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Preface

This article develops the basics of the Lebesgue integral and measure theory.
In terms of content, it adds nothing new to any of the existing textbooks on
the subject. But our approach here will be to avoid unduly abstractness and
absolute generality, instead focusing on producing proofs of useful results as
quickly as possible.

Much of the material here comes from lecture notes from a short real analysis
course I had taken, and the rest are well-known results whose proofs I had
worked out myself with hints from various sources. I typed this up mainly for
my own benefit, but I hope it will be interesting for anyone curious about the
Lebesgue integral (or higher mathematics in general).

I will be providing proofs of every theorem. If you are bored reading them,
you are invited to do your own proofs. The bibliography outlines the background
you need to understand this article.

Copyright matters

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts.

1 Motivation for the Lebesgue integral

If you have followed the rigorous definition of the Riemann integral in R or Rn,
you may be wondering why do we need to study yet another integral. After all,
why should we even care to integrate nasty functions like:

D(x) =
{

1 , x ∈ Q
0 , x ∈ R \Q

Rephrased in another way, D(x) is actually the indicator function1 of the
set

S = {x ∈ Q} ⊂ R ,

and we want to find its “length”. Continuing to rephrase this question, sup-
pose we are taking many real-valued measurements x of a particular physical
phenomenon. What is the probability, say, that x is rational? If we assume

1 For any set S, this is the function χS defined by χS(x) = 1 if x ∈ S and χS(x) = 0 if
x /∈ S. Math people call this the “characteristic function”, while probability people call it the
“indicator function” instead.
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the measurements are distributed normally with a mean of µ and a standard
deviation of σ, then this is given by:

Pr[X ∈ Q] =
∫

S

1√
2πσ2

e−
1
2 ( x−µ

σ )2

dx

So wild sets like S are theoretically worth considering, and it does not work to
use Riemann integral to evaluate the above probability.

Another limitation to the Riemann integral is with limits. If a sequence of
functions fn is uniformly convergent (on a closed interval, or more generally a
compact set A ⊆ Rn), then we can interchange limits for the Riemann integral:

lim
n→∞

∫
A

fn(x) dx =
∫

A

lim
n→∞

fn(x) dx ,

but the criterion of uniform convergence is often too restrictive, e.g. when
integrating Fourier series. On the other hand, it can be proven with the Lebesgue
integral that the interchange is valid under weaker conditions (e.g. the functions
fn is bounded above somehow, and they converge pointwise).

As an added benefit, some sophisticated results concerning the Riemann
integral, such as the Change of Variables Theorem in Rn, are more easily proven
using the Lebesgue integral, with its arsenal of limit theorems.

Finally, the Riemann integral does not deal with integration over “infinite
bounds” very well. For example, the standard way to compute the probability
integral ∫ +∞

−∞
e−

1
2 x2

dx

goes like this:(∫ +∞

−∞
e−

1
2 x2

dx
)2

=
∫ +∞

−∞
e−

1
2 x2

dx

∫ +∞

−∞
e−

1
2 y2

dy

=
∫ +∞

−∞

∫ +∞

−∞
e−

1
2 (x2+y2) dx dy

=
∫

R2
e−

1
2 (x2+y2) dx dy

=
∫ 2π

0

∫ ∞

0

e−
1
2 r2
r dr dθ (using polar coordinates)

= 2π
[
−e− 1

2 r2
]r=∞

r=0

= 2π .

So ∫ +∞

−∞
e−

1
2 x2

dx =
√

2π .

The above computation seems easy, and although it can be justified using the
Riemann integral alone, it is not entirely trivial, but it is with the Lebesgue
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integral. (For example, why should
∫ +∞
−∞

∫ +∞
−∞ be the same as

∫
R2? Note that

in the Riemann theory, the iterated integral and the area integral are proven to
be equal only for bounded sets of integration.)

You will probably be able to find other sorts of limitations with the Riemann
integral.

2 Basic measure theory

The setting of abstract integration is measure theory, which tells us what the
areas or volumes of various sets are. Essentially we are given some function
µ of sets which returns the area or volume — formally called the measure —
of the given set. i.e. We assume at the beginning that such a function µ has
already been defined for us. The abstract approach of the Lebesgue integral has
the obvious advantage that the theory can be applied to many other measures
besides volume in Rn.

We begin with the axioms of measure theory.

Definition 2.1. Let X be any non-empty set. A sigma algebra2 of subsets of
X is a family A of subsets of X, with the properties:

1. A is non-empty.

2. If E ∈ A, then X \ E ∈ A.

3. If {En}n∈N is a sequence of sets in A, then their union is in A. That is,
A is closed under countable unions.

The pair (X,A) is called a measurable space, and the sets in A are called
the measurable sets.

Notice that the axioms always imply that X ∈ A. Also, by De Morgan’s
laws, A is closed under countable intersections as well as countable union.

Needless to say, we cannot insist that A is closed under arbitrary unions
or intersections, as that would force A = 2X if A contains all the singleton
sets. That would be uninteresting. On the other hand, we want closure under
countable set operations, rather than just finite ones, as we will want to take
countable limits.

Example 2.1. Let X be any (non-empty) set. Then A = 2X is a sigma algebra.

Example 2.2. Let X be any (non-empty) set. Then A = {X, ∅} is a sigma
algebra.

To get non-trivial sigma algebras to work with we need the following, a very
unconstructive(!) construction:

If we have a family of sigma algebras on X, then the intersection of all the
sigma algebras from this family is also a sigma algebra on X. If all of the sigma

2I do not know why it has such a ridiculous name, other than the fact that it is often
denoted by the Greek letter.
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algebras from the family contains some fixed G ⊆ 2X , then the intersection of
all the sigma algebras from the family, of course, is a sigma algebra containing
G.

Now if we are given G, and we take all the sigma algebras on X that contain
G, and intersect all of them, we get the smallest sigma algebra that contains G.

Definition 2.2. The smallest sigma algebra containing any given G ⊆ 2X , as
constructed above, is denoted 〈G〉, and is also called the sigma algebra generated
by G.

The following is an often-used sigma algebra.

Definition 2.3. If X is a topological space, we can construct the sigma algebra
〈T 〉, where T is the set of all open sets. This is called the Borel sigma algebra
and is denoted B(X). When topological spaces are involved, we will always take
the sigma algebra to be the Borel sigma algebra unless stated otherwise.

B(X), being generated by the open sets, then contains all open sets, all
closed sets, and countable unions and intersections of open sets and closed sets.
It seems unlikely, however, that every set in B(X) is expressible as a countable
union and/or intersection of open sets and closed sets, although it is tempting
to think that.

By the way, Theorem 9.3 shows the Borel sigma algebra is generally not all
of 2X .

Sigma algebras are the domain on which measures are defined.

Definition 2.4. Let (X,A) be a measurable space. A positive measure on this
space is a function µ : A → [0,∞] such that

1. µ(∅) = 0

2. Countable additivity : For any sequence of mutually disjoint sets En ∈ A,

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(En) .

The set (X,A, µ) will be called a measure space. Whenever convenient we
will abbreviate this expression, as in “let X be a measure space”, etc. Also, in
this article, when we say “measure”, we will be dealing with positive measures
only. (There are also theories about signed measures and complex measures.)

Example 2.3. Let X be an arbitrary set, and A be a sigma algebra on X. Define
µ : A → [0,∞] as

µ(A) =
{
|A| , if A is a finite set
∞ , if A is an infinite set .

This is called the counting measure.
We will be able to model the infinite series

∑∞
n=1 an in Lebesgue integration

theory by using X = N and the counting measure, since integrals are essentially
sums of the integrand values weighted by areas or measures.
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Example 2.4. X = Rn, andA = B(Rn). We can construct the Lebesgue measure
λ which assigns to the rectangle [a1, b1] × · · · × [an, bn] in Rn its expected n-
dimensional volume (b1 − a1) · · · (bn − an). Of course this measure should also
assign the correct volumes to the usual geometric figures, as well as for all the
other sets in A.

The existence of such a measure will be demonstrated later.
Intuitively, defining the volume of the rectangle only should suffice to uniquely

also determine the volume of the other sets, since the volume of every set can
be approximated by the volume of many small rectangles. Indeed, we will later
show this intuition to be true. In fact, you will see that most theorems using
Lebesgue measure really depend only on the definition of the volume of the
rectangle.

Example 2.5. Any probability measure (as defined by the usual axioms of prob-
ability) is actually a measure in our sense. For example,

Pr[Z ∈ B] = µ(B) =
∫

B

1√
2π
e−

1
2 t2dt , 3

where the integration, of course, is with respect to the Lebesgue measure on
the real line. Other examples include the uniform distribution, the Poisson
distribution, and so forth.

Before we begin the prove more theorems, I must mention that we will be
operating on the quantity ∞ as if it were a number, even though you may have
been told this is “wrong” by some teachers. It is true, of course, that certain
algebraic properties of R would fail to hold with ∞ included (i.e. R∪{∞,−∞}
is not a field), but the crucial point in real analysis is that ∞ obeys the usual
ordering rules when used in inequalities. The rules we adopt are the following:

a ≤ ∞
∞+∞ = ∞
a · ∞ = ∞ (a 6= 0)
0 · ∞ = 0

The first three rules are self-explanatory. The last rule may need explaining:
when integrating functions, we often want to ignore “isolated” singularities, e.g.
at zero for

∫ 1

0
dx/

√
x. The point 0 is supposed to have “measure zero”, so

even though the function is ∞ there, the area contribution at that point should
still be 0 = 0 · ∞. Hence the rule. At this point a warning should be issued:
the additive cancellation rule will not work with ∞. The danger should be
sufficiently illustrated in the proofs of the following theorems.

Theorem 2.1. The following are easy facts about measures:

1. It is finitely additive.
3I guess this is my favorite integral. It’s got all the important numbers in it — well, except

for i.
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2. Monotonicity: If E,F ∈ A, and E ⊆ F , then µ(E) ≤ µ(F ).

3. If E ⊆ F has finite measure (µ(E) <∞), then µ(F \ E) = µ(F )− µ(E).

4. If A or B has finite measure, then µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

Proof. The first fact is obvious. For the second fact, we have

µ(F ) = µ((F \ E) ] E) = µ(F \ E) + µ(E) ,

and µ(F \E) ≥ 0. For the third fact, just subtract µ(E) from both sides. (The
funny union symbol means that the union is disjoint.) Of course the fact that
A is a sigma algebra is used throughout to know that the new sets also belong
to A.)

For the fourth fact, we decompose each of A, B, and A ∪ B into disjoint
parts, to obtain the following:

µ(A) = µ(A ∩Bc) + µ(A ∩B) .
µ(B) = µ(B ∩Ac) + µ(B ∩A) .

µ(A ∪B) = µ(A ∩Bc) + µ(Ac ∩B) + µ(A ∩B) .

Adding the first two equations and then substituting in the third one,

µ(A) + µ(B) = µ(A ∩Bc) + µ(A ∩B) + µ(B ∩Ac) + µ(B ∩A)
= µ(A ∪B) + µ(A ∩B) .

Since one of A or B has finite measure, so does A ∩ B ⊆ A,B, by the second
fact, so we may subtract µ(A ∩B) from both sides. Of course if one of A or B
has infinite measure, the resulting equation says nothing interesting. �

The preceding theorem, as well as the next ones, are quite intuitive and you
should have no trouble remembering them.

Theorem 2.2. Let (X,A, µ) be measure space, and let E1 ⊆ E2 ⊆ E3 ⊆ · · ·
be subsets in A with union E. (The sets En are said to increase to E, and
henceforth we will write {En} ↗ E for this.) Then

µ(E) = µ

( ∞⋃
n=0

En

)
= lim

n→∞
µ(En) .

Proof. The sets Ek and E can be written as the disjoint unions

Ek = E1 ∪ (E2 \ E1) ∪ (E3 \ E2) ∪ · · · ∪ (Ek \ Ek−1)
E = E1 ∪ (E2 \ E1) ∪ (E3 \ E2) ∪ · · · ,

(and set E0 = ∅), so that

µ(E) =
∞∑

k=1

µ(Ek \ Ek−1) = lim
n→∞

n∑
k=1

µ(Ek \ Ek−1) = lim
n→∞

µ(En) . �
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Theorem 2.3. For any En ∈ A,

µ

( ∞⋃
n=1

En

)
≤

∞∑
n=1

µ(En) .

Proof.

µ

( ∞⋃
n=1

En

)
= µ

( ∞⋃
n=1

En \ (E1 ∪ E2 ∪ · · · ∪ En−1)
)

=
∞∑

n=1

µ
(
En \ (E1 ∪ E2 ∪ · · · ∪ En−1)

)
≤

∞∑
n=1

µ(En) . �

Theorem 2.4. Let {En} ↘ E (that is, En are decreasing and their intersection
is E), and µ(E1) <∞. Then

lim
n→∞

µ(En) = µ(E) = µ

( ∞⋂
n=1

En

)
.

Proof. We have {E1 \ En} ↗ (E1 \ E). So

µ(E1 \ E) = µ

( ∞⋃
n=1

(E1 \ En)
)

= lim
n→∞

µ(E1 \ En) ,

µ(E1)− µ(E) = lim
n→∞

[µ(E1)− µ(En)] = µ(E1)− lim
n→∞

µ(En) ,

and cancel µ(E1) on both sides. �

3 Measurable functions

To do integration theory, we of course need functions to integrate. You should
not expect that arbitrary functions can be integrated, but only the “measurable”
ones. The following definition is not difficult to motivate.

Definition 3.1. Let (X,A) and (Y,B) be measurable spaces. A map f : X → Y
is measurable if

for all B ∈ B, the set f−1(B) = [f ∈ B] is in A .

Example 3.1. A constant map is always measurable, for f−1(B) is either ∅ or
X.

Theorem 3.1. The composition of two measurable functions is measurable.

Proof. Immediate from the definition. �
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Theorem 3.2. Let (X,A) and (Y,B) be measurable spaces, and suppose H
generates the sigma algebra B: 〈H〉 = B. A function f : X → Y is measurable
if and only if for every V ∈ H, f−1(V ) is in A.

Proof. The “only if” part is just the definition of measurability. For the “if”
direction, define G = {f−1(V ) : V ∈ H}, and also C = {V ∈ B : f−1(V ) ∈ 〈G〉}.
It is easily checked that C is a sigma algebra on Y , and it containsH, and hence it
is actually equal to B. That is, for every V ∈ B, f−1(V ) is in 〈G〉 ⊆ 〈A〉 = A. �

Corollary 3.3. All continuous functions (between topological spaces) are mea-
surable.

A comment about infinities again. There is a natural topology on [−∞,+∞]
and [0,∞] that make them look like closed intervals. Some denote [−∞,+∞] by
R (“the extended real numbers”). However, for convenience, I will just denote it
as plain R. So keep in mind that when we prove our theorems, we have to make
sure that they work (or do not work) when infinite quantities are introduced.

