not the best upper bound for the
maximum matching problem. In fact, a moderate change in Algorithm 10.3
gives an algorithm of running time O(n?®) for the problem. The basic idea
for this change is that instead of actually shrinking the blossoms, we keep
track of all vertices in a blossom by “marking” them. A careful bookkeeping
technique shows that this can be done in time O(n) per blossom. The best
known algorithm for the maximum matching problem on general graphs runs
in time O(y/ne), thus matching the best known algorithm for the maximum
matching problem on bipartite graphs.
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11 Linear programming problem

The Linear Programming Problem is to find a vector (x1,22,...,2,) € R"
such that a linear function ¢izq + ¢cox9 + ... + ¢,x,, which is called an
objective function, is optimized (maximized or minimized) and the vector
(22,22, ...,x,) satisfies a given set of conditions (these conditions are called
linear constraints).

a11%1 + 1222 + ... + Q1pTy, > A
a1x1 + a9+ ...+ appx, > a,
bi1z1 + bigxe + oo+ b1, < by
bs121 + bsoxa + ... + bspry, < by

dizy +digza+ o+ digz, = dy

dpxy + dpxe+ ..o+ dpx, = d;

This is called the general form of Linear Programming Problem.
Using our 4-tuple formulation, the Linear Programming Problem is given
as LP = (Ig,5q, fg.optg), where

e [y is the set of 7-tuples (¢, A, B, D,a,b,d), where ¢ = (¢1,...,¢,),
a=(ay,...,a;), b = (by,...,bs), and d = (dy,...,d) are vectors of
real numbers, A = (a;;)rxn, B = (bij)sxn, and D = (d; ;)ixn are
matrices of real numbers, for some positive integers r, s, ¢, and n.

e foragivena = (¢, A, B, D,a,b,d) € Ig, the solution set Sg(a) consists
of the set of vectors = (z1,...,2,) of real numbers that satisfies the
conditions Az > a, Bx < b, and Dz = d.
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e for a given input instance a € Ig and a solution z € Sg(a), the
objective function value is defined by fo(a,z) = 121+ -+ cpzy.

e oplg is either max or min.

For many combinatorial optimization problems, the objective function
and the constraints on a solution to an input instance are linear, i.e., they can
be formulated by linear equations and linear inequalities. Therefore, optimal
solutions for these combinatorial optimization problems can be derived from
optimal solutions for the corresponding instance in Linear Programming
Problem. This is one of the main reasons why Linear Programming Problem
receives so much attention from researchers.

Example 11.1 (Maximum Flow) As an example, we show how the Max-
Flow Problem is formulated in terms of the Linear Programming Problem.

A flow-graph G of n vertices can be given by n? non-negative real num-
bers ¢; ;, 1 < ¢,j5 < n, where ¢; ; is the capacity of the edge from vertex ¢
to vertex j (recall that ¢; ; = 0 if and only if there is no edge from vertex
i to vertex j). Here we assume that vertex 1 is the source and vertex n is
the sink. Now a flow on ¢ (i.e., a solution to the instance G of Max-Flow
Problem) can be given by an n*-dimensional vector

a = (fl,lv- . '7f1,n7f2,17- . '7f2,n7- . '7fn,17- . '7fn,n)

where f; ; is the amount of flow from vertex ¢ to vertex j. The three condi-
tions that a flow should satisfy are trivially given by

fij <eij for1<e,5<n
fij == for1<i,j<n
n

Z fi;=0 t#£ 1,n
i=1
and the objective function is to maximize the linear function f; 2+ fi3 +
-+ fi, (or equivalently, to maximize fi, + fo, + -+ facin)-
The standard form for Linear Programming Problem is given by

minimize cixq1 + cox9 + -+ -+ € 2,
41121 + @12%2 + ... + ATy, = @

2171 + A22%2 + ... + A2, T, = A2
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U121 + Gm2Z2 + oo + Cpp Ty = A
120, 2920, ..., z,2>0

The general form of Linear Programming Problem can be converted into
the standard form through the following steps.

1. Converting Max to Min

Maximization max{cyz1 + ¢392 + ... + ¢, 2, } can be replaced by the
equivalent condition min{(—e¢q)z1 + (—¢2)xa + -+ (—¢n)Tp }-

2. Eliminating < inequalities

Each inequality b;1x1 + bjoxo + ... + bz, < b; is replaced by the
equivalent inequality (—bs1)x1 + (=bi2)zs + ... + (=bi)z, > (=b;).

3. Eliminating > inequalities

FEach inequality aj121 + ajoz2 + ... + aj,z, > a; is replaced by the
inequality aj1z1 + ajo22 + ... + aj,z, — y; = a;, where y; is a new
variable satisfying y; > 0.

4. Eliminating unconstrained variables

For each variable x; for which z; > 0 is not present, introduce two
new variables u; and w»; satisfying w; > 0 and »; > 0, and replace the
variable x; by u; — v;.

It is easy to see that the above process will convert Linear Programming
Problem from an arbitrary general form to the standard form. It is also
easy to verify that an optimal solution for the general form can be easily
derived from an optimal solution for the corresponding standard form. Thus,
we only need to concentrate on the standard form for Linear Programming
Problem.

A classical method, called Stmplex Method was derived for solving Linear
Programming Problem. 1t is based on the following observations. Fach
equation in the constraints (1) defines a hyperplane in the n-dimensional
space R"™, so the set of all points in R™ that satisfy the constraints (1)
forms a polytope in R™, which is a convex set.! Moreover, the objective

A set Sin R™ is conver if for any two points z and y in S, the line segment Ty is
entirely in S.
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function c;z1 + - - -+ ¢, 2, is a convex function.? Therefore, there is a vertex
of the polytope at which the objective function achieves its optimal value,
and this vertex can be found using greedy method. Roughly speaking, the
Simplex Method starts from an arbitrary vertex of the polytope defined by
the linear constraints (1), and uses greedy method to traverse the vertices
of the polytope until reaching a vertex at which local improvement is no
longer possible. This vertex then is an optimal solution.

In most practical cases, Simplex Method is fast enough to construct an
optimal solution for a given instance of Linear Programming Problem. It
took a while for researchers to be able to formally prove that in the worst
case, Simplex Method runs in exponential time.

It was an outstanding open problem whether Linear Programming Prob-
lem could be solved in polynomial time, until the spring of 1979, the Russian
mathematician L.G. Khachian published a proof that an algorithm, called
the Fllipsoid Algorithm, solves Linear Programming Problem in polynomial
time. Despite the great theoretical value of the Ellipsoid Algorithm, it is not
clear at all that this algorithm can be practically useful. The most obvious
among many obstacles is the large precision apparently required.

Another polynomial time algorithm for Linear Programming Problem,
called the Projective Algorithm, or more generally, the Interior Point Algo-
rithm, was published by N. Karmarkar in 1984. The Projective Algorithm,
and its derivatives, have great impact in the study of Linear Programming
Problem.

2A function f from R” to R is convexzif for any two points ¢ and y in R™ and for any
real number 0 < ¢ <1, we have f(ce 4+ (1 —c)y) < cf(z)+ (1 — o) f(y).
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12 Integer Linear Programming Problem

Suppose that in Linear Programming Problem, we further require that
all numbers are integers, then we get Integer Linear Programming Prob-
lem. More formally, Integer Linear Programming Problem is to find an
n-dimensional vector @ = (21, 2,...,2,) of integers such that

minimize cixq1 + cox9 + -+ -+ € 2,

1171 + 1222 + ... + 1,2, = aq
2171 + A22%2 + ... + A2, T, = a3
...... (2)
U 1% + Q222 + oo + ATy = Ay
120, 2920, ..., z,2>0

where all numbers ¢;, a;;, a;, 1 <@ <n,1 < j <m, are integers. The equa-
tions (2) give the standard form for Integer Linear Programming Problem.
We can similarly define the general form for Integer Linear Programming
Problem. Moreover, it is not hard to verify that the translation steps de-
scribed in the previous Lecture Notes convert Integer Linear Programming
Problem in general form into Integer Linear Programming Problem in stan-
dard form.

It might seem that Integer Linear Programming Problem is easier since
we are working on simpler numbers. This intuition is, however, not true. In
fact, Integer Linear Programming Problem is computationally harder than
general Linear Programming Problem. This may be seen from the following
fact: now the point set defined by the constraints (2) is no longer a convex
set. It consists of discrete points in the n-dimensional Euclidean space.
Therefore, greedy algorithms based on local search do not seem to work any
more.

To formally prove the difficulty of Integer Linear Programming Problem,
we need introduce some definitions.
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Definition 12.1 An optimization problem 1 = (I1, 51, f1,0pt1) is poly-
nomial time reducible to an optimization problem Q2 = (I3, 52, f2, 0pty) if
there are two polynomial time algorithms A; and A; such that (1) given an
input instance z1 € Iy of ¢J1, the algorithm Ay constructs an input instance
x9 € I3 of @3, and (2) for any optimal solution y, for the input instance
xq of ()3, the algorithm Ay constructs an optimal solution g, for the input
instance x1 of 4.

The following theorem follows directly from the definition.

Theorem 12.1 Suppose that an oplimization problem ()1 is polynomial
time reducible to an optimization problem ()5, then

(1) If Q2 can be solved in polynomial time, then so can Q1;

(2) If Q1 cannot be solved in polynomial time, then neither can Q.

A problem is a decision problem if each input instance of the problem
requires only a YES/NO answer. Note that a decision problem can also be
regarded as an optimization problem in which the objective function takes
only value 0 (NO) or 1 (YES).

Recall that a decision problem is in NP if it can be solved by a nonde-
terministic algorithm running in polynomial time, and that a problem L in
NP is NP-complete if all problems in NP can be polynomial time reducible
to L. By Theorem 12.1, if any NP-complete problem is polynomial time
solvable, then P = NP. Since people commonly believe that P # NP, ev-
ery NP-complete problem is regarded as not solvable in polynomial time
(though there is no formal proof for this conjecture).

Definition 12.2 An optimization problem () is NP-hard if there is an NP-
complete problem that is polynomial time reducible to @.

According to Theorem 12.1, we accept the conjecture that every NP-hard
optimization problem is not solvable in polynomial time.

Now we are ready to show the hardness of Integer Linear Programming
Problem.

Theorem 12.2 Integer Linear Programming Problem is NP-hard.
PROOF. We show that the well known NP-complete problem, the Satisfia-

bility Problem, is polynomial time reducible to the Integer Linear Program-
ming Problem.
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Formally, an instance « of the Satisfiability Problem is given by a Boolean
expression in conjunctive normal form (CNF):

04201/\02/\.../\Cm (3)

where each C; (called a clause) is an OR of Boolean literals. The question is
whether there is a Boolean assignment to the Boolean variables x4, zq, .. .,
x, in « that makes the expression true.

We show how the input instance (3) of Satisfiability Problem is translated
into an input instance for Integer Linear Programming Problem.

Suppose that the clause C; is

Ci= (2 V- -Va, VT, V---VTj,)
We then construct a linear constraint
o+t (l—z) 4 (1—2j5,) > 1
Moreover, for each Boolean variable z; in o, we have the constraints
z; >0 and ;<1

Here we let z; = 1 simulate the assignment z; = true and let z; = 0 simulate
the assignment z; = false. Therefore, the clause C; is true if and only if
the corresponding linear constraint is satisfied for a 0-1 assignment to the
variables zq, x2, -+, Tp.

The objective function of the Integer Linear Programming Problem is
irrelevant in this reduction and can be defined arbitrarily. For example, we
can define the objective function as

min{xq + 224+ -+ 2,}

which corresponds to finding a truth assignment for the Boolean expression
a such that the assignment has a minimum weight (i.e., the number of 1’s
in the assignment is minimized).

It is easy to see that for the given input instance a for Satisfiability Prob-
lem, the corresponding input instance 7(«a) for Integer Linear Programming
Problem can be constructed in polynomial time. Moreover, if an optimal
solution is found for m(«), then the Boolean expression a is certainly satisfi-
able thus the answer to « is YES. On the other hand, if no feasible solution
can be constructed for 7(a) then a has no truth assignment so the answer

to a should be NO.
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Therefore, Satisfiability Problem is polynomial time reducible to Integer
Linear Programming Problem. Consequently, Integer Linear Programming

Problem is NP-hard. O

As we have described in the previous Lecture Notes, the general Lin-
ear Programming Problem can be solved in polynomial time. The above
discussion shows that Integer Linear Programming Problem is much harder
than the general Linear Programming Problem. Our latter study will show
that Integer Linear Programming Problem is actually one of the hardest
optimization problems.
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13 NP-hard optimization problems

Recall the decision problem PARTITION that is defined as follows.

ParTITION

INPUT: A set S = {xy,29,...,2,} of n integers

QUESTION: Is there a subset S/ C S such that
Ylies i = Djes—s Tj!

It is well-known that the problem PARTITION is NP-complete.

We now introduce several optimization problems that are at least as hard
as PARTITION problem.

We start with an optimization version for the problem PARTITION that
is given by SUBSETSUM = ([, S, f, opt), where

o [ ={(z1,22,...,2,; B) | ;, B : integers}

o S({z1,-- 20 B)) =45 CHr, . 20} | Ypesr i < B

[} f(<$1, vees Ty B>, Sl) = inesl i

e opl : max
Theorem 13.1 The SUBSETSUM problem is NP-hard.
PROOF. We show a polynomial time reduction f from the problem PAR-
TITION to the problem SUBSETSUM.

Given an input instance o = {xy,29,...,2,} for the problem PARTITION,
fla) = (21,23,...,2,; B) is an instance for the problem SUBSETSUM, where

B = (32", %;)/2. Now it is obvious that if an optimal solution to the
instance f(a) of SUBSETSUM is a subset S” of {1, 22,...,2,} such that

1 i3
2, m= g2
=1

z; €S’
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then @ = {zy,...,2,} is a YES-instance for PARTITION, otherwise « is a
NO-instance for the problem. []

Another popular optimization problem is KNAPSACK problem that is
formally defined by KNapsack = (1,9, f,opt), where

o [ ={(s1,....8,501,...,05; B) | 5;,v;, B : integers}

o S((81,.0y8ni 01,0 B)) = {5 C{lL,...,n} | Yiess < B}
o f({s1,. , 8101, 01 B),S) =Y ies Wi

e opl : max

An “application” of KNAPSACK problem can be described as follows. A
thief robbing a store finds n items. The ith item is worth v; dollars and
weighs s; pounds. The thief wants to take as valuable a load as possible,
but he can carry at most B pounds in his knapsack. Now the thief wants to
decide what items he should take. Fortunately, the problem is NP-hard, as
we prove in the following theorem.

Theorem 13.2 The KNAPSACK problem is NP-hard.

PROOF.  We construct a polynomial time reduction f from the problem
SUBSETSUM to the problem KNAPSACK.

Given an input instance a = (a1,...,2,; B) for the problem SUBSET-
Sum, f(a) = (x1,...,2.;21,...,2,; B) is an input instance for the problem
Knapsack. Clearly, an optimal solution to the instance f(a) is a subset
S of {1,...,n} that satisfies the condition } ;.5 #; < B and maximizes the
sum Y ;g ;. Thus, an optimal solution to the instance f(a) of KNAPSACK
is also an optimal solution to the instance « of SUBSETSUM. [

We say that a collection of ¢ subsets (S1,...,59.) of {1,...,n}is a ¢-
partition of {1,...,n}if SyU---US. = {1,...,n} and all subsets Sy, ..., S,
are pairwisely disjoint.

We consider the optimization problem ¢-PROCESSOR SCHEDULING, which
is formally defined by ¢-SCHEDULE = (1,9, f, opt), where

o [ ={(t1,...,t,) | t;’s are integers}

o S((t1,...,tn)) = {{(51,...,9:) | (51,...,9:) a c-partition of {1,...,n}}
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o f({tr,eestn)s (51505 50)) = maxi{d jes, th)
e opt :min

Intuitively, suppose we are given n jobs such that the ¢th job takes exe-
cution time ¢;, and we want to distribute these jobs to ¢ identical processors
so that the parallel finish time (i.e., the time at which all processors finish
their work) is minimized.

Theorem 13.3 The ¢-PROCESSOR SCHEDULING problem is NP-hard, for
c> 2.

PROOF. We give a polynomial time reduction f from PARTITION problem
to ¢-PROCESSOR SCHEDULING problem.

Let a = (#1,...,2,) be an input instance for PARTITION problem. With-
out loss of generality, we assume that >~ | 2; is an even number — otherwise
a is clearly a NO-instance for PArRTITION PROBLEM. We define f(a) to be
(x1,...,%n, Bs,...,B.),where B, = (3.7, t;)/2forall » = 3, ..., c. Clearly,
f(a)is an input instance for the ¢c-PROCESSOR SCHEDULING problem. Now
it is easy to verify that if an optimal solution to f(a) gives a parallel finish
time (>_7=; ¢;)/2, then (zq,...,2,) is a YES-instance for PARTITION prob-
lem, otherwise, (x1,...,2,) is a NO-instance for the problem. [J

Thus, all these three optimization problems described above are NP-
hard. By our believing that P # NP, they cannot be solved in polynomial
time. However, this does not obviate the need for solving these problems
because of their obvious applications. One possible approach is that we could
relax the requirement that we always find the optimal solution. In practice,
a near-optimal solution will work fine in many cases. Of course, we expect
that the algorithms for finding the near-optimal solutions are efficient.

Definition 13.1 An algorithm A is an approzimation algorithm for an op-
timization problem @ = (Ig, Sqg, fg,optg), if on any input instance z € Iy,
the algorithm A produces a solution y € So(z).

Note that here we have put no requirement on the approximation quality
for an approximation algorithm. Thus, an algorithm that always produces
a “trivial” solution (for example, it simply returns the first item for the
KNaPsACK problem) is an approximation algorithm. To measure the quality
of an approximation algorithm, we introduce the following concept.
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Definition 13.2 An approximation algorithm A for an optimization prob-
lem @ = (Ig, Sg, fg.optg) has an approzimation ratio r(n), if on any input
instance z € Ig, the solution y produced by the algorithm A satisfies

Opt(x) : _
1) < r(lz|) if optg = max
g(p?(z; <r(]z|) if optg = min

where Opt(z) is defined to be max{f(z,y) | y € S¢g(2)} if optg = max and
to be min{ f(z,y) | y € Sg(z)} if optg = min.

Remark 13.3 By the definition, an approximation ratio is at least as large
as 1. It is easy to se that the closer the approximation ratio to 1, the better
the approximation quality of the approximation algorithm.
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14 The Knapsack problem

We start with an approximation algorithm for the KNAPSACK problem. Re-
call that the KNAPSACK problem is defined as

KNAPSACK
INPUT: (S1,...,8,501,...,0,; B) where all s;,v;, B are integers

OutpruT: A subset S of {1,...,n}, such that }",c5s; < B
and ) ;g v; is maximized

We first present an algorithm that solves the KNAPSACK problem pre-
cisely. To simplify the description, for a subset S of {1,...,n}, we will call
> ics S: the size of S and )~ ;cgv; the value of 5. Let V = vy +vg+ -+ -+ v,.
Thus, there is no subset of {1,...,n} that can have value larger than V.
The algorithm goes as follows. For each index ¢ and for each value j <V,
we try to answer the question

Question K(¢,7)

Is there a subset S of {1,...,47} such that the size of S is not
larger than B and the value of 5 is equal to 57

The answer to Question K (i,7) is “yes” if and only if at least one of the
following two cases is true: (1) there is a subset S” of {1,...,7—1} such that
the size of 57 is not larger than B and the value of 5 is equal to j (in this
case, simply let S be S”), and (2) there is a subset S of {1,...,¢— 1} such
that the size of S is not larger than B — s; and the value of 5" is equal to
J — v; (in this case, let S = 5" U {i}). Therefore, if we are able to answer
Question K (¢ —1,7) for all j, 0 < 7 <V, we can answer Question K(1,j)
easily.

For small values 7, the Question K(7,7) seems easy. In particular, the
answer to K(0,7) is always “no” for j > 0 and the answer to K(0,0) is
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The above discussion motivates the following dynamic programming al-
gorithm for solving the KNaPsacK problem. We first compute K(0, 7) for all
J, then, inductively, compute each K'(¢,7) based on the answer to K(i—1, j)
for all j'. For each item K (4, ), we associate it with a subset S in {1,...,¢}
such that the size of 5 is not larger than B and the value of 5 is equal to j.

Now a potential problem arises. How do we handle two different wit-
nesses for a “yes” answer to the Question K'(¢,7)? More specifically, suppose
that we find two subsets 57 and 53 of {1,...,¢} such that both of 5y and
S5 have size bounded by B and value equal to j, should we keep both of
them with K(¢,7), or ignore one of them? Keeping both can make K(i,7)
exponentially grow as ¢ increases, which will significantly slow down our al-
gorithm. Thus, we intend to ignore one of 57 and S3. Which one do we want
to ignore? Intuitively, the one with larger size should be ignored (recall that
S1 and S have the same value). However, would ignoring the set cause a fi-
nal loss of the optimal solution? Fortunately, the following theorem ensures
that optimal solutions cannot get lost when we ignore the set with larger
size.

Theorem 14.1 Let Sy and Sy be two subsets of {1,...,1} such that Sy and
S5 have the same value, and the size of 51 is at least as large as the size
of S3. If 51 leads to an optimal solution S = 51U S5 for the KNAPSACK
problem, where S3 C {i + 1,...,n}, then S = S5 U S5 is also an optimal
solution for the KNAPSACK problem.

PROOF. Let size(.5) and value(.S') denote the size and value of a subset §
of {1,...,n}, respectively. We have

size(S') = size(Sy) + size(S3) and  size(S) = size(S1) + size(S3)

By the assumption that size(S7) > size(.S3), we have size(.S) > size(S).
Since S is an optimal solution, we have size(S’) < B. Thus 5’ is also a
solution to the KNAPSACK problem. Moreover,

value(S') = value(S2) + value(Ss) = value(S1) + value(S3) = value(S)
Thus, S’ is also an optimal solution. [J

By Theorem 14.1, for two subsets Sy and Sy of {1,...,¢} that both
witness the “yes” answer to Question K (7, j), if the one of larger size leads
to an optimal solution, then the one with smaller size also leads to an optimal
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solution. Therefore, ignoring the set of larger size will not lead to loss of
all optimal solutions. More specifically, if we can derive an optimal solution
based on the set of larger size, then we can also derive an optimal solution
based on the set of smaller size using exactly the same procedure.

Now we are ready for the algorithm.

Algorithm 14.1 Xnapsack-Dyn
Input: S1,...,84;01,...,0,; 8, all integers
Output: A subset S C {l,...,n}, such that ) ;g5 < B
and ) ;cs?; is maximized

1. for 1=0 to n do
for j=0 to V do

Kli,j] = #;
2. K[0,0] = ¢; {¢ is the empty set}
3. for :=0 ton—-1do
for j=0 to V do
if K[i,j]# * then
Put(K[7,j], K[i + 1,7]);
if size(K[t,7])+ sit1 < B then
V=74 vit1; {j is the value of KTJi,j|}
Put(K[i,jlUu{i+ 1}, K[i + 1,0]);
4. 7=V,
while K[n,j]=* do
i=i-5

5. return Kln,j].

Step 4 of the algorithm Knapsack-Dyn searches the last row from the
last column to find the first K[n,j] that is not *. Obviously, the value j
is the largest value a subset S of {1,...,n} can make under the restriction
that 5 has size bounded by B.

The subroutine Put(So, K[¢, 7])is used to solve the multiple witness prob-
lem, where S is a subset of {1,...,i} such that Sy has value j. Details of
this subroutine is given as follows.

Algorithm 14.2 Put(Sy, K[, j])
1. if KJ[i,j]=* then
K[i,j] = So;
else if size(Sy) < size(K[i,j])
then Kli,j]= 59.
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According to our discussion, it should be clear that the Algorithm 14.1
solves the KNAPSACK problem.

Theorem 14.2 The algorithm Knapsack-Dyn runs in time O(nV').

PROOF. We show data structures on which the if statement in Step 3
can be executed in constant time. The theorem follows directly from this
discussion.

For each item KTi, j], which is for a subset S;; of {1,...,¢}, we associate
three parameters: (1) the size of 5;;, (2) a marker m;; indicating whether
¢ is contained in S;;, and (3) a pointer p;; to an item K[¢— 1,;'] in the
previous row such that the set \9;; is derived from the set K[i — 1, j/]. Note
that the actual set S;; is not stored in KTz, j].

With these parameters, the size of the set S;; can be directly read from
KTi, j] in constant time. Moreover, it is also easy to verify that the subrou-
tine calls Put(K[i, j], K[t 4 1, j]) and Put( K[, j]U{i+ 1}, K[i 4+ 1,v]) can
also be performed in constant time by updating the parameters in K[i+1, j]
and K[i+ 1,v].

This shows that steps 1-4 of the algorithm Knapsack-Dyn take time
O(nV).

We must show how the actual optimal solution Kln,j] is returned in
step 5. After we have decided the item K[n,j]in step 5, which corresponds
to an optimal solution 5,; that is a subset of {1,...,n}, we first check the
marker my,; to see if 5,; contains n, then follow the point p,; to an item
K[n —1,j'], where we can check whether the set 5,,; contains n — 1 and a
pointer to an item in the (n — 2)nd row, and so on. In time O(n), we will
be able to “collect” all elements in S,; and return the actual set §,,;. [

It seems that we have developed a polynomial time algorithm that solves
the NP-hard optimization problem KNapsack. This is, in fact, not true
since the value V' can be much larger than any polynomial of n.

Remark 14.1 We point out that the problem SUBSETSUM can be solved
by an algorithm very similar to Knapsack-Dyn, with running time O(nB)
on input instance {1, ...,x,; B}. We leave the detailed implementation for
this algorithm as an exercise to the reader.
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15 Approximating Knapsack

We re-visit KNAPSACK problem and attempt to develop an approximation
algorithm that provides a solution of acceptable quality. Recall that the
KNAPSACK problem is defined as

KNAPSACK
INPUT: (S1,...,8,501,...,0,; B) where all s;,v;, B are integers

OutpuT: A subset S of {1,...,n}, such that }~..gs; < B
and ) ;- g v; is maximized

In the last lecture, we presented an algorithm Knapsack-Dyn that, on
an input instance X = (s1,...,8,;01,...,0,; B) of the KNAPSACK problem,
constructs an optimal solution for X in time O(nV'), where V =377, v;. If
V' is not bounded by any polynomial function of n, then the running time
of the algorithm is not polynomial. Is there a way to lower the value of V7
Well, an obvious way is to divide each value v; by a sufficiently large number
K so that V is replaced by a smaller value V/ = V/K. In order to let the
algorithm Knapsack-Dyn to run in polynomial time, we must have V/ < en?
for some constants ¢ and d, or equivalently, K > V/(en?). Another problem
is that the value v;/ K may not be an integer while by our definition, all
input values in an instance of KNAPSACK problem are integers. Thus, we
will take v/ = |v;/K|. This gives a new instance X' for KNAPSACK problem

r_ c ! I
X = (s1,..,8.301,...,0; B)

where v/ = |v;/K |, for i = 1,...,n. For K > V/(en?) for some constants
¢ and d, the algorithm Knapsack-Dyn finds an optimal solution for X’ in
polynomial time. Note that a solution to X’ is also a solution to X and we
intend to “approximate” the optimal solution to X by an optimal solution
to X'. Since the application of the floor function ||, we lose precision thus
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an optimal solution for X’ may not be an optimal solution for X. How
much precision have we lost? Intuitively, the larger the value K, the more
precision we would lose. Thus, we want K to be as small as possible. On
the other hand, we want K to be as large as possible so that the running
time of the algorithm Knapsack-Dyn can be bounded by a polynomial. Now
a natural question is whether there is a value K that makes the algorithm
Knapsack-Dyn run in polynomial time and cause not much precision loss
so that the optimal solution to the instance X' is “close” to the optimal
solution to the instance X. For this, we need the following formal analysis.

Let S C {1,...,n} be an optimal solution to the instance X, and let
S" C{1,...,n} be the optimal solution to the instance X’ produced by the
algorithm Knapsack-Dyn. Note that S is also a solution to the instance X’
and that S’ is also a solution to the instance X. Let Opt(X) = Y ;cqv; and
Apz(X) = 3" ,cq v; be the objective function values of the solutions § and
S’ respectively. Therefore, Opt(X)/Apa(X) is the approximation ratio for
the algorithm we proposed. In order to bound the approximation ratio by
a given constant €, we consider

Opt(X) = Z v;

€S
v
= KY —
e K
v;
< K 1
< K%+
€S
(&
< I/’ -
< Kn+ K ZLAJ
€S
= Kn+ K Z ?JZ’»
€S
The last inequality is because the cardinality of the set 5" is bounded by n.
Now since 57 is an optimal solution to X' = (s1,...,8,;01,...,v; B),
we must have
PRSI
1€S 1€S!
Thus,
Opt(X) < Kn+ K Z v}
€S’
(&
= K K
nt K L)
€5’
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< EKnt+ Ky 2
—~ K

€S’

= Kn+ Apz(X) (4)

This gives us the approximation ratio.

Opt(X) Kn

Apa(X) =1 Apa(x)

Without loss of generality, we can assume that s; < Bforalli=1,...,n
(otherwise, the index ¢ can be simply deleted from the input instance since
it can never make contribution to a feasible solution to X ). Thus, Opt(X)
is at least as large as maxy<i<,{v;} > V/n. From inequality (4), we have

Apz(X) > Opt(X)— Kn > v_ Kn
n

It follows that

Opt(X) < 14 Kn
Apx(X) — % — Kn
~ g Kn?
N V — Kn?

Thus, in order to bound the approximation ratio by 1+ ¢, it should be such
that
Kn?
V—Kn? —
This leads to K < (eV)/(n*(1+ ¢)).

Recall that to make the algorithm Knapsack-Dyn run in polynomial time
on the input instance X', we must have K > V/(en?) for some constants ¢
and d. Combining these two relations, we get ¢ = 1 + 1/¢, and d = 2, and
the value

V.
(1+1/€e)n?
makes the algorithm Knapsack-Dyn run in time O(n>(1+1/¢)) and produces

a solution S’ to the instance X with approximation ratio bounded by e.
We summarize the above discussion in the following algorithm and the-

K =V/(en?) =

orems.
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Algorithm 15.1 Knapsack-Approx
Input: (S1,...,8,;01,...,0,;B), and a constant e.
Output: A subset S’ C {l,...,n}, such that } ;cqs < B

. Let K= ﬁ;
2. fori=1tondo v =|v/K|;
3. Apply algorithm Knapsack-Dyn on (s1,...,8,;0],...,00;
and find a subset S’ C {1,...,n};
4. Output S5';

B)

Theorem 15.1 For any input instance of the KNAPSACK problem, the algo-
rithm Knapsack-Approx runs in time O(n3(1+1/¢)) and produces a solution
with approzimation ratio bounded by 1 + ¢.

Theorem 15.2 For any fized constant €, there is an algorithm of running
time O(n>) that, on an input instance of the KNAPSACK problem, produces

a solution with approzimation ratio bounded by 1+ €.

This lecture concludes with the above result.
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16 Approximating Processor Scheduling

We continue the discussion of approximation algorithms.

We presented an O(n?/¢) time approximation algorithm with approxi-
mation ratio € for any € > 0 for the KNAPSACK problem. Note that the time
complexity of this algorithm is polynomial in both the input size n and the
value 1/¢, which seems the best we can expect for an approximation algo-
rithm for an NP-hard optimization problem. This motivates the following
definition.

Definition 16.1 An optimization problem ¢ has a fully polynomial time
approzimation scheme (FPTAS) if it has an approximation algorithm A
such that given (z,¢), where x is an input instance of () and € is a positive
constant, A finds a solution for # with approximation ratio bounded by 1+¢
in time polynomial in both n and 1/e.

By the definition, the KNAPSACK problem has a fully polynomial time
approximation scheme. In this lecture, we illustrate the techniques for devel-
oping fully polynomial time approximation schemes for optimization prob-
lems by studying another important optimization problem, the ¢-PROCESSOR
SCHEDULING problem.

The approach for developing a fully polynomial time approximation
scheme for the ¢-PROCESSOR SCHEDULING problem is very similar to that
for the KNAPSACK problem: we first develop a precise algorithm for the
problem such that the algorithm runs in time polynomial in both n and T,
where T is a large number obtained from the input. Then we try to scale
T by dividing all numbers in the input by a large number K. By properly
choosing the value K, we can make the precise algorithm to run in polyno-
mial time and keep the approximation ratio bounded by a given constant
€. Because of the similarity, some details in the algorithms and in the anal-
ysis are omitted. The reader is advised to refer to corresponding parts in
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the study of the KNAPSACK problem and complete the omitted parts for a
better understanding.

Recall that the optimization problem ¢-PROCESSOR SCHEDULING is de-
fined by ¢-SCHEDULE = (1,9, f, opt), where

o [ ={(t1,...,t,) | t;’s are integers}
o S((t1,...,tn)) = {(51, .., 9|51, ..., 9¢) is a c-partition of {1,...,n}}

o f({t1ye-stn), {51,005 50)) = maxi<ice{d kes, th}
e opt :min

Let "= 3>""_, t;. Note that every scheduling (51,...,9.) of the n jobs
(t1,...,1,), where Sy is the subset of {1,...,n} that corresponds to the
jobs assigned to the dth processor, can be written as a c-tuple (71,...,7;)
with 0 < Ty < T for all 1 < d < ¢, where Ty = ZheSd t;, 1s the total
execution time assigned to the dth processor. The c-tuple (T1,...,T.) will
be called the time list for the scheduling (51, ...,5.). Moreover, each ¢-tuple
(Th,...,T,) with 0 < T; < T for all d = 1,...,¢ can be uniquely written
as a non-negative integer j less than or equal to (74 1)¢ by the following
formula

J=T(T+ 1)+ T(T+ 1) 4+ T (T+ 1)+ T, (5)

Conversely, each non-negative integer j less than or equal to (7' 4 1)¢ can
be uniquely decomposed into a c-tuple (171,...,7T,) with 0 < T, < T for all
d=1,...,c, using the formula (5).

Now as for the KNAPSACK problem, for each ¢, 0 < ¢ < n, and for each
non-negative integer j, where we suppose that the integer j is decomposed
into a c-tuple (11,...,7.) by the formula (5), we ask the question

Is there a scheduling of the first ¢ jobs {t{,...,%;} that gives the
time list j = (T1,...,71.)?

Note that for two different schedulings of the i jobs {¢{,...,%;} that have
the same time list (7%,...,7.), we can pick either of them without loss of
correctness.

Now we are ready to present the algorithm.

Algorithm 16.1 c¢-Scheduling-Dyn
Input: n jobs with execution time ¢;,...,{,, all integers
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OQutput: A scheduling of the n jobs on ¢ processors such
that the parallel finish time is minimized

{ H[0..n,0..(T'4+ 1)°] is a table such that the element H]i,j]
is a scheduling (51,...5.) of the first ¢ jobs t1, ..., ¥
whose time list is j= (T4,...,7.). }

1. T=30
for i =0 to n do
for j=0 to (T'+1)° do
HIi, j] = *;
3. H[0,0]=(¢,...,0); {¢ is the empty set}
4. for i=0ton—-1do
for j=0 to (T'+1)° do
if H[i,j]# * then
Let H[i,j]=(51,...,5:) is a scheduling of ¢y, ...,
t;, and j = (T1,...,7.) is the time list for H[:,j];
for d =1 to ¢ do
H[l—l— 1,jd] = (Sl,...,Sd_l,SdU {Z—I— 1},Sd+1,...,5c);
where jg = (Tl,. e g, T+ tivr, Tagt, - - .,Tc);

5. Scan the nth row of the table H to find the scheduling
Hn,j] # * such that j = (T4,...,7.) has the minimum
parallel time;

6. Return Hln,j].

We analyze the algorithm. As we did for the algorithm Knapsack-Dyn,
instead of storing the entire c-tuple (51,...,5.) in H[i, j], we simply keep a
marker that indicates which processor is assigned the ith job and a pointer
to the element H[i — 1,j'] such that the scheduling H[i,j] of t1, ..., ¢; is
obtained from the scheduling H[i — 1,;] of t1, ..., t;_1 by assigning the
job t; to a proper processor. By these data structures, each assignment
to the elements of the table H can be done in constant time. Moreover,
for each non-negative integer j less than or equal to (7" + 1)°, by formula
(5), j can be uniquely decomposed using a constant number of division
and modulo operations into a c-tuple (7T1,...,7T.) with 0 < Ty < T for all
d=1,...,c(recall that ¢is a constant). Similarly, each c-tuple (71,...,T;)
with 0 <Ty < T foralld=1,...,ccan be converted in constant time into a
unique non-negative integer j less than or equal to (7' + 1)°. In conclusion,
each execution of the if statement in the loop in step 4 takes constant time.
Consequently, the algorithm c¢-Scheduling-Dyn takes time O(nT¢).
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A fully polynomial time approximation scheme now is derived for the c¢-
PROCESSOR SCHEDULING problem based on algorithm ¢-Scheduling-Dyn.
The idea is the same as for the KNAPSACK problem: we first scale the input
numbers to make T" smaller then apply algorithm c¢-Scheduling-Dyn to the
scaled input.

Algorithm 16.2 c¢-Scheduling-Apx
Input: (#1,...,%,;€), all ¢;’s are integers
OQutput: A scheduling of the n jobs on ¢ processors

1. Let K=¢€)Y " t;/(cn);
. for i=1tondo t=7Jt/K]|;
3. Apply algorithm c¢-Scheduling-Dyn on input (#{,...,%]) to
produce a scheduling (S57,...,5)) on (ti,...,t,);
4. Output (S57,...,950);

Theorem 16.1 The algorithm c-Scheduling-Apx on input (t1,...,1,;€)
produces a scheduling (57, ..., S%) with approzimation ratio bounded by 1+ €
and runs in time O(n°t1/ec).

PROOF. It is easy to see that the time complexity of the algorithm
c-Scheduling-Apx is dominated by step 3.

Since Top = > g th = O3 1=y t;/K) = O(n/¢), by our analysis, the algo-
rithm c-Scheduling-Dyn in step 3, thus the algorithm c-Scheduling-Apx,
runs in time O(nT§) = O(nt1/ec).

Now let (51,...,5;.) be an optimal solution to the input instance X =
(t1,...,t,) of the c-PROCESSOR SCHEDULING problem, and let (57,...,57)
be the optimal solution to the input instance X' = (#,...,¢ ) obtained by
the algorithm c-Scheduling-Dyn. Note that (57,...,5.) is also a solution
to the instance (¢{,...,,) and (57,...,57) is also a solution to the instance
(t1,. .. tn).

