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In this paper, we systematically develop the “ghost” symmetry of the Kadomtsev-
Petviashvili sub-hierarchy of B type (BKP) through its actions on the Lax operator
L, the eigenfunctions, and the 7 function. In this process, the spectral representation
of the eigenfunctions and a new potential are introduced by using squared eigen-
function potential of the BKP hierarchy. Moreover, the bilinear identity of the
constrained BKP hierarchy and Adler—Shiota—van Moerbeke formula of the BKP
hierarchy are rederived compactly by means of the spectral representation and
“ghost” symmetry. © 2010 American Institute of Physics. [doi:10.1063/1.3397943]

I. INTRODUCTION

Symmetry1 plays an important role in the study of the integrable system. Many crucial prop-
erties of the integrable system, such as the Noether conserved laws, Hamiltonian structure, Dar-
boux transformation, and reduction, are closely connected with symmetries. There are several
kinds of symmetry of the integrable system. For instance, in the well-known Kadomtsev-
Petviashvili (KP) theory, there is an important symmetry called “ghost” symmetry.2 By identifying
the “ghost” symmetry with the kth time flow, the constrained KP (cKP) hierarchyH] can be easily
defined. In this paper, we shall focus on the study of the “ghost” symmetry of the Kadomtsev-
Petviashvili sub-hierarchy of B type (BKP) hierarchy.

The “ghost” symmetry was first introduced by Oevel” in studying the solutions of the cKP
hierarchy. Then it was extensively studied in Refs. 5 and 12—-16. In the KP hierarchy, the “ghost”
symmetry is closely related with a squared eigenfunction potential (SEP), which is associated with
a pair of 2arbitrary eigenfunction ®(r) and adjoint eigenfunction W(¢) by means of following
definition:

%S((I)(t),‘]?(t)) =Res(7'VM, D). (1)
Here M,=L" and L is a Lax operator of the KP hierarchy. [In this paper, we use the notations
Cia;d),=2i=0a;@, (Z,0;0)_-=2c0a;d, (20,0 =a;, Res(Za;d)=a_,, and (Z,a,0)*=2(-d)'a;.]
The predecessor of SEP was, in fact, the Cauchy—Baker—Akhiezer kernel introduced in Ref. 17,
which is an important object for a study of vector fields action on Riemann surfaces and Virasoro
action on tau functions. In Ref. 15, Aratyn er al. gave a systematic study for the SEP and the
“ghost” symmetry in KP case. By using SEP as a basic building block in the definition of the KP
hierarchy, they established a new way to reformulate the theory of the KP hierarchy called SEP
method. The crucial fact of the SEP method is that there exists a spectral representation for any
eigenfunction of the KP hierarchy with SEP as an spectral density. They also showed that the
“ghost” symmetry,5 13 Which is generated by SEP, has close relation with the additional symme-
tries of the KP hierarchy.lg_24 In fact, SEP can be regarded as a generating function for the
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additional symmetries of the KP hierarchy when both eigenfunction ®(r) and adjoint eigenfunc-
tion W(z) defining the SEP are Baker—Akhiezer (BA) functions.

In present work, we would like to consider the “ghost” symmetry for the BKP hierarchy. Here
BKP hierarchy25 is an important reduction in the ordinary KP hierarchy under the constraints on
the Lax operator L*=—JLd™'. In contrast with the KP hierarchy, the SEP of the BKP hierarchy
cannot generate directly a symmetry flow due to the BKP constraints L*=—dLdJ~ 1.1% Thys, we have
to find a new potential, which is used to generate the “ghost” symmetry of the BKP hierarchy and
is expected to be expressed by SEP. So this new potential is called SEP of B-type (BSEP).
Fortunately, as we shall show, the BSEP was first introduced by Loris'® in the study of symmetry
reduction in the BKP hierarchy.

Similar to the case of the KP hierarchy,15 before giving the “ghost” symmetry of the BKP
hierarchy, we need to study SEP first. Starting from the BKP bilinear identity, we shall show that
there is also a spectral representations for the eigenfunctions of the BKP hierarchy, i.e., any
eigenfunction of BKP hierarchy can be represented as a spectral integral over BA wave function
with a spectral density expressed in terms of SEP. Then according to the differential Fay identity
of the BKP hierarchy, we get the expression of the basic SEP (the one whose defining eigenfunc-
tions are BA functions). Thus we can give the general expressions of SEP for the BKP hierarchy
with the spectral representation. We then point out the importance of the spectral representations
by showing that it can, in fact, provide another definition of the BKP hierarchy. In other words, we
get an equivalent formulation of BKP hierarchy. We also call it SEP method for the BKP hierarchy.

Next, after BSEP is systematically studied, we define the “ghost” symmetry flows d, for the
BKP hierarchy by means of its action on the Lax operator L and the dressing operator W. Fur-
thermore, actions of d, on the eigenfunction ® and 7 function are given by BSEP.

At last, we consider applications for above theory. We shall first derive the bilinear identities
for the cBKP hierarchym’%’27 with the SEP method. Moreover, then by letting eigenfunctions in
the BSEP be BA functions, we get the relation between the “ghost” symmetry and the additional
symmetry: in this case, the BSEP becomes a generating function for the additional symmetries of
the BKP hierarchy. With the help of this fact, we shall give a simple and straightforward proof for
the Adler—Shiota—van Moerbeke formula of the BKP hierarchy.zg_31

This paper is organized in the following way. In Sec. II, some basic facts about the BKP
hierarchy are reviewed. Then, SEP for the BKP hierarchy is studied in detail in Sec. III. After
some interesting properties of the BSEP studied in Sec. IV, the “ghost” symmetry for BKP is
showed in Sec. V. At last, we devote Sec. VI to two applications on the spectral representation and
the “ghost” symmetry.