Theorem 3.4. Let (X,A) be a measurable space. A map f : X → R is mea-
surable if and only if [f > c] = f−1((c,+∞]) ∈ A for all c ∈ R.

Proof. Let B be the set of all open intervals (a, b), along with {−∞}, {+∞}. Let
H be the set of all intervals (c,+∞]. (a, b, c are finite.) Evidently H generates
B:

(a, b) = [−∞, b) ∩ (a,+∞] ,

[−∞, b) =
∞⋃

n=1

[−∞, b− 1
n

] =
∞⋃

n=1

R \ (b− 1
n
,+∞] .

{+∞} =
∞⋂

n=1

(n,+∞] .

{−∞} = R \
∞⋃

n=1

(−n,+∞] .

In turn, B generates the Borel sigma algebra on R. Applying Theorem 3.2 to
the generator H gives the result. (As B ⊆ 〈H〉 and H ⊆ 〈B〉 together mean
〈H〉 = 〈B〉.) �

Remark 3.5. We can replace (c,+∞], in the statement of the theorem, by
[c,+∞], [−∞, c], etc. and there is no essential difference.

The “countable union with 1/n” trick used in the proof is widely applicable.
It may be of interest to note that the Archimedean property of the real num-
bers is being used here — the same proof will not work with non-Archimedean
ordered fields.
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Theorem 3.6. Let fn be a sequence of measurable R-valued functions. Then
the functions

sup
n
fn, inf

n
fn, max

n
fn, min

n
fn, lim sup

n
fn, lim inf

n
fn

(the limits are pointwise) are all measurable.

Proof. If g(x) = supn fn(x), then [g > c] =
⋃

n[fn > c], and we apply Theorem
3.4. Similarly, if g(x) = infn fn(x), then [g < c] =

⋃
n[fn < c]. The rest can

be expressed as in terms of supremums and infimums (over a countable set), so
they are measurable also. �

Not surprisingly, we will need to do arithmetic in integration theory, so we
better know that

Theorem 3.7. If f, g : X → R are measurable, then so are f + g, fg, and f/g.

Proof. Consider the countable union

[f + g < c] =
⋃
r∈Q

[f < c− r] ∩ [g < r] .

The set equality is justified as follows: Clearly f(x) < c−r and g(x) < r together
imply f(x) + g(x) < c. Conversely, if we set g(x) = t, then f(x) < c − t, and
we can increase t slightly to a rational number r such that f(x) < c − r, and
g(x) < t < r. This shows that f + g is measurable (by Theorem 3.4).

Since [−f < c] = [f > −c], we see that −f is measurable.
Therefore the functions

f+(x) = max{+f(x), 0} (positive part of f)

f−(x) = max{−f(x), 0} (negative part of f)

are measurable (from Theorem 3.6 and Example 3.1). Since f = f+ − f−, f is
measurable if f+ and f− are measurable separately also.

Since

fg = (f+ − f−)(g+ − g−) = f+g+ − f+g− − f−g+ + f−g− ,

to prove that fg is measurable, it suffices to assume that f and g are both
non-negative. Then just as with the sum,

[fg < c] =
⋃
r∈Q

[f < c/r] ∩ [g < r] .

Finally, for 1/g,

[1/g < c] =
{

[1/c < g, cg > 0] ∪ [1/c > g, cg > 0] , c 6= 0
[g < 0] , c = 0 . �
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Remark 3.8. You probably have already noticed there may be difficulty in defin-
ing what the arithmetic operations mean when the operands are infinite (or
when dividing by zero). The usual way to deal with these problems is to simply
redefine the functions whenever they are infinite to be some fixed value. In
particular, if the function g is obtained by changing the original measurable
function f on a measurable set A to be a constant c, we have:

[g ∈ B] =
(
[g ∈ B] ∩A

)
∪

(
[g ∈ B] ∩Ac

)

[g ∈ B]∩A =
{
A , c ∈ B
∅ , c /∈ B

[g ∈ B]∩Ac = [f ∈ B] ∩Ac ,

so the resultant function g is also measurable. Very conveniently, any sets like
A = [f = +∞], [f = 0] are automatically measurable. Thus the gaps in the
previous proof with respect to infinite values can be repaired with this device.

As a final note, one intermediate result from the proof is quite useful and
should be formally recognized:

Theorem 3.9. An R-valued function f is measurable if and only if f+ and f−

are measurable. Moreover, if f is measurable, so is |f | = f+ + f−.

Remark 3.10. Of course the converse to the second statement is not true. You
may construct a counterexample to convince yourself of this fact.

4 Definition of the Lebesgue Integral

The idea behind Riemann integration is to try to measure the sums of area of
the rectangles “below a graph” of a function and then take some sort of limit.
The Lebesgue integral uses a similar approach: we perform integration on the
“simple” functions first:

Definition 4.1. A function is simple if its range is a finite set.

An R-valued simple function ϕ always has a representation

ϕ =
n∑

k=1

ak χEk
,

where ak are the distinct values of ϕ, and Ek = ϕ−1({ak}). Conversely, any
expression of the above form, where ak need not be distinct, and Ek is not neces-
sarily ϕ−1({ak}), also defines a simple function. For the purposes of integration,
however, we will require that Ek be measurable, and that they partition X. It
should be mentioned that χS is measurable if and only if S is.
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Definition 4.2. Let (X,µ) be a measure space. The Lebesgue integral, over
X, of a R+-valued measurable simple function ϕ is defined as∫

X

ϕdµ =
∫

X

n∑
k=1

ak χEk
dµ =

n∑
k=1

ak µ(Ek) .

(We restrict ϕ to being non-negative for now, to avoid mixed +∞, −∞ on
the right-hand side.) Needless to say, the quantity on the right represents the
sum of the areas below the graph of ϕ.

It had better be the case that the value of the integral does not depend
on the representation of ϕ. If ϕ =

∑
i aiχAi

=
∑

j bjχBj
, where Ai and Bj

partition X (so Ai ∩Bj partition X), then∑
i

ai µ(Ai) =
∑

j

∑
i

ai µ(Ai ∩Bj) =
∑

j

∑
i

bj µ(Ai ∩Bj) =
∑

j

bj µ(Bj) .

The second equality follows because the value of ϕ is ai = bj on Ai ∩ Bj , so
ai = bj whenever Ai ∩Bj 6= ∅. So fortunately the integral is well-defined.

Using the same algebraic manipulations just now, you can prove that if we
have two simple functions ϕ ≤ ψ, then

∫
X
ϕdµ ≤

∫
X
ψ dµ (monotonicity of the

integral).

Theorem 4.1. The Lebesgue integral (for non-negative simple functions) is
linear.

Proof. Clearly
∫

X
cϕ dµ = c

∫
X
ϕdµ. And if ϕ =

∑
i ai χAi

, ψ =
∑

j bj χBj
, we

have ∫
X

ϕdµ+
∫

X

ψ dµ =
∑

i

aiµ(Ai) +
∑

j

bjµ(Bj)

=
∑

i

∑
j

aiµ(Ai ∩Bj) +
∑

j

∑
i

bjµ(Bj ∩Ai)

=
∑

i

∑
j

(ai + bj)µ(Ai ∩Bj)

=
∫

X

(ϕ+ ψ) dµ . �

Next, we integrate non-simple measurable functions like this:

Definition 4.3. Let f : X → [0,+∞] be measurable. Consider te set Sf of all
measurable simple functions 0 ≤ ϕ ≤ f , and define the integral of f over X as∫

X

f dµ = sup
ϕ∈Sf

∫
X

ϕdµ .
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Intuitively, the simple functions in Sf are supposed to approximate f as
close as we like, and we find the integral of f by computing the integrals of
these approximations. But logically we need to know that these approximations
really do exist. This is the essence of the following theorem.

Theorem 4.2 (Approximation Theorem). Let f : X → [0,∞] be measur-
able. Then there exists a sequence of non-negative functions {ϕn} ↗ f , meaning
ϕn are increasing pointwise and converging pointwise to f . Moreover, if f is
bounded, it becomes possible for the ϕn to converge to f uniformly.

Proof. We prove the second statement first. Let N be any integer > sup f , and
set

ϕn =
N2n∑
k=1

k − 1
2n

χEn,k
, En,k = f−1

([
k − 1
2n

,
k

2n

))
.

We have 0 ≤ f − ϕn < 2−n uniformly. The detailed verification is left to the
reader.

The construction for the first statement is very similar. Set

ϕn =
n2n∑
k=1

k − 1
2n

χEn,k
+ χFn

, Fn = [f ≥ n] .

I leave it to you to check that 0 ≤ f(x)−ϕn(x) < 2−n whenever n > f(x), and
ϕn(x) = n whenever f(x) = ∞. �

In case you were worrying about whether this new definition of the integral
agrees with the old one in the case of the non-negative simple functions, well, it
does. Use monotonicity to prove this.

Definition 4.4. If f is not necessarily non-negative, we define∫
X

f dµ =
∫

X

f+ dµ−
∫

X

f− dµ ,

provided that the two integrals on the right are not both ∞.

Of course we will want to integrate over subsets of X also. This can be
accomplished in two ways. Let A be a measurable subset of X. Either we
simply consider integrating over the measure space restricted to subsets of A,
or we define ∫

A

f dµ =
∫

X

f χA dµ .

If ϕ is non-negative simple, a simple working out of the two definitions of the
integral over A shows that they are equivalent. To prove this for the case of
arbitrary measurable functions, we will need the tools of the next section.

Let us note some other basic properties of our integral:

13



Let f, g be non-negative. Since

Scf = c · Sf = {cϕ : ϕ ∈ Sf} , 0 ≤ c <∞ .

we have (we freely omit the “dµ” and/or the integration limit “X” when they
are implied by the context) ∫

cf = c

∫
f .

This rule about constant multiplication also holds for f and c not necessarily
non-negative, as you can easily check, but proving linearity requires the tools of
the next section.

Moreover, if 0 ≤ f ≤ g, then Sf ⊆ Sg, and therefore
∫
f ≤

∫
g. In particular,

if A ⊆ B, then fχA ≤ fχB , so ∫
A

f ≤
∫

B

f .

Unsurprisingly
∫
f ≤

∫
g also holds if f, g are not necessarily non-negative, and

that is proven by considering the positive and negative parts of f, g separately.
Then since −|f | ≤ f ≤ |f |, we also obtain

−
∫
|f | ≤

∫
f ≤

∫
|f |, i.e.

∣∣∣∫ f
∣∣∣ ≤ ∫

|f | .

(This last inequality is sometimes called the “generalized triangle inequality”,
as integrals can be viewed as an advanced form of summing.)

Next, we make one more definition related to integrals.

Definition 4.5. A (µ-)measurable set is said to have (µ-)measurable zero if
µ(E) = 0.

Typical examples of a measure-zero set are the singleton points in Rn, and
lines and curves in Rn, n ≥ 2. By countable additivity, any countable set in Rn

has measure zero also.
A particular property is said to hold almost everywhere if the set of points

for which the property fails to hold is a set of measure zero. For example, “a
function vanishes almost everywhere”.

Clearly, if you integrate anything on a set of measure zero, you get zero.

Assuming that linearity of the integral has been proved, we can demonstrate
the following intuitive result.

Theorem 4.3. A measurable function f : X → [0,∞] vanishes almost every-
where if and only if

∫
X
f = 0.

Proof. Let A = [f = 0], and µ(Ac) = 0. Then∫
X

f =
∫

X

f · (χA + χAc) =
∫

X

fχA +
∫

X

fχAc =
∫

A

f +
∫

Ac
f = 0 + 0 .

14



Conversely, if
∫

X
f = 0, consider [f > 0] =

⋃
n[f > 1

n ]. We have

µ[f >
1
n

] =
∫

[f> 1
n ]

1 = n

∫
[f> 1

n ]

1
n
≤ n

∫
X

f = 0 .

Hence µ[f > 0] = 0. �

5 Convergence theorems

The following theorems are another feature of the Lebesgue integral that make
it so much better than the Riemann definition.

Theorem 5.1 (Monotone Convergence Theorem). Let (X,µ) be a mea-
sure space. Let fn be non-negative measurable functions increasing pointwise to
f . Then ∫

X

f dµ =
∫

X

(
lim

n→∞
fn

)
dµ = lim

n→∞

∫
X

fn dµ .

Proof. f is measurable because it is a limit of measurable functions. Since fn is
an increasing sequence of functions bounded by f , their integrals is an increasing
sequence of numbers bounded by

∫
X
f ; thus the following limit exists:

lim
n→∞

∫
X

fn dµ ≤
∫

X

f dµ .

Next we show the inequality in the other direction.
Take any 0 < t < 1. Given a fixed ϕ ∈ Sf , let An = [fn − tϕ ≥ 0]. The An

are obviously increasing.
If for a particular x ∈ X, we have ϕ(x) = 0, then x ∈ An, for all n.

Otherwise, ϕ(x) > 0, so f(x) ≥ ϕ(x) > tϕ(x), and there is going to be some n
for which fn(x) ≥ tϕ(x), i.e. x ∈ An. Hence X =

⋃
nAn.

For all µ-measurable sets E, define a new measure on X by

ν(E) =
∫

E

tϕ dµ .

Then∫
X

tϕ dµ = ν(X) = ν
(⋃

n

An

)
= lim

n→∞
ν(An) = lim

n→∞

∫
An

tϕ dµ

≤ lim
n→∞

∫
An

fn dµ , since on An we have tϕ ≤ fn

≤ lim
n→∞

∫
X

fn dµ .

t

∫
X

ϕdµ ≤ lim
n→∞

∫
X

fn dµ , and take limit t→ 1 .∫
X

ϕdµ ≤ lim
n→∞

∫
X

fn dµ , and take sup over ϕ ∈ Sf . �
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Using this theorem, we are now in the position to prove linearity of the
Lebesgue integral for non-simple functions. Given any two non-negative mea-
surable functions f, g, by the approximation theorem (Theorem 4.2), we know
that are non-negative simple functions {ϕn} ↗ f , and {ψn} ↗ g. Then
{ϕn + ψn} ↗ f + g, and so∫

f + g = lim
n→∞

∫
ϕn + ψn = lim

n→∞

∫
ϕn +

∫
ψn =

∫
f +

∫
g .

(The second equality follows because we already know the integral is linear
for simple functions. For the first and third equality we apply the Monotone
Convergence Theorem.)

And if f, g not necessarily non-negative, then∫
f + g =

∫
(f+ − f−) + (g+ − g−)

=
∫
f+ + g+ − (f− + g−)

=
∫
f+ + g+ −

∫
f− + g−

=
∫
f+ +

∫
g+ − (

∫
f− +

∫
g−) =

∫
f +

∫
g .