Forall d, 1 <d<e,let

Tyi= >t Vi= >t

hESd hESd
! ! !
Ti= >t Vi= > 1
hes, hes,

Without loss of generality, suppose

T = max {Tq} Va = max {Va}
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T/ — T/ V/ — V/
3 lrgggc{ i} 4 lrgggc{ i}

Therefore, on instance (t1,...,%,), the scheduling (S57,...,5.) has parallel
finish time 7} and the scheduling (57,...,5”) has parallel finish time 7%;
and on instance (t},...,t,), the scheduling (S51,...,5.) has parallel finish
time V5 and the scheduling (57,...,57) has parallel finish time V,. The

approximation ratio given by the algorithm ¢-Processor-Apx is T5/T;.

We have

To=> th=K> (in/K)<S K Y t,=KVi< KV
heS) heS) hes]

The last inequality is by the assumption V) = max;<q<.{V}}.
Now since (57,...,57) is an optimal scheduling on instance (t},...,t),
we have V] < V5. Thus,

T4<KVa=K Y =K > [ty/K]
he€S2 he€S2

t
<SKEY (L+1)<T+ Kn<Ty+Kn
h€Sy K

The last inequality is by the assumption 77 = maxy<g<.{74q}.
This gives us immediately

Té/Tl <1+ Kn/Tl
It is easy to see that 77 > Y1 t;/c, and recall that K = €} /4 t;/(¢en),
we obtain K'n/T; < e. That is, the scheduling (57,...,5.) produced by the
algorithm c¢-Scheduling-Apx has approximation ratio bounded by 1+e€. [

Corollary 16.2 For a fized constant ¢, the ¢-PROCESSOR SCHEDULING
problem has a fully polynomial time approximation scheme.
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17 Which optimization problem has a FPTAS?

Let us first review the definition of a fully polynomial-time approximation
scheme.

Definition 17.1 An optimization problem ¢ has a fully polynomial time
approzimation scheme (FPTAS) if it has an approximation algorithm A
that on input (z,€), where z is an input instance of @ and € is a positive
number, gives a solution of approximation ratio bounded by 1 + ¢ in time
polynomial in |z| and 1/e.

This definition says that if a fully polynomial time approximation scheme
exists for an optimization problem (), then there is a polynomial time ap-
proximation algorithm for the problem that can approximate the optimal so-
lution for the problem () to any arbitrary precision. A fully polynomial time
approximation scheme seems the best solution we can hope to derive for an
NP-hard optimization problem. By our discussion in the previous lectures,
the optimization problems SUBSET SuM, KNAPSACK, and ¢-PROCESSOR
SCHEDULING have fully polynomial time approximation schemes.

Natural questions are how many problems we can devise a fully poly-
nomial time approximation scheme for, what are the kinds of possible fully
polynomial time approximation scheme solutions, and how it can be deter-
mined that a problem does not have a fully polynomial time approximation
scheme. To discuss these questions, we first introduce a notation.

Definition 17.2 Let ) = (Ig, 59, fg,optg) be an optimization problem.
For each input instance z € Ig, define Optg(z) = opto{ fo(z,y)ly € Sq(z)}.
That is, Optg(z) is the value of the objective function fg on input instance

x and an optimal solution to z.

We have the following very useful theorem.
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Theorem 17.1 Let () = (Ig, Sq, fg,optg) be an optimization problem. If
there is a fized polynomial p such that for all input instances x € Ig, Opto(x)
is bounded by p(|z|), then Q does not have a fully polynomial time approxi-
mation scheme unless () can be precisely solved in polynomial-time.

PROOF. Let A be an approximation algorithm that is a fully polynomial
time approximation scheme for the optimization problem ¢). We show that
() can be precisely solved in polynomial time.

By the definition, we can suppose that the running time of A is n°/e?,
where ¢ and d are fixed constants. Moreover, by the condition given in the
theorem, we can assume that Optg () < n", where h is also a fixed constant.

First assume that optg = min. For an input instance 2 € I, let A(z) be
the objective function value on the input = and the solution to z produced
by the algorithm A. Thus, we know that for any ¢ > 0, the algorithm A
produces in time n°/e? a solution with approximation ratio A(z)/Opt(z) <
1 4 ¢. Also note that A(z)/Opt(x) > 1.

Now, let ¢ = 1/n*', then the algorithm A produces a solution with
approximation ratio bounded by
A(z) 1

<14y

which gives

Opt(x) < A(z) < Opt(x) + Opt(x)/n"+!
Since both Opt(z) and A(x) are integers, and Opt(z) < n” implies that
Opt(x)/n"*1 is a number strictly less than 1, we conclude that

Opt(z) = A(z)

That is, the algorithm A actually produces an optimal solution to the input
instance z. Moreover, the running time of A is bounded by n°/(1/n"*1)? =
nethdtd which is a polynomial of n.

The case that optg = max can be proved similarly. Note that in this case,
we should also have A(z) < n”. Thus, in time n°/(1/n*1)? = pethdtd the

algorithm A produces a solution to # with the value A(z) such that
1< Opt(x)/A(z) < 1+ 1/n"+?

which gives

A(z) < Opt(z) < A(z) + A(z)/n*!
Now since A(z)/n"*! < 1, we conclude Opt(z) = A(z). O
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In particular, this theorem says that if Optg(«) is bounded by a poly-
nomial of the input length |z| and @ is known to be NP-hard, then @ does
not have a fully polynomial time approximation scheme unless P = NP.

Theorem 17.1 is actually very powerful. Most NP-hard optimization
problems satisfy the condition stated in the theorem, thus we can derive
directly that these problems have no fully polynomial time approximation
scheme. We will give a few examples below to illustrate the power of Theo-
rem 17.1.

Consider the following problem:

INDEPENDENT SET IS = (1,9, f,opt)
I: set of all graphs G = (V, V)

S(G): the collection of subsets S of vertices of G such that no
two vertices in 5 are adjacent

f(G,9): the number of vertices in

opt: max

INDEPENDENT SET problem has many applications in networking design
and scheduling. A trivial solution to the INDEPENDENT SET problem is to
pick one single vertex, or a small number of vertices from the graph which are
not adjacent. The problem is more difficult for a very large set of vertices.
In fact, this is well-known that the INDEPENDENT SET problem is NP-hard.

It is easy to apply Theorem 17.1 to show that the INDEPENDENT SET
problem has no fully polynomial time approximation scheme. In fact, the
value of the objective function is bounded by the number of vertices in the
input graph G, which is certainly bounded by a polynomial of the input
length |G].

There are many other graph problems (actually, most graph problems)
like the INDEPENDENT SET problem that ask to optimize a subset of ver-
tices or edges of the input graph. For all these problems, we can conclude
directly from Theorem 17.1 that they do not have a fully polynomial time
approximation scheme unless they can be solved precisely in polynomial
time.

Let us consider another example of a problem for which no fully polyno-
mial time approximation scheme exists.

BoUuNDED-TIME PROCESSOR SCHEDULING
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InpuT: {ty,t2,...,t,; B}, all integers where each t; is the exe-
cution time for the 7th job and B is a restriction on the parallel
finish time

OutTpUT: A scheduling of the n jobs on m processors such that
the parallel finish time is bounded by B and m is minimized

The BouNDED-TIME PROCESSOR SCHEDULING problem is commonly
called BIN PACKING problem, which is known to be NP-hard. Given an
input instance for the BOUNDED-TIME PROCESSOR SCHEDULING problem,
either we can conclude immediately that there is no such scheduling (if any
input job has execution time larger than B), or we know the output value
m is bounded by n (i.e., in the worst case, each processor is assigned with a
single job). In any case, we have Opt(z) bounded by n. By Theorem 17.1,
we conclude directly that the BOUNDED-TIME PROCESSOR SCHEDULING
problem has no fully polynomial time approximation scheme unless P =
NP.

Remark 17.3 Although this version of the scheduling problem has no fully
polynomial time approximation scheme, the majority of the problems for
which a fully polynomial time approximation scheme exists are scheduling
problems.

What if the condition of Theorem 17.1 does not hold? Can we still
derive a conclusion of nonexistence of a fully polynomial time approximation
scheme for an optimization problem? We study this problem starting with
the famous TRAVELING SALESMAN problem (TSP), and will derive general
rules for this kind of optimization problems.

TRAVELING SALESMAN (TSP)
INPUT: a weighted complete graph ¢

OuTPUT: a simple cycle through all vertices of G (such a simple
cycle is called a traveling salesman tour) and the weight of the
cycle is minimized

The TRAVELING SALESMAN problem obviously does not satisfy the con-
dition stated in Theorem 17.1. For example, if all edges of the input graph
G of n vertices have weight of order ©(2"), then the weight of the min-
imum traveling salesman tour is ©(n2") while a binary representation of
the input graph G has length bounded by O(n?®) (note that the length of
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the binary representation of a number of order ©(27) is O(n) and G has
O(n?) edges). Therefore, Theorem 17.1 does not apply to the TRAVELING
SALESMAN problem.

To show the non-approximability of the TRAVELING SALESMAN problem,
we first consider a simpler version of the TRAVELING SALESMAN problem,
which is defined as follows.

TRAVELING SALESMAN 1-2 (TSP(1,2))

INPUT: a weighted complete graph ¢ such that the weight of
each edge of GG is either 1 or 2

OUTPUT: a traveling salesman tour of minimum weight

Theorem 17.2 The TRAVELING SALESMAN 1-2 problem is NP-hard.

PROOF. We present a polynomial time reduction that transforms the well-
known NP-complete problem HAMILTONIAN CIRCUIT to the TRAVELING
SALESMAN 1-2 problem.

By the definition, for each undirected unweighted graph G of n vertices,
the HAMILTONIAN CIRCUIT problem asks if G contains a Hamiltonian cir-
cuit, i.e., a simple cycle of length n.

Given an input instance G = (V, F) for the HAMILTONIAN CIRCUIT
problem, we add edges to G to make a weighted complete graph G’ =
(V, EU E’) such that for each edge e € E of G’ that is in the original graph
G, we assign a weight 1 and for each edge ¢/ € FE’ of G’ that is not in
the original graph G, we assign a weight 2. The graph G’ is certainly an
input instance of the TRAVELING SALESMAN 1-2 problem. Now, let T be a
minimum weighted traveling salesman tour in G’. Tt is easy to verify that
the weight of T'is equal to n if and only if the original graph G contains a
Hamiltonian circuit.

This completes the proof. []

Theorem 17.1 can apply to the TRAVELING SALESMAN 1-2 problem
directly.

Theorem 17.3 The TRAVELING SALESMAN 1-2 problem has no fully poly-
nomial time approximation scheme unless P = NP.

PROOF. Since the weight of a traveling salesman tour for an input instance
G of the TRAVELING SALESMAN 1-2 problem is at most 2n, assuming that
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G has n vertices, the condition stated in Theorem 17.1 is satisfied by the
TRAVELING SALESMAN 1-2 problem. Now the theorem follows from Theo-
rem 17.1 and Theorem 17.2. [

Now we are ready for a conclusion on the approximability of the TRAV-
ELING SALESMAN problem in its general form.

Theorem 17.4 The TRAVELING SALESMAN problem has no fully polyno-
mial time approximation scheme unless P = NP,

PROOF. Since each input instance for the TRAVELING SALESMAN 1-2
problem is also an input instance for the TRAVELING SALESMAN problem, a
fully polynomial time approximation scheme for the TRAVELING SALESMAN
problem should also be a fully polynomial time approximation scheme for
the TRAVELING SALESMAN 1-2 problem. Now the theorem follows from
Theorem 17.3. [
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18 Strong NP-hardness

We continue the discussion on what conditions will make an optimization
problem have a fully polynomial time approximation scheme. In the last
lecture, we have seen that if the optimal value Optg(z) is always bounded
by a polynomial of the input length of z, then the problem ¢ has no fully
polynomial time approximation scheme unless () can be solved precisely in
polynomial time. We have also studied the TRAVELING SALESMAN problem,
which does not satisfy the above condition, and developed a technique to
show that the TRAVELING SALESMAN problem has no fully polynomial time
approximation scheme. We started by a restricted version of the TRAV-
ELING SALESMAN problem, the TRAVELING SALESMAN 1-2 problem, and
showed that it satisfies the above condition and is also NP-hard. Thus,
the TRAVELING SALESMAN 1-2 problem has no fully polynomial time ap-
proximation scheme. From this we derived that the original TRAVELING
SALESMAN problem does not have a fully polynomial time approximation
scheme. In this lecture, we will formalize this technique and extend it to
other optimization problems.

For many optimization problems, such as those we have previously dis-
cussed as SUBSET SUM, KNAPSACK, ¢-PROCESSOR SCHEDULING, and TRAV-
ELING SALESMAN, an input instance is always associated with numbers. In-
deed, it is natural to define a number in the problem statement for these
problems.

Definition 18.1 Suppose @ = (lg, 5S¢, fg,optg) is an optimization prob-
lem. For each input instance z € Ig we can define:

e length(z) = the length of binary representation of z; and

e max(z) = the largest number that appears in input z.
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In particular, if no number appears in the input instance x, we define
max(z) = 0.

Definition 18.1 can vary by some degree without loss of the generality
of our discussion. For example, length(z) can also denote the length of the
decimal representation in the input x or of any other fixed base representa-
tion in the input z, and max(z) can be defined to be the sum of all numbers
appearing in the input z. Our discussion below will be valid for any of these
variations. The point is that for two different definition systems (length(z),
max(z)) and (length’(z), max’(z)), we require that length(z) and length’(z)
are polynomially related and that max(z) and max’(z) are polynomially
related for all input instances .

Definition 18.2 An optimization problem @ = (Ig, Sq. fo,optg) is a non-
number problem if for all @ € Ig, max(z) < p(length(z)), where p is a fixed
polynomial. If there is no such a polynomial p exists, then @ is called a
number problem.

According to the definition, SUBSET SuM, KNAPSACK, ¢-PROCESSOR
SCHEDULING, and TRAVELING SALESMAN problems are all number prob-
lems. INDEPENDENT SET is a non-number problem.

Definition 18.3 Let @ = (Ig, S, fg,optg) be an optimization problem
and let ¢ be any function. Define an optimization problem ¢}, to be the sub-
problem of ) such that Q@ = (Ip, S5, f§, opty), where I, C Ig, S5 = Sq,
fo = fq and opty = optq, and for all z € I, max(z) < q(length(z)).
In other words, for all input instances z of @,, max(z) is bounded by

q(length(z)).

The following definition was first introduced and studied by Garey and
Johnson.

Definition 18.4 An optimization problem @ = (lg, Sq, fo,optg) is NP-
hard in the strong sense if (), is NP-hard for some polynomial ¢.

The TRAVELING SALESMAN problem is an example of optimization prob-
lems that are NP-hard in the strong sense, as shown by the following theo-
rem.

Theorem 18.1 The TRAVELING SALESMAN problem is NP-hard in the strong
sense.
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PROOF. If we denote by () the TRAVELING SALESMAN problem, then @)
corresponds to the TRAVELING SALESMAN 1-2 problem. By Theorem 17.2,
the TRAVELING SALESMAN 1-2 problem is NP-hard. Now by the above
definition, the TRAVELING SALESMAN problem is NP-hard in the strong
sense. [

Remark 18.5 Every non-number NP-hard optimization problem () is NP-
hard in the strong sense. This is because for every non-number NP-hard
optimization problem (), ) = @, for some polynomial function p. This
implies that (), is NP-hard, which, by the definition, further implies that ¢)
is NP-hard in the strong sense.

Theorem 18.2 SUBSET-SUM, KNAPSACK, and ¢-PROCESSOR SCHEDUL-
ING problems are not NP-hard in the strong sense unless P = NP.

PROOF. Let () be any one of these problems. From previous lectures, we
know that there is an algorithm A such that for an input instance z of @, the
algorithm A constructs an optimal solution to z in time O(nV?) for some
constants ¢ and d, where V' < n-max(z). Therefore, the algorithm A solves
the optimization problem @ in time O((length(z))* (max(z))%), where ¢ is
a constant.

If @ is NP-hard in the strong sense, then (), is NP-hard for some
fixed polynomial p. However, for all input instances z of @,, max(z) <
p((length)(x)). Thus, the algorithm A constructs an optimal solution for
each input instance z of (), in time

O((length(x)) (max(2))!) = O((length(2))” ((p(length(z)))"))

which is bounded by a polynomial of length(x). Thus, the problem @, is
solvable in polynomial time, which implies P = NP. [

The following theorem serves as a fundamental theorem for showing
which number problem has no fully polynomial time approximation scheme.
We say that a two-parameter function f(z,y) is a polynomial of z and y if
f(2,y) can be written as a finite sum of the terms of form 2°y®, where ¢ and
d are non-negative integers.

Theorem 18.3 Let Q) = (Ig, S, fg,optg) be an optimization problem that
is NP-hard in the strong sense. Suppose that for all x € Ig, Optg(x) is
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bounded by a polynomial of length(xz) and max(xz). Then Q has no fully
polynomial time approzimation scheme unless P = NP.

PROOF. The proof of this theorem is very similar to the discussion we have
given for the TRAVELING SALESMAN problem in the last lecture.

Since ) is NP-hard in the strong sense, (), is NP-hard for a polynomial
q. Let Q, = (15,59, fq,optq) such that for each input instance z € Ij,, we
have max(z) < ¢(length(z)). Combining this condition with the condition
stated in the theorem that Optg(2) is bounded by a polynomial of length(z)
and max(z ), we derive that Optg(z) is bounded by a polynomial of length(z)
for all input instances z € Ié. Now by Theorem 17.1, the problem ¢, has
no fully polynomial time approximation scheme unless P = NP. Since each
input instance of ¢, is also an input instance of ), a fully polynomial time
approximation scheme for () is also a fully polynomial time approximation
scheme for (),. Now the theorem follows. []

Remark 18.6 How common is the situation that Optg(z) is bounded by a
polynomial of length(z), and max(z)? In fact, this situation is fairly com-
mon because for most optimization problems, the objective function value
is defined through additions or constant number of multiplications on the
numbers appearing in the input instance z, which is certainly bounded by
a polynomial of length(z) and max(z). Of course, the condition is not uni-
versely true for general optimization problems. For example, an objective
function can be simply defined to be the exponentiation of the sum of a sub-
set of input values, which cannot be bounded by any polynomial of length(z)
and max(z).

A general technique for showing the strong NP-hardness for an opti-
mization problem ) is to pick an NP-complete problem I and show that L
is polynomial time reducible to ¢, for some polynomial ¢g. Our polynomial
time reduction from the HAMILTONIAN CIRCUIT problem to the TRAVELING
SALESMAN 1-2 problem given in the last lecture well illustrates this idea.

We give another example of optimization problems that are NP-hard in
the strong sense.

MurTI-PROCESSOR SCHEDULING (MPS)

InpuT: {ti,%9,...,t,; m}, all integers, where ¢; is the execution
time for the #th job

OuTpPUT: a scheduling of the n jobs on m identical processors
such that the parallel finish time is minimized
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The MULTI-PROCESSOR SCHEDULING problem is NP-hard in the strong
sense. In fact, the following restricted version of the MULTI-PROCESSOR
SCHEDULING problem is NP-hard in the strong sense.

THREE-PARTITION

INPUT: {t1,t2,...,t3m;m}, all integers, where ?; is the execution
time for the #th job

OuTPUT: a scheduling of the 3m jobs on m identical processors
such that the parallel finish time is minimized

The reader is advised to read Section 4.2.2 in Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness by M. Garey and D. John-
son, for a detailed proof that the THREE-PARTITION is NP-hard in the
strong sense. Chapter 4 of the above book also contains excellent discussion
on strong NP-hardness of optimization problems.

We should point out that for the MULTI-PROCESSOR SCHEDULING prob-
lem, when the number of processors is fixed by a constant ¢, the problem
has a fully polynomial time approximation scheme, as we discussed in the
previous lectures on the ¢-PROCESSOR SCHEDULING problem. However, if
the number m of processors is given as a variable in the input, then the
problem becomes NP-hard in the strong sense. By Theorem 18.3, the prob-
lem has no fully polynomial time approximation scheme (it is easy to verify
that the condition that Opt(z) is bounded by a polynomial of length(z) and
max(x) is satisfied by this problem).
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19 Absolute approximability

We have seen a number of NP-hard optimization problems for which we can
derive a polynomial time approximation algorithm with approximation ratio
bounded by an arbitrary constant ¢ > 0. In this section, we will discuss the
approximability of optimization problems in terms of a different measure —
the absolute difference.

Definition 19.1 Let @ = (Ig, 5S¢, fg,optg) be an optimization problem
and let d(n) be a function. We say that ¢) can be approximated with an
absolute difference d(n) in polynomial time if there is a polynomial time
approximation algorithm A for ¢) such that for any input instance z of @,
the algorithm A produces a solution y to z such that

Opt(2) = fo(e, y)| < d(|z])
We start the discussion with the famous planar graph coloring problem.

Pranar GraPH COLORING
InpuT: a planar graph G

OuTpPUT:  a coloring of the vertices of G such that no two
adjacent vertices are colored with the same color and the number
of colors used is minimized.

Theorem 19.1 The PLANAR GRAPH COLORING problem is NP-hard.

PROOF. In fact, the decision problem PLANAR GRAPH 3-COLORABILITY:
“given a planar graph G, can G be colored with at most 3 colors?” is NP-
complete. It is straightforward that the PLANAR GRAPH 3-COLORABILITY
problem is polynomial time reducible to the PLANAR GrAPH COLORING
problem. []
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Theorem 19.2 The PLANAR GrRAPH COLORING problem can be approzi-
mated in polynomial time with an absolute difference 2.

PROOF. First note that there is a well-known and simple process that
colors any planar graph with at most 5 colors. Moreover, the process can
be implemented by a polynomial time algorithm.

Therefore, given a planar graph G, we first check if G is 2-colorable —
this is equivalent to checking if G is a bipartite graph and can be done in
linear time. If GG is 2-colorable, then we color G' with 2 colors and obtain an
optimal solution. Otherwise, we need at least 3 colors and we call the above
algorithm to color G' with at most 5 colors. [J

Remark 19.2 By the famous Four-Color Theorem, every planar graph can
be colored with at most 4 colors. Therefore, the absolute difference in The-
orem 19.2 can actually be replaced by 1. However, since the Four-Color
Theorem is too involved, we rather use a much simpler Five-Color Theorem
here.

Thus, the PLaANAR GrAPH COLORING problem can be approximated
with a constant absolute difference. On the other hand, the approximation
algorithm does not seem very good in term of the approximation ratio. For
example, for a planar graph that is 3-colorable, the algorithm can only guar-
antee a 4-coloring solution. Thus, the approximation ratio for this algorithm
is at least 4/3 > 1.3. The reason for this is that the optimal value of an
instance of the problem is always bounded by a constant. Thus, even a
small absolute difference makes a significant error in the approximation ra-
tio. Next we give another example for which optimal values are not bounded
while the problem still has very good approximation algorithm in terms of
the absolute difference.

GraPH EDGE COLORING
InPUT: a graph G

OuTPUT: a coloring of the edges of G such that no two adjacent
edges are colored with the same color and the number of colors
used is minimized.

Remark 19.3 The GrarH EDGE COLORING problem is NP-hard.
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Given a graph G, let v be a vertex of (¢. Define deg(v) to be the degree
of the vertex and define deg((') to be the maximum deg(v) over all vertices

v of G.

The following lemma follows directly from the definition.
Lemma 19.3 FEvery edge coloring of a graph G uses at least deg(G') colors.

Since deg(() can be arbitrarily large, the optimal value for an instance
of the GRaAPH EDGE COLORING problem is not bounded by any constant.
This is the difference to the case of the PLANAR GRAPH COLORING problem.

The next lemma may look more surprising.

Lemma 19.4 There is a polynomial time algorithm that colors a given
graph G with at most deg(G)+ 1 colors.

PROOF.  Let GG be the input graph. To simplify the expression, let d =
deg(G). We present an algorithm that colors the edges of (¢ using at most
d + 1 colors.

The algorithm has the following framework.

Algorithm 19.1 Edge-Coloring
Input: a graph G
Output: an edge coloring of G

1. let Gp =G with all edges deleted;
{ Suppose that the edges of ( are €1, ..., €, |
2. for :=1 to m do
Gi = Gio1 U{e)s

color the edges of (; using at most d+4 1 colors;

We need to explain how the graph G; can be colored with at most d + 1
colors. Inductively, suppose that we have colored the edges of G;_; using
at most d + 1 colors. Now G = G;_1 U{e;}, where suppose e; = (vy,w).
Thus, we have all edges of G; except e; colored properly using at most d + 1
colors.

We say that a vertex w in G; misses a color ¢ if no edge incident on w« is
colored with ¢. Since we have d 4 1 colors and each vertex of G; has degree
at most d, every vertex of (G; misses at least one color.

If both vertices v; and w miss a common color ¢, then we simply color
e; = (v, w) with ¢ and we obtain a valid coloring for the graph G.
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Figure 2: A fan structure

So we suppose that there is no color that is missed by both vy and w.
Let ¢q be the color missed by v; and ¢g be the color missed by w, ¢; # ¢o.

Since ¢q is not missed by w, there is an edge (vg,w) colored with ¢;.
Now if v, and w have a common missed color, we stop. If v, and w have no
common missed color, then let ¢s be a color missed by vg — ¢5 is not missed
by w. Now let (vs,w) be the edge colored with ¢;.

Inductively, suppose that we have constructed a "fan” that consists of h
neighbors vy, ..., vy of w and h — 1 different colors ¢4, ..., ¢y_1, such that
(see Figure 2)

e forall j =1,...,h — 1, the vertex v; misses color ¢; and the edge
(vj41,w) is colored with the color ¢;;

e none of the vertices vy, ..., vp_1 have a common missed color with w;
o forall j =1,...,h —1, the vertex v; does not miss any of the colors
Cly «vvy €51

There are three possible cases.

Case 1. the vertex v, does not miss any of the colors ¢y, ..., ¢,_1 and
v, has no common missed color w.

Then let ¢, be a color missed by vy. Since ¢y, is not missed by w, there is
an edge (vp41, w) colored with ¢j,. Thus, we have expanded the fan structure
by one more edge.

Since the degree of the vertex w is finite, Case 1 must fail at some stage
and one of the following two cases should happen.

Case 2. the vertex vy has a common missed color ¢g with w.
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Figure 3: In case vy and w miss a common color ¢

Then we change the coloring of the fan by coloring (v, w) with ¢g, and
coloring (v;, w) with ¢;, fori = 1,...,h—1 (see Figure 3). It is easy to verify
that this gives a valid edge coloring for the graph G; = G;_y U {e;}.

Case 3. the vertex v, misses a color ¢, 1 <s<h —1.

Let ¢g be a color missed by w. We start from the vertex v,. Since v, has
no common missed color with w, there is an edge (v,, u1) colored with c¢g.
Now if u; does not miss ¢, there is an edge (uq,uz) colored with ¢, now we
look at vertex us and see if there is an edge colored with ¢, and so on. By
this, we obtained a path P; whose edges are alternatively colored by ¢y and
¢s. The path has the following properties: (1) the path P, must be a simple
path since each vertex of the graph G;_; has at most two edges colored with
cp and ¢,;. Thus, the path P; must be a finite path; (2) the path Ps cannot
be a cycle since the vertex v, misses the color ¢g; and (3) the vertex w is
not an interior vertex of P since w misses the color ¢g.

Let Py = {vs,uq,...,us}, where vgs misses the color ¢,, u; misses one of
colors ¢, and cg, and u;, j =1...,¢t — 1, misses neither ¢, nor co.

If u; # w, then interchange the colors ¢g and ¢; on the path P to make
the vertex v, miss ¢g. Then color (v,, w) with ¢y and color (v;, w) with ¢;,
for j=1,...,5—1 (see Figure 4). It is easy to verify that this gives a valid
edge coloring for the graph G; = G;_1 U {e;}.

If u;, = w, we must have u;_1 = vys41. Then we grow a cyp-¢, alternating
path P starting from the vertex vy, which also misses the color ¢;. Again
P is a finite simple path. Moreover, the path P, cannot end at the vertex
w since no vertex in G;_1 is incident on more than two edges colored with
co and ¢; and the vertex w misses the color ¢g. Therefore, similar to what
we did for vertex v,, we interchange the colors ¢g and ¢; on the path P, to
make v, miss ¢g. Then color (vy, w) with ¢o and color (v;, w) with ¢; for
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Jj=1,...,h =1 (see Figure 5). It is easy to verify that this gives a valid
edge coloring for the graph G; = G;_1 U {e;}.

Therefore, starting with an edge coloring of the graph G;_; using at
most d 4+ 1 colors, we can always derive a valid edge coloring for the graph
G; = Gi_1 U {e;} using at most d 4+ 1 colors. It is also easy to see that this
process can be implemented by a polynomial time algorithm. We leave the
detailed implementation of this process to the interested reader.

Now we conclude that the algorithm Edge-Coloring runs in polynomial
time and produces a valid edge coloring using at most d + 1 colors for the

graph G. U

Theorem 19.5 The GrarH EDGE COLORING problem can be approzi-
mated within an absolute difference of 1 in polynomial-time.

88



PROOF. Follows directly from Lemma 19.3 and 19.4. [

Remark 19.4 Theorem 19.5 seems to give the best possible polynomial
time approximation algorithm for the NP-hard GrAPH EDGE COLORING
problem. On the other hand, this algorithm does not provide a fully poly-
nomial time approximation scheme for the problem. Indeed, the decision
problem GrRAPH EDGE 3-COLORABILITY “given a graph (4, can the edges
of G be colored using no more than 3 colors” is NP-complete. Thus, the algo-
rithm from Theorem 19.5 can only guarantee a 4-coloring for an instance of
the GRaAPH EDGE 3-COLORABILITY problem, which has an approximation
ratio at least 4/3 > 1.3.

It is natural to ask whether the optimization problems that have fully
polynomial time approximation scheme should have good approximation
algorithms in terms of absolute difference. It is, in fact, not very difficult to
show that this is not always the case.

Recall the KNAPSACK problem.

KNAPSACK
INPUT:  (81,...,5.501,...,0,; B), all integers

OutpruT: a subset S of {1,...,n} such that }";cqs; < B and
Y ies vi is maximized

Theorem 19.6 There is no polynomial time approzimation algorithm for
the KNAPSACK problem that guarantees an absolute difference 2" unless P
= NP.

PROOF. Suppose that A is a polynomial time approximation algorithm for
the KNaPsacK problem @ = (1,5, f, opt) such that for any input instance
X of ), A produces a solution S such that |Opt(X)— A(X)| < 2", where
A(X) = f(X,5). We show how we can use this algorithm to solve the
KNAPSACK problem in polynomial time.

Given an input instance X = (s1,...,8,;v1,...,0,; B) for @, we con-
struct X/ = (81,...,8,; 012" .. 0,2"FL: B) (i.e. scale the values v; to be
a multiple of 27t so that a difference of 2 between two values makes no
difference).

Now apply the algorithm A to X’ to get a solution S with value A(X') =
f(X',5). According to our assumption, |[Opt(X') — A(X')] < 2". Since
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both Opt(X’) and A(X') are multiples of 2"+, we conclude that Opt(X') =
A(X"), that is, the solution S is an optimal solution to the instance X'.
Moreover, it is easy to see that 5 is also a solution to the instance X and
Opt(X') = 2" 0pt(X) and A(X') = 2" A(X). Therefore, S is also an
optimal solution for the instance X.

By our assumption, the algorithm A runs in polynomial time. It is
also easy to see that we can construct the instance X’ from the instance
X in polynomial time. Therefore, the above process constructs an optimal
solution for X in polynomial time. Consequently, the KNAPSACK problem
can be solved in polynomial time. Since the KNAPSACK problem is NP-hard,
it follows that P = NP. [

This proof for Theorem 19.6 can be easily extended to other number
problems such as the ¢-PROCESSOR SCHEDULING problem and the SUBSET
SUM problems.

The main reason that Theorem 19.6 holds for many number problems is
that we can scale the numbers in the input instances so that a small abso-
lute difference would make no difference for the scaled instance. However,
what about non-number problems? In particular, is there a similar theorem
for optimization problems whose instances contain no number at all? We
demonstrate a technique for this via the study of an optimization problem
related to graph embeddings.

Graph embeddings can be studied using graph rotation systems. A rota-
tion at a vertex v is a cyclic permutation of the edge-ends incident on ». A
list of rotations, one for each vertex of the graph, is called a rotation system.

An embedding of a graph (G in an orientable surface induces a rotation
system, as follows: the rotation at vertex v is the cyclic permutation corre-
sponding to the order in which the edge-ends are traversed in an orientation-
preserving tour around ». Conversely, it is known that every rotation system
induces a unique embedding of (¢ into an orientable surface. In the follow-
ing, we will interchangeably use the phrases “an embedding of a graph” and
“a rotation system of a graph”.

The genus y(1L(G)) of the rotation system 1I(G) is defined by the Euler
polyhedral equation

VI = El+ |F| =2 = 29(II(G))

where | F| is the number of faces in the embedding II(G). It can be proved
that the value y(II(G)) is actually the number of “holes” of the surface on
which the embedding 1I(() is realized. Consequently, v(II(G)) is always a
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non-negative integer. There is a linear time algorithm that, given a rotation
system II(G) for a graph G, traces the boundary walks of all faces in the ro-
tation system. Therefore, given a rotation system II(G'), the genus v(1I(G))
of II(G') can be computed in linear time.

Now we are ready to state the following problem.

GrarH GENUS
InpPUT: a graph GG
OutpuT: an embedding II(G) of G such that the genus y(II(G))

is minimized. Such a value is called the minimum genus of the
graph G, written as Ymin(G)

It is known that the GrRAPH GENUS problem is NP-hard. The GrAPH
GENUS problem has applications in circuit layouts and distributed compu-
tation.

Let (G and G’ be two graphs. The bar-amalgamation of G and G, denoted
G+ (', is the result of running a new edge (called the “bar”) from a vertex
of G to a vertex of G'. The definition of bar-amalgamation on two graphs
can be extended to more than two graphs. Inductively, a bar-amalgamation
of r graphs G, ..., G,, written Gy * G * - - - * G, is the bar-amalgamation
of the graph G and the graph Gy % --- % G,

Let GG be a graph and let [ be a subgraph of G. Let II(G) be a rotation
system of GG. A rotation system II'( H) of H can be obtained from II(G) by
deleting all edges that are not in H. The rotation system II'(H) of H will
be called an induced rotation system of H from the rotation system II(G).

The proofs for the following theorem and corollary are omitted.

Theorem 19.7 Let Gy, ---, G, be graphs and let 1I(Gy * ---x G,) be a
rotation system of a bar-amalgamation Gy % ---x G, of G1, -+, G.. Then

(G x5 Gy)) = iﬂm(&))

where 11;(G;) is the induced rotation system of G; from II(Gq * ---*x G,),
1<i<r.

Corollary 19.8 Let Gy, -+, G, be graphs and let G' be an arbitrary bar-
amalgamation of Gy, -+, G,.. Then

’)/min(G/) = Z ’}/mln(Gz)
=1
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Now we are ready for the main theorem.

Theorem 19.9 For any fized constant €, 0 < € < 1, the GRAPH GENUS
problem cannot be approzimated in polynomial time with an absolute differ-
ence n¢ unless P = NP.

PROOF. Suppose that A is an approximation algorithm that, given a graph
G of n vertices, constructs an embedding of GG of genus at most yyin(G) +n°.

Let k£ be an integer such that € < % Then for sufficiently large n, we
have n® < n% Thus nck+1) <nk-1.

Let n*G be a graph that is an arbitrary bar amalgamation of n* copies
of G. Then the number of vertices of n*G is N = n**t'. The graph n*G
can be obviously constructed from G in polynomial time. Moreover, by
Corollary 19.8

Yanin(1°G) = 0" - Yrin( G)

Now running the algorithm A on the graph n*G gives us an embedding

I(n*G) of n*G, which has genus at most Ymin(n*G) + N¢. Therefore,

Y(I(n*G)) < Ymin(n"G) + N°
nk'}/min(G) + ne(k-l—l)
nk’ymin(G) +nF -1 (6)

IN

On the other hand, if we let II;(G), - - -, I1,,x(G) be the n* induced rotation
systems of G from II(n*G), then by Theorem 19.7

nk

Y(II(n"G)) = Y 4(I(G)) (7)

=1

Combining Equations (6) and (7) and noticing that the genus of II;(G) is at
least as large as ymin(G) for all 1 <4 < nk, we conclude that at least one
induced rotation system II;(G) of G achieves the minimum genus Ypin(G).
This rotation system of G can be found by calculating the genus for each
induced rotation system II;(G) from II(n*G) and selecting the one with the
smallest genus. This can be accomplished in polynomial time.

Therefore, using the algorithm A, we would be able to construct in poly-
nomial time a minimum genus embedding for the graph G. Consequently,
the GraPH GENUS problem can be solved in polynomial time. Since the
GrAPH GENUS problem is NP-hard, we would derive P = NP. [
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The technique of Theorem 19.9 can be summarized as follows. Let ¢} =
(1o, 59, fg,optg) be an optimization problem such that there is an operator
@ implementable in polynomial time that can “compose” input instances,
i.e., for any two input instances z and y of (), x By is also an input instance
of @ such that |z & y| = |z| 4 |y| (in the case of Theorem 19.9, @ is the
bar-amalgamation). Moreover, suppose that from a solution s,q, to the
instance z @ y, we can construct in polynomial time solutions s, and s, for
the instances x and y, respectively such that

fQ(x ©® yvsl’@y) = fQ($,8x) + fQ(@/,Sy)

(this corresponds to Theorem 19.7) and
Opt(x ©y) = Opt(x) + Opt(y)

(this corresponds to Corollary 19.8), then using the technique of Theo-
rem 19.9, we can prove that the problem ) cannot be approximated in
polynomial time with a absolute difference n® for any constant ¢ < 1 unless
() can be solved precisely in polynomial time. In particular, if ¢ is NP-
hard, then @ cannot be approximated in polynomial time with a absolute
difference n¢ for any constant € < 1 unless P = NP.

As an easy exercise, readers are advised to use this technique to prove
that the INDEPENDENT SET problem cannot be approximated in polynomial
time with an absolute difference n® for any constant ¢ < 1.
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20 Planar Independent Set

The algorithm Knapsack-Dyn for the KNAPSACK problem and the algo-
rithm c-Scheduling-Dyn for the c-PROCESSOR SCHEDULING problem share
a common property that the algorithms run in time polynomial in length(z)
and max(z) on an input instance x, where length(z) and max(z) are as
defined in Definition 18.1. This motivates the following definition.

