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Preface

Finite element method has been the dominant technique in computational mechan-
ics in the past decades, and it has made significant contributions to the developments
in engineering and science. Nevertheless, FEM is not well suited to problems hav-
ing severe mesh distortion owing to extremely large deformations of materials,
encountering moving discontinuities such as crack propagation along arbitrary
and complex paths, involving considerable meshings and remeshings in structural
optimization problems, or having multidomain of influence in multiphenomena
physical problems. It is impossible to completely overcome those mesh-related
difficulties by a mesh-based method. The highly structured nature of finite ele-
ment approximations imposes severe penalties in seeking the solutions of those
problems.

Distinguishing with finite element, finite difference, and finite volume methods,
meshless method discretizes the continuum body only with a set of nodal points
and the approximation is constructed entirely in terms of nodes. There is no need of
mesh or elements in this method. It does not possess the mesh-related difficulties
and provides an approach with more flexibility in the applications in engineering
and science.

The meshless method started to capture the interest of a broader community of
researchers only several years ago, and now it becomes a growing and evolving
field. It is showing that this is a very rich area to be explored, and has great
promise for many very challenging computational problems. On the one hand,
great advances of meshless methods have been achieved. On the other hand, there
are many aspects of meshless methods that could benefit from improvements. A
broader community of researchers can bring diverse skills and backgrounds to bear
on the task of improving this method.

We were invited to give a series of lecture on meshless methods, equivalent to
one-semester graduate course, to research scientists at USDOT, in Spring 2003.
This book is mainly based on the lecture notes distributed in that DOT class.

The main objective of this book is to provide a textbook for graduate courses on
the numerical analysis of solid mechanics. It can also be used as a reference book
for engineers and scientists who are exploring the physical world through computer
simulations. Emphasis of this book is given to the understanding of the physical
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viii Preface

and mathematical characteristics of the procedures of computational continuum
mechanics. It naturally brings the essence, advantages, and challenging problems
of meshless methods into the picture.

This book covers the fundamentals of continuum mechanics, the integral formu-
lation of continuum problems, the basic concepts of FEM, and the methodologies
and applications of various meshless methods. It also provides general and de-
tailed procedures of meshless analysis of elastostatics, elastodynamics, nonlocal
continuum mechanics, and plasticity with a large number of numerical examples.
Some basic and important mathematical methods are included in the Appendixes.
For the readers who want to gain knowledge through hands-on experience, two
meshless computer programs, one for elastostatics and elastodynamics and the
other for the analysis of crack growth in elastoplastic continuum, are posted on the
book’s page at www.springer.com/0-387-30736-2. User’s manuals are included in
Appendix D and Appendix E, respectively.
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1
Introduction

Foundation of Physical Theories

Physics is correctly considered to be the foundation of the natural sciences. Yet
physical theories almost never deal with real objects or phenomena in nature,
just because even a piece of metal is too complicated to be described exactly.
Instead, theorists work with models that capture the most important properties of
real objects.

There exist two fundamental physical models that provide foundations for all
physical theories concerning modeling the material behavior: (1) microscopic dis-
crete atomistic models and (2) macroscopic continuum models. The entire physical
science is based on these two models. In the range of nanometer or below, one
would only see collections of discrete particles moving under the influence of their
mutual interaction forces. Fundamentally, the motion is governed by the law of
quantum mechanics, although classical mechanics is a very good approximation
in many problems. Hence, the natural description of microscopic physics is in
terms of many-body dynamics. Quantum mechanics, crystal dynamics, molecular
dynamics, and statistical mechanics are basic atomistic descriptions.

On the other hand, the results of centuries of experimental work are usually for-
malized into well-structured continuum theories covering the field of macroscopic
physics, with such subdivisions as solid mechanics, fluid mechanics, elasticity,
thermodynamics, electromagnetism, and acoustics. The purpose of such theories
is to inscribe all objects of our perception into the familiar framework of a four-
dimensional space-time. We want to describe what happens in every point of space
and at every instant of time. As an abstraction of our immediate perception, matter
and energy are considered as a continuum in this framework. Therefore, the natural
mathematical representation of physical quantities in this perspective is by means
of continuous or piecewise-continuous functions of the space coordinates x and
time t .

Although the underlying physical concept may be the same, the descriptions
by the two kinds of models are thoroughly different, whereas the success of both
models has been demonstrated and tested throughout the history of science in
explaining and predicting various physical phenomena.
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The computer modeling and simulation of physical phenomena are basically
divided into two categories corresponding to the two kinds of models: atomistic
modeling and partial differential equation-based continuum modeling.

Atomistic Modeling and Computation

In an atomistic modeling, an explicit interaction rule between all atoms or between
all electrons in the simulated system must be established. The vast array of atomic
scale simulation methods can be then classified into two main classes of modeling
approaches depending on how they model physical phenomena in the simulated
system: quantum mechanical and classical.

It is well known that quantum mechanical representation is in term of wave
function, �(r, t), and the basic equation in quantum mechanics is the Schrödinger
equation {

− h̄2

2m
∇2 + V (r, t)

}
�(r, t) = ih̄

∂

∂t
�(r, t), (1.1){

− h̄2

2m
∇2 + V (r)

}
�(r) = E�(r). (1.2)

Equations (1.1) and (1.2) are the time-dependent and time-independent
Schrödinger equations, respectively, in which h̄ is Planck’s constant, m is mass,
and − h̄2

2m ∇2 + V (r, t) is the Hamiltonian.
For pure two-body systems, like the hydrogen atom, it is possible to solve the

Schrödinger equation analytically. For system with few electrons, such as helium,
the “many-electron” problem can be solved more or less exactly. However, more
general many-electron systems cannot be treated with such precision any more.
The understanding of the cooperative behavior of many interacting electrons and
ions requires dramatic approximations for decoupling the formidable many-body
problem.

Quantum mechanical computation of electronic structure of materials, based on
decoupling the many-body problem, rest essentially on Density Functional Theory
(DFT) and, in a very minor part, on the Hartree–Fock (HF) method. Both of them
were established decades ago: the HF method in the 1930s, and DFT in the 1960s.
But the birth date of genuine ab initio simulations of the properties of materials is
much more recent. This breakthrough was made possible by the development of
very innovative methods, techniques, approximations, and algorithms.

DFT provides a rigorous way to decouple the electron–electron interaction.
By reformulating the problem in terms of the ground-state electron density,
Hohenberg, Kohn, and Sham showed that the many-electron equation could be
replaced by an equivalent set of independent, one-electron Schrödinger equations
(Kohn–Sham equation)[

−h̄2

2m
∇2 +

∑
I

Vion(r − RI ) + VH (r) + Vxc(r)

]
�i (r) = Ei�i (r), (1.3)
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where �i is the wave function of electronic state i , Vion(r − RI ) is the static
electron-ion potential, VH (r) is the Hartree potential of the electrons, and Vxc(r)
is the exchange-correlation potential.

DFT implementations are often called “total energy” methods, since proper-
ties related to cohesion, structure, elasticity, and lattice dynamics are accessed by
computing the total ground-state energy in various circumstances. Energy deriva-
tives, which define forces and stresses, can be evaluated by finite differences. It is
generally observed that DFT predicts basic ground-state structural properties such
as lattice constant and bulk modulus to within a few percent of the experimental
values, with no parameter fitting. Since it generally scales as N 3, where N is the
number of electrons, its main drawback is the computational cost, which severely
limits the size of the system that can be simulated. For a simulation involving metal
oxides, it is estimated that a system up to several hundred atoms can be solved by
DFT.

HF methods also make the one-electron approximation, and assume that the elec-
tron wave functions can be described as a combination of antisymmetric orbitals,
typically Gaussians or atomic orbitals. Most HF methods can treat the electron
correlation effect properly, and they are generally highly reliable. The methods
scale as N 4, and primarily used for the study of small molecules.

Tight binding (TB) approach significantly reduces the cost of solving single-
electron Schrödinger equation by making several further approximations. First, a
minimal basis set of valence atomic orbitals is used to expand the wave function
for each of the N -electrons in the system, so that typically 10–20 times fewer
basis functions are used in TB than that in DFT. Second, self-consistency in the
eigensolution is neglected so that iterative solutions are no longer required. Last,
all interactions are parameterized. It is still a quantum mechanical method, but
much less expensive than DFT. However, it requires parameter fitting, and its
predications are generally not as accurate as those of DFT or HF.

Classical atomic scale models do not explicitly take into account the role of
electrons in determining the material properties. Instead, physical mechanisms
are described solely in terms of interactions between atoms. The interaction en-
ergy is expressed by an interatomic potential energy function whose form is often
derived empirically and their parameters are obtained through fitting to experimen-
tal measurements. Computational approaches include molecular dynamics (MD)
simulation, Monte Carlo simulation, and others.

In an MD simulation, the dynamical trajectories of atoms governed by the forces
predicted by interatomic potentials are followed as a function of time. Because of
its computational efficiency, MD has been widely used in applications requiring
the collective behavior of large numbers of atoms. State-of-the-art MD calculations
on parallel computers have studied the dynamical properties of systems contain-
ing millions of atoms. This would allow a specimen size up to microns on the
time scale of picoseconds. Atomic scale modeling of biological or chemical sys-
tem, mechanical phenomena, such as fracture and plasticity, are typically limited
to the MD approaches due to the relatively large physical dimensions required.
The ratio of computational cost of MD, TB, and DFT is roughly 1, 102–103 and
105.



4 1. Introduction

An important shortcoming of classical atomic scale models is that they cannot
describe the electronic structure of materials that results from electron interactions.
In contrast, quantum mechanical models explicitly treat electron interactions by
solving the governing equation of quantum mechanics. By starting with a funda-
mental description of materials, quantum mechanical approaches avoid the need
to introduce empirical formulations and to numerically fit parameters.

PDE-Based Continuum Modeling and Computation

The macroscopic continuum physics are represented by a boundary value prob-
lem, a set of partial differential equations (PDE) with boundary conditions, in
the continuum field. However, continuous problems can only be solved exactly
by mathematical manipulation, and the available mathematical techniques usually
limit the possibilities to oversimplified situations.

To overcome the intractability of the realistic type of continuum problem, vari-
ous methods of discretization have been proposed and developed. All involve an
approximation that approaches the true continuum solution as the number of dis-
crete variables increases. There are various methods in this category. The purpose
of those methods is to numerically solve the partial differential equations. Among
those well established methods, there are finite difference (FD) methods, finite
element methods, boundary element (BE) methods; and now we have meshless
methods.

The FD method is an earliest classical numerical treatment for solving par-
tial differential equations. In the FD method, we replace the continuous solution
domain by a discrete set of lattice points. In each lattice point, we replace any
differential operators by FD operators. By substituting the difference formulae
into the PDE, a set of difference equations are obtained, which can then be easily
solved.

Equations in differential forms can often be transformed into integral forms.
The BE method utilizes this fact by transforming the differential operator defined
in the domain to integral operators defined on the boundary. Hence, in the BE
method only the boundary of the domain of interest requires discretization. As a
consequence, the mesh generation is considerably simpler than other methods. For
example, if the domain is either the interior or the exterior to a sphere then only
the surface is divided into elements. The development of the BE method requires
the governing PDE to be reformulated as an integral equation. Boundary solutions
are obtained directly by solving the set of linear equations.

In the FE method, the solution domain can be discretized into a number of
uniform or nonuniform finite elements that are connected via nodes. The change
of the dependent variable with regard to location is approximated within each
element by a shape function. The shape function is defined relative to the values of
the variable at the nodes associated with each element. The original boundary value
problem is then replaced with an equivalent integral formulation. The interpolation
functions are then substituted into the integral equation, integrated, and combined
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with the results from all other elements in the solution domain. The results of this
procedure can be reformulated into a matrix equation of the form,

Mü + Cu̇ + K u = F, (1.4)

where, usually, M is the mass matrix, C the damping matrix, K the stiffness matrix,
F the applied force vector, and u the displacement field and the unknown variable.

Both the FE and FD methods are similar as the entire solution domain needs to
be discretized, and a mesh is needed, while in the BE method only the bounding
surfaces need to be meshed. For regular domains, the FD method is generally the
easiest method to code and implement, but it usually requires special modifications
to define irregular boundaries, abrupt changes in material properties, and complex
boundary conditions. The FD method has the merit of computational simplicity
and also often has an accuracy loss. The BE method has advantage where only the
boundary solution is of interest, whereas FE method is superior to the BE method
for representing nonlinearity and anisotropy.

Although FE and BE are alternatives for certain engineering problems, the
FE method has been the dominant technique in computational mechanics in past
decades, and it has made significant contributions to the advance in engineering
and science.

In recent years, there has been considerable interest shown for meshless method
in which there is no need of element or mesh. It discretizes the continuum body
only with a set of nodal points and the approximation is constructed entirely in
terms of nodes. The method is thus less susceptible to mesh distortion difficulties
than the FE method. For a variety of problems with extremely large deformation,
moving boundary discontinuities, or in optimization problems where re-meshing
may be required, meshless methods are very attractive. The method has the promise
to provide an approach with more flexibility in the applications in engineering and
science.



2
Fundamental of Continuum Mechanics

Continuum mechanics is a branch of physical sciences concerned with the defor-
mations and motions of continuous material media under the influence of external
effects. External effects that influence bodies appear in the form of forces, dis-
placements, and velocities that result from contact with other bodies, gravitational
forces, thermal changes, chemical interactions, electromagnetic effects, and other
environmental changes.

The theory of continuous media is built upon two strong foundations: (1) the
basic laws of motion and (2) a constitutive theory. The basic laws of motion are
the fundamental axioms of motion that are valid for all bodies irrespective of their
constitution. They are the results of our experience with the physical world. The
constitutive relations are constructed to take the nature of different materials into
consideration. These relations also depend on the range of physical effects, which
we wish to describe. Certain axioms are employed in the construction and re-
striction of the constitutive relations. The resulting equations nevertheless contain
some unknown material parameters that must be determined through experiments
and/or statistical mechanical considerations.

This chapter is a brief review of continuum mechanics devoted to a study of the
basic laws of motions and the constitutive theory (cf. Eringen, 1989).

Kinematics

The purpose of this section is to study the local geometric changes and the motion
of points in the continua. The relationship between the initial position of any
material point in a body and its subsequent places is essential in the description
of the local length, angle, and volume changes and translations and rotations of
elements of the body. In this section, we are concerned with such changes and their
measures both in space and in time, irrespective of the type of substance and the
external effects.

Appendixes A and B provide the prerequisite explanation of all notations used
in this section.

6



Kinematics 7

The material points of a continuous medium at t = 0 (undeformed state) occupy
a region B that consists of the material volume V and its surface S. The position
of a material point P in this region is expressed by X (or X K , K = 1, 2, 3) in
the material or Lagrangian coordinate system. After deformation takes place, at
time t (deformed state), the material points of B occupy a region b consisting of
a spatial volume v and its surface s. The position of the material point P at time
t, denoted by p, is expressed by x (or xk, k = 1, 2, 3) in the spatial or Eulerian
coordinate system. In the description of the deformation and motion of a continuous
medium, the use of two sets of coordinate systems (Lagrangian and Eulerian)
makes many subtle points clearly understood. The motion of the material body
that carries various material points through various spatial positions can now be
expressed as

xk = xk(X K , t) or x = x(X, t), (2.1)

or conversely

X K = X K (xk, t) or X = X(x, t). (2.2)

It is noted that the motion, Eq. (2.1), takes a material point X in B at t = 0 to a
spatial position x in b at time t and the inverse motion, Eq. (2.2), traces the material
point occupying the spatial position x at time t back to its original position X at
t = 0. Here, we take the assumption, known as the axiom of continuity, that the
matter is indestructible and impenetrable. This is equivalent to the statement that
the mappings, Eqs. (2.1) and (2.2), are single valued and possess continuous partial
derivatives with respect to their arguments for whatever order as needed, except
possibly at some singular points, curves, and surfaces. In other words, the motion
and the inverse motion are the unique inverses of each other. It should be noted
that, in practice, there are cases in which the axiom of continuity is violated. For
example, material may have propagating cracks, may be broken into pieces, or
may transmit shock waves and other types of discontinuities. Special attention and
treatments must be given to those cases. This axiom is secured by the nonvanishing
Jacobian, i.e.,

j ≡ det(∇X x) =
∣∣∣∣ ∂xk

∂ X K

∣∣∣∣ �= 0. (2.3)

Now the notion of deformation gradients is introduced as

xk,K ≡ ∂xk

∂ X K
, (2.4)

X K ,k ≡ ∂ X K

∂xk
, (2.5)

and from now on majuscules (minuscules) indices after a comma indicate partial
differentiation with respect to Lagrangian (Eulerian) coordinates. The readers may
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verify the following identities as an exercise:

X K ,k = 1

2 j
eKLMeklm xl,L xm,M , (2.6)

j = 1

6
eKLMeklm xk,K xl,L xm,M , (2.7)

( j X K ,k),K = 0, (2.8)

( j−1xk,K ),k = 0, (2.9)

∂ j

∂xk,K
= j X K ,k . (2.10)

The Green deformation tensor is defined as

CK L ≡ xk,K xk,L . (2.11)

When there is no deformation, the deformation gradient is reduced to a constant
matrix, i.e.,

xk,K → δkK , (2.12)

where δkK is the matrix of direction cosines between the Lagrangian and Eulerian
coordinates, which may be referred to as shifter. Then the Green deformation
tensor is reduced to a Kronecker delta, δK L , in case of deformation free, hence it
is natural to define the Lagrangian strain tensor as

EK L ≡ (CK L − δK L )/2. (2.13)

Note that the shifter and Kronecker delta have completely different meanings.
Similarly, the Cauchy deformation tensor and the Eulerian strain tensor are

defined as

ckl ≡ X K ,k X K ,l , (2.14)

εkl ≡ (δkl − ckl)/2. (2.15)

The physical meaning of the strain tensors may be seen as follows: the squares
of the differential lengths in the deformed and undeformed states can be expressed,
respectively, as

dS2 = dX K dX K = X K ,kdxk X K ,ldxl = ckldxkdxl , (2.16)

ds2 = dxkdxk = xk,K dX K xk,LdX L = CK LdX K dX L . (2.17)

The difference ds2 − dS2 is the measure of the change of length due to defor-
mation, and it is equal to

ds2 − dS2 = (CK L − δK L )dX K dX L = (δkl − ckl) dxkdxl

= 2EK LdX K dX L = 2εkldxkdxl .
(2.18)

Readers may find the measures of the changes of volume and area (cf. Problems
of this chapter).
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x1

x2

i1

i3

p

x3

i2

X1

X2

X3

I1

I2

I3

P

FIGURE 2.1. Motion and deformation of a point in a continuum.

One may verify that the Lagrangian and Eulerian strains are related as

EK L = εkl xk,K xl,L , (2.19)

εkl = EK L X K ,k X L ,l . (2.20)

We now define the displacement of a material point as the vector that extends
from X in the undeformed state to x in the deformed state, i.e.,

u ≡ x − X + b = xk ik − X K IK + b, (2.21)

where IK (K = 1, 2, 3) and ik(k = 1, 2, 3) are the unit base vectors in the
Lagrangian and Eulerian coordinate systems, respectively; b is the vector extend-
ing from the origin of the Lagrangian coordinate to the Eulerian coordinate (cf.
Fig. 2.1). Then one may express a generic vector in either Lagrangian or Eulerian
coordinate system as

u = uk ik = UK IK , b = bk ik = BK IK . (2.22)

Note that IK · IL = δK L , ik · il = δkl , and ik · IK = IK · ik = δkK = δK k . The
shifter and the Kronecker have the following properties:

UK = δK kuk, uk = δkK UK , (2.23)

δK kδLk = δK L , δK kδKl = δkl . (2.24)

It is worthwhile to note that any pair of vectors (tensors), that can be related in
the form as in Eq. (2.23), is actually one vector (tensor) physically but represented
in two-coordinate systems.

From Eq. (2.21) we may obtain

uk = xk − δLk X L + bk, (2.25)

UK = δK k xk − X K + BK , (2.26)
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then it is straightforward to show that the strain components can be written in terms
of displacement gradients as follows:

2EK L = UK ,L + UL ,K + UN ,K UN ,L , (2.27)

2εkl = uk,l + ul,k − un,kun,l . (2.28)

In infinitesimal deformation theory, or referred to as small strain theory, we drop
the second-order terms in Eqs. (2.27) and (2.28) and obtain

EK L ≈ ẼK L ≡ (UK ,L + UL ,K )/2, (2.29)

εkl ≈ ε̃kl = ekl ≡ (uk,l + ul,k)/2, (2.30)

where ekl is usually called the infinitesimal strain tensor.
If one approximate xk,K by δkK and X K ,k by δK k , then from Eqs. (2.19) and

(2.20), it results

ẼK L = ε̃klδkK δl L , (2.31)

ε̃kl = ẼK LδK kδLl , (2.32)

which means in small strain theory the distinction between the Lagrangian strain
and the Eulerian strain disappears.

The material time rate of change of a generic tensor f is defined as

f ≡ df
dt

≡ ∂f
∂t

∣∣∣∣
X

, (2.33)

where the subscript X accompanying the vertical bar indicates that X is held
constant in the differentiation of f . If f is a material function, i.e., f = f(X, t), then

ḟ ≡ df
dt

= ∂f (X, t)

∂t
, (2.34)

and if, on the other hand, f is a spatial function, i.e., f = f (x, t), then

df
dt

= ∂f (x, t)

∂t
+ ∂f

∂xk

dxk

dt

∣∣∣∣
X

. (2.35)

The velocity vector v is defined as the material time derivative of the position
vector of a material point. Note that, for a given material point, the Lagrangian
coordinate X is a constant and the Eulerian coordinate x is a function of time. Now
the material time derivative of a spatial function f can be written as

ḟ = ∂f
∂t

+ f,kvk . (2.36)

The acceleration vector a is the material time derivative of the velocity v; there-
fore it can be expressed as

v̇k = ∂vk

∂t
+ vk,lvl , (2.37)
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where vk,lvl is the convective term. It is straightforward to obtain the following
frequently used expressions:

d

dt
(dxk) = vk,ldxl , (2.38)

d

dt
(xk,K ) = vk,l xl,K , (2.39)

d

dt
(X K ,k) = −vl,k X K ,l , (2.40)

d j

dt
= d

dt
|xk,K | = jvk,k, (2.41)

d

dt
(ds2) = 2dkldxkdxl , (2.42)

ĖK L = 1

2
ĊK L = dkl xk,K xl,L , (2.43)

where the deformation rate tensor d is defined as

dkl = 1

2
(vk,l + vl,k). (2.44)

Thus, we have shown that the displacements, strains, changes of length and
volume, velocity, strain rates, deformation rate, etc., can all be derived from the
motion, Eq. (2.1).

Basic Laws of Motion

In mechanics, for each material body there is an associated measure called mass. It
is nonnegative, additive, and invariant under the motion. If the mass is absolutely
continuous in the space variables, then there exists a mass density ρ so that the
total mass of the body is determined by

M =
∫

v

ρdv, (2.45)

where v is the volume of the region that the material body occupies. Now we
define the linear momentum P, the angular momentum H about the origin of
the coordinate system, and the kinetic energy K of a continuous mass medium
contained in v as

P ≡
∫

v

ρvdv, (2.46)

H ≡
∫

v

x × ρvdv, (2.47)

K ≡ 1

2

∫
v

ρv · vdv. (2.48)

Now we can enunciate four balance laws in continuum mechanics as follows:
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Principle of Conservation of Mass. The total mass of the body is unchanged
during the process of deformation and motion.

The global mass conservation law can be expressed as:∫
v

ρdv =
∫

V
ρ0dV , (2.49)

or

d

dt

∫
v

ρdv = 0. (2.50)

Since
∫
v
ρdv = ∫

V ρ jdV , Eqs. (2.49) and (2.50), respectively, lead to∫
V

(ρ0 − ρ j)dV = 0, (2.51)∫
v

(ρ̇ + ρvk,k) jdv =
∫

V
(ρ̇ + ρvk,k)dV . (2.52)

In this book, we further require that the conservation laws, such as Eqs. (2.51) and
(2.52), to be valid for any arbitrary portion of the material body. This requirement
can be satisfied if and only if the integrand is identically zero at any point in the
volume of the material body, i.e.,

ρ0 = ρ j, ρ̇ + ρvk,k = 0, (2.53)

which is the local form of the conservation law of mass.

Principle of Balance of Linear Momentum. The time rate of change of linear
momentum is equal to the resultant force F acting on the body.

It can be expressed as

d

dt

∫
v

ρvdv = F. (2.54)

Its local form can be written as

ρv̇k = fk . (2.55)

Principle of Balance of Angular Momentum. The time rate of change of the
angular momentum about any fixed point O is equal to the resultant moment M
about that point.

It can be expressed as

d

dt

∫
v

x × ρvdv = M. (2.56)

The local form can be obtained as

ρeki j xi v̇ j = mk . (2.57)
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Principle of Conservation of Energy. The time rate of change of the kinetic
energy plus the internal energy is equal to the sum of the rate of work done W by
the external forces plus all other energy rates that enter or leave the material body.

The global form of conservation of energy can be written as

d

dt

∫
v

ρ

(
1

2
vkvk + e

)
dv = W +

∑
α

Uα, (2.58)

where Uα is the αth kind of energy that enters the body per unit time, which may be
the heat energy, the electromagnetic energy, or the chemical energy. This principle
implies that energies are additive, and if proper accounting is made due to all the
external effects, what is left over to be balanced is the rate of the internal energy.

In analyzing the forces that act on the volume v of the material body, it is
necessary to take into account the two types of forces:

1. Body force, which is the force proportional to the mass contained in v.

2. Surface force, which acts on the enclosing surface s of the volume v.

The body force can simply be expressed as
∫
v
ρfdv, and f is the body force density

(body force per unit mass). For surface force, we have to introduce the concepts of
stress vector and stress tensor. Imagine a closed surface s within a material body.
We would like to know the interaction between the material exterior to this surface
and that within the surface. In this consideration, there arises the basic defining
concept in continuum mechanics: the stress principle of Euler and Cauchy. Let �s
be a small surface element on s and n be a unit normal to �s, with its direction
outward from the interior of s. Then we can distinguish the positive and negative
sides of �s according to the direction of n. Consider that the material lying on the
positive side of the normal exerts a force �F on the material lying on the negative
side. The force �F is a function of area and orientation of the surface. Assume
that as �s tends to be zero, the ratio �F/�s tends to be a definite limit, i.e.,

lim
�s→0

�F
�s

= dF
ds

≡ Tn, (2.59)

which is called the stress vector or the surface traction. In this book, it is also
assumed that the moment of the forces acting on the surface �s about any point
within the area vanishes in the limit. Consider a special surface element �sk whose
normal is along the xk axis. Then Tk has three components T k

1 , T k
2 , and T k

3 acting
along the direction of the coordinate axes x1, x2, and x3, respectively. The index
i of T k

i refers to the direction of the force and the symbol k indicates the surface
on which the force acts. Now we can construct a stress tensor t by linking its
components to those in Tk

ti j = T i
j . (2.60)

One may verify Cauchy’s formula that says knowing the nine components ti j

the stress vector Tn acting on any surface with a unit outward normal n, with
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components n1, n2, n3, can be represented by

T n
i = t ji n j . (2.61)

Therefore, the stress tensor is often referred to as the Cauchy stress.
Now the balance law of linear momentum can be rewritten as∫

v

ρv̇kdv =
∫

v

ρ fkdv +
∮

s
tlknlds. (2.62)

Using the Green–Gauss theorem to convert the surface integral in Eq. (2.62) to
the volume integral, it leads to the following balance law of linear momentum in
local form

tlk,l + ρ fl = ρv̇l . (2.63)

The global form of the balance law of angular momentum can now be written
as ∫

v

eki j xi v̇ j dv =
∫

v

eki j xi f j dv +
∮

s
eki j xi tmj nmds, (2.64)

which, upon using Eq. (2.63) and the Green–Gauss theorem, leads to

eki j ti j = 0. (2.65)

This simply means the stress tensor is symmetric, i.e.,

ti j = t ji . (2.66)

It is worthwhile to mention that the symmetry of the stress tensor is the conse-
quence of the balance law of angular momentum with the implicit assumptions that
(1) the angular momentum is only the moment of the linear momentum, i.e., no
spin inertia is incorporated, (2) the moment stress considered is only the moment
of the Cauchy stress, and (3) no body couple is incorporated.

For conservation of energy, the rate of work done by the external forces can now
be expressed as

W =
∫

v

ρf · vdv +
∮

s
Tn · vds =

∫
ρ fkvkdv +

∮
s

tlkvknlds. (2.67)

In this book, the nonmechanical energy considered is the thermal energy that
can be written as

Q =
∫

v

ρhdv −
∮

s
qknkds, (2.68)

where h denotes the distributed heat source having the dimension of energy per
unit time per unit mass and q is the heat flux vector with the dimension of energy
per unit time per unit area. Note that the surface integral in Eq. (2.68)

∮
sq · n ds is

the amount of heat energy flowing out per unit time through the enclosing surface s
and that is why there is a minus sign associated with this surface integral. Interested
readers should take a note that different authors may choose to use different sign
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convention for heat flux. After straightforward derivation, the local form of the
conservation law of energy is obtained as

ρė = t jivi, j − q j, j + ρh. (2.69)

We may now formulate the second law of thermodynamics, may also be named
as principle of entropy, as follows. There exist two scalar-valued functions of state,
the absolute temperature θ and the entropy η, with the following properties:

1. Absolute temperature θ is strictly positive, which is a function of the empirical
temperature only.

2. The entropy is additive, i.e., the entropy of the system is equal to the sum of
entropies of its parts.

3. The entropy of a system can change in two distinct ways: by interaction with
the surroundings and by changes taking place inside the system, i.e.,

dS = dSe + dSi, (2.70)

where the part of the increase due to the interaction with the surroundings dSe

is equal to the heat absorbed by the system from its surroundings divided by
the absolute temperature, i.e.,

dSe = dQ

θ
, (2.71)

4. The change of entropy due to the changes taking place inside the system dSi is
never negative, i.e.,

dSi = dS − dQ/θ ≥ 0. (2.72)

If dSi is zero, the process is said to be thermodynamically reversible. If dSi is
positive, the process is said to be thermodynamically irreversible. The remain-
ing case, dSi < 0, never occurs in nature. Now we may enunciate the following
fundamental law of entropy.

Principle of Entropy. The time rate of change of the total entropy is never less
than the sum of the influx of entropy through the surface of the body and the
entropy supplied by the body sources.

We may express the principle of entropy as an inequality

d

dt

∫
v

ρηdv +
∮

s

qk

θ
nkds −

∫
v

ρh

θ
dv ≥ 0. (2.73)

The local form can be written as

ρη̇ + qk,k

θ
− qkθ,k

θ2
− ρh

θ
≥ 0, (2.74)

which is often called the Clausius–Duhem (CD) inequality. It is important to
familiarize ourselves with the concept that absolute temperature and entropy are
attributes to a material body, just as its mass or its electric charges are. We will
not attempt to define them in terms of other quantities regarded as simpler. The
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justification of those postulates that form the basis of the classical thermodynamics
is the empirical fact that all conclusions derived from these assumptions are without
exception in agreement with the experimentally observed behavior of systems in
nature at the macroscopic scale.

If the Helmholtz free energy function is defined as

ψ ≡ e − ηθ, (2.75)

then the (CD) inequality can be rewritten as

−ρ(ψ̇ + ηθ̇ ) + ti jv j,i − qkθ,k

θ
≥ 0. (2.76)

It is convenient to introduce the second-order Piola–Kirchhoff stress tensor as

TK L ≡ j tkl X K ,k X L ,l , (2.77)

which enables one to express the Cauchy stress tensor in terms of the second-order
Piola–Kirchhoff stress tensor as

tkl = j−1TK L xk,K xl,L . (2.77)*

After straightforward derivation, the balance law of linear momentum can be
rewritten as

(TK L xk,L ),K + ρ0( fk − v̇k) = 0, (2.78)

and also the symmetry of the Cauchy stress tensor implies the symmetry of the
Piola–Kirchhoff stress tensor, i.e.,

TK L = TL K . (2.79)

The conservation law of energy and the CD inequality can be rewritten in La-
grangian form, respectively, as

ρ0ė = TK L ĖK L − QK ,K + ρ0h, (2.80)

−ρ0(ψ̇ + ηθ̇ ) + TK L ĖK L − QK θ,K /θ ≥ 0, (2.81)

where

QK ≡ j X K ,kqk . (2.82)

Constitutive Theory

From the fundamental laws of continuum mechanics, including the CD inequal-
ity, we have eight equations: one each for conservation of mass and energy and
three each for balance of linear and angular momenta; and 19 unknown vari-
ables, namely, ρ, vk, ti j , e, qk, θ , and η. Mathematically speaking, 11 additional
equations must be supplied to make the problems in continuum mechanics deter-
minate. Physically, we understand that the fundamental laws are valid for all types
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of media irrespective of their internal constitutions. Obviously, material bodies
with the same geometry, when subjected to identical external effects, respond dif-
ferently. Internal constitution of matter is responsible for these different responses.
In continuum mechanics, we are not concerned with the atomic structure and the
interatomic forces of the matter; rather, we are interested in the macroscopic be-
haviors of the matter resulting from its internal constitution. To this end, therefore,
we need equations, named constitutive equations, to describe the behaviors of
each material in the range of phenomena to be covered. For example, if we are
interested in solids, which upon the relief of applied loads return to their original
undeformed states, then we are dealing with elastic solids. However, we also know
from our daily experience that all solids undergo a permanent deformation when
the applied loads exceed certain limits. To study the behavior of solids outside
the elastic limits, we need the constitutive equations of plasticity. Thus, a set of
constitutive equations is intended only to describe a range of physical phenomena
decided at the outset for a given material.

For a constitutive theory to adequately represent a material, certain physical and
mathematical requirements have to be satisfied. The following axioms are basic to
the formulation of the constitutive equations (Eringen, 1989, 1999):

Axiom of Causality. We consider the motion and temperature of the material
points of a body as self-evident observable effects in every thermomechanical
behavior of the body. The remaining quantities (other than those derivable from
the motion and temperature) that enter the expression of the CD inequality are the
causes or the dependent constitutive variables.

The axiom of causality is intended for the selection of the independent
and dependent constitutive variables. Since the motion x = x(X, t) and tem-
perature θ = θ (X, t) are chosen as the “effects,” it is seen that xk,K , ρ =
ρ0/ det(xk,K ), vk, vk,l , dkl , ĖK L , θ,k , and θ̇ are all derivable from the motion and
temperature. Then, from either Eq. (2.76) or Eq. (2.81), the dependent constitutive
variables are ψ, η, tkl or TK L , qk or QK .

Axiom of Determinism. The value of the thermomechanical constitutive func-
tions {ψ, η, T, Q} at a material point X of the body B at time t is determined by
the histories of the motion and temperature of all material points in B.

This axiom is a principle of exclusion. It excludes the dependence of the material
behavior at any point outside the body and any future events. Following this axiom
one may write

T(X, t) = T̂{x(X′, t ′), θ (X′, t ′), X, t}, (2.83)

where T̂ is a tensor-valued functional defined over the field of functions x(X′, t ′)
and θ (X′, t ′) with

X′ ∈ B and t ′ ≤ t, (2.84)

and it is also a function of X and t. Similarly, Q, η, ψ can be written as functionals
with the same list of arguments as in T̂.
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Axiom of Equipresence. At the outset all constitutive functionals should be ex-
pressed in terms of the same list of independent constitutive variables until the
contrary is deduced.

This axiom is a precautionary measure. It helps us not to be prejudiced against a
certain class of variables and favor others in the expression of constitutive function-
als. Later, the axiom of admissibility and various approximations may eliminate
the dependence on some of these variables. Until such is shown to be the case, we
should follow the axiom of equipresence.

Axiom of Neighborhood. The values of the independent constitutive variables at
distant material points from X do not affect appreciably the values of the dependent
constitutive variables at X.

There is no single way to formulate this axiom. Here, we present a popular and
useful formulation, named smooth neighborhood, for this book. The Taylor series
expansion of x(X′, t ′) about X′ = X for all t ′ ≤ t is written as

x(X′, t ′) = x(X, t ′) + (X ′
K − X K )x,K (X, t ′)

+ 1

2!
(X ′

K − X K )(X ′
L − X L )x,K L (X, t ′) (2.85)

+ 1

3!
(X ′

K − X K )(X ′
L − X L )(X ′

M − X M )x,KLM (X, t ′) + · · · .

Similarly, one may expand θ (X′, t ′) into a Taylor series about X′ =
X for all t ′ ≤ t. If the constitutive functionals are sufficiently smooth
so that they can be approximated by functionals in the field of real
functions x(X, t ′), x,K (X, t ′), x,K L (X, t ′), x,K L M (X, t ′), . . . andθ (X, t ′), θ,K (X,t ′),
θ,K L (X, t ′), θ,K L M (X, t ′), . . ., the material is said to satisfy the smooth neighbor-
hood hypothesis and may be named as material of gradient type.

Axiom of Memory. The values of the independent constitutive variables at dis-
tant past from the present do not affect appreciably the values of the dependent
constitutive variables at the present time t .

This axiom is the counterpart of the axiom of neighborhood in the time domain.
Accordingly, the memory of the past motions and temperatures of any material
point decays rapidly. As in the case of axiom of neighborhood, no unique mathe-
matical formulation can be made of this axiom. Here, we adopt the smooth memory
hypothesis. The Taylor series expansions of the motion and temperature at t ′ = t
for all X′ in B can be written as

x(X′, t ′) = x(X′, t) + (t ′ − t)ẋ(X′, t) + · · · + 1
n! (t

′ − t)n (n)
x (X′, t) + · · · , (2.86)

θ (X′, t ′) = θ (X′, t) + (t ′ − t)θ̇ (X′, t) + · · · + 1
n! (t

′ − t)n
(n)
θ (X′, t) + · · · , (2.87)

where

(n)
x ≡ dnx

dtn
,

(n)
θ ≡ dnθ

dtn
. (2.88)
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For materials that satisfy the smooth memory hypothesis, the constitu-
tive functionals can be reduced to functionals in the field of real func-
tions x(X′, t), ẋ(X′, t), ẍ(X′, t), . . .

(n)
x (X′, t), . . . and θ (X′, t), θ̇ (X′, t), θ̇ (X′, t), . . .

(n)
θ (X′, t), . . ., and these materials may be named as materials of rate type.

Axiom of Objectivity. The constitutive equations must be form-invariant with
respect to rigid motions of the spatial frame of reference.

This is one of the very few important concepts in continuum mechanics, especially
in the construction of constitutive equations. To understand objectivity, we first
introduce two definitions as follows:

Definition 1. Two motions are called objectively equivalent if and if only

x̄k(X, t̄) = Qkl(t)xl(X, t) + bk(t), t̄ = t − a, (2.89)

where

Qkm(t)Qlm(t) = Qmk(t)Qml(t) = δkl , det(Qkl) = 1. (2.90)

These two objectively equivalent motions differ only relative to the reference frame
and time. For a fixed frame and time, the two motions can be made to coincide by
the superposition of a rigid motion of one and by a shift of time.

Definition 2. Any tensorial quantity is said to be objective if in any two objectively
equivalent motions it obeys the following tensor transformation law for all times

Āklm . . . (X, t̄) = Qkk ′ (t)Qll ′ (t)Qmm ′ (t) . . . Ak ′l ′m ′ . . . (X, t). (2.91)

According to the axiom of objectivity, for example, a second-order tensor-valued
functional, such as the Cauchy stress tensor, should satisfy the following require-
ment:

t̄(X, t̄) = Q(t)t̄(X, t)Qt (t), (2.92)

which implies

t̂i j {Qkl(t ′)xl(X′, t ′) + bk(t ′), θ (X′, t ′), X, t − a}
= Qim(t)Q jn(t)t̂mn{xk(X′, t ′), θ (X′, t ′), X, t}.

(2.93)

Axiom of Material Invariance. Constitutive equations must be form-invariant
with respect to a group of orthogonal transformations {S} and translations {B} of
the material coordinates, which reflects the symmetric conditions of the material
body.

This axiom says that the constitutive functionals, e.g., stresses, should transform
according to

t̂{x(X′, t ′), θ (X′, t ′), X, t} = t̂{x(SX′ + B, t ′), θ (SX′ + B, t ′), SX + B, t},
(2.94)
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under the transformation of the Lagrangian coordinate system

X = SX + B, (2.95)

where S is subjected to SSt = St S = I. It should be emphasized that if the material
in question does not have any symmetry, then this axiom does not impose any
constraint on the constitutive equations.

Axiom of Admissibility. All constitutive equations must be consistent with the
basic principles of continuum mechanics, including the CD inequality.