(Only at the fourth equality we apply what we had just proved for non-negative
functions. The third and last equality are just by the definition of the integral.)

Here is another application of the Monotone Convergence Theorem.

Theorem 5.2 (Beppo Levi). Let fn : X → [0,∞] be measurable. Then∫ ∞∑
n=1

fn =
∞∑

n=1

∫
fn .

Proof. Let gN =
∑N

n=1 fn, and g =
∑∞

n=1 fn. The Monotone Convergence
Theorem applies to gN , and:∫

g =
∫

lim
N→∞

gN = lim
N→∞

∫
gN = lim

N→∞

N∑
n=1

∫
fn =

∞∑
n=1

∫
fn . �

There are many more applications like this. We postpone those for now,
since you will probably be even more amazed by the next convergence theorem.
We first need a lemma.

Lemma 5.3 (Fatou’s Lemma). Let fn : X → [0,∞] be measurable. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn .
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Proof. Set gn = infk≥n fk, so that gn ≤ fn, and {gn} ↗ lim infn fn. Then∫
lim inf

n
fn =

∫
lim
n
gn = lim

n

∫
gn = lim inf

n

∫
gn ≤ lim inf

n

∫
fn . �

Remark 5.4. By adding and subtracting a constant, the hypotheses may be
weakened to allow functions that are bounded below by any fixed number, not
just non-negative functions. (This lower bound condition cannot be dropped.)
The same considerations apply to the Monotone Convergence Theorem.

The following definition is used to formulate a crucial hypothesis of the
theorem that is about to follow.

Definition 5.1. A function f : X → R is called integrable if it is measurable
and

∫
X
|f | <∞.

It is immediate that f is integrable if and only if f+ and f− are both
integrable. It is also helpful to know, that

∫
|f | < ∞ must imply |f | < ∞

almost everywhere.

Theorem 5.5 (Dominated Convergence Theorem). Let (X,µ) be a mea-
sure space. Let fn : X → R be a sequence of measurable functions converging
pointwise to f . Moreover, suppose that there is an integrable function g such
that |fn| ≤ g, for all n. Then fn and f are also integrable, and

lim
n→∞

∫
X

|fn − f | dµ = 0 .

Proof. Obviously fn and f are integrable. Also, 2g−|fn− f | is measurable and
non-negative. By Fatou’s lemma,∫

lim inf
n

(2g − |fn − f |) ≤ lim inf
n

∫
(2g − |fn − f |) .

Since fn converges to f , the left-hand quantity is just
∫

2g. The right-hand
quantity is:

lim inf
n

(∫
2g −

∫
|fn − f |

)
=

∫
2g + lim inf

n

(
−

∫
|fn − f |

)
=

∫
2g − lim sup

n

∫
|fn − f | .

Since
∫

2g is finite, it may be cancelled from both sides. Then we obtain

lim sup
n

∫
|fn − f | ≤ 0 , i.e. lim

n→∞

∫
|fn − f | = 0 . �

Remark 5.6. It obviously suffices to only require that fn converge to f pointwise
almost everywhere, or that |fn| is bounded above by g almost everywhere. (Of
course, if fn only converges to f almost everywhere, then the theorem would
not automatically say that f is measurable.)
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Remark 5.7. By the generalized triangle inequality, we conclude from the hy-
potheses that also

lim
n→∞

∫
X

fn dµ =
∫

X

f dµ ,

which is usually how this theorem is applied.
Remark 5.8. The theorem also holds for continuous limits of functions, not just
countable limits. That is, if we have a continuous sequence of functions, say ft,
0 ≤ t < 1, we can also say

lim
t→1

∫
X

|ft − f | dµ = 0 ;

for given any sequence {an} convergent to 1, we can apply the theorem to fan
.

Since this can be done for any sequence convergent to 1, the above limit is
established.

6 Some Results of Integration Theory

This section contains some nice applications proven using the convergence the-
orems from the last section.

Theorem 6.1 (Generalization of Beppo Levi). Let X be a measure space,
and fn : X → R be measurable functions, with

∫ ∑
|fn| =

∑∫
|fn| <∞. Then

∞∑
n=1

∫
fn =

∫ ∞∑
n=1

fn .

Proof. Let gN =
∑N

n=1 fn, g = lim supN→∞ gN , and h =
∑∞

n=1|fn|. Then
|gN | ≤ h = |h|. Since

∫
|h| < ∞ by hypothesis, we have |h| < ∞ almost

everywhere, so
∑∞

n=1 fn is absolutely convergent almost everywhere. That is,
gN converges pointwise to g almost everywhere.

By the Dominated Convergence Theorem, lim
N→∞

∫
gN =

∫
g, whence

∞∑
n=1

∫
fn = lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn =
∫ ∞∑

n=1

fn . �

Example 6.1. Here’s a perhaps unexpected application. Suppose we have a
countable set of real numbers an,m, n,m ∈ N. Let µ be the counting measure on
N. Then

∫
m∈N an,m dµ =

∑∞
m=1 an,m. Moreover, Theorem 6.1 says that we can

sum either along n first or m first and get the same results (
∑∞

n=1

∑∞
m=1 an,m =∑∞

m=1

∑∞
n=1 an,m) if the double sum is absolutely convergent. Of course, this

fact can also be proven in an entirely elementary way.

Theorem 6.2. Let g : X → [0,∞] be measurable in the measure space (X,A, µ).
Let

ν(E) =
∫

E

g dµ , E ∈ A .
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Then ν is a measure on (X,A), and for any measurable function f on X,∫
X

f dν =
∫

X

fg dµ ,

often written as dν = g dµ.

Proof. We prove ν is a measure. ν(∅) = 0 is trivial. For countable additivity,
let {En} be measurable with union E, so that χE =

∑∞
n=1 χEn

, and

ν(E) =
∫

E

g dµ =
∫

X

gχE dµ

=
∫

X

∞∑
n=1

gχEn
dµ =

∞∑
n=1

∫
X

gχEn
dµ =

∞∑
n=1

ν(En) .

Next, if f = χE for some E ∈ A, then∫
X

f dν =
∫

X

χE dν = ν(E) =
∫

X

χEg dµ =
∫

X

fg dµ .

By linearity, we see that
∫
f dν =

∫
fg dµ whenever f is non-negative simple.

For general non-negative f , we use a sequence of simple approximations {ϕn} ↗
f , so {ϕng} ↗ fg. Then by the monotone convergence,∫

X

f dν = lim
n→∞

∫
X

ϕn dν = lim
n→∞

∫
X

ϕng dµ =
∫

X

lim
n→∞

ϕng dµ =
∫

X

fg dµ .

Finally, for f not necessarily non-negative, we apply the above to its positive
and negative parts, and use linearity. �

The procedure of proving some fact about integrals by first reducing to the
case of simple functions and non-negative functions is used quite often. (It will
get quite monotonous if we had to detail the procedure every time we use it, so
we won’t anymore if the circumstances permit.)

Also, we should note that if f is only measurable but not integrable, then
the integrals of f+ or f− might be infinite. If both are infinite, the integral of f
is not defined, although the equation of the theorem might still be interpreted
as saying that the left-hand and right-hand sides are undefined at the same
time. For this reason, and for the sake of the clarity of our exposition, we will
not bother to modify the hypotheses of the theorem to state that f must be
integrable.

Problem cases like this also occur for some of the other theorems we present,
and there I will also not make too much of a fuss about these problems, trusting
that you understand what happens when certain integrals are undefined.

Theorem 6.3 (Change of variables). Let X,Y be measure spaces, and
g : X → Y , f : Y → R be measurable. Then∫

X

(f ◦ g) dµ =
∫

Y

f dν ,

where ν(B) = µ(g−1(B)) is a measure defined for all measurable B ⊆ Y .
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Proof. First suppose f = χB . Let A = g−1(B) ⊆ X. Then f ◦ g = χA, and we
have ∫

Y

f dν =
∫

Y

χB dν = ν(B) = µ(g−1(B)) = µ(A) =
∫

X

(f ◦ g) dµ .

Since both sides of the equation are linear in f , the equation holds whenever f
is simple. Applying the “standard procedure” mentioned above, the equation is
then proved for all measurable f . �

Remark 6.4. The change of variables theorem can also be applied “in reverse”.
Suppose we want to compute

∫
Y
f dν, where ν is already given to us. Further

assume that g is bijective and its inverse is measurable. Then we can define
µ(A) = ν(g(A)), and it follows that

∫
Y
f dν =

∫
X

(f ◦ g) dµ.

Our theorem (especially when stated in the reverse form) is clearly related
to the usual “change of variables” theorem in calculus. If g : X → Y is a bijec-
tion between open subsets of Rn, and both it and its inverse are continuously
differentiable (i.e. g is a diffeomorphism), and ν = λ is the Lebesgue measure
in Rn, then (as we shall prove rigorously in Lemma 12.1),

µ(A) = λ(g(A)) =
∫

A

|det Dg| dλ .

Appealing to Theorems 6.2 and 6.3, we obtain:

Theorem 6.5 (Differential change of variables in Rn). Let g : X → Y be
a diffeomorphism of open sets in Rn. If A ⊆ X is measurable, and f : Y → R
is measurable, then∫

g(A)

f dλ =
∫

A

(f ◦ g) dµ =
∫

A

(f ◦ g) · |det Dg| dλ .

The next two theorems are the Lebesgue versions of well-known results about
the Riemann integral.

Theorem 6.6 (First Fundamental Theorem of Calculus). Let I ⊆ R be
an interval, and f : I → R be integrable (with Lebesgue measure in R). Then
the function

F (x) =
∫ x

a

f(t) dt

is continuous. Furthermore, if f is continuous at x, then F ′(x) = f(x).

Proof. To prove continuity, we compute:

F (x+ h)− F (x) =
∫ x+h

x

f(t) dt =
∫

I

f(t) · χ[x,x+h](t) dt .
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(Naturally, when h < 0, χ[x,x+h] should be interpreted as −χ[x+h,x] here.) Since
|f ·χ[x,x+h]| ≤ |f |, by the Dominated Convergence Theorem (along with remark
5.8),

lim
h→0

F (x+ h)− F (x) = lim
h→0

∫
I

f(t) · χ[x,x+h](t) dt

=
∫

I

lim
h→0

f(t) · χ[x,x+h](t) dt

=
∫

I

f(t) · χ{x}(t) dt = 0 .

The proof of differentiability is the same as for the Riemann integral:∣∣∣∣F (x+ h)− F (x)
h

− f(x)
∣∣∣∣ =

∣∣∣∣∣
∫ x+h

x
(f(t)− f(x)) dt

h

∣∣∣∣∣
≤

∫
[x,x+h]

|f(t)− f(x)| dt
|h|

≤
supt∈[x,x+h]|f(t)− f(x)| · |h|

|h|
,

which goes to zero as h does. �

The First Fundamental Theorem was easy, but the Second Fundamental
Theorem (which states that

∫ b

a
f ′ = f(b) − f(a)) is not entirely trivial. The

difficulty is that we should not assume as hypotheses that f ′ is continuous, or
even that it is Lebesgue-integrable. It turns out that a theorem without such
strong hypotheses is possible; we will not reproduce its proof here, but just
settle for a weaker version:

Theorem 6.7 (Second Fundamental Theorem of Calculus). Suppose
f : [a, b] → R is measurable and bounded above and below. If f = g′ for some
g, then ∫ b

a

f(x) dx = g(b)− g(a) .

Proof. We first note that
∣∣∣ g(x+h)−g(x)

h

∣∣∣ can be bounded by a constant using the
Mean Value Theorem, and a constant is obviously integrable on a finite interval.
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Then ∫ b

a

f(x) dx =
∫ b

a

lim
h→0

g(x+ h)− g(x)
h

dx

= lim
h→0

∫ b

a

g(x+ h)− g(x)
h

dx

= lim
h→0

1
h

[∫ b+h

a+h

g(x) dx−
∫ b

a

g(x) dx
]

= lim
h→0

1
h

[∫ b+h

b

g(x) dx−
∫ a+h

a

g(x) dx
]

= g(b)− g(a) .

(The last equality follows from the First Fundamental Theorem and that g must
be continuous at a and b if it is differentiable there.) �

Remark 6.8. If g′(x) exists, then it can also be computed as the countable limit
limn→∞ n(g(x+ 1/n)− g(x)), thus showing that g′ is measurable. Thus we can
drop the hypothesis that f is measurable in Theorem 6.7.
Remark 6.9. You might have noticed that I cheated a bit in the proof, in as-
suming the integral of a function is invariant under horizontal translations. But
of course, this can be proven readily using the fact that Lebesgue measure is
translation-invariant.

The following theorems are often not found in calculus texts even though
they are quite important for applications.

Theorem 6.10 (Continous dependence on integral parameter). Let
(X,µ) be a measure space, T be any metric space (e.g. Rn), and f : X×T → R,
with f(·, t) being measurable for each t ∈ T . Consider the function

F (t) =
∫

x∈X

f(x, t) .

Then we have F continuous at t0 ∈ T if the following conditions are met:

1. For each x ∈ X, f(x, ·) is continuous at t0 ∈ I.

2. There is an integrable function g such that |f(x, t)| ≤ g(x) for all t ∈ T .

Proof.

lim
t→t0

∫
x∈X

f(x, t) =
∫

x∈X

lim
t→t0

f(x, t) =
∫

x∈X

f(x, t0) . �

Theorem 6.11 (Differentiation under the integral sign). Using the same
notation as Theorem 6.10, with T being an open real interval, we have

F ′(t) =
d

dt

∫
x∈X

f(x, t) =
∫

x∈X

∂

∂t
f(x, t)

if the following conditions are satisfied:
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1. For each x ∈ X, ∂
∂tf(x, t) exists.

2. There is an integrable function g such that
∣∣ ∂
∂tf(x, t)

∣∣ ≤ g(x) for all t ∈ T .

Proof. This theorem is often proven by using iterated integrals and switching
the order of integration, but that method is theoretically troublesome because it
requires more stringent hypotheses. It is easier, and better, to prove it directly
from the definition of the derivative.

The straightforward computation yields:

lim
h→0

F (t+ h)− F (t)
h

= lim
h→0

∫
x∈X

f(x, t+ h)− f(x, t)
h

=
∫

x∈X

lim
h→0

f(x, t+ h)− f(x, t)
h

=
∫

x∈X

∂

∂t
f(x, t)

(noting that
∣∣∣ f(x,t+h)−f(x,t)

h

∣∣∣ is bounded by g(x)). �

Remark 6.12. It is easy to see that we may generalize Theorem 6.11 to T being
any open set in Rn, taking partial derivatives. I won’t write it out in full because
the notation is somewhat complicated.

Example 6.2. Check that the function Γ(x) =
∫∞
0
e−ttx−1 dt, x > 0 is continu-

ous, and differentiable with the obvious formula for the derivative.