Definition 20.1 An algorithm A that solves an optimization problem @ =
(1,5, f,opt) is a pseudo-polynomial time algorithm if on any input instance
x € I, the running time of A is bounded by a polynomial of length(z) and
max(a). In this case, we say that the optimization problem ) can be solved
in pseudo-polynomial time.

Most fully polynomial time approximation scheme algorithms are derived
from pseudo-polynomial time algorithms for the same problem by properly
scaling and rounding the input data. On the other hand, the following
theorem shows that under a very general condition, the existence of a fully
polynomial time approximation scheme implies the existence of a pseudo-
polynomial time algorithm.

Theorem 20.1 Let Q = (1,5, f,opt) be an optimization problem such that
for all input instance x € I we have Opt(x) < p(length(z), max(z)), where p
s a two variable polynomial. If ) has a fully polynomial time approximation
scheme, then () can be solved in pseudo-polynomial time.

PROOF. Suppose (J is a minimization problem, i.e., opt = min. Since ) has
a fully polynomial time approximation scheme, there is an approximation
algorithm A for ¢) such that for any input instance z € I, the algorithm A
produces a solution y € S(2) in time py(|2|, 1/€) satisfying

f(z,y)
Opt(z)

<l+4c¢
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where py is a two variable polynomial.
In particular, let € = 1/(p(length(z), max(z)) + 1), then the solution y
satisfies

Opt(z)
(length(z), max(z)) + 1

flz,y) < Opt(x) + 5 < Opt(z)+1

Now since both f(z,y) and Opt(x) are integers and f(z,y) > Opt(z), we
get immediately f(z,y) = Opt(x). That is, the solution produced by the
algorithm A is actually an optimal solution. Moreover, the running time of
the algorithm A for producing the solution y is bounded by

pi(|2]; p(length(z), max(z)) + 1)

which is a polynomial of length(z) and max(z). We conclude that the opti-
mization problem @ can be solved in pseudo-polynomial time. []

Theorem 17.1 gives a fairly convenient way for checking that an optimiza-
tion problem has no fully polynomial time approximation scheme. How well
can this kind of problems be approximated? In the following, we will show
that for certain problems that have no fully polynomial time approximation
scheme, polynomial time approximation algorithms with approximation ra-
tio 1 + € are still possible, for any fixed constant ¢ > 0.

The first problem to be considered is the INDEPENDENT SET problem
on planar graphs, defined as follows.

Pranar INDEPENDENT SET (IS)= (1,9, f, opt)

I the set of all planar graphs GG

S(G):  the collection of all subsets D of the vertices of the graph
G such that no two vertices in D are adjacent

f(G, D): the number of vertices in D

opt: max

It is known that the PLANAR INDEPENDENT SET problem is NP-hard.
Moreover, by Theorem 17.1, the PLANAR INDEPENDENT SET problem has
no fully polynomial time approximation scheme unless P = NP.

The following theorem by Lipton and Tarjan plays a key role in the
approximation algorithm for the PLANAR INDEPENDENT SET problem. The
proof of the theorem is omitted.
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Theorem 20.2 (Separator Theorem) For any planar graph G = (V, E),
|[V| = n, one can partition the vertex set V' of G into three disjoint sets, A,
B, and C, such that

1. AL, B| < 20/3;
2. |C| < vV8n; and
3. C separates A and B, i.e. there is no edge between A and B.

Moreover, there is a linear time algorithm that, given a planar graph G,
constructs the triple (A, B,C') as above.

Let G = (V, F') be a planar graph and let (A, B, ) be a triple satisfying
the conditions of Theorem 20.2. We will say that the graph G is split into
two smaller pieces A and B (using the separator C'). A simple observation is
that if D4 and Dp are independent sets of the graphs induced by the vertex
sets A and B, respectively, then the union D4 U Dp is an independent set of
the graph GG. Moreover, since the sizes of the sets A and B are of order (n)
while the size of the separator C' is of order O(y/n), ignoring the vertices
in the separator €' does not seem to lose too much precision. This idea
is implemented by the following algorithm, where K is a constant to be
determined later.

Algorithm 20.1 PlanarIndSet(H)
Input: a planar graph G = (V,F)
Output: an independent Set 5 in G

1. If (|JV| < K) then

find a maximum indepenent set D in (' using
exhaustive search;

Return(D);

{At this point |V|> K.}

2. split V into (A,B,C) as in Theorem 20.2;

3. recursively find an independent set D4 for A and an
independent set Dp for B;

4. return(D4U Dpg).

By the discussion above, the algorithm PlanarIndSet correctly returns
an independent set for the graph . Thus, it is an approximation algorithm
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for the PLANAR INDEPENDENT SET problem. We first study a few properties
of this algorithm.

The algorithm splits the graph G into small pieces. If the size of a piece
is larger than K, then the algorithm splits the piece into two smaller pieces
in linear time according to Theorem 20.2. Otherwise, it finds a maximum
independent set for the piece using brute force method. We first discuss the
number of pieces whose size is within a certain region.

A piece is at level 0 if its size is not larger than K. For a general ¢ > 0,
a piece is at level ¢ if its size (i.e., the number of vertices in the piece) is in
the region ((3/2)'1K,(3/2)'K], i.e., if its size is larger than (3/2)'"'K but
not larger than (3/2)'K. Note that the largest level number is bounded by
log(n/K)/log(3/2) = O(log(n/K)).

Lemma 20.3 For a fized i, each vertex of the graph G belongs to at most
one piece at level 1.

PROOF. Fix a vertex v of the graph G.

Suppose that the largest level number is h and that the graph G is at
level h. By the definition, n < (3/2)"K. Now according to Theorem 20.2,
G is split into two pieces A and B, whose size is bounded by

2n/3 < (2/3)(3/2)"K = (3/2)" 'K

Thus, both pieces A and B do not belong to level L. Consequently, GG is the
only piece at level h. Thus, there is only one piece at level h that contains
the vertex v.

Inductively, suppose that for each 7 > 7, at most one piece at level ¢
contains the vertex » and there is a piece P at level j that contains the
vertex v. If j = 0, then we are done. Otherwise, let P; and P, be the two
smaller pieces obtained by splitting the piece P according to Theorem 20.2.
As we proved above for level h, no P; and Py can be at level 7. Moreover, at
most one of P; and P, can contain the vertex v. Without loss of generality,
suppose that P; contains v and that P; is at level j/ < j. Now for each
i > 7', at most one piece at level ¢ contains the vertex v. The induction goes

through. [
Therefore, all pieces at level 7 are disjoint. Since each piece at level ¢ con-

sists of more than (3/2)"~'K vertices, there are no more than (2/3)~!(n/K)
pieces at level ¢, for all 7. We summarize these discussions as follows.
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e There are no more than n pieces at level 0, each is of size at most K;

e For each fixed ¢ > 0, there are no more than (2/3)"~!(n/K) pieces at
level ¢, each is of size bounded by (3/2)'K’; and

e There are at most O(logn) levels.
Now we are ready to analyze the algorithm.

Lemma 20.4 The running time of the algorithm PlanarIndSet is bounded
by O(nlogn + 25n).

PROOF. For each piece at level ©+ > 0, we apply Theorem 20.2 to split
it into two smaller pieces in time linear to the size of the piece. Since the
total number of vertices belonging to pieces at level ¢ is bounded by n, we
conclude that the total time spent by the algorithm PlanarIndSet on pieces
at level ¢ is bounded by O(n) for each ¢ > 0. Since there are only O(logn)
levels, the algorithm PlanarIndSet takes time O(nlogn) on piece splitting.

For each piece P at level 0, which has size bounded by K, the algorithm
finds a maximum independent set by checking all subsets of vertices of the
piece P. There are at most 2% such subsets in P, and each such a subset
can be checked in time linear to the size of the piece. We conclude that
the algorithm PlanarIndSet spends time O(2%n) on pieces at level 0. In
summary, the running time of the algorithm PlanarIndSet is bounded by

O(nlogn + 25n). O

Let us consider the approximation ratio for the algorithm PlanarIndSet.

Fix an ¢ > 0. Suppose that we have [ pieces of size nqy, ng, ..., n; at
level i. For each such a piece of size ng, a separator of size less than 3,/ng
is constructed to split the piece into two smaller pieces. The vertices in the
separator will be ignored in the further consideration. There are at most

3y + 3y + -+ 3y

vertices that belong to separators for pieces at level . It is well-known that
the above summation will be maximized when all ny, no, ..., n; are equal.
As nqy 4+ ng+ -+ n; < n, each ny can be at most (n/l). Hence, the above
summation is bounded by

3y/n/l+3/nfl+ -+ 3y/nfl = 31 /n/l = 3v/nl

[ terms
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Now, since [ < (2/3)i=!(n/K) (as derived above), the total number of ver-
tices belonging to separators for pieces at level ¢ is bounded by

sl (2)2'—1 n 3n (2)%
n — — = — | =
3 K JVE\3

Let F' denote the set of all vertices that belong to a separator at some
level. We derive

i1 - i1
neE ) =GRV -
where d = S22, (1/2/3)""" is a constant.

Lemma 20.5 Let S be the solution produced by the algorithm PlanarIndSet.
Then Opt(G) < |S|+ | F|.

PROOF. Let P be a piece at level 0 and let S1,.x be a maximum independent
set of the graph G. It is easy to see that Si,ax N P is an independent set
in the piece P, which cannot be larger than the maximum independent set
SE of P constructed by the algorithm PlanarIndSet. Note that S is the

union of SE . over all pieces at level 0. We have
Smax = U (Smax N P) U (Smax N F)
P: level 0 piece
Therefore,
Opt(G) = |Smax| < Z (|Smax N P|) + |Smax N F|
P: level 0 piece
< > |Smax| + |F]
P: level 0 piece
= 5]+ [F]

The lemma is proved. []

From Lemma 20.5, we get immediately

Opt(G) |1
<1 ——
|51 Opt(G) — | F]
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Since the graph G is planar, by the famous Four-Color Theorem, GG can be

colored with at most 4 colors such that no two adjacent vertices in GG are of

the same color. It is easy to see that all vertices with the same color form an

independent set for . We conclude that the size Opt(G) of the maximum

independent set Spax of G is at least a quarter of the size n of the graph G.
Combining Opt(G) > n/4 with |F| < 3nd//K, we obtain

Opt(G) 7] 7]
< 4 < —
5] Opt(G) — | F| (n/4) = |F]
3nd/VEK 12d

- (n/4) — 3nd/VEK VK —12d
Now for any fixed constant e, if we let
K = (12d(14 1/€))* = 144d*(1 + 1/€)?

then the algorithm PlanarIndSet(A ) produces an independent set S for G
with approximation ratio

Opt(G)
|5

<l+4c¢

in time O(nlogn + n2144d2(1+1/5)2). For a fixed ¢ > 0, this is a polynomial
time algorithm. However, this is not a fully polynomial time approximation
scheme since its time complexity is not bounded by a polynomial of n and

1/e.
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21 A-TSP: first algorithm

The approximation algorithm PlanarIndSet for the PLANAR INDEPENDENT
SET problem motivates the following definition.

Definition 21.1 An optimization problem () has a polynomial time approz-
imation scheme (PTAS), if for any fixed constant € > 0, there is a polynomial
time approximation algorithm for ¢ with approximation ratio bounded by

1+ e

Note that a polynomial time approximation scheme does not require the
running time of the approximation algorithm to be bounded by a polynomial
of 1/e.

The previous lecture shows that the PLANAR INDEPENDENT SET prob-
lem has a polynomial time approximation scheme. According to Theo-
rem 17.1, the PLANAR INDEPENDENT SET problem has no fully polyno-
mial time approximation scheme unless P = NP. Thus, a polynomial time
approximation scheme seems the best we can hope for the problem.

Other optimization problems that have polynomial time approximation
schemes but have no fully polynomial time approximation schemes include
the PLANAR VERTEX COVER problem and some other optimization prob-
lems on planar graphs. Most of these polynomial time approximation scheme
algorithms use the similar technique as the one we described for the PLANAR
INDEPENDENT SET problem, i.e., using Separator Theorem (Theorem 20.2)
to separate a planar graph into small pieces by separators of small size and
using brute force method to solve the problem for the small pieces. Stu-
dents are encouraged to apply this technique to derive a polynomial time
approximation scheme for the PLANAR VERTEX COVER problem.

A difference separating technique has been proposed by Baker (1994)
to derive polynomial time approximation scheme for optimization problems
on planar graphs. We briefly describe the idea here based on the PLANAR
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INDEPENDENT SET. Let GG be a planar graph. Embed G into the plane. Now
the vertices on the unbounded face of the embedding give the first layer of
the graph . By peeling the first layer, i.e., deleting the vertices in the first
layer, we obtain (maybe more than one) several separated pieces, each of
which is a planar graph embedded in the plane. Now the first layers of these
pieces form the second layer for the graph GG. By peeling the second layer of
(G, we obtain the third layer, and so on. Define depth of the planar graph G
to be the maximum number of layers of the graph. Baker observed that for
a graph of constant depth, a maximum independent set can be constructed
in polynomial time by dynamic programming. Moreover, for any graph G of
arbitrary depth, if we remove one layer out of every K consecutive layers, we
obtain a set of separated planar graphs of constant depth. Now for each such
graph of constant depth, we construct a maximum independent set. The
union of these maximum independent sets forms an independent set for the
original graph G. For sufficiently large K, the number of vertices belonging
to the removed layers is very small and thus gives only a small error in
the approximation. Baker demonstrated a polynomial time approximation
scheme for the PLANAR INDEPENDENT SET problem with running time
bounded by O(8Yn/e).

Another optimization problem that has a polynomial time approxima-
tion scheme but has no fully polynomial time approximation scheme is the
MULTI-PROCESSOR SCHEDULING problem. The polynomial time approxi-
mation scheme algorithm for this problem is closely related to approxima-
tion algorithms for the BIN PACKING problem. We will discuss this after
the study of approximation algorithms for the BIN PACKING problem.

We will study in this lecture a restricted version of the TRAVELING
SALESMAN problem.

Definition 21.2 Let G = (V, £) be a weighted, undirected, and complete
graph. We say that the graph G satisfies the triangle inequality if for any
three vertices u, v, and w of G we have

weight(u, w) < weight(u, v) + weight(v, w)

The TRAVELING SALESMAN problem under triangle inequality is defined
as follows.

A-TRAVELING SALESMAN Problem (A-TSP)

InpuT: a weighted, undirected, and complete graph &
satisfying the triangle inequality
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OuTpPUT: a simple cycle of minimum weight that contains
all vertices of G

Let GG be an input instance of the A-TSP. Every solution to G, i.e., every
simple cycle in G that contains all vertices of G, will be called a traveling
salesman tour.

An important case of the A-TSP is the EvcLIDEAN TSP, in which each
vertex is a point in the Euclidean plane and the weight of an edge (w,u)
equals the Fuclidean distance between w and wu.

Remark 21.3 Both A-TSP and EvcrLipEaNn TSP are NP-hard.

We present the first approximation algorithm for the A-TSP based on
minimum spanning trees.

Algorithm 21.1 EasyTSP
Input: an input instance (G of A-TSP
Output: a traveling salesman tour I

1. construct a minimum spanning tree 1 for G

2. perform a depth first search on the tree 7T to compute
the dfs number for each vertex of T;

3. let L be the list of vertices of T sorted by their dfs
numbers;

4. return L as a traveling salesman tour for G.

The analysis of the time complexity of the above algorithm is pretty
simple. It is well-known that a minimum spanning tree of a graph of n
vertices can be constructed in time O(n?). It is also easy to see that each of
the steps 2, 3, and 4 takes time bounded by O(n?). Therefore, the algorithm
EasyTSP runs in time O(n?).

Now we consider the approximation ratio for the algorithm. A depth
first search process that computes the dfs numbers for vertices of a tree can
be implemented by the following simple algorithm.

Algorithm 21.2 DFS(v)
1. counter = counter + 1;

2. dfs[v] = counter;
3. for each child w of » do
DFS(w);
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Figure 6: The minimum spanning tree T’

This recursive subroutine is called by the following main program.

Algorithm 21.3 Main
{suppose that vertex 1 is the root of the tree T}
1. counter = 0;
2. DFS(1).

The depth first search process on the tree T’ can be regarded as a closed
walk Lg of the tree (a closed walk is a cycle in T in which each vertex may
appear more than once). Each edge (u,v), where u is the father of v in T,
is traversed exactly twice in the walk Lg: the first time when DFS(u) calls
DFS(v) we traverse the edge from u to v, and the second time when DFS(v)
is finished and returns back to DFS(u) we traverse the edge from v to wu.
Therefore, the walk Ly has weight exactly twice the weight of the tree T'. It
is also easy to see that the list L produced by the algorithm EasyTSP can
be obtained from the walk Ly by deleting for each vertex v all but the first
occurrences of v in the list Lg. Since each vertex appears exactly once in
the list L and G is a complete graph, L corresponds to a traveling salesman
tour.

Example 21.4 Consider the tree T in Figure 6, where a is the root of the
tree T'. The depth first search process traverses the tree T in the order

a?b7d7b7a7c7e7c7f7g7f7c7a

By deleting for each vertex v all but the first vertex occurrences for v, we
obtain the list of vertices of the tree T sorted by their dfs numbers

a7b7d7c767f7g
Deleting a vertex occurrence of v in the list {---uovw---} is equivalent

to replacing the path v — v — w by a single edge (u,w). Since the graph
G satisfies the triangle inequality, deleting vertex occurrences from a walk
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does not increase the weight of the walk. Consequently, the weight of the
traveling salesman tour I is not larger than the weight of the closed walk
Lo, which is bounded by 2 times the weight of the minimum spanning tree
T.

Note that for the TRAVELING SALESMAN problem, we can assume with-
out loss of generality that all edge weights are non-negative integers (oth-
erwise we add a sufficiently large weight to each edge). Observe that the
weight of any traveling salesman tour is at least as large as the weight of the
minimum spanning tree 7' — removing any edge (of non-negative weight)
from the traveling salesman tour results in a spanning tree of the graph G.
In conclusion, the traveling salesman tour I constructed by the algorithm
EasyTSP has weight bounded by 2 times the weight of a minimum traveling
salesman tour. We conclude with the following theorem.

Theorem 21.1 The approzimation ratio of the algorithm EasyTSP is bounded
by 2.

We give a simple example to show that the ratio 2 is tight for the ap-
proximation algorithm EasyTSP in the sense that there are input instances
for the A-TSP for which the algorithm EasyTSP produces a solution with
approximation ratio arbitrarily close to 2. This kind of input instances can
actually appear for the EUCLIDEAN TSP. Consider the figures in Figure 7.
Suppose we are given 2n points on the Euclidean plane with polar coordi-
nates z = (b,2kw/n) and yi, = (b4 d,2kw/n), k = 1,...,n, where d is
much smaller than b. See Figure 7(a), where n = 8. Then it is not hard (for
example, by Kruskal’s algorithm for minimum spanning tree) to see that the
edges (g, 2541), k =1,...,n—1and (z;,y;), j = 1,...,n form a minimum
spanning tree 7" for the set of points. See Figure 7(b). Now if we perform a
depth first search on T starting from the vertex z; and construct a traveling
salesman tour, we will get a tour L that is shown in Figure 7(c) while an
optimal traveling salesman tour Lg is shown in Figure 7(d).

The weight of the tour L is about 2a(n — 1)+ 2d, where a is the distance
between two adjacent points 2 and 241 (note that when d is sufficiently
small compared with a, the distance between two adjacent points y; and
yr+1 is roughly equal to the distance between the two corresponding points
z) and xp41), while the optimal traveling salesman tour has weight roughly
nd + na. When d is sufficiently small compared with a and when n is
sufficiently large, the ratio of the weight of the tour L and the weight of the
tour Lo can be arbitrarily close to 2.
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Figure 7: A-TSP Example.
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22 A-TSP: Christofides algorithm

In this lecture, we will allow a graph to have “multiple edges”, i.e., each pair
of vertices of a graph can be connected by more than one edge.

Let us reconsider the approximation algorithm EasyTSP for the A-TSP
problem. As we pointed out, after the minimum spanning tree T is con-
structed, we traverse the tree T' by a depth first search process in which
each edge of T is traversed exactly twice. This process can be re-interpreted
as follows:

1. construct a minimum spanning tree;

2. double each edge of T into two edges, each of which has the same
weight as the original edge. Let the resulting graph be D;

3. make a closed walk W in the graph D such that each edge of D is
traversed exactly once in W;

4. use “shortcuts”, i.e., delete all but the first occurrences for each vertex
in the walk W to make a traveling salesman tour L.

There are three crucial facts that make the above algorithm correctly
produce a traveling salesman tour with approximation ratio 2: (1) the graph
D gives a closed walk in the graph G' and D contains all vertices of G; (2)
the total weight of the graph D is bounded by 2 times the weight of an
optimal traveling salesman tour; and (3) the shortcuts do not increase the
weight of a closed walk so that we can derive a traveling salesman tour L
from D without increasing the weight of the walk.

Therefore, if we can construct a better graph Dy whose weight is smaller
than the graph D constructed by the algorithm EasyTSP such that Dy forms
a closed walk of G and that DD contains all vertices of G, then using the
shortcuts on D4 should derive a better approximation to the minimum trav-
eling salesman tour.

For this, we need introduce a definition.
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Definition 22.1 An undirected connected graph G is an Fuler graph if
there is a closed walk in (¢ that traverses each edge of ¢ exactly once.

Recent research has shown that Fuler graphs play an important role in
designing efficient parallel graph algorithms.

Theorem 22.1 An undirected connected graph G is an Fuler graph if and
only if every vertex of G has an even degree.

PROOF. Suppose that G is an Euler graph. Let W be a closed walk in GG
that traverses each edge of (G exactly once.

Let v be a vertex of GG. Since W is a closed walk, each time W enters the
vertex v from an edge, W must leave the vertex v by another edge incident
on v. Therefore, each edge incident on v that is an “incoming” edge for W
must be paired with an edge incident on v that is an “outgoing” edge for
W. Since W traverses each edge exactly once, we conclude that the number
of edges incident on v, i.e., the degree of v, is even.

Conversely, suppose that all vertices of the graph G have even degree.
We prove the theorem by induction on the number of edges in . The
minimum such a graph G in which all vertices have even degree consists of
two vertices connected by two (multiple) edges. This graph is clearly an
Euler graph.

Now suppose that G has more than two edges. Let vg be any vertex of
G. We construct a maximal walk Wy starting from the vertex vy. That is,
starting from vg, on each vertex if there is an unused edge, then we extend
Wy along that edge (if there are more than one such edge, we pick any
one). The process stops when we hit a vertex u on which there is no unused
incident edge. We claim that the ending vertex u must be the starting vertex
vgp. In fact, for each interior vertex w in the walk Wy, each time Wy passes
through, Wy uses one edge to enter w and uses another edge to leave w.
Therefore, if the process stops at u and u # vg, then the walk Wy has only
used an odd number of edges incident on w. This contradicts our assumption
that the vertex u is of even degree. This proves the claim. Consequently,
the walk Wy is a closed walk.

The closed walk Wy can also be regarded as a graph. By the definition,
the graph W, itself is an Euler graph. According to the proof for the first
part of this theorem, all vertices of the graph Wy have even degree. Now
removing all edges in the walk Wy from the graph G results in a graph
Go = G — Wy. The graph Gg may not be connected. However, all vertices
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of Gy must have an even degree because each vertex of the graphs G and
Wy has an even degree.

Let (1, Cy, ..., C} be the connected components of the graph Gy. By
the inductive hypothesis, each connected component C; is an Fuler graph.
Let W; be a closed walk in C; that traverses each edge of C; exactly once,
for ¢ = 1,...,h. Moreover, for each ¢, the closed walk Wy contains at least
one vertex v; in the connected component C; (if Wy does not contain any
vertex from (', then the vertices of C; have no connection to the vertices in
the walk Wy in the original graph G, this contradicts the assumption that
the graph G is connected).

Therefore, it is easy to insert each closed walk W; into the closed walk
Wy (by replacing any vertex occurrence of v; in Wy by the list W;, where W,
is given by beginning and ending with v;), for all ¢ = 1,...,h. This forms
a closed walk W for the original graph G such that the walk W traverses
each edge of G exactly once. Thus, the graph G is an Fuler graph. [

The proof of Theorem 22.1 suggests an algorithm that constructs a closed
walk W for an Fuler graph G such that the walk W traverses each edge
of GG exactly once. This walk will be called an Fuler tour. By a careful
implementation, one can make this algorithm run in linear time. We leave
the detailed implementation to the reader. Instead, we state this result
without a proof as follows.

Theorem 22.2 There is an algorithm that, given an Fuler graph, con-
structs an Fuler tour in linear time.

Now we are ready to show how a better Euler graph Dy can be con-
structed based on a minimum spanning tree, from which a better approxi-
mation for the minimum traveling salesman tour can be derived.

Let G be an input instance of the A-TSP problem and let T be a mini-
mum spanning tree in G. We have

Lemma 22.3 The number of vertices of the tree T that has an odd degree
in T is even.

PROOF. Let vy, ..., v, be the vertices of the tree T'. Since each edge
e = (v;,v;) of T contributes one degree to v; and one degree to v;, we must
have

Zn:degT(vi) =2(n—-1)

=1
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where degr(v;) is the degree of the vertex v; in the tree T'. Note that n — 1
is the number of edges in the tree T'. We partition the set of vertices of T’
into odd degree vertices and even degree vertices. Then we have

Z degr(v;) + Z degr(v;) =2(n—1)

v;: even degree v;: odd degree

Since both 37, ayen degree degr(v;) and 2(n — 1) are even numbers, the

value Zv],: odd degree degr(v;) is also an even number. Consequently, the

number of vertices that have odd degree in T must be even. [J

By Lemma 22.3, we can suppose, without loss of generality, that vy, vo,
..., V25, be the odd degree vertices in the tree T'. The vertices vy, vg, ..., V2p
induce a complete subgraph H in the original graph . Now construct a
minimum weight complete matching Fp in H. The matching Fj consists of
h edges such that each of the vertices vy, vg, ..., vy is incident on exactly
one edge in Fj,. Thus, adding the edges in Fp, to the tree T results in a graph
Dy = T+ FEy, in which all vertices have an even degree. By Theorem 22.1, the
graph Dq is an Fuler graph. Moreover, the graph D; contains all vertices of
the graph G. We are now able to derive a traveling salesman tour L; from
Dy by using shortcuts.

We formally present this in the following algorithm. The algorithm is
due to N. Christofides.

Algorithm 22.1 Christofides
Input: an input instance (G of A-TSP
Output: a traveling salesman tour I

1. construct a minimum spanning tree T for G

let vy, ..., v2p be the odd degree vertices in 7,
construct a minimum weight matching Fj in the
complete graph induced by vy, ..., vap;

3. construct an Euler tour W; in the Euler graph
Dy =T+ FEy;

4. wuse shortcuts to derive a traveling salesman tour I,
from Wi

5. return L;.

It is known that a minimum weight matching can be constructed in time
O(n?) (see lecture notes 7-10 for discussion on graph matchings). The other
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steps of the algorithm Christofides clearly take time O(n®). Therefore,
the algorithm Christofides runs in time O(n®).
Now let us study the approximation ratio for the algorithm Christofides.

Lemma 22.4 The weight of the minimum weight matching Fy on vy, vs,
co V2 D ecq, Weight(e), is at most 1/2 of the weight of an optimal traveling
salesman tour in the graph G.

PROOF. Let L be an optimal traveling salesman tour in the graph G. By
using shortcuts, i.e., by removing the vertices that are not in {vy, vg,..., vop}
from the tour L, we obtain a simple cycle L’ that contains exactly the vertices
V1, .., Vop. Since G satisfies the triangle inequality, the weight of L’ is not
larger than the weight of L.

Moreover, the simple cycle L' can be decomposed into two disjoint
matchings of {vy,...,v9;} — one matching is obtained by taking every
other edge in the cycle L, and the other matching is formed by the rest
of the edges. Of course, both of these two matchings have weight at least as
large as the minimum weight matching Fj on {vy,...,v9,}. This gives

weight(L) > weight(L') > 2 - weight( F},)
This completes the proof. []
Now the analysis is clear. We have Dy =T + Ej,. Thus
weight( D) = weight(T") + weight(E£},)

By the analysis for the algorithm EasyTSP (Algorithm 21.1), the weight of
T is not larger than the weight of an optimal traveling salesman tour for (.
Combining this with Lemma 22.4, we conclude that the weight of the graph
Dy is bounded by 1.5 times the weight of an optimal traveling salesman
tour in (. Moreover, the traveling salesman tour L constructed by the
algorithm Christofides is obtained by using shortcuts on the graph Dy
and thus has weight not larger than the weight of D;. We close this lecture
with the following theorem.

Theorem 22.5 The algorithm Christofides for the A-TSP problem runs
in time O(n®) and has approzimation ratio 1.5.

As for the algorithm EasyTSP, one can show that the ratio 1.5 is tight for
the algorithm Christofides in the sense that there are input instances of
A-TSP for which the algorithm Christofides produces traveling salesman
tours with approximation ratio arbitrarily close to 1.5.
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23 Bin Packing problem

In the previous lectures, we have presented several approximation algorithms
for NP-hard optimization problems. In this lecture, we study approximation
algorithms for the BIN PACKING problem. Recall that the BIN PACKING
problem is defined as

Bin PACKING
INPUT: (t1,12,...,t,; B), all integers and ¢; < B for all

OuTPUT: a packing of the n objects of size ¢y, ..., ¢, into the
minimum number of bins of size B

Since the number of bins used by any packing cannot be larger than the
number of objects in the input, according to Theorem 17.1, the BIN PACK-
ING problem has no fully polynomial time approximation scheme. On the
other hand, it is fairly easy to design a polynomial time approximation algo-
rithm for the BIN PACKING problem with a reasonably good approximation
ratio. Consider the following simple approximation algorithm for the BIN
PACKING problem.

Algorithm 23.1 First-Fit (FF)
Input: [ = (t1,tz,---,1,; B)
Output: a packing of the n objects into bins of size B

1. for i=1 to n do

2 j=1

3 notput = true;

4. while notput do

5 if object ¢ can be put in bin j

6 then put ¢ in bin j; notput = false;
7 else j=7+1
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The for loop in the algorithm is executed n times, and in each execution,
the while loop can be done in O(n) time since ¢; < B for all ¢«. This
concludes that the algorithm First-Fit runs in time O(n?). What is the
approximation ratio for the algorithm?

Theorem 23.1 The algorithm First-Fit has approzimation ratio 2.

PROOF. We observe that there is at most one used bin whose content
is not larger than B/2. In fact, suppose that there are two used bins B;
and B; whose contents are bounded by B/2. Without loss of generality, let
t < j. Then the algorithm First-Fit would have put the objects in the bin
B; into the bin B; since the bin B; has enough room for them and the bin
B; is considered before the bin B; by the algorithm First-Fit.

Now the theorem can be proved in two cases.

Suppose that the contents of all used bins are not less than B/2. Let m
be the number of bins used by the algorithm FirsT-Fi1T. We have

" mB
2tz

Since the bin size is B, we need at least

n

[(X_t:)/B] > [(mB)/(2B)] > m/2

=1

bins to pack the n objects, i.e., Opt(I) > m/2. Therefore, the approximation
ratio is bounded in this case by

Now suppose that there is a used bin whose content x is less than B/2.
Again let m be the number of bins used by the algorithm First-Fit. There-
fore, there are m — 1 bins with contents at least B/2. This gives us

~ - 1)B - 1B
Ztiz%ﬂw%

Thus, [(She )/ B] > (m —1)/2
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If m—1is an even number, then since both [(3-", #;)/B] and (m—1)/2
are integers, we get

n

(3 4)/B] > (m—1)/241 > m/2
=1
If m —11is an odd number, then

n

[(Q_t)/B] 2 [(m=1)/2] = (m —1)/2+1/2 = m/2

=1

Note that any packing should use at least [(3°7, #;)/B] bins. In partic-

ular,
n

Opi(1) > [(3 1)/ B]

=1
The above analysis shows that the approximation ratio is bounded by
m m m

Opi(D) = T 0)/B] = m2 = °

This proves the theorem. [

Therefore, the BIN PACKING problem can be approximated in polyno-
mial time with approximation ratio 2. Can we do better than 27 In particu-
lar, does the BIN PACKING problem have a polynomial time approximation
scheme? A negative answer to this question can be easily derived, as shown
in the following theorem.

Theorem 23.2 There is no polynomial time approzimation algorithm for
the BIN PACKING problem with approzimation ratio less than 1.5 unless
P=NP.

PROOF. Suppose that we have a polynomial time approximation algorithm
A with approximation ratio less than 1.5 for the BIN PACKING problem.
We show how we can use this algorithm to solve in polynomial time the
PARTITION problem, which is NP-complete.

Recall that PARTITION is a decision problem defined as follows.

ParTITION
INnpUT: A set {xy,29,...,2,} of n integers

QUESTION: Is there a subset S/ C S such that
Yies i = ZjeS—S’ z;?
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Given an input instance X = {ty,ty,---,,} for the PARTITION problem,
if 3" ¢; is an odd number, then we know X is a NO-instance. Otherwise,
let B= (3" ,%)/2,and let g(X) = (t1,13,---,t,; B) be an instance for the
problem BIN PAcKING. Now apply the approximation algorithm A for the
BIN PACKING problem on the input g(X). Suppose that the approximation
algorithm A uses m bins for this input instance g(X'). There are two different
cases.

If m > 3 bins, then since we have

m/Opt(g(X))< 1.5

we get Opt(g(X)) > 2. That is, the objects 1, ..., t, cannot be packed
into two bins of size B = (37—, t;)/2. Consequently, the instance X =
{t1,t3,+ -+, t,} is a NO-instance for the PARTITION problem.

On the other hand, if m < 2, then we must have m = 2. Thus, the
objects 1y, ..., t; can be evenly split into two sets of equal size. That is, the
instance X = {ty,%3,---,¢,} is a YES-instance for the PARTITION problem.

Therefore, the instance X is a YES-instance for the PARTITION problem
if and only if the approximation algorithm A uses two bins to pack the
instance ¢(X). Since by our assumption, the approximation algorithm A
runs in polynomial time, we conclude that the PARTITION problem can be
solved in polynomial time.

Since the PARTITION problem is NP-complete, this implies P = NP. The
theorem is proved. [

We observe that the 1.5 lower bound on approximation ratio for the
BIN PAcKING problem occurs when the optimal value Opt( X)) is very small.
Similar lower bounds on approximation ratio can be derived for optimiza-
tion problems that remain NP-hard even when the optimal value is very
small. Examples include GRAPH COLORING and GRAPH EDGE COLORING
problems.

In some cases, we may be interested in the asymptotic lower bounds on
approximation ratio of an optimization problem. For instance, we may want
to ask whether the 1.5 lower bound can still be achieved when the optimal
value is sufficiently large for a input instance for the BIN PACKING problem.
This question is closely related to the concept of asymptotic approzimation
scheme defined as follows.

Definition 23.1 An optimization problem @ = (I, 5, f, opt) has a asymp-
totic polynomial time approximation scheme (APTAS) if for any fixed con-
stant € > 0, there is a constant ¢, and a polynomial time approximation
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algorithm A, for () such that for all input instances z € I with Opt(x) > ¢,
the algorithm A, produces a solution for z with approximation ratio bounded

by 1+ e.

We will show that the BIN PACKING problem has an asymptotic poly-
nomial time approximation scheme.

Let us start with a restricted version of the BIN PACKING problem, which
will be called the (¢, 7)-BIN PACKING problem. There are two restrictions.
First, we assume that the input objects have at most a constant number
7 of different sizes. Second, we assume that the size of each input object
is at least as large as a ¢ factor of the bin size. The following is a formal
definition.

(6, 7)-BIN PackiNG

INPUT: (t1 : m1,t2:ng,...,t; i ng; B), where 6B < t; < B for
all 7, interpreted as: for the n = "7, n; input objects, n; of
them are of size t;, fori=1,.... 7

OUuTPUT: a packing of the n objects into the minimum number
of bins of size B

We first study the properties of the (8, 7)-BIN PAcCKING problem. Let
I ={t1 :ny,...,tz : nr; B) be an input instance for the (¢, 7)-BIN PACKING
problem. Suppose that an optimal packing packs the objects in I into m
bins By, By, ..., B,,. Consider the first bin By. Suppose that the bin By
contains by objects of size t1, by objects of size tq, ..., and b, objects of size
t.. We then call

(b1,b2,...,b:)

the configuration of the bin By. Since each object has size at least 6 B and
the bin size is B, the bin By contains at most 1/ objects. In particular,
we have b; < 1/é for all i. Therefore, the total number of different bin
configurations is bounded by (1/6)".

Now consider the set I’ of objects that is obtained from the set I with
all objects packed in the bin By removed. The set I’ can be written as

I'=(t1 : (n1 = b1),t2: (ng —ba), ..., tx : (nz — br); B)

Note that I’ is also an input instance for the (8, 7)-BIN PACKING problem
and the packing ( Bz, Bs, ..., B, ) is an optimal packing for I’ (I’ cannot be
packed into less than m — 1 bins otherwise the set I can be packed into less
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than m bins). Therefore, if we can pack the set I’ into a minimum number
of bins then an optimal packing for the set I can be obtained by packing
the rest of the objects into a single bin Bj.

Now the problem is that we do not know the configuration for the bin
By. Therefore, we will try all possible configurations for a single bin, and
recursively find an optimal packing for the rest of the objects. As pointed
out above, the number of bin configurations is bounded by (1/6)", which is
a constant when both 6 and 7 are fixed. In the next lecture, we will present
a dynamic programming algorithm that constructs an optimal packing for
an input instance for the (6, 7)-BIN PACKING problem.
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24 The (6, 7)-Bin Packing problem

Recall that the (6, 7)-BIN PACKING problem is defined as follows:

(6, 7)-BIN PackiNG

INPUT: (t1 : m1,t2:ng,...,t; i ng; B), where 6B < t; < B for
all ¢, interpreted as: for the n = 3 7_; n; input objects, n; of
them are of size t;, fori=1,.... 7

OUuTPUT: a packing of the n objects into the minimum number
of bins of size B

Fix an input instance I = (t1 : ny,...,tx : ny; B) of the (6, 7)-Bin
PACKING problem. Each subset of objects in I can be written as a w-tuple
[h1,...,hy] wWith h; < n; to specify that the subset contains h; objects of
size t; for all 2. In particular, the input instance [ itself can be written as
[N,y 0]

Let #H[hy,...,h,] denote the minimum number of bins needed to pack
the subset [hq,...,h,] of the input instance I for the (¢,7)-BIN PacCK-
ING problem. Suppose that #H[hy,...,h;] > 1. According to the discus-
sion in the last lecture, we know that #H[hy,..., hy] is equal to 1 plus
#H[h1 —b1,...,hy — by] for some bin configuration (b1, bs,...,b:). On the
other hand, since #H|[hq,...,h,] corresponds to an optimal packing of the
subset [hy,..., hz], #H[hq,..., h,] is actually equal to 1 plus the minimum
of #H[h1—b1,...,hz—b;] over all consistent bin configurations (b1, ...,b:).
This suggests an algorithm that uses the dynamic programming technique
to compute the value of #H[hy,..., hy]. In particular, #H[ny,...,n,] gives
the optimal value for the input instance I for the (4, 7)-BIN PACKING prob-
lem.