Thermoviscoelastic Solid and Its Special Cases

In this section, we are going to formulate the constitutive equations for thermovis-
coelastic solid. To begin with, let the constitutive functions be written as

ψ(X, t) = ψ(E, Ė, θ, θ̇ , ∇θ, X), (2.96)

η(X, t) = η(E, Ė, θ, θ̇ , ∇θ, X), (2.97)

T(X, t) = T(E, Ė, θ, θ̇ , ∇θ, X), (2.98)

Q(X, t) = Q(E, Ė, θ, θ̇ , ∇θ, X), (2.99)

which imply that this material is strain, strain rate, temperature, temperature rate,
and temperature gradient dependent. It is recognized that the constitutive functions,
Eqs. (2.96)–(2.99) follow the axioms of causality, determinism, equipresence,
neighborhood, memory, and objectivity. Substituting Eqs. (2.96)–(2.99) into the
entropy inequality, Eq. (2.81), one obtains

−ρ0

(
∂ψ

∂E
: Ė + ∂ψ

∂Ė
: Ë + ∂ψ

∂θ
θ̇ + ∂ψ

∂θ̇
θ̈ + ∂ψ

∂∇θ
· ∇ θ̇

)

+ T : Ė − Q · ∇θ

θ
≥ 0. (2.100)

It is seen that (2.100) is linear in Ë, θ̈ , and ∇ θ̇ . The necessary and sufficient
conditions for the CD inequality to be valid are

∂ψ

∂Ė
= ∂ψ

∂θ̇
= ∂ψ

∂∇θ
= 0 ⇒ ψ = ψ(E, θ, X), (2.101)

−ρ0

(
∂ψ

∂θ
+ η

)
θ̇ +

(
T − ρ0 ∂ψ

∂E

)
: Ė − Q · ∇θ

θ
≥ 0. (2.102)

Now we may separate the entropy and the Piola–Kirchhoff stresses into two
parts: the reversible (elastic) part and the irreversible (dissipative) part, as

η = ηe + ηd = −∂ψ

∂θ
+ ηd(E, Ė, θ, θ̇ , ∇θ, X), (2.103)

T = Te + Td = ρ0 ∂ψ

∂E
+ Td(E, Ė, θ, θ̇ , ∇θ, X). (2.104)
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Then the CD inequality is expressed as

−ρ0ηdθ̇ + Td : Ė − Q · ∇θ

θ
≥ 0. (2.105)

It is seen, from Eq. (2.105), that there are three pairs of thermodynamic conju-
gates that contribute to the irreversibility of this material: the irreversible part of the
entropy and the temperature rate, the irreversible part of the second-order Piola–
Kirchhoff stress, and the Lagrangian strain rate, the heat flux and the temperature
gradient.

Several special constitutive theories may be deduced as follows.

Simple Theory for Thermoviscoelastic Solid

For constitutive functions without temperature rate dependence (cf. Eqs. (2.96)–
(2.99)), the dissipative part of the entropy vanishes, i.e.,

η = −∂ψ

∂θ
, (2.106)

which means we recover the classical Gibbs equation for entropy; and the CD
inequality is reduced to

Td : Ė − Q · ∇θ

θ
≥ 0. (2.107)

Viscoelasticity

If we exclude both temperature rate and gradient from the list of independent
constitutive variables, the following equations are obtained

η = −∂ψ

∂θ
, (2.108)

QK = 0, (2.109)

Td : Ė ≥ 0. (2.110)

It implies that the heat flux vanishes and the dissipation is only due to the viscous
effect.

Thermoelasticity

If one excludes the strain rate and the temperature rate from the constitutive func-
tions, it results in the following:

ηd = Td = 0, (2.111)

QK θ,K ≤ 0. (2.112)

Equation (2.112) means the angle between the heat flux and the temperature gra-
dient is greater than 90◦, in other words, it says that the heat flows from the hot
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region to the cold region. This is a well-known physical phenomenon, but now we
note that it is just a special case in continuum mechanics.

We further assume that the Helmholtz free energy density can be expanded as a
polynomial in its arguments up to second order, i.e.,

ψ = ψ0 − η0T − γ T 2/2T 0 − BK L EK L T/ρ0 + AKLMN EK L EM N /2ρ0,

(2.113)

where ψ0, η0, γ, BK L = BL K and AKLMN = AMNKL = ALKMN = AKLNM are
material constants, and they can be functions of Lagrangian coordinate X if there
exists material inhomogeneity; T is the temperature variation, from the reference
temperature T 0, having the following constraints

θ ≡ T + T 0, T 0 > 0, |T | << T 0. (2.114)

Then it is straightforward to obtain

η = −∂ψ

∂θ
= η0 + γ T/T 0 + BK L EK L/ρ0,

(2.115)
TK L = ρ0 ∂ψ

∂ EK L
= −BK L T + AKLMN EM N .

The heat flux QK is assumed to be linearly proportional to the temperature
gradient, i.e.,

QK = −HK L T,L . (2.116)

Following the Onsager’s postulate, one may show that the H matrix in Eq.
(2.116) is symmetric (cf. Eringen, 1999). It is seen that the CD inequality, Eq.
(2.112), now implies

−HK L T,L T,K ≤ 0, (2.117)

which means the material property matrix H has to be positive definite. Now the
conservation law of energy, Eq. (2.80), can be expressed as

ρ0γ
T + T 0

T 0
Ṫ + (T + T 0)BK L ĖK L = (HK L T,L ),K + ρ0h. (2.118)

Elasticity

For constitutive functions that only retain the strain, temperature, and the La-
grangian coordinate as the independent constitutive variables, we have

η = −∂ψ

∂θ
, T = ρ0 ∂ψ

∂E
, Q = 0; (2.119)
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and the CD inequality is reduced to a null statement 0 ≥ 0, which simply means
there is no dissipation and the thermomechanical process is reversible. We further
assume that BK L = 0, then the equilibrium equation, Eq. (2.78), and the energy
equation, Eq. (2.118), are reduced to

{AKLMN EM N (δkL + δk MUM,L )},K + ρ0( fk − v̇k) = 0, (2.120)

ρ0γ T +T 0

T 0 Ṫ = ρ0h, (2.121)

which means the displacement field and the temperature field are completely
decoupled.

Heat-Conducting Fluid

Definition. In continuum mechanics, a material body is called a fluid if every con-
figuration of the body leaving the density unchanged can be taken as the reference
configuration.

Following this definition, the independent constitutive variables appearing in Eqs.
(2.96)–(2.99) for fluid are reduced to ρ, dkl , θ, θ̇ , and θ,k ; The constitutive equa-
tions are obtained as

ψ = ψ(ρ−1, θ ), (2.122)

η = −∂ψ

∂θ
+ ηd(ρ−1, dkl , θ, θ̇ , θ,k), (2.123)

ti j = − ∂ψ

∂ρ−1
δi j + td

i j (ρ
−1, dkl , θ, θ̇ , θ,k), (2.124)

qk = qk(ρ−1, dkl , θ, θ̇ , θ,k), (2.125)

td : d − ρηdθ̇ − qkθ,k

θ
≥ 0. (2.126)

Equations (2.123)–(2.125) are saying that the irreversible parts of entropy and
the Cauchy stress and the heat flux are isotropic scalar-valued, tensor-valued, and
vector-valued functions of scalars ρ−1, θ, θ̇ , vector ∇θ, and tensor d. According
to the representation theorems for isotropic functions (cf. Wang, 1970, 1971 and
Appendixes A and B), ηd, q, and td can be written as

ηd = ηd(ρ−1, θ, θ̇ , I1, I2, I3, I4, I5, I6), (2.127)

qk = a1θ,k + a2dklθ,l + a3dkldlmθ,m, (2.128)

td
i j = b1δi j + b2di j + b3dikdk j + b4θ,iθ, j

+ b5(θ,i d jkθ,k + dikθ,kθ, j )

+ b6(θ,i d jkdklθ,l + dikdklθ,lθ, j ). (2.129)
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where

I1 = dkk, (2.130)

I2 = dkldlk, (2.131)

I3 = dkldlmdmk, (2.132)

I4 = θ,kθ,k, (2.133)

I5 = θ,kdklθ,l , (2.134)

I6 = θ,kdkldlmθ,m ; (2.135)

and ai (i = 1, 2, 3) and b j ( j = 1, 2, . . . , 6) are functions of ρ−1, θ, θ̇ , and Ik(k =
1, 2, . . . , 6). The CD inequality is now reduced to

b1 I1 + b2 I2 + b3 I3 + b4 I5 + 2b5 I6 + 2b6 I7 − ρηdθ̇

−1

θ
(a1 I4 + a2 I5 + a3 I6) ≥ 0, (2.136)

where I7 ≡ d3
i jθ,iθ, j .

In summary, we have derived the balance laws for mass, linear momentum,
angular momentum, energy, and entropy (Eqs. (2.53), (2.63), (2.66), (2.69), and
(2.74)), the constitutive equations for the general thermoviscoelastic solid (Eqs.
(2.99), (2.101), (2.103), (2.104), and (2.105)), and its special cases, including vis-
coelastic solid, thermoelastic solid, elastic solid, and heat-conducting fluid. We
have also demonstrated that Wang’s representation theorem for isotropic func-
tions is valuable in constructing constitutive equations for fluids and isotropic
materials.

Remarks. The spirit of continuum mechanics is that it applies equally well to all
kinds of continuous media, including gas, liquid, and solid, in both equilibrium
and nonequilibrium systems.

Problems

1. Let A be an arbitrary second-order tensor, tr A = Aii , tr A2 = Ai j A ji , tr A3 =
Ai j A jk Aki .

The Cayley–Hamilton theorem asserts that A satisfies its own characteristic
equation:

A3 − I A2 + IIA − IIII = 0.

Show that the three invariants can be expressed as

I = tr A,

II = {(tr A)2 − tr A2}/2,

III = {(tr A)3 − 3tr Atr A2 + 2tr A3}/6.
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2. Use the result
det A det B = det (AT B)
to show that

εi jkεlmn = δil(δ jmδkn − δ jnδkm) + δim(δ jnδkl − δ jlδkn) + δin(δ jlδkm − δ jmδkl)

and consequently

εi jkεlmk = δilδ jm − δimδ jl ,

εi jkεl jk = 2δil .

3. Prove the following vector identities involving ∇:

∇ · (∇F) = ∇2 F,

∇(FG) = F∇G + G∇F,

∇2(FG) = F∇2G + 2(∇F) · (∇G) + G∇2 F,

∇ · (Fv) = (∇F) · v + F∇ · v,

∇ · (F∇G) = F∇2G + ∇F · ∇G,

∇ × (∇F) = 0,

∇ · (∇ × v) = 0,

∇ · (a × b) = (∇ × a) · b − a · (∇ × b),

∇ × (Fv) = ∇F × v + F∇ × v,

∇ × (∇ × v) = ∇(∇ · v) − ∇2v.

4. A is a second-order tensor, verify that

j ≡ det(A) = εi jkεlmn Ail A jm Akn/6,

A−1
li = 1

2 j
εi jkεlmn A jm Akn,

∂ j

∂ Ai j
= j A−1

j i .

5. Verify that

j ≡ det(xk,K ) = eklmeK L M xk,K xl,L xm,M/6,

X K ,k = eklmeK L M xl,L xm,M

2 j
.

6. Prove that

∂ j

∂xk,K
= j X K ,k,

( j X K ,k),K = 0,

( j−1xk,K ),k = 0.



26 2. Fundamental of Continuum Mechanics

7. The Cauchy deformation tensor and the Green deformation tensor are defined,
respectively, as follows:

ckl ≡ X K ,k X K ,l ,

CK L ≡ xk,K xk,L .

The Eulerian strain tensor is defined as εkl ≡ 1
2 (δkl − ckl) and the Lagrangian

strain tensor is defined as EK L ≡ 1
2 (CK L − δK L ). Show that

EK L = εkl xk,K xl,L ,

εkl = EK L X K ,k X L ,l .

8. From u = x − X + b, show that

UK = δKl xl − X K + BK ,

uk = xk − δLk X L + bk,

dxk = (δM K + UM,K )δMkdX K ,

dX K = (δmk − um,k)δmK dxk,

2EK L = UK ,L + UL ,K + UM,K UM,L ,

2εkl = uk,l + ul,k − um,kum,l .

9. Prove that

dv = jdv,

dak = j X K ,kdAK ,

dAK = j−1xk,K d ak .

10. For CK L to play the role of a metric tensor, the Riemann–Christoffel tensor
formed from it must vanish, i.e.,

R(C)
K L M N = 0.

Find the compatibility equations in terms of EKL .

11. Prove that

d

dt
(xk,K ) = vk,l xl,K ,

d

dt
(X K ,k) = −vl,k X K ,l ,

d

dt
(ds2) = 2vk,ldxkdxl = 2dkl xk,K xl,LdX K dX L ,

ĖK L = dkl xk,K xl,L ,

d j

dt
= jvk,k,

d

dt
(dak) = vm,mdak − vm,kdam .
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12. Determine the objectivity of the following quantities:
(a) xk (Eulerian coordinate)
(b) vk (velocity)
(c) ak = v̇k (acceleration)
(d) ckl = X K ,k X K ,l (Cauchy’s deformation tensor)
(e) vk,l (velocity gradient)
(f) ωkl = (vk,l − vl,k)/2 (spin tensor)
(g) dkl = (vk,l + vl,k)/2 (deformation rate tensor)
(h) xk,K (deformation gradient)
(i) CK L = xk,K xk,L (Green’s deformation tensor)
(j) dak (differential area vector)
(k) d

dt (dak) (material time rate of dak)
(l) tkl (Cauchy’s stress tensor)
(m) ṫkl (material time rate of Cauchy’s stress tensor)
(n) TK m ≡ j X K ,k tkm (first-order Piola–Kirchhoff stress tensor)
(o) TK L ≡ j X K ,k X L ,l tkl (second-order Piola–Kirchhoff stress tensor)
(p) A(M)

kl (Rivlin–Ericksen tensor of order M)
(q) C (M)

K L (Mth order material time derivative of Green’s deformation tensor)

Note that Rivlin–Ericksen tensor of order 1 is defined as

A(1)
kl ≡ dkl

and the M + 1 order Rivlin–Ericksen tensor is defined as (M = 1, 2, 3, . . . . .)

A(M+1)
kl ≡ d

dt
A(M)

kl + A(M)
km vm,l + A(M)

ml vm,k .

and A(M) and C(M) are related as

C (M)
K L = A(M)

kl xk,K xl,L .

13. Tensor ai j is objective,
(a) determine the objectivity of ȧi j

(b) the Jaumann rate of a is defined as

âi j ≡ ȧi j − ωikak j + aikωk j ,

is â objective?
(c) the Truesdell rate of a is defined as

a∗
i j ≡ ȧi j − vi,kak j − v j,kaik + ai jvk,k,

is a∗ objective?
14. Verify that

TK mdAK = tkmdak .

What is the physical meaning of TK m? Why it is named the engineering stress?
15. Show that the balance law of linear momentum can be written as

TK k,K + ρ0( fk − v̇k) = 0.

Is it true that TK k = TkK ?
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16. Show that the balance law of linear momentum can also be expressed in terms
of the second-order Piola–Kirchhoff stress tensor as

(TK L xk,L ),K + ρ0( fk − v̇k) = 0.

Is it true that TK L = TL K ?
17. Find the detailed expressions for the following constitutive relations based on

Wang’s representation theorem for isotropic functions:
(a) ψ = ψ(xk,K , θ,k, X K )
(b) qm = qm(Ai j , Bi j , vi , θ ),
where A and B are first- and second-order Rivlin–Ericksen tensors, respec-
tively, and
vi ≡ ∂θ

∂xi
is the temperature gradient.

(c) TK L = TK L (xm,M )
(d) ψ = ψ(xm,M , xm,M N )
(e) ti j = ti j (vk,l , θ,k)
where vk,l is the velocity gradient. Note that it is neither symmetric nor
antisymmetric.

18. Consider the material is isotropic. To begin with, the constitutive relations
have the following forms. Based on Wang’s representation theorem, further
derive each of the following constitutive relations.
(a) ψ = ψ(CK L , ĊK L , θ,K ).
(b) TK L = TK L (EM N , ĖM N , θ,M ).
(c) QK = QK (EM N , ĖM N , θ,M ).

19. To begin with, a heat conducting fluid is assumed to have the following con-
stitutive equations:

t = t(ρ−1, d, θ, ∇θ ),

q = q(ρ−1, d, θ, ∇θ ),

ψ = ψ(ρ−1, d, θ, ∇θ ),

η = η(ρ−1, d, θ, ∇θ ).

Use CD inequality to prove that these constitutive equations are reduced to

ψ = ψ(ρ−1, θ ),

η = −∂ψ

∂θ
,

π ≡ − ∂ψ

∂ρ−1
,

tkl = −πδkl + td
kl(ρ

−1, θ, d, ∇θ ),

td
kldkl + 1

θ
qkθ,k ≥ 0.
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Use Wang’s representation theorem to show that

td = c0I + c1d + c2d2 + c3u ⊗ u + c4(u ⊗ du + du ⊗ u)

+ c5(u ⊗ d2u + d2u ⊗ u),

q/θ = c6u + c7du + c8d2u.

Find the constraints imposed by CD inequality.

Answer:

c0 I1 + c1 I2 + c2 I3 + c3(I4 + I7) + c4(I5 + I8) + c5 I6 + c6 I7 + c7 I8 ≥ 0,

where

ci = ci (ρ−1, θ, I1, I2, I3, I4, I7, I8) (i = 0, 1, 2, . . . , 7),

u ≡ ∇θ,

d2
i j ≡ dikdk j ,

I1 ≡ dkk,

I2 ≡ dkldlk,

I3 ≡ dkmdmldlk,

I4 ≡ u · du = ui di j u j ,

I5 ≡ (du) · (du) = di j u j dikuk,

I6 ≡ u · d3u + (du) · (d2u),

I7 ≡ u · u,

I8 ≡ u · d2u.

20. To begin with, a thermoviscoelastic solid is assumed to have the following
constitutive equations:

T = T(E, Ė, θ, ∇θ, X),

Q = Q(E, Ė, θ, ∇θ, X),

ψ = ψ(E, Ė, θ, ∇θ, X),

η = η(E, Ė, θ, ∇θ, X).

Find the constraints on these constitutive equations based on CD inequality.

21. Following Problem 20 and assuming that the material is isotropic, further
derive the constitutive equations. Derive the energy equation.

22. Following Problem 21 and assuming that the constitutive relations between
the independent and the dependent constitutive variables (except ψ) are linear,
further derive the constitutive equations. Derive the energy equation.

23. Following Problem 20 and assuming that the constitutive relations between
the independent and the dependent constitutive variables (except ψ) are linear,
further derive the constitutive equations. Derive the energy equation.
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24. Following Problem 23 and assuming that the material is isotropic, further
derive the constitutive equations. Derive the energy equation.

25. What happens to those constitutive equations if the thermoviscoelastic solid
is melted into fluid?

26. For isotropic elastic solid, the Cauchy stress tensor in the first approach is
written as

ti j = ti j (xk,K ).

Further derive this constitutive equation based on the principle of objectivity
and Wang’s representation theorem. In the second approach, let

tkl = 2

J

∂�(C)

∂CK L
xk,K xl,L ,

where C is the Green deformation tensor. Again, further derive this constitutive
equation based on the principle of objectivity and Wang’s representation theo-
rem. Compare the results from these two approaches. Are there any similarity
and difference? Why or why not?



3
Fundamentals of Finite Element Method

The fundamentals of continuum mechanics were discussed in Chapter 2. In this
chapter, we first present the integral formulation of continuum problems, and then
move on to present the essentials of finite element methods. The development is
necessary as a prerequisite to the subsequent chapters in meshless methods.

Integral Formulation of Continuum Problems

Physical problem arising in engineering and science can often be represented by
a set of differential equations and boundary conditions. The problem to be solved
in most general cases is to find an unknown function u such that it satisfies a set
of differential equations

D(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1(u)
D2(u)
D3(u)

...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = f (3.1)

in a domain �, together with a set of boundary conditions

B(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1(u)
B2(u)
B3(u)

...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = g (3.2)

on the boundaries � of the domain (Fig. 3.1). D and B are differential operators
operating on the unknown function u. The boundary condition that does not involve
differential operator is often named the essential boundary condition. The boundary
condition that involves differential operator is referred to as nonessential or natural
boundary condition.

The function u sought may be a scalar quantity or may represent a vector
of several variables. Correspondingly, the differential equation may be a single
equation or a set of simultaneous equations.

31
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Ω
D (u) = f Γ

B(u) = g

X

Y

FIGURE 3.1. Problem
domain � and its
boundary �.

The problem for which a model is obtained using a finite number of well-
defined components is termed discrete. If the model is continued indefinitely and
the problem can only be defined using the mathematical fiction of an infinitesimal,
and it leads to differential equations with an infinite number of elements. We term
this continuous.

Continuous problem can only be solved exactly by mathematical manipulation.
However, the available mathematical techniques usually limit the possibilities to
oversimplified situations. With the advent of digital computers, discrete problems
can generally be solved readily even if the number of elements is very large.

To overcome the intractability of the realistic type of continuum problem, vari-
ous methods of discretization have been proposed and developed. All involve an
approximation that is of such a kind that it approaches, as closely as desired, the
true continuum solution as the number of discrete variables increases. We have
had finite difference methods, finite volume methods, finite element methods, and
boundary element methods, and now we have meshless methods.

Those above-mentioned methods seek the solution in the approximate form

u ≈ û = �i ai , (3.3)

where the tensor summation convention is adopted; i = 1, 2, . . . n; �i may be
called shape, basis, or interpolation functions prescribed in terms of independent
variables, such as the coordinates x, y, and z; and all or some of ai are unknown
parameters. These shape or basis functions are usually defined locally for elements
or subdomains. The properties of the discrete systems can be recovered if the
approximating equations are cast in an integral form∫

�

G j (u) d� +
∫

�

h j (u) d� = 0 j = 1, 2, 3, . . . , n (3.4)

in which G j and h j prescribe known functions or operators. These integral forms
will permit the approximation to be obtained node by node and an assembly can
be achieved as∫

�

G j (u) d� +
∫

�

h j (u) d� =
m∑
i

(∫
�i

G j d� +
∫

�i

h j (u) d�

)
, (3.5)

where �i is the domain of the ith element and �i its part of the boundary.



Weighted Residual Methods 33

Two distinct procedures are available for obtaining the approximation in such in-
tegral formulations: the weighted residual methods and the variational functionals.

A weighted residual method uses integral expressions that contain the differ-
ential equations of a physical problem. The Galerkin method, which is the most
popular weighted residual method, is used to produce finite element and some
meshless formulations.

A variational principle uses an integral expression, called a functional, that yields
the governing differential equations and nonessential boundary conditions of a
problem when operated upon by standard procedures of the calculus of variations.
The principle of stationary potential energy is one of many variational principles.

Functional and residual formulations are both known as “weak” form of stat-
ing the governing equations of a problem. The differential equations themselves
comprise the “strong” form. The weak form enforces conditions in an average or
integral sense, whereas the strong form enforces them at every point.

Weighted Residual Methods

The governing differential equations and nonessential boundary conditions of an
arbitrary physical problem are symbolized as

D(u) − f = 0 in domain � (3.6)

B(u) − g = 0 on boundary �of �. (3.7)

For example, a beam-bending problem, as shown in Fig. 3.2, can be described
with

E Iv,xxxx = −q x ∈ (0, L), (3.8)

E Iv,xx = ML
at x = L , (3.9)

E Iv,xxx = QL

v,x = 0
at x = 0, (3.10)

v = 0

where v is the vertical displacement, q the distributed load, E Young’s modulus, I
the moment of inertia of the cross-sectional area, and EI the bending stiffness.

x

y q = q(x) 

L

QL

ML

FIGURE 3.2. A beam-bending
problem.
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Equation (3.8) is the governing differential equation and can be symbolized
by Eq. (3.6) with D = E I d4/dx4, u = v, and f = −q. The two equations in
Eq. (3.9) are the nonessential boundary conditions, corresponding to Eq. (3.7)
with B = E I d2/dx2, g = ML and B = E I d3/dx3, g = QL , respectively. The
first equation in Eq. (3.10) is the nonessential boundary condition, correspond-
ing to Eq. (3.7) with B = d/dx, g = 0 and note that the second equation in Eq.
(3.10) is an essential boundary condition because the unknown function v itself is
specified at the boundary.

In general, we seek an approximate solution, û. Typically, û is a polynomial
that satisfies essential boundary conditions and contains undermined coefficients
a1, a2, . . . , an . To obtain an approximate solution, we must determine the values
of ai (i = 1, 2, 3, . . . , n) such that u and û are as close as possible.

If û is substituted into Eqs. (3.6) and (3.7), equality does not prevail because û
is not exact. The discrepancy can be expressed as residuals RD and RB , which are
functions of x and the ai :

RD = RD(a, x) = D(û) − f, (3.11)

RB = RB(a, x) = B(û) − g. (3.12)

We presume that û is a good approximation of u if residuals are small. Small
residuals can be achieved by various methods, each of which is designed to produce
algebraic equations that can be solved for the n coefficients ai . The various common
choices are summarized as follows.

Point Collocation

For n distinct points xi in the solution domain, the residuals are set to zero to obtain
n simultaneous equations for the n coefficients ai , i.e.,

RD(a, xi ) = 0 for i = 1, 2, 3, . . . , j, (3.13)

RB(a, xi ) = 0 for i = j + 1, j + 2, . . . , n. (3.14)

Subdomain Collocation

The complete domain of solution is subdivided into n subdomains. Over n different
regions �i and �i , the integral of the residual is set to zero to obtain n equations
for the coefficients ai .∫

�i

RD(a, x) dV = 0 for i = 1, 2, 3, . . . , j, (3.15)∫
�i

RB(a, x) dS = 0 for i = J + 1, J + 2, . . . , n. (3.16)



Weighted Residual Methods 35

Continuous Least Squares

The ai s are chosen to minimize a function I:

∂ I

∂ai
= 0 for i = 1, 2, 3, . . . n. (3.17)

Function I is formed by integrating squares of the residuals,

I =
∫

�

[RD(a, x)]2 dV + α

∫
�

[RB(a, x)]2 dS (3.18)

where α is an arbitrary scalar multiplier that may be used to achieve dimensional
homogeneity and also serve as a penalty number. Large values of α increase the
importance of RB relative to RD .

Least Squares Collocation

The ai (i = 1, 2, 3, . . . , n) is still chosen to minimize a function I, but I is defined
in terms of squared residuals at m points x j , ( j = 1, 2, 3, . . . , m). The number
of points is larger than the number of coefficients ai , (i = 1, 2, 3, . . . . , n), i.e.,
m ≥ n. We have

I =
k−1∑
j=1

[RD(a, x j )]
2 + α

m∑
j=k

[RB(a, x j )]
2. (3.19)

∂ I

∂ai
= 0 for i = 1, 2, 3, . . . n. (3.20)

Equation (3.20) yields n equations for ai , even for m > n. The method is also
called point least squares or overdetermined collocation. If m = n, the method
becomes simple point collocation.

Galerkin

In this technique, the coefficients ai are determined from the n equations of
weighted residuals

Ri =
∫

�

Wi (x)RD(a, x) dV = 0 for i = 1, 2, 3, . . . n. (3.21)

In the general Galerkin method, also called Bubnov–Galerkin method, the weight
functions, Wi = Wi (x), are coefficients of the generalized coordinates ai . Thus
Wi = ∂ û/∂ai . In the Petrov–Galerkin method, other forms of Wi are used. Galerkin
method leads frequently to symmetric matrices. This is one reason that it has been
adopted in finite element method almost exclusively. It is also widely used in
meshless methods.
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The commonality shared by the foregoing methods is that they all can be sym-
bolized as ∫

�

Wi R d� = 0, (3.22)

where R represents RB and/or RD, � represents � and/or �. It says that over the
region of interest, the weighted residual has an average value of zero. The various
weighted residuals differ in how Wi is defined. In the collocation and subdomain
methods, the Wi is unit delta or step function that is nonzero at certain points
or over certain regions. In least squares methods, Wi = ∂ R/∂ai . In the Galerkin
method, Wi = ∂ û/∂ai .

Example 1. Formulation of elasticity by Galerkin method.

In general three-dimensional continuum, the equilibrium equations can be written
in tensor notation as

t ji, j + ρ fi − ρv̇i = 0, (3.23)

where t is the stress, ρf the body force, and v the velocity. To obtain a weak form, we
shall introduce a weighting tensor function �iα . The Galerkin method then gives∫

�

�iα(t ji, j + ρ fi − ρv̇i ) dV = 0. (3.24)

Using the Green–Gauss theorem and integration by parts, the above equation
becomes∫

�

(t ji�iα, j + ρv̇i�iα − ρ fi�iα) dV −
∮

�

t ji n j�iα dS = 0. (3.25)

For small strain elasticity,

ei j = (ui, j + u j,i )/2, (3.26)

ti j = t ji = ai jklekl , (3.27)

v̇i = üi . (3.28)

With the approximation, ûi = �iαUα , we have

êi j = 1

2
(�iα, j + � jα,i )Uα

�= Bi jαUα. (3.29)

Equation (3.25) then becomes∫
�

(ai jkl BklβUβ�iα, j + ρ�iβÜβ�iα − ρ fi�iα) dV −
∮

�

t ji n j�iα dS = 0,

(3.30)
which can be rewritten as

Uβ

∫
�

ai jkl Bklβ Bi jα dV + Üβ

∫
�

ρ�iβ�iα dV −
∫

�

ρ fi�iα dV

−
∫

�t

t̄i�iα dS −
∫

�u

t j i n j�iα dS = 0. (3.31)
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The fourth term is the natural boundary condition, i.e., n j t ji = t̄i . The fifth
term is the essential boundary condition and it vanishes in the methods where
approximation functions pass through nodes, such as finite element method.
Equation (3.31) results a finite element formulation

MαβÜβ + KαβUβ = Fα or MÜ + KU = F, (3.32)

where

Mαβ =
∫

�

ρ�iβ�iα dV ,

Kαβ =
∫

�

ai jkl Bklβ Bi jα dV , (3.33)

Fα =
∫

�

ρ fi�iα dV +
∫

�t

t̄i�iα dS.

In meshless methods, the fifth term in Eq. (3.31) remains, additional treatment of
essential boundary condition is needed, and this will be discussed in next section.

If we replace �iα by δui , then Eq. (3.25) becomes∫
�

(t jiδui, j + ρv̇iδui ) dV −
∮

�

t ji n jδui dS = 0. (3.34)

This is the virtual work statement. Therefore, the method of virtual work is in fact
a Galerkin formulation of the weighted residual process applied to the equilibrium
equation.

Variational Principle

A variational principle specifies a scalar function � that is defined by an integral
form

� =
∫

�

F(ui , ui, j , . . . ) dV +
∫

�

E(ui , ui, j , . . . ) dS, (3.35)

in which u is the unknown function and F and E are the specified differential
operators. The solution to the continuum problem is a function u that makes �

stationary with respect to small changes δu. Thus, for a solution to the continuum
problem, the “variation” is

δ� = 0. (3.36)

Assuming a trial function

ui ≈ ûi = �iαaα, (3.37)

it follows that

δ� = ∂�

∂ai
δai . (3.38)
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Since the above equation should hold for any arbitrary variation δai , this implies,
for each ai ,

∂�

∂ai
= 0. (3.39)

We can then have a set of equations for ai . If a “variational principle” can be found,
the approximate solutions in the standard integral form can then be obtained. In
the case that the functional � is quadratic function of ai , then Eq. (3.39) yields a
set of linear algebra equations

∂�

∂a
= Ka − f. (3.40)

Zienkiewicz (1983) has shown that the matrix K will always be symmetric. In
fact, the symmetry matrices will arise whenever a variational principle exists in
one of the most important merits of variational approaches for discretization. It is
noted that symmetric matrices can also frequently arise directly from the Galerkin
process.

Some physical problems can be stated directly in a variational principle form.
There are some others for which the variational principle has to be constructed by
considering some constraints. We called them the constrained variational princi-
ples. Two common choices are the Lagrange multiplier method and the penalty
functions method.

Lagrange Multipliers

Consider the problem of making a functional � stationary, subject to that the
unknown u obeying some set of additional differential relationships

C(u) = 0 in �, (3.41)

E(u) = 0 on �. (3.42)

We can introduce such constraints by forming another functional

�̄(u,λ,γ) = �(u) +
∫

�

λ · C(u) dV +
∫

�

γ · E(u) dS, (3.43)

in which λ and γ are functions of the coordinates and called as Lagrange multi-
pliers. Note that λ and γ are vectors having same number of elements as in C(u)
and E(u), respectively. The variation of the new functional is now

δ�̄ = δ� +
∫

�

δλ · C(u )dV +
∫

�

λ · δC(u) dV +
∫

�

δγ · E(u) dS

+
∫

�

γ · δE(u) dS, (3.44)

and this is zero providing C(u) = 0, E(u) = 0, and hence δC(u) = 0, δE(u) = 0,
and simultaneously,

δ� = 0. (3.45)
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Penalty Functions

For penalty methods, the new functional is constructed as

�̄(u, α, β) = �(u) + α

∫
�

C(u) · C(u) dV + β

∫
�

E(u) · E(u) dS, (3.46)

in which α and β are penalty numbers. If � is a minimum of the solution, then α

and β should be positive numbers. The solution obtained by the stationarity of the
function �̄ will satisfy the constraints only approximately. The larger the values
of α and β, the better will be the constraints achieved.

It is noted that introducing Lagrange multiplier allows constrained variational
principles to be obtained at the expense of increasing the total number of unknowns.
Also, even in linear problems the algebraic equations that have to be solved are
now complicated by having zero diagonal terms (Zienkiewicz and Taylor, 1989).
The penalty function method does not have these drawbacks, but the solution is
often not as accurate as that by Lagrange multiplier method.

Example 2. Formulation of elasticity by variational principle.

Consider again the previous example of elasticity with the governing equation

t ji, j + ρ fi − ρv̇i = 0, (3.47)

and essential and natural boundary conditions

ui = ūi on �u, (3.48)

ti = t̄i on �t . (3.49)

The strain energy and kinetic energy in a body of volume � for a linear elasticity
are given, respectively, by

I = 1

2

∫
�

ti j ei j dV , (3.50)

K = 1

2

∫
�

ρvivi dV . (3.51)

The conservation of energy gives the potential energy as

� ≡ 1

2

∫
�

ti j ei j dV + 1

2

∫
�

ρvivi dV −
∮

�

ti ui dS −
∫

�

ρ fi ui dV , (3.52)

in which the third term is the work done by external force and the fourth term
is the work done by body force. To enforce the essential boundary condition, we
construct a new functional with Lagrange multiplier λ

�̄ ≡ 1

2

∫
�

ti j ei j dV + 1

2

∫
�

ρvivi dV

−
∫

�t

t̄i ui dS −
∫

�

ρ fi ui dV +
∫

�u

λi (ui − ūi ) dS. (3.53)
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Since

ti j = ∂ I

∂ei j
, (3.54)

viδvi = u̇iδu̇i = u̇i üiδt = üiδui , (3.55)

we have

δ�̄ ≡
∫

�

ti jδei j dV +
∫

�

ρviδvi dV −
∫

�t

t̄δui dSi

−
∫

�

ρ fiδui dV +
∫

�u

λiδ(ui − ūi ) dS +
∫

�u

δλi (ui − ūi ) dS

=
∫

�

ti jδei j dV +
∫

�

ρüiδui dV −
∫

�t

t̄iδui dS

−
∫

�

ρ fiδui dV +
∫

�u

λiδui dS +
∫

�u

δλi (ui − ūi ) dS.

(3.56)

Now approximate λ on �u in terms of nodal value Λ as

λ j = ψ jα�α, α = 1, 2, 3, . . . , l, (3.57)

where l is the number of nodes whose weight functions are nonzero on the es-
sential boundary. Together with the constitutive relations, ti j = t ji = ai jklekl , and
the approximation ûi = �iαUα, êi j = 1

2 (�iα, j + � jα,i )Uα = Bi jαUα, Eq. (3.56)
becomes

δ�̄ =
∫

�

(ai jkl BklβUβ Bi jαδUα + ρ�iβÜβ�iαδUα) dV

−
∫

�t

t̄i�iαδUα dS −
∫

�

ρ fi�iαδUα dV

+
∫

�u

ψiβ�β�iαδUα dS +
∫

�u

ψiβδ�β(�iαUα − ūi ) dS

= 0.

(3.58)

For finite element methods,

δUα = 0
on �u ;

�iαUα − ūi = 0
(3.59)

hence ∂�̄/∂ai = 0 leads to

Uβ

∫
�

ai jkl Bklβ Bi jα dV + Üβ

∫
�

ρ�iβ�iα dV −
∫

�t

t̄i�iα dS−
∫

�

ρ fi�iα dV = 0,

(3.60)

which is identical with Eq. (3.32) obtained previously.
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For meshless methods, Eq. (3.59) does not hold, we have instead

Uβ

∫
�

ai jkl Bklβ Bi jα dV + Üβ

∫
�

ρ�iβ�iα dV + �β

∫
�u

ψiβ�iα dS

=
∫

�t

t̄i�iα dS +
∫

�

ρ fi�iα dV ,

(3.61)

and

Uα

∫
�u

ψiβ�iα dS =
∫

�u

ψiβ ūi dS. (3.62)

Or in tensor form

MÜ + KU + GΛ = F,

Gt u = f,
(3.63)

where Gt stands for transpose of G and

Gαβ =
∫

�u

�iαψiβ dS,

fα =
∫

�u

ūiψiα dS.

(3.64)

Example 3. Type of governing equations of linear elasticity.

For linear elasticity, the stress–strain relation can be expressed as

ti j = ai jmnum,n, (3.65)

the governing equation, t ji, j + ρ fi − ρv̇i = 0, then becomes

a jimnum,nj + ρ fi − ρüi = 0. (3.66)

Since ai jmn is positive definite andρ is positive, we have B2 − 4AC = 4ai jmnρ > 0
(cf. Appendix C). The governing equation of elastodynamics is hyperbolic and Eq.
(3.66) represents wave equations.

For isotropic material in static case, Eq. (3.66) reduces to

λum,mi + µ(ui, j j + u j,i j ) + ρ fi = 0, (3.67)

where λ and µ are Lamé constants. In the case u1 = u(x, y), u2 = u3 = 0, we
have

λum,m1 + µ(u, j j + u j,1 j ) + ρ f1

= λu,11 + µ(u,11 + u,22 + u,11) + ρ f1

= (λ + 2µ)u1,11 + µu1,22 + ρ f1

= 0.

(3.68)

It is seen that B2 − 4AC = −4(λ + 2µ)µ < 0 and the equation of the static elastic
case is then elliptic.
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Introduction to Finite Element Method

The development of finite element methods for the solution of practical engineering
problems began with the advent of the digital computer. The essence of a finite ele-
ment solution of an engineering problem is that a set of governing algebraic equa-
tion is established and solved. Hence, it was only through the use of the digital com-
puter that this process could be rendered effective and given general applicability.

The name “finite element methods” was first used by Clough in 1960. It gained
wide respectability and attention when it was recognized as having a sound math-
ematical foundation: it can be regarded as the solution of a variational problem
by minimization of a functional. Thus, the method was seen as applicable to all
field problems that can be cast in a variational form. Large general purpose finite
element computer programs emerged during the late 1960s and early 1970s. Ex-
amples include NASTRAN and ANSYS that have been popular for almost half
century.

The process of approximating the behavior of a continuum by “finite elements”
can be described as follows:

1. The continuum is divided into a number of “finite elements.”
2. The elements are assumed to be connected at nodal points situated on their

boundaries. The displacements of these nodal points are the basic unknown
parameters of the problem.

3. A set of functions is chosen to define uniquely the state of displacement within
each “finite element” in terms of the nodal displacements.

4. The displacement functions then define uniquely the state of strain within an
element also in terms of the nodal displacements. These strains, together with
any initial strains and the constitutive properties of the material, define the state
of stress throughout the element and, hence, also on its boundary.

5. A system of “forces” concentrated at the nodes and equilibrating the boundary
stresses and any distributed loads is determined, resulting in a set of algebraic
equations.

6. Solving the algebraic equations gives the displacements. Other information
derivable from the displacement field, such as the strain tensor and the stress
tensor through the constitutive equations, can also be obtained.

The approach outlined in the procedure is known as the displacement formulation.