7 Lp spaces

The contents in this section do not have applications in this article, but they
are so well known that it would not do justice to omit them.

Definition 7.1. Let X be a measure space, and let p ∈ [1,∞). The space Lp

consists of all measurable functions f : X → R such that∫
|f |p <∞ .

Definition 7.2. For each f ∈ Lp, define

‖f‖p =
(∫

|f |p
)1/p

.

(If f /∈ Lp, this quantity is of course defined as ∞.)

As suggested by the notation, ‖·‖p is a real norm on the vector space Lp,
provided that we declare two functions to be equivalent if they differ only on
a set of measure zero (so that ‖f‖p = 0 if and only if f = 0 as equivalence
classes). Only the verification of the triangle inequality presents any difficulties
— this will be solved by the theorems below.

Definition 7.3. Two numbers p, q ∈ (1,∞) are called conjugate exponents
when 1

p + 1
q = 1.
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Theorem 7.1 (Hölder’s inequality). For R-valued measurable functions f
and g, ∣∣∣∫ fg

∣∣∣ ≤ ∫
|f ||g| ≤ ‖f‖p‖g‖q .

Proof. The first inequality is trivial. For the second inequality, since it only
involves absolute values, for the rest of the proof we may assume that f, g are
non-negative.

If ‖f‖p = 0, then |f |p = 0 almost everywhere, and so f = 0 and fg = 0
almost everywhere too. Thus the inequality is valid in this case. (Similarly
when ‖g‖q = 0.)

If ‖f‖p or ‖g‖q is infinite, the inequality is trivial.
So we now assume these two quantities are both finite and non-zero. Define

F = f/‖f‖p, G = g/‖g‖q, so that ‖F‖p = ‖G‖q = 1. We must then show that∫
FG ≤ 1.

To do this, we employ the fact that log is concave:

1
p

log s+
1
q

log t ≤ log
(
s

p
+
t

q

)
, 0 ≤ s, t ≤ ∞

or,

s
1
p t

1
q ≤ s

p
+
t

q
.

Substitute s = F p, t = Gq, and integrate both sides:∫
FG ≤ 1

p

∫
F p +

1
q

∫
Gq =

1
p
‖F‖p

p +
1
q
‖G‖q

q =
1
p

+
1
q

= 1. �

You may have seen a special case of this theorem, for p = q = 2, as the
Cauchy-Schwarz inequality.

Theorem 7.2 (Minkowski’s inequality). For R-valued measurable functions
f and g,

‖f + g‖p ≤ ‖f‖p + ‖g‖p .

Proof. The inequality is trivial when p = 1 or when ‖f + g‖p = 0. Also, since
‖f + g‖p ≤ ‖|f |+ |g|‖p, it again suffices to consider only the case when f, g are
non-negative.

Next, we employ the convexity of t 7→ tp, p > 1,(
s+ t

2

)p

≤ sp + tp

2
, 0 ≤ s, t ≤ ∞ .

When we substitute s = f , t = g, we get (f + g)p ≤ 2p−1(fp + gp). This
inequality shows that if ‖f + g‖p is infinite, then one of ‖f‖p or ‖g‖p is also
infinite, so Minkowski’s inequality holds true in that case.

We may now assume ‖f + g‖p is finite. We write:∫
(f + g)p =

∫
f(f + g)p−1 +

∫
g(f + g)p−1 .
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By Hölder’s inequality, and noting that (p− 1)q = p for conjugate exponents,∫
f(f + g)p−1 ≤ ‖f‖p

∥∥(f + g)p−1
∥∥

q
= ‖f‖p

(∫
|f + g|p

)1/q

= ‖f‖p‖f + g‖p/q
p .

A similar inequality holds for
∫
g(f + g)p−1. Putting these together:

‖f + g‖p
p ≤ (‖f‖p + ‖g‖p)‖f + g‖p/q

p .

Dividing by ‖f + g‖p/q
p yields the desired result. �

Definition 7.4. A measure space (X,µ) has finite measure if µ(X) is finite.

Theorem 7.3. Let (X,µ) have finite measure. Then whenever 1 ≤ r < p <∞,
Lp ⊆ Lr. Moreover, the inclusion map from Lp to Lr is continuous.

Proof. If f ∈ Lp, apply the Hölder inequality with conjugate exponents p
r and

s = p
p−r :

‖f‖r
r =

∫
|f |r ≤

(∫
|f |r·

p
r

)r/p(∫
1s

)1/s

= ‖f‖r
p µ(X)1/s ,

and so
‖f‖r ≤ ‖f‖p µ(X)1/rs = ‖f‖p µ(X)

1
r−

1
p <∞ .

To show continuity of the inclusion map, replace f with f − g above where
‖f − g‖p < ε. �

Example 7.1.
∫ 1

0
x−

1
2 dx = 2 < ∞, so automatically

∫ 1

0
x−

1
4 dx < ∞. On the

other hand, the condition that µ(X) <∞ is indeed necessary:
∫∞
1
x−2 dx <∞,

but
∫∞
1
x−1 dx = ∞.

Theorem 7.4. Let fn : X → R be measurable functions converging (almost
everywhere) pointwise to f , and |fn| ≤ g for some g ∈ Lp. Then f, fn ∈ Lp,
and fn converges to f in the Lp norm, meaning:

lim
n→∞

(∫
|fn − f |p

)1/p

= lim
n→∞

‖fn − f‖p = 0.

Proof. |fn−f |p converges to 0 and |fn−f |p ≤ (2g)p ∈ L1. Apply the Dominated
Convergence Theorem on these functions. �

One wonders whether the converse is true: if fn converges to f in the Lp

norm, do the functions fn themselves converge pointwise to f? The answer is
no (the counterexamples are not difficult), but we do have the following.

Theorem 7.5. Let {fn} be a Cauchy sequence in Lp. Then it has a subsequence
converging pointwise almost everywhere.
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Corollary 7.6. If lim
n→∞

‖fn − f‖p = 0 then there is a subsequence {fn(k)} con-
verging to f pointwise almost everywhere.

Corollary 7.6 is used in the following result.

Theorem 7.7. Lp is a complete metric space. (This means every Cauchy
sequence in Lp converges.)

The proofs of these theorems are collected in the next section.

It is also possible to define “L∞”:

Definition 7.5. Let X be a measure space, and f : X → R be measurable. A
number M ∈ [0,∞] is an almost-everywhere upper bound for |f | if |f | ≤ M
almost everywhere. The infimum of all almost-everywhere upper bounds for |f |
is denoted by ‖f‖∞.

Definition 7.6. L∞ is the set of all measurable functions f with ‖f‖∞ < ∞.
Its norm is given by ‖f‖∞.

The use of the subscript “∞” is explained by the following theorem, whose
proof is left to the reader:

Theorem 7.8. If µ(X) <∞, then lim
p→∞

‖f‖p = ‖f‖∞.

Remark 7.9. Observe that there is a similar thing for vectors ~a = (a1, . . . , an) ∈
Rn:

lim
p→∞

‖~a‖p = lim
p→∞

(
|a1|p + · · ·+ |an|p

)1/p = max(|a1|, . . . , |an|) = ‖~a‖∞ .

This remark may serve as a hint.

If we (naturally) define the conjugate exponent of p = 1 to be q = ∞,
the Hölder inequality remains valid, since |fg| ≤ |f |‖g‖∞ almost everywhere.
Integrating both sides gives ‖fg‖1 ≤ ‖f‖1‖g‖∞.

Before closing, we mention two more results. From Theorem 7.4, it is clear
that

Theorem 7.10. Let f : X → R ∈ Lp(X), 1 ≤ p < ∞. Then for any ε > 0,
there exist simple functions ϕ : X → R such that

‖ϕ− f‖p =
(∫

Rn

|ϕ− f |p dλ
)1/p

< ε .

(This is also true for p = ∞.) This may be summarized by saying that the
set of all simple functions is dense in Lp (in the topological sense).

When X = Rn with Lebesgue measure λ, we have another result. The set of
infinitely differentiable functions on Rn with compact support4, denoted C∞

0 ,
4The support of a function ψ : X → R is the closure of the set {x ∈ X : ψ(x) 6= 0}. “ψ has

compact support” means that the support of ψ is compact (when X = Rn, same as closed
and bounded).
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is also dense in Lp(Rn, λ), 1 ≤ p <∞. (This fact will be fully proven in Section
14.)

These two facts are typically used as tools to prove other theorems about
functions f ∈ Lp. One first proves that a certain theorem holds for all simple
ϕ (or ϕ ∈ C∞

0 ), and then prove that the same result holds for arbitrary f ∈ Lp

by approximating such f by ϕ. An example of this procedure follows.

Theorem 7.11 (Riemann-Lebesgue Lemma). For all f ∈ L1(R),

lim
|ω|→∞

∫
R
f(x) sin(ωx)dx = 0 .

Proof. For convenience, assume ω > 0.
Suppose first that f = ψ ∈ C∞

0 . Since ψ has compact support, integrating
ψ(x) sin(ωx) over R is the same as integrating over some compact interval [a, b]
containing the support of ψ. And since every function involved is infinitely
differentiable, we may use integration by parts (u = ψ(x), dv = sin(ωx) dx):∫ b

a

ψ(x) sin(ωx) dx = −ψ(x)
cos(ωx)

ω

∣∣∣∣b
a

+
∫ b

a

cos(ωx)
ω

ψ′(x) dx .

As |ψ| and |ψ′| are continuous on [a, b], they are bounded by constants M and
M ′ respectively. We have,∣∣∣∣∣
∫ b

a

ψ(x) sin(ωx) dx

∣∣∣∣∣ ≤ 1
ω
|ψ(b) cos(ωb)− ψ(a) cos(ωa)|+ 1

ω

∫ b

a

|cos(ωx)ψ′(x)| dx

≤2M
ω

+
(b− a)M ′

ω
→ 0 , ω →∞ .

Thus we have proven the result when f = ψ ∈ C∞
0 . Now suppose f is

arbitrary. By the denseness of C∞
0 , for every ε > 0 we can find ψ ∈ C∞

0 such
that ‖f − ψ‖1 < ε. Then∣∣∣∣∫

R
f(x) sin(ωx) dx−

∫
R
ψ(x) sin(ωx) dx

∣∣∣∣ ≤ ∫
R

∣∣∣(f(x)− ψ(x)
)
sin(ωx)

∣∣∣ dx
≤

∫
R
|f(x)− ψ(x)| dx

< ε ,

or, ∣∣∣∣∫
R
f(x) sin(ωx) dx

∣∣∣∣ < ε+
∣∣∣∣∫

R
ψ(x) sin(ωx) dx

∣∣∣∣ .
We take lim supω→∞ of both sides:

lim sup
ω→∞

∣∣∣∣∫
R
f(x) sin(ωx) dx

∣∣∣∣ ≤ ε+ 0 .

But ε > 0 is arbitrary, so we must have:

lim
ω→∞

∣∣∣∣∫
R
f(x) sin(ωx) dx

∣∣∣∣ = lim sup
ω→∞

∣∣∣∣∫
R
f(x) sin(ωx) dx

∣∣∣∣ = 0 . �
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8 Construction of Lebesgue Measure

We now come to actually construct Lebesgue measure, as promised. The idea
is to extend an existing measure µ which has been only partially defined, to an
“outer measure” µ∗. The extension is remarkably simple and intuitive:

µ∗(E) = inf
A1,A2,...∈A
E⊆

S
n An

∑
n

µ(An) , for all E ⊆ X .

(One interesting point to note: the definition of µ∗ “works” with pretty much
any non-negative function µ, provided that µ is defined on some set A ⊆ 2X

with ∅, X ∈ A, and µ(∅) = 0. In fact, for the first few proofs, these are the
only formal properties of µ that we need. Of course later we will need stronger
conditions on µ, such as additivity.)

Lemma 8.1. µ∗ has the following properties:

1. µ∗(∅) = 0.

2. It is monotone: µ∗(E) ≤ µ∗(F ) when E ⊆ F ⊆ X.

3. µ∗(A) ≤ µ(A) for all A ∈ A.

4. µ∗ is countably subadditive: if E1, E2, . . . ⊆ X, then
µ∗(

⋃
nEn) ≤

∑
n µ

∗(En).

Proof. The first three properties are obvious. For the fourth, first observe
that if any of the µ∗(En) is infinite, there is nothing to prove. Otherwise,
let ε > 0. For each En, by the definition of µ∗, there are sets {An,m}m ∈ A
covering En, with

∑
m µ(An,m) ≤ µ∗(En)+ε/2n. All of the An,m together cover⋃

nEn, and
∑

n,m µ∗(An,m) ≤
∑

n µ
∗(En) + ε. Since ε was arbitrary, we have∑

n,m µ∗(An,m) ≤
∑

n µ
∗(En). �

There is of course no guarantee that µ∗ satisfies all the properties of a proper
measure on 2X . (It often does not.) Instead we will claim that µ∗ is a proper
measure on the following subcollection of 2X :

M = {B ∈ 2X | µ∗(B ∩ E) + µ∗(Bc ∩ E) = µ∗(E) for all E ⊆ X}
= {B ∈ 2X | µ∗(B ∩ E) + µ∗(Bc ∩ E) ≤ µ∗(E) for all E ⊆ X} .

(The two subcollections are the same since by subadditivity we always have
µ∗(B ∩ E) + µ∗(Bc ∩ E) ≥ µ∗(E).)

Lemma 8.2. M is a sigma algebra.

Proof. It is immediate from the definition that M is closed under taking com-
plements, and that ∅ ∈ M. We first show M is closed under finite intersection
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(and hence under finite union). Let B,C ∈M.

µ∗
(
(B ∩ C) ∩ E

)
+ µ∗

(
(B ∩ C)c ∩ E

)
=µ∗(B ∩ C ∩ E) + µ∗

(
(Bc ∩ C ∩ E) ∪ (B ∩ Cc ∩ E) ∪ (Bc ∩ Cc ∩ E)

)
≤µ∗(B ∩ C ∩ E) + µ∗(Bc ∩ C ∩ E) + µ∗(B ∩ Cc ∩ E) + µ∗(Bc ∩ Cc ∩ E)
=µ∗(C ∩ E) + µ∗(Cc ∩ E) , by definition of B ∈M
=µ∗(E) , by definition of C ∈M .

Thus B ∩ C ∈M.
We now have to show that if B1, B2, . . . ∈M,

⋃
nBn ∈M. We may assume

that Bn are disjoint, for otherwise we just consider B′
n = Bn \ (B1∪· · ·∪Bn−1),

which are in M by the previous paragraph.
We shall need to know that, for all N ≥ 1, and all E ⊆ X,

µ∗
( N⋃

n=1

Bn ∩ E
)

=
N∑

n=1

µ∗(Bn ∩ E) .

