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Preface

This manuscript consists of lecture notes for CPSC���� Computational
Optimization as it was taught by me in the Fall of ���� at Department of
Computer Science� Texas A�M University� The notes were �rst taken by
students in the class then were rewritten by myself� The notes were not
meant at all to be in polished form and they probably contain many errors�
I will appreciate that readers let me know their corrections and comments�

Because of the time limit� I was not able to cover many other recent
interesting and important results in this set� The �rst few of them in my
mind are the probabilistic method and derandomization� recent improved
approximation algorithms for Max�Sat and Max�Cut� and approximability
of Steiner trees� The discussion on linear programming should certainly be
in more detail and in more depth� My plan is to add at least these topics in
the next revision�

Help from the following list of scribes is acknowledged� M� Chatterjee�
X� Chen� S� Lu� L� Shao� B� Varanasi� J� Walter� W� Zhang� and H� Zheng�
I also appreciate encouraging discussion and comments from Professors D�
Friesen and C� Papadimitriou�
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� Introduction

Most computational optimization problems come from practice in industry
and other �elds�

De�nition �	� An optimization problem Q is a 	�tuple hIQ� SQ� fQ� optQi�
where IQ is the set of input instances� SQ is a function such that for each
input x � IQ� SQ
x� is a set of solutions to x� fQ is the objective function
such that for each pair x � IQ and y � SQ
x�� fQ
x� y� is an integer� and
optQ � fmax�ming speci�es the problem to be a maximum problem or a
minimum problem�

Therefore� an optimization problem can be de�ned as follows� given an
input instance x� �nd a solution y in SQ
x� such that the objective function
value fQ
x� y� is optimized 
maximized or minimized depending on optQ�
among all solutions in SQ
x��

Remark �	
 The 	�tuple must satisfy the following conditions for an opti�
mization problem�

�� It should be testable in polynomial time whether a given x is an input
instance of Q�

�� It should be testable in polynomial time given x and y whether y is a
solution in S
x��


� The objective function f
x� y� should be computable in polynomial
time� given x � IQ and y � SQ
x��

Examples of combinatorial optimization problems�
�� Minimum Spanning Tree
�� Shortest Path

� Knapsack

�



	� Bin Packing
�� Vertex Cover
�� Traveling Salesman Problem
This list is not exhaustive� There are many other optimization problems�

Example �	� How do we formulate the Minimum Spanning Tree problem
using the above formulation�

By using the de�nition of an optimization problem� we can formulate the
MST problem as follows�
IQ� weighted graph G

SQ� all spanning trees of G
fQ� fQ
G� T � � sum of weights of edges of T � a spanning tree of G
optQ� min

Example �	� How do we formulate the Shortest Path problem�

IQ� weighted graph G with two speci�ed vertices u� v
SQ� all paths connecting vertices u� v in G
fQ� fQ
G� u� v� p� � length of p� a path connecting u� v
optQ� min

Example �	� How do we formulate the Knapsack problem�

IQ� Set S � fx�� x�� � � � � xng� where each x has size si and pro�t fi� Bound
B on size is also de�ned�

SQ� S�� S�
P

xi�S�
si � B

fQ� fQ
S� S�� �
P

xi�S�fi
optQ� max

Example �	� How do we formulate the Bin Packing problem�

IQ� Set S � fx�� x�� � � � � xng� where � � xi � ��
SQ� Partition P of S into S� � S� � � � �� Sr such that

P
x�Si

x � �
fQ� fQ
S� P � � r
optQ� min

Example �	
 How do we formulate the Vertex Cover problem�

�



IQ� A graph G � 
V�E��
SQ� A subset S of V such that every edge e in E has at least one end

in S�
fQ� fQ
G� S� � the number of vertices in S�
optQ� min

Example �	� How do we formulate the Traveling Salesman problem�

IQ� A weighted complete graph G � 
V�E��
SQ� A path P in G that goes through all vertices of G�
fQ� fQ
G�P � � the weight of the path P �
optQ� min

Examples ��
 and ��	 can be solved in polynomial time� Examples ���
to ��� are known to be NP�hard� which means it is unlikely to have e�cient
algorithms for solving them precisely� For these problems� we will discuss
e�cient approximation algorithms that �nd solutions �close� to the optimal
ones� We will see that for Knapsack problem� there is a very good approx�
imation algorithm that produce solutions arbitrarily close to the optimal
solutions� For Bin Packing problem and Vertex Cover� we will see that ap�
proximation algorithms of constant ratio will be possible while it is unlikely
for them to have further better approximation algorithm� For Traveling
Salesman problem� we will see that any reasonable approximation will be
infeasible�

The course will start with optimization problems that can be solved
in polynomial time� Examples are Maximum Flow� Matching� and Linear
Programming� Then we discuss approximation algorithms on NP�hard op�
timization problems� We �rst discuss techniques that approximate NP�hard
optimization problems with solutions that are arbitrarily close to optimal
solutions� This class of optimization problems includes Knapsack and many
scheduling problems� Then we present approximation algorithms with con�
stant ratio for certain optimization problems and show that no much better
approximation algorithms are possible for these problems� Bin Packing and
Vertex Cover belong to this class� We will also discuss optimization problems
such as Traveling Salesman Problem� which are very hard to approximate�
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� Max�Flow Problem

De�nition 
	� A �ow graph G � 
V�E� is a directed and positively weighted
graph with two distinguished vertices s 
the source� and t 
the sink�� The
weight on an edge 
u� v� is called the capacity of the edge� and is designated
by cap
u� v�� If there is no edge from vertex u to vertex v� then we de�ne
cap
u� v� � ��

Remark 
	
 Edges can be directed into the source and out of the sink�

De�nition 
	� A �ow f on a �ow graph G � 
V�E� is a function on pairs
of vertices of G satisfying the following conditions�

�� For all u� v � V � cap
u� v� � f
u� v��

�� For all u� v � V � f
u� v� � �f
v� u��

� For all u �� s� t�

P
v�V f
u� v� � ��

Question 
	� What is the �ow value from u to v if there is no edge between
u and v �

By the de�nition� if there is no edge between u and v� then we have cap
u� v� �
cap
v� u� � �� By the �rst condition of a �ow f � we must have cap
u� v� �
f
u� v� and cap
v� u�� f
v� u�� These together with the second condition of
the �ow f
u� v� � �f
v� u� give immediately f
u� v� � ��

Remark 
	� Note the following about capacities and �ows�

� cap
u� v� is always de�ned�

� If cap
u� v� � �� then f
u� v� can be negative�

� cap
u� v� is in general not equal to cap
v� u��

	



De�nition 
	� Given a �ow graph G � 
V�E� and given a �ow f on G� the
residual graph Gf � 
V�E�� of G 
with respect to the �ow f� has the same
vertex set as G� Moreover� for each vertex pair u� v� if cap
u� v� � f
u� v��
then 
u� v� is an edge in Gf with capacity cap
u� v�� f
u� v��

Remark 
	
 New edges may be created in the residual graph Gf that were
not originally present in the original graph G�

Remark 
	� Max�Flow problem can be formulated using our de�nition of
optimization problems as a 	�tuple Max�Flow � hI� S� f� opti

I � �ow graphs G with source s and sink t

S� S
G� is the set of valid �ows f on G
f � f
G� f� �

P
v�V f
s� v�

opt� max

Remark 
	� The goal in the Maximum Flow Problem is to �nd the max�
imum �ow from source to sink� Solving the Max�Flow problem involves
�nding paths from s to t and pushing the maximum �ow over those paths�
Formally� the goal of Max�Flow is to maximize

P
v�V f
s� v�� the amount of

�ow coming out of the source� Alternatively� the goal could be speci�ed as
maximizing

P
w�V f
w� t�� the amount of �ow going into the sink� It can be

proved that these two de�nitions are equivalent� The proof is not very hard
and left to the students�

�
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� Max�Flow Problem �Contd��

Theorem �	� Let G be a �ow�graph and let f be a �ow in G� The �ow f
is a maximum �ow in G if and only if the residual graph Gf has no positive
�ow�

proof�


��� Assume that there is a positive �ow f� in the residual graph Gf �
i�e� jf�j �Pv�V f

�
s� v� � ��
De�ne a function f� on each pair 
u� v� of vertices in the �ow�graph G

as follows�
f�
u� v� � f
u� v� � f�
u� v�

Claim� f� is a valid �ow in G�

Proof for the Claim� A �ow is valid if it satis�es all the three conditions as
described in De�nition ��
� The conditions are veri�ed as follows�


a� For all u� v � V � cap
u� v� � f�
u� v��
We compute the value cap
u� v�� f�
u� v�� By de�nition we have

cap
u� v�� f�
u� v� � cap
u� v�� f
u� v�� f�
u� v�

Now by the de�nition of capf � we have cap
u� v� � f
u� v� � capf 
u� v��
Moreover� since f�
u� v� is a valid �ow in the residual graph Gf � capf
u� v��
f�
u� v� � �� Consequently� we have cap
u� v��f�
u� v� � �� The condition
is thus satis�ed�


b� For all u� v � V � f�
u� v� � �f�
v� u��
Since both f
u� v� and f�
u� v� are valid �ows in �ow�graphs G and Gf �

respectively� we have f
u� v� � �f
v� u� and f�
u� v� � �f�
v� u�� Thus�

f�
u� v� � f
u� v� � f�
u� v� � �f
v� u�� f�
v� u� � �f�
v� u�


c� For all u �� s� t�
P

v�V f
�
u� v� � ��

�



Again� since both f
u� v� and f�
u� v� are valid �ows in �ow�graphs G
and Gf � respectively� we have for all u �� s� tX

v�V

f
u� v� �
X
v�V

f�
u� v� � �

Thus X
v�V

f�
u� v� �
X
v�V

f
u� v� �
X
v�V

f�
u� v� � �

Thus� the function f� satis�es all three conditions for a �ow in G and
is a valid �ow in the �ow�graph G� Now we compute jf�j and note that
jf�j � �� we get

jf�j �
X
v�V

f�
s� v� �
X
v�V

f
s� v� �
X
v�V

f�
s� v� � jf j� jf�j � jf j

Hence f is not a maximum �ow in G�

	�� Here� we assume that f is not a maximum �ow in G� Let fmax be

a maximum �ow in G� Thus� jfmaxj � jf j � �� Now de�ne a function f� on
each pair 
u� v� of vertices in the �ow�graph Gf as follows�

f�
u� v� � fmax
u� v�� f
u� v�

Claim� f� is a valid �ow in Gf �

Proof for the Claim� Again we verify the three conditions of a �ow in Gf �

a� For all u� v � V � capf 
u� v� � f�
u� v��

capf 
u� v�� f�
u� v� � cap
u� v�� f
u� v�� f�
u� v�

Note that f
u� v� � f�
u� v� � fmax
u� v�� Since fmax is a valid �ow in G�
we have cap
u� v� � fmax
u� v� � �� Consequently� we have capf
u� v� �
f�
u� v� � ��


b� For all u� v � V � f�
u� v� � �f�
v� u��

f�
u� v� � fmax
u� v�� f
u� v� � �fmax
v� u� � f
v� u� � �f�
v� u�


c� For all u �� s� t�
P

v�V f
�
u� v� � ��X

v�V

f�
u� v� �
X
v�V

fmax
u� v��
X
v�V

f
u� v� � �

�



This� f� is a valid �ow in the �ow�graph Gf � Moreover� since we have

jf�j �
X
v�V

f�
s� v� �
X
v�V

fmax
s� v��
X
v�V

f
s� v� � jfmaxj � jf j � �

We conclude that the residual graph Gf has a positive �ow�
This completes the proof of the theorem�

Theorem 
�� ensures the correctness of the following algorithm�

Algorithm �	� Max�Flow

Input� A flow�graph G�
Output� A maximum flow f on G�

�� Let f
u� v� � � for all pairs 
u� v� of vertices in G�
�� Construct the residual graph Gf�

�� while there is a positive flow f� in Gf do
Construct a positive flow f� in Gf�

Let f � f � f� be the new flow on G�
Construct the residual graph Gf�

Remark �	� Whenever there is a positive �ow f� in Gf � there is at least
one directed path in Gf from s to t on which all the edges have a positive
capacity� There can be several approaches to �nd such paths in the residual
graph Gf � An algorithm by Ford�Fulkerson �nds a path of maximum capac�
ity� This algorithm is e�cient in most cases� but can perform badly in some
cases� In this context� Dinic�s 
Dinitz� algorithm has a stronger bound on
the time complexity� This algorithm tries to �nd the shortest path from s to
t� The path length is based on the number of edges in the path� The short�
est path can be determined by using breadth �rst search 
BFS� algorithm�
In each iteration of the while loop in Algorithm 
��� Dinic�s algorithm will
push the �ow through all the shortest paths� so that in the next iteration�
the length of the shortest path increases at least by one� Dinic�s algorithm
and its analysis will be presented in the next lecture�

�
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	 Max�Flow Problem �Contd��

Algorithm �	� BFS Dinic

Input� A flow�graph G�
Output� A leveled graph L � 
VL� EL� containing all shor�

test paths in G from s to t�
�� C level � ��� f C level � current level g
�� For all vertices v� level�v� � n� ��
�� level�s� � �� Q
 s� VL � fsg�

fQ is a queue�g
	� while Q is non�empty and C level � level�t� do

v 
 Q�

if 
C level � level�v�
 then C level � level�v��
for each edge 
v� w� in G do

if 
level�w� � n� �

then VL � VL

Sfwg� Q
 w�

if 
level�w� � level�v�
 then
EL � EL

Sf
v� w�g�
level�w� � level�v� � ��

Remark �	� The above algorithm is a modi�cation of the famous breadth
�rst search algorithm� The analysis can be performed similarly as for
breadth �rst search� Thus� we conclude that the time complexity of the
algorithm is O
e�� where e is the number of edges in the �ow�graph G� This
algorithm stops either when it reaches t 
in this case� the leveled graph L is
constructed�� or when it exhausts all the edges 
in this case� the vertices s
and t are disconnected��

Given the leveled graph L� we �nd all paths in L from the source s to
the sink t as follows� Starting from the vertex s� we follow the edges of L
to �nd a path p of length level�t�� Since the graph L is leveled� the path p

�



can be found in a straightforward way 
i�e�� at each vertex� simply follow
an arbitrary edge from the vertex�� Thus� the path p can be constructed in
time O
level�t�� � O
n�� where n is the number of vertices in G� Now if the
ending vertex is t� then we have found a path from s to t� We trace back
the path p to �nd the edge e on p with minimum capacity c� Now we can
push c amount of �ow along the path p� Note that this cuts at least one
edge� e�g� the edge e� from the path p� On the other hand� if the ending
vertex v of p is not t� then v must be a �deadend�� Thus� we can cut all
incoming edges to v� In conclusion� in the above process of time O
n�� at
least one edge is removed from the leveled graph L� Thus� after at most e
such processes� the vertices s and t are disconnected� i�e�� all shortest paths
from s to t are saturated� This totally takes time O
ne�� We give a formal
description for the above process�

Algorithm �	
 SATURATING

Input� Leveled graph L�

�� while there is an edge from s do
find a path p of maximal length from s

if p leads to t
then saturate p and delete at least one edge on p�

else delete the last edge on p�

Now the complete version for Dinic�s algorithm can be given as follows�

Algorithm �	� Max�Flow Dinic

Input� A flow�graph G�
Output� A maximum flow f on G�

�� Let f
u� v� � � for all vertex pairs 
u� v��
�� Construct the residual graph Gf�

�� while there is a positive flow in Gf do

Call BFS Dinic on Gf to construct the leveled graph L�
Call SATURATING to saturate all paths in L�

Let f� be the flow in Gf constructed by SATURATING�

Let f � f � f� be the new flow in G�

Construct the residual graph Gf�

By the above discussion� each execution of the body of the while loop
in Algorithm 	�
 takes time O
ne�� Now we study the number of times the
body of the while loop is executed�

��



Theorem �	� On a �ow�graph G of n vertices� the body of the while loop
in Step 	 of Algorithm 
�	 is executed at most n� � times�

proof� We �rst prove that after each execution of the body of the while
loop� the length of the shortest path in the �ow�graph is increased by at
least one� We need some notations� Let G be a �ow�graph� let f be the �ow
obtained by one execution of the body of the while loop on the �ow�graph
G� and let Gf be the residual graph of G on the �ow f � For any vertex v of
G� let level
v� be the distance from s to v in the graph G� and let levelf 
v�
be the distance from s to v in the graph Gf �

Claim �� Suppose 
v� w� is an edge in Gf � then level
w� � level
v� � ��

Proof for Claim �� 
v� w� can be an edge in Gf due to two cases�
Case �� 
v� w� is an edge in G� Then either the vertex w is seen before

we start the search from the vertex v � in this case the level of w cannot
be larger then level
v� � �� or the vertex w is discovered in the search from
v � in this case� the level of w is exactly one plus the level of v�

Case �� 
v� w� is not an edge in G� Since 
v� w� is an edge in the residual
graph Gf of G on the �ow f � we must have that 
w� v� is an edge in G and
there is a positive �ow in f from the vertex w to the vertex v� Since we only
push �ow in the leveled graph L on edges that only connect consecutive levels
of vertices� we conclude that level
v� is one plus level
w�� Thus� certainly
we also have level
w� � level
v� � ��

Claim 
� For all vertices v� we have level
v� � levelf 
v��

Proof for Claim �� Let r � levelf
v� be the distance from s to v in the graph
Gf � Let 
s� x�� x�� � � � � xr��� v� be a shortest path in Gf from s to v� Then

level
v� � level
xr��� � � fdue to Claim�g
� level
xr��� � �

� � �
� level
x�� � 
r � ��

� level
s� � r

� r � levelf
v�

In particular� we have level
t� � levelf 
t�� which implies that the length
of the shortest path from s to t is not decreased after each execution of the
body of the while loop�

��



Claim �� level
t� � levelf 
t��

Proof for Claim 	� It has been already shown that level
t� � levelf 
t� in
Claim �� Hence� to prove Claim 
� we only need to show that level
t� and
levelf 
t� are di�erent� Let us assume the contrary that level
t� � levelf 
t� �
r and derive a contradiction�

Let P � 
s� x�� x�� � � � � xr��� t� be a shortest path in the graph Gf from
the source s to the sink t� Then we must have

levelf
t� � levelf 
xr��� � � � � � � � levelf 
s� � r � r

By Claim �� we have

level
t� � level
xr��� � �

� level
xr��� � �

� � �
� level
x�� � 
r � ��

� level
s� � r

� r

By our assumption� we also have level
t� � r� thus all inequalities ��� in the
above formula should be equality ���� This gives level
xi��� � level
xi���
for all i � �� � � � � r��� level
x�� � level
s���� and level
t� � level
xr������
Now we show that P is also a path in the graph G� In fact� if 
s� x�� is not
an edge in G� then since 
s� x�� is an edge in Gf � 
x�� s� must be an edge in
G and we have pushed a �ow in f along the edge 
x�� s�� But this implies
that 
x�� s� is an edge in the leveled graph L so level
x�� � � � level
s��
contradicting the fact that level
x�� � level
s� � �� Thus� 
s� x�� is an edge
in G� Similarly� all edges on the path P are edges in the graph G� Therefore�
the path P is also a path in the graph G� Since the length of the path P is
r � level
t�� P is a shortest path in G� By our SATURATING algorithm�
at least one of the edges on P is saturated� thus at least one of the edges
on P should not appear in the residual graph Gf � This contradicts the
assumption that P is also a path in the graph Gf � The contradiction proves
level
t� � levelf 
t��

Thus� each execution of the body of the while loop in Algorithm 	�

increases the length of the shortest path from s to t in the �ow graph Gf

by at least ��
Now we can complete the proof of the theorem� Since we start with the

original �ow�graph G in which the length of the shortest paths from s to

��



t is at least one 
we can always assume that the source s and the sink t

are di�erent�� if the body of the while loop were executed more than n� �
times� Claim 
 says that the length of the shortest path from s to t in the
resulting residual graph Gf would be at least n� i�e�� would consist of more
than n vertices� But this contradicts the fact that the graph Gf has only n
vertices�

Theorem �	
 The running time of Dinic�s Maximum Flow algorithm 
Al�
gorithm 
�	� is O
n�e��

�
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 Max�Flow Problem �Contd��

��� Edmonds�Karp�s Algorithm

We �rst give a formal proof for a claim we made in the last lecture� Recall
that we denote by level
v� and levelf 
v� the distance from the source node
s to the node v in the �ow�graphs G and Gf � respectively�

Lemma �	� Let G be a �ow�graph and let f be the �ow generated by an
execution of the body of the while loop in Dinic�s algorithm� If 
u� v� is an
edge in the residual graph Gf and level
u� � level
v� � � in G� then 
u� v�
is also an edge in the original �ow�graph graph G�

proof� Suppose 
u� v� is not an edge in G� Since 
u� v� is an edge in the
residual graph Gf � we must have that 
v� u� is an edge in G and we pushed
a �ow in f from vertex v to vertex u� However� since each execution of
the while of Dinic�s algorithm pushes �ow only in the leveled graph L� we
conclude that

level
v� � � � level
u�

This contradicts the condition given in the lemma that level
u� � level
v����

In the last lecture� we have proved that if levelf
t� � level
t�� then for
a shortest path P � 
s� x�� � � � � xr��� t� in the graph Gf � we must have
level
xi� � level
xi��� � �� level
s� � level
x�� � �� and level
xr��� �
level
t�� � in G� Applying Lemma ��� claims that P is also a path in the
original graph G� Since P is a shortest path in Gf and level
t� � levelf
t�� P
is also a shortest path in the original graph G� Consequently� P is contained
in the leveled graph L� By the subroutine SATURATING� all paths in the
leveled graph L are saturated� Thus� the path P in G should have also been
saturated� and at least one of the edges on P should have not appeared in

�	



the residual graph Gf � But this contradicts the assumption that P is a path
in Gf � This contradiction combined with the inequality levelf
t� � level
t�
gives

levelf 
t� � level
t�

Therefore� each execution of the body of the while loop in Dinic�s al�
gorithm 
Algorithm 	�
� increases the length of the shortest path in the
�ow�graph Gf by at least �� Since the lengths of the shortest paths in Gf

cannot be larger than n� �� the while loop can be executed at most n� �
times� Moreover� as we have discussed before� each execution of the body
of the while loop takes time O
ne�� This concludes that Dinic�s algorithm
runs in time O
n�e��

It will be interesting to compare Dinic�s algorithm with Edmonds�Karp�s
algorithm� which also uses the strategy of �nding shortest augmenting path�
Instead of �nding all shortest paths� Edmonds�Karp�s algorithm �nds just
one shortest path each time and saturates the path� The algorithm can be
given as follows�

Algorithm �	� Edmonds�Karp

Input� a flow�graph G
Output� a maximum flow on G

�� let f be the zero flow�

�� construct the residual graph Gf�

�� while there is a positive capacity path P in Gf do
find a shortest positive capacity path P��

increase the flow f along the P� as much as possible�

construct Gf for the new f�

We omit the detailed analysis here� An informal analysis can be given as
follows� Finding a single shortest path from s to t can be done using breadth
�rst search in time O
e�� Other steps in the loop can easily be done in time
O
e�� Thus� each execution of the body of the while loop takes time O
e��
Each execution of the body of the while loop in the above algorithm cuts at
least one edge from a shortest path� Therefore� after at most e executions�
all shortest paths of the same length have been cut so that the length of
the shortest paths in the �ow�graph Gf must be increased by at least ��
Now using the same argument as above� the length of the shortest paths
cannot be larger than n � �� Therefore� after at most O
en� executions of
the body of the while loop in the above algorithm� there will be no positive
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capacity path from s to t in Gf and the algorithm stops with a maximum
�ow� This concludes that Edmonds�Karp�s algorithm runs in time O
ne���
which is slightly worse than Dinic�s algorithm�

��� Multiple source�sink �ow problem

We say that a �ow�graph G is a multiple source�sink �ow�graph if G has
more than one source or more than one sink 
or both�� The multiple source�
sink �ow problem can be reduced to the single source�sink �ow problem as
follows�

�� add a new source S and add a new sink T �

�� add directed edges which goes from the new source S to all old sources
in the original �ow�graph� and add an directed edge from every old sink
to the new sink T �


� de�ne the capacity of every new added edge� We can simply let the
capacity be a very large number� For example� this number can be the
sum of the capacities of all edges in the original �ow graph�

This is easy to see that a maximum �ow in the new constructed single
source�sink �ow�graph gives a maximum �ow in the original multiple source�
sink �ow�graph�

��� Graph Matching

De�nition �	� Given an undirected graph G � 
V�E�� a maximum match�
ing is a maximum subset of edges E

�

of E such that no two edges in E
�

share a common endpoint�

Using the formal de�nition of an optimization problem� we can formulate
the Graph Matching problem as a 	�tuple Q � 
IQ� SQ� fQ� optQ�� where�

IQ� the set of all undirected graphs G � 
V�E��

SQ� given G � 
V�E� � IQ� SQ
G� is the collection of all subsets E� of E
such that no two edges in E� share a common endpoint�

fQ� given G � IQ and E� � SQ
G�� fQ
G�E
�� is equal to the number of

edges in E��

��



optQ� max

In this lecture we will discuss a special case� to �nd maximum matchings
in bipartite graphs�

De�nition �	
 A bipartite graph is an undirected graph G � 
V�E� in
which V can be partitioned into two sets V� and V� such that 
u� v� � E
implies either u � V� and v � V� or u � V� and v � V�� That is� all edges go
between the two sets V� and V��

There are several approaches to solve the maximum matching problem
in bipartite graphs�

� We can use the method of augmenting paths� which is described in our
Algorithm Analysis course� The time complexity for this method is
O
ne�� We will give a more detailed and careful study on this method
for general non�bipartite graphs�

� We can use Dinic�s Algorithm to �nd a maximum matching in an
undirected bipartite graph G � 
V�E� by constructing a �ow graph
in which �ows correspond to matchings� We de�ne the corresponding
�ow graph G� as follows�

a� add two new vertices� let them be the source s and the sink t�

b� add new directed edges from the source s to the vertices in V�
and new directed edges from the vertices in V� to the sink t�

c� give each edge in the original graph G a direction so all these
edges go from V� to V��

d� assign unit capacity to each edge in the graph G��

The proof of the following Theorem is straightforward and left for the
reader�

Theorem �	
 A maximum matching in a bipartite graph G corresponds
directly to a maximum �ow in the �ow�graph G��

If we apply Dinic�s Algorithm directly to the above �ow�graph G�� we can
only claim a time bound O
n�e�� which is worse than the augmenting path
method� However� a more careful analysis plus a slight modi�cation will
show that the running time of Dinic�s Algorithm on the above �ow�graph
G� is bounded by O


p
ne�� thus a better result than the direct augmenting

path method� The details of this analysis and the modi�cation will be given
later in this course�
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� Karzanov�s Algorithm

In this lecture� we present Karzanov�s Algorithm to get a maximum �ow�
This approach runs in O
n�� time� thereby an improvement upon Dinic�s
Algorithm which runs in O
n�e� time� Let us review Dinic�s Algorithm
�rst�

Algorithm �	� Dinic�s Algorithm

Input� a flow�graph G

Output� a maximum flow on G

�� let f be the zero flow�

�� construct the residual graph Gf�

�� while there is a positive capacity path P in Gf do
begin

��� find all shortest paths of positive capacity from s
to t in Gf

��� increase the flow f along these paths as much as

possible�

��� construct Gf for the new flow f�

end

Step 
�� can be done in O
e� time by Breadth�First Search� and Step

�
 can easily done in time O
e�� Moreover� we have already proved that
the while loop can be executed at most n � � times� Finally� our early
implementation shows that Step 
�� takes time O
en�� Therefore if we want
to improve the time complexity from O
n�e� to O
n��� what we need to do
is to improve the running time of Step 
��� Now the question is how to
improve it�

Let us have a closer look at our implementation of Step 
�� in Dinic�s
algorithm� With the leveled graph L being constructed� we iterate the pro�
cess of searching a path in L from the source s to the sink t� pushing �ow
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along the path� and saturating 
thus cutting� at least one edge on the path�
In the worst case� for each such a path� we may only be able to cut one edge�
Therefore� to ensure that the leveled graph L is eventually cut� we may have
to perform the above iteration e times�

The basic idea of Karzanov�s algorithm is to reduce the number of times
of the above iteration from e to n� In each iteration� instead of saturating
an edge in L� Karzanov saturates a vertex in L� Since there are at most n
vertices in the leveled graph L� the number of iterations is bounded by n�

De�nition �	� Let v be a vertex in the leveled graph L � 
V�� E��� De�ne
the capacity cap
v� of the vertex v to be

cap
v� � min

�
� X
�w�v��E�

cap
w� v��
X

�v�u��E�

cap
v� u�

�
A

That is� cap
v� is the maximum amount of �ow we can push through the
vertex v� For the source s and the sink t� we naturally de�ne

cap
s� �
X

�s�u��E�

cap
s� u� and cap
t� �
X

�w�t��E�

cap
w� t�

If we start from an arbitrary vertex v and try to push a �ow of amount
cap
v� through v� it may not always be possible� For example� pushing
cap
v� � �� units �ow through a vertex v may require to push � units
�ow along an edge 
v� w�� which requires that cap
w� is at least �� But
the capacity of the vertex w may be less than �� thus we would be blocked
at the vertex w� However� if we always pick the vertex w in L with the
smallest capacity� this problem will disappear� In fact� trying to push a �ow
of amount cap
w� will require no more than cap
v� amount of �ow to go
through a vertex v for all vertex v� Therefore� we can always push the �ow
all the way to the sink t 
assuming we have no deadend vertices�� Similarly�
we can pull this amount cap
w� of �ow from the incoming edges of w all the
way back to the source s� Note that this process saturates the vertex w�
Thus� the vertex w can be removed from the leveled graph L in the rest of
the iterations of the algorithm SATURATING on L�

Now we can formally describe Karzanov�s Algorithm� The �rst subrou�
tine deletes all deadends in the leveled graph L and computes the capacity
for each vertex in L�

Algorithm �	
 INITIALIZATION
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Input� the leveled graph L

�� Perform a depth first search on L to delete all

vertices that are not on a path from s to t�
�� for each vertex v �� s� t do

in�v� � �� out�v� � �� f �v� � ��
�� in
s� � ��� out
t� � ���

	� for each edge 
u� v� do
in�v� � in�v� � cap
u� v��
out�u� � out�u� � cap
u� v��

�� for each vertex v do
cap
v� � minfin�v�� out�v�g

Here� in�v� is the sum of capacities of all incoming edges of vertex v� out�v�
is the sum of capacities of all outgoing edges of vertex v� and f �v� is the
amount of �ow we want to push 
or pull� through vertex v�

We will always start with a vertex v with the smallest cap
v� and push
a �ow of amount cap
v� through it all the way to the sink t� This process
is similar to the breadth �rst search algorithm� starting from the vertex v�
We use the array f ��� to record the amount of �ow we need to push through
the corresponding vertex� f �w� � � implies that the vertex w has not been
seen in the breadth �rst search�

Algorithm �	� PUSH
v

Input� the leveled graph L
fQ is a queue used for the breadth first search�g
�� Q
 v� f �v� � cap
v��
�� while Q is not empty do
�� u
 Q� f� � f �u��
	� while f� � � do
�� let 
u� w� be the next edge from u

�� if f �w� � � and w �� t then Q
 w�
�� if cap
u� w� � f� then

�� cut edge 
u� w��
�� f �w� � f �w� � cap
u� w�� f� � f� � cap
u� w��
��� else
��� push f� along 
u� w��
��� cap
u� w� � cap
u� w�� f�� f �w� � f �w� � f�� f� � ��
��� if u �� v then cap
u� � cap
u�� f��

��



�	� if u �� v and cap
u� � �
then delete u from the leveled graph L�

Note that we neither change the value cap
v� nor remove the vertex v
from the leveled graph L� This is because the vertex v will be used again in
the following PULL algorithm�

The algorithm PULL is very similar to algorithm PUSH� We start from
the vertex v and pull cap
v� amount of �ow all the way back to the source
vertex s� Note that now the breadth �rst search is on the reversed directions
of the edges of the leveled graph L� This can be easily done by a reorgani�
zation of the adjacency list representation of the graph L and the process
can be done in time O
e� 
this only needs to be done once for all calls to
PULL�� Moreover� note that the only vertex that can be seen in both PUSH
subroutine and PULL subroutine is the vertex with the smallest capacity�
Therefore� no updating is needed for array f ����

Algorithm �	� PULL
v

Input� the leveled graph L

fQ� is a queue used for the breadth first search�g
�� Q� 
 v� f �v� � cap
v��
�� while Q� is not empty do

�� u
 Q�� f� � f �u��
	� while f� � � do

�� let 
w� u� be the next edge into u
�� if f �w� � � and w �� s then Q� 
 w�
�� if cap
w� u� � f� then

�� cut edge 
w� u��
�� f �w� � f �w� � cap
w� u�� f� � f� � cap
w� u��
��� else
��� push f� along 
w� u��
��� cap
w� u� � cap
w� u�� f�� f �w� � f �w� � f�� f� � ��
��� cap
u� � cap
u�� f��

�	� if cap
u� � �
then delete u from the leveled graph L�

Again note that after the execution of the PULL algorithm� the vertex
v with minimum capacity always gets removed�

With the subroutines PUSH and PULL� a new saturating subroutine can
be given as follows�
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Algorithm �	� SATURATING�Karzanov

Input� the leveled graph L
Output� a flow f on L that saturates all paths in L

�� call INITIALIZATION�

�� while there is a path from s to t in L do
�� let v be the vertex in L with minimum cap
v��
	� call PUSH
v��
�� call PULL
v��

We now analyze the algorithm SATURATING�Karzanov�

Lemma �	� The algorithm SATURATING�Karzanov takes time O
n���

proof� Step � takes time O
e� � O
n��� Steps 
 takes time O
n�� Since
each execution of the loop body Steps 
�� deletes at least one vertex from L�
the while loop body 
Steps 
��� is executed at most n times� Therefore� all
executions of Step 
 in the algorithm SATURATING�Karzanov take time
O
n���

Now we study the complexity of Steps 	 and �� Let us �rst consider
the subroutine PUSH� To push a �ow of amount f �u� through a vertex u�
we take each outgoing edge from u� If the capacity of the edge is smaller
than the amount of �ow we need to push� we saturate the edge� and if the
capacity of the edge is not smaller than the amount of �ow we need to push�
we let all remaining �ow go along that edge and jump out from the while
loop of Steps 	��� in the algorithm PUSH� Moreover� once an edge gets cut
at Step � of the algorithm� the edge will never appear in the leveled graph L
for the later calls for PUSH in the while loop of Algorithm SATURATING�
Karzanov� Thus� each execution of the while loop body Steps ���� in the
algorithm PUSH� except the last one� deletes an edge from the leveled graph
L� Therefore� the number of total such executions cannot be larger than e�
Consequently� all such executions in the algorithm SATURATING�Karzanov
take time O
e� � O
n��� Besides these executions� the subroutine PUSH
spends constant time on each vertex u� thus O
n� time on the graph L� Since
there are only O
n� calls to the PUSH in the algorithm SATURATING�
Karzanov� we conclude that the algorithm SATURATING�Karzanov takes
time O
n�� on all calls to PUSH� Similarly� the total time spent on the calls
to PULL is also bounded by O
n���

Algorithm �	� Karzanov�s Algorithm
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Input� a flow�graph G

Output� a maximum flow on G

�� let f be the zero flow�

�� construct the residual graph Gf�

�� while there is a path from s to t in Gf do

���� construct the leveled graph L�
���� call SATURATING�Karzanov to find a flow f� to

saturate L�
���� f � f � f�� construct Gf for the new flow f�

Theorem �	
 Karzanov�s Algorithm 
Algorithm ���� runs in time O
n��

proof� According to the discussion of Dinic�s algorithm� we know that the
body of the while loop in Algorithm ��� is executed at most n � � times�
Moreover� Steps 
�� and 
�
 takes time O
e� � O
n��� By Lemma ����
each call to the subroutine SATURATING�Karzanov takes time O
n��� We
conclude that Karzanov�s algorithm takes time O
n���
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� Maximum matching on bipartite graphs

In this lecture� we study maximum matching problem on bipartite graphs�
We show that the problem can be reduced to a special form of the max��ow
problem� for which Dinic�s algorithm runs very e�ciently�

��� Max�Flow Min�Cut Theorem

De�nition 
	� Let G � 
V�E� be a �ow graph with source s and sink t�
A partition of V � V� � V� 
i�e� V� � V� � V and V� 
 V� � �� is a cut if
s � V�� t � V��

De�nition 
	
 The capacity of a cut 
V��V�� is de�ned by the value�

cap
V�� V�� �
X

v�V��w�V�

cap
v� w�

The following lemma will be used in our later discussion�

Lemma 
	� Let G � 
V�E� be a �ow graph and let 
V�� V�� be a cut of G�
Then for any �ow f on G we have

jf j �
X

v�V��w�V�

f
v� w�

proof� By de�nition� we have jf j �Pw�V f
s� w�� By the de�nition of a
�ow� we have

P
w�V f
v� w� � � for all vertices v � V� � fsg� Therefore� we

have

jf j �
X
w�V

f
s� w� �
X

v�V��w�V

f
v� w�

�
X

v�V��w�V�

f
v� w� �
X

v�V��w�V�

f
v� w�

Now since f
v� w� � �f
w� v� for all vertices v� w � V�� the �rst term in the
last expression of the above equation is equal to �� The lemma follows�
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Lemma ��� implies one direction of the following fundamental theorem
in the study of maximum �ow problem�

Theorem 
	
 �Max�Flow Min�Cut Theorem� For any �ow graph G �

V�E��

maxfjf j � f is a �ow on Gg � minfcap
V�� V�� � 
V�� V�� is a cut of Gg

proof� Let f be a �ow on G and let 
V�� V�� be a cut of G� By Lemma ���
and note that f is a �ow on G thus f
v� w�� cap
v� w� for all vertices v � V�
and w � V�� we have

jf j �
X

v�V��w�V�

f
v� w� �
X

v�V��w�V�

cap
v� w� � cap
V�� V��

Since f is an arbitrary �ow on G and 
V�� V�� is an arbitrary cut of G� we
conclude

maxfjf j � f is a �ow on Gg � minfcap
V�� V�� � 
V�� V�� is a cut of Gg

To prove the other direction� let f be a maximum �ow on the �ow graph
G� Let Gf be the residual graph of G with respect to f � By Theorem 
���
there is no path from the source s to the sink t in the residual graph Gf �
De�ne V� to be the set of vertices that are reachable from the source s in
the graph Gf � Thus� s � V� and t �� V�� Therefore� if we let V� � V � V��
then 
V�� V�� is a cut of the �ow graph G� Now let e � 
v� w� be an edge in
G such that v � V� and w � V�� Since e is not an edge in the residual graph
Gf 
otherwise� the vertex w would be reachable from s in Gf �� the edge e
must be saturated by the �ow f � That is� f
v� w� � cap
v� w�� Therefore�
we have

cap
V�� V�� �
X

v�V��w�V�

cap
v� w� �
X

v�V��w�V�

f
v� w�

By Lemma ���� the last expression is equal to jf j� This proves

maxfjf j � f is a �ow on Gg � minfcap
V�� V�� � 
V�� V�� is a cut of Gg

The proof of the theorem is thus completed�
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��� Hopcroft and Karp�s analysis

Now we describe an analysis given �rst by Hopcroft and Karp� which gives an
O

p
ne� time algorithm for maximum matching on bipartite graphs� which

is the best algorithm known so far for the problem�
Given a bipartite graph B � 
V�� V��� we can construct a �ow�graph G

by adding two vertices s and t� adding a directed edge from s to each of
the vertices in V�� adding a directed edge from each of the vertices in V� to
t� giving each original edge in B a direction from V� to V�� and setting the
capacity of each edge in G to �� The resulting �ow�graph G has some very
interesting properties that can be characterized as follows�

De�nition 
	� A �ow graph G is a simple �ow�graph if it satis�es the
following two conditions�

�� the capacity of each edge of G is �� and
�� every vertex v �� s� t either has only one incoming edge or has only

one outgoing edge�

Clearly� the �ow�graph G constructed above from a bipartite graph is a
simple �ow�graph� Now consider Dinic�s algorithm on a simple �ow�graph
G�

Algorithm 
	� Dinic�s Algorithm

�� f � ��
�� Construct Gf�

�� while there is a path from s to t in Gf do
construct the leveled graph L�

saturate all the paths in L from s to t�
update the flow f�

construct the new Gf�

Lemma 
	� Let G � 
V�E� be a simple �ow�graph and let f be a �ow on G
such that f
v� w� is either � or � for all pairs 
v� w� of vertices in G� Then
the residual graph Gf is also a simple �ow�graph�

proof� Consider any vertex w in G� w �� s� t� Suppose that the vertex w
has only one incoming edge e � 
v� w��

If f
v� w� � � then f
w� u� � � for all u � V � Thus� in the residual
graph Gf � e is still the only incoming edge for the vertex w�
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If f
v� w� � � then there must be an outgoing edge 
w� u� of w such
that f
w� u� � �� and for all other outgoing edges 
w� u�� we must have
f
w� u�� � �� Therefore� in the residual graph Gf � the edge 
v� w� disappears
and we add another outgoing edge 
w� v�� and the edge 
w� u� disappears and
we add a new incoming edge 
u� w�� which is the unique incoming edge of
the vertex w in Gf �

The case that the vertex w has only one outgoing edge can be proved
similarly�

Lemma 
	� Let G � 
V�E� be a simple �ow�graph� and let f be a max�
�ow on G� let l be the length of the shortest path from s to t in G� then
l � n�jf j� �� where n is the number of vertices in G�

proof� De�ne Vi to be the set of vertices of distance i from s in G�
Fix an i� � � i � l � �� De�ne C� and C� by

C� �
i�

j��

Vj and C� � V � C�

It is clear that 
C�� C�� is a cut of the �ow graph G�
We claim that for any edge e � 
v� w� of G such that v � C� and w � C��

we have v � Vi and w � Vi��� In fact� if v � Vh for some h � i� then the
distance from s to w cannot be larger than h � � � i� This would imply
that w is in C�� Thus� v must be in Vi� Now since e � 
v� w� is an edge in
G� w is in Vk for some k � i� �� and v is in Vi� we must have w � Vi���
This observation together with Lemma ��� gives us

jf j �
X

v�C��w�C�

f
v� w� �
X

v�Vi�w�Vi��

f
v� w�

Now since G is a simple �ow graph� there is at most one unit �ow through
a vertex v �� s� t� Therefore� if i � � 
i�e�� Vi � fsg�� then jf j � jVi��j� and
if i � l � � 
i�e�� Vi�� � ftg�� then jf j � jVij� and for � � i � l� �� we have
both jf j � jVi��j and jf j � jVij� Summarizing these inequalities for all i� we
get

n � jV j � jV�j� jV�j� � � �� jVl��j � 
l� ��jf j
which gives immediately l � n�jf j� ��

Now we are ready for analyzing the complexity of Dinic�s algorithm on
simple �ow�graphs�
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Lemma 
	� For simple �ow�graphs� the constructed leveled graph L in
Dinic�s algorithm can be saturated in time O
e��

proof� The saturating is based on a depth �rst search process� starting
from the source s� Any subtree constructed during the depth �rst search
can be entirely deleted if it does not lead to the sink t� Moreover� once a
path from s to t is found� all edges on the path will be saturated because
all edges in a simple graph have capacity �� Therefore� in this process� each
edge is processed at most twice then will be deleted from the leveled graph
L� This concludes that the running time of the saturating process can be
done in time O
e��

Since other steps in the while loop body of Dinic�s algorithm can be
easily done in time O
e�� we conclude that each execution of the while loop
body of Dinic�s algorithm takes time O
e��

Lemma 
	� On a simple �ow�graph� the while loop body of Dinic�s algo�
rithm is executed at most �

p
n� � times� where n is the number of vertices

in the simple �ow�graph�

proof� Let h be the number of times the while loop body of Dinic�s
algorithm is executed on a simple �ow graph G of n vertices� Let fmax be a
maximum �ow on G�

If jfmaxj � �
p
n� then of course the loop body is executed at most �

p
n

times since each execution of the loop body increases the �ow value by at
least ��

Now assume jfmaxj � �
p
n� Let k� be the largest integer such that after

k� executions of the while loop body� the �ow f� constructed in Dinic�s
algorithm is still less than jfmaxj �

p
n� A few interesting facts about k� are

� k� � h�

� after 
k����st execution of the while loop body in Dinic�s algorithm�
the constructed �ow is at least jfmaxj � p

n�

� the value of the maximum �ow in the �ow graph Gf� is larger thanp
n�

By the third fact� the length of the shortest path from s to t in the �ow
graph Gf� is bounded by n�

p
n � � �

p
n � �� Now since each execution

of the while loop body increases the length of the shortest path from s to

��



t by at least � 
see Claim 
 in the proof of Theorem 	���� we conclude that
k� �

p
n�

By the second fact� after 
k�� ��st execution of the while loop body in
Dinic�s algorithm� the constructed �ow f� is at least jfmaxj �

p
n� There�

fore� with another
p
n executions of the while loop body� starting from the

�ow�graph Gf� � Dinic�s algorithm must reach the maximum �ow value fmax

because each execution of the while loop body increases the �ow value by
at least ��

In conclusion� we have h � k� � � �
p
n � �

p
n� �� This completes the

proof�

Theorem 
	
 Dinic�s algorithm runs in time O

p
ne� on a simple �ow

graph of n vertices and e edges�

proof� Follows directly from Lemma ��� and Lemma ����

Corollary 
	� The maximum matching problem on bipartite graphs can be
solved in time O


p
ne��
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 Maximum matching for general graphs

Now we study the maximum matching problem on general graphs� Recall
that a matchingM on a graph G � 
V�E� is a subset of edges in E such that
no two edges in M share a common endpoint� A vertex v is a matched vertex
if v is an endpoint of an edge in M � otherwise� the vertex is an unmatched
vertex�

De�nition �	� Let M be a matching in a graph G� An alternating path is
a simple path p � fu�� u�� u�� � � �g such that the vertex u� is unmatched and
that the edges 
u�i��� u�i� are in M � for i � �� �� � � �� An alternating path is
an augmenting path if it starts and ends with unmatched vertices�

Note that alternating paths and augmenting paths are relative to a �xed
matching M � The following theorem serves as a fundamental theorem in
graph matching�

Theorem �	� Let G be a graph and let M be a matching in G� M is
maximum if and only if there is no augmenting path in G�

proof� Suppose that there is an augmenting path p � 
u�� u�� � � � � ur� in
the graph G with respect to the matching M �

It is easy to see that the length r of p is odd� Let r � �h� �� where h is
an integer� Consider the set of edges M � � M�p� where � is the symmetric
di�erence de�ned by A�B � 
A�B�� 
B �A�� Since the number of edges
on p that are in M is one less than the number of edges on p that are not in
M � the number of edges in M � is one more than that in M � It is also easy
to check that M � is also a matching in G� M � � M �p � 
M�p�� 
p�M��
for any two edges e� and e� in M �� 
�� if both e� and e� are in M � p then
they are in M so have no common endpoint because M is a matching� 
��
if both e� and e� are in p �M then e� and e� have no common endpoint


�



because p is alternating� and 

� if e� is in M � p and e� is in p�M then e�
cannot have an endpoint on p since the two endpoints of p are unmatched
and all other vertices on p are matched by edges on p�

Therefore� M � is a matching larger than the matching M � This proves
that if there is an augmenting path p� then the matching M cannot be
maximum�

Conversely� suppose that the matching M is not maximum� Let Mmax

be a maximum matching� Then jMmaxj � jM j� Consider the graph G� �
Mmax�M � 
M �Mmax�� 
Mmax�M�� No vertex in G� has degree larger
than �� In fact� if a vertex v in G� had degree larger than �� then at least
two edges incident on v belong to either M or Mmax� contradicting the fact
that both M and Mmax are matchings in G� Therefore� each component of
G� must be either a simple path� or a simple cycle� In each simple cycle
in G�� the number of edges in Mmax �M should be exactly the same as
the number of edges in M � Mmax� For each simple path in G�� either
the number of edges in M �Mmax is the same as the number of edges in
Mmax �M 
in this case� the path has an even length�� or the number of
edges in M �Mmax is one more than the number of edges in Mmax�M � or
the number of edges in Mmax�M is one more than the number of edges in
M �Mmax� Since jMmaxj � jM j� we conclude that there is at least one path
p � 
u�� u�� � � � � u�h��� in G� in which the number of edges in Mmax �M is
one more than the number of edges in M�Mmax� Note that the endpoint u�
of the path p must be unmatched in M � In fact� since 
u�� u�� �Mmax�M �
if u� is matched in M by an edge e� we must have e �� 
u�� u��� Now since u�
has degree � in G�� e �� G�� e is also contained in Mmax� This would make
the vertex u� incident on two edges 
u�� u�� and e in the matching Mmax�
Similar reasoning shows that the vertex u�h�� is also unmatched in M � In
consequence� the path p is an augmenting path in the graph G with respect
to the matching M �

This completes the proof�

Based on the above theorem� a maximum matching algorithm can be
given as follows�

Algorithm �	� Max�matching for general graphs

�� M � ��

�� while there is an augumenting path in G do
find an augmenting path p�
construct the matching M � M � p with one more edge�


�



Since a matching in a graph G of n vertices cannot contain more than
n�� edges� the while loop in the above algorithm will be executed at most
n�� times� In the next lectures� we will show how an augmenting path can
be constructed when a matching is given for a graph�
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� Theorems on maximum matching problem

Let us �rst review the fundamental theorem and algorithm for maximum
matching for general graphs�

Theorem �	� Let G be a graph and let M be a matching in G� M is
maximum if and only if there is no augmenting path in G�

Algorithm �	� Max�matching for general graphs

�� M � ��
�� while there is an augumenting path in G do

find an augmenting path p�
Let M � M � p�

All known algorithms for maximum matching of general graphs are based
on Theorem ��� and Algorithm ���� The main point here is how an aug�
menting path can be found� For the rest of the discussion� we assume that
G is a �xed graph and that M is a �xed matching in G�

Observe that an augmenting path P must start with an unmatched ver�
tex v�� The next vertex v� must be a neighbor of v�� If v� is also unmatched�
then the edge 
v�� v�� constitutes an augmenting path� On the other hand�
if the length of P is larger than �� then the third vertex v� on P must be the
one that matches v� in M � Now since the path fv�� v�� v�g does not make
an augmenting path� the fourth vertex v� must be a neighbor of the vertex
v�� and so on� Therefore� it seems that we can search the augmenting path
using a breadth �rst search manner� start with v�� then search all neighbors
of v�� then search all vertices that match the neighbors of v�� and so on until
we �nd an unmatched vertex� In this search� we give each vertex v a level
number level�v� such that all roots of the breadth �rst search trees are at
level �� and that the children of a vertex at level i are at level i��� A vertex
will be called an even level vertex or an odd level vertex according to its level







number� On each even level vertex v�h� we search all neighbors of v�h� and
on each odd level vertex v�h��� we only take the unique vertex v�h�� such
that the edge 
v�h��� v�h��� is in the matching M �

Another modi�cation we will made is that we will perform this BFS
fashion search starting from all unmatched vertices at the same time� instead
of starting from a single vertex� Implementation of this modi�cation is
simple� as for the standard BFS� we use a �rst�in �rst�out queue� However�
we �rst put all unmatched vertices in the queue then perform the BFS
fashion search until either an augmenting path is found or the queue Q is
empty� It is easy to see that this search will �rst construct the �rst level for
all BFS trees rooted at the unmatched vertices� then the second level for all
BFS trees� and so on�

Remark �	� These modi�cations make the BFS trees lose many of their
well�known and nice properties� The following lost properties should be
mentioned�


�� in the modi�ed BFS process� a cross�edge 
i�e�� an edge of G that links
two vertices in the BFS trees that do not have a father�son relation� may
link two vertices whose level numbers di�er by an arbitrarily large number�
On the other hand� in the standard BFS process� each cross�edge links two
vertices whose level numbers di�er by at most ��


�� in the modi�ed BFS process� a tree path from an ancestor to a
descendent may no longer be a shortest path between the two vertices� and



� in the modi�ed BFS process� a tree may not necessarily contain all
vertices in a connected component of the graph G� In fact� now there may
be cross�edges that link two vertices in two di�erent BFS trees�

We present our �rst draft of the algorithm�

Algorithm �	
 Modified BFS 
Version �


�� put all unmatched vertices in the queue Q�
�� while no augmenting path has been found do

Let v be the next vertex in the queue Q�
if v is an even level vertex

then make all unvisited neighbors of v the children

of v and add them to Q

else fv is an odd level vertex�g
if the vertex w that matches v is unvisited�

then make w a child of v and add w to Q�


	



Algorithm ��� does not describe the details of how an augmenting path
can be found� which is discussed in the rest of this section�

De�nition �	
 In the modi�ed BFS process� a cross�edge e is a good cross�
edge if either e �M and e links two odd level vertices in two di�erent BFS
trees� or e ��M and e links two even level vertices in two di�erent BFS trees�

Lemma �	
 If a good cross�edge is given in the modi�ed BFS process� then
an augmenting path can be constructed in linear time�

proof� Let e � 
v�s��� u�t��� be a good cross�edge such that e � M �
fv�� v�� � � � � v�s��g is a tree path in a BFS tree Tv from root v� to v�s��� and
fu�� u�� � � � � u�t��g is a tree path in a BFS tree Tu from root u� to u�t���
where v� �� u�� By the modi�ed BFS process� v� and u� are unmatched
vertices� the edges 
v�i� v�i��� and 
u�j� u�j��� are not in M � for all i �
�� � � � � s and j � �� � � � � t� and the edges 
v�i��� v�i��� and 
u�j��� u�j��� are
in M � for all i � �� � � � � s� � and j � �� � � � � t� �� Therefore� the path

fv�� v�� � � � � v�s� v�s��� u�t��� u�t� � � � � u�� u�g

is an augmenting path that can be easily constructed in linear time�
The case that the good cross�edge is not in M and links two even level

vertices can be proved similarly�

Lemma ��� suggests a re�nement of Algorithm ����

Algorithm �	� Modified BFS 
Version �


�� put all unmatched vertices in the queue Q�
�� while no augmenting path has been found do

Let v be the next vertex in the queue Q�
if v is an even level vertex then

for each neighbor w of v do
if 
v� w� is a good cross�edge then

construct an augmenting path and stop�

if w is unvisited then
make w a child of v and add w to Q�

else fv is an odd level vertex�g
let w be the vertex matching v�

if 
v� w� is a good cross�edge then
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Figure �� The structure of a blossom

construct an augmenting path and stop�

if w is unvisited then
make w a child of v and add w to Q�

for years people believed that Algorithm ��
 was su�cient for construct�
ing an augmenting path until the following structure was discovered�

De�nition �	� In the modi�ed BFS process� a cross�edge e is a bad cross�
edge if either e �M and e links two odd level vertices in the same BFS tree�
or e ��M and e links two even level vertices in the same BFS tree�

Let us consider how a bad cross�edge may make the modi�ed BFS process
fail to �nd an existing augmenting path� Let e � fv� v�g be an edge in M
such that both v and v� are odd level vertices in the same BFS tree� When
we �rst encounter the edge e in the modi�ed BFS process� both vertices v
and v� have been visited� Therefore� the edge cannot be added to the BFS
tree� However� the edge cannot be simply ignored since it may �hide� an
augmenting path from our BFS process� Consider the case in Figure �
a��
where each single line represents an edge not in the matching M and each
double line represents a matched edge in M �

The only two unmatched vertices in Figure �
a� are v� and u�� Thus� the
modi�ed BFS process starts with v� and u� being in the queue Q and stops
as in Figure �
b� without �nding an augmenting path� Note that the edge

v�� u�� is not included in the BFS trees because at time u� is expanding� v�
has been visited through v�� and at time v� is expanding� only the matched


�



edge 
v�� v
� is considered� The edge 
v� v�� is also not included in the BFS
trees because at time v 
resp� v�� is processed� v� 
resp� v� has been visited�
However� there is clearly an augmenting path from v� to u��

fv�� v�� v�� v�� v	� v� v�� v
� v�� u�� u�� u�g
In a similar case when e is a bad edge such that e is not in M and e

links two even level vertices in the same BFS tree� we can also construct
a con�guration in which the modi�ed BFS process fails to �nd an existing
augmenting path�

This discussion motivates the following de�nition�

De�nition �	� In the modi�ed BFS process� a blossom is a simple cycle
consisting of a bad cross�edge e � 
v� v�� together with the two unique tree
paths from v and v� to their least common ancestor v��� The vertex v�� will
be called the base of the blossom�

For example� the cycle fv�� v�� v	� v� v�� v
� v�� v�g is a blossom whose base
is v��

Remark �	� There are a number of interesting properties for blossoms�
We list those that are related to our later discussion�


��� A blossom consists of an odd number of vertices� This is because
either both ends v and v� of the bad cross�edge are odd level vertices or both
v and v� are even level vertices�


��� Suppose that the cycle b � fv�� v�� � � � � v�s� v�g is a blossom� where
v� is the base� then the edges 
v�s� v�� and 
v�i� v�i��� for all i � �� � � � � s���
are not in the matching M � and the edges 
v�j��� v�j� for all j � �� � � � � s are
in the matching M �



�� If an edge e� is not contained in a blossom but is incident to a vertex
v in the blossom� then the edge e� cannot be in the matching M unless the
incident vertex v is the base of the blossom� This is because each vertex�
except the base� in a blossom is incident on a matched edge in the blossom�

Identifying and constructing a blossom is easy� as stated in the following
lemma�

Lemma �	� In linear time� we can identify a bad cross�edge and construct
the corresponding blossom�

proof� In the modi�ed BFS process� we keep track of the level number
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for each visited vertex� Once a cross�edge e � 
v� v�� is found� we can follow
the tree edges back to the root to check whether the two ends v and v� of e
belong to the same BFS tree� This together with the level numbers of v and
v� is su�cient for deciding if e is a bad cross�edge� For a bad cross�edge� we
trace the two tree paths back from the common root to �nd the last common
vertex v�� on the paths� The vertex v�� is the base for the blossom�

Thus� blossoms are structures that may make the modi�ed BFS process
fail� Is there any other structure that can also fool the modi�ed BFS process�
Fortunately� blossoms are the only such structures� as we will discuss below�
We start with the following lemma�

Lemma �	� If a matched edge in M is a cross�edge� then it is either a good
cross�edge or a bad cross�edge�

proof� Let e � 
v� v�� be a matched edge that is a cross�edge� The vertices
v and v� cannot be roots of the BFS trees since roots of the BFS trees are
unmatched vertices� Let w and w� be the fathers of v and v�� respectively�
The tree edges 
w� v� and 
w�� v�� are not matched edges since 
v� v�� is a
matched edge� Thus� v and v� must be odd level vertices� Now if v and v�

belong to di�erent BFS trees� then the edge e is a good cross�edge� otherwise
e is a bad cross�edge�

Lemma �	� If there is no blossom in the modi�ed BFS process� then there
is a good cross�edge if and only if there is an augmenting path�

proof� By Lemma ���� if there is a good cross�edge� then there is an
augmenting path that can be constructed from the good cross�edge in linear
time�

Conversely� suppose there is an augmenting path p � fu�� u�� � � � � u�t��g�
If t � �� then the path p itself is a good cross�edge and we are done� Thus�
assume t � �� Let v�� � � �� vh be the roots of the BFS trees� processed in that
order by the modi�ed BFS process� Without loss of generality� we assume
u� � vb where b is the smallest index such that vb is an end of an augmenting
path� With this assumption� the vertex u� is a child of u� in the BFS tree
rooted at u�� If any matched edge e on p is a cross�edge� then by Lemma ��	�
e is either a good cross�edge or a bad cross�edge� Since there is no blossom�
e must be a good cross�edge again the lemma is proved�
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Thus� we assume that the augmenting path p has length larger than ��
no matched edges on p are cross�edges� and u� is a child of u� in the BFS
tree rooted at u��

Case �	 Suppose that all vertices on p are contained in the BFS trees�
Both u� and u�t�� are even level vertices� Since the path p is of odd

length� there must be an index i such that level�ui��� � level�ui� mod ��
Without loss of generality� assume i is the smallest index satisfying this con�
dition� The edge 
ui��� ui� must be a cross�edge� Thus� by our assumption�

ui��� ui� is not a matched edge�

Suppose that both ui�� and ui are odd level vertices� then i � �� Since

ui��� ui��� is a matched edge� ui�� �� u�� Moreover� by our assumption�

ui��� ui��� is a tree edge� Thus� ui�� is an even level vertex� Moreover�
since 
ui��� ui��� is a matched edge� the index i� � is an odd number� Now
the partial path

pi�� � fu�� u�� � � � � ui��g
is of odd length and has both ends being even level vertices� This implies
that there is an index j such that j � i�� and level�uj��� � level�uj� mod ��
But this contradicts the assumption that i is the smallest index satisfying
this condition�

Thus� ui�� and ui must be even level vertices� So 
ui��� ui� is either a
good cross�edge or a bad cross�edge� By the assumption of the lemma� there
is no blossom� Consequently� 
ui��� ui� must be a good cross�edge and the
lemma is proved for this case�

Case 
	 Some vertices on p are not contained in any BFS trees�
Let ui be the vertex on p with minimum i such that ui is not contained

in any BFS trees� Then i � ��
Suppose 
ui��� ui� �M � If ui�� is an odd level vertex then ui would have

been made a child of ui��� Thus ui�� is an even level vertex� However� since
ui�� cannot be a root of a BFS tree� ui�� would have matched its father in
the BFS tree� this contradicts the assumption that ui�� matches ui and ui
is not contained in any BFS trees�

Thus we must have 
ui��� ui� �� M � Then 
ui��� ui��� is in M � Thus�
the index i� � is an odd number� By our assumption� 
ui��� ui��� is a tree
edge� If ui�� is an even level vertex� then ui would have been made a child
of ui��� Thus� ui�� is an even level vertex� Now in the partial path of odd
length

pi�� � fu�� u�� � � � � ui��g�
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all vertices are contained in the BFS trees� and the two ends are even level
vertices� Now the proof goes exactly the same as for Case � � we can
�nd a smallest index j � i � � such that level�uj��� � level�uj� mod � and

uj��� uj� is a good cross�edge�

This completes the proof of the claim�

By Lemma ���� if there is an augmenting path and if no bad cross�edge
is found 
thus no blossom is found�� then the modi�ed BFS process will
eventually �nd a good cross�edge� By Lemma ���� an augmenting path can
be constructed in linear time from this good cross�edge� In particular� if the
graph is bipartite� then the modi�ed BFS process will always be able to con�
struct an augmenting path if one exists� since a bipartite graph contains no
odd length cycle� thus no blossom can appear in the modi�ed BFS process�
This gives the well�known algorithm of running time O
ne� for maximum
matching on bipartite graphs�

In order to develop an e�cient algorithm for maximum matching on
general graphs� we need to resolve the problem of blossoms� Surprisingly�
the solution to this problem is not very di�cult� based on the following
�blossom shrinking� technique�

De�nition �	� Let G be a graph and M a matching in G� Let b be a
blossom found in the modi�ed BFS process� De�ne G�b to be the graph
obtained from G by �shrinking� the blossom b� That is� G�b is a graph
obtained from G by deleting all vertices 
and their incident edges� of the
blossom b then adding a new vertex vb that is connected to all vertices that
are adjacent to some vertices in b in the original graph G�

It is easy to see that given the graph G and the blossom b� the graph
G�b can be constructed in linear time�

Since there is at most one matched edge that is incident to but not
contained in a blossom� for a matching M in G� the edge set M � b is a
matching in the graph G�b�

Theorem �	� 
Edmond� Let G be a graph and M a matching in G� Let b
be a blossom in G� Then there is an augmenting path in G with respect to
M if and only if there is an augmenting path in G�b with respect to M � b�

proof� Suppose that the blossom is b � fv�� v�� � � � � vs� v�g� where v� is
the base� We �rst show that the existence of an augmenting path in G�b
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implies an augmenting path in G� Let p � fu�� u�� � � � � utg be an augmenting
path in G�b and let vb be the new vertex in G�b obtained by shrinking b�

Case �	 If the vertex vb is not on the path p� then clearly p is also an
augmenting path in G�

Case 
	 Suppose vb � ut� Then vb is an unmatched vertex in the
matching M � b� Consequently� the base v� of the blossom b is unmatched
in the matching M �

If the edge 
ut��� ut� in G�b corresponds to the edge 
ut��� v�� in G� then
the path

p� � fu�� u�� � � � � ut��� v�g
is an augmenting path in G�

If the edge 
ut��� ut� in G�b corresponds to the edge 
ut��� vh� in G�
where vh is not the base of b� then one of the edges 
vh��� vh� and 
vh� vh���
is a matched edge� Without loss of generality� suppose that 
vh� vh��� is a
matched edge� Then� the path

p� � fu�� u�� � � � � ut��� vh� vh��� � � � � vs� v�g
is an augmenting path in G�

The case vb � u� can be proved similarly�
Case �	 Suppose that vb � ud� where � � d � t� Then without

loss of generality� we assume that 
ud��� ud� is a matched edge in M � b

and 
ud� ud��� is an unmatched edge� The edge 
ud��� ud� in G�b must
correspond to the matched edge 
ud��� v�� in G� Let the edge 
ud� ud��� in
G�b correspond to the edge 
vh� ud��� in G�

If vh � v�� then the path

p� � fu�� � � � � ud��� v�� ud��� � � � � utg
is an augmenting path in G�

If vh �� v�� then as we proved in Case 
� we can assume that 
vh��� vh�
is a matched edge� Thus� the path

p� � fu�� � � � � ud��� v�� v�� � � � � vh��� vh� ud��� � � � � utg
is an augmenting path in G�

Therefore� given an augmenting path in G�b� we are always able to con�
struct an augmenting path in G�

The proof for the other direction that the existence of an augmenting
path in G implies an augmenting path in G�b is rather complicated based
on a case by case analysis� We omit the proof here�
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Corollary �	
 Let G be a graph of n vertices and let b be a blossom� Given
an augmenting path in G�b� an augmenting path in G can be constructed in
time O
n��

proof� Directly follows from the construction given in the proof of The�
orem ����
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�� Algorithms for maximum matching problem

We �rst review two theorems given in the last lecture�

Theorem ��	� Suppose we perform the modi�ed BFS process� If there is
an augmenting path and there are no blossoms� then the BFS process will
�nd an augmenting path�

Theorem ��	
 If a blossom b is found in the modi�ed BFS process� then
there is an augmenting path in G with respect to the matching M if and only
if there is an augmenting path in G�b with respect to the matching M � b�
Moreover� an augmenting path in G can be constructed in time O
n� if an
augmenting path in G�b is given�

Now the idea is fairly clear for how we can �nd an augmenting path�
we perform the modi�ed BFS process� either we �nd an augmenting path
in G then we are done� or we �nd a blossom then we shrink the blossom
and search an augmenting path in G�b� Once an augmenting path in G�b

is found� we can easily convert it into an augmenting path in G� as stated
in Corollary ���� Theorem ��� ensures that if we cannot �nd an augmenting
path in G�b then there is no augmenting path in G�

The main algorithm for constructing a maximum matching for a general
graph now can be rewritten as follows�

Algorithm ��	� Maximum Matching

Input� a graph G�

Output� a maximum matching M in G

�� M � ��
�� repeat

if there is an augmenting path in G w�r�t�M
then

	




construct an augmenting path p�

let M � M � p�
until no augmenting path is found

The process of �nding an augmenting path is implemented by the mod�
i�ed BFS process as follows�

Algorithm ��	
 Finding An Augmenting Path

�� Perform the modified BFS process�

�� if an augmenting path is found then

convert it to an augmenting path for the original

graph G� stop�

�� if a blossom is found then
construct the graph G�b� resume the modified BFS

process�

To give a more detailed description for the modi�ed BFS process� we
give a level number level�v� to each vertex v� Initially� level�v� � �� for all
vertices v� Thus� a vertex v is visited if and only if its level number is larger
than ���

Algorithm ��	� Finding An Augmenting Path 
Refined


Input� a graph G and a matching M in G

Output� an augmenting path in G� or report no such a path

�� for all vertices w of G do level�w� � ���
�� for all unmatched vertices w in G do

level�w� � �� Q
� w�

�� while the queue Q is not empty do
v 
� Q�

if level�v� is even then
for each neighbor w of v do

if 
v� w� is a good cross�edge then
construct an augmenting path�

convert it into an augmenting path in G�
stop�

if 
v� w� is a bad cross�edge then
construct the blossom b based on 
v� w��
construct the graph G�b�

		



update the queue Q properly

go back to the beginning of Step ��

if level�w� � �� then

make w a child of v�
level�w� � level�v� � ��
Q
� w�

else fv is an odd level vertex�g
let w be the vertex matching v�

if 
v� w� is a good cross�edge then
construct an augmenting path�

convert it into an augmenting path in G�
stop�

if 
v� w� is a bad cross�edge then
construct the blossom b based on 
v� w��
construct the graph G�b�
update the queue Q properly

go back to the beginning of Step ��

if level�w� � �� then
make w a child of v�

level�w� � level�v� � ��
Q
� w�

	� fAt this point� the modified BFS is finished without

finding an augmenting pathg
return 
�no augmenting path�


The correctness of Algorithm ���
 is ensured by Lemma ��� and Theo�
rem ����

Lemma ��	� Algorithm ���	 runs in time O
ne� on a graph of n vertices
and e edges�

proof� A BFS process takes time O
e��
If a blossom b is found� the graph G�b is constructed and the queue Q is

updated� It is easy to see that constructing G�b and updating Q can be done
in time O
e�� Moreover� the the number of vertices in the graph G�b is at
least two less than the number of vertices in the graph G� Therefore� there
are at most n�� blossoms found in Algorithm ���
� and for each blossom
it takes time O
e� for Algorithm ���
 to update the graph and the queue�
Therefore� the total time spent by Algorithm ���
 on processing blossoms is
bounded by O
ne��

	�



Once an augmenting path is found� by Corollary ���� in time O
n� we can
expand a vertex back to a blossom and construct an augmenting path for the
new graph� Since there are at most n�� such blossom restoration operations�
the total time Algorithm ���
 spends on constructing an augmenting path
for the original graph is bounded by O
n��� This proves the time bound for
the algorithm stated in the lemma�

Theorem ��	� The maximum matching problem on general graphs can be
solved in time O
n�e��

proof� By Lemma ���
� an augmenting path can be found in time O
ne��
Since each augmenting path increases one edge for the matching� and there
are no more than n�� edges in a matching for a graph of n vertices� the
repeat loop in Algorithm ���� is executed at most O
n�� The theorem
follows�

We should point out that O
n�e� is not the best upper bound for the
maximum matching problem� In fact� a moderate change in Algorithm ���

gives an algorithm of running time O
n�� for the problem� The basic idea
for this change is that instead of actually shrinking the blossoms� we keep
track of all vertices in a blossom by �marking� them� A careful bookkeeping
technique shows that this can be done in time O
n� per blossom� The best
known algorithm for the maximum matching problem on general graphs runs
in time O


p
ne�� thus matching the best known algorithm for the maximum

matching problem on bipartite graphs�

	�
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�� Linear programming problem

The Linear Programming Problem is to �nd a vector 
x�� x�� ���� xn� � Rn

such that a linear function c�x� � c�x� � ��� � cnxn� which is called an
objective function� is optimized 
maximized or minimized� and the vector

x�� x�� ���� xn� satis�es a given set of conditions 
these conditions are called
linear constraints��

a��x� � a��x� � ���� a�nxn � a�

� � � � � �
ar�x� � ar�x� � ���� arnxn � ar

b��x� � b��x� � ���� b�nxn � b�

� � � � � �
bs�x� � bs�x� � ���� bsnxn � bs

d��x� � d��x� � ���� d�nxn � d�

� � � � � �
dt�x� � dt�x� � ���� dtnxn � dt

This is called the general form of Linear Programming Problem�
Using our 	�tuple formulation� the Linear Programming Problem is given

as LP � hIQ� SQ� fQ� optQi� where
� IQ is the set of ��tuples 
c� A� B�D� a� b� d�� where c � 
c�� � � � � cn��
a � 
a�� � � � � ar�� b � 
b�� � � � � bs�� and d � 
d�� � � � � dt� are vectors of
real numbers� A � 
ai�j�r�n� B � 
bi�j�s�n� and D � 
di�j�t�n are
matrices of real numbers� for some positive integers r� s� t� and n�

� for a given � � 
c� A� B�D� a� b� d�� IQ� the solution set SQ
�� consists
of the set of vectors x � 
x�� � � � � xn� of real numbers that satis�es the
conditions Ax � a� Bx � b� and Dx � d�

	�



� for a given input instance � � IQ and a solution x � SQ
��� the
objective function value is de�ned by fQ
�� x� � c�x� � � � �cnxn�

� optQ is either max or min�

For many combinatorial optimization problems� the objective function
and the constraints on a solution to an input instance are linear� i�e�� they can
be formulated by linear equations and linear inequalities� Therefore� optimal
solutions for these combinatorial optimization problems can be derived from
optimal solutions for the corresponding instance in Linear Programming
Problem� This is one of the main reasons why Linear Programming Problem
receives so much attention from researchers�

Example ��	� �MaximumFlow� As an example� we show how the Max�
Flow Problem is formulated in terms of the Linear Programming Problem�

A �ow�graph G of n vertices can be given by n� non�negative real num�
bers ci�j � � � i� j � n� where ci�j is the capacity of the edge from vertex i
to vertex j 
recall that ci�j � � if and only if there is no edge from vertex
i to vertex j�� Here we assume that vertex � is the source and vertex n is
the sink� Now a �ow on G 
i�e�� a solution to the instance G of Max�Flow
Problem� can be given by an n��dimensional vector

� � 
f���� � � � � f��n� f���� � � � � f��n� � � � � fn��� � � � � fn�n�

where fi�j is the amount of �ow from vertex i to vertex j� The three condi�
tions that a �ow should satisfy are trivially given by

fi�j � ci�j for � � i� j � n

fi�j � �fj�i for � � i� j � n
nX
j��

fi�j � � i �� �� n

and the objective function is to maximize the linear function f��� � f��� �
� � �� f��n 
or equivalently� to maximize f��n � f��n � � � �� fn���n��

The standard form for Linear Programming Problem is given by

minimize c�x� � c�x� � � � �� cnxn

a��x� � a��x� � ���� a�nxn � a�

a��x� � a��x� � ���� a�nxn � a�

	�



� � � � � � 
��

am�x� � am�x� � ���� amnxn � am

x� � �� x� � �� � � � � xn � �

The general form of Linear Programming Problem can be converted into
the standard form through the following steps�

�� Converting Max to Min

Maximization maxfc�x� � c�x� � ��� � cnxng can be replaced by the
equivalent condition minf
�c��x� � 
�c��x� � � � �� 
�cn�xng�

�� Eliminating � inequalities

Each inequality bi�x� � bi�x� � ��� � binxn � bi is replaced by the
equivalent inequality 
�bi��x� � 
�bi��x� � ���� 
�bin�xn � 
�bi��


� Eliminating � inequalities

Each inequality aj�x� � aj�x� � ��� � ajnxn � aj is replaced by the
inequality aj�x� � aj�x� � ��� � ajnxn � yj � aj � where yj is a new
variable satisfying yj � ��

	� Eliminating unconstrained variables

For each variable xi for which xi � � is not present� introduce two
new variables ui and vi satisfying ui � � and vi � �� and replace the
variable xi by ui � vi�

It is easy to see that the above process will convert Linear Programming
Problem from an arbitrary general form to the standard form� It is also
easy to verify that an optimal solution for the general form can be easily
derived from an optimal solution for the corresponding standard form� Thus�
we only need to concentrate on the standard form for Linear Programming
Problem�

A classical method� called Simplex Method was derived for solving Linear
Programming Problem� It is based on the following observations� Each
equation in the constraints 
�� de�nes a hyperplane in the n�dimensional
space Rn� so the set of all points in Rn that satisfy the constraints 
��
forms a polytope in Rn� which is a convex set�� Moreover� the objective

�A set S in Rn is convex if for any two points x and y in S� the line segment xy is
entirely in S�

	�



function c�x�� � � �� cnxn is a convex function�� Therefore� there is a vertex
of the polytope at which the objective function achieves its optimal value�
and this vertex can be found using greedy method� Roughly speaking� the
Simplex Method starts from an arbitrary vertex of the polytope de�ned by
the linear constraints 
��� and uses greedy method to traverse the vertices
of the polytope until reaching a vertex at which local improvement is no
longer possible� This vertex then is an optimal solution�

In most practical cases� Simplex Method is fast enough to construct an
optimal solution for a given instance of Linear Programming Problem� It
took a while for researchers to be able to formally prove that in the worst
case� Simplex Method runs in exponential time�

It was an outstanding open problem whether Linear Programming Prob�
lem could be solved in polynomial time� until the spring of ����� the Russian
mathematician L�G� Khachian published a proof that an algorithm� called
the Ellipsoid Algorithm� solves Linear Programming Problem in polynomial
time� Despite the great theoretical value of the Ellipsoid Algorithm� it is not
clear at all that this algorithm can be practically useful� The most obvious
among many obstacles is the large precision apparently required�

Another polynomial time algorithm for Linear Programming Problem�
called the Projective Algorithm� or more generally� the Interior Point Algo�
rithm� was published by N� Karmarkar in ���	� The Projective Algorithm�
and its derivatives� have great impact in the study of Linear Programming
Problem�

�A function f from Rn to R is convex if for any two points x and y in Rn and for any
real number � � c � �� we have f�cx� ��� c�y� � cf�x� � ��� c�f�y��

��
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�� Integer Linear Programming Problem

Suppose that in Linear Programming Problem� we further require that
all numbers are integers� then we get Integer Linear Programming Prob�
lem� More formally� Integer Linear Programming Problem is to �nd an
n�dimensional vector � � 
x�� x�� � � � � xn� of integers such that

minimize c�x� � c�x� � � � �� cnxn

a��x� � a��x� � ���� a�nxn � a�

a��x� � a��x� � ���� a�nxn � a�

� � � � � � 
��

am�x� � am�x� � ���� amnxn � am

x� � �� x� � �� � � � � xn � �

where all numbers ci� aij � aj � � � i � n� � � j � m� are integers� The equa�
tions 
�� give the standard form for Integer Linear Programming Problem�
We can similarly de�ne the general form for Integer Linear Programming
Problem� Moreover� it is not hard to verify that the translation steps de�
scribed in the previous Lecture Notes convert Integer Linear Programming
Problem in general form into Integer Linear Programming Problem in stan�
dard form�

It might seem that Integer Linear Programming Problem is easier since
we are working on simpler numbers� This intuition is� however� not true� In
fact� Integer Linear Programming Problem is computationally harder than
general Linear Programming Problem� This may be seen from the following
fact� now the point set de�ned by the constraints 
�� is no longer a convex
set� It consists of discrete points in the n�dimensional Euclidean space�
Therefore� greedy algorithms based on local search do not seem to work any
more�

To formally prove the di�culty of Integer Linear Programming Problem�
we need introduce some de�nitions�

��



De�nition �
	� An optimization problem Q� � 
I�� S�� f�� opt�� is poly�
nomial time reducible to an optimization problem Q� � 
I�� S�� f�� opt�� if
there are two polynomial time algorithms A� and A� such that 
�� given an
input instance x� � I� of Q�� the algorithm A� constructs an input instance
x� � I� of Q�� and 
�� for any optimal solution y� for the input instance
x� of Q�� the algorithm A� constructs an optimal solution y� for the input
instance x� of Q��

The following theorem follows directly from the de�nition�

Theorem �
	� Suppose that an optimization problem Q� is polynomial
time reducible to an optimization problem Q�� then


�� If Q� can be solved in polynomial time� then so can Q��

�� If Q� cannot be solved in polynomial time� then neither can Q��

A problem is a decision problem if each input instance of the problem
requires only a YES NO answer� Note that a decision problem can also be
regarded as an optimization problem in which the objective function takes
only value � 
NO� or � 
YES��

Recall that a decision problem is in NP if it can be solved by a nonde�
terministic algorithm running in polynomial time� and that a problem L in
NP is NP�complete if all problems in NP can be polynomial time reducible
to L� By Theorem ����� if any NP�complete problem is polynomial time
solvable� then P � NP� Since people commonly believe that P �� NP� ev�
ery NP�complete problem is regarded as not solvable in polynomial time

though there is no formal proof for this conjecture��

De�nition �
	
 An optimization problem Q is NP�hard if there is an NP�
complete problem that is polynomial time reducible to Q�

According to Theorem ����� we accept the conjecture that every NP�hard
optimization problem is not solvable in polynomial time�

Now we are ready to show the hardness of Integer Linear Programming
Problem�

Theorem �
	
 Integer Linear Programming Problem is NP�hard�

proof� We show that the well known NP�complete problem� the Satis�a�
bility Problem� is polynomial time reducible to the Integer Linear Program�
ming Problem�

��



Formally� an instance � of the Satis�ability Problem is given by a Boolean
expression in conjunctive normal form 
CNF��

� � C� � C� � ���� Cm 

�

where each Ci 
called a clause� is an or of Boolean literals� The question is
whether there is a Boolean assignment to the Boolean variables x�� x�� � � ��
xn in � that makes the expression true�

We show how the input instance 

� of Satis�ability Problem is translated
into an input instance for Integer Linear Programming Problem�

Suppose that the clause Ci is

Ci � 
xi� � � � � � xis � xj� � � � � � xjt�
We then construct a linear constraint

xi� � � � �� xis � 
�� xj�� � � � �� 
�� xjt� � �

Moreover� for each Boolean variable xj in �� we have the constraints

xj � � and xj � �

Here we let xj � � simulate the assignment xj � true and let xj � � simulate
the assignment xj � false� Therefore� the clause Ci is true if and only if
the corresponding linear constraint is satis�ed for a ��� assignment to the
variables x�� x�� � � �� xn�

The objective function of the Integer Linear Programming Problem is
irrelevant in this reduction and can be de�ned arbitrarily� For example� we
can de�ne the objective function as

minfx� � x� � � � �� xng
which corresponds to �nding a truth assignment for the Boolean expression
� such that the assignment has a minimum weight 
i�e�� the number of ��s
in the assignment is minimized��

It is easy to see that for the given input instance � for Satis�ability Prob�
lem� the corresponding input instance �
�� for Integer Linear Programming
Problem can be constructed in polynomial time� Moreover� if an optimal
solution is found for �
��� then the Boolean expression � is certainly satis��
able thus the answer to � is YES� On the other hand� if no feasible solution
can be constructed for �
�� then � has no truth assignment so the answer
to � should be NO�

�




Therefore� Satis�ability Problem is polynomial time reducible to Integer
Linear Programming Problem� Consequently� Integer Linear Programming
Problem is NP�hard�

As we have described in the previous Lecture Notes� the general Lin�
ear Programming Problem can be solved in polynomial time� The above
discussion shows that Integer Linear Programming Problem is much harder
than the general Linear Programming Problem� Our latter study will show
that Integer Linear Programming Problem is actually one of the hardest
optimization problems�

�	
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�� NP�hard optimization problems

Recall the decision problem Partition that is de�ned as follows�

Partition

Input� A set S � fx�� x�� � � � � xng of n integers

Question� Is there a subset S� � S such thatP
i�S� xi �

P
j�S�S� xj�

It is well�known that the problem Partition is NP�complete�
We now introduce several optimization problems that are at least as hard

as Partition problem�
We start with an optimization version for the problem Partition that

is given by SubsetSum � 
I� S� f� opt�� where

� I � fhx�� x�� � � � � xn�Bi j xi� B � integersg
� S
hx�� � � � � xn�Bi� � fS� � fx�� � � � � xng j

P
xi�S�

xi � Bg
� f
hx�� � � � � xn�Bi� S �� �Pxi�S�

xi

� opt � max

Theorem ��	� The SubsetSum problem is NP�hard�

proof� We show a polynomial time reduction f from the problem Par�

tition to the problem SubsetSum�
Given an input instance � � fx�� x�� � � � � xng for the problem Partition�

f
�� � hx�� x�� � � � � xn�Bi is an instance for the problem SubsetSum� where
B � 


Pn
i�� xi���� Now it is obvious that if an optimal solution to the

instance f
�� of SubsetSum is a subset S� of fx�� x�� � � � � xng such that

X
xi�S�

xi �
�

�

nX
i��

xi

��



then � � fx�� � � � � xng is a YES�instance for Partition� otherwise � is a
NO�instance for the problem�

Another popular optimization problem is Knapsack problem that is
formally de�ned by Knapsack � 
I� S� f� opt�� where

� I � fhs�� � � � � sn� v�� � � � � vn�Bi j si� vj� B � integersg
� S
hs�� � � � � sn� v�� � � � � vn�Bi� � fS � f�� � � � � ng j Pi�S si � Bg
� f
hs�� � � � � sn� v�� � � � � vn�Bi� S� �Pi�S vi

� opt � max

An �application� of Knapsack problem can be described as follows� A
thief robbing a store �nds n items� The ith item is worth vi dollars and
weighs si pounds� The thief wants to take as valuable a load as possible�
but he can carry at most B pounds in his knapsack� Now the thief wants to
decide what items he should take� Fortunately� the problem is NP�hard� as
we prove in the following theorem�

Theorem ��	
 The Knapsack problem is NP�hard�

proof� We construct a polynomial time reduction f from the problem
SubsetSum to the problem Knapsack�

Given an input instance � � hx�� � � � � xn�Bi for the problem Subset�

Sum� f
�� � hx�� � � � � xn� x�� � � � � xn�Bi is an input instance for the problem
Knapsack� Clearly� an optimal solution to the instance f
�� is a subset
S of f�� � � � � ng that satis�es the condition

P
i�S xi � B and maximizes the

sum
P

i�S xi� Thus� an optimal solution to the instance f
�� of Knapsack
is also an optimal solution to the instance � of SubsetSum�

We say that a collection of c subsets hS�� � � � � Sci of f�� � � � � ng is a c�
partition of f�� � � � � ng if S�� � � ��Sc � f�� � � � � ng and all subsets S�� � � �� Sc
are pairwisely disjoint�

We consider the optimization problem c�Processor Scheduling� which
is formally de�ned by c�Schedule � 
I� S� f� opt�� where

� I � fht�� � � � � tni j ti�s are integersg
� S
ht�� � � � � tni� � fhS�� � � � � Sci j hS�� � � � � Sci a c�partition of f�� � � � � ngg

��



� f
ht�� � � � � tni� hS�� � � � � Sci� � maxif
P

k�Si
tkg

� opt � min

Intuitively� suppose we are given n jobs such that the ith job takes exe�
cution time ti� and we want to distribute these jobs to c identical processors
so that the parallel �nish time 
i�e�� the time at which all processors �nish
their work� is minimized�

Theorem ��	� The c�Processor Scheduling problem is NP�hard� for
c � ��

proof� We give a polynomial time reduction f from Partition problem
to c�Processor Scheduling problem�

Let � � hx�� � � � � xni be an input instance for Partition problem� With�
out loss of generality� we assume that

Pn
i�� xi is an even number � otherwise

� is clearly a NO�instance for Partition Problem� We de�ne f
�� to be
hx�� � � � � xn� B�� � � � � Bci� where Br � 


Pn
i�� ti��� for all r � 
� � � � � c� Clearly�

f
�� is an input instance for the c�Processor Scheduling problem� Now
it is easy to verify that if an optimal solution to f
�� gives a parallel �nish
time 


Pn
i�� ti���� then hx�� � � � � xni is a YES�instance for Partition prob�

lem� otherwise� hx�� � � � � xni is a NO�instance for the problem�

Thus� all these three optimization problems described above are NP�
hard� By our believing that P �� NP� they cannot be solved in polynomial
time� However� this does not obviate the need for solving these problems
because of their obvious applications� One possible approach is that we could
relax the requirement that we always �nd the optimal solution� In practice�
a near�optimal solution will work �ne in many cases� Of course� we expect
that the algorithms for �nding the near�optimal solutions are e�cient�

De�nition ��	� An algorithm A is an approximation algorithm for an op�
timization problem Q � 
IQ� SQ� fQ� optQ�� if on any input instance x � IQ�
the algorithm A produces a solution y � SQ
x��

Note that here we have put no requirement on the approximation quality
for an approximation algorithm� Thus� an algorithm that always produces
a �trivial� solution 
for example� it simply returns the �rst item for the
Knapsack problem� is an approximation algorithm� To measure the quality
of an approximation algorithm� we introduce the following concept�

��



De�nition ��	
 An approximation algorithm A for an optimization prob�
lem Q � 
IQ� SQ� fQ� optQ� has an approximation ratio r
n�� if on any input
instance x � IQ� the solution y produced by the algorithm A satis�es

Opt
x�

f
x� y�
� r
jxj� if optQ � max

f
x� y�

Opt
x�
� r
jxj� if optQ � min

where Opt
x� is de�ned to be maxff
x� y� j y � SQ
x�g if optQ � max and
to be minff
x� y� j y � SQ
x�g if optQ � min�

Remark ��	� By the de�nition� an approximation ratio is at least as large
as �� It is easy to se that the closer the approximation ratio to �� the better
the approximation quality of the approximation algorithm�

��
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�	 The Knapsack problem

We start with an approximation algorithm for the Knapsack problem� Re�
call that the Knapsack problem is de�ned as

Knapsack

Input� hs�� � � � � sn� v�� � � � � vn�Bi where all si� vj� B are integers

Output� A subset S of f�� � � � � ng� such that
P

i�S si � B
and

P
i�S vi is maximized

We �rst present an algorithm that solves the Knapsack problem pre�
cisely� To simplify the description� for a subset S of f�� � � � � ng� we will callP

i�S si the size of S and
P

i�S vi the value of S� Let V � v�� v�� � � �� vn�
Thus� there is no subset of f�� � � � � ng that can have value larger than V �
The algorithm goes as follows� For each index i and for each value j � V �
we try to answer the question

Question K
i� j�

Is there a subset S of f�� � � � � ig such that the size of S is not
larger than B and the value of S is equal to j�

The answer to Question K
i� j� is �yes� if and only if at least one of the
following two cases is true� 
�� there is a subset S� of f�� � � � � i��g such that
the size of S � is not larger than B and the value of S is equal to j 
in this
case� simply let S be S ��� and 
�� there is a subset S�� of f�� � � � � i� �g such
that the size of S �� is not larger than B � si and the value of S�� is equal to
j � vi 
in this case� let S � S�� � fig�� Therefore� if we are able to answer
Question K
i � �� j� for all j� � � j � V � we can answer Question K
i� j�
easily�

For small values i� the Question K
i� j� seems easy� In particular� the
answer to K
�� j� is always �no� for j � � and the answer to K
�� �� is
�yes��

��



The above discussion motivates the following dynamic programming al�
gorithm for solving theKnapsack problem� We �rst computeK
�� j� for all
j� then� inductively� compute each K
i� j� based on the answer to K
i��� j ��
for all j�� For each item K
i� j�� we associate it with a subset S in f�� � � � � ig
such that the size of S is not larger than B and the value of S is equal to j�

Now a potential problem arises� How do we handle two di�erent wit�
nesses for a �yes� answer to the Question K
i� j�� More speci�cally� suppose
that we �nd two subsets S� and S� of f�� � � � � ig such that both of S� and
S� have size bounded by B and value equal to j� should we keep both of
them with K
i� j�� or ignore one of them� Keeping both can make K
i� j�
exponentially grow as i increases� which will signi�cantly slow down our al�
gorithm� Thus� we intend to ignore one of S� and S�� Which one do we want
to ignore� Intuitively� the one with larger size should be ignored 
recall that
S� and S� have the same value�� However� would ignoring the set cause a ��
nal loss of the optimal solution� Fortunately� the following theorem ensures
that optimal solutions cannot get lost when we ignore the set with larger
size�

Theorem ��	� Let S� and S� be two subsets of f�� � � � � ig such that S� and
S� have the same value� and the size of S� is at least as large as the size
of S�� If S� leads to an optimal solution S � S� � S� for the Knapsack
problem� where S� � fi � �� � � � � ng� then S� � S� � S� is also an optimal
solution for the Knapsack problem�

proof� Let size
S� and value
S� denote the size and value of a subset S
of f�� � � � � ng� respectively� We have

size
S�� � size
S�� � size
S�� and size
S� � size
S�� � size
S��

By the assumption that size
S�� � size
S��� we have size
S� � size
S���
Since S is an optimal solution� we have size
S�� � B� Thus S� is also a
solution to the Knapsack problem� Moreover�

value
S�� � value
S�� � value
S�� � value
S�� � value
S�� � value
S�

Thus� S� is also an optimal solution�

By Theorem �	��� for two subsets S� and S� of f�� � � � � ig that both
witness the �yes� answer to Question K
i� j�� if the one of larger size leads
to an optimal solution� then the one with smaller size also leads to an optimal
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solution� Therefore� ignoring the set of larger size will not lead to loss of
all optimal solutions� More speci�cally� if we can derive an optimal solution
based on the set of larger size� then we can also derive an optimal solution
based on the set of smaller size using exactly the same procedure�

Now we are ready for the algorithm�

Algorithm ��	� Knapsack�Dyn

Input� s�� � � � � sn� v�� � � � � vn�B� all integers

Output� A subset S � f�� ���� ng� such that
P

i�S si � B
and

P
i�S vi is maximized

�� for i � � to n do

for j � � to V do
K�i� j� � ��

�� K��� �� � �� f� is the empty setg
�� for i � � to n� � do

for j � � to V do
if K�i� j� �� � then

Put
K�i� j��K�i� �� j���
if size
K�i� j��� si�� � B then

v � j � vi��� fj is the value of K�i� j�g
Put
K�i� j�� fi� �g� K�i� �� v���

	� j � V �

while K�n� j� � � do
j � j � ��

�� return K�n� j��

Step 	 of the algorithm Knapsack�Dyn searches the last row from the
last column to �nd the �rst K�n� j� that is not �� Obviously� the value j

is the largest value a subset S of f�� � � � � ng can make under the restriction
that S has size bounded by B�

The subroutine Put
S�� K�i� j�� is used to solve the multiple witness prob�
lem� where S� is a subset of f�� � � � � ig such that S� has value j� Details of
this subroutine is given as follows�

Algorithm ��	
 Put
S�� K�i� j��
�� if K�i� j� � � then

K�i� j� � S��
else if size
S�� � size
K�i� j��
then K�i� j� � S��

��



According to our discussion� it should be clear that the Algorithm �	��
solves the Knapsack problem�

Theorem ��	
 The algorithm Knapsack�Dyn runs in time O
nV ��

proof� We show data structures on which the if statement in Step 

can be executed in constant time� The theorem follows directly from this
discussion�

For each item K�i� j�� which is for a subset Sij of f�� � � � � ig� we associate
three parameters� 
�� the size of Sij � 
�� a marker mij indicating whether
i is contained in Sij � and 

� a pointer pij to an item K�i � �� j �� in the
previous row such that the set Sij is derived from the set K�i� �� j��� Note
that the actual set Sij is not stored in K�i� j��

With these parameters� the size of the set Sij can be directly read from
K�i� j� in constant time� Moreover� it is also easy to verify that the subrou�
tine calls Put
K�i� j��K�i� �� j�� and Put
K�i� j�� fi� �g� K�i� �� v�� can
also be performed in constant time by updating the parameters in K�i��� j�
and K�i� �� v��

This shows that steps ��	 of the algorithm Knapsack�Dyn take time
O
nV ��

We must show how the actual optimal solution K�n� j� is returned in
step �� After we have decided the item K�n� j� in step �� which corresponds
to an optimal solution Snj that is a subset of f�� � � � � ng� we �rst check the
marker mnj to see if Snj contains n� then follow the point pnj to an item
K�n � �� j��� where we can check whether the set Snj contains n � � and a
pointer to an item in the 
n � ��nd row� and so on� In time O
n�� we will
be able to �collect� all elements in Snj and return the actual set Snj �

It seems that we have developed a polynomial time algorithm that solves
the NP�hard optimization problem Knapsack� This is� in fact� not true
since the value V can be much larger than any polynomial of n�

Remark ��	� We point out that the problem SubsetSum can be solved
by an algorithm very similar to Knapsack�Dyn� with running time O
nB�
on input instance fx�� � � � � xn�Bg� We leave the detailed implementation for
this algorithm as an exercise to the reader�

��



CPSC���� Computational Optimization

Lecture ���� October 
� ����

Lecturer� Professor Jianer Chen
Scribe� Balarama Varanasi
Revision� Jianer Chen

�
 Approximating Knapsack

We re�visit Knapsack problem and attempt to develop an approximation
algorithm that provides a solution of acceptable quality� Recall that the
Knapsack problem is de�ned as

Knapsack

Input� hs�� � � � � sn� v�� � � � � vn�Bi where all si� vj� B are integers

Output� A subset S of f�� � � � � ng� such that
P

i�S si � B

and
P

i�S vi is maximized

In the last lecture� we presented an algorithm Knapsack�Dyn that� on
an input instance X � hs�� � � � � sn� v�� � � � � vn�Bi of the Knapsack problem�
constructs an optimal solution for X in time O
nV �� where V �

Pn
i�� vi� If

V is not bounded by any polynomial function of n� then the running time
of the algorithm is not polynomial� Is there a way to lower the value of V �
Well� an obvious way is to divide each value vi by a su�ciently large number
K so that V is replaced by a smaller value V � � V�K� In order to let the
algorithm Knapsack�Dyn to run in polynomial time� we must have V � � cnd

for some constants c and d� or equivalently� K � V�
cnd�� Another problem
is that the value vi�K may not be an integer while by our de�nition� all
input values in an instance of Knapsack problem are integers� Thus� we
will take v�i � bvi�Kc� This gives a new instance X � for Knapsack problem

X � � hs�� � � � � sn� v��� � � � � v�n�Bi

where v�i � bvi�Kc� for i � �� � � � � n� For K � V�
cnd� for some constants
c and d� the algorithm Knapsack�Dyn �nds an optimal solution for X � in
polynomial time� Note that a solution to X � is also a solution to X and we
intend to �approximate� the optimal solution to X by an optimal solution
to X �� Since the application of the �oor function b�c� we lose precision thus
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an optimal solution for X � may not be an optimal solution for X � How
much precision have we lost� Intuitively� the larger the value K� the more
precision we would lose� Thus� we want K to be as small as possible� On
the other hand� we want K to be as large as possible so that the running
time of the algorithm Knapsack�Dyn can be bounded by a polynomial� Now
a natural question is whether there is a value K that makes the algorithm
Knapsack�Dyn run in polynomial time and cause not much precision loss
so that the optimal solution to the instance X � is �close� to the optimal
solution to the instance X � For this� we need the following formal analysis�

Let S � f�� � � � � ng be an optimal solution to the instance X � and let
S� � f�� � � � � ng be the optimal solution to the instance X � produced by the
algorithm Knapsack�Dyn� Note that S is also a solution to the instance X �

and that S� is also a solution to the instance X � Let Opt
X� �
P

i�S vi and
Apx
X� �

P
j�S� vi be the objective function values of the solutions S and

S�� respectively� Therefore� Opt
X��Apx
X� is the approximation ratio for
the algorithm we proposed� In order to bound the approximation ratio by
a given constant �� we consider

Opt
X� �
X
i�S

vi

� K
X
i�S

vi
K

� K
X
i�S


b vi
K
c � ��

� Kn �K
X
i�S

b vi
K
c

� Kn �K
X
i�S

v�i

The last inequality is because the cardinality of the set S is bounded by n�
Now since S� is an optimal solution to X � � hs�� � � � � sn� v��� � � � � v�n�Bi�

we must have X
i�S

v�i �
X
i�S�

v�i

Thus�

Opt
X� � Kn�K
X
i�S�

v�i

� Kn�K
X
i�S�

b vi
K
c

�	



� Kn�K
X
i�S�

vi
K

� Kn� Apx
X� 
	�

This gives us the approximation ratio�

Opt
X�

Apx
X�
� � �

Kn

Apx
X�

Without loss of generality� we can assume that si � B for all i � �� � � � � n

otherwise� the index i can be simply deleted from the input instance since
it can never make contribution to a feasible solution to X�� Thus� Opt
X�
is at least as large as max��i�nfvig � V�n� From inequality 
	�� we have

Apx
X� � Opt
X��Kn � V

n
�Kn

It follows that

Opt
X�

Apx
X�
� � �

Kn
V
n �Kn

� ��
Kn�

V �Kn�

Thus� in order to bound the approximation ratio by �� �� it should be such
that

Kn�

V �Kn�
� �

This leads to K � 
�V ��
n�
� � ����
Recall that to make the algorithm Knapsack�Dyn run in polynomial time

on the input instance X �� we must have K � V�
cnd� for some constants c
and d� Combining these two relations� we get c � � � ���� and d � �� and
the value

K � V�
cnd� �
V


� � ����n�

makes the algorithm Knapsack�Dyn run in time O
n�
������� and produces
a solution S � to the instance X with approximation ratio bounded by ��

We summarize the above discussion in the following algorithm and the�
orems�
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Algorithm ��	� Knapsack�Approx

Input� hs�� � � � � sn� v�� � � � � vn�Bi� and a constant ��
Output� A subset S � � f�� ���� ng� such that

P
i�S� si � B

�� Let K � V
�������n�

�

�� for i � � to n do v�i � bvi�Kc�
�� Apply algorithm Knapsack�Dyn on hs�� � � � � sn� v��� � � � � v�n�Bi

and find a subset S� � f�� ���� ng�
	� Output S��

Theorem ��	� For any input instance of the Knapsack problem� the algo�
rithm Knapsack�Approx runs in time O
n�
������� and produces a solution
with approximation ratio bounded by � � ��

Theorem ��	
 For any �xed constant �� there is an algorithm of running
time O
n�� that� on an input instance of the Knapsack problem� produces
a solution with approximation ratio bounded by � � ��

This lecture concludes with the above result�
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�� Approximating Processor Scheduling

We continue the discussion of approximation algorithms�
We presented an O
n���� time approximation algorithm with approxi�

mation ratio � for any � � � for the Knapsack problem� Note that the time
complexity of this algorithm is polynomial in both the input size n and the
value ���� which seems the best we can expect for an approximation algo�
rithm for an NP�hard optimization problem� This motivates the following
de�nition�

De�nition ��	� An optimization problem Q has a fully polynomial time
approximation scheme 
FPTAS� if it has an approximation algorithm A
such that given hx� �i� where x is an input instance of Q and � is a positive
constant� A �nds a solution for x with approximation ratio bounded by ���
in time polynomial in both n and ����

By the de�nition� the Knapsack problem has a fully polynomial time
approximation scheme� In this lecture� we illustrate the techniques for devel�
oping fully polynomial time approximation schemes for optimization prob�
lems by studying another important optimization problem� the c�Processor
Scheduling problem�

The approach for developing a fully polynomial time approximation
scheme for the c�Processor Scheduling problem is very similar to that
for the Knapsack problem� we �rst develop a precise algorithm for the
problem such that the algorithm runs in time polynomial in both n and T �
where T is a large number obtained from the input� Then we try to scale
T by dividing all numbers in the input by a large number K� By properly
choosing the value K� we can make the precise algorithm to run in polyno�
mial time and keep the approximation ratio bounded by a given constant
�� Because of the similarity� some details in the algorithms and in the anal�
ysis are omitted� The reader is advised to refer to corresponding parts in
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the study of the Knapsack problem and complete the omitted parts for a
better understanding�

Recall that the optimization problem c�Processor Scheduling is de�
�ned by c�Schedule � 
I� S� f� opt�� where

� I � fht�� � � � � tni j ti�s are integersg
� S
ht�� ���� tni� � fhS�� ���� ScijhS�� ���� Sci is a c�partition of f�� ���� ngg
� f
ht�� � � � � tni� hS�� � � � � Sci� � max��i�cfPk�Si

tkg
� opt � min

Let T �
Pn

i�� ti� Note that every scheduling 
S�� � � � � Sc� of the n jobs
ht�� � � � � tni� where Sd is the subset of f�� � � � � ng that corresponds to the
jobs assigned to the dth processor� can be written as a c�tuple 
T�� � � � � Tc�
with � � Td � T for all � � d � c� where Td �

P
h�Sd

th is the total
execution time assigned to the dth processor� The c�tuple 
T�� � � � � Tc� will
be called the time list for the scheduling 
S�� � � � � Sc�� Moreover� each c�tuple

T�� � � � � Tc� with � � Td � T for all d � �� � � � � c can be uniquely written
as a non�negative integer j less than or equal to 
T � ��c by the following
formula

j � T�
T � ��c�� � T�
T � ��c�� � � � �� Tc��
T � �� � Tc 
��

Conversely� each non�negative integer j less than or equal to 
T � ��c can
be uniquely decomposed into a c�tuple 
T�� � � � � Tc� with � � Td � T for all
d � �� � � � � c� using the formula 
���

Now as for the Knapsack problem� for each i� � � i � n� and for each
non�negative integer j� where we suppose that the integer j is decomposed
into a c�tuple 
T�� � � � � Tc� by the formula 
��� we ask the question

Is there a scheduling of the �rst i jobs ft�� � � � � tig that gives the
time list j � 
T�� � � � � Tc��

Note that for two di�erent schedulings of the i jobs ft�� � � � � tig that have
the same time list 
T�� � � � � Tc�� we can pick either of them without loss of
correctness�

Now we are ready to present the algorithm�

Algorithm ��	� c�Scheduling�Dyn
Input� n jobs with execution time t�� � � � � tn� all integers

��



Output� A scheduling of the n jobs on c processors such

that the parallel finish time is minimized

f H ����n� ���
T � ��c� is a table such that the element H �i� j�
is a scheduling 
S�� � � �Sc� of the first i jobs t�� � � �� ti
whose time list is j � 
T�� � � � � Tc�� g

�� T �
Pn

i�� ti�
�� for i � � to n do

for j � � to 
T � ��c do

H �i� j� � ��
�� H ��� �� � 
�� � � � � ��� f� is the empty setg
	� for i � � to n� � do

for j � � to 
T � ��c do

if H �i� j� �� � then
Let H �i� j� � 
S�� � � � � Sc� is a scheduling of t�� � � ��

ti� and j � 
T�� � � � � Tc� is the time list for H �i� j��
for d � � to c do

H �i� �� jd� � 
S�� � � � � Sd��� Sd � fi� �g� Sd��� � � � � Sc��
where jd � 
T�� � � � � Td��� Td � ti��� Td��� � � � � Tc��

�� Scan the nth row of the table H to find the scheduling

H �n� j� �� � such that j � 
T�� � � � � Tc� has the minimum

parallel time�

�� Return H �n� j��

We analyze the algorithm� As we did for the algorithm Knapsack�Dyn�
instead of storing the entire c�tuple 
S�� � � � � Sc� in H �i� j�� we simply keep a
marker that indicates which processor is assigned the ith job and a pointer
to the element H �i � �� j�� such that the scheduling H �i� j� of t�� � � �� ti is
obtained from the scheduling H �i � �� j �� of t�� � � �� ti�� by assigning the
job ti to a proper processor� By these data structures� each assignment
to the elements of the table H can be done in constant time� Moreover�
for each non�negative integer j less than or equal to 
T � ��c� by formula

��� j can be uniquely decomposed using a constant number of division
and modulo operations into a c�tuple 
T�� � � � � Tc� with � � Td � T for all
d � �� � � � � c 
recall that c is a constant�� Similarly� each c�tuple 
T�� � � � � Tc�
with � � Td � T for all d � �� � � � � c can be converted in constant time into a
unique non�negative integer j less than or equal to 
T � ��c� In conclusion�
each execution of the if statement in the loop in step 	 takes constant time�
Consequently� the algorithm c�Scheduling�Dyn takes time O
nT c��
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A fully polynomial time approximation scheme now is derived for the c�
Processor Scheduling problem based on algorithm c�Scheduling�Dyn�
The idea is the same as for the Knapsack problem� we �rst scale the input
numbers to make T smaller then apply algorithm c�Scheduling�Dyn to the
scaled input�

Algorithm ��	
 c�Scheduling�Apx

Input� ht�� � � � � tn� �i� all ti�s are integers

Output� A scheduling of the n jobs on c processors

�� Let K � �
Pn

i�� ti�
cn��
�� for i � � to n do t�i � dti�Ke�
�� Apply algorithm c�Scheduling�Dyn on input ht��� � � � � t�ni to

produce a scheduling 
S��� � � � � S
�
c� on ht�� � � � � tni�

	� Output 
S ��� � � � � S
�
c��

Theorem ��	� The algorithm c�Scheduling�Apx on input ht�� � � � � tn� �i
produces a scheduling 
S��� � � � � S

�
c� with approximation ratio bounded by �� �

and runs in time O
nc����c��

proof� It is easy to see that the time complexity of the algorithm
c�Scheduling�Apx is dominated by step 
�

Since T� �
Pn

i�� t
�
i � O


Pn
i�� ti�K� � O
n���� by our analysis� the algo�

rithm c�Scheduling�Dyn in step 
� thus the algorithm c�Scheduling�Apx�
runs in time O
nT c

�� � O
nc����c��
Now let 
S�� � � � � Sc� be an optimal solution to the input instance X �

ht�� � � � � tni of the c�Processor Scheduling problem� and let 
S��� � � � � S
�
c�

be the optimal solution to the input instance X � � ht��� � � � � t�ni obtained by
the algorithm c�Scheduling�Dyn� Note that 
S�� � � � � Sc� is also a solution
to the instance ht��� � � � � t�ni and 
S��� � � � � S

�
c� is also a solution to the instance

ht�� � � � � tni�
For all d� � � d � c� let

Td �
X
h�Sd

th Vd �
X
h�Sd

t�h

T �d �
X
h�S�

d

th V �
d �

X
h�S�

d

t�h

Without loss of generality� suppose

T� � max
��d�c

fTdg V� � max
��d�c

fVdg

��



T �� � max
��d�c

fT �dg V �
	 � max

��d�c
fV �

dg

Therefore� on instance ht�� � � � � tni� the scheduling 
S�� � � � � Sc� has parallel
�nish time T� and the scheduling 
S��� � � � � S

�
c� has parallel �nish time T ���

and on instance ht��� � � � � t�ni� the scheduling 
S�� � � � � Sc� has parallel �nish
time V� and the scheduling 
S��� � � � � S

�
c� has parallel �nish time V �

	� The
approximation ratio given by the algorithm c�Processor�Apx is T ���T��

We have

T �� �
X
h�S�

�

th � K
X
h�S�

�


th�K� � K
X
h�S�

�

t�h � KV �
� � KV �

	

The last inequality is by the assumption V �
	 � max��d�cfV �

dg�
Now since 
S��� � � � � S

�
c� is an optimal scheduling on instance ht��� � � � � t�ni�

we have V �
	 � V�� Thus�

T �� � KV� � K
X
h�S�

t�h � K
X
h�S�

dth�Ke

� K
X
h�S�



th
K

� �� � T� �Kn � T� �Kn

The last inequality is by the assumption T� � max��d�cfTdg�
This gives us immediately

T ���T� � � �Kn�T�

It is easy to see that T� �
Pn

i�� ti�c� and recall that K � �
Pn

i�� ti�
cn��
we obtain Kn�T� � �� That is� the scheduling 
S ��� � � � � S

�
c� produced by the

algorithm c�Scheduling�Apx has approximation ratio bounded by �� ��

Corollary ��	
 For a �xed constant c� the c�Processor Scheduling

problem has a fully polynomial time approximation scheme�

��



CPSC���� Computational Optimization

Lecture ��
� October �� ����

Lecture� Professor Jianer Chen
Scribe� Jennifer Walter
Revision� Jianer Chen

�� Which optimization problem has a FPTAS�

Let us �rst review the de�nition of a fully polynomial�time approximation
scheme�

De�nition �
	� An optimization problem Q has a fully polynomial time
approximation scheme 
FPTAS� if it has an approximation algorithm A

that on input hx� �i� where x is an input instance of Q and � is a positive
number� gives a solution of approximation ratio bounded by � � � in time
polynomial in jxj and ����

This de�nition says that if a fully polynomial time approximation scheme
exists for an optimization problem Q� then there is a polynomial time ap�
proximation algorithm for the problem that can approximate the optimal so�
lution for the problem Q to any arbitrary precision� A fully polynomial time
approximation scheme seems the best solution we can hope to derive for an
NP�hard optimization problem� By our discussion in the previous lectures�
the optimization problems Subset Sum� Knapsack� and c�Processor
Scheduling have fully polynomial time approximation schemes�

Natural questions are how many problems we can devise a fully poly�
nomial time approximation scheme for� what are the kinds of possible fully
polynomial time approximation scheme solutions� and how it can be deter�
mined that a problem does not have a fully polynomial time approximation
scheme� To discuss these questions� we �rst introduce a notation�

De�nition �
	
 Let Q � hIQ� SQ� fQ� optQi be an optimization problem�
For each input instance x � IQ� de�ne OptQ
x� � optQffQ
x� y�jy � SQ
x�g�
That is� OptQ
x� is the value of the objective function fQ on input instance
x and an optimal solution to x�

We have the following very useful theorem�

��



Theorem �
	� Let Q � hIQ� SQ� fQ� optQi be an optimization problem� If
there is a �xed polynomial p such that for all input instances x � IQ� OptQ
x�
is bounded by p
jxj�� then Q does not have a fully polynomial time approxi�
mation scheme unless Q can be precisely solved in polynomial�time�

proof� Let A be an approximation algorithm that is a fully polynomial
time approximation scheme for the optimization problem Q� We show that
Q can be precisely solved in polynomial time�

By the de�nition� we can suppose that the running time of A is nc��d�
where c and d are �xed constants� Moreover� by the condition given in the
theorem� we can assume thatOptQ
x� � nh� where h is also a �xed constant�

First assume that optQ � min� For an input instance x � IQ� let A
x� be
the objective function value on the input x and the solution to x produced
by the algorithm A� Thus� we know that for any � � �� the algorithm A

produces in time nc��d a solution with approximation ratio A
x��Opt
x� �
� � �� Also note that A
x��Opt
x� � ��

Now� let � � ��nh��� then the algorithm A produces a solution with
approximation ratio bounded by

� � A
x�

Opt
x�
� � �

�

nh��

which gives
Opt
x� � A
x� � Opt
x� �Opt
x��nh��

Since both Opt
x� and A
x� are integers� and Opt
x� � nh implies that
Opt
x��nh�� is a number strictly less than �� we conclude that

Opt
x� � A
x�

That is� the algorithm A actually produces an optimal solution to the input
instance x� Moreover� the running time of A is bounded by nc�
��nh���d �
nc�hd�d � which is a polynomial of n�

The case that optQ � max can be proved similarly� Note that in this case�
we should also have A
x� � nh� Thus� in time nc�
��nh���d � nc�hd�d � the
algorithm A produces a solution to x with the value A
x� such that

� � Opt
x��A
x� � � � ��nh��

which gives
A
x� � Opt
x� � A
x� �A
x��nh��

Now since A
x��nh�� � �� we conclude Opt
x� � A
x��

�




In particular� this theorem says that if OptQ
x� is bounded by a poly�
nomial of the input length jxj and Q is known to be NP�hard� then Q does
not have a fully polynomial time approximation scheme unless P � NP�

Theorem ���� is actually very powerful� Most NP�hard optimization
problems satisfy the condition stated in the theorem� thus we can derive
directly that these problems have no fully polynomial time approximation
scheme� We will give a few examples below to illustrate the power of Theo�
rem �����

Consider the following problem�

Independent Set IS � hI� S� f� opti
I � set of all graphs G � 
V�E�

S
G�� the collection of subsets S of vertices of G such that no
two vertices in S are adjacent

f
G� S�� the number of vertices in S

opt� max

Independent Set problem has many applications in networking design
and scheduling� A trivial solution to the Independent Set problem is to
pick one single vertex� or a small number of vertices from the graph which are
not adjacent� The problem is more di�cult for a very large set of vertices�
In fact� this is well�known that the Independent Set problem is NP�hard�

It is easy to apply Theorem ���� to show that the Independent Set

problem has no fully polynomial time approximation scheme� In fact� the
value of the objective function is bounded by the number of vertices in the
input graph G� which is certainly bounded by a polynomial of the input
length jGj�

There are many other graph problems 
actually� most graph problems�
like the Independent Set problem that ask to optimize a subset of ver�
tices or edges of the input graph� For all these problems� we can conclude
directly from Theorem ���� that they do not have a fully polynomial time
approximation scheme unless they can be solved precisely in polynomial
time�

Let us consider another example of a problem for which no fully polyno�
mial time approximation scheme exists�

Bounded�Time Processor Scheduling

�	



Input� ft�� t�� � � � � tn�Bg� all integers where each ti is the exe�
cution time for the ith job and B is a restriction on the parallel
�nish time

Output� A scheduling of the n jobs on m processors such that
the parallel �nish time is bounded by B and m is minimized

The Bounded�Time Processor Scheduling problem is commonly
called Bin Packing problem� which is known to be NP�hard� Given an
input instance for the Bounded�Time Processor Scheduling problem�
either we can conclude immediately that there is no such scheduling 
if any
input job has execution time larger than B�� or we know the output value
m is bounded by n 
i�e�� in the worst case� each processor is assigned with a
single job�� In any case� we have Opt
x� bounded by n� By Theorem �����
we conclude directly that the Bounded�Time Processor Scheduling

problem has no fully polynomial time approximation scheme unless P �
NP�

Remark �
	� Although this version of the scheduling problem has no fully
polynomial time approximation scheme� the majority of the problems for
which a fully polynomial time approximation scheme exists are scheduling
problems�

What if the condition of Theorem ���� does not hold� Can we still
derive a conclusion of nonexistence of a fully polynomial time approximation
scheme for an optimization problem� We study this problem starting with
the famous Traveling Salesman problem 
TSP�� and will derive general
rules for this kind of optimization problems�

Traveling Salesman 
TSP�

Input� a weighted complete graph G

Output� a simple cycle through all vertices of G 
such a simple
cycle is called a traveling salesman tour� and the weight of the
cycle is minimized

The Traveling Salesman problem obviously does not satisfy the con�
dition stated in Theorem ����� For example� if all edges of the input graph
G of n vertices have weight of order !
�n�� then the weight of the min�
imum traveling salesman tour is "
n�n� while a binary representation of
the input graph G has length bounded by O
n�� 
note that the length of

��



the binary representation of a number of order !
�n� is O
n� and G has
O
n�� edges�� Therefore� Theorem ���� does not apply to the Traveling
Salesman problem�

To show the non�approximability of the Traveling Salesman problem�
we �rst consider a simpler version of the Traveling Salesman problem�
which is de�ned as follows�

Traveling Salesman ��� 
TSP
�����

Input� a weighted complete graph G such that the weight of
each edge of G is either � or �

Output� a traveling salesman tour of minimum weight

Theorem �
	
 The Traveling Salesman ��� problem is NP�hard�

proof� We present a polynomial time reduction that transforms the well�
known NP�complete problem Hamiltonian Circuit to the Traveling
Salesman ��� problem�

By the de�nition� for each undirected unweighted graph G of n vertices�
the Hamiltonian Circuit problem asks if G contains a Hamiltonian cir�
cuit� i�e�� a simple cycle of length n�

Given an input instance G � 
V�E� for the Hamiltonian Circuit

problem� we add edges to G to make a weighted complete graph G� �

V�E �E�� such that for each edge e � E of G� that is in the original graph
G� we assign a weight � and for each edge e� � E� of G� that is not in
the original graph G� we assign a weight �� The graph G� is certainly an
input instance of the Traveling Salesman ��� problem� Now� let T be a
minimum weighted traveling salesman tour in G�� It is easy to verify that
the weight of T is equal to n if and only if the original graph G contains a
Hamiltonian circuit�

This completes the proof�

Theorem ���� can apply to the Traveling Salesman ��� problem
directly�

Theorem �
	� The Traveling Salesman ��� problem has no fully poly�
nomial time approximation scheme unless P � NP�

proof� Since the weight of a traveling salesman tour for an input instance
G of the Traveling Salesman ��� problem is at most �n� assuming that

��



G has n vertices� the condition stated in Theorem ���� is satis�ed by the
Traveling Salesman ��� problem� Now the theorem follows from Theo�
rem ���� and Theorem �����

Now we are ready for a conclusion on the approximability of the Trav�
eling Salesman problem in its general form�

Theorem �
	� The Traveling Salesman problem has no fully polyno�
mial time approximation scheme unless P � NP�

proof� Since each input instance for the Traveling Salesman ���

problem is also an input instance for the Traveling Salesman problem� a
fully polynomial time approximation scheme for the Traveling Salesman
problem should also be a fully polynomial time approximation scheme for
the Traveling Salesman ��� problem� Now the theorem follows from
Theorem ���
�

��
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�
 Strong NP�hardness

We continue the discussion on what conditions will make an optimization
problem have a fully polynomial time approximation scheme� In the last
lecture� we have seen that if the optimal value OptQ
x� is always bounded
by a polynomial of the input length of x� then the problem Q has no fully
polynomial time approximation scheme unless Q can be solved precisely in
polynomial time� We have also studied the Traveling Salesman problem�
which does not satisfy the above condition� and developed a technique to
show that the Traveling Salesman problem has no fully polynomial time
approximation scheme� We started by a restricted version of the Trav�
eling Salesman problem� the Traveling Salesman ��� problem� and
showed that it satis�es the above condition and is also NP�hard� Thus�
the Traveling Salesman ��� problem has no fully polynomial time ap�
proximation scheme� From this we derived that the original Traveling
Salesman problem does not have a fully polynomial time approximation
scheme� In this lecture� we will formalize this technique and extend it to
other optimization problems�

For many optimization problems� such as those we have previously dis�
cussed as Subset Sum�Knapsack� c�Processor Scheduling� and Trav�
eling Salesman� an input instance is always associated with numbers� In�
deed� it is natural to de�ne a number in the problem statement for these
problems�

De�nition ��	� Suppose Q � hIQ� SQ� fQ� optQi is an optimization prob�
lem� For each input instance x � IQ we can de�ne�

� length
x� � the length of binary representation of x� and

� max
x� � the largest number that appears in input x�

��



In particular� if no number appears in the input instance x� we de�ne
max
x� � ��

De�nition ���� can vary by some degree without loss of the generality
of our discussion� For example� length
x� can also denote the length of the
decimal representation in the input x or of any other �xed base representa�
tion in the input x� and max
x� can be de�ned to be the sum of all numbers
appearing in the input x� Our discussion below will be valid for any of these
variations� The point is that for two di�erent de�nition systems 
length
x��
max
x�� and 
length�
x�� max�
x��� we require that length
x� and length�
x�
are polynomially related and that max
x� and max�
x� are polynomially
related for all input instances x�

De�nition ��	
 An optimization problem Q � hIQ� SQ� fQ� optQi is a non�
number problem if for all x � IQ� max
x� � p
length
x��� where p is a �xed
polynomial� If there is no such a polynomial p exists� then Q is called a
number problem�

According to the de�nition� Subset Sum� Knapsack� c�Processor
Scheduling� and Traveling Salesman problems are all number prob�
lems� Independent Set is a non�number problem�

De�nition ��	� Let Q � hIQ� SQ� fQ� optQi be an optimization problem
and let q be any function� De�ne an optimization problem Qq to be the sub�
problem of Q such that Qq � hI �Q� S�Q� f �Q� opt�Qi� where I �Q � IQ� S�Q � SQ�
f �Q � fQ and opt�Q � optQ� and for all x � I �Q� max
x� � q
length
x���
In other words� for all input instances x of Qq� max
x� is bounded by
q
length
x���

The following de�nition was �rst introduced and studied by Garey and
Johnson�

De�nition ��	� An optimization problem Q � hIQ� SQ� fQ� optQi is NP�
hard in the strong sense if Qq is NP�hard for some polynomial q�

The Traveling Salesman problem is an example of optimization prob�
lems that are NP�hard in the strong sense� as shown by the following theo�
rem�

Theorem ��	� The Traveling Salesman problem is NP�hard in the strong
sense�

��



proof� If we denote by Q the Traveling Salesman problem� then Q�

corresponds to the Traveling Salesman ��� problem� By Theorem �����
the Traveling Salesman ��� problem is NP�hard� Now by the above
de�nition� the Traveling Salesman problem is NP�hard in the strong
sense�

Remark ��	� Every non�number NP�hard optimization problem Q is NP�
hard in the strong sense� This is because for every non�number NP�hard
optimization problem Q� Q � Qp for some polynomial function p� This
implies that Qp is NP�hard� which� by the de�nition� further implies that Q
is NP�hard in the strong sense�

Theorem ��	
 Subset�Sum� Knapsack� and c�Processor Schedul�

ing problems are not NP�hard in the strong sense unless P � NP�

proof� Let Q be any one of these problems� From previous lectures� we
know that there is an algorithm A such that for an input instance x of Q� the
algorithm A constructs an optimal solution to x in time O
ncV d� for some
constants c and d� where V � n �max
x�� Therefore� the algorithm A solves
the optimization problem Q in time O

length
x��c

�


max
x��d�� where c� is
a constant�

If Q is NP�hard in the strong sense� then Qp is NP�hard for some
�xed polynomial p� However� for all input instances x of Qp� max
x� �
p

length�
x��� Thus� the algorithm A constructs an optimal solution for
each input instance x of Qq in time

O

length
x��c
�


max
x��d� � O

length
x��c
�



p
length
x���d��

which is bounded by a polynomial of length
x�� Thus� the problem Qp is
solvable in polynomial time� which implies P � NP�

The following theorem serves as a fundamental theorem for showing
which number problem has no fully polynomial time approximation scheme�
We say that a two�parameter function f
x� y� is a polynomial of x and y if
f
x� y� can be written as a �nite sum of the terms of form xcyd� where c and
d are non�negative integers�

Theorem ��	� Let Q � hIQ� SQ� fQ� optQi be an optimization problem that
is NP�hard in the strong sense� Suppose that for all x � IQ� OptQ
x� is

��



bounded by a polynomial of length
x� and max
x�� Then Q has no fully
polynomial time approximation scheme unless P � NP�

proof� The proof of this theorem is very similar to the discussion we have
given for the Traveling Salesman problem in the last lecture�

Since Q is NP�hard in the strong sense� Qq is NP�hard for a polynomial
q� Let Qq � hI �Q� SQ� fQ� optQi such that for each input instance x � I �Q� we
have max
x� � q
length
x��� Combining this condition with the condition
stated in the theorem that OptQ
x� is bounded by a polynomial of length
x�
and max
x�� we derive thatOptQ
x� is bounded by a polynomial of length
x�
for all input instances x � I �Q� Now by Theorem ����� the problem Qq has
no fully polynomial time approximation scheme unless P � NP� Since each
input instance of Qq is also an input instance of Q� a fully polynomial time
approximation scheme for Q is also a fully polynomial time approximation
scheme for Qq� Now the theorem follows�

Remark ��	� How common is the situation that OptQ
x� is bounded by a
polynomial of length
x�� and max
x�� In fact� this situation is fairly com�
mon because for most optimization problems� the objective function value
is de�ned through additions or constant number of multiplications on the
numbers appearing in the input instance x� which is certainly bounded by
a polynomial of length
x� and max
x�� Of course� the condition is not uni�
versely true for general optimization problems� For example� an objective
function can be simply de�ned to be the exponentiation of the sum of a sub�
set of input values� which cannot be bounded by any polynomial of length
x�
and max
x��

A general technique for showing the strong NP�hardness for an opti�
mization problem Q is to pick an NP�complete problem L and show that L
is polynomial time reducible to Qq for some polynomial q� Our polynomial
time reduction from the Hamiltonian Circuit problem to the Traveling
Salesman ��� problem given in the last lecture well illustrates this idea�

We give another example of optimization problems that are NP�hard in
the strong sense�

Multi�Processor Scheduling 
MPS�

Input� ft�� t�� � � � � tn�mg� all integers� where ti is the execution
time for the ith job

Output� a scheduling of the n jobs on m identical processors
such that the parallel �nish time is minimized

��



TheMulti�Processor Scheduling problem is NP�hard in the strong
sense� In fact� the following restricted version of the Multi�Processor

Scheduling problem is NP�hard in the strong sense�

Three�Partition

Input� ft�� t�� � � � � t�m�mg� all integers� where ti is the execution
time for the ith job

Output� a scheduling of the 
m jobs on m identical processors
such that the parallel �nish time is minimized

The reader is advised to read Section 	���� in Computers and Intractabil�
ity� A Guide to the Theory of NP�Completeness by M� Garey and D� John�
son� for a detailed proof that the Three�Partition is NP�hard in the
strong sense� Chapter 	 of the above book also contains excellent discussion
on strong NP�hardness of optimization problems�

We should point out that for theMulti�Processor Scheduling prob�
lem� when the number of processors is �xed by a constant c� the problem
has a fully polynomial time approximation scheme� as we discussed in the
previous lectures on the c�Processor Scheduling problem� However� if
the number m of processors is given as a variable in the input� then the
problem becomes NP�hard in the strong sense� By Theorem ���
� the prob�
lem has no fully polynomial time approximation scheme 
it is easy to verify
that the condition that Opt
x� is bounded by a polynomial of length
x� and
max
x� is satis�ed by this problem��

��
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�� Absolute approximability

We have seen a number of NP�hard optimization problems for which we can
derive a polynomial time approximation algorithm with approximation ratio
bounded by an arbitrary constant � � �� In this section� we will discuss the
approximability of optimization problems in terms of a di�erent measure �
the absolute di�erence�

De�nition ��	� Let Q � hIQ� SQ� fQ� optQi be an optimization problem
and let d
n� be a function� We say that Q can be approximated with an
absolute di�erence d
n� in polynomial time if there is a polynomial time
approximation algorithm A for Q such that for any input instance x of Q�
the algorithm A produces a solution y to x such that

jOpt
x�� fQ
x� y�j � d
jxj�

We start the discussion with the famous planar graph coloring problem�

Planar Graph Coloring

Input� a planar graph G

Output� a coloring of the vertices of G such that no two
adjacent vertices are colored with the same color and the number
of colors used is minimized�

Theorem ��	� The Planar Graph Coloring problem is NP�hard�

proof� In fact� the decision problem Planar Graph ��Colorability�
�given a planar graph G� can G be colored with at most 
 colors�� is NP�
complete� It is straightforward that the Planar Graph ��Colorability

problem is polynomial time reducible to the Planar Graph Coloring

problem�

�




Theorem ��	
 The Planar Graph Coloring problem can be approxi�
mated in polynomial time with an absolute di�erence ��

proof� First note that there is a well�known and simple process that
colors any planar graph with at most � colors� Moreover� the process can
be implemented by a polynomial time algorithm�

Therefore� given a planar graph G� we �rst check if G is ��colorable �
this is equivalent to checking if G is a bipartite graph and can be done in
linear time� If G is ��colorable� then we color G with � colors and obtain an
optimal solution� Otherwise� we need at least 
 colors and we call the above
algorithm to color G with at most � colors�

Remark ��	
 By the famous Four�Color Theorem� every planar graph can
be colored with at most 	 colors� Therefore� the absolute di�erence in The�
orem ���� can actually be replaced by �� However� since the Four�Color
Theorem is too involved� we rather use a much simpler Five�Color Theorem
here�

Thus� the Planar Graph Coloring problem can be approximated
with a constant absolute di�erence� On the other hand� the approximation
algorithm does not seem very good in term of the approximation ratio� For
example� for a planar graph that is 
�colorable� the algorithm can only guar�
antee a 	�coloring solution� Thus� the approximation ratio for this algorithm
is at least 	�
 � ��
� The reason for this is that the optimal value of an
instance of the problem is always bounded by a constant� Thus� even a
small absolute di�erence makes a signi�cant error in the approximation ra�
tio� Next we give another example for which optimal values are not bounded
while the problem still has very good approximation algorithm in terms of
the absolute di�erence�

Graph Edge Coloring

Input� a graph G

Output� a coloring of the edges of G such that no two adjacent
edges are colored with the same color and the number of colors
used is minimized�

Remark ��	� The Graph Edge Coloring problem is NP�hard�

�	



Given a graph G� let v be a vertex of G� De�ne deg
v� to be the degree
of the vertex and de�ne deg
G� to be the maximum deg
v� over all vertices
v of G�

The following lemma follows directly from the de�nition�

Lemma ��	� Every edge coloring of a graph G uses at least deg
G� colors�

Since deg
G� can be arbitrarily large� the optimal value for an instance
of the Graph Edge Coloring problem is not bounded by any constant�
This is the di�erence to the case of the Planar Graph Coloring problem�

The next lemma may look more surprising�

Lemma ��	� There is a polynomial time algorithm that colors a given
graph G with at most deg
G� � � colors�

proof� Let G be the input graph� To simplify the expression� let d �
deg
G�� We present an algorithm that colors the edges of G using at most
d� � colors�

The algorithm has the following framework�

Algorithm ��	� Edge�Coloring

Input� a graph G
Output� an edge coloring of G

�� let G� � G with all edges deleted�

f Suppose that the edges of G are e�� � � �� em g
�� for i � � to m do

Gi � Gi�� � feig�
color the edges of Gi using at most d� � colors�

We need to explain how the graph Gi can be colored with at most d� �
colors� Inductively� suppose that we have colored the edges of Gi�� using
at most d � � colors� Now Gi � Gi�� � feig� where suppose ei � 
v�� w��
Thus� we have all edges of Gi except ei colored properly using at most d��
colors�

We say that a vertex u in Gi misses a color c if no edge incident on u is
colored with c� Since we have d� � colors and each vertex of Gi has degree
at most d� every vertex of Gi misses at least one color�

If both vertices v� and w miss a common color c� then we simply color
ei � 
v�� w� with c and we obtain a valid coloring for the graph Gi�
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Figure �� A fan structure

So we suppose that there is no color that is missed by both v� and w�
Let c� be the color missed by v� and c� be the color missed by w� c� �� c��

Since c� is not missed by w� there is an edge 
v�� w� colored with c��
Now if v� and w have a common missed color� we stop� If v� and w have no
common missed color� then let c� be a color missed by v� � c� is not missed
by w� Now let 
v�� w� be the edge colored with c��

Inductively� suppose that we have constructed a �fan� that consists of h
neighbors v�� � � �� vh of w and h � � di�erent colors c�� � � �� ch��� such that

see Figure ��

� for all j � �� � � � � h � �� the vertex vj misses color cj and the edge

vj��� w� is colored with the color cj �

� none of the vertices v�� � � �� vh�� have a common missed color with w�

� for all j � �� � � � � h � �� the vertex vj does not miss any of the colors
c�� � � �� cj���

There are three possible cases�
Case �	 the vertex vh does not miss any of the colors c�� � � �� ch�� and

vh has no common missed color w�
Then let ch be a color missed by vh� Since ch is not missed by w� there is

an edge 
vh��� w� colored with ch� Thus� we have expanded the fan structure
by one more edge�

Since the degree of the vertex w is �nite� Case � must fail at some stage
and one of the following two cases should happen�

Case 
	 the vertex vh has a common missed color c� with w�
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Figure 
� In case vh and w miss a common color c�

Then we change the coloring of the fan by coloring 
vh� w� with c�� and
coloring 
vi� w� with ci� for i � �� � � � � h�� 
see Figure 
�� It is easy to verify
that this gives a valid edge coloring for the graph Gi � Gi�� � feig�

Case �	 the vertex vh misses a color cs� � � s � h � ��
Let c� be a color missed by w� We start from the vertex vs� Since vs has

no common missed color with w� there is an edge 
vs� u�� colored with c��
Now if u� does not miss cs� there is an edge 
u�� u�� colored with cs� now we
look at vertex u� and see if there is an edge colored with c�� and so on� By
this� we obtained a path Ps whose edges are alternatively colored by c� and
cs� The path has the following properties� 
�� the path Ps must be a simple
path since each vertex of the graph Gi�� has at most two edges colored with
c� and cs� Thus� the path Ps must be a �nite path� 
�� the path Ps cannot
be a cycle since the vertex vs misses the color cs� and 

� the vertex w is
not an interior vertex of Ps since w misses the color c��

Let Ps � fvs� u�� � � � � utg� where vs misses the color cs� ut misses one of
colors cs and c�� and uj � j � � � � � � t� �� misses neither cs nor c��

If ut �� w� then interchange the colors c� and cs on the path Ps to make
the vertex vs miss c�� Then color 
vs� w� with c� and color 
vj � w� with cj �
for j � �� � � � � s� � 
see Figure 	�� It is easy to verify that this gives a valid
edge coloring for the graph Gi � Gi�� � feig�

If ut � w� we must have ut�� � vs��� Then we grow a c��cs alternating
path Ph starting from the vertex vh� which also misses the color cs� Again
Ph is a �nite simple path� Moreover� the path Ph cannot end at the vertex
w since no vertex in Gi�� is incident on more than two edges colored with
c� and cs and the vertex w misses the color c�� Therefore� similar to what
we did for vertex vs� we interchange the colors c� and cs on the path Ph to
make vh miss c�� Then color 
vh� w� with c� and color 
vj � w� with cj for

��
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Figure 	� Extending a c��cs alternating path Ps from vs not ending at w
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Figure �� Extending a c��cs alternating path Ph from vh not ending at w

j � �� � � � � h � � 
see Figure ��� It is easy to verify that this gives a valid
edge coloring for the graph Gi � Gi�� � feig�

Therefore� starting with an edge coloring of the graph Gi�� using at
most d� � colors� we can always derive a valid edge coloring for the graph
Gi � Gi�� � feig using at most d� � colors� It is also easy to see that this
process can be implemented by a polynomial time algorithm� We leave the
detailed implementation of this process to the interested reader�

Now we conclude that the algorithm Edge�Coloring runs in polynomial
time and produces a valid edge coloring using at most d � � colors for the
graph G�

Theorem ��	� The Graph Edge Coloring problem can be approxi�
mated within an absolute di�erence of � in polynomial�time�

��



proof� Follows directly from Lemma ���
 and ���	�

Remark ��	� Theorem ���� seems to give the best possible polynomial
time approximation algorithm for the NP�hard Graph Edge Coloring

problem� On the other hand� this algorithm does not provide a fully poly�
nomial time approximation scheme for the problem� Indeed� the decision
problem Graph Edge ��Colorability �given a graph G� can the edges
of G be colored using no more than 
 colors� is NP�complete� Thus� the algo�
rithm from Theorem ���� can only guarantee a 	�coloring for an instance of
the Graph Edge ��Colorability problem� which has an approximation
ratio at least 	�
 � ��
�

It is natural to ask whether the optimization problems that have fully
polynomial time approximation scheme should have good approximation
algorithms in terms of absolute di�erence� It is� in fact� not very di�cult to
show that this is not always the case�

Recall the Knapsack problem�

Knapsack

Input� 
s�� � � � � sn� v�� � � � � vn�B�� all integers

Output� a subset S of f�� � � � � ng such that
P

i�S si � B andP
i�S vi is maximized

Theorem ��	� There is no polynomial time approximation algorithm for
the Knapsack problem that guarantees an absolute di�erence �n unless P
� NP�

proof� Suppose that A is a polynomial time approximation algorithm for
the Knapsack problem Q � hI� S� f� opti such that for any input instance
X of Q� A produces a solution S such that jOpt
X�� A
X�j � �n� where
A
X� � f
X�S�� We show how we can use this algorithm to solve the
Knapsack problem in polynomial time�

Given an input instance X � 
s�� � � � � sn� v�� � � � � vn�B� for Q� we con�
struct X � � 
s�� � � � � sn� v��

n��� � � � � vn�
n���B� 
i�e� scale the values vi to be

a multiple of �n�� so that a di�erence of �n between two values makes no
di�erence��

Now apply the algorithm A to X � to get a solution S with value A
X �� �
f
X �� S�� According to our assumption� jOpt
X �� � A
X ��j � �n� Since

��



both Opt
X �� and A
X �� are multiples of �n��� we conclude that Opt
X �� �
A
X ��� that is� the solution S is an optimal solution to the instance X ��
Moreover� it is easy to see that S is also a solution to the instance X and
Opt
X �� � �n��Opt
X� and A
X �� � �n��A
X�� Therefore� S is also an
optimal solution for the instance X �

By our assumption� the algorithm A runs in polynomial time� It is
also easy to see that we can construct the instance X � from the instance
X in polynomial time� Therefore� the above process constructs an optimal
solution for X in polynomial time� Consequently� the Knapsack problem
can be solved in polynomial time� Since theKnapsack problem is NP�hard�
it follows that P � NP�

This proof for Theorem ���� can be easily extended to other number
problems such as the c�Processor Scheduling problem and the Subset
Sum problems�

The main reason that Theorem ���� holds for many number problems is
that we can scale the numbers in the input instances so that a small abso�
lute di�erence would make no di�erence for the scaled instance� However�
what about non�number problems� In particular� is there a similar theorem
for optimization problems whose instances contain no number at all� We
demonstrate a technique for this via the study of an optimization problem
related to graph embeddings�

Graph embeddings can be studied using graph rotation systems� A rota�
tion at a vertex v is a cyclic permutation of the edge�ends incident on v� A
list of rotations� one for each vertex of the graph� is called a rotation system�

An embedding of a graph G in an orientable surface induces a rotation
system� as follows� the rotation at vertex v is the cyclic permutation corre�
sponding to the order in which the edge�ends are traversed in an orientation�
preserving tour around v� Conversely� it is known that every rotation system
induces a unique embedding of G into an orientable surface� In the follow�
ing� we will interchangeably use the phrases �an embedding of a graph� and
�a rotation system of a graph��

The genus 	
#
G�� of the rotation system #
G� is de�ned by the Euler
polyhedral equation

jV j � jEj� jF j � �� �	
#
G��

where jF j is the number of faces in the embedding #
G�� It can be proved
that the value 	
#
G�� is actually the number of �holes� of the surface on
which the embedding #
G� is realized� Consequently� 	
#
G�� is always a
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non�negative integer� There is a linear time algorithm that� given a rotation
system #
G� for a graph G� traces the boundary walks of all faces in the ro�
tation system� Therefore� given a rotation system #
G�� the genus 	
#
G��
of #
G� can be computed in linear time�

Now we are ready to state the following problem�

Graph Genus

Input� a graph G

Output� an embedding #
G� ofG such that the genus 	
#
G��
is minimized� Such a value is called the minimum genus of the
graph G� written as 	min
G�

It is known that the Graph Genus problem is NP�hard� The Graph
Genus problem has applications in circuit layouts and distributed compu�
tation�

LetG andG� be two graphs� The bar�amalgamation ofG and G�� denoted
G �G�� is the result of running a new edge 
called the �bar�� from a vertex
of G to a vertex of G�� The de�nition of bar�amalgamation on two graphs
can be extended to more than two graphs� Inductively� a bar�amalgamation
of r graphs G�� � � �� Gr� written G� �G� � � � � �Gr� is the bar�amalgamation
of the graph G� and the graph G� � � � � �Gr�

Let G be a graph and let H be a subgraph of G� Let #
G� be a rotation
system of G� A rotation system #�
H� of H can be obtained from #
G� by
deleting all edges that are not in H � The rotation system #�
H� of H will
be called an induced rotation system of H from the rotation system #
G��

The proofs for the following theorem and corollary are omitted�

Theorem ��	
 Let G�� � � �� Gr be graphs and let #
G� � � � � � Gr� be a
rotation system of a bar�amalgamation G� � � � � �Gr of G�� � � �� Gr� Then

	
#
G� � � � � �Gr�� �
rX
i��

	
#i
Gi��

where #i
Gi� is the induced rotation system of Gi from #
G� � � � � � Gr��
� � i � r�

Corollary ��	� Let G�� � � �� Gr be graphs and let G� be an arbitrary bar�
amalgamation of G�� � � �� Gr� Then

	min
G
�� �

rX
i��

	min
Gi�
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Now we are ready for the main theorem�

Theorem ��	� For any �xed constant �� � � � � �� the Graph Genus

problem cannot be approximated in polynomial time with an absolute di�er�
ence n� unless P � NP�

proof� Suppose that A is an approximation algorithm that� given a graph
G of n vertices� constructs an embedding of G of genus at most 	min
G��n��

Let k be an integer such that � � k
k�� � Then for su�ciently large n� we

have n� � n
k

k�� � Thus n��k��� � nk � ��
Let nkG be a graph that is an arbitrary bar amalgamation of nk copies

of G� Then the number of vertices of nkG is N � nk��� The graph nkG
can be obviously constructed from G in polynomial time� Moreover� by
Corollary ����

	min
n
kG� � nk � 	min
G�

Now running the algorithm A on the graph nkG gives us an embedding
#
nkG� of nkG� which has genus at most 	min
n

kG� �N �� Therefore�

	
#
nkG�� � 	min
n
kG� �N �

� nk	min
G� � n��k���

� nk	min
G� � nk � � 
��

On the other hand� if we let #�
G�� � � �� #nk 
G� be the nk induced rotation
systems of G from #
nkG�� then by Theorem ����

	
#
nkG�� �
nkX
i��

	
#i
G�� 
��

Combining Equations 
�� and 
�� and noticing that the genus of #i
G� is at
least as large as 	min
G� for all � � i � nk � we conclude that at least one
induced rotation system #i
G� of G achieves the minimum genus 	min
G��
This rotation system of G can be found by calculating the genus for each
induced rotation system #i
G� from #
nkG� and selecting the one with the
smallest genus� This can be accomplished in polynomial time�

Therefore� using the algorithm A� we would be able to construct in poly�
nomial time a minimum genus embedding for the graph G� Consequently�
the Graph Genus problem can be solved in polynomial time� Since the
Graph Genus problem is NP�hard� we would derive P � NP�
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The technique of Theorem ���� can be summarized as follows� Let Q �
hIQ� SQ� fQ� optQi be an optimization problem such that there is an operator
� implementable in polynomial time that can �compose� input instances�
i�e�� for any two input instances x and y of Q� x�y is also an input instance
of Q such that jx � yj � jxj � jyj 
in the case of Theorem ����� � is the
bar�amalgamation�� Moreover� suppose that from a solution sx�y to the
instance x� y� we can construct in polynomial time solutions sx and sy for
the instances x and y� respectively such that

fQ
x� y� sx�y� � fQ
x� sx� � fQ
y� sy�


this corresponds to Theorem ����� and

Opt
x� y� � Opt
x� �Opt
y�


this corresponds to Corollary ������ then using the technique of Theo�
rem ����� we can prove that the problem Q cannot be approximated in
polynomial time with a absolute di�erence n� for any constant � � � unless
Q can be solved precisely in polynomial time� In particular� if Q is NP�
hard� then Q cannot be approximated in polynomial time with a absolute
di�erence n� for any constant � � � unless P � NP�

As an easy exercise� readers are advised to use this technique to prove
that the Independent Set problem cannot be approximated in polynomial
time with an absolute di�erence n� for any constant � � ��
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The algorithm Knapsack�Dyn for the Knapsack problem and the algo�
rithm c�Scheduling�Dyn for the c�Processor Scheduling problem share
a common property that the algorithms run in time polynomial in length
x�
and max
x� on an input instance x� where length
x� and max
x� are as
de�ned in De�nition ����� This motivates the following de�nition�

De�nition 
�	� An algorithm A that solves an optimization problem Q �
hI� S� f� opti is a pseudo�polynomial time algorithm if on any input instance
x � I � the running time of A is bounded by a polynomial of length
x� and
max
x�� In this case� we say that the optimization problem Q can be solved
in pseudo�polynomial time�

Most fully polynomial time approximation scheme algorithms are derived
from pseudo�polynomial time algorithms for the same problem by properly
scaling and rounding the input data� On the other hand� the following
theorem shows that under a very general condition� the existence of a fully
polynomial time approximation scheme implies the existence of a pseudo�
polynomial time algorithm�

Theorem 
�	� Let Q � hI� S� f� opti be an optimization problem such that
for all input instance x � I we have Opt
x� � p
length
x��max
x��� where p
is a two variable polynomial� If Q has a fully polynomial time approximation
scheme� then Q can be solved in pseudo�polynomial time�

proof� Suppose Q is a minimization problem� i�e�� opt � min� Since Q has
a fully polynomial time approximation scheme� there is an approximation
algorithm A for Q such that for any input instance x � I � the algorithm A
produces a solution y � S
x� in time p�
jxj� ���� satisfying

f
x� y�

Opt
x�
� � � �

�	



where p� is a two variable polynomial�
In particular� let � � ��
p
length
x��max
x�� � ��� then the solution y

satis�es

f
x� y� � Opt
x� �
Opt
x�

p
length
x��max
x�� � �
� Opt
x� � �

Now since both f
x� y� and Opt
x� are integers and f
x� y� � Opt
x�� we
get immediately f
x� y� � Opt
x�� That is� the solution produced by the
algorithm A is actually an optimal solution� Moreover� the running time of
the algorithm A for producing the solution y is bounded by

p�
jxj� p
length
x��max
x�� � ��

which is a polynomial of length
x� and max
x�� We conclude that the opti�
mization problem Q can be solved in pseudo�polynomial time�

Theorem ���� gives a fairly convenient way for checking that an optimiza�
tion problem has no fully polynomial time approximation scheme� How well
can this kind of problems be approximated� In the following� we will show
that for certain problems that have no fully polynomial time approximation
scheme� polynomial time approximation algorithms with approximation ra�
tio � � � are still possible� for any �xed constant � � ��

The �rst problem to be considered is the Independent Set problem
on planar graphs� de�ned as follows�

Planar Independent Set 
IS�� hI� S� f� opti
I � the set of all planar graphs G

S
G�� the collection of all subsets D of the vertices of the graph
G such that no two vertices in D are adjacent

f
G�D�� the number of vertices in D

opt� max

It is known that the Planar Independent Set problem is NP�hard�
Moreover� by Theorem ����� the Planar Independent Set problem has
no fully polynomial time approximation scheme unless P � NP�

The following theorem by Lipton and Tarjan plays a key role in the
approximation algorithm for the Planar Independent Set problem� The
proof of the theorem is omitted�
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Theorem 
�	
 
Separator Theorem� For any planar graph G � 
V�E��
jV j � n� one can partition the vertex set V of G into three disjoint sets� A�
B� and C� such that

�� jAj� jBj � �n�
�

�� jCj � p
�n� and

	� C separates A and B� i�e� there is no edge between A and B�

Moreover� there is a linear time algorithm that� given a planar graph G�
constructs the triple 
A�B�C� as above�

Let G � 
V�E� be a planar graph and let 
A�B�C� be a triple satisfying
the conditions of Theorem ����� We will say that the graph G is split into
two smaller pieces A and B 
using the separator C�� A simple observation is
that if DA and DB are independent sets of the graphs induced by the vertex
sets A and B� respectively� then the union DA�DB is an independent set of
the graph G� Moreover� since the sizes of the sets A and B are of order "
n�
while the size of the separator C is of order O


p
n�� ignoring the vertices

in the separator C does not seem to lose too much precision� This idea
is implemented by the following algorithm� where K is a constant to be
determined later�

Algorithm 
�	� PlanarIndSet
K�
Input� a planar graph G � 
V�E�
Output� an independent Set S in G

�� If 
jV j � K� then
find a maximum indepenent set D in G using

exhaustive search�

Return
D��
fAt this point jV j � K�g
�� split V into 
A�B�C� as in Theorem �����

�� recursively find an independent set DA for A and an

independent set DB for B�

	� return
DA �DB��

By the discussion above� the algorithm PlanarIndSet correctly returns
an independent set for the graph G� Thus� it is an approximation algorithm
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for the Planar Independent Set problem� We �rst study a few properties
of this algorithm�

The algorithm splits the graph G into small pieces� If the size of a piece
is larger than K� then the algorithm splits the piece into two smaller pieces
in linear time according to Theorem ����� Otherwise� it �nds a maximum
independent set for the piece using brute force method� We �rst discuss the
number of pieces whose size is within a certain region�

A piece is at level � if its size is not larger than K� For a general i � ��
a piece is at level i if its size 
i�e�� the number of vertices in the piece� is in
the region 


���i��K� 

���iK�� i�e�� if its size is larger than 

���i��K but
not larger than 

���iK� Note that the largest level number is bounded by
log
n�K�� log

��� � O
log
n�K���

Lemma 
�	� For a �xed i� each vertex of the graph G belongs to at most
one piece at level i�

proof� Fix a vertex v of the graph G�
Suppose that the largest level number is h and that the graph G is at

level h� By the de�nition� n � 

���hK� Now according to Theorem �����
G is split into two pieces A and B� whose size is bounded by

�n�
 � 
��
�

���hK � 

���h��K

Thus� both pieces A and B do not belong to level h� Consequently� G is the
only piece at level h� Thus� there is only one piece at level h that contains
the vertex v�

Inductively� suppose that for each i � j� at most one piece at level i
contains the vertex v and there is a piece P at level j that contains the
vertex v� If j � �� then we are done� Otherwise� let P� and P� be the two
smaller pieces obtained by splitting the piece P according to Theorem �����
As we proved above for level h� no P� and P� can be at level j� Moreover� at
most one of P� and P� can contain the vertex v� Without loss of generality�
suppose that P� contains v and that P� is at level j � � j� Now for each
i � j�� at most one piece at level i contains the vertex v� The induction goes
through�

Therefore� all pieces at level i are disjoint� Since each piece at level i con�
sists of more than 

���i��K vertices� there are no more than 
��
�i��
n�K�
pieces at level i� for all i� We summarize these discussions as follows�
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� There are no more than n pieces at level �� each is of size at most K�

� For each �xed i � �� there are no more than 
��
�i��
n�K� pieces at
level i� each is of size bounded by 

���iK� and

� There are at most O
logn� levels�

Now we are ready to analyze the algorithm�

Lemma 
�	� The running time of the algorithm PlanarIndSet is bounded
by O
n logn � �Kn��

proof� For each piece at level i � �� we apply Theorem ���� to split
it into two smaller pieces in time linear to the size of the piece� Since the
total number of vertices belonging to pieces at level i is bounded by n� we
conclude that the total time spent by the algorithm PlanarIndSet on pieces
at level i is bounded by O
n� for each i � �� Since there are only O
logn�
levels� the algorithm PlanarIndSet takes time O
n logn� on piece splitting�

For each piece P at level �� which has size bounded by K� the algorithm
�nds a maximum independent set by checking all subsets of vertices of the
piece P � There are at most �K such subsets in P � and each such a subset
can be checked in time linear to the size of the piece� We conclude that
the algorithm PlanarIndSet spends time O
�Kn� on pieces at level �� In
summary� the running time of the algorithm PlanarIndSet is bounded by
O
n logn� �Kn��

Let us consider the approximation ratio for the algorithm PlanarIndSet�
Fix an i � �� Suppose that we have l pieces of size n�� n�� � � �� nl at

level i� For each such a piece of size nq� a separator of size less than 

p
nq

is constructed to split the piece into two smaller pieces� The vertices in the
separator will be ignored in the further consideration� There are at most



p
n� � 


p
n� � � � �� 


p
nl

vertices that belong to separators for pieces at level i� It is well�known that
the above summation will be maximized when all n�� n�� � � �� nl are equal�
As n� � n� � � � �� nl � n� each nq can be at most 
n�l�� Hence� the above
summation is bounded by



q
n�l � 


q
n�l� � � �� 


q
n�l� �z �

l terms

� 
l
q
n�l � 


p
nl

��



Now� since l � 
��
�i��
n�K� 
as derived above�� the total number of ver�
tices belonging to separators for pieces at level i is bounded by




s
n�

�
�




�i�� n

K
�


np
K

�
�




� i��
�

Let F denote the set of all vertices that belong to a separator at some
level� We derive

jF j �
hX
i��

�

np
K

�	r
�





i��
�
�


np
K

� �X
i��

	r
�





i��
�


ndp
K

where d �
P�

i��

p
��
�i�� is a constant�

Lemma 
�	� Let S be the solution produced by the algorithm PlanarIndSet�
Then Opt
G� � jSj� jF j�

proof� Let P be a piece at level � and let Smax be a maximum independent
set of the graph G� It is easy to see that Smax 
 P is an independent set
in the piece P � which cannot be larger than the maximum independent set
SPmax of P constructed by the algorithm PlanarIndSet� Note that S is the
union of SPmax over all pieces at level �� We have

Smax �
�

P � level � piece


Smax 
 P � � 
Smax 
 F �

Therefore�

Opt
G� � jSmaxj �
X

P � level � piece


jSmax 
 P j� � jSmax 
 F j

�
X

P � level � piece

jSPmaxj� jF j

� jSj� jF j

The lemma is proved�

From Lemma ����� we get immediately

Opt
G�

jSj � � �
jF j

Opt
G�� jF j

��



Since the graph G is planar� by the famous Four�Color Theorem� G can be
colored with at most 	 colors such that no two adjacent vertices in G are of
the same color� It is easy to see that all vertices with the same color form an
independent set for G� We conclude that the size Opt
G� of the maximum
independent set Smax of G is at least a quarter of the size n of the graph G�

Combining Opt
G� � n�	 with jF j � 
nd�
p
K� we obtain

Opt
G�

jSj � � �
jF j

Opt
G�� jF j � � �
jF j


n�	�� jF j

� � �

nd�

p
K


n�	�� 
nd�
p
K

� � �
��dp

K � ��d

Now for any �xed constant �� if we let

K � 
��d
�� ������ � �		d�
� � �����

then the algorithm PlanarIndSet
K� produces an independent set S for G
with approximation ratio

Opt
G�

jSj � � � �

in time O
n logn � n��		d
����������� For a �xed � � �� this is a polynomial

time algorithm� However� this is not a fully polynomial time approximation
scheme since its time complexity is not bounded by a polynomial of n and
����
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�� ��TSP� �rst algorithm

The approximation algorithm PlanarIndSet for the Planar Independent
Set problem motivates the following de�nition�

De�nition 
�	� An optimization problem Q has a polynomial time approx�
imation scheme 
PTAS�� if for any �xed constant � � �� there is a polynomial
time approximation algorithm for Q with approximation ratio bounded by
� � ��

Note that a polynomial time approximation scheme does not require the
running time of the approximation algorithm to be bounded by a polynomial
of ����

The previous lecture shows that the Planar Independent Set prob�
lem has a polynomial time approximation scheme� According to Theo�
rem ����� the Planar Independent Set problem has no fully polyno�
mial time approximation scheme unless P � NP� Thus� a polynomial time
approximation scheme seems the best we can hope for the problem�

Other optimization problems that have polynomial time approximation
schemes but have no fully polynomial time approximation schemes include
the Planar Vertex Cover problem and some other optimization prob�
lems on planar graphs� Most of these polynomial time approximation scheme
algorithms use the similar technique as the one we described for the Planar
Independent Set problem� i�e�� using Separator Theorem 
Theorem �����
to separate a planar graph into small pieces by separators of small size and
using brute force method to solve the problem for the small pieces� Stu�
dents are encouraged to apply this technique to derive a polynomial time
approximation scheme for the Planar Vertex Cover problem�

A di�erence separating technique has been proposed by Baker 
���	�
to derive polynomial time approximation scheme for optimization problems
on planar graphs� We brie�y describe the idea here based on the Planar

���



Independent Set� Let G be a planar graph� Embed G into the plane� Now
the vertices on the unbounded face of the embedding give the �rst layer of
the graph G� By peeling the �rst layer� i�e�� deleting the vertices in the �rst
layer� we obtain 
maybe more than one� several separated pieces� each of
which is a planar graph embedded in the plane� Now the �rst layers of these
pieces form the second layer for the graph G� By peeling the second layer of
G� we obtain the third layer� and so on� De�ne depth of the planar graph G
to be the maximum number of layers of the graph� Baker observed that for
a graph of constant depth� a maximum independent set can be constructed
in polynomial time by dynamic programming� Moreover� for any graph G of
arbitrary depth� if we remove one layer out of every K consecutive layers� we
obtain a set of separated planar graphs of constant depth� Now for each such
graph of constant depth� we construct a maximum independent set� The
union of these maximum independent sets forms an independent set for the
original graph G� For su�ciently large K� the number of vertices belonging
to the removed layers is very small and thus gives only a small error in
the approximation� Baker demonstrated a polynomial time approximation
scheme for the Planar Independent Set problem with running time
bounded by O
����n����

Another optimization problem that has a polynomial time approxima�
tion scheme but has no fully polynomial time approximation scheme is the
Multi�Processor Scheduling problem� The polynomial time approxi�
mation scheme algorithm for this problem is closely related to approxima�
tion algorithms for the Bin Packing problem� We will discuss this after
the study of approximation algorithms for the Bin Packing problem�

We will study in this lecture a restricted version of the Traveling

Salesman problem�

De�nition 
�	
 Let G � 
V�E� be a weighted� undirected� and complete
graph� We say that the graph G satis�es the triangle inequality if for any
three vertices u� v� and w of G we have

weight
u� w� � weight
u� v� � weight
v� w�

The Traveling Salesman problem under triangle inequality is de�ned
as follows�

$�Traveling Salesman Problem 
$�TSP�

Input� a weighted� undirected� and complete graph G
satisfying the triangle inequality
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Output� a simple cycle of minimum weight that contains
all vertices of G

Let G be an input instance of the $�TSP� Every solution to G� i�e�� every
simple cycle in G that contains all vertices of G� will be called a traveling
salesman tour�

An important case of the $�TSP is the Euclidean TSP� in which each
vertex is a point in the Euclidean plane and the weight of an edge 
w� u�
equals the Euclidean distance between w and u�

Remark 
�	� Both $�TSP and Euclidean TSP are NP�hard�

We present the �rst approximation algorithm for the $�TSP based on
minimum spanning trees�

Algorithm 
�	� EasyTSP

Input� an input instance G of $�TSP

Output� a traveling salesman tour L

�� construct a minimum spanning tree T for G�
�� perform a depth first search on the tree T to compute

the dfs number for each vertex of T�
�� let L be the list of vertices of T sorted by their dfs

numbers�

	� return L as a traveling salesman tour for G�

The analysis of the time complexity of the above algorithm is pretty
simple� It is well�known that a minimum spanning tree of a graph of n
vertices can be constructed in time O
n��� It is also easy to see that each of
the steps �� 
� and 	 takes time bounded by O
n��� Therefore� the algorithm
EasyTSP runs in time O
n���

Now we consider the approximation ratio for the algorithm� A depth
�rst search process that computes the dfs numbers for vertices of a tree can
be implemented by the following simple algorithm�

Algorithm 
�	
 DFS
v�
�� counter � counter � ��

�� dfs�v� � counter�

�� for each child w of v do
DFS
w��

��
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Figure �� The minimum spanning tree T

This recursive subroutine is called by the following main program�

Algorithm 
�	� Main

fsuppose that vertex � is the root of the tree Tg
�� counter � ��

�� DFS
���

The depth �rst search process on the tree T can be regarded as a closed
walk L� of the tree 
a closed walk is a cycle in T in which each vertex may
appear more than once�� Each edge 
u� v�� where u is the father of v in T �
is traversed exactly twice in the walk L�� the �rst time when DFS
u� calls
DFS
v� we traverse the edge from u to v� and the second time when DFS
v�
is �nished and returns back to DFS
u� we traverse the edge from v to u�
Therefore� the walk L� has weight exactly twice the weight of the tree T � It
is also easy to see that the list L produced by the algorithm EasyTSP can
be obtained from the walk L� by deleting for each vertex v all but the �rst
occurrences of v in the list L�� Since each vertex appears exactly once in
the list L and G is a complete graph� L corresponds to a traveling salesman
tour�

Example 
�	� Consider the tree T in Figure �� where a is the root of the
tree T � The depth �rst search process traverses the tree T in the order

a� b� d� b� a� c� e� c� f� g� f� c� a

By deleting for each vertex v all but the �rst vertex occurrences for v� we
obtain the list of vertices of the tree T sorted by their dfs numbers

a� b� d� c� e� f� g

Deleting a vertex occurrence of v in the list f� � �uvw � � �g is equivalent
to replacing the path u � v � w by a single edge 
u� w�� Since the graph
G satis�es the triangle inequality� deleting vertex occurrences from a walk
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does not increase the weight of the walk� Consequently� the weight of the
traveling salesman tour L is not larger than the weight of the closed walk
L�� which is bounded by � times the weight of the minimum spanning tree
T �

Note that for the Traveling Salesman problem� we can assume with�
out loss of generality that all edge weights are non�negative integers 
oth�
erwise we add a su�ciently large weight to each edge�� Observe that the
weight of any traveling salesman tour is at least as large as the weight of the
minimum spanning tree T � removing any edge 
of non�negative weight�
from the traveling salesman tour results in a spanning tree of the graph G�
In conclusion� the traveling salesman tour L constructed by the algorithm
EasyTSP has weight bounded by � times the weight of a minimum traveling
salesman tour� We conclude with the following theorem�

Theorem 
�	� The approximation ratio of the algorithm EasyTSP is bounded
by ��

We give a simple example to show that the ratio � is tight for the ap�
proximation algorithm EasyTSP in the sense that there are input instances
for the $�TSP for which the algorithm EasyTSP produces a solution with
approximation ratio arbitrarily close to �� This kind of input instances can
actually appear for the Euclidean TSP� Consider the �gures in Figure ��
Suppose we are given �n points on the Euclidean plane with polar coordi�
nates xk � 
b� �k��n� and yk � 
b � d� �k��n�� k � �� � � � � n� where d is
much smaller than b� See Figure �
a�� where n � �� Then it is not hard 
for
example� by Kruskal�s algorithm for minimum spanning tree� to see that the
edges 
xk� xk���� k � �� � � � � n� � and 
xj � yj�� j � �� � � � � n form a minimum
spanning tree T for the set of points� See Figure �
b�� Now if we perform a
depth �rst search on T starting from the vertex x� and construct a traveling
salesman tour� we will get a tour L that is shown in Figure �
c� while an
optimal traveling salesman tour L� is shown in Figure �
d��

The weight of the tour L is about �a
n�����d� where a is the distance
between two adjacent points xk and xk�� 
note that when d is su�ciently
small compared with a� the distance between two adjacent points yk and
yk�� is roughly equal to the distance between the two corresponding points
xk and xk���� while the optimal traveling salesman tour has weight roughly
nd � na� When d is su�ciently small compared with a and when n is
su�ciently large� the ratio of the weight of the tour L and the weight of the
tour L� can be arbitrarily close to ��
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�� ��TSP� Christo�des algorithm

In this lecture� we will allow a graph to have �multiple edges�� i�e�� each pair
of vertices of a graph can be connected by more than one edge�

Let us reconsider the approximation algorithm EasyTSP for the $�TSP
problem� As we pointed out� after the minimum spanning tree T is con�
structed� we traverse the tree T by a depth �rst search process in which
each edge of T is traversed exactly twice� This process can be re�interpreted
as follows�

�� construct a minimum spanning tree�

�� double each edge of T into two edges� each of which has the same
weight as the original edge� Let the resulting graph be D�


� make a closed walk W in the graph D such that each edge of D is
traversed exactly once in W �

	� use �shortcuts�� i�e�� delete all but the �rst occurrences for each vertex
in the walk W to make a traveling salesman tour L�

There are three crucial facts that make the above algorithm correctly
produce a traveling salesman tour with approximation ratio �� 
�� the graph
D gives a closed walk in the graph G and D contains all vertices of G� 
��
the total weight of the graph D is bounded by � times the weight of an
optimal traveling salesman tour� and 

� the shortcuts do not increase the
weight of a closed walk so that we can derive a traveling salesman tour L
from D without increasing the weight of the walk�

Therefore� if we can construct a better graph D� whose weight is smaller
than the graph D constructed by the algorithm EasyTSP such that D� forms
a closed walk of G and that D� contains all vertices of G� then using the
shortcuts on D� should derive a better approximation to the minimum trav�
eling salesman tour�

For this� we need introduce a de�nition�
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De�nition 

	� An undirected connected graph G is an Euler graph if
there is a closed walk in G that traverses each edge of G exactly once�

Recent research has shown that Euler graphs play an important role in
designing e�cient parallel graph algorithms�

Theorem 

	� An undirected connected graph G is an Euler graph if and
only if every vertex of G has an even degree�

proof� Suppose that G is an Euler graph� Let W be a closed walk in G
that traverses each edge of G exactly once�

Let v be a vertex of G� Since W is a closed walk� each time W enters the
vertex v from an edge� W must leave the vertex v by another edge incident
on v� Therefore� each edge incident on v that is an �incoming� edge for W
must be paired with an edge incident on v that is an �outgoing� edge for
W � Since W traverses each edge exactly once� we conclude that the number
of edges incident on v� i�e�� the degree of v� is even�

Conversely� suppose that all vertices of the graph G have even degree�
We prove the theorem by induction on the number of edges in G� The
minimum such a graph G in which all vertices have even degree consists of
two vertices connected by two 
multiple� edges� This graph is clearly an
Euler graph�

Now suppose that G has more than two edges� Let v� be any vertex of
G� We construct a maximal walk W� starting from the vertex v�� That is�
starting from v�� on each vertex if there is an unused edge� then we extend
W� along that edge 
if there are more than one such edge� we pick any
one�� The process stops when we hit a vertex u on which there is no unused
incident edge� We claim that the ending vertex u must be the starting vertex
v�� In fact� for each interior vertex w in the walk W�� each time W� passes
through� W� uses one edge to enter w and uses another edge to leave w�
Therefore� if the process stops at u and u �� v�� then the walk W� has only
used an odd number of edges incident on u� This contradicts our assumption
that the vertex u is of even degree� This proves the claim� Consequently�
the walk W� is a closed walk�

The closed walk W� can also be regarded as a graph� By the de�nition�
the graph W� itself is an Euler graph� According to the proof for the �rst
part of this theorem� all vertices of the graph W� have even degree� Now
removing all edges in the walk W� from the graph G results in a graph
G� � G�W�� The graph G� may not be connected� However� all vertices
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of G� must have an even degree because each vertex of the graphs G and
W� has an even degree�

Let C�� C�� � � �� Ch be the connected components of the graph G�� By
the inductive hypothesis� each connected component Ci is an Euler graph�
Let Wi be a closed walk in Ci that traverses each edge of Ci exactly once�
for i � �� � � � � h� Moreover� for each i� the closed walk W� contains at least
one vertex vi in the connected component Ci 
if W� does not contain any
vertex from Ci� then the vertices of Ci have no connection to the vertices in
the walk W� in the original graph G� this contradicts the assumption that
the graph G is connected��

Therefore� it is easy to insert each closed walk Wi into the closed walk
W� 
by replacing any vertex occurrence of vi in W� by the list Wi� where Wi

is given by beginning and ending with vi�� for all i � �� � � � � h� This forms
a closed walk W for the original graph G such that the walk W traverses
each edge of G exactly once� Thus� the graph G is an Euler graph�

The proof of Theorem ���� suggests an algorithm that constructs a closed
walk W for an Euler graph G such that the walk W traverses each edge
of G exactly once� This walk will be called an Euler tour� By a careful
implementation� one can make this algorithm run in linear time� We leave
the detailed implementation to the reader� Instead� we state this result
without a proof as follows�

Theorem 

	
 There is an algorithm that� given an Euler graph� con�
structs an Euler tour in linear time�

Now we are ready to show how a better Euler graph D� can be con�
structed based on a minimum spanning tree� from which a better approxi�
mation for the minimum traveling salesman tour can be derived�

Let G be an input instance of the $�TSP problem and let T be a mini�
mum spanning tree in G� We have

Lemma 

	� The number of vertices of the tree T that has an odd degree
in T is even�

proof� Let v�� � � �� vn be the vertices of the tree T � Since each edge
e � 
vi� vj� of T contributes one degree to vi and one degree to vj � we must
have

nX
i��

degT 
vi� � �
n� ��
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where degT 
vi� is the degree of the vertex vi in the tree T � Note that n� �
is the number of edges in the tree T � We partition the set of vertices of T
into odd degree vertices and even degree vertices� Then we haveX

vi� even degree

degT 
vi� �
X

vj � odd degree

degT 
vj� � �
n� ��

Since both
P
vi� even degree degT 
vi� and �
n � �� are even numbers� the

value
P
vj � odd degree degT 
vj� is also an even number� Consequently� the

number of vertices that have odd degree in T must be even�

By Lemma ���
� we can suppose� without loss of generality� that v�� v��
� � �� v�h be the odd degree vertices in the tree T � The vertices v�� v�� � � �� v�h
induce a complete subgraph H in the original graph G� Now construct a
minimum weight complete matching Eh in H � The matching Eh consists of
h edges such that each of the vertices v�� v�� � � �� v�h is incident on exactly
one edge in Eh� Thus� adding the edges in Eh to the tree T results in a graph
D� � T�Eh in which all vertices have an even degree� By Theorem ����� the
graph D� is an Euler graph� Moreover� the graph D� contains all vertices of
the graph G� We are now able to derive a traveling salesman tour L� from
D� by using shortcuts�

We formally present this in the following algorithm� The algorithm is
due to N� Christo�des�

Algorithm 

	� Christofides

Input� an input instance G of $�TSP

Output� a traveling salesman tour L

�� construct a minimum spanning tree T for G�
�� let v�� � � �� v�h be the odd degree vertices in T�

construct a minimum weight matching Eh in the

complete graph induced by v�� � � �� v�h�

�� construct an Euler tour W� in the Euler graph

D� � T � Eh�

	� use shortcuts to derive a traveling salesman tour L�

from W��

�� return L��

It is known that a minimum weight matching can be constructed in time
O
n�� 
see lecture notes ���� for discussion on graph matchings�� The other
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steps of the algorithm Christofides clearly take time O
n��� Therefore�
the algorithm Christofides runs in time O
n���

Now let us study the approximation ratio for the algorithm Christofides�

Lemma 

	� The weight of the minimum weight matching Eh on v�� v��
� � �� v�h�

P
e�Eh

weight
e�� is at most ��� of the weight of an optimal traveling
salesman tour in the graph G�

proof� Let L be an optimal traveling salesman tour in the graph G� By
using shortcuts� i�e�� by removing the vertices that are not in fv�� v�� � � � � v�hg
from the tour L� we obtain a simple cycle L� that contains exactly the vertices
v�� � � �� v�h� Since G satis�es the triangle inequality� the weight of L� is not
larger than the weight of L�

Moreover� the simple cycle L� can be decomposed into two disjoint
matchings of fv�� � � � � v�hg � one matching is obtained by taking every
other edge in the cycle L� and the other matching is formed by the rest
of the edges� Of course� both of these two matchings have weight at least as
large as the minimum weight matching Eh on fv�� � � � � v�hg� This gives

weight
L� � weight
L�� � � � weight
Eh�

This completes the proof�

Now the analysis is clear� We have D� � T �Eh� Thus

weight
D�� � weight
T � � weight
Eh�

By the analysis for the algorithm EasyTSP 
Algorithm ������ the weight of
T is not larger than the weight of an optimal traveling salesman tour for G�
Combining this with Lemma ���	� we conclude that the weight of the graph
D� is bounded by ��� times the weight of an optimal traveling salesman
tour in G� Moreover� the traveling salesman tour L� constructed by the
algorithm Christofides is obtained by using shortcuts on the graph D�

and thus has weight not larger than the weight of D�� We close this lecture
with the following theorem�

Theorem 

	� The algorithm Christofides for the $�TSP problem runs
in time O
n�� and has approximation ratio ����

As for the algorithm EasyTSP� one can show that the ratio ��� is tight for
the algorithm Christofides in the sense that there are input instances of
$�TSP for which the algorithm Christofides produces traveling salesman
tours with approximation ratio arbitrarily close to ����
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�� Bin Packing problem

In the previous lectures� we have presented several approximation algorithms
for NP�hard optimization problems� In this lecture� we study approximation
algorithms for the Bin Packing problem� Recall that the Bin Packing

problem is de�ned as

Bin Packing

Input� ht�� t�� � � � � tn�Bi� all integers and ti � B for all i

Output� a packing of the n objects of size t�� � � �� tn into the
minimum number of bins of size B

Since the number of bins used by any packing cannot be larger than the
number of objects in the input� according to Theorem ����� the Bin Pack�
ing problem has no fully polynomial time approximation scheme� On the
other hand� it is fairly easy to design a polynomial time approximation algo�
rithm for the Bin Packing problem with a reasonably good approximation
ratio� Consider the following simple approximation algorithm for the Bin
Packing problem�

Algorithm 
�	� First�Fit 
FF


Input� I � ht�� t�� � � � � tn�Bi
Output� a packing of the n objects into bins of size B

�� for i � � to n do
�� j � �
�� notput � true�

	� while notput do

�� if object i can be put in bin j
�� then put i in bin j� notput � false�

�� else j � j � �
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The for loop in the algorithm is executed n times� and in each execution�
the while loop can be done in O
n� time since ti � B for all i� This
concludes that the algorithm First�Fit runs in time O
n��� What is the
approximation ratio for the algorithm�

Theorem 
�	� The algorithm First�Fit has approximation ratio ��

proof� We observe that there is at most one used bin whose content
is not larger than B��� In fact� suppose that there are two used bins Bi

and Bj whose contents are bounded by B��� Without loss of generality� let
i � j� Then the algorithm First�Fit would have put the objects in the bin
Bj into the bin Bi since the bin Bi has enough room for them and the bin
Bi is considered before the bin Bj by the algorithm First�Fit�

Now the theorem can be proved in two cases�
Suppose that the contents of all used bins are not less than B��� Let m

be the number of bins used by the algorithm First�Fit� We have

nX
i��

ti � mB

�

Since the bin size is B� we need at least

d

nX
i��

ti��Be � d
mB��
�B�e � m��

bins to pack the n objects� i�e�� Opt
I� � m��� Therefore� the approximation
ratio is bounded in this case by

m

Opt
I�
� m

m��
� �

Now suppose that there is a used bin whose content x is less than B���
Again letm be the number of bins used by the algorithm First�Fit� There�
fore� there are m� � bins with contents at least B��� This gives us

nX
i��

ti � 
m� ��B

�
� x �


m� ��B

�

Thus� d
Pn
i�� ti��Be � 
m� ����

��




If m�� is an even number� then since both d
Pn
i�� ti��Be and 
m�����

are integers� we get

d

nX
i��

ti��Be � 
m� ���� � � � m��

If m� � is an odd number� then

d

nX
i��

ti��Be � d
m� ����e � 
m� ���� � ��� � m��

Note that any packing should use at least d
Pn
i�� ti��Be bins� In partic�

ular�

Opt
I� � d

nX
i��

ti��Be

The above analysis shows that the approximation ratio is bounded by

m

Opt
I�
� m

d
Pn
i�� ti��Be

� m

m��
� �

This proves the theorem�

Therefore� the Bin Packing problem can be approximated in polyno�
mial time with approximation ratio �� Can we do better than �� In particu�
lar� does the Bin Packing problem have a polynomial time approximation
scheme� A negative answer to this question can be easily derived� as shown
in the following theorem�

Theorem 
�	
 There is no polynomial time approximation algorithm for
the Bin Packing problem with approximation ratio less than ��� unless
P � NP �

proof� Suppose that we have a polynomial time approximation algorithm
A with approximation ratio less than ��� for the Bin Packing problem�
We show how we can use this algorithm to solve in polynomial time the
Partition problem� which is NP�complete�

Recall that Partition is a decision problem de�ned as follows�

Partition

Input� A set fx�� x�� � � � � xng of n integers

Question� Is there a subset S� � S such thatP
i�S� xi �

P
j�S�S� xj�

��	



Given an input instance X � ft�� t�� � � � � tng for the Partition problem�
if
Pn

i�� ti is an odd number� then we know X is a NO�instance� Otherwise�
let B � 


Pn
i�� ti���� and let g
X� � ht�� t�� � � � � tn�Bi be an instance for the

problem Bin Packing� Now apply the approximation algorithm A for the
Bin Packing problem on the input g
X�� Suppose that the approximation
algorithm A usesm bins for this input instance g
X�� There are two di�erent
cases�

If m � 
 bins� then since we have

m�Opt
g
X��� ���

we get Opt
g
X�� � �� That is� the objects t�� � � �� tn cannot be packed
into two bins of size B � 


Pn
i�� ti���� Consequently� the instance X �

ft�� t�� � � � � tng is a NO�instance for the Partition problem�
On the other hand� if m � �� then we must have m � �� Thus� the

objects t�� � � �� th can be evenly split into two sets of equal size� That is� the
instance X � ft�� t�� � � � � tng is a YES�instance for the Partition problem�

Therefore� the instance X is a YES�instance for the Partition problem
if and only if the approximation algorithm A uses two bins to pack the
instance g
X�� Since by our assumption� the approximation algorithm A

runs in polynomial time� we conclude that the Partition problem can be
solved in polynomial time�

Since the Partition problem is NP�complete� this implies P � NP� The
theorem is proved�

We observe that the ��� lower bound on approximation ratio for the
Bin Packing problem occurs when the optimal value Opt
X� is very small�
Similar lower bounds on approximation ratio can be derived for optimiza�
tion problems that remain NP�hard even when the optimal value is very
small� Examples include Graph Coloring and Graph Edge Coloring

problems�
In some cases� we may be interested in the asymptotic lower bounds on

approximation ratio of an optimization problem� For instance� we may want
to ask whether the ��� lower bound can still be achieved when the optimal
value is su�ciently large for a input instance for the Bin Packing problem�
This question is closely related to the concept of asymptotic approximation
scheme de�ned as follows�

De�nition 
�	� An optimization problem Q � hI� S� f� opti has a asymp�
totic polynomial time approximation scheme 
APTAS� if for any �xed con�
stant � � �� there is a constant c� and a polynomial time approximation

���



algorithm A� for Q such that for all input instances x � I with Opt
x� � c��
the algorithmA� produces a solution for x with approximation ratio bounded
by � � ��

We will show that the Bin Packing problem has an asymptotic poly�
nomial time approximation scheme�

Let us start with a restricted version of the Bin Packing problem� which
will be called the 

� ���Bin Packing problem� There are two restrictions�
First� we assume that the input objects have at most a constant number
� of di�erent sizes� Second� we assume that the size of each input object
is at least as large as a 
 factor of the bin size� The following is a formal
de�nition�



� ���Bin Packing

Input� ht� � n�� t� � n�� � � � � t� � n� �Bi� where 
B � ti � B for
all i� interpreted as� for the n �

P�
i�� ni input objects� ni of

them are of size ti� for i � �� � � � � �

Output� a packing of the n objects into the minimum number
of bins of size B

We �rst study the properties of the 

� ���Bin Packing problem� Let
I � ht� � n�� � � � � t� � n� �Bi be an input instance for the 

� ���Bin Packing
problem� Suppose that an optimal packing packs the objects in I into m
bins B�� B�� � � �� Bm� Consider the �rst bin B�� Suppose that the bin B�

contains b� objects of size t�� b� objects of size t�� � � �� and b� objects of size
t� � We then call


b�� b�� � � � � b��

the con�guration of the bin B�� Since each object has size at least 
B and
the bin size is B� the bin B� contains at most ��
 objects� In particular�
we have bi � ��
 for all i� Therefore� the total number of di�erent bin
con�gurations is bounded by 
��
���

Now consider the set I � of objects that is obtained from the set I with
all objects packed in the bin B� removed� The set I � can be written as

I � � ht� � 
n� � b��� t� � 
n� � b��� � � � � t� � 
n� � b���Bi

Note that I � is also an input instance for the 

� ���Bin Packing problem
and the packing 
B�� B�� � � � � Bm� is an optimal packing for I � 
I � cannot be
packed into less than m� � bins otherwise the set I can be packed into less

���



than m bins�� Therefore� if we can pack the set I � into a minimum number
of bins then an optimal packing for the set I can be obtained by packing
the rest of the objects into a single bin B��

Now the problem is that we do not know the con�guration for the bin
B�� Therefore� we will try all possible con�gurations for a single bin� and
recursively �nd an optimal packing for the rest of the objects� As pointed
out above� the number of bin con�gurations is bounded by 
��
��� which is
a constant when both 
 and � are �xed� In the next lecture� we will present
a dynamic programming algorithm that constructs an optimal packing for
an input instance for the 

� ���Bin Packing problem�

���
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�	 The ��� �
�Bin Packing problem

Recall that the 

� ���Bin Packing problem is de�ned as follows�



� ���Bin Packing

Input� ht� � n�� t� � n�� � � � � t� � n� �Bi� where 
B � ti � B for
all i� interpreted as� for the n �

P�
i�� ni input objects� ni of

them are of size ti� for i � �� � � � � �

Output� a packing of the n objects into the minimum number
of bins of size B

Fix an input instance I � ht� � n�� � � � � t� � n� �Bi of the 

� ���Bin
Packing problem� Each subset of objects in I can be written as a ��tuple
�h�� � � � � h�� with hi � ni to specify that the subset contains hi objects of
size ti for all i� In particular� the input instance I itself can be written as
�n�� � � � � n���

Let %H �h�� � � � � h�� denote the minimum number of bins needed to pack
the subset �h�� � � � � h�� of the input instance I for the 

� ���Bin Pack�

ing problem� Suppose that %H �h�� � � � � h�� � �� According to the discus�
sion in the last lecture� we know that %H �h�� � � � � h�� is equal to � plus
%H �h� � b�� � � � � h� � b�� for some bin con�guration 
b�� b�� � � � � b��� On the
other hand� since %H �h�� � � � � h�� corresponds to an optimal packing of the
subset �h�� � � � � h��� %H �h�� � � � � h�� is actually equal to � plus the minimum
of %H �h��b�� � � � � h��b�� over all consistent bin con�gurations 
b�� � � � � b���
This suggests an algorithm that uses the dynamic programming technique
to compute the value of %H �h�� � � � � h��� In particular� %H �n�� � � � � n�� gives
the optimal value for the input instance I for the 

� ���Bin Packing prob�
lem�

De�nition 
�	� Fix an input instance I � ht� � n�� � � � � t� � n� �Bi for the


� ���Bin Packing problem� Let I � � �h�� � � � � h�� be a subset of the input

���



objects in I � where hi � ni for all i� A ��tuple 
b�� � � � � b�� is an addable bin
con�guration to I � if