Il. BKP HIERARCHY

Here, we shall review some basic facts about the BKP hierarchy.”> The BKP hierarchy can be
defined in Lax form as
(92;1+1L = [BZn+1’L]’ BZn+1 = (L2n+1)+’ n= Oa 172’ cees (2)

where the Lax operator is given by

L=d+u,d" +ud+ -, 3)
with coefficient functions u; depending on the time variables t=(f;=x,ts,5,...) and satisfies the
BKP constraint,

L'=-dLd". (4)

It can be shown” that the constraint (4) is equivalent to the condition (B,, +D)[0]=0.
The Lax equation (2) is equivalent to the compatibility condition of the linear system
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L(pa(t.N)) = Nehga(t.N), 021 Wpa(t.N) = Boyyy 1 (Ppa(t.N)), (5)

[for a differential operator A and a function f, A(f) denotes the action of A on f], where ¢g,(¢,\)
is called BA wave function. The whole hierarchy can be expressed in terms of a dressing operator
W, so that

[}

L=WoWw', W=1+2wd,
j=1

and the Lax equation is equivalent to the Sato’s equation,

(72n+1W= - (L2n+l)_W, (6)

with constraint

W aW=24. (7)

Let the solutions of the linear system (5) be the form

Ppa(t,N) = W(eEV) = w(t,N) etV (8)

where &(t,N) =27 i N1 and w(t,N)=1+w;/N+w,/N*+---. Then i4(t,z) is a wave function
of the BKP hierarchy if and only if it satisfies the bilinear identity,25

f AN s () Ppa(t = N) =1, V1t 9)

where [d\N=§.dN/2mi=Res,_, and t=(t;=x,13,15,"**).
In the BKP hierarchy, if ® (or W) satisfies

(92n+1q) =an+1(q))(0r 62n+1q’ == B;;‘H.](’\P))’ n= 07 1’29 ey (10)

we shall call ® (or W) eigenfunction (or adjoint eigenfunction) of the BKP hierarchy. Obviously,
pa(t,\) is also an eigenfunction. The relation between the eigenfunctions and adjoint eigenfunc-
tions can be seen from the fact B3, ,, d=-3B,,., ;. This fact implies that any eigenfunction ¥ gives
rise to an adjoint eigenfunction W=®,. In particular, we have ¢,(t,\)==N"if,(¢,—\),, where
Ypalt,N)= W*=1(e~¢"N), Moreover, from the bilinear identity (9), solutions of the BKP hierarchy
can be characterized by a single function 7(¢) called 7-function such that™

(1 —2[\7'])
LGN

where [N"1]=(\"1, %)\‘3,...). This implies that all dynamical variables {u;} in the Lax operator L
can be expressed by 7function, which is an essential character of the KP and BKP hierarchies.
Moreover, another important property of 7 function of the BKP is the following Fay-like identity.

Proposition 1: (Reference 30) (Fay identity) The tau function of the BKP hierarchy satisfies

w(t,\) = (11)

(51— 50)(s1 +55) (51 + 53)

(51,52,53) (s1+50)(s1 = 52) (57 = 53)

ot +2[s] + 2 s3]) 7t + 2[50] + 2[51])

(50— 51) (59— 52) (50— 53)
(s0+51)(s0+ 52) (50 + 53)

1+ 2[s0] + 2[ 511+ 2[5, + 2[s3]) (1) = 0, (12)

where (s),5,,53) stands for cyclic permutations of s, , s, , and s5 .
Proposition 2: (Reference 30) (Differential Fay identity) For the BKP hierarchy,
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1

(% - lz)w + 2y ol + 2055 - 1l + 2]+ 2L )0} = (12 + —l)wm 2yl +2051])
1 S S

25
1 1
= dr(t+2[s, )t + 2[5, ])} + (s— - S—>{T(t +2[s1]+2[s,]) 9 7(t) = 97(t + 2[5, ] + 2[5, (1)}
2 5
(13)
Note that these identities are indeed different from the counterpart of the KP hierarchy because of

the BKP constraint (4). In the next context, we shall show it is for the same reason that the SEP
of the BKP hierarchy cannot generate directly the symmetry flow.

lll. SEP FOR THE BKP HIERARCHY

As mentioned in Sec. I, we hope to get a new potential BSEP from the SEP of the BKP
hierarchy. So we shall study some interesting properties of the SEP of the BKP hierarchy in this
section. For any pair of (adjoint) eigenfunctions ®(z), W(r), there exists a function S(P(z), ¥ (z))
called SEP, determined by the following equations:

P S(P(r), W (1)) =Res(d "W (L), b "), n=0,1,2,3,.... (14)
2n+1

In particular, for n=0, we have

9:S(P(1), ¥ (1)) = POV (7). (15)

One can see that this definition is the same as the one” in the KP hierarchy except even number
flows are frozen. There are two properties of SEP for the BKP hierarchy.

Lemma 3: If (1) and W(t) are BKP eigenfunction and adjoint eigenfunction respectively, then
one has the following relation:

S(@(1), Ypa(t, = N),) = e EN(D(1) + O\, (16)

S(pa(t, M), V(1) = DWW (N + O(N?)). (17)

Proof: We only prove the first identity since the proof of the second one is similar. Because
pat,—\),=e~5"N(=\+0O(1)) and

f e (1)dx = — f NP de™ = = NN (1) + )\_lf e M (1)dx
= =M= MO + O(N ),
we find

S(P(1), thpalt,= N),) = f D(1) hpa(t,— M) dx = J D(r)e N (= N+ O(1))dx

=- )\f D) e Ndx + e~ ENONT)

== Ae N\ D(1) + ON2)) + e~ ENONT)
= e~ EEN(D(1) + O\).

Lemma 4: If ®, and ®, are two eigenfunctions of the BKP hierarchy, then

(DIQD2=ASUDIJD2X)+‘S(¢b,qu). (18)
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Proof: Some useful formulas below are needed in the proof.

Res(A) = - Res(A"), (19)
a,=da-ad, (20)
Res(Ad™") = Afgy. 21

where A is a pseudodifferential operator, and a is a function,

17

Donsl

S(®y,Dy,) = Res(d7' @, By, P27 ") == Res(97' @85, @1, d7")  using (19)
=Res(7'®, By, ' ®,, ") using B>, =— 0By I
=Res(T'®, By, P15 ") = Res(57'®y 9By, 7' D)) using (20)
= Res(®B5,,1P17") — Res(7 ' ©y, By, P157")
+ Res(77'®,B;,, @) using (20) and B,,;=— 0By,
= ®,Res(B,,, D 1T") — Res( '@y, By, P,77") + Res(Bs,, P, D, using (19)
= ©)By,41(Py) = Res(T7 ' Py, By, 1 P17") + By (D) Py using (21)

=D,(9, D))-3, S(®,P)+ (9, DP)P1=0, (DDy) -3, S(P),Dy,).