Definition 24.1 Fix an input instance I = ({1 : ny,..., % : ny; B) for the
(6, 7)-BIN PACKING problem. Let I’ = [hy,..., h,] be a subset of the input
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objects in I, where h; < n; for all i. A w-tuple (b1,...,b:) is an addable bin
configuration to I' if

1. hi+b; <m;foralli=1,...,7; and

2. Z?:l t;0; < B.

Intuitively, an addable bin configuration specifies a bin configuration
that can be obtained using the objects in I that are not in the subset I'.

Now we are ready for presenting the following dynamic programming
algorithm. We use a 7-dimensional array H[l..nq,...,1..n.] (note that 7 is
a fixed constant) such that H[iy,..., .| records an optimal packing for the
subset [iy,...,i;] of I. We use the notation #H[iy,...,i,] to denote the
number of bins used in the packing HJiy,...,i,]. For a packing H[i,..., ]
and a bin configuration (by,...,b,), we will use

Hlir, ..o in] @ (b1y. .., by)

to represent the packing for the subset [iy + by, ..., ;4 b,] that is obtained
from H[i,...,i:] by adding a new bin with configuration (by,...,b,).

Algorithm 24.1 (4, 7)-Precise
InpuT: I =(t1:n1,...,tx :ny; B), where t; > 6B for all i
OuTPUT: a bin packing of [/ using minimum number of bins.

1. #H[h,...,iz] =400 for all 0<¢;<n;, 1 <5< m;

2. H[0,....00=¢; #H[0,...,00=0;

3. for i1 =0 to ny do

4, for i, =0 to ny do

5. for i, =0 to n, do

6. for each bin configuration (by,...,b,)
addable to the subset [iy,...,i;] do

7. if #H[21+b1,,Z7T—|—bﬂ—]>1—|-#H[’Ll,,Zr]

8. then

H[’L'1—|-b1,...,l'7r—|-b7r]IH[il,...,ir]@(bl,...,bﬂr);
BH[i 4 broeeyin + be) = #Hir, i) + 1

Steps 7-8 can obviously be done in time O(n). Since b; < 1/6 for all
i = 1,...m, there are at most (1/6)™ addable bin configurations for each
subset [i1,...,i;]. Moreover, n; < n for all i = 1,..., 7. Therefore, steps
7-8 can be executed at most n”(1/6)" times. We conclude that the running
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time of the algorithm (6, 7)-Precise is bounded by O(n™*1(1/§)™), which
is a polynomial of n when 6 and 7 are fixed.

The algorithm (¢, 7)-Precise is not very satisfying. In particular, even
for a moderate constant 7 of different sizes, the factor n”+! in the complexity
makes the algorithm not practically useful. On the other hand, we will see
that our approximation algorithm for the general BIN PACKING problem is
based on solving the (4, 7)-BIN PACKING problem with a very large constant
7w and a very small constant 6. Therefore, we need, if possible, to improve
the above time complexity. In particular, we would like to see if there is an
algorithm that solves the (4, 7)-BIN PACKING problem such that in the time
complexity of the algorithm, the exponent of n is independent of the values
of m and 6.

Fix an input instance I = ({1 : nq,...,t; : ng; B) for the (6, 7)-Bin
PACKING problem. We say that a 7-tuple (bq,...,b,) is a feasible bin con-
figuration if b; < n; for all 7 and #1b61 + - --t;b, < B. Since t; > 6 B for all 1,
we get b; < 1/6 for all ¢. Therefore, there are totally at most (1/6)™ feasible
bin configurations. Let all feasible bin configurations be

Tl = (b117b127' . '7b17r)
T2 = (b217b227 o '7b27T) (8)

T, = (bqlqu2v"'qu7r)

where ¢ < (1/6)™. Note that the above list of feasible bin configurations can
be constructed in time independent of the number n = >"7_; n; of objects
in the input instance I. Now each bin packing P of the input instance [
can be written as a ¢-tuple (21, z9,...,z,), where z; is the number of bins
of bin configuration 7} used in the packing P. Moreover, there is essentially
only one bin packing that corresponds to the g-tuple (@1, zq,...,z,), if we
ignore the ordering of the bins used. An optimal packing corresponds to a
g-tuple (zq,2,...,2,) with 21 + - - -2, minimized.

Conversely, in order to let a ¢-tuple (zq,2,...,2,) to describe a real
pin packing, we need to make sure that the g-tuple uses exactly the input
objects given in I. For each feasible bin configuration 77, there are b;,
objects of size ;. Therefore, if z; bins are of bin configuration 7}, then for
the bin configuration 7, the g-tuple assumes x;b;; objects of size ¢,. Now
adding these over all bin configurations, we conclude that the total number
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of objects of size t, assumed by the ¢-tuple (zq,25,...,2,) is
2101y + T2bop + -+ Tobgs

This should match the number nj of objects of size t;, in the input instance
I. This formulates the conditions into the following linear programming
problem.

min - 2y + 24+ 2y
21011+ 22byr + -+ 2 = M
1012+ 22bog + - -+ 25bg2 = o (9)

T101r + 22bor + - F 2yl = ng

x; >0, for e =1,...,¢q

Since all 2;8 must be integers, this is an integer linear programming problem.
It is easy to see that if a ¢-tuple (zq,...,2,) corresponds to a valid bin
packing of the input instance I, then the vector (zq,...,z,) satisfies the
constraints in the system (9). Conversely, any vector (z1,...,z,) satisfying
the constraints in the system (9) describes a valid bin packing for the input
instance I. Moreover, it is easy to see that if a vector (zq,...,z,) satisfying
the constraints in the system (9) is given, the corresponding bin packing can
be constructed in linear time.

Therefore, to construct an optimal solution for the input instance I for
the (6, 7)-BIN PAcKING problem, we only need to construct an optimal
solution for the integer linear programming system (9). As we discussed
before, the INTEGER LINEAR PROGRAMMING problem in general is NP-
hard. But here the nice thing is that both the number ¢ of variables and the
number g+ of constraints in the system (9) are independent of n = Y74 n;.
However, this does not immediately imply that the system can be solved in
time independent of n — the numbers n; appearing on the right side of the
system may be as large as n.

Anyway, the above system has at least suggested a polynomial time
algorithm for solving the problem: we know that an optimal solution must
satisfy 21 +---+ 2, <n. Thus, 0 <z; <nforalli=1,...,¢in an optimal
solution. Therefore, we could enumerate all vectors (z1,...,2,) satisfying
0 < z; < n and solve the system (9). Note that there are totally (n+41)? such
vectors and ¢ is independent of n. However, since ¢ has order (1/6)™, this
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enumerating algorithm gives a polynomial time algorithm whose complexity
is even worse than that of the algorithm (4, 7)-Precise.

Fortunately, Lenstra in 1983 has described an algorithm that solves the
system (9) in time h(q,7), where h(q,7) is a function depending only on ¢
and 7. Since the algorithm involves complicated analysis on integer linear
programming, we omit the description of the algorithm.

We summarize the above discussion.

Algorithm 24.2 (4, 7)-Precise2
InpuT: I =(t1:n1,...,tx :ny; B), where t; > 6B for all i
OuTPUT: a bin packing of [/ using the minimum number of bins.

1. construct the list (8) of all feasible configurations

Tl,TQ,. . .,Tq;
2. solve the system (9) using Lenstra’s algorithm;
3. return the solution (zy,...,2,) of step 2.

Algorithm (6, 7)-Precise2, as discussed above, runs in time hq(q,7) =
ho(m,8), where hy is a function depending only on ¢ and 7. This may
seem a bit surprising since the algorithm packs n = >~]_; n; objects in time
independent of n! This is really a matter of coding. Note that the input [ =

(t1 :m1,...,tx 2 ny; B) of the algorithm (6, 7)-Precise2 actually consists of
27 + 1 integers, and the solution (x4, ..., z,) given by the algorithm consists
of ¢ = (1/€)™ integers. To convert the vector (zq,...,2,) into an actual

packing of the n = 3", n; input objects, an extra step of time O(n) should
be added.

Theorem 24.1 The (6,7)-BIN PACKING problem can be solved in time
O(n) + h(é, ), where h(6,7) is a function independent of n.

122



CPSC-669 Computational Optimization
Lecture #25, October 25, 1995

Lecturer: Professor Jianer Chen
Scribe: Weijie Zhang
Revision: Jianer Chen

25 Approximating Bin Packing

In the last lecture, we have shown that the (6, 7)-BIN PACKING problem can
be solved in time O(n) + h(é, ), where h(6,7) is a function independent of
n.

In today’s lecture, we use the solution for the (4, 7)-BIN PACKING prob-
lem to develop an approximation algorithm for the general BIN PACKING
problem. Let us first roughly describe the basic idea of the approximation
algorithm.

An input instance of the general BIN PACKING problem may contain
objects of small size and objects of many different sizes. To convert an input
instance I = (t1,...,t,; B) of the general BIN PACKING problem to an input
instance of the (6, 7)-BIN PACKING problem, we perform two preprocessing
steps:

1. ignore the objects of small size, i.e., the objects of size less than 6 B;
and

2. sort the rest of the objects by their sizes in decreasing order, then
partition the sorted list into = groups G, ..., G'r. For each group G,
replace every object by the one with the largest size t; in G.

After the preprocessing steps, we obtain an instance I’ = (¢} : m,...,t :
m; B) of the (6, 7)-BIN PACKING problem, where m < n/7. Now we use the
algorithm we have described to construct a solution Y’, which is a packing,
for the instance I’. To obtain a solution Y to the original input instance
I of the BIN PACKING problem, we first replace each object in Y’ by the
corresponding object in I, then add the objects in I that have size smaller
than 6 B using greedy method.

The intuition is that an optimal solution to I’ is an over-estimation of
the optimal solution to I (since each object in I is replaced by a larger
object in I’, the number of bins used by an optimal packing of I’ is at least
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as large as the number of bins used by an optimal packing of I); while an
optimal solution to I = (t§ : m,...,t/. : m; B) is an under-estimation of
the optimal solution to I (I” can be regarded as an instance obtained by
replacing each object of I in the group G; by a smaller object of size t._;
for 1 < ¢ < m—1 and deleting the objects in the last group G). Since the
instance I can also be obtained by deleting the m largest objects in I’, an
optimal packing of I’ uses at most m more bins than an optimal packing of
I" (the m bins are used to pack the m largest objects in I’). Therefore, an
optimal packing of I’ uses at most m more bins than an optimal packing
of I, with the objects of size less than 6B ignored. When the value 7 is
sufficiently large, the value m = n/7 is small so that an optimal solution to
I’ will be a good approximation to the optimal solution to I with objects of
size less than ¢ B ignored.

Finally, after a good approximation of the optimal solution to the in-
stance I minus the small objects is obtained, we add the small objects to
this solution using greedy method. Since the small objects have small size,
the greedy method will not leave much room in each bin. Thus, the resulting
packing will be a good approximation for the input instance I of the general
BIN PACKING problem.

We present the formal algorithm and formal analysis as follows.

Algorithm 25.1 ApprxBinPacking
Input: [ = ({1,...,t,;B) and ¢ >0
Output: a packing of the objects in [

1. sort {i,...,t,; without loss of generality, let
lh2lyg2>-- 21,
2. let h be the largest index such that ¢, > eB/2; let
IO = <t1,t2, .. .,th;B>

3. let m=[4/€], partition the objects in [y into «
groups (1, ..., G, such that the group (; consists
of the objects

t(m—l)i—l—lvt(m—l)i—l—% ceesbmg

where m = [h/n] (the last group G, contains m’ <m
objects).

4. construct an optimal solution Y’ to the instance
I'=(t1 i m,tgn sy tomgr 2, oy 2 15 B)
for the (¢/2,7)-BIN PACKING problem;

5. replace each object in Y’ of size tj,4; by a proper
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object in the group G, 41 of Iy, for j=0,...,7 -1,
to construct a packing Yy for the instance Ijy;

6. add the objects #p41,...,%, in I to the packing Y, by
greedy method (i.e., no new bin will be used until no
used bin has enough space for the current object).
This results in a packing for the instance [.

According to Theorem 24.1 and note that 7 = [4/¢], the (¢/2,7)-BIN
PACKING problem can be solved in time O(n) + h(¢/2,7) = O(n) + ho(e),
where hg(€) is a function depending only on €, we conclude that the algorithm
ApprxBinPacking runs in time O(nlogn) + ho(¢), if an O(nlogn) time
sorting algorithm is used for step 1.

We discuss the approximation ratio for the algorithm ApprxBinPacking.
As before, we denote by Opt([) the optimal value, i.e., the number of bins
used by an optimal packing, of the input instance I of the BIN PacKinG
problem.

Lemma 25.1 Let Iy be the input instance constructed by step 2 of the al-
gorithm ApprxBinPacking. Then

Opt(ly) < Opt(1)

PROOF. This is because Iy is a subset of I so I takes at least as many bins

as Ip. O

Lemma 25.2 Let Iy and I' be the input instances constructed by step 2 and
step 4 of the algorithm ApprxBinPacking, respectively. Then

Opt(I') < Opt(L)(1 +¢) + 1

PROOF. Note that the instance I’ is obtained from the instance Iy by
replacing each object in a group G; by the largest object ¢(;_1),,41 in the
group. Therefore, an optimal packing for the instance I’ uses at least as
many bins as that used by an optimal packing for the instance Iy. This
gives

Opt(ly) < Opt(]’)

Now let
"= <tm—|—1 P tomyl T, '7t(7r—1)m—|—1 : m/; B>
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I" can be regarded as an instance obtained from Iy by (1) replacing each
object in the group G; by a smaller object t;,+1 (recall that ¢;,41 is the
largest object in group G'i41), forall i = 1,...,7—2; (2) replacing m’ objects
in group Gr—1 by a smaller object #(;_1)p41; and (3) eliminating rest of the
objects in group G,_1 and all objects in group ;. Therefore, an optimal
packing for Iy uses at least as many bins as an optimal packing for I”. This
gives

Opt(I") < Opt(Io)

Finally, the difference between the instances I’ and I"” are m objects of size
t1. Since an object can fit into a bin, we must have

Opt(I') < Opt(I") + m
Combining all these we obtain
Opt(lo) < Opt(I') < Opt(lo) +m
This gives us

Opt(I') < Opt(Io) + m = Opt(Io) + [h/7]
< Opt(lo) + hjm +1=0pt(lp) + he? /4 + 1 (10)

Now since each object of Iy has size at least €B/2, each bin can hold at
most [2/¢] objects. Thus, the number of bins Opt(ly) used by an optimal
packing for the instance [y is at least as large as eh/2:

ch/2 < Opt(1p)
Use this in Equation (10), we get
Opt(I') < Opt(Iy) + € - Opt(Io) /2 + 1 < Opt(Ip) (14 €) + 1
The lemma is proved. []

Lemma 25.3 The solution Yy constructed by step 5 of ApprxBinPacking
s a packing for the instance Iy. Moreover, the number of bins used by Yy s
at most Opt(Ily)(1+¢€) + 1.

PROOF. First note that the instances Iy and I’ have the same number

of objects. The solution Yy to I is obtained from the optimal solution Y’
to the instance I’ by replacing each of the m objects of size l(i—1)m41 in I
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by an object in group G; of Iy. Since no object in group G; has size larger
than ¢(;_1),41, we actually replace objects in the bins in Y’ by objects of
the same or smaller size. Therefore, no bin would get content more than B
in the packing Yy. This shows that Yy is a packing for the instance Iy.

Finally, since Yy uses exactly the same number of bins as Y’ and Y’ is
an optimal packing for I’. By Lemma 25.2, the number of bins used by Yjp,
i.e., the number of bins Opt(I’) used by Y’, is at most Opt(Iy)(1 + €) + 1.
]

Now we are ready for deriving our main theorem.

Theorem 25.4 For any input instance I = (t1,...,t,; B) of the BIN Pack-
ING problem and for any 0 < € < 1, the algorithm ApprxBinPacking con-
structs a bin packing of I that uses at most Opt(1)(14 ¢)+ 1 bins.

PROOF.  According to Lemma 25.3, the solution Yy constructed by step
5 of the algorithm ApprxBinPacking is a packing for the instance /5. Now
step 6 of the algorithm simply adds the objects in I — Iy to Yy using greedy
method. Therefore, the algorithm ApprxBinPacking constructs a packing
for the input instance I. Let Y be the packing constructed by the algorithm
ApprxBinPacking for / and let r be the number of bins used by Y. There
are two cases.

If in step 6 of the algorithm ApprxBinPacking, no new bin is introduced.
Then r equals the number of bins used by Yy. According to Lemma 25.3
and Lemma 25.1, we get

r<Opt(Lo)(14+ )+ 1 <Opt(I)(1+¢€)+1

and the theorem is proved.

Thus, we assume that in step 6 of the algorithm ApprxBinPacking, new
bins are introduced. According to our greedy strategy, no new bin is intro-
duced unless no used bin has enough room for the current object. Since all
objects added by step 6 have size less than €/2, we conclude that all of the
7 bins in Y, except maybe one, have content larger than B(1 — ¢/2). This
gives us

th+-+t,>B(1l—-¢/2)(r—1)

Therefore, an optimal packing of the instance I uses more than (1—¢/2)(r —
1) bins. From
Opt(l)> (1 —¢€/2)(r—1)
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we derive

r<Opt)/(1—¢€/2)+ 1 < Opt(I)(14+¢)+ 1

The last inequality is because ¢ < 1.

Therefore, in any case, the packing Y constructed by the algorithm
ApprxBinPacking for the input instance I of the BIN PAcCKING problem
uses at most Opt(I)(1+ €) + 1 bins. The theorem is proved. [

Note that the condition that ¢ must be less than or equal to 1 loses no
generality. In particular, if we are interested in an approximation algorithm
for the BIN PACKING problem with approximation ratio 1 + ¢ with ¢ > 1,
we simply use the First-Fit algorithm (Algorithm 23.1).

We conclude the lecture by the following theorem.

Theorem 25.5 The BIN PACKING problem has an asymptotic polynomial
time approximation scheme.

PROOF. For any € > 0, let ¢, = 2/e. For each input instance I of the BIN
PackiNnG problem, let the algorithm ApprxBinPacking construct in time
O(nlogn) + ho(¢/2) a packing that uses at most r < Opt(I)(1 +¢/2) + 1
bins. Now for input instances I with Opt([l) > ¢. = 2/¢, we have

T € 1
— <14+ -+—-=x<1
o = et o =T
By the definition, the BIN PACKING problem has an asymptotic polynomial
time approximation scheme. []

The algorithm ApprxBinPacking runs in time O(nlogn) + ho(¢), which
is not a polynomial of 1/e. When € is small, the value hg(€) can be huge.
Therefore, a further improvement on the algorithm ApprxBinPacking is
an algorithm of the similar approximation ratio but with the running time
bounded by a polynomial of n and 1/e. This kind of algorithms is charac-
terized by the following definition.

Definition 25.1 An optimization problem @ = (I, 5, f, opt) has an asymp-
totic fully polynomial time approximation scheme (AFPTAS) if there is an
approximation algorithm A for ) such that for any € > 0, there is a constant
¢. such that for all input instances @ € I with Opt(z) > ¢., the algorithm
A produces in time polynomial in both n and 1/¢ a solution for z with
approximation ratio bounded by 1 + e.
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The question whether the BIN PACKING problem has an asymptotic
fully polynomial time approximation scheme was answered by Karmakar
and Karp, who use a similar approach that reduces the bin packing problem
to the linear programming problem. The algorithm uses some deep observa-
tions on the linear programming problem. We omit the detailed description
here. Instead, we state the result directly.

Theorem 25.6 (Karmakar and Karp) There is an approzimation algorithm
A for the BIN PACKING problem such that for any € > 0, the algorithm A
produces in time polynomial in n and 1/€ a packing in which the number of
bins used is bounded by

Opt(z)(1+e)+ 1/ +3

Corollary 25.7 The BIN PACKING problem has an asymptotic fully poly-
nomial time approximation scheme.

PROOF.  For any € > 0, let ¢, = (8 + 6¢2)/€’. For each input instance [
of the BIN PACKING problem, let the Karmakar-Karp algorithm construct
a packing that uses at most

r < Opt(I)(1+¢/2) +(2/e)* +3
bins. Now for input instances I with
OpHI) = . = (8 + 66)/¢
we have
e (2/e)*+3

1+4-4+—<1
opn) = et o =TS

Moreover, the algorithm runs in time polynomial in n and 2/e, which is also
in polynomial in n and 1/e. [
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26 Multi-processor scheduling

In the next few lectures, we study how the techniques developed for the BIN
PACKING problem can be used to develop a polynomial time approximation
scheme for the MULTI-PROCESSOR SCHEDULING problem.

Recall that the MULTI-PROCESSOR SCHEDULING problem is defined as
follows.

MUurLTI-PROCESSOR SCHEDULING

INPUT: (t1,%2,...,1,;m), all integers, where ¢; is the processing
time for the #th job

OuTpPUT: a scheduling of the n jobs on m identical processors
such that the parallel finish time is minimized

We point out a few properties for the MULTI-PROCESSOR SCHEDULING
problem:

1. Even if we fix the number m of processors to be any constant larger
than 1, the problem is still NP-hard (Theorem 13.3);

2. If the number m of processors is a fixed constant, then the problem
has a fully polynomial time approximation scheme (Corollary 16.2).

3. If m is not fixed, the problem is strongly NP-hard and has no fully
polynomial time approximation scheme unless P = NP (see Lecture
Notes #18).

Therefore, the best we can expect for the MULTI-PROCESSOR SCHEDUL-
ING problem is a (non-fully) polynomial time approximation scheme.

The MULTI-PROCESSOR SCHEDULING problem can also be regarded as
a variation of the BIN PACKING problem in which we are given n objects of
sizes t1, ..., t,, respectively, and the number m of bins, and we are asked
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to pack the objects into the m bins such that the bin size is minimized.
Therefore, there are two parameters: the number of bins and the bin size.
Each of the MULTI-PROCESSOR SCHEDULING problem and the BIN Pack-
ING problem fixes one parameter and optimizes the other parameter. In this
sense, the MULTI-PROCESSOR SCHEDULING problem is “dual” to the BIN
Packing problem. Therefore, it is not very surprising that the techniques
developed for approximation algorithms for the BIN PACKING problem can
be useful in deriving approximation algorithms for the MULTI-PROCESSOR
SCHEDULING problem.

Consider the following problem, where for an input instance I of the BIN
PACKING problem, we use Opt([) to denote the optimal value of I, i.e., the
number of bins used by an optimal packing of the instance I.

(14 €)-BIN PacKING
INnpUT: [ = (t1,13,...,t,; B), all integers

OuTpUT: a packing of the n objects into at most Opt([) bins
such that the content of each bin is at most (1 + €)B

We first show that the (1 + ¢)-BIN PACKING problem can be solved
in polynomial time for a fixed constant ¢ > 0. Then we show how this
solution can be used to derive a polynomial time approximation scheme for
the MULTI-PROCESSOR SCHEDULING problem.

The idea for solving the (1+ €)-BiN PACKING problem is very similar to
the one for the approximation algorithm ApprxBinPacking for the general
BiN PACKING problem. We first perform two preprocessing steps:

1. ignore the objects of size less than €B; and

2. partition the rest of the objects into = groups G4, ..., G so that the
objects in each group have a very small difference in size. For each
group G;, replace every object by the one with the smallest size in G;.

The preprocessing steps give us an instance I’ of the (¢, 7)-BIN PACKING
problem, for which an optimal solution can be constructed in polynomial
time. Note that the optimal solution for I’ is an under-estimation of the
optimal solution for I and thus it uses no more than Opt([) bins. Then we
restore the object sizes and add the small objects by greedy method to get
a packing for the instance I. Since the difference in sizes of the objects in
each group is very small, the restoring of object sizes will not increase the
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content for each bin very much. Similarly, adding small objects using greedy
method will not induce much error.
The formal algorithm is given as follows.

Algorithm 26.1 VaryBinPacking
Input: [ = ({1,...,t,;B) and ¢ >0
Output: a packing of the objects of [ into bins of size
(1+¢)B

1. sort {i,...,t,; without loss of generality, let
lh2lyg2>-- 21,
2. let h be the largest index such that #, > €B; let
IO = <t1,t2,. . .,th;B>

3. let 7= [1/¢?], divide the line segment (¢B,B] into 7

subsegments of equal length
(li, Pa], (I3, h2], ooy (Ir, bl
where h; =l;11 and h; —l; = (B — €B)/7;

4. partition the objects in /y into 7 groups Gy, ..., Gx,
such that an object is in group (; if and only if its
size is in the range (/;,h;]; let t. be the size of the
smallest object in group G; (if G; is empty, let
t'=1;), and let m; be the number of objects in G;

5. construct an optimal solution Y’ to the instance

I'={t smy, by cmg, ...t my; B)
for the (¢,7)-BIN PACKING problem;

6. replace each object in Y’ of size t; by a proper object
in the group G; of Iy, for j=1,...,7, to construct a
packing Y, for the instance Ip;

7. add the objects #p41,...,%, in I to the packing Y, by
greedy method (i.e., no new bin will be used until
adding the current object to any used bins would
exceed the size (1 +¢)B). This results in a packing
Y for the instance /.

According to Theorem 24.1 and note that 7 = [1/€?], the (e, 7)-BIN
PACKING problem can be solved in time O(n)+ ho(¢), where hg(¢) is a func-
tion depending only on ¢. We conclude that the algorithm VaryBinPacking
runs in time O(nlogn) + ho(¢), if an O(nlogn) time sorting algorithm is
used for step 1.
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As before, we denote by Opt(I) the optimal value, i.e., the number of
bins used by an optimal packing, of the input instance I of the general BIn
PACKING problem.

Lemma 26.1 The packing Y' for the instance I' constructed by step 5 of
the algorithm VaryBinPacking uses no more than Opt(1) bins.

PROOF.  The instance Iy is a subset of the instance I. Thus, Opt(ly) <
Opt(I). The instance I’ is obtained from Iy by replacing each object in Iy by
a smaller object. Thus, Opt(I") < Opt(ly) < Opt(I). Since Y’ is an optimal
packing for I’, Y uses Opt(1’') < Opt(I) bins. O

Lemma 26.2 In the packing Yy constructed by step 6 of VaryBinPacking,
no bin has content larger than (1 + ¢)B, and Yy uses no more than Opt(l)
bins.

PROOF. According to step 6 of the algorithm VaryBinPacking, the number
of bins used by Yy is the same as that used by Y’. By Lemma 26.1, the
packing Yy uses no more than Opt(I) bins.

Fach object of size t. in I’ corresponds to an object in group G; in Iy.
The packing Yy for Iy is obtained from the packing Y’ by restoring each
object of I’ to the corresponding object in [y. Since t! is the size of the
smallest object in G; and no object in G; has size larger than

t; —I—(hZ — lZ) = t;—l— (B— €B)/7T

the size increase for each object from Y’ to Y is bounded by (B — eB)/.
Moreover, since all objects in I’ have size at least ¢B, and the packing

Y’ has bin size B, each bin in the packing Y’ holds at most |1/€] objects.

Therefore, the size increase for each bin from Y’ to Yy is bounded by

(B = eB)/x)- |Lfe] = (B eB)/[1/@)- [1/e] < (B/(1]) - (1)c) = B

Since the content of each bin of the packing Y’ is at most B, we conclude
that the content of each bin of the packing Yy is at most (1 +€)B. [

Lemma 26.3 The packingY constructed by step 7 of VaryBinPacking uses
no more than Opt(I) bins, and each bin of Y has content at most (1 + ¢)B.

PROOF. By Lemma 26.2, each bin of the packing Yy has content at most
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(1 + €)B. The packing Y is obtained from Yy by adding the objects of size
bounded by eB using greedy method. That is, suppose we want to add an
object of size not larger than ¢B and there is a used bin whose content will
not exceed (1 + €)B after adding the object to the bin, then we add the
object to the bin. A new bin is introduced only if no used bin can have the
object added without exceeding the content (1 + ¢)B. The greedy method
ensures that the content of each bin in Y is bounded by (1 + ¢)B. Note
that since all added objects have size bounded by ¢B, when a new bin is
introduced, all used bins have content larger than B.

If no new bin was introduced in the process of adding small objects in
step 7, then the number of bins used by the packing Y is the same as the
number of bins used by the packing Yp. By Lemma 26.2, in this case the
packing Y uses no more than Opt(I) bins.

Now suppose that new bins were introduced in the process of adding
small objects in step 7. Let r be the number of bins used by the packing
Y. By the above remark, at least » — 1 bins in the packing Y have content
larger than B. Therefore, we have

i+ +t,>B(r—1)

This shows that we need more than r—1 bins of size B to pack the objects in
I in any packing. Consequently, the value Opt([)is at least (r —1)+1 = r.
That is, the packing Y uses no more than Opt([) bins. [J

We conclude this lecture with the following theorem.

Theorem 26.4 Given an instance I = (t1,...,t,; B) for the BIN PACKING
problem and a constant ¢ > 0, The algorithm VaryBinPacking constructs
in time O(nlogn) + ho(€) a packing for I that uses no more than Opt(l)
bins and the content of each bin is bounded by (1 + ¢)B, where Opt(I) is
the number of bins used by an optimal packing of I using bins of size B and
ho(€) is a function depending only on €.

Corollary 26.5 The (1 + €)-BIN PACKING problem can be solved in poly-
nomial time for a fired constant «.
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27 Approximating multi-processor scheduling

In the last lecture, we developed an algorithm VaryBinPacking that, given
an input instance I = (t1,...,1,; B) of the BIN PACKING problem and a
constant ¢ > 0, constructs in time O(nlogn) + ho(€) a packing using at
most Opt([) bins such that the content of each bin is bounded by (1 + ¢)B,
where hg(€) is a function depending only on e.

We use this algorithm to develop a polynomial time approximation scheme
for the MULTI-PROCESSOR SCHEDULING problem. We first re-formulate the
MULTI-PROCESSOR SCHEDULING problem in the language of bin packing.

MurTI-PROCESSOR SCHEDULING (Bin Packing version)

INPUT: (t1,%3,...,t,;m), all integers, where #; is the size of the
1th object

OuTpPUT: a packing of the n objects into m bins of size B with
B minimized

We use the idea of binary search to find the optimal bin size B. In
general, suppose that we try bin size B, and find out that the input instance

(t1,...,1,; B) for the BIN PACKING problem needs more than m bins in its
optimal packing, then the tried bin size B is too small. So we will try a
larger bin size. On the other hand, if the instance (¢1,...,%,; B) needs no

more than m bins, then we may want to try a smaller bin size because we
are minimizing the bin size. Note that the algorithm VaryBinPacking can
be used to estimate the number of bins used by an optimal packing of the
instance (t1,...,t,; B).

We first discuss the initial bounds for the bin size in the binary search.
Fix an input instance (t1,...,t,;m) for the MULTI-PROCESSOR SCHEDUL-
ING problem. Let

i3
Aveg = maX{Zti/m,tl,tg, ceotn}

=1
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Lemma 27.1 The minimum bin size of the input instance (t1,...,t,;m)
for the MULTI-PROCESSOR SCHEDULING problem is at least Avg.

PROOF. Since ) ", ¢;/m is the average content of the m bins for packing
the n objects of size ¢4, ..., t,,, any packing of the n objects into the m bins
has at least one bin with content at least >, ¢;/m. That is, the bin size
of the packing is at least > 1 t;/m.

Moreover, the bin size of the packing should also be at least as large as
any t; since every object has to be packed into a bin in the packing.

This shows that for any packing of the n objects of size ¢y, ..., ¢, into
the m bins, the bin size is at least Avg. The lemma is proved. []

This gives a lower bound on the bin size for the input instance I of
the MULTI-PROCESSOR SCHEDULING problem. We also have the following
upper bound.

Lemma 27.2 The minimum bin size of the input instance (t1,...,t,;m)
for the MULTI-PROCESSOR SCHEDULING problem is bounded by 2 - Avg.

PROOF. Suppose that the lemma is false. Let r be the minimum bin size
for packing I = (t1,...,%,;m) into m bins, and r > 2 - Avg.

Let Y be a packing of I into m bins such that the bin size of Y is r.
Furthermore, we suppose that Y is the packing in which the least number
of bins have content r. Let By, By, ..., B,, be the bins used by Y, where
the bin By has content r > 2 - Avg. Then at least one of the bins Bs, ...,
B, has content less than Avg — otherwise, the sum of total contents of the
bins By, By, ..., By, would be larger than mAvg > > | ¢;. Without loss of
generality, suppose that the bin By has content less than Avg. Now remove
any object ¢; in the bin By and add #; to the bin By. We have

1. the content of the bin By in the new packing is less than r;
2. the content of the bin B, in the new packing is less than

Avg 4+t <2-Avg <r

3. the contents of the other bins are unchanged.

Thus, in the new packing, the number of bins that have content r is one less
than the number of bins of content r in the packing Y. This contradicts our
assumption that Y has the least number of bins of content r.

This contradiction proves the lemma. [
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Therefore, the minimum bin size for packing the instance I into m bins
is in the range [Avg,2Avg]. We apply binary search on this range to find
an approximation for the optimal solution of I for the MULTI-PROCESSOR
SCHEDULING problem.

Algorithm 27.1 ApprxMPS

Input: [ =({,...,t,;m), all integers, and € > 0
OQutput: a scheduling of the n jobs of processing time {;,
t2, ..., t, on m identical processors.

1. Avg=max{) ", ti/m,t1,t2, ..., tn};
lower = |Avg]; upper = [2 - Avg];
3. while upper — lower > ¢- Avg/4 do
B = |(lower + upper)/2];
call the algorithm VaryBinPacking on the input
(t1,...,1,; B) and €/4; suppose that the algorithm
uses r bins on the input;
if r>m
then lower = B
else upper = B;
4. let B* = |upper(l+¢/4)];
5. call the algorithm VaryBinPacking on the input
(t1,...,t,; B*) and €/4 to construct a scheduling
of I.

We first study the complexity of the above algorithm ApprxMPS. The
complexity of the algorithm is dominated by step 3. We start with

upper — lower = 2 - Avg — Avg = Avg

Since we are using binary search, each execution of the body of the while
loop will half the difference (upper — lower). Therefore, after O(log(1/¢))
executions of the body of the while loop in step 3, we must have

upper — lower < € - Avg/4

That is, the body of the while loop is executed at most O(log(1/¢)) times.

In each execution of the body of the while loop in step 3, we call the
algorithm VaryBinPacking on input (f1,...,%,; B) and €/4, which takes
time O(nlogn) + ho(¢/4) = O(nlogn) + hi(¢), where hy(¢) is a function
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depending only on €. Therefore, the running time of the algorithm ApprxMPS
is bounded by

O(log(1/€))(O(nlogn) 4 hi(€)) = O(nlognlog(1/¢)) + ha(e)
where hy(€) is a function depending only on e.
Theorem 27.3 The running time of the algorithm ApprxzMPS on input in-
stance I = (t1,...,t,;m) and € > 0 is bounded by O(nlognlog(1/¢))+ha(c).
In particular, for a fized constant ¢ > 0, the algorithm ApprxMPS runs in

polynomial time.

We will present the analysis for the approximation ratio for the algorithm
ApprxMPS in the next lecture.
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28 More on multi-processor scheduling

In the last lecture, we presented the following algorithm for the MuULTI-
PROCESSOR SCHEDULING problem.

Algorithm 28.1 ApprxMPS

Input: [ =({,...,t,;m), all integers, and € > 0
OQutput: a scheduling of the n jobs of processing time {;,
t2, ..., t, on m identical processors.

1. Avg=max{d " ti/m,t1,ta, ..., tn};
lower = |Avg]; upper = [2 - Avg];
3. while upper — lower > ¢- Avg/4 do
B = |(lower + upper)/2];
call the algorithm VaryBinPacking on the input
(t1,...,1,; B) and €/4; suppose that the algorithm
uses r bins on the input;
if r>m
then lower = B
else upper = B;
4. let B* = |upper(l+¢/4)];
5. call the algorithm VaryBinPacking on the input
(t1,...,t,; B*) and €/4 to construct a scheduling
of I.

we also showed that the algorithm runs in time O(nlognlog(1/¢))+ ha(€),
where hy(€) is a function depending only on €. Now we discuss the approx-
imation ratio of the algorithm.

Fix an input instance I = (#1,...,%,;m) for the MULTI-PROCESSOR
SCHEDULING problem. Let Opt(I) be the optimal solution, i.e., the parallel
finish time of an optimal scheduling, of the instance I.
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Lemma 28.1 In the whole execution of the algorithm ApprzMPS, we always
have
lower < Opt(I) < upper(1l + ¢/4)

PROOF. Initially, lower = |Avg| and upper = [2- Avg]. By Lemmas 27.1
and 27.2, we have lower < Opt(1) < upper(1l + ¢/4).

Now for each execution of the while loop in step 3, we start with a bin
size B and call the algorithm VaryBinPacking on input (¢1,...,%,; B) and
€/4, which uses r bins.

If » > m, by the algorithm VaryBinPacking, the minimum number of
bins used by a packing to pack the objects into bins of size B is at least as
large as r. Therefore, if the bin size is B, then we need more then m bins
to pack the objects t1, ..., t,. Thus, in order to pack the objects t1, ..., t,
into m bins, the bin size B is too small. That is, Opt(I) > B. Since in this
case we set lower = B, the relation lower < Opt([) < upper(l + ¢/4) still
holds.

If » < m, then the objects ty, ..., t, can be packed in r bins of size
(1 + ¢/4)B. Certainly, the objects can also be packed in m bins of size
(14 ¢/4)B. This gives Opt(I) < (14 ¢/4)B. Thus, setting upper = B still
keeps the relation lower < Opt(I) < upper(1+ ¢/4).