Shape Functions in Finite Element Method

In the derivation of finite element models, the element displacements, u(x, y, z),
are assumed in the form of polynomials in local element coordinates, x, y, and
z, with undetermined constant coefficients. These displacements are found to be
linear combinations of the element nodal point displacements. The essence of the
finite element method is thus to achieve the approximated relationship between
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the element displacement at any point and the element nodal point displacements
directly through the use of shape function, i.e., approximating the displacement u
at any point within the element as

ui ≈ ûi = NαUiα (i = 1, 2, 3, α = 1, 2, 3, . . . , m), (3.69)

where m is the number of nodes per element; Uiα the ith component of the αth nodal
displacements for a particular element. Equation (3.69) is sometimes written as

ui ≈ ûi = NiβUβ, (3.70)

where Niβ is the (i, β)th component of the 3 × 3m matrix made of m shape func-
tions Nα(α = 1, 2, 3, . . . , m) and Uβ(β = 1, 2, 3, . . . , 3m) is the βth component
of the vector of nodal displacements of the finite element.

A rigid translation of an element means

ui = Uiα = Ai , (3.71)

where A = {A1, A2, A3} is a constant vector of translation. Then, from Eq. (3.69),
it follows that

n∑
α=1

Nα = 1, (3.72)

which is the character of shape functions, often referred to as partition of unity. The
shape function defined in this way is named as standard shape functions. It depends
on the number of nodes. If the approximation is expressed as a series in which the
shape function Nα does not depend on the number of nodes in mesh, the shape
function is then called hierarchic shape functions. The standard shape functions are
the basis of most finite element programs. Here, we will only introduce the standard
shape functions for two-dimensional rectangular elements and three-dimensional
prism elements of linear, quadratic, and cubic types. For shape functions of other
types of elements, interested readers are referred to the book by Zienkiewicz and
Taylor (1989).

Two-Dimensional Rectangular Elements

Figure 3.3 shows the most frequently used rectangular elements. For the first
element with four nodes, it is obvious that a product of the form

1

4
(ξ + 1)(η + 1)

gives unity at top right corners where ξ = η = 1 and zero at all the other corners.
Also, a linear variation of the shape function of all sides exists and hence continuity
is satisfied (cf. Problems). Introducing new variables

ξ0 = ξξi , η0 = ηηi , i = 1, 2, 3, 4, (3.73)
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(a)                                           (b)                                    (c)

h
xx = –1 x = 1

h = –1

h = 1

1 5 2 

8

4 7 3 

6

FIGURE 3.3. Most frequently used rectangular elements: (a) linear, (b) quadratic, (c) cubic.

where (ξi , ηi ) are the coordinates of the ith node. Then the form

Ni = 1

4
(1 + ξ0)(1 + η0) (3.74)

allows all shape functions to be written down in one expression.
It can be verified that

� For the 8-node element,

for corner nodes: Ni = 1

4
(1 + ξ0)(1 + η0)(ξ0 + η0 − 1), (3.75)

for mid-side nodes: ξi = 0 Ni = 1

2
(1 − ξ 2)(1 + η0), (3.76)

ηi = 0 Ni = 1

2
(1 − η2)(1 + ξ0). (3.77)

� For the 12-node element,

for corner nodes: Ni = 1

32
(1 + ξ0)(1 + η0)(−10 + 9(ξ 2 + η2)), (3.78)

for mid-side nodes: ξi = ±1 and ηi = ±1

3
(3.79)

Ni = 9

32
(1 + ξ0)(1 − η2)(1 + 9η0),

ηi = ±1 and ξi = ±1

3
Ni = 9

32
(1 + η0)(1 − ξ 2)(1 + 9ξ0). (3.80)

Three-Dimensional Solid Elements

For the most frequently used rectangular prism elements (Fig. 3.4), we have the
following shape functions:

� 8-node linear element

Ni = 1

8
(1 + ξ0)(1 + η0)(1 + ς0), (3.81)



Shape Functions in Finite Element Method 45

(a) (b) (c)

x = –1

z = –1

h = 1

FIGURE 3.4. Most frequently used rectangular prism elements: (a) linear, (b) quadratic,
(c) cubic.

� 20-node quadratic element

Corner nodes: Ni = 1

8
(1 + ξ0)(1 + η0)(1 + ς0)(ξ0 + η0 + ς0 − 2),

(3.82)

Typical mid-side nodes: ξi = 0 ηi = ±1 ςi = ±1

Ni = 1

2
(1 − ξ 2)(1 + η0)(1 + ς0). (3.83)

� 32-node cubic element

Corner nodes: Ni = 1

64
(1 + ξ0)(1 + η0)(1 + ς0)[9(ξ 2 + η2 + ς2) − 19],

(3.84)

Typical mid-side nodes: ξi = ±1

3
ηi = ±1 ςi = ±1

Ni = 9

64
(1 + η0)(1 + ς0)(1 − ξ 2)(1 + 9ξ0). (3.85)

Example 4. Strain–displacement relation in two-dimensional finite element
formulation.

For eight-node rectangular element, cf. Fig. 3.5 for nodal points, the approxi-
mated displacements in one element are

∣∣∣∣u1

u2

∣∣∣∣ =
∣∣∣∣N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8 0
0 N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1x

U1y

U2x

U−2y
...
U8x

U8y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(3.86)
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1 5 2

8

4 7 3

6

FIGURE 3.5. Two-dimensional
element and its nodal points.

with

N1 = 1

4
(1 − ξ )(1 − η)(−ξ − η − 1)

N2 = 1

4
(1 + ξ )(1 − η)(ξ − η − 1)

N3 = 1

4
(1 + ξ )(1 + η)(ξ + η − 1)

N4 = 1

4
(1 − ξ )(1 + η)(−ξ + η − 1)

N5 = 1

2
(1 − ξ )(1 − η)(1 + ξ )

N6 = 1

2
(1 + ξ )(1 − η)(1 + η)

N7 = 1

2
(1 − ξ )(1 + η)(1 + ξ )

N8 = 1

2
(1 − ξ )(1 − η)(1 + η)

The element strains are given by

e = [e11, e22, 2e12]t = [exx , eyy, γxy]t , (3.87)

where

exx = e11 = ∂u1

∂x
, eyy = e22 = ∂u2

∂y
, γxy = 2e12 = ∂u1

∂y
+ ∂u2

∂x
. (3.88)

They involve the derivatives with respect to the global coordinates x and y. Using
the chain rule, we have ∣∣∣∣∣∣∣∣

∂

∂ξ

∂

∂η

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∂

∂x
∂

∂y

∣∣∣∣∣∣∣∣ , (3.89)
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or in tensor notation, with x = [x, y]t , ξ = [ξ, η]t ,

∂

∂ξ
= J

∂

∂x
or

∂

∂x
= J−1 ∂

∂ξ
, (3.90)

where J is the Jacobian matrix relating the global coordinate derivatives to the
local coordinate derivatives, i.e.,

J =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣∣ , J−1 =

∣∣∣∣∣∣∣∣
∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y

∣∣∣∣∣∣∣∣
and J−1 is linked to J as

J �=
∣∣∣∣ J11 J12

J21 J22

∣∣∣∣ , J−1 = 1

j

∣∣∣∣ J22 −J12

−J21 J11

∣∣∣∣ , j ≡ det(J) = J11 J22 − J12 J21.

(3.91)

Substituting Eq. (3.86) into Eq. (3.88), we have

∂u1

∂x
= N1α,xUα

∂u1

∂y
= N1α,yUα

∂u2

∂x
= N2α,xUα

∂u2

∂y
= N2α,yUα.

(3.92)
Hence

ei j = Bi jαUα, (3.93)

with

B =
∣∣∣∣∣∣

N1,x 0 N2,x 0 . . . N8,x 0
0 N1,y 0 N2,y . . . 0 N8,y

N1,y N1,x N2,y N2,x . . . N8,y N8,x

∣∣∣∣∣∣ , (3.94)

Nα,x = (Nα,ξ J22 − Nα,η J12)/j, (3.95)

Nα,y = (−Nα,ξ J21 + Nα,η J11)/j. (3.96)

Finite Element Formulation

Finite element formulation can be obtained by either weighted residual method or
variational principle. Both methods will give same formulation for finite element
methods.

Following the same procedure and using

ti j = ai jklekl + bi jkl ėkl , (3.97)

ûi = NiαUα, (3.98)

êi j = Bi jαUα, ˙̂ei j = Bi jαU̇α, (3.99)
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the finite element formulation for viscoelastic solid can be obtained as

Uβ

∫
�

ai jkl Bklβ Bi jα dV + U̇β

∫
�

bi jkl Bklβ Bi jα dV + Üβ

∫
�

ρNiβ Niα dV

=
∫

�t

t̄i Niα dS +
∫

�

ρ fi Niα dV ,

(3.100)

which can be rewritten in a general form of dynamic equation as

MÜ + CU̇ + KU = F, (3.101)

with the mass, damping, stiffness, and the external force matrices as

Mαβ =
∫

V
ρ�iβ(x)�iα(x) dV = Mβα, (3.102)

Cαβ =
∫

V
bi jkl Bi jα(x)Bklβ(x) dV , (3.103)

Kαβ =
∫

V
ai jkl Bi jα(x)Bklβ(x) dV , (3.104)

Fα =
∫

V
ρ f j� jα(x) dV +

∫
�t

t̄ j� jα(x) dS. (3.105)

For static problems, ignoring the dynamic effect of Ü and U̇, Eq. (3.101) is then
reduced to

KU = F. (3.106)

This simple form is the finite element equations of elastostatics.

Numerical Integration in Finite Element Method

Numerical integration is a very important step in finite element methods. The
integrals, such as those in Eqs. (3.102–3.105), that we obtained previously can all
be expressed in the form of∫

F(ξ, η) dξ dη,

∫
F(ξ, η, ς) dξ dη dς

for two- and three-dimensional problems, respectively. It was stated that those
integrals are in practice evaluated numerically using∫

F(ξ, η) dξ dη =
∑
i, j

αi j F(ξi , η j ) + Rn, (3.107)∫
F(ξ, η, ς) dξ dη dς =

∑
i, j,k

αi jk F(ξi , η j , ςk) + Rn, (3.108)

where the summations are extended over all i, j , and k as specified, the αi j and
αi jk are weighting factors, F(ξi , η j ) and F(ξi , η j , ςk) are the functions of F(ξ, η)
and F(ξ, η, ς) evaluated at the points specified in the arguments, respectively. The
matrices Rn are error matrices which in practice are usually not evaluated.
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The numerical integration of
∫ b

a F(ξ ) dξ is essentially based on passing a poly-
nomial ψ(ξ ) through given values of F(ξ ) and then using

∫ b
a ψ(ξ ) dξ as an ap-

proximation to the interval from a to b to determine how well ψ(ξ ) approximates
F(ξ ) and hence the error of the numerical integration.

A convenient way to obtain ψ(ξ ) is to use Lagrangian interpolation. The fun-
damental polynomials of Lagrangian interpolation is given as

l j (ξ ) = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2) · · · (ξ − ξ j−1)(ξ − ξ j+1) · · · (ξ − ξn)

(ξ j − ξ0)(ξ j − ξ1)(ξ j − ξ2) · · · (ξ j − ξ j−1)(ξ j − ξ j+1) · · · (ξ j − ξn)
.

(3.109)

It is seen that

l j (ξi ) = δi j . (3.110)

The polynomial ψ(ξ ) is then

ψ(ξ ) = F0l0(ξ ) + F1l1(ξ ) + · · · + Fnln(ξ ). (3.111)

The Newton–Cotes Formulas for One-Dimensional
Integration

In Newton–Cotes integration, it is assumed that the sampling points of F(ξ ) are
spaced at equal distance, and we have

ξ0 = −1, ξn = 1, h = 1

n
, (3.112)

where ξ0 and ξn are the positions of the starting and ending points of a one-
dimensional element, respectively and h is the spacing between sampling points.

Using Lagrangian interpolation to obtain ψ(ξ ) as an approximation to F(ξ ), it
gives ∫ 1

−1
F(ξ ) dξ =

n∑
i=0

(∫ 1

−1
li (ξ ) dξ

)
Fi + Rn, (3.113)

∫ 1

−1
F(ξ ) dξ =

n∑
i=0

Cn
i Fi + Rn, (3.114)

where Cn
i are the Newton–Cotes constants for numerical integration with n sam-

pling points. The cases n = 1 and n = 2 are the well-known trapezoidal rule and
Simpson formula. The even formulas with n = 2 and n = 4 are used in practice.
The error is of order O(bn) where b is the element size.

The Gauss Formulas for One-Dimensional Integration

A very important numerical integration approach in which both the positions of
the sampling points and the weights have been optimized is the Gauss quadrature.
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FIGURE 3.6. Gauss numerical integration for one, two, and three sampling points.

The basic assumption in Gauss numerical integration is that∫ b

a
F(ξ ) dξ = H1 F(ξ1) + H2 F(ξ2) + · · · + Hn F(ξn) + Rn ≈

n∑
i=1

Hi F(ξi ),

(3.115)

where both the weights Hi and the sampling point positions ξi are variables (cf.
Fig. 3.6). If we assume a polynomial expression, it is easy to see that for n sampling
points we have 2n unknowns, and hence a polynomial of degree 2n − 1 could be
constructed and exactly integrated. The error thus is of order O(h2n).

The simultaneous equations involved are difficult to solve. Fortunately, it is
found that the solution can be obtained explicitly in terms of Legendre polyno-
mials. Thus, this particular process is frequently known as the Gauss–Legendre
quadrature. Table 3.1 summarizes the positions and weighting coefficients of Gauss
quadrature.

TABLE 3.1. Abscissa and weight coefficients of the Gaussian
quadrature formula (Zienkiewicz and Taylor, 1989)∫ 1

−1 F(x) dx =
n∑

i=1
Hi F(ai )

±a H

n = 1
0 2.000 000 000 000 000

n = 2
0.577 350 269 189 626 1.000 000 000 000 000

n = 3
0.774 596 669 241 483 0.555 555 555 555 556
0. 000 000 000 000 000 0.888 888 888 888 889

n = 4
0.861 136 311 594 053 0.347 854 845 137 454
0.339 981 043 584 856 0.652 145 154 862 546

n = 5
0.906 179 845 938 664 0.236 926 885 056 189
0.538 469 310 105 683 0.478 628 670 499 366
0.000 000 000 000 000 0.568 888 888 888 889

n = 6
0.932 469 514 203 152 0.171 324 492 379 170
0.661 209 386 466 265 0.360 761 573 048 139
0.238 619 186 083 197 0.467 913 934 572 691
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For the purpose of finite element analysis, the complex calculations are involved
in determining the value of F(ξ ), the function to be integrated. Thus, the Gauss
process, requiring the least number of such evaluations, is ideally suited, and has
been used in most of finite element programs.

Two-Dimensional and Three-Dimensional Numerical
Integrations

The two- and three-dimensional integrations can be obtained by applying the
one-dimensional integration formulas successively in each direction. As in the
analytical evaluation of multidimensional integrals, successively, the innermost
integral is evaluated by keeping the variables corresponding to the other integrals
constant. Therefore, we have

∫ 1

−1

∫ 1

−1
F(ξ, η) dξ dη =

n∑
i=1

Hi

n∑
j=1

Hj F(ξi , η j )

=
n∑

i=1

n∑
j=1

Hi Hj F(ξi , η j ), (3.116)

∫ 1

−1

∫ 1

−1

∫ 1

−1
F(ξ, η, ς) dξ dη dς =

n∑
i=1

n∑
j=1

n∑
k=1

Hi Hj Hk F(ξi , η j , ςk).

(3.117)

It is noted that it is not necessary to have the number of integrating points to be
same in each direction. Sometimes it may be of advantage to use different numbers
in each direction of integration. It is also of interest to note that in fact the double
or triple summation can be readily interpreted as a single one over n × n points
for two-dimensional rectangle or n × n × n points for a cube.

Required Order for Numerical Integration

In evaluating the matrices in Finite Element Formulation section, i.e., the mass
matrix M, stiffness matrix K, damping matrix C, and force vector F, the choice of
the order of numerical integration is most important because the cost of numerical
integration can be quite significant for high-order integration; on the other hand
using a different integration order, the results can be affected by a very large
amount. It involves both the convergence and cost.

The integration order required to evaluate a specific element matrix accurately
can be determined by studying the order of the function to be integrated. For
example, the integral for the stiffness matrix,

Kαβ =
∫

V
ai jkl Bi jα(x)Bklβ(x) dV , (3.118)



52 3. Fundamentals of Finite Element Method

can be rewritten in terms of integral in the local coordinate of an element

Kαβ =
∫

ai jkl Bi jα(ξ)Bklβ(ξ) det(J) dξ

=
∫ 1

ξ=−1

∫ 1

η=−1

∫ 1

ς=−1
ai jkl Bi jα(ξ, η, ς)Bklβ(ξ, η, ς) det[J(ξ, η, ς)] dξ dη dς,

(3.119)

where ai jkl is the constant material property matrix, Bi jα(ξ) the strain–
displacement relation in the local coordinate (ξ, η, ς) of an element, and det(J) the
determinant of the Jacobian matrix transforming global to local coordinates, and
the integration is performed over the element volume in local coordinate system.
The matrix function F to be integrated is, therefore,

F = BT : a : B det(J). (3.120)

For a two-dimensional four-node rectangular element,

F = f (ξ 2, ξη, η2), (3.121)

hence, using two-point Gauss numerical integration is adequate; since for inte-
gration order n, the order of ξ and η integrated exactly is (2n − 1) with Gaussian
quadrature.

The recommended order for eight-node rectangular element is 3 × 3, whereas
for 12-node rectangular element is 4 × 4. With these integration orders, the element
matrices of geometrically undistorted elements can be evaluated exactly, whereas
for geometrically distorted elements a sufficiently accurate approximation can be
obtained unless the geometric distortions are extremely large.

To reduce the cost, the advantage of symmetry should be fully utilized. Finite
element methods possess the advantage that symmetry in loading and geometry
can reduce the problem to manageable proportions with appropriate boundary
conditions.

Also, a concise presentation of relevant techniques is provided here; there is a
rich and mature literature that could be referred to for a more detailed coverage of
finite element methods and their various applications.

Problems

1. Reformulate the linear elastic problem by using penalty functions method.
2. For a two-dimensional linear elastic problem to have unique solution, what

kind of boundary condition should be specified?
3. Consider the system of equations∣∣∣∣ 2 −1

−1 2

∣∣∣∣
∣∣∣∣U1

U2

∣∣∣∣ =
∣∣∣∣10
−1

∣∣∣∣ .



Problems 53

Use the Lagrange multiplier method and the penalty method to impose the
condition U2 = 0. Solve the equations and interpret the solution.

4. For thermoelastic solid, the constitutive equations for Cauchy stress tensor
are usually written as

ti j = −βi j T + Ai jklekl ,

where T is temperature deviation from the reference temperature (cf.
Chapter 2); βi j may be called the thermal expansion coefficients; and −βi j T
are named as the thermal stresses. Show the finite element equations may be
expressed as

MÜ + KU − PT = F,

where the expressions of M, K, and F are given in Eq. (3.30). What are the
detailed expressions of P and T?

5. Following Problem 4, let the energy equation and the heat flux be written as

ρ0γ Ṫ + T 0βi j ėi j = −qi,i + ρ0h
qi = −Hi j T, j

Show that another set of finite element equations may be obtained as

AṪ + HT + T 0Pt U̇ = Q

What are the detailed expressions of A, H, and Q?
6. Derive the B matrix for eight-node solid element.
7. Establish the Jacobian matrix J of the two-dimensional elements shown in the

following.

3 cm

4 cm

x
y

x
y

3 cm 

4 cm

60°

x
y

4 cm

3 cm

8. Use two-point Gauss quadrature to evaluate the integral
∫ 4

0 (2x − 2x + 4) dx .
9. Verify that

∑m
α=1 Nα = 1 for all those mentioned linear, quadratic, and cubic

two-dimensional and three-dimensional elements.
10. For four-node two-dimensional element, find that

N1,ξ = −(1 − η)/4, N1,η = −(1 − ξ )/4
N2,ξ = +(1 − η)/4, N2,η = −(1 + ξ )/4
N3,ξ = +(1 + η)/4, N3,η = +(1 + ξ )/4
N4,ξ = −(1 + η)/4, N4,η = +(1 − ξ )/4
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11. For eight-node two-dimensional element, find that

N1,ξ = (1 − η)(2ξ + η)/4, N1,η = (1 − ξ )(2η + ξ )/4
N2,ξ = (1 − η)(2ξ − η)/4, N2,η = (1 + ξ )(2η − ξ )/4
N3,ξ = (1 + η)(2ξ + η)/4, N3,η = (1 + ξ )(2η + ξ )/4
N4,ξ = (1 + η)(2ξ − η)/4, N4,η = (1 − ξ )(2η − ξ )/4
N5,ξ = −ξ (1 − η), N5,η = −(1 − ξ 2)/2
N6,ξ = (1 − η2)/2, N6,η = −η(1 + ξ )
N7,ξ = −ξ (1 + η), N7,η = (1 − ξ 2)/2
N8,ξ = −(1 − η2)/2, N8,η = −η(1 − ξ )

12. Using four-node two-dimensional element as an example, show that the
Jacobian matrix may be calculated as

J ≡

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣ N1,ξ N2,ξ N3,ξ N4,ξ

N1,η N2,η N3,η N4,η

∣∣∣∣∣
∣∣∣∣∣∣∣∣

X1 Y1

X2 Y2

X3 Y3

X4 Y4

∣∣∣∣∣∣∣∣
where {Xi , Yi } (i = 1, 2, 3, 4) are the coordinates of the four nodes of an
element. In general, it is seen that the value of J depends on the position
{ξ, η, ς} and the geometry of the element in question.

13. Using four-node two-dimensional element as an example, find that

u(0, 0) = (U1 + U2 + U3 + U4)/4,

u(ξ, 1) = {(1 + ξ )U3 + (1 − ξ )U4}/2,

u(1, η) = {(1 − η)U2 + (1 + η)U3}/2,

which demonstrate the basic ideas of shape functions. Is the function u(ξ, η)
continuous within the element? Is u continuous when it crosses the boundaries
η = 1 and ξ = 1?

14. Using four-node two-dimensional element as an example, find that

u,ξ (ξ, 1) = (U3 − U4)/2,

u,η(ξ, 1) = {(1 − ξ )(U4 − U1) + (1 + ξ )(U3 − U2)}/4,

which demonstrate the basic ideas of the derivatives of shape functions. Is u,ξ

continuous when it is crossing the boundary η = 1? Is u,η continuous when it
is crossing the boundary η = 1? So, strains and stresses are continuous within
the element, but are they continuous when it crosses the element boundary?



4
An Overview on Meshless Methods
and Their Applications

Meshless methods can be traced back to 1977 when Lucy (1977) and Gingold
and Monaghan (1977) proposed a smooth particle hydrodynamics (SPH) method
that was used for modeling astrophysical phenomena without boundaries, such as
exploding stars and dust clouds. Extensive developments have been made in several
varieties since then and with many different names: SPH (Monaghan, 1982, 1988,
1992), generalized finite difference method (Liszka and Orkisz, 1980), diffuse
element method (Nayroles et al., 1992), particle in cell method (Sulsky et al., 1992),
wavelet galerkin method (Qian and Weiss, 1993), reproducing kernel particle
method (RKPM) (Liu et al., 1995a,b), element-free Galerkin (EFG) (Belytschko
et al., 1994), partition of unity (PU) (Babuska and Melenk, 1995, 1996), Hp clouds
(Duarte and Oden, 1995, 1996), finite point method (Onate et al., 1996a,b), free-
mesh method (Yagawa and Furukawa, 2000), meshless local boundary integration
equation method, meshless local Petrov–Galerkin method (MLPG) (Atluri and
Zhu, 2000; Zhu, 1999), and multiscale methods (Liu et al., 1996a,b, 1997, 2000).

This chapter is to give an overview of the development of meshless methods,
with emphasis on the approximation functions, the numerical implementation, and
the applications.

Approximation Function

Meshless methods construct approximations entirely in terms of nodes. The ap-
proximation function is an essential feature of the method. A weight function,
which plays an important role in the performance of the methods, is used in all va-
rieties of meshless methods. The compact support of weight functions, also called
the domain of influence of a node, gives a local character to the meshless methods.
The weight function is nonzero in the domain of support and zero outside of the
domain of support. The most commonly used supports are discs and rectangles,
as shown in Fig. 4.1.

55
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FIGURE 4.1. The commonly used supports of node I.

Smooth Particle Hydrodynamics Method

SPH method, the oldest meshless method, developed by Gingold and Monaghan
in 1977, created a kernel approximation for a single function u(x) in a domain �

by

uh(x) =
∫

w(x − y, h)u(y) d�y, (4.1)

where uh(x) is the approximation, w(x − y, h) a kernel or weight function, and h
a measure of the size of the support.

The discrete form was obtained by numerical quadrature of the right-hand side
in the following type:

uh(x) =
∑

I

w(x − x I )uI �VI =
∑

I

φI (x)uI , (4.2)

where �VI is the volume, for 3D, or area, for 2D, or length, for 1D, associated
with node I, and φI (x) = w(x − xI )�VI the SPH shape function of the approxi-
mation. One difficulty in applying the above is the development of robust technique
for assigning �VI to each of the nodes. In SPH applications of hydrodynamics
equations, the ambiguity associated with the definition of �VI can be reduced by
invoking the continuity equation.

For any numerical method to converge, it must be consistent and stable. Sta-
bility is associated with the quadrature of the Galerkin form and the character of
the Galerkin procedure. Consistency inherently arises from the character of the
approximation. The requirements depend on the order of the partial differential
equations (PDEs) to be solved. For a PDE of order 2k, solution by a Galerkin
method requires consistency of order k, i.e., a constant field for the kth deriva-
tives must be represented exactly as the discretization parameter h tends to zero.
For a second order PDE, this implies that consistency is satisfied if constant first
derivative can be represented exactly.

Consistency conditions are closely related to completeness and reproducing
conditions. An approximation is complete if it provides a basis that can produce
the function with an arbitrary order of accuracy. Any approximation that can ex-
actly reproduce linear polynomials can reproduce any smooth function and its first
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derivative with arbitrary accuracy as the approximation is refined, and approx-
imation that has linear consistency also has linear completeness. Reproducing
condition refers to the ability to reproduce a function if the nodal values are set by
the function. Therefore, the ability to reproduce nth order polynomials is equiv-
alent to nth order consistency. The order of the consistency of an approximation
is also called the order of the polynomial that can be exactly represented, and
consistency conditions are often expressed in terms of the order of the polynomial
that can be exactly represented.

It can be shown that the linear consistency condition does not hold for both
uniform and nonuniform meshes in SPH.

Reproducing Kernel Particle Method

Along the same line of development as SPH, Liu and coworkers developed the
RKPM and proposed a correction function for kernels in both the discrete and
continuous cases. The reproducing kernel approximation of u(x) is given by

uh(x) =
∫

C(x, x − y)�α(x − y)u(y) d�y, (4.3)

where C(x, x − y) is called the correction function which is obtained by imposing
the reproducing conditions, i.e., the reproducing equation should exactly repro-
duce polynomials and can be expressed by a linear combination of polynomial
basis functions; α is the dilation parameter of the kernel function �α(x − y). By
performing the numerical integration, the following discrete form can be obtained:

uh(x) =
∑

I

�̄α(x, x − x I )u(x I )�VI =
∑

I

φI (x)uI . (4.4)

This approach is motivated by the theory of wavelets in which a function is repre-
sented by a combination of the dilation and translation of a single wavelet, which
is a window function. Based on the reproducing kernel particles and wavelets,
the RKPM was further elaborated in the frequency domain and a multiple scale
kernel particle method has been presented (Liu et al., 1995b, 1996a,b, 1997). This
method permits the response of a system to be separated into different scales, with
wave numbers corresponding to spatial scales and/or frequencies corresponding
to temporal scales, and the response of each scale can be examined separately.

Moving Least Square Approximation

Nayroles et al. (1992) introduced a spatial discretization in the numerical solution
of boundary value problems. In their method, only a set of nodes and a boundary
description are needed to develop the Galerkin equations. The interpolants are
polynomials that are fit to the nodal values by a least square approximation. The
approximation was not recognized as moving least squares (MLSs), referred as
“diffuse elements,” and the method was viewed as a generalization of the finite
element method (FEM).
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Belytschko et al. (1994) recognized this spatial discretization as MLSs, refined
and modified this method, and called it EFG. In MLS, the interpolants of the
function u(x) were defined in the domain � by

uh(x) =
m∑

i=1

pi (x)ai (x) ≡ pT (x)a(x), (4.5)

where m is the number of terms in the basis, pi (x) the monomial basis functions,
and ai (x) the coefficients which are functions of the spatial coordinates x. Ex-
amples of commonly used bases are the linear basis and the quadratic basis. The
coefficients ai (x) are obtained by performing a weighted least square fit for the
local approximation, which is obtained by minimizing the difference between the
local approximation and the function, with

J =
∑

I

w(x − x I )[uh(x, x I ) − u(x I )]2,

=
∑

I

w(x − x I )

[∑
i

pi (x I )ai (x) − u(x I )

]2

,

= (Pa − u)T W(x)(Pa − u), (4.6)
∂ J

∂a
= A(x)a(x) − B(x)u = 0. (4.7)

The approximation uh(x) can then be expressed in the form of shape functions and
nodal values as

uh(x) =
∑

I

φk
I (x)uI . (4.8)

The consistency of order k of the MLS approximations can be satisfied if the basis
is complete in the polynomials of order k. In fact, any function, which appears in
the basis, can be reproduced exactly by an MLS approximation.

Partition of Unity Methods

Babuska and Melenk (1995, 1996) and Duarte and Oden (1995, 1996) have shown
that the MLS functions constitute a PU, and the methods based on MLS are spe-
cific instances of partitions of unity. Based on this viewpoint, they did powerful
extensions of these approximations and proposed new approximations.

Babuska and Melenk (1995, 1996) introduced the following approximation form

uh(x) =
∑
I=1

φ0
I (x)(a0I + a1I x + · · · + ak I xk + b1I sinh nx + b2I cosh nx),

(4.9)

where φ0(x) is the Shepard function, or the zeroth-order approximation, which
produces the PU and hence the compact support of the approximation. The co-
efficients ak I , b1I , and b2I are the unknowns of the approximation and can be
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determined by a Galerkin or collocation procedure. The degree of consistency
depends on the number of terms xk .

Duarte and Oden (1995, 1996) used the PU concept in a more general manner.
Their approximation is

uh(x) =
∑

I

φk
I (x)

(
uI +

m∑
i=1

bi I qi (x)

)
. (4.10)

Here, qi (x) can be a monomial basis of any order greater than k and can be either
higher-order monomials or enhancement functions, called extrinsic base. These
facilitate the hp adaptivity.

The concept of the PU provides a rational method for constructing localized
approximations to global functions with a greater degree of flexibility. Based on
the concept, Krysl and Belytschko (2000) presented an approach to construct ba-
sis functions of a linear-precision PU for unstructured meshless methods. In their
approach, they used the Shepard functions as the PU and designed the nodal func-
tions so that the degrees of freedom are exclusively the values of the approximation
function at nodes. The benefits of this approach include better conditioning of the
discrete equations and easier handling of essential boundary conditions in appli-
cations to PDEs.

Other Meshless Methods

Liszka et al. (1980, 1996) took another path in the evolution of meshless meth-
ods with a “generalized finite difference method.” Although it is cast as a finite
difference method for arbitrary grids, it also used a least square fit, for which
the parameters are the partial derivatives of the function at nodes. This method
is applicable to arbitrary domains and employs only a scattered set of nodes to
build approximation solutions to boundary value problems. It has been shown that
the method takes a character that closely resembles MLS and partitions of unity
(Liszka et al., 1996).

Yagawa et al. (1996, 2000) proposed a seamless FEM, namely the “free-mesh
method.” In their approach, the elements were created around each node only in
a local manner after a set of nodes were provided; thereby, the processes from
the creation of the local elements to the construction of the local equations were
conducted on a node-by-node basis. The main advantage of their method in com-
parison with other meshless method is its reliability of solution as the construction
of global linear equations is based on FEM, accuracy of which has been studied
for decades.

Sulsky et al. (1992) described a “particle-in-cell method” within the framework
of conventional finite element technology. In their approach, particles were inter-
preted as material points that were followed through the complete loading process.
A fixed Eulerian grid provided the means for determining a spatial gradient. With
the use of maps between the material points and the grid, the advantages of both
Eulerian and Lagrangian schemes could be utilized so that the mesh tangling is
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avoided while the material variables are tracked through the complete deformation
history.

Onate et al. (1996a) presented a meshless method called the “finite point method”
for solving convection–diffusion and fluid flow type problems. The approach is
based on a weighted least square interpolation of point data and point collocation
for evaluating the approximation integrals. Improvement to this method was given
(Onate et al., 1996b) to the stabilization of the convective terms and the Neumann
boundary condition. Numerical examples have shown that the method for solution
of adjoint and nonself adjoint equations typical of convective–diffusive trans-
port and also to the analysis of a compressible fluid mechanics problem worked
well.

“Natural Neighbor Interpolation” (Sibson, 1981) is a multivariate scattered data
interpolation method that has primarily been used in geophysical modeling. This
natural neighbor interpolant relies on the concept of the Voronoi diagram and
Delaunay triangulations, and has very interesting features, such as its strictly in-
terpolant character and its ability to exactly interpolate piecewise linear boundary
conditions. The application of natural neighbor coordinates to the numerical so-
lution of PDEs was carried out by Traversoni (1994) and Braun and Sambridge
(1995). The latter researchers coined the name “Natural Element Method” (NEM)
to refer to its numerical implementation. Cueto et al. (2000) have imposed essen-
tial boundary conditions in NEM by means of density-scaled α-shapes. Sukumar
et al. (1998, 1999, 2001) have systematically used NEM to solve solid mechanics
problems.

Common Feature of the Approximations

It has been shown that the kernel methods, MLS methods, and PU methods share
many feature of the same framework (Belytschko et al., 1996c). A discrete kernel
approximation that is consistent must be identical to the related MLS approxima-
tion. Replacing the discrete sum in the MLS approximation by an integral leads to
an approximation similar to that of SPH (Belytschko et al., 1994). Liu et al. (1996a)
have identified a similar correspondence in a different way and have called the dif-
ference between the SPH approximation and a generalized reproducing kernel as
the correction function; they assert that this correction function is essential for
accuracy near boundaries. Duarte and Oden (1995) pointed out that any MLSs
approximation could serve as a PU.

Numerical Implementation

Collocation Method

The collocation method was employed in the SPH for the discretization. The
discrete equations of approximation were obtained by enforcing the approximation
equation on a set of interior nodes. The equations obtained are just a set of algebraic
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equations in the unknown variables. This is obviously a simple and fast method,
but it has been reported to suffer from instability.

Dyka (1994), Dyka et al. (1997), and Randles and Libersky (1996) have proposed
stabilization by means of stress particles. Swegle et al. (1995) have shown the
origin of the tensile instability through a dispersion analysis of the linearized
equations and proposed a viscosity to stabilize it. Johnson and Beissel (1996)
have proposed a method for improving the strain calculation. In a recent article by
Randles et al. (1999), two sets of points were created for domain discretization;
one carries velocity and another carries stress. It was reported that this treatment
could improve the accuracy and reduce spurious oscillations in the SPH.

Galerkin Method with Quadrature Integration Scheme

Discretization by the Galerkin method requires a weak form or a variational prin-
ciple. EFG (Belytschko et al., 1994), Hp clouds (Duarte and Oden, 1995, 1996),
PU (Babuska and Melenk, 1995, 1996), and RKPM (Liu et al., 1995b) use the
Galerkin method to obtain the discrete equations of the approximation, Lagrangian
multipliers to enforce the essential boundary condition, and a quadrature scheme
(cell quadrature or element quadrature) to evaluate the integrals. It has been re-
ported that this procedure did not exhibit any volumetric locking, and the rate of
convergence could exceed that of FEM significantly (Belytschko et al., 1994). The
disadvantage of this method seems to be that the resulting method is not truly
meshless, and its cost is too high. It was reported that the computational cost of
explicit EFG exceeds a low-order FEM by a factor of 4–10 (Belytschko et al.,
1996a,b,c, 2000).

Improvements were introduced by Lu et al. (1994) by employing an orthogo-
nal polynomial basis to reduce the computational effort in constructing the MLS
approximation and by replacing the Lagrangian multipliers with their physical
counterparts to modify the variational principle, which lead to a banded, positive-
definite stiffness matrix. While this modified formulation is not as accurate as the
original one, it is suggested that by using a finer grid, equivalent accuracy could
be achieved with less computational effort.

Nodal Integration of Galerkin Method

Spatial integration of the Galerkin method was achieved by evaluating the integrals
of the weak form only at the nodes (Beissel and Belytschko, 1996). There was no
need of cell structure or background mesh in this approach. It is a truly mesh-
less method and is faster. However, it results in a spatial instability. Beissel and
Belytschko (1996) proposed a stabilization procedure for the application of nodal
integration to elastostatics by adding the square of the residual of equilibrium equa-
tion to the potential energy functional. It has been shown that the unstabilized EFG
method with nodal integration manifests near-singular modes in many cases and
that the stabilized EFG method eliminated these modes and achieved a reasonable
rate of convergence.
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A strain smoothing stabilization was introduced to compute nodal strain by a
divergence counterpart of a spatial averaging of strain for nodal integration of
Galerkin (Chen et al., 2001a,b). It was reported that this could avoid evaluat-
ing derivatives of meshless shape functions at nodes and thus eliminate spurious
modes.

A unified stability analysis of meshless methods with Eulerian and Lagrangian
kernels was presented by Belytschko et al. (2000). The stability properties of
EFG and SPH under different quadrature scheme were investigated using Fourier
analysis. Three types of instabilities were identified in one-dimensional problems:
(1) an instability which occurs due to rank deficiency of the discretization of the
divergence and makes the equilibrium equations singular; (2) a tensile instability
which occurs when the stress is tensile and the second derivative of the kernel is
large enough; and (3) an instability under compressive stress which also occurs
in the continuum equations. It was suggested that the best approach to stabilize
particle discretization of solids and fluids is to use Lagrangian kernels with stress
points.

Local Boundary Integral Equation Method and Local
Petrov–Galerkin Method

Zhu (1999) and Atluri and Zhu (2000) proposed two kinds of meshless methods:
meshless local boundary integral equation (MLBIE) method and MLPG method.
Both methods used MLS approximation to interpolate the solution variables,
whereas the MLBIE method used a local boundary integral equation formulation,
and the MLPG employed a local symmetric weak form. Integrals in both methods
were evaluated over regularly shaped domains and their boundaries. There is no
need for a background mesh, and they called the methods truly meshless methods.

Imposition of Essential Boundary Conditions

The meshless approximation does not pass through the nodal parameter values. As
a consequence, the imposition of boundary conditions on the dependent variable
is one of the main difficulties in the implementation of meshless methods. There
have been several different approaches to this problem:

1. Lagrangian multiplier approaches (Aluru, 1999; Babuska and Melenk, 1995;
Belytschko et al., 1994; Duarte and Oden, 1995; Liu et al., 1995a).

2. Modified variational principles (Lu et al., 1994).
3. Penalty methods (Atluri and Zhu, 2000; Kim et al., 2000).
4. Perturbed Lagrangian (Chu and Moran, 1995).
5. Point collocation method (Wagner and Liu, 2000).
6. Coupling to finite element (Attaway et al., 1994; Belytschko et al., 1995;

Johnson, 1994; Liu and Chen, 1995).
7. NEMs (Cueto et al., 2000).
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Among the above-mentioned methods, the Lagrangian multiplier method is the
most accurate one for imposing Dirichlet boundary conditions; however, it is the
most expensive one since the discrete equations for a linear self-adjoint PDE are
no longer positive definite nor banded (Belytschko et al., 1996c). It was suggested
that, since meshless methods have been not as fast as FEMs, it is advantageous to
use meshless method only in those subdomains where their greater versatility is
needed, e.g., problems with moving discontinuities, and use finite element model
for the rest (Belytschko et al., 1996c).

Applications

Large Deformation Analysis

Finite element formulations dealing with geometric and material nonlinearities
have been well developed, and a significant amount of work has been accomplished
in large deformation analysis. However, the underlying structure of the FEM that
originates from their reliance on a mesh is not well suited to the treatment of extreme
mesh distortion. Meshless methods require no explicit mesh in computation and
therefore avoid mesh distortion difficulties in large deformation analysis.

A 3D explicit EFG has been formulated and applied to the Taylor bar, the
classical benchmark for nonlinear elastic–plastic computations, by Belytschko
et al. (1996c). Both normal impact and oblique impact were simulated. Numerical
examples also included fluid sloshing. The accuracy and cost were compared with
explicit FE DYNA3D models. It was shown that the EFG model is more accurate
than the FE model with the same number of degrees of freedom; however, it is more
expensive than FE model. Simulations (Belytschko et al., 1996c) also indicated
that the EFG was free of volumetric locking in incompressible materials.