Dn+1 2n+1 Dn+1 2n+1 2n+1

|
Proposition 5: (Spectral representation) If ®(t) is an eigenfunction of the BKP hierarchy, then

d(r) = f AN P (0 N)S(D(1), pa(t' ;= N) ) s (22)

where the time t' is taken at some arbitrary fixed value. In other words, ®(t) owns a spectral
representation in the form of

O(1) = J AN o) A (8N, (23)

with spectral densities given by SEP, that is, (N)=S(®(1"), ga(t’ ,—N\),1).
Proof: Denote the right hand side of (22) by I(¢,7’). Then by the BKP bilinear identity (9), one
finds that d,/ I(¢,#")=0. Hence I(¢,t")=f(t). By considering (16), we have

1(t,t =t)=Jd)\)\_ll,bBA(t,)\)e_g(”)‘)(CI)(t)+(’)()\_1))=(I)(t).

|

Remark 1: Here we only give the spectral representation for eigenfunctions. As for the adjoint

eigenfunctions, the spectral representation can be derived similarly by considering (9) and (17),
that is,

V() = f ANfipp (£, M) S (hipa(t' M), W (1)) 24)

However, because of the relation between the eigenfunctions and adjoint eigenfunctions, we must
show that our spectral representations for BKP hierarchy are compatible.

In fact, any adjoint eigenfunction ¥ for BKP can be written as the derivative of an eigen-
function @, that is, ¥=®,. So with the help of (22), (9), and (18) and #},(t,N)=—N""¢p(¢,
—\),, then
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D,(1) = f AN P (8N, S(@(1), hpa (1= N) ) = f AN A (M) s (1= N D (')
—J}mx*wmmx»ﬂwmuz—xx¢avﬂ)
=—Jlﬂx*wmmx»ﬂwmox—xx®uvf)
=- f AN (1= M) S(pa(t' N), D(1) 1) letting N — =\
= J AN (1, M) S (Ppa (' N), D (") 1) = f AN (1, M)S (s (1", N), W (1)) = W ().

So our representation is consistent with W=® ., which shows it is necessary to only study the
spectral representation of the eigenfunctions for the BKP hierarchy.
Remark 2: Since g, (t,\)==\""4f34(t,—\),, so we can rewrite (22) as

q>(t)=—JdhlﬂBA(t,X)S(CD(t'),lﬁZA(t'J\))- (25)

Our results (24) and (25) can be regarded as a natural reduction from corresponding ones" of the
KP hierarchy by considering BKP constraints L*=—dLJ"! and ¥=®,.
Remark 3: In particular,

Ppalt,p) = f ANN" g (£, M) S (pa (2, ), hpa (.= N)r) (26)

is given from (22) by setting ® (1) = g4 (7, ).

Now we shall use the above obtained spectral representation to get general expressions of
SEP. Before this we will use the differential Fay identity (13) to get S(¢ga(r, 1), hpa(t,—N),),
which is a basic and useful SEP of the BKP hierarchy. According to Proposition 2, set s;,=\"! and
s,=—u"!, we can find

P ( e +2[\"] - Z[M_l])) A G N e V7 | s O s G D e V7 | 40

’ 1) (1)
_ D) @erle =20 D r(e+ 200D — o = 2w D, +2IN71])
(-m=N) 7(1)
 Ep N = 2L D e+ 201 - 7= 20" - 2[ D 7(0)
(1) ’

Taking into account of the following identity:

Hi- 2[#*])) ) . ( e+ 2D\‘1]))
ax( T(I) T(t+ 2[)\ 1]) - 7(t - 2[1“‘ 1])ax ’T(I)

_ ayrte= 2L D et + 201D - oo = 2w Dot 20D
- (1) ’

then,
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5 (7(” 2] - 2[#‘1]))
! (1)

_peN[ (- Z[M_l])) _ ) ( Hr+2\1) ))
e =2[p Dt +2[\7"]) T(t+2[>\‘1]—2[u"]))
+ (M—)\)< 20 - A0 : (27)

Furthermore, in order to get S(ig4(2, i), ga(t,—N\),), by using (8) and (11), we first calculate

A+ t+ 2N =-2[p!
3 (Ppalt, ) hpa(t - 2[#«_1],— N) = 07x< _/’“eg(t,,;)-g(t,x) it Lt ]))

JTADN 7(1)

-1 -1 -1 -1

(A + M)eg(,’#)_g(,,;\) m(t+ 2N ] =-2[p]) _ A+ Me‘f(t’#)_g(t’)\)ﬁx< m(t+2[N"]=2[p7]) ) .
7(t) N—p (1)
Note
QE2ITTAN) Z 2OV U ) _ i) n(1np) _ MEN (28)

JTEDN

is used in the first equality above. Taking (27) into the last term of above formula, then

(gt ) hpa(t = 2L "1, = N))
e T 2N -2[p D) A+ Meaf,m—g(z,x)( £ x{ﬁx( m(t+2[\71]) ) 1

- P
s 1) A-p RN 1)
2 )\_] -2 -1 2 )\—1
£ - T(r—z[u“])ax<7(t ' T(E) : )} + (u—x)( =2 T]z)(:;” )
_r+2D - 2[#’1])))
1)
-1 —1
_ e§<z,u>—§<r,x>< &X(TO%E)M])) A+ 2 — 70— 2] ﬂx< ul +j£)7\ ]))
() e =2[p " Dt + 2[)\_1])>
g (1)

= 9, pa(t, 1) Ypa(t,— N) = Yiga(t, ) 3, hpa(t,— N)
= 0, (Ppa(t, ) Ypa(t,= N)) = 24hp (1, 1) 9, hpa(t,— N).