This proves the lemma. [

Now we are ready to show that the algorithm ApprxzMPS is a polyno-
mial time approximation scheme for the MULTI-PROCESSOR SCHEDULING
problem.

Theorem 28.2 On any input instance I = (t1,...,t,;m) for the MULTI-
PROCESSOR SCHEDULING problem and for any €, 0 < € < 1, the algorithm
ApprxMPS constructs in time O(nlognlog(1/¢)) + ha(¢) a scheduling of the
n jobs on the m processors with approximation ratio 1 + €, where hy(€) is a
function depending only on ¢.

PROOF. The time complexity of the algorithm ApprxMPS is given by
Theorem 27.3.
By Lemma 28.1, the relation

lower < Opt(1) < upper(1+ ¢/4)
always holds. In particular, at step 4 of the algorithm, we have

Opt(I) < upper(1 + ¢/4)
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Since Opt(I) is an integer, we should also have
Opi(1) < Lupper(1+ ¢/4)] = B*

Therefore, the bin of size B* is at least as large as the bin of size Opt([).
Since the objects t1, ..., ¢, can be packed into m bins of size Opt(I), we
conclude that the objects 1, ..., t,, can also be packed into m bins of size B*.
By the property of the algorithm VaryBinPacking, on input instance I =
(t1,...,1,; B*) and €/4, the algorithm VaryBinPacking packs the objects
t1, ..., t, into at most m bins, with each bin of content at most B*(1+¢/4).
Therefore, the packing is a scheduling of the n jobs on the m processors.
Now let us consider the content bound B*(1 + €/4) for the bins in the
packing constructed by the algorithm VaryBinPacking. At step 4, we have

upper — lower < € - Avg/4
Since lower = Avg initially, and lower is never decreased, we have
upper < lower 4 € - Avg/4 < lower + ¢ - lower/4 = lower(1 + €/4)
By Lemma 28.1, we always have
lower < Opt(1) < upper(1+ ¢/4)

Thus
upper(1 + €/4) < lower(1 4 ¢/4)* < Opt(I)(1 + €/4)*

Therefore, the content bound B*(1 + ¢/4) is bounded by

B (14 ¢/4) = [upper(1 + ¢/4)] (1 + ¢/4)
< upper(1 + ¢/4)* < Opt(D)(1 + ¢/4)°

Now Opt(I)(1+€/4)> < Opt(I)(1+€) for € < 1. Recall that in the scheduling,
the number m of bins corresponds to the number of processors, and the
maximum bin content B*(1 4 ¢/4) corresponds to the parallel finish time.
In conclusion, the scheduling of the n jobs on the m processors constructed
by the algorithm ApprxMPS has parallel finish time bounded by Opt(I)(14¢).
In other words, the algorithm ApprxMPS has approximation ratio 1 + €. [

Corollary 28.3 The MULTI-PROCESSOR SCHEDULING problem has a poly-
nomial time approximation scheme.
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Again, the condition € < 1 is not crucial. In particular, we will see below
that if € > 1, a much simpler approximation algorithm for the MurLTI-
PROCESSOR SCHEDULING problem can be designed to have approximation
ratio bounded by 1 + e.

Algorithm 28.2 SimpleMPS

Input: [ = ({1,...,t,;m), all integers
OQutput: a scheduling of the n jobs of processing time {;,
t2, ..., t, on m identical processors

for 1 =1 to n do
assign {; to the processor with the lightest load;

Using a data structure such as a 2-3 tree to organize the m processors
using their loads as the keys, we can always find the lightest loaded pro-
cessor, update its load, and re-insert it back to the data structure in time
O(log m). With this implementation, the algorithm SimpleMPS runs in time
O(nlogm).

Now we study the approximation ratio of the algorithm SimpleMPS.

Theorem 28.4 Algorithm SimpleMPS for the MULTI-PROCESSOR SCHEDUL-
ING problem has approximation ratio bounded by 2.

PROOF. Let I = (t1,...,t,;m) be an input instance to the MuLTI-
PROCESSOR SCHEDULING problem. Suppose that the algorithm SimpleMPS
constructs a scheduling S for I with parallel finish time T. Let P; be a
processor that has the execution time T’ assigned by the scheduling 5.

If the processor Py is assigned only one job, then the job has processing
time T, and any scheduling on I has parallel finish time at least T'. In this
case, the scheduling 5 is a optimal scheduling with approximation ratio 1.

So suppose that the processor P is assigned at least two jobs. Let {g
be the last job assigned to the processor P;. We have T'— {5 > 0. By our
strategy, at the time the job {y is about to be assigned to the processor Py,
all processors have load at least T' — tg. This gives:

> ti > m(T = to) + to = mT — (m — 1)tg
=1

This gives
iz ti +(m—1)tg

m
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Now since the optimal value Opt([) is at least as large as (3 ;—; ¢;)/m, and
at least as large as top, we conclude that

T<2-Opt(])

Consequently, the approximation algorithm SimpleMPS has approximation
ratio bounded by 2. [

There are certainly many possible ways to improve the performance of
the algorithm SimpleMPS. For example, it seems that if we sort the jobs first
so that the larger jobs will be assigned first, then we may get an improvement
on the approximation ratio. In fact, it can be shown that such a modification
makes the algorithm have an approximation ratio of 4/3. Students are
encouraged to think of other possible improvements.
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29 Approximability with a constant ratio

So far we have seen many optimization problems that can be approximated
in polynomial time to approximation ratio 1 + ¢, for any given constant e.
These problems are classified into the following two classes.

Definition 29.1 An optimization problem is in the class FPTAS if it has
a fully polynomial time approximation scheme. An optimization problem is
in the class PTAS if has a polynomial time approximation scheme.

Obviously, FPTAS is a subclass of PTAS.

On the other hand, there are many other optimization problems that
do not seem to have such nice approximability. There is a large class of
optimization problems of practical importance, which do not seem to have
polynomial time approximation schemes. The rest of this course will be
centered on the study of these optimization problems.

Let us first consider the VERTEX COVER problem. Given a graph G =
(V, F), we say that a subset V of V' is a vertex cover of the graph G if every
edge of the graph G has at least one endpoint in V.

VERTEX COVER
INPUT: an undirected graph G' = (V, E)

OuTPUT: a vertex cover Vp of minimum cardinality

The VERTEX COVER problem has applications in computer networks,
VLSI design, and circuit testing. For example, in computer network, we are
given a network, which can be regarded as a graph, and we are asked to
pick a set of nodes in the network so that all connections of the network are
monitored by the nodes in the set. To economize the resources, we expect
to have as few nodes as possible in the set. This is exactly the VERTEX
COVER problem.

We have a very efficient and simple approximation algorithm for the
VERTEX COVER problem. The algorithm is given below.
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Algorithm 29.1 ApprxVC
Input: an undirected graph G = (V,F)
Output: a vertex cover of (4

1. Let Vp = ¢;
2. for each edge e of G do
if ¢ has no ends in Vj
then add both ends of e to Vj

From the ApprxVC algorithm, we can easily get two observations.

Observation 29.2 The set V; constructed by the algorithm ApprxVC is a
vertex cover of the graph G.

As we can see, the algorithm makes sure that all edges of the graph G
are covered by the set V.

Observation 29.3 The algorithm ApprxVC actually constructs a maximal
matching for the graph G.

When the algorithm ApprxVC includes two endpoints u and » of an edge
e in the set Vy, we can regard that the algorithm matches the two endpoints
u and v by the edge e. By the algorithm, if the endpoints u and v are
matched by e, no other edge incident on either v or v would be used for
matching. That is, the set

Ey = {e | e is picked by ApprxVC for matching its two ends}

is a matching in . Moreover, the matching is maximal because every edge
has at least one end in Vj.

Theorem 29.1 The algorithm ApprxVC is an approximation algorithm for
the VERTEX COVER problem and has approximation ratio 2.

PROOF. By Observation 29.2, the algorithm ApprxVC always constructs a
vertex cover for the input graph G.

By Observation 29.3, a maximal matching Fg is constructed by the al-
gorithm ApprxVC. Let

Ey = {e | e is picked by ApprxVC for matching its two ends}
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and let C' be any minimum vertex cover. Then every edge in Fy should be
covered by (', i.e., each edge in Fy should have at least one end in C'. Since
no two edges in Fy share a common end, we should have

|C| > | Eol

Since each edge in Fy has two ends in Vy and no two edges in Fy share a
common end, we have

2| Eo| = Vo

In conclusion

Opt(G) = |C| = |Vo| /2
This gives the approximation ratio
Vol /Opt(G) < 2
and the theorem is proved. [

The algorithm ApprxVC looks very simple. However, it gives the best
approximation ratio known for the VERTEX COVER problem. Actually, it is
an outstanding open problem whether the VERTEX COVER problem has a
polynomial time approximation algorithm with approximation ratio r < 2,
for a fixed constant r > 0.

I assign the following as one of the project problems.

Project problem: Improve the approximation ratio 2 for the VERTEX
COVER problem on graph classes with some reasonable restrictions.

There are many optimization problems like the VERTEX COVER problem
that have polynomial time approximation algorithms with approximation
ratio bounded by a fixed constant ¢ (¢ = 2 for the VERTEX COVER problem).
On the other hand, for many of them, it is unknown whether the constant
¢ can be arbitrarily close to 1, i.e., whether the problems have polynomial
time approximation schemes. We discuss another example as follows.

Let X, Y, and Z be three finite sets. Given a subset § C X XY X Z,
a matching M in S is a subset of 5 such that no two triples in M have
the same coordinate at any dimension. The 3-DIMENSIONAL MATCHING
problem is defined as follows.

3-D MATCHING
InpuT: aset S C X XY x Z of triples

OuTPUT: a matching M in S with |M| maximized
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The 3-D MATCHING problem is a generalization of the classical “mar-
riage problem”: Given n unmarried men and m unmarried women, along
with a list of all male-female pairs who would be willing to marry one an-
other, find the largest number of pairs so that polygamy is avoided and
every paired person receives an acceptable spouse. Analogously, in the 3-D
MATCHING problem, the sets X, Y, and Z correspond to three sexes, and
each triple in § corresponds to a 3-way marriage that would be acceptable
to all three participants.

Remark 29.4 The 2-D MATCHING problem can be similarly defined: given
aset 5 C X XY of pairs, find a maximum subset M of .5 such that no two
pairs in M agree in any coordinate. The 2-D MATCHING problem is the
standard graph matching problem. In fact, the sets X and Y can be regarded
as the vertices of a graph G, and each pair in the set S corresponds to an
edge in the graph . Now a matching M in S is simply a subset of edges in
which no two edges share a common end. That is, a matching in 5 is a graph
matching in the corresponding graph G. As we have studied in Lectures 8-
10, the graph matching problem, i.e., the 2-D MATCHING problem can be
solved in polynomial time.

Remark 29.5 The 3-D MATCHING problem is NP-hard. This is from the
fact that the decision version of the 3-D MATCHING problem is NP-complete
(see Garey and Johnson’s book) and can be reduced to the optimization
version of the 3-D MATCHING problem. In fact, the decision version of the
3-D MATCHING problem is listed by Garey and Johnson as one of the six
basic NP-complete problems.

We present two polynomial time approximation algorithms for the 3-D
MATCHING problem.

Let S C X XY X Z be a set of triples and let M be a matching of 5. We
say that a triple (2,9, 2) in S — M does not contradict the matching M if no
triple in M has x as its first coordinate, or has y as its second coordinate,
or has z as its third coordinate. In other words, (z,y, z) does not contradict
the matching M if M U {(z,y,2)} is still a matching.

Algorithm 29.2 Apprx3D-First
Input: a set SC X XY X Z of triples
Output: a matching M in §

1. let M = ¢.
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2. for each triple (2,y,2) in S do
if (2,y,7) does not contradict M
then add (z,y,2) to M.

It is easy to verify that the algorithm Apprx3D-First runs in polynomial
time. In fact, if we use three arrays for the symbols in X, Y, and Z, and
mark the symbols as “in M” or “not in M”, then in constant time we can
decide whether a triple (z,y,2) contradicts the matching M. With these
data structures, the algorithm Apprx3D-First runs in linear time.

Theorem 29.2 The algorithm Apprx3D-First construclts a matching in
the set S and has approximation ratio 3.

PROOF.  From the algorithm Apprx3D-First, it is clear that the set M
constructed is a matching in the given set .

Let Myax be a maximum matching in S and let (z,y,2) be a triple in
Mmax. By the algorithm Apprx3D-First, the triple (2, y, z) contradicts the
matching M (otherwise, it would have been added to M by the algorithm).
Therefore, either z is the first coordinate of a triple in M, or y is the second
coordinate of a triple in M, or z is the third coordinate of a triple in M.
Therefore, the total number of symbols appearing in the matching M (in
either the first dimension, or the second dimension, or the third dimension)
is at least |Mpyax|. Since each triple in M uses exactly three symbols, we
conclude that the number of triples in the matching M is at least | Myax|/3.
That is,

OpU(S)/|M| = [ Ml /| M] < 3

The theorem is proved. [
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30 3-dimensional matching

We continue our discussion on the 3-D MATCHING problem.

Let 5 C X XY X Z be a set of triples. Without loss of generality, we
assume that the symbol sets X, Y, and Z are all pairwise disjoint. Therefore,
it makes no ambiguity to say that a triple ¢ contains a symbol win XUY UZ.
Recall that a matching M in S is a subset of .5 in which no two triples agree
in any coordinate. We say that a symbol w € X UY U Z is in the matching
M if a triple in M contains the symbol w. A triple ¢t in S — M contradicts
the matching M if a symbol in 7 is also in the matching M. We say that a
matching M in S is mazimal if every triple in S — M contradicts M.

Before we present another approximation algorithm for the 3-D MATCH-
ING problem, we diverge to a related problem.

k-TRIPLE MATCHING

Given aset S C X XY X Z of n triples and an integer k& > 0, find
a matching in S with k triples or report that no such a matching
exists in 9.

It is clear that the k-TRIPLE MATCHING problem can be solved in time
O(nk) if we pick every k triples in 5 and check whether they make a match-
ing. However, the algorithm will be very time-consuming even for a small
value of k. We would like to have a better algorithm for the problem. In
particular, we would like to have an algorithm for the problem such that in
the time complexity of the algorithm, the exponent of n is independent of
the value k.

We present an algorithm solving the k-TRIPLE MATCHING problem as
follows. The algorithm is first given as a nondeterministic algorithm, i.e.,
an algorithm that can “guess” a desired object in a set without exhaustively
searching the set. Then we show how the nondeterministic algorithm can
be converted into a deterministic one.
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We first suppose that a maximum matching in the set S contains at
least k triples. Fix a matching My = {t1,%2,...,%x} of k triples in S (the
matching My is unknown to our algorithm).

Let M; be a maximal matching in 5. M; can be found in time O(n)
by, say, the algorithm Apprx3D-First given in the last lecture. If |My| > k,
then we are done — any k triples in M7 make a matching of k triples in 5.
Thus, we assume | M| < k.

Let t; be any triple in the matching Mq. If ¢; is in My, then certainly
the symbols in #; are also in M;. If t; is not in My, then ¢; contradicts M,
because M; is maximal. Thus, in any case, for each triple ¢; in My at least
one symbol in ¢; is in the matching M.

Thus, our algorithm guesses k symbols aq, ..., a5 in My such that «; is
a symbol in the triple ¢;, ¢ = 1,.... k. This gives us a “pseudo-matching”

My = {89 4Py

52) is the triple ¢; in the matching My with the symbol a; present

and the other two symbols replaced by a special symbol ‘+’, for ¢ = 1..., k.

where ¢

This gives us the initial pseudo-matching. Note that the pseudo-matching
Mj can be constructed from the matching My in time O(k) if the guessed
symbols aq, ..., a; are given.

Inductively, suppose that we have obtained a pseudo-matching

My = {949y
Ej) is the triple ¢; in the matching My with at least one symbol present
and the other symbols replaced by the symbol *+’, for « = 1..., k. We say

where ¢

that a triple ¢ in 5 is consistent with a triple tgj) if ¢ and tgj) agree in all
5]) has the symbol “*’.
Now we try to fill the missing symbols in the pseudo-matching M; using

a greedy algorithm. Formally, we start with M’ = ¢ then scan the triples
in 5. We add a triple ¢ in § to M’ if (1) ¢ is consistent with a triple tgj) in
M;; (2) no symbols in ¢ appear in other triples in M;; and (3) the triple ¢
does not contradict the matching M’. Note that this process is equivalent to

()

7

coordinates except those on which ¢

filling the missing symbols ‘x” in the triple ¢
in the triple t.

The above process ends up with a matching M’ in 5. Note that the
matching M’ can be constructed from the matching M; in time O(n). If
|M'| = k, i.e., if all missing symbols in M; are filled, then we are done (note

by the corresponding symbols
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that the matching M’ may not necessarily be the matching My). Otherwise,

|M'| < k. Without loss of generality, suppose that the triples in M; whose
(9) (9)

missing symbols are filled are the triples 77/, ..., ¢;”’, h < k. Now consider

the triple t;ﬁ_l, which corresponds to the triple #5491 in the matching M.

It is clear that the only reason that the triple #;47 was not included in the
matching M’ is that the triple ¢, 1 contradicts the matching M’. According
to the way we construct the matching M’, the symbols in t;4; that also
appear in tgj_l)_l cannot be in M’. Thus, the symbols in t,44 that are in
2]4)-1' Now we guess a symbol

bpy1 in M’ such that bjyy is in t;41 and corresponds to a “*’ in t;ﬁ_l,
(9)

replace the corresponding symbol “x” in th;|-1 by bp11. This gives us a new
pseudo-matching

M' must correspond to the symbol ‘*” in ¢

and

Mgy = {00 400 Uy

where tgﬁ_l) = tgj) for all ¢ # h 4 1, and t;fjll) is the triple t;f_l)_l with a
symbol ‘*’ replaced by the symbol bj41.

Therefore, both pseudo-matchings M; and M;;, are the matching My
with some symbols replaced by the symbol ‘*’. Moreover, the pseudo-
matching M;q has one less “*’ than the pseudo-matching M;. It is clear
that the matching M;; can be constructed from the matching M; in time
O(n) if the guessed symbol by 41 is given. Now our algorithm applies the
same process on the matching M; ;.

Since we started with the matching M, with 2k ‘4’ symbols and the
above algorithm reduces the number of “+’ symbols by one from M; to M;41,
the algorithm must end up with a matching M, of k triples that contains
no ‘«” symbols, where ¢ < 2k + 2. This completes the description of our
nondeterministic algorithm. Our nondeterministic algorithm runs in time
O(kn) if the guessed symbols are all given.

We point out that our nondeterministic algorithm reports a matching of
k triples in .S only if it actually finds a matching of &k triples. Therefore, if
a maximum matching in S contains less than k triples, then our nondeter-
ministic algorithm will be stuck at some point without having a matching
of k triples. An incorrect guess may also spoil the process. However, if
the maximum matching in 5 has at least k triples, and if all our guesses in
the process are correct, then the nondeterministic algorithm will produce a
matching of £ triples.

Now we explain how the nondeterminism in the above algorithm can
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be eliminated. Each guess in the algorithm corresponds to a sequence of
nondeterministic binary bits. We first calculate how many nondeterministic
binary bits are needed in the algorithm.

In constructing the pseudo-matching My from the maximal matching
My, we need guess k symbols in M;. Since M; contains 3|M;| < 3k symbols,
k symbols in My can be represented by a binary vector of length 3|M|, in
which exactly k bits are 1. Therefore, guessing k symbols in M; takes no
more than 3k nondeterministic binary bits.

When we construct the pseudo-matching M;;, from the pseudo-matching
M;, we need to guess the symbol by4q from the matching M’. First we need
0
, contains at most two ‘+’ symbols). Once

at most one nondeterministic binary bit to decide which ‘+’ symbol in ¢

should be filled (recall that ¢/}
the ‘x” symbol in tgj_l)_l is decided, we only need to look at the triples in M’
on the corresponding dimension. Since the matching M’ contains less than
k triples, M’ contains less than k£ symbols in each dimension. Therefore,
guessing a symbol in M’ corresponding to the chosen ‘x” in tgj_l)_l is equiva-
lent to deciding a position out of | M| positions. Thus, guessing the symbol
by+1 totally takes no more than 1 + log k nondeterministic binary bits.
Since the nondeterministic algorithm ends up with a matching M,, with
g < 2k + 2, we conclude that the total number of nondeterministic binary
bits used by the nondeterministic algorithm is bounded by (note that the

pseudo-matching starts from My)
3k 4 2k(1 4+ logk) = k(5 + 2logk)

To convert the nondeterministic algorithm into a deterministic algorithm,
we run the nondeterministic algorithm using each of the 25(5+2108%) hipary
vectors of length k(5 + 2log k) as the k(5 + 2log k) nondeterministic binary
bits. Since for a fixed such binary vector, the algorithm runs in time O(kn),

we conclude that the running time of the resulting deterministic algorithm
is bounded by O(n23klesk),

Theorem 30.1 There is an algorithm A such that given a set S of n triples
and an integer k, the algorithm A runs in time O(n23%198%) either finds a
matching of k triples in § or reports no such a matching exists in 5.

Now we come back to approximation algorithms for the 3-D MATCH-
ING problem. In the last lecture, we presented an algorithm Apprx3D-First
that runs in linear time and constructs a maximal matching for a given set

152



of triples. We proved that the number of triples in a maximal matching is
at least 1/3 the number of triples in a maximum matching (Theorem 29.2).
Thus, the algorithm Apprx3D-First is an approximation algorithm of ap-
proximation ratio 3 for the 3-D MATCHING problem. Now we present an-
other polynomial time approximation algorithm with a better approximation
ratio for the 3-D MATCHING problem.

Let S be a set of triples and let M be a maximal matching in 5. Since
the matching M is maximal, no triple in .S — M can be added directly to
M to obtain a larger matching. However, it is possible that if we remove
one triple from M, then we are able to add two triples from 5 — M to M
to obtain a larger matching. We say that the matching M is I-optimal if
no such a triple in M exists. More formally, we say that a matching M is
1-optimal if M is maximal and it is impossible to find a triple ¢; in M and
two triples t5 and 3 in S — M such that M — {t;} U {t2, 3} is a matching
in §.

We present an algorithm that constructs a l-optimal matching for a
given set of triples.

Algorithm 30.1 Apprx3D-Second
Input: a set S of n triples
Output: a matching M in §

1. construct a maximal matching M using Apprx3D-First;
2. change = true;
3. while change do
for each triple ¢t in M do

M =M —{t};

let 5; be the set of triples not contradicting M ;

construct a maximum matching M; in 5;

if M; contains more than one triple

then M = M UM,;; change = true;

else M = M U{t};

Lemma 30.2 After each execution of the for loop in step 3 of the algorithm
Apprx3D-Second, the matching M is a maxzimal matching.

PROOF. Before the algorithm enters step 3, the matching M is maximal.

Since the set S} has no common symbol with the matching M after the
triple ¢ is removed from M, for any matching M’ in S;, MUM’ is a matching
in S. Moreover, since all triples in 5 — 5 contradict M, and all triples in
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S¢— M, contradict M,, we conclude that all triples in 5 — (M UM;) contradict
M U M,. That is, the matching M U M, is a maximal matching in 5, which
is assigned to M if M; has more than one triple. In case M; has only one
triple, the triple ¢ is put back to M, which by induction is also maximal. []

Lemma 30.3 The matching constructed by the algorithm Apprx3D-Second
is 1-optimal.

PROOF. It is easy to see that there are a triple £ in M and two triples t; and
ty in S — M such that M —{t} U{t1, 2} is a matching in S if and only if the
matching M, in 5; contains more than one triple. Therefore, the algorithm
Apprx3D-Second actually goes through all triples in M and checks whether
each of them can be traded for more than one triple in S — M. In other
words, the algorithm Apprx3D-Second ends up with a 1-optimal matching
M. U

Lemma 30.4 The mazimum matching M, in the set S; can be constructed
in time O(n).

PROOF.  We first show that a maximum matching in 5; contains at most
3 triples. Suppose that t1, t3, t3, and {4 are four triples in a maximum
matching in 5;. Then at least one of them, say t;, contains no symbol in
the triple ¢. Since t; does not contradict M — {t}, t; does not contradict M
even before t is removed from M. Therefore, before the triple ¢ is removed,
the matching M is not maximal. This contradicts Lemma 30.2.

Therefore, a maximum matching in 5y contains at most 3 triples. Now
according to Theorem 30.1, we can find a maximum matching M, in 5 in

time O(n). U

Since each execution of the while loop in algorithm Apprx3D-Second
increases the number of triples in M by at least 1 and a maximum matching
in § contains at most n triples, we have the following theorem.

Theorem 30.5 The algorithm Apprx3D-Second runs in time O(n?).
We analyze the approximation ratio for the algorithm Apprx3D-Second.

Theorem 30.6 The algorithm Apprx3D-Second has approzimation ratio 2.

PROOF. We denote by M the matching in S constructed by the algorithm
Apprx3D-Second and let My ,x be a maximum matching in 5.
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Based on the matchings M and My,ay, we introduce a weighting function
w(-) on symbols in X UY U Z as follows.

e if a symbol ¢ is not in both M and My, then the symbol a has weight
0: w(a)=0;

e if a symbol @ is in both M and My,.y, and @ is in a triple of M, .y that
contains two symbols not in M, then a has weight 1: w(a) = 1;

e if a symbol @ is in both M and My,.y, and @ is in a triple of M, .y that
contains only one symbol not in M, then a has weight 1/2: w(a) = 1/2;

e if a symbol @ is in both M and My,.y, and @ is in a triple of M, .y that
contains no symbol not in M, then a has weight 1/3: w(a) = 1/3;

The weight w(t) of a triple t is the sum of the weights of its components.
According to the definition, each triple in the matching My, has weight
exactly 1.

Now let t = (a,b,c) be a triple in M. If w(t) > 2, then at least two
components of ¢ have weight 1. Without loss of generality, suppose that
w(a) = w(b) = 1. By the definition, there are two triples t; = (a,b’, )
and t; = (a”,b,¢") in the matching Mpax such that the symbols o', ¢/,
a”, ¢" do not appear in M. However, this would imply that M — {t} U
{t1,%2} is a matching and the matching M constructed by the algorithm
Apprx3D-Second would not be 1-optimal. This contradicts Lemma 30.3.

Thus, each triple in the matching M has weight at most 2. Since only
symbols in both matchings M and My, have nonzero weight, we must have

> w(t)= ) w(t)

teMmax tEM

Since each triple in Muyay has weight 1, we have 3".cpy  w(t) = |[Mpax|.
Moreover, since each triple in M has weight at most 2, we have 3~y w(t) <
2|M|. This gives us

Ml < 2/M|

or |Mmax|/|M| < 2. This completes the proof. [

Corollary 30.7 The 3-D MATCHING problem has an approximation algo-
rithm that runs in time O(n®) and has approzimation ratio 2.
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Remark 30.1 A natural extension of the algorithm Apprx3D-Second is to
consider 2-optimal, or in general k-optimal. That is, we construct a maximal
matching M in 5 such that no k triples in M can be traded for £+ 1 triples
in § — M. It is not very hard to see that a k-optimal matching in 5 can be
constructed in polynomial time when k is a fixed constant. In fact, using
Theorem 30.1, we can develop an algorithm of running time O(n**+2) that
constructs a k-optimal matching for a set S of n triples. We can show that a
k-optimal matching gives an approximation ratio smaller than 2 when k& > 1.
For example, a 2-optimal matching has approximation ratio 9/5 while a 3-
optimal matching has approximation ratio 5/3. It can also been shown that
the approximation algorithm for the 3-D Matching problem by constructing
k-optimal matchings for a fixed constant k& cannot have approximation ratio
less than or equal to 3/2.

Course Project Problem: Develop an approximation algorithm for the
3-D Matching problem that uses an approach different from the k-optimality
method and has approximation ratio better than 2.
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31 Maximum satisfiability

We have studied the VERTEX COVER problem and the 3-D MATCHING
problem. These two problems have a common property that both of them
have polynomial time approximation algorithms whose approximation ratio
is bounded by a constant ¢ > 1. It is unknown how close this constant ¢ can
be to the value 1. In particular, do these problems have a polynomial time
approximation scheme? Very recent progress in computational optimization
has shown that a large class of optimization problems of practical impor-
tance falls into this category. For this reason, we introduce another class of
optimization problems.

Definition 31.1 An optimization problem is approximable with a constant
ratio in polynomial timeif it has a polynomial time approximation algorithm
with approximation ratio ¢, where ¢ is a fixed constant. Let APX be the
class of all optimization problems approximable with a constant ratio in
polynomial time.

It is clear that the class PTAS is a subclass of the class APX.

It is well-known that the SATISFIABILITY problem plays a fundamental
role in the study of NP-completeness. An optimization version of the SATIS-
FIABILITY problem, the MAX-SAT problem, plays a similar role in the study
of the optimization class APX.

Let X = {zy,...,2,} be a set of boolean variables. A literal in X is
either a boolean variable x; or its negation Zj, for some 1 < ¢ < n. A clause
on X is an Or of a set of literals in X. The SATISFIABILITY problem is
formally defined as follows.

SATISFIABILITY (SAT)
INPUT: a set of clauses Cy,Cy, ..., Chppon {2y, ..., 2,}

QUESTION: does there exist a truth assignment on {zq,...,2,}
that satisfies all clauses?
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By the famous Cook’s Theorem, the SATISFIABILITY problem is NP-
complete.

If we have further restrictions on the number of literals in each clause,
we obtain another two interesting complexity classes.

3-SATISFIABILITY (3SAT)

INPUT:  a set of clauses C'y,C5,...,Cpy on {@1,...,2,} such
that each clause has exactly 3 literals

QUESTION: does there exist a truth assignment on {zq,...,2,}
that satisfies all clauses?

2-SATISFIABILITY (2SAT)

INPUT:  a set of clauses C'y,C5,...,Cpy on {@1,...,2,} such
that each clause has exactly 2 literals

QUESTION: does there exist a truth assignment on {zq,...,2,}
that satisfies all clauses?

It is well-known that the 3-SATISFIABILITY problem is still NP-complete,
while the 2-SATISFIABILITY problem can be solved in polynomial time (in
fact, in linear time).

An optimization version of the SATISFIABILITY problem can be defined
as follows.

MAX-SAT
INPUT: a set of clauses Cy,Cy, ..., Chppon {2y, ..., 2,}
OuTpPUT: a truth assignment on {z1,...,z,} that satisfies the

maximum number of the clauses

The optimization versions for the 3-SATISFIABILITY problem and for the
2-SATISFIABILITY problem are
MAX-3SAT

INPUT:  a set of clauses C'y,C5,...,Cpy on {@1,...,2,} such
that each clause has at most 3 literals

OuTpPUT: a truth assignment on {z1,...,z,} that satisfies the
maximum number of the clauses
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MAX-2SAT

INPUT:  a set of clauses C'y,C5,...,Cpy on {@1,...,2,} such
that each clause has at most 2 literals

OuTpPUT: a truth assignment on {z1,...,z,} that satisfies the
maximum number of the clauses

It is easy to see that the SATISFIABILITY problem can be reduced in poly-
nomial time to the MAX-SAT problem: an instance {C4,...,C,,} is a Yes-
instance for the SATISFIABILITY problem if and only if when it is regarded
as an instance of the MAX-SAT problem, its optimal value is m. Therefore,
the MAX-SAT problem is NP-hard. Similarly, the 3-SATISFIABILITY prob-
lem can be reduced in polynomial time to the MAX-3SAT problem so that
the MaX-3SAT problem is NP-hard.

Since the 2-SATISFIABILITY problem can be solved in linear time, one
may expect that the corresponding optimization problem MAX-2SAT is also
easy. However, the following theorem gives a bit surprising result.

Lemma 31.1 The MAX-25AT problem is NP-hard.

PROOF.  We show that the 3-SATISFIABILITY problem can be reduced in
polynomial time to the MAX-2SAT problem.

Let £ ={Cy,...,C,} be an instance for the 3-SATISFIABILITY problem,
where each C; is a clause of three literals in {xy,...,2,}. Consider the
clause C; = (a; Vb;V ¢;), where a;, b;, and ¢; are literals in {z1,...,2,}. We

construct ten clauses:

Ci = A{lai), (bi), (i), (),
@Vb), (@ve), (bive), (11)
(ai v E)v (bl \ E)v (Ci \% E)}
where y; is a new created boolean variable. It is easy to verify the following
facts.

o if none of a;, b;, ¢; is true, then any assignment to y; can make at most
six out of the ten clauses in (11) true;

e if one of a;, b;, ¢; is true and two of a;, b;, ¢; are false, then no as-
signment to y; can make more than seven of the ten clauses in (11)
true and there is an assignment to y; that makes seven out of the ten
clauses in (11) true;
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e if two of a;, b;, ¢; are true and one of a;, b;, ¢; is false, then no as-
signment to y; can make more than seven of the ten clauses in (11)
true and there is an assignment to y; that makes seven out of the ten
clauses in (11) true;

o if all a;, b;, ¢; are true, then no assignment to y; can make more than
seven of the ten clauses in (11) true and there is an assignment to y;
that makes seven out of the ten clauses in (11) true;

Based on the above analysis, we conclude that if we set any of the three
literals a;, b;, and ¢; true, then no assignment to y; can make more than
seven of the ten clauses in (11) true and there is an assignment to y; that
makes seven out of the ten clauses in (11) true, and if we set all three literals
a;, b;, ¢; false, then any assignment to y; can make at most six out of the
ten clauses in (11) true.

Now let E be the set of 10m clauses in (7, ..., C,,, where each Cj is
given as in (11). F is an instance for the MAX-2SAT problem. It is easy
to see that the instance E can be constructed in polynomial time from the
instance F.

Suppose that F is a Yes-instance for the 3-SATISFIABILITY problem.
Then there is an assignment S, to {xy,...,2,} that makes at least one
literal in each C; of the clauses (', ..., C), true. According to the analy-
sis given above, this assignment S, together with a proper assignment 9,
to {y1,...,¥m} will make seven out of the ten clauses in C; true, for all
¢ = 1,...,m. Therefore, the assignment 5, 4+ 5, to the boolean variables
{21, e s T, Y1y - - Ym } makes Tm clauses in E true. This gives Opt(F) >
m.

Now suppose that F is a No-instance for the 3-SATISFIABILITY prob-
lem. Let S be an assignment to {z1,..., %, %1, .., ¥n} and we analyze how
many clauses in I the assignment S can satisfy. The assignment S can be
decomposed into an assignment S, to {z1,...,2,} and an assignment 5, to
{y1,..-,Ym}. Since E is a No-instance for the 3-SATISFIABILITY problem,
for at least one clause C; in F, the assignment 5, makes all literals false.
According to our previous analysis, any assignment to y; together with the
assignment S, can make at most six out of the ten clauses in C; true. More-
over, since no assignment to {xy,...,Z,,Y1,..., ¥} can make more than
seven clauses in each C; true, we conclude that the assignment S can make
at most 7(m — 1) + 6 = 7m — 1 clauses in E true. Since S is arbitrary,
we conclude that in this case, no assignment to {1y, ..., 2., ¥1,..., Ym} can
make more than 7m — 1 clauses in F true.
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Summarizing the discussion above, we conclude that F is a Yes-instance
for the 3-SATISFIABILITY problem if and only if the optimal value Opt(E) for
the instance F for the MAX-2SAT problem is equal to 7m. Consequently, the
3-SATISFIABILITY problem can be reduced in polynomial time to the Max-
2S5AT problem. This completes the proof that the MAX-2SAT problem is
NP-hard. [J

Now we describe an approximation algorithm for the MAX-SAT problem.
Consider the following algorithm. For each clause, we give it a weight w(C}).
We use || to denote the number of literals in the clause C;.

Algorithm 31.1 ApprxMaxSat
Input: a set of clauses {C4,...,C,} on {a1,...,2,}
Output: a truth assignment to {xy,...,2,}

1. LEFT ={Cy,....C.};
2. for each clause (; do

w(Cy) =121

3. for =1 to n do
find all clauses (f%,...,C! in LEFT that contain a;;
find all clauses C{,...,Cg in LEFT that contain Zj;
if i w(C) > T5ny w(C)
then z;,=1

delete C!,...,C! from LEFT;

for j =1 to s do w(Cf):Qw(C]f)
else 2;,=0

delete C{,...,Cﬂf from LEFT;

for j=1to r do w(C%) =2w(C})

The algorithm ApprxzMaxSat runs in polynomial time. Now we analyze
the approximation ratio for the algorithm.

Lemma 31.2 If each of the input clauses {Cy,...,Cp} contains at least
k literals, then the algorithm ApprxzMaxSat constructs an assignment that
satisfies at least m(1 — 1/2%) of the clauses.

PROOF. In the algorithm ApprxMaxSat, once a clause is satisfied, the

clause is deleted from the set LEFT. Therefore, the number of clauses that
are not satisfied by the constructed assignment is equal to the number of
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clauses left in the set LEFT at the end of the algorithm. We calculate the
number of clauses in LEFT using the weighting function w(-).

Initially, each clause C; has weight 1/2|Oi|. By our assumption, the clause
C; contains at least k literals. So we have

Sow@)= > 128 < N 1/2k = w2t

C;eLEFT C;eLEFT C;eLEFT

In step 3, we update the set LEFT and the weight for the clauses in LEFT. It
can be easily seen that we never increase the value 3. cpgrT w(C;) — each
time we update the set LEFT, we delete a heavier set of clauses in LEFT and
double the weight for a lighter set of clauses in LEFT. Therefore, at end of
the algorithm, we should have

S w(C) < m/2k (12)

C;eLEFT

At the end of the algorithm, all boolean variables {zy,...,2,} have been
assigned a value. A clause C; in the set LEFT has been considered by the
algorithm exactly |C;| times and each time the corresponding literal in C;
was assigned 0. Therefore, for each literal in C;, the weight of the clause
('; is doubled once. Since initially the clause C; has weight 1/2|C"| and its
weight is doubled exactly |C;| times in the algorithm, we conclude that at
the end of the algorithm, the clause '; in LEFT has weight 1. Combining this
with the inequality (12), we conclude that at the end of the algorithm, the
number of clauses in the set LEFT is no more than m/2*. In other words,
the number of clauses satisfied by the constructed assignment is at least
m(1 —1/2%). The lemma is proved. [

Theorem 31.3 For an input of m clauses each containing at least k > 0
literals, the algorithm ApprxzMaxSat constructs an assignment with approz-
imation ratio 1+ 1/(2% — 1). In particular, the algorithm ApprxMaxSat is
an approximation algorithm with approzimation ratio 2 for the MAX-SAT
problem.