�� hi � bi � ni for all i � �� � � � � �� and
��
P�

i�� tibi � B�

Intuitively� an addable bin con�guration speci�es a bin con�guration
that can be obtained using the objects in I that are not in the subset I ��

Now we are ready for presenting the following dynamic programming
algorithm� We use a ��dimensional array H ����n�� � � � � ���n�� 
note that � is
a �xed constant� such that H �i�� � � � � i�� records an optimal packing for the
subset �i�� � � � � i�� of I � We use the notation %H �i�� � � � � i�� to denote the
number of bins used in the packing H �i�� � � � � i��� For a packing H �i�� � � � � i��
and a bin con�guration 
b�� � � � � b��� we will use

H �i�� � � � � i��� 
b�� � � � � b��

to represent the packing for the subset �i�� b�� � � � � i�� b�� that is obtained
from H �i�� � � � � i�� by adding a new bin with con�guration 
b�� � � � � b���

Algorithm 
�	� 

� ���Precise
Input� I � ht� � n�� � � � � t� � n� �Bi� where ti � 
B for all i
Output� a bin packing of I using minimum number of bins�

�� %H �i�� � � � � i�� � �� for all � � ij � nj� � � j � ��

�� H ��� � � � � �� � �� %H ��� � � � � �� � ��
�� for i� � � to n� do
	� for i� � � to n� do

���

�� for i� � � to n� do
�� for each bin configuration 
b�� � � � � b��

addable to the subset �i�� � � � � i�� do
�� if %H �i� � b�� � � � � i� � b�� � � � %H �i�� � � � � i��
�� then

H �i� � b�� � � � � i� � b�� � H �i�� � � � � i��� 
b�� � � � � b���
%H �i�� b�� � � � � i� � b�� � %H �i�� � � � � i�� � �

Steps ��� can obviously be done in time O
n�� Since bi � ��
 for all
i � �� � � ��� there are at most 
��
�� addable bin con�gurations for each
subset �i�� � � � � i��� Moreover� ni � n for all i � �� � � � � �� Therefore� steps
��� can be executed at most n�
��
�� times� We conclude that the running

���



time of the algorithm 

� ���Precise is bounded by O
n���
��
���� which
is a polynomial of n when 
 and � are �xed�

The algorithm 

� ���Precise is not very satisfying� In particular� even
for a moderate constant � of di�erent sizes� the factor n��� in the complexity
makes the algorithm not practically useful� On the other hand� we will see
that our approximation algorithm for the general Bin Packing problem is
based on solving the 

� ���Bin Packing problem with a very large constant
� and a very small constant 
� Therefore� we need� if possible� to improve
the above time complexity� In particular� we would like to see if there is an
algorithm that solves the 

� ���Bin Packing problem such that in the time
complexity of the algorithm� the exponent of n is independent of the values
of � and 
�

Fix an input instance I � ht� � n�� � � � � t� � n� �Bi for the 

� ���Bin
Packing problem� We say that a ��tuple 
b�� � � � � b�� is a feasible bin con�
�guration if bi � ni for all i and t�b� � � � � t�b� � B� Since ti � 
B for all i�
we get bi � ��
 for all i� Therefore� there are totally at most 
��
�� feasible
bin con�gurations� Let all feasible bin con�gurations be

T� � 
b��� b��� � � � � b���
T� � 
b��� b��� � � � � b��� 
��

���

Tq � 
bq�� bq�� � � � � bq��

where q � 
��
��� Note that the above list of feasible bin con�gurations can
be constructed in time independent of the number n �

P�
i�� ni of objects

in the input instance I � Now each bin packing P of the input instance I
can be written as a q�tuple hx�� x�� � � � � xqi� where xj is the number of bins
of bin con�guration Tj used in the packing P � Moreover� there is essentially
only one bin packing that corresponds to the q�tuple hx�� x�� � � � � xqi� if we
ignore the ordering of the bins used� An optimal packing corresponds to a
q�tuple hx�� x�� � � � � xqi with x� � � � �xq minimized�

Conversely� in order to let a q�tuple hx�� x�� � � � � xqi to describe a real
pin packing� we need to make sure that the q�tuple uses exactly the input
objects given in I � For each feasible bin con�guration Tj � there are bjh
objects of size th� Therefore� if xj bins are of bin con�guration Tj � then for
the bin con�guration Tj � the q�tuple assumes xjbjh objects of size th� Now
adding these over all bin con�gurations� we conclude that the total number

���



of objects of size th assumed by the q�tuple hx�� x�� � � � � xqi is

x�b�h � x�b�h � � � �� xqbqh

This should match the number nh of objects of size th in the input instance
I � This formulates the conditions into the following linear programming
problem�

min x� � x� � � � �� xq

x�b�� � x�b�� � � � �� xqbq� � n�

x�b�� � x�b�� � � � �� xqbq� � n� 
��

���

x�b�� � x�b�� � � � �� xqbq� � n�

xi � �� for i � �� � � � � q

Since all xis must be integers� this is an integer linear programming problem�
It is easy to see that if a q�tuple hx�� � � � � xqi corresponds to a valid bin
packing of the input instance I � then the vector 
x�� � � � � xq� satis�es the
constraints in the system 
��� Conversely� any vector 
x�� � � � � xq� satisfying
the constraints in the system 
�� describes a valid bin packing for the input
instance I � Moreover� it is easy to see that if a vector 
x�� � � � � xq� satisfying
the constraints in the system 
�� is given� the corresponding bin packing can
be constructed in linear time�

Therefore� to construct an optimal solution for the input instance I for
the 

� ���Bin Packing problem� we only need to construct an optimal
solution for the integer linear programming system 
��� As we discussed
before� the Integer Linear Programming problem in general is NP�
hard� But here the nice thing is that both the number q of variables and the
number q�� of constraints in the system 
�� are independent of n �

P�
i�� ni�

However� this does not immediately imply that the system can be solved in
time independent of n � the numbers ni appearing on the right side of the
system may be as large as n�

Anyway� the above system has at least suggested a polynomial time
algorithm for solving the problem� we know that an optimal solution must
satisfy x�� � � �� xq � n� Thus� � � xi � n for all i � �� � � � � q in an optimal
solution� Therefore� we could enumerate all vectors 
x�� � � � � xq� satisfying
� � xi � n and solve the system 
��� Note that there are totally 
n���q such
vectors and q is independent of n� However� since q has order 
��
��� this

���



enumerating algorithm gives a polynomial time algorithm whose complexity
is even worse than that of the algorithm 

� ���Precise�

Fortunately� Lenstra in ���
 has described an algorithm that solves the
system 
�� in time h
q� ��� where h
q� �� is a function depending only on q
and �� Since the algorithm involves complicated analysis on integer linear
programming� we omit the description of the algorithm�

We summarize the above discussion�

Algorithm 
�	
 

� ���Precise�
Input� I � ht� � n�� � � � � t� � n� �Bi� where ti � 
B for all i
Output� a bin packing of I using the minimum number of bins�

�� construct the list 
�
 of all feasible configurations

T�� T�� � � � � Tq�

�� solve the system 
�
 using Lenstra�s algorithm�

�� return the solution hx�� � � � � xqi of step ��

Algorithm 

� ���Precise�� as discussed above� runs in time h�
q� �� �
h�
�� 
�� where h� is a function depending only on 
 and �� This may
seem a bit surprising since the algorithm packs n �

P�
i�� ni objects in time

independent of n& This is really a matter of coding� Note that the input I �
ht� � n�� � � � � t� � n��Bi of the algorithm 

� ���Precise� actually consists of
���� integers� and the solution hx�� � � � � xqi given by the algorithm consists
of q � 
����� integers� To convert the vector hx�� � � � � xqi into an actual
packing of the n �

P�
i�� ni input objects� an extra step of time O
n� should

be added�

Theorem 
�	� The 

� ���Bin Packing problem can be solved in time
O
n� � h

� ��� where h

� �� is a function independent of n�
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�
 Approximating Bin Packing

In the last lecture� we have shown that the 

� ���Bin Packing problem can
be solved in time O
n� � h

� ��� where h

� �� is a function independent of
n�

In today�s lecture� we use the solution for the 

� ���Bin Packing prob�
lem to develop an approximation algorithm for the general Bin Packing

problem� Let us �rst roughly describe the basic idea of the approximation
algorithm�

An input instance of the general Bin Packing problem may contain
objects of small size and objects of many di�erent sizes� To convert an input
instance I � ht�� � � � � tn�Bi of the general Bin Packing problem to an input
instance of the 

� ���Bin Packing problem� we perform two preprocessing
steps�

�� ignore the objects of small size� i�e�� the objects of size less than 
B�
and

�� sort the rest of the objects by their sizes in decreasing order� then
partition the sorted list into � groups G�� � � �� G�� For each group Gi�
replace every object by the one with the largest size t�i in Gi�

After the preprocessing steps� we obtain an instance I � � ht�� � m� � � � � t�� �
m�Bi of the 

� ���Bin Packing problem� where m � n��� Now we use the
algorithm we have described to construct a solution Y �� which is a packing�
for the instance I �� To obtain a solution Y to the original input instance
I of the Bin Packing problem� we �rst replace each object in Y � by the
corresponding object in I � then add the objects in I that have size smaller
than 
B using greedy method�

The intuition is that an optimal solution to I � is an over�estimation of
the optimal solution to I 
since each object in I is replaced by a larger
object in I �� the number of bins used by an optimal packing of I � is at least

��




as large as the number of bins used by an optimal packing of I�� while an
optimal solution to I �� � ht�� � m� � � � � t�� � m�Bi is an under�estimation of
the optimal solution to I 
I �� can be regarded as an instance obtained by
replacing each object of I in the group Gi by a smaller object of size t�i��
for � � i � � � � and deleting the objects in the last group G��� Since the
instance I �� can also be obtained by deleting the m largest objects in I �� an
optimal packing of I � uses at most m more bins than an optimal packing of
I �� 
the m bins are used to pack the m largest objects in I ��� Therefore� an
optimal packing of I � uses at most m more bins than an optimal packing
of I � with the objects of size less than 
B ignored� When the value � is
su�ciently large� the value m � n�� is small so that an optimal solution to
I � will be a good approximation to the optimal solution to I with objects of
size less than 
B ignored�

Finally� after a good approximation of the optimal solution to the in�
stance I minus the small objects is obtained� we add the small objects to
this solution using greedy method� Since the small objects have small size�
the greedy method will not leave much room in each bin� Thus� the resulting
packing will be a good approximation for the input instance I of the general
Bin Packing problem�

We present the formal algorithm and formal analysis as follows�

Algorithm 
�	� ApprxBinPacking

Input� I � ht�� � � � � tn�Bi and � � �
Output� a packing of the objects in I

�� sort t�� � � � � tn� without loss of generality� let

t� � t� � � � � � tn
�� let h be the largest index such that th � �B��� let

I� � ht�� t�� � � � � th�Bi
�� let � � d	���e� partition the objects in I� into �

groups G�� � � �� G�� such that the group Gi consists

of the objects

t�m���i��� t�m���i��� � � � � tmi

where m � dh��e 
the last group G� contains m� � m
objects
�

	� construct an optimal solution Y � to the instance

I � � ht� � m� tm�� �m� t�m�� �m� � � � � t�����m�� �m
��Bi

for the 
���� ���Bin Packing problem�

�� replace each object in Y � of size tjm�� by a proper

��	



object in the group Gj�� of I�� for j � �� � � � � � � ��
to construct a packing Y� for the instance I��

�� add the objects th��� � � � � tn in I to the packing Y� by

greedy method 
i�e�� no new bin will be used until no

used bin has enough space for the current object
�

This results in a packing for the instance I�

According to Theorem �	�� and note that � � d	��e� the 
���� ���Bin
Packing problem can be solved in time O
n� � h
���� �� � O
n� � h�
���
where h�
�� is a function depending only on �� we conclude that the algorithm
ApprxBinPacking runs in time O
n logn� � h�
��� if an O
n logn� time
sorting algorithm is used for step ��

We discuss the approximation ratio for the algorithm ApprxBinPacking�
As before� we denote by Opt
I� the optimal value� i�e�� the number of bins
used by an optimal packing� of the input instance I of the Bin Packing

problem�

Lemma 
�	� Let I� be the input instance constructed by step � of the al�
gorithm ApprxBinPacking� Then

Opt
I�� � Opt
I�

proof� This is because I� is a subset of I so I takes at least as many bins
as I��

Lemma 
�	
 Let I� and I
� be the input instances constructed by step � and

step 
 of the algorithm ApprxBinPacking� respectively� Then

Opt
I �� � Opt
I��
� � �� � �

proof� Note that the instance I � is obtained from the instance I� by
replacing each object in a group Gi by the largest object t�i���m�� in the
group� Therefore� an optimal packing for the instance I � uses at least as
many bins as that used by an optimal packing for the instance I�� This
gives

Opt
I�� � Opt
I ��

Now let
I �� � htm�� � m� t�m�� � m� � � �� t�����m�� �m

��Bi

���



I �� can be regarded as an instance obtained from I� by 
�� replacing each
object in the group Gi by a smaller object tim�� 
recall that tim�� is the
largest object in group Gi���� for all i � �� � � � � ���� 
�� replacing m� objects
in group G��� by a smaller object t�����m��� and 

� eliminating rest of the
objects in group G��� and all objects in group G�� Therefore� an optimal
packing for I� uses at least as many bins as an optimal packing for I ��� This
gives

Opt
I ��� � Opt
I��

Finally� the di�erence between the instances I � and I �� are m objects of size
t�� Since an object can �t into a bin� we must have

Opt
I �� � Opt
I ��� �m

Combining all these we obtain

Opt
I�� � Opt
I �� � Opt
I�� �m

This gives us

Opt
I �� � Opt
I�� �m � Opt
I�� � dh��e
� Opt
I�� � h�� � � � Opt
I�� � h���	 � � 
���

Now since each object of I� has size at least �B��� each bin can hold at
most b���c objects� Thus� the number of bins Opt
I�� used by an optimal
packing for the instance I� is at least as large as �h���

�h�� � Opt
I��

Use this in Equation 
���� we get

Opt
I �� � Opt
I�� � � �Opt
I���� � � � Opt
I��
� � �� � �

The lemma is proved�

Lemma 
�	� The solution Y� constructed by step � of ApprxBinPacking
is a packing for the instance I�� Moreover� the number of bins used by Y� is
at most Opt
I��
� � �� � ��

proof� First note that the instances I� and I � have the same number
of objects� The solution Y� to I� is obtained from the optimal solution Y �

to the instance I � by replacing each of the m objects of size t�i���m�� in I �

���



by an object in group Gi of I�� Since no object in group Gi has size larger
than t�i���m��� we actually replace objects in the bins in Y � by objects of
the same or smaller size� Therefore� no bin would get content more than B

in the packing Y�� This shows that Y� is a packing for the instance I��
Finally� since Y� uses exactly the same number of bins as Y � and Y � is

an optimal packing for I �� By Lemma ����� the number of bins used by Y��
i�e�� the number of bins Opt
I �� used by Y �� is at most Opt
I��
� � �� � ��

Now we are ready for deriving our main theorem�

Theorem 
�	� For any input instance I � ht�� � � � � tn�Bi of the Bin Pack�
ing problem and for any � � � � �� the algorithm ApprxBinPacking con�
structs a bin packing of I that uses at most Opt
I�
� � �� � � bins�

proof� According to Lemma ���
� the solution Y� constructed by step
� of the algorithm ApprxBinPacking is a packing for the instance I�� Now
step � of the algorithm simply adds the objects in I � I� to Y� using greedy
method� Therefore� the algorithm ApprxBinPacking constructs a packing
for the input instance I � Let Y be the packing constructed by the algorithm
ApprxBinPacking for I and let r be the number of bins used by Y � There
are two cases�

If in step � of the algorithm ApprxBinPacking� no new bin is introduced�
Then r equals the number of bins used by Y�� According to Lemma ���

and Lemma ����� we get

r � Opt
I��
� � �� � � � Opt
I�
� � �� � �

and the theorem is proved�
Thus� we assume that in step � of the algorithm ApprxBinPacking� new

bins are introduced� According to our greedy strategy� no new bin is intro�
duced unless no used bin has enough room for the current object� Since all
objects added by step � have size less than ���� we conclude that all of the
r bins in Y � except maybe one� have content larger than B
� � ����� This
gives us

t� � � � �� tn � B
�� ����
r� ��

Therefore� an optimal packing of the instance I uses more than 
������
r�
�� bins� From

Opt
I� � 
�� ����
r� ��

���



we derive
r � Opt
I��
�� ���� � � � Opt
I�
� � �� � �

The last inequality is because � � ��
Therefore� in any case� the packing Y constructed by the algorithm

ApprxBinPacking for the input instance I of the Bin Packing problem
uses at most Opt
I�
�� �� � � bins� The theorem is proved�

Note that the condition that � must be less than or equal to � loses no
generality� In particular� if we are interested in an approximation algorithm
for the Bin Packing problem with approximation ratio � � � with � � ��
we simply use the First�Fit algorithm 
Algorithm �
����

We conclude the lecture by the following theorem�

Theorem 
�	� The Bin Packing problem has an asymptotic polynomial
time approximation scheme�

proof� For any � � �� let c� � ���� For each input instance I of the Bin
Packing problem� let the algorithm ApprxBinPacking construct in time
O
n logn� � h�
���� a packing that uses at most r � Opt
I�
� � ���� � �
bins� Now for input instances I with Opt
I� � c� � ���� we have

r

Opt
I�
� � �

�

�
�

�

Opt
I�
� � � �

By the de�nition� the Bin Packing problem has an asymptotic polynomial
time approximation scheme�

The algorithm ApprxBinPacking runs in time O
n logn� � h�
��� which
is not a polynomial of ���� When � is small� the value h�
�� can be huge�
Therefore� a further improvement on the algorithm ApprxBinPacking is
an algorithm of the similar approximation ratio but with the running time
bounded by a polynomial of n and ���� This kind of algorithms is charac�
terized by the following de�nition�

De�nition 
�	� An optimization problem Q � hI� S� f� opti has an asymp�
totic fully polynomial time approximation scheme 
AFPTAS� if there is an
approximation algorithm A for Q such that for any � � �� there is a constant
c� such that for all input instances x � I with Opt
x� � c�� the algorithm
A produces in time polynomial in both n and ��� a solution for x with
approximation ratio bounded by � � ��

���



The question whether the Bin Packing problem has an asymptotic
fully polynomial time approximation scheme was answered by Karmakar
and Karp� who use a similar approach that reduces the bin packing problem
to the linear programming problem� The algorithm uses some deep observa�
tions on the linear programming problem� We omit the detailed description
here� Instead� we state the result directly�

Theorem 
�	� 
Karmakar and Karp� There is an approximation algorithm
A for the Bin Packing problem such that for any � � �� the algorithm A

produces in time polynomial in n and ��� a packing in which the number of
bins used is bounded by

Opt
x�
� � �� � ���� � 


Corollary 
�	
 The Bin Packing problem has an asymptotic fully poly�
nomial time approximation scheme�

proof� For any � � �� let c� � 
� � �������� For each input instance I
of the Bin Packing problem� let the Karmakar�Karp algorithm construct
a packing that uses at most

r � Opt
I�
� � ���� � 
����� � 


bins� Now for input instances I with

Opt
I� � c� � 
� � �������

we have
r

Opt
I�
� � �

�

�
�


����� � 


Opt
I�
� � � �

Moreover� the algorithm runs in time polynomial in n and ���� which is also
in polynomial in n and ����

���
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�� Multi�processor scheduling

In the next few lectures� we study how the techniques developed for the Bin
Packing problem can be used to develop a polynomial time approximation
scheme for the Multi�Processor Scheduling problem�

Recall that the Multi�Processor Scheduling problem is de�ned as
follows�

Multi�Processor Scheduling

Input� ht�� t�� � � � � tn�mi� all integers� where ti is the processing
time for the ith job

Output� a scheduling of the n jobs on m identical processors
such that the parallel �nish time is minimized

We point out a few properties for the Multi�Processor Scheduling

problem�

�� Even if we �x the number m of processors to be any constant larger
than �� the problem is still NP�hard 
Theorem �
�
��

�� If the number m of processors is a �xed constant� then the problem
has a fully polynomial time approximation scheme 
Corollary ������


� If m is not �xed� the problem is strongly NP�hard and has no fully
polynomial time approximation scheme unless P � NP 
see Lecture
Notes %����

Therefore� the best we can expect for theMulti�Processor Schedul�

ing problem is a 
non�fully� polynomial time approximation scheme�
The Multi�Processor Scheduling problem can also be regarded as

a variation of the Bin Packing problem in which we are given n objects of
sizes t�� � � �� tn� respectively� and the number m of bins� and we are asked

�
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to pack the objects into the m bins such that the bin size is minimized�
Therefore� there are two parameters� the number of bins and the bin size�
Each of the Multi�Processor Scheduling problem and the Bin Pack�

ing problem �xes one parameter and optimizes the other parameter� In this
sense� the Multi�Processor Scheduling problem is �dual� to the Bin
Packing problem� Therefore� it is not very surprising that the techniques
developed for approximation algorithms for the Bin Packing problem can
be useful in deriving approximation algorithms for the Multi�Processor

Scheduling problem�
Consider the following problem� where for an input instance I of the Bin

Packing problem� we use Opt
I� to denote the optimal value of I � i�e�� the
number of bins used by an optimal packing of the instance I �


� � ���Bin Packing

Input� I � ht�� t�� � � � � tn�Bi� all integers
Output� a packing of the n objects into at most Opt
I� bins
such that the content of each bin is at most 
� � ��B

We �rst show that the 
� � ���Bin Packing problem can be solved
in polynomial time for a �xed constant � � �� Then we show how this
solution can be used to derive a polynomial time approximation scheme for
the Multi�Processor Scheduling problem�

The idea for solving the 
�� ���Bin Packing problem is very similar to
the one for the approximation algorithm ApprxBinPacking for the general
Bin Packing problem� We �rst perform two preprocessing steps�

�� ignore the objects of size less than �B� and

�� partition the rest of the objects into � groups G�� � � �� G� so that the
objects in each group have a very small di�erence in size� For each
group Gi� replace every object by the one with the smallest size in Gi�

The preprocessing steps give us an instance I � of the 
�� ���Bin Packing

problem� for which an optimal solution can be constructed in polynomial
time� Note that the optimal solution for I � is an under�estimation of the
optimal solution for I and thus it uses no more than Opt
I� bins� Then we
restore the object sizes and add the small objects by greedy method to get
a packing for the instance I � Since the di�erence in sizes of the objects in
each group is very small� the restoring of object sizes will not increase the

�
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content for each bin very much� Similarly� adding small objects using greedy
method will not induce much error�

The formal algorithm is given as follows�

Algorithm 
�	� VaryBinPacking

Input� I � ht�� � � � � tn�Bi and � � �
Output� a packing of the objects of I into bins of size


� � ��B

�� sort t�� � � � � tn� without loss of generality� let

t� � t� � � � � � tn
�� let h be the largest index such that th � �B� let

I� � ht�� t�� � � � � th�Bi
�� let � � d����e� divide the line segment 
�B�B� into �

subsegments of equal length


l�� h��� 
l�� h��� � � � � 
l�� h��
where hi � li�� and hi � li � 
B � �B����

	� partition the objects in I� into � groups G�� � � �� G��

such that an object is in group Gi if and only if its

size is in the range 
li� hi�� let t�i be the size of the

smallest object in group Gi 
if Gi is empty� let

t�i � li
� and let mi be the number of objects in Gi�

�� construct an optimal solution Y � to the instance

I � � ht�� �m�� t
�
� �m�� � � � � t

�
� �m� �Bi

for the 
�� ���Bin Packing problem�

�� replace each object in Y � of size t�j by a proper object

in the group Gj of I�� for j � �� � � � � �� to construct a

packing Y� for the instance I��
�� add the objects th��� � � � � tn in I to the packing Y� by

greedy method 
i�e�� no new bin will be used until

adding the current object to any used bins would

exceed the size 
� � ��B
� This results in a packing

Y for the instance I�

According to Theorem �	�� and note that � � d����e� the 
�� ���Bin
Packing problem can be solved in time O
n��h�
��� where h�
�� is a func�
tion depending only on �� We conclude that the algorithm VaryBinPacking

runs in time O
n logn� � h�
��� if an O
n logn� time sorting algorithm is
used for step ��

�
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As before� we denote by Opt
I� the optimal value� i�e�� the number of
bins used by an optimal packing� of the input instance I of the general Bin
Packing problem�

Lemma 
�	� The packing Y � for the instance I � constructed by step � of
the algorithm VaryBinPacking uses no more than Opt
I� bins�

proof� The instance I� is a subset of the instance I � Thus� Opt
I�� �
Opt
I�� The instance I � is obtained from I� by replacing each object in I� by
a smaller object� Thus� Opt
I �� � Opt
I�� � Opt
I�� Since Y � is an optimal
packing for I �� Y � uses Opt
I �� � Opt
I� bins�

Lemma 
�	
 In the packing Y� constructed by step � of VaryBinPacking�
no bin has content larger than 
� � ��B� and Y� uses no more than Opt
I�
bins�

proof� According to step � of the algorithm VaryBinPacking� the number
of bins used by Y� is the same as that used by Y �� By Lemma ����� the
packing Y� uses no more than Opt
I� bins�

Each object of size t�i in I � corresponds to an object in group Gi in I��
The packing Y� for I� is obtained from the packing Y � by restoring each
object of I � to the corresponding object in I�� Since t�i is the size of the
smallest object in Gi and no object in Gi has size larger than

t�i � 
hi � li� � t�i � 
B � �B���

the size increase for each object from Y � to Y� is bounded by 
B � �B����
Moreover� since all objects in I � have size at least �B� and the packing

Y � has bin size B� each bin in the packing Y � holds at most b���c objects�
Therefore� the size increase for each bin from Y � to Y� is bounded by



B � �B���� � b���c � 

B � �B��d����e� � b���c � 
B�
������ � 
���� � �B

Since the content of each bin of the packing Y � is at most B� we conclude
that the content of each bin of the packing Y� is at most 
� � ��B�

Lemma 
�	� The packing Y constructed by step � of VaryBinPacking uses
no more than Opt
I� bins� and each bin of Y has content at most 
� � ��B�

proof� By Lemma ����� each bin of the packing Y� has content at most

�






� � ��B� The packing Y is obtained from Y� by adding the objects of size
bounded by �B using greedy method� That is� suppose we want to add an
object of size not larger than �B and there is a used bin whose content will
not exceed 
� � ��B after adding the object to the bin� then we add the
object to the bin� A new bin is introduced only if no used bin can have the
object added without exceeding the content 
� � ��B� The greedy method
ensures that the content of each bin in Y is bounded by 
� � ��B� Note
that since all added objects have size bounded by �B� when a new bin is
introduced� all used bins have content larger than B�

If no new bin was introduced in the process of adding small objects in
step �� then the number of bins used by the packing Y is the same as the
number of bins used by the packing Y�� By Lemma ����� in this case the
packing Y uses no more than Opt
I� bins�

Now suppose that new bins were introduced in the process of adding
small objects in step �� Let r be the number of bins used by the packing
Y � By the above remark� at least r � � bins in the packing Y have content
larger than B� Therefore� we have

t� � � � �� tn � B
r � ��

This shows that we need more than r�� bins of size B to pack the objects in
I in any packing� Consequently� the value Opt
I� is at least 
r� ��� � � r�
That is� the packing Y uses no more than Opt
I� bins�

We conclude this lecture with the following theorem�

Theorem 
�	� Given an instance I � ht�� � � � � tn�Bi for the Bin Packing
problem and a constant � � �� The algorithm VaryBinPacking constructs
in time O
n logn� � h�
�� a packing for I that uses no more than Opt
I�
bins and the content of each bin is bounded by 
� � ��B� where Opt
I� is
the number of bins used by an optimal packing of I using bins of size B and
h�
�� is a function depending only on ��

Corollary 
�	� The 
� � ���Bin Packing problem can be solved in poly�
nomial time for a �xed constant ��

�
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�� Approximating multi�processor scheduling

In the last lecture� we developed an algorithm VaryBinPacking that� given
an input instance I � ht�� � � � � tn�Bi of the Bin Packing problem and a
constant � � �� constructs in time O
n logn� � h�
�� a packing using at
most Opt
I� bins such that the content of each bin is bounded by 
�� ��B�
where h�
�� is a function depending only on ��

We use this algorithm to develop a polynomial time approximation scheme
for theMulti�Processor Scheduling problem� We �rst re�formulate the
Multi�Processor Scheduling problem in the language of bin packing�

Multi�Processor Scheduling 
Bin Packing version�

Input� ht�� t�� � � � � tn�mi� all integers� where ti is the size of the
ith object

Output� a packing of the n objects into m bins of size B with
B minimized

We use the idea of binary search to �nd the optimal bin size B� In
general� suppose that we try bin size B� and �nd out that the input instance
ht�� � � � � tn�Bi for the Bin Packing problem needs more than m bins in its
optimal packing� then the tried bin size B is too small� So we will try a
larger bin size� On the other hand� if the instance ht�� � � � � tn�Bi needs no
more than m bins� then we may want to try a smaller bin size because we
are minimizing the bin size� Note that the algorithm VaryBinPacking can
be used to estimate the number of bins used by an optimal packing of the
instance ht�� � � � � tn�Bi�

We �rst discuss the initial bounds for the bin size in the binary search�
Fix an input instance ht�� � � � � tn�mi for the Multi�Processor Schedul�

ing problem� Let

Avg � maxf
nX
i��

ti�m� t�� t�� � � � � tng

�
�



Lemma 

	� The minimum bin size of the input instance ht�� � � � � tn�mi
for the Multi�Processor Scheduling problem is at least Avg�

proof� Since
Pn

i�� ti�m is the average content of the m bins for packing
the n objects of size t�� � � �� tn� any packing of the n objects into the m bins
has at least one bin with content at least

Pn
i�� ti�m� That is� the bin size

of the packing is at least
Pn

i�� ti�m�
Moreover� the bin size of the packing should also be at least as large as

any ti since every object has to be packed into a bin in the packing�
This shows that for any packing of the n objects of size t�� � � �� tn into

the m bins� the bin size is at least Avg� The lemma is proved�

This gives a lower bound on the bin size for the input instance I of
the Multi�Processor Scheduling problem� We also have the following
upper bound�

Lemma 

	
 The minimum bin size of the input instance ht�� � � � � tn�mi
for the Multi�Processor Scheduling problem is bounded by � �Avg�

proof� Suppose that the lemma is false� Let r be the minimum bin size
for packing I � ht�� � � � � tn�mi into m bins� and r � � �Avg�

Let Y be a packing of I into m bins such that the bin size of Y is r�
Furthermore� we suppose that Y is the packing in which the least number
of bins have content r� Let B�� B�� � � �� Bm be the bins used by Y � where
the bin B� has content r � � � Avg� Then at least one of the bins B�� � � ��
Bm has content less than Avg � otherwise� the sum of total contents of the
bins B�� B�� � � �� Bm would be larger than mAvg �Pn

i�� ti� Without loss of
generality� suppose that the bin B� has content less than Avg� Now remove
any object ti in the bin B� and add ti to the bin B�� We have

�� the content of the bin B� in the new packing is less than r�

�� the content of the bin B� in the new packing is less than

Avg � ti � � �Avg � r


� the contents of the other bins are unchanged�

Thus� in the new packing� the number of bins that have content r is one less
than the number of bins of content r in the packing Y � This contradicts our
assumption that Y has the least number of bins of content r�

This contradiction proves the lemma�

�
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Therefore� the minimum bin size for packing the instance I into m bins
is in the range �Avg� �Avg�� We apply binary search on this range to �nd
an approximation for the optimal solution of I for the Multi�Processor

Scheduling problem�

Algorithm 

	� ApprxMPS

Input� I � ht�� � � � � tn�mi� all integers� and � � �
Output� a scheduling of the n jobs of processing time t��

t�� � � �� tn on m identical processors�

�� Avg � maxfPn
i�� ti�m� t�� t�� � � � � tng�

�� lower � bAvgc� upper � d� � Avge�
�� while upper� lower � � � Avg�	 do

B � b
lower� upper���c�
call the algorithm VaryBinPacking on the input

ht�� � � � � tn�Bi and ��	� suppose that the algorithm

uses r bins on the input�

if r � m

then lower � B
else upper � B�

	� let B� � bupper
� � ��	�c�
�� call the algorithm VaryBinPacking on the input

ht�� � � � � tn�B�i and ��	 to construct a scheduling

of I�

We �rst study the complexity of the above algorithm ApprxMPS� The
complexity of the algorithm is dominated by step 
� We start with

upper � lower � � �Avg� Avg � Avg

Since we are using binary search� each execution of the body of the while
loop will half the di�erence 
upper � lower�� Therefore� after O
log
�����
executions of the body of the while loop in step 
� we must have

upper � lower � � �Avg�	

That is� the body of the while loop is executed at most O
log
����� times�
In each execution of the body of the while loop in step 
� we call the

algorithm VaryBinPacking on input ht�� � � � � tn�Bi and ��	� which takes
time O
n logn� � h�
��	� � O
n logn� � h�
��� where h�
�� is a function
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depending only on �� Therefore� the running time of the algorithm ApprxMPS

is bounded by

O
log
�����
O
n logn� � h�
��� � O
n logn log
����� � h�
��

where h�
�� is a function depending only on ��

Theorem 

	� The running time of the algorithm ApprxMPS on input in�
stance I � ht�� � � � � tn�mi and � � � is bounded by O
n logn log
������h�
���
In particular� for a �xed constant � � �� the algorithm ApprxMPS runs in
polynomial time�

We will present the analysis for the approximation ratio for the algorithm
ApprxMPS in the next lecture�

�
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�
 More on multi�processor scheduling

In the last lecture� we presented the following algorithm for the Multi�

Processor Scheduling problem�

Algorithm 
�	� ApprxMPS

Input� I � ht�� � � � � tn�mi� all integers� and � � �
Output� a scheduling of the n jobs of processing time t��

t�� � � �� tn on m identical processors�

�� Avg � maxfPn
i�� ti�m� t�� t�� � � � � tng�

�� lower � bAvgc� upper � d� � Avge�
�� while upper� lower � � � Avg�	 do

B � b
lower� upper���c�
call the algorithm VaryBinPacking on the input

ht�� � � � � tn�Bi and ��	� suppose that the algorithm

uses r bins on the input�

if r � m
then lower � B

else upper � B�
	� let B� � bupper
� � ��	�c�
�� call the algorithm VaryBinPacking on the input

ht�� � � � � tn�B�i and ��	 to construct a scheduling

of I�

we also showed that the algorithm runs in time O
n logn log
����� � h�
���
where h�
�� is a function depending only on �� Now we discuss the approx�
imation ratio of the algorithm�

Fix an input instance I � ht�� � � � � tn�mi for the Multi�Processor

Scheduling problem� Let Opt
I� be the optimal solution� i�e�� the parallel
�nish time of an optimal scheduling� of the instance I �

�
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Lemma 
�	� In the whole execution of the algorithm ApprxMPS� we always
have

lower � Opt
I� � upper
� � ��	�

proof� Initially� lower � bAvgc and upper � d� �Avge� By Lemmas ����
and ����� we have lower � Opt
I� � upper
� � ��	��

Now for each execution of the while loop in step 
� we start with a bin
size B and call the algorithm VaryBinPacking on input ht�� � � � � tn�Bi and
��	� which uses r bins�

If r � m� by the algorithm VaryBinPacking� the minimum number of
bins used by a packing to pack the objects into bins of size B is at least as
large as r� Therefore� if the bin size is B� then we need more then m bins
to pack the objects t�� � � �� tn� Thus� in order to pack the objects t�� � � �� tn
into m bins� the bin size B is too small� That is� Opt
I� � B� Since in this
case we set lower � B� the relation lower � Opt
I� � upper
� � ��	� still
holds�

If r � m� then the objects t�� � � �� tn can be packed in r bins of size

� � ��	�B� Certainly� the objects can also be packed in m bins of size

� � ��	�B� This gives Opt
I� � 
� � ��	�B� Thus� setting upper � B still
keeps the relation lower � Opt
I� � upper
� � ��	��

This proves the lemma�

Now we are ready to show that the algorithm ApprxMPS is a polyno�
mial time approximation scheme for the Multi�Processor Scheduling

problem�

Theorem 
�	
 On any input instance I � ht�� � � � � tn�mi for the Multi�

Processor Scheduling problem and for any �� � � � � �� the algorithm
ApprxMPS constructs in time O
n logn log
����� � h�
�� a scheduling of the
n jobs on the m processors with approximation ratio � � �� where h�
�� is a
function depending only on ��

proof� The time complexity of the algorithm ApprxMPS is given by
Theorem ���
�

By Lemma ����� the relation

lower � Opt
I� � upper
� � ��	�

always holds� In particular� at step 	 of the algorithm� we have

Opt
I� � upper
� � ��	�
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Since Opt
I� is an integer� we should also have

Opt
I� � bupper
� � ��	�c � B�

Therefore� the bin of size B� is at least as large as the bin of size Opt
I��
Since the objects t�� � � �� tn can be packed into m bins of size Opt
I�� we
conclude that the objects t�� � � �� tn can also be packed intom bins of size B��
By the property of the algorithm VaryBinPacking� on input instance I �
ht�� � � � � tn�B�i and ��	� the algorithm VaryBinPacking packs the objects
t�� � � �� tn into at mostm bins� with each bin of content at most B�
�� ��	��
Therefore� the packing is a scheduling of the n jobs on the m processors�

Now let us consider the content bound B�
� � ��	� for the bins in the
packing constructed by the algorithm VaryBinPacking� At step 	� we have

upper � lower � � �Avg�	

Since lower � Avg initially� and lower is never decreased� we have

upper � lower � � �Avg�	 � lower � � � lower�	 � lower
� � ��	�

By Lemma ����� we always have

lower � Opt
I� � upper
� � ��	�

Thus
upper
� � ��	� � lower
� � ��	�� � Opt
I�
� � ��	��

Therefore� the content bound B�
� � ��	� is bounded by

B�
� � ��	� � bupper
� � ��	�c
� � ��	�

� upper
� � ��	�� � Opt
I�
� � ��	��

NowOpt
I�
����	�� � Opt
I�
���� for � � �� Recall that in the scheduling�
the number m of bins corresponds to the number of processors� and the
maximum bin content B�
� � ��	� corresponds to the parallel �nish time�
In conclusion� the scheduling of the n jobs on the m processors constructed
by the algorithm ApprxMPS has parallel �nish time bounded by Opt
I�
�����
In other words� the algorithm ApprxMPS has approximation ratio � � ��

Corollary 
�	� The Multi�Processor Scheduling problem has a poly�
nomial time approximation scheme�

�	�



Again� the condition � � � is not crucial� In particular� we will see below
that if � � �� a much simpler approximation algorithm for the Multi�

Processor Scheduling problem can be designed to have approximation
ratio bounded by � � ��

Algorithm 
�	
 SimpleMPS

Input� I � ht�� � � � � tn�mi� all integers

Output� a scheduling of the n jobs of processing time t��

t�� � � �� tn on m identical processors

for i � � to n do
assign ti to the processor with the lightest load�

Using a data structure such as a ��
 tree to organize the m processors
using their loads as the keys� we can always �nd the lightest loaded pro�
cessor� update its load� and re�insert it back to the data structure in time
O
logm�� With this implementation� the algorithm SimpleMPS runs in time
O
n logm��

Now we study the approximation ratio of the algorithm SimpleMPS�

Theorem 
�	� Algorithm SimpleMPS for theMulti�Processor Schedul�

ing problem has approximation ratio bounded by ��

proof� Let I � ht�� � � � � tn�mi be an input instance to the Multi�

Processor Scheduling problem� Suppose that the algorithm SimpleMPS

constructs a scheduling S for I with parallel �nish time T � Let P� be a
processor that has the execution time T assigned by the scheduling S�

If the processor P� is assigned only one job� then the job has processing
time T � and any scheduling on I has parallel �nish time at least T � In this
case� the scheduling S is a optimal scheduling with approximation ratio ��

So suppose that the processor P� is assigned at least two jobs� Let t�
be the last job assigned to the processor P�� We have T � t� � �� By our
strategy� at the time the job t� is about to be assigned to the processor P��
all processors have load at least T � t�� This gives�

nX
i��

ti � m
T � t�� � t� � mT � 
m� ��t�

This gives

T �
Pn

i�� ti � 
m� ��t�
m

�	�



�

Pn
i�� ti
m

�
m� �

m
t�

�
Pn

i�� ti
m

� t�

Now since the optimal value Opt
I� is at least as large as 

Pn

i�� ti��m� and
at least as large as t�� we conclude that

T � � �Opt
I�

Consequently� the approximation algorithm SimpleMPS has approximation
ratio bounded by ��

There are certainly many possible ways to improve the performance of
the algorithm SimpleMPS� For example� it seems that if we sort the jobs �rst
so that the larger jobs will be assigned �rst� then we may get an improvement
on the approximation ratio� In fact� it can be shown that such a modi�cation
makes the algorithm have an approximation ratio of 	�
� Students are
encouraged to think of other possible improvements�
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�� Approximability with a constant ratio

So far we have seen many optimization problems that can be approximated
in polynomial time to approximation ratio � � �� for any given constant ��
These problems are classi�ed into the following two classes�

De�nition 
�	� An optimization problem is in the class FPTAS if it has
a fully polynomial time approximation scheme� An optimization problem is
in the class PTAS if has a polynomial time approximation scheme�

Obviously� FPTAS is a subclass of PTAS�
On the other hand� there are many other optimization problems that

do not seem to have such nice approximability� There is a large class of
optimization problems of practical importance� which do not seem to have
polynomial time approximation schemes� The rest of this course will be
centered on the study of these optimization problems�

Let us �rst consider the Vertex Cover problem� Given a graph G �

V�E�� we say that a subset V� of V is a vertex cover of the graph G if every
edge of the graph G has at least one endpoint in V��

Vertex Cover

Input� an undirected graph G � 
V�E�

Output� a vertex cover V� of minimum cardinality

The Vertex Cover problem has applications in computer networks�
VLSI design� and circuit testing� For example� in computer network� we are
given a network� which can be regarded as a graph� and we are asked to
pick a set of nodes in the network so that all connections of the network are
monitored by the nodes in the set� To economize the resources� we expect
to have as few nodes as possible in the set� This is exactly the Vertex
Cover problem�

We have a very e�cient and simple approximation algorithm for the
Vertex Cover problem� The algorithm is given below�

�		



Algorithm 
�	� ApprxVC

Input� an undirected graph G � 
V�E�
Output� a vertex cover of G

�� Let V� � ��
�� for each edge e of G do

if e has no ends in V�
then add both ends of e to V�

From the ApprxVC algorithm� we can easily get two observations�

Observation 
�	
 The set V� constructed by the algorithm ApprxVC is a
vertex cover of the graph G�

As we can see� the algorithm makes sure that all edges of the graph G
are covered by the set V��

Observation 
�	� The algorithm ApprxVC actually constructs a maximal
matching for the graph G�

When the algorithm ApprxVC includes two endpoints u and v of an edge
e in the set V�� we can regard that the algorithm matches the two endpoints
u and v by the edge e� By the algorithm� if the endpoints u and v are
matched by e� no other edge incident on either u or v would be used for
matching� That is� the set

E� � fe j e is picked by ApprxVC for matching its two endsg

is a matching in G� Moreover� the matching is maximal because every edge
has at least one end in V��

Theorem 
�	� The algorithm ApprxVC is an approximation algorithm for
the Vertex Cover problem and has approximation ratio ��

proof� By Observation ����� the algorithm ApprxVC always constructs a
vertex cover for the input graph G�

By Observation ���
� a maximal matching E� is constructed by the al�
gorithm ApprxVC� Let

E� � fe j e is picked by ApprxVC for matching its two endsg
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and let C be any minimum vertex cover� Then every edge in E� should be
covered by C� i�e�� each edge in E� should have at least one end in C� Since
no two edges in E� share a common end� we should have

jCj � jE�j
Since each edge in E� has two ends in V� and no two edges in E� share a
common end� we have

�jE�j � jV�j
In conclusion

Opt
G� � jCj � jV�j��
This gives the approximation ratio

jV�j�Opt
G� � �

and the theorem is proved�

The algorithm ApprxVC looks very simple� However� it gives the best
approximation ratio known for the Vertex Cover problem� Actually� it is
an outstanding open problem whether the Vertex Cover problem has a
polynomial time approximation algorithm with approximation ratio r � ��
for a �xed constant r � ��

I assign the following as one of the project problems�

Project problem� Improve the approximation ratio � for the Vertex
Cover problem on graph classes with some reasonable restrictions�

There are many optimization problems like theVertex Cover problem
that have polynomial time approximation algorithms with approximation
ratio bounded by a �xed constant c 
c � � for theVertex Cover problem��
On the other hand� for many of them� it is unknown whether the constant
c can be arbitrarily close to �� i�e�� whether the problems have polynomial
time approximation schemes� We discuss another example as follows�

Let X � Y � and Z be three �nite sets� Given a subset S � X � Y � Z�
a matching M in S is a subset of S such that no two triples in M have
the same coordinate at any dimension� The ��Dimensional Matching

problem is de�ned as follows�

��D Matching

Input� a set S � X � Y � Z of triples

Output� a matching M in S with jM j maximized
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The ��D Matching problem is a generalization of the classical �mar�
riage problem�� Given n unmarried men and m unmarried women� along
with a list of all male�female pairs who would be willing to marry one an�
other� �nd the largest number of pairs so that polygamy is avoided and
every paired person receives an acceptable spouse� Analogously� in the ��D
Matching problem� the sets X � Y � and Z correspond to three sexes� and
each triple in S corresponds to a 
�way marriage that would be acceptable
to all three participants�

Remark 
�	� The ��D Matching problem can be similarly de�ned� given
a set S � X � Y of pairs� �nd a maximum subset M of S such that no two
pairs in M agree in any coordinate� The ��D Matching problem is the
standard graph matching problem� In fact� the setsX and Y can be regarded
as the vertices of a graph G� and each pair in the set S corresponds to an
edge in the graph G� Now a matching M in S is simply a subset of edges in
which no two edges share a common end� That is� a matching in S is a graph
matching in the corresponding graph G� As we have studied in Lectures ��
��� the graph matching problem� i�e�� the ��D Matching problem can be
solved in polynomial time�

Remark 
�	� The ��D Matching problem is NP�hard� This is from the
fact that the decision version of the ��D Matching problem is NP�complete

see Garey and Johnson�s book� and can be reduced to the optimization
version of the ��D Matching problem� In fact� the decision version of the
��D Matching problem is listed by Garey and Johnson as one of the six
basic NP�complete problems�

We present two polynomial time approximation algorithms for the ��D
Matching problem�

Let S � X�Y �Z be a set of triples and let M be a matching of S� We
say that a triple 
x� y� z� in S�M does not contradict the matching M if no
triple in M has x as its �rst coordinate� or has y as its second coordinate�
or has z as its third coordinate� In other words� 
x� y� z� does not contradict
the matching M if M � f
x� y� z�g is still a matching�

Algorithm 
�	
 Apprx�D�First

Input� a set S � X � Y � Z of triples

Output� a matching M in S

�� let M � ��
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�� for each triple 
x� y� z� in S do

if 
x� y� z� does not contradict M
then add 
x� y� z� to M�

It is easy to verify that the algorithm Apprx�D�First runs in polynomial
time� In fact� if we use three arrays for the symbols in X � Y � and Z� and
mark the symbols as �in M� or �not in M�� then in constant time we can
decide whether a triple 
x� y� z� contradicts the matching M � With these
data structures� the algorithm Apprx�D�First runs in linear time�

Theorem 
�	
 The algorithm Apprx�D�First constructs a matching in
the set S and has approximation ratio 
�

proof� From the algorithm Apprx�D�First� it is clear that the set M
constructed is a matching in the given set S�

Let Mmax be a maximum matching in S and let 
x� y� z� be a triple in
Mmax� By the algorithm Apprx�D�First� the triple 
x� y� z� contradicts the
matching M 
otherwise� it would have been added to M by the algorithm��
Therefore� either x is the �rst coordinate of a triple in M � or y is the second
coordinate of a triple in M � or z is the third coordinate of a triple in M �
Therefore� the total number of symbols appearing in the matching M 
in
either the �rst dimension� or the second dimension� or the third dimension�
is at least jMmaxj� Since each triple in M uses exactly three symbols� we
conclude that the number of triples in the matching M is at least jMmaxj�
�
That is�

Opt
S��jM j � jMmaxj�jM j � 


The theorem is proved�
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�� ��dimensional matching

We continue our discussion on the ��D Matching problem�
Let S � X � Y � Z be a set of triples� Without loss of generality� we

assume that the symbol setsX � Y � and Z are all pairwise disjoint� Therefore�
it makes no ambiguity to say that a triple t contains a symbol w in X�Y �Z�
Recall that a matching M in S is a subset of S in which no two triples agree
in any coordinate� We say that a symbol w � X � Y � Z is in the matching
M if a triple in M contains the symbol w� A triple t in S �M contradicts
the matching M if a symbol in t is also in the matching M � We say that a
matching M in S is maximal if every triple in S �M contradicts M �

Before we present another approximation algorithm for the ��D Match�

ing problem� we diverge to a related problem�

k�Triple Matching

Given a set S � X�Y �Z of n triples and an integer k � �� �nd
a matching in S with k triples or report that no such a matching
exists in S�

It is clear that the k�Triple Matching problem can be solved in time
O
nk� if we pick every k triples in S and check whether they make a match�
ing� However� the algorithm will be very time�consuming even for a small
value of k� We would like to have a better algorithm for the problem� In
particular� we would like to have an algorithm for the problem such that in
the time complexity of the algorithm� the exponent of n is independent of
the value k�

We present an algorithm solving the k�Triple Matching problem as
follows� The algorithm is �rst given as a nondeterministic algorithm� i�e��
an algorithm that can �guess� a desired object in a set without exhaustively
searching the set� Then we show how the nondeterministic algorithm can
be converted into a deterministic one�
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We �rst suppose that a maximum matching in the set S contains at
least k triples� Fix a matching M� � ft�� t�� � � � � tkg of k triples in S 
the
matching M� is unknown to our algorithm��

Let M� be a maximal matching in S� M� can be found in time O
n�
by� say� the algorithm Apprx�D�First given in the last lecture� If jM�j � k�
then we are done � any k triples in M� make a matching of k triples in S�
Thus� we assume jM�j � k�

Let ti be any triple in the matching M�� If ti is in M�� then certainly
the symbols in ti are also in M�� If ti is not in M�� then ti contradicts M�

because M� is maximal� Thus� in any case� for each triple ti in M� at least
one symbol in ti is in the matching M��

Thus� our algorithm guesses k symbols a�� � � �� ak in M� such that ai is
a symbol in the triple ti� i � �� � � � � k� This gives us a �pseudo�matching�

M� � ft���� � t
���
� � � � � � t

���
k g

where t
���
i is the triple ti in the matching M� with the symbol ai present

and the other two symbols replaced by a special symbol '��� for i � � � � � � k�
This gives us the initial pseudo�matching� Note that the pseudo�matching
M� can be constructed from the matching M� in time O
k� if the guessed
symbols a�� � � �� ak are given�

Inductively� suppose that we have obtained a pseudo�matching

Mj � ft�j�� � t
�j�
� � � � � � t

�j�
k g

where t
�j�
i is the triple ti in the matchingM� with at least one symbol present

and the other symbols replaced by the symbol '��� for i � � � � � � k� We say

that a triple t in S is consistent with a triple t
�j�
i if t and t

�j�
i agree in all

coordinates except those on which t
�j�
i has the symbol '���

Now we try to �ll the missing symbols in the pseudo�matching Mj using
a greedy algorithm� Formally� we start with M � � � then scan the triples

in S� We add a triple t in S to M � if 
�� t is consistent with a triple t
�j�
i in

Mj � 
�� no symbols in t appear in other triples in Mj � and 

� the triple t
does not contradict the matching M �� Note that this process is equivalent to

�lling the missing symbols '�� in the triple t
�j�
i by the corresponding symbols

in the triple t�
The above process ends up with a matching M � in S� Note that the

matching M � can be constructed from the matching Mj in time O
n�� If
jM �j � k� i�e�� if all missing symbols in Mj are �lled� then we are done 
note
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that the matchingM � may not necessarily be the matching M��� Otherwise�
jM �j � k� Without loss of generality� suppose that the triples in Mj whose

missing symbols are �lled are the triples t
�j�
� � � � �� t

�j�
h � h � k� Now consider

the triple t
�j�
h��� which corresponds to the triple th�� in the matching M��

It is clear that the only reason that the triple th�� was not included in the
matching M � is that the triple th�� contradicts the matching M �� According
to the way we construct the matching M �� the symbols in th�� that also

appear in t
�j�
h�� cannot be in M �� Thus� the symbols in th�� that are in

M � must correspond to the symbol '�� in t
�j�
h��� Now we guess a symbol

bh�� in M � such that bh�� is in th�� and corresponds to a '�� in t
�j�
h��� and

replace the corresponding symbol '�� in t
�j�
h�� by bh��� This gives us a new

pseudo�matching

Mj�� � ft�j���� � t
�j���
� � � � � � t

�j���
k g

where t
�j���
i � t

�j�
i for all i �� h � �� and t

�j���
h�� is the triple t

�j�
h�� with a

symbol '�� replaced by the symbol bh���
Therefore� both pseudo�matchings Mj and Mj�� are the matching M�

with some symbols replaced by the symbol '��� Moreover� the pseudo�
matching Mj�� has one less '�� than the pseudo�matching Mj � It is clear
that the matching Mj�� can be constructed from the matching Mj in time
O
n� if the guessed symbol bh�� is given� Now our algorithm applies the
same process on the matching Mj���

Since we started with the matching M� with �k '�� symbols and the
above algorithm reduces the number of '�� symbols by one fromMj toMj���
the algorithm must end up with a matching Mg of k triples that contains
no '�� symbols� where g � �k � �� This completes the description of our
nondeterministic algorithm� Our nondeterministic algorithm runs in time
O
kn� if the guessed symbols are all given�

We point out that our nondeterministic algorithm reports a matching of
k triples in S only if it actually �nds a matching of k triples� Therefore� if
a maximum matching in S contains less than k triples� then our nondeter�
ministic algorithm will be stuck at some point without having a matching
of k triples� An incorrect guess may also spoil the process� However� if
the maximum matching in S has at least k triples� and if all our guesses in
the process are correct� then the nondeterministic algorithm will produce a
matching of k triples�

Now we explain how the nondeterminism in the above algorithm can
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be eliminated� Each guess in the algorithm corresponds to a sequence of
nondeterministic binary bits� We �rst calculate how many nondeterministic
binary bits are needed in the algorithm�

In constructing the pseudo�matching M� from the maximal matching
M�� we need guess k symbols in M�� Since M� contains 
jM�j � 
k symbols�
k symbols in M� can be represented by a binary vector of length 
jM�j� in
which exactly k bits are �� Therefore� guessing k symbols in M� takes no
more than 
k nondeterministic binary bits�

When we construct the pseudo�matchingMj�� from the pseudo�matching
Mj � we need to guess the symbol bh�� from the matching M �� First we need

at most one nondeterministic binary bit to decide which '�� symbol in t
�j�
h��

should be �lled 
recall that t
�j�
h�� contains at most two '�� symbols�� Once

the '�� symbol in t
�j�
h�� is decided� we only need to look at the triples in M �

on the corresponding dimension� Since the matching M � contains less than
k triples� M � contains less than k symbols in each dimension� Therefore�

guessing a symbol in M � corresponding to the chosen '�� in t
�j�
h�� is equiva�

lent to deciding a position out of jM �j positions� Thus� guessing the symbol
bh�� totally takes no more than � � log k nondeterministic binary bits�

Since the nondeterministic algorithm ends up with a matching Mg� with
g � �k � �� we conclude that the total number of nondeterministic binary
bits used by the nondeterministic algorithm is bounded by 
note that the
pseudo�matching starts from M��


k � �k
� � log k� � k
� � � logk�

To convert the nondeterministic algorithm into a deterministic algorithm�
we run the nondeterministic algorithm using each of the �k�
�� logk� binary
vectors of length k
� � � log k� as the k
�� � log k� nondeterministic binary
bits� Since for a �xed such binary vector� the algorithm runs in time O
kn��
we conclude that the running time of the resulting deterministic algorithm
is bounded by O
n��k logk��

Theorem ��	� There is an algorithm A such that given a set S of n triples
and an integer k� the algorithm A runs in time O
n��k logk�� either �nds a
matching of k triples in S or reports no such a matching exists in S�

Now we come back to approximation algorithms for the ��D Match�

ing problem� In the last lecture� we presented an algorithm Apprx�D�First

that runs in linear time and constructs a maximal matching for a given set
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of triples� We proved that the number of triples in a maximal matching is
at least ��
 the number of triples in a maximum matching 
Theorem ������
Thus� the algorithm Apprx�D�First is an approximation algorithm of ap�
proximation ratio 
 for the ��D Matching problem� Now we present an�
other polynomial time approximation algorithm with a better approximation
ratio for the ��D Matching problem�

Let S be a set of triples and let M be a maximal matching in S� Since
the matching M is maximal� no triple in S �M can be added directly to
M to obtain a larger matching� However� it is possible that if we remove
one triple from M � then we are able to add two triples from S �M to M

to obtain a larger matching� We say that the matching M is ��optimal if
no such a triple in M exists� More formally� we say that a matching M is
��optimal if M is maximal and it is impossible to �nd a triple t� in M and
two triples t� and t� in S �M such that M � ft�g � ft�� t�g is a matching
in S�

We present an algorithm that constructs a ��optimal matching for a
given set of triples�

Algorithm ��	� Apprx�D�Second

Input� a set S of n triples

Output� a matching M in S

�� construct a maximal matching M using Apprx�D�First�

�� change � true�

�� while change do

for each triple t in M do
M � M � ftg�
let St be the set of triples not contradicting M�

construct a maximum matching Mt in St�

if Mt contains more than one triple

then M � M �Mt� change � true�

else M � M � ftg�
Lemma ��	
 After each execution of the for loop in step 	 of the algorithm
Apprx�D�Second� the matching M is a maximal matching�

proof� Before the algorithm enters step 
� the matching M is maximal�
Since the set St has no common symbol with the matching M after the

triple t is removed fromM � for any matchingM � in St�M�M � is a matching
in S� Moreover� since all triples in S � St contradict M � and all triples in
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St�Mt contradictMt� we conclude that all triples in S�
M�Mt� contradict
M �Mt� That is� the matching M �Mt is a maximal matching in S� which
is assigned to M if Mt has more than one triple� In case Mt has only one
triple� the triple t is put back to M � which by induction is also maximal�

Lemma ��	� The matching constructed by the algorithm Apprx�D�Second

is ��optimal�

proof� It is easy to see that there are a triple t inM and two triples t� and
t� in S�M such thatM �ftg�ft�� t�g is a matching in S if and only if the
matching Mt in St contains more than one triple� Therefore� the algorithm
Apprx�D�Second actually goes through all triples in M and checks whether
each of them can be traded for more than one triple in S �M � In other
words� the algorithm Apprx�D�Second ends up with a ��optimal matching
M �

Lemma ��	� The maximum matching Mt in the set St can be constructed
in time O
n��

proof� We �rst show that a maximum matching in St contains at most

 triples� Suppose that t�� t�� t�� and t	 are four triples in a maximum
matching in St� Then at least one of them� say t�� contains no symbol in
the triple t� Since t� does not contradict M �ftg� t� does not contradict M
even before t is removed from M � Therefore� before the triple t is removed�
the matching M is not maximal� This contradicts Lemma 
����

Therefore� a maximum matching in St contains at most 
 triples� Now
according to Theorem 
���� we can �nd a maximum matching Mt in St in
time O
n��

Since each execution of the while loop in algorithm Apprx�D�Second

increases the number of triples in M by at least � and a maximum matching
in S contains at most n triples� we have the following theorem�

Theorem ��	� The algorithm Apprx�D�Second runs in time O
n���

We analyze the approximation ratio for the algorithm Apprx�D�Second�

Theorem ��	� The algorithm Apprx�D�Second has approximation ratio ��

proof� We denote by M the matching in S constructed by the algorithm
Apprx�D�Second and let Mmax be a maximum matching in S�
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Based on the matchingsM and Mmax� we introduce a weighting function
w
�� on symbols in X � Y � Z as follows�

� if a symbol a is not in bothM andMmax� then the symbol a has weight
�� w
a� � ��

� if a symbol a is in both M and Mmax� and a is in a triple ofMmax that
contains two symbols not in M � then a has weight �� w
a� � ��

� if a symbol a is in both M and Mmax� and a is in a triple ofMmax that
contains only one symbol not inM � then a has weight ���� w
a� � ����

� if a symbol a is in both M and Mmax� and a is in a triple ofMmax that
contains no symbol not in M � then a has weight ��
� w
a� � ��
�

The weight w
t� of a triple t is the sum of the weights of its components�
According to the de�nition� each triple in the matching Mmax has weight
exactly ��

Now let t � 
a� b� c� be a triple in M � If w
t� � �� then at least two
components of t have weight �� Without loss of generality� suppose that
w
a� � w
b� � �� By the de�nition� there are two triples t� � 
a� b�� c��
and t� � 
a��� b� c��� in the matching Mmax such that the symbols b�� c��
a��� c�� do not appear in M � However� this would imply that M � ftg �
ft�� t�g is a matching and the matching M constructed by the algorithm
Apprx�D�Second would not be ��optimal� This contradicts Lemma 
��
�

Thus� each triple in the matching M has weight at most �� Since only
symbols in both matchingsM andMmax have nonzero weight� we must haveX

t�Mmax

w
t� �
X
t�M

w
t�

Since each triple in Mmax has weight �� we have
P

t�Mmax
w
t� � jMmaxj�

Moreover� since each triple inM has weight at most �� we have
P

t�M w
t� �
�jM j� This gives us

jMmaxj � �jM j
or jMmaxj�jM j � �� This completes the proof�

Corollary ��	
 The ��D Matching problem has an approximation algo�
rithm that runs in time O
n�� and has approximation ratio ��
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Remark ��	� A natural extension of the algorithm Apprx�D�Second is to
consider ��optimal� or in general k�optimal� That is� we construct a maximal
matching M in S such that no k triples in M can be traded for k�� triples
in S �M � It is not very hard to see that a k�optimal matching in S can be
constructed in polynomial time when k is a �xed constant� In fact� using
Theorem 
���� we can develop an algorithm of running time O
nk��� that
constructs a k�optimal matching for a set S of n triples� We can show that a
k�optimal matching gives an approximation ratio smaller than � when k � ��
For example� a ��optimal matching has approximation ratio ��� while a 
�
optimal matching has approximation ratio ��
� It can also been shown that
the approximation algorithm for the ��D Matching problem by constructing
k�optimal matchings for a �xed constant k cannot have approximation ratio
less than or equal to 
���

Course Project Problem� Develop an approximation algorithm for the
��D Matching problem that uses an approach di�erent from the k�optimality
method and has approximation ratio better than ��

���



CPSC���� Computational Optimization

Lecture ���� November �� ����

Lecturer� Professor Jianer Chen
Scribe� Shijin Lu
Revision� Jianer Chen

�� Maximum satis�ability

We have studied the Vertex Cover problem and the ��D Matching

problem� These two problems have a common property that both of them
have polynomial time approximation algorithms whose approximation ratio
is bounded by a constant c � �� It is unknown how close this constant c can
be to the value �� In particular� do these problems have a polynomial time
approximation scheme� Very recent progress in computational optimization
has shown that a large class of optimization problems of practical impor�
tance falls into this category� For this reason� we introduce another class of
optimization problems�

De�nition ��	� An optimization problem is approximable with a constant
ratio in polynomial time if it has a polynomial time approximation algorithm
with approximation ratio c� where c is a �xed constant� Let APX be the
class of all optimization problems approximable with a constant ratio in
polynomial time�

It is clear that the class PTAS is a subclass of the class APX�
It is well�known that the Satisfiability problem plays a fundamental

role in the study of NP�completeness� An optimization version of the Satis�
fiability problem� theMax�Sat problem� plays a similar role in the study
of the optimization class APX�

Let X � fx�� � � � � xng be a set of boolean variables� A literal in X is
either a boolean variable xi or its negation xi� for some � � i � n� A clause
on X is an Or of a set of literals in X � The Satisfiability problem is
formally de�ned as follows�

Satisfiability 
Sat�

Input� a set of clauses C�� C�� � � � � Cm on fx�� � � � � xng
Question� does there exist a truth assignment on fx�� � � � � xng
that satis�es all clauses�

���



By the famous Cook�s Theorem� the Satisfiability problem is NP�
complete�

If we have further restrictions on the number of literals in each clause�
we obtain another two interesting complexity classes�

��Satisfiability 
�Sat�

Input� a set of clauses C�� C�� � � � � Cm on fx�� � � � � xng such
that each clause has exactly 
 literals

Question� does there exist a truth assignment on fx�� � � � � xng
that satis�es all clauses�

��Satisfiability 
�Sat�

Input� a set of clauses C�� C�� � � � � Cm on fx�� � � � � xng such
that each clause has exactly � literals

Question� does there exist a truth assignment on fx�� � � � � xng
that satis�es all clauses�

It is well�known that the ��Satisfiability problem is still NP�complete�
while the ��Satisfiability problem can be solved in polynomial time 
in
fact� in linear time��

An optimization version of the Satisfiability problem can be de�ned
as follows�

Max�Sat

Input� a set of clauses C�� C�� � � � � Cm on fx�� � � � � xng
Output� a truth assignment on fx�� � � � � xng that satis�es the
maximum number of the clauses

The optimization versions for the ��Satisfiability problem and for the
��Satisfiability problem are

Max��Sat

Input� a set of clauses C�� C�� � � � � Cm on fx�� � � � � xng such
that each clause has at most 
 literals

Output� a truth assignment on fx�� � � � � xng that satis�es the
maximum number of the clauses
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Max��Sat

Input� a set of clauses C�� C�� � � � � Cm on fx�� � � � � xng such
that each clause has at most � literals

Output� a truth assignment on fx�� � � � � xng that satis�es the
maximum number of the clauses

It is easy to see that the Satisfiability problem can be reduced in poly�
nomial time to the Max�Sat problem� an instance fC�� � � � � Cmg is a Yes�
instance for the Satisfiability problem if and only if when it is regarded
as an instance of the Max�Sat problem� its optimal value is m� Therefore�
the Max�Sat problem is NP�hard� Similarly� the ��Satisfiability prob�
lem can be reduced in polynomial time to the Max��Sat problem so that
the Max��Sat problem is NP�hard�

Since the ��Satisfiability problem can be solved in linear time� one
may expect that the corresponding optimization problem Max��Sat is also
easy� However� the following theorem gives a bit surprising result�

Lemma ��	� The Max��Sat problem is NP�hard�

proof� We show that the ��Satisfiability problem can be reduced in
polynomial time to the Max��Sat problem�

Let E � fC�� � � � � Cmg be an instance for the ��Satisfiability problem�
where each Ci is a clause of three literals in fx�� � � � � xng� Consider the
clause Ci � 
ai� bi� ci�� where ai� bi� and ci are literals in fx�� � � � � xng� We
construct ten clauses�

Ci � f
ai�� 
bi�� 
ci�� 
yi��


ai � bi�� 
ai � ci�� 
bi � ci�� 
���


ai � yi�� 
bi � yi�� 
ci � yi�g
where yi is a new created boolean variable� It is easy to verify the following
facts�

� if none of ai� bi� ci is true� then any assignment to yi can make at most
six out of the ten clauses in 
��� true�

� if one of ai� bi� ci is true and two of ai� bi� ci are false� then no as�
signment to yi can make more than seven of the ten clauses in 
���
true and there is an assignment to yi that makes seven out of the ten
clauses in 
��� true�
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� if two of ai� bi� ci are true and one of ai� bi� ci is false� then no as�
signment to yi can make more than seven of the ten clauses in 
���
true and there is an assignment to yi that makes seven out of the ten
clauses in 
��� true�

� if all ai� bi� ci are true� then no assignment to yi can make more than
seven of the ten clauses in 
��� true and there is an assignment to yi
that makes seven out of the ten clauses in 
��� true�

Based on the above analysis� we conclude that if we set any of the three
literals ai� bi� and ci true� then no assignment to yi can make more than
seven of the ten clauses in 
��� true and there is an assignment to yi that
makes seven out of the ten clauses in 
��� true� and if we set all three literals
ai� bi� ci false� then any assignment to yi can make at most six out of the
ten clauses in 
��� true�

Now let E be the set of ��m clauses in C�� � � �� Cm� where each Ci is
given as in 
���� E is an instance for the Max��Sat problem� It is easy
to see that the instance E can be constructed in polynomial time from the
instance E�

Suppose that E is a Yes�instance for the ��Satisfiability problem�
Then there is an assignment Sx to fx�� � � � � xng that makes at least one
literal in each Ci of the clauses C�� � � �� Cm true� According to the analy�
sis given above� this assignment Sx together with a proper assignment Sy
to fy�� � � � � ymg will make seven out of the ten clauses in Ci true� for all
i � �� � � � � m� Therefore� the assignment Sx � Sy to the boolean variables
fx�� � � � � xn� y�� � � � � ymg makes �m clauses in E true� This gives Opt
E� �
�m�

Now suppose that E is a No�instance for the ��Satisfiability prob�
lem� Let S be an assignment to fx�� � � � � xn� y�� � � � � ymg and we analyze how
many clauses in E the assignment S can satisfy� The assignment S can be
decomposed into an assignment Sx to fx�� � � � � xng and an assignment Sy to
fy�� � � � � ymg� Since E is a No�instance for the ��Satisfiability problem�
for at least one clause Ci in E� the assignment Sx makes all literals false�
According to our previous analysis� any assignment to yi together with the
assignment Sx can make at most six out of the ten clauses in Ci true� More�
over� since no assignment to fx�� � � � � xn� y�� � � � � ymg can make more than
seven clauses in each Cj true� we conclude that the assignment S can make
at most �
m � �� � � � �m � � clauses in E true� Since S is arbitrary�
we conclude that in this case� no assignment to fx�� � � � � xn� y�� � � � � ymg can
make more than �m� � clauses in E true�
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Summarizing the discussion above� we conclude that E is a Yes�instance
for the ��Satisfiability problem if and only if the optimal value Opt
E� for
the instance E for theMax��Sat problem is equal to �m� Consequently� the
��Satisfiability problem can be reduced in polynomial time to the Max�

�Sat problem� This completes the proof that the Max��Sat problem is
NP�hard�

Now we describe an approximation algorithm for theMax�Sat problem�
Consider the following algorithm� For each clause� we give it a weight w
Ci��
We use jCij to denote the number of literals in the clause Ci�

Algorithm ��	� ApprxMaxSat

Input� a set of clauses fC�� � � � � Cmg on fx�� � � � � xng
Output� a truth assignment to fx�� � � � � xng
�� LEFT � fC�� � � � � Cmg�
�� for each clause Ci do

w
Ci� � ���jCij

�� for i � � to n do

find all clauses Ct
�� � � � � C

t
r in LEFT that contain xi�

find all clauses Cf
� � � � � � C

f
s in LEFT that contain xi�

if
Pr

i�� w
C
t
i� �

Ps
j�� w
C

f
j �

then xi � �
delete Ct

�� � � � � C
t
r from LEFT�

for j � � to s do w
Cf
j � � �w
Cf

j �
else xi � �

delete Cf
� � � � � � C

f
r from LEFT�

for j � � to r do w
Ct
j� � �w
Ct

j�

The algorithm ApprxMaxSat runs in polynomial time� Now we analyze
the approximation ratio for the algorithm�

Lemma ��	
 If each of the input clauses fC�� � � � � Cmg contains at least
k literals� then the algorithm ApprxMaxSat constructs an assignment that
satis�es at least m
�� ���k� of the clauses�

proof� In the algorithm ApprxMaxSat� once a clause is satis�ed� the
clause is deleted from the set LEFT� Therefore� the number of clauses that
are not satis�ed by the constructed assignment is equal to the number of
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clauses left in the set LEFT at the end of the algorithm� We calculate the
number of clauses in LEFT using the weighting function w
���

Initially� each clause Ci has weight ���
jCij� By our assumption� the clause

Ci contains at least k literals� So we haveX
Ci�LEFT

w
Ci� �
X

Ci�LEFT

���jCij �
X

Ci�LEFT

���k � m��k

In step 
� we update the set LEFT and the weight for the clauses in LEFT� It
can be easily seen that we never increase the value

P
Ci�LEFTw
Ci� � each

time we update the set LEFT� we delete a heavier set of clauses in LEFT and
double the weight for a lighter set of clauses in LEFT� Therefore� at end of
the algorithm� we should haveX

Ci�LEFT

w
Ci� � m��k 
���

At the end of the algorithm� all boolean variables fx�� � � � � xng have been
assigned a value� A clause Ci in the set LEFT has been considered by the
algorithm exactly jCij times and each time the corresponding literal in Ci

was assigned �� Therefore� for each literal in Ci� the weight of the clause
Ci is doubled once� Since initially the clause Ci has weight ���jCij and its
weight is doubled exactly jCij times in the algorithm� we conclude that at
the end of the algorithm� the clause Ci in LEFT has weight �� Combining this
with the inequality 
���� we conclude that at the end of the algorithm� the
number of clauses in the set LEFT is no more than m��k� In other words�
the number of clauses satis�ed by the constructed assignment is at least
m
�� ���k�� The lemma is proved�

Theorem ��	� For an input of m clauses each containing at least k � �
literals� the algorithm ApprxMaxSat constructs an assignment with approx�
imation ratio � � ��
�k � ��� In particular� the algorithm ApprxMaxSat is
an approximation algorithm with approximation ratio � for the Max�Sat

problem�

proof� According to Lemma 
���� on an input of m clauses each contain�
ing at least k literals� the algorithm ApprxMaxSat constructs an assignment
that satis�es at least m
�� ���k� clauses� Since no assignment can satisfy
more than m clauses� the approximation ratio must be bounded by

m

m
�� ���k�
� � �

�

�k � �
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Since for each input instance for theMax�Sat problem� each clause con�
tains at least � literal� the second statement in the theorem follows directly�

Remark ��	
 The approximation ratio � for theMax�Sat problem is due
to a classical work of David Johnson about �� years ago� The bound � stood
for more than �� years until recently� Yannakakis developed a polynomial
time approximation algorithm with approximation ratio 	�
 for the Max�

Sat problem�
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�� Probabilistically Checkable Proofs

We have seen a number of optimization problems that are in APX� that
is� that have polynomial time approximation algorithms with approxima�
tion ratio bounded by a constant� the $�Traveling Salesman problem
can be approximated in polynomial time with approximation ratio ���� the
Vertex Cover problem can be approximated in polynomial time with ap�
proximation ratio �� the ��D Matching problem can be approximated in
polynomial time with approximation ratio �� and the Max�Sat problem
can be approximated in polynomial time with approximation ratio �� The
ratios for the �rst two problems are still the best results known today� and
the ratios for the last two problems have be somehow improved recently to
a constant c � � 
c � ���� � for the ��D Matching problem and c � ��
��
for the Max�Sat problem�� The question is whether further improvement
on the approximation ratio is possible� In particular� how close can this
approximation ratio be to the value �� Can they have a polynomial time
approximation scheme�

The questions turn out to be very deep in the study of computational
optimization� We will see later that from a viewpoint of complexity theory�
these questions are equivalent to the famous P � NP problem� Moreover� our
algorithmic practice also suggests the possibility for either directions� Take
the $�Traveling Salesman problem as an example� It has been more
than �� years that the bound ��� on the approximation ratio has stood for
the problem� On the other hand� very recent research 
still in manuscript
version� has shown that the Graph Traveling Salesman problem� in
which the distance metric between two vertices is the shortest path met�
ric of an unweighted graph� has a polynomial time approximation scheme�
Note that theGraph Traveling Salesman problem is a restricted version
of the $�Traveling Salesman problem� From this progress� researchers
have even conjectured that the Euclidean Traveling Salesman prob�
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lem� which seems the most naturally restricted version of the $�Traveling
Salesman problem� has a polynomial time approximation scheme�

Researchers were not able to answer these questions for more than ��
years until a very recent breakthrough in complexity theory that gives a new
characterization of the complexity class NP� In the rest of this lecture� we
will describe this new characterization�

We need to review a few fundamental de�nitions in complexity theory�

De�nition �
	� A language L is a subset of (�� where ( is a �xed alphabet�
With a proper coding scheme� we can assume that ( � f�� �g� For an
instance x � (�� if x � L then we say that x is a Yes�instance of L while if
x �� L then we say that x is a No�instance of L�

A language L is also called a �decision problem� in which for each in�
stance x� we need to decide a �Yes No� conclusion for the question �x � L��

De�nition �
	
 A language L is accepted by an algorithm A if on any
input instance x � (�� the algorithm A outputs �Yes� if x � L 
or we say
that A accepts x�� and �No� if x �� L 
or we say that A rejects x��

De�nition �
	� An algorithm A is nondeterministic if it works as follows�
on an input instance x � (�� the algorithm A is also provided with another
�guessed� string yx � (� 
by some magic way�� Thus� the algorithm A can
work on x with the �hints� given in the guessed string y� The nondetermin�
istic algorithm A accepts a language L if for each x � L� there is a guessed
string yx such that A accepts x when yx is provided� and for each x �� L�
the algorithm A rejects x for any guessed string y�

A nondeterministic algorithm A runs in polynomial time if the running
time of A is bounded by a polynomial of the input length jxj� Note that the
time complexity of a nondeterministic algorithm is not measured in terms
of the guessed string y� Since a polynomial time nondeterministic algorithm
A can read at most polynomial many bits in y� we can assume� without
loss of generality� that the length of the guessed string y is bounded by a
polynomial of the input length jxj�

We say that an algorithm A reduces a language L� to another language
L� if on any input instance x� for L�� the algorithm A produces an input
instance x� for L� such that x� � L� if and only if x� � L��
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De�nition �
	� A language L is in NP if it is accepted by a polynomial
time nondeterministic algorithm� A language L is NP�complete if L is in
NP and for each language L� in NP� there is a polynomial time algorithm
that reduces L� to L�

Take the Satisfiability problem as an example� Given a set x of clauses
C�� � � �� Cm on fx�� � � � � xng� a polynomial time nondeterministic algorithm
A can work as follows� A interprets the �rst n binary bits in the guessed
string y as a truth assignment to the boolean variables fx�� � � � � xng and
replaces each literal in the clauses by the corresponding boolean value� A

accepts x if all clauses are evaluated true on this assignment� otherwise A
rejects x� It is easy to see that if x is a Yes�instance for the Satisfiability
problem� then for the guessed string yx whose �rst n bits give the assignment
that satis�es x� the algorithm A will accept� On the other hand� if x is a
No�instance for the Satisfiability problem� then no matter which guessed
string y is provided� the algorithm A will reject anyway since no assignment
on fx�� � � � � xng can satisfy all the clauses in x� Therefore� the Satisfiabil�
ity problem is in NP� By the famous Cook�s theorem� the Satisfiability
problem is actually NP�complete�

A nondeterministic algorithm A accepting a language L can also be
interpreted as a proof system� The given input instance x can be regarded
as a statement of a theorem �the string x is in the language L�� while the
guessed string y can be regarded as a proof for the theorem� The algorithm
A is a very trusty �veri�er�� who may not be able to derive a proof for
the theorem x� but can verify whether y is a valid proof for the theorem x�
Therefore� if the theorem x is true and the guessed string y is a valid proof
for the theorem x� then the algorithm A will say �Yes�� and if the theorem
x is not true then the algorithm A will disprove any pseudo�proof y and say
�No�� In this sense� each problem in NP is a set of theorems that have valid
proofs that are �easily checkable�� i�e�� that can be checked in polynomial
time�

An interesting question is how many bits of the proof y a polynomial time
nondeterministic algorithm needs to read in order to verify the theorem x�
In real life� it seems that most of the theorems simply need a single �hint�
and the other parts of the proof can be easily derived from the hint� Is
this also true for the problems in NP� For this� we introduce the following
de�nition�

De�nition �
	� A language L is in the class PCP
�� b
n�� if L is accepted
by a polynomial time nondeterministic algorithm A such that on each input
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instance x� the algorithm A reads at most O
b
jxj� bits from the guessed
string y�

We have the following easy observations�

Lemma �
	� Every language in NP is in the class PCP
�� nc� for some
constant c�

proof� Suppose that a language L is in NP� Then L is accepted by a
polynomial time nondeterministic algorithm A� Let the running time of the
algorithm A be O
nc�� Then the algorithm A on input instance x reads at
most O
jxjc� bits from a guessed string y� That is� the language L is in the
class PCP
�� nc��

It is interesting to ask whether it is possible to have a polynomial time
algorithm that accepts a language in NP� in particular an NP�complete lan�
guage� by reading less than "
n� bits from the guessed string y� The con�
jecture is No� However� it seems that our current knowledge is still far from
a formal proof of this conjecture� A 
much� weaker result can be formally
proved� if a language is in PCP
�� log logn�� then it is in P�

Another extension of our deterministic algorithms is probabilistic algo�
rithms� de�ned as follows�

De�nition �
	� An algorithm A is a probabilistic algorithm if on any in�
put instance x� the algorithm A �rst generates a random string r� then
deterministically works on the input x�

If the outcome of a probabilistic algorithm does not depend on the gener�
ated random string� then the probabilistic algorithm is just a normal deter�
ministic algorithm� If the computation of the probabilistic algorithm does
depend on the generated random string� then each outcome of the computa�
tion will happen with a certain probability� Some very interesting practical
problems can be solved by probabilistic algorithms in such a way that correct
solutions are produced by the algorithm with very high probability�

If we allow both probabilism and nondeterminism� we obtain the follow�
ing class�

De�nition �
	
 A language L is in the class PCP
r
n�� b
n�� if it is ac�
cepted by a polynomial time algorithm A with two constants c and d such
that
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�� On an input instance x� the random string generated by the algorithm
A is of length c�r
jxj��� a guessed string y of length O
jxjd� is provided�
and the algorithm A reads at most O
b
jxj�� bits from a guessed string�

�� For each input instance x � L� there is a guessed string yx of length
O
jxjd� such that the algorithm A accepts x with probability � 
i�e��
A accepts x based on yx for every generated random string of length
c � r
jxj���


� For each input instance x �� L� on any guessed string y of length
O
jxjd�� the algorithm A rejects x with probability at least ��� 
i�e�� A
rejects x based on y for at least half of the generated random strings
of length c � r
jxj���

The algorithm A is called a PCP
r
n�� b
n�� system accepting the language
L�

The name �PCP� here refers to the �probabilistically checkable proof�
as the model involves a checkable proof system 
i�e�� guessed strings� and
probabilistic computation 
i�e�� the random string generation��

It was a very active research topic that for what functions r
n� and b
n��
the class PCP
r
n�� b
n�� precisely describes the class NP� The question was
eventually settled down recently� as a result stated as follows�

Theorem �
	
 A language L is in the class NP if and only if L is in the
class PCP
logn� ���

The current proof for Theorem 
��� is rather involved� It borrows sig�
ni�cantly from results on polynomial checking� proof veri�cation� program
result checking� and coding theory� Giving the details of these results goes
far beyond the scope of this course and we refer the interested students to
the papers that originate them 
talk to the instructor��
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�� Max��Sat has no PTAS

In the previous lecture� we de�ned the PCP systems� The following theorem
was stated�

Theorem ��	� A language L is in the class NP if and only if L is accepted
by a PCP
logn� �� system�

An outstanding application of Theorem 

�� is a proof that many opti�
mization problems� such as Max��Sat� have no polynomial time approxi�
mation scheme unless P � NP� Before we present the proof� we �rst make
a closer look at the PCP systems� This investigation should let us have a
better understanding on the PCP systems�

By the de�nition� a PCP
logn� �� system is a polynomial time algorithm
A that on input of length n� generates a random string of length O
logn� and
reads at most b bits from the guessed string y� where b is a �xed constant�
It should be noted that which b bits of the guessed string y are read by the
algorithm A may depend on the values of the bits read from y� For example�
suppose that the algorithm A reads the �rst bit from the guessed string y�
Now the algorithm A may calculate the address of the second bit to be read
from y based on the value of the �rst bit� In general� the address of the ith
bit to be read by A from y may depend on the values of the �rst i� � bits
read by A�

De�nition ��	� A PCP
r
n�� b
n�� system A is nonadaptive if on an input
instance x and a �xed randomly generated string of length O
r
jxj��� the
addresses of the O
b
n�� bits to be read by A from the guessed string y are
independent of the content of the guessed string y�

Therefore� the process of a nonadaptive PCP
r
n�� b
n�� system A can
be regarded as follows� on input instance x� the polynomial time algorithm
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A �rst generates a random string of length O
r
jxj��� then generates the
O
b
n�� addresses for the bits to be read from the guessed string y� and
then reads the bits from y� There will be no other computation performed
during the reading of the bits from the guessed string y�

Lemma ��	
 A language L is accepted by a PCP
logn� �� system if and
only if it is accepted by a nonadaptive PCP
logn� �� system�

proof� By the de�nition� if the language L is accepted by a nonadaptive
PCP
logn� �� system� then L is accepted by a general PCP
logn� �� system�

Now suppose that the language L is accepted by a PCP
logn� �� system
A�� By the de�nition� on each input instance x� the polynomial time algo�
rithm A� �rst generates a random string R of length O
logn�� then works
on x based on R and a guessed string y� The algorithm A� reads at most b
bits from the guessed string y� where b is a �xed constant� If x � L� then
there is a guessed string yx such that on all randomly generated strings R
of length O
logn�� A� accepts x based on yx� and if x �� L� then for any
guessed string y� for at least half of the randomly generated strings of length
O
logn�� the algorithm A� rejects x based on y�

We construct a nonadaptive PCP
logn� �� system A� that accepts the
language L�

Let x be an input instance of L� Fix a randomly generated string R of
length O
logn�� The algorithm A� works as follows� A� �rst enumerates all
the �b boolean vectors of length b� Note that each boolean vector 
v�� � � � � vb�
of length b gives a possible set of values for the b bits to be read from the
guessed string y� For the �xed input instance x and the �xed random string
R� the boolean vector 
v�� � � � � vb� also uniquely determines the addresses
of the bits to be read by the algorithm A� from the guessed string y� the
address of the �rst bit depends only on x and R� the address of the second
bit depends on x� R� and the value of the �rst bit� which is supposed to
be v�� and the address of the third bit depends on x� R� and the values of
the �rst two bits� which are supposed to be v� and v�� respectively� and so
on� Therefore� based on the input instance x� the random string R� and the
given boolean vector 
v�� � � � � vb� of length b� the algorithm A� can uniquely
determine the addresses of the b bits to be read by the algorithm A�� The
algorithm A� simulates the algorithm A� on this computation� records the b
addresses on the guessed string� and records the decision of A� on x and R
based on this boolean vector� Note that so far� no bits have been actually
read from the guessed string y� the values of the bits on the guessed string
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y are assumed in the boolean vector 
v�� � � � � vb��
The algorithm A� performs the above operation on each of the �b boolean

vectors of length b� At the end� the algorithm A� has recorded d � b�b

addresses on the guessed string y� Now the algorithm A� reads all these
d bits at once from the guessed string y� With these d values available�
the algorithm A� can easily decide precisely which boolean vector gives the
correct sequence of values of the bits read from y by the algorithm A� on
x and R� Note that there is exactly one such vector� With this correct
boolean vector� now the algorithm A� can �nd out whether the algorithm
A� accepts x on the random string R and the guessed string y� The algorithm
A� accepts x on R if and only if the algorithm A� accepts x on R�

Now we can describe the algorithm A� in a complete version� Given an
input instance x for L� the algorithm A� simulates the algorithm A� by �rst
generating a random string R of length O
logn�� Then� as described above�
the algorithm A� simulates the algorithm A� on x and R� and A� accepts if
and only if A� accepts�

By the construction� the algorithm A� is clearly nonadaptive� The num�
ber of bits read by A� from the guessed string y is bounded by d � b�b�
which is still a constant� The running time of A� is bounded by b�b times
the running time of the algorithm A�� Thus� A� is also a polynomial time
algorithm� Finally� on any input instance x� any randomly generated string
R� and any guessed string y� the algorithm A� makes the same decision as
the algorithm A�� Thus� the algorithm A� is a nonadaptive PCP
logn� ��
system that accepts the language L�

Now we are ready for our main theorem in this lecture�

Theorem ��	� The Max��Sat problem has no polynomial time approxi�
mation scheme unless P � NP�

proof� Let L be any language that is NP�complete� We show that if the
Max��Sat problem has a polynomial time approximation scheme� then the
language L can be solved in polynomial time by a deterministic algorithm�
which implies that P � NP�

Since the language L is in NP� by Theorem 

��� L is accepted by a
PCP
logn� �� system A� Without loss of generality� we assume that on
an input instance x� the polynomial time algorithm A generates a random
string R of length c logn� and reads at most b bits from a guessed string
y� where c and b are �xed constants� If the input instance x is in L� then
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there is a guessed string yx of length nd such that for all randomly generated
strings R of length c logn� the algorithm A accepts x� if the input instance
x is not in L� then for any guessed string y� the algorithm A rejects x on at
least half of the randomly generated strings R of length c logn� According to
Lemma 

��� we can assume that the PCP
logn� �� system A is nonadaptive�

Let x be a given input instance of L� Fix a random string R of length
c logn� We simulate the algorithm A on the input x and the random string
R� Note that the outcome of the algorithm A on input x and the random
string R depends on the values of the b bits to be read from the guessed
string y� Since the algorithm A is nonadaptive� the addresses i�� � � �� ib of
the b bits to be read from the guessed string y can be computed without
knowing the actual content of the guessed string y� Formally� the outcome
of the algorithm A on input x and the random string R is a boolean function
of b boolean variables�

Fx�R
yi� � � � � � yib�

where yij stands for the ijth bit of the guessed string y� The boolean function
Fx�R can be constructed by simulating the algorithm A on input x and
the random string R and on each of the possible assignments of yi� � � � ��
yib � Note that there are only �b di�erent possibilities� Now convert the
function Fx�R
yi� � � � � � yib� into the conjunctive normal form� Note that in
the conjunctive normal form� each clause has at most b literals and there
are at most �b clauses� Now for each clause C � 
z� � � � �� za� containing
more than 
 literals� we use the standard transformation� by introducing
a� 
 new variables w�� � � �� wa��� to convert it into a set of a� 
 clauses of

 literals�


z� � z� � w�� � 
w� � z� � w�� � 
w� � z	 � w�� �
� � � � � 
wa�	 � za�� � wa���� 
wa�� � za�� � za�

After this transformation� the boolean function Fx�R has been converted into
a set Sx�R of clauses� in which each clause contains at most 
 literals� One
important fact is that the number of clauses contained in Sx�R is bounded
by b�b� a constant independent of the input instance x� Note that there is an
assignment to the boolean variables yi� � � � �� yib that makes the function Fx�R
true if and only if there is an assignment to the variables in Sx�R that satis�es
all clauses in Sx�R� It is also clear that the set Sx�R can be constructed from
the input x and the random string R in polynomial time�

Now for each random string R of length c logn� we construct the set Sx�R
of clauses that contain at most 
 literals� The union of all these sets gives
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us an input instance for the Max��Sat problem�

S
x� �
�

jRj�c logn

Sx�R

Since there are totally �c logn � nc binary strings of length c logn� we can
rename the subsets Sx�R in S
x� as S�� � � �� Sm� where m � nc�

S
x� � S� � S� � � � � � Sm
Since each set Si can be constructed in polynomial time and m � nc� the
set S
x� can be constructed from the input instance x in polynomial time�
Moreover� there is a constant h � b�b such that each subset Si contains at
most h clauses� Suppose that the set S
x� has N clauses� Then N � hm�

If the input x is in the language L� then according to the de�nition of
the PCP
logn� �� system A� there is a guessed string yx of length nd such
that on every randomly generated string R� the algorithm A accepts x�
Consequently� if we let this yx be the assignment on the variables in the set
Sx�R� then all clauses in Sx�R are satis�ed� That is� if we regard S
x� as an
input instance of theMax��Sat problem� then the optimal value Opt
S
x��
of S
x� is N �

If the input instance x is not in the language L� then given any guessed
string y� for at least half of the random strings R of length c logn� the
algorithm A rejects x� That is� there are at least m�� of the subsets S��
� � �� Sm in S
x�� for which the assignment y cannot satisfy all clauses in the
subset� Therefore� on any assignment to the variables in the set S
x�� at
least m�� � N�
�h� clauses in the set S
x� are not satis�ed�

In conclusion� the set S
x� is an input instance of theMax��Sat problem
with the following properties�

Either x � L and there is an assignment to the boolean variables
in S
x� that satis�es all clauses in S
x�� or x �� L and no as�
signment to the boolean variables in S
x� can satisfy more than
N
�� ��
�h�� clauses in S
x�� where h � � is a �xed constant�
Moreover� the set S
x� of clauses can be constructed from x in
polynomial time�

Now it is straightforward to prove the theorem� Suppose that the Max�

�Sat problem has a polynomial time approximation scheme� Then let A�

be a polynomial time approximation algorithm with approximation ratio
� � ��
	h� for the Max��Sat problem� We describe a polynomial time
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deterministic algorithm A� that accepts the language L� Given an input
instance x� the algorithm A� �rst constructs the instance S
x� in polynomial
time for the Max��Sat problem� Suppose that S
x� has N clauses� The
algorithm A� then applies the polynomial time approximation algorithm A�

on S
x� to produce a solution s for S
x�� where s is an assignment to the
boolean variables in S
x�� The algorithm A� accepts x if and only if the
assignment s satis�es more than N
�� ��
�h�� clauses in S
x��

It is clear that the algorithm A� is a polynomial time deterministic algo�
rithm� We prove that the algorithm A� accepts precisely the language L� In
case x � L� by the above analysis� Opt
S
x�� � N � Since the approximation
algorithm A� has approximation ratio ����
	h�� the assignment s produced
by the algorithm A� must satisfy at least

N

� � ��
	h�
� N
�� ��
�h��

clauses in S
x�� In this case� the algorithm A� accepts x� On the other
hand� if x �� L� then by the above analysis� no assignment to the variables in
S
x� can satisfy more than N
����
�h�� clauses in S
x�� In particular� the
assignment s produced by the algorithm A� satis�es no more than N
� �
��
�h�� clauses in S
x�� Thus� in this case� the algorithm A� rejects x�
This proves that the polynomial time algorithm A� accepts precisely the
language L� We conclude that the NP�complete problem L is accepted by a
polynomial time deterministic algorithm� Consequently� P � NP�

This completes the proof�
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�	 Independent Set has no PTAS

The famous Cook theorem that the Satisfiability problem is NP�complete
serves as a fundamental theorem for the study of NP�completeness of deci�
sion problems and gives the �rst NP�complete problem� Because of this �rst
NP�complete problem� the proofs for the NP�completeness of other decision
problems become much simpler by means of a proper �reduction� from the
Satisfiability problem�

Theorem 

�
 plays the same role in the study of approximability of opti�
mization problems as does Cook�s theorem in the study of NP�completeness�
By Theorem 

�
� the hardness of approximability for theMax��Sat prob�
lem is established� The hardness of approximability for other optimization
problems now can be established from the Max��Sat problem by a proper
reduction that preserves the approximability� We will demonstrate a few
such reductions in this lecture� A formal de�nition of such a reduction
among optimization problems will be given in the next lecture�

The �rst reduction is straightforward�

Lemma ��	� If the Max�Sat problem has a polynomial time approxima�
tion scheme� then so does the Max��Sat problem�

proof� Each instance x of the Max��Sat problem is also an instance
for the Max�Sat problem� Therefore� any approximation algorithm for the
Max�Sat problem is also an approximation algorithm for the Max��Sat

problem with the same approximation ratio� Therefore� if the Max�Sat

problem has a polynomial time approximation scheme� then so does the
Max��Sat problem�

Theorem ��	
 TheMax�Sat problem has no polynomial time approxima�
tion scheme unless P � NP�

proof� This follows directly from Theorem 

�
 and Lemma 
	���
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Now let us consider a less simple reduction� Let G be a graph� Recall
that an independent set in G is a subset S of vertices in G in which no two
vertices are adjacent� The Independent Set problem is de�ned as follows�

Independent Set

Input� a graph G

Output� an independent set S of G with the cardinality of S
maximized

We present a reduction from the Max��Sat problem to the Indepen�
dent Set problem�

The reduction is the one that is used in the NP�completeness theory to
show that the decision version of the Independent Set is NP�complete�
However� we need a more careful quantitative analysis�

Given an instance E � fC�� C�� � � � � Cmg of the Max��Sat problem�
where each Ci is a clause of at most 
 literals in fx�� � � � � xng� We construct
a graph GE as follows�

Every literal occurrence l in a clause Ci in E induces a vertex in the
graph GE� which will be named by l�i�� Note that if the same literal appears
in two di�erent clauses in E� then there will be two corresponding vertices

in the graph GE � For any pair of vertices l
�i�
� and l

�j�
� � there is an edge

connecting them if and only if either

�� i � j� i�e�� the literals l
�i�
� and l

�j�
� belong to the same clause in E� or

�� i �� j and l
�i�
� � l

�j�
� � i�e�� the literals l

�i�
� and l

�j�
� belong to di�erent

clauses in E and they negate each other�

This completes the description of the graph GE �

Lemma ��	� If � is an assignment to the variables fx�� � � � � xng that sat�
is�es k clauses in E� then an independent set S� of at least k vertices in the
graph GE can be constructed in polynomial time based on the assignment ��

proof� Without loss of generality� suppose that the assignment � to the
variables fx�� � � � � xng satis�es the k clauses C�� � � �� Ck in E� Then under
this assignment �� each clause Ci� i � �� � � � � k� has 
at least� one literal l�i�

that is set to true by �� We claim that the subset S� � fl���� � � � � l�k�g of
vertices in the graph GE forms an independent set� In fact� for any pair of
vertices l�i� and l�j�� � � i� j � k� i �� j� since the literals l�i� and l�j� belong
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to di�erent clauses Ci and Cj in E� the vertices l�i� and l�j� are adjacent in
the graph GE only if the literal l�i� is the negation of the literal l�j�� Thus�
any assignment will set one of the literals l�i� and l�j� true and the other
false� By our assumption� the assignment � sets both the literals l�i� and
l�j� true� Thus� the literal l�i� cannot be the negation of the literal l�j�� In
consequence� the vertices l�i� and l�j� in the graph GE are not adjacent� This
proves that the set S� � fl���� � � � � l�k�g is an independent set in the graph
GE � It is easy to see that the independent set S� � fl���� � � � � l�k�g in the
graph GE can be constructed in linear time when the assignment � to the
variables fx�� � � � � xng is given�

Lemma ��	� If the graph GE has an independent set S of k vertices� then
an assignment �S to the variables fx�� � � � � xng can be constructed in poly�
nomial time such that �S satis�es at least k clauses in E�

proof� Let S � fl�� � � � � lkg be an independent set in the graph GE � Since
no two vertices in S are adjacent� by the construction of the graph GE�

�� no two literals li and lj in the set S belong to the same clause in E�
and

�� no two literals li and lj in the set S negate each other� Thus� for each
variable xh� at most one of xh and xh is in S�

Thus� the set S � fl�� � � � � lkg induces an assignment �S to the variables
fx�� � � � � xng such that �S sets all literals l�� � � �� lk in S true� That is� if
xh is in S then �S sets xh � � and if xh is in S then �S sets xh � �� For
variables xh such that neither of xh and xh appears in S� the assignment �S
sets xh arbitrarily�

Now since the k literals l�� � � �� lk� which are set true by the assignment
�S � belong to k di�erent clauses in E� we conclude that the assignment �S
satis�es at least k clauses in E� The assignment �S to fx�� � � � � xng can be
easily constructed in linear time from the independent set S in the graph
GE �

Corollary ��	� The number of vertices in a maximum independent set in
the graph GE is equal to the maximum number of clauses in E that can be
satis�ed by an assignment to fx�� � � � � xng�

Now we are ready to prove�
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Lemma ��	� If the Independent Set problem has a polynomial time ap�
proximation scheme� then so does the Max��Sat problem�

proof� Suppose that the Independent Set problem has a polynomial
time approximation scheme� we show how a polynomial time approximation
scheme for the Max��Sat problem can be constructed�

For a given constant � � �� Let ApxIS be a polynomial time approxi�
mation algorithm for the Independent Set problem with approximation
ratio � � �� Consider the following algorithm�

Algorithm ��	� Apx�Sat

Input� a set of clauses fC�� � � � � Cmg� where each Ci is

a clause of at most 
 literals in fx�� � � � � xng
Output� a truth assignment to fx�� � � � � xng
�� construct the graph GE�

�� call the algorithm ApxIS on the graph GE to find

an independent set S in GE�

�� construct an assignment �S to fx�� � � � � xng from S
such that �S satisfies at least jSj clauses in E�

It is clear that step � and step � of the algorithm Apx�Sat take polyno�
mial time� Lemma 
	�	 proves that step 
 of the algorithm Apx�Sat also
takes polynomial time� Therefore� the algorithm Apx�Sat is a polynomial
time approximation algorithm for the Max��Sat problem�

Now we analyze the approximation ratio for the algorithm Apx�Sat�
Let OptSAT 
E� be the optimal value of the set E � fC�� � � � � Cmg of

clauses� where E is treated as an instance of the Max��Sat problem� and
let OptIS
GE� be the optimal value of the graph GE � where GE is treated
as an instance of the Independent Set problem� By Corollary 
	���

OptSAT 
E� � OptIS
GE�

Let Apx
�S� be the number of clauses in E that are satis�ed by the assign�
ment �S � According to step 
 of the algorithm Apx�Sat� we have

OptSAT 
E�

Apx
�S�
� OptSAT 
E�

jSj �
OptIS
GE�

jSj 
�
�

Since S is the independent set produced by the approximation algorithm
ApxIS for the Independent Set problem� by our assumption�

OptIS
GE�

jSj � � � �
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We conclude that the approximation ratio of the algorithm Apx�Sat for the
Max��Sat problem is bounded by

OptSAT 
E�

Apx
�S�
� � � �

This proves that the polynomial time algorithm Apx�Sat is an approxima�
tion algorithm of approximation ratio � � � for the Max��Sat problem�
Since � � � is arbitrary� we have proved that the Max��Sat problem has a
polynomial time approximation scheme�

Theorem ��	
 The Independent Set problem has no polynomial time
approximation scheme unless P � NP�

proof� This follows directly from Lemma 
	�� and Theorem 

�
�

Another important optimization problem� Clique� is very closely related
to the Independent Set problem� Let G be a graph� A subset C of vertices
in G is a clique in G if all vertices in C are mutually adjacent�

Clique

Input� a graph G

Output� a clique C in G with the cardinality of C maximized

Let G � 
V�E� be a graph� The graph Gc � 
V�E�� with the same vertex
set V is called the complement graph of G if for any pair of vertices u and
v in V � u and v are adjacent in Gc if and only if u and v are not adjacent
in G� Note that the complement graph of the complement graph Gc is the
original graph G�

Lemma ��	� Let G � 
V�E� be a graph and let Gc � 
V�E�� be the com�
plement graph of G� Let S be a subset of vertices in V � Then� S is an
independent set in the graph G if and only if S is a clique in the graph Gc�

proof� This follows directly from the de�nitions�

The approximabilities of the Clique problem and the Independent
Set problem are related by the following theorem�
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Theorem ��	� Let t
n� be a function that is at least as large as n� The
Clique problem has an approximation algorithm of running time O
t
n��
and approximation ratio r
n� if and only if the Independent Set problem
has an approximation algorithm of running time O
t
n�� and approximation
ratio r
n���

proof� Let A�Clique be an approximation algorithm for the Clique
problem such that A�Clique has running time O
t
n�� and approximation
ratio r
n�� Consider the following algorithm for the Independent Set

problem�

Algorithm ��	
 A�IS

Input� a graph G
Output� an independent set S in G

�� construct the complement graph Gc�

�� call the algorithm A�Clique on the graph Gc to find

a clique S in Gc�

�� return S as an independent set in the graph G�

By Lemma 
	��� the set S constructed by the algorithm A�IS is an inde�
pendent set in the graph G� It is clear that the running time of the algo�
rithm A�IS is bounded by the running time of the algorithm A�Clique plus
O
n�� By our assumption� the algorithm A�Clique runs in time O
t
n�� and
t
n� � "
n�� thus we conclude that the running time of the algorithm A�IS

is also bounded by O
t
n���
Again by Lemma 
	��� the number of vertices in a maximum indepen�

dent set in the graph G is equal to the number of vertices in a maximum
clique in the graph Gc� Therefore� if we let Optcl
G

c� be the optimal value
for the graph Gc treated as an instance for the Clique problem and let
Optis
G� be the optimal value for the graph G treated as an instance for
the Independent Set problem� then we have

Optis
G�

jSj �
Optcl
G

c�

jSj
By our assumption� the approximation ratio for the approximation algo�
rithm A�Clique is bounded by r
n�� thus Optcl
G

c��jSj � r
n�� This gives
immediately that the approximation ratio of the approximation algorithm
A�IS is also bounded by r
n��
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The other direction that if the Independent Set problem has an ap�
proximation algorithm of running time O
t
n�� and approximation ratio
r
n� then so does the Clique problem can be proved in a similar way�

Corollary ��	�� The Clique problem has no polynomial time approxima�
tion scheme unless P � NP�

proof� This follows directly from the combination of Theorem 
	�� and
Theorem 
	���

According to Theorem 
	��� we can say that essentially there is no dif�
ference in the approximability between the Clique problem and the Inde�
pendent Set problem� In fact� a result can be obtained which is much
stronger than Theorem 
	�� and Corollary 
	��� on the approximability of
these two optimization problems� We will discuss this in the next lecture�
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�
 Independent Set is not in APX

In this lecture� We present results on the approximability of the Indepen�
dent Set problem and the Clique problem that strengthen Theorem 
	��
and Corollary 
	����

Let G� � 
V�� E�� and G� � 
V�� E�� be two graphs� The composition
graph G � G��G�� of these two graphs is the graph G � 
V�E� that has
vertex set V � V�� V�� Two vertices �u�� u�� and �v�� v�� in the graph G are
adjacent� where u� and v� are vertices in G� and u� and v� are vertices in
G�� if and only if either 
u�� v�� is an edge in G�� or u� � v� and 
u�� v�� is
an edge in G�� A convenient way to view the composition graph G � G��G��
is as being constructed by replacing each vertex of G� by a copy of G� and
then replacing each edge of G� by a complete bipartite subgraph that joins
every vertex in the copy corresponding to one endpoint to every vertex in
the copy corresponding to the other endpoint�

Lemma ��	� Let fu�� � � � � ukg be an independent set of k vertices in the
graph G� and let fv�� � � � � vhg be an independent set of h vertices in the
graph G�� then the kh vertices

�ui� vj � � � i � k and � � j � h

form an independent set in the composition graph G��G���

proof� By the de�nition� no two vertices in fu�� � � � � ukg are adjacent in
the graph G� and no two vertices in fv�� � � � � vhg are adjacent in the graph
G�� According to the de�nition of the composition graph G��G��� it is easy
to check that no two vertices �ui� vj� and �ui� � vj� � in the list given in the
lemma are adjacent in the graph G��G���

Let G be any graph� We de�ne a graph dG by iterating the composition
operation� Inductively� �G � G� and for d � �� dG � 
d � ��G�G�� Note
that if the graph G has n vertices� then the graph dG has nd vertices�
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Lemma ��	
 Let d be a �xed positive integer and K be an integer satisfying
K � 
k� ��d� If the composition graph dG has an independent set Sd of K
vertices� then the graph G has an independent set S that contains at least k
vertices� Moreover� the independent set S of the graph G can be constructed
from the independent set Sd of the graph dG in polynomial time�

proof� First note that since d is a �xed constant� the number of vertices
in the graph dG is nd� which is a polynomial of the number n of vertices in
the graph G� Therefore� the running time of any polynomial time algorithm
on the graph dG is also bounded by a polynomial of n�

We prove the lemma by induction on the integer d� The lemma is cer�
tainly true for the case d � ��

Now consider the graph dG � 
d���G�G�� Suppose that the independent
set Sd in the graph dG is

Sd � f�u�� v��� �u�� v��� � � � � �uK� vK �g
where ui�s are vertices in the graph 
d � ��G and vj �s are vertices in the
graph G�

We partition the vertices in the set Sd into groups H�� � � �� Hm such that
all vertices in each group Hj have the same �rst coordinate� There are two
possible cases�

If one Hi of the groups contains at least k vertices�

Hi � f�ui� w��� �ui� w��� � � � � �ui� wk� �g
where k� � k� then since no two of these k� vertices are adjacent in the
graph dG � 
d� ��G�G�� by the de�nition� no two of the k� vertices w�� � � ��
wk� are adjacent in the graph G� That is� the set S � fw�� � � � � wk�g is an
independent set of at least k vertices in the graph G� It is also easy to see
that if such a group Hi exists in the set Sd� then the set S � fw�� � � � � wk�g
can be constructed in polynomial time�

If none of the groups H�� � � �� Hm in the set Sd contains more than k� �
vertices� then we have m
k � �� � K� which implies m � K�
k � �� �

k � ��d��� Pick any vertex �ui� wi� from the group Hi� for i � �� � � � � m�
since no two of the vertices

�u�� w��� �u�� w��� � � � � �um� wm�

are adjacent in the graph dG� by the de�nition� no two of the vertices u��
� � �� um are adjacent in the graph 
d� ��G� Thus� we obtain an independent
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set Sd�� of m � 
k � ��d�� vertices in the graph 
d� ��G�

Sd�� � fu�� u�� � � � � umg

It is easy to see that the independent set Sd�� of the graph 
d� ��G can be
constructed in polynomial time from the independent set Sd of the graph
dG� Now by our inductive hypothesis� an independent set S of at least k
vertices in the graph G can be constructed in polynomial time from the
independent set Sd�� of more than 
k���d�� vertices in the graph 
d���G�
Because d is a �xed constant� we conclude that an independent set S of at
least k vertices in the graph G can be constructed in polynomial time from
the independent set Sd of more than 
k � ��d vertices in the graph dG�

This completes the proof of the lemma�

Theorem ��	� The number of vertices in a maximum independent set of
the graph G is k if and only if the number of vertices in a maximum inde�
pendent set of the graph dG is kd�

proof� Suppose that a maximum independent set of the graph G contains
k vertices� Applying induction on Lemma 
���� we can easily derive that
a maximum independent set of the graph dG has at least kd vertices� If a
maximum independent set of the graph dG contains more than kd vertices�
then by Lemma 
���� the graph G would contain an independent set of
more than k vertices� This contradicts the assumption that a maximum
independent set in G has k vertices� Thus� a maximum independent set of
the graph dG contains exactly kd vertices�

Conversely� if a maximum independent set of the graph dG has kd ver�
tices� then by Lemma 
���� a maximum independent set of the graph G

contains at least k vertices� A maximum independent set of G cannot con�
tain more than k vertices since otherwise� by Lemma 
���� a maximum
independent set of dG would contain more than kd vertices�

Now we come back to the approximability of the Independent Set

problem and the Clique problem�

Lemma ��	� If the Independent Set problem has a polynomial time ap�
proximation algorithm Ac with approximation ratio bounded by a �xed con�
stant c � �� then the Independent Set problem has a polynomial time
approximation scheme�
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proof� We construct a polynomial time approximation scheme for the
Independent Set problem from the polynomial time approximation al�
gorithm Ac of constant approximation ratio for the problem� Consider the
following algorithm for the Independent Set problem�

Algorithm ��	� PTAS�IS

Input� a graph G and a constant � � �
Output� an independent set S in G

�� d � d
c� ����e�
�� construct the composition graph dG�

�� apply algorithm Ac to construct an independent set Sd
in the graph dG�

	� construct an independent set S of k vertices in the

graph G from the set Sd� where k is the largest

integer such that jSdj � 
k � ��d�

Since d � 
c � ����� we have 
� � ��d � � � d� � c� Note that when c and
� are �xed constants� d is also a �xed constant� Thus� if the graph G has n
vertices� then the number of vertices of the composition graph dG is bounded
by a polynomial of n� and the composition graph dG can be constructed in
polynomial time� Consequently� the independent set Sd in the graph dG can
be constructed in time polynomial in n� Finally� according to Lemma 
����
the independent set S in the graph G can be constructed from Sd in time
polynomial in n� In conclusion� the algorithm PTAS�IS is a polynomial time
algorithm�

Let Opt
G� be the number of vertices in a maximum independent set of
the graph G� By Theorem 
��
� the number Opt
dG� of vertices in a max�
imum independent set of the graph dG is 
Opt
G��d� By the construction
we have jSdj � kd � jSjd� Finally� since the independent set Sd of the graph
dG is produced by the algorithm Ac� by our assumption� Opt
dG��jSdj � c�
With all these relations� we obtain

�
Opt
G�

jSj
�d

�

Opt
G��d

jSjd � Opt
dG�

jSdj � c � 
� � ��d

which gives
Opt
G�

jSj � � � �
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Therefore� for any �xed constant � � �� the algorithm PTAS�IS constructs in
polynomial time an independent set S for the graph G such that the approx�
imation ratio Opt
G��jSj is bounded by � � �� That is� the Independent
Set problem has a polynomial time approximation scheme�

Since we already know that the Independent Set problem has no
polynomial time approximation scheme unless P � NP 
Theorem 
	����
Lemma 
��	 derives the following theorem that is stronger than Theo�
rem 
	���

Theorem ��	� Unless P � NP� the Independent Set problem is not in
the class APX� In other words� unless P � NP� the Independent Set prob�
lem has no polynomial time approximation algorithm whose approximation
ratio is bounded by a �xed constant c�

Corollary ��	� The Clique problem has no polynomial time approxima�
tion algorithm whose approximation ratio is bounded by a �xed constant c�
unless P � NP�

proof� This follows from Theorem 
	�� and Theorem 
����
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�� Vertex Cover has no PTAS

After the establishment of the fundamental theorem 
Theorem 

�
� that
claims the non�approximability of the Max��Sat problem� we have seen
that the non�approximability of other optimization problems� such as the
Max�Sat problem and the Independent Set problem� can be derived by
reducing the Max��Sat problem to them� The reductions used for these
problems are essentially the same as the ones that are used in the proofs for
the NP�completeness of the corresponding decision versions of the problems�
Since there has been a long line of reductions that reduce one NP�complete
problem to another� we would wonder whether we can somehow simply
modify these reductions for decision problems to the world of optimization
problems so that the non�approximability of all optimization problems can
be derived�

Researchers quickly realized the di�erence in these two worlds� To il�
lustrate the di�erence� we use the Vertex Cover as an example� Recall
that given a graph G� a subset S of vertices of G forms a vertex cover of G
if every edge in G has at least one end in the set S� The Vertex Cover

problem is formulated as follows�

Vertex Cover

Input� a graph G

Output� a vertex cover S of G with jSj minimized

Lemma ��	� Let G � 
V�E� be a graph� A set S � V of vertices is a
vertex cover of the graph G if and only if the set V � S is an independent
set in the graph G� In particular� S is a minimum vertex cover of the graph
G if and only if V � S is a maximum independent set in the graph G�

proof� If S is a vertex cover of the graph G� then every edge in G has at
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least one end in S� Therefore� no edge in G has both ends in V � S� That
is� the set V � S is an independent set in the graph G�

If V � S is an independent set of the graph G� then no two vertices in
V � S are adjacent� That is� no edge has both ends in the set V � S� or
equivalently� every edge has at least one end in S� Thus� the set S is a vertex
cover�

The rest of the lemma follows directly�

Therefore� suppose that we know that the decision version of the Inde�
pendent Set problem �given a graph G and k� does G have an independent
set of k vertices�� is NP�complete� then we can use Lemma 
��� to show
the NP�completeness of the decision version of the Vertex Cover prob�
lem �given a graph G and k� does G have a vertex cover of k vertices��
by reducing the decision version of the Independent Set problem to it�
asking if a given graph G has an independent set of k vertices is equivalent
to asking if the graph G has a vertex cover of n� k vertices� Therefore� the
problem of �nding an independent set of k vertices in a graph is not harder
than the problem of �nding a vertex cover of n � k vertices in the same
graph� Thus� the hardness of the �rst problem implies the hardness of the
second problem�

However� the above reduction would not work if we approximate the op�
timal solutions in the problems� For instance� let G � 
V�E� be a graph of
���� vertices in which a maximum independent set has �� vertices while a
minimum vertex cover contains ��� vertices� Now suppose we want to derive
an approximation for the maximum independent set from an approximation
for the minimum vertex cover� Let S be a vertex cover of ��� vertices in G�
Then S is a pretty good approximation for the minimum vertex cover 
with
approximation ratio ������� � ������ However� if we use the above reduc�
tion to get the independent set V �S for the graphG� we obtain a very bad
approximation V �S for the maximum independent set 
with approximation
ratio ����� � ��� Therefore� even Lemma 
��� suggests a reduction that re�
duces the Independent Set problem to the Vertex Cover problem� the
reduction does not preserve the approximation ratio when we apply approx�
imation algorithms� The hardness of approximability of the Independent
Set thus does not imply the hardness of approximability of the Vertex
Cover problem� In fact� as we have shown� the Independent Set has no
polynomial time approximation algorithm with a constant approximation ra�
tio unless P � NP 
Theorem 
���� while the Vertex Cover problem has
a simple approximation algorithm of approximation ratio � 
Theorem ������

���



Therefore� to study approximability of optimization problems� we need to
consider reductions that somehow preserve the approximability� Before we
present the formal de�nition for the reduction� we �rst introduce a notation�

De�nition ��	� Let Q � hI� S� f� opti be an optimization problem� Let
x � I be an instance of Q and y � S
x� be a solution to the instance x� The
relative error EQ
x� y� of the solution y is de�ned by

EQ
x� y� �

��



Opt�x�
f�x�y� � � if opt � max
f�x�y�
Opt�x� � � if opt � min

Simply speaking� the relative error EQ
x� y� of the solution y is the approx�
imation ratio of y minus �� Note that the relative error EQ
x� y� is always
a non�negative number�

Now we are ready for giving the de�nition of our reduction that preserves
the approximation ratio�

De�nition ��	
 An optimization problem Q� � hI�� S�� f�� opt�i can be
E�reducible to an optimization problem Q� � hI�� S�� f�� opt�i� in written
Q� �E Q�� if there are two polynominal time computable functions g
�� and
h
� � ��� a polynomial p
�� and a constant �� such that

�� for any x� � I�� g
x�� � x� � I�� satisfying Opt�
x�� � p
jx�j�Opt�
x��
and Opt�
x�� � p
jx�j�Opt�
x���

�� for any y� � S�
x��� h
x�� y�� � y� � S�
x�� such that

E�
x�� y�� � �E�
x�� y��

where Opt�
x�� and Opt�
x�� are the optimal values for the instances x� and
x� of the problems Q� and Q�� respectively� and E� and E� are the relative
errors for the problems Q� and Q�� respectively�

The de�nition of the E�reduction seems very natural from the viewpoint
of polynomial time approximability of optimization problems� Condition
� and the polynomial time computability of the functions g and h ensure
that the reduction is a polynomial time transformation� while condition �
requires that the transformation preserves the approximability� The only
thing that looks a bit less natural is the requirement that the optimal values
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of the instances are related by a polynomial factor� We will see that this
requirement makes the E�reduction the canonical reduction for an important
class of optimization problems� Moreover� in most cases� this requirement is
naturally satis�ed� For example� if the optimal values of both optimization
problems Q� and Q� are bounded by a polynomial of their input instance
length� then this requirement is automatically satis�ed�

The E�reduction from the optimization problem Q� to the optimization
problem Q� provides a systematic technique for designing approximation
algorithms for the problem Q� based on approximation algorithms for the
problem Q�� as shown by the following lemmas�

Lemma ��	
 Let Q� and Q� be two optimization problems� If Q� �E Q�

and Q� has a fully polynomial time approximation scheme� then so does Q��

proof� Let Q� � hI�� S�� f�� Opt�i and Q� � hI�� S�� f�� Opt�i� Let A� be
a fully polynomial time approximation scheme for the problem Q�� Suppose
that the reduction Q� �E Q� is given as stated in De�nition 
����

We design an approximation algorithm for the problem Q� as follows�
For any constant � � �� given x� � I�� we 
�� compute x� � g
x�� � I�� 
��
apply the algorithm A� for Q� on x� to get a solution y� for x� satisfying
E�
x�� y�� � ���� and �nally 

� construct the solution y� � h
x�� y�� for
the instance x� of Q��

Since A� is a fully polynomial time approximation scheme for Q�� the
solution y� can be constructed in time polynomial in jx�j and ���� thus in
time polynomial in jx�j and ���� The other steps of the above algorithm
take time polynomial in jx�j� Therefore� the total running time of the above
algorithm is bounded by a polynomial of jx�j and ����

Since the reduction is an E�reduction� we have

E�
x�� y�� � �E�
x�� y�� � �

Thus� the above algorithm has approximation ratio � � �� thus� is a fully
polynomial time approximation scheme for the problem Q��

In a similar way� we can prove

Lemma ��	� Let Q� and Q� be two optimization problems� If Q� �E Q�

and Q� has a polynomial time approximation scheme� then so does Q��
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Lemma ��	� Let Q� and Q� be two optimization problems� If Q� �E Q�

and Q� is in the class APX 
i�e�� Q� has a polynomial time approximation
algorithm whose approximation ratio is bounded by a �xed constant�� then
so is Q��

In particular� Lemma 
��
 implies

Lemma ��	� Let Q� and Q� be two optimization problems and Q� �E Q��
If Q� does not have a polynomial time approximation scheme unless P �
NP� then Q� does not have a polynomial time approximation scheme unless
P � NP�

Example ��	� We give an example to illustrate these ideas� In Lecture

	� we presented a reduction from Q�� the Max��Sat problem� to Q�� the
Independent Set problem as follows� Given an instance x� of the Max�

�Sat problem� where x� is a set of clauses of at most 
 literals 
x� was
written as E in the discussion of Lecture 
	�� we construct a graph x� that
is an instance for the Independent Set problem 
x� was written as GE

in the discussion of Lecture 
	�� This corresponds to the polynomial time
computable function g
��� g
x�� � x�� The condition that the optimal
values of x� and x� are related by a polynomial factor is automatically
satis�ed since both of x� and x� have their optimal values bounded by a
polynomial of their input instance length� Now for any solution y� to x��
where y� is an independent set in the graph x� 
y� was written as S in the
discussion of Lecture 
	�� a truth assignment y� to the clauses in x� can be
constructed in polynomial time 
y� was written as �S in the discussion of
Lecture 
	�� This corresponds to the polynomial time computable function
h
� � ��� y� � h
x�� y��� Since we have Opt�
x�� � Opt�
x�� 
Corollary 
	����
f�
x�� y�� � f�
x�� y�� 
Lemma 
	�	�� we eventually have

E�
x�� y�� �
Opt�
x��

f�
x�� y��
� � � Opt�
x��

f�
x�� y��
� � � E�
x�� y��

Thus� if we let � � �� then the above reduction is an E�reduction from the
Max��Sat problem to the Independent Set problem� Since the Max�

�Sat problem has no polynomial time approximation scheme unless P � NP

Theorem 

�
�� by Lemma 
���� we derive directly that the Independent
Set problem has no polynomial time approximation scheme unless P � NP�

Now we apply the E�reduction to show the non�approximability of the
Vertex Cover problem� As we explained at the beginning of this lecture�
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the reduction from the Independent Set problem to the Vertex Cover

problem does not seem to preserve approximation ratio� Thus� a reduction
from another problem seems more proper� We present an E�reduction from
the Max��Sat problem to the Vertex Cover problem�

The reduction from the Max��Sat problem to the Vertex Cover

problem is the same as the one that reduces the Max��Sat problem to the
Independent Set problem�

Given an instance E � fC�� C�� � � � � Cmg of the Max��Sat problem�
where each Ci is a clause of at most 
 literals in fx�� � � � � xng� The graph
GE � 
VE� AE� is constructed as follows�

Every literal occurrence l in a clause Ci in E induces a vertex in the

graph GE � which will be named by l�i�� For any pair of vertices l
�i�
� and l

�j�
�

in GE � there is an edge connecting them if and only if either

�� i � j� i�e�� the literals l
�i�
� and l

�j�
� belong to the same clause in E� or

�� i �� j and l
�i�
� � l

�j�
� � i�e�� the literals l

�i�
� and l

�j�
� belong to di�erent

clauses in E and they negate each other�

This completes the transformation from the instance E of the Max�

�Sat problem to an instance GE of the Vertex Cover problem� Note
that again the condition that the optimal values of E and GE are related
by a polynomial factor is automatically satis�ed since both E and GE have
their optimal value bounded by their input length�

Now we show how the transformation from a solution S for the instance
GE � where S is a vertex cover of GE� to a solution �S for the instance E�
where �S is an assignment to fx�� � � � � xng� is constructed�

Given a vertex cover S of the graph GE � 
VE� AE�� we �rst construct
the independent set VE � S in the graph GE� Then based on the indepen�
dent set VE�S� we apply Lemma 
	�	 to construct an assignment �� to the
variables fx�� � � � � xng such that �� satis�es at least jVE�Sj clauses in E� If
the assignment �� satis�es at least m�� clauses in E� then we let �S � ���
If the assignment �� satis�es less than m�� clauses in E� then we apply Al�
gorithm 
��� ApprxMaxSat to construct the assignment �S that satis�es at
leastm�� clauses in E 
see Lemma 
����� ignoring the assignment ��� There�
fore� the assignment �S always satis�es at least maxfm��� jVE�Sjg clauses
in E� According to Lemma 
	�	� the assignment �� can be constructed from
the independent set VE � S in polynomial time� Moreover� Algorithm 
���
ApprxMaxSat runs in polynomial time� We conclude that the assignment �S
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to fx�� � � � � xng can be constructed from the vertex cover S in polynomial
time� This completes the transformation from a solution S for the instance
GE of the Vertex Cover problem to a solution �S for the instance E of
the Max��Sat problem�

Now we analyze the relative errors of the solutions S and �S �

Lemma ��	� A minimum vertex cover of the graph GE � 
VE� AE� con�
tains at most �jVEj�� vertices�

proof� Each clause of the set E contains at most 
 literals� and there
are m clauses in the set E� Since there is a one�to�one correspondence
between the literal occurrences in E and the vertices in the graph GE� the
number jVEj of vertices of the graph GE is bounded by 
m� which gives
m�� � jVEj���

By Algorithm 
��� and Lemma 
���� we know that there is an assignment
to fx�� � � � � xng that satis�es at least m�� clauses in E� By Corollary 
	��� a
maximum independent set in the graph GE contains at least m�� vertices�
Now by Lemma 
���� a minimum vertex cover of the graph GE contains at
most

jVEj �m�� � jVEj � jVEj�� � �jVEj��
vertices� The lemma is proved�

Let Optsat
E� be the optimal value for the instance E of theMax��Sat

problem� let Optis
GE� be the optimal value for the instance GE of the
Independent Set problem� and let Optvc
GE� be the optimal value for the
instance GE of the Vertex Cover problem� According to Corollary 
	��
and Lemma 
���

Optsat
E� � Optis
GE� � jVEj �Optvc
GE� 
�	�

Let Apxsat
�S� be the number of clauses in E that are satis�ed by the
assignment �S � By the construction of the assignment �S � we have

Apxsat
�E� � maxfm��� jVE � Sjg
Let Esat
E� �S� be the relative error of the solution �S to the instance E
of the Max��Sat problem and let Evc
GE� S� be the relative error of the
solution S to the instance GE of the Vertex Cover problem� we have

Esat
E� �S� �
Optsat
E�

Apxsat
�S�
� � and Evc
GE� S� �

jSj
Optvc
GE�

� �

��




Now from

Esat
E� �S� �
Optsat
E�

Apxsat
�S�
� � �

Optsat
E��Apxsat
�S�

Apxsat
�S�

we combine the relation Apxsat
�S� � maxfm��� jVE � Sjg with Equation

�	� and obtain

Esat
E� �S� � Optsat
E�� jVE � Sj
m��

�
jSj � 
jVEj �Optsat
E��

m��

�
jSj � 
jVEj �Optis
GE��

m��
�
jSj � Optvc
GE�

m��

Now by Lemma 
��� Optvc
GE� � �jVEj�� and note jVEj � 
m� we get

Esat
E� �S� � jSj � Optvc
GE�

Optvc
GE���

� �

� jSj
Optvc
GE�

� �

�
� �Evc
GE� S�

We summarize this analysis in the following lemma�

Lemma ��	
 The reduction constructed above that reduces the Max��Sat

problem to the Vertex Cover problem is an E�reduction�

Combining Lemma 
��� with Theorem 

�
 and Lemma 
���� we obtain
the following result for the Vertex Cover problem�

Theorem ��	� TheMax��Sat problem is E�reducible to the Vertex Cover
problem� In consequence� the Vertex Cover problem has no polynomial
time approximation scheme unless P � NP�

��	



CPSC���� Computational Optimization

Lecture ��
� November 

� ����

Lecturer� Professor Jianer Chen
Scribe� Xiaotao Chen
Revision� Jianer Chen

�� The E�reducibility and the class APX�PB

The E�reduction introduced in the last lecture plus Theorem 

�
 have led
to signi�cant progress recently in the study of the approximability of opti�
mization problems� Here we mention some of the recent results related to
this direction�

De�nition �
	� An optimization problem Q � hI� S� f� opti is in the class
APX�PB if Q is in the class APX and there is a polynomial p
�� such that
for all instances x � I � we have Opt
x� � p
jxj�� Here the letters PB stand
for �polynomially bounded��

Not all optimization problems in APX are in APX�PB� For example� the
Knapsack problem� the Multi�Processor Scheduling problem� and
the $�Traveling Salesman problem are all in the class APX but none
of them is in the class APX�PB� On the other hand� a very large class
of important optimization problems are in the class APX�PB� such as the
Max�Sat problem�Vertex Cover problem� ��D Matching problem� and
Bin Packing problem� By Theorem ����� we know that an optimization
problem in APX�PB has no fully polynomial time approximation scheme
unless the problem can be solved in polynomial time� Therefore� for an NP�
hard optimization problem in the class APX�PB� the most interesting thing
is to decide whether it admits a polynomial time approximation scheme�

Since the E�reducibility requires that the optimal values of the instances
in the original problem and in the transformed problem be related by a
polynomial factor� it is impossible to reduce an optimization problem in
APX but not in APX�PB to an optimization problem in APX�PB� In fact�
this requirement in the E�reducibility makes the class APX�PB closed under
the E�reducibility� as shown in the following lemma�

Lemma �
	� Let Q� and Q� be two optimization problems� If Q� �E Q�

and Q� is in the class APX�PB� then so is Q��
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proof� Let Q� � hI�� S�� f�� opt�i and Q� � hI�� S�� f�� opt�i� By
Lemma 
��	� since the optimization problem Q� is in the class APX� the
optimization problem Q� is also in the class APX� Moreover� for any x� � I��
since the E�reduction transforms x� into an instance x� � I� in polynomial
time� we have jx�j bounded by a polynomial of jx�j� Now since Q� is in the
class APX�PB� the value Opt�
x�� is bounded by a polynomial of jx�j thus
by a polynomial of jx�j� Now from the de�nition of the E�reducibility� the
optimal value Opt�
x�� of the instance x� is bounded by Opt�
x�� times a
polynomial of jx�j� We conclude that Opt�
x�� is bounded by a polynomial
of jx�j� That is� the problem Q� is in the class APX�PB�

The following important result� which was a little unexpected� has been
derived recently� The proof of the theorem is omitted� Interested students
can talk to the instructor for a discussion of the proof�

Theorem �
	
 An optimization problem Q is in the class APX�PB if and
only if it is E�reducible to the Max��Sat problem�

Remark �
	
 Theorem 
��� is derived from amodi�cation of Theorem 

���
Theorem 
��� is a very powerful theorem� For example� our fundamental
theorem� Theorem 

�
� can be derived directly from Theorem 
��� without
using Theorem 

��� We give a complete proof for this�

According to Algorithm �
�� First�Fit and Theorem �
��� the Bin
Packing problem is in the class APX�PB� By Theorem 
���� the Bin

Packing problem is E�reducible to the Max��Sat problem� Now if the
Max��Sat problem has a polynomial time approximation scheme� then by
Lemma 
��
� the Bin Packing problem has a polynomial time approxi�
mation scheme� However� by Theorem �
��� there is no polynomial time
approximation algorithm of approximation ratio less than ��� for the Bin
Packing problem unless P � NP� In particular� the Bin Packing prob�
lem has no polynomial time approximation scheme unless P � NP� This
proves that the existence of a polynomial time approximation scheme for
the Max��Sat problem implies P � NP� This is Theorem 

�
�

Remark �
	� According to Lemma 
���� the E�reduction cannot transform
an optimization problem in APX but not in APX�PB to an optimization
problem in APX�PB� Thus� the class APX�PB in Theorem 
��� cannot be
replaced by the class APX since theMax��Sat problem is in the class APX�
PB� However� if the E�reduction is replaced by another reduction� called the
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PTAS�reduction� then Theorem 
��� is also true for the class APX� that is� an
optimization problem is in the class APX if and only if it is PTAS�reducible
to the Max��Sat problem� The de�nition of the PTAS�reducibility is a
bit more technical� but it still preserves PTAS approximability and APX
approximability� More speci�cally� suppose that a problem Q� is PTAS�
reducible to a problem Q�� Then if Q� has a polynomial time approximation
scheme then so does Q�� and if Q� is in the class APX then so is Q�� I am
not going to give a detailed discussion along this line� Instead� I refer the
interested students to the related literature�

Theorem 
��� motivates the following de�nition�

De�nition �
	� An optimization problem Q is ApxPB�hard if every opti�
mization problem in the class APX�PB is E�reducible to Q� An optimization
problem Q is ApxPB�complete if Q is in the class APX�PB and Q is ApxPB�
hard�

According to the de�nition� theMax��Sat problem is ApxPB�complete�

Theorem �
	� An ApxPB�hard optimization problem Q has no polynomial
time approximation scheme unless P � NP�

proof� If the problem Q is ApxPB�hard� then by the de�nition� the
Max��Sat problem can be E�reducible to the problem Q� Now the theorem
follows directly from Lemma 
��� and Theorem 

�
�

Thus� the ApxPB�hardness implies the di�culty of approximation of
an optimization problem� This provides a systematic technique for deriv�
ing non�approximability for optimization problems� To derive the ApxPB�
hardness for optimization problems� we need the following lemma�

Lemma �
	� If Q� �E Q� and Q� �E Q�� then Q� �E Q��

proof� Let Q� � hI�� S�� f�� opt�i� Q� � hI�� S�� f�� opt�i� and Q� �
hI�� S�� f�� opt�i� Let g�
�� and h�
� � �� be the functions� p�
�� be the poly�
nomial� and �� be the constant that constitute the E�reduction from Q� to
Q�� and let g�
�� and h�
� � �� be the functions� p�
�� be the polynomial� and
�� be the constant that constitute the E�reduction from Q� to Q�� Without
loss of generality� suppose that both functions g�
�� and g�
�� are computable
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in time p
n�� where p
�� is a polynomial� Then it is easy to check that the
functions

g
x�� � g�
g�
x��� and h
x�� y�� � h�
x�� h�
g�
x��� y���

the polynomial
p
n� � p�
n� � p�
p
n��

and the constant
� � ����

constitute an E�reduction from the optimization problem Q� to the opti�
mization problem Q��

Lemma 
��	 immediately gives

Lemma �
	� If an optimization problem Q� is ApxPB�hard� and Q� �E

Q�� then the optimization problem Q� is ApxPB�hard�

Now our previous study gives the following theorem�

Theorem �
	� The Max��Sat problem� the Max�Sat problem� and the
Vertex Cover problem are ApxPB�complete� The Independent Set

problem and the Clique problem are ApxPB�hard�

proof� Algorithm 
��� ApprxMaxSat shows that the Max��Sat problem
and the Max�Sat problem are in the class APX�PB� Theorem 
��� shows
that the Max��Sat problem is ApxPB�hard� The proof of Lemma 
	��
shows the ApxPB�hardness for the Max�Sat problem� Theorem 
��� gives
the ApxPB�hardness of the Vertex Cover problem� and Theorem ����
shows that the Vertex Cover problem is in the class APX�PB�

Finally� Example 
��
 shows the ApxPB�hardness for the Independent
Set problem� and Theorem 
	�� gives the ApxPB�hardness for the Clique
problem�

There are a number of more restricted optimization problems that are
also ApxPB�complete� Note that the ApxPB�hardness of more restricted
optimization problems sometimes is more useful in our derivation of non�
approximability for our own optimization problems� our own problem may
not be strong enough to have a simple E�reduction from an unrestricted
ApxPB�hard optimization problem� On the other hand� a restricted version
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of the problem may look more similar to our own problem and an E�reduction
may be readily available�

Let d be a �xed positive integer� We de�ne the following restricted
optimization problems�

d�Occurrence Max��Sat

Input� a set E of clauses C�� C�� � � � � Cm on fx�� � � � � xng such
that each clause has at most 
 literals and each variable xi ap�
pears� either as xi or as xi� at most d times in E

Output� a truth assignment on fx�� � � � � xng that satis�es the
maximum number of the clauses in E

d�Occurrence Max��Sat

Input� a set E of clauses C�� C�� � � � � Cm on fx�� � � � � xng such
that each clause has at most � literals and each variable xi ap�
pears� either as xi or as xi� at most d times in E

Output� a truth assignment on fx�� � � � � xng that satis�es the
maximum number of the clauses in E

d�Degree Vertex Cover

Input� a graph G in which each vertex has degree at most d

Output� a vertex cover S of G with jSj minimized

d�Degree Independent Set

Input� a graph G in which each vertex has degree at most d

Output� an independent set S of G with jSj maximized

Theorem �
	
 The 
�Occurrence Max��Sat problem is ApxPB�complete�

proof� The 
�Occurrence Max��Sat problem is a restricted version
of the Max�Sat problem� which is in the class APX�PB 
Theorem 
�����
Thus� the 
�Occurrence Max��Sat problem is in the class APX�PB�

The proof that the 
�Occurrence Max��Sat problem is ApxPB�hard
is more complicated� which uses the techniques called Ampli�er and Ex�
pander� We omit the detailed proof here� Interested students are encouraged
to talk to the instructor�
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Theorem �
	� The 	�Degree Vertex Cover problem and the 	�Degree
Independent Set problem are ApxPB�complete�

proof� We �rst consider the 	�Degree Independent Set problem�
It is a bit surprising that the 	�Degree Independent Set problem is

in the class APX�PB� As we have seen� the unrestricted Independent Set

problem is not in the class APX unless P � NP 
Theorem 
����� However�
when the degree of the vertices of a graph G is bounded by a �xed constant
c� an independent set of the graph G with approximation ratio bounded by
c�� can be constructed easily by the following process� start with an empty
set S� Each time we pick one vertex v from the graph G and put it in S�
and delete all neighbors of v in the graph G� We iterate this until there is
no vertex in the graph G� It is easy to see that the set S constructed by this
process forms an independent set in the graph G� Since the degree of the
vertices of the graph G is bounded by c� each time we add a vertex v to the
set S� we delete at most c� � vertices from the graph 
including the vertex
v�� Therefore� the set S contains at least n�
c� �� vertices� where n is the
number of vertices in the graph G� Since an independent set of the graph G
contains at most n vertices� the independent set S has approximation ratio
at most n�
n�
c� ��� � c� �� In particular� when c � 	� we have that the
	�Degree Independent Set problem is in the class APX�PB�

To show the ApxPB�hardness of the 	�Degree Independent Set prob�
lem� we E�reduce the 
�Occurrence Max��Sat problem to it� The re�
duction is exactly the same as the one we used to reduce the Max��Sat

problem to the Independent Set problem 
see Lecture Notes 
	�� That
is� given a set E of clauses� we construct a graph GE such that each literal
occurrence in E corresponds to a vertex in GE � and two vertices in GE are
adjacent if and only if either they are in the same clause in E or they negate
each other� Note that if E is an instance of the 
�Occurrence Max��Sat

problem� then each vertex l in GE has at most 	 neighbors � two of them
correspond to the literals in the same clause� and two of them correspond
to the other occurrences of l in E� Therefore� the graph GE is an instance
of the 	�Degree Independent Set problem� As we have shown in Lec�
ture 
	� this reduction is an E�reduction� We conclude that the 	�Degree
Independent Set problem is ApxPB�complete�

The problem 	�Degree Vertex Cover problem is in the class APX�
PB because the unrestricted version of theVertex Cover problem is in the
class APX�PB� As we have seen in Lecture Notes 
�� the E�reduction from
theMax��Sat problem to the Independent Set problem can be modi�ed
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to an E�reduction from the Max��Sat problem to the Vertex Cover

problem� In particular� if E is an instance of the 
�Occurrence Max�

�Sat problem� then the corresponding graph GE is an instance of the 	�
Degree Vertex Cover problem� Thus� the 
�Occurrence Max��Sat

problem is E�reducible to the 	�Degree Vertex Cover problem� which
gives the ApxPB�hardness of the 	�Degree Vertex Cover problem�

Finally� we consider the ��Occurrence Max��Sat problem� We �rst
present an E�reduction from the 	�Degree Independent Set problem to
the ��Occurrence Max��Sat problem�

Let G � 
V�E� be a graph in which each vertex has degree at most 	�
where V � fv�� � � � � vng� and E � fe�� � � � � emg� We construct an instance
SG for the ��Occurrence Max��Sat problem as follows� The boolean
variable set of SG is fv�� � � � � vng� For each vertex vi in G� the set SG has a
��literal clause 
vi�� and for each edge eh � �vi� vj� in G� SG has a ��literal
clause 
vi � vj�� Note that each vertex of G appears in one ��literal clause
and in at most four ��literal clauses� Thus� the set SG is an instance of the
��Occurrence Max��Sat problem� This completes the construction of
the instance SG for the ��Occurrence Max��Sat problem�

We call an assignment to fv�� � � � � vng a setting assignment if it satis�es
all ��literal clauses in the set SG�

Lemma �
	� Let � be an assignment to the boolean variables fv�� � � � � vng�
Then there is a setting assignment �� that satis�es at least as many clauses
in SG as � does� Moreover� the setting assignment �� can be constructed
from the assignment � in polynomial time�

proof� If � is a setting assignment� then simply let �� be �� Otherwise�
suppose that the clause 
vi � vj� is not satis�ed by the assignment �� then
� sets vi � � and vj � �� Now we set vi � �� Note this makes false the
��literal clause 
vi�� which was set true by �� but makes true the ��literal
clause 
vi�vj�� which was set false by �� No other ��literal clauses in SG are
turned from true to false� Moreover� since only the negation of vi appears
in ��literal clauses in SG� no ��literal clauses in SG are turned from true
to false� Therefore� setting vi � � will not decrease the number of clauses
satis�ed by the assignment� Now we repeat the above process on each ��
literal clause that is not satis�ed by the assignment� Eventually� we obtain
a setting assignment �� that satis�es at least as many clauses in SG as the
assignment � does�
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Lemma �
	�� Let � be a setting assignment to SG and let 
u��� � � �� 
uk�
be the ��literal clauses satis�ed by the assignment �� then fu�� � � � � ukg is an
independent set in the graph G�

proof� Consider any pair ui and uj � If the vertices ui and uj are adjacent
in G� then we have a ��literal clause 
ui � uj� in SG� Since � sets both ui
and uj true� the clause 
ui � uj� is not satis�ed by the assignment �� This
contradicts the assumption that � is a setting assignment�

Let Optis
G� be the optimal value of the instance G for the 	�Degree
Independent Set problem� and let Optsat
SG� be the optimal value of the
instance SG for the ��Occurrence Max��Sat problem�

Lemma �
	�� Let m be the number of edges in the graph G� then

Optis
G� �m � Optsat
SG�

proof� Let D � fu�� � � � � ukg be a maximum independent set in the
graph G� Consider the assignment �D to fv�� � � � � vng that sets uj � �� for
j � �� � � � � k� and sets all other variables �� Thus� the assignment �D satis�es
exactly k ��literal clauses in SG� For each ��literal clause 
vi � vj�� which
corresponds to an edge �vi� vj �� since at least one of vi and vj is not in D�
the assignment �D sets 
vi � vj� true� That is� the assignment �D satis�es
all ��literal clauses� In conclusion� the assignment �D satis�es k�m clauses
in SG� This gives

Optis
G� �m � Optsat
SG�

Now let � be an assignment to fv�� � � � � vng that satis�es the largest
number of clauses in the set SG� By Lemma 
���� we can assume that
the assignment � is a setting assignment� Let 
u��� � � �� 
uk� be the ��
literal clauses satis�ed by �� By Lemma 
����� the set fu�� � � � � ukg is an
independent set in the graph G� Since the assignment � satis�es all m
��literal clauses in SG� we get

Optis
G� �m � Optsat
SG�

This completes the proof�

Now we are ready for an E�reduction from the the 	�Degree Indepen�
dent Set problem to the ��Occurrence Max��Sat problem�
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Lemma �
	�
 The 	�Degree Independent Set problem is E�reducible
to the ��Occurrence Max��Sat problem�

proof� Given an instance G of the 	�Degree Independent Set prob�
lem� we use the transformation described above to construct an instance SG
for the ��Occurrence Max��Sat problem� The instance SG can certainly
be constructed from the instance G in polynomial time�

Now suppose that � is a solution to the instance SG� i�e�� � is assignment
to the boolean variables fv�� � � � � vng in SG� We construct a solution D� to
the instance G� where D� is an independent set in the graph G� as follows�
We �rst construct a setting assignment �� that satis�es at least as many
clauses as � does� According to Lemma 
���� the assignment �� can be
constructed from the assignment � in polynomial time� Let 
v��� � � �� 
vk� be
the ��literal clauses satis�ed by ��� Then by Lemma 
�����D � fv�� � � � � vkg
is an independent set in the graph G� Now if jDj � n��� we let D� � D�
otherwise� we let D� be an independent set of at least n�� vertices in G�
Note that by the proof of Theorem 
���� an independent set of at least n��
vertices in G can be constructed in polynomial time when the degree of
vertices in the graph G is bounded by 	� This completes the construction
of the transformation that transforms the solution � of SG� which is an
instance of the ��Occurrence Max��Sat problem� to a solution D� of G�
which is an instance of the 	�Degree Independent Set problem� By the
above discussion� the solution D� can be constructed from the solution � in
polynomial time�

Now we analyze the relative errors� Let Apx
�� be the number of clauses
satis�ed by the assignment �� By the construction of the independent set
D�� we have

jD�j � maxfApx
���m�n��g 
���

Since each vertex of G has degree at most 	� the number m of edges in the
graph G� which also equals the number of ��literal clauses in SG� is bounded
by �n� Therefore�

Apx
�� � n�m � 
n 
���

Let Eis
G�D�� be the relative error of the solution D� to the instance
G of the 	�Degree Independent Set problem� and Esat
SG� �� be the
relative error of the solution � for the instance SG of the ��Occurrence
Max��Sat problem� Using Lemma 
����� together with Equations 
��� and

��





���� We have

Eis
G�D�� �
Optis
G�

jD�j � � �
Optis
G�� jD�j

jD�j
� Optis
G�� 
Apx
���m�

n��
�
Optis
G� �m�Apx
��

n��

�
Optsat
SG�� Apx
��

n��
� Optsat
SG��Apx
��

Apx
�����

� ��Esat
SG� ��

This completes the proof that the above reduction from the 	�Degree In�
dependent Set problem to the ��Occurrence Max��Sat problem is an
E�reduction�

Theorem �
	�� the Max��Sat problem and the ��Occurrence Max�

�Sat problem are ApxPB�complete�

proof� It is easy to see that both of these two problems are in the class
APX�PB�

The ApxPB�hardness of the ��Occurrence Max��Sat problem is de�
rived from Lemma 
����

Finally� since the ��Occurrence Max��Sat problem is a restricted
version of theMax��Sat problem� we conclude that theMax��Sat problem
is also ApxPB�hard�

We will study more ApxPB�complete optimization problems in the rest
of this course�
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 ��D Matching has no PTAS

In today�s lecture� we study the approximability of the ��D Matching

problem� Recall that a matching M in a set T of triples is a subset of T
such that no two triples in M have the same coordinate at any dimension�

��D Matching

Input� a set S � X � Y � Z of triples

Output� a matching M in S with jM j maximized

According to Algorithm 
��� Apprx�D�Second and Theorem 
���� the
��D Matching problem is in the class APX�PB� We show below that the
��D Matching problem is ApxPB�complete�

We construct an E�reduction from an ApxPB�complete problem� the ��
Occurrence Max��Sat� to the ��D Matching problem�

Let S be a set of clauses fC�� � � � � Cmg on boolean variables fx�� � � � � xng
in which each clause contains at most three literals and each variable xi
appears� either as xi or as xi� at most 
 times in S� The set S is an instance
of the ��Occurrence Max��Sat problem� We construct an instance TS
of the ��D Matching problem based on S�

We will use graphs to represent the triples in TS � Each triple will be
given as a triangle whose three vertices correspond to the three components
of the triple� Therefore� if two triples have a common component� then the
two corresponding triangles will have a shared vertex�

For each boolean variable u in fx�� � � � � xng we have a ring structure� If
u has three occurrences in S� then the ring structure of u consists of six
triples� connected as in Figure �
a�� Similarly� if u has two occurrences or
one occurrence in S� then the ring structure of u consists of four triples or
two triples� connected as in Figure �
b� and Figure �
c�� respectively�

In the following� we �rst consider the case that the boolean variable u
has three occurrences in the set S� The discussion for the cases that u
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u[1,k] u[1,k]
u[1,k]

u[2,k]

u[2,k]

u[3,k]

u[1,k]

u[2,k] u[1,k]

u[3,k] u[1,k]

u[2,k]

# occurrences of u = 3 # occurrences of u = 2 # occurrences of u = 1(a) (b) (c)

Figure �� The ring structure for the boolean variable u

has two occurrences or one occurrence in S is very similar� we will brie�y
describe them after we complete the discussion on the case that u has three
occurrences�

For the boolean variable u that has three occurrences in the set S� there
are four identical rings of six triples� For k � �� � � � � 	� the kth ring has its
outer vertices labeled by u��� k�� u��� k�� u��� k�� u��� k�� u�
� k�� and u�
� k�

see Figure ��� For each i � �� �� 
� the four vertices u�i� ��� u�i� ��� u�i� 
� and
u�i� 	� are connected by three new triples


u�i� ��� u�i� ��� u��i��� 
u�i� 
�� u�i� 	�� u��i��� 
u��i�� u��i�� u�i��

in a binary tree manner� Similarly� for each i � �� �� 
� the four vertices
u�i� ��� u�i� ��� u�i� 
� and u�i� 	� are connected by three new triples


u�i� ��� u�i� ��� u��i��� 
u�i� 
�� u�i� 	�� u��i��� 
u��i�� u��i�� u�i��

in a binary tree manner� Figure � shows the four rings and the three new
triples connecting the vertices u��� ��� u��� ��� u��� 
� and u��� 	�� Note that
the new triples connecting the other �� triples in the rings are not shown in
Figure ��

The triples contained in each ring will be called ring triples� The triples


u�i� ��� u�i� ��� u��i��� 
u�i� 
�� u�i� 	�� u��i���


u�i� ��� u�i� ��� u��i��� 
u�i� 
�� u�i� 	�� u��i��

for i � �� �� 
� will be called leaf triples� and the triples


u��i�� u��i�� u�i�� 
u��i�� u��i�� u�i��
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u[1,1]

u[1,1]

u[2,1]u[3,1]

u[3,1]

u[1,2]

u[2,2]

u[2,2]

u[3,2]

u[3,2]

u[1,3]

u[1,3]

u[2,3]

u[2,3]

u[3,3]

u[3,3]

u[1,4]

u[1,4]

u[2,4]u[3,4]

u[3,4]

u[2,4]u[2,1]

u2[1]u1[1]

u[1]

u[1,2]

Figure �� The set Tu of triples for the boolean variable u

for i � �� �� 
� will be called root triples� Moreover� a triple will be called a
positive triple if it contains a component labeled as u��� or u��� ��� and a triple
will be called a negative triple if it contains a component labeled as u��� or
u��� ��� Note that by this de�nition� every triple constructed above is either
a positive triple or a negative triple�

Therefore� there is a set Tu of 	� triples corresponding to each boolean
variable u in fx�� � � � � xng� �	 of them are ring triples� �� of them are leaf
triples� and � of them are root triples�

To make the set Tu a valid set of triples� i�e�� a subset of X � Y � Z�
we must label the vertices in Tu with X � Y � or Z properly� All trees will
be labeled identically� so we only describe the labeling for the tree rooted
at u���� Label u��� with X � label u���� with Y and u���� with Z� and label
u��� �� with Z� u��� �� with X � u��� 
� with X � and u��� 	� with Y � Note that
for each �xed ring� this labeling process labels all outer vertices of the ring
with the same symbol� Thus� the inner vertices in the ring can be properly
labeled using the other two symbols� It is not hard to verify that in this
labeling process� no triangle in Tu has two vertices labeled with the same
symbol� Therefore� the set Tu represents a set of triples�

We �rst study the matching problem of the set Tu� Note that the set Tu
is also an instance of the ��D Matching problem�

It is easy to check that the following two sets M�
u and M�

u in the set Tu
are matchings in Tu�

The setM�
u consists of� 
�� the �� ring triples that contain u�i� k��

for i � �� �� 
 and k � �� �� 
� 	� respectively� 
�� the � leaf triples

u�i� ��� u�i� ��� u��i��� and 
u�i� 
�� u�i� 	�� u��i��� for i � �� �� 
� and
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� the 
 root triples 
u��i�� u��i�� u�i��� for i � �� �� 
�

The setM�
u consists of� 
�� the �� ring triples that contain u�i� k��

for i � �� �� 
 and k � �� �� 
� 	� respectively� 
�� the � leaf triples

u�i� ��� u�i� ��� u��i��� and 
u�i� 
�� u�i� 	�� u��i��� for i � �� �� 
� and


� the 
 root triples 
u��i�� u��i�� u�i��� for i � �� �� 
�

Each of the matchings M�
u and M�

u contains �� triples� The two match�
ings M�

u and M�
u will be called the canonical matchings in Tu�

Lemma ��	� The canonical matchings M�
u and M�

u are maximum match�
ings in Tu�

proof� If we regard the set Tu as a graph� then a matching in Tu corre�
sponds to a set of disjoint triangles in the graph� We �rst count the number
of vertices in this graph�

Each ring contains �� di�erent vertices� each leaf triple adds a new vertex�
and each root triple adds another new vertex� Since there are 	 rings� ��
leaf triples� and � root triples� we conclude that there are totally �� vertices
in the graph�

Since �� vertices can make at most �� disjoint triangles� the number of
triples in a maximum matching in Tu is at most ��� Now suppose thatMu is
a matching of �� triples in Tu� Then every vertex is contained in a triangle
in Mu� In particular� the six vertices labeled with u�i� and u�i�� i � �� �� 
�
should appear in Mu� Since the six root triples are the only triples that
contain these vertices� all these six root triples should be in the matching
Mu� In consequence� no leaf triples can be in the matching Mu since every
leaf triple shares a vertex with a root triple� Now by the structure of the
rings� each ring can have at most 
 triples in Mu� Thus� the matching Mu

contains at most �� ring triples� Summarizing all these� we derive that the
matchingMu would contain at most �� triples� contradicting the assumption
that Mu contains �� triples� Therefore� no matching in Tu can contain ��
triples�

Since the canonical matchings M�
u and M�

u each contains �� triples in
Tu� we conclude that the canonical matchings are maximum matchings in
the set Tu�

Let Mu be a matching in Tu� We call a triple matched 
by Mu� if it is
contained in Mu� Otherwise� we say that the triple is unmatched�
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Lemma ��	
 Let Mu be a matching in the set Tu� If Mu is not a canonical
matching� then Mu is not maximum�

proof� Suppose that Mu is a maximum matching in Tu� We show that
Mu must be one of the canonical matchings M�

u and M�
u �

By Lemma 
���� jMuj � ��� Let ru� lu� and tu be the number of ring
triples� leaf triples� and root triples in Mu� respectively� Then

jMuj � �� � ru � lu � tu

Since each matched root triple must be connected with two unmatched leaf
triples and since each leaf triple is connected with exactly one root triple�
we must have

tu � b
��� lu���c 
���

Since each matched leaf triple must be connected with two unmatched ring
triples and since each ring triple is connected with exactly one leaf triple�
we must have

ru � �	� �lu 
���

Another trivial upper bound for ru is �� since each ring can have at most 

matched ring triples� This gives us

jMuj � ru � lu � tu

� minf�	� lu � b
��� lu���c� �� � lu � b
��� lu���cg
From this relation� it is easy to verify that in order to make jMuj � ��� we
must have lu � �� Combining lu � � and jMuj � �� together with Equations

��� and 
���� we also get tu � 
 and ru � ���

From ru � ��� we derive that each ring in Tu must have exactly three
ring triples in Mu� Thus� each ring either has all its three positive triples
in Mu but none of its negative triples in Mu� or has all its three negative
triples in Mu but none of its positive triples in Mu�

We show that it is impossible that one ring has all its positive ring triples
in Mu while another ring has all its negative ring triples in Mu�

If the �rst ring has all its positive ring triples in Mu while the second
ring has all its negative ring triples in Mu� then none of the six leaf triples
that are connected to the ring triples in the �rst and the second rings can
be in the matching Mu� Since Mu contains six leaf triples and Tu has totally
�� leaf triples� all six leaf triples that are connected to ring triples in the
third and the fourth rings must be in Mu� But this is impossible because
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it would imply that no ring triples in the third and the fourth rings are in
Mu� This proves that we must either have all positive ring triples in the
�rst and the second rings in Mu or have all negative ring triples in the �rst
and the second rings in Mu� Similarly� either all positive ring triples in the
third and the fourth rings are in Mu or all negative triples in the third and
the fourth rings are in Mu�

Now suppose that the �rst and the second rings have all their positive
ring triples in Mu while the third and the fourth rings have all their negative
ring triples in Mu� Since the matching Mu has � leaf triples� the 
 negative
leaf triples connecting to triples in the �rst and the second rings and the 

positive leaf triples connecting to triples in the third and the fourth rings
must be in the matching Mu� However� it would imply that none of the root
triples can be in the matching Mu� contradicting the fact that the matching
Mu contains 
 root triples�

Therefore� we must either have all positive ring triples in Mu but no
negative ring triples in Mu� or have all negative ring triples in Mu but no
positive ring triples in Mu� Whenever this is decided� the six leaf triples and
the three root triples in Mu are uniquely determined� In fact� if all positive
ring triples are inMu� thenMu must be the canonical matchingM�

u � while if
all negative ring triples are in Mu� then Mu must be the canonical matching
M�

u �

This completes the discussion on the set Tu of triples� where u is a
boolean variable in fx�� � � � � xng that has 
 occurrences in the given set S of
clauses�

If u is a boolean variable that has � occurrences in S� then 	 rings of
	 triples� which has the structure shown in Figure �
b�� are used� Four
binary tree structures are constructed by adding � leaf triples and 	 root
triples� Thus� the set Tu of triples corresponding to u contains �� triples�
There are two canonical matchings M�

u and M�
u of �	 triples in Tu such

that M�
u contains all negative root triples but no positive root triples� while

M�
u contains all positive root triples but no negative root triples� Moreover�

M�
u and M�

u are the only maximum matchings in the set Tu�
Similarly� if u is a boolean variable that has � occurrence in S� then 	

rings of � triples� which has the structure shown in Figure �
c�� are used�
Four binary tree structures are constructed by adding 	 leaf triples and �
root triples� Thus� the set Tu of triples corresponding to u contains �	 triples�
There are two canonical matchings M�

u and M�
u of � triples in Tu such that

M�
u contains all negative root triples but no positive root triples� while M�

u
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contains all positive root triples but no negative root triples� Moreover�M�
u

and M�
u are the only maximum matchings in Tu�

We summarize these discussions into the following theorem�

Theorem ��	� Let u be a boolean variable in fx�� � � � � xng such that u has
d occurrences in the set S� � � d � 
� Then one can construct a set Tu of
at most 
� triples with the following properties�

�� Tu has d positive root triples that contain the d components u���� � � ��
u�d�� respectively� and d negative root triples that contain the d com�
ponents u���� � � �� u�d�� respectively�

�� Tu has only two maximum matchings M�
u and M�

u � such that M�
u

contains all d positive root triples but no negative root triples while
M�

u contains all d negative root triples but no positive root triples�

���



CPSC���� Computational Optimization

Lecture ���� December �� ����

Lecturer� Professor Jianer Chen
Scribe� Balarama Varanasi
Revision� Jianer Chen

�� ��D Matching has no PTAS �contd��

In the last lecture� we have shown the following theorem�

Theorem ��	� Let u be a boolean variable in fx�� � � � � xng such that u has
d occurrences in the set S� � � d � 
� Then one can construct a set Tu of
at most 
� triples with the following properties�

�� Tu has d positive root triples that contain the d components u���� � � ��
u�d�� respectively� and d negative root triples that contain the d com�
ponents u���� � � �� u�d�� respectively�

�� Tu has only two maximum matchings M�
u and M�

u � such that M�
u

contains all d positive root triples but no negative root triples while
M�

u contains all d negative root triples but no positive root triples�

Now let us complete the construction of the set TS of triples� which is an
instance for the ��D Matching problem� from the set S of clauses� which
is an instance for the ��Occurrence Max��Sat problem�

Let S be the set of clauses on the boolean variable set fx�� � � � � xng� The
set TS is the union of all sets Txi� i � �� � � � � n� which satis�es the properties
stated in Theorem 
���� plus the clause triples desribed as follows� For each
clause Ch � 
u � v � w�� where u� v� and w are literals in fx�� � � � � xng and
we assume that this is the ith occurrence of u� the jth occurrence of v� and
the kth occurrence of w� the set TS contains three triples


u�i�� y�h�� z�h��� 
v�j�� y�h�� z�h��� 
w�k�� y�h�� z�h��

where y�h� and z�h� are two new symbols introduced for the clause Ch� Sim�
ilarly� if the clause Ch consists of � literals or � literal� the set TS introduces
two new symbols y�h� and z�h� and has � or � new triples� Figure �� il�
lustrates this construction� This completes the construction of the set TS �
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y[h] z[h]

u[1]

the tree
for u[1]

C   = (u)h

the tree
for u[1]
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for v[3]
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y[h] z[h]
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y[h]

u[1]

the tree
for u[1]

z[h]

w[2]
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for w[2]

C   = (u    w)h

Figure ��� The clause triples in TS

Since each clause in S has at most 
 literals� the set TS contains at most

m clause triples� Moreover� since each set Txi contains at most 	� triples�
we conclude that the set TS contains at most 	�n � 
m triples� It is not
di�cult to see that the set TS can be constructed from the set S of clauses
in polynomial time�

Let xi be a boolean variable� Each matching M in the set TS induces
a matching M�Txi in the set Txi of triples corresponding to the boolean
variable xi� We say that the matching M is a canonical matching for the set
TS if for all boolean variables xi� the induced matching M�Txi is a canonical
matching in the set Txi�

Lemma ��	
 Let M be a matching in the set TS� Then there is a canonical
matching M � in the set TS that contains at least as many triples as M does�
Moreover� the canonical matching M � can be constructed from the matching
M in polynomial time�

proof� For each variable xi� we consider the set Mi of clause triples in
M that contain an occurrence of xi�

If no clause triples in Mi contain a negative occurrence of xi� or Mi

is empty� then we replace the induced matching M�Txi by the canonical
matching M�

xi in Txi � Note that since the canonical matching M�
xi contains

only negative root triples but no positive root triples� this replacement still
gives a matching in TS � Moreover� since M�

xi is a maximum matching in Txi �
this replacement does not decrease the number of triples in the matching�

Similarly� if no clause triples in Mi contain a positive occurrence of xi�
then we replace the induced matching M�Txi by the canonical matching
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M�
xi in Txi� which gives a matching in TS that is at least as large as M �
Finally� suppose that the set Mi has a clause triple that contains a posi�

tive occurrence of xi and a clause triple that contains a negative occurrence
of xi� Then at least one positive root triple and at least one negative root
triple in the set Txi are not contained in the matching M � Consequently�
the induced matching M�Txi is not canonical� thus not maximum by The�
orem 
���� Moreover� since the variable xi has at most three occurrences
in the set S� we have either at most one clause triple in Mi that contains a
positive occurrence of xi or at most one clause triple in Mi that contains a
negative occurrence of xi� Without loss of generality� we assume that only
one clause triple inMi contains a positive occurrence of xi� Then we perform
the following operation� 
�� delete the clause triple containing the positive
occurrence of xi� and 
�� replace the induced matching M�Txi in Txi by
the canonical matching M�

xi � Since after deleting the unique clause triple
containing the positive occurrence of xi� the matching M contains no clause
triples containing positive occurrences of xi while the canonical matching
M�

xi
in Txi contains only positive root triples in Txi � we conclude that this

operation still gives a matching in the set TS � Moreover� since the induced
matching M�Txi is not maximum in Txi� replacing M�Txi by the maximum
matching M�

xi in Txi increases the number of matched triples in Txi by at
least one� which can be used to make up the clause triple deleted from Mi�
In consequence� this operation replaces the induced matching M�Txi in Txi
by a canonical matching in Txi and does not descrease the number of triples
in the matching�

If we apply the above process to each of the boolean variables xi� i �
�� � � � � n� we will eventually get a canonical matching M � in the set TS such
that the matching M � is at least as large as the matching M � It is also
easy to verify that the canonical matching M � can be constructed from the
matching M in polynomial time�

For each boolean variable xi� let ni be the number of triples contained
in a maximum matching in the set Txi� and let N� �

Pn
i�� ni�

Now we are ready to construct a solution for the instance S of the ��
Occurrence Max��Sat problem based on a solution for the instance TS
of the ��D Matching problem�

Lemma ��	� Given a matching M in the set TS� an assignment �M to the
boolean variables fx�� � � � � xng can be constructed in polynomial time such
that �M satis�es at least jM j �N� clauses in the set S�
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proof� Let M be a matching in the set TS � By Lemma 
���� we can
construct in polynomial time a canonical matchingM � in TS such that jM j �
jM �j�

Let M �
c be the subset of M � such that M �

c consists of all clause triples in
M �� Then we have

jM �
cj � jM �j �N�

No boolean variable xi can have both its positive occurrence and its negative
occurrence contained in the clause triples in M �

c � otherwise� the induced
matchingM ��Txi would not be canonical in Txi� Therefore� we can construct
an assignment �M to the boolean variables xi� � � �� xn as follows� if M �

c has
a clause triple that contains a positive occurrence of xi then �M assigns
xi � �� if M �

c has a clause triple that contains a negative occurrence of xi
then �M assigns xi � �� For variables that have no occurrences in M �

c� �M
assigns them arbitrarily� By the construction of the clause triples� for each
clause Ch� at most one corresponding clause triple is contained in the setM �

c�
Moreover� if a clause Ch has a corresponding clause triple in the setM �

c� then
the assignment �M sets the clause Ch true� In conclusion� the assignment
�M satis�es at least jM �

cj clauses in S� From jM �
cj � N� � jM �j � jM j� we

derive jMcj � jM j �N�� The lemma follows�

Lemma ��	� Let Optsat
S� be the optimal value of the instance S for the ��
Occurrence Max��Sat problem and let Opt�dm
TS� be the optimal value
of the instance TS for the ��D Matching problem� Then

Optsat
S� � Opt�dm
TS��N�

proof� Lemma 
��
 shows Optsat
S� � Opt�dm
TS��N��
Now suppose that � is an assignment to fx�� � � � � xng that satis�es the

largest number of clauses in the set S� Without loss of generality� let the
clauses satis�ed by � be C�� � � �� Ck� where k � Optsat
S�� Suppose that
the assignment � sets the literal li true in the clause Ci� for i � �� � � � � k�
If � sets more than one literal in Ci true� pick any of them as li� Then
we construct a matching M� in the set TS as follows� For i � �� � � �k� we
pick the clause triple 
li� y�i�� z�i��� If li is a positive occurrence of a boolean
variable xj � then we also pick all triples in the canonical matching M�

xj in
the set Txj � and if li is a negative occurrence of a boolean variable xj � then
we pick all triples in the canonical matching M�

xj in the set Txj � Note that
for each boolean variable xj � the assignment � either sets all its positive
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occurrences true or sets all its negative occurrences true� Therefore� the
above selection of triples cannot result in any con�ict� Moreover� since no
positive root triple in Txj is contained in M�

xj and no negative root triple

in Txj is contained in M�
xj � the above selection of triples makes a matching

in the set TS � Finally� for those boolean variables xj with no occurrence
in fl�� � � � � lkg� we pick all the triples in the canonical matching M�

xj � This
constructs a canonical matching M� in the set TS � andM� contains k clause
triples in TS � That is�

jM�j � k �N� � Optsat
S� �N�

Since Opt�dm
TS� � jM�j� we derive Optsat
S� � Opt�dm
TS� � N�� The
lemma is proved�

Now we can describe how one can construct a solution �M to the instance
S of the ��Occurrence Max��Sat problem from a solution M to the
instance TS of the ��D Matching problem� Recall that S is a set of m
clauses� Consider the following algorithm�

Algorithm ��	� �DM�to��SAT

Input� a matching M in the set TS
Output� an assignment �M to fx�� � � � � xng
�� construct an assignment � to fx�� � � � � xng that

satisfies at least jM j �N� clauses in S�

�� if � satisfies less than m�� clauses in S
then construct an assignment �M that satisfies

at least m�� clauses in S
else let �M be ��

�� output �M�

By Lemma 
��
� the assignment � in step � can be constructed in poly�
nomial time� Moreover� Algorithm 
��� ApprxMaxSat and Lemma 
��� show
that an assignment that satis�es at leastm�� clauses in S can be constructed
in polynomial time� In consequence� Algorithm 
��� �DM�to��SAT runs in
polynomial time�

To study the relative errors� let Apx
�M� be the number of clauses in
S that are satis�ed by the assignment �M � By the construction of the
assignment �M � we have

Apx
�M� � maxfjM j �N�� m��g 
���
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Let Esat
S� �M� be the relative error of the solution �M to the instance S
of the ��Occurrence Max��Sat problem� and let E�dm
TS �M� be the
relative error of the solution M to the instance TS of the ��D Matching

problem� Note that the set TS has at most 
m�	�n � ���m triples� Thus�
jM j � ���m� Combining this fact with Equation 
��� and Lemma 
��	� we
have

Esat
S� �M� �
Optsat
S�

Apx
�M�
� � �

Optsat
S��Apx
�M�

Apx
�M�

� Optsat
S�� 
jM j �N��

m��
�
Optsat
S� �N� � jM j

m��

�
Opt�dm
TS�� jM j

m��
� Opt�dm
TS�� jM j

jM j����
� ���E�dm
TS�M�

This shows that the reduction we constructed from the ��Occurrence
Max��Sat problem to the ��D Matching problem is an E�reduction� We
conclude with the following theorem�

Theorem ��	� The ��Occurrence Max��Sat problem is E�reducible to
the ��D Matching problem�

By Theorem 
���� the ��Occurrence Max��Sat problem is ApxPB�
complete� We get

Theorem ��	� The ��D Matching problem is ApxPB�complete� There�
fore� the ��D Matching problem has no polynomial time approximation
scheme unless P � NP�

Remark ��	� The set TS of triples constructed from the set S of clauses
in our E�reduction is actually an instance of a more restricted version of
the ��D Matching problem� Note that in the construction of the set TS �
each symbol in X � Y � Z appears in at most 
 triples in TS � In fact� all
symbols in the set Txi � i � �� � � � � n� appear in at most � triples in TS � only
the symbols y�h� and z�h� introduced for the clause Ch� h � �� � � � � m� may
appear in 
 triples in TS � We can naturally de�ne a problem called the
��Occurrence ��D Matching by requiring that in an instance of the ��
D Matching problem� each symbol appears in at most 
 triples� The set
TS is an instance of the ��Occurrence ��D Matching problem� Thus�
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our E�reduction constructed in these two lectures actually reduces the ��
Occurrence Max��Sat problem to the ��Occurrence ��D Matching

problem� In consequence� the ��Occurrence ��D Matching problem is
also ApxPB�complete�

Remark ��	
 There is another optimization problem Triangle Packing

whose ApxPB�completeness can be easily obtained from an E�reduction from
the ��D Matching problem� Let G be a graph� A triangle in G consists
of three mutually adjacent vertices in G� Two triangles in G are disjoint if
they do not share any common vertex� The Triangle Packing problem
is formulated as follows�

Tirangle Packing

Input� a graph G

Output� a set S of disjoint triangles in G with jSj maximized

It is not very hard to see that if an instance S of the ��D Matching problem
is given as a graph� as we did in the last lecture� then a matching in S is a set
of disjoint triangles in the graph� This observation leads to an E�reduction
from the ��D Matching problem to the Triangle Packing problem� We
leave the details to the interested students� On the other hand� the best
polynomial time approximation ratio for the Triangle Packing problem
is �� Therefore� the Triangle Packing problem is ApxPB�complete�
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	� Max�Cut is ApxPB�complete

The last problem we will study in this course is theMax�Cut problem� Let
G � 
V�E� be a graph� A cut of the graph G is a partition D � 
V�� V�� of
the vertex set V of G� That is� V� � V� � V and V� 
 V� � �� We say that
an edge e of G is crossing in the cut D if one end of e is in V� and the other
end of e is in V�� The Max�Cut problem is de�ned as follows�

Max�Cut

Input� a graph G � 
V�E�

Output� a cut 
V�� V�� of G that maximizes the number of
crossing edges

While the Max�Cut problem is NP�hard� it has a very simple approxi�
mation algorithm� as shown below�

Algorithm ��	� Large�Cut

Input� a graph G � 
V�E�� where V � fv�� � � � � vng
Output� a cut 
V�� V�� of the graph G

�� let V� � � and V� � ��
�� for i � � to n do

if vi has more adjacent vertices in V� than in V�
then V� � V� � fvig
else V� � V� � fvig�

�� output 
V�� V���

Theorem ��	� The approximation algorithm Large�Cut for theMax�Cut

problem has approximation ratio ��

proof� In the algorithm� each time the vertex vi is considered� the edges
connecting vi to the vertices v�� � � �� vi�� are counted� According to the
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algorithm� at least half of these edges become crossing edges� Therefore�
at the end of the algorithm� at least half of the edges of the graph G are
crossing edges� Since no cut can have the number of crossing edges larger
than the number of edges in the graph G� the theorem follows�

Remark ��	� This simple algorithm provided the best approximation ratio
for the Max�Cut problem for over �� years� Very recently 
���	�� the
approximation ratio has been improved to ���	� The complete version of the
paper is still not available yet� Interested students may ask the instructor
for a copy of the preliminary version of the paper�

To show that the Max�Cut problem is ApxPB�hard� we construct an
E�reduction from a ApxPB�complete problem� the ��Occurrence Max�

�Sat problem� to the Max�Cut problem�
Let S � fC�� � � � � Cmg be an instance of the ��Occurrence Max��Sat

problem� That is� S is a set of clauses of at most two literals in the boolean
variable set fx�� � � � � xng and each variable xi appears� either as xi or as
xi� at most �ve times in the set S� We construct an instance GS for the
Max�Cut problem� where GS � 
VS � ES� is a graph�

The vertex set VS of the graph GS is

VS � fx�� x�� � � � � xn� xn� z� zg
where z is a new symbol�

For each i � �� � � � � n� there are �� multiple edges connecting the vertices
xi and xi� and there are �m multiple edges connecting the vertices z and z�
These edges connecting xi and xi or z and z will be called the pairing edges
of the graph GS � For each clause Ci � 
u�w� of two literals in S� we have a
triangle consisting of three edges �u� w�� �u� z�� and �w� z�� and for each clause
Ci � 
u� of one literal in S� we have two multiple edges connecting u and z�
These edges will be called the clause edges corresponding to the clause Ci�
Note that if a literal u appears in two di�erent clauses Ci and Cj � then there
are two multiple incident clause edges connecting u and z� corresponding to
the two clauses Ci and Cj � respectively�

This completes the construction of the instance GS of the Max�Cut

problem from the instance S of the ��Occurrence Max��Sat problem�
It is clear that the graph GS can be constructed from the set S of clauses
in polynomial time�

A cut D � 
V�� V�� of GS is regular if for any u � fx�� � � � � xn� zg� one of
u and u is in the set V� and the other is in the set V�� For a cut D of the
graph GS � denote by jDj the number of crossing edges in the cut D�
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Lemma ��	
 There is a polynomial time algorithm that� given a cut D of
the graph GS � constructs a regular cut D� of GS such that jDj � jD�j�

proof� Suppose D � 
V�� V��� where V� � V� � VS and V� 
 V� � ��
If for any boolean variable xi� both vertices xi and xi are in V�� then we

remove xi from V� and add it to V�� We show this does not decrease the
number of crossing edges in the cut� In fact� since S is an instance of the
��Occurrence Max��Sat problem and there are at most � clause edges
incident to xi corresponding to each clause containing xi� there are at most
�� clause edges incident on xi� Since both xi and xi are in V�� these clause
edges are the only edges incident on xi that may be crossing edges in the
cut D� On the other hand� there are �� pairing edges connecting xi and xi�
which are not crossing edges in the cut D� Therefore� moving the vertex
xi from V� to V� will convert all these �� pairing edges incident on xi from
non�crossing edges into crossing edges and may convert at most �� clause
edges incident on xi from crossing edges into non�crossing edges� No other
crossing edges in the cut are changed� In consequence� this process does not
decrease the number of crossing edges in the cut�

If both vertices z and z are in V�� then we move the vertex z from the
set V� to the set V�� Again� since z is incident to �m clause edges and to
�m pairing edges� moving z from V� to V� does not decrease the number of
crossing edges in the cut�

The case when both xi and xi� or both z and z� are in the set V� can be
dealt with in a completely similar way�

Thus� applying this process on each boolean variable xi and on z gives a
regular cut D� without decreasing the number of crossing edges� Moreover�
it is easy to verify that the cut D� can be constructed from the cut D in
polynomial time�

Lemma ��	� There is a polynomial time algorithm that� given a cut D
of the graph GS� constructs an assignment �� to fx�� � � � � xng such that ��
satis�es at least 
jDj � ��n� �m��� clauses in the set S�

proof� We �rst convert the cut D into a regular cut D� of GS such that
jDj � jD�j� By Lemma 	���� the cut D� can be constructed in polynomial
time�

Let D� � 
V�� V��� Then for each u � fx�� � � � � xn� zg� exactly one of u
and u is in the set V�� Thus� all 
��n��m� pairing edges in GS are crossing
edges in the cut D�� Without loss of generality� we assume that the vertex

���



z is in the set V� while the vertex z is in the set V��
We let �� be the assignment to fx�� � � � � xng that sets all literals in the

set V��fzg true� Note that since D� � 
V�� V�� is a regular cut� �� is always
a valid assignment to fx�� � � � � xng�

Now consider a crossing edge e in D� that is a clause edge corresponding
to a clause Ci in the set S� If Ci � 
u � w� consists of � literals� then since
the crossing edge e is one of the three clause edges �u� w�� �u� z� and �w� z�
corresponding to the clause Ci� exactly two of these three clause edges are
crossing edges� In particular� by our assumption that the vertex z is in the
set V�� at least one of the vertices u and w is in V�� In consequence� the
assignment �� sets this literal true and satis�es the clause Ci� If Ci � 
u�
consists of � literal� since the crossing edge e is one of the multiple clause
edges connecting u and z� both multiple clause edges connecting u and z
are crossing edges� Moreover� the vertex u is in the set V� since we assume
that the vertex z is in the set V�� Thus the assignment �� satis�es the
clause Ci� We conclude that in either case� there are exactly two clause
edges corresponding to Ci that are crossing edges in the cut D�� and the
assignment �� satis�es the clause Ci�

Since there are jD�j���n��m crossing edges in D� that are clause edges�
and no three of them correspond to the same clause in S� we conclude that
the assignment �� satis�es at least


jD�j � ��n� �m��� � 
jDj � ��n� �m���

clauses in the set S�

Lemma ��	� Let Optsat
S� be the optimal value of S� regarded as an in�
stance of the ��Occurrence Max��Sat problem� and let Optcut
GS� be
the optimal value of GS� regarded as an instance of the Max�Cut problem�
then

Optsat
S� � 
Optcut
GS�� ��n� �m���

proof� Let D be a maximum cut of the graph GS � By Lemma 	��
� there
is an assignment that satis�es at least


jDj � ��n� �m��� � 
Optcut
GS�� ��n� �m���

clauses in the set S� Consequently�

Optsat
S� � 
Optcut
GS�� ��n� �m���

���



Conversely� let � be an assignment to fx�� � � � � xng that satis�es the
largest number of clauses in the set S� Construct a cut D� � 
V�� V�� of the
graph GS such that a literal u is in V� if and only if the assignment � sets
u true� Moreover� the vertex z is in the set V� and the vertex z is in the set
V�� It is easy to verify that the cut D� is a regular cut� Thus� all ��n� �m
pairing edges in GS are crossing edges in the cut D��

Moreover� suppose without loss of generality that the assignment � sat�
is�es the clauses Ci� i � �� � � � � k� in the set S� where k � Optsat
S�� Thus�
the assignment � makes at least one literal ui true in the clause Ci� so the
literal ui is in the set V�� Since the vertex z is in the set V�� exactly two of
the clause edges corresponding to the clause Ci are crossing edges� Thus�
there are at least �k � �Optsat
S� clause edges that are crossing edges in
the cut D�� This implies that the number of crossing edges in the cut D� is
at least �Optsat
S����n��m� which should not be larger than Optcut
GS��
Consequently�

Optsat
S� � 
Optcut
GS�� ��n� �m���

This completes the proof of the lemma�

Now we are ready to show how a solution D to the instance GS of the
Max�Cut problem� where D is a cut of the graph GS � can be transformed
into a solution �D to the instance S of the ��Occurrence Max��Sat

problem� where �D is an assignment to the boolean variables fx�� � � � � xng�
Consider the following algorithm�

Algorithm ��	
 CUT�to��SAT

Input� a cut D of the graph GS

Output� an assignment �D to fx�� � � � � xng
�� construct an assignment �� to fx�� � � � � xng such that ��

satisfies at least 
jDj � ��n� �m��� clauses in S�
�� if �� satisfies less than m�� clauses in S

then construct an assignment �D that satisfies

at least m�� clauses in S

else let �D be ��
�� output �D�

By Lemma 	��
� the assignment �� in step � can be constructed in poly�
nomial time� Moreover� Algorithm 
��� ApprxMaxSat and Lemma 
��� show
that an assignment that satis�es at leastm�� clauses in S can be constructed

��




in polynomial time� In consequence� Algorithm 	��� CUT�to��SAT runs in
polynomial time�

To study the relative errors� let Apx
�D� be the number of clauses in
S that are satis�ed by the assignment �D� By the construction of the
assignment �D� we have

Apx
�D� � maxf
jDj � ��n� �m���� m��g 
���

Let Esat
S� �D� be the relative error of the solution �D to the instance
S of the ��Occurrence Max��Sat problem� and let Ecut
GS � D� be the
relative error of the solution D to the instance GS of theMax�Cut problem�
Since each clause in S results in at most 
 clause edges in GS � the number
of edges in the graph GS is bounded by ��n� �m� 
m� which is bounded
by ��m� Thus� jDj � ��m� Combining this fact with Equation 
��� and
Lemma 	��	� we have

Esat
S� �D� �
Optsat
S�

Apx
�D�
� � �

Optsat
S��Apx
�D�

Apx
�D�

� Optsat
S�� 
jDj � ��n� �m���

m��

�
�Optsat
S�� 
jDj � ��n� �m�

m

�

�Optsat
S� � ��n� �m�� jDj

m

�
Optcut
GS�� jDj

m

� Optcut
GS�� jDj
jDj���

� ��

�
Optcut
GS�

jDj � �

�
� ��Ecut
GS � D�

This shows that the reduction we constructed from the ��Occurrence
Max��Sat problem to the Max�Cut problem is an E�reduction� We con�
clude with the following theorem�

Theorem ��	� The ��Occurrence Max��Sat problem is E�reducible to
the Max�Cut problem�

By Theorem 
���
� the ��Occurrence Max��Sat problem is ApxPB�
complete� Combining this with Theorem 	��� and Theorem 	���� we get

��	



Theorem ��	� TheMax�Cut problem is ApxPB�complete� Therefore� the
Max�Cut problem has no polynomial time approximation scheme unless P
� NP�

To close the course� we point out that for most of the optimization
problems studied in this course� we have precisely classi�ed each of them
into a proper class� some of them are polynomial time solvable� some of
them are NP�hard but have fully polynomial time approximation schemes�
some of them have polynomial time approximation schemes but have no
fully polynomial time approximation schemes unless P � NP� and some of
them have polynomial time approximation algorithms with constant ratio
but have no polynomial time approximation scheme unless P � NP�

There are some optimization problems that even do not have a poly�
nomial time approximation algorithm with constant ratio� Examples are
the Independent Set problem� the Clique problem� and the Traveling
Salesman problem� For example� recent research has shown that there is
a constant � � � such that the Independent Set has no polynomial time
approximation algorithm with approximation ratio n� unless P � NP�

One problem for which we did not study the non�approximability is the
$�TSP problem� Theorem ���� shows that the problem has a polynomial
time approximation algorithm of approximation ratio ���� Using the E�
reduction� we can show that the $�TSP problem is ApxPB�complete� In
fact� even a weaker version� the Traveling Salesman ��� problem 
see
Lecture ��� is ApxPB�complete�
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