Note the first term cancels the fourth term of the first equality above. So we have
Ypa(t, ) Ypa(t,— N), = %0x{(¢BA(tv_ N) = gt = 2L 1= M) palt, )},
which implies

S(hpalt, ), hga(t,— N),) = %(‘TI/BA(I’_ N) = At = 2L 1= M) hpalt, ). (29)

Next, we shall give the expression of another basic SEP-S(®(¢), ¢yp4(¢,—\),). According to the
spectral representation of ®(z) in (23), then
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S(q)([)a wBA(t,_ )\)x) = S(f dMM_IQD(M)wBA(t’M)’ I/IBA(L_ h)x)
= f dpp™" o()S(Wpat, i), ha(t,= N),)
1
= f dpp" o) ¢BA(t’M)E(¢BA(tv_ N) = thpa(t=2[p™'],= \)) using (29)

1 1
= E‘//BA(ta_ ND(r) - Ef dup () st = 20w ], = N hpa(t, ).

Thus we only need to compute the underlied part above. To this end, with the help of
-1
SN = (4 N)/ (u—N) in (28), we first calculate

11 t+ 2N =2[ut
Vialt = 20T~ N it ) = (4 ) - — gt 20T =20
py_ X 7(t)
2
-1 -1
=N+ w)| S\, m) - L e&Hm=EN) e+ 2] - 2[n7 )
A |k (1)
N
= — pat+ 2IN ] ) hpa (.= N) + (N + ) SO\, ). (30)
Here, the delta function is defined as
lw () 11 1 1
S =— 2 (-) =+, (31)
My \ N >\1 By A
A M

and the following property of delta function is used: given a function f(z)=27__ a7,

f(2)8(N,z) = f(N) 8N, 2)
as is seen from z'S,(z/N)"=N2,(z/\)"*. Thus taking (30) back into the underlined part above,

then
f dup () pa (=20 1= M) alt, )
=- f A" () s (1 + 2IN1], 1) hpa(1,— N) + J dup™ ()N + ) SN, )
=—D(t+2[N"])hga(t,— \) + the term independent of ¢.
So we get

S(D(1), palt,~ N)) = 3 pat,~ (@ (2 +2[N71]) + D(1)), (32)

since the definition of SEP up to the term independent of .
Similarly, we can get the expressions of S(i4(z,\), P (¢)) and S(P,(z),D,,(¢)) by consider-
ing ®,(t)=JdA\N""@(N)ifa(2,\),, see Appendices A and B. Thus we have the following corollary.
Corollary 6: If ®(t),D (1), D,(t) are eigenfunctions of the BKP hierarchy, then

S(hpalt, ), ha(t, = N),) = %(l//BA(t»_ N) = hpa(t = 2L 1= M) hpalt, )., (33)
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S(D(1), pa(t,= N)y) = 3 pat,= N(D(t +2[N']) + D(0)), (34)
S(a(t,0), @) = 5 pa (L, \) (D (1) — D - 2[N71])), (35)
S(D (1), D,.(1) = f f AN N 1 @y () @2 (N)S (a2, ), g, N)y). (36)

Remark 4: Note that (35) is also derived by Loirs'® by a different method.
Remark 5: According to Proposition 5 and Corollary 6, we have

d(r) = f AN g (8 N) hpa (2 - A)Bcb(t' 2N + %q)(t’) . (37)

In fact, the inverse of Proposition 5 is also correct and it provides another formulation of the
BKP hierarchy.

Proposition 7: Given a function ydt,\) which has the form 1,b(t,)\)=e§(”)‘)2?20wj(t))\_j with
wo=1 and &(t,\) as in (8), where multitime t=(t,=x,15,...) and \ is the spectral parameter, let us
assume that y(t,\) has the following spectral representation:

Yt p) = f AT N)S (N, ) (38)

for two arbitrary multitimes t and t' , where the function S(t;\,u) is defined such that
(910t)S(t; N, w)=lt, ) Yt,—N), . Then, (38) is equivalent to the Hirota bilinear identity (9), so
in this way d(t,\) becomes BA functions of the associated BKP hierarchy.

Proof: The proof for one side of the equivalence that Hirota bilinear identity (9) imply the
spectral representation (38) is contained in the proof of (26). So we only need to show that (38)
implies (9). To the end, by differentiating both side of (38) with respect to 7], then,

0= dy(t,\)/dt; = Ydt', ) j AP N (=N,

So

fd)\)\_llﬂ(t,)\)l/l(t',— \) =C.

By letting ¢’ =¢, and considering y(¢,\)y(¢,—\)=1+O(\""), we have C=1. Thus y(¢,\) satisfies
JaNN"Y(t , N ydt' ,—\) =1, i.e., the Hiorta biliner equations of the BKP hierarchy. [ |

By now, we have established the SEP method for the BKP hierarchy, which provides another
formulation of the BKP hierarchy.

IV. BSEP

Based on the useful properties of the SEP given Sec. III, we are now in a position to discuss
a new potential Q-BSEP,"° which will be used to generate the “ghost” flow of the BKP hierarchy
in Sec. V. We first provide three expressions of ) for different eigenfunctions, and then give their
identities.

BSEP is also defined as a function of a pair of BKP eigenfunctions ®; and ®,,

Q(q)bq)Z) = S(q)bq)lx) - S((DI’CDZ)C)- (39)

The definition of BSEP can be up to a constant of integration. It is obvious that Q(®,;,®,)=
—-Q(P,,P,) and that Q(P,1)=> (since 1 is an eigenfunction). So according to (29) and (30), we
have
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Q(hpa(t, ), pa(t;= N)) = = tha(t + 2IN" ], ) g (2,— M) + %O\ + ) 6\, )
= Ypa(t. ) a1 = 2L "1~ N) = SN+ ) SN, ). (40)

Remark 6: As the definition of BSEP can be up to the term independent of #, we can omit the
terms independent of 7 in (40). That is,

Q(pa(t, ), hpa(t,= N)) == ga(t + 2IN" T, ) ha (2, N). (41)

We would like to mention there is another expression for Q(ga(t, i), Ppa(t,—N\)), ie.,

X(\,
Q(pat, ), Ppat, = N)) == % (42)

Here the vertex operator25 is defined as follows:

A0 ) = 1) 1 o 0m) im0 o2 21D D= B iy )

= -2 I S 2O ) Ly ) (43)
where
o\ = - E N+ E e (44)
=1 =1 20-1 Ity
the columns :- - -: indicate Wick Normal ordering with respect to the creation/annihilation “modes”

t; and 9/ dr;, respectively. Thus according to the definition of the Vertex operator (43) and the wave
functions (8) and (11), we can easily get

X\, ) 7(t)

) = Ypalt+ 2[)\_1]”“) Wpa(t,= N) = — Ppa(t, ) thpa(t - Z[M_l],— N+ N+ )N, w).