The proof will be by induction on N . The statement is trivial for N = 1. For
the induction step, let DN =

⋃N
n=1Bn which are increasing and are all in M.

Then

µ∗(DN+1 ∩ E) = µ∗
(
DN ∩ (DN+1 ∩ E)

)
+ µ∗

(
Dc

N ∩ (DN+1 ∩ E)
)

= µ∗(DN ∩ E) + µ∗(BN+1 ∩ E)

=
N+1∑
n=1

µ∗(Bn ∩ E) (induction hypothesis).

Using the fact just proven, we now have:

µ∗(E) = µ∗(DN ∩ E) + µ∗(Dc
N ∩ E)

=
N∑

n=1

µ∗(Bn ∩ E) + µ∗(Dc
N ∩ E)

≥
N∑

n=1

µ∗(Bn ∩ E) + µ∗
(( ∞⋃

n=1

Bn

)c

∩ E
)

(monotonicity).

Taking N →∞, we obtain:

µ∗(E) ≥
∞∑

n=1

µ∗(Bn ∩ E) + µ∗
(( ∞⋃

n=1

Bn

)c

∩ E
)

≥ µ∗
(( ∞⋃

n=1

Bn

)
∩ E

)
+ µ∗

(( ∞⋃
n=1

Bn

)c

∩ E
)

(subadditivity).

But this shows
⋃∞

n=1Bn ∈M. �
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Lemma 8.3. If B1, B2, . . . ∈M are disjoint, then µ∗(
⋃

nBn) =
∑

n µ
∗(Bn).

Proof. The finite case µ∗(
⋃N

n=1Bn) =
∑N

n=1 µ
∗(Bn) was proven in the previous

lemma (set E = X). By monotonicity,
∑N

n=1 µ
∗(Bn) ≤ µ∗(

⋃∞
n=1Bn). Taking

N → ∞ gives
∑∞

n=1 µ
∗(Bn) ≤ µ∗(

⋃∞
n=1Bn). Inequality in the other direction

is implied by subadditivity of µ∗. �

We now know µ∗ satisfies all the properties of a measure on M. In order for
µ∗ to be a sane extension of µ to M, we need to impose some conditions on µ.
The ones that work from experience are:

1. A should be an algebra, meaning that it is non-empty, and closed under
intersection and finite union (and intersection).

2. If A1, . . . , An ∈ A are disjoint, then µ(
⋃

iAi) =
∑

i µ(Ai). It follows that
µ is monotone and finitely subadditive.

3. Also, if A1, A2, . . . ∈ A are disjoint, and
⋃

iAi happens to be in A, the
previous equation must also hold. (This is equivalent to requiring that
µ(

⋃
iAi) ≤

∑
i µ(Ai).)

Then we have the following important result. (By the way, the name of
“Carathéodory Extension Process” is often used to refer to the constructions in
this section.)

Theorem 8.4. A ⊆M, and µ∗(A) = µ(A) for all A ∈ A.
Thus µ∗ is a measure extending of µ onto the sigma algebra M containing

the algebra A. (M must also then contain the sigma algebra B generated by A,
although M may be larger than B.)

Proof. Fix A ∈ A. For any E ⊆ X and ε > 0, by definition we can find
A1, A2, . . . ∈ A with E ⊆

⋃
nAn and

∑
n µ(An) ≤ µ∗(E) + ε. Then we have

µ∗(A ∩ E) + µ∗(Ac ∩ E) ≤ µ∗
(
A ∩

⋃
n

An

)
+ µ∗

(
Ac ∩

⋃
n

An

)
≤

∑
n

µ∗(A ∩An) +
∑

n

µ∗(Ac ∩An)

≤
∑

n

µ(A ∩An) +
∑

n

µ(Ac ∩An)

=
∑

n

µ(An) (finite additivity of µ)

≤ µ∗(E) + ε .

ε being arbitrary, µ∗(A ∩ E) + µ∗(Ac ∩ E) ≤ µ∗(E), showing that A ∈M.
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Now we show µ∗(A) = µ(A). Note µ(A) ≥ µ∗(A) is always true. Con-
sider any A1, A2, . . . ∈ A with A ⊆

⋃
nAn. By countable subadditivity and

monotonicity of µ,

µ(A) = µ
(⋃

n

A ∩An

)
≤

∑
n

µ(A ∩An) ≤
∑

n

µ(An) .

This implies µ(A) ≤ µ∗(A), directly from the definition of µ∗. �

Our final results for this section concern the uniqueness of this extension.

Theorem 8.5. Assume µ(X) <∞. Let B be the sigma algebra generated from
the algebra A. If ν is another measure on B, which agrees with µ∗ on A, then
µ∗ and ν agree on B as well.

Proof. Let B ∈ B.

µ∗(B) = inf
A1,A2,...∈A
B⊆

S
n An

∑
n

µ(An) = inf
∑

n

ν(An) ≥ inf ν
(⋃

n

An

)
≥ inf ν(B) .

So µ∗(B) ≥ ν(B). Similarly, we have µ∗(Bc) ≥ ν(Bc), so that µ∗(X)−µ∗(B) ≥
ν(X) − ν(B) = µ∗(X) − ν(B), or µ∗(B) ≤ ν(B). (In fact, this actually proves
µ∗ and ν agree on M also, if ν is defined on M.) �

But the hypothesis that µ(X) <∞ is clearly too restrictive. The fix is easy:

Definition 8.1. A measure space (X,B, µ) is sigma-finite, if there are mea-
surable sets X1, X2, . . . ⊆ X, such that

⋃
nXn = X and µ(Xn) < ∞ for all

n.
(Clearly, we may as well assume that theXn are increasing in this definition.)

Theorem 8.6. Theorem 8.5 holds also in the case that (X,B, µ) is sigma-finite.

Proof. Let {Xn} ↗ X, µ(Xn) <∞ as in the definition of sigma-finiteness. (Of
course we also need to assume that the Xn can be chosen from A.) For each
B ∈ B, Theorem 8.5 says that µ∗(B ∩ Xn) = ν(B ∩ Xn). Taking limits as
n→∞ gives µ∗(B) = ν(B). �

The restriction thatX be sigma-finite is not too severe, since the usual spaces
such as Rn are sigma-finite. Sigma-finiteness also comes back in the theorems
of Section 11.

Finally, the corollary below is just Theorem 8.6 restated without reference
to the outer measure:

Corollary 8.7 (Uniqueness of measures). Let B be the sigma algebra gen-
erated by the algebra A. Then if two measures µ and ν agree on A, and X is
sigma-finite (under either µ or ν), then µ = ν on B.
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9 Lebesgue Measure in Rn

In this section we rigorously construct the n-dimensional volume measure on Rn.
As hinted before, the idea is to define the measure for rectangles and then use
the extension process in Section 8. Unfortunately, there is some grunt work to
do in order to verify that the hypotheses of those theorems are indeed satisfied.

Our setting will be the collection R of rectangles I1 × · · · × In in Rn, where
Ik is any open, half-open or closed, bounded or unbounded, interval in R. The
following definition is merely an abstracted version of the formal facts we need
about these rectangles.

Definition 9.1. Let X be any set. A semi-algebra is any R ⊆ 2X with the
following properties:

1. The empty set is in R.

2. The intersection of any two sets in R is also in R.

3. For any set in R, its complement is expressible as a finite disjoint union
of other elements of R.

It is easy to see, although tiresome to write down formally, that the collection
of all rectangles is indeed a semi-algebra. But immediately from this, we can
automatically construct an algebra A:

Theorem 9.1. The set A of all finite disjoint unions of elements of a semi-
algebra R is an algebra on X.

Proof. We check the properties for an algebra:

1. The empty set is trivially in A.

2. If A =
⊎

iRi, and B =
⊎

j Sj , where Ri and Si denote a finite number of
sets chosen from R, then A ∩B =

⊎
iRi ∩

⊎
j Sj =

⊎
i,j Ri ∩ Sj ∈ A.

3. If A =
⊎

iRi, then Ac =
⋂

iR
c
i =

⋂
i

⊎
j Si,j for some Si,j ∈ R. The finite

intersection belongs to A by the previous step. So Ac ∈ A.

4. Finally, given Ai =
⊎

j Ri,j , for a finite number of i, let D0 = ∅, and Di =
Di−1 ] (Ai \Di−1) ∈ A. Then

⋃
iAi =

⋃
iDi =

⊎
i(Di \Di−1) ∈ A. �

By the way, the sigma algebra generated by A will contain the Borel sigma
algebra: every open set U ∈ Rn obviously can be written as a union of open
rectangles, and in fact we can use a countable union of open rectangles. For,
given an arbitrary collection of rectangles covering U ⊆ Rn, there always exists
a countable subcover5.

The volume of A = I1×· · ·×In is naturally defined as λ(A) = λ(I1)·· · ··λ(In),
λ(Ik) being the length of the interval Ik, with the usual rules about multiplying
zeroes and infinities together in force.

5If you are not aware of this theorem, you are invited to prove it yourself.
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Now let’s suppose that the rectangle A has been partitioned into a disjoint
smaller rectangles. Then the sum of the volumes of the smaller rectangles, as we
have defined it, should equal the volume of A. This is true, of course, although
it is again tedious to write down formally. Essentially, one draws a rectangular
grid on A using the boundaries of the smaller rectangles, and show that the sum
of the volumes of each cell in the grid equals the volume of A, by applying the
distributive property of multiplication over addition.

In the even more general case, supposeA ∈ A is a disjoint union of rectangles,
but A is not necessarily in the semi-algebra of rectangles. The volume of A is
defined as the sum of the volumes of the component rectangles. This is obvious
— we mention it only to note that, although A may certainly have different
decompositions (A =

⋃
iRi =

⋃
j Sj), the volume sum is always the same.

To see this, simply take the common refinement Ri ∩ Sj . Then
∑

i λ(Ri) =∑
i

∑
j λ(Ri ∩ Sj) by applying the result of the previous paragraph on each

rectangle Ri. But
∑

j λ(Rj) equals this double sum also.
It follows easily then, that λ is finitely additive. Thus there is only one

final thing left to show: if the disjoint union of A1, A2, . . . ∈ A is C ∈ A,
then λ(C) =

∑∞
i=1 λ(Ai). From monotonicity and taking limits we always have

λ(C) ≥
∑∞

i=1 λ(Ai).
We show λ(C) ≤

∑∞
i=1 λ(Ai). Observe that this also ought to be true if C

is contained in, but not necessarily equal to, the union of the Ai, and Ai need
not be disjoint at all. Henceforth these are our new hypotheses.

Suppose first that C happens to be compact, and Ai are all open. In other
words, {Ai} form an open cover of the compact set C. So there is a finite
subcover A1, . . . , An. By finite subadditivity, we have λ(C) ≤

∑n
i=1 λ(Ai) ≤∑∞

i=1 λ(Ai).
Now continue to assume that C is compact, but Ai are not open. But

it is easy to make the Ai open and still cover C, by slightly expanding each
Ai. In particular, stipulate that the volume of each new Ai grows by at most
ε/2i. (We can assume the Ai are plain rectangles, rather than disjoint unions of
them, and that they are bounded, since C is bounded.) Then we have λ(C) ≤∑∞

i=1 λ(Ai) + ε, and ε > 0 is arbitrary.
All that remains is the case that C is not compact. If C is bounded, so is its

closure, and hence by the Heine-Borel theorem, C is compact. Similarly take
the closure of the Ai. But taking closures of elements of A does not change
their volumes.

Finally consider C unbounded. But C ∩ [−N,N ]n is bounded for each N ,
so from the previous case we have λ(C ∩ [−N,N ]n) ≤

∑∞
i=1 λ(Ai). It is easily

checked that the limit as N →∞ of the left side is exactly λ(C).
Thus, using the theorems of Section 8, we can conclude:

Theorem 9.2. Lebesgue measure in Rn exists, and it is uniquely determined,
given our hypotheses.

It is obvious from our constructions that Lebesgue measure is invariant under
translations of sets. It is also invariant under other rigid motions (rotations,
reflections); this will be a consequence of Lemma 12.1 and some linear algebra.
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An interesting question to ask is whether there are any sets that are not
Borel, or that cannot be assigned any volume. The following theorem gives a
classic example (and should also serve to convince you why our strenuous efforts
are necessary).

Theorem 9.3 (Vitali). There exists a non-measurable set in [0, 1] using Lebesgue
measure. In other words, Lebesgue measure cannot be defined consistently for
all subsets of [0, 1].

Proof. The key fact in this proof is translation-invariance. In particular, given
any measurable H ⊆ [0, 1], define its “shift with wrap-around”:

H ⊕ x = {h+ x : h ∈ H, h+ x ≤ 1} ∪ {h+ x− 1 : h ∈ H, h+ x > 1} .

Then λ(H ⊕ x) = λ(H).
Define two real numbers to be equivalent if their difference is rational. The

interval [0, 1] is partitioned by this equivalence relation. Compose a set H ⊂
[0, 1] consisting of exactly one element from each equivalence class, and also say
0 /∈ H. Then (0, 1] equals the disjoint union of all H ⊕ r, for r ∈ [0, 1) ∩ Q.
Consequently, by countable additivity,

1 = λ((0, 1]) =
∑

r∈[0,1)∩Q

λ(H ⊕ r) =
∑

r∈[0,1)∩Q

λ(H) ,

a contradiction, because the sum on the right can only be 0 or ∞. Hence H
cannot be measurable. �

A fact related to these matters is that Lebesgue measure is complete, mean-
ing if µ(A) = 0, then every B ⊆ A is Lebesgue-measurable and µ(B) = 0. (This
follows directly from the construction of the outer measure in the previous sec-
tion.) On the other hand, one can show that the Lebesgue measure restricted
to the Borel sets in Rn is not complete. This means a slight complication in
the theorems we prove about Lebesgue measure, but fortunately the extension
process allows us to complete any (sigma-finite) measure if necessary.

10 Riemann integrability implies Lebesgue in-
tegrability

You have probably already suspected that any function that any Riemann-
integrable function is also Lebesgue-integrable, and certainly with the same
values for the two integrals. We shall prove this fact here. Let us first review
the definition of the Riemann integral.

Let A ⊂ Rm be a (bounded) rectangle. Usually a bounded function f : A→
R is said to be (proper-) Riemann-integrable if the supremum of its lower sums
and the infimum of its upper sums are equal:

sup
P

{∑
R∈P

µ(R) · inf
x∈R

f(x)
}

= inf
P

{∑
R∈P

µ(R) · sup
x∈R

f(x)
}
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(where P denotes a rectangular partition of A).
We can rephrase the definition by considering not just lower sums and upper

sums for f , but the integral of any simple function s ≤ f or s ≥ f (simple with
respect to a rectangular partition). Such simple functions are obviously both
Riemann- and Lebesgue- integrable with the same values for the integral. It is
also easily seen that for every such s ≤ f there exists some lower sum for f (in
the usual sense) such that the integral of s is less than or equal to that lower
sum. Similarly for the upper simple functions and the upper sums. Therefore

sup
all simple s≤f

{∫
A

s
}

= sup
P

{∑
R∈P

µ(R) · inf
x∈R

f(x)
}
,

inf
all simple s≥f

{∫
A

s
}

= inf
P

{∑
R∈P

µ(R) · sup
x∈R

f(x)
}
,

and we may equivalently define f to be Riemann-integrable if the supremum
of the integrals of the lower simple functions is equal to the infimum of the
integrals of the upper simple functions.