Liu et al. (1996a) simulated an elastic rubber ring impacting with a rigid wall by
RKPM. Jun et al. (1998) formulated an explicit RKPM and applied it to simulations
of nonlinear elastic materials. Several numerical examples, namely bending of a
rubber beam, necking of a circular bar, and an elastic–plastic aluminum bar im-
pacting with a rigid wall, were presented by Chen et al. (1996) using RKPM. It was
found that, compared to FEM, RKPM could better handle large deformation with-
out any special numerical treatment. Also, there was an absence of volumetric lock-
ing for RKPM in dealing with incompressible materials under large deformation.

Li et al. (2000) simulated shear band formations in an elasto-viscoplastic ma-
terial using reproducing kernel interpolants in a displacement-based explicit for-
mulation. It was shown that the numerical solutions obtained are insensitive to the
orientation of the particle distributions if the local particle distribution is quasi-
uniform. Although mesh-alignment sensitivity could not be completely eliminated,
especially in the case where the particle density is not quasi-uniform, the situations
have been drastically improved compared with those of the FEM. The advantages
of using meshless methods to simulate shear band formation were concluded to be
its ability to avoid volumetric locking, the nonlocal feature of its approximation,
and a favorable environment for hp-adaptive refinement.
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Fracture and Crack Propagation

Meshless methods differ from the FEM in that the discretization is achieved by
a model that consists only of nodes and a description of the internal and external
boundaries and interfaces, like cracks, of the model. The connectivity in terms of
node interaction may vary with time and space. The interaction of the nodes can be
changed by the evolution of the model. Those flexible meshless features consider-
ably simplify the modeling of fracture, free surface, and crack propagation. Mesh-
less methods have much greater advantage in the treatment of evolving moving
discontinuities such as crack growth than the FEM and the finite difference method.

The EFG method has been shown to be well suited to simulate arbitrary dynamic
crack propagation by Belytschko et al. (1996a,b). In those simulations, a constant
crack-tip velocity was assumed. An extension and application to process zone
models by Belytschko et al. (2000) was presented with mixed-mode dynamic
crack propagation in concrete. The method is suited for arbitrary crack growth
with respect to crack speed and direction. The formulation included a model of
the fracture process zone to characterize fracture processes in concrete and other
cement-based materials. The computational results were shown to agree well with
the experimental results. It was reported that the running time for EFG were ap-
proximately five times longer than that of an equivalent FE approach. If viewed in
terms of the costs involved to solve this problem with interactive remeshings by a
user, these computer costs are quite modest.

Ponthot and Belytschko (1998) presented an Arbitrary Lagrangian–Eulerian
(ALE) formulation for EFG method and applied it to the crack propagation prob-
lems. The ALE formulation allows continuous relocation of nodes on the com-
putational domain and keeps the density of nodes dynamically high through the
evolving region where it is needed and at a rather small cost. Schwer et al. (2000)
applied EFG to simulations of concrete failure in dynamic uniaxial tension tests.
A set of EFG simulations were performed with a single crack and with multiple
cracks in an effort to assess the effect on the computed strains of the presence and
location of cracks in the rod. Numerical results and their comparisons to laboratory
measurements provide some insight into the subtleties in the experimental strain
histories and improve the understanding of the dynamic tensile failure of concrete.

Thin-Shell Structure

The numerical simulation of linear/nonlinear thin-shell structures has been a chal-
lenge in applied mechanics. Its applications cover many engineering areas such
as metal forming, vehicle crashworthiness, vessel liability, etc., and has been a
research area for a century. Constructing C1 finite elements for shells of general
shape has been addressed by many researchers and methodologies which circum-
vent the continuity requirement seem to have become predominant in recent years.
From this viewpoint, meshless methods based on MLS approximations are very
attractive for shell structures because C1 continuity requirement can be easily met
by its approximation.
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Krysl and Belytschko applied EFG to the analysis of thin Kirchhoff plates (Krysl
and Belytschko, 1996a) and to the analysis of thin shells (Krysl and Belytschko,
1996b) with C1 approximations. They used background quadrilateral elements
for the purpose of integration and Lagrangian multipliers to enforce the essential
boundary conditions. Both applications were successful, as demonstrated by the
numerical examples. The shell theory used was geometrically exact and could be
applied to deep shells. EFG offers potential to those boundary value problems
that require high continuity in the trial functions, and the Kirchoff shell theory
is one of them. It was found that membrane locking, which is due to a different
approximation order for transverse and membrane displacements, was removed
by using larger domains of influence with the quadratic basis, and the locking was
removed completely by using a quadratic polynomial basis.

Donning and Liu (1998) presented an approach to analyze moderately thin
and thick structures using Mindlin–Reissner theory. They used an unmodified
displacement-based Galerkin method and a uniform discretization. It was reported
that shear and membrane lockings were completely eliminated pointwise at the
interpolant level using cardinal splines, and the method worked well for coarse
discretization.

Instead of using thin-shell theory, Li et al. (2000) performed a large defor-
mation analysis of thin-shell structures with a 3D continuum using a meshless
method. They used window function-based meshless interpolants to directly sim-
ulate large deformation of thin-shell structures. Numerical results have shown that
the approach was viable in 3D direct simulation of thin-shell structures that are
undergoing extremely large deformations. The main advantage of this approach is
its simplicity in both formulation and implementation.

Shape Design Sensitivity Analysis and Optimization

The difficulty of shape design optimization problems arises from the fact that the
geometry of the structure is the design variable. This means that the analysis model
associated with a structure must be changed in a process of optimization. Normally,
it requires several times of remeshing from an initial shape to an optimum shape
with a mesh-based FEM, and it is essential for the finite element meshes to vary
smoothly during the iterations. In addition, highly skewed finite element meshes
can generate difficulties in computation of design sensitivities and lead to instability
of the overall optimization process.

Grindeanu et al. (1998, 1999) performed a design sensitivity analysis of hy-
perelastic structures and a shape design optimization of hyperelastic structures
by using meshless RKPM. In their papers, the Rivilin energy density function
was employed to describe the hyperelastic structural behavior and the Lagrangian
multiplier method was used for imposing the essential boundary conditions. The
numerical results have shown that shape design sensitivity analysis and optimiza-
tion using meshless methods can eliminate mesh distortion problems that occurs in
finite element analysis using ABAQUS. Kim et al. (2000) performed shape design
sensitivity analysis and optimization for a contact problem with friction. It also
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benefits from the fact that solution by the meshless method is much less sensitive
to the mesh distortion. The accuracy of their numerical results has been compared
with the results of FEMs, and good agreement has been obtained.

Micromechanics

Classical continuum physics is based on the fundamental assumption that all bal-
ance laws are valid for every part of the body, however small it may be, and that
the state of the body at any material point is influenced only by the infinitesimal
neighborhood about that point. The first of these assumptions eliminates the long-
range effect of loads on the motion and the evolution of the state of the body, and
the second ignores the effect of long-range interatomic interactions. This implies
a certain intrinsic limitation (long wavelength limit) since the cohesive forces in
real materials have a finite or even infinite range, and nonlocality is an intrinsic
aspect of certain material phenomena.

Generally any problem that requires the solution of integro-differential equa-
tions can be said to be nonlocal in character. Eringen (1966) proposed a nonlocal
elastic theory in the spirit of the well-accepted classical continuum mechanics
with certain modifications. Edelen (1969) and Edelen and Laws (1971) proposed
a nonlocal elastic theory in the tradition of Gibbsian thermodynamics employing a
variational principle. Both approaches turned out to give similar results for elastic
solids (Eringen and Edelen, 1972). Later, further developments in this area are
almost within the framework of those two theories. The strain gradient theories
(Aifantis, 1999; Fleck et al., 1994), which are reported to be able to explain many
size-dependent phenomena and effective in dealing with plastic instabilities at
the mesoscale (dislocation patterning) or macroscale (shear localization), can be
considered as successive approximation to the nonlocal integral theory.

Meshless method is a computational tool. However, meshless approximations
possess intrinsic nonlocal properties that make it easy and natural to incorporate
with nonlocal theory. Moreover, the meshless method is a particle method, which
is closer to the nature of the discrete atomistic model.

Liu et al. (2000) presented a multiscale method. The multiple field based on a
1D gradient plasticity theory with material length scale was proposed to remove
the mesh dependency difficulty in softening/localization problems. Numerical re-
sults have shown that, in conjunction with the strain gradient theory, the multiple
field RKPM could be applied for simulating strain localization problems. Chen
et al. (2000) demonstrated that a length scale could be directly incorporated into
a meshless approximation to regularize problems with material instabilities. Two
types of implicit length scale implementations were incorporated: one in the dis-
placement approximation and the other in the strain approximation. The numerical
results were shown to match with the results of a gradient regularization.

Chen et al. (2001a,b, 2002a,b) developed a meshless method of nonlocal field
theory. They suggested that both the meshless method and the nonlocal field theory
could benefit from this incorporation. The nonlocal kernel in the constitutive theory
brings the influence of strains at distant points x′ to the stresses at x. Meshless
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methods share this essential feature by nonlocally constructing the approximation
in the domain of influence. The incorporation of meshless particle method and
nonlocal constitutive theory takes the effect of long-range material interactions into
consideration and brings the length scales into the picture. Numerical examples in
their paper have proved its effectiveness in small length scale problems through
the stress analyses of a crack problem and a beam problem in which the size effect
is demonstrated.

Hoover and Hoover (1993) suggested a potential for the meshless particle
method to apply to a variety of hybrid atomistic continuum problems in material
science. They described the applications of the particle-based continuum technique
from the closely related standpoint of nonequilibrium molecular dynamics. They
pointed out that the logical and computational structure of SPH closely resembles
that of ordinary molecular dynamics, although additional state variables are re-
quired. The dynamics, the treatment of boundary conditions, and the analysis of
chaotic instability are also similar. They also suggested that the meshless particle
approach should prove particularly valuable in constructing hybrid methods bridg-
ing the gap between the atomistic and the continuum views and in characterizing
the fluctuations that underlie continuum flows.

Problems

1. Check the consistency of MLS approximation.
2. Make a literature search on

(a) Stability analysis of meshless methods.
(b) Treatment of essential boundary conditions.
(c) Applications on microscopic physical problems.



5
Procedures of Meshless Methods

This chapter presents the procedures of meshless methods. A good understanding
of the procedures of meshless methods would enrich our confidence in using and
further developing meshless methods. For this purpose, certain procedures are
described and discussed in detail.

Construction of the Approximation

It has been shown that the kernel methods, moving least-square methods, and
partition of unity methods share many features of the same framework. A discrete
kernel approximation that is consistent must be identical to the related moving
least-square approximation. We are therefore going into some details of the moving
least-square technique to show the procedures of constructing the approximation.

In moving least-square approximation, the approximation û(x) of a scalar-valued
function, u(x), is represented by the inner product of a vector of the polynomial
basis, p(x), and a vector of the coefficients, a(x), as:

û(x) =
m∑

i=1

pi (x)ai (x) ≡ pt (x)a(x) ≡ p(x) · a(x), (5.1)

where m is the number of terms in the polynomial basis; pi (x) (i = 1, 2, 3, . . . , m)
are the monomial basis functions; p′ = pt is the transpose of p; and ai (x) are their
corresponding coefficients that are functions of the spatial coordinates x. Examples
of the commonly used bases are the polynomial bases:

p′(x; 1, 1) = {1, x}, (5.2)

p′(x; 1, 2) = {1, x, y}, (5.3)

p′(x; 2, 2) = {1, x, y, x2, y2, xy}, (5.4)

p′(x; 3, 2) = {1, x, y, x2, y2, xy, x3, y3, x2 y, xy2}, (5.5)

p′(x; 3, 3) = {1, x, y, z, x2, y2, z2, xy, yz, zx, x3, y3, z3, x2 y, xy2, y2z, yz2,

z2x, zx2, xyz}, (5.6)

68
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where p(x; k, n) are the kth order n-dimensional polynomial basis functions of x.
Apparently, the number of coefficients, m, depends on the order of polynomial
and dimensions. In order to determine a(x), a weighted discrete error norm can be
constructed as

J (x) =
n∑

I=1

WI (x)[p(xI ) · a(x) − UI ]2, (5.7)

where UI are the data of u at the I th node, xI is the coordinate of the I th node,
x the coordinate of a generic sampling point, n the number of nodes of which the
domain of influence (support) covers x, the weight function associated with the
I th node is given by

WI (x) = W (x, xI , ρI ), (5.8)

and ρI is the radius of the support of the I th node. Then the error norm is minimized
with respect to a(x), i.e.,

∂ J (x)

∂a(x)
= 0, (5.9)

which leads to the following set of linear equations for a(x)

A(x)a(x) = B(x)U (5.10)

where

Ut = {U1, U2, . . . , Un}, (5.11)

A ≡
n∑

I=1

WI (x)p(xI )pt (xI ), (5.12)

B ≡ {W1(x)p(x1), W2(x)p(x2), . . . , Wn(x)p(xn)}. (5.13)

The vector of coefficients, a(x), can be solved as

a(x) = A−1(x)B(x)U, (5.14)

provided that the matrix A is nonsingular for every sampling point x. Now the
approximation of u(x) can be expressed as

u ∼= û = p′(x)A−1(x)B(x)U ≡ Φ(x)U, (5.15)

which takes the form of an inner product between vectors of shape functions,�,

and nodal values, U, as in the finite element method. The shape function and its
derivative can be obtained as

Φ(x) = p′(x)A−1(x)B(x), (5.16)

Φ,i = p′
,i A

−1B + p′A−1
,i B + p′A−1B,i , (5.17)

where A−1
,i = −A−1A,i A−1.

It should be noted that the approximation in Eq. (5.15) is no longer a polynomial.
However, if u(x) is a polynomial, it will be reproduced exactly by û(x). If the weight
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function WI (x) and its first kth derivatives are continuous, then the shape function
Φ(x) and its first kth derivatives will be continuous.

The standard least-squares interpolant is obtained if the weight function is cho-
sen to be constant over the entire domain. However, all the unknowns are then fully
coupled. By choosing the weight function to have a large domain of influence, the
approximation behaves like a polynomial of higher order than p(x). Limiting the
weight function to be nonzero over a small subdomain results in a sparse system
of equations.

The standard finite element formulation will be obtained if the weight function
is chosen to be piecewise constant over each subdomain or element.

Choice of Weight Function

The weight functions WI (x) play an important rule in the performance of the
meshless methods. They should be constructed so that they are positive and that a
unique solution a(x) is guaranteed. They are monotonic decreasing functions with
respect to the distance from x to x I .

The commonly used weight functions are functions of the distance between two
points, i.e.,

WI (x) = W (‖x − xI ‖). (5.18)

We have weight functions of the exponential, cubic spline, and quartic spline, i.e.,

Exponential:

W (sI ) =
{

e−(sI /α)2, for sI ≤ 1
0, for sI > 1

(5.19)

or

W (sI ) =
⎧⎨
⎩

e−(sI /c)2 − e−(ρI /c)2

1 − e−(ρI /c)2 , for sI ≤ ρI

0, for sI > ρI

(5.20)

Cubic spline:

W (sI ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

3
− 4s2

I + 4s3
I , for sI ≤ 1

2
4

3
− 4sI + 4s2

I − 4

3
s3

I , for
1

2
< sI ≤ 1

0, for sI > 1

(5.21)

Quartic spline:

W (sI ) =
{

1 − 6s2
I + 8s3

I − 3s4
I , for sI ≤ 1

0, for sI > 1
(5.22)
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Smooth particle hydrodynamics (SPH) uses a spline weight function:

W (sI ) = 2

3h

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 3

2
s2

I + 3

4
s3

I , for sI ≤ 1

1

4
[2 − sI ]3, for 1 ≤ sI ≤ 2

0, for sI > 2

(5.23)

where α and c are numerical parameters that can be used to adjust the weights and

sI ≡ RI

ρI
, RI ≡ ‖rI‖, rI ≡ x − xI . (5.24)

It is noticed that W (sI ) → δ(sI ) as ρI → 0, ρI is the radius of the support of the
I th node.

The choice of weight function is more or less arbitrary as long as the weight
function is positive and continuous together with its derivatives up to the desired
order. The exponential form in Eq. (5.19) is not zero at sI = 1, the parameter
α = 0.4 results in W (1) ∼= 0.002, but it performs well in SPH. And it is called
the “golden rule of SPH” (Monaghan, 1992). Generally, the exponential functions
are computationally more demanding, but they may be less sensitive to the size of
the support. The common choice in element-free Galerkin methods (EFG) is the
quartic spline, i.e.,

W (sI ) =
{

1 − 6s2
I + 8s3

I − 3s4
I , for sI ≤ 1

0, for sI > 1
(5.25)

Its derivative is

∂WI (x)

∂x
= dW (sI )

dsI

∂sI

∂x
=

{
(−12sI + 24s2

I − 12s3
I )rI /ρI RI , if sI ≤ 1

0, if sI > 1
(5.26)

It satisfies

W (0) = 1, W (1) = 0

dW

dsI

∣∣∣∣
sI =0

= 0,
dW

dsI

∣∣∣∣
sI =1

= 0,
d2W

ds2
I

∣∣∣∣
sI =1

= 0
(5.27)

These conditions provide continuous first- and second-order derivatives to the
weight function and the moving least-square approximations.

The support, or the domain of influence, of the weight function associated with
node I is selected to satisfy the following conditions:

1. The support, as reflected by the radius, ρI , should be large enough to provide
a sufficient number of neighbors at every sample point (integration point) to

ensure the invertability of matrix A ≡
n∑

I=1
WI (x)p(xI )p′(xI ).

2. The support should be large enough to ensure that information is passed into
four quadrants at every sample point, except points near the boundary, so that
a given interior sample point has neighbors on all sides.
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3. The support should be small enough to provide adequate local character to the
least-square approximation.

4. The support should be not too large for the sake of computational cost.

Formulation of Meshless Analysis

The strong form of continuum mechanics is expressed as

tij,i + ρ f j − ρü j = 0 in �, (5.28)

ui = ūi on �ui , �ui (5.29)

ti ≡ tki nk = t̄i on �ti , �ti (5.30)

where the union of the essential boundary, �ui , and the natural boundary, �ti , is the
enclosing surface of the domain �, i.e., �ui

⋃
�ti = ∂�. If there is no ambiguity,

we use �u ≡ ⋃
i �ui and �t ≡ ⋃

i �ti for abbreviation.
The constrained variational principle yields∫

�

ti jδei j dV +
∫

�

ρüiδui dV −
∫

�t

t̄iδui dS −
∫

�

ρ fiδui dV

+
∫

�u

λiδui dS +
∫

�u

δλi (ui − ūi ) dS = 0, (5.31)

where λ is the vector of Lagrange multiplies introduced here to enforce the essential
boundary conditions, Eq. (5.29), on �u .

Let the approximated displacement field, ûi (x), be expressed as

ui
∼= ûi = �iαUα. (5.32)

Then the strain field, e(x), can be obtained as

ei j
∼= êi j = 1

2
(�iα, j + � jα,i )Uα = Bi jαUα. (5.33)

The detailed expressions for the shape function, Φ, and its derivative, �,i , for
moving least-square approximation have been obtained previously. For other kinds
of approximations, the expressions will be different, but the procedure remains the
same.

Also, approximate λ on �u in terms of nodal value � as

λi = ψiβ�β, β = 1, 2, 3, . . . , l, (5.34)

where l is the number of nodes whose weight functions are nonzero on the essential
boundary. We then have

δλi = ψiβδ�β, (5.35)

δui = ΦiαδUα, (5.36)

δei j = 1

2
(Φiα, j + Φ jα,i )δUα = Bi jαδUα. (5.37)
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One of the differences between the finite element methods and the meshless meth-
ods is that Eq. (5.15) is an approximation rather than an interpolation, i.e.,

Φ(xI )U �= UI , (5.38)

and therefore the essential boundary conditions, Eq. (5.29), should be read as

ΦiαUα = ūi on �u, (5.39)

which are the constraints rather than the specifications on U.
For viscoelastic solid, the constitutive relation is of the form

ti j = Ai jklekl + ai jkl ėkl . (5.40)

Equation (5.31) then becomes

δ�̄ =
∫

�

{Ai jkl BklβUβ Bi jαδUα + ai jkl BklβU̇β Bi jαδUα + ρ�iβÜβ�iαδUα) dV

−
∫

�t

t̄i�iαδUα dS −
∫

�

ρ fi�iαδUα dV +
∫

�u

ψiγ �γ δUα dS

+
∫

�u

ψiγ δ�γ (�iαUα − ūi ) dS= 0. (5.41)

This can be rewritten as

δUα{MαβÜβ + CαβU̇β + KαβUβ − Fα + Gαγ �γ } + δ�γ {Gαγ Uα − fγ } = 0,

(5.42)

where

Mαβ =
∫

�

ρ�iβ�iα d� = Mβα, (5.43)

Cαβ =
∫

�

ai jkl(x)Bklβ Bi jα(x) d�(x), (5.44)

Kαβ =
∫

�

Ai jkl Bi jα(x)Bklβ(x) d�(x), (5.45)

Gαγ =
∫

�u

�iαψiγ ds, (5.46)

Fα =
∫

�

ρ f j� jα d� +
∫

�t

t̄ j� jα dS, (5.47)

fγ =
∫

�u

ψiγ ūi dS. (5.48)

Equation (5.42) should hold for any arbitrary δU and δ�. The governing equations
in matrix form are thus obtained:

MÜ + CU̇ + KU + GΛ = F, (5.49)

G′U = f. (5.50)
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For static problems, the governing equations are reduced to∣∣∣∣K G
Gt 0

∣∣∣∣
∣∣∣∣U
Λ

∣∣∣∣ =
∣∣∣∣F
f

∣∣∣∣ . (5.51)

For dynamic problems, one needs to solve the following system of linear equations
to get K̄′ and Ḡ′ first (Chen et al., 2002)∣∣∣∣Kt G

Gt 0

∣∣∣∣
∣∣∣∣ K̄t

Ḡt

∣∣∣∣ =
∣∣∣∣ I
0

∣∣∣∣ . (5.52)

Then the governing equations for the displacements become

K̄MÜ + K̄CU̇ + U = K̄F + Ḡf. (5.53)

It can be verified both analytically and numerically that the displacement field so
obtained satisfies Eq. (5.29), the essential boundary conditions.

Evaluation of the Integral

The major dilemma in meshless methods revolves around how to evaluate the
integrals in the weak form, in other words, how to obtain the matrices in Eqs.
(5.43)–(5.48). Several approaches have been proposed and studied and can be
summarized as follows.

Nodal Integration

Partial integration was achieved by evaluating the integrals of the weak form only
at the nodes (Beissel and Belytschko, 1996). The integration is evaluated by∫

�

f (x) dV =
N∑

I=1

f (xI )�VI . (5.54)

Therefore, no background mesh is needed. It is a very fast approach. However, it
would result in a spatial instability, and a stabilization procedure is then needed.
It was suggested by Belytschko et al. (2000) that the best approach to stabilize
particle discretization of solids and fluids is to use Lagrangian kernels with stress
points.

Background Mesh

A regular array of domain in the background is used for quadrature as shown in
Fig. 5.1. It is also called cell or octree quadrature method.

Another way is to use a finite element mesh, as shown in Fig. 5.2, as the back-
ground mesh. The procedure is then similar to that in finite element method, i.e.,
the integral is performed by Gauss quadrature.
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Background cell 

Domain in consideration

FIGURE 5.1. Cell quadrature.

Wigner–Seitz Cell

This approach is adopted in lattice dynamics. In lattice dynamics, the cell associated
with the lattice point can be obtained by forming a Wigner–Seitz primitive cell.
The procedures to obtain a Wigner–Seitz cell are (cf. Fig. 5.3):

FIGURE 5.2. Finite element mesh.

(a) Uniformly distributed points

(b) Non-uniformly distributed point

FIGURE 5.3. Wigner–Seitz cell: (a)
uniformly distributed points, (b)
nonuniformly distributed points.
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1. Draw lines to connect a given lattice point to all nearby lattice points.
2. Normal to each of these lines, at the midpoint, draw new line or plane.

The smallest volume enclosed in this way is the Wigner–Seitz cell. These cells then
fill the entire domain. The area or the volume associated with the point can be de-
termined. This approach eliminates the need of a background mesh and provides an
exact solution to the area or volume, �VI , of the I th node in meshless SPH or EFG.

Treatment of Discontinuity

Many engineering problems involve multiconnected domains and various kinds
of discontinuities. For example, in elastostatics, for problems involving two mate-
rials, the coefficients in the partial differential equations are discontinuous across
the interface between the materials. This results in solutions with discontinuous
derivatives at the interface. When the approximation is a smooth function, such
as the moving least-square approximation, the discontinuity in the derivative in-
troduces spurious oscillations. Similarly, when a crack is modeled in a body, the
dependent variable, i.e., the displacement must be discontinuous across the crack.

The introduction of discontinuity also requires special treatment in meshless
methods. Here, we introduce two techniques (cf. Belytschko et al., 1996).

Visibility Criterion

This is the simplest approach to introduce a discontinuity into meshless approxi-
mation by viewing the boundary of the body and any interior line of discontinuity
as opaque. When the domain of influence for the weight function is constructed,
the line from a point to a node I is imagined to be a ray of light. If the ray en-
counters an opaque surface, such as the boundary of body or a crack surface, it
is terminated and the point is not included in the domain of influence. Figure 5.4
shows the union of the domain of influence of node I near the crack tip and the
domain that is excluded due to the crack surface and the indicated “ray of light.”
Although the approximation is not continuous across these lines of discontinuity,
it has been shown that the resulting approximations still leads to convergence.

Domain of influence
for node I

The ray of light

• •

•
Crack surface •

•
•

•

•

•

•Node I

Area excluded from
the domain of influence 

FIGURE 5.4. Domain of influence of node I adjacent to a crack tip by visibility criterion.
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(a) (b)

•

(x)s0

(x)s2

1sLine of 
discontinuity

x

x

•Line of 
discontinuity

I

xc

FIGURE 5.5. Domain of influence of node I near the tip of discontinuity by diffraction
method: (a) scheme for the diffraction method, (b) domain of influence of the weight
function near the tip of discontinuity.

Diffraction Method

This method is motivated by the way light diffracts around a sharp corner. The
essence of the diffraction method is to treat the line of discontinuity as opaque but
to evaluate the length of the ray s by a path that passes around the corner of the
discontinuity, as shown in Fig. 5.5a. The weight parameter s is computed by

s(x) =
(

s1 + s2(x)

s0(x)

)λ

s0(x), (5.55)

where

s0(x) = ‖x − x I ‖, s1 = ‖xC − xI‖, s2(x) = ‖x − xC‖. (5.56)

As a consequence, the domain of influence is determined by weight function W (sI ),
which, as can be seen in Fig. 5.5b, includes the point on the other side of the line
of discontinuity. The weight function and shape function are continuous within
the domain but are discontinuous across the line of discontinuity.

Treatment of Mirror Symmetry

The treatment of mirror symmetry in meshless method is very different from
that in finite element method. It needs special and careful treatment. It will lead
to erroneous results otherwise. To make this point, a specimen having mirror
symmetry with respect to the x–z plane is illustrated in Fig. 5.6. It is seen that there
is a sampling point above the mirror plane, marked by its coordinate x, surrounded
by many supportive nodes, among which those below the mirror plane are labeled
with {1′, 2′, . . . , m ′}, and correspondingly, their mirror images are labeled with
{1, 2, . . . , m}. The displacements of the sampling point can now be expressed as

ui (x) =
n∑

I=1

Φ(x)ui (I ), (5.57)
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•
• •

•

•
• •

•
° X
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1
2
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m

1'

2' 3'
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x

FIGURE 5.6. Illustration of mirror symmetry.

where ui (I ) is the nodal value of ui at the Ith node. Because of mirror symmetry,
we have

ρJ ′ = ρJ , xJ ′ = xJ , z J ′ = z J , yJ ′ = −yJ , (5.58)

ux (J ′) = ux (J ), uz(J ′) = uz(J ), uy(J ′) = −uy(J ), (5.59)

where J = 1, 2, . . . , m. Now, Eq. (5.57) can be rewritten as

ux (x) =
m∑

J=1

{ΦJ + ΦJ ′ }ux (J ) + other terms, (5.60)

uy(x) =
m∑

J=1

{ΦJ − ΦJ ′ }uy(J ) + other terms, (5.61)

uz(x) =
m∑

J=1

{ΦJ + ΦJ ′ }uz(J ) + other terms, (5.62)

where “other terms” means the contribution from other supportive nodes above
the mirror plane whose mirror images do not support the sampling point x. On the
contrary, the mirror symmetry with respect to x–z plane in finite element method
is treated by simply setting uy(x) = 0 for all nodes on the x–z plane.

H- and P-Refinements

The essential characteristics of the meshless methods are that there is no need for
a highly structured mesh as required in the finite element methods. Obviously, the
major advantages of meshless methods must be closely related to those character-
istics.

In finite element methods, to enhance the accuracy in a critical region, e.g.,
around the crack tip, one can use the techniques of h-refinement and/or p-
refinement. The h-refinement calls for a finer mesh in that critical region. The
p-refinement needs a higher order polynomial, which is corresponding to higher
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x

y

qL qL 

yyt q= −

0yyt =

FIGURE 5.7. Simply supported beam subject to uniform loading at the top surface.

order elements, e.g., the four-node element has to be upgraded to eight-node ele-
ment in a plane problem. In either case, the finite element mesh has to be regenerated
with tremendous cost.

On the other hand, the h-refinement in meshless methods can be achieved by
simply sprinkling arbitrary number of nodes in the critical region. This means that
only the number and the locations of the added nodes need to be specified. Even
simpler for the p-refinement, only the order of polynomial needs to be modified.
The following is an example to show the improvement of the accuracy upon h-
and p-refinements.

Consider an elastic problem of a beam, with length 2L (from x = −L to x = L)
and height 2c (from y = −c to y = c), simply supported at the two ends and
subjected to a uniformly distributed load tyy = −q at the top surface (y = c) as
shown in Fig. 5.7. The analytical elastic solution of the beam in the case of plane
stress can be expressed as:

txx = −0.5q[(L2 − x2)y + 2y3/3 − 0.4c2 y]/I, (5.63)

tyy = 0.5q[y3/3 − c2 y − 2c3/3]/I, (5.64)

txy = −0.5q(y2 − c2)x/I, (5.65)

where I = 2c3/3 is the moment of inertia of the beam. This solution indicates the
following boundary conditions:

At y = c, txy = 0, tyy = −q. (5.66)

At y = −c, txy = tyy = 0. (5.67)

At x = L and x = −L ,

Fx =
∫ y=c

y=−c
txx dy = 0, (5.68)

Fy(x = L) ≡
∫ y=c

y=−c
tyx dy = q L

Fy(x = −L) ≡
∫ y=c

y=−c
−tyx dy = q L (5.69)
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TABLE 5.1. Effect of hp-refinements.

Case Error Remarks

1 2.079 Second-order polynomial
2 0.427 Second-order polynomial with h-refinement
3 0.152 Third-order polynomial
4 0.077 Third-order polynomial with h-refinement

Define the differences between the exact analytical stresses and the meshless
stresses as

�ti j = ti j (meshless) − ti j (analytical), (i, j = 1, 2); (5.70)

then the error, E, is defined as the dimensionless Euclidean norm of the differences
at the sampling points as follows:

E ≡
[

m∑
i=1

(�t2
xx + �t2

yy + �t2
xy)i

]1/2

/q/3m, (5.71)

where m is the number of sampling points in question. For this typical beam
problem, the errors for four cases are listed in Table 5.1 in which the effectiveness
of hp-refinements is demonstrated.

Meshless methods possess a favorable environment for h- and p-refinements.
Based on our working experience with the meshless method, we now summarize
the general characteristics of four refinement approaches as follows:

1. P-refinement: raise the order of polynomials. In this approach, there is no need
to increase the number of nodes. However, in many situations, we need to
enlarge the size of support of certain nodes to ensure the invertability of the A
matrix (cf. Eq. (5.14)).

FIGURE 5.8. P-refinement.

2. H-refinement: simply add nodes. In this approach we simply add nodes, but
the size of the support (radius of influence) of each existing and newly added
node is not changed. This method can improve the accuracy, but the effect may
become saturated after too many nodes are added.

FIGURE 5.9. H-refinement without change of the size of support.
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3. H-refinement: add more nodes and also decrease the size of support. In this
approach, the size of support of all nodes is reduced. It would work to improve
the accuracy in the region where nodes are added. Because the increase of the
number of nodes is proportional to the decrease of the size of support, this
approach may be costly.

FIGURE 5.10. H-refinement with the reduction of size of support.

4. H-refinements: add nodes and the newly added nodes have support with smaller
size. In this approach, the size of support of those newly added nodes is smaller
than that of the previously existing nodes. It surely works to improve the ac-
curacy in the region where nodes are added. It seems to be the best way of
h-refinement to improve the accuracy with a minimal cost.

FIGURE 5.11. H-refinement with change of the size of support of
newly added nodes.

In Figs. 5.8–5.11, the red dot is a newly added node. It would be worthwhile
to perform a systematic study on the accuracy and cost of a certain benchmark
problem that has exact and analytical solution using these four approaches.

This chapter has presented general procedures of meshless methods, including
the construction of the approximation, choices of weight function, formulation of
meshless analysis, evaluation of the integrals, treatment of discontinuity, treatment
of mirror symmetry, and H- and P-refinements. Note that meshless method is still
in its early stage of development. Further advances of these procedures and many
other aspects of meshless methods will deepen our understanding of meshless
methods. A collaboration between engineers and mathematicians can be of great
benefit.

Problems

1. For two-dimensional problems with second-order and third-order polynomial
bases, at least how many sampling points do you need to ensure the invertability
of matrix A?

2. What are the differences between finite element method and meshless method
in the treatment of boundary conditions, discontinuity, refinements, and sym-
metry? Why?

3. What is the major cost in meshless computation? Why?
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4. Recall that the constitutive equation for viscoelastic solid as

ti j = Ai jklekl + ai jkl ėkl

If Ai jkl = Akli j and ai jkl = akli j (cf. Chapter 2), show that the stiffness matrix
K, Eq. (5.45), and the damping matrix C, Eq. (5.44), are symmetric.

5. Prove that the stresses, Eqs. (5.63)–(5.65), of the beam subjected to uniform
loading as shown in Fig. 5.7 satisfy the equilibrium equations

∂txx

∂x
+ ∂tyx

∂y
= 0

∂txy

∂x
+ ∂tyy

∂y
= 0

6. From Eq. (5.52), it is seen that

G′K̄′ = 0 ⇒ K̄G = 0

K′K̄′ + GḠ′ = I ⇒ K̄K + ḠG′ = I

Multiply Eq. (5.49) by K̄, it results

K̄{MÜ + CU̇ + KU + GΛ} = K̄F

Prove that the above equation leads to

K̄MÜ + K̄CU̇ + U = K̄F + Ḡf

Also prove that the essential boundary conditions are identically satisfied.



6
Meshless Analysis of Elastic Problems

The mechanical properties of materials include elastic, anelastic, or inelastic be-
havior. A solid is said to be elastic when any deformations disappear “quickly”
once the external forces are removed (i.e., the solid returns to its initial state). In
the elastic region, the deformations are directly proportional to the external forces,
i.e., the mechanical strain tensor is a linear function of stress tensor. The anelastic
behavior of materials is a type of time-dependent mechanical behavior in which the
applied stresses and the resulting strain are not uniquely related to each other due
to relaxation effects. Other types of response, including permanent deformations,
plasticity, viscoelasticity, etc., correspond to inelastic behavior.

In this chapter, we consider the meshless analysis of elastic problems, for both
static and dynamic cases. A detailed analysis of crack propagation problem is also
included. A meshless computer program for elastostatics and elastodynamics is
posted on this book’s page at www.springeronline.com.

Background Theory for Applications of Elastostatics

Plane Stress Problem

Consider some typical plane stress problems shown in Fig. 6.1. Typically, a thin
plate is subjected to loads applied in the xy plane that is the plane of the structure.
The thickness of the plate is small compared with the dimensions in the xy plane,
so the stresses are assumed to be constant through the thickness of the plane and
tzz, tzx , and tzy are ignored. Thus, the displacements are expressed as

u = {u, v}t , (6.1)

where u and v are the in-plane displacements in the x and y directions, respectively.
The strain components expressed in vector notation as

ε = [εx , εy, γxy]t , (6.2)

where, for linear small strain theory, the normal strains are given as

εx = ∂u

∂x
and εy = ∂v

∂y
, (6.3)

83
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(a) (b)

x, u

y, v

FIGURE 6.1. Plane stress problem. (a) Circular disc under point loads. (b) Thin plate with
a hole under tension.

and the shear strain is given as

γxy = ∂u

∂y
+ ∂v

∂x
. (6.4)

The linear stress–strain relationships can be written as

σ = Dε, (6.5)

where

σ ≡ [txx , tyy, txy]t , (6.6)

and for isotropic material

D = E

(1 − υ2)

⎡
⎣1 υ 0

υ 1 0
0 0 (1 − υ)/2

⎤
⎦ . (6.7)

E and υ are the Young’s modulus and Poisson’s ratio, respectively.
The body forces f can be written as

f = { fx , fy}t , (6.8)

in which fx and fy are the body forces per unit mass in the x and y directions,
respectively.

The nonessential boundary conditions may be expressed in terms of surface
tractions t̄:

t̄ = {t̄x , t̄y}t , (6.9)

in which t̄x and t̄y are the surface tractions per unit length.

Plane Strain Problem

For plane strain problems, the thickness dimension normal to the xy plane is large
compared with the typical dimensions in the xy plane and the body is subjected
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x, u

y, v

FIGURE 6.2. Plane strain prob-
lem: long cylinder under internal
pressure.

to loads in the xy plane only. It may be assumed that the strains in the z direction
are negligible and that the in-plane displacements u and v are independent of z. A
typical plane strain problem is illustrated in Fig. 6.2.

We then have the displacement vector as

u = {u, v}t , (6.10)

the in-plane strain

ε = [εx , εy, γxy]t , (6.11)

and the in-plane stress

σ ≡ [txx , tyy, txy]t , (6.12)

in which u and v are the in-plane displacements in the x and y directions, respec-
tively. The stress–strain relationships have the same form as that in the plane stress
problem, i.e.,

σ = Dε. (6.13)

For linear isotropic elastic materials, we have D as

D = E

(1 + υ)(1 − 2υ)

⎡
⎣ (1 − υ) υ 0

υ (1 − υ) 0
0 0 (1 − 2υ)/2

⎤
⎦ . (6.14)

Note that the stress normal to the xy plane is nonzero and may be evaluated as

tzz = υ(txx + tyy). (6.15)

The body forces f and surface tractions t̄ have the same form as those for plane
stress problem.

Axisymmetric Solids

For a three-dimensional (3D) solid which is symmetrical about its centerline axis
(which coincides with the z axis) and subjected to loads that are symmetrical
about this axis, the behavior is independent of the circumferential coordinate θ .
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A flat surface 

A cylinder with initial
velocity v

z

r

FIGURE 6.3. A typical
axisymmetric problem: a
cylinder impacts against
a fixed flat surface with
initial velocity v.

A cylinder under impression or impact with a flat surface and (cf. Fig. 6.3) a
cylindrical bar under axisymmetric loading are typical axisymmetric problems.
For axisymmetric problems, the displacements can be expressed as

u = {u, w}t , (6.16)

where u and w are the displacements in the r and z directions, respectively.
The nonzero strains are given as

ε = [εr , εθ , εz, γr z]
t , (6.17)

where, for small displacements,

εr = ∂u

∂r
, (6.18)

εθ = u

r
, (6.19)

εz = ∂w

∂z
, (6.20)

γr z = ∂u

∂z
+ ∂w

∂r
. (6.21)

The stress–strain relationships still has the same form as in two-dimensional (2D)
linear elasticity

σ = Dε, (6.22)

where σ ≡ {trr , tθθ , tzz, tr z}t in which trr , tθθ , and tzz are the normal stresses in the
r, θ , and z directions, respectively, and tr z is the shear stress in the rz plane, and
for isotropic material,

D = E

(1 + υ)(1 − 2υ)

⎡
⎢⎢⎣

(1 − υ) υ υ 0
υ (1 − υ) υ 0
υ υ (1 − υ) 0
0 0 0 (1 − 2υ)/2

⎤
⎥⎥⎦ . (6.23)
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The body forces are

f = { fr , fz}t , (6.24)

and the boundary surface tractions are

t̄ = {t̄r , t̄z}t . (6.25)

Three-Dimensional Stress Analysis

The displacements in 3D problem can be expressed as

u = {u, v, w}t , (6.26)

where u, v, and w are the displacements in the global x, y, and z directions,
respectively.