(45)
So (42) is true.
As for Q(P(1), ga(r,—N)), according to the definition of (), two identities (34) and (35), then
Q(D(2), ppa(t,—N)) can expressed by the form of
Q((D(t)7 wBA(t’_ )\)) = S(wBA(t’_ }\)’(I)x(t)) - S((I)(t)’ lzyBA(t’_ }\)x)
= 3(D() = D+ 2IN" D) Ppat.— N) = a1, = N[ D(r + 2[N"]) + D(1)]
== Ppa(t,= NP+ 2[\71]). (46)

Note that (46) implies (41) in Remark 6 as we expected.
Remark 7: In fact, with the help of spectral representation (23) for the BKP hierarchy and the
expression for Q(pa(t, ), Ypa(t,—N)) (41), Q(DP(7), ha(t,—\)) is derived alternatively as

Q(CI)(I)’ ¢BA(I’_ )\)) = f d/'LM_l(p(M)Q(l//BA(tuu‘)’ ‘pBA(t’_ )\))

=- f dpp" (1) Ppa(t + 2IN"T, ) Ypa(t,— N)

=— D+ 2N D ihat,— N).

We further show a more general () of eigenfunctions @, and ®,,
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Q(q)l,q)z)zjfd)\d,“)\_I,U«_IQD](M)QDz()\)Q(QUBA(l,M),l/fBA(f,A))- (47)

Next, we would like to show three identities on () of the BKP hierarchy.
Lemma 8: For the BKP hierarchy,

A (pa(t, ) Ppalt = Z[M_l]’)\)) = Ypa(t,N) a2 — 2[2_1],#«) — Ypalt, ) a2 - 2[z7"N),
(48)

-3 2D P )]
=1

Proof: First of all, we move all terms in right side hand of (48) to the left, take ¢g,(¢,\) in (8)
and (11) into it, then

where A,=¢ 1 is a shift-difference operator.

(48)holds & it — 2[27' T, ) hpalt = 20w T = 2[z7"IN) = (e, ) pa(t = 2[ ™' TN
+ hpa(t, ) pa(t = 2027 LN) = a(EN) hpa(t = 2[z7 ") = 0
(=W =Np-N71-2[p"T-2["T-2I\"D  p—- N1 -2[uT- 2"

(z+ w(z+ N+ N Wt - 2[z7']) DY (1)
P U Ap Dt =2[z7"T-2N"D  z- prfe = 2D e - 207 - 2['D)
4N 1) ot - 2[z7"]) z+p (1) - 2[z""])

=0 using(28), removing e:N*&Ew)

C-me-NE=-N R
TS VTS VA G et ER i L U U e Ul

= 2N DA = 207D +

S o Prte - 2] - 21
Z+ A\

- i ; Zdt = 2Nz = 2[z7'] - 2[w™']) = 0 multiplying () 7(z - 2[z™"])

(= 2)(u—N\) e RN (L BV (Al )
(ar N ()t = 2[pu ] = 2[z7 ] = 2[\77]) + EE Y
Xr(t = 2[z7"] = 2[w D (e = 2[N71])
A=\ +2)

N+ 0 —2) (it = 2[p '] = 2N (e - 2[27'])

— (it =2l Dt - 2[z7' T -2 =0, multiplyingi * Z.

For convenience, denote the left hand side of above equality by C. Second, we shall prove indeed
C=0 from the Fay identity (12) of the BKP hierarchy, thus (48) is proven. To this end, by letting
5o=0 in Fay identity (12), then

(51 +52)(s1 +53)
(s1—52)(s1—53)
(534 51)(s3+57)

(s3—51)(s53—52)

(55 +53) (52 +57)

(55— 53)(s2—57)

7t +2[s,] + 2[s3]) 7 + 2[5, ]) + 7(t + 2[ s3] + 2[5, ]) 7 + 2[5,])

(1 + 2[5, ]+ 2[5, ]) (¢ + 2[53]) — 7(t + 251 ]+ 2[5,] + 2[s3]) 7(r) = 0.

Then, after shifting 7—¢—2[s,]—2[s3] and letting [s,]——[s,] in above equation, it becomes
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(s1—55)(s —53)
(s +52) (51 + 53)

(s2+53)(s5—57)
(52— 53)(s2+51)

)7t = 2[51] - 2[s5] - 2[s3]) + 1 =2[s5] = 2[5, D)t = 2[s55])

(s3—51)(s3+5,)
(s3+51)(s3—152)

ot = 2[s1] = 2[s3D) 1 = 2[5,]) = ot = 2[5, ) 7z = 2[5,] - 2[55]) = 0.