It follows from the usual arguments, that if s1 and s2 are simple with s1 ≤
f ≤ s2, then

∫
A
s1 ≤

∫
A
s2, and that f is Riemann-integrable if and only if there

exists a sequence of lower simple functions ln ≤ f , and upper simple functions
un ≥ f such that

lim
n→∞

∫
A

ln =
∫

A

f = lim
n→∞

∫
A

un .

This more relaxed definition of Riemann integrability is easier to work with
in the proof of the following theorem.

Theorem 10.1. Let A ⊂ Rm be a rectangle. If f : A→ R is proper Riemann-
integrable, then it is also Lebesgue-integrable (with respect to Lebesgue measure)
with the same value for the integral.

Proof. f is Riemann-integrable, so choose a sequence of simple functions ln ≤
f ≤ un with limn

∫
A
ln =

∫
A
f = limn

∫
A
un. Let gn(x) = maxk≤n lk(x), so that

gn(x) increase to g(x) = supn gn(x). By our construction, we have

ln ≤ gn ≤ g ≤ f ≤ un .

Since the integrals of ln and un converge onto each other, we know that g
is Riemann-integrable. Riemann-integrating and applying limits to the above
inequality,

lim
n→∞

∫
A

ln ≤ lim
n→∞

∫
A

gn ≤
∫

A

g ≤
∫

A

f ≤ lim
n→∞

∫
A

un .

Thus the non-negative function f − g has a Riemann integral of zero, and so
f − g = 0 almost everywhere with respect to Lebesgue measure6. In turn, f − g
must be measurable. (This follows from Lebesgue measure being complete.)

6This follows from a very famous theorem about Riemann integrability, whose proof you
can find in [Spivak2] or [Munkres].
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On the other hand, g is measurable, because gn and ln are, so f is measur-
able. Since |f | is bounded and A has finite measure, f must also be Lebesgue-
integrable. Then the same inequality above with the Riemann integrals changed
to Lebesgue integrals shows that the Lebesgue and Riemann integrals of f are
the same. �

The following theorem concerns the absolutely convergent improper Rie-
mann integral as defined in [Munkres].

Theorem 10.2. Let A ⊆ Rm be open, and f : A → R be locally bounded on A
and continuous almost everywhere on A. If f is improper-Riemann-integrable
(i.e.

∫
A
|f | < ∞), then its Lebesgue integral exists with the same value for the

integral. Also
∫

A
|f | diverges simultaneously for the improper Riemann integral

and the Lebesgue integral.

Proof. Suppose first that f ≥ 0. Let Cn be a sequence of compact Jordan-
measurable subsets of A whose union is A and Cn ⊂ interiorCn+1. Then∫

A

f = lim
n→∞

∫
Cn

f .

Note that
∫

Cn
f is valid as both a Riemann and Lebesgue integral, by Theo-

rem 10.1, and it can also be written as the Lebesgue integral
∫

A
f · χCn which

converges monotonically, as n → ∞, to the Lebesgue integral
∫

A
f . This must

of course be equal to the left side of the equation above, which is the improper
Riemann integral.

For general f , repeating the same reasoning for the non-negative functions
|f |, f+, f−, in turn proves the theorem. �

11 Product measures and Fubini’s Theorem

Fubini’s theorem concerns integrals in “multiple dimensions” and their eval-
uation using iterated integrals. The concept should be familiar from multi-
dimensional calculus, so I won’t launch myself into an extended discussion here.

But before we start writing down integral signs, we need to discuss the
measurability of the sets involved in multiple integration.

Definition 11.1. Let (X,A) and (Y,B) be two measurable spaces. A measur-
able rectangle in X × Y is a set of the form A×B, where A ∈ A and B ∈ B.

The sigma algebra generated by all the measurable rectangles is denoted by
A⊗ B, and this will be the sigma algebra we use for X × Y .

Theorem 11.1. Let E be a measurable set from (X × Y,A⊗ B). Let

Ex = {y ∈ Y : (x, y) ∈ E} , x ∈ X .

Ey = {x ∈ X : (x, y) ∈ E} , y ∈ Y .

Then Ey ∈ A, Ex ∈ B.
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Proof. We prove the theorem for Ey; the proof for Ex is the same.
We consider the collection D = {E ∈ A⊗ B : Ey ∈ A}.
Suppose E = A × B is a measurable rectangle. Then Ey = A when y ∈ B,

otherwise Ey = ∅. In both cases Ey ∈ A, so E ∈ D.
D is a sigma algebra, because:

1. ∅y = {x ∈ X : (x, y) ∈ ∅} = ∅ ∈ A, so ∅ ∈ D.

2. If En ∈ D, then (
⋃
En)y =

⋃
En

y ∈ A. So
⋃
En ∈ D.

3. If E ∈ D, and F = Ec, then Fy = {x ∈ X : (x, y) ∈ F} = {x ∈ X :
(x, y) /∈ E} = X \ Ey ∈ A. So Ec ∈ D.

Thus D is a sigma algebra containing the measurable rectangles, i.e. D is all of
A⊗ B. �

Theorem 11.2. Let (X × Y,A⊗ B) and (Z, C) be measurable spaces.
If f : X × Y → Z is measurable, then the functions fy : X → Z, fx : Y → Z
obtained by holding one variable fixed are also measurable.

Proof. Again we consider only fy. Let Iy : X → X × Y be defined by Iy(x) =
(x, y). Then given E ∈ A⊗ B, by Theorem 11.1. I−1

y (E) = Ey ∈ A , so Iy is a
measurable function. But fy = f ◦ Iy. �

The next theorem on multiple integration requires the following technical
tool, which comes equipped with a definition.

Definition 11.2. A family A of subsets of X is a monotone class if it is closed
under increasing unions and decreasing intersections.

The intersection of any set of monotone classes is a monotone class. The
smallest monotone class containing a given set G is the intersection of all mono-
tone classes containing G. This construction is analogous to the one for sigma
algebras, and the result is also said to be the monotone class generated by G.

Theorem 11.3 (Monotone Class Theorem). If A be an algebra on X, then
the monotone class generated by A is the same as the sigma algebra generated
by A.

Proof. Since a sigma algebra is a monotone class, the generated sigma algebra
contains the generated monotone class M. So we only need to show M is a
sigma algebra.

We first claim that M is actually closed under complementation. Let M′ =
{S ∈ M : X \ S ∈ M} ⊆ M. This is a monotone class, and it contains the
algebra A. So M = M′ as desired.

To prove that M is closed under countable unions, we only need to prove
that it is closed under finite unions, for it is already closed under countable
increasing unions.

First let A ∈ A, and N (A) = {B ∈ M : A ∪B ∈ M} ⊆M. Again this is a
monotone class containing the algebra A; thus N (A) = M.
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Finally, let S ∈ M, with the same definition of N (S). The last paragraph,
rephrased, says that A ⊆ N (S). And N (S) is a monotone class containing A
by the same arguments as the last paragraph. Thus N (S) = M as desired. �

Theorem 11.4. Let (X,A, µ), (Y,B, ν) be sigma-finite measure spaces.
If E ∈ A⊗ B, then

1. ν(Ex) is a measurable function of x ∈ X.

2. µ(Ey) is a measurable function of y ∈ Y .

Proof. We concentrate on µ(Ey). Let {Xm} ↗ X, with µ(Xm) < ∞. Fix m
for now and let D = {E ∈ A ⊗ B : µ(Ey ∩Xm) is a measurable function of y}.
D is equal to A⊗ B, because:

1. If E = A×B is a measurable rectangle, then µ(Ey ∩Xm) = µ(A ∩Xm) ·
χB(y) which is a measurable function of y.

If E is a finite disjoint union of measurable rectangles En, then µ(Ey ∩
Xm) =

∑
n µ(En

y ∩Xm) which is also measurable.

The measurable rectangles form a semi-algebra (just like the rectangles in
Rn). Therefore, applying Theorem 9.1, D contains the algebra of finite
disjoint unions of measurable rectangles.

2. If En are increasing sets in D (not necessarily measurable rectangles), then
µ((

⋃
En)y ∩Xm) = µ(

⋃
En

y ∩Xm) = limn→∞ µ(En
y ∩Xm) is measurable,

so
⋃
En ∈ D.

Similarly, if En are decreasing sets in D, then using limits we see that⋂
En ∈ D. (Here it is crucial that En

y ∩Xm have finite measure, for the
limiting process to be valid.)

3. These arguments show that D is a monotone class, and it contains the
monotone class generated by the algebra of finite unions of measurable
rectangles. By the Monotone Class Theorem, D must therefore be the
same as the sigma algebra A⊗ B.

We now know that for each E ∈ A⊗B, µ(Ey ∩Xm) is measurable, for every
m. Taking limits as m→∞, we conclude that µ(Ey) is also measurable. �

One thing has been deliberately left out of our discussion so far: the con-
struction of the product measure µ ⊗ ν, which, as in the case of Rn, should
assign a measure µ(A)ν(B) to the measurable rectangle A×B. The problem is
that we cannot prove countable additivity of µ ⊗ ν defined this way. We take
an indirect route instead, defining it by iterated integrals:

Theorem 11.5. Let (X,A, µ), (Y,B, ν) be sigma-finite measure spaces. There
exists a unique product measure µ⊗ ν : A⊗ B → [0,∞], with

(µ⊗ ν)(E) =
∫

x∈X

∫
y∈Y

χE(x, y) dν︸ ︷︷ ︸
ν(Ex)

dµ =
∫

y∈Y

∫
x∈X

χE(x, y) dµ︸ ︷︷ ︸
µ(Ey)

dν.
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Proof. Let λ1(E) denote the double integral on the left, and λ2(E) denote the
one on the right. (These integrals exist by Theorem 11.4.) It is obvious that
both λ1 and λ2 are countably additive, so they are both measures on A ⊗ B.
Moreover, if E = A× B, then just expanding the two integrals shows λ1(E) =
µ(A)ν(B) = λ2(E). Now X×Y is sigma-finite if X and Y are, so by uniqueness
of measures7 (Corollary 8.7), λ1 = λ2 on all of A⊗ B. �

There’s not much work left for our final theorems:

Theorem 11.6 (Fubini). Let (X,A, µ) and (Y,B, ν) be sigma-finite measure
spaces. If f : X × Y → R is µ⊗ ν-integrable, then∫

X×Y

f d(µ⊗ ν) =
∫

x∈X

[∫
y∈Y

f(x, y) dν
]
dµ =

∫
y∈Y

[∫
x∈X

f(x, y) dµ
]
dν .

This equation also holds when f ≥ 0 (if it is merely measurable, not integrable).

Proof. The case f = χE is just Theorem 11.5. Since all three integrals are
additive, they are equal for non-negative simple f , and hence also for all other
non-negative f , by approximation and monotone convergence. From linearity
on f = f+− f−, we see that they are equal for any integrable f . (We will allow
∞−∞ to occur on a set of measure zero.) �

Theorem 11.7 (Tonelli). Let (X,A, µ) and (Y,B, ν) be sigma-finite measure
spaces, and f : X × Y → R be µ ⊗ ν-measurable. Then f is µ ⊗ ν-integrable if
and only if ∫

x∈X

[∫
y∈Y

|f(x, y)| dν
]
dµ <∞

(or with X and Y reversed).
Consequently, if any one of these conditions hold, then it is valid to switch

the order of integration when integrating f .

Proof. Immediate from Fubini’s theorem applied to the function |f |. �

Remark 11.8. Note that it is possible that
∫

y∈Y
|f(x, y)| dν = ∞ on a set of

measure zero in X, and still have integrability, and conversely.

12 Change of variables in Rn

This section will be devoted to completing the proof of the differential change
of variables formula, Theorem 6.5. As we noted in the remarks preceding that
theorem, it suffices to prove the following.

7 If you prefer, you can also prove this theorem using the Monotone Class Theorem instead.
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Lemma 12.1. Let g : X → Y be a diffeomorphism between open sets in Rn.
Then for all measurable sets A ⊆ X,

λ(g(A)) =
∫

g(A)

1 =
∫

A

|det Dg| .

Proof. We first begin with two simple reductions.

(I) It suffices to prove the lemma locally.

That is, suppose there exists an open cover of X, {Uα}, so that the
equation of the lemma holds for measurable A contained inside one of the
Uα. Then the equation actually holds for all measurable A ⊆ X.

Proof. By taking a countable subcover, we may assume there are only
countably many Ui. Define the disjoint measurable sets Ei = Ui \ (U1 ∪
· · · ∪ Ui−1), which cover X. Also define the two measures:

µ(A) = λ(g(A)) , ν(A) =
∫

A

|detDg| .

Now let A ⊆ X be any measurable set. We have A ∩ Ei ⊆ Ui, so µ(A ∩
Ei) = ν(A ∩ Ei) by hypothesis. Therefore,

µ(A) = µ
(⋃

i

A ∩ Ei

)
=

∑
i

µ(A ∩ Ei) =
∑

i

ν(A ∩ Ei) = ν(A) .

(II) Suppose the lemma holds for two diffeomorphisms g and h, and all mea-
surable sets. Then it holds for the composition diffeomorphism g ◦h (and
all measurable sets).

Proof. For any measurable A,∫
g(h(A))

1 =
∫

h(A)

|det Dg| =
∫

A

|(detDg) ◦h| · |det Dh| =
∫

A

|detD(g ◦h)| .

The second equality follows from Theorem 6.5 applied to the diffeomor-
phism h, which is valid once we know λ(h(B)) =

∫
B
|detDh| for all mea-

surable B.

We proceed to prove the lemma by induction, on the dimension n.

Base case n = 1. Cover X by a countable set of bounded intervals Ik in R. By
Reduction I, it suffices to prove the lemma for measurable sets contained
in each of the Ik individually. By the uniqueness of measures (Corollary
8.7), it also suffices to show µ = ν only for the intervals [a, b], (a, b), etc.
But this is just the Fundamental Theorem of Calculus:∫

g([a,b])

1 = |g(b)− g(a)| = |
∫ b

a

g′| =
∫ b

a

|g′| .
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(For the last equality, remember that the g′ must be either positive on all
of [a, b] or negative on all of [a, b]. If the interval is open or half-open, we
may not be able to apply the Fundamental Theorem, but the preceding
equation can still be obtained via a limiting procedure.)