The strain components are

ε = {εxx , εyy, εzz, γyz, γzx , γxy}t , (6.27)

corresponding to the stresses

σ = {txx , tyy, tzz, txy, tr z, tzx }t , (6.28)

in which txx , tyy, and tzz are the normal stresses and txy, tyz, and tzx are the shear
stresses, and for small displacements, the normal strains are given as

εxx = ∂u

∂x
, εyy = ∂v

∂y
, and εzz = ∂w

∂z
, (6.29)

and the shear strains are given as

rxy = ∂u

∂y
+ ∂v

∂x
, ryz = ∂v

∂z
+ ∂w

∂y
, and rzx = ∂w

∂x
+ ∂u

∂z
. (6.30)

For isotropic material, the stiffness matrix in the stress–strain relationship is given
as

D = α1

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α2 α2 0 0 0
α2 1 α2 0 0 0
α2 α2 1 0 0 0
0 0 0 α3 0 0
0 0 0 0 α3 0
0 0 0 0 0 α3

⎤
⎥⎥⎥⎥⎥⎥⎦ , (6.31)

where

α1 = E(1 − υ)

(1 + υ)(1 − 2υ)
, α2 = υ

1 − υ
, and α3 = (1 − 2υ)

2(1 − υ)
. (6.32)

The body forces f are

f = { fx , fy, fz}t , (6.33)
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and the surface tractions t̄ are

t̄ = {t̄x , t̄y, t̄z}t . (6.34)

Meshless Analysis of Elastostatic Problems

Meshless Formulation of Elastostatics

The meshless formulation for elastostatic problem has been obtained in Chapter 5
as ∣∣∣∣ K G

Gt 0

∣∣∣∣
∣∣∣∣ U
Λ

∣∣∣∣ =
∣∣∣∣F

f

∣∣∣∣ , (6.35)

where K is the stiffness matrix, U is the displacement vector, and Λ is the vector
of Lagrangian multipliers, and

Kαβ =
∫

�

Ai jkl Bi jα(x)Bklβ(x) dV , (6.36)

Gαβ =
∫

�u

�iαψiβ dS, (6.37)

Fα =
∫

�

ρ fi�iα dV +
∫

�t

t̄i�iα dS, (6.38)

fα =
∫

�u

ūiψiα dS. (6.39)

After evaluation of those matrices by numerical integrations, the step left is to
solve the linear algebra equations in Eq. (6.35). Essentially, there are two different
classes of methods for the solutions of Eq. (6.35): direct solution techniques and
iterative solution methods. Direct technique can be applied to almost any set of
simultaneous linear equations, while for large systems iterative method can be
much more effective.

Gauss Elimination

The most effective direct solution technique currently used is basically the appli-
cation of Gauss elimination. We begin this subject by an example

2u + v + w = 5,

4u − 6v = −2,

−2u + 7v + 2w = 9.

(6.40)

The method to find the unknown value of u, v, and w by Gauss elimination starts
by subtracting multiples of the first equation from the others, so as to eliminate u
from the last two equations. This results an equivalent system of equations

2u + v + w = 5,

−8v − 2w = −12, (6.41)

8v + 3w = 14.
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We then subtract the second equation from the third so as to eliminate v from the
third equation; this gives

2u + v + w = 5,

−8v − 2w = −12, (6.42)

w = 2.

From the last equation, we find w = 2. Substituting into the second equation, we
obtain v = 1. Then, the first equation gives u = 1.

This process involves forward elimination and back substitution. Forward elim-
ination produces the pivots 2, −8, and 1 as in Eq. (6.42). It subtracts multipliers
of each row from the rows beneath and reaches the “triangular” system. Back
substitution, from bottom to top, substitutes each newly computed value into the
equation above, and solve the system. For a system of n equations, the total number
of operations for the forward elimination is

n∑
1

(k2 − k) = (12 + 22 + · · · + n2) − (1 + 2 + · · · + n) = n3 − n

3
, (6.43)

and for the back substitution, the number of operations is

1 + 2 + · · · + n = n(n + 1)

2
. (6.44)

Equation (6.40) can be written in the matrix form as

KU = R. (6.45)

The whole process can then split into two steps. The first step is the triangular
factorization. It gives

K = LS, (6.46)

R = LC, (6.47)

where L is lower triangular matrix, with 1s on the diagonal and the multipliers
li j (taken from elimination) below the diagonal. S is the upper triangular matrix,
which appears after forward elimination and before back substitution. The second
step is then to solve

SU = C. (6.48)

Since S is upper triangular matrix and the diagonal elements are the pivots in the
Gauss elimination, S can be further written as S = DS̃, where D is a diagonal matrix
storing the diagonal elements of S, i.e., dii = Sii . For the classical continuum
mechanics, when the K matrix is symmetric and the decomposition is unique, we
obtain S̃ = Lt . We thus have

DLt U = C, (6.49)

and the U is obtained by a back substitution,

Lt U = D−1C. (6.50)
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Since D is a diagonal matrix, there is no need of performing matrix inversion to
obtain D−1. The elements of D−1 are the inverse of elements of D.

When considering very large system, a direct method of solution can require a
large amount of storage and computer time. The fact that considerable storage can
be saved in an iterative solution has prompted a large amount of research effort to
develop effective iterative schemes, such as Gauss–Seidel iteration method (Varga,
1962) and conjugate gradient method (Hestenes and Stiefel, 1952).

Procedures of Meshless Analysis of Elastic Static Problems

The step-by-step procedures of meshless analysis of elastostatics are given as
follows.

Step 1. Read input data. Readers are referred to the user’s manual (Appendix D).
Step 2. Generate shape functions Φ and ψ and their derivatives B at all sampling

points and at points on the boundary to specify the natural and essential boundary
conditions (cf. Chapter 5).

Step 3. Form matrices K and G and forcing terms F and f (cf. Eqs. (5.45)–(5.48),
(6.35)).

Step 4. Solve the governing equation (6.35) by Gauss elimination method to obtain
the displacements U of all nodes and the Lagrange multipliers Λ.

Step 5. The displacement field u and the strain field e for all sampling points
are obtained according to Eqs. (5.32) and (5.33), respectively. The stresses are
calculated according to Eqs. (6.5) and (6.7) and (6.13)–(6.15) for plane stress
case and plane strain case, respectively.

Numerical Examples of Meshless Analysis
of Elastic Static Problems

Plate with a Hole

The analytical solution of an infinite plate with a hole of radius a subjected to
uniform tensile stress at infinity is given by

txx = Tx

{
1 − a2

r2

[
3

2
cos(2θ ) + cos(4θ )

]
+ 3a4

2r4
cos(4θ )

}
, (6.51)

tyy = −Tx

{
a2

r2

[
1

2
cos(2θ ) − cos(4θ )

]
+ 3a4

2r4
cos(4θ )

}
, (6.52)

txy = −Tx

{
a2

r2

[
1

2
sin(2θ ) − sin(4θ )

]
− 3a4

2r4
sin(4θ)

}
, (6.53)
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ur = Tx

4µ

{
r

[
κ − 1

2
+ cos(2θ )

]
+ a2

r
[1 + (1 + κ) cos(2θ )] − a4

r3
cos(2θ )

}
,

(6.54)

uθ = Tx

4µ

[
(1 − κ)

a2

r
− r − a4

r3

]
sin (2θ ), (6.55)

where µ is the shear modulus defined as

µ ≡ E

2(1 + υ)
, (6.56)

and for plane strain,

κ = 3 − 4υ, (6.57)

for plane stress,

κ = (3 − υ)

(1 + υ)
. (6.58)

In this work, we specify the natural boundary conditions (stress free) around the
hole (r = a) and the essential boundary conditions at r = 5a. 2400 nodes, as shown
in Fig. 6.4, are employed. The analytical and numerical results for Txx around the
hole are shown in Fig. 6.5. It has been observed that the meshless solution and the
analytical solution have a good agreement.

Plate with a Line Crack

An infinite plate with a line crack (along x-axis with crack size = 2a) as shown in
Fig. 6.6 is subjected to tensile stress t̄yy = σyy = σ where infinity is considered.

FIGURE 6.4. Meshless discretization
of the plate with a hole.
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The exact analytical solution is given by Sneddon and Lowengrub (1969) as

txx = K1√
arr2

[
r1 cos

(
θ1 − θ + θ2

2

)
− r1a2

rr2
sin θ1 sin

3

2
(θ + θ2)

]

+ K2√
arr2

[
2r1 sin

(
θ1 − θ + θ2

2

)
− r1a2

rr2
sin θ1 cos

3

2
(θ + θ2)

]
+ χ − σ, (6.59)

y

•
(x, y)

2θ 1θ θ

1r2r r

τσσσ == xyyy ,

τσσσ == xyyy ,

τσ
χσ

=
=

xy

xx τσ
χσ

=
=

xy

xx

x
x = –a x = a

FIGURE 6.6. An infinite plate with a line crack.
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tyy = K1√
arr2

[
r1 cos

(
θ1 − θ + θ2

2

)
+ r1a2

rr2
sin θ1 sin

3

2
(θ + θ2)

]

+ K2√
arr2

r1a2

rr2
sin θ1 cos

3

2
(θ + θ2), (6.60)

txy = K1√
arr2

r1a2

rr2
sin θ1 cos

3

2
(θ + θ2)

+ K2√
arr2

[
r1 cos

(
θ1 − θ + θ2

2

)
− r1a2

rr2
sin θ1 sin

3

2
(θ + θ2)

]
, (6.61)

4µux = K1√
arr2

[
(κ − 1)rr2 cos

θ + θ2

2
− 2r2

1 sin θ1 sin

(
θ1 − θ + θ2

2

)]

+ K2√
arr2

[
(κ + 1)rr2 sin

(
θ + θ2

2

)
+ 2r2

1 sin θ1 cos

(
θ1 − θ + θ2

2

)]
− 0.5(σ − χ )(κ + 1)r1 cos θ1, (6.62)

4µuy = K1√
arr2

[
(κ + 1)rr2 sin

θ + θ2

2
− 2r2

1 sin θ1 cos

(
θ1 − θ + θ2

2

)]

+ K2√
arr2

[
(1 − κ)rr2 cos

(
θ + θ2

2

)
− 2r2

1 sin θ1 sin

(
θ1 − θ + θ2

2

)]
− 0.5(σ − χ )(κ − 3)r1 sin θ1, (6.63)

where K1 = σ
√

a and K2 = τ
√

a.
The natural boundary conditions (stress free) along the crack surfaces and the

essential boundary conditions along the boundary of the square of 0.2a × 0.2a
are specified according to the exact analytical solution (Sneddon and Lowengrub,
1969). One-hundred and twenty-six nodes, as shown in Fig. 6.7, are initially em-
ployed. With h and p refinements, we have used 232 nodes finally. The normalized
stress tyy/σ, which is the most critical crack opening stress, is plotted along the line
crack in Fig. 6.8. The analytical results (Sneddon and Lowengrub, 1969) are also
plotted in Fig. 6.8. The agreement between the analytical solution and the meshless
solution is excellent. Also, it is noticed that the line crack is treated as a barrier that
cuts off the nodal support according to the rule of visibility test (cf. Chapter 5).

In Fig. 6.9, the normalized stress tyy/σ is displayed on the deformed shape of
the specimen. The distribution of the meshless stress is in general quite close to
that obtained by the finite element (FE) method. A region of compressive stress
is seen at the right-hand side of the specimen due to the presence of a long crack,
i.e., a/w = 0.5.

Three-Point Bending Beam with a Small Edge Crack

A concrete beam, 12 m in length, 3 m in height, 1 m in thickness, is simply
supported at two ends and subjected to a concentrated load of 100 N at the center
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FIGURE 6.7. Meshless discretization
of the cracked specimen.
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FIGURE 6.9. Stress distribution dis-
played on deformed shape.
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FIGURE 6.10. Stress (txx in GPa) distribution of a three-point bending beam with edge crack.

of the top surface. An edge crack extends from {x, y} = {4, 0.0} to {4, 0.4}. The
distribution of local meshless solution of txx is displayed in Fig. 6.10. It is seen that
there is an intense and localized stress concentration around the crack tip, which
is even larger than the maximum bending stress at the center of the bottom surface
of the beam.

General Dynamic Problems

Wave Propagation Problems and Structural
Dynamic Problems

Generally, dynamic problems can be categorized as either wave propagation prob-
lems or structural dynamic problems. In wave propagation problems, the loading
is often an impact or an explosive blast. The structural responses are rich in high
frequencies. In such problems, we are usually interested in the effects of stress
wave and the transients produced. Thus, the time duration of analysis is usually
short and is typically of the order of a wave traversal time across a structure. A
problem that is not wave propagation problem, but for which inertia is important,
is a structural dynamic problem. For structural dynamic problem, the frequency of
excitation is usually of the same order as the structure’s lowest natural frequencies
of vibration.

Methods of structural dynamics are largely independent of the discretization
methods. The standard form of dynamic problem can be written in a general form

MÜ + CU̇ + KU = R, (6.64)

where M is the mass matrix, K the stiffness matrix, C the damping matrix, and R
the general force matrix. Many popular methods to solve it were formulated and
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developed before the advent of either the FE or meshless methods. However, the
matrices, M, C, K, and R, obtained from the FE method, meshless method, and
other methods are different in detail. In this chapter, we are going to introduce
the common way to solve the dynamic equations, i.e., the time-history analysis,
by direct integration methods. Before we go into the details of those methods, we
introduce the concepts of natural frequencies and the mode shapes.

Natural Frequencies and Mode Shapes

The natural frequencies and their corresponding mode shapes of a structure are
often referred as the dynamic characteristics of a structure. The information reflects
the stiffness or compliance of a structure. To study the dynamic behavior, normal
mode analysis is often the first step.

An undamped structure, with no external loads applied to the boundary, under-
goes harmonic motion caused by initial conditions. Thus,

U = Ū sin ωt, (6.65)

and consequently

Ü = −ω2Ū sin ωt, (6.66)

where Ū is the amplitude of the vibrations and ω the circular frequency (radians
per second).

Substituting U and Ü into Eq. (6.64) with C and R both being zero, we obtain

(K − ω2M)Ū = 0. (6.67)

This is the basic statement of the vibration problem. Equation (6.67) is called a
generalized eigenvalue problem. It has nontrivial solutions only if

det(K − ω2M) = 0. (6.68)

Associated with each eigenvalue λi = ω2
i , there is an eigenvector Ūi , which is

called a normal mode. The lowest nonzero ωi is called the fundamental vibration
frequency. If K and M are n × n matrices, under conditions usually satisfied in
structural analysis, Eq. (6.68) has n eigenvalues and n eigenvectors. All eigen-
values are positive if K and M are both positive definite. A partly or completely
unsupported structure has positive semidefinite K and has one zero eigenvalue
associated with each possible rigid-body motion.

Direct Integration Methods in Transient Analysis

In a time-history or dynamic response problem, we usually solve the dynamic
equation in the form of Eq. (6.64) for U, U̇, and Ü as functions of time. When
M, C, and K are independent of U, U̇, and Ü, the system is linear. When M, C,

and K are independent of time, the system is time invariant. If the material behavior
is nonlinear, we use an internal force vector Rint replacing KU in Eq. (6.64), which
is then called a nonlinear initial value problem.
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There are two kinds of methods for time-history analysis: mode superposition
method and direct integration method. For many structural dynamics or wave
propagation problems, including those with complicated nonlinearities, direct in-
tegration is more expedient.

Methods of direct integration can be categorized as explicit or implicit. Explicit
methods have the form

U(n+1) = f(U(n), U̇(n), Ü(n), U(n−1), U̇(n−1), Ü(n−1), . . .), (6.69)

and hence permit U(n+1) to be completely determined in terms of historical infor-
mation consisting of displacements and time derivatives of displacements at time
n�t and before. Implicit methods have the form

U(n+1) = f (U̇
(n+1)

, Ü(n+1), U(n), U̇
(n)

, Ü
(n)

, . . .), (6.70)

and hence computation of U(n+1) requires knowledge of the time derivatives of
U(n+1), which are unknown. Explicit and implicit methods have markedly different
properties. The choices of method is strongly problem dependent. In this chapter,
we introduce both explicit and implicit direct integration methods and consider
only linear and time-invariant problems (cf. Bathe, 1996).

Central Difference Method

If the dynamic equation (6.64) is regarded as a system of ordinary differential
equations with constant coefficients, it follows that any convenient finite differ-
ence expressions to approximate the accelerations and velocities in terms of dis-
placements can be used. Therefore, a large number of differential finite difference
expressions could be theoretically employed. One procedure that has been proved
very effective in the solution of certain problems is the central difference method,
in which it is assumed that

Ü(n) = (U(n−1) − 2U(n) + U(n+1))/(�t)2. (6.71)

The error in the expansion, Eq. (6.71), is of order (�t)2, and to have the same
order of error in the velocity expansion, we use

U̇(n) = 1

2
(U(n+1) − U(n−1))/�t. (6.72)

The displacement solution for time t + �t is obtained by considering Eq. (6.64)
at time t , i.e.,

MÜ
(n) + CU̇

(n) + KU(n) = R(n). (6.73)

Substituting the expressions of Ü(n) and U̇(n) in Eqs. (6.71) and (6.72), respectively,
into Eq. (6.73), we obtain

[M/(�t)2 + C/2�t]U(n+1) = R(n) − [K − 2M/(�t)2]U(n) − [M/(�t)2

+ C/2�t]U(n−1), (6.74)
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from which we can solve U(n+1). It should be noted that the solution of U(n+1) is
thus based on using the equilibrium conditions at time t = n�t, i.e., Eq. (6.74).
For this reason, the integration procedure is called an explicit integration method,
and it is noted that such integration scheme do not require a factorization of the ef-
fective stiffness matrix in the step-by-step solution. On the other hand, the Houbolt,
Wilson, and Newmark methods, discussed later, using the equilibrium conditions
at time t = (n + 1)�t , are called implicit integration methods.

If central difference method is extremely effective when the damping matrix is
zero and the mass matrix is diagonal, then the system of equations in Eq. (6.64) can
be solved without factorizing a matrix. This can be achieved in both FE methods and
meshless methods. It should be emphasized that the integration method requires
that the time step �t be smaller than a critical value, �tcr = 2/ωmax, where ωmax

is the largest frequency of the n degree of freedom system (cf. Eq. (6.68)). This
requirement makes the central difference method a conditionally stable method.

Houbolt Method

The Houbolt integration scheme is somewhat related to the central difference
method in which standard finite difference expressions are used to approximate
the acceleration and velocity components in terms of the displacement components.
The following finite difference expansions are employed in the Houbolt integration
method (Houbolt, 1950):

Ü(n+1) = [2U(n+1) − 5U(n) + 4U(n−1) − U(n−2)]/(�t)2, (6.75)

and

U̇(n+1) = [11U(n+1) − 18U(n) + 9U(n−1) − 2U(n−2)]/6�t, (6.76)

which are two backward difference formulas with errors of order (�t)2.
In order to obtain the solution at time t + �t, we now consider Eq. (6.64) at

time t + �t (different from the central difference method), i.e.,

MÜ
(n+1) + CU̇

(n+1) + KU(n+1) = R(n+1). (6.77)

Substituting Eqs. (6.75) and (6.76) into Eq. (6.77) results

[2M/(�t)2 + 11C/6�t + K]U(n+1) = R(n+1) + [5M/(�t)2 + 3C/�t]U(n)

− [4M/(�t)2 + 3C/2�t]U(n−1)

+ [M/(�t)2 + C/3�t]U(n−2). (6.78)

As shown in Eq. (6.78), the solution of U(n+1) requires knowledge of U(n), U(n−1),
and U(n−2). Although the knowledge of U(0), U̇(0), and Ü(0) is useful to start the
Houbolt integration scheme, it is more accurate to calculate U(1) and U(2) by some
other means; i.e., we employ special starting procedures. One way to proceed
is to integrate Eq. (6.64) for the solutions of U(1) and U(2) by using a different
integration scheme, possibly a conditionally stable method such as the central
difference scheme with a fraction of �t as the time step.
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A basic difference between the Houbolt method and the central difference
scheme is in the appearance of the stiffness matrix K in the matrix 2M/(�t)2 +
11C/6�t + K to be factorized to obtain the required displacements U(n+1). The
term KU(n+1) appears because in (6.78) equilibrium is considered at time t + �t
and not at time t as in the central difference method. The Houbolt method is, for
this reason, an implicit integration scheme, whereas the central difference method
was an explicit procedure. With regard to the time step �t that can be used in the
integration, there is no critical time step limit and �t can in general be selected
much larger than that given by the central difference method.

A noteworthy point is that the step-by-step solution scheme based on the Houbolt
method reduces directly to a static analysis if mass and damping effects are ne-
glected, whereas the central difference method could not be used. In other words,
if C = M = 0, the Houbolt method yields the static solution for time-dependent
loads.

Wilson θ Method

Let τ denote the increase in time, where 0 ≤ τ ≤ θ�t , then for the time interval
[t, t + θ�t], it is assumed that

Ü(t + τ ) = Ü(t) + τ [Ü(t + θ�t) − Ü(t)]/θ�t. (6.79)

Integrating Eq. (6.79), we obtain

U̇(t + τ ) = U̇(t) + τ Ü(t) + τ 2[Ü(t + θ�t) − Ü(t)]/2θ�t, (6.80)

and

U(t + τ ) = U(t) + τ U̇(t) + τ 2Ü(t)/2 + τ 3[Ü(t + θ�t) − Ü(t)]/6θ�t.
(6.81)

Using Eqs. (6.80) and (6.81), we have at time t + θ�t

U̇(t + θ�t) = U̇(t) + θ�t[Ü(t + θ�t) + Ü(t)]/2, (6.82)

U(t + θ�t) = U(t) + θ�tU̇ + (θ�t)2[Ü(t + θ�t) + 2Ü(t)]/6, (6.83)

from which we can solve Ü(t + θ�t) and U̇(t + θ�t) in terms of U(t + θ�t):

Ü(t + θ�t) = 6[U(t + θ�t) − U(t)]/(θ�t)2 − 6U̇(t)/θ�t − 2Ü(t), (6.84)

U̇(t + θ�t) = 3[U(t + θ�t) − U(t)]/θ�t − 2U̇(t) − θ�tÜ(t)/2. (6.85)

To obtain the solution for the displacements, velocities, and accelerations at time
t + �t , the equilibrium equation, Eq. (6.64), is considered at time t + θ�t . How-
ever, because the accelerations are assumed to vary linearly, a linearly extrapolated
load vector is used; i.e., the equation employed is

MÜ(t + θ�t) + CU̇(t + θ�t) + KU(t + θ�t) = R(t + θ�t), (6.86)

where

R(t + θ�t) = R(t) + θ [R(t + θ�t) − R(t)]. (6.87)
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t t+∆t t+q∆t

Ü Ü Ü

FIGURE 6.11. Linear accelera-
tion assumption of Wilson θ

method.

Substituting Eqs. (6.84) and (6.85) into Eq. (6.86), an equation is obtained from
which U(t + θ�t) can be solved. Substitute U(t + θ�t) into Eqs. (6.84) and (6.85)
to obtain Ü(t + θ�t) and U̇(t + θ�t). Then, from Eqs. (6.79) to (6.81), we obtain
U(t + �t), U̇(t + �t), and Ü(t + �t) based on τ = �t . Interested reader may
find the complete algorithm of Wilson θ method (Fig. 6.11) from Bathe’s book
(1996).

As it can be seen that the Wilson θ method is also an implicit integration method,
the stiffness matrix K is a coefficient matrix to the unknown displacement vector.
It may also be noted that no special starting procedures are needed since the
displacements, velocities, and accelerations at time t + �t are expressed in terms
of the same quantities at time t only.

Newmark Method

The Newmark integration scheme can also be understood to be an extension of
linear acceleration method. The following assumptions are used (Newmark, 1959):

U̇(t + �t) = U̇(t) + [(1 − δ)Ü(t) + δÜ(t + �t)]�t, (6.88)

U(t + �t) = U(t) + �tU̇ + [(0.5 − α)Ü(t) + αÜ(t + �t)](�t)2, (6.89)

where α and δ are parameters that can be determined to obtain integration accuracy
and stability. When δ = 1

2 and α = 1
6 , Eqs. (6.88) and (6.89) correspond to the

linear acceleration method, which is also obtained by using θ = 1 in the Wilson
θ method. Newmark originally proposed as an unconditionally stable scheme: the
constant-average-acceleration method, in which case δ = 1

2 and α = 1
4 .

In addition to Eqs. (6.88) and (6.89), for the solution of displacements, velocities,
and accelerations at time t + �t , the equilibrium equation (6.64) at time t + �t
is also considered:

MÜ(t + �t) + CU̇(t + �t) + KU(t + �t) = R(t + �t). (6.90)

Solving from Eq. (6.90) for Ü(t + �t) in terms of U(t + �t) and then substitut-
ing Ü(t + �t) into Eq. (6.88), we obtain equations for U̇(t + �t) and Ü(t + �t),
each in terms of the unknown displacements U(t + �t) only. These two rela-
tions U̇(t + �t) and Ü(t + �t) are substituted into Eq. (6.90), to solve U(t + �t),
afterward, using Eqs. (6.88) and (6.89), U̇(t + �t) and Ü(t + �t) can also be cal-
culated. Interested reader may find the complete algorithm of Newmark’s method
(Fig. 6.12) from Bathe’s book (1996).
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FIGURE 6.12. Newmark’s
constant-average acceler-
ation scheme.

The close relationship between the computer implementation of the Newmark
and the Wilson θ method should be noted.

With explicit methods of direct integration, stability typically requires that the
time step be small enough that information does not propagate more than one
element per time. Explicit methods are ideal for wave propagation problems in
which behavior at the stress wave front is of engineering importance. Here the
stability restriction is not a serious disadvantage because a small �t is necessary
for accuracy. Other factors in favor of explicit time integration are easy implemen-
tation, accurate treatment of general nonlinearity, and the capability of treating
very large problems with only modest computer storage requirements. For struc-
tural dynamic problems, time scales and analysis durations are usually long and
accuracy consideration alone would permit a �t much larger than the upper limit
of �t for stable explicit integration. Explicit methods are then not as well suited
to this class of problems, as they are suited for wave propagation problems.

The only advantage of implicit methods over explicit methods is that they allow
a much large �t because they are unconditionally stable. Implicit methods are
expensive for wave propagation problems since accuracy requires a small �t . For
long-duration structural dynamic problems, implicit methods are usually more
effective than explicit methods.

Meshless Analysis of Elastodynamic Problems

Meshless Formulation of Elastodynamics

The meshless formulation of dynamic problem has been obtained in Chapter 5.
The governing equations for the displacements can be expressed as

K̄MÜ + K̄CU̇ + U = K̄F + Ḡf, (6.91)

where K̄t and Ḡt can be obtained by solving the following system of linear equa-
tions ∣∣∣∣∣Kt G

Gt 0

∣∣∣∣∣
∣∣∣∣∣ K̄t

Ḡt

∣∣∣∣∣ =
∣∣∣∣∣ I
0

∣∣∣∣∣, (6.92)
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while M, C, K, G, F, and f are obtained as

Mαβ =
∫
�

ρ�iβ�iα d� = Mβα, (6.93)

Cαβ =
∫

�

ai jkl Bi jα(x)Bklβ(x) dV , (6.94)

Kαβ =
∫
�

Ai jkl Bi jα(x)Bklβ(x)dV, (6.95)

Gαβ =
∫

�u

�iα�iβ dS, (6.96)

Fα =
∫

�

ρ f j� jα dV +
∫

�t

t̄ j� jα dS, (6.97)

fα =
∫

�t

�iα ūi dS. (6.98)

It is obvious that Eq. (6.91) can be rewritten in the same form as Eq. (6.64), i.e.,

M̂Ü + ĈU̇ + K̂U = R̂, (6.99)

where M̂ = K̄M, Ĉ = K̄C, K̂ = I, and R̂ = K̄F + Ḡf. From now on we can em-
ploy the direct integration methods introduced in the section “General Dynamic
Problems” to solve the meshless dynamic equations.

Procedures of Meshless Analysis of Elastic Dynamic
Problems

The step-by-step procedures of meshless analysis of elastodynamics are given as
follows.

Step 1. Read input data. Readers are referred to the user’s manual (Appendix D).
Step 2. Generate shape functions Φ,ψ, and their derivatives B at all sampling

points and at points on the boundary to specify the natural and essential boundary
conditions (cf. Chapter 5).

Step 3. Form matrices M, C, K, and G and forcing terms F and f (cf. Eqs. (6.93)–
(6.98)).

Step 4. Solve Eq. (6.92) for K̄t and Ḡt .
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Step 5. Calculate the generalized mass, damping, stiffness matrices, and forcing
term as

M̂ = K̄M,

Ĉ = K̄C,

K̂ = I,

Fext = R̂ = K̄F + Ḡf. (6.100)

Step 6. Solve the governing equation (6.99) with the specified initial conditions
U(t = 0) = U0 and U̇(t = 0) = V0 by using the one of the direct integration
methods (Newmark method is employed in the disk) to obtain the displacements
U of all nodes.

Step 7. The displacement field u and the strain field e as functions of time t for all
sampling points are obtained according to Eqs. (5.32) and (5.33), respectively.
The stresses are calculated according to Eqs. (6.5) and (6.7) and (6.13)–(6.15)
for plane stress case and plane strain case, respectively.

Numerical Examples of Meshless Analysis of Elastodynamic
Problems

Shown in Fig. 6.13 is a cracked specimen with width w and height 2h. The hor-
izontal edge crack extends from x = 0 to x = a. A uniformly distributed normal
stress, tyy = σ (t), is applied along the top and bottom surfaces (y = ±h). A plane
strain condition is assumed.

X

y = h

y = –h
x = w(t)yyt σ=

x = a

yyt = σ(t)

FIGURE 6.13. Edge cracked specimen
subjected to mode-I tensile stress.
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(t)σ

t

FIGURE 6.14. The applied loading as
a function of time.

Case 1. The applied loading is a Heaviside step function in time as shown in
Fig. 6.14, i.e., σ (t) = σ 0 for t ≥ 0. A large damping coefficient is incorporated.
Newmark method is employed for the direct integration. The normalized stress,
tyy/σ

0, at the sampling point nearest to the crack tip is plotted as a function of
normalized time, t/τ , in Fig. 6.15 while τ is defined as w/

√
E/ρ. It is seen that as

time becomes larger the stresses approach the static values. It indicates the validity
of the computer software and, also, verifies that the time step, �t , used in this
work is small enough to yield accurate solutions.

Case 2. The applied loading in this case is expressed as

tyy(x, ±h, t) =
{
σ 0 sin(2π t/t0), if t ≤ t0
0, if t > t0

where t0 = 0.5τ is small comparing with the time needed for the longitudinal
wave to reach the line crack from the edges where the loadings are applied. The
normalized stress, tyy/σ

0, at the sampling point nearest to the crack tip is plotted in
Fig. 6.16. It is seen that the stress, although still oscillating, is reducing gradually
to zero, as it should be.
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FIGURE 6.15. Time history of the stress near the crack tip (Case 1).
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FIGURE 6.16. Time history of the stress near the crack tip (Case 2).

Meshless Analysis of Multiphase Materials

Multiphase Materials

Industry materials are generally inhomogeneous. They usually consist of mi-
crostructure and have multiphases, examples including ceramics, polycrystalline
solids, concretes, etc. The boundaries between phases are usually irregular and
random. Some of materials usually consist of defects such as microcracks, voids,
and dislocations. Therefore, to say the least, it is very difficult to model and to
perform numerical simulation of the detailed feature of multiphase materials. On
the other hand, digital imaging data from CT, ultrasound, MRI, etc., are abounding.

CT, also known as CAT scanning or X-ray-computed topography, is a completely
nondestructive technique that enables one to visualize detailed features in the
interior of opaque solid objects and to obtain information on their 3D geometry
and composition. In CT, cross-sectional images are generated by projecting a thin
beam of X-ray through one plane of an object from many different angles. A 2D
image of a section or a slice of a 3D object usually has 512 × 512 pixels. The value
of each pixel is a measure of the reduction in X-ray intensity and energy, which in
turn is a measure of the density of the material at that point. Therefore, the values
at the pixels can be taken as the input to specify the configuration and composition
of the specimen.

Meshless methods can be constructed solely in terms of nodes without the need
of a highly structured mesh as required in FE method. In a meshless method, the
approximation of any scalar-valued function, Ũ (x), can be expressed as an inner
product between a vector of shape functions, Φ(x), and a vector of nodal values,
U, as

Ũ (x) = Φ(x) · U, (6.101)

which has the same form as in the FE method. However, there is a characteristic
difference between FE method and meshless method: Eq. (6.101) is an approx-
imation rather than an interpolation, i.e., in meshless method, Ũ (xi ) �= Ui . This



106 6. Meshless Analysis of Elastic Problems

character requires special and careful treatments of essential boundary conditions,
mirror symmetries, and moving discontinuities, such as crack propagation.

Material Forces

The gravitational forces, the Lorentz force on a charged particle, and a radiation
force that causes damping are all physical forces in the usual Newtonian view of
mechanics. They are the contributors to Newton’s equation of motion (balance
of linear momentum) or Euler–Cauchy equations of motion when we pass from
discrete model to continuum field theory. Physical forces are generated by dis-
placements in physical space. For a continuous body, this means a change in its
actual position in its physical configuration at time t (Maugin, 1995).

On the other hand, the concept of material forces was first introduced by Eshelby
(1951), elaborated and further developed by Maugin (1993, 1995). Material forces
are generated by displacement, not in physical space, but on material manifold.
For example, they can be generated by (a) an infinitesimal rigid displacement of a
finite region surrounding a point of singularity in an elastic body (Eshelby, 1951),
(b) an infinitesimal displacement of a dislocation line (Peach and Koehler, 1950),
(c) an infinitesimal increase in the length of a crack (Casal, 1978; Rice, 1968).
This characteristic property of material forces also leads to their christening as
inhomogeneity forces. Material inhomogeneity is defined as the dependence of
properties (not the solution), such as density, elastic coefficients, viscosity, and
plasticity threshold, on the material point. These inhomogeneities may be more or
less continuous such as in metallurgically superficially treated specimens or in a
polycrystal observed at a mesoscopic scale, or it may change abruptly such as in
laminated composite or in a body with foreign inclusions or cavities.

For thermoelastic material, the governing equations of material forces may be
expressed as

BK L ,K + FL = ṖL , (6.102)

where the pseudomomentum P, Eshelby stress B, and material force F are derived
to be (Maugin, 1995):

PL ≡ −ρ0vk xk,L , (6.103)

BK L = −(K − W )δK L − TK MCL M , (6.104)

FL = −ρ0 fl xl,L + 1

2
vkvk

(
ρ0

)
L + (

ρ0γ T/T 0 + aK M EK M
)
TL

+ (ρ0γ )L
T 2

2T 0
+ aK M,L EK M T − 1

2
AI J M N ,L EI J EM N . (6.105)

It is seen that the material force in thermoelastic solid is due to (1) body force f,
(2) temperature gradient ∇T , and (3) the material inhomogeneities in density ρ0

and all the thermoelastic coefficients γ, a, and A. In Eqs. (6.103)–(6.105), v, C,
E, K , W , and T 0 are the velocity, Green deformation tensor, Lagrangian Strain,
kinetic energy, strain energy, and reference temperature, respectively. It should



Meshless Analysis of Multiphase Materials 107

be emphasized that it is almost impossible and even erroneous to calculate the
derivatives of the material properties through FE method, and, on the other hand,
it is natural and easy to do so through meshless method.

Also, for 2D problems in the presence of propagating crack, the material force
associated with the crack tip is obtained as

F = lim
�→0

∫
�

N · (V ⊗ P − B) d�, (6.106)

where � denotes the cross-sectional circuit around the crack tip; N the unit vector
normal to � pointing away from the crack tip, and V the velocity of crack propa-
gation. Notice that crack propagation is a movement on material manifold, not in
physical space, therefore, V is not equal to the material time rate of change of the
position vector (velocity) of any particle. It can be shown that, in a very special
case, the projection of F in the direction tangent to the crack path behind the crack
tip is reduced to the J -integral, which is path independent if the material within �

is homogeneous.
For readers interested in material forces, more recent works are found in Chen

and Lee (2005), Lee et al. (2004), Lee and Chen (2005).

Crack Propagation

In 2D fracture problems, mode I fracture may lead to self-similar crack extension
due to symmetry. In general case, especially in case of multiphase material, we
encounter mixed mode fracture problems. Therefore, to determine the direction
of crack extension is an unavoidable task. Usually, we use the maximum opening
stress criterion or the maximum energy release rate criterion to determine the direc-
tion of crack propagation. For example, using maximum opening stress criterion,
the current crack tip will extends to {rc, θ} if the opening stress tθθ is maximum at
{rc, θ}, where rc > 0 is small and finite constant. One may consider that tθθ (rc, θ )
is the driving force distributed along an arc with a radius rc with respect to the
current crack tip. If the material is homogeneous, the maximum opening stress cri-
terion is reasonable, i.e., the information of driving force is enough to determine
the direction of crack extension. However, if the material is inhomogeneous, one
has to consider the resistance, i.e., the toughness, distributed in front of crack tip.
In this work, we propose that the current crack tip will extend to {rc, θ} if the ratio

R(rc, θ ) ≡ tθθ (rc, θ )

tc(rc, θ )
, (6.107)

reaches a maximum at {rc, θ}, where tc is the toughness associated with the opening
stress. Crack propagation process can be viewed as a changing of crack tip with a
moving barrier following the advancing of the crack tip. It is noticed that meshless
analysis of crack propagation does not involve the formidable task of constantly
remeshing the cracking specimen. It only needs the updating of the barrier and the
sprinkle of additional nodes in front of the current crack tip to enhance the solution
accuracy.
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FIGURE 6.17. X-ray image of con-
crete indicting aggregate, paste, and
voids.

Numerical Examples

A typical X-ray image of a slice of concrete and its meshless computational model
are shown in Figs. 6.17 and 6.18, respectively. As can be seen from Fig. 6.17,
there are aggregates, pastes, and voids, which are reproduced in the meshless
model, Fig. 6.18. Both Figs. 6.17 and 6.18 are in terms of points (pixels). The only
difference is the resolution. Here, for the sake of computational efficiency, we use
a model with reduced resolution for the meshless computation. It turns out that,
upon comparisons of numerical results, there is no significant difference by using
models with reduced resolution.

The specimen is subjected to compression at the top and bottom edges, i.e., in
the Y -direction, with a specified displacement of 1% of the height of the spec-
imen. Stress distributions are displayed in Fig. 6.19(a)–(d). It can be seen from
Fig. 6.19(a)–(d) that there is a nonuniform distribution of stresses. This is because

FIGURE 6.18. Meshless model of con-
crete with reduced resolution. Yellow:
aggregate, blue: paste, black: voids.
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(a)

(b)

(c)

FIGURE 6.19. (a) Distribu-
tion of Cauchy stress σxx .

(b) Distribution of Cauchy
stress σyy . (c) Distribution
of Cauchy stress σxy . (d)
Distribution of von Mises
stress.
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(d)

FIGURE 6.19. (Continued )

concrete is a multiphase material that consists of aggregates, pastes, and voids.
Specifically, from Fig. 6.19(a) and (c), it is seen that there are σxx and σxy , both
of which would not exist if the specimen were treated as a homogeneous mate-
rial. Most interestingly, it is observed tensile stress σyy appears in the region near
or around voids (cf. Fig. 6.19(b)) while the specimen is under compression in the
Y -direction. In general, the maximum stresses appear around the interface between
aggregates, pastes, and voids.

Material forces due to the existence of material inhomogeneity are calculated
and displayed in Fig. 6.20(a) and (b). The existence of material forces indicates the
material inhomogeneity and a tendency to change the material manifold, which
may be interpreted as crack will possibly initiate and propagate.

The fracture criterion, based on the ratio of the opening stress over the material
toughness distributed in front of the crack tip, is proposed to determine the direction
of crack propagation of mixed mode fracture problem in multiphase material. The
path of crack propagation, i.e., failure pattern of a typical concrete specimen is
displayed in Fig. 6.21.

The numerical results of concrete material has demonstrated a very promising
approach to analyze and predict properties and life of various industry and bio-
logical materials which are often inhomogeneous and have multiphase including
voids and microcracks.

Problems

1. From the displacement field given in Eqs. (6.62) and (6.63), find the following
strains analytically or numerically

exx = ∂ux

∂x
, eyy = ∂uy

∂y
, γxy = 2exy = ∂ux

∂y
+ ∂uy

∂x
.