At last, setting s,=u"!, s,=2"", s3=\"!, we have

(r-2)(p-N) oty ity @FNE=)
(,LL‘I'Z)(,U«‘l')\)T(t)T(t 2Lu™ ] =2[z7] -2 ])+(z—)\)(z+,u)7(t 2z ] = 2[p Dt
-1 ()\_M)()\"'Z) _ -17_ —1 _ -1y _ _ —1 _ 1
-2[\ ])+—()\+,U«)()\—Z)T(t Ap =2 D e =2[27 ) = e = 2[pT D (e = 2[27]
-2[x'D =0,
i.e., C=0, as we claimed before. This is the end of the proof. |

After the preparation above, now we can give two important identities of the BSEP below.
Proposition 9: Under shift of the times t of the BKP hierarchy, BSEP obeys

QP (1= 2[z71]), 41 - 2[z7']) = QP (1), D(1) = P, (1 = 2[z NP (1) = 1 ()Pt - 2[=7']),
(49)

QP (1+2[z71]), @41 + 2[z71]) = QP (1), Do(1) = P, (1 4+ 2[z7 NP (1) = Py ()Pt +2[7']).
(50)

Proof: By a straightforward calculation, then
A QD D,) = f f AN N 1 @ (1) @2 (N A QU (s (£, 1), A (1,N)) using(47)

=ffd)\dﬂ)\_lﬂ_lfm(#)@2()\)(1//BA(L)\)l//BA(f—2[2_1],#)

— hpa(t 1) a1 = 2[z7'].N)), using(41) and (48)
=@, (1= 2[77" ) D,(1) - D, (D, (t—2[z"']) using (23).

So (49) is proven. By shift 1—¢+2[z""], (50) is derived from (49). |
Remark 8: In fact, these identities above have been given in Loris’ paper,16 but here we give
another proof and our proof is much easier.

V. “GHOST” SYMMETRY

After the preparation above, now we can define the “ghost” symmetry flows generated by the
BSEP through its action on the Lax operator. We shall further show its actions on the dressing
operator, eigenfunction ®(¢), and 7 function.

Given a set of eigenfunctions ®@,,®,,,a € {a}, the “ghost” symmetry of the BKP hierarchy is
defined in the following way:

aaL = 2 ((DZaa_lq)la,x - q)lua_lq)Za,x)»L]’ aaW = E (q)2aa_1q)1a,x - (I)laa_l(DZa,x)W'

ae{a} aci{a}

(51

Next, we need to show that the definition above is consistent with the BKP constraint (4) and d,,
commutes with 4, . In other words, d, is indeed a kind of symmetry flow of the BKP hierarchy.
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For simplicity in the next context, we introduce an operator A=2X, (D, 0" HOTN
_(I)]aa_ICDZa,x)'
Proposition 10: d,, is consistent with the BKP constraint (4), i.e., (d,L*) d+d(d,L)=0 .
Proof: According to the definition of A, and using a identity 7' f=fd'=d'f,d', we have

A* d+ 0A = E ((I)Zu,xﬂ_lq)la d- q)lu,xa_ICDZa d+ aq)Zu&_lq)la,x - &(Dla&_lq)Zu,x) = E (q)Za,x(Dla
ae{a} ac{a}
- q)Za,x(qu)la,x - (Dla,x(DZa + qjla,x(?_lq)hz,x + (DZaq)la,x + q)2a,x(9_lq)la,x - (Dlaq)2a,x
- qjla,x&_] (I)Za,x) =0.

Furthermore, using the definition of d,, a simple computation leads to

(0,L%) d+ d(a,L) =[A,L] 9+ d[A,L]=—[A*,L*] 9+ J[A,L]=— LT 'A* 9+ A* dLT "' 9+ J[A,L]
=—d(Ld'A* 90— T 'A* 9L) + I[A,L]= [T 'A* 9,L]+ J[A,L] = d[d'A* 9+ A,L]
=0

because of the above identity on A. This means d,L" is consistent with BKP constraint (4). W

Proposition 11: d, commutes with O, -
Proof: We first claim the following equations

ﬁaB2n+1 -9

Dn+l

A=[A7B2n+l] (52)

hold for A and d,, which will be proven latter. With the help of above equation, a simple calcu-
lation infers

[,

bons1?

aa]L = &12n+1([A7L]) - aa([32n+l’L]) = [&IZnHA’L] + [A9[BZn+19L]] - [ﬁaBZn+l’L]
- [B2n+1’[AaL]] = [&t2n+1A - aaBZnH + [A7B2n+1]7L] = 0,

which shows d, commutes with J, o Therefore, the remaining part of the proof is to show our
claimed statement (52). First of all, the definition of the “ghost” flows d,L=[A,L] implies obvi-
ously d,L*"*'=[A,L*"*']. Thus, we have

&Q’BZI’L+| = ([A’L2n+l])+ = ([A?an+]])+' (53)

Second, the derivative of A with respect to t,,,; is given by

at2n+lA = E (((912n+]CD2a)0')_lq)la,x - ((9[2"+1(D1a)a_1q)2a,x) + E ((DZaérl(é’tanq)la,x)
ae{a} acla}
- (Dlaa—l(ﬁtznﬂq)Za,x)) .

Taking (10) into it, then

7

Iop+1

A= 2 (BZI1+1((I)2a)a_1(D1a,x_BZn+1(q)1a)ﬂ—1(I)2a,x)_ E ((I)2aa—lB;n+1(q)la,x)

ae{a} ae{a}
- q)laa_lB;rHl (q)Za,x)) .
Note @y, , and ®,,, are two adjoint eigenfunctions. Furthermore,

(912,“_1‘4 = <BZn+1 E (q)Za(qu)la,x - Cbla(?_lq)Za,x)) - ( E ((DZa(Tlcbla,x - (I)la,j)_l (DZa,x))BZrHl)

ae{a} aefa}
= (an+lA)— - (ABZn+1)—~

Here the relation (F,d™')_=Fyd"' (F is a pseudodifferential operator) is used. With the relation
(7'F,)_ =\ (F o] (F is a pseudodifferential operator.) Thus, we have
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A=- ([A332n+l])—’ (54)

Don+l

At last, according to (53) and (54), (52) is obtained. [ |
Next, let us see the action of the above “ghost” flows on the eigenfunctions ®.
Proposition 12: The “ghost” symmetry is the compatible condition of the linear problems,

7

Dnt1

® =By,41(P), (55)

1
aaq) = 5 E (q)ZaQ(q)la’q)) - q)laQ(q)Za’(D))' (56)

ae{a}

Proof: The main idea of the proof is to use (52), which is equivalent to ghost symmetry flow
(51), to get the commutativity of the flows dnd, ®=4d, d,P. So, according to (18), we can
rewrite (56) into