PROOF. According to Lemma 31.2, on an input of m clauses each contain-
ing at least k literals, the algorithm ApprxMaxSat constructs an assignment
that satisfies at least m(1 — 1/2%) clauses. Since no assignment can satisfy
more than m clauses, the approximation ratio must be bounded by

1
:1+2k—

m(1 — 1/2F) —1
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Since for each input instance for the MAX-SAT problem, each clause con-
tains at least 1 literal, the second statement in the theorem follows directly.

O

Remark 31.2 The approximation ratio 2 for the MAX-SAT problem is due
to a classical work of David Johnson about 20 years ago. The bound 2 stood
for more than 20 years until recently, Yannakakis developed a polynomial
time approximation algorithm with approximation ratio 4/3 for the Max-
SAT problem.
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Scribe: Hao Zheng
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32 Probabilistically Checkable Proofs

We have seen a number of optimization problems that are in APX, that
is, that have polynomial time approximation algorithms with approxima-
tion ratio bounded by a constant: the A-TRAVELING SALESMAN problem
can be approximated in polynomial time with approximation ratio 1.5, the
VERTEX COVER problem can be approximated in polynomial time with ap-
proximation ratio 2, the 3-D MATCHING problem can be approximated in
polynomial time with approximation ratio 2, and the MAX-SAT problem
can be approximated in polynomial time with approximation ratio 2. The
ratios for the first two problems are still the best results known today, and
the ratios for the last two problems have be somehow improved recently to
a constant ¢ > 1 (¢ = 1.5+ € for the 3-D MATCHING problem and ¢ = 1.325
for the MAX-SAT problem). The question is whether further improvement
on the approximation ratio is possible. In particular, how close can this
approximation ratio be to the value 17 Can they have a polynomial time
approximation scheme?

The questions turn out to be very deep in the study of computational
optimization. We will see later that from a viewpoint of complexity theory,
these questions are equivalent to the famous P = NP problem. Moreover, our
algorithmic practice also suggests the possibility for either directions. Take
the A-TRAVELING SALESMAN problem as an example. It has been more
than 15 years that the bound 1.5 on the approximation ratio has stood for
the problem. On the other hand, very recent research (still in manuscript
version) has shown that the GRAPH TRAVELING SALESMAN problem, in
which the distance metric between two vertices is the shortest path met-
ric of an unweighted graph, has a polynomial time approximation scheme.
Note that the GRAPH TRAVELING SALESMAN problem is a restricted version
of the A-TRAVELING SALESMAN problem. From this progress, researchers
have even conjectured that the EUCLIDEAN TRAVELING SALESMAN prob-
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lem, which seems the most naturally restricted version of the A-TRAVELING
SALESMAN problem, has a polynomial time approximation scheme.
Researchers were not able to answer these questions for more than 20
years until a very recent breakthrough in complexity theory that gives a new
characterization of the complexity class NP. In the rest of this lecture, we
will describe this new characterization.
We need to review a few fundamental definitions in complexity theory.

Definition 32.1 A language L is a subset of ¥*, where X is a fixed alphabet.
With a proper coding scheme, we can assume that ¥ = {0,1}. For an
instance x € X*, if & € L then we say that = is a Yes-instance of L while if
x ¢ L then we say that z is a No-instance of L.

A language L is also called a “decision problem” in which for each in-
stance ., we need to decide a “Yes/No” conclusion for the question “a € L?”

Definition 32.2 A language I is accepted by an algorithm A if on any
input instance z € ¥*, the algorithm A outputs “Yes” if z € L (or we say
that A accepts x), and “No” if & € L (or we say that A rejects z).

Definition 32.3 An algorithm A is nondeterministic if it works as follows:
on an input instance z € X*, the algorithm A is also provided with another
“guessed” string y, € X* (by some magic way). Thus, the algorithm A can
work on z with the “hints” given in the guessed string y. The nondetermin-
istic algorithm A accepts a language L if for each z € L, there is a guessed
string ¥, such that A accepts  when y, is provided, and for each ¢ L,
the algorithm A rejects x for any guessed string y.

A nondeterministic algorithm A runs in polynomial time if the running
time of A is bounded by a polynomial of the input length |z|. Note that the
time complexity of a nondeterministic algorithm is not measured in terms
of the guessed string y. Since a polynomial time nondeterministic algorithm
A can read at most polynomial many bits in y, we can assume, without
loss of generality, that the length of the guessed string y is bounded by a
polynomial of the input length |z|.

We say that an algorithm A reduces a language I to another language
Ly if on any input instance 2, for Ly, the algorithm A produces an input
instance xo for Lo such that xy € Ly if and only if 25 € Ls.
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Definition 32.4 A language L is in NP if it is accepted by a polynomial
time nondeterministic algorithm. A language L is NP-complete if L is in
NP and for each language L’ in NP, there is a polynomial time algorithm
that reduces L’ to L.

Take the SATISFIABILITY problem as an example. Given a set 2 of clauses
Cyy ooy Cpyoon {2q,...,2,}, a polynomial time nondeterministic algorithm
A can work as follows: A interprets the first n binary bits in the guessed
string y as a truth assignment to the boolean variables {zy,...,2,} and
replaces each literal in the clauses by the corresponding boolean value. A
accepts a if all clauses are evaluated true on this assignment, otherwise A
rejects x. It is easy to see that if 2 is a Yes-instance for the SATISFIABILITY
problem, then for the guessed string y, whose first n bits give the assignment
that satisfies z, the algorithm A will accept. On the other hand, if z is a
No-instance for the SATISFIABILITY problem, then no matter which guessed
string y is provided, the algorithm A will reject anyway since no assignment
on {zy,...,2,} can satisfy all the clauses in @. Therefore, the SATISFIABIL-
ITY problem is in NP. By the famous Cook’s theorem, the SATISFIABILITY
problem is actually NP-complete.

A nondeterministic algorithm A accepting a language L can also be
interpreted as a proof system. The given input instance z can be regarded
as a statement of a theorem “the string z is in the language [.” while the
guessed string y can be regarded as a proof for the theorem. The algorithm
A is a very trusty “verifier”, who may not be able to derive a proof for
the theorem x, but can verify whether y is a valid proof for the theorem =x.
Therefore, if the theorem z is true and the guessed string y is a valid proof
for the theorem z, then the algorithm A will say “Yes”, and if the theorem
x is not true then the algorithm A will disprove any pseudo-proof y and say
“No”. In this sense, each problem in NP is a set of theorems that have valid
proofs that are “easily checkable”, i.e., that can be checked in polynomial
time.

An interesting question is how many bits of the proof y a polynomial time
nondeterministic algorithm needs to read in order to verify the theorem z.
In real life, it seems that most of the theorems simply need a single “hint”
and the other parts of the proof can be easily derived from the hint. Is
this also true for the problems in NP? For this, we introduce the following
definition.

Definition 32.5 A language L is in the class PCP(0,b(n))if L is accepted
by a polynomial time nondeterministic algorithm A such that on each input
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instance z, the algorithm A reads at most O(b(]z|) bits from the guessed
string y.

We have the following easy observations.

Lemma 32.1 Fvery language in NP is in the class PCP(0,n°) for some
constant c.

PROOF. Suppose that a language L is in NP. Then L is accepted by a
polynomial time nondeterministic algorithm A. Let the running time of the
algorithm A be O(n®). Then the algorithm A on input instance z reads at
most O(|z|°) bits from a guessed string y. That is, the language L is in the
class PCP(0,7°). U

It is interesting to ask whether it is possible to have a polynomial time
algorithm that accepts a language in NP, in particular an NP-complete lan-
guage, by reading less than £(n) bits from the guessed string y. The con-
jecture is No. However, it seems that our current knowledge is still far from
a formal proof of this conjecture. A (much) weaker result can be formally
proved: if a language is in PCP(0,loglogn), then it is in P.

Another extension of our deterministic algorithms is probabilistic algo-
rithms, defined as follows.

Definition 32.6 An algorithm A is a probabilistic algorithm if on any in-
put instance z, the algorithm A first generates a random string r, then
deterministically works on the input =z.

If the outcome of a probabilistic algorithm does not depend on the gener-
ated random string, then the probabilistic algorithm is just a normal deter-
ministic algorithm. If the computation of the probabilistic algorithm does
depend on the generated random string, then each outcome of the computa-
tion will happen with a certain probability. Some very interesting practical
problems can be solved by probabilistic algorithms in such a way that correct
solutions are produced by the algorithm with very high probability.

If we allow both probabilism and nondeterminism, we obtain the follow-
ing class.

Definition 32.7 A language L is in the class PCP(r(n),b(n)) if it is ac-
cepted by a polynomial time algorithm A with two constants ¢ and d such
that
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1. On an input instance z, the random string generated by the algorithm
Ais of length ¢-7(|z|)), a guessed string y of length O(|z|?) is provided,
and the algorithm A reads at most O(b(]z|)) bits from a guessed string;

2. For each input instance x € L, there is a guessed string y, of length
O(]z|?) such that the algorithm A accepts = with probability 1 (i.e.,
A accepts z based on y, for every generated random string of length

c-r(le]));

3. For each input instance & ¢ L, on any guessed string y of length
O(|z|%), the algorithm A rejects x with probability at least 1/2 (i.e., A
rejects z based on y for at least half of the generated random strings

of length ¢ - r(|z])).

The algorithm A is called a PCP(r(n),b(n)) system accepting the language
L.

The name “PCP” here refers to the “probabilistically checkable proof”
as the model involves a checkable proof system (i.e., guessed strings) and
probabilistic computation (i.e., the random string generation).

It was a very active research topic that for what functions r(n) and b(n),
the class PCP(r(n),b(n)) precisely describes the class NP. The question was
eventually settled down recently, as a result stated as follows.

Theorem 32.2 A language L is in the class NP if and only if L is in the
class PCP(logn,1).

The current proof for Theorem 32.2 is rather involved. It borrows sig-
nificantly from results on polynomial checking, proof verification, program
result checking, and coding theory. Giving the details of these results goes
far beyond the scope of this course and we refer the interested students to
the papers that originate them (talk to the instructor).
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33 MAax-3SAT has no PTAS

In the previous lecture, we defined the PCP systems. The following theorem
was stated.

Theorem 33.1 A language L is in the class NP if and only if L is accepted
by a PCP(logn, 1) system.

An outstanding application of Theorem 33.1 is a proof that many opti-
mization problems, such as MAX-35AT, have no polynomial time approxi-
mation scheme unless P = NP. Before we present the proof, we first make
a closer look at the PCP systems. This investigation should let us have a
better understanding on the PCP systems.

By the definition, a PCP(logn, 1) system is a polynomial time algorithm
A that on input of length n, generates a random string of length O(logn) and
reads at most b bits from the guessed string y, where b is a fixed constant.
It should be noted that which b bits of the guessed string y are read by the
algorithm A may depend on the values of the bits read from y. For example,
suppose that the algorithm A reads the first bit from the guessed string y.
Now the algorithm A may calculate the address of the second bit to be read
from y based on the value of the first bit. In general, the address of the ith
bit to be read by A from y may depend on the values of the first + — 1 bits
read by A.

Definition 33.1 A PCP(r(n),b(n))system A is nonadaptive if on an input
instance 2 and a fixed randomly generated string of length O(r(|z|)), the
addresses of the O(b(n)) bits to be read by A from the guessed string y are
independent of the content of the guessed string y.

Therefore, the process of a nonadaptive PCP(r(n),b(n)) system A can
be regarded as follows: on input instance z, the polynomial time algorithm
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A first generates a random string of length O(r(|z|)), then generates the
O(b(n)) addresses for the bits to be read from the guessed string y, and
then reads the bits from y. There will be no other computation performed
during the reading of the bits from the guessed string y.

Lemma 33.2 A language L is accepted by a PCP(logn,1) system if and
only if it is accepted by a nonadaptive PCP(logn, 1) system.

PROOF. By the definition, if the language L is accepted by a nonadaptive
PCP(logn, 1) system, then L is accepted by a general PCP(logn, 1) system.

Now suppose that the language L is accepted by a PCP(logn, 1) system
Ajq. By the definition, on each input instance z, the polynomial time algo-
rithm A; first generates a random string R of length O(logn), then works
on x based on R and a guessed string y. The algorithm Ay reads at most b
bits from the guessed string y, where b is a fixed constant. If € L, then
there is a guessed string y, such that on all randomly generated strings R
of length O(logn), Ay accepts x based on y,; and if @ ¢ L, then for any
guessed string vy, for at least half of the randomly generated strings of length
O(logn), the algorithm Ay rejects z based on y.

We construct a nonadaptive PCP(logn, 1) system Ay that accepts the
language L.

Let 2 be an input instance of L. Fix a randomly generated string R of
length O(logn). The algorithm A, works as follows. Aj first enumerates all
the 2° boolean vectors of length b. Note that each boolean vector (vy,. .., v;)
of length b gives a possible set of values for the b bits to be read from the
guessed string y. For the fixed input instance z and the fixed random string
R, the boolean vector (vq,...,v;) also uniquely determines the addresses
of the bits to be read by the algorithm Ay from the guessed string y: the
address of the first bit depends only on z and R, the address of the second
bit depends on z, R, and the value of the first bit, which is supposed to
be vy, and the address of the third bit depends on z, R, and the values of
the first two bits, which are supposed to be vy and vy, respectively, and so
on. Therefore, based on the input instance z, the random string R, and the
given boolean vector (vq,...,v;) of length b, the algorithm A, can uniquely
determine the addresses of the b bits to be read by the algorithm Ay. The
algorithm A, simulates the algorithm Ay on this computation, records the b
addresses on the guessed string, and records the decision of 47 on  and R
based on this boolean vector. Note that so far, no bits have been actually
read from the guessed string y, the values of the bits on the guessed string
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y are assumed in the boolean vector (vy,...,vp).

The algorithm A, performs the above operation on each of the 2° boolean
vectors of length b. At the end, the algorithm A, has recorded d < 52°
addresses on the guessed string y. Now the algorithm A, reads all these
d bits at once from the guessed string y. With these d values available,
the algorithm As can easily decide precisely which boolean vector gives the
correct sequence of values of the bits read from y by the algorithm A; on
x and R. Note that there is exactly one such vector. With this correct
boolean vector, now the algorithm Ay can find out whether the algorithm
Aj accepts z on the random string R and the guessed string y. The algorithm
Ay accepts z on R if and only if the algorithm A; accepts xz on R.

Now we can describe the algorithm A; in a complete version. Given an
input instance z for L, the algorithm A, simulates the algorithm Ay by first
generating a random string R of length O(logn). Then, as described above,
the algorithm A, simulates the algorithm Ay on @ and R, and A5 accepts if
and only if Ay accepts.

By the construction, the algorithm A; is clearly nonadaptive. The num-
ber of bits read by A, from the guessed string y is bounded by d < b2°,
which is still a constant. The running time of A, is bounded by b2° times
the running time of the algorithm A;. Thus, A5 is also a polynomial time
algorithm. Finally, on any input instance &, any randomly generated string
R, and any guessed string y, the algorithm Ay makes the same decision as
the algorithm A;. Thus, the algorithm A; is a nonadaptive PCP(logn,1)
system that accepts the language L. [

Now we are ready for our main theorem in this lecture.

Theorem 33.3 The MAX-3SAT problem has no polynomial time approzi-
mation scheme unless P = NP.

PROOF. Let L be any language that is NP-complete. We show that if the
MAX-3SAT problem has a polynomial time approximation scheme, then the
language L can be solved in polynomial time by a deterministic algorithm,
which implies that P = NP.

Since the language L is in NP, by Theorem 33.1, I is accepted by a
PCP(logn,1) system A. Without loss of generality, we assume that on
an input instance z, the polynomial time algorithm A generates a random
string R of length clogn, and reads at most b bits from a guessed string
y, where ¢ and b are fixed constants. If the input instance z is in L, then
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there is a guessed string v, of length n? such that for all randomly generated
strings R of length clogn, the algorithm A accepts z; if the input instance
x is not in L, then for any guessed string y, the algorithm A rejects = on at
least half of the randomly generated strings R of length ¢logn. According to
Lemma 33.2, we can assume that the PCP(logn, 1) system A is nonadaptive.

Let = be a given input instance of L. Fix a random string R of length
clogn. We simulate the algorithm A on the input 2 and the random string
R. Note that the outcome of the algorithm A on input z and the random
string R depends on the values of the b bits to be read from the guessed
string y. Since the algorithm A is nonadaptive, the addresses ¢y, ..., ¢ of
the b bits to be read from the guessed string y can be computed without
knowing the actual content of the guessed string y. Formally, the outcome
of the algorithm A on input « and the random string R is a boolean function
of b boolean variables:

Fx,R(@/h R yzb)

where y;, stands for the i;th bit of the guessed string y. The boolean function
F, r can be constructed by simulating the algorithm A on input z and
the random string R and on each of the possible assignments of y;,, ...,
y;,- Note that there are only 20 different possibilities. Now convert the
function Fy gr(¥i,,--.,yi,) into the conjunctive normal form. Note that in
the conjunctive normal form, each clause has at most b literals and there
are at most 2° clauses. Now for each clause C' = (21 V...V z,) containing
more than 3 literals, we use the standard transformation, by introducing
a — 3 new variables wyq, ..., w,_3, to convert it into a set of @ — 3 clauses of
3 literals:

(21VZ2le)A(w_1VZ3Vw2)/\(w_QVZ4Vw3)/\
VANCIEIVAY (wa_4 V242V wa_3) A (wa_g Vzg1V Za)

After this transformation, the boolean function F), r has been converted into
a set S, r of clauses, in which each clause contains at most 3 literals. One
important fact is that the number of clauses contained in S, g is bounded
by b2°, a constant independent of the input instance x. Note that there is an
assignment to the boolean variables y; , ..., y;, that makes the function Fi g
true if and only if there is an assignment to the variables in 5, g that satisfies
all clauses in S, g. It is also clear that the set 5, r can be constructed from
the input z and the random string R in polynomial time.

Now for each random string R of length clog n, we construct the set S, g
of clauses that contain at most 3 literals. The union of all these sets gives
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us an input instance for the MAX-3SAT problem:

S(z) = U SR

|R|=clogn

Since there are totally 2°1°8™ = n° binary strings of length clogn, we can
rename the subsets S, g in S(z) as 51, ..., S, where m = n®:

S($)251USQU"'USm

Since each set 5; can be constructed in polynomial time and m = n®, the
set S(z) can be constructed from the input instance z in polynomial time.
Moreover, there is a constant h < b2° such that each subset S; contains at
most h clauses. Suppose that the set S(z) has N clauses. Then N < hm.

If the input z is in the language L, then according to the definition of
the PCP(logn, 1) system A, there is a guessed string y, of length n such
that on every randomly generated string R, the algorithm A accepts z.
Consequently, if we let this y, be the assignment on the variables in the set
Sz R, then all clauses in S, g are satisfied. That is, if we regard S(z) as an
input instance of the MAX-3SAT problem, then the optimal value Opt(S(z))
of S(x)is N.

If the input instance z is not in the language L, then given any guessed
string y, for at least half of the random strings R of length clogn, the
algorithm A rejects . That is, there are at least m/2 of the subsets 57,

oy S in S(2), for which the assignment y cannot satisfy all clauses in the
subset. Therefore, on any assignment to the variables in the set S(xz), at
least m/2 > N/(2h) clauses in the set S(z) are not satisfied.

In conclusion, the set S(x)is an input instance of the MAX-3SAT problem
with the following properties:

FEither x € L and there is an assignment to the boolean variables
in S(z) that satisfies all clauses in S(z), or v ¢ L and no as-
signment to the boolean variables in S(z) can satisfy more than
N(1—=1/(2h)) clauses in S(x), where h > 0 is a fized constant.
Moreover, the set S(x) of clauses can be constructed from z in
polynomial time.

Now it is straightforward to prove the theorem. Suppose that the MAX-
3SAT problem has a polynomial time approximation scheme. Then let A’
be a polynomial time approximation algorithm with approximation ratio
1 4+ 1/(4h) for the MAX-3SAT problem. We describe a polynomial time
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deterministic algorithm Ag that accepts the language L. Given an input
instance x, the algorithm Ag first constructs the instance S(z)in polynomial
time for the MAX-3SAT problem. Suppose that S(z) has N clauses. The
algorithm Ag then applies the polynomial time approximation algorithm A’
on S(z) to produce a solution s for S(z), where s is an assignment to the
boolean variables in S(z). The algorithm Ag accepts z if and only if the
assignment s satisfies more than N(1 —1/(2h)) clauses in S(z).

It is clear that the algorithm Ag is a polynomial time deterministic algo-
rithm. We prove that the algorithm Ag accepts precisely the language L. In
case ¢ € L, by the above analysis, Opt(S5(x)) = N. Since the approximation
algorithm A’ has approximation ratio 1+ 1/(4h), the assignment s produced
by the algorithm A’ must satisfy at least

N

clauses in S(z). In this case, the algorithm Ag accepts z. On the other
hand, if ¢ L, then by the above analysis, no assignment to the variables in
S(x) can satisfy more than N(1—1/(2h)) clauses in S(z). In particular, the
assignment s produced by the algorithm A’ satisfies no more than N(1 —
1/(2h)) clauses in S(z). Thus, in this case, the algorithm Ag rejects z.
This proves that the polynomial time algorithm Ag accepts precisely the
language L. We conclude that the NP-complete problem L is accepted by a
polynomial time deterministic algorithm. Consequently, P = NP.
This completes the proof. []
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34 INDEPENDENT SET has no PTAS

The famous Cook theorem that the SATISFIABILITY problem is NP-complete
serves as a fundamental theorem for the study of NP-completeness of deci-
sion problems and gives the first NP-complete problem. Because of this first
NP-complete problem, the proofs for the NP-completeness of other decision
problems become much simpler by means of a proper “reduction” from the
SATISFIABILITY problem.

Theorem 33.3 plays the same role in the study of approximability of opti-
mization problems as does Cook’s theorem in the study of NP-completeness.
By Theorem 33.3, the hardness of approximability for the MAX-3SAT prob-
lem is established. The hardness of approximability for other optimization
problems now can be established from the MAX-3SAT problem by a proper
reduction that preserves the approximability. We will demonstrate a few
such reductions in this lecture. A formal definition of such a reduction
among optimization problems will be given in the next lecture.

The first reduction is straightforward.

Lemma 34.1 If the MAX-SAT problem has a polynomial time approxima-
tion scheme, then so does the MAX-3SAT problem.

PROOF.  Each instance z of the MaX-3SAT problem is also an instance
for the MAX-SAT problem. Therefore, any approximation algorithm for the
MAX-SAT problem is also an approximation algorithm for the MaX-35AT
problem with the same approximation ratio. Therefore, if the MAX-SAT
problem has a polynomial time approximation scheme, then so does the
MaX-3SAT problem. [

Theorem 34.2 The MAX-SAT problem has no polynomial time approxima-
tion scheme unless P = NP.

PROOF. This follows directly from Theorem 33.3 and Lemma 34.1. [J
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Now let us consider a less simple reduction. Let G be a graph. Recall
that an independent set in GG is a subset 5 of vertices in ' in which no two
vertices are adjacent. The INDEPENDENT SET problem is defined as follows.

INDEPENDENT SET
InPUT: a graph G

OutTpuT: an independent set § of G with the cardinality of §
maximized

We present a reduction from the MAX-3SAT problem to the INDEPEN-
DENT SET problem.

The reduction is the one that is used in the NP-completeness theory to
show that the decision version of the INDEPENDENT SET is NP-complete.
However, we need a more careful quantitative analysis.

Given an instance F = {C,C5,...,C,,} of the MAX-3SAT problem,
where each C; is a clause of at most 3 literals in {zy,...,2,}. We construct
a graph G'g as follows.

Every literal occurrence [ in a clause C; in F induces a vertex in the
graph G g, which will be named by (). Note that if the same literal appears
in two different clauses in F, then there will be two corresponding vertices
in the graph Gg. For any pair of vertices ly) and lg]), there is an edge
connecting them if and only if either

1. 2 = j,i.e., the literals ly) and lgj) belong to the same clause in F; or

2.1 # j and ly) = lgj), i.e., the literals ly) and lgj) belong to different
clauses in F/ and they negate each other.

This completes the description of the graph Gg.

Lemma 34.3 If a is an assignment to the variables {xy,...,x,} that sat-
isfies k clauses in E, then an independent set S, of at least k vertices in the
graph G'g can be constructed in polynomial time based on the assignment a.

PROOF. Without loss of generality, suppose that the assignment o to the
variables {z1,...,2,} satisfies the k clauses Cy, ..., C in F. Then under
this assignment «, each clause C;, i = 1,...,k, has (at least) one literal 1)
that is set to true by a. We claim that the subset S, = {I{(M), ... ()} of
vertices in the graph G'g forms an independent set. In fact, for any pair of
vertices {() and 1), 1< 4,j <k, i # 7, since the literals 1) and 1) belong
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to different clauses C; and C; in F, the vertices 1) and 1) are adjacent in
the graph G’ only if the literal 10 is the negation of the literal 1), Thus,
any assignment will set one of the literals /() and () true and the other
false. By our assumption, the assignment « sets both the literals 1) and
10) true. Thus, the literal [() cannot be the negation of the literal {), In
consequence, the vertices [() and 1) in the graph G are not adjacent. This
proves that the set 5, = {l(l), .. .,l(k)} is an independent set in the graph
Gp. It is easy to see that the independent set S, = {I(V),... . I%)} in the
graph G'g can be constructed in linear time when the assignment « to the
variables {xy,...,2,} is given. [J

Lemma 34.4 If the graph G has an independent set S of k vertices, then
an assignment ag to the variables {xy,...,x,} can be constructed in poly-
nomial time such that ags satisfies at least k clauses in E.

PROOF. Let S = {ly,...,lx} be an independent set in the graph Gg. Since
no two vertices in 5 are adjacent, by the construction of the graph G,

1. no two literals /; and /; in the set S belong to the same clause in £
and

2. no two literals /; and /; in the set 5 negate each other. Thus, for each
variable x;, at most one of x;, and T is in 9.

Thus, the set S = {ly,...,l;} induces an assignment ag to the variables
{x1,...,2,} such that ag sets all literals [y, ..., [ in 9 true. That is, if
xy is in 9 then ag sets x;, = 1 and if T is in 5 then ag sets z; = 0. For
variables xj, such that neither of z; and Ty appears in 5, the assignment ag
sets xp arbitrarily.

Now since the k literals [y, ..., I, which are set true by the assignment
ag, belong to k different clauses in F, we conclude that the assignment ag
satisfies at least k clauses in . The assignment ag to {zy,...,2,} can be

easily constructed in linear time from the independent set S in the graph

Gg. O
Corollary 34.5 The number of vertices in a maximum independent set in
the graph Gg is equal to the mazimum number of clauses in F that can be

satisfied by an assignment to {xy,...,x,}.

Now we are ready to prove:
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Lemma 34.6 If the INDEPENDENT SET problem has a polynomial time ap-
prozimation scheme, then so does the MAX-3SAT problem.

PROOF.  Suppose that the INDEPENDENT SET problem has a polynomial
time approximation scheme, we show how a polynomial time approximation
scheme for the MAX-3SAT problem can be constructed.

For a given constant ¢ > 0. Let ApxIS be a polynomial time approxi-
mation algorithm for the INDEPENDENT SET problem with approximation
ratio 1 + €. Consider the following algorithm.

Algorithm 34.1 Apx3Sat

Input: a set of clauses {(C4,...,(,,}, where each (; is
a clause of at most 3 literals in {21,...,%,}
Output: a truth assignment to {xy,...,2,}

1. construct the graph Gg;

2. call the algorithm ApxIS on the graph Gr to find
an independent set S in Gg;

3. construct an assignment ag to {z1,...,z,} from 9
such that ag satisfies at least |S| clauses in F.

It is clear that step 1 and step 2 of the algorithm Apx3Sat take polyno-
mial time. Lemma 34.4 proves that step 3 of the algorithm Apx3Sat also
takes polynomial time. Therefore, the algorithm Apx3Sat is a polynomial
time approximation algorithm for the MaX-3SAT problem.

Now we analyze the approximation ratio for the algorithm Apx3Sat.

Let Optsar(F) be the optimal value of the set £ = {Cy,...,Cp} of
clauses, where F is treated as an instance of the MAX-3SAT problem, and
let Opt;s(GE) be the optimal value of the graph G'g, where G is treated
as an instance of the INDEPENDENT SET problem. By Corollary 34.5,

Optsar(L) = Optrs(GE)

Let Apz(ags) be the number of clauses in F that are satisfied by the assign-
ment ag. According to step 3 of the algorithm Apx3Sat, we have

Optsar (L) < Optsar(L) _ Optrs(GE) (13)
Apr(as) ~ 15 15

Since 5 is the independent set produced by the approximation algorithm
ApxIS for the INDEPENDENT SET problem, by our assumption,

Opt1s(GEg)
15

<1l+e¢
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We conclude that the approximation ratio of the algorithm Apx3Sat for the
MAX-3SAT problem is bounded by

Optsar(L)

<l+4c¢
Apz(ag)

This proves that the polynomial time algorithm Apx3Sat is an approxima-
tion algorithm of approximation ratio 1 4 ¢ for the MAX-3SAT problem.
Since € > 0 is arbitrary, we have proved that the MAX-35SAT problem has a
polynomial time approximation scheme. []

Theorem 34.7 The INDEPENDENT SET problem has no polynomial time
approzimation scheme unless P = NP.

PROOF. This follows directly from Lemma 34.6 and Theorem 33.3. [J

Another important optimization problem, CLIQUE, is very closely related
to the INDEPENDENT SET problem. Let GG be a graph. A subset C' of vertices
in GG is a clique in G if all vertices in €' are mutually adjacent.

CLIQUE
InPUT: a graph G
OutpuT: aclique €' in G with the cardinality of C' maximized
Let G = (V, I) be a graph. The graph G° = (V, ') with the same vertex
set V is called the complement graph of G if for any pair of vertices u and
vin V, w and v are adjacent in G° if and only if u and v are not adjacent

in GG. Note that the complement graph of the complement graph G¢ is the
original graph G

Lemma 34.8 Let G = (V, L) be a graph and let G° = (V, E') be the com-
plement graph of G. Let S be a subsel of vertices in V. Then, S is an
independent set in the graph G if and only if S is a clique in the graph G°.

PROOF. This follows directly from the definitions. [

The approximabilities of the CLIQUE problem and the INDEPENDENT
SET problem are related by the following theorem.
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Theorem 34.9 Let t(n) be a function that is at least as large as n. The
CLIQUE problem has an approximation algorithm of running time O(t(n))
and approximation ratio r(n) if and only if the INDEPENDENT SET problem
has an approzimation algorithm of running time O(t(n)) and approximation
ratio r(n)).

PROOF. Let A-Clique be an approximation algorithm for the CLIQUE
problem such that A-Clique has running time O(¢(n)) and approximation
ratio r(n). Consider the following algorithm for the INDEPENDENT SET
problem:

Algorithm 34.2 A-IS
Input: a graph G
Output: an independent set 5 in G

1. construct the complement graph G°;

2. call the algorithm A-Clique on the graph ¢ to find
a clique S in G¢;

3. return S as an independent set in the graph G.

By Lemma 34.8, the set S constructed by the algorithm A-IS is an inde-
pendent set in the graph G. It is clear that the running time of the algo-
rithm A-IS is bounded by the running time of the algorithm A-Clique plus
O(n). By our assumption, the algorithm A-Clique runs in time O(¢(n)) and
t(n) = Q(n), thus we conclude that the running time of the algorithm A-IS
is also bounded by O(t(n)).

Again by Lemma 34.8, the number of vertices in a maximum indepen-
dent set in the graph G is equal to the number of vertices in a maximum
clique in the graph G°. Therefore, if we let Opt.(G°) be the optimal value
for the graph G° treated as an instance for the CLIQUE problem and let
Optis(G) be the optimal value for the graph G treated as an instance for
the INDEPENDENT SET problem, then we have

Optis(G) _ Optcl(Gc)
B B

By our assumption, the approximation ratio for the approximation algo-
rithm A-Clique is bounded by r(n), thus Opty(G°)/|S| < r(n). This gives
immediately that the approximation ratio of the approximation algorithm
A-IS is also bounded by r(n).
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The other direction that if the INDEPENDENT SET problem has an ap-
proximation algorithm of running time O(#(n)) and approximation ratio
r(n) then so does the CLIQUE problem can be proved in a similar way. [

Corollary 34.10 The CLIQUE problem has no polynomial time approzima-
tion scheme unless P = NP.

PROOF.  This follows directly from the combination of Theorem 34.9 and
Theorem 34.7. [

According to Theorem 34.9, we can say that essentially there is no dif-
ference in the approximability between the CLIQUE problem and the INDE-
PENDENT SET problem. In fact, a result can be obtained which is much
stronger than Theorem 34.7 and Corollary 34.10 on the approximability of
these two optimization problems. We will discuss this in the next lecture.
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35 INDEPENDENT SET is not in APX

In this lecture, We present results on the approximability of the INDEPEN-
DENT SET problem and the CLIQUE problem that strengthen Theorem 34.7
and Corollary 34.10.

Let Gy = (Vi, 1) and Gy = (Va, Eg) be two graphs. The composition
graph G = G1[G4] of these two graphs is the graph G = (V, F) that has
vertex set V = V] x V5. Two vertices [uy, ug] and [vy, v9] in the graph G are
adjacent, where uy and vy are vertices in (7 and s and vy are vertices in
(9, if and only if either (uq,v1) is an edge in Gy, or ug = v1 and (ug,vq) is
an edge in G'o. A convenient way to view the composition graph G' = G1[G3]
is as being constructed by replacing each vertex of G'; by a copy of G5 and
then replacing each edge of G; by a complete bipartite subgraph that joins
every vertex in the copy corresponding to one endpoint to every vertex in
the copy corresponding to the other endpoint.

Lemma 35.1 Let {uy,...,ux} be an independent set of k vertices in the
graph Gy and let {vy,...,vp} be an independent set of h vertices in the
graph G+, then the kh vertices

[u;, v;] 1<i<k and 1<j<h

form an independent set in the composition graph G1[G3].

PROOF. By the definition, no two vertices in {uy,...,u;} are adjacent in
the graph Gy and no two vertices in {vy,...,v;} are adjacent in the graph
G3. According to the definition of the composition graph G4[Gs], it is easy
to check that no two vertices [u;, v;] and [u;,v;] in the list given in the
lemma are adjacent in the graph G1[G3]. U

Let GG be any graph. We define a graph dG' by iterating the composition
operation. Inductively, 1G = G, and for d > 1, dG = (d — 1)G[G]. Note
that if the graph G has n vertices, then the graph dG has n? vertices.
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Lemma 35.2 Let d be a fixed positive integer and K be an integer satisfying
K > (k- 1)d. If the composition graph dG has an independent set Sq of K
vertices, then the graph G has an independent set S that contains at least k
vertices. Moreover, the independent set S of the graph G can be constructed
from the independent set Sy of the graph dG in polynomial time.

PROOF. First note that since d is a fixed constant, the number of vertices
in the graph dG' is n?, which is a polynomial of the number n of vertices in
the graph G. Therefore, the running time of any polynomial time algorithm
on the graph dG is also bounded by a polynomial of n.

We prove the lemma by induction on the integer d. The lemma is cer-
tainly true for the case d = 1.

Now consider the graph dG' = (d—1)G[G]. Suppose that the independent
set Sy in the graph dG is

Sq = {[ur, v1], [ug, v2],. .., [uK, vi]}

where u;’s are vertices in the graph (d — 1)G and v;’s are vertices in the
graph G.

We partition the vertices in the set Sy into groups Hy, ..., H,, such that
all vertices in each group H; have the same first coordinate. There are two
possible cases.

If one H; of the groups contains at least k vertices:

H; = {[u;, wy], [ug, wal, ..., [wi, wir]}

where &/ > k, then since no two of these &’ vertices are adjacent in the
graph dG = (d — 1)G[G], by the definition, no two of the &’ vertices wy, ...,
wyr are adjacent in the graph G. That is, the set S = {wy,...,wp} is an
independent set of at least k vertices in the graph G. It is also easy to see
that if such a group H; exists in the set Sy, then the set S = {wy, ..., wp}
can be constructed in polynomial time.

If none of the groups Hy, ..., H,, in the set 5; contains more than k—1
vertices, then we have m(k — 1) > K, which implies m > K/(k—-1) >
(k — 1)?=1. Pick any vertex [u;, w;] from the group H,, for i = 1,...,m,
since no two of the vertices

[ulv wl]v [u27 wQ]v teey [umv wm]

are adjacent in the graph dG, by the definition, no two of the vertices uq,
.« Uy, are adjacent in the graph (d — 1)G. Thus, we obtain an independent
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set Sy_1 of m > (k — 1)%"! vertices in the graph (d — 1)G:
Sd—l = {ulv Uy ...y um}

It is easy to see that the independent set S4_1 of the graph (d — 1)G can be
constructed in polynomial time from the independent set Sy of the graph
dG. Now by our inductive hypothesis, an independent set .5 of at least k
vertices in the graph G can be constructed in polynomial time from the
independent set Sy_; of more than (k— 1)?~! vertices in the graph (d—1)G.
Because d is a fixed constant, we conclude that an independent set 5 of at
least k vertices in the graph GG can be constructed in polynomial time from
the independent set Sy of more than (k — 1)? vertices in the graph dG.
This completes the proof of the lemma. [

Theorem 35.3 The number of vertices in a mazimum independent set of
the graph G is k if and only if the number of vertices in a maximum inde-
pendent set of the graph dG is k?.

PROOF. Suppose that a maximum independent set of the graph G contains
k vertices. Applying induction on Lemma 35.1, we can easily derive that
a maximum independent set of the graph dG has at least k? vertices. If a
maximum independent set of the graph dG contains more than k% vertices,
then by Lemma 35.2, the graph G would contain an independent set of
more than k vertices. This contradicts the assumption that a maximum
independent set in GG has k vertices. Thus, a maximum independent set of
the graph dG' contains exactly k? vertices.

Conversely, if a maximum independent set of the graph dG has k¢ ver-
tices, then by Lemma 35.2, a maximum independent set of the graph G
contains at least k vertices. A maximum independent set of G cannot con-
tain more than k vertices since otherwise, by Lemma 35.1, a maximum
independent set of dG would contain more than k¢ vertices. [

Now we come back to the approximability of the INDEPENDENT SET
problem and the CLIQUE problem.

Lemma 35.4 If the INDEPENDENT SET problem has a polynomial time ap-
proximation algorithm A, with approzimation ratio bounded by a fized con-
stant ¢ > 1, then the INDEPENDENT SET problem has a polynomial time
approzimation scheme.