Note that the expressions are valid for both plane strain and plane stress cases.



(a)

FIGURE 6.20. (a) Distribu-
tion of material force fx .

(b) Distribution of material
force fy .

(b)

FIGURE 6.21. Failure
(crack growth) pattern
of concrete predicted by
meshless method.
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2. From the strains, find the stresses through the constitutive equations. Verify
that the results are identical to those given in Eqs. (6.59)–(6.61).

3. Verify that the stresses satisfy the boundary conditions at infinity, i.e.,

r = r1 = r2 → ∞, txx = τ, tyy = σ, txy = χ.

4. Verify that the stresses satisfy the boundary conditions at the crack
surface, i.e., at θ = 180 ◦, θ2 = 0 ◦, θ1 = 0 ◦ or 180 ◦ (or θ = −180 ◦, θ2 =
360 ◦, θ1 = 0 ◦ or 180 ◦ ),

tyy = txy = 0.

5. Show that the stresses and displacements, Eqs. (6.59)–(6.63), in the neigh-
borhood of the crack tip (θ1 → 0, θ2 → 0, r1 → a, r2 → 2a) can be
expressed as

txx = K1√
2r

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)

− K2√
2r

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
+ χ−σ + · · ·

tyy = K1√
2r

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+ K2√

2r
sin

θ

2
cos

θ

2
cos

3θ

2
+ · · ·

txy = K1√
2r

cos
θ

2
sin

θ

2
cos

3θ

2
+ K2√

2r
cos

θ

2

(
1 − sin

θ

2
sin

3θ

2

)
+ · · ·

ux = K1

√
2r

8µ

[
(2κ − 1) cos

θ

2
− cos

3θ

2

]
+ K2

√
2r

8µ

[
(2κ + 1) sin

θ

2
+ sin

3θ

2

]

−σ − χ

8µ
(κ + 1)(x + a) + · · ·

uy = K1

√
2r

8µ

[
(2κ + 1) sin

θ

2
− sin

3θ

2

]
− K2

√
2r

8µ

[
(2κ − 3) cos

θ

2
+ cos

3θ

2

]

−σ − χ

8µ
(κ − 3)y + · · ·

6. Prove analytically or numerically that the stresses satisfy the equilibrium equa-
tions.

7. Mini-Project. Consider the three-point bending beam with a small edge crack
in section “Three-Point Bending Beam with a Small Edge Crack”; find the
elastic material constants for standard steel.
(a) Use the software for elastic static analysis to solve stress distribution.
(b) Assume the applied loading is a Heaviside step function in time as shown

in Fig. 6.14. Use the software for elastic dynamic analysis to solve the time
history of the stress near crack tip.



7
Meshless Analysis of Nonlocal
Continua

Introduction to Nonlocal Theory

Classical continuum mechanics is a local theory. It is based on the fundamental
assumption that all balance laws are valid for every part of the body, however
small it may be, and that the state of the body at any material point is influ-
enced only by the state in the infinitesimal neighborhood about that point. The
first of these assumptions eliminates the long-range effect of loads on the motion
and the evolution of the state of the body, and the second ignores the effect of
long-range interatomic interactions. This implies a certain intrinsic limitation
(long-wavelength limit) since the cohesive forces in real materials have a finite
or even infinite range, and nonlocality is an intrinsic aspect of certain material
phenomena.

Generally, any problem that requires the solution of integrodifferential equa-
tions can be said to be nonlocal. Solid-state physics, and more particularly, lattice
dynamics, is based on the dynamics of atoms attracted to each other by long-range
forces. In the dislocation dynamics, the state of the body at a point is influenced
appreciably by the dislocations that take place at neighboring points. Plastic de-
formations, known to originate at the atomic scale through the accumulations of
large numbers of dislocations, are generally nonlocal in character. Suspensions,
thin films, composites, bubbly fluids, and phase transitions are a few other fields
where nonlocality may play an essential role.

Eringen (1966) proposed a nonlocal elastic theory in the spirit of the well-
accepted classical continuum mechanics with certain modifications. Edelen (1969),
Edelen and Laws (1971), and Edelen et al. (1971) proposed a nonlocal elastic
theory in the tradition of the Gibbsian thermodynamics employing a variational
principle. Both approaches turned out to give similar results for elastic solids
(Eringen and Edelen, 1972). Later, further developments in this area are almost
within the framework of those two theories.

The applications of nonlocal theory have shown the positive signs in explain-
ing and predicting physical phenomena in microscopic length scales. The critical
examples include Rayleigh surface waves with small wavelength, stress concen-
tration at the tip of crack, and quasi-static elastic dielectrics. The dispersion curves

113



114 7. Meshless Analysis of Nonlocal Continua

obtained for both plane and Rayleigh surface waves fit perfectly with the atomic
dispersion curves throughout the entire Brillouin zone, obtained by lattice dynamic
computations. Moreover, the fracture toughness calculated agrees fairly well with
experimental results on brittle materials. The recent application examples, includ-
ing strain softening due to tunnel excavation, shear band formation, localization,
and crack initiation and failure process, have also proved the success of nonlocal
methods in eliminating the mesh dependence and in interpreting size effects.

The Framework of Nonlocal Theory

In continuum physics, nonlocal is taken to mean that the fundamental equations of a
physical system contain integrals as well as derivatives of the dependent variables.
For example, the basic equations of radiative transfer may be written as:

µ
∂ I

∂x
(x, µ, ν) + I (x, u, ν) =

∫∫
I (x, s, t)P(s, µ, t, ν) ds dt . (7.1)

This integrodifferential equation describes an intrinsically nonlocal process. In-
deed, the disciplines of radiative transfer, particle interaction, stellar dynamics, and
nuclear reactor theory are founded on integrodifferential equations. The mathe-
matics of these disciplines is intimately connected with the nonlocal aspects of the
problems and requires great care in order to ensure uniqueness and computational
feasibility for solutions.

Time Nonlocality

Time nonlocality (memory effect) has been well recognized. A lot of experimental
results available show that some materials have strong memory effects. In time
nonlocal theory, the state of the body, at the material point X at time t , depends
on the histories of motions and temperature of X at all times prior to and at
t . The dependent constitutive variables are considered to be functionals of all the
independent constitutive variables that are functions of all past times. For example,
in Boltzmann–Volterra theory, the constitutive equation was expressed as

ti j (t) = ai jmnemn(t) +
∫ t

−∞
bi jmn(t − s)

∂emn(s)

∂s
ds, (7.2)

where ti j is the stress tensor and emn the strain. It is seen that the strain rates of all
past times, s, are incorporated and the attenuation function b reflects that the axiom
of memory is enforced. Therefore, rate-dependent theory accounts for certain time
nonlocality.

Space Nonlocality

The simplest way of exemplifying the space nonlocal theories is to state that
the dependent constitutive variables at a material point x are functionals of the
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independent constitutive variables at all points x′ of the body, e.g.,

T(X, t) = F{E(X′, t)}, X′ ∈ B. (7.3)

This means the stress T at X and t is a functional of the strain E′ ≡ E(X′, t) that
is a function of all the material points X′ in body B and time t . The functional F
in Eq. (7.3) may be approximated by a series of gradients of the strain tensor or
by a series of multiple volume integrals.

In the approach proposed by Eringen, a difference function has been introduced

y′(X′) ≡ y(X − X′) − y(X), (7.4)

and with

y = y(X, t), (7.5)

y′ = y′(X′, t), (7.6)

to represent local and nonlocal (relative to X) variables (e.g., strain, temperature,
plastic strain, etc.), respectively, an asterisk placed on a quantity indicates the
interchanges of X′ and X, e.g.,

A∗(X′, X, y′, y) = A(X, X′, y, y′); (7.7)

then the dependent variables Z (stress, heat flux, entropy, Helmholtz free energy,
etc.) can be symbolically written as

Z(X, t) =
∫

V ′
z(y, y′) dV ′, (7.8)

and the material time rate of � can be obtained as

�̇ =
∫

V ′

{
∂ψ

∂y
· ẏ + δψ

δy′ · ẏ′
}

dV ′

= ẏ ·
∫

V ′

∂ψ

∂y
dV ′ +

∫
V ′

δψ

δy′ · ẏ′ dV ′ (7.9)

= ẏ · ∂ψ

∂y
+

∫
V ′

δψ

δy′ · ẏ′ dV ′,

where the second term in the right-hand side of above equation involves the Frechet
derivative δψ/δy′ (Griffel, 1981).

As far as the stress–strain relation is concerned, nonlocality means the stress at
a point x is a function of the strains at all points of the body. For linear elasticity,
this gives

ti j (x) = Ci jklekl(x) +
∫

ci jkl(x, x′)ekl(x′) dx′, (7.10)

where ti j (x) is the stress at x, ei j (x′) the strain at x′, and C and c the material
moduli tensors. The strain gradients would appear after the performance of the
integrations when ekl(x′) is written as a Taylor series around point x. This is why
sometimes strain gradient theory is called nonlocal theory.
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Material Instability and Intrinsic Length

Certain materials or processes exhibit narrow zones of intensive straining. This
localization of deformation poses considerable difficulties in numerical solutions.
From a mathematical point of view, it is due to a change of type of governing
equations: loss of ellipticity in quasi-static problems and change from hyperbolic
to elliptic type in the dynamic case. This change of type allows the prediction
of the critical stress level that triggers localization; however, it leaves the size of
the localization zone unspecified in static problems and gives infinite strains over
a set of measure zero in dynamic problem. When incorporated into a computa-
tional model, strain-softening behavior therefore leads to severely mesh-dependent
results in which deformation localizes in one element irrespective of its size. Fur-
thermore, the energy dissipated in the strain-softening domain tends to diminish
as the mesh is refined.

To remedy the change of type of governing equations, a length scale or timescale
must be incorporated, implicitly or explicitly, into the material description or for-
mulation of the boundary value problem. Rate-dependent material models account
for certain time nonlocality and introduce a timescale. In strain gradient theories,
the stress depends on strain and strain gradients. This accounts for some neigh-
boring effects, i.e., the nonlocality in space, and thus introduces a length scale.
As a consequence, the rate-dependent material does not lose strong ellipticity, and
strain localization is caused by inhomogeneity; the strain gradient can be served as
a regularization of material instabilities, and the mesh sensitivity can be remedied.
However, there are at least two disadvantages in gradient-dependent approaches.
First, corresponding to the strain gradients, there are high-order stresses; more ma-
terial constants as well as additional boundary conditions are thus needed. Second,
in the discretization, higher order differentiable shape functions are required, and
the physical meaning of the additional boundary conditions is still an open issue.

The integral nonlocal theory naturally brings timescale or length scale into
consideration. Its time or length effects are achieved by an attenuation function or
a weight function that has clearly understood physical origin. It has an inherent
advantage over either rate-dependent or gradient-dependent theories in numerical
treatments.

A common feature of all meshless methods is a weight function that is defined
to have compact support. The support size of the weight function is usually greater
than the nodal spacing, and therefore nonlocality is embedded in the weight func-
tion and meshless method is nonlocal in nature. It is thus natural to lead to a
conclusion that both the stability of meshless method and the numerical imple-
mentation of nonlocal field theory should benefit from the incorporation.

Nonlocal Constitutive Relations

In a nonlocal continuum, the state of the body at a material point X and time
t cannot be determined entirely by the state variables at X and t . In this book,
attention is focused on the nonlocality in the constitutive relations.
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Generally, a nonlocal constitutive relation for viscoelastic solid takes the fol-
lowing form:

ti j (x) =
∫

�′
Ai jmn(x, x′)emn(x′) d�(x′) +

∫
�′

ai jmn(x, x′)ėmn(x′) d�(x′). (7.11)

For isotropic material, Eq. (7.11) is simplified to

ti j (x) = H (x)

{
(λδi jδmn + 2µδimδ jn)

∫
�′

f (r )emn(x′) d�(x′)

+ (λ̄δi jδmn+2µ̄δimδ jn)
∫

�′
f (r )ėmn(x′) d�(x′)

}
, (7.12)

where f (r ) is the weight function,

f (r ) =
{

1 − 6r2 + 8r3 − 3r4, if r ≤ 1
0, if r > 1

(7.13)

H (x) ≡ 1∫
�′ f (r ) d�(x′)

, (7.14)

where

r ≡ ‖x − x′‖
R

,

and R is the radius of nonlocality. It is noted that the constitutive equation,
Eq. (7.12), with Eqs. (7.13)–(7.14) has the following properties:

1. As R approaches zero, the stress tensor at x becomes

ti j (x) = A0
i jmnemn(x) + a0

i jmnėmn(x), (7.15)

which is the corresponding local constitutive equation for viscoelastic solid.
2. For constant strains and strain rates, the stresses are also constant.
3. For any interior point x whose distance from the nearest point on the boundary

S is greater than R, the function H (x) becomes a constant.

Also, it is emphasized that to apply the constitutive equation, Eq. (7.11) or
(7.12), the visibility criterion has to be checked to determine whether the stress at
x is influenced by the strain and strain rate at x′.

Formulation of Nonlocal Meshless Method

Let the displacement field, u(x), be approximated as

ui
∼= ûi = �iαUα, (7.16)

the strain field, e(x), can thus be obtained as

ei j (x) ∼= êi j (x) = 1

2
(�iα, j + � jα,i )Uα = Bi jα(x)Uα. (7.17)
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Following the procedures outlined in Chapter 3, the detailed expressions for the
shape function � and its derivative �,i can be easily found. Recall the strong form
of continuum mechanics as

ti j,i + ρ fi − ρü j = 0 in �, (7.18)

ui = ūi on �ui , (7.19)

ti ≡ tki nk = t̄i on �ti , (7.20)

where the union of the essential boundary, �ui , and the natural boundary, �ti , is
the enclosing surface of the domain �, i.e., �ti

⋃
�ui = ∂� (i = 1, 2, 3). If there

is no ambiguity, let �u ≡ ⋃
i �ui and �t ≡ ⋃

i �ti . One of the differences between
the finite element (FE) methods and the meshless methods is that Eq. (7.16) is an
approximation rather than an interpolation, i.e.,

Φ(xI ) · U �= ui I , (7.21)

where ui I is the i th component of the displacement field at the I th node, and
therefore the essential boundary conditions, Eq. (7.19), should be read as

�iαUα = ūi on �ui , (7.22)

which are constraints rather than specifications on U.
The corresponding weak form based on the meshless particle methods can be

obtained as∫
�

σi jδei j dV +
∫

�

ρüiδui dV −
∫

�t

tiδui dS −
∫

�

ρ fiδui dV

+
∫

�u

λiδui dS +
∫

�u

δλi (ui − ūi ) dS = 0, (7.23)

whereλ is the vector of Lagrange multiplies introduced here to enforce the essential
boundary conditions, Eq. (7.19), on �u .

Now, approximate λ on �u in terms of nodal value Λ as

λi = ψiα�α. (7.24)

The weak form, Eq. (7.23), becomes

δUα{MαβÜβ + CαβU̇β + KαβUβ − Fα + Gαβ�β} + δ�α{GβαUβ − fα} = 0.

(7.25)
where

Mαβ =
∫

�

ρ�iα�iβ d� = Mβα, (7.26)

Cαβ = a0
i jmn

∫
�

∫
�′

H (x) f (r )Bi jα(x)Bmnβ(x′) d�(x) d�(x′), (7.27)
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Kαβ = A0
i jmn

∫
�

∫
�′

H (x) f (r )Bi jα(x)Bmnβ(x′) d�(x) d�(x′), (7.28)

Gαβ =
∫

�u

�iαψiβ dS, (7.29)

Fα =
∫

�

ρ fi�iα d� +
∫

�t

t̄i�iα dS, (7.30)

fα =
∫

�u

ūiψiα dS. (7.31)

Because Eq. (7.25) should hold for any arbitrary δU and δΛ, the governing equa-
tions in matrix form are thus obtained

MÜ + CU̇ + KU + GΛ = F, (7.32)

Gt U = f. (7.33)

For static problems, the governing equations are reduced to∣∣∣∣ K G
Gt 0

∣∣∣∣
∣∣∣∣ U
Λ

∣∣∣∣ =
∣∣∣∣F

f

∣∣∣∣ . (7.34)

For dynamic problems, solve the following system of linear equations to get
K̄t and Ḡt ∣∣∣∣Kt G

Gt 0

∣∣∣∣
∣∣∣∣ K̄t

Ḡt

∣∣∣∣ =
∣∣∣∣ I
0

∣∣∣∣ . (7.35)

Then the governing equations for the displacements become

K̄MÜ + K̄CU̇ + U = K̄F + Ḡf. (7.36)

These equations have the same form as local theory but with nonlocal constitutive
relations. It is verified both analytically and numerically that the displacement field
so obtained satisfies Eq. (7.19), the essential boundary conditions.

Numerical Examples by Nonlocal Meshless Method

Beam with Different Length Scales

A cantilever beam with fixed ratio of length/height, L/H , is modeled with uni-
formly distributed nodes, as shown in Fig. 7.1. The beam is subjected to an end
load equivalent to an averaged shear stress txy = t0. For the sake of compari-
son of results with different length scales, normalized deflection is defined as
ū ≡ uy(x = L)E/Lt0 and length scale is defined as L/R, where R represents the
size of the long-range interaction. The normalized deflection is plotted in length
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FIGURE 7.1. Meshless particle discretization of the beam.

scales for both meshless local and nonlocal theories in Fig. 7.2. It is seen that
the solution of local theory is independent of the scales, which is well known.
While in the nonlocal solution, the deflections are dependent of the length scales,
it become larger and larger as the size decreases. This means that the material be-
comes less stiff and more compliant. This is consistent with the qualitative results
obtained by atomistic simulations for silicon and quartz (Rudd and Broughton,
1999).

Static Analysis of a Cracked Specimen

Figure 7.3 is a cracked specimen. It has a width w and height 2h. The horizontal
edge crack extends from x = 0 to x = a. A uniformly distributed normal stress,
tyy = σ (t), is applied along the top and bottom surfaces (y = ±h). A plane strain
condition is assumed.

The first case is a static case with σ (t) = σ 0. The h-refinement is implemented
around the crack tip. The solutions of local and nonlocal (R = 0.02w) are obtained.
The normalized stresses, tyy(x, y)/σ 0, of these two cases together with the cor-
responding FE solution and the analytical crack tip solution (Sih and Liebowitz,
1968) are plotted as a function of normalized x coordination, x/w, along the line
crack at y/w = 0.005 in Fig. 7.4.

In Fig. 7.4, the black line is the analytical crack tip solution that serves as a base
reference to compare with the meshless numerical solutions. The green line is the
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FIGURE 7.3. Edge cracked specimen
subjected to mode-I tensile stress.

FE solution that is close to the analytical solution after the crack tip, but deviates
off before the crack tip. The red line is the meshless solution of the local theory
(R = 0). After the crack tip, it is qualitatively in agreement with the analytical
solution, and before the crack tip, although it oscillates more than the FE solution,
the unreasonably large stress at x → a− disappears. With finer mesh for FE method
and denser nodes for meshless method, the oscillation of the numerical solutions
would disappear.

The common characteristics of the analytical, FE, and meshless solutions of local
theory is the stress singularity. It is noted that the nonlocal meshless solution (the
blue line) does not exhibit stress singularity at the crack tip; it yields a continuous
stress field and has smaller oscillations before the crack tip; the stress distribution
along the line crack closely resembles the relation between the cohesive force
acting on bonds and the atomic positions (Masuda-Jindo et al., 1991).
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FIGURE 7.4. Stress distribution before and after the crack tip; red line: meshless solution
of local theory; blue line: meshless solution of nonlocal theory with R = 0.02w; green
line: finite element solution of local theory; black line: analytical crack tip solution of local
theory.
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FIGURE 7.5. Effect of nonlocality on the stress near the crack tip. ------, local solution;
———, nonlocal solution with R = 0.03w.

Dynamic Analysis of the Cracked Specimen

The applied time-dependent loading in this case is expressed as

tyy(x, ±h, t) =
{

σ 0 sin(2π t/t0), if t ≤ t0
0, if t > t0

(7.37)

where t0 = 0.5τ is small compared with the time needed for the longitudinal
wave to reach the line crack from the edges where the loadings are applied. The
normalized stress, tyy/σ

0, at the sampling point nearest to the crack tip of two
subcases, local solution with R = 0 and nonlocal solution with R = 0.03w, are
plotted in Fig. 7.5. It is also seen that the magnitude of the stress in the nonlocal
case is smaller than that in the local case. This is also qualitatively consistent with
that by molecular dynamics simulation (Hoover, 1991).

Three-Point Bending Beam with a Small Edged Crack

The three-point bending problem with an edge crack analyzed in Chapter 6 is
reconsidered. The concrete beam, 12 m in length, 3 m in height, and 1 m in
thickness, is simply supported at two ends and subjected to a concentrated load
of 100 N at the center of the top surface. An edge crack extends from {x, y} =
{4, 0.0} to {4, 0.4}. The normal stresses, txx , of the local theory and the nonlocal
theory are shown in Fig. 7.6. It is clearly observed that (1) based on the local
theory there is a stress singularity near the crack tip and also the solution has an
oscillation and (2) the nonlocal theory removes the stress singularity, reduces the
magnitude of stress, and yields a much smoother stress distribution.

Discussions

Nonlocal theory predicts that, because of material interaction, the material will
become less rigid and the stresses near the crack tip become smaller as the length
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scale decreases, in consistent with atomic model solutions. Most of all, the nonlocal
solution eliminates the singularity at the crack tip and gives a continuous stress
distribution. Nevertheless, it is conceptually and numerically very simple.

The nonlocal constitutive theory brings the influence of strains at distant point
x′ to the stresses at x. Meshless particle methods share this essential feature by
nonlocally constructing the approximation in the entire domain of influence. Mesh-
less methods eliminate the need of constructing mesh and a lot of mesh-related
problems and have great advantages in facilitating h and p adaptivity. The treat-
ments of crack, shear band, and large deformation problems are the fields in which
meshless methods have greatest promise. The crack, dislocation or plastic defor-
mation, and small length scale problems such as MEMS, thin films, which are
originally nonlocal in nature, are the fields in which nonlocality plays an essential
role. Those are the promising fields where nonlocal meshless method has great
application.

The stability of meshless methods is essential for their robustness. There are
three instabilities for the meshless method (Belytschko et al., 2000): (1) the tensile
instability, (2) the stability due to the spurious singular mode, and (3) the material
instability. The material instability often occurs in the case of strain softening which
results in a loss of ellipticity in the governing equation. It has been found that the
particle equations with a Lagrangian kernel do not exhibit the tensile instability
(Belytschko et al., 2000), and incorporating a length scale can remedy the loss of
ellipticity (Chen and Belytschko, 2000). It is thus reasonable to expect that the
stability of meshless methods can benefit from the incorporation with nonlocal
constitutive theory.

The logical and computational structure of meshless methods closely resem-
bles that of ordinary molecular dynamics, although additional state variables are
required. The dynamics, the treatment of boundary conditions, and the analysis
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of chaotic instability are similar too. From this point of view, meshless particle
method should prove particularly valuable in constructing hybrid methods bridging
the gap between the atomistic and continuum views.

Problems

1. Explain why nonlocal theory can help to improve stability of meshless methods.
2. For nonlocal linear elasticity (cf. Eq. (7.10)) with a weight function of quartic

spline, to which order of strain gradients should it be expanded to account for
the effect of integral nonlocal constitutive relations?

3. What is the requirement of the number of sampling points to implement nonlocal
constitutive relations?

4. Make a literature survey on the effect of intrinsic length scale on the improve-
ment of meshless methods.

5. Prove that as the radius of nonlocality R approaches zero, the stress tensor at x
becomes

tij(x) = A0
ijmnemn(x) + a0

ijmnėmn(x),

which is the corresponding local constitutive equation for viscoelastic solid.
Hint: Let f (r ) → δ(r ).

6. Prove that, from Eq. (7.12), if strains and strain rates are constant in space, then
the stresses are also constant in space.

7. Show that for any interior point x whose distance from the nearest point on the
boundary S is greater than R, the function H (x) becomes a constant.



8
Meshless Analysis of Plasticity

In this chapter, we first present the formulation of a constitutive theory of ther-
moviscoelastoplastic (TVEP) continuum with full utilization of thermodynamics.
No restrictive assumption has been made to the magnitude of any independent
constitutive variables. Special attention is given to the notions of irreversibility
and plastic dissipation. The fundamental concept of return mapping algorithm in
computational plasticity is introduced. The special J2 flow theory is presented in
detail. The numerical procedures to obtain the solutions of boundary value prob-
lems by meshless method are outlined. As examples, the problems of finite strain
high-speed impact and of slow crack growth in elastic–plastic solid are solved.
Numerical results are presented and discussed.

Constitutive Relations

For the purpose of abbreviation, let the dependent constitutive variables be denoted
by

Z = {T, Q, ψ, η}, (8.1)

and let the independent constitutive variables be decomposed into two sets

U = {E, θ}, (8.2)

V = {Ė, θ̇ , ∇θ ), (8.3)

then, to construct the constitutive theory for thermoviscoelastic (TVE) material,
one begins with (cf. Lee and Chen (2001) and Chapter 2)

Z = Z(U, V). (8.4)

This seemingly general framework and approach elaborated in Chapter 2 turns out
to be insufficient for the construction of the constitutive theory of plasticity. For
plasticity, one needs to introduce a new set of variables, called internal variables,
as

W = {Ep, R}, (8.5)

125
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where Ep is the plastic strain tensor corresponding to the Lagrangian strain E, and
R, named as the hardening parameters, is a generalized vector of internal variables.
Also, one may define the elastic strain tensor Ee as

Ee ≡ E − Ep. (8.6)

It should be emphasized that the (total) strain E is derivable from the displacement
field; if the plastic strain Ep is obtained, then the elastic strain Ee follows the simple
rule, Eq. (8.6).

To separate the material behavior into two distinct parts: TVE and TVEP, a
scalar-valued yield function is expressed as

f = f (U, V, W), (8.7)

and, for a fixed set of values for W, a hyper surface, named yield surface, is
determined by the equation

f (U, V, W) = 0. (8.8)

The yield function can be chosen in such a way that the TVE region is corresponding
to f < 0. The states of f > 0 are nonadmissible and ruled out in plasticity.

We now define the loading rate as the inner product between the outward normal
to the yield surface and the tangent vector to the trajectory in the {U, V} space,
i.e.,

ξ ≡ ∂ f

∂U
· U̇ + ∂ f

∂V
· V̇

= ∂ f

∂E
: Ė + ∂ f

∂θ
θ̇ + ∂ f

∂Ė
: Ë + ∂ f

∂θ̇
θ̈ + ∂ f

∂∇θ
· ∇ θ̇ . (8.9)

Three distinct cases, unloading, neutral loading, and loading, can be defined by (a)
f < 0, (b) f = ξ = 0, and (c) f = 0, ξ > 0, respectively. The internal variables
W will remain constant in cases of unloading and neutral loading. The evolution
equations for the internal variables are postulated to be

Ẇ = ξ̂ πφ(U, V, W), (8.10)

where ξ̂ ≡ 0 if ξ ≤ 0 and ξ̂ ≡ ξ if ξ > 0.
One should impose the consistency condition of plasticity: f = 0 and ξ ≥ 0 lead

to ḟ = 0, in other words, a TVEP state leads to another TVEP state. To enforce
this consistency condition in case of loading, one must have

ḟ = 0 = ∂ f

∂U
· U̇ + ∂ f

∂V
· V̇ + ∂ f

∂W
· ξπϕ

= ξ + ∂ f

∂W
· ξπϕ, (8.11)

which implies

1 + π
∂ f

∂W
· ϕ = 0. (8.12)
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Then π can be solved as

π = −
{

∂ f

∂W
· ϕ

}−1

. (8.13)

Now the Kuhn–Tucker conditions for plasticity can be written as

f ≤ 0, ξ̂ ≥ 0, ξ̂ f = 0. (8.14)

Following the axiom of equipresence, the constitutive relations of TVEP material
are now initiated as (also, take a note of Eqs. (8.7) and (8.10))

Z = Z(U, V, W). (8.15)

Substituting Eqs. (8.15) and (8.10) into the Clausius–Duhem inequality, Eq. (2.81),
it results

− ρ0

{
∂ψ

∂E
· Ė + ∂ψ

∂θ
θ̇ + ∂ψ

∂Ė
· Ë + ∂ψ

∂θ̇
θ̈ + ∂ψ

∂∇θ
· ∇ θ̇ + ∂ψ

∂W
· ξ̂πϕ + ηθ̇

}
+ T · E − Q · ∇θ/θ ≥ 0, (8.16)

which implies

ψ = ψ(U, W) = ψ(E, θ, Ep, R), (8.17)

η = ηe + ηd = −∂ψ

∂θ
+ ηd (U, V, W), (8.18)

T = Te + Td = ρ0 ∂ψ

∂E
+ Td (U, V, W), (8.19)

Td : Ė − ρ0ηd θ̇ − Q · ∇θ/θ ≥ 0, (8.20)

∂ψ

∂W
· ϕ ≤ 0, (8.21)

∂ f

∂W
· ϕ < 0, (8.22)

where the last two inequalities came from the fact that π cannot be zero (cf. Eq.
(1.12)); therefore it can never change sign, and without loss of generality, we
choose π > 0.

In the following, we derive the governing equations of classical rate-independent
plasticity in pure mechanical domain. First, we exclude V = {Ė, θ̇ , ∇θ} from the
list of independent constitutive variables. Then immediately we have

η = ηe = −∂ψ

∂θ
, ηd = 0, (8.23)

T = Te = ρ0 ∂ψ

∂E
, Td = 0 (8.24)

Q = 0, (8.25)

and inequality, Eq. (8.20), becomes a null statement. Green and Naghdi (1965), in
their pioneer work on theory of plasticity, proposed that the stresses and entropy
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for thermoelastoplastic continuum are only functions of temperature and elastic
Lagrangian strains. Following this idea, we further assume that the Helmholtz free
energy density can be expressed as a polynomial of Ee = E − Ep and θ up to
second order as

ψ = ψ(E − Ep, θ ) = ψ(Ee, θ )

= {
S0 − ρ0η0T − 1

2ρ0cT 2/T 0 + 1
2 AKLMN Ee

KL Ee
MN

}/
ρ0 (8.26)

then, from Eqs. (8.23) and (8.24), it results

η = η0 + cT

T 0
, (8.27)

T = A : Ee or TKL = AKLMN Ee
MN, (8.28)

where T 0 is the temperature of the natural state, may also be referred to as reference
temperature, and T ≡ θ − T 0 is the temperature variation from the reference tem-
perature with the assumption that the temperature variation is small with respect
to T 0, i.e.,

T 0 > 0, | T | � T 0. (8.29)

In such a way, the thermal and mechanical parts are separated and the second-
order Piola–Kirchhoff (PK2) stress tensor is linearly proportional to the elastic
Lagrangian strain tensor.

Now we may rewrite the yield function as

f = f (T, R). (8.30)

Similarly, the evolution equations for the internal variables can be rewritten as

Ėp = γ g(T, R), (8.31)

Ṙ = −γ h(T, R), (8.32)

where g and h are prescribed constitutive functions that define the direction of
the plastic flow and type of hardening; γ is a nonnegative function and obeys the
following Kuhn–Tucker conditions

γ ≥ 0, f (T, R) ≤ 0, γ f (T, R) = 0. (8.33)

The flow rule, Eq. (8.31), and the hardening rule, Eq. (8.32), are for the general
nonassociative model. For associative model, Eqs. (8.31) and (8.32) are specialized
as

Ėp = γ
∂ f

∂T
, (8.34)

Ṙ = −γ D · ∂ f

∂R
, (8.35)

where D is a symmetric matrix of plastic moduli and assumed to be positive definite.
The physical meaning of Eq. (8.34) is that the plastic strain tensor is increasing
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in the direction parallel to the outward normal of the yield surface in the stress
space.

Return Mapping Algorithm

In this section, we describe the numerical problems associated with the elastic–
plastic process, which as we can see now is highly nonlinear, and a very powerful
numerical algorithm, named return mapping algorithm (Simo and Hughes, 1998).

At time t = tn, we assume that the total strain, the plastic strain, and all the
other internal variables are known, i.e.,

E(tn) = En, Ep(tn) = Ep
n, R(tn) = Rn. (8.36)

The elastic strain and stress are dependent variables and can be calculated as

Ee(tn) = Ee
n = En − Ep

n, (8.37)

T(tn) = Tn = A : Ee
n. (8.38)

Now the problem is to update the basic variables E, Ep, R at t = tn+1 assuming
that the incremental displacement field �U is obtained through a finite element
or a meshless analysis. The incremental displacement field being added to the
displacement field at t = tn gives the displacement field Un+1 at t = tn+1. Now
this problem can be stated in the following mathematical form:

En+1 = {∇XUn+1 + (∇XUn+1)t + (∇XUn+1) · (∇XUn+1)t }/2, (8.39)

Tn+1 = A : (En+1 − Ep
n+1), (8.40)

Ep
n+1 = Ep

n + �γ
∂ f (Tn+1, Rn+1)

∂T
, (8.41)

Rn+1 = Rn − �γ D · ∂ f (Tn+1, Rn+1)

∂R
, (8.42)

where �γ = γn+1�t, and the Kuhn–Tucker conditions become

f (Tn+1, Rn+1) ≤ 0, �γ ≥ 0, �γ f (Tn+1, Rn+1) = 0. (8.43)

The return mapping algorithm splits the problem into two parts, often referred
as the elastic-predictor and the plastic-corrector problems. The elastic predictor
creates a trial elastic state as follows:

Ẽp
n+1 = Ep

n, (8.44)

R̃n+1 = R̃n, (8.45)

T̃n+1 = A : (En+1 − Ẽp
n+1), (8.46)

f̃n+1 = f (T̃n+1, R̃n+1), (8.47)

where a “∼” placed on a variable indicates the trial value of that variable at t = tn+1.
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An important concept in plasticity is the convexity of the elastic domain. A
scalar-valued function g of a general vector v is said to be convex if, for 0 ≤ β ≤ 1,

g(βv1 + (1 − β)v2) ≤ βg(v1) + (1 − β)g(v2). (8.48)

One may easily prove that g(v) is convex if and only if

g(v1) − g(v2) ≥ (v1 − v2) · ∂g

∂v
. (8.49)

The convexity of the elastic domain, equivalent to that the yield function f (T, R)
is convex. Simo and Hughes (1998) proved that

f̃n+1 − fn+1 ≥ �γ

{
∂ fn+1

∂T
: A :

∂ fn+1

∂T
+ ∂ fn+1

∂R
: D :

∂ fn+1

∂R

}
. (8.50)

Since A and D are positive definite, Simo and Hughes (1988) further show that

f̃n+1 ≤ 0 ⇒ fn+1 ≤ 0 and �γ = 0, (8.51)

f̃n+1 > 0 ⇒ fn+1 = 0 and �γ > 0. (8.52)

This means the possible situation of loading/neutral or loading/unloading is solely
decided by f̃n+1. For the case f̃n+1 > 0, the Kuhn–Tucker conditions are violated
by the trial elastic state and the consistency has to be restored by the plastic
corrector. Dividing Eqs. (8.41) and (8.42) by �γ, the plastic-corrector problem
can be rephrased as a nonlinear initial value problem governed by the following
ordinary differential equations and initial conditions for Ep(�γ ) and R(�γ ):

dEp

dδγ
= ∂ f (A : (En+1 − Ep), R)

∂T
, (8.53)

dR
d�γ

= −D · ∂ f (A : (En+1 − Ep), R)

∂R
, (8.54)

Ep(�γ = 0) = Ep
n, (8.55)

R(�γ = 0) = Rn. (8.56)

This means the internal variables are the solutions of the initial value problems
specified by the differential equations, Eqs. (8.53) and (8.54), and the initial con-
ditions, Eqs. (8.55) and (8.56). Equations (8.53)–(8.56) can also be expressed in
stress space as

dT
d�γ

= −A :
∂ f (T, R)

∂T
, (8.57)

dR
d�γ

= −D · ∂ f (T, R)

∂R
, (8.58)

T(�γ = 0)x = T̃n+1, (8.59)

R(�γ = 0) = R̃n+1 = Rn. (8.60)
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In other words, we need to solve Eqs. (8.57) and (8.58) to obtain T and R as function
of �γ starting from the trial elastic state, Eqs. (8.59) and (8.60), until consistency
is restored by returning to the boundary of the elastic domain, equivalently, by the
value of �γ such that

f (T(�γ ), R(�γ )) = 0. (8.61)

J2 Flow Theory

In this section, we introduce a special and classical model for metal plasticity,
often named as the J2 flow theory. It has two distinct forms and needs different
treatments, one for three-dimensional and plane strain problems and another for
plane stress problems (Simo and Hughes, 1998).

J2 Flow Theory for Three-Dimensional and
Plane Strain Problems

First, we define the deviatoric stress tensor, with reference to the PK2 stress tensor,
as

SKL ≡ TKL − 1

3
TMMδKL or S ≡ T − 1

3
tr(T)I. (8.62)

Second, we assume that the material in question is isotropic, and then the fourth-
order elastic property tensor A can be reduced to

AKLMN = λδKLδMN + µ(δKMδLN + δKNδLM), (8.63)

where λ and µ are the two Lame constants.
It is worthwhile at this moment to recall Eqs. (2.77) and (2.78)

TKL = j tkl XK,k XL,l, tkl = j−1TKLxk,K xl,L. (8.64)

Note that, in small strain theory, one has the approximations: xk,K
∼= δkK, XK,k

∼=
δKk, and ρ ∼= ρ0 ⇒ j ∼= 1, which make Eq. (8.64) read as

TKL = j tkl XK,k XL,l
∼= tklδKkδLl

tkl = j−1TKLxk,Kxl,L
∼= TKLδkKδlL. (8.65)

In other words, in small strain theory, there is no difference between the Cauchy
stress tensor and the second-order Piola–Kirchhoff stress tensor. What we derive
in the following is valid for finite strain theory and certainly it is applicable to
small strain theory.

From Eq. (8.62), it is seen that the trace of the deviatoric stress tensor is vanish-
ing, i.e., tr(S) = SKK ≡ 0. A choice of internal variables, typical for metal plasticity,
is

R = {β, β̄}, (8.66)
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where β is a second-order symmetric tensor with tr(β) = 0 and defines the center
of the von Mises yield surface in the stress space and β̄ defines the isotropic
hardening of the von Mises yield surface. The resulting J2 model has the following
yield condition, flow rule and hardening law:

f (T, R) = ||ξ|| −
√

2/3(σY + cH β̄), (8.67)

Ėp = γ
ξ

||ξ|| , (8.68)

β̇ = γ
2

3
(1 − c)H

ξ

||ξ|| , (8.69)

˙̄β = γ
√

2/3, (8.70)

where

ξ ≡ S − β, ||ξ|| ≡
√
ξ : ξ, (8.71)

σY is the von Mises strength; H is a constant representing the slope of the stress–
strain relation in the plastic loading; and c is a constant with 0 ≤ c ≤ 1. Since,
from Eq. (8.69), ||Ėp|| = γ, it is seen that Eq. (8.70) implies

β̄(t) =
∫ t

0

√
2/3||Ėp(τ )||dτ , (8.72)

which is the reason that β̄ is usually named as the equivalent plastic strain. Also,
it is noted that

1. c = 1implies β̇ = 0 which is the case of isotropic hardening;
2. c = 0 implies that β̄ does not affect the size of the yield surface—it is the case

of kinematic hardening.

For this special J2 model, one may obtain an exact closed-form solution for �γ

in using the return mapping algorithm:

f̃n+1 = ||S̃n+1 − βn|| −
√

2/3(σY + cH β̄n), (8.73)

�γ = f̃n+1

2µ + (2/3)H
. (8.74)

Then the plastic strain and internal variable at t = tn+1 can be updated as

Ep
n+1 = Ep

n + �γ
S̃n+1 − βn

||S̃n+1 − βn||
, (8.75)

βn+1 = βn + 2

3
(1 − c)H�γ

S̃n+1 − βn

||S̃n+1 − βn||
, (8.76)

β̄n+1 = β̄n +
√

2/3�γ. (8.77)

One may readily prove that with the updated values for Ep
n+1,βn+1, β̄n+1 from

Eqs. (8.75) to (8.77) and the updated values of Ee
n+1, Tn+1, Sn+1 the value of the
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yield function

fn+1 = ||Sn+1 − βn+1|| −
√

2/3(σY + cH β̄n+1)

indeed returns to zero.

J2 Flow Theory for Plane Stress Problems

Since, in the case of plane stress, T31 = T32 = T33 = 0, it is convenient to define
the following.