Induction step. Locally (i.e. on a sufficiently small open set around each
point x ∈ X), g can always be factored8 as g = hk ◦ · · · ◦ h2 ◦ h1, where
each hi is a diffeomorphism and fixes one coordinate of Rn. By Reduction
I, it suffices to consider this local case only. By Reduction II, it suffices to
prove the lemma for each of the diffeomorphisms hi.

So suppose g fixes one coordinate. For convenience in notation, assume g
fixes the last coordinate: g(u, v) = (hv(u), v), for u ∈ Rn−1, v ∈ R, and hv

are functions on (open subsets of) Rn−1, in fact diffeomorphisms. Clearly
hv are one-to-one, and most importantly, det Dhv(u) = det Dg(u, v) 6= 0.

Next, let a measurable set A be given, and consider its projection V =
{v ∈ R : (u, v) ∈ A}, and its cross-section Uv = {u ∈ Rn−1 : (u, v) ∈ A}.
We now apply Fubini’s theorem and the induction hypothesis on hv:∫

g(A)

1 =
∫

v∈V

∫
hv(Uv)

1

=
∫

v∈V

∫
u∈Uv

|det Dhv(u)|

=
∫

v∈V

∫
u∈Uv

|det Dg(u, v)| =
∫

A

|det Dg| . �

13 Vector-valued integrals

This section, in short, is a remark that everything we have done so far generalizes
to vector-valued functions, the vectors being from real finite-dimensional spaces
(or C). These often occur in applications.

Given f : X → Rn measurable, let {ek} denote the standard basis vectors
in Rn, and {fk} the components of f with respect to this basis. Of course we
define ∫

f =
n∑

k=1

(∫
fk

)
ek ,

provided the integrals on the right exist. Generally, to say that
∫

X
f exists, we

do not allow any one of the components to be infinite, for this is usually not
useful when n ≥ 2.

It is not hard to see that f is measurable if and only if each fk is.
It follows immediately that this integral is linear, and hence, the definition

is independent of the basis, as it ought to be. That is, if {ek} is any basis of
Rn, the sum in the definition does not change.

8The proof of this fact can be found in [Munkres], but it is not difficult to prove it yourself.
Hint: Inverse Function Theorem.
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Since by our convention that the components of the integral are not allowed
to be infinite, it seems we do not need to define separately what it means for f
to be integrable. But we define it, because we want to take note of some facts
(admittedly they are not very interesting): f being integrable means

∫
‖f‖ <∞.

The norm can be arbitrary, for in Rn, every norm is equivalent: if ‖·‖1 and
‖·‖2 are any two given norms, then there always exist constants α, β > 0 such
that α‖·‖2 ≤ ‖·‖1 ≤ β‖·‖2. Thus being integrable in one norm implies integra-
bility in another norm. In particular, by using the norm ‖x‖Σ =

∑n
k=1|xk|, we

see that f is integrable if and only if its components fk are integrable.
We want to show that ‖

∫
f‖ ≤

∫
‖f‖; this basic inequality will enable us

to make estimates without having to separate components. As a start, this is
clearly true if f is a simple function, i.e. f =

∑m
j=1 ajχEj

for aj ∈ Rn. It is
also trivial if

∫
‖f‖ = ∞. To prove the inequality for the other f , we use the

following easy lemma.

Lemma 13.1. Let f : X → Rn be integrable. There exists a sequence of simple
functions ϕj : X → Rn converging pointwise to f , with

lim
j→∞

∫
‖ϕj − f‖ = 0 .

Proof. By equivalence of norms, it suffices to prove this only for the norm ‖·‖Σ
as defined above.

For each fk+, by the approximation theorem in R, there exists measurable
simple ϕk+

j increasing to fk+. Similarly for fk−. Let ϕk
j = ϕk+

j − ϕk−
j . Using

the Dominated Convergence Theorem applied to each component,

lim
j→∞

∫
‖ϕj − f‖Σ = lim

j→∞

∫ n∑
k=1

|ϕk
j − fk| = 0 .

We also note that by the Monotone Convergence Theorem, the ϕj satisfy
lim

j→∞

∫
ϕj =

∫
f. �

We finish our demonstration of the generalized triangle inequality. Let ϕj

as in the lemma. Then∥∥∥∫
ϕj

∥∥∥ ≤ ∫
‖ϕj‖ ≤

∫
‖f‖+

∫
‖ϕj − f‖ ,

so that

lim
j→∞

∥∥∥∫
ϕj

∥∥∥ =
∥∥∥ lim

j→∞

∫
ϕj

∥∥∥ =
∥∥∥∫

f
∥∥∥ ≤ ∫

‖f‖+ lim
j→∞

∫
‖ϕj − f‖ =

∫
‖f‖.

14 C∞
0 functions are dense in Lp(Rn)

This section is devoted to the result that the space of C∞
0 functions is dense in

Lp(Rn), which was discussed at the end of Section 7.
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Theorem 14.1. Let f : Rn → R ∈ Lp(Rn), 1 ≤ p < ∞. Then for any ε > 0,
there exists ψ ∈ C∞

0 such that

‖ψ − f‖p =
(∫

Rn

|ψ − f |p dλ
)1/p

< ε .

Our strategy for proving this theorem is straightforward. Since we already
know that the simple functions ϕ =

∑
i aiχEi

are dense in Lp, we should try
approximating χEi

by C∞
0 functions. Since C∞

0 functions are non-zero on com-
pact sets, it stands to reason that we should approximate the sets Ei by compact
sets Ki. If this can be done, then it suffices to construct the C∞

0 functions on
the sets Ki.

Our constructions start with this last step. You might even have seen some
of these constructions before.

Lemma 14.2. Let A be a compact rectangle in Rn. Then there exists φ ∈ C∞
0

which is positive on the interior of A and zero elsewhere.

Proof. Consider the infinitely differentiable function

f(x) =
{
e−1/x2

, x > 0
0 , x ≤ 0 .

If A = [0, 1], then φ(x) = f(x) · f(1− x) is the desired function of C∞
0 . (Draw

pictures!)
If A = [a1, b1]× · · · × [an, bn], then we let

φA(x) = φ

(
x1 − a1

b1 − a1

)
· · · φ

(
xn − an

bn − an

)
. �

Lemma 14.3. For any δ > 0, there exists an infinitely differentiable function
h : R → [0, 1] such that h(x) = 0 for x ≤ 0 and h(x) = 1 for x ≥ δ.

Proof. Take the function φ from Lemma 14.2 for the rectangle [0, δ], and let

h(x) =

∫ x

−∞ φ(t) dt∫∞
−∞ φ(t) dt

. �

Theorem 14.4. Let U be open, and K ⊂ U compact. Then there exists ψ ∈
C∞

0 which is positive on K and vanishes outside some other compact set L,
K ⊂ L ⊂ U .

Proof. For each x ∈ U , let Ax ⊂ U be a bounded open rectangle containing x,
whose closure Ax lies in U . The {Ax} together form an open cover of K. Take
a finite subcover {Axi

}. Then the compact rectangles {Axi
} also cover K.

From Lemma 14.2, obtain functions ψi ∈ C∞
0 that are positive on Axi and

vanish outside Axi . Let ψ =
∑

i ψi ∈ C∞
0 . ψ vanishes outside L =

⋃
iAxi ,

which is compact. �
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Corollary 14.5. In Theorem 14.4, it is even possible to require in addition that
0 ≤ ψ(x) ≤ 1 for all x ∈ Rn and ψ(x) = 1 for x ∈ K.

Proof. Let ψ be from Theorem 14.4. Since ψ is positive on the compact set K,
it has a positive minimum δ there. Take the function h of Lemma 14.3 for this
δ. The new candidate function is h ◦ ψ. �

As we have said, we must now approximate arbitrary Borel sets B ∈ B(Rn)
by compact sets. (We will also need approximation by open sets.) It turns out
that this part of the proof is purely topological, and generalizes to other metric
spaces X besides Rn. Henceforth we consider the more general case.

Let d denote the metric for the metric space X.

Theorem 14.6. Let (X,B(X), µ) be a finite measure space, and let B ∈ B(X).
For every ε > 0, there exists a closed set V and an open set U such that
V ⊆ B ⊆ U and µ(U \ V ) < ε.

Proof. Let M be the set of all B ∈ B(X) for which the statement is true. We
show that M is a sigma algebra containing all the open sets in X.

1. Let B ∈ M with V and U as above. Then V c open ⊇ Bc ⊇ U c closed,
and µ(V c)− µ(U c) < ε. This shows Bc ∈M.

2. Let Bn ∈M. Choose Vn and Un for each Bn such that µ(Un \Vn) < ε/2n.
Let U =

⋃
n Un which is open, and V =

⋃
n Vn, so that V ⊆

⋃
nBn ⊆ U .

Of course V is not necessarily closed, but WN =
⋃N

n=1 Vn are, and these
WN increase to V . Hence µ(V \WN ) → 0 as N → ∞, meaning that for
large enough N , µ(V \WN ) < ε.

Next, we have

U \WN = (U \ V ) ] (V \WN )

⊆
⋃

n
(Un \ Vn) ∪ (V \WN ) ,

µ(U \WN ) = µ(U \ V ) + µ(V \WN )

≤
∑

n
(Un \ Vn) + µ(V \WN ) < ε+ ε .

This shows that
⋃

nBn ∈M.

3. Let B be open, and A = Bc. Also let d(x,A) = infy∈A d(x, y) be the
distance from x ∈ X to A. Set Dn = {x ∈ X : d(x,A) ≥ 1/n}. Dn is
closed, because d(·, A) is a continuous function, and [1/n,∞] is closed.

Clearly d(x,A) ≥ 1/n > 0 implies x ∈ Ac = B, but since A is closed, the
converse is also true: for every x ∈ Ac = B, d(x,A) > 0. Obviously the
Dn are increasing, so we have just shown that they in fact increase to B.
Hence µ(B \Dn) < ε for large enough n. Thus B ∈M. �

44



The case that µ is not a finite measure is taken care of, as you would expect,
by taking limits like we did for sigma-finite measures in Section 8. But since
compact and open sets are involved, we need stronger hypotheses:

1. There exists {Kn} ↗ X, with Kn compact and µ(Kn) <∞.

2. There exists {Xn} ↗ X, with Xn open and µ(Xn) <∞.

It is easily seen that these properties are satisfied by X = Rn and the
Lebesgue measure λ, as well as many other “reasonable” measures µ on B(Rn).
We will discuss this more later.

We assume henceforth that X and µ have the properties just listed.

Theorem 14.7. Let B ∈ B(X) with µ(B) < ∞. For every ε > 0, there exists
a compact set V and an open set U such that K ⊆ B ⊆ U and µ(U \K) < ε.

Proof. It suffices to show that µ(U \B) < ε and µ(B \K) < ε separately.

Existence of K. Since {B ∩Kn} ↗ B, there exists some n such that µ(B)−
µ(B ∩Kn) < ε/2.

For this n, define the finite measure µKn
(E) = µ(E ∩Kn), for E ∈ B(X).

By Theorem 14.6, there are sets V ⊆ B ⊆ U , V closed, and µKn
(B \V ) ≤

µKn(U \ V ) < ε/2. Since Xn is compact, it is closed. Then K = V ∩Kn

is also closed, and hence compact, because it is contained in the compact
set Kn. We have,

µ(B \K) = µ(B)− µ(B ∩Kn) + µ(B ∩Kn)− µ(K)

= µ(B)− µ(B ∩Kn) + µKn(B)− µKn(V ) <
ε

2
+
ε

2
.

Existence of U . For every n, define the finite measure µXn(E) = µ(E ∩Xn),
for E ∈ B(X). By Theorem 14.6, there are sets Vn ⊆ B ⊆ Un, Un open,
and µXn

(Un \B) ≤ µXn
(Un \ Vn) < ε/2n.

Let U =
⋃

n Un ∩Xn ⊇ B. We have,

µ(U \B) ≤
∑

n
µ(Un ∩Xn \B) =

∑
n
µXn(Un \B) < ε . �

We return to the case of X = Rn.

Theorem 14.8. Let B ∈ B(Rn) with µ(B) <∞. For every ε > 0, there exists
ψ ∈ C∞

0 such that

‖ψ − χB‖p =
(∫

Rn

|ψ − χB |p dµ
)1/p

< ε .
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Proof. By Theorem 14.7, there is compact K and open U , K ⊆ B ⊆ U , µ(U \
K) < ε. From Corollary 14.5, there is ψ ∈ C∞

0 such that ψ = 1 on K, ψ = 0
outside U , and 0 ≤ ψ ≤ 1. Then∫

Rn

|ψ − χB |p =
∫

Rn\U
0 +

∫
U\B

ψp +
∫

B\K
(1− ψ)p +

∫
K

0

≤ µ(U \B) + µ(B \K)
= µ(U)− µ(B) + µ(B)− µ(K)
< ε . �

Proof of Theorem 14.1. Let ϕ =
∑

i aiχEi
, ai 6= 0 be a simple function such

that ‖ϕ − f‖p < ε/2. Let ψi ∈ C∞
0 such that ‖ψi − χEi‖p < ε/2|ai|. (Note

that Ei must have finite measure; otherwise ϕ would not be integrable.) Let
ψ =

∑
i aiψi. Then (Minkowski’s inequality),

‖f − ψ‖p ≤ ‖f − ϕ‖p + ‖ϕ− ψ‖p

≤ ‖f − ϕ‖p +
∑

i

|ai| · ‖χEi
− ψi‖p < ε . �

Actually, even the last part of theorem can be generalized to spaces other
than Rn: instead of infinitely differentiable functions with compact support, we
consider continuous functions, defined on the metric space X, with compact
support. In this case, a topological argument must be found to replace Lemma
14.2. This is easy:

Lemma 14.9. Let A be any compact set in X. Then there exists a continuous
function φ : X → R which is positive on the interior of A and zero elsewhere.

Proof. Let C = X \ interiorA, so C is closed. Then φ(x) = d(x,C) works.
(d(x,C) was defined in the proof of Theorem 14.6.) �

The proof of Theorem 14.4 goes through verbatim for metric spaces X,
provided that X is locally compact. This means: given any x ∈ X and an open
neighborhood U of x, there exists another open neighborhood V of x, such that
V is compact and V ⊆ U .

Finally, we need to consider when properties (1) and (2) (in the remarks
preceding Theorem 14.7) are satisfied. These properties are somewhat awkward
to state, so we will introduce some new conditions instead.

Definition 14.1. A measure µ on a topological space X is locally finite if for
each x ∈ X, there is an open neighborhood U of x such that µ(U) <∞.

It is easily seen that when µ is locally finite, then µ(K) < ∞ for every
compact set K.