184



PROOF.  We construct a polynomial time approximation scheme for the
INDEPENDENT SET problem from the polynomial time approximation al-
gorithm A. of constant approximation ratio for the problem. Consider the
following algorithm for the INDEPENDENT SET problem.

Algorithm 35.1 PTAS-IS
Input: a graph (G and a constant ¢ >0
Output: an independent set 5 in G

1. d=1T(c—1)/€];

2. construct the composition graph dG;

3. apply algorithm A. to construct an independent set Sy
in the graph dG;

4. construct an independent set S of k vertices in the
graph (' from the set S5;, where k is the largest
integer such that |S4| > (kK —1)7.

Since d > (¢ — 1)/e, we have (14 €)? > 1 + de > ¢. Note that when ¢ and
¢ are fixed constants, d is also a fixed constant. Thus, if the graph G has n
vertices, then the number of vertices of the composition graph dG is bounded
by a polynomial of n, and the composition graph dG can be constructed in
polynomial time. Consequently, the independent set S, in the graph dG can
be constructed in time polynomial in n. Finally, according to Lemma 35.2,
the independent set S in the graph G can be constructed from 5y in time
polynomial in n. In conclusion, the algorithm PTAS-IS is a polynomial time
algorithm.

Let Opt(G) be the number of vertices in a maximum independent set of
the graph . By Theorem 35.3, the number Opt(d(G) of vertices in a max-
imum independent set of the graph dG is (Opt(G))?. By the construction
we have |5y < k% = |5]%. Finally, since the independent set Sy of the graph
dG is produced by the algorithm A., by our assumption, Opt(dG)/|S4| < c.
With all these relations, we obtain

Opt(G)\" _ (Opt(G))" _ Opt(dG)
( 5] )‘ [S17 =18l

<e< (141

which gives
Opt(G)

—— < 1+e
|5
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Therefore, for any fixed constant € > 0, the algorithm PTAS-IS constructs in
polynomial time an independent set 5 for the graph G such that the approx-
imation ratio Opt(G')/|S] is bounded by 14 €. That is, the INDEPENDENT
SET problem has a polynomial time approximation scheme. [

Since we already know that the INDEPENDENT SET problem has no
polynomial time approximation scheme unless P = NP (Theorem 34.7),
Lemma 35.4 derives the following theorem that is stronger than Theo-
rem 34.7.

Theorem 35.5 Unless P = NP, the INDEPENDENT SET problem is not in
the class APX. In other words, unless P = NP, the INDEPENDENT SET prob-
lem has no polynomial time approzimation algorithm whose approrimation
ratio is bounded by a fixed constant c.

Corollary 35.6 The CLIQUE problem has no polynomial time approzima-
tion algorithm whose approximation ratio is bounded by a fixed constant c,

unless P = NP.

PROOF. This follows from Theorem 34.9 and Theorem 35.5. [
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36 VERTEX COVER has no PTAS

After the establishment of the fundamental theorem (Theorem 33.3) that
claims the non-approximability of the MAX-3SAT problem, we have seen
that the non-approximability of other optimization problems, such as the
MAX-SAT problem and the INDEPENDENT SET problem, can be derived by
reducing the MAX-3SAT problem to them. The reductions used for these
problems are essentially the same as the ones that are used in the proofs for
the NP-completeness of the corresponding decision versions of the problems.
Since there has been a long line of reductions that reduce one NP-complete
problem to another, we would wonder whether we can somehow simply
modify these reductions for decision problems to the world of optimization
problems so that the non-approximability of all optimization problems can
be derived.

Researchers quickly realized the difference in these two worlds. To il-
lustrate the difference, we use the VERTEX COVER as an example. Recall
that given a graph G, a subset S of vertices of &G forms a vertex cover of G
if every edge in G has at least one end in the set §. The VERTEX COVER
problem is formulated as follows.

VERTEX COVER
InPUT: a graph G

OuTPUT: a vertex cover S of G with |.S| minimized

Lemma 36.1 Let G = (V,FE) be a graph. A set S C V of vertices is a
vertex cover of the graph G if and only if the set V. — 5 is an independent
set in the graph G. In particular, S is a minimum vertex cover of the graph
G if and only if V. — S is a mazimum independent set in the graph G.

PROOF. If 5 is a vertex cover of the graph G, then every edge in G has at
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least one end in S. Therefore, no edge in G has both ends in V — 5. That
is, the set V' — 5 is an independent set in the graph G.

If V — 5 is an independent set of the graph G, then no two vertices in
V — 5 are adjacent. That is, no edge has both ends in the set V — 5, or
equivalently, every edge has at least one end in 5. Thus, the set 5 is a vertex
cover.

The rest of the lemma follows directly. []

Therefore, suppose that we know that the decision version of the INDE-
PENDENT SET problem “given a graph GG and k, does G have an independent
set of k vertices?” is NP-complete, then we can use Lemma 36.1 to show
the NP-completeness of the decision version of the VERTEX COVER prob-
lem “given a graph G and k, does G have a vertex cover of k vertices?”
by reducing the decision version of the INDEPENDENT SET problem to it:
asking if a given graph G has an independent set of k vertices is equivalent
to asking if the graph G has a vertex cover of n — k vertices. Therefore, the
problem of finding an independent set of k vertices in a graph is not harder
than the problem of finding a vertex cover of n — k vertices in the same
graph. Thus, the hardness of the first problem implies the hardness of the
second problem.

However, the above reduction would not work if we approzimate the op-
timal solutions in the problems. For instance, let G = (V, £') be a graph of
1000 vertices in which a maximum independent set has 10 vertices while a
minimum vertex cover contains 990 vertices. Now suppose we want to derive
an approximation for the maximum independent set from an approximation
for the minimum vertex cover. Let S be a vertex cover of 950 vertices in G.
Then §' is a pretty good approximation for the minimum vertex cover (with
approximation ratio 990/950 < 1.05). However, if we use the above reduc-
tion to get the independent set V' — 5 for the graph(', we obtain a very bad
approximation V — .5 for the maximum independent set (with approximation
ratio 50/10 = 5). Therefore, even Lemma 36.1 suggests a reduction that re-
duces the INDEPENDENT SET problem to the VERTEX COVER problem, the
reduction does not preserve the approximation ratio when we apply approx-
imation algorithms. The hardness of approximability of the INDEPENDENT
SET thus does not imply the hardness of approximability of the VERTEX
COVER problem. In fact, as we have shown, the INDEPENDENT SET has no
polynomial time approximation algorithm with a constant approximation ra-
tio unless P = NP (Theorem 35.5) while the VERTEX COVER problem has
a simple approximation algorithm of approximation ratio 2 (Theorem 29.1).
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Therefore, to study approximability of optimization problems, we need to
consider reductions that somehow preserve the approximability. Before we
present the formal definition for the reduction, we first introduce a notation.

Definition 36.1 Let ) = (I,5, f,opt) be an optimization problem. Let
x € I be an instance of  and y € S(z) be a solution to the instance 2. The
relative error Eg(x,y) of the solution y is defined by

Optlz) ¢ jf opt = max
Eq(z,y) = ﬁfc ?Z . .
Opt(z) ~ 1 if opt = min

Simply speaking, the relative error Eg(x,y) of the solution y is the approx-
imation ratio of y minus 1. Note that the relative error Eg(x,y) is always
a non-negative number.

Now we are ready for giving the definition of our reduction that preserves
the approximation ratio.

Definition 36.2 An optimization problem (1 = (1,51, fi,0pt1) can be
F-reducible to an optimization problem Q2 = (3,52, f2,0pts), in written
Q1 <g @3, if there are two polynominal time computable functions g(-) and
h(-,-), a polynomial p(-) and a constant 3, such that

1. forany 21 € I1, g(z1) = @2 € I, satisfying Opta(22) < p(|21|)Opt1(21)
and Opti(z1) < p(|x1]|)Opta(a2);

2. for any yz € Sa(x2), h(x1,y2) = 11 € S1(21) such that
Ey(z1,y1) < BEy(22,y2)

where Opty(z1) and Opta(x32) are the optimal values for the instances 1 and
xo of the problems ()1 and ()2, respectively, and £ and F5 are the relative
errors for the problems (J1 and ()9, respectively.

The definition of the E-reduction seems very natural from the viewpoint
of polynomial time approximability of optimization problems. Condition
1 and the polynomial time computability of the functions ¢ and h ensure
that the reduction is a polynomial time transformation, while condition 2
requires that the transformation preserves the approximability. The only
thing that looks a bit less natural is the requirement that the optimal values
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of the instances are related by a polynomial factor. We will see that this
requirement makes the E-reduction the canonical reduction for an important
class of optimization problems. Moreover, in most cases, this requirement is
naturally satisfied. For example, if the optimal values of both optimization
problems ()1 and (), are bounded by a polynomial of their input instance
length, then this requirement is automatically satisfied.

The E-reduction from the optimization problem ()4 to the optimization
problem @, provides a systematic technique for designing approximation
algorithms for the problem )1 based on approximation algorithms for the
problem €)5, as shown by the following lemmas.

Lemma 36.2 Let ()1 and Qo be two optimization problems. If Q1 <g (o
and Q9 has a fully polynomial time approximation scheme, then so does ()1.

PROOF. Let Ql = <11,Sl,f170pt1> and QQ = <IQ,SQ,f2,0pt2>. Let A2 be
a fully polynomial time approximation scheme for the problem ¢}5. Suppose
that the reduction 1 <p @5 is given as stated in Definition 36.2.

We design an approximation algorithm for the problem )1 as follows.
For any constant ¢ > 0, given 27 € Iy, we (1) compute x5 = g(z1) € Iy; (2)
apply the algorithm A, for )2 on x4 to get a solution y, for z5 satisfying
Fa(za,y2) < €/5; and finally (3) construct the solution y; = h(z1,y2) for
the instance z1 of (4.

Since A is a fully polynomial time approximation scheme for (), the
solution y, can be constructed in time polynomial in |z2| and /e, thus in
time polynomial in |z1| and 1/e. The other steps of the above algorithm
take time polynomial in |21|. Therefore, the total running time of the above
algorithm is bounded by a polynomial of |z{| and 1/e.

Since the reduction is an E-reduction, we have

Ei(z1,31) < fEy(x9,y2) < €

Thus, the above algorithm has approximation ratio 1 + €, thus, is a fully
polynomial time approximation scheme for the problem Q. [I

In a similar way, we can prove

Lemma 36.3 Let ()1 and Qo be two optimization problems. If Q1 <g (o
and Q9 has a polynomial time approximation scheme, then so does ().
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Lemma 36.4 Let ()1 and Qo be two optimization problems. If Q1 <g (o
and Q3 is in the class APX (i.e., Q2 has a polynomial time approximation
algorithm whose approximation ratio is bounded by a fized constant), then

s0is Q1.
In particular, Lemma 36.3 implies

Lemma 36.5 Let ()1 and ()5 be two optimization problems and ()1 <g Q3.
If )1 does not have a polynomial time approzimation scheme unless P =
NP, then Qo does not have a polynomial time approzimation scheme unless
P = NP.

Example 36.3 We give an example to illustrate these ideas. In Lecture
34, we presented a reduction from ()1, the MAX-3SAT problem, to ()2, the
INDEPENDENT SET problem as follows. Given an instance z; of the MAX-
3SAT problem, where x1 is a set of clauses of at most 3 literals (21 was
written as F in the discussion of Lecture 34), we construct a graph x3 that
is an instance for the INDEPENDENT SET problem (zy was written as G'g
in the discussion of Lecture 34). This corresponds to the polynomial time
computable function ¢g(-): ¢(z1) = x2. The condition that the optimal
values of z1 and z9 are related by a polynomial factor is automatically
satisfied since both of xy and z9 have their optimal values bounded by a
polynomial of their input instance length. Now for any solution y, to zs,
where 75 is an independent set in the graph z; (y; was written as S in the
discussion of Lecture 34), a truth assignment y; to the clauses in 21 can be
constructed in polynomial time (y; was written as ag in the discussion of
Lecture 34). This corresponds to the polynomial time computable function
h(-,-): y1 = h(21,y2). Since we have Opty(z1) = Opta(zz) (Corollary 34.5),
filz1,y1) > fa(@2,y2) (Lemma 34.4), we eventually have
Opty(z1) Opta(22)
Em, o) = Jil@1,m1) hs f2(@2,92) L= Ealen 1)

Thus, if we let 3 = 1, then the above reduction is an E-reduction from the
MAX-3SAT problem to the INDEPENDENT SET problem. Since the Max-
3SAT problem has no polynomial time approximation scheme unless P = NP
(Theorem 33.3), by Lemma 36.5, we derive directly that the INDEPENDENT
SET problem has no polynomial time approximation scheme unless P = NP.

Now we apply the E-reduction to show the non-approximability of the
VERTEX COVER problem. As we explained at the beginning of this lecture,
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the reduction from the INDEPENDENT SET problem to the VERTEX COVER
problem does not seem to preserve approximation ratio. Thus, a reduction
from another problem seems more proper. We present an E-reduction from
the MAX-3SAT problem to the VERTEX COVER problem.

The reduction from the MAX-3SAT problem to the VERTEX COVER
problem is the same as the one that reduces the MAX-3SAT problem to the
INDEPENDENT SET problem.

Given an instance F = {C,C5,...,C,,} of the MAX-3SAT problem,
where each C; is a clause of at most 3 literals in {zy,...,2,}. The graph
Gg = (Vg, Ag) is constructed as follows.

Every literal occurrence [ in a clause C; in F induces a vertex in the
graph G'i, which will be named by 1), For any pair of vertices ly) and lgj)
in Gg, there is an edge connecting them if and only if either

1. 2 = j,i.e., the literals ly) and lgj) belong to the same clause in F; or

2.1 # j and ly) = lgj), i.e., the literals ly) and lgj) belong to different
clauses in F/ and they negate each other.

This completes the transformation from the instance E of the Max-
3SAT problem to an instance G'g of the VERTEX COVER problem. Note
that again the condition that the optimal values of I/ and G’ are related
by a polynomial factor is automatically satisfied since both F and G'g have
their optimal value bounded by their input length.

Now we show how the transformation from a solution 5 for the instance
G, where 5 is a vertex cover of G'g, to a solution ag for the instance F,
where ag is an assignment to {x1,...,2,}, is constructed.

Given a vertex cover S of the graph G = (Vg, Ag), we first construct
the independent set Vg — 5 in the graph G'g. Then based on the indepen-
dent set Vg — 5, we apply Lemma 34.4 to construct an assignment o’ to the
variables {1, ...,2,} such that o’ satisfies at least |V — 5| clauses in F. If
the assignment o' satisfies at least m/2 clauses in F, then we let ag = o'.
If the assignment o' satisfies less than m/2 clauses in F, then we apply Al-
gorithm 31.1 ApprxMaxSat to construct the assignment ag that satisfies at
least m /2 clauses in F (see Lemma 31.2), ignoring the assignment o’. There-
fore, the assignment ag always satisfies at least max{m/2, |Vg — 5|} clauses
in E. According to Lemma 34.4, the assignment &’ can be constructed from
the independent set Vg — 5 in polynomial time. Moreover, Algorithm 31.1
ApprxMaxSat runs in polynomial time. We conclude that the assignment ag
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to {1,...,2,} can be constructed from the vertex cover S in polynomial
time. This completes the transformation from a solution $ for the instance
G of the VERTEX COVER problem to a solution ag for the instance F of
the MAX-3SAT problem.

Now we analyze the relative errors of the solutions S and ag.

Lemma 36.6 A minimum vertex cover of the graph G = (Vg, Ag) con-
tains at most 5|Vg|/6 vertices.

PROOF.  Each clause of the set F contains at most 3 literals, and there
are m clauses in the set F. Since there is a one-to-one correspondence
between the literal occurrences in F and the vertices in the graph G, the
number |Vg| of vertices of the graph G is bounded by 3m, which gives
m/2 > |Vgl|/6.

By Algorithm 31.1 and Lemma 31.2, we know that there is an assignment
to {z1,...,2,} that satisfies at least m/2 clauses in £. By Corollary 34.5, a
maximum independent set in the graph G'g contains at least m/2 vertices.
Now by Lemma 36.1, a minimum vertex cover of the graph G'g contains at
most

Vel —m/2 < |Vg| = |VE|/6 = 5|VE|/6

vertices. The lemma is proved. [

Let Optsu(E£) be the optimal value for the instance F of the MAX-3SAT
problem, let Opt;(Gg) be the optimal value for the instance Gg of the
INDEPENDENT SET problem, and let Opt,.(G'r) be the optimal value for the
instance G'g of the VERTEX COVER problem. According to Corollary 34.5
and Lemma 36.1

Optsat(E) = Optis(GE) = |VE| - Optvc(GE) (14)

Let Apzso(as) be the number of clauses in F that are satisfied by the
assignment ag. By the construction of the assignment ag, we have

Apzsa(ag) > max{m/2,|Vy — S|}

Let Fgu(E,ag) be the relative error of the solution ag to the instance F

of the MAX-3SAT problem and let F,.(Gg,S5) be the relative error of the

solution S to the instance Gg of the VERTEX COVER problem, we have
Optsat(E) |S|

Eg( B ag) = —20"0 d  Eu(Gp,8)= ——"———1
t( aS) Apxsat(aS) o ( i ) OthC(GE)
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Now from

Optsat(E) 1= Optsat(E) - prsat(aS)
prsat(aS) prsat(aS)

Esat(E7 Oés) =

we combine the relation Apzs.(as) > max{m/2,|Vg — S|} with Equation
(14) and obtain

Optsat(E) = [Vie = S| _ |51 = (IVEl = Optsa(£))

Esat(E7 aS) S

m/2 m/2
181 (IVel - Optun(Gi)) _ I5]- Oplan(Gi)
m/2 m/2

Now by Lemma 36.6 Opt,.(Gg) < 5|Vg|/6 and note |Vg| < 3m, we get

|| — Optu.(GE)
Optu.(GE)/5

) = BE(C5, S)

Esat(E7 aS) S

B
=5|=—-1
(Optvc(GE)

We summarize this analysis in the following lemma.

Lemma 36.7 The reduction constructed above that reduces the MAX-3SAT
problem to the VERTEX COVER problem is an F-reduction.

Combining Lemma 36.7 with Theorem 33.3 and Lemma 36.5, we obtain
the following result for the VERTEX COVER problem.

Theorem 36.8 The MAX-35SAT problem is E-reducible to the VERTEX COVER
problem. In consequence, the VERTEX COVER problem has no polynomial
time approximation scheme unless P = NP.
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CPSC-669 Computational Optimization
Lecture #37, November 27, 1995

Lecturer: Professor Jianer Chen
Scribe: Xiaotao Chen
Revision: Jianer Chen

37 The E-reducibility and the class APX-PB

The E-reduction introduced in the last lecture plus Theorem 33.3 have led
to significant progress recently in the study of the approximability of opti-
mization problems. Here we mention some of the recent results related to
this direction.

Definition 37.1 An optimization problem ¢ = (I, 5, f,opt) is in the class
APX-PBif Q is in the class APX and there is a polynomial p(-) such that
for all instances @ € I, we have Opt(z) < p(|z|). Here the letters PB stand
for “polynomially bounded”.

Not all optimization problems in APX are in APX-PB. For example, the
KnaPsAcK problem, the MULTI-PROCESSOR SCHEDULING problem, and
the A-TRAVELING SALESMAN problem are all in the class APX but none
of them is in the class APX-PB. On the other hand, a very large class
of important optimization problems are in the class APX-PB, such as the
MAX-SAT problem, VERTEX COVER problem, 3-D MATCHING problem, and
Bin PackinGg problem. By Theorem 17.1, we know that an optimization
problem in APX-PB has no fully polynomial time approximation scheme
unless the problem can be solved in polynomial time. Therefore, for an NP-
hard optimization problem in the class APX-PB, the most interesting thing
is to decide whether it admits a polynomial time approximation scheme.

Since the E-reducibility requires that the optimal values of the instances
in the original problem and in the transformed problem be related by a
polynomial factor, it is impossible to reduce an optimization problem in
APX but not in APX-PB to an optimization problem in APX-PB. In fact,
this requirement in the E-reducibility makes the class APX-PB closed under
the E-reducibility, as shown in the following lemma.

Lemma 37.1 Let ()1 and Qo be two optimization problems. If Q1 <g (o
and Q9 is in the class APX-PB, then so is ()q.
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PROOF. Let Ql = <11,Sl,f1,0pt1> and QQ = <IQ,SQ,f2,0pt2>. By
Lemma 36.4, since the optimization problem ()5 is in the class APX, the
optimization problem ()1 is also in the class APX. Moreover, for any z1 € I3,
since the E-reduction transforms z; into an instance x5 € I5 in polynomial
time, we have |z2| bounded by a polynomial of |z{|. Now since @5 is in the
class APX-PB, the value Opty(z3) is bounded by a polynomial of |z3| thus
by a polynomial of |z1]. Now from the definition of the E-reducibility, the
optimal value Opti(x1) of the instance z1 is bounded by Opta(x2) times a
polynomial of |z1]|. We conclude that Opt;(z1) is bounded by a polynomial
of |#1|. That is, the problem @ is in the class APX-PB. [

The following important result, which was a little unexpected, has been
derived recently. The proof of the theorem is omitted. Interested students
can talk to the instructor for a discussion of the proof.

Theorem 37.2 An optimization problem ) is in the class APX-PB if and
only if it is F-reducible to the MAX-3SAT problem.

Remark 37.2 Theorem 37.2is derived from a modification of Theorem 33.1.
Theorem 37.2 is a very powerful theorem. For example, our fundamental
theorem, Theorem 33.3, can be derived directly from Theorem 37.2 without
using Theorem 33.1. We give a complete proof for this.

According to Algorithm 23.1 First-Fit and Theorem 23.1, the BIN
Packing problem is in the class APX-PB. By Theorem 37.2, the BIN
Packing problem is E-reducible to the MAX-3SAT problem. Now if the
MAX-3SAT problem has a polynomial time approximation scheme, then by
Lemma 36.3, the BIN PACKING problem has a polynomial time approxi-
mation scheme. However, by Theorem 23.2, there is no polynomial time
approximation algorithm of approximation ratio less than 1.5 for the BIN
PACKING problem unless P = NP. In particular, the BIN PACKING prob-
lem has no polynomial time approximation scheme unless P = NP. This
proves that the existence of a polynomial time approximation scheme for
the MaX-3SAT problem implies P = NP. This is Theorem 33.3.

Remark 37.3 According to Lemma 37.1, the E-reduction cannot transform
an optimization problem in APX but not in APX-PB to an optimization
problem in APX-PB. Thus, the class APX-PB in Theorem 37.2 cannot be
replaced by the class APX since the MAX-3SAT problem is in the class APX-
PB. However, if the E-reduction is replaced by another reduction, called the
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PTAS-reduction, then Theorem 37.2 is also true for the class APX, that is, an
optimization problem is in the class APX if and only if it is PTAS-reducible
to the MAX-3SAT problem. The definition of the PTAS-reducibility is a
bit more technical, but it still preserves PTAS approximability and APX
approximability. More specifically, suppose that a problem @y is PTAS-
reducible to a problem (J5. Then if ()5 has a polynomial time approximation
scheme then so does ()1, and if ()5 is in the class APX then sois J1. I am
not going to give a detailed discussion along this line. Instead, I refer the
interested students to the related literature.

Theorem 37.2 motivates the following definition.

Definition 37.4 An optimization problem @ is ApePB-hard if every opti-
mization problem in the class APX-PB is E-reducible to ¢). An optimization
problem @ is ApxPB-complete if () is in the class APX-PB and () is ApxPB-
hard.

According to the definition, the MAX-3SAT problem is ApxPB-complete.

Theorem 37.3 An ApzPB-hard optimization problem () has no polynomial
time approximation scheme unless P = NP.

PROOF. If the problem ¢ is ApxPB-hard, then by the definition, the
MAX-3SAT problem can be E-reducible to the problem (). Now the theorem
follows directly from Lemma 36.5 and Theorem 33.3. [

Thus, the ApxPB-hardness implies the difficulty of approximation of
an optimization problem. This provides a systematic technique for deriv-
ing non-approximability for optimization problems. To derive the ApxPB-
hardness for optimization problems, we need the following lemma.

Lemma 37.4 If Q1 <p Q2 and Q2 <g @3, then Q1 <g Q.

PROOF. Let Q1 = (I1,51, fi,opt1), Q2 = (2,52, f2,0pt2), and Q3 =
(I3, 53, f3,0pts). Let ¢g1(-) and hy(-,-) be the functions, pi(-) be the poly-
nomial, and 3y be the constant that constitute the E-reduction from ¢ to
()2, and let g5(+) and hy(-,-) be the functions, py(-) be the polynomial, and
32 be the constant that constitute the E-reduction from @5 to 5. Without
loss of generality, suppose that both functions ¢1(-) and gz(+) are computable
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in time p(n), where p(-) is a polynomial. Then it is easy to check that the
functions

g(z1) = g2(91(21)) and h(x1,y3) = ha(z1, ha(g1(21), y3))

the polynomial
p(n) = pi(n) - pa(p(n))

and the constant _
B = P12

constitute an E-reduction from the optimization problem )1 to the opti-
mization problem Q5. [

Lemma 37.4 immediately gives

Lemma 37.5 If an optimization problem )y is ApxPB-hard, and )1 <g
)2, then the optimization problem Qo is ApxPB-hard.

Now our previous study gives the following theorem.

Theorem 37.6 The MAX-3SAT problem, the MAX-SAT problem, and the
VERTEX COVER problem are ApzPB-complete. The INDEPENDENT SET
problem and the CLIQUE problem are ApxzPB-hard.

PROOF. Algorithm 31.1 ApprxMaxSat shows that the MAX-3SAT problem
and the MAX-SAT problem are in the class APX-PB. Theorem 37.2 shows
that the MaAX-3SAT problem is ApxPB-hard. The proof of Lemma 34.1
shows the ApxPB-hardness for the MAX-SAT problem. Theorem 36.8 gives
the ApxPB-hardness of the VERTEX COVER problem, and Theorem 29.1
shows that the VERTEX COVER problem is in the class APX-PB.

Finally, Example 36.3 shows the ApxPB-hardness for the INDEPENDENT
SET problem, and Theorem 34.9 gives the ApxPB-hardness for the CLIQUE
problem. [

There are a number of more restricted optimization problems that are
also ApxPB-complete. Note that the ApxPB-hardness of more restricted
optimization problems sometimes is more useful in our derivation of non-
approximability for our own optimization problems: our own problem may
not be strong enough to have a simple E-reduction from an unrestricted
ApxPB-hard optimization problem. On the other hand, a restricted version
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of the problem may look more similar to our own problem and an E-reduction
may be readily available.

Let d be a fixed positive integer. We define the following restricted
optimization problems.

d-OCCURRENCE MAX-3SAT

INpUT: aset F of clauses C1,C5,...,C, on {xy,...,2,} such
that each clause has at most 3 literals and each variable z; ap-
pears, either as x; or as T;, at most d times in &

OuTpPUT: a truth assignment on {z1,...,z,} that satisfies the
maximum number of the clauses in I

d-OCCURRENCE MAX-2SAT

INpUT: aset F of clauses C1,C5,...,C, on {xy,...,2,} such
that each clause has at most 2 literals and each variable z; ap-
pears, either as x; or as T;, at most d times in &

OuTpPUT: a truth assignment on {z1,...,z,} that satisfies the
maximum number of the clauses in I

d-DEGREE VERTEX COVER
InpPUT: a graph G in which each vertex has degree at most d

OuTPUT: a vertex cover S of G with |.S| minimized

d-DEGREE INDEPENDENT SET
InpPUT: a graph G in which each vertex has degree at most d

OuTpUT: an independent set S of G with |S| maximized

Theorem 37.7 The 3-OCCURRENCE MAX-3SAT problem is ApxPB-complete.

PROOF.  The 3-OCCURRENCE MAX-3SAT problem is a restricted version
of the MAX-SAT problem, which is in the class APX-PB (Theorem 37.6).
Thus, the 3-OCCURRENCE MAX-3SAT problem is in the class APX-PB.

The proof that the 3-OCCURRENCE MAX-3SAT problem is ApxPB-hard
is more complicated, which uses the techniques called Amplifier and FEz-
pander. We omit the detailed proof here. Interested students are encouraged
to talk to the instructor. [
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Theorem 37.8 The4-DEGREE VERTEX COVER problem and the 4-DEGREE
INDEPENDENT SET problem are ApxzPB-complete.

PROOF. We first consider the 4-DEGREE INDEPENDENT SET problem.

It is a bit surprising that the 4-DEGREE INDEPENDENT SET problem is
in the class APX-PB. As we have seen, the unrestricted INDEPENDENT SET
problem is not in the class APX unless P = NP (Theorem 35.5). However,
when the degree of the vertices of a graph (' is bounded by a fixed constant
¢, an independent set of the graph G with approximation ratio bounded by
¢+ 1 can be constructed easily by the following process: start with an empty
set 5. Each time we pick one vertex v from the graph G and put it in 5,
and delete all neighbors of v in the graph G. We iterate this until there is
no vertex in the graph G'. It is easy to see that the set 5 constructed by this
process forms an independent set in the graph . Since the degree of the
vertices of the graph G is bounded by ¢, each time we add a vertex v to the
set S, we delete at most ¢ + 1 vertices from the graph (including the vertex
v). Therefore, the set S contains at least n/(c + 1) vertices, where n is the
number of vertices in the graph . Since an independent set of the graph G
contains at most n vertices, the independent set S has approximation ratio
at most n/(n/(c+ 1)) = ¢+ 1. In particular, when ¢ = 4, we have that the
4-DEGREE INDEPENDENT SET problem is in the class APX-PB.

To show the ApxPB-hardness of the 4-DEGREE INDEPENDENT SET prob-
lem, we F-reduce the 3-OCCURRENCE MAX-35AT problem to it. The re-
duction is exactly the same as the one we used to reduce the MAX-3SAT
problem to the INDEPENDENT SET problem (see Lecture Notes 34). That
is, given a set I of clauses, we construct a graph G'g such that each literal
occurrence in F corresponds to a vertex in G'g, and two vertices in G are
adjacent if and only if either they are in the same clause in F or they negate
each other. Note that if / is an instance of the 3-OCCURRENCE MAX-3SAT
problem, then each vertex [ in Gg has at most 4 neighbors — two of them
correspond to the literals in the same clause, and two of them correspond
to the other occurrences of [ in F. Therefore, the graph G is an instance
of the 4-DEGREE INDEPENDENT SET problem. As we have shown in Lec-
ture 34, this reduction is an E-reduction. We conclude that the 4-DEGREE
INDEPENDENT SET problem is ApxPB-complete.

The problem 4-DEGREE VERTEX COVER problem is in the class APX-
PB because the unrestricted version of the VERTEX COVER problem is in the
class APX-PB. As we have seen in Lecture Notes 36, the E-reduction from
the MAX-3SAT problem to the INDEPENDENT SET problem can be modified
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to an E-reduction from the MAX-3SAT problem to the VERTEX COVER
problem. In particular, if F is an instance of the 3-OCCURRENCE MAX-
3SAT problem, then the corresponding graph G'g is an instance of the 4-
DEGREE VERTEX COVER problem. Thus, the 3-OCCURRENCE MAX-35AT
problem is E-reducible to the 4-DEGREE VERTEX COVER problem, which
gives the ApxPB-hardness of the 4-DEGREE VERTEX COVER problem. [

Finally, we consider the 5-OCCURRENCE MAX-2SAT problem. We first
present an E-reduction from the 4-DEGREE INDEPENDENT SET problem to
the 5-OCCURRENCE MAX-25AT problem.

Let G = (V, F) be a graph in which each vertex has degree at most 4,

where V- = {vy,...,v,}, and £ = {ey,...,e,}. We construct an instance
S for the 5-OCCURRENCE MAX-25AT problem as follows. The boolean
variable set of S is {vy1,...,v,}. For each vertex v; in G, the set Sg has a

1-literal clause (v;), and for each edge e, = [v;,v;] in G, Sg has a 2-literal
clause (77 V 7;). Note that each vertex of GG appears in one 1-literal clause
and in at most four 2-literal clauses. Thus, the set S is an instance of the
5-OCCURRENCE MAX-2SAT problem. This completes the construction of
the instance S¢g for the 5-OCCURRENCE MAX-2SAT problem.

We call an assignment to {vy,...,v,} a setting assignment if it satisfies
all 2-literal clauses in the set S¢.

Lemma 37.9 Let a be an assignment to the boolean variables {vy,...,v,}.
Then there is a setting assignment ag that satisfies at least as many clauses
n Sg as a does. Moreover, the setling assignment ag can be constructed
from the assignment a in polynomial time.

PROOF. If e is a setting assignment, then simply let ag be a. Otherwise,
suppose that the clause (7; V 7;) is not satisfied by the assignment «, then
a sets v; = 1 and v; = 1. Now we set v; = 0. Note this makes false the
1-literal clause (v;), which was set true by «, but makes true the 2-literal
clause (7;V7;), which was set false by a. No other 1-literal clauses in S¢ are
turned from true to false. Moreover, since only the negation of v; appears
in 2-literal clauses in S¢g, no 2-literal clauses in S5 are turned from true
to false. Therefore, setting v; = 0 will not decrease the number of clauses
satisfied by the assignment. Now we repeat the above process on each 2-
literal clause that is not satisfied by the assignment. Eventually, we obtain
a setting assignment g that satisfies at least as many clauses in S¢g as the
assignment a does. [
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Lemma 37.10 Let o be a setting assignment to S and let (uy), ..., (ug)
be the 1-literal clauses satisfied by the assignment a, then {uy,...,ug} is an
independent set in the graph G.

PROOF. Consider any pair u; and u;. If the vertices u; and u; are adjacent
in G, then we have a 2-literal clause (7; V @;) in Sg. Since a sets both u;
and u; true, the clause (%; V ;) is not satisfied by the assignment «. This
contradicts the assumption that « is a setting assignment. [

Let Opt;s(G') be the optimal value of the instance G for the 4-DEGREE
INDEPENDENT SET problem, and let Opts.;(Sa) be the optimal value of the
instance S¢g for the 5-OCCURRENCE MAX-2SAT problem.

Lemma 37.11 Let m be the number of edges in the graph G, then

Optis(G) 4+ m = Optsai(Sa)

PROOF. Let D = {uy,...,ux} be a maximum independent set in the
graph G. Consider the assignment ap to {v1,...,v,} that sets u; = 1, for
j=1,...,k, and sets all other variables 0. Thus, the assignment ap satisfies

exactly k 1-literal clauses in Sg. For each 2-literal clause (7; V 7;), which
corresponds to an edge [v;, v;], since at least one of v; and v; is not in D,
the assignment ap sets (7; V 7;) true. That is, the assignment ap satisfies
all 2-literal clauses. In conclusion, the assignment ap satisfies k4 m clauses
in Sg. This gives

Optzs(G) +m < Optsat(SG)

Now let a be an assignment to {vy,...,v,} that satisfies the largest
number of clauses in the set Sg. By Lemma 37.9, we can assume that
the assignment « is a setting assignment. Let (u1), ..., (ug) be the 1-

literal clauses satisfied by @. By Lemma 37.10, the set {uy,...,uz} is an
independent set in the graph (. Since the assignment « satisfies all m
2-literal clauses in Sqg, we get

Optzs(G) +m Z Optsat(SG)
This completes the proof. []

Now we are ready for an E-reduction from the the 4-DEGREE INDEPEN-
DENT SET problem to the 5-OCCURRENCE MAX-2SAT problem.
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Lemma 37.12 The 4-DEGREE INDEPENDENT SET problem is F-reducible
to the 5-OCCURRENCE MAX-2SAT problem.

PROOF. Given an instance G of the 4-DEGREE INDEPENDENT SET prob-
lem, we use the transformation described above to construct an instance S¢
for the 5-OCCURRENCE MAX-2SAT problem. The instance S¢ can certainly
be constructed from the instance G in polynomial time.

Now suppose that a is a solution to the instance Sg, i.e., a is assignment
to the boolean variables {vy,...,v,} in Sg. We construct a solution D, to
the instance G, where D, is an independent set in the graph G, as follows.
We first construct a setting assignment g that satisfies at least as many
clauses as o does. According to Lemma 37.9, the assignment ag can be
constructed from the assignment a in polynomial time. Let (v1), ..., (vg) be
the 1-literal clauses satisfied by ag. Then by Lemma 37.10, D = {vy,..., vz}
is an independent set in the graph G. Now if |D| > n/5, we let D, = D,
otherwise, we let D, be an independent set of at least n/5 vertices in G.
Note that by the proof of Theorem 37.8, an independent set of at least n/5
vertices in GG can be constructed in polynomial time when the degree of
vertices in the graph G is bounded by 4. This completes the construction
of the transformation that transforms the solution a of Sg, which is an
instance of the 5-OCCURRENCE MAX-2SAT problem, to a solution D, of G,
which is an instance of the 4-DEGREE INDEPENDENT SET problem. By the
above discussion, the solution D, can be constructed from the solution « in
polynomial time.

Now we analyze the relative errors. Let Apz(a) be the number of clauses
satisfied by the assignment a. By the construction of the independent set

D, we have
|Dao| > max{Apz(a) — m,n/5} (15)

Since each vertex of G has degree at most 4, the number m of edges in the
graph G, which also equals the number of 2-literal clauses in S¢, is bounded
by 2n. Therefore,

Apz(a) <n+m < 3n (16)

Let E;s(G, Dy) be the relative error of the solution D, to the instance
G of the 4-DEGREE INDEPENDENT SET problem, and Fg (S, a) be the
relative error of the solution « for the instance S of the 5-OCCURRENCE
MAX-2SAT problem. Using Lemma 37.11, together with Equations (15) and
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(16), We have

Eis(GaDa) _ O]it,ésjc;) 1= Optzs(|GD)a| |D0é|
< Optis(G) — (Apz(a) — m) _ Optis(G)+ m — Apz(a)
- n/5 n/5
_ Optsat(Sa) — Apz(a) < Optsat(Sa) — Apz(a)
n/5 - Apz(a)/15

= 15E5at(SG,Oé)

This completes the proof that the above reduction from the 4-DEGREE IN-
DEPENDENT SET problem to the 5-OCCURRENCE MAX-2SAT problem is an
E-reduction. [J

Theorem 37.13 the MAX-25AT problem and the 5-OCCURRENCE MAX-
2SAT problem are ApxzPB-complete.

PROOF. It is easy to see that both of these two problems are in the class
APX-PB.