1 1
&aq) = 5 2 CI)Za(S((D’q)lax) - S(q)la»q)x)) - (1 - 2) = 2 <(I)2aS(CD’(D1ax) - E(I)laq)Za(D)
ae{a} aeia}

- (1 e 2) = E ((DZaS(q)sq)lax) - (I)las(q)sq)Zax))’ (57)

aei{a}

and then

0t2n+1(0aq)) = E {(atz’,+|q)2a)s((p»q)lax) - (0t2n+1(1)1a)s(q)»q)25x) + (DZa Res(a_lq)laxB2n+lq)0-'—1)
}

ac{a

=@, Res(7' Dy, By, P )} = 2 {(0,,,, P2)S(P,®1,) = (9, P1)S(P, Do)}

aef{a}
+ReS(ABZ,H_1(I)(?—1). (58)

By a tedious but straightforward calculation, we have (see Appendix C)

Res(ABZlHl(D(Tl) = aa((?tznﬂq)) - E (((912”+1q)2a)s(q)’¢)1a,x) - (&tzn“q)la)s(q)’q)Za,x))'

ae{a}
(59)
Thus by substituting (59) and (58), we get
éa( é)t2n+1(1)) = O')t2n+l (&aq)) :
|

We now consider the commutativity of two “ghost” symmetries generated by different pairs of
eigenfunctions {®,, Py} c(y and {Py,.Py,},cqp. and their corresponding flows are d,L
=[A,L] and dpgL=[A",L]. Here A=3, (y(Ps, ' P, ~P, 7 Py, ,) as before, A’
=2 (g Pop(T7' Py, = P ' Doy ).

Proposition 13: If two “ghost” symmetry flows d, and dg are generated by A and A" above,
then [d,,d5]=0 .

Proof: By using the relation

[0 8120 2= f18(f2.81)7 g2 = £157'S(f2.81)82. (60)

then,
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AA' =D (Do ' Dy = Py, Dy )Py Py, — Py ' Dy, ) = > (D' @y Do ' Py,
a,b a,b

- (I)Zaﬂ_lq)la,xq)lba_lq)%,x - (Dlaﬂ—l(I)Za,x(DZbo’rlq)lb,x + q)laa_l(DZa,x(D]ha_l(DZb,x)
= 2 (P S( @, @1, )T Dy = Do S(P @1, )Py — D S(D Dy, )T Dy
a,b

+ (I)Zaa_ls(q)lb’q)la,x)cb2b,x - q)laS(q)Zh’q)Za,x)a_lq)lh,x + CDlaa_IS((DZb’(I)Za,x)q)lh,x
+ D S(D, Dy )T Dy, = P, T S(D, Dy )Py )
Collecting terms in AA’ according to '@y, 7Py, ,, D,,7", and P, in order, then using

(57), we have

AA' = 2 (q)ZaS((be’q)la,x) - CblaS ((I)Zb’(DZa,x))(qu)lb,x - ((DZaS(q)lb’q)la,x)
ab

=D S(D ), Dy )T Doy + Py (S(P 1, P )P = S(Pyy D )Py )
+ @y, T (S( Doy, Do )P = S(P 1, Doy )Py )

= (0 D2p) T @y, = (9, P1,) T ' Doy ) + > (- Do, 7 (0P, + P10 (9pPs,0)).
b a

So

[AA]=2 {(30P2p) T '@y = (9,D1,) T Dy} + - P, 7 (3pP14,) + P10 (95D, )}
b a
+2{- (9P T '@y + (3D )T Doy} + > (D0, (3,P150) = P10 (3, Py )}
a b
= 2 {_ (I)Zaﬂ_l((gﬁqjla,x) + q)laa_l(ﬁﬁq)Za,x) - (aﬁq)Za)(qu)la,x + (aﬂq)la)a_lq)Za,x}

+ { D4, (9, D 15.) = P10 (9, Pop0) + (9 Pop) T Py = (3, D) T Py )}
b

=—dpA+d,A'.

Hence,

[0 9L = 9JA" L] — A, L] =[3,A" - dpA, L] +[A"[A,L]] - [A,[A",L]]
=[9,A" - 9pA +[A",AL,L] = 0.

|
At last, let us see the action of “ghost” flow on the 7 function.
Proposition 14:
1
Galt) = 20 QD (0), P, (1)7(0). (61)
aef{a}

Proof: Since iz,4(2,\) is also an eigenfunction, so (56) implies
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1
ﬁalﬂBA(t?)\) = 5 E [(DZa(t)Q((Dla(t)’ lszA(t?)\)) - q)la(t)Q(q)Za(t)? wBA(t’)\))]

ae{a}

= % E{ } [— @5, ()Pt = 2IN"]) + Dy () Do, (1 = 2IN ' D ]epa(t,N) using (46)

=53 D@L wsing (49)
So we have &ar(t)z%Eae{a}ﬂ(q)z“(t),<I>1a(t))7'(t) using the expression of ¢,(z,\) in (8) and
(11). |
Remark ~9: So starting from the “ghost” symmetry, we find that C7
+%EQE{Q}Q@DZ“O‘),<1)1a(t))7(t) is a new 7 function of the BKP hierarchy. This transformation is
also given by Loris'® started from bilinear identity.
Remark 10: The symmetry reduction in BKP hierarchy, which is now called constrained BKP
(cBKP) hierarchy,'® is just to identify 4, with =0, . ie.,

(L2n+])— = 2 ¢)2aa_1q)la,x - q)laa_l(bZa,x (62)
aei{a}
or
1 1
01223 3 0@ =5 D Q@O P00, (63)

Note if set (L*"*')_=A as (62), then d,, L= [By,.1,L]=[-L*"*! L]=-d,L. So d,= =,

To conclude this section, we Would hke to stress that the “ghost” symmetry (51) of the BKP
hierarchy is indeed different from the counterpart in the KP hierarchy. This difference is due to the
BKP constraint (4). Moreover, the BSEP provides a convenient tool to show it.