σ ≡ {T11, T22, T12}t , (8.78)

ε ≡ {ε11, ε22, 2ε12}t , (8.79)

εp ≡ {
εp

11
, εp

22
, 2εp

12

}t
, (8.80)

P ≡ 1

3

∣∣∣∣∣∣
2 −1 0

−1 2 0
0 0 6

∣∣∣∣∣∣ , (8.81)

C ≡ E

1 − v2

∣∣∣∣∣∣∣
1 v 0
v 1 0

0 0
1 − v

2

∣∣∣∣∣∣∣ , (8.82)

where E and v are Young’s modulus and Poisson’s ratio.
A special J2 model for plane stress problem may be represented by

ξ ≡ σ − β, (8.83)

f = (ξ · P · ξ)1/2 −
√

2/3K (β̄), (8.84)

ε̇p = γ P · ξ, (8.85)

β̇ = γ
2

3
Hξ, (8.86)

˙̄β = γ
√

2/3(ξ · P · ξ)1/2, (8.87)

σ = C · (ε − εp) (8.88)

The corresponding return mapping algorithm stipulates

ε
p
n+1 = εp

n + ∆γP · ξn+1, (8.89)

βn+1 = βn + 2

3
∆γHξn+1, (8.90)

β̄n+1 = β̄n +
√

2/3�γ f̄ , (8.91)

where

f̄ ≡ (ξn+1 · P · ξn+1)1/2, (8.92)

and �γ is the solution of the following nonlinear scalar equation

f̄ 2 = 2

3

[
K (β̄n +

√
2/3�γ f̄ )

]2
(8.93)
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Simo et al. (1988) showed that, for linear kinematic hardening and certain forms of
isotropic hardening, the discrete consistency equation reduces to a quartic equation
that can be solved in closed form. For the case of pure kinematic hardening,
the shape of the yield surface does not change, i.e., Eq. (8.93) can be rewritten
as

f̄ 2(�γ ) = 2

3
σ 2

Y
�= R2, (8.94)

which leads to

γ̄ 4 +
(

2

C3
+ 2

C4

)
γ̄ 3 +

(
4

C3C4
+ 1 − C2

C2
4

+ 1 − C1

C2
3

)
γ̄ 2

+ 2

(
1 − C2

C3C2
4

+ 1 − C1

C4C2
3

)
γ̄ + 1 − C1 − C2

C2
3C2

4

= 0, (8.95)

where

C1 = (ξ̃11 + ξ̃22)2

6R2
, (8.96)

C2 = (ξ̃11 − ξ̃22)2 + 4ξ̃ 2
12

2R2
, (8.97)

C3 = 1

3(1 − v)
+ 2H

3E
, (8.98)

C4 = 1

1 + v
+ 2H

3E
, (8.99)

and ξ̃ is the trial value of ξ at t = tn+1; γ̄ ≡ E�γ .
It can be further showed that this fourth-order algebraic equation has one pos-

itive root, one negative root, and a pair of complex conjugate roots (Hunger-
ford, 1974; Herstein, 1964). In other words, �γ can be analytically and uniquely
determined.

Meshless Analysis of High-Speed Impact/Contact Problem

The underlying structure of the finite element method that originates from their
reliance on a mesh is not well suited to the treatment of extreme mesh distortion.
As a consequence, the application of finite element method to large deformation
problem involving severe mesh distortion is limited. On the other hand, meshless
methods require no explicit mesh in computation (Belytschko et al., 1994, 1996,
2000a; Chen et al., 2002; Jun et al., 1998) and therefore avoid mesh distortion
difficulties in large deformation analysis. One of the application areas in which
meshless has obvious advantages over finite element method is high-speed impact
problem.



Meshless Analysis of High-Speed Impact/Contact Problem 135

High-speed impact is a dynamic large-strain elastic–plastic problem. Central
difference method is utilized to find solutions as functions of time. It should also
be noted that high-speed impact is a contact problem between two material bodies.
During the process of contact, penetration is prohibited but separation is allowed.
In fact, separation begins as soon as the pair of points in contact has the tendency to
move apart. In meshless method, the displacement, as well as the velocity and the
acceleration, of a point is not equal to the nodal value associated with that point;
rather, it is a combination of nodal values of points in the neighborhood of that
point; however, the instantaneous contact force being incorporated in the central
difference method is only applicable to the point in question. This makes meshless
analysis of contact problem very challenging and requires special attention during
the formulation as well as the numerical implementation.

We recall the momentum equation (balance of linear momentum) as

tji,j + ρ fi − ρv̇i = 0. (8.100)

Take the inner product between the momentum equation and a test function (here
we choose the test function to be the virtual velocity) and integrate it over the
current (deformed) configuration, it results∫

v

δvi (t ji, j + ρ fi − ρv̇i )dv = 0. (8.101)

Assuming that (1) virtual velocity vanishes on all the boundary on which essential
boundary conditions are specified and (2) stresses are continuous on all mate-
rial interfaces (this requirement is easily guaranteed by using meshless method),
Eq. (8.101) leads to∫

v

δviρv̇i dv =
∫

v

δviρ fi dv +
∫

�t

δvi t̄i ds −
∫

v

t jiδvi, j dv, (8.102)

where the second term in the RHS is the surface integral over all the boundaries
on which the surface traction is specified as (with n being the unit outward normal
on �t )

n j t ji ≡ ti = t̄i . (8.103)

In meshless method, as well as in finite element method, let Nα(X) be the shape
functions where X denotes the Lagrangian coordinate and α is referring to the αth
node. Then the unknown function (trial function), in this case the displacement
vector, and the test function at any generic point X can be expressed as

ui (X, t) = Nα(X)Uiα(t),

δvi (X, t) = Nα(X)δViα(t), (8.104)

where Uiα and δViα are the i th component of nodal values of the displacement and
virtual velocity of the αth node, respectively. Then those terms in Eq. (8.102) can
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be further derived as∫
v

δviρ fi dv +
∫

�t

δvi t̄i ds = δViα

{∫
v

Nαρ fi dv +
∫

�t

Nα t̄i ds

}

= δViα

{∫
V

Nαρ0 fi dV +
∫

�0
t

Nα t̄0
i dS

}
≡ δViα f ext

iα , (8.105)∫
v

t jiδvi, j dv = δViα

∫
v

t ji Nα, j dv

= δViα

∫
v

j−1xi,K x j,L TKL Nα, j dv

= δViα

∫
V

xi,K TKL Nα,LdV

= δViα

∫
V

(δi K + Nβ,K Uiβ)TKL Nα,LdV

≡ δViα f int
iα , (8.106)

∫
v

δviρv̇i dv = δViα

{∫
v

Nα Nβρdv

}
V̇iβ = δViα

{∫
V

Nα Nβρ0dV

}
V̇iβ.

(8.107)
Because Eq. (8.102) has to stand for arbitrary δViα, we then derive

Mαβ V̇iβ = f ext
iα − f int

iα , (8.108)

where the mass matrix, defined as

Mαβ ≡
∫

V
ρ0 Nα NβdV , (8.109)

is constant in time and can be calculated in the Lagrangian setting. It should be
emphasized that the formulation (including governing equation, Eq. (8.108), and
definitions for f ext

iα , f int
iα , Mαβ in Eqs. (8.105), (8.106), and (8.109), respectively)

is exact for dynamic finite strain plasticity. Now we diagonalize the mass matrix
by row-sum technique

Md
α α =

∑
β

Mαβ, (8.110)

where Md is the diagonal, lumped mass matrix and the bars underlying the
α indicate that usually understood summation convention is suspended. Now
Eq. (8.108) is reduced to

V̇iα =
(

f ext
iα − f int

iα

)/
Md

α α. (8.111)

For abbreviation, we now rewrite Eq. (8.111) as

an ≡ ün = f n/Md , (8.112)
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where the superscript n is referring to solution at t = tn . The procedures of solving
the governing equation, Eq. (8.112), by the central difference method are given as
follows (Belytschko et al., 2000b):

Step 1. Partially update the nodal velocities.

vn+1/2 = vn + 1

2
�tan. (8.113)

(At this moment, we assume that we know un, vn, an . This assumption is per-
fectly all right because at t = 0 we know u0 and v0 and from Eq. (8.112) we
know a0.)

Step 2. Enforce velocity boundary conditions. Set

vi
(
Xγ , t (n+1)/2

) = v̄i
(
Xγ , t (n+1)/2

)
, (8.114)

if the γ th node is one of those, we specify the i th component of the velocity
at t = t (n+1)/2 to be v̄i

(
Xγ , t (n+1)/2

)
. Note that in finite element analysis,

Eq. (8.114) simply reads as

V (n+1)/2
iγ = v̄i (Xγ , t (n+1)/2). (8.115)

However, in meshless method, we know that

Nα(Xβ) �= δαβ, (8.116)

ui (Xα, t) �= Uiα(t), vi (Xα, t) �= Viα(t). (8.117)

The velocity boundary conditions, Eq. (8.114), should be enforced by finding
V (n+1)/2

iγ such that the following is satisfied

V (n+1)/2
iβ Nβ(Xγ ) = v̄i (Xγ , t1/2). (8.118)

This step should be performed with extreme caution.
Step 3. Update nodal displacements.

un+1 = un + �t v(n+1)/2. (8.119)

Step 4. Computer nodal force using Eqs. (8.105) and (8.106).
Step 5. Compute an+1 using Eq. (8.112).
Step 6. Partially update nodal velocities.

vn+1 = v(n+1)/2 + 1

2
�tan+1. (8.120)

Step 7. Update counter, let n ← n + 1. Go to Step 1 if the entire process of
simulation has not been completed yet.

Note that the central difference method is an explicit method of which the
condition of stability requires that the time step �t ≡ tn+1 − tn cannot exceed a
critical value �tc, which is given by

�tc = 2

ωmax
, (8.121)
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Initial velocity v = 50

Fixed and rigid 

FIGURE 8.1. A beam impacting with
a rigid cylinder with an initial veloc-
ity (meshless model).

where ωmax is the maximum frequency of the corresponding linearized dynamic
system. The suggested �t equals c�tc with 0.8 < c < 0.98 (Belytschko et al.,
2000b).

We now consider the impact between two bodies: one is a rigid cylinder (radius =
0.4 m) and the other is a deformable beam (0.2 m × 2 m), as shown in Figs. 8.1 and
8.2. There are two cases: (1) the cylinder is fixed in space and is impacted by a beam
with an initial velocity v0 = 50 m/s and (2) the fixed end beam is impacted by the
cylinder moving with a constant velocity vc = 100 m/s. The relevant input data are

E = 0.21 × 1012 N/m2, υ = 0.28, σY = 0.2 × 109 N/m2,
H = 0.21 × 109N/m2, c = 1, ρ0 = 0.785 × 104 Kg/m3,

where E is the Young modulus, υ the Poisson ratio, σY the von Mises strength,
H a constant representing the slope of the stress–strain relation in plastic loading,
and c a constant with 0 ≤ c ≤ 1, with c = 1 implies β̇ = 0, which is the case of
isotropic hardening; and c = 0 implies that β̄ does not affect the size of the yield
surface—it is the case of kinematic hardening; ρ0 is the mass density. To test the
applicability of the numerical implementation of meshless method on large-strain
high-speed impact/contact simulation, very high-speed impact velocity is used
in each case. It is noted that these velocities are higher than those in the case of
regular car crash. This then demonstrates the applicability of meshless method on
the simulation of high-speed impact in general sense.

Case 1. A beam impacting with a rigid cylinder with initial velocity 50 m/s.

This case is concerned with the beam impacting with a rigid cylinder at an initial
velocity as illustrated in Fig. 8.1. The objective is to test the contact/separation
algorithm during large-strain elastic–plastic deformation. Some of the numerical
results of Case 1 are shown in Fig. 8.2a–d. They are the snap shots of von Mises
stress distribution on deformed model during the contact/separation process: initial
contact, full contact, initial separation, and full separation. As can be seen from the
results that the numerical implementation of meshless method on dynamic, large
strain, elastic–plastic, impact/contact/separation is successful.

Case 1. The rigid cylinder impacting with a beam with constant velocity 100 m/s.

In this case, the beam is fixed at the two ends and the rigid cylinder is impacting
with the beam with a constant high-speed velocity of 100 m/s, as shown in Fig. 8.3.
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(a) Initial contact (meshless result)

(b) Full contact (meshless result)

FIGURE 8.2. Von Mises stress distribution during impact/contact/separation (impact with
initial velocity).
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FIGURE 8.2. Continued

Some snap shots are displayed in Fig. 8.4a–e. The objective of this simulation is to
test the applicability of meshless method on extreme large deformation involving
contact/friction.

The above results have demonstrated the applicability of meshless method on
extreme large deformation and on impact/contact problem. To compare the per-
formance of meshless method with finite element method, we have coded a finite
element method with the same exact analytical treatment so that the mesh and
meshless methods can be compared in the aspect of methodology. As can be seen
from Fig. 8.5b, the simulation by finite element method collapsed at very large de-
formation. This shows the limitation of the applicability of finite element method
on large deformation problem.

The first case of the impact problem, a moving beam impacts with a rigid
and fixed cylinder, aims at the simulation of a moving vehicle encountering an

Rigid impactor 
with constant speed

v = 100 m/s

FIGURE 8.3. A rigid cylinder is impacting with a beam with an initial velocity (meshless
model).



(a)

(b)

FIGURE 8.4. von Mises stress distribution during (a) initial impact, (b) impact, (c) impact
with large deformation, (d) impact with very large deformation, and (e) impact with extreme
large deformation.



142 8. Meshless Analysis of Plasticity

(c)

(d)

FIGURE 8.4. Continued
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(e)

FIGURE 8.4. Continued

obstacle, while the second case, a moving rigid cylinder impacts on a fixed end
beam, belongs to a general category of metal forming problems. A much more
realistic but difficult problem would be the analysis of impact process between
two deformable bodies.

Both extreme large deformation and contact/separation modeling have been a
research subject pursued by many researchers. The combination is more chal-
lenging and is often involved in crash and impact problems. The two numerical
cases presented have demonstrated a very promising feature of the application of
meshless method on crash and impact simulations.

Incremental Plasticity and Slow Crack Growth Problem

From now on, we focus our attention on quasi-static problems of plasticity with
small strain approximations. Recall the governing equation, Eq. (6.35), of the static
problems in elasticity from Chapter 6 and recast it for the quasi-static problems
as ∣∣∣∣ K G

G′ 0

∣∣∣∣
∣∣∣∣ �U
��

∣∣∣∣ =
∣∣∣∣�F
�f

∣∣∣∣ , (8.122)
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(a)

breakdown

(b)

FIGURE 8.5. Frame display of (a) meshless result and (b) finite element result showing the
collapse of the computation.

where �U and �� are the incremental nodal displacements and Lagrange multi-
pliers, respectively; and, according to Eqs. (6.38) and (6.39), �F and �f may be
rewritten as

�Fα =
∫

�t

�t̄ jφ jαd�, (8.123)

� fα =
∫

�u

�ū jψ jαd�. (8.124)

However, in plasticity, �F should include an additional term due to the application
of the return mapping algorithm. It is further discussed as follows. First, we note
that, by writing ∫

�

tij BijαdΩ = F∗
α , (8.125)
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F∗ is the nodal force due to the stress tensor. If the stress tensor is further related
to strain tensor as

tij = Aijklekl, (8.126)

then we obtain (cf. Eq. (6.36))

F∗
α =

{∫
�

Aijkl Bijα Bklβd�

}
Uβ = KαβUβ. (8.127)

In other words, in solving problem in plasticity, the first step is to create a trial
elastic state and it is equivalent to employing

�tij = Aijkl�ẽkl, (8.128)

and utilizing Eqs. (8.122), (8.103), and (8.124) to obtain the increment displace-
ments and, subsequently, the incremental strains. If the yield function evaluated
at the trial elastic state is less than or equal to zero, the process is elastic and the
trial state is taken as the actual state. On the other hand, if the trial state violates
the Kuhn–Tucker conditions and the return mapping algorithm is used to update
the stresses and all the internal variables, it is emphasized that the stresses are not
simply calculated by Eq. (8.128); F∗ calculated by Eqs. (8.125) and (8.127) is very
much different. The differences should be considered as the residual nodal force,
which will be balanced by iteratively solving Eq. (8.122) for �U and �Λ with
�f = 0 and

�Fα =
∫

�

tij Bijαd� − KαβUβ. (8.129)

Fracture mechanics deals with the rupture of solids in the presence of cracks.
Linear elastic fracture mechanics (LEFM) was originally developed to describe
crack growth and fracture under essentially elastic conditions, as the name suggests.
However, such conditions are met only for plane strain fracture of high-strength
metallic materials and for fracture of intrinsically brittle materials like glasses,
ceramics, and rocks. Later, it was shown that LEFM concepts could be slightly
altered to cope with limited plasticity in the crack tip regime. Nevertheless, there are
many important classes of materials that are too ductile to permit description of their
behavior by LEFM. It is observed that cracked specimens made of ductile materials
subjected to monotonically and slowly increasing load show a considerable amount
of crack tip plasticity and nonnegligible amount of stable crack growth prior to the
onset of fast fracture.

During the process of crack growth, even in the case of two-dimensional self-
similar crack growth, the crack size becomes a monotonically increasing but un-
known variable. Precisely speaking, one more unknown variable corresponds to
the need of one more governing equation for the system. In order to establish the
governing equation for the crack size, various kinds of relations between the crack
size and the other fracture parameters have been proposed and tested (Lee et al.,
1996, 1997). Here, we take the experiment curve relating the applied load with
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X

yyt = t

Y

yyt = t

FIGURE 8.6. Center-cracked specimen
subjected to mode-I tensile stress.

the incremental crack size as an input and calculate the displacements, strains,
stresses, internal variables, and plastic energy as outputs.

A rectangular plate of length 2L , width 2W , and thickness B with a centered
line crack of initial crack size 2a subjected to symmetric boundary conditions is
shown in Fig. 8.6. Therefore, only the first quadrant of the plate R = {x, y|0 ≤ x ≤
W, 0 ≤ y ≤ L} needs to be analyzed. The specimen is made of 2024-T3 aluminum
alloy. A realistic experimental curve relating the applied load t̄ and crack size a
is shown in Fig. 8.7. The J2 flow theory with plane stress condition is used to
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FIGURE 8.7. Applied stress (tyy = t̄)
vs. crack size (a).
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(a) no crack in the domain of influence (b) the presence of a crack (c) crack growth

•• •

FIGURE 8.8. Illustration of visibility test.

describe the material behavior of the cracked specimen. The boundary conditions
may be specified as

tyy = t̄, txy = 0 on y = L , 0 ≤ x ≤ W, (8.130)

txx = txy = 0 on x = W, 0 ≤ y ≤ L , (8.131)

tyy = txy = 0 on y = 0, 0 < x ≤ a, (8.132)

uy = txy = 0 on y = 0, 0 ≤ x ≤ W, (8.133)

ux = txy = 0 on x = 0, 0 ≤ y ≤ L . (8.134)

It is seen that the essential boundary conditions uy = 0 along y = 0, x ∈ [a, W ],
and ux = 0 along x = 0, y ∈ [0, L] are the consequences of the mirror symmetries
that the first quadrant of the specimen has. Also, the line crack {x, y|y = 0, 0 ≤
x ≤ a} is a barrier. In finite element analysis, the presence of mirror symmetries or
barriers does not present a major difficulty. On the contrary, in meshless analysis,
the presence of mirror symmetry and/or barrier needs special treatment as indicated
in the previous chapter. Moreover, in crack growth problem, the size of the crack,
i.e., the geometry of the barrier, is a variable. This will make the problem even
more difficult to solve. Figure 8.8 demonstrates that the presence of a crack affects
the “visibility” of region near the crack tip and, as crack tip advances, the effect is
even more pronounced. The essential step-by-step procedures for solving the slow
crack growth problem by using the meshless method are listed as follows.

Step 1. Initialize the stresses, strains, nodal displacements, Lagrange multipliers,
and all the internal variables. Set n = 1.

Step 2. Based on the current crack size, determine the shape functions φ jα and ϕ jα

and the derivatives of ϕ, i.e., Bijα ≡ (φiα, j + φ jα,i )/2. Form matrices K and G
according to Eqs. (6.36) and (6.37), respectively. Calculate the forcing term

Fα =
∫

�

ρ fiφiαdΩ +
∫

�t

t̄ j (n)φ jαd�, (6.38)∗

fα =
∫

�u

ū j (n)ψ jαd�, (6.39)∗

�Fα =
∫

�t

{t̄ j (n) − t̄ j (n − 1)}φ jαd�, (6.123)∗

� fα =
∫

�u

{ū j (n) − ū j (n − 1)}ψ jαd�. (6.124)∗
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Step 3. Solve Eq. (8.122) for the incremental nodal displacements �U and La-
grange multipliers ��.

Step 4. Update all the variables, utilizing the return mapping algorithm if needed.
Then calculate the nodal forces as

F̂α =
∫

�

tij Bijαd� + Gαβ�β +
∫

�

ρ fiφiαd�, (8.135)

f̂α = GβαUβ. (8.136)

Define the error as

e ≡ ||F̂ − F|| + ||f̂ − f||. (8.137)

If e is less than an error tolerance, then increase n by one and set the crack size
at a(n) and go to Step 2; otherwise, set

�F = F̂ − F, �f = f̂ − f, (8.138)

and go to Step 3.

A general purpose computer software for meshless analysis of two-dimensional,
plane strain and plane stress, plasticity problems has been developed. It is capable
of solving crack growth problems. The special treatment for the presence of mirror
symmetries and barriers is incorporated. In this work, a center-cracked specimen
(cf. Fig. 8.6) subjected to monotonically increasing load (cf. Fig. 8.7) has been
analyzed. The relevant input data are:

L = 6.0 in., W = 6.0 in., a0 = 3.0 in., B = 0.062 in., (8.139)

E = 10, 300 ksi, υ = 0.33, σY = 55 ksi, H = 250 ksi, (8.140)

and, for the case of plane strain, a combined isotropic/kinematic hardening rule,
c = 0.5, is assumed. The applied loading tyy = t̄ increases from 12.5 ksi at a0 =
3.0 in. to 17.1 ksi at a = 3.25 in. From the geometry of the specimen, this is
considered as a plane stress problem. As output, for plane stress case, plastic
energy, P, defined as

P =
∫

�

{∫ t

0
tijε̇

p
ijdτ

}
d�, (8.141)

is shown as a function of the crack size in Fig. 8.9; the stress distributions of
tyy are shown in Fig. 8.10. For illustrative purpose, we use the same input data
(Fig. 8.7) for plane strain case and the output data are shown in Figs. 8.11 and
8.12.

In fracture mechanics, crack size is an ever-increasing variable, so is plas-
tic energy due to the second law of thermodynamics. Therefore, plastic energy
should be a monotonic function of crack size and in this sense Fig. 8.9 has a
profound physical meaning. The relation between plastic energy and crack size
being linear makes it possible to serve as a criterion for slow crack growth process
(Lee et al., 1996, 1997). Figure 8.10a,b clearly indicates that, as crack grows, the
plastic region and the stresses in front of the crack tip increase and in the wake
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FIGURE 8.9. Plastic energy vs.
crack size.

(a)

(b)

FIGURE 8.10. (a) Stress distribution
(tyy) at initial crack size a = 3.0 in.
(plane stress case) and (b) Stress dis-
tribution (tyy) as crack size grows to be
a = 3.25 in. (plane stress case).
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(a)

FIGURE 8.11. (a) Stress distribution
(tyy) at initial crack size a = 3.0 in.
(plane strain case), (b) stress distri-
bution (tyy) as crack size grows to
be a = 3.25 in. (plane strain case).

(b)

of the advancing crack tip an unloading process is ongoing and the stresses are
reduced.

For illustrative purpose, we use the same input data (Fig. 8.7) for plane strain
case and the stress distributions are shown in Fig. 8.11a,b. In this case, the mirror
symmetry with respect to the x–z plane was not utilized, the symmetry of the stress
distribution shown in Fig. 8.11 indicates the validity of the computer software used
in this work. The opening stresses tyy for a = 3.00 in. and a = 3.25 in. are plotted
for y ∼= 0.125 in. and x ∈ (0, W ) in Fig. 8.12, which also indicates the plastic
loading process and the elastic unloading process near the advancing crack tip.
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FIGURE 8.12. Stress distribution (tyy) along the line of crack (plane strain case). Solid line:
a = 3.25 in., dot line: a = 3.0 in.

Remarks

In this chapter, we formulate a general theory of plasticity in an axiomatic ap-
proach with full utilization of the concept of internal variables and the constraint
due to Clausius–Duhem inequality. The two example problems solved demon-
strated that this theory is valid for both static and dynamic cases with either
finite or infinitesimal strains. The return mapping algorithm works exactly and
analytically if the J2 flow theory is adopted. It is also shown that the problems
with mirror symmetry and/or moving barrier can be rigorously and successfully
treated.

For the readers who want to gain knowledge through hands-on experience, a
meshless computer program for the analysis of slow crack growth in elastoplastic
continuum can be found on the book’s page at http://www.springeronline.com/.The
corresponding user’s manual is included in Appendix E

Problems

1. The J2 model for three-dimensional and plane strain problems is defined by
Eqs. (8.67)–(8.70). (a) Show that this model is an associative model of plasticity.
(b) Prove that �γ given by Eq. (8.74) is the solution of the initial value problem
specified by Eqs. (8.57)–(8.60).

2. The J2 model for plane stress problem is defined by Eqs. (8.84)–(8.87). (a) Show
that this model is an associative model of plasticity. (b) Prove that �γ ≡ γ̄ /E
obtained by solving the quartic Eq. (8.95) satisfies Eq. (8.94) and is the solution
of the initial value problem specified by Eqs. (8.57)–(8-60).

3. Let the Lagrangian strain at tn+1 be En+1 and let the trial value of the yield
function be

f̃n+1 = ||ξ̃n+1|| −
√

2/3(σY + cH β̄n),
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where

T̃n+1 = λtr
(
En+1 − Ep

n

)
I + 2µ

(
En+1 − Ep

n

)
,

S̃n+1 = T̃n+1 − tr(T̃n+1)I/3,

ξ̃n+1 ≡ S̃n+1 − βn.

If f̃n+1 > 0, let �γ = f̃n+1/(2µ + 2H/3) and calculate the following updated
values

Ep
n+1 = Ep

n + �γ ξ̃n+1

/||ξ̃n+1||,
β

p
n+1 = βp

n + 2(1 − c)H�γ ξ̃n+1

/||ξ̃n+1||
/

3,

β̄n+1 = β̄n +
√

2/3�γ,

Tn+1 = λtr
(
En+1 − Ep

n+1

)
I + 2µ

(
En+1 − Ep

n+1

)
,

Sn+1 = Tn+1 − tr(Tn+1)I/3.

Prove that, with these updated values, the value of the yield function indeed
returns to zero, i.e.,

fn+1 = ||Sn+1 − βn+1|| −
√

2/3(σY + cH β̄n+1) = 0.

4. The simple tension-compression problem is defined as the one with deformation
gradient being constant in space and all stress components vanishing except
t11 = σ. Based on the constitutive relations of plasticity given in this chapter,
plot the trajectory of stress and strain in case of simple tension-compression
including loadings and unloadings.



Appendix A
Vectors and Tensors

Scalars, Vectors, and Tensors

There are many physical quantities with which only a single magnitude can be
associated. For example, the mass density may vary throughout the bulk of a
material, but in the neighborhood of a given point, it is found to be a constant. We
may associate this density with the point. There is no sense of direction associated
with the density. Such quantities are called scalars and in any system of units they
are specified by a single real number.

There are other quantities associated with a point that have not only a magnitude
but also a direction. If a force of 1 kg is said to act at a certain point, it is not fully
specified until the direction is given. Such a physical quantity is a vector. Vectors
are entities possessing both magnitude and direction and obeying certain laws.
Examples include force, velocity, and acceleration. A vector can be expressed
with respect to a frame of reference with three base vectors as

v = ai + b j + ck, (A.1)

where i, j, and k are the base vectors and a, b, and c the components. In ordinary
three-dimensional space, the system defined by three mutually orthogonal direc-
tions with equal units of measurements is called Cartesian. The base vectors may
be thought of as lines of unit length lying along the three axes.

The word tensor is quite general and when necessary its order must be specifi-
cally mentioned, for it will appear that a scalar is a tensor of order zero and a vector
is a tensor of order 1. A 3 × 3 matrix can be written down in a tensor form as a
tensor of order 2. Physical quantities are rarely associated with tensors of higher
order than the second, but tensors up to the fourth order will arise.

Example 1. The Kronecker delta δi j is a second-order tensor and is frequently
used in the continuum mechanics:

δi j =
{

1, i = j,
0, i �= j.

(A.2)
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FIGURE A.1. Stress tensor

Example 2. Stress tensor tkl is another most common tensor in continuum me-
chanics, as shown in Fig. A.1, where k indicates the coordinate surface xk =
constant and l the direction.

Vector Calculus

Any two vector quantities of the same kind (e.g., two forces or two velocities) may
be represented as two vectors a and b placed in such a way that the initial point of
b coincides with the terminal point of a, as in Fig. A.2. The sum of a and b is then
defined as the vector c extending from the initial point of a to the terminal point
of b, c = a + b, as shown in Fig. A.2.

The actual addition of two vectors is most conveniently performed by using
their rectangular components in some coordinate system, but the definition and
properties of vectors addition do not depend on the introduction of a coordinate
system.

From the definition, it follows that

b + a = a + b, (A.3)

as is indicated by the dashed arrows in Fig. A.2. Thus, vector addition obeys the
commutative law. It also follows from the definition that the associative law

(a + b) + c = a + (b + c) (A.4)

a
bc

FIGURE A.2. Addition of Vectors
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is satisfied. The common value of the two expressions is written as the sum of the
three vectors, a + b + c.

If a vector is reversed in direction with no change in magnitude, the resulting
vector is called the negative of the original vector. To subtract b from a, add the
negative of b to a:

a − b = a + (−b). (A.5)

A vector a may be multiplied by a scalar c to yield a new vector, ca or ac, of
magnitude of |ca|. If c is positive, ca has the same direction as a; if c is negative,
ca has the direction of −a. If c is zero, the product is a zero vector with zero
magnitude and undefined direction.

There are two different kinds of multiplication of one vector by another. In one
case, the product is not a vector but a scalar; it is called the scalar product or dot
product. The second case yields a vector; it is called the vector product or cross
product.

The scalar product is defined as the product of two magnitudes and the cosine
of the angle between the vectors:

a · b = ab cos θ. (A.6)

It follows immediately from the definition that if m and n are scalars, then

(ma) · (nb) = mn(a · b). (A.7)

Apparently, the scalar product is commutative.

a · b = b · a. (A.8)

The scalar product is also distributive, i.e.,

a · (b + c) = (a · b) + (a · c). (A.9)

if

a = ax i + ay j + azk, b = bx i + by j + bzk,

a · b = ax bx + ayby + azbz, (A.10)

or

a · b = ai bi (A.11)

in indicial notation. This is very important formula. It furnishes the method by
which we actually evaluate scalar products.

The product of one vector multiplied by another is the vector product or cross
product:

c = a × b,

= (aybz − azby)i + (azbx − ax bz) j + (ax by − aybx )k, (A.12)
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which may be written as the formal expansion of the determinant

a × b =
∣∣∣∣∣∣

i j k
ax ay az

bx by bz

∣∣∣∣∣∣ . (A.13)

Magnitude c is given by

c = ab sin θ. (A.14)

The commutative law does not hold for vector product. We have instead

b × a = −(a × b). (A.15)

The vector product is still distributive

a × (b + c) = (a × b) + (a × c). (A.16)

However, the vector product is not associative

a × (b × c) �= (a × b) × c. (A.17)

We have

a × (b × c) = (a · c)b − (a · b)c. (A.18)

(a × b) × c = (a · c)b − (b · c)a. (A.19)

For a vector function, u(t), the derivative of a vector can be expressed in terms
of derivatives of its components as

du
dt

= duk

dt
i k . (A.20)

It is then easy to see that we can immediately apply our knowledge of differential
calculus to a vector function u(t).

d

dt
(λu) = λ

du
dt

+ dλ

dt
u, (A.21)

d

dt
(u + v) = du

dt
+ dv

dt
, (A.22)

d

dt
(u · v) = du

dt
· v + u · dv

dt
, (A.23)

d

dt
(u × v) = du

dt
× v + u × dv

dt
, (A.24)

where λ is a scalar function.
The most important integral theorem of vector analysis is the divergence theo-

rem, which is also called Green–Gauss theorem∫
v

div u dv =
∫

v

∇ · u dv =
∮

�

u · n da. (A.25)
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The use of divergence theorem is fundamental in the derivation of differential equa-
tions in continuum mechanics, where surface integrals involving surface tractions
are converted to volume integrals.

The differential operators gradient of a scalar φ and the divergence and curl of
a vector A are defined as

∇ ≡ ∂

∂xi
i i , (A.26)

∇φ = φ,i i i , (A.27)

div A ≡ ∇ · A = Ai,i , (A.28)

curl A = ∇ × A = ei jk Ak, j i i , (A.29)

where i k is the base vector and ei jk the usual permutation tensor (e123 = e312 =
e231 = −e213 = −e321 = −e132 = 1, all other ei jk = 0).

Tensor Analysis

Tensors are a generalization of vector concepts. They provide powerful tools for
the formulation of physical laws in a systematic fashion. The tensor A, of order n, is
a quantity defined by 3n components, which may be written as Ai jklm . . .︸ ︷︷ ︸

n indices

, provided

that under rotation to a new coordinate frame they transform according to the law

A∗
αβγ δ... = Qαa Qβb Qγ c Qδd . . . Aabcd...(det Q)N , (A.30)

where Q is the matrix of direction cosine. In the case N = 0, A is an absolute
tensor, and in the case N = 1, A is an axial tensor.

If interchange of two of the indices does not change the value of the component,
the tensor is said to be symmetric with respect to these indices. If the absolute
value is unchanged but the sign is reversed, it is antisymmetric with respect to the
indices.

Tensor addition and multiplication by a scalar obey the following four addition
axioms and four scalar-multiple axioms, characteristic of a generalized vector
space.

Addition Axioms:

(a) T + U = U + T (commutative)
(b) T + (U + V) = (T + U ) + V (associative)
(c) T + 0 = T
(d) T + (−T) = 0

(A.31)

Scalar-Multiple Axioms:

(a) a(bT) = (ab)T
(b) 1T = T
(c) (a + b)T = aT + bT
(d) a(T + U ) = aT + aU

(A.32)
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The scalar product of two tensors is a scalar, denoted T : U, which can be calcu-
lated in terms of components of the two tensors in any one rectangular Cartesian
system, by

T : U = Ti jUi j . (A.33)

The tensor product or open product of two vectors, denoted ab, is a tensor called
a dyad, defined by the requirement that

(ab) · v = a(b · v), (A.34)

for all vectors v. That is, if T = ab, then T · v = a(b · v) for all vectors v. In
rectangular Cartesian components,

Ti j = ai b j . (A.35)

The product of two second-order tensors, denoted T · U , means the composition
of the two operations T and U, with U performed first, defined by the requirement
that

(T · U ) · v = T · (U · v) (A.36)

for all vectors v. If P = T · U , then

Pi j = TikUkj (A.37)

or P = TU in matrix notation, where P, T, and U are the matrices of compo-
nents in any one rectangular Cartesian system.

Tensor Algebra Axioms

(a) (T · U ) · R = T · (U · R)
(b) T · (R + U ) = T · R + T · U
(c) (R + U ) · T = R · T + U · T
(d) a(T · U ) = (aT) · U = T · (aU )
(e) I · T = T · I = T

(A.38)

The differential calculus to a tensor function follows the same way as to a vector
function in Eqs. (A.21)–(A.24).

Example 3. Deformation gradients and some identities.
In the description of the deformation and motion of a continuous body, two sets of
coordinates may be used: the material or Lagrangian coordinate for undeformed
body and the spatial or Eulerian coordinates for deformed body. If we call X K the
Lagrangian coordinate and xk the Eulerian coordinate, the deformation gradient is
defined as

xk,K ≡ ∂xk

∂ X K
, X K ,k ≡ ∂ X K

∂xk
. (A.39)

Through the chain rule of partial differential, it is clear that

xk,K X K ,l = δkl , X K ,k xk,L = δK L . (A.40)
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Each one of the two sets is a set of nine linear equations for the nine unknowns
xk,K or X K ,k . A unique solution exists, if the Jacobian of the transformation is
assumed that it does not vanish. Using Cramer’s rule of determinants, the solution
for X K ,k may be obtained in terms of xk,K . Thus,

X K ,k = cofactor xk,K

j
= 1

2 j
eK L M eklm xl,L xm,M , (A.41)

where eK L M and eklm are permutation tensors and

j ≡ ∣∣xk,K

∣∣ = 1
6 eK L M eklm xk,K xl,L xm,M (A.42)

is the Jacobian. By differentiating Eq. (A.42), the following identities can be
obtained

( j X K ,k),K = 0, (A.43)

( j−1xk,K ),k = 0, (A.44)

∂ j

∂xk,K
= cofactor xk,K = j X K ,k . (A.45)

The proof of Eq. (A.43) is shown as follows.

( j X K ,k)K = ( 1
6 eK L M eklm xl,L xm,Mδkk)K ,

= 1
2 eK L M eklm(xl,L xm,M )K ,

= 1
2 eK L M eklm xl,L K xm,M + 1

2 eK L M eklm xl,L xm,M K . (A.46)

Since

eK L M = −eL K M , eK L M = −eK M L , (A.47)

while

xl,L K = xl,K L , xm,M K = xm,K M . (A.48)

Hence

eK L M xl,L K = eK L M xm,M K = 0. (A.49)

Equation (A.43) is then resulted and proved.

Invariants of Vectors and Tensors

The theory of invariants of vectors and tensors is very useful in constructing con-
stitutive equations for scalar, vector, and tensor functions of vector and tensor
variables. We shall be concerned only with constitutive equations, which are in-
variant under the full group of orthogonal transformations of the rectangular frame
of reference.
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If x is a set of rectangular coordinates, then the transformation

x∗
i = Qi j x j (A.50)

determines a new set of rectangular coordinates x∗ if Qi j has the property

Q QT = QT Q = 1, det Q = ±1. (A.51)

The matrix Q satisfying Eq. (A.51) is said to be an orthogonal transformation.
The set of all orthogonal transformations forms a group. This is the full group of
orthogonal transformations. The set of orthogonal transformations with positive
determinations also forms a group. This is the proper group.

Under transformations of coordinates (A.50), a vector vi and a second-order
tensor Ai j transform according to:

v∗
i = Qikvk, (A.52)

A∗
i j = Qik Q jl Akl . (A.53)

Any axial vector, wi , which transforms according to

w∗
i = Qikwk det Q, (A.54)

may be replaced by skew-symmetric tensor Wi j

Wi j = ei jkwk, (A.55)

which transforms like Eq. (A.53).
A function f (v1, v2, . . . , A1, A2, . . . , W1, W2, . . .) of vectors vα(α =

1, 2, . . . , K ), second-order symmetric tensors Aβ(β = 1, 2, . . . , L), and second-
order skew-symmetric tensors Wγ (γ = 1, 2, . . . , N ) is said to be an invariant of
these vector and tensors under a given group of transformations Q if

f
(
v∗

α, A∗
β, W∗

γ

) = (det Q)N f (vα, Aβ, Wγ ) (A.56)

for every transformation Q of the group. In the case N = 0, f is called an absolute
invariant, and in the case N �= 0, it is a relative invariant with weight N . We usually
deal with absolute invariants.

Example 4. The scalar product of two vectors is an absolute invariant:

u∗
i v

∗
i = Qi j u j Qilvl = δ jlu jvl = u jv j . (A.57)

Example 5. The trace of a matrix is an absolute invariant:

A∗
i i = Qik Qil Akl = δkl Akl = Akk = tr A. (A.58)

Example 6. The determinant of matrix A is an absolute invariant

det(A∗
i j ) = det(Qik Qil Akl) = (det Q)2 det(Akl) = det(A). (A.59)
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If Eq. (A.56) with N = 0 is valid for all members of the full orthogonal group
Q, then the invariant function f is called isotropic. If it includes only the members
of the full orthogonal group for which det Q = +1, we say that f is hemitropic. In
this case, reflection is not allowed. If the function f in Eq. (A.56) is a polynomial in
the components of vectors and tensors, then it is said to be a polynomial invariant.
A set of invariants that can be used to express any invariant in members of the
given set as a polynomial is called an “integrity” (a function) basis. A basis that
contains the smallest possible number of members is called a “minimal” basis.
The main problem of invariant theory is to determine the minimal basis.