The ApxPB-hardness of the 5-OCCURRENCE MAX-25AT problem is de-
rived from Lemma 37.12

Finally, since the 5-OCCURRENCE MAX-2SAT problem is a restricted
version of the MAX-2SAT problem, we conclude that the MAX-25AT problem
is also ApxPB-hard. [

We will study more ApxPB-complete optimization problems in the rest
of this course.
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Lecture #38, November 29, 1995

Lecturer: Professor Jianer Chen
Scribe: Balarama Varanasi
Revision: Jianer Chen

38 3-D MATcHING has no PTAS

In today’s lecture, we study the approximability of the 3-D MATCHING
problem. Recall that a matching M in a set T of triples is a subset of T
such that no two triples in M have the same coordinate at any dimension.

3-D MATCHING
InpuT: aset S C X XY x Z of triples

OuTPUT: a matching M in S with |M| maximized

According to Algorithm 30.1 Apprx3D-Second and Theorem 30.6, the
3-D MATCHING problem is in the class APX-PB. We show below that the
3-D MATCHING problem is ApxPB-complete.

We construct an E-reduction from an ApxPB-complete problem, the 3-
OCCURRENCE MAX-3SAT, to the 3-D MATCHING problem.

Let S be a set of clauses {C1,...,C,,} on boolean variables {z1,...,2,}
in which each clause contains at most three literals and each variable z;
appears, either as z; or as T;, at most 3 times in 5. The set 5 is an instance
of the 3-OCCURRENCE MAX-3SAT problem. We construct an instance Tg
of the 3-D MATCHING problem based on 5.

We will use graphs to represent the triples in Ts. Each triple will be
given as a triangle whose three vertices correspond to the three components
of the triple. Therefore, if two triples have a common component, then the
two corresponding triangles will have a shared vertex.

For each boolean variable u in {x1,...,2,} we have a ring structure. If
u has three occurrences in 5, then the ring structure of u consists of six
triples, connected as in Figure 8(a). Similarly, if u has two occurrences or
one occurrence in 5, then the ring structure of u consists of four triples or
two triples, connected as in Figure 8(b) and Figure 8(c), respectively.

In the following, we first consider the case that the boolean variable u
has three occurrences in the set 5. The discussion for the cases that u
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u[1K] u[L.K]

3K LK U[LK]
a2,k T[1,k]
u[3,K] Uu[2,K]
TU2K] U2K] U1K
(8) # occurrences of u=3 (b) # occurrences of u=2 () #occurrencesof u=1

Figure 8: The ring structure for the boolean variable u

has two occurrences or one occurrence in S is very similar, we will briefly
describe them after we complete the discussion on the case that u has three
occurrences.

For the boolean variable u that has three occurrences in the set 5, there
are four identical rings of six triples. For k = 1,...,4, the kth ring has its
outer vertices labeled by u[l, k], u[l, k], u[2, k], u[2, k], u[3, k], and @[3, k]
(see Figure 8). For each ¢ = 1,2, 3, the four vertices u[i, 1], u[7, 2], u[i, 3] and
uli, 4] are connected by three new triples

(u[i, 1], ult,2],ulld]), (u[i,3],uli, 4], uw2[e]), (ulli], u2[i], ule])

in a binary tree manner. Similarly, for each 7 = 1,2,3, the four vertices
uli, 1], @le, 2], ult, 3] and @i, 4] are connected by three new triples

(ulé, 1], e, 2], ulld]),  (uli, 3], i, 4], w2ld]),  (ulld], u2fi], uli])

in a binary tree manner. Figure 9 shows the four rings and the three new
triples connecting the vertices u[l, 1], u[1,2], u[l,3] and u[l,4]. Note that
the new triples connecting the other 20 triples in the rings are not shown in
Figure 9.

The triples contained in each ring will be called ring triples. The triples

(uli, 1], ult, 2], ulld]),  (u[t, 3], i, 4], w2[d]),
(uli, 1), @i, 21, wlld]),  (uli, 3], i, 4], u2[i])

for ¢ = 1,2, 3, will be called leaf triples, and the triples
(ulfd], w2(i], uld])  (ulfd], u2z], 1))
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u[1]

u[1,4]

T[3,1] u11] T3,2] T[1,2] U3, a4

u[3.1] u2,1] ul3,2] u[2,2] u33 u(2,4]

T2,1] 1[2,2] T[2,3] T[2,4]

Figure 9: The set T, of triples for the boolean variable u

for ¢ = 1,2,3, will be called root triples. Moreover, a triple will be called a
positive triple if it contains a component labeled as u[-] or u[-, -], and a triple
will be called a negative triple if it contains a component labeled as @[-] or
u[-,-]. Note that by this definition, every triple constructed above is either
a positive triple or a negative triple.

Therefore, there is a set T}, of 42 triples corresponding to each boolean
variable u in {xy,...,2,}: 24 of them are ring triples, 12 of them are leaf
triples, and 6 of them are root triples.

To make the set T, a valid set of triples, i.e., a subset of X X Y x Z,
we must label the vertices in T, with X, Y, or Z properly. All trees will
be labeled identically, so we only describe the labeling for the tree rooted
at u[l]. Label u[l] with X, label u1[1] with Y and »2[1] with Z, and label
u[l,1] with 7, u[1,2] with X, w[1, 3] with X, and u[l,4] with Y. Note that
for each fixed ring, this labeling process labels all outer vertices of the ring
with the same symbol. Thus, the inner vertices in the ring can be properly
labeled using the other two symbols. It is not hard to verify that in this
labeling process, no triangle in 7T, has two vertices labeled with the same
symbol. Therefore, the set T, represents a set of triples.

We first study the matching problem of the set T,. Note that the set T,
is also an instance of the 3-D MATCHING problem.

It is easy to check that the following two sets M.;" and M, in the set T,
are matchings in 7T),.

The set M consists of: (1) the 12 ring triples that contain a[é, k],
fori=1,2,3and k = 1,2,3,4, respectively; (2) the 6 leaf triples
(ul7, 1], u[t, 2], ulli]), and (u[7, 3], u[i, 4], u2[i]), for i = 1,2, 3; and
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(3) the 3 root triples (ul[é], u2[:],w[i]), for i = 1,2, 3.

The set M~ consists of: (1) the 12 ring triples that contain u[1, k],
for i = 1 2,3 and k = 1,2,3,4, respectively; (2) the 6 leaf triples
(uli, 1], e, 2], w1ld]), and( 23] uli, 4], u2[i]), for i = 1,2,3; and
(3) the 3 root triples (ul[é], u2[i], u[¢]), for ¢ = 1,2, 3.

Each of the matchings M;F and M, contains 21 triples. The two match-
ings M. and M, will be called the canonical matchingsin T,.

Lemma 38.1 The canonical matchings M} and M are mazimum match-
ings in T,.

PROOF. If we regard the set T, as a graph, then a matching in 7T, corre-
sponds to a set of disjoint triangles in the graph. We first count the number
of vertices in this graph.

Each ring contains 12 different vertices, each leaf triple adds a new vertex,
and each root triple adds another new vertex. Since there are 4 rings, 12
leaf triples, and 6 root triples, we conclude that there are totally 66 vertices
in the graph.

Since 66 vertices can make at most 22 disjoint triangles, the number of
triples in a maximum matching in T, is at most 22. Now suppose that M, is
a matching of 22 triples in T,. Then every vertex is contained in a triangle
in M,,. In particular, the six vertices labeled with u[i] and @[i], i = 1,2, 3,
should appear in M,. Since the six root triples are the only triples that
contain these vertices, all these six root triples should be in the matching
M,,. In consequence, no leaf triples can be in the matching M, since every
leaf triple shares a vertex with a root triple. Now by the structure of the
rings, each ring can have at most 3 triples in M,. Thus, the matching M,
contains at most 12 ring triples. Summarizing all these, we derive that the
matching M, would contain at most 18 triples, contradicting the assumption
that M, contains 22 triples. Therefore, no matching in 7, can contain 22
triples.

Since the canonical matchings M and M, each contains 21 triples in
T,, we conclude that the canonical matchings are maximum matchings in

the set T,,. [

Let M, be a matching in 7,,. We call a triple matched (by M,) if it is
contained in M,. Otherwise, we say that the triple is unmatched.
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Lemma 38.2 Let M, be a matching in the setT,,. If M, is not a canonical
matching, then M, is not mazimum.

PROOF.  Suppose that M, is a maximum matching in T,,. We show that
M, must be one of the canonical matchings M;" and M, .

By Lemma 38.1, |M,| = 21. Let r,, [, and t, be the number of ring
triples, leaf triples, and root triples in M., respectively. Then

M| =21=7r,+1,+1,

Since each matched root triple must be connected with two unmatched leaf
triples and since each leaf triple is connected with exactly one root triple,
we must have

f < (12— 1,)/2) (17)

Since each matched leaf triple must be connected with two unmatched ring
triples and since each ring triple is connected with exactly one leaf triple,
we must have

ry <24 =21, (18)

Another trivial upper bound for r, is 12 since each ring can have at most 3
matched ring triples. This gives us

< min{24 — L+ [(12 = 1)/2], 12+ 1y + [(12 = L)/2]}

From this relation, it is easy to verify that in order to make |M,| = 21, we
must have [, = 6. Combining [,, = 6 and |M,| = 21 together with Equations
(17) and (18), we also get ¢, = 3 and r, = 12.

From r, = 12, we derive that each ring in T}, must have exactly three
ring triples in M,. Thus, each ring either has all its three positive triples
in M, but none of its negative triples in M,, or has all its three negative
triples in M, but none of its positive triples in M,,.

We show that it is impossible that one ring has all its positive ring triples
in M, while another ring has all its negative ring triples in M,,.

If the first ring has all its positive ring triples in M, while the second
ring has all its negative ring triples in M,, then none of the six leaf triples
that are connected to the ring triples in the first and the second rings can
be in the matching M,. Since M, contains six leaf triples and T, has totally
12 leaf triples, all six leaf triples that are connected to ring triples in the
third and the fourth rings must be in M,. But this is impossible because
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it would imply that no ring triples in the third and the fourth rings are in
M,,. This proves that we must either have all positive ring triples in the
first and the second rings in M,, or have all negative ring triples in the first
and the second rings in M,,. Similarly, either all positive ring triples in the
third and the fourth rings are in M, or all negative triples in the third and
the fourth rings are in M,,.

Now suppose that the first and the second rings have all their positive
ring triples in M, while the third and the fourth rings have all their negative
ring triples in M,. Since the matching M, has 6 leaf triples, the 3 negative
leaf triples connecting to triples in the first and the second rings and the 3
positive leaf triples connecting to triples in the third and the fourth rings
must be in the matching M,. However, it would imply that none of the root
triples can be in the matching M, contradicting the fact that the matching
M, contains 3 root triples.

Therefore, we must either have all positive ring triples in M, but no
negative ring triples in M,,, or have all negative ring triples in M, but no
positive ring triples in M,,. Whenever this is decided, the six leaf triples and
the three root triples in M, are uniquely determined. In fact, if all positive
ring triples are in M,,, then M, must be the canonical matching M, while if
all negative ring triples are in M,, then M, must be the canonical matching

MF. O

This completes the discussion on the set T, of triples, where u is a
boolean variable in {z1,...,z,} that has 3 occurrences in the given set 5 of
clauses.

If w is a boolean variable that has 2 occurrences in 5, then 4 rings of
4 triples, which has the structure shown in Figure 8(b), are used. Four
binary tree structures are constructed by adding 8 leaf triples and 4 root
triples. Thus, the set T, of triples corresponding to u contains 28 triples.
There are two canonical matchings M;F and M, of 14 triples in T, such
that M." contains all negative root triples but no positive root triples, while
M, contains all positive root triples but no negative root triples. Moreover,
M} and M, are the only maximum matchings in the set 7T),.

Similarly, if « is a boolean variable that has 1 occurrence in 5, then 4
rings of 2 triples, which has the structure shown in Figure 8(c), are used.
Four binary tree structures are constructed by adding 4 leaf triples and 2
root triples. Thus, the set T, of triples corresponding to u contains 14 triples.
There are two canonical matchings M and M, of 7 triples in T, such that
M contains all negative oot triples but no positive root triples, while M,
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contains all positive root triples but no negative root triples. Moreover, M}
and M, are the only maximum matchings in 7).
We summarize these discussions into the following theorem.

Theorem 38.3 Let u be a boolean variable in {x1,...,x,} such that u has
d occurrences in the set 5, 1 < d < 3. Then one can construct a set T, of
at most 42 triples with the following properties:

1. Ty has d positive root triples that contain the d components u[l], ...,
uld], respectively, and d negative root triples that contain the d com-
ponents u[l], ..., u[d], respectively;

2. T, has only two mazimum matchings M} and M, such that M
contains all d positive root triples but no negative root triples while

M} contains all d negative root triples but no positive root triples.
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39 3-D MATCHING has no PTAS (contd.)

In the last lecture, we have shown the following theorem.

Theorem 39.1 Let u be a boolean variable in {x1,...,x,} such that u has
d occurrences in the set 5, 1 < d < 3. Then one can construct a set T, of
at most 42 triples with the following properties:

1. Ty has d positive root triples that contain the d components u[l], ...,
uld], respectively, and d negative root triples that contain the d com-
ponents w[l], ..., u[d], respectively;

w s Such that M,
contains all d positive root triples but no negative root triples while
M} contains all d negative root triples but no positive root triples.

2. T, has only two maximum matchings M and M,

Now let us complete the construction of the set Ts of triples, which is an
instance for the 3-D MATCHING problem, from the set S of clauses, which
is an instance for the 3-OCCURRENCE MAX-3SAT problem.

Let S be the set of clauses on the boolean variable set {1,...,2,}. The
set T's is the union of all sets T},., 7 = 1,...,n, which satisfies the properties
stated in Theorem 39.1, plus the clause triples desribed as follows. For each
clause Cy, = (u Vv V w), where u, v, and w are literals in {z1,...,2,} and
we assume that this is the ¢th occurrence of u, the jth occurrence of v, and
the kth occurrence of w, the set T's contains three triples

where y[h] and z[h] are two new symbols introduced for the clause C. Sim-
ilarly, if the clause C', consists of 2 literals or 1 literal, the set T introduces
two new symbols y[h] and z[h] and has 2 or 1 new triples. Figure 10 il-
lustrates this construction. This completes the construction of the set Ts.
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y[hl Z[h] y[hl Z[h] y[hl Z[h]

w2 u] w[2]

the tree
for u[1]

thetree
forw[2]

thetree
for u[1]

Ch=(uvVvvw) Ch=(uv w) Ch=(u)

Figure 10: The clause triples in Ts

Since each clause in S has at most 3 literals, the set Ts contains at most
3m clause triples. Moreover, since each set 7T}, contains at most 42 triples,
we conclude that the set T's contains at most 42n + 3m triples. It is not
difficult to see that the set Ts can be constructed from the set S of clauses
in polynomial time.

Let z; be a boolean variable. Fach matching M in the set Ts induces
a matching M/T,, in the set T, of triples corresponding to the boolean
variable z;. We say that the matching M is a canonical matching for the set
Ts if for all boolean variables z;, the induced matching M /T, is a canonical
matching in the set T7,.

Lemma 39.2 Let M be a matching in the set Ts. Then there is a canonical
matching M’ in the set Ts that contains at least as many triples as M does.
Moreover, the canonical matching M’ can be constructed from the matching
M in polynomial time.

PROOF. For each variable z;, we consider the set M; of clause triples in
M that contain an occurrence of z;.

If no clause triples in M; contain a negative occurrence of z;, or M;
is empty, then we replace the induced matching M/T,, by the canonical
matching M;,': in T,,. Note that since the canonical matching M;,': contains
only negative root triples but no positive root triples, this replacement still
gives a matching in Ts. Moreover, since M;,': is a maximum matching in 77;,,
this replacement does not decrease the number of triples in the matching.

Similarly, if no clause triples in M; contain a positive occurrence of z;,
then we replace the induced matching M /Ty, by the canonical matching
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M. in T,,, which gives a matching in T’s that is at least as large as M.

Finally, suppose that the set M; has a clause triple that contains a posi-
tive occurrence of z; and a clause triple that contains a negative occurrence
of ;. Then at least one positive root triple and at least one negative root
triple in the set 7, are not contained in the matching M. Consequently,
the induced matching M/T,, is not canonical, thus not maximum by The-
orem 39.1. Moreover, since the variable z; has at most three occurrences
in the set §, we have either at most one clause triple in M; that contains a
positive occurrence of x; or at most one clause triple in M; that contains a
negative occurrence of z;. Without loss of generality, we assume that only
one clause triple in M; contains a positive occurrence of ;. Then we perform
the following operation: (1) delete the clause triple containing the positive
occurrence of x;, and (2) replace the induced matching M/T,, in T,, by
the canonical matching M. Since after deleting the unique clause triple
containing the positive occurrence of z;, the matching M contains no clause
triples containing positive occurrences of z; while the canonical matching
M, in T, contains only positive root triples in T, we conclude that this
operation still gives a matching in the set T's. Moreover, since the induced
matching M/T,, is not maximum in 7}, replacing M /T, by the maximum
matching M, in T, increases the number of matched triples in T, by at
least one, which can be used to make up the clause triple deleted from M;,.
In consequence, this operation replaces the induced matching M /T, in T},
by a canonical matching in 7, and does not descrease the number of triples
in the matching.

If we apply the above process to each of the boolean variables z;, 1 =
1,...,n, we will eventually get a canonical matching M’ in the set Ts such
that the matching M’ is at least as large as the matching M. It is also
easy to verify that the canonical matching M’ can be constructed from the
matching M in polynomial time. []

For each boolean variable x;, let n; be the number of triples contained
in a maximum matching in the set T,,, and let No = >~ n;.

Now we are ready to construct a solution for the instance S of the 3-
OCCURRENCE MAX-3SAT problem based on a solution for the instance Ts
of the 3-D MATCHING problem.

Lemma 39.3 Given a matching M in the set Ts, an assignment aps to the

boolean variables {x1,...,2,} can be constructed in polynomial time such
that apy satisfies at least |M| — No clauses in the set S.
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PROOF. Let M be a matching in the set Ts. By Lemma 39.2, we can
construct in polynomial time a canonical matching M’ in T's such that |M| <
).
Let M! be the subset of M’ such that M/ consists of all clause triples in
M’. Then we have
M) = M) - Ny

No boolean variable z; can have both its positive occurrence and its negative
occurrence contained in the clause triples in M. — otherwise, the induced
matching M'/T,. would not be canonical in T,,. Therefore, we can construct
an assignment s to the boolean variables z;, ..., z, as follows: if M/ has
a clause triple that contains a positive occurrence of x; then aps assigns
x; = 1; if M! has a clause triple that contains a negative occurrence of z;
then aps assigns @; = 0. For variables that have no occurrences in M/, aps
assigns them arbitrarily. By the construction of the clause triples, for each
clause 'y, at most one corresponding clause triple is contained in the set M.
Moreover, if a clause ', has a corresponding clause triple in the set M/, then
the assignment aps sets the clause C true. In conclusion, the assignment
ays satisfies at least |M/| clauses in 5. From |M!| + No = |M'| > | M|, we
derive |M.| > |M| — Ny. The lemma follows. [J

Lemma 39.4 Let Optyu(9) be the optimal value of the instance S for the 3-
OCCURRENCE MAX-3SAT problem and let Optsg,(Ts) be the optimal value
of the instance Tg for the 3-D MATCHING problem. Then

Optsat(s) = OptSdm(TS) - NO

PROOF. Lemma 39.3 shows Optsai(S) > Optsgm(Ts) — No.

Now suppose that « is an assignment to {zy,...,2,} that satisfies the
largest number of clauses in the set 5. Without loss of generality, let the
clauses satisfied by a be C1, ..., Ck, where k = Optyu(5). Suppose that
the assignment « sets the literal [; true in the clause C;, for ¢ = 1,..., k.
If o sets more than one literal in C; true, pick any of them as [;. Then
we construct a matching M, in the set Ts as follows. For ¢ = 1,...k, we
pick the clause triple (I;, y[¢], z[¢]). If [; is a positive occurrence of a boolean
variable z;, then we also pick all triples in the canonical matching M;,'; in
the set T, and if /; is a negative occurrence of a boolean variable z;, then
we pick all triples in the canonical matching lej in the set 7;;;. Note that
for each boolean variable z;, the assignment a either sets all its positive
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occurrences true or sets all its negative occurrences true. Therefore, the
above selection of triples cannot result in any conflict. Moreover, since no
positive root triple in 77, is contained in M;,'; and no negative root triple
in T, is contained in ]\/AI'I_J7 the above selection of triples makes a matching
in the set Ts. Finally, for those boolean variables z; with no occurrence
in {ly,...,l;}, we pick all the triples in the canonical matching M;,'; This
constructs a canonical matching M, in the set T, and M, contains k clause
triples in Ts. That is,

|Moz| =k + NO = Optsat(s) + NO

Since Optsgm(Ts) > | M|, we derive Optsqi(S) < Optsgm(Ts) — No. The
lemma is proved. [

Now we can describe how one can construct a solution aps to the instance
S of the 3-OCCURRENCE MAX-35AT problem from a solution M to the
instance Tg of the 3-D MATCHING problem. Recall that 5 is a set of m
clauses. Consider the following algorithm.

Algorithm 39.1 3DM-to-3SAT
Input: a matching M in the set Tg
Output: an assignment ap; to {xy,...,2,}

1. construct an assignment « to {y,...,2,} that
satisfies at least |M|— Ny clauses in 9;
2. if a satisfies less than m/2 clauses in S5
then construct an assignment ajs that satisfies
at least m/2 clauses in §
else let ap be «;
3. output ays.

By Lemma 39.3, the assignment « in step 1 can be constructed in poly-
nomial time. Moreover, Algorithm 31.1 ApprxMaxSat and Lemma 31.2 show
that an assignment that satisfies at least m/2 clauses in 5 can be constructed
in polynomial time. In consequence, Algorithm 39.1 3DM-to-3SAT runs in
polynomial time.

To study the relative errors, let Apz(aps) be the number of clauses in
S that are satisfied by the assignment ap;. By the construction of the
assignment aps, we have

Apz(aps) > max{| M| — No,m/2} (19)
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Let Esu (S, apr) be the relative error of the solution aps to the instance 9
of the 3-OCCURRENCE MAX-3SAT problem, and let Esg,(Ts, M) be the
relative error of the solution M to the instance T of the 3-D MATCHING
problem. Note that the set T's has at most 3m + 42n < 126m triples. Thus,
|M| < 126m. Combining this fact with Equation (19) and Lemma 39.4, we
have
Esat(sa aM) _ Optsat(s) 1= Optsat(s) - pr(aM)
Apz(anr) Apz(anr)
Optsat(s) - (|M| - NO) _ Optsat(s) + NO - |M|
m/2 B m/2
Optgdm(Ts) — |M| < Optgdm(Ts) — |M|
m/2 - |M|/252
= 252Fs34,(Ts, M)

This shows that the reduction we constructed from the 3-OCCURRENCE
MAX-3SAT problem to the 3-D MATCHING problem is an E-reduction. We
conclude with the following theorem.

Theorem 39.5 The 3-OCCURRENCE MAX-3SAT problem is F-reducible to
the 3-D MATCHING problem.

By Theorem 37.7, the 3-OCCURRENCE MAX-3SAT problem is ApxPB-
complete. We get

Theorem 39.6 The 3-D MATCHING problem is ApzPB-complete. There-

fore, the 3-D MATCHING problem has no polynomial time approximation
scheme unless P = NP.

Remark 39.1 The set Ts of triples constructed from the set 5 of clauses
in our E-reduction is actually an instance of a more restricted version of
the 3-D MATCHING problem. Note that in the construction of the set T,
each symbol in X UY U Z appears in at most 3 triples in Ts. In fact, all
symbols in the set T,,., ¢ = 1,...,n, appear in at most 2 triples in Ts, only
the symbols y[h] and z[h] introduced for the clause Cp, h = 1,...,m, may
appear in 3 triples in Ts. We can naturally define a problem called the
3-OCCURRENCE 3-D MATCHING by requiring that in an instance of the 3-
D MATCHING problem, each symbol appears in at most 3 triples. The set
Ts is an instance of the 3-OCCURRENCE 3-D MATCHING problem. Thus,
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our E-reduction constructed in these two lectures actually reduces the 3-
OCCURRENCE MAX-3SAT problem to the 3-OCCURRENCE 3-D MATCHING
problem. In consequence, the 3-OCCURRENCE 3-D MATCHING problem is
also ApxPB-complete.

Remark 39.2 There is another optimization problem TRIANGLE PACKING
whose ApxPB-completeness can be easily obtained from an E-reduction from
the 3-D MATCHING problem. Let G be a graph. A triangle in G consists
of three mutually adjacent vertices in . Two triangles in G are disjoint if
they do not share any common vertex. The TRIANGLE PACKING problem
is formulated as follows.

TIRANGLE PACKING
InPUT: a graph G

OuTPUT: a set S of disjoint triangles in G with || maximized

It is not very hard to see that if an instance S of the 3-D MATCHING problem
is given as a graph, as we did in the last lecture, then a matching in 5 is a set
of disjoint triangles in the graph. This observation leads to an E-reduction
from the 3-D MATCHING problem to the TRIANGLE PACKING problem. We
leave the details to the interested students. On the other hand, the best
polynomial time approximation ratio for the TRIANGLE PACKING problem
is 2. Therefore, the TRIANGLE PACKING problem is ApxPB-complete.
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CPSC-669 Computational Optimization
Lecture #40, December 4, 1995

Lecturer: Professor Jianer Chen
Scribe: Balarama Varanasi
Revision: Jianer Chen

40 Max-Cut is ApxPB-complete

The last problem we will study in this course is the MaX-CuT problem. Let
G = (V,F)be a graph. A cut of the graph G is a partition D = (V1,V3) of
the vertex set V of G. That is, Vi U Vo = V and Vi NV, = ¢. We say that
an edge e of GG is crossingin the cut D if one end of e is in V7 and the other
end of e is in V. The Max-CuT problem is defined as follows.

Max-Cut
INPUT: a graph G = (V, V)

OutpuT: a cut (V4,V;) of ¢ that maximizes the number of
crossing edges

While the MAX-CUT problem is NP-hard, it has a very simple approxi-
mation algorithm, as shown below.

Algorithm 40.1 Large-Cut
Input: a graph G = (V,F), where V ={v,...,v,}
Output: a cut (Vj,V2) of the graph

1. let Vi=¢ and V5= ¢;

2. for :=1 to n do
if v; has more adjacent vertices in V) than in Vj
then Vo, = Vo U {v;}
else Vi = ViU {v;};

3. output (V4,V3).

Theorem 40.1 The approzimation algorithm Large-Cut for the MaX-CuT
problem has approximation ratio 2.

PROOF. In the algorithm, each time the vertex v; is considered, the edges
connecting v; to the vertices vy, ..., v;_1 are counted. According to the
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algorithm, at least half of these edges become crossing edges. Therefore,
at the end of the algorithm, at least half of the edges of the graph G are
crossing edges. Since no cut can have the number of crossing edges larger
than the number of edges in the graph G, the theorem follows. [J

Remark 40.1 This simple algorithm provided the best approximation ratio
for the Max-CutT problem for over 20 years. Very recently (1994), the
approximation ratio has been improved to 1.14. The complete version of the
paper is still not available yet. Interested students may ask the instructor
for a copy of the preliminary version of the paper.

To show that the MaX-CuT problem is ApxPB-hard. we construct an
E-reduction from a ApxPB-complete problem, the 5-OCCURRENCE MAX-
2SAT problem, to the Max-CuT problem.

Let S = {C1,...,C},} be an instance of the 5-OCCURRENCE MAX-2SAT
problem. That is, 5 is a set of clauses of at most two literals in the boolean
variable set {zy,...,2,} and each variable z; appears, either as x; or as
T;, at most five times in the set 5. We construct an instance G'g for the
Max-CuTt problem, where G'g = (Vg, Fg) is a graph.

The vertex set Vg of the graph Gg is

Vs = {21, 0,0, 0y Ty 2,2}

where z is a new symbol.

For each ¢ = 1,...,n, there are 10 multiple edges connecting the vertices
x; and Z;, and there are 2m multiple edges connecting the vertices z and Z.
These edges connecting z; and Z; or z and Z will be called the pairing edges
of the graph G's. For each clause C; = (uV w) of two literals in 5, we have a
triangle consisting of three edges [u, w], [u, z], and [w, z]; and for each clause
C; = (u) of one literal in 5, we have two multiple edges connecting u and z.
These edges will be called the clause edges corresponding to the clause (.
Note that if a literal u appears in two different clauses C; and C';, then there
are two multiple incident clause edges connecting u and z, corresponding to
the two clauses C; and C;, respectively.

This completes the construction of the instance G'g of the Max-CuT
problem from the instance S of the 5-OCCURRENCE MAX-2SAT problem.
It is clear that the graph (g can be constructed from the set 5 of clauses
in polynomial time.

A cut D = (V1,V3) of G is regular if for any u € {z1,...,2,, 2}, one of
u and 7 is in the set V; and the other is in the set V5. For a cut D of the
graph Gg, denote by |D| the number of crossing edges in the cut D.
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Lemma 40.2 There is a polynomial time algorithm that, given a cut D of
the graph Gg, constructs a reqular cut Dy of G such that |D| < |Do|.

PROOF. Suppose D = (V1,V3), where Vi U Vy = Vg and ViNnV; = ¢.

If for any boolean variable z;, both vertices x; and #; are in V{, then we
remove x; from V7 and add it to V3. We show this does not decrease the
number of crossing edges in the cut. In fact, since S is an instance of the
5-OCCURRENCE MAX-25AT problem and there are at most 2 clause edges
incident to z; corresponding to each clause containing z;, there are at most
10 clause edges incident on z;. Since both z; and 77 are in V7, these clause
edges are the only edges incident on z; that may be crossing edges in the
cut D. On the other hand, there are 10 pairing edges connecting z; and 7y,
which are not crossing edges in the cut D. Therefore, moving the vertex
x; from Vi to V5 will convert all these 10 pairing edges incident on z; from
non-crossing edges into crossing edges and may convert at most 10 clause
edges incident on z; from crossing edges into non-crossing edges. No other
crossing edges in the cut are changed. In consequence, this process does not
decrease the number of crossing edges in the cut.

If both vertices z and Z are in Vp, then we move the vertex z from the
set V1 to the set V5. Again, since z is incident to 2m clause edges and to
2m pairing edges, moving z from V; to V;, does not decrease the number of
crossing edges in the cut.

The case when both x; and 77, or both z and Z, are in the set V5 can be
dealt with in a completely similar way.

Thus, applying this process on each boolean variable z; and on z gives a
regular cut Dg without decreasing the number of crossing edges. Moreover,
it is easy to verify that the cut Dy can be constructed from the cut D in
polynomial time. []

Lemma 40.3 There is a polynomial time algorithm that, given a cut D
of the graph Gg, constructs an assignment ag to {xy,...,2,} such that ag
satisfies at least (| D| — 10n — 2m)/2 clauses in the set S.

PROOF. We first convert the cut D into a regular cut Dg of G'g such that
|D| < |Dg|. By Lemma 40.2, the cut Dy can be constructed in polynomial
time.

Let Doy = (V4,V2). Then for each u € {21,...,2,,2}, exactly one of u
and @ is in the set V4. Thus, all (10n 4 2m) pairing edges in G'g are crossing
edges in the cut Dy. Without loss of generality, we assume that the vertex
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Z is in the set V; while the vertex z is in the set V5.

We let ap be the assignment to {zy,...,2,} that sets all literals in the
set V1 —{Z} true. Note that since Dy = (V1, V3) is a regular cut, ag is always
a valid assignment to {xy,...,2,}.

Now consider a crossing edge e in Dg that is a clause edge corresponding
to a clause C in the set S. If C; = (u V w) consists of 2 literals, then since
the crossing edge e is one of the three clause edges [u,w], [u, z] and [w, 2]
corresponding to the clause (;, exactly two of these three clause edges are
crossing edges. In particular, by our assumption that the vertex z is in the
set V5, at least one of the vertices u and w is in V. In consequence, the
assignment ag sets this literal true and satisfies the clause C;. If C; = (u)
consists of 1 literal, since the crossing edge e is one of the multiple clause
edges connecting w and z, both multiple clause edges connecting « and z
are crossing edges. Moreover, the vertex u is in the set V; since we assume
that the vertex z is in the set V5. Thus the assignment g satisfies the
clause C;. We conclude that in either case, there are exactly two clause
edges corresponding to C; that are crossing edges in the cut Dy, and the
assignment ag satisfies the clause (.

Since there are | Do|—10n—2m crossing edges in Dg that are clause edges,
and no three of them correspond to the same clause in 5, we conclude that
the assignment ag satisfies at least

(|1Do| — 10m — 2m)/2 > (|D| — 10n — 2m)/2
clauses in the set §. O

Lemma 40.4 Let Optsq(S) be the optimal value of S, regarded as an in-
stance of the 5-OCCURRENCE MAX-2SAT problem, and let Opt..(Gs) be
the optimal value of G's, regarded as an instance of the MAX-CUT problem,
then

Optsai(S) = (Opto(Gs) — 100 — 2m) /2

PROOF. Let D be a maximum cut of the graph Gs. By Lemma 40.3, there
is an assignment that satisfies at least

(|1D] = 10n — 2m)/2 = (Opte(Gs) — 10n — 2m) /2
clauses in the set 5. Consequently,
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Conversely, let « be an assignment to {zy,...,2,} that satisfies the
largest number of clauses in the set S. Construct a cut D, = (V,V3) of the
graph G'g such that a literal w is in Vj if and only if the assignment « sets
u true. Moreover, the vertex Z is in the set V] and the vertex z is in the set
V5. It is easy to verify that the cut D, is a regular cut. Thus, all 10n 4+ 2m
pairing edges in GGg are crossing edges in the cut D,.

Moreover, suppose without loss of generality that the assignment « sat-
isfies the clauses C;, ¢ = 1,...,k, in the set 5, where k = Opts.(5). Thus,
the assignment a makes at least one literal u; true in the clause C;, so the
literal wu; is in the set V;. Since the vertex z is in the set V5, exactly two of
the clause edges corresponding to the clause C; are crossing edges. Thus,
there are at least 2k = 20pt,,(5) clause edges that are crossing edges in
the cut D,. This implies that the number of crossing edges in the cut D, is
at least 20ptsq:(S)+ 100+ 2m, which should not be larger than Opt...(G's).
Consequently,

Optsat(S) < (Opto(Gs)— 100 —2m) /2
This completes the proof of the lemma. [

Now we are ready to show how a solution D to the instance G'g of the
MAX-CuT problem, where D is a cut of the graph G'g, can be transformed
into a solution ap to the instance S of the 5-OCCURRENCE MAX-2SAT
problem, where ap is an assignment to the boolean variables {xy,...,2,}.
Consider the following algorithm.

Algorithm 40.2 CUT-to-2SAT
Input: a cut D of the graph Gy
Output: an assignment ap to {zy,...,2,}

1. construct an assignment «y to {xy,...,2,} such that ag
satisfies at least (|D|— 10n —2m)/2 clauses in 9;
2. if ap satisfies less than m/2 clauses in §
then construct an assignment ap that satisfies
at least m/2 clauses in §
else let ap be «;
3. output ap.

By Lemma 40.3, the assignment ag in step 1 can be constructed in poly-
nomial time. Moreover, Algorithm 31.1 ApprxMaxSat and Lemma 31.2 show
that an assignment that satisfies at least m/2 clauses in 5 can be constructed
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in polynomial time. In consequence, Algorithm 40.2 CUT-to-2SAT runs in
polynomial time.

To study the relative errors, let Apz(ap) be the number of clauses in
S that are satisfied by the assignment ap. By the construction of the
assignment ap, we have

Apz(ap) > max{(|D| — 10n — 2m)/2, m/2} (20)

Let FEyu(S,ap) be the relative error of the solution ap to the instance
S of the 5-OCCURRENCE MAX-2SAT problem, and let E.(Gg, D) be the
relative error of the solution D to the instance G g of the MAX-CUT problem.
Since each clause in S results in at most 3 clause edges in (g, the number
of edges in the graph Gg is bounded by 10n + 2m + 3m, which is bounded
by 25m. Thus, |D| < 25m. Combining this fact with Equation (20) and
Lemma 40.4, we have

Optsa(9) Optsai(S) — Apz(ap)
EauelS0p) = Apa(ap) = Apz(ap)
< Optsar(S) — (| D] — 10n — 2m)/2
- m/2
~ 20ptsi(S) = (|D] = 10n — 2m)
N m
_ (20pteas(S) + 10n + 2m) — |D|
N m
_ Opteu(Gs) — | D|
m
< Optcut(GS) - |D|
- |D]/25
— 95 (Optcut(GS) . 1)
D]

- 25Ecut(G57D)

This shows that the reduction we constructed from the 5-OCCURRENCE
MAX-2SAT problem to the MaX-CuT problem is an E-reduction. We con-
clude with the following theorem.

Theorem 40.5 The 5-OCCURRENCE MAX-2SAT problem is F-reducible to
the MAX-CUT problem.

By Theorem 37.13, the 5-OCCURRENCE MAX-2SAT problem is ApxPB-
complete. Combining this with Theorem 40.1 and Theorem 40.5, we get
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Theorem 40.6 The MAX-CUT problem is ApzPB-complete. Therefore, the
MAX-CUT problem has no polynomial time approximation scheme unless P
= NP.

To close the course, we point out that for most of the optimization
problems studied in this course, we have precisely classified each of them
into a proper class: some of them are polynomial time solvable, some of
them are NP-hard but have fully polynomial time approximation schemes,
some of them have polynomial time approximation schemes but have no
fully polynomial time approximation schemes unless P = NP, and some of
them have polynomial time approximation algorithms with constant ratio
but have no polynomial time approximation scheme unless P = NP.

There are some optimization problems that even do not have a poly-
nomial time approximation algorithm with constant ratio. Examples are
the INDEPENDENT SET problem, the CLIQUE problem, and the TRAVELING
SALESMAN problem. For example, recent research has shown that there is
a constant € > 0 such that the INDEPENDENT SET has no polynomial time
approximation algorithm with approximation ratio n® unless P = NP.

One problem for which we did not study the non-approximability is the
A-TSP problem. Theorem 22.5 shows that the problem has a polynomial
time approximation algorithm of approximation ratio 1.5. Using the E-
reduction, we can show that the A-TSP problem is ApxPB-complete. In
fact, even a weaker version, the TRAVELING SALESMAN 1-2 problem (see
Lecture 17) is ApxPB-complete.
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