Definition 14.2. A topological space X is strongly sigma-compact if there
exists a sequence of open sets Xn with compact closure, and {Xn} ↗ X.
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IfX is strongly sigma-compact, and µ is locally finite, then properties (1) and
(2) are automatically satisfied. It is even true that strong sigma-compactness
implies local compactness in a metric space. (The proof requires some topology
and is left as an exercise.) Then we have the following theorem:

Theorem 14.10. Let X be a strongly sigma-compact metric space, and µ be
any locally finite measure on B(X). Then the space of continuous functions with
compact support is dense in Lp(X,B(X), µ), 1 ≤ p <∞.

15 Other examples of measures

Since so far we have chiefly worked only in Rn with Lebesgue measure, it should
be of interest to give a few more useful examples of measures.

k-dimensional volume of a k-dimensional manifold

A manifold is a generalization of curves and surfaces to higher dimensions, and
sometimes even to spaces other than Rn. But here we shall concentrate on differ-
entiable manifolds inside Rn; the theory is elucidated in [Spivak2] or [Munkres].
Here we give a definition of the k-dimensional volume for k-dimensional mani-
folds which does not require those dreaded “partitions of unity”.

Suppose a k-dimensional manifold M ⊆ Rn is covered by a single coordinate
chart α : U →M , U ⊆ Rk open. Let Dα denote the n-by-k matrix

Dα =
[
dα

dt1

dα

dt2
. . .

dα

dtk

]
.

(More precisely, each vector dα
dti

is represented by a column vector in the standard
basis of Rn. Actually our definition works using any orthonormal basis also.)

Define, for any vectors v1, . . . , vk ∈ Rn (again represented in an orthnormal
basis):

V(v1, . . . , vk) =
√

det
[
v1 v2 . . . vk

]tr [
v1 v2 . . . vk

]
=

√
det [vi · vj ]i,j=1,...,k ,

This is the k-dimensional volume of a k-dimensional parallelopiped spanned by
the vectors v1, . . . , vk in Rn. One easily shows that this volume is invariant under
orthogonal transformations, and that it agrees with the usual k-dimensional
volume (as defined by the Lebesgue measure) when the parallelopiped lies in
the subspace Rk × 0 ⊆ Rn.

The k-dimensional volume of any E ∈ B(M) is defined as:

ν(E) =
∫

α−1(E)

V(Dα) dλ .

(Since α is continuous, α−1(E) ∈ B(Rk).)
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The integrand, of course, is supposed to represent “infinitesimal” elements of
surface area (k-dimensional volume), or approximations of the surface area of E
by polygons that are “close” to E. As indicated by the quotation marks, these
assertions about “surface area” are completely non-rigorous, and we won’t be-
labour to prove them, since the equation above is our definition of k-dimensional
volume. But it should be pointed out that there are better theories of k-
dimensional volume available, which are intrinsic to the sets being measured,
instead of our computational theory. (I don’t know these other theories well
enough though.)

Back to our definitions. If M is not covered by a single coordinate chart,
but more than one, say αi : Ui → M , i = 1, 2, . . . , then partition M with
V1 = α1(U1), Vi = αi(Ui) \ Vi−1, and define

ν(E) =
∑

i

∫
α−1

i (E∩Vi)

V(Dα) dλ .

It is left as an exercise to show that ν(E) is well-defined: it is independent of
the coordinate charts αi used for M .

Finally, the scalar integral of f : M → R over M is simply∫
M

f dν .

And the integral of a differential form ω on an oriented manifold M is∫
p∈M

ω
(
p ;T (p)

)
dν ,

where T (p) is an orthonormal frame of the tangent space of M at p, oriented
according to the given orientation of M . (If you don’t know what I’m talking
about, just ignore this definition — essentially it generalizes the line and surface
integrals in calculus.)

Again it is not hard to show that the formulae I have given are exactly
equivalent to the classical ones for evaluating scalar integrals and integrals of
differential forms, which are of course needed for actual computations. But there
are several advantages to our new definitions. First is that they are elegant: they
are mostly coordinate-free, and all the different integrals studied in calculus have
been unified to the Lebesgue integral by employing different measures. In turn,
this means that the nice properties and convergence theorems we have proven
all carry over to integrals on manifolds.

For example, everybody “knows” that on a sphere, any circular arc C has
“measure zero”, and so may be ignored when integrating over the sphere. To
prove this rigorously using our definitions, we only have to remark that ν(C) =
0, since λ(α−1(C)) = 0 for a coordinate chart α for the sphere.

Stieltjes measure

The definition of the Stieltjes measure is best motivated by probability theory.
Suppose we have a random variable Z with distribution µ, and the cumulative
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distribution function F : R → [0, 1] — by definition, they satisfy F (z) = Pr[Z ≤
z] = µ

(
[−∞, z]

)
. It follows that F is (non-strict) increasing, and µ((a, b]) =

F (b)− F (a).
The idea here is to try to reverse this procedure: given any increasing func-

tion F , can we construct a measure µ on B(R) that assigns, to any interval
(a, b], a “length” of F (b)− F (a)?

Actually we will need to impose some conditions on F first. Since F is in-
creasing, it always has only a countable number of discontinuities, and these
discontinuities must all be jump discontinuities. At these jumps, we will insist
that F is right-continuous, i.e. limx↘a F (x) = F (a). Otherwise, taking count-
able limits may fail: for example, if at the point a, F is left-continuous instead
of right-continuous, then

µ
(
(a, b]

)
= F (b)− F (a)
6= lim

x↘a
(F (b)− F (x))

= lim
x↘a

µ
(
(a, x]

)
.

(Of course, the preference of “right” over “left” comes from our convention that
we used intervals (a, b] that are open on the left and closed on the right.)

We will also insist that F (x) <∞ for x 6= −∞,+∞, so that the subtraction
F (b)−F (a) makes sense. However, it should be allowed that, say, F (−∞) = −∞
(and F (x) does not have to be in [0, 1] either). This allows sigma-finite measures
to be constructed.

With the necessary conditions now stated, we can begin the construction of
µ, which is not much different from the construction of the Lebesgue measure
on R — not surprising, since F (x) = x is exactly the Lebesgue measure on R.

First, it is easily checked, by drawing pictures of the intervals (a, b], that
they actually form a semi-algebra on R. (Just ignore the point −∞ for now.)
The measure µ on the generated algebra A is defined in the obvious way, and
it follows from the same arguments as in Section 9 that µ is finitely additive.

Countable additivity requires the typical approximation arguments. Suppose
that we have Jn ∈ A with infinite disjoint union I ∈ A. By monotonicity we
automatically have

∑∞
n=1 µ(Jn) ≤ µ(I), so we only have to prove the other

inequality. We can assume that Jn are simple intervals (an, bn], instead of finite
disjoint unions of intervals. Also assume, for now, that I is the finite interval
(a, b].

Since F is right-continuous, for every ε > 0, there exists δ > 0 such that

0 ≤ F (b)− F (a) < F (b)− F (a+ δ) + ε .

Also there exists δn > 0 such that

0 ≤ F (bn + δn)− F (an) < F (bn)− F (an) +
ε

2n
.

There exists a finite set n1, . . . , nk such that (a+ δ, b] ⊆
⋃k

i=1(ani
, bni

+ δni
],
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since the open sets (an, bn + δ) cover the compact set [a+ δ, b]. Therefore,

F (b)− F (a+ δ) ≤
k∑

i=1

F (bni + δni)− F (ani)

≤
∞∑

n=1

F (bn + δn)− F (an) ,

F (b)− F (a) ≤ 2ε+
∞∑

n=1

F (bn)− F (an) .

and we take ε→ 0.
Finally, the proof for general I = I1 ] · · · ] Ik ∈ A just follows from finite

additivity and that the finite sum of limits equals the limit of the finite sum.
Infinite intervals are handled in the same way as in Section 9.

Thus using the theorems of Section 8, µ can thereby be extended to a measure
on B(R). This is called the Stieltjes measure on R, and the integral∫

R
g dµ =

∫
R
g dF

is the Stieltjes integral, and it generalizes the Riemann-Stieltjes integral that
is sometimes studied in real analysis courses. (The Riemann-Stieltjes integral
is defined by taking limits of Riemann-like sums

∑
i g(ξi) · (F (xi) − F (xi−1)).

Showing this limit exists requires some effort, however.)
Of course, if F is differentiable, the Stieltjes integral just reduces to∫

R
g dF =

∫
R
g · F ′ dλ .

Lastly, we should mention that if we admit signed measures, which are dif-
ferences of two (positive) measures, then the condition that F be increasing can
even be relaxed. We will not pursue that theory here though.

16 Egorov’s Theorem

The following theorem does not really belong in a first course, but it is quite a
surprising and interesting result, and I want to record its proof.

Theorem 16.1 (Egorov). Let (X,µ) be a measure space of finite measure, and
fn : X → R be a sequence of measurable functions convergent almost everywhere
to f . Then given any ε > 0, there exists a measurable subset A ⊆ X such that
µ(X \A) < ε and the sequence fn converges uniformly to f on A.

Proof. First define

Bn,m =
∞⋂

k=n

[
|f − fk| < 1

m

]
.
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Fix m. For most x ∈ X, fn(x) converges to f(x), so there exists n such that
|fk(x)−f(x)| < 1/m for all k ≥ n, so x ∈ Bn,m. Thus we see {Bn,m}n ↗ X \C
(C is some set of measure zero).

We construct the set A inductively as follows. Set A0 = X \ C. For each
m > 0, since {Am−1 ∩Bn,m}n ↗ Am−1, we have µ(Am−1 \ Bn,m) → 0, so we
can choose n(m) such that

µ(Am−1 \Bn(m),m) <
ε

2m
.

Furthermore set
Am = Am−1 ∩Bn(m),m .

Since Am ] (Am−1 \Bn(m),m) = Am−1, we have

µ(Am) > µ(Am−1)−
ε

2m

> µ(X)− ε

2
− ε

4
− · · · − ε

2m
≥ µ(X)− ε .

The sets Am are decreasing, so letting

A =
∞⋂

m=1

Am =
∞⋂

m=1

Bn(m),m ,

we have µ(A) ≥ µ(X)− ε, or µ(X \A) ≤ ε. Finally, for x ∈ A, x ∈ Bn(m),m for
all m, showing that |f(x) − fk(x)| < 1/m whenever k ≥ n(m). This condition
is uniform for all x ∈ A. �

17 Exercises

I have been suggested to provide some more exercises to this text. Here they
are.

1. In Rn with Lebesgue measure, find an uncountable set of measure zero.

2. Show that if f : Rn → R is continuous and equal to zero almost everywhere,
then f is in fact equal to zero everywhere.

3. Find a sequence of integrable functions fn such that fn(x) → 0 for every
x but

∫
fn →∞.

4. Let f ∈ L1(Rn), 1 ≤ p <∞. Compute the limits

lim
h→0

∫
|f(x+ h)− f(x)|p dx , lim

‖h‖→∞

∫
|f(x+ h)− f(x)|p dx .

5. Let f ∈ L1(Rn). Show that

lim
‖y‖→∞

∫
Rn

f(x)ei〈x,y〉dx = 0 .
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6. Let fn ∈ Lp, 1 < p < ∞ be a sequence of functions converging to f ∈ Lp

almost everywhere, and suppose there is a constant M such that ‖fn‖p ≤
M for all n. Then for each g ∈ Lq,∫

fg = lim
n→∞

∫
fng .

Hint: Use Egovov’s Theorem and a density argument. Is this also true for
p = 1?

7. Let fn ∈ Lp, 1 ≤ p < ∞ be a sequence of functions converging f ∈ Lep

almost everywhere. Prove that fn converges to f in the Lep norm if and
only if ‖fn‖p → ‖f‖p.

8. Let f ∈ Lp(R), g ∈ Lq(R), with 1 ≤ p, q ≤ ∞. Show that the function
F (x) =

∫ x

0
f(t) dt is defined and continuous for all x ∈ R, and that the

function h(x) = (|x| + 1)−aF (x)g(x) is in L1(R), the constant a being
larger than 2− 1

p −
1
q .

9. Let f ∈ L1(R). Show that the series

∞∑
n=1

1√
n
f(x

√
n)

is convergent for almost all x ∈ R.

10. Let f be in L1(R), and g be a continuous periodic function with period 1.
Show that

lim
n→∞

∫ ∞

−∞
f(x)g(nx) dx =

∫ ∞

−∞
f(x) dx

∫ 1

0

g(y) dy .

18 Bibliography

The following outlines the prerequesites for this article. (Although I’m not
suggesting that you must first know everything here before you read this article;
you could be learning these as you go along.)

First, you need a respectable first-year calculus course, dealing with limits
rigorously. The course I took used [Spivak1], possibly the best math book ever.

You probably should be at least somewhat familiar with multi-dimensional
calculus, if only to have a motivation for the theorems we prove (e.g. Fu-
bini’s Theorem, Change of Variables). I learned multi-dimensional calculus
from [Spivak2] and [Munkres]. As you’d expect, these are theoretical books,
and not very practical, but we will need a few elementary results that these
books prove.

Point-set topology is also introduced in the study of multi-dimensional cal-
culus. We will not need a deep understanding of that subject here, but just the
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basic definitions and facts about open sets, closed sets, compact sets, continous
maps between topological spaces, and metric spaces. I don’t have particular
references for these, as it has become popular to learn topology with Moore’s
method (as I have done), where you are given lists of theorems that you are
supposed to prove alone.

The last book, [Rosenthal], (not a prerequesite) is what I mostly referred
to while writing up Section 8. It contains applications to probability of the
abstract measure stuff we do here, and it is not overly abstract. I recommend
it, and it’s cheap too.

I don’t mention any of the standard real analysis or measure theory books
here, since I don’t have them handy, and this text is supposed to supplant a fair
portion of these books anyway. But surely you can find references elsewhere.

References

[Spivak1] Michael Spivak, Calculus (3rd ed.). Publish or Perish, 1994; ISBN
0-914098-89-6.

[Spivak2] Michael Spivak, Calculus on Manifolds. Perseus, 1965; ISBN 0-
8053-9021-9.

[Munkres] James R. Munkres, Analysis on Manifolds. Westview Press, 1991;
ISBN 0-201-51035-9.

[Rosenthal] Jeffrey S. Rosenthal, A First Look at Rigorous Probability Theory.
World Scientific, 2000; ISBN 981-02-4303-0.

53


	Motivation for the Lebesgue integral
	Basic measure theory
	Measurable functions
	Definition of the Lebesgue Integral
	Convergence theorems
	Some Results of Integration Theory
	Lp spaces
	Construction of Lebesgue Measure
	Lebesgue Measure in Rn
	Riemann integrability implies Lebesgue integrability
	Product measures and Fubini's Theorem
	Change of variables in Rn
	Vector-valued integrals
	C0 functions are dense in Lp(Rn)
	Other examples of measures
	Egorov's Theorem
	Exercises
	Bibliography