Constitutive equations for vector f -valued and tensor T-valued functions re-
quire the invariance of the forms

f (v∗
α,A∗

β,W∗
γ ) = Q f (vα,Aβ,Wγ ), (A.60)

and

T(v∗
α,A∗

β,W∗
γ ) = QT(vα,Aβ,Wγ )Qt . (A.61)

These functions can be generated by use of certain products of the argument
vectors and tensors, with coefficients that are functions of the invariants of the
argument vectors and tensors. These vector and tensor products are called the
generators of f and T . For example, T = T(A) (where T and A are symmetric),
which obeys the invariance

T(Q AQT ) = QT(A)QT

has the form

T = a0 I + a1 A + a2 A2

where a0, a1, and a2 are functions of invariants tr A, tr A2, and tr A3. The tensors
I, A, and A2 are the generators of the tensor T .

The representations for isotropic scalar, vector- and tensor-valued functions
were studied by Wang (1969a,b, 1970, 1971), Smith (1970, 1971), and others.
After the modifications discussed by Boehler (1977), both representations were
made identical. They are summarized in the Appendix B.



Appendix B
Representations of Isotropic Scalar,
Vector, and Tensor Functions
(Wang, 1970, 1971)

TABLE B.1. Complete and irreducible sets of invariants of
symmetric tensors A, vectors v, and skew-symmetric tensors W.

Variables Invariants

(I) Invariant depending on one variable
A tr A, tr A2, tr A3

v v · v
W tr W2

(II) Invariant depending on two variables when (I) is assumed
A1, A2 tr A1A2, tr A2

1A2, tr A1 A2
2, tr A1

1A2
2

A, v v · Av, v · A2v
A, W tr AW2, tr A2W2, tr A2W2AW
v1, v2 v1 · v2

v, W v · W2v
W1, W2 tr W1W2

(III) Invariant depending on three variables when (II) is assumed
A1, A2, A3 tr A1 A2 A3

A1, A2, v v · A1 A2v
A, v1, v2 v1 · Av2, v1 · A2v2

A, W1, W2 tr AW1W2, tr AW1W2
2, tr AW2

1W2

A1, A2, W tr A1A2W, tr A2
1A2W, tr A1A2

2 W, tr A1W2A2

W1, W2, W3 tr W1 W2 W3

v1, v2, W v1· Wv2, v1 · W2v2

v, W1, W2 v · W1 W2 v, v · W2
1 W2 v, v · W1 W2

2v
A, v, W v · AWv, v · A2 Wv, v · AW2v

(IV) Invariant depending on four variables when (III) is assumed
A1, A2, v1, v2 v1 · (A1A2 − A2 A1)v
A, v1, v2, W v1 · (AW − WA)v2
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TABLE B.2. Generators for vector-valued isotropic functions.

Variables Generator

(I) Generators depending on one variable
v v

(II) Generators depending on two variables when (I) is assumed
A, v Av, A2v
W, v Wv, W2v

(III) Generators depending on three variables when (II) is assumed
A1, A2, v (A1 A2 − A2 A1 )v
W1, W2, v (W1 W2 − W2 W1)v
A, v, W (AW − WA)v

TABLE B.3. Generators for symmetric tensor-valued isotropic functions.

Variables Generator

(I) Generators depending on no variable
I

(II) Generators depending on one variable when (I) is assumed
A A, A2

v v ⊗ v
W W2

(III) Generators depending on two variables when (II) is assumed
A1, A2 A1 A2 + A2 A1, A2

1 A2 + A2 A2
1, A1 A2

2 + A2
2 A1

A, v v ⊗ Av + Av ⊗ v, v ⊗ A2v + A2v ⊗ v
A, W AW − WA, WAW, A2W − WA2, WAW2 − W2AW
v1, v2 v1 ⊗ v2 + v2 ⊗ v1

v, W Wv ⊗ Wv, v ⊗ Wv + Wv ⊗ v, Wv ⊗ W2v + W2v ⊗ Wv
W1, W2 W1 W2 + W2 W1, W1 W2

2 − W2
2 W1, W2

1 W2 − W2 W2
1

(IV) Generators depending on three variables, (III) is assumed
A, v1, v2 A(v1 ⊗ v2 − v2 ⊗ v2 ) − (v1 ⊗ v2 − v2 ⊗ v1 )A
W, v1, v2 W(v1 ⊗ v2 − v2 ⊗ v2 ) + (v1 ⊗ v2 − v2 ⊗ v1 )W
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TABLE B.4. Generators for skew-symmetric tensor-valued isotropic functions.

Variables Generator

(I) Generators depending on one variable
W W

(II) Generators depending on two variables when (I) is assumed
A1, A2 A1 A2 − A2 A1, A2

1 A2 − A2 A2
1, A1 A2

2 − A2
2 A1,

A1 A2 A2
1 − A2

1 A2 A1, A2 A1 A2
2 − A2

2 A1 A2

A, v v ⊗ Av − Av ⊗ v, v ⊗ A2v − A2v ⊗ v,
Av ⊗ A2v − A2v ⊗ Av

A, W AW + WA, AW2 − W2A
W, v v ⊗ Wv − Wv ⊗ v, v ⊗ W2v − W2v ⊗ v
v1, v2 v1 ⊗ v2 − v2 ⊗ v1

W1, W2 W1 W2 − W2 W2
1

(III) Generators depending on three variables when (II) is assumed
A1, A2, A3 A1 A2 A3 + A2 A3 A1 + A3 A1 A2

− A2 A1 A3 − A1 A3 A2 − A3 A2 A1

A1, A2, v A1v ⊗ A2 v − A2 v ⊗ A1 v,
v ⊗ (A1 A2 − A2 A1 )v − (A1 A2 − A2 A1 )v ⊗ v

A, v1, v2 A(v1 ⊗ v2 − v2 ⊗ v2 ) + (v1 ⊗ v2 − v2 ⊗ v1 )A
W, v1, v2 W(v1 ⊗ v2 − v2 ⊗ v2 ) − (v1 ⊗ v2 − v2 ⊗ v1 )W



Appendix C
Classification of Partial
Differential Equations

In the theory and application of ordinary or partial differential equations, the
dependent variable, denoted by u, is usually required to satisfy some conditions
on the boundary of the domain on which the differential equation is defined.
The equations that represent those boundary conditions may involve values of
derivatives of u, as well as values of u itself, at points on the boundary. In addition,
some conditions on the continuity of u and its derivatives within the domain and
on the boundary may be required.

Such a set of requirements constitutes a boundary value problem. A boundary
value problem is correctly set if it has one and only one solution within a given class
of functions. Physical interpretations often suggest boundary conditions under
which a problem may be correctly set. In fact, it is sometimes helpful to interpret
a problem physically in order to judge whether the boundary conditions may
be adequate. This is a prominent reason for associating such problems with their
physical applications, aside from the opportunity to illustrate connections between
mathematical analysis and the physical sciences.

The theory of partial differential equations gives results on the existence and
uniqueness of solutions of boundary value problems. A partial differential equa-
tion is an equation that involves an unknown function and some of its derivatives
with respect to two or more independent variables. An nth order equation has its
highest order derivative of order n. A partial differential equation is linear if it is an
equation of the first degree in the dependent variable and its derivatives. A partial
differential equation is homogeneous if every term contains the dependent variable
or one of its partial derivatives. The trivial (zero) function is always a solution of
a homogeneous equation.

The general linear partial differential equation of the second order in u = u(x, y)
has the form

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G, (C.1)

where the coefficients are functions of the independent variables x and y, and we
use the subscript notation to denote partial derivatives:

ux or ux (x, y) for
∂u

∂x
, uxx for

∂2u

∂x2
, uxy for

∂2u

∂x∂y
, . . . (C.2)
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We shall always assume that the partial derivatives of u satisfy conditions
allowing us to write uxy = uyx .

Example 1. Linear and nonlinear partial differential equations.
The differential equation

xuxx + y2uxy + xyuyy + xy + x = 1 (C.3)

is linear in u = u(x , y), but the equation

uxx + uuy = 1 (C.4)

is nonlinear in u = u(x , y) because the term uuy is not of first degree as an algebraic
expression in the two variables u and uy .

Heat Equation

Thermal energy is transferred from warmer to cooler regions interior to a solid
body by means of conduction. It is convenient to refer to the transfer as a flow
of heat, as if heat were a fluid or gas that diffused through the body from regions
of high concentration into regions of low concentration. A fundamental postulate
in the mathematical theory of heat conduction is Fourier’s law. If T (x , y, z, t)
denotes temperatures at points of body at time t , n a direction of n, q the rate of
heat flow, Fourier’s law states that

q = −k
dT

dn
= −k

∂T

∂x
ex − k

∂T

∂y
ey − k

∂T

∂z
ez, (C.5)

or

q = −k∇T . (C.6)

Here, the material isotropy has been assumed and so the same conductivity k for
three directions can be used. The heat flux q has the units of energy per unit area
per unit time.

Suppose now an arbitrary body of volume V , closed surface S, and unit outward
normal n (Fig C.1). The balance of energy for this body is that the heat entering
the body through the surface per unit time plus the heat produced by sources in
the body per unit time equals the time rate of change of the heat content of the

S

V

n

FIGURE C.1. Arbitrary body of vol-
ume V and surface S
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body: ∮
S
−q · n dS +

∫
V

Q dV =
∫

V
ρc

∂T

∂t
dV , (C.7)

where Q = Q(x , y, z) is the internal heat generation per unit volume per unit time,
ρ the mass density of the material, c the specific heat (the heat required per unit
mass to raise the temperature by 1◦), and t time. Substituting Fourier’s law of the
heat conduction, Eq. (C.6), into Eq. (C.7), and applying the divergence theorem,
we have ∫

V

{
∇ · k(∇T ) + Q − ρc

∂T

∂t

}
dV = 0. (C.8)

Since this equation holds for arbitrary volume, this requires

∇ · (k∇T ) + Q − ρc
∂T

∂t
= 0 in V, (C.9)

or

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ Q = ρc

∂T

∂t
. (C.10)

This is the famous heat equation. It is also called the diffusion equation. If k is
independent of the space variables (x , y, z), which is referred as a homogeneous
material, the heat equation becomes

∇2T = 1

K

∂T

∂t
− Q

k
, (C.11)

where K = k/(ρc) is the thermal diffusivity. The steady-state temperature in a
system with a homogeneous material satisfies Poisson’s equation:

∇2T = −Q/k. (C.12)

In the absence of internal source, Q = 0, it results Laplace’s equation:

∇2T = 0. (C.13)

A function that is continuous, together with its partial derivatives of the first order
and second order, and satisfies Laplace’s equation is called a harmonic function.

Wave Equation

Consider a tightly stretched string, whose position of equilibrium is some interval
on the x-axis, vibrating in the xy plane. Each point of the string, with coordinates
(x , 0) in the equilibrium position, has a transverse displacement u = u(x , t) at
time t . We assume that both the displacements u(x , y) and the slopes ∂u/∂x are
very small and that the movement of each point is vertical to the x-axis. Denoting
the string tension as T at location x , the tension at short distance dx away can be
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obtained using Taylor’s series approximation

T + dT ≈ T + ∂T

∂x
dx . (C.14)

Similarly given the slope ∂u/∂x at x , the slope at x + dx is approximately

∂u

∂x
+ ∂

∂x

(
∂u

∂x

)
dx = ∂u

∂x
+ ∂2u

∂x2
dx . (C.15)

Applying Newton’s second law, the net applied force is written as(
T + ∂T

∂x
dx

)(
∂u

∂x
+ ∂2u

∂x2
dx

)
− T

∂u

∂x
+ f (x, t) = ρ A dx

∂2u

∂x2
, (C.16)

where ρ is the density of the string material and A the cross-sectional area. Elim-
inating the nonlinear terms, we obtain the linear partial differential equation for
the vibrating string

T
∂2u

∂x2
+ f (x, t) = ρ A

∂2u

∂t2
, (C.17)

or

uxx + f (x, t)

T
= 1

c2
utt , (C.18)

where c = √
T/ρ A.

For zero force ( f = 0), Eq. (C.18) reduces to

uxx = utt/c2. (C.19)

This is the one-dimensional wave equation. The transverse displacement for the
unforced, infinitesimal vibrations of a stretched string satisfies the one-dimensional
wave equation. The transverse displacement for the unforced, infinitesimal vibra-
tions of membranes satisfies the two-dimensional wave equation

uxx + uyy = utt/c2. (C.20)

In three dimensions, the wave equation becomes

uxx + uyy + uzz = utt/c2, (C.21)

which is the applicable equation for acoustics, where the variable u represents, for
example, the pressure p or the velocity potential φ.

In any number of dimensions, the wave equation can therefore be written as

∇2u = 1

c2
utt . (C.22)

For time-harmonic motion, u = u0 cos(ωt), the wave equation then reduces to
the Helmholtz equation,

∇2u0 + k2u0 = 0, (C.23)
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where k = ω/c is called the wave number. The Helmholtz equation is sometimes
referred to as the reduced wave equation.

Classification of Partial Differential Equations

The second-order linear partial differential equation

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G, (C.24)

in u = u(x , y), where A, B, C , D, E , F , and G are constants or functions of x and
y, is classified in any given region of the xy plane according to whether B2 − 4AC
is positive, negative, or zero throughout that region. Specifically, Eq. (C.24) is

(a) Hyperbolic if B2 − 4AC > 0;

(b) Elliptic if B2 − 4AC < 0;

(c) Parabolic if B2 − 4AC = 0. (C.25)

For each of these categories, Eq. (C.24) and its solutions have distinct features,
and the behavior of the solutions will differ. Elliptic equations characterize static
problems and the hyperbolic or parabolic equations characterize time-dependent
problems.

Example 2. Laplace equation in two dimensions

uxx + uyy = 0 (C.26)

is a special case of Eq. (C.24) in which A = C = 1 and B = 0, B2 − 4AC < 0.

Hence, it is elliptic throughout xy plane. It arises in incompressible fluid flow,
gravitational potential problems, electrostatics, magnetostatics, and steady-state
heat conduction.

Example 3. Poisson’s equation in two dimensions

uxx + uyy = f (x, y) (C.27)

has A = C = 1 and B = 0. It is elliptic in any region of xy plane, where f (x , y)
is defined. It may appear in steady-state heat conduction with distributed sources
and torsion of prismatic bars in elasticity.

Example 4. Helmholtz equation

uxx + uyy + k2u = 0 (C.28)

is also elliptic in two dimensions. It arises in time-harmonic elastic vibrations
(strings, bars, and membranes), acoustics, and electromagnetics.

Example 5. The one-dimensional heat equation

−kuxx + ut = 0 (C.29)
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is parabolic in the xt plane. It arises in heat conduction and other diffusion
processes.

Example 6. The one-dimensional wave equation

−c2uxx + utt = 0 (C.30)

is hyperbolic in u = u(x , t). It arises in transient problems.

The type of partial differential equations is of special importance in dealing with
localization problems. From a mathematical point of view, the appearance of local-
ization in classical local continuum mechanics with rate independence is associated
with the change of type of the differential governing equations: loss of ellipticity
in quasi-static problems; change from hyperbolic to elliptic type in the dynamic
case.

Type of Boundary Conditions and Uniqueness of Solution

The three types of second-order linear equations require different types of boundary
conditions in order to determine a solution.

Let u denote the dependent variable in a boundary value problem. A condition
that prescribes the value of u itself along a portion of the boundary is known as a
Dirichlet condition, or essential boundary condition. A condition that prescribes
the value of du/dn on a part of boundary is called Neumann condition, or natural
boundary condition, or nonessential boundary condition. A linear combination
of both is a Robin condition. It prescribes the value of hu + du/dn at boundary
points, where h is either a constant or a function of the independent variables.

A well-posed problem is one for which the solution exists, is unique, and has
continuous dependence on the data. For transient heat conduction problems, the
partial differential equation

∇2T = 1

K

∂T

∂t
− Q

k
in V (C.31)

has a unique solution T (x , y, z, t) if there are imposed boundary conditions

α
∂T

∂n
+ bT = f (x, y, z, t) on S, (C.32)

where a and b are constants, and initial condition

T (x, y, z, 0) = T0(x, y, z). (C.33)

For general linear partial differential equations, a nonhomogeneous system has
a unique solution if and only if the corresponding homogeneous system has only
the trivial solution.

For steady-state (time-independent) heat transfer problem, for which the relevant
differential equation is the Poisson or Laplace equation, the general requirement
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for uniqueness is that a boundary condition of the form

α
∂T

∂n
+ bT = f (x, y, z, t) (C.34)

be imposed.
A contrary example is a pure Neumann problem{∇2T = f in V,

∂T

∂n
= g on S.

(C.35)

Uniqueness for this nonhomogeneous problem requires that T = 0 is the only
solution of the corresponding homogeneous problem{∇2T = 0 in V,

∂T

∂n
= 0 on S.

(C.36)

However, since every appearance of T in the above system is in a derivative,
solutions of Neumann problems are unique only up to an arbitrary additive constant.
Guaranteeing uniqueness in such cases requires that T be specific at one point.

Nonuniqueness in this Neumann problem is analogous to the nonuniqueness that
occurs in the static mechanical problem in which a free bar is loaded in tension with
a force F at each end. Although the stresses in the bar are unique, the displacements
are not unique unless the location of one point is prescribed.



Appendix D
User’s Manual: Meshless Computer
Program for Electrostatics and
Electrodynamics

Meshless Analysis of Elasticity

MESHLESS ANALYSIS OF 
ELASTICITY

START

Generate shape functions
and their derivatives

INPUT
Read control parameters, material 
properties, geometry, boundary
and  initial conditions, etc. 

FORM

Generate M, C, K, G, and F matrices

SOLVE1 (STATIC) 

Solve for displacement field using 
Gauss Elimination Method 

SOLVE2 (DYNAMIC) 

Solve for displacement field as function 
of time using Newmark Method 

PRINT

Print output files 
Generate IDEAS universal file

172
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TABLE D.1. Table of input data (INFILE).

Variables Format Section

ID(1), ID(2), . . . . . . , ID(7) 16I5 1
MP, ME 9X, 2I8 2
1, (IJK(J,1), J = 1,4) 9X, I8, 8X, 4I8
2, (IJK(J,2), J = 1,4)
...
...
ME, (IJK(J,ME), J = 1,4) 9X, I8, 7X, 2G8.5
1, XMESH(1), YMESH(1)
2, XMESH(2), YMESH(2)
...
...
MP, XMESH(MP), YMESH(MP)
MN 9X, I8 3
1, XNODE(1), YNODE(1), RNODE(1) 9X, I8, 7X, 3G8.5
2, XNODE(2), YNODE(2), RNODE(2)
...
...
MN, XNODE(MN), YNODE(MN), RNODE(MN)
DEN, RADIUS 2E15.8 4
YOUNG, POISSON
YDAMP, PDAM
MU, MF 2I5 5
ICU(1), XB(1), YB(1), SCALE1(1) I5, 3(5X, F15.8) 6
ICU(2), XB(2), YB(2), SCALE1(2)
...
...
ICU(MU), XB(MU), YB(MU), SCALE1(MU)
ICF(1), SCALE2(1) I5, 5X, F15.8 7
ICF(2), SCALE2(2)
...
...
ICF(MF), SCALE2(MF)
DTIME, TREF 2E15.8 8
XBARRIER(1), YBARRIER(1) 2E15.8 9
XBARRIER(2), YBARRIER(2)
MUPRINT, MSPRINT 2I5 10
(IUPRINT(K), K = 1, MUPRINT) 4I5
(ISPRINT(L), L = 1, MSPRINT) 3I5
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Control Parameters

Definitions

ID(1) = 1 Static case
ID(1) = 2 Dynamic case (Newmark method)

ID(2) = 1 Local theory
ID(2) = 2 Nonlocal theory

ID(3) = 0 (For further development)

ID(4) = 1 Plane strain
ID(4) = 2 Plane stress

ID(5) = 0 There is no barrier
ID(5) = 1 There is a barrier

ID(6) = MTIME Number of time steps in the dynamic analysis

ID(7) = IPRINT Outputs, including IDEAS, at every IPRINT time step

Remarks

1. This is a general purpose computer program based on local and nonlocal con-
tinuum field theory and meshless method.

2. This version is focused on two-dimensional elasticity, including static and dy-
namic analyses.

3. The output includes an IDEAS universal file that can be used to graphically
display stress distributions of the whole specimen.

Background Mesh

Definitions

MP Number of points in the background mesh
ME Number of elements in the background mesh
IJK(J,I) The number of the Jth point of the Ith element
XMESH(I) The X -coordinate of the Ith point in the background mesh
YMESH(I) The Y-coordinate of the Ith point in the background mesh

Remarks

1. The background mesh is like a finite element mesh. It is used for two purposes:
(1) to generate an IDEAS universal file and (2) to create a set of sampling points,
each of which is associated with an area.

2. If the graphic display is no longer a concern, then we do not need the background
mesh; instead, we need a set of sampling points, each of which is associated
with an area. The sampling points are equivalent to the Gauss points in finite
element analysis.
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Nodes

Definitions

MN Number of nodes
XNODE(I) The X-coordinate of the Ith node
YNODE(I) The Y-coordinate of the Ith node
RNODE(I) The radius of support of the Ith node

Remarks

The weight function for a generic sampling point x and a node xI is a quartic spline
expressed as

w(x, xI ) ≡ wI (x) =
{

1 − 6s2 + 8s3 − 3s4, if s ≤ 1
0, if s ≥ 1

where RI is the radius of support of the Ith node and

s ≡ ||x − xI ||
RI

.

Material Properties

Definitions

DEN The density of the material ρ

RADIUS The radius of nonlocality (nonlocal theory) R
YOUNG Young’s modulus of the material E
POISSON The Poisson’s ration of the material υ

YDAMP The first damping coefficient of the material Ê
(corresponding to Young’s modulus in elasticity)

PDAMP The second damping coefficient of the material υ̂
(corresponding to Poisson’s ratio in elasticity)

Remarks

The constitutive relation is based on the Kelvin–Voigt model, in the local theory
it is expressed as

σij(x) = λεkk(x)δij + 2µεij(x) + λ̂ε̇kk(x)δij + 2µ̂ε̇ij(x), (D.4.1)

where Young’s modulus and Poisson’s ratio are related to the two Lame constants
λ and µ; in the same manner, YDAMP and PDAMP are related to λ̂ and µ̂. Note
that the equation above emphasizes that the stresses at a point are related to the
strains and strain rates at that point only.
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For nonlocal theory, the constitutive relation is generalized to be

σij(x) = C(x)

{
Aijmn

∫
�′

f (r )εmn(x′)d�(x′) + aijmn

∫
�′

f (r )ε̇mn(x′)d�(x′)
}

,

(D.4.2)

where

C(x) = 1∫
�′

f (r )d�(x′)

f (r ) =
{

1 − 6r2 + 8r3 − 3r4, if r ≤ 1
0, if r ≥ 1

r ≡ ||x + x′||
R

and R is the radius of nonlocality. Note that as R → 0, f (r ) behaves like the δ

function and then Eq. (D.4.2) is reduced to Eq. (D.4.1).

Boundary Condition Parameters

Definitions

MU Number of displacement-specified boundary conditions
(see Section D.6)

MF Number of nodal-force-specified boundary conditions
(see Section D.7)

Displacement-Specified Boundary Condition

Definitions

ICU(I) The X- or Y-component of the Ith displacement-specified
boundary condition

XB(I) The X-coordinate of the location at which the Ith boundary
condition is specified

YB(I) The Y-coordinate of the location at which the Ith boundary
condition is specified

SCALE1(I) The magnitude of the displacement specified for the
ICU(I)th component

Remarks

For example, the fifth displacement-specified boundary condition is that the Y -
component of the displacement at x = 1.23, y = 4.56 is equal to 7.89, then we
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specify the following

ICU(5) = 2

XB(5) = 1.23

YB(5) = 4.56

SCALE1(5) = 7.89

Note that {x, y} = {1.23, 4.56} has to be on the boundary but does not have to be
a node.

In dynamic analysis, this boundary condition is read as

uy(xB, yB, t) = 7.89 × f (t)

where f (t) is the time factor (cf. Section D.8).

Nodal Force Specified Boundary Condition

Definitions

ICF(I) The component number of the I th nodal force specified
boundary condition

SCALE2(I) The magnitude of the nodal force specified for the ICF(I)-th
component

Remarks

The nodal-force-specified boundary condition is a type of natural boundary condi-
tion. There is no difference between finite element method and meshless method.
For example, if the first natural boundary condition is that the Y -component of the
applied force at the 43rd node equals 64.126, then we set

ICF(1) = 86

SCALE2(1) = 64.126

In dynamic analysis, this boundary condition is read as

Fy(43) = 64.126 × f (t)

where f (t) is the time factor (cf. Section D.8).

Dynamic Analysis Parameters

Definitions

DTIME The magnitude of the time step used in the dynamic
analysis

TREF The reference time used in the user supplied subroutine
FTIME to define the dynamic loading
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Remarks

DTIME is the �t used in the dynamic analysis. In static analysis, the value of
DTIME is irrelevant.

The time factor f (t) is defined in a user-supplied subroutine, named FTIME, in
most cases, f (t) reduces to zero after t = TREF.

Note that, correspondingly, in static case f (t) = 1.0.

Barrier

Definitions

XBARRIER(1) The X -coordinate of the first point of the barrier X̃ (1)
YBARRIER(1) The Y -coordinate of the first point of the barrier Ỹ (1)

XBARRIER(2) The X -coordinate of the second point of the barrier X̃ (2)
YBARRIER(2) The Y -coordinate of the second point of the barrier Ỹ (2)

Remarks

A crack is modeled as a straightline connecting {X̃ (1), Ỹ (1)} and {X̃ (2), Ỹ (2)}. For
further development, a propagating crack may be modeled as a curve connecting
a series of points {X̃ (1), X̃ (2), . . . , X̃ (n)}.

Printing Parameters

Definitions

MUPRINT Number of points of which the displacements as functions
of time can be plotted using EXCEL, MUPRINT < 5

MSPRINT Number of elements of which the stresses as functions of
time can be plotted using EXCEL, MSPRINT < 4

IUPRINT(I) The Ith number of the point of which displacements are
stored as functions of time

ISPRINT(I) The Ith number of the element of which stresses are stored
as functions of time

Remarks

1. For example, MUPRINT = 3 and IUPRINT(I = 1,2,3) = 2, 5, 8 means the
displacements, ux and uy, of the second, the fifth, and the eighth node can be
plotted as functions of time, using EXCEL.

2. For example, MSPRINT = 3 and ISPRINT(I = 1,2,3) = 3, 6, 9 means the
stresses, σxx , σyy, and σxy, of the third, sixth, and ninth element (in the back-
ground mesh) can be plotted as functions of time, using EXCEL.
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User’s Manual: Meshless Computer
Program for Analysis of Crack Growth
in Elastoplastic Continuum

MESHLESS ANALYSIS OF 
PLASTICITY

START
Generate shape functions and their derivatives

INPUT
Read control parameters, material properties, geometry,
boundary and initial conditions, crack growth parameters, etc. 

FORM

Generate K and G matrices 

SOLVE
Solve for displacement field using Gauss Elimination Method 

PRINT AND EXIT

Print output files and Generate IDEAS universal file

LOAD
Generate forcing terms, including unbalanced forces

due to the use of return-mapping 

RETURN MAPPING
Apply return-mapping algorithm to elastic–plastic process 

Is equilibrium  
reached pointwise ?

Is this the end  
of crack growth?

No

Crack
grows one
step

No

Yes

Yes

FIGURE E.1.
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TABLE E.1 Table of input data (INFILE).

Variables Format Section

ID(1), ID(2), . . . . . . , ID(7) 16I5 1
MP, ME, MN, MS
1, XNODE(1), YNODE(1), RNODE(1) 9X, I8, 7X, 3G8.5 2
2, XNODE(2), YNODE(2), RNODE(2)

MN, XNODE(MN), YNODE(MN), RNODE(MN)
1, (IJK(J,1), J = 1,4) 16I5 3
2, (IJK(J,2), J = 1,4)

ME, (IJK(J,ME), J = 1,4)
1, XS(1), YS(1), AREA(1) I5, 3(5X,E15.8) 4
2, XS(2), YS(2), AREA(2)

MS, XS(MS), YS(MS), AREA(MS)
YOUNG E15.8 5
POISSON
VON
PSLOPE
MU, MF 2I5 6
ICU(1), XB(1), YB(1), SCALE1(1) I5, 3(5X, E15.8)
ICU(2), XB(2), YB(2), SCALE1(2)

ICU(MU), XB(MU), YB(MU), SCALE1(MU)
ICF(1), SCALE2(1)
ICF(2), SCALE2(2)
...
...
ICF(MF), SCALE2(MF)
NDATA, MTERM 2I5 7
ASI(0), CSI(0) 2F15.8
ASI(1), CSI(1)
ASI(2), CSI(2)
...
...
ASI(NDATA), CSI(NDATA)
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Control Parameters

Definitions

ID(1) = 0 Static case
ID(2) = 0 Local theory
ID(3) = 2 Second-order polynomial used in the shape function
ID(3) = 3 Third-order polynomial used in the shape function
ID(4) = 1 Plane stress
ID(5) = 0 There is no barrier
ID(5) = 1 There is a barrier
ID(6) = MSTEP Number of load steps
ID(7) = 0 There is no mirror symmetry
ID(7) = 1 There is a mirror symmetry about x-axis
ID(7) = 2 There are mirror symmetries about x-axis and y-axis
MP Number of points in the background mesh only for the use

of IDEAS
ME Number of elements in the background mesh only for the

use of IDEAS
MN Number of nodes (in this version MN = ME)
MS Number of sampling points

Remarks

1. This is the User’s Manual of a meshless computer program for the analysis of
crack growth based on two-dimensional plane stress plasticity.

2. The line crack is assumed to be along the x-axis; the problem is assumed to
have mirror symmetry about x-axis. For center-cracked problems, one may also
assume there is additional mirror symmetry about the y-axis.

3. This computer program generates an IDEAS universal file, as part of the output,
in order to graphically show the stress distributions in the whole specimen. For
this reason, a finite element type background mesh is needed.

4. A crack, in meshless method, is considered as a barrier that may block the
support of a node to a sampling point if the crack cuts through the straightline
connecting these two points.

5. A sampling point is a point of which the detailed information is needed in the
process of analysis. It is equivalent to a Gauss point in finite element analysis.

6. The second-order polynomial basis in two-dimensional domain is

p = {1, x, y, x2, y2, xy}′

while the third-order polynomial basis is

p = {1, x, y, x2, y2, xy, x3, y3, x2 y, xy2}′.
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Nodes

Definitions

XNODE(I) X -coordinate of the I th node
YNODE(I) Y-coordinate of the I th node
RNODE(I) Radius of support of the I th node

Remarks

1. Every point in the domain must be supported by at least n nodes; n is the number
of terms in the polynomial basis.

2. The weight function between the sampling point x and the I th node xI is a
quartic spline expressed as

w(x, xI ) ≡ wI (x) =
{

1 − 6s2 + 8s3 − 3s4, if s ≤ 1
0, if s ≥ 1

where RI is the radius of support of the I th node and

s = ||x − xI ||
RI

.

Background Mesh

Definitions

IJK(J,I) The number of the J th point of the I th element, i.e., the
connectivity of background mesh

Remarks

The background mesh is for the purpose of generating an IDEAS universal file;
there are four points per element; the numbering of the four points goes counter-
clockwise.

Sampling Points

Definitions

XS(I) X-coordinate of the I th sampling point
YS(I) Y-coordinate of the I th sampling point
AREA(I) The area associated with the I th sampling point
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Remarks

1. The sampling points are equivalent to the Gauss points in finite element method.
2. Each sampling point is associated with an area; the summation of all the areas

of all the sampling points should be equal to the total area of the specimen.
3. The areas of all sampling points should be supplied by the user; note that in

finite element method each Gauss point is also associated with an area; however,
in that case, the area can be calculated because the geometry of each element
is specified.

Material Properties

Definitions

YOUNG (E) Young’s modulus of the material
POISSON (υ) Poisson’s ratio of the material
VON (σY ) The von Mises yield strength
PSLOPE (H ) The slope of the incremental stress–strain relation in the

plastic region

Remarks

1. The stress–elastic strain relation is expressed as

σi j = λ
(
εkk − ε

p
kk

)
δi j + 2µ

(
εi j − ε

p
i j

)
;

and the two lame constants, λ and µ, are related to Young’s modulus and
Poisson’s ratio.

2. The J2 flow theory for plane stress plasticity is adopted in this code; σY is the
von Mises yield strength; and H is the slope of the incremental stress–strain
relation in the plastic region (cf. Simo and Hughes, 1998).

Boundary Conditions

Definitions

MU Number of displacement-specified boundary conditions
MF Number of nodal-force-specified boundary conditions
ICU(I) The X - or Y -component of the I th-displacement-specified

boundary condition
XB(I) The X -coordinate of the location at which the I th boundary

condition is specified
YB(I) The Y -coordinate of the location at which the I th boundary

condition is specified
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SCALE1(I) The magnitude of the displacement specified for the
ICU(I)th component

ICF(I) The component number of the I th nodal force specified
boundary condition

SCALE2(I) The magnitude of the nodal force specified for the ICF(I)th
component

Remarks

1. To specify the essential boundary conditions, take the following as an example.
Let ICU(3) = 1, XB(3) = 1.01, YB(3) = 2.05, SCALE1(3) = 10.66. It means
the third displacement-specified boundary condition should read as

Ux (1.01, 2.05) = 10.66.

In this example, {x, y} = {1.01, 2.05} should be a point on the boundary, but it
does not have to be a node. On the other hand, even if that point is a node, the
nodal value is not equal to the value of displacement at that node. This is one of
the key distinctions that separate finite element method and meshless method.

2. To specify the natural boundary condition, there is no difference between finite
element method and meshless method. For example, if, as the mth natural
boundary condition, we want to specify the X -component of the applied force
at the 15th node, which is on the boundary, to be 1.2345, i.e.,

Fx (15) = 1.2345,

then we set ICF(m) = 29, SCALE2(m) = 1.2345.
3. In slow-crack growth analysis, the line crack is along the x-axis from {x, y} =

{0, 0} to {x, y} = {a0, 0} initially. Then the essential boundary conditions to
represent the crack growth are specified as follows. First, for the initial crack
tip

ICU(MU) = 2,

XB(MU) = a0,

YB(MU) = 0.0,

SCALE1(MU) = 0.0.

In an immediate next step, the crack grows to {x, y} = {a1, 0}, then we have the
following to represent the boundary condition at the crack tip

ICU(MU − 1) = 2,

XB(MU − 1) = a1,

YB(MU − 1) = 0.0,

SCALE1(MU − 1) = 0.0.
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The order is important. For the sake of discussion, in the next step the crack grows
to

{x, y} = {a2, 0}
then the boundary condition at this crack tip is specified as

ICU(MU − 2) = 2,

XB(MU − 2) = a2,

YB(MU − 2) = 0.0,

SCALE1(MU − 2) = 0.0.

Crack Growth DATA

Definitions

NDATA Number of data points in the applied stress–crack size curve
(experimental data)

MTERM Number of terms in the polynomial to represent the applied
stress–crack size curve

ASI(0) The applied stress at the onset of slow-crack growth = σ 0
yy

CSI(0) The initial crack size = a0

ASI(I) The applied stress at the I th data point = σyy(I )
CSI(I) The crack size at the I th data point = a(I )
ASI(NDATA) The applied stress at the onset of fast fracture
CSI(NDATA) The crack size at the onset of fast fracture

Remarks

1. The crack growth data is an experimental curve relating applied stress σyy and
crack size a (a variable); it should be realistic, otherwise, the output will be
misleading.

2. Suppose the data consist of 10 pairs of {σyy , a}, including the initial crack
size a0 and the applied stress at the onset of slow-crack growth σ 0

yy . Then
NDATA = 9(= 10 − 1) and MTERM ≤ 9. It is suggested to set MTERM =
NDATA.
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plastic dissipation, 125
plasticity, 3, 17, 66, 83, 106, 125, 126, 127, 130,

131, 136, 143, 144, 145, 148, 151, 152,
181, 183

plastic moduli, 128
plastic strain, 115, 126, 128, 129, 132
plate with a hole, 90
plate with a line crack, 91–93

point collocation, 34
point least squares collocation, 35
polynomial basis, 61, 65, 68, 69, 181, 182
Poisson’s ratio, 84, 133, 175, 183
position vector, 107
positive definite, 22, 41, 63, 96, 128, 130
p-refinement, 78–81
psuedomomentum, 106

Q
quartic spline

R
radiation force, 106
radiative transfer, 114
radius of nonlocality, 117, 124, 175, 176
radius of support, 175, 182
rate-dependent material, 116
Rayleigh surface wave, 113, 114
reference temperature, 53, 107, 128
representation theorems for isotropic functions,

23, 24
reproducing kernel particle method, 57
return mapping algorithm, 125, 129, 132, 133,

144, 145, 148, 151
Rivlin-Ericksen tensor, 27

S
sampling point, 50, 69, 77, 78, 104, 122, 175,

181, 182, 183
Schrödinger equation, 2, 3
second law of thermodynamics, 15, 148
self-similar crack growth, 107
shape design optimization, 65
shape function, 4, 70, 77
shear band formation, 63, 114
Shepard function, 58, 59
Shifter, 8, 9
simple tension-compression problem, 152
Simpson formula, 49
slow crack growth, 143, 148, 151
small strain theory, 10, 83, 131
smooth memory hypothesis, 19
smooth neighborhood hypothesis, 18
smooth particle hydrodynamics (SPH) method,

55
solid-state physics, 113
space nonlocality, 114
spatial coordinate system, 7, 9
spatial instability, 61, 74
spin tensor, 27
stabilization procedure, 61, 74
standard shape function, 43
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stellar dynamics, 114
stiffness matrix, 5, 51, 61, 82, 87, 88, 95, 98, 99,

100
strain, 8, 10, 11, 20, 21, 22, 26, 36, 39, 41, 42,

52, 61, 62, 64, 66, 72, 83, 84, 85, 86, 87, 90,
91, 102, 103, 107, 110, 114, 115, 116, 117,
120, 123, 124, 126, 129, 131, 132, 135, 138,
143, 145, 148, 150, 151, 152, 174, 175, 183

strain-displacement relation, 52, 84, 86
strain gradient theories, 66, 116
strain-softening, 113, 114, 116, 123
stress, 13, 14, 16, 21, 27, 28, 36, 41, 42, 61, 62,

67, 74, 79, 83, 84, 85, 86, 87, 90, 91, 92, 93,
94, 95, 101, 102, 103, 104, 105, 107, 109,
110, 112, 113, 114, 115, 116, 117, 119,
120, 121, 122, 123, 124, 128, 129, 130,
131, 132, 133, 138, 139, 141, 145, 146,
148, 149, 150, 151, 152, 174, 181, 183, 185

stress tensor, 13, 131, 145
strong form, 33, 72, 118
structural dynamics, 95, 97
subdomain collocation, 34
support, 55, 56, 58, 69, 71, 72, 78, 80, 81, 116,

181, 182
surface force, 13
surface traction, 13, 135
suspension, 113

T
Taylor bar, 63
temperature, 15, 17, 18, 20, 21, 22, 23, 28, 53,

106, 114, 115, 128, 167
temperature variation, 128
thermodynamically irreversible, 15
thermodynamically reversible, 15
thermodynamics, 1, 16, 125
thermoelasticity, 21
thermo-visco-elastic solid, 20–23
thermo-visco-elastic-plastic solid, 125–126
thin film, 113, 123
thin shell, 64, 65
three-point-bending beam, 93, 95
tight binding (TB), 3

time nonlocality, 114
time scale, 3
toughness, 107, 110, 114
trapezoidal rule, 49
triangular factorization, 89
Truesdell rate, 27
tunnel excavation, 114

U
undeformed state, 7, 9
unit base vector, 9
unit normal, 13
unloading, 126, 130, 150

V
variational principle, 37, 38, 39, 47, 61, 66
vehicle crashworthiness, 64
velocity, 10, 11, 27, 28, 36, 61, 64, 86, 97, 98,

106, 107, 135, 137, 138, 139, 140, 153, 168
vessel liability, 64
virtual work, 37
viscoelasticity, 21
viscoelastic solid, 24, 48, 73, 82, 117
visibility criterion, 76
void
volumetric locking, 61, 63
von Mises strength, 132, 138
von Mises yield surface, 132

W
Wang’s representation theorem, 24, 28, 29, 30
wavelet Galerkin method, 55
wave propagation, 95
weak form, 33, 36, 61, 62, 74, 118
weighted residual method, 33, 34
weight function, 55
Wigner-Seitz cell, 75, 76
Wilson Method, 99–101

Y
yield function, 126, 128, 133, 145, 152
yield surface, 126, 129, 132, 134
Young’s modulus, 33, 84, 133, 175, 183
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