VI. APPLICATIONS

In this section, we shall show two applications for previous results.
First, let us derive a bilinear identity for the cBKP hierarchy (62) through the spectral repre-
sentation of the BKP hierarchy. Since

= N (8= N) = L2 (i (.- N) = (L), (hpa(t,— M) + (L") _(ghpa(t,— )
= 3z2 A= N) + oihpa(t,=N) =3, s, N)

+5 > [ @0, ()QUD (D), W a(t,— )

ae{a}

= @, ()P, (1), Wpa(t, = N))] using (56)

IinltN) 45 D [ (0, 1+ 201

aef{a}

+ D, (Do, (1 +2[N ) ]W4(2,— \) using (46). (64)

’2 +1

So according to (64) and the bilinear identity of the BKP hierarchy, we have
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1
fd)\)\znlﬁBA(f,)\)'//BA(f,,— N = 2 5 AN T (£, M) pa (', = N) Do, (1) D, (2" + 2[N71])

aef{a}

= YAt N hpa(t' .= NP, (1) P (1 + 2[N"])] = 2{:} {‘bza(f')f NN g (N pa(t' = N)

X Bq)l“(tl +2[N1) + %qm(r’)} -(1-2)

= E [(I)2a(t’)q)la(t) - q)la(t’)(DZa(t)] llSil’lg (37)
ae{a}
Thus we get the following.
Proposition 15: For the constrained BKP hierarchies (62),the bilinear identity can be written
as

J ANN" Y (8 N) thpa (1= N) = E{ } [ D (1) D1,(1) = Dy, (1) Do, (1)]. (65)

Remark 11: The bilinear identity of the cBKP is the same with Loris’ papelr.]6

Next, we will study the relation between the “ghost” symmetry and the additional symmetry.
By using the “ghost” symmetry of the BKP hierarchy, we shall give a simple proof of the
Adler—Shiota—van Moerbeke formula®~° of the BKP which provides the connection between the
form of additional symmetries of the BKP hierarchy acting on BA functions and Sato Backlund
symmetry acting on the tau functions of the BKP hierarchy. To this end, let Y(\,u) = ip,(t,
“N) T hga(t, o) = thpa(t, )T hgs(t,—N\), be pseudodifferential operator inducing a special
“ghost” symmetry flow d , \W=Y(\,u)W according to (51). In this case, the “ghost” symmetry
flow is generated by an infinite combination of additional syrllmf:tries.30’31 Then, dy )W
=Y(\,u)W infers its actions on wave function,

a()\,ﬂ)(wBA(tsZ)) = Y()\J-L)(lr/,BA(t’Z)) .

Taking (56) into it, we have

YN, ) (fpa(2,2)) = %(lﬂBA(t,— N Q(hga(t, ), Ppa(t,2)) = hpa(t, W) Q(Ppa(t,— N), pa(t,2))).
(66)

Further, according to (8) and (11), the action of the vertex operator X(\,u) on the BA function
Ppa(t,z) is as follows:

XN\, p) (1)
XN, ) pa(t,2) = wsA(t,Z)AzT- (67)
Now, the above results allow us to establish the connection between X and Y.
Proposition 16:
X()\,,LL) wBA(t’Z) = 2Y()\nu*)(/lBA(t’Z) . (68)
Proof:
X070 .
XN, 1) ipa(2,2) = t/fBA(t,z)AzT == Ppa(,2) Ppat,= N hpa(t = 2[z7 ], )

+ ia(£,2) pa(t, 1) rpa(t — 2[27"],— N)using(45)and(48)
= hpa(t,= N Qs (1, 1), Ypa(t,2)) = Ppa(t, ) QUthga(t,— N), tha(2,2) )using(41)
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= ZY()\’ :u')(l//BA(tsZ)) USlng(66) .
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APPENDIX A: PROOF OF (35)
S(l//BA(f,)\),(I)x(t))=S<‘//BA(E)\),J dﬂl/«_lqﬁ(ﬂ)‘/fm(hﬂ)x) using (23)

1
= f dpi™ @) S (pa(t,N), st p),) = f dﬂM‘lsD(u)E(deA(t,M)
— Yt = 2[N"'], 1) 4 (2,N) using (33)

= %m(r,x)(@(r) —®(t-2[\"']) using (23).

APPENDIX B: PROOF OF (36)
S(q)l(t)’(pZX(l)):S(f dM,U«_1<P1(,U~)¢BA(Z,M),fd)\)\_léoz()\)lﬂm(f,)\)x) using (23)

=ffd)\dﬂ)\_l,“«_l<P1(M)¢2(>\)S(¢BA(L/-L),lffBA(t,)\)x)-

APPENDIX C: PROOF OF (59)
According to (52),

Res(AB,,, ®d")
= Res(9aBy1 P ') —Res(d,, ADT ") + Res(By, AP )
=(9,By,1)(P) + Res(By,, AP !) using (21)
= (0aBoe) (@) + 2 Res(Byy 1 (P ' @y = @, ' Dy, JPT)

ae{a}

= (94Bons)(P) + > (Res(Byy 1 P2, ' (0S(D,Dy,,) — S(P, Dy, )T )

aef{a}

—(1+2)) using (20)
=(aaB2n+l)(<D)+ 2 (ReS(BZnH(I)ZaS((I)’q)la,x)a_l)

aef{a}

- ReS(anHq)zaleS(q),q)la,x)) -(1<2))

= (94Bons)(P) + 2 (B211+I((D2as(q)9q)1a,x)) - B2n+]((D2a)S((I)sq)la,x) - (1+2)) using (21)

aef{a}

Downloaded 31 May 2010 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



053514-19  Ghost symmetry J. Math. Phys. 51, 053514 (2010)

= (60’BZI1+])(¢) + BZn+l 2 (q)ZaS((I)’q)lu,x) - CI)laS(q)’q)hi,x))

acf{a}
- E (((9t2n+lq)2a)s(q)’q)la,x) - (atzn“q)la)s((b’q)Za,x))
ae{a}
= (aaBZnH)((D) + B2n+l(aaq)) - E ((&tznﬂq)Za)S(chq)la,x)
aef{a}
- (&ZZ’HI(I)la)S(q)’CDZa,x)) llSiIlg (57)

=04dy, | @)= 2 (3, Po)S@, D) = (d,,  P1)S(D,Ds)).

ae{a